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Preface 

In this second edition the section “Weak Derivatives and Weak Solutions” 
was removed to Chapter 5 to be together with advanced concepts such as 
discontinuous solutions of nonlinear conservation laws. The figures were re- 
arranged, many points in the text were improved and the errors in the first 
edit ion were corrected. 

Many thanks are due to G. Barbatis for his comments. Also many thanks 
to our graduate students over several semesters who worked through the text 
and the exercises making useful suggestions. 

The second author would like to thank National Research Fund in Bulgaria 
for the support by the Grant MM 904/99. 

Special thanks are due to Dr J.T. Lu, Scientific Editor of WSPC, for the 
continuous support, advice and active interest in the development of the sec- 
ond edition. 

September, 2003 Ioannis P. Stavroulakis, 
Stepan A. Tersian 
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Preface to the First Edit ion 

This textbook is a self-contained introduction to Partial Differential Equa- 
tions (PDEs). It is designed for undergraduate and first year graduate students 
who are mathematics, physics, engineering or, in general, science majors. 

The goal is to give an introduction to the basic equations of mathematical 
physics and the properties of their solutions, based on classical calculus and 
ordinary differential equations. Advanced concepts such as weak solutions and 
discontinuous solutions of nonlinear conservation laws are also considered. 

Although much of the material contained in this book can be found in 
standard textbooks, the treatment here is reduced to the following features: 

0 To consider first and second order linear classical PDEs, as well as to 
present some ideas for nonlinear equations. 

0 To give explicit formulae and derive properties of solutions for problems 
with homogeneous and inhomogeneous equations; without boundaries 
and with boundaries. To consider the one dimensional spatial case before 
going on to two and three dimensional cases. 

0 To illustrate the effects for different problems with model examples: To 
use Mathematics software products as Mathematzca and MAPLE in 
ScientifiCWorkPlacE in both graphical and computational aspects; To 
give a number of exercises completing the explanation to some advanced 
problems. 

The book consists of eight Chapters, each one divided into several sections. 
In Chapter I we present the theory of first-order PDEs, linear, quasilinear, 

nonlinear, the method of characteristics and the Cauchy problem. In Chapter 
I1 we give the classification of second-order PDEs in two variables based on the 
method of characteristics. A classification of almost-linear second-order PDEs 
in n-variables is also given. Chapter I11 is concerned with the one dimensional 
wave equation on the whole line, half-line and the mixed problem using the 
reflection method. The inhomogeneous equation as well as weak derivatives 

ix 



X Preface to the First Edition 

and weak solutions of the wave equation are also discussed. In Chapter IV 
the one dimensional diffusion equation is presented. The Maximum-minimum 
principle, the Poisson formula with applications and the reflection method 
are given. Chapter V contains an introduction to the theory of shock waves 
and conservation laws. Burgers’ equation and Hopf-Cole transformation are 
discussed. The notion of weak solutions, Riemann problem, discontionuous 
solutions and Rankine-Hugoniot condition are considered. In Chapter VI the 
Laplace equation on the plane and space is considered. Maximum principles, 
the mean value property, Green’s identities and the representation formulae 
are given. Green’s functions for the half-space and sphere are discussed, as 
well as Harnack’s inequalities and theorems. In Chapter VII some basic the- 
orems on Fourier series and orthogonal systems are given. Fourier methods 
for the wave, diffusion and Laplace equations are also considered. Finally in 
Chapter VIII two and three dimensional wave and diffusion equations are con- 
sidered. Kirchoff’s formula and Huygens’ principle as well as Fourier method 
are presented . 

Model examples are given illustrated by software products as Muthematicu 
and MAPLE in ScientifiCWorkPlacE. We also present the programs in Math- 
ematica for those examples. For further details in Muthemutica the reader is 
referred to Wolfram [49], Ross [34] and Vvedensky [47]. 

A special word of gratitude goes to N. Artemiadis, G. Dassios, K. Gopal- 
samy, M.K. Grammatikopoulos, M.R. Grossinho, E. Ifantis, M. Kon, G. Ladas, 
N. Popivanov, P. Popivanov, Y.G. Sficas and P. Siafarikas who reviewed the 
book and offered helpful comments and valuable suggestions for its improve- 
ment. Many thanks are also due to G. Georgiou, J.R. Graef, G. Karakostas, 
K. Kyriaki, Th. Kyventidis, A. Raptis, Th. Vidalis for their comments and 
to T. Kiguradze, G. Kvinikadze, J.H. Shen for their extensive help with the 
proofreading of the material. The help of S.I. Biltchev, J. Chaparova and M. 
Karaivanova is gratefully acknowledged. 

Our deep appreciation to Calouste Gulbenkian Foundation and to the 
Greek Ministry of National Economy. 

Special thanks are due to Ms S.H. Gan, Editor of WSPC, for her contin- 
uous support, advice and active interest in the development of this project. 

June, 1999 Ioannis P. Stavroulakis, 
Stepan A. Tersian 
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Chapter 1 

First-order Partial 
Differential Equations 

1.1 Introduction 

Let u = u(q, ..., 2,) be a function of n independent variables z1, ..., 2,. A 
Partial Differential Equation (PDE for short) is an equation that contains 
the independent variables q , ... , Xn, the dependent variable or the unknown 
function u and its partial derivatives up to some order. It has the form 

where F is a given function and uXj  = a u / a X j ,  uxCixj = a 2 U / a X ; a z j ,  i , j  = 
1, ..., n are the partial derivatives of u. The order of a PDE is the order of the 
highest derivative which appears in the equation. 

A set R in the n-dimensional Euclidean space Rn is called a domain if 
it is an open and connected set. A region is a set consisting of a domain 
plus, perhaps, some or all of its boundary points. We denote by C(R)  the 
space of continuous functions in R and by Ck (a) the space of continuously 
differentiable functions up to the order k in R. Suppose (1.1) is a PDE of order 
m. By a solution of the equation (1.1) we mean a function u E C" ($2) such 
that the substitution of u and its derivatives up to the order m in (1.1) makes 
it an identity in (XI, ..., xn) E R. 

1 



2 Partial Differential Equations 

Some examples of PDEs ( all of which occur in Physics ) are: 

1. u, + uy = 0 ( transport equation ) 

2. u, + uuy = 0 ( shock waves ) 

3. ui + ut = 1 ( eikonal equation ) 

4. utt - u,, = 0 ( wave equation ) 

5. ut - u,, = 0 ( heat or diffusion equation ) 

6 .  u,, + uyy = 0 ( Laplace equation ) 

7. u,,,, + 2uxxYy + uyyyy = 0 ( biharmonic equation ) 

8. utt - u,, + u3 = 0 ( wave with interaction ) 

9. ut + cuu, = EU,, ( Burgers' equation ) 

10. ut + mu, + u,,, = 0 ( Korteweg-de Vries equation ) 

11. (1 - u:) u,, + 2u,utu,t - ( 1  + u:) utt = 0 ( Born-Infeld equation ) 

12. u:y - u,,uyy = f (z, y) ( Monge-Amphre equation ) . 

Each one of these equations has two independent variables denoted either 
by z,y or z , t .  Equations 1, 2 and 3 are of first-order. Equations numbered 
as 4, 5, 6, 8 , 9, 11 and 12 are of second-order; 10 is of third-order; 7 is of 
fourth-order. Examples 2,  3, 8, 9, 10, 11 and 12 are distinguished from the 
others in that they are not "linear". 

Linearity means the following. The correspondence 

defines an operator L. The operator L is said to be linear iff (if and only if ) 

L ( C l U l  + c2u2) = ClLUl + c2Lu2 (1.2) 
for any functions u1, u2 and any constants c1, c2 E R. 

The operator L is nonlinear if (1.2) is not satisfied. For instance, the 
equation 2 is nonlinear because (u1 + u2)(ul + u ~ ) ~  = ululy + ~ 2 ~ 2 ~  is not 
satisfied for any functions u1 and u2. 

Nonlinearity may be of various types. An equation is said to be almost- 
linear if it is of the form Lu+f ( x , u )  = 0,  where f (2, u)  is a nonlinear function f
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with respect to u. An equation is said to be quasi-linear if it is linear with 
respect to highest order derivatives and fully-nonlinear if it is nonlinear with 
respect to highest order derivatives. For instance, the equation 8 is almost- 
linear, the equations 2, 9, 10 and 11 are quasi-linear, while the equations 3 and 
12 are fully-nonlinear. 

The general form of a first-order PDE for a function u = u ( x 1 ,  ..., x,) of n 
independent variables ( 2 1 ,  ..., x, ) is 

where F is a given function and uxj  = a u / d x j ,  j = 1, ..,, n are the partial 
derivatives of the unknown function u. In the case of two independent variables 
x , y  the above form is 

Equations of this type occur in the calculus of variations, geometrical op- 
tics, particle mechanics, etc. The philosophy of treatment of first-order PDEs 
is in many ways different from that of the more commonly encountered second- 
order PDEs appearing in physics and science. First-order PDEs may always 
be reduced to a system of Ordinary Differential Equations (ODES for short ). 

If the operator L is linear then the equation 

Lu = 0 

is called a linear homogeneous equation, while 

Lu= f, 

where f # 0, is called a linear inhomogeneous equation. It is clear that Exam- 
ples 1, 4, 5, 6 and 7 are linear homogeneous equations. 

A partial differential equation subject to certain conditions in the form 
of initial or boundary conditions is known as an initial value problem (IVP 
for short) or boundary value problem (BVP for short). The initial conditions, 
also known as Cauchy conditions, are the values of the unknown function u 
and of an appropriate number of its derivatives at the initial point, while the 
boundary conditions are the values on the boundary dD of the domain D under 
consideration. The three most important kinds of boundary conditions are: 

(i) Dirichlet conditions or boundary conditions of the first kind are the 
values of u prescribed at each point of the boundary dD.  
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(ii) Neumann conditions or boundary conditions of the second kind are the 
values of the normal derivative of u prescribed at each point of the boundary 
dD. 

(iii) Robin conditions or mixed boundary conditions or boundary conditions 
of the third kind are the values of a linear combination of u and its normal 
derivative prescribed at each point of the boundary dD.  

In this textbook we concentrate on problems for first-order PDEs (linear, 
quasi-linear and fully-nonlinear ) , the three classical linear second-order PDEs 
(wave, heat or diffusion and Laplace equations) as well as the Burgers’ equa- 
tion. We first consider one spatial dimension before going on two and three 
dimensions; problems without boundaries before problems with boundary con- 
ditions; homogeneous equations before inhomogeneous equations. 

1.2 Linear First-order Equations 
A linear first-order PDE in two independent variables z,y and the dependent 
variable u has the form 

4 2 ,  Y)UZ + b ( z ,  Y)U, + 4 2 ,  Y)U = d (z, Y) , (1.3) 

where a,  b, c, d E C1 (a), R c R2 and a2 + b2 # 0, that is, at least one of the 
coefficients a or b does not vanish on R. If we consider the differential operator 

a a  
ax a y  

L := a- + b- + C, 

then equation (1.3) is written as 

LU = d ,  

while the homogeneous equation corresponding to (1.3) is 

Lu = 0. (1.4) 

By a general solution of (1.4) we mean a relation involving an arbitrary 
function such that for any choice of the arbitrary function we derive a solution 
of equation (1.4). If U h  denotes the general solution of the homogeneous equa- 
tion and up a particular solution of the inhomogeneous equation (1.3), then 
the general solution of (1.3) is 
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Indeed, (1.5) is a solution of equation (1,3), since by the linearity property 
of the operator L ,  we have 

Conversely, if w is a solution of (1.3), then we will show that it is of the 
form (1.5). Take the function w - up. Then 

L (v - up) = Lv - Lu?, = d - d = 0, 

that is, v - up is a solution of the homogeneous equation (1.4) and therefore 
U h  = w - up for some choice of the arbitrary function which appears in uh. 

Thus w = U h  f up. 

Example 1.1. Find the general solution of the equation 

d U  - + u = e -xc .  
d X  

Solution. The corresponding homogeneous equation is 

Integrating with respect to x (holding y as a constant), we have 

where f is an arbitrary continuously differentiable function. This is the general 
solution of (1.7). Observe that a particular solution of (1.6) is 

up = x e - x c .  

Thus the general solution of the inhomogeneous equation (1.6) is 

u (x, y) = e-”f (y) + m P ,  

where f is an arbitrary continuously differentiable function. 

from (1.6), (considering y as a constant), we derive the solution 
We could also work as in the case of ordinary differential equations. Thus, 
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u ( x , ~ )  = e-Jdx  f (9)  + e-xeSdxdx [ J  I 
3 = e-x [ f (y) + 1 e-"eXdz 

= e-" f (y)-+ xe-", 

that is, the same result. Observe here that f is an arbitrary continuously 
differentiable function of y (instead of an arbitrary constant C that we have in 
the case of ODES). 

Next we will derive the form of the general solution of the linear first-order 
homogeneous equation 

a ( z ,  Y ) U X  + b(x,y)uy + c(x, Y)U = 0, (1.8) 
where a, b, c E C1 (a) , s2 c R2. Consider the transformation 

with Jacobian 

Since 

the equation (1.8) is transformed into the following equation 

(atx + Ky) UE + ( ~ 7 ~  + bTy) U, + cu = 0, (1.9) 
where the coefficients are now expressed in terms of the new variables t ,  r).  Our 
aim is to simplify equation (1.9), by choosing r )  such that 

ar), + bqy = 0. (1.10) 

This is accomplished as follows. Assume, without loss of generality, that 
a (z, y) # 0 and consider the ordinary differential equation 
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(1.11) 

Let the general solution of equation (1.11) be 

r )  (w) = K ,  (1.12) 

where qy # 0 and K is an arbitrary constant. Then, for this function rl (x, y) 

and, in view of (l.ll), equation (1.10) is satisfied. 

called characteristic curves of the differential equation (1.8). 
The one-parameter family of curves (1.12) defined by equation (1.11) are 

Now choose 

Then 

and the transformation constructed in this manner, that is 

where 7 (2, y) = K is the general solution of the ODE (l.ll), is invertible. 
The equation (1.9) reduces to the following simple form 

a (t ,  r l )  u< + c (<, r l )  u = 0, (1.13) 

called the canonical form for the linear equation (1.8), and it can be solved as 
an ODE (cf. Example 1.1). 

In the case of the inhomogeneous equation (1.3) we derive the following 
form 

(1.14) 
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Example 1.2. Find the general solution of the linear equation 

2 2 xux-yuy+y u = y  , x,y#O. 

Solution. The coefficients are 

a = x ,  b = - y ,  c = y 2 ,  d = y 2 .  

Consider the homogeneous equation 

2 xu, - yuy + y u = 0. 

The equation (1.11) is 

(1.15) 

(1.16) 

and its general solution (which gives the family of the characteristic curves) is 

xy = K ,  K a constant. 

An appropriate transformation is 

since the Jacobian 

The coefficients a and c with respect to < and 7 become 

and therefore equation (1.13) yields 

This is the canonical form of the homogeneous equation (1.16). The general 
solution of the last equation is 
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and therefore the general solution to equation (1.16) is 

Y2 

Observe that the constant 1 is a particular solution of equation (1.15) and 
therefore the general solution of the inhomogeneous equation (1.15) is given 
by the function 

(1.17) 

where f is an arbitrary continuously differentiable function. 

tion (1-15) and using the same transformation, equation (1.14) yields 
Note that we could consider from the beginning the inhomogeneous equa- 

with general solution 

U 

Thus the general solution of equation (1.15) is given by (1.17). 



10 Partial Differential Equations 

Exercises 
1. Find the general solutions of the following equations: 
(a) X U ,  + y u ,  = nu (Euler’s relation) 
(b) X U ,  + y u ,  = xn 
(c) au, + buy + c21= d ,  where a ,  b, c, d constants and u2 + b2 # 0. 

2. (Extension of the linear equation in n-variables). Consider the equation 
n 

z a j  (21, . . . ,X,)UXj = 0. 
j=1  

The characteristic system 

dxn ... - - - d X l  -- - 
a1 an 

describes the family of the characteristic curves. If 

u ~ ( z I ,  ..., 2,) = ~ 1 ,  ...,un-l ( 5 1 ,  e . . ,  x,) = cn-1 

are n - 1 functionally independent solutions of the characteristic system, then 
the general solution is given by 

u = f ( ~ 1 ,  ..., u n - 1 )  , 

The functions u 1  (XI, .. ., Z n )  , ..., u n - 1  (XI, ..., xn)  are functionally independent 
if 

= n - 1 .  - 1  Ul,Xl  * * U1,xn  

rank [ ; 
U n - l , x l  * * * U n - l , x n  

In the case of the linear equation 
n 

the general solution is given by 

where v is a particular solution. 

for 

3. Find the general solutions of the equations 
(a) (y - z )  u, + ( z  - x )  u, + ( x  - y) u, = 0. 

(c) q u ,  + a 2 u y  + a 3 u ,  +cu = 0 ,  where a l ,  a 2 ,  a 3 ,  c are constants and ai # 0 
some i = 1,2 ,3 .  

(b) x (9 - 2) U X  + y ( z  - X) u p  + z ( X  - 9) U ,  = 0. 
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1.3 The Cauchy Problem for First-order Quasi- 
linear Equations 

We consider the case of the quasi-linear equation 

(1.18) 

Quasi-linearity means that the operator 

is nonlinear, but it is linear with respect to the derivatives (uz,  uy). For in- 
stance, the equation 2 in the Introduction is nonlinear, but it is quasi-linear 
because 

for any functions u, 211, 212 and any constants c1, c2. 
A solution of (1.18) defines an integral surface S : u = u (x, y)  in the Eu- 

clidean (x, y, u) space. The normal to this surface at the point P(x ,  y, u) is the 
vector ??p (uz,uy,-l) andleti$ bethevector (a(z,y,u),b(z,y,u),c(x,y,u)

Then the equation (1.18) can be interpreted as the condition that at each 
point P of the integral surface S the vector G is tangent to the surface S. 

Suppose that P f R, where R is a domain in the (x, y, u) space and consider 
the vector field V = {G : P E R}. We define as characteristic curwes 

the integral curves in R of the characteristic system 

The last system can be rewritten shortly as 

(1.19) 
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which is an autonomous system of ODEs. Assuming a ,  b and c to be of class 
C1 (R) by the existence and uniqueness theorem for ODEs it follows that 
through each point Po (xo, yo, U O )  E S-2 passes exactly one characteristic curve 
r0 * 

There is a 2-parameter family of characteristic curves in R of (1.19) and the 
curves do not change by translating the independent variable t. Note that if a 
surface S : u = u (x, y) is a union of characteristic curves, then S is an integral 
surface and conversely every integral surface S is a union of characteristic 
curves. 

Theorem 1.1. Let the characteristic curve 

x = xo( t )  

u = uo(t) 
ro : { Y = Y o ( t )  t E [ U , b ] )  

intersect the integral surface S at the point PO (xo, yo, uo) E R. Then ro c S 
which means 

uo ( t )  = u (xo ( t )  , Yo ( t ) )  > a F t F b. 

Proof. Let U ( t )  = uo ( t )  - u (xo ( t )  ,yo ( t ) )  . As PO (ZO,YO, U O )  E S n ro, 
there exists t o  E [a,b] such that 

xo = xo ( t o )  >YO = Yo (to) , uo = uo ( t o )  and u ( t o )  = 0. 

We have 

where u(t)  = u (20 ( t )  ,yo ( t ) )  . The equation (1.20) is an ODE with initial 
condition U ( t o )  = 0 and by the uniqueness theorem for the Cauchyl problem 
for ODEs it follows 

Augustin Louis Cauchy, 21.08.1789-23.05.1857. 
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As a consequence of Theorem 1.1 we have that if two integral surfaces S1 
and Sz have a common point PO , then they intersect along the characteristic 
curve ro through PO. 

The selection of an individual surface S : u = u ( x ,  y) among all integral 
surfaces, containing a prescribed curve constitutes the Cauchy problem for 
(1.18). This is formulated as 

Find a solution u = u ( x ,  y) of (1.18) f o r  which 

where 
x = 2 0  ( s )  

u = uo(s) 

is an  initial curve. 
We shall consider the local solvability of the Cauchy problem, i.e. the 

existence of an integral surface in a neighborhood of the curve r. The main 
tool for solving the local problem is the well known Inverse Mapping Theorem 
(IMT), which also has a local character. 

Theorem 1.2. (IMT). Let D c RS,t and Df  c R& be domains @ : 

D + D' be of class C' ( D )  ,PO (SO,  t o )  E D ,  Q o  (20, yo) E D',  @ (Po) = Qo, 

x = x ( s , t )  
Y = Y W >  

@ : {  

and 

Then  there exist neighborhoods U of PO E D and U' of QO E Df  and a mapping 
@-' E C1 (U') such that @-' (27') = U and 

J@-' (Qo)  = ( J @  (Po))-'. 

Now we prove a local existence theorem for the Cauchy problem 

Theorem 1.3. (Existence and Uniqueness Theorem) Consider the first- 
order quasi-linear PDE in the domain s1 c R3 

r
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where a ,  b and c are of class C1 (R) 

x = xo(s)  

u = uo(s)  
r : {  y = y o ( s )  O L s L 1 ,  

is an initial smooth curve in R and 

Then there exists one and only one solution u = u ( x ,  y) defined in a neighbor- 
hood N of the initial curve l?, which satisfies the equation (1.18) and the initial 
condition 

uo(s)  = u ( 2 0  (4 ,Yo (4) > 0 L s I 1. 

Proof. Let us consider the Cauchy problem for the ODEs system 

with initial conditions 

jF'rom the existence and uniqueness theorem for ODEs the problem has a 
unique solution 

x = J: ( s , t )  ) y = y ( s , t )  ) u = u ( s , t )  ) 

defined for t : a ( s )  I t 5 p ( s )  where 0 E [a (s) , p  (s)] , a (s) and p (s) are 
continuous functions and 

According to (1.21) for the mapping 

x = x ( s , t )  
Y = Y W )  @ :  { 
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By IMT there exists a unique inverse mapping @-' : D' --+ D, 

defined in a neighborhood N' of I?' = Pro,, r. Consider now 

We find that 

acp, + b'p, = a (Us% + utt,) + b (u,s, + utt,) 
us (as ,  + bs,) + U t  (at, + bt,) 

u s  ( w z  + Y t s y )  + U t  (ztt, + &tY) 

= 

- - 

= u,.O+ut.l 
U t  = c - - 

and 

Moreover cp (2, y) is a unique solution. Indeed let cp1 (2, y) and (p2 (x, y) 
be two solutions satisfying the initial condition and Sj = pj (x, y) , j = 1,2  be 
the corresponding integral surfaces. Considering the systems of ODEs 

with initial conditions 

we find solutions (zj (s, t )  , yj (s, t ) )  . Then (z j  (s, t )  , yj (s, t )  , V j  (s, t ) )  are so- 
lutions of system (C) . Therefore by the uniqueness theorem for ODEs 

coincide in the common domain of definition . It follows that the characteristics 
rl and r2 starting from the point P (xo (s) , 'yo ( s )  , uo ( s ) )  also coincide. 
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Remark. Note that condition (1.21) implies that the vector ( a ,  b, c) is not 
tangent to the initial curve I' at the point (20, yo, uo) . For if it were 

(2,%, 2) = k ( a , b , c )  

or 

for some const ant 

which contradicts 

- k a ,  - - - kb, - - - kc, dX0 

ds  ds  ds  

k .  Thus 

-- 

dxo d ~ o  -b - -a = kab - kba = 0 ,  
ds  ds  

(1.21). 
In the following example it is shown that when (1.21) is violated, i.e. if 

then for the Cauchy problem there may not exist a solution or there may exist 
infinitely many distinct solutions. In other words, either there is no existence 
of a solution or there is no uniqueness. 

Example 1.3. Consider the equation 

yu, - xuy = 0. 

Show that there exist initial curves such that when (1.21) holds with the equality 
sign, then the Cauchy problem has no  solution or there exist infinitely many  
distinct solutions. 

Solution. It is easy to see that the characteristic curves are given by 

2 2  x + y  = k  

and the general solution is 

u = f ( x 2  + y 2 )  , 

where f is an arbitrary function. Consider the following three cases: 
(i) The initial curve is given by the parametric equations 
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This curve is the parabola 

u=x2, y = o ,  

which lies in the ( x ,  u) plane. We have 

and by Theorem 1.3 there exists a unique solution. Indeed the integral sur- 
faces u = f (x2 + y2) are surfaces of revolution about the u axis. The condi- 
tion that such a surface contains rl is 

f ( x i  + y;) = f (s2) = s2, 

that is, f ( t )  = t ,  which leads to the unique solution 

2 2  u=x + y .  

This surface is a circular paraboloid. 
(ii) The initial curve is given by 

r2 : x = xo ( s )  = coss, y = yo (s) = sins, u = uo (s) = sins, 

that is, r2 is the ellipse 

2 2  x + y  =1, u=y. 

Here 

d X 0  dYo --b(xo,yo,uo) - -a(zo,yo,uo) = (-sins) (-coss) - (coss) (sins) = 0. ds ds 

If u = f (x2  + y2) is a solution, then on the circle x2 + y2 = 1 one has 
u = f (1) a constant. This is incompatible with the requirement u = y and 
therefore no solution exists. Note that the given curve I72 is such that its 
projection on the ( x ,  y) plane coincides with the projection on the ( x, y) plane 
of a characteristic curve, but r 2  itself is non-characteristic. Indeed the tangent 
vector (- sin s ,  cos s, cos s )  to r2 is nowhere parallel to the characteristic vector 
(sins, - cos s, 0) along r2. 
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(iii) The initial curve is given by 

r3 : x = xo (s) = COSS, y = yo ( s )  = sins, u = UO ( s )  = 1, 

that is, r3 is the circle 

x 2 + y 2 = 1 ,  u = l .  

Here again 

In order for u = f (x2 + y2) to be a solution it should satisfy f (1) = 1 
which is possible for any function f such that f (1) = 1 (i.e. f (w) = wn). 
For such a function f ,  u = f (x2 + y2) is an integral surface which contains r3. 

Clearly there are infinitely many solutions in this case. Observe that the initial 
curve r3 is now a characteristic curve. Indeed the tangent vector (- sins, cos s, 0) 
to r3 is parallel to the characteristic vector (sins, - cos s ,  0) along r3. 

Example 1.4. Solve the PDE uu, + uy = 1/2, with initial condition 

Solution. The initial curve 
u(s ,s)  = 4 4 ,  0 5 s 5 1. 

x = s  
r ; {  y = s  

u = ~ / 4  

where 0 5 s 5 1 satisfies (1.21) 

dx0 dYo S -b - -a = 1 - - # 0 
ds ds 4 

for s # 4. The characteristic system 

f dx 

with initial conditions 

2 (s, 0) = s ,  y ( s ,  0) = s, 7.L (s, 0) = 4 4 ,  
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has a solution 
x = s + st/4 + t2/4 

y = s + t  
u = s/4 + t / 2 .  

Solving with respect to s, t in terms of 2, y we obtain 

S =  

t =  i 42 - y2 
4-Y 

4 (Y - 4 
4-Y 

and the unique solution of the problem is 

8y - 42 - y2 
U =  

4 (4 - Y> 

for y = s # 4. 

1.1 using the Mathernatica program 
The integral surface S through the initial curve I? is plotted in the Figure 

fl=ParametricPlot3D [ { s+ (t "2+st)/4)t +s, (2t+s)/4}) 
{ s,O, 1) , { t ,-I, I} ,PlotPoints- > 101 
f2=Par ametricPlot 3D [ { s ,s ,s/4}, { s ,-0 .5 , 1.5}] 
Show [fl,f2, Shading- > False, 
Plo tlabel- > ') Integral surface through initial curve"] 

I I n t e g r a l  s u r f a c e  t h r o u g h  i n i t i a l  c u r v e  

Figure 1.1.  Graph of the function
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Example 1.5. The solution of the equation uy+uu, = 0 can be interpreted 
as a vector field on the x-axis varying with the time y .  Find the integral surface 
satisfying the initial condition u ( s ,  0 )  = h (5) , where h is a given function. 

Solution. The characteristic system 

f dx 

with initial conditions 

z (s ,  0) = s ,  

has the solution 

y ( s ,  0 )  = 0, u ( s ,  0 )  = h ( s )  

x = s + h ( s ) t  
y = t  

u = h(s).  

As before, (s, t )  can be expressed in terms of (z, y) when 

xs zt = 1 + h' ( s )  t # 0 ,  I Ys Yt 1 
1 

i.e. y = t # - - . In this case for the solution 
h' (4 

we have 
h ' ( 4  

U ,  = h' ( s )  S, = 
1 + h' (s) t ' 

Hence for h' (s) < 0 ,  u, becomes infinite at the positive time 

1 T = - -  
h' ( s )  ' 

The smallest y for which this happens corresponds to the value s = SO at which 
h' (s) has a minimum. At the time 
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the solution has a gradient catastrophe or blow up. There can not exist a 
smooth solution beyond the time TO. 

As an example, consider 

uo(s )  = s 3 - 3 s 2 + 4 ,  0 9 3 5 2 .  
hl ( s )  = 3(s2 - 2s) < 0, 0 < s < 2 
hI1 (s) 

111 

= 3(2s - 2) = 0 for s = 1, h (s) = 6. 

Then h‘ (s) has a minimum at SO = 1 and TO = 1/3. 
We plot the curves ct 

x = s + t(s3 - 3s2 + 4), 
u = s3 - 3 2  + 4, Ct : { 

in the Figure 1.2 for the instants t = 0, 0.2, 0.3, 0.33, 0.333, 0.4 to demon- 
strate the effect of blow up with the Mathernatica program 

u[s-]:=sA3-3sA2+4 
x [ s-, t -1 : = s + t u [ s] 
hO=ParametricPlot [Evaluate[x[s,O] ,u[s]] ,{ s,0,2}, 
PlotRange-> { 0,4} ,PlotLabel->” y=O”] 
hl=ParametricPlot [Evaluate[x[s,0.2] ,u[s]] ,{ s,0,2}, 
Plot Range- > { 0,4} ,Plot Label- > ” y =O .2”] 
h2=ParametricPlot [Evaluate[x[s,0.3] ,u[s]] ,{ s,0,2}, 
PlotRange-> { 0,4} ,PlotLabel->”y=0.3”] 
h3=ParametricPlot [Evaluate [x [s ,O. 331 ,u [s] 3 ,  { s ,0,2}, 
Plot Range-> { 0,4) ,PlotLabel- >” y=O.33”] 
h4=Par ametricPlot [ Evaluat e[x [s ,O. 3331 ru [ s]] , { s ,0,2}, 
Plot Range- > { 0,4} ,Plot Label- > ” y=O. 333”] 
h5= Par ametr icP lo t [Evaluate [x [ s ,O .4] ,u [s]] , { s ,O ,2}, 
Plot Range- > { 0,4}, P lot Label- > ” y =O. 4”] 
Show[GraphicsArray[{ { hO,hl}, { h2,h3}, { h4,h5}}], 
F’r ame- > True,Fr ameTicks- >None] 
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y=0.3 
4 > 3.5 

\ J 

y= 0.333 
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Figure 1.2. Curves ct at the instants t = 0,0.2,0.3,0.33,0.333,0.4. 

Exercises 
1. Prove that if two integral surfaces S1 and S2 of the equation (1.18) 

intersect transversally along a curve I?) which means that at each point P 
of I? the normal vectors n i i  and n i i  are linearly independent, then I' is a 
characteristic curve. 

2. Solve the following initial value problems: 
(a) u, + yu, = 2u, ~ ( 1 , s )  = s. 
(b) U ,  + uY = u2, U ( S ,  0) = s2. 
(c) xu, + (y + 2 ) U Y  = u, U ( 2 )  s) = s - 4. 

3. Show that the solution of the quasi-linear PDE uy + a(u)u, = 0 with 
the initial condition u ( s ,  0) = h(s)  is given implicitly by u = h (z - a (u) y) . 
Show that the solution becomes singular for some positive y unless a(h ( s ) )  is 
a nondecreasing function. 
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1.4 General Solutions of Quasi-linear Equations 
Suppose that for P ( x ,  y, z )  E 0, 

The characteristic curve 
( a ,  b, c )  # ( O , O ,  0) . 

x = x ( t )  

u = u(t)  
r :  { Y = y ( t )  

can be represented as the intersection of two surfaces 

(1.22) 

for which the normal vectors 61 (vz, vy, v,) and 62(wx,  wy, w,) are linearly 
independent at each point P ,  which means that 

(1.23) 

A continuously differentiable function v ( x ,  y, u) is said to be a first integral 

Definition 1.1. The first integrals v (x, y , u )  and w (2, y , u )  of (1.18) are 
of (1.18) if it is a constant on characteristic curves. 

functionally independent i f  (1.23) is fulfilled. 

grals and (1.22) holds. From 
Suppose 21 (x, y, u) and w (x, y, u) are functionally independent first inte- 

it follows 

v x x + v y y + v u ~  = 0, 
wxx+wy$j+wuiL = 0, 

dx 
d t  

where k = - and 

v,a+vyb+v,c = 0 ,  
wxa+Wyb+wuC = 0. 
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From (1.23) it follows that v and w are functionally independent first 

- (1.24) 

integrals iff 
C b - a 

wy wu wu wx WX 

which geometricaly means that the vector 61 x n'a is a tangent vector to I? at 
P. 

Theorem 1.4. Let v (x, y , u )  and 20 (x, y, u)  be functionally independent 
first integrals of (1.18). Then the general solution of (1.18) is 

where F is an  arbitrary continuously difierentiable function of two variables. 

Proof. Let u = u(x,y) be a function for which 

Differentiating (1.25) with respect to x ,y ,  we have 

FdVX + vuux) + Fw(wx + wuux) = 0,  
Fw ( V Y  + vuuy ) + F w  (wy + wuuy ) = 0. 

Assuming (F, , F,) # (0,O) it follows 

or 
('u,wy - vywu)ux + (vxwu - vuwx)uy = vywx - vxwy. (1.26) 

jF'rom (1.26) and (1.24) it follows aux + buy = c.  
Conversely let u = u (x, y) be a solution of (1.18), v (x, y, u) and w (z, y, u) 

be functionally independent first integrals of (1.18). Then , by (1.24) , it follows 
(1.26). 

We have for the functions V = v (x, y, u (x, y))  and W = 20 (2, y, u (2, y)) 

v x  wx 21%- + V U U X  wx + W U U X  

IVY WYl = 1 vy + v,uy wy i- w,uy 
= (vuwy - 'uywu)u, + (vxwu - V u W x ) ~ y  - (vywx - vxwy) 
= X (au, + buy - c)  = 0. 
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jF'rom the rank theorem of Calculus it follows that one of the functions V and 
W can be expressed as a function of the other, i.e. there exists a function f 
such that 

V ( X , Y , U ( X , Y ) >  = f ( w b , y , u ( z , y ) ) ) *  

Example 1.6. Find the general solution of the equation 

(u - y)ux + yuy = x + y. 

and solve the initial value problem u ( s ,  1) = 2 + s. 

Solution. The characteristic system is 

dY du -- - - =  - dx 
U - Y  Y Z + Y '  

(4 (i i)  (iii) 

Using the proportion property ( i )  + (iii) = (i i)  we have 

Then u t x  v=-- - c1 
Y 

is a first integral. From ( i )  + (i i)  = (iii) 

it follows that 
w = ( z + y )  2 2  - u  =c2 

is a second first integral. We have 

-2u 
l / Y  - (x + 4 l Y 2  

2 (x + Y)  [ wz vx wy vy w u  vu ] = [ 2 ( x + y )  

and for y # 0, x + y + u # 0 we get the relation (1.24). The general solution is 

or 
u + x  

Y 
-- - f((x + y)2 - u2)- (1.27) 
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We plot the surfaces v = 0, 5, 10 and w = 0, 5, 10 for 0 5 x 5 1,0  5 y 5 1 

fO=PlotSD[-x, {x,O,l} ,{y,O,l} ,PlotPoints-> 101 
fl=PlotSD [5y-x, {x,O, 1 }, {y,O,l} ,PlotPoints-> 101 
f2=Plot3D[ 1Oy-x, { x,O,l}, {y,O,l} ,PlotPoints-> 10) 
g l  =S how [fo, f 1 $2, Shading- >False] 
hO=Plot3D[x+y, {x,O,l},{y,O,l} ,PlotPoints-> 101 
hl=PlotSD[Sqrt [ (x+y) ^2+5] ,{x,O,l}, {y,O,l}, 
PlotPoints-> 101 
h2=Plot3D[Sqrt [ (x+y) ̂ 2+10] ,{x,O)l} ){ y,O,l}) 
PlotPoints- > 101 
g2=Show[hO,hl ,h2,Shading->False] 
S how[GraphicsArray [ { g l  ,g2}]] 

in Figure 1.3 using the Mathernatica program 

1 "  

0.75 
7 0  

I I 

Figure 1.3. Two families of characteristics in Example 1.3. 

To solve the initial value problem we substitute the initial conditions in 
(1.27) 

2 + s + s 

2 ( s +  1) = f(-2s -3 ) ,  

= f((s + 1)2 - (s + 2)2)) 

so f ( t )  = -t - 1 and the solution is 

u + z  + ( x + y ) 2 - u 2 + 1 = O ,  Y f  0. 
Y 



First-order Partial Differential Equations 27 

We now indicate (cf. Exercise 2, Section 1.2) how to proceed in the case 
of more than two variables. For the quasi-linear equation 

the characteristic system is 

If 

are n functionally independent first integrals of the characteristic system then 
the general solution is implicitly given by 

where F is an arbitrary continuously differentiable function. 

Exercises 
1. Find the general solutions of the equations 
(a) ( x  - y) y2u ,  - ( x  - y) x2uy - ( x2  + y2) u = 0. 

(c) 2 (y - u) u, + y (u - 2 )  u y  = ( x  - y) u. 
(b) (9 - U )  u,: + (U - X) U Y  = z - y. 

(d) U U ,  + (u2 - z2)uY = -x.  
(e) (I + d m )  u, + uy = 2. 

2. Solve the initial value problems 

(a> 
xu,: + yzu, = 0 ,  
u ( X )  y, 1) = xy. 

(b) 

3. The Euler PDE for a homogeneous function u (z, y, z )  is 

xu, + y u y  + zu, = au. 
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Show that the initial value problem u (5, y, 1) = h (x, y) has a solution u = 
z"h ( z ,  5 )  , z # 0 and u (Ax, Xy, Xz) = X"u (z,y, z )  . 

4. Verify that: 
(a) The general solution of the differential equation 

u y  = (5.) 
X 

(1.28) 

is u = xf (x2 + y2)  . 
(b) The function 

00 

satisfies the equation (1.28). 
(c) The following identity is satisfied 

00 00 

1.5 filly-nonlinear First-order Equations 
The general first-order equation for a function u = u (x, y) has the form 

where p = u,, q = uy , F is a twice continuously differentiable function with 
respect to its arguments x, y, u , p ,  q and F: + F: # 0. 

We assume now that the operator 

is nonlinear with respect to ( p , q ) .  In this case we say that (1.29) is a fully- 
nonlinear first-order equation. For instance the so called eikonal equation 
u: + ut = 1 arising in geometric optics is nonlinear because there exist u1 and 
u2 such that 

The equation (1.29) can be viewed as a relation between the coordinates 
of the point P (x, y, u) on an integral surface S : u = u (5, y) and the direction 
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of the normal vector n'p ( p ,  q,  -1) at P. The tangent plane TS (PO) at the point 
PO ( a : ~ , y ~ , u o )  E S is given by 

u - uo = p (. - 20) + (Y - Yo) , 

(1.30) 

Given the values (zo,yo,uo) in (1.30), different values of p therein will 
yield different values of Q and hence a one-parameter family of tangent planes, 
parametrized by p .  The envelope of these tangent planes is called the Monge2 
cone for (1.29) at PO. 

Recall that the envelope of a family of smooth surfaces Sx : u = G (2, y , A) , 
depending on a parameter A E [a,b] , is a surface C for which at each point 
P E C there exists A0 E [u,b] such that 

The equation of C is implicitly given by the system 

(1.31) 

In the case of the Monge cone, assuming 4 = ~ ( p )  the system (1.31) is 

(1.32) 

Recall that a set K C R3 is said to be a cone with a vertex PO if for every 
P E K the point XP + (1 - A) PO E K ,  for every X E R. It is easy to see that 
the Monge cone is a cone with vertex PO. 

Example 1.7. Find the equation of the Monge cone at Po(x0, yo, U O )  for 

Solution. By p2  + q2 = 1 we have q = k d m  and the system (1.32) 

the equation ug + u: = 1. 

has the form 

2Gaspard Monge, 10.05.1746-28.07.1818. 

where
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Taking squares of both equations and adding we get 

(x - xo)2  + (9 - yo)2 = (u - 210)2. 

Assuming xo = yo = uo = 0 the cone, represented as an envelope of planes 
for which p = 0, 1, - d / 2  is given in Figure 1.4, using the Muthematicu 
program 

fO=ParametricPlotSD[ { uCos[v] ,uSin[v] ,u}, 

{ u,O, 1 } , { v,O ,2Pi}, Plot Points-> 201 

f l  =Plot3D [ y, { x,- 1 , 1 } , { y,- 1 , 1 } ,PlotPoints- > 101 

f2=P lot 3D [x, { x,-1 , 1 } , { y,- 1 , 1 } ,PlotPoints- > 101 

f3=Plot3D[ (-x-y)/Sqrt [2], {x,-1 ,l},{ y,-l,1} ,PlotPoints-> 101 

Show [fO , f l , f2  $3, Shading- > False] 

LI 

Figure 1.4. Monge cone 
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The equation (1.29) defines a cone field. Namely, let us consider the Monge 
cone M ( P )  at each point P ( x ,  y ,  u)  E R3. The completion of these cones 
{ M  ( P )  : P E R3} is the cone field. 

A surface S in R3 solves the equation (1.29) iff it remains tangent to the 
cone M ( P )  at each point P E S. 

Assuming q = q (p)  , by (1.29), we have 

dq 
dP 

so that - may be eliminated in (1.32) and the equations describing the Monge 
cone are 

P(" - 2 0 )  + 4(Y - Y o )  = u - uo, 

x - -0  Y - Y o  -- - 
FP 4 ' 

FP Fq PFP +qFq' 

or x - x o  y - y o  u - U O  
- -- --- 

The characteristic curves are determined as integral curves of the ODE 
system 

dx 

- D = Fq (1.33) 
dt  

- = Fp 

d u  
d t  = PFp + 4Fq - 

or 

It is clear that the three equations (1.33) are not sufficient to determine the 
characteristic curves comprising the integral surface. The reason is that there 
are three equations only for the five unknown functions x ,  y ,  u ,  p ,  q. However 
for p = p ( x  ( t )  , y ( t ) )  and q = q ( x  ( t )  , y ( t ) )  we have 

(1.34) 
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and from F (z, y , u , p  (z, y) , q (z, y ) )  = 0 it follows 

Since 

Py = u x y  = u y x  = qx 

equations (1.34) may be written as 

-Fx - PFU, 

- = -Fy - qFu. d t  

(1.35) 

Equations (1.35) associated with (1.33) give a system of five ODES for the 
five functions z, y ,  u ,  p ,  q depending on t .  This system is called a charucteris- 
tic system related to the equation (1.29). The equation (1.29) together with 
the characteristic system provides a system of six equations for the unknown 
functions z ( t )  > 3 ( t )  > u ( t )  , P ( t )  > ( t )  

This system is overdetermined; however (1.36) follows from (1.37) for it is 
a first integral of (1.37). Indeed if z ( t )  , y ( t )  , u ( t )  , p  ( t )  , q ( t )  is a solution of 
(1.37) : 

dF d 
d t  d t  
- -  - --F ( x  (-4 , Y ( t )  , u ( t )  , P ( t )  , !I ( t ) )  

d x  d y  d u  dp dq 
d t  d t  ' d t  d t  

= F x X  + Fy- + Fu- + F - + Fq- 

which means that F ( x  ( t )  , y ( t )  , u ( t )  , p  ( t )  , q ( t ) )  = const. 
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If F = 0 is satisfied at an “initial point” (50, .,., 40) for t = 0 , then the 

A solution of (1.37) can be interpreted as a strip . This means a space 
solution of (1.37) satisfies F (x ( t )  , y ( t )  , u  ( t )  , p  ( t )  , q ( t ) )  = 0 for every t .  

curve 

x = 2 ( t )  

u = u (t) 
r : {  Y = Y N  

and along its point P (x ( t )  , y ( t )  , u ( t ) )  the tangent plane T ( P )  with the nor- 
mal vector np ( p  ( t )  , q ( t )  , -I)  . 

Note that not any five functions define a strip. Namely, we require that 
the planes be tangent to the curve I? which means that 

(1.38) 

called the strip condition. The strip condition is guaranteed by the system 
(1.37) because 

du dx dY 
- = PF, 3- qF4 = P ( t )  dt + Q (t) X’ d t  

We call the strips which are solutions of (1.37) characteristic strips , and 
their corresponding curves characteristic curves. 

We consider the structure of integral surfaces and the initial value prob- 
lem for (1.29). We formulate without proofs theorems which correspond to 
Theorems 1.1 and 1.3 of the quasilinear case. 

Theorem 1.5. If a characteristic strip has an element (50, yo, uo, PO, qo) 
in common with an integral surface u = u(x,y),  then it lies completely on 
the surface, which means that i f  (x ( t )  , y ( t )  , u ( t )  , p ( t )  , q ( t ) )  is a solution of 
(1.37) and there exists t o  such that x ( t o )  = XO, ..., q ( t o )  = qo then 

u ( t )  = u (z ( t )  , Y ( t ) )  , 
P ( t )  = ux (x ( t )  7 Y ( t ) )  9 

4 ( t )  = uy (x ( t )  > Y ( t ) )  * 

Theorem 1.6. Consider the PDE (1.291, where F has continuous second- 
order derivatives with respect to its variables x, ..., q and suppose that 

x = 20 (s) 
Y = Y o ( s )  
u = uo (s) 

0 5 s 51 r :  { 
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is an initial curve, po ( s )  , qo ( s )  are two differentiable functions satisfying 

and 
(1.39) 

Then there exasts a unique solution u = u ( x ,  y) of (1.29) in a neighborhood N' 
of I?' = Prozy I? , which contains the initial strip, i.e. 

dX0 dY0 Z F ,  ( 5 0 ,  Yo, uo, Po, a01 - Z F ,  (xo,  Y o ,  uo, Po, aa) # 0. 

As before, the proofs are based on the existence and uniqueness theorem 
for ODES and IMT. 

Example 1.8. Find the solution of the eikonal equation 

u2, + u; = 1 

through the initial curve 

I? : x = coss, y = sins, u = 1, 0 5 s 5 27r. 

Solution. Functions po ( s )  and qo (s) such that 

Po" (4 + ao" (4 = 1, 

- 0 = P O  (s) (-sins) + qo (s) (coss) 
duo 
ds 
-- 

are po (s) = cos s and qo ( s )  = sin s. 
For these functions the condition (1.39) is fulfilled 
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Integrating the system 
x = 2p 
y = 24 
u = 2  
p = 0  i q = 0  

with initial conditions 

x(s ,O)  = cos s ,  

u(s ,O)  = 1, 
P ( S , O )  = cos s, 

Y (0) = sin s, 

q(s ,O)  = sins, 

we get 

x = (2t + 1) COSS 

u = (2t + 1). 
y =  (2t+I)s ins  

Then x2 + y2 = u2 is the integral surface for which 

u(coss,sins) = 1, 
uz (cos s, sins) = cos s, 

uy (cos s, sins) = sin s. 

The surface with Monge cones at the points (1,0,1) and ( - l , O ,  1) is given 
in Figure 1.5 using the Muthernatica program: 

fO=ParametricPlot3D[{uCos[v], uSin[v],u}, 
{ u,O ,2}, { v ,O ,2Pi}, PlotPoints- > 15 ,PlotRange- > { 0,2} ] 
fl=ParametricPlot3D [ { 1 +uCos[v] ,uSin[v] ,l +u} , 
{ u,O ,I}, { v ,O $Pi}, PlotPoints-> 151 
f2=ParametricPlot3D[{ u Cos[v]-l,u Sin[v], l+u}, 
{ u,O ,1} , { v ,O ) 2P i} ) Plot Points- > 1 51 
Show [fO, f l  ,f2,S hading- >False] 
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Figure 1.5. Integral surface with Monge cones. 

Exercises 
1. Solve the following initial value problems: 
(4 

(b) 

(4 

u,uy = 2, { r : x = s ,  y = s ,  u = 3 s ,  o ~ s g .  

{ r : x = s ,  y = i ,  u = s ,  o ~ s g .  

u; + u; + 2 (ux - z) (UY - y) - 2u = 0,  { r : x = s ,  y = o ,  u = o ,  o s s g .  

u; - u y  = 0,  { r : z = s ,  y = o ,  u = 2 s f i ,  o i s g .  

{ r : z = o ,  Y = S ,  u = s 2 ,  o ~ s i i .  

uxuy = U )  

(4 

( 4  

u, + ;u; = 1, 

2. Consider the differential equation 

u2, + xuy  = 0. (1.40) 
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Making the so called Legendre3 transformation 

where p = uz, q = uY, show that v satisfies the equation 

2 p + qv, = 0. 

Show that the solution of (1.40) can be expressed in parametric form as 

where f is an arbitrary continuously differentiable function. 
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Adrien Marie Legendre, 18.09.1752-10.01.1833. 
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Chapter 2 

Second-order Partial 
Differential Equations 

2.1 Linear Equations 

The general form of a linear second-order equation in two independent variables 
x ,y  is 

where a ,  b,  c, d,  e, f ,  g E C2 (0) ) R C R2 and a2+b2+c2 # 0 in R. If we consider 
the partial differential operator 

then the equation (2.1) is written as 

Lu = g, 

while the homogeneous equation corresponding to (2.1) is 

Lu = 0. 

39 
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The operator L is linear since the condition (1.2) is satisfied for every pair 
of functions u1, u2 E C2 (R) and any constants c1, c2 E R. Fkom the linearity 
of the operator it follows that if 

are solutions of the homogeneous equation (2.3), then for every choice of con- 
stants c1, ..., cn the function 

is also a solution of (2.3). Furthermore, if up is a particular solution of Eq. 
(2.1) , then 

Thus 

is also a solution of Eq. (2.1) for every choice of constants c1, ..., c,. 
We shall now consider the simplest case when the coefficients in Eq. (2.1) 

are real constants. Assume also that the given function g is a real-valued 
analytic function in R. Then in some cases we can obtain the general solution 
of Eq. (2.3), i.e. a relation involving two arbitrary C2 (0) functions such that 
for every choice of the arbitrary functions a solution of Eq. (2.3) results. If uh 

denotes the general solution of the homogeneous equation (2.3) and up is any 
particular solution of the inhomogeneous equation (2.1), then 

is termed the general solution of the inhomogeneous equation. 

We classify linear differential operators L A, 6 into two types which 0 
we shall study separately. We say that: 

(i) L (g , 6) is reducible or factorable if it can be written as a product of 

linear first-order factors of the form a& + b& + c. 

(ii) L (&, &) is irreducible or non-factorable if it cannot be so written. 
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(i) Reducible Equations 
In this case the general solution can be found with the aid of results of 

Section 1.2. Suppose L is such that 

= (a1- d + b1- d + c l )  (a2-  d + b2- a + c2)  . 
ax  dy dx dy 

Since the coefficients are constants 

L1, L2 commute, i.e. L1L2 = L2L1. If u1 
equation Llu = 0, then 

the operators and - 
is a solution of the linear first-order 

d2 - - -  d2  
axay dydx’ 

LUl = (LlL2) u1 = (L2L1) u1 = L2 ( L l U l )  = L2 (0) = 0, 

that is, u1 is a solution of (2.3). Similarly if u2 is a solution of L2u = 0, then 
u 2  is a solution of (2.3). Since L is a linear operator, then u = u1 + u2 is also 
a solution. Accordingly, if a = a1a2 # 0 and the factors L1, L2 are distinct, 
then the general solution of (2.3) is given by 

c2 _-  c1 x --X 

uh = e a1 p (blx - aly) + e u2 1c) (b22 - U2Y) > (2.5) 
where cp and $ are arbitrary twice continuously differentiable functions. If 
L1 = L2, that is 

2 L=L1L1= ( a l - + b l - + c l )  a d , 
ax dy 

then the general solution is 

C1 
--X 

uh = e a1 (xp (blx - aly) + 1c) (blx - aiy)).  (2.6) 

The operator L is always reducible when it is a homogeneous operator, 
that is, of the form 

d2 d2 d2 L =  a- + 2b- + C- 
8x2 dxdy dy2’ 

If a # 0 and XI, X2 are the roots of the quadratic equation 

aX2 + 2bX + c = 0, 
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then 
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L = a  (:x - -XI - -  :y) (&$)* 
If a = 0,  then 

d a 
L = dy ( 2 b z  + c;) . 

Note that the roots XI, X2 are real iff b2 - ac 2 0. 

Example 2.1. Find the general solution of the equation 

Solution. This equation is written as Lu = 0 ,  where L is the operator 

The operator reduces to 

L=L&2= ( E - 2 )  ( -+-+I)  d d  
a x  dy a x  dy 

and according to (2.5) the general solution is 

which may also be written in the form 

u = 'p (x + y) + e-xex-yh (x - Y )  

'p (x + y) + e-Yh (x - Y) , = 

where 'p,$ and h are arbitrary functions. 

A linear second-order equation in n independent variables X I ,  ..., xn has 
the form 
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If we consider the operator 

then Eq. (2.7) is written as 

LU = G 

and the corresponding homogeneous equation is 

Lu = 0. (2.8) 
Assume that the coefficients Aij, Bi, C in L are real numbers and Aij = 

Aji, i, j = 1, ..., n. When L is reducible 

L = LlLZ 

then we can work as in the case of two independent variables. Accordingly, 
the general solution of Eq. (2.8) is 

where c p , $  are arbitrary functions. If either a1 or bl is zero, the form of 
the general solution is modified appropriately. The general solution of the 
inhomogeneous equation (2.7) is 

u = uh +up, 

where up is a particular solution. 

(ii) Irreducible Equations 
When the operator L (&, 6) is irreducible it is not always possible to 

find the general solution, but it is possible to construct solutions which con- 
tain as many arbitrary constants as we wish. This is achieved by attempting 
exponential type solutions of the form 
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u = ecrz+py 

where a and p are constants to be determined. Since 

dU d U  
-- -au, - = p u ,  
d X  dY 

it is easy to see that 

and therefore u = ecrz+PY is a solution of the homogeneous equation (2.3), 
when 

L (aJ) = 0. 

Suppose that the last relation is solved for /3 so as to obtain a functional 
relationship /3= h (a)  . Then the function 

is a solution of (2.3). Also 

az+h(a)y 
1 u = cp (a)  e 

for arbitrary choice of the function cp is a solution. More generally the super- 
positions 

are solutions whenever they define C2 (52)  functions, and differentiation within 
the summation sign or within the integral sign is legitimate. The preceding 
ideas extend to Eq. (2.8) when the coefficients are constants. 

As an example, let us consider the heat equation 

1 
uzZ - -ut = 0, 

k 
k > 0 constant. 

The operator 
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is irreducible. Looking for solutions of the form u = euxSpt, we obtain 

Thus p = k a 2 ,  and for any value of a the function 

is a solution. If we take a = in, then the function 

is a solution and also superpositions of the form 

co 

= C ( A , c o s n x +  Bnsinnx)e-kn2t, 
n=l 

are solutions of Eq. (2.9). 

Exercises 

1. Check whether the operators in the following equations are reducible 

(a) utt - c2uxx = 0, 

(c) 3uxx + louxy + 3uyy = 0, 

and in the case they are find the general solution 

1 (b) uXX - XUt = 0, k > 0, 

(d) utt = au,, + 2buxy + cuyy, a ,  b,  c positive constants and b2 - ac = 0. 

2. Find solutions of the exponential type eas+pY for the equations 
1 

1 
(a) uxx - put t  = 0, 
(b) uxx - p t  = 0, 
(c) u,, + uyy = 0. 
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3. Find the general solution of the equation 

u,, - utt = t + e2,. 

4. Show that 

Then find a particular solution of the equations 
(a) u,, - ut = e3x+2t, 
(b) u,, - ut = e2x+4t, 
(c) u X X  - Ut  = A cos (ax + P t )  , 
(d) u,, - Ut = Ax2 + Bxt + C. 

5 .  (a) Using the change of independent variables 

< = lnx, q = lny, 

show that the equation 

where a ,  b,  c, d, e, f are constants, is transformed into an equation with constant 
coefficients. 

(b) Find the general solution of the equation 

x2uxx + 2xyux:y + y2uyy = 0. 

2.2 Classification and Canonical Forms of Equa- 
t ions in Two Independent Variables 

Consider the linear equation 

au,, + 2buXy + cuyy i- dux + euy -k fu = g ,  (2.10) 

and the almost-linear equation in two variables 

auxx + 2buxy + cuYy + F (x, g,  U, u,, uY) = 0, (2.11) 

where a,  ..., g are of class C2 (R) , R C R2 is a domain and (a ,  b, c) # (0, 0,O) 
in R. 
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The expression 

auxx + 2buxy + cuyy 

is called the principal part of each of these equations. Since the principal part 
mainly determines the properties of solutions we shall classify the more general 
form (2.11) instead of (2.10). 

The function A defined by 

is called the discriminant of Eq. (2.11). 

The sign of the discriminant is invariant under invertible transformations 
of variables. 

be a smooth change of variables, for which 

and equation (2.11) is tmnsfomed into 

Then the sign of the discriminant at Q = @ ( P )  is the same as at P. 

Proof. Making the change of variables we have: 

(2.12) 

Theorem 2.1. Let

Substituting in  (2.11) we obtain the equation (2.12) where:
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Applying the MAPLE procedure Simplify we have 

A' = B~ - AC = - (-czvar + v z ~ y ) 2  (-b2 + ca) 
= (5ZllY - 17zEd2 (b2 - ac) 
= J 2 @ ( P ) A .  

Since JQ> ( P )  # 0 the proof is complete. H 

jFrom the above it is clear that we can classify Eq. (2.11) according to 
the sign of the discriminant. 

Definition 2.1. W e  say that the equation (2.11) at a point P (x, y) E R 

( i )  hyperbolic, i f  A (x, y) > 0, 
(ii) parabolic, i f  A (x, y) = 0 ,  
( i i i )  elliptic, i f  A (x, y) < 0. 
The equation is hyperbolic (parabolic, elliptic) in a subset G c R i f  it i s  

Next we will show that we can find new coordinates < and 7 so that in 
terms of the new coordinates the form of Eq. (2.11) is such that its principal 
part is particularly simple. Then we say that the equation is in canonical fomn. 

is: 

hyperbolic (parabolic, elliptic) at every point of G. 

Theorem 2.2. Assume that Eq. (2.11) i s  hyperbolic, parabolic or elliptic 
in a neighborhood of a point PO (XO, yo), Then there exists an  invertible change 
of variables 

defined in a neighborhood of the point PO (XO, yo) such that the equation (2.11) 
can be reduced to one of the three forms, as follows: 
(i) if PO (XO, yo) i s  a hyperbolic point 

(first canonical f o r m  for  hyperbolic equations); 
(ii) if PO (XO, yo) i s  a parabolic point 

(iii) i f  Po (20, yo) i s  an  elliptic point 

(2.14) 

(2.15) 
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In the case of hyperbolic equations the transformation 

reduces (2.13) to 

uaa - upp + 0 (a, p, u, Ua, u p )  = 0, 

called the second canonical form for hyperbolic equations. 

Proof of Theorem 2.2. (i) Let PO (XO, yo) be a hyperbolic point. We choose 
< and q in order to have 

A = a<: + 2b<,<, + <: = 0, 
C = aq2 + 2bqxqy + cqy = 0. 2 

So < and q are solutions of the first-order nonlinear equation 

a(p2, + 2b(p,cpy + ccp2y = 0. 

By the theory of Section 1.5 

(2.16) 

= pFp + qF, = 2 (up2 + 2bpq + cq2) = 0, 
dt 

so along the characteristics of (2.16) 

cp (x, y) = const. (2.17) 

If we suppose cpy (XO, yo) # 0 we can determine y = y (x) as an implicit 
function in a neighborhood of the point xo and 

By (2 .16)  the function y (x) satisfies the ODE 

ayf2 - 2by' + c = 0. (2.18) 

If we suppose cpS (20, yo) # 0 we can determine x = x (y) as an implicit 
function in a neighborhood of the point yo and 
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Then the function z(y) satisfies the ODE 

cxf2 - 2bx' + a = 0. (2.19) 

Both equations (2.18) and (2.19) can be presented in the differential form 

a ( d ~ ) ~  - 2bdzdy + ~ ( d x ) ~  = 0. (2.20) 

Without loss of generality we can suppose a (z0,yo) # 0 or c ( z ~ , y o )  # 0 ,  
because if a (x0,yo) = c(x0, yo) = 0, then b(x0, yo) # 0 and dividing (2.11) by 
b(x0, yo) we obtain the form (2.13). 

Let us suppose a (zo, yo) # 0 and a (z, y) # 0 in a neighborhood N of the 
point (x0,yo). The equation (2.18) reduces to two ODES 

, b i - a  I b - a  , y2=- A = b2 - ac. 
a Y: = 7 (2.21) 

Suppose t (x ,  y) = C1 and q(x, y) = C2 are respectively their general solutions 
defined in a domain N1 c N . Then 

The change of variables 

reduces (2.11) to the form (2.13). It is invertible, because by 

it follows 

The case c (20, yo) # 0 is treated similarly. 

Next we describe the parabolic and elliptic cases. 

(ii) Let PO (20 ,  yo) be a parabolic point. We should choose t and q such that 
A = B = 0. Since b2 - ac = 0 it follows that one of the two coefficients a or c is 
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not zero. Otherwise b should also be zero which contradicts ( a ,  b, c )  # (O,O, 0) .  
If a # 0 equation (2.20) reduces to 

Suppose its general solution is 

Take = (x, y) a simple function such that 

Then A = B = 0 and C # 0. The change of variables 

reduces (2.11) to the canonical form (2.14). In the case that a = 0, then c # 0 
and we follow a similar procedure. 

(iii) Let PO (XO, yo) be an elliptic point. We should choose [ and q such 
that A = C and B = 0. Since b2 - ac < 0 it follows that a # 0 and (2.20) 
reduces to ODES of the complex form 

Let cp(x, y) = [(z, y) + iq(s, y) = K be the general solution of the first 
equation. By (2.16) it follows that A = C and B = 0. Then the change of 
variables 

reduces (2.11) to the form (2.15). H 

The equation (2.20) is called the characteristic equation of (2.11)) while 
its solutions are characteristics. In the hyperbolic domain the equation (2.11) 
admits two families of real characteristics, which intersect transversally. In the 
parabolic domain the equation (2.11) admits one family of real characteristics, 
while in the elliptic domain it has no real characteristics. 
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Example 2.2. Determine the type of the equation 

x2uxx - y 2 u y y  - 2yuy = 0, 

reduce it to the canonical form in the hyperbolic domain and f ind the general 
solution. 

Solution . The discriminant is b2-ac = x2y2 and the equation is hyperbolic 
in R2\{(x, y) : x = 0, y = 0). On the lines x = 0 and y = 0 the equation is 
parabolic. 

Let us consider the hyperbolic damain. We apply MAPLE procedures of 
ScientifiCWorkPlacE to realize the algorithm of canonization. Namely 

1. Solution of characteristic equation. Replacing y’ by X in (2.18) we 
derive the equation 

aX2 - 2bX + c = 0. 

For 
2 2 u = x ,  b = 0 ,  c = - y  

applying Solve to the last equation we get the solutions 

2. Applying Solve ODE we find solutions of equations 

Y 
dx x X 
- =  dy Y, exact solution is - = CI 

and 

3 - - -Y, exact solution is xy = ~ 2 .  
dx x 

3. The new variables are 

3.1. For < and 7 we apply VectorCalculus+Jacobian, 

3.2. For ( and 7 we apply VectorCalculus+Hessian 

c
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[ 2 y  
Hessian is X i  

1-7 - $ I 7  0 

xy,  Hessian is [ ] . 
3.3. Denote 

1 1 
a = - s y ,  p = - ,  y = y ,  s = x ,  

X 

a3 = 0, 
2 1 

a1 = 3 3 ,  a2= -- 
2 2  ' 

P1 = o ,  p2 = 1, p 3  = o .  
Applying Simplify we compute: 

-ut2 y + UT2 yx4 - u<x + uqx3 - - 
2 3  

, 
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Then 

Partial Differential Equations 

x2uxz - Y2Uyy - 2yuy = -2y (2u,cvy + uvx) 
= -4utvy2 - 2u,xy 
= -4Jqut, - 2quv 

because from [ = 2 ,  q = xy it follows y2 = Eq. 
X 

The canonical form of the equation in the hyperbolic domain is 

1 
Utv  + -u, = 0. 

2J 

The substitution uv = v reduces the last equation to the first-order equation 

1 

with general solution 

v (0 r l )  = P2f (59 * 

u (07) = P 2 v  (7) + ,$J (0 * 

Integrating with respect to q, we have 

Therefore the general solution is 

Example 2.3. Determine the type of the equation 

2 y u,, + 2xyu,, + 2X2UYY + yuy = 0 

and reduce it to the canonical f o rm in the elliptic domain. 

Solution. As A = -x2y2, the equation is elliptic if x # 0, y # 0. For 
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the equation 

has solutions 

a = y  2 , b = x y , c = 2 x  2 

aX2 - 2bX + c = 0 

1 
(2x9 + 2ixy) , A2 = - (2xy - 2ixy) . X I  = - 1 

2Y2 2Y2 

Now Solve ODE 

- = -  dy (2xy+2ixy) 
dx 2y2 

yields the solution 

zy2 1 (x) - -x2 1 - -iX2 1 = c1. 
2 2  

New variables are 

= y2 - 5 2 ,  { 7 = - x 2 .  

For (y2 - x2, -x2), Jacobian is [ 1;: 21. 
For y2 - x2, Hessian is , for -x2, Hessian is -2. 

Denote: 

a = - 2 x ,  p = 2 y ,  y =  -22, 6=0,  

a1 = -2, a2 = o ,  a3 = 2 ,  

and compute: 
u, = u t a  i- urly = -2utx - 2UVX, 

uy = u tp  4- u,s = 2uty, 

55 
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Then 

y2uxz + 2xyuzy + 2x2uyy + yu 
4y2u52x2 + 4y2uq2x2 - 2y2uq + 4X2Ut = 

1 1 
= 4y2s2 (uc2 +uq2 - -u + - 

2x2 y2Ut) 

'= 4y2x2 (ut2 +uq2 + -uq 27 1 + - J - r l  Ut). 

The canonical form in the elliptic domain is 

1 1 
U t t  + uqq + -uq + -Ut = 0. 

2rl 5 - 7  

Exercises 

1. Determine the type of the following equations and reduce them to the 
canonical form. Using Muthematica plot the two families of real characteristics 
in hyperbolic domains. 

(a) uxx - 2uxy - 3uyy + uY = 0. 

(c )  u,, + yuyy + ;uy = 0. 

(4 (1 + x2) uxx + (1 + y2) uyy + xux + yu, = 0. 

(e) e2xuxx + 2ex+yuXy + e2yuyy + (e2y - ex+Y)uy = 0. 
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2. Find the general solutions of the following equations in the domains of 
constant type. 

(a) u,, - 2uXy - 3uyy = 0. 

(b) 3u,, - 5UXY - 2uyy + 3u, + uy = 2. 

(c) u,, - 2 sin zuXy - cos2 xuyy - cos xuy = 0. 

(d) x2uXx - y2uYy - 2yuY = 4x9. 

3. Find PDEs, whose general solutions are of the form 

(d) u (x, ZJ) = l / ~  (p (X - y) + + (x + y)) ,where p and @ are arbitrary dif- 
ferentiable functions. 

4. Consider the Tricomi' equation 

YU,, + uyy = 0. 

Show that this equation is: 
(a) elliptic for y > 0 and with the change of variables 

it reduces to 

1 
UEE + uqq + -Uv = 01 

37 

(b) hyperbolic for y < 0 and with the change of variables 

lF'rancesco Jacopo Tricomi, 05.05.1897-21.11.1978. 
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it reduces to 

(us - uv) = 0. 
1 

6 (t - 77) usv - 

Plot the picture of characteristics in the hyperbolic domain. 

5. The Born-Infeld2 equation is 

(1 - cp?)cpZZ + 2cpZcptcpZt - (1 + V2)cptt = 0. 
Show that: 
(a) Introducing new variables 

= x - t ,  

q = x + t ,  
u = cpt(t,d, 
v = vv(tJ7) 

uv - v< = 0 
v2ut - (1 + 2uv) uv + u2vv = 0. 

the equation (2.22) is equivalent to the system 

(2.22) 

(2.23) 

(b) If uq = 21s and < = < (u, v) ,‘I = 77 (u, v )  is the inverse mapping then 

t v  = qu, u<tu = vqrlv * 

(c) In the new variables (u, v) the system (2.23) is equivalent to the system 

5 v  - qu = 0 ( z  v q v  + (1 + 2uv) <v + U 2 t U  - - 0, 
or to the equation 

u2tuu + (1 + 2uv) t u v  + v 2 t v v  + 2 (utu + v t v )  = 0. (2.24) 

(d) Determine the hyperbolic domain of the equation (2.24) and show that 
the characteristics in (u ,v)  plane are the lines 

u = c,zv + c1,v = c;u + C2,u = 0,v  = 0 ,  

and their envelope is the hyperbola 1 + 4uv = 0. Plot the picture of character- 
istics using Mathernatica. 

Max Born, 11.12.1882-05.01.1970, 
Leopold Infeld, 20.08.1898-15.01.1968. 
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2.3 Classification of Almost-linear Equations 
in Rn 

Let D be a domain in the n-dimensional Euclidean space R". Denote by 
x = ( X I ,  ..., xn) a point of R" and by < ., . > the usual scalar product in R". 
An almost-lanear second-order equation in R" has the form 

n c aij (4 u x i x j  + F (x, u, 0.) = 0, (2.25) 

where the coefficients aij (x) are assumed to be continuously differentiable 
functions in x, aij (x) = aji (x), u (x) is an unknown function and vu = 
(uxl, ..., uZn) is the gradient of u. Almost-linearity means that the equation 
(2.25) is linear with respect to second-order derivatives u x i x j .  The linear op- 
erator 

z,j=l 

n d2 
L := C aij (x) - 

i , j = l  d X i d X j  

is called the principal part of the operator appearing in equation (2.25). A func- 
tion u (2) E C2 ( D )  is a solution of the equation (2.25) in D ,  if the substitution 
of u and its derivatives in (2.25) results an identity in x E D.  

A main requirement for a classification of the equation (2.25) is to be 
invariant under nonsingular changes of independent variables. As before, we 
make a classification locally, i.e. for a fixed point xo E D.  

Let 

and 

be nonsingular mappings defined in neighborhoods N and N' of xo and yo = 
4 (xo) respectively, such that 
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Let u (x) E C2 ( D )  be a solution of the equation (2.25) in D and 

' (3) = u ($ (9)) > Y E ". 
Then 

u(.> = ' ( 4 ( .> )  > x E N 

and 

A substitution in (2.25) leads to 

or 

n 

where 

(2.26) 

(2.27) 

The classification of the equation (2.25) at the point xo is based on the 
classification of the characteristic fomn 

n 

Q (xo,t)  = C aij ( xo )  tiEj, 
i,j=l 

t E R". (2.28) 

Let A be the symmetric matrix 
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We have 

where A is a n x n matrix, then 

Q (x', [) =< ARq, hr] >=< RTAhq, r]  > . 
Here AT denotes the transpose matrix of A. Let 

A =  

y = ATx. 

61 

(2.29) 

, 

(2.30) 

Note that 

If we make the linear change of variables (2.30) we obtain the transformed 
coefficients as 

which coincide by (2.27). Denote by B the matrix with elements bk l ,  i.e. 

B =  

It is symmetric and 
B = ATAh. 

and if
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By (2.29) the characteristic forms of (2.25) and the transformed equation at 
xo and y* = ATxo are equal: 

By the basic theorem for quadratic forms there exists a nonsingular matrix 
A such that Q (5') () reduces to the canonical f o m  

2 
VP+4 ... 2 2  (2 (Y*, r l )  = 7: + ... + rlp - 7p+l - - (2.31) 

where p 2 0, q 2 0, p + q  5 n. The number p of positive terms in (2.31) is called 
the positive index, the number q of negative terms the negative index, r = p + q 
- rank and u = n - T - nullity of the characteristic form (2.28). The important 
statement is that these numbers are invariant with respect to nonsingular linear 
transformations of the variables < and x . Therefore the classification of (2.25) 
is made regardless of the canonical form of the characteristic form (2.28). 

Let 

be the nonsingular linear transformation reducing the characteristic form (2.28) 
to its canonical form (2.31). Then the transformation 

T y = A  X ,  

reduces the equation (2.31) at the point xo to the form 

P 4 

i=l i=l 

where 

. ( d = u ( ( A  T ) -1 Y). 

The equation (2.25) at the point zo is said to be: 

(1) elliptic, if 

u = n - p - q = 0, and either p = 0 or q = 0, 

(2) hyperbolic, if 

v = 0, and either p = n - 1 and q = 1, or p = 1 and q = n - 1, 
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(3) ultrahyperbolic, if 

u = 0 and 1 < p < n - 1, 

(4) parabolic, if v > 0. 

The equation (2.25) is said to be elliptic (hyperbolic, ultrahyperbolic, 
parabolic) in D, if it is elliptic (hyperbolic, ultrahyperbolic, parabolic) at every 
point of D . 

The classification can also be made with respect to the eigenvalues of the 
coefficient matrix A ,  i.e. the roots of the equation 

jF'rom linear algebra it is known that since the matrix A is symmetric its 
eigenvalues are all real. Moreover the number of positive, zero and negative 
eigenvalues of the matrix A remains invariant under nonsingular changes of 
independent variables. Let XI, ..., An be the eigenvalues of the matrix A of the 
principal part of Eq. (2.25). 

The equation (2.25) at the point zo is said to be: 

(1) elliptic, if XI, ..., An are nonzero and have the same sign, 
(2) hyperbolic, if XI, ..., An are nonzero and all except one have the same 

(3) ultrahyperbolic, if AI, ..., A, are nonzero and at least two of them are 

(4) parabolic, if any one of X I ,  ..., An is zero. 

sign, 

positive and two negative, 

For instance, the Laplace equation 

Au := uxIxl + ... + uXnxn = 0,  

is elliptic in Rn, the wave equation 

where c is a constant, is hyperbolic in Rn+', while the heat or diffusion equation 
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ut - a2Au = 0, 

where a is a constant, is parabolic in Rn+'. The equation 

UXlXl + uxzx2 - ux3x3 - ux4x4 - ux5x5 = 0, 

is ultrahyperbolic in R5. 

Example 2.4. Reduce the equation 

1 
2Ux1x1 -I- ~ U X Z Z ~  - Z U X ~ X ~  -I- ~ u X ~ X Z  - 2 U ~ 2 ~ 3  = 0 

to the canonical form. Determine the type and change of variables. 

Solution. The characteristic form of the equation is 

l 2  
= ( a 1  + fi(, - z(3) 

= .I?+$ -.I$. 

The change of variables 

1 0  

has an inverse 

-Jz 2 

Then the linear transformation 

-4 Jz 
2 -1 
1 -1 

+ Kl + C2I2 - ((1 - r 3 ) 2  

-11 1 [ 511. 
0 

-? ] 
0 

reduces the original equation to the canonical form 
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VYlYl +Vyzyz  - vy3y3 = 0. 

So the equation is hyperbolic on the whole space. Note that 

and 

Exercises. 

1. Reduce the following equations to the canonical form. 

2. Suppose that ai,  bi, i = 1, ..., n and c are constants and ai # 0. Find a 
function w such that the change of the dependent variable u = wz, reduces the 
equation 

n n 

n 
to the form 

i=l 

3. Classify the equation (2.11) with respect to the eigenvalues X1,Xz of 
the coefficent matrix 

Compare with Definition 2.1. 
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Chapter 3 

One Dimensional Wave 
Equation 

3.1 The Wave Equation on the Whole Line. 
D’ Alembert Formula 

The simplest hyperbolic second-order equation is the wave equation 

U t t  - c2uz, = 0 ,  ( 3 4  
where x signifies the spatial variable or (‘position”, t the ‘(time” variable, u = 
u ( x , t )  the unknown function and c is a given positive constant. The wave 
equation describes vibrations of a string. Physically u (2 ,  t )  represents the 
“value” of the normal displacement of a particle at position x and time t .  

Using the theory of Section 2.2 the characteristic equation of (3.1) is 

(dx)2 - c2 ( d q 2  = 0 

and 

x + ct = c1 { x - ct = c2 

are two families of real characteristics. Introducing the new variables 

x = (e + r l )  /2 
t = (t - d /2c 

w1 : { ( = X + d  

r ] = x - c t  ’ a :  { 
and the function 

67 
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the equation (3.1) reduces to 

u (<, 7) = / F (t) 4 + 9 (7) = f (5) + 9 (7) > 

and in the original variables u (x, t )  is of the form 

u (x, t )  = f (x + ct)  + g (x - ct)  , (3.3) 

known as the general solution of (3.1). It is the sum of the function g (x - ct )  
which presents a shape traveling without change to the right with speed c and 
the function f (x + ct)  - another shape, traveling to the left with speed c. 

Consider the Cauchy (initial value) problem for (3.1) 

U t t  - c2uXz = 0 x E R, t > 0,  
u (x, 0 )  = $9 (x) 

U t  (x, 0) = 1cI (4 
x E R, 
x E R, 

where cp and @ are arbitrary functions of x. Further we denote R+ = {t : t 2 0). 

Theorem 3.3. (' D'Alembert' formula ). If cp E C2 (R) and 1c, E C1 (R) 
the problem (CW) has a unique solution u E C2 (R x R+) given by  the formula 

x+ct 

(3.4) 
1 1 

u ( 5 ,  t )  = 5 (cp (x + ct)  + cp (x - c t ) )  + 2c / $ (s) ds. 
2-ct 

Proof. We are looking for a solution of the problem in the form (3.3) 
satisfying the initial conditions at t = 0 

'Jean Le Rond D'Alembert, 16.11.1717-29.10.1783. 

Therefore
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cf ' (x) - cg/ (x) = $ (x) ' 

Differentiating (3.5) with respect to z and solving the linear system for f' and 
g', we obtain 

Integrating (3.6) and (3.7) from 0 to x weget 
X 

By (3.5) f (0) + g (0) = cp (0). Therefore 

u (z, t )  = f (z + C t )  + 9 (x - Ct>  

-(cp (z + ct)  + cp (. - c t ) )  
1 
2 

= 

x f c t  x - c t  

0 0 
x+ct  

x - c t  

Conversely it is easy to see that for cp E C2 (R) and II) E C1 (R) this 
formula gives the solution u E C2 (R x R+) of (CW) . Note that if cp = $ = 0, 
then it follows u = 0. W 

Some corollaries from D' Alembert formula are as follows: 
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I .  Domain of dependence. The value of u at (xo, t o )  is determined by the 
restriction of initial functions cp and II) in the interval [ZO - cto, xo + cto] on the 
z-axis, whose end-points are cut out by the characteristics: 

x - - 0  = f c ( t - t o ) ,  

through the point (x0,to). 

with vertices 
The characteristic triangle A (20, to) is defined as the triangle in R x R+ 

and u (21, t l)  is determined by the values of cp and II) on [x1 - ctl, z1 + ct l] .  

value of u at (x, t )  in the wedgeshaped region 
2. Domain of influence. The point (x0,O) on the x-axis influences the 

For any 

3. Well-posedness. 
The problem (CW) is well-posed in the sense of Hadamard2 if the following 

(i) There exists a solution; 
(ii) The solution is unique; 
(iii) The solution is stable. 
Statement (iii) means that small variations of the initial data yield small 

variations on the corresponding solutions. This is also referred to as continuous 

three requirements are satisfied: 

2Jacques Hadamard, 18.12.1865-17.10.1963. 
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dependence upon the initial data. The meaning of small variation is made 
precise in terms of the topology suggested by the problem. A problem that 
does not satisfy any one of these conditions is called ill-posed. 

For v (2) E C (R) and w (x, t )  E C (R x [0, m)) introduce uniform norms 

and 

For a given T > 0 by (3.4) it follows 

x+ct 

2-ct 

Then for any E > 0 there exists 6 E (0, &) such that if llqllw < S and 

I l q ! ~ l ( ~  < S it follows I{ulloO,T < E ,  which proves the continuous dependence. 

Example 3.3. Solve the problem (CW) with c = 1, @ = 0 and 

Solution. The solution of the problem is u (z, t )  = a (cp (z + t )  + cp (z - t ) )  . 
Using Mathematica the profile of u (x, t )  is presented in Figure 3.1 at successive 
instants t = 0, 1, $, 3, 4, 5 .  Note that at t = 0 the amplitude is 1. After the 
instant t = $ the profile breaks up into two traveling waves moving in opposite 
directions with speed 1 and amplitude a. The surface u = u (x, t )  is presented 
in Figure 3.2. We use the Mathernatica program 

f[x-] :=Which[-Pi/2< =x<=Pi/2,Cos[x] ^S,True,O] 

hO=Plot [Evaluate[u[x,O]] ,{x,-8,8}, 
PlotRange-> { 0,1} ,PlotLabel->” Wave at t=O”]  
hl=Plot [ Evaluate[u [x, 111, {x,-8,8}, 
PlotRange->{O,l},PlotLabel->” Wave at t=l”] 
h2=Plot [Evaluate[u[x,2]], {x,-8,8}, 

u[x-, t-] :=( f[x+t] +f[x-t])/2 
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PlotRange-> {O,l},PlotLabel->”Wave at t=Pi/2”] 
h3=Plot [Evaluate [ u [x,3]], { x,-8,8}, 
PlotRange->{O,l} ,PlotLabel->”Wave at t=3”] 
h4=Plot [Evaluate[u[x,4]], { x,-8 ,8} , 
PlotRange- > { 0 , 1 } ,PlotLabel- > ” Wave at t=4”] 
h5=Plot [Evaluate[u[x,5]] ,{ x ,-8,8} , 
PlotRange-> {O, l}  ,PlotLabel->”Wave at t=5”] 
Show [ Gr ap hicsArr ay [ { { hO , h l  } , { h2, h3}, { h4 , h5}}] , 
Frame->True,F’rameTicks->None] 
Plot3D[ u[x, t] , { x ,-8 ,8} ,{ t ,0,5} ,PlotPoints->40 , 
AxesLabel->”Position” ,”Time” ,”Value” , 
PlotRange->{ 0,l) ,Shading->False] 

Flave at t = O  

-7.5 2 -5 -2.5 0. 2.5 5 7.5 

Mve at t = P i / 2  

o.:j 
0.6 

-7.5 -5 -2.5 2.5 5 7.5 

Wave at t = 4  

0.6 

-7.5 -5 -2.5 2.5 5 7.5 

Wve at t=l 

0 . q  
0.6 

-7.5 -5 -2.5 2.5 5 7.5 

Flave at t = 3  

0.6 

, , , , , , , ,h:; 1 , .  ,A,, , , , , ,  , 

-7.5 -5 -2.5 2.5 5 7.5 

Wve at t = 5  
I I  

0.8 1 
1 

0.6 } 

-7.5 -5 -2.5 2.5 5 7.5 

Figure 3.1. The wave at instants t = 0, 1, 4, 3, 4, 5. 
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V a l u e  

Figure 3.2. Graph of the function u = u (x, t )  in Example 3.3. 

Example 3.4. Solve the problem (CW)  with c = fi, cp = 0 and $J (x) = 
e-x2 

Solution. Let erf (x) = 2 

The solution can be expressed in terms of erf as 

e-”ds be the error function used in statistics. ..[ 

1 - (erf (x + f i t )  - erf (x - f i t ) )  . 
4 

= 

Using Mathernatica the profile of u (x, t )  is presented in Figure 3.3 at the suc- 
cessive instants t = 0, 1, 2, 3. Note that at t = 1 the amplitude is 1/2 and 
it remains the same for all next instants.The surface u = u (x, t )  is plotted in 
Figure 3.4. We use the following program 
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0.4 

0.3 

0.2 

Partial Differ en tial Eq ua tions 

! 

: 

u [x-, t -1 : = (Erf [x+Sqrt [Pi] t]-Erf [x-Sqrt [Pi] t] ) /4 
hO=Plot [Evaluate [u[x,O]] , { x,-8,8} , 
Plot Range- > { 0,O. 5 } ,Plot Label- > ’) Wave at t =0” ] 
hl=Plot [Evaluate[u[x,l]] ,{x,-8,8}, 
PlotRange->{ 0,0.5},PlotLabel->”Wave at t=l”] 
h2=Plot [Evaluate [u[x,Z]], { x,-8,8}, 
PlotRange-> {0,0.5},PlotLabel->”Wave at t=2”] 
h3=Plot [Evaluate [u [x,3]] , { x,-8,8}, 
PlotRange-> { 0,0.5} ,PlotLabel->” Wave at t=3”] 
Show [GraphicsArray [ { { hO, h l  } , { h2 ,h3} }] , 
Frame->True,FrameTicks->None] 

AxesLabel->” Position” ,”Time” ,’)Value” ,PlotPoints->20, 
Plot Range- > { 0,O. 5 )  ,Shading- > False] 

plot3~[u[x, t i  , { x , - 8 , ~ , 0 , 4 ) ,  

Wve at t = O  
0.5 1 

I 

Wavg-at t = 2  

-7.5 -5 -2.5 2.5 5 7.5 

-7.5 -5 -2.5 2.5 5 7.5 

Wave at t = 3  

0.2 1 0.1 
b 

-7.5 -5 -2.5 25 5 7.5 

Figure 3.3. Wave at instants t = 0, 1, 2, 3. 
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Figure 3.4. Graph of the function u = (erf (x + f i t )  - erf (x - f i t ) )  

Exercises 

1. Prove the formula for the general solution of the wave equation (3.1) 
reducing it to the system of first order equations: 

vt - cvx = 0 { Ut + cux = v. 

2. Suppose 

A (x, t )  , q x  + cs, t + s ) ,  
C ( x  + c ( s  - T) , t  + s +T) , D ( x  - CT,t +T) 

are vertices of a characteristic parallelogram, where s, r are positive parame- 
ters. Prove that if u E C’ (R’) is a solution of the wave equation (3.1) then 

u (A) + u (C) = u (B) + u ( D )  . (3-8) 
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Conversely, prove that if u is of class C2 (R2) and satisfies (3.8) for every 
( s , t )  E R2, then u is a solution of the equation (3.1). 

3. (a) Prove that if u (x, y, z )  = u ( p )  , p = dx2 + y2 + z2, then 

2 
P 

Au = u X X  + u y y  -I- u z p  = u p p  + - u p .  

(b) Making the change of variables v ( p ,  t )  = pu (p ,  t )  show that the general 
solution of the threedimensional wave equation 

2 
Utt - c2(upp + ,up) = 0 

is 

( c )  Prove that the initial problem for the spherical wave equation with 
conditions 

has a solution 

p- ct  

Note that this solution exists provided p 2 ct. 

x+ct 

2-ct 
4. Show that for $J E C1 (R) the function u (x, t )  = & $J (s) ds verifies 

the problem: 

( Utt - c2uxx = 0 

Check it also using Mathernatica. 
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5 .  (a) Prove that if p(s) is a continuous function, then cp(z5ct )  are 
“weak” solutions of the equation utt - c2uz, = 0 in the sense 

cp (z f ct)  (vtt - c2vz,) dzdt = 0 ,  
R R  J J  

for every test function w (z, t )  of the space 

Co” (R2) = {f E C” (R2) : suppf is compact}, 

where 

suppf = {(U) E R2 : f ( z , t )  # O } .  

(b) Prove that if cp (5) is a continuous function, then the problem 

has a weak solution u (x, t )  = $ (cp (z + ct )  + cp (z - c t ) )  in the sense 

1 / u (z, t )  (wtt - c2v,,) dxdt = 0,  
R R  

for every test function w (2, t )  E C r  (R2) . 

(c) Using Muthematicu draw the profile of the solution of the problem (3.1) 
with 

at each of the instants t = 0, 0.2, 0.6, 0.8, 1.2. 
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3.2 The Wave Equation on the Half-line. Re- 
flection Method 

Let us consider the problem (CW) on the half-line ( 0 , ~ )  with Dirichlet3 
boundary condition at the endpoint x = 0. 

This is the problem: 

U t t  - c 2 u x x  = 0 
U ( X , O )  = cp(2) ,  U t  ( 2 , O )  = .II) (x) 

0 < 2 < 00,t > 0, 
0 < x < 00, (CDW) : { u(0 , t )  = 0 t 2 0. 

It can be interpreted as vibrations of a very long string with a clamped 
one end. 

We are looking for a solution of (CDW) given by an explicit formula. 
In fact we shall reduce the problem (CDW) to a problem (CW) by the odd 
re*jIection method. It consists in considering the odd extensions of the initial 
functions cpo (z) and Qo (x) where 

cp(x) if x > 0, 

The problem 

vtt - c2vXx = 0 II: E R, t > 0 ,  
z E R, 
x E R. 

(x,O) = cpo (x) 
vt (x, 0 )  = Qo (x) 

has the solution 

x+ct 
1 1 

ct>> 5 / $o (s) ds. v (4 = - 2 (yo (x + c t )  + cpo (x - 
x-ct 

Its restriction 

is the unique solution of the problem (CDW) . 
If 0 < x < ct, then 

3Lejeune Peter Gustav Dirichlet, 13.02.1805-05.05.1859. 
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x+ct x+ct 0 

x-ct  0 x-ct  
x+ct 0 x+ct 

0 c t -x  c t L  x 

Therefore we have 
x+ct 

1 a (cp (x + ct)  + cp (x - c t ) )  + 5 1 $ (s) ds 

1 3 (cp ( x + ct ) - cp (ct - x) ) + 2c 1 + (s) ds if 0 < z < ct . 

if x > ct, 
x-ct 

ct+x 

c t -x  

(3.9) 

u ( x , t )  = 

Note that u (z, t )  is a continuous function if the Compatibility condition 
cp ( 0 )  = 0 is satisfied. Otherwise u (z, t )  is a discontinuous solution and the 
jump of u (z, t )  on the characteristic x = ct is 

u (ct + 0 ,  t )  - u (ct - 0,  t )  = cp (0) . 

We have 

Theorem 3.4. Let cp (z) E C2 (R+) , $J (z) E C1 (R+) and the following 
compatibility conditions be satisfied: 

cp (0) = cp" (0) = $J (0) = 0. (3.10) 

Then the function u (2, t )  defined by  (3.9) is the unique solution of the 
problem (CDW) of class C2(R+ x R+). 

Proof. The function u (x, t )  is of class C2 in domains { (x, t )  : x > ct > 0) 
and ((2, t )  : 0 < x < c t} .  We shall prove that the derivatives of u (z, t )  up to 
order two are continuous along the line z = ct. We have 

1 
(9' (x + ct)  + $Dl (x - c t ) )  + 2c (@ (x + ct)  - 1c) (x - c t ) )  , . 3 ct, 

1 { ; ($0' (z + ct)  + 'p' (ct - z)) + 5 ($ (z + C t )  + 1c) (ct - x)) , 0 < z < ct. 
12 ( x , t )  = 
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Therefore by (3.10) 

1 u, (ct + 0 ,  t )  - u, (ct - 0,  t )  = --q (0) = 0. 
C 

By the same way 

UXX (ct + 0,  t )  - u,, (ct - 0,  t )  = cp" (0) = 0, 

U t  (ct + 0,  t )  - U t  (ct - 0 ,  t )  = q (0) = 0, 

u t x  (ct + 0 , t )  - U t ,  (ct - 0 , t )  = -c(pII (0) = 0, 

U t t  (ct + 0,  t )  - U t t  (ct - 0 ,  t )  = c2# (0) = 0. 

Moreover the function u (z, t )  satisfies the equation, boundary and initial con- 
ditions of the problem (CDW) . = 

We can do the same for the problem with the Neumann4 boundary condi- 

Let us consider the problem 
tion, considering even extensions of initial data. 

U t t  - C2UX, = 0 
u (z, 0 )  = cp (2) , U t  (z, 0 )  = 1c) (z) 

0 < z < 00,t > 0, 
0 < z < 00, (CNW) : { u, (0 , t )  = 0 t 2 0. 

In this case we reduce the problem (CNW)  to (CW) with initial functions 
v e  (z) and 1c)e (.> 7 where 

As before we can show that the problem (CNW)  has a unique solution 

1 
(cp (z + ct )  + cp (z - c t ) )  + s ( P  (z + ct)  - P (z - c t ) ) ,  z > ct, 

1 i f (cp(a: + ct )  + cp (ct - 2)) + s(!v (a: + ct) + !v (ct - x)), 0 < 5 < c , .  

u (x, t )  = 

4Karl Gottfried Neumann, 07.05.1832-27.03.1925 
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t 
where XD ( t )  = .Ic) (s) ds. 

0 

Example 3.5. Solve the problem (CDW) with c = l,$ = 0 and 

c0s3 z x E (3n /2 ,5~ /2 ) ,  
’(”) = { 0 z E R+\ (3~/2,57r/2). 

Solution. The solution of the odd extended problem 

The original problem has the solution 

q ’ P ( “ + t ) + c p ( Z - t ) )  x > t ,  
u ( x 4 ) =  { !((D(z+t)-cp(t-r))  O < z < t .  

The profile of u (z, t )  is presented in Figure 3.5 at successive instants t = 0, 5 ,  
9, 27r, F ,  9 using the Mathematica program 

f[x-] :=Which[SPi/2<=~<=5Pi/2,Cos[x] A3,T!rue,0] 
g[x-] :=Which[x<O,-f[-x] ,True,f[x]] 

hO=Plot [Evaluate[u[x,O]] ,{x,O,8Pi}, 
Plot Range- > { - 1 , 1 } ,PlotLabel- > ” Wave at t =O” ] 
hl=Plot [Evaluate[u[x,Pi/2]] ,{x,O,8Pi}, 
Plot Range-> { - 1 , 1 } ,PlotLabel- >” Wave at t =Pi/2”] 
h2=Plot [Evaluate[u[x,3Pi/2]], {x,O,8Pi}, 
PlotRange-> { -1 ) 1 } ,PlotLabel->” Wave at t=3Pi/2”] 
h3=Plot [Evaluate [ u [x, 2Pi]], { x,O ,8Pi} ) 
Plot Range- > { -1 , 1 } ,PlotLabel-> ’’ Wave at t =2Pi”] 
h4=Plot[Evaluate[u[x,5Pi/2]], {x,O,8Pi}, 
PlotRange-> {-l,l},PlotLabel->”Wave at t=5Pi/2”] 
h5=Plot [Evaluate[u[x,7Pi/2]] ,{x,O,8Pi}, 
Plot Range- > { - 1,1} ,Plot Label- > ” Wave at t = 7Pi/ 2” J 
Show [GraphicsArray [ { { hO, h l  } , { h2, h3}, { h4, h5}}] 

u[x-, t-] :=(f[x+t] +g[x-t])/2 
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i 

Frame-> True,FrameTicks- >None] 
Plot3D [ u[x, t] , { x,O $Pi}, { t ,0,4Pi}, 
AxesLabel- > ’’ Position” ,” Time” ,” Value” ,Plot Points- > 40, 
Plot Range-> { - 1,l },Shading- > False] 
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Figure 3.6. Graph of the function u = u (x, t )  in Example 3.5 

Note that the initial profile splits into two profiles with amplitude a up to 
the instant 27r, when the left one turns to zero and after this instant it changes 
its direction. This fact is known as a “swimmer efeci!?. The graph of the 
function u ( x , t )  on the rectangle R1 = { ( z , t )  : 0 5 x 5 8n,0 5 t 5 47r} is 
plotted in Figure 3.6. 

Exercises 

1. Prove that for a function f (x) E C2 (R+) its odd extension fo (x) E 
C2 (R) if and only if f (0) = f“ (0) = 0. 

2. Solve the problem 

U t t  - u,, = 0 0 < x < O0,t > 0, 
o < x < m, u (x, 0) = sin3 x, ut (x, 0) = o { u (0, t )  = 0 t 2 0. 

Prove that the solution u (x, t )  E C2((0, 00) x R). 
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3.3 Mixed Problem for the Wave Equation 
Let us consider the problem (CW) on a finite interval [O,Z] with Dirichlet 
boundary conditions at the end-points z = 0 and z = 1. This is the problem 

U t t  - c2uxx = 0 ,  
u (z, 0 )  = $9 (x) , U t  (z, 0 )  = 1c, (2) , 

u (0, t )  = u (1,  t )  = 0, 

0 < z < z,t > 0, 
0 5 z 5 I ,  

t 2 0. 
( M D W )  : { 

It can be interpreted as vibrations of a string with clamped ends, for 
instance vibrations of a guitar string. 

We can get the solution of the problem ( M D W )  again using the method 
of reflection in this case through both ends. We extend the initial data cp(z) 
and (z) given on the interval (0,Z) to the whole line using “odd”extensions 
q e o  (2) and q e o  (2) with respect to both sides z = 0 and z = I, where 

cp(x)  o <  z <  I ,  
-cp(-z) -1 < 12: < 0, 

extended to be of period 21. 
q e o  (x) := 

Consider the problem (CWeo) : 

By Section .3.1 it has a solution 

x-ct 

Its restriction 

gives the unique solution of the problem ( M D W ) .  Note that the solution 
formula is characterized by a number of reflections at each end z = 0 and 
II: = I along characteristics through reflecting points. They divide the domain 
R = { (2, t )  : 0 < x < 1, t > 0} into diamond-shaped domains with sides parallel 
to characteristics and within each diamond the solution u (z, t )  is given by a 
different formula. 

On the data cp and 1c) we impose the compatibility condition 
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cp(0) = $9 (1)  = 1c) (0) = 1c) ( 1 )  = 0. (3.11) 

In this case the solution u ( x , t )  is a continuous function on R. Note that 
u ( x , t )  E C 2 ( ~ )  if 

cp(0) = cp (1 )  = cp"(0) = cp" (1)  = @ (0) = $ ( I )  = 0. (3.12) 

We can do the same for the problem with the Neumann boundary condi- 
tion, considering even extensions of initial data. Namely, let us consider the 
problem 

U t t  - c2uxx = 0 
u (X) 0 )  = cp (x) , U t  (2) 0 )  = $ (x) 

u, ( 0 ) t )  = u, (1,t) = 0 

0 < x < I ,  t > 0) 
0 < x < 1 )  

t 2 0. 

In this case we reduce the problem ( M N W )  to ( C W e e )  with initial func- 
tions p e e  (z) and 1c)ee (z) ,where 

(P(Z), O < x < l ,  
y ( - x )  ) -1 < x < 0) 

extended to be of period 21. 
(Pee (x) := 

As before the problem (MNW) admits the unique solution 

where w (x,t) is the solution of the problem 

Example 3.6. Solve the problem ( M D W )  with c = l,$ = 0 and 

C O S ~  z z E [ ( 3 ~ / 2 , 5 ~ / 2 ) ] ,  
p(x)  = { 0 x E [ 0 , 3 ~ / 2 )  U ( 5 ~ / 2 , 4 ~ ] .  

Solution. The solution of the odd extended problem 

vtt - v,, = 0 
(x) 0) = p e o  (x) 

x E R, t > 0, 
x E R, 

V t  (a ,  0 )  = 0 x E R, 
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The graph of the function u (x, t )  on the rectangle 

is presented in Figure 3.7 using the Mathernatica program 

f[x-]:=Which[3Pi/2<=~<=5Pi/2,Cos[x] ^3,True,O] 
gO[x-] :=Which[x<O,-f[-x] ,True,f[x]] 
gl  [x-] :=Which[x>4Pi,-f [x-4Pi] ,True,f[x]] 

Plot3D [u[x,t] , { x,O,4Pi}, { t ,0,4Pi}, 
AxesLabel->” Position” ,”Time” ,”Value” , PlotPoints >40, 
PlotRange- > { -1,1} ,Shading- > False] 

u[x-, t-] := (81 [x+t] +go [x-t])/2 

Val.. 

Figure 3.7. Reflection of a wave. 

The original problem has a solution
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Note that the initial profile splits into two profiles with amplitude 3 up to 
the instant 27r, when both turn to zero and after this instant they change their 
direction up to the instant 4n. 

Exercises 

1. Find the values u ($,l) , u (j, 3) where u ( x ,  t )  is the solution of the 
problem 

U t t  - u x ,  = 0 
u (z, 0 )  = z2(1 - z), ut (x, 0 )  = 0 

u, (0, t) = u x  (1, t )  = 0 

0 < x < 1,t  > 0, 
0 < 12: < 1, 

t 2 0. { 
2. Solve the problem 

Plot the graph of the function u ( x ,  t) on the rectangle R3 = { ( x ,  t) : 0 < x < 
4n,O < t < 4n) using Mathematica. 

3.4 Inhomogeneous Wave Equation 
Let f E C'(R2) and consider the inhomogeneous Cauchy problem 

U t t  - c2uXx = f 

ut(x,O) = +(x)  

x E R,t > 0, 
x E R, 
x E R. 

u(z,O) = p(x) 

It can be split into two problems - one homogeneous with nonzero initial 
data (CW), which we solve, and one inhomogeneous with zero initial data 

Utt  - c 2 u,, = f x E R , t  > 0, 
u(x,O) = 0 x E R, (3.13) 
u&O) = 0 x E R. 
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If u1 (x, t) and 212(x, t) are solutions of (CW) and (3.13) respectively, then 

Let us consider (3.13). Making change of variables 
u(x,t) = ul(z,t) + uz(z,t) is a solution of ( ICW) . 

= x +ct, 

7 =  x - ct, 

we transform (3.13) into 
1 477 = -gF(E, 7) ,  

where 

Integrating (3.14) with respect to 7 we have 

which, in view of (3.15), yields 

Integrating the last equation with respect to < 

Let us make change of variables 

(3.14) 

(3.15) 

(3.16) 

s =  a - cr, 
z = u + c r ,  



One Dimensional Wave Equation 89 

a ( s  4 w, 4 which has Jacobian J = - = 2c. The last change transforms the domain 

of integration 
D = { ( s , z )  : rl 5 s < z, r l <  z I t} 

into 
D‘ = ((0,~) : x - c(t - T )  5 0 _< x + ~ ( t  - T ) ,  0 5 T _< t}. 

Indeed by, 7 < s 5 z 5 5, we have 

x - ct 5 u - cr 5 u + cr < x -k ct. 

Then it follows 

0 5 2cr < 2ct e 0 < r < t ,  

and 

x - c ( t - 7 )  < a  < z + c ( t - 7 ) .  

The solution of (3.13) is 

where A(x, t) denotes the characteristic triangle. 
We prove that problem (ICW) has a solution given by the exact formula 

1 
2 u(z,  t )  = - ( c p ( X  + ct) + c p ( X  - ct)) 

Note that from (3.18) it follows the well-posedness of ( ICW).  
Indeed, as in Section 3.1, for 0 5 t 5 T ,  we have 

(3.18) 
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2cT.T 
d a d r  = S(A) 5 - JJ A 2 

Example 3.7. Solve the problem 

U t t  - u,, = xt x E R, t > 0, 
u(x,O) = 0 
ut(x,O) = 0 

x E R, 
x E R. 

Solution. The solution is 

t 
r(t - r ) d 7  = x (: - %> 

Exercises 

1. Solve the problems 
(4 

utt - u,, = ex-t  x E R,t > 0 ,  
u(x,O) = 0 x E R, 
ut(x,O) = 0 x E R .  

utt - u,, = sin x 
u(x,O) = cosx 

ut(x,O) = x 

x E R, t > 0 ,  
x E R, 
x E R. 

{ 
(b) 
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(4 
U t t  - uXx = x2 
U ( X ,  0 )  = cos x 

ut(x,O) = 0 

x E R, t > 0 ,  
x E R, 
x E R. 

2. (a) Prove the formula 

where f ( x ,  t )  and a(t) are differentiable functions. 
(b) Verify that the function 

satisfies the problem 

U t t  - u,, = f ( X )  t ) ;  u(2, 0 )  = 0) U t ( X )  0 )  = 0 )  

where f ( x ,  t )  E C1 (R2). 
Check the problem using a Mathemutica program. One program is 

g [ w -1 : =Integrate [ f [ v , w ] , v ,x- t + w ,x + t - w] 
u [x-, t -1 :=Integrate [g [w] ,w ,O ,t] /2 
ut t =D [ u [x, t] , t ,2] 
UXX=D[U[X,~] ,x,2] 
Simplify [ ut t- WM] 

Give another program. 

3. Prove the formula (3.17) applying Green’s5 identity 

c2vdt + udx = (ut - c2wX) dxdt, 
L A  JJ A 

to the equation utt - c2uzX = f ( x ,  t),where dA is the oriented boundary of the 
characteristic triangle A = A ( x ,  t )  . 

George Green, 14.07.1793-31.03.1841. 
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3.5 Conservation of the Energy 

Let 
R = { ( x , t )  : 0 < x < I ,  0 < t < OO}, 

and u E C2 (R)  be a solution of the problem 

Utt - c2ux,, = 0 

u (0, t )  = u ( 1 ,  t )  = 0,  

0 < x < 1,t > 0 ,  
0 < x < 1, 

t 2 0. 
( M D W )  : u (z, 0 )  = cp (z) , Ut (z, 0) = + (x) { 

The quantity 

1 
1 
2 K E  ( t )  = - / u; (a, t )  dz  
0 

is known as the kinetic energy, the quantity 

1 

PE ( t )  = 1 2 / c 2 u 2  ( z , t )  dx 
0 

is the potential energy. The sum of the kinetic and potential energy 

E(t )  = KE( t )  + PE ( t )  = (u: ( z , t )  + c2u2 ( z , t ) )  dz 
0 

is the total energy of the system at the instant t .  The conservation of energy is 
one of the most basic facts about the wave equation. For the above mentioned 
problem ( M D W )  we show that the total energy E(t )  is a constant independent 
o f t .  This is the law of conservation of energy. 

Theorem 3.5. If u E C2 (R)  is a solution of the problem ( M D W )  , then 

Proof. Multiplying the equation by ut , using the identities 

the energy E ( t )  is a constant E (t)  = E ( 0 ) .  

I d  
2 at UtUtt = -- (UP) 1 

d 1 8  
OX 2 at U t U X Z  = - (U&) - -- (4) 



One Dimensional Wave Equation 93 

and integrating by parts we get 

1 

0 = 1 (utt - c2u,,) utdx 
0 

1 

1 

- - Id / (up ( x ,  t )  + c2u2 (z, t ) )  dx 
2 dt 

0 

-c2ux (1,  t )  U t  ( I ,  t )  + C2UX (0, t )  U t  (0, t )  
dE 
d t  ' 

- - -  

Therefore for t > 0 

E ( t )  = E (0)  = (u: (x, 0 )  + C ~ U :  (a:, 0 ) )  d~ (3.19) 
0 

1 

= 1 1  (q2(z) + ~ ~ c p ' ~ ( a : ) )  dz, 
2 

0 

so the energy is conserved. 
jFkom (3.19) it follows that if cp = $J = 0 then u = 0 on R. H 

Exercises 

1. Consider the problem 

Prove that the energy 

1 

E ( t )  = f 1 (..I (x, t )  + u: (x, t ) )  da: 
0 
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is a decreasing function. 

2. Let u E C2 (R2) be a solution of the wave equation 

utt - c2uxx = 0 ,  

and 

DT = {(x,t) : a - ct 5 x 5 b +  ct,O 5 t 5 T } ,  

DT = {(~,t) : U +  ct 5 z 5 b -  ct,O 5 t 5 T}. 

(a) Using 

1 
2 

U t  (utt - C2UX,) = - (ul + c”u2), - (c2ux2Lt), 

and Green’s identity in DT prove that 

b+cT b 1 (u: + c2u2) (x, T )  dx - (ul + c2ui) (x,O) dx s 
a-cT a 

b+ cT 

= 1 (ut - CU,)~ (x, y) dx + 1 (ut + C U , ) ~  (x, q) dx. 
a-cT b 

(b) From the last identity it follows 

b+cT b 

(c) Applying Green’s identity in DT prove that 

(up + c2uE) (x, 2’) dx 5 (uf + c2u2) (x, 0 )  dx. 
a t c T  
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3. Consider the problem 

and suppose that f E C1 (R x R+) n L2 (R x Rs), 'p E C2 (R),  'p' E L2 (R) 
and $ E C1 (R) n L2 (R) . Let 

(u: (2, t )  + U: (z, t ) )  dx. 
-ca 

Prove that 

t +m 

. 0 -ca 
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Chapter 4 

One Dimensional Diffusion 
Equation 

4.1 Maximum-minimum Principle for the 
Diffusion Equation 

In this section we consider the homogeneous one-dimensional diffusion (heat) 
equation 

( 4 4  
2 

U t  - a  u,z = 0, 

which appears in the study of heat conduction and other diffusion processes. 
As a model for equation (4.1), we consider a thin metal bar of length l whose 
sides are insulated. Denote by u(x,t) the temperature of the bar at the point 
x at the time t .  The constant k = a2 is known as the themnal conductivity. 
The parameter k depends only on the material from which the bar is made. 
The units of k are (length)2/time. Some values of k are as follows: Silver 
1.71, Copper 1.14, Aluminium 0.86, Water 0.0014. In order to determine the 
temperature in the bar at any time t we need to know: 

(1) initial temperature distribution 

where cp(z) is a given function. 
(2) boundary conditions at the ends of the bar. 
For instance, we assume that the temperatures at the ends are fixed 

97 
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u(0,t) = TI, u(Z,t) = T2, t > 0. 

However it turns out that it suffices to consider the case 7’1 = 7’2 = 0 only. 
We can also assume that the ends of the bar are insulated, so that no heat can 
pass through them, which implies 

u,(O,t) = u,(Z,t) = 0 ,  t > 0. 

A “well posed” problem for a diffusion process is 

ut - ku,, = 0, 0 < x < I ,  t > 0, 

where u (x, t )  satisfies the initial condition 

u(x,O) = cp(x), 0 < x < I 

and the boundary conditions 

u(0,t)  = u(Z,t) = 0 ,  t > 0 

or 

(4.3) 

(4.4) 

u,(O,t) = u,(Z,t) = 0 ,  t > 0. (4.5) 

The problem (4.2), (4.3), (4.4) is known as the Dirichlet problem for the 

At first we discuss a property of the diffusion equation, known as the 

Let R = { (x, t )  : 0 5 x 5 I ,  0 5 t 5 T }  be a closed rectangle and 

diffusion equation, while (4.2), (4.3), (4.5) as the Neumann problem. 

maximum-minimum principle. 

I? = { ( ~ , t )  E R : t = 0 or x = 0 or z = I } .  

Theorem 4.1. (Maximum-minimum principle). Let u(x, t )  be a continu- 
ous function in R which satisfies equation (4.2) in R\r. Then 

max u(x, t )  =max u(x ,  t ) ,  (4.6) R r 

min u ( x ,  t )  =min r u(x, t ) .  (4.7) R 

(4.2)
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By Theorem 4.1 the maximum (minimum) of u(x, t )  cannot be assumed 
anywhere inside the rectangle but only on the bottom or lateral sides (unless 
u is a constant). 

Proof of Theorem 4.1. Denote 

M = m a  u(z ,  t ) .  r 

We shall show that max u(x, t )  5 M which implies (4.6). 

Consider the function v(z, t )  = u(z,  t )  +m2, where E is a positive constant. 
R 

We have for (z, t) E R\r 

Lv(z ,  t )  = Lu(z, t )  - 2 k ~  = - 2 ~ k  < 0 (4.8) 

If w(z, t )  attains its maximum at an interior point (q, t l )  it follows that 
L w ( q ,  t l )  2 0, which contradicts (4.8). Therefore v(z ,  t )  attains its maximum 
at a point of d R  = I' U y,y = { ( z , t )  E R : t = T } .  Suppose v(x,t) has a 
maximum at a point (5 ,T)  E y, 0 < Z < 1. Then v,(Z,T) = 0, wzz(iE,T) 5 0. 
As 

v(z, T )  1 w(z, T - S), 0 < S < T ,  

we have 

v(z,  T - S) - v(z ,  T )  wt(%,T) =lim 2 0. 
6 4 0  -6 

Therefore Lw(z,T) 2 0, which contradicts (4.8). Hence 

= maxv(z, t )  R = maxv(z , t )  r 5 M + E Z ~ ,  

which implies u(z, t )  5 M + &(Z2 - x2), on R for every E > 0. 
Letting E 4 0, we obtain u(z, t )  5 M on R which means that 

maxu(z , t )  =maxu(z,t). 
R r 

Considering the function w ( z , t )  = -u(z,t) we get (4.7). H 

By the maximum-minimum principle it follows the uniqueness of the solu- 
tion of the Dirichlet problem for the diffusion equation 

and
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Suppose 

By a solution we mean a function u E C(R) which is differentiable inside R 
and satisfies the equation along with the initial and the boundary conditions 
of ( I D D ) .  

Theorem 4.2. The problem (IDD) has no more than one solution. 

Proof. Suppose u1 (z, t )  and u2 (2, t )  are two solutions of ( I D D ) .  Let 
w(z,  t )  = u1(z, t )  - u2(z, t ) .  Then 

wt - kw,, = 0 0 < 2 < 1,o < t 5 T ,  
w(z,O) = 0 O S z < l ,  

O L t S T .  { w(0,t)  = w(1, t) = 0 

By Theorem 4.1 it follows 

max w(z,  t )  =min w(z,  t )  = 0. 

Therefore w(z,  t )  = 0 ,  so that ul (z , t )  E uz(z, t)  for every ( z , t )  E R. 

R R 

Consider the problem ( I D D )  with f = g = h = 0,that is 

U t - k U , , = O  O < x < l , O < t < T ,  
u(2,O) = p(z) O S z S l ,  

egg. u(0,t)  = u(1,t) = 0 

As a Corollary of Theorem 4.1 the continuous dependence of solutions of 
(HDD) with respect to initial data follows. 

Corollary 4.1. Let uj(x, t )  be a solution of (HDD) with initial data Y j (x ) ,  
j = 1,2. Then 
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fo r  every t E [0, TI. 
Proof Consider the function w ( x ,  t )  = q ( x ,  t )  - u ~ ( z ,  t ) ,  which satisfies 

Wt - kwxx = 0 
W ( Z , O )  = V l ( 4  - ( P 2 M  

0 < 2 < l , o  < t 5 T, 
O L X < l ,  
O L t S T .  [ w(0 , t )  = w( l , t )  = 0 

By Theorem 4.1 it follows that 

and 

2 - O S X < l  I V l ( 4  - V2(Z)l J 

which imply (4.9). 

The uniqueness and stability of solutions to ( H D D )  can be derived by 
another approach, known as the energy method. We have already used this 
method in Section 3.5 for the wave equation. 

Let u be a solution of the problem ( H D D ) .  The quantity 

P l  

H ( t )  = J, u2(x, t )dz  

is referred to as the thermal energy at the instant t. In contrast to the wave 
equation where the energy is a constant, we shall show that H ( t )  is a decreasing 
function. 

Theorem 4.3. (a )  Let u ( ~ , t )  be a solution of (HOD). Then 

H(t1)  2 H(t z ) ,  if 0 5 tl 5 t 2  _< T. 

(b)  Let uj (x, t )  be a solution of (HDD) corresponding to the initial data 
( ~ j ( x ) ,  j = 1,2.  Then 
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Proof. (a) Multiplying the equation by u, using 

1 8  2 d 
2 at dX 

U U t  = --(u ), uu,, = -(uuz) -u2, 

and integrating, we obtain 

) 
= ( i g ( u 2 )  - k-(uuz) d + ku: dx 

dX 

- - (Jdl u 2 ( x ,  t ) d x )  - k((uu,) ( 1 ,  t )  - (uu,) (0, t ) )  2 d t  

1 dH 
2 d t  

2 --(t). 

Therefore H ( t )  is a decreasing function, so if 0 5 tl 5 t 2  5 T ,  then H(t1)  2 

(b) The function w(x, t )  = u1(x,  t )  - u2(x,  t )  satisfies (HDD) with cp(x) = 
H(t2) .  

91 (2) - cpz(x). Therefore for t 2 0 by (a) 

Exercises 
1. Consider the mixed problem for the diffusion equation 

U t - U , , = O  o < x < 2 ,  O<t ,  
u ( x , O ) = x ( 2 - x )  O I x 5 2 ,  { u(0 , t )  = u(2,t)  = 0 0 5 t.  

Show that: 
(a) 0 < u ( x , t )  < 1 for every t > 0 and 0 < x < 2, 
(b) u ( x , t )  = u(2 - x,t) for every t 2 0 and 0 I x 5 2, 
(c )  u2 (x ,  t )dx  5 for every t 2 0. 



One Dimensional Diffusion Equation 103 

2. The maximum principle is not valid for parabolic equations with vari- 
able coefficients. Verify that the equation ut - xu,, = 0 in the rectangle 
R = {(x,t) : -2 5 x 5 2, 0 5 t 5 1) has a solution u(x,t) = -2xt - x2 and 
max u(x, t )  = u(-1, 
R 

3. Consider the 
(a) Show that 

1) = 1. 

thermal energy H ( t )  of the problem ( H D D )  . 

1 

H’(t) = - 2 k i  u2,(x,t)dx 

and 
1 

P ( t )  = 4 1 Uf(II:, t )dz.  

(b) Using the Cauchy-Schwarz inequality derive that 

H’2(t) 5 H(t)H”(t) .  

(c) Show that for every 0 _< tl < t < t 2  5 T the inequality 

t 2 - t  t - t l  

H ( t )  _< H(t1)  t 2 - t l  H(t:!) t 2 - t l  , 

holds, known as logarithmic convexity of H ( t ) .  

4.2 The Diffusion Equation on the Whole Line 
In this section we give an explicit formula for the solution of the Cauchy prob- 
lem for the diffusion equation on the whole line 

We shall prove that the solution of (CD)  is given by the Poisson’ formula 

(4.10) 

assuming that p(z) is continuous and bounded on R. 
Notice from (4.10) that the value of u (x, t )  depends on the values of the 

initial data cp(J) for all < E R. Conversely, the value of cp at a point 20 has 

Simeon Denis Poisson, 2 1.06.1781-25.04.1840. 
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an immediate effect everywhere for t > 0. This effect is known as infinite 
speed of propagation which is in contrast to the wave equation. Moreover the 
solution given by (4.10) is infinitely differentiable for t > 0. It is known that 
the diffusion is a smoothing process going forward in time. Going backward 
(antidiffusion) the process becomes chaotic. Therefore, we would not expect 
well-posedness of the backward-in-time problem for the diffusion equation. 

A natural way to derive (4.10) is the Fourier transform, but we do not 
consider it in our text. In order to prove that (4.10) satisfies the problem (CD) 
we need some preliminaries on improper integrals. Recall some definitions and 
proper ties. 

Let f (x, y) be a continuous function in (5, y) E R x [a ,  b]. Suppose the 
integral 

I(Y) = Srn f ( x , y ) d x  (4.11) 
-W 

is convergent for every y E [a ,  b]. 

Definition 4.1. W e  say that the integral (4.11) i s  uniformly convergent 
for  y E [a ,  b] ,  i f  for every E > 0 there exists A0 = Ao(E) ,  such that if A > A0 , 
then 

for  every y E [a,  b]. 

Theorem 4.4. If the integral (4.11) is uniformly convergent f o r  y E [a ,  b],  
then the function I(y) is continuous in [a ,  b]. 

Theorem 4.5. Suppose f (x, y) and g ( x ,  y) are continuous functions in 
R x [a ,  b] ,  I(y) i s  convergent for  every y E [a ,  b] and 

is uniformly convergent for  y E [a ,  b]. Then  I (y )  i s  a differentiable function in 
(a ,b )  and 

I'(Y) = 4 9 ) .  

A criterion on uniform convergence of integrals is the following. 
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Theorem 4.6. (Weierstras2 criterion) Suppose there exists a function 
g ( x )  such that I f  (2, y)I 5 g ( x )  for  every y E [a, b] and the integral 

00 

is convergent. Then the integral (4.11) is uniformly convergent fo r  y E [a,  b] .  

lem (CD)  i f  it satisfies the equation ut - ku,, = 0 in R x (0, T )  and 
Definition 4.2. A differentiable function u ( x , t )  is a solution of the prob- 

lim u ( x , t )  = cp(x) (4.12) 
t l o  

Theorem 4.7. Let cp(x) E C (R ) and Icp(x)I 5 M .  Then Poisson fomnula 
(4.10) defines an infinitely differentiable function u ( x ,  t )  which is a solution of 
the problem (CD) and lu(x,t) l  5 M. 

Proof. From (4.101, making the change of variables 5 = x - p m  we have 

u ( x , t )  = - Jrn e-gcp(x - p&)dp, 
2 f i  -00 

(4.13) 

By Poisson identity 

J -00  

we obtain 

Let us show that (4.12) is fulfilled. Note that the formula (4.10) has a meaning 
for t > 0 and the initial condition is satisfied in the limit sense. We have 

/00 e - c  (cp(x - p&) - cp(x))dp. (4.14) 1 
u ( x , t )  - y ( x )  = - 

2 f i  -00 

Let E > 0 be fixed. As p ( x )  is continuous, there exists S > 0 such that 

or 
(4.15) 

2Karl Theodor Wilhelm Weierstrass, 31.10.1815-19.02.1897. 
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As the integral s-”, e - G d p  is convergent there exists a sufficiently small 
t o  such that 

(4.16) 
& 

e 4 d p < -  & Lp,>& 2fi ‘S I P P k  -z 4M ’ 
-2 e 4 d p < -  

if 0 < t < t o .  Then, by (4.14), (4.15) and (4.16) for t E (0 , to)  we have 

& &  < -+ -== ,  2 2  

which means that (4.12) is fulfilled. 

R x (0,T). Let Lu = ut - ku,,. As 
It remains to show that u(z , t )  satisfies the equation ut - ku,, = 0 in 

it sufficies to show that 

Suppose that 
(x, t )  E S := [-A, A] x [S, TI, 

where A > 0 and 0 < S < T are fixed. 
By Theorem 4.5, in order to show that 

we need to prove that the last integral is uniformly convergent for 
We have 

(4.17) 

( X , t )  E s. 

(4.18) 
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x 2 + p  1 I -  +- 
2 k f l  2@ 

I -+- 
2 k f l  2@' 
A2+t2  1 

jF'rom the elementary inequality 

it follows 

( x  - < I 2  p - 2x2 
4kt ' 8kt 

' 8kT 
tz - 2A2 

(4.19) 

Then, by (4.18)) (4.19) and Theorem 4.6, we have 

where C = C ( M ,  A,  k ,  T ,  6) is a constant, so it follows that the integral (4.13) 
is uniformly convergent. Note that the integral s-", t2e-t2dC is convergent 
and 

Following the same way we show that 
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and the last integrals are uniformly convergent. 
Then 

ut - ku,, = 0,  if ( z , t )  E [-A,A] x [S,T]. 

As A > 0 and 0 < 6 < T are arbitrary 

ut - ku,, = 0 ,  if (x, t )  E R x (0, TI, 

which completes the proof. H 

The initial data p(x) in (CD) is a continuous function in Theorem 4.4. It 

A function p(x) is said to have a jump at 20, if both left and right limits 
can be supposed p(x) to have a jump discontinuity. 

of p(z) exist 

p(x0 - 0) = lim p(x), p(z0 + 0) = lim p(x) 
X- XQ x - x o  
2 <"O ">"O 

and 

The function cp(z) is said to be piecewise continuous if in each finite interval 
it has a finite number of jumps and is continuous at all other points. 

Theorem 4.8. Let p(x) be a bounded piecewise continuous function. Then 
formula (4.10) defines an infinitely dinerentiable function u ( x , t ) ,  which is a 
solution of the equation 

U t  - kuxx = 0 ,  (x, t )  E R x (0, T )  

and 

1 
lim u(z ,  t )  = -(p(x + 0) + cp(x - 0)) 
t l0  2 

for all x E R. 
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Proof. Let xo be a point of jump discontinuity of cp(x). As in the proof of 
Theorem 4.7 we show that 

(4.20) 

(4.21) 

as t -+ 0, t > 0. Let us prove (4.20). Suppose E > 0 and 6 > 0 are such that 

I'p(z0 - p a >  - p(z0 - o ) (  < E ,  i f 0  < p < - &' 
6 

As e - G d p  = fi there exists t o  > 0, such that 

e -2 4 d p < -  .J;; i f O < t < t o ,  
2M ' 

where, as before, lcp(z)I 5 M for every z. Then 

< - ( q h + 2 M - )  1 &fi 
2 f i  2M 

which proves (4.20). 
proof. 

Analogously it can 

Example 4.1. Solve the problem 

U t  - u x x  = 0 )  
u(z,O) = e-", 

= & )  

be proved (4.21), which completes the 

z € R , t > O  
x E R. 
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Solution. By the Poisson formula we have 

Using 

( x  - + < = -(x2 1 - 2 t x  + 6 2  + 4<t) 4t 4t 
1 
4t 

= -(x2 + t2 + 4t2 - 2 t x  + 4 t t  - 4xt + 4xt - 4t2) 

+ x - t  - - (t + 2t - x)2 
4t 

( + 2 t - x  
2& 

and making change of variable = p ,  we have 

Observe that lim u ( x ,  t )  = e-" for every x E R. 
t l0  

Example 4.2. Solve the problem 

Solution. We express the solution in terms of the error function of statistics 

2 "  
erf(z) = J;; 1 e-p2dp,  

already used in Section 3.1, Example 3.4. Note that 

erf(O) = O , lim erf(z) = 1, 
2++w 

erf (-x) = -erf (x). 

(4.22) 
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By the Poisson formula and the change of variable = x - 2 4 p  

1 ( X - O 2  

e 4t dJ  

e-p2 dp  

1 u ( x , t )  = -/ -- 
2 f i  -1 

- - -  

= 1 2 (erf (s) -erf (2)) . 

By Theorem 4.8 and (4.22) we have 

1 1  
2 2  

- - - = -(u(l + 0,O) + u(l  - 0,O)). 

Example 4.3. Solve the Cauchy problem for the diflusion equation ut - 
u,, = 0 with initial data 

Show that u ( x , t )  -+ 0 as t -+ +oo for every x .  

Solution. Making the change of variable < = x - 2&p we have 

- 2& J' 7 pe-p2dp+2&/:pe-p2dp 
I - 1  - 

2 d T  2 t  
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The graph of this function is given in Figure 4.1 using MAPLE in Scien- 
tific Wor kP lacE. 

J 

Figure 4.1. Graph of the function u = u(x, t )  in Example 4.3. 

Note that for every x E R 

as t --+ +oo. Indeed for x 2 0 
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1 ( x +  1)2 x2 
p d p  = - 2 (- 4 4  - -) 4 4  + 0, 

as t -+ +oo. 
If -1 < z < 0 

= 1 x2 -(-+-)+o. (x+ 1)2 
2 4& 4& 

as t + +m. 
Finally for x 5 -1 

as t -+ +oo. 
The same way 

& J" pe-P2dp -+ o as t + +oo. 
%+ 

Then by erf(0) = 0 it follows that lim u(x,t) = 0 for every x E R. Note 
t++m 

that 

u(0.t) = erf (L) + 2 6  (e-h - 1) . 
2 f i  

The graph of this function is given in Figure 4.2. 
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0 1 2 t  3 4 5 

Figure 4.2. Graph of the function u = erf (h) + 2 8  ( e - h  - 1) 

Exercises. 
1. Solve the Cauchy problem for the diffusion equation ut - u,, = 0 ,  

(a) u ( x ,  0 )  = e - x 2 ,  

(b) u ( x ,  0) = e-lzl, 

x E R, t > 0 with initial data 

2, if x > 0, 
4, if x < 0. (4 + , O )  = 

Compute u ( 0 ; t )  in the cases (a), (b) and show that lim u(0,t) = 0. 
t+m 

Compute lim u(0,  t ) .  
t l 0  

2. Consider the Cauchy problem for the diffusion equation with the initial 
condition u ( x ,  0) = cp(x). Show that if (p(x) is an odd (even) function, then the 
solution u(x,t) is also an odd (even) function of x. 

3. Solve the Cauchy problem for the diffusion equation with constant 
dissipation 

U t  - kuxx + bu = 0 ,  (x, t )  E R x (0, OO), { U ( X ,  0 )  = c p ( ~ ) ,  x E R. 
4. Solve the Cauchy problem for the diffusion equation with convection 

U t  - kuxx + W U ,  = 0 ,  
u(x,O) = ~ ( x ) ,  

(2, t )  E R x (0, OO), 

x E R. 
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4.3 Diffusion on the Half-line 
Let us consider the diffusion equation on the half-line (0,co) and take the 
Dirichlet boundary condition at the end-point x = 0. 

Using the reflection method considered in Section 3.2 for the wave equation 
we shall treat the problem 

U t  - kuxx = 0 x E (0, +w), t > 0, 

0 5 t.  
+,O) = P(Z) 2 E (0, -too), (4.23) 

We are looking for a solution formula for (4.23) analogous to the Poisson 

Let us consider the problem (CD)  with initial data p,, which is the odd 

u(0,t) = 0 

formula. 

extension of p(x) on the whole line 

(4.24) 

where 

Let uo(x ,  t )  be the unique solution of (4.24) which, by the Poisson formula, 
is 

is the unique solution of the problem (4.23). Note that u,(z,t) satisfies the 
diffusion equation and is an odd function uo(-x, t )  = -u,(x, t ) ,  which easily 

The restriction
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follows from (4.25). Then u(0,t) = u,(O,t) = 0 and u(a,t) satisfies the diffu- 
sion equation. Moveover, u(z,t)  satisfies the initial condition for x > 0. 

Let us consider now the Neumann boundary condition at the end point 
x = 0 for the diffusion equation on the half-line. Namely, let us consider the 
problem 

U t  - kuxx = 0 x E (0, -too), t > 0, 

t > 0. 
u(z ,  0) = cp(4 

UX(0,t) = 0 
z E (0, +m), 

In this case we use the even reflection of P ( X )  

(4.26) 

Let Ue(x,t) be the solution of the problem 

As before, we have 

The restriction u(x, t )  = ue(x, t)lx>O - is the solution of (4.26). Note that 

and 

a U  due 
-(O,t) = - ( O , t )  ax  d X  

As before, U ( X ,  t )  satisfies the diffusion equation and the initial condition. 
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Example 4.4. Solve (4.23) with cp(x) = e-” andk = 1. 

Solution. By the solution formula for (4.23) 

Using 

+ x - t  (.-El2 +[ = (< + 2t - ..)2 

4t 4t 

- ( x  + t )  ( X + t l 2  + t  = (t + 2t + .)2 

4t 4t 
we obtain 

Note that u ( 0 , t )  = ;et (erf (4) + erf (-4)) = 0. 

Example 4.5. Solve (4.26) with p ( x )  = e-“ and k = 1. 

Solution. By the solution formula for (4.26) and previous calculations we 
obtain that the solution for x 2 0 is 
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As erf'(x) = L e - x 2  J;; we have 

u,(O,t) = 0. 

Exercises. 
1. Prove the following maximum principle for the problem (4.26). If cp(x) 

is a bounded continuous function, then the solution u(x, t )  of (4.26) satisfies 

I 4 X )  t>I <SUP lv(x)I * 

X Z O  

1 ,  2 2. Let @(x) = s-, e- 2 d p  be the density function of the standard 

(a) Derive that the problem (4.26) with the initial condition ~ ( x )  = e-x 
normal distribution. Show that @(+m) = 1 and @(-x) = 1 - @(x). 

has a solution 

(b) Using the maximum principle for (4.26) show that 

e-"b@(a - b)  + e a b @ ( - ( a  + b ) )  5 e-g, a E R, b > 0, 
1 2 3 2 2  

2 
1+-e--'i- - e - T  5 @(x) 5 1 ,  x 2 O .  

4.4 Inhomogeneous Diffusion Equation on the 
Whole Line 

Consider the problem of finding a function u(x, t )  such that 

{ U(X,O)  = 44 (4.27) 

known as Cauchy problem for the inhomogeneous diffusion equation. By linear 
properties of the operator Lu G ut - ku,,, the solution of (4.27) u(z, t )  is the 
sum of the solutions w(x,t) and w(x,t) of the problems 

U t  - ku,, = f (2, t )  x E R, t > 0, 
x E R, 

(4.28) wt - hXx = 0 x E R, t > 0, 
v(x,O) = v(x) x E R, 
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and 
wt - kw,, = f (IL', t )  J: E R, t > 0, 

W ( Z ' 0 )  = 0 x E R, 
respectively. 

We have that 

119 

(4.29) 

(4.30) 

and will show that 

Denote 

known as Green's function or fundamental solution of the diffusion operator 
L. It is clear that 

L ( G ( x - t , t - ~ ) ) = o ,  ( ~ , t )  E R X  ( o , ~ ) ,  t f ~ .  

jFrom (4.30) and (4.31) it follows that the solution of (4.27) is 

Assuming that f(x, t )  is bounded and continuous on R x (0, oo), we prove 
that the function w(z,  t )  given by (4.31) satisfies the problem (4.29). 

By the maximum principle for the diffusion equation on the whole line it 
follows that the function ~ ( x ,  t )  given by (4.33) is the unique solution of (4.27). 

Theorem 4.9. Let f (x, t )  E C(R x (0,oo)) be a bounded function and 

Then  the function 
t 

w(x, t )  = Ju w(x, t ,  7)dT 

is a solution of the problem (4.29). 
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Proof. By virtue of the estimates of Section 4.2 and the assumption of the 
theorem the integrals 

t It v(z,  t ,  7 ) d T  I ” U t ( X ,  t ,  d d 7 ,  Jd u&, t ,  

are uniformly convergent over bounded and closed intervals of R. 
By the formula for differentiation of integrals depending on parameters 

and we have 
t-& d 

- - aW - L v ( z , t , T ) d T  = 
at 

vt(x, t ,  7 ) d 7 +  lim v(z,  t ,  t - E )  = 1 0  &+O 

To show that the initial condition is satisfied observe tiiat 

M X ,  t)I 5 I’ 142, t ,  41 d7 

and therefore lim w(z,  t )  = 0. 
t l 0  

Consider now the inhomogeneous problem on the half-line with the Dirich- 
let boundary condition 

U t  - kuzz = f ( ~ , t )  x > 0, t > 0, 
u(0,t)  = h(t) t > 0 ,  (4.34) 
u(z,O) = ( P ( 4  x > 0. 
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We reduce (4.34) to a simpler problem letting v (x ,  t )  = u ( x ,  t )  - h(t). Then 
v ( x ,  t )  satisfies the problem 

The solution v(z,t) of (4.35) is the sum v(z,t) = vl(z,t) +v2(z,t), where 
vl(z, t )  and v2(xj t )  are solutions of the problems 

(4.36) 

and 
~ 2 t  - kv2Xz = f ( ~ , t )  - h’ ( t )  x > 0, t > 0, 

w2(0,t) = 0 t > 0, (4.37) 
v2(x,O) = 0 x > 0. 

The solution of (4.36) is found by the reflection method of the previous section. 
Note that (4.37) can be solved again by the reflection method using the odd 
extension of the source function F ( x ,  t )  = f ( x ,  t )  - h’(t). Namely, let Fo(x, t )  
be the odd extension of F ( x , t )  with respect to x and w ( x , t )  be the solution 
of the problem 

wt - kwZx = Fo(x , t ) ,  z E R, t > 0 
w(s,O) = 0 ,  x E R, 

given by

Then

is the solution of (4.37).
Let us show that v2(0,t) = 0 for t > 0. we have
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because G(z , t )  is an even function with respect to x. 

Exercise 
1. Solve the inhomogeneous Neumann problem on the half-line 



Chapter 5 

Weak Solutions, Shock 
Waves and Conservation 
Laws 

5.1 Weak Derivatives and Weak Solutions 
Consider the Cauchy problem (CW) . It was noted in Section 3.1 that to have 
a solution u E C2 (R x R+) of (CW) we require cp E C2 (R) and $ E C1 (R) . 
If the last assumptions are not satisfied then the solution given by D'Alembert 
formula is not a classical solution. How to justify the meaning of a solution in 
this case? There exist two main approaches. One is to introduce the so called 
weak derivatives so that the wave equation is satisfied in a form of integral 
identity. The other is the sequential approach. Consider approximating prob- 
lems with smooth data (cpk,+k)  E C2 (R) x C1 (R) . It is possible to define 
a weak (' generalized ) solution of the problem by passing to the limit in L2 
spaces of corresponding solutions U k .  We prove that in some sense these two 
approaches are equivalent. 

Let L2 (R) be the usual Lebesgue space of square integrable functions 
u : R --+ R, where R is a measurable domain in R". L2 (0) is a Banach space 
with a norm 

Denote by CF (0) the space of test functions, i.e. all functions p (x) E 

123 
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C" (52) with compact support 

suppp = { X  E R" : p ( x )  # 0). 

Next 
subset K c 52 it holds U ~ K  E L2 ( K )  . 

(R) is the space of functions u : R -+ R, such that for every compact 

a 
dx  j 

Definition 5.1. A function v E L;oc (R) is said to be the weak - 
derivative of a given function u E Lf?oc ($2) i f  

for  every test function p ( x )  E C r  (0) I 

If u E C1 (R) it is easy to see that the weak & derivative of u ( x )  is equal 
a U  

The Sobolevl space W2>l (0) is introduced as the m space of L2 (R) functions 

to -. 
dzj  

OU 
u : R -+ R for which there exist weak derivatives - E L2 (52) , j = 1, ,.., n. 

8 X j  
W2>l (R) is a Banach space with the norm 

By W,2d,l (0) we denote the space of functions u : R + R such that for every 
compact subset K c R it holds u l ~  E W2i1 ( K )  . Every function of W29l (R) 
can be approximated by a sequence of smooth functions with respect to W2y1 
norm on compact subdomains of R. 

Consider the so-called Dirac? kernels or mol lifying kernels or the f iedrichs3 
mollijiers. Let E > 0 and po (x) E C r  (0) 

'Sergej Lvovich Sobolev, 08.10.1908-03.01.1989. 
2Paul Adrien Maurice Dirac, 1902-1982. 

3Kurt Otto Friedrichs, 1901-1982. 
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where the constant co is such that 

mollifiers 

po (2) dx = 1. Define the sequence of 
R n  

1 
PE (4 = E"P0 (;) 

for which p, (z) E C r  (0) , suppp, (x) = B, (0) and p, (x) dz = 1. 
Rn 

Mollifications or Regularizations J,u of a function u E Lioc (0) are defined 
as 

JEU (4 = 1 PE (x - Y) (Y) dY. 
n 

dlkl 
Here 03 = Ik( = kl + ... + k,, is a partial derivative of order Ik(. 

ax;1 . ..ax$ ' 

Theorem 5.1. For a given function u E W?: (a) the regularizations J,u 
tend to u in W2i1 ( K )  for every compact K c R, i.e. 

Proof. Let E < dist ( K ,  80) . By the change of variables y = 2 - E Z  and 
the Cauchy-Schwarz4 inequality we have 

*Hermann Amandus Schwarz, 25.01.1843- 30.11.1921 
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or 

where K, = {z E 0 : dist (z, K )  5 E }  . 
Let S < 5 .  There exist v E C (K,) such that 

IIu - v l ) L z ( K E )  < 6- 

By Exercise 2, (a) it follows 

IIJ&,V - 4 I C ( K )  + 0, 

as €1 -+ 0. Then for sufficiently small ~1 < E 

Moreover 

and then 
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A similar procedure is used to prove that IlDj (J,,u - u)  l lL2(K)  -+ 0 as 
~1 -+ 0 and 

for u E W,ld,2 (R) -Exercise 4. H 

Definition 5.2. A function u E W12d,l (R2) i s  said to be a weak solution 
of the wave equation utt - c2uxx = 0 iff 

u (p t t  - c2pxz)  dxdt = 0 
J 

R 2  

every test function p E C r  (R2) . 

Definition 5.3. A function u E W"d,' (R2) i s  said to be a weak solution 
of the wave equation utt - c2uxx = 0 iff there exists a sequence of smooth 
solutions u k  ( x , t )  E c2 (R2) of the wave equation such that for every compact 
set K c R2, llUk - u I I w ~ , I ( K )  3 0 as k -+ 00. 

Theorem 5.2. Definition 5.2 i s  equivalent to Definition 5.3. 

Proof. (a) Definition 5.3 3 Definition 5.2. 
Let p E C r  (R2),  suppp C K and ( U k )  be a sequence of C2 smooth 

- U l ( W 2 , 1 ( K )  -+ 0 as k -+ 00. solutions of the wave equation such that 
Integrating by parts, we have 

for
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By Definition 5.3 and the Cauchy-Schwarz inequality it follows 

a s k - + o o .  
Therefore 

/ u (pt t  - c2pzx) d x d t  = 1 u (ptt - c2p,,) d x d t  = 0. 
K R 2  

(b) Definition 5.2 + Definition 5.3. 

We use regularizations to construct approximating sequences of solutions. 
Let u E (R2) be a weak solution of the wave equation in the sense 
of Definition 5.2 and uE = J E u .  For every compact set K C R2, lluE - 
U \ I W ~ , I ( K )  --+ 0 as E -+ 0. It remains to prove that uE is a smooth solution of 
the wave equation. Denote for simplicity 

X = ( x , t ) ,  d X  = d x d t ,  

Y = (y,-r), d Y  = dyd-r, 

By integration by parts and h b i n i  theorem we have 

W
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= Jm Jp€(X-Y)LxP(X)dXdY 

R$ R2, 

R2x R2y 

= JP(X) Su(Y)Lup,(X-Y)dYdX=O. 

As p ( X )  is arbitrary it follows that Lxu, (X) = 0 which completes the 
proof. H 

Exercises -I 

1 1. Show that the function 

1 
E L;oc (1x1 < 1) for every m, but 

(1 - 14)" 
E L~ (1.1 < 1) for m < f. 

(1 - IXI)" 

2. (a) Let u E C (n) and K c be a compact set. Prove that 

IIJE. - 4IC(K)  = zy I (J& - u) (x) I + 0, 

as E -+ 0. 
(b) Let u E C" (0) and K c R be a compact set. Using 
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for Jk) 5 m, prove that 

3. (a) Let u ( x , t )  = 1x1, = { ( x , t )  : x2 + t2 < l} . Verify that u has 
weak derivatives 

-- - 0  1 i f x > O  du 
-1 i f x < O  ' & 

d U  - = sgnx = 
d X  

in B. 
(b) Let u ( x , t )  = sgnx, 

a weak derivative - in B.  

B = { ( x , t )  : x2 +t2 < l}. Show that u has not 
dU 
8 X  

4. Prove that if u E W;;: (R) , then 

5.2 Conservation Laws 

We consider solutions of hyperbolic systems of conservation laws. These are 
systems of PDEs of the form 

where u : R x R + Rm is a vector function 

and f : Rm -+ R" is a mapping 
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The function u describes physical quantities as mass, momentum, energy 
in fluid dynamical problems. The mapping f ( u )  is called a flux function. The 
system (5.1) is hyperbolic iff the Jacobian matrix 

A = J f ( u ) =  1 i I ’  

has only real eigenvalues and is diagonalizable, i.e. there exists a complete set 
of m linearly independent eigenvectors. 

The Euler5 system in gas dynamics is a system of conservation laws. In 
one space dimension these equations are 

where p = p ( x , t )  is the density, v is the velocity, pv is the momentum, p is 
the pressure and E is the energy. The equations (5.2) are known as 

pt + (pv), = 0, conservation of mass, 
(pv), + (pv2 + p ) ,  = 0, conservation of momentum, 

Et + (v ( E  + p ) ) ,  = 0, conservation of energy. 

Introducing new variables 

the system can be written in the form (5.1) with 

Leonard Euler, 15 -04.1707-18.09.1783. 
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Example 5.1. Assume p (u) = u1. Then the system (5.2) is hyperbolic in 

Solution. The Jacobian of 

R3\{u : = 0). 

is the matrix 

A =  

with eigenvalues 

+1, x 3 = - -  u2 1. 212 u 2  

U1 U1 U1 
X I = - ,  x 2 = -  

Corresponding eigenvectors are 

which are linearly independent, because the determinant 

I 0  1 1 1 
0 

1 
-2. 

The simple initial value problem for the system (5.1) is the Cauchy problem 
in which (5.1) holds for 2 E R, t > 0 and 
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U ( X , O )  = uo (4 , (5.3) 
where uo (x) is a prescribed function. 

(5.1) in one dimension 
Let us consider the Cauchy problem for the simplest equation of the form 

where a is a constant, known as the linear advection equation or one-side wave 
equation. The problem (5.4) has the unique solution 

u ( x ,  t )  = uo ( x  - at)  , (5.5) 

if the initial function uo ( x )  E C1 (R) . It can be found by the method of 
characteristics of Chapter I. If U Q  E Ck (R) then u ( x ,  t )  E Ck(R x [O,m)). 
The solution presents a right moving profile (graph) of the function uo (x) 
with speed a. 

Example 5.2. Solve the problem 

U t  +u,  = 0 ,  
c0s3 x if x E [ 3 ~ / 2 , 5 ~ / 2 ]  , 

if x $ [ 3 ~ / 2 , 5 ~ / 2 ] .  u o ( x )  = { 0 

The solution is 
u ( x , t )  = u o ( x - t ) .  

Note that uo E C1 (R), because 

Then u ( z , t )  = uo (x - t )  E C1 (R x [O,m)). The graphs of u ( x , t )  at the 
instants t = 0, 2, 4, 6 are plotted in Figure 5.1 using the Muthematica program 

f [x-] :=Which [3Pi/2 < =x < =5Pi/2, Cos[x] -3 ,True,O] 

hO=Plot [Evaluate[u[x,O] , {x,5Pi/4,5Pi}, 
PlotRange-> { 0,2} ,PlotLabel->” Wave at t=O”] 
hl=Plot [Evaluate[u[x,2] ,{x,5Pi/4,5Pi}, 

u[x-,t-] :=f [x-t] 
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1.75 
1.5; 
1.25 
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f 

! 

PlotRange-> {0,2},PlotLabel->” Wave at t=2”] 
h2=Plot[Evaluate[u[x,4] ,{x75Pi/4,5Pi), 
PlotRange-> {0,2},PlotLabel->” Wave at t=4”] 
h3=Plot[Evaluate[u[x76] ,{x,5Pi/4,5Pi}, 
PlotRange-> {0,2},PlotLabel->” Wave at t=6”] 
Show [ Gr aphicsArray [ { { ho, hl} , { h2, h3}}] , 
Frame->True, FrameTics->None] 

2: 
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Figure 5.1. The wave u (z , t )  at the instants t = 0, 2, 4, 6. 

Suppose now that uo (2) is not a smooth function. Then the function (5.5) 
is not smooth and does not satisfy (5.4) in the usual sense. It satisfies (5.4) in 
a weak (generalized) notion. An approach to generalize the notion of solution 
is to satisfy an integral identity. 
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Denote by Ci (R x [O,m)) the space of C1 functions p vanishing outside 
of a compact set in t 2 0 , i.e. there exists T > 0 such that suppp C_ [-T,T] x 
[O,T], so that p = 0 outside of [-T,T] x [O,T] and on the lines t = T, x = -T 
and x = T .  

Definition 5.4. Assume that uo (x) E Lie, (R) . A function u ( z , t )  E 
Ltoc (R x [O,oo)) i s  a weak solution of (5.4) zfl 

0 0 0 0  00 

0 -00 -00 

for  every test function p E CA (R x [O,oo)). 

Then u (x, t )  i s  a weak solution of the problem. 
Proposition 5.1. Let u (x, t )  be a smooth solution of the problem (5.4). 

Proof. Obviously u (x, t )  E Lioc (R x [0, m)) . Let p (x, t )  E C; (R x [O,oo)) 
and suppp 
[O, T ]  and using p (fT, t )  = p (x, T )  = 0, we obtain 

[-T, TI x [0, TI. Multiplying (5.4) by p, integrating in [-T, T ]  x 

0 = 77 (Ut  +au,)pdxdt 
0 -T 
T T  

T T  T T  

= 1 J (up), d tdx  - ] ] u (pt + up,) dxdt 

Another approach to generalize the notion of solution of (5.4) is to ap- 
proximate the nonsmooth initial function uo (x) with a sequence of smooth 
functions U n o  (2) . The function un (x, t )  = uno (x - at)  is the solution of the 
problem (5.4) with initial data uno (x) . Then a generalized solution of (5.4) is 
defined as a L1 - limit of the sequence un (2, t )  . 
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Definition 5.5. Assume that uo (z) E L1 (R) . The function u = u (z, t )  E 
L1 (R x [O,oo)) is a strong solution of (5.4) i f l  

0 0 0 0  r r  

lim J J IU (2, t )  - uno (X - at)l dxdt = 0 ,  
n-00 

0 -00 

f o r  any sequence (un0) of smooth functions such that 

lim J Iuno ( x )  - uo (.)I dx  = 0. 
n-+w 

-00 

It can be proved (Exercise 2, b) that a strong solution is a weak solu- 
tion. Unfortunately the sequential approach is not appropriate for nonlinear 
differential equations. 

As an extension of one-side wave equations we consider linear strictly hy- 
perbolic systems 

ut+Aux = 0, 
u(x,O) = uo(2) .  

Here u : R x R -+ R", A E RmX" is a constant matrix. The system (5.6) 
is strictly hyperbolic iff the matrix A is diagonalizable and has m distinct real 
eigenvalues. Let 

A = RAR-', (5.7) 

is the matrix of right eigenvectors 

Changing the variables 
v = R-lu, 

by R-lut + AR-lu, = 0 ,  we obtain 

where
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or componentwise 

The initial conditions to (5.8) are 

Then 
v k  (x) t )  = VkO (x - A k t )  

is the solution of (5.8)' (5.9). 
The solution of (5.6) is 

m 

Example 5.3. Solve the problem 

where u : R x R -+ R3, 

3 1 -2 

A=[;1 4 y3]  

- sin3 x x E [-ST, - 2 ~ 1  
fi(4 = { 0 Ic # [-37r,-2T] ' 

(5.9) 

(5.10) 

- sin3 x x E [-n, 01 

- sin3 x z E [r, 27r] 
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Solution. The matrix 

A =  

has eigenvalues 

and corresponding eigenvectors 

A1 = 2, 

21 B I ' ] ,  
4 1 -3 

A2 = -1, A3 = 1 

V =  

The graph of the function u1 (x, t )  is given in Figure 5.2 plotted by the 
Mathematica program 

Clear [ f ,g , h, u] 
f[x-]:=Which[-3Pi <=x<= -2Pi, -Sin[x] "3,True,O] 
g[x-]:=Which[-Pi <=x<= 0, -Sin[x] ̂ 3,True,O] 
h[x-]:=Which[Pi <=x<= 2Pi, -Sin[x] "3,True,O] 
u [x-, t -1 : = f [x- 2 t ] - 7g [x+ t] /2 + h [x- t ] 
Plot3D[u[x,t] , {x,-4Pi,8Pi},{ t ,0,6Pi} 
AxesLabel->"Position" ,)'Time" ,"Value u1" , 
Plot Points- >40, PlotRange-> { -4,1} , Shading- >False] 

Then
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Value ul 

Figure 5.2. Graph of the function u = ul(x, t ) .  

All calculations in Examples 5.1 and 5.3 are made by MAPLE in Scien- 
t ifiCWorkPlacE. 

Exercises. 

1. Consider the problem 

with 

Show that the system is hyperbolic, but not strictly hyperbolic. Diagonalize 
it and solve the Cauchy problem with initial conditions 
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where fi (x) ) f2 (z) , f3 (x) are given in Example 3. Plot the graph of the 
function u2 (x, t) . 

2. (a) Let uo (x) E Lie, (R) be any locally integrable function. Prove that 
the function u (x) t )  = uo (Z - t )  is a weak solution of the Cauchy problem 

in the sense of Definition 5.4, i.e. u (x, t )  satisfies the identity 

uo (x - t )  (vt + v,) dxd t  + uo (z) v (z, 0) dx = 0, 
-00 7 

0 -00 

for any v E Ch (R x [O,oo)) . 

solution of (5.4) then it is a weak solution of (5.4). 
(b) Prove that if the function u = u (x, t )  E L1 (R x [0, 00)) is a strong 

5.3 Burgers' Equation 
The simplest equation combining both nonlinear propagation and diffusion 
effects is the Burgers" equation 

U t  + uu, = EU,,. (5.11) 

The equation (5.11) was studied at first in a physical context by Bateman 
(1915). Subsequently, Burgers (1948) rederived it as a model equation in the 
theory of turbulence. Around 1950, Hopf7 and independently Cole', showed 
that the exact solution of (5.11) could be found by using the transformation 

6J.M. Burgers. A mathematical model illustrating the theory of turbulence. Adv. Appl. 

7E. Hopf. The partial differential equation ut + uux = p u x x .  Comm. Pure Appl. Math. 

'J.D. Cole. On a quasilinear parabolic equation occuring in aerodynamics. Q. Appl. 

Mech., 45 (1948), 171-199. 

3(1950), 201-230. 

Math 9 (1951), 225-236. 
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u = qX, $ = -2~lncp. (5.12) 

This, known now as Hopf-Cole transformation, reduces (5.11) to the dif- 

'Pt = &'Pxx* (5.13) 
fusion equation 

The motivation of (5.12) is as follows. Let us rewrite (5.11) as a conserva- 
tion law 

U t  - ( E U ,  - 1u2) 1 = 0 
5 

and try to find $ E C2 such that 

$x = u, 
$t = EUX - p.4 . 1 2  

Then QXt = $tx implies (5.11). From (5.14) it follows 

Now introducing 

(5.14) 

(5.15) 

it is easy to show that (5.15) is equivalent to the diffusion equation (5.13). 

t ion 
Let us consider the Cauchy problem for equation (5.11) with initial condi- 

u(x,O) = 2Lo ( 3 2 ) .  

Under the transformation (5.12) the initial condition reduces to 

--S..(.)ds 1 
2 E  

q ( x , O ) = e  0 (5.16) 

By the Poisson formula the problem (5.13), (5.16) has the unique solution 
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0 0 -  
1 2 ] u 0  (s )ds  - - ( x  - r )  

2& 4&t 

-00 

-00 

where 

The exact solution of (5.11) is 

t 

+ Juo (s )  ds. 

0 

(5.17) 

-00 

We consider the behavior of the solution (5.17) as E -+ 0, while ( x ,  t ,  uo ( x ) )  

Let us recall an asymptotic formula derived by the so called steepest descent 
is fixed. 

method 

(5.18) 

where s is a strong local minimum point of g ( x ) :  

g/ ( s )  = 0, g“ ( s )  > 0. 

The estimate is motivated by Taylor’sg formula and the Poisson integral 

-00 -00 

Brook Taylor, 18.09.1685-29.12.1731. 
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In order to apply the asymptotic formula (5.18) to (5.17) we need to study 

Suppose that there is only one strong local minimum E (2, t )  which satisfies 
critical points of the function g (x) t ,  [) with respect to [. 

jFrom (5.17)) in view of (5.18), it follows 

x - E  u (x, t )  N - - t - uo ' 

The asymptotic solution may be rewritten as 

or in implicit form 

u = uo (x - U t )  . 

The last function is exactly the solution of the problem 

(5.19) 

(5.20) 

(5.21) 

found by the method of characteristics - Chapter I. The solution (5.20) is 
smooth for small t if uo (x) is a smooth function. Differentiating (5.20) with 
respect to x ) we have 

or 
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1 + u‘o (<) t # 0. 

Suppose ub (x) < 0 for every x. Then u, = 00 if t = -- ub:t). The first 

instant TO when u, = 00, known as gradient catastrophe, corresponds to a so 
where ub (x) has a minimum 

1 
ub’ (so) = 0) Ub” (so) > 0. To = -- 

..b (so) ’ 

Example 5.4. Find the instant of gradient catastrophe for  the problem 

U ~ + U U ,  = 0 ,  x € R , t > O ,  

u(x ,O)  = -tanh(:), ~ E R .  

Solution. The solution of the problem in implicit form is 

u (x, t )  = - tanh 

For the function uo (x) = - tanh (:) 

1 
&cosh2 z u’o (x) = - 

which has a minimum at x = 0 

1 
minub(x) = - max 

&cosh2 
1 - 

E min cosh2 
1 

because 

cosh2 - = 
& 
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Then To = E -+ 0 as E --+ 0. Note that 

E-+O lim (- tanh (:)) = 1 - 2H (.) , 

where H (2) is the Heaviside function 

x < 0, 
H ( x ) =  { :: x > o .  

The graphs of the functions - tanh ( z )  for E = 1,  5 ,  a, $ are given in Figure 
5.3. 

Figure 5.3. Graphs of the functions - tanh (E) for E = 1, $, i, i, 

The gradient catastrophe is demonstrated in Figure 5.4 by the Muthemut- 
ica program 

u[s-I:=-Tanh[s] 

hO=Par ametricPlot [Evaluate [ Evaluate [x [s ,O] ,u [ s] ] , { s ,- 5,5}, 
Plot Range- > { - 1.0 1, l .  0 1 } ,Plot Lab el- > ” t =O” ] 
hl=ParametricPlot [Evaluate[Evaluate[x[s,l] ,u[s]], {s,-5,5}, 
Plot Range- > { - 1.01,l .O 1 } ,PlotLabel- > ” t = 1” ] 
h2=Parametr icPlo t [Evaluate[ Evaluate [ x[ s,2] ,u [ s] ] , { s ,- 5,5}, 
Plot Range- > { - 1.0 1 , l .  0 1 } ,Plot Lab el- > ” t =2”] 
h3=Par ametr icPlot [Evaluate [ Evaluate[x [ s, 31 ,u[ s] 3 ,  { s ,- 5,5}, 

x[s-,t-] :=s+tu[s] 
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Plot Range- > { - 1.0 1,l. 0 1 } ,Plot Label- > ’’ t = 3”] 
Show [ Grap hicsArr ay [ { { hO, h 1 } , { h2, h3}}], 
Frame->True, FrameTics->None] 

-1 I L- 

-3 1 3  -2 -1 

I 

4 - 2 1  2 4  

”h_ -1 

Figure 5.4. Gradient catastrophe. 

In Figure 5.5 it is given the surface in R3 

x = s - ttanhs, 
u = -tanhs, 

t = t. 
s :  { 
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Figure 5.5. The surface S (x (s, t )  , u (s, t )  , t )  , 

Let us return to the asymptotic behavior of solution (5.17) as E -+ 0. For 
a given uo (x) and fixed (x, t )  it is possible to have three solutions of equation 
(5.19) J1 < (0  < J2, such that and J2 are points of local minima of uo (x) , 
while is a local maximum. It is possible to have 

(5.22) 

or 

For the function uo (x) = eVz2 the situation (5.22) is demonstrated in 
Figure 5.6.a and Figure 5.6.b while (5.23) in Figure 5.7.a and Figure 5.7.b. 
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Figure 5.6 a. Graphs of functions y = e-”2and y = 

-4 -2 0 2 x  4 

Figure 5.6.b. Graph of
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2 .5 -x  Figure 5.7 a. Graphs of functions y = e-”’and y = 3 ,  

-4 -2 0 2 x  4 

Figure 5.7.b.  Graph of



150 Partial Differen tid Equations 

In the case (5.22)) by virtue of (5.18)) we have 

N 

x - 51 
4 -- t - uo (El) 7 

as E + 0. Similarly in the case (5.23) 

as E + 0. Both 51 and & depend on ( x ) t ) .  
The inequality g ( x , t , J 1 )  < g ( x , t , & )  or its opposite determines the be- 

havior of u ( x )  t )  as & + 0 at a given ( x ,  t )  . For a fixed x the changeover from 
(1 to (2 occurs at an instant 7 such that g ( x , T , ( ~  ( x , ~ ) )  = g (x ,T,& ( x , ~ ) )  
which implies 

(5.24) 

The last equation means that the regions in (E,u) plane between the graphs of 
uo (() and 9 for ( E [ r l ,  501 and 5 E [<o, &] have equal areas. From (5.24) it 
follows 

t 2  

uo (s) ds. uo (51) + uo (52) - -LJ 
(2 - 51 2 

El 

We summarize these observations in 

Theorem 5.3. Let u, ( x , t )  be a solution of the problem 

(5.25) 

U t i - U U ,  = EU,,, x E R,t > 0 ,  
u ( z , O )  = U O ( Z ) )  x E R. 
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Suppose that for  a given x, there exist T and J1 < 6 2  such that 

and (5.25) i s  satisfied. Then  

as E --+ 0. 

Exercises 

1. Show that any solution of the problem 

U ~ + U U ,  = u ~ ,  x E R,t > 0,  
u ( x , O )  = U O ( Z ) ,  x E R, 

satisfies the functional relation 

u = etuO (x - u + ue-t)  , n = 1, 

u o  (x - In (1 - tu)) 
1 - tuo (x - In (1 - t u ) )  ' n = 2, U =  

2. Consider Liouville 'slo equation 

-- - eu 
d2U 

dxdy 
Show that : 
(a) Making the change of variables (x, y, u )  - (x', y', u ' )  such that 

(5.26) 

lo Josef Liouville, 24.03.1809-08.09.1882. 
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2' = x I Y' = Y 

where p is a constant, the equation (5.26) reduces to 

(b) The solution of the problem 

is 
3 7 q(s)ds  

e "0 u(x) = 21n t 

2 3 s q(s)ds  
e-? + a  J p ( t ) e  "0 dt 

20 

(c) The general solution of the equation (5.26) is 

where f and g are functions, xo and yo are constants. 

3. (a) Consider the Cauchy problem for the advection-diffusion equation 

ut +au, = EU,,, x E R , t  > 0, (5.27) 
u ( x , O )  = UO(X), x E R, 

with uo (x) E L1 (R) . Making a change of variables w (x, t) = u (x + at, t) it 
reduces to Cauchy problem for the diffusion equation 
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Vt = EV,,, x E R,t  > 0, 
v(x,O) = U O ( Z ) ,  x E R. 

(b) Show that the solution u, (x, t )  E C" (R x (0, 00)) of (5.27) is 

and u, ( ~ , t )  N uo (X - at)  as E -+ 0. 

5.4 Weak Solutions. Riemann Problem 
Consider the Cauchy problem for the quasilinear equation 

U ~ + U U ,  = 0 ,  X E R , ~  > 0 ,  (5.28) 
u ( z , O )  = U O ( Z ) ,  x E R, 

which is a limit case of Burgers' equation as E -+ 0. If uo (x) is nonsmooth we 
introduce, as in Section 5.2, a notion of weak solution. 

Definition 5.6. Assume u~(a;) E Lio,(R). A function 
L,2,,(R x [ O , o o ) )  is a weak solution of (5.28) iff 

for every test function p E CA (R x [0, 0 0 ) ) .  

We have 

Proposition 5.2. Let u E C1 (R x [0, 00))  be a smooth solution of the 
equation ut + uu, = 0 and a weak solution of the problem (5.28). If uo (x) is 
continuous at a point xo , then u (x0,O) = uo (XO) . 

Proof. Let p ( x ,  t )  E Ci (R x [0, 00)) . As in Proposition 5.1 we are led to 
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7 (u (x, 0) - uo (x)) p (x, 0) dx = 0. 
-00 

Suppose u (xo, 0) > uo (20) . By continuity there exists a neighborhood U 
such that 

u ( x , O )  > uo (x) ) x E u. 
Take p (x, t )  E Ci (R x [O,oo)) such that 

Then 

which is a contradiction. 

(u (x, 0) - uo (4) P (x, 0) dx > 0, 

Similarly u (x0,O) < uo (SO) is impossible. Then 

The problem (5.28) with discontinuous initial data is known as a Riemann" 
problem. Let us consider the initial data 

(5.30) 

where u1 and ur are constants. 
The two cases u1 > U r  and u1 < Ur are quite different with respect to the 

solvability of problem (5.28). It can be proved that if u1 > up , then the weak 
solution is unique, while if u1 < U,, then there exist infinitely many solutions. 

Case I. u1 > ur 

Consider the problem 

llGeorg Friedrich Bernhard Riemann, 17.09.1826-20.07.1866. 
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ut+uu, = EU,,, x E R,t > 0 ,  
u ( x , O )  = U O ( X ) ,  x E R. 

If u1 > U, we are in a situation to apply Theorem 5.1. 
Let x > 0 be fixed and 

The instant r of Theorem 5.3 is determined by the slope k of the straight line 
through the points ( q 0 )  and (0,s) 

Then 
X 

r = - ,  
S 

and by Theorem 5.3 

The unique solution of (5.28) is known as a shock wave, while s = (u1 + uT)  /2 
is a shock speed, the speed at which the discontinuity of the solution travels. 

Proposition 5.3. The function 

UI x < s t ,  { UT 2 > st ,  u ( x , t )  = 

is a weak solution of the problem (5.28) with initial data (5.30), where 

Proof. Let p (x) t )  E Ci (R x [ O , o o ) )  . Denote for simplicity 

(5.31) 
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B := - /m u (z, 0) p (z, 0) dz. 
--oo 

We have 

00 s t  

A1 : = 1 / (ptui + p z $ )  dxdt  
0 -00 

- - u i / 6  (7 .,dz) d t  + 2 J (7 &dz) d t .  
-00 -00 

s t  

J p t ( z , t ) d z =  d d t  j P ( . . t ) d . - p ( S t ) t ) S  

--oo -00 

and 

it follows 

= - 1 p(x,O)dx. 
-00 

By
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Then 

00 s t  0 00 11 p t ( x , t ) d z d t =  - / p ( z , O ) d z - s ~ p ( s t , t ) d t ,  
0 -00 -00 0 

A1 = -u1 ( ] p(a:, 0) da: + s f p  ( s t , t )  d t )  + $ T p  ( s t , t )  d t .  
-m 0 

Similarly 

because 

p (2, t )  d2 + sp ( s t ,  t )  , dt  
s t  i t  

00 
P 

Then 

157 
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On the other hand 

Partial Differential Equations 

0 00 

= - / u(z ,O)p (z ,O)dx - /u (z ,O)p (z ,O)d r  
-00 0 

0 00 

-00 0 

Finally 

and since 

we obtain A = B. 4 

Case 11. u1 < u, 
In this case there exist more than one weak solutions. One is (5.31). We 

Proposition 5.4. The function 
show 

x < U l t  

is a weak solution of the problem (5.28) with initial data (5.30). 

Proof. Let p (z, t )  E Ci (R x [0, m)) . For simplicity we take U I  = -1 and 
ur = 1 and denote 

0 0 0 0  

c := / 1 (upt + $Iz) d x d t ,  
0 -00 

00 0 

D := - / u (x, 0 )  p (z, 0) dz = / p (z, 0) d z  - T p  (z, 0) dz. 

-00 -00 0 
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The function x / t  for t # 0 satisfies the equation ut + uu2 = 0. We have 

where 

00 -t 

(71 :=// ( -P t+ ;Pz)dxdt=  p p ( x , o ) d x - -  2 lsa p ( - t , t ) d t ,  

0 --oo -00 0 

0 0 t  

1 x 2  
c2 := 11 (:pt + 5 ( 7 )  p.> dxd t ,  

0 -t 

and 

0 0 0 0  00 00 

c3 := 11 (P t  + ;Px) d x d t =  -/p(x,O)dx+ +.t)dt. 1 

O t  0 0 

Because C2 has a singularity at 0 

C2 = lim C Z , ~  
E - 0  

where 

We have 

x x  (-P> X = -pP ' ,P t ,  
t t  
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1 x 2  
;Pt + f ( ; ) 2 P 2  = ( T P ) ,  + ( 5  (7) P )  2 , 

t t 

-t -t 

Then 

c2,& = 7; (1 ( F p )  d x )  d t  - f J ( p ( t , t )  - p ( - t , t ) )  d t  
& -t  & 

& 00 

2 's = - / - p ( x , & ) d z -  X - ( p ( t , t )  - p ( - t , t ) ) d t .  
& 

-& & 

By the mean value theorem 

where x ,  E ( - E , E )  . Because the function p is bounded and x E  -+ 0 as E -+ 0 
it follows 

& 

lim / E p  ( x ,  E )  dx = 0. 
&+O & 

-& 

Then 
00 

C2 = -1 1 ( p  ( t , t )  - p (-t , t))  d t .  
2 
0 

Finally 
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0 0 

-00 0 

which completes the proof. 

Exercises 

1. Show that the equation ut + uu, = EU,, has a traveling wave solution 
of the form u, ( z , t )  = w (z - at ) ,  where w satisfies the equation 

1 
EW' (9) + aw (y) = s w 2  (y) + c. 

Verify that the function 

(5.32) 

w ( y ) = a - ~ ~ t a n h ~ ~ ~ y ,  C S -  a2 
2 E  2 '  

satisfies the equation (5.32). Determine the behavior of this solution as E -+ 0. 

2. There exist infinitely many weak solutions of the problem (5.28) with 
initial data (5.30) in the case u1 < u,. Show that every function 

u,t < 2, 

where u, E [ul , u,] and s = - is a weak solution of the problem. uz -I- 
2 
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5.5 Discontinuous Solutions of Conservation Laws. 
Rankine-Hugoniot Condition. 

Let us consider the Cauchy problem for a general conservation law 

(5.33) U t  + (f ( u ) ) ~  = 0, x E R, t > 0, 
x E R. u (x, 0 )  = uo (z) , 

For the sake of simplicity we assume that in (5.1) m = 1. Suppose f is a 
C1 function and let 

(5.34) 

If u is a classical solution of (5.33), then 

U t  + g ( u )  U ,  = 0 ,  x E R, t > 0, (5.35) 

which is a quasilinear first order equation. The characteristics of (5.35) in (x, t )  
plane are the curves 

x = x ( t )  
t = t  ' c :  { 

such that 
dx  ( t )  = g (u (x ( t )  , t ) )  

d t  (5.36) 

Along the characteristics u is a constant because 

By (5.36) it follows that a characterictic through the point (x0,O) is the 
straight line 

with slope 

Assume that there exist two points 2 1  < 22 such that 
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Then the characteristics c1 and c2 through (XI, 0) and (x2,O) intersect at some 
point P. At this point u ( P )  = uo (XI) = uo (x2), which is impossible. Hence the 
solution can not be continuous at P. So, the existence of a classical solution 
depends on the intersection of the characteristics of equation (5.35) and is 
independent of smoothness of the functions uo (x) and f (u) . If the function 
g (UO (x)) is monotone increasing then the classical solution exists for t > 0; 
otherwise it can't be defined for all t > 0. Assume that 

dx 

for some x. It can be shown that the solution u is smooth up to the instant 

m 1 

The above considerations lead us to introduce a weak solution of the 
Cauchy problem (5.33). 

Definition 5.7. Assume that U O ( X )  E L;oc(R) . A function i s  a weak 
solution of (5.33) i f  u E Lt,, (R x [O,oo)) , f (u) E Ltoc (R x [0, 00))  and 

f o r  every test function p E CA (R x [O,  0 0 ) ) .  

We consider now weak solutions of (5.33) which are piecewise smooth only. 
We show that not every discontinuity is admissible. 

We say that u is piecewise smooth in R x [0,00) if there exist a finite 
number of smooth curves rj c R x [0, 00), j = 1, ..., k outside of which u is 
a C1 function and across rj it has a jump discontinuity. Let I' be the curve of 
discontinuities 

r : { x ~ ~ t ( t )  . 

Assume that r is a smooth curve, the tangent and normal vectors to I? at 
( x , t )  are ?(+(t) ,  1) and G ( 1 ,  -+(t)) , where q ( t )  = 2. Denote 

the limits of u on each side of I?. 
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Theorem 5.4. Let u : R x [ O , o o )  --+ R be a piecewise C1 function. Then  

(1) u is a classical solution in domains where u is a C' function, 
(2)  u satisfies the jump  condition 

u i s  a weak solution of (5.33) iff 

along every discontinuity curve I? : x = y ( t )  . 
The jump condition is known as Rankine-Hugoniot'2 condition. For the 

n 

U L  

2 
case of Burgers' equation f (u)  = -, it reduces to 

If I? : x = xo + kt  is a straight line the last equation means 

Proof of Theorem 5.4. Suppose u is a piecewise C1 function, which is a 
weak solution of (5.33). 

As in the proof of Proposition 5.2 u is a classical solution in domains where 
u is a C1 function. Assume that I' : x = y ( t )  is a discontinuity curve, P E I' 
and B c R x (0,oo) is a small ball centered at P ,  which does not intersect 
other curves of discontinuity. Let p E Ci ( B )  . As u is a weak solution and 
suppp c B , we have 

0 --oo 

where B* are the two open components of B on each side of I?. By Green's 
identity 

l2 William John Macqorn Rankine 1820-1872. W. J.M.Rankine. On the thermodynamic 

Pierre Henri Hugoniot, 1851-1887. H. Hugoniot. Sur la propagation du mouvement dans 
theory of waves of finite longitudial disturbance. Phil. Trans. 160( 1870)' 277-288. 

les corps et specialement dans les gaz parfaits. J. 1'Ecole Polytech. 58(1889), 1-125. 



Shock Waves and Conservation Laws 165 

Since p E CA ( B )  is arbitrary we obtain the jump relation 

Conversely, it is easy to check that if u is a piecewise Cf function which 
satisfies (1) and (2), then it is a weak solution of (5.33). I 

Example 5.6. Consider the Cauchy problem 

U t  + uu, = 0, 

2 L 0, 
.(x,O)= 1 - x  O L x <  1, { : x > 1 .  

Determine the t ime of existence of a continuous weak solution and f ind a dis- 
continuous weak solution. 

Solution. The characteristic through the point (x0,O) is co : x = xo + 
tuo (xo) , so that 

2 0  +t  xo 5 0 ,  
c o : x =  z o + t ( l - x o )  O < z o < _ l ,  { 50  20 > 1. 

The picture of characteristics is given in Figure 5.8. 
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X 

Figure 5.8. Characteristics in Example 5.6. 

No pair of characteristics intersect for t < 1. A continuous weak solution 
for t < 1 is 

1 x 5 t ,  
u(x , t )  = - t < x < l ,  { ;;; x 2 1. 

Characteristics intersect for t 2 1. In this case we are looking for a weak 
solution of the form 

1) x < l + k ( t - l ) ,  
0, x > l + k ( t - 1 ) .  

u (x, t )  = 

By Theorem 5.2 and the Rankine-Hugoniot condition we should have 

u + + u -  1 
2 2 ’  

- - - k =  

So, for t >_ 1 the function 

1, a:< 1 / 2 ( t + 1 ) ,  { 0, x > 1/2 (t + 1) , u (x,t) = 

is a weak solution of the problem. 
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Exercises 
1. Consider the Cauchy problem 

U t  + uu, = 0 ,  

where k 2 2 is an integer. 

(a) Find the characteristics of the problem and show that their envelope 
is the curve 

x = 1 + -  
k2 - 1 

in (2, t )  plane. 

(b) Verify that the continuous solution exists for 

2k 
and does not exist for t 2 - 

k 2 - 1 .  

(c) Plot the picture of characteristics and their envelope with Mathematicu 
in the case Ic = 2 .  

2 .  (a) Find the characteristics and the solution of the problem 

U t  + uux = 0,  

(b) Show that: 
if a 2 0 the solution is differentiable for t 
if a < 0 the solution is continuous for 0 5 t < --. 

0, 
1 
a 
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3. Consider the Cauchy problem 

U t  + uu, = 0 ,  

x 5 0 ,  
cos2 x 0 5 x 5 7q2, u ( x ,  0 )  = { :  x 2 T / 2 .  

(a) Determine the characteristics and show that they have an envelope of 

(b) Plot the picture of chracteristics and their envelope with Mathernatica. 
(c) Find a weak solution. 

two branches. 

4. Consider the problem 

ut +uu,+au = 0 ,  
u(x ,O)  = u o ( x ) .  

Show that the characteristics of the problem are 

Discuss the question of breaking of solutions. 



Chapter 6 

The Laplace Equation 

6.1 Harmonic Functions. Maximum-minimum 
Principle 

The Laplacel equation or potential equation is 

Au = 0, 

where Au is the Laplacian of the function u 

Au = V2u = u,, + uyy in two dimensions, 

Au = V2u = u,, + uyy + u,, in three dimensions. 

A function u E C2 (R) which satisfies the Laplace equation is called a 
harmonic function. The inhomogeneous Laplace equation 

n u =  f ,  

where f is a given function is known as the Poisson equation. 
The Laplace equation is very important in applications. It appears in 

physical phenomena such as 
1. Steady-state heat conduction in a homogeneous body with constant 

heat capacity and constant conductivity. 
2. Steady-state incompressible fluid flow. 
3. Electrical potential of a stationary electrical field in a region without 

charge. 

Pierre Simon Laplace, 23.03.1749-05.03.1827. 

169 

(6.1)
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The basic mathematical problem is to solve the Laplace or Poisson equa- 
tion in a given domain possibly with a condition on its boundary dR = n \ R .  

Let ‘p and II) be continuous functions on 82. The problem of finding a 
function u E C2(s2) n C(a) such that 

Au=O i n n ,  
u=’p o n d n ,  

is called the Dirichlet or first boundary value problem (BVP) for the Laplace 
equation. Historically, the name boundary value problem was attributed to 
only problems for which the PDE was of the elliptic type. Today we use this 
term in a much wider sense. 

The Neumann or second BVP is 

I A u = O  i n n ,  

where n’ denotes the outward unit normal to 00 and 
derivative. 

= V u . 6  is the normal 

The Robin or third BVP is 
A u = O  ins, 

(RL)  : { o u + ~ = +  o n a n ,  

where cr is a continuous function on 22. 

sense of Hadamard with respect to a class of boundary data if 
A boundary value problem for the Laplace equation is well posed in the 

1. A solution of the problem exists; 
2. The solution is unique; 
3. Small variations of the boundary data yield small variations on the 

The Cauchy problem for Laplace equation is ill-posed. A modification of 
corresponding solutions. 

Hadamard’s example follows. 

Example 6.1. Consider the problem 

uZz + uyy = 0 in R x ( O , o o ) ,  
cos nx 

n2 
U ( Z ) O )  = 0) UY(Z)O) = -. 

1 
n3 Show that un(x,  y) = - sinhny cosnx is a solution of the problem (CL,) 

but 
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is not fu@lled. 

Solution. It can be easily seen that Un(z,y) = 5 sinhny cosnx is a so- 
lution of (CLn). Let X E (0, l). There exist x~ and nk -+ +00, such that 
cosnkxo -+ X as k -+ 00. This follows from the fact that if x is an irrational 
multiple of T ,  then the set of points { (cos nz, sinnz) : n E N} is a dense set in 
the unit circle S = { (z, y) : x2 + y2 = 1). For every y > 0, we have 

enY - e-nY sinh n y 1 lim - = - lim 
n+oo n3 2 n+oo n3 

1 eny  

2 n - m  n 3  
= - lim -=+00 .  

Then 
1 

lim 7 sinh nky cos n ' k q  = +00, 
k--tW nk 

for y > 0, which implies that (6.2) is not true. 

In contrast to the Cauchy problem for Laplace equation, the Dirichlet 
problem is well posed. This follows by the maximum-minimum principle for 
harmonic functions. 

boundary. 
Let R c RN, N = 2 or 3 be a bounded 

Denote by P a point of a, 

or 

domain and r = dR be its 

i f N = 2  

Theorem 6.1. (Maximum-minimum principle). Suppose that u E C2(R)n 
C(a) is a harmonic function in a bounded domain R. Then 

m-ax u =max u, (6.3) 

mjn u =min u. (6.4) 

R r 

R r 

Proof. Consider the case N = 2. Let E > 0 and consider the modified 
function v(P) = u(P) + €IPl2. Then 

AV = AU + €A(x2 + y2) = 4~ > 0, 
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while Av = v,, + vyy 5 0 at an interior maximum point by the second deriva- 
tive test in Calculus. Since v(P)  has no interior maximum in 0, being a 
continuous function, it should attain its maximum on OR with 

.(PI) =max v (P)  =m-ax u(P).  
r n 

Then for P E n 
u(P)  < v(P)  5 .(PI) = .(PI) + &IP1I2 5 m F  u + &R2, (6.5) 

where R is such that R c BR(O). Since E is an arbitrary by (6.5) it follows 

u(P) Lmax u5m-ax u. 
r n 

As P E n is arbitrary by the last inequality (6.3) follows. Because -u is also 
a harmonic function and mjn u = - m-ax (-u) (6.4) also follows. 

n R 

Corollary 6.1. Let R be a bounded domain, f E C(n) and cp E C(r). 
Then the Dirichlet problem 

has no  more than one solution. 

Proof. Suppose u j (P) ,  j = 1 , 2  are two solutions of (6.6) and u = u1 - u2. 
Then u E C(0)  is a harmonic function and u = 0 on I?. By the Maximum- 
minimum principle it follows that u = 0 on R. = 

Exercises. 
1. (a) Show that in polar coordinates 

x = p cos 0, 
y = p sin 0, 

the two dimensional Laplacian is 

1 1 
A u ( x , y )  = up,, + -up + -Uw.  

P P2 

(b) A harmonic function u(x, y) is rotationaly invariant if u(p, 0) depends 
only on p. Prove that u(p) = c1 lnp + c2 if u is rotationaly invariant. 
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(c) In spherical coordinates 

x = p cos 8 sin cp, 
y = psinosincp, 
.z = p cos cp, 

the three dimensional Laplacian is expressed as 

(d) A harmonic function u(z, y, z )  is spherically symmetric if u(p, 8, 'p) 

depends only on p. Show that u(p)  = (71; + C2 if u is spherically symmetric. 

1 - x2 - y2 

x2 + (y - 1)2 
2. Prove that the function u (2, y) = is harmonic in R2\ (0 , l )  . 

Find the maximum M and minimum m of u (x, y) in the disk Bp (0,O) , p < 1 
and show that M m  = 1. Plot the graphic of u (x, y), where (x, y) E Bo.9 (0,O) 
using polar coordinates. 

6.2 Green's Identities 
Let u, w E C2(o), 0 be a domain with smooth boundary 80, n' be the outward 
unit normal vector to 80. Recall the following notations of field theory 

gradu = Vu = (ux,uy,u,), 

div? = V - = fx + g, + h,, 

rot@ = V x @ =  (h,  - g,, fz - hx,g, - f,)) 
Au = div(Vu) = V2u = uzz i- uyy -I- uEZ,  

where p ( f ,  g ,  h)  is a vector field. Denote d V  = dzdydz, dSp a surface element 
and dsp an arc length element at P on dQ. 

We have the divergence theorem or the Gauss-Ostrogradskii2 formula 

JJJ div@dV = JJ @ .  f idSp.  

2Karl Friedrich Gauss, 30.04.1777- 23.02.1855, 
Michail Vasilievich Ostrogradskii, 12.09.1801- 20.12.1861 



174 Partial Differential Equations 

If F = V u ,  we have 

JJJ A u d V  = JJ E d s P ,  
an n 

known as Gauss formula.  
By the product rule 

it follows 
div(vVu) = V v  V u  + vAu 

and by (6.7). 

JJJ v A u d V  + JJJ t 7 v .  V u d V  = JJ v g d S p ,  
n n an 

known as Green’s first identity. 
Changing the role of v and u we have 

JJJ U A v d V  + JJJ v U .  V v d V  = JJ u---dSp. E (6.10) 
n n an 

Subtracting (6.9) from (6.10) we obtain 

J J J ( u ~ v  - v A u ) d V  = JJ ( u g  - v g )  d S p ,  
n an 

(6.11) 

known as Green’s second identity. 
Consider the two dimensional case. 
Let D c R2 be a bounded domain with smooth closed oriented boundary 

C, u,v  E C2(D)  n C ( D ) .  Include R2 c R3 by (2, y) --+ (a, y,O) and consider 
the cylinder K c R3 with base D and altitude 1. As u and v do not depend 
on z 

(UAV - v A u ) d x d y d z  = (UAV - VAU) dxdy, JJJ K JJ D 

JJ’ ( u g  - v g )  d S p  = ( u g  - v 2 )  d s p .  
d K  

Then, by (6.11), we obtain Green’s second identity in R2 
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(6.12) 

Consider some applications of Green's identities. 

1. Mean value property. 

Theorem 6.2. The average value of any harmonic function over any 
sphere as equal to its value at the center. 

Proof. Let u(P)  be a harmonic function on B,  where 

B = 

S = 
B,(Po) = ( P  E R3 : IP - Pol 5 a } )  

S,(Po) = { P  E R3 : IP- PO( = a } .  

By (6.9) it follows 

o = JJJAUdv = JJ E d s p .  
B S 

For the sphere S the unit normal vector at P E S is 

Let us make the change of variables 

x = xo + pcosOsincp, 
y = yo + psindsinp, 
z = 20 + pcoscp. 

Then for 

we have 

z - ZO 
uy -/- - U Z  

x - xo Y -Yo uz + - 
= cos 9 sin pu, + sin 0 sin 'puy -/- cos 'puZ 

a a a s 

(6.13) 
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Therefore (6.13) becomes 

and as a > 0 

The last identity is valid for every a > 0, so that we can consider a as a variable 
r and we have 

Then 

I ( T )  = J(12s iT U ( T ,  8, cp) sin cpdCpd8 

is independent of T. Letting r -+ 0 , we get 

= 1' u( PO) sin cpdcpd8 

= 4TU(Po). 

Then it follows 

or 
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Note that the mean value property is also valid in the two dimensional 
case. Namely, if u(z,  y) is a harmonic function in R2, Po(z0, yo) E R2 and 

is a disk, Ca = aKa then 

which is the mean value formula for the two dimensional equation. 

as well as uniqueness for solutions of Dirichlet problem in domains of R3. 
By the mean value property it follows the maximum-minimum principle 

Theorem 6.3. Let u ( P )  be a harmonic function in the domain R and u 
be bounded f rom above. Then  u attains supu an C!, aff u is  a constant. 

Proof. As !2 is a connected set it can not be represented as a union of two 
nonempty open subsets 01 and 0 2  whose intersection is empty. 

Let M =sup u =  PO), PO E R and 01 = { P  E R : u ( P )  = M } .  As u 

is a continuous function 01 is relatively closed and 0 2  = R\O1 is open. We 
shall prove that 01 is an open set. Then, as R is connected, we have 0 2  = 8 
because 01 # 8 and R = 01 which means that u is a constant in R. 

Let PI E 01 and &(PI)  c R, where &(PI)  = { P  : (P-P1( < r} .  We shall 
prove that Br(P1) c 01, which means that 01 is an open set. As M =sup u, 

we have u _< M on the boundary Sr(P1) = { P  : IP - = r } .  Suppose there 
is a point P2 E Sr(P1) such that u(P2) < M .  By the continuity of u there is a 
neighborhood N of P2 such that u ( P )  < M if P E N .  Let 0 = N n Sr(P1). By 
the mean value property 

R 

52 

which is a contradiction. Therefore u ( P )  = M if P E S,(Pl). By the same 
way u(P) = M if P E Sp(P1) for every p E ( 0 , ~ ) .  Finally u ( P )  = M in &(PI)  
and this means that 01 is an open set, which completes the proof. 
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As a direct consequence we have 
Corollary 6.2. Let R be a bounded domain with smooth boundary = ail 

and u E C2(R) n C(n> be an harmonic function. Then 

m-axu = max u, 
R r 

mjnu = minu.  
R r 

Corollary 6.3. Let R be a bounded domain, p(P) E C(r), f ( P )  E C(s2). 
Then the Dirichlet problem 

has no more than one solution u E C2(R) n C(a). 

2. Dirichlet principle 

Theorem 6.4. Let R c R3 be a domain with boundary = dR. Among 
a1 1 functions w ( P )  E C2 (R) n C( a) that satisfy the Dirichlet boundary condition 

w(P)  = p(P) on r, 
where p(P) E C(r), the lowest energy 

(6.14) 

is attained b y  a harmonic function satisfying (6.14). 

Proof. We prove that if u is the unique harmonic function, such that 
u(P) = p ( P )  on I?, then for every w E C2(R) n C(0) with v(P) = p(P) on 
r,we have 

E ( 4  2 E ( 4  

We can represent w = u - w, where w ( P )  = 0 on I?. 
By the Green's first identity 

E(w) = E(u - w) = //i (IVu12 - 2VuVw + IVwI2) d V  

= E(u) + E(w)  2 E(u) ,  

r
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which completes the proof. H 

3. Represent at ion formula 

Theorem 6.5. Let u E C2(n) n C1(Q) be such that Au E L1(R). Then 
for every P E a, zf N = 3, 

and af N = 2 

Proof. Consider the three dimensional case. Fix P E R and let E be suffi- 
ciently small such that B,(P) c R. Let us apply the Green’s second identity 

which is harmonic in O\B,(P) for the functions u(&) and v(Q)  = - I& - PI ’ 
for Q # P. Denote for simplicity 

1 

On S, we have 

It follows by the Green’s second identity that 

By (6.15) 

(6.15) 

(6.16) 
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where M,(u) denotes the mean value of u over S, and ISe[ the area of S,. As 
u E C'(o) ,  letting E + 0 , by 1, we have 

lim A, = 47ru(P). 
&+O 

Then, by (6.16), we obtain as E -+ 0 

1 1 du 
- JJL vm Au(Q) dVQ = JL, (u$ (-) I Q  - PI - --) I Q  - PI dSQ 

+47ru(P), 

or 

Motivated by the representation formula we set 

if N = 3, 
1 

The function F ( Q , P )  is called a fundamental solution of the Laplacian with 
pole at P. 

In the case of an harmonic function u we get the following conclusions. 

Corollary 6.4. Let u E C2(R) n C'(0)  be a harmonic function in R. 

for every P E R.  
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Corollary 6.5. Let u E C2(R) be harmonic in R. Then u E P(Q) and 

Proof. If u E C2 (0) n C1 (a) the conclusion follows by (6.18). If u E C2 ($2) 

every partial derivative of u i s  a harmonic function in Q, 

we can apply (6.18) to any subdomain R' c 52 with smooth boundary. W 

Exercises 
1. A function u E C(R) is called subharmonic if for every P E R,  there 

exists a ball B,(P) c R such that for every p < r 

Prove that, if u is subharmonic and bounded from above, then u attains supu 
in s2, iff u is a constant. 

2. Prove the vector form of the Green's second identity 

n as2 

where G(P) and G(P) are smooth vector-valued functions, R is a domain with 
smooth boundary I?, n' is the outward normal vector to I? ( ii x v' means the 
vector product of vectors u' and 5.) 

3. (a) Prove the Green's first identity for the biharmonic operator A2 

where u, v E C4(R) nC3(n). 

w E C4($2) n C3(n) satisfying the boundary conditions 
(b) Prove Dirichlet principle for biharmonic functions. Among all functions 

where p(P) and $(P)  E C(B$2), the lowest energy 
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is attained by a biharmonic function u,  i.e. a function satisfying A2u = 0 and 
(6.19). 

4. (a) Show that if u is a solution of the Neumann problem 

Au = f in R, 
dU 
- = + o n d R ,  d n  

then 

(b) Prove Dirichlet principle for the Neumann boundary condition. Among 
all functions w E C2(R) n C1(n) satisfying the boundary condition 

d 
dn --.(P) = +(P) ,  P E dR, (6.20) 

is attained by a harmonic function u,  which satisfies (6.20). 

5 .  (a) Prove that if u E and PO E R is an interior point, then the . .  

u(Q)dS + u(P0) a~ E 4 0. 
1 

mean value IM,(PO) = - 
4 r E 2  JLe 

(b) Show that the last statement is not true if u is a discontinuous function. 

6.3 Green’s Functions 
Now we use Green’s indentities to study the Dirichlet problem. Consider the 
problem of finding a function Q(Q,  P )  E C2(R) n C1(Q) such that 

where P E R is fixed and 
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Suppose that (6.21) has a solution and u E C2(52) n C1(a) is a harmonic 
function. By the Green's second identity we have 

Consider the Dirichlet problem of finding a function u(P)  E C2(R) nC1(fi) 
such that 

Au(P) = 0, P E 52, 
u ( P )  = cp(P), P E an, 

where cp(P) E C(d52). By the representation formula 

(6.23) 

Substracting (6.24) from (6.22) and using (6.21), we obtain 

(6.25) 

where G(Q,P) = F(Q,P)  - Q(Q,P) is known as Green's function for the 
Laplacian in 52. Formula (6.25) is an integral representation of any solution of 
the Dirichlet problem (6.23). 

A main property of the Green's function is its symmetry. 

Lemma 6.1. The Green's function for the Laplacian in R is symmetric, 
i.e. for  every PI and P2 E R 

Proof. Let E > 0 be small enough such that &(Pi) c R, i = 1 , 2  and 
&(PI)  n B,(P2) = la. The functions u(P)  = G(P,Pl) and u(P)  = G(P,P2) 
are harmonic in RE = S2\(BE(P1) U B,(P2)). Applying the Green's second 
identity to u ( P )  and v ( P )  in 52,, we have 

(6.27) 

because u ( P )  = v ( P )  = 0 on dR. 
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Letting E + 0 we observe that 

Therefore by (6.27) 

lim // v&dS =lim // udndS. dV 
&+O an E-+O 

Then 
aF(P1 P1) dS =lim // .(P) aF(P) P2) dS, 

d n  E-+O d n  
lim J/ 
E+O 

SE (P1) SE (P2) 

Calculating the limits in the last expression, as in (6.17), we obtain 

which means that G(Pl,P2) = G(P2,Pl). 

d Corollary 6.6. The functions P I-+ G(Q,P) and P I----+ -G(Q,P) 
dnQ 

are harmonic in R for every Q E dR. 

Proof. As G(Q,P)  = G(P,Q) and F(P,Q) = F ( Q , P )  it follows that 
@(Q, P )  = @(P, Q). As Ap@(P, Q) = 0 by the definition it follows that 

which implies that ApG(Q, P )  = 0 for Q E dR, P E R. Moreover we have 
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The solution of the Dirichlet problem (6.23) is given by formula (6.25). By 
Corollary 6.6 the function u ( P )  is harmonic since 

d Apu(P)  = - ( ~ ( Q ) A ~ - G ( Q , P ) ~ S Q  = 0. JJ BR dnQ 

It remains to show the boundary condition in the sense 

This can be shown if the problem (6.21) has a solution, i.e. if the Green’s 
function for the Laplacian in 52 is determined. 

The Green’s function also allows us to solve Dirichlet problem for Poisson 
equation. Namely, the solution of the problem 

Au(P) = f(P) in R, 
u(P)  = p(P) on 352, (6.28) 

is given by 

Solving the Dirichlet problem (6.28) reduces to solving the Dirichlet problem 
(6.21). We solve the problem (6.21) for some regions 52 with simple geometry. 

6.4 Green’s finctions for a Half-space and Sphere 

6.4.1 Half-space 
Let D C R3 be the half-space of points P(x ,  y, z ) ,  z > 0. Each point P(x ,  y, z )  E 

D has a reflected point P*(x,y,-z)  4 D.  Suppose Q(<,q,O) E d D  = { z  = 0). 
By symmetry of P and P* with respect to d D  

I& - PJ = IQ - P*) .  (6.30) 

As D is an infinite region, all the properties on Green’s function are still valid 
if we impose the so-called boundary condition at infinity, that is the function 
and its derivatives are tending to 0 as [PI + 00. 

We assert that the Green’s function for D is 
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is a solution of the problem 
1 

4 ~ l Q  - P*I 
Indeed we have to show that @(Q, P )  = 

A,@(Q, P )  = 0 in D, 
@(Q,p)  = 

1 
on dD. 

4 4 ~  - PI  

is harmonic in D ,  because P* 4 D it remains to As the function 

prove that the boundary conditions are satisfied. As for Q E d o ,  IQ - PI = 
IQ - P* I it follows that 

1 
4 ~ l Q  - P*I 

We find an explicit formula for the Dirichlet problem for the Laplace equa- 
tion in the half-space 

Denote P(z ,  y, z )  E D ,  Q = (<, 7, <) and observe that 

Then, in view of (6.25), the solution of the problem (6.31) is 

Lemma 6.2. For all z > 0 and for all (z, y) E R2 

(6.31) 

(6.32) 
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Proof. Making the change of variables < = J; + pcos8, r] = y + psin8 we 
have for z > 0 

= 1. 

By Lemma 6.2 there follows a maximum principle for harmonic functions 
in a half-space. 

Corollary 6.7. Ifcp(Q) E C(R2)nLw(R2), Icp(Q)l 5 M then the function 
u ( x ,  y, z )  given b y  (6.32) is harmonic and Iu(P)I 5 M .  

6.4.2 Sphere 

Let BR be the open ball of radius R centered at the origin 0, SR = ~ B R .  Let 
P E BR and P* be the inverse point of P with respect to SR defined as 

opj 

which implies 
IPI 

R2 --+ 
= -OP, 

IPl2 

P*I = R2. (6.33) 

If Q E SR by (6.33) it follows that the two triangles QOP* an( POQ are 
similar, because they have a common angle <QOP = <QOP*, \&I  = R and 

-- IPI IS1 
I Q I  - Ip*(’ 

Then it follows 

(6.34) 
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if Q E SR, P E BR. 
For each P E BR\{O} the solution of (6.21) is given by 

i f P = O .  
1 I,, 

The function (a(Q,P) is harmonic with respect to P in BR\{P} because 

are harmonic. By (6.34) it follows that the bound- I& - PI and I& - P*l 
1 1 

1 
4 r ) Q  - PI' 

ary condition @(Q, P) = Q E SR is satisfied. 

In the two dimensional case we' have 

Thus the Green's function for the sphere SR 

if P = 0. 

n R3 is 

R )  

In order to solve the Dirichlet problem according to the formula (6.25) let us 
compute the normal derivative &G(Q, P), which for the sphere SR is 

Applying the cosine theorem to the triangles O Q P  and OQP* we have 

where y = uQOP. Therehe  for Q E SR,  y fixed 
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(6.35) 

Substituting (6.35) in (6.25) we obtain 

Theorem 6.6. Let u E C 2 ( B ~ )  f~ C'(&) be a solution of the Dirichlet 
problem 

Then 

Au = 0 in BR, 
u(P)  = q ( P )  on SR. 

Setting u(P)  = 1 in we obtain 

Corollary 6.8. For every P E BR 

(6.36) 

(6.37) 

(6.38) 

Note that (6.37) and (6.38) are known as Poisson formulae. In the two 
dimensional case we have respectively 

(6.39) 

(6.40) 
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Introducing polar coordinates for 

P(p  cos 8, p sin 8) , Q(R cos r, R sin r ) ,  

u(p,O) = u(pcosO,psinO), cp(r) = cp(Rcosr, Rs inr )  

by (6.39)) (6.40) we obtain 

27r - -- 
d r  27r 1 R2 - 2Rpcos(8 - T )  + p2 R2 - P 2 ’  

known also as Poisson formulae. 

the sphere, which is the statement of the following 
The formula (6.37) gives the unique solution of the Dirichlet problem for 

Theorem 6.7. For every cp(P) E ~ ( S R ) ,  the function 

R2 - \PI2 /J cp(Q)dS~  
IQ - pi3 

u(P)  = 
47r R 

SR 

(6.41) 

is the unique solution of the Dirichlet problem. 

Proof. By Corollary 6.6, u given by (6.41) is a harmonic function in BR. 
To prove the boundary condition in the sense 

let us fix a QO E SR and E > 0. As cp E C(SR) there exists S > 0 such that 

Moreover let M > 0 be such that Icp(P)I I M ,  P E SR. By (6.37) and (6.38) 
we have 

(6.42) 
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and 

R2 - ( R  - 61)2 2A4 
47rR (6 - 61)3 IS2I < - 

The last estimate implies 
lim J (P)=O.  

Taking 61 E (0,s) such that J ( P )  < 5 ,  by (6.42) we obtain that for JP - QoI < 
61, P E BR it follows 

P+Qo 

b(P) - (P(Qo)I < E *  

It means lim u(P)  = cp(Q0). 
P+Qo 

By the maximum-minimum principle it follows that u ( P )  is the unique 
solution of the Dirichlet problem. 

Exercises 
1. (a) Find the Green’s function for the half-plane G = { (x, y) : y > 0) c 

(b) If u E C2(G) n C1(@ is a solution of the Dirichlet problem 

A u ( z , ~ )  = 0, x E R, 

R2. 

> 0, 
u(z,  0) = C p ( 4  z E R, 

where
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then 

(6.43) 

(c) Prove that 

and if cp(x) E C(R) n Lm(R) then the function (6.43) satisfies lim 
( W ) - - + ( ~ O > O )  

u ( z , d  = (P(z0). 

2. (a) Find the Green's function for the exterior sphere B& = { P  E R3 : 

(b) If u E C2(B&) n C 1 ( E )  is a solution of the Dirichlet problem 
PI > R) 

Au(P)  = 0, P E B&, 
U ( P )  = Cp(P), P E SR, 

then 
u ( P )  = IP12 - R 2  /J ~ Q P S Q  p Bk,  

47rR IQ - p i 3  
SR 

(c) Prove that if p(P) E C(SR)  the function (6.44) is harmonic, 

lim u(P) = (p(&), if Q E SR 
P+Q 

and 

(6.44) 

lim u(P) = O .  
IPI-fm 

3. Let R be a bounded domain with smooth boundary F = dR, P E 0. 
The function 

R(Q, P )  = F(Q, P )  - +(Q, P )  
where 

A,+(&, P )  = 0, Q E R, { &$(Q, p) + a+(Q, P )  = &J'(Q, P )  + aJ'(Q, P ) ,  Q E r, 
a # 0 is a constant, is called Robin function. Prove that: 

(a) R(P1, P2) = R(P2, Pl) if Pl, P 2  E R,  Pl # P2. 
(b) if u E C2(R) n C'(n> is a solution of the Robin problem 

AU = f(P), P E R, 
dn + au = C ~ ( P ) ,  P E r, 
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6.5 Harnack’s Inequalities and Theorems 
As an application of Poisson formula (6.37) we derive, the so called Harnack’s 
inequa2ities for harmonic functions. 

Theorem 6.8. Let u be a nonnegative harmonic function in 0, Then for 
every PO E 0, &(PO) C s2 and every p E (O,R), P E S,(Po) 

(6.45) 

Proof. Using a translation of the argument if it is necessary we may assume 
PO = 0. We have by Poisson formula and the mean value property 

By the same way 

3Alex Harnack, 1851-1888. A. Harnack. Grundlagen des logaritmischen Potentiales. 
Leipzig, 1887. 

3
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Corollary 6.9. (Liouville 's theorem). A nonnegative harmonic function 
in R3 is a constant. 

Proof. Fix Po E R3 and p > 0. By (6.45) letting R -+ +oo we obtain 
.(Po) = u ( P )  for every P, IP - Pol = p .  As PO and p are arbitrary, ZL should 
be a constant in R3. H 

As a consequence of Liouville's theorem we derive the unique continuation 
property for harmonic functions on a half-space. 

Theorem 6.9. Every cp(x,y) E C(R2) f l  LO"(R2) has a unique bounded 
harmonic extension an R2 x { z  > 0 } ,  given by 

(6.46) 

Proof. It is easy to see that the function u ( z , y , z ) ,  given by (6.46)) is 
harmonic for z > 0. By Corollary 6.7 it is a bounded function. 

Suppose 211 and v2 are two bounded harmonic functions on R2 x { z  > 0) 
such that 211 lzZ=o = 212lZ=o = p. Then w = 211 - 212 is harmonic on R2 x { z > 0} 
and wIzz=o = 0. The function 

is bounded and harmonic on the whole R3. By Liouville's theorem it must be 
a constant. As wJ,=o = 0, then w = 0 on R3. 

The existence part shows that (6.46) is the unique harmonic extension of 
cp to R2 x { z  > 0). 

Denote for simplicity by rI(Q) P )  the Poisson kernel in R3, 

which is a harmonic function 

By Theorem 6.7 

is a harmonic function in BR. 
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Theorem 6.10. (Harnack's first theorem) Let { u n ( P ) }  be a sequence of 
harmonic functions in a domain 0, uniformly convergent on  every compact 
K c R. Then the limit function u ( P )  i s  harmonic in R. 

Proof. It is clear that the limit function u(P) is a continuous function. Let 
B be an open ball, S = aB and P E B. Passing to the limit in 

we obtain 

As II(Q, P )  is a harmonic function in B ,  by 

it follows that u(P) is harmonic in B. As B is arbitrary, u(P)  is harmonic in 
R. 

Theorem 6.11. (Harnack's second theorem). Let u l ( P )  5 u2(P) 5 ... 5 
un(P) 5 ... be a monotone increasing sequence of harmonic functions in R,  
which is convergent in a point Q E s2. Then { u n }  is uniformly Convergent on  
every compact subset K c R and the limit function u i s  a harmonic in 0. 

Proof. Let 01 be the set of points P of s2 where the sequence { u n ( P ) }  
is convergent. We shall show that 01 is an open set. Let Q E 01 and 2R = 
dist (Q,  aa). We show that the sequence {un(P)) is convergent in the ball 
BR/3(Q). By the monotone property and Harnack's inequality we have 

and 
(6.47) 

for every P, J P  - QI = p 5 -f. Let E > 0 be arbitrary and N ( E )  be such that 
for n > N ( E ) ,  m > 0 

un+m(Q) -un(Q) < 3-  E 
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jF’rom (6.47) we have 

(6.48) 

which means that {un(P)}  is convergent for every P, IP - QI < 4. 
Thus 01 is an open set. Let now 0 2  = R\01. We prove that 0 2  is also 

open. As R is a connected set and 01 # 0 it implies that 0 2  = 0 and 0 = 01. 

Let Q E 0 2  be arbitrary and 47- = dist(Q,dR). If there exists a point 
QO E 01, IQ - Qol < 5 it follows by previous observation that Q E 01. 

Therefore Bg(Q) c 0 2 ,  which shows that 0 2  is open. As we have noted, 
this implies that R = 01, so {un(P)}  is convergent at every point of 0. By 
(6.48) it follows that {un} is uniformly convergent on closed balls. If K c R 
is a compact subset covering K by a finite number of balls with appropriate 
radius, we obtain that {un} is uniformly convergent on K.  By Harnack’s first 
theorem the limit function is a harmonic function. 

Exercises 
1 (a) Prove the Harnack’s inequalities in the two dimensional case. For 

every PO E R,  KR(Po) c R and every p E ( O , R ) ,  P E C,(Po) 

--(PO) 5 u ( P )  5 -+(PO), 
R+P R -  P 

where u ( P )  is a nonnegative harmonic function on R c R2. 
(b) Prove Liouville’s theorem in R2. 

2. Prove that Liouville’s theorem holds for harmonic functions in R3, 
bounded from above (below). 

3 (a) Prove that if u ( P )  is a harmonic function in R3, R > 0 , then 

3 
4rR3 / l R ( p l  u(Q)nxdS’ 

dU 
dX 
-(P) = - 

(b) Prove that, if u ( P )  is a harmonic function in R3 and for every Q E R3 
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then u is a constant. 

4 (a) Let B be the unit ball centered at the origin and u be the unique 
solution of 

Au = 0 in B ,  
u ( a B  = q. 

Prove that if cp E C(BB) and p(x, y, z )  = -cp(x, y, - z )  then u(x ,  y, z )  = 

(b) Let u be a harmonic function in B+ = B n { z  > 0} vanishing for z = 0. 
-+, 9, -2). 

Extend u to a harmonic function on B. 

(x,
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Chapter 7 

Fourier Series and Fourier 
Method for PDEs 

7.1 Fourier Series 

7.1.1 

In this chapter we consider Fourier series and the Fourier method in order to 
solve boundary value problems for linear PDEs in terms of series. This ap- 
proach was used by Joseph Fourier' , who had developed his ideas on trigono- 
metric series studying heat conduction. 

Fourier coefficients. Convergence of Fourier series 

Let us begin with the Fourier sine series. 
Let f(x) be a piecewise continuous function, x E [O,Z] and f(x) be ex- 

pressed as 
00 nrx f ( ~ )  = C bn sin - 

1 '  
n=l 

The problem is, how to find the coefficients bn if f(x) is a given function? 
Observe that 

nrx m r x  
sin -dx = 0 if m # n, (7.2) 1 

I' sin 7 
1 
2 n E N, (7.3) 

'Jean Baptiste Joseph Fourier, 21.03.1768-16.05.1830. 
His results on the representation of functions by trigonometric series, presented to the 

Academy of Sciences in Paris in 1807 and 1811, were criticized (most strongly by Lagrange) 
for a lack of rigor and were not published until 1822. 

199 
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known as orthogonality 

Partial Differ en t i al Eq u a t ions 

property of the trigonometric system 

{sin- n r x  :  EN}. 
1 

Suppose that we can integrate (7.1) term by term. 
Multiplying (7.1) by sin -, integrating from 0 to 1 and using (7.2) and 

rnrx 
I 

(7.3), we obtain 
1 rnrx bm = h f ( x )  sin -dx, m E N 

1 (7.4) 

Similarly suppose that f ( x )  is expanded in Fourier cosine series 

n r x  
1 

Using orthogonality of the trigonometric system { cos - : n E N U (0)) 

cos -dx = 0,  m # n, 1 

1 
cos2 y d x  = - 

2 '  n E N, 

we obtain that the coefficients am are expressed as 

A full Fourier series, or simply Fourier series, of a function f ( x ) ,  where x E 

(-1,l) is defined as 

f (4 

Observe that 

03 

= -a0 1 + C (a,  cos - n r x  + bn sin - ";">. 
1 

n=l 
2 

n r x  rnrx 1, cos I cos -dx = 0, n # m, 1 

(7.5) 

' n r x  rnrx 
sin -dx = 0, n # m, 1 
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N 

jU(x0) - x u n ( x 0 )  
n=l 

201 

< 

' n r x  m r x  
sin -dx = 0, 'dn,'dm E N U (0) 

1 
and ' n r x  

sin2 -dx = 1 ,  
1 (7.7) 

dx = 21, 

known as orthogonality of the trigonometric system 
7rx r x  n r x  n r x  { 1, cos d , s i n  -, ..,, cos -,sin -, ...} 

1 1 1 
If we can integrate (7.5) term by term, then using orthogonality we obtain 

the coefficients a,  and bm as 

1 '  m r x  am = [, f ( x )  cos -dx, m E N U  (0) 
1 

and 

(7.9) 

Recall some facts for series of functions. 
Let I = [a, b] be a closed and bounded interval, un(x)  : I -+ R, n E N, be 

a function. The series 

is pointwise convergent 

(7.10) 

to a function u ( x )  on I iff for every 20 E I the series 

n=l 

I n=l I 
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for every x E I .  

I iff for every E > 0 there exists NO = No(€) such that if N > NO 
The series (7.10) converges in the mean-square (or in L2) sense to u ( x )  on 

Note that uniform convergence is stronger than both pointwise and mean- 
square convergence. 

Remark 7.1. If v ( x )  is a bounded function on I ,  

for every x E I and c,"=l un(x) is uniformly convergent on I ,  then the series 
Cn=l 21, ( x ) v ( x )  is uniformly convergent. 00 

The series (7.10) is absolutely convergent if the series CrZ1 Iun(x)l is con- 
vergent. A criterion for uniform convergence is 

Theorem 7.1. (Weierstrass criterion) Let there exist constants cn,  n E N 
such that 

Iun(z)I I cn, vn, vx E I 

00 
and the series 

c 
n=l 

be convergent. Then  the series C,"=l U n ( x )  is uniformly convergent on  I .  

For instance, if the coefficients an and bn of the trigonometric series 

5 + C ( a n  cosnx + bn s i n w )  (7.11) 
2 n=l 

00 
are such that the series 

n=l 
is convergent, then (7.11) is uniformly convergent on R. 

tinuity, differentiability and integrability of the sum are as follows: 
Some basic statements for uniformly convergent series with respect to con- 
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Theorem 7.2. Let un (x ) ,  x E I be a continuous function and C,"=l un(x) 
be uniformly convergent on I .  Then the sum u ( x )  = C,"=l un(x)  is a continu- 
ous function on I .  

Theorem 7.3. Let un(x) ,  x E I be an integrable function and C,"=l un(x)  
be uniformly convergent on I .  Then 

Theorem 7.4. Let un(x) ,  x E I be a continuously differentiable function 
and the series C,"=l .I(.) be uniformly convergent on I .  If C,"=, un(x)  is 
pointwise convergent and u ( x )  is its sum, then u ( x )  is differentiable on I and 

00 

u ' ( z )  = C u h ( z ) .  
n=l 

Denote Il := [ - 1 , 1 ]  and suppose the series (7.5) is uniformly convergent 
on I,. By Remark 7.1, Theorem 7.3, the orthogonality properties (7.6) and 
(7.7) we obtain the coefficients formulae (7.8) and (7.9), known as Fourier 
coeficients of the function f ( x ) .  

Suppose f ( x )  : R --+ R is a periodic function with period 21, i.e. 

and f ( x )  is absolutely integrable on I1 

(7.12) 

(7.13) 

the Fourier coefficients (7.8), (7.9) are well-defined. 

By
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Let us associate to the function f its Fourier series 

The natural question is: Does f ( x )  coincide with the sum of its Fourier se- 
ries and what kind of convergence appears? There are answers to this question 
for some classes of functions f(x). 

The function f (x)  has a j ump  discontinuity at a point xo E I if the one 
side limits 

f (xo + 0) = ;.%o f (4 ,  f(zo - 0) = ).-go f(41 
z>zo x < z o  

exist but are not equal. The value of the jump discontinuity is the number 

J f  ( 2 0 )  := f ( x 0  + 0) - f(x0 - 0). 

The function f (2) is said to be piecewise continuous on I ,  if there exist a 
finite number of points xj ,  j = 1, ..., n, a 5 x1 < 2 2  < .,. < xn 5 b, such that 
f ( x )  is continuous on each open interval ( x j ,  xj+1), j = 1, ..., n - 1 and f ( x )  
has a jump discontinuity at each point x j .  

Theorem 7.5. Suppose f (x) and f ‘ (x )  are piecewise continuous functions 
on11 and 

00 n r x  
f (x) - :a0 + C (an cos 1 + bn sin 

n=l 

is the Fourier series of f ,  where the coeficients an and bn are given by (7.8) 
and (7.9). Then the sum of the Fourier series s(x) is equal to f ( x )  at each 
point x E ( - 1 , l )  where f is continuous and is equal to 

1 
2 -(f (xo + 0) + f (xo - O ) ) ,  

if f has a jump discontinuity at XO. At x = z t l ,  the series converges t o  

1 
2 -(f (1 - 0) + f (-1 + 0)). 

Theorem 7.6. Let f (x) be a continuous function on  I i ,  f ( -1) = f (I) and 
f‘(x) be piecewise continuous on  Il. Then  the Fourier series o f f  converges 
uniformly to f (x) on 11. 

Theorem 7.6 is based on a result on the mean-square convergence of the 
Fourier series. 
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Theorem 7.7. Let f be a 21-periodic piecewise continuous function o n  Il,  
Then  the Fourier series f o r  f converges to f (x) an the mean-square sense and 

00 

n=l 

(7.14) 

The equation (7.14) is known as ParseVal’s2 equality. 

Proof of Theorem 7.6. As f’(x) is piecewise continuous on Il,  it is ab- 
solutely integrable and square integrable. Denote by a/,  and b/, the Fourier 
coefficients of f‘. By Theorem 7.7 

00 
ah2 I f’(z)I2dx = - + C (a$’ + b:) < 00 

n=l 
2 

(7.15) 

Integrating (7.8) and (7.9) by parts and using f ( 1 )  = f ( - l ) ,  we obtain 

nnx 1 
an = I J f(x)cos-dx 

1 -1 1 

n r x  1 

b, = :/ f(x)sin-dx 

nxx 
1 - 1  1 

nn -1 I 
- - [ f’(x) cos -dx 

Using the elementary inequality 

1 1 
n -(la1 + lbl) L a2 + b2 + 2132’ 

(7.16) 

(7.17) 

Mark-Antoine Parseval des Chimes, 17’55-1 833. 
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by (7.15) we obtain that the series 

n 
n=l 

is convergent. Then, by (7.16) and (7.17), it follows that the series 

n=l 

is convergent. By the Weierstrass criterion the Fourier series for f is uniformly 
convergent and the sum is a continuous function which coincides with f (2)  on 
Il. 

Using integration by parts we have the following estimates for Fourier 
coefficients . 

Lemma 7.1. Let f ( x )  be a 21-periodic function, absolutely integrable on 
Ii, an and bn be the Fourier coeficients. Then  

(7.18) 

where 
1 ,  

M = - s_, l f ( x ) l d x *  I 
Moreover, suppose that f (x) i s  diferentiable and f ‘ (x )  is absolutely integrable 
on  I,. Then  

where 

If f ’ ( x )  i s  continuous and f“ (x )  is absolutely integrable on  Il, then 

where 

(7.19) 

(7.20) 
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Proof. It is easy to see that (7.18) follows from (7.12) and (7.13). In order 
to obtain (7.19) we integrate by parts 

n r x  (7.21) an = -S_lf(x)cos-dx l 1  
1 1 

nrx I', - t 1 1 
= -f(x)sin - 

n r  1 n r  - 1  

- l 1  n r x  
- -G ll f'(x)sin -dx. 

n r x  
sin -cix 

1 

1 

1 

Then 
Ml lf'(x)ldx = -. 
n 

Similarly, in view of f ( 1 )  = f ( - l ) ,  which follows by continuity, we have 

(7.22) l 1  n r x  bn = 7 J_, f ( ~ )  sin -dx = - 
1 

and 

In order to obtain 
f'(-1) we have 

(7.20) we integrate by parts in (7.21) and (7.22). By f'(1) = 

Then it follows 

7.1.2 Even and odd functions. The complex form of the 
full Fourier series 

A function f defined on R or on an interval I1 is said to be even if for every x 
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The function f is called odd if for every x 

f (-4 = - f ( x ) -  

The graph of an even function is symmetric with respect 
is an integrable even function on I1 then 

If f is an odd function then f(0) = 0. The graph of an 
symmetric with respect to origin 0. If f is an integrable odd 

It is easy to see that: 

to axis Oy. If f 

odd function is 
function on I1 

(I) The sum of two even (odd) functions is an even (odd) function. 
(2) The product of an even and an odd function is an odd function, while 

Let f(z) be a function defined on the interval ( 0 , l ) .  It can be extended to 
the product of two odd (even) functions is an even function. 

( - I , I )  as an even function by 

f ( x )  0 < x < I ,  
f e ( x )  = { f ( - x )  -1 < x < 0. 

The even extension is not necessarily defined at 0. 
The function f ( x )  can be extended to (-1,I) as an odd function by 

f ( x )  0 < x < 1, 
f o ( x )  = - f ( - x )  - I  < x < 0, 

{ O  x = 0. 

Let us return to Fourier series. Suppose f ( x )  is an even function, 21- 
periodic and absolutely integrable on ( - 1 , l ) .  Then for the Fourier coefficients 
we have 

n r x  
1 

1 

an = I1 ~ ( X ) C O S  -dx, n E NU{O}, (7.23) 

If f( x )  is an odd function, 21-periodic and absolutely integrable on ( - I ,  I ) ,  
then 

a, = 0,  €NU{O} (7.24) 
n r x  

1 

1 

bn = :i f ( ~ ) s i n - d x ,  n E N .  
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Finally, given a function f(x)  on (0,Z) it can be expanded both in Fourier 
cosine or Fourier sine series. Namely, let us consider the 21-periodic extension 
of the even extension fe(x) and calculate the Fourier series with coefficients 
(7.23). 

Restricting to the interval (0,Z) we obtain the Fourier cosine series of f (x)  

M 

n=l 

where 
1 n r x  
f (x) cos -dx, n E NU{O}. 

a n = $ 1  1 

Similarly, taking the 21-periodic extension of the odd extension fo(x) we obtain 
a Fourier series with coefficients (7.24). Restricting to the interval (0,Z) we get 
the Fourier sine series of f (x)  

n=l 

where 
n r x  

Z 

1 
b, = 1 f (x) sin -dx, n E N. 

Let us consider some examples of Fourier series. 

Example 7.1. Expand the 21r-periodic function f : R -+ R, 

in Fourier series. 

Solution. As the given function is odd in (-r, r) , we have 

bn = :JdTxsinnxdx=-- nIr JdTxdcosnx 

- - - L (  zcosnx~;  - JuTcosnxdx) 
nn- 
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The Fourier series is 
O0 (-l)n+l 

sin nx. 
n 

x - 2 c  
n=l 

By Theorem 7.5 we have 

O0 (-1)"+' 
x = 2 c  sinnx, -7r < x < 7r. 

n 
n=l 

If x = 7r , then 

sin n7r 
1 
- (f(7r - 0) + f(-T + 0)) = 

2 n=l - 
1 
$"-") = 0. 

Example 7.2. Expand the 27r-periodic function f : R --+ R, 

f(x) = x2, x E (-7r,7r) 

an Fourier series. 

Solution. As the function is even, we have 

bn = 0, n € N ,  

an = 2 J T ~ 2 c o s n x d x ,  n E N, 
T o  

4 x  
- - Jd xdcosnx 

- - x cos nxl i  - LT cos nxdx) 

- 4(-1)" 
- 

n2 ' 
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The Fourier series of the function is 

n=l 

As the function is continuous in [-7r,7r] 

n=l 

Taking x = 7~ and x = 0 we obtain the identities 

Example 7.3. Expand the 2~-periodic function f ; R -+ R, 
7 T - X  

O l z < 7 r ,  

-7T < x < 0.  f ( x )  = { -- ,2+, 
2 

in Fourier series. 

Solution. As the function is odd in ( -T ,  r)\{O} , we have 

an = 0 ,  n €  NU{O}, 

bn = sin nxdx  

T - X  
d cos n x  

cos n x l i  + IT cos n x d z )  

1 
n 

, n = 1,2, ... - - -  

The Fourier series is 

The coefficients and the partial sums can be calculated by the Muthematica 
program as follows 
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Clear[a, x, k, n, f, fs] 
f[x-] := Which[x <= 0, -(x + Pi)/2, True, (Pi - x)/2] 
fI[x-] := (Pi - x)/2 
a[k-] := (2/Pi)Integrate[fl[x] Sin[k x], {x, 0, Pi}] 
fs[x-, 121 := Sum[a[k] Sin[k x], {k, 1, 12}] 

g l  = Plot[Evaluate[f[x]], {x, -Pi, Pi}] 
g l l  = Plot[Evaluate[f[x - 2Pi]], {x, Pi, 3Pi}] 
g2 = Plot[Evaluate[fs[x, 1211, {x, -Pi, Pi}] 
g22 = Plot[Evaluate[fs[x - 2Pi, 1211, {x, Pi, 3Pi)l 

The graphs of f(x) and the partial sum S12(2) are plotted in Figure 7.1. 
Show[gl, g l l ,  g2, $21 

1.5 

1 

0.5 

8 

Figure 7.1. Graphs of 5’12 ( x )  and f (x) in Example 7.3. 

Consider the partial sum 

We have the trigonometric identity 
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1 + &osnt = sin (N + a> t 
2 n=l 2 s i n i  ’ 

where 

sin ( N  + 4) t 
DN(t )  := 

2sing ’ 

is known as the Dirichlet kernel. 
Then 

Let us consider now the so called Gibbs phenomenon3 describing the dif- 
ference between the partial sums of the Fourier series and the value of the 
function near a jump point. Gibbs showed that the limit deviation of SN(Z) 
in a neighborhood of a jump point xo is greater than the jump j(x0) at xo by 
an amount of 18%. 

Let us illustrate the Gibbs phenomenon by Example 7.3. We have 

Jo 

It is easy to see 

/Z sin ( N  + a )  t d t + l Z  (& - t) sin ( N  + ;) t d t - 5  X (7.26) 
t s N ( x )  = 

that 

lim (- 1 - :) = 0, 
t-0 2sin$ 

so that the function 

g N ( t )  = (- 1 - i) sin (N + i) t 
Zsin $ 

is bounded in a neighborhood of 0. Therefore 

Josiah Willard Gibbs, 11.02.1839-28.04.1903. 
In a letter to Nature 59 (1899) he described the Gibbs phenomenon. For this and other 

contributions Gibbs has been honored by a prize with his name by the American Mathemat- 
ical Society. 
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uniformly in N .  Making the change of variable s = ( N  + 3) t in the first 
integral of (7.26) we obtain 

(7.27) 

Let us consider the so called Sine integral 

sins 
Si(t) = -ds. 

S 

It is easy to see that Si(t) is an odd and bounded function. 
The maximum of Si(t) is attained at n, Si(n) M 1.8519. 
The graph of the function Si is plotted in Figure 7.2. 

Figure 7.2. Graph of the function Si (x). 

As the function Si(t) is monotone increasing on [-n, n], it is invertible and 
for every po E [- Si(n), Si(n)] there exists a unique t o  = Si-l(p0) E [-n, n] 
such that 

-+ 0 as N --+ 00, by (7.27) we get t o  Taking x~ = - 
N + 1  

lim S N ( z N )  
N-oo 
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N + 112 

to sins 
= 1 -ds 

= po E [- Si(7r), Si(7r)I. 
S 

If po = Si(7r) then t o  = 7r and we get 

lim S N  (m) 7r = Si(7r) M 1.8519, 
N + W  

while 

Note that J f ( 0 )  = f (0  + 0) - f(0 - 0) = 7r and the Gibbs amount is 

1.8519 - 1.5707 
N N 

lim (sN (*) - s N  (-*)) - 
N + w  

Jf (0) 1.5707 
= 0.17902 M 18%. 

Finally in this Section let us note that there exists a complex form of 
Fourier series based on Euler's formulae 

eix = cos x + i sin x, e-ix - - cosx - is inx (7.28) 

e ix  + e - i x  ,ix - , - ix 

2 2i * 

, sinx = (7.29) cosx = 

Let us consider a Fourier series 

(7.30) 

l Z  n7rx 

l 1  n7rx 

a, = 

bn = 7 1 ,  f(x)sin-dx, n E N .  

Ll f (x)  cos -dx, n E NU{O}, 
1 

1 
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Substituting (7.29) in (7.30), we obtain 

or more briefly 
00 

n=--00 

where 

n r x  n r x  
= L J 1 (  cos - - isin -) f ( x ) d x  

21 - 1  1 1 

e - i y  f ( x ) d x ,  n E N, 
= 

and 

where is the complex conjugate of C n .  Simply we have 

1 
cn = 1 / e - i T f ( x ) d x ,  n E Z, 

21 - 1  

(7.31) 

(7.32) 

(7.33) 

The series (7.31) with coefficients (7.32) is known as the complex form of 

Let us note that the system of complex exponentials 
the Fourier series. 

has the orthogonality property, that is 
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if n # m and 

7.2 Orthonormal Systems. General Fourier 
Series 

The system of complex-valued functions {cpn(x)} defined on the interval I = 
[a,  b] is said to be orthonormal iff 

Ja 

for every m,n E N. 

For example, the system { h e i n z }  is orthonormal on [-T, T I .  

Let {cpn(z)} be an orthonormal system and f(z) be an absolutely inte- 
grable function on [a, b] .  Then the numbers 

r b  

are well-defined and are called the Fourier coeficients of f with respect to 
(9,). We write as before 

n=l 

where the series is called the Fourier series of f with respect to { c p n } .  

The partial sums of the Fourier series have a minimal property in L2-sense. 



218 Partial Differential Equations 

Theorem 7.8. Let f E L2[a,b] and ( p n )  be an orthonormal system in 
L2[a, b].  Then the function 

2 

dx  
r b  I n 

attains its minimum at the point (c1, ..., C n ) ,  where ck is 
ficient o f f .  

the k-th Fourier coef- 

Proof. By the orthonormality of the system { p n }  we have 

n 

rb n n 

k=l k=l 

By (7.34) it follows that @ ( ? I ,  ..., yn)  is minimal at (q, .. 
r b  n 

(7.34) 

C n )  and 

(7.35) 

Corollary 7.1. Let f E L2[u,b] and ( p n )  be an orthonormal system in 
L2[a,  b]. Then 

r b  00 

(7.36) 

Proof. The result follows from (7.35). As the series C,"=l ICnl2  is conver- 
gent it follows that lcnl + 0 or C n  0 as n + 00. W 

The inequality (7.36) is known as Bessel inequulity4. 

4F'riedrich Wilhelm Bessel, 22.07.1784-17.03.1846. 
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Let us consider some special examples of orthonormal systems generated 
by boundary value problems for linear second-order differential equations. 

7.2.1 The Bessel functions 

The Bessel equation of order p is 

x2y" + xy' + (x2 -p2)y = 0 (7.37) 

or 

1 
Y" + ;d+ (1 - 5 )  y = 0, z # 0, 

where p is a nonnegative constant. As the equation (7.37) is a linear second- 
order differential equation its general solution is of the form 

Y = C l Y l  + C2Y2,  

where y1 and y2 are two linearly independent solutions of (7.37), and c1 and 
c2 are arbitrary constants. 

The Bessel function of the first kind of order p is defined as 

(7.38) 

where 
qp) = lw t p - ~ d t  

is known as the Gamma function. 

and the general solution is 
If p is not an integer, then J-p(x) is a second linearly independent solution 

Y = C l J p ( Z )  + CZJ-,(Z) .  

If p is an integer, then 

and so J-'(Z) is not a second linearly independent solution. In this case the 
function 

Jq(x) cosq7r - J-,(x) Yp(x) =lim 
sin q7r 7 

4 + P  
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known, as the Bessel function of the second kind of order p ,  is a second linearly 
independent solution. 

Let us recall some properties of the Gamma function r ( p ) .  

3. r(n + 1) = n! if n is a positive integer. 

4. Ir(-n)l = 00, n = 0,1,2,  ... 

if p # 0, -1, ..., -k + 1. r(P + k) 5. qp) = 
P ( P +  1) ...(P+ k - 1) 

The solution (7.38) is derived by the power series method for solving 
second-order differential equations. For simplicity let us consider it for the 
case p = 0. 

Suppose the solution of the equation 

xy” + yt + xy = 0 (7.39) 

is presented in the form of power series 

Differentiating (7.40) twice and substituting in (7.39) we obtain 

( 2 ~ 2 ~  + 3 . 2 ~ 3 ~ ~  + 4 . 3 ~ 4 3 ~  + ...) (7.41) 

+(cl 3- 2c22 + 3c3x2 + ...) + (cox + c1x2 + c2x3 + ...) = 0. 

Equating the coefficients of the powers xk ,  k = 0,1,2, ... in (7.41) to zero 
we obtain 

c1 = 0, 

(n + 2)2~ ,+2  + cn = 0, n E N. 

As c1 = 0 it follows 

and
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Then a solution of (7.39) has a form 

(7.42) 

Note that, by D'Alembert criterion, (7.42) is absolutely convergent for 
every x . If Q = 1 we get the Bessel function of the zeroth-order 

It is a solution of (7.39) with initial data 

y(0) = 1, y'(0) = 0. 

Similarly, the Bessel function of the first-order 

is the solution of the equation 

x2y" + xy' + (x2 - 1)y = 0 

with initial data 1 
y(0) = 0, y'(0) = 2. 

Let us note that the Gamma function and the Bessel functions of the first 
and the second kind of order p are denoted in Mathematica by Gammab], 
BesselJb, x] , BesselY b, x] respectively. 

The graphs of the functions Jo(x),Jl(x) and J2(x) are plotted in Figure 
7.3. Note that the functions Jh(x), k = 0,1,2,, have a countable number 
of positive zeros. The first three of them are computed by the Mathematicu 
program 

a[l, 11 = FindRoot[BesselJ[O, x] == 0, {x, l}] 
a[1, 21 = FindRoot[BesselJ[O, x] == 0, {x, 5}] 
a[l, 31 = FindRoot[BesselJ[O, x] == 0, {x, lo}] 
a[2, 11 = FindRoot[BesselJ[l, x] == 0, {x, l}] 
a[2, 21 = FindRoot[BesselJ[l, x] == 0, {x, 5}] 
a[2, 31 = FindRoot[BesselJ[l, x] == 0, {x, lo}] 
a[3, 11 = FindRoot[BesselJ[2, x] == 0, {x, l}] 
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a[3, 21 = FindRoot[BesselJ[2, x] == 0, {x, 5}] 
a[3, 31 = FindRoot[BesselJ[2, x] == 0, {x, 7}] 

Do[g[n] = Plot[BesselJ[n, XI, {x, 0, 20}, Plotstyle -> {GrayLevel[O.S], {}}I, 

Show[g[O], g[l], g[2], PlotLabel -> "Bessel's functions J[n,x], n=0,1,2"] 

The first three zeros are as follows: 

Table[a[i, jl, ti, 1, 3), {j, 1, 3)l 

{n, 0, 211 

JO (x): x -> 2.40483, x -> 5.52008, x -> 8.65373, 
J1 (x): x -> 1.32349 
52 (x): x -> 0.00086538, x -> 5.13562, x -> 11.6198. 

, x -> 3.83171, x -> 10.1735, 

Bessel ' s  functim J[n,x], n=0,1,2 

Figure 7.3. Graphs of Jo(x), Jl(z)  and & ( x )  

Let us consider the orthogonality of the functions { f i & ( p k Z ) }  , where 
p k  are distinct positive zeros of Jo(z )  . Note that the function & ( A x )  satisfies 
the differential equation 

Lemma 7.2. The  system of the functions { & J O ( p k x ) }  is orthogonal o n  
[O, 11 

10-20
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and 

Proof. Let yi(x) = Jo(X1x) and y2(z) = Jo(X2z) for A1 # X2. Multiplying 
by zy2 the equation 

1 
y:' + ;y: + X?y1 = 0, 

Y2 + ,Yb + &2 = 0 

by zyl the equation 
I 1  1 

and substracting we have 

or 

( 4 d Y 2  - Y;Yl))' + (A: - X;)Zyly2 = 0. 
Then 

1 

(A? - A;) J Wl92da: = -9;(l)Y2(1) + y;(l)yl(l)  (7.43) 
0 

= - A1 JA (A 1) Jo (X2) + A2 J A  (X2) Jo (A 1 ) * 
If X i  = p k  and A2 = pn  are distinct positive zeros of Jo(z) it follows 

By (7.43) 

Letting X -+ p k ,  we have 
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7.2.2 Legendre polynomials 
The Legendre dzfierential equation5 is 

((1 - x2)y'(x))' + n(n + l)y(a:) = 0, (7.44) 

where n 2 0 is an integer. The points x = f l  are singular points and not every 
solution of (7.44) is bounded on the interval [-1, I]. For n 2 0 an integer, 
bounded solutions of (7.44) are polynomials, known as Legendre polynomials, 
defined as 

( ( x2  - 1)"). 
1 d" 

2"n! dxn 
Pn(z) = -- 

Using Mathematicu we find that the first six Legendre polynomials are as 
follows 

P2 (x) = ; (-1 + 322) , 

P3 (x) = ; (-3a: + 5x3) , 

P4 (x) = (3  - 30x2 + 3 5 ~ ~ )  , 

P5 ( x )  = ( 1 5 ~  - 70x3 + 6 3 ~ ~ )  . 

They are plotted in Figure 7.4 by the program 

Table[LegendreP[n, X I ,  {n, 0, 5}] 

Do[g[n] = Plot[LegendreP[n, X I ,  {x, -1, l}, Plotstyle -> 
{Gra~Level[0.31, OH, b, 0, 5}] 

Adrien Marie Legendre, 18.09.1752-10.01.1833. 
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We list some properties of P,(x) as follows: 

1". P,(1) = 1, P,(-I) = (-l), for every n = O,1,2, ... 

2". P,(z) is an even function if n is an even integer, and Pn(x) is an odd 
function if n is an odd integer. 

3'. IP,(z)I 5 1 if 1x1 5 1. 

4". P,(x) has n real simple zeros on the interval (-1,l) for n 2 1. 

5". P, (x) are orthogonal on (- 1,l). 

2 
2n+1 '  7". P,2(x)dx = - 

Let us prove 5" using the procedure considered in Lemma 7.2. Multiplying 
by P,(x) the equation 

Figure 7.4 . Graphs of the first six Legendre polynomials
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by Pn(x) the equation 

and subtracting we have 

or 
( ( 1  - X~)(P,P: - P,P;))' = (m(m + 1) - n(n + I ) ) P , P ~ .  

Integrating over [ - 1,1] we obtain 
1 

(m(m + 1) - n(n + 1)) / ~~(x)~,(z)dx = 0. 

fl P,(z)P,(x)dx = 0. 

-1 

Therefore for m # n 

Let us prove 7" using 6". Multiplying the identity 6" by &.-I(.) and 
integrating in [--1,1] by 5" we have 

1 1 

( 2 n  + 1)  S _ ,  x ~ , ( x ) ~ , - I ( x ) d z  = n ~:-I(x)dx. (7.45) 
Ll 

Replacing n by n - 1 in 6", multiplying by P,(x) and integrating over 
[-I, 11, we get 

1 

(2n  - 1) JI: x ~ , - ~ ( x ) ~ , ( x ) d x  = n S_, ~:(x)dx. 
Therefore by (7.45) we obtain the identity 

(272 + 1) 1' P;(x)dx = (2n  - 
-1 

valid for n = 1,2 ,  ... . Hence 

n 
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Exersices 
1. Expand the following functions in Fourier series: 

(a) eaz, -7r < x < 7r, where a = const # 0. 

(b) sin3 x, -7r < x < T ,  

0 - 7 r < x < o ,  
(4 f (4 = { e" O L x ~ 7 r .  

sinz 0 5 x < 7r/2, 
(dl g(x)  = { 0 T/2 < x L 7r. 

2. (a) Expand in Fourier series the function 

y = Si(x) ,  -7r < z < 7r 

(b) Show that: 

3. (a) Using the Euler formula and the expansion 

z2 z3 z4 
2 3 4  ln (1+ z )  = z - - + - - - + '.') (21 

prove that if -7r < x < 7r , then 

cos2x cos3x 
2 3 

In (2cos ;) = cosz - - + - 

+ 2Si7r). 

X sin22 sin32 +-- sinx - - 2 2 3 . * *  * 

- -  - 

(b) Find the sums of the series 

cos2x cos3z cos nx 
3 8 n2 - 1 + ... + (-1y - + '", --- 
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sin22 sin32 sin nx 
3 8 n2 - 1 + ... + (-1y - + .", --- 

if -7r < x < 7r. 
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4. (a) The Bernoulli numbers Bn6 are the coefficients of the Taylor series 
of the function 

X " 1  - = C z B n x n .  
n=O ex - 1 

Bzn-l = 0 if n 2 2. 

Compute the first seven Bernoulli numbers. 

in the expansion 
(b) The Bernoulli polynomials Bn ( t )  are defined as the coefficients of xn 

xext O0 1 
ex - 1 n! 
-- - C -Bn ( t )  xn.  

n=O 
Prove that: 

Bn (t + 1) - Bn ( t )  = ntn-') 

sin 2n1rt 
n 

B1 ( t )  = t - - = -- 
2 7 r  n=O 

Compute first seven Bernoulli polynomials and plot their graphs with 

(c) Prove the identity 
Mathemutica. 

5. Find the general solution of the differential equation 

5 
y" + -y/ + y = 0, 

X 

using the change of variables u = x2y.  

'Daniel I Bernoulli, 29.01.1700-17.03.1782. 

Prove that:
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6, Prove that 

1 

7.3 Fourier Method for the Diffusion Equation 

7.3.1 Homogeneous equation and boundary conditions 
Consider the boundary-value problem 

ut - Q2UZX = 0 
( M D H )  : u(x,O) = p(x) o < x < z ,  

0 < x < 1, t > 0, 

t 2 0. { u(0, t )  = u(1, t )  = 0 

Our goal is to find the solution of ( M D H )  using the method of separation of 
variables or Fourier method. A separable solution is a solution of the form 

u(z, t )  = X ( Z ) T ( t )  

to the problem 

U t  - ct2uzx = 0 0 < x < 1, t > 0, 
t 2 0. ( sD)  { u(0,t) = u(l,t) = 0 

Plugging this into the diffusion equation, we get 

X ( x ) T ' ( t )  - a2X"(x )T( t )  = 0 

or 
T'(t) Xll(x) 

a2T(t) - X ( z )  * 
-- 

In order for the last relation to be an equality each side must be identically 
equal to a constant: 

T'(t)  X " ( x )  
Q2T(t) X ( x )  
- = A.  -= 
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By the boundary conditions 

u(0, t )  = X(O)T(t)  = 0, u(1, t )  = X(Z)T(t)  = 0 

it follows 
X ( 0 )  = X(Z) = 0 

so that X ( x )  satisfies the following eigenvalue (Sturn-Liouville) problem 

(7.46) 
X / / ( z )  = X X ( z )  0 < z < 1 ,  

X ( 0 )  = X(1)  = 0, 

while T( t )  satisfies the equation 

T'(t) - XQ2T(t)  = 0. (7.47) 

We are looking for the values of X which lead to nontrivial solutions. Con- 
sider the following three cases: 

(i) Let X = p2 > 0 ,  p > 0. Then the equation (7.46) has the general 
solution 

X ( Z )  = clePZ + ~ 2 e - P ~ .  

By the boundary conditions it follows 

and c1 = c2 = 0 because 

(ii) If X = 0, X ( x )  has the form 

X ( z )  = c1x + c2. 

It follows again c1 = c2 = 0. 
So in the first two cases the problem (7.46) admits the trivial solution only. 

(iii) If X = -p2 < 0 ,  p > 0, then the equation (7.46) has the general 
solution 

X ( z )  = c1 cospz + c2 sinpz. 
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By the boundary conditions it follows that for a nontivial solution 

c1 = 0 and sin ,8l = 0. 

Then 

= nr, n E 2. 

So the only nontrivial solution of (7.46) appears when 

and has the form n r x  
1 

X n ( x )  = an sin -, n E N .  

The above values An are called eigenvalues and the functions Xn(x )  ezgen- 

Solving (7.47) with X = An , we obtain 
functions. 

Therefore functions of the form 

un(z, t )  = A n , - ( y ) 2 t  sin (y),  EN, (7.48) 

are solutions of the problem ( S D )  . 

Namely, the function 
In order to find a solution of ( M D H )  we take a superposition of un(z, t ) .  

(7.49) 
n=l 

is the solution of ( M D H )  provided that 

00 nnx 
cp(z) = C An sin - O L X < Z .  

1 ’  n=l 

The last identity means that An are the Fourier sine coefficients of cp(x), i.e. 

nnx  
I 

1 

An = f J, p ( x )  sin -dx, n = 1,2 ,  ... . (7.50) 
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So the formal solution of ( M D H )  is the function (7.49) with coefficients 

In order to justify the method we prove 
An determined by (7.50). 

Theorem 7.9. Let cp E C[O, l] ,  cp‘(x) be a piecewise continuous function 
and cp(0) = cp(Z) = 0. Then  the problem ( M D H )  has a unique solution given 
by  (7.49) and (7.50) . 

Proof. Let us note that the function p(z) satisfies the assumptions of 
Theorem 7.6. Taking the Fourier expansions of the odd extension of cp(x) on 
[-l)  11, we have 

nrx 
cp(z) - 2 An sin - O ~ x g )  I ’  

n=l 

and 
00 

o < x < z .  nrx 
cp’(z) - C A; cos - I ’  

n=l 

As in Theorem 7.6, we have 

and the series CrX1 lAnl is convergent because 

IAnl I ; ( (&)2 +A?) 7 

and by Bessel inequality 

00 1 CA? 5 1 cp12(x)dx. 
n=l 

Since 

by the Weierstrass criterion the series (7.49) is uniformly convergent and u(x, t )  
is a continuous function. 

By uniform convergence it follows 

nrx 
U ( Z ,  0) = C A n  sin 7 - - c p ( X ) )  0 5 x 5 1. 

n=l 
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Since the boundary conditions are satisfied let us prove that u ( x , t )  satisfies 
the heat equation. 

Let us fix 0 < 6 < 7'. Suppose 6 5 t 5 T and 0 < x < 1. Formal 
differentiation yields 

n=l 

(7.52) 

(7.53) 

In order to prove convergence of (7.51) observe that there exists no such 
that for n 2 n o  

because 

for n 2 no. 
As the series C,"=, [Ant is convergent, by the Weierstrass criterion and 

Theorem 7.4, we obtain (7.51). Similarly, we obtain (7.52) and (7.53). Com- 
bining (7.51) and (7.53) we get ut = a2u,, in (0, I) x [S, TI, As S and T are 
arbitrary we have ut = a2u,, in (0, I) x ( 0 , ~ ) .  

By the maximum-minimum principle for the diffusion equation it follows 
that the solution obtained is unique. 

7.3.2 Inhomogeneous equation and boundary conditions 

Let us consider now the boundary-value problem for the inhomogeneous diffu- 
sion equation 



234 Partial Differential Equations 

To solve ( M D I )  we apply the method of variation of constants (parame- 
ters) looking for a solution of the form 

Substituting formally u(z,  t )  into the equation 

U t  - a2uz2 = 

we obtain 
00 n r x  

= C fn(t> sin - I ’  
n=l 

where 
00 

n=l U 

Then equating coefficients in (7.54)’ we obtain 

or 

In order to calculate An(0)  observe that 

00 n r x  
u ( x ,  0) = C An(()) sin 7 = P ( X )  

n=l 

and therefore 
n r x  

1 

1 
AJO) = Ju p ( x )  sin -dx. 

Then the solution of ( M D I )  is 

(7.54) 

where 
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1 n r x  an = f 1 cp(x) sin -dx. 
1 

In order to justify the solution we consider the case when f(z, t )  = f ( x ) .  

Theorem 7.10. Suppose p(z) E C[O,Z] and f ( x )  E C[O$], cp'(z) and 
f'( x )  are piecewise continuous functions and 

cp(0) = cp(1) = f(0) = f ( 1 )  = 0. 

Then the problem ( M D I )  has the unique solution 

where 

n7rx 
1 

1 

fn = f(Z)sin-dx, n E N. 

Since the proof is similar to the proof of Theorem 7.9 it is left to the reader 
as an exercise. 

Finally in this section we consider the case of inhomogeneous boundary 
conditions and the method of shzfting the data. Consider the diffusion equation 
with sources at both endpoints 

The last problem can be reduced to a problem ( M D I )  subtracting from u 
any known function satisfying the boundary conditions (BCs) 
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The linear combination 

X 2 
s(x,t) = (1 - p ( t )  + 74(t), 0 I 2 I I 

satisfies the BCs. Consider now 

w ( 2 ,  t )  = u(2, t )  - s (2 ,  t ) .  

Then, as 

the function w(z,t) satisfies the problem ( M D I )  

2 X 

I wt - Q w,, = - (1 - ;) p’ ( t )  - -q ’ ( t )  0 < x < I )  t > 0) 
2 

42,  0) = - (1 - T )  P ( 0 )  - O < a : < l ,  { w(0,t) = 0, w ( I , t )  = 0 t 2 0. 

which has been considered before. 
If we have an inhomogeneous equation and inhomogeneous BCs 

we can split it into two problems 

and 

Solving ( P I )  and (P2) by previous procedures we obtain that u(x,t) = 
w(z, t )  + w(z,  t )  is a solution of ( P ) .  
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Example 7.4. Solve the heat conduction problem for the copper rod of 
length one 

ut - 1 . 1 4 ~ ~ ~  = 0 
u(x, 0 )  = sin2nz + 42 

u ( 0 , t )  = 2, u ( 1 , t )  = 6 t >_ 0. 

O < x < l ,  t > 0 ,  
O l x L 1 ,  

Solution. 
The function s(z) = 2(1 - x) + 6x = 2 + 42, known as a steady state 

solution satisfies 

S t  - 1 . 1 4 ~ ~ ~  = 0, 
~ ( 0 )  = 2, s(1) = 6. 

Then for v ( x , t )  = u(z , t )  - s(z) we have 

vt - 1 . 1 4 ~ ~ ~  = 0 if 0 < x < 1,  t > 0 ,  
o s z s 1 ,  

t 2 0. 
w(x, 0) = sin2rz - 2 
v(0,t) = v ( 1 , t )  = 0 

The last problem has the solution 

where 
1 

cn = 2 J/,  (sin2xx - 2) s i n n m d x  

The solution of the original problem is 

u(2, t )  = 2 + 4x  + sin 2 m  e-4.56r2t 
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7.4 Fourier Method for the Wave Equation 
7.4.1 
Let us consider the Dirichlet boundary value problem (BVP) for the homoge- 
neous wave equation 

Homogeneous equation and boundary conditions 

( utt - c%,, = 0 O < a : < Z ,  t > 0 )  

( u(0,t) = U ( Z ) t )  = 0 t > 0, 

which describes the motion of the vibrating string. 
Our goal is to find the solution of ( M W H )  using the Fourier method. 
A separable solution is a solution of the form 

u(x,t) = X(x)T(t) 

to the problem 

utt - c2u,, = 0 O < z < Z , t > O ,  
(SW)  : { u(0, t )  = u(1, t )  = 0 t 2 0. 

Plugging the form into the wave equation, we get 

X(z)T”(t)  - C2X”(Z)T(t) = 0 

or 
-_-- - A.  
T“(t) - xy2) 
C2T(t) X ( 5 )  

By the boundary conditions 

U ( 0 ) t )  = X(O)T( t )  = 0 )  u(Z,t) = X(Z)T( t )  = 0 

it follows 
X ( 0 )  = X(Z) = 0. 

So X(z) satisfies the problem 

X”(Z) - XX(2)  = 0, 0 < 2 < 1 ,  
X ( 0 )  = X(1)  = 0. (PI : { 

As before the problem ( P )  has nontrivial solutions 

(7.55) 

(7.56) 

nrx 
I ’  X,(z)  = a, sin - 12 = 1,2, ... 
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corresponding to 
2 

x = A, = - (7) , n = 1,2,  ... 

Plugging (7.57) into (7,55), we obtain the ODE 

(7.57) 

nm 2 
TI’@) + (I) T( t )  = 0 

with general solution 

nm nm 
1 1 

Tn(t) = bn cos -t + cn sin -t, n E N. 

Therefore functions of the form 

n E N, nm 
u,(z, t )  = An cos -t + Bn sin ( 1 

known as norrnal modes of vibration, are solutions of the problem (SW). In 
order to find a solution of ( M W H )  we take a superposition of un(x ,  t ) .  Namely, 
we are looking for a solution of the form 

00 

(7.58) nm n n c )  n1rx . 
U ( X ,  t )  = C (An cos -t + Bn sin -t sin - 

1 1 
n=l 

Formally the last function satisfies the initial conditions if 

n= 1 

m 

Using the Fourier-sine series for ~ ( x )  and +(z) we obtain that 

n r x  
1 

1 
An = 1 cp(x) sin -dx, n E N, 

n r x  +(x) sin -dx, n E N. 2 l  
B n Z - 1  nm 1 

In order to justify the formal solution we prove 

(7.59) 

(7.60) 

Theorem 7.11. Suppose cp E C2[0,Z], ’p’”(z) is piecewise continuous 
$ E C1 [0, Z], $,”(x) is piecewise continuous, and 
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cp(0) = Cp”(0) = cp(Z) = cp”(Z) = 0, (7.61) 
Q(0) = +(Z) = 0. 

Then the function (7.58), where the coeficients A n  and B n  are determined 

Proof. As in Theorem 7.9, the main tool to justify differentiation of the 

by (’7.59) and (7.60), is the unique solution of the problem ( M W H ) .  

series (7.58) is Theorem 7.6. We show that (7.58) and the series 

00 

u z z ( x , t )  = -C (y )2  nm n r x  

n=l  
00 nTx 

1 ut t (x ,  t )  = - c ( T) (An cos I t  + B, sin -t sin - n m  2 n m  
I 

n=l  

are uniformly convergent in (0 , l )  x (0, m). 
Since 

n m  n m  nr 2 I (y)’ (An cos T t  + Bn sin -t ) sin * - nyxl I (T) + IBnl) 1 

it suffices to show that the series 

(7.63) 

is convergent. 

(~”’(x) for x E [O,Z] 
Let us take the Fourier sine series of cp(x) and the Fourier cosine series of 

n=l 
u 

Similarly for the Fourier sine series of $(x )  and $”(x) 

(7.64) 

(7.65) 

n=l 
U 
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Integrating by parts (7.59) and (7.60) and using conditions (7.61), we have 

(7.66) 
3 1 3 

An = - (&) A: and B, = ; ($) B:. 

By the Bessel inequality, we obtain 

00 1 
A r 2  5 (p1'12(x)dx 

n=l 

and 

Then the series (7.63) is convergent, because by (7.66) 

By the convergence of the series (7.63) it follows also that the series (7.64) 
and (7.65) are uniformly convergent in [0,1] and the initial conditions 

are satisfied. The uniqueness of the solution follows by the energy method - 
Section 3.2. 
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7.4.2 Inhomogeneous equation and boundary conditions 

Consider now the mixed BVP for the inhomogeneous wave equation 

utt - C 2 U X Z  = f(x, t )  0 < x < I ,  t > 0, 

ut(z,O> = $(XI OLXLZ)  
( M W I )  : u(z,O) = c p ( 4  O<z<Z, { u(0,t) = u(Z,t) = 0 t > 0. 

i W ( 0 , t )  = w ( 1 , t )  = 0 t > 0. 

The solution of ( M W I )  can be constructed by superposing the unique 
solution of ( M W H )  with the unique solution of the problem 

vtt - c2vxz = f(z,t) 0 < z < 1 ,  t > 0 ,  
v(z,O) = 0 o < z g  
vt(z,O) = 0 OLXLZ, ( W I )  : 

The last problem can be solved by reducing it to the Cauchy problem for 
the inhomogeneous wave equation, by odd reflection of f(z, t )  with respect to 
z = 0 and x = 1 .  

Another approach is to expand f(x,t) in the Fourier sine series 

n=l 

where 

Let us try to find a solution w(x,t) of the form 

n=l 

where 
vn(0) = vI(0) = 0. 

Formally, substituting (7.68) into the wave equation, we get 

(7.67) 

(7.68) 

(7.69) 

The last linear second-order ODE with initial conditions (7.69) has the 
unique solution 

w n ( t )  = f fn (r )  sin (y(t - T ) )  d r .  n m  
(7.70) 
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The solution of (WI)  is (7.68), where fn(t) and vn(t) are determined by 

Let us consider finally the case of inhomogeneous boundary conditions 
(7.67) and (7.70). 

The solution of the last problem can be found by superposing the solution 
of the problem ( M W I )  with the solution W of the problem with zero initial 
data and source 

wtt - c2w,, = 0 
w(x,O) = 0 o < x g ,  
wt(x,O) = 0 O < X < Z ,  

w(0, t )  = &)) w(Z, t )  = h(t)  

O < S < Z )  t > 0 )  

t > 0. 

(WB)  : 

In order to solve the last problem, we use the method of shifting the data. 
Namely, considering 

W ( x ,  t )  = lw(x,  t )  - ((I - x)g( t )  + xh( t ) )  

we reduce (WB) again to a problem of the type ( M W I )  : 

wtt - c2wx, = -((Z - x)g”(t)  + xh”(t)) 0 < x < 1, t > 0, 
W ( x ,  0) = -((Z - x)g(O) + xh(0)) o < x < z ,  
Wt(2,O) = - ( (1  - x)g’(O) + X h ’ ( 0 ) )  O L x L Z ,  

t > 0. { W(0, t )  = W(Z, t )  = 0 

7.5 Fourier Method for the Laplace Equation 

7.5.1 BVPs for the Laplace equation in a rectangle 

We consider now the Laplace equation 

uxx + uyy = 0 in D ,  (7.71) 

where D = { (2, y) : 0 < z < a ,  0 < y < b}  is a rectangle in a plane. On each 
side of D we assume that either Dirichlet or Neumann boundary conditions 
are prescribed. These problems can be solved by the method of separation of 
variables. 
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Example 7.5. Solve (’7.71) with the boundary conditions 

Solution. The solution of the problem has a form u = u1 + u2, where u1 
and u2 satisfy (7.71) respectively with the boundary conditions 

u1 (q0) = u1 ( q b )  = 0 O < x L a ,  

and 

We find each one of u1 and u2 by the Fourier method. Separating variables 
for u1 (z, y) = X (x) Y (y) we have 

This implies that 

X ” ( 2 )  + X X ( x )  = 0, 0 < x < a ,  (7.72) 

Y ” ( y )  - AY(y) = 0, 0 < y < b, (7.73) 

for a constant A. Since the function u1 satisfies (BC1) we should have 

Y(0) = Y(b) = 0 

X’(a) = 0. 

Nontrivial solutions of (7.73), (7.74) are 

(7.74) 

(7.75) 

nTY Yn(y) = sin- b 
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corresponding to 

2 X=X,=-(y), n E N .  

The differential equation for X ( x )  

2 
X”(X)  - (Y) X ( x )  = 0 

implies that 
n r x  n r x  X ( x )  = C1 cosh - + C2 sinh - 

b b 
The condition (7.75) is satisfied if 

c2 n r a  - = - tanh -. 
C1 b 

Then X ( z )  has the form 

n r x  n r a  
b b 

X n ( x )  = U, (cosh - - tanh - sinh 

We are looking for a solution u1 of the form 

00 

n.rry (7.76) tanh - sinh - n.rrx) sin 7. n r x  n r a  
b b 

u ~ ( x ,  9 )  = Can (cash 7 - 
n=l 

It satisfies the boundary condition 

when 

which implies that 

(7.77) 

Suppose now u 2 ( z , y )  = X ( s ) Y ( y )  satisfies (7.71) and (BC2). As before, 
we have the equations (7.72) and (7.73) for X ( x )  and Y ( y )  with the boundary 
conditions 

Y ( 0 )  = Y(b) = 0 

and 
X ( 0 )  = 0. 
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Then 

corresponding to 

For X (2)  

nrY Yn(y)  = sin - 
b 

2 
X ” ( x )  - (Y )  X ( x )  = 0 ,  

X ( 0 )  = 0,  

which implies 
n r x  

X n  ( Z )  = bn sinh - 
b ’  

n E N  

Looking for u2(x,  y) in the form 

00 n r x  n r y  u ~ ( x ,  y )  = C bn sinh - sin - 
b b n=l 

the condition 
U2x(a,Y) = q Y ) ,  

should be satisfied, which yields 

(7.78) 

Finally the solution is 

‘ L L ( X , Y )  = 2 L 1 ( X , Y )  + U Z ( X , Y ) ,  

where an and bn are determined by (7.77) and (7.78). 

7.5.2 

Let us consider the problem 

Dirichlet problem for Laplace equation in a disk 

u,, + uyy = O in x2  + y 2  < 2, 

In polar coordinates the problem reduces to 

1 1 
upp + -up + --t/,Oe = 0 if 0 5 p < a ,  

P P2 
(7.79) 
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with boundary condition 

where u(p,  8 )  = u ( p  cos 8,  psin 8) and h(8) = g ( a  cos 8, a sin 8 )  . The separation 
of variables means seeking a solution of the form u ( p ,  8)  = R ( p ) 0 ( 8 ) .  Plugging 
into equation (7.79) we find that 

1 1 R"O + -R'@ + -R@" = 0. 
P P2 

Dividing by RO # 0 and multiplying by p2 , we obtain 

0'' + XO = 0 (7.81) 

and 
p2R" + pR' - XR = 0 (7.82) 

for some constant A. For the function O(8) it is natural to require the periodic 
boundary condition 

o(e) = o(e + 2 4 .  (7.83) 

Then (7.81) and (7.83) imply that X = n2 and 

0, (8) = an cos n8 + bn sin n8 

is the corresponding solution. Note that if X = 0, 

is a nontrivial solution of (7.81). 

change of variables p = et it reduces to 
If X = n2, n E N , then the equation (7.82) is an Euler equation. Making 

with general solution 
Rn(t) = cnent + dneVnt. 

Then 
1 

Pn 
and we have a separable solution of the form 

R n ( p )  = &pn + dn- ,  n E N 



248 Partial Differential Equations 

If X = 0 the equation (7.82) reduces to 

pR" + R' = 0 

with general solution 
Ro(P) = co + do In p. 

So we have a separable solution 

for some constants a0 and bo. 
The functions un and uo are harmonic in D. At p = 0 some of these 

solutions are infinite if dn # 0 and bo # 0. We reject these terms in order to 
have bounded solutions. We are looking for a solution of the form 

00 

u(p,  8) = + C pn(An cosn8 + Bn sinno), 

which satisfies the boundary condition if 
00 

h(8) = - A0 + C Un(An cosne + Bn sinno). 
2 n=l 

By the Fourier expansion of h(8) we observe 

h ( ~ )  cos nTdT, n E N U {0}, 

and 

h(r)  sinnrdr, n E N. 

(7.84) 

(7.85) 

(7.86) 

The solution of the problem (7.79), (7.80) is the series (7.84) with coefficients 
(7.85) and (7.86). It is surprising that this series is summable explicitly and 
the result coinsides with the Poisson integral formula for the Dirichlet problem 
in a disk. 

Proposition 7.1. Let r E [O, 1). Then 
00 r sin t 

1 - 2 r c o s t + r 2 '  s : = C r n s i n n t  = 
n=l 
00 rcost  - r 2  

1 - %cost + r2' 
c : = x r n c o s n t =  

n=l 
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Proof. Consider the partial sums Cn = C;:: rk cos kt and Sn = rk  sin kt. 
By the Euler formula we have 

n-1 

Cn + isn = C rk (COS kt + i sin kt) 
k=l 
n-1 

= Crkeikt 

(1 - rneint) (1 - r e v i t )  
2 - 1  (1 - r cost)' + ( r  sint) 

- - 

1 
1 - 2 r c o s t + r 2  (An +iBn) - 1, - - 

where 

An = 

Bn = 

1 - r cost - rn cosnt + rn+l C O S ( ~  - I ) t ,  

r sint - rn sinnt + rn+l sin(n - 1)t. 

Then 

An 
Cn = - 1, 1 - 2rcost + r 2  

We have rn -+ 0 as n + 00 because 0 < r < 1 and 
1 - rcost  

1 - %cost + r2 
C = lim Cn = -1  

7 2 - 0 0  

rcost - r 2  

1 - %cost + r2' 
- - .. r sin t S = lim Sn = 

12-00 1 -2 rcos t+ r2  

Theorem 
periodic. Then 

7.12. 
the sum of the series 

Suppose that the function h(0) is continuous and 2n- 

A0 
~ ( p ,  0) = 5 + pn(An c o s d  + Bn sinn0) 

n=l 
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with coeficients (7.85) and (7.86) is 

(7.87) 

By Proposition 7.1 as 5 < 1 we have 

1 - +  2 
a2 - p2 

2 (a2 - 2 u p ~ ~ ~ ( e  - T )  + p2) 

apcos(8 - T )  - p2 
a2 - 2 ~ p  cos(8 - r )  + p2 

- - .. - - 

Exercises 
1. Solve the heat conduction problems for an aluminium bar of length 2 

Ut - 0 . 8 6 ~ ~ ~  = 0,  0 < x < 2, t > 0 

with initial and boundary conditions as follows: 

u (x, 0) = sin -, 7TX 
(4 

2 
u(0,t)  = u (2,t) = 0. 

u (z, 0) = 10 cos 2, 
u (0, t )  = u (2,  t )  = 0. 

(b) 

Proof. We have
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0 O < z < l ,  
40 l < z L 2 ,  u (z) 0 )  = 

u ( 0 )  t).= u (2) t )  = O# 

20x O < X < l ,  { 2 0 ( 2 - z )  1 < z  5 2 )  u (X) 0 )  = 

u,: (0)  t )  = u, (2) t )  = 0. 

2. Solve the BVPs for the diffusion equation: 
(4 

U t  - ku,, = 0 
u (Z) 0 )  = To 

0 < x < 1 ) t  > 0 )  
O < z < l ,  

u ( 0 , t )  =TI)  U ( 1 ) t )  = T2 t > 0. 

U t  -u ,x  + 2 u =  0 

u (0)  t )  = u (1 ,  t )  = 0 

0 < 2 < 1, t  > 0) 

{ 
u(z,O) = cosz O < z < l ,  

t > 0. 

3. Solve the following mixed problems for the wave equation 

utt -u ,x  = 0 )  0 < 2 < 3 ) t  > 0 : 

T X  
(4 

u (z) 0) = 1 - cos - O < z < 3 ,  3 
U t  (z,O) = 0 0 5 ~ 5 3 ,  

u ( 0 , t )  = U ( 3 ) t )  = 0 t > 0. 

u (x, 0 )  = 0 
U t  (z, 0 )  = 1 

0 5 ~ 5 3 ,  
0 5 ~ 1 3 ,  

t > 0. u, (0, t )  = u, (3, t )  = 0 

o L z < l )  
1 5 x 5 2 ,  

U t  ( 2 , O )  = 0 0 5 ~ 5 3 ,  

u (z) 0 )  = { :  
6 -  22 2 5 x 5 3, 

t > 0. u ( 0 , t )  = u ( 3 , t )  = 0 

(c)

(d)
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u(x ,O)  = xcos7l-x 

u(0 , t )  = U ( 1 ) t )  = 0 

0 < x < 1, 
U t  ( 2 , O )  = 1 o < x g ,  

t > 0. 

4. Prove Theorem 7.10. 

5. Solve the following mixed problems for the inhomogeneous wave equa- 
tions: 

(4 
utt - 4uxx = sin3x 0 < x < T )  t > 0, 
U ( Z ) O )  = 0 O < Z < T )  

ut(x,O) = cosx OLx<.;rr ,  
u(0,t) = U ( 7 r ) t )  = 0 t > 0) 

utt - 4u,, = 2 sin x 
u(x,O) = 0 o < x g ,  
ut(x,O) = 0 O < Z < l )  

u(0,t) = 1) u(1,t) = 1) t > 0. 

O < x < l ,  t > 0 ,  

6. Solve the mixed problem 

U t t  - c2ux, + au = 0 0 < x < I, t > 0, 
u(x,O) = ( P ( 4  O < z < l ,  
U t ( Z ) O )  = 0 O < x < Z ,  { U ( 0 ) t )  = U ( Z ) t )  = 0 t > 0, 

where a is a constant. 

7. Solve the mixed problem for the wave equation 

2 utt - c u,, = Asinwt, 0 < x < Z,t > 0, 

with zero initial and boundary conditions. For which w does the resonance 
(growth in time) occur ? 

8. Solve the boundary value problems for the Laplace equation in the 
square K = {(x,~) : O < x < T , O  < y < T }  : 

(a) uy (2, 0) = uy (q T )  = ux (0, y) = 0, ux (r, 9) = cos3y, 
(b) u(0,y)  = uy (x,O) +u(x ,O)  = u, (n ,y )  = 0, u(x,.;rr) =s in%.  
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9. (a) Using Euler's formula prove the identities: 

(b) Solve the Dirichlet problem 

u,, + uyy = O 
u(xc,y)  = x4 - y3 

in x2 + y2 < 1, 
on x2 +y2 = 1. 

10. Let Un(z,y) be the solution of the problem 

u,, +uyy  = O 
u (x) y) = yn 

in x 2  +y2 < 1, 
on cc2 + y2 = 1. 

Prove that: 
(4 
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Plot the graphs of the functions U1(x, y), U3(x, y) and u5(x, 3) using Math- 
ematica. 

00 

( c )  The series 

(d) The series C U2, (z,y) is divergent for x2 + y2  < 1,while the series 

& (2,") is divergent. 
m=l 

00 

m=l 
00 

C qmUzm+l (x, y) is convergent for o 5 q < I, x2 + y2 < 1. 
m=l 



Chapter 8 

Diffusion and Wave 
Equations in Higher 
Dimensions 

8.1 Diffusion Equation in Three Dimensional 
Space 

Let us consider the Cauchy problem for the diffusion equation in R3 

where P = (x, y,  z )  E R3 and #(P) is a given function. 
At first observe 

Proposition 8.1. Suppose u1 (x, t ) ,  u2(y, t )  and u3(z, t )  are solutions of 
the one-dimensional dinusion equation ut - kuSs = 0,  where s E {x, y, z ) .  Then 
u(x ,y ,z , t )  = ~1(x,t)u2(y,t)u3(z,t) is  a solution of ut - kAu = 0 in R3. 

Proof. We have 

255 
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The function 

Partial Differential Equations 

X 2  

G ( x , ~ )  = - e-4lct 
2 m  

is a fundamental solution of the diffusion equation ut - ku,, = 0. 
By Proposition 8.1 the function 

is a solution of 

U t  - ~ A u  = 0 ,  P E R3, t > 0. (8.1) 

G3 (P,  t )  is again called the Green's function or fundamental solution of 

Observe that 
(8.1). 

P o 0  P o 0  

We consider the case when the initial data $ ( P )  is a function with separable 
variables 

4(P> = cp(4lCl(y)W* (8.3) 

Proposition 8.2. Suppose that $ ( P )  is a function with separable vari- 
ables (8.3)) where cp, $ and 0 are bounded and continuous functions. 

Then 

u(Pj  t )  = S,, G 3 P  - Q ,  tM(Q>dQ, 
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with Q = (t, q ,  s> E R3 is a solution of (CD3). 

Proof. Separating integration we have 

By Theorem 4.7 and Proposition 8.1 it follows that 

ut - kAu = 0 for ( P , t )  E R3 x ( 0 , ~ )  

and 

By linearity Proposition 8.2 can be extended for any initial data which is 
a finite linear combination of functions with separable variables of the form 

n 

($71 (p) = c k q k  (z ) '$k  b ) O k  ( 2 )  (8.5) 
k = l  

Let us show that any continuous and bounded function on R3 can be 
uniformly approximated by functions of type (8.5) on bounded domains. Recall 
Bernstein's' polynomial for a bounded function on the interval [0,1] , given 
by 

B,(z) = 2 (;)f (!) z"1 - z y k .  
k=O 

Theorem 8.1. (Bernstein). Let f(z) E C[O, 11. Then  Bn(z) -+ f(z) 
unzformly for J: E [ O , 1 ]  as n + +w. 

'Sergej Natanovich Bernstein, 06.03.1880-26.10.1968. 
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Proposition 8.3. Let $(P)  E C ([0, lI3) , [q5(P)[ 5 M and E > 0. 
There exists a function with separable variables &(P)  E C ( [ O , l l 3 )  , such that 
I4n(P)I I M and 

Proof. Let E > 0. By Theorem 8.1 there exists n such that 

& < -  2 '  

for ( x ,  y,  z )  E [O, iI3. 
By the same way there exists n k  such that 

for (y, z )  E [0, 112. 
Let 

$ n ( x , y , z ) = e g  (L)(2)$(b,m,z)x'( l-z)n-"ym(l-y)" 'm. n n k  

k=O m=O 

We have that 4n(x ,  y, z )  E C ([0, lI3) is a function with separable variables 
and 

& 

k=O 
& &  

= - + - = & .  
2 2  

By the construction of ~ $ ~ ( x ,  y, z )  we have I&(x, y, z)I 5 M .  
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x + R  y f R  z + R  - - - Let R > 0. By rescaling the variables (z, y ,  z )  I---+ ( 2R ' 2R ' 2R 
we can prove that every function $(z, y ,  z )  E C ( [ - R , ' q 3 )  can be uniformly 
approximated by a function &(z, y, z )  E C ( [ - I ? ,  RI3) with separable vari- 
ables. 

Theorem 8.2. Suppose 4(P)  E C(R3) n L"(R3). 
Then the function 

is a solution of the diffusion equation (8.1) on R3 and 

lim u(P,t)  = +(P) 
t l0  

uniformly on bounded sets of R3. 

Proof. By Proposition 8.2 it follows that u(P, t )  satisfies (8.1). Let us show 
that (8.6) holds. Suppose E > 0 and B c R3 is a bounded set. Making the 
change of variables Q = P - 2&P' we have 

e-IP'I2$(P - 2&P')dP', 
1 u(P,t)  = - (8.7) 

where P' = (p,q,r)  E R3. Let I+(P)I 5 M, P E R3 and denote 

KR = [-R, RI3, k~ = R 3 \ K ~ .  

There exist R > 0 and & ( P )  E C ([ - R, R] ') with separable variables such 
that: 

1 I 2  & e-IP I dP' < - and B c [-R, RI3, 
8M 

I$(P) - &(P)I < if P E [-R,RI3. (8.9) 

By continuity of $(P)  there exists 6 > 0 such that if t E (0,6) , then 

max l$(P - Zap') - $(P)l < 4 & for P E KR. (8.10) 
P'EKR 

Finally for P E B c KR and t E (0,6), by (8.8), (8.9) and (8.10), we have 
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& & & &  < 2 M . - + - + - + - = E ,  
8 M 4 4 4  

which completes the proof. W 

The same arguments hold as well for the diffusion equation in higher space 
dimensions. The fundamental solution for the diffusion equation in R" is given 
by 

PI2 -- 
4kt  , 1 

2nJ(nk t )ne  G"(P, t )  = 

where P = ( X I ,  .,., xn) and /PI = /-. Following previous steps one 
can prove that the solution of the Cauchy problem 

U t  - kAu = 0, (P , t )  E R" x (0, OO), 

u(P,O) = 4(P)  P E R" 

is given by 

UP, t )  = S,. Gn(P - Q ,  t)4(Q)dQ 
The solution of the inhomogeneous problem 

~t - kAu = f ( P ,  t )  (P,  t )  E R" x (O,OO), 
u(P,O) = 0 P E R", 

is given by 

The maximum principle holds in higher dimensions as well. Let R c R" be a 
domain 

RT = R x (O,T), It = aRT\{(P,t) : P E R , t  = T } .  
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Suppose that u E C2(S2,) n C ( f i ~ )  is a solution of the diffusion equation 
ut = kAu in S2,. Then 

max U 
nT 

max u, n 
minu = min u. 
nT n 

Exercises 
1. Find solutions of the problems 
(4 

(b) 

ut - Au = 0 in R3 x ( O , o o ) ,  { u(2, y, z ,  0 )  = z2yz 

ut - Au = 0 in R3 x ( O , o o ) ,  
u(z,  y, z ,  0) = z2yz - zyz? 

2. The function T,(x) = a0 + ct=l ( u k  cos kx  + bk sin kz) is called a 
trigonometric polynomial of n-th order if u i  + b i  # 0. T,(z) is even if bl = 
bz = ... = b, = 0. Prove that: 

( a )  The function cosk x can be represented as an even trigonometric poly- 
nomial of k-th order. 

(b) If f(z) E C[O,r] and E > 0 , then there exists an even trigonometric 
polynomial T,(z) such that for every z E [0, 7r] 

3. Using the reflection method find a formula for the solution of the BVP 
for the diffusion equation in half-plane. 

ut - kAu = 0 in {(z,y,t) : z > 0,y E R, t  > 0). 
u(O,y,t) = 0 ( y , t )  E R x R+, 
u ( w , O )  = +,!I) ( X > Y )  E (0,oo) x R. 

4. Find a formula for the solution of the BVP for the diffusion equation 
in half-space 

ut - kAu = 0 in { ( z , y , z , t )  : (z,y) E R2,z > 0 , t  > 0)) 
% ( w , O , t )  = 0 ( X , Y )  E R2, 
4 x 7  Y, r ,  0) = d h  3 ,  4 (z, Y, 4 E R2 x ( 0 7 4 .  
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8.2 Fourier Method for the Diffusion Equation 
in Higher Dimensions 

In this Section we shall apply the Fourier method to the diffusion equation 

ut = kAu 

in R x (0,00), where R c R2 is a bounded domain with standard initial and 
boundary conditions on do. Such BVPs are as follows: 

ut = kAu in R x (O,oo), 

(8.11) 

u(2, y, t )  = 0 on dR x [O, 00) 

or 

dU -(x, y, t )  = O on 8 R  x [O, 00) 
dn 

or 

dU 
- ( ~ ~ t ) + a u ( ~ ~ , t )  d n  = O o n d R x  [o,oo). 

Separating variables 

u(z,y,t) = @(Z,Y)T(t)  

and substituting into (8.11) we see that @ and T must satisfy 

where X is constant. This leads to the eigenvalue problem for the Laplacian 

-A@==@ i n R  

with boundary condition 

@ = O  ondR 

or 

(8.12) 
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- = 0  ondR 
d n  (8.13) 

or 

dQ> 
-+aQ>=O dn o n d o .  (8.14) 

It can be shown that for each one of the boundary conditions (8.12)-(8.14) 
there is an infinite sequence of eigenvalues 

and an infinite set of orthogonal eigenfunctions which is complete. Denote by 
<pn the eigenfunction corresponding to A n  with the understanding that not all 
of An are distinct. Solving the ODE fof T( t )  

we find 
~ ( t )  = ane-kXnt. 

We are looking for a solution of the form 

(8.15) 

which satisfies the initial condition if 

n=l 

By the orthogonality of (Qn) it follows that 

(8.16) 

If we suppose 4(x,y) E L2(R) it can be shown that the series (8.15) is 
convergent for t > 0 and u(x, y, t )  -+ 4 ( x ,  y) as t 4 0  in the mean-square sense 
in R. 

As an example, consider the heat transfer problem on a circular plate 

JJa @(z, Y ) Q n ( Z ,  ~ ) d z d y  
JJ* @?&, Y)dZdY * 

An = 
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Using polar coordinates for u(P, t )  = u( d m ,  t )  = u(p,  t ) ,  we have 

Separating variables 

we have 

As before 
T ( t )  = C k e - ( a A ) 2 t  

while U(p) satisfies the Bessel equation 

1 

P 
U y p )  + -U/(p)  + X2U(p) = 0. 

The first solution of (8.17) is the Bessel function of zerot,,-orc 

U(P> = JO(XP) 

(8.17) 

ler 

(8.18) 

while a second linearly independent solution of (8.17) is Yo (Xp), which we do 
not take into account because it is infinite at zero. 

The boundary condition U l p = ~  = 0 is satisfied if 

Jo(XR) = 0. (8.19) 

Then the eigenvalues of the problem (8.17), (8.19) are 

where /-& 4 +oo as k 4 oo are the zeros of the Bessel function J,-J(z). 
We are looking for a solution of the form 

(8.20) 
k = l  

which satisfies the initial condition if 
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For r = 5 E [0,1] we have 

k=l 

By the properties of the Bessel function, Subsection 7.2.1, it follows 

c k  = - (8.21) 

The solution of the problem is (8.20) with coefficients given by (8.21). 

Example 8.1. Solve the problem 

Solution. In polar coordinates the problem is 

The solution is 

where 

By the orthogonality of { f i J o ( f L k r ) }  it follows 
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The solution is 

u(p, t )  = e-P%7o(plp) + e-pgtJo(pzp), 

where p1 = 2.4 and p2 = 5.52. The surface 

( P c o s ~ , P s i n w P , t ) )  > (P,O) E [O, 11 x [0,2.lr] 

is plotted in Figure 8.1 at the instants t = 0, 0.1, 0.4 using the Mathematzca 
program 

Clear [a, b ,x, y, u] 
a=2.4 
b=5.52 
x[r-,v-]:=rCos[v] 
y [ [r-,v-] :=r Sin[v] 
u [r -,v-, t -1 : =Exp [- a" 2 t] BesselJ [ 0, a r] +Exp [-b " 2 t] Bessel J [ 0, b r] 
hO=ParametricPlot3D[Evaluate[x[r,v] ,y [r ,v] ,u[r,v,O]] , 
{ r , O , l  } , { v,O,2Pi}, Shading-> False,PlotRange-> { -1,2}] 
h 1 = Paramet r icP lo t 3D [Evaluate [x [r ,v] , y [ r ,v] , u [r ,v, 0.11 ] , 
{ r ,O ,1} , { v ,O ,2Pi}, Shading- > False,PlotRange- > { - 1 , 1 }] 
h2=ParametricPlot3D[Evaluate[x[r ,v] , y [r,v] ,u[r,v,0.4]], 
{ r ,O ,1} , { v ,O ,2Pi}, Shading-> False,PlotRange- > { - 1 , 1 }] 
Show [GraphicsArray [ { hO ,hl , h2}], 
Frame- >True,l?r ameTicks- >None] 

0. 

-0 

1 V.2 

Figure 8.1. Temperature u(p , t )  at the instants t = 0, 0.1, 0.4 
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Finally in this Section we consider the problem with the Neumann condi- 
t ion 

ut = a2Au 

Using polar coordinates for u(P, t )  = u(p, t ) ,  we have 

Separating variables 

for U ( p )  we find 

Then 

U(p) = Jo(Xp) and U‘(R) = 0. 

JA(XR) = -Jl(XR) = 0 

and the eigenvalues are 

where vk  are the zeros of the Bessel function 

by 

we find 

0, 

0. 

51. Looking for a solution of the 

k = l  

where 

(8.22) 
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Working as in Lemma 7.2, we have 

Therefore the solution of the problem is (8.22), where 

n r l  

Exercises 

1. Solve the problem 

u t = u p p + ; u p  o s p < 1 ,  t > 0 ,  
u(p,O) = 1 - p2 0 p < 1, { u(1,t) = 0 t 2 0. 

The solution is 

Show that 

2. Solve the problem 
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8.3 Kirchoff’s Formula for the Wave Equation. 
Huygens’ Principle 

8.3.1 Kirchoff’s formula. Spherical means. 

The linear wave equation in R3 is 

U t t  - c2Au = 0, (8.23) 

where u = u(P, t )  and P = (2, y, 2) E R3. We are looking for the solution of 
(8.23) with initial conditions 

(8.24) 

as in the D’Alembert formula. Assume that ( P )  E C3 (R3) and 2c, ( P )  E 
C2 (R3) . Then there exists a unique solution to the problem (8.23), (8.24) 
given by the formula 

which is due to Poisson but known as Kirchofl’s formula2 To derive it we 
shall use the so called spherical means introduced by Poisson. Let us denote 

to be the mean value of u(P, t )  over the sphere S,(P) = { Q  : IQ - PI = T }  

with center P and radius T .  Some properties of G(P, T ,  t )  are as follows: 
lo. 

G(P, r ,  t )  = 1’ u ( r ,  8, cp, t )  sin cpdcpde, (8.26) 4n 
where 

2O. If u(P, t )  is a continuous function, then 

lim fi(P, r ,  t )  = G(P, 0 ,  t )  = u (P,  t )  
r-+o 

2Gustav Robert Kirchoff, 12.03.1824-17.10.1887. 
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3'. If u(P) t )  is differentiable in t ) then 

(8.27) 
d 
at - q P )  r ,  t )  = K(P) T )  t) .  

4'. If u(P, t )  is twice differentiable in (x, y, z )  ) then 

5'. If u(P,t)  E C" (R4) ) rn E N , then P +--+ i l (P)r , t )  E C" (R4) . 

Proof of 4'. Let us change to spherical coordinates for Q(<, q, C )  

{ = z+rcosgsincp 

q = y+rsingsincp 

c = z+rcoscp, 

where 8 E [ 0 , 2 ~ ]  and cp E [ O , T )  . From 

1 1  
(sin quV) + - - uee ) 

2 1 1 8  
Au(P, t )  = u,r + -u, + -7- 

r r2 sin cp dcp r2 sin2 cp 

(8.26)) the F'ubini theorem and the periodicity of u(r, 9, cp) t )  with respect to 9, 
we have 

Proposition 8.4. Let 4( r )  E C3(0,00) and ~ ( r )  E C2(0,rx). The 
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Proof. Introducing W ( T ,  t )  = rw(r, t )  for T 2 0 we easily find that 

W t t  - c2w1-r = 0, ( r , t )  E ( 0 , ~ )  x (0, w), 
w(r ,  0) = .$(.), r E ( O , . O ) ,  
wt (q  0 )  = rW(r), T E (0, oo) 

w(0, t )  = 0, t E ( O , . O ) .  

This problem for the wave equation on the half-line has a solution 
i 

, if r > ct, 

if 0 5 r 5 ct. 

In order to find . (Opt) observe that 

where sr E [ct - r , c t  + r ] ,  sr + ct as r + 0. 
Then 

2c d 2ct 
2c dt 

- - -- (t$(ct))  + %U(Ct)  

d 
d t  

= - (t+(ct))  + tw(ct) .  



272 Partial Differ en t ial Eq u a tions 

Derivation of Kirchoff's formula 
Applying the mean-sphere operator to (8.23), (8.24) by properties 1" - 5" 

for w(r, t )  = E(P, r )  t ) ,  we have 

Then by Proposition 8.4. and 2' we obtain 

U ( P )  t )  = E ( P ,  0 ,  t )  = w(0, t )  
d 
at 

= - (@(P, c t ) )  + t q P )  C t )  

which is Kirchoff's formula. 
In the case of the oncdimensional wave equation the solution given by 

D'Alembert formula is as regular as the initial data. However, in the three- 
dimensinal case, because of the t -derivative in the Kirchoff's formula, the 
solution is less regular than the data 4 and $. In general if 

4 E Cm+' (R3) and $ E C" (R3) m 2 2, 

then u E C" (R3 x R+) . If q5 and $ are of class C2 (R3) then the second 
derivatives of u might blow up at some point even though the second derivatives 
of 4 and $ are bounded. This is known as the focusing effect. 

8.3.2 Wave equation on R2. Met hod of descent. Huygens' 
principle. 

We can derive the solution formula for the wave equation on R2 x R+ 

U t t  - c 2 A u  = 0 ,  P E R2, t > 0, 
u(P,O) = q5(P), 
u~(P,O) = $(P) ,  

P E R2, 
P E R2. 

(CW2) 
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Assume that 4 E C3 (R2) and $J C2 (R2) .Let us transform the integral 

where = (P,O) = (z,y,O) E R2 x (0) and = (Q,C) = ( c ,q , ( )  E R3. We 
have 

where 

are the upper and lower hemisphere. For both hemispheres 

and 

In order to solve (CW2) we can consider it as a problem in R2 x (0) c R3. 
By Kirchoff's formula 

where 
solution of (CW2) is 

= (x,y,O) and = ( Q , c )  = (<,q ,c ) .  By previous calculation the 
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which is Kirchoff's formula for the wave equation on R2. 
As an application of Kirchoff's formula we consider the so called Huygens' 

princzpZe3. According to it, in the three dimensional space , the values of $ 
and q at the point PO E R3 influence the solution on the sphere IP - Pol = ct 
only. 

Suppose for simplicity $ = 0, @ has a compact support K = { P  : +(P) # 0) 
and II, > 0 in the interior of K .  Denote for P 4 K 

z(P, K )  = min{ IP - &I : Q E K } ,  
~ " ( P , K )  = max{lP - QI : Q E K ) ,  

which exist because the function g(Q) = ) P  - QI is continuous on K ,  a compact 
set. Kirchoff 's formula 

implies 
U ( P ,  t )  = o if ct < d ( ~ ,  K )  or ct > d " ( ~ ,  K ) ,  

because the sphere JP - &I = ct does not intersect K for these values of t. If 
u(P, t )  is a sound produced on K ,  with @(P, t )  as an initial speed, it is heard 

at the point P 4 K from the instant - z(P' K ,  until -. This means that 

time and moves with speed the sound passes through P for 

Let us introduce the forward and backward wave fronts at the instant t o  

z (P  K )  
C C 

J(P, K )  - Z(P, K )  
C 

C. 

as 

u(P,t)  # O if t E ( t o , t o  +S). 
u(P,t)  = 0 if t < t o  

and 

u(P, t )  # 0 if t E ( t o  - 6, t o ) .  
u(P, t )  = 0 if t > t o  

In the case under consideration $ = 0 and $ I K  2 0 implies 

and 
{ P  : d"(P,K) = cto} c @ ( t o ) ,  

3Christian Huygens, 14.04.1629 - 08.07.1695. 
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so w(t0) and @(to) are non empty sets. Namely, this is the Huygens’prin- 
czple. It does not hold in R2 where *( to )  = 0. This means that there exists 
{ t j }  , 

For instance, in the case 4 = 0 and $J I K  2 0 in R2 by Kirchoff’s formula 
t j  --+ 00 such that u(tj)  # 0. 

it follows that u(P, t )  > 0 if t > - ’(p:K) because the disk I& - PI 5 ct 

4p, K )  intersects K for t E 

The sound produced on K will be heard infinitely. This means that Huygens’ 

and contains K for t > -. 
C C 

principle does not occur in R2. 

We are lucky to live in a three dimensional space because we are able to 
hear every sound for a finite interval of time. This phenomenon does not occur 
in the two dimensional world (Flatland) where sounds are heard forever. 

Exercises 
1. Verify that Kirchoff’s formula gives the solution of the problem (8.23), 

(8.24) in the case 4 = 0. Namely, for $ E C2(R3) show that 

= c2Au. 
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8.4 Fourier Method for the Wave Equation on 
the Plane. Nodal Sets 

In this section we shall apply the Fourier method to the wave equation 

utt = c2Au (8.29) 

in 0 x ( O , o o ) ,  where R c R2 is a bounded domain with standard initial End 
boundary conditions on dR as follows: 

U ( Z , Y , O )  = $(.,Id, (Z)Y> E f4 (8.30) 
Ut(z,Y,O) = $J(Z,Y), b , Y )  E 0, 

or 

or 

u(z ,  y, t )  = 0 on dR x [0, 00) 

d U  
- ( z , y , t )  = O on dR x [ O , o o )  
dn 

d U  
- ( z , y , t )  + au(z,y, t)  = O on dR x [O,oo). 
an 

(8.31) 

(8.32) 

(8.33) 

Separating variables 

u(z,  Y, t> = @(x, 3 ) W  

and substituting into (8.29) we see that @ and T must satisfy 

where X is constant. This leads to the eigenvalue problem for the Laplacian 

with boundary condition 

A @ = A @  i n n  

< p = O  ondR 

(8.34) 

(8.35) 

or a@ 
- = 0  o n d a  
dn 

(8.36) 
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or 
(8.37) 

Denote again by @n the eigenfunction corresponding to A, with the un- 
derstanding that not all of An are distinct. Solving the ODE for T(t)  

we find 

T( t )  = An cos c a t  + Bn sin c a t .  

We are looking for a solution of the form 

which satisfies the initial conditions if 

n=l 

By the orthogonality of (an) it follows 

(8.39) 

Example 8.2. Determine the radial vibrations u ( d m - ,  t )  = u ( p ,  t )  
of the circular drum D = { ( x ,  y )  : x2 + y 2  5 1) satisfying the problem 
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Solution. In polar coordinates the problem is 

Separating variables as in Section 8.2, we find the solution 

where 

n r1 

In our case 

By the orthogonality of { f i J O ( P k f ) }  it follows 

1 if k =  1 ,2 ,  
ak= { 0 i f k > 3 .  

The solution is 

where = 2.4 and p 2  = 5.52. The surface 
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Dt : (P  cos 0, P sin 0, .(P, t>) , (P ,  0) E [O, 11 x [O, 2x1 

is plotted in Figure 8.2 at the instants t = 0, x/p2, x /p l  using the Mathe- 
rnatica program 

Clear[a,b,x, y,u] 
a=2.4 
b=5.52 
x[r-,v-] : =rCos [v] 
y[ [r-,v-]:=r Sin[v] 
u[r-,v-,t-]:=Cos[a t] BesselJ[O,a r]+Cos[b t] BesselJ[O,b r] 
hO = P ar ame t r icP lo t 3 D [Evaluate [ x [ r ,v] , y [ r ,v] , u [ r , v , 01 ] , 
{ r ,O , 1 } , { v, 0,2Pi}, Shading- >False, Plo t Range- > { - 1,2}] 
h l  =Par ametr icPlot3D [ Evaluate[x [ r ,v] , y [ r ,v] , u[ r ,v ,Pi/ b] 1, 
{ r , O , l  } , { v,O ,2Pi}, Shading-> False,PlotRange- > { - 1 , 1 }] 
h2=ParametricPlot3D [ Evaluate[x[ r ,v] , y [ r ,v] ,u[ r ,v ,Pi/ a]], 
{ r ,0, 1 } , { v,O ,2Pi} , Shading- > False,PlotRange > { - 1 , 1 }] 
Show [ GraphicsArray [ { h0,hl , h2}], 
Frame-> True,FkameTicks- >None] 

0. 

-0 

0. 

-0 

Figure 8.2. The surface Dt at the instants t = 0, x/p2, x/pl 
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Next we consider the wave equation on rectangular domains in R2. Let 
II = (0, a )  x (0, b)  be a rectangle and consider the wave equation 

utt = c2 (uzx + Uyy) , (2, y) E n, t > 0, 

with the usual initial condition and the Dirichlet boundary condition 

- - - 
4,=0 - 4,=, - uly=o - UlY,b = 0. 

The eigenfunctions of the problem 

-vxx - vyy = xu, (x, y) E rI, (8.40) 

(8.41) 

are 

corresponding to the eigenvalues 

We shall discuss the nodal set 

Nu = {@,!I) : 'U(Z,Y) = 0) 

of an eigenfunction v of the problem (8.39), (8.41). Note that boundary points 
of II do not belong to Nu. 

The nodal set has a physical meaning, because it presents the set where 
the rectangular membrane IT does not move at all. The nodal sets consist 
of points, curves and surfaces in one, two and three dimensions respectively. 
There is a physical experiment due to Chladny4 which allows one to visualize 
the nodal set in two dimensions. Covering the membrane II with fine sand 
and vibrating it with a given frequency the sand particles take the place of the 
nodal set. These sets are known also as Chladny's figures. 

Let us consider nodal sets of some eigenfunctions of (8.39) in the square 
K = (0, T )  x (0, T ) .  Both eigenfunctions and vnm have the eigenvalue 

*Ernst Florens F'riedrich Chladny, 30.11.1756-03.04.1827 
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x = Am, = Xnm = m2 + n2 

and vibrate with angular frequency 

w = C J X , , .  

For each Q! E [O, 11 

21, = aurnn(x, Y) + (1 - a)Unm(x, Y) 

is a mode of vibration with frequency w. The nodal set Nva is the curve 

It varies from the nodal set Nu,, to the nodal set Nu,, and divides the square 
K into several different regions which vibrate independently. 

We consider now in detail the nodal sets 

Nn = { (x, Y )  E K : Vn (x, Y) = O} 

of the function 

Vn (x, y )  = sin 2nx sin y + sin x sin 2ny. 

It is clear that if (x,y) E Nn , then the points 

also belong to Nn . 

Using mathematical induction one can prove: 

Claim 1'. 

Vn (z, y) = Vn-l (x, y )  + 2 sin x siny (cos (2n - 1) x + cos (2n - 1) y) 
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Claim 2O. 

V, (z, y) = sin z sin y (cos z + cos y) 

2n) 
( 2 2 4  (cos2(,-1) z + cos2(n--1) y) + ... + ( - 1 y - l  

for n 2 2. 

The first four functions V, (z, y) are expanded as follows: 

& (x,y) = sinxsiny (cosx +cosy) 
(8cos2 z - 2coszcosy - 4 + 8cos2 y) , 

fi (x, y) = sinz sin y (cos x + cosy) f (z, Y) , 
where 

f (z, y) = ~ ~ ( c o s ~  2 + C O S ~  y - C O S ~  x COSY - cos II: C O S ~  

+ C O S ~ X C O S ~ Y + C O S X C O S ~ - C O S ~ X - C O S ~ Y )  + 6  

and 

v4 (z, y) = sin z sin y (cos + cos y) g (z, Y) , 
where 

g (5, y) = 8(16 (cos6 2 + cos6 y) - 16 (c0s5 zcosy - cosy c0s5 z) 

+ 16 ( c0s4 y cos2 z + 6 cos2 y c0s4 x) - 16 c0s3 y c0s3 z 

(8.42) 

-24 ( C O S ~  y - C O S ~  X) + 24 ( C O S ~  cos z + cos y C O S ~  X) 

-24 C O S ~  C O S ~  x + 10 (COS2 + C O S ~  X) - 10 cOS y COS Z - 1). 

Computations are made by MAPLE in Scientific WorkPlacE using 
Expund+Fuctor. The nodal sets h/, or n = 1,2 ,4  are presented using 
Plot2D+ Implicit. 

For the function 

Vl (z ,y ,a )  = sin2xsiny +asinxsin2y = 2sinxsiny (cosx + acosy) 

the curves c, : cos x + a cos y = 0 for a = 0.5, 1) 1.5 are presented in Figure 
8.3. 



Diffusion and Wave Equation in H.D. 283 

Figure 8.3. Curves c, : cosx + acosy = 0 for a = 0.5, 1, 1.5 

Using the expansion of V2 (x, y) = sin 4x sin y + sin II: sin 4y the nodal set 
& is presented in Figure 8.4. It divides K into 4 regions. 

0' 0.5 1 1.3 2 2.5 3 

Figure 8.4. Nodal set N2 
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2.5:: 

2:: 

i!5:- 

1: 

0.5:: 

The nodal set Ng , where g is given by (8.42), is presented in Figure 8.5. 
The nodal set Ng divides K into 8 regions. 

: 

I . . . . , . . . . , . .  _ , . _ _ . , _ . . _ , ~ _ ,  , 

0’ 0.5 1 1.; 2 2.5 3 
+ 

Figure 8.5. Nodal set Ng 

Claim 3’. The nodal set Nn divides K into 2n regions. 

using the method of separation of variables. Consider separately the “nonres- 

onance” case w # wmn = 7rq/m and the “resonance” w = w,,,, 
for some (mo, no) . 

Exercises
1. Solve the problem
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2. Consider the axis symmetric bounded solutions u = u(p,cp) of the 
Laplace equation in a ball BR 

(a) Separating variables 

u (P ,  cp) = R (PI  @ (9) 

show that R(p) satisfies the Euler equation 

while ( cp )  = (x) satisfies the Legendre equation 

d - dx ( ( l - X 2 ) 2 )  + v ( v + l ) 6 = 0 ,  

where @ (9) = @ (arccosz) = 6 (z) . 

(b) The solution of the problem (P2) is 

where Pn is the n-th Legendre polynomial and 

C n  = - 2n + 1 h ( cp )  Pn (COS q) sin cpdcp. 
2Rn 

0 

(c) Solve the problem (P2) with R = 1 and h (cp) = cos 29. Plot the surface 

p cos 8 sin cp 
psinosin9 , 

u ( P ,  cp) cos cp 

with Mathematica for (8 ,q )  E [0,2n] x [O,n] and p = 0.25, 0.5, 1. 

3. Prove Claims lo-3O. 
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4. Plot the nodal set h/3  using the expansion 

v3 (2, y) = siny sinz (cos z + cosy) f (z, 9) 

where 

f (x, y) = ~ ~ ( c o s ~  x + C O S ~  y - C O S ~  x cos y - cos x C O S ~  y 
+ C O S ~  z C O S ~  y + cos z COSY - C O S ~  z - C O S ~  3 )  + 6 .  

Show that Nf intersects the diagonal II: = y of K at the points 

( d 6 )  ~ / 6 )  ) (7d3) ~ / 3 )  ) ( 2 ~ ' 3 , 2 ~ / 3 )  ) (5@, 5.rr/6) . 
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Answers and Hints to Exercises 

Chapter 1 

Section 1.2 

1. (a) u = xnf (f) , (b) u = f ( f )  + $)(c) u= e-cs’af(aY -bX) 5- 
3. (a) It is a linear equation in three variables and the characteristic system 
is 

dX dY dz -=-=- 
y - z  z - x  x - y  

The general solution is u = f (x + y + z, x 2  + y2 + z2)  . 

(b) u = f (zyz, x + y + z )  ) (c) u = u = e-c2/a1 f (a21 - m y ,  a35 - aiz) , 
where a1 # 0. 

Section 1.3 

Section 1.4 

1. (a) F ( r 3 + y 3 , y )  = 0 ,  (b) F ( ~ + y + ~ , ~ ~ + y ~ +

(c) F (Z + y + u, zyu) = 0, (d) F ( x 2  + u2, (r + u)2 - 29) = 0, 

(e) F (u - 2y,y + 2,/-) = 0. 

291 
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Section 1.5 
3 2  1. (a) u = y + 22, (b) u = zy, (c) u = 2xy - 2Y 9 

2x& (e) u=x+- Y2 m' 1 + 22' (d) u = 

Chapter 2 

Section 2.1 

1. (a) u = f (x + ct) + g (x - d )  , (b) Irreducible, 

3 e2x 

- 4. 

4. (a) up = 3e3z+2t, (b) up = ixe2x+4t, 

(c) up = - 

3. u = f (x + ct) + g (x - ct) + 

[a2 cos (ax + ~ t )  + ,O sin (ax + Pt ) ]  , 

(d) up = &z4 - f z t 2  - $t3.  

5. (a) autc + 2but,, + cu,,,, + (d - a) ut + (e - c) a,, + f u  = 0. 

(b) 2.4 = f (:> + zg (:I * 

Section 2.2 
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(c)u.tv=O ( = x + 2 , / 3 ,  7 7 = x - 2 6 ,  i fy<O;  

u" + uqq = 0 ( = x, q = 2 8 ,  if y > 0. 

(e) uqV = 0, ( = e-, - e-9, 7 = x. 

(c) u (x, y) = f (y - cos x + x) + g (y - cos x - x) . 

(d) u (5, y) = -229 + f (XY) fl+ 9 (:) , if XY < 0. 

3. (a) 2uxz + uZy - uyy = 0, (b) u,, - 2uXy + uyy = 0, 

Section 2.3 

(4 V Y l Y ,  + VYZI iZ  - W Y 3 Y 3  - vy4y4 = 0, 
Y1 = fix1 - J Z x 2  - fix3 - fix*, 
Y2 = -21 + 2x2 + 2x3 + 2x4, 
Y3 = -21 + 5 2 ,  y4 = -21 + 2 2  + x3. 

. 

(4 %y, + Vy2y2 = 0, y1 = g a x 1  + ;fix:!, y2 = -x2, 
1 1 y3 = -5x1 - 3x2 +x3, 

2. Substitute ' 1 ~  = wzl in the equation and choose w such that 
2 a i ~ , ,  + biw = 0. 
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Chapter 3 

Section 3.2 

2. u (z, y> = + (sin3 (z + t> + sin3 (z - t ) )  . 

Section 3.3 

1. u (i, 1) = i ,  u ( x ,  3 1  5 )  - 3  - 3 2 '  

Section 3.4 

1. (a) u (z, y) = (ez+t - eZFt (1 + 2t)) .  

(b) u (z, y) = zt + cos z cost + sin z (1 - cost) , 

(c) u ( z , y )  = Q ( 3 x 2 9  + $4) + cosxcost. 

Chapter 4 

Section 4.1 

3 .  Hint. ( c )  The result follows from (b) if H ( t )  > 0 for t E [tl ,  t 2 ]  because 

If H ( t )  >, 0, replacing H ( t )  by H E ( t )  = H ( t )  + E then for some E E (0, l), 
one can prove the inequality for H E .  
Then let E --+ 0. 

Section 4.2 

1. (a) u(z,t) = m e  1 + 4 t ,  
2 1 -- 

(b) ~ ( z , t )  = % (e-x (1 + erf (s - f i ))  + e x  (1 - erf (s + A))) , 

(c) u(z, t )  = $ (6 - 2erf (&)) . 

3. Hint. Make the change of dependent variable u(x,t) = e-btv(x, t ) .  
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4. Hint. Make the change of independent variable y = z - vt. 

Section 4.4 

1. Hint. Consider the function v(x,t) = u(x,t) - xh(t)  and use 
the even extension of the source function. 

Chapter 5 

Section 5.2 

1. The eigenvalues of A are A1 = 8 and X2,3 = -1. The solution is 

Section 5.4 

2. Use the characteristic method. 

Section 5.5 

2. (a) The charactersistics are 

3. (a) The envelope is 

The solution is
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Chapter 6 

Section 6.2 

2. Hint. Use that div(ii x 5') = v' - rot i i  - ii - rotv'. 

(c) To show the boundary condition apply the Green's second identity to 
G(Q,P) and fi in the region { P  : R 5 IQI I T, I& - PI 2 E } .  

Letting T -+ 00 and E -+ 0 obtain that 

if IPI > R. 

1 if IQI = R 

and lim u(P) = cp(Q), follows as in Theorem 6.8. 
P-Q 

Section 6.5 

3. (a) Use the mean value property of harmonic functions 

(b) Show that the first partial derivatives are equal to zero. 

Section 6.4

(b) Show that

(b) Use that
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Chapter 7 
Section 7.2 

(b) sin3 x = sinx - a sin3x) -7r 5 x 5 7r. 

(4 . .  

ex - I ex O0 ( - I ) ~  - I 
(cos nx - n sin nx) . f(4 = 7 + - c 1 + 

-51r n=l 

1 4 O0 ( -1)nn 
sin2nx) 0 < x 5 7r. ZFi g(x) = - sinx - - 

-51r n=l 
2 

-7r < x < 7r# 

3. Hint. (a) Use that 

x x  In (1 + e ix )  = 1n2cos - + 2-  
2 2 '  

1 
(b) Use that - - 

and results of (a). 

4. (a) Equate the coefficients of xn in both sides of the identity 

(c) Evaluate the coefficient to tn in the product 

(5 k=O &&(s)zk) (5 1=0 hBl(t)z') and use that 
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5. Y(4 = $(ClJ2(4 + C2Y2(4). 

6. Hint. Use the indentity zJL(x) - pJ,(x) = -xJ,+l(x). 

2. (4 
u(x,t) = T1 + (T2 - T1)x 

+: c,"=1 (To - Tl + (-qn(T2 - To)) 
e-kn2n2t 

sin n r x  
n 

(b) u(z , t )  = t 

(d) u(x,t) = (-& cosnt + 3 sinnt) s inrx  
+p ~ r = ~  (w cosnnt + 9 sinnnt) sinnnx. 
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5 .  (4 
~ ( 2 ,  t )  = 9 (1 - cos 6 t )  sin 32  + C,"=, -= sin 2nt sin n x  

cosh 3x 
3 sinh 371- 

8. (a) u(x,~) = cos 3 y 

3 cosh % - 2 sinh 2 3J: 
sin - 

3cosh% - 2 s i n h F  2 (b) 44 = 

Chapter 8 

Section 8.1 

1. (a) U (x, y, z ,  t )  = x2yz + 2tyz, 

(b) u (2, y, Z, t )  = 9 (XZ - 2 t )  (Z - Z) . 

Section 8.2 

2. u ( p , t ) = T + q R  (.a;t 2--- : ( 1 - 2 g ) )  

00 2e-(a~,1/R)2t - c  Jo (y) ,where pn are positive zeros of J1 ( p )  = 0. 
n=l PZJO (Pn) 
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D’Alembert J. 68 
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Dirac P. 124 
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second identity 174 

sine series 199 

diffusion equation 229 
Laplace equation 243 

Fully-nonlinear equation 28 
Function Hadamard J. 70 

biharmonic 181 Harmonic function 169 
even 207 Harnack A. 193 
Gamma 220 Harnack ’s 
harmonic 169 first theorem 195 
odd 208 inequality 193 
piecewise continuous 204 
Robin 4, 170 
subharmonic 181 

Fourier method 

wave equation 238 H 

second theorem 195 
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Hop f-Cole transformation 14 1 
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Gauss-Ostrogradskii formula 173 
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Gibbs J.W. 213 
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diffusion equation 118 
wave equation 87 
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Integral surface 12 
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Irreducible equation 43 

J 

Jump discontinuity 204 

K 

Kinetic energy 92 
Kirchoff G.R. 269 
Kirchoff’s formula 269 

L 

Laplace P.S. 169 
Legendre A. 37, 224 
Legendre 

differential equation 224 
polynomial 224 
transformation 37 

Linear operator 2, 40 
Linear equation 4, 46 
Liouville J. 151 
Liouville’s 

equation 151 
theorem 194 

M 

Maximum-minimum principle 
diffusion equation 98 
Laplace equation 171 

Mean value property 175 
Method of shifting the data 235 
Method of steepest descent 142 
Mixed problem wave equation 84 
Mollifying kernels 124 
Monge G. 29 
Monge cone 29 
Mollifiers 124 

N 

Negative index 62 
Neumann K.G. 80 
Neumann boundary condition 4, 80 
Nodal set 280 
Nonlinear operator 2 
Non-factorable equation 40 

0 

Operator 
linear 2 
nonlinear 2 

Order 1 
Orthogonal system 200 
Orthonormal system 217 



Index 

P 

305 

S 

Parseval M-A.Ch. 205 
Parseval’s equality 205 
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elliptic 48, 63 
hyperbolic 48, 63 
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Poisson S.D. 103 
Poisson formula 

diffusion equation 103 
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Potential energy 92 
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Schwarz H.A. 125 
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Shock wave 123, 155 
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Steepest descent 142 
Strictly hyperbolic system 136 
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S t urm-Liouville problem 230 
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Swimmer effect 83 
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Quasi-linear equation 3, 11 
T 

R 

Rank 10 
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Reducible equation 40 
Reflection method 78 
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Regularizations 125 
Riemann G.F. 154 
Riemann problem 154 

Taylor B. 142 
Thermal conductivity 97 
Thermal energy 101 
Transpose matrix 61 

U 

Ultrahyperbolic equation 63 
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W 
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