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Preface

In this second edition the section “Weak Derivatives and Weak Solutions”
was removed to Chapter 5 to be together with advanced concepts such as
discontinuous solutions of nonlinear conservation laws. The figures were re-
arranged, many points in the text were improved and the errors in the first
edition were corrected.

Many thanks are due to G. Barbatis for his comments. Also many thanks
to our graduate students over several semesters who worked through the text
and the exercises making useful suggestions.

The second author would like to thank National Research Fund in Bulgaria
for the support by the Grant MM 904/99.

Special thanks are due to Dr J.T. Lu, Scientific Editor of WSPC, for the
continuous support, advice and active interest in the development of the sec-
ond edition.

September, 2003 Ioannis P. Stavroulakis,
Stepan A. Tersian
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Preface to the First Edition

This textbook is a self-contained introduction to Partial Differential Equa-
tions (PDEs). It is designed for undergraduate and first year graduate students
who are mathematics, physics, engineering or, in general, science majors.

The goal is to give an introduction to the basic equations of mathematical
physics and the properties of their solutions, based on classical calculus and
ordinary differential equations. Advanced concepts such as weak solutions and
discontinuous solutions of nonlinear conservation laws are also considered.

Although much of the material contained in this book can be found in
standard textbooks, the treatment here is reduced to the following features:

e To consider first and second order linear classical PDEs, as well as to
present some ideas for nonlinear equations.

¢ To give explicit formulae and derive properties of solutions for problems
with homogeneous and inhomogeneous equations; without boundaries
and with boundaries. To consider the one dimensional spatial case before
going on to two and three dimensional cases.

o To illustrate the effects for different problems with model examples: To
use Mathematics software products as Mathematica and MAPLE in
ScientifiCWorkPlacE in both graphical and computational aspects; To
give a number of exercises completing the explanation to some advanced
problems.

The book consists of eight Chapters, each one divided into several sections.

In Chapter I we present the theory of first-order PDEs, linear, quasilinear,
nonlinear, the method of characteristics and the Cauchy problem. In Chapter
II we give the classification of second-order PDEs in two variables based on the
method of characteristics. A classification of almost-linear second-order PDEs
in n—variables is also given. Chapter III is concerned with the one dimensional
wave equation on the whole line, half-line and the mixed problem using the
reflection method. The inhomogeneous equation as well as weak derivatives

ix



X Preface to the First Edition

and weak solutions of the wave equation are also discussed. In Chapter IV
the one dimensional diffusion equation is presented. The Maximum-minimum
principle, the Poisson formula with applications and the reflection method
are given. Chapter V contains an introduction to the theory of shock waves
and conservation laws. Burgers’ equation and Hopf-Cole transformation are
discussed. The notion of weak solutions, Riemann problem, discontionuous
solutions and Rankine-Hugoniot condition are considered. In Chapter VI the
Laplace equation on the plane and space is considered. Maximum principles,
the mean value property, Green’s identities and the representation formulae
are given. Green’s functions for the half-space and sphere are discussed, as
well as Harnack’s inequalities and theorems. In Chapter VII some basic the-
orems on Fourier series and orthogonal systems are given. Fourier methods
for the wave, diffusion and Laplace equations are also considered. Finally in
Chapter VIII two and three dimensional wave and diffusion equations are con-
sidered. Kirchoff’s formula and Huygens’ principle as well as Fourier method
are presented.

Model examples are given illustrated by software products as Mathematica
and MAPLE in ScientifiCWorkPlacE. We also present the programs in Math-
ematica for those examples. For further details in Mathematica the reader is
referred to Wolfram [49], Ross [34] and Vvedensky [47].

A special word of gratitude goes to N. Artemiadis, G. Dassios, K. Gopal-
samy, M.K. Grammatikopoulos, M.R. Grossinho, E. Ifantis, M. Kon, G. Ladas,
N. Popivanov, P. Popivanov, Y.G. Sficas and P. Siafarikas who reviewed the
book and offered helpful comments and valuable suggestions for its improve-
ment. Many thanks are also due to G. Georgiou, J.R. Graef, G. Karakostas,
K. Kyriaki, Th. Kyventidis, A. Raptis, Th. Vidalis for their comments and
to T. Kiguradze, G. Kvinikadze, J.H. Shen for their extensive help with the
proofreading of the material. The help of S.I. Biltchev, J. Chaparova and M.
Karaivanova is gratefully acknowledged.

Our deep appreciation to Calouste Gulbenkian Foundation and to the
Greek Ministry of National Economy.

Special thanks are due to Ms S.H. Gan, Editor of WSPC, for her contin-
uous support, advice and active interest in the development of this project.

June, 1999 Ioannis P. Stavroulakis,
Stepan A. Tersian
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Chapter 1

First-order Partial
Differential Equations

1.1 Introduction

Let u = u(z1,...,%,) be a function of n independent variables z1,...,z,. A
Partial Differential Equation (PDE for short) is an equation that contains
the independent variables x1, ..., z,, the dependent variable or the unknown
function u and its partial derivatives up to some order. It has the form

F(@1y 0y T Uy Uy ooy Uy, Uy 3y s ooy Uy oon) = 0, (1.1)

where F' is a given function and uy; = 0u/0xj, Ugz; = Bzu/amiaxj, i, =
1,...,n are the partial derivatives of u. The order of a PDE is the order of the
highest derivative which appears in the equation.

A set © in the n—dimensional Euclidean space R" is called a domain if
it is an open and connected set. A region is a set consisting of a domain
plus, perhaps, some or all of its boundary points. We denote by C(Q2) the
space of continuous functions in Q and by C* () the space of continuously
differentiable functions up to the order & in §2. Suppose (1.1) is a PDE of order
m. By a solution of the equation (1.1) we mean a function v € C™ () such
that the substitution of u and its derivatives up to the order m in (1.1) makes
it an identity in (z1,...,z,) € Q.



2 Partial Differential Equations

Some examples of PDEs ( all of which occur in Physics ) are:

—

. Ug + uy = 0 ( transport equation )
2. ug + uuy = 0 ( shock waves )

uZ +u2 =1 ( eikonal equation )

&~ W

Uy — Uge = 0 ( wave equation )

Uy — Ugz = 0 ( heat or diffusion equation )

Ugg + Uyy = 0 ( Laplace equation )

Uggzz + 2Usgyy + Uyyyy = 0 ( biharmonic equation )

Usy — Ugy +u = 0 ( wave with interaction )

e ® N o o

Ut + ULy = EUy, ( Burgers’ equation )

10. ut + cuty + Ugge = 0 ( Korteweg—de Vries equation )

11 (1 — ) Ugs + 2ugusuge — (1 + u2) uy = 0 ( Born-Infeld equation )
12. ugy — UgzUyy = f (z,y) ( Monge-Ampére equation ) .

Each one of these equations has two independent variables denoted either
by =,y or z,t. Equations 1, 2 and 3 are of first-order. Equations numbered
as 4, 5, 6, 8,9, 11 and 12 are of second-order; 10 is of third-order; 7 is of
fourth-order. Examples 2, 3, 8, 9, 10, 11 and 12 are distinguished from the
others in that they are not “linear”.

Linearity means the following. The correspondence

WE1, o, ) > Lu = F(Z1, ., Ty Uy Uz, ooy Uy o)

defines an operator L. The operator L is said to be linear iff (if and only if )

L (cyuy + coug) = ¢ Luy + caLug (1.2)

for any functions u;,us and any constants ¢;,ca € R.

The operator L is nonlinear if (1.2) is not satisfied. For instance, the
equation 2 is nonlinear because (uy + uz)(u1 + ua)y = uiuly + Uzugy is not
satisfied for any functions u; and us.

Nonlinearity may be of various types. An equation is said to be almost-
linear if it is of the form Lu+ f (z,u) = 0, where f (z,u) is a nonlinear function
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with respect to w. An equation is said to be quasi-linear if it is linear with
respect to highest order derivatives and fully-nonlinear if it is nonlinear with
respect to highest order derivatives. For instance, the equation 8 is almost-
linear, the equations 2, 9, 10 and 11 are quasi-linear, while the equations 3 and
12 are fully-nonlinear.

The general form of a first-order PDE for a function v = w(zy, ..., z,) of n
independent variables (z1, ...,z ) is

F("rl) "')xn)u7u.€c1)"')uﬂ3n) = 0’

where F is a given function and u,, = 8u/0z;, j = 1,...,n are the partial
derivatives of the unknown function u. In the case of two independent variables
x,y the above form is

F(z,y,u,uq, uy) = 0.

Equations of this type occur in the calculus of variations, geometrical op-
tics, particle mechanics, etc. The philosophy of treatment of first-order PDEs
is in many ways different from that of the more commonly encountered second-
order PDEs appearing in physics and science. First-order PDEs may always
be reduced to a system of Ordinary Differential Equations (ODEs for short ).

If the operator L is linear then the equation

Lu=90
is called a linear homogeneous equation, while
Lu=f,

where f # 0, is called a linear inhomogeneous equation. It is clear that Exam-
ples 1, 4, 5, 6 and 7 are linear homogeneous equations.

A partial differential equation subject to certain conditions in the form
of initial or boundary conditions is known as an nitial value problem (IVP
for short) or boundary value problem (BVP for short). The initial conditions,
also known as Cauchy conditions, are the values of the unknown function u
and of an appropriate number of its derivatives at the initial point, while the
boundary conditions are the values on the boundary 8D of the domain D under
consideration. The three most important kinds of boundary conditions are:

(i) Dirichlet conditions or boundary conditions of the first kind are the
values of u prescribed at each point of the boundary 8D.
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(ii) Neumann conditions or boundary conditions of the second kind are the
values of the normal derivative of u prescribed at each point of the boundary
oD.

(iii) Robin conditions or mized boundary conditions or boundary conditions
of the third kind are the values of a linear combination of u and its normal
derivative prescribed at each point of the boundary 8D.

In this textbook we concentrate on problems for first-order PDEs (linear,
quasi-linear and fully-nonlinear), the three classical linear second-order PDEs
(wave, heat or diffusion and Laplace equations) as well as the Burgers’ equa-
tion. We first consider one spatial dimension before going on two and three
dimensions; problems without boundaries before problems with boundary con-
ditions; homogeneous equations before inhomogeneous equations.

1.2 Linear First-order Equations

A linear first-order PDE in two independent variables z,y and the dependent
variable u has the form

a(@, y)uz + b(e, y)uy + c(z, y)u = d(z,y), (1.3)

where a,b,c,d € C1(Q),9 € R? and a? + b2 # 0, that is, at least one of the
coefficients a or b does not vanish on 2. If we consider the differential operator

a 0
L:=a—+b—
"oz + Oy te
then equation (1.3) is written as
Lu=d,

while the homogeneous equation corresponding to (1.3) is

Lu=0. (1.4)

By a general solution of (1.4) we mean a relation involving an arbitrary
function such that for any choice of the arbitrary function we derive a solution
of equation (1.4). If u; denotes the general solution of the homogeneous equa-
tion and u, a particular solution of the inhomogeneous equation (1.3), then
the general solution of (1.3) is

U = up + Up. (1.5)
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Indeed, (1.5) is a solution of equation (1.3), since by the linearity property
of the operator L, we have

Lu =L (up+up) = Lup+ Lup, =0+d=d.

Conversely, if v is a solution of (1.3), then we will show that it is of the
form (1.5). Take the function v — u,. Then

L(v—up)=Lv—Lu,=d—-d=0,

that is, v — u, is a solution of the homogeneous equation (1.4) and therefore
up = v — U, for some choice of the arbitrary function which appears in uy.
Thus v = up + up.

Example 1.1. Find the general solution of the equation

Ou s
32 +u=e". (1.6)

Solution. The corresponding homogeneous equation is

ou
B2 +u=0. (1.1

Integrating with respect to z (holding y as a constant), we have

u(z,y)=e "f(y),

where f is an arbitrary continuously differentiable function. This is the general
solution of (1.7). Observe that a particular solution of (1.6) is

- -
Up = T€

Thus the general solution of the inhomogeneous equation (1.6) is

u(z,y)=e "f(y) +ze¥,

where f is an arbitrary continuously differentiable function.
We could also work as in the case of ordinary differential equations. Thus,
from (1.6), (considering y as a constant), we derive the solution



6 Partial Differential Equations

w) = el r@)+ [end i

=e“P@+/fWW}

= e *f(y)y+ze %,

that is, the same result. Observe here that f is an arbitrary continuously
differentiable function of y (instead of an arbitrary constant C' that we have in
the case of ODEs).

Next we will derive the form of the general solution of the linear first-order
homogeneous equation
a(z,y)ug + b(z,y)uy + c(z,y)u =0, (1.8)
where a,b,c € C! (Q),Q C R?. Consider the transformation

é.:f(l',y)
{ﬂ=n(w,y) =y ed,

with Jacobian

9(&m) €& &
J = = | >* 0on Q.
6 (.I, y) Nz ny # on
Since
Uy = uelz + UpNa,
uy = ugby + upty,

the equation (1.8) is transformed into the following equation

(abs + by) ug + (ane + bny) uy +cu =0, (1.9)
where the coefficients are now expressed in terms of the new variables £,7. Our
aim is to simplify equation (1.9), by choosing 7 such that

ang + by = 0. (1.10)

This is accomplished as follows. Assume, without loss of generality, that
a(z,y) # 0 and consider the ordinary differential equation
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dy _b(zy) (1.11)
Let the general solution of equation (1.11} be

n(z,y) = K, (1.12)

where 7, # 0 and K is an arbitrary constant. Then, for this function 7 (z,y)

Ngdx +nydy =0

and, in view of (1.11), equation (1.10) is satisfied.

The one-parameter family of curves (1.12) defined by equation (1.11) are
called characteristic curves of the differential equation (1.8).

Now choose

£=£(z,y) ==
Then
_0Em | & & |
T O(zy) | M ny | =MW70

and the transformation constructed in this manner, that is

= z
= 77(90,?/),

where 7 (z,y) = K is the general solution of the ODE (1.11), is invertible.
The equation (1.9) reduces to the following simple form

a(faﬂ) Ug +c(§,77)u: 0’ (113)

called the canonical form for the linear equation (1.8), and it can be solved as
an ODE (cf. Example 1.1).

In the case of the inhomogeneous equation (1.3) we derive the following
form

a(€,mue+cEnu=dEn). (1.14)
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Example 1.2. Find the general solution of the linear equation

TUg — YUy +y2u=y2a z,y # 0. (115)

Solution. The coefficients are

Consider the homogeneous equation

TUy — yuy, +y2u = 0. (1.16)
The equation (1.11) is
B __y
dx T

and its general solution (which gives the family of the characteristic curves) is

zy = K, K a constant,

An appropriate transformation is

= xr
= Yy,
since the Jacobian
8(£a7]) & €y ‘

The coefficients a and ¢ with respect to £ and 7 become

2

i
a(&"?)zﬁa C(f,ﬂ)zgz‘
and therefore equation (1.13) yields
2
Eue + Z—zu =0

This is the canonical form of the homogeneous equation (1.16). The general
solution of the last equation is
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2 2

7€
wmte BE )2

and therefore the general solution to equation (1.16) is

Y
u(z,y) = f(zy)e 2
Observe that the constant 1 is a particular solution of equation (1.15) and

therefore the general solution of the inhomogeneous equation (1.15) is given
by the function

v

u(z,y)=f(zy)e 2 +1, (1.17)
where f is an arbitrary continuously differentiable function.

Note that we could consider from the beginning the inhomogeneous equa-
tion (1.15) and using the same transformation, equation (1.14) yields

2 ,n2
with general solution
2 2
-7
J z34¢ 3
w = ¢ € |fm+ Z-ge T de
2 r 2
2% LT
= e fn) + 3¢ 3
i 7
= % | fm)+e %

,’72

= f(n)e%i+1.

Thus the general solution of equation (1.15) is given by (1.17).
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Exercises

1. Find the general solutions of the following equations:

(a) zuz 4 yu, = nu (Euler’s relation)

(b) zugz + yu,y = ™

(c) aug + buy + cu = d, where qa, b, c,d constants and a? + b2 £ 0.

2. (Extension of the linear equation in n~variables). Consider the equation

n

Zaj (T1, ooy Tn) Ug; = 0.
j=1
The characteristic system
dzq dz,
a7 e,
describes the family of the characteristic curves. If
U (T1, .y Tn) = €1y oy Un—1 (T1, 000y Tn) = Cn1
are n — 1 functionally independent solutions of the characteristic system, then
the general solution is given by
u=f (U, ..yUn_1).
The functions u; (%1,...,%5) ..., Un—1 (%1, ..., Z) are functionally independent
if
U,z v U1z,
rank : : =n-—1
Un-1,2, " Un-1,z,

In the case of the linear equation
n
Zaj (T1, .0, Tp) Ug; +C(T1, 0y Tn)u =0,
Jj=1

the general solution is given by

U = ’Uf (ul, ...,un_l) ,

where v is a particular solution.

3. Find the general solutions of the equations

(8) (= 2) s + (2 — 2 Uy + (@~ y) s = 0,

M zy—2)ug+y(z—z)uy +z(x —y)u, =0.

(c) a1ug+aguy +azu, +cu = 0, where a1, ag, as, ¢ are constants and a; # 0
for some i = 1,2,3.
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1.3 The Cauchy Problem for First-order Quasi-
linear Equations

We consider the case of the quasi-linear equation

a(z,y, uug + b(z,y, wuy = c(z,y,u). (1.18)

Quasi-linearity means that the operator

u(z,y) — Lu = a(z,y,u)u, + bz, y, u)uy — c(z,y,u),

is nonlinear, but it is linear with respect to the derivatives (ugz,u,). For in-
stance, the equation 2 in the Introduction is nonlinear, but it is quasi-linear
because

u(cr1v1 + Covg)y = C1UV1y + CoUVy,

for any functions u, v, vy and any constants ¢y, ca.

A solution of (1.18) defines an integral surface S : v = u (x,y) in the Eu-
clidean (z,y,u) space. The normal to this surface at the point P(z,y,u) is the
vector T p (Uz, Uy, —1) and let Up be the vector (a(z,y,u), b(z, y,u), c(z,y,u)) .

Then the equation (1.18) can be interpreted as the condition that at each
point P of the integral surface S the vector vp is tangent to the surface S.

Suppose that P € Q, where  is a domain in the (z,y, u) space and consider
the vector field V = {vp : P € Q}. We define as characteristic curves

z = z(t)
r:{ y=y() t € [a,bl,
u = u(t)

the integral curves in  of the characteristic system

gt = = a(z,9,u)
é’it - b(x,y,u) (1'19)
o c(x,y,u).

dt
The last system can be rewritten shortly as
dz  dy du
alz,y,u)  bz,y,u)  clz,yu)’
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which is an autonomous system of ODEs. Assuming a, b and ¢ to be of class
C' () by the existence and uniqueness theorem for ODEs it follows that
through each point Py (g, y0,uq) € € passes exactly one characteristic curve
PO.

There is a 2-parameter family of characteristic curves in 2 of (1.19) and the
curves do not change by translating the independent variable t. Note that if a
surface S : u = u (2, y) is a union of characteristic curves, then S is an integral
surface and conversely every integral surface S is a union of characteristic
curves.

Theorem 1.1. Let the characteristic curve

xz =z9(t)
To:q y=wolt) te€ad],
u = up(t)

intersect the integral surface S at the point Po(xo,yo,up) € 2. Then Ty C S
which means

uo () =u(zo(t), 50 (@), a<t<h

Proof. Let U (t) = uo (t) — u (2o (¢) %0 (¢)). As Py (zo,50,u0) € SN Ty,
there exists tg € [a,b] such that

zo = o (o), Yo = Yo (to) , o = uo (to) and U (¢g) = 0.

We have
wo_ duw_dzo - do,
dt dt dt " dt Y

= <z (2),50 (t) w0 (t)) — alzo () 30 (¢) ,u0 (t))us
—b(o () 90 (t) 0 (£))uy

= (20 (t), 40 (), U () +u(t)) — alzo (t) 50 (£) , U(t) + u(t))ue
—b(zo (), 50 (£)  U(t) +u ())uy, (1.20)

where u(t) = u(z¢(t),yo (t)). The equation (1.20) is an ODE with initial
condition U (¢p) = 0 and by the uniqueness theorem for the Cauchy! problem
for ODEs it follows

U@R)=uo(t) —u(zo(t),y0(t)) =0, a<t<b N

! Augustin Louis Cauchy, 21.08.1789-23.05.1857.
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As a consequence of Theorem 1.1 we have that if two integral surfaces S
and Sy have a common point Fy , then they intersect along the characteristic
curve I'g through P,.

The selection of an individual surface S : u = u(z,y) among all integral
surfaces, containing a prescribed curve I' constitutes the Cauchy problem for
(1.18). This is formulated as

Find a solution u = u(z,y) of (1.18) for which

up(s) =u(zo(s),yo(s)), a<s<h,

where
z =z (8)
I':q y=yo(s)
u = ug(s)

18 an wnitial curve.

We shall consider the local solvability of the Cauchy problem, i.e. the
existence of an integral surface in a neighborhood of the curve I'. The main
tool for solving the local problem is the well known Inverse Mapping Theorem
(IMT), which also has a local character.

Theorem 1.2. (IMT). Let D C R2, and D' C R2, be domains ® :
D — D' be of class C1 (D), Py (sg,t0) € D, Qo (zo,%) € D', ® (Py) = Qo,

| z=2(s,t)
e { y =y(s,t)
and
s8R = G ()= | 2 % | (m) #0

Then there exist neighborhoods U of Py € D and U’ of Qo € D and a mapping
o1 e C (U’) such that @1 (U') = U and

JO 1 (Qo) = (JO ().

Now we prove a local existence theorem for the Cauchy problem

Theorem 1.3. (Ezistence and Uniqueness Theorem) Consider the first-
order quasi-linear PDE 1in the domain Q C R3

a(x;yyu)ux + b(xyylu)u’y = C(miy>u))
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where a,b and ¢ are of class C! (Q)

18 an initial smooth curve in Q and

Z20b (20 (5),90 (5) 0(5)) ~ 2 (ao(s), yo(s), os)) 0, 0 < s < 1. (1.21)

Then there exists one and only one solution v = u(z,y) defined in a neighbor-
hood N of the initial curve T', which satisfies the equation (1.18) and the initial
condition

ug(s) =u(zo(s),50(s)), 0<s <1

Proof. Let us consider the Cauchy problem for the ODEs system

_t = a($7y:u)
(©):§ % =b=vv)
d_:-: = C(.’L’,y,u)

with initial conditions

z(5,0)=2zo(s), y(s,0)=wo(s), u(s0)=up(s).

(From the existence and uniqueness theorem for ODEs the problem has a
unique solution

z=1z(st), y=y(st), u=u(st),

defined for ¢ : a(s) < t < B(s) where 0 € [a(s),B(s)], a(s) and B(s) are
continuous functions and

D={(s,t):0<s<l,a(s)<t<B(s)}cQ =PrQ.

- ozy

According to (1.21) for the mapping

z = x(8,t)
i 38
{ y = y(s,t)
Ts d:E(] dyO
o = = 0.
JO It—O Ys yt ]t-—() d 7é
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By IMT there exists a unique inverse mapping ®~! : D' - D,

1. | s=s(z,y)
® 1'{ t=1t(z,y)

defined in a neighborhood N "of TV = Pr,ey I'. Consider now
u=u(s(z,y),t(z,9) = ¢ (z,9).
We find that

apg +bpy = a(ussg +uty) + b(ussy + ugt,)
us (@sg + bsy) + uy (at, + bty)

= Us (Ti8z + Y 8y) + Ut (Teto + Yety)
.0 4 us.1

= Uyr=<¢C

and

¢(zo(s),30(s)) = u(s(zo(s),y0(s)),t(zo(s),v0(s)))
= u(s,0)=1ug(s).
Moreover ¢ (z,y) is a unique solution. Indeed let 1 (z,y) and o (z,y)

be two solutions satisfying the initial condition and S; = ¢; (z,7),5 = 1,2 be
the corresponding integral surfaces. Considering the systems of ODEs

dzx

'_t = a(w,y,(Pj (.’E,y))
Yy

with initial conditions

1:(8,0)=:l?0(.5‘), y(370)=y0(3)>

we find solutions (z; (s,t),y; (5,t)). Then (z; (s,t),y; (s,),0; (s,t)) are so-
lutions of system (C) . Therefore by the uniqueness theorem for ODEs

(xj (Syt) ' Y5 (S,t),(pj (Svt)), j=12,

coincide in the common domain of definition . It follows that the characteristics
I’y and Iy starting from the point P (g (s), o (s) ,uo (s)) also coincide. H
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Remark. Note that condition (1.21) implies that the vector (a, b, c) is not
tangent to the initial curve I' at the point (xg,yo,uo) . For if it were

d:lIo dyo duo _
( ds’ ds’ ds = k(a,b,¢)

or
d:to o dyo . d’u,() .
a5~ Fa gy TRh 5 =k
for some constant k. Thus
dro, dyo _
'd—s d—sa—kab—kba—o,

which contradicts (1.21).
In the following example it is shown that when (1.21) is violated, i.e. if

dwo

20 0 (), 0 (5), 0(5)) — 22 (ao(s), yo(s),wols)) =0, 0 < s < 1.

then for the Cauchy problem there may not exist a solution or there may exist
infinitely many distinct solutions. In other words, either there is no existence
of a solution or there is no uniqueness.

Example 1.3. Consider the equation
YUz — TUy = 0.

Show that there exist initial curves such that when (1.21) holds with the equality
sign, then the Cauchy problem has no solution or there exist infinitely many
distinct solutions.

Solution. It is easy to see that the characteristic curves are given by
2 4 y2 =k
and the general solution is
u=f(z® +9°%),

where f is an arbitrary function. Consider the following three cases:
(i) The initial curve is given by the parametric equations



First-order Partial Differential Equations 17

Miz=zo(s)=s, y=w(s)=0, u=up(s)=s"

This curve is the parabola

which lies in the (z,u) plane. We have

d.’I:o

d
E’b(anyO)uﬂ) - —(—iqsga’ (.’EO, yO’u()) =—3 '_Ié 07

and by Theorem 1.3 there exists a unique solution. Indeed the integral sur-
faces u = f (:2:2 + y2) are surfaces of revolution about the u axis. The condi-
tion that such a surface contains I'y is

f(ad+9d) = f () = &%,
that is, f () = ¢, which leads to the unique solution
u=ax?+ yz.

This surface is a circular paraboloid.
(ii) The initial curve is given by

Fp:x=1x0(s) =coss, y=yo(s) =sins, u=1ug(s) =sins,

that is, I'; is the ellipse

Here

%ﬂ;_ob (z0,%0,u0) — ddisoa (%0, Yo, uo) = (—sins) (—coss) — (cos s) (sins) = 0.

If u = f (2% 4+ ¢?) is a solution, then on the circle z2 + y? = 1 one has
u = f(1) a constant. This is incompatible with the requirement © = yand
therefore no solution exists. Note that the given curve I'zis such that its
projection on the (z,y) plane coincides with the projection on the (z,y) plane
of a characteristic curve, but I'; itself is non-characteristic. Indeed the tangent
vector (—sin s, cos s, cos s) to I'y is nowhere parallel to the characteristic vector
(sins, — cos s,0) along I's.
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(ili) The initial curve is given by

F3:z=1x¢(s) =coss, y=yg(s) =sins, u=yy(s) =1,

that is, '3 is the circle

Here again

d;Eo

Eb(xo,yo,uo) -

o

A (0, Y0, up) = 0.

In order for u = f (a;2 + y2) to be a solution it should satisfy f(1) = 1
which is possible for any function f such that f(1) = 1(ie. f(w)=w").
For such a function f,u = f (z® +y?) is an integral surface which contains I's.
Clearly there are infinitely many solutions in this case. Observe that the initial
curve I'3 is now a characteristic curve. Indeed the tangent vector (—sin s, cos s, 0)
to '3 is parallel to the characteristic vector (sins, — cos s,0) along I'3.

Example 1.4. Solve the PDE uug + uy = 1/2, with initial condition
u(s,s)=s/4, 0<s<1.
Solution. The initial curve

T=3
I': y=8
u=s/4
where 0 < s < 1 satisfies (1.21)
dxg dyo s
PR P
for s # 4. The characteristic system
dz
.=
b
du _ 1
dt 2

with initial conditions

z(5,0)=s, y(s,0)=s, u(s,0)=s/4,
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has a solution

y=8+1t
u=s/4+1t/2.

Solving with respect to s,t in terms of z,y we obtain

{ z=s+st/4+1t2/4

4z — o2
s = g

4(y — =)
4-y

a<

t=

and the unique solution of the problem is

_8y——425—y2
4(4-y)

fory=s+#4.
The integral surface S through the initial curve I is plotted in the Figure
1.1 using the Mathematica program

fl=ParametricPlot3D[{s+(t"2-+st)/4,t+s,(2t+s)/4},
{s,0,1},{t,-1,1},PlotPoints->10]
f2=ParametricPlot3D({s,s,s/4},{s,-0.5,1.5}]
Showlf1,f2,Shading->False,

PlotLabel->"Integral surface through initial curve”]

Integral surface through initial curve

8y — dx — y°

Figure 1.1. Graph of the function u =
4(4-y)
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Example 1.5. The solution of the equation uy+uu, = 0 can be interpreted
as a vector field on the —axis varying with the time y. Find the integral surface
satisfying the initial condition u (s,0) = h(s), where h 1s a given funcition.

Solution. The characteristic system

2
&

- =1
L
di

with initial conditions
z(5,0) =35, y(50)=0, u(s,0)=nh(s)
has the solution
z =5+ h(s)t
y=t
u = h(s).

As before, (s,t) can be expressed in terms of (xz,y) when

Ts Tt

=1+4h (s)t#£0,
Ys Yt + (8) #

ie. y=t# _h’L(s)' In this case for the solution

u=1u(z,y) = up (s) = ug (z,y)

we have

’

_ __h()
Uy =h (s)sz—m.

Hence for A’ (s) < 0, uy becomes infinite at the positive time

1
T=———.
)
The smallest v for which this happens corresponds to the value s = sg at which
R’ (s) has a minimum. At the time
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the solution has a gradient catastrophe or blow up. There can not exist a
smooth solution beyond the time Ty.
As an example, consider

u(s) = s2-3s7+4, 0<s<2
R(s) = 3(s5°—28)<0, 0<s<?2
h'(s) = 3(2s—2)=0fors= 1,h" (s) = 6.

Then %’ (s) has a minimum at sg = 1 and Tp = 1/3.
We plot the curves ¢;

f z=s+1t(s? - 352+ 4),
C u =83~ 3s% +4,

in the Figure 1.2 for the instants ¢ = 0, 0.2, 0.3, 0.33, 0.333, 0.4 to demon-
strate the effect of blow up with the Mathematica program

ufs]:=s"3-3s"2+4

x[s_,t_|:=s+tus]
hO0=ParametricPlot[Evaluate[x[s,0],u(s]],{s,0,2},
PlotRange->{0,4},PlotLabel->"y=0"]
hl=ParametricPlot[Evaluate[x[s,0.2],u[s]],{s,0,2},
PlotRange->{0,4},PlotLabel->"y=0.2"]
h2=ParametricPlot[Evaluate[x[s,0.3],u[s]],{s,0,2},
PlotRange->{0,4} PlotLabel->"y=0.3"]
h3=ParametricPlot[Evaluate[x[s,0.33],u[s]],{s,0,2},
PlotRange->{0,4},PlotLabel->"y=0.33"]
h4=ParametricPlot[Evaluate[x([s,0.333},u[s]],{s,0,2},
PlotRange->{0,4},PlotLabel->"y=0.333"]
h5=ParametricPlot[Evaluate[x([s,0.4],u(s]],{s,0,2},
PlotRange->{0,4},PlotLabel->"y=0.4"]
Show[GraphicsArray[{{h0,h1},{h2,h3},{h4,h5}}],
Frame->True,FrameTicks->None|
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Figure 1.2. Curves ¢; at the instants ¢t = 0,0.2,0.3,0.33,0.333,0.4.

Exercises

1. Prove that if two integral surfaces Sy and Sy of the equation (1.18)
intersect transversally along a curve I', which means that at each point P
of I' the normal vectors ﬁ and ﬁ are linearly independent, then I' is a
characteristic curve.

2. Solve the following initial value problems:
(a) ug +yuy, =2u, u(l,s)=s.

(b) up +uy =u2, wu(s,0) = s

(c) zup + (y + 2¥)uy =u, u(2,8)=s-4.

3. Show that the solution of the quasi-linear PDE uy + a(u)u; = 0 with
the initial condition u(s,0) = h(s) is given implicitly by v = h(z —a(u)y).
Show that the solution becomes singular for some positive y unless a(h(s)) is
a nondecreasing function.
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1.4 General Solutions of Quasi-linear Equations

Suppose that for P (z,y,2) € Q, V (a,b,c) # (0,0,0).

The characteristic curve

z = z(t)
r:< y=y()
u = u(t)

can be represented as the intersection of two surfaces

' = §,Nn8,,
S viz,yu)=c, (1.22)
S w(z,y,u) =cy,

for which the normal vectors iy (vg, vy, v,) and flg(wg,wy,w,) are linearly
independent at each point P, which means that

rank[z}m ;’)y E}“ ]:2. (1.23)
T v u

A continuously differentiable function v (z, y, u) is said to be a first integral
of (1.18) if it is a constant on characteristic curves.

Definition 1.1. The first integrals v (z,y,u) and w(z,y,u) of (1.18) are
functionally independent if (1.23) is fulfilled.

Suppose v (z,y,u) and w(z,y,u) are functionally independent first inte-
grals and (1.22) holds. From

v(z(t),y(#),u) = o,
w(z(t),y(),u(t) = c,

it follows

VeE+ V0 + v = 0,

wmi + wy’!) + wu’l.[, = 0,

where & = d_:r: and
dt

o

Uga + vyb+ v =

e

Wza + Wyb + wyc
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From (1.23) it follows that v and w are functionally independent first

integrals iff
a b ¢

(1.24)

Uy Uy
Wy Wy

Uy Uy
Wy Wy

Up Uy
Wy Wy

which geometricaly means that the vector 7, X i3 is a tangent vector to I' at
P.

Theorem 1.4. Let v(z,y,u) and w (z,y,u) be functionally independent
first integrals of (1.18). Then the general solution of (1.18) is

F(v(x,y,u),w(z,y,u)) =0,

where F is an arbitrary continuously differentiable function of two variables.

Proof. Let u = u(z,y) be a function for which
Fv(z,y,u(z,y)),w(z,3,u(z,9))) =0. (1.25)
Differentiating (1.25) with respect to x,y, we have

F’u('u:v + Uuum) + Fw(wz + wuuz) = O;
Fy(vy 4 vatty) + Fu(wy + wuuy)

I
e

Assuming (F,, F,,) # (0,0) it follows

Uy + VplUy Wz + Wyly | 0
- )
Uy + Uyly Wy + Wy ly

or
(VuWy — VyWy )y + (VpWy — Uy Wy YUy = UVyWy — VpWy. (1.26)

(From (1.26) and (1.24) it follows aus + buy = c.

Conversely let u = u (x,y) be a solution of (1.18), v (z,y,u) and w (z, y, u)
be functionally independent first integrals of (1.18). Then , by (1.24) , it follows
(1.26).

We have for the functions V = v (z,y,u(z,y)) and W = w (z,y,u(z,y))

Vg + UyUy Wg + Wyly
Uy + Uylly Wy + Wy Uy

Ve Wa
Vy Wy

(VaWy — Vywy g + (VaWy — VW )y — (Vyws — vzwy)

= A(aug +buy —c)=0.
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(From the rank theorem of Calculus it follows that one of the functions V and
W can be expressed as a function of the other, i.e. there exists a function f
such that

v(z,y,u(z,9) = flw(z,y,u(z,y))). W

Example 1.6. Find the general solution of the equation
(u—y)us +yuy, =z +y.
and solve the initial value problem u(s,1) = 2 + s.

Solution. The characteristic system is

dz _ dy  du
u—y y  z+y’
(3) (i) (i)

Using the proportion property (%) + (it) = (ii) we have

dlut+z) dy
utz Y
Then ut o

v = = Cl

Y

is a first integral. From (¢) + (¢4) = (¢43)
diz+y) du

u Tz Y

it follows that
w=(z+y)° -u’=c

is a second first integral. We have

[l B P S VA

and for y # 0,z 4+ y + u # 0 we get the relation (1.24). The general solution is

F(u;x,(m+y)2—u2> =0

or

u_ym = f((z+y)* - ). (1.27)
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We plot the surfaces v=10,5,10and w =0,5,10for 0 <z <1,0<y <1
in Figure 1.3 using the Mathematica program

f0=Plot3D[-x,{x,0,1},{y,0,1} ,PlotPoints->10]
f1=Plot3D[5y-x,{x,0,1},{y,0,1} ,PlotPoints->10]
f2=Plot3D[10y-x,{x,0,1},{y,0,1} ,PlotPoints->10)
gl=Show|f0,f1,f2,Shading->False]
h0=Plot3D[x+y,{x,0,1},{y,0,1},PlotPoints->10]
h1=Plot3D[Sqrt[(x+y)"2+5],{x,0,1},{3,0,1},
PlotPoints->10]
h2=Plot3D[Sqrt[(x-+y)"2+10],{x,0,1},{y,0,1},
PlotPoints->10]
g2=Show([h0,h1,h2,Shading->False]
Show|GraphicsArray[{gl,g2}]]

Figure 1.3. Two families of characteristics in Example 1.3.

To solve the initial value problem we substitute the initial conditions in

1.27)

2+s5+s fls+1)* = (s+2)%),
2(s+1) = f(-2s-3),

I

so f(t) = —t — 1 and the solution is

u+m+(m+y)2—u2+1=0, y #0.
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We now indicate (cf. Exercise 2, Section 1.2) how to proceed in the case
of more than two variables. For the quasi-linear equation

aj (T1, .00, T,y ) Ug; = (21, ..., T, U)

n
=1

2

the characteristic system is

drq dr, du

a1 an c

If
W1 (X1, ooy By W) = C1y ooey Wy (T1, 00y T, U) = Cpy

are n functionally independent first integrals of the characteristic system then
the general solution is implicitly given by

F(wy,...,wp) =0,
where F is an arbitrary continuously differentiable function.

Exercises

1. Find the general solutions of the equations

(a) (z — y) y2u, — (x —y) 2?uy — (2% + ) u = 0.
b)) y—wuzs+u—x)uy=2-—1y.
©zly—wu, +yu—z)uy, = (z—-y)u.

(d) uug + (u? — 22)u, = —2.

(€) (1 + Vi— T =) ug +uy = 2.

2. Solve the initial value problems

(a)
Tuz + yzu, =0,
u(z,y,1) =z¥.

(b)

{ (z = )2 ug + 2uy +yu, =0,
u(0,y,2) =2y (y — 2).

3. The Euler PDE for a homogeneous function u (z,y, 2} is

Tug + YUy + 2u; = ou.



28 Partial Differential Equations

Show that the initial value problem u(x,y,1) = h(z,y) has a solution u =
22h (Z,%) 2 0 and v (Az, My, Az) = A%u(z,y, 2).

2z

4. Verify that:
(a) The general solution of the differential equation

Y
Uy = (;u)z (1.28)
isu=zf (22 +y?).
(b) The function
I(z,y) = gv/e‘y"““t cos ztdt

0

satisfies the equation (1.28).
(c) The following identity is satisfied

/e‘y\/1+t’ cos wtdt = L/e‘v(””)(‘””y”du y>0.
J Va2 +y? J

1.5 Fully-nonlinear First-order Equations
The general first-order equation for a function w = u (x, y) has the form
F (xayauapaq) =0, (129)

where p = uy,q = u, , F is a twice continuously differentiable function with
respect to its arguments z,y,u,p,q and F2 + F2 # 0.
We assume now that the operator

u— F(2,y,4,p,q)

is nonlinear with respect to (p,q). In this case we say that (1.29) is a fully-
nonlinear first-order equation. For instance the so called eikonal equation
ul + uf] = 1 arising in geometric optics is nonlinear because there exist u; and
ug such that

(u1 + )2 + (uq +u2)2 # (ul, +ud,) + (u3; +u3,).

The equation (1.29) can be viewed as a relation between the coordinates
of the point P (z,y,u) on an integral surface S : u = u (,y) and the direction
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of the normal vector 7ip (p, g, —1) at P. The tangent plane Ts (P;) at the point
Py (x9,y0,u0) € S is given by

u—u=p(x—zo)+q(y—yo),
where

F(QUO:?JO;UO;P,‘I) =0 (130)

Given the values (zo,yo,up) in (1.30), different values of p therein will
yield different values of ¢ and hence a one-parameter family of tangent planes,
parametrized by p. The envelope of these tangent planes is called the Monge®
cone for (1.29) at F.

Recall that the envelope of a family of smooth surfaces S : u = G (z,y, A},
depending on a parameter A € [a,b] , is a surface ¥ for which at each point
P € ¥ there exists Ay € [a,b] such that

Ts, (P)=Tx (P).

The equation of ¥ is implicitly given by the system

| u=G(z,y,N)
w { Ga(z,y,A) =0 (1.31)

In the case of the Monge cone, assuming g = ¢ (p) the system (1.31) is

| u—uo=p(z—z0) +q(p)(y - o)
e T -3

Recall that a set K C R? is said to be a cone with a vertex B if for every
P € K the point AP + (1 — A) Py € K, for every A € R. It is easy to see that
the Monge cone is a cone with vertex Pp.

Example 1.7. Find the equation of the Monge cone at Py(zo, Yo, ug) for
the equation u2 +u2 = 1.

Solution. By p? + q% = 1 we have ¢ = £1/1 — p? and the system (1.32)
has the form

u—up =p(z ~ o) £ /1 —p(y — o)

0=(w—wo)¥ﬁ(y—yo)

2Gaspard Monge, 10.05.1746-28.07.1818.
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Taking squares of both equations and adding we get
(z — 20)® + (¥ — vo)® = (v — uo)*.

Assuming zg = yo = ug = 0 the cone, represented as an envelope of planes
for which p = 0, 1, —/2/2 is given in Figure 1.4, using the Mathematica
program

f0=ParametricPlot3D[{uCos|v],uSin[v],u},
{u,0,1},{v,0,2Pi}, PlotPoints->20]
f1=Plot3D[y,{x,-1,1},{y,-1,1},PlotPoints->10]
f2=Plot3D[x,{x,-1,1},{y,-1,1},PlotPoints->10]
£3=Plot3D[(-x-y)/Sqrt[2],{x,-1,1},{y,-1,1} ,PlotPoints->10]

Showl[f0,1,£2,£3,Shading->False]

Figure 1.4. Monge cone
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The equation (1.29) defines a cone field. Namely, let us consider the Monge
cone M (P) at each point P(z,y,u) € R3. The completion of these cones
{M (P): P € R3} is the cone field.

A surface S in R? solves the equation (1.29) iff it remains tangent to the
cone M (P) at each point P € §.

Assuming ¢ = ¢ (p) , by (1.29), we have

adF dq
Y _F A _
ap g, =0
d
so that Eg may be eliminated in (1.32) and the equations describing the Monge
cone are

F (anyO’umpa q) = O,

p(z — o) + q(y — y0) = © — uo,

T—Zo _ Y—Yo
F T R
or
T-%o _Y—Y% _ U~
F F, pFp +qFy’
The characteristic curves are determined as integral curves of the ODE
system

dx

Pt

Y-F (1.33)
dat ¢ '

or

Fp Fy pFp+qFy
It is clear that the three equations (1.33) are not sufficient to determine the
characteristic curves comprising the integral surface. The reason is that there
are three equations only for the five unknown functions z,¥,u,p,q. However

for p=p (2 (t),y(t)) and ¢ = ¢(z () ,y (t)) we have

dp dz dy

P73 IPmE +py3_t_ =pzFp +pyFy

(1.34)
dg  dx dy
P %E +qu = gz Fp + g Fy
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and from F (z,y,u,p(z,v),q(z,y)) = 0 it follows

aF
dF
Gy = Fot Fuat Fypy + Fagy =0.

Since

Py = Ugy = Uyz = Qx

equations (1.34) may be written as

d_p = —Fy — pF,,
4 (1.35)
9 _

-d—t = —Fy - un

Equations (1.35) associated with (1.33) give a system of five ODEs for the
five functions z,¥,u,p, q depending on t. This system is called a characteris-
tic system related to the equation (1.29). The equation (1.29) together with
the characteristic system provides a system of six equations for the unknown

functions x (t),y (t) ,u(t),p(t),q(t)
F(z,9,u,p,q) =0, (1.36)

ia:" _dy du _ dp _ dq (1.37)
Fp;Fq—pr*‘qu_—“F:v_pFu_—_Fy‘un- '

This system is overdetermined; however (1.36) follows from (1.37) for it is

a first integral of (1.37). Indeed if = (t),y (t),u(t),p(t),q (%) is a solution of

(1.37) :

dF d
- = FE®.v®,u0).p0),90)
d dy d dp dq

= Fme + F,Fy+ F, (pr +qFy)
+F,(—F —pF,) + Fy (-F, — qF.)
= 0,

which means that F (z (¢),y (t),u () ,p(t),q(t)) = const.



First-order Partial Differential Equations 33

If F = 0 is satisfied at an “initial point” (=g, ...,q¢) for ¢ = 0, then the
solution of (1.37) satisfies F (z (¢),y (t),u (t),p(t),q(t)) = O for every t.

A solution of (1.37) can be interpreted as a strip . This means a space
curve

z=1z(t)
I':< y=y()
u=u(t)

and along its point P (x (t),y (t),u (t)) the tangent plane T (P) with the nor-
mal vector np (p(t),q(t),—1).

Note that not any five functions define a strip. Namely, we require that
the planes be tangent to the curve I' which means that

du

S T Ok (1.38)
called the strip condition. The strip condltxon is guaranteed by the system
(1.37) because

du
— =PFp+dF —p(ﬂ +—(ﬂ

We call the strips which are solutions of (1.37) charactem’stic strips , and
their corresponding curves characteristic curves.

We consider the structure of integral surfaces and the initial value prob-
lem for (1.29). We formulate without proofs theorems which correspond to
Theorems 1.1 and 1.3 of the quasilinear case.

Theorem 1.5. If a characteristic strip has an element (zg, Yo, %o, Po, 90)
in common with an integral surface u = u(z,y), then it lies completely on
the surface, which means that if (z (t),y (t),u(t),p(t),q(t)) is a solution of
(1.37) and there ezists ty such that z (to) = g, ...,q (to) = qo then

u(t) = u(z(®),y),
p(t) = uz(z(),y(t),
q(t) = wuy(z(t),y(t)).

Theorem 1.6. Consider the PDE (1.29), where F' has continuous second-
order derivatives with respect to its variables z,...,q and suppose that

{CIJ-—IL‘()()
I': ¢ y=1yo(s) 0<s<1
u=1ug(s)
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is an initial curve, pg (s) , qo (8) are two differentiable functions satisfying

F(20(s),v0(s),u0(s),p0(s),90(s)) =0,

dug dxg dyg
v = po () - T4 (s) s
and d J
T
d_.:Fq (330,1/0,“0)?0,‘10) - —dy‘—:_Fp (-770;!/01“01170,‘10) 7& 0. (139)

Then there ezists a unique solution u = u (z,y) of (1.29) in a neighborhood N’
of I" = Progy I' , which contains the initial strip, i.e.

u(zo(s),v0(s)) = wuo(s),
Uy (3:0 (S) » Yo (3)) = Do (S) )
uy (To (s),40(s)) = qo(s).

As before, the proofs are based on the existence and uniqueness theorem
for ODEs and IMT.

Example 1.8. Find the solution of the eikonal equation

through the initial curve

l:z=coss, y=sins, u=1, 0<s<2m.

Solution. Functions pg (s) and gg (8) such that

Po(s) +45 (s) =1,

duo

- = 0 = po (s) (—sins) + gop (s) (cos s)

are pg (s) = cos s and go (s) = sins.
For these functions the condition (1.39) is fulfilled
dzg P dyg

s Fa~ E;Fp = —~2ggsins — 2pgcoss = —2 £ 0.
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Integrating the system

T =2p
y=2
U=2
p=0
¢=0
with initial conditions
z(s,0) = coss,
y(s,0) = sins,
u(s,0) = 1,
p(s,0) = coss,
g(s,0) = sins,

we get
z=(2t+1)coss
y=(2t+1)sins
uw=(2t+1).

Then 2 4+ y% = u? is the integral surface for which

u(coss,sins) = 1,
ug (cos 8,sins) = coss,
uy {cos s,sins) = sins.

The surface with Monge cones at the points (1,0,1) and (-1,0,1) is given
in Figure 1.5 using the Mathematica program:

fo=ParametricPlot3D[{uCoslv], uSin[v],u},
{u,0,2},{v,0,2Pi}, PlotPoints->15,PlotRange->{0,2}]
fl=ParametricPlot3D[{1+uCos[v],uSin[v],14+u},
{u,0,1},{v,0,2Pi}, PlotPoints->15]
f2=ParametricPlot3D[{u Cos[v]-1,u Sin[v],1+u},
{u,0,1},{v,0,2Pi}, PlotPoints->15|
Show|f0,f1,f2,Shading- > False]
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Figure 1.5. Integral surface with Monge cones.

Ugly = 2,
I'iz=s, y=s, u=3s,

1. Solve the following initial value problems:

(a)

Exercises

0<s<1.

(b)

u =0,

bl

=0

u +ud 42 (ug — z) (uy —
TFiz=s,9

—u, =0,
=s, y=0 u=2s/s, 0<s<1

3
T

u

I':z

(e)

L

b

Ug + Jul

N'z=0,y=s, u

0<s<1.

=8

2
T

2. Consider the differential equation

(1.40)

=0.

+ zuy

u
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Making the so called Legendre® transformation
vV =pT+qy—u,
where p = uz, ¢ = Uy, show that v satisfies the equation
P* +qup = 0.

Show that the solution of (1.40) can be expressed in parametric form as

p3 ;
u=—§a+qf (@) - f(g)

where f is an arbitrary continuously differentiable function.

3 Adrien Marie Legendre, 18.09.1752-10.01.1833.
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Chapter 2

Second-order Partial
Differential Equations

2.1 Linear Equations
The general form of a linear second-order equation in two independent variables

T,y is

a(m,y)um + 2b(1‘, y)uwy + C(:L': y)uyy +d (:E, y) Uz + € (:17, 'y) Uy + f (m,y) U
= g(=zy), (2.1)

where a,b,c,d, e, f,g € C? (), C R? and a®4+b?+c? # 0 in Q. If we consider
the partial differential operator

I 0o 0 82 a2 02 0 0
Oz’ Oy
then the equation (2.1) is written as
Lu =g,

while the homogeneous equation corresponding to (2.1) is

Lu=0. (2.3)

39
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The operator L is linear since the condition (1.2) is satisfied for every pair
of functions u1,uy € C? () and any constants ¢1,c2 € R. From the linearity
of the operator it follows that if

ULy ooy Unp,

are solutions of the homogeneous equation (2.3), then for every choice of con-
stants ¢y, ..., ¢, the function

ci1uy + ... + cpup,

is also a solution of (2.3). Furthermore, if u, is a particular solution of Eq.
(2.1), then
L(ciur + ... + crin +up) = L(crus + ... + cpttn) + Lup, = Luy, = g.

Thus
U= CuUs + ... + Chun + Up

is also a solution of Eq. (2.1) for every choice of constants ¢y, ..., ¢,.

We shall now consider the simplest case when the coefficients in Eq. (2.1)
are real constants. Assume also that the given function g is a real-valued
analytic function in Q. Then in some cases we can obtain the general solution
of Eq. (2.3), i.e. a relation involving two arbitrary C2 () functions such that
for every choice of the arbitrary functions a solution of Eq. (2.3) results. If u
denotes the general solution of the homogeneous equation (2.3) and u, is any
particular solution of the inhomogeneous equation (2.1), then

U= U+ Up

is termed the general solution of the inhomogeneous equation.

We classify linear differential operators L (%, a%) into two types which
we shall study separately. We say that:

(i) L (a%, ;%) is reducible or factorable if it can be written as a product of

linear first-order factors of the form aa% + b(% +c.

(ii) L (Z%’ -5%) is irreducible or non-factorable if it cannot be so written.
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(i) Reducible Equations

In this case the general solution can be found with the aid of results of
Section 1.2, Suppose L is such that

L = LI, (24)
= |a 2 +5b 2 +c 0 +b 0 +
- \"Mae "My T \MEr Ty T
6? 6?
Since the coefficients are constants and ——— = ———, the operators
Oz 8y Aydz

Ly, Ly commute, i.e. L1Ly = LgLy. If u; is a solution of the linear first-order
equation Lju = 0, then

Lu1 = (L}Lz) Uy = (LQLl)’U,l = LQ (Llul) = Lg (0) = 0,

that is, u; is a solution of (2.3). Similarly if us is a solution of Lyu = 0, then
ug is a solution of (2.3). Since L is a linear operator, then u = uy + uy is also
a solution. Accordingly, if @ = aj1az # 0 and the factors L1, Ly are distinct,
then the general solution of (2.3) is given by

€1 62

—z
up =€ 4 p(hz—ay)te “ap w (boz — agy), (2.5)

where ¢ and 1 are arbitrary twice continuously differentiable functions. If
L1 = Lo, that is

) E) 2
L:L1L1 = (al'a—ir‘+b1'é:‘y'+cl> )

then the general solution is
C1

up=¢e % (zp(biz —ary) + ¢ (biz — a1y)). (2.6)

The operator L is always reducible when it is a homogeneous operator,
that is, of the form

o? 02 82
L= 82+2b88

If a # 0 and Ay, Ay are the roots of the quadratic equation

ar? + 26X + ¢ =0,
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then

If a =0, then

0 0 3]

Note that the roots A1, Az are real iff b2 — ac > 0.

Example 2.1. Find the general solution of the equation

Ugg + Ug = Uyy + Uy.

Solution. This equation is written as Lu = 0, where L is the operator

#2082
T 922 0y? Oz Oy

The operator reduces to
0 0 0 3]
L=LiL,= (55'5;) (EZJ“a_yH)

and according to (2.5) the general solution is
=¢(z+y) +e P (z—y),
which may also be written in the form

v = @ty +e e Vh{z—vy)
= p(@+y)+evh(z—-y),

where ¢, and h are arbitrary functions.

A linear second-order equation in n independent variables z1,...,z, has
the form

- 0u ou
= 2.7
ijzzlA'LJa ax] +;B +Cu G ( )
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If we consider the operator

4,J=1

then Eq. (2.7) is written as

Lu=G

and the corresponding homogeneous equation is

Lu=0. (2.8)

Assume that the coefficients A;j, B;,C in L are real numbers and A;; =
Aji,i,7 =1,...,n. When L is reducible

L = L)L,
3] 0 Is} 0
= (ala_xl+"'+anﬂ+c) (bléag—l+"'+b”£+d>’

then we can work as in the case of two independent variables. Accordingly,
the general solution of Eq. (2.8) is

-2
up, = e 1 'p(ag — 4122, ..., GnT) — G1%p)
_d
+e ®1 zl’d) (bz.’E] - b1£L'2, ...,bn.’L'l - blxn) )
where ¢, are arbitrary functions. If either a; or b is zero, the form of

the general solution is modified appropriately. The general solution of the
inhomogeneous equation (2.7) is

U = Up + Up,

where u, is a particular solution.

(ii) Irreducible Equations
When the operator L (a%’ a%) is irreducible it is not always possible to
find the general solution, but it is possible to construct solutions which con-

tain as many arbitrary constants as we wish. This is achieved by attempting
exponential type solutions of the form
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U= eaz+ﬁy’

where o and 3 are constants to be determined. Since

du _ du

%—au, _6-_1;:

Bu,

it is easy to see that

_3_ ﬁ az+By _ az+PBy
L(B:c’@y)e =L(a,P)e

and therefore u = e®**#¥ is a solution of the homogeneous equation (2.3),
when

L{a,B)=0.

Suppose that the last relation is solved for 8 so as to obtain a functional
relationship # = h(a). Then the function

- eaz+h(a)y

is a solution of (2.3). Also
u=g (a) eam+h(a)y’

for arbitrary choice of the function ¢ is a solution. More generally the super-
positions

u= Z @ (o) e TMaly -y — /(,D () e*® M@V gy

are solutions whenever they define C? (Q) functions, and differentiation within
the summation sign or within the integral sign is legitimate. The preceding
ideas extend to Eq. (2.8) when the coefficients are constants.

As an example, let us consider the heat equation

1
Use = FUL = 0, k > 0 constant. (2.9)

The operator
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_9 198
T 82 kot

is irreducible. Looking for solutions of the form u = e***+At we obtain
1
2
a"——-0=0.
P

Thus 8 = ka?, and for any value of o the function

2
U= eam+ka t

is a solution. If we take & = in, then the function
inz—kn?t

u=e=e

is a solution and also superpositions of the form

=)

. 32

v = § :Cneznm kn°t
n=1

Il

o0
. - 2
Z (An cosnz + B, sinnz) e k"t

n=1

are solutions of Eq. (2.9).
Exercises

1. Check whether the operators in the following equations are reducible
and in the case they are find the general solution

(a) us — g, =0,

(b) Ugy — %Ut = 0, k > 0,

(€) Btgz + 10Uy + 3uy, =0,

(d) ust = augy + 2bugy + cuyy, a,b, c positive constants and b2 — ac = 0.

2. Find solutions of the exponential type e***+5¥ for the equations
(a) Ugg — 'c;lﬁ'utt = 0)

(b) Uge — £u; = 0,

(€) Ugg + uyy = 0.
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3. Find the general solution of the equation

Ugg — Upy = T + €22,

4. Show that

I (a%’ qu_) [e@ By (3,y)] = eas+By L, (a% +o, & +ﬂ) e (z,y).

Then find a particular solution of the equations
(a) Upg — Up = esz+2t,

(b) gz —usr =€
() Uugz —uy = Acos(az + Gt),
(d) ugy — uy = Az? 4 Bxt + C.

2x44¢
)

5. (a) Using the change of independent variables

§=Inz, n=Iny,

show that the equation

ax?ug, + 2bxyu, + cy2uyy +dzug + eyuy + fu =0,

wherea, b, c,d, e, f are constants, is transformed into an equation with constant

coefficients.
(b) Find the general solution of the equation

22Uy + 2xyUzy + y2uyy =0.

2.2 Classification and Canonical Forms of Equa-

tions in Two Independent Variables

Consider the linear equation

OUzg + 2bUgy + Cuyy + dug +euy + fu=g,

and the almost-linear equation in two variables

QUgg + 2bUgy + Cuyy + F (2,9, U, Ug, Uy) = 0,

(2.10)

(2.11)

where a, ..., g are of class C2 (), Q@ C R? is a domain and (a,b,¢) # (0,0,0)

in .
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The expression

QUgy + 2bugy + Clyy

is called the principal part of each of these equations. Since the principal part
mainly determines the properties of solutions we shall classify the more general
form (2.11) instead of (2.10).

The function A defined by

A (:L', y) = bz (.’l?,y) —a (:c,y) C(.’L‘, y)
is called the discriminant of Eq. (2.11).

The sign of the discriminant is invariant under invertible transformations
of variables.

Theorem 2.1. Let
- { ¢ =¢(x,y)
n=n(z,y)
be a smooth change of variables, for which

J®(P) = ggiz)) £0

and equation (2.11) is transformed into
Auge + 2Bugy + Cugy + ¥ (€, 1,4, ug, uy) = 0. (2.12)

Then the sign of the discriminant at @ = ® (P) is the same as at P.

Proof. Making the change of variables we have:

Us = Ube + UnMls,

uy = ugly +unty,
Uss = Ugebs + Qignbatls + Unnn2 + Ueboz + UnToz,
Ugy = ugebaly + Uen(€amly + EyMe) + UnnTlatly + Uelay + Unllzy,
Uy = gy + ugnbymy + upnmy + tebyy + Unlyy.

Substituting in (2.11) we obtain the equation (2.12) where:

A = agl+ 2068, + &,
B = afens +b(amy + n2y) + cEymy,
C = anj+2mgny +cn;.
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Applying the MAPLE procedure Simplify we have
A = B%~ AC = —(~Ey +1u&y) (=B + ca)

= (gzny - 77::611)2 (b2 - ac)
= J?®(P)A.

Since J® (P) # 0 the proof is complete. B

(From the above it is clear that we can classify Eq. (2.11) according to
the sign of the discriminant.

Definition 2.1. We say that the equation (2.11) at a point P (z,y) € Q
is:

(2) hyperbolic, if A (z,y) > 0,

(%) parabolic, if A (z,y) =0,

(#i) elliptic, if A (z,y) <O0.

The equation is hyperbolic (parabolic, elliptic) in a subset G C Q if it is
hyperbolic (parabolic, elliptic) at every point of G.

Next we will show that we can find new coordinates £ and 7 so that in
terms of the new coordinates the form of Eq. (2.11) is such that its principal
part is particularly simple. Then we say that the equation is in canonical form.

Theorem 2.2. Assume that Eq. (2.11) is hyperbolic, parabolic or elliptic
in a neighborhood of a point Py (zg,yo). Then there exists an invertible change

of variables
& E= {(1‘, y)
n=n(z,y)
defined in a neighborhood of the point Py (zo,yo) such that the equation (2.11)
can be reduced to one of the three forms, as follows:
(i) if Py (zo,%0) is a hyperbolic point

¥

Uen +ql(€>nau1u€aun) :0, (213)

(first canonical form for hyperbolic equations);
(%) if Py (zo,y0) is a parabolic point

unn + W (5) 7, U)U‘E’ un) = 07 (214)

(#1) if Py (z0,y0) is an elliptic point

Uge + Upy + U (€, 1,4, ug,un) = 0. (2.15)
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In the case of hyperbolic equations the transformation
a = {+n,
B = &~
reduces (2.13) to
Uga — ugp + © (@, B, u,ua, ug) =0,

called the second canonical form for hyperbolic equations.

Proof of Theorem 2.2. (i) Let Py (zo,yq) be a hyperbolic point. We choose
¢ and 7 in order to have

A afg + 2b€z€y + C€§ =0,
C = an+ 2y, + cng =0.

fl

So ¢ and 7 are solutions of the first-order nonlinear equation
ap? + 2bpp, + cgof, = 0. (2.16)

By the theory of Section 1.5

d
d—f = pF, + qFy = 2 (ap® + 2bpq + c¢*) =0,

so along the characteristics of (2.16)
¢ (z,y) = const. (2.17)

If we suppose @y (0,y0) # 0 we can determine y = y(z) as an implicit
function in a neighborhood of the point z¢ and

r_ i?i_ ‘Pa:(m’y)

dx Py (z,y)
By (2.16) the function y (x) satisfies the ODE

ay'? — 2by’ + ¢ = 0. (2.18)

If we suppose ¢, (zg,y0) # 0 we can determine z = z (y) as an implicit
function in a neighborhood of the point yg and

/ dz Py (x)y)

 =— =277

Y 9z (%,9)
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Then the function z(y) satisfies the ODE
cx'? — 2b2' +a = 0. (2.19)
Both equations (2.18) and (2.19) can be presented in the differential form
a (dy)® - 2bdzdy + c (dz)® = 0. (2.20)

Without loss of generality we can suppose a(2q,%0) # 0 or c(zo,y0) # 0,
because if a (zg,y9) = c(xg,40) = 0, then b(zo,yo) 7 0 and dividing (2.11) by
b(xo,yo) we obtain the form (2.13).

Let us suppose a (g, yg) # 0 and a (z,y) # 0 in a neighborhood A of the
point (2o, o). The equation (2.18) reduces to two ODEs

, _ bt VE b~ VA

! = = b —ac. .
vi — ¥ —, A ac (2.21)

Suppose £(z,y) = Cy and n(z,y) = C; are respectively their general solutions
defined in a domain A7 C N . Then

€, # 0 and n, # 0 for (z,y) € M.

The change of variables

5 - { {=¢(z,y)
n = n(z,y)
reduces (2.11) to the form (2.13). It is invertible, because by
g = b _btVA
1 é—y a )
! Nx b— \/Z
Yo = ——= ’
Ny a
it follows /A
2VA
Exy = EyNe = ————&y1y #0.

a
The case c(xg,y0) # 0 is treated similarly.

Next we describe the parabolic and elliptic cases.

(i1) Let Py (zo, yo) be a parabolic point. We should choose £ and 7 such that
A = B = 0. Since b% —ac = 0 it follows that one of the two coefficients a or ¢ is
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not zero. Otherwise b should also be zero which contradicts (a, b, ¢) # (0,0,0).
If a # 0 equation (2.20) reduces to

Y =-
a

Suppose its general solution is

{(z,y)=K

Take n = n(z,y) a simple function such that

9 (z,y)
Then A = B =0 and C # 0. The change of variables
¢1{6=ﬂnw
n=n{z,y)

reduces (2.11) to the canonical form (2.14). In the case that a = 0, then c # 0
and we follow a similar procedure.

(iii) Let Pp (xo,y0) be an elliptic point. We should choose { and 7 such
that A = C and B = 0. Since b2 — ac < 0 it follows that a # 0 and (2.20)
reduces to ODEs of the complex form

_b+iV=A b—iv=A
— =

[
> Yo a

Y1
Let ¢(z,y) = &(z,y) +in(z,y) = K be the general solution of the first
equation. By (2.16) it follows that A = C and B = 0. Then the change of
variables

Q'{n=n@w)

reduces (2.11) to the form (2.15). W

The equation (2.20) is called the characteristic equation of (2.11), while
its solutions are characteristics. In the hyperbolic domain the equation (2.11)
admits two families of real characteristics, which intersect transversally. In the
parabolic domain the equation (2.11) admits one family of real characteristics,
while in the elliptic domain it has no real characteristics.
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Example 2.2. Determine the type of the equation
Uy — YUy — 2yuy = 0,

reduce it to the canonical form in the hyperbolic domain and find the general
solution.

Solution . The discriminant is 5 —ac = z2y? and the equation is hyperbolic
in R*\{(z,y) : z = 0,y = 0}. On the lines z = 0 and y = 0 the equation is
parabolic.

Let us consider the hyperbolic domain. We apply MAPLE procedures of
ScientifiCWorkPlacE to realize the algorithm of canonization. Namely

1. Solution of characteristic equation. Replacing ¥’ by A in (2.18) we
derive the equation

aX? — 26X +¢c=0.

For
a=2% b=0, c=—y?

applying Solve to the last equation we get the solutions

2. Applying Solve ODE we find solutions of equations

d: .
Y9 _ _3_/_7 exact solution is y_ Ch
dr =z T
and
d ..
d_y = —E, exact solution is zy = Cs.
x x

3. The new variables are

Y
[

3.1. For £ and n we apply VectorCalculus+Jacobian,
y ¥
(—, xy) , Jacobian is z2 .
¥ y

88 |—

3.2. For £ and n we apply VectorCalculus+Hessian
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Y 1
235 —2
y/z, Hessian is 4 z ,
- 0
z

3.3. Denote
1
a=-Sy, f==, 7=y, 8=z,
«a 3 lo% E a 0
1 :L_gya 2 = (L'2’ 3 =Y,

Applying Simplify we compute:
—Ug + Uy T?

Uz = Ugx +UpY =Y s ,

Ug + Upx?
Uy = UfB + upd = ETTI,

Ugy = UgeQ + gn@y + Unyy? + uear + upB
Ugzy — 2u5nyx2 + Up2 yzt + 2uez
Y

x4 !

Ugy = Ugef + ugn(ad + BY) + Uy ¥ + ueog + upnfa
—ug2y + Up2yx? — ueT + uywd

3

?

Uyy = ugef? + 2uenB6 + w6 + ugas + uyfs

ugz + 2ugnz? + U2t

T2
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Then

gy — YUy — 2yuy, = —2y (Queny + unz)

—4u5ny2 - 2upzy
= —4fnuey — 2nuy,

1
= —4¢n (ug77 + iu,,)
because from £ = g,n = zy it follows y? = &),
b
The canonical form of the equation in the hyperbolic domain is

Uty + 57Uy = 0.

1
2€
The substitution u, = v reduces the last equation to the first-order equation

1
?)g—*—%'u:o,

with general solution

v(€m) =€ f ().

Integrating with respect to 7, we have

w(€,m) =E20m) +9(€).

Therefore the general solution is

u(z,y) = G)m o (zy) + ¥ (%) :

Example 2.3. Determine the type of the equation
YUz + 28YUgy + 282Uy, +yu, =0

and reduce it to the canonical form in the elliptic domain.

Solution. As A = ~z2y?, the equation is elliptic if z # 0,y # 0. For
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a=1y%b=1y,c=2z>

the equation
—2bA+c=0

has solutions
A= — (2zy + 2izy), o= L (2zy — 2izy)
! 2y? 2 2y? '

Now Solve ODE

%— = (Zwy + 2izy)

yields the solution

()——.7: —%m —c..

New variables are

€=y2 _x2,
17:—.7:2.

. —2r 2y
For (y2 — 2 —x2), Jacobian is [ —92 0 ]

For 4% — 22, Hessian is [ —02 g ], for —z2, Hessian is —2.

Denote:

a=-2z, [=2, v=-2z, 6§=0,

a1 = —-2, Qg = 0, Q3 = 2,

:Bl = _2) :62 = 0) 163 = 01

and compute:
Up = Ug X + Uyy = —2ugT — 2uy,T,

Uy = U + und = 2ugy,
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Use = UgeQ® + g0y + Unyy® + g0 + uyfy

duge 2 + 8u§,,x2 + 4u,,z:r;2 — 2ug — 2uy,

Ugy = Ugef + ugn(abd + By) 4+ Unyyd + ugaz + unf
= —dugezy — dueyzy,

Uyy = ufgﬁz + 2ue, 86 + u,,,,éz + ugag + upfs
= 4u£zy2 + 2ug.
Then

yzuM + 2xyuqy + 2:1:2uyy +yu
= 4y2u£z z? + 4y2u,,2232 - 21,/211,,7 + 4:1:2u5

1 1
= 4y2;1:2 (ugz + Uz — mun + F%)
I 4y2x2(u +u +1u+ 1 u)
= 2 2 - e .
£ n 277 n f—')’] 3
The canonical form in the elliptic domain is

1 1
Uge + Upy + %un + 'é:_—nug =0.

Exercises

1. Determine the type of the following equations and reduce them to the
canonical form. Using Mathematica plot the two families of real characteristics
in hyperbolic domains.

() Ugg — 2Ugy — SUyy + uy = 0.

(b) Ugy — Bugy + 10uyy + uz — 3uy = 0.

(C) Ugz + Ylgyy + %uy =0

(d) (14 22) uee + (1 +4%) Uyy + Tug + yuy = 0.

(e) €¥%ugy + 2% Y,y + eWuyy + (€Y — e"HV)u, = 0.
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2. Find the general solutions of the following equations in the domains of
constant type.

(8) Uge — 2ugy — Juyy = 0.

(b) Bugy — Bugy — 2uyy + Juy +uy = 2.

(¢) Uy — 25in Tuzy — cos? Uy, — coszu, = 0.

(d) z2uzy — YPuyy — 2yuy, = dzy.

3. Find PDEs, whose general solutions are of the form
(a) u(z,y) =p(z+y)+¥(z—-2),

(b) u(z,y) =2p(z+y) +y¥(z+y),

(©) u(z,y) = ¢ (zy) + ¥(z/y),

(d) u(z,y) = 1/z (¢ (z —y) + ¢ (z + y)) ,where ¢ and ¢ are arbitrary dif-
ferentiable functions.

4. Consider the Tricomi! equation

YUzr + Uyy = 0.

Show that this equation is:
(a) elliptic for ¥ > 0 and with the change of variables

it reduces to

1
Ugg -+ Upy + 3—77-11,7, =0,

(b) hyperbolic for y < 0 and with the change of variables
2

g=z-2(-»t, =zt -yt

IFrancesco Jacopo Tricomi, 05.05.1897-21.11.1978.
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it reduces to
Ugn — 1
6(§—m)
Plot the picture of characteristics in the hyperbolic domain.

(ug —uy) =0.

5. The Born-Infeld®> equation is

(1 — ) Puz + 20xpr0at — (1 +92)pu = 0. (2.22)
Show that:
(a) Introducing new variables
£ = z—1,
n = z+t,
v o= (i),
v o= p&m)
the equation (2.22) is equivalent to the system
{ v2ue — (1 :L—n2uv1;£u,, -?— u?v, = 0. (2.23)

(b) If uy = v¢ and & = € (u,v),n = 7 (u,v) is the inverse mapping then
6’0 = N, u&fu = Unty.
(c) In the new variables (u,v) the system (2.23) is equivalent to the system

§v—Nu=0
V210, + (1 4 2uv) €, +u2&, =0,

or to the equation

U2 + (1 + 2u0) Euy + V200 + 2 (uby +vEy) = 0. (2.24)

(d) Determine the hyperbolic domain of the equation (2.24) and show that
the characteristics in (u, v) plane are the lines

u-——Cfv+01,v=022u+0'2,u=0,v=0,

and their envelope is the hyperbola 1+ 4uv = 0. Plot the picture of character-
istics using Mathematica.

2Max Born, 11.12.1882-05.01.1970,
Leopold Infeld, 20.08.1898-15.01.1968.



Second-order Partial Differential Equations 59

2.3 Classification of Almost-linear Equations
in R"

Let D be a domain in the n—dimensional Euclidean space R™. Denote by
z = (1,...,Z,) a point of R™ and by < .,. > the usual scalar product in R".
An almost-linear second-order equation in R™ has the form

n

Z Qij () Ugse; + F (z,u,7u) =0, (2.25)

1,j=1
where the coeficients a;; (z) are assumed to be continuously differentiable
functions in z, a;; () = aj; (z), u(z) is an unknown function and Ju =
(4g, s, Uz, ) is the gradient of u. Almost-linearity means that the equation
(2.25) is linear with respect to second-order derivatives uy,q,. The linear op-
erator

L= D i) 5ope

4,j=1

is called the principal part of the operator appearing in equation (2.25). A func-
tion u (z) € C* (D) is a solution of the equation (2.25) in D, if the substitution
of u and its derivatives in (2.25) results an identity in z € D.

A main requirement for a classification of the equation (2.25) is to be
invariant under nonsingular changes of independent variables. As before, we
make a classification locally, i.e. for a fixed point z° € D.

Let

[ ¢1(z) ]
y=¢(z)= :

| On (:U) i

and

[ 1 (y) |
=1 (y)= :

| Yn (¥)

be nonsingular mappings defined in neighborhood's N and N’ of z° and 40 =
¢ (2°) respectively, such that

y=0 (), yeN andz=1v9(¢(x)), z€N.
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Let u(z) € C? (D) be a solution of the equation (2.25) in D and

v(y) =u(¥(y), yeN.
Then
u(z)=v($(z)), z€N

and

ey = Yy, (9()) S
k=1

n ) 3 62
umﬂ:j = Z Vyiy (¢ ({E ¢k ¢l + Z i (¢( 6111'13:7.7

k=1

A substitution in (2.25) leads to

Z aw Z Vyrm (¢( a¢k g¢l + & (y,v V’U) 0,

1,j=1

or

> bet (4) vy (v) + @ (3,0, 70) = 0, (2.26)

k=1
where

= ¢y, O
bua (1) = D 013 (o) G oL, (2.27)
i,j=1 i O

The classification of the equation (2.25) at the point z° is based on the
classification of the characteristic form

n

Q%8 =Y a; () &g, ¢eR™ (2.28)

ij=1
Let A be the symmetric matrix
a1 (2%) - a1 (29)
A= .

a1 (29 - anm (29)
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We have
Q(z°,¢) =< A¢, ¢ >
and if
§=An, neR”
where A is a n X n matrix, then

Q (29,¢) =< AAn, Ay >=< ATAAq,n > . (2.29)

Here AT denotes the transpose matriz of A. Let

/\ki = %%?(:L‘O), k,i‘-—‘ 1,...,7’L,
At 0 A
A = )
Anl RN )\nn
y = ATz (2.30)

Note that

= 0
Uk =Y Meili, aik = Aki.

=1

If we make the linear change of variables (2.30) we obtain the transformed
coefficients as

n
brr = Z ai; (2%) Akideg,
i,4=1
which coincide by (2.27). Denote by B the matrix with elements by, i.e.

bir o+ bin

It is symmetric and
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By (2.29) the characteristic forms of (2.25) and the transformed equation at
2% and y* = ATz0 are equal:

Q(fﬂo,f):Q(y*,ﬂ)a f:AU
By the basic theorem for quadratic forms there exists a nonsingular matrix

A such that Q (xo,f) reduces to the canonical form

QW n) =nt+ .. +1% =21 — - — 12, (2.31)

wherep > 0, ¢ > 0, p+q < n. The number p of positive terms in (2.31) is called
the positive index, the number ¢ of negative terms the negative indez, r = p+¢q
- rank and v = n —r - nullity of the characteristic form (2.28). The important
statement is that these numbers are invariant with respect to nonsingular linear
transformations of the variables £ and = . Therefore the classification of (2.25)
is made regardless of the canonical form of the characteristic form (2.28).

Let

£ = An,

be the nonsingular linear transformation reducing the characteristic form (2.28)
to its canonical form (2.31). Then the transformation

y=A"Tz,

reduces the equation (2.31) at the point z° to the form

Zvyiyi - Zvyp+iyp+i + $ (y,v, VU) = Oa

i=1 =1

where
v(y)=u ((AT)_1 y) :
The equation (2.25) at the point z° is said to be:
(1) elliptic, if
v=n—p—q=0,and either p=0o0r ¢ =0,
(2) hyperbolic, if

v=0, andeitherp=n—1landg¢=1, orp=1landg=n-1,
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(3) ultrahyperbolic, if
v=0andl<p<n-1,
(4) parabolic, if v > 0.

The equation (2.25) is said to be elliptic (hyperbolic, ultrahyperbolic,
parabolic) in D, if it is elliptic (hyperbolic, ultrahyperbolic, parabolic) at every
point of D .

The classification can also be made with respect to the eigenvalues of the
coefficient matrix A, i.e. the roots of the equation

a (2% — A - ap (29
: : =0.
any (2°) o Gpn (29) = A

(From linear algebra it is known that since the matrix A is symmetric its
eigenvalues are all real. Moreover the number of positive, zero and negative
eigenvalues of the matrix A remains invariant under nonsingular changes of
independent variables. Let Aq, ..., A,, be the eigenvalues of the matrix A of the
principal part of Eq. (2.25).

The equation (2.25) at the point z° is said to be:

(1) elliptic, if Ay, ..., Ap are nonzero and have the same sign,

(2) hyperbolic, if A1, ..., A, are nonzero and all except one have the same
sign,

(3) ultrahyperbolic, if Ay, ..., A, are nonzero and at least two of them are
positive and two negative,

(4) parabolic, if any one of Ay, ..., A, is zero.

For instance, the Laplace equation

Av:=Ug g + ... +Ug,z, =0,

is elliptic in R"™, the wave equation
p q
2 —
Uy — c“Au =0,

where c is a constant, is hyperbolic in R™+?, while the heat or diffusion equation
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up — a?Au = 0,
where a is a constant, is parabolic in R**!. The equation
Ugyzy + Uzpzy — Uzgzs — Uzyog — Yagzs = 0,
is ultrahyperbolic in RS,
Example 2.4. Reduce the equation
1
2u:c1:c1 + 3uw2m2 — sUgzxg T+ 6“111:2 - zuw2m3 =0

2

to the canonical form. Determine the type and change of variables.

Solution. The characteristic form of the equation is

26 + 363 — 363 + 6616, ~ 2%k

2
(ﬁa V3 - %53) (6 ) = (6~ &)

= ni+ni-n3

I

The change of variables
T V2 V2 - 75 &1
=11 1 ()
73 1 0 -1 €3

has an inverse

€ -2 2 1 m

L l=] v2 -1 -1 2

€3 -2 2 0 73
Then the linear transformation

W - \/i \/§ —v?2 T

Y3 1 -1 0 T3

reduces the original equation to the canonical form
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Uy + Vyoys — Vyays = 0.

So the equation is hyperbolic on the whole space. Note that

1 \/§ 1 1 Y1
T3 | = V2 1 0 Y2
z3 —%\/Q 0 -1 Y3
and
1
v (yl>y2)y3) =u (\@w +y2 + ys, \/§y1 +y2, ——ﬁw - ys) .
Exercises.

1. Reduce the following equations to the canonical form.
(a) 4u~731931 + 3um212 + %Ux3:,;3 + 2uﬂiwz + 4u=ﬂlws + 2'“1'223 = 0
(b) Bug, gy + dug,g, — %“msza + dug, g, + 20z, = 0.

1
(c) Sumlml + 2ua¢2z2 - 2“'1313 ~ Uz + 6u$11‘2 - 2uz‘114
+2u$223 - Zuxzm + 211,13,,,4 =0.

(d) 4u171m1 + Ugyz, + %umaza - 2uz1w2 + 2u$113 =0.

2. Suppose that a;, b;,i = 1,...,n and ¢ are constants and a; # 0. Find a
function w such that the change of the dependent variable u = wv reduces the
equation

n n
Zaiumzi + Z biug, +cu = f(z)
i=1 i=1
to the form N
Zawwixi + Cu = F(z).

i=1

3. Classify the equation (2.11) with respect to the eigenvalues Ay, Az of
the coefficent matrix
a b
b ¢ |’

Compare with Definition 2.1.
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Chapter 3

One Dimensional Wave
Equation

3.1 The Wave Equation on the Whole Line.
D’Alembert Formula

The simplest hyperbolic second-order equation is the wave equation

Ug — CUgy = 0, (3.1)
where z signifies the spatial variable or “position”, t the “time” variable, u =
u{z,t) the unknown function and ¢ is a given positive constant. The wave
equation describes vibrations of a string. Physically u(z,t) represents the
“value” of the normal displacement of a particle at position = and time .

Using the theory of Section 2.2 the characteristic equation of (3.1) is
(dz)® — 2 (dt)? =0
and

T+ cl=cy
T—ct=co

are two families of real characteristics. Introducing the new variables

Ly =zt s [ s=(E+n)/2
q)'{n=z—ct’ (Dl'{t=(£—n?§//20

and the function

67
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U&n) =u((+m)/2,(§—n)/20),

the equation (3.1) reduces to

Ugy (§,m) = 0. (3.2)

Therefore

Ue (§m) = F (€),

U(f,n)=/F(€)d€+g(?7)=f(§)+g(n),

and in the original variables u (z,t) is of the form

u(z,t) = f(z+et)+g(z—ct), (3.3)

known as the general solution of (3.1). It is the sum of the function g (z — ct)

which presents a shape traveling without change to the right with speed ¢ and

the function f (x + ct) - another shape, traveling to the left with speed c.
Consider the Cauchy (initial value) problem for (3.1)

Uy — gy =0 zER, t>0,
(CW):q u(z,0)=0¢(z) z €R,
ug (z,0) = ¢ (z) z€R,

where ¢ and v are arbitrary functions of . Further we denote R* = {t : t > 0}.

Theorem 3.3. ( D’Alembert' formula ). If p € C?(R) and ¢ € C* (R)
the problem (CW) has a unique solutionu € C? (R x R*) given by the formula

z+tct

u(m,t)=%(<p(m+ct)+<p(r—ct))+§lz /'(,b(s)ds. (34)

T—ct

Proof. We are looking for a solution of the problem in the form (3.3)
satisfying the initial conditions at { = 0

1Jean Le Rond D’Alembert, 16.11.1717-29.10.1783.
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f(z)+g(z)=p(2), (3.5)

cf '(z) —cg' (z) =% (2).

Differentiating (3.5) with respect to  and solving the linear system for f’ and
g', we obtain

f'(5) = 50 (@) + 5= (@), (36)

Py e Loy L
&)= 39 () - ¥ @), (3.7
Integrating (3.6) and (3.7) from 0 to = we get

F@) =50 + /¢(sds+<f(0) 30),

00 = 3o @ - 5 [V as+ (30~ 50 ©).
4]
By (3.5) f(0) + g(0) = ¢ (0). Therefore

u(z,t) flz+ct)+g(z—ct)

= l(so(ac+ct) +o(z —ct))

Ii

z+-ct

_21_(/ W (s)ds — / P (s)ds)
1 z+ct
= —(cp(x+Ct)+<P($“Ct)) /%”(5)‘“

Conversely it is easy to see that for ¢ € C?(R) and ¢ € C'(R) this
formula gives the solution u € C% (R x R*) of (CW) . Note that if o = ¢ = 0,
then it follows ©v =0. H

Some corollaries from D’Alembert formula are as follows:
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1. Domain of dependence. The value of u at (zg, ty) is determined by the
restriction of initial functions ¢ and ¢ in the interval [zg — ctg, 2o + ctg) on the
z—axis, whose end-points are cut out by the characteristics:

r—xo=2c(t —1tp),

through the point {xg,tg).
The characteristic triangle A (zg, 1) is defined as the triangle in R x R
with vertices

Ao (xo —cto,0), Bo(zg+ cto,0), Po(zo,to)-
For every (z1,t1) € A (g, to)

[r1 = cty, 21 + et1] C [0 — cto, zo + cto],

A (.’Iil,tl) C A(!L‘o,to)

and u (z1,t1) is determined by the values of ¢ and ¢ on [z; — ct1,z1 + cty].
2. Domain of influence. The point (zg,0) on the z—axis influences the
value of u at (z,t) in the wedge-shaped region

I(zo)={(z,t):xo—ct <z <wmp+ct, t>0}.
For any

P (z1,t1) € I(z0), A(z1,t1)NI(20) #0,

Py (z1,t1) ¢ I'(z0), A(z1,t1)NI(xe)=0.

3. Well-posedness.

The problem (CW) is well-posed in the sense of Hadamard? if the following
three requirements are satisfied:

(1) There exists a solution;

(ii) The solution is unique;

(iii) The solution is stable.

Statement (iii) means that small variations of the initial data yield small
variations on the corresponding solutions. This is also referred to as continuous

2Jacques Hadamard, 18.12.1865-17.10.1963.
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dependence upon the initial data. The meaning of small variation is made
precise in terms of the topology suggested by the problem. A problem that
does not satisfy any one of these conditions is called ill-posed.

For v (z) € C(R) and w (z,t) € C (R x [0,00)) introduce uniform norms

[[9]loo = sup ju(z)|
z€ER

and -
\

wlleor = sup  |w(z,1)].
2€R, 0T

For a given T' > 0 by (3.4) it follows

ztct
3 (12lle + lplle) + 5ol |

r—ct

IA

llulloo,z

< lelleo + Tl oo

Then for any € > 0 there exists § € (0, -H-E—T) such that if ||¢||e < 6 and

l[¥]]oo < & it follows |{ul[ee, T < €, which proves the continuous dependence.

¥

Example 3.3. Solve the problem (CW) withc=1, 19 =0 and
cosz ifxe §—

‘P(””):{ 0 ifz ;f

Solution. The solution of the problem is u (z,2) = 3 (¢ (z + 1) + ¢ (z — t)).
Using Mathematica the profile of u (x,t) is presented in Figure 3.1 at successive
instants t = 0, 1, 7, 3, 4, 5. Note that at ¢t = 0 the amplitude is 1. After the
instant t = 7 the profile breaks up into two traveling waves moving in opposite
directions with speed 1 and amplitude §. The surface u = u (,t) is presented
in Figure 3.2. We use the Mathematica program

flx_]:=Which[-Pi/2<=x<=Pi/2,Cos|x]"3,True,0]

ufx.,t:=(f{x+t]+f{x-t]) /2

h0=Plot[Evaluate[u[x,0]],{x,-8,8},

PlotRange->{0,1},PlotLabel->” Wave at t=0"]

h1=Plot{Evaluate[u[x,1]],{x,-8,8},

PlotRange->{0,1},PlotLabel->" Wave at t=1"]

h2=Plot[Evaluate[u[x,2]],{x,-8,8},

[METIE]

s
2
pig
R
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PlotRange->{0,1},PlotLabel->"Wave at t=Pi/2"]
h3=Plot|Evaluate[u[x,3]],{x,-8,8},
PlotRange->{0,1},PlotLabel->” Wave at t=3"]
h4=Plot{Evaluate[u[x,4]],{x,-8,8},
PlotRange->{0,1},PlotLabel->"Wave at t=4"]
h5=Plot[Evaluate[u[x,5]],{x,-8,8},
PlotRange->{0,1},PlotLabel->"Wave at t=5")
Show[GraphicsArray[{{h0,h1},{h2,h3},{h4,h5}}|,
Frame->True,FrameTicks->None]
Plot3D[u[x,t],{x,-8,8},{t,0,5},PlotPoints->40,
AxesLabel->"Position”,” Time”,” Value”,
PlotRange->{0,1},Shading->False]

Wave at t=0 Wave 1at t=1
0.8
0.6
0
.2
25 5 7,5 -1.5 -5 -2,5 2.5 5 7.5
t=Pi/2 Wave at t=3
1 1
0.8 0.8
0.6} 0.6
.4 0.4
O.ZE .2
~7.5 -5 2.5 25 5 7.5 -1.5 5-2.5 2,5 5 7.5
Wave 1a’c t=4 Wave 1at t=5
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
-7.5 -5 2.5 25 5 7.5 -15 -5 -2.5 2.5 5 7.5

Figure 3.1. The wave at instants t =0, 1, 7, 3, 4, 5.
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Figure 3.2. Graph of the function v = u (z,¢) in Example 3.3.

Example 3.4. Solve the problem (CW) with ¢ = \/m, ¢ =0 and ¥ (z) =
2

-z

e
T

Solution. Let erf (z) = % S/ e=*"ds be the error function used in statistics.
0

The solution can be expressed in terms of erf as

] z4/mt

_ —s?

u(z,t) = N / e % ds
T—+/Tt

- % (erf (z + v/7t) — erf (x — V/xt)) .

Using Mathematica the profile of u (z,t) is presented in Figure 3.3 at the suc-
cessive instants ¢ = 0, 1, 2, 3. Note that at ¢ = 1 the amplitude is 1/2 and
it remains the same for all next instants.The surface u = u (z,t) is plotted in
Figure 3.4. We use the following program
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ufx_ t_]:=(Erf{x+Sqrt[Pi]t]-Erf[x-Sqrt[Pi]t]) /4
h0=Plot[Evaluate[u[x,0]],{x,-8,8},
PlotRange->{0,0.5},PlotLabel->”Wave at t=0"]
hl=Plot[Evaluate[u[x,1]],{x,-8,8},
PlotRange->{0,0.5},PlotLabel->"Wave at t=1"]
h2=Plot{Evaluate[u[x,2]],{x,-8,8},
PlotRange->{0,0.5},PlotLabel->"Wave at t=2"]
h3=Plot|Evaluate[u[x,3]],{x,-8,8},
PlotRange->{0,0.5},PlotLabel->"Wave at t=3"]
Show|GraphicsArray[{{h0,h1},{h2,h3}}],
Frame->True,FrameTicks->None]
Plot3D[ufx,t],{x,-8,8},{t,0,4},
AxesLabel->"Position”,” Time”,” Value” ,Plot Points->20,
PlotRange->{0,0.5},Shading->False]

Wave at t=0 Wave at t=1
0.5 0.
0.4
0.3
0.2
0.1
-7.5 -5 2.5 25 5 1.5 -7.5 -5 -2.5 25 5 7.5
Wave at t=2 Wave at t=3
0.4 0.4
0.3 0.3
0.2 0.2
0.1 0.1
-1.5 -5 -2.5 25 5 7.5 -1.5 -5 2.5 25 5 7.5

Figure 3.3. Wave at instants ¢t =0, 1, 2, 3.
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Position

Figure 3.4. Graph of the function u = 1 (erf (z + /mt) — erf (z — \/mt))

Exercises

1. Prove the formula for the general solution of the wave equation (3.1)
reducing it to the system of first order equations:

{ vy —cvy =0

Uy + Cugy = 0.
2. Suppose

A(z,ty, Bz +cst+s),
Cz+c(s—7),t+s+7), D(x—crt+7)

are vertices of a characteristic parallelogram, where s, are positive parame-
ters. Prove that if u € C? (RQ) is a solution of the wave equation (3.1) then

u(A)+u(C)=u(B)+u(D). (3.8)
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Conversely, prove that if u is of class C? (R2) and satisfies (3.8) for every
(s,t) € R?, then u is a solution of the equation (3.1).
3. (a) Prove that if u (x,y,2) = u(p),p = /22 + y? + 22, then
2
Au = Ugr + Uyy + Uy, = Upp + ;'U,p.

(b) Making the change of variables v (p,t) = pu (p,t) show that the general
solution of the three-dimensional wave equation

2
Ut — C2(Upp + ;u,,) =0
is
wlot) = S o+ ) +alo- ).

(c) Prove that the initial problem for the spherical wave egquation with
conditions

©(0,0) =9 (p), u:(p,0)=1(p)

has a solution

ptct
1 1
— - —ct — ds.
w(p,t) = 5o+ o lpret) + (o= ctholo-c) + 5 [ w(s)ds
p—ct
Note that this solution exists provided p > ct.
T+ct
4. Show that for ¢ € C* (R) the function u(z,t) = 5= [ 1 (s)ds verifies
z—ct

the problem:

Ut — Czuzx =0
u(z,0) =0
u (z,0) = ¢ (x).

Check it also using Mathematica.
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5. (a) Prove that if ¢ (s) is a continuous function, then ¢ (z + ct) are
“weak” solutions of the equation us — c?uz, = 0 in the sense

//cp (z & ct) (vy — Pugg) dadt = 0,
R R

for every test function v (z,t) of the space
Cs° (R?) = {f € C*° (R?) : suppf is compact},

where

suppf = {(z,4) € R2 - 1 (=,0) £ 0}.

(b) Prove that if ¢ (s) is a continuous function, then the problem
Ugy — gy = 0
u(z,0) = ¢ ()
U (IE, 0) =0

has a weak solution u (z,t) = 3 (¢ (z + ct) + ¢ (x — ct)) in the sense
//u (z,t) (vse - *vgg) dzdt = 0,
R R

for every test function v (z,t) € C§° (R?).

(c) Using Mathematica draw the profile of the solution of the problem (3.1)
with

. [ 1—z) if |z L1,
e=1 9"(5‘)*{ 0 iffa]> 1,

at each of the instants ¢t =0, 0.2, 0.6, 0.8, 1.2.
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3.2 The Wave Equation on the Half-line. Re-
flection Method

Let us consider the problem (CW) on the half-line (0,c0) with Dirichlet?
boundary condition at the endpoint z = 0.
This is the problem:

Ut — Cligy =0 0<2<o00,t>0,
(CDW): ¢ u(z,0) =9 (), u(z,0) =1 () 0<z< oo,
©(0,t) =0 t>0.

It can be interpreted as vibrations of a very long string with a clamped
one end.

We are looking for a solution of (CDW) given by an explicit formula.
In fact we shall reduce the problem (CDW) to a problem (CW) by the odd
reflection method. 1t consists in considering the odd extensions of the initial
functions @, (z) and 1, (z) where

px) ifz>0,
o () =< —p(-z) ifz<0,
0 ifx=0.

The problem
Vg — Vg =0 zER,t>0,
(CW,): ¢ v(z,0) =, () z € R,
vt (2,0) = 1, (z) z €R.

has the solution
1 z+ct
v(e,0) = 5 (o @t ct) 4o (e =) + 5 [ Volo)ds

:z:—ct
Its restriction
u (m7t) = (:lf, t)lzzo

is the unique solution of the problem (CDW).
If0 <z <ct, then

3Lejeune Peter Gustav Dirichlet, 13.02.1805-05.05.1859.
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z+ct z+ct 0
I_/ﬁ%(s)ds - Ofw(s)ds—/zp(—s)ds

z+ct z+ct

- /¢<s)ds+/w<s )ds = /w(s

Therefore we have

z+ct

bo@ra)to@-c+q [ v@ds o>
u(x,t) = xctc-:z
1 (p(e+ct) — o (ct — z) + / W(s)ds 0<z<ct.

(3.9)

Note that u(z,t) is a continuous function if the compatibility condition

¢ (0) = 0 is satisfied. Otherwise u (z,t) is a discontinuous solution and the
jump of u (z,t) on the characteristic z = ct is

u{ct +0,t) —u(ct — 0,t) = ¢ (0).
We have

Theorem 3.4. Let ¢ (x) € C?(R*),y (z) € C' (R*) and the following
compatibility conditions be satisfied:

©(0) =¢"(0) =% (0) =0. (3.10)
Then the function u(z,t) defined by (3.9) ts the unique solution of the
problem (CDW) of class C2(Rt x Rt).

Proof. The function u (z,t) is of class C? in domains {(z,t) : ¢ > ¢t > 0}
and {(z,t) : 0 < = < ct}. We shall prove that the derivatives of u (z,t) up to
order two are continuous along the line £ = ct. We have

%(w’(x+ct>+<p'<m—ct))+%(wmct)-w(:c—ct», e
i (2,t) =
104 (x+ct)+<p(ct~x))+ (w(m+ct)+1,b(ct—:c)) 0<z<ct.
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Therefore by (3.10)
ug (¢t + 0,t) — uy (¢t — 0,t) = —%w (0)=0.
By the same way

Ugg (€t + 0,1) — ugy (ct — 0,8) = " (0) =0,
ug (¢t +0,t) — ug (¢t — 0,t) = 9 (0) = 0,
Uty (et + 0,t) — ute (ct — 0,) = —cp” (0) = 0,

Ut (Ct + 0, t) - Utt (Ct - O, t) = C2(p” (0) = 0.

Moreover the function u (z,t) satisfies the equation, boundary and initial con-
ditions of the problem (CDW). R

We can do the same for the problem with the Neumann* boundary condi-
tion, considering even extensions of initial data.
Let us consider the problem

Ut — CPUggy = 0 0<z<oo,t>0,
(CNW): < u(z,0) = (z), u(z,0) =9 (z) 0 <z < o0,
uz (0,1) =0 t>0.

In this case we reduce the problem (CNW) to (CW) with initial functions
we (z) and 9. (), where

T ifx >0,
Pe (2) = { (f((-g) ifz<0.

As before we can show that the problem (CNW) has a unique solution

—%(go(x%—ct)—l—cp(x—ct))—k—2-12(\I'(x+ct) -U(z—ct)), z>a,
u(z,t) =

%(<P(x+ct)+g0(ct—x))+-21—c(\I'(x+ct)+\IJ(ct—z)), O0<z<eg,.

4Karl Gottfried Neumann, 07.05.1832-27.03.1925
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t

where ¥ (t) = [ 1 (s)ds.
0

Example 3.5. Solve the problem (CDW) with ¢ = 1,4 =0 and

[ cosfz =z e(3n/2,51/2),
p(z) = { 0 =z¢ R+\7E37r/27,r57r/2)~

Solution. The solution of the odd extended problem

Vit — Uz =0 2z ER,t>0,
v(z,0) = @, (z) z € R,
v (2,0) =0 z€R,

is v(z,t) = 5 (o (z+) + 9o (z~ 1))
The original problem has the solution

_[ s+t te-1)  a>t
sen={ JEEIOT0GTD 022t

T

The profile of u (z,t) is presented in Figure 3.5 at successive instants ¢t = 0, %,

%’5, 2m, 57", 77” using the Mathematica program

flx_]:=Which[3Pi/2<=x<=5Pi/2,Cos|x] " 3,True,0]
glx_]:=Which[x<0,-f[-x], True,f[x]]

bt J=(Ept +gl])/2
h0=Plot{Evaluate[u[x,0]],{x,0,8Pi},
PlotRange->{-1,1},PlotLabel->"Wave at t=0"]
h1=Plot[{Evaluate[u[x,Pi/2]],{x,0,8Pi},
PlotRange->{-1,1} PlotLabel->”Wave at t=Pi/2"]
h2=Plot(Evaluate[u[x,3Pi/2]],{x,0,8Pi},
PlotRange->{-1,1},PlotLabel->"Wave at t=3Pi/2"]
h3=Plot[Evaluate|[u[x,2Pi]],{x,0,8Pi},
PlotRange->{-1,1},PlotLabel->" Wave at t=2Pj”]
h4=Plot|Evaluate[u[x,5P1/2]],{x,0,8Pi},
PlotRange->{-1,1},PlotLabel->"Wave at t=5Pi/2”]
h5=Plot[Evaluate[u[x,7Pi/2]],{x,0,8Pi},
PlotRange->{-1,1},PlotLabel->"Wave at t=7Pi/2"]
Show|GraphicsArray[{{h0,h1},{h2,h3},{h4,h5}}]



82 Partial Differential Equations

Frame->True,FrameTicks->None]
Plot3D[u[x,t],{x,0,8Pi},{t,0,4Pi},
AxesLabel->"Position”,” Time” ,” Value” PlotPoints->40),
PlotRange->{-1,1},Shading->False]

1 Wave at t=0 1 Wave at t=Pi/2
0.75 0.75
0.5 0.5
0.25 0.25 /\/\
—0.25 2.5 5 7.5 1012.51517.5 -0.25 2.5 5 7.5 1012.51517.5
-0.5 -0.5
-0.75 -0.75
-1 -1
1 Wave at t:3Pl/2 1 Wave at t=2Pi
0.75 0.75
0.5 0.5
0.25 /\ A 0.25 /\
-0.25 5 100 15 20 25 —0.25 5 100 15 20 25
0.5 -0.5
-0.75 -0.75
-1 -1
0.75 0.75

0.5 0.5
0.25 /\ 0.25 /\

025 5 10 15 20 25 5, \7 10 15 20 25
-0.5 -0.5
-0.75 -0.75
-1 -1
Figure 3.5. Wave at the instants t =0, 5, 3 27 3% | Tx
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Position

Figure 3.6. Graph of the function u = u (z,t) in Example 3.5

Note that the initial profile splits into two profiles with amplitude % up to
the instant 27, when the left one turns to zero and after this instant it changes
its direction. This fact is known as a “swimmer effect”. The graph of the
function u (z,t) on the rectangle Ry = {(2,t) : 0 < z < 87,0 <t < 47} is
plotted in Figure 3.6.

Exercises

1. Prove that for a function f(z) € C? (R¥) its odd extension f,(z) €
C? (R) if and only if £ (0) = f” (0) = 0.

2. Solve the problem

Upp — Ugg = 0 0<z<oo,t>0,
u(z,0) =sin®z, w (2,0)=0 0 <z < oo,
w(0,t) =0 t>0.

Prove that the solution u (z,t) € C?((0, ) x R).
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3.3 Mixed Problem for the Wave Equation

Let us consider the problem (CW) on a finite interval [0,!] with Dirichlet
boundary conditions at the end-points = 0 and z = [. This is the problem

U — CUgg =0, O<z<,t>0,
(MDW): ¢ u(z,0)=p(x), w(z,0) =9 (z), 0<z <,
©(0,t) = u(l,t) =0, t>0.

It can be interpreted as vibrations of a string with clamped ends, for
instance vibrations of a guitar string.

We can get the solution of the problem (MDW) again using the method
of reflection in this case through both ends. We extend the initial data ¢ (x)
and 9 (z) given on the interval (0,!) to the whole line using “odd” extensions
Peo () and e, (z) with respect to boeth sides z = 0 and z = I, where

@ (z) 0<z<l,
Peo (Z) 1= ~p(-z) -l<z<0,
extended to be of period 2.

Consider the problem (CW,,) :

Vg — Uz =0 T ER,E>0,
(CWeo) : v (2,0) = @eo () r€R,
Uy (2,0) = o () zeR.

By Section .3.1 it has a solution

T+ct
1 1
v(z,t) = 3 (Peo (T + €t) + Peo (z — ct)) + 5% / Yeo (8) ds.

z—ct

Its restriction

u(z,t) = v (z, t)!ogzgl

gives the unique solution of the problem (M DW). Note that the solution
formula is characterized by a number of reflections at each end z = 0 and
x = [ along characteristics through reflecting points. They divide the domain
R ={(z,t): 0 < z < (,t > 0} into diamond-shaped domains with sides parallel
to characteristics and within each diamond the solution u (z,t) is given by a
different formula.

On the data ¢ and 9 we impose the compatibility condition
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p0) =) =9(0) =9 {)=0. (3.11)
In this case the solution u(z,t) is a continuous function on R. Note that
u(z,t) € C?(R) if

Pp0) =) =¢"(0) =" ) =¥ (0) =4 () =0. (3.12)

We can do the same for the problem with the Neumann boundary condi-
tion, considering even extensions of initial data. Namely, let us consider the
problem

Ups — CPUgy = 0 O<z<l,t>0,
(MNW):{ u(z,0)=¢(z), u(z,0) = (z) 0<z<l,
uz (0,t) = uz (I,t) =0 t>0.

In this case we reduce the problem (MNW) to (CWee) with initial func-
tions @ee (z) and .. (x) ,where

elz), O<z<l,
Pee (.’I:) = <p(—m) , —l<z <0,
extended to be of period 2.

As before the problem (MNW) admits the unique solution

u(x,t) = w(x, t)loswsl ,
where w (z,t) is the solution of the problem

w“—-czwm=0 iL‘ER,t>0,
(CWee) : w(,0) = pee () r€R,
Wy (:E>0) = wee (iL’) zeR.

Example 3.6. Solve the problem (M DW) with ¢ =1, =0 and

_ [ cosPz € [(3/2,57/2)],
p(r)= { 0 T Eaiﬂ, 3[7r/2) U (57{/2]» 4r).

Solution. The solution of the odd extended problem

vtt—vm=0 $€R,t>0,
v(2,0) = peo (2) z € R,
’Ut(iD,O):O reR,
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s U(:z:,t) = % (Qoeo (:L‘—I—t) + ©eo (5'7 - t))
The original problem has a solution

u(z,t) = v(myt)105m§47r'

The graph of the function u (z,t) on the rectangle
Ry ={(z,t): 0 <z <4m,0<t <4n}

is presented in Figure 3.7 using the Mathematica program

f[x_:=Which(3Pi/2<=x<=5Pi/2,Cos[x]"3,True,0)
g0[x_]:=Which[x<0,-f[-x],True,f[x]]
gl{x_]:=Which[x>4Pi,-f[x-4Pi], True,f[x]]

ufic, b= (g1 -] +80x-t])/2
Plot3D{u[x,t],{x,0,4Pi},{t,0,4Pi},
AxesLabel->"Position”,” Time”,” Value”, PlotPoints->40,
PlotRange->{-1,1},Shading->False]
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Figure 3.7. Reflection of a wave.
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Note that the initial profile splits into two profiles with amplitude —5- up to
the instant 27, when both turn to zero and after this instant they change their
direction up to the instant 4.

Exercises

1. Find the values u(3,1), u (2, }) where u(z,1) is the solution of the
problem

Ugt — Ugg = 0 O<z<1,t>0,
u(z,0) =221 -2), u (2,0)=0 0<z<l,
g (0,8) = ug (1,£) = 0 £>0.

2. Solve the problem

U — Ugg = 0, O0<z<4mt>0,
_f cos®z, 3r/2 < z < 57/2,
u(@O) =91 "0 e[ 4n]\(3r/257/2),
us (2,0) =0, 0<z < 4m,

ug (0,8) = ug (4m,t) =0, t>0.

Plot the graph of the function u (z,t) on the rectangle R3 = {(z,t): 0 < z <
4m,0 < t < 4} using Mathematica.

3.4 Inhomogeneous Wave Equation

Let f € C*(R?) and consider the inhomogeneous Cauchy problem

Uy — CUze = f T E€R,t>0,
(Icwy: u(z,0) = ¢(z) z€R,
u(z,0) = ¥(z) z €R.

It can be split into two problems - one homogeneous with nonzero initial
data (CW), which we solve, and one inhomogeneous with zero initial data

utt—czum=f fL'GR,t>O,
u(z,0) =0 ze€R, (3.13)
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If w1 (z,t) and ug(x,t) are solutions of (CW) and (3.13) respectively, then
u(z,t) = uy(z,t) + ug(z, t) is a solution of (ICW).
Let us consider (3.13). Making change of variables

& = z+ct,

n = x-—ct,

we transform (3.13) into
Uen = — 1z F &), (3.14)

U(€,8) = Ue(€,€) = Upn(€,6) =0, (3.15)
where

2yt
+
3
oy
3

|

3

U¢,n = o

F(E’n) = f(

),
).

N

C

78 2%
—+ o
3
ey
|
3

wl

" 2
Integrating (3.14) with respect to 7 we have

1 3
Ue(6,6) ~ Ueesn) =~z | (&),
n

which, in view of (3.15), yields
1 £
Uele,n) = g | F(Es)ds.
7

Integrating the last equation with respect to £

I
U(§7 77) - U(ﬂﬂ?) = E / / F(Z, s)dsdz,
n Jn

1 [t
U¢,n) = Zzg/n /n F(z,s)dsdz. (3.16)
Let us make change of variables

s = o-—cT,

z2 = o+4cT,
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which has Jacobian J = _(_s,_z) = 2c. The last change transforms the domain

d
(o, 7
of integration
D={(s2):n<s<z n<z<é)

into
D'={(o,7):x—ct-7)<o<z+clt—7), 0<7<th

Indeed by, n < s < z < £, we have
r—ctLo—ctrLo+cr <z+ct
Then it follows
0<2r<2ct0< 7Y,
and
z—ct—-1)Lo<z+c(t—1).

The solution of (3.13) is

t zte(t—1)
1
ug(z,t) = %/ / flo,7)dodr = 512 // f(o,T)dodr (3.17)
0 z—c(t—71) A(z,t)

where A(zx,t) denotes the characteristic triangle.
We prove that problem (ICW) has a solution given by the exact formula

u(z,t) = 2ol +ot) +plz - ct) (3.18)
z+ct t z+c(t—7)
to | [was+ [ [ somdoar
T—ct 0 z—c(t~T1)

Note that from (3.18) it follows the well-posedness of (ICW).
Indeed, as in Section 3.1, for 0 <t < T, we have

1 1
@01 < ol + 55 1900 2T + 5 1y [[ dodr
A(z,t)

TZ
<0l + T 1lloo + 5 1o,z
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because

/ / dodr = S(A) < 2C€'T.

A

€
1+4T+72)2
b, 1Y)l < 6 and || fllo p < 6, it follows [lul| , » <e.

Then for € > 0, there exists § € | 0, ) such that if ||¢|| <

Example 3.7. Solve the problem

u(z,0)=0 z€R,

Ugp — Ugg = Tt 1'6R,t>0,
u(z,0) =0 z € R.

Solution. The solution is

) t z+(t—71)
u{z,t) = 3 ordodr
0 z—(t—7)
1 t
- /T((x +(t=T))? = (2 (t—7))2)dr
0
t 3 3
= :1:/0 T(t—T)dT=w<%—%>
= %xts’.
Exercises

1. Solve the problems

(a)
U — Ugz = €771z ER,T >0,
u(z,0) =0 z €R,
ug(z,0) =0 zeR.
(b)

Uy —Ugy =sinz x € R, E> 0,
u(z,0) = cosz z € R,
u(z,0) =z z€R.
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()
U —Ugg =22 T ER,2>0,
u(z,0) = cosz z €R,
ui(z,0) =0 r € R.

2. (a) Prove the formula

aft) at)

d 9

Ei/f(w,t)dm: / E.Jti(x,t)dﬂf(a(t),t)a'(t),
0 0

where f(z,t) and «(t) are differentiable functions.
(b) Verify that the function

1 t z+t—7r
u(z,t) = 5/ / f(o,7)dodT
0 z—t+7

satisfies the problem
Uy — Ugz = f(.’l?,t); ’U,(fL‘,O) =90, ut(:c,O) =0,

where f(z,t) € C1(R?).
Check the problem using a Mathematica program. One program is

g(w_]:=Integrate[f[v,w],v,x-t+w,x+t-w]
ufx_ t_]:=Integrate[g[w],w,0,t] /2
utt=D|ufx,t],t,2]

wax=D[ulx,t],x,2]

Simplify [utt-uxx]

Give another program.

3. Prove the formula (3.17) applying Green’s® identity

/ udt + udz = // (ut - czvz) dxdt,
oA N

to the equation s — gy = f (z,t),where QA is the oriented boundary of the
characteristic triangle A = A (z,1).

5George Green, 14.07.1793-31.03.1841.
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3.5 Conservation of the Energy

Let
R={(z,t): 0<z <, 0<t< o0},

and u € C? (R) be a solution of the problem

uu—czum=0 0<(L’<l,t>0,
MDW): { u(z,0)=0(2), w(@0)=y(@E 0<z<l,
u(0,t) =u(l,t) =0, t>0.
The quantity
!
1 2
KE(t) = 3 [ u (z,t)dx
0
is known as the kinetic energy, the quantity
) l
PE () = 3 /czui (z,t) dz
0
is the potential energy. The sum of the kinetic and potential energy
. l
B(t) = KE(t) + PE(t) = 5 / (w2 (2, ) + P (z,1)) da
0

is the total energy of the system at the instant ¢. The conservation of energy is
one of the most basic facts about the wave equation. For the above mentioned
problem (M DW) we show that the total energy E(t) is a constant independent
of t. This is the law of conservation of energy.

Theorem 3.5. Ifu € C%(R) is a solution of the problem (MDW), then
the energy E (t) is a constant E (t) = E(0).
Proof. Multiplying the equation by u; , using the identities

190
25t ()

UgUpy =

0 19
Uty = % (uxut) - 5—6? (Ui) )
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and integrating by parts we get

[}
0 = O/(utt — Cuge) updz
!
=[G () - Pl (waw) — 3 2 (42))de
0

!
1d
= Ezi—;/(u% (z,t) + Pl (z,1)) do
0

~c2uy (1, t) ug (1, 1) + Pug (0,8) s (0, 1)
_diz?_

dt’

Therefore for t > 0

{
Et) = E(0)= % / u? (z,0) + *u (z,0)) do (3.19)
0

N =

{
/ (W () + () da
0

so the energy is conserved.
(From (3.19) it follows that if p =4 =0thenu=0o0n R. M

Exercises

1. Consider the problem

Uy ~ Ugg + Ut = 0 O<z<lI, t>0,
u(z,0) = (), w(2,0)=1v() O<z <,
w(0,t)=u(l,t) =0 t>0.

Prove that the energy

1
EQ@®)= / (z,t) + 2 (z,1)) dz
0

Mlv—l
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is a decreasing function.

2. Let u € C? (R?) be a solution of the wave equation

2
Ut — CUgg = 0,
and

DT ={(x,t):a—ct <z <b+ct,0<t<T},

Dr={(z,t):a+ct<z<b-—ct,0<t<T}.

(a) Using

1
ug (wge — Pgs) = = (uf + c2u:)t - (c2uzut)z

2

and Green’s identity in DT prove that

b4-cT b
u? +c2ul) (x,T)dz — | (u? + *u?) (z,0) dz
t z t

a—cT a
b+cT

= /“ (us — cuz)z (m, a- m) dz + / (ue + cuac)2 (x, - b) dz.

& C
a—cT b

(b) From the last identity it follows

b+cT b
/ (ut2 + czui) (z,T)dz > / (uf + c2ug) (z,0) dz.

a—cT a

(c) Applying Green’s identity in D prove that

b—cT b
[ ey nin s [ () @0 i
a+cT a
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3. Consider the problem

Ut — Ugy = | zeR,t>0,
u(z,0) =¢(z), u(z,0)=1(x) z €R,

and suppose that f € C' (R x RT)NL2(R x R*),p € C?(R), ¢’ € L?(R)
and ¢ € C' (R)NL?(R). Let

+o0

E@)=3 / (u? (,1) + 42 (2, 1)) da.

Prove that

/ 72 (z,5)dz)ids + Vv E (0).
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Chapter 4

One Dimensional Diffusion
Equation

4.1 Maximum-minimum Principle for the
Diffusion Equation

In this section we consider the homogeneous one-dimensional diffusion (heat)
equation

U — @2Ugg =0, 4.1)

which appears in the study of heat conduction and other diffusion processes.
As a model for equation (4.1), we consider a thin metal bar of length { whose
sides are insulated. Denote by u(z,t) the temperature of the bar at the point
z at the time t. The constant k£ = &2 is known as the thermal conductivity.
The parameter k& depends only on the material from which the bar is made.
The units of k are (length)?/time. Some values of k are as follows: Silver
1.71, Copper 1.14, Aluminium 0.86, Water 0.0014. In order to determine the
temperature in the bar at any time ¢t we need to know:
(1) initial temperature distribution

u(z,0) = p(z), 0<z<l,

where p(z) is a given function.
(2) boundary conditions at the ends of the bar.
For instance, we assume that the temperatures at the ends are fixed

97
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u(0,t) =Ty, wu(l,t)=T, t>0.

However it turns out that it suffices to consider the case Ty = T = 0 only.
We can also assume that the ends of the bar are insulated, so that no heat can
pass through them, which implies

uy(0,t) = uy(I,t) =0, t>0.
A “well posed” problem for a diffusion process is

U —Kuge =0, O<z<l, t>0, 4.2)

where u (x,t) satisfies the initial condition

u(z,0) =p(z), O<z<l (4.3)
and the boundary conditions

u(0,t) =u(l,t) =0, t >0 (4.4)
or

ue(0,8) = up(l,t) =0, t> 0. (4.5)

The problem (4.2), (4.3), (4.4) is known as the Dirichlet problem for the
diffusion equation, while (4.2), (4.3), (4.5) as the Neumann problem.

At first we discuss a property of the diffusion equation, known as the
maximum-minimum principle.

Let R = {(z,t) : 0 <2 £1,0 <t < T} be a closed rectangle and

I'={(z,t)e R:t=00rz=0o0r z=1}.

Theorem 4.1. (Mazimum-minimum principle). Let u(z,t) be a continu-
ous function in R which satisfies equation (4.2) in R\I'. Then

max u(z,t) =max u(z,t), (4.6)

min u(z,t) =min u(z, t). (4.7)
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By Theorem 4.1 the maximum (minimum) of u(z,t) cannot be assumed

anywhere inside the rectangle but only on the bottom or lateral sides (unless
u is a constant).
Proof of Theorem 4.1. Denote

M =max u(z, t).

We shall show that max u(z,t) < M which implies (4.6).

Consider the function v(z,t) = u{x,t)+e2?, where € is a positive constant.
We have for (z,t) € R\T

Lv(z,t) = Lu(z,t) — 2ke = —2¢k < 0 (4.8)

and
v(z,t) £ M +€l?, if (z,t) € T.

If v(z,t) attains its maximum at an interior point (z1,%1) it follows that
Lv(zq,t1) > 0, which contradicts (4.8). Therefore v(z,t) attains its maximum
at a point of R = P Uy,y = {(z,t) € R : t = T}. Suppose v(z,t) has a
maximum at a point (Z,T) € 4, 0 < Z < l. Then v,(%,T) =0, v,(Z,T) < 0.
As

vz, T) > vz, T-6), 0<é6<T,

we have

(. T) =lim 2&L =9 ~v@ 1)

> 0.
5§40 ) 20

Therefore Lv(Z,T) > 0, which contradicts (4.8). Hence
M, = m}ng(x,t) = mrz‘axv(a:,t) <M +el?

which implies u(z,t) < M + ¢({? — z?), on R for every € > 0.
Letting € — 0, we obtain u(z,t) < M on R which means that

max u(z,t) =max u(z, t).
Considering the function w(zx,t) = —u(x,t) we get (4.7). W

By the maximum-minimum principle it follows the uniqueness of the solu-
tion of the Dirichlet problem for the diffusion equation
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{ U — kuze = f(z,t) 0<z<!l,0<t<T,
(IDD): u(z,0) = ¢(z) 0<z <],
u(0,t) = g(t), wu(l,t) = h(t) 0<t<T.
Suppose
fl@t) € C(R), e¢lz)eCl0,,
g(t) € C[0,T], h(t)eC[0,T],

e(0) = g(0), ()= h(0).

By a solution we mean a function u € C(R) which is differentiable inside R
and satisfies the equation along with the initial and the boundary conditions
of (IDD).

Theorem 4.2. The problem (IDD) has no more than one solution.

Proof. Suppose u; (z,t) and uy (z,t) are two solutions of (IDD). Let
w(z,t) = uq(z,t) — up(z,t). Then

Wy — kWge =0 0<z<l,0<t<T,
w(0,t) =w(l,t) =0 0<t<T.
By Theorem 4.1 it follows
max w(z,t) =min w(z,t) =0.

Therefore w(z,t) = 0, so that u;(z,t) = us(z,t) for every (z,t) € R.

Consider the problem (IDD) with f = g = h = 0,that is

U — kugy =0 0<z<l,0<t<T,
(HDD) : u(z,0) = ¢(z) 0<z<l,
u(0,t) =u(l,t) =0 0<t<T.

As a Corollary of Theorem 4.1 the continuous dependence of solutions of
(HDD) with respect to initial data follows.

Corollary 4.1. Let u;(z,t) be a solution of (HDD) with initial data @;(x),
i =1,2. Then

Jax Jur(z,t) —uz(z, )] < max lo1(x) — ()], (4.9)
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Jor every t € [0, 7).

Proof. Consider the function w(z,t) = u;(z,t) — uy(z,t), which satisfies

Wy — kwWge =0 0<z<l,0<tLT,
’LU(:E,O) = QO](IIJ) "502(37) 0<z<l,
w(0,t) = w(l,t) =0 0<t<T.

By Theorem 4.1 it follows that

51 (:B,t) - u2(xst) < max{orgf%(l (901 (.’E) - 902(‘7;)) :0}

< max lp1(z) — @2(z)|,
and
ul(xw t) ~uz(z,t) 2= min{olélzigz ((pl(l‘) — 2(z)),0}

v

- max{orgaa%cl (p1(z) ~ pa(z)), 0}

v

- Qoax, lp1(z) ~ p2(z)],

which imply (4.9). B

The uniqueness and stability of solutions to (HDD) can be derived by
another approach, known as the energy method. We have already used this
method in Section 3.5 for the wave equation.

Let u be a solution of the problem (HDD). The quantity

{
H(t):/{; u?(z,t)dx

is referred to as the thermal energy at the instant ¢. In contrast to the wave
equation where the energy is a constant, we shall show that H(t) is a decreasing
function.

Theorem 4.3. (a) Let u(z,t) be a solution of (HDD). Then
H(t)) > H(tp), f0<t; <ta <T.
(b) Let u;j(z,t) be a solution of (HDD) corresponding to the initial data
wi{x), 3=1,2. Then

1l {
/ (w2, 8) — un(z, 1))2de < / (1(z) - pa(2))?de.
0 0
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Proof. (a) Multiplying the equation by u, using

and integrating, we obtain

!
0 = /(ut~—kuw)udac
0

/(;gt( H- k%(uu,)—i-kug)dz

1d

= 5—622 (/ uz(a:,t)d93> - k((uuz) (l,t) - (uuw) (O:t))

+k/ ulde

1dH
2dt()

Therefore H(t) is a decreasing function, so if 0 < t; < to < T, then H(t;) >
H(tz).

(b) The function w(z,t) = ui(z,t) — uz(z,t) satisfies (HDD) with (z) =
¢1(z) — po(z). Therefore for t > 0 by (a)

it

2

1 l
/ (ur(z,t) — us(z, 1)) 2dz < / (w1 (z, 0) — up(z, 0))%dz
0
- / (1(2) — p2())?dz. W

Exercises
1. Consider the mixed problem for the diffusion equation

wz,0)=z(2-1z) 0<2<2,

U — Uzy =0 O<z<2 0<«<t,
u(0,t) = u(2,t) =0 o<t

Show that:

(a) 0 < u(z,t) < 1foreveryt >0 and 0 < z < 2,

(b) u(x t)—u(2—x t) foreveryt >0and 0 <z <2,
(c) fo u?(z, t)dz < 18 for every t > 0.
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2. The maximum principle is not valid for parabolic equations with vari-
able coefficients. Verify that the equation u; — zuz; = 0 in the rectangle
R={(z,t): -2 <z <2 0<¢<1} has a solution u(z,?) = —2at — z? and
max u(z,t) =u(-1,1) =1

3. Consider the thermal energy H(t) of the problem (HDD).
(a) Show that

H'(t) = -2k /Ol ul(z,t)dz
and
H'(t) = 4/ W2(z, )dz
(b) Using the Cauchy-Schwarz inequality derive that
H™(t) < H{t)H"(¢).
(c) Show that for every 0 < ¢; < t < ¢ty < T the inequality
H(t) < H(t) %= H(t2) 50,

holds, known as logarithmic convexity of H(t).

4.2 The Diffusion Equation on the Whole Line

In this section we give an explicit formula for the solution of the Cauchy prob-
lem for the diffusion equation on the whole line

Jour—kug, =0 z€eR, 0<t<T,
(€D) { u(z,0) = p(z) z€R.

We shall prove that the solution of (C'D) is given by the Poisson! formula

(z=¢)°
akt  p(€)d¢, (4.10)

u(z,t) =

2V Tkt

assuming that ¢ () is continuous and bounded on R.
Notice from (4.10) that the value of u (z,t) depends on the values of the
initial data ¢(&) for all £ € R. Conversely, the value of ¢ at a point zg has

1Simeon Denis Poisson, 21.06.1781-25.04.1840.
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an immediate effect everywhere for ¢ > 0. This effect is known as infinite
speed of propagation which is in contrast to the wave equation. Moreover the
solution given by (4.10) is infinitely differentiable for ¢t > 0. It is known that
the diffusion is a smoothing process going forward in time. Going backward
(antidiffusion) the process becomes chaotic. Therefore, we would not expect
well-posedness of the backward-in-time problem for the diffusion equation.

A natural way to derive (4.10) is the Fourier transform, but we do not
consider it in our text. In order to prove that (4.10) satisfies the problem (CD)
we need some preliminaries on improper integrals. Recall some definitions and
properties.

Let f(z,y) be a continuous function in (z,y) € R X [a,b]. Suppose the
integral

I(y) = /_oo f(z,y)dz (4.11)

is convergent for every y € [a, b].

Definition 4.1. We say that the integral (4.11) is uniformly convergent
for y € [a,b], if for every € > 0 there exists Ay = Ao(€), such that if A > A ,

then
+o0
/ f(z,y)dzx

A

+ < g,

/_: f(z,y)d

for every y € [a,b].

Theorem 4.4. If the integral (4.11) is uniformly convergent for y € [a, b],
then the function I(y) is continuous in [a,b).

Theorem 4.5. Suppose f(z,y) and %(w,y) are continuous functions in
R x [a,b], I(y) is convergent for every y € [a,b] and

J(y) = / —(z,y)dz
(v) . ay( Y)
is uniformly convergent for y € [a,b]. Then I(y) is a differentiable function in

(a,b) and
I'(y) = J()-

A criterion on uniform convergence of integrals is the following.



One Dimensional Diffusion Equation 105

Theorem 4.6. (Weierstrass® criterion) Suppose there exists a function
g(x) such that |f(z,y)| < g(z) for every y € [a,b] and the integral

/_ o; 9(z)dz

is convergent. Then the integral (4.11) is uniformly convergent for y € [a, b).
Definition 4.2. A differentiable function u(z,t) is a solution of the prob-
lem (CD) if it satisfies the equation uy — kugy =0 in R x (0,T) and

ltilr(rJl u(z,t) = (z) (4.12)

Theorem 4.7. Let p(z) € C (R ) and |p(z)| < M. Then Poisson formula
(4.10) defines an infinitely differentiable function u(z,t) which is a solution of
the problem (CD) and |u(z,t)| < M.

Proof. From (4.10), making the change of variables £ = z — pv/kt, we have
= : — pVkt)d 4.13

4
u(z,t) \/_/ e~ Tz — pVkt)dp. (4.13)

By Poisson identity

*° 2
/ e Tdp=2ym

-0

we obtain

Let us show that (4.12) is fulfilled. Note that the formula (4.10) has a meaning
for t > 0 and the initial condition is satisfied in the limit sense. We have

2
wwt) = p) = 5= [ e (ol — oD - (414
Let € > 0 be fixed. As ¢(z) is continuous, there exists § > 0 such that

lp(z) — eyl < 5 ,lf lz —y| <6,

or

e~ pVED) — o(@)| < &, if Ipl < % (4.15)

2Karl Theodor Wilhelm Weierstrass, 31.10.1815-19.02.1897.
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2
As the integral ffooo e‘%‘dp is convergent there exists a sufficiently small
tp such that

1 -

— dp < —= Tdp < —
2vm .,,.>7,, 2\/— p|>72—
if 0 <t < tg. Then, by (4.14), (4.15) and (4.16) for t € (0,tg) we have

XTI v

4M (4.16)

oz — pVEE) - ()| dp

2
e“%dp+ oM -

< ——

4\/7_1' |p|<\/% 4M
< E+5——5

2 2 7

which means that (4.12) is fulfilled.
It remains to show that u(z,t) satisfies the equation u; — kugzz = 0 in
R x (0,T). Let Lu = us — kg, As

()

it sufficies to show that

IS R e
t= g [ (e ) o
Suppose that
(z,t) € §:=[—A, A] x [6,T],

where A > 0 and 0 < § < T are fixed.
By Theorem 4.5, in order to show that

L [T et (@ 1
w(@ ) = m/_we ( NN ) PlE)dd (417)

we need to prove that the last integral is uniformly convergent for (z,t) € S.
We have

(z-€62 1 (-8 .
VT 2B #VE | 2 (418)
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< +§2 1
Y
< A? 4+ 52 1
T/

(From the elementary inequality

2 _ 2 2
PN I S
(-2 55
it follows
z — £)2 2922
( 4kt§) 2 : 8kt (4.19)

52 - 2A2

- 8kT

Then, by (4.18), (4.19} and Theorem 4.6, we have

[ (et - m) o

® wie (A€ 1 )
= M/ ° (219\/_ V8 %

< c/ £2+1)d§,

where C = C (M, A, k, T, 6) is a constant, so it follows that the integral (4.13)
is uniformly convergent. Note that the integral f €2e~€"d¢ is convergent

and
/ 2e=de = ~l/ ¢de=¢*
-0 2 )
1

Following the same way we show that

ww = [ (fk;f_g) o€,
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Uan (2, 8) = — /°° o s <(“"f)2 — )<p(§)d§
T ovmk o 4k2VE5  2kV13
and the last integrals are uniformly convergent.
Then

uy — kuge =0, if (z,t) € [-A, A] x [6,T).
As A>0and 0 <8 <T are arbitrary
uy — kugze =0, if (z,t) € R x (0,7,
which completes the proof. B

The initial data ¢(z) in (CD) is a continuous function in Theorem 4.4. It
can be supposed ¢(z) to have a jump discontinuity.

A function ¢(z) is said to have a jump at xo, if both left and right limits
of p(z) exist

@(xo —0) =lim ¢(z), ¢(zo+0)=1lim p(z)
z<zg g

and

p(xg — 0) # p(zo +0).

The function ¢(z) is said to be piecewise continuous if in each finite interval
it has a finite number of jumps and is continuous at all other points.

Theorem 4.8, Let p(x) be a bounded piecewise continuous function. Then
formula (4.10) defines an infinitely differentiable function u(z,t), which is a
solution of the equation

ur —kugy =0, (z,t) e Rx(0,T)
and

. 1

tim u(z,t) = 5(p@+0) +p(z - 0))

for all x € R.
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Proof. Let 2o be a point of jump discontinuity of ¢(z). As in the proof of
Theorem 4.7 we show that

1 [ _p 1

m./o e 'ii_go(:cg—p\/kt)dp—)?p(xg—ﬂ), (4.20)
L/O e~ o(z0 — pVEE)dp — ~p(zp + 0 (4.21)
N p(zo—p P — 5¢(zo +0), :

ast — 0, t > 0. Let us prove (4.20). Suppose € > 0 and § > 0 are such that

l%’(xo—P\/H) —(zo ~0)' <e ifl<p< %

2
As f0+°° e~ "Tdp = /7 there exists ¢y > 0, such that

/ _B‘po<5\/—, if 0 <t < to,
p>7= 2M

where, as before, |p(z)| < M for every z. Then

1 ® _p? 1
‘m/o e 4 $0—kat)dp—§¢(xo-0))
1 * 2
= “2—\/:7;/0 e” So(xo—Pth)—SO(mo—O)) dp’
< —/ e T w(mo—pvkt)—w(xo—O)ldp
\/— <p<?=
1 _B
by [ €% (|0~ pVRD)| + loao — 0)]) dp
™ o> g
1 evm\ _
< m <6ﬁ+2MW) =&,

which proves (4.20). Analogously it can be proved (4.21), which completes the
proof. B

Example 4.1. Solve the problem

U — Uz =0, z€R, >0
u(z,0)=e"% =zeR,
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Solution. By the Poisson formula we have

—-£
u(z,t) = ——= 4t d
(1) o) ¢
Using
("r — 6)2 1 2 2
7 T8 = E(a: — 28z + &% + 4t)
1
= 7@ +& + 4" — 2z + 46t — dat + 4ot — 487)
(€42t —x)?
= 4t +x—1
and making change of variable “T%jz_——ai = p, we have
R _(€+2t—-x)2
u(zx,t) = 4t d.
@0 = 57 ] ‘
t—x co
— e 2\/£ e"p2dp
2Vt Jooo

= 7,

Observe that liﬁ} u(z,t) = e 7 for every z € R.
t

Example 4.2, Solve the problem

1, if |z| <1,

U — Uz =0, z€R,E>0
“(“’O):{ 0, if |z|> 1.

Solution. We express the solution in terms of the error function of statistics

erf(z) = %/0 e " dp,

already used in Section 3.1, Example 3.4. Note that

erf(0) = 0, lim erf(z)=1, (4.22)

Tz— 400

erf(—z) = —erf(x).
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By the Poisson formula and the change of variable { = z — 2v/tp

w—5)2
u(z,t) = 2\/-— /3
z+1
1 2Vt 2
= — e Pdp
VT is

By Theorem 4.8 and (4.22) we have

i1 (o (5)
1

(w(140,0) + u(1 - 0,0)).

1,:1%1 u(1,t)

l\')lP—‘

Example 4.3. Solve the Cauchy problem for the diffusion equation u; —
Uze = 0 with initial data

l-z, 0<z<1,
plz) =< 1+z, -1<z<0,
0, |z| > 1.

Show that u(z,t) — 0 as t — +oo for every .
Solution. Making the change of variable ¢ = z — 21/tp we have

(@ - ) (z - §)?
1 0 _ 1 _
wot) = go=| [ aroe @ a+ [a-ge # g
1 A _a o
= —\/—%-((1-}—:1;)/# e”dp—{-(l—w)/;__\%epdp

T z=1

- Soon (e (52) et ()

%; z
-2Vt ’ pe P dp+2\/_ pe*” dp
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+%(1 —~ ) (erf (‘21\/,;) —ert (%_Ttl»
@+1p @ -1

+ﬁ e 4t - 23_5 + e_ 41
™

The graph of this function is given in Figure 4.1 using MAPLE in Scien-
tifiCWorkPlacE.

Figure 4.1. Graph of the function u = u(z,t) in Example 4.3.

Note that for every z € R

v

2Vt

\/Z/ pe"102 dp
Vi

%%
sﬁ/* Ip| dp = A(t) — 0
W

as t — +o00. Indeed for £ > 0
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A 1/(z+1)2 22
s =i [ w3 (S 7) o

as t — +o0.
f-l1<z<0

At) = JE(—/Z pdp+/0§%pdp>

1/ 22 (z2+41)2
= === 0,
2(4\/E+ 4/ >_'
as t — +400.
Finally for z < -1

A(t)

[
|
&
\N
S
5

A
DN ==
TN

~—~

8

+

[Sy

g

N

&

N
N’
L

as t — +o00.
The same way

z

==
\/f/2 tpe""2dp~—>0ast~++oo.
i

Then by erf(0) = 0 it follows thatt liin u(z,t) = 0 for every z € R. Note
-1 00

u(0,t) = erf (-2—1\7_2) + 2\/% (e‘# - 1) .

The graph of this function is given in Figure 4.2.

that
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0.8]
0671
047

027

0 1 2 i 3 4 5

Figure 4.2. Graph of the function u = erf (2—%) +24/% (e‘Tlt - 1)

Exercises.

1. Solve the Cauchy problem for the diffusion equation u; — ug; = 0,
z € R, t > 0 with initial data

(a) u(z,0) = e,

(b) u(z,0) = e~

_ | 2,ifx>0,

(c) u(=,0) = { 4, ifz <0.

Compute u (0,t) in the cases (a), (b) and show that tlim w(0,t) = 0.
Compute ltilrgl u(0,1).

2. Consider the Cauchy problem for the diffusion equation with the initial
condition u(z,0) = ¢(z). Show that if ¢(z) is an odd (even) function, then the
solution u(x,t) is also an odd (even) function of z.

3. Solve the Cauchy problem for the diffusion equation with constant
dissipation
Uy — kugg +bu =0, (z,t) € R x (0, 00),
{ u(z,0) = p(a), =R

4. Solve the Cauchy problem for the diffusion equation with convection

g — kgg +vug =0, (z,t) € R x (0,00),
u(z,0) = p(z), z€R.
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4.3 Diffusion on the Half-line

Let us consider the diffusion equation on the half-line (0,00) and take the
Dirichlet boundary condition at the end-point z = 0.

Using the reflection method considered in Section 3.2 for the wave equation
we shall treat the problem

u —kuz, =0 z€(0,+00), t>0,
u(z,0) = p(z) z € (0,400), (4.23)
u(0,t)=0 0<t.
We are looking for a solution formula for (4.23) analogous to the Poisson
formula.
Let us consider the problem (C'D) with initial data ¢,, which is the odd
extension of ¢(x) on the whole line

{ Uy —kug, =0 z€R,1>0, (4.24)
( .

u(z,0) = p,(x) z€R,

where

_(p(—x) < Oa
0 z=0.

w(x) >0,
vo(z) =

Let uo(x,t) be the unique solution of (4.24) which, by the Poisson formula,
is
Uolz,t) = - e o
@) = sz [ o
1 et ° _G-g? )
= — e T akt dfé — / —&8e” TRt
e ([ e - [ oo ag

_ L ([ e T ey~
- = (/0 0 o (6)de /0 () d&)

= ——2\/% /0 (e—‘%ﬁ —e—%‘t’i> w(€)dE. (4.25)

The restriction

u(z, t) = uo(x, t)|zzo

is the unique solution of the problem (4.23). Note that u,(z,t} satisfies the
diffusion equation and is an odd function u,{—z,t) = —u,(z,t), which easily
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follows from (4.25). Then u(0,t) = u,(0,t) = 0 and u(z,t) satisfies the diffu-
sion equation. Moveover, u(r,t) satisfies the initial condition for z > 0.

Let us consider now the Neumann boundary condition at the end point
z = 0 for the diffusion equation on the half-line. Namely, let us consider the
problem

—kugz; =0 z€(0,400), t >0,
u(x,0) = ¢(z) z € (0, +00), (4.26)

In this case we use the even reflection of ¢{z)

T x>0,
we(z) = { (:EE_Q):) z<0.

Let u.(z,t) be the solution of the problem

U — Kuzge =0, z€R,t>0
(2,0) = pe(z), z € R.

As before, we have

w@d) = j;k_ we‘%ﬁcpe(ﬁ)df

_ (=+)?
= ) (e e

The restriction u(z,t) = ue(z,t)|z>0 is the solution of (4.26). Note that

- [ (55 9 (5o

and

ou 8ue
— = t
52 0) 5. 00

1 *° 2 (=& 2 (& _
(e () () ones

As before, u(z,t) satisfies the diffusion equation and the initial condition.
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Example 4.4. Solve (4.23) with p(z) =e~% andk = 1.
Solution. By the solution formula for (4.23)

e[ @8 e
o) = L _ —¢
u(z, t) 2\/%/0‘ e 4 e 4 e~td¢

(z-¢)?° ) (($‘F€V )
S Gk +e
_ 1 e ( 4t —e 4t de.

2v/mt Jo
Using
(z - ) (€+2t—x)
—tf = Z—t tr—t
(z it§)2 (€ + Zit—}- z)?
e
we obtain
(g +2t—a)? (6 +2t+1z2)?

t— 0 t4+z [0
u(z,t) = 2%/7? e x/(; € 4 dé —e /0 e 4t d¢

i
DO =
~
mN
|
]
mli-
+
5]
e
l\Ji—-‘
/—\
l-#
+
[
o}
-
-y
N
l\DH
g+
1| b
-
—
+
mﬁ
o)
4
-
TN
7
| e
-
~—
~—

Note that u(0,t) = e’ (erf (V) + erf (- Vt)) =0.

Example 4.5. Solve (4.26) with p(z) = ™% andk = 1.

Solution. By the solution formula for (4.26) and previous calculations we
obtain that the solution for 2 > 0. is

(z—¢)? ) <@+02 )'
o [ - +¢ : +¢
u(z,t) = ! e ( 4 +e 4 d€

2v/7t Jo
_ — 2t x4+ 2
(e er 5 e Fer W

(e‘_z + et”) +

[N o
[N
N
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As erf'(z) = %e‘”‘g we have

1 1 x—2t
ug(z,t) = = (e*® —et7%) 4 —[—e'"Terf (———-—)
-}-et_“”Le‘gz“_ﬁt)i —ettZerf (—-———m + 2t) _ette L e"ﬁi‘#ﬁ],
it 2Vt Vvt
ug(0,8) = 0.
Exercises.

1. Prove the following maximum principle for the problem (4.26). If p(x)
is a bounded continuous function, then the solution u(z,t) of (4.26) satisfies

|u(z, )| <sup |p(z)|.
z2>0

2
2. Let &(z) = \/—% f_woo e~ T dp be the density function of the standard
normal distribution. Show that ®(4+00) =1 and ®(—z) =1 - &(z).

(a) Derive that the problem (4.26) with the initial condition ¢(z) = e~®

has a solution

u(x,t) = ekt== (1 - @ (%)) + ektte (1 -® (2]\“;2%“’)) .

(b) Using the maximum principle for (4.26) show that

e ®®(a —b) +e®®(—(a+b) < e 7T, a€R,b>0,
1—}-%6—%—6—% < P(x) <1, x>0.

4.4 Inhomogeneous Diffusion Equation on the
Whole Line

Consider the problem of finding a function u{z,t) such that
Ut — kUugy = f(x,t) z€R, t>0,

{ u(x,0) = p(x) z€R, (4.27)
known as Cauchy problem for the inhomogeneous diffusion equation. By linear
properties of the operator Lu = u; — kuy,, the solution of (4.27) u(z,t) is the
sum of the solutions v(z,t) and w(z,t) of the problems

v — kv, =0 z€R, >0,
Lo o “rem (4.28)
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and L f o) R 0
wy — kwgg = f(z,t) z€R, >0,
{ w(z,0) =0 z € R, (4.29)
respectively.
We have that
8 = - 4.30
R I (430

and will show that
= i _.._1— "4::--?
w(z, t) —/0 /_ NG T)e @7 f(&, T)dEdT. (4.31)

Denote

[N

G(z,t) = 2\/];%6_42 ,

known as Green’s function or fundamental solution of the diffusion operator
L. 1t is clear that

x|
o

L(G(z,t)) =0,  (z,t) € R x (0, 00), (4.32)

L(G(x—-&,t—1)) =0, (z,t) e R x (0,00), t #T.
(From (4.30) and (4.31) it follows that the solution of (4.27) is

w(z,t) = /_ " Gz — £ t)o(e)de + /0 /_ " Gla- £t — 1) f (€, 7)dedr. (4.33)

Assuming that f(z,t) is bounded and continuous on R X (0, 00}, we prove
that the function w(z,t) given by (4.31) satisfies the problem (4.29).

By the maximum principle for the diffusion equation on the whole line it
follows that the function u(z,t) given by (4.33) is the unique solution of (4.27).

Theorem 4.9. Let f(z,t) € C(R x (0,00)) be a bounded function and
v(z,t, 1) = ] Gz - & t—7)f(&, 7)dE

Then the function
¢
w(z, t) =/ v(z,t,7)dr
0

is a solution of the problem (4.29).
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Proof. By virtue of the estimates of Section 4.2 and the assumption of the
theorem the integrals

t t t
/ v(z,t,7)drT, / ve(z, t, 7)dT, / Vg (2, t, T)dT
0 0 0

are uniformly convergent over bounded and closed intervals of R.
By the formula for differentiation of integrals depending on parameters

¢ ¢
%/0 f(x,t)dx=/0 fi(z, t)dz + f(¢,t)

and we have

t t—e
%1—;; = %/ U(m,t, T)dT = % llr%/ U(:L‘,t,'T)dT
0 £~ Jo
6 t—e
- lim——/ v(z,t, 7)dr
e—0 Ot 0 ( )

t
= / ve(z,t, T)dT+ lim v(z,t,t —¢€)
0 e—0

= /t kvgo(z,t,7)dT+ lim /oo Gz —&,e)f(€,t —e)dE
0 €0 J_ oo

82 t . 1 00 —p2
= kW (/0 v(:v,t,T)d’r)+Elgr(1)-\-/—"7—T/;ooe f(x—Qp\/E,t——e)dp
0w

= kw + f(l‘,t).

To show that the initial condition is satisfied observe that

lw(z,t)] < /0|u(a:,t,'r)]d7'
/0 % B e 7’ |f(:1:—2p\/k(t—7'),7')‘dpd7'
< tsupl|f(z,t)]

and therefore ltiLrg w(z,t)=0.1

Consider now the inhomogeneous problem on the half-line with the Dirich-
let boundary condition

{ut—kumzf(x,t) z>0, t>0,

u(0,t) = h(t) t>0, (4.34)
u(z,0) = p(z) z>0.
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We reduce (4.34) to a simpler problem letting v(x, t) = u(z,t) — h(t). Then
v(z, t) satisfies the problem

vy — kvge = fz, t) =R (t) >0, t>0,
v(0,t) =0 t>0, (4.35)
{ v(z,0) = ¢(z) — h(0) x>0

The solution v(z,t) of (4.35) is the sum v(x,t) = vi(z,t) + va(x,t), where
v1(z,t) and ve(z,t) are solutions of the problems

V1t — kUigz =0 >0, t>0,
v(0,t) =0 t>0, (4.36)
v1(z,0) = o(x) — h(0) z >0,

and

v2(0,t) =0 t>0, (4.37)
va(z,0) =0 z > 0.
The solution of (4.36) is found by the reflection method of the previous section.
Note that (4.37) can be solved again by the reflection method using the odd
extension of the source function F(z,t) = f(z,t) — h/(t). Namely, let Fo(z,t)
be the odd extension of F(z,t) with respect to z and w(z,t) be the solution
of the problem

{vm—kwm:f(x,t)—h’(t) z>0, t>0,

wt_kwmm:Fo(xat)a zeR, t>0
w(z,0) =0, z€R,

given by

w(z, t) / / Gz — &, — 7)Fo(&, 7)dédrT.

Then
vo(z,t) = w(z,t)|s>0
is the solution of (4.37).
Let us show that v2(0,t) = 0 for ¢t > 0. We have

t 0
o(z,t) = — A /_ Glz — £t — T)F(—€,7)dedr
+/0/0 Gz —&,t — 1)F(§,7)dédT
_ // Gz — &t — 1) — Gz + £, ¢ — 7)) F(€, 7)dédr,
0(0,8) = / / (=, — 1) = G(&,t — 7)) F(€, 7)dédr = 0,
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because G(z,t) is an even function with respect to z.

Exercise
1. Solve the inhomogeneous Neumann problem on the half-line

Uy — kg, = flz,t) >0, £>0,
uz(0,t) = h(t) t>0,
u(z,0) = p(x) z>0.



Chapter 5

Weak Solutions, Shock
Waves and Conservation
Laws

5.1 Weak Derivatives and Weak Solutions

Consider the Cauchy problem (CW) . It was noted in Section 3.1 that to have
a solution u € C? (R x R*) of (CW) we require ¢ € C? (R) and ¥ € C* (R).
If the last assumptions are not satisfied then the solution given by D’Alembert
formula is not a classical solution. How to justify the meaning of a solution in
this case? There exist two main approaches. One is to introduce the so called
weak derivatives so that the wave equation is satisfied in a form of integral
identity. The other is the sequential approach. Consider approximating prob-
lems with smooth data (¢, %%) € C2(R) x C* (R). It is possible to define
a weak ( generalized ) solution of the problem by passing to the limit in 2
spaces of corresponding solutions uz. We prove that in some sense these two
approaches are equivalent.

Let L2 () be the usual Lebesgue space of square integrable functions
u: 2 — R, where Q is a measurable domain in R™. L? () is a Banach space
with a norm

ol 230y = / W () dz.

Q

Denote by Cg° () the space of test functions, i.e. all functions p(z) €

123
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C* (Q) with compact support

suppp = {z € R": p(z) # 0}.

Next L . (§) is the space of functions u :  — R, such that for every compact
subset K C € it holds u|x € L? (K).

Definition 5.1. A function v € L} (Q) is said to be the weak 6—8—
Zj

derivative of a given function u € L2, () iff

/v(z)p(x>dz=—]u(m)%(w)dx,

Q Q

for every test function p(z) € C§° (Q).

Ifu € C? (Q) it is easy to see that the weak z2- ~ derivative of u (z) is equal
ou
E:; .

The Sobolev! space W2! () is introduced as the space of L? (Q) functions

u: §2 — R for which there exist weak derivatives _%u eL?(Q), j=1,.,n
J

to

W21 () is a Banach space with the norm

2 —
”u“W“(Q)_/ u +Z 3%

2

z o ! () we denote the space of functions u : © — R such that for every
compact subset K C it holds u|x € W%! (K). Every function of W2! ()
can be approximated by a sequence of smooth functions with respect to w21
norm on compact subdomains of €.

Consider the so-called Dirac? kernelsor mollifying kernels or the Friedrichs®
mollifiers. Let ¢ > 0 and pg (z) € C§° (Q)

oo (z) = Co-exXp (1—_‘%‘3) if |z| < 1,
‘ 0 if |z} > 1,

1Sergej Livovich Sobolev, 08.10.1908-03.01.1989.
2Paul Adrien Maurice Dirac, 1902-1982.

3Kurt Otto Friedrichs, 1901-1982.
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where the constant ¢y is such that [ po(z)dz = 1. Define the sequence of
R
mollifiers

1 z
pe (z) = 6—”p0 (E)
for which pe (z) € C§° (), suppp, (z) = B, (0) and [ p (z)dz = 1.
Rn.

Mollifications or Regularizations J.u of a function u € L} _ (f)) are defined

as
Jou(z) = / pe (z ~ ) u(y) dy.
2
Ifu € L}, (Q), then Jou € C*® (R?) and

DiJu@) = [ Dbpe (- v)u(wdy = (-)¥ / D¥pe (z — ) u (y) dy.
R R’e

Ik

Here D¥ = — —
x b
Ozt ... Ok

|k| = k1 + ... + ky, is a partial derivative of order |k|.

Theorem 5.1. For a given function u € Wicl (Q) the regularizations Jou
tend to u in W2 (K) for every compact K C Q, i.e.

HJEU - ’ILHWZ.I(K) —0ase—0.

Proof. Let ¢ < dist (K,0Q). By the change of variables y = z — £z and
the Cauchy-Schwarz* inequality we have

Ju() = / pe (& — ) u (y) dy

Q

= Ein / Po(m;y>U(y)dy

ly—z|<e

= / po(z)u(z —e2) dz,
[2(<1

4Hermann Amandus Schwarz, 25.01.1843- 30.11.1921
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Veu@) < [ o2 ()0 (2) lu(e —e2) dz

1/2 1/2

/ po (2)u? (z — ez)dz

K‘z‘gl z|<1

IN
—
©
[=3
O
oL
N

1/2

= / po (2)u? (z — e2)dz ,

\zlgl

/ [Ju (:1:)]2 dr < / po (2) ('[u? (z—e2) dm) dz
K |2|<1
< 'zél pg(z)dzkluz(x)dxzk[ﬁ(x)dw

or

[[Jew () |2 (k) < Hullz2k.),

where K. = {z € Q : dist (x,K) <€} .
Let 6 < £. There exist v € C' (K¢) such that

Hu —llL2k,) <6
By Exercise 2, (a) it follows
| Je,v —vllex) — 0,
as €1 — 0. Then for sufficiently small ¢; < ¢
([Jeyv — vl{L2 () < 8.
Moreover
[ Je; (w—v) |l2x) < = llr2k.) <9,

and then
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[Je,u —ullpay € ey (w =) |le2@y + 176, — v]l2(x)
+llu — v||r2(x)
< 26+ Jlu—lp2k,)
< 3<e.

A similar procedure is used to prove that [|D; (Je,u — u) |{2(x) — 0 as
g1 — 0 and

Dj (Jeu) () = Je (Dju) (z)

for u € W22 (Q) —Exercise 4. B

loc

Definition 5.2. A function u € W} (R?) is said to be a weak solution

loc
of the wave equation wy — gy = 0 iff

/u (pu - c2pm) dzdt =0
R?

for every test function p € C§° (R?).

Definition 5.3. A function u € W2} (R?) is said to be a weak solution
of the wave equation u; — c*uzy = 0 iff there exists a sequence of smooth
solutions uy (z,t) € C? (R?) of the wave equation such that for every compact
set K C R?, |juk —ullwa1 k) — 0 as k — oo.

Theorem 5.2. Definition 5.2 is equivalent to Definition 5.3.

Proof. (a) Definition 5.3 => Definition 5.2.

Let p € C§° (R?), suppp C K and (ux) be a sequence of C? smooth
solutions of the wave equation such that ||jug — u|lwz22(x) — 0 as k — oo
Integrating by parts, we have

0 = / (uktt - czukm) pdzdt = /uk (ptt - czpm) dxdt

R? R2

= /Uk (Ptt -— Cszm) dmdt
K
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By Definition 5.3 and the Cauchy-Schwarz inequality it follows

/u (per — c2pm) drdt| = /(u — ug) (pee — czpm) dzdt
K K

/Iu - uk, |ptt - CZPuI dzdt
K

IA

IA

Ilu — k|l L2y llost — prallL2(x)

IA

o = wkll o 198t = € PaallLzgry — O
0

as k — 0o.
Therefore

/u (pee — czpm) dzdt = /u (per — czpm) dzdt = 0.
K R?

(b) Definition 5.2 = Definition 5.3.

We use regularizations to construct approximating sequences of solutions.
Let u € W2, (R?) be a weak solution of the wave equation in the sense

oc

of Definition 5.2 and ue = J.u. For every compact set K C R?, |jue —
ullw2. (k) — 0 as € — 0. It remains to prove that u. is a smooth solution of
the wave equation. Denote for simplicity

X = (z,t), dX=dzdt,
Y = (y,7), dY =dydr,

2 2
Lxu =ty — C“Ugy, Ly =1t —CUy,.

By integration by parts and Fubini theorem we have
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/ Lxue (X)p(X)dX = f we (X) Lxp (X)dX

R2

- //pE (X —Y)u(Y) Lxp(X)dYdX
R2 RZ

- /u(Y)/pe (X = Y) Lxp(X)dXdY
RZ A%

- /u(Y)/LXpe (X - Y) p(X)dXdY
R2 R.2

- /u(Y /Lype (X - Y) p(X)dXdY
R2 R%

- /p(X)/u(Y)Lype(X—Y)deXzo.
R, RZ

As p(X) is arbitrary it follows that Lxu. (X) = 0 which completes the
proof. I

Exercises

1. Show that the function Hfll—il—)_’ﬁ € L}, (Jz) < 1) for every m, but
1

= € L% (|z] < 1) for m < 3.

(1~ |zf)
2. (a) Let u € C () and K C 2 be a compact set. Prove that

e — ulloxy = max | (Jeu —u) (z)]| — 0,

as e — 0.
(b) Let u € C™ () and K C Q be a compact set. Using

Drju(z) = (-1)¥ / Dkp, ( ~ y)u (y) dy

1l

/ pe (z — y) D¥u (3) dy,

Q
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for |k} < m, prove that
lTeu — ullemay = Y, I1D* (Jeu = ) llox) = 0,
[k|<m
as e — 0.

3. (a) Let u(z,t) = |z|, B = {(z,t):2%+t> <1}. Verify that u has
weak derivatives

— = sgnx = — =0

ou 1 ifz>0 ou
Oz 1 ifz<0 ' &t

in B.
(b) Let u(z,t) = sgnz, B = {(z,t):2?+1t* <1} . Show that u has not

L. u
a weak derivative o in B.
z

4. Prove that if u € W12 (Q) , then

loc

D; (Jew) (z) = Je (Dju) (2) .-

5.2 Conservation Laws

We consider solutions of hyperbolic systems of conservation laws. These are
systems of PDEs of the form

u (z,t) + (f (u(z,))), =0, (56.1)

where u : R x R — R™ is a vector function

uy (z,t)
u(z,t) = : ,

U (T, 1)
and f: R™ — R™ is a mapping

fi(ua(=,t),. .. um (,1))
f('u(l‘,t))Z
fm (ua(z,t), .. um (z,t))
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The function u describes physical quantities as mass, momentum, energy
in fluid dynamical problems. The mapping f(u) is called a fluz function. The
system (5.1) is hyperbolic iff the Jacobian matrix

N 0f
A=Jf(u)= ; ’
0 fm O fm

has only real eigenvalues and is diagonalizable, i.e. there exists a complete set
of m linearly independent eigenvectors.

The Euler® system in gas dynamics is a system of conservation laws. In
one space dimension these equations are

p P pv (
= | pv |+—=] pv°+p | =0, 5.2)

where p = p(z,t) is the density, v is the velocity, pv is the momentum, p is
the pressure and F is the energy. The equations (5.2) are known as

pt + (pv), 0, conservation of mass,
(pv), + (p02 + p)x = 0, conservation of momentum,
Ei+ @wE+p), = 0, conservation of energy.
Introducing new variables
p(z,t) u (z,t)
ulz,t)=| plz,)v(x,t) | = | ual(z,t) |,
E (z,1) ug (z,t)

the system can be written in the form (5.1) with

U3
f@=| %4p)
%2 (3 + p(u))

5Leonard Euler, 15.04.1707~18.09.1783.
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Example 5.1. Assume p(u) = u;1. Then the system (5.2) is hyperbolic in
R3\ {u:u; =0}.

Solution. The Jacobian of

Uz
f(u): Ez'f'ul )

uy

%ﬁ (u;; + ’U.l)

is the matrix

0 1 0
2
'U/2 uz
—-——=+1 2-= 0
A= u? + u
__2 U3+u1_1 U3z + Uy E?_
Uy U Uy U1
with eigenvalues
M=2 a=2411 n=2_1
U U U

Corresponding eigenvectors are

F o [ 1
Uz
’U“1 = 0 y 1)2: ;1.:+1 ’
|1 u3z + U2 1
L Ui
- 1 -
U2
=21
’1)3 - Uy ’
Uz — Uz +1
(751 L

0 1 1

(73} ’lilu - =
1 U3+u2+1 U3 2+1

(75} Uy

The simple initial value problem for the system (5.1) is the Cauchy problem
in which (5.1) holds for z € R, t > 0 and
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u(z,0) = uo (z), (5.3)

where ug (2) is a prescribed function.
Let us consider the Cauchy problem for the simplest equation of the form
(5.1) in one dimension

ut+au, = 0, z€eR,t>0, (5.4)
u(z,0) = wup(z), zeR,

where a is a constant, known as the linear advection equation or one-side wave
equation. The problem (5.4) has the unique solution

u(z,t) = up (z —at), (5.5)

if the initial function ug (z) € C'(R). It can be found by the method of
characteristics of Chapter I. If ug € C* (R) then u(z,t) € C*(R x [0,00)).
The solution presents a right moving profile (graph) of the function ug ()
with speed a.

Example 5.2. Solve the problem

Ut + Ug = 01
{ cosdz ifz € [3n/2,57/2],

u(z) = 0 ifz¢ [3n/2,5m/2.

The solution is
u(z,t) =ug(z—1t).

Note that ug € C! (R), because

(cos® m)l le=3r /2,57 /2= 0

Then u(z,t) = uo(z—t) € C*(R x[0,00)). The graphs of u(z,t) at the
instants £ = 0, 2, 4, 6 are plotted in Figure 5.1 using the Mathematica program

fix_J:=Which[3Pi/2<=x<=5Pi/2, Cos|x]"3,True,0]
ufx.,t):=f[x-t]
hO0=Plot{Evaluate[u[x,0],{x,5Pi/4,5Pi},
PlotRange->{0,2},PlotLabel->" Wave at t=0"]
h1=Plot[Evaluate[u[x,2],{x,5Pi/4,5Pi},



134 Partial Differential Equations

PlotRange->{0,2},PlotLabel->” Wave at t=2"]
h2=Plot|Evaluate[u[x,4],{x,5Pi/4,5Pi},
PlotRange->{0,2},PlotLabel->" Wave at t=4"]
h3=Plot|Evaluate[u[x,6],{x,5Pi/4,5Pi},
PlotRange->{0,2},PlotLabel->" Wave at t=6"]
Show[GraphicsArray([{{ho,h1},{h2,h3}}],
Frame->True, FrameTics->None]

) Wave at t=0 ) Wave at t=2 7
1.75 1.75
1.5 1.5
1.25 1.25
1 1
0.75 0.75
0.5 0.5
0.25 0.25
o 6 8 10 12 14 16 6 8 10 12 14 16
5 Wave at t=4 5 Wave at t=6
1.75 1.75
1.5 1.5
1.25 1.25
1 1
0.75 0.75
0.5 0.5
0.25 0.25
6 8 10 12 14 16 6 8 10 12 14 16

Figure 5.1. The wave u (x,t) at the instants t = 0, 2, 4, 6.

Suppose now that ug () is not a smooth function. Then the function (5.5)
is not smooth and does not satisfy (5.4) in the usual sense. It satisfies (5.4) in
a weak (generalized) notion. An approach to generalize the notion of solution
is to satisfy an integral identity.
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Denote by C} (R x [0,00)) the space of C? functions p vanishing outside
of a compact set in ¢t > 0, i.e. there exists T > 0 such that suppp C [-T,T] x
[0, T, so that p = 0 outside of [-T,T] x [0,7] and on the linest =T, z = -T
andz=T.

Definition 5.4. Assume that uo(z) € L},,(R). A function u(z,t) €

Li,. (R x [0,00)) is a weak solution of (5.4) iff

loc

//u(pt+ap$)dxdt+ /uo(a:)p(x 0) da

~00
for every test function p € C¢ (R x [0,00)).

Proposition 5.1. Let u(z,t) be a smooth solution of the problem (5.4).
Then u (z,t) is a weak solution of the problem.

Proof. Obviously u(z,t) € L},. (R x [0,00)) . Let p (z,t) € C3 (R x [0, 00))

and suppp C [-T,T] x [0,T]. Multiplying (5.4) by p, integrating in [T, 7] x
[0,T) and using p (£7,t) = p(z,T) = 0, we obtain

o
]

(us + au,) pdzdt

((up); + a(up), — u(pt + aps)) dzdt

S Ay

I

Il
Yoy S Oy
O\’ﬂ

(up), dtd:c—//u(m—f-apz)dxdt

T T
= (/uo(x Yp(z,0) da:+//u pt—l—apz)da:dt> |

0 -T

Another approach to generalize the notion of solution of (5.4) is to ap-
proximate the nonsmooth initial function ug (x) with a sequence of smooth
functions uyg (z) . The function u, (z,t) = uno (z — at) is the solution of the
problem (5.4) with initial data ung (). Then a generalized solution of (5.4) is
defined as a L'~ limit of the sequence uy, (z,t).
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Definition 5.5. Assume that ug (z) € L' (R). The function v = u (z,t) €
L' (R x [0,00)) is a strong solution of (5.4) iff

n—00

lim 0/ _ 4 lu (2,2) — tno (z — at)| dadt = 0,

for any sequence (ung) of smooth functions such that
o0

lim [ttng (2) — ug (z)|dz = 0.

n—oo
-0

It can be proved (Exercise 2, b) that a strong solution is a weak solu-
tion. Unfortunately the sequential approach is not appropriate for nonlinear
differential equations.

As an extension of one-side wave equations we consider linear strictly hy-
perbolic systems

Uy + A, = 0, (56)
u(z,0) = wug(x).

Hereu: RxR — R™, A € R™*™ is a constant matrix. The system (5.6)
is strictly hyperbolic iff the matrix A is diagonalizable and has m distinct real
eigenvalues. Let

A= RAR™Y, (5.7)

where
A=diag(>\1,>\2,...,)\m), R=[’I‘1|’I‘2‘..,'7‘m]

is the matrix of right eigenvectors
Arg = Mg, k=1,2,...,m.

Changing the variables
v=R 1y,

by R~ lu; + AR 'u, = 0, we obtain

vy + Avg = 0, (58)
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or componentwise
(i), + M (vk), =0, k=1,2,...,m.
The initial conditions to (5.8) are
v(z,0) = wo(z) =R lug (),
v (2,0) = wvgo(z) = (R“luo (:c))k

Then
vg {z,t) = vgo (T — Axt)

is the solution of (5.8), (5.9).
The solution of (5.6) is

m

U (SL‘, t)} = Z’Uko (:C — )\kt) Tk.

k=1

Example 5.3. Solve the problem

up + Auy, = 0,
u(x,O) = ’LL()(:E),

where u: R x R — R3,

Ax) = 1f2(z) + f3 (2)
ug (z) = h@)+ fa(z) ;
fi(z) = Bfa(z) + f3 (x)
~sinz x € [-3m 27
fi(@) = { 0 x¢%—37r,—27r{ !
_ —sin*z x€[-7,0)
h@) = { 0 x¢%—7r,0] ’
pe = {78 e

137

(5.9)

(5.10)
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3 1 -2
A=| -1 2 1 |,
4 1 -3

A1=2, d=-1, M=1
and corresponding eigenvectors

Solution. The matrix

has eigenvalues

1 -1 1
rm=\1],ro= 1 , 3= 0 |.
1 -4 1
Then
1 -1 1
R={[rifram]=|1 1 01,
1 -2 1

[fl(.’l,‘—Qt) }
v=| fa(z+t) |,
f3(z—1)

[ filz=2t) = Ifa(e+t)+ fa(z—1) ]
u=Ryv= f1($—2t)+f2(x+t)
file=2t) = Bfo(@+1t)+ fa(z - 1)

The graph of the function ui(z,t) is given in Figure 5.2 plotted by the
Mathematica program

Clear([f,g,h,u]

f{x_|:=Which[-3Pi <=x<= -2P4j, -Sin{x]"3,True,0]
g[x_]:=Which[-Pi <=x<= 0, -Sin[x|"3,True,0]
hfx_|:=Which[Pi <=x<= 2Pj, -Sin[x]"3,True,0
ux.,t]:=f[x-2t]-7g[x+t] /2+h[x-t]

Plot3D[ufx,t], {x,-4Pi,8Pi},{t,0,6Pi}
AxesLabel->"Position”,” Time”,” Value ul”,
PlotPoints->40, PlotRange->{-4,1}, Shading->False]
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Figure 5.2. Graph of the function v = u;(x,t).

All calculations in Examples 5.1 and 5.3 are made by MAPLE in Scien-
tifiCWorkPlacE.

Exercises.
1. Consider the problem

u; + Au, = 0,

U (SL‘,O) = U (I) ’
with

(el 1

3 4
A= | 2 2
4 2 3
Show that the system is hyperbolic, but not strictly hyperbolic. Diagonalize
it and solve the Cauchy problem with initial conditions
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2f1 () + fo ()
u (r) = | fi(z) —2f2(2z) - 2f3(z) |,
2f1 (z) + f3 (z)

where f (z), f2(z), fs () are given in Example 3. Plot the graph of the
function ug (z,t) .

2. (a) Let ug (z) € L},, (R) be any locally integrable function. Prove that
the function u (z,t) = ug (x —t) is a weak solution of the Cauchy problem

utu, = 0, zeR,t>0,
u(x,O) = UO(.’C), z € R,

in the sense of Definition 5.4, i.e. u(z,t) satisfies the identity

O/_ZO ug (z —t) (vt+Ua:)dZ'dt+-[° ug (z) v (x,0)dx = 0,

for any v € C§ (R x [0,0)).
(b) Prove that if the function v = u(z,t) € L' (R x [0,00)) is a strong
solution of (5.4) then it is a weak solution of (5.4).

5.3 Burgers’ Equation

The simplest equation combining both nonlinear propagation and diffusion
effects is the Burgers’® equation

Up + Uy = EUgg. (5.11)

The equation (5.11) was studied at first in a physical context by Bateman
(1915). Subsequently, Burgers (1948) rederived it as a model equation in the
theory of turbulence. Around 1950, Hopf’ and independently Cole®, showed
that the exact solution of (5.11) could be found by using the transformation

6J.M. Burgers. A mathematical model illustrating the theory of turbulence. Adv. Appl.
Mech., 45 (1948), 171-199.

"E. Hopf. The partial differential equation 4t + uts = pugz. Comm. Pure Appl. Math.
3(1950), 201-230,

8).D. Cole. On a quasilinear parabolic equation occuring in aerodynamics. Q. Appl.
Math 9 (1951), 225-236.
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u=1y Y=-2lngp. (5.12)

This, known now as Hopf-Cole transformation, reduces (5.11) to the dif-
fusion equation

The motivation of (5.12) is as follows. Let us rewrite (5.11) as a conserva-

tion law
1
Uy — (€'U,¢ - 5’!1?)1 =0
and try to find ¢ € C? such that
{ I/)I = u) 5 (5'14)

¢t=sum—%u .

Then 4 = ¥, implies (5.11). From (5.14) it follows

Yt = €Yzq ~ %w: (515)

Now introducing

1
oz ty=c 20O

it is easy to show that (5.15) is equivalent to the diffusion equation (5.13).
Let us consider the Cauchy problem for equation (5.11) with initial condi-

tion
u(z,0) = ug ().

Under the transformation (5.12) the initial condition reduces to

T

—2% /uo (s)ds

p(z,0)=¢e 0 . (5.16)

By the Poisson formula the problem (5.13), (5.16) has the unique solution
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3
1
QE/uo(s)ds—Z%(m—é‘)
plzt) = 2\/67 3

1
1 -9 (x)tig)

2e de,

2vemt € g
-0

where

2
g(z,t,&) = (& ;tg) + /uo (s)ds.
0

The exact solution of (5.11) is

I ettt
u(z,t) = T . (5.17)
0o _— t,
Te 59 (T, E)d5

We consider the behavior of the solution (5