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PREFACE

The present book has its source in the authors’ wish to create a bridge between
mathematics and the technical disciplines that need a good knowledge of a strong
mathematical tool. The authors tried to reflect a common experience of the University of
Bucharest, Faculty of Mathematics and of the Technical University of Civil Engineering
of Bucharest.

The necessity of such an interdisciplinary work drove the authors to publish a first book
with this aim (“Ecuatii diferentiale cu aplicatii in mecanica constructiilor” — Ordinary
differential equations with applications to the mechanics of constructions, Editura
Tehnicd, Bucharest, Romania).

The present book is a new edition of the volume published in 1999. Unfortunately, the
first author (M.V. Soare) passed away shortly before the publication of the Romanian
edition, so that the present work is only due to the other two authors. It contains many
improvements concerning the theoretical (mathematical) information, as well as new
topics, using enlarged and updated references.

We considered only ordinary differential equations and their solutions in an analytical
frame, leaving aside their numerical approach.

Compared to the Romanian edition, this volume presents the applications in a new way.
The problem is firstly stated in its mechanical frame. Then the mathematical model is set
up, emphasizing on the one hand the physical magnitude playing the part of the unknown
function and on the other hand the laws of mechanics that lead to an ordinary differential
equation or system. The solution is then obtained by specifying the mathematical
methods described in the corresponding theoretical presentation. Finally — last, but not
least — a mechanical interpretation of the solution is provided, this giving rise to a
complete knowledge of the studied phenomenon; after all, this is the main goal of any
scientific approach. In most of cases, the solution is interpreted by using a parametrical
study, which better emphasizes the core of the phenomenon. Sometimes, we pointed out
the influence of a certain parameter or presented auxiliary diagrams and tables, whence,
by interpolation, one can immediately get effective numerical values of the solution.

The number of the applications was increased; in order to keep the volume within a
reasonable number of pages and also, not to exaggerate the interference between
mathematics and engineering, we did not exhaustively introduce and present the
mathematical model. It must be pointed out that many of these problems currently
appear in engineering.

X
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The book is organized in seven chapters. Each of them begins with a theoretical
presentation, which insists on the practical computation — the “know-how” of the
mathematical method — and ends with a rich range of applications. Unlike the standard
presentations, we introduced separately the linear case, which is exposed in the first three
chapters. The reason of this is that in the linear case one can use not only general
methods, fitted for any differential equation, but also specific methods. The non-linear
case forms the object of the next two chapters. The sixth chapter treats problems in a
variational frame. Finally, the last chapter is devoted to an initiation in the modern
domain of stability.

It should be mentioned that the book contains some personal results of the authors,
published in scientific reviews of wide circulation.

The prerequisites of this book are courses of elementary analysis and algebra, acquired
by a student in a technical university. It is addressed to a large audience, to all those
interested in using mathematical models and methods in various fields, like: mechanics,
civil and mechanical engineering, people involved in teaching or design as well as
students.

P.P.TEODORESCU and ILEANA TOMA



INTRODUCTION

1. Generalities

The study of physical phenomena becomes consistent and applicable by establishing
mathematical relationships between the involved physical quantities. Sometimes, these
relationships are algebraic. But in most cases, algebra is not enough to characterize the
phenomenon. The involved quantities may depend on other quantities, considered as
independent variables, and the relationships are no more algebraic, containing both the
unknown function and its derivatives. In the case of functions depending only on one
variable, these are called ordinary differential equations (ODEs). If the unknown
function depends on several variables, the equations will also contain its partial
derivatives; such equations are called partial differential equations (PDEs).

In this book, only ODEs will be considered. Solving them is not only formally necessary,
but also leads to physical interpretations in the frame of the considered phenomenon.

To emphasize the above considerations, let us take an example.

The parabolic mirror

Problem. Find the profile of an axially symmetric reflector (mirror), such that all the
luminous radiations coming from a point-source O be reflected as a parallel beam, of
given direction.

Solution. We choose O as origin for the system of co-ordinate axes and as Ox-axis — the
direction of the parallel beam and we search the equation of the generating curve in the
form

y=0x). (1.1)

We admit that this unknown curve is contained in the xOy plane (Fig.1)

\j

Figure 1. The parabolic mirror
Let P(x,y) be a point on this curve. Draw the tangent 77’ at P and consider a
luminous beam OP, issued from O and reflected in PQ . By hypothesis, PO " Ox, so
that the angles OTP and QPT" are both equal to a. As the incidence angle ®, must equal
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the reflection angle ®,, we see that the angles 6and o are equal. Looking at the
triangle POT, we see that the angle MOP is 20.. From the right triangle MOP we deduce

fan 20 = 2. (1.2)
X
On the other hand,
dy
tano = y' =—. 1.3
V= (1.3)

From (1.2) and (1.3), using the tangent of a double arc, it follows

y_
x 1_y12

(1.4)

Equation (1.4) is an ODE, representing precisely the mathematical model for the curve
v =olx).

To get the form of @, one must find the solutions of this equation.

Let us leave aside — for the moment — the physical phenomenon and provide these
solutions in a mathematical frame. This is by no means an easy task; we shall use the
idea of differentiating with respect to y. Step by step, we thus get

2x:y[i,_y,j7
y

(1.5)
SYCIN.l  B P B
dy " dy [y y
or else
2 1, &1
=Y -y — 1 (1.6)
yooy dy { y
after canceling and simplifying by 1+ y'2, y'#0, y # 0, it is obtained
dy’ dy
— = 1.7
y B (1.7)
But equation (1.7) is equivalent to
ln|y’|:—1n|y|+lnC' , (1.8)

where C' > 0 is an arbitrary constant. It then follows
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y=—, C==£C', (1.9)
and finally
yTZC“K’ (1.10)

K being a new arbitrary constant.

Note that in this case there were obtained two arbitrary constants only because of the
differentiation with respect to y; one of them may be determined from the other. Indeed,
at the point of intersection of the curve with the Oy-axis one has x =0, therefore, by the

first equation (1.5) dy/dx =1and so o =45"; it follows that K = C? /2 . Thus, the final
form of the solution is

y?=2Cx+C?, (1.11)

that is a family of parabolae of axis Ox, of common focal point O and focal distance
Cc/2.

Conclusion. The internal surface of the silvered mirror is a paraboloid of revolution.

This simple example emphasizes the necessity of an organized study of the ODEs in an
appropriate mathematical frame.

2. Ordinary Differential Equations
An ODE is defined by an equality of the form
Fle y(x) /(). y(x)=0, @1

where the unknown function y also appears through its derivatives y(i), i=1n. The

variable x is also called independent variable.
It is considered that it belongs to a real interval 7, on which the function y is defined; this

last one is supposed of class C”" (1 ), meaning that y is continuous on /, together with its
derivatives up to n—th order inclusive. The function F is supposedly defined on the
Cartesian product 7xQ, where Q c R""'is such that /xQ be compact in the space of
co-ordinates (x, y(x),y'(x),..., y(")(x)). In most of the standard applications, F is

continuous in its arguments. The maximum order of differentiation of the unknown
function is called the order of the differential equation. For instance, the equation (2.1)
is of order n.

Under the previous conditions, the equation (2.1) may be developed with respect to

y(") to give

y(") = f(x, y(x),y'(x),..., y(”'l)(x)); (2.2)
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we call this form normal.
A particular solution of (2.1) is a function of class C”(I ) that satisfies (2.1) for any

xel.
The general solution (or general integral) of (2.1) is a function

J/ZJ’(X,CpCz,---,C,,) (23)

of class C" (I ), depending on » arbitrary constants C,,C,,...,C,, corresponding to the

order of equation, and satisfying (2.1) on /, for any set of admissible constants.

Thus, in the previous example, the function (1.11) is the general solution of equation
(1.4).

The particular solutions of a differential equation are obtained from the general one by
giving particular values to the constants C,,C,,...,C, . The solutions that cannot be

obtained in this way are called singular.
If we represent the general solution (2.3) in a system of rectangular axes xOy , we shall

obtain a family of plane curves — the parabolae (1.11) in the case of the previous example.
This justifies the denomination of integral curve for any particular solution of (1.4).

A very important class of ODEs is the class of linear differential equations. In order to
make things clear, denote by

—b(x)= F(x,0,0,...,0).
Then

F(x, y(x), y'(x), - y(")(x))z G(x, y(x), y'(x), - y(")(x))— b(x).
We call the n-th order differential equation (1.12) linear if its left member satisfies

G(x,ay+Bz,ay'+Bz',...,ay(”)+Bz(”)): 04)
=OLG(x,y,y’,...,y(”)>+ﬁG(x,z,z',...,z(”)l '

for any o,peR and any y,z e C"(I).

If G has an analytic expression and is linear, then necessarily

Gl 1) () 0= Y, () @5)

i=0
where a,(x) are real functions, defined on /. So, G is a homogeneous first degree

polynomial with respect to the unknown function y and its derivatives. Consequently, a
linear n-th order ODE has the general form

a, (x)y(") +a (x)y("_l) tota, () +a,(x)y=bx), b:I->R, (2.6)

If, in particular, b(x) =0, x e, then (2.6) is called homogeneous.

Remark. While the linear ODE of order # could be directly defined by (2.6), we preferred
to express the linearity in the form (2.5) from various reasons. First of all, the definition
(2.5) of the linearity is extremely useful in applications and mostly effective to establish
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the general representation of the solutions. Secondly, from (2.4) it is immediately seen
that the linearity of an ODE means linearity with respect to the unknown function and
not at all with respect to the independent variable x, the last confusion being a common
error.

Obviously, the differential equation (1.4) is non-linear, as it does not satisfy condition
(2.6). Let us note, in particular, that we used an artifice to solve this equation; it could
not be easily solved by using a standard method.

Actually, the non-linear case has not the advantage of a general method, leading to
satisfactory representations of the solution. Unlike this, in the linear case there were
found general techniques effectively leading to the solutions, in many cases expressed in
closed form.

This is why, in the present book, we decided to treat separately the case of linear ODEs,
starting with the first order ones.

3. Supplementary Conditions Associated to ODEs

We saw that the general integral of an ODE does not represent a well defined integral
curve. For instance, (1.11) represents a family of parabolae. This means that the solution
of a differential equation is not umique. As the classical physical phenomena are
deterministic, this means that some supplementary conditions must be added to the
equation such that the whole problem should allow a unique solution. Such conditions
are naturally imposed in the process of modelling itself. More precisely, the
mathematical model must be well posed in the sense of Hadamard. This means that its
solution
a) must exists, in a certain class of function C, ;

b) must be unique, in a certain class of functions C, ;

¢) must be continuous with respect to the given data.
Again, according to the involved phenomenon, we may distinguish two standard
types of such conditions:

= the Cauchy (or initial) conditions;

=  the boundary conditions.

3.1 THE CAUCHY (INITIAL) PROBLEM

Consider, for the moment, the ODE of first order
Flx,y(x)y(x))=0. xel, 3.1
whose general solution is
y=0(x,C), xel. (3.2)

In other words, every particular solution of (3.1) may be found among the curves of the
family (3.2), in which we take C as a parameter. A possible choice would be to get the
curve passing through a certain point (xo Y0 ) € I xQ , therefore, for which
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¥(x0)=y0s (3.3)
this yields
olx0,C)=yo- (3.4)

From (3.4), we get C.
The condition (3.3) is a Cauchy (initial) condition associated to (3.1).
The equation (3.1) and the Cauchy condition (3.3)

{F(x, y(x), y'(x)) =0, xel,

Mxo)= o, 3.5

form together a Cauchy (initial) problem.
If the problem is well posed (i.e., the solution exists and is unique), then the functional
equation (3.4) allows only one solution C = C(xo, yo) and the unique integral curve,

satisfying (3.5), is
¥ =y(x,Clxg. y0)). (3.6)

Suppose now that we deal with a second order ODE. A common physical phenomenon
leading to such equations is e.g. the motion of a particle. Let us give an example.

Problem. Study the free fall of a body of mass m.

Mathematical model. We must firstly set up a mathematical model for this phenomenon.
To do this, we must observe two steps:

1) establish the physical quantity/quantities representing the unknown function, whose
knowledge should give us an exact and complete idea of the phenomenon evolution

2) find the physical law/laws governing the considered phenomenon.

In the case of a free fall, the body, modelled as a particle (material point), moves on a
vertical to the earth. To know the motion is therefore to know at every moment ¢ the
distance y from the impact point. Thus, the unknown function will be the displacement
y= y(t) along the vertical; this is a real function, of one independent variable: the time

t. As for the law of mechanics governing the free fall, we can obviously use Newton’s
law

ma=F,

where a is the acceleration and F is the resultant of the forces acting upon the body.
According to the problem, we only deal with the force of gravity G, expressed as

G =-mg,

g being the gravity acceleration.
The sign minus is meant to indicate that G acts downwards, unlike y, which is upwards
directed.
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Note that all the involved vectors have only one component-dimensional, as the motion
evolves along one direction: the vertical. Consequently, the forces acting upon the body
are expressed in the form —mg , with g =9.81 m/s”.

The velocity of the body — also one-dimensional — will be expressed as the derivative of
the displacement y with respect to the independent variable ¢

dy .
a7

The acceleration will be the first derivative of the velocity with respect to ¢, and therefore
the second derivative of the displacement

dy
de?

In the above expressions, we used the dot for the derivative with respect to the time, as it
is a standard notation in mechanics.
Introducing this in Newton’s law, we get

my =-mg .
After simplifying with m, we finally obtain
y=-g, (3.7)
which represents the mathematical model for the free fall.

Solution. This is a second order ODE.As g is a constant, we can immediately integrate
once both sides, to get

y=-gt+Cy, (3.8)
where C, is an arbitrary constant. It is possible to integrate once more and we obtain

2

where C, is a new arbitrary constant.

According to the previously defined notions, (3.9) is precisely the general solution of
(3.7) and it is seen that it depends on two arbitrary constants. So, clearly, we need two
supplementary conditions in order to specify these constants. In this case, it is natural to
define more accurately

= the position of the body at the beginning of the motion (initial position)

= its velocity at the same moment (initial velocity).
If the motion starts at the moment ¢ = 0, then these conditions read

0)= — the initial position,
{y() Yo P (.10

y(O) =y, - theinitial velocity,
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with y,,v, previously given. The conditions (3.10) are called Cauchy or initial

conditions.
If we now make ¢ =0in (3.8), we get

)"(0)=C1 = Ci=v. (3.11)
Taking ¢ =01n (3.9) yields
¥0)=C, = C,=y,, (3.12)

therefore both constants are perfectly determined from the supplementary conditions
(3.10).
The problem formed by equation (3.7) and the initial conditions (3.10)

j} =-4,
7(0)= vy, (3.13)
}"(0)=V0»

is a Cauchy or initial problem.

In general, the motion problems may be modelled by using Newton’s law. If we consider
the case of a single particle, the unknown function will be its displacement, say,
x= x(t). As in the previous example, the particle velocity will be x=dx/d¢ and the

particle acceleration, X = d?x/dt*. As for the resultant of the forces acting upon the
particle, we usually find expressions depending on x and x. Thus, the unidimensional
equation of motion of a particle is usually expressed in the form

mi = F(t,x,%). (3.14)
The initial conditions read now
3.15
%(0) = %,. (3-15)

The equation (3.14) together with the conditions (3.15) form a Cauchy or initial problem.
We observe that a first order ODE requires one Cauchy condition, while a second order —
two such conditions.

In the general case, to the equation (2.1) we associate n Cauchy conditions

{x(O) = X0,

J’(xo):)’wa J’(i)(xo):yz‘ﬂ,o’ i=Ln-1, x,€el, (3.16)

where y,,,i=1,n are previously defined constants, usually known as Cauchy or initial

data. It is important to note that, in this case, all the involved conditions are given at the
same point x,. Obviously, the point (xo, Vigs---s y,,o) must belong to the domain of

definition of F.
If the general solution (or integral) of equation (2.1)

y=y(x,C1,C2,...,C,,) (317)
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is known, then the Cauchy problem (2.1), (3.16) is reduced to get the constants
C;,i=1,n from the algebraic (or functional) system of n relationships and » unknowns

y(xo’clacb""cn):le’

y’(xO,Cl,Cz,...,C,,)=yzo,
(3.18)

Under certain conditions, ensuring the existence and uniqueness of the solution of the
Cauchy problem (2.1), (3.16), this system allows a unique solution.

3.2 THE TWO-POINT PROBLEM

Like the Cauchy problem, this kind of problem has it source in the modelling of the
physical phenomena.

A classic example is the simply supported bar. Let us study the deflection of the bar axis
y(x) with respect to its rest position Ox, when the bar is acted upon by some known

forces or loadings.
The unknown function y(x) satisfies, under certain physical hypotheses, the Bernoulli —

Euler equation

3

= f(x)(l+y’2)5 ’ (3.19)

where f depends on the bending moment and on the bar rigidity. This is a second order
non-linear ODE, in normal form. From the physical point of view, a bar is simply
supported if the bar deflection is null at the bar ends a and b, say, laying on the Ox - axis.
Translated in mathematical terms, this reads

y(a)=0, y(b)=0. (3.20)

These are no more Cauchy conditions, because the unknown function must be known at
two different points: a and b.

The simply supported bar problem (3.19), (3.20) is therefore a two-point (or bilocal)
problem.

The two-point conditions may be generalized for the n-th order equation (2.1)

n—l1

S lo, v (a) 4B,y (b)) =7, i=0m, (3.21)

Jj=0

where y(o) =y, &;,By,7;,0,j=0,n—1 are given constants and a,be ] .

Let us note that, while for the Cauchy problem (2.1), (3.16) we have the benefit of
appropriate theorems, ensuring the existence and uniqueness of the solution under
sufficiently large hypotheses, for the two-point problem such general theorems are no
more available, even for linear equations. This is why we shall not try to find convenient
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hypotheses ensuring the existence and uniqueness of the solution of a two-point problem;
they will be specified on particular cases, when applied.

Another important generalization of the two-point problem is the polylocal (or n-point)
problem, which consists in getting those solutions of (2.1) that also take given values at n

different points a;, e [,i=1Ln
y(ai):yiﬁ l:l,_”l, aj<aka j,kzl,_”l (322)

To find convenient theorems of existence and uniqueness of the solution of the poly-
local problem (2.1), (21) is not an easy task. Yet, the polylocal conditions may be
considered, in a certain sense, a generalization of the Cauchy conditions (3.16). Indeed, if

J/(ai )_y(ai—l )

a;—a;

the points a;,i= 2,_n , are getting closer to a;_;, then the ratios tend to

the derivative of y at a,_;. All the involved constants being previously known, it follows

that the limit y’(ai ),i =1,n—1 is also known. Further, the points a,,i=2,n—1 are
again moving to the left; this yields y”(a,- ), i=1,n—2. After n—1such steps, we know

all the values )/(")(cz1 ), i=0,n-1.

This interpretation is intuitive and might be somewhat formal, but it serves as a
foundation for some general considerations in the study of polylocal problems. As we do
not consider here applications involving polylocal problems, we shall not treat such
problems in detail.



Chapter 1

LINEAR ODEs OF FIRST AND SECOND ORDER

1. Linear First Order ODEs

As it was already specified in the introduction, the general form of such equations is
v+ plely = £(x) (LLD)

where fand g are functions defined and supposed continuous on the real interval /. The
function f (x) is usually called the free term.

We shall study this equation starting from the most simple up to the most general case,
which is (1.1.1).

1.1 EQUATIONS OF THE FORM y' = f(x)

This is the simplest form of (1.1.1). The solutions of this equation may be obviously
regarded as primitives of /. Consequently, its general solution (integral) is

y(x)=ff(X)dX+Ca (1.1.2)

where J. f (x)dx is one of the primitives of f and C is an arbitrary constant. The

representation (1.1.2) is obviously obtained by integrating both members of y' = f (x) .
If we wish to get the solution passing through the point (xo, Yo ), where x, €/, then it

is convenient to choose J. f (é)dé among the primitives of f. Indeed, with this choice, the
Xo

solution passes through (xo , yo) if

C+ [ 1(e)ae = v, (1.1.3)

Yo

therefore if C =y, . This yields

(x)= If(é)dé+yo~ (1.1.4)

Xo

11
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1.2 THE LINEAR HOMOGENEOUS EQUATION

This equation is also a particular case of (1.1.1), where the free term is identically null,
that is

y'+plx)y=0. (1.1.5)
Dividing by y both terms of this equation, we immediately get
d
—\Injy|)=-plx). 1.1.6
- (inb)=-p(x) (1.1.6)

This means that 1n| y| satisfies an equation of the previously considered type. Thus, the

general solution of (1.1.6) is, by using directly (1.1.2),
1n|y|:6—jp(x)dx, (1.1.7)

where C is an arbitrary constant and I p(x)dx — one of the primitives of p. From (1.1.7)

we see that y is the general solution of (1.1.5) and is expressed by
y(x)= ce Tl (1.1.8)
with C arbitrary constant.

As previously, to get a particular solution, passing through the point (xo, Yo ), we shall

choose — J- p(i)d& among the primitives of p. Then (1.1.8) immediately yields C = y,, .
Xo

Consequently, the solution passing through (xo , yo) is given by

~Tple)de
He)=soe (L1

1.3 THE GENERAL CASE

Let us get back to the equation (1.1.1), in which the functions fand p, definedon / c R,
are not identically null. Suppose that we know a particular solution of (1.1.1), Y (x) say,
and let us perform the change of function

y(x)=2{x)+ ¥ (x). (1.1.10)
Introducing this in (1.1.1) immediately involves
z'+p(x)z+Y'+p(x)Y=f(x); (1.1.11)

thus, z satisfies the homogeneous equation
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z'+p(x)z=0, (1.1.12)
which was studied at Sec.1.2 and whose general solution is

2(x)= Ce TP, (1.1.13)

Getting back to (1.1.10), we see that the general solution of (1.1.1) may be expressed in
the form

y(x)= Ce TP Ly (y), (1.1.14)
where Y (x) is a particular solution of the non-homogeneous equation (1.1.1). This form
is very important, as it is characteristic for linear ODEs in general; we shall discuss it

further.

14 THE METHOD OF VARIATION OF PARAMETERS (LAGRANGE’S
METHOD)

Except for Y(x), formula (1.1.14) refers only to the coefficients of (1.1.1). Lagrange
remarked that ¥(x) can be obtained in terms of these coefficients if we search it under
the form

¥(x)= Clx)e TP, (1.1.15)

that is, shaping it according to the general solution of the associated to (1.1.1)
homogeneous equation. Introducing this in (1.1.1) yields

C'(x)e TP p()C(x)e TP 4 px)C(x)e TP = 1), (1.1.16)
from which we deduce that C(x) must satisfy
C'(x)e PR = £(), (1.1.17)
which leads to
C'(x) = f(x)el 70, (1.1.18)

This is an equation considered at Sec.1.1. It follows that the general integral of (1.1.18)
is written in the form
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C(x)=K+J.f(X)ejp(")d"dX- (1.1.19)

In this expression, K is an arbitrary constant and the integral in the right member is a
primitive of the function f (x)eI Pl Actually, we don’t need the general solution of

(1.1.18) for our purpose; all we need is a particular solution, which can be found giving
to K an arbitrarily chosen value, e.g. K =0. With this, we get

V()= 10 [ (el Mgy (1.1.20)

We replace now this particular solution in (1.1.14). The final form of the general solution
of the linear non-homogeneous equation (1.1.1) is thus

y(x)= o pla)d (K n I F(x)e! p(x)dxdx)_ (1.1.21)

It is seen that this expression contains only primitives involving the coefficients of the
equation.
To find the integral curve passing through a given point (xo, yo) we conveniently

choose the primitives. The solution of this Cauchy problem will be

N e N FETE
yx)=e " yo+jf(n)e’° dn |. (1.1.22)

Xo

From the above considerations, we point out the following two aspects, particularly
important in the study of linear ODEs:
(1) The general integral y(x) of the non-homogeneous equation (1.1.1) may

be put under the form (1.1.10), i.e., a sum between a particular solution of
(1.1.1) and the general solution of the associated to (1.1.1) homogeneous
equation.

(i1) We succeeded to find a particular solution of the non-homogeneous
equation shaping it in the form of the general solution of the associated
homogeneous equation, in which the constant C was replaced by a
function C(x). This method is called the method of variation of

parameters or Lagrange’s method.
The representation (1.1.10), as well as Lagrange’s method, are extremely important and
useful tools for the study of linear ODEs and systems; they will be also used for higher
order linear ODEs.
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Let us think of the property of linearity in an algebraic frame. Denote by

LyEy'+p(x)y (1.1.23)

the left member of (1.1.1). Actually, we can think of L as being a succession of
functional operations executed on C'(7)- class functions y.

Example. For Ly =y'—xy, let us take y, = x? . According to the operations indicated by
the definition of L, we have Ly, =2x—x- x% =2x—x>, therefore the result is a function.
If, for instance we take y, =e”*, then Ly, =2e* —x-e** =(2-x)e**. Taking

2
/2 _x.e""'2 =0, therefore the null function.

2 2
yy=e* /%, weget Ly, = xe*
We can say that L is an operator, as it realizes a function-to-function correspondence.
Moreover, we say that it is defined on C'(7), with the range in C°().

In general, an operator L:Y — Z, where Y and Z are spaces of functions, is called
linear if

L(oy, +By,)=oLly, +BLy,, Vo,BeR, vy, y, €Y. (1.1.24)

With this definition, we can easily prove that the differential operator introduced in
(1.1.23) is linear. Indeed, we have

Llay, + Br,) = (an + Bry) + p(x)an + Bry)
= aly; + p(x)y |+ Bl + p(x)y, ] (1.1.25)
= aly, + fLy,.

Let us get back to the general case. The kernel of an operator L:Y — Z is a subset of Y,
containing functions cancelled by L

kerL = {ye Y|Ly=0/. (1.1.26)

As Y is a linear vector space, kerL will be a linear subspace of Y. Indeed, if
Vi,¥, €kerL, then L(ony1 +By2): aLly, +BLy, =0 Va,B eR, therefore ay, +By, €
kerL. It is seen that finding solutions for the homogeneous ODE (1.1.5) means

in fact to get kerL. From the form (1.1.8) of the general solution we deduce that
the dimension of ker L is 1, for first order ODEs. This is not a casualty; we shall see that
the kernels of linear n-th order ODEs have the dimension 7.

1.5  DIFFERENTIAL POLYNOMIALS

Let us denote by D the operator indicating the derivative of first order of a function



16 ODEs WITH APPLICATIONS TO MECHANICS

d
D= (1.1.27)
and by E the identity
Ey=y (1.1.28)
Then L may be also expressed as
Ly=P,(x,D)y, P,(x,D)=D+ p(x)E. (1.1.29)

The operator defined in (1.1.29) is a formal polynomial of first order in D and it is called
a differential polynomial.
Let now y = [y j J]_:E, f= [ S Ji:ﬁ be vector functions and assume that we must solve

the vector equation

Ly=y+ply=f. pec(1)fe(c(). (1.1.30)

Writing (1.1.30) componentwisely, this means, in fact, that one has to solve n uncoupled
ODEs

Ly, =y, +plx)y, =f;, j=Ln. (1.1.31)

These first order ODEs are linear and non-homogeneous, therefore their general solution
can be written, following formula (1.1.21)

v, (x)=eTrts (Kj +J'fj(x)elp(x)dxdx), (1.1.32)

or, in vector form

y(x) = o Trlek (K . If(x)ejp(x)dxdx) K=[k, ]j (1.133)

=ln"

2. Linear Second Order ODEs

The general form of such equations is, according to the introduction (see e.g.(15))
ao(x)y"+a,(x)y’ +a, (x)y = b(x), 1.2.1)

where ag,a;,a,,b are real functions defined on a real interval [/ cR. We may

consider these functions continuous on /.
If qa, (x);t 0,Vxel, we can divide both members of (1.2.1) by it, thus getting an

equation whose leading coefficient is 1
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y"+ p(x)y +q(x)y = f(x), (12.2)
_ a, (x) _% (x) _ blx)

) e
the coefficients of (1.2.1) are of class C° (1 ), so are p, g and f.

We see that, if « (x): 0, Vx € I, the equation is no more of second order, and, at the

where we used the notations p(x)

. Obviously, if

points at which a,(x)=0, it has singularities. For the moment, we shall not deal with

such situations, such that we consider that the given equation may be brought to the form
(1.2.2).
Let us denote by

Ly=y"+plx)y'+qlx)y . (1.2.3)

The operator L is defined on C? (1 ), with range in C° (1 ), and we can easily prove that it
is linear.
The kernel of this operator is a subset of C? (1 ), containing functions cancelled by L

kerL =y e C?(1)| Ly = 0}. (1.2.4)

In other terms, kerL is the set of all the solutions of the homogeneous ODE
v+ px)y +qlx)y =0

As in the case of first order ODEs, by using the notations we can express L in terms of
the second degree differential polynomial

Ly=P, (x,D) , P, (x,D)E D? +p(x)D+q(x)E (1.2.5)

In (1.2.5), the formal power D? means to apply twice the operator D, in other words, to
differentiate twice

2 2
d d "

2.1  HOMOGENEOUS EQUATIONS

Let us take the associated to (1.2.1) homogeneous equation
ag(x)y"+a,(x)y'+a,(x)y =0. (1.2.7)

If we know a particular solution of this equation, say Y(x), we can completely solve
(1.2.7). Indeed, let us perform the change of function

y(x)=2(x)r(x), (12.8)

z(x) being the new unknown function. Replacing this in (1.2.7), we get
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ao(X)¥z" +[2a0 (x)Y' + @, Y |2 +[ag (x)Y" + a, (x)Y" + 2, (x)Y ]z =0 . (1.2.9)
As Y s a solution of (1.2.7), it follows that « = z" must satisfy
ao(x)¥u' +[2ag(x)Y' +a, Y e =0; (1.2.10)

this is a linear first order ODE.

We conclude that if we know a particular solution, we can reduce the order of the given
equation by one unit.

Suppose now that Yl(x) is a known particular solution of the homogeneous equation,

associated to (1.2.2)
y"+plx)y'+qlx)y =0 (12.11)

and suppose moreover that ¥; does not vanish on /. Using the change of function

y=Y,z, we find that u = z' must satisfy

u'+(2 ?I(x)+p(x)]u -0, (12.12)

i.e., a linear first order homogeneous ordinary differential equation. According to
Sec.1.2, it allows the general integral

e—IP(X)dx
ulx)=C, ——, (1.2.13)

()=, e
where | p(x)dx is a primitive of p(x) and C, is an arbitrary constant. Getting back to y,

we deduce
o plx)dx
y(x):ClYl(x)jz—dx. (12.14)
Y7 (x)

The path we followed so far, as well as the linearity of the homogeneous equation,
involve that any solution of (1.2.11) is a linear combination between the function Y; (x)

and the function
e*j'p(X)dX
Y. =Y, —dx. (1.2.15)
2 (x) I(X)'[ le (x)

The two particular solutions ¥, (x), ¥, (x) are linearly independent, i.c.

kY, (x)+k,Y,(x)=0,Vxel = k =0k, =0. (1.2.16)
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We can check this either directly, or, better, by introducing the Wronskian

Y0

W[YI’YZ]dEfdet[Y' Y!
< 1 2

}:Yle'—YzYl’. (1.2.17)
We can prove that if Y;,Y, are linearly dependent, then W(Yl,Yz)EO on /, and if

Y., Y, are linearly independent, then W(YI,YZ )(x):t 0,Vxel.

A fundamental system of solutions of (1.2.7), or, accordingly, of (1.2.11), is a pair of
linearly independent particular solutions of (1.2.7) or (1.2.11), nonvanishing identically
on /.

Following this definition, we can say that the above mentioned functions Y;(x), ¥, (x)
form a fundamental system of solutions for the equation (1.2.11) and the general integral
of this equation will be expressed in the form

y(x)= €Y, (x)+ C, Y5 (x), (12.18)

i.e., in the form of a linear combination of the functions of the fundamental system with
arbitrary constant coefficients.

Otherwise speaking, in this case the dimension of ker L is 2 and any fundamental system
of solutions represent a basis for it.

We can choose the functions of the fundamental system such that, at a given point
x,y €1, the following Cauchy conditions be satisfied

Yl(x0)=1, Yz(x0)=0s
Yi(xg)=0, Yy(xo)=1.

The corresponding system of solution will be called in this case normal; it is a
fundamental system for the equation (1.2.11). Indeed, suppose that

kY (x)+k,Y,(x)=0, Vx e 1.

(1.2.19)

As Y,(x), Y, (x) are differentiable on 7, we can also write
kY (x)+k, Y5 (x)=0, Vx e 1.
These two relationships may be written at any point of /, therefore also at x, €/,

klyl(xo)+k2Y2(x0)=0s

, , (1.2.20)
ey Y (g )+ ke, Y3 (xg ) = 0,
and, taking (1.2.19) into account, it results that k£, =0, k, =0.
This might be more effectively proved by using the Wronskian. Indeed,
Yi(xo) Yalxo)| [T 0
Wy, v)(xo) = 0=l =120, (12.21)
Y (xo ) r (xo ) 0 1

which means that Y, (x), Y, (x) are linearly independent on /.
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The Wronskian also has a special property, very useful in practice.
Let us differentiate it, by using the well-known rules of differentiating determinants. We
have

arfy.yn]_n 1 Y, Y Y, 0
T " ” =7 ’ ’ = _p ! ’
dx N Y |pYi+qY, pY,+4qY, Y Y, (1.2.22)
=P W[Y1 e ]
This means that the Wronskian satisfies the first order linear homogeneous ODE
dw
—+pW =0. 1.2.23
o P ( )
According to Sec.1.2, the general solution of this equation is
- x )dx
W[Yl,Yz]zCe Ip() , (1.2.24)

where C is an arbitrary constant.
If we know the value of W at a point x, €/, then (1.2.24) may be also written in the

form

- [ ple)a (12.25)
W(x): W(xo )e 0
From this, it follows that, if the Wronskian vanishes at some point x, €/, then it

vanishes identically.
Formula (1.2.24), or, equivalently, (1.2.25), is known as Liouville’s formula.

2.2 NON-HOMOGENEOUS EQUATIONS. LAGRANGE’S METHOD

To solve the non-homogeneous equation (1.2.2), we shall use again the previous ideas,
exposed for first order ODEs.

Suppose that we know a particular solution of (1.2.2), say Y (x) Let us perform the
change of function y =z+7Y , where z is the new unknown function. Introducing this in
(1.2.2), we get for z

z"+ p(x)z’ + q(x)z =0, (1.2.26)

which is precisely the associated to (1.2.2) homogeneous equation. Therefore, the
general solution of (1.2.2) is the sum between one of its particular solutions and the
general solution of the associated homgeneous equation, exactly as in the case of first
order equations.

If we also know a fundamental system Y, (x), ¥, (x) for (1.2.26), we can write the general

solution of this equation in the form of the linear combination
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2(x)=C, Y, (x)+ C, Y, (x). (1.2.27)
Thus, the general solution of the non-homogeneous equation (1.2.2) is
y(x)=C Y, (x)+ C, Y, (x)+ Y(x). (1.2.28)

To write this, we must therefore know three functions: Y, Y,,Y,.

But from the above considerations it follows that we need to know only one particular
solution of the homogeneous equation (1.2.26), say Yl(x) Indeed, in this case we

immediately get another particular solution, ¥, (x), linearly independent on ¥, (x), as it
was previously shown. The functions Y,(x),Y,(x)form a fundamental system of

solutions for (1.2.26).
According to Lagrange’s idea, we can search now for a particular solution of (1.2.2)
under the form

Y(x)=C, (%), (x)+ C, (x)¥, (x). (1.2.29)
Differentiating this once, it is obtained
Y'(x)= Y, (x)+ C5 Y, (x)+ C ¥ (x)+ C, Y5 (x). (1.2.30)
We can choose C,, C, such that
C}Y,(x)+C5Y,(x)=0, (1.2.31)
therefore
Y'(x)=C Y (x)+ C, Y5 (x). (1.2.32)
We differentiate this once more
Y"(x)=C1Y/(x)+ CY5 (x)+ C Y (x)+ C,Y(x) . (1.2.33)

To retrieve the non-homogeneous equation (1.1.24) we shall multiply (1.2.32) by p(x),
(1.2.29) by q(x) and then add them to (1.2.33). We obtain

LY(x)=Cj¥{(x)+ C3Y;(x)+ C LY, (x)+ C,LY, (x) (1.2.34)
or
CiY/(x)+C5 Y5 (x)=LY(x). (1.2.35)
But LY(x)= f(x) and so we get for C], C} a linear algebraic system

{C{Yl(x)+ CiY,(x)=0,

1.2.36
CY(x)+ Ci(x)= £(). (1.236)
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The associated determinant is precisely the Wronskian of Y;,Y,, therefore it does not
vanish all over 1. Solving (1.2.36), we find for Cj, C}

e 1545
1 W) (1.2.37)
_K()s() -

- W(x)

B

G

B

that, integrated once, yield
(1.2.38)

We did not add arbitrary constants to the primitives C,, C,, because we only need a
particular solution of (1.1.24). This particular solution is precisely

ITx):Yﬂﬁﬂzig%ggjdx—K(xﬂzi%%ggﬁdx. (1239)

The conclusion is that if we know Y; e ker L, then the non-homogeneous ODE (1.1.24)
is completely solved. Its general solution may be put in the form

yQ):(}me)+CZKAﬁ}+KAxHZl%%£$2dx—K(x”22%2§$gdm (12.40)

where Y, (x) is expressed e.g. by (1.2.15).

Lagrange’s idea of finding a particular solution Y for a non-homogeneous linear ODE
may be applied in various ways. Thus, we can search for Y in the form

Y(x)=C, (%)Y, (x)+ Cy (x)¥, (x)+ z(x), (1.2.41)
Y(x)=[C) ()1, (x)+ €, ()1, (6l (). (1.2.42)

if these forms present more advantages in computation.
Naturally, the algebraic system in Cj, C} will differ from (1.2.36). Thus, for instance,

applying (1.2.41), we find, if q(x) #0,xel
CiY; (x)+ CyYy (x) = =2,
CJY/(x)+CyY;(x)=0, (1.2.43)
bz=f.
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The general integral (1.2.40) may be written in a compact form by introducing the
function

Y (4)r (0)- V5 ()1 1)
k(x, )=+ W(t)

, (1.2.44)

where we take the sign + for x <t and the sign — for x>¢. We observe that this
function has the following properties

(1) kis of class C'(1), for x#1;

(i1) k(x, t) satisfies the homogeneous ODE (1.2.11), for x #¢, (x, t) elxI;
(ii1) for any s € I, the first derivative of k& with respect to x has a jump equal to
one unit
Ok Ok
—(s+0,5)-—(s-0,5)=1. (1.2.45)
Ox Ox

By definition, a function with the above properties is called a fundamental solution of the
equation (1.2.11).

The fundamental solution is not unique. Yet, one can prove that the set of all the
fundamental solutions of (1.2.11) is given by the function of the form

k(x, 1)+ C, ()Y, (x)+ C, (1)Y, (x), (1.2.46)

with k(x, t) defined by (1.2.44) and C,, C, continuous with respect to .

By means of the fundamental solution, we can express the general solution of the non-
homogeneous equation (1.2.2) in the form

y(x) =k ¥y (x)+ ky Yo (x) + Tk(x,t) £(¢)de (1.2.47)

a

o and [ being the extremities of /.

The idea of fundamental solution may be also applied to first order ODEs and may be
extended to PDEs, but this last exceeds the topics of the present book. The natural
mathematical frame for the fundamental solutions is the theory of distributions.

Let now y = [y j JFL—”, f= [ S J_i:ﬂ be vector functions and assume that we must solve

the vector equation

Ly =+ p()y+q(y =1, pgec®(r)telc(). (1.2.48)

Writing (1.1.30) componentwisely, this means, in fact, that one has to solve n uncoupled
ODEs

Ly, =y, +P(X)J>_/ +Q(x)y_j =fi J =Ln. (1.2.49)



24 ODEs WITH APPLICATIONS TO MECHANICS

These second order ODEs are linear and non-homogeneous, therefore, knowing the
fundamental system of solutions Y;,Y,, their general solution can be written, following

formula (1.2.40),

yj(x):kjlyl(x)+kj2Y2(x)

Y (x)f; (%) L), — (1.2.50)
+Y2(X)J.de_yl(x)jw , ]—l,n.
Eventually, the solution of the vector equation (1.2.48), written in vector form, is
_ A8 1 (x)f(x)
y(x) =k (x)+ k1 (x)+ 1, (X)J.IWT)CIX -1 (X)J.szde (1251)
k= [kﬂ ]j:fn’ ky= I:ka]j:ﬁ'

2.3 ODEs WITH CONSTANT COEFFICIENTS

In this case, we can always find easily a fundamental system of solutions for the given
ODE.
Indeed, consider the second order homogeneous ODE with constant coefficients

Ly=ayy"+a,y' +a,y=0, ay,a,,a, eR,a,#0 (1.2.52)

and, naturally, / =R .
Euler’s idea was to search for solutions in exponential form, i.e.

y(x)=e™ (1.2.53)
with a constant. Introducing this in (1.2.52) yields for o an algebraic equation
a0a2+a1(x+a2 =0, (1.2.54)

also called the characteristic equation. The second degree polynomial in the left member
is the characteristic polynomial.
This equation allows two roots, o, o, , say, that might be
1) real and distinct,
ii) complex-conjugate,
1ii) double.
Let us analyse one by one the above mentioned cases.
i) There are two distinct solutions of the exponential form (1.2.53)

Y (x)=e*, v, (x)=e®". (1.2.55)
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We notice that Y;,Y, are linearly independent. Indeed, their Wronskian

ox ayx

n 5
non

= ¢ C = (g — oy et ), (1.2.56)

W[Ylayz]:

ae® ™

does not vanish, as the roots are distinct.

So, the functions e*',e“? form a fundamental system and the general solution may be
written as

y(x)=Cre™* +Cre®”. (1.2.57)

Let us get now a normal system, at some point x, € R .
We must find the solutions Z,, Z, of (1.2.52) satisfying the Cauchy conditions

Zl(xo)zla Zz(xo)zoa

1.2.58
Zi(x0)=0. Z3log)=1. (228
Inspired by (1.2.57), we express Z,,Z, in the form
Zx)=c e(xl(x—xo)+c e“z(xfxo)’
1()=e : (1.2.59)

Zz (.x): dleal(X7X0) + dze(XZ(X7x0).

Imposing now the conditions (1.2.58), we obtain for the coefficients ¢;,c, the following
linear algebraic system

are=l (1.2.60)
OLlCl +a2C2 :0, -
and for d,,d, the system
d, +d, =0, (1.2.61)
o d; +o,d, =1. -
Both systems allow the unique solution
Cl :a—z’ 02 :L’
o, — 0 o, — 0O (12.62)
d, = 1 d,y - 1
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Introducing this in (1.2.59), we obtain

o e“l(x*xo) _aleuz()‘*xo)

Z (x) 2 )
a2 1.2.63
_eotl(x—xo) +e°‘2(x—xo) ( o )
Zy (x) =
Ay =0y
The general solution of (1.2.52) in terms of this normal system is

ay(¥=xp) _ o (x=xp) _e (x=x) ot (¥=xp)

y(x) =, 225 bl v, ¢ re . (1.2.64)

oy — 0y ®y — 0y

If o, =—0, =—1, then Z, (x) = cosh(x - X, ), Z, (x) = sinh(x - X, ) and (1.2.64) becomes
y(x)=C, cosh(x—x, )+ C, sinh(x—x,). (1.2.65)

i) In this case, the two roots are complex-conjugate. Putting
o, =p+i0, 0, =p—i0, with 60, we see that the functions e(p“e)x,e(p_‘e)x form a
fundamental system for (1.2.52). But this equation is linear, and, as kerL is a vector

space, their linear combinations, which, according to Euler’s formulae, are real
functions, also belong to ker L

(p+i0)x (p—i6)x i0x —ifx
Y, = ° 42—e —efr & +26 =¢P cos Ox,
e(p+19)x _ e(pfie)x gi0x _g-ifr (1.2.66)
Y, = y =efr - =P sin Ox.
2i 2i
Besides, they form a fundamental system, as their Wronskian
e cosOx e sin Ox "
wn.nl=| . e =0’ (1.2.67)
e (p cos Bx — O sin Ox) e (p sin Bx + 6 cos Ox
is obviously non-zero.
The general solution of (1.77) is therefore
y(x)=e™(C, cos Ox+ C, sin Ox), (1.2.68)

with C,,C, arbitrary constants.

iii) Let us denote by o the double root of the characteristic equation (1.2.54).
Obviously, (1.77) allows

Y, (x)=e™ (1.2.69)

as a particular solution. A second particular solution cannot coincide with Y;. So, in
order to get a new particular solution, linearly independent from Y;, we suppose, for the
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moment, that the characteristic equation allows two distinct solutions, o, o', very close

to each other. To these roots, according to i), we put into correspondence the solutions

e® %" which, so far, are linearly independent. But this does not hold if o' — o . We

o'x o
' . . .e"—e . -
then replace e“” by the linear combination ———— and, passing to the limit as
o' —o
o' — o, we obtain a second particular solution, distinct from ¥,
e(XX _e(XX xeocx o

Y, (x)= lim — = lim = xe™ . (1.2.70)

adsa o' —a a—a 1

To get ¥, we used L’Hospital rule.

The functions Y}, Y, form a fundamental system. Indeed,

wlron )= T e L (1.2.71)
PR e (ax+1)e™ ' o
The general solution of (1.2.52) is then
y(x)=e™(C, +Cyx), (12.72)

with C,,C, arbitrary constants.
The general integral of the non-homogeneous ODE

LyEaOy"+a1y'+a2y=f(x), ay,a,,a, €R, a, ;tO,feCO(I), (1.2.73)

obviously allows the representation (1.2.47), where Y;,Y, are determined as it was
shown in the cases i), ii) or iii). But this kind of formula often leads to cumbrous
computation, because of the integral in the right side. We have another option, if f'is an
elementary function — polynomial, exponential, trigonometric function etc. In this case,
the particular solution of (1.2.73) is searched under a form similar to f. In applications,
we shall make use of this idea.

24  ORDER REDUCTION

Let us get back to the linear ODE(1.2.7), whose coefficients are supposed continuous on
the real interval / and a,(x)#0,Vxel. We already proved that, once we know a

particular solution, one can completely solve this equation. But there are cases in which
we don’t even need this. Let us mention some of them.
a) Ifa, (x) =a; —ajg, then (1.2.7) may be integrated once, to give

ay'+(a,—ap)y=0C, (12.74)

where C is a real arbitrary constant. The linear first order ODE (1.2.74) was already
completely solved at Sec.1.3.
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Lol
b) By the change of function u(x)= y(x)ez'[”"(x)
to Liouville’s normal form

, the equation (1.2.7) is brought

u"+K(xu=0. (1.2.75)
The function K(x) is defined by the formula

2 ’
K(x)= “_Z_l[ﬂj _l[“_lj (12.76)

2\ ag

and is called the invariant of (1.2.7). We see that K has a sense only if @, /a, € C'(I).

¢) Let us consider, together with (1.2.7), a similar ODE, fulfilling the same
conditions

b (x )" +by (x)u’ + by (X =0 . (1.2.77)
It can be proved that their solutions are connected by the relationship
y(x)=ulx)p(x), pec?(1), (1.2.78)

with p nonvanishing on 7, if and only if the two corresponding ODEs have the same
invariant K (x) In this case, let Y},Y, and, accordingly, U,,U,, be two fundamental

systems for these ODEs. It can be proved that the ratio

Y (x) _ U (x)
s(x)=—H==—t, 1.2.79
ACRCAD) -
with s'(x)# 0, satisfies the non-linear ODE
m 3 ” 2
S—,——(S—,j = 2K (x). (1.2.80)
s 2\s

The differential expression in the left member is called the Schwarz derivative of s and
plays an important part in the study of stability of the solutions of ODEs.
d) By means of the transformation

y
Uu=-—, 1.2.81
’ ( )

the equation (1.2.7) becomes

ao () + ay (x)u + ag (x)u? +a,(x)=0, (1.2.82)
which is a first order non-linear ODE, of Riccati type (see Chap. 4, Sec. 1.4).
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2.5 THE CAUCHY PROBLEM. ANALYTICAL METHODS TO OBTAIN THE
SOLUTION

We shall briefly expose several of the mostly used and most general analytical methods
to get the solutions of Cauchy problems for linear second order ODEs.
Let us associate to the equation (1.2.2) the following initial (or Cauchy) conditions

yxo)=vo. ¥(xo)=3h. xgel. (1.2.83)

Suppose that the coefficients and the free term allow derivatives of any order on /,
therefore p,q, f € C*(I).

a) The method of the Taylor series expansion
We write Taylor’s formula for y(x)

X=X

1!

(x—xo )k (k)
+Ty (x0)+Rk (x,xo),

()= ylxo )+
(1.2.84)

where

(x - X, )k+1
Ry (x,x0)= Twe)

is the Lagrange remainder. The first (k + 1) terms of Taylor’s formula form a k-th degree

y(k)(xo + 9(x—x0 )), |9| <1,

polynomial, usually called Taylor’s polynomial. The value of y(x) around x, may thus

be approximated by Taylor’s polynomial. To obtain the coefficients y(j )(xo ), i =2,_k,
we differentiate step by step, also using the ODE (1.2.2). This yields

¥"(x0) = =g )y (0 )= qlxo (o )= £ (0 ) = =2 xo ) — 0 Jo — £ (x0 ),
7(x0)= [P ()= 'k )= a0 )y (e )+ [ o Yo )= e ()
= £ )+ Pl ) (v0) = [0 )~ /(0 ) - o i (1.2.85)
+ [P(xo )Q(xo )— q'(xo )]yo - f’(xo )+ P(xo )f(xo ),
Ihis way. e expressed the values of higher derivtives of y at x, . required by Taglor'

polynomial, in terms of the Cauchy data y,, yg.

Remark. The Taylor’s formula is currently used especially to solve Cauchy problems.
Yet, the obtained approximation has a local character and for this reason it serves to set
up one-step methods in the frame of the numerical analysis.

b) The method of the successive approximations (Picard)
Let y, be a linear function, satisfying the Cauchy conditions (1.2.52).
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Picard’s method for the linear second order ODE consists of determining the sequence of
functions y, (x) by the recurrence relationship

yi()==plx)yi (x)-qlx)y,y + fx), k=2, (1.2.86)
starting from y,. It can be proved that the (convergent) series
() =y () + 35 () + 3 (x)+ ... (1.2.87)

is the desired solution.

¢) The method of continued fraction expansion
This method can be applied to the homogeneous ODEs (1.2.11) for which q(x) #0. The

equation may be written in the form
y=po()y +qo(x)y. (1.2.88)

If py,q, allow derivatives of any order on /, then, differentiating (1.2.88), we get

/ p Po +4q q
y'=p )y g )y, p =g =, (1.2.89)
1-qq 1-4q
and, in general,
g _
B B N O L R (1.2.90)
1-gj, 1-q;
if the denominators do not vanish.
The relationships (1.2.88) and (1.2.89) involve
2= po(¥)+ o (x) 2 (1.2.91)
y y
Dividing (1.2.89) by »", we deduce
y qo\X
2= o) .
Prrar— o
y
Eventually, we obtain the continued fraction
q q q
RA +—°|+—‘|+—2|+..., (1.2.93)

7= Po
y |P1 |P2 |P3

q

where |— stands for
p
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%+Q:ng, (1.2.94)

If the expression in the right side of (1.2.93) converges, then it may be either determined
or conveniently approximated. In both cases, (1.2.93) becomes a first order linear ODE,
which can be straightforwardly integrated with the method described at Sec.1.2.

An interesting application of this method will be presented in Sec.2.7, where we shall
study the hypergeometric series.

2.6 TWO-POINT PROBLEMS (PICARD)

Another kind of problem, very interesting for applications to mechanics is the two-point
(bilocal) problem. The (semi-homogeneous) linear two-point problem consists of finding
a solution of (1.2.2) that satisfies the homogeneous conditions

Ha)=0, ¥B)=0, apel, a<p. (1.2.95)

This problem may be solved in many ways, among which we chose two, that are
connected with the previously exposed facts.

a) The general solution of the ODE (1.2.2) allows the representation (1.2.47),

based on the fundamental solution k(x, 7). Therefore, to get the solution of the

above two-point problem, it is enough to find C,(¢), C,(¢) such that the

fundamental solution match (1.2.95).

The Green function for the two-point problem (1.2.2), (1.2.95) is that fundamental
solution of (1.2.2) that satisfies (1.2.95).
Remark. The Green function is defined provided the homogeneous two-point problem
(for f =0) allows only the null solution.
Let us suppose now that, instead of (1.2.95), the solution y of (1.2.2) must satisfy some
non-zero conditions

yla)=4, yB)=B, a.pel, a<p. (1.2.96)

In this case, we make the change of function y(x)= z(x)+ A(x), with & chosen such that
h(o)= 4, h(B)=B. The new unknown function z(x) will obviously satisfy a semi-
homogeneous two-point problem.

Examples of Green functions
. .1
1. The fundamental solution for the ODE »"=0is E|x—t|. Consequently, the

Green function for the associated semi-homogeneous two-point problem is

K(x,1)=C,(t)+xC, (t)+%|x—t| : (1.2.97)
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2. Take the ODE y"—y=0. The Green function for the associated semi-
homogeneous two-point problem is

K(x,t)=C,(t)e" +C,(t)e™ +%sinh|x—t|, (1.2.98)

where C,(¢), C,(¢) match (1.2.95).
b) The general solution of the ODE (1.2.2) can be written in the form

y(x)=C Y, (x)+ C, 1, (x)+ Y(x), (1.2.99)

where Y;,Y, form a fundamental system for the associated to (1.2.2) homogeneous

equation and Y is a particular solution of (1.2.2); suppose that these three functions could
be obtained by the previously described methods.
Imposing now to y the two-point conditions (1.2.95), we get for C,, C, the following

algebraic system

CiY, (OL)+ G, (OC) =A- Y(oc),
{CIYI (B)+C,Y,(B)=B-Y(p) (1.2.100)

There are two possibilities:

Yi(@) Y(a)
Y(8) 1.(8)

In this case, the two-point problem allows a unique solution of the form (1.2.99), with
C;,C, uniquely determined from (1.2.100). We observe that, in this case, the

i) The determinant d = #0.

homogeneous two-point problem allows only the null solution.
i) The determinant d = 0. According to Rouché’s theorem,
a. either the bordered matrix has the rank 1, in which case the two-point
problem allows infinitely many solutions;
b. or the bordered matrix has the rank 2, and the two-point problem has
no solution.
In conclusion, the following alternative works

Alternative. Either d # 0and the non-homogeneous problem (1.2.2), (1.2.96) allows a
unique solution, and the homogeneous one — only the null solution, or d =0, case in
which the homogeneous problem allows also non-null solutions. In this last situation, the
non-homogenoues problem has no solutions, in general, except for some special cases.

It may be also proved that, if p,q, f € C° (I ) and if there is a strictly negative constant
O such that q(x)S 0<0,Vxel, then the two-point problem (1.2.2), (1.2.96) allows a
unique solution.
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2.7  STURM-LIOUVILLE PROBLEMS

Another class of boundary value problems that might be associated to ODEs are the
eigenvalue and eigenfunction problems; these are by no means simple artificial
mathematical generalizations, but, on the contrary, they come from the study of physical
models. We shall illustrate the way these problems appear by a notorious example.

Let us study the longitudinal oscillations of a non-homogeneous thread, fixed at its ends
o and . It is known that these oscillations are described by the linear second order PDE

2
0 [E a”]—pﬁ “ (1.2.101)

al o) Vo
where E(x) is the modulus of elasticity and p(x) is the volume density. The unknown
function u(x, t) represents the displacement of the point of abscissa x of the thread at the

moment ¢, with respect to its rest position.
Suppose we know the initial displacement and velocity

u(x,0)= £(x), Z—L;(x,O): g(x), xel=[aB]. (1.2.102)
As the thread is fixed at its ends, we shall also have
ulo,t)=0, u(B,£)=0, £>0. (1.2.103)
By reason of continuity, the functions f'and g must satisfy the compatibility conditions
fla)=0, gla)=0, r(B)=0, g(p)=0. (1.2.104)
Let us search for solutions of (1.2.101) in the form
ulx,t)= X (x)r(). (1.2.105)

Replacing this in (1.2.101) we obtain

LI,

0 (1.2.106)
plx)X T

B

where the primes stand for the derivatives with respect to x and the points — for the
derivatives with respect to .

The right member of this equation does not depend on x and the left one does not depend
on t. Consequently, the above ratio must have a constant value, say A. Otherwise, the
relationship (1.2.106) would represent a functional dependence between the temporal
and the spatial variables ¢ and x. From (1.2.106) we thus get two linear second order
ODEs: one in x

[E()x] =ap(x)x, (1.2.107)
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and one in ¢
T =\T. (1.2.108)

Obviously, the ODE (1.2.107) is defined for E e C! (I ), pe c’ (I ) at least. The boundary
conditions (1.2.103) yield for X the two-point conditions

X(a)=0, x(B)=0. (1.2.109)
If p(x): 1, x € I, then the ODE (1.2.107) becomes more simple. Even if this is not true,

but p(x) does not cancel on / and is of class C°(I), we may perform the change of
function

y=X4plx), (1.2.110)
by which (1.2.107) becomes

Ly =[p(x)y] +q(x)y=2p. (1.2.111)

In (1.2.111) we introduced the linear operator L and used the notations

!

x:M x)= ! x;'
)= £, - L E<{ p(x]

The two-point conditions (1.2.109) obviously will not change for y

ya)=0, y(p)=0. (12.112)
So, our problem was transformed into a homogeneous two-point problem
Ly =2y,
(1.2.113)

It is easily seen that the null function satisfies (1.2.113), for any constant A. But,
naturally, this is not a convenient issue. Thus, we are led, by the above considerations, to
the following problem:

Problem. Find A such that the solutions of the homogeneous two-point problem (1.2.113)
allow at least another solution, different from the null one.

These particular values of A are called eigenvalues; they are included in the spectrum of
L. The corresponding non-zero solutions are called eigenfunctions.

In order to get a representation of u(x,t), we must prove that the eigenfunctions for an

infinite and complete system in L, (I ) — the space of measurable and square-integrable
on / functions. This property ensures the representation of any function of L2(I ) as a
series of eigenfunctions.
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In the case of the thread, the boundary conditions are precisely the two-point conditions.
But there are other physical models leading to the more general problem

Ly= Kr(x)y,
ayp(0)+apy'(@)=0, |a|+fa,]=0, j=12 (12.114)
azl)’(ﬁ)“Lazzy'(B): 0,

The boundary conditions of (1.2.114) are usually called the Sturm conditions.

The problem of finding the eigenvalues and eigenfunctions of (1.2.114), as well as of
proving the closure and completeness of the eigenfunction system is called the Sturm-
Liouville problem.

It can be proved that two eigenfunctions y,,y,, corresponding to two distinct

eigenvalues A, ,, are orthogonal with weight » on /

r(oclyy (x)y; (x)dx =0 (1.2.115)

R

If the sign of » does not change on /, then all the eigenvalues of (1.2.114) are real.
By using Sturm’s oscillation theorem, one can prove that, if p e C'(I), ¢,» € C°(I) and
if p,  do not vanish on 7, then

1) the set of eigenvalues {7» j }jeJ\f form a monotonically decreasing sequence;
ii) the eigenvalues are simple (their order of multiplicity is 1);
1ii) any eigenfunction has, in 7, only n zeros.

These general facts are helpful in proving e.g. the completeness of the eigenfunction
system.

Getting back to the Sturm-Liouville problem (1.2.113), let us try to solve it in the
particular case of a homogeneous thread, i.e., p=const. If E =const too and

o =0,B =/, /being the thread length, the problem (1.2.113) becomes
{y” ~w=0, E

W0)=0, H)=0, "My (1.2.116)

We see that for u >0 the problem allows only the null solution. So, the only possibility

is that p=—-v?,v>0. The involved ODE becomes y"+v?y=0. It is with constant
coefficients and its associated characteristic equation allows only the purely imaginary
roots *iv . So, its general solution is the linear combination
y(x)=C, cosvx+C, sinvx .
Introducing the boundary conditions, we obtain for C;,C, the linear algebraic system
C, -1+C,-0=0,
{Cl cosv/+C, sinv/=0.
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This leads to C; =0, C, sinv/=0. The only option in order to get non-zero solutions

is that sin v/ =0, which yields

I
v, =7“, keX. (1.2.117)

The eigenvalues of the Sturm-Liouville problem (1.2.116) are

2_2
xk:—k;‘ . keXN, (1.2.118)
!

and the corresponding eigenfunction

yk(x):sinkTm, keX. (1.2.119)
Thus, {yk (x)}keN forms an infinite system of eigenfunctions for the problem (1.2.116).
22
The spectrum of L is, in this case, composed of the eigenvalues A, = _kl_zn’ keN.1It
is seen that {yk (x)}kEN is orthogonal on 7, with weight 1, as r =1, i.e.
1 i - 0, k=#]j,
jsin—msin]—dx: 1 k,jeN. (1.2.120)
0 l l Ea k= j’

The final solution of the thread problem exceeds the frame of this book. However, this
example emphasizes the natural way in which a Sturm-Liouville system may occur and
serve to solve a physical problem.

2.8 LINEAR ODEs OF SPECIAL FORM
In what follows, we shall consider two ODEs, leading to the introduction of several

special functions.

1.  Gauss’ equation. The hypergeometric function (series)
There are various physical models that lead to a second order ODE of the form

(t2 +at+b)j}+(ct+d)j/+ey20, a,b,c,d,eeR, (1.2.121)

where the dot means differentiation with respect to .

Let us assume that the polynomial t? +at+b allows the distinct roots, t1,t, . Then, by
using the change of variable x =(r—¢,)/(t, —,) we can reduce this ODE to a standard
form, Gauss’ equation,

(1 =x)y"+[y—(a+B+1)x]y'—apy=0, y=-nneN. (12.122)
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In (1.2.122), the primes mean differentiation with respect to x.
The invariant of this equation, computed by formula (1.2.76), is

_1=(-1) 1-(a+B-y)  (a+p-v) +(r-1)’ -(a-B)’ -1
K= 4vx2 " 4(x—1)2y " : 41()6—1)

(1.2.123)

Searching for a solution in the form of a power series, we obtain the hypergeometric
series or function

ala+1)B(B+1) »

ap
=F =1+
yl(x) (a,ﬂ,y/,x) +1'7x+ 1.2.7.(]/+1) x°+

1.2.124
Lalar). (asn)p(Be1)(Brn) (12.124)
(n+1)!-7/-(7+1)...(7/+n)
A second solution of Gauss’ equation, independent of y, (x) , 1s a series as well
y,(x)=x""Fla+1-y,p+1-v,2—7;x). (1.2.125)

Both series are convergent for |x| < 1. Obviously, the series are breaking off if o or 3 are

zero or negative integers. Some of the polynomials obtained this way have various
applications. Thus,

L L) 2
F( SEAEIEE )_( Y 1-3-5...(2n—1)P2”(x)’

3 3 " . (1.2.126)
xF(—n,n-i—E,E;xz) =(-1)" mPZnH (x),
where P; (x) are Legendre’s polynomials, satisfying the equation
(xz —l)y"+2xy'—n(n+l)y=0. (1.2.127)

Jacobi’s polynomials, more general than Legendre’s, are obtained by considering

D ) A S Yo winp
1- : 1.2.128
BB+1)...([B+n—1) dx" [x (1-x) ] ( )

The function systems {P, }ne + and {0, }neN are orthogonal and complete.

0, (x) = F(n,—n +a, 3 x) =

Other particular cases of hypergeometric series, leading to elementary functions, are,
e.g.,
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F(— n,B, B;—x) = (1 + x)”, F[% ,1,1;sin xj =secx,
1 113 5 .
F(,B,B;x)= xF| —,—,—;x° |=arcsinx,. 1.2.129
(LB, Bsx) = (2 5 j (1.2.129)
F(1,1,2;—x)—llnx xF l,l,z,—x2 =arctan x.
X 2 2

One can also get convergent numerical series. For instance, a numerical series,
converging to T, is

31
2F| 1L~ |=n.
( > 2) n (1.2.130)

Other elementary functions could be obtained from the hypergeometric series passing to
the limit

lim F(1,B,1;x)=

B0

2 (1.2.131)
lim xF' oc[33 S
a,B—wo 4aB

From the identity
F(oB,yil)= F-a,—B,y—a—pl), y>0. (1.2.132)
we get the recurrence formula
ap
Flo,B,y;x)=——F(a+LB+Ly+Lx), y=-n (1.2.133)
Y
The Wronskian of a fundamental system of solutions Y}, Y, of Gauss’ equation is
-y y—o—B-1
Wy, v, ]= 1« , (1.2.134)
according to Liouville’s formula (1.2.24).
Finally, let us mention the continued fraction expansion for the hypergeometric function,
obtained by the method exposed at Sec.2.4

F(oc,[3+1,y+l;x)=1_|+a1_x|+ag_x|
F(oc,B,y;x) |1 |l |1

(1.2.135)
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where

:(,B+n)(a—]/—n) 4 :(a+n)(,8—]/—n)
" (2n-1)y+20) " (r+20)y+2n+1)

a, (1.2.136)

This expansion converges on the whole complex plane, with a slit from +1 to +oo,
except for the zeros of F (oc, B,v; x).

2.  Euler’s gamma function
To get another remarkable representation of the hypergeometric function, we need to
introduce the gamma function, which is also important in itself.
The gamma function is defined, for real arguments, by means of the integral

T(v)=[x""e ™ dx, (12.137)
0
and makes sense for Rev >0.
From the definition, we get, integrating by parts,

I(v+1)= Txve’xdx =—x'e™" : +vTxV’le’xdx , (1.2.138)
0 0

X

The term x"e ™™ is null for x =0 and

lim
X—>00 e

:0’

X

therefore
C(v+1)=vI(v). (1.2.139)

This recurrence relationship extends the factorials of positive numbers. Indeed, by
integration, we have

r(1)=Je dr=—c" : 1. (1.2.140)
0
Applying now the recurrence formula, it results
r@2)=1-r@)=1=1,
r(3)=2-r(2)=2-1=2!,
r4)=3-1(3)=3-21=31, (1.2.141)

where 7 is a positive integer.
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The values of T(v) for all positive v may be deduced from the above recurrence formula,

once F(v) known between two consecutive integers, e.g., between | and 2. For instance,
as F(O.S) = x/; , we have, step by step
r(4.5)=3.5-1(3.5)=3.5-2.5-1(2.5)=3.5-2.5-1.5-0.5-1(0.5) = 11.63,
and, in general, for a positive integer r,
T +r+1)=(v+r)0+r)=.=(v+r)v+r-1).(r+1)(v). (1.2.142)
Taking this formula into account, the well-known combinatorial formula

k n!

C,=——
" k(n—k)
may be expressed in terms of gamma functions as
fo Tl) 1.2.143
" T(k+)(n—k+1)° (1.2.143)
Y
5
4
\
VMR
2
/
|
N4 =3 =2 =k | 213 1% x

=(x)

/
1A
]

L T e
1S
|

Figure 1. 1. The graph of the gamma function

This formula is useful for the calculus of C ,1,‘ for great n and k.

It should be mentioned that the classic definition of the gamma function may be
extended to complex arguments
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1 v-1 _—t
[v)=-o————-1) e dr, 1.2.144
( ) 2isin v £( ) ( )
where c is a given contour.
It can be proved that T(v) is a rational analytical function with respect to its argument,

having simple poles at v=-n,neN, at which the corresponding residues are
(-1)" /n.
The graph of I as a function of v is represented in Fig.1.1.

The gamma function also satisfies other recurrence relationships; we mention here two
of them

T 1 T

r(1-v)r(v)= r[——vjr[%w) = (1.2.145)

. B b
sin v 2 CoS TV

useful for applications.
Getting back to the hypergeometric series, we see that, by using gamma functions, one
obtains the following representation formula

L)y —o—p)

Flo,B,v;1)= . 1.2.146
( ) I(y—a)r(y-p) ( )
3. Bessel’s equation
The ODE
xzy"+xy'+(x2—v2)y20, (1.2.147)

where v is a real/complex parameter and x may be real or complex, is called Bessel’s
equation. Its solutions are called Bessel functions and also cylindrical functions, as they
usually appear when solving boundary values problems on domains with cylindrical
symmetry; such models appear e.g. in the frame of the potential theory.

Searching for solutions of (1.2.147) in the form of a power series, we find the Bessel
functions of order v and first kind

TSI

aonT(v+n+1)\ 2

RIS

aonT(=v+n+1){ 2

(1.2.148)

for v ¢ N'. The expansions (1.2.148) converge on R (even on the complex space C), but
not at the infinity. The Wronskian of the system J,,,J_,, is

W[JV,J,V]=—isin . (1.2.149)
X
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As W[J,,J_,]#0for veX, it follows that the general solution of Bessel’s equation
may be written in the form of the linear combination

y(x)=CJ, (x)+CyJ ,(x), veX. (1.2.150)
If v=ne N, then the Wronskian vanishes. In fact, it can be shown that
J_,(x)=(=1)"J,(x) nexN. (1.2.151)

So J,,J_, form no more a fundamental system. To avoid this, one introduces the
second kind Bessel functions, also called Neumann or Weber functions

(x): J, (x)cos vi—J_, (x) .

Y, . (1.2.152)
sin Tv
It is seen that
W[JV,YV]zi, veR/Cx=0. (1.2.153)
fine

It can be proved that

Y, (x)= lim 2 (X)CO? vi—t (&) _ 1 lim[i T )=y 2 (x)} (1.2.154)
vn sin v T v—n| OV ov

satisfies Bessel’s equation of integer order n. It follows that J,,Y, are linearly

independent for any v, so they form in any case a fundamental system. Thus, the general
solution of Bessel’s equation may be expressed as

y(x)=CJ, (x)+ Co 7, (), (1.2.155)

for any v.
The Bessel functions may be obtained as the coefficients of the development of their
generating function

—
t

S e (12.156)

The expansions

03] () 5] -
J“z%{z) %@

represent the Bessel functions of orders 0 and 1.

(1.2.157)
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The recurrence relationships, e.g.
T 64 (6) =220, ),
Ty ()= () = =2 (x)

simplify the calculus of Bessel’s functions. By using them, one can get e.g. the
expressions of J,, (x), n € N starting from J,(x),J, (x)

(1.2.158)

The only orders for which J,, (x)is converted into an elementary function are, according

. 1 . . .
to Liouville’s theorem, v=n+ E , with n integer ; for instance,

Jl/z(x):\/%sinx, Jl/z(x):\/%cosx. (1.2.159)

Starting from (1.2.159), one can get step by step J (x), by using the recurrence
n+

relationships (1.2.158).
All the other J,, (x) are new functions.

The invariant of Bessel’s equation, computed by formula (1.2.76), is

1-4v?

Kix)=1+
(X) 4x?

(1.2.160)

A property very useful in applications is the orthogonality.
Let us firstly note that, for Rev>-1, J, (x) allows infinitely many real and simple

zeros, Ty, tp,,tls,..., =1, .., symmetric with respect to the origin. For Rev > -1,
the functions {J v (“—k x]} form an orthogonal system, with weight x, on the real
a
keXN

interval [O, a]

ijV[“—"x]JV[“—"deF a2 (1.2.161)
0 a a _J\’/+1( n)’ k=n,

ifu #

3. Applications

Application 1.1

Problem. Consider a symmetric membrane state of efforts in a thin shell of rotation,
acted upon by the external loads Y and Z, along the tangent to the meridian line and the
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normal to the median surface, accordingly. Find the general expressions of the meridian
and the annular efforts N, Ny, respectively (Fig.1.2).

Mathematical model. The equations of equilibrium of a shell element read

d

@(Ngoro)—Neh cos @+ Yryr =0, (a)
N, N
207z =0. (b)
n r

The independent variable for this problem is the meridian angle ¢, measured clock-wise
from the top, while 0 is the angle along the parallel circle. Other intervening quantities
are: the radius r;, of the parallel circle, the curvature radius r, = (1/cos ¢)dr, / do) of the
meridian curve — the first principal radius of curvature of the median surface — and the
second principal curvature radius of the median surface, r, =7, /sin¢ .

Figure 1. 2. Membrane efforts in a thin shell of rotation

Solution. The equation (b) is algebraic, therefore we find for N,

;
Ny =——=N,-Zr,, (©)

n
which introduced in (a) yields
d
d—(N(prO )+ Nory cos@+Yryry +Znr, =0.
Taking into account the relationship between the radii r, and r, , we obtain
di(p (N(pro sin (p) = —(Y sin @+ Z cos (p)ror1 ;

denoting by y((p): Norysing, we get for y a linear and non-homogeneous first order
ODE, studied at the Sec.1.1
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L

Ysin ¢+ Z cos (p)ro . (d)
do

By straightforward integration, it follows

1 .
Ny=-—; j(Ysm(p-i-Zcos(P)’”o”ld‘P“LC’
7o Sin @

C being an arbitrary constant.
The annular effort is directly obtained from (c)

1 .
Ny =—Zr, +—2J.(Ys1n(p+ZCOS(p)r0r1d(p—Cr—2.
r sin” @ 7
The constant C may be determined from a condition imposed at the superior edge
(@=0,), or at the vertex (¢ =0).

Application 1.2

Problem. Find the general expression of the normal stress, as a function of time, for a
Maxwell body.

Mathematical model. To explain the relaxation, one sets up the Maxwell model by a
series combination of a Hooke (elastic) and a Newton (viscous) model (Fig.1.3, a). The
stress results as a sum of the states of strain of the two bodies; thus, the total strain
€, =const is composed of

= the elastic strain of the arc, expressed as
Eelastic = 6/E > (a)

where F is the longitudinal modulus of elasticity, and

= the viscous strain, € ;s.qys -

Consequently (Fig.1.3, a)

(e}
€9 _E"—gviscous .

Differentiating this with respect to the time 7 (¢, =0), we get

G .
— t €yiscous = 0. (b)

By Newton’s law,
€

viscous — >

where 1 is the coefficient of dynamic viscosity, which is constant. Thus, (b) becomes
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6+£0=0. (c)
n

Solution. The equation (c) is a first order linear and homogeneous ODE, of the type
studied at Sec.1.2. Separating the variables, we get

d E
L2,
o n
involving
E
1n|6| =InC-—t¢,
n
where C is an arbitrary constant.
(e
o
Hooke Model
T=££
%
Newton Model
G=7¢
a —
o t
a. b.

Figure 1. 3. Maxwell model (a). Diagram ¢ vs. ¢ (b)

The general solution of the homogeneous ODE is therefore

E
-—t

c=Ce " .
To this equation, we can add the initial condition
G(O) =0.
yielding C =, . The solution of the above Cauchy problem is thus

R

Y (d)

c=04e " .

The variation of ¢ as a function of ¢ is given in Fig.1.3, b. The diagram represents a
decreasing exponential, having as asymptote the time axis.
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Application 1.3

Problem. A thread is wrapped round a rough circular fixed pulley, of radius R (Fig.1.4).
If the thread end P, is acted upon by a tension T, , then what tension T, must be

applied to the other end P, , such that the thread slide on the pulley?

Mathematical model. As the pulley is rough, the reaction R(s)ds upon an element of
thread will have, along with a normal component N(s)ds, a tangential one, ®(s)ds,

called force of sliding friction.
The equilibrium of an element of thread (Fig.1.5) leads to the vector equation

dT+R(s)ds =0; (a)

we can also write

%(Tr)—Nv—fNr:(), (b)

Figure 1. 4. Equilibrium of a thread on a pulley

In (b), N is the normal reaction along the unit vector v and fN is the tangential reaction
at the limit — along the unit vector 1, f* being the coefficient of sliding friction.

Figure 1. 5. Efforts acting on a thread

Finally, using Frenet’s formula dt/ds=v/R, we can write the system that models the
phenomenon
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d_T_ﬂ\r =0,

ds

; ©
~-N=0.

R

Solution. Eliminating the normal reaction N, we find the first order linear homogeneous
ODE (ds =Rd0)

dr(e
%—ﬁﬂ- )
According to the hypotheses, this equation must be integrated under the initial condition
7(0)=T1;. (e)
Integrating this, as shown at the Sec.1.2, we get the general solution of (d)
T=Ce”?, ®

where C is an arbitrary constant.
The initial condition leads to the solution of the Cauchy problem (d), (e)

T=Te”. ()
For O=0a, one can write 7, =T, 1eﬁ", where the tensions at the thread ends were
emphasized.

The equilibrium may also occur for T, <7 ; in this case, the force of sliding friction

changes the sense and we have 7| =T. 2eﬁ". Thus, Euler’s condition of equilibrium is
obtained

T .
e <72< e/, (h)
1

If the ratio T, /T, is outside this interval, the thread begins to slide.

Application 1.4

Problem. Find the general expression of the strain € = s(t) in the case of a Voigt-Kelvin
model and determine it in the particular case £(0)=0.

Mathematical model. To explain the creep phenomenon, one sets up the Voigt-Kelvin
model, by combining in parallel a Hooke and a Newton body (Fig.1.6, a). The strain state
is then a sum between the states of stress of the two bodies

GO :Gl+02’
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where o, represents the resultant stress, supposedly known; o, = Ee corresponds to
Hooke’s, while 6, =né corresponds to Newton’s model. In the last two relationships, £
is the modulus of longitudinal elasticity, 1 is the coefficient of dynamic viscosity and
€ =de/ dt is the velocity of deformation.
It immediately follows o, = E€+n¢ , that may be also written in the form

%9

. E
e+—e=—. (a)
n n

Consequently, in a Voigt-Kelvin model the strain € = a(t) must satisfy the equation (a).
Solution. The first order ODE (a) is linear and non-homogeneous; this type was treated at

the Sec.1.3. The associated homogeneous equation €+—g=0allows the general
n

solution

E
-=t

8homog =Ce K . (b)

As the free term is constant, we can directly search for a particular solution of () in the
form of a constant, ¢, =K . Finally, &, =c, /£ and the general solution of (a) is

E
T (e}
gt)=Cce " +=2. (©)
E
LY £l
| P XTI ETIIIS
: G,
qree o erd
Hooke .
Model Newton
Maodel
CLL L L2l
0 -
a r
a. o b

Figure 1. 6. Voigt-Kelvin model (a). Diagram ¢ vs. 7 (b)

This formula gives the strain in the case of a Voigt-Kelvin model. To get the solution of
(a) corresponding to null Cauchy conditions, we put ¢ = 0 in (c); it results

E
-=t

o
e=—; 1-e " |. d
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The variation of € as a function of ¢ is presented in Fig.1.6, b. It is seen that the graph of
the function allows an asymptote &, =,/ E, parallel to the 7 — axis; this means that

the deformation is damped in time. The tangent at the originis € =c, /1.
The time-dependent function

is called the creep function.

Application 1.5

Problem. Determine the general meridian displacements w of a thin shell of rotation.
Particular case: the spherical dome of radius a, acted upon by its own weight g.

Mathematical model. The meridian displacements of a shell of rotation are described, in
the membrane theory, by the ODE (see e.g. Fliigge)

j—w—wcow - (o). (@)
¢

where ¢ is the angular variable (the meridian angle) and f ((p) is a function depending on
the external loading.

Solution. The equation (a) is a linear first order non-homogeneous ODE, of the kind
treated at Sec.1.3. The associated homogeneous equation

d—W—wcot(p:O, (b)
do

allows, according to Sec.1.2, the general solution

Whomog = C SIN G

To get a particular solution of (a), we use the variation of parameters, searching for it in
the form

Woart = C((p)sin Q.

Replacing this in (a) yields

Whart = SINQ —df((p) Q.
sin @

Thus, the general solution of (a) is

wlo)= (c + Md(pj sing, CeR. (c)
sin @
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In the case of the spherical dome, one has

_ga2(1+v) 2
f((p)_E—S COS(P—m ) (d)

where E represents the modulus of longitudinal elasticity, v is Poisson’s ratio and d is the
thickness of the shell, assumed constant.

In the particular case of the loading (d), we directly replace the expression of fin (c).
After integration, we get the closed formula

w((p) =& 7Y i (1 i V) {ln(l +cos (p)—

5 ;}sianCsin(p, CeR. (e)

I+cos@

We get the constant C requiring null displacements along the inferior circle of support,
defined by the angle g = ¢,

w(e;)=0. (
This is a Cauchy condition, associated to the ODE (a). We deduce
2
ga (1 + V) 1
C=—-=——Z|In{l+cos@,; ]-—|.
S { (1+cos ;) Frvy ()

Finally, the solution of the Cauchy problem (a), (f) is

2
1 1 1 .
w((p):ga (+V) n— %P + sing.
ES I+cos¢p, l+cose l+coso;,

Application 1.6

Problem. Let P be a particle of mass m,acted upon by an elastic force of attraction
F = —kr, where r is the position vector and k > 01is a coefficient of elasticity. Study the
motion of P.

Mathematical model. Newton’s equation of motion
m¥=F=—kr, (a)
may be written in the form of a second order vector ODE
F+ro’r=0, (b)

where o =k/m.
To (b) we can add the initial (Cauchy) conditions

r(0)=r,, #0)=v,. (©)
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Solution. The mathematical model (b) is a second order homogeneous vector ODE, of a
type studied at Sec.2.2. We must find a fundamental system of solutions for the scalar

equation J+m’?y=0, searching them in the exponential form e®. We get the
characteristic equation o’ +®> =0, allowing only the purely imaginary roots +i®.
Using Euler’s formulae, we obtain the solutions cos w?, sin of , that form a fundamental
system. The vector solution of (b) is

r(t)= A cos ot + Bsin ot , (d)

with A and B arbitrary constant vectors. Imposing the initial conditions (c), we find (see
Fig.1.7)

VO .
r(t)=r, cos ot + —Lsin o,
® ©

v(1)= v, cos ot —or sin o.

Mechanical interpretation. We observe that rxv=r, xv,, corresponding to the first
integral of areas. The vector r is a linear combination of r,,v,; consequently, the
trajectory is a plane curve, except for the case ry, x v, =0, which means that ry, v, are

collinear. The trajectory does not pass through the origin, because r(t) # 0 for any ¢.

Figure 1. 7. The elliptic oscillator

We see that |r| < |r0 | + |v0 / c0| for any ¢, so that all the points of the trajectory lay at finite

distance. The trajectory is a closed curve, surrounding the centre O, which is a stable
position of equilibrium; the orbit can be included in an arbitrarily small circle and the
particle velocity can be also arbitrarily small. The motion is periodic, as the particle
returns at the same point r(t+T ): r(t) with the same velocity V(t+T ) = V(t) , after the

same period of time

m

~
Il
| [\®)
a
Il
[\e]
L‘

The pole O is a centre of symmetry of the motion, because r(t+7/2)=-r(t),
v(t+7/2)=—v(r). The velocity vector is finite too, is continuous and is different from
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zero no matter ¢. Using the oblique co-ordinate system Ox’y’, determined by the
conjugate diameters corresponding to the vectors rj,and v,, we get the parametric

equations of the trajectory

!

Vo .
x' =7, cos wt, y' =Lsin o, ®

which is an ellipse of equation

=1, (@

known as the elliptic oscillator.
We notice that

1 .
rv=r,-v, coscot+—(v§ —r02m2)51n20)t; (h)
20
hence, to obtain a circular oscillator (r-v =0, V#) it is necessary and sufficient that the
initial conditions of the elliptic case verify the relationships r,-v, =0and v, =rym . In
the case of the circular oscillator, the motion is uniform (v = const), because one has

v = vg +((02r02 —vé )sin2 O —Or, - v, sin 20¢, 1)

as a consequence of the above conditions.
The number which shows how many times the particle travels through the whole
trajectory in a unit time is called the frequency of the motion and is given by

1 o 1 |k .
frmmama ()

we notice that the pulsation @ =2nf represents the number of periods in 27 units of
time , and the denomination of circular frequency, also used, is thus justified.

Application 1.7

Problem. Study the motion of a particle P of mass m, acted upon by an elastic repulsive
force, F = kr , where r is the position vector and & > 0 is a coefficient of elasticity.

Mathematical model. Newton’s equation of motion may be written in the form of a
second order vector ODE

F-0’r=0, (a)

where w? =k/m.
To (a) we can add the initial (Cauchy) conditions
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r(0)=ry, #0)=v,. (b)

Solution. The mathematical model (a) is a second order homogeneous vector ODE, of a
type studied at Sec.2.2. We must find a fundamental system of solutions for the scalar
equation j}—mz y=0, searching them in the exponential form e®. We get the

2o’ =0, allowing the real and distinct roots +. Using the

hyperbolic functions, we obtain the solutions cosh wt,sinh f , that form a fundamental
system. The vector solution of (a) is

characteristic equation o

r(t)= A cosh ot + Bsinh oz, (¢

with A and B arbitrary constant vectors.
The initial conditions (b) lead to (Fig.1.8)

r(t)=r, cosh ot + Y0 sinh ot,
® (d

v(t)= v, cosh wr + or, sinh or.

Figure 1. 8. The motion on a hyperbola under the action of repulsive forces
Mechanical interpretation. With respect to an oblique co-ordinate system Ox’y’,
determined by the conjugate diameters corresponding to the vectors ryand v, we get
the parametric equations of the trajectory

Vo .
x'=r, cosh t, y'=—Lsinh wt, (e)
o)

which is an arc of hyperbola, of equation

—-——=1 )

”02 ("0 /03)2
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It is seen that the centre O is a labile position of equilibrium, as the orbit cannot be
contained inside an arbitrarily small circle and the velocity of the particle may increase
indefinitely.

The particle travels only once through the trajectory and does not return to the initial
position. Putting (d) in the form

v
r(t)= [ro +—tanh (MJ cosh wt,
[}

v (®
v(r)= Q{ro tanh of + —OJ cosh ot

(O]

and noticing that lim tanh of =1, it follows that the trajectory tends asymptotically to

t—0
v
r=ry+—-. (h)
®
Let us note that the velocity also tends to a vector with the same direction.

Application 1.8

Problem. Study the oscillatory motion of a heavy particle P on a cycloid ‘G of horizontal
basis, laying in a vertical plane, of concavity directed upwards (the cycloidal pendulum).

Mathematical model. Let us take the tangent to the cycloid at its lowest point as Ox- axis
and the Oy-axis be the symmetry axis of the cycloid, being ascendent (Fig.1.9). The
parametric equations of the cycloid G are then

x=a(0+sin0), y=a(l-cos0), 0Oe [—TE, TE], (a)
where y =2a is the right line along which the cycloid generating circle — of centre
O’ and radius a — is rolling without sliding. Starting from ds? =dx? +dy?, we find
ds =2a cos(e / 2)d6 = mdy . Integrating this with respect to y, it is obtained
s =24/2ay = 4asin(0/2), so that dy/ds =s/4a.

If m is the particle mass and g — the gravity acceleration, the motion equations read

. .. dy  m?
my=ms=1F_= —mga,

=F, +R, (b)

where T and v are the unit vectors of the tangent and, accordingly, of the principal
normal, and p is the curvature radius of the cycloid. It results

§+032s=0, 0)2=£; (c)
4a
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This is a linear and homogeneous second order ODE with constant coefficients.
Searching for solutions of the exponential type e®, we firstly get the characteristic

equation o’ +®? =0, allowing only the purely imaginary roots +iw. We then find the
fundamental system of solutions coswt,sin ot by using Euler’s formulae. The general
solution of the ODE (b) is thus

s(t)=c, cos t +c, sin ot . (d)
Assume now that the particle is launched with null initial velocity from the point P, of

curvilinear co-ordinate s, at the moment ¢, =0; this corresponds to the Cauchy
conditions

s(0)=s,,  $(0)=0. (e)

Figure 1. 9. The cycloidal pendulum

The solution of the Cauchy problem (c), (e) is then
s(t) =50 COS I . ®

Mechanical interpretation. The period of the motion is

T:Z—n:4n\/z=2n 4—a; (2)
o g \/g

this period does not depend on the amplitude s, so that the oscillations are isochronic
(immaterial of their magnitude). On the other hand, the particle in free falling from the
point P, attains the point O — the lowest point of the cycloid — in a time of 7/4, no

matter s, therefore it is independent on the initial position; this is the property of

tautochronism of the cycloid. We say that the motion is tautochronous, i.e., immaterial
of the magnitude of oscillations, the cycloid being thus a tautochronous curve. This
property was emphasized by Huygens, who realized a cycloidal pendulum by means of
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the evolute I' of a cycloid, I" being itself a cycloid. The thread linking the particle P
(unilateral constraint) is fixed at the point O, the cuspidal point of a set up cycloid
(Fig.1.9); but the occurring resistance considerably modifies the motion.

Integrating the first equation (b), we get v? =2g(y0 —y), where the ordinate
¥, corresponds to the initial position P . As

dx = a(1+cos0)d0 = 2a cos* (6/2)d6 = cos(6/ 2)ds ,

we have F, =—mgdx/ds=-mgcos(8/2); but p=PO"=2PM'=4acos(8/2) and
thus the second equation (b) provides the constraint force in the form

0—cos0
R=mg cosg+w . (h)

2cos9
2

If, in particular, 6, = £m, meaning that the particle is left to travel along the cycloid

with null initial velocity, starting from one of the cuspidal points P or P',itresults
0 .
R =2mg cos 3 =-2F,; @)

we can state in this case, following Euler, that the modulus of the constraint force is
twice as much as the modulus of the normal component of the particle weight.
Application 1.9

Problem. Study the motion of a heavy particle P acted upon by an elastic force of
attraction of fixed support (the Ox — axis), of the form F (x) =—kx, k > 0 being an elastic

constant.
Mathematical model. Using the results of Appl.1.6, we may write the equation of motion
in the form

i+0’x=0, (a)

with the initial conditions
X(0)=xp,  #(0)=v(0)=v,. (b)

Solution. The second order linear and homogeneous ODE (a) is with constant
coefficients and was already solved at Appl.1.6. We thus find
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x(t) =X, COs ™f + Yo sinwt =a cos(c)t - (p),
" (©)

(1) = v(t)= v, cos ot — wx, sin of = —awsin(ot — ).

2
v %
a= xé 2 ¢ = arctan -0 (d)
[0) WX

Mechanical interpretation. In (c), a is the amplitude of the oscillation, i.e., the maximum
elongation, the elongation |x| being the distance from the centre O to an arbitrary

where

position of the particle; ¢ is the phase difference, computed with respect to the phase
ot , such as the whole argument ®f— @ represents the phase at the moment z. The

trajectory is the segment of a line AA , travelled through back and forth during the
period T =2n/ o, starting with the initial position P, (Fig.1.10, a).
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Figure 1. 10. The linear oscillator (a). Diagram of the motion (b)

Therefore, the motion is oscillatory, around the oscillation centre O, which is a stable
position of equilibrium. Because the period 7, as well as the frequency f =1/T, are

independent on the amplitude, it results that the free linear oscillations of a particle with
one degree of freedom are isochronic; on the other hand, the interval of time 7 /4 in
which the segment 4O is travelled through does not depend on the initial position 4
(more precisely, does not depend on a), the velocity vanishing at this point, so that the
motion is tautochronous too. The diagram of the motion is given in Fig.1.10, b, where
the phase difference effect is also emphasized.

The mechanical system formed by a particle which describes a segment of a line under
the action of an elastic force is called a linear oscillator; this one can be also considered
as a limit case of an elliptic oscillator, i.e., the case in which one of the semiaxes of the
ellipse tends to zero.

We also notice a connection with the circular oscillator, that is, a particle of velocity v,

of constant modulus |v|:am, uniformly travelling along a circle; o is the angular
velocity. The above linear oscillator may be obtained by projecting the motion of this
circular oscillator on one of its diameters A4 . Let the diameter 44 be positioned by
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the angle ¢ with respect to the Ox — axis and let the radius OP' be positioned by the
angle 0 = ot ; then we get the equation (b) (Fig.1.11).
Let us consider now two harmonic vibrations having the same direction

xj(t)zaocos(cojt—(pjl j=12. (e)
Each x; (¢) satisfies the equation
. 2 .
X;+oix; =0, j=12, ®

in which a;,®;,9;, j=12, are the corresponding amplitudes, pulsations and phase

differences. We shall study the motion obtained by their superposition.

Figure 1. 11. The linear oscillator as projection of a circular one

We firstly consider two harmonic vibrations of the same pulsation o, =w, = ; the

composition of these vibrations, usually called interference in the case of acoustic or
light waves, also results in a harmonic vibration

X=X +X, :acos(o)t—(p). (9]

where, by identification,

a; sin @, +a, sin
a= \/al2 +a§ +2a,a, COS((p2 -0, ) ¢ = arctan 1 S Py + s SN P . (h)
@, COS P, +da, Cos P,

The term 2a,a, cos((p2 —(pl) is called the interference term, producing the effect of
interference fringes. If @, —¢@, =2nm, then a=a,+a, and the interference is
constructive, while if @, —¢, =(2n+1)t,neZ, then a= |a1 —a2| and the interference

is destructive. Finally, if a, = a,, the destructive interference leads to extinction (zones

in which the sound disappears, in case of acoustic waves, or zones of darkness, in case of
. 2n—-1

light waves). If ¢, —¢, = % ,then a =yal +a?, ¢= arctan(a] /a, )

In the case of composition of a certain number of harmonic vibrations, one can make an

analogous computation.
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If the two harmonic vibrations have not the same pulsation, then their composition, still
called interference, by extension, leads to an expression of the same form, modulated in
amplitude

a(t) = \/al2 +a3 +2a,a, [cos((x)1 -0, )t —cos((pl -0, )] , @)
as well as in phase
), —0,

G=—2, G)

a, cos(al—(pl )+ a, cos(61+(p2) ’ 2

—a, sin(6r—@, )+a, sin(@r+0,)

(¢ = arctan

where (;):(o)1 +w2)/ 2 . The motion thus obtained is no more harmonic, as its form
depends on the amplitude, on the ratio of frequencies and on the phase differences; it is
periodic only if the periods of the two motions have a common multiple, i.e. if
2nn, /©) =21n, /®,, n;,n, €N, or, equivalently, ©, /o, = q € Q (Fig.1.12, a, b).

XLy

PR
J—Tﬂl‘n-n'j'
S RVl

a b

Figure 1. 12. The resultant motion of two collinear periodic motions: non-periodic case (a); periodic case (b)

Ly T

X

The amplitude a(f)varies between a,, :|a1 —a2| and a,,, =a,+a,. Its maximal

max
values are attained at intervals of time given by the periods 7, =27 /|oo1 —o)2| and are

called beats (Fig.1.13), in the case of acoustic waves; the corresponding frequency will
be

szzl|(91—m2|:|f1_f2 > (k)
T

hence it equals the modulus of the difference of the frequencies of the component
motions. One may thus tune two musical instruments: the period of the beats tends to
infinity if the frequencies of the two instruments tend to become equal.

One can take notice of this phenomenon the more so as the two amplitudes are close in
magnitude. If a; = a,, the formulae (i) and (j) lead to
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_ _ N N
y=2gcog LLT®2 , P17P | [ O1TO P TPy ’ 0
2 2 2 2

i.e., to a product of two harmonic functions.

s
Omax a,
Amin St ™
h 7
LU | t
o U =
Figure 1. 13. Beats Figure 1. 14. Simple beats

In this case, a,,, =2a, while a,;, =0, for which one gets the nodes of the beats

(Fig.1.14). It is seen that in this case one has simple beats.
Application 1.10
Problem. Study the motion of a simple pendulum in a resistent medium.

Mathematical model. Consider the simple pendulum of Appl.4.33. We introduce the
resistance R of the medium, tangent to the trajectory and of a direction opposite to that
of the velocity; the equation of motion along the tangent reads, with the notations used in
the above mentioned application,

ml® =—mg sinO®— Rt . (a)

Consider the case of small oscillations (sin 0= 0); if we assume that the resistance is
proportional to the velocity (viscous damping), of the form R = 2Aml6, A = const, A >0,
then the equation (a) becomes

0+200+0?0=0. (b)
If, in the case of oscillations of finite amplitude, we consider a resistance proportional to
the square of the velocity (aerodynamic damping), i.e., R=mlk*6?, k* = const , then

the equation (a) becomes
0+4%6+ w0’ sin’ 6=0 (©)

for an ascendant motion; in the case of a descendant motion, k2 will be replaced by
-k
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Solution. The second order linear and homogeneous ODE (b) is with constant
coefficients. Assuming that ®> >A” and denoting by nu? = m? -1, we get the general
solution in the form

0=c"*(4cosut+ Bsinpr), (d)

where the constants 4 and B may be determined from the initial conditions
O(IO ) =0, é(to ) = 90 . Taking ¢, = 0 for the sake of simplicity, we may thus write

e:e“[eo cosut-l—l(keo +Go)sinut}, (e)
u

6= e}‘t{éo cos ut—l(mz% +k90)sin ut} . ®
u

If, in particular, we take éo =0, then the particle moves without initial velocity from the
point P, and attains the point P, where the velocity 0= —(l / p)mzﬁoefm sin pt
vanishes at the moment ¢, =n/p (Fig.1.15); the motion continues following the same

law, the particle returning till the point P, after a time ¢, =2n/p a.s.o.

Figure 1. 15. Simple pendulum in a resistent medium

The oscillations are isochronic and the period

T=2n/p=2n/Jo?-22

(greater than that of the motion in vacuum) does not depend on the amplitudes
0, >|61| >0, >|63| >

we also notice that
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—nh/
|0,]/60 =0, /0, =[05]/6, =...=e™™'",

so that the absolute values of the amplitudes form a geometric series of ratioe ™/*

Hence, the motion is damped after an infinite time and the particle attains its lowest
position (the stable position of equilibrium).

In what concerns the equation (c), we notice that 6 = 0d0/d6 = d(é2 )/ 2d6, so that we
get

52
%%%)ikzéz +0’sin’0=0, (2)

a linear and non-homogeneous first order ODE, whose general solution is

2
0% = Ce™H 04 % (cos 0F 2k” sin e), (h)
—+

where C is a constant to be determined. Actually, the relationship (h) represents an ODE
with separable variables; the quadrature is easily performed for small amplitudes.

Application 1.11

Problem. Consider a particle acted upon by an elastic force of attraction F =—kr, k>0

and by a damping force ® =-® versv , tangent to the trajectory and whose direction is
opposite to the direction of motion. Study the motion in case of a viscous damping force
® =—k'v, k' = const, k' > 0 being a damping coefficient.

Mathematical model. The equation motion in Appl.1.6 is completed in the form

F+2AF+0r=0, (@)

introducing the constant A =k'/2m > 0. The damping coefficient corresponding to the
relation o =A is the coefficient of critical damping k| , that does not depend on k' ; we
notice that, in this case,

k. =2mo=2~vkm . (b)
We also introduce the non-dimensional ratio of damping
_K_A
x Koo (©)

Solution. The vector ODE (a) with constant coefficients will be solved as shown at
Sec.2.2. With the initial conditions r(0)=r,, v(0)= v, , the solution reads
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r(t) =e™M [ro cosm't +i,(vo +Arg )sin (x)'t:| , (d)
®

_ 1 .
v(t)=e M[Vo cos o)'t—a((ozro +kv0)sm co't}, (e)

where we introduced the pseudopulsation

(n':\/(oz -2 :m\/l—xz , (f

assuming that y <1, hence ® > A (subcritical damping). The damping factor

¢ transforms the trajectory, which, in its absence, would be an ellipse, in a spiral (the
vector radius r(t) diminishes continuously in magnitude), the particle tending in an
infinite time to the origin O, with a velocity tending to zero (Fig.1.16, a).

This mechanical system is called a damped pseudoelliptic oscillator, the respective
motion of the particle being a pseudoperiodic damped motion. After intervals of time
equal to the pseudoperiod

_2n 21 _2n 1 , 3 4
P ) o

-l
)
S

d b
Figure 1. 16. Pseudoelliptic damped oscillator (a). Critical and supercritical damping (b)

the particle attains the points P’, P”,..., all of them situated on the common support of

the position vectors r'(¢),r'(¢)..., with the velocities v'(¢), v'(t)..., of the same

direction. We notice that »'/r=r"/r'=..=e T, v'/v=v"/v'=..=e " thus

obtaining a geometric progression of decreasing ratio e of the vector radius and of
the velocities; the number
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6:—7»T:—2n)f =— 2y :—2n[x+%x3+%xs—...j, (h)
o ll_xz

is called the logarithmic decrement (for y <<1 we may take —AT = —2my ), being equal
to ln(r'/r): ln(v' / v)z s
If y =1, hence if ®=A (critical damping), then we may write

r(t)=e ey +(vo +rrg k) v(t)=e[vy —Alvy +2r, )]. )

The corresponding motion is damped; the trajectory starts from the point P, and tends,

in an infinite time, with a velocity tending to zero, to the centre O, which is an
asymptotic point (Fig.1.16, b). Noting that we may write

)= v i) ()=t 2 Gy )| 0
and that we have limse™ =0, it results that the tangent at O to the trajectory is
—w
specified by the vector

r:r0+v—°. k)
A

If y >1, hence if ® <A (supercritical damping), then we use the notation

(o":x/kz—(nz :co\/xz—l, ®
and we obtain
r(t)=e™ {ro cosh ®"t +L" (v +Arg )sinh m”t} , (m)
®
v(r)=e™ |:V0 cosh ®"¢ —L” (w2r0 +Av, )sinh co”t} . (n)
®

Observing that we may write

r(t)=e™ cosh co"t{ro + L” (Vo +Arg)tanh (n”t} , (0)
o

v(t) =e¢ M cosh m”t{vo —ﬁ (w2r0 +Av, )tanh m”t} (p)
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and that

2lime™ cosh®”t = lim e “*~*'¥ (1 +e 2t ): 0, limtanhe"r=1,
t—>0 t—00 =0

it results that the trajectory of the particle has the same form as in the previous case
(Fig.1.16, b); the tangent at the asymptotic point O will be specified by the vector

1
r(’):ro+g("o+7ﬂ’o)~ @

The corresponding motion is a strongly damped motion. More precisely, we may say that
the last two cases correspond to aperiodic motions.

Application 1.12

Problem. Study the motion of a damped linear oscillator.

Mathematical model. Using the notations in Appl.1.11, we get the equation of motion
(along the Ox-axis)

420+ 0x=0; (a)

with the initial conditions x(0)= x,,(0)=v,, we obtain the solution

- ! 1 . ’ - !
x(t)=e™ [xo cos 't +— (vy +Ax, )sin © t} =ae ™ cos(w't— @), (b)
)
where we used the notations
1 Vo +Ax
a= x§+—(v0+kxo)2, ¢ = arctan ——— > ,0 ’ ()
0)!2 Xo®

corresponding to a subcritical damping (y <1). The motion is a pseudoperiodic damped

motion of pseudoperiod 7 =27n/®', the trajectory — which starts from the point P,

being contained in the segment of a line 44 and tending to the asymptotic point O after
an infinity of oscillations around this pole (Fig.1.17, a).

Z Z

A

41 Y

%"‘l

?0‘ I

“ ‘f, L1

v T2 T

A1 T T

a b

Figure 1. 17. Linear oscillator with subcritical damping (a). The diagram of the motion (b)
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This motion constitutes a modulated vibration in amplitude, being strongly damped; the
diagram of motion has the form of a cosinusoid contained between the curves

x=+ae™ and the tangents to it at the points t=¢/®', t=¢/0'+T,..., and
t=¢/0'+T/2,t=¢/®"+3T/2 ,..., respectively, where T =2n/ o' (Fig.1.17, b).

In the case of a critical damping (x =1), we obtain an aperiodic damped motion given
by

x(t)=eMxq +(vy +2x, )] (d)
If vy >0, then the particle starts from the point F,, attains 4 at the moment

t'=vy/ k(vo + kxo) and then changes of direction, tending asymptotically to the centre

O (Fig.1.18, a, b); the diagram of motion has a maximum for ¢=¢', tending then
asymptotically to zero.

yj

pf Va-"l/ \
o f a% £ i
a b c d

Figure 1. 18. Linear oscillator with critical damping (a) and the diagram of the motion (b). Linear oscillator
with critical and sub critical damping (c) and the diagram of the motion (d)

If —Ax, <v, <0, then the particle starts from the point P, and tends asymptotically to

O (Fig.1.18, c, d); the corresponding diagram has no zeros and no extrema, yet if
—Axy /2<v, <0 apoint of inflection appears.

xZ T
b
B
Y
A
Y%

i TK/ t

Figure 1. 19. Linear oscillator with critical and subcritical damping
If vy <—Ax,, then the particle starts from F,, passes through the centre O at the

moment " =—x, /(v +Ax,), attains A at the moment ¢' and then turns back

asymptotically to the centre O (Fig.1.19); the diagram of motion pierces the Ot-axis at
the point ¢#=¢", has a minimum for 7=¢', and tends asymptotically to zero with
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negative values. If the point F, is on the other side of the pole O, hence if x, <0, then

— by symmetry — one obtains analogous results.
A supercritical damping (7 > 1) leads to an aperiodic damped motion of the form

x(t)=e™ {xo cosh "t +L” (vo +Ax, )sinh m”t} . (e)
o)

In what concerns the trajectory and the diagram of motion, one obtains the same results
as before, as vy >0, —(A+0")xy <vy <0or as vy <—(A+0")x, (Fig.1.18, 1.19); we
notice that

1 -0"x
, t":—"argtanh—o.
® xy +Av, ® Vo +Axg

(J)”VO

)

1
t'=—argtanh
®

Application 1.13
Problem. Determine the oscillation period of a liquid in a curved pipe.

Mathematical model. By means of Bernoulli’s conservation theorem of mechanical
energy one can write

1
zZ) =2, +lfﬂds =z, +LQ,

godt g dt
where the data of the problem are given in Fig.1.20; it is supposed that the velocity v
depends only on the time.

Solution. Noting that

dv _d’x
dt de*’
one obtains
2
LE+22 z;=0

Using z; = xsina, z, = xsinf (the angles a and B are given), the differential equation of
the problem reads
2
E+§(sinoc + sinB)x =0.
de* 1
Noting ®? = (g//)sin o +sinf), this equation becomes a linear second order ODE with
constant coefficients
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d2X 2

—2"1‘ o°x=0 , (a)
dt

whose general solution is

xX= Acos(cot —(p).

Zy

reference plane

~
AELL LTI 7Pl 7777/ 77777 777777777777 7777777

Figure 1. 20. Oscillations of a liquid in a curved pipe

The period of the proper oscillations of the liquid is given by

21 [

T=—=2n (b)
®

g(sin o +sin [3) ’

Application 1.14

Problem. Study the motion of a heavy particle P (the motion of a particle in gravitational
field of the Earth) of mass m, in vacuum.

Mathematical model. Newton’s equation of motion is of the form
myr =mg , (a)
where g is the gravitational acceleration.

Solution. By direct integration, we get
r:%g(t—t0)2+vo(t—to)+r0, v=g(t—10)+v,, (b)

where we took into account the initial conditions r(t,)=r,, v(t,)=v,; noting that
r—r, is a linear combination of the constant vectors g and v, it results that the

trajectory is a plane curve. Without any loss of generality, we may assume that
r, =0,¢, =0, so that
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1
rzzgt2+vot, V=gt+v,; ©)
and also obtain the remarkable relation

1, 1
r=——gt - +vit=—(v+v,)t. d
e S(vevy) (d)

Mechanical intepretation. We suppose that v, # 0 and has not the same direction as g;

the velocity v cannot vanish in this case, and the relation (d) allows a simple graphic
construction of the velocity of the particle P if its position is known or allows to set up
graphically its position if one knows the velocity v. Projecting the equations (c) on the
co-ordinate axes Ox and Oy (Oy is the ascendent vertical, while a is the angle made by
the initial velocity with the Ox- axis), we get the parametric equations of the trajectory
(Fig.1.21)

1 .
x:votcoscx,y:—EgI2 +votsino (e)

and the components of the velocity

Vy =V COSOL V), =—gt+Vsina. H
Y
P
/29 7% =y
L4,
P8 \IF
7 g
o
& ZL ‘H Fl'm!
%129 2z il z

Figure 1. 21. Motion of a heavy particle in vacuum — Cauchy’s problem

Eliminating the time ¢ between the equations (e), we obtain

g 2
y=—->——>—Xx" +xtana,
2v§ cos’ o ©®

hence, the trajectory of the particle is a parabola. Further, taking into account (e), we
may write the magnitude of the velocity in the form
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v=qlvy —2g. (h)

For o >0, we are in the basic problem of external ballistics neglecting the friction with
the air. The particle (an eventual projectile) obtains the highest point of the trajectory P
if v, =0, hence at the moment t=vysino/g= vg / g ; the co-ordinates of the point are
2 0.0 2 ( 0 )2
VxVy Vo o2 Vy

— Vo . —
X=—sin200=——, y=—-sin"o=——, 1)
2g g 2g 2g

and Torricelli’s formula is given by
Wo=y2gh, h=3. G)

We obtain thus the component vg of the velocity by which one must launch a projectile

to attain the height 4, immaterial of the angle o ; the formula (j) takes place for the
motion along the vertical (o = 1t/2) too. The formula (h) may be written also in the form
v = 2g(v§ / 2g— y); one can thus state that the magnitude of the velocity at a given
moment is equal to that of a particle falling, without initial velocity, from a height
vg / 2g.

If o <0, then the particle starts from a point situated on the descending branch of the
parabola.

The point P, of abscissa 2x = (vg / g)sin 2a is the most distant point attained by the
projectile on a horizontal plane, at the moment 27 , the magnitude of the velocity being
the same as that of the initial moment; the range of throw is maximal for o =m/4,
namely 2X,. =vi / g. If we wish to attain a point P of abscissa 2Xx, the initial

conditions must verify the relation vg sin20. =2gx (the two-point problem). To the
same magnitude v, of the initial velocity correspond two angles: o < n/4 and 7/2-a
(symmetric with respect to the angle m/4, because m/4—o =(n/2—a)-n/4) under
which one may attain the same point P (Fig.1.22); in particular, if v, = @ , then we
have a=m/4. To the two shooting angles there correspond the shooting heights
h= (vg /2g)sin2 o and k= (\/3/2g)cos2 o.

If we wish that the projectile do pass through the point P(é,n), then we find the
condition

gt

2
8¢ 2 .
2—2tan a-Etana+n+==-=0; k)
Vo 2v;
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as in the above considered particular case, one may reach the point P, shooting a
projectile under two angles specified by

2

2 2
tano =22 |12 [1-2&|q 85 ||, )
gé Vo

2
2vg

Figure 1. 22. Motion of a heavy particle in vacuum — two-point problem

To reach a point P by a projectile, that one must be in the interior of the safety parabola
(Fig.1.21)

2

y =3 _sz + V_O

’ m
2v3 2g ™

which passes through the points P, (0,\)3 /Zg) and P .« (vg /2g ,O); no point in the
exterior of this parabola may be reached by an initial velocity of magnitude v, . This
parabola is the envelope of the family of trajectories (g) for v, = const and o variable.
The parameter of the parabola (g) is p = (vé / 2 g)0052 o , so that the locus of the focus
F((vé /Zg)sin Za,—(vg /2g)cos 2a) is the quarter of a circle (Fig.1.21)

v
x2+y2= 0 ’ (1’1)

the centre of which is the origin and which passes through the point all these

max ;
parabolas have as directrix a parallel to the Ox- axis of equation yzvg /Zg, which

passes through the vertex of the safety parabola. The locus of the vertices of the
trajectories (g) is the ellipse (Fig.1.21)
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2

2
W ray? =20y (0)
g

the minor axis of which is OP,_. , the major axis being parallel to the Ox- axis (the half

max °

of it is equal to vé /2g ).

Application 1.15
Problem. Consider a cantilever bar of a variable cross section, the height # being
constant, while the width has a linear variation (b, at the free end and b, at the built-in

cross section), which is acted upon by a concentrated force P. It is required:
i) to determine the rotation of the free end;
ii) to determine the deformed axis of the bar and its maximal deflection.

Particular case: b, =2b, (Fig.1.23).

Mathematical model. Let I, =byh> /12 and I, =bh* /12 be the moments of inertia of

the cross section with respect to the neutral axis for the free end and for the built-in end,
respectively. The moment of inertia of an arbitrary cross section of abscissa x is given by

[(x):]0|:(j—(l)— j%ﬂ}:l{[s—;— j?Jrl}:%(xHSl), (a)

with the notation

ERLANE (b)
By
g
5 :
. —fzx
1 3
w /
S
b, . &y
1%
L —

Figure 1. 23. Cantilever bar of a variable rectangular cross section

The bending moment in a cross section x is given by

M(x)=-Px, (©)
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so that the approximate differential equation of the bar axis is of the form

dzw__M(x)_PlB x
2  EI(x) El, x+pl’

where w is the deflection.

Solution. The rotation of the cross section is given by ¢ = % Thus, we get
d Pl /
_(P — _B 1 _B_ , (d)
dx EIl, x+p!

from which, by straightforward integration,

_dw_PB ., B _ PRy
‘p_dx_Eloj(l x+Bl]dx , [x—BlIn(x+pl)+C, ],

C, being an arbitrary constant. The condition (p(l ) =0 leads to

PIB

C,=———-BlIn(1+B)|,
1=, [ ~Bn(+p)]
and the rotation is given by
xﬂ3
5 i
PR g XEPLI PRI gy @)
0 (1+p)| EI, |1 1+8
At the free end we have
PI*p p
= = —1-Bln——|.
Do = Pmax EIO ( Bnl“'BJ (f)

A new integration leads to the deflections

_PB i X tBL
W_EIO'[[X / Blln(“_ﬁ)l}dx,

which gives

_PBIX g X B x+Bl
W_EIO{Z Ix B{xm(l—kﬁ)l x+Blln(l+B)l}+C2}.
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The condition w(/)=0 determines the new integration constant

C =G—Bj12,

so that the expression of the deflections reads

X
_Pl3 ? X x 7+B
P ( 1) _B(I_TJ_B(TB}“HB | ®

The maximal deflection is obtained at the free end (x =0) and reads

P’ B
= = — _—— h
Wo Winax EIO B( B B 1+B] ( )
In the particular case (b1 /by = 2) it results =1 and the maximal rotation (f) becomes

2 2
@ max =Pl -1-In— L) _ 2 ( 1+069314718) —0. 306852819i
El, 2) EI 0 0

@ @)E“’s?o

a3

Figure 1. 24. Diagram of the deflections w

while the deflection (g) is given by

3 2 —+1
:i _l l_x_ _ 1+£ In ) ;
El,| 2 I? l 2

their diagram is plotted in Fig.1.24.

Application 1.16

Problem. A cantilever bar of span / has a variable circular cross section of radius 7. We
have to determine:
i) the profile of the bar so as to be of equal resistance for a concentrated force P
acting upon the free end;
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ii) the maximal deflection at the same cross section (Fig.1.25).

Mathematical model. Let r=r(x) be the radius of the cross section at the abscissa x
(Fig.1.25, a). The moment of inertia and the modulus of resistance are given by

4 3
o s
I\x)=—,Wlx)=—,
(=" w(x) ="
respectively. For the bending moment M (x): —Px (Fig.1.25, b) the normal stress (in

absolute value) is given by Navier’s formula

M(x)_ Px 4P x _
Gmax_m_j__T_Ga’ (a)

g Ty

and is equated to the admissible stress o, .
The approximate differential equation of the deflection w is of the form

d>w _ M(x) _ Px [ij _ P13 T
a2 EI(x) El, " El,

: (b)

X

where E is the modulus of longitudinal elasticity.

Solution. From (a) we get

(]

Figure 1. 25. Cantilever bar with a variable circular cross section (a). Diagram of bending moments (b).
Variation of the radius r (c)
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f4Pl
ro=3—
no,

the radius of the built-in cross section, it results » = ry3 x/ [, so that one obtains a cubic

denoting by

parabola (Fig.1.25, ¢). Numerical values for the ratio r/r, as a function of the non-

dimensional abscissa x// are given in Table 1.1.

Table 1. 1. The values of ”/”0

x/1 r/r x/1 rl/r x/1 N

0 0 0.333... ] 0.6934 | 0.70 0.8879
0.10 ] 0.4642 | 0.40 0.7368 | 0.75 0.9086
0.20 ] 0.5848 | 0.50 0.7937 | 0.80 0.9283
0.25 ] 0.6300 | 0.60 0.8434 | 0.90 0.9655
0.30 ] 0.6694 | 0.666... | 0.8736 | 1 1

The moment of inertia becomes

4
I(x)=ﬂ

£4/3_1£4/3[_lo4
4 \ 1 N7g) 70 4

Integrating the equation, one obtains successively

4/3 4/3
%:ZI @xz/3+clj,w:” (2x5/3+C1x+C2j,
0

where C, and C, are integration constants determined by the conditions

M 0 w=0 for x=1.
dx

/ constant section v / ﬂj

/ %

0333
0,600

variable section

Figure 1. 26. Diagram of the deflections w

It is easily seen that C; = —(3/2)/3, C, = (3/5)¥* . The deflection becomes (Fig.1.26)
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4/3 3 53
e (9 7 —%lzﬂﬁrilsﬁj:ii[{ij _5£+2}_

El, {10 10 10 E1, | "\ !
The maximal deflection is obtained at the free end (x = 0)

3 3
_3PP_ Pl
5 EI, El,

Whax = C2

and is with 80% greater than the maximal deflection of the cantilever bar of constant
circular cross section of moment of inertia /.

Application 1.17

Problem. Study the motion of a particle of mass m subjected to the action of a force of
Newtonian attraction

F =—f";—]f, (a)

where M is the mass of the attracting particle,  the distance between the two particles
and f = 6.6732-107° = 1/38712 cm/g-s2 is a coefficient of universal attraction.

Mathematical model. The force F is a central force (the particle of mass M is considered
fixed), so that we may consider Binet’s theory (see Appl.4.25); one obtains the equation

2
4 (1M , (b)
do*\r) r (2

in polar co-ordinates r,0 , where C is the constant of areas.

Solution. The associated equation is a non-homogeneaous linear second order ODE with
constant coefficients, with respect to 1/ . Integrating, we get

1 M
7:C1 cos(e—Cz)-i-—C2 , ()
where C;,C, are two scalar integration constants.

Using the notations C, =e/p, C, =0,, p=C> / fM , we find the equation of a conic,
in polar co-ordinates, with respect to the focus F and to an axis inclined by 0, with
respect to the apsidal line in the form

_ p
r_1+ecos(9—91)- O
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The conditions at the initial moment ¢ =¢, (as in Appl.4.25) lead to the parameter of the

conic

C?  rfvisin?a, ©
p =
M M

where r,, v, correspond to the initial conditions, while o, is the angle formed by those

vectors.
Analogously, the eccentricity e and the angle 0, are given by

l+ecos(6—61):£,esin(G—Gl)zﬁcotao, H

) o
whence

2 2
e =[2 0] E oty =14 2|2
7y To \ 1y sin” o

(2
:1+r0v§ sin® o [ 7ovo o
™M ™M
2 .
cota SIn oy Cosa
tan(9—0, )= £ 20 _ fo¥o TR R0 B0 (h)

pP—n rovg sin? oy — M
Hence, the trajectory is an ellipse if rovg <2fM , a parabola if rovg =2fM or a
hyperbola if rovg >2fM .
Mechanical interpretation. The genus of the conic depends only on the initial distance to
the centre of attraction (radius 7, ), on the intensity of this centre (the mass M), and on
the intensity of the initial velocity (the velocity v, ), but does not depend on the direction

of this velocity (angle o). As () yields p=1r, and o, =m/2, the condition e=0
leads to

”0"3 ”0"3 o l=_1-
M\ M

hence, the orbit is circular if v = fM (one can see that o, =m/2 is now a
consequence).
Using the results of Appl.4.25 , we notice that
mM — M mC* 2 C* 2h
u(r)= 2" Gy = LM olr)= M

—, -+ (i)
r r 2r r 7 m
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We choose the Ox- axis so as to be an apsidal line; we are thus led to the equation of the
trajectory in polar co-ordinates (we take 6, =0)

r rpin d(1
e:CJ‘ dp — (/p) 5
min [2/MC* 2k Wr fPM® 2k _(1_]1\4)
p p2 m ct mc* \p C?
1_M
2
= arccos r ¢ ,
1
2.2 2
M
mC C?

where we noticed that » = r,;, corresponds to 8 =0. We find again the equation (d) of a

conic, with
2 2
2C*h
P\ T 0

Figure 1. 27. The orbit in case of a force of Newtonian attraction

It results (we observe that x = rcos0) (Fig.1.27)
x2+y2—(ex—p)2 =0 (k)

in Cartesian co-ordinates; the conic pierces the co-ordinate axes at the points (rmm ,O)
and (0, p) , obtaining thus a geometric interpretation for the parameter of the conic. From
the expression of the eccentricity one sees that the trajectory is an ellipse, a parabola or a
hyperbola as h<0, h=0, h>0, respectively; in particular, if h=— f 2mM / 2C?, then
e =0 and the ellipse is a circle.
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The law of motion of the particle on the trajectory is of the form

t=to+ | de :
o [2/M_C* 2k (1)
pp om

In the case of an elliptic motion we write the equation (k) in the form (we have 0 <e<1)
(1—ez)x2 +y2 +2pex=p2.

We notice that one may write this equation also in the form

2 2
X+ ae
br+ae)’ 2) +2=1, (m)
a b
where the semiaxes
a=—P___SM b oM (n)
1-¢° 2h J1-e? 2k

and the focal distance (Fig.1.28)

M

c=ae=p—ez=—m= a’-b* (0)
l-e 2h

are emphasized; we mention that, for a given potential — finM is given — the semi-major

axis of the ellipse depends only on the constant mechanical energy 7. We may express

Figure 1. 28. Elliptic orbit

the semiaxes of the ellipse in the form
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1 TyVo SIn QL

a=- ,b= ,
12M _ (p)
To

2
Y
5 L _ Yo
ro 2/M
with respect to the initial conditions; we notice thus that a does not depend on the
direction of the initial velocity.

Figure 1. 29. Kepler’s ellipse

Taking into account the above used notations, we see that the relations

2
finM =-2ah,C* :_2_’:1;7 : =—%a2(1—e2)rmm =a(l-e¢) @
—e

hold true; we thus obtain the law of motion of the particle along the ellipse (1) in the form

T d
] ZLi (r)

t=ty+
-e)ayja’e? —(a—p)2

_m
2h

by the change of variable p = a(l —ecos u) , We may write

t=t0+a1/—2—n;l;|j(l—ecosz7)dﬁ, (s)

so that Kepler’s equation reads
u—esinuzn(t—to), t)

with the notation
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n=_|—, (w)

usual in celestial mechanics.
We assume now that, in general, the Fx- axis does not coincide with the aspidal line
(6, #0, Fig.1.29), yw =0-0, being the true anomaly. The equation of the conic takes

the form r(l+ecosy)=p= bz/a = (a2 —cz)/a =a—ce, where we used the above
notations; it results ¢ +rcosy = (a —r)/e=acosu, if we take into account the previous
change of variable. The ordinate of the point P pierces the director circle of the ellipse at
Q; denoting by u the angle QOF , we notice that O_Qcos u=acosuis given by

Q_F+W =c+rcosy, hence just by the expression obtained above. The angle u has

thus a simple geometric interpretation, being called eccentric anomaly.
In the case in which the centre of attraction of mass M, considered fixed, is the Sun, the
particle in motion (relative to the fixed centre) being a planet, we have to do with the
solar system. Analogously, one may consider the motion of a satellite of a planet with
respect to the planet itself, e.g., the motion of the Moon around the Earth. One may state
Kepler’s laws, obtained as a synthesis of astronomic observations, i.e.:

Law I. The motion of a planet around the Sun takes place along an elliptic orbit,
the Sun being in one of the foci.
As a consequence of the first integral of areas (see Appl.4.25) one may state

Law II. (the law of areas). In the motion of a planet around the Sun, the vector
radius drawn from the Sun to the planet sweeps over equal areas in equal times.
We notice that to a variation 2m of the true anomaly y corresponds the same variation
of the eccentric anomaly u. Kepler’s equation (t) leads to the period 7 in which the planet
describes the whole ellipse, hence a motion of revolution is effected (the vector radius
describes the whole area of the ellipse), in the form

T=2—n22na i; )
n \ M

it results that n represents the circular frequency (called mean motion). We may write
T? B 4
a M

too, stating thus (the ratio 4r* / fM ) depends only on the mass of the Sun).

: (W)

Law III. In the motion of planets around the Sun, the ratio of the square of the
time of revolution and the cube of the semi-major axis is the same for all the planets.
By astronomical observations, these results represent a particularly important check of
the Newtonian model of mechanics.
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Application 1.18

Problem. Study the motion of a linear non-damped oscillator subjected to the action of a
perturbing force of the form f° (t) = acos(pt - q)).

Mathematical model. Using the notations of Appl.1.9, we may write the equation of
motion (along the Ox-axis) in the form

i+ o’x=f()=acos(pt— o). (a)

Solution. This is a non-homogeneous linear second order ODE, with constant
coefficients. Its general solution is written as a sum between the general solution of the
associated homogeneous equation and a particular solution of the non-homogeneous
equation. The solution corresponding to the Cauchy data x(0)= x,v(0)=v, is then

vO .
x(t)=x, cosot+—Lsinot
®

. (b)
p . .
- [cos Pcosmt+—sin@sin wt— cos(pt - (p)} ,
0" —p [0)
z|
oww ¢
|
|
!
|
T
Figure 1. 30. Phenomenon of resonance
We may write
(04
x(t): acos(o)t—\y)+ ﬁcos(pt—(p), (c)

o -p

where

2 2
0L COS P 1 op sin @
a= (xo _ﬁ] +_2(V0_ﬁ] ' )
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_ apsing
0 2 —p2
y = arctan . (e)
0.COS P
o —-p

It is thus seen that the motion of the particle is obtained as an interference of two
harmonic vibrations: the eigen vibration of pulsation ® and the forced vibration of
pulsation p.

If, in particular, we assume null initial conditions (xo =y, = 0) and if the difference

phase of the perturbing force vanishes ((p = 0) , then it results

o
x\t) = ———-cos(pt —ot).
(¢) pemp. ( ) )
If the pulsation p differs greatly from the pulsation ® ( p <<® or p>> ), then the
diagram of the motion is that of Fig.1.12, b (the case p << ®, hence an eigen vibration

of great pulsation, “carried on” by a forced vibration of small pulsation); we notice that
the maximal elongation of the resultant motion is practically equal to the double of the

amplitude of one of the motions (xmax = 2(1/ (0)2 - pz». If the two magnitudes of the
pulsations are close, then one obtains the phenomenon of “beats” (Fig.1.13, 1.14).

14|
3
L]
2
s\
, \
05 L8

) [
¢ a5 1+ 15 2 258 g3 35 g

Figure 1. 31. The diagram of the amplitude # vs. n in the case of the phenomenon of resonance

In the case p =m, it results an indeterminedness in (b), as well as in (f). For p > © we
obtain at the limit, according to the theorem of I” Hospital),

x(t) = it sin ot , €]
2m
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for the law of motion (f). In the case of the law of motion (b) one obtains an analogous
result (one adds supplementary harmonic vibrations). The diagram of the motion (g) is a
sinusoid of modulated amplitude after the straight lines x=ztas/20 and of

pseudoperiod 7 =2n/o (Fig.1.30). The amplitude increases very much, in arithmetic

progression, and the phenomenon is called resonance, being particularly dangerous for
civil and industrial constructions or for mechanical ones.
The amplitude of the forced vibration (g) is proportional to the amplification factor

1
l—n2 ’

A (h)

where we have introduced the relative pulsation n= p/®, which is a non-dimensional

ratio. The graphic of the absolute value # is given in Fig.1.31.

Application 1.19
Problem. Study the motion of the previous case for a damped linear oscillator.

Mathematical model. Assuming a viscous damping (as in Appl.1.12), we are led to the
equation of motion

jc'+27w'c+0)2x:(xcospt, (a)

with the notations introduced in the mentioned application; to simplify, we admit that
©=0. To fix the ideas, we assume to be in the case of a subcritical damping (y,<1).

Solution. The solution of the linear second ordre ODE with constant coefficients (a) is of
the form

x(t): ae™® cos(w't —y)+ C, cos pt +C, sin pt, (b)

where

(c)

the last two terms corresponding to the forced motion.

Mechanical interpretation. Taking into account the exponential term, the proper motion
is rapidly damped, so that we may consider the forced motion in the form

x(t): Acos(pt—(p), (d)
with
2\p

A= “ ¢ = arctan ———
- YT 2 2" (e)
\/( 2—p2)2+4k2p2 o -p
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o b
g T
X=0
45
A=
4
35
3
T
, |
2 X=03
15 f X=04
X=405
J o~ X=VZ 2= G707
a5 \ ~X=I, |

Toas 452 25 3 35 4 45y
Figure 1. 32. Diagram of the amplification factor of the amplitude (+vs. 1)

By means of the notations introduced in Appl.1.12 and of the relative pulsation
n=p/®, we may also write

1 2
A= , @ = arctan an , (9

\/(1—712)2+4X2112 1-1

the amplitude 4 being proportional to the amplification factor = A (n), the diagram of
which is given in Fig.1.32 as a function of various values of the damping factor . We
notice that /7 (1)=1/2y, .

We define an amplitude resonance for the values

=T, =y1-2¢> <Ly <1/42, (2)

for which the amplification factor has a maximum

1 1
max= T — - h
2yyl1-2y¢2 2% ®

One observes that the resonance amplitude is smaller as damping is greater, the graphic
of the function becoming oblate for a great damping; the effect of the damping is
particularly important in the vicinity of the resonance zone (n = 1). If the damping is

A

very small (x << 1), then the amplitude resonance appears for n=1, the amplitude

factor being A, = 1/2y, . Eliminating  between (g) and (h), we get
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ﬂmale/vz_nies ’ (1)

that is the locus of the points of maximum of the graphics for various values of
(represented by a broken line); these points are at the left of the line ) = 1.

4 2=0 X=03 X=VZ2
o [xuaos T x
57/ 4——;—'

] P

Gy -
T/6 =~
=X

1 2 3 p] 5"7'

Figure 1. 33. Diagram of the phase function (¢ vs. 1)

The diagram of the phase function ¢ = (p(n) is given Fig.1.33 for various values of the
coefficient y . We notice that for the non-damped system the phase is ¢ =0 below the
resonance (n < l), the vibration being in phase with the perturbing force, and ¢ = T,
over the resonance (n > 1) , the vibration being in phase opposition with respect to the

perturbing force; at the damped system there always exists a phase difference between
the perturbing force and the vibration. For n <1, y (hence, the damping) increases as

the phase shift between the motion and the perturbing force increases, the motion
remaining after that force. For n>1, yx increases as the phase shift decreases, the

motion remaining after the perturbing force too. For a very great m, the phase shift
increases immaterial the perturbing force. But the opposition is rigorously obtained only
in the absence of the damping (n = 0). For n=1 one obtains ¢ =7/2, immaterial of the

damping coefficient y ; one may thus define a phase resonance for which the vibration is
in quadrature with the perturbing force.

Application 1.20

Problem. Determine the bending deflections W of a circular ring of radius @ acted upon
by two diametral concentrated forces P (Fig.1.34, a).

Mathematical model. The deflections w satisfy the differential equation

d>w Pa’ (2
— +w=———| =—cosq |, (a)
do 2EI\
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in polar co-ordinates, where EI represents the bending rigidity (£ is the modulus of
longitudinal elasticity and [/ is the moment of inertia of the cross section with respect to
the neutral axis).

=

Ly

A
o P b

Figure 1. 34. Loading of a ring with diametral concentrated forces P (a). The deformation of the ring (b)

Solution. This is a second order linear, non-homogneous ODE. The general solution of
the associated homogenous equation is

wy, =C,sing+C, cosQ,
and a particular solution of the non-homogeneous ODE may be searched in the form
w, = A+(p(Bsin(p+Ccosq));
introducing this in (a), we get the coefficients

3 3
a=_FPa g _Pa _,
nEI’"  4EI

The general solution of the above ODE is thus

w=w, +w — i + 3 esing+C, sinp+C, cos ¢
P h nEl 4El ! 2 .
By differer 1tiati()n, w¢e get
W 3 sin @+ 3 @cos@+C,cosp—C,sin@

The integration constants are specified by the symmetry condition for ¢ =0 and

e=m/2.Itresults C; =0 and C, = Pa’ / 4EI . Finally, the deflections read
w= P_a3 cosQ+@sing — 4
4gr (S0 )

the deformation of the ring axis being drawn in Fig.1.34, b.
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Application 1.21
Problem. The tram of a cable railroad moves downwards (Fig.1.35) with a velocity v, .

The driving wheel is braked by a band brake, so that after a time ¢, it remains blocked

(the delayed acceleration may be considered constant). Determine the frequency and the
amplitude a of the free longitudinal vibrations of the tram hanged down, due to the
brake.

G=mg

Figure 1. 35. Circulation of a tram
Numerical data: v, =3.6km/h, t,=3s, the modulus of longitudinal elasticity

E=13-10° daN/cm2 , the area of the active cross section of the cable 4 =3 cm? , the
length of the cable in rest / =1.3km , the weight of the tram G =29.4kN .

X X5

A —y, 8

Figure 1. 36. The equivalent mechanical system

Mathematical model. The cable subjected to traction may be modelled by an elastic
string; due to the small linear strain

Al =vyt = 3m,A—l = 3 =0.0023,
[ 1300

the elastic constant of the string may be considered invariable. To study the problem
enounced above, we may consider the equivalent mechanical system (Fig.1.36),
corresponding to the following

Equivalent problem. Two points 4 and B, moving with a constant velocity V,, are
connected by a string. In B there is a particle of mass m=G/g. Starting from the
moment ¢ =0, the velocity v, = (dx/ dt)x: 4 of the point A4 is reduced from v to zero in
t, seconds, by a constant delayed acceleration, and then the point 4 remains in rest.
Study the motion of the particle B.
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The velocity v, has a linear variation in time (Fig.1.37).

Va

&

0 l, 4
Figure 1. 37. The linear variation of the velocity v,

If the link between the points 4 and B would be rigid, then the displacements, for
te [0, to] , would be equal to

vot2
2,

xAszz\}Ot_

(@)

Due to the elastic connection, the differential equation of motion of the mass m in the
interval of time [O,to] is

2
d xp

de?

m +k(xz—x,)=0, (b)

where £ is an elastic constant, x, is given by (a), while x, is the unknown of the
problem.

Solution. Introducing the notation = /kg/G for the pulsation of the free vibrations, the

equation (b) becomes

d*x; 5 Vot
+B" xg =P vt - ; (c)
hence, the perturbing term is no more periodic. The general solution of the associated
homogeneous equation is
xp, = CysinBt+C, cos Pt
and a particular solution of the non-homogeneous equation (c) is of the form

Xp, =C +czt+c3t2,

P
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where ¢|,c,,c; are constants to be determined by identification; one obtains thus

Yo Yo
O == .0y =Vg,03=—7—,
B 2t
so that

v
0 .2
Bp="5 tVol—o 1.

0 Lo

The general solution of (c) is the sum

. 1% v
Xp=Xp,+ xg, =CsinBt+C, cosPt + Bz(; +v0t—%;2. (d)
0 0
The initial conditions for t=0 are x5 = 0, dxy /df =v, and lead to
v %
Xp =vol ——=1% + 20 (1-cospt),
or, taking (a) into account, to
Yo

Xp=X4+— (1-cospt). (e)

ty

If £ =xp —x, is the deviation from the rest position, one obtains

VO d&_, VO .
=—2(1-cospt),—=—LsinPt,
3 2%( cospt), g SinB

and for ¢ =¢;, the initial values read

1% d&o Vo .
£y =&(ty)=—="—(1-cosPty ) —=2 = —Lsin Bt, .
0 =8lto)= gz b g = g SinPlo ()
For ¢ > t,, the differential equation of motion becomes
d’€ o
m—=+B’€=0, (&)
dr’

so that the motion of the point B is a free harmonic vibration, the amplitude of which
must be determined by using the initial values &, and d§, /dz .

The equation (g) leads to

&= AsinB(z—1y )+ Bcosp(t —1, ),

%: BACOSB(t—to)—BBsinB(t—tO).
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One obtains the harmonic motion

E= Yo [(l—cothO)cosB(t—t0)+sin[3t0 sinB(t—to)]

Bt
=0 [cosB(t—t )—coth]z 2o sin%sinB t—t—o =asinf t—t—o
B2, ’ B2, 2 2 2 )

where the amplitude and the proper period of vibration are accordingly given by

2 . Bt
a —ﬁsmﬁ—o, T= 2n

- tho 2 p

Introducing numerical values, one has

6
o EA_13:10°-3

; 310° =30daN/cm,m =
1.3-1

B= ,/k—g =\/z= ‘/ﬂ =3.162s7",
G m 3
the amplitude is given by

vy . Bty 2-100 . 3.162-3

a =——--:In S
B, 2 103 2

G _2990 _ ) 99694daNem's?
g 981

so that the pulsation is

=6.66cm ,

while the proper period is

Application 1.22
Problem. Determine the deflections w of a hanged up structure.

Mathematical model. The deflections w satisfy the linear second order non-homogeneous
ODE with constant coefficients

d’w 5 1 x X X X
B w=——"o|M_ +M|1-——|+M,—-4 —|1-=1],
dx2 B EI|: P 1( lj 2[ pr l( lj:| (a)
where x is the abscissa, M b M, M,, H p are dimensional constants, E/ is the

bending rigidity, while f and / are the bending deflection and the span of the cable,
respectively.
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Solution. The general solution of the associated homogeneous ODE is of the form
w, = AeP* + Be P, (b)

and a particular solution of the non-homogeneous equation is a trinomial of second
degree
2

wp:cl’l‘—z+c2§+c3; ©

by identifying the coefficients, it results

:4pr c :M1+M2+4pr c :MP+M1+ 8/H,
pEr B2EI TOOBEI BYREI

G
Hence, the general solution of (a) is of the form

1 X X X X SfH
= AeP* + BeP* + M, +M|1-Z=|+M,=—4fH =|1-=|-—2L|.
w e e B2EI|: P 1[ lj 21 prl[ lj B212:| (d)

The solution (b) may be also written in the form
w, = A’ cosh Bx + B'sinh Bx,

where A'= A+ B,B'= A— B are new integration constants.

Application 1.23

Problem. Determine the amplitude and the period of the water oscillations in the
cylindrical equilibrium tank, of (horizontal) cross section F, of hydroenergetical conduit,
having the length L and the cross section 4 (Fig.1.38). The frictions are neglected and the
suddenly vanishing of the rate of flow of the turbine Q, is assumed, the initial conditions

being v=v,, z=0, O, =0,

Mathematical model. Bernoulli’s conservation theorem of mechanical energy, written
between the storage basin and the equilibrium tank, leads to

L dv
4+ ——=

g dt 0. @

where g is the gravitational acceleration, and the equation of continuity reads
dz

Av=F—. b
v=Fo (b)



1. Linear ODEs of First and Second Order 95

strorage basin =\ equilibrisen:
reference plane tank

Figure 1. 38. Schema of the hydroenergetical conduit

Eliminating the velocity v between (a), (b), one obtains finally
2
d_zz +0’z=0, (©)
dt

_ |4
co—\/;. (d)

Solution. The solution of the linear and homogeneous ODE with constant coefficients (c)
may be put in the form

with the notation

z =2z, sin((ot + (p) , (e

where z, is the oscillation amplitude; the period is given by

T:2—n22n E,
() &
so that
. (2=
Z=12zysn ?t+(|) . ®

The initial condition Z(O):O leads to @=0. The condition v(O):vO at the initial
moment, the rate of flow of the turbine O, vanishing, all the rate of flow in the conduit

Avy = F(%] .
dr ),

enters in the tank, so that
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dz 2= 2n dz 21
_:_Z()COS —t N :_Zo.
e T T dt ), T

Equating the two expressions of (%j , it follows
=0

On the other hand

Application 1.24

Problem. A bar of steel subjected to traction is formed by joining two bands by two
longitudinal welding seams (Fig.1.39). Determine the effort S in one of the bands and
the effort 7 in the welding seams.

Mathematical model. The searched efforts are given by the differential equations

2
d°S c+dyg e _o, @
dx> E A4, EA,
1dS
T=-———, b
> dx (b)

where 4, and A4, represent the areas of the cross sections of the joining bands, P is the

effort of traction in the bar, and £ and G are the moduli of longitudinal and transverse
elasticity, respectively, of the material; the coefficient of deformation due to shifting is

l:i 1+b_1+b_2 ,
c 2G| 6t 6t

where b;,b, and ¢,¢, are the width and the thickness of the two bands, respectively.

- LD TN P N
~ > )
4 . [ b2
- -
Figure 1. 39. The joining of two bands by longitudinal welding seams
Using the notation
2 C Al + AZ
o ©

E A4,
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the differential equation (a) becomes

(d)
Solution. The model represents a linear second order non-homogeneous ODE with

constant coefficients. The associated two-point conditions are S(0)=P and S(/)=0.
Noting that the free term is constant, the general solution of (d) is

S = C| coshox + C, sinh wx + 4

P.

A+ A4,
The two-point conditions lead to
A
C,+—L1—P=P,
A+ A4,
. A,
C,coshw/+C, sinh o/ + P=0,
A+ A4,
so that
A a P A4+ A4, coshwl
"4 +4, T F A +4, sinhol
The final form of § is thus
A A +4 h o/ A
S= 2 Pcoshwx— P ! .2008 ® sinh ox + :_p
A+ A4, A+ A4, sinh o/ |+ 4,
. , (e)
__ P 4 1_51.nhoox A, sml.m)(l—x) .
A, + A4, sinh w/ sinh o/
Differentiating (e) and taking (b) into account, it results
A, +4 h o/
©o_P A, sinh ox —& cosh wx
2 A4, +4, sinh o/
® P A coshwx—A4, cosh oa(l - x)
2 A4 +4,

sinh ®/
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&N

ez

Pz

e gz J.

Figure 1. 40. Variation of S, and §, (a). Variation of T'(b)

For the numerical data: b, =100mm, b, =120mm, ¢ =12mm, ¢, =10mm,

A =4, :12cm2, G= E/2.6, E=21-10° dalN/cm2 , [ =20cm , one obtains

>

1 0 12) 79 36

—=—1+ + = ,C=—

c 26\ 612 610) 36G°° 79

022200612712 36 1 24 6 050911295,
79E 1212 792.6 144 7926

©=0.170913121cm ™, o/ = 3.148262426, sinh ! =15.2417876.
The solution (e) is given by

g= P 12 1_smhoox Jrlzsmhoo(l—x)
12+12 sinh w/ sinh o/

12

" 24152417876
=0.032804551[15.2417876 —sinh cx + sinh (/- x)|P.

[15.2417876 —sinh @x + sinh o(/ - x)]P

The variations of S, and S, = P—S, are given in Fig.1.40, a, and the variation of 7I/P
in Fig.1.40, b.
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Application 1.25

Problem. Consider a bar of axis not perfectly rectilinear (we say that the bar has an
initial curvature). Study the influence of this curvature, supposing that the bar is doubly
hinged and is acted upon by compression forces P. One assumes that the initial
curvilinear form of the axis is given by

w=w, sin% , (a)
where w,, is known (Fig.1.41).

yo)

-

~

2

=4

Figure 1. 41. The influence of the initial curvature in the stability of a bar

Mathematical model. The bending moment in the deformed state is given by

M = P(w+W)=Pw+ Pw, sin%,
where w is the bending deflection. The differential equation of the deformed bar axis
becomes

2
d_W+B2W:_£W sin =~ | (b)
dx? El

where ET is the bending rigidity.

Solution. This is a linear non-homogeneous ODE with constant coefficients. A particular
solution is searched in the form

w=Csin%; (c)
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it satisfies the two-point conditions W(O) = w(l ) = 0. Introducing this in (b), one gets

Ce_ Pw, 1 Pw,
EI 2_7[2 P, -P (d)
?
where
2=l p n’El
ELCCE 2
In this case, we get
. mwx PP . TX
w= Wy SIn— = ——=—w, sin—, (e)
P, — I 1-P/P, l

emphasizing an amplification of the initial geometric line (a).
The bending moment is given by

2 2
P
M:—Eldw:nEI P wosinE: £ PwosinE
dx? /> Py;-P I Pp-P [ ®
1 .
:—Pwosmz.
1-P/ Py )

We notice that for P — P, (Euler’s load), the deflection w and the bending moment M
tend to infinity, independently on the initial curvature w, (instability by divergence).

Application 1.26

Problem. Consider a doubly hinged bar, of length /, acted upon by the compression
forces P and transversally by a sinusoidal load p(x)z Do sin(mc/l) (Fig.1.42).

Determine the deflection w and the bending moment M.

Mathematical model. The bending moment is given by

2
M:—Eljx—zv,

where EI is the bending rigidity, and the deflection w satisfies the differential equation

2 2
/ g

d_W+£W:_p() sin — . (a)

dx?  EI n’El 1

Solution. Denoting by

pr=—, (b)
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the solution of the associated homogeneous equation is given by

w), = AsinBx+ Bcosfx . (c)
1o)
0!
4 4
X
~ pdy-ﬂi?&
Y

’

Figure 1. 42. Doubly hinged bar acted upon by axial forces P and by a sinusoidal transverse load

A particular solution of the non-homogeneous ODE (a) is searched of the same form as
the free term

w, = (@

As (d) must satisfy the ODE (a), it follows

12 ?
W:_P02 12 :p02 1 ,
b n El n- Pp—P
P_
12
where
2
n El
Py = g

is Euler’s load.
Because the particular solution satisfies the two-point conditions w(0)=w(l)=0, the
constants 4 and B of (c¢) vanish. We thus get

Pol 21 sinmx

w= s
n? Pp—P I
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dzw_ Pr  pol? sinme 1 pol? sinmx
dx? P;-P g* 1 PR L
P

M =-EI

For P — Py, the quantities w and M tend to infinity, immaterial of the intensity of the
load p(x) (instability by divergence).

Application 1.27

Problem. Consider a doubly hinged bar, of length /, acted upon by compression forces P
and transversally by a uniform load p (Fig.1.43). Determine the deflection w and the

bending moment M.

Mathematical model. The deflection w satisfies the differential equation

2 —
dw P pli=x) @
dx?  EI 2EI

and the bending moment reads M =—EI d>w/dx? (El s the bending rigidity).

Solution. The model represents a second order linear non-homogeneous ODE with
constant coefficients. Searching a particular solution of the form

2
W, =Co+Cx+cyx7,
one obtains, by identification, the coefficients

p o _p . __PEL

- € = ——=,C) = .
P’ VT optt T p2

C():

Denoting by B* = P/EI , the general solution of the ODE (a) reads

__pEL px(i-x)

+ AsinBx + BcosPx. b
P’ 2P P P ®)

By using the two-point conditions W(O) = w(l ) =0, we get

4= DpEI 1—.005[3[ B PpEI -
P?  sinpl P?

>

We obtain the deflection w and the bending moment M

e PpEI sin B(Z - x)— (sin B/ —sin Bx) 3 px(l - x)
- p? sin p/ 2P
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COSB(Z—XJ
M pE]|:SinBX+SinB(l_x)_l:|:£ —1+ 2

P | sinpl sin B/ B> cos P! ’

respectively.

A

P

b

Figure 1. 43. Doubly hinged bar acted upon by axial forces P and by a uniform distributed transverse load

The maximal values (at the middle of the span x =//2) are

1—cosPL
pEl "~ %5 pi? P 1
I R
P COS— B C057

wmax

For P— P; =n’ EI/ I1? (Euler’s force), the quantities w and M tend to infinity,
immaterial of the load p (instability by divergence).

Application 1.28

Problem. Study the influence of the eccentricity of application of the normal force P to
a bar free at the upper end and perfectly built-in at the lower end.

Mathematical model. We denote by e the initial eccentricity (Fig.1.44); the bending
deflections satisfy the second order linear non-homogeneous ODE with constant
coefficients

d’>w P __pe

ol Em" T E (@)
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Solution. The general solution of the non-homogeneous equation is the sum between the
general solution of the associated homogeneous equation and a particular solution of the
non-homogeneous one, therefore it is of the form

w=—e+ AsinBx+ BcosPx;
we also have

% = B(A cosPx — Bsin Bx) .

P
—
x

Figure 1. 44. Eccentricity of application of the normal force P

The boundary conditions w(0)=0, (dw/ dx)x:] =0 leadto A=etanPB/,B=ec.

Hence, the deflections become

w= e(—1+cosBx+tanBlsian): e[—1+

cosf!/
and the bending moments are given by

2 2 _
M =g :Mcosﬁ(l_x): pew _
dx>  cospl cosPl
For B/ — /2 we have cosB/ =0, so that the deflection and the bending moment tend to

infinity (instability by divergence). In this case, the normal force P tends to the value of
the critical buckling force (see Appl.1.31).

Application 1.29

Problem. Let be a doubly hinged bar, of length /, acted upon by compression forces P
and transversally by a concentrated force F at the middle of the span (Fig.1.45).
Determine the bending deflections w.
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Mathematical model. For an arbitrary cross-section of abscissa x one may write the

bending moment
1
M =Pw+ EFx .

o 2

Y2

7
y=

Figure 1. 45. Doubly hinged bar acted upon by axial forces P and by a transverse force F'

The model is thus a linear second order ODE of the form
P

2
d W+B2w:—ix,xe O,L, Bzz—,
2EI 2 EI

to which one associates the two-point conditions w(0)=0, (dw/ dx)x:, 1> =0 the last one

is a symmetry condition.
Solution. The general solution of the above ODE is

F .
w=———x+ Asinfx + BcosPx,

and therefore
dw __F +BAcosPx—PBBsinPx.

dx 2P
Taking into account the boundary conditions, we get
A= F ,B=0,
2PBcos %

so that
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W:_ZI}: —PBx+ smB);
B cos P
The bending moment becomes
_ F sinfx
2B cos P!

For P— P, =ni° El/l2 (Euler’s force) we have cos(Bl/2) =0, so that w and M tend to
infinity, independently of the transverse force F' (instability by divergence).

Application 1.30

Problem. A cable BOC passes over a mast OA, of height / (Fig.1.46, a). A tension in
the cable introduces a compression force in the mast. Determine the value of the critical
force for which the mast loses its stable form.

Mathematical model. Let o be the inclination angle of the cable with respect to a
horizontal line, in the initial position (Fig.1.46, a). We suppose that, due to the buckling
phenomenon, the upper edge O has a lateral displacement f. Then, the inclination angle
of the left part of the cable is reduced with Aca., while the inclination angle of the right
part of it increases with Ao (Fig.1.46, b).

If N is the effort of tension in the cable, the initial position of equilibrium leads to

P

N= 2sino (@
Due to the deformation of the mechanical system, a horizontal force arises
H = N cos(a.—Aat)— N cos(a+Aa) = 2N sin asin Aat ;
as Aa is very small with respect to o (sin Ao = Aa ), we may write
H =2Nsin aAa = PAa . (b)

If D is the projection of O on BO' (O’ is the point reached by O by buckling), then
from the triangle ODO' it results (Fig.1.46, c)

O_D:B_OAa:fsinoc;

as BO =I/sin o, one obtains
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sina .
Ao = f = ismz o,

! ! (©)

sino

®
N

k

Figure 1. 46. Geometric schema of the mast and of the cable (a). Lateral displacement f'(b). Displacement of
the upper edge (c). Static schema of the mast (d)

so that
H:P§sin2a. (d)

One must thus determine the critical force for a cantilever bar OA acted upon at the free
end by the forces P and H (Fig.1.46, d).

We choose the origin of the X -axis at the upper edge of the bar, so that for an arbitrary
X we obtain the bending moment

M(x)=Pw—Hx=P(w—x§sin2 ) (e)

The differential equation of the deformed bar axis is
2
d_w = —i w—xisin2 ,
x> EI !
where EI is the bending rigidity, or

2
?bc—;v+[32w=[32x§sin2a, 6
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with the usual notation
pP=—. (2

Solution. The general solution of the linear second order ODE is of the form

w=Asian+BcosBx+x%sin2(x, (h)

and the rotation of the cross section is given by

%:BAcosBx—BBsian+§sinzoc. @

The boundary conditions w(0)=0, w(I)=0, (dw/ dx)x:, =0 lead to

B=0,

Asinpl + BcosPl+ fsin’a = f, G
BAcosp!—pBsin P/ +§sin2 a=0.

The linear system of algebraic equation in A4,B,f has non- zero solutions (which

correspond to the stable position of equilibrium) if

sinfB/ - cos® o

det =0;
© Bcosp! %sinza

thus, the following characteristic equation is obtained

2

tan 3/
—B:—cot a,

Bl

whose solution can be obtained only numerically. The Table 1.2 may be used to this
goal. For instance, for o = TC/4 one obtains B/ =2.02876, so that the critical force is

given by
EI  m’El

P, =2.02876> —_—
1> (1.54851)



1. Linear ODEs of First and Second Order 109
Table 1. 2. The values of the function j(u) =tanu/u
tanu tanu tanu tanu
u u u u
u u u u

0 1.0000 1.800 | -2.3813 | 3.600 0.1371 5.300 -0.2833
0.050 1.0008 1.850 | -1.8854 | 3.650 0.1527 | 5.350 -0.2523
0.100 1.0033 1.900 | -1.5406 | 3.700 0.1688 | 5.400 -0.2255
0.150 1.0076 1.950 | -1.2869 | 3.750 0.1857 | 5.450 -0.2019
0.200 1.0136 2.000 | -1.0925 | 3.800 0.2036 | 5.500 -0.1810
0.250 1.0214 2.050 | -0.9388 | 3.850 0.2225 | 5.550 -0.1623
0.300 1.0311 2.100 | -0.8142 | 3.900 0.2429 | 5.600 -0.1433
0.350 1.0429 2.150 | -0.7112 | 3.950 0.2651 | 5.650 -0.1299
0.400 1.0570 2.200 | -0.6245 | 4.000 0.2895 | 5.700 -0.1157
0.450 1.0735 2.250 | -0.5505 | 4.050 0.3166 | 5.750 -0.1026
0.500 1.0926 2.300 | -0.4866 | 4.100 0.3472 | 5.800 -0.0905
0.550 1.1147 2.350 [ -0.4308 | 4.150 0.3823 | 5.850 -0.0791
0.600 1.1402 2400 [ -0.3817 | 4.200 0.4233 | 5.900 -0.0683
0.650 1.1695 2450 [ -0.3380 | 4.250 0.4721 5.950 -0.0582
0.700 1.2033 2.500 [ -0.2988 | 4.300 0.5316 | 6.000 -0.0485
0.750 1.2421 2.550 [ -0.2635 | 4.350 0.6063 | 6.050 -0.0393
0.800 1.2870 2.600 [ -0.2314 | 4.400 0.7037 | 6.100 -0.0304
0.850 1.3392 2.650 | -0.2021 | 4.450 0.8367 | 6.150 -0.0218
0.900 1.4002 2.700 | -0.1751 | 4.4934 1.0000 | 6.200 -0.0134
0.950 1.4720 2.750 | -0.1502 | 4.500 1.0305 | 6.250 -0.0053
1.000 1.5574 2.800 | -0.1270 | 4.550 1.3415 | 2=n 0

1.050 1.6605 2.850 | -0.1053 | 4.600 1.9261 | 6.300 0.0027
1.100 1.7861 2.900 | -0.0850 | 4.6042 2.0000 | 6.350 0.0105
1.150 1.9430 2.950 | -0.0658 | 4.650 3.4425 | 6.400 0.0183
1.200 2.1435 3.000 | -0.0475 | 4.700 17.1729 6.450 0.0261
1.250 2.4077 3.050 | -0.0301 | 3w/2 +oo 6.500 0.0339
1.300 2.7708 3.100 | -0.0134 | 4.750 -5.5948 | 6.550 0.0417
1.350 3.3002 T 0 4.800 -2.3718 | 6.600 0.0497
1.400 4.1413 3.150 0.0027 | 4.850 -1.4889 | 6.650 0.0578
1.450 5.6814 3.200 0.0183 | 4.900 -1.0750 | 6.700 0.0661
1.500 9.4009 3.250 0.0335 | 4.950 -0.8342 | 6.750 0.0747
1.550 31.0184 3.300 0.0484 | 5.000 -0.6761 6.800 0.0836
/2 oo 3.350 0.0631 | 5.050 -0.5641 6.850 0.0929
1.600  }21.3953 3.400 0.0777 | 5.100 -0.4803 6.900 0.1028
1.650 -7.6359 3.450 0.0923 | 5.150 -0.4150 | 6.950 0.1132
1.700 -4.5274 3.500 0.1070 | 5.200 -0.3626 | 7.000 0.1245
1.750 -3.1545 3.550 0.1219 | 5.250 -0.3195 | 7.050 0.1369
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Application 1.31

Problem. A slender doubly hinged bar is subjected to compression by two axial forces
P . 1f a critical force P, is attained, then the bar does no more remain in the rectilinear

form of equilibrium. Determine the first two values of this force. To solve the problem,
one considers the moment in which the bar leaves its rectilinear form of equilibrium and
takes a new curvilinear form, very close to the initial position.

Mathematical model. For a cross section of arbitrary abscissa x, the bending moment is
given by M = Pw, where w is the deflection; the differential equation of the deformed
axis becomes
2
P
dw, P co, (a)
dx? EI

where EI is the minimal bending rigidity of the cross section.
Choosing the origin of the x-axis at the upper edge, the two-point conditions are

w(0)=w(t)=0, (b)
whith / the bar length (Fig.1.47).

Solution. This is a Sturm-Liouville problem, as the linear ODE (a) and the boundary
conditions (b) are homogeneous; a non-zero solution is only possible for certain
eigenvalues of the parameter P.

o

Figure 1. 47. Buckling of a doubly hinged bar

For the sake of simplicity, with the notation (g) from Appl.1.30, the equation (a)
becomes
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d*w
ymzw:o. (c)

Ax

Searching a solution of the form w=e™, we find the characteristic equation

22 +B% =0, with the roots A 1.2 = *iB . The general solution is

w = AsinBx+ Bcosfx, (d)
A and B being integration constants.
The boundary conditions w(0)=w(/)=0 yield B=0 and AsinB/=0.ButA=0, or
else the bar remains rectilinear. Also, B # 0, or else the bar should not be loaded. Thus,

it follows that sin3/ =0, with the roots B/ =nn,n=1,2,3....
Turning back to the notation (g) for B, one obtains the eigenvalues

2
P =pE=nTEL 123
and the equations of the deformed axis
w:Asin%,nﬂ,z,&.. @)

We notice that the amplitude 4 of the deformed axis remains non-determinate; as a
matter of fact, the model we used was an approximate (linearized) form of the ODE
satisfied by the deformed bar axis. The solution (e) represents a sinusoid of semi-wave
In.

Practically, the minimal value of the critical force (for n=1) is of particular interest.
This one is called the Eulerian critical force

2
n El
Pcr = PE = 12 ) (f)
for which the deformed axis of semi-wave / is given by
™
W= Wyae R (8)
where w,,,, corresponds to the middle of the span.
For greater values of n, e.g., n =2, the next critical force is obtained
, mlEI
})cr,Z =2 12 = 4Pcr ) (h)

corresponding to another form of equilibrium; this situation also matches to a
supplementary simple support at the middle of the span.
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Application 1.32

Problem. Study the buckling problem for a straight bar built-in at one end and free at the
other end (a cantilever bar).

Mathematical model. The problem being similar with the previous one, we use the same
ODE (a), or, likewise, (c), for the deflection of the bar axis; we also use the same
notations. The difference between the two problems is mathematically expressed by the
differences between the two-point conditions, which, in this case, are (Fig.1.48):

w(0)=0, (dw/dx)_, =0.
E

LIS,

X

Figure 1. 48. Buckling of a cantilever bar

Solution. As in the previous application, the model is a Sturm-Liouville problem. The
general solution of the ODE (c) and its derivative read accordingly

w= AsinBx+ BcosPx,

dw .
—=p4 -BB .
BAcosBx—BBsinPx

The boundary conditions involve B =0 and cosp/ =0, with the eigenvalues

nmt
Bn _2_1'

The minimal value of the critical force (1 =1) is

_ nEl
Ca?

and the equation of the corresponding deformed axis is given by

w= AsinE.
21
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This represents a sinusoid whose period is twice as much as that of the previous case; the
amplitude 4 is non-determinate.
Application 1.33

Problem. Study the buckling problem for a straight bar of length /, built-in at one end
and hinged at the other end.

Mathematical model. Due to the built-in mounting, a reaction H — playing the rdle of a
non-determinate parameter — also appears in the hinge, normal to the bar axis (Fig.1.49).

P
Yo H
[.c
-
&
Q
t ~
i S

X

Figure 1. 49. Buckling of a bar built-in at one end and hinged at the other end

The bending moment in a cross section of abscissa x of the deformed axis is given by
M = Pw+ Hx , so that the differential equation of the problem is

d’w P H
—t—w=——x, ()
dx*> EI EI
where P is the compression force and E1 is the bending rigidity.
With the notation (g), Appl.1.30, the equation (a) becomes
2
W gy (b)
dx? EIl
The boundary conditions are
w(0)=0, w(1)=0, (dw/dx) _, =0. ©

Solution. The above model is a Sturm-Liouville problem. The general solution of the
linear second order ODE (b) and its derivative are, accordingly,
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H .
w=—Fx+Asme+BcosBx,

) (d
Ew - _%+ B(AcosBx—Bsian) .

The boundary conditions yield B=0 and the algebraic linear system, satisfied by
(- H/P) and 4,

H H
——I[+AsinBl/=0, ——+ AcosB/=0.
7 p 7 p (e)

This system is also homogeneous, therefore it has non-vanishing solutions only if

{z sin B/ }
det =0
[ BcosPl

Computing this determinant, we obtain the transcendental characteristic equation
tanP/ =PI . H
The minimal root of this equation (corresponding to the Table 1.2)

Bl=44934095=— "~ ~ T
0.699155653 0.7

leads to the minimal critical force

2
nEl
P, = . (8)
(0.71)?
Application 1.34
Problem. Determine the critical buckling force for a doubly built-in bar.
Mathematical model. The differential equation of the problem is
2
dw P :—ix—ﬂ, @)

—t—Ww
dx* EI EI EI
where P is the compression force, H and M, (the reaction normal to the bar axis and the

moment at the built-in cross section, respectively) are non-determined parameters, E7 is
the bending rigidity and w is the unknown deflection (Fig.1.50). The two-point
conditions are, in this case,

w(0)=w(1)=0, (dw/dx),_, = (dw/dx),_, =0, (b)

where / is the bar length.
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Solution. To solve this Sturm-Liouville problem, we firstly get the general solution of the
linear ODE and the corresponding derivative

H M .
- x——" 4 4sin Bx + B cos Bx,

P P ©)

w=

dw H .

—=——4+pl4 -B .
7 B( cos fx— Bsin Bx)

f=]
LNy
< 0
-~
-] b
~N
S
y
2
P77 7777
X

Figure 1. 50. Buckling of a doubly built-in bar

The two-point conditions lead to the linear homogeneous algebraic system, written in
matrix form
0 1 0 -1 A
§ 0 -1 0 B
sin B/ cosB/ -1 -1| H/P
BecosPl —Psinfl -1 0 || M,/P

(d)

S O O O

To have non-zero solutions, we must equate to zero the determinant of the associated
matrix, thus obtaining the characteristic equation

Z(I—COSBI)—Blsin B/ =2sin Bl[tan%—%jzo, (e)

of roots B/ =2nm,n=1,2,3.... The root B,/ =2n leads to the minimal buckling force
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P An’El  n°El ®
T (051

The minimal root corresponding to the second factor is greater than 3,//2.

Application 1.35
Problem. Study the lateral buckling of a slender beam subjected to bending.

Mathematical model. 1t is possible for a slender beam subjected to bending to lose its
plane form of equilibrium if the bending moment attains a critical value. (Fig.1.51). The
beam loses its stability in the compressed zone; the beam axis becomes curvilinear in its
plane of minimal rigidity while various cross sections of the beam rotate around the axis.

Figure 1. 51. Lateral buckling of a beam of simple cross section

This phenomenon of losing the stability of the equilibrium form of a beam subjected to
bending is called lateral buckling (or buckling due to bending).
The study of the lateral buckling leads to the differential equation

eo,

+——0=0,
dx? EIGI, @

where EI, and GI, are the rigidities by bending in the z-plane or torsion (of the cross

section), respectively, M is the bending moment in the y-plane, while 0 is the unknown
rotation of torsion of the cross section (simple, without booms) .
Introducing the notation
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=1
JELGI,’ ®)

the equation (a) becomes

2
%wzezo, (c)

analogous to that of the axial buckling (see e.g. Appl.1.31). To this ODE one associates
the two-point conditions

6(0)=0(7)=0, (d)
therefore a Sturm-Liouville problem.
Solution. The general solution of the ODE (c) is

0= AsinBx+ BcosPx .

Making use of the two-point conditions, one obtains the minimal eigenvalue B =/, so
that

M, == [EI.GI, .
I

Application 1.36

Problem. Consider a steel bar built-in at one end and elastically supported at the other
end. Determine the critical buckling force P, .

Mathematical model. The bending moment in a cross section of abscissa x is given by
(Fig.1.52)

M:P(f—w)—cf(l—x), (a)

where P is the axial force, f the deflection of the elastically supportel end (the elastic
coefficient is ¢), and / is the bar length. Using the notation (g), Appl.1.30, it results the
differential equation of the deflection

ji—§”+ﬁ2w=5{f—%(1—x)} (b)
to which we must add the conditions

w(0) = (dw/dx),_, =0, wlt)= 1, ©
therefore, again an eigenvalue problem.

Solution. The general solution of the differential equation is
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w:Asian+BcosBx+f(l—%)+% (d)
The initial conditions lead to
cl cl
A = 1 - B = ) &
f( B2EI J B EI ©
i yz,
— ——
cf
Y
]
|
~ {
!
] —
I
(
x ! x

R 7
a b

Figure 1. 52. Buckling of a bar built-in at one end and elastically supported at the other end

so that the deflection is given by
wix)= 1| 1- 2Cl (1-cosPx)+ 2c [x—lsin[}xj . ®
BEI B*EI\ P
The condition w(/)= /" leads to the characteristic equation
(8

cl j(]—cosﬁl)+ [322'] [Z—%sinﬁlj =1,

B2EI

-
(h)

which can also be written as
Bl—k(Bl) =tanpl,

where
EI .
: (1)
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For a bar of circular cross section of diameter d and the numerical data
E=2.1-10°daN/em*, [ =2m, ¢=5daN/cm, d =4cm , we get

2 1.106-T°'44

h=— 6% 0659734457 .
500200

Table 1. 3. The values of & fas a function of 5/

Bl k Bl k
2 | o 2.05 | 0461347
1.60 | 8.748177 | 2.10 | 0.411386
1.65 | 3.172054 | 2.15 | 0.370179
1.70 | 1.912600 | 2.20 | 0.335633
175 | 1.356572 | 2.25 | 0.306272
1.80 | 1.043598 | 2.30 | 0.281024
1.85 | 0.843079 | 2.35 | 0.259092
1.90 | 0.703761 | 2.40 | 0.239874
195 | 0.601423 | 2.45 | 0.222901

The minimal root of the equation (h) is, in this case,

Bl =1.9197825.

10

w0

=)

S N

w

&~
P

/ N

~—

I ——

g
Ti6 17 48 19 20 21 22 23 2% 25 Pl

Figure 1. 53. The diagram of the function & = f(Bl)
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The critical force becomes
s2 B _ n’El

P, =1.919782 —
1> (1.63641)

where the buckling length /, =1.6364/ was emphasized.

Various values of

R T A

are given in Table 1.3 and are plotted into a diagram (Fig.1.53). Both the table and the
figure are useful to obtain the root B/ for a given .

_Bl—tanpl _ 1 (l_tan[}lj i

Application 1.37
Problem. Search a solution by power series for the buckling of a doubly hinged bar.
Mathematical model. The deflection w satisfies the linear second order ODE
2
aw P oo, (@)
dx? EI

where EI is the bending rigidity and w is the unknown deflection. To this ODE, we must
add the boundary conditions

w0)=0, w(i)=0. (b)

Solution. As the deformed axis of the bar has an antisymmetric form with respect to the
origin O, we use an odd series expansion

W= 00X+ 03X + 00X 440y, X2 oy, X (c)

The second derivative of (c) is
d2W 3 5 2n-1 d
?:2~3a3x+4-5a5x +6-707x° 4.4+ 2n(2n + 1)y, x> 4 (d)

As it is seen, the boundary condition w(0)= 0 is fulfilled.
Introducing (¢) and (d) in (a), it follows

[2 300X+ 450057 +6- Ty x> +...+ 2n(2n + 1)y, x> +...]+

©)

P _
+E O X + 03X 40X ...+ Oy, X2 g, x P L) = 0.

so that P/EI=p® must be positive; the

polynomials in (e) must differ by a constant factor, and the ratio of two homologous
coefficients (of the same power) must be negative

The value of the force P must be P

cr?
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2-30 4-50 6-Ta 2n2n+1)o,,
3 =_B29 5 Z_Bza 7 =_BZ, ( )0'2 +1 =_B2= (f)
A A3 Qs ®2p
so that
BZ BZ B4 ; B2n
O3 =———0, 05 =———03 =——0l],...,0,, =(—1 Olyyenns
3 7.3 s 4.5 37 5N 2n+1 ( ) (2n+1)! 1 (8)
Finally, we get
3 5 2n+l1
:ﬁ BX_M+@_...+(_1)}/’M+ A, (h)
B 3! 51 2n+1)!
which is precisely the series expansion of the sinus
w=asinpx, a=—-. 6]
p
The boundary condition w({)=0 is satisfied if B = nn/ ; hence,
w= asin%; )

thus, we found again the classical solution.

We also obtain P, =B2El = n? TI:ZE[/IZ .

Using the same development (c), one may study the buckling of a bar free at one end and
built-in at the other end, a.s.o.

Application 1.38
Problem. Determine the buckling critical force of a cantilever bar, of moment of inertia

varying as [, =1, (x/a)4 (e.g., for a circular cross section, Fig.1.54).

Mathematical model. The deflection w of the bar axis due to the compression force P is
governed by the differential equation

2
Y pyo, (a)
X dx2

where EI, is the bending rigidity.
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e

TRy, LAy
X

Figure 1. 54. Buckling of a cantilever bar with a variable moment of inertia
Taking into account the expression of /., the equation (a) becomes

4d2W 2
X —2+B w=0, (b)

_a B
p=a El, ©

To (b) we must associate the boundary conditions

wla)=0, (dw/dx)

where

0.

x=a+l

Solution. The ODE (b) is linear, but it has no more constant coefficients. Yet, we can
obtain its general solution by means of Bessel’s functions of the first species and order
y=1/2; in this case, applying Liouville’s theorem, we conclude that it can be expressed

by elementary functions (see Sec.2.7)

w= x(AcosE+BsinEj, (d)
x X

where A4 and B are integration constants.
The derivative reads

d—W:AcosE—i-BsinE+E[AsinE—BcosEj. (e)
dx X X x x X

Applying now the boundary conditions (c), we get for 4 and B a homogeneous linear
algebraic system



1. Linear ODEs of First and Second Order 123

cosE sinE 4
g a =0. )
cos p + B sin B sin B - B cos B B
a+l a+l a+! a+l a+l a+l

To obtain non-zero solutions, the determinant of (f) must vanish and we get the
characteristic equation

sin B + B cos Bl =0, (2)
ala+1) a+1 ala+1)
or
Bl Bl a
tan =— —. h
ala+1)  ala+1)1 M
Table 1. 4. The values of u and p for various ratios a/l
all u H
0.2 2.65366 | 0,19731
0.5 2.28893 | 0.45751
1 2.02876 | 0.77426
2 1.83660 [ 1.14037
3 1.75186 | 1.34014
5 1.68868 [ 1.55032
10 1.63199 [ 1.69126
0 /2 2
With the notation
l 1 P
u=pl o | P ()
ala+ l) a+!l\ El,
the equation (h) becomes
tanu a .
=7 0)
u /

which is solved using the Table 1.2.
From (i) one obtains the critical force

2 2
El
P, :yzEIO(l+lj “Ioo (k)
a 1) ()
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where
s

p=—-.
u(l+lj O
a

Table 1.4 contains the numerical values of u and p for various ratios a/l e [0.2,00).
The variation of the buckling length /, =p/ as function of the ratio a/l is plotted in a
diagram (Fig.1.55). For a/l — o, one obtains p =2, that is, the value corresponding to

a cantilever of constant cross section.

M

20 *--‘—'-— ————— 9

15 et
19 e

9544

0(‘7:55 K 5 (7] 0'7/

et
14
€

Figure 1. 55. The diagram of the function p = f(a/l)

Application 1.39

Problem. Determine the buckling critical load of a bar of length /, free at the upper end
and built-in at the bottom; the axial load p is supposed to be uniformly distributed along

the bar axis (Fig.1.56).

Figure 1. 56. Buckling of a cantilever bar acted upon by an axial uniformly distributed load
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Mathematical model. The deflection w satisfies the differential equation

d’w P dw
—+—(-x)—=0, a
o e (@)
where EI is the bending rigidity. The boundary conditions are
(0)=0, (dw/dx),_, =0, (b)
(a2w/dx?),_, =0. ©

Solution. We notice that the order of the equation (a) may be easily reduced by a unit.
But first of all, we make a change of variable

Z:g i(l_x)3/2,x:l_39£22/3. (d)
3VE 4p

Step by step differentiation yields

dw__dw,3p
dx dz V2E1™

2 23 2
Loz [121/3d_w+22/3 d w),

o2 2E) (37 @ a2 ©
Cw_3p (1 dw d’w dw
dx3  2EI9 dz  {z? dz3
Introducing this in (a) and using the notation
dw
—=u,
& &)
we get
d’u  1du 1
— 4 ——+| 11— u=0,
PR ( 922j (2)

i.e. a differential equation of Bessel type of first species and order y=1/3 (see Sec.2.7).
The general solution of this ODE is

u=CJy; (Z)+C2J—1/3 (Z)= (h)



126 ODEs WITH APPLICATIONS TO MECHANICS

where

3 9 - 3 9 .
Jl/3(z)=zl/3[l—gzz +%24 —...J, J71/3(Z)= z 1/3[1—§22 +%Z4 —j @A)

In the new variables, the boundary condition (c) becomes (1/ 3)271/ Su+ 23 du/dz =0 for

z=0, and we obtain C, =0. The second boundary condition (b) becomes u =0 for

x=0, so that z=(2/3% pl® JEI .

The transcendental equation which leads to (p/),, becomes

—4/3 2
2 | pl® 3(4pP) 9 (4pP® .
falgy s -2 S|+ —=—| =& | —...|=0. G)
3\ El 8\ 9 EI | 320(9 EI

The smallest root of this equation is (2/3h/ p* / EI =1.866, so that

2 2
3 » EI _71834EI  n’El
1), =| =] 1.866%- == = : K
(v (2) I’ & (1.1221)? 0

The deflection w is obtained from (f), by integration, taking C, =0, while C; remains
non-determinate. The value /, =1.122/ represents the buckling length of the bar.

Application 1.40

Problem. Consider a circular cylindrical vessel of wall thickness varying linearly with
the height. Determine its axially symmetric deformation due to an interior loading with
liquid (Fig.1.57).

Mathematical model. Let us take the origin of the Ox -axis (Fig.1.57) at the theoretical
applicate corresponding to a vanishing wall thickness. Then the differential equation of
the deflection is given by

d? [xz d2WJ+l2(1—v2) 12(1—v2Xx—x0)

— xw=— , a
dx? dx? a’a® Eo’® (@)

where the variation law of the thickness of the wall is given by
h=ax. (b)

The free edges (x = x, and x =x, + /) are thus specified; the constants £ and v are the

modulus of longitudinal elasticity and Poisson’s ratio, respectively.
The problem requires the general solution of (a).

Solution. A particular solution of the linear fourth order ODE (a) is
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2 —
w, = _Ya_ X=X (©)
E x

where y is the unit weight of the liquid; it represents the radial dilatation of the cylinder.

]
1—:-—:
'f-b

ANERERNN

L& |

X

Figure 1. 57. Cylindrical tank the wall thickness of which has a linear variation

Further, it is necessary to search the general solution of the homogeneous equation

1 d? d?
il e

where we used the notation

o :12!1—v2!

o’a® ©

We mention that the first term in (d) may be written in the form

1d?w( ,d’w) 1d]| ,d[1d( ,dw
—— X — == x| | x ||}
x dx? dx? ) xdx dx| x dx dx
Introducing the differential operator
2 2
x dx dx? dx? dx

the equation (d) becomes
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LL(w)]+p*w=0. (®

We search solutions of the form L(w)z Aw, A = const; introducing this in (g), we get,
step by step,

L(?uw)+p4w:7»L(w)-i—p4w:7L2w+p4w:(7»2 +p4)w:0. (h)

If 2%+ p4 =0, thatis A= iip2 , then the differential equation (h) may be split into the
following two differential equations

L(w)+ip’w=0, (i)
L(w)—ipzw:0. (),

Let
W =@ +i9,, Wy = @3 +iQy, k)

be two independent linear solutions of the equation (i); then
W3 =0 10, Wy = @3 10y, )

are two linearly independent solutions of the equation (j).
By a convenient choice of the integration constants, the general solution of the
differential equation (d) may be put in the form

w=C0; +Cr0, + G305+ C404, (m)

where C;,C,,C5,C, are four integration constants.

Thus, the problem is reduced to searching the four functions ¢,,i= 1,_4 ; hence, one must

search the solution of one of the equations (i) or (j).
Choosing e.g. the equation (i) and replacing L(w) by (f), it results

2
LB U (n)
dx?  dx

By the change of variable

n=2pix, = wilx, (0)

the equation (n) becomes

Zd—zé+n£+(n2—1)é=0- (p)

n
dn? dn

One may search a solution of the equation (p) in the form of a power series
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2
al :ao +a1n+a2n +....
Introducing this in (p) and taking a, =0, we obtain

2 4 6
n n n n
LT P - o l=a),
S 2{ 2-4+2-42-6 2-(4-6)2-8+ } 1(71) (@)

where J; (n) is Bessel’s function of first species and order 1. This expression may be
also written in the form

d n2 n4 n6 dJ,
-J ——— |1 — oo | =T ’
& 1(11) I: 72 + (2_4)2 (2~4-6)2 * :I dn ®

where J, is Bessel’s function of first species and order zero

2 4 6
n n n
Jo(n)=1--+ -
o) 2? +(2-4)2 (2-4-6) "

Replacing n in the first expression (o) and separating the real and imaginary parts, one
may write

Jon)= \vl(2px/;)+iw2(2m/;),

where

ko) ode)
wleo)-1- (5-4)2 +(2-Z-6-8)2 o

S O 3 A s M S

+
22 (2-4-6)* (2-4-6-8-10)

in this case the solution (q) reads

1 =—vi v )-ivs ovE). ©
A second solution of the equation (p) may be obtain in the form
&, =y 2oV v, o), ®
where
w32V )= Sy, )_%[Rl +InlpBv Ju v )|

1
2
v lpva) %\v ) (29\/;)4'%[132 +1“(PB\/;)\I/1(2P\/;)],
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and
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R1=(px/;)z—%(p\/_) ()(\/_) _—
ST

1 1 1
S(n)—1+5+§+...+;,

In3 =0.57722... (Euler’s constant).

The general solution of the equation (m) becomes

T

[C1W1(2P\/_)+ Cz\Uz(ZP\/_)+ C3\V3(2P\/_)+ C4\I/4(ZP\/_)]

Numerical values of the functions vy, i = 1,_4, and of their derivatives of first order may
be found in F. Schleicher. These functions are connected also to Klein’s functions.



Chapter 2

LINEAR ODEs OF HIGHER ORDER (7 >2)

1. The General Study of Linear ODEs of Order n > 2
1.1 GENERALITIES

The linear ODE of order # is of the form (see also the Introduction)
Ly=a, (x)y(") +a, (x)y("_l) +ota, (x)y' +a, (x)y = F(x) , (2.1.1)

where the functions a; (x), F (x) are defined and supposedly continuous on a real
interval /.

Obviously, in a classical frame we search for solutions of (2.1.1) in the class C" (I )

If ay(x)# 0 for x e, we can divide both members of (2.1.1) by a,(x). We obtain

Ly =y 4 p U st p, () + p, (e = £(), (2.1.2)

where

(9=

- . 2.1.3
aox) @13

a; (x)
AX )= .
p;) et
The ODEs (2.1.1), (2.1.2) are non-homogeneous. If the right member is null, then they
are called homogeneous. The homogeneous ODE associated to (2.1.1) is

Ly=aq, (x)y(") +a, (x)y("_l) +..t+a,, (x)y' +a, (x)y =0. (2.1.4)

A linear ODE is still linear for any change of variable and for any linear change of
function.

1.2 LINEAR HOMOGENEOUS ODEs

The operator L, defined by the left member of (2.1.1), is linear, i.e.,
L(oy +Bz)= oLy +pLz, 2.1.5)

for any real/complex o, B and any y,z e C" (1 ) .

The operator L, and, consequently, also L;, may be put in the form of a differential
polynomial, as shown in Sec.1.5,

131
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L=P(x,D)=ay(x)D" +a,(x)D" " +..+a, ,(x)D+a,(x)E, D=— (2.1.6)

E being the identity on C" (I ) By using the well-known Leibniz formula
D(uv)=uDv+vDu, 2.1.7)
we can prove the following formula, useful for applications,
1 1
P(x, D)uv) = uP(x, D)+ - Du PO, D+ 5Dzu PO(x, D)

(2.1.8)

+...+%D-/uP(-/)(x,D)v+...+i'D"uP(")(x,D)v,
J! n!

in which PU )(x,D) are the formal derivatives with respect to D of the differential
polynomial P

P(j)(x, D)=ay(x)-n(n-1)..(n—j+1)D"/

. 2.1.9
+a,(x)-(n=1).(n— D"/ +...+aj(x)-j!E. @19)
Indeed, we have
E(uv) =uv, xay (x)
D(uv)zuDv—i—vDu, xan_l(x)
Dz(uv):uD2v+C;DuDv+C22vD2u, xan72(x)
D}(wv)=uD*v+ClDuD*v+C?D*uDv+C3vDu, .
(uv) uD’v+C3;DuD“v+C;DuDv+C5;vD u xa 3(x 2.1.10)

D" (uv)=uD"v+C.DuD"'v+..+C ' D" uDv+CIvD/. xag(x)

We then perform the multiplication with the coefficients, indicated on the right hand of
(2.1.10) and we sum up both members of these relationships. Also observing the
common factors u, Du, a.s.o., we finally get (2.1.8).

As previously, in the case of lower order ODEs, y is a solution of the homogeneous
equation (2.1.4) if and only if y is an element of the kernel of L

kerL:{yGC"(l]Lyzo}. (2.1.11)

As L is linear, it immediately follows that if y,, y, are solutions of the homogeneous
ODE (2.1.4), then any of their linear combination is also a solution of the same equation.
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It results that kerL is a vector subspace of C"(I). Obviously, one can immediately
prove that if y,,y,,..., y, are solutions of (2.1.4), then any linear combination

y=cy1te )yt yy, (2.1.12)

is also a solution, i.e., it belongs to ker L .
One can prove that

dimker L =n. (2.1.13)

A basis in ker L is called a fundamental system of solutions of (2.1.4). In other words, a
fundamental system of solutions for (2.1.4) is a system of n linearly independent
solutions of (2.1.4).

In general, a system of n functions {(pk }k:ﬁ defined on some real set A is called

linearly independent if any linear combination X c;¢; (x) vanishing identically on / —
j=1

ie., ZCj(pj(x)=0,VxeA —involves c; =0,j=1n.
j=l

It can be proved that the necessary and sufficient condition that a system of » solutions
{(p P } e-in of (2.1.1) be fundamental is that its Wronskian, defined by the determinant

N ) -
i Yoo Wy
W[Vl,yz,...,yn]dj : (2.1.14)
yl(n—l) ygn—l) ysln—l)

be non-zero on /.
We previously mentioned Liouville’s formula for linear second order ODEs. This result
may be generalized to get Liouville’s formula for linear n-th order ODEs, which is

_ralx)
wie)-ce ol @119
or, for an arbitrary x, € /
(o)
Ji® (2.1.16)

W(x) = W(xo )e v

From the last formula, we see that if the Wronskian cancels at a point of /, then it
vanishes identically on /. Hence, given a system of n solutions of the homogeneous ODE
(2.1.4), if their Wronskian cancels in a point of /, the system is not fundamental. If the
Wronskian is not nul on the whole 7, then the system is fundamental.

Also by using the Wronskian, it can be proved that a linear n-th order ODE with
continuous coefficients always allows a fundamental system of solutions.
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From the above considerations, it follows that if {y j }j=ﬁ form a fundamental system

for a linear homogeneous ODE, then every solution y of this ODE may be written as a
linear combination of the functions of the system, i.e.

Yx)=ep )+ 20 (04,3, (x). (2.1.17)

Thus, if we know a fundamental system of solutions for a linear homogeneous ODE,
then this equation is completely solved.

Consider now the problem of finding a solution of (2.1.4) that also satisfies the Cauchy
conditions

J/(xo):J/o’
yr(xo)=J’('>s
(2.1.18)

y("_])(x0)=y("71), xp el

The solution of the Cauchy problem (2.1.4), (2.1.18) may be written in the form (2.1.17).
Differentiating this expression n—1times and taking then into account the initial

conditions (2.1.18), we get a linear algebraic system for the constants ¢, j=1,n,

0 0 0
C1Y10 tC2Va0 T T € V0o = Vo>

Cl)’110 +Czyéo +-~-+Cny}10 =05 (2.1.19)

(n—l)

n—1 n-1 n-1 _
C1Yio T Vuo Tt CpVuo =Vo s

in which we used the notations yfo = y&k)(xo ), k= m, j= I,_n , for the values of the
functions belongong to the fundamental system, obtained for £ =0, and of their
derivatives, all of them taken at x, € /. We see that the determinant of the system
(2.1.19) is precisely the Wronskian W(xo )of the considered fundamental system, taken
at x,. As the system is fundamental, its Wronskian never vanishes on I, therefore

W(xy)# 0. It follows that the Cauchy problem (2.1.4), (2.1.18) is unique. We get this
unique solution by replacing the solution ¢, j = I,_n , of the algebraic system (2.1.19) in

the expression (2.1.17).
The calculus of the coefficients may be considerably simplified if the functions of the
fundamental system were determined such that they satisfy the initial conditions

yj(xo)zo,y}(xo)z0,...,y_§-j)(x0)=1,ys:i)l(xo):0,...,y,(/)(x0)=0, j=Ln. (2.1.20)

Indeed, in this case the system (2.1.19) straightforwardly yields ¢; = y(()j _l), j=Lln,

where yéo) =y, - The solution of the Cauchy problem (2.1.4), (2.1.18) is then
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()= 3021 ()4 77 ()4t 2§y, (x). (2.1.21)

A fundamental system of solutions satisfying the Cauchy conditions (2.1.20) is called a
normal system. As we see, a normal system allows to write directly the solution of a
Cauchy problem replacing the initial data in the formula (2.1.17).

At Sec.2.1, Chap.1, we considered a normal system in the particular case of the second
order ODEs. At Sec.2.3, same chapter, we determined the functions Z,, Z, , representing
the normal system for the second order linear ODE with constant coefficients, if the
associated characteristic equation allows real and distinct roots (formulae (1.2.63),
(1.2.65)).

Given a linear ODE, we can get for it infinitely many fundamental systems. Conversely,
a fundamental system {y i }jfﬁ corresponds to a unique linear n-th order ODE, except

for a multiplicative factor. This ODE is found by using the functions y;, j = I,_n of the

fundamental system. Indeed, if y is an arbitrary solution of the ODE, then
Vi>V2.s Yy, y are linearly dependent, i.e. their Wronskian is identically null on /. We

thus have
y yl Y2 Yn
' i Yoo e o
Wi yaseo Vus VIZ| (oo - - o =0. 2.1.22
[Vl 2 ] y( 2) yl( 2) yé 2) y’(1 2) ( )
y(n 1) yl(n—]) ygn—l) yslnfl)
p ) e

This is the ODE we are looking for. It is linear, as we can see developing the above
determinant following the first column and it is of order #, as the coefficient of y(") is
precisely the Wronskian WLV1 s V9 sees y”] of the given fundamental system, which does
not vanish on /.

Example. Let us find the homogeneous ODE allowing y, =coshx, y, =sinhx as a

fundamental system.
The searched ODE is of second order and the Wronskian of the given fundamental
system is

coshx sinhx 2 12
Wy =1, =cosh” x—sinh“ x=1#0.
sinhx cosh x

As any solution y of the searched equation is linearly dependent on y,,y,, we shall
have
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y coshx sinhx
y' sinhx coshx|=0.

y" coshx sinhx

Developing this determinant following its first column, we immediately find

y'=y=0. (2.1.23)

1.3 THE GENERAL SOLUTION OF THE NON-HOMOGENEOUS ODE

The general solution of (2.1.1) is written as a sum between the general solution of the

associated homogeneous equation and a particular solution y, (x) of the non-
homogeneous ODE, i.e., in terms of a fundamental system {y j }/:ﬁ , also taking (2.1.17)

into account,
(%)= 31 (¥)+ co 0, (6) 4t e, (6) 3, (x). (2.1.24)

To get the particular solution y, (x), we can use again the fundamental system.

Following Lagrange, we can use the method of variation of parameters, also called
Lagrange’s method. The particular solution is searched in the form

vy (6)= Ky (x)yy (0)+ K, (x)y, (x) 4.+ K, (x), (). (2.1.25)

After step-by-step differentiations and replacements in (2.1.1), we get for K’ (x) the
following linear algebraic system
Ky, +K)y, +..+K,y, =0,
Kiyi+Kypy +..+K,, =0,
......................................................................... (2.1.26)

Ky 2 kyy s gyl < F(x) '
ao(x)

The determinant of this system is precisely the Wronskian of the fundamental system,
hence it does not vanish. Solving algebraically the system (2.1.26), we get

K (x), j= I,_n , and by integration, we finally obtain the expressions of X ; (x), j= Ln.

1.4 ORDER REDUCTION
Let y, (x) be a particular solution of the homogeneous ODE (2.1.4), i.e.

Ly,(x)=0; (2.127)



2. Linear ODEs of Higher Order (n > 2 ) 137

let us perform the change of function
y(x) =y, (x)z(x). (2.1.28)

To apply it, we must compute L(y pz): P(x, D)(y pz), where P(x, D) is the associated to

L differential polynomial; to perform this computation, we can use formula (2.1.8), with
the same notations, explained in (2.1.9). Taking u =z,v=y ,, we get

1 1
L(zy )= P(x,D)(zyp): zP(x, D)yp +EDZP(1)(x, D)yp +ED22 P(z)(x,D)yp
1 ' 1 (2.1.29)
+...+—.D/uP(])(x,D)yp +...+—D"ZP(”)(x,D)yp,
J! n!

or,as Ly=0and P(x,D)yp =0,

P(n_l)(x, D)yp (nfl)

z + +—P(2)(x’ D)y
(n—1)! 2!

22"+ PU(x,D)y,z'=0.  (2.1.30)

()

aq(x)z\" +

In this ODE we perform again the change of function z'=u, thus obtaining another
ODE, of order n—1 with respect to the new unknown function .

By using the same pattern, one can prove that if we previously know r particular
solutions of the homogeneous ODE (2.1.4), which are linearly independent, the order of
the ODE may be reduced by 7 units.

At Sec.2.1 and 2.2, Chap.1, we treated the case of second order ODEs, for which one
knows a particular solution, say Y, (x), of the associated homogeneous equation. In this

case, it was obtained the representation (1.2.40), in which Y, (x) is given by (1.2.15).

2. Linear ODEs with Constant Coefficients

The general form of such equations is (2.1.1), with a;, j=1,n real constants and
ay # 0. More precisely, we have

Ly= aoy(") +a1y(”71) tota, v +a,y=f(x), fiICR->R. (2.2.1)
This equation may be written in terms of differential polynomials
Ly= P(D)y = (aOD" +a,D"! +...+an71D+anE)y = f(x), i IcR->NR. (2.2.2)

From the above considerations, it follows that the solution of this equation depends on
the effective determination of a fundamental system of solutions, i.e., of n linearly
independent solutions of the associated homogeneous ODE

Ly= aoy(") +a1y("_l) +ota, ¥ +a,y=0, (2.2.3)
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or, equivalently, of

P(D)y =(ayD" +a,D"" +..+a, D+a,EJy=0. (2.2.4)

2.1 THE GENERAL SOLUTION OF THE HOMOGENEOUS EQUATION

Following Euler’s idea, one searches for solutions of the exponential form

y(x)=e™, (2.2.5)
where A is a parameter, so far undetermined. Replacing this in (2.2.3), or, better, in
(2.2.4), we immediately see that P(D)e“ = eMP(k), hence we find for A the algebraic
equation eMP(}.): 0; as this must hold for any real x and as e™ £0, we eventually
obtain the algebraic equation

P(L)=ag\" +a M +...+a, A+a, =0, (2.2.6)

known as the characteristic equation. The polynomial P(X)is called the characteristic
polynomial. 1t is easily seen that it may be formally written replacing the j-th derivative

of y in the given ODE by A’ . The solutions of the ODE (2.2.3), or, equivalently, (2.2.4),
depend on the roots of the characteristic polynomial. We must therefore examine the
cases a) — d). The set C of the complex numbers form an algebraically closed field,
therefore the characteristic polynomial allows 7 roots, all of them contained in C. Let us

denote them by %, j =1,_n.

a) A ; are real and distinct. In this case, we obtain the system of n particular
solutions of (2.2.3)

nilx)=e", yola) ="y, (x)= ™", (2.2.7)

which is fundamental, as their Wronskian

| S R R
A A, Ay e A,

Wy, vasny, |=[ 22 23 22 . A2 [elatharthal (2.2.8)
Aot ot !

is non-zero. Indeed, the determinant in (2.2.8) is of Vandermonde type and does not
vanish, as A ; # A, for j#k, jk=1n.

The general solution of the homogeneous ODE is thus

y(x)=ce™* + e ot e, (2.2.9)
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where ¢ joJ=Ln,are arbitrary constants.

b) The -characteristic equation allows complex roots. Let, for instance,
Ay =0+iB, with a,B real and PB#0. As the characteristic equation has real

coefficients, once A, is a root, its complex-conjugate A, = a.—if3 will also be a root. For

the sake of simplicity, suppose now that the remaining roots A ;, j=3,n are real and

distinct. Then, according to the previous considerations, the system

y(x)= elo+ib)e y,(x)= gloib)x yy(x)=e™" ...y, (x) =" (2.2.10)

is fundamental. To avoid complex calculus, we consider, instead of the first two
functions of this system, two linear combinations of them, which are also solutions of the
ODE (2.2.3)

( ): », +y2 _ e((x+iﬁ)x +e(a—iB)x

Y (x 5 5 =e™ cospux,
(o+ip)x (o=ip)x (2.2.11)
- € —¢C .
Y, (x)= 24! ‘yz = . =e™ sinPx.
2i 2i
In (2.2.11), we used Euler’s formulae
iBx —ipx iBx _ —ifx
cospr=""TC " ginpp=_—° (2.2.12)
2 2i
Finally, the general solution reads, in this case,
y(x)=e* (¢, cosPx+c, sinPx)+c;y e +..+¢,e™, (2.2.13)

with ¢ i J=Ln, arbitrary constants.

¢) The characteristic equation allows multiple roots. Suppose e.g. that A has the

order of multiplicity m. We cannot take ¢ m times in the fundamental system,

because it should not be linearly independent. We can take it just once.
To complete the fundamental system, we use the following remark. Let n=2and

suppose for now that A, # A, . We can choose for the corresponding second order ODE
the fundamental system

e?\,zx _ eklx

n(x)=e, yz(x)=ﬁ. (2.2.14)
27 M

If the associated characteristic equation allows the double root A, we can consider for it
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2 elzx _e)ulx A
yile)=e", yy(x)= tim ———— = xe™*;
7»2*)7\,1 7\,2 —7\,1

(2.2.15)
to compute the above limit, we used I’Hospital rule.

Getting back to arbitrary n, we see that (x): x/et satisfy the linear ODE with

constant coefficients for j=1,m—1. To prove this, we use again formulae (2.1.8),
(2.1.9), taking u = x/, v =eM*
P(D)/e™ )= x/PD)eH +%ij pO(D)e +%D2xj pO(D)e
L '_ | ’ _ (2.2.16)
+..+—D/x PUD)M 4.+ D"/ (D),

7! n!
in which PO(D)e* =P®(,)e™* and D*x/ = j(j-1).(j—k+1)x/* k<j. We
eventually get

P(D)x/e™ )= ij(Kl)+% il 1RO, e +...+i’ PO, e ; (2.2.17)
! 7!

The other terms in the sum (2.2.16) vanish, because D¥x/ =0,k > j. As the order of
multiplicity of A, is m, we obviously have P(%,)=0, PO)(x,)=0,..P"(1,)=0.
From (2.2.17) it then follows that P(D)(xj e}“x)= 0, j=0,m 1. One can easily see that
i X

x’e™, j=0,m—1, are linearly independent. Again for the sake of simplicity, suppose

that the other roots of the characteristic equation A ;, j=m+1,n are real and distinct.

A s o Ax A 2 A
Then e, xe™* .., x™ M ehmti¥ ehme2X oM form a fundamental system for the
given ODE and its general solution is

A A

y(x)= (cl +cy x+..+c,x" l)e}“x +e, ., € e, e e e (2.2.18)

d) The characteristic equation allows multiple complex roots. Let
AM=Ay=..=A, =0+if be a multiple root of order m. Then

A
Exactly as before, we deduce 2m linearly independent solutions of the given ODE

mil =NMpis =-.=XA,, =a—iff is also a root with the same order of multiplicity.

e™ cosPBx, e™ sin Px,

xe™ cos Bx, xe™* sin Bx, (2.2.19)

x"1e™ cosPx, x™'e™ sin P,
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that, together with the other n—2m linearly independent solutions — determined by
taking into account the nature of the roots of P(A) — form a fundamental system for

(2.2.3). The general solution of this ODE is then a linear combination of the functions of
this fundamental system, with arbitrary constants as coefficients.

2.2 THE NON-HOMOGENEOUS ODE

At the previous section, we showed how to find a fundamental system for a
homogeneous ODE with constant coefficients, by using the roots of the characteristic
equation. According to Sec.1.3, we can get particular solutions of the non-homogeneous
ODE by using Lagrange’s method. Yet this method lead to cumbrous computation, the
more so as the order of the ODE is greater. If the free term is an elementary function, or
a linear combination of such functions, then there exists a direct method of obtaining
particular solutions, which is more efficient than the method of variation of parameters.

Let us note firstly that if f(x): A (x)+ 1 (x)+...+fp (x) and if we determine

V15 Y2res ¥V p such that

Ly =fi. vy =fos by, =1, (2.2.20)
then their sum Y =y, +y, +..+y, is a particular solution of the non-homogeneous
ODE ((2.2.1), i.e,,

LY = L(yl +, +...+yp)=fl +hh+et+f, =f(x). (2.2.21)

Now let us get particular solutions for non-homogeneous ODEs with free terms
composed of elementary functions, currently met in applications.

a) f(x)=byx"™ +bx" " +..+b, x+b, . We search for a particular solution
shaping f (x)

Y(x):xr(qoxm +q1x'”71 +...+qm,1x+qm), (2.2.22)

where r is the order of multiplicity of 0 as a root of the associated characteristic
polynomial. Naturally, if O does not satisfy the characteristic equation, then »=0.
Introducing the above expression in (2.2.1) and identifying the coefficients of the same

powers of x, we find ¢,/ =0,m. The algebraic system obtained for ¢, j =0,m, is

linear and allows a unique solution.
b f (x) =e™* . We search for solutions of the form
Y(x)=Ax"e™, (2.2.23)

where r is the order of multiplicity of a as root of the characteristic equation. Again, if a
does not satisfy the characteristic equation, then » =0 . To introduce (2.2.23) in the ODE

(2.2.1), we use formula (2.2.17), for j=r,A; =o . We get
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P(D)Ax"e™ )= 4P(D)x"e™)

= Aer((X)+%rxr 1P(l)((l)'*'...+l'}"!P(r)((1)ewc. (2224)
. r.

By virtue of multiplicity, P(j)(a)z 0,j=0,r—1, with P(O)(OL)E P(a), but P(")(oc);t 0.
We finally get for ¥

Y(x)=——x"e™. (2.2.25)

) f(x)zew‘(boxm+b1xm_1+...+bm71x+bm). If a is not a root of the

characteristic equation, then we search for Y in the form
Y(x)=e™ (qoxm +qx" 4 4q, x+q, ) (2.2.26)

The coefficients g ; are found by identification.

If a is a multiple root of order » of the characteristic equation, then we search for Y in the
form

Y(X)Z x"ew‘(qoxm +qlxm71 +...+qm,1x+qm). (2.2.27)

The introduction of this expression in the given ODE leads to tiresome computation.
This is why it is recommended to perform firstly the change of function

y(x)=z(x)e™, (2.2.28)

where z(x) is a new unknown function. Applying formula (2.1.8) for u = z(x), v=e™,
we get for z the following ODE

(4,204 4, 2 V44 20))em = (b +bx™ T+ b, xHb,)e™, (22,29
where
1 o
4, = FP(f)(a), j=ron. (2.2.30)
Simplifying with ™, this case is reduced to a).
d) Suppose now that
£(6)=(box™ +b,x™ " 4+ b,y x4 b, Joos b

+ (doxk +d x" . +d, x+d, )sin Bx.
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Let us denote by s = max{m, k}. If B is not a root of the characteristic equation, then we
search for Y in the form

Y(x): (%xs ""les_1 +o.t g x+q, )cosBx

(2.231)
+(p0xs +p x4 p X+, )Sin Bx.

Replacing this in the given ODE, we get by identification the coefficients

P;»q;,Jj=0,s.1f B is a multiple root of order r of the characteristic equation, then we

search for Y in the form

Y(x)=x" [(qoxs +qx* T+ 4q, x+q, )cos Bx

, (22.32)
+(p0xs +px* T+, 1x+ps)sin[3x],

the coefficients p;,q;, /= a , being obtained, as previously, by identification.

2.3 EULER TYPE ODEs

These ODE:s are also linear, but with variable coefficients. Yet, by a change of variable,
they can be reduced to ODEs with constant coefficients. Euler’s ODEs are of the form

Ly= aox"y(") + alx”_ly("_l) +ota,xy'+a,y=0. (2.2.33)
Applying the change of variable x =e¢’, we immediately get

y'=e'Dy,y"=e *D(D-E)y, y" =e'D(D-E)D-2E)y,... (2.2.34)

where D =d/d¢ and E is the identity operator. Introducing this in (2.2.33), we get an
ODE with constant coefficients. In this new equation, searching for solutions of

exponential type y =e’’, we get the characteristic equation
aor(r—l)...(r—n +1)+ a]r(r—l)...(r—n +2)+...+ a,,,vr+a, =0, (2.2.35)
whose roots lead to a fundamental system of solutions for (2.2.33). We see that we can

get the same characteristic equation by searching directly for y in the form

rinx r
y=¢€ =X .

3. Fundamental Solution. Green Function
3.1 THE FUNDAMENTAL SOLUTION

By definition, a fundamental solution of the ODE (2.1.1) is a function E(x,t) with the
following properties:
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i) EeC” (D\J), where D=1x1,1= [a,b] and J is the diagonal of the square D,
ie., J= {(x, x), xe I},
il) as a function of x, E satisfies the ODE in D\J,
. o"E o"'E 1
iiiy EeC"™2%(D)and —— (¢, ,t)-——(t_,t)=—r.
) € ( ) P (+ ) P ( ) ao(x)

An ODE of type (2.1.1) always allows fundamental solutions. For instance, if {y j} —

Jj=Ln

is a fundamental system for (2.1.1), then

” (t)T n) o )
e g 20 0l
E(x,t)= =254 (2.3.1)
a0\t W (¢
ao( ) ( ) yl(n 2)(t) ygn 2)(t) )’S,n 2)(t
WO 00 06
is a fundamental solution for (2.1.1). This solution has the important property
) 0" E
Elt,t)=— =.=— =0. 232
0= 0== 2 ) 232)
The set of the fundamental solutions of the ODE (2.1.1) is given by
E(x,0)+ Y e (1), (x), (23.3)

j=

where ¢; (t) are continuous functions. By using the fundamental solution, one can

immediately put the solution of (2.1.1) in the form
b
y(x)=[E(x,t)F(e)dt . (2.3.4)

In the case of constant coefficients, we can easily find a fundamental system of solutions
as shown at Sec.2.2. Then, the corresponding fundamental solution will be obtained by
replacing the expressions of y; in formula (2.3.1).

3.2  THE GREEN FUNCTION

Let us consider the generalized two-point problem

Ly=0, (2.3.5)
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n—1
Uy= EO[Alky(k)(aﬁB 1k y(k)(b)]z 0,

n—1
Uyy= 3 |dy v (a)+B . y®(b)|= 0,
2Y /ZB[ 2 ) +B 5 )] (2.3.6)

n-1
Uny = EO[Anky(k) (a)+B nk y(k)(b)]

[
e

The operator L is given by (2.1.1); the coefficients 4, B ; must be such that the rank

of the matrix

AlO A]l A12 Al,n—] BlO Bll B]Z Bl,n—l
AZO A21 A22 A2,n—1 B20 B21 B22 BZ,n—l (237)
AnO Anl An2 An,n—l BnO Bnl Bn2 Bn,n—l

be n.
As previously, we shall consider only coefficients a; (x) continuous on 7 = [a,b].

By definition, we call Green function or influence function for the problem (2.3.5),
(2.3.6) a fundamental solution G(x,z) for the ODE (2.3.6) also satisfying the boundary

conditions (2.3.7).

The two-point problem (2.3.5), (2.3.6) may allow other solutions besides the trivial one.
We say that the two-point problem has the index k if every one of its solutions may be
written as a linear combination of & solutions of a fundamental system of the ODE
(2.3.9).

If the boundary problem (2.3.5), (2.3.6) allows only the trivial solution, then the
associated Green function is unique.

The Green function may be effectively set up if one knows a fundamental system of
solutions for the given ODE, which is always possible in the case of constant
coefficients. If y,,»,,....,», form a fundamental system of (2.3.5), then the associated

Green function is given by

Glx,1)= H(x,1) (2.3.8)
A
where
E(xt) »(x) »() o »,&)
H(x,t): UE Uy Uy, .. Ulyn’ (23.9)

UnE Unyl UnyZ Unyn



146 ODEs WITH APPLICATIONS TO MECHANICS

E(x, t) is given by formula (2.3.1) and A is the determinant

Uy Uy, o Uy,
U U .. Uyy,

A= 2M 2¥2 2y . (23.10)
Unyl Uny2 Unyn

The representation (2.3.8) is generally not valid at the ends @ and b of the interval 1. At
these points, one takes G(x,a)= lim G(x,¢), G(x,b)= 1irr[} G(x,1).
t—a =

3.3  THE NON-HOMOGENEOUS PROBLEM

Consider firstly the semi-homogeneous problem

Ly = f(x).

. (2.3.11)
U,y=0, j=Ln.
Its solution is represented in the form
b
y(x)= [ Glx, e (e)dr - 23.12)
Finally, the solution of the non-homogeneous problem
Ly =1) 23.13
U,y=K,, j=LnK,eR (2.3.13)
reads
b n
yx)= Gl el e+ X K 0, (x), (2.3.14)
a Jj=1
where ¢ ; (x) are the unique solutions of the “elementary” Cauchy problems
L(p] = 05
UI(\Dj = Os
U,0; =0,
................... j=Ln. (2.3.15)
Uje; =1,
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To get ¢, (x) , we may write them as linear combinations of the functions y; (x), j= l,_n

of a fundamental system
Q) =Cyyi Ty Yyt yy,, j=hn. (2.3.16)
The constants cy; are, for every j, the solutions of the linear algebraic system

cljU]y] +csz1y2 +...+cnjU1yn =0,
cljUzyl +csz2y2 +...+c,,jU2yn =0,

(2.3.17)

For j= Ln we get n such systems, whose associated determinant is defined by formula

(2.3.10). The solutions of these systems are then replaced in (2.3.16) and, eventually, the
functions ¢ j(x) are introduced in (2.3.14).

34 THE HOMOGENEOUS TWO-POINT PROBLEM. EIGENVALUES

Let us consider now the homogeneous problem

Ly +g(x)y =0,
U,y=0, j=Ln,

(2.3.18)

where A is a parameter and g € C° (1 ) Obviously, this problem always allows the trivial

solution.

The values of A for which (2.3.18) allows non-zero solutions are called eigenvalues; they
are included in the spectrum of the problem. The non-trivial solutions corresponding to
every A are called eigenfunctions (see also Sec.2.7, Chap.1).

We say that an eigenvalue A has the order £ of multiplicity if for that A the two-point
problem (2.3.18) has the index £.

Let {y j (x, k)}j:L—n be a fundamental system for the ODE Ly+kg(x)y =0, for every

fixed A. Also suppose that this system is normal (for x, =a), i.e.

ySmfl)(a):6j?’ m,j=ln, (2.3.19)
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where 6;’ is the Kronecker delta, defined as follows

gn =)l M= 23.20
7o, me . (2.3.20)

The determinant

Ulyl(x,),) Ulyz(x,),) Ulyn(x,k)

:Uzyl(x’}") Uzyz(x,k) Uzy"(x,X

A()) (2.3.21)

Unyl(x97\’) Uny2(x97\’) Unyn(x’}\’

is called the characteristic determinant. According to the previous considerations, the
zeros of this determinant will be the eigenvalues of the problem. The order of
multiplicity of an eigenvalue is less or equal to its order of multiplicity, considered as a
root of the characteristic determinant.

In applications, we shall treat each problem by using specific methods, that, in general,
could not be considered as particular cases of the above exposed theory.

4. Applications

Application 2.1
Problem. Study the wire drawing.

Mathematical model. Modelling the drawing phenomenon, one obtains an ODE of the
form

u"’+u"cot9+(6— _1 ju'=0. ()
sin? 0

Solution. Putting u' = y , the equation (a) becomes

y”+y'cot6+(6— .1 }yzO. (b)
sin? @
Observing that
1 2
—_— = 1+ cot 6,
sin” 0

the equation (b) may be written further
y"+ y'cotO + (5 - cot? G)y =0, (c)

or in the form
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y"+4y+y’cot6+(1—cot2 6)y=0; (d)

it also reads

’ 2
y”+4y+ycot9[L+MJ:0
y

cotO
On the other hand,
~ cot? _ : '
1-cot”6 _ 0 cot 20 = 2.cot 20 (51.n 20)
cot O sin 20 sin 20

and the equation (b) may take the form

y sin 20 ©

L’ B (sin 29)’} —0

y'+ 4y + ycot 6[

Because the differential equation y" + 4y = 0 has the general integral
y; = Asin 20 + Bcos 20,

it results that the equation (b) has the particular solution y;, = sin 20.
The other particular solution of the equation (b) is thus reduced to quadratures. Let y,

be this particular solution.
In the particular case of homogeneous linear equations of second order, Liouville’s
formula is of the form

a1(0)
yl y2 ' ' 7J‘ 0 a0
Ly iy =Ce @O
Y V2
hence,
. , ! _ay(6)
s =viva (1) _ € Tae® )
R R e )
Vi N Y1

In our case y, = sin 20, ,(0) = cotO, ay(0) = 1, so that the relation (f) becomes

’
cosede

[ V2 j — c 7J‘sin9 _#
sin 20 4sin? 0cos? 0 sin® 0cos? O

therefore

de

C
= —sinOcos Of ————.
2 2 I sin? 6 cos? 0
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Neglecting the multiplicative constant, the second particular solution is given by

do

=sinBcos O ————,
72 I sin? 0 cos? 0

hence, by integration, one obtains

Yy = %sin6+%sin9coselntan9—

2sin 0 @

Let us also notice that

[yido= —%cos 20,

J'yzde:—é 2cos 0+ l—i—cos26 lntan9 .
8 3 2

By a slight modification of the arbitrary constants, the general integral of the differential
equation (a) reads

u(@) = A+ Bcos20 + C{Zcose + (% + cos 26jln tan%}

Application 2.2

Problem. Study the deformation and the state of stress of a circular gallery, surrounded
by an elastic medium. Determine the efforts in a cross section and the bending deflection
w. Particular case: a lateral uniform pressure of the medium.

Mathematical model. The equations of equilibrium are of the form

LT @
adp a
ld—T+£+Z—kw:0, (b)
ado a
1 dM
T=——": ©
a do
and the equation of deformation is given by
Afdw N oM ;
a? \ de? E I’ @

where N,T,M are the axial force, the shearing force, and the bending moment,
respectively, in a cross section specified by the angle ¢ (the angular variable, measured
clockwise from the vertex), k£ is the foundation modulus (representing the pressure
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which leads to a deflection w =1), a is the median radius of the pipe (supposed of
constant thickness), £,/ is the bending rigidity of a span of a pipe of unit width, and
Y,Z are the tangential and normal components of the external bending, respectively.

From (b), one obtains

N=—d—T—Za+kaw, (e)
do
Le.
dN d’r  dz dw
e bl B (R ®
dp  do* do de
introducing this in (a), it results
2
d—Z+T—kad—W+(d—Z—Y)a:0. ()
do do (do
Further, we eliminate T between (c) and (g)
3
dM+%_ka2d_w+ g_ya: (h)
do®  de do  (do
Finally, M given by (d) is introduced in (h)
d>w d3w ka* ) dw dz ) a* ]
— 22—+l —|—= |-V +— |—, i)
de’ do? Eyl ) do do ) Eol
obtaining thus the searched differential equation.
The efforts on the cross section may be thus expressed by means of w in the form
EyI ( d?
M = ——02 w +wl, G4)
a’ | do?
Eyl (d3
T = 20" 4w + dw , k)
a’* | de?® do
E.T 4 2
N =22 dw , 47w + kaw — Za . Q)
a® | do* do?

Solution. To obtain a solution in the form of a trigonometric series for the equation (i),
we suppose that the components of the external loading are of the form

Y=Y sinngp, Z=327Z,cosng,
n n

where Y,

", and Z, are dimensional factors specifying that loading. We denote
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w1+ L =S (-, 40, )sinno =3 p, sinng. (m)
(p n n
Thus, the equation (i) reads
d>w d3w ka* \dw  a*
— 22—+t — | —=— sin no,
dos |~ do? ( Eolj do  Eol %pn ¢ (n)
where

Pn = _Yn + nZn' (0)

Taking into account the trigonometric form of the right member in (m), we search for a
similar solution

W= W, COSHQ. )

n

Introducing it in the equation (i), it results

4 4
>end =20 + 1+kLan+pna sinng = 0.
n Eol EOI

Hence, the coefficients of the series must vanish, so that

4
__a Pn

w, = — .
Eol n (n2 - 1)2 + E (@)
E,l

In the particular case of a lateral pressure of the medium one has ¥ = psingcoso,

Z = psin? @, leading to

3.
== psin2¢.
' 2P )
We thus obtain
3 4
w:—zgal pl’;4c052(p,
00 g4 M
E,l
9
M =-=pa Pr cos 20,
4 ka*
9+—
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p

9
T = —— pa——2—sin 20,
2p ka* ®
9+ —
Eql
N=22 ;—l—i-cos&p .
4 ka*
9+ —
Eyl

Application 2.3

Problem. Determine the angle ¢ of relative rotation in the starting of an engine under
the action of a variable driving moment.

Mathematical model. The ODE governing the above enounced problem is of the form

d3(P+ M, dz(P+k(J1+J2)d_(P+ Mk

=0, a
d[3 JI(DO dtz J1J2 dt JlJz(DO(p ()

where J, and J, are the moments of inertia of the mass of the rotor, of the driving
motor and of the coupling and of the reduced mass of the mechanism of transmission of
motion of the work organ and of the connected loads, respectively, k is the rigidity
coefficient of the elastic element of connection between the disks J, and J, (Fig.2.1),
¢ = @, — @, is the relative rotation angle, M, is the starting moment of the motor, and
®, is the angular velocity in loose running.

Figure 2. 1. Geometric schema of the elastic element and of the disks J; and J,
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One assumes the initial conditions of Cauchy type

2
¢(0) = 0, d‘g(to) -0, dd‘fgo) - 0. (b)

Solution. The linear differential equation (a) is homogeneous and with constant
coefficients; we search for solutions of the form ¢=e™ , being thus led to the
characteristic equation

M +al +ak+a; =0, ()
where
M k Mk
4 = =9 g4, = (J1+J2)’a3= o
J oy S J1Jr00

By the substitution A = y — a, /3, the equation (c) is reduced to the canonical form

¥y +3py+2¢=0, ()

where

= - ; (e)

1 al ) k(I +J,) MEK?
a
? 30, 9722

al(2a12 “2} a; M, {M& +(2J1—J2)k} o

In the case of the considered mechanical system, p3 + g3 > 0, so that the equation (d)
has one real and two complex conjugate roots, that is

yl :u+v, y2 :81u+82V,y3 = 82”+81V,

u=3-q+q*+p*,v=="q+q* +p*,

€, and €, being the roots of the equation &2 + ¢ + 1 = 0, that is
(. L.
£ :—E(I—H\/g), €, :—5(1—1\/5).

The roots of the equation (d) become

al u-+v \/g

a
A =——tutv, hy=——- +i—wu-v), AMy=——7FF—-—--1—
-4 L P ),

where
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Introducing the notations

M
q=_t_utv_ —0_%(3\/—q+1lq2+p3 —3\/q+wlq2+p3 J,

32 3J0,

B:£<u_v):§(a¢_q+m+vq+m],

2

the roots of the characteristic equation read

M
A =h=—20-—2,
J10

Ay =0 +iB, Ay =o—ip.

The general solution of the differential equation (a) becomes
@=CeM +e%(C, sin Bt +C; cosPr). (h)

To determine the integration constants, one must compute the first two derivatives of ¢
with respect to time, i.e.

((11_(;) =Che™ +e%|[(Cyo—C3B)sin Pt +(CoB + Cya)cos Br], (i)

Lo_ e {lut 5Ky 2000 binp s basc, ot 5k kst

The initial conditions (b) lead to the linear system of algebraic equations

1 0 1 C v 0
L B a c, :J—O 0/,
A2 208 a? —B2 | C, "1
therefore
M
G = 02 21= P G, =-G,
Ja-np +p2] a-2
_ M _
C, - a—-A 0 _ o XC1-

The solution (h) becomes

0= ; (a_]‘;{;z e {e“ +ew(aT_kSinBt_COSBtﬂ.
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Application 2.4

Problem. Determine the buckling critical force of a doubly hinged bar in an elastic
medium, the coefficient of soil reaction of which is & .

Mathematical model. The deflection w satisfies the differential equation

d4w d?w
E[F-FP?J:-]{W:O, (a)

and is obtained combining the bending equation of a beam on elastic medium with
buckling; we denote by P the compression forces and by E7 the bending rigidity. Taking
into account that M (x)= EI dzw/ dx? , the following boundary conditions must be added
to this ODE

2 2
w0)=0, w)=0, ¥(0)=0, ¥ @)=0
dx? dx?
Solution. The above model reprezents an eigenvalue problem. The linear homogeneous
differential equation
4 P 2

d_W 4+ — d_W + i w=20 (b)

dx*  El &x* EI
is of fourth order with constant coefficients. Searching a solution of the form w=e¢",
we get the characteristic equation

P
rt+ —r? +i:0,
EI EI
of roots
P PY k
rl,rz,r3,r4 = +,|-—= ) (C)
2FEI 2FEI EI

the solution depending on the sign of the expression P? —4kEI .

If P? <4kEI, then the roots of the characteristic equation are complex conjugate, i.e.
r,ry, 13, ry =taxib, where

e[, [, p @
4EI  4EI 4ElI  4EI

and the general solution is of the form

w = C, cosh axcos bx + C, cosh axsin bx + C; sinh axcosbx + C, sinh axsinbx . (e)
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If P? > 4kEI , then the roots are imaginary and may be written in the form )

ry,ry =ik, , where

P PY k P PY k
kl = - o Y k2 = — + e - .
2EI 2EI)  EI 2EI 2EI)  EI

The general solution takes the form

w = C;sink;x +C, coskx + Cysink,x + C, cos kyx.

157

¢

(@

For both solutions (e) and (g), the constants C,, C,, C;, C, are determined by two-

point conditions, which lead to a homogeneous system of four linear algebraic equations;
to get non-zero solutions, its associated determinant must vanish. It is thus obtained a

characteristic equation, of mimimal root corresponding to the critical force.

We consider the solution (g) (the solution (e) does not lead to real values for P,

), then

we put the conditions w = 0 and M = EI d*w/dx? = 0 for x = 0 and x =/, which

lead to the system
0 1 0 1 C
0 k? 0 k3 c,
sink;/  cosk;l sink,l cosk,l | Cs
kE sin kil k? cosk,l k3 sink,l k3 cosk,l | C,
The characteristic equation becomes
(k32 )’ sin &,/ sin kyl = 0
and it is satisfied for

ky K, =%(n =1,2,3,...).

The solution (g) is reduced to

the relationships (f) and (h) lead to

+ P 2_ k _nznz_ P
"\ \2Er EI 2 2FEI

B

(h)
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whence
n2El 5 k4 .
o ="p (" T el ) ®
P
w a
L<

P

Figure 2. 2. Buckling of a beam in an elastic medium

The critical force is given by the minimal value in (i). Denoting

ki .
[y 0
we may write
n’El v
Pcr = —12 [1’12 +n—2 . (k)

Hence, one must determine the integer number # of semiwaves which minimizes (k)
(Fig.2.2). In the absence of the elastic medium (k = O) we get ¥y = 0 and the minimum

takes place for n = 1, obtaining again Euler’s critical force

n2El
Pcr = PE = 12 .
For increasing y, the minimum takes place for n = 1,2, 3, ..., hence if the deformed

axis has one, two, three or more semiwaves.
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The value P.. must be smaller for n than for n — 1 or n + 1, hence we must have

cr

( —1)2+( _yl)z>n2+nlz<(n+l)2+(nr1)2. )

The second inequality leads to

nlz— Y <(n+1) - n?

or to
y < n? (n + 1)2 .
Likewise, from the first inequality it results
Y > (n - 1)2 n?,
so that
(n—l)zn2 <y<n2(n+1)2, (m)

therefore: 0 <y <4 for n=1, 4<y<36 for n=2, 36<y<144 for n=3,

144 <y €400 for n=4, as.o.; thus, one, two, three or four semiwaves are obtained.

In general, if y =n?(n+1), the deformed curve may have n or n+1 semiwaves.

If y is great, that is if the coefficient of soil reaction k is great or if the bar length is
great, then the number of semiwaves is also great. In these cases, the inequalities (1) are
reduced to the approximate relation y = n*; hence, one sees that

n’El Y n’El Kl* w2EI
P, =— +—= =2y —— =2y 5———,
£ {*/; Jr Jr 12 n2El [P

or, finally,
P, = 24JkEI, (n)

the critical force being thus independent of the bar length. One obtains the same result by
differentiating the relation (k)

dP, w’EI 2y
= n——,_= ,
dn 12 n’

as if n would take continuous values. One obtains the same value for 7y .

Practically, one determines first the non-dimensional quantity 7y, then the consecutive

integers between which is situated the value n = %/? . The minimal value of P, is then

given by (k) for n thus obtained.
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Application 2.5

Problem. Study the deformation of circular pipe in an elastic medium, assuming that it is
acted upon by a uniformly distributed load along the vertex generator (Fig.2.3, a).
Discussion.

Mathematical model. One starts from the results and notations in Appl.2.2, i.e. from the
differential equation

dw d3w ka* | dw dz ) a*
— 42— |l — | —=| -V +—= | —. (a)
3 3 do ) Eyl

b

Figure 2. 3. Circular pipe in an elastic medium: geometric and static schema. Loading with an
uniformly distributed force along the vertex genetrix (a); the case of a loading acting in
antigravitational direction (b)
Assuming that the length of the pipe is great (theoretically infinite), the study is made on
a span of unit length (the case of a plane state of deformation).

Solution. The reaction of the elastic medium is specified by the foundation modulus £ ;
because there are not other distributed external loads, we may take ¥ = Z = 0.
With the notation

ka*
=1+ —, b
n ol (b)
the ODE (a) becomes
5 3
Sw dw ey, (©)
do®>  do¢’ do
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hence a linear homogeneous differential equation of 5™ order with constant coefficients.
Searching for a solution of the form w=e¢™?, one obtains the characteristic equation

m> +2m® +n?m =0,

with the roots m; = 0, m,,my,m,,ms =+o =i}, where

_/n_—l :/n”
== , B - (d)

The general solution of the equation (b) is thus of the form
w=Cy+ (C1 cosh a@ + C, sinh oup)cos Bo + (C3 cosh a@ + C, sinh oup) sinBe, (e)

where C,,C,,C,,C5,C, are five integration constants which must be determined from

the boundary conditions.
The sectional efforts are given by (see Appl. 2.2)

E,I(d?
M=——02 d v2v+w ,
a” \ do

EyI(d°
ro-Zol|dw dw) ®
a’ \do’® do
E.I 4 2
N = 03 d :v d 1;/ + kaw.
a” \do® do

Taking into account the displacement w, we get

M = —E—OZI {CO - 20L[3[(C1 sinh ap + C, cosh (x(p)sin Bo ©
a ) g
—(C; sinh o + C,, cosh ap)cos B(p] 1,
EyI . .
T= —3'2(1[3[(0LC1 +BC, )cosh o sin B + ([3C1 -aCy )smh o cos B )
a
+ (OLC2 +BC; )sinh o sin Bo + (BC2 —oCs )cosh o cos B(p],
Eyl . .
N =kaCy +— [(C1 sinh ap + C, cosh oup)sm B 0
a i

- (C3 sinh ap+ C, cosh oup)cos B(p].

Let us notice that the functions cosh apcosP¢ and sinh agsinBe are even, while the

functions sinh ap cos B¢ and cosh o sin B¢ are odd.
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In our case, the origin of the variable ¢ is at the vertex. Considering the symmetry and
the antisymmetry with respect to the vertical axis, respectively (¢ =0 and ¢ = 1),
there result the boundary conditions

dw )
Pl ©)
¢
P
T=—, k
: 9
for ¢ = 0 and
d
==, (1)
de
T=0, (m)
T Ma 17 d?w 1|aw|® 17
| =do = ——[| < + wdo ==~~~ fuwdg = 0 ®
0 Epl ap\ do aldp|, ap
for p =m.

The last condition shows that there is no relative rotation between @ =0 and ¢ = w;
taking into account the conditions (j) and (1), the condition (n) reduces to

Ewd(p 0. ©0)

To simplify the calculus, we consider also the pipe loaded by the force P applied in the
antigravitational direction at the bottom (Fig.2.3, b). In this case, the boundary
conditions are: condition (j) and

T=0, (k")
for ¢ = 0 and (k) and
P
Tz—E, (m’)

for ¢ = m, as well as the condition (0).

Conditions (j) and (k') yield aC, + BC; =0 and BC, —aC; =0, accordingly,
consequently C, = C; = 0, so that the solution (e) contains only even terms.

The other three conditions lead to

C, (oc sinh a.w cos Bt — B cosh an sin Bn)

+C, (oc cosh am sin B + B sinh am cos Bn) =0,
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C, (oa cosh amsin B + B sinh ar cos Bn)

. . Pa’
-Cy ((x sinh ot cos Bt — 3 cosh am sin Brc): _—,
4oBEyI

U

e, L C, sinh a sin Bp + C, cosh ap cosBe |[dp = 0.
0 20

The first two relationships involve

B Pa® o coshamsin Br + B sinh am cos fr
daBEy1 n(sinh2 amn+sin? Bn)

G

b

B Pa®  osinh o cos B — B cosh o sin Pt )
4aBE,I n(sinh2 am+sin? Bn)

Cy

b}

introducing these expressions in the third condition, we get

Pa’

Cy = ————-.
O 2mPE L

By means of the notations

P cosh an sin B + B sinh am cos B

4o (sinh 2 am+sin? Bn) '
_asinh ancos B — 3 cosh an sin Br

B
4o (sinh 2 am+sin? Bn)

>

where a, B, n are given by (b) and (d), the final expressions of w, M, T and N become

Pa’? 1
w=— — A cosh ap cos Bt + B sinh o sin "
Fol ( o @cosf ® B(p]

% + gsinh oup sin B + gcosh o cos ﬁtpj ,

M = Pa
(2nn

T = g[(ch - BB)cosh o sin B + (BA + (xB) sinh oup cos B(p] R

P(n?-1 . .
N=-— — A sinh o sin B¢ — B cosh aup cos fo |.
2 mm?

In the previous expressions, the sectional efforts appear as product of a dimensional
factor Pa’ /EOI (for the deflections), Pa (for the bending moment), and P (for the

shearing force and the axial force) by a factor which is a function of the angular velocity
¢ . As it is seen, only one parameter 1 intervenes, which depends on the geometry of
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the pipe (the radius a and the moment of inertia /), on the elastic medium (the
foundation modulus %), and on the material of the pipe (the modulus of elasticity E,,
corresponding to a state of plane deformation).

+05 @

730

)\
(O

Figure 2. 4. The w-diagram (a); the M-diagram (b); the 7-diagram (c); the N-diagram (d)

Tables 2.1, 2.2, 2.3, 2.4 contain the values of w, M, T, N as functions of ¢ for various
values of the parameter m. These values are plotted into the diagrams 2.4, a, b, c, d,
corresponding to the values n =1.5,2.0,2.5,3.0 and 5.0.
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Pa
Table 2.1. The values of w/E—

3

165

01
n 1.5 2.0 2.5 3.0 5.0 10.0
0 +1.173 +0.560 +0.361 +0.262 +0.116 +0.041
10 +1.143 +0.540 +0.345 +0.249 +0.107 +0.035
20 +1.061 +0.489 +0.305 +0.215 +0.086 +0.024
30 +0.938 +0.414 +0.249 +0.169 +0.059 +0.012
40 +0.785 +0.327 +0.185 +0.119 +0.033 +0.003
50 +0.611 +0.233 +0.120 +0.069 +0.010 -0.004
60 +0.427 +0.139 +0.058 +0.024 -0.008 -0.007
70 +0.239 +0.051 +0.002 -0.015 -0.021 -0.009
80 +0.056 -0.030 -0.046 -0.047 -0.030 -0.009
90 -0.119 -0.101 -0.085 -0.070 -0.034 - 0.009
100 -0.281 -0.161 -0.114 -0.087 -0.036 -0.008
110 -0.427 -0.211 -0.136 -0.097 -0.036 -0.007
120 -0.555 -0.249 -0.151 -0.102 -0.034 -0.007
130 - 0.664 -0.279 -0.160 -0.104 -0.032 -0.006
140 -0.753 -0.301 -0.165 -0.104 -0.030 -0.006
150 -0.822 -0.316 -0.167 -0.102 -0.028 -0.006
160 -0.871 -0.326 -0.168 -0.100 -0.027 -0.006
170 - 0.900 -0.331 -0.168 -0.099 -0.026 -0.006
180 -0.910 -0.333 -0.168 -0.098 -0.025 -0.006

Table 2.2. The values of M / Pa

0 1.5 2.0 2.5 3.0 5.0 10.0

0 +0.225 +0.210 +0.196 +0.183 +0.148 +0.108
10 +0.143 +0.129 +0.116 +0.104 +0.072 +0.037
20 +0.072 +0.061 +0.050 +0.041 +0.017 -0.005
30 +0.013 +0.007 +0.001 - 0.005 -0.017 -0.023
40 -0.032 -0.033 -0.035 -0.035 -0.035 -0.027
50 -0.063 - 0.060 -0.056 -0.053 -0.042 -0.022
60 -0.082 -0.075 - 0.067 - 0.060 - 0.040 -0.015
70 -0.090 -0.079 - 0.068 -0.059 -0.033 -0.008
80 -0.088 -0.075 -0.063 -0.052 -0.024 -0.003
90 -0.078 - 0.065 -0.052 -0.042 -0.016 +0.001
100 -0.062 -0.050 -0.039 -0.029 -0.008 +0.002
110 -0.042 -0.032 -0.023 -0.016 -0.001 +0.003
120 -0.019 -0.013 -0.008 -0.004 +0.004 +0.003
130 +0.003 +0.005 +0.006 +0.007 +0.007 +0.003
140 +0.024 +0.021 +0.019 +0.016 +0.009 +0.002
150 +0.042 +0.035 +0.029 +0.024 +0.011 +0.002
160 +0.056 +0.046 +0.037 +0.029 +0.011 +0.002
170 +0.064 +0.052 +0.042 +0.032 +0.012 +0.002
180 +0.067 +0.055 +0.043 +0.033 +0.012 +0.001
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Table 2.3. The values of T/ P

¢’ 1 1.5 2.0 2.5 3.0 5.0 10.0
0 - 0.500 - 0.500 - 0.500 - 0.500 - 0.500 - 0.500
10 - 0.441 - 0.429 -0.418 - 0.407 -0.373 -0.317
20 - 0.371 - 0.350 - 0.330 -0.311 - 0.251 - 0.163
30 - 0.296 - 0.269 - 0.242 -0.219 - 0.147 - 0.055
40 -0.219 -0.190 -0.162 -0.137 - 0.066 +0.008
50 -0.145 -0.117 - 0.091 - 0.068 - 0.009 +0.036
60 - 0.076 - 0.053 - 0.032 -0.014 +0.027 +0.042
70 -0.015 +0.001 +0.014 +0.025 +0.076 +0.036
80 +0.037 +0.043 +0.048 +0.052 +0.052 +0.026
90 +0.077 +0.075 +0.071 +0.067 +0.049 +0.015
100 +0.106 +0.095 +0.084 +0.073 +0.042 +0.007
110 +0.124 +0.105 +0.088 +0.073 +0.033 +0.002
120 +0.130 +0.107 +0.086 +0.068 +0.024 - 0.001
130 +0.126 +0.101 +0.078 +0.059 +0.016 - 0.002
140 +0.113 +0.088 +0.066 +0.048 +0.009 - 0.003
150 +0.091 +0.071 +0.052 +0.037 +0.005 - 0.002
160 +0.064 +0.049 +0.036 +0.025 +0.002 - 0.001
170 +0.033 +0.025 +0.018 +0.012 +0.001 - 0.001
180 0 0 0 0 0 0

Table 2.4. The values of N/ P

¢’ 1 1.5 2.0 2.5 3.0 5.0 10.0
0 +0.066 +0.051 +0.037 +0.024 -0.011 - 0.051
10 -0.017 - 0.030 - 0.043 - 0.055 - 0.088 -0.123
20 - 0.088 - 0.098 -0.109 -0.118 -0.142 -0.164
30 - 0.146 - 0.152 - 0.159 -0.164 -0.176 -0.182
40 -0.191 -0.192 -0.194 -0.195 - 0.195 - 0.186
50 -0.222 -0.219 -0.216 -0.212 -0.201 -0.182
60 -0.242 - 0.234 - 0.226 -0.219 -0.199 -0.175
70 -0.249 - 0.238 - 0.228 -0.218 -0.192 - 0.168
80 -0.247 -0.234 -0.222 -0.211 -0.184 -0.162
90 -0.237 -0.224 -0.211 - 0.201 -0.175 - 0.159

100 - 0.221 - 0.209 - 0.198 - 0.188 - 0.167 - 0.157
110 - 0.201 -0.191 - 0.183 - 0.175 - 0.160 - 0.156
120 -0.178 -0.172 -0.167 -0.163 - 0.155 - 0.156
130 - 0.156 -0.154 - 0.153 - 0.152 - 0.152 - 0.156
140 -0.135 -0.138 - 0.140 - 0.143 - 0.150 - 0.157
150 -0.117 -0.124 - 0.130 - 0.135 - 0.148 - 0.157
160 -0.103 -0.113 -0.122 - 0.130 -0.148 - 0.157
170 - 0.095 -0.107 -0.118 - 0.127 - 0.148 - 0.158
180 - 0.092 - 0.105 -0.116 - 0.126 - 0.148 - 0.158
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Application 2.6
Problem. Study the buckling of a straight bar in a general case of support at both ends.

Mathematical model. In a general case, the buckling of a straigth bar of length /, acted
upon by compression forces P, leads to a linear ODE of fourth order

4 2
d—:v+ 2d—?=0, (a)
dx dx

where the parameter 3 is given by B2 = P/EI, EI being the bending rigidity. Particular
case: a doubly built-in bar (Fig.1.49).

Solution. Searching a solution of the form P, we get the characteristic equation
M+ =0,

ofroots A, = A, =0, Ay =L, ==if. The general solution of (a) and its derivative are,
accordingly,

w=AsinBx+ BcosPx+Cx+D,

%:B(Acosﬁx—Bsian)+ C.

Choosing the origin of x-coordinates at the upper end of the bar, the boundary conditions

in the particular case mentioned above are w = 0, dw/dx=0 for x =0 and x = /.
The four conditions lead to

0 1 01| 4

B 0 10| B

sin/ cosP/ [ 1|C

BcosBl/ —PBsinB/ 1 0| D

This system has non-zero solutions only if

0 101
B 0 10
sinpl  cospl 1|
BcosB/ —PBsinfBl 10

—B[2(1 = cos i) - BIsinpi] = 0.

As B # 0, one obtains again the solution given in Appl.1.34.
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Application 2.7

Problem. Determine the deflections of a beam in an elastic medium, assuming Winkler’s
hypothesis ( p = kw, the pressure p is proportional to the displacement w, k = const
being the coefficient of soil reaction).

Mathematical model. The ODE which governs the deformation of the bar is of the form

d4

d4+m%_0 (a)

where the parameter B depends on the elasticity of the medium.
Solution. Searching for solutions of the exponential form eP*, one obtains the

characteristic equation
M +4B2 =0

of roots A;,A,,A3,4, = (E1Zi)B.
The general solution may be expressed in one of the following forms

w = A4; cosh Bx cos Bx + 4, sinh Bx cos Bx + 4; cosh Bx sin Bx + A4, sinh Bxsin Bx, (b)
w = e (4 cos Px + Bsin Bx)+ e (C cos x + D sin px), (©

where 4, 4,, A5, A4 and 4, B, C, D, respectively, represent integration constants.

Starting from formula (b), we can introduce new integration constants, with a physical
significance (initial parameters), i.e. : wy, ¢y, M, T, representing the deflection, the

rotation, the bending moment, and the shearing force, respectively, at the left end of the
bar (chosen as origin of x-co-ordinates).
Introducing the functions

£1(Bx) = cosh Bx cos Bx,
(Bx) sinh Bx cos Bx + cosh Bx sin Px,
(Bx) = sinh Bx sin Bx,

f4( x) = sinh Bx cos fx — cosh Bx sin Px,

(d)

we may express the deflection, the rotation, the bending moment, and the shearing force
in the form

2Mol3 ol3

w= o fi(B)+ 5 12 (Bx) - S3(Bx) + 2 £,(B),
d M B3 27,82 ©
0 = S = B £33+ 00/ (3) - 20 £, () + 20 1),
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d? kw ke T;
M = —BI = oot £~ 5 180+ Mo () + 35 1),

3 kw k
T = —Eljx—v: = 2—[;f2([3x)+2;;gf3(l3x)+ 5M0f4( x)+T0fl( x).

The above defined functions f,-(Bx), i=1,2,3,4, are often met in the mechanics of
deformable solids. Their diagrams are given in Fig.2.5.
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Figure 2. 5. Graphics of functions f; (Bx), i=1,2,3,4

Application 2.8

Problem. Determine the critical moment M . in the lateral buckling of a doubly hinged
beam (Fig.2.6).

Mathematical model. The lateral buckling of a beam subjected to pure bending in a

vertical plane is governed by the differential equation

d*o de M
C i - e = O s a
1 i 4 i 2 E]Z ( )
where 0 is he rotation of the transverse section in its plane, £/, is the bending rigidity

with respect to the minimal neutral axis (vertical), C and C, are the torsion and
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hindered torsion rigidities, respectively, and M, are the bending moments applied at the
end sections of the beam.

Figure 2. 6. Lateral buckling of a doubly hinged beam of rotation

The boundary conditions are

de de
0(0)=0,0(/)=0,—(0)=0,—(/)=0. b
(0)=0.,06(/) dX() dX() (b)

Solution. Using the notations

C o M
oa=—, = , O, > 0 s
e P T wme P ©
the equation (a) becomes
d*e d?0
F—Zag—ﬁzezo, (d)

that is a linear, homogeneous differential equation with constant coefficients. The roots
of the characteristic equation

A 2002 —B2 =0

are Ay,A, =xim, A3, A, = £n, with

m=q—a+qa?+p2, n=qlo+ja?+p2, (e

yielding the general solution

0 = A4, sin mx + A, cos mx + Ay sinh nx + A4, cosh nx,

2
% = —m?(4, sin mx + A, cos mx)+ n2(4; sinh nx + A4, cosh nx).
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Introducing the boundary conditions (b), we get the homogeneous algebraic system

0 1 0 1 4,
0 - m? 0 n? 4| 0
sin ml cos ml sinhnl  coshnl | Ay |
—m? sinml —m? cosml n? sinhnl n? coshnl | 4,
Equating to zero the determinant of the coefficients, we get
2n2(m2 + nz)sin mlsinhnl = 0.
The only factor which can vanish is
sinml =0. 63}

The equation of the rotations of the cross sections is then given by
0 = 4, sin mx,
where the constant 4; remains non-determinate.
From (f) one obtains the minimal value m = rt// , and — returning to (c) — one has
2
[2 2 _ T
— O + 40" + B = 1—2

Introducing the relations (c), the critical moment becomes
/ 2
T n-C,
M, =7 EI.C| + Tk

Problem. Determine the critical rotative speed of a simply supported driving shaft.

Application 2.9

Mathematical model. The deflections w satisfy the homogeneous differential equation

d'w  ydo?
dx*  gEI

w=0, (a)

where o is the angular velocity, A is the area of the cross section of the shaft, y is the
unit weight of the material and g is the gravitational acceleration. The boundary

conditions are w = 0, dw/dx for x =0, x =1.

Solution. Introducing the notation

4 _ 1A’
p “gEl (b)

the equation (a) becomes
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d*w
dx4

- B4W =0 5 (C)
with the general solution

w = C; cosh Bx + C, sinh ffx + C; cos Bx + C, sin Bx , (d)
where C|, C,, C;,C, are integration constants. The second derivative is given by

d?w

o B2(C, cosh Bx + C, sinh Bx — C; cos Bx — C, sin Bx).

Taking into account the boundary conditions, we get the homogeneous algebraic system

1 0 1 0 G
p? 0 -p? 0 G
. . =0. (e)
cosh 3/ sinh 3/ cos B/ sin 3/ G

B? cosh B/ PB*sinh Bl —p?cosPl —Pp*sinBl| C,

It has non-zero solutions only if the determinant of the coefficients vanishes. The
characteristic equation thus obtained leads to sinf3/ = 0, that involves P/ = nm,

n =1,2,.... From the relation (b), we obtain thus the critical rotation speed

2
0)cr:Bzz‘g_E‘[:'1271:_4g_E‘[' (f)
vA 12\ y4

The solution (d) is currently met in the mechanics of deformable solids.

Application 2.10

Problem. A very long beam (theoretically infinite) stays on an elastic medium and is
acted upon by a concentrated transverse force P . Determine the deflection w, the
rotation @, the bending moment M and the sharing force 7 in an arbitrary cross section.
Mathematical model. The origin of the x-co-ordinates may be chosen in any point,
because the beam is of infinite length; but it is convenient to choose the point of
application of the force P, to obtain diagrams with properties of symmetry or
antisymmetry with respect to this point (Fig.2.7, a).

The deflection is given by the general solution (see Appl.2.7)

w=e P (4 cos Bx + Bsin Bx)+ P (C cos Bx + Dsin Bx), (a)

where B is a dimensional constant given by p* =k /4EI, where k is the response of
the elastic medium and E/ is the bending rigidity of the beam.
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v

Figure 2. 7. Beam of infinite length on elastic medium. Diagram of deflections (a). Diagram of shearing forces
in the vicinity of the origin (b)

Solution. At the origin we have dw/dx =0, while the shearing force has a jump; at the

right, we have T, =—P/2 (Fig.2.7, b). At infinity, the influence of the concentrated

force vanishes, so that w, M and T tend to zero. As the factor eP

for x > o, wetake C = D = 0. We therefore get

increases indefinitely

w=e (4 cosPx+ BsinPx),

0= % _ Be—Bx [(B - A)cos Bx—(A—i—B)sin Bx] ,

d*w

b
M=—EI—=2B2Ele_ﬁx(BcosBx—Asin Bx), ®)
a2

3
T :—Eld—zv:—2B3EIe’Bx [(4+ B)cos Bx — (B — 4)sin px].
dx
Introducing the above mentioned boundary conditions, it results 4 = B = PB/2k, so
that
PB —Bx

W=Ee (cos x +sin Bx),

2
Q= —ie_ﬁx sin Bx,
k
» ©
M= 4—Be*ﬁ)C (cos Bx —sin x),

P _
Tz—ze B cosBx for x > 0.

We notice that formula (c¢) contains four functions of argument Bx , i.e.:
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1 (Bx)=e7P* cos px,
2(Bx) =™ sinx,
3 (B) = 7 (cos B+ sin fix) =y (Bx)+ v (Bix).
4 (Bx) = e (cos Bx —sin Bx) =y, (Bx)— v, (Bx).

< <

(d)

< =<

The functions \ul-(Bx), i= 1,_4, are usual in the mechanics of deformable solids; they are

plotted into diagrams (Fig.2.8).
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Figure 2.8. Graphics of functions w, o, M, T
Application 2.11

Problem. Determine the deflection, the bending moment M and the shearing force 7' for
a beam on an elastic medium of elastic response &, acted upon by moments M, at its

free ends.

Mathematical model. We use the functions fl-([}x), i :1,_4 , introduced in Appl.2.7 (see
Fig.2.9), as well as the solution (e). The boundary conditions are M : M ,,T =T, =0
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for x = 0 and x = /. In the above mentioned formulae we therefore take 7, = 0, M,
being a known value.

Mo Mp

o I

Figure 2. 9. Beam on elastic medium acted upon at its ends by moments M,

Solution. From the previous considerations, we obtain

2
w = i) + 22 1y () - 22 7 ), @
B k
kw ke
M = oo )= 18+ Mo, (o) ®)
kw ki
T=2—Bofz([3x)+%f3( x)+l3Mof4( x). (c)
Introducing the boundary conditions in (b) and (c), we are led to
kw ket
EreRs (Bx)—%ﬂ (Bx)= =M./, (Bx).
owy.

k
ERE (Bx)—z%gfa (Bx)=-BM £, (B);

the solution is given by

_4MoB’ £ (B1)f> (BY)
ke B0 e
where B* = k/4EI , EI being the bending rigidity.

The values of the bending moment M are plotted into diagrams for various values of the
argument B/ (Fig.2.10). As it can be seen, B/ has a strong influence on M; the greater

gl B
Py
o)
=
N
o)
~
—

/5 (B1)

B/, the more the variation of M has the character of a local perturbation (at the bar
ends).
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Figure 2. 10. Variation of the bending moments M for various values of the parameter 3/

We notice that the boundary conditions for x =/ may be replaced by ¢ =0 and

BIY (Bl Bl
g A (B
0= s
E o=

2 Bl 2 B!

oy (2)” ‘ [2)

" A

One may also take into account the geometric and the loading symmetry of the beam,
choosing the origin of the x-co-ordinates at the middle of the span. In this case, the initial

parameters ¢, and 7, vanish. We put the boundary conditions M =M and T =0 for

T =0 for x = 1/2, and the initial parameters become

B!

x =1/2 (we denote by M the moments at the beam ends); by means of

2M
k

w = wy f, (Bx) - 15(Bx),

M = Z:—gﬁ (Bx)+ M, £, (Bx),

T = k;—gfz( x)+ BM o f4(Bx).

we obtain the initial parameters
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Bl
o 2Mp’ ! “(2j
L I I ! N’
(5555 )A(5)
Bi
_ Ay

" A

Problem. Determine the general expression of the deflections of a beam of span /, acted
upon by two uniformly distributed loads of intensities p, and p, (Fig.2.11).

Application 2.12

Mathematical model. The deflections w are given by the differential equation

d*w _ p(x) (@)

dx? EI

where p(x) is the transverse load and E7 is the bending rigidity.

@ @ @ @ @
P e

W -
Y LTI AT 1YPHYY x

[,_Qx_, 4
t4

az

Figure 2. 11. Beam acted upon by two uniformly distributed loads
Solution. The general solution of the homogeneous differential equation is given by

3 2
EIw=C1%+C2%+C3x+C4. (b)

To obtain a particular solution of the non-homogeneous ODE, we use Cauchy’s integral
relationship, i.e.
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dx

O =
O =

dx(f)dx...zp(x)dx:ﬁﬂx_t)n-lp(t)dt;

0

in our case, n = 4 and the particular solution becomes

Bt =] (x=1)' lek
w, = 6) X P .

We notice that the load is expressed in the form

0, xel0,a,),
Py xe(alabl)
P(x)= 0, (bla az)
P2 (azabz)
0, xe(bz,l].

In this case

Elw, :%T(x—t)3-0~dt:0 forxe[O,al),
0
1){ 1111 3 lx 3
Elw, =—[(x—t)p(t)dt =— [(x—)*-0-dt+ — [(x—1)’ p,dr
60 6 0 6”1
_pl(x——a1)4 forxe[a b)
! poe
X 3 14 3 lbl 3
Elw, == [ (e=t) pleMr =2 [(r=2)-0-de = [(x—t) pydt
0 0 a
X — 4 — 4
+lj'(x—t)3-0-dt =P1(x a)) _Pl(x b) for x € [by, a,),
61;1 24
3 1(11 3 lbl 3
Elw [(x~1) p(t)dt=g_[(x—t) -0-dt + gj(x—t) pydt
0 0 a
19 3 13 3
+gj(x—t) 0-dt+— [(x—1t)’ p,dt
b ap

- pix-a)" _pl(x—b1)4 +P2(X—az)4

7 7 ) for xe [a2 , bz],

(©)

(d)

(e)

®
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a by

B, = [w=) plekr = [ (=1 -0-dr+ = [x=1) pya
0 0

a
5 12 3 1x 3
(x—t) -0-dt+— [(x—1)’ pydt+— [(x—1)*-0-ds
b] 6(12 6b2

4 4 4 N
pi(x—a)) _P1(x_b1) +p2(x—a2) _pz(x—bz) for xelb,,1].
24 24 24 24

We observe that at the common end of two intervals the deflections are continuous,

while in the expression of w), appears a supplementary term.

Introducing the Macaulay brackets < . ) , the general expression of w, reads

p
Elw, :o+<M> _<P1(x—b1)4>
24 24
x2a) x>b

(2
+<p2(x—a2)4> _<P2(X—bz)4> i
24 xX2a, 24 x2by

with the convention that the respective term must be considered only for the positive
argument.

Application 2.13

Problem. Determine the traiectory of an electrized particle in an electromagnetic field of
intensity E and induction B.

Mathematical model. The components of the two forces are represented in Fig.2.12 with
respect to an orthogonal reference trihedron Oxyz. The resultant force is
F =qgE+¢gvx B, where ¢ is the electric load, v is the velocity of the particle, and the

second term is Lorenz’s force. We have

to study the motion, we introduce Newton’s equation
F =ma=mr,
where m is the mass of the particle.
Solution. Projecting on the three axes of co-ordinates, we obtain the equations of motion

mx =qv,B, (a)

mj}:qu—quB, (b)
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mz = qE,. (¢)

Figure 2. 8. Electrized particle in an electromagnetic field

The equation (¢) may be considered separately. By integration, we get
E E
i=[Lra =244,
m m

the constant C; being determined by the initial condition Z(O) =v?. One obtains

-0
C,=v? and

) E
1=y vY.
m
A new integration gives
E
2=z +v%+C,.

2m
The condition z(O) =0 leadsto C, =0, so that
z= &tz +vt (d)
2m

represents a uniformly accelerated motion along the z-axis, of acceleration a, = gE, /m .
For the other two axes, we may write the equations (a) and (b) in the form

mx =¢qBy, my =gB—gBx. (e)

Eliminating the function y , we obtain
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quz . _ quEy

X+ x , §3)
m? m?
hence a linear non-homogeneous third order ODE with constant coefficients.
The ratio g/m represents the elastic load on the unit mass.
Denoting by
2
2p2 q BE
q2 - 02, 2}’:R2’ (g)
m m

the equation (f) becomes
X +o’x = R?.

As the right member of this ODE is a constant, we find easily the particular solution

At

x,=E,t/B. Searching for an exponential solution x=e™ of the associated

homogeneous ODE, one obtains the characteristic equation
2+ 0% =M1 +0?)=0,
having three roots, A; = 0, A,,A; =+io. Thus, the general solution of the associated
homogeneous ODE is
x, =D, +D, cosot + D; sin ot
hence, the general solution of the non-homogeneous ODE is finally given by
. E,
x:D]+choscot+D3sm(ot+?t. (h)
The first equation (e) gives
m . m(E, :
y=—x+const =—| — — D,osin of + D;wcos ot |+ const
qB gB\ B
or, finally,

mo .
y= 3 (— D, sin ot + D5 cos (ot)+ const. (i)
q
The four integration constants are determined by the initial conditions x(0)=0 ,

$(0)=0,%(0)=v?, (0)=v?. They are

B qBv(y) __qng _ﬁ_Ey D __mvg +mEy
1 — P 2 - P 3 — ) 4 — P
mem me o Bo qB  ¢B
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so that

qng E, ) vo

x= (1—coso)t)+—((ot—smoot)+—xsm ot,
mo Bo o)

0

mE %

y= ; (1-cos wr)+—sin wr.
9B ©

Taking into account the notation (g), the displacements x and y read

E
X :ﬂli O sin (nt+v2 (1-cos ot)+ —=(wz —sin mt)},
qB B

E
y:ﬂ v(y) sin(ot+—y(1—cos0)t) =ox.
qB B

We obtained the parametric equations of the projection of the trajectory on the Oxy -
plane; this projection is a trochoid.

Application 2.14

Problem. A circular cylindrical tank, of a very great length is subjected to an internal
constant pressure p . Assuming that at the bottom end the envelope is articulated to the

corresponding circular plate, determine the deflection w and the bending moment A, .

Mathematical model. The ODE of the deflection is

where S is a constant damping coefficient, while K is the bending rigidity of the
cylindrical shell.

We consider the cylindrical tank of semi-infinite length. Choosing the origin of the x-co-

ordinates at the bottom (Fig.2.13), the boundary conditions are w =0, d*w/dx? =0
for x=0.

Solution. Obviously, a particular solution of the above non-homogeneous ODE with
constant coefficients is

p
w, = ————:,
p 4KB4

searching for solutions of the associated homogeneous equation of the exponential form

™ we get the characteristic equation

A+ 4Bt =0,
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ofroots A, Ay, A3,A, = (ilii)ﬁ.

0
a

Figure 2. 9. Circular cylindrical bunker
Hence the general solution of the non-homogeneous equation is

4

w=-—
4Kp*

[1 +e (4 cos Bx + Bsin x)+ e’ (C cos px + Dsin Bx)] ,

where 4, B,C, D are integration constants.
For x — oo, the conditions are satisfied only if C = D = 0. One obtains thus

w=— 4[?[34 [l+e"Bx(A cosBx+Bsinl3x)],
%:ﬁeﬁX[(A_B)cosBx+(A+B)sian],
d2W P —Bx :
?:We (BcosBx—Asme).

The conditions at the bottom x = 0 lead to

B4
i)yt _po
dx? 2KPB? ’

yielding A =—1, B = 0. The general solution becomes

P
4Kp*

w=

(l —e P cos Bx) ,
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P -p

:—e_

2p

. " sin Bx .

Application 2.15

Problem. A circular cylindrical tank of vertical axis is subjected to an internal pressure
p . Assuming that at both the bottom (x = 0) and the upper end ( x =/) the envelope is
articulated to rigid plates, determine the deflections w and the bending moments
M, = —Kd*w/dx?, K being the bending rigidity of the plate.

Mathematical model. The differential equation of the deflection is given by (see also the
previous application)

d*w P

— AP = - a

T4 = (a)
where [ is a constant damping coefficient, and the boundary conditions are w =0,
d*w/dx* =0 for x =0 and x = /.

Solution. We may choose the particular solution w, :—p/4KB4 for the non-

homogeneous equation. In this case, it is convenient to express the general solution of
the associated homogeneous equation in terms of hyperbolic functions, which are linear
combinations of the exp-functions. We finally get the general solution of the non-
homogeneous equation (a) in the form

P 2 (l + C, cosh Bx cos Bx + C, cosh Bxsin Bx
4KPB (b)

+C; sinh BxcosPx + C, sinh P sin Bx).

w=—

Its second derivative is

2
?bc_vzv =— # (C4 cosh Bx cos Bx — C; cosh Bx sin Bx

+C, sinh x cos Bx — C, sinh Bx sin px).

(©)

From W(O) =0, weobtain C; = —1.
2
d (0)=0 leadsto C4 = 0.

Analogously, the condition

The same conditions for x =/ yield the relationships

C, cosh B/sin B/ + C; sinh B/ cos B/ = -1+ cosh B/ cos B/,
C, sinh B/ cos B/ — C; cosh B/ sin B/ = —sinh B/ sin B/,
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therefore
__sin Bl(cosh B/ —cos [31)
2 sinh? Bl +sin’ p/
__ sinh Bl(cosh BI - cos pl)
sinh? Bl +sin® Bl

(d)

Eventually, one obtains

w= p (1 — cosh Bx cos Bx + C, cosh Bx sin fx + C; sinh Bx cos Bx) s

- 4Kp*

.= % (— C; cosh Bx sin Bx + C, sinh Bx cos Bx + sinh fx sin Bx),
where C, and C; are given by (d).

Choosing the origin of the co-ordinates x at the middle of the height (for the sake of
symmetry), we take C, = C; = 0 in (b) and we have

w= _FPB‘* (1 + C, cosh Bx cos fx + C, sinh Bx sin Bx),
(e)

—_— = KLB“ (C4 cosh Bx cos Bx — C; sinh fx sin Bx).

2
Applying now the conditions w(l / 2) =0, d—zv (l / 2) =0, it results
dx

Bl Pl Bl . Pl

C, cosh — cos — + C,, sinh —sin — = —1,
2 2 2

2
p! pr B!

—(,; sinh Esin—+ C, cosh—cos— =0,
2 2 2 2

which means

cosh? E cos’ E

G=- ] 1 : ] I’
cosh? B— cos® == + sinh? B— sin? B—
2 2
sinh E cosh E sin ﬂ cos E
C,=- 2 2 2 2

2 B!

cosh? %cos P 4 sinh? Esin2 %



186 ODEs WITH APPLICATIONS TO MECHANICS
Application 2.16

Problem. Determine the radial displacements u , the radial stress o, and the annular

stress ©,, for a circular (or annular) disk acted upon by an axially symmetric load.

Application for the annular disk in Fig.2.14.

b=2a
S)

-

Figure 2. 10. Annular disk

Mathematical model. The displacements u verify the linear second order ODE

d’uv 1du u
rsEoLoy, (a)
dr?  rdr 2

where r is the vector radius. The radial stress and the annular stress are given by

E (du u E (u du
o, = —+V— :0,c(p: —tv—
1-v2\dr r 1-v2\r dr

j:o, (b)

respectively.

Solution. The homogeneous linear ODE is of Euler type; we search for solutions of the
form u = r» . The characteristic equation is

AP -1=0
and has the roots A;,A, = £1. The general solution for the radial displacement is
therefore
u=Ar + E
r

The stresses are given accordingly by
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E 1
0o =1 (A(l+v)+B(l—v)r—2j. (d)

In the particular case of an annular disk (Fig.2.14), one determines the integration
constants using the boundary conditions &, (¢)=~p and ,(b)=0. It results

Ao (1 - v)p a’ ’
E b2 _a2 E b2 _az

so that the stresses read

Their distribution is given in Fig.2.14.

Application 2.17
Problem. Determine the buckling critical force of a cantilever bar the moment of inertia

of which has a variation given by I, = I, (x/ a)z (Fig.2.15).

VIO 777,

Figure 2. 11. Pillar of variable cross section subjected to compression
Mathematical model. The differential equation of the deformed axis is

d?w
EIXW+PW:O; (a)
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taking into account the expression of /., one obtains

, d?>w  Pa?
X —+
dx?  El,

w=0. (b)

To this ODE we add the boundary conditions w(a)= 0 and (}EW (a+1)=0.

Solution. The linear homogeneous ODE is of Euler type, thus we search for solutions of
the form w = x* ; the corresponding characteristic equation

Pa?

Ar -1
( )+E[0

=0

has the roots A,,A, =1/2+if, with the notation

Pa* 1
P=E, T d (©)
Thus, the solution may be expressed in the form
w = \/E{A sin([_’) In i] +B COS(B In iﬂ ,
a a a
dw = L (é - BB) sin(B In i) + (E + AB) cos(B In ij .
de  Jax |2 a 2 a
The boundary conditions lead to B = 0 and to
L[sin(ﬁ In a_+lj + 2B cos(B 4t lﬂ =0.
2 a(a + l) a a
As A # 0, one obtains the equation
tan(Blna+lj+2[3:0. )
a

For a given ratio //a, one obtains the minimal value B from (d); the relationship (c)
determines the critical force
EI 1 n’El
P, =—2IB2+—|= 0.
“ a’ (B 4) (ul)2 ©

To solve numerically the equation (d), we write it in the form
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a+l a+l 2
t : =
an([}ln ]+Bln p T 0
In——
a
Denoting by
a+l 2
= 1 = -
u=fln Pl T
In
a

the above equation is put in the form

tan u

>

u

to solve it, one may use the Table 1.2. For various values of the ratio a//, the values of

u, B and p are given in Table 2.5.

Table 2.5. The values of u, B and  for a /1 € [0.2,10]

a/l Umin (rad) B “’
0.2 1.993206 1.112429 0.51517
0.5 1.858220 1.691425 0.89059

1 1.764719 2.545951 1.21083
2 1.690173 4.168480 1.49658
3 1.657368 5.761110 1.62980
5 1.626775 8.922560 1.75772

10 1.600561 | 16.793180 | 1.86993

The variation of the buckling length /, = u/ as a function of the ratio a/I is given in
Fig.2.16.

/-U
20 T T e T T T e e e s i e e e ey
P
15
ot
a5
a -
7205 2 3 5 10 0/?

Figure 2. 12. Variation of the buckling length as a function of the ratio a/l
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For a/l — o one obtains p = 2, that is the value corresponding to a cantilever bar of

constant cross section.
The variable moment of inertia considered above corresponds approximately to a cross
section formed by four corner irons, the moment of inertia of which with respect to the

own axis is negligible with respect to the product A4 d? /4 (A4 is the area of the cross

section of a corner iron and d is the distance between the centers of gravity of two
adjacent corner irons).

Application 2.18

Problem. Study the symmetric state of stress with respect to the pole in plane elasticity.

Mathematical model. The plane state of stress in an axially symmetric case is governed
by the differential equation

AAF =0, (a)
where F' = F (r) is a potential function.
Solution. In polar co-ordinates, Laplace’s operator is

2
A :d_+li’
drz  r dr

in the axially symmetric case. Successive differentiations

+
&3 o drr A’

A(EF 1) _@CF 1EF 1
dr\ dr2  r dr

d?F (d?’F 1dF d*F 1d°F 2 d*F 2 dF
+——| = - —-—
dr?2 \ dr?2  r dr dar*t  r a3 2 dr? 3 dr
lead to the biharmonic equation

d*F Ed3F 1 d’°F 1 dF

&t o drd 2 A2 3 ar

which finally yields an ODE of Euler type

4 3 2
r4dF+2r3dF—2dF+r£:O. (b)

-
dr dr3 dr? dr

Searching for solutions of the form 7”, one obtains the characteristic equation
A ) 2) 3)+20 D 2) A 1)+a=2r*(r 2)* =0,

with the double roots A, A, =0, A3, Ay =2.
The general solution is then
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F(r) =Alnr+Br’lnr+Cr? + D,

where the integration constants 4, B,C,D must be determined from the boundary
conditions.

Due to the logarithmic terms, » = 0 is a pole. In the case of a circular disk one must take
A = B = 0, while in the case of an annular disk one has 4,8 # 0.

Application 2.19

Problem. Determine the deflections w of a circular (or annular) plate of constant
thickness in case of an axially symmetric state of stress and strain with respect to its
centre.

Particular case: a simply supported circular plate acted upon by a uniformly distributed
load p = const (Fig.2.17).

e
G ARREECAAE A

A r=gp
1,01069 e

4198
I pa’

| 018
0104 e
o5 | jpa

Figure 2. 13. Circular plate acted upon by a uniformly distributed load. Diagrams of the deflections w, the
radial moments M,, the annular moments M, and the shearing force 7,

Mathematical model. The deflections satisfy the ODE

d> 1.dYd*w 1dw) p(r)
o | =R = B (a)
dr?2  rdr )\ dr? rdr K

where p(r) is the external load and K = const is the bending rigidity of the plate.

The bending moments are given by
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2 2
M, =k S v dw , M, =K ldw, 4w (b)
d&rr r dr

where v is the coefficient of transverse contraction of the material.

Solution. As we have seen in Appl.2.18, the general solution of the homogeneous
equation (a) is of the form

w, =Alnr+ Br?lnr+Cr* + D.

To obtain a particular solution of the non-homogeneous equation, we notice that

d>w ldw 1d dw
Aw = A

dr? rdr rdr dr

or

d®w dw d dw
F—t—=—r—

dr? dr dr dr’

The equation (a) may be thus written

ri-’—li dzwp+ldwp :i(’,i) d2Wp+lde :p(r)r'
drz  rdr )| dr? r dr dr\ dr ) dr? r dr K’

after integration, we get

d [d w), +ldijzijp(r}ir.

y—
dr| dr? rodr

Multiplying both members by r, it follows

d’>w, dw d( dw 1 .dr
A R i P L T
a2 A dr (r dr J A Il ar

7

A new integration leads to

d
r :;ip = %jrdrf%fp(r)rdr.

Thus, the general solution of the equation (a) reads

w(r) = w, + Alnr + Br*Inr+Cr* + D,

whence
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w), =%I%Irdr.[%fp(r)rdr. (©

The bending moments are of the form

P

M, =—1{wg + Y —(l—v)iz+2(l+v)Blnr+(3+v)B+2(1+v)C},
r r

(d)
1 ’ " A
M, = —K{—wp +vw +(1—v)—2+2(1+v)Blnr+(1+3v)B+2(l+v)C} :

r r

In the particular case of a simply supported plate one must take 4 = B = 0, to have a
finite displacement for » = 0; on the boundary one has w(a)=0, M, (a)=0.
The general solution becomes

w:wp+Cr2+D,

M, =—K|:W;+;W1;+2(1+V)Cj|,

(e)
My ==K|Sw! 4! +2(1+v)
0= 7wp+va+ +v)C|.
If p(r) = p = const , then the particular solution becomes
p . dr dr prt
w ==—[—/[rdr{—[rdr = ,
’ KJ r J / rJ 64K
3 2
3
W;:pr s Wy = pr
16K 16K
The formulae (e) take the form
prt 2
w==——+Cr-+D,
64K
pr’
M, =-K|(3+Vv)—+2(1+V)C |,
= K| G2 2fi) o

2
pr
M, = —K{(l +3v) T 2(1 +v)c} :

Introducing the boundary conditions
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2 4
(3+v)%+2(l+v)€zo, %Jr Ca>+D =0,

one obtains the integration constants

34y pa3 _S+v pa4
1+v 32K~ 1+v 64K

The formulae (f) thus become

pr4 _3+v pazr2 +5+v pa4 B pa4 {l_rz J(5+v rzj

w= = I ==r__
64K 1+v 32K 1+v 64K 64K a’? \1+v g2

16K a

2 2
M, =(3+v)22 [1-7—2}

2
M, = pla6 {3+v—(l+3v);—2}, re [O,a].

A global equilibrium (for a plate & of radius 7)

T, - 2nr = —pna?

leads to

T, =-2
2

The variations of w, M, , M,, and 7, are given in Fig.2.17.

Application 2.20

Problem. Study the deflection w of a beam on an elastic medium, of variable response
depending on the law

al*
k=—, a
(e By @
where x is the abscissa (measured from the left end of the beam), / is the bar length, o
and P are parameters characterizing the variability of .

Mathematical model. In the absence of the distributed loads, the differential equation of
the problem is of the form
d*w k&

-+ —w=0, b
dx? EIW ®)
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where EI =const is the bending rigidity of the beam. We assume that
v = al*/El €[0,1]. (c)

Solution. Replacing (a) in (b), one obtains the linear ODE

(x+Bl)4(j:C—W+yw:0. (d)

The equation (d) is of Euler type; assuming a solution of the form w = (x + Bl)", we get
the characteristic equation

r(r—l)(r—Z)(r—3)+y =0.
If we write this equation in the form
(2 =37 )2 =3r+2)+1=(2 =3 +2(2 =3r)+1= (2 =3r +1] =1-v,

then, taking into account the interval mentioned in (c), we get the real and distinct roots

3 5 3 / /
}’1:”225i Z+V1_Vs”3»”425i V-7

The general solution of the ODE (d) reads

NG VY

w=Cyx+BI)" + Cylx +BI)? + Cy(x +BI)* + Cylx + BIY, (e)
where the integration constants C;, i =1,2,3,4, must be determined by boundary
conditions.

Application 2.21

Problem. Consider a circular cylindrical tank of radius R and height /, the thickness of
which has a parabolic variation between the values &, (at the upper end) and §,, (at the
bottom of the tank). Determine the general expression of the deflection w .

Mathematical model. The deformation of tank walls is governed by the differential
equation

2 2 E
d (K dwj+ﬁw=—z, ()

E * dx? a?

where Z is the normal component of the internal load, due to a liquid of unit weight vy,

§, is the wall thickness and K, = ESi / 12(1 —vz) is the bending rigidity at the abscissa
x and E,v are the elastic constants of the material.

pY
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Solution. One chooses the origin of the x-co-ordinates at the section where — theoretically
— the wall thickness vanishes (Fig.2.18). The thickness of the wall is given by the
parabolic law

x2

W v

where a is the distance from the origin to the upper end of the tank. Taking into account
that 5, = &, for x = a, it results

6x :60

S, ©

o>

-

s

SN

)
%

%
%
//

L

Figure 2. 14. Circular cylindrical tank the thickness of which has a parabolic variation

The loading Z is of the form
Z = y(a - x), (d)

as we have Z(a):O and for x =a+/ it results Z = —yl, corresponding to the

hydrostatic pressure (Z > 0 towards the interior of the tank).
The bending rigidity becomes
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K_E53 K, x6K_E53 ©
=) @) @) T 120-v?) ©

so that the differential equation (a) reads

2 2
KO d (XG d Wj " E60 1 _x2W _ ’Y(a _ x)

(@+1)f &2 &2 ) R (a+1)
and further
2 2 6
() Bt
0 0

Differentiating the first term in the previous equation, we have

4 3 2 6
dw+12x3d_w+30x2d_w+4[34w=y(a+l) a—x
dx dx? dx? K, )

2
4pt =220 (a+z)4zi_)121‘sv (a+1)". ®

The equation (f) is a linear, non-homogeneous ODE of Euler type.
For this equations, we firstly search a particular solution of the form
A(a - x)

YT T ®

x4

) ®

with the notation

where A4 is a constant to be specified. Introducing this in (f), we obtain

_y(a+l)6 1 .
4= K, 4B+p') @

so that the particular solution is

w = y(a+l)6 a-—x
P Ak (B +pY) X2

W)

At the upper end (x = a) we have w, ; = 0, while at the bottom (x = a + /) we have

p,s

W - yl(a+l)4

The general solution w, of the homogeneous equation
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d*w, d3w d?w,
x4 —dx4° +12x3 dx;) +30x2 dx2° +4B*w, =0 (k)
is searched in the form w, = x", where the parameter » must be specified.
Differentiating
d?w, d*w, d*w

- = r(r - l)xr"2 , ?: r(r - 1)(r - 2)xr_3 , dx—40: r(r - l)(r - 2)(r —3)xr_4

and introducing in (k), we get the associated characteristic equation
r(r = 1)r = 2)r = 3) + 127(r = 1)r = 2) + 30r(r = 1)+ 4B* = 0,
which may be also written in the form
(2 +3rf —4(2 +37)+ 484 = 0.
To solve this equation, we write further
(2 +3rf = a(r2 +3r)+ 4 = 4(1 - p4) = —4(p* - 1).

So, the roots are r,r,= p, £iq, r;,r 4= p, tig , where

3 1
= ==+ ———1/4/225 + 64B* +17 > 0,
)41 2 2\/5\/ B
3 1
= - ——— 4225+ 64B% +17 <0
)2) 7 2\/5\/ + B + < s
q :ﬁ\/w/225+64[34 -17 > 0.

Taking into account the complex form of the roots 7;,i =1,_4 , this solution may be

written as
Wy = CjxP1H4 4 Clx P79 4 Cyx P29 4 ) x P27
=x? (Cl'xiq +Chx )—i— xP2 (Céxiq +Cyx7 ) ,
where C/,i= 1,_4 , are integration constants, or, equivalently,
wo = xP[C, cos(q In x)+ C, sin(g In x)]+ x72[C; cos(q In x)+ C, sin(g In x)] . M
The general solution of the ODE (a) is thus w=w, +w, , where w; is given by (1) and

w,, by (j). The constants C;,i =l,_4, will be determined from convenient boundary

conditions, put at both ends of the tank.
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The above solution is suggested by a study of E. Steuermann.

Application 2.22

Problem. Consider a cantilever column of length / and minimal flexural rigidity EZ,
subjected to axial compression forces P and immersed in an elastic medium of response
constant k, corresponding to a Winkler model. Determine the deformed axis and the
critical load (see ).

Mathematical model. The action of the elastic medium is equivalent to the transverse
load

g(x)=—kw, k>0, (a)

where for &k = 0 the elastic medium does not exist and for £ — oo this a rigid one and
the bifurcation of the equilibrium does no more take place; w(x) is the transverse
displacement of the axis of the column in the cross section of abscissa x (Fig.2.19). This

model corresponds e.g. to piles driven in the earth, which can suffer displacements at the
upper end.

P x

Figure 2. 15. Cantilever column in an elastic medium

The bending moment in a current cross section is given by

M(x): —P(S—y)+Mq (x),

where M, is the bending moment due to the load g; noting that
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Eh"=-M, M; =—q=ky
we can write
ER” +Py"+ky=0.
By using the notations

P

_:2a2’ _:b47 (b)
EI EI

we obtain the ODE of the problem
vy 42a%y"+b%y=0. ()

The boundary conditions are two-point conditions of the form
»0)=0, y(0)=0 @
for the built-in cross section and of the form
M=0, T+Py'=0,
where T'= —M" is the shearing force, i.e. of the form
y'(1)=0, y"()+2ay'(1)=0 (d)

at the free end of the column.
The deflection curve of the column is only specified up to a multiplicative factor,
because the phenomenon has been linearized.

Solution. We introduce the conventional load
Py =2VEIk (©
and the critical Euler type load
n’El

Py=——, (e')
lcr

where /, is the critical length in case of buckling.

If P, <P,,ie.if a> < b2, then we can use the solution

y(x)zCl coshPB,xcosP;x+C, coshB,xsinf,x 0

+C, sinh B,xcosBx+C, sinh B, xsin f,x,

where
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BN s P
=— 2 — 4+ = b tag® =—b [1+—; £
P =\ "5 T “T RN ()

the boundary conditions (d") become

y()=0, y(0)+2(p2 -p3p(1)=0. (d")
The boundary conditions (d) lead to C; = 0, B,C, + ,C; = 0, so that
y'(x): (BZC2 —B]C3)sinthxsinBIx+C4(B2 coshB,xsinf,x+f; sinh BzxcosB]x)

:BL(BIZ +B§)C2 sinh B,xsinB,x+C, ([32 cosh B,xsin B,x+f3, sinh Bzxcosﬁlx);
2

we obtain

y"(x):é(ﬁlz +B§)c2([32 cosh B, xsin B, x +p, sinh B, xcos B, x)
~C,[[p2 - p2 )sinh p,x cos pyx— 2B, B cosh px cospyx).

»(x)= —é(ﬁf +83)C, [B7 ~B3 Jsinh B, xsin B,.x ~ 2B, B, cosh B, cos 1]
-C, [(3512 —ﬁ%)ﬁz costhxsinB1x+([3]2 —333)31 sinh BzxcosB]x].

The conditions (d" ) lead to a linear algebraic system

(32 +B2)C, (B, cosh P, Isin B,/ +B, sinh B,/ cosB,7)
-B,C, [(312 —ﬁg)sinhﬁzzsinﬁlz—zﬁlﬁz costhlcosB]l]z 0,
C,[(p2 ~p2 )sinh 7 sin B,7+ 2, cosh Bl cos ]
—B, C4(B, coshB,/sinB,/—P, sinh B,/ cosp,/)=0,

where we admit that B? + B3 = b2 = 0 (if not, we have k = 0, that is absence of the

elastic medium). To obtain a bifurcation of the equilibrium, i.e. a deformation of the axis
of the column (C,, C, # 0), the equation

(32 +p2)(B2 cosh? B,sin B,7—B? sinh® B,/ cos )

= (82 ~p2)sinh2 p,/sin? B,/ 4p2p2 cosh® B,/ cos? B/ ®

must be verified; this is the characteristic equation, which leads to the critical load.
The deflection curve is given by
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o
= sinh B,/ cosB;(/—x
Blz Sil’lh2 le-l-B% Sil’l2 Bll {BI[BI BZ Bl( )

—sinh B,x—P, [, cosB,/sinh B, (I —x)
—B, sin B,/ cosh B, (I - x)]sin B, x},

where we have introduced the deflection & = y(I) at the free end of the column; the

(x)
(h)

bending moment is

P8
M(x)=
) 282 B2 (B sinh® B,/ + B2 sin’ B,/
< (B2 +B2)(B, cosh p,/sin B,/ — P, sinh B,/ cos B, /)
><(B2 cosh B,xsin B;x+f; sinh Bzxcosﬁlx)
—[(B% —ﬁg)sinhﬁzzsinslmzﬁlﬁz costhlcosﬁll]KBlz _Bg)
xsinh B,xsin B, x—2p,B, coshP,xcos le]}.

(1)

The condition M({) = 0 is verified if we take into account the equation (g); the moment
in the built-in cross section is given by

_ BB, PS
M- (B7 —B3 )82 sinh B,/ +B3 sin? B,7)’

Dividing by cosh? B,/ cosh? B,/, we notice that the characteristic equation (g) can be

(i)

written in the form

(pf +B§)@§ tan® B,/ -7 tanh? le)= (ﬁ% —35)2 tanh? B,/ tan® B,/ —4p2p2, (&")

which is more convenient for computation; taking into account the relations
cosh? B,/ =1+ sinh? B,I, cos® B,/ =1—sin? B,/, we can write

4B7B3 =(B7 383 )B7 sinh® B,/ + (387 ~ 3 JB3 sin® B,/ (g")
or
(32 -B3) + (387 B3 )B3 cos® B, = (B2 ~3p3 B2 cosh® B, . (g")
With the notation (f"), we have
4pip3 =b* —a*, (37 -B3) =a*, B} —3p3 =207 —b7,3pF -3 =24 +b7;

using also the notations (b), the critical load will be determined by the equation
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2
P P P P, P
2 1—(ﬁJ =(2i-1){1+i}inhzﬁzl+(2 N +1j[1— ersinz[}ll, G)
PO PO PO PO PO

which can be written in the form

sin? B,/ —| 1+
-0 | —_
P P

cr cr

1+ sinh? B,/ =2 )

1+

or by the equation

2
P P P P P
2( ] +[2 °‘+1)(1— Cchosz 311:(2 “—1)[1+ “Jcoshz B, "
P, P, P, By B

2

Taking into account the condition a? < b? of validity of the solution (f'), we notice

that

1P

7, <1. (k)

The equations (j), (/") allow to determine the ratio P,, /P, (the reduced critical load) as

a function of the non-dimensional magnitude b/ = I{/k/EI , i.e. as a function of the data

of the problem (rigidity of the elastic medium and rigidity and length of the column);
starting from

the critical length is given by

Io\2b (R, )
Py
We can write
Pcr_Pcr PC?
Py Pc? P’

where P is the critical load in the absence of the elastic medium; observing that

P, > P2 (in the absence of the elastic medium, P is smaller) and that P, < P> (the

condition of validity of the solution), it results
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2
- ! <1,
8

(1)’

Py 7PEl 1
Py 41* 2JEIk

hence b > m/2+/2 = 1.1107207 .

In the limit case P, = P,, i.e. in the case a? = b2, the general solution of the equation
(c) is of the form

y(x)=(Cyx+C,)cos bx +(Cyx +Cy )sinbx ; (m)

the two-point conditions (d), (d") lead to the relations C, = 0, C; + aC, = 0, as well
as to

C, (sin b +bl cos bl)— C; (2 cos bl — bl sin bl) = 0,
C, (2 cos bl + bl sin bl )+ C; (sin bl — bl cos bl) = 0.

The corresponding characteristic equation will be
coszbz%(bzl2 —1), (n)

leading to bl = 1.1896, whence, taking into account the notations (b), we obtain the
critical load

_2.830EI _ n’EI
Pcr = P = 5
I (1.8671)

(0)

as well as

2.00E1
kg = . (o)

In the absence of the elastic medium, the critical load is given by

n’El _ 2.467EI
41° 2o

1

this load is somewhat smaller than the critical load (o).
Taking into account the continuity of the solution with respect to the coefficients of the
differential equation, the case P,. < P, can take place only for b/ > 1.1896.

The general solution
y(x): Ciycosox+C,sinax+Cscoso,x+Cy cosa,x, (p)

where
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2
(X,lzz azi a4_b4 :b &i i —1 N (p’)
’ F F

corresponds to the case P, > Py,i.e. a> > b?; the boundary conditions (d’) become

y(0)=0, y"()+(a? +a2)y()=0. (d")

As in the former cases, the conditions (d), (d”) lead to a system of linear equations for
the constants C;, C,, C5, and C,,hence to the characteristic equation

alaz(oclz +0L§)sinocllsinoczl+(af +a§)cosallcosazl =2(112(X.§. (@
Noting that
o0, :bz,ocl2 +(x§ :2612,0ci1 +0c‘2‘ :2(2a4 —b4),

we can write

2
P P
—Lsina,/sino,/+| 2] == | —1|cosa,lcosa,l=1 (q")
Fy Fy
or
P, P P
T cosla; —oy 4+ 2= +1 | == —1|cosa,lcosa,/=1. 4
P, ( 1 2)1 { P J(Po j 1 2 (q")

The equations (q), (q") allow to determine the reduced critical force P, /P, as a

function of the non-dimensional magnitude b/, i.e. as a function of the data of the
problem; the reduced critical length /. /I is given by the formula (1).

Table 2.6. The values of P, / P, and [, /1

bl | poipy [ igrt ot ey | it [ o0 | poipy | 0,0
0 B 2000 | 15 | 0748 | 1712 | 45| 0516 | 0.687
02 | 30.846 | 2.000 | 1.8 | 0654 | 1526 | 50 | 0506 | 0.625
05 4958 | 1.995 | 2.0 | 0.636 | 1393 | 60 | 0502 | 0523
0.8 198 | 1970 | 25 | 0629 | 1.120 | 70 | 0502 | 0.448
1.0 1325 | 1.930 | 3.0 | 0661 | 0947 | 80 | 0501 | 0392
1.1896 | 1.000 | 1.867 | 3.5 | 0573 | 0.838 | 85 | 0500 | 0370
12 0987 | 1.863 | 40 | 0538 | 0.757 | © | 0.500 0

For bl — 1.1896 we have P.. /P, — 1, hence the solution corresponding to the general
integral (p) tends to the solution corresponding to the general integral (m); for 5/ — 0,
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we obtain P, /P, —> . The reduced critical load approaches the unity, remaining
greater than the unity for an infinity of values of the non-dimensional magnitude b/
(e.g., for b/ =142). In conclusion, till b/ = 1.1896 we have one P, and from this
value further two critical loads; but we take into account only the smallest one.

The values of the reduced critical load P, /Py (P, is the smallest critical load) and of
the reduced critical load are listed in Table 2.6 and plotted into diagrams (Figs.2.20 and
2.21).

fer
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Figure 2. 16. Diagram of the reduced critical load P, / P, vs. bl
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Figure 2. 17. Diagram of the reduced critical length / / ly vs..bl
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bl =1 ﬂi >8.5
EI

we can use the asymptotic formulae

For

cr

2
P, =0.500P, =Elk = (bi)’ %:(ﬂj P,

T
and
la o1
1 bl
where
2
P, = nl 2EI

207

()

(")

(s)

is the Euler critical load corresponding to a simply supported column in the absence of

the elastic medium.

We observe that in case of a column for which the bilocal conditions allow a greater
deformation the elastic medium has a smaller influence on the critical load. Indeed, in
case of the cantilever column, this load grows (in comparison to the critical load
corresponding to the absence of the elastic medium) less than in case of the simply
supported one. A calculus shows that the critical load is much greater in case of a double
built-in column in an elastic medium and much smaller in case of a free column

immersed in such a medium.



Chapter 3

LINEAR ODSs OF FIRST ORDER

1. The General Study of Linear First Order ODSs
1. GENERALITIES

The canonical form of a linear non-homogeneous first order ODS with n unknown
functions is

yi = an(x))ﬁ +alz(x)J’2 +..tay, (x)yn +f1(x),
Vs = a21(x)y1 +a22(x)y2 t...+ay, (x)yn + /2 (x),

G.1.1)

where the primes mean differentiation with respect to x, f;,a ol J = I,_n , are functions
considered of class CO(I ), I= [a,b] €N and y )= L_n, are the unknown functions. In
a classic frame, we shall search for solutions of class C' (7).

If f; vanish identically on /, then we get the associated homogeneous ODS

i :an(x)% +a12(x)y2 +"'+a1n(x) n o
V5 :azl(x))ﬁ +ay (x)y2 +...tay, (x) ns

(3.1.2)

To simplify the writing and, also, to emphasize certain useful properties, we shall
introduce the following vector functions

Jh(x) y{(x) fl(x)
y(x)= yzg(x) ’ %’: yzg(X) f(0)= fze(x) (3.13)
7, (%) V(%) fu(x)

and the associated to (3.1.1) — or, also to (3.1.2) — matrix

209
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all(x) alz(x) aln(x)

A(x): a21(x) a22(x) ) (x) (3.1.4)
apn (x) anZ(x) ann(x)
Then the above non-homogeneous system is written in matrix form
%zA(x)erf, (3.1.5)
while the associated homogeneous ODS takes the form
d—y:A(x)y. (3.1.6)

dx

1.2 THE GENERAL SOLUTION OF THE HOMOGENEOUS ODS

Consider 7 linearly independent vector-solutions of the homogeneus system (3.1.6)

J’11(x) Y12(x) )’1n(x)
Y, (x)= yzg(x) . Y,(x)= yf(x) Y, ()= yz’;(x) (3.1.7)
ynl(x) ynZ(x) ynn(x)

Such a system is called a fundamental system of solutions. Exactly as in the case of the
linear ODEs, we consider the Wronskian of this system

J’11(x) J’12(x) J’1n(x)

W[YI,YZ,...,YH x) yzl(X) y22(x) yz,,(x)

=w(x), (3.1.8)
ynl(x) ynZ(x) ynn(x)

which is non-zero if and only if the system {Yl Y5, Yn} is linearly independent. We

also can prove Liouville’s theorem and formula

Ttr Alr)de

1
W(x)zW(xO)exo , trA=a;,+ay+..+a,,. 3-1.9)

More specific, tr A is the trace of the matrix A, that is the sum of the entries of the main
diagonal. In the above formula (3.1.9), x, is an arbitrary point in /. Exactly as in the

case of higher order ODEs, one can prove that any linear ODS with continuous
coefficients always allows a fundamental system of solutions.
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Any solution y of the homogeneous ODS may thus be written as a linear combination
with constant coefficients of the functions belonging to a fundamental system, i.e.

y(x)=clYl(x)+c2Y2(x)+...+cnY,,(x). (3.1.10)

The Cauchy — or initial — problem associated either to the non-homogeneous ODS
(3.1.1) or to the homogeneous ODS (3.1.2) consists of finding a solution of the given
ODS that also satisfies the initial (Cauchy) conditions

yl(x0)2y109y2(x0):y20""’yn(x0):ynO’ xgel, (3.1.11)

or, using vector-functions

Y10

vxo)=vo, vo=|"2|. (3.1.12)

Yo

If the vector-functions of the fundamental system satisfy the initial conditions

1 0 0
0 1 0

Y (xo)=|. |, Ya(xo)=|, |m ¥, (x0)=|. | (3.1.13)
0 0 1

then the system is called normal. Knowing a normal system, the solution of the Cauchy
problem (3.1.6), (3.1.13) is written using directly the Cauchy data

Y(x)= 310 Yy () + y20 Yo (x) 4.4+ 3,0 Y, (x). (3.1.14)

1.3 THE GENERAL SOLUTION OF THE NON-HOMOGENEOUS ODS

The general solution of the linear non-homogeneous ODS (3.1.1) — or, equivalently,
(3.1.6) — is the sum between one of its particular solutions

Yip (x)

( )= J’zfu(x)

Yy,
ynp (x)
and the general solution of the associated homogeneous ODS, i.e.,
y(x)=c Y, (x)+ .Y, (x)+...+ ¢, Y, (x)+yp (x). (3.1.15)

Knowing a fundamental system of solutions for the given ODS enables us to get a
particular solution for the non-homogeneous ODS by using, as previously, the method of
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variation of parameters (Lagrange’s method). We search for a solution shaping (3.1.10),
but with variable — instead of constant — coefficients

¥, (@)= ()Y, (x)+ €, ()Y, (x)+-.. ¢, ()Y, (x). (3.1.16)

The functions ¢, (x) are supposedly of class C'(I). Introducing the above expression in

the non-homogeneous ODS (3.1.5), we get

dy , , :
d; =c (x)Yl (x)+ c) (x)Y2 (x)+ ..tc, (x)Yn (x)
dy dY. dy,,
o ()t rer ()= e, (v) (3.1.17)
=i (), ()45 ()Y, (1) +...+¢, (x)Y, (x)
+c; (x)A(x)Yl +c, (x)A(x)Y2 +..+¢, x)A(x)Yn R
or, taking (3.1.16) into account,
dy
Kp = (0)Y; (x)+ ¢ ()Y, (x)+ ...+ ¢, ()Y, (x)+ A(x)yp (x). (3.1.18)
Buty, (x) must satisfy the ODS (3.1.5), whence we get for C} ,J= l,_n ,
e ()Y, (x)+ ¢4 (x)Y, (x)+ ...+ ¢l (x)Y,, (x) = £(x), (3.1.19)
that may be written componentwise
v+ v+t v, = fi(x),
Clyay +€hyp oty = (%), (3.1.20)

This represents, in fact, a linear algebraic system, whose associated determinant is
precisely the Wronskian of the fundamental system. As the Wronskian does not vanish
on 7, it follows that the algebraic system (3.1.20) allowe a unique solution. We therefore
get

¢i(x)=p;(x), j=Ln, (3.1.21)
whence y , (x) results by direct integration.
1.4  ORDER REDUCTION OF HOMOGENEOUS ODSs

To simplify the presentation, we shall take the case n =3, i.e., we consider the ODS
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i :all(x)yl +012(X)Y2 +ap (x)y3 )
yy = aZI(X)yl +a22(x)y2 +a23(x)y3 ) (3.1.22)
V3 =ay, (x))’1 +as (x)y2 +as; (x)y3 ,

for which we know a particular solution, say

Yip (x)
¥, (x)=| 2, ()|
Y3p (x)
We perform the change of functions
Y1 =D1plrs
Yo =VaplUy Ty, (3.1.23)

Y3 =Y3plUy tus,

where u,,u,,u; are the new unknown functions.

We differentiate the above expressions and we replace them in (3.1.23), getting the
degenerate ODS

P ap, (%) a3 (x)

ul l/lz + u3 N
ylp ylp
! y y
uy = {azz (x)—alz(x)i:luz ‘{%3 (x)—an(x)i}g > (3.1.24)
1p 1p

uz = {an (x)_a12 (x)yi}uz J{%s (x)_aw(x)yi}% .

ylp ylp

The last two equations of this system may be solved separately. As a result, we obtain
the functions u,, u;, which, introduced in the first equation (3.1.24), determine u; . As

the system formed by the last two equations has only two unknown functions, it follows
that the order of the ODS (3.1.22) was reduced by one unit.

1.5 BOUNDARY VALUE PROBLEMS FOR ODSs
Consider again the ODS

%:A(x)y+f, (3.1.25)

with a;, f s J=Ln, defined and continuous on the real interval 1 =[a,b]. Also

consider the real matrix of rank »
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AIO All A12 Al,n—l BIO Bll B12 Bl,n—l
M= A20 A21 A22 A2,n—1 B20 B21 B22 BZ,n—l (3.1.26)
AnO Anl An2 An,n—] BnO Bnl Bn2 Bn,n—l

with n rows and 2n columns. By using this matrix, we form the two-point conditions
Uy=X [Aijy_j (a)"‘B;'/ Vi (b)]: K, i=Ln, (3.1.27)
j=

where K; are given real constants.

The boundary value (two-point) problem for the ODS (3.1.25) consists of finding a
solution of this system that also satisfies the two-point conditions (3.1.27). The semi-
homogeneous problem consists of finding a solution of (3.1.25) that satisfies (3.1.27) for

K; =0,i=1,n. The homogeneous problem is defined as

dy
2 -A
dx (el (3.1.28)

U,y=0, i=ln.

If the homogeneous problem allows only the trivial solution, then we say that it has the
index 0.

If the homogeneous problem allows £ linearly independent non-trivial solutions, then this
problem is called of index k. Any other solution may be written as a linear combination
of these k solutions.

If Y,,Y,,....,Y, are n vector functions, solutions of the homogeneous ODS, then the

homogeneous boundary value problem allows non-trivial solutions if and only if the
determinant

A= (3.1.29)
Un(Yl) Un(YZ) Un

Is identically null. If the associated matrix has the rank r, then the index of the

corresponding boundary value problem is n—r.

One can introduce the notions of fundamental solution and Green function for the ODS

(3.1.25) by considering its correponding adjoint system.
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2. ODSs with Constant Coefficients

2.1  THE GENERAL SOLUTION OF THE HOMOGENEOUS ODS

Consider the homogeneous ODS with constant coefficients

dy L —
=AY, A:[a,.j]l_,j:];, a; eR,i,j=1n. (32.1)

As in the case of linear ODEs with constant coefficients, we shall search for solutions of
exponential form

S
c
y(x)=| 7 e = e, (3.2.2)
Cn
where A is a parameter and

¢
)

C=| . (3.2.3)
c

is a constant vector. Introducing this in (3.2.1), we get
Cre™ = ACe™ (3.2.4)

or, denoting by E the nxn unit matrix

1 0 0
01 ... 0
E= , (3.2.5)
0 0 1
we deduce
(A-AE)C=0, (3.2.6)

i.e., an algebraic linear homogeneous system, that must be fulfilled by the components of
C. Componentwise, this system reads
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(a“ —k)cl +ap,c, +...+a,c, =0,

a,c; +(a22 —7»)02 +..+a,,c, =0,

3.2.7
A, € +a,C) ...+ (a,m —X)cn =0.
It allows non-zero solutions if and only if its associated determinant vanishes
A(%) = det{A-AE]=0. (3.2.8)

The n-th degree polynomial A(X) is called the characteristic polynomial and the

equation (3.2.8) — the characteristic equation. The solutions of the homogeneous ODS
depend on the nature of the roots of the characteristic equation. It is seen that these roots
are precisely the eigenvalues of the matrix A and that C are the corresponding
eigenvectors.

Let A,A,,...,A, be the roots of the characteristic equation. As for the ODEs, we must

consider several distinct cases.

a) Real and distinct roots. Denote by

c,=| | j=Ln. (3.2.9)

the corresponding eigenvectors. As the eigenvalues are distinct, the Wronskian of the
. A . T .
vector-functions C ;e 7, j=1n, does not vanish. Consequently, these vectors are

linearly independent and the general solution of the homogeneous ODS (3.2.1) is
y(x)=k,C " +kyCret? 4. +k,C,e"" (3.2.10)

or, componentwise,

J/1(x) C11 C12 Cn

X c c c
yzz( ) =k, 2: M tky| M 4wk, 2? e, (3.2.11)
Y (x) Cnl Cn2 cnn

where & j»J=Ln,are arbitrary constants.

b) Complex-conjugate roots. Suppose that all the roots are distinct, but some of
them are complex. Let A, =a+if, with B=0. The characteristic equation has real

coefficients, it will allow also the solution A, =a—-if. If C=C,+iC,C is the
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(complex) eigenvector corresponding to A, , then C= C, —iC, will be the eigenvector

corresponding to A,, C,,C, being constant real vectors. As the ODS is linear, once

with the solutions Ce((’”iﬁ)",ae(OHB X it also allows as solutions their linear

combinations
v (x)_ Cela+iB)r | Colo-if)x e oibr | ooiBx CLe% 603 pr
1\)= = 1= 5 % >
. 2 _ . . 2 . (3.2.12)
Ce(aﬂﬁ)x _ Ce(a—l[})x ele _e-lﬁx
¥2(x)= 2i =e™C, T =C,e™ sinfx;
i i

to get the above expressions, we used Euler’s formulae (2.2.5). These real solutions are
linearly independent too. Therefore, they may replace Ce(““ﬁ)ﬂfe(“—iﬁ)x in the

corresponding fundamental system. So, if the remainding roots of the characteristic
equation are real and distinct, the general solution of (3.2.1) reads

y(x)=k,C ™ cosPx+k,Cre™ sinPx+k;Cye”3" +...+k,C, " (3.2.13)

¢) Multiple roots. To simplify the presentations, let us suppose that A; has the

order of multiplicity m and that the other roots of the characteristic equation are all of
them real and distinct. As in the case of ODEs, we search for solutions of the form

Ce™™ Cyxe™™ ..., C, x" M, (3.2.14)

where C;, j=1m, are constant vectors, whose components are determined by

identification, after replacing (3.2.14) in the ODS (3.2.1). Thus, the general solution of
(3.2.1) reads

y(x): (klcl +k2 C2x+...+ kmmem*I %le

(3.2.15)
+k,,C, e 4+ k,C e

2.2 SOLUTIONS IN MATRIX FORM FOR LINEAR ODSs WITH CONSTANT
COEFFICIENTS

Let us start from the Cauchy problem associated to the linear ODS with constant
coefficients (3.2.1)

Y10
_ Y20
Y(xo)=vo. vo=|""| x5eR. (3.2.16)

Yno

We can expand the solution in a Taylor series around x,,
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x—xy dy (x—x0)2 dzy
T a(xo)Jr—z! ﬁ(x‘))

¥(x)=¥lxo)+

o) dhy

+...+ X w

(3.2.17)

Replacing this expansion in (3.2.1) and taking into account the initial conditions (3.2.16),

we obtain, step by step,

d

Ey(xo):Aycfo):AYO,

q2

dx—f(xo) A (xo):A Yo,
q*

dx_ky( o)zAkYOs

We thus get for y the expansion

Y7Xo0 o 0+(x—x0)2

y(x)=y, + oAy . —

or

2 k
y(x): E+2 0 A+(x—x0) A%+ ..+MA1‘ +...¥o-

1! 2! ' k!
By analogy with the scalar functions, we define

eAlwo) _ gy TTY0 4 (=) A’ +...+—(x_x°)k AF
1! 2! k!

+...

Thus, the solution of the Cauchy problem (3.2.1), (3.2.16) finally reads

y(x) = eA(XﬂCO)YO .

(3.2.18)

(3.2.19)

(3.2.20)

(3.2.21)

(3.2.22)

The problem of solving the system (3.2.1) is ultimately reduced to the calculus of the

exponential matrix (3.2.21).

Let A,A,,...,A, be the eigenvalues of the matrix A, i.e., the roots of the characteristic

equation

det[A —AE]=0,

(3.2.23)
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each of them having the order of multiplicity m,m,,...,m,, accordingly. Hence

7o

-
> my =n.Letusdenote by J, the m; xm; matrix

k=1
v, 1 0 0 ... 0 O]
0 A, 1 0
0 0 A, 1 —
J; = .,  k=Lr, (3.2.24)
0 0 0 0 Ay ]
|0 0 0 O 0 A,
and by J the block matrix
J, 0 0
0 J, ... 0
J= ) (3.2.25)
0 0 J

The matrix J is called the normal Jordan form for A; J, are called Jordan cells. If
my, =1, then the corresponding Jordan cell is reduced to the 1x1 matrix J, = [k x ] .

From the matrix theory, it is known that one can find a non-degenerate matrix D such
that

A=DJD'. (3.2.26)
The ODS (3.2.1) may then be written in the form

D! % =D 'Ay. (3.2.27)

Let us apply now the change of vector-function y(x):Dz(x). The ODS (3.2.27)
becomes

4 pAD: (3.2.28)
dx

or, taking (3.2.26) into account,

e _y, (3.2.29)
dx

For the new unknown vector-function z, one has the initial conditions

z(xy)=D"y,, (3.2.30)
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deduced from (3.2.16).
Applying now formula (3.2.22) to the ODS (3.2.29), also considering (3.2.30), we
deduce for z the following representation

2(x)=e"t)ply . (3.2.31)

But the exponential matrix of this formula is easily computed, due to the particular form
of J. Indeed, we find immediately

Y1) 0 ... 0
J (x—x )
) |0 e , (3.2.32)
0 0 eJr'()'C;Xo)
where
_1 (x—x,) .(x_xo)2 (x—xp)"
0 200 7 (my 1)
eJk(v\”*Xo) — 0 1 (x—xo) (x_x )mk_2 Xk(X*xO)’ k=7 (3233)
(mk —2)!
K 0 0 1 i

Eventually, the solution of the initial problem (3.2.1), (3.2.16) reads
y(x)=De’0)ply . (3.2.34)

Remarks. 1)Another practical possibility to solve a linear ODS with constant coefficients
is to eliminate the unknown functions, all but one, by successive differentiations, thus
reducing it to a linear ODE with constant coefficients, which can be solved by the
methods exposed at Chap.2.

2) To solve a non-homogeneous ODS with constant coefficients, one can use,
as in the case of linear ODEs, either the general method of variation of parameters
(Lagrange), as exposed at Sec.1.3, or to search for solutions in the form of the free term,
if this term is formed by elementary functions.
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3. Applications

Application 3.1

Problem. Consider two masses m; and m,, sliding frictionless along a vertical axe,
being connected with springs of elastic constants k; and &, (Fig.3.1). Study the motion
of the two springs.

Figure 3. 1. Oscillation of two masses m; and m, connected with springs of elastic constants k; and &,

Mathematical model. We specify the positions of the two masses at the moment ¢ by the
displacements x; and x,, measured from the static positions of equilibrium, when the
springs are not acted upon. Taking into account Newton’s equation of motion, we may
write

mx; = —kx, +k2(x2 _x1)> (@)

myX, = —kz(xz - xl)' (b)
Introducing the notations

M:a k_zzb k_zzc (C)
ml ’ml ’mz ’

these equations read

d2x,

de?

+ax; —bx, =0,
(d)
d2x

dt22 —-cx; +ex, =0,
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that is, they form a linear and homogeneous ODS, of unknown functions x; and x, and
of independent variable ¢.
Solution. The solution of the problem can be obtained by two methods: 1) the method of

elimination and 2) the standard method.
1) In the first method we eliminate one of the unknown functions, e.g., x,. To

this goal, we write the system (a), (b) in the form

d2
dt_2+a x, —bx, =0,

(e)
d2
- cx; +(dt—2+c]x2 =0.
2 d2
The differential operators d_2+ a, d_2 + ¢ are prime between them, so that —
t t

eliminating x, — one obtains
d2 d2
|:(dt—2 + Clj(dt—z + CJ — bc:lxl = 0 (f)

d*x, d2x,
+c
) dr?

or

+cla-b)x, =0. €3]

We get thus a linear differential equation of fourth order, homogeneous and with
constant coefficients. Searching solutions of the form x, =e", we obtain the
characteristic equation

y4+(a+c)y2+c(a—b):0, (h)
of roots
a+c a-c\
Y1Y2:Y3,Ya = 4|~ 5 + [ 5 j + be . (1)

The quantity under the second radical must be positive

2
("_Cj the>0.
2

Further, the notations (c) lead to @ — b > 0, hence the value of the second radical is
always less than (a + ¢)/2 . In this case, we may write y = ip , where
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2
a+c a-c .
P1> P25 P35 P4 :i\/ > * ( 2 j + bc . )]

Taking into account Euler’s formula (ei” = cos p+isin p), the general solution may be
written in a real form

x; = C; cos pit + C, sin p;t + C;5 cos p,t + C4 sin p,t . (k)
The second function x, may be determined by the first relation (d)

my .. ki +k
x2:_1x1+#
my k,

Xy . (l)
Noting that p; = —p, and p, = —p,, the relation (k) may take the form
X, =4 sin(plt + (x') + 4, sin(pzt + oc"), (m)

and (1) takes the corresponding form

Xy = M4, sin(pyt + a') + L"4, sin(p,r + a”), (n)
where
a-pi c a-p3 c
7\’/ — pl — =, 7\‘0 — p2 _ > (O)
b c— pj b c—p;

2) To apply the standard method exposed in Sec.2.2, we firslty write the system
(a), (b) in the form of a first order ODS, introducing two new unknown auxiliary
functions u and v,

X, =u,
u = —ax; + bx,, ®)
. P
x2 =V,

vV =cx; —cx,.

According to the results in Sec.2.2, we determine the eigenvalues of the matrix P of the
system, which satisfy

% 1 0 0
-a -\ b 0
det[P - LE]= o o0 . 117 (@

c 0 —c —-X\

leading to the biquadratic equation
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Mr(@a+e? +cla-b)=0, (v)

the same as (b). One obtains thus the imaginary roots given by (j).
The eigenvector corresponding to the eigenvalue ip, is

By means of all the four eigenvectors, corresponding to the eigenvalues *ip,, tip,, we
obtain the general solution of the system (p) in the form

1 1
1 ip —ip,
u = el a—p12 +oe it a—p12
X2 b b
v . a—plz - a_p12
1Py T —1p b
- _ _ _ S
{ { (s
ip, —ip,
+Beipzf a—p% +l§e-ipzl a‘P% ,
b b
2 2
. a-p . a-p
1Py Tz —1p; b 2

where a = A+1iB, B=C+1D,and 4, B, C, D are arbitrary real constants. It follows
x, = Acos p;t — Bsin p;t + Ccos pyt — D, sin p,t,

2 ®

a-pt a—
Pi (A cos p;t — Bsin plt) + P2 (C cos p,t — D, sin pzt).

x2=

If we take 4, = -B, o' = arctan(— A/B), A, =-D, o" = arctan(— C/D), then we
obtain the form (m), (n) of the solution.

Finally, we notice that we may assume from the very beginning a trigonometric form of
the solution, taking into account that we have to do with a problem of oscillations. For
the sake of simplicity of the calculation we search for x; and x, solutions of the form
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x, = Asin(pr + o),

x, =B sin(pt + oc), ®

where 4,B,p,o are indeterminate constants. Introducing the solution (u) in the
differential system (a), (b), one obtains the homogeneous algebraic equations

Ala - p?)-Bb =0,

—Ac+B(c—p2)=O. ©

The trivial solution 4 = B = 0 defines the condition of equilibrium. A non- trivial
solution is obtained by equating to zero the determinant
a-p> -b

-c c¢-p?

-0, W)

yielding the biquadratic equation
p* —(a+c)p2 +c(a—b):O,
which coincides with the equation (h) in y , of roots (j).
Due to the homogeneity of the algebraic system, we may determine only the ratio B/ 4 ;

the calculus corresponding to the two values p? and p3 results in B,/ A, =" and

B,/A4, = \", with the values (0) previously given.

Application 3.2

Problem. Consider a vertical string strongly tensioned by a force S . On the string are
fixed three masses m at equal distances (Fig.3.2, a). Determine the various types of
vibration, assuming that the tension does not change very much four small transverse
displacements.

Figure 3. 2. String acted upon by the tension S and having three equal masses m fixed (a); three types of
vibration (b, c, d)
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Mathematical model. We denote by a the distances between the three masses and by
Vi, V2, y3 the transverse displacements of those masses. The equations of motion of the

three masses are

my; = — (2)’1 - J’2),

a
} S
my, = —;(— yi+ 2y, = v3) (a)

) S
mjjy = —;(— vy +2y3).

Solution. The above linear and homogeneous ODS may be written in the form
V) = buy,
Uy = -b* (2)’1 N ),
Yy =bu,,
iy ==b*(= 3, +2y;, = y3),
V3 = bus,
iy = =b* (= y) +2y3),

(b)

where u;,u,,u, are new auxiliary unknown functions, while b is given by
b=,—. (©)

Introducing the variable
T=0bt, (d)

one simplifies the system to the form

’

Y1 =uy,

up ==2y;+y,,

3 =y,

uy =y =2y, +ys,
V3 =us,

uy =y, —2y;.

<

(e)

where primes mean differentiation with respect to 1. The matrix associated to (e) is
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0O 1 0 0 0 O
-2 0 1 0 0 O
0 0 0 1 0 O
P2l 0220 1 of ®
0 0 0 0 0 1
L0 0 1 0 -2 0]
The eigenvalues of this matrix are given by
-1 1 o o0 0 O
-2 -r 1 0 0 O
det[P —AE]= R (2)
1 0 -2 -2 1 0
0o o0 o0 0 -a 1
0 0 1 0 -2 —-A

The biquadratic equation (g) has purely imaginary roots, i.e.

pl=iﬁ,p2:i\/2—ﬁ,p3=i\[2+\/§, (h)

the other three being their conjugates. After computing the corresponding eigenvectors,
the general solution of the system (e) is given by

v, 1 1 1
u, i2 ~iV2 iV2-+2
Va2 2| O +aefi\/51 0 +Bei\/2—ﬁr 2

7 0 0 4242
¥s . . 1
s —iv2 | -iv2) i2-+2

- o - . o o)

1
—iy2-+2i i2+42 L2442
. —iy 221 2 i\/2+\/§‘[ _\/E — —iy 24421 _\/E
+he a2z | _ifaro2 |76 a2 |

I 1 1

| —ivV2-+2 | | iv2+42 | -iy2+4/2 |

where 20.=4,+id,, 2B=B,+iB,, 2y=C, +iC,, 4;,B;,C;, j =12, being

arbitrary real constants. Finally, we return to the variable ¢ and choose from the
representation (i) only the components of odd index, corresponding to the unknown
functions y,, y,, ¥3, of interest for our problem; we thus get
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71(6)= 4, cos\2bt — 4, sin2bi + B, cos(m b:j _B, sin(m bt) "
+C, cos( 2+ ﬁbtj -C, sin( 2442 sz,
yy()=+2 [B, cos(m bt) -B, sin(m btﬂ
-2 [CI cos( 2442 bt) -C, sin(m btﬂ
y5(1)= —(Al cos+/2bt — A, sin ﬁbt)+ B, cos(m bt) -B, sin(m sz +
+C, cos( 2+J§bt)—c2 sin( 2 +ﬁbtj

@

or
Y = Cos(ﬁbt—81)+k2 cos(w/Z—ﬁbt—82)+k3 Cos( 2+J§bt—53),
v, :ﬁ{xz cos(\/Z—x/Ebt—Szj—M cos( 2+ﬁbt—83ﬂ, (k)
Yy =4, cos(ﬁbt—ﬁl)mz cos(\/Z—ﬁbt—62j+k3 cos( 2+J§br—63),

with the notations

A= 4, Ao = B, Na = G
! cosd, : cosd, ’ cosdy

)
4 B c

tand, =——=, tand, =——=, tand; =——=.
1 1 1

The standard method used above often leads to cumbrous computation, despite its
generality. In the above considered particular case one may simplify the computation;
thus, the system (e) can be directly written in the form

d2y1
d‘cz :_2y1+y2’
d2y2
dr—2=)’1—2)’2 RED (m)
d2y
: =y, —2y3;
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then, subtracting the last equation from the first one, we find out that the function

¢ = y; — y5 satisfies the second order ODE with constant coefficients

2
_fhj’ +20=0. ()

The characteristic equation associated to (n) is

M +2=0, (0)
and thus
Q=Y —y; =0 COS\/E‘C-FB] sinﬁt:A] cos(ﬁ—S]l (p)

with notations of the form (1).
Further, we add the first and the last equation (m) and get

d2

ey (0 +v3) = 200 + 33) + 235,

5 (@)
d“y,

Ie2 +2y; =y s

Eliminating y, between the above two equations, one obtains

d4)’2 4 dz)’z

a0 002 +2y, =0. (r)

The corresponding characteristic equation is

M+a?+2=0, (s)

with the roots ii\/ 2 —\/E , J_ri\/ 2+\/5 . Hence, the general solution of the equation (r)
is

yz(ﬂ:)zA2 cos( 2—&1—62)+A3 cos(\/2+\/zr—83). (3]
From the second equation (q) we get

i+ Vs ZN/E{Az cos( 2—\/5 —82)—A3 cos( 2+x/51—63ﬂ, (w)

and, together with (p), the unknowns y; and y; read
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Vi :%cos(ﬁ‘c—éil)
ﬁ A, cos \/2—\/5’5—62 — A5 cos 2+x/57:—63 ,
" 2
V3= —%cos(ﬁr—éil)

+g{fl2 cos(ﬁt—éiz)—/g cos(mt—&)]

The formulae (t) and (v) represent the general solution of the system in t, where
A j,S j»J=123, are arbitrary constants. It coincides with the formulae (k) if we return

V)

to the variable ¢ and denote by

4 V2 V2
}\.1 :71,7\.2 ZTAZ, 7\.3 :—7A3,

without any loss of generality.
The three types of oscillation are indicated in Fig.3.2, b, ¢, d.
Application 3.3

Problem. Study the translation and the rotation vibrations of a foundation block on an
elastic ground.

Mathematical model. The differential equations governing this phenomenon are

mx + k. x —k ho =0, (a)

I + (ky — Gh + k,h? Jp =k hx = 0, (b)

in a plane Ozx, where J is the moment of inertia of the assembly foundation-engine
with respect to the Oy-axis (normal to the plane Ozx), passing through the centre of
gravity. G =mg is the weight of the block on the elastic ground, % is the applicate of

the centre of gravity with respect to the ground, x is the translation displacement in the
direction of the Ox-axis, ¢ is the rotation about the Oy-axis, k, is the horizontal force

due to a unit displacement and k,, is the moment in the plane Ozx due to a unit rotation
(Fig.3.3).
Solution. The equations (a) and (b) may be written in the form

d?
mdt—2+kxx—kxh(p:0, (c)
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d2

~ ket | S kBT e~ Gfo = 0. (d)
t

Eliminating the displacement x between these equations one obtains a linear,
homogeneous differential equation of fourth order with constant coefficients for the
rotation ¢ .

!
S S—

N
I
1
f
i

Figure 3. 3. Foundation block on an elastic ground

Searching a solution of the form e”, we find for r the characteristic equation

k.h®+ho—-Gh k k. \k, — Gh
B e L el LS N +M=0‘ )
J m mJ
The notations
k k. — Gh J
2 x 2 9
= = 5> = 5> 60,13
pi=py sy =0 ()

where p, is the limit pulsation of the translation vibrations in the absence of rotations,
while p, is the limit pulsation of the rotaion vibration in the absence of sliding, are

introduced.
The biquadratic equation (f) becomes

yrt(p2 4 p2)r? 4 p2p2 =0;

its roots are given by

rt = 2%{— (2 +p$)i\/(p§ + p2f —4vp§p£}

and are all imaginary. Hence, the solution of the equations (a) and (b) may be obtained
directly in the form
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¢=25B sin(pt + OL),

x = Csin(pt + o), M

where B, C, o are constants to be determined from the initial conditions. Introducing (h)
in (a) and (b), one obtains the linear algebraic system

k, — mp? — kh cl_ 0 i
—kyh kg - Gh+—kh? - Jp? | B| T

The system is homogeneous, so that the determinant of the coefficients must be equated
to zero, to get non-zero solutions; this leads to the equation of the pulsation p

ypt+(p2 4 p2)p?+ p2p2 =0,

which differs from the corresponding equation for » only by a sign (the change of r in
p;)- The roots of this equation are

1 2 .
pf,p§=2—y{p§+p$i\/(pﬁ+p$) —4yp§pi} Q)
Hence, in motions with two degrees of freedom the system engine-foundation may
oscillate with one of the principal pulsations p; or p,, given by (j).

The ratio of the amplitudes B and C of the two vibrations is of the form

kX
kb ot ph

ky —mp*> k. 5 pl-p

<
B

The system (a), (b) may be also solved directly, using the standard method for the linear
first order ODS, without reducing to only one differential equation (of fourth order in
this case). By means of the notations (g) and introducing the auxiliary functions y and

v , the system (a), (b) becomes

x=y,
y=-pix+hp},
o=, k)
2 2
hm 2 p(p zmh
=—px—| —+
V=—"r; (y T

The associated characteristic determinant is
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-2 1 0 0
2 2
P Th hpi 1 2, 2 2 2
+
det[P—kE]: 0 0 , -y 1 =7\‘4+px p(P 7\‘2+pxp(p .
2 Y Y
LS Y S RO L0
J Y J

Equating it with zero, we find the eigenvalues of the matrix P of the system (k) which
are purely imaginary and coincide with the roots of the equation in r. Taking into
account the form of the system, we may search for the solution, as in the previous
method, in the form

x Asin(rt + )
y B cos(rt + OL)
o : )
(0] C sm(rt +a)
) D cos(rt + (x)

From now on, the solution of the problem follows the same way as before.

Application 3.4

Problem. The foundation of an engine of weight O lays on an elastic medium (Fig.3.4).
The area of the foundation basis is .S and the coefficient of elasticity of the medium is
k. To avoid the resonance which may appear during the working, the engine is placed

on a rigid bed, connected to the foundation by springs of elastic constant k; . The weight
of the engine and of the bed is P . Determine the pulsation of the system foundation-

engine. Numerical data: Q =9.8-10°N, §=17m?, k, =588-10% N/m?,
ky =49-10° N/m, P = 48.02 - 103N .
Mathematical model. The differential equations of the motion are

mX +k](x1 _xz):(), (a)

myiy + (ky + k), —kyx, =0, (b)

where the displacements x; and x, are measured from the static position of equilibrium
of the systemand k = k.S .

Solution. The second order ODS given by (a) and (b) may be expressed as a system of
first order, introducing auxiliary unknown functions. One may search directly the
unknown functions in the form

x] = Cleﬁt, x2 = Czeﬁt 5



234 ODEs WITH APPLICATIONS TO MECHANICS
it follows that

m1B2C1 + k1(c1 - Cz) =0,
myB2C, + (ky + k)C, — k,Cy = 0.

<

¥ 3%

My

L

/

Figure 3. 4. The foundation of an engine on a rigid bed
This is a linear and homogeneous algebraic system in C;, C,. To get non-zero
solutions, the associated determinant must vanish, i.e.
2
mB* + ky — ki
—k, myBr+k +k

>

or

B4+(£+MJ[L}2+£:()_ (C)

m m; mym;
Taking into account that m;, = P/g and m, = Q/g, the equations (c) becomes

gty o KSR e k k,Sg?
P 0 PO

The roots of this equation are

= 0. (d)

Br.B3 = -

gk, kS+k k, kS+k ) 4kkS
Sl—=+ 2t || =+ -
2|2 0 P 0 PO

We denote by B? = —p?, i = 1,2 . Introducing numerical data, we have
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2 2
1>£2 —

9.81| 49-10° +58.8-106-17+49-106+
2 | 48.02-10° 9.8-10° -

6 6 62 6 6
L [[49-10° | 58.8-10°-17+49.10° ) 4.49:10°-458.810°-17
|\ 48.02-10° 9.8-10° 48.02-10%-9.8-10°

= 4.905(1020.408163 +107 £ \/1 127.4081632 — 416326.5308)
= 4.905(1 127.408163+107 924.512107),
therefore
p? = 9952051568 52, p? = 10064.66892s2,
and
P, = 3154757, p, =100.323s7".

Because the roots of the characteristic equation (d) are purely imaginary in this case, the
solution of the system (a), (b) is of the form

x| = 4 sin(plt + ocl) + A4, sin(pzt + ocz),

m, p? m, p?
X, = Al(l - }cpl Jsin(plt + ocl)+ Az(l - }(pz Jsin(pzt + az).
1 !

Application 3.5

Problem. An engine of mass M, staying on an elastic spring of constant K is subjected to
a vertical pulsatory force F' = F|, sin ot . Because, for a certain velocity of running of

the engine, the frequence of the pulsatory force may become equal to the frequence of
the eigenvibrations of the system (M , K ) it appears the risk of resonance (Fig.3.5, a); it
is useful to fit out the equipment by a dynamic damper, formed by a mass m linked to

the engine M by a spring of elastic constant k& (Fig.3.5, b). The system thus obtained
has two degrees of freedom.

Mathematical model. The ODS modelling the phenomenon is of the form
myj = k(= x), (a)
Mz = k(y—x)- Kx+ F, sinot (b)
and the boundary conditions are

x(0)= 0. »(0)=0. i(0)= 0. 3(0) = 0. (©)
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Solution. By using the notations

the differential equations (a), (b) become
2
(d +B2jy—l32x:0,

dr?

2
vy + Jd—+(x2+y2x=f sin ©f .
Ty 412 0

¥
kZ Ssinwl
] b
» M
kJ
K
a i b

Figure 3. 5. Resonance of the mechanical system (a). Dynamic damper (b)

Eliminating the function y between these equations, we find

L(lit_i+ (02 +p2 +92)+ OLZBZ}C = folB? - w?)sin ot

Similarly, the function x may be eliminated and it results

d* d?
dt—4+(OL2 +B2 +'Y2)dt—2+01,2B2 y = foﬁz sin o7 .

(d)

(e

¢

(2

(h)

As it should be expected, the differential operator applied to the functions x and y is

the same, because the system (e), (f) is linear with constant coefficients.

Noting that (g), (h) contain only derivatives of even order, we may search particular

solutions of the form

x, =Asinwt, y, = Bsinor.

(@)
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Introducing (i) in (g) and (h), we get
x, :LfO(Bz—wz)sincot,yp :Lfoﬁz sin oz , G)
N N
with the notation
N=o' (02 +p2 +72 o> +a2p2. )

The eigenvibrations (represented by the solution of the homogeneous equations) may be
neglected, remaining only the forced vibrations (represented by the particular solution
(i)). From (i), one observes that the masses m and M have a simple harmonic motion
after the eigenvibrations tend to zero.

The reaction between the pulsatory force F and the system (M , K ) works when the

frequency ® or F and the eigenfrequency o = /K/M of the system (M , K) are

equal. Taking a = ®, the expressions (i) become

1 . 1 .
5 = = garr FolB? -0 Jsinor, y, = =5 fiB?sin ot 0)

it is thus proved that the amplitude of x,, which — normally — tends to infinity, is

p 2
reduced — due to the damper — to the finite value f, ([32 - w? )/ w?y?.
If the values of £ and m of the damper are such that a = B = o, then the relations (1)

are reduced to
— O — 1 1 .
x,=0,y,= __yz Jfo sinot;

this proves that the damper called syntonized, completely cancels the vibrations of M.



Chapter 4

NON-LINEAR ODEs OF FIRST AND SECOND ORDER

1. First Order Non-Linear ODEs
1.1 FORMS OF FIRST ORDER ODEs AND OF THEIR SOLUTIONS

1.1.1  Forms of ODEs
A first order ODE may appear in various forms, according to the modelled physical
phenomenon and it also may be put in forms better suited to the method of solving it.

a) The general form
’ ’ d
Flx,2,y)=0, ===, (4.1.1)

also called the implicit form.
If OF /0y" # 0, then, according to the implicit function theorem, we can express y’ as a

function of x and y, thus getting

b) The canonic/normal/explicit form

- W
vi=rley) v 4.1.2)

Writing this as dy = f (x, y)dx , we observe that a first order ODE may also be expressed

in
¢) The differential form

P(x, y)dx+O(x, y)dy = 0. (4.1.3)
Dividing by the product PQ and re-noting the functions, this can also be written in

d) The symmetric form

(4.1.4)

1.1.2  Forms of the solutions
We firstly define the types of solutions of first order ODEs.

1. A solution of a first order ODE is a function of class C'(/), / <R, identically
satisfying the ODE for any x e/ .

239



240 ODEs WITH APPLICATIONS TO MECHANICS

2. The general solution is a function y=(p(x,C), depending on the arbitrary

constant C, that satisfies the given ODE for any admissible C.
3. The particular solutions are obtained from the general one by giving numerical
values to C.
4.  The singular solutions are those solutions of the ODE that cannot be obtained
from the general one by particularizing the constant C.
The constant C is determined imposing a supplementary condition. For instance, it is
required that y(xo)z Yo » Where x,, y,, are previously given. This is a Cauchy condition

(see also the Introduction).
The forms in which there can be obtained the solutions of first order ODEs are

a) the explicit form

y=0x), (4.1.5)
b) the implicit form
®(x,y)=0 (4.1.6)
and
¢) the parametric form
{;z(j,((t,))’ telap]cn. (4.1.7)

Example. Consider the ODE y' = 2 , defined for y > 0. Then
y

a) the function y =v1-x%, x e (— 1,1) is an explicit solution of the ODE;

b) the function X+ y2 =1 is an implicit solution. Indeed, differentiating both
members, we get 2xdx+2ydy=0,or dy/dx=-x/y;
¢) the functions

X =cost,
. te (— T, Tc) S
y=sint,
determine a parametric solution. Indeed,
dx =—sin¢ dt,
dy =costdt,
whence

dy  costdr  cost

dx —sintdr  sint’
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which coincides with —x/y =—cos?/sin¢, therefore the parametric solution identically

satisfies the given ODE.

1.2 GEOMETRIC INTERPRETATION. THE THEOREM OF EXISTENCE AND
UNIQUENESS

Let f (x, y) be a function depending on the real variables x and y; suppose that the point

P(x, y) belongs to an open set Q < K2 . The function f (x, y) defines an ODE with one
unknown function, of first order with respect to the independent variable x

% = (). (4.1.8)

To solve this ODE means to find all its solutions and to study their behaviour.
We call solution or integral curve or, simply, integral of (4.1.1), a function y = (p(x),

defined on a real open interval / = [a, b] e R, of class C'(7), that satisfies
o'(x)=fx0(x)), vxel, (4.1.9)

if, moreover, the points (x, (p(x)) belong to Q forany xe /.

To solve the associated Cauchy (or initial) problem means to find those solutions of
(4.1.1) that satisfy

¥(x0)= 0. (4.1.10)

where (xo , yo) is a given point, belonging to Q.

Figure 4. 1. The contact element

In what follows, we shall see that, under certain convenient hypotheses concerning the
regularity of f, the Cauchy problem (4.1.1), (4.1.10) allows at least one solution; the
uniqueness is ensured only if f'satisfies some supplementary conditions.

Let us define, for every point P(x, y) belonging to Q, the angle a, by the formula
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tano = f(x, ). (4.1.11)

The point P(x, y) forms, together with the angle o, the so called contact element or

linear element. The set of all contact elements is called field of directions; this field of
directions defines the differential ODE (4.1.1).

Hence, a solution — or, equivalently, an integral curve — of the ODE (4.1.1) is a curve
possessing a tangent of slope a at each of its points P(x, y), with the property that
P(x, y) and a are, all of them, contact elements of (4.1.1).

In Fig.4.1 we give an intuitive representation of the contact element.
We shall give two classical examples that are significant for the importance of these
notions.

Example 1. Consider the equation

dy 2 2
—=x"+y°. 4.1.12
. y ( )

To draw the integral curves, we firstly shall draw the curves for which the slope is the
same; these curves are called isoclines. For example, if »'=0, it follows that

x=0,y=0.For y'=1/2, we find x2 er2 =1/2,1i.e. a circle centered at the origin, of

radius 1/+/2 ; the unit circle corresponds to y'=1, a.s.o. (see Fig.4.2, a). We then
choose in the plane a point of co-ordinates (xo, yo) and we draw a curve passing

through this point and has, at any of its points, a tangent parallel to the field direction;
according to the previous considerations, this will be an integral curve of the ODE
(4.1.12). Choosing another point, we find another integral curve. In the Fig.4.2, a there

are drawn those integral curves passing through the points (0,0), (0,—1/ 2), (x/E ,O). One

finally obtain a family of integral curves depending on a parameter.

Example 2. The first order ODE

d
g__r (4.1.13)
dx X

defines a field of directions in the whole plane, except for the origin. In the current point
M (x, y) the field direction is perpendicular on the vector radius OM. Due to this

property, the integral curves will be circles centered at the origin, of arbitrary radii, and
they will be represented analitically by the expression

y:i\/Cz— 2

where C is an arbitrary real constant.
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b

Figure 4. 2. Field of directions and integral curves for the ODE (4.1.12) (a); Field of directions and integral
curves for the ODE (4.1.14) (b)

Example 3. In Fig.4.2, b it is represented the field of directions corresponding to the
ODE

Y_,r,

4.1.14
R ( )

formed by the tangents to the parabolae y = Cx?.

A study of uniqueness and existence of the solution of the Cauchy problem associated to
the ODE (4.1.1) may be tackled in many ways, following the functional frame in use.

To enounce the classic theorem of existence and uniqueness some preliminary notions
must be introduced: the maximal solution and the Lipschitz property.

If y= (p(x), x €1, is a solution of (4.1.1), then any of its restrictions to a subinterval of /

is also a solution. This remark permits the introduction of an order relationship on the set
of the solutions of (4.1.1); more precisely, if ¢,,x€l,, and ¢,,xel,, are two
solutions, then we say that ¢, is “smaller” than ¢, and we write ¢, <¢,if I, I,
and @, (x) =0, (x) for any x € ;. In fact, ¢, < @, means that ¢, is the prolongation of
¢, . Any maximal element of the set of solutions is called a maximal solution. According

to this definition, such a solution cannot be anymore prolonged in Q. One can also prove
that any solution is “smaller” than a certain maximal solution.
We say that the function f (x, y) is Lipschitzian with respect to y if one can find a

constant K > 0 such that
|f(x7yl)_f(x’y2)|<K|yl_y2|7 (x:yl)EQ, (xayZ)EQ' (4115)

The function f (x, y) is called locally Lipschitzian if any point of Q has a neighbourhood
on which f'is Lipschitzian.
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There are large classes of functions with Lipschitz’s propriety; e.g., the analytic
functions and, in general, the functions of bounded derivatives with respect to y are also
Lipschitzian.

A function f may be Lipshitzian in y without being continuous with respect to (x, y).
Indeed, let f (x, y): g(x)+ y; this function is obviously Lipschitz with respect to y,

independently of the continuity of g.
Let us also note that a locally Lipschitz function is not necessarily Lipschitz on its whole

domain of definition; as an example, let us take f(x,y)=y?,(x,y)eQ=R?. With
these preparations, one can state

Theorem 4.1. Let f(x,y) be defined and continuous on the open set QO R*. Then
there is a unique maximal solution of (4.1.1) passing through any arbitrary point of Q.

Yet, there are simple ODEs that do not fit the conditions of this theorem and for which
the uniqueness of the solution is not ensured. Indeed, let us consider the ODE

¥ =3y"". (4.1.16)
The right member is defined and continuous on R, Yet, there are at least two solutions,
y1=0,», =x*, passing through (0,0). Actually, there are infinitely many solutions

passing through any point of the plane. The most general form of the solutions passing
through the origin is represented by the function

(x—a)S, x<a,
y(x)=10, a<x<b,. (4.1.17)
x—b)3, x>b,

where ¢ <0,6>0.

Intuitively, the Lipschitz propriety plays an important part in what concerns the
uniqueness of the solution. What does this mean from the geometric point of view?
Let A (x, yl) and P, (x, yz) be two points in Q and let let O be the piercing point of the

right lines corresponding to the elements of contact of P, and P, (Fig.4.3).

g
&

i

a G X X

Figure 4. 3. The Lipschitz propriety
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From the figure, it is seen that

f(xsyl)—f(x,yz) 1

Yi=)2 X—=6

p. (4.1.18)

If fis Lipschitz, then it satisfies the inequality (4.1.12) and thus the relationship (4.1.15)
involves |p| <K, for all the points of Q. Consequently, any condition imposing to p

values greater than 1/x automatically yields the uniqueness of the solution.
This remark may represent a starting point in considering some hypotheses — other than
the Lipschitz propriety — yielding the existence and uniqueness of solutions.
In what concerns the Cauchy problem, the (local) existence and the uniqueness of the
solutions are ensured by
Theorem 4.2 (Cauchy-Picard-Lipschitz). If
i) fe CO(D), where D = {(x,y)e 912,|x—x0| <a, |y—y0| < b},
i) fis Lipschitz iny, i.e. 3K > 0:|f(x,Y)- f(x,Z)|< K|V = Z|, (x,¥).(x,Z) e D,
then the Cauchy problem (4.1.1), (4.1.10) allows a unique solution y = y(x), of class
Cl(l), 1= [xo —h,x, +h], where h = min{a,b/M}, M = sup |f(x,y)|.
(x.)

x,y)eD

Remark. If f is only continuous in D, then one can only ensure the existence of the
solution (the Cauchy-Peano theorem), but uniqueness may fail, as in the case of equation
(4.1.16).

The proof of Theorem 4.2 is constructive, being based on the method of successive
approximations, also called the Picard-Lindeloff method; by using it, one can get
analytic approximates of the solution of the Cauchy problem (4.1.1), (4.1.10).

1.3 ANALYTIC METHODS FOR SOLVING FIRST ORDER NON-LINEAR ODEs

a) The method of successive approximations
Suppose that f satisfies the hypotheses of theorem 4.2. Then one sets up on the rectangle
D the recurrent sequence of functions, defined as follows

n(6)=yo + [l yo)d,
2 ()= + [ £ (0))de,
0 (4.1.19)

YalX)=yp+ Tf (¢, v, (1)),



246 ODEs WITH APPLICATIONS TO MECHANICS

It is proved that the sequence { n} is uniformly and absolutely convergent to the

ned
solution of the Cauchy problem (4.1.1), (4.1.10) on the interval /, centred at x,, of

length /4, defined in theorem 4.2. More precisely, it is shown that the following inequality
holds true

M 0
|yn(x ()|S? Z —|x x0| |x—x0|Sh. (4.1.20)

The above inequality allows a good enough evaluation of the distance between the
approximate and the solution itself.

b) The method of power series expansion
If fis infinitely many differentiable with respect to both its arguments, then y(x) will

alow a Taylor series expansion around x,,

(x—xo)

—(x 0 )2 J’”(xo )

y{x)=ylxo )+ 30 )+

1! 2!
( y (4.1.21)
X=X "
+...+T'0y( )(xo )+Rn (x, X ),
where R, (x,x ) is the remainder. The Lagrange’s form for the remainder reads
(x=x0)"" ()
R, (x,xo)zwy (&), &e(xo,x), (4.1.22)
so that, if  sup f(”)(x,yx <M, then
(r.y(x))en
n+l
IR, (x, x| <M |x(_ io1|)' y(E), & e(xy.x). (4.1.23)
n

Therefore, in a close neighbourhood of x, the remainder is small enough to be

neglected; thus, the solution of (4.1.1), (4.1.10) can be approximated by Taylor’s
polynomial

(x—xo)
1!

y'(x0)+...+wy<")(xo), (4.1.24)
n:

y(x) = y(xo )+

whose coefficients y( )( ) are computed step by step, by using the chain rule
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¥(x0) =y,
¥'(xg)= £ g, ¥(x)) = £ (x0. 30 )
0 0 0 0 4.1.25
J’"(x ):al(xo’yO)+—(x0aJ’o)J"(xo):i(x()syo)Jrf(x()syo)l(ono)’ ( )
x oy ox Oy

In the particular case in which f can be developd as a double power series in x and y
around (xo,yo), ie.,

Ms

flx.y)=

J»

aji (x=2x0) (y=1,)", (4.1.26)

=
Il

also expanding y in a power series around x,

Wx)=yo+ Se,(x=x,)", (4.1.27)

n=1

convergent for |x—x0|£h, therefore on the interval / from Theorem 4.2, we get,
introducing both developments in the ODE (4.1.1),

k

St Lol | = Selen). 129

J.k=0 m=1

From (4.1.28) we obtain by identification the coefficients c,,

€1 =4dgp>
2¢, =ag +ayC
2 10 Ta01C15
5 (4.1.29)
3¢y =ayy +agcp Fagce +agc,,

1.4 FIRST ORDER ODEs INTEGRABLE BY QUADRATURES

There are several types of ODEs of first order that may be solved by special methods,
leading to general solutions expressed in terms of first integrals of known functions. We
shall give here some of the most usual such types.

1.4.1  ODEs with separate variables
The ODEs with separate variables are of the form

X(x)dx+Y(y}dy =0, (4.1.30)

where the functions X and Y are supposedly continuous with respect to the variables x
and y respectively. In this case, the ODE can be integrated directly, obtaining the general
solution in the form
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[ X (x)dx+[Y(y)dy =C, (4.131)
or else

TX(z)dH fY(t)dt =C. (4.1.32)

X0 Yo

The Cauchy problem for (4.1.30) consists of finding the integral curve that passes
through the point (xo Y0 ); this solution reads

TX(t)dH— fY(z)dz =0. (4.1.33)

X0 Yo

1.4.2  ODEs with separable variables
These ODEs are of the form

P(x)g(y)dx + p(x)0(y)dy = 0. (4.134)

If p(x),¢(y) do not vanish, then we divide the ODE by the product p(x)q(y), thus
getting
Py 00Dy o
plx)

q(v)

which is an ODE with separate variables. The general solution of (4.1.34) is then

I%dﬂj%dﬁ C. (4.1.36)

(4.1.35)

1.4.3  Homogeneous first order ODEs
A function f:R? — R is called homogeneous of degree m if
f(tx,ly)= tmf(x, y), Vi, x,yeR.
The ODE
P(x, y)dx+0O(x, y)dy =0. (4.137)

in which P,Q e CO(D), Dc R? are homogeneous functions of the same degree m, is

called homogeneous.
By using the change of function

y=zx. (4.1.38)

the ODE (4.1.37) becomes, after simplification by x” (we take t=1/x)



4. Non-Linear ODEs of First and Second Order 249

[P(1,2)+ z0(1, z)|dx + xO(1, z)dz = 0, (4.1.39)

i.e., an ODE with separable variables. Its general solution is therefore

_ eV - —Q(l,z) =
x=Ce"), y(z)=-[ P(l,z)+zQ(l,z)dZ 0 (4.1.40)

and getting back to the variables x, y, the general solution of (4.1.37) is

o CeW[f] (4.1.41)

B

where v is not defined for x=0.

1.4.4  ODE:s of the form

dy ax+by+c
—=f— . (4.1.42)
dx ox+By+y
a) If A=aP—ba #0, then the linear algebraic system
ax+by+c=0,
(4.1.43)

ox+Py+y=0,

allows the unique solution (xo Yo ), as its determinant A is not null. By using the change

of variables u=x-x,,v=y—-y,, we reduce (4.1.41) to the 0-degree homogeneous
ODE

ﬂ_f au +bv 4144
du " low+Pv)’ (4.1.44)

b) If A=aB-bo=0, then a/o=b/B=0Ar, and therefore ax+by =A(ox+py).
Denoting by ¢ =ax+by , we get dt/dx =a+bdy/dx, whence

dr A+ e
Loavh : 4.1.45
& f( t+yxj (4:1.43)

i.e., an ODE with separable variables.

1.4.5  Total differential ODEs
By definition, an ODE

P(x,y)dx+0(x,y)dy=0, P,0eC’(D), D= R?, (4.1.46)
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is called a fotal differential ODE if there exists a differentiable function F = F(x,y)
such that dF EP(x, y)dx+Q(x, y)dy. Consequently, the general solution of a total
differentiable ODE is

F(x,y)=C, (4.1.47)

where C is an arbitrary constant. So, solving such an ODE is equivalent to finding a
function of two real variables given its first order differential.

It is well known that, if P,Q e C° (D) , then dF' = P(x, y)dx + Q(x, y)dy if and only if
)-22

X,y —(x, y), (x,y)e D. (4.1.48)

oP
By ( ox

oy

Thus, to solve a total differential ODE one must observe the following two steps:

oQ

1) One computes the partial derivatives%, e ; if they coincide, then the ODE is
X

with total differentials, i.e., there exists F' such that dF = P(x, y)dx + Q(x, y)dy .
2) As the first differential of a function F is

oF oF
dFF =—dx+—d
& P (4.1.49)
one must have
oF oF
. (x,»)=P(x,y), —(xy)=0, (x,y)el. (4.1.50)
X oy

Integrating the first relationship with respect to x, we find
Fx,y)= [Pt y)dt +o(y). (4.1.51)
X0

where ¢ is an arbitrary function depending only on y. Differentiating both members of
(4.1.51) with respect to y, we get

oF ¢ 6P(
= [ (exhe+o(y), 4152
o I o (4.1.52)
where x is fixed up, but arbitrarily chosen, such that (xo, y) belong to D. Taking now
(4.1.50) into account, it results
oF

& L b 0= 0lo) -0l ) o ). @159

Comparing this with the expression of 0F /0y from (4.1.52), it follows
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O(x,y)=0xg,»)+9'(y)= O(x. »). (4.1.54)
whence
¢'(y)=0(x.¥): (4.1.55)
thus, ¢ is given by
y
o(y)= [Olx,.1)dt, (4.1.56)
Yo

¥, being chosen in the same conditions as x,, . Eventually, we find F in the form

X Y
F(x,y)= [Pt y)de+ [O(xo,)de . (4.1.57)

X0 Yo

The general solution of the ODE with total differentials (4.1.46) is
x ¥
[ Pty)dt+ [Olxy,t)de = C, (4.1.58)
X0 Yo

where C is an arbitrary constant.
If we firstly integrate the second relation (4.1.50) with respect to y, we obtain the
general solution of (4.1.46) in an equivalent form

]EP(x, yo )z + fQ(x,t)dt =C. (4.1.59)
X0 Yo

1.4.6  Integrant factor
In most of cases, an ODE is not a total differential one. In this case, we can still use this
idea by looking for a function p = u(x, y) such that

u(x, y)[P(x, y)dx + Q(x, y)dy] =0, P,Qe C! (D), Dc R2 (4.1.60)

be a total differential ODE.
The function p= u(x, y) is called an integrant factor. One can prove several important

fact, ensuring the existence and the form of the integrant factors of a given ODE.

a) One can always find an integrant factor for a given first order ODE. Indeed, the
general solution of the ODE (4.1.46) may be written in the implicit form

F(x,y)=C. (4.1.61)
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Then
OF OF
—dx+—dy =0, 1.
o Y Ly (4.1.62)
which means
oOF
dy o
e oF . (4.1.63)
oy
On the other hand, from the ODE (4.1.46), we also get
dv __ Plxy)
= . 4.1.64
& Ofxy) ( )
This yields
oF oF
ox dy (4.1.65)
= =u(x,y)
Plx,y) O(xy)
and so
oF oF
= = u(x, y)P(x, y), 5 = M(X, y)Q(x, Y)- (4.1.66)

This means that . is an integrant factor for (4.1.46).

b) A first order ODE allows infinitely many integrant factors. Indeed, if u is an
integrant factor for (4.1.46) and F (x, y): C, for some C, is one of its integral curves,

then any A(x, y)= @(F(x, y)ju(x, y) is also an integrant factor, as

M, )P, y)dx+ O(x, y)dy] = o(F)ulx, y)P(x, y)dx + ulx, )O(x, y)dv]= 0. (4.1.67)

Thus, A(x, y)P(x, y)dx+A(x, y)O(x, y)dy is the differential of the function
®(F)=[o(F)dF, (4.1.68)

i.e., A(x, ) is an integrant factor for (4.1.46).

c) Any integrant factor of (4.1.46) is of the form (p(F(x, y))u(x, y). Let A be
another integrant factor, different from p. Then we have

(e, y)P(x, y)dx-+p(x, )O(x, y)dy = dF (x, y),

X(x, y)P(x, y)dx + ?u(x, y)Q(x, y)dy = dG(x, y).

Therefore, according to the properties of the first order differentials, we have

(4.1.69)
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uP=Z—I:, uQ=6a—§»
. (4.1.70)
Ox ay
involving
oF oF
D(F,G) _|ox  oy|_ , (x,y)eD. (4.1.71)

D(x,y) ~|0G G
ox oy
According to the properties of the Jacobian, it exists then @ = (I)(F ) such that
G(x, y) = @(F(x, y)) So,
Mex, y)[P(x, y)dx+O(x, y)dv]=A(x, y)P(x, y)dr+2(x, ¥)O(x, v}y = dG(x, »)
= ®'(F)dF (x, y) = ®'(F)[u(x, »)P(x, )dx + ulx, ) O(x, y)dy] . 4172)
= O'(F)ulx, y[P(x, y)dx +O(x, y)dy].
This yields precisely that
M, )= @(F)ulx, y). (4.1.73)

Consequence. If one knows two qualitatively different integrant factors, say A and p, of a
first order ODE, then its general solution is written without quadrature

My,
ry) o (4.1.74)
ulx. »)
d) Getting an integrant factor. If (4.1.60) is a total differential ODE, then
0 0
5011’) = (0), (4.1.75)
or
ou oun oP 0Q
——P—=y———]. 4.1.76
0 Ox oy l{ oy Ox ( )

Let us find for (4.1.76) solutions of the form p=p(w), where o is a known functionm
depending on x and y. As

a_dudo o dude

o do ox’ dy do oy’
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we deduce that

0w Om ) du oP 0Q
——P—|—=p———1. 4.1.77
[an ayjdco H[@y axj “.1.77)
Suppose now that the expression
oP_ 90
0 o
E(x,y)=—2F (4.1.78)
om 19/0)
0> -P”
Ox oy

depends explicitely only on ®, i.e. E (x, y) = \y(co). Then p satisfies the linear ODE

d
S vlon, (4.1.79)
do
allowing the solution
= oJvlodo (4.1.80)

This the integrant factor we are looking for. Note that we only need a particular solution
of (4.1.79) and not its general solution.

Particular cases. A) If @ =x , then

op_09
x oy Ox 4.1.81
p= el vk wlx)= y : ( )
0
B)If o=y ,then
o9 _op
ox 0 (4.1.82)
w=evOW oy (y)= Y
P
1.4.7  Clairaut’s equation
This ODE is of the form
y=x"+0(y"). (4.1.83)

We see that the ODE is linear in both x and y, but it is not explicit with respect to y’.
Using the change y'= p, (4.1.83) reads

y=xp+o(p). (4.1.84)
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As dy = pdx, differentiating (4.1.84) we get

pdx = pdx+xdp+¢'(p)dp . (4.1.85)

whence
[x+¢'(p)ldp =0, (4.1.86)

If dp=0, then p=C; introducing this in (4.1.84), we get the general solution of
Clairaut’s equation

y=Cx+9(C). (4.1.87)

The second possibility, x = —(p'(p) , yields the singular solution, expressed in parametric
form

x=-9'(p).
y=-po'(p)+olp). (4.1.88)

Indeed, it is easily seen that this solution cannot be obtained from the general one by
giving particular values to C.

From the geometric point of view, the general solution of Clairaut’s equation always
represents a pencil of straight lines; the envelope of this pencil can be obtained
eliminating C from the algebraic system formed of the general solution and its partial
derivative with respect to C, i.e.

F(x,,C)=y-Cx-¢(C)=0,

—E—x—(p,(C):O’ (4.1.89)

which is precisely, apart from the notation, the singular solution. We deduce that the
singular solution of Clairaut’s equation always represents the envelope of the pencil of
straight lines giving its general solution.

1.4.8  Lagrange’s equation
This is, in fact, a generalization of Clairaut’s equation

Ay )y+B(y x+C(y')=0. (4.1.90)

Supposing that A(y') # 0, we divide by it and thus (4.1.90) reads

y=0(yh+y(y). (4.1.91)

In order to avoid Clairaut’s equation, previously treated, we also suppose (p(y')¢ '

The method of solving (4.1.91) is the same: we use the change y’' = p, thus getting

y=o(pkx+v(p), (4.1.92)



256 ODEs WITH APPLICATIONS TO MECHANICS

then we differentiate this, and, taking into account that dy = pdx , we deduce

[o(p)- pldx +[xo'(p)+v'(p)ldp =0. (4.1.93)

If (p(p) is a constant, then (4.1.93) is an ODE with separable variables. If (p(p) is not
constant, then, as (p(p) # p, (4.1.93) may be written in the form

& olp) vl
d olp)-p~ p-olp)’

(4.1.94)

which is a first order linear non-homogeneous ODE, that can be easily solved by using
the method described in Chap.1, Sec.1. We get x as a function of p

x=a(p)C+B(p), (4.1.95)
with C an arbitrary constant. Getting back to (4.1.92), we deduce
v =o(p)lalp)c+B(p)l+w(p). (4.1.96)

so that the general solution of Lagrange’s equation, written in parametric form, is

x=a(p)C+B(p)
y=1(p)C+3(p)

Let us consider now the case (p(p): p . Generally speaking, this represents a

(4.1.97)

transcendental equation. Denoting by p; its solutions, we find the equations of some
straight lines

y=px+y(p;), (4.1.98)

also representing solutions of Lagrange’s equation, possibly singular.

1.4.9  Bernoulli’s equation
This ODE is of the form

y'+P(x)y+0(x)y* =0, (4.1.99)

with P,Q e CO(I ), IcR.If =0, then (4.1.99) is a linear non-homogeneous first
order ODE; if a =1, then (4.1.99) becomes also a linear first order ODE, but in this case
it is homogeneous. As both these cases were treated in Chap.l, we shall consider
ag{0l}.
By using the change of function

u=y*, (4.1.100)

the Bernoulli ODE becomes
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Lt P+ 0(x) =0, (4.1.101)
—a

i.e., again a linear ODE, that can be solved as shown in Chap.l. After obtaining u, we
return to y by using (4.1.100).

1.4.10 Riccati’s equation
This widely studied ODE is of the form

y' = Plx)y+0x)y® +R(x), (4.1.102)

where P,Q,R ECO(I),IQ‘.R. If R or Q vanish identically on 7, then (4.1.102) is

reduced either to a Bernoulli equation for oo =2 or to a linear first order ODE, both of
them previously studied.

Riccati’s equation is of great interest as it models important classes of physical
phenomena. We shall emphasize several important properties of this equation and of its
solutions, along with methods of solving it.

a) If we know one of its particular solutions, say Y, then Riccati’s equation may be
solved by quadratures.
Indeed, by the change of function

y(x)=z(x)+¥(x), (4.1.103)

we find out that the new unknown function z(x) must satisfy Bernoulli’s equation

2" =[P(x)+2Y(x)0(x)z(x)+ O(x)z2, (4.1.104)

and therefore the function u=1/z=1/(y—Y) satisfies the linear non-homogeneous
ODE

u' +[P(x)+2Y(x) O(x)|u = O(x). (4.1.105)
b) The solution of a Riccati equation is a homographic function of an arbitrary

constant C.
The solution of (4.1.105) may be written in the form

u = CellPWRYoWler | (), (4.1.106)

where U is a particular solution of the non-homogeneous ODE. Note that (4.1.106) may
be also written in the form

u=Colx)+y(x), (4.1.107)

putting C into evidence. Getting back to y, we find the general solution of Riccati’s
equation in the form
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; (4.1.108)

or, with obvious notations,
y(x) _ C(x(x)+ B(x) )
Cy(x)+8(x)

meaning that y is a homographic function of C.
We can prove, conversely, that

(4.1.109)

a) Any homographic function (4.1.109) represents the general solution of a certain
Riccati equation.
Indeed, from (4.1.109) it follows that

Differentiating this with respect to x, we find that y satisfies a Riccati equation.

d) If we know two particular solutions, say Y,,Y,, then Riccati’s equation can be

solved by using only one quadrature.
By using the same changes of function as before, we find out that the function

u(x):m (4.1.111)

is a particular solution of the linear non-homogeneous ODE
u' +[P(x)+2Y, (x)0(x )l = O(x) . (4.1.112)

To find the general solution of (4.1.112) we need only the general solution of its
associated homogeneous ODE, which is

u, = Ce! [P(x)+27; (x)O(x)lix (4.1.113)

yielding only one quadrature.

e) If we know three particular solutions, say Y,,Y,,Ys, then Riccati’s equation

can be solved without quadratures.
Indeed, in this case, the functions

0w Y S @114

are both particular solutions of the linear non-homogeneous ODE (4.1.112). Their
difference will satisfy the associated homogeneous ODE. Therefore, the general solution
of (4.1.112) is obtained without quadratures
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u(x) =y (x)+ Cluy (x) -, ()]
1 1 1 } (4.1.115)

- Y2<x>—n<x>*c{y3<x>—n<x>‘Y2<x>—n<x> |

Thus, turning back to y, we obtain

! = ! +C{ ! - ! } (4.1.116)
y6)-1(x) nE)-1k) [HBE)-1k) HE)-1k)

y(x)—Yz(x). Y5 (x)-7, (x) —C
yx)=1(x) " % (x)-7,(x)

The general solution of Riccati’s equation can therefore be written in the form of a
constant anharmonic ratio. This immediately yields the following property.

(4.1.117)

f) The anharmonic ratio of any four particular solution of Riccati’s quation is
always constant.
As it was previously shown, there is a tight connection between the Riccati’s equation
and the linear second order ODE; this connection is useful if this linear ODE is easier
solved. Let us mention some particular cases of interest.

1) If P(x)+Q(x)+R(x)=0 on [, then the general solution of Riccati’s equation is

)-S* [[0(x)+ R(x)|o(x)dx - o (x) (x) = ellotrCee

e [[0(x)+ R(x)lo(x)dx + p(x) (4.1.118)

2) In the more general case a”P(x)+abQ(x)+b*R(x)=0, xel, where the

constants @ and b are not simultaneously null; if b0, we can use the change of
function y(x)=a/b+u(x), obtaining for the new unknown function a Bernoulli-type
equation

u'=Ox)u? +[2b—a O(x)+ P(x)}u . (4.1.119)

3) If P and R are polynomials satisfying A=P?—2P'—4R =const, then
Yl(x)z—%[P(xﬁx/X] and Yz(x)z—%[P(x)—\/X] are both of them solutions of
Riccati’s equation

y'=Px)y+y* +R(x). (4.1.120)
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2. Non-Linear Second Order ODEs

The general form of a second order ODE is
Flx,y,5",y")=0. (4.2.1)

If OF /0y" # 0 on the domain of definition of F and if F is sufficiently regular, then, by

the implicit function theorem we can explicit y" , thus getting the normal/canonic form

y'=fley.y) fiIxD,xD, >R. (422)

2.1 CAUCHY PROBLEMS

In the examples given in the Introduction, we saw that the study of a motion, for whoch
Newton’s second law represents a fundamental principle in the classical mechanics leads
to an ODE of form (4.2.2). To determine completely the trajectory of the moving body
one must know its position and its initial velocity. The mathematical correspondent of
the velocity is the derivative of the displacement with respect to time. Consequently, to
an ODE of type (4.2.2) one can naturally associate the following supplementary
conditions

y(xo)=r0, ¥'(xo)=¥0, (x0.v0.¥0)€IxD,xD, (42.3)

called initial or Cauchy conditions.

As in a study of motion the initial position and velocity perfectly determine the trajectory
of the body, we should expect that the initial problem (4.2.2), (4.2.3) allow unique
solution, under certain hypotheses on f.

One can easily prove an existence and uniqueness theorem for the solution of this
problem, similar to theorem 4.2. But, as we previously saw, a second order ODE can be
reduced to a first order ODS with two unknown functions, we shall rediscover this
theorem in Chap.5, as a particular case of the corresponding theorem for ODSs.

2.2 TWO-POINT PROBLEMS

We already saw that, if we associate to an ODE the Cauchy (or initial) conditions, this
means that the values of the unknown function and of its derivative at the same point x,
are supposedly known. Such conditions do not match to all mathematical models; for
instance, they do not fit to the simply supported bar, as in this case the physical problem
requires the values of the displacement at two distinct point: the bar ends. The simplest
conditions of this type are

vla)=4, y(b)=B, abel, A4, Be%R, (4.2.4)

which, associated to the ODE (4.2.2), form the two-point (bilocal) problem.
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The first difficulty in tackling this problem is to get appropriate hypotheses ensuring the
existence and uniqueness of the solution, as in this case we have no more the benefit of
such powerful a tool as the Cauchy-Picard theorem.

We shall suppose f eC° ([a,b]), for any y, y" € R . Obviously, there are infinitely many
integral curves passing through the point (a, A). But it is possible, even in simple cases
as that of the ODE y” =2y"*, that none of these integral curves reach the point (b, B).
In other words, it is possible that the solution of the two-point problem not even exist.
Hereafter, we give some of the most common conditions, each of them ensuring the
existence and uniqueness of the solution of the two-point problem (4.2.1), (4.2.4):

1 f(x, y') bounded.

2. |f| < C|y| for sufficiently great values of |y| ; here, C <+/3n° /(b—a)2 .

3. f is Lipschitzian with respect to y,»" on any finite interval and
f(x,, y')/(|y| +|y’|) tends to 0, uniformly on [a,b], if (|y| +|y’|)—> o .

4. fis Lipschitzian with respect to y, y' on any finite interval and has the form

[ y.y)=olx. y)+wlx, y, ), 4.2.5)

where \u(x, v, y')/(]y| +|y’|) tends to 0 uniformly on [a,b], if (|y| +|y’|)—> 0,

5. fallows continuous partial derivatives with respect to y, y’ and

o o
—|<a, |[=|<B, a+p<l1, (4.2.6)
oy oy
or of /oy=0.
6. A particular case of interest is that of the two-point problem
y"=flxy)

1(0)=0, y(a)=0. (4.2.7)

One can prove the existence and uniqueness of its solution provided feC 0([0,a]x R),

and there exist two numbers ¢, > 0,¢; >0 such that

ff(x,t)dt > —cly2 —cy, ac€ (O,L] . (4.2.8)

2.3 ORDER REDUCTION OF SECOND ORDER ODEs

There are particular cases in which the second order ODEs may be easier solved by
reducing their order. In what follows, we shall present some of these cases, frequently
met in applications.
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a) If the ODE is of the form

Flx,y',y")=0, (4.2.9)
i.e., F does not explicitly depend on y, then, by the change of function y'= p, we get
F(x,p,p")=0, (4.2.10)

which is a first order ODE, that can be solved by using the above presented methods. Let
p= p(x, Cl) be its general solution. Then the general solution of (4.2.9) is

y(x)=[ plx, €, Jx +C,, “2.11)
C, and C, being arbitrary constants.
b) If the ODE does not depend explicitly on x, i.e., if
F(y,y"y")=0, 4.2.12)
then, using again the change y’' = p, we obtain

o _ddy

e an e (4.2.13)

this means that (4.2.12) becomes a first order ODE, having p as unknown function and y
as independent variable

d
F[y, p,—p] =0. (4.2.14)
dy

The general solution of this ODE reads p = p(y, C ), whence we get another first order
ODE

d
Ey =p(y,C)), (4.2.15)

which can be solved by separation of variables, thus getting

1
x=[———dy+C,. 42.16
J‘p(y'JCl) ? ( )

This is precisely the general solution of (4.2.12).
¢) If the function F(x,y,y’,y") is homogeneous of degree m with respect to
y,y',y", thatis, if
Flx,op,y ") =t"F(x,,5".5"), (4.2.17)

then we can use the change
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Y
U=-—. 42.18
y ( )
This yields
du d yr yﬂy _ y!2
2o L= , 4.2.19
whence
L—wvu?, (4.2.20)
y
Eventually, the second order ODE (4.2.1) is replaced by the first order ODE
FlxLuu'+u*)=0. 42.21)

Let u= u(x, Cl) be its general solution. Introducing it in (4.2.18), we get a new first
order ODE, linear and homogeneous,

¥ =ulx,Cy)y=0, (4.2.22)
whose general solution reads

(x)= € el ek, (4.2.23)
this is also the general solution of (4.2.1) in this particular case.

2.4 THE BERNOULLI-EULER EQUATION

This ODE is of greatest importance in the mechanics of constructions, as it represents the
mathematical model of an elastic bar deformation by bending.

We shall consider later on the physical hypotheses under which this model is set up. The
Bernoulli-Euler equation reads

v = ey ), (4.2.24)

where y corresponds to the deflection of the bar axis, and the independent variable x is
considered along the ideal non-deflected bar. The function f(x)=M /EI , where M is

the bending moment and the rigidity £/ is expressed by the product between the modulus
of elasticity £ and the moment of inertia / of the cross section with respect to the neutral
bar axis.

The ODE (4.2.24) is of the form a) from Sec.2.3. Therefore, by using the change y' =z,

it becomes

2= a2 (4.2.25)
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Introducing the function A(x) as a primitive of f(x), i.e.

%: f(x), h(x):f f(e)de, (4.2.26)
0

we can simplify the form of (4.2.25), applying the change of variable z = z(h) , that leads
to

& _ (1+22 )3/2_ (4.2.27)

This ODE is invariant on the class of Bernoulli-Euler type equations. Its form does not
depend on the physical bar characteristics; one can say that it represents the intrinsic
mathematical structure of an elastic bar model.

Using the change of function z =sinh u , we can integrate (4.2.27), obtaining its general
solution in the form

z

== h+C, (4.2.28)
1+z

where C is an arbitrary constant; it results

h+C
e —— h+C<l1. (4.2.29)

In the particular case f(x)=1/R = const , we deduce h(x)=x/R, therefore

X
~4C
dy R

dx 2
1—(x+cj
R

whence we get the general solution of the Bernoulli-Euler equation in the form of a
pencil of circles

’ (4.2.30)

(x+CR)* +(y-b)* =R*,  b,C =const. (4.2.31)

This was to be expected, taking into account the physical interpretation of the function
/().

Expanding now (4.2.29) in a power series with respect to (h + C), we get

dy 21 ko 2k+1
Y_(hec 2j-1)(h+C
il )+kZ:12kk!£[]( J=)r+CP, (4.2.32)

whence
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o) = (o) Chtes £ 112j -1 o)+ e, 4239

L=l

valid for A+ C<1.
2.5 ELLIPTIC INTEGRALS

From (4.2.29) it follows that the general solution of the Bernoulli-Euler ODE can also be
written in integral form

h(x)+C

W)=l —es dx+b. (4.2.34)
1-[h(x)+C]

If /(x)is a polynomial P(x), then the Bernoulli-Euler equation would be reduced to the

study of an integral of the type

[olx, y/P0o) . (4.2.35)

where CD(OL, B) is rational with respect to its arguments.
If P(x) has the degree 3 ar 4, then this integral can be reduced to integrals of rational

functions and to three other integrals, called elliptic integrals of first, second and third
species accordingly, in normal Legendre form

V2—k3x? 1

! dx, | dr,

J. /( 2)( 2 2) 2 j 2)/( 2'( 2 2)dx. (4.2.36)
1-x“ 1-k"x 1-x (l+nx 1—x“ N —-k“x

The number k is called the modulus of the integrals and k'= VI-k? is the
complementary modulus (& <1); the number » is the parameter of the integral of third
species.

By the substitution x =sin@ one obtains the elliptic integrals in normal trigonometric

form; thus

sin @

1 @ 1
| dv = [ ——=dy. (42.37)
0 1[‘1—x2 Nl—kzxz’ O\H—k2 sin2\|1

is the elliptic integral of first species,

sing _[1_ 72,2 [0)
E(p,k)= | udx=j1/1—k2sinzwdw, (4.2.38)
0 Al-x? 0

is the elliptic integral of second species and

Flo, k)=
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sin @ 1

elo,n k)=
( ) £(1+nxzwl—x2Hl—k2x2i

is the elliptic integral of third species.
We must also mention the following combination of the elliptic integrals, useful in
applications

1

¢
dx =[ dv .(4.2.39)
0

(1+nsin2 yN1-k?sin? y

Dlg.k) = F( ,k)—E((p,k):sm‘p x? ¢ sin’y

d = dy .
K I \/(l_xz)(l—kzxz) Ox/l—kz sinij v (4.2.40)

For ¢ =m/2, we get the complete elliptic integrals

B
F(EakJEK(k):J. ! d(P’
0 l—kzsinch
3
E[g,kJEE(k):f 1-k? sin? odo, , (4.2.41)
0
D(E,kj:K(k)zE(k):T Sn’Q o
k 041—k2 sin 0}

=|—=do
\1—k'" si
S @ (4.2.42)
T
’ T ’ 2 12 2
E'(k)=E E,k = [{1-k"* sin* @do.
0

In practice, the modulus £ is usually omitted; for instance, we can write E instead of
E(k), E' instead of E(k'), a.s.o.

In most of cases, the elliptic integrals, whether they are complete or not, cannot be
computed in terms of elementary functions. This is why series expansions were used,
leading to accurate approximations. This approximations were then used to set up tables
of values for the elliptic integrals.

We give several of the most useful series developments for the calculus of complete
elliptic integrals:
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2 2
K@:z{np) o 3] e o] }
2 2 2-4 2" n!
] 1, 123 Qn-n7* &>
E(k)=Z41-—k* - k—...— " 2.
" 2{ 2? 22.42 { REE (*#24)

2 2 2
Dlt)- {;@ 213V e g [ kzw—lu.}.
. n-— 2" n!

For the elliptic integrals F (q),k), E((p,k) there were also found trigonometric series
expansion. It should be mentioned that the complete elliptic integrals can be decomposed
in Legendre’s polynomials.

The calculus of the elliptic integrals is considerably simplified by certain functional
relationships between them. The more currently in use are

F(~,k)=~F(g,k),

E(-¢,k)=~E(9.k),

Fnntg,k)=2nK (k)+ F(g,k),

E(nni(p,k)—Zn (k) E((p,k),

0F E-F (4.2.44)

ok kO
oF 1 E—k'zF_ sin @ cos @

ok k" k \ll—kz sinz(p

For the complete elliptic integral, we emphasize the following representative
relationships

T
2 b

=L (4.2.45)

and also

(4.2.46)
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Finally, let us mention that the functions K and K’ satisfy the ODE of independent
variable k

d 2 du
| k' — |—ku =0, 4.2.4
dk( dkj ! (4.2.47)

and the functions £ and (E’— K') are particular solutions of the ODE

k’zi( %}H’mzo. (4.2.48)

3. Applications

Application 4.1

Problem. Study the motion of a heavy particle P (the motion of a particle in the
gravitational field of the Earth), of mass m, in a resistant medium. Such a particle is, for
instance, a projectile in motion, which has a spherical form and is not subjected to
rotations; from the point of view of the mathematical modelling, the projectile is reduced
to its centre of gravity.

Mathematical model. We assume that, besides the given force (in our case the
gravitational force mg, where g is the gravitational acceleration) intervenes also a force
R, called resistance,

R= —mg(p(v)versv, (p(O) =0, lim (p(v) =, (a)
V—>0

where (p(v) is a strictly increasing function (the resistance of the air increases together
with the velocity v); there exists — obviously — a value v* and only one for which
(p(v*) =1.
Solution. Newton’s equation of motion is

mr=g-— mg@(v)i‘ , (b)

where @(v)=(v)/v; we assume that, in general, the initial velocity v, is not directed
along the vertical of the launching position ( v is not collinear with g); the trajectory is a
plane curve (contained in a vertical plane). Using Frenet’s trihedron, we may write

2
\'/:—g[sin9+go(v)], V—=gcos6, ©)]
p

where 0 is the angle made by velocity v with the x-axis, while p is the curvature radius of
the trajectory. We notice that cos © > 0, hence —n/2 < 6 < /2 ; the concavity of the
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trajectory is directed towards the negative ordinates (Fig.4.4), so that to ds>0

corresponds dO <0 (the angle 0 is decreasing). It follows p =—ds/d0 =-vd#/dO, so
that the second equation (c) takes the form

VO =—gcosh. (d)
We have thus obtained a system of two differential equations (c), (d) for the unknown
functions v = () and 6 = 6(z), with the initial conditions v(ty) = vy, 6(zy)=0,.
Eliminating the time ¢, we may write the equation
dv (p(v)
— =y tanO+—= |,
do { 0 ©

CoS

which defines the function v = v() with the initial condition v(6,) = v, . This equation
of the hodograph of velocities, which can be written in the form

d(vcos®) volv)

0 ®

too, is the basic equation of the external ballistics. The equation (d) allows then to
determine (usually, one takes ¢z, = 0)

Y

Figure 4. 4. Motion of a heavy particle in a resistant medium

19 w8
=ty -1 120, (®)
g §,c0s 9
whence — afterwards — we may obtain 6 = 6(¢). Noting that dx=vcos0ds,

dy =vsin0d¢, there result the parametric equations of the trajectory in the form
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0 0
X=X —é Ivz(S)dS, Y=Y —é Ivz(S)tan 9d8, (h)
8o 8o

where we take x, = y, = 0 if the particle (the projectile) is launched from the origin 0.
In the case of an object launched from an airplane at the height # we take x, =0,
yo = h; the initial velocity is the velocity of the airplane at the moment of launching

the object.
From the second equation (c) one observes that (6 is only decreasing and greater than
—n/2 for ¢ finite, hence cos © > 0) the velocity v is finite and non-zero. An extreme

value of v is given by dv/dr=0; we obtain thus ¢(v) = —sin 6 . Because the velocity
v is finite, from (d) it follows that 6 has an extreme value for d6/ds =0, hence for

cos 6 = 0 ; but the angle 6 is decreasing, so that we have lim0 =—n/2 . We notice that
t—o

for v > v", (p(v*)zl, we have v < 0, the function (p(v) being monotone decreasing.

Hence, the velocity v has a lower limit (v > 0) and a upper limit (v < v*). The
trajectory has a vertical asymptote x = x , with

0o
x= lim x=l jvz(S)dS, @)
0—>—7/2+0 g 12
and the corresponding velocity is given by lim v(G) =v*. Because of the
0>-m/2+0

resistance of the air, we notice that the range of throw of the projectile is smaller.
Besides, for two points P and P’, which have the same ordinate y , it results |9| < |6’| ;

hence, the two branches (increasing and decreasing) of the trajectory are not symmetric.
Multiplying the first equation (c) by v and noting that dy =vsin 6df, we may write
d(v2 /2)= —gdy— g(p(v)vdt , so that, integrating between the points P(t) and P'(t'), we
obtain

L2 v2)= g allelakie <o,

t
whence v>v'>0.
Modelling the projectile as a rigid solid, one can take into account also its rotation, being
led to a deviation from the vertical plane of the trajectory.

In particular, d’Alembert has considered the law of resistance (p(v) =" n>0, A

being a positive constant with dimension. The equation (f) leads to

Mycos )"

d .
E(vcose)z BTN )

integrating, we get
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vy cos 0
ycos 0 = 0 0

fi- 2L, (0)2,(0 oy cos 0, @

where we have introduced the integral
© d9
50(0)- |

cos"*l 9

)
For small velocities one can use Stokes’ law (# = 1); thus, we obtain g, (6) =tan 0, so
that

(o) = vy cos 0,
~ cos 0y — v sin(@ - 60) '

(m)

For velocities till 250 m/s, one may take n = 2, obtaining Euler’s law; we notice that

82(9) _ l{tan 0 + In tan(% + gji| . (1'1)

2| cos0

Let us consider now the case n e 9 ; for n odd (n = 2p — 1), we have

_ sin® i, B 25(p-1)(p-2)...(p - k) 2p-2k-1
e,(0)= 1{sec P e+k§1(2p—3)(2p—5)...(2p—2k—1)sec P 0], (o)

while for n even (n = 2p) we may write

gn(e):ﬁ{sech e+pz_:l(zp—1)(219_2)~--(2P—2k+1)seczp72k 6}

2p k=1 2k(p—1)(p—2)...(p—k)

+Mln tan(ﬁ—kgj.
4 2

2P p!

(p)

The velocity v(G) is easily obtained from the formula (k), getting the time ¢ and the

parametric equations of the trajectory from the formulae (g) and (h).
We observe that, by the substitution v[sin 0+ (p(v)] =1/, the equation (e) reads

% Vo2 ()1 - {2<p(V)+ vd(g—iv)}yz : (@

Drach has determined all the forms of the function ¢(v) for which the solution of the
equation may be obtained by quadratures.
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Application 4.2

Problem. Study the motion of a heavy solid body of weight A, which is moving on a
plane inclined by the angle o with respect to the horizontal and is tied by a chain
wrapped up frictionless on a pulley in 4 (Cayley’s problem, 1857) (Fig.4.5).

Mathematical model. Applying the theorem of momentum, one obtains the differential
equation

Pdv p

A (NED (a)

gdr g
where P/ g is the total mass of the mechanical system at the moment ¢, g being the
gravitational acceleration, p/g is the accumulation of mass, X is the external force, v
is the velocity at the moment ¢, while v is the initial velocity of the additional mass,

one obtains the model of a mechanical system of variable mass.
Let be ¢ the weight of the chain on the unit length; in this case, for a displacement x of

the weight F, the total mass is

P =P +gx. (b)
We notice that
dpP
=—=gqv. c
=4 (©)
A
I
7o
VA

Figure 4. 5. Mechanical system of variable mass
The portion of the chain wrapped up on the pulley being in rest, we may consider that the
initial velocity of the additional mass is zero (v, = 0). The external force X is the
component along the inclined plane of the force P, so that X = (P0 + qx) sin o . Thus,
the equation (a) becomes
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i[Pﬂﬂzgj = (P0 +qx)sin(x.
g\ dt dt

Solution. The equation governing the problem becomes

% (Pv)=Pgsina = (P, +gx)gsina. (d)

Multiplying at the left by Pv and at the right by (PO + qx)dx/ dr and integrating, we get

1 2 _ & 3
—\Pv) ==I(F), +gx) sina + C.
S £ (74 00) ©
If we assume that for # = 0 the mechanical system is at rest at the upper part of the
inclined plane, then the condition x(O) =0 leads to C :—(g/3q)P03 sino and the
velocity is given by
3
b2 2g (Po + qx) -P . _ ESPO(PO + qx)+ q°x?
3 (P +qx) 3 (Py + gqx)°

sina. ®

In the particular case P, = 0 (the chain is free to fall), one obtains

2
) (dx 2gx .
vi=|—| =—sina,
( m 3 (8)
whence
Ez 2—gsinotdt;
P E
then

\/a:,/gsinoct+cl,

so that (x(0) = 0)

x(t):%t2 sina,v(t):étsina,a(t):gsina, (h)

the motion of the chain being uniformly accelerated.

Application 4.3

Problem. Study the motion in air along the vertical of a body of mass m , launched with
an initial velocity v, if the resistance of the air is given by R = —kv?, v being the
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velocity and k& a constant coefficient. Determine the maximal height attained by the
body.

Mathematical model. Modelling the body as a particle, Newton’s equation of motion
mx = —mg — kv? becomes

¥+ o’ =-g, (a)
where o2 = k/m.

Solution. Noting that

. d,y dv _dvdx dv
x:—(x):—:——:v—
de dr  dx dr dx

>

the equation of motion becomes
dv 2.2
v—=—g+0"V b
o=lerorv?) (b)

and is a differential equation with separable variables. Separating the variables and
integrating, we have

vdy
PRI
g+o’v
1 2,2
x:——ln(g+oo v )+lnC;
2w?
because x = 0 and v = v, for # = 0, we obtain
1 g+ o?vi

X = In ;
202 g+ ov?

the maximal value x,,, is obtained for v = 0 and is given by

+ w2v? 0?v?
Xmax = ! lng 0o _ 1 In| 1+ ° 1.
2?2 g 202 g

Application 4.4

Problem. Study the motion of a heavy particle on a surface of rotation.

Mathematical model. Let be a heavy particle P of mass m, constrained to move on a
surface of rotation the symmetry axis of which is vertical (Fig.4.6). The own weight of
the particle mg, where g is the gravitational acceleration, and the constraint force R (the
support of which pierces the Oz-axis) act in the meridian plane, their moments with
respect to the symmetry axis vanishing; hence, we may write the first integral of areas



4. Non-Linear ODEs of First and Second Order 275

for the projection P’ of particle P on the plane Oxy (for the particle P too) in the form
(we use cylindrical co-ordinates ,0,z)

r?0 =120, =C, (a)

where (zy) = ry, 6(zy) = 6, . Because the constraint is scleronomic and the given force
is conservative, we may use the first integral of energy

v2 = }:'2 +I"2é2 +Z'2 = Vg +2g(20 _Z) (b)

too, where z(to) =z, v(to) =Vq.

Figure 4. 6. Motion of a heavy particle on a surface of rotation

Solution. If the surface of rotation is specified by the equation r = f (z) (the equation of
the meridian curve C), we can eliminate the functions » = (¢) and 6 = 0(¢) from (a)
and (b), obtaining the equation with separate variables

C? _df

f! ; (c)

2'2(1+fr2)zvg+2g(zo—z)—7, &

which determines the applicate z = z(t) by a quadrature; returning to the equation of the
rotation surface and to the first integral of areas, we obtain the other co-ordinates of the
point P .

In case of a circular cylinder of radius [, the equation (c) becomes ( f = /)

C2

1_2 > (d)

22 =v2 +2g(zg - 2) -

in case of a circular cone of equation r = kz , we may write

C2
k2z?

(1+k2)2 = v2 +2g(zy — 2) - )
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and in case of a sphere of radius [, we obtain (7% + z2 = [?)

1222 = 02 + 2g(zy - 2))(12 - 22) - C2. ®
If we represent the rotation surface by the equation z = (p(r), then we may eliminate the

functions z = z(¢) and 0 = (¢); it results

. , C? , d
rz(l+(p2):v§+2g(zo—z)——2 ,(p:—(p, )
r dr

which specifies the radius » = r(t) by a quadrature too.
Eliminating the time, we get the equation of the trajectory of the point P’ in the form

o s crde 1+[o'()
" Cr{ p \/{VS+2g[Zo—<P(p)]}p2—C2 ’ ®

where B(to) = 0, ; assuming that the surface is algebraic, we may put in evidence the

cases in which the function 0 = G(t) is expressed by means of elliptic functions.

In the case of a conservative force the potential of which depends only on r, the
problem may be solved also only by quadratures.

Application 4.5

Problem. Study the motion of a heavy particle of weight mg (m is the mass, g is the
gravitational acceleration), which moves frictionless on a sphere of radius [ (spherical
pendulum).

Mathematical model. The constraint may be bilateral or unilateral in the considered
problem; we consider the case of a bilateral constraint. We choose the equatorial plane of
the sphere as Oxy-plane, the Oz-axis being directed towards the descendent vertical; it is
convenient to use cylindrical co-ordinates (Fig.4.7). If the constant C in the first integral

of areas (a) (see Appl.4.4) vanishes, then 6 =0 and 0 = const ; the trajectory of the
particle is contained in a meridian plane of the sphere, hence it is a great circle of it. The
spherical pendulum is, in this case, a simple pendulum (see Appl.4.33). If the constant
C is non-zero, then we have to do with a non-degenerate spherical pendulum. The
equation (f) of Appl.4.4 becomes

1222 = P(z), P(z): [vg +2g(z—zo)](12 —22)—C2. (a)

Solution. From (a), we get

t=tyxl] s

A ; (b)

the first integral (a) of Appl.4.4 allows to determine the angle 0 in the form
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t
0=0,+Cl|
o ZZ_E’Z

Assuming that z, # 0, we take the sign of z'(to) = z, in the two above formulae. If

(©)

z, = 0, then we search if z is increasing or decreasing, starting from the initial value

Zy -

s

z
Figure 4. 7. Spherical pendulum
Let us suppose firstly that z, # 0; in this case, P(zo) > 0 (from (a) and (b), Appl.4.4 it
results P(z,) = 02('02 +z2 )).
However, during the motion we must have P(z) > 0 so that the integrals (b) and (c) be
real. Noting that |20| <[l @f |zo| =1/, then we have a simple pendulum) and
P(—oo) =, P(i [) = —C?, it results that the polynomial P(z) is of the form
P(z)z —Zg(z—zl)(z—zz)(z—z3), —w<zy<-l<zy,<zy<z <. (d)

Hence, the particle P oscillates on the spherical zone between the parallel circles
specified by z = z; and z = z, (to have P(z) = 0).

Application 4.6

Problem. Study the motion in Appl.4.3 , assuming a resistance of the form R = —kv®.
The case o =2 may be considered for a simplification of the computation; it is a
satisfactory approximation in case of motions at small velocities.

Mathematical model. If a. > 2 the equation of motion becomes

ﬂ:_(g-ﬂozv“l} v(xo):vo #0. (a)
dx %
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Solution. In this form, the equation may be easily solved by Taylor series. Corresponding
to the relations (4.16), we write

v(xo) = vo,
v'(xo) = —(é + cozvg‘lj,
Yo
2
)= £ ot [£022]
Ve Vo Vo

so that, taking only the first three terms of the series

Vo — (% + mzvolj{x - X —%L% — (o - 1)(92v8‘2:|(x - X )2} (b)

<
—

=
~—

I

0

Application 4.7

Problem. To eliminate the unfortunate effect of the centrifugal force which appears in
case of a curvilinear motion of a vehicle, between the straight- way and the arc of circle
an arc of curve having a progressive curvature is inserted. Determine this curve, called
clothoid (or spiral curve of Cornu) (Fig.4.8).

Figure 4. 8. Clothoid

Mathematical model. The intrinsic equation of the clothoid is of the form

ps = k2, (a)
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where p is the curvature radius, s is the length of the arc measured from the point of
zero curvature (1/p = 0) and k = const is the modulus of the clothoid. The curve will
be determined by its parametric equations in the form of a power series in x and y.

Solution. If we denote by a the angle made by the tangent at a point of the clothoid with
the O x - axis, then the curvature is expressed by means of the relation p = d s/d o, so
that the equation (a) becomes

ds _ .2
—=k>. b
S e (b)

A direct integration leads to s? = 2k%a + C ; noting that o = 0 for s = 0, it results
C =0, so that

s? =2k%a (c)
or
s = kv2yo . (d

One can write the ODEs
d
E=cosot,—y=sinoc, (e)
ds ds

allowing the determination of x and y when s and o are known. From (d) one obtains,
by differentiation,

ds-= 7 ®
N
Further, the substitution
o =17, do = 2tdt, (2
leads to
ds = 290 P (h)

i

One obtains thus

dx=dscosa = kx/Ecostzdt,
dy = dssin o = k+/2 sin £2de,

whence, by integration,
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t t
x= kﬁj'costzdt, y :kﬁfsintzdt.
0 0

Developing in a power series

4 t8 t12 4n
cost? =1t ————t .+ (-1)
21 41 6! (2n)!
6 10 4n+2
sing? =2 -yl (1)L +..
31 5! (2n+1)!

and integrating term by term, we get

5
x=kﬁ{t—t—+ !

5.21 9.41

9 4n+1

+(_1)n ( d

4n+1)2n)!
4n+3

y:kﬁ[f__f_+f__...+<_1y( f

3 7.3 11-5!

Application 4.8

4n+3)2n+1)

i

W)

Problem. Determine the curve for which the length of the segment of tangent from the
contact point to the curve till the intersection with the O x - axis is constant.

Mathematical model. Let P(xo , yo) be a point on the curve; the tangent to it is given by

y=yo=yo(x—xp),

(@)

and pierces the Ox-axis in 4, of abscissa x, = x, — yo/»; . The condition imposed

(ﬁ = a = const ) leads to

a* = (XA —x0)2 + V5
whence
dx /az_yz
or

[2 2

Solution. We obtain thus a differential equation with separate variables. By integration,

we get
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2
x = a2 - »2 +a1n[%—/i—2—1J+C. (b)

The curve thus obtained is called tractrix. The graphic of the function (b) is given in
Fig49for C =0.

Figure 4. 9. Tractrix

Application 4.9

Problem. Determine the families of principal normal stresses in the case of an elastic
half- plane acted upon by a concentrated force P normal to the separaton line.

Mathematical model. The searched families of lines are defined by the differential
equation of first order

2
6, —O
(d_yj +¥d_y_1:0’ (a)
dx Ty dx

where ©,,06, and t,, are the normal stresses and the tangential stress (supposed

known), respectively, at the point (x, y), given by

o 2P x3
x T T T w2
nh (x2 +y2)
o = 2P xy?
y T T, g b
mh (x2 4 y2) (b)
2P 2
Ty == Y ,

b (x2 i y2)2
where P/b is known.

Solution. The differential equation is of second degree with respect to dy/dx and may be
decomposed in two differential equations of first order. The product of the roots is equal
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to —1, so that the two families of trajectories are orthogonal. Solving the equation (a)
with respect to dy/dx , we get

(c)

Figure 4. 10. Trajectories of the principal normal stress in case of an elastic half- plane acted upon by a
concentrated force normal to the separation line

The relations (b) lead to

so that

and may be decomposed in the equations

dy vy
>y d
o x (d
dy__l
FI (e)

The equation (d) is a differential equation with separate variables
& _&
X oy
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and has the general solution In x = In y — In m, m = const . One obtains thus y = mx,

which represents a family of radial semi-lines (passing through the point O of
application of the force).

The equation (e) may be also written in the form of a differential equation with constant
coefficients

xdx+ydy=0;

to the general solution x2? + y? = R? corresponds a family of semicircles with the
centre O (the integration constant is R?). The two nets are represented in Fig.4.10.

If we wish to determine the trajectories passing through the point (xo, yo) (the Cauchy
problem), it results

Yo 2 2 2
= , R =x5 +y5-
Xo

Application 4.10

Problem. The vessel of a storage basin is asimilated to a parallelepiped the transverse
(horizontal) section area of which is 4. The discharge of the water at the downhill is
made with the aid of an overflow, the flow rate of which is given by the formula

Q, =Ch 32 where C is a constant and 4 is the charge of the overfall, defined in the

Fig.4.11. Study the variation in time of the water level if the flow rate of the entrance
stream Q, is given by

0. - O forte[O,T],
©710 fort>T,

where O, and T are constants.

—_— 3 —q,
/ — _-;LL —
o i _==

1_— == — ===
1— .
7]
/] —
7] — A —
Y
5 s
/ - ¥
A —_—
I PT77777 7777777777777 777777777 77777 777777777

Figure 4. 11. The vessel of a storage basin

Mathematical model. To obtain the differential equation governing the motion, we notice
that, in a time interval d¢, the sum of the stored volume and the evacuated volume is
equal to the entrance volume
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Adh+Ch¥?dt=0,dt .

Solution. For the first interval, we write the equation (a) in the form

Adh
_AY
Qe =Ch 2

Introducing the notation Q, / C=p", the change of function

h=y?, dh=2ydy

leads to the differential equation with separate variables

24 ydy
C g -y’

Decomposing the previous fraction in simple fractions

=dr.

y :L( 1 . By J
-y 3B(B-»y B +Py+y°

3B

3 -

the differential equation becomes

1( L1 2y+B

1

]
B-y 2plipyty? 2 p2 +By+y2}

24( 1 1 294 3P
3CB

Integrating, we get

24
3CB

where ¢, is an integration constant.
The previous solution reads

24 Lln\/yzgﬁywz 5
-y

arctan

3CB

too; returning to the initial function % , we obtain

—{— In(B - y)+ %ln<y2 + By + [32)— 3 arctan

2y +B

V3p

— — dy=dr.
B—y 2B%7+pBy+y? 2132+By+y2)

2y+B:|—t+t
.

J=t+%

(@

(b)

(c)

(d)
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BB 2P

arctan ———— | =t + ¢;.

3CB B—h V3p

For t = 0 we have & = 0, so that
_24 3 arctan € =t
3CP Ny
Finally, we obtain
\/h +BVh + B2
BJ_ b ﬁ arctan ——— x/_ :t,te[O,T].

3CB B—h Vi +2p

At the time ¢ = T, (f) becomes a transcendental equation

\/hT‘FBx/ZJFB M

Jarctan — | =T,

3CB B—hr Vhr +2p

which determines the level 4, of the water.

For t > T wehave Q, = 0 and the equation (a) reads
Adh+Ch**dt =0
or

A 3244 dr = 0

Integrating, one obtains

24
— = h2 =y,

where ¢, is an integration constant, which is determined by the condition h(T ) =

this case
24
__th/z + T = tl'
Hence, we get the formal solution

t = %(frl/2 et T,

whence

285

(e)

®

(2

(h)

(1)

hy.In
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Application 4.11
Problem. A vessel the transverse (horizontal) section area of which is 4 has at the
bottom an outflow orifice which may evacuate a flow rate Q4 =Ch 12 , where C is a

constant and / is the depth of the water in the vessel. Study the variation in time of the
level i of the water in the vessel if the flow rate of the inflow is O, (initially the vessel

is empty, that is we have A = 0 for ¢+ = 0). One considers two cases:

2) 0, = {Qo forte [O,T],

0 fort>T,
At T
— forte|0,— |,
ol 4]
e 0 2—ﬂj fort e LT
0 T 4’2 B

where O, and T are constants.
The computation schema is given in the Fig.4.12, a and the two variation laws of O, are
given in Fig.4.12, b.

Mathematical model. To obtain the differential equation governing the motion, we notice
that, in a time interval dz, the sum of the stored volume and the evacuated volume is
equal to the inflow volume

dh 12
A—+Ch’* =0,.
& 0. (a)

This is a non-linear, non-homogeneous differential equation.

Solution. By the change of function
h=y? = dh=2ydy (b)

the equation (a) becomes
d
2Ayd—);+ Cy=0,, ©

and we may consider the two cases for Q. .

a) For ¢t € [0, T ] the equation (c) is with separate variables
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2 Aydy
Qy -Cy

Introducing the notation Q,/C = B, the general solution of the previous equation

dr =

becomes
C
y+BIn(B-y)=-—lr+70),

where 1, is an integration constant; returning to the variable %, the solution becomes

C
2 Qo[ Qo e C ). d
o= S+ %0) (@
2,
(o)
C - £
/, \\
/! \\
A
v 4 ) \\ f'
0 Fd z P
& 2
b.

Figure 4. 12. Vessel with orifice. Computation schema (a). Variation laws of Q. (b)

Introducing the initial condition (2 = 0 for ¢ = 0), it results

240y, O
TO = —-———1In— 5
Cc C C
so that (d) becomes
12
pir Loy oG :—it,te[o,T]. (e)
C O 24
In particular, at the moment ¢ = T, we have
Cchl?
h}/2+&ln1— r S, ®
C [N 24

obtaining the height A, .
For the interval ¢ > T , the differential equation (a) takes the form
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A48 en2 —g
dr
or
A ﬂ +Cdt=0,
B2
with the general solution
240V? + Ct = 1y, (g)

where T, is an integration constant, which must be determined from the condition of

continuity; for + = 7 we must have 4 = A, so that
24h)* + CT = 1,. (h)
Introducing in (g), one obtains
24hV? + Ct = 24h)* + CT,

so that the level 74 is determined by
/ C 2
h=|hV? ——(t-T >T. 1
{ T 5 [( )} ()

The time ¢ is thus given by

12
_ﬁlihl/z +%ln(l—c}l ﬂ forz [0, 7],

=1 C o
T+%(h}/2—hl/2) fort>T.
b) The differential equation (a) becomes

dh 12 4¢
A o2 =g, 2L
d % 7

for the first interval; by means of the change of function % = t%u , the equation reads
4
ARt + 12u')+ Ctlu = 0, Ft

Simplifying by ¢, we get the equation with separate variables
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Adu dt

hence

K being an arbitrary positive constant.
The primitive F in the right member may be written
2 Avdy B 2 Avdv

24v? 4 Cv— 20 - 24(v=v v =v,)
T

dv

\% 1 % 1
:J' 1 dv_j 2
V) =V V=V Vo) =V V=V,

Y Y
= 1 1n|v—vl|— 2
Vy =V Vy =V

1n|v -V,

>

where v = /u and v, v, are the roots of the algebraic equation

4
2 Av? +Cv—%:0,

which are always real. Hence,

/ 16
-Ct C2+%2A

Vip = Y , v >0,v, <0.

The solution is thus of the form

Ji

__vl

d In|

Vo =V

or

(«/Z - vlt)vl (JZ - vzt)_v2 =K,

where K, is a new arbitrary constant.
If 4(0) = 0, it results & = v2¢2 on the first interval.

For the second interval, we use the same method.
In the equation
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dh 12 [ 4t]
A—+Ch’* = 2——
dr Qo 277

we make the change of function / = (2 — 4¢/T )2 u . Thus

4—;{2—%}+(2—%Tui+4?—%g%;=Q{2—¥}

Simplifying by 2—(4t/T ), we obtain again a differential equation with separable
variables

84 4t \ du
——u+|2——|—+CNu =0,,
" ( Tjdt Ju=0,

that is

dt du

4 84
2-— —Cu+"Su
T 2 T

Application 4.12

Problem. Study the variation of the velocity of the water in a simple pipe filled in from a
tank by the sudden oppening of the slide valve (Fig.4.13).

Mathematical model. The energetically relation of Bernoulli between the bunker and the
slide valve leads to

2
Hy=(are) s L (@)

for the case of the non-permanent motion (transitory regime), and to

2
Ho:@+@§§ (b)

where v, = const is the velocity in a permanent regime, for the case of the permanent
motion (stabilized regime).

Solution. Subtracting the relation (b) from (a), it results the differential equation

2?@%%%?%:

0;

simplifying by g and introducing the notation
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p_att_gHy

2L L ©
we may write
d 1 1 1
Bdt = ——— =—£ + jdv. ()
vi—vy  2vg\votv vo—v

T 4

—

L

Figure 4. 13. Geometric schema of the tank and of the pipe

The general solution of the differential equation with separate variables (d) is

1 +
_ Yo TV
2Bvy vy —v

+ C, (e)

where C is an integration constant. We put v(0) = 0; it results C = 0, so that we have

1 Vo + Vv voL  vg +v
t = In = n , 63)
2Bvy vog—vVv 2gH, vy -—v
as well as
H
v=v0tanhg0t. €3]
voL

Application 4.13

Problem. Study the form of the free surface of water which flows through a pervious
layer on a tight bed of inclination i. The velocity v of aparent flow through an arbitrary
section (the flow rate with respect to the whole section) is proportional to the inclination
of the free surface of water in that section (Darcy’s law). Particular case: i = 0.

Mathematical model. The computation schema is given in Fig.4.14, where ¢ is the unit
flow rate (corresponding to a section of unit breadth), z is the applicate of the tight bed
with respect to a horizontal plane of reference, z is the applicate of the free surface of
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water, measured from the inclined tight bed, and 4, is the constant depth in the uniform
motion.

. pervious layer +*
feerre € L.,

reference plane

v a—

-y

Figure 4. 14. Flow through a pervious layer

Hence, i=-dz/ds is the inclination of the tight bed and j =-dH/ds is the
inclinationt of the free surface, where

H=z+h. (a)
Darcy’s law reads
v=1», (b)
where & is the proportionality constant.
Solution. The velocity may be written in the following forms:

v=L=kj=_kﬂ=_kM=_kE_k%=ki_k%.
h-1 ds ds ds ds ds

From the second and the last member, we get

dh g

& Z—E. (©)

In the case of a uniform motion we have v = v, = ¢/h, and j =i, hence q/h, = ki,

itresults ¢ = kih, . Replacing in (c), one obtains
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il @

ds h
or, separating the variables,

h
1-—"— |dh =ids .
hy —h
Integrating, it results
h+ hyIn(hy — 1) =is + C, (e)

where C is an integration constant. To determine it, we put the condition that the
applicate of the free surface is # = A, in a section s = s, ; the relation (e) becomes

hy + hy In(hy — hy) =is, + C. 6)

Subtracting (f) from (e), we have, finally,

hy — h
h—h + hy In—2 =i(s—s),
Ve T (s =s1) (g
whence
h—h h hy — h
s =8 + L4020 . (h)

To obtain %, one must solve numerically the transcendental equation (g).
In the particular case i = 0, the equation (c) has a simpler form

dh__q
ds ki’
and, separating the variables, we get
hdh=-Lds .
k

Noting that for s = 5, we have & = A, it results, eliminating the constant C,

or

he i =2 s). i)

In this case, the free surface is a parabolical cylinder.
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Application 4.14

Problem. Establish the equation of the meridian curve of the free surface of water which
flows through a pervious layer with horizontal bed towards a circular fountain (Fig.4.15).
One assumes that the perfect fountain attains the bottom tight layer.

Aa

pervious layer

11
Iy
' |
] : B LA
f - ]
ho| 11 =
i
i ) T:f,_' 7 //f(/z’///// 7777777
tight layer ke i 1

L o

Figure 4. 15. Free surface of the water in flow through a pervious layer

Mathematical model. The problem is axi-symmetrical, so that the free surface of water is
a surface of rotation defined by its meridian curve.
We denote by Q the flow rate extracted from the fountain, by 7, the radius of the

fountain, by 7 the radius of the cylinder of height / through which the water flows, by
v=kdh/dr the velocity (given by d’Arcy’s law), where & is a proportionality constant,
and by &, the free depth of water in the fountain.

To put the problem in equation, we notice that the flow rate extracted from the fountain

is equal to the flow rate which flows through the pervious layer towards the fountain. We
may write

O =2nrhv = 27trhk% ,
dr

obtaining thus a differential equation with separate variables

Q d_ hdh . (a)
2nk r
Solution. Integrating, one obtains
2
< Inr = L +C, (b)
2ntk 2
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where C is an integration constant, determined by the condition % = h, for r =7, ; hence

2
—lnr0=70+C. (c)

ilnl :l(hz —hg)
2nk  r,
The flow rate through a cylinder of radius » and height / is thus given by
 mk(n? - n2)
n (d)
To
whence
0 r
h= {hg+—1n— (e)
k1
and
}"Z}"Oenk(hz_hg)/g,re[7”0,00), (f)
respectively.

The formula (f) may be written more conveniently if a point of the curve, e.g. 7 =5, for

r =, is known. From (d), one obtains

Q W ki
Ttk_ n ’
nL
o

introducing this in (f), we eventually have

h2—hg rlj

r=r exp(—h12 myY lnz (8)

Application 4.15

Problem. Study the curve of the free surface of water in a prismatic channel of
rectangular cross section, the longitudinal gradient being i .

Mathematical model. The computation schema is given in Fig.4.16 and the differential
equation of the problem is
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dh . b’ —hg

& o @

where / is the depth of water at the distance s and /4, and %, are the normal and the
critical depth, respectively. The two heights A, and /., may be in any ratio( 4, < h, or
hy > h); in Fig.4.16 it has been considered the case A, > A, .

Figure 4. 16. The curve of the surface of water in an inclined channel

Solution. The equation (a) may be written in the form

h—nd
— < dh=ids, (b)
h* —hd

hence an ODE with separate variables.
The ratio in the left member may be written successively

h—h) B’ —hy+hy —h, _1+h3 —h

h® —hy h? —hg h® —hy
:th—hj, 1 h+2h
3nt \h=hy  h* +hoh+hi
_1+hg—h3, L1 2h+hy 3, 1
302 \h—hy 2K 4hgh+h? 2 " W2 +hoh+hl

and the equation (b) becomes

hy —h} 2h+h
1+~ 1 . %o 2—2h0% dh =ids .
3hy \h—=hy 2 h*+hyh+h; 2~ h°+hyh+h;

Integrating, it results
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hy —h2. hy —h
o B2 (= hy ) =22 0+ hoh 3 )
3h 6h

—+/3 arctan o + 2 = i(s+C),

V3h,

where C is an integration constant; the solution may be written

h3 —h} h—h 2h+ h
0 ——1In d ~ B arctan 20 - i(s + C) (©)
3hq VB2 + hoh + 1 3,

too, where the constant is determined supposing that, downhill, we have 4 = h, for

h+

s =8, ,thatis

hg - h} hy = h 2h + h
P L=l ~VBarctan 210 _ (s, 4 €), (d)

3hy B2+ hohy + B2 3h,

Subtracting (d) from (c), we finally get

h_h1+h3—h3, ol = ho hE +hohy +ht
3hg hy—=ho \ h* + hoh+ hg

—\/EarctanM = i(s -85 )

h+2hy +3h,

5 (e)

The formula (e) allows to determine the free surface upstream the section § =5, .

Application 4.16

Problem. Study the flow rate of water from a vessel the form of which is a rotation
surface of vertical axis. Consider the particular case of a semi-sphere vessel of radius a,
with an orifice of area 4 at the bottom (we assume that the radius of the orifice may be
neglected with respect to the dimensions of the vessel). Determine the interval of time in

which the full vessel becomes empty. Numerical data: a =100cm, 4 =1 cm?.

Mathematical model. In hydro-dynamics, the velocity of flow of water through an orifice
at the depth % from the free surface of the liquid is given by Galilei’s formula, in the
form

v =ky4J2gh = kﬁ, (a)

where k, is a viscosity coefficient (for water, £, = 0.6).

We suppose that the equation of the meridian curve of the vessel is r? = rz(h)
(Fig.4.17) and we must determine the height 4 of water at a given moment ¢ .
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The velocity v of the flow is also a function of time (by the agency of 4, as it can be seen

in (a)).

r

£
\ LTI TITLITIIII D ISITETETIISS
< H
i .
J 7
3. /
©
>

Figure 4. 17. The flow of water from a vessel the form of which is a rotation surface

We calculate now the volume of water which flows in the interval of time dz. First of all,
through the orifice flows the liquid contained in a cylinder of basis area 4 and height
vdt , hence

dV = Avdt = Akh"?dr . (b)
On the other hand, the height in the vessel lowers with d#; the corresponding volume is
dV =-—mr?dh . ©
Equating the expressions (b) and (c) of dV, it results the ODE of the problem
—mr?dh = Akh'dr .

Solution. Separating the variables, we get

2

Tor
dt == 4
whence, by integration
2 A d
= e @

The integration constant C is determined by the initial condition / = h,, for ¢ = 0.
Then it results

T h 1’2

Akhj dn.

max

(e)
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In the particular case of a semi-sphere, the equation of the meridian curve is (with
hmax =a)

r2 = h(2a - h).

Introducing in (e), we have successively

h
_ T f h(za_h) dh =ijl'(2ahl/2 _h3/2 }ﬂfl =l|:iah3/2 _gh5/2:|
Ak 3 5

TANE ’ Ak .
- ﬂa5/2 —iahm +gh5/2 i
Ak \15 3 5

The vessel is completely empty for 4 = 0; it corresponds the interval of time

n 14 a5/2 )

O Ak 15
With the numerical data of the problem and taking g =981 cm/ s? , we get

14 110072

t e —
" 715 1.0.642-981

Application 4.17

=11033"=183'53"=3h 03' 53".

Problem. To cross a river, a swimmer starts from a point P(x,, y,) situated on a bank
and wishes to reach the point 0(0,0) on the other bank. The velocity of the water flow is
a and the velocity of displacement of the swimmer is b. Which is the trajectory described
by the swimmer if the relative velocity is directed all the time towards the point Q ?

Mathematical model. Let be M the position of the swimmer at the moment ¢ (Fig.4.18).
The components of the absolute velocity along the two axes Ox and Oy (O = Q) are

E=a—b al ,
de x2+y?
(a)
Y,y
de X2 12
eliminating dz, we obtain
2
dr_x a 1+ b)

which is the differential equation of the searched trajectory.
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9 Pez, y,)

Figure 4. 18. Swimmer’s problem

Solution. The equation (b) is a homogeneous one, so that we make the substitution

and it becomes

d [
y—u:—% 1+u? . ©)

dy
Introducing the ratio m = a/b of the velocities, we get

dy du

By integration, one obtains

—mlny+mlnc:ln(u+\/1+u2),

where ¢ is an integration constant, or

Thus, we get

)" "
2 H -2 @
21y c
and the problem has a solution only for m € (0,1). The constant may be determined by
imposing the condition that the trajectory passes through the points P and Q.
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Application 4.18

Problem. Determine the families of the trajectories of the extreme tangential stresses in
case of an elastic half-plane acted upon by a concentrated force P normal to the
separation line.

Mathematical model. The searched trajectories are defined by the first order ODE

2 41,
(d_yj M by =0, (a)
dx c6,—0c, dx

where 6,.,05, and T,

, are the normal and tangential stresses (supposedly known),

¥
respectively, at a point (x, y) (Fig.4.19). The state of stress is given by

S N S
* (52 4 2 ) ’
N .
y b <x2 +y2)2 ’ (b)
2P x2y
Ty = _E—(xz +y2)2 )

where b is the constant thickness of the plate and P/b = const .

Solution. The differential equation is of second degree and may be decomposed in two
differential equations of first order. The product of the roots is —1, so that the two
families of curves are orthogonal. Solving the algebraic equation of second degree (a),
one obtains

dy_ 2rxy
dx Gx—Gy_

(c)

By means of relations (b), we obtain

2'{:)0/ 2xy

_ 2 27
X Gy xT =Yy

so that the differential equation of the trajectories becomes

and may be decomposed in two equations
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dy x+y
== (@
xX=y
dy = x-y
dx x+y’ (e)
The equation (d) may be written as a homogeneous equation
Y
1+=
P ()
dx
Y
X

By the substitution u = y/x, the equation (f) reads

dr  du  1-u du = du 1 2udu
x 1"‘”_” 1+u? 1+u? 2 1+u®’
I-u

integrating, we get
1 2
In x = arctan u —Eln(l +u )+lnC,

where C is an integration constant.
The solution is obtained in a simpler form in polar co-ordinates; we have successively

(with x =rcos@, y =rsing, y/x =tan¢)

[ 2
Inx +In 1+y—:arctanl+lnC1,
x? x

Inyx? +y? = arctan 2 + In C,
x

Inr=0¢+InC
and, finally,
r=Cpe?. (8)

The curve (g) represents the equation of a family of logarithmic spirals which pierce the
radial half-lines in the Appl.4.9 under angles of n/4.
The equation (e) may be written in the homogeneous form
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R
dv _ x
Lox (h)
dr R
X
The same substitution u = y/x leads to
de  du 14w Q= — du 1 2udu
X u—l_u 1+u? 1+u® 21+u>
u+1
By integration, it results
1 2
In x = —arctanu —Eln(l +u )+ InC,
or, finally,
r=C,e ?. (@)

which represents a family logarithmic spirals, orthogonal to the first one.

Let us determine the constants C; and C, . Consider the point A(x,, yo) through which
pass the trajectories of the principal normal stresses and the trajectories of extreme
tangential stresses.

The equation of the trajectory o, reads

y:xtan(po,tan(pozy—o. G)
Xo
and the trajectory c, may be written
x2+y2:r02,r0= xg+y§. (k)

Let us consider further the solution (g). The condition that this logarithmic spiral passes
through the point 4 leads to

C, =rye ™,
hence,
r=rye? . )]

For the second trajectory we may write

r=rye®?. M
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To represent graphically the trajectories, we take x, = y, = 1. It follows that ¢, = n/4

androzx/z.

Figure 4. 19. The trajectories of the extreme tangential stresses in case of an elastic half- plane acted
upon by a concentrated force normal to the separation line

The curves (1) and (m) have been represented in Fig.4.19, together with the trajectories
(j) and (k). We notice that the trajectories of the extreme tangential stress pierce the
straight line (j) and the semicircle (m) under angles of w/4 . From the two trajectories we

retain the arcs corresponding to x > 0.

Application 4.19

Problem. Find the isogonal trajectories of the family of straight lines passing through a
fixed point; the angle of intersection is o .

Mathematical model. As it is known, in general, if a family of curves is given by the
differential equation

F(x,y,dy/dx)=0, (a)
then the family of isogonal trajectories is defined by the differential equation

dy
F x,y,—dg =0, (b)
k—y+1
dx

where k = tan ..
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Solution. In our case, choosing the origin of the co-ordinate axes at the fixed point, the
equation of the family of straight lines is given by y = mx, whence dy/dx=m, so that

the differential equation of the family of straight lines is

y_dy
EAE c
o (©)
In this case, the equation (b) leads to
b
Y dx
Yok & +1
which represents the ODE of the isogonal trajectories.
It may be reduced to the form
dy hkx+y
o= (@)
dx x—ky
hence to a homogeneous equation with separate variables
dx _ 1 1—ku du,
x  k1l+u?

the general solution of which is
1 1 )
Inx = ;arctanu —Eln(l +u )+ InC;

returning to the initial variables, we get

2 X

2
lnx+%ln(l+y—]:larctanl+lnC.
x

After some transformations, the previous expression reads

lxz +y2 _ Ce(l/k)arctan(y/x) (e)

In polar co-ordinates r = 4/x2 + y2 , y = arctan(y/x), one obtains

r=Ce¥* ®

which is the equation of a family of logarithmic spirals.
The previous application is thus generalized.
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Application 4.20

Problem. Determine the trajectories of the principal normal stresses in a gravity dam, the
upstream face of which is vertical, while the downhill face is inclined of angle a.. The
unit weights of concrete and of water are y; and vy, respectively (Fig.4.20).

0 . ) -

(&3

)

&)

Xy

Figure 4. 20. Cross section in a gravity dam

Mathematical model. As a study of plane elasticity, one may express the state of stress in
a gravity dam in the form

Y 2
o0 Jof -2,
tan” o ano  tan” o

c, =—Yx, (a)
)4
Top =Ty =— .
R tan? o
where o, o, and t,, are the normal and the tangential stresses, respectively. The

differential equations of the searched trajectories are given by

dy Oy =% (b
dx 27,
Solution. We compute the ratio
G,—0, 2
27 Mang - ! +(1+tan @1 tan? a]£:a+b£, ©)
21, 2y tan o 2 2y y y

where we used the notations
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a —y—ltanoc—
2y tan a
l+tan’ o @
b:——y—ltan2 o.
2 2y

The ODE of the trajectories become

2
Ez—(d-ﬁ-biJi (a+b£J +1. (e)
dy y y
From the equation (¢) we may separate the two trajectories. We take first of all the sign
+ before the radical, hence

2
ﬂz—[a+b£j+ [a+b£j +1. (O
dy y y

For y — 0 it results dx/dy =0, hence dy/dx — oo, characterizing thus the family of the

trajectories of the compression stresses G, which start normal to the upstream face. To

see this, one multiplies the equation by its conjugate and, after a reduction of terms, one
makes y =0.

For y =xtana (the inclined downhill face) it results
dx 1 dy

—= , —=tanao,
dy tano dx

and the trajectories of 6, become asymptotically tangent to the downhill face.
Returning to the differential equation (f), the substitution
X t—a X
;:T’t:a+b;’ (2)
leads to the equation with separate variables
dy de
Yooa—-(b+1)+bVit +1 .

(h)

A new change of variables

2

2 _q 1 241 .
r=Y - dr=2 * du , u:t+\/t2+1, Vt2+l=u - ) (1)

2u 2u 2u

transforms the equation (h) in another equation with separate variables
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dy (u2 + l)du 0
y u(u2 —2au —2b—1).
We notice that
2
a2+2b+1=(y—1tanoc— —tanaj =(2a—tanoc)2,
2y tan o
so that
u® —2au—2b-1= (u—tanoc)(u—2a+tanoc).
Decomposing in simple fractions
u? +1 _ u? +1
u(uz —2au—2b—1) (u—tana)(u—2a+tana) &)
A B C
= ——+4 + s
u u-—tano wu-—2a+tano
we obtain
I B
tan a(tan o — 2a)
_ l+tan? o
2 tan a(tan o- a) ’ O
2
C=1+A-B=1+ ! o Ivtana
tan a(tan o- 2a) 2 tan a(tan o-— a)
Integrating now the equation (j), we get
lnlz Alnu—Bln(u—tanoc)—Cln(u—Za-i—tan oc),
1
where the constants A4, B, C are given by (1); further, we may write
4
u
y=C , (m)

(u —tan oc)B (u —2a +tan O.)C

where C,; is a new integration constant, which can be determined by the condition that

the trajectory passes through a given point.
The variable # may be expressed by means of the variables x and y in the form
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2
u=a+b>+ (a+b£J +1. (n)
y y

In particular, for y = xtan o we have

For this value of u, the denominator in the right member of (m) vanishes, so that
y=xtanao isan asymptote of the trajectory.

Taking into account (n), the solution (m) may be written in its final form

A
(u+\/u2 +1j
X
| 5 o u(x,y):a+b—. (0)
(u+x/u2+l—tana) (—2a+u+\/u2+1+tana) Y

For the trajectories of the tension stress G, , the differential equation is

2
E:—(cwbi]— (a+b£J +1. (p)
dy y y

For y — 0 it results dx/dy — oo, hence dy/dx — 0, and the trajectories are asymptotic

=C

to the wupstream face; for y=xtano it results dx/dy=-tana, hence
dy/dx = —1/tan o, so that the trajectories are normal to the downhill face.

By the same substitutions (g) and (i) one obtains the differential equation with separate
variables

dy _ (u2—1)du _du  Ddu Edu @
y _u(utana-i—l)[u(tana—Za)—l]_ u utano+1 u(tana—Za)—l’ d
where
2 2
D= 1+tan” o E=D-2q-= I+tan” o _2a. (r)
2(tan o~ a) 2(tan .- a)

As in the first case, the final solution is

2 ”ﬂ/m |
Ku+M)tana+lr[(u+m)(tana—2a)_1r (s)

where C, is a second integration constant and « has the same significance as in the

formula (o).
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Figure 4. 21. Trajectories of principal normal stresses passing through a point in a gravity dam

The two trajectories passing through a certain point are given in Fig.4.21; this analytical
solution is quite difficult to use in practice.
Application 4.21
Problem. Study the surface of coincidence in case of a surface of the form
c0sQ sing _ Z(ro)
dry o Ny’ (@)
do

where 7, is the radius of the parallel circle, ¢ is the meridian angle between the axis of
rotation and the support of the curvature radii, Z(r,) is the normal component of the
load (uniform distributed along the parallel circles) and N is the constant value of the

meridian and annular efforts (supposed to be known).

Solution. The equation (a) may be written in the form

z
7o cos edo + (sin o+ %} dry =0. (b)
0

It is an ODE with total differentials, because
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%(ro coscp):%(sin(p-i-z(;—oo)mJ =CcosQ.

Hence, there exists a function F = F(r,, ) so that

sza—Fd(p+a—Fdr0, (c)
16/0] or,
with
or _ ¥y COS
a(p 0 o0, ;
oF | Z(ro )ro (d)
— =sinQ + ———.
or, N,
The function F' is thus of the form
F(ro, (p) =7y sin @+ f(ro);
introducing in (d), we are led to f'(ry) = Z(r, ) 7, /Ny .
Hence, the general solution of the equation (b) is given by
Z
I sin(p+j'%dro +C. (e)

0

Application 4.22

Problem. Search the solution of the equation (d) in Appl.4.19 by means of an integrating
factor.

Solution. The equation

d_y _hx+y
dx x—ky
may be written in the form
1
xdx -+ ydy = - (vdy - yd) (a)

too. An integrant factor is 1/ <x2 +y2 ), so that the equation (a) becomes

xdx+ydy 1 xdy—ydx
S =

x2+y? ok xt4y

each member of this equation is a total differential, the general solution being of the form
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lln<x2 +y2)= larctanl+ InC.
2 k X

We find thus again the solution in orthogonal Cartesian co-ordinates or in polar co-
ordinates, respectively.
Application 4.23

Problem. Determine a curve so that the portion of a tangent to it between two rectangular
straight lines be of constant length a.

xy

Figure 4. 22. The segment of line of length a with the ends leaning on two rectangular axes (a). Astroid (b)

Mathematical model. We choose the two orthogonal straight lines as Ox - and Oy -axes

and be (x, y,) a point on the searched curve. The equation of the tangent reads
¥ = o = y5(x —xo).
The segments 04 and OB determined by the tangent on the two axes (Fig.4.22, a) are

04 =x, 22 = - 207000 op _ 0~ oy

Yo Yo
Applying Pythagoras’ theorem, we obtain
L N\2
(—yo —y:oyo] +(vo — Xy = a?. @)
Passing to the co-ordinates x,y and denoting p = y’, the equation (a) becomes

(y - Px)z(l + pz) =a’p?, whence
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ap
y=pxt ——,—, (b)
J1+ p?
obtaining an equation of Clairaut type.

Solution. The general solution of the equation (b) is

v e’ ©

representing a family of straight lines.
The solution is obtained by eliminating the constant C between the equation (c) and its
derivative with respect to C

a
Xt ———-=0.

ey
Denoting C = tan ¢ , it results
y = *asin’® ¢, x = tacos® @;
eliminating the parameter ¢ between the two above relations, we have
X234 2 = g2

obtaining thus an astroid (Fig.4.22, b).
Technically, one may find such a situation in case of the door of a rectangular shower
bath, from the open to the closed position.

Application 4.24

Problem. Study the differential equation of thin shells of rotation in a theory of
membrane. Particular cases: spherical and parabolical dome.

Mathematical model. The function efforts in the membrane shell U = U(p) is of the
form

1d 1d
dU+(—ﬁ—couij— P oSy oo, ()
cos@ ry, do sin @

where ¢ is the meridian angle (independent variable), r, = 7, ((p) is the radius of the
parallel circle of the rotation surface, and n > 2 is an integer number.

Solution. The equation (a) is of Riccati type and its solution may be obtained by
quadratures only if a particular integral is known; this is possible only in particular cases,
specifying the form of the meridian curve.

In case of a spherical dome for which a is the radius of the sphere; it results
ry = asin @, whence (1/ To )dr0 /de = cot ¢ . The equation (a) takes the simpler form
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(1-u?)=o0. (b)

We may write this equation as a differential equation with separate variables

dU2+r.zd(p:O’ ©
1-U? sing
the solution of which is
C +tan>" @
U= -2 , (d)
C—tan?" @
2

where C is an integration constant.
In case of a parabolical dome for which a is the curvature radius at the vertex of the

paraboloid, we have 7y, = atan¢ and dr, / d(p:a/ cos? ¢, so that the equation (a)
becomes

L (L —— @

dau sing n
do cosQ singcos’ @ sin @

It may be written also in the form

d( U n U?
cos @ — +— 1- =0; ®
de | cosq ) sing cos® @

we notice thus that it has two particular solutions U,,U, = £cos .

From now on, one may follow two ways to get the solution.
1) We introduce the notation v = U/cos ¢ and the equation (f) becomes

o fv?)=o, ()
dp cos@sin
hence an equation with separable variables of the same type as (b). We may write

dv. _ 2nde

1-v?2 sin 2¢

whence

_c+tan? @

c—tan?" ¢~
¢

finally, we have
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¢ + tan?" @

U =coso 2”(p’

¢ — tan

where ¢ is an arbitrary constant.

i) Another way is to use the fact that the equation (e) is of Riccati type; if
we know a particular solution we are led to a complete solution. Indeed, by a change of
function

U=v+cosg, @1

we obtain

dv sin @ 2n n 2 .
dv,[sine__ - —v? =0, ()
do COS(Q SIMQCOSP ) sin@cos” ¢

hence an equation of Bernoulli type with o = 2. Denoting z =1/v , it results for the new
unknown function z the non-homogeneous linear equation

dz sin @ 2n n
I (L L - -0, ()
do cos@ sin@cos® ) singcos’ ¢

which may be solved by the method presented in Sec.1.6, c. The solution is the sum of
the general solution of the associated non-homogeneous equation

(tan )"

zZy =
cos ¢

and a particular solution of the non-homogeneous equation, which may be obtained by
the method of variation of parameters. Finally, we have

z=—"(tan @) > - L
cos @ 2 cos @

Returning to v and then to U, we get
c(tan )" + 1
cos @ ¢

U=— S | cosp=cosp ——2 |=cosp
c(tan )" — 5 c(tan )" — 5

K +(tan ¢)*"
ARV @
K- (tan (p)
where we denoted K = 1/2 ¢. The forms (h) and (1) of the solution are identical.
A possibility to integrate the equation (a) appears if its coefficients satisfy the condition
in Sec.1.6. d, case 1, that is

n Ldy, n

——L _cot

ry do _cosq) 1y do sing

=0, (m)

whence
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dry
dp _cose (n)
rp  sing

As we have seen, this condition is satisfied for a spherical dome (r, = asin @).

In the more general case indicated in Sec.1.6. d, case 2, the Riccati equation (a) may be
integrated if there exist two non- simultaneous non-zero constants a, b, so that

d d
a2 " LﬁJrab —Lﬁ+cot(p —b? _n =0, (0)
cos ry, do ry do sin ¢
whence
dr, bzn—abcoqu
— =L = cot g (p)
ry do a‘n—abcos@
Application 4.25

Problem. Study the motion of a particle P of mass m, acted upon by a central force F,
which passes through the fixed point O.

Mathematical model. Newton’s equation of motion is of the form
.. r
mr=F—, (a)
r

where r is the position vector of the point P (Fig.4.23). A cross product by r in both

members leads to ¥rxr =0, so that d(ixr)/dtz(), whence rxr=C, C=const; we

effect now a scalar product by r in both members and obtain C-r =0 (the triple scalar
product in the left member vanishes). We may thus state that the trajectory is a plane
curve G; taking the corresponding plane as plane Oxy, we may write the equations of
motion in polar co-ordinates »,0 in the form

mli = 92) = F, m(2id + ) = 0. (b)

Solution. The second equation (b) leads to the first integral of areas
20=r20= g =C,C= rozéo = rovg =71V, sino, = const, (©)

where Q is the areal velocity of the particle P and the constant C is specified by the
initial conditions (Fig.4.23)

Iy = r(to), vo =w(tg), 0 =6(ry). 6, =6(,),

where o, is the angle between the vectors r, and v, .
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&y

Figure 4. 23. The motion of a particle subjected to the action of a central force
Taking into account (c), the first equation (b) may be written in the form
2 2
.= .z .G mC . my,
mi = F(r, 0,7, O;t)z F(r, 0,7, 9;t)+ = F(r, 0,7, O;t)+ 0 , (d)

r3 r

where we have introduced the apparent force F (we notice that the supplementary force
mv} / r is of the nature of a centrifugal force); the system of differential equations (c),
(d) determines the functions » = r(¢), 6 = 6(¢), the three integration constants which
appear being specified by the initial conditions. If F = F (r, 7 t), then the motion along
the vector radius is given by Newton’s one-dimensional equation, where the apparent

force F is used, the angle 0 being then obtained from the integral areas.
Successive differentiations lead to

f:zeziz:_ci(lj ,
do 2 do do\ r

) d> (1. «c? d* (1
Vv =— —_— 9:——— —_ ;
do> \ r r? 4% \r

replacing in the equation (d), we obtain Binet’s equation (we assume that
F =0F[ot =0)

d? (1) 1 Fr? ,
— | = [t—== 7F=F 39’ 399
de2(rj r omC? 0.9 ©)
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eliminating, analogously, 7# and © from the expression of the force F, one obtains a
differential equation of the second order, which determines the trajectory of the motion
in the form

1
—=f6:0.6,). ()
The initial conditions
1 , 7 cot o
f(00:C1.Cy)=—, f1(64:C,Cy) = - % = - —, (g)

Ty C Ty

where 7y = v, cosa, f' = 0f/d0 allow to determine the integration constants C; and

C, . The integral of areas specifies the motion on the trajectory in the form

t=ty+ ! JQ ds (h)
=ty +—
C eofz(S;C1>C2)
If we notice that F-dr = F X d(r Lj = Fdr, the theorem of kinetic energy leads to
r r
2 2 r .
%—%=IF(p,9,p,e;t)dp. (i)

0

If F=F (r, 6), hence if F = F(r), then we may write a first integral of Binet’s

equation in the form

2
d(1 1 1], "
—| = || +—==—|vy +2m| Flp)dp]|, i
Le(rﬂ = [ 0 { (p) p} 0]
noting that v2 = 72 + 202 = 72 + C2/r2 ; one may obtain this result multiplying both
members of Binet’s equation by d(1/r)/d0 and integrating. The given force is, in this

case, conservative and we can introduce the simple potential U = U(r), so that
F(r)=U'(r)=dU/dr . The first integral (f) becomes

.2 2 2 2 2
mr~ _ mC i[lj _mC [ﬂ) =U(r)+h,
2 2 do\ r 2r2 do
mC? e mvg
2r2 2

(k)

U(r)=U(r)- Ul

where we have introduced the apparent potential U (r) and the energy constant h; we
obtain thus
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0= eoicj dwp) =0, F Cfd—p, o(r)= [U +h] 0]

w o) 0P yolp

the trajectory being determined in polar co-ordinates. The two first integral used allow,
at the same time, to put in evidence the motion of the particle along the trajectory,
establishing the parametric equations of that one in the form

0 r
t=ty=C [r*(8)d9, r=t,%

- (m)
8o R (P(p)

If the potential is of the form U (r) = k/ r®, k=const, s €9, then the above integrals

may be expressed by elementary functions only if s =—2 (harmonic oscillator), s = -1,
s =1 (Keplerian motion), and s = 2 ; if s = —6,—4,3,4, 6, then these integrals may be
expressed by means of elliptic functions.

The sign of the radical is determined by the sign of the initial velocity 7, = f(to) if

o(r) > 0. If @(r) = 0, then v0 =7, = 0, so that the velocity is normal to the vector

radius at the initial moment; the motion along the vector radius takes place as if the

radius would be fixed, the force acting upon the particle being F . If the apparent force
is positive (repulsive force), then r is increasing and one takes the sign + ; otherwise
one takes the sign —. Let us suppose, in particular, that F =0 at the initial moment; in
this case the particle remains immovable for an observer of the vector radius, because the
particle moves on this radius as it would be fixed, the particle being launched without
initial velocity from a point at which the apparent force vanishes. Hence, the trajectory is
a circle of radius 7, , the motion being uniform (because the areal velocity is constant).

To have a circular trajectory we must have o, = + /2 (the velocity must be normal to
the vector radius at the initial moment so that C = tryv,) and F (ro )+ mC? / r03 =0.If

r =1, (circular motion) and 6= éo (uniform motion) during the motion, then the

equation (e) is identically verified; because the initial conditions are fulfilled, the
theorem of uniqueness ensures us about the searched solution. The velocity at the initial
moment must have the modulus

vo = %; (n)

hence, at the initial moment, the force F must be of attraction ( F (’”0 ) <0.
The relation (e) may be written also in the form

mC?| d* (1) 1
ponc e )] o

r do- \r r
we obtain thus Binet’s formula, which allows to solve the inverse problem: determinate
the central force which, applied to a given particle, leads to a plane trajectory, after the
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areas law with respect to a fixed pole. Taking into account the equation (f) of the
trajectory, we may write

F == [0+ 70)] o)

too, where f" =0%f / 002 . If a given form of the expression F is not previously
imposed, then that one has a certain indetermination, taking into account the equation of
the trajectory (the equation which links » to 0); eliminating 0, one obtains F = F (r),

a form used the most times.
For example, in the case of trajectories for which corresponds the equation

r¥ =acosk®+b, a,b,k=const, (@
we obtain
C? | (k+1)\a® - b?
A= - S [l =02) ] o

choosing the origin as a fixed pole; in particular, these trajectories may be conics having
the pole as focus (k = —1) or as centre (k =1), Pascal’s limagons (k =2,b= 0),
lemniscates etc.

The trajectory of a particle in a field of central forces is usually called orbit (even if it is
not a closed curve). The relations (k) — (m) determine the orbit and the motion on the
orbit only if 7, 0, and ¢ are real quantities, that is if (p(r) > (; the apparent potential

must verify the condition U (r)+/4 >0, which determines the domain of variation of r,
corresponding to the motion of the particle; the solutions of the equation

U(r)+h=0 (s)

specify the frontier of the domain. From (k) it is seen that the radial velocity vanishes on
the frontier (f = O) , the angular velocity being non-zero (6 # 0;if we have 0 = 0 ata

point different of the origin, then, from the first integral of areas, it results C = 0, hence
the trajectory is rectilinear); the velocity is normal to the vector radius at the respective
points. On the frontier, r(t) changes of sign, the respective point corresponding to a

relative extremum for 7(¢). The relation (c) shows that 8(z) has a constant sign, so that
G(t) is a monotone function; the integrals (1) and (m) must be calculated on intervals of

monotony, the sign being chosen correspondingly. Let be r,;,, and r,,, the extreme

max
values which may be taken by r; the corresponding points of the orbit are called

apsides. In this case 0 < 7, <7 < rpay -

The radius r,

nax 18 finite, hence the orbit is bounded and the trajectory is contained in the

annulus determined by the circles » = r;, and r = r,,, (We suppose at the beginning
that 7,

win > 0); the radii r,;,, and 7,

nax  are called apsidal distances. The points for



4. Non-Linear ODEs of First and Second Order 321

which r = 7, are called pericentres, while those for which » =r_, are called
apocentres. Taking into account that at an apsidal point the velocity is normal to the
vector radius, which is the radius of a circle, it results that the trajectory is tangent to the
concentric circles at the corresponding apsides (Fig.4.24). Choosing as origin of angles
0 the radius of an apsidal point © = 0, called apsidal line, we may use the relation (m)
for two points of same vector radius » of the trajectory, of one and the other part of that

line, 7, being r,;, Or rn,. ; it results that the trajectory of the particle is symmetric with
respect to an apsidal line. The angle y at the centre between two consecutive apsidal
lines is constant; it is called apsidal angle and is given by

"max dr
x=C [ - (®
"min ]"2 (p(}")

It results that the angle at the centre between two consecutive pericentres (apocentres) is
equal to 2y .

Figure 4. 24. Orbit of a particle subjected to the action of a central force

From the above mentioned properties it results that, if the arc of trajectory between two
consecutive apsides is known, then one may set up geometrically the whole trajectory
(Fig.4.24). From (c) it results that § has a constant sign, so that the particle rotates
always in the same direction around the point O . To have a closed bound trajectory, it is
necessary that, after a finite number of such rotations, the particle returns at a previous
position; hence, the condition 2y =2ng, ¢ € @, must be satisfied. In the contrary case,

. We observe that the apparent

the orbit is open and covers the annulus » € [rmm, rmax]

potential U (r) has a maximum at a point in the interior of the annulus, corresponding to
F(r)=dU/dr=0. It is possible that the equation ¢(r) = 0 may have more than two
roots. In this case, we obtain two possible annular domains; the motion takes place in

that domain which contains the given initial position 7, = r(to). If r,,, =0, then the
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particle passes through the pole O or stops at this point. Assuming that

C # 0 (otherwise, the trajectory is rectilinear), the term —mC> / 2r? leads to

limﬁ(r): —oo, “the fall” towards O being thus hindered. The condition of “falling”

r—0
towards O is obtained from the condition U > —h , written in the form
r2U(r) - mC?/2 > —hr?. To have r; =0 we must have lim [VZU(V)JZ mC*/2,

r—0+0
hence U(r) must tend to zero at least as A/r2, 4> mC2/2 oras A/r", 4>0,
n>2.
= 1, , the trajectory is a circle of radius #,, corresponding to F (r) =0and

If Tmin = "max

the energy constant & = —U

max *

One may prove the following

Theorem 4.3 (J. Bertrand). The only closed orbits corresponding to central forces are
those for which s = =2, k <0 for any initial conditions or s =1, k > 0 for certain

initial conditions, assuming a potential of the form U(r) = k/rs ,k=const,s €9 .

Jacobi considered the case in which the central force is of the form F = y()/r? , hence
it is inverse proportional to the square of the distance to the point O. Binet’s equation

(c) becomes

2

(1)1 ) W
do*\r) r  mC?

integrating, we obtain
1 . _
—=C,cos0+C, sm6+y(6), v)
B

where ?(6) is a particular integral, which may be always obtained by quadratures. The
integration constants are easily obtained by initial conditions of Cauchy type.
Analogously, we may consider central forces of the form k/ 3,k = const , leading to the

d? (1 k)1
— | — |+ 1+ —=0,
dezu ( mchr ™)

whence the general integral

equation

1 .
—=C,cosPO+C,sinP0O,B=./1+ k2 . (%)
r mC
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Application 4.26
Problem. Study the motion of rotation of a simple pendulum around a vertical axis.

Mathematical model. Let us assume that the vertical circle on which mores a heavy
particle, in particular the mathematical pendulum considered in Appl.4.33, rotates with a
constant angular velocity » around its vertical diameter. The co-ordinates of the particle

are thus: x = /sin 0 cos @t, y = [ cos 0 sin @wt, z = —I cos 0, where the applicate z has
been taken along the ascendent local vertical (Fig.4.25).

T 2

Figure 4. 25. Simple pendulum in a motion of rotation

The constraint is rheonomic, so that we use Lagrange’s equation (see Appl.2, formula
(m)), where

T = %mlz(éz + o2 sin? 0)), Q=mg-%=—mglsin6; (a)
we obtain thus
é—mzsin60056+§sin6:0. (b)

Solution. Introducing the non-dimensional variable ¢ = z, we may write the equation
(b) in the form (d¢ = dodz, 6" = d6/d¢ )

0" = (cos © — A)sin 6, A =i; (©)
lw?

multiplying by 26 and integrating, it results the first integral
0% - (sin2 0+ 2\ cos 6)= const, (d)

and the equation 6 = 6((p) of the trajectory is obtained by a quadrature.
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The above considerations are valid for a pendular motion as well as for a circular motion.

Application 4.27

Problem. Determine the motion of a particle constrained to stay on a straight line which
rotates around one of its points, the tangent of the rotation angle being proportional to the
time ¢ (Fig.4.26).

Mix.y)

X

Figure 4. 26. Motion of a particle on a straight line which is rotating

Mathematical model. Let us consider tan¢ = kf, where k is a constant of
proportionality. At the time 7, the equation of the straight line is

vy = kix, (a)
The components of the acceleration along the two axes are a, :d2x/ de?

a,= d? y/ dt* . By a virtual displacement of the particle, of components 8x and &y,

the condition of compatibility, deduced from (a), leads to
Oy = kitdx ; (b)

the virtual work is (m is the mass of the particle)

2 2
d
md—;8x+m—§}6y=0. (©
de de

Simplifying by m and taking into account (b), the relation (c) becomes

Sl ikm—2=0. (d)

Solution. From (a), one obtains (differentiating twice)
42 2
4y de 4 ©)
de? dt dr?

Eliminating d? v/ dt? between (d) and (), we get
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2
(1+522) 9% 0p2 & )
de? dr

Noting that in this differential equation we have not a term in x, we make the substitution

dx d’x _du

—_—=y = = —

dr di?  dt
and the equation (f) becomes successively

(1+k2t2 )d—”+2k2m =0,

dt
du  2k%t
u o 1+k%?
The variables are separated and, by integration,
nu = In(l + k2¢2)+ In C k ;

hence, we deduce

whence
x = C, arctan kt + C, . (e
From (a), it results
y = kt(C, arctan kt + C, ), (h)

so that (g) and (h) are the parametric equations of the trajectory.
Eliminating the parameter ¢ between the two relations, it results

x-C
arctan 2 =2
X Cl
or
X =0 .
y = xtan . @)

1

We notice that (f) is a linear, homogeneous ODE; one may apply the results in Sec.1.2
after the change of function u = dx/d¢, obtaining
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2kt C
M(t): Cexp{—jmdt] = Cexp[—ln(l+k2t2)]:m .

Integrating once more with respect to ¢, one obtains the formula (g).

Application 4.28

Problem. An electron is situated in an electrostatic field of a very long wire (theoretically
infinite) with a positive charge and starts from rest at the moment ¢ = 0. The electron
has a negative charge and is attracted towards the wire. Evaluate the time 7 necessary
for the electron to reach the wire.

Mathematical model. Corresponding to Coulomb’s law, two particles of electric charges
q, and ¢, , of opposite sign, respectively, situated at a distance r, are attracted by a force

F=qq, / kr? | where k is the dielectric constant of the medium.

If e is the charge of the electron, A is the charge per unit length of the wire, y is the
distance from the electron to the wire, and dz is the elementary length of wire (Fig.4.27),
then the attraction exerted by the charge Adz upon e is

ehdz

dF =22, a

2 (a)
where r is the distance between the electron and the element dz. Denoting by 0 the angle
between the Oy-axis and the straight line connecting the electron to the element dz, we
have

po Y g o199
cos 0 cos 0
and the relation (a) becomes
errdd ehdd
B kr? cos© B ky

The element dz symmetric with respect to the origin, hence situated at the distance -z,
acts upon e with a force of the same magnitude; the components parallel to O z of these
forces are equal in modulus and of opposite directions, their sum vanishing. The non-
zero resultant, parallel to the Oy-axis, is

chosezﬂcosedO.
ky

Summing all these elementary forces, we obtain the force by which the wire acts upon
the electron, i.e.
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/2

F:% cosedezﬂl. (b)
0 k y
yls

e
4 & XRI¢
(‘ :h A
or oF roe
ol = z oz,
-z z

Figure 4. 27. Motion of an electron in the electrostatic field of a wire

Under the action of this force, the motion of the electron of mass m is governed by
Newton’s law

i 2eh 1

=———, c
=S ©
where the sign minus in the second member takes into account the fact that, for a
positive y , the force acts in the negative direction of O y, and inversely.

Denoting
2eh
K=—, d
o (d)
the equation of motion is a non-linear equation of second order
d’ K
_2y - (e)
de y
The initial conditions are
»0) = n, y(0)=0, ()

where £ represents the initial distance of the electron to the wire.

Solution. Noting that the equation (e) does not contain the independent variable, we
make the substitution
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_dy.
p_dt’ (g)

hence,

d2y d(dy) dp dpdy dp
_——(—jz—:——_ - (h)

a2 di\de) a dede Pa
Substituting in (e), we obtain
dp K .
P (i)
ly y

Separating the variables, it results pdp=-Kdy/y; integrating this, we get
p? / 2=-KIny+C. From the homogeneous initial conditions y(O) = 0 and
7(0)= p(0)= 0, itresults 0 = —K Ins+ C or C = K Inh, so that

2
%;szh—mﬁ:Kmﬁ.

y
p:d—yzi /2K1n£.
dr y

In the previous relation one takes the sign minus, because the velocity is directed
towards a negative y for a positive 4, so that

One obtains thus

dy

/2K1nﬁ
Yy

Integrating in the left member between 0 and 7 and in the right member between the
corresponding limit /# and 0, we get finally,

dt=-

1 9 1

- i dr T d
V2K 3 | h 2K o h )]
n— In—
y y

The integrals in (j) may be calculated by the change of variable

T

x—lnﬁ (k)
y’

whence
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ﬁze’r , y=he™, dy=—he™dx,
Y

where x — o for y=0 and x =0 for y = 4.

The expression (j) of T' becomes

7/2dx= h Txfl/z

1 ¢ !
T=—=he™x
V2K§£ V2K o

The integral (1) may not be calculated by means of elementary functions in a finite form.
Developing the integrand into a power series

e dx. )

T x2 X3 e X XP
x e =x l-x+——-—+...|=x -Xx +—-

20 3 2! 3! e

and integrating, one obtains the power series of primitive

J.x—l/ze_dezzx—l/z 2x3/2+ 2 52 2 724

5-2! 7-3
2n+1 ( )
0 2 m
R TR
,EO( ) 2n+1 |
n!
2
The series (m) is convergent for any x and may be used to calculate
2n+l
2 . © P
Ydx=1 1)) —,
R o
5 !

hence a Gamma function I' (see the Chap.1, Subsec.2.8 ).

Application 4.29

Problem. The form of a directrix curve of a surface of translation is given by the
differential equation

" 1
= (a)

1+y"? a

Determine the general solution of the equation (a) and the integration constants assuming
the bilocal homogeneous conditions 1(0) = y(/) = 0. Discussion.

Solution. The equation (a) is of the form F(y’, y”) =0 and, by a change of variable
y' = p, we obtain the differential equation with separate variables



330 ODEs WITH APPLICATIONS TO MECHANICS

’

p = -
1+ p? a
or
dp _ dx
l-i-p2 a
The general integral is
X
arctan p = —— — C;, C, =const,
a

whence

4 sin(x+C1j
ly X a
=—=—tan —+C, |=———X.
p dx [a 1)

A last integration leads to
x
y = alncos(—+ Clj +C,,
a
where C, is a second integration constant.
From the boundary condition y(O) =0, we get
C, =—-alncosC,,

hence

cos C,

cos(x + Clj
a

The boundary condition y(/) = 0 leads to

y=-aln

/ ) L
cosCy = cos(— + C, | =cos—cosC; —sin—sin C},
a a a

whence

(b)

(©
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/
1 —cos—
a I
tan C;, = ————— = tan —
. 2a
sin —
a
or
C, __
2a

Finally, the equation of the directrix curve reads

/
cos —
In 2a

a (1 %) @
cos| — — —
2a a
To have a real solution, the condition //2a [O, i/ 2] must be fulfilled. We consider the

particular cases a/l = 3/n,2/n,3/2n.
For a/l = 3/n, the equation (d) becomes

|<

e

cos —
Z:—ln 6 =—In \/5 :ln[cosﬂl+isinﬂlj.
“ cos| & - ™ x/gcosE+sinE 3 \/3 3

6 3/ 3/ 3/

We notice that all the curves defined by the equation (d) are symmetric with respect to
the middle of the span. To set up the curve, we divide the span in 10 equal intervals. The
ordinates thus obtains are listed in Table 4.1 and are plotted into diagrams in Fig.4.28.

In the limit case a/l = © the co-ordinates y tend to infinity, while for a/l — o we

have y — 0, that is the graphic of the curve is reduced to the segment of a line /.

Table 4.1. The values of y/I for various a//

x/1 v/l
all=3/n al/l=2/n | all=3/2n

0 0 0 0
0.1 0.05101 0.08571 0.13912
0.2 0.08944 0.14717 0.22976
0.3 0.11626 0.18869 0.28779
0.4 0.13211 0.21275 0.32040
0.5 0.13736 0.22064 0.33095

Another way to solve the equation takes into account the fact that the equation (a) does
not contain explicitly the function y. As it was shown in Sec.2.3, b, we may make a

change of function y' = p, considering then p as function of y . We obtain
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dp dp , d
L-Ly-pL,
de dy dy

and the equation (a) becomes

d
»

b __1 (©
1+p? a’

hence a non-linear equation of first order with separate variables, the general solution of

which is of the form
—2—y+C
y'=p=+\e ¢ 1—1, ®

0 a5 l 10
a1 I~ //
A N /
N /
42 a A v

7 N\ e

™|

Figure 4. 28. The directrix curve for various a//

where C; is an arbitrary constant. The equation (f) is also with separate variables;

integrating it, we get

Y iikkew.

2
——y+Cl
e ¢ -1

Calculating the primitive in the left member, we obtain, successively,

I dy :I adu :_[ —adv__ —2aarctane’
[ 2. u\/uz 1 coshvy
e ¢ -1
—-x/a+Cy/2

by the change of variable u =¢ u =cosh v. Hence, we get

e’ = tan(— X4 kj
2a
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e 1 1
e ¢ = = ;
sin(—x+kj cos[erCzj
a a
finally,
y=a1ncos(§+€2j+cl, (h)

i.e. the same formula as that previously obtained.
But the first method is more convenient, because it is quite direct. In this case, the
second method led to an intricate computation of the primitive (g).

Application 4.30

Problem. Determine the form of equilibrium of an elastic thread suspended between two
points; the area of the cross section is 4 and the modulus of longitudinal elasticity is E.
The thread is acted upon by its own weight mg.

Mathematical model. Let be S the tension in the thread and Sdx/ds, Sdy/ds its

components along the axes Ox and Oy, respectively (Fig.4.29).
In the deformed form, the equations of projection on the two axes are

d dx

a@a}“ (®
d dy S
a[sﬂ(”a}g’ ®

where g is the own weight on unit length (we take the mass equal to unity). From (a) it
results

dx ds
S§—=8,=const,S=5,—,
ds 0 de (©)

and introducing in (b) we get
d(dy Sy ds
So—|— | 1+——|=g
Ods(dsj( EAdx] g (d)

Taking into account the relations ds=+1+y'*dx, dy/dv=y', we obtain the

differential equation

NS, L

0 dx | EA 12
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X

Figure 4. 29. Deformation of an elastic thread suspended between two points

Solution. We denote y' = p and consider p as independent variable; we obtain

Sol S
ﬂ:_o _0+; A %)
dp g EA 1+p2

Integrating, it results
So | S
x=—0|:E—1(;p+1n(p+1[p2+l)+C1:|. (g)
g

Because for x = 0 we have y' = p = 0, we obtain C; = 0 and

:%{&pﬂn(ph/,ﬂ +1)}. (h)

EAq

Multiplying (f) by p =dy/dx, we get

dy Syl S p :
e Lyt 0)
dp g | EA ,1+p2

Integrating, it results

So S
y=—0(—0p2+1/1+p2 —lj-&-CZ.

g \2E4

Because we have y' = p =0 for y = 0, we obtain C, = 0, so that

y:S—O(S—Op2+1/1+p2—1J. )

g \2EA

The relations (h) and (j) constitute the parametric representation of the deformed thread.
If EA — « (inextensible thread) one finds the catenary curve.
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The tension S, may be obtained from a geometric condition connected to the total
length of the thread.

Application 4.31

Problem. Determine the deflections of a cantilever bar of length / acted upon at the free
end by a couple M, (Fig.4.30).

0 Pl

Figure 4. 30. Cantilever bar acted upon by a concentrated moment at the free end

Mathematical model. The bending moment along the bar axis is M = M, so that the
equation of the curvature is given by

1
—=0_ const, (a)

p

where p is the curvature radius and E1 is the bending rigidity. The curvature is given by

d*w

dx2

272 p’ (b)
[1+[dwj ]
dx

where w is the deflection. The equations (a) and (b) leads to the differential equation of
the problem.

Solution. By the substitution u = dw/dx, du/dx = d?w/ dx”, the relation (b) becomes

du E

Integrating once, we obtain

Y __c X
VI + u? : p ©
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The condition of built-in section u(/) = 0 determines the integration constant C, = 1/p ,
so that the relation (c) becomes

dw [—x
dx pz—(l—x)z

The sign minus appears because to positive deflections correspond negative slopes (see
Fig.4.30).
The deflection w is obtained by integration in the form

l—x

/pz —(l—x)2

where C, is a second constant of integration.

w=-—

dx+C2, (d)

To calculate the integral in (d), one makes the change of variable

[-x=psingp = dx:—pcosq)d(p,cosq):l\lpz—(l—x)2,
p

so that
we=| sin @
Vp? —p’sin’ ¢

returning to the variable x, we get

pcospde+C, =pfsin edp+C, =—pcoso+C,;

w=C, —p2-(-x).
The constant C, is determined by the condition that, in the built-in cross section, the
deflection be zero; hence, w = 0 for x =/ and one obtains C, = p so that
w=p-+p2-(-x). (e)

From (a) it results, obviously, that the deformed axis in an arc of circle of radius p . The
relation (e) leads to the equation of this circle in Cartesian co-ordinates

(=x) +(w=p) =p*.

The expression (e) is not convenient for the computation, because it is a difference of
two great quantities of near values. We may write

l—x2
w=pl- 1—(pj ; 4]
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developing the radical into power series after Newton’s binomial we have

1/2
[-xY 1(1-x)  1:3(1-x)" 1.3.5(1-x)°
1— 1— :1—— —+ —
p 20 p 2-40 p 2-4-6\ p
Thus, the expression (f) becomes

(- x)2 3 3(7 - x)4 N 5( - x)6
2p 8p? 16p3

w =

Taking only the first term in the power series, it results

N (I -x) _ M, (I - x)
T2 2EI

w

B

hence an arc of parabola; this solution coincides with that obtained if we start from the
approximate differential equation of the deformed axis

d>w M,
di? EI’
in the case of infinitesimal strains and of rotations negligible with respect to unity.

Application 4.32

Problem. Determine the deflections of a cantilever bar of length I/, acted upon by a
uniformly distributed normal load p (Fig.4.31).

P

T

!

AN \I\ o

Figure 4. 31. Cantilever bar acted upon by a normal uniformly distributed load p
Mathematical model. We search a solution by means of a power series. The bending
moment in a section of abscissa x is M = — pxz/ 2 ; the differential equation of the

deformed axis is given by
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dZw
e M
{ a2 32 EI 2EI (a)
1+(j }

dx

Solution. The function w does not effectively appear in (a); by the substitution
u = dw/dx, du/dx = d*w/dx? , the equation (a) becomes

du px?

(1+142)3/2 _E

We integrate once

3
“ =C1+px

V14 u? 6EI ®)

The condition u(/) = 0 in the built-in cross section determines the integration constant

_ o’

U 6ED

so that (b) becomes

whence

Integrating the previous relation, it results

3.3
w=C, -2 Fox dx .
6EI 2
1| 2 (=)
6FE[
We denote
p
g=L(r - x),
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so that the integrand becomes

- (-2

J1-¢2

Because & << 1, one may develop in a power series

2\ V2 l 2 E 4 1:3:5 ¢
(l—é'; ) _é';(1+2é'; +2'4E_, +—2.4.6é'; +j

1.3 3.5, 5.4
Y Py S iy Sy S
& 2@ 8& 16&

Taking into account the substitution (¢) and returning to the variable x, we have

w:Cz_;{rgl(ﬁ_f)%%(ﬁ_xs)T

5 7
A [E P | I (£ |
8| 6EI 16| 6EI
or, developing the parentheses and integrating, we get

P ) 1(pY 3 3 1
w=C, ———|DBx—"—|+=| | | Px==1%* + =3x7 ——x10 | +

6EI 4 2\ 6EI 4 7 10

5
+E i llSyc—éllzx4 +£19x7 —]6x10 -i-il3x13 —ix16 + ...
8\ 6EI 4 7 13 16

The condition w(/) = 0 in the built-in cross section leads to
4 3 1)
c._pt su(pl’ ) 2187 prt )
> 8EI 280| 6EI ) 11648 6EI
2 4
_plt 27 pl’ ) 729 ( pl’ .
8EI| 70| 6EI 2912 | 6EI

The constant C, represents the maximal deflection (at the free end x =0) of the

cantilever bar. The first term in the development into series corresponds to the
approximate solution, which is given by the simplified differential equation

dw__M
dx? EI’
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Application 4.33

Problem. Study the motion of a heavy particle P of mass, frictionless, on a circle C of
radius /, situated in a vertical plane (mathematical pendulum).

Mathematical model. We choose the Ox-axis in the direction of the gravitational
acceleration g (Fig.4.32); the theorem of kinetic energy, applied between the points £,
and P, allows to write

v2 =v2 = 2g(xy — x) = v2 — 2gl(cos 0, — cos 0) = ~2g(a — x), (a)
where a = x, — vé /2g , Vo = 190 being the initial velocity at the point P, at the initial
moment 7 .

The equation x = a is the equation of the straight line till which a particle may rise if it
is launched after the local vertical, with the initial velocity v, ; the values of the constant

a determine the character of the motion in case of a bilateral constraint. Indeed, if the
straight line x = a pierces the circle C (—l <a< 1), then the motion is oscillatory, if

this straight line is tangent to the circle (a =] ), then we have v, = 0, corresponding a

stable position of equilibrium, hence an asympfotic motion, while if the straight line does
not pierce the circle (a < —I), then the motion is circular. We cannot have a > I .

Figure 4. 32. Mathematical pendulum

From the relation (a) it results that the velocity v = 1 may vanish for an angle given by
cos© = cos 0, — v /2gl or by sin?(6/2) = sin?(0,/2)+ v3 /4gl . This condition can

never be satisfied if v2 > 4gl (or 02 > 40?,®> = g/I), the motion being circular. If

v§ < 4gl , then the condition may be fulfilled for certain values of the angle 6, hence



4. Non-Linear ODEs of First and Second Order 341

for some initial positions, e.g. for 8, = 0, the motion being, in this case, oscillatory. If

vg = 4gl we must have 8, = 0, the motion being asymptotic.

Solution. We assume that the motion is oscillatory, we denote a =/cosa, where

0 < o < 7 is the angle corresponding to the limit position P (for which v = 0) of the
particle P, specifying the amplitude of the motion. The relation (a) takes the form

62 = 2w%(cos 6 — cos a); (b)
differentiating with respect to time, we may write (we notice that 6, = 0)

02 + ©2sin® =0 (©)

too. This equation (called the equation of mathematical pendulum) is often encountered
in problems of mechanics in one of the two forms mentioned above; in fact, the relation
(b) corresponds to a first integral of the equation of motion (c).

The particle P starts from the initial position £, with the velocity v, and mounts on the
circle with a velocity of diminished intensity; at the extreme position P the velocity
vanishes. Returning on the arc of circle, the velocity increases; the particle passes over
the initial position P, and reaches the lowest point P’, where it has the maximal
velocity; then, the velocity decreases till the particle attains the point P’ for which
0 = —a . The particle returns then at P', at P,, at P, a.s.0. Hence the motion is
oscillatory. From the relation (b) we observe also that the velocity v(t) depends only on

the position of the particle, being a periodic function of this position (of angle 0);
integrating this equation with separate variables, we may write (during the motion
cos O > cosa )

9 ds

1

0

=t + , d
o2 e'[)\/cos{)—cosoc @

where 0° corresponds to the position at the arbitrary moment ¢° (which may be

t

different from the initial moment ¢,). As one may see, the interval of time ¢ — ¢°

depends only on the corresponding positions of the two moments; it results that the
oscillatory motion is periodical, of period 7. We notice further that, if we change the
direction of the motion on the arc of circle, then the sign of the velocity is changed, its
modulus remaining the same by passing through the same point; hence, the arc PP’ is
traveled through in an interval of time 7/2 . Because the relation (b) is even with respect
to 0, it results that for symmetric points with respect to the Ox-axis we have the same
velocity (by up, or down travel); hence the arc P'P is traveled through in a quarter of
period. In this case, the period 7 is given by

:2\5“ d9

® p+/cosI—cosa

T (e)
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We notice that cos®—coso = 2[sir12(oc/ 2)—sin2(6/ 2)] and denoting by
sin(6/2) = ksin ¢, k = sin(a/2), we may write

dy

oy/1-k?% sin? y

t=t"+

—-

’ &)

1
()

=

where @° is given by sin(e0 / 2) = ksin ¢°; denoting sin ¢° = z, we can write

4
/7—)(1_(; TS ’ (e

is specified by sin @° = z°. Introducing, after Legendre, the elliptic

e~

N
ot—nN

too, where z°
integral of first species

sin @

@ dy dz
Flo.k)= | === | ————. h
0y1-k%sin®y 0 1/(1—zi1—k222i ®

where @ is the amplitude and k is the modulus of the integral, we obtain

1 .
t=1%+ g[F(<p, k) - Flo®. k). (i)
By the notation # = ot , we can write

u—ud =F((p,k)—F((p0,k), )

where u® = wt°. Taking ¢ = 0, without any loss of generality, and if we assume that

0% =0, then it results ¢° = z° = y° = F((po,k)z 0, so that
u:F( ,k), (k)

As it was noticed by Abel, we may express the angle ¢ as a function of the variable u
in the form

sin@=snu, @

where sn is the symbol of the elliptic sinus (the amplitude sinus), one of the elliptic
functions of Jacobi; analogously, we may use the elliptic cosinus (the amplitude
cosinus), denoted by the symbol cn (cos ¢ = cnu).

Starting from the formula (a), the period of motion is given by

4 42 d 4! dz
R
© O 0 \J1-k?sin?@  Qoy(1-zNl-k?z?

(m)
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with @ = 4/g/l , where K(k) = F(n/Z, k) is the elliptic integral of first species. Noting

that k2 < 1, it results the development (we use Newton's binomial series)

2.2 Y12 2 (2n) o oo
(l—k sin (p) :1+n§122”(—n!)2k sin“" @ . (n)

This series is absolutely and uniform convergent in the interval [0, n/ 2], so that we may
integrate, taking into account Wallis’ formula

/2 (2n)!

. 2n _ ad
£ sin (Pd(P_—zzn Bk > (0)

and obtain the period

[ = [(2n)] n o on A
T=2n\/;{l+’§%kz sin? 5} (p)

Because we may develop sin(oc/ 2) too into an absolutely convergent series with respect
to o, we obtain also for the period 7 such a development, which takes the form

2 4
T=2n i{1+“—+1—1“—+..}. @
g

We notice that the ratio between the second and the first term of series is equal to
a? /16; as well, the ratio between the third and the second term is given by

(1 1/ 12)0L2 / 16 < a? / 16, a.s.o. This series is rapidly convergent; practically, we may take

T = 2n\/§{1+?—;}. (r)

If oo = 0.4 (corresponding to an angle of 22°55'06" ), then the correction brought by
the second term of the development is not greater than 1% . The astronomical clocks
have penduli with amplitudes not greater than 1°30', corresponding a correction of
approximate 0.05% . In general, the period T depends on the angle o, but is
independent of the mass m of the particle.

In case of small oscillations around a stable position of equilibrium, the equation (c)
becomes the form (we approximate sin 6 by 0)

0+ 020 =0, (s)
whence

O(t) = o cos(or + (p), (t
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the angle ¢ being specified by the initial conditions, the period being given by Galilei’s

T=2ng; (w)
8

we observe that this result approximates the development into series (q). The period T
thus obtained depends on the length / of the pendulum and on the gravitational
acceleration g at the respective place on the Earth. Because this period does not depend
on the amplitude o, we say that the respective motion is isochronic (the small motions
around a stable position of equilibrium take place in the same interval of time). A
particle P left to fall from P without initial velocity reaches the lowest position P’ in
an interval of time 7/4, which does not depend on the initial position (angle a ); hence,

formula

the respective motion is called tautochronous.

Application 4.34

Problem. Study the motion of a system with one degree of freedom which begins to
move from the initial position with the velocity v, at the moment ¢ = 0 and oscillates

under the action of a non- linear spring.

Mathematical model. The motion is governed by Duffing’s equation

jc':—(k—ox+Lx3j, (a)

m m
with the initial conditions x(0) = 0, ¥(0) = v, = 0.

Solution. Multiplying both members of the equation (a) by 2d x = 2xd¢, we have
successively

k
2%dxz—2(—0x+Lx3J5cdt,

m m

m m

d(x)? :—(%x+£x3]dx.

Integrating between v, and x in the left member and between 0 and x in the right
member, we get

. k r
x2 —vg = 0524 " x4,
m 2m

whence one obtains
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k k
dx _ Vg — S0x2 4 Ly = v [1-| =% x2 + "
dt m 2m mvé 2mv§

it was taken the sign + because v, > 0.
Separating the variables and integrating with respect to time between 0 and ¢, we may
write

lj_
Yo o k ’ b
[ R . > z* (®)
mvy 2mv)

where z is an integration variable.
The above integral may be reduced to elliptic integrals. We denote

l—(k—oz2 + L Z4J = (1 - azzZXl +b222)= 1+ (b2 - a2)22 —a’b?z*,

2 2
mvj 2mvg

where a2 and b? are constants given by the relations

k
b2_a2:_ 02,02b2= 5
mv 2mvy

7

B

with the solutions

b? = - ko + ( Ko Jz P
mvg 2mv§ 2mv§
Using the new notations, the integral in relation (b) becomes
(=] & .
Vo o \/(1—a22211+b222)

Denoting
- = C2 s dz=— 5 (C)
a

we may write
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1 du
= (d)

avo o A l1=u? 1 +c%u

Denoting further

2 2
o __? =k%, u=cosy, (e)

1+¢2 a? + b2

we obtain
du =—sinydy, 1 —u? =sin? y,

1+c?u? =1+¢? cos> y=1+c? —c? sin’ y

2 2 42
= (1+Cz) — 3 sin? y | = a +2b (l—k2 sin? \y)
I+c a
and the integration limits become
I
=— foru=0,
Y72 0
y =arccosu =arccosax=¢  for u = ax.
So, from (b), (c) and (d) we get
. 1 T —sin ydy 3 1 T dy
avy 232 222 9 22
m/ sin\u\/a -f;b (l—kzsinz \V) vO\/a +b° = \/1 k*sin” y
a
1 w2 dy @ dy (2)

= J’ -
vox/a2+b2 0\/1—kzsin2\|/ 0\/1—kzsin2\|/

- [k(K)-F(k0)]

vova® +b*
To obtain x as a function of #, we express, first of all,
F(k, (p) = K(k) —vova? + b2t

Using the inverse function am u , we get

0= am(K(k)— vova? + bzt)

and, finally,
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1 1
x(t) = —cos ¢ = — cn(K(k) —voVa? + bzt).
a a

The displacement x(t) is thus a periodic function of amplitude 1/a, the maximal value
of which is obtained for

K(k)
The period T of he motion is four times greater and is given by
4K (k)

vova? + b2 . ®)

t =

T =

Application 4.35

Problem. Study the non- linear problem of buckling of a doubly hinged straight bar of
length /, subjected to compression by forces P, also taking into account the shortening of
the bar.

Mathematical model. The second order ODE which governs the deformation of the bar is
Q"+ X sing—A,sinpcosp =0, (a)
where ¢ is the slope of the deformed axis and

P P?

7\,12—’7\‘22 ,
EI EA - EI

EA and EI being the axial and the bending rigidities, respectively. The abscissa along the
initial bar axis will be denoted by x.

Solution. We do not consider the solution ¢ = 0, which corresponds to the non-
deformed state of the bar.

Multiplying the equation (a) by the integrating factor 2¢', we get

rn

20'¢" + 2, sin ¢’ — 2A, sin ¢ cos o' = 0,

whence, by integration, we may write
A
((p')2 =2\, cosm—Tzcos 20 + Cy, (b)

where C, is a first integration constant.

The maximal value of ¢ is obtained for x = 0; let be ¢,, this value. For the doubly
articulated bar, the bending moment at both ends must vanish, hence ¢’ = 0. One
obtains thus from (b)
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A
C, =—-AcosQ,, + Tzcos 29, ,

so that, introducing in (b), one obtains

¢ = i\/Zkl(COS(p— cos (pm)—%(cos 2¢ — cos 2(pm). (c)

The signs + indicate that the buckling may take place on both sides of the bar.
Noting that ¢’ = d¢/dx , from (c) one obtains

x=ij do

\/ZM (cos ¢—CcosQ,, )—% (cos 2¢—cos 2(pm)

+C,,

where C, is a second integration constant.

The solution of the differential constant is thus reduced to a quadrature. It cannot be
performed in a finite form by means of elementary functions, but may reduced to elliptic
integrals listed in tables.

Further, we make the substitutions

coscp:l—Zsinzg, cos2(p:1—8sin2%+85in4%.

The relation (b) becomes

and introducing a new variable defined by

singqupz = do= ' ! dz,

the expression (e) becomes

x=4 1 dz +C2

2h; =%, I\/z(l—z)(l—pz)(l—i-q—i-qz)

A new substitution
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z=—2 = &zizdu,
a+bu (a+bu)
with the notations
1
142, a4
1+g¢ l+¢
leads to
1 du
x=x% I +C, .
20 (A —=h, J1+2 -
\/( 1 2)( ‘1) \/u(l—u{l—p bu]
a
Finally, taking # = sin? 0, which yields du = 2sin 0 cos0d0 and denoting
K= 1 kr=Pb
20y =2, M1+ 29) a
one obtains
x:iKIL—i-CZ. )
1-k?sin? @

Expressing now the last notations K and k2 in terms of the first ones, we get

K: )
A
(b =2, ) 142 =2 sin2 P
A 2 2
A — A, sin? Pm.
k? =sin? 2L 2 ,
di = Ay + 20, sin? ‘PT’"
A
1 1+2, 2 sin? ‘PT’"
sin 6 = sin2 : L2 .
sin? Pmop ot (G2 Pmo g2 @
2 T oy 2

We determine now the constant C, . Introducing the limits of the primitive (f) and taking

into account the boundary conditions ¢(/) = @,, and (/) = 1/2 , we obtain
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9 dd
Cz = K J. —— D)
041-k?sin? 9

and the final result is

2 do 0 dg
x=K| | +| . (g)
0 VI—k2sin20 0+41-k2sin2 9

These two integrals represent the Legendre’s normal form of the elliptic integral of first
species.

For given values of the rigidity, of the loading and of the angle ¢,, , we may determine,
with the aid of tables, firstly x as a function of 6 and secondly ¢ as a function of x.

We notice that this is a boundary value problem and not a problem of eigenvalues as that
in Appl.1.31.

Application 4.36

Problem. Study the previous buckling problem, assuming that the axial rigidity of the bar
is neglected.

Mathematical model. The differential equation of second order which governs the
deformation of the bar is given by the equation (a), Appl.4.35

¢" + A sine =0, (a)
where we made £4 — oo, hence A, =0.
Solution. We denote A, = p?. The above equation may be thus written in the form
dz(p
ds?

=—p2 sinQ, (b)

where s represents a linear variable, measured along the deformed axis. Multiplying both
members by (dg/ds)ds , it results

2
jjs—;p%ds:—pzjsingod(p
or still
1.d(do)
—[—|=| ds=—-p?[sin .
L[S0 a5 = singao

Integrating, we obtain
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2
1(de 2
—|—| =p coso+C(,
2(ds] preoser

where C; is an integration constant, which is determined by the boundary condition at
one end of the bar. Thus, for x = 0, we must have d¢/ds =0, because the bending

moment vanishes, while the slope is ¢ = ¢,,. We obtain thus C; = —p? cos ¢,, so that

do)>
(f) =2p2(COS(p—COS(pm)

or

(clls_(p = ix/zpqlcosq)—coqum .

Solving with respect to s, we may write

ds =+ do .
V2pfcosp—cos o,

The total length of the bar remains unchanged, so that

1:jds:wjm do :Lq}m de ,
0 0 ﬁp,/cosm—coscpm 2p \/sinz (P—”’—sin29
2 2

The integral may be written in a simpler form, denoting £ = sin((pm / 2) and introducing
a new variable 0, so that

sin%z ksin@ = sinhsine.

Thus, if ¢ variates between 0 and ¢, , then O variates between 0 and /2.
Differentiating, we obtain
_ 2kcos0d0 2k cos6dO

do .
cos P 1-k%sin% 0

Introducing in the expression of the length /, and noting that

\/sinz P _in2 @ ksin@,
2 2
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we get
172 do 1
l=— | ———==—Klk),
P o \1-k*sin’0 P

where K (k) is the complete elliptic integral of the first species.

Application 4.37

Problem. Compute the deformed axis of a cantilever bar acted upon at the free end by a
normal concentrated force P. The length of the bar is / and the bending rigidity is E1.

Mathematical model. The curvature of the deformed axis of the bar is given by

d?w
dx? _ M

32 - pr°
I+ —
dx
where w is the deflection and the bending moment is M = P(l - x) (the origin of the

Ox-axis is chosen at the built-in cross section, Fig.4.33). We obtain thus the non-linear
second order ODE

1
[

@
& P
42 32 _EI(I x) (a)
[1+[Wj }
dx
P
l >
0,/4 X l-x
¥y
-PY
_ ]
/
M=~P(t-x)

Figure 4. 33. Cantilever bar acted upon by a normal concentrated force P at the free end

Solution. By the substitution p=dw/dx, the equation (a) becomes an ODE with
separable variables
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Tl

or

v _ P
_El(l x)dx .

2
l1+p2 EI 2

We put the condition p =dw/dx=0 for x = 0 and obtain C; = 0; hence

Integrating once, we get

2
_p  _Pl,_x)
,1+p2 EI 2

From (b) we obtain

and, by a new integration, we may write

P x?
Bl Iy N
EI 2
dx+C, .

fal-s]

By means of the condition w(0) = 0, we obtain C, =0, so that

P g2
A5
d

ekl

=
Il
O =

S
Il
o=

The substitution
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leads to
2EI @ BdC
P C2a-BC

introducing the notations o = /%, B = 2 EI/P, k* = 2EI/PI2 =B/a.
Finally, we have

=
Il
~
-+
~
[\
|
[T
Il
+

EI PI2EI cdc

* Pl /h_gzil_kzczj

Application 4.38

Problem. Establish the equation of the deformed axis of a simply supported beam acted
upon by a concentrated moment M, at the fixed end. The span is L and the bending

rigidity is EI (Fig.4.34, a,b)

Mathematical model. Taking into account the bending curvature of the beam and the
linear variation of the moment diagram (Fig.4.34, c), the solution may be obtained with
the aid of elliptic integrals. In the previous application the problem was directly treated,
noting that the boundary value problem was a problem of initial values. In the present
case we have to do with a bilocal problem.

The equilibrium of an element of beam (Fig.4.34, d) leads to

LT T 0. (a)

From the geometry of an element we obtain

dx

—=cos0, b
ds ®)
dy .

—=sin0.

% sin ©)

The relation between the bending moment and the slope 0 of the tangent is (Fig.4.34, b)

M=E1@. (d)
ds

Differentiating M with respect to s and introducing in (a) we get
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2
EI%—%COSGZO

or

——=—-cos0. (e)

T‘&J

~~
Y

M,
w
'l "
o X

M’/I

Figure 4. 34. Simply supported beam (a). Deformation of the beam axis acted upon by a concentrated moment
M (b). M-diagram (c). Equilibrium of an element ds (d)

Solution. Multiplying both members by (de/ ds)ds =do, we get

2
M

d_Od_GdS =1 :0s0d0
ds? ds Ell

or further

2
LAY oo M osodo.
2ds\ds Ell

Integrating both members, it results
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2
1(doy M,
L) _Mignesc,.
2(dsj g @

The integration constant may be determined if we put the condition that the bending
moment does vanish at the left end, hence where d0/ds=0 and 0 = -0, (still

unknown).
The relation (f) may be written in the form

@:21/& sin? £+e_o —sin? E—gj. (2)
ds Ell 4 2 4 2

where the rotation 0 is positive if it takes place in the anticlockwise direction. We make
a change of variable

sin(p =———+, (h)
A
sin| —+—
whence
0
2sin| T4+ 0 cos @
4 2
do=- 5 (i)
1—sin?| T4 20 smz(p
4 2
Thus, the relation (g) becomes
_ |ER —de
M 0 ' i
: 1—sin?| T4 20 sin2q) 0)
4 2

If we suppose that the axial rigidity of the beam is infinite (the length of the axis does not
change by bending), we my write

_ [En? do

M .I.
Lo 1—sin2(n+eojsin2(p
4 2 ) k)

L
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where F and K are the elliptic and the complete elliptic integrals of the first species,
respectively, @, is the value of the variable ¢ given by

. (m 6
sin| — + —
4 2 0
(B (m 8|
sin| = + — sin| — + —
4 2 4 2

and 0, is the slope of the deformed axis at the right (fixed) end. The quantities 0,, 0,

sin ¢, =

and / are the unknowns of the problem.
From the relations (h), (i) and (j), it results

E]l . Y 60 .
dx =-2 |— sin| —+— [sin @d@ ,
W/Ml (4 2) @do (m)
0
dy=— £l 2 [1-sin?| 420 sin? ¢ — ! do. (n)
M, 4 2 x 0
1—sin2(+0jsin2
¢
4 2

By integration, one obtains

-6,
I= [dy= E—”,/Z(sin91+sin90), (0)
8o M,

O_T]d _ZEE_,_G_O +E £+6_0 _K£+e_0 _F £+6_0
o0 T )T PR FREERALY | N
The equations which determine the three unknowns are (p), (n) and (0); it results

ML \/—j n 0 n 0

——=4/2(sin®; +sin O, )| K| —+— |- F| —+—, s

El ( 1 o{ (4 > I ¢4 (@

obtaining the slope 0, as function of M ,L/EI .
The distance between the supports si given by the the relation

/ N/2(sin 0, +sin )

" ’
KE_;’_eiO _FE+970’(p1
4 2 4 2

while the parametric equations of a point of the deformed axis are
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x 1 ?dx \/2(sin6+sin60)—\/2(sin61+sin60)
L Ly 0 0 ’
0 K E+70 —F EJ'_*O!(PI
4 2 4 2
0 0 0 0
p Yo QR By ¢ I ) LI B - (L B
Z—l?dy— 4 2 4 2 4 2 4 2
L L 0 0 '
0 K E_i_io —F E+70’(P1
4 2 2
Application 4.39

Problem. A flexible band of length / and unit breadth, in a vertical position, is subjected
to a hydrostatic pressure of a liquid of unit weight y . Determine the deformation of the

band. Discussion.

Mathematical model. A flexible bar cannot take over bending moments and shearing
forces; thus, the equations of equilibrium are reduced to

dNv
—=0, a
& (a)
N
— = P> (b)
p
where N represents the axial effort, s is the arc of curve,
142 )2
NS0 ©
y

is the curvature radius of he deformed axis, and p, is the normal pressure exerted by the
liquid.
From (a) we deduce N (s) = const , while from (b), we have

N =p,p=const. (d)

The relation (d) determines the curvature radius p, hence the form of the funicular
curve, for a given p, .
The hydrostatic pressure is given by p, = yx, x € [0, l], where we suppose that the

water plane is at the upper end of the band.
From (c) and p, we get

T ©
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Integrating once, we may write

) =LN(x2+C1), )

1+ 2

where C; is an integration constant. The first derivative becomes

,_dy_ %(X2+Cl)
T 2 L (®)
\/1—43\[2 (x2+cl)

Taking into account the mechanical significance of the problem, that is that along the
span / there is a section for which the tangent to the deformed axis is parallel to the non-

deformed axis, it results that C; < 0; we take C; = —c?/I? , where ¢ € [0, 1].
By the notation, the relation (g) becomes
Y (.2 22
——\x“—c”l
_dy_ 2N ( )

Yy = = . h

dx 2 (h)

\/1— v (x2—0212)2
4N*?

Integrating once the previous relation, we get

o] " .
OJI— Y22 (xz—czlz)2 1

Fixing the inferior limit of the integral, the condition of support at the origin, that is
y =0 for x = 0, is satisfied. The constant ¢ is then specified by y(l) =0.

The integral in (i) is an elliptic integral. To obtain a canonical form of it, one makes the
substitutions

%(xz - Czlz) =1-2k?sin? o, 0)
2N
c? =—yl—2(1—2k2). k)

It results

x:2\/ikcoscp,dx:—2 ,Eksin(pdq), )]
Y Y

and the limits become x = 0 for ¢ = n/2 and x — ¢. Thus, we obtain
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v (R ey T ik g
Y Y

1- k2 sin? @

Tc/2 [
—2\/7_[#1 k? sin? pdo—  [— 1 _de +\/EJ' ds

k?sin® Y ol—k? sinzi'

(m)

Introducing the elliptic integral of second species, of amplitude ¢ and of modulus £,

9
— [y1-k?sin? gde,
0
the complete elliptic integral of second species,

/2
( j \ll k? sin? @do,

the elliptic integral of first species, of amplitude ¢ , and of modulus £,
4
J1-k?sin? g

and the complete elliptic integral of first species

/2
F(E’kj: I d(p >
2 0 y1—k? sin? (0]

Flo, k)=

S —5

the equation of the funicular curve becomes

y = E{ZE(g , kj — 2E(p, k) - F(g , kj + Flg, k)} . (n)

The elliptic functions are listed in tables as functions of ¢ and 6 (where k£ = sin 6).

To put the condition at the end x =/, we notice that from (1) we get

yi? 1 |yl?
cos @, = — BT (¢, = arccos AN | (0)

If we take ¢ = @, in (n), that one is transformed in the transcendental equation

262 k] - 260 K) - {3k )+ Floy.) = 0. ®

whose solution finally yields the constant c.
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As the direct solution of the transcendental equation (p) is difficultly obtained, one may
search a numerical solution, starting from the equation

J]_ y(x2 _Czlz) o
0 Y2 (2 2} ‘ (@
ZN\/1—4N2(x —c”l )

To this goal, the length / was divided in 20 equal intervals. To obtain non-dimensional
expressions, we denote

N = ayl? ()

and make the change of variable x = §/ = dx=/d§, &€ € [0, 1]; thus, the equation (q)
becomes

2 2
f 5 de=0,
2a.|1- ! (éz —cz) ®)

40,
where the roots ¢ are determined for various values of the parameter o . If a takes very
great values (great efforts in the band), then the value of ¢ may be directly obtained
considering under the radical that 1/ 40> — 0, hence neglecting the paranthesis with
respect to unity. It is left to compute the integral

i(az—cz)ia{%—czaJ

whence, equating to zero the last member, it results the convenient root

c = l/ V3 = 057735 (value which determines the position of the maximal bending
moment in a simply supported beam), acted upon by a triangular distributed load.

The problem of the inferior limit is more difficult. From the condition of existence of a
real solution we may write the inequality

1

1 .2
- s
3

0

- (g2 —¢2)> o0,

40,2

equivalent to the inequalities

One obtains the conditions

¢t >1-2a, ¢? < 2a.
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To the limit, if the inequalities become equalities, then the equations ¢? =1 — 20 and
c? = 2a. represent two parabolas; their graphics, ¢ vs o, are represented in Fig.4.35.
The two parabolas have a piercing point, i.e. o = 1/ 4, ¢ = 1/ V2.

We try to represent the graphic of the function f (c, oc) = 0, corresponding to the
equation (s). As it was established before, the graphic admits an asymptote parallel to the
axis Oa, that is ¢ = 1/«5

The numerical calculation provides values of ¢ for a > 0.35. If a < 0.35, then the
equation (s) must be solved directly.

We search the limit point of the curve, situated on the parabola c¢? =1-2a.
Associating the relation (k), in which we replace N by the expression (r), we have

¢? =1-20 = -2a(l - 2k2),

whence we obtain 4k2a = 1 or 2kJo = 1.

Further, the relation (o) becomes cos ¢, = 1/ 2ko =1 or a; =0.
Because FE (0, 6) =F (0, 9) = 0, the transcendental equation (p) is reduced to

26| Tk —F(E,k -0
2 2

chstt
1,27 0
AN ;
N /__ curve s/t
1000 kfo- 3
NS I
e
NEES
1
#2 H-H-X
M =t —| curve ¢
=== ﬁ"-EEEEiﬁ =
EREAN
]
vl 1T
N
1 \‘:§
FIY
! |
1
I 1
! 1 i
|
1R
0 Q7503026 050 ars 100 o

Figure 4. 35. Diagrams of the two parabolas (c vs. o)
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or

by the substitution £ — 6.
Using the tables and the linear interpolation, it results 6 = 65,315° and successively

k = sin 0 = 0.90891, o = —— = 0.30262,
4k2

c? =1-2a =0.39476, c = 0.62830.

The solution may be obtained in a direct way, using the developments into power series
of the functions E(n/2, k) and F(n/2, k); finally, we get the equation

Loz amel(1:3:5. m-)Y ,,
Coasi2m—1\ 2-4-6...(2m) ’

obtaining the same value of the root & .

Application 4.40

Problem. To compute the contour of a section with thin walls of constant thickness and
of maximal rigidity of the cross section area, one must solve the ODE

2y + 2" = y2y" - Wy" =0, (a)

where y is the applicate of the median line of the cross section, x is the abscissa in the
cross section, while A is a given constant. Determine the general solution of (a).

Solution. The equation (a) may be written
2y(1 + y'z)— y"(y2 + k) =0

or

"

yoo_ 2y
1+y2  y2+a

Supposing that y # 0, we multiply by 2" and obtain
2yy" 4wyt
1+y2  p2 4’

integrating once we have

nf1+y2)=21n(y? +2.)-n ¢
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or
) 2
, y +7\)
1+ :—( .
ct
Further, we may write
I(.2 2 2
+A] -C C
ydbafoc C) L=y,
2
! (y2+x) -Cy
x+Cy =1=C,] b

S o en-c)

By the change of variable y = /- iCl + 1)z , we obtain

C,dz

Izj ;
V22 —1)-(C, +2)2 +1-C,
further
I=] Cide .
V22 21Jc, —x gl +2 2241
.

If we denote k% =—(C, +1)/(C, 1), it results

JC —A
R ()= [ .
¢ 1/‘1—22 Hl—kzzzi
The integral in the second member is the inverse Legendre’s elliptic integral of first
species; we obtain z = sn(,/C1 - A / C, )(x +C 2) and, having in view the value of z,

C,-h
y=4-C —ksné—(x—i—Cz),

1

where sn is the Legendre’s sinus-amplitude function.



Chapter 5

NON-LINEAR ODSs OF FIRST ORDER

1. Generalities
1.1 THE GENERAL FORM OF A FIRST ORDER ODS

The general form of a first order ODS with n unknown functions is

Fl(x:J’hy27“~ayn9y{9y’29"'9y;1):0’

Fy(% 915 Vasees Vs Vhs Vs 7', )= 0,
(X P10 Y2 seees Vs V1o Vs Vi) G

Fn(X,ylsz-’yn’J/f’y'zr--aJ/;):O’

where F' ; are defined on the same (2n+l) -dimensional domain and are considered

sufficiently regular.
If the hypotheses of the theorem of implicit systems are fulfilled, then one can get '

explicitely from (5.1.1), thus obtaining the canonic/normal form of a first order ODS

y{ :fl(x’yl’y29""yn)’
yé :f2(x9y1:y27""yn)’

(5.1.2)
y;1 :fn(x’ylsyza“"yn)'
In what follows, we shall consider only first order ODSs of canonic form.
These ODSs can also be written in compact form. Indeed, by using the notations
" vi filxy)
d 5 X,
v="%| ay= P21 (xy)= fZ(: y) , (5.1.3)
i3 v falx,y)
the ODS (5.1.2) may be written in the vector form
d
Y t(n,y). (5.1.4)

dx

Let us also note that any n-th order ODE

365
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P ) B (5.1.5)

can be written in the form of a first order ODS with » unknown functions. Indeed, with
the notations

»=>x y2:y’7 y3:y”7~'~nyn:y(n_l)s (516)

the ODE (5.1.5) becomes the following first order ODS with » unknown functions

yl, =V2,

Yy =ys,

............ (5.1.7)
y},’l—l =Vn>

y;; :f(xaylayb“"yn)'

One can prove that, conversely, a normal (canonical) first order ODS with » unknown
functions can be reduced to a n-th order ODE, under certain regularity conditions.

1.2 THE EXISTENCE AND UNIQUENESS THEOREM FOR THE SOLUTION OF
THE CAUCHY PROBLEM

Exactly as in the case of linear ODSs, we can consider the problem of determining that
solution of (5.1.2) that satisfies the initial or Cauchy conditions

Jﬁ(xo):J/]o’
Y2(xo)=J’20a (5.1.8)
yn('xO)_ynO
or, in vector form,
Y10
_ Y20
Yo)=ve.  vo=|" | (5.1.9)
Yno

The point (xo s V105 Y200 V0 ) = (xo , yo) belongs to the (n + 1) -dimensional domain on

which (5.1.2), or, equivalently, (5.1.4), makes sense. We can generalize to ODSs the
Cauchy-Picard theorem 4.2 from Chap.4.

Theorem 5.1. Suppose that f satisfies the following conditions:
fe (CO(D))" , where D = {(x,y)e R, |x—xp|<a, |yj _yj0| <b,j =1,_n},

) f;, 7= I,_n are Lipschitz with respect to y, i.e
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3K, >0:|f, (%, Y)- f(x,2) < K, i|yj -7, (% Y)(x,2)eD, j=Ln.
m=1

Then the Cauchy problem (5.1.4), (5.1.9) allows a unique solution y = y(x), of class

(Cl(]))" 1 =[xy —h,xy +h], where h=min{a,b/ M}, M = max{ sup |fj (x,yj} :
J=Ln |(x,y)eD

The proof of this theorem is also based on successive approximations; this method
offers a practical and efficient possibility of getting solutions of ODSs.

Let us note that, if the general solution of a first order ODE depends on an arbitrary
constant, the general solution of a first order ODS with n» unknown functions and n
equations depends on #n arbitrary constants. In both cases, the constants can be fixed up
by adding Cauchy conditions to the ODE or to the ODS, accordingly.

The general solution of an ODS of type (5.1.2) or (5.1.4) can thus be written in the
explicit form

34 =(p1(x, CI’CZ""9Ci1)’
Vo= (Pz(x’ ¢, Cy,..., C, ),

(5.1.10)

If we think of (5.1.10) as a functional system with respect to C;,C,,...,C,, then,

supposing that this system fulfills the hypotheses of the implicit function theorem, we
can explicit C,,C,,...,C, from (5.1.10), thus obtaining the general solution of the ODS

(5.1.2) in the implicit form
Vi (6 Y1 Y000, )= G
\VZ(xayl’yZ""7yn): CZ’

\Vn(xa yhyz,...,yn): Cn .

(5.1.11)

1.3 THE PARTICLE DYNAMICS

The classical study of mechanical motions is generally based on Newton’s second law,
according to which the acceleration of a moving particle is determined by the resultant of
the forces acting upon it, i.e.

ma=F (5.1.12)
where m is the mass of the particle.

A moving body can be thought as a particle of co-ordinates (x, Vv, z) with respect to a

fixed up system of co-ordinates; obviously, as the position of the particle changes every
moment, x, y and z will be functions depending on time.
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The co-ordinates of the velocity vector of the particle will be given by
V =)+ p(e)j+2( )k, (5.1.13)

where i, j,k are the versors of the co-ordinate axes and the point signifies differentiation
with respect to the time 7. Also, the acceleration vector is represented in the form

a=x()i+y(e)j+ (k. (5.1.14)

Suppose that the resultant of the forces acting upon the particle, determining its motion,
is known, that is

F=Xi+Yj+Zk, (5.1.15)

where X, Y and Z are given functions that might depend on the time ¢, on the particle
position and also on its velocity, so that the motion of the particle is finally described by
the second order ODS

mx = X(t, X, V2, X, Y, z'),
my =Y(t,x,y,2,% ,2), (5.1.16)
mz = Z(t,x,y,z,fc,)'/,z') .
This system can be reduced to a first order ODS, by introducing the functions
X=u, y=v, z=w. (5.1.17)

The new first order ODS will have six equations and six unknown functions,
X, Vs Zy Uy V, W

X=u,

y=v,

z=w,

mii = X(t,x,y,2,%, 3, 2), (5.1.18)

my = Y(t, X, V,2,X, j/,z'),

mw = Z(t,x,y,z,)'c,j/,z') .

The general integral of this system will be written in the form
x=f1(x,C1,C2,C3,C4,C5,C6),
y=fz(x,Cl,Cz,C3,C4,C5,C6),
z=f3(x,C1,C2,C3,C4,C5,C6),
(5.1.19)

u =(pl(x,Cl,C2,C3,C4,C5,C6),

v:(pZ(x’CI’CZ’C3’C49C59C6)7
W:(P3(X>C1>C23C39C4,C5,C6),

obvioulsy depending on six arbitrary constants C;,C,,C5,C4,Cs,C.
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The first three relations (5.1.19) refer to the particle position and define its trajectory and
the last three, concerning its velocity, represent the law of motion.

The system (5.1.18) allows infinitely many solutions. But if the initial position and the
initial velocity of the particle are fixed up, this particle will follow a unique trajectory.
This physical fact is mathematically justified by applying the Theorem 5.1 of local
existence and uniqueness of the solution of the Cauchy problem associated to the ODS
(5.1.18); indeed, knowing the initial position and velocity of the particle means in fact
that there are satisfied the Cauchy (initial) conditions

x(tg)=x9, ¥to)=v0, =ltg)=z,
. . ) ) . . (5.1.20)
itg)=%g, 3ltg)=Jo. £te)=20,

where ¢, marks the beginning of the motion. If, moreover, X, Y, Z are continuous with
respect to their arguments and Lipschitz-ian in x, y, z,u,v,w, then by Theorem 5.1 the
solution of the Cauchy problem (5.1.18), (5.1.20) allows a unique solution.

2. First Integrals of an ODS

2.1 GENERALITIES

The left members  ; of the relations (5.1.11) obviously become identically constant if
we replace y; by their corrresponding expressions (5.1.10).

We call first integral of the ODS (5.1.2) a C'-class function, depending on the
independent variable and on the unknown functions, which becomes identically constant
if we replace the unknown functions by an arbitrary solution of the system.

With this definition, we see that any of the relations (5.1.11) is a first integral of the ODS
(5.1.2). Also from the definition we deduce that a given ODS allows infinitely many first
integrals. Indeed, the relation

(D(\Vl(x:ylseruayn )J\VZ(xayl9y2:-~~9yn)7~~>\vn(xayl5y27""yn )): C’ (521)

where ® is an arbitrary C'-class function in its arguments and C is an arbitrary constant,
is obviously a first integral of (5.1.2).
Suppose now that in one of the first integrals of the ODS (5.1.2)

\V(x’ylaer"vyn)zc (522)
we replaced y;,,,....,y, by an arbitrary solution of the system. If y allows a total

differential, then dy =0, whence

d
v, oy dn, Oy dn, Oy d,

=0; 523
ox Oy, dx 0Oy, dx oy, dx ( )

as y; also satisfy the ODS (5.1.2), we find out that
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oy 8 0
6_W+_Wfl(x>J/1’J/2,~--syn)+_Wf2(x’y1’y2""’y”)
X Oy, 0,

(5.2.4)
oy
+...+a)}—fn(xsylsy29~-~,y;1)= 0.

Thus, the left members of every first integral of (5.1.2) satisfies (5.2.4).

We observe that (5.2.4) may represent a linear first order PDE, having y as unknown
function.

Suppose now that, conversely, y satisfies (5.2.4). Then along any integral hypersurface
of the system (5.1.2) the relation (5.2.3) holds true, therefore (5.2.4) is also true. We thus
get the following results:

A. The PDE (5.2.4) is the necessary and sufficient condition for (5.2.2) to be a first
integral of the ODS (5.1.2).

Suppose now that we could find » functionally independent first integrals of (5.1.2),

Wi,Ws,.., W, . This means that their Jacobian with respect to y,,y,,....,y, does no

vanish identically, i.e.

ov, oy v, |
oy oy,
Dlypva,y,) |H2 oo S| 525
D(yoyaoyy) | P2 & | e
oy, oy, O
L 0y1 6‘)’2 ayn |

Let us show that, once determined a system of » functionally independent first integrals,
one can determine any solution of the ODS (5.1.2). Indeed, suppose known the system of
first integrals and let y;,y,,...,», be an arbitrary solution of (5.1.2). Let x, be an

arbitrary point of the domain of definition of the solution and denote by
Yo=Y, (xo ), j=Ln. Also suppose that x, was chosen such that the Jacobian (5.2.5)

be not null at the point (J’10= Y205+ Y0 ) According to the implicit function theorem,
we can invert (5.1.11) around this point, thus obtaining

yl = yl (x, Cl N C2 geeey CI‘I ),
Y2 :yZ(x7C1>C27"'3Cn);

Yn :yn(x’ChCZ’“"Cn)’

where y ; are continuous and univocal functions of x,C,,C,,...,C

(5.2.6)

.- These relations

will become identities if we replace every C; by j(x, VisVasees Vi ) Now, replacing
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each C; by C;,=vy j(xo, V10 V20 5+ yno)accordingly, then, obviously, the vector of

components

Yi=n (X, CIO’ C20 EARRE CnO )’
V2 =y2(x, C10sC20s---»Cno)a (52.7)

satisfies the Cauchy conditions y ; (xo)z YViorJ= 1,_n , as well as the system (5.1.2). But

the arbitrary solution we started from satisfies the same conditions; therefore, by theorem
5.1, this solution (locally) coincides with the solution (5.2.7), determined by first
integrals. Consequently,

B. Knowing n functionally independent first integrals is equivalent to the
integration of the ODS (5.1.2).
Suppose that we succeeded to find only one first integral of (5.1.2)

W(xaylaer"’yn):C' (528)

From this relation we can express one of the unknown functions — say y,, if

oy /0y, #0 —as afunction of x,y,y,,...,»,; and C, therefore

yn =(P(x»J’1»J’2,~~-»yn_1,C)~ (529)

Introducing y, in (5.1.2), we obtain a new first order ODS, with (n—1) unknown
functions y;, y,,..., ,_; . Thus, the number of the unknown functions of the ODS was
diminished by one unit. Integrating this new system, its solution will depend on (n —1)

arbitrary constants, which, together with C, will complete the set of n arbitrary constants
corresponding to (5.1.2). Similarly, we can prove that

C. Ifwe know k functionally independent first integrals of (5.1.2), then the number
of the unknown functions can be reduced by k units.

2.2 THE THEOREM OF CONSERVATION OF THE KINETIC ENERGY

Let us write the ODEs (5.1.16) in the form
F=mi-X(t,x,y,2,%9,2)=0,
G=my-Y(t,x,p,2,% 7,2)=0, (5.2.10)
H=m:-Z(t,x,y,2,%,7,2)=0 .

We suppose for now that the functions X, Y, Z do not depend on ¢, x, y, z , therefore they

only depend on the particle position (x, v, z). Also suppose that the vector of
components (X Y, Z ) may be written as the gradient of a scalar function U, i.e.
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LU, U U

xX="2, v="2, z="2.
Ox oy oz

(5.2.11)

The function U is called force function or potential. The derivative of U with respect to
the time ¢ is expressed in the form

dU oU . oU . oU . S .
- = x4+ — +_Z=XX+Y +ZZ.
< > % y = " (5.2.12)

Multiplying the above ODEs (5.2.10) by x, y,z respectively and adding them member
by member, we get

F)'C+G)'/+Hz':%%()'c2+j/2+z'2)—X5c+Yj/+Zz':0. (5.2.13)
or, taking (5.2.12) into account,

%{%(ﬁ +3° +z'2)—U(x,y,z)}=0, (5.2.14)

whence, by integration
%(x2+y2+z'2)—U(x,y,z)=C. (5.2.15)

This is, in fact, a first integral of the ODS (5.2.10); actually, in terms of the above
definition for first integrals, (5.2.15) is a first integral of the equivalent first order ODS
(5.1.18).

The mechanical interpretation of this first integral is extreemly important. It practically
proves the theorem of energy conservation. Indeed, denoting by v the modulus of the
particle velocity, it results

2
m{., .2 .2 my
—xr eyt 4zt )=, (5.2.16)
)5
so that the first term of the sum in (5.2.15) has the significance of kinetic energy.

2.3 THE SYMMETRIC FORM OF AN ODS. INTEGRAL COMBINATIONS

The system (5.1.2) may be written in the differential form
dx _ dy; _ dy, _ dy,
1 f]('x7ylay2a~~~ayn) fz(%)’n)’z»m,yn) fn(x’ylayZW"yn)

(5.2.17)

This system is equivalent to (5.1.2) if we multiply the denominators with the same non-
zero factor. We can thus suppose from the beginning that, instead of 1, the differential dx
is divided by an arbitrary function. To take advantage of a symmetric writing, we shall
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put x,,x,,...,x, instead of x,y,»,,....,»,, re-noting the number of variables with n,

n

instead of (n+1).
In conclusion, the symmetric form of a first order ODS is
dxl dx2 dxn

= = .= . 5.2.18
X](xaylaernayn) Xz(x»J’1»J’2,~~-syn) X,,(%)’p)’z,m»yn) ( )

Let us note that the values cancelling all the functions X '; cannot be chosen as initial

data for an associated Cauchy problem. These values are called singular and they
corrrespond to the critical (singular) points of the system. In this case, the Cauchy-
Picard theorem 5.1. does not work.

The symmetric form of a first order ODS may be useful to emphasize first integrals.

Indeed, if we can determine 7 functions 2 ; (xl 3 X5 ey X, ), j= L_n such that
MX |+ X+ 40, X, =0 (5.2.19)

and if the expression

Aidy; +,dx, +..4+ 4, dx, = dD (5.2.20)

n
is a total differential, then the sum 3% ;X ; is called integral combination and
j=1 ‘

D(x;,x5,0%,)=C (5.2.21)

is a first integral of the system (5.2.18).
2.4 JACOBI’S MULTIPLIER. THE METHOD OF THE LAST MULTIPLIER

The necessary and sufficient condition that a function f(x,,x,,....x, ) be a first integral
of the ODS (5.2.18) is

n 9
df = Zldxj =0. (5.2.22)
j=1 Oxj

Taking the system into account, this can be written in the form

o o o
X, —+X,—+.+4X,—=0.
1 o, 2 o, " x, (5.2.23)

This is a linear and homogeneous first order PDE. Without insisting on details, we shall
only note that the characteristic system associated to this PDE is precisely (5.2.18). We
already showed that if one knows (n —1) functionally independent first integrals

@1, 95,0, ¢, of (5.2.18), then any other first integral f is functionally dependent on
them, i.e.
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g o o
ox, ox,  ox,
o0 o0 op
D(f’(pl’(PZr--’(p —l) —l —1 _1
A= = =0. 5.2.24
D(xl,xz,...,xn) axl axz axn ( )
a(pn—l a(Pn—l 6('),171
0ox, o,  ox,

Expanding this determinant with respect to its first row, we get

n of
A=YA, 2 =0,
jZ:l j o, (5.2.25)

where A is the algebraic complement corresponding to of /0x ;. As both (5.2.23) and
(5.2.25) must be fulfilled, it follows

A, =MX;, j=lLn. (5.2.26)

The function M is called Jacobi’s multiplier. We cam also write

M )(11+X2l+..+)(,,i =A. (5.2.27)
Ox; X5 ox,
Starting, with Jacobi, from the determinant
a, a, e a,
%1 991 901
u=| ™ 00 P |, (5.2.28)
a(Pn—l a(\Dn—l a(Pn—l
0Ox, x, | ox,

n
we observe that U = ZlajA ;» again developing U with respect to its first row.
Jj=

Differentiating now A ; with respect to x; , we deduce

>—-=0, (5.2.29)

J ]6Xj

n OA .

which, together with (5.2.25), involves

0
> o ex)=o. (5.2.30)

n
2
Jj=1
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This is the equation of Jacobi’s multiplier.
Computing the expression

no 9 no 0 n 6f
—WMX ]+ M) X,
Lo, X 3 b, )= 1 e bax, ) e (5:231)
whence, taking (5.2.23) and (5.2.30) into account, we obtain
Lo— (MfX )=0 (5.2.32)

Jj= 1

This means that the product between a Jacobi multiplier of the ODS (5.2.18) and any of
its first integrals is also a Jacobi multiplier. If

n 0X
> (5.2.33)
j=1 0%

in other words, if the divergence of the vector of components X, X,,..., X, is null,

then, obviously, any constant is a Jacobi multiplier for (5.2.18). Consequently, for such
systems any non-constant Jacobi multiplier is a first integral.

Suppose that we know (n—2) independent first integrals @;,¢,,...,¢,_,0of (5.2.18).
Should we know another first integral ¢,_,, functionally independent on the previous
ones, we could express (n—1) variables as functions of the n-th one and of (n—1)

arbitrary constant, thus obtaining the general integral of the ODS (5.2.18).
According to the previous remarks, the system would be then reduced to

& _ 2 5.2.34
X, X, 5 (5.2.34)

which is in fact a first order ODE, that can be written in differential form
X,dx, —X,dx, =0. (5.2.35)

Multiplying this equation by the integrant factor p, we get a total differential equation
dd(x;,x,)=0. (5.2.36)
The integrant factor must satisfy the condition (see also Chap.4, Sec.1.4)

ar) ors)

o o, (5.2.37)

This integrant factor is also called the last multiplier for the system (5.2.18).
Consequently, if we know a multiplier for the ODS (5.2.18), then it is enough to know
(n —1) first integrals in order to integrate it. If the ODS satisfies the condition (5.2.33),
then M =1is a Jacobi multiplier, so that to integrate the system we need only (n—2)
first integrals.
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3. Analytical Methods of Solving the Cauchy Problem for non-Linear ODSs
3.1 THE METHOD OF SUCCESSIVE APPROXIMATIONS (PICARD-LINDELOFF)

Let us consider again the Cauchy problem (5.1.2), (5.1.8) or, equivalently, (5.1.4),
(5.1.9) and suppose satisfied the hypothesis of the existence Theorem 5.1. The Picard-
Lindel6ff method, also called the successive approximation method, which serves to
prove the local existence and uniqueness of the solutions, is a strong tool for setting up
this solution. It is proved that the sequence of the approximations

y}”(X)=yjo+]fj(t,yf_l(t),y?_'(f),-..,yi?"(f))dt, Y&)=y,0. j=Ln, (53.0)
x0

uniformly converges on [xo—h,x0+h] to the solution of the considered Cauchy

problem. The length 2/ of this interval is determined by Theorem 5.1.

The construction of the n recurrent sequences tending to the unique solution of the
Cauchy problem is a straightforward generalization of that exposed at Sec.1.2 for the
case n=1. More precisely, the functions defined by recurrence in (5.3.1) satisfy the
inequality

” M = (nKx—x i
‘yj ()=, (XX SEP_Z,,E+1|TO|)’ 432)

for |x - x0| < h . The constant X is the Lipschitz constant.
3.2 THE METHOD OF THE TAYLOR SERIES EXPANSION

If the functions f ]-(x, V0oV seens yn) are of class C” in a neighbourhood of

(xo s V105 Y205+ V0 ) , then the solution of (5.1.2), (5.1.8) may be searched in the form of
a Taylor series, i.e.

_ _ 2 _ m
P e FEL LT RS 1 TP N

_ X—X (X—xo)m (m) 2
yz(x)—J’2o+ T J’2( 0)+ Y J’z(xo)+ +TJ’2 (x0)+Rm’ (5.3.3)
_ _ 2 _ m
e P S AR P L TR

where R/ =R/ (x,x,) are the corresponding remainders of the above developments.
The Lagrange estimations of these remainders are
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_ m+1
Fale x°):%y5"’+"(&), (v, ), (5.34)
therefore
|x — Xy |m+l
‘Rm (x’xo)‘ <M (m+1)' > (5.3.5)
where

M :max(( su)E,ij (i, Y)U CD:{("’Y)”X‘xd<a’|yj ‘yj0|<b’j:1’_”}' (5.3.6)
Vs

Jj=Ln\ (x,

Precisely as in the one-dimensional case (see Sec.1.2), the solution of the Cauchy
problem (5.1.2), (5.1.8) may be approximated by Taylor’s polynomials in the right sides
of (5.3.3), neglecting the remainder, therefore

(x—xo )2

21!

X—X

—!0)/} (xo )+

1 y}(x0)+...+mygm)(xo)’ (537)

m!

J’j(x)zyjo +

for j= I,_n . The corresponding coefficients are computed successively, as follows

y_}(xo):fj(xo,)’(xo)):f/(xm)’o)a

N/ AT
J’j(xo)=a_j(XOsYo)Jr_j(XOaYO)M(Xo)
x o
o, o,
+—j(XOaYo)J’E(xo)+-~-+—j(x0a3’0)y;1(xo) (53.8)
ayZ ayn
o, y o,
:a_J(XmYO)JFka(xm)’o)_J(xo’YO)’
X k=1 6 k

We can also consider the case in which f; allow a series expansion in the form

v

£y =¥ —2 " ()",

\v\21Vo!V1!--~Vn! N (5.3.9)

— — v _ Vi \P) \4
v—(vo,v],...,vn), |v|—v0+v1+...+vn, Y o=y vyt

where v is a (n+1)-dimensional multi-index and the coefficients f X (x) are continuous

on [O, a] . We suppose that they also satisfy in this interval the inequality
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v|! A o —
|ij(X)|: VO!\!1|!"'Vn! rovorlvlr 7 Vn ’ J:Ln’ |V|E@Z” (5310)

-y

Aand 7y, k= O,_n being determined constants.

Then the solution of the initial problem (5.1.2), (5.1.8) can be developed in a series
expansion

yj(X)=‘Z 0 (X)p" ey vt J=Ln, (53.11)

V‘Zl

which is absolutely convergent in the domain determined by the inequality

ry N Ty = k!

w 7 k-1
|P| N |J/1o| - |ynO| <3 k o Kladnt1) (5.3.12)

In the particular case f, (x)za_jvxvo, in the above series of y; we also take

Qjy (x): c ijVO . The coefficients ¢, are obtained by identification.
Yet this procedure is very difficultly applied in practice. In the next section, dedicated to
the linear equivalence method, we shall present an efficient way of deducing the

coefficients ¢, by using the normal LEM representation.

3.3 THE LINEAR EQUIVALENCE METHOD (LEM)

The linear equivalence method, or, briefly, LEM, was introduced to find convenient,
both quantitative and qualitative representations of the solutions of non-linear ODSs via
the methods in use for the linear ones. The method, initially introduced for first order
polynomial differential systems , was extended to first order ODSs, with right side
analytic with respect to the unknown functions. The case of polynomial operators
involves some simplified formulae for the LEM representations and even more
simplifications are emphasized in the case of constant coefficients.

Consider therefore the system

v=1(r.y) f(z,y)z[fj(t,y)]j:rn, velc' o). 1=[aplen, (5.3.13)

where f; (z,y) are analytic functions, uniformly with respect to ¢ €1, i.e.

£63)= 3 £, =l nel@o)), (53.14)

ul=1

p= (ul,uz,...,un) is a multi-index, |u| =p; +H, +...4+u, and

MANESR U U Ve (5.3.15)
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The coefficients f,, :I1—> R are supposedly at least of class CO(I). The applications

presented here deal only with ODS with null free term; this is why the sums in (5.3.14)
are starting from 1 on.
This system may be also written putting into evidence the differential operator 6‘(y) s

5(y)=y-1(.y)=0. (5.3.16)

LEM considers an exponential mapping depending on n parameters, &eR",

§=(§1,§2,...,<‘,n), namely
Wx, &)=Y, (g y)= il&_,-y_,- , (5.3.17)
=

that associates to the above non-linear ODS two linear equivalents :
1. alinear PDE, always of first order with respect to x

sv(x,g)zg-(g,f(x, D)y=0, (5.3.18)

2. and a linear, while infinite, first order ODS

- ZJ’, Z f/u( )vvﬂtfej’ € :(6{)1:1,7’ ME%' (5.3.19)

j=1 H‘ 1
The operator £ introduces the linear PDE (5.3.18), always of first order with respect to #;
in (5.3.18), the formal operators

n o0 ‘“‘
0
<§,f(f,D)>EjZ:1§jfj (f,Dal fi (I,Da) Zzll ()g‘ag;‘—zvag,@‘ (5.3.20)

make sense on Exp-type spaces.
The LEM equivalent (5.3.18) was obtained by differentiating (5.3.17) with respect to ¢

and replacing the derivatives y ; from the non-linear system (5.3. 16).
The usual notation f (t, DE) stands for the differential polynomial associated to
S (t, y). The second LEM equivalent, the system (5.3.19), is obtained from the first one,

by searching the unknown function v in the class of analytic with respect to & functions
W(t.8) 1+Z : (5.3.21)
[7/=1
The LEM system (5.3.19) may be also written in matrix form
Sv= E—A( V=0, v=(v,) .. Vv, =l )M=f . (53.22)
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The LEM matrix A has a special form, being always row-finite and, in the case of
polynomial operators, also column-finite

(AL() ALl) ARl o AL() ALK ]
0 Aynl) Ax() .. A2,m—l(t) A, (0)

S I T
0 0 0o .. 0 A, (0)

The cells A (t) on the main diagonal are square, of s+1 rows and columns, and are

generated by the coefficients of the linear part of the operator — namely, those f, (t) for

which |H| = 1. The other cells A, (t) contain only those f, (t) with |p_| =s+1.

More precisely, the diagonal cells contain the coefficients of the linear part, on the next
upper diagonal we find the coefficients of the second degree in y etc. In the case of
polynomial operators of degree m, the associated LEM matrix is band-diagonal, the band
being made up of m lines.

It should be mentioned that this particular form of the LEM matrix permits the calculus
by block partitioning, which represents a considerable simplification.

Consider now for (5.3.13) or, equivalently, (5.3.16), the initial conditions

ylto)=yo, toel. (53.24)
By LEM, they are transferred to

Weg,8)=c¥) gew, (5.3.25)
a condition that must be associated to the PDE , and
v, (6o)=y3, leot, (5.3.26)

indicating an initial condition for the system (5.3.19) or, equivalently, (5.3.22). For the
matrix form, the initial conditions (5.3.26) become

Vi) =[] ) oo (5.3.27)

Let us note that, in order to get back to the solutions of the polynomial Cauchy problem
(5.3.16), (5.3.24), the PDE should be conveniently defined on some space of analytic
with respect to & functions, uniformly for ¢ € I. To this aim, we introduce

Y
@,’f(l)z{vzlxﬁﬂ" —>5R;v(x,§):HZ Vv(x)éy_"”vV"k SKMY,MG@Z}- (5.3.28)
v|=0 .

where |||| is the “sup” norm in CO(I) and ||f||m :max{”f(j)u,j :(),_m} is the norm in

c(1).
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Another space may be similarly introduced, 93,],‘ (I) — the isomorphic with @2,]1‘ (I) space of
infinite vectors V, of components satisfying the same inequalities as in (5.3.28). The
isomorphism is emphasized by the application t.@F(1)— ®(I) that associates to v the
infinite vector of the coefficients in the development, i.c. t(v(1,&))=V(r).

The relationships among the above-introduced operators are suggestively explained in
the following diagram

L@y —-ae’()
4
S:al(1) —-a2(1)

3.3.1.  Solutions of non-linear ODSs by LEM
We note that the above diagram is not closed; yet, it may be used to turn back to the
solutions of the polynomial system. In this respect, it was proved

Theorem 5.2. Suppose that Sin€ Cw(I). Then the solution of the initial problem,
(5.3.27) formally allows the representation

V() =TIt —1,)V(z, ), (5.3.29)
where the infinite matrix Il is given by
k
n(—1,)= ZA(/‘)(IO)M. (5.3.30)
k>0 k!

(k)

The matrices A"’ are determined by the recurrence

A(k)(t _ dA(k—l)

= (0)+ AFD(AE). AL()=E, (5.3.31)

where E is the infinite unit matrix. The components v, of V are consistent on

intervals IM s y| €9, centred at 1, whose length depends on f;, , ony and on |y0| .

In particular, the first n components of V coincide with the Taylor series expansion of
the solution of the Cauchy problem (5.3.16), (5.3.24) around t .

The first n rows of I represent in fact the inverse of the non-linear operator & in matrix
form. Thus, the representation separates the contribution of the operator from that of the
initial data.

Let us mention that, as the series form cannot be completely computed, if we wish to
stop at some level £, all the involved computation up to this level is finite.

In the case of constant coefficients, the following representations were found:
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Theorem 5.3. If the coefficients f,, j = I,_n are constant, then the solution of the non-
linear initial problem (5.3.16), (5.3.24)
i) coincides with the first n components of the infinite vector

V(e)=eAl0ly, (5.3.32)

where the exponential matrix

2 k
P G P S GO (5333)
can be computed by block partitioning, each step involving finite sums;
ii) coincides with the series

v, )=y, +ZHZ (i, j=Ln, (5.3.34)
I=1|y|=l
where u , (t) are solutions of the finite linear ODS

du

_dlk =ALU +AL U, +.. . +ALU,, k=11 U, = (uy (t))\v\=s , (5.3.35)
that satisfy the Cauchy conditions
Uy (to)=e;, U,(xg)=0,5=21. (5.3.36)

The representation is very much alike a solution of a linear ODS with constant
coefficients. There is more: the computation is even easier due to the fact that the
eigenvalues of the diagonal cells are always known . The representation (5.3.34) is called
the normal LEM representation and was used in many applications requiring the
qualitative behavior of the solution.

3.3.2.  New LEM representations in the case of polynomial coefficients
Suppose now that the coefficients f, of the non-linear operator are also polynomials,

of maximum degree ¢, written in the form
q S
fu®)=X fhle=t), j=Ln, |ujeor. (5.3.37)
k=0

Then, the linear equivalent system becomes

d—V=[Ao +(t—10)A + (-1 A, +...+(t—t0)qu]V,

dr
V= (VJ ).jem’ V= (VV )\V\ZJ'

Let us mention that in (5.3.38) the matrices A, are all of them constant and, obviously,

(5.3.38)

of LEM construction. Each of the LEM matrices A, is set up by using only the
coefficients f jkp . One can formally write (5.3.38) in integral form
t
V(t)=V, + I[Ao +u—to)A, + (- fo)2A2 +o+(u—t )qu ]V(”)d“ ) (5.3.39)

to
and apply to this linear integral equation the successive approximations
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v _vy,,

t
vO()=v, + I{i(u—to)qu}V(“)(u)du.
toLJ=0
With these preparations, using the same techniques as in Theorem 5.1, one can obtain
LEM representations in the case of polynomial coefficients.
The representation (5.3.29) is more suitable for numerical applications, while the normal
LEM representation suits better to study the qualitative behavior of the solution.
LEM was used to many applications: to set up a transport matrix for REBs (relativistic
electron beams), to get asymptotic estimations for the solution of Troesch’s plasma
problem, to a qualitative study of the oscillatory solution of Belousov-Zhabotinskij’s
chemical reaction, to the Lotka-Volterra prey-predator model and even in the theory of
graphs.
The most pertinent results were obtained in the frame of mechanics, studying the
Bernoulli-Euler bar and the non-linear rigid pendulum; some of them will be presented
in this book.
It must be mentioned that during the last several years, the interest in applying LEM to
various mechanical and technical problems was continuously increasing. Thus, the
application of LEM was extended to modern high-tech modelling for shape memory
alloys for non-linear mesoscopic materials and to domains like damping in machine
tools .
LEM was applied to the non-linear coupled pendulum, comparing the LEM
representations and the cnoidal ones, comparison also sustained by the numerical results
obtained via wavelets. In it is suggested the application of LEM to equations like
Korteweg de Vries. In an excellent book, recently appeared, there are opened the
perspectives of applying LEM to non-linear models in nanotechnologies. This may give
rise to a fruitful feedback between the development of the method itself, on the one hand,
and the specific results obtained by applying it, on the other hand.

(5.3.40)

4. Applications

Application 5.1

Problem. Study the motion of a discrete mechanical system formed by two particles P
and P, of masses m; and m,, respectively, subjected to the reciprocal action of forces
of Newtonian attraction (the problem of the two particles).

Mathematical model. Consider the particles P, and P, of position vectors r; and r,,
respectively, acted upon by forces of Newtonian attraction (Fig.5.1)

mym,
F12 :f

r=-F,, (@)

where r = P, P, . Newton’s equations of motion are
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. mym, . mym,
mty = f—==r, myf) =—f ——=r, (b)
r r
. my . my
n=f—r, hH=—-f—r. (©)
r r
5
gy,
c
AN
A

Figure 5. 1. The problem of the two particles

Noting that r =r, —r; and r =¥, —r; and subtracting the equations (c) we obtain

.. +
LLLY @

r

hence the equation of motion of the particle P, with respect to the particle P ;
analogously, we may determine the equation of motion of the particle P, with respect to
the particle P, .

Solution. The equation (d) has been considered in Appl. 1.17 for Kepler’s problem:
motion of a planet of mass m, =m subjected to the action of a central force of

Newtonian attraction, the Sun, of mass m; =M , considered fixed. The equation (d)

M(l + m]
M _ (e)

The first two Kepler’s laws are verified. The planet describes an ellipse, the Sun being at
one of the foci; but also the Sun describes an ellipse, the planet being at one of its foci.
Concerning the third law, we are led to

T2 4n® 1 47? mY"'  4n? m
_3 = = 1+— = — 1__+... 5
a M 14+ M M M M

M

becomes
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this law is verified with good approximation too, because m/ M <<1.
This problem plays an important réle both for the macrocosm (in celestial mechanics) an
for the microcosm (in atomic mechanics).

Application 5.2

Problem. A man goes along the straight line O'y' with a uniform velocity v;. At the
moment =0 he is at O' and calls his dog; that one runs towards the master with the
uniform velocity v, =kv,, k>1, so that it is directed at any moment towards the man.
Determine the trajectory of the dog and the interval of time in which it reaches the
master (problem of the meeting). Discussion.

Mathematical model. We model mathematically the man and the dog by two particles P,

and P,, respectively; the velocity v, of the particle P, is collinear with the vector

PP, , tangent to its trajectory. We choose a fixed frame of reference O'x"y’ linked to the
initial position O’ of the particle P, and a movable frame of reference P xy, linked to a
momentary position of the particle P, in uniform translation with respect to the fixed
frame; in fact, its motion is specified by the equations (we admit that the two particles
start from the points Plo =0’ and on at the initial moment ¢ = 0) (Fig.5.2)

X'=x,y' =vt+y. (a)

We notice that v, =v, vers P, P, , obtaining the differential equations which determine
the trajectory of the particle P, in the movable frame in the form (v, has the
components x and y )

Vo X . VoV

Solution. Dividing the two equations (b), member by member (we eliminate the time ¢ ),
we get

i=-

d v :
A AN [ A (©)
dx x v, X

Noting that dy/dx=y/x+ (x / dx)d(y / x) and integrating, we may write the equation of
the trajectory with respect to the movable frame in the form

Vi /vy =V /v,
ElEAR 2
S GRE <
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Eliminating /x> +y? between the two differential equations, we may write

X= (v1 + j/)(x / y); taking into account the previous observation and (d), it results

Y9\

0=~ =

Figure 5. 2. The problem of the meeting

1_)/ X y a ¥ v /vy ¥ =V /v, ¥
ersfpoa 2l )
v\ x v\ x 232 | \a a a

whence , assuming that v, #v,,

X 1 X vy /vy 1 ¥ —vi /vy
t=t, —= = - = . e
) v +v, \a vi—Vv, \a ©

Calculating x = x(t) and then y = y(t) , we obtain the parametric equations of motion of

the particle P, on the trajectory. The equation of the trajectory with respect to the fixed
frame is of the form

vyx' 1 PANKE 1 X\

’

yo=wl ) — + — : ®
v +v, La V=V, \a

The constants a an ¢, are specified by (d) and (e), if we put the initial conditions

X=xy=X4, y=yo=y¢ for t=0.For x >0 wehave y >0, t >1¢ if v, <v,, and
y—>—o, t—>oo if v, >v,. As a consequence, if v, <v,, then the particle P, meets
the particle P, at the moment 7 =¢, at the point o co-ordinates x'=0, y'=v;; with

respect to the fixed frame. If v; =v,, then the two particles do not meet. The distance

L =5 2
between them is given by AP, =x” +y?, so that
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v /v - /v I+v, /v 1-v, /v
x|\ x 1/V2 a x 1/V2 X 1/V2
D B o A St I 3 I ®
2|\a a 2(\a a

the minimum of this distance is obtained for

vy /2w
Vv, —V
x= a(l—zj : (h)
Vi + V)
so that
vy /2
b av, V1™V .
PZPI min > > ( 4 (1)
Vi —V, Vi V)

at the moment

vy /2
2av,v, (vl -V, J

t=t1+(v12—v§)m S~ @
In particular, for y, =0, we obtain x =a and
f=- Vlfizvg : (®)
being led to
acl 1 (¥ (k+1)/k I (k=1)/k >
y'ﬁ{m(;} ) _J' ?

For instance, for £ =2 the trajectory is an arc of semicubic parabola

A -

If v =v, =v, k=1, then the equation of the trajectory with respect to the movable
frame is given by

y=o (e -a?) )

the motion being specified by
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2
al|l(x X
t=t;—|—|—| +In—|; (0)
2v| 2\a a

ﬁ:z—la(xz+a2). (P

as well

The two particles do not meet, the minimal distance between them being obtained for
x =0 at the moment ¢ — oo ; itisequalto a/2.
Application 5.3

Problem. Determine the first integrals in the motion of a discrete mechanical system S |,
expressed by Lagrange’s equations in the space o configurations

Mathematical model. In case of discrete mechanical system S of » particles, the
equations of motion of the representative point P in the space of configurations A, are
of the form (see Appl.6.2)

dfor 6T —
Qk B k = 13 S, (a)
dr a‘Ik a‘]k

where T 1is the kinetic energy, Q, are the generalized forces and s is the number of
degrees of freedom of the system S .
Solution. Multiplying by ¢, and summing from 1 to s, we obtain

s orT oT s

Z [ j K~k |= 2Ol -

-1 dz{ 6g, oqy, k=1

But

d(or,) _dfor . | or .

arl o, [ = arag, 4 ) g,
Taking into account the relation (¢) in Appl.6.3 and applying Euler’s theorem concerning
homogeneous functions, we may write

orT . or, . o7, .

SO =Y SR gy |=2m 4T,
§=10 =1\ Oq 0q,

where we noticed that 7, and 7; are homogeneous forms of the second and first degree

with respect to the generalized velocities, respectively, while 7,, is a constant with

respect to these velocities. As well,
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dr &(er . or d
—= +—q; +T T, +T,+T; ).
Q& Z_:(aqkq Py qu ] dt(z 1 0)
Finally, we may write
s .
d(1, =Ty)= 3 Oy dg, —Tdt . (b)
k=1

If there exists a function W so that
dw =3 0,dq, ~Tdr,
then .
T, —Ty—W =h=const (©
is a first integral of Lagrange’s equations (the first integral of Painlevé). We observe that

W = W(ql , qz,...,qs;t) and cannot depend on the generalized velocities too. Indeed, in

this case, in the total derivative dW /d¢ would appear also the generalized acceleration
4, ; but the given forces cannot depend on accelerations (second principle of Newton),

hence neither the generalized forces cannot depend on the generalized accelerations, so
that neither in the expression d/# /d¢ cannot appear such accelerations. We may write

dW s ..
=Yg, +W = I, +T, +T1, ;
dt kZlaqk 9 ZQka (2 1 0)

because only the functions W and 7, do not depend on the generalized velocities, it
results that W = —TO . Differentiating partially the relation (c) with respect to the time,

we obtain also 7’ » =0. We may thus state that Painlevé’s first integral does not depend

explicitly on time, neither in the case of rheonomic constraints and of forces which
depend explicitly on time.
In case of quasi-conservative generalized forces O, =0U /0g,; ,U = U(ql,qz,...,qs;t),

we may introduce the kinetic potential L =7 + U , and the equations (a) take the form

d( oL oL
—— =0, k=1,5s. d
dt( 7 ] * @

oqy, oq

We follow now an analogous procedure. We multiply the equation by g, and sum for &

o[afa), o
&l 4\ og, dx o4, 9k

By an analogous calculation, we get

from 1 to s; we obtain
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4 ii% -L[+L=0.
dt \ k51 0q,

Hence, if L=0, we may write the first integral

s oL
—¢q, —L=h=const,
kZZI ai, (e)

called the first integral of Jacobi. Noting that L =7, + 7} + T, + U , we may also write
E=T,-T,-U=h=const, ®

where E is the generalized mechanical energy. In case of scleronomic constraints (which
do no depend explicitly on time), we have 7, =7,=0, while 7=T7,, so that

E =T -U = E; the generalized mechanical energy coincides with the mechanical energy
E . We get again the conservation theorem of mechanical energy.
If 0T / 0gk = 0, then the respective co-ordinate g, is called a hidden co-ordinate; in this

case, the corresponding equation (a) is reduced to

d(oT
= [=%-
dt{ 0g,

If we have O, =0 too, then we obtain

or
~. = Ck H
o, (2

which is also a first integral.
If oL /0q, =0, then the respective co-ordinate is called an ignorable co-ordinate, and

the equations (d) lead to the first integral
i =Cks (h)
o4

in fact, oL /0q, is just the generalized momentum p, (see Appl. 6.3), so that p, =c, .

Application 5.4

Problem. Determine the first integrals in the motion of a discrete mechanical system S |
expressed with the aid of Hamilton’s equations in the phase space.

Mathematical model. In case of a discrete mechanical system S of n particles, the
equations of motion of the representative point P in the phase space T',;, may be
written in the form (see Appl.6.3)
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qkz—;pkz——’k: 58 (a)

where H=H(ql,q2,...,qs,pl,pz,...,ps;t) is Hamilton’s function, while s is the
number of degrees of freedom of the system S .

Solution. The total derivative of the Hamiltonian H takes the form

dH & oH . OH . .
Y[ PP e
dt k=1 6qk apk

If the canonical equations are verified, then it results

dH

5 (b)

we may thus state that along the trajectory of the representative point P (when
Hamilton’s equations, which govern the motion of this point, take place) the total
derivative of the function H does not depend explicitly on time (e.g., in case of
scleronomic constraints), thereforedH /d¢ =0 and H is a first integral of the system of

canonical equations. Taking into account the definition of Hamilton’s function (see
Appl.6.3), we may write

3 . s, oL . s, 0T .
H=Ypig-L=3Y——¢, -(T+U)=Y——¢, -(T+V)
k=1 =10}, k=10q
=21, +T, = (T, + T, + T, +U)
so that
H=T,-T,-U=E, ()
where E is the generalized mechanical energy (see Appl. 5.3). We find thus again the

first integral of Jacobi in canonical co-ordinates. Indeed, the link between the functions
H and L puts in evidence the equivalence of the conditions L=0 and H=0. If the
constraints are scleronomic, we get H = E = const, hence the conservation theorem of
the mechanical energy (as in case of Lagrange’s equations).

Let be @(q1,q2se54y5s P1s Paseees Pit) and (41,02, 0005, 1y Paseens Py3E) WO

functions of class C'; the expression

op 09
(o.v)=|0k  Pr|_s Op oy _J9 Oy )
’ oy oy | o\ oqy Opr  Opi 0q
5% apk

is called the Poisson bracket corresponding to the functions ¢ and v .
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The obvious properties

(¢.C)=0, C=const, (¢.y)=—(v.0). (~¢.v)=—~(¢.v) (e)

take place; taking into account the definition relation (d) it may be shown that

(o) =00+ 0.9). G

Let us consider now a first integral of the canonical system (a), hence a function of class

C', which is identically reduced to a constant if one replaces the generalized co-
ordinates ¢, and the generalized momenta p, by the solutions of this system. Hence,

f =const along the trajectory of the representative point P ; it results that df /dr=0
or

s of . of . .
Z(qu +lka+f=0.
=1\ 0q P

Because the equations (a) take place, we may also write

Z[ of 6H of aHJ+f:0

=1\ 0qy Opy  Opy Oq

or
(f.H)+f=0. ()

Hence, if f is a first integral, then the relation (g) takes place. Reciprocally, supposing

that the relation (g) holds, let us write the sequence of Lagrange-Charpit differential
equations attached to this partial derivative equation of first order

dg, _ dg, - dg, _ dp, _ dp, - _ dp :g,
OH " oH T oM T oM _oH T oH 1 (h)
op;  Op, op oq, 0q, oq,

but this sequence is just the system of canonical equations (a). We may thus state the
relation (g) represents the necessary and sufficient condition so that the function f be a

first integral of Hamilton’s equations.
By partial differentiation of the relation (g) with respect to time, taking into account the
property (f), we obtain

%(f,H)+f':(f,H)+(f,H)+f:0.

If H =0, then we have
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. o -
HMH+— =0, i
.m)e = (i)
hence, if H and f are first integrals of the canonical system, then /f is also a first
integral of this system (Poisson’s theorem). Analogously, f , f, ... are first integrals
too.

I 0G1.qasesdes ProPases Pit)s Wla1.425044 P1o P pyit)  and
x(ql,qz,...,qs,pl,pz,...,ps;t) are functions of class C?, then the Poisson-Jacobi
identity

(o w) )+ (v h o)+ (e @)k w) =0, )
expressed by means of Poisson’s brackets, holds true; indeed, using the definition
relation (d), one obtains mixed derivatives of second order of the functions ¢, y and

X , the coefficients of which vanish. Let us suppose now that ¢ and y are first integrals
of the system (a); then the relations

(@.H)+6=0, (y,H)+y=0 (k)

take place. If x = H the Poisson-Jacobi identity (j) becomes

(o, w) H)+((v. H), 0)+(H, ), w)=0.

Taking into account (k) and the properties (e), it results

(((p,\v),H)+%( y)=0. (1)

Hence, if ¢ and y are first integrals of the canonical system (relations (k)), then their
Poisson bracket ((p,\y) is a first integral of this system (relation (1)) (Jacobi-Poisson

theorem).

Assuming that ¢, y and H are first integrals of the system (a) and using Poisson’s
theorem and the Poisson-Jacobi theorem, one may obtain various first integrals for this
system i.e.: d(o,w)/ot, (0,w),H), (0, H), (v, H), (¢.w), (¢,\) etc. We notice that
one may obtain at the most 2s distinct first integrals (linear independent), any other first
integral being a linear combination of the other ones. Often, we find again a first integral
previously obtained or a combination of such first integrals or we obtain a constant
(which may be zero).

If 0H /0q, =0, then the corresponding co-ordinate is called cyclic co-ordinate; in this

case, the second sequence of equations (a) leads to p, =c; =const . Let us suppose that

the co-ordinates ¢, ¢,, ..., q,, h <s, are cyclic co-ordinates. In this case

pkzckakzla_h) (m)
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and we have & first integrals, while
H :H(Qhus‘1h+2,---sqssclsczs---achsph+1sph+2,---sps§t)-

The system of canonical equations (a) is reduced to

on '-=—6—H,j=k+l,s,

4; ", Pj 24, (n)

hence to a system of 2(s—/) equations with 2(s—#) unknown functions q9;,=4, (t),

P;=p; (t), j=h+1s. The functions once determined are introduced in the

Hamiltonian H , which becomes thus a function depending only on the time ¢. There
remain the equations
OH —
dg, =——-dt, k=1nh, (0)
oq

which specify the cyclic co-ordinates g, =g, (t), k= I,_h .

If h=s,hence if all the co-ordinates are cyclic ¢, =g, (t), k =1,s,then we have

pkzckakzls_sa (p)

hence s first integrals, the Hamiltonian being thus of the form H = H (cl 3ChpeeesCy ;t),
hence a function of time. The cyclic co-ordinates are thus given by

qkzj'a—Hdt+yk,yk=const,k=1,_s. @
gy
Particularly, if H is a first integral (H = 0), denoting 0H /dc, = ®, =const , we have
G =0pt+y,, k=Ls. )

If s=1 one obtains the equation of motion on a circle, g, being an angle and ®, the

angular velocity; the denomination of cyclic co-ordinate is just justified. Hence, the
integration of the canonical system (a) is equivalent to the finding of a transformation of
co-ordinates so that all generalized co-ordinates be cyclic.

Application 5.5

Problem. Determine the first integrals in the motion of a discrete mechanical system S |
expressed by Hamilton’s equations in the phase space, by the Hamilton-Jacobi method.

Mathematical model. In the case of a discrete mechanical system S of # particles, the
equations of motion of the representative point P in the phase space T,  are written in

the form (see Appl.6.3)
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qkz—;pkz——’k: s 8 (a)

where H=H(ql,q2,...,qs,pl,pz,...,ps;t) is Hamilton’s function, while s is the

number of degrees of freedom of the system S .

Solution. Let us build up the partial differential equation

b}

. oS oS oS
S+H|q1,q3srqgr—s—s.c.,0—31 |=0, b
(41 q> q oq, " 64, oq ] (b)

s

where we replace the generalized momenta p, by the partial derivatives of first order
0S/0q,, k :L_s, in the expression of the Hamiltonian. We assume that
S=S(ql,qz,...,qs;t;al,az,...,as) is a complete integral of the equation (b) (an
integral which contains s essential constants of integration a,, a,, ..., a, and which

may be obtained, for instance, as a combination of s particular integrals), which verifies

the condition

2

det| =25 120, (©)
0q ;0ay

The partial differential equation (b) is called the Hamilton-Jacobi equation or the

equation in S .

Let us set up the sequences of relations
oS oS

_:b s T — skzlasa
Oay, , 0q; P @

where b, b,, ..., b, are arbitrary constants. The total derivatives of these sequences
with respect to time (condition of first integral) lead to

“

%S & ats . d%s o’s .. —
+y g,=0, + q; =Py, k=Ls. (e)
otda,  1-10q 0a, 0t0q,  j=10q ;0q

As well, noting that by introducing the complete integral S in the equation (b) we obtain
an identically zero expression (which does not depends on a; and g, ) the equation (b)

leads to
2 B 2 2 s 2 o
aS.|_ ai ) =0, 8S+ a_H ) +a_H:()’k:1’5_ (f)
Oa,, Ot j:lapj aakéqj 0q, Ot j:lapj 8qk6qj opy

Subtracting the relations (e) and (f) member by member an noting that S is a function of

class C?(the mixed derivatives of the second order do not depend on the order of
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differentiation, corresponding to the theorem of Schwartz), we obtain the conditions of
first integral, equivalent to (e), in the form

s 0°8 (. oH s.9°s (. eH| . oH —
)y q;——— =0, 2 q;j———|=Pr+-—, k=Ls. (2
j=10q ;0ay p =109 ;0q op; 0q

If the canonical equations (a) take place, the conditions (g) are identically verified. Let us
assume now that the relations (g) take place. The first of these relations may be
considered as a system of homogeneous algebraic linear equations in the parentheses
q; —OH /0p; ; noting that the determinant (c) of the coefficients is non-zero, it results

that we can have only vanishing solutions, corresponding the first subsystem (a) of
equations of Hamilton. If we replace in the second relation (g), we find the second
subsystem (a). We may thus state:

The sequences of relations (d) represent 2s first integrals of the canonical system (a)
(Hamilton-Jacobi theorem). The first sequence of relations (d) specifies the trajectory of
the representative point in the configuration space A ; (the condition (c) allows to apply
the theorem of implicit functions for the determination of the generalized co-ordinates),
while the second sequence of relations (d) determines the generalized momenta, hence
also the trajectory of the representative point in the phase space I, .

The Hamilton-Jacobi method may be simplified in some particular cases. Thus, if H =0

(e.g. in case of scleronomic constraints) the equation (b) leads to S =0, where, by
integration,

S:—ht+§(q1,qz,...,qx;al,az,...,as), (h)

where we take, for instance, a, = k. The Hamilton-Jacobi equation takes the reduced
form

s as oS
H 5 Ry N S S PR :hs i
(% 9> q 24, 04, oq J (@)

N

hence the sequences of first integrals are written in the form

os S as —
—S=bj,j=1,s—1,a—SzbS-i-t,—S:pk,k:l,s. 0]
oa; Oa, 0q

If one of the generalized co-ordinates is cyclic (for instance, g, ), then we have p, =0,
hence p, = a, = const . It results 925/ 8q,6t = 0 ; integrating, we obtain

S=aq, +So(q2,q3,...,q‘v;t;az,a3,...,as), (k)

where S, verifies the equation
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95, 6S_0 aS_O- IJ =0 )

S’O +H|q5,95,...,95;a;,—, yeens ;
( 04, 043 aq

hence an equation which contains only s—1 generalized co-ordinates.

Application 5.6

Problem. Study the motion of a rigid solid with a fixed point O subjected to the action
of the own weight in the Euler-Poinsot case (first case of integrability).

Mathematical model. In the Euler-Poinsot case (see Appl. 5.7 too) the system of
differential equations of motion is written in the form (Euler’s kinetic equations)

Ix(bx+(lz—1y)mywz =0,
Lo, +(,-1.)o.0, =0, (a)
I, o, +(Iy —Ix)coxooy =0,

where 1, I,, I, are the moments of inertia with respect to the axes of the movable

frame Oxyz, rigidly linked to the rigid, while ®,, ®,, ®, are the components of the

y b
rotation vector of the movable frame (of the rigid solid) with respect to the fixed frame
Ox'y'z" . The principal axes of inertia are taken as axes Ox, Oy and Oz, respectively.

Noting that multiplying the first equation (a) by /,®,, the second by /,®, and the

third one by /,®, and summing, we obtain a first integral of the form
Ifcoi+1§ooi+122(o§:1<’02:const, (b)

where K, is the moment of momentum of the rigid solid with respect to the pole of the
fixed frame, in that frame. Analogously, multiplying the first equation by o, , the
second one by ®, and the third one by ®. and summing, it results a first integral given

by
I.0%+1 0%+ 0> =2T"=const (
xx y>y zz > C)
where T' is the kinetic energy of the rigid solid with respect to the fixed frame. The
constants K, and T’ which intervene in these first integrals are, obviously, positive; we
denote them K;, =1Q, 2T = IQ?%  where I is a quantity of the nature of moment of

inertia, while Q is a quantity of the nature of an angular velocity (/ =sz /2T,
Q=2T"/Kyp).
In this case, the motion is governed by the dynamical system
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Lol+Lo,+lo=1"Q7,
(d)

Il +1,0}+1 0l =10,
I o) +( -1 )co o, (e)

the equation (e) being one of the three equation (a). We associate to these equations the
initial conditions ®, (to ) = cog , O, (to ) = (og , O, (to ) = co(z) . The ratio of the two relations
(d) are written in the form

Iio +120)2 +12 (oz

y
=1.
§+12m2 ®

+1 o

I.o e

z

Assuming that the principal moments of inertia are ordered in the form 7, > 7, >17_, we

may write (the ellipsoid of inertia is not of rotation)

Ilo? +I oo 2o+ o?
I, > ; 21> ? 2 ;>IZ. (2)
Ixcox+]ycox I,o,+1 0

From the equations (d) we get

o’ ( [z)( 2) 2 _ 11-1,) 02

Y1)t Yo -n)T "
n\r-1,) 52 M0.-1)

@ = 1.(1, 1)(By )By_ylx—lyg

and the differential equation (e) becomes

ot WL g ) 0

IX[Z

hence a differential equation of the first order with separate variables for the unknown
function ©, =0, (). We obtain thus

t_to = ! N 3
p @ /B qlil—zzil—kzzzi 0

where
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b )e-n L () -nl ) "
P )

Denoting @, =, sink and introducing the elliptic integral of the first species F (K, k),
given by

K d(P K dz
F(K,k)ZI :j . 1
CNimksinze A li=z2)(1-k222) O

where k is the amplitude and k is the modulus of the integral, we may write the
relation (j) in the form

t=t, +%[F(K,k)—F(KO,k)], (m)

. 0 0 .
where sink” =) /B,. One obtains thus o, =0, (t) and then o, =, (),
0, =0, (t), using the relations (h).

Denoting u = p(t —t, ), we may also write

u=Fk,k)-(x k). (n)

Without any loss of generality, we assume that (Dg =0 it results k'=F (Ko,k)z 0, so

that
u="F(k k), (0)

where u =argk, k =amu . Introducing Jacobi’s elliptic functions: the amplitude sinus

(snu=sink), the amplitude cosine (cnu=cosx) and the amplitude delta
(dn u=+1-k?sin’ K) , we may express the components of the vector angular velocity
of rotation in the form

mx(t):_gx Cnp(t_tO)’ 0‘)y(t):By Snp(t_t0)9 (Dz(t):Bz dnp(t_tO)’ (p)

observing that ®2 = -

X0

0 _ 0_
©®, =0 and o; =p_, where

N2 1(1_12) 2 2 2 ](Ix_l) 2 n2
=— "2/ == -0 .
* Ix(]x_lz) <BY’BZ Iz(lx_lz) <B)’ (q)
Application 5.7

Problem. Study the motion of a rigid solid with a fixed point O acted upon by its own
weight Mg, where M is the mass and g the gravitational acceleration.
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Mathematical model. We consider a fixed frame of reference Ox'y’z’ and a movable
frame of reference Oxyz , the last one rigidly linked to the rigid solid S and having as
axes the principal axes of inertia of S . The own weight Mg =—-Mgk', where k' is the
unit vector of the Oz'-axes, acts a the centre of gravity C, of position vector p with
respect to the movable frame. The equation of motion, corresponding to the principle of
moment o momentum, is written in the form

d .

d—(IOco)=IOco+0)><(IO(x))=—Mgp><k’, (a)
t

where we put into evidence the derivative with respect to time in the fixed and in the

movable frames of reference of the contracted tensor product I,®; I, is the moment

of inertia tensor and @ is the rotation vector of the rigid solid (of the movable frame).

Projecting on the axes of the movable frame Oxyz , we find Euler’s kinetic equations

1.0, +(IZ —Iy)coy(oz =Mg(pzocy —py(xz),

1,6, +(, -1, )o.0, =Mgp o, —p.a,), (b)
1.0, +<Iy -1, 0,0, = Mg(pyax —pa, ),
where o, a,, o, are the components (direction cosines) of the unit vector k' with
respect to the same movable frame. We may establish the vector equation
d ! ’ !
—k'=k'+oxk'=0 (c)
dt

too, which shows that the unit vector k' has a fixed direction; projecting on the axes of
the same frame, we may write

a,+o,a,-o.a, =0,
a,+o. o, -0, =0, (d)

a,+o0,-0,o0, =0.

We have thus obtained a system of six differential equations of first order, formed by the
subsystems (b) and (d) for the unknown functions o, =, (t), 0, =0, (t),

©, =(nz(t), o, :(xx(t), a, =ocy(t) and o, :ocz(t).

Solution. Introducing the notations x; =®,, X, =®,, X3 =0,, Xy =0,, X5 =0

X vy yo

Xg =0, ,as well as
X, =[L[(Iy —[z)coy(x)z +Mg(p20ty _pyaZ)]’

X
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X2 ZILI:(IZ _[x )(DZ(D)C +Mg(pxaz BLERS >]’
y

X, :IL[(IX —Iy)(”x“)y +Mg<py0°x —prty)],

Xy=0.0,-0,0_,

Xs=0,0, —0,0

z R

Xe=0,0,—0.0,,

we may write the system (b), (d) in the form (5.35), that is

&:&: :%:dt (e)
X, X, X

Let us suppose now that for the system
by _d o _dx 0
X X, Xg '

which does not contain the time explicitly, we succeed in obtaining the independent first
integrals f (xl,xz,...,xé)z Cv, k=12,...,5, C, =const, which form a basic system
of first integrals (the rank of the matrix |_6fk /aij, k=12,....,5, j=12,...,6); we
may thus express five of the variables as functions of the sixth one (e.g.
Xy :xk(xG,Cl,Cz,...,CS), k=12,...,5, so that the system (e) is reduced to the
differential equations with separate variables dx; = X (xé, C,,Cy,...,Cs )dt. By a
quadrature, we obtain f (x6 ) =t+7, T =const, noting that
df /dxg =dt/dxg =1/Xg#0. The theorem of implicit functions leads to
X :x6(t+r), obtaining also x, :xk(t+r,C1,C2,...,C5), k=12,...,5, too. Hence,

to integrate the system of differential equations (b) and (d) it is sufficient to determine
five independent first integrals, which do not depend on time. We notice that a condition
of the form (5.50) is verified, that is

60X,
1 — 0 ;
2o ()
using the method of the last multiplier, it results that it is sufficient to know four
independent first integrals f,, f,, f3, f4 of the considered differential system to may

determine a fifth first integral, independent of the other ones; we obtain then an
integrating factor, which allows to determine all the unknown functions of the problem.
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A scalar product of the vector equation (a) by k' leads to [d(lo(x))/dt]-k'zo or
d[(I,0)-k']/ds =0, k' being a constant unit vector, so that

(Ipw) k' =K., (h)

where K, represents the constant projection of the moment of momentum on the fixed

Oz’ ; we obtain thus a scalar first integral of the moment of momentum (the conservation
of the moment of momentum along the local vertical) in the form

’ .
lLoo,+I 0,0, +] 0.0, =Kq,. (i)

A scalar product of the equation (a) by ®, leads to
. ' ' " a 2
(Too)o = Mg, k', p) = Mgloxk')-p=-Mgk'-p=-Mg —(k"-p),

the derivative being taken with respect to the movable frame; integrating we get
(Iow)~m=—2Mgk’-p+2h, )

where /4 represents the constant of mechanical energy. It results thus the first integral of
mechanical energy in the form

Ix(n)zc+1y0)i+lz(n§ :—2Mg(px(xx+pyoty+pzocz)+2h. (k)
A third first integral is
af+a§+a§=1, )

which is justified because k' is a unit vector.

Taking into account the above results, we may state that the problem of integration of the
system of equations (b), (d) reduces to the problem of finding a fourth first integral of
this system. Ed. Husson proved in his doctor thesis (1906) that, in the problem of the
rigid solid with a fixed point O, governed by the mechanical equations (b) and by the
geometric equations (d), in case of arbitrary initial conditions, excepting the first

integrals (I), (k), (), there exists a fourth first integral, algebraic function of ®,, ®,,

®,, 0, a,, o, ,non-depending explicitly on ¢, if an only if the fixed point is just the

centre of mass (O =C, hence p =0, Euler-Poinsot case) or if the ellipsoid of inertia is
of rotation (/, =/, and p, =p, =0, Lagrange-Poisson case; [, =1, =21, p, =0,
Sonya Krukovsky (Sophia Kovalévsky) case). If we renounce to the generality

concerning the initial conditions, we may find also other cases of integrability (by
quadratures).
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Application 5.8

Problem. Study the motion of a rigid solid with a fixed point O subjected to the action
of its own weight in the Lagrange-Poisson case (second case of integrability).

Mathematical model. In the Lagrange-Poisson case (see Appl. 5.7 too), the ellipsoid of
inertia with respect to the axes of the movable frame of reference Oxyz , rigidly linked to
the rigid solid, verifies the relations 7, =1, =J>1_ (hence, the oblate case); the
principal axes of inertia are taken as Ox, Oy and Oz axes. The co-ordinates of the
centre of mass C with respect to the movable frame verify the relations p, =p, =0,
p, =po > 0, this centre being on the principal axis Oz, which is thus a central principal

axis of inertia. The differential equations of motion (Euler’s kinetic equations) are
written in the form

J(bx_(‘]_lz)(")y(’)z =Mgpzo'y9
J(bx _(J_Iz )(Dz('ox :Mgpzax s (a)
@, =0,

where ®,, ®,, ®, are the components of the rotation vector of the movable frame (of

y b
the rigid solid) with respect to a fixed frame Ox'y'z", Mg=-Mgk', k' being the unit
vector of the Oz’ -axis, is the own weight which acts at the centre C (M is the mass,
and g is the gravitational acceleration); as well a,, o ,, o, are the components

zZ

y b
(direction cosines) of the unit vector k' with respect to the same movable frame.

Solution. We obtain
o.(f)=o! (b)

the constant o)g is called spin, that one being the fourth integral in Husson’s theorem
(see Appl. 5.7). The first integrals (i) an (k) (see the same application) become

0, _ g
J((oxocx +c0ycxy)+lzoazocz =Ko,

J((x)i +0)i)+1(0)2)2 =-2Mgp.o, +2h, ©
where we took into account the first integral (b).
It is useful to introduce Euler’s cinematic equations
®, = 6 cos @+ sinOsin @,
® =—ésin(p+\i/sin9cos¢, (d)

¥
®, =\y+@cosH,
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where Euler’s angles appear: the angle of precession \y , the angle of nutation © and the
angle of proper rotation ¢, which specify the position of the movable frame with
respect to the fixed frame. We mention, as well, the relations

o, =sinBsing,

a, =sinBcosg, (e)

o, =cos0,

which link the components of the vector @ to the components of the unit vector k' ;
thus we may determine Euler’s angles when we know the direction cosines o, , o,

o, .

Using the relations (e), we may write the first integrals (c) in the form

: 0 '
J(o)x sSing+o, cosq))+IZwZ cos0=Ky,.,

J((o)zC +(oi )+ I(cog )2 =—-2Mgp, cosO+2h. ®

Using the equations (d), the first integrals (b) and (f) lead to the system of equations
ysin? 0 =a—an’ cosH,

\jfsin29+92:B—bcose, (2)

VeosO+p=0",

2
where we have introduced the notations a=K./J, B= [2—1 . (oog) }/ J,

a=1,/J>0, b=2mgp,/J>0; we observe that o« and [ are constants which

depend on the initial conditions, while the constants a and b are functions depending
only on the geometry and on the mechanical properties of the rigid solid.
The system of differential equations (g) will determine Euler’s angles v = \V(t), 0= G(t)

and @ = (p(t). Eliminating \y between the first two equations, we obtain

(oc—acog cos@)2 =(B—bcosB)sin® 6—-Osin” 0. (h)
Denoting u = cos 0, it results the differential equation
iu? = Plu), P(u)=(B—bu)(l—uz)—(oc—a(ogu)z, (1)
whence
t=ty+[" ds

g ,P‘E_;i’ (.])
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with 1, =cos0,, 0, =0(¢, ); assuming that #(¢, )= 0 (ui(z) has a continuous variation,
beginning with 1(z, )), the radical is taken with the sign of (z, ).

If 800 and 6, #n, then we have u, € (—1,1), hence K. ii]zmg. Because the

equation (i) admits a solution only if P(uo ) >0, it results that the polynomial P(u) is of
the form

Plu) = blu—u, ) —u; )u—us), (k)
where u;, u,, uy are the real zeros of the polynomial of third degree P(u), so that

—1<u; Suyg<u, <uy <oo.One may thus show that u(t) varies between u; and u,,
the duration of a complete period being

) du
2 T 0

Hence, u(t+T)=ulr) and u(r+T)=1(t); it results 0(¢ +7)=0(z) too.
We may introduce a new variable k by the relation

u=1u cos? K+u, sin? K=1u, +(u1 —uz)sin2 K

(m)
=Up _(“2 —”1)0052 K=1j —(u3 —ul)(l—k2 sin? K),
where
k= a7y ;
Uz —u
introducing this in (i) and (j), we obtain
1 K dX 1
t—ty =—[" ————, p=—1lblus —u,), n
P J1- k2 sin? y 2 (n)

where Kk =K, corresponds to u =u. Using the notation w =sin k , we may also write

1w dg .
t_to = WO :Sano. (0)

P W‘u/h_gz ih—kzgz )’

Introducing now Jacobi’s elliptic functions (see Appl.5.6), it also results

u(t):u] cnzp(t—to)+u2 snzp(t—to):u1 -i—(u2 —ul)snzp(t—to) ( )
p
=1y —(uy —u; Jen ple—ty) = uy = (uy —u )dn ple—1,),

the nutation angle being thus completely determined.
The other angles of Euler are given by the equations (g) in the form
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0 0
.oo—am,u . 0 (a—aoa u)u

Y=——"—, =0, - —=3 (@
1—u

I-u
hence, it results (z+7)=(¢) and ¢(t+7)=(¢), so that
\V(I+T):\|/(t)+‘l’o, (p(t+T):(p(t)+(D0, ()

where ¥, and @ are arbitrary constants.

Application 5.9

Problem. Study the circular thin plates acted upon by axially symmetric loads, in the
hypothesis of great deformations.

Mathematical model. We take into consideration the equations of equilibrium

dNt
N,—-N,+r =0, (a)
dr
T,=—N,d—w—lfqrdr, (b)
dr rj

the equations of deformation

2
8}’ :d_u+l d_W s (C)
dr r\dr
u
& =— (d)
r
and the relations of elasticity
5 -
E E 1
N, = (8r+vs,): ! d_u — d_u bl , (e)
1-v 1-v2|dr 2\dr r
»
N, = £t (e, +ve, )= B ju, du, vidw ; ®
1—v? 1-v2|r dr 2dr
Ef® dw 1d°w 1dw
T= ] —= . (®

— +_
12(1—v &3 rdr? rdr
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where N,, N, represent the radial and the annular efforts in the plate, respectively,
T. =T is the shearing force, # and w are the displacement and the deflection of a point

of the plate in the radial and transverse direction, respectively, €,, €, are the linear

ro
strains in the radial and annular directions, respectively, E , v are the elastic constants of
the material, # =const and a are the thickness and the radius of the plate, respectively,

and ¢ is the transverse load (supposed to be constant). Application for the circular built-
in plate.

Solution. Introducing the shearing force (g) in (b), we obtain

3 3 2
Et 2)(dw 1d°w 1de=N d_w+ﬂ’ h)

+— -——— .
12(1—v dr® rdrr rdr Tdr 2
the last term representing the integral in (b) for ¢ = const .
Eliminating u between (c) and (d), we get the equation of compatibility

de, 1(dw ?
g, =g +r—+—| — |,
dr 2\ dr

or, replacing

1 1
Sr:E(Nr VNt)’ € = (Nt_VNr)
and using the equation (a),
2
d Et(dw .
—(N, +N,)J+—| —| =0. i
r (e N) 2[dr] (i)

The equations (a), (b), and (i) contain the unknown functions N,, N, and w and will
be considered as the general equations of the problem.

We introduce the non-dimensional unknowns
q r .
p=ap.&=T. S, =2k 8, =t ()

With these notations, the equations (a), (b), (i) become

d
d—é(ésr)—s, =0, (k)

I dfid(,dw)] pe_ . dw
12@1—v2id_é{€d_é(agﬂ_ 2 e ®
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2
1(d
i(S,+S,)+— Y. (m)
de 2 dr

From the equation (d), one obtains
u=re, :é(Nf —vN,): r(S, —VS[).

The boundary conditions are © =0, dw/dr=0, w=0 for r =a. Thus, on the contour
(r = a) we have

(S, -vs,)|_ =o0. (n)

r=a

We may assume that S, is a symmetric function, while dw/dr is an antisymmetric
function with respect to &, so that one may introduce the power series

S,.:Bo+Bzgz+B4a4+..., (O)
dw
Lo Blogrog vog v, ®
where By, B,, B,, ... and C;, C;, Cs, ... are constants which must be determined.

Introducing the series (o) in (k), it results
S, =By +3B,E%* +5B,EY +... ()
Differentiating the relation (p) with respect to & , we get
d%(i—szﬁ(cl +3C2F;2+5C5§4+...). (t)
It is seen that all the quantities of interest may be obtained if we know the constants B,
B,, By, ...,and C;, C5, Cs, ... Introducing the series (0), (p), (q) in the equations (1)

and (m) and noting that all these equations must be satisfied for any &, we find
following relations between the constants B and C

4 k
By =————=2CriCopopma » £=1,2,3,...,
2k 2k(2k+2)m§1 2m-142k-2m+1
12(1-v? ) &
Carss :J_) 2 BonCoramu » k=1,2,3,..., (s)

2
-1 m=0

C, =3(1—v2)(i+30c1] .

2 248
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We notice that if we choose certain values for B, and C,, all the other constants may be
determined with the aid of the relations (s). We observe also that choosing S, is
equivalent to choosing B, and C, and the curvature at the centre of the plate.

The problem is extremely difficult from the point of view of the numerical computation.
Practically, there are chosen values for v and p=¢/E and then, for the values which

are chosen for B, and C,, are determined the radii of the plates, so as to satisfy the

boundary conditions dw/dr=0 for r=a.
The boundary values for S, and S, have been thus calculated, as well as the radial

displacement u for » =a. The condition (n) is not generally satisfied, but all the data
which are necessary for plates, if both boundary conditions are satisfied, may be
obtained.

Application 5.10

Problem. Study the critical and postcritical behaviour of a cantilever bar acted upon by
an axial force P .

Mathematical model. The deformed axis of the bar, denoted by y and supposed to be a
function depending on the arc s, satisfies the system of non-linear ODE

dy

a:sine,
40 ) (a)
PR (f-»),

S

where a?, /', © have the signification mentioned in Chap. 4, Sec. 2.4. The functions
y and 0 must verify also the Cauchy conditions

¥(0)=0, 6(0)=0. (b)

Solution. We apply the LEM, presented in the Section 3.3. In this case, the LEM
exponential transformation depends on two parameters ¢ and &

W(s,0,8)=e 0 F=y— 1. (©

We preferred the function 3 as unknown function, because the LEM is easier applied to
homogeneous non-linear systems; indeed, we notice that y and 6 satisfy the differential

system
dy . de 2~
— =sinh, —=-a d
s 5 y (d)

and the initial conditions
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7(0)=-7. 0’0)=0. @)

The first linear equivalent equation corresponding to the transformation (c) is
ov . 2, OV
——osinD.v+a°E—=0,
os : : 3 @

where sin Dy is the operator

Mg

sin Dé =

o2k -1)1 pe 21
Consider now for v the development
J

v(s,c, E_,)= 1+ i Vi (s)(j—'g"—

i+ j=1 J!
Then we obtain from (f) the infinite linear ODS of first order for the coefficients v, (s)

dv.. 0 (_1)k_1
i 2. ..
— =) Vil sk TO Vi i =0, 0, €.
ds k:1(2k—1)! i-1,j+2k-1 JVitl, j-1 J €3]
In vector form, we get
dv
ds AV, V= [Vszz ]’”EN » Vouy = [V” JOSi+jS2m—l : (h)

The linear equivalence matrix A is of the form

_A11 A A o Ay Ao
0 Az Az oo A3,2j—1 Al,2j+l
A= . s (i)
0 0 o - A2j—l,2j—1 A2j—l,2j+l
L 4 -
the cells A, being given by
Ay :[ 02 1}»
-a” 0
0 2j-1 0 0 0 0 0]
—a* 0 2j-2 0 0 0 Ol
0 -2 0 2j-3 0 0 0
A2j71,2_j71 = -
0 0 0 0 —(2j-2)o? 0
0 0 0 0 0 —(2j-1a* 0
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0 0 0 0 0 0

2j-1 0 0 0 0 0

A C(f o 2j-2 0 0 0 0
e (VA T) ) 0 2j-3 0 0 0l
0

0 0 0 - 1 0 0

We specify that the matrix A,; ;. has 2/ linesand 2;j+2k columns.

As we have shown in the Sec.3.3, the solution of the non-linear problem (d), (e) assumes
the following normal LEM representation

y(S)= -f+ il”zjq,o (S)fzj_l ) (k)
=

where u,; (s) are the first components of the finite vectors U, j-1» satisfying the

finite systems of ODEs, written by blocks

du *
_1:A11U1 >

—L=ALU; + AU, 0

as well as the initial conditions
1
U, (O) = {

0
We will solve these systems on blocks. Firstly, we look for the vector U, , using the

}U%mmFmLmery ()

methods presented in Chap.3. We have

dU 0 1 1
e I OB N e

The characteristic determinant is det[A11 —kE], hence A? +a? =1, where A, =dia.

The matrix of the corresponding eigenvectors is

11
i —ia|’

its inverse reads
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1 -

Q|-

1
2, i
o
Hence, the solution of the linear Cauchy problem deduced for U, from (I) and (m) is

written as

- L de o 1 1 cosas asinos 17 |cosas
U, (s)== & , =| sinows =|sinas [. (o)
20 Lo ™ ]ia —ia cosas 10| |7 —

[0 (04

We look now for the second block of equations, corresponding to U;. Similarly, we get
o2
Usyg = 16 {Z (= cos 3as + cos aus )— 3ais sin as} .

We can stop at U, for instance, including thus the 3™ order effects; this yields
y(s)= —f(cos as—1)
-fa? é{% (—cos 3aus + cos aus )— 3aus sin as} — faty(as). ®)

The criticity condition is determined by the relation y(l ) = f . From (p) we get
2 113 .
cosal + (af) E{Z (— cos 3ol +cos ol )—3aus sin al} =0, )

which leads to the critical values

al:(2k—1)g,ke@z, (¥)
corresponding to the critical charges
2
n”El
Pcr=4]—2(2k—l). (S)

Turninig back to (q), we obtain an approximate formula for the postcritical behaviour of

the cantilever bar, i.e.
i i .2C0—tal’£<al<n. (t)
I~ ol Vsin20/—20/ ~ 2

This formula leads to numerical results closer to the solution expressed by elliptic
integrals than other approximate postcritical formulae (e.g. to Grashof’s or Steiner’s
formula).

I
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Application 5.11

Problem. Study the criticity problem of the built-in bar, with small geometric
imperfections

Mathematical model. Let us suppose that the bar is not perfectly built-in, so that its axis
forms a small angle 0, with the ideal direction. Let be B, =tan0,. In this case, the

deformation y of the mean fiber of the bar satisfies the Bernoulli-Euler equation

&2y & 57372
. (f—y){n(aj ] iy (@)

as well as Cauchy’s conditions
¥0)=0, 2(0)=p,. (b)

dx

By the translation )7(x): y—f, where f is the deflection, we get for y the non-linear
problem with initial values

f, o~ /2
yrra’i{lei ' <o, ©
70)=-1.7(0)=p, .
Solution. Applying LEM to this problem, same way as previously, we obtain for y
Bo . 985 {1 . .
y(x);—sm YoX— —(sm3y0 +9sin yox)—yoxcosyox
Yo 16{1+p2 Jy, L1 @
985 . .
+ fl1-cosyyx— (y X—sInyy xcosyyx)sinyyx |,
{ 0 16(1+p2 0 0 0 ) 0
. ) \3/4 .. .
with v, :a(1+BO) . The condition y(l): f involves
983 [ 1.,
1+ 1——sin” yo/—yqlcoty,l
r _tanyel  16(+p2)L 3 oo ©
- = s €
So Yol 9[3%

1+ Yol —sinyylcosy,l)tany,l
161+ B2 ( 0 0 0) 0

where f, =B,/ is the deformation due to the imperfection of the built-in cross section.
We note that

n | P

1= =,
o=z ®
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where Euler’s force is given by the formula

2

n°El
Py = : (@
oy

The formula (e) represents the non-dimensional fraction [/ f, as a function of the ratio

P/ Py . Neglecting B% with respect to unity, we obtain the linear classical result

f _tanod b
f() O(l 4 ( )
which leads to the critical value
Pcr = PE b (1)
corresponding to o/ =7w/2.
Writing the formula (e) in the form
/ 9By { ( Lo ) S :
1+ Bol 1 ==sin” v,/ ——yol(yol—smyolcosyol)
ol 16li+pi) 3 Jo 0

vl [, 9 s
= > ,
tanyyl | 161+B2) f
we observe that the arrow [ cannot be greater than the length / of the bar and grows

indefinitely for y,/ > /2.

One obtains immediately the critical load for the cantilever bar with small geometrical
imperfections

Po 27 k
(1+|3§)3/2 (k)
or
PE
P, = .
3.2 M
1+
2[30

Unlike the previous application, in which the instability is obtained by bifurcation, in
this case it is obtained by divergence. By LEM, we got a complete picture of the criticity,
i.e. a picture which definitely cannot be obtained by a linear study. We also notice that
the formulae (k) and (1) lead to Euler’s critical load for f, =0.



Chapter 6

VARIATIONAL CALCULUS

1. Necessary Condition of Extremum for Functionals of Integral Type
1.1 GENERALITIES

In various cases, the mathematical models associated to mechanical phenomena are
presented in integral form. This form naturally appears e.g. when we are searching for a
minimum energy.

If the energy depends only on one physical magnitude, corresponding to a function
y(x), as well as on its derivative y'(x), then one can enounce the following

Minimum problem. Find the function y € C? ([xl , X ]) for which the integral

)= TR (. () () 61D

X1

has a mimimal value.
If the mechanical problem involves other restrictions on y, then the minimum of ILv]

must be searched for in the set of the admissible functions, i.e., of the functions satisfying
these restrictions.
We admit that the integrand of I[y] — the function F — is of class C* with respect to its

arguments x,y,y";the ends x;, x, of the interval of integration are supposedly fixed up.

Obviously, the integral I has a well-determined value for each y e Cl([xl,x2 ]) It thus
associates to any such function a real number.
We say the 1 is a real functional. We can also say that 1 is defined on C'([x,, x,]).

In what follows, we shall denote by § < C' ([x1 , Xy ]) the domain of definition of I and by
Uc§ the set of the admissible functions that satisfy the supplementary conditions
imposed by the considered mechanical problem.

Denote by ||f|| = s[up ]|f(x1 the norm in CO([xl,x2 ) and by ||f||l = max{"f

X€[x],X7

7} the

>

norm in Cl([xl,x2 ])
Letnowye§. Wecall V, = {Y €Ss, ||Y—y|| < a}a neighbourhood of order 0 of y. The
set 4 :{Yeg, ||Y—y||] Sa} is a neighbourhood of order 1 of y. Obviously, a

neighbourhood of order 0 is richer than one of order 1.
We say that 1:§ — R allows an absolute maximum at y € U if

415
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I[Y]S I[y] forany Y eU; (6.1.2)
Similarly, we say that 1:§ — R allows an absolute minimum at y € U if

1[¥]>1[y] forany Yea . (6.1.3)

The maxima and minima are also called extrema. Relaxing the above conditions, we
obtain the definitions of the relatively strong/weak extrema.
We say that 1:§ — R allows a relatively strong maximum at y € U if there exists a

neighbourhood ¥, of order 0 of y such that
I[Y]S I[y] forany Y eV, nU (6.1.4)

and allows a relatively weak maximum at y € U if there exists a neighbourhood V; of
order 1 of y such that

[r]<1[y] forany Y eV, nac. (6.1.5)

The relatively strong/weak minima are defined exactly sameway; the only difference is
that one changes the sense of the inequalities (6.1.4), (6.1.5).

From the above definitions, we see that an absolute extremum is also both relatively
strong and weak; a relatively strong extremum is also relatively weak.

To get necessary conditions of extremum for relatively weak extrema one must prove the
following essential result

Lemma 6.1 (fundamental). Let f e CO([xl,x2 ]) If
[/ (h(e)ix =0 (6.1.6)

forany ne Cz([xl,xz]), n(xl): 0, n(xz): 0, then f(x): 0,Vxe [xl,xz].

The proof is by reductio ad absurdum. We firstly note that, due to the continuity of £, if
f(x)=0,Yxe(x,,x;), then f(x,)=0, f(x,)=0. So, we only need to prove that
f(x) =0in the open interval (xl , Xy ) . Let, for instancea € (xl , X5 ) such that f(a) >0.

Then, again by the continuity of f, one can find &>0such that
f(x)>0,Vxe(a—e a+e). Let us consider the function 1 defined as follows

n(x): [(x_a)z _82}3, XE(G_S,G"FS), (617)
0, xe(a—ga+e).

Obviously, n satisfies the hypotheses of the fundamental lemma. For this choice, we
have
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xfzf (o)) = T £(hn(x)dx <0; (6.1.8)

a—¢

this contradicts the hypothesis, the lemma being thus proved.

X
1.2 FUNCTIONALS OF THE FORM I[y]= f F(x, y(x), y'(x))dx

X1

Let us consider the functional (6.1.1), defined in the introduction of this chapter. We
wish to determine the relatively weak extrema of I. Suppose that F is of class C* with
respect to its arguments and that y realizes an extremum on a set of admissible functions
A, defined by

%C:{Yecz([xl,xz]), Y(x1):y1aY(x2):y2}a (6.1.9)

where y,,y, are given real numbers. It is natural to search for this extremum among the
functions in a neighbourhood of order 1 of y. In particular, the functions of the type

Y(x)=ylx)+en(x), (6.1.10)

where n is a function of class Cz([xl,x2 ]), vanishing at x;,x,, belong to such a
neighbourhood, as

[¥ =l <l - (6.1.11)

Moreover, due to the continuity of the derivatives of the three functions y,Y,n, we also
have the inequality

[¥ =, <e|ml, - (6.1.12)

Let us replace y by Y in (6.1.1). For a fixed up n, we get an integral depending on the
parameter €

Je)= [ F (e y(x)  ene) () em'(x)r 6.L13)

that must be maximum or minimum at € =0, as a function of €. Therefore, the becessary
condition of extremum is

dJ(e)
de |,

=0. (6.1.14)

As the conditions of differentiation of the integral (6.1.13) with respect to the parameter
¢ are fulfilled, we can write
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dJ(e) 2| oF oF
= [|— —n'(x) |dx.
G | x{{@y n(x)+ ay,n(X)} (6.1.15)
Integration by parts yields
2 oF oF |7 2d(oF
—,n’(x)dx:[n(x)—l - —[—,Jn(x)dx. (6.1.16)
R ay ay X=X xldx ay

As n(xl ): 0, n(xz): 0, the first term in the right member of (6.1.16) vanishes and the
condition (6.1.14) eventually becomes

xf{a—F—i(aFﬂn(X)dFO. (6.1.17)

el (o'

This equality is satisfied for any n of class Cz([xl,x2 ]), vanishing at x;,x,. The

function in square brackets is also continuous, by our initial assumption on F. Therefore
we can apply the fundamental lemma and it results that y must satisfy

oF_d|o%F =0 xe[x x] (6.1.18)
ay dx ay, ) 1-421- ..
This is a second order ODE, called Euler’s equation. So, we proved the following

theorem

Theorem 6.1 (Euler). Suppose that F is of class C with respect to its arguments and that
y realizes an extremum on a set of admissible functions U, defined by (6.1.9). Then y
must satisfy Euler’s equation (6.1.18).

The reciprocal of this theorem is not always true. The solutions of Euler’s equation are
called extremals, even if they do not realize an extremum for (6.1.1).

1.3 FUNCTIONALS OF THE FORM 1{y]= [ F(x. . y", ...y Jdx

X1

Let us consider now the case of an integrand depending on higher order derivatives of y.
Let I[y] be of the form

i[v)= [ Rl o))y () y ) ), (6.1.19)

where F is of class C"™! in its arguments. We wish to get relatively weak extrema for
Ib/] on the set 9 of the function of class C*" ([xl , X, ]) , satisfying the conditions
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y(x1)= J’nsyl(xl): Yi2» yn(x1)= J’13,~~-sy(n_l)(x1)= Vin»

i s (6.1.20)
J/(xz): Yais y'(xz)z Yo y"(xz): J/23,-~-ay(n 1)(xz): Yons

where y o J = 1,2, k= I,_n, are given constants.
Let y € U realizing a relatively weak extremum of (6.1.19). As in the previous case, we
shall consider variations of the function y of the form

Y(x)= y(x)+en(x), (6.1.21)

where neC?" ([x1 , Xy ]) is an arbitrary function, vanishing together with its first (n—1)
derivatives at x|, x,. Replacing y by Y in (6.1.19), we get, for a fixed up 1, the integral
depending on the parameter €

X2
J(e)= | F(x, y+en,y'+en',.., y(”’l) +en (n-1) )dx ; (6.1.22)
X1
This integral allows, as a function of €, an extremum at € = 0, therefore

O O e O ]
= ){{ay n(x)+ay, n (x)+...+ 6y(”) n (x):ldx—(). (6.1.23)

Yie)
de

e=0

Integrating by parts, taking into account the fundamental lemma and the conditions
satisfied by 1, we deduce for the functional (6.1.19) the following ODE, of order 2n

OF _d(oF), d®(oF)_ w9 el ] 6.1.24
ay dx ay' dxz ay" dx”l ay(n) ) 1421~ ( A )

This is Euler-Poisson’s equation. Thus, we have proved

Theorem 6.2 (Euler-Poisson). Suppose that F is of class C""' with respect to its
arguments and that y € C*" ([)c1 , X, ]) v realizes an extremum on the set U of admissible
functions, defined by (6.1.20) . Then y must satisfy Euler-Poisson’s equation (6.1.24).

Let us note that Euler’s equation is a particular case (for n=1) of Euler-Poisson’s
equation.

1.4 FUNCTIONALS OF INTEGRAL TYPE, DEPENDING ON n FUNCTIONS

Let us consider necessary conditions of extrema for functionals of the type

X2
I[ylayzs'“ayn]z _[F(x,yl,yz,...,yn,yl’,ylz,..,,y;l)dx, (6125)

X1
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where the integrand F depends on n unknown functions y;,y,,..,», and on their

derivatives of first order.
Considering the vector functions

()= ya @ v, 0y 06)= () ys e v )], xelvxa]. (6126
we can simplify the form of (6.1.25)
ily]= [ Flx.y(x)y'(x))dr (6.1.27)

We shall search for the relatively weak extrema of I on the class % of admissible
functions, defined by

%={Ye(Cz([xlaxz]))",Y(x1)=y1,Y(x2)=yz}, (6.1.28)
where the constant vectors

Yi =Dy d Yo =a o vl (6.1.29)

are considered known.
Suppose that y € U realizes a relatively weak extremum for 1. As previously, consider

variations of y of the form
Y(x)=[1 () Y () Y, (0] Y, ()=, (x)+&m; (x) j=Ln, (6.1.30)

where ¢ are small parameters and n; are arbitrary Cz([x] , Xy ]) -functions, vanishing
at x,x, . Replacing y by Y in (6.1.27), we get, for fiexd up n;, a function J depending

on the n parameters €,,¢,,...,€, , written as € = [81 , €9 ,...,an]

X
J(S)E ,[F(x9y1 +51n1,J/2 +82n2""9yn +8nnn""9y{ +81ni""’y;1 +8nn;1)dx‘ (6131)

1

This function allows an extremum for € = 0, therefore

aJ(g)

=0, k=1n; 1.
2, (6.1.32)

=0

this immediately yields

2 oF oF
J‘{ank(x)*r@ﬂk(x)}dx:(), k=1n. (6.1.33)

X1
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Integrating by parts the terms containing n}{(x), taking into account that

up ()c1 ): 0, My (x2 )= 0, k= I,_n and, eventually, applying the fundamental lemma, we
deduce for y the second order ODS

6_F_1£6_Fj_0
;x| 9y ’

a_F_g(a_F]_

(6.1.34)

that must be satisfied on x [xl , X5 ] . This is called the Euler-Lagrange system.
Thus, we proved the
Theorem 6.3 (Euler-Lagrange). Suppose that F is of class C* with respect to its

arguments and that y (C2 ([xl , X5 ]))n y realizes an extremum on the set U of admissible
functions, defined by (6.1.28). Then y must satisfy Euler-Lagrange system (6.1.34).

As in the previous cases, all the solutions of the Euler-Lagrange system will be called
extremals.

Let us note that the necessary conditions of extrema emphasized in this chapter may be
also expressed in a significant form by introducing the notions of variation of a
functional, of Gateaux and Fréchet derivatives.

2. Conditional Extrema

In certain cases, one must search for extrema of functionals on classes of admissible
functions that must satisfy supplementary conditions, expressed in terms of functions or
integrals. We shall tackle here variational problems of isoperimetric and Lagrange type.

2.1 ISOPERIMETRIC PROBLEMS

The isoperimetric problem consists of finding the extrema of a functional

ly]= Iz Fx,y(x)y'(x))dx , 62.1)

X1

where

y() =)y (v, W ¥ )= ()5 () (] weloa ], (622)
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on a set U of admissible functions, satisfying the standard conditions

Yi=Diyies v b Y2 =D ynsen vl (6.2.3)

and also the supplementary conditions

L= 16, (ey(hy()dx=a,, j=Tp., (6.2.4)

x

a; being given constants.

The term isoperimetric comes from Greek, meaning the same perimeter.

This type of problem is also called Dido’s problem; this denomination has roots of
history and legend. Dido — or Didona — the legendary founder of Carthago (Carthagena)
was a Phoenician queen, obliged to leave hastily her country because of a plot put in
application by her brother. Once on the African coast, Dido and her faithful servants
required hospitality and a place to settle up from the natives. The local king’s diplomatic
answer was positive, but, in fact, he offered them as much land as could be held by a
bull’s skin. The fugitives were highly disappointed, but Dido did not immediately reject
the offer; she promised a firm answer for the next morning. During the night, she cut the
bull skin in thin stripes and, joining them one by one, she succeded to cover a great piece
of land, with the skin stripes as a perimeter. So, the natives gave up and Dido settled up
on that land, building Carthagena after a while.

While her idea was fruitful, obviously, Dido was not initiated in modern variational
calculus. Yet, her problem can be easily put in mathematical terms. In the xOy plane,
denote by I' the smooth closed curve that limits the plane domain D. The area @ of D is
then given by Green’s formula

1
Q= —3§xdy —ydx . (6.2.5)
21

The curve I has a fixed length /, as, according to the problem, the perimeter is the same,
therefore

ds=1,
lﬁf (6.2.6)

where ds is the element of arclength on I'. So, Dido’s problem consists of getting a
maximum value of (6.2.5) if (6.2.6) is fulfilled. Considering a parametrization of I', we
immediately obtain a variational problem of isoperimetric type, whose solution should be

a circle. In general, in the plane, @ <I? /4w .
Suppose that the functional I depends only on one argument, i.e.

i[y)= [ F(x, y(c) () (6.2.7)

X1

and only one supplementary condition must be fulfilled
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ly]= [6(e, y(x) /() dx =a 62.8)

x

Then one can prove by using, as a rule, the same techniques as in the previous section,
that if y realizes an extremum for I and satisfies the condition (6.2.8) and also the
conditions y(x1 ): Vi y(xz): ¥, , then one can find a constant A such that y be a free

extremum for the functional

2

K[y]= JIF G p(x) y'(0))+ 26 (x, y(x), y'(x))]dx . (6.2.9)

X

Thus, the problem of a conditional extremum was reduced to that of a free one, similar to
those treated at Sec.1. According to Theorem 6.1, if y realizes an extremum for K, then y
satisfies

- A ———
oy oy dr

OF . 3G d(é’FJr Ej_o (62,10
G -

a) Consider now the general isoperimetric problem, stated at the beginning of this
section. Suppose that the admissible functions y,, y,,...,y, realize an extremum for the
functional (6.2.1), but not for any of the functionals (6.2.4). In this case, one can prove,
again by using the calculus of variations, that one can find p constants, A;,A,,...., A

p b
such that y,,y,,..., v, realize a free extremum for the functional
X2 )4
K= ] by 6 £, 3oy ) 211
X1 J=

Applying to the integrand the Euler-Lagrange system (6.1.34), we find the ODS

oF 2. 0G, dfeF) dfe&. oG —
— YA e || XA = |=0, j=Ln, (6.2.12)
; k= Oy, Aoy ) drlim Oy

whose solutions are the extremals of the considered isoperimetric problem.

2.2 LAGRANGE’S PROBLEM

a) We shall firstly state this problem for the functional
X2
[y, vy ]= [F(xy () v, () v (), 95 (x))dx (6.2.13)
X1

Let us find an arc C, of equations y; =y, (x), V)=V, (x), xXe [xl,xz], laying on the
surface S of equation
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G(x,y1,v,)=0 (6.2.14)

and for which the functional (6.2.13) realizes an extremum. The co-ordinates of the arc
ends will be (x,,,(x; ) v (x; ) (2, 1 (x5 ), ¥, (x, ). Let us denote

J’1(x1)=J’11a )ﬁ(xz):)’lz’

yz(xl):yzla yz(xz):)bz- (62.13)
As Clays on S, so will its extremities, therefore
G, y115721) =0, Glxy, y12,72)=0. (6.2.16)
If 0G /0y, #0 along the extremal, then we can explicit y, from (6.2.14)
y2 =0l ). (6.2.17)

Introducing this in (6.2.13), we finally get a new functional, depending only on the
argument y,

~ X2
I[y,]= Jo(x, vy (x) {(x))dx . (6.2.13)
x
with @ given by
' , 09 09,
O i) = | sl ot 220201 62.19)
x Oy

The corresponding Euler equation is immediately brought to the form
OF d[O0F) 0| OF d|oF
— | = |+ = =—||=0. (6.2.20)
oy de\dyp) oy [Qyy dx(dp;

Replacing y, by (p(x,y]) in (6.2.13), we deduce

G L OF do _

6.2.21
Y1 sy Oy ( )
and, eliminating 0@/ 0y, between (6.2.20) and (6.2.21), we get
aF_d(aF] aF_d(aFJ
;. dx| 0y _ dy, dx\dp; . (6.2.22)
G G
M ,

Denoting by —k(x) the common value of the ratios (6.2.22) along the extremal, we have
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OF oG d[aFJ
o)== -0,

X o
a3 o dx oy
(6.2.23)
OF oG d | oF
—+k(x)——— — (=0
vy y, dx{0y;
As 0G/ ay} =0, j =1,2, the above relations may be also written in the form
OH d| oH
| ==-[=0, j=12, H=F+Mx)G. (6.2.24
oy dr [ayj J :

These are the necessary conditions of extremum for Lagrange’s problem in the case of a
functional depending on two arguments. Let us note that the ODS (6.2.24) is in fact the
Euler-Lagrange system, written for the functional

x2

Ky, v, 1= [[F(ep1 () 32 (0 p1 (), 95 () + )G (x, 3 () y2 (e . (6.2.25)

X1

b) Lagrange’s problem for functionals

ily]= [ F(ey()y(e))d (6.2.26)

X1
depending on several arguments — or, equivalently, on a vector function y — consists of

finding a vector function y = (yl, V2 seees Vi ), at least of class (C2 ([xl,x2 ]))n, satisfying
(6.2.15) as well as the supplementary conditions

G,(x.y)=a;, j=Lp. (6.2.27)

As previously, this problem may be reduced to a problem of free extremum for a certain
functional. More precisely, if y realizes an extremum for the Lagrange problem b), then
one can find p functions A,(x), A, (x).... A » (x) such that y is an extremal for the

functional

X p

K]} rleslody o) £, 0 sto)ar 6228
x| J=1

The equations of the extremals are, in this case

OH d|oH — z
O VMo jotn H=F+3n,()G,. 6.2.29
,; dx{ayj} A e 02
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3. Applications

Application 6.1

Problem. Study the motion of a discrete mechanical system of n particles subjected to
holonomic constraints and situated in a field of quasi-conservative forces, using
Hamilton’s variational principle.

Mathematical model. Let be a system of n particles Pj(x, Yz j) of masses m,

j= 1,_n , subjected to m holonomic (geometric) constraints

fk :fk(xl5y1szlaxZayz3229"'3xnaynazn;t)=0a kzlama (a)

and acted upon by quasi-conservative forces

F; :Fj(x],yl,zl,xz,yz,22,...,xn,yn,zn;t), j=Ln,
which derives from the simple quasi-potential
U:U(xl’yl’zl’x2’y2’22""5'xn’yn’zn;t);

hence, the components of the forces F; which acts upon the particle P; are

x, QU g U, U

=, Z,=—.
J axj J ayj J azj (b)

In general, the constraints (a) are rheonomic (time appears explicitly); if
f » =0f, /0t =0, hence if it does not depend explicitly on time, then the constraints are
scleronomic. As well, if U =3dU /dt =0, hence if U does not depend explicitly on time,

then the quasi-potential is a simple potential and the given forces are conservative.
pr

Figure 6. 1. True curve. Various paths



6. Variational Calculus 427

We introduce the kinetic energy

1 I 2 .2 .2)
T==2mv; =—ij(xj +tyjt+z; (c)
j=1 J=
too, where v ; is the velocity of the particle P; .

The sum
L=T+U (d)

represents the kinetic potential of Lagrange (the Lagrangian) in the absence of
holonomic constraints. The integral

A=
(e)

f e Ce .
:J;OL(xl;yl;Z]3x2;y27223"'>xn3yn3zn3xl7yl721’xz7y27225”'7xn’yn’zn’t>it

is called Lagrangian action and represents a functional which plays an important role in
mechanics. We state that:

The motion of a discrete mechanical system of free particles takes place only if the
Lagrangian action has a minimum (Hamilton s principle).

Solution. The Euler-Lagrange equations corresponding to an extremum of this functional
are written in the form

dfaoL) o

—| = |-=—=0,

dr{ ox; | ox;

d| oL oL

—|l = |-z—=0 ®
deldy; ) oy,

afa)a

deloz; | oz;

for j :L_n. Taking into account (b), (c) and (d), we find Newton’s equations of motion
(second principle of mechanics) in the form of a theorem

mj)'c'jsz,mjj}j»:Yj,ijj:Zj,j:l,n. (2)

If we take into account the holonomic constraints (a), then we may introduce a
Lagrangian of the form
L=T+U+XA,f, , (h)
i=1

where A, are Lagrange’s multipliers. The corresponding Euler-Lagrange equations lead
to
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mx, =X, +> A, —,

JJ J Z‘i ’a)'cj

.. no of;
m;y; =Y+ A ——, i
iYi e o, (i)
mz.=7Z.+» AN, ——,

< J E 5

for j :L_n.
Let us consider now the particle P; of position vector r;, the trajectory of which, due to

the given forces which act upon it, is the arc of curve C;, contained between the points

R]Q and P} , corresponding to the initial moment ¢, and to the final moment ¢,
respectively. By a virtual displacement 3r;, we obtain the point P;; from the set of
virtual displacements 6r; we choose those which are uniquely obtained, travelling
through from P}) to P} , the locus of the points P; being a varied path C'; (Fig.6.1).

An infinity of varied paths are thus obtained and we may write

rj=r; +3r;. 0);

Starting from Newton’s equations, in the case of holonomic constraints, we obtain the
principle of virtual work (the d’Alembert-Lagrange principle) in the form of a theorem,
Le.

2@, -5r; =0, (k)

where we have introduced the lost forces of d’Alembert

q)j:Fj—mjrj,jzl,n; M

thus, the dynamical problem has been reduced to a statical one, by eliminating from
computation the constraint forces. We may also write

n

13
ZlL;q’j -8r;dt=0. (m)
J=

The fundamental lemma of the variational calculus allows to show that the relations (k)
and (m) are equivalent.
We calculate
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S (1 i g d (. m . d

2 [ msky Bedt =3 [ m, =, -or, i [ m = (o
! jA dr i dt

n 1

_ n . n ] _ 4 5]
=Y m¥;-8r; —le;omjvjﬁvjdt—ijvj-Srj —I[OSTdt,
=

4 J=1 to

taking into account the operational relation (d/d¢) = S(d /dt); we may also write

Fj-Sl'j =W , (n)

M=

1

j
where 0I is the virtual work of the given forces. The relation leads thus to

bl

4 L

[ BT +8W)dt=Y.m v ; -8r;| . (0)
J=1 0

This relation represents a general integral theorem; starting from this theorem

(considered as to be a principle) one may obtain various integral and variational

principles. The relation (o) corresponds to a synchronous case, in which the chronology

(hence the time variable) is the same for all the varied paths.

pa

Figure 6. 2. Various paths with fixed ends

In the particular case of the varied paths with fixed ends (Fig.6.2) we have
6rjq = Sr} =0, so that the general integral principle becomes

ffé (3T +8W )t =0. )
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In the case of given conservative forces (or, more general, quasi-conservative) we have
U=U (rl,r2 . ;t) so that 3/ =0U . Introducing the Lagrangian (d) and taking into

account the permutability of the operator & with the operator integral, we obtain
_ s[4 —0-
A =5[ L dr=0; (@

we can thus state Hamilton’s principle in the form:

Among all possible motions of a discrete mechanical system subjected to holonomic and
ideal constraints and acted upon by quasi-conservative forces on synchronous varied
paths with fixed ends, only and only the motion for which the variation of the
Lagrangian action vanishes (the extremal curves) takes place.

We have obtained Hamilton’s principle in the form of a theorem; starting from this
result, considered as to be a principle, we find again Newton’s equations as a theorem.
We mention that Newton’s equations have a general character, while Hamilton’s
principle may be applied only in the case of the existence of a Lagrangian of the
mechanical system.

This principle was enunciated in 1834 by W. R. Hamilton for scleronomic constraints; it
was extended by M. V. Ostrogradski in 1848 to the case of rheonomic constraints. One
observes that, unlike differential principles (in which, to establish the motion at a given
moment, one considers only the motion in the vicinity of this one), in case of variational
principles the motion of the mechanical system at a given moment is specified by its
motion in the whole (finite) interval of time.

Application 6.2

Problem. Establish Lagrange’s equations of motion, corresponding to a discrete
mechanical system S of n particles, subjected to holonomic constraints and situated in a
field of quasi-conservative forces, in the configuration space A, using Hamilton’s

variational principle.

Mathematical model. Let be a system S of n particles Pj(xj,yj,zj), jzl,_n,

subjected to m holonomic (geometric) constraints

fi = Fi(001.21.%0. 900200 X, 0,0 2,58) =0, i =Lm. (a)
In the space E;, the system of particles, considered as to be free, has 3n degrees of
freedom, being necessary 3n parameters to fix its position. But we may introduce a
representative space FE3, with 3n dimensions, in which the position of a representative
point P is specified by 3n co-ordinates X, k :1,3, which may be chosen, e.g., in
the form X, =x;, X, =y, X5=2;, Xy =x,, ..., X3
the mechanical system S in the space E; is specified by the position of the

. =z, . Hence, the position of

representative point P in the space Ej,. The presence of m holonomic constraints (a),
expressed in a finite form, diminishes the number of degrees of freedom of the system S
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to s =3n—m; hence, there are necessary s parameters to specify the position of this
system. Let ¢;, ¢,, ..., q, be such a set of parameters, obtained by eliminating the
holonomic constraints. We introduce now a space A, with s dimensions, called

Lagrange’s space, in which the position of a representative point P is specified by the
generalized co-ordinates ¢, , ¢,, ..., ¢, . If we know the position of the representative

point P in the space A, then we know the position (or the configuration) of the
mechanical system S in the space E;; hence the space A, is called also the space of

configurations. A great advantage is the fact that the representative point P is a free
point (non-subjected to any constraints, which have been eliminated) in the space A ; as

well, we notice that s <3n.

The kinetic potential L of Lagrange (the Lagrangian) introduced in Appl.6.1, is a
function of the position of the particles of the system and of their velocities. We notice
that one passes from the space E; to the space A by relations of the form

r; :rj(ql,qz,...,qs;t), j=1n; (b)
for velocities, we may write
drj s 6rj dg, 6& s Or

i . . .
VvV, =—>—= + = —_— +r., =1,n, C
T Y e P T Yy o LRI ©

where, by analogy, ¢, are the generalized velocities. In this case, the Lagrangian L is

expressed in the space A in he form

L =L (q]’q2""quQIJQZ7"'QS)’ k:L_S, (d)

where g, =g, (t) To obtain the extremum of the Lagrangian action A , given by the
formula (c) in Appl.6.1, we may write the corresponding Euler-Lagrange equations in

the form
d (oL oL —

—l = |-%=—=0,k=Ls. (e)

dt aq k

These equations are Lagrange’s equations of second species (shortly, Lagrange’s
equations) which specify the motion of the representative point P in the space A . Itis
a system of s differential equations of second order in the unknown functions
qr =9 (t), k =1,s. By integration, one introduces 2s arbitrary constants which are

determined by conditions of Cauchy type (at the initial moment ¢ )

qk(to):q,?,c}k(to)zq,?,kzl,_s. ®
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Solution. As it was asked, the first variation of the Lagrangian action may be directly
calculated in the form

s oL oL
f .. . o 4 oL oL . .
SLOL(ql,qz,...qs,ql,qz,...qs,t)dt—LO SLdt_J.’OkZ_“](@qk 8q, + 2 SQdet,
but
s oL .. s oL d s{df oL d( oL
ZTqu = Zf—(&]k): 2 —[f&lkJ——(fj&lk
=10q, k=10q; dt i=1| df\ 6g, dr | 0gy
and

f
s d( oL s oL
'Y —| =8¢, dt=Y——38q, =0,
0=1de\ Ogy =104}

fo

because the varied paths are wit fixed ends. Consequently, we remain with

Pyl df A Vs, a=o.
0 k=1 aq k dt aq k
The generalized virtual displacements 8q, are independent (the holonomic constraints

have been eliminated); we can thus take, in turn, one of them different of zero, the other
ones being taken equal to zero, and we obtain just the equations (e).
Introducing the operator

R @

which generalises the operator of partial differentiation, we may write Lagrange’s
equations also in the form

L], =0, k=1s. (h)
Starting from the relations (b), we notice that
s, Or, . .
or; =3 —=38q; , j=l,n; (1)
k=109

in this case, the virtual work, expressed by the relation (n) in the Appl.6.1, becomes

8W=§Qmm, )

where we have introduced the generalized forces
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n 61‘]. _
Qk:ZFj-—',kzl,s. )]
Jj=1 oq

If we apply the above methodology of computation to the general integral principle (o) in
the mentioned application, then we find

J‘,tli ox.a 6—T +0; 8g,dr=0;
02| 0qy  dt\ Ogy

on the basis of considerations analogous to those above, we obtain Lagrange’s equations

in the form
d( or oT —
— | —|-—=0,, k=15s.
dt(aq'J O * (m)

These equations have a more general character than the equations (e), because they
correspond to arbitrary given forces. In the case of quasi-conservative generalized forces

_oU

Qk__9UZU(qlqua"'aqs;t)’k:LS (Il)
94

we find again the equations (e).

Application 6.3

Problem. Establish Hamilton’s equations of motion, corresponding to a discrete
mechanical system of n particles subjected to holonomic constraints and situated in a
field of conservative forces, in the phase space I',,, using Hamilton’s variational
principle.

Mathematical model. Let be a system of n particles P;, j =1,_n, subjected to m

holonomic (geometric) constraints, which may be, generally, rheonomic. If there exists a
kinetic potential L =7 +U , where T is the kinetic energy and U is the potential of
quasi-conservative forces (which depend explicitly on the time), then we may write
Lagrange’s equations of motion in the configuration space in the form (see Appl.6.2)

d[aLj_a_'-zo,kst, (a)

dt |\ 0g,
where ¢q, =g, (t) are the generalized co-ordinates, ¢, =g, (t) are the generalized
velocities, and s =3n—m . We introduce the notation

AL

p _fykzla_s’ b
g 94 ®)
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where p, are the generalized momenta; this denomination is given because, in case of

only one particle P(x, v, z) , the Lagrangian is given by
L =ml&? + 52 +22)/2+U(x. y. 1),

so that p; =mx, p, =my, p, =mz . Noting that

and taking into account the expression (c) in Appl.6.2 of the velocity v, we may

express the kinetic energy in the form
T=T,+T, +T,, (c)

where 7, is a quadratic form, positive definite in the generalized velocities, 7] is a
linear form, while T}, is a constant with respect to those velocities. Thus, the relation (b)

may be seen as a system of s linear algebraic equations, the unknowns being the
generalized velocities ¢, ; because 7, is a positive definite quadratic form, the

determinant of the coefficients of this system is just the discriminant of the quadratic
form, which is non-zero. Hence, we may solve the system of equations (b) with respect

to ¢;, obtaining ¢, :q'k(ql,q2,...,qs,pl,pz,...,ps;t). In general, we get the
Lagrangian L :L(q1 242524554 ,qz,...,qs;t); taking into account the solutions of the
system of equations (b), it finally results that L = L(q1 3G2sesQssPl>Pasees Pss t).

Solution. Hamilton has introduced the space I',; with 2s dimensions, called the phase
space (or Gibb’s space), in which the position of a representative point P; is specified
by the canonical co-ordinates q,, q5, ..., 45, Pi» P2s ---» Ds, in the given order.

From the above considerations, it is seen that, by knowing the position of a
representative point in the phase space I',,, one knows the position and the velocity of a

representative point in the configuration space A, hence the position of the mechanical
system S in the space E;.
We introduce Hamilton’s function H in the form
S .
H=3 piq —L; (d)
k=1

taking into account the transformation (b) (denoted also the Legendre’s transformation),
it results H = H(ql,qz N ,pl,pz,...,px;t). In this case, Hamilton’s principle (q) in
Appl.6.1 is written in the form
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n| < .
SLSLZ_IPM _H(ql’qzs-“»%’pl!p2>""ps;t)j|dt:0’ (©)

called the canonical form of Hamilton's principle.
Writing the Euler-Lagrange equations corresponding to this functional, we find the
equations of motion of the representative point P in the form

’pkz——’k: 58 (f)

these equations form the canonical system of equations of analytical mechanics
(Hamilton’s equations), hence a system of 2s differential equations of first order with

2s unknown functions ¢, = ¢, (t), Pr = Dr (t) , k= 1,_s . One introduces 2s integration

constants determined by conditions of Cauchy type (at the initial moment ¢, )

ai(te)=ap. pilty)=pf. k=Ls. ()

Passing from Lagrangian mechanics (space A ) to Hamiltonian mechanics (space I';,)

the number of equations becomes double; in exchange, these ones are no more of second
order, but of first one. As well, the initial conditions are homogeneous (only for the
position of the representative point).

If a certain position of the representative point is given (for instance, the initial position),
the canonical equations allow to determine the position of this point at any moment; thus
the deterministic character of Hamiltonian mechanics is put into evidence (in fact — in
general — of Newtonian mechanics).

Application 6.4

Problem. Study the problem of two particles, using Lagrange’s equations in the
configuration space.

Mathematical model. Consider the particles P, and P, of masses m; and m,, their
positions being specified by the spherical co-ordinates r;, 6, ¢,and r,, 1—6, T+,

respectively, with respect to he centre of mass O, situated on the segment of straight
line PP, , so that

mry =myry, My >my. (@)

Because, in this problem, are acting only internal forces of Newtonian attraction
F, =-F, = (fmlmz /3 )r (see Appl.5.1), then the centre of mass has a rectilinear and

uniform motion with respect to an inertial (fixed) frame of reference. We study the
motion of the two particles with respect to this point.
The kinetic energy is expressed in the form
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7= 2 1 2
—Emlvl +Em2v2

(b)

:%m1 [’;12 +r12 (62 +(i)2 sin? 6)]+%m2[f22 +r22 (62 -i—('p2 sin? 6)],

where the velocities are expressed by spherical co-ordinates. The forces of Newtonian
attraction are conservative and derive from the potential

U=f@, ©)

where
r=r+trn. (d)

We notice thus that the positions of the particles A and P, are specified by the

parameters 1, r,, 0 and ¢ . Taking into account the relations (a) and (b), we may write

2 2 2 -2 -2 -2
mn +m2r2 =mr-, mn +m2r2 =mr

if we introduce the notation
1 1 . 1
I e
m my m, ©

Thus, the Lagrangian corresponding to this problem may be written with the aid of three
generalized co-ordinates 7, 8 and @, respectively, in the form

mym,

L =%m[r'2 +r2(92 +¢” sin’ e)]+f ®

Z A

<y

Figure 6. 3. Problem of two particles
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Because

—,:mi’,—.:mrzé,i:mrzsin2 0¢ (g)
or 0 op
and
—L:mr(é2 -i—('p2 sin? 6)—f mmy L = =mr? (p sinfcos O, a =0,
or 27 00 acp
Lagrange’s equations (see Appl.6.2) read

[r r(@ +¢? sin 6)]+f My =0,

%(rzé)—rz(\bz sinBcos® =0, (h)
%(rz sin? 9(b)=0

hence, we obtain a system of three differential equations with the unknown functions
r=r(t), 6=0(c) and ¢ = o(t).

Solution. From the very beginning, we notice that

72 sin? 0¢ = a, = const )]
represents a first integral of the system of equations (h). Taking into account (i), the
second equation (h) is written in the form
: 0
4 {zg)o @050
de r-sin” 0
multiplying by 2r%6 and integrating, we obtain a new first integral

2

. a .
r'e? ++:a2 = const . G
sin” 0

Eliminating the terms r20% and rsin® 0¢ from the first equation (h) by means of the
two first integrals obtained above, we get

.. mym
r——+f T2 0
o

multiplying then by 27 and integrating, it results the third first integral
mym,

r+— 2f——
r?

=aj; =const . (k)

This first integral contains only one space variable, so that
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dt=t—

——2+a3; (l)

hence, by a quadrature, one obtains ¢ as a function of » and then r = r(¢), introducing a

fourth integration constant a, . Analogously, the first integral (j) leads to

2
a

e B 0)=a Y (m)
rquﬂri w/gi(%)i- sin” 0

we obtain 0 = 9(r) and then ¢ = (p(t) , by two quadratures, introducing a new integration

constant as . Finally, the first integral (i) allows to write

do =+ a,do @
sin? 0,/g(0)

where we used the previous results; hence, we obtain ¢ = (p((-)) and then ¢ = (p(t),
introducing the integration constant a4 . The integration constants a,, k=1,2,...,6 are
then determined with the aid of the initial conditions.

Application 6.5

Problem. Study the problem of two particles, using Hamilton’s equations, in the phase
space.
Mathematical model. Let us consider the particles P, and P, of masses m; and m,,

respectively, the positions of which are specified by the generalized co-ordinates », 0,
¢ (see Appl.6.4, with the results and the corresponding notations). We notice that the

generalized momenta (given by formulae of the form p, =0L/3dq, ) are expressed by
(see formulae (g) in the mentioned application)

pr:ml?,pezmrzé,pw:mrzsinze(p; (a)
hence, it results
. Py a Po . p(P
p=Pr g=Lo oo . (b)
m mr? mr? sin” 0

Having to do with holonomic and scleronomic constraints, the Hamiltonian is of the
form H =T -U (see Appl.5.4), so that

2
1 2
H=— p2+l7_e+ Po -2f

mym,m
r . .
2m 2 r?sin’ 0 r

(c)

The first subsystem of canonical equations (see Appl.6.3) is given by (b), while the
second subsystem reads
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2 2
1 5P . Py c0s0
p_e+ . = fmymym |, py = :

Py =0. (d)

—!
mr?| r rsin?@ mr? sin® 0

Solution. We will use the Hamilton-Jacobi method. We notice that ¢ is a cyclic co-
ordinate, so that
Py =a; =const (e)

represents a first integral of the system of canonical equations. Because the constraints
are scleronomic, the function S is of the form

S =—ht+a,0+S,(r.0,a,), ®
h, a; and a, being the three integration constants. The Hamilton-Jacobi equation
becomes
oS,
H|r,0,—.,a, |=h
( 0 1) (8)
or, taking into account the expression (c) of the Hamiltonian
2 2
s oS, +L AN . a12 _zfm]mzm . )
2m |\ or r2 00 r?sin® 0 r
Choosing S, as a sum of two functions of a single variable
So(r,0)=R(r)+00(0), (i)

the equation (h) takes the form (we denote R'=dR/dr, ®'=d®/d0)

2

1 a mymym .
R?+—=07% +—————2f 12— =2mh; )
r r-sin” 0 r
we may also write
a2
r2R'? =2 finymymr —2mhr* = -@'* — 12 =-a,, a, >0, a, =const.
sin” 0

Hence, one obtains the equations

2
dR=+\[g,(")dr, g,(r)=2mh+2 2" 22 ®)
r

r
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2
a
40 =1+g,(0)d0, g,(0)=a, ——-—>0. (1)
sin” @
By two quadratures, we get the functions R(r) and @(0), hence the function
Sy =S, (r, 9) and, finally, the function S .

Applying the Hamilton-Jacobi theorem (see Appl.5.5), one may write two sequences of
three first integrals, which allow the solution of the problem.

Application 6.6

Problem. Let be a doubly hinged straight bar. Determine the variation of the radius of the
circular cross section r = r(x) so that, for a given volume ¥ of material, to obtain the

maximal resistance to buckling.

Mathematical model. The moment of inertia of the cross section is 1, = (/4)r*, so that
the differential equation of the deformed axis in the first state of buckling is

W P w—w"+4P W
EI, nE 4 (@)
By the notation
4P
W=, b
nE ®)
the equation (a) becomes
r=ar 2 ©
w

The volume of the bar of length / is given by

V=mnfride, )
0
so that the equation (c) reads
LA s
TC}\, 0 "

This expression attains a minimum when A (and at the same time P too) will attain a
maximum. We are thus led to the variational problem

I
I = [ F(w,w")dx = extremum, szf—l", (e)
o w
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with the bilocal conditions w(0)=w(l)=0.

Solution. The Euler-Poisson equation reads

or, & (o)
ow  dx?\ow’
We have further
oF 1 lw,m: 1 ,

a_W_\/—w" 2 24— ww"
oFr 1H(W~)—3/2:_l _w

6w” :_E 2 W”3 ’

so that the Euler-Poisson equation becomes

”

1 1 /_l —0
2—ww” 2(V W

or

If we denote

the previous equation may be written

Multiplying by w and amplifying the first term by w", it results

”

ww
—v'w=0
”3
—ww

or
w"—v"'w=0.
Integrating, we have

w'—v'w=C,.

441
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From the conditions w(0)=0, hence v(0)=0, we get C;, =0.

The relation vw'—v'w =0 is equivalent to

yw —sz:[lj -0,
w w
whence v/w=C, or v=C,w.
Because in the hypothesis of infinitesimal deformations the amplitude of the deformed

2

axis is non-determinate, one may take C, =1, so that v=w or v~ = w?: it results

"3
ww"” =—1.
But the independent variable is missing in this last equation, so that one may take
w'=p and w" = pdp/dw . Thus, the differential equation becomes

)1
pdw w

pdp = —w 1 3dw.

or

Integrating the equation with separate variables, we get
Pl 3(02 w23 )’

where a is a new integration constant. Hence, one may deduce
dw /
aw _ ﬁ al-—w?'3
dx

1/3

A first substitution w'’® =u , hence w=u> and dw=3u’du, leads to the equation

_ 3u’du _\/g u’du
_ﬁ\/az_uz_ \/az_uz'

A new substitution u = asin @, hence du = acos@de allows us to write

\3a’

a’+/3 sin? (pd(p:T(l—cos2(p)dq),

2 2
dx:\/ga sin” @ aCOS(pd(p:
az—a2sin2(p

whence, by integration,
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X =

NG} uou u’
=7 4| arcsin———  [1-— +Cy,
2 a a a’

where C, is the fourth integration constant.

Returning to the variable w, we get

—%azj(l—coshp)dq)—l-C4 zgaz((p—%sin2(pj+C4

3, RN w23
X =——a"| arcsin - 1- > +Cy.
a a a

Because w=0 for x=0, itresults C, =0 and

3 5 ) 1/3 Wl/3 W2/3
X =——a | arcsm - 2
a a a

The boundary condition at the second end w(/)=0 leads to

I 3 2
=—a ;
2

lzgaz(ﬂ:—())b—

T
hence
. 1313 2/3
X =—| arcsin - 1-
T a a a’
4 2 W 1 .
From r* =-A" — and w=——- it results
W”
2
s A
rl=—
W”
and then
3/2
A r
r3:_3:7\.3/2W, 1/3:_.
w" VA
Therefore

x—i arcsin r__r ‘Il— r’
T aﬁ aﬁ an |’
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P
T =
\
g Q25 \ Q91477
=
- ———aw — 3
¥
!
&
. 1
o ‘E
e
Figure 6. 4. Meridian curve of a bar of given volume V'
But we have

aﬁzﬁﬂﬁgz%ﬁiﬁ%
BAndn VE (3753) E
where 7, is the maximal radius of the cross section; hence

16 P2

4
ry =
3n® E

The notation introduced above allows us to write, finally,
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x 1 . r r 2
— =—| arcsin —— — 1——2
I =

}"0 I”O rO
The values of x/I vs. r/ry e [O,l] are listed in Table 6.1 (in fact, the inverse problem is
solved).

By solving the transcendental equation we get a solution of the form r =7, f (x) The

meridian curve of the cross section is drawn in Fig.6.4.
Further, the volume of the bar is given by

Vv :nférz(x)dxz nrozféfz(x)dx,

whence

2 V

rg =———m.
I r2
nj'o f (x)dx
The critical buckling force is obtained from r04 in the form

3% L E_my 3n’ E_37°Ely 3
s E_ £_3 =3

2 4 4 2 4 2 40

cr 16

hence the critical force for a bar of given volume represents three quarters of the critical
force which corresponds to a bar of constant cross section and moment of inertia /.

Table 6.1.
r/ry x/1
0 0
0.1 0.000213
0.2 0.001718
0.3 0.005892
0.4 0.014296
0.5 0.028883
0.6 0.052044
0.7 0.087694
0.8 0.142378
0.85 0.180870
0.90 0.231560
0.914771 0.250
0.95 0.304495
1 0.500000
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Application 6.7

Problem. Let be a cantilever bar in the form of a solid body of revolution, acted upon at
the free end by a concentrated force P . Determine the variation of the radius of the
cross section along the span, for a given volume ¥ of material, so that the deflection be
maximal or minimal.

Mathematical model. Let r =r(x) be the variable radius and /, =nr* /4 the moment
of inertia. The bending moment at a cross section of abscissa x is M, =—Px, so that
the approximate differential equation of the deformed axis is of the form
d*w 4P x
w2 mE A @
dx nE p

The boundary conditions are of Cauchy type, hence: w(l)=w'(/)=0.

Solution. Integrating once the equation (a), one obtains

(N APL X
w(x)—nE£r4(x')dx+w(l),

because w'(/)=0, we obtain

which, integrating once more, leads to

w(x):jt_fE’Ij dx"de’+w(l)

ert ()

and, because w(/)=0, we have

”:_ﬁ(j{ Tk J o

Integrating by parts, we obtain, finally,

4Px L x' 4p L x'?
=—= ' dx’ .
w(x) TCE:[

[ +_
) B ()
Obviously, w attains its maximum at x = 0. Therefore
4P X
nE §r(x)

(b)

W =(0)=
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The volume of the cantilever bar is

V=njr2dx. (c)
0

It results thus the variational problem

nE Lx?
F=—ww =|—dx=min, (d)
4p ™ { r
with the condition
V ]
Gz—zj'rzdx:const. (e)
T 9

The variational problem (d), (e) is a problem of isoperimetric type. According to
Sec.2.1, the solution is among the extrema of the functional F +AG . Euler’s equation
for the integrand of this functional

2
X 2

o(x,r, 1) ==+ ()
r
is
dp_dfoe)_
or dx\or
But ¢ does not depend on ', so that the above equation is reduced to
%0 _ A oo ()
6r 7'5 ' &
Therefore r® =2x% /A or
2x?
232 (h)
r .
A
Introducing in the expression (c) of the volume, we get
1
V:nf32x2dx:3—ni/zlm, (i)
o VA 5 VA

whence

2 57
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Thus, the relation (h) leads to
f 5 |V, [x
r=rix)=.—.—3—,
( ) 3nVI VI

the variation of the radius being after a cubic parabola.
If we denote by 7, the radius at the built-in cross section, then we have

oo |2V
0 3n V!
and we find again the same expression listed in Table 6.1.

Application 6.8

Problem. A filling of gelatine dynamite is placed on a circular surface of radius a ata
depth % in the ground. Determine the meridian curve of the funnel of earth ejected due
to the detonation (Fig.6.5, a).

Mathematical model. We assume that the component of the outbreak force along the
normal to the meridian curve is proportional to the element of area and that the total
explosion force is minimal.

Figure 6. 5. Evaluation of the force dS(a). Graphic solution of the transcendental system (b)
Let 6 be the inclination of the tangent to the meridian curve with respect to the vertical
line; we may write sin®=dy/dx. We have thus dSsin®=2A-2nydx, where A is a
factor of proportionality; it results
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2
dS:any(dS—):%tky %+d—y dx .
dy dy dx

From the elementary rectangular triangle, we get
d
(ds)? = () + (d)? = ded| L+ & | = deay] 4L |
dx dy y
One obtains a variational condition
9 1
S =271\ J.y(y'-i-—,]dx = min
~h y

for a functional of (6.1) type.

Solution. As it was shown in § 1, the extrema are, in this case, solutions of Euler’s

. 1 . .
equation (6.1.8) for F (x, ¥, y') = y( y' +—'j . We easily obtain
y

12

whence y/y'=C,;/2, where C, is an integration constant. Integrating once more, it
results the equation of the meridian curve

y — ez(x+C2)/C] , (a)

where C, is a second integration constant.
To determine the constants, we may write a first condition y=a for x=-#, i.e.

2(-h+Cy)/ €

e =a. (b)

A second natural boundary condition reads

oF 1
— =y 1l-— =0.
|:ay':|x—0 [y[ y’z j]x_o (C)

This condition is obtained from the relation (6.1.6). Indeed, if oJ (s)/ oe=0 for =0,
then we have

X=Xp

X=X

anon-zero M at the ends x;, x, yields the condition (c).
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Further, the condition (c) implies
(0) = 41— 2 o262/
y(0)=1=—-e2'. (d)
G
The constants C; and C, are obtained from (b) and (d). We deduce thus the
transcendental system
2(—h+C2):lna,iezc2/c1 4l ©
G &
If we denote 2/C, =u and 2C, / C; = v, the system (e) reads

—hu+v=Ina, ue’" ==+1. ®
In the system of the axes Ouv, the two equations represent (Fig.6.5, b) a straight line

u v
+—=1
_Ina Ina

h

and an exponential u =+e™", respectively.

For given values of /4 and a, the solutions # and v may be determinate numerically,
and then

Clz



Chapter 7

STABILITY
1. Lyapunov Stability
1.1 GENERALITIES

Let us consider first order ODSs of the form
. — . dx;
xizfi(t,xl,xz,...,xn), i=1n, xizd—’, (7.1.1)
t

where the point stands for the derivative with respect to the time #; this is a usual notation
in mechanics. The functions f; are of class C' ([to ,)).
The system x,,x,,...,x, may be interpreted as representing the co-ordinates of a particle

in motion, the independent variable being the time ¢. If we denote by x the vector
function x = (xl,xz,...,x,,), then the system may be written in the equivalent compact
form

x=f(t,x), £, x)=(f,(x) f5Ex)., £, (2, ). (7.1.2)

The system (7.1.1) or, equivalently, (7.1.2), is called autonomous (dynamical) if f does
not explicitly depend on ¢ and non-autonomous in the opposite case. With this
interpretation, the particular solutions of the above ODSs will represent displacements of
the particle.

Consider now that the co-ordinates of the particle are given at ¢, , i.e.

x1(tg) =19, X3 (69 )= X500 %, (9 ) = X0 (7.1.3)

or, in vector terms

X(to):XO, XO :(xlo,xZo,...,xno). (7.1.4)

The Cauchy-Picard theorem applied to the Cauchy problem (7.1.1), (7.1.3) or, similarly,
to (7.1.2), (7.1.4) ensures the local existence and uniqueness of the solution

x(6)=x(t,20, %) (7.1.5)

A problem of great importance is the long term behaviour of the solution. If the
considered ODS represents a dynamical system, then the analysis of the asymptotic
behaviour of the solution leads to the knowledge of the successive states of the motions,
up to its annihilation, according to the principles of thermodynamics. If the initial data
are slightly perturbed, e.g. i(to ) =X, , then we should expect that the perturbed solution
i(t,to,io) be close to x(t,to, Xg ) In this case, obviously, the behaviour of the solution
would be predictible. Such a solution will be called stable.

451
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In order to make things clearer, let us denote by |x(t)| = \/ xE(e)+x3(¢)+...+ x2(¢) . If for
any &> 0one can find 3(¢) such that, as soon as |x0 - §0| < 8(8), we have
Ix(t.t0,%0)-X(t, 10, % )| < & (7.1.6)

for any ¢>¢,, then we say that x(t,to,xo) is stable in the sense of Lyapunov. The
solutions that are not sstable are called unstable (Fig.7.1 a, c)

u v u

a b c

Figure 7. 1. Lyapunov stability for an equilibrium state; stable (a); asymptotically stable (b); unstable (c)

A solution x(f) is called asymptotically stable if it is stable and, moreover,
lim|x(¢)—-X(¢)|=0 for any solution () which is such that |x(t,)—X(t, )| <& (Fig.7.1b)
t—00

1.2 LYAPUNOV’S THEOREM OF STABILITY

Besides the above conditions of regularity imposed on f, let us suppose that the
components f; allow constant partial derivatives along the trivial solution

o, _
—(,0)=qa;, i,j=1n. 1.
axj( )=ay,, ij (7.1.7)

The functions f; may then be represented in the form

fi(tax):iaijxj‘"@i(t’x); i:L_n; (7.1.8)
=1

if, moreover, f,-(t,()): 0,i= l,_n, then ¢, tend to zero once x; — 0, j =1,n. Hence we

can neglect the non-linear terms ¢;, keeping in (7.1.8) only the linear part of f;. We
thus get the following linear and homogeneous ODS with constant coefficients

=

X =2 agx;, i=ln; (7.1.9)
=l
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let us denote by A = [aij]i i the matrix of its coefficients.

The ODS (7.1.9), associated to is called the system of the first (or linear) approximation
of (7.1.1). Initially, this system was considered satisfactory for a qualitative study of the
solutions of (7.1.1). This idea was infirmed by Lyapunov, who proved

Theorem 7.1. [fthe roots of the characteristic equation
P, (1)=det[A - AE] (7.1.10)

of the linear approximation of (7.1.1) have all of them strictly negative real part and if
the functions ¢; satisfy

i, x)| < M|x| ™", (7.1.11)

where M is a constant and o> 0, then the trivial solution of (7.1.1) is stable. If at least
one of the roots of the characteristic equation (7.1.10) has a positive real part, then the
trivial solution of (7.1.1) is unstable.

The above theorem studies the stability around 0; it can be directly applied to ODSs
allowing 0 as a solution. If we wish to study the stability around another critical point of
(7.1.1) —say, x= ()?1 3 X3 5eer Xy ) — then, by using the change of functions

X=x-%X, X=(X,X;,..X,), (7.1.12)

the solution x will be translated to the origin. The problem of the stability of X is thus
reduced to the study of the stability of the trivial solution for the transformed system

X=g(.X), g(tX)=(g,(X). g, X)....g, (X)), (7.1.13)
where
g;(tX)=f;(t,X+X)-X,, j=Ln. (7.1.14)
If the system is autonomous, the solutions of the functional system
fix)=0,
£2()=0 (7.1.15)
fu(x)=0
or
f(x)=0 (7.1.16)

are called critical points or equilibrium points or else stationary solutions of the ODS
(7.1.1) or of its equivalent (7.1.2).
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2. The Stability of the Solutions of Dynamical Systems
2.1 AUTONOMOUS DYNAMICAL SYSTEMS

In the case of autonomous systems, if f satisfies the hypothesis of Theorem 7.1, then the
trivial solution is not only stable, but also asymptotically stable. If at least one of the
eigenvalues of the matrix A — or, otherwise speaking, a root of the characteristic
polynomial P, (}\.) —has a positive real part, then the trivial solution is unstable.

Using the Hurwitz matrix associated to the polynomial P, (k), one can straightforwardly

check if the real part of the eigenvalues is or is not strictly negative.

If the eigenvalues of A have zero real part, then the stability of the null solution cannot
be checked in the frame of the first approximation of the given ODS. It may be tackled in
another frame — for instance, in the frame of the central manifold theory.

Figure 7. 2. Nodes

Consider the autonomous system (case n=2)

i=f(xy) y=glxy). (7.2.1)
At the points at which f (x, y) # 0, this ODS can be reduced to a single ODE
_Sfley) o dy
Yy = s Y = 7.2.2
glx.») dx (7:22)

The stationary solutions of (7.2.1) will be singular points of a special type for the ODE
(7.2.2).

Let us admit that the system (7.2.1) is defined for (x, y)e Q c R?. Also suppose that Q
is simply connected, i.e., together with any closed curve I'c QQ, it also contains the
domain limited by I'.
If Q contains a unique criticity point P, (xo, yo) of (7.2.1), then the trajectories
belonging to Q behave in a few qualitatively distinct ways; these types of behaviour also
represent criteria of classification of the critical point P, as follows:

a)node — if the trajectories passing through F, have a well-defined tangent

(Fig.7.2);
b)focus — if the trajectories tend asymptotically to P, , spiraling towards it (Fig.7.3);
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c)centre — if it is surrounded only by closed trajectories (Fig.7.4);
d)saddle point (Fig.7.5).

Z
X
5 0
Figure 7. 3. A focus
More precisely, let
x=ax+by, y=cx+dy (7.2.3)

be the linear approximation of (7.2.1) after a translation of type (7.1.12) of the
equilibrium point to the origin. Denote by A,,A, the eigenvalues of the associated

characteristic equation
A —(a+dW+ad—bc=0, (7.2.4)

i.e., the eigenvalues of the matrix
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Y

T
&

Figure 7. 4. A centre at the origin

¥

Figure 7. 5. A saddle point

a b
e al (7.2.5)

H. Poincaré explicitly found the type of the equilibrium point, according to the nature of
7\41 5 7\/ 2.

2.2 LONG TERM BEHAVIOUR OF THE SOLUTIONS

Usually, the solutions of the dynamical systems show firstly a transient state, after which
the motion tends to a stable state for a long period of time. The neighbouring motions,
with initial data close to each other, converge to these stable “attraction basins”.

The simplest case is that of the equilibrium point at which any motion stops. A typical
example is that of the non-linear rigid pendulum, which, after several damped
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oscillations, gets back to the vertical position, no matter the initial data. In the phase
space — of co-ordinates position and velocity — the portraits of these motions appear as
non-intersecting spirals, converging to a unique point: the equilibrium point. This is a
point attractor.

Another type of attractor is the periodic attractor. A classical example of such an
attractor is a thin and flexible steel rod, in resonance with an electromagnet subjected to
alternating current. After a short transient state, the rod motion will be stabilized to a
forced oscillation. A change in the initial conditions will generate a distinct periodic
motion, also stabilized after a short transient.

Two limit cycles are thus emphasized, each of them attracting certain motions; it is
noticed that the attraction basins are separated by a curve called separatrix.

We thus conclude that a linear analysis is unsatisfactory for a qualitative study of the
solutions of a non-linear dynamical system.

A third type of attractor, recently discovered, is the strange (or haotic) attractor, which
collects the motion of a perfectly determined dynamical system in a bounded domain of
the phase space; apparently, the motion is in a perpetual haos. While some values of the
solution may repeat at irregular periods of time, one cannot say that the motion is
periodic. Even if the phase portrait seems to be haotic, this attractor shows some
particularities and properties that may lead to deeply know the structure of the solutions.
Among the first discoverers of such attractors one may quote Lorenz and Hénon.
Hénon'’s attractor (Fig.7.6) was put into evidence on the occasion of an astronomic study,
and Lorenz’s attractor was emphasized in a study of some meteorologic phenomena
(Fig.7.7).

Figure 7. 6. Hénon’s attractor

A dynamical system often depends on some parameters with a physical significance. It
was noticed that not only some variations of the initial data, but also the variations of this
parameters lead to qualitative modifications of the solutions. In this sense, there are
serious perspectives of explaining the phenomena of turbulence by using the analysis of
the structures of the solutions of non-linear ODS generating strange attractors.

The above remarks point out several steps in a study of the long term behaviour of the
solutions of a non-linear dynamical system.
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First of all, one must identify all the possible attractors of the given dynamical system.
The non-linear systems may allow various attractors of different types, which might
coexist (e.g., periodic and haotic attractors).

Figure 7. 7. Lorenz’s attractor

Then one identifies the basin of attraction of each of these attractors; this can be
numerically obtained, considering the solutions corresponding to a great number of
initial data. It is a difficult task, that might be perhaps more efficiently carried over in the
frame of the theory of the invariant manifold, initiated by Poincaré.

We thus obtain a portrait attractor —basin of attraction (AB) in the phase space. The
whole procedure must be repeated if we modify the parameters of the system. In the new
AB-portrait it is possible that some of the attractor dissapear and some others, of another
type, replace them.

At the points of bifurcation, we observe qualitative changes of the topological structure
of the portrait AB; the state changes are sometimes called catastrophes.

The theory of catastrophes, of the central manifold, of the bifurcations are all of them
modern theories, with numerous applications in phenomenological studies.

One can conclude that the qualitative study of the solutions of the ODS depending on
parameters represents a key to clarify and foresee a great number of physical
phenomena, so far unexplained and, because of this fact, sometimes classified as
“experimental errors”.

3. Applications

Application 7.1

Problem. Study the stability of the position of equilibrium of a free or constraint particle
P in the presence of a field of conservative forces.
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Mathematical model. Let us consider first of all the case of a free particle subjected to
the action of a conservative force of the form F =gradU(r), where r is the position

vector of the particle P ; the Newtonian equation of motion is written in the form
my =mv =gradU , (a)

where m is the mass of the particle, while v is the velocity. A scalar product by dr
leads to

mi;-drzmﬁ-drzmv-ﬁzd lmv2 =gradU -dr =dU ,
dt de 2
whence
lmvz—U+lmv2—U ; (b)
2 270 T

we found thus a first integral (the first integral of mechanical energy) of the differential
equation (a).
Solution. We assume that the potential U (r) has an isolated minimum at the origin O ;

noting that the potential is determinate abstraction of an arbitrary constant the gradient of
which vanishes, we can take U(0)=0. Let be a convex closed surface S which contains

the point O (e.g. a sphere of centre O), of arbitrary small dimensions, so that in the
interior of the surface and on it the function U (r) be negative, vanishing only at the
point O . We may assume that there exists p >0 sufficiently small so that on the surface
S tohave —U > p, hence U + p <0. Let be F, an initial position of the particle P in
the interior of the surface S, the corresponding velocity being v, ; we may thus use the

first integral (b) with U, <0. We determine the position and the magnitude of the
velocity at the initial moment by the condition mvy /2~U, < p ; for this it is sufficient
to take, for instance, mvé /2<pl2, -Uy<p/2. The first relation shows that
Vo <M =+ p/m. As well, the function U is continuous and vanishes at the origin;

there exists thus 1 > 0, such that O_PO <n, corresponding to —U, < p/2 . Hence, if —in
the interior of the surface S — we give to the particle an initial position at a distance to
O less than n, with an initial velocity less than n’, then the theorem of energy leads to
the inequality mv? /2 <U+ p; thus, the particle cannot come out from the interior of
the surface S . Indeed, if the particle P would reach S, then the sum U + p would
become negative, which is not possible if we take into account the previous relation.
Hence, we may state that it corresponds € >0 so that OP < €, P=P(t). As well,

mv? /2< p, because U <0; it results v(t)=+/2p/m =¢'>0. The conditions for the
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point O to have a stable position of equilibrium are fulfillEd. We may thus state for a
point P’ =0

The position of equilibrium P° of a free particle P, in the presence of a field of
conservative forces, the potential U having an isolated maximum at the point P°, is a
position of stable equilibrium (the Lagrange-Dirichlet theorem).

For instance, the origin of the co-ordinate axis is a stable position of equilibrium for a
free particle subjected to the action of an elastic force of attraction F(r)=—kr, k>0,
which derives from the potential U (r) =—kr? /2.

In the case of a particle constrained to stay on a fixed smooth surface S there are
introduced the generalized forces Q, (u,v), o=1,2, where u and v are co-ordinates
along the co-ordinate lines on the respective surface. If Q,du +Q,dv =dU (u,v) is a total
differential, then we are led to the study of the extrema of the potential U =U (u,v),

where u# and v are generalized co-ordinates, the holonomic (geometric, integrable) and
scleronomic (i.e.,which do not depend explicitly on time) constraints being eliminatEd.

We may also obtain for U a maximum equal to zero at the point P, coinciding with
the origin (17 (0,0)= O). We draw on the surface S a closed curve C around the point

P°, so that to have on the curve U <0 ; there exists thus p>0 so that U+ p<0 on

C . Displacing the particle from P ata neighbourhood point, interior to the curve C,
we may follow the preceding demonstration. In general, we can state that the Lagrange-
Dirichlet theorem may be applied in case of holonomic and scleronomic constraints too.
If the potential U has an isolated minimum at the point P, then that one represents a
labile position of equilibrium.

Introducing the potential energy V' =-U, we may affirm that, for a stable position of
equilibrium, the potential energy has an isolated minimum, while, for a labile position of
equilibrium, it has an isolated maximum.

In particular, let be the case of a gravitational field for which V' =mgz (the Oz -axis is
along the ascendent vertical), where g is the gravitational acceleration; we obtain the
Torricelli’s theorem, which states that the stable position of equilibrium corresponds to
the lowest position on a fixed smooth curve or surface. We may also state that a labile
position of equilibrium corresponds to the highest such position.

Application 7.2

Problem. Study the motion of a particle with a single degree of freedom, subjected to
scleronomic constraints in a conservative field.

Mathematical model. In the case of a particle (or of a mechanical system) with only one
degree of freedom, for which the equation of motion is of the form

i=1(q), (a)

where ¢ is the generalized co-ordinate, we may set up a first integral of the energy in the
form
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q* 45 =2[Ulq)-Ulq,)]. Ulg)=] f(q)dg. (b)

We have introduced a simple potential U (or a scalar potential U, of a generalized

potential); hence, the corresponding mechanical system is a conservative system. As
well, one can show that a unidimensional conservative mechanical system (with only one
degree of freedom) or a pluridimensional one (if we succeed to eliminate, by means of
first integrals, the corresponding parameters, transforming it in an unidimensional
system) leads to an equation of motion of the form (a).

Solution. We notice that the equation (a) corresponds to non-linear, non-damped free
oscillations; in this case, the function f (q) corresponds to a calling force. Integrating the
equation (b), we get

i dn

I=lp =% 9 <P(n) > ©)

where we have introduced the notation

olg)= g5 +2[U(g)-Ulg)]. (d)

The sign + or — in (c) is taken as the function q(t) is monotone increasing or decreasing,

respectively. It is necessary to have (p(q)z 0 so that the motion be real. Noting that

(p(q ): qg >0, we may assume that the function g begins to increase together with ¢
(corresponding to the direction of the initial velocity); so that one chooses the sign +. A
study of the variation of the function f (q) and of its zeros allows to obtain interesting

conclusions about the motion of the particle (or of the mechanical system).
Denoting ¢ = p , we may replace the equation (a) by the system

dg _ dp _
P g ) (e)
which leads to
dp_ fla) . ®
dg p

the motion of the particle is the equivalent to the motion of a representative point P in
the phase space of co-ordinates ¢, p. The trajectory C in this space pierces the axis

Oq under a right angle, a tangent to it being parallel to the same axis for f (q): 0,
p#0;if we have p =0 too, one obtains a singular point, corresponding to a position of
equilibrium, as it results from the system (e).
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Figure 7. 8. Motion of a particle with one degree of freedom in a conservative case

Expressing the first integral (b) in the form

pr+2V(g)=h, h=45+2V(q,), V(g)=-Ulq), ()

where # is the energy constant; we notice that the trajectory C is symmetric with
respect to the Ogq -axis, being situated in the domain 2V(q)$ h . Corresponding to the

Lagrange-Dirichlet theorem (see Appl.7.1), to the points of minimum of the potential
energy V(q) correspond positions of stable equilibrium, while to the points of maximum

correspond positions of labile equilibrium (Fig.7.8). From the first equation (e) it results
that, for p >0, ¢ increases with the time ¢, which allows to specify the direction of the

trajectory. The period of the motion is given by this equation in the form
dg
r=f=—, (h)
p

the integral taking place along a closed curve.
Application 7.3

Problem. Study the topological structure of the phase trajectories in the motion of a
particle with a single degree of freedom, subjected to scleronomic constraints in a field
of conservative forces.

Mathematical model. In connection to the preceding application, the equation of motion
in the generalized co-ordinate ¢, corresponding to a single degree of freedom, is of the

form

éj:f(%}“)’ (@)
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where A is a parameter the values of which contribute to the variation of the topological
structure of the phase trajectories. In a field of conservative forces, we have

(0.1)= ov(g.2)

A==V, -—
flg.n)=-v,(q Pt (b)
the position of equilibrium being situated along the curve C of equation (Fig.7.9)
flg.1)=0. ©
¢
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)
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Figure 7. 9. Topological structure of the phase trajectories in the motion of a particle with a single degree of
freedom, subjected to scleronomic constraints, in a field of conservative forces

Solution. For different values of the parameter A one obtains three positions of
equilibrium (for A =)' correspond the points P, P,, P; of ordinates q;, ¢5, g3)ora
single position of equilibrium (for A =A" corresponds the point P" of ordinate ¢"); one
passes from three positions to only one position by critical values of the parameter A
(L =2..,A" ), to which correspond the points P.., P! of ordinates g/, , ¢!, and points
P', P" of ordinates §', g" . Noting that dg/d\ =—f; (q,?»)/fq' (g,2), it results that
the critical points correspond to the solution of the equation f, (; (q, k) =0 (for which the
tangent to the curve f, (q, 7») =0 is parallel to the Ogq -axis) assuming that f} (q, X) #0.

We may conclude that the points of equilibrium appear and disappear two by two. We
assume that C is a Jordan curve, which divides the plane in two regions. We observe

that a straight line A =X’ pierces the curve C, e.g., at the point P ; if f(q,k')> 0,
hence ¥, (q,k’)< 0 under the curve C, then for ¢ increasing V'(q;,x'):o on C and

v, (¢.1')>0 over the curve C. It results that Vq(qg,k') represents an isolated
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minimum of the potential energy and the Lagrange-Dirichlet theorem (see Appl.7.1)
allows to state that:

The positions of equilibrium of a particle which moves after the law ¢ = f (q,k) ina
conservative field are stable if the domain f(g,1)> 0 is under the curve f(g,1)=0,
q >0, A >0, and labile if this domain is over the curve (Poincaré’s theorem).

The hatched domain corresponds to f (q, K) >0 in Fig.7.9.

Application 7.4

Problem. Let be a surface S which passes through the origin O, so that the plane
tangent at this point is horizontal; in the neighbourhood of this point, the surface is over
this point. Study the small oscillations around the point O of a heavy particle staying on
this surface.

Mathematical model. Corresponding to Torricelli’s theorem (see Appl.7.1) the point O
is a stable position of equilibrium for a heavy particle P of mass m . Taking the Oz -
axis along the ascendent local vertical, the surface S may be represented in the vicinity
of the point O by a Maclaurin series in the form

1(x2 52
z=—| —+=— |+0(x, ),
2[ % RzJ o(x, ) (a)

where R;, R, are the principal curvature radii of the surface at O, while (p(x, y)
contains terms at least of the third degree with respect to the co-ordinates x, y .

Solution. The simple potential corresponding to the gravitational field is U (z): -mgz
where g is the gravitational acceleration; eliminating the constraint relation (a) and
neglecting the terms of higher order, we get

mg xZ y2
U(x»J’)=—— —t )

2 \R, R,

the force which acts upon the particle being given by

R y .
F=gradU = -mg| —i+—j|.
¢ g(Rl R, J]

We obtain thus the equations of motion
. 2 . 2 2 2
x=—0)1x, y:_(l)zy, ('01 =, 0)2:_. (b)

By integration, it results

x=ay cos(yf =@y ), y =ay cos(0yt = ¢,), (©
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where the amplitudes a;, a, and the phase differences ¢,, ¢, are determined by initial

conditions. In particular, if R, =R, =R, then one obtains the small motions
corresponding to the spherical pendulum (see Appl.4.5 too).

Application 7.5

Problem. Study the small oscillations of a discrete system S of n particles subjected to
holonomic and scleronomic constraints in a field of conservative forces, in the space £j,
around a stable position of equilibrium.

Mathematical model. We consider a system S of n particles P, i=1,_n, subjected to

m holonomic (geometric) and scleronomic constraints; in this case, the system has
s=3n—m degrees of freedom, hence there are necessary s generalized co-ordinates

q;, J =15, to specify its position. Let be P(ql,qz,...,qs) the representative point in

the configuration space A, with s dimensions of Lagrange and let be

V= V(ql 2G5 qs) the potential energy corresponding to the given field of forces. The
representative point specifies the position of the system S in the space A, by the
functions ¢; = ¢ (t)

Because the potential energy is determined making abstraction of an arbitrary constant,
we may choose this constant as to have V(0,0,...,O)z 0 at the point O(0,0,...,O). The
Lagrange-Dirichlet theorem (see Appl.7.1) shows that for the position of stable
equilibrium p° (let that one be the origin of generalized co-ordinates) the potential
energy has an isolated minimum. Let P° =0 be the respective point; thus, in a
neighbourhood of P we have V(P) > 0. We assume that /' may be developed into a
power series in the form

V=Vy+V,+Vy+...+V, +..., (a)

where ¥, is a polynomial of #th degree in generalized co-ordinates. We observe that
V(0,0,...,O)z Vo =0; then ¥, =0 is a hyperplane which passes through P°, hence
VI(P) has not a constant sign in the neighbourhood of P°. Having to do with small

oscillations, the polynomials V5, V,, ... may be neglected with respect to ¥, . In this

case V =V, , hence a positive definite quadratic form (7, >0 in the neighbourhood of
P, vanishing only at P° hence if all generalized co-ordinates are zero); we may write
1 N S
Vzazz%-qiqj , a; =const. (b)
i=1 j=1

In the case of scleronomic constraints, the kinetic energy 7 is also a positive definite
quadratic form in the generalized velocities ¢ ; =¢; (t) We may thus write
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1& &, ..
T=E§Z%byqiq,, (©
i=l j=
where, in general, b; =b; (ql,qz,...,qs ); assuming a development into power series of

those coefficients and taking into account that the oscillations are small, we may take
b; = const.

Solution. As it is known, one can make always a linear transformation of generalized co-
ordinates so that, in the new co-ordinates m, =m,; (t) , k=15 (called normal co-

ordinates), the two quadratic forms be expressed simultaneously in the form of sums of
squares (it is sufficient that only one of the quadratic forms be positive definite, while the
other may be only positive)

. ]
T==Yn0;,V==Yoim;; (d)

here (oi are the s real and positive roots of the algebraic equation of s th degree

detla, b, |=0. (©)

Lagrange’s kinetic potential being L =7 -V, one may write the Lagrange equations of

motion in the form
d (oL oL .. 2 —
——|-——=1, +t® =0,k=1s

dt(@iykJ ons Nk Mk (0

for the representative point. By integration, we obtain
i (6)=ay cosloyt -9, ), k=1,s, (8)
where a; and ¢, are the amplitudes and the phase differences, respectively. One may

thus state that any permanent oscillatory phenomenon (scleronomic constraints) may be
analysed by a superposition of independent harmonic oscillations (D. Bernoulli’s
theorem).

The mechanical oscillations are called also vibrations.

Application 7.6

Problem. Study the influence of a holonomic constraint which intervenes in the frame of
a permanent oscillatory phenomenon.

Mathematical model. Consider a holonomic (geometric) constraint expressed in the
configurations space A, in the form

f0yn,...mny)=0, (a)
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where n;, j= I,_S, are normal generalized co-ordinates (see Appl.7.5). Developing into

a power series, we remain to the linear form, corresponding to small oscillations; thus,
we have

ZICjnjzo,Cjzconst. (b)
=

Solution. Eliminating these constraints, Lagrange’s equations (the equations (f) in the
mentioned application) become

fie +oing +AC, =0, k=Ls, ©
where A = A(t) is a Lagrange’s multiplier. Let us assume that
N, =0;coswl, L=pcoswt, o ;,o,|=const. (d)
By the condition of verifying the equation (c), we find

a; (‘03 ~o’ )+ ue; =0. (e)

Taking into account (d), the condition (b) becomes
2.Cio; =0. ()
Replacing o ; given by (e), it results the algebraic equation

s Cj
25— =0, ()

A0 -0

which gives the values of ®”, hence of ®, for which the equation (c) is verified; this

equation is of (s - 1) -degree and has s—1 real roots contained between ©7, ®3; ®3,

®3;...; ©>,, ®>,assuming that ®, <®, <...<®, .

We may thus state that, in a holonomic and scleronomic, discrete mechanical system,
with s degrees of freedom, subjected to small oscillations around a stable position of
equilibrium, the intervention of a holonomic constraint cannot bring down the

fundamental note (the minimal frequency in acoustics) or cannot raise over the value of
the frequency of the harmonic of s-th order (Rayleigh’s theorem).

Application 7.7

Problem. Study the motion of the mathematical pendulum in the phase space.

Mathematical model. We use the results given in Appl.7.3, taking into consideration an
equation of the form (a) in the phase space of co-ordinates g and p. With the notations
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in Appl.4.33, corresponding to a mathematical pendulum, and noting that ¢ =6, we
obtain

2=2(x)zcos(9+h,p=(§,V(9)=—o)2cos(9, (a)
with

m2:§>h:2m2h,z=—0050€, (b)

h being a non-dimensional constant.
Solution. Representing 2V (9) vs. 0 (Fig.7.10), we see that the motion can take place

only for 4 e [—1,1]; we may have also & >1, but it does not correspond to a real angle,
the motion being — in this case — circular. The condition ZV(G)S h allows to draw the
curves p = p(e), symmetric with respect to the OO -axis, as function of various values
of / in the phase space. For he (—1,1) the motion is oscillatory (we have a simple
pendulum), e.g. for 4 =0. If h =1, then the motion is asymptotic, obtaining the
separation lines (drawn with a thicker line) in the phase space; it corresponds a labile
position of equilibrium for oo = . For 4 =—1 we obtain a stable position of equilibrium
(a point in the phase space), corresponding o = 0. Noting that, for p >0, ¢g increases at

the same time as ¢, we have indicated by an arrow the direction of motion in the phase
space.

[
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Figure 7. 10. Motion of the pendulum
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We observe that the separation lines are phase trajectories of the representative point in
the phase plane; they allow to pass from one type of motion to another one. We have
seen that a singular point is specified by the equations f (q) =0, p=0, any other point
being an ordinary one; it results that an ordinary point is characterized by a well definite
direction of the tangent to the phase trajectory which passes through this point. We may
thus state that:

Through any ordinary point in the phase space passes a phase trajectory and only one
(Cauchy’s theorem).

We notice that the equation pdp = 1 (q)dq defines a field of vectors of components ¢,
p, hence a field of velocities in the phase plane; the singular point represents the point

in which the velocity in the phase plane vanishes.
The topological methods allow the study of the general topological properties of the

phase trajectories in the neighbourhood of the stable points of equilibrium (E:—l).
Such a singular point is called centre; analogous considerations lead to the denomination
saddle point for a singular point of labile equilibrium (}7 = 1).

Application 7.8

Problem. Study the topological structure of the phase trajectories of a simple pendulum
in a motion of rotation around a vertical axis.

Mathematical model. We use the results in Appl.4.26 to the study of the topological
structure of the phase trajectories of a simple (mathematical) pendulum for which the
vertical circle on which the heavy particle moves is rotating with a constant angular
velocity ® about its vertical diameter. The results in this application lead to the

differential equation (q = 9)

0=(cos®—1)sin0, (a)
where A = g/lo® >0 is a parameter with respect to which is effected the study.

Solution. The curves C are given by the straight lines 6 =0 and 6=1n and by the
curve O =arccosh. Applying Poincaré’s theorem (see Appl.7.3), we find stable
branches of the curve C (the points of equilibrium of centre type being denoted by full
circlets , i.e. O=arccosh and 6=0, A>1 and O=xn, A<-1) as well as labile
branches (the points of equilibrium of saddle type being denoted by hollow circlets, i.e.
0=0, A<1 and 6=+, A>-1) (Fig.7.11). The points 6 =0, A =1 and O==m,
A =-—1 are points of branching of equilibrium, while the values A, ==l are critical

values (of bifurcation) of the parameter A, corresponding to those points. Taking into
account (a), it results that A > 0, the domains of the figure being thus restraint; as well,
to have A <1 the angular velocity @ must be sufficient great. If we put the condition

that a separation line passes trough the singular point 6=0, 0=0, then we find the first
integral
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6? =sin? 0 — 2A(1 - cos0), (b)

W

Figure 7. 11. Topological structure of the phase trajectories of a simple pendulum in motion of rotation about a
vertical axis

é:izsing coszﬁ—k; (©)
2\ 2

if such a line passes through the singular points 6 =0, 6=+m, the respective first
integral becomes

whence

62 =sin? 0 + 24(1 + cos 0) (d)

('9=J_r20059 sin29+k. (e)
2 2

For A < -1, the singular points of saddle type =0, 6 =+n become singular points of
centre type (Fig.7.12, a); passing through A, =—-1, for -1 <A <0 two separation lines,

whence

C, and C,, appear the first of those ones surrounding two centres, while the point O
becomes a singular point of saddle type (Fig.7.12, b).
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A<=7 91 -!<A<081. @

m 2 e} '

Figure 7. 12. Phase trajectories of a simple pendulum in motion of rotation about a vertical axis for:
A<-1(); -1<A<0 (b); A=0(c); 0<A<1l(d); A>1(e)

If X =0, hence if @ — oo, then the curves C; and C, coincide with the curve C and

form only one line of separation; in this case, the centres are of abscissae 0==tmn/2
(Fig.7.12, ¢). For 0 <A <1 one obtains two separation lines C; and C,, corresponding

to the equations (c), which pass through the singular points of saddle type 6=0,0=0,

and =0, 6 =+r, respectively; in the interior of the loops of the curve C, there exist

two other singular points of centre type, having the abscissae 0 =12 arccos VA
(Fig.7.12, d). If A=A, =1, then the curve C, coincides with the singular point O,
which becomes a point of centre type; for A >1, remains only one separation line C
(Fig.7.12, e). We observe thus that the separation lines correspond to phase trajectories
with different topological aspects.

The above considerations allow to state, without demonstration:

The closed phase trajectories of a particle which is moving after the law ¢ = f (q, X) ina
conservative field may surround only an odd number of singular points, the number of
centres being greater than the number of singular points of saddle type (Poincaré’s
theorem).

Application 7.9

Problem. Study the topological structure of the phase trajectories of a simple pendulum
in a resistant medium.
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Mathematical model. In the case of motion of the simple pendulum in a resistant medium
the field of forces is non-conservative (see Appl.1.10). If we put the condition
6= 90 greater or smaller than 0 for 6=0 in the formula (h), in the mentioned
application, then we obtain

2 2
02 = (eg - i‘f Je”"ze +I§2L(cose$2k2 sin e), (a)
4k” +1 4k- +1

where the sign + corresponds to 90 greater or smaller than 0 respectively.

\

——

2\

Figure 7. 13. Topological structure of the phase trajectories of a simple pendulum in a resistent medium

Solution. The points 0=0, 0=nn, ne 9, correspond to positions of equilibrium; the

equilibrium is stable for n even (the corresponding singular points are of focus type),
while for n odd the equilibrium is /abile (there correspond singular points of saddle

type) (Fig.7.13). If

2
62, =—2 (142 ), odd, (b)
On P
4k” +1

then we notice that for 0, < 0,, the particle oscillates, the motion being damped around
the stable position of equilibrium 6=0, 6=0; if 6, =0, , then one obtains the
asymptotic motion of the particle. For 901 < 90 < 903 the particle effects a complete
rotation and then its oscillatory motion is damped; in general, if 8,, <0, < éO,n 2> N

odd, the particle effects (n+1)/2 complete rotations, passing then in a regime of
damped oscillations around a stable position of equilibrium

Application 7.10

Problem. Study the small oscillations of a small sphere M of mass m, linked to a fixed
point O by a spring of clastic constant & and of negligible weight, if it may rotate
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around the point O in a vertical plane (Fig.7.14). The length of the spring in non-
deformed state is /.

Mathematical model. The position of the particle M may be specified by the angle ¢
and by the length / of the spring at a given moment, having two degrees of freedom.

Figure 7. 14. Small oscillations of a particle linked by an elastic spring around a fixed point, in a vertical plane

The kinetic energy and the potential one are expressed in the form

T:%m(ﬂ(pz +12), V:%k(l—zo)z+mg(zo—1cos<p), (@)
respectively. We may write Lagrange’s equations (see Appl.6.2, formula (e)) in the form

[ —mip* +k(I-1,)-mgcosp=0,
ml —mlp* +k(I—1,)-mg cos ¢ ©)

lp+2ip+gsing=0.
By the notations /, =/, +m/k, p12 =k/m, p% = g/l; and by the change of variable
x =1-1,, the equations (b) become

i+ pix=(, +x)p? —g(l-cos o),
b+ p3 sino=—-= i, ©
L

thus obtaining a new system of non-linear differential equations.
We observe that one may find a particular solution for ¢ =0, the pendulum oscillating
in this case only along the vertical, after the law

X=X =x10 cos(plt—\u), o=¢; =0. (d)

This motion with the pulsation p, represents a natural mode of oscillation.
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Assuming that ¢ is very small and neglecting the powers of higher order of this
argument, the differential equations (c) become

i+ pix=0,

L (e)
o+p20=0;

in this case x and ¢ become normal co-ordinates, the two modes of vibrations being no

more couplEd. Although for a very small ¢ we obtain a system of non-coupled ODEs, a

reciprocal influence of the two oscillations is still possible. This appears in the form of

the instability of the basic oscillation x; = x]O cos(plt - \V) and ¢=0.

To study this phenomenon, we consider the motions in the neighbourhood of the

fundamental oscillation. Let thus be x =x,+y and ¢ ; we suppose that y and ¢ are

sufficiently small to may linearize the terms which appear. Replacing in the equations
(e), we get

. . X X, .
y+p12y=0,@(1+l—‘]+2l—1¢+p§¢=0- ()
1 1

Although the vibrations are non-coupled with respect to the parameters y and ¢, one

may see that ¢ depends on the fundamental motion x, = x{ cos(p,z— ). Because the
equation in @ has coefficients variable with the pulsation p,, by convenient changes of

function it may be brought to the form of a differential equation of Hill’s type with
variable coefficients, with the same pulsation p;. One may deduce that the solution of

the equation in ¢ may have also domains of instability for some ratios between the
pulsations p, and p,; this instability puts in evidence also the instability of the
fundamental oscillations x; , the reciprocal influence of the two oscillations being thus
proved.

Application 7.11

Problem. A Watt centrifugal regulator is composed of two rods O4 and OB of the
same length /, articulated at the point O of a vertical axle tree; at the ends of the rods
are two balls of equal masses m . Other two rods CD and CE are articulated to the first
ones at the points D and E and by a collar C, which slides along the axle tree; one
assumes that the quadrangle ODCE is a thomb of side a. One considers a modelling of
particle for the balls 4 and B (Fig.7.15). If the angular velocity of the axle tree
increases, then the rods move away, while the masses raise; at the same time, the collar
raises too, acting by a force P a system of levels which diminishes the admission of the
vapour in a motor. Neglecting the masses of the rods and of the collar, study the stability
of motion of the regulator.

Mathematical model. At a given moment, the position of the regulator is determined by
the rotation angle 6 of the plane of the regulator around the axle OC and by the angle
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¢ made by the rods O4 and OB with the axle tree in the plane of the regulator; the
mechanical system has thus two degrees of freedom. The moment of inertia of the parts
in rotation, without the balls 4 and B, with respect to the axis of the tree is /; the

moment of bringing back due to the variation Ap =¢@—¢, of the angle ¢ made by the
rod OA with the axis of the tree with respect to an angle @, in case of a constant
angular velocity ®, of the axle tree, is —kA(pz—k(q)—q)o), where k is a constant
coefficient.

Figure 7. 15. Watt’s centrifugal regulator
The motion of the regulator is composed from a rotation in its plane around an axis
normal to the plane around the OC -axis, with an angular velocity ¢ . The two axes are
principal axes of inertia, so that the kinetic energy reads

T:%(]lé2 +12é2), (a)
with
I, =1y +2ml*sin®> @, I, =2mi*; (b)
finally, we get
T =%[(10 +2ml* sin’ (p)éZ +2ml*§ ] (c)

Upon the regulator act the weights mg of the balls, the force P in the collar, the
moment —k((p—(po) and the reactions at O and C, which give a zero virtual work.

Assuming that only a virtual displacement &6 takes place, we obtain
W = —k((p O )86 ; hence it results the generalized force
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0y =—k(o-0,). @
As well, the virtual displacement 3¢ leads to
OW = Pdz, +mgdz , + mgdzz = Pdz, +2mgdz 4;
but z.=2acosq, z,=Icosq, so that SW =-2(aP+mgl)sindp, and the
corresponding generalized force is given by

0, = ~2(aP+mgl)sin ¢. (e)
We obtain thus Lagrange’s equations (see formula (e) in Appl.6.2)

d

. . 1.p0l .
5(Jle)=—k(¢—%), Iz(p—Eeza—(;:—Z(aP+mgl)sm(p. H

Solution. We search firstly the position of relative equilibrium of the regulator in its
plane, corresponding to the rotation with a constant velocity 0= ®, about the axis of the

tree; let be @, the angle corresponding to this position. Noting that ¢ =0, the second
equation (f) leads to sin (po(mco%l 2 cos ®o —aP—mgl)zO; one obtains thus two

positions of relative equilibrium for ¢, =0 and for coso, = (aP+mgl)/ mco%l 2 The

motion with a constant angular velocity ®, given by the second relation, for which we

assume that aP +mgl < mooél 2 is called motion of régime of the regulator.
We use now the equation (f) to study the small oscillations around this motion of régime.
We denote 9 =¢, +v, H= ®, + v . The first equation (f) is written in the form

4ml? sin<pcos<p¢é+llé = —k(q)—(po),
whence
2mil? sin 2((p0 +\|/)\i/(0)0 +y)+ l]o +2ml* sin’ ((p0 +\u)jy =-ky;
neglecting the powers of higher order (siny =y, cosy = 1), we obtain
(rg +2mi? sin® g Jy +2mi w2 sin 20 + ky =0.
The second equation (f) becomes
12(',6—2m1292 sin(pcosq)=—2(aP+mgl)sin(p (2)
or
1, —ml? (030 + y)2 sin? (‘Po + \|/) = —2(aP + mgl)sin((po + \|/) .

In the frame of the same approximations, we get
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V-, sin2(p0y+coé sin? ooy =0. (h)

The solutions of the system of equations (g), (h) are of the form y = AleM, Y= Aze“

and lead to the characteristic equation (the necessary and sufficient condition to have
non-zero A; and 4,)

a0K3 +a,h+a; =0, 1
where
_ 1o +sin? a =0, a, =2 sin’ 1+3cos? @, + Iy
0= 3 Po, a1 =V, a; =0 ?o Po E
2ml 2ml G)
_k .2
a; = P> W, sin” @ .

To have a stable motion, the real parts of the roots A must be negative (so that the
exponential does tend to zero for ¢ — o). In conformity to Hurwitz’s criterion, this
condition takes place if

a a3 0
a; a3
a, >0, 0 a|T @42~ s >0, la, a, O =a3(a1a2—a0a3)>0; (k)
0o %
0 a a

one may see that, in the considered case, these conditions are not verified and the motion
of régime is not stable. This fact, which is established experimentally too, imposes the
introduction of new elements in the regulator system.

Application 7.12

Problem. Study the motion of the centrifugal regulator in Fig.7.16. Each ball has the
mass m;, , the collar has the mass m,, the spring is of elastic constant &, while the four

rods are each one of length /; the weights of the rods and of the spring are negligible.
The moment of inertia of the collar with respect to the axis of rotation is /. Upon the
axis of the regulator acts a moment M . The regulator rotates with an angular velocity
o, the variation of which leads to a change of the distance of the balls to the rotation
axis, to a displacement of the collar and to a deformation of the spring; by a fitment acts
a valve which regulates the alimentation with fuel of the engine, so as to obtain a certain
angular velocity. We assume also that the collar is linked to a hydraulic damper which
yields a viscous force of resistance, the damping coefficient being c.

Mathematical model. We choose as generalized co-ordinates the angle ¢ of rotation
about the vertical axis and the angle o indicated in the figure, the system having thus
two degrees of freedom. We assume that the regulator is built up so as for a =0 the
spring be non-deformed; measured from this position of the collar, the distances s; and

s, indicated on the figure are given by s, =/(2—cosa), s, = 2/(1-cosa.).
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Figure 7. 16. Centrifugal regulator

The kinetic energy of the balls and of the collar, respectively, are
Ty =2(m, /2Wi, Ty =(my /203 +(1/2)p2.
Noting that the relative and the transportation velocities are orthogonal and that v, =la,
v, =(a+Isina)p, we get v =(a+Isina)’®? +/%d?. The collar has a motion of
rotation about the vertical axis with the angular velocity ¢ and a motion of translation
with the velocity v, =ds, /df = 2/asin a . Finally, the kinetic energy of the mechanical
system is given by
¢ &2

T=T+T, = [2m1 (a+1sin oc)2 + 1]7+ [2m212 +4m,yl? sin? a]T . (a)

The virtual work for a displacement compatible with the constraints is
OL = 0,60+ Q, 00 = M —2m, gds; —m,g0s, —ks,8s, —c$,05,,

where ks, is the elastic force in the spring, while c¢s, is the viscous resistant force.

Calculating ds;, ds, and s, and replacing in the above relation, we may write
W = Mdo+ [— 2m, glsina—2m,glsino — 412k(1 —cos oc)sin o —41% céusin? OLJB(x ,

so that the generalized forces are

Q,=M, Q, =-2Isin af(m, +m, )g +21k(1-cos o) + 2lcésin a]. (b)

Lagrange’s equations (formula (e), Appl.6.2) read
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[2ml(a+lsin o) +I]('(>+4ml(a+lsin a)palcosa =M,
my +2m, sin? oc)lzd +2m, 1% sin o cos o —m (a +1sin o )p?l cos a ()
=—/sin oc[(m1 +m, )g + 2lk(1 —cos oc)+ 2lcasin a]

and form a system of non-linear differential equations.

Solution. The goal of the regulator is, obviously, to maintain a constant angular velocity

®, of the axis. First of all, we determine the position of relative equilibrium of the

regulator corresponding to this angular velocity; thus the motion of the regulator will be
a motion of régime. Let be, in this case, o, the value of o and ¢ =, =const. As

¢®=0 and =0, itresults M =0 and
. 2 . .
my (a+1sin oy)og cos o —2kl(1—cos oy )sin oy —(m, +m, )gsino, =0, (d)

thus obtaining the link between the régime angular velocity o, , the position o, of the
regulator and the position of the collar s, :ZI(I—cos oco), a relation important in

design. To put in evidence the stability of the motion of régime, we assume that that one
is characterized by ®, and may be perturbed by the variation of the moment M . We

may write p=0=0,+®, and a =0, +0o,, where ®, and o, are small, so that we
may consider

sin(oco +a1)=sin Oy +0y Cosa, cos(on0 +oc1)=cosa0 —a,sino,
Moy +0,)=M(ag)+a, M (og)+...=a,M (o),

because M(oy)=0.

Replacing in the equations (c¢) and taking into account the equation (d), we obtain the
system

foo,+po, -Ma, =0,

héi, +bé, +do, — po, =0, ©
where
f=2m1(a+lsinoc0)2 +1, p=4m1(a+lsina0)m0 cosay, b=4cl?sin’ o,
h =2(m1 +2m, sin? ao)lz, 0

d = 20m03 [asina +1(25in® g —1)|
+4ki*(cos oy +2sin? a —1)+ 2(ml +m, )gl cos g ;
this system of linear ODEs determines the oscillations of the regulator about the motion

of régime. Searching the solutions of this system in the form o, = Ale“, o, = AzeM
we obtain the characteristic equation, which gives the pulsations
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2
hk3+bxz+(d+p7Jk—M’?:0; ()

the oscillations are damped if the exponential decreases in time, hence if the real part of
those equations is negative. According to Hurwitz’s theorem, this condition is fulfilled if
one verifies the conditions

h>0,b>0, b(d+p—2]—h(—M'£j>0, —mL b(d+p—2}+hM'£ >0;  (h)
A A A A f

as h >0, these conditions may be written in the form

2
b>0, M'<0, b d+2 |2
S S

The condition 5> 0 is fulfilled if there is a damping which satisfies the last condition

(1). The condition M'<0 is satisfied if, by a growth of the angle o, the regulator
provokes a decreasing of the driving moment.

Application 7.13

Problem. The axle tree of a rotor rests in a spherical hinge with the centre at the point O
(Fig.7.17). The weight of the system rotor-axle tree is P, the centre of gravity C being
situated above the point O, at the distance oc=1 | - The rotor is rotating with a constant
angular velocity @ about the vertical axis of symmetry of the system. The inferior
extremity of the axle tree is at the distance OM =1 of the fixed point O. Study the

stability of the motion of rotation of the system, knowing that the moment of inertia with
respect to the symmetry axis is /,, and with respect to any other axis normal to the first

one at the point O is I,.

Mathematical model. Let us consider the fixed frame of reference Oxyz, the axis Oz
being vertical. The position of the rotation axis at a given moment is specified by the
position M’ of the point M along the axis of the tree; at a certain moment, it coincides
with the axis OC, while the functions of time by means of which we may study the
vibrations are the co-ordinates x and y of the point M .

Because the elastic forces at the point M’ vanish, the differential equations of the
vibrations are written in the form

Lyj—1I,0i-1,Py=0; (@)

multiplying the second equation by i=+/—1 and introducing the complex variable
u = x+iy , we get the differential equation in u
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Lyii—il,ou—1,Pu=0. (b)

Figure 7. 17. Motion of a rotor-axle treee system

Solution. The characteristic equation
I,s* —il,os—1,P =0 ()

has the roots

S1a :i(ﬂlmaMQllP—lfmz), )
while the general solution of the differential equation (b) is

u= A" +4,e"; (e)
if the complex integration constants are of the form A4, = Cleio‘1 , Ay = CzeiOLz , where

C,, C,, oy, a, arereal integration constants, the solution is written in the form
u= Cles1t+la1 + Czesztﬂaz ) (f)

If 112(»2 <41,1,P, hence if o<w, = (2/[1 ),/IZIIP , then the roots (d) are of the form

s, =Fa+ib, where a=(1/21, \N4I,,P~1}o® >0, b=I,0/2],>0. In this case,

the general solution is written in the form
U= Cle—aHi(bHa]) + CzeaHi(hHocz) . (g)

One obtains thus the equations of motion
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x=Ce ™ cos(bt+a, )+ Cpe® cos(bt+a., ), ®

y=Cre ™ sin(bt +a, )+ Cre™ sin(br +a, ).
Noting that in the second term of the vibrations a factor increasing with time (a >0)
appears, the corresponding component has an increasing amplitude, so that the motion of
rotation of the system is labile. If Ilzo)2 =41,[,P, hence if o=0, :(2/11 WILP,

then the roots are equal, while the general solution is given by
u= (A] +A2[)es1t _ Clei(bzml) +C2tei(bt+a2)’ ()
so that the equations of motion are

x=C, cos(bt+a, )+ Cyt cos(bt + ., ),
y=C; sin(bt+(x1)+ Cztsin(bt+oc2).

@

In this case too, the amplitudes of the second component are increasing, and the motion
of rotation of the system is unstable too.

If 112(92 >41,1, P, hence if 0> o, :(2/11 )lellP , then the roots s,, =ip,,, with

DPip = (2 /1 {Ilaﬁ qlllz(nz - 41211Pj are purely imaginary. The general solution is
given by

u= Clei(PlHal) + Czei(PzH(lz) )
and the equations of motion are of the form

x=C, cos(p1t+(x1)+C2 cos(p2t+(x2), |
y=C, sin(p]t+otl)+C2 sin(p2t+oc2). @
Hence, the two natural modes of vibration are harmonic. The amplitudes of the
vibrations remain finite; that is, if ® > ®, the motion of rotation is stable. As we have
seen, the vertical position of equilibrium of the mechanical system is unstable; it remains
unstable for 0 < o < ®,, but becomes stable for ® > .
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Motion of a material point

Motion of a particle acted upon by

Newtonian attraction

Motion of a particle in a graviational fiekd

Motion of a particle on a surface

Oscillations around a stable position of

equilibrium

Relaxation

Repulsive elastic forces
Rigid solid with a fixed point
Simple pendulum

Stability of oscillations
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