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PREFACE 

This book has evolved from a course on optimization that I have taught at 
Stanford University for the past five years. It is intended to be essentially 
self-contained and should be suitable for classroom work or self-study. 
As a text it is aimed at first- or second-year graduate students in engineering, 
mathematics, operations research, or other disciplines dealing with opti­
mization theory. 

The primary objective of the book is to demonstrate that a rather large 
segmenToflne-"fielif-·ofbptfiniiation can be effectively unified by a few 
geometric principles of linear vector space theory. By use of these principles, 
important and complex infinite-dimensional problems;··"su"Cli" asihose 
generated by considleration of time functions, are interpreted and solved by 
methods springing from 9ur geometric insight. Concepts such as distance, 
orthogonality, and (;onvexity play fundamental" roles in this development. 
Viewed in these terms, seemingly diverse problems and techniques often 
are found to be intimately related. 

The essential mathematical prerequisite is a familiarity with linear 
algebra, preferably from the geometric viewpoint. Some familiarity with 
elementary analysis including the basic notions of sets, convergence, and 
continuity is assume:d, but deficiencies in this area can be corrected as one 
progresses through the book. More advanced concepts of analysis such as 
Lebesgue measure and integration theory, although referred to in a few 
isolated sections, arc~ not required background for this book. 

Imposing simple intuitive interpretations on complex infinite-dimen­
sional problems requires a fair degree of mathematical sophistication. 
The backbone of the approach taken in this book is functional analysis, 
the study of linear vector spaces. In an attempt to keep the mathematical 
prerequisites to a minimum while not sacrificing completeness of the develop­
ment, the early chapters of the book essentially constitute an introduction 
to functional analysis, with applications to optimization, for those having 
the relatively modest background described above, The mathematician or 
more advanced studlent may wish simply to scan Chapters 2, 3, 5, and 6 for 
review or for sections treating applications and then concentrat~ on the 
other chapters which deal explicitly with optimization theory. 

vii 



viii PREFACE 

The sequencing of the various sections is not necessarily inviolable. 
Even at the chapter level the reader may wish to alter his order of progress 
through the book. The course from which this text developed is two 
quarters (six months) in duration, but there is more material in the text 
than can be comfortably covered in that period. By reading only the first 
few sections of Chapter 3, it is possible to go directly from Chapters I and 2 
to Chapters 5, 7,8, and 10 for a fairly comprehensive treatment of optim­
ization which can be covered in about one semester. Alternatively, the 
material at the end of Chapter 6 can be combined with Chapters 3 and 4 for 
a unified introduction to Hilbert space problems. To help the reader make 
intelligent decisions regarding his order of progress through the book, 
sections of a specialized or digressive nature are indicated by an *. 

The problems at the end of each chapter are of two basic varieties. 
The first consists of miscellaneous mathematical problems and proofs 
which extend and supplement the theoretical material in the text; the second 
consists of optimization problems which illustrate further areas of appli­
cation and which hopefully will help the student formulate and solve 
practical problems. The problems represent a major component of the 
book, and the serious student will not pass over them lightly. 

I have received help and encouragement from many people during the 
years of preparation of this book. Of great benefit were comments and 
suggestions of Pravin Varaiya, E. Bruce Lee, and particularly Samuel 
Karlin who read the entire manuscript and suggested several valuable 
improvements. I wish to acknowledge the Departments of Engineering­
Economic Systems and Electrical Engineering at Stanford University for 
supplying much of the financial assistance. This effort was also partially 
supported by the Office of Naval Research and the National Science Fohn­
dation. Of particular benefit, of course, have been the faces of puzzled· 
confusion or of elated understanding, the critical comments and the sincere 
suggestions of the many students who have worked through this material 
as the book evolved. 

DAVID G. LUENBERGER 

Palo Alto, California 
August 1968 
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NOTATION 

Sets 

If x is a member of the set S, we write xeS. The notation y ¢ S means y is 
not a member of S. 

A set may be specified by listing its elements between braces such as 
S = {l, 2, 3} for the slet consisting of the first three positive integers. 
Alternatively, a set S may be specified as consisting of all elements of the 
set X which have the .property P. This is written S = {x e X: P(x}} or, if 
X is understood, S = {x: P(x}}. 

The union of two sets Sand T is denoted S u T and consists of those 
elements that are in either S or T. 

The intersection of two sets Sand T is denoted S ('\ T and consists of 
those elements that are in both Sand T. Two sets are disjoint if their 
intersection is empty. 

If S is defined as a subset of elements of X, the complement of S, denoted 
S, consists of those elements of X that are not in S. 

A set S is a subset of the set T if every element of S is also an element of 
T. In this case we write: SeT or T::> S. If SeT and S is not equal to T 
then S is said to be a proper subset of T. 

Sets of Real Numbers 

If a and b are real numbers, [a, b] denotes the set of real numbers x satis­
fying a:::;; X :::;; h. A rounded instead of square bracket denotes strict 
inequality in the definition. Thus (a, bJ denotes all x with a < x :::;; h. 

If S is a set of real numbers bounded ahove, then there is a smallest real 
number y such that x :~ y for all XES. 1 he number y is called the least 
upper bound or supremum of S and is denoted sup (x) or sup {x: XES} 

xeS 
If S is not bounded above we write sup (x) = 00. Similarly, the greatest 

xeS 

lower bound or infimum of a set S is denoted inf (x) or inf {x: XES}. 
xeS 

xv 



xvi NOTATION 

Sequences 

A sequence Xl, X 2 , ..• , X., •.• is denoted by {Xi}?"! or {Xi} if the range of 
the indices is clear. 

Let {Xi} be an infinite sequence of real numbers and suppose that there 
is a real number S satisfying: (I) for every E > 0 there is an N such that for 
all n > N, Xn < S + E, and (2) for every E > 0 and M > 0 there is an n > M 
such that Xn > S - E. Then S is called the limit superior of{xn} and we write 
S = lim sup X n . If {x.} is not bounded above we write lim sup Xn = + 00. 

n'" 00 

The limit inferior of Xn is lim inf Xn = - lim sup ( - xn). If lim sup Xn = lim 
inf Xn = S, we write lim Xn = S. 

Functions 

The function sgn (pronounced sig-num) of a real variable is defined by 

sgn (x) = ( ~ 
-1 

X>o 
x=O 
x<O 

The Kronecker delta function oij is defined by .. 

i=j 
i=j 

The Dirac delta function {) is used occasionally in heuristic discussions. 
It is defined by the relation 

b f /(t)1;(t) dt = /(0) 
a 

for every continuous function/provided that 0 E Ca, b). 

If 9 is a real-valued fUnction of a real variable we write S = lim sup g(x) 
X-"Xo 

if: (1) for every s> 0 there is 0 > 0 such that for all X satisfying Ix - xol 
< 0, g(x) < S + E, and (2) for every E > 0 and 0 > 0 there is anxsuchthat 
Ix - xol <" and g(x) > S - E. (See the corresponding definitions for 
sequences.) 

If 9 is a real-valued function of a real variable, the notation g(x) = O(x) 
means that 

. Ig(X) I K=hmsup -
X'" 0 X 

is finite. The notation g(x) = o(x) means that K, above, is zero. 



NOTATION xvii 

Matrices and Vedors 

A vector X with neomponentsis written x = (Xl' X;p ... , xn), but when used 
in matrix calculations it is represented as a column vector, i.e., 

The corresponding row vector is 

X' = Xl X2 •.. Xn 
, I 

An n x m matrilx A with entry ail in its i-th row andj-th column is written 
A = [aij]' If X = (Xl' X2, ... , xn), the product Ax is the vector y with com­
ponents Yt = Li"'l alri, i = 1, 2, ... , m. 

Letj(xl' X2, ... ,. xn) be a function of the n real variables Xi' Then we 
write I" for the row vector 

oj oj oj 
ax;' OX2'"'' Oxn ' , 

If F = (fl , f2' ... ,1m) is a vector function of X = (Xl, ••• , xn), we write 
F" for the m x n Jacobian matrix [ofi/oxj]' 





1 
INTRODtrCTION 

1.1 Motivation 

During the past twenty years mathematics and engineering have been 
increasingly directed towards proble~ IS of decision making in physical or 
organizational systems. This trend has been inspired primarily by the 
significant economic benefits which often result from a proper decision 
concerning the distribution of expensive resources, and by the repeated 
demonstration that such problems can be realistically formulated and 
mathematically aMlyzed to obtain good decisions. 

The arrival of high-speed digital computers has also played a major 
role in the development of the science of decision making. Computers 
have inspired the development of larger systems and the coupling of 
previously separate systems, thereby resulting in decision and control 
problems of correspondingly increased complexity. At the same time, 
however, comput(~rs have revolutionized applied mathematics and solved 
many of the complex problems they generated. 

It is perhaps natural that the concept of best or optimal decisions should 
emerge as the fundamental approach for formulating decision· problems. 
In this approach Ii single real quantity, summarizing the performance or 
value of a decision, is isolated and optimized (Le., either maximized or 
minimized depending on the situation) by proper selection among available 
alternatives. The resulting optimal decision is taken as the solution to the 
decision problem. This approach to decision problems has the virtues of 
simplicity, precisell1ess, elegance, and, in many cases, mathematical tract­
ability. It also has obvious limitations due to the necessity of selecting a 
single objective by which to measure results. But optimization has proved 
its utility as a mode of analysis and is firmly entrenched in the field of 
decision making. 

_Nllcll ... of the classical theory of optimization, motivated primarily by 
problems of physics, is associated with great mathematicians: Gauss, 
. I .. 
Lagrange, Euler, the Bernoulis, etc. During the recent development of 
optimization in decision problems, the classical techniques have been reo 
examined, extended, sometimes rediscovered, and applied to problems 
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having quite different origins than those responsible for their earlier 
development. New insights have been obtained and new techniques have 
been discovered. The computer has rendered many techniques obsolete 
while making other previously impractical methods feasible and efficient. 
These recent developments in optimization have been made by mathe­
maticians, system engineers, economists, operations researchers, statis­
ticians, numerical analysts, and others in a host of different fields. 

The study of optimization as an independent topic must, of course, be 
regarded as a branch of applied mathematics. As such it must look to 
various areas of pure mathematics for its unification, clarification, and 
general foundation. One such area of particular relevance is functional 
analysis. 

Functional analysis is the study of vector spaces resulting from a 
merging of geometry, linear algebra, and analysis. It serves as a basis for 
aspects of several important branches of applied mathematics including 
Fourier series, integral and differential equations, numerical analysis, and 
any field where linearity plays a key role. Its appeal as a unifying discipline 
stems primarily from its geometric character. Most"Of the principal results 
in functional analysis are expressed as abstractions of intuitive geometric 
properties of ordinary three-dimensional space. 

Some readers may look with great expectation toward functional 
analysis, hoping to discover new powerful techniques that will enable them 
to solve important problems beyond the reach of simpler mathematical 
analysis. Such hopes are rarely realized in practice. The primary utility 
of functional analysis for the purposes of this book is its role as a unifying 
discipline, gathering a number of apparently diverse, specialized mathe­
matical tricks into one or a few general geometric principles. 

1.2 Applications 

The main purpose of this section is to illustrate the variety of problems 
that can be formulated as optimization problems in vector space by intro­
ducing some specific examples that are treated in later chapters. As a 
vehicle for this purpose, we classify optimization problems according to 
the role of the decision maker. We list the classification, briefly describe 
its meaning, and illustrate it with one problem that can be formulated in 
vector space and treated by the methods described later in the book. The 
classification is not intended to be necessarily complete nor, for that matter, 
particularly significant. It is merely representative of the classifications 
often employed when discussing optimization. 

Although the formal definition of a vector space is not given until 
Chapter 2, we point out, in the examples that follow, how each problem 
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can be regarded as formulated in some apprc ..... riate vector space. However, 
the details of the formulation must, in many cases, be deferred until later 
chapters. 

1. Allocation. In aIle,cation problems there is typically a collection of 
resources to be distributed in some optimal fashion. Almost any optimiza­
tion problem can be placed in this broad category, but usually the term 
is reserved for problems in which the resources are distributed over space 
or among various activlities. 

A typical problem of this type is that faced by a manufacturer with an 
inventory of raw materials. He has certain processing equipment capable 
of producing n different kinds of goods from the raw materials. His 
problem is to allocate the raw materials among the possible products so 
as to maximize his profitt. 

In an idealized version of the problem, we aSsume that the production 
and profit model is linear. Assume that the selling price per unit of product 
j is P J' j = 1, 2, ... , n. If x J denotes the amount of product j that is to be 
produced, b i the amount of raw material i on hand, and aij the amount of 
material i in one unit of product j, the manufacturer seeks to maximize 
his profit 

.PIXI + P2 X2 + ... + PnXn 

subject to the production constraints on the amount of raw materials 

allx1 + a 12 x 2 + ... + a1nXn ~ bl 

a21 x I + a 2 2 x 2 + ... + a 2n Xn ~ b2 · . · . · . 
amlx1 + a m2 X 2 + ... + amnXn ~ bm ' 

and 

This type of problem, characterized by a linear objective function subject 
to linear inequality constraints, is a linear programming problem and is 
used to illustrate aspects of the general theory of optimization in later 
chapters. 

We note that the problem can be regarded as formulated in ordinary 
n-dimensional vector space. The vector x with components Xi is the un­
known. The constraints define a region h_ the vector space in which the 
selected vector must lie. The optimal vector is the ~one in that region 
maximizing the objectiv(~. . 

The manufacturing problem can be generalized to allow for nonlinear 
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objectives and more general constraints. Linearity is destroyed, which may 
make the solution more difficult to obtain, but the problem can still be 
regarded as one in ordinary Euclidean n-dimensional space. 

2. Planning. Planning is the problem of determining an optimal pro­
cedure for attaining a set of objectives. In common usage, planning refers 
especially to those problems involving outlays of capital over a period of 
time such as (1) planning a future investment in electric power generation 
equipment for a given geographic region or (2) determining the best hiring 
policy in order to complete a complex project at minimum expense. 

As an example, consider a problem of production planning. A firm 
producing a certain product wishes to plan its production schedule over a 
period of time in an optimal fashion. It is assumed that a fixed demand 
function over the time interval is known and that this demand must be met. 
Excess inventory must be stored at a storage cost proportional to the 
amount stored. There is a production cost associated with a given rate of 
production. Thus, denoting x(t) as the stock held at time t, ret) as the rate 
of production at time t, and d(t) as the demand at time t, the production 
system can be described by the equations! 

x(t) = r(t) - d(t), x(O) given 

and one seeks the function r satisfying the inequality constraints 

r(t) ;;::: 0,] 
x(O) + J~ [r(r) - d(r)] clr = X(/) ;;::: ° 

and minimizing the cost 

for 0::::; t ::; T 

.T 
J = 10 {c[r(t)] + h . x(t)} dt 

where c[r] is the production cost rate for the production level rand h . x 
is the inventory cost rate for inventory level x. 

This problem can be regarded as defined on a vector spffCe consisting of 
continuous functions on the interval [0, T] of the real line. The optimal 
production schedule r is then an element of the space. Again the con­
straints define a region in the space in which the solution r must lie while 
minimizing the cost. 

3. Control (or Guidance). Problems of control are asso.::iated with dy­
namic systems evolving in time. Control is quite similar to planning; 

1 x(t) == dx(t)fdt. 
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indeed, as we shall see, it is often the source of a problem rather than its 
mathematical structure which determines its category. 

Control or guidance usually refers to directed influence on a dynamic 
system to achieve desired performance. The system itself may be physical 
in nature, such as a rocket heading for Mars or a chemical plant processing 
acid, or it may be operational such as a warehouse receiving and filling 
orders. 

Often we seek fee:dback or so-called closed-loop control in which de­
cisions of current control action are made continuously in time based on 
recent observations of system behavior. Thus, one may imagine himself as 
a controller sitting at the control panel watching meters and turning knobs 
or in a warehouse ordering new stock based on inventory and predicted 
demand. This is in contrast to the approach described for planning in 
which the whole series of control actions is predetermined. Generally, 
however, the terms planning or control may refer to either possibility. 

As an example of a control problem, we consider the launch of a rocket 
to a fixed altitude h in given time T while expending a minimum of fuel. 
For simplicity, we assume unit mass, a constant gravitational force, and 
the absence of aerodynamic forces. The motion of a rocket being propelled 
vertically is governed by the equations 

ji(t) = u(t) - 9 

where y is the vertical height, u is the accelerating force, and 9 is the 
gravitational force. The optimal control function u is the one which 
forces yeT) = h while minimizing the fuel expenditure JJ lu(t)1 dt. 

This problem too might be formulated in a vector space consisting of 
functions u defined on the interval [0, .J. J. The solution to this problem, 
however, is that u(t) consists of an impulse at t = 0 lnd, therefore, correct 
problem formulation and selection of an appropriate vector space are 
themselves interestilllg aspects of this example. Problems of this type, in­
cluding this specific example, are dilicussed in Chapter 5. 

4. Approximation!. Approximation problems are motivated by the desire 
to approximate a gcmeral mathematical entity (such as a function) by one 
of simpler, specified! form. A large class of such approximation problems 
is important in numerical analysis. For example, suppose we wish, because 
of storage limitatiol1ls or for purposes of simplifying an analysis, to approxi­
mate a function, say x(t), over an interval [a, b] of the real line by a poly­
nomial p(t) of ord(:r n. The best approximating polynomial p minimizes 
the error e = x - p in the sense of some criterion. The choice of criterion 
determines the approximation. Often used criteria are: 
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IJ 
1: JeZ(t) dt 

a 

2. max le(t)1 
a,;;r,;;b 

b 

3. fle(t)1 dt. 
a 

The problem is quite naturally viewed as formulated in a vector space 
of functions over the interval [a, b]. The problem is then viewed as finding 
a vector from a given class (polynomials) which is closest to a given vector. 

5. Estimation. Estimation problems are really a special class of approxi­
mation problems. We seek to. estimate some quantity from imperfect 
observations of it or from observations which are statistically correlated 
but not deterministically related to it. Loosely speaking, the problem 
amounts to approximating the unobservable quantity by a combination of 
the observable ones. For example, the position of a random maneuvering 
airplane at some future time might reasonably be estimated by a linear 
combination of past measurements of its position. 

Another example of estimatio'n arises in connection with triangulation 
problems such as in location of forest fires, ships at sea, or remote stars. 
Suppose there are three lookout stations, each of which measures the angle 
of the line-of-sight from the station to the observed object. The situation is 
illustrated in Figure 1.1. Given these three angles, what is the best estimate 
of the object's location? 

• 

Figure 1.1 A triangulation problem 

To formulate the problem completely, a criterion must be precisely 
prescribed and hypotheses specified regarding the nature of probable 
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measurement errors and probable location of the object. Approaches can 
be taken that-result.in a problem form~lated in vector space; such prob­
lems are discussed in Chapter 4. 

6. Games. Many problems involving a competitive element can be 
regarded as games. In the usual formulation, involving two players or 
protagonists, there is an objective function whose value depends jointly on 
the action employed by both players. One player attempts to maximize 
this objective while the other attempts to minimize it. 

Often two problems from the categories discussed above can be com­
petitively intermixed to produce a game. Combinations of categories that 
lead to interesting games. include: allocation-allocation, allocation-control, 
control-control, and estimation-control. 

As an example, consider a control-con~rol game. Most problems of this 
type are of the pursuer-evader type such as a fighter plane chasing a 
bomber. Each player has a system he control~ but one is trying to maximize 
the objective (time to intercept for instance) while the other is trying to 
minimize the objective. 

As a simpler example, we consider aproblem of advertising or campaign­
ing which is essentially an allocation-allocation game.2 Two opposing 
candidates, A and B, am running for office and must plan how to allocate 
their advertising resources (A and B dollars, respectively) among n distinct 
geographical areas. Let Xj and y{ denote, respectively, the resources com­
mitted to area i by candidates A and B. We assume that there are currently 
a total of u undecided votes of which there are U j undecided votes in area i. 
The number, of votes going to candidates A and B from area'i are assumed 
to be 

X{Uj 
---, 
XI+ Y{ 

respectively. The total difference between the number of votes received by 
A and by B is' then 

~ XI-YI 
L." --- UI' 

1= 1 ;'(j'" Yj 

Candidate A seeks to maximize this quantity while B seeks to minimize it. 
This problem is obviously finite dimensional and can be solved by 

ordinary calculus in a fe:w lines. It is illustrative, however, of an interesting 
class of game problems .. 

2 This problem is due to L. Friedman [57J. 
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1.1 The Main PrInciples 

The theory of optimization presented in this book is derived from a few 
simple, intuitive, geometric relations. The extension of these relations to 
infinite-dimensional spaces is the motivation for the mathematics of 
functional analysis which, in a sense, often enables us to extend our three­
dimensional geometric insights to complex infinite-dimensional problems. 
This is the conceptual utility of functional analysis. On the other hand, 
these simple geometric relations have great practical utility as well because 
a vast assortment of problems can be analyzed from this point of view. 

In this section, we briefly describe a few of the important geometric 
principles of optimization that are developed in detail in later chapters. 

1. The Projection Theorem. This theorem is one of the simplest and 
nicest results of optimization theory. In ordinary three-dimensional 
Euclidean space, it states that the shortest line from a point to a plane is 
furnished by the perpendicular from the point to the plane, as illustrated 
in Figure 1.2. 

Figure 1.2 The projection theorem 

This simple and seemingly innocuous result has direct extensions in 
spaces of higher dimension and in infinite-dimensional Hilbert space. In 
the generalized form, this optimization principle forms the basis of all 
least-squares approximation, control, and estimation procedures. 

2. The Hahn-Banach Theorem. Of the many results and concepts in 
functional analysis, the one theorem dominating the theme of this book 
and embodying the essence of the simple geometric ideas upon which 
the theory is built is the Hahn-Banach theorem. The theorem takes several 
forms. One version extends the projection theorem to problems having 
nonquadratic objectives. In this manner the simple geometric interpretation 
is preserved for these more complex problems. Another version of the 
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Hahn-Banach theorem states (in simplest form) that given a sphere and a 
point not in the sphere there is a hyperplane separating the point and the 
sphere; This version of the theorem, together with the associated notions 
of hyperplanes, is the basis for most of the theory beyond Chapter 5. 

3. Duality. There are several duality principles in optimization theory 
that relate a probllem expressed in terms of vectors in a space to a problem 
expressed in terms of hyperplanes in the space. This concept of duality is 
a recurring theme in this book. 

Many of these duality principles are based on the geometric relation 
illustrated in Figure 1.3. The shortest distance from a point to a convex 
set is equal to the: maximum of the distances from the point to a hyper­
plane separating the point from the convex set. Thus, the original mini­
mization over vectors can be converted to maximization over hyperplanes. 

Figure 1.3 Duality 

4. Differentials. Perhaps the most familiar optimization technique is 
the method of dHferential calculus-setting the derivative of the objective 
function equal to zero. The technique is discussed for a single or, perhaps, 
finite number of variables in the most elementary courses on differential 
calculus. Its extension to infinite-dimensional spaces is straightforward and, 
in that form, it can be applied to a variety of interesting optimization prob­
lems. Much of the classical theory of the calculus of variations can be 
viewed as a consequence of this principle. 

The geometric interpretation of the technigue for one-dimensional 
problems is obviQus. At a maximum or minimum the tangent to the graph 
of a function is horizontal. In higher dimensions the geometric interpreta­
tion is similar: at a maximum or mmimum the tangent hyperplane to the 
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graph is horizontal. Thus, again we are led to observe the fundamental 
role of hyperplanes in optimization. 

1.4 Organization of the Book 

Before our discussion of optimization can begin in earnest, certain funda­
mental concepts and results of linear vector space theory must be intro­
duced. Chapter 2 is devoted to that task. The chapter consists of material 
that is standard, elementary functional analysis background and is essen­
tial for further pursuit of our objectives. Anyone having some familiarity 
with linear algebra and analysis should have little difficulty with this 
chapter. 

Chapters 3 and 4 are devoted to the projection theorem in Hilbert space 
and its applications. Chapter 3 develops the general theory, illustrating it 
with some applications from Fourier approximation and optimal control 
theory. Chapter 4 deals solely with,the applications of the projection 
theorem to estimation problems including the recursive estimation and 
prediction of time series as developed by Kalman. 

Chapter 5 is devoted to the Hahn-Banach theorem. It is in this chapter 
that we meet with full force the essential ingredients of the general theory 
of optimization: hyperplanes, duality, and convexity. 

Chapter 6 discusses linear transformations on a vector space and is the 
last chapter devoted to the elements of linear functional analysis. The 
concept of duality is pursued in this chapter through the introduction of 
adjoint transformations and their relation to minimum norm problems. 
The pseudoinverse of an operator in Hilbert space is discussed. 

Chapters 7, 8, and 9 consider general optimization problems in linear 
spaces. Two basic approaches, the local theory leading to differential 
conditions and the global theory relying on convexity, are isolated and 
discussed in a parallel fashion. The techniques in these chapters are a direct 
outgrowth of the principles of earlier chapters, and geometric visualization 
is stressed wherever possible. In the course of the development, we treat 
problems from the calculus of variations, the Fenchel conjugate function 
theory, Lagrange multipliers, the Kuhn-Tucker theorem, and Pontryagin's 
maximum principle for optimal control problems. 

Finally, Chapter 10 contains an introduction to iterative techniques for 
the solution of optimization problems. Some techniques in this chapter 
are quite different than those in previous chapters, but many are based on 
extensions of the same logic and geometrical considerations found to be so 
fruitful throughout the book. The methods discussed include successive 
approximation, Newton's method, steepest descent, conjugate gradients, 
the primal-dual method, and penalty functions. 
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LINEAR SPACES 

2.1 Introduction 

The first few sections of this chapter introduce the concept of a vector 
space and explon: the elementary properties resulting from the basic 
definition. The notions of subspace, linear independence, convexity, and 
dimension are developed and illustrated by examples. The material is 
largely review for most readers since it duplicates the first part of standard 
courses in linear algebra. 

The second part of the chapter discusses the basic properties oLnormed 
linear spaces. A normed linear space is a vector space having a measure of 
distance or length defined on it. With the introduction of a norm, it 
becomes possible to define analytical or topological properties such as 
convergence and open and closed setS. Therefore, that portion of the 
chapter introduces and explores these basic concepts which distinguish 
functional analysis. from linear algebra. 

VECTOR SPACES 

2.2 Definition and Examples 

Associated with every vector space is a set of scalars used to define scalar 
multiplication on the space. In the most abstract Jetting these scalars are 
required only to he elements of an algebraic field. However, in this book 
the scalars are always taken to be either the set of real numbers or of 
complex numbers. We sometimes distinguish between these possibilities 
by referring to a vector space as either a real or a complex vector space. In 
this book, however, the primary emphasis is on real vector spaces and, 
although occasional reference is made to complex spaces, many results 
are derived only for real spaces. In case of ambiguity, the reader should 
assume the space to be real. 

Definition. A vector space X is a set of elements called vectors together 
with two operations. The first operation is addition which associates with 

11 
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any two vectors X, y E X a vector X + Y E X, the sum of X and y. The 
second operation is scalar multiplication which associates with any vector 
x E X and any scalar IX a vector IXX; the scalar multiple of x by IX. The set X 
and the operations of addition and scalar mUltiplication are assumed to 
satisfy the foIlowing axioms: 

1. x + y = y + x. 
2. (x + y) + z = x + (y + z). 
3. There is a null vector 0 in X such 

that x + 0 = x for all x in X. 
4. IX(X + y) = IXX + lXy. } 
5. (IX + f3)x = IXX + [3x. 
6. (1X[3)X = 1X([3X). 
7. Ox=O, 1x=x. 

(commutative law) 
(associative law) 

(distributive laws) 

(associative law) 

\ 
For convenience the vector -1 x is denoted -x and called the negative 

of the vector x. We have oX + (-x) = (1 - l)x = Ox = O. 
There are several elementary but important properties of vector spaces 

that foIlow directly from the axioms listed in the definition. For example 
the following properties are easily deduced. The details are left to the 
reader. 

Proposition 1. III any vector space: 

1. x + y = x + z implies y = z. 1 
2. IXX = lXy and IX t= 0 imply x = y. 
3. IXX = [3x and x t= 0 imply IX = [3. 

(cancellation, laws) 

4. (IX - [3)x = IXX - [3x. } 
5. IX(X - y) = IXX - lXy. 

(distributive laws) 

6. IXO = O. 

Some additional properties are given as exercises at the end of the 
chapter. 

Example 1. Perhaps the simplest example of a vector space is the set of 
real numbers. It is a real vector space with addition defined in the usual 
way and multiplication by (real) scalars defined as ordinary multiplication. 
The null vector is the real number zero. The properties of ordinary addition 
and multiplication of real numbers satisfy the axioms in the definition of a 
vector space. This vector space is called the one-dimensional real co­
ordinate space or simply the real line. It is denoted by Rl or simply R. 

Example 2. An obvious extension of Example 1 is to n-dimensional real 
coordinate space. Vectors in the space consist of sequences (n-tupJe'J) of 
n real numbers so that a typical vector has the form x = (~l' ~2' ... , ~n)' 
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The real number 'k is referred to as the k-th component of the vector. Two 
vectors are equal if their corresponding components are equal. The null 
vector is defined as e = (0, 0, ... ,0). If x = (el, e2, ... , en) and y = 
(th, Yl2, ... , YIn), the vector x + y is defined as the n-tuple whose k-th 
component is ek + Ylk' The vector ax, where a is a (real) scalar, is the 
n-tuple whose k-th component is aek. The axioms in the definition are 
verified by checking for equality among components. For example, if 
x = (e1, e2, " ., en), the relation ek + 0 = ek implies x + e = x. 

This space, n-dimensional real coordinate space, is denoted by Rn. The 
corresponding complex space consisting of n-tuples of complex numbers 
is denoted by en. 

At this point WI~ are, strictly speaking, somewhat prematurely intro­
ducing the term dimensionality. Later in this chapter the notion of dimen­
sion is defined, and it is proved that these spaces are in fact n dimensional. 

Example 3. Several interesting vector spaces can be constructed with 
vectors consisting of infinite sequences of real numbers so that a typical 
vector has the form x = (e 1, e2, ... , ek> ... ) or, equivalently, x = {ek} k~l' 
Again addition and multiplication.re defined componentwise as in 
Example 2. The collection of all infinite sequences of real numbers forms 
a vector space. A sequence {ek} is said to be bounded if there is a constant 
M such that lekl -< M for all k. The collection of all bounded infinite 
sequences forms a vector space since the sum of two bounded sequences 
or the scalar multiple of a bounded sequence is again bounded. This space 
is referred to as the space of bounded real sequences. 

Example 4. The collection of all sequences of real numbers having only a 
finite number of terms not equal to zero is a vector space. (Different 
members of the spa<ee may have different numbers of nonzero components.) 
This space is called the space of finitely nonzero sequences. 

Example 5. The collection of infinite sequences of real numbers which 
converge to zero is a vector space since the sum of two sequences con­
verging to zero or the scalar multiple of a sequence converging to zero also 
converges to zero. 

Example 6. Consider the interval [a, b] on the real line. The collection of 
all real-valued continuous functions on this interval forms a vector space. 
Write x = y if x(t) := y(t) for all t E [a, b]. The null vector e is the function 
identically zero on [a, b]. If x and yare vectors in the space and (J( is a 
(real) scalar, write (x + y)(t) = x(t) + y(t) and (~x)(t) = (J(x(t). These are 
obviously continuous functions. This space is referred to as the vector 
space of real-valued continuous functions on [a, b]. 
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Example 7. The collection of all polynomial functions defined on the 
interval [a, b] with complex coefficients forms a complex vector space. 
The null vector, addition, and scalar multiplication are defined as in 
Example 6. The sum of two polynomials and the scalar multiple of a 
polynomial are themselves polynomials. 

We now consider how a set of vector spaces can be combined to produce 
a larger one. 

Definition. Let X and Y be vector spaces over the same field of scalars. 
Then the Cartesian product of X and Y, denoted X x Y, consists of the 
collection of ordered pairs (x, y) with x E X, Y E Y. Addition and scalar 
multiplication are defined on X x Y by (Xl' Yl) + (X2' Y2) = (Xl + X2, 
Yl + Y2) and (X(x, y) = «(Xx, (Xy). 

That the above definition is tonsistent with the axioms of a vector space 
is obvious. The definition is easily generalized to the product of n vector 
spaces Xl' X2 , ••• , Xn. We write Xn for the product of a vector space 
with itself n times. 

2.3 Subspaces, Linear Combinations, and Linear Varieties 

Definition. A nonempty subset M of a vector space X is called a subspace 
of X if every vector of the form (Xx + f3y is in M whenever x and yare 
both in M. 

Since a subspace is assumed to be nonempty, it must contain at least 
one element x. By definition, it must then also contain Ox = e, so every 
subspace contains the null vector. The simplest subspace is the set con­
sisting of e alone. In three-dimensional space a plane that passes through 
the origin is a subspace as is a line through the origin. 

The entire space X is itself a subspace of X. A subspace not equal to the 
entire space is said to be a proper subspace. 

Any subspace contains sums and scalar multiples of its elements; 
satisfaction of the seven axioms in the entire space implies that they are 
satisfied within the subspace. Therefore a subspace is itself a vector space 
and this observation justifies the terminology. 

If X is the space of n-tuples, the set of n.tuples having the first com· 
ponent equal to zero is a subspace of X. The space of convergent infinite 
sequences is a subspace of the vector space of bounded sequences. The 
space of continuous functions on [0, 1] which are zero at the point one­
half is a subspace of the vector space of continuous functions. 

In three-dimensional space, the intersection of two distinct planes 
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containing the origin is a line containing the origin. This is a special case 
of the following result 

Proposition 1. Let M and N be subspaces of a nee tor space X. Then the 
intersection, M n N, of M and N is a subspace of x. 

Proof M n N contains 0 since 0 is contained in each of the subspaces 
M and N. Therefore, M n N is nonemptj . If x and yare in M n N, they 
are in both M and N. For any scalars IX, f3 the vector ('IX + f3y is contained 
in both M and N since M and N are subspaces. Therefore, IXX + f3y is 
contained in the intersection M n N. I 

The union of two subspaces in a vector space is not necessarily a sub­
space. In the plane, for example, the union of two (noncolinear) lines 
through the origin does not contain arbitrary sums of its elements. How­
ever, two subspaces may be combined to form a larger subspace by intro­
ducing the notion of the sum of two sets. 

Definition. The sum of two subsets Sand T in a vector space, denoted 
S + T, consists of all vectors of the form s + t where s E Sand t E T. 

The sum of two sets is illustrated in Figure 2.1. 

Figure 2.1 The sum of two sets 

Proposition 2. Let M and N be subspaces of a vector space X. Then their 
sum, M + N, is a subspace of X. I 

Proof Clearly M + N contains e. Suppose x and yare vectors in 
M + N. There are vectors m1, m z in M and vectors nl' nz in N such.that 
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x = tnl + nr,y = m 2 + nz. For any scalars a, p; ax + py = (aml + Pm2) + 
(anl + Pn2)' Therefore, ax + py can be expressed as the sum of a vector 
in the subspace M and a vector in the subspace N. I 

1n two-dimensional Euclidean space the sum of two noncolinear lines 
through the origin is the entire space. The set of even continuous functions 
and the set of odd continuous functions are subspaces of the space X of 
continuous functions on the real line. Their sum is the whole space X 
since any continuous function can be expressed as a sum of an even and 
an odd continuous function. 

Definition. A linear combination of the vectors Xl' X 2 , ••• , Xn in a vector 
space is a sum of the form alxl + a2x2 + ... + anxn. 

Actually, addition Ihas been defined previously only for a sum of two 
vectors. To form a sum consisting of n elements, the sum must be performed 
two at a time. It follows from the axioms, however, that analogous to the 
corresponding operations with real numbers, the result is independent of 
the order of summation. There is thus no ambiguity in the simplified 
notation. 

It is apparent that a linear combination of vectors from a subspace is 
also in the subspace. Conversely, linear combinations can be used to 
construct a subspace from an arbitrary subset in a vector space, 

Definition. Suppose S is a subset of a vector space X. The set [S], called 
the subspace generated by S, consists of all vectors in X which are linear 
combinations of vectors in S. 

The verification that [S] is a subspace in X follows from the obvious 
fact that a linear combination of linear combinations is also a linear 
combination. 

There is an interesting characterization of the subspace [S]. The set S 
is, in general, wholly contained in a number of subspaces. Of these, the 
subspace [S] is the smallest in the sense that if M is a subspace containing 
S, then M contains [SJ. This statement is proved by noting that if the 
subspace M contains S, it must contain all linear combinations from S. 

In three-dimensional space the subspace generated by a two-dimensional 
circle centered at the origin is a plane. The subspace generated by a plane 
not passing through the origin is the Whole space. A subspace is a generali­
zation of OUI intuitive notion of a plane or line through the origin. The 
translation of a subspace, therefore, is a generalization of an arbitrary 
plane or line. 

Definition. The translation of a subspace is said to be a linear variety. 
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A linear varietyl V can be written as V = Xo + M where M is a sub:­
space. In this representation the subspace M is unique, but any vector in 
V can serve as xo. This is illustrated in Figure 2.2. 

Given a subset S, we can construct the smallest linear variety contain­
ing S. 

\M 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

8 

Figure 2.2 A linear variety 

Definition. Let S be a nonempty subset of a vector space X. The linear 
variety generated by S, denoted v(S) is defined as the intersection of all 
linear varieties in X that contain S. 

We leave it to the reader to justify the above definition by showing that 
v(S) is indeed a llinear variety. 

2.4 Convexity and Cones 

We come now to the topic that is responsible for a surprising number of 
the results in this book and which generalizes many of the useful properties 
of subspaces andllinear varieties. 

Definition. A set K in a linear vector space is said to be convex if, given 
Xl' X2 e K, all points of the form /Xx! + (1 - ct)X2 with 0 S; IX S; 1 are in K. 

This definition merely says that given two points in a convex set, the line 
segment between them is also in the set. Examples are shown in Figure 2.3 
Note in particular that subspaces and linear varieties are convex. The 
empty set is con!lidered convex. 

1 Other names for a linear variety include: flat, affine subspace, and linear manifold. 
The term linear manifold, although commonly used, is reserved by many authors as an 
alternative term for subspace. 
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09 
Convex Nonconvex 

Figure 2.3 Convex and nonconvex sets 

The following relations for convex sets are elementary but important. 
Their proofs are left to the reader. 

Proposition 1. Let K and G be convex sets in a vector space. Then 

1. rxK = {x: x = rxk, k E K} is convex for any scalar rx. 
2. K + G is convex. 

We also have the following elementary property. 

Proposition 2. Let Ctf be an arbitrary collection of convex sets. Then 
n K E 'I K is convex. 

Proof Let C = nK e'G K. If C is empty, the lemma is trivially proved. 
Assume that Xl' X2 E C and select rx, 0::;; Or: ::;; 1. Then Xl' x2 E K for all 
K E Ctf, and since K is convex, rxXl + (1 - rx)X2 E K for all K E Ctf. Thus 
rxxl + (1 - rx)X2 E C and C is convex. I 

Definition. Let S be an arbitrary set in a linear vector space. The convex 
cover or convex hull, denoted co(S) is the smallest convex set containing 
S. In other words, co(S) is the intersection of all convex sets containing S. 

Note that the justification of this definition rests with Proposition 2 
since it guarantees the existence of a smallest convex set containing S. 
Some examples of a set and its convex hull are illustrated in Figure 2.4. 

Definition. A set C in a linear vector space is said to be a cone with vertex 
at the origin if x E C implies that rxx E C for all rx ~ O. 

Figure 2.4 Convex hulls 
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Several cases are shown in Figure 2.5. A cone with vertex p is defined as a 
translation p + C of a cone C with vertex at the origin. If the vertex of a 
cone is not e1{plicitly mentioned, it is assumed to be the origin. A convex 
cone is, of course, defined as a set which is both convex and a cone. Of 
the cones in Figure 2.5, only (b) is a convex cone. Cones again generalize 
the concepts of subspace and linear variety since both of these are convex 
cones. 

(a) (b) 

Figure 2.5 Cones 

(c) 

Convex cones usually arise in connection with the definition of positive 
vectors in a vector space. For instance, in n-dimensional real coordinate 
space, the set 

p = {x : x = gl' ~2' ... , ~"}, ~i ~ 0 all i}, 

defining the positive orthant, is a convex cone. Likewise, the set of all 
nonnegative continuous functions is a convex cone in the vector space of 
continuous functions. 

2.5 Linear Independence and Dimension 

In this section we first introduce the concept of linear independence, which 
is important for any general study of vector space, and then review the 
essential distinguishing features of finite-dimensional space: basis and 
dimension. 

Definition. A vector x is said to be linearly dependent upon a set S of 
. vectors if x can be expressed as a linear combination of vectors from S. 
Equivalently, x: is linearly dependent upon S if x is in [S], the subspace 
generated by S. Conversely, the vector x is saJ.d to be linearly independent 
of the set S if it is not linearly dependent on S; a set of vectors is said to 
be a linearly independent set if each vector in the set is linearly independent 
of the remaind,er of the set. 
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Thus, two vectors are linearly independent if they do not lie on a com­
mon line through the origin, three vectors are linearly independent if they 
do not lie in a plane through the origin, etc. It follows from our definition 
that the vector () is dependent on any given vector x since () = Ox. Also, 
by convention, the sd consisting of () alone is understood to be a dependent 
set. On the other hand, a set consisting of a single nonzero vector is an 
independent set. With these conventions the following major test for linear 
independence is applicable even to trivial sets consisting of a single vector. 

Theorem 1. A necessary and sufficient condition for the set of vectors 
Xl' X2 , •.• , Xn to be linearly independent is that the expression Iz= 1 (J.kXk = e 
implie.\·!J.k = Of or all k = 1,2,3, ... , n. 

Proof To prove the necessity of the condition, assume that 
Ik= 1 CXkXk = 0, and that for some index 1', CXr 1: O. Since the coefficient of 
Xr is nonzero, the original relation may be rearranged to produce 
Xr = Lk*r (-CXdCXr)Xk which shows xr to be linearly dependent on the 
remaining vectors. 

To prove the sufficiency of the condition, note that linear dependence 
among the vectors implies that one vector, say Xr , can be expressed as a 
linear combination of the others, xr = Lk;tr Cf.kXk' Rearrangement gives 
Lk*r (J.kXk - Xr = e which is the desired relation. I 

An important consequence of this theorem is that a vector expressed as 
a linear combination of linearly independent vectors can be so expressed 
in only one way. 

Corollary 1. If xl> x 2 , ••• , XII are linearly independent vectors, and if 
Ik= 1 CXk Xk = Lk=' 1 13k Xb then (J.k = f3kfor all k = 1, 2, ... , n. 

Proof. IfLk=1 (J.kXk = Lk=1 f3k Xb then D=1 (CXk - f3k)Xk = e and 
ak - 13k = 0 according to Theorem I. I 

We turn now from the general notion of linear independence to the 
special topic of finite dimensionality. Consider a set S of linearly inde­
pendent vectors in a vector space. These vectors may be used to generate 
[S], a certain subspace of the vector space. If the subspace [S] is actually 
the entire vector space, every vector in the space is expressible as a linear 
combination of vectors from the original set S. Furthermore, according 
to the corollary to Theorem 1, the expression is unique. 

Definition. A finite set S of linearly independent vectors is said to be a 
basis for the space X if S generates X. A vector space having a finite basis 
is said to be finite dimensional. All other vector spaces are said to be 
infinite dimensional. 
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Usually, we charact(!rize a finite-dimensional space by the number of 
elements in a basis. Thus, a space with a basis consisting of n elements 
is referred to as n-diml~nsional space. This practice would be undesirable 
on grounds of ambiguity if the number of elements in a basis for a space 
were not unique. The following theorem is, for this reason, a fundamental 
result in the study of finite-dimensional spaces. 

Theorem 2. Any two bases for a finite-dimensional vector space contain the 
same number of elements. 

Proof Suppose that {Xl' X2' ... , X.} and {Yl' Y2' ... , Ym} are bases 
for a vector space X. Suppose also that m ~ n. We shall substitute Y vectors 
for X vectors one by one in the first basis until all the X vectors are replaced. 

Since the x;'s form a basis, the vector Yl may be expressed as a linear 
combination of them, say, Yl = II=l (XiXi' Since Yl::F e, at least one of 
the scalars (Xi must be nonzero. Rearranging the x;'s if necessary, it may 
be assumed that (Xl ::F O. Then Xl may be expressed as a linear combination 
of Y1' x2 , x 3 , ••• , x. by the formula 

The set Yl' x2 , ... , x. generates X since any linear combination of the 
original x/s becomes an equivalent linear combination of this new set 
when Xl is replaced according to the above formula. 

Suppose now that k - 1 of the vectors Xi have been replaced by the 
first k - 1 y;'s. The vector Yk can be expressed as a linear combination of 
Yl' Y2' ... , Yk-l, xk , ... , Xn , say, 

k-l • 

Yk = L (Xi Yi + L Pi Xi' 
i= 1 i=k 

Since the vectors Yl,)'2 , ... ,)'k are linearly independent, not all the P;'s 
can be zero. Rearrangiing Xk, Xk+ l' ... , X. if necessary, it may be assumed 
that Pk::F O. Then Xk can be solved for as a linear combination of 
Yl')'2, .•. , Yk, Xk+ 1> ••• , X., and this new set of vectors generates X. 

By induction on k then, we can replace all n of the x;'s by y;'s, forming a 
generating set at each step. This implies that the independent vectors 
Yl')'2, ... , Yn generate X and hence forrr: a basis for X. Therefore, by the 
assumption of linear independence of {Yl' Y2, ... , Ym}, we must have 
n=m. I 

Finite-dimensional spaces are somewhat simpler to analyze t:lan 
infinite-dimensional spaces. Fewer definitions are required, fewer patholog­
ical cases arise, and our native intuition is contradicted in fewer instances 
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in finite-dimensional· spaces. FurthermQre, there are theorems and· con­
cepts in finite-dimensional space which have no· direct counterpart in 
infinite-dimensional spaces. Occasionally, the availability of these special· 
characteristics of finite dimensionality is essential to obtaining a solution 
to a particular problem. It is more usual, however, that results first derived 
for finite-dimensional spaces do have direct analogs in more general 
spaces. In these cases, verification of the corresponding result in infinite­
dimensional space often enhances our understanding by indicating pre­
cisely which properties of the space are responsible for the result. We 
constantly endeavor to stress the similarities between infinite- and finite­
dimensional spaces rather than the few minor differences. 

NORMED LINEAR SPACES 

2.6 Definition and Examples 

The vector spaces of part\cular interest in both abstract analysis and appli­
cations have a good deal more structure than that implied solely by the 
seven principal axioms. The vector space axioms only describe algebraic 
properties of the elements of the space: addition,· scalar multiplication, 
and combinations of these. What are missing are the topological concepts 
such as openness, closure, convergence, and completeness. These concepts 
can be provided by the introduction of a measure of distance in a space. 

DefinitiDn. A normed linear vector space is a vector space X on which 
there is defined a real-valued function which maps each element x in X 
into a real number Ilxll called the norm of x. The norm satisfies the follow­
ing axioms: 

1. Ilxll;::: 0 for all x EX, Ilxll = 0 if and only if x = e. 
2. Ilx + yll :s;; Ilxll + Ilyll for each x, y E X. (triangle inequality) 
3. Ilctxll = Ictl'llxll for all scalars ct and each x EX. 

The norm is clearly an abstraction of our usual concept of length. The 
following useful inequality is a Mrect consequence of the triangle inequality. 

Lemma 1. In a normed linear space Ilxll - Ilyll :::;; Ilx - yll for any two 
vectors x, y. 

Proof. 
Ilxll - Ilyl\ = Ilx - y + yll - I\yll :s;; \\x - y\\ + \\y\\ - \\y\\ = \\x - y\\. I 

By introduction of a suitable norm, many of our earlier examples of 
vector spaces can be converted to nonned spaces. 
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Example 1. The n(}rme~d.linear space C[a, b] consists of continuous func­
tions on the real interval [a, b] together with the norm Ilxll = max Ix(t)l. 

astSb 

This space was considered as a vector space in Section 2.2. We now verify 
that the proposed norm satisfies the three required axioms. Obviously, 
Ilxll ~ 0 and is zero only for the function which is identically zero. The 
triangle inequality follows from the relation 

max Ix(t) + y(t)1 ~ max [lx(t)1 + ly(t)l] ~ max Ix(t)1 + max ly(t)l. 

Finally, the third axiom follows from the relation 

max IlXx(t)I = max 1IXIIx(t)1 = loci max Ix(t)l· 

Example 2. The norml~d linear space D[a, b] consists of all functions on 
the interval [a, b] whil~h are continuous and have continuous derivatives 
on [a, b]. The norm on the space D[a, b] is defined as 

Ilxll = max Ix(t)1 + max Ix(t)l. 
astsb aStSb 

We leave it to the reader to verify that D[a, b] is a normed linear space. 

Example 3. The space: of finitely nonzero sequences together with the 
norm equal to the sum of the absolute values of the nonzero components 
is a normed linear space. Thus the element x = {el> e2 , ••• , en, 0, 0, ... } 
has its norm defined as Ilxll = L'i=1 leil. We may easily verify the three 
required properties by inspection. 

Example 6. The space: of continuous fl lctions on the interval [a, b] 
becomes a normed space with the norm of a function x defined as 
Ilxll = S! Ix(t)1 dt. This is a different normed space than C[a, b]. 

Example 5. Euclidean n-space, denoted En, consists of n-tuples with the 
norm of an element x = {el> e2 ,.··, en} defined as IIxll = (L7=1 leiI2)1/2. 

This definition obviously satisfies the first and third axioms for norms. The 
triangle inequality fot this norm is a well-known result from finite­
dimensional vector spaces and is a special case of the Minkowski inequality 
discussed in Section 2.10. The space En can be chosen as.a real or complex 
space by considering rleal or complex n-tuples. We employ the same nota­
tion En for both because it is generally apparent from context which is 
meant. 

I 

Example 6. We consider now the space BV[a, b] consisting of functions 
of bounded variation on the interval [a, b]. By a partition of the interval 
[a, b], we mean a finit€~ set of points ti E [a, b], i =0, 1,2, ... , n, such that 
a = to < 11 < 12 < ... :< 1n = b. A function x defined on [a, b] is said to 
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be of bounded variation if there is a constant K so that for any partition 
of [a, bJ 

• 
L,lx(t;) - x(tj_I)1 :$ K. 

;=1 

The total variation of x, denoted T.Y.(x), is then defined as 

• 
T.Y.(x) = sup L Ix(t j ) - x(ti_I)1 

j= I 

where the supremum is taken with respect to all partitions of [a, bJ. A 
convenient and suggestive notation for the total variation is 

b 

T.Y.(x) = J Idx(t)l· 
a 

The total variation of a constant function is zero and the total variation of 
a monotonic function is the absolute value of the difference between the 
function values at the end points a and b. 

The space BV[a, bJ,is defined as the space of all functions of bounded 
variation on [a, bJ together with the norm defined as 

Ilxll = Ix(a)1 + T.Y.(x). 

2.7 Open and Closed Sets 

We come now to the concepts that are' .. Jundamental to the study of 
<, 

topological properties. 

Definition. Let P be a subset of a normed space X. The point PEP is 
said to be an interior point of P if there is an 6 > 0 such that all vectors x 
satisfying Ilx - pil < 6 are also members of P. The collection of all in­
terior points of P is called the interior of P and is denoted P. 

We introduce the notation S(X,6) for the (open) sphere centered at x 
with radius 6; that is, sex, 6) = {y : Ilx - yll < S}. Thus, according to the 
above definition, a point x is an interior point of P if there is a sphere 
sex, 6) centered at x and contained in P. A set may have an empty interior 
as, for example, a set consisting of a single point or a line in E2. 

Definition. A set P is said to be open if P =P. 

The empty set is open since its interior is also empty. The entire space 
is an open set. The unit sphere consisting of all vectors x with Ilxll < 1 is 
an open set. We leave it to the reader to verify that P is open. 
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Definition. A point x E X is said to be a closure point of a set P if, given 
B > 0, there is a point PEP satisfying Ilx - pll < B. The collection of all 
closure points of P is called the closure of P and is denoted P. 

In other words, a point x is a closure point of P if every sphere centered 
at x contains a point of P. It is clear that P c:: P. 

Definition. A set P is said to be closed if P = P. 

The empty set and the whole space X are closed as well as open. The 
unit sphere consisting of all points x with Ilxli =:;; 1 is a closed set. A single 
point is a closed set. It is clear that P = P. 

Proposition 1. The complement of an open set is closed and the complement 
of a closed set is open. 

Proof Let P be an open set and 15 = {x: x ¢ P} its complement. A 
point x in P is not a closure point of 15 since there is a sphere about x 
disjoint from P. Thus 15 contains all its closure pomts and is therefore 
closed. 

Let S be a closed set. If XES, then x is not a closure point of Sand, 
hence, there is a sphere about x which is disjoint from S. Therefore x is 
an interior point of S. We conclude that S is open. I 

The proofs of the following two complementary results are left to the 
reader. 

Proposition 2. The intersection of a finite number of open sets is open; the 
union of an arbitrary collection of open sets is open. 

Proposition 3. The union of a finite number of closed sets is closed; the inter­
section of an arbitrary collection of closed sets is closed. 

We now have two topological operations, taking closures and taking 
interiors, that can bl~ applied to sets in normed space. It is natural to 
investigate the effect of these operations on convexity, the fundamental 
algebraic concept of vector space. 

Proposition 4. Let C be a convex set in a normed space. Then E and Care 
convex. 

Proof If C is empty, it is convex. Suppose xo, Yo are points in C. 
Fix ex, 0 < ex < 1. We must show that Zo = exxo + (1 - <X)Yo e C. Given 
e > 0, let x, y be selected from C such that IIx - ~o II < 8, Ily -·Yoll < B. 

Then lIax + (1 - a)y - axo - (1 - a)Yoll =:;; e and, hence, Zo is within a 
distance B of z == (J.X + (1 - a)y which is in C. Since e is arbitrary, it 
follows that Zo is a closure point of C. 
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If C is empty, it is convex. Suppose x o, Yo E (; and fix a, ° < a < l. We 
must show that Zo = axo + (I - a)yo E C. Since x o, Yo E C, there is an 
e > 0 such that the open spheres S(xo, e), S(Yo, e) are contained in C. It 
follows that all points of the form Zo + w with IIwll < e are in C since 
Zo + w = a(xo + w) + (I - a)(yo + w). Thus, Zo is an interior point of C. I 

Likewise, it can be shown that taking closure preserves subspaces, 
linear varieties, and cones. 

Finally, we remark that all of the topological concepts discussed above 
can be defined relative to a given linear variety. Suppose that P is a set 
contained in a linear variety V. We say that p E, P is an interior point of P 
relative to V if there is an e > 0 such that all vectors x E V satisfying 
Ilx - pil < e are also members of P. The set P is said to be open relative 
to V if every point in P is an interior point of l' relative to V. 

In case V is taken as the closed linear variety generated by P, i.e., the 
intersection of all closed linear varieties containing P, then x is ~;imply 
referred to as a relatice interior point of P if it is an interior point of P 
relative to thtt variety V. Similar meaning is given to relatively closed, etc. 

2.8 Convergence 

In order to prove the existence of a vector satisfying a desired property, 
it is common to establish an appropriate sequence of vectors converging 
to a limit. In many cases the limit can be shown to satisfy the required 
property. It is for this reason that the concept of convergence plays an 
important role in analysis. 

Definition. In a normed linear space an infinite sequence of vectors {x"} 
is said to cont'erge to a vector x if the sequence {llx - x"ll} of real numbers 
converges to zero. In this case, we write x" ~ x. 

If x" ~ x, it follows that Ilx"1I ~ Ilxll because, according to Lemma 1, 
Section 2.6, we have both Ilx"11 - IIxll ::; IIx" - xII and IIxll - IIx"" ::; 
IIx" - xII which implies that I \Ix" II - lixlll ::; IIx. - xii -+ O. 

In the space E" of n-tuples, a sequence converges if and only if each 
component converges; however, in other spaces convergence is not always 
easy to characterize. Tn the space of finitely nonzero sequences, define the 
vectors e{ = {O, 0, ... , 1,0, ... }, the i-th vector having each of its com­
ponents zero except the i-th which is I. The sequence of vectors {ei} 
(which is now a sequence of sequences) converges to zero componentwise, 
but the sequence does not converge to the nulll vector since Ileill = I for 
all i. . 

An important observation is stated in the following proposition. 
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Proposition 1. If a sequence converges, its limit is unique. 

Proof Suppose xn -t x and xn -t y. Th~n 

IIx - yll = IIx - Xn + Xn - YII:5: I!x - xnll + Ilxn - yll-t O. 

Thus, x =y. I 
Another way to state the definition of convergence is in terms of spheres. 

A sequence {xn} converges to x if and only if given e > 0; the sphere 
S(x, e) contains Xn for all n greater than some number N. 

The definition of convergence can be used to characterize closed sets 
and provides a useful alternative to the original definition of closed sets. 

Proposition 2. A set F is closed if and only if every convergent sequence 
with elements in F has its limit in F. 

Proof The limit of a sequence from F is obviously a closure point of 
F and, therefore, must be contained in F if F is closed. Suppose now that F 
is not closed. Then there is a closure point x of F that is not in F. In each 
of the spheres S(x, lin) we may select a point xn e F since x is a closure 
point. The sequence {xn} generated in this way converges to x ¢ F. I 

2.9 Transformations and Continuity 

The objects that make the study of linear spaces interesting and useful 
are transformatiorts. 

Definition. Let X and Y be linear vector spaces and let D be a subset of 
X. A rule which associates with every element XED an element y E Y 
is said to be a transformation from X to Y with domain D. If y corresponds 
to x under T, we write y = T(x). 

Transformations on vector spaces become increasingly more important 
as we progress through this book; they are treated in some detail beginning 
with Chapter 6. It is the purpose of this section to introduce some common 
terminology that is convenient for describing the simple transformations 
encountered in the early chapters. 

Ifa specific domain is not explicitly mentioned when discussing a 
transformation on a vector space X, it is understood that the domain is 
X itself. If for every y e Y there is at most one xeD for which T(x) = y, 
the transformation T is said to be one-to-one. If for every y e Y there is at 
least one xeD for which T(x) = y, T is said to be onto or, more precisely, 
to map D onto Y. This terminology, as the notidn of a transformation 
itself, is of course an extension of the familiar rtotion of ordinary functions. 
A transformation is simply afunction c...;;fined on one vector space X while 
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taking values in another vector space Y. A special case of this situation is 
that in which the space Y is taken to be the real line. 

Definition. A transformation from a vector space X into the space of real 
(or complex) scalars is said to be a functional on X. 

In order to distinguish functionals from more general transformations, 
they are usually denoted by lower case letters such asfand g. Hence,f(x) 
denotes the scalar that f associates with the vector x E X. 

On a normed space, f(x) = IIxll is an example of a functional. On the 
space C[O, IJ, examples of functionals aref,(x) = X(-l),J2(X) = fbx(t)dt, 
f3 (x) = max X4 (t), etc. Real-valued functionals are of direct interest 

OS!SI 

to optimization theory, since optimization consists of selecting a vector 
in minimize (or maximize) a prescribed functional. 

Definition. A transformation T mapping a vector space X into a vector 
space Y is said to be linear if for every Xl' X2 E X and all scalars CL I , (.(2 we 
have T(O'.lxI + 0'.2 X2 ) = 0'.1 T(x l) + 0'.2 T(x 2 )· 

The most familiar example of a linear transformation is supplied by a 
rectangulal'm x n matrix mapping elements of Rn into Rm. An example 
of a linear transformation mapping X = C [a, b] into X is the integral 
operator T(x) = f~ k(t, T)x('r) dT where k(t, T) is a function continuous on 
the square a s; t s; b~ a S; t S; b. 

Up to this point we have considered transformations mapping one 
abstract space into another. If these spaces happen to be normed, it is 
possible to define the notion of continuity. 

Definition. A transformation T mapping a normed space X into a normed 
space Y is continuous at Xo E X if for every e > 0 there is a f> > 0 such that 
Ilx - xoll < f> implies that IIT(x) - T(xo)11 < e. 

Note that continuity depends on the norm in both the spaces X and Y. 
If T is continuous at each point Xo E X, we say that T is continuous every­
where or, more simply, that T is continuous. 

The following characterization of continuity is useful in many proofs 
involving continuous transformations. 

Proposition 1. A transformation T mapping a normed space X into a normed 
space Y is continuous at the point Xo E X if and only if xn --+ Xo implies 
T(xn) --+ T(xo). 

Proof. The" if" portion of the statement is obvious; thus we need 
only proofthe "only if" portion. Let {xn} be a sequence such that Xn - Xo, 
T(xn) ~ T(xo). Then, for some Il > 0 and every N there is an n > N such 
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that IIT(xn) - T(xo)1I ~ 8. Since xn -+ xo, this implies that for every 8 > 0 
there is a point Xn with Ilxn - xoll < 8 and IIT(xn) - T(x)1I > s. This proves 
the" only if" portion by contraposition. I 

*2.10 The' .. and L .. Spaces 

In this section we discuss some classical normed spaces that are useful 
throughout the book. 

Definition. Let p be a real number I ~ P < oo.The space Ip consists of all 
sequences of scalars {~1' ~2""} for which 

<Xl 
L leil P < 00. 
i= 1 

The norm of an element x ={~;}in Ip is defined as 

The space l<Xl consists of bounded sequences. The norm of an element 
x = {~I} in 1<Xl is defined as 

It is obvious that the norm on Ip satisfies lIexxll = lexlllxll and that 
IIxll > 0 for each x :f: O. In this section, we establish two inequalities con­
cerning the Ip norms, the second of which gives the triangle inequality for 
these Ip norms. Therefore, the Ip riorm indeed satisfies the three axioms 
required of a general norm. Incidentally, it follows from these properties 
of the norm that Ip is in fact a linea" vector space because, if x = gil, 
Y = {711} are vectors in Ip, then for any scalars ex, p, we have lIexx + Pyll 
~ lexlllxll + IPIllyll < 00 so that' (XX + py is a ve(~or in Ip. Since Ip is a 
vector space and the norm satisfies the three required axioms, we may 
justifiably refer to Ip as a normed linear vector space. 

The following two theorems, although of fundamental importance for a 
study of the Ip spaces, are somewhat tangential to our main purpose. The 
reader will lose little by simply scanning the proofs. 

Theorem 1. (The Holder Inequality) If p and q are positive numbers 
1 ~p ~ 00, I ~ q ~ 00, such that IIp + llq = I ant! ifx = {~1' e2 , ... } e /p 

. y = {71t> 712, •.. } e lq , then 
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Equality holds if and only if 

(M) 1/ q = (J1J..) l/p 

Ilxllp Ilyllq 
Jor each i. 

Proof The cases p = 1, 00; q = 00, I are straightforward and are left 
to the reader. Therefore, it is assumed that I < p < 00, I < q < 00. We 
first prove the auxiliary inequality: For a >- 0, b >- 0, and 0 < A < I, we 
have 

aWl-A) ~ AO + (l - A)b 

with equality if and only if a = b. 
For this purpose, consider the function 

J(t) = I). - At + A - I 

defined for t >- o. Then f'(t) = A(t)·-l - I). Since 0 < A < I, we have 
f'(t) > ° for ° < t < I and f'(t) < ° for t > 1. It follows that for t >- 0, 
J(t) ~J(l) = 0 with equality only for t = 1. Hence 

tA ~ At + I - A 

with equality only for t = 1. If b =1= 0, the substitution t = alb gives the 
desired inequality, while for b = 0 the inequality is trivial. 

Applying this inequality to the numbers 

( 
leil )p. 

a = IIxllp , b - (J1J..)Q 
- Ilyllq 

with A = ~, 1 - A = ~, 
p q 

we obtain for each i 

lei lTd < ~ (JQ)P + ~ (1hl.)q 
Ilxllpllyllq - P II xll p q IIYllq . 

Summing this inequality over i, we obtain the Holder inequality 
tJ) 

Jlle, lId 1 1 
-'--'--=---<-+-=1 
Ilxllpllyllq - P q . 

The conditions for equality follow directly from the required condition 
o = b in the auxiliary inequality. I 

The special case p = 2, q = 2is of major importance. In this case, 
Holder's inequality becomes the well-known Cauchy-Schwarz inequality 
for sequences: 
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Using the Holder inequality, we can establish the triangle inequality 
for Ip norms. 

Theorem 2. (The Minkowski Inequality) If x and yare in I P' I :::; p :::; 00, 

then so is x + y, and Ilx + yllp :::; Ilxllp + IIYllp' For I < P < 00, equality holds 
if and only ifk1x = k 2 y for some positive constants kl and k2 . 

Proof The cases p == 1 and p = 00 are straightforward. Therefore, it 
is assumed that 1 < p < 00. We first consider finite sums. Clearly we may 
write 

n n n 

L lei + '7d P
:::; L lei + '7IIP-II~d + L lei + '7dP- II'7J 

i=1 1=1 i=1 

Applying Holder's inequality to each summation on the right, we obtain 

Itll~1 + '7d P ~ (Itllei: + '7d(P-I)q) Ilq [ (JlledP) lip + (Itll'7d P
) liP] 

= Ctllel + '7t1
pYIQ [Ctl'~dPf'P + Ctl

'
'7d Pf/1 

Dividing both sides of this inequality by (Li'= I Ie + '7iI P)I /Q and taking 
account of I - llq = lip, we find 

(tllel + '7II Pf'P ~ Ctl'~dPf'P + (tl''7llpf'P. 

Letting n --+ 00 on the right side of this inequality can only increase its 
value, so 

Ctl1el + '7;1p) lip ~ Ilxllp + IIYllp 

for each n. Therefore, letting n --+ 00 on the left side produces IIx + yllp ~ 
Ilxllp + IIYllp' : 

The conditions for equality follow from the conditions for equality in 
the Holder inequality and are left to the reader. I 

The Lp and Rp spaces are defined analogously to the Ip spaces. For 
p ~ I, the space Lp[a, b] consists of those real-valued measurable func­
tions x on the interval [a, b] for which Ix(tW is Lebesgue integrable. The 
norm on this space is defined as 

II x ll p = ((IX(tW dtr lP
. , 

Unfortunately, on this space Ilxllp = 0 does not necessarily imply x = e 
since x may be nonzero on a set of measure zero (such as a set consisting 
of a countable number of points). If, however, we do not distinguish 
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between functions that are equal almost everywhere l
2 then Lp[al bJ is a . 

normed linear space. 
The space Rp[a, bJ is defined in an analogous manner but with attention 

restricted to functions x for which Ix(t)1 is Riemann integrable. Since all 
functions encountered in applications in this book are Riemann integrable, 
we have little reason, .at this point in the development, to prefer one of 
these spaces over the other. Readers unfamiliar with Lebesgue measure 
and integration theory lose no essential insight by considering the Rp 
spaces only. In the next section, however, when considering the notion of 
completeness, we find reason to prefer the Lp spaces over .the Rp spaces. 

The space Loo[a, bJ is the function space analog of 100 • It is defined as 
the space of all Lebesgue measurable functions on [a, bJ which are bounded, 
except possibly on a set of measure zero. Again, in this, space, two functions 
differing only on a set of measure zero are regarded as equivalent. 
, Roughly speaking, the norm of an element x in Loo[a, bJ is defined as 
sup Ix(t)l. This quantity is ambiguous, however, since an element x does 

a,Stsb 

not correspond uniquely to any given function but to a whole class of 
functions difftring on a set of measure zero. The value sup Ix(t)1 is 

astsb 

different for the different functions equivalent to x. The norm of a function 
in Loo[a, bJ is therefore defined as 

Ilxll oo = essential supremum of IxCt)1 

== infimum [sup ly(t)IJ 
y(t)=x(t) a.e. 

For brevity, we write Ilxll oo = ess sup Ix(t)l. 

Example 1. Consider the function 

{
1 - t2 

x(t) = 2 
t E [ -1, 1J, 
t=O 

t;:f:O 

shown in Figure 2;6. The supremum of this function is equal to 2 but 
the essential supremum is 1. 

There are HOlder and Minkowski inequalities for the Lp spaces analogous 
to the corresponding results for the Ip spaces. 

Theorem 3. (The Holder Inequality) If x E Lp[a, bJ, y E Lq{a, bJ, IIp + 
llq= l,p,q> i,then . 

b 

LIX(t)y(t)1 dt::;; IIxllpllYllq. 

2 Two fUnctions are said to be equal almost everywhere (a.e.) on [a, h] if they differ 
on a set of Lebesgue measure zero. 
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Equality holds if and only if 

(IX(t)I)P = (ly(t)I)q 
Ilxll p IiYllq 

almost everywhere on [a, b]. 

Theorem 4. (The Minkowski Inequality) If x and yare in Lp[a, b], then so 
is x + y, and Ilx + yllp :::;; Ilxll p + lIyllp' 

The proofs of these inequalities are similar to thJse for the Ip-spaces 
and are omitted here. 

x(t) 

2 

I 

f 
-1 o 

Figure 2.6 The junction jor Example 1 

2.11 Banach Spaces 

Definition. A sequence {xn} in a normed space is said to be a Cauchy 
sequence if Ilx. - xmll-" 0 as n, m .... OCJ; i.e., given B > 0, there is an integer 
N such that Ilx. - xmll < B for all n, m > N. 

In a normed space,. every convergent sequence is a Cauchy sequence 
since, if Xn .... x, then 

Ilx. - xmll = Ilx. - x + x - xmll :::;; Ilxn - xii + Ilx - xmll .... O. 

In general, however, a. Cauchy sequence may not be convergent. 
Normed spaces in which every Cauchy sequence is convergent are of 

particular interest in analysis; in such spaces it ?s possible to identify 
convergent sequences without explicitly identifying their limits. A space 
in which every Cauchy sequence has a limit (and is therefore convergent) 
is said to be complete. 
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Definition. A normed linear vector space X is complete if every Cauchy 
sequence from X has a limit in X. A complete normed linear vector space 
is called a Banach space. 

We frequently take great care to formulate problems arising in applica­
tions as equivalent problems in Banach space rather than as problems in 
other, possibly incomplete, spaces. The principal advantage of Banach 
space in optimization problems is that when seeking an optimal vector 
maximizing a given objective, we often construct a sequence of vectors, 
each member of which is superior to the preceding members; the desired 
optimal vector is then the limit of the sequence. In order that the scheme 
be effective, there must be available a test for convergence which can be 
applied when the limit is unknown. The Cauchy criterion for convergence 
meets this requirement provided the underlying space is complete. 

We now consider examples of incomplete normed spaces. 

Example 1. Let X be the space of continuous functions on [0, 1] with 
norm defined by IIxll = Sb Ix(t)1 dt. One may readily verify that X is a 
normed linear space. Note that the space is not the space C [0, lJ since the 
norm is different. We show that Xis incomplete. Define a sequence of 
elements in X by tM.e equation 

'\ 0 " 

for 
1 1 

O<t<---- - 2 n 

for 
1 1 1 

x (t) = '. nt - - + 1 ---<t<-
n \ 2 2 n - - 2 

[I for 
1 

t>--:-2 

This sequence of functions is illustrated in Figure 2.7. Each member 
of the sequence is a continuous function and thus a member of the 
space X. The sequence is Cauchy since, as is easily verified, Ilxn - xmll = 
tll/n - l/ml-4 0. It is obvious, however, that there is no continuous 
function to which the sequence convergd. 

Example 2. Let X be the vector space of finitely nonzero sequences 
x = gi' e2 , ••• , en, 0,0, ... }. Define the norm of an element x as 
IIxll = max Ie;\. Define a sequence of elements in X by 

i 
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Each x. is in X and has its norm equal to unity. The sequence {x.} is a 
Cauchy sequence sinc(:, as is easily verified, 

11x.. - xmll = max {lIn, 11m} -+0. 

It is obvious, hO'IVevl~r, that there is no element of X (with a finite 
number of nonzero components) to which this sequence converges. 

x 

Figure 2.7 Sequence for Example 1 

The space E 1, the real line, is the fundamental example of a complete 
space. It is assumed here that the completeness of E1, a major topic in 
elementary analysis, is well known. The completeness of E1 is used to 
establish the completeness of various other normed spaces. 

We establish the completeness of several important spaces that are used 
throughout this book. For this purpose the following lemma is useful. 

Lemma 1. A Cauchy sequence is bounded. 

Proof. Let {xn} be a Cauchy sequence and let N be an integer such 
that Ilx. - xN11 < 1 flOr n > N. For 11. > N, we have 

II x nll = Ilxn - XN + xN11 ~ IlxNII + IIxn - xNII < IlxNII + 1. I 
Example 3. C[O, 1] is a Banach spac., We have previously considered 
this space as a normed space. To prove that C ro, 1J is complete, it is 
only necessary to shlOw that every Cauchy sequence in C [0, IJ has a limit. 
Suppose {xn} is a Cauchy sequence in C [0, 1]. For each fixed t E [0, 1], 
IXn(t) - Xm(t) I ~ Ilxn - xmll -+ 0, so {xit)} is a Cauchy sequence of real 
numbe~s. Since the :set of real numbers is complete, there is a real number 
x(t) to which the sequence converges; x.(t) -+ x(t)'ITherefore, the functions 
Xn converge pointwiise to the function x. 

We prove next that this pointwise convergence is actually uniform in 
t E [0, IJ, i.e., given e > 0, there is an N such that IX~n(t) - x(t)\ < e for all 
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t E [0, IJ and n :2: N. Given e > 0, choose N such that Ilxn - xmll < e/2 for 
n, m > N. Then for n > N 

Ixn(t) - x(t)1 S Ixn(t) - Xm(t) I + Ixm(t) - x(t)1 

S Ilxn - xmll + IXm(t) - x(t)l. 

By choosing m sufficiently large (which may depend on t), each term on 
the right can be made smaller than e/2 so IXn(t) - x(t)1 < e for n > N. 

We must still prove that the function x is continuous and that the 
sequence {xn} converges to x in the norm of C [0, 1]. To prove the con­
tinuity of x, fix e > 0. For every <5, t, and n, 

Ix(t + <5) - x(t)1 S Ix(t + <5) - xn(t + <5)1 

+ Ixn(t + <5) - xn(t)1 + IXn(t) - x(t)l. 

Since {xn} converges uniformly to x, n may be chosen to make both the 
first and the last terms less than 8/3 for all <5. Since xn is continuous, <5 may 
be chosen to make the second term less than e/3. Therefore, x is continu­
ous. The convergence of Xn tox in the C [0,1] norm is a direct consequence 
of the uniform convergence. 

It is instructive to reconcile the completeness of C [0, 1] with Example 1 
in which a sequence of continuous functions was shown to be Cauchy but 
nonconvergent Jith respect to the integral norm. The difference is that, 
with respect to the C [0, 1] norm, the sequence defined in Example 1 is 
not Cauchy. The reader may find it useful to compare these two cases in 
detail. 

Example 4. Ip, 1 :s: p :s: 00 is a Banach space. Assume first that 1 S P < 00. 

Let {xn} be a Cauchy sequence in Ip. Then, if xn = {e'i, ez, " .}, we have 

le~ - e~1 S {i~lle? - ~iIP} lip ~ ° 
Hence, for each k, the sequence {e~} is a Cauchy sequence of real numbers 
and, therefore, converges to a limit ek' We show now that the element 
x = {e1, e 2, ... } is a vector in I p' According to Lemma 1, there is a constant 
M which bounds the sequence {xn}. Hence, for alln and k 

k 

L: I~'W :$; IIxnll P :$; MP. 
i= 1 . 

Since the left member of the inequality is a finite sum, the iaequality 
remains valid as 11 ~ 00; therefore, 

k 

L l~dP S MP. 
i= I 
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Since this inequality holds uniformly in k, it follows that 

and x E lp; the norm e.f x is bounded by Ilxl\ :::;; M. 
It remains to be shown that the sequence {xn } converges to x in the lp 

horm. Given e > 0, there is an N such that 
k 

Liei' - eilP 
:::;; Ilxn - xmll P 

:::;; e 
1= 1 

for n, m > N and for ,each k. Letting m -+ 00 in the finite sum on the left, 
we conclude that 

k 

Liei' - eil P 
:::;; e 

1= 1 

for n > N. Now letting k -+ 00, we deduce that Ilxn - xil P :::;; e for n > N 
and, therefore, Xn -+ x. This completes the proof for 1 :s; P < 00. 

Now let {xn } be a Cauchy sequence in lex)' Then Ie;: - e;:'1 :::;; Ilxn - xmll -+ 0. 
Hence, for each k there is a real number ek such that e;: -+ ek' Furthermore, 
this convergence is uniform in k. Let x = {el> e2 , ••• }. Since {xn} is Cauchy, 
there is a constant M such that for all , , Ilxnll :::;; M. Therefore, for each k 
and each n, we have le;:1 :::;; Ilxnll :::;; M from which it follows that x E Ie<) 
and IlxlI:::;; M. 

The convergence of Xn to x follows directly from the uniform convergence 
of e;: -+ ek • 

Example 5. Lp[O, n. 1 !:.p!:. 00 is a Banach space. We do not prove the 
completeness of the Lp spaces because the proof requires a fairly thorough 
familiarity with Leb()sgue integration theory. Consider instead the space 
Rp consisting of all functions x on [0, IJ for which IxlP is Riemann 
integrable with norm defined as 

Ilxll = {( Ix(t)IP dt} lIP. 

The normed space Rp is incomplete. It may be completed by adjoining 
to it certain additional functions derived from Cauchy sequences in Rp. 
In this way, Rp is imbedded in a larger normed space which is complete. 
The smallest compl(~te space containing Rp is Lp. A general method for 
completing a normed space is discussed in Problem 15. 

Example 6. Given two normed spaces X, Y, we consider the product space 
X x Y consisting of ordered pairs (x, y) as defined in Section 2.2. The 
space X x Y can be normed in several ways such as II(x, y)11 = Ilxll + Ilyll 
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or II(x,y)11 = max {llxll, Ilyll} but, unless specifically noted otherwise, we 
define the product norm as II(x, y) II = Ilxll + Ilyli. It is simple to show that 
if X and Yare Banach spaces, the product space X x Y with the product 
norm is also a Banach space. 

2.12 Complete Subsets 

The definition of completeness has an obvious extension to subsets of a 
normed space; a subset is complete if every Cauchy sequence from the 
subset converges to a limit in the subset. The following theorem states that 
completeness and closure are equivalent in a Banach space. This is 
not so in general normed space since, for example, a normed space is 
always closed but not necessarily complete. 

Theorem 1. In a Banach space a subset is complete if and only if it is closed. 

Proof A complete subset is obviously closed since every convergent 
(and hence Cauchy) sequence has a limit in the subset. A Cauchy sequence 
from a closed subset has a limit somewhere in the Banach space. By 
closure the limit must be in the subset. I 

The following theorem is of great importance in many applications. 

Theorem 2. In a lI10rmed linear space, any finite-dimensional subspace is 
complete. 

Proof The proof is by induction on the dimension of the subspace. 
A one-dimensional subspace is complete since, in such a subspace, all 
elements have the form x = lXe where IX is an arbitrary scalar and e is a 
fixed vector. Convergence of a sequence IXn e is equivalent to convergence 
of the sequence of scalars {lXn} and, hence, completeness follows from the 
completeness of E. 

Assume that the theorem is true for subspaces of dimension N - 1. 
Let X be a normed space and M an N-dimensional subspace of X. We 
show that M is complete. 

Let {e1 , e2' ... , eN} be a basis for M. For each k, define 

Ok = inf Ilek - '2:>jejll. 
a/s j*k 

The number Ok is the distance from the vector ek to the subspace Mk 
generated by the remaining N - 1 basis vectors. The number Ok is greater 
than zero because otherwise a sequence of vectors in the N - 1 dimensional 
subspace Mk could be constructed converging to ek' Such a sequence 
cannot exist since Mk is complete by the induction hypothesis. 
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Define J > 0 as the minimum of the Jk , k = 1,2, ... , N. Suppose that 
{x.} is a Cauchy sequence in M. Each x. has a unique representation as 

For arbitrary n, m 

Ilx. - xmll = II itp7 - Aj)el\1 ;;:: IA~ - A~lo 
for each k, I ~ k ~ N. Since Ilx. - xmll-+ 0, each IA7 - A~I-+ O. Thus, 
{A~},~)= 1 is a Cauchy sequence of scalars and hence convergent to a scalar 
Ak' Let x = Lk=1 Akek' Obviously, x EM. We show that x. -+ x. For all 
n, we have 

Ilx. - xii = II f(Ak - Ak)ekll s:; N· max IAk - Akl' Ilekll, 
k=1 1skSN 

but since IAk - Akl-+ 0 for all k, Ilx. - xii -+ O. Thus, {x.} converges to 
XEM. I 

*2.13 Extreme Values of Functionals and Compactness 

Optimization theory is largely concerned with the maximization or 
minimization of real functionals over a given subset; indeed, a major 
portion of this book is concerned with principles for finding the points at 
which a given functional attains its maximum. A more fundamental 
question, however, is whether a functional has a maximum on a given set. 
In many cases the answer to this is easily established by inspection, but in 
others it is by no means obvious. 

In finite-dimensional spaces the well-known Weierstrass theorem, which 
states that "a continuous function defined on a closed and bounded (com­
pact) set has a maximum and a minimum, is of great utility. Usually, this 
theorem alone is sufficient to establish the existence of a solution to a 
given optimization problem. 

In this section we generalize the Weierstrass theorem to compact sets 
in a normed space, thereby obtaining a simple and yet general result 
applicable to infinite-dimensional problems. Unfortunately, however, the 
restriction to compact sets is so severe in infinite-dimensional normed 

I 

spaces that the Weierstrass theorem can in fact only be employed in the 
minority of optimization problems. The theorem, however, deserves 
special attention in optimization theory if only because of the finite­
dimensional version. Th(: interested reader should also consult Section S.lO. 
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Actually, to prove the Weierstrass theorem it is not necessary to assume 
continuity of the functional but only upper semicontinuity. This added 
generality is often of great utility. 

Definition. A (real-valued) functional/defined on a normed space X is 
said to be upper sC!micontinuous at Xo if, given B > 0, there is aD> Osuch. 
that f(x) - /(xo) < B for Ilx - XO II < D. A functional/ is said to be lower 
semicontinuous at Xo if - / is upper semicontinuous at Xo. 

As the reader may verify, an equivalent definition is that/is upper semi­
continuous at Xo if 3 lim suPx .... xJ(x) s,/(xo)' Clearly, if / is both upper 
and lower semicontinuous, it is continuous. 

Definition. A set K in a normed space X is said to be compact if, given an 
arbitrary sequence {x;} in K, there is a subsequence {Xi.,} converging to an 
element x E K. 

In finite dimensions, compactness is equivalent to being closed and 
bounded, but, as is shown below, this is not true in general normed space. 
Note, however, that a compact set K must be complete since any Cauchy 
sequence from K must have a limit in K. 

Theorem 1. (Weierstrass) An upper semicon tinuous functional on a compact 
subset K 0/ a normed linear space X achieves a maximum on K. 

I 

Proof. Let M = sup/ex) (we allow the possibility M::;: 00). There is 
xeK 

a sequence {Xi} from K such that /(x;) --+ M. Since K is compact, there 
is a convergent subsequence Xj" --+ x E K. Clearly, /(Xi,,) --+ M and, since / 
is upper semicontinuous,/(x) ~ lim/(x i ,,) = M, Thus, since/ex) must be 
finite, we conclude that M < 00 and that/ex) ,b. M. I 

We offer now an example of a continuous functional on the unit sphere 
of C [0, IJ which does not attain a maximum (thus proving that the unit 
sphere is not compact). 

Example 1. Let the functional/be defined on cEO, IJ by 

1/2 1 

f(x) = f x(t) dt - f x(t) dt. 
o 1/2 

It is easily verified that / is continuous since, in fact, 1/(x)1 s IIxli. The 
supremum of / over the unit sphere in C [0, I J is I, but no continuous 
function of norm less than unity aCllieves this supremum. (If the problem 

3 The lim sup of a functional on a normed space is the obvious extension of the 
corresponding definition for functions of a real variable. 
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were formulated in Loo[O, IJ, the supremum would be achieved by a 
function discontinuous at t = l) 

Example 2. Suppose that in the above example we restrict our attention 
to those continuous functions in CEO, IJ within the unit sphere which are 
polynomials of degree n or less. The set of permissible elements in C [0, IJ 
is now a closed, bounded subset of the finite-dimensional space of n-th 
degree polynomials and is therefore compact. Thus Weierstrass's theorem 
guarantees the existence of a maximizing vector from this set. . 

*2.14 Quotient SpacE~s 

Suppose we select a subspace M from a vector space X and generate 
linear varieties V in X by translations of M. The linear varieties obtained 
can be regarded as the elements of a new vector space called the quotient 
space of X modulo M and denoted XI M. If, for example M is a plane 
through the origin in three-dimensional space, XI M consists of the family 
of planes parallel to M. We formalize this definition below. 

Definition. Let M be: a subspace of a vector space X. Two elements 
Xl' X 2 E X are said to be equivalent modulo M if Xl - X 2 E M. In this case, 
we write Xl == X 2 . 

This equivalence relation partitions the space X into disjoint subsets, or 
classes, of equivalent elements: namely, the linear varieties that are distinct 
translates of the subspaceM. These classes are often called the eosels of M. 
Given an arbitrary eh~ment X E X, it belongs to a unique coset of M which 
we denote4 by [x]. 

Definition. Let M be a subspace of a vector space X. The quotient spaee 
XI M consists of all cosets of M with addition and scalar multiplication 
defined by [xa + [x,~J = [Xl + x2J, ct[xJ = [ctx], 

Several things, whkh we leave to the reader, need to be verified in order 
to justify the above definition. It must be shown that the definitions for 
addition and scalar multiplication are independent of the choice of 
representative elements, and the axioms for a vector space must be verified. 
These matters are easily proved, howevP,r, and it is not difficult to see that 
addition of cosets [Xl] and [x 2] merely amounts to addition of the corre­
sponding linear varieties regarded as sets in X. Like.vise, multiplication of 
a coset by a scalar oc (except for oc = 0) amounts to multiplication of the 
corresponding linear variety by ct. 

4 The notation [xl is also used for the subspace generated by x but the usage is always 
clear from context. 
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Suppose. now that Xis a notmed space a~d that M is a, closed subspace 
of X. We define the norm of a coset [x] E X/M by 

II [x] II = infllx + mil, 
",eM 

i.e., II [x] II is the infimum of the norms of all elements in the coset [x]. The 
assumption that M is closed insures that II [x] II > 0 if [x] :f: e. Satisfaction 
of the other two axioms for a norm is easily verified. In the case of X being 
two dimensional, M one dimensional, and X/M consisting of parallel 
lines, the quotient norm of one of the lines is the minimum distance of the 
line from the origin. 

Proposition 1. Let X be a Banach space, M a closed subspace of X, and X/ M 
the quotient space l-t'ith the quotient norm defined as above. Then X/M is also 
a Banach space. 

The proof is left to the reader. 

*2.15 Denseness and Separability 

We conclude this chapter by introducing one additional topological con­
cept, that of denseness. 

Definition. A set D is said to be dense in a normed space X if for each 
element x E X and each e > 0 there exists dE D with /Ix - d/l < e. 

I 

If D is dense in X, there are points of D arbitrarily close to each x E X. 
Thus, given x, a sequence can be constructed from D which converges to 
x. It follows that equivalent to the above definition is the statement: D 
is dense in X if 15, the closure of D, is X. 

The definition converse to the above is that of a nowhere dense set. 

Definition. A set E is said to be nowhere dense in a normed space X if E 
contains no open set. 

The classic example of a dense set is the set of rationals in the real line. 
Another example, provided by the well-known Weierstrass approximation 
theorem, is that the space of polynomials is dense in the space C [a, b 1 
Definition. A normed space is separable if it contains a countable dense set. 

Most, but not all, of the spaces considered in this book are separable 

Example 1. The space E" is separable. The collection of vectors 
x = eel' ez , ... , en) having rational components is countable and dense 
in En. 
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Example 2. The Ip spaces, 1 ~ p < 0Cl, are separable. To prove separability, 
let D be the set consi!;ting of all finitely nonzero sequences with rational 
components. D is easily seen to be countable. Let x = {el' e2, ... } exist in 
Ip, 1 ~ P < 0Cl' and fix e > O. Since E~ 1 leilP < 0Cl' there is an N such that 
Ei'?:N+ 1 led P < e/2. For each k, 1 ~ k ~ N, let rk be a rational such that 
I~k - rkl P < e/2N; let d = {r1> r2' ... , rN, 0, 0, ... }. Clearly, de D and 
IIx - dil P < e. Thus, D is dense in Ip. 

The space 100 is not separable. 

Example 3. The spac1e C [a, b J is separable. Indeed, the countable set 
consisting of all polynomials with rational coefficients is dense in C [a, bJ. 
Given x E C [a, b J and e > 0, it follows from the well-known Weierstrass 
approximation theorem that a polynomial p can be found such that 
IxCt) - p(t)1 < e/2 for all t E [a, bJ. Clearly, there is another polynomial r 
with rational coefficil~nts such that Ip(t) - r(t)1 < e/2 for all t E [a, b J 
can be constructed by changing each coefficient by less than s/2N where 
N - 1 is the order of the polynomial p). Thus 

Ilx - rll = max Ix(t) - r(t)1 ~ max Ix(t) - p(t)1 + max Ip(t) - r(t)1 
te[a,b] 

Example 4. The Lp spaces 1 ~ p < 0Cl are separable but Loo is not separable. 
The particular space L2 is considered in great detail in Chapter 3. 

2.16 Problems 

1. Prove Proposition I, Section 2.2. 
2. show that in a vector space (-(X)x = (X( -x) = -«(Xx), (X(x - y) = 

(Xx - (XY, «(X - (3)x := (Xx - [3x. 
3. Let M and N be subspaces in a vector space. Show that [Mu NJ = 

M+N. 
4. A convex combination of the vectors Xl' x2, .. " Xn is a linear com­

bination of the form !XlXl + (X2 X2 + ... + (Xnxn where (Xi ~ 0, for each 
i; and (Xl + (X2 + ... + (Xn = 1. Given a set S in a vector space, let K be 
the set of vectors consisting of all convex combinations from S. Show 
that K = co(S). 

5. Let C and D be co:nvex cones in a vector space. Show that C nD and 
C + D are convex cones. 

6. Prove that the union of an arbitrary collection of open sets is open and 
that the intersection of a finite collection of open sets is open. 
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7. Prove that the intersection of an arbitrary collection of closed sets is 
closed and that the union of a finite collection of closed sets is closed. 

8. Show that the closure of a set S in a normed space is the smallest closed 
set containing S. 

9. Let X be a normed linear space and let Xl' Xl' .•. , Xn be linearly 
independent vectors from X. For fixed y E X, show that there are 
coefficients ai' a2, ... , an minimizing Ily - alx 1 - a2 x 2 ... - anxnll. 

10. A normed space is said to be strictly normed if Ilx + yll = Ilxll + Ilyll 
implies that y = e or X = ay for some a. 
(a) Show that Lp[O, 1] is strictly normed for 1 < P < 00. 

(b) Show that if X is strictly normed the solution to Problem. 9 is 
unique. 

11. Prove the Holder inequality for p = 1,00. 

12. Suppose X = g1' ~2' ... , ~"' ... } E lp<> for some Po' 1 5, Po < 00. 

(a) Show that X E lp for all P ~ Po . . 
(b) Show that Ilxll", = lim Ilxllp' 

p .... '" 

13. Prove that the normed space D[a, b] is complete. 
14. Two vector spaces, X and Y, are said to be isomorphic if there is a 

one-to-one mapping T of X onto Y such that T(alxl + a2 x 2) = 
alT(xl ) + a2 T(x;J. Show that any real n-dimensional space is iso­
morphic to En. 

15. Two normed linear spaces, X and Y, are said to be isometrically 
isomorphic if theY' are isomorphic and if the corresponding one-to-one 
mapping T satisfies IIT(x)11 = Ilxll. The object of this problem is to 
show. that any normed space X is isometrically isomorphic to a dense 
subset of a Banach space %. 
(a) Let X be the set of all Cauchy sequences {xn} from Xwith addition 
and scalar multiplication defined coordinatewise. Show that X is a 
linear space. 
(b) If y = {xn } E X, define Ilyll = sup Ilxnll. Show that with this 

n 

definition, X becomes a normed space. 
(c) Let M be the subspace of X consisting of all Cauchy sequences 
convergent to zero, and let j( = X / M. Show that j( has the required 
properties. 

16. Let S, T be open sets in the normed spaces X and Y, respectively. 
Show that S x T = {(s, t) : s E S, t E T} is an open subset of X x Y 
under the usual product norm. 

17. Let M be an tn-dimensional subspace of an n-dimensional vector 
space X. Show that XIM is (n - m) dimensional. 

18. Let Xben dimensional and Ybe m dimensional. What is the dimension 
of Xx Y? 
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19. A real-valued functional lxi, defined on a vector space X, is called a 
seminorm if: 
1. Ixl:2: 0 all x E X 
2. IlXxl = 11X1'lxl 
3. Ix + y I ~ Ixl + Iyl· 
Let M = {x: Ixl = O} and show that the space X/M with l/[xJI/ = 

inf Ix + ml is llormed. 
meM 

20. Let X be the space of all functions x on [0, IJ which vanish at all 
but a countable lllumber of points and for which 

00 

IIxll = 1: Ix(tn) I < 00, 
n= 1 

where the tn are the points at which x does not vanish. 
(a) Show that X is a Banach space. 
(b) Show that X is not separable. 

21. Show that the Banach space I"" is not separable. 
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3 
HILBERT SPACE 

3.1 Introduction 

Every student of high school geometry learns that the shortest distance 
from a point to a line is given by the perpendicular from the point to the 
line. This highly intuitive result is easily generalized to the problem of 
finding the shortest distance from a point to a plane; furthermore one might 
reasonably conjecture that in n-dimensional Euclidean space the shortest 
vector from a point to a subspace is orthogonal to the subspace. Thi's is, in 
fact, a special Case of one of the most powerful and important optimization 
principles-the projection theorem. 

The key concept in this observation is that of orthogonality; a concept 
which is not generally available in normed space but which is available in 
Hilbert space. A Hilbert space is simply a special form of normed space 
having an inner product defined which is analogous to the dot product of 
two vectors in analytic geometry. Two vectors are then defined as 
orthogonal if their inner product is zero. 

Hilbert spaces, equipped with their inner products, possess a wealth of 
structural properties generalizing many of our geometrical insights for two 
and three dimensions. Correspondingly, these structural properties imply a 

•. wealth of analytical results applicable to problems formulated in Hilbert 
space. The concepts of orthonormal bases, Fourier series, and least­
squares minimization all have natural settings in Hilbert space. 

PRE-HILBERT SPACES 

3.2 Inner Products 

Definition. A pre-Hilbert space is a linear vector space X together with an 
inner product defined on X x X. Corresponding to each pair of vectors 
x, y in X the inner product (x I y) of x and y is a scalar. The inner product 
satisfies the following axioms; 

1. (xly) = (Ylx). 
2. (x + ylz) = (xlz) + (Ylz). 

46 
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3. (Ax Iy) = A(x Iy). 
4. (x I x) ;::: 0 and (x I x) = 0 if and only if x = e. 
The bar on the right: side of axiom I d, .lotes complex conjugation. The 

axiom itself guarantees that (x I x) is real for each x. Together axioms 2 and 
3 imply that the inner product is linear in the first entry. We distinguish 
between real and complex pre-Hilbert spaces according to whether the under­
lying vector space is real or complex. In the case of real pre-Hilbert spaces, 
it is required that the iltlner product be real valued; it then follows that the 
inner product is linear in both entries. In this book the pre-Hilbert spaces 
are almost exclusively considered to be real. 

The quantity J(XTJ0 is denoted IIxll, and our first objective is to verify 
that it is indeed a norm in the sense of Chapter 2. Axioms I and 3 together 
give II ax II = lo:lllxll and axiom 4 gives IIxll > 0, x # e. It is shown in 
Proposition I that II II satisfies the triangle inequality and, hence, defines a 
norm on the pre-Hilb(~rt space. 

Before proving the triangle inequality, it is first necessary to prove an 
important 'lemma whkh is fundamental throughout this chapter. 

Lemma 1. (The Cauchy-Schwarz Inequality) For all x, y in an inner product 
space, l(xly)l::;;; Ilxllllyll. Equality holds if and only ifx = Ay or y = e. 

Proof If y = e; the inequality holds trivially. Therefore, assume y # e. 
For all scalars A, we have 

0::;;; (x - AY I x -- AY) = (x I x) - A(y I x) - 1(x I y) + IAI2(y I y). 

In particular, for A = (x I y)/(y I y), we have 

or 

o ::;;; (x I x) _I(x I y)12 , 
(y Iy) 

l(xly)1 ::;;;J(xlx)(Yly) = IIxlillyll· I 

Proposition 1. On a pre-Hilbert space X the junction IIxll = J(x I x) is a 
norm. 

Proof The only requirement for a norm which has not already been 
established is the triaillgle inequality. For any x, y E X, we have 

IIx + yl12 = (x + ylx + y) = (xix) + (xly) + (Ylx) + (Yly) 
::;;; IIxll2 +21(xly)1 +llyIl2. 

By the Cauchy-Schwarz inequality, this becomes I 

Ilx + Yll2 ~;; IIxll2 + 211xllilyll I- lIyll2 = (lIxll + lIyll)2. 

The square root of the above inequality is the deshd result. I 
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Several of the normed spaces that we have previously considered can be 
converted to pre-Hilbert spaces by introducing an appropriate inner 
product. 

Example 1. The space En consisting of n-tuples of real numbers is a 
pre-Hilbert space with the inner product of the vector x = (~1' ~2"'" ~n) 
and the vector y = ('11' '12"", '1n) defined as (xly) = 2J=1 ei'1i' In this 
case it is clear that (x I y) = (y I x) and that (x I y) is linear in both entries. 
The norm defined as J (x Ix) is 

Ilxll = Ct1e"1 2 f/2 
which is the Euclidean norm for En. 

Example 2. The (real) space 12 becomes a pre-Hilbert space with the inner 
product of the vectors x = gl' e2' ... } and y = {'11' '12, ... } defined as 
(xIY) = Lf';,1 ei '1i' The Holder inequality for 12 (which becomes the 
Cauchy-Schwarz inequality) guarantees that I(x I y) I ~ Ilxii . lIy\\ and, 
thus, the inner product has finite value. The norm defined by J (x I x) 
is the usual 12 norm. 

Example 3. The (real) space L 2 [a, b] is a pre-Hilbert space with the inner 
product defined as (x I y) = S: x(t)y(t) dt. Again the Holder inequality 
guarantees that (x I y) is finite. 

Example 4. The space of polynomi1tlfunctions on [a, b] with inner product 
(x I y) = J~ x(t)y(t) dt is a pre-Hilbert space. Obviously, this space is a sub­
space of the pre-Hilbert space L 2 [a, b]. 

There are various properties of inner products which are a direct con­
sequence of the definition. Some of these are useful in later developments. 

Lemma 2. In a pre-Hilbert space the statement (x I y) = 0 for all y implies 
that x = O. 

Proof Putting y =: x implies (x I x) = 0 .• 

Lemma 3. (The Parallelogram Law) In a pre-Hilbert space 

Ilx + yll2 + Ilx - yll2 = 211xl12 + 211y112. 
Proof. The proof is made by direct expansion of the norms in terms of 

the inner product. I 
This last result is a generalization of a result for parallelograms in two­

dimensional geometry. The sum of the squares of the lengths of the 
diagonals of a parallelogram is equal to twice the sum of the squares of 
two adjacent sides. See Figure 3.1. 
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Since a pre-Hilbert space is a special kind of normed linear space, the 
concepts of convergence, closure, completeness, etc., apply in these spaces. 

Definition. A complet1e pre-Hilbert space is called a Hilbert space. 

A Hilbert space, then, is a Banach space equipped with an inner product 
which induces the norm. The spaces En, 12 , and L 2 [a, b] are all Hilbert 
spaces. Inner products. enjoy the following useful continuity property. 

Figure 3.1 The parallelogram law 

Lemma 4. (Continuity of the Inner Product) Suppose that Xn -+ x andy n -+ Y 
in a pre-Hilbert space. Then (xn I Yn) -+ (x I y). 

Proof Since the sequence {xn} is convergent, it is bounded; say 
Ilxnll ~ M. Now 

I(xn I Yn) - (x I y)l == l(xII I Yn) - (xn I y) 

+ (xn IY) - (x ly)1 ~ I(xn IYn - y)1 + l(xn - x ly)l· 

Applying the Cauchy-Schwarz inequality, we obtain 

I(xn I Yn) - (x I y)1 ~ /lxn/lllYn - yll + /lxn - x/lllyI/· 

Since /lxnll is bounded, 

l(xn IYn) - (x Iy)l ~ MIlYn - y/I f- /lxn - x/llIylI -+ O. I 

3.3 The Projection Theorem 

We get a lot of analytical mileage from the following definition. 

Definition. In a pre-Hilbert space two vectors x, yare said to be orthog­
onal if (x IY) = O. We symbolize this by x .Ly. A vector x is said to be 
orthogonal to a set S (written x.L S) if x.L s for each s E S. 

The concept of orthogonality has many of the c!onsequences in pre­
Hilbert spaces that it has in plane geometry. For example, the Pythagorean 
theorem is true in pre-Hilbert spaces. 

Lemma 1. Ifx .Ly, then IIx + YII2 = IIxll2 + lIylI2. 
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Proof 
Ilx + Yl12 = (x + y I x + y) = IIxl12 + (x Iy) + (y I x) + Ilyll:! = IIxl12 + IIYI12 .• 

We turn now to our first optimization problem and the projection 
. 'theorem which characterizes its solution. We prove two slightly different 

versions of the theorem: one valid in an arbitrary pre-Hilbert space and 
another. with a stronger conclusion, valid in Hilbert space. 

The optimization problem considered is this: Given a vector x in a pre­
Hilbert space X and a subspace M in X, find the vector mE M closest to x 
in the sense that it minimizes Ilx - mil. Of course, if x itself lies in M, the 
solution is trivial. In general, however, three important questions must be 
answered for a complete solution to the problem. First, is there a vector 
m E M which minimizes IIx - mil, or is there no m that is at least as good as 
all others? Second, is the solution unique? And third, what is the solution 
or how is it characterized? We answer these questions now. 

Theorem 1. Let X be a pre-Hilbert space, M a subspace of X, and x an 
arbitrary vector in X. If there is a vector mo EM such that Ilx - moll ::;; 
IIx - mil for all mE M, then mo is unique. A necessary and sufficient 
condition that rno E M be a unique minimizing vector in M is that the error 
vector x - mo be orthogonal to M. 

Proof We show first that if mo is a minimizing vector, then x- m() is 
orthogonal to M. Suppose to the contrary that there is an m E M which is 
not orthogonal to x - mo. Wfthout loss of generality, we may assume that 
Ilmil == I and that (x - mo 1m) = f> =;6 O. Define the vector m1 in M as 
m1 = mo + f>m. Then 

Ilx - ml11 2 = Ilx - mo - f>m112 = Ilx - mol1 2 - (x - mo I f>m) 

-(f>m I x - mo) + 1f>12 
= IIx - moll 2 -1f>12 < Ilx - moll 2. 

Thus, if x - mo is not orthogonal to M, mo is not a minimizing vector. 
We show now that if x - mo is orthogonal to M, then mo is a unique 

minimizing vector. For any mE M, the Pythagorean theorem gives 

IIx - mll 2 = IIx - mo + mo - ml12 = IIx - moll 2 + limo - m1l2. 

Thus, IIx - mil> IIx - moll for m =;6 mo .• 

The three-dimensional version of this theorem is illustrated in Figure 3.2. 
We still have not established the existence of the minimizing vector. We 

have shown that if it exists, it is unique and that x - rno is orthogonal to the 
subspace M. By slightly strengthening the hypotheses, we can also guaran­
tee the existence of the minimizing vector. 
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Figure 3.2 The projection theorem 

Theorem 2. (The Classical Projection Theorem) Let H be a Hilbert space 
and M a closed subspace of H. Corresponding to any vector x e H, there is a 
unique vector mo e M such that IIx - moll S IIx - mil lor all me M. Further­
more, a necessary and sufficient condition that mo E M be the unique minimiz­
ing vector is that x - mo be orthogond to M. 

Proof The uniqueness and orthogonality have been established in 
Theorem 1. It is only required to establish the existence of the minimizing 
vector. 

If x E M, then m(l = x and everything is settled. Let us assume x ¢ M and 
define 0 = inf \Ix - mil. We wish to produce an mo e Mwith II x-moll = O. 

meM 
For this purpose, let {m i } be a sequence of vectors in M such that 
IIx - mill -. O. Now, by the parallelogram law, 

lI(m) - x) + (x -- mi)1I2 +1I(m) - x) - (x - ml)11 2 

= 211m) - xl12 + 211x - m1112. 

Rearranging, we obtain 

For all i, j the vector (mj + mj)/2 is in M since M is a linear subspace. 
Therefore, by definition of /), Ilx - (mi + mj)/211 ~ /) and we obtain 

11m) -- mill 2 S 211m) - xl1 2 + 211x - mill 2 - 402
• 

Since IImi - xll2 -> 02 as i -+ 00, we conclude th~t 

as i, j -. 00. 

Therefore, {m l } is Ii Cauchy sequence, and since M is a closed subspace of a 
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. complete space, the sequence {m j } has a limit 1110 in M.By continuity of the 
norm, it follows that IIx - moll = o. I 

It should be noted that neither the statement nof the proof of the 
existence of the minimizing vector makes explicit reference to the inner 
product; only the norm is used. The proof, however, makes heavy use of 
the parallelogram law, the proof of which makes heavy use of the inner 
product. There is an extended version of the theorem, valid in a large class 
of Banach spaces, which is developed in Chapter 5, but the theorem cannot 
be extended to arbitrary Banach spaces. 

3.4 Orthogonal Complements 

In this section we apply the projection theorem to establish some additional 
structural properties of Hilbert space. Our primary object is to show that 
given any closed subspace of a Hilbert space, any vector can be written as 
the sum of two vectors: one in the given subspace and one orthogonal to it. 

Definition. Given a subset S of a pre-Hilbert space, the set of all vectors 
orthogonal to S is called the orthogonal complement of S and is denoted 
S1.. 

The orthogonal complement of the set consisting only of the null vector e 
is the whole space. For any set S, S 1- is a closed subspace. It is a subspace 
because a linear combination of vectors orthogonal to a set is also orthog­
onal to the set. It is closed since if {x,J is a convergent sequence from S1-, 
say Xn ~ x, continuity of the mner product implies that 0 = (xn I s) ~ (x I s) 
for all s E S, so XES 1-. The following proposition summarizes the basic 
relations between a set and its orthogonal complement. 

Proposition 1. Let Sand T be subsets of a Hilbert space. Then 

I. S 1- is a closed subspace. 
2. SC SH, 
3. If SeT, then T1- c S 1-. 

4. SH1- = S1-. 

5. SH = [SJ, i.e., SH is the smallest closed subspace containing S. 

Proof 

1. This was proved in the text above. 
2. If XES, then x J.y for all y E S1-; therefore, x E SH. 

3. If Y E T1-, then Y 1. x for all XES since SeT. Therefore, y E S1-. 
4. From 2, S.L c S.LH. Also S c SH which from 3 implies SH1- cs.L. 

Therefore, S 1. ::= S H1.. 

S. This statement is most easily proved by using the result of Theorem 1 
below. We leave it as an exercise. I 
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Definition. We say that a vector space X is the direct sum of two subspaces 
M and N if every vector x E X has a unique represeniationof the form 
x = m + n where m E M and n E N. We describe this situation by the nota­
tion X = M EB N. (The 4)nly difference between direct sum and the earlier 
definition of sum is the added requirement of uniqueness.) 

We come now to the theorem that motivates the expression" orthogonal 
complement" for the set of vectors orthogonal to a set. If the set is a 
closed subspace in a Hilbert space, its on:hogonal complement contains 
enough additional vectors to generate the space. 

Theorem 1. If M is a closed linear subspace of a Hilbert space H, then 
H = MEt> M 1. and M == M H. 

Proof The proof follows from the projection theorem. Let x E H. 
By the projection theorem, there is a unique vector mo E M such that 
IIx - moll ::s; IIx - mil for all mE M, and no = x - mo E M1.. Thus, 
x = »10 + no with »10 e M and no E M J.. 

To show that this r(~presentation is unique, suppose x = m1 + n1 with 
m1 E M, n1 E M 1.. Then 9 = m1 - mo + n1 - no but m1 - mo and n1 - no 
are orthogonal. Hence, by the Pythagorean theorem, 11911 2 = IIm1 - moi\2+ 
IIn1 - noll 2

• This impli(~s that mo == m1 and no = n1' 
To show that M = Al H, it is only necessary to show M H c: M since by 

Proposition I we have M c: M H. Let x E M H. By the first part of this 
theorem, x = m + n where mE M, n E M1.. Since both x E MH and 
mE MH, we have x - mE MH; that is, n E MH. But also n E M1., hence 
n .Ln which implies n = 9. Thus, x = mE M and MH c: M. I 

In view of the above results, given a vector x and a closed subspace Min 
a Hilbert space, the vector mo E M such that x - mo E M 1. is called the 
orthogonal projection of x onto M. 

3.5 The Gram-Schmidt Procedure 

Definition. A set S of vectors in a pre-Hilbert space is said to be an 
orthogonal set if x .L)' for each x, YES, x ¥: y. The set is said to be ortho­
normal if, in addition, each vector in the set has norm equal to unity. 

As we shall see, orthogonal sets are extremely convenient in various 
problems arising in Hilbert space. Partially, this is due to the property 
stated below. I 

Proposition 1. An orthogonal set of nonzero vectors is a linearly independent 
set. 
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Proof Suppose {Xi> X2., ... , xn} is a finite subset of the given orthog­
onal set and that there are n scalars lXi' i = 1, 2, ... , n, such that 
:Li'= 1 ctiXi = O. Taking the inner product of both sides of this equation with 
Xk produces 

or 

Thus, ctk = 0 for each k and, according to Theorem 1, Section 2.5, the 
vectors are independent. I 

In Hilbert space, orthonormal sets are greatly favored over other 
linearly independent sets, and it is reassuring to know that they exist and 
can be easily constructed. The next theorem states that in fact an orthonor­
mal set can be constructed from an arbitrary linearly independent set. The 
constructive method employed for the proof is referred to as the Gram­
Schmidt orthogonalization procedure and is as important in its own right 
as the theorem itself. 

Theorem 1. (Gram-Schmidt) Let {Xi} be a countable or finite sequence of 
linearly independent vectors in a pre-Hilbert space X. Then, there is an 
orthonormal sequence {e i} such that for each n the space generated by the 
first n e;'s is the same as the space generated by the first n x;'s; i.e.,jor each n 
we have [el , e2' ... , en] ~ [Xl' X2' ... , XnJ. 

Proof For the first vector, take 

which obviously generates the same space as Xl' Form e2 in two steps. 
First, put 

Z2 = X2 - (x21 el)el 

and then e2 = z2/11z 211. By direct calculation, it is verified that Z2 .1. e1 and 
e2 .1. el . The vector Z2 cannot be zero since X2 and el are linearly indepen­
dent; furthermore, e2 and e1 span the same space as Xl and X2 since X2 
may be expressed as a linear combination of el and ez. 

The process is best understood in terms of the two-dimensional diagram 
of Figure 3.3. The vector Z2 is formed by subtracting the projection of X2 on 
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el from x 2 • The remaining ej's are defined by induction. The vector Zn 

is formed according to the equation 

and 

n-l 

Zn = Xn - L (xn I ej)ej 
j= 1 

Again it is easily verified by direct computation that Zn .L e / for all i < n, 
and Zn is not zero since it is a linear combination of independent vectors. It 
is clear by induction that the e;'s generate the same space as the x/'s. If the 
original collection of x I 's is finite, the process terminates; otherwise the 
process produces an infinite sequence of orthonormal vectors. I 

L-----~~------~el 

(.\'21 el )el 

Figure 3.3 The Gram-Schmidt procedure 

The study of the Gram-Schmidt procedure and its relation to the projec­
tion theorem, approximation, and equation solving is continued in the 
following few secti'Dns. 

APPROXIMATION 

3.6 The Normal lr.quations and Gram Matrices 

In this section we investigate tHe following approximation problem. 
Suppose Yto Y2' ... , Yn are elements of a Hilbert space H. These vectors 
generate a (closed) finite-dimensional subspace M of H. Given an arbi­
trary vector x E H, we seek the vector ~ in M which is closest to x. If ~ is 
expressed in terms. of the vectors Yi as ~ = IXIYI + 1X2Y2 + ., . + IXnYn, the 
problem is equivalent to that of finding the n scalars lXi' i == I, 2, ... , n, 
that minimize Ilx,- (XIYI - (X2Y2 - .. , - IXnYnll· 
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According to the projection theorem, the unique minimizing vector ~ is 
the orthogonal projection of x on M, or equivalently the difference vector 
x - ~ is orthogonal to each of the vectors Yi' Therefore, 

(x -IXIYI -1X2Y2 -'" -1X~YnIYi) = 0 

for i = I, 2, ... , n. Or, equivalently, 

(YII YI)IX I + (Y21 YI) 1X2 + ... + (Yn I YI)lXn = (x I YI) 

(YII Y2)IX I + (Y21 Y2)1X2 + ... + (Yn I Y2)er:n = (x I Y2) 

These equations in the n coefficients IX; are known as the normal equations 
for the minimization problem. 

Corresponding to the vectors YI' Y2, ... , Yn, the n x n matrix 

[

(YII Yt) (YII Y2) 
(Y21 YI) 

G=G(Yt.Y2,· .. ,Yn):= : 

(YnIYt) 

is called the Gram matrix of YI' Y2, ... , Yn' It is the transpose of the co­
efficient matrix of the normal equations. (In a real pre-Hilbert space the 
matrix is symmetric. In a complex space its transpose is its complex conju­
gate.) The determinant g = g(Yb Y2 , ... , Y.) of the Gram matrix is known 
as the Gram determinant. I 

The approximation problem is solved once the normal equations are 
solved. In order that this set of equations be uniquely solvable, it is neces­
sary and sufficient that the Gram determinant be nonzero. 

Proposition 1. g(Yl> Y2 , ... , Yn) ¥= 0 if and only if the vectors Yl> Y2 , ... , Yn 
are linearly independent. 

Proof. The equivalent contrapositive statement is that 

g(Yl, Y2 , ... , Yn) = 0 

if and only if the vectors YI' Y2, ... , Y. are linearly dependent. Suppose that 
the Yi'S are linearly dependent; that is, suppose there are constants IX/) not 
aU zero. such that 2:7-. f't,)J, ::= fJ. It i~ then clear that the rows of the Gram 
determinant have a corresponding dependency and, hence, the determinant 
is zero. 



§3.6 1rHE NORMAL EQUATIONS AND GRAM MATRICES 57 

Now assume that the Gram determinant is zero or, equivalently, that 
there is a linear dependency among the rows. In that case there are-con­
stants r:J.j, not all zero, such that L~= 1 r:J.j(Yi I YJ) = 0 for all j. From this it 
follows that 

for all ,j 

and hence that 

or 

Thus, L7= 1 r:J.iYI = () and the vectors Yl, Y2, ... , Y. are linearly dependent. I 
Although the normal equations do not possess a unique solution if the 

YI'S are linearly dependent, there is always at least one solution. Thus the 
degeneracy that arises as a result of g = 0 always results in a multiplicity of 
solutions rather than an inconsistent set of equations. The reader is asked 
to verify this in Probkm 4. 

We turn now to the evaluation of the minimum distance between x and 
the subspace M. 

Theorem 1. Let Yl' hI ... , Y. be linearly independent. Let ~ be the minimum 
distance from a vector x to the subspace M generated by the y;'s; i.e., 

Then 

~2 == g(ylo Y2, ••. , Y., x). 
g(yto Y2, ••• , Yn) 

Proof By definition, ~2 :::: IIx - ~1I2 ::;= (x - ~ I x) - (x - ~ I ~). By the 
projection theorem, x - * is orthogonal to M so, in particular, (x - ~ I ~) = 
O. Therefore, 

or 

This equation, together with the normal equations, gives n + 1 linear 
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equations for the n + 1 unknowns IXt, 1X2' ••. , IXn' 62
• Applying Cramer's 

rule to determine 62
, we obtain 

.:5 2 = 

(ytl Y1) (Y21 YI) ... (Yn I Yt) (x I YI) 
(YIIY2) 

(Yt I Yn) , . (Yn I Yn) (x I Yn) 
(YI I x) 

(YIIYI) (Y21 Yt) 

I-=.....::....:---C-_____ ----"'(Y-::n-'-I x-,)_-,(_x.:.....1 X---'-)_I = g(y 1, Y2 , ... , Yn' x). I 
(Yn I Yt) 0 g(YI' Y2' ... , Yn) 

(hi Y2) 

(Yt I Yn) .. , (Yn I Yn) 0 
(Yt I x) .. , (Ynlx) 1 

This explicit formula, although of some theoretical interest, is of little 
practical importance because of the impracticality of evaluating large 
determinants. The evaluation of an n + I-dimensional determinant is in 
general about as difficult as inverting an n-dimensional matrix; hence, the 
determinant relation is not particularly attractive for direct computations. 
An alternative approach is developed in Section 3.9. 

3.7 Fourier Series 

Consider the problem of finding the best approximation to x in the sub­
space M generated by the orthonormal vectors et , e2' ... , en' This special 
case of the general approximation problem is trivial since the Gram 
matrix of the e /s is simply the identity matrix. Thus the best approxima­
tion is 

n 

i = LlXiei 
i= t 

where (Xi = (x lei)' 
In this section we generalize this special approximation problem slightly 

by considering approximation in the closed subspace generated by an 
infinite orthonormal sequence. This leads us naturally to a general dis­
cussion of Fourier series. 

To proceed we must define what is meant by an infinite series. 

Definition. An i'lfinite series of the form I~ I Xi is said to converge to the 
element x in a normed space if the sequence of partial sums Sn = Li= I XI 

converges to x. In that case we write x = L~ I Xi' 
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We now establish a necessary and sufficient condition for an infinite 
series of orthogonal vectors to converge in Hilbert space. 

Theorem 1. Let {el} be an orthonormal sequence in a Hilbert space H. A 
series of the form L~ I ~ i e i converges to an element x E H if and only if 
L~l led2 < 00 and, in that case, we have ~i = (xl ei)' 

froof. Suppose that L~ 1 Ie 112 < 00 and define the sequence of partial 
sums s" = L~=l ele,. Then, 

Iisn - sml1
2 = II i=~ lei ei 112 = '=~.1IeiI2 -4 0 

as n, m -4 00. Therefore, {sn} is a Cauchy ~equence so by the completeness 
of H there is an element x E H such that Sn -). x. 

Conversely, if s" converges, it is a Cauchy sequence 10 Lf=n+ 1 lel~~-4 o. 
Thus, L~n+lled2 -0 and L~llelf < 00. 

Obviously, (sn lei) -4- e I as n -+ 00 which, by the continuity of the inner 
product (Lemma 4, Section 3.2), implies that (x I e i) = e I' I 

In the above theorem we started with an arbitrary square-summable 
sequence of scalars {~: i} and constructed the element x = Lr;. 1 e i e i in 
the !;pace. It was found that e I = (x I e I)' We now consider the possibility of 
start'ng with a given x and forming an infinite summation with (x I e l) as 
coefficients of the orthonormal vectors ei' These coefficients are called the 
Fourier coefficients of x with respect to the ei and are fundamental in the 
theory of generalized Fourier series in Hilbert space. 

Lemma 1. (Bessel's Inequality) Let x be an element in a Hilbert space H 
and suppose {etl is an orthonormal sequence in H. Then, 

Proof. Letting IXI = (x I ei), we have for all n 

n n 

Os Ilx - 1>Xleill 2 = IIxl12 - L IlXil2. 
i'" 1 1= 1 

Thus, 
n 

L \cxi \2 S; I\xl\2 for all n. 
i. == 1 

Hence, 
00 

L IIXil2 S Ilx112. I 
i= 1 
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Since Bessel's inequality guarantees that L~ 1 I<x Ie i)iZ < 00, Theorem 1 
guarantees that the series Ir;. 1 (x I e j)e i converges to some element. We 
now characterize that element. 

Definition. If S is a subset of a Hilbert space, the closed subspace generated 

by Sis [S]. 

Theorem 2. Let x be an element in a Hilbert space H and suppose {e;} is a 
orthonormal sequence in H. Then the series 

converges to an element ~ in the closed subspace M generated by the e;'s. 
The difference vector x - ~ is orthogonal to M. 

Proof The fact that the series converges is a consequence of 
Theorem 1 and Bessel's inequality. Obviously, .~ E M. The sequence of 
partial sums Sn = Ii=, (xl ej)e j converges to~. For each) and for n >}, 
we have 

n 

(x - Sn I e) = (x - L (x I e;)ei I e) = (x I e) - (x I e) = O. 
j= 1 

Therefore, by the continuity of the inner product lim (x - Sn lej) == 
n .... IX) 

(x - ~ I ej ) = 0 for each }. Thus, x - ~ is orthogonal to the subspace 
generated by the e,'s. Again using the continuity of the inner product, we 
deduce that x - ~ is perpendicular to the closed subspace generated by the 
e;'s. I 

From Theorem 2 it is apparent that if the closed subspace generated by 
the orthonormal set of e/s is the whole space, any vector in H can be 
expanded as a series of the e;'s witIt coefficients equal to the Fourier 
coefficients (x I e i)' In the next section, we turn to the problem of construct­
ing an orthonormal sequence that generates the whole space. 

*3.8 Complete Orthonormal Sequences 

Suppose {e;} is a sequence of orthonormal vectors in a Hilbert space H. 
Generally this sequence generates a linear subspace in H and, as we have 
seen, any vector in the closure M of this subspace can be expressed uniquely 
as the limit of an infinite series of the form 2:~ 1 !Xi e j • To express every 
vector in H this way, it is necessary that the closed subspace M generated 
by the e/s be the whole space. 

Dofinililm. An orthonormalscqucncc {eJ in a Hilbert space H is said to be 
complete if the closed subspace generated by the e;'s is H. 
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The following result giv1es a simple criterion for an arbitrary orthonormal 
sequence to be complete. We leave the proc.;' to the reader. 

Lemma 1. An orthonormal sequence {el} in a Hilbert spa;;;e H is complete if 
and only if the only vector orthogonal to each of the e / s is the null vector. 

Example 1. Consider the Hilbert space L2 [ -1, IJ consisting of square­
integrable functions on the interval [-1,1]. The independent functions 
1, t, t 2

, ••• , tn, ... generate the subspace of polynomials. The Gram­
Schmidt procedure can be applied to the sequence 1, t, t 2

, '" to produce an 
orthonormal sequence {e,}~o. Obviously the e/s, being linear combina­
tions of polynomials, are themselves polynomials. It turns out that 

J2n + 1 . 
en<t) = -2- p"(t), n = 0,1,2, ... , 

where the Pit) are the well-known Legendre polynomials 

(_1)" d" 2" 
p"(t) = -2" , d" {(I - t ) }. n. t 

We wish to show that this sequence is a complete orthonormal sequence in 
L 2 [ -1, 1]. According to Lemma 1, it is sufficient to prove that there is 
no nonzero vector orthogonal to the subspace of polynomials. 

Assume that there exists an f E L 2 [ -1, 1] orthogonal to each t"; i.e., 
assume that . 

1 L /''f(t) dt = ° for n = 0,1,2, .... 

The continuous function 

t 

F(t) = L/(-r) d-r 

has F( -1) == F(1) = 0, and it follows from integration by parts that 

f
1 t"+1 1 t"+1 

t"F(t) dt = --F(t)I~1 -f --f(t) dt = ° 
-1 n+l -1n+l 

for n = 0, 1, 2, ... , Thus the continuous function F is also orthogonal 
to polynomials. 

Since F is continuous, the Weierstrass approximation theorem applies: 
Given B > 0, there is a polynomial • 

N 

Q(t) = La, t' 1=0 
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such that 

IF(t) - Q(t)1 < B 

for all t E [ -1, 1]. Therefore, since F is orthogonal to polynomials, 

the last inequality being a special case of the Cauchy-Schwarz inequality. 
It follows that 

1 L IIF(t)1 2 dt :::; 282
• 

Since e is arbitrary and Fis continuous, we deduce that F(t) = ° and, hence, 
thatf(t) = ° (almost everywhere). This proves that the subspace of poly­
nomials is dense in £2[ -1, 1J. 

Example 2. Consider the complex space £2[0, 211:]. The functions ek(t) = 

(l/jfn)e ikt for k = 0, ± 1, ±2, ... are easily seen by direct calculation to be 
an orthonormal sequence. Furthermore, it may be shown, in a manner 
similar to that for the Legendre polynomials, that the system is complete. 
Therefore, we obtain the classical complex Fourier expansion for an 
arbitrary function x E £2[0, 211:J 

<Xl elkt 

x(t)= I fkJ-
k=-oo 211: 

where the Fourier coefficients Ck are evaluated according to the formula 

1 21t 

Ck = (x I ek) = ;;;;: J x(t)e -ikt dt . 
.....; 211: 0 

3.9 Approximation and Fourier Series 

Suppose again that we are given independent vectors Yl' Yz, ... , Yn 
generating a subspace M of a Hilbert space H and wish to find the vector :£ 
in M which minimizes IIx - ~II. Rather than seeking to obtain :£ directly 
as a linear combination of the Yi'S by solving the normal equations, we 
can employ the Gram-Schmidt orthogonalization procedure together with 
Fourier series. 
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First we apply the Gram-Schmidt procedure to {Ylo Y2, ... , Yn}, obtain­
ing an orthonormal set {e1, e2' ... ', en} generating M. The vector ~ is then 
given by the Fourier series 

" ~ = L (x I ej)el 
1= 1 

since x - ~ is orthogonal to M. Thus, our original optimization problem is 
. easily resolved once th(~ independent vectors YI are orthonormalized. The 
advantage of this method is that once the et's are found, the best approxi­
mation to any vector is easily computed. 

Since solution to the approximation problem is equivalent to solution of 
the normal equations, it is clear that the Gram~Schmidt procedure can be 
interpreted as a procedure for inverting the Gram matrix. Conversely, 
many effective algorithms for solving the normal equations have an inter­
pretation in terms of the minimum norm problem in Hilbert space. 

We have seen that the Gram-Schmidt procedure can be used to solve 
a minimum norm approximation problem. It is interesting to note that 
the Gram-Schmidt procedure can itself be viewed as an approximation 
problem. Given a sequence {Yl' Y2, Y3' ... , Yn} of independent vectors, the 
Gram-Schmidt procedure sets 

k-l 
Yk - L (Yk I ej)ej 

j= 1 
ek =' k 1 

IIYk - L (Yk I ej)ejll 
j=1 

The vector Yk - L~;~ (Yk I ej)ej is the optimal error for the minimum 
problem: 

minimize IIy" -~" 

where the minimum is over all ~ in the subspace [Ylo Y2' ... , Yk-I] = 
rei, e2' ... , ek-l]. The vector ek is just a normalized version of this error. 
Thus, the Gram-Schmidt procedure consists of solving a series of minimum 
norm approximation problems by use of the projecti(;m theorem. 

Alternatively, the minimum norm approximation of x on the subspace 
[YI, Y2, ... , YnJ can be found by applying the Gram-Schmidt procedure to 
the sequence {Yl' Y2' Y:I' ... , Yn' x}. The optimal error x - ~ is found at 
the last step. 
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OTHER MINIMUM NORM PROBLEMS 

3.10 The Dual Approximation Problem 

In Section 3.6 we considered in some detail the problem of approximating 
all arbitrary vector in a Hilbert space by a vector in a given finite-dimen­
sional subspace. The projection theorem led to the normal equations which 
could be solved for the best approximation. A major assumption in such 
problems was the finite dimensionality of the subspace from which the 
approximation was chosen. Finite dimensionality not only guarantees 
closure (and hence existence of a solution) but leads to a feasible computa­
tion procedure for obtaining the solution. 

In many important and interesting practical problems the subspace in 
which the solution mllst lie is not finite dimensional. In such problems it is 
generally not possible to reduce the problem to a finite set of linear equa­
tions. However, there is an important class of such problems that can be 
reduced by the projection theorem to a finite set of linear equations similar 
to the normal equations. In this section we study these problems and their 
relation to the earlier approximation problem. We begin by pointing out a 
trivial modification of the projection theorem applicable to linear varieties. 

Theorem 1. (Restatement of Projection Theorem) Let M be a closed sub­
space of a Hilbert space H. Let .\ be a fixed element in H and let V be the 
linear mriety x + M. Then there is a unique rector Xo in V of minimum norm. 
Furthermore, Xo is orthogonal to M. 

Proof The theorem is proved by translating V by - x so that it 
becomes a closed subspace and the,n applying the projection theorem. 
See Figure 3.4. I 

A point of caution is necessary here. The minimum norm solution Xo is 
not orthogonal to the linear variety V but to the subspace M from which V 
is obtained. 

Figure 3.4 Minimum 1I0rm to a linear variety 
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Two special kinds of linear varieties are of particular interest in optimiza­
tion theory because they lead to finite-dimensional problems. The first 
is the n-dimensional linear variety consisting of points of the form 
x + Li': I aj XI where {Xl' X2, ... , Xn} is a linearly independent set in Hand 
X is a fixed vector in H. Problems which seek minimum norm vectors in an 
n-dimensional variety can be reduced to the solution of an n-dimensional 
set of normal equations as developed in Section 3.6. 

The second special type of linear variety consists of all vectors X in a 
Hilbert space H satisfying conditions of the form 

(x I YI) = CI 

(XIY2) = C2 

where Ylo Y2' ... , Yn are a set of linearly independeQ,t vectors in Hand 
Cl , C2' ... , Cn are fixed ';:onstants. Ifwe denote by M the subspace generated 
by YI' Y2, ... , Yn' it is dear that if each C I == 0, then th~ linear variety is the 
subspace M1.. For nonzero CI'S the resulting linear variety is a translation 
of M 1.. A linear variety of this form is said to be of codimension n since 
the orthogonal complement of the subspace producing it has dimension n. 

We now consider the minimum norm problem of se'eking the closest 
vector to the origin lying in a linear variety of finite codimension. 

Theorem 2. Let H be Cl Hi/bert space and {YI' Y2' ... , Yn} a set of linearly 
independent vectors in H. Among all vectors X E H satisfying 

(XIYl) = C1 

(XIY2) = C2 

(X I Yn) = Cn' 

let Xo have the minimum norm. Then 

" Xo = LPIYI 
1= I 

where the coefficients P I satisfy the equations 

(Yl I Yl)Pl + (Y21 Yl)P2 + . " + (Yn I Yl)Pn = CI , 
(Yl I Y2)Pl + (Y21 Y2)P2 + ... + (Yn I Y2)Pn = C2 
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Proof. Let M be the (n-dimensional) subspace generated by the vectors 
Yi' The linear variety defined by the constraints of the minimization 
problem is a translation of the subspace M 1.. Since M 1. is closed, existence 
and uniqueness of an optimal solution follow from the modified projection 
theorem. Furthermore, the optimal solution Xo is orthogonal to M 1.. Thus, 
Xo E MH. However, since M is closed, ME == M. We therefore conclude 
that Xo E M or, equivalently, that 

n 

Xo = L f3iYi' 
i= 1 

The n coefficients f3 i are chosen so that Xo satisfies the n constraints. This 
leads to the n equations displayed in the theorj~m statement. I 

Example 1. The shaft angular velocity w of a d-c motor driven from a 
variable current source u is governed by the following first-order differential 
equation: 

w(t) + wet) = u(t), 

where u(t) is the field current at time t. The angular position e of the motor 
shaft is the time integral of w. Assume that thc~ motor is initially at rest, 
8(0) = w(O) = 0, and that it is desired to find the field current function u 
of minimum energy which rotates the shaft to the new rest position e = I, 
w = 0 within one second. The energy is assumed to be proportional to 
g u2(t) dt. This is a simple control problem in which the cost criterion 
depends only on the control function u. The problem can be solved by 
treating it as a minimum norm problem in the Hilbert space L 2 [O, 1]. 

We can integrate the first-order differential equation governing the motor 
to obtain the explicit formula 

(1) 

for the final angular velocity corresponding to any control. From the equa­
tion wet) +O(t) = u(t) follows the equation 

(2) 
1 

8(1) = J u(t) dt - w(1) 
o 

or, combined with equation (1), 

(3) 
1 

0(1) = J {I - e(t-l)}u(t) dt. 
o 
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If the function u is regarded as an element of the Hilbert space L 2 [0, 1], 
the above relations may be expressed as 

(0(1) = (Y1 I u) 

8(1) = (Y21 u) 

where Yl = e(t-1l, Y2 = I - e(t- 1l. 

With these definitions the original problem is equivalent to that of finding 
u E L2[0, 1] of minimum norm subject to the constraints 

° = (Y11 u) 
(4) 

1 = (Y21 u). 

According to Theorem 2, the optimal solution is in the subspace 
generated by Yl and Y2' Equivalently, 

u(t) =OC1 + OC2 et 

where OC1 and OC2 are chosen to satisfy the two constraints (4). Evaluating the 
constants leads to the solution 

1 
u(t) == -3 - [1 + e - 2et

]. 
-e 

We have observed that there are two basic forms of minimum norm 
problems in Hilbert space that reduce to the solution of a finite number of 
simultaneous linear equations. In their general forms, both problems are 

. concerned with finding the shortest distance from a point to a linear variety. 
In one case the linear variety has finite dimension; in the other it has 
finite codimension. To understand the relation between these two prob­
lems, which is one of the simplest examples of a duality relation, consider 
Figure 3.5. Let M be a closed subspace of a Hilbert space H and let x be an 
arbitrary vector in H. We may then formulate two problems: one of 
projecting x onto M and the other of projecting x onto M 1. The situation 
is completely symmetrical since M l.l. = M. If we solve one of these prob­
lems, the other is automatically solved in the process since if, for instance, 

x 

Figure 3.5 Dual projectIOn problems 
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mo is the projection of x onto M, then x - mo is the projection of x onto 
M 1.. Therefore, if either M or M 1. is finite dimensional, both problems can 
be reduced to that of solving a finite set of linear equations. 

*3.11 A Control Problem 

In this section we indicate how the projection theorem can be applied to 
more complicated problems to establish existence and uniqueness results. 
We consider an optimal control problem that is more difficult than the one 
discussed in the previous section but which is of great practical importance. 

Suppose we seek to minimize the quadratic objective 
T . 

J = J {x 2(t) + u 2(t)} dt 
o 

where x and u are connected by the differentiaR equation 

(1) x(t)=u(t); x(O) given. 

Problems of this form arise when it is desired to reduce x to zero quickly 
by suitable application of control u. The quadratic objective represents a 
common compromise between a desire to have x small while simultane­
ously conserving control energy. 

For notational ease we have selected the simplest possible differential 
equation to represent the controlled systems, but the techniques developed 
below apply equally well to more complex differential equations. 

Let us begin by replacing equation (1) by the equivalent constraint 

(2) x(t) = xeD) + fu(r) dr. 
o 

We now may formulate our problem in the Hilbert space 

H = L 2 [O, TJ x L 2 [O, TJ 

consisting of ordered pairs (x, u) of square-integrable functions on [0, T] 
with inner product defined by 

T 

«Xl' u t ) I (X2' u2» = fo [X 1(t)X2(t) + ul(t)uz(t)] dt 

and the corresponding norm 
T 

II(x, u)11 2 = fo [x 2(t) + u2(t)] dt. 

The set of elements (x, u) E H satisfying the constraint (2) is a linear variety 
V in H. Thus, abstractly the control problem is one of finding the element 
(x, u) E V having minimum norm. 
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To establish the existence and uniqueness of a solution, it is sufficient to 
prove that the linear variety V is closed. For this purpose, let {(Xn' Un)} be a 
sequence of elements from V converging to an element (x, u). To prove that 
Vis closed, we must show that (x, u) e V. Letting y(t) = x(O) + J~ u(t) dr, 
we must show that .x = y. We havey(t) - xit) = S~ [u('t) - ui't)] d't. Thus, 
by the Cauchy-Schwarz inequality (applied to the functions 1 and u - un), 

Iy(t) - Xn(t)12 ::::; t {Iu('t) - un(t)12 d't::::; Tllu - unl1 2 
o 

and, hence, integrating from 0 to T, Ily - xnll ::::; Tllu - unll. It follows that 

lIy - xII ::::; lIy - xnll + IIxn - xII ::::; Tllu - unll + IIxn - xII. 
Both terms on the right tend to zero as n -+ 00, from which we conclude 
that x = y, the desired result. 

The general quadratic loss control problem is treated further in Sec­
tion 9.5. 

3.12 Minimum Distance to a Convex Set 

Much of the discussion in the previous sections can be generalized from 
linear varieties to convex sets., The following theorem, which treats the 
minimum norm problem illustrated in Figure 3.6, is a direct extension of 
the proof of the projection theorem. 

Figure 3.6 Minimum distance to a convex set 

Theorem 1. Let x be a vector in a Hilbert space H and let K be a closed 
convex subset 0/ H. Then there is a unique vector ko e,K such that 

IIx-ko'lI::::; IIx-kll 

for all k E K. Furthermore, a necessary and sufficient condition that ko he 
the unique minimizing vector is that (x - ko 1 k - ko) ::::; O/or all k e K. 
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Proof. To prove existence, let {kJ be a sequence from K such that 

Ilx - kill -+ 0 = inf IIx - kll. 
kEK 

By the parallelogram law, 

Ilk; - kj l1
2 = 2 IIki - xl12 + 2 IIk j - xllz - 4/1 x - kl ~ kj r 

By convexity of K, (k; + kj )/2 is in K; hence, 

and therefore 

Ilk; - kjl12 :$ 2 IIk i - Xll2 + 2 IIkj - xllz - 402-+ O. 

The sequence {k i } is Cauchy and hence convergent to an element ko E K. 
By continuity, IIx - koll = 0. 

To prove uniqueness, suppose kl E K with IIx - kt II ::::: 0. The sequence 

n even 
n odd 

has llx - knll-+ 0 so, by the above argument, {kn} is Cauchy and conver­
gent. This can only happen if kl = ko. 

We show now that if ko is the unique minimizing vector, then 

(x - ko I k - ko) :$ 0 

for all k E K. Suppose to the contrary that there is a vector kl E K such 
that (x - ko I kl - ko) = B > O. Conside\- the vectors k,. = (1 -rt)ko + rtk1 ; 

o ::;:; rt :$ 1. Since K is convex, each k,. E K. Also 

IIx - k,.11 2 = 11(1 - a) (x - ko) + a(x - k1)11 2 

= (1 -a)ZIIx - koll z + 2rt(l- a)(x - kolx - k1)+o:21Ix-kt I1
2. 

The quantity IIx - k,.11 2 is a differentiable function of rt with derivative at 
ex = 0 equal to 

d 2/ 2 . da IIx - k,,11 a=O = -2 IIx - koll + 2(x - ko I x - k 1) 

= -2(x-kolk t -ko)= -2B<0. 

Thus for some small positive ex, IIx - k,.11 < IIx - koll which contradicts the 
minimizing property of ko . Hence, no such kl can exist. 
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Conversely, suppose that ko e K is such that (x - ko I k - k o) :s; 0 for all 
k E K. Then for any k E K, k =F ko, we have 

Ilx - kl1 2 = Ilx - ko + ko - kll 2 = IIx - k oll 2 

+ 2(x - ko I ko - k) + Illko\- kl1 2 > IIx - k oll 2 

and therefore ko is a unique minimizing vector. I 
Example 1. As an applic:ation of the above result, we consider an approxi­
mation problem with restrictions on the coefficients. Let {Yt, Y2, ... ,Yn} be 
linearly independent vectors in a Hilbert space H. Given x e H, we-seek 
to minimize IIx - IXtYt -- 1X2Y2 - ••• - IXnYnll where we require IX; ~ 0 for 
each i. Such a restriction is common in many physical problems. 

This general problem can be formulated abstractly as that of finding the 
minimum distance from the pointx to the convex cone 

K = {y: Y = IXtYt + ... + IXnYn, IX; ~ 0 each i}. 

This cone is obviously dosed and there is therefore a unique minimizing 
vector. The minimizing vector ~ = IXtYt + ... + 1X.,Yn must satisfy 

(x -- ~ I k - ~) :s; 0, 

Setting k = ~ + Y; leads to 

all k eK. 

(x-jcly;)sO 

and setting k = ~ - IX/Y; leads to 

for i = 1,2, ... , n 

(x - ~ Iy;) ~ 0 if IX; > O. 

Thus it follows that 

for i = 1, 2, ... , n 

with equality if IX; > O. 
Letting G be the Gra.m matrix of the y;'s and letting b; = (x I YI), we 

obtain the equation 

(1) GIX - b = z 

for some vector z with components Zl ~ O. (Here IX and b are vectors with 
components IX; and b;, respectively.) Furthermore, IX;Z/ = 0 for each i or, 
more compactly, 

(2) IX'Z = O. 

Conditions (1) and (2) are the analog of the normal equations. They 
represent necessary and sufficient conditions for the solution ofthe approxi­
mation problem but are not easily solved since they are nonlinear. 
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The dual of the approximation problem discussed above is that of 
minimizing /lxll when xis s~bject to inequality constraints of the. form 
(xl Yi) ;::;: Ci • This topic is treated in the problems and in Chapter 5. 

3.13 Problems 

1. Let x andy be vectors in a pre-Hilbert space. Show that I(x I y)1 = Ilxllllyll 
if and only if i1.X + fiy = ° for some scalars i1., {3. 

2. Consider the set X of all real functions x defined on (- 00, 00) for 
which 

1 T 
lim - J Ix(tW dt < 00. 
T->Cfj 2T -T 

It is easily verified that these form a linear vector space. Let M be the 
subspace on which the indicated limit is zero. 
(a) Show that the space H::= XjM becomes a pre-Hilbert space when 
the inner product is defined as 

1 T 
([x] I [y]) = ;~~ 2T L/(t)y(t) dt 

(b) Show· that H is not separable. 
3. Let H consist of all m x n real matrices with addition and scalar multi­

plication defined as the usual corresponding operations with matrices, 
and with the inner product of two matrices A, B defined as 

(A I B) = Trace [A' QB] 

where A I denotes the transpose of tbe matrix A and Q is a symmetric, 
positive-definite m x m matrix. Prove that H is a Hilbert space. 

4. Show that if g(Xl' x2 , ... , xn) = 0, the normal equations possess a 
solution but it is not unique. 

5. Find the linear function x(t) = a + bt minimizing S~ 1 [t 2 
- x(t)]2 dt. 

6. Given a function x E L 2[0, 1], we seek a polynomial p of degree n or 
less which minimizes J6 Ix(t) - p(t)1 2 dt while satisfying the require­
ment S6 p(t) dt = 0. 
(a) Show that this problem has a unique solution. 
(b) Show that this problem can be solved by first finding the poly­
nomial q of degree n or less which minimizes Sb Ix(t) - q(t)12 dt and 
then finding p of degree n or less which minimizes g Iq(t) -p(tW dt 
while satisfying SA p(t) dt = 0. 

7. Let M and N be orthogonal closed subspaces of a Hilbert space Hand 
let x be an arbitrary vector in H. Show that the subspace M Ee N is 
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closed a.nd that the orthogonal projection of x onto M EEl N is equal to 
m + n, wherem is the orthogonal projection of x onto M and n is the 

. orthogonal projection of x onto N. 
8. Let {Xl' X2, ... ,xm} and {Yl' Y2, ... ,Yn} each be sets of linearly 

independent vectors in a Hilbert space generating the subspaces M and 
N, respectively. Given a vector x E H, it is desired to find the best 
approximation ~ (in the sense of the r.orm) to x in the subspace M n N. 
(a) Give a set of equations analogous to the normal equations which 
when solved producl~ ~. 
(b) Give a geometrical interpretation 01 the method of solution. 
(c) Give a computational procedure for producing ~. 
Hint: Consider the dual problem and use Problem 7. 

9. Prove part 5 of Proposition 1, Section 3.4. 
10. A Hilbert space H of functions on a set S is said to bea reproducing 

kernel Hilbert space iif there is a function K defined on S x S having the 
properties: (1) K( . , t) E H for each t E S, and (2) x(t) = (x I K( . , t)) 
for each x E H, t E S. Such a function K is, called a reproducing kernel. 
Prove that a reproducing kernel, if it exists, is unique. 

11. Suppose H with reproducing kernel K is a closed subspace of a Hilbert 
space X. Show that for x E X the function (x I K( . , t» is the projection 
of x onto H. 

12. Suppose randomly varying data in the form of a function x(t) is 
observed from t = 0 to the present time t = T. One proposed metnod 
for predicting the future data (t > T) is by fitting an (n - l)-th degree 
polynomial to the past data and using the extrapolated values of the 
polynomial as the e:stimate. 

Specifically, suppose that the polynomial, 

peT, t) == a1(T) + a2(T)t + a3(T)t2 + ... + an(T)tn- 1 

minimizes 

T 

fo [x(t) - peT, t)]2 dt. 

Show that the coefficients ai(T) need not be completely recomputed for 
each T but rather can be continuously updated according to a formula 
of the form 

. where e(T) = x(T) -- p(T, T) is the instantaneous error and the bi's are 
fixed constants. 
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13, Show that the Gram determinant g(x" X2, ... , xn) is never negative 
(thus generalizing the Cauchy-Schwarz inequality which can be 
expressed as g(Xl, X2) ;;::; 0). 

14. Let {Yl' Y2, ... , Yn} be linearly independent vectors in a pre-Hilbert 
space X and let x be an arbitrary element of X. Show that the best 
approximation to 'x in the subspace generated by the y/s has the 
explicit representation 

(Yl I Yl) (Y21 Yt) (Yn I YI) (x I YI) 
(YI I Y2) (Y21 Y2) (Yn I Y2) (x I Y2) 

(YI I Yn) (Y21 Yn) (Yn I Yn) (x I Yn) 

~= 
YI Y2 Yn () 

-gCYI' Y2,"" Yn) 

where the determinant in the numerator is to be expanded algebraically 
to yield a linear combination of the Y /s. Show that the minimum error 
~ - x is given by the identical formula except for x replacing 0 in the 
determinant. 

15. (Muntz's Theorem) It was shown in Example 1, Section 3.8, that the 
functions l,t,t 2

, ••• generate a dense subspace of L 2 [-I,I] (or 
L2[0, 1] by a simple translation and scalar factor). In this problem we 
prove that the functions tn" (n2, ••. ; I ~ n l < n2 < ... , generate a 
dense subspace of L2 [0, I] if and only if the integer's ni satisfy 

00 1 
2: - = 00. 

i'" I ni 

(a) Let Mk = [tn" tnz, ... , t nk]' The result holds if and only if for each 
m ;;::; 1 the minimal distance dk of t.: from Mk goes to zero as k goes to 
infinity. This is equivalent to 

I
. g(ln" tn2, ... , tnk, t~) 
1m n, n2 nk' = O. 

k-o 00 g( t , t , ... , t ) 
Show that 

k 

IT (ni - m)2 
d 2 _ i= I 

k - k 

(2m + 1)TI(m + ni + 1)2 
i= 1 

(b) Show that a series of the form 2:r; I log (1 + ai) diverges ifand only 
if L{; 1 a I diverges. 
(c) Show that lim log d/ = - 00 jf and only if 'L;';ll/ni = 00. 

k'" 00 
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16. Prove Parseval's equality: An orthonormal sequence {ei}i"=l is com­
plete in a Hilbert space H if and only if for each x, y in H 

OC> 

(x Iy) = L (x I et)(etly)· 
1= 1 

17. Let {Yl'Y2' ... ,Yn} be independent and suppose {eto e2, ... , en} are 
obtained from the y;'s by the Gram-Schmidt procedure .. Let 

n n 

~ = L (xl el)el = L lXiYi' 
1= 1 i= 1 

Show that the coefficients lXi can be easily obtained from the Fourier 
coefficients (x lei). 

18. Let w(t) be a positive (weight) function defined on an interval [a, b] of 
the real line. Assume that the integrals 

exist for n = 1, 2, .... 

Define the inner product of two polynomials p and q as 

b 

(p I q) = f p(t)q(t)w(t) dt. 
D 

Beginning with the sequence {I, t, t2
, ., .}, we can employ the Gram­

Schmidt procedure to produce a sequence of orthonormal polynomials 
with respect to this weight function. Show that the zeros of the real 
orthonormal polynomials are real, simple, and located on the interior 
of [a, b]. 

19. A sequence of orthonormal polynomials {en} (with respect to a 
weighting function on a given interval) can be generated by applying 
the Gram-Schmidt procedure to the vectors {I, t, (2, ••• }. The proce­
dure is straightforward but becomes progressively more complex with 
each new term. A superior technique, especially suited to machine com­
putation, is to exploit a re~ursive relation of the form 

n = 2, 3, .... 

Show that such a recursive relatIon I;;xists among the orthonormal poly-
nomials and det.ermine the coefficients an' bn, ~n' . 

20. Suppose we are to set up a special manufacturing company which will 
operate for only ten months. During the ten m"nths the company is to 
produce one million copies of a single product. We assume that the 
manufacturing facilities have been leased for the ten-month period, but 
that labor has not yet been hired. Presumably, employees will be hired 
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and fired during the ten-month period. Our problem is to determine how 
many employees should be hired or fired in each of the ten months. 

It is assumed that each employee produces one hundred items per 
month. The cost of labor is proportional to the number of productive 
workers, but there is an additional cost due to hiring and firing. If 
u(k) workers are hired in the k-th month (negative u(k) corresponds to 
firings), the processing cost can be argued to be u2(k) because, as u 
increases, people must be paid to stand in line and more nonproductive 
employees must be paid. 

At the end of the ten-month period all workers must be fired. Find 
u(k) for k = 1,2, ... ,10. 

21. Using the projection theorem, solve the finite-dimensional problem: 

minimize x' Qx 
subject to Ax = b 

where x is an n-vector, Q a positive-definite symmetric matrix, A an 
m x n matrix (m < n), and b an m-vector. 

22. Let x be a vector in a Hilbert space H, and suppose {Xl' X2, .•• , xn} 
and {Yl' Yz , ... , Ym} are sets of linearly independent vectors in H. We 
seek the vector ~ minimizing Ilx - xii while satisfying: 

x E M = [xl> X2, ••• , XII] 

(xly;)=c;, i = 1,2, ... , m. 

(a) Find equations for the solution which are similar to the normal 
equations. 
(b) Give a geometric interpretation of the equations. 

23. Consider the problem of finding the vector X of minimum norm 
satisfying 

(X I Yi) ~ ci , .. i = 1,2, ... ,11 

where the Yi'S are linearly independent. 
(a) Show that this problem has a unique solution. 
(b) Show that a necessary and sufficient condition that 

n 

X= Lai)'i 
i= f 

be the solution is that the vector a with components al satisfy 

G'a ~ c 

a~{) 

and that aj = 0 if (x I Yi) > c i · G is the Gram matrix of {Yll Y2' .. " Yn}. 
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24. The following the:orem is valid in a Hilbert space H. If K is a closed 
convex set in H and x E H, x ¢ K; there is a unique vector ko e K such 
that Ilx - koll :$ Ux - kll all k E K. Show that this theorem does not 
apply in arbitrary Banach space. 
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4 
LEAST-SQUARES ESTIMATION 

4.1 Introduction 

Perhaps the richest and most exciting area of application of the projection 
theorem is the area of statistical estimation. It appears in virtually all 
branches of science, engineering, and social science for the analysis of 
experimental data, for control of systems subject to random disturbances, 
or for decision making based on incomplete information. 

All estimation problems discussed in this chapter are ultimatlely formu­
lated as equivalent minimum norm problems in Hilbert space and are 
resolved by an appropriate application of the projection theorem. This 
approach has several practical advantages but limits our estimation criteria 
to various forms of least squares. At the outset, however, it ~hould be 
pointed out that there are a number of different least-squares estimation 
procedures which as a group offer broad flexibility in problem foqnulation. 
The differences lie primarily in the choice of optimality criterion a\nd in the 
statistical assumptions required. In this chapter three basic forms of least· 
squares estimation are distinguished and examined. 

Least squares is, of course, only one of several established approaches to 
estimation theory, the main alternatives being maximum likelihood ann 
Bayesian techniques. These other techniques usually require a completc~ 
statistical description of the problem variables in terms of joint probability 
distribution functions, whereas least squares requires only means, variances, 
and covariances. Although a thorough study of estimation theory would 
certainly include other approaches as well as least squares, we limit our 
discussion to those techniques that are derived as applications of the pro­
jection theorem. In complicated, multivariable problems the equatiol)s 
resulting from the other approaches are often nonlinear, difficult to solve, 
and impractical to implement. It is only when all variables have GaussLln 
statistics that these techniques produce linear equations, in which case the 
estimate is identical with that obtained by least squares. In many practical 
situations then, the analyst is forced by the complexity of the problem to 
either assume Gaussian statistics or to employ a least-squares approac:h. 
Since the resulting estimates are identical, which is used is primarily a 
matter of taste. 

78 
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The first few sections of this chapter are devoted to constructing various 
Hilbert spaces of random variables and to finding the appropriate normal 
equations for three bask estimation problems. No new optimization tech­
niques are involved, but these problems provide interesting applications 
of the projection theorem. 

4.2 Hilbert Space of R.andom Variables 

A complete and rigorolls definition of a random variable and associated 
probabilistic concepts is in the realm of measure and integration theory. 
The topic of least-squar1es estimation, however, makes only casual, indirect 
reference to the machinery available for a thorough study of probability. 
Consequently, the notions of probability measure and related concepts 
can be largely suppressed from the studies cfthis chapter. We assume only 
a rudimentary familiarity with random variables, probability distributions, 
and expected value. Of these, only the concept of exp~cted value is used 
explicitly in least-squares estimation. With this in mind, we now briefly 
review those probabilistic concepts pertinent to our development. 

If x is a real-valued random variable, we define the probability distribu­
tionPofxby 

P(~) = Prob (x :s; ~). 

In other words, P(~) is the probability that the random variable x assumes 
a value less than or equal to the number ~. The expected value of any 
function g of x is then dl~fined as 

E[g(x)] = J~}(~) dP(~), 

which may in general not be finite. Of primary interest are the quantities 

E(x), 

E(xZ), 

E[(x -- E(X»2], 

the expected value of x, 

the second moment of x, 

the variance ofx. 

Given a finite collec1tion of real random variables {Xl> X2,' .. , xn}, we 
define their joint probability distribution P as 

P(~l' ~2'"'' ~:n) = Prob (Xl :s; ~ 1, X2 :s; ~2'"'' Xn :s; ~n)' 

i.e., the probability of the simultaneous occurrence of Xi :s; ~ i for all i. 
The expected value of any function g of the xt's is defirled as 
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All of the second-order statistical averages of these variables are 
described by then expected values 

i;:: 1,2, ... , n, 

and the n x n covariance matrix cov (Xl' X2 , ••• , xn) whose ij-th element is 
defined as 

E {[Xi - E(Xi)] [Xj - E(Xj )]} 

which in: case of zero means reduces to E(xixj)' 
Two random variables Xi' Xj are said to be uncorrelated if E(XiXj) = 

E(xj) E(x) or, equivalently, if the ij-th element of the covariance matrix 
is zero. 

With this elementary background material, we now construct a Hilbert 
space of random variables. Let {Yl, Y2, ... , Ym} be a finite collection of 
random variables with E(y/) < C1) for each i. We define a Hilbert space H 
consisting of all random variables that are linear combinations of the y;'s. 
The inner product of two elements x, Y in H is defined as 

(x I y) = E(xy). 

Since x, yare linear combinations of the y/s, their inner product can be 
calculated from the second-order statistics of the Yi'S. In particular, if 
X = LCtiYi,Y = LPiYi' then 

E(xy) = E{ (~ Ct j Yi) (~ Pj yj)}' 
The space H is a finite-dimensional Hilbert space with dimension equal to 
at most m. (If the matrix G = [E(YiY)] is not positive definite, there 
will be nontrivial linear combinations L CtiYi having zero norm in the space 
H. These combinations must be considered equivalent to the zero element, 
thereby reducing the dimension of H.) 

If in the Hilbert space H each random variable has expected value equal 
to zero, then two vectors x, z are orthogonal if they are uncorrelated: 
(x I z) = E(x) E(z) = O. 

The concept of a random vari~~hle can be generalized in an important 
direction. An n-dimensional vector-valued random variable X is an ordered 
collection of 11 scalar-valued random variables. Notationally, x is written 
as a column vector 
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(the components being random variables). For brevity, a vector-valued 
random variable is referred to simply as a random vector. In applications, 
the random variables which are comp~nents of a random vector may, for 
example, be associated with the parameters of a single experiment. Or, 
they may correspond to results of repeated trials uf the same experiment 
or be elements in a random time series such as barometric pressures on 
five consecutive days. 

A Hilbert space of random vectors can be generated from a given set of 
random vectors in a manner analogous to that for random variables. 
Suppose {h, Y2, ... , Ym} is a collection of n-dimensional random vectors. 
Each element YI has n components Yij' j = I, 2, ... ', n, each of which is a 
random variable with finite variance. We define the Hilbert space .lit' of 
n-dimensional random vectors as consisting of all vectors whose com­
ponents are linear combinations of the components of the y/s. Thus an 
arbitrary element y in this space can be expressed as 

Y = Kl Yl + K2 Y2 + ... + Km Ym 

where the K/s are real 11 x n matrices. The resulting space is, of course, 
generally larger than that which would be obtained by simply considering 
linear combinations of the y/s. This specific compound construction of.llt', 
although rarely n~ferred to explicitly in our development, is implicitly 
responsible for the simplicity of many standard results of estimation theory. 

If x and z are elements of:?t, we define their inner product as 

which is the expe<:ted value of the n-dimensional inner product. A con­
venient notation is (x I z) = E(x'z). 

The norm of an element x in the space of n-dimensional random vectors 
can be written 

where 

II x II = {Trace E(xX'W I2, 

[

E(XI Xl) E(XI X2) 
E(X2 Xt) E(X2 X2) 

E(xx') = . 

E(X/l~I) E(X"X2) 

... E(x t xn)] 

... E(x 2 xn) 

.•. I E(xnxn) 

is the expected value of the random latrix dyad xx'. Similarly, we have 

(x I z) ,; Trace E(xz'). 
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In the c'ase Of zero means the matrix E(xx') is simply, the covariance 
matrix of the random variables Xi which form the components of x, These 
components can, of course, be regarded as elements of a " smaller" Hilbert 
space of random variables; the covariance matrix above then is seen to be 
the Gram matrix corresponding to {Xl' X2, •.• , xn}. 

Corresponding to the general case with nonzero means, we define the 
corresponding covariance matrix by 

cov (x) = E [(x - E(x» (x - E(x»']. 

4.3 The Least.Squares Estimate 

The purposes of this and the next two sections are to formulate and to solve 
three basic linear estimation problems. The three problems are quite 
similar, differing only slightly in the choice of optimality criterion and in the 
underlying statistical assumptions, 

Suppose a quantity of data consisting of m real numbers has been 
collected and arranged as the m components of a vector y. Often the nature 
of the source of the data leads one to assume that the vector y, rather than 
consisting of m independent components, is a given linear function of a 
few unknown parameters. If these parameters are arranged as the com· 
ponents of an n-dimensional vector 13 (where 11 < m), such a hypothesis 
amounts to assuming that the vector y is of the form y = Wf3. The m x n 
matrix W is, by assumption, determined by the particular experiment or 
physical situation at hand and is assumed to be known. The data vector y 
is known. The problem is to determine the vector 13. Since n < m, however, 
it is generally not possible to determine a vector 13 exactly satisfying y = Wf3. 
A useful alternative consists of determining the value of 13 which best 
approximates a solution in the sense of minimizing the norm II y .;... Wf3ll. 
If this norm is taken as the standard Euclidean m·space norm, this 
approach leads to a simple least-squares estimate. 

As formulated above, this problem is not a statistical one. It simply 
amounts to approximating y by a v~ctor lying in the subspace spanned by, 
the n column vectors of the matrix W. However, the technique is often 
used in a statistical setting and it provides a useful comparison for other 
statistical methods. For example, the procedure might be applied to finding 
a straight-line approximation to the data in Figure 4.1 (which may represent 
experimental data gathered on distance traveled versus time for a body 
under constant acceleration). We hypothesize a model of the form s = tf3 
and choose 13 by least squares. The y vector in this case is made up of the 
measured s values; the W matrix consists of a single column made up of the 
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corresponding t values. The error is due to the unaccounted nonlinearity 
and the measurem(:ht errors. If the hypothesized model were originally 
of the forms = tPl + t 2P2' a better fit could be made. 

s 

Figure 4.1 Straight-line approximation to data 

Theorem 1. (Least-Squares Estimate) Suppose y is an m vector and Wan 
m x n matrix with linearly independent columns. Then there is a unique n 
vector P which minimizes Ily - WPII over all P (the norm taken as the 
Euclidean m-space norm). Furthermore, 

Proof. As pointed out above, this problem amounts to approximating 
y by a linear combination of columns of W. The existence and uniqueness 
follow immediately from the projection theorem and the independence of 
the columns of W. Furthermore, the Gram matrix corresponding to the 
column vectors of Wis easily seen to be W'W. The vector W'y has as its 
components inner products of the columns of W with the vector y. Hence 
the normal equations become 

W'WP= W'y. 

Since the columns of Ware assumed to be linearly independent, the Gram 
matrix W' W is nonsingular and the result follows. I 

There is an extensive theory dealing with the case where W' W is singular. 
See the references at the end of this chapter and the discussion of pseudo-
inverses in Section 6.11. , 

Although Theorem 1 is actually only a simple finite-dimensional version 
of the general approximation problem treated in Chapter 3, the solution is 
stated here explicitly in matrix notation so that the result can be easily 
compared with other estimation techniques derived in this chapter. 
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4.4 Minimum-Variance Unbiased Estimate (Gauss-Markov Estimate) 

Assume now that we have arranged an experiment that leads to an 
m-dimensional data vector y of the form 

y = Wp + B. 

In this model W is a known matrix, p is an It-dimensional unknown vector 
of parameters, and e is an m-dimensional random vector with zero mean 
and with covariance £(ee') = Q which we assume to be positive definite. 
The vector y can be interpreted as representing the outcome of m inexact 
measurements, the random vector e representing the measurement errors. 
For example, repeated measurements of a single quantity p might be 
represented as Yi = P + ei , in which case W would contain a single column 
with each component equal to unity. 

In this section we consider a method for estimating the unknown vector 
of parameters P from the vector y. In particular we seek a linear estimate P 
oftheform 

P=Ky, 

where K is a constant n x m matrix. 
Since y is the sum of random vector B and the constant vector Wp, it is 

itself a random vector. Therefore, both the estimate P and the error P - P 
are random vectors with statistics determined by those of e and the choice 
of K. A natural criterion for the optimality of the estimation scheme is 
minimization of the norm of the error, expressed in this case as 

E[II P - PII 2
], 

where 1/ II is the ordinary Euclidean n-space norm. If, however, this error 
is written explicitly in terms of the problem variables, we obtain 

(1) E[IIP - P11 2
] = E[IIKy - P11 2

] = E[IIK Wp + Ke - P1I 2
] 

= 11K Wp - PI1 2 + Trace (KQK'), 

The matrix K minimizing this expression is obviously a function of the 
(unknown) parameter vector p. Therefore, a practical estimation scheme 
for the parameters P cannot be derived as a solution to the proposed 
problem. 

We observe, however, that if K W = I (the identity matrix), the norm 
of the error is independent of p. This observation suggests the alternative 
problem: find the estimate P = Ky minimizing E[IIP - P1I 2] while 
satisfying 

(2) KW=I. 

The solution to this problem is independent of p. 
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The additional requirement K W = I may at first seem to be highly 
arbitrary and pel:haps inappropriate. The requirement has a simple inter­
pretation, however, that tends to defend its introduction. The expected 
value of the estimate is E(P) == E(Ky) = E(KWP + Ke) = KWp. If KW= I, 
the expression reduces to E(P) = p. Thus the expected value of the estimate 
of P is itself p. In general, estimators with this property are said to be 
unbiased. Thus the requirement K W = I leads to an unbiased estimator. 
Conversely, if we require that an estimator of the form P == Ky be unbiased 
in the sense that E(P) == P for all p, it follows that K W = I. We seek the 
unbiased linear estimate of P which minimizes E(IIP _ PII 2

). 

Before plunging into the detailed analysis of this problem, it behooves 
us to make some: elementary observations concerning its structure. The 
problem can be written out in terms of the components of P as that of 
finding P to minimize 

subject to 

and 

A k' Pi == iY 

i = 1,2, .... n, 

i = 1,2, ... , n, 

where k/ is the i-th row of the matrix K. Therefore, the problem is really 
n separate problems, one for each Pi' Minimizing each E(PI - Pi)2 
minimizes the sum. Each subproblem can be considered as a constrained 
minimum norm problem in a Hilbert space of random variables. 

An alternative viewpoint is to consider the equivalent deterministic 
problem of selecting the optimal matrix K. Returning to equations (1) and 
(2), the problem is: one of selecting the n x m matrix K to 

minimize 
sul::dect to 

Trace {KQK'} 
KW=I. 

This problem can be regarded as a minimum norm problem in the space 
of matrices (see Problem 3, Chapter 3), or it may be decomposed in a 
manner analogous to that described for the components of p. The j-th 
subproblem is 

minimize 
subject to 

k/Qki 
k/wj == Oi}' j == 1,2, ... , n, 

where Wj is the j-th column of Wand Oij is the Kronecker delta function. 
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Introducing the inner product (x I Y)Q ::::: x' Qy, the problem becomes 

minimize 
subject to j = 1,2, ... , n. 

This is now in the form of the standard minimum norm problem treated in 
Section 3.10. It is a straightforward exercise to show that 

k j = Q-1W(W'Q-1W)-le
i 

where ei is the n-vector with i-th component unity and the rest zero. Note 
that W' Q W is the Gram matrix of the columns of W with respect to (I)Q' 
Finally, combining all m of the subproblems, we obtain 

K' = Q-I W(W'Q- 1W)-1. 

We summarize the above analysis by the following classical theorem. 

Theorem 1. (Gauss-Markov) Suppose y = Wp + /l where 

£(/l) = 0 

£(/l/l') = Q 

with Q positive definite. The linear minimum-variance unbiased estimate 
olP is 

with corresponding error covariance 

Proof The derivation ofthe estimate is given above. It only remains to 
calculate the corresponding error covariance 

E[(P - fJ)(p - PY] = E[(Ky - P)(Ky - PY] 

= E[K/l/l'K'J 

= KQK' = (W'Q- 1W)-1W'Q-IQQ- 1W(W'Q- 1W)-1 

=(W'Q- 1 W)-1··1 

As an aside, it might be mentioned that the justification for the termin-
I 

ology "minimum variance unbiased" rather than "minimum covariance 
trace unbiased" is that for each i, Pi is the minimum-variance unbiased 
estimate of PI' In other words, the Gauss-Markov estimate provides a 
minimum-variance unbiased estimate of each component rather than 
merely a vector optimal in the sense of minimizing the sum of the individual 
vanances. 
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A striking property of the result of the Gauss-Markov theorem is that if 
E(88') = I, the linear, minimum-variance unbiased estimate is identical 
with the least-squares estimate of Section 4.3. It is clear that the least­
squares technique and the Gauss-Markov technique are intimately related. 
However, a fundamental difference between the two approaches is that 
least squares is a singJle elementary minimum norm problem while the 
Gauss-Markov problem is actually n separete minimum norm problems. 

4.5 Minimum-Varianc:e Estimate 

In the preceding two sections, the vector {3 was assumed to be a vector of 
unknown parameters. Presumably these parameters could have assumed 
any value from - 00 to + 00; we, as experimenters, had absolutely no 
prior information conc:erning their values. In many situations, however, 
we do have prior information and it is then perhaps more meaningful to 
regard the unknown ve:ctor {3 as a random variable with known mean and 
covariance. In such situations, this a priori statistical information can be 
exploited to produce an estimate oflower error variance than the minimum­
variance unbiased estimate. 

In view of this observation, in this section we again consider estimation 
of {3 from measurements of the form 

y = W{3 + e 

but in this case both p and e are random vectors. The criterion for opti­
mality is simply the minimization of E[IIS - {3112]. 

We begin by establishing an important theorem which applies in a some­
what more gen~ral setting than that described above but which is really 
only an application of the normal equations. 

Theorem 1. (Minimum-Variance Estimate) Let y and {3 be random vectors 
(not necessarily 0/ the same dimension). Assume [E(yy')] -1 exists. The 
linear estimate S 0/{3, based ony, minimizing E[IIP - {3112] is 

P = E({3y')[E(yy')]-1y, 

with corresponding error covariance matrix 

E[(P - {3) (p .- {3)'] = E({3{3') - E(PP') 

= E({3{3'} - E({3y') [E(yy')] -1 E(y{3'}. 

Proof. This problem, like that in the last sectioh, decomposes into a 
separate problem for leach component {3 i' Since there are no constraints, 
the i~th subproblem is simply that of finding the best approximation of {3 i 
within the subspace ge:nerated by the y;'s. 
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Wrhing the optimal estimate as fl = Ky, where K is an n x m matrix, 
the i-tIi subproblem is equivalent to the problem of selecting the i-th row 
of K which, in turn, gives the optimal linear combination of the y/s for 
Pi' Hence, each row of K satisfies the normal equations corresponding to 
projecting 131 into the y/s. The normal equations for all n subproblems 
can be written simultaneously in the matrix form 

[E(yy')]K' = E(yf3') 

from which i~follows that 
K = E(f3y')[E(yy')J -1, 

which is the desired result. Proof of the formula for the error covariance 
is obtained by direCt substitution. I 

Note that, as in the previous section, the term minimum variance applied 
to these estimates can be taken to imply that each component of 13 is 
estimated by a minimum-variance estimator. Also note that if both 13 and y 
have zeto means, the estimate is unbiased in the sense that E(P) = E(f3) = O. 
If the means are not zero, we usually broaden the class of estimators to 
include. the form P = Ky + b where b is an appropriate constant vector. 
This matter is considered in Problem 6. 

Returning to our original purpose, we now apply the above theorem to 
a revised form of our standard problem. 

Corollary 1. Suppose 
y = Wf3 + 8 

where yis a known m-dimensional data vector"f3 is an n-dimensional unknown 
random vector, 8 is an unknown m-dimensional random error vector, W is 
a known m x n constant matrix, and 

E(88') = Q 

E(f3f3') = R, E(ef3') = O. 

We assume that Rand Q are positive-semidefinite matrices (of appropriate 
size) and that WRW' + Q is nonsingu!ar. Then the linear estimate P of 13 
minimizing E[IIP - f311 2J is .. 

P = RW'(WRW' + Q)-I y 
with err@r covariance 

E[(f3 - p)(f3 - Pn = R - RW'(WRW' + QrIWR. 
• 

Proof It is easily computed that E(yy') = WRW' + Q and that 
E(f3y') = RW' from which the result follows by the minimum-variance 
theorem. I 
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A significant difference between the estimation problem treated above 
and those of previous sections is that the number of observations, m, 
need not be at least as large as the number of unknowns, n. The estimate 
in Corollary 1 exists if the m x m matrix (WRW' + Q)-I exists; this is the 
case for any m if, for instance, Q is positive definite. Physically the reason 
for this property is that since P is now a random variable, it is possible to 
form a meaningful estimate (namely zero) even with no measurements. 
Every new measurement simply provides additional information which may 
modify our original estimate. 

Another unique feature of this estimate is that for m < n there need be 
no measurement error. Thus, we may have Q = 0, because as long as 
WRW' is positive definite the estimate still exists. 

Example 1. Consider P to be a random two-dimensional vector with mean 
zero and covariance I (the identity matrix). Such a vector can be thought 
of as having an expected length of unity but with a completely random 
angle as measured from any given axis. Suppose that a single perfect 
measurement y of the first component PI of P has been obtained and from 
this we seek the best estimate of p. The situation is illustrated in Figure 4.2. 
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Figure 4.2 Estimation from one component 

Intuitively, we choose our estimate somewhere 01. the vertical line at 
PI = y. Having no reason to favor one angle over another, we take the 
shortest vector since it is closest to the mean. Hence we select the horizontal 
vector that meets the vertical line. This solution can be verified by applica­
tion of Corollary 1. 

By some matrix ma.nipulations, the result of Corollary 1 can be translated 
into a form that more closely resembles our earlier results. 
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Corollary 2. The estimate gil'etl by Corollary 1 call be expressed ill the 
alternative form 

lI'ith corresponding error covariance 

£[(/3 - {J)(# - {J)'J = (W'Q-I W + R-1)-I .. 

Proof The matrix identity 

RW'(WRW' + Q)-I = (W'Q-I W + R-1)-1 W'Q- 1 

is easily established by postmultiplying by (W R W' + Q) and premulti­
plying by (W'Q-I W + R- 1

). This establishes the equivalence of the 
formula for the estimate p. 

From Corollary I we have 

£[(/3 - (3)(p - (J)'] = R - RW'(WRW' + Q)- 1 WR 

which becomes, by application of the above matrix identity, 

£[(p - {J)(/3 - (J)'] = R - (W'Q- 1 W + R- 1)-1 W'Q-I WR 

= (W'Q-1W + R-1)-I{(W'Q-1W + R-1)xR 

- W'Q-1WR} 

=(W'Q-1W+W·1)-I·1 

In this form the minimum-variance estimate can be easily compared with 
the least-squares and Gauss-Markov estimates. In particular, note that 
if R- 1 = 0 (corresponding to infinite variance of the a priori information 
concerning (J), the result of Corollary 2 is identical with the Gauss-Markov 
estimate. Thus the Gauss-Markov estimate is simply a limiting case of 
the minimum-variance estimate and, hence, further study of minimum­
variance estimates, for the most part, also applies to Gauss-Markov 
estimates. 

4.6 Additional Properties of Minimum-Variance Estimates 

In this section we investigate minimum-variance estimation in more detail 
by considering three problems: the first is to deduce the optimal estimate 
of a linear function of {J, the second is to determine how the optimal 
estimate of fi changes if the optimality criterion is a more general quadratic 
form, and the third is to determine how an estimate of {J is changed if 
additional measurement data become available. We shall see that these 
problems are related and that all three have strikingly simple solutions. 



§4.6 ADDITIONAL PROPERTIES OF MINIMUM-VARIANCE ESTIMATES 91 

Theorem 1. The minimum-variance linear estimate of a linear function of 
{3, based on the random vector y, is equal to the same linear function of the 
minimum-variance linear estimate of {3; i.e., given an arbitrary p x n matrix 
T, the best estimate ofT{3 is rp. 

Proof The result can be obtained from the observation, made in the 
last section, that the linear estimate P minimizing E[II{3 - P11 2

] actually 
minimizes E({3i - Pi for each component {3i of {3. We leave it to the reader 
to complete a proof along these lines. 

An alternate proof can be obtained directly from the projection theorem 
by deriving the optimal estimate of T{3 and comparing the result with TP. 
If ry is the optimal estimate of T{3, we must have 

E[y(T{3 - ry)'J = 0 

and, hence, in matrix form the normal equations for the columns of rare 

[E(yy')]r' = E[y{3'T'J 

so that 

r = T E({3y') [E(yy')] -1 

which, by comparison with the minimum-variance estimate of {3, yields 
the desired result. I 

Another property of linear minimum-variance estimates, which is closely 
related to the property considered above and which again can be regarded 
asa simple consequence of the componentwise optimality of the estimate, 
is that the estimate is optimal for any positive-semidefinite quadratic 
optimality criterion. 

Theorem 2. If P = Ky is the linear minimum-varianr:e estimate of {3, then 
P is also the linear estimate minimizing E[({3 - P)'P({3 - p)]for any positive­
semidefinite n x n matrix P. 

Proof Let p I
/2 be the unique positive-semidefinite square root of P. 

According to Theorem 1, p I/2p is the minimum-variance estimate of 
pl/2{3 and, hence, P minimizes 

Finally, we consider the problem of updating an optimal estimate of {3 
if additional data become available. This result is of fundamental practical 
importance in a number of modern sequential estidtation procedures such 
as the recursive estimation of random processes discussed in Section 4.7. 
Like the two properties discussed above, the answer to the updating problem 
is extremely simple. 
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The procedure is based on the simple orthogonality properties of pro­
jection in Hilbert space. The idea is illustrated in Figure 4.3. If Y1 and Y 2 

are subspaces of a Hilbert space, the projection of a vector {3 onto the 
subspace Y 1 + Y 2 is equal to the projection onto Yl plus the projection 
onto Yz wtjere Y2 is orthogonal to Y I and is chosen so that Y1 El3 Y2 = 
Y I + Y2 • FUrthermore, if Y 2 is generated by a finite set of vectors, 
the diffe"'!llces between these vectors and their projections onto Y l 

generate Yz . 

Figure 4.3 

For clarity and simplicity, the following theorem is stated in terms of a 
single unknown random variable {3 rather than an n-dimensional random 
vector. Since minimum-variance estimation of an n-dimensional random 
vector is merely n separate problems, the theorem statement easily carries 
over to the more general case. 

Theorem 3. Let {3 be a member of a Hilbert space H of random variables 
and let PI denote its orthogonal projection on a closed subspace Y1 of H. 
(Thus, PI is the best estimate of {3 in Y I ·) Let yz be an m-vector of random 
variables generating a subspace Y2 of H, and let yz denote the m-dimensional 
vector of the projections of the components of yz onto Y I . (Thus, Y2 is the 
vector of best estimates ofYz in Y I ·) Let Y2 = Yz - Y2· 

Then the projection of {3 onto the subspace Yl + Y 2 , denoted P, is 
P = PI + E({3Y2')[E(Y2Y2')]-ly2 · 

In other words, P is PI plus the best estimate of {3 in the subspace Y2 generated 

by Y2 . 

Proof. It is clear that Y1 + Yz = Y1 El3 ¥2 and that Yz is orthogonal 
to Y1• The result then follows immediately since the projection onto the 
sum of subspaces is equal to the sum' of the individual projections if the 
subspaces are orthogonal. I 

An intuitive interpretation of this result is that if we have an estimate PI 
based on measurements generating Y1, then when receiving another set of 
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measurements we should substract out from these measurements that part 
that could be anticipated from the result of the first measurements. In 
other words, the updating must be based on that part of the new data which 
is orthogonal to the old data. 

Example 1. Suppose that an optimal estimate iJ of a random n-vector [3 
has been formed on .the basis of past measurements and that 

E[([3 - iJ)([3 - iJ)'J = R. 

Given additional measurements of the form 

y = Wp + 6 

where e is a random vector which has zero mean and which is uncorrelated 
with both p and the past measur~ments, we seek the updated optimal 
estimate p of [3. 

The best estimate of y based on th'" past measurements is p = wiJ and 
thus y = y - wiJ. Hence, by Theorem 3, 

P = iJ + E([3y')[E(YY'>r 1y 
which workf> out to be 

/1 = iJ + RW'[WRW' + Qrl(y - wiJ). 

The error covariance is 

E[([3 - p)([3 - /3)'] = R - RW'[WRW' + Q]-IWR. 

4.7 Recursive Estimation 

In many applications we are led, quite naturally, to consider a sequence of 
random variables that occur consecutively in time. For example, daily 
temperature measurements, the Dow-Jones stock averages, or a sequence of 
measurements of the position of a maneuvering aircraft can be regarded as 
sequences of random variables. We define a discrete random process as 
any sequence of random variables. 

There are a number of important estimation problems associated with 
random processes including: prediction, which is estimation of future 
values of the process from past observations; filtering, which is estimation 
of the present value of a random process from inexact measurements of 
the process up to the present time; or, more generally, estimation of one 
random process from observations of a different but related process. If we 
require linear minimum-variance estimates, these1estimation problems are 
only special cases of the theory developed earlier in this chapter. 

It is customary Ito depart from our previous notation slightly by indexing 
the sequence of random variables that compose a discrete process by the 
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notation x(k) rather than by subscripts. Unless explicitly stated otherwise, 
all random variables in this section are assumed to be real and to have 
zero means. 

The starting point for the recursive approach to estimation is a represen­
tation of random processes that explicitly characterizes the manner in which 
the process is generated in time. We begin by describing this representation. 

Definition. A random process {x(k)} is said to be orthogonal or white if 

E[x(j)x(k)] = rt j · 0 jk' 

The process is orthonormal if, in addition, ex j = 1. 

We assume that underlying every observed random process is an orthog­
onal process in the sense that the variables of the observed process are 
linear combinations of past values of the orthogonal process. In other 
words, the given observed process results from the operation on an orthog­
onal process by a linear-processing device acting in real time. 

Example 1. (Moving Average Process) Let {u(k)}f" _ ex:> be an orthor­
normal random process, and suppose that {x(k)}k'= -ex:> is generated by the 
formula 

ex:> 

x(k):= Laju(k-j) 
j=1 

where the constants a j satisfy LJ= I la j/2 < 00. The process can be regarded 
as a moving average of past values of the underlying orthonormal process. 

Example 2. (Autoregressive Scheme of Order 1) Let {u(k)}k'o:.:.ex:> be an 
orthonormal process and suppose that {x(k)} is generated by the formula 

x(k) = ax(k - 1) + u(k - 1), lal < 1. 

This process, defined by a first~order difference equation, is equivalent to 
the moving average process 

<Xl 

x(k) = L aj-Iu(k - j). 
j=1 

Example 3. (Finite-Difference Scheme or Autoregressive Scheme of 
Order n) As a generalization of the previous example, we imagine that 
{x(k)} is generated from the orthonot*mal process {u(k)} by the finite­
difference formula 

x(k) + a1x(k - 1) + ... + anx(k - n) = b1u(k - 1) + ... + bnu(k - n). 

In order that the formula represents a stable system (so that E[x2(k)] 
remains finite when the formula is assumed to have been operating over the 
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infinite past), we require that the characteristic pOlynomial equation 

s" + a1s"-1 + ... + an = 0 

has its roots within the unit circle in the complex plane. Alternatively, 
we may assume that n initial random variables, say x(O), x( -1), .... , 
x( -n + I), have been specified and regard the difference formula as 
generating [x(k)] for positive k only. In that case, stability is immaterial, 
although in general E[x2(k)] may grow without bound as k -L!X). By 
hypothesizing time .. varying coefficients in a finite-difference scheme such 
as this, we can generate a large class of random processes. 

There is a great deal of physical motivation behind these models for 
random processes. It is believed that basic randomness at the micro­
scopic scale including electron emissions, molecular gas velocities, and 
elementary particle fission are basically uncorrelated processes. When 
their effects are observed at the macroscopic scale with, for example, a volt­
meter, we obtain some average of the past microscopic effects. 

The recursive approach to estimation of random processes is based on 
a model for the process similar to that in Example 3. However, for con­
venience and generality, we choose to represent the random process as 
being generated by a first-order vector difference equation rather than an 
n-th order scalar difference equation. This model accommodates a larger 
number of practic:al situations than the scalar model and simplifies the 
notation of the analysis. 

Definition. An n-dimensional dynamic model of a random process consists 
of the following three parts: 

1. A vector difference equation 

x(k + 1) = <ll(k)x(k) + u(k), k = 0,1,2, ... , 

where x(k) is an n-dimensional state vector, each component of 
which is a random variable, <ll(k) is a known n x n matrix, and u(k) 
is an n-dime:nsional random vector input of mean zero satisfying 
E[u(k)u'(l)] = Q(k)~kl' 

2. An initial random vector x(O) together with an initial estimate ~(O) 
having covariance E[(~(O) -x(O))(~(O) -x(O))'] = P(O). 

3. Measurements of the process, assumed to be ofthe form 

vi(k) = M(k)x(k) + w(k), k = 0, 1,2, ... , 

where M(k) is an m x n matrix and w(k) is at} m-dimensional random 
measurement error having me:l.n zero and satisfying 

E[w(k)w'(j)] = R(k)DkJ 

where R(k) is; positive definite. 
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In addition, it is assumed that the random vectors x(O), u(j) and w(k) are 

all uncorrelated for j ;? 0, k ~ O. 
This model covers most of the examples discussed previously as well as 

several other important situations. In many applications, the matrices 
<l>(k), Q(k), M(k), and R(k) are independent of k. 

The estimation problem is that of obtaining the linear minimum-variance 
estimate of the state vector x from the measurements v. We introduce the 
notation! x(k I j) for the optimal estimate of x(k), given the observations v 
up to instant j. Thus x(k I j) is the appropriate projection of x(k) onto the 
space V(j) generated by the random 111-vectors v(O), v(l), ... , v(j). 

We are concerned exclusively with the case k ~ j-the case correspond­
ing to either prediction of some future value of the state or estimation of 
the present state. Estimation of past values oCthe state vector is referred 
to as the smoothing problem; although in principle it is not substantially 
different than prediction, the detailed calculations are a good deal more 
messy. Solution to the estimation problem is quite straightforward, requir­
ing primarily the successive application of the updating procedure of 
Section 4.6. 

Theorem 1. (Solution to Recursive Estimation Problem-Kalman) The 
optimal estimate x(k + 11 k) of the random state vector may be generated 
recursively according to the equation 

(1) x(k + 11 k) = <l>(k)P(k)M'(k)[M(k)P(k)M'(k) + R(k)r I 

X [v(k) - M(k)x(k I k - 1)] + <l>(k)x(k I k - 1) 

where the n x n matrix P(k) is the covariance of x(k' k - 1) which itself is 
generated recursively by 

(2) P(k + 1) = <l>(k)P(k){l- M'(k)[M(k)P(k)M'(k) 

+ R(k)r 1 M(k)P(k)}<l>'(k) + Q(k). 

The initial conditions for these recurrence equations are the initial estimate 
x(O I - 1) = X(O) and its associated covariance P(O). 

Proof Suppose that v(O), v(l), ... , vtk - 1) have been measured and 
that the estimate x(k I k - 1) together with the covariance matrix P(k) = 
E[(x(k I k - 1) - x(k»(x(k' k - 1) - x(k»)'J have been computed. In other 
words, we have the projection of x(k) opto the subspace V(k - 1). At timek, 
we obtain the measurements 

v(k) = M(k)x(k) + w(k) 

which gives us additional information about the random vector x(k). This 

I In this section this notation should not be confused with that of an inner product. 
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is exactly the situation considered in Example I, Section 4.6. The updated 
estimate of x(k) is 

(3) x(k I k) == x(k I k - 1) + P(k)M'(k)[M(k)P(k)M'(k) + R(k)r 1 

x [v(k) - M(k)x(k I k - 1)] 

with associated error covariance 

(4) P(k I k) = P(k) -. P(k)M'(k)[M(k)P(k)M'(k) + R(k)r IM(k)P(k). 

Based on this optimal estimate of x(k), we may now compute the optimal 
estimate x(k + 11 k) of x(k + 1) = <1>(k)x(k) + u(k), given the observation 
v(k). We do this by noting that by Theorem 1, Section 4.6, the optimal 
estimate of <1>(k)x(k) is <1>(k)x(k I k), and since u(k) is orthogonal (uncor­
related) to v(k) and x(k), the optimal estimate of x(k + 1) is 

(5) x(k + II k) = <1>(k)x(k I k). 

The error covariance of this estimate is 

(6) P(k + 1) = <1>(k)P(k I k)<1>'(k) + Q(k). 

Substitution of equation (3) into (5) and of (4) into (6) leads directly to (1) 
and (2). I 

Equations (1) and (2) may at first sight seem to be quite complicated, 
but it should be easily recognized that they merely represent the standard 
minimum-variance formulae together with a slight modification due to the 
updating process. Furthermore, although these equations do not allow for 
simple hand computations or analytic expressions, their recursive structure 
is ideally suited to machine calculation. The matrices P(k) can be pre­
computed from equation (2); then, when filtering, only a few calculations 
must be made as each new measurement is received. 

Theorem 1 treats only estimates of the special form x(k + 1 I k) rather 
than xU I k) for arbitrary j. Solutions to the more general problem, however, 
are based on the estimate x(k + 11 k). See Problems 15 and 16. 

4.8 Problems 

1. A single scalar f3 is measured by m different people. Assuming un­
correlated measurement errors of equal variance, show that the 
minimum-variancle unbiased estimate of f3 is equal to the average of 
the m measurement values. I 

2. Three observers, [ocated on a single straight line, measure the angle 
of their line-of-sight to a certain object (see Figure 4.4). It is desired 
to estimate the true position of the object from these meaSllrements. 
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Figure 4.4 A triangulation problem 

Assuming that the angles measured, () i, i = I, 2, 3, are sufficiently 
accurate so that "small angle approximations" apply to the devia­
tions, show that the estimated position defined by 0/, i = 1, 2, 3, 
which minimizes Li; I «(}i - 0;)2 is given by 

A 2 
0, = (}1 + k(R 2 - R 3)S, 

O2 = (}2 + k(R3 - RI)S/ 

~3 = 03 + k(R , - R2)S/' 

where Si = secant ()/ and k is chosen so that 01, O2 , &3' define a single 
point of intersection. 

3. A certain type of mass-spectrometer produces an output graph similar 
to that shown in Figure 4.5. Ideally, this curve is made up of a linear 
combination of several identical but equally displaced pulses. In other 
words, 

n-I 

s(t) = L fJia(t - i) 
i=O 

where the fJ;'s are unknown constants and a(t) is a known function. 
Assuming that J~<Xl a(t)a(t - i) dt = i. show that the least-squares 
estimate of the fJ;'s, given an arbitrary measurement curve s(t), is 

. 1 <Xl 
Pi = -1 _ 2 f b;<t)s(t) dt 

P -<Xl 
where 

bi(t) = 

(

a(t - i) - pa(t - i - 1) 

(1 -I- p2)a(t - i) - pa(t - i - 1) - pa(t - i + 1) 

a(t - i) - pa(t - i + 1) 

i = 0 

O<i<n-l 
i=n-l 
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Figure 4.5 Mass-spectrometer data 

4. Let P be an n-dimelilsional ran~om vector of zero mean and positive­
definite covariance matrix Q. Suppose measurements of the form 
y = Wp are made where the rank of W is m. If P is the linear minimum 
variance estimate of P based on y, show that the covariance of the 
error P - P has rank n - m. 

5. Assume that the measurement vector y is obtained from P by 

y == Wp + e 
where 

E(f3 13') = R, E(ee') = Q, E(f3e') = S. 

Show that the minimum-variance estimate of P based on y is 

P = (RW' + S)(WRW' + WS + S'W' + Q)-ly. 

6. Let p, y be random vectors with E(P) = Po, E(y) = Yo, and finite­
covariance matrices. Show that the minimum-variance estimate of P 
ofform 

P=Ky+ h, 

where b is a constant vector, is 

P = Po + E[(P - Po)(Y - Yo)']{E[(y - yo)(y - Yo)']} -ley - Yo). 

7. Let P = Ky be the minimum-variance linear estimate of a random 
vector P based on the random vector y. Show that 

E[(P - p)(P - P)'] = EEPP'] - EEPP'J. 

8. In this problem we develop the rudiments of the theory of linear 
regression. Suppose that associated with an experiment there are two 
random variables y and x. If the outcomes of several measurements of 
y and x are plotted on a two-dimensional graph, the result may look 
somewhat like that shown in Figure 4.6. These results could be 
effectively summarized by saying that y is approximately a linear func­
tion of x. So y would be described by the equation y = a + bx which 
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is represented by the dashed line in the figure. A natural way to choose 
the appropriate dashed line is to choose that line which minimizes 
the total sum of the squared errors Lf= 1 ei

2 where ei = Yi - (a + bXj) 
is the vertical distance between an observation point on the graph and 
the dashed line. 

y 

• 
. .....,;-

...-'"" 
. -..,..- . . .,...­..,..-

'----------~x 

Figure 4.6 Regression 

(a) Show that the best linear approximation is given by 

where 

1 N 
ji= -N LYj, 

i= 1 

y ~ ji + b(x- x) 

1 N 
x=- LX, 

N j=1 

N 
LYjXj - Njix 

b = ;:...I=-.r:'--__ _ 
L,X,2 -Nx2 
i= I 

(b) Show that b may be alternatively expressed as 

N 

r(Yi - ji)(x; - x) 
b = ;:...1=.....:!c.......,.;N-----

L(x; - X)2 
i= 1 

9. With the same terminology as in Problem 8, suppose now that the 
random variable y can be represented as 

y = IX + px + e , 
where e is a random variable with zero mean, variance (T£2, and in­
dependent of x. We are hypothesizing the existence of a linear relation 
between x and y together with an additive error vallable. The values 
of a and b found in Problem 8 are estimates of the parameters IX and p. 

Suppose the outcomes of N observations produce Xl. X2, ... , xN• 

(The x/s are thus fixed in the discussion that follows.) 



(a) Show that 
N 

L (61.- e)(xi - x) 
b = P + I._=....:I,N..-----

so that E(b) = p. 
(b) Show that E(a) = ct.. 

(c) Show that 

L (XI - X)2 
1= 1 

(12 

Var (b) = N • 

L (Xi - X)2 
i= 1 

(d) Whatis Var (b)? 
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10. Suppose a large experiment producing data of the form 

Y = Wp + 6 

is planned with y an m-dimensional data vector, p an n-dimensional 
vector of unknown parameters, and 6 a random error vector with 
E(6) = 0, E(66') = I. Before the experiment the matrix (W'W)-l, 
which is of high order, is calculated. Unfortunately, during the experi­
ment the last component of y is not obtained and the Gauss-Markov 
estimate of p must be computed on the basis of the remaining com­
ponents. Show that the inverse need not be recalculated but that P 
can be determined using (W' W) -1 and the last row of W. 

11. Show that, analogous to Theorem 1, Section 4.6, the Gauss-Markov 
estimate of TP is 1'fJ where fJ is the Gauss-Markov estimate of p. 

12. Show that, analogous to Theorem 2, Section 4.6, the Gauss-Markov 
estimate P of P is the linear minimum-variance unbiased estimate 
minimizing E [(P -- /3) PCP - /3)'] for any positive-semidefinite matrix P. 

13. It is the purpose of this problem to show that Gauss-Markov estimates 
can be updated in a manner analogous to that of minimum-variance 
estimates. As a by·.product, a formal connection between the two kinds 
of estimation techniques is obtained. 

Let Y1 and Y2 be two measurement vectors of an n-dimensional 
vector of unknown parameters P; say, 

Yl = W1P + 61 

Y2 = W2 P + 62 
I 

where E(81) = (), E(62 ) = e, E(61 61') = QI' E(62 62 ') = Q2' and 
E(6162') = O. Assuming that the dimension m1 of Yl is at least nand 
that WI' QI -1 WI is nonsingular, show that the Gauss-Markov 
.estimated of P based on Y1 and Y2 can be obtained by first obtaining the 
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Gauss~Markov estimate, as well as the corresponding error covariance 
of fJ based on Yb and then updating it with the minimum~variance 
estimator based on Y2 . 

14. A satellite is put into orbit about the earth. Its initial state vector (whose 
components are position and velocity coordinates) is not known 
precisely and it is desired to estimate it from later measurements of the 
satellite's position. The equations of motion are: 

x(k + I) = <l>x(k) 

where x(k) is the n~dimensional state vector and <I> is an n X n matrix. 
It is assumed that 

E[x(O)] = e, E[x(O)x'(O)] = P. 

The measurements are of the form 

v(k) == Mx(k) + e(k) 

where Mis an m x n matrix (m < n) and E(e(k» = f), E[e(k)e'(j)] = 
QfJ jk' Develop the recursive equations for the minimum- variance 
linear estimate of x(O) given the observations. 

15. Given the general dynamical model of a random process as in Section 
4.7, show that ~(k \ j) = <I>(k - l)<I>(k - 2) ... <I>(j + I)~(j + 1\.i) for 
k > j. 

16. Given the general dynamical model of a random process as in Section 
4.7, show how to calculate recursively ~(O \.i), .i > O. 
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5 
DUAL SP ACI~S 

5.1 Introduction 

The modern theory of optimization in normed linear space is largely 
centered about the interrelations between a space and its corresponding 
dual-the space consisting of all continuous linear functionals on the 
original space. In this chapter we consider the general construction of 
dual spaces, give some e:xamples, and develop the most important theorem 
in this book-the Hahn-Banach theorem. 

In the remainder of the book we witness the interplay between a normed 
space and its dual in a number of distinct situations. Dual space plays a 
role analogous to the inner product in Hilbert space; by suitable inter­
pretation we can develop results extending the projection theorem solution 
of minimum norm problems to arbitrary normed linear spaces. Dual space 
provides the setting for an optimization problem "dual" to a given 
problem in the origina.l (primal) space in the sense that if one of these 
problems isa minimization problem, the other is a maximization problem. 
The two problems are equivalent in the sense that the optimal values of 
objective functions are equal and solution of either problem leads to 
solution of the other. Dual space is also essential for the development of 
the concept of a gradient, which is basic for the variational analysis of 
optimization problems. And finally, dual spaces provide the setting for 
Lagrange multipliers, fundamental for I:' study of constrained optimization 
problems. . 

Our approach in this chapter is largely geometric. To make precise 
mathematical statements, however, it is necessary to translate these geo­
metric concepts into concrete algebraic relations. In this chapter we follow 
two paths to a final set of algebraic results by consitiering two different 
geometrical viewpoints, corresponding to two versions of the Hahn­
Banach theorem. The first viewpoint parallels the development of the 
projection theorem, While the second is based on the idea of separating 
convex sets with hyperplanes. 
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LINEAR FUNCTIONALS 

5.2 Basic Concepts 

First we recall that a functional fOil a vector space X is linear if for any 
two vectors x, Y E X and any two scalars a, fJ there holds f(ax + fJy) == 
af(x) + Pf(y)· 

Example 1. On the space En a linear functional can be expressed in the 
form f(x) = I~= 1 11k ~k' for x = (~1l ~z' ... , ~n)' where the 11k are fixed 
scalars. Such a functional is easily seen to be linear. Furthermore, it can be 
shown that all linear functionals on E" are of this form. 

Example 2. On the space C[O, I] the functional f(x) = xG-) is a linear 
functional. 

Example 3. On the space Lz[O, I] the functionalf(x) = Sby(t)x(t) dt, for a 
fixed y E L2[O, IJ, is a linear functional. 

We are primarily concerned with continuous linear functionals. The 
reader may verify that the functionals in the above three examples are all 
continuous. 

Proposition 1. If a linear functional on a normed space X is continuous at a 
single point, it is continuous throughout X. 

Proof Assume that f is linear and continuous at Xo E X. Let {xn} be 
a sequence from X converging to x E X. Then, by the linearity off, 

If(x,,) - f(x) I = If(xn - x + xo) - f(xo)l· 

However, since XII - x + Xo -+ Xo and sincefis continuous at xo, we have 
f(xn - x + xo) -+ f(xo). Thus, If(x,,) - f(x) I -+ O. I 

The above result is most often applied to the point e and continuity 
thus verified by verifying that f(xn) -+ ° for any sequence tending to e. 
Intimately related to the notion of continuity is the notion of boundedness. 

Definition. A linear functional f on a normed space is bounded if there 
is a constant M such that lI(x) I S M IIxll for all x EX. The smallest 
such constant M is called the norm of.( and is denoted IIf11. Thus, Ilfll = 
inf {M: If(x) I ::::;; Mllxll, all x EX}. 

It is shown below that this definition satisfies the usual requirements of 
a norm. 

Proposition 2. A linear functional on a normed space is bounded if and only 
if it is continuous. 
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Proof Suppose first that the linear functional/is bounded. Let M be 
such that I I(x) I ::;; Mllxll for all x E X. Then if Xn -4 e, we have I/(xn) I ::;; 
Mllxnll _0. Thus, I is, continuous at e. From Proposition 1 it follows that 
lis continuous everywhere. 

Now assume that f is continuous at e. Then there is aD> 0 such that 
I I(x) I < I for Ilxll ::;; D. Since for any nonzero x E X, Dxlllxli has norm 
equal to D, we have 

I I(x) I = k(,~;,)l' II~" < II~" 
and M = liD serves as a bound for f I 

We offer now an example of an unbounded linear functional. 

Example 4. On the space of finitely nonzero sequences with norm equal to 
the maximum of the absolute values of the components, we define, for 
x = {el' e2' ... , en, 0, 0, " .}, 

n 

f{x) = L kek' 
k=t 

The functional lis clearly linear but unbounded. 

The linear functionals on a vector space may themselves be regarded as 
elements of a vector space by introducing definitions of addition and scalar 
multiplication. Given two linear functionals/t '!2 on a space X, we define 
their sum/l + 12 as the functional on X given by (/1 + 12)(X) = II (x) + lix) 
for all x E X. Similarly, given a linear functional!, we define rJ./by (~f)(x) = 
rJ.[f(x)]. The null ehement in the space ')f linear functionals is the func­
tional that is identically zero on X. The space of linear functionals defined 
in this way is called the algebraiC dual of X. Its definition is independent of 
any topological structure on X such as might be induced by a norm on X. 

Of greater importance for our purposes is the subspace of the algebraic 
dual consisting of all bounded (i.e., continuous) linear functionals on a 
normed space X. The space becomes a normed space by assigning the norm 
according to the last definition. 

The norm of a functional I can be expressed in several alternative ways. 
We have 

Ilfll = inf {M: If(x)1 ::;; Mllxll, for all x EX} 
M 

= sup Il(x)1 
x <1<8 IIxll 

= sup I f(x) I 
IIxll :s 1 

= sup If(x)l. 
Ilxll =1 
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The reader should verify these equivalences since they are used throughout 
this chapter. The norm defined in this way satisfies the usual requirements 
of a norm: 11/\\ > 0; 11/\\ = 0 if and only if 1= e; 11 alii = lalll/ll; 1111 + 
1211 = sup I/l(x)+/2(x)1 ~ sup I/I(x)1 + sup I/l(x) I = Il/tll+1I/211· 

II xli :s; I IIxll:s; I lIxli s 1 

In view of the preceding discussion, the following definition is justified: 

Definition. Let X be a normed linear vector space. The space of an bounded 
linear functionals on X is called the Ilorllled dllal of X and is denoted X *. 
The norm of an element I EX'" is 

11/11 = sup I/(x)l. 
IIxll:s; 1 

Given a normed space X, we usually refer to its normed dual X* simply 
as the dual of X. As a general rule we denote functionals, linear or not, on a 
normed space X by J, g, h, etc. However, when in the context of a particular 
development, certain bounded linear functionals are regarded as elements 
of the space X *; they are usually denoted by x1, x; , etc. The value of the 
linear functional x* E X* at the point x E X is denoted by x*(x} or by the 
more symmetric notation (x, x*) which is introduced in Section 5.6. 

Theorem 1. X * is a Banach space. 

Proof Since it has already been established that X* is a normed linear 
space, it remains only to show that X* is complete. For this purpose, let 
{x:} be a Cauchy sequence in X*. This means that Ilx: - x!1I ~ 0 as 
fl, m -+ 00. Now for any x e X, {x:(x)} is a Cauchy sequence of scalars since 
Ix:(x) - x!(x)1 ~ Ilx: - x!1I . \lxll. Hence, for each x, there is a scalar x*(x) 
such that x:(x) -+ x*(x). The functional x* defined on all of X in this way 
is certainly linear since X*(IXX + f3y) = lim x:(ax + f3y) = lim (IXX:(X) + 
f3x:(y)] = a lim x:(x) + f3lim x:(y) = IXX*(X) + f3x*(y). 

Now since {x:} is Cauchy, given a > 0, there is an M such that Ix:(x)­
x!(x) I < al\xll all n, m> M and all x; but since x:(x) -+ x*(x), we have 
Ix*(x) - x!(x)1 < allxl1, m > M. Thus, 

Ix*(x)1 = Ix*(x) - x!(x) + x!(x) I ~ Ix*(x) - x!(x) I + Ix!(x)1 

~ (a + IIx!IDllxll 
and x* is a bounded linear functional. Also from Ix*(x) - x!(x) I < al\xll, 
m > M, there follows IIx* - x!1I < a s~ that x! ~ x* in X*. I 

5.3 Duals of Some Common Banach Spaces 

In this section we develop representations of the duals of En, lp, Lp, co' 
and Hilbert space. The dual 'of C[a, b] is discussed in Section 5.5. These 
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concrete representations of the duals of various Banach spaces enable us 
to apply the abstrac:t theory of functional analysis to specific practical 
problems. 

The Dual of Eft. In the space En, each vector is an n-tuple of real scalars 
x = (~1' ~ 2' ... , ~n) with norm Ilxll = (Li _, ~?y 12. Any functional fOf the 
formf(x) = L,= I til ~, with each tljareal numberisc1earlylinear. Also,from 
the Cauchy-Schwarz inequality for finite sequences. 

If(x)1 = \lttl1el \ ~ Ctlt112) 1/2(Jle?) 1/2 = Cttl/2) '/2 1Ixll , 

we see that f is bounded with Ilfll ~ (L~=1 tlI2)'/2. However, since for 
x = (til' tl2' ... , tin) equality is achieved in the Cauchy-Schwarz inequality, 
we must in fact have IIfII = (L~=11112)'/2 

Now letfbe any bounded linear functional on En. Define the basis vectors 
ei in X by el = (0, 0, ... ,0, 1,0, ... ,0) with the i-th component 1 and all 
others 0. Let til = x*(e i). A vector x = (ell e2, ... , en) may be expressed in 
terms of the basis as x = L~=t eie/. Sincefis linear, we have 

Thus the dual space X* of X = En is itself En in the sense that the space 
X* consists of all functionals of the formf(x) = Ltliei and the norm on 
X* is Ilfll = (L~= 11'112

)1
/
2. 

The Dual of lp, 1 ~~ p < 00. The I p spaces were discussed in Section 2.10. 
For every p, 1 ~ p < 00, we define the conjugate index q = p/(p - 1), so 
that l/p + l/q = 1; if p = 1, we take q = 00. We now show that the dual 
space of Ip is Iq• 

Theorem 1. Every bounded linear functional on lp, 1 ~ p < 00, is represent. 
able uniquely in the form 

00 

(1) f(x) = L '1i el 
1= 1 

where y == {'1f} is an element of lq. Furthermore, every element of lq defines a 
member of (1,,)* in this way, and we have 

{( f l'1ilq) I/q if 1 < p < 00 

Ilfll = Ilyllq = 1=1 

sup l11kl if p = 1. 
(2) 

k 

Proof Suppose f is a bounded linear functional on 1". Define the 
element el E I". i = 1,2, ... , as the sequence that is identically zero except 
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for a 1 in the i-th component. Define lJi =!(el)' For any x ={el} E lp, we 
have, by the continuity of/,f(x) = Ir'=l lJi~I' 

Suppose first that I < P < 00. For a given positive integer N define the 
vector XN E Ip having components 

Then 

and 

i 5, N 
i >N. 

But I/(XN) I 5, 11/llllxNII; therefore, from the above two expressions, it 
follows that 

(tlllJd q
) ljq 5, 11111 for all N. 

Hence the sequence y = {lJi} is an element of lq, and Ilyllq 5, II/II. 
Suppose now that y = {IJ I} is an element of lq. If x = {, I} E 1 p' then 

f(x) = 2:r;, 1 'IIJ I is a bounded linear functional on I p since, by the Holder 
inequality, I/(x) 1 :::;; 2:(;II'ilJd 5, Il xl1 p llyllq, and thus 11/115, Ilyllq' Since 
/(el) = IJI in this case, it follows from the previous analysis that lIyllq :::;; II/II· 
Therefore, 111\1 = lIyllq' 

For p = 1, q = 00, define XN by 

Then IlxN11 5, I and 

i :i= N 
i=N. 

IIJNI =/(xN) 5, 11/lllIxNII 5, II/II. 

Thus the sequence y = {IJJ is bounded by Ilfll. Hence, Ilyll", :::;; Ilfll. 
Conversely, if y = {l1J E la;, the relation (1) obviously defines an element 

! of (/1)* with II/II :::;; IIYlloo· Sinte again /(el) = lJi' it follows from above 
that Ilyll", :::;; 11/11 and, hence, 11/11 = Ilyll",. I 

The dual of I", is not II' 

The Dual of Lp(O, 1), 1!;p <. 00. The Lp spaces were discussed in Sec­
tion 2.10 and are the function space analogs of the lp spaces. Arguments 
similar to those given in Theorem 1 show that for 1 ::; P < 00, the dual 
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space of Lp is Lq; (lIp + llq = 1) in the sense that there is a one-to-one 
correspondence between bounded linear functionals f and elements y e Lq 
such that 

I 

f(x) = fax(t)y(t) dt 

and Ilfll = lIyllq' 

The Dual of Co. The space Co is defined as the space of all infinite 
sequences x = {~i} of real numbers converging to zero. The norm on Co 

is IIxll = max I~". Thus, Co is a subspace of 100 . 
i 

We leave it to the reader to verify that the dual of Co is II in the usual 
sense with bounded linear functionals represented as 

and IIfll = lIyll. 

The Dual of Hilhert Space. On a Hilbert space the functionalf(x) = (x I y) 
for a fixed y is a linear functional in the variable x. The Cauchy-Schwarz 
inequality I(x I y)1 ~ Ilxlillyll shows that the functional f is bounded with 
IIfll ~ Ilyll; the relation f(y) = (y I y) shows that in fact Ilfll = lIyll. Ob· 
viously, distinct vectors y produce distinct functionals f Thus, in Hilbert 
space, bounded linear functionals are generated by elements of the space 
itself. Here we show that all bounded linear functionals on Hilbert space 
are of this form. The examples for the Hilbert spaces En, 12 , and L1-
considered above illustrate this general result. 

Theorem 2. (Riesz-Frechet) Iff is a bounded linear functional on a Hilbert 
space H, there exists a unique vector y e H such that for all x e H, f(x) = 
(x I y). Furthermore, we have IIfll = lIyll and every y determines a unique 
bounded linear functional in this way. 

Proof Given a bounded linear functional f, let N be the set of all 
vectors n e H fClr which f(n) = O. The set N is obviously a subspace of 
H. It is closed since if ni -+ x is a sequence in H with ni eN, we have 0 = 
f(ni) -+ f(x) by the continuity off. 

If N = H, then/= 0 and the theorem is proved by taking y = e. 
If N:F H, we may write, according to T.heorem 1, Section 3.4, 

H = N $ N.J., and sinceN # H, there is a nonzero vector Z E N.J.. Since z is 
nonzero and z ~ N, necessarily f(z) .,; O. Since N.J. is a subspace, we may 
assume that z has been appropriately scaled so that /(z) = 1. It will be 
shown that the vector z is a scalar multiple of tht: desired vector y. 
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Given any x e n, we have x - f(x)z eN since f[x - f(x)z] = f(x) -
f(x)f(z) = O. Sincez ..L N, we have (x - f(x)z I z) = 0 or (x I z) = f(x)llzI1 2 or 
f(x) = (x Iz/lIzI12). Thus, defining y = z/llzIl2, we havef(x) = (x Iy). 

The vector y is clearly unique since if y' is any vector for whichf(x)= 
(x I y') for all x we have (x I y) = f(x) = (x I y'), or (x I y - y') = 0 for all x 
which according to Lemma 2, Section 3.2 implies y' ::::: y. 

It was shown in the discussion preceding the theorem that IIfll = lIyll· I 

EXTENSION FORM OF THE HAHN-BANACH THEOREM 

5.4 Extension of Linear Functionals 

The Hahn-Banach theorem, the most important theorem for the study of 
optimization in linear spaces, can, like so many important mathematical 
results, be stated in several equivalent ways each having its own particular 
conceptual advantage. The two classical versions of the theorem, referred 
to as the" extension form" and the" geometric form," playa fundamental 
role in the theory of this book. The extension form proved in this section 
serves as an appropriate generalization of the projection theorem from 
Hilbert space to normed space and thus provides a means for generalizing 
many of our earlier results on minimum norm problems. 

Definition. Letfbe a linear functional defined on a subspace M of a vector 
space X. A linear functional F is said to be an extension off if F is defined 
on a subspace N which properly contains M, and if, on M, F is identical 
with! In this case, we say that F is an extension of ffrom M to N. 

In simple terms, the Hahn-Banach theorem states that a bounded linear 
functional f defined only on a subspace M of a normed space can be 
extended to a bounded linear functional F defined on the entire space and 
with norm equal to the norm off on M; i.e., 

If(m)1 
IIFII = IlfllM = ~~E lmf' 

Actually, we are able to prove a somewhat more general version of the 
theorem, replacing norms with sublinear functionals. This generalization 
is used later to prove the geometric form of the Hahn~Banach theorem. 

Definition. A real-valued function p defined on a real vector space X is said 
to be a sub linear functional on X if 

1. P(Xl 1" X2) S P(Xl) -t P(X2), for aU XI' X2 € X. 
2. p(Cl.x) = Cl.p(x), for all CI. ;;:: 0 and x e X. 

Obviously, any norm is a sublinear functional. 
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Theorem 1. (Hahn-Banach Theorem, Extension Form) Let X be a real 
linear normed space' and p a continuous sublinear functional on X. Let f be 
a linear functional defined on a subspace M of X satisfying f(m) ~ p(m) 
for all m e M. Then there is an extension F off from M to X such that 
F(x) ~ p(x) on X. 

Proof. The theorem is true in an arbitrary normed linear space, but 
our proof assumes that X is separable. The general result, however, is 
obtained by exactly the same method together with a simple application 
of Zorn's lemma. The reader familiar with Zorn's lemma should have little 
difficulty generalizing the proof. The basic idea is to extend f one dimension 
at a time and then apply induction. 

Suppose y is a vector in X not in M. Consider all elements of the subspace 
[M + y]. Such an element x has a unique representation of the form 
x = m + ocy, where m e M and oc is a real scalar. An extension 9 off from 
M to [M + y] has the form 

g(x) = f(m) + ocg(y) 

and, hence, the extension is specified by prescribing the constant g(y). We 
must show that this constant can be chosen so thatg(x) ~ p(x) on [M + y]. 

For any two elements m1, m2 in M, we have 

or 

and hence 

sup [f(m) - p(m - y)] ~. inf [p(m + y) - f(m)]. 
meM ""oM 

Therefore, there is a constant c such that 

sup [f(m) - p(m - y)] ~ c ~ inf [p(m + y) - f(m)]. 
meM meM 

For the vector x = m + ocy e [M + y], we define g(x) = f(m) + occ. We 
must show that gem + ocy) ~ p(m. + ocy). 

If oc > 0, then 



112 DUAL SPACES 5 

If ex = -p < 0, then 

- pc + f(m) = p[ - c + f(7i) ] ~ p[p(; - Y) - f(7i) + f(7i)] 

= pp(~- Y) = p(m - py). 

Thus g(m + exy) ~ p(m + exy) for all ex and 9 is an extension off from M 
to [M+yJ. 

Now let {XI' Xl, ••• , X n , ••• } be a countable dense set in X. From this 
set of vectors select, one at a time, a subset of vectors {YI, Y2 , ... , Yn, ... } 
which is independent and independent of the subspace M. The set 
{YI' Y2' ... , Yn, ... } together with the subspace M generates a subspace S 
dense in X. 

The functionalfcan be extended to a functional 9 on the subspace S by 
extendingffrom M to [M + YI], then to [[M + YI] + Y2]; and so on. 

Finally, the resulting 9 (which is continuous since p is) can be extended 
by continuity from the dense subspace S to the space X; suppose X E X, 
then there exists a sequence {sn} of vectors in S converging to x. Define 
F(x) = lim g(sn)' F is obviously linear and F(x) +- g(sn) ~ p(sn) ~ p(x) so 

n .... co 

F(x) ~ p(x) on X. I 
The version of the Hahn-Banach extension theorem given above is by 

no means the most general available. It should be noted in particular that 
since f and its extension F are dominated by the continuous sublinear . 
functional p, both rand F are continuous linear functionals. A more general 
version of the theorem requires X only to be a linear vector space and, 
hence, neither continuity of the functionals nor separability of the space 
plays a role. Neither of these restrictions is of practical importance to us; 
in all applications considered in this book, the linear functions are bounded 
and the Hahn-Banach theorem is applied only to separable normed spaces, 
although the dual spaces may be nonseparable. 

Corollary 1. Let f be a bounded linear functional defined on a subspace M 
of a real normed vector space X. Then there is a bounded linear functional 
F defined on X which is an extension off and which has norm equal to the 
norm of f on M. 

Proof Take p(x) = IIfll11 IIxll in the Hahn-Banach Theorem. I 
The following corollary establishes the existence of nontrivial bounded 

linear functionals on an arbitrary normed space. 

Corollary 2. Let X be an element of a normed space X. Then there is a 
nonzero bounded linear functional F on X such that F(x) = IIF 1lllxli. 
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Proof Assume X:F (J. On the one-dimensional subspace generated by 
x, define f(lXx) = lXllxll. Then f is a bounded linear functional with norm 
unity which, by Corollary 1, can be extended to a bounded linear functional 
F on X with norm unity. This functional satisfies the requirements. 

If x = (J, any bounded linear functional (existence of one is now 
established) will do. I 

The converse of Corollary 2 is not generally true even in Banach space, 
as the following example illustrates. 

Example 1. Let X = II' X* = 100 , For x = gl' ~2' ~3' ..• } E X, we define 

f(x) = f (1 - ~)ei' 
i= 1 I 

It is clear that fE X*, IIfll = 1. However, the reader may verify by 
elementary analysis thatf(x) < IIxll for all nonzero x Ell ' 

The Hahn-Banach theorem, particularly Corollary 1, is perhaps most 
profitably viewed as an existence theorem for a minimization problem. 
Given anf on a subspace M of a normed space, it is not difficult to extendf 
to the whole space. An arbitrar:\' extension, however, will in general be 
unbounded Olr have norm greater than the norm off on M. We therefore 
pose the problem of selecting the extension ot minimum norm. The Hahn­
Banach theorem both guarantees the existence of a minimum norm exten­
sion and tells us the norm of the best extension. 

5.5 The Dual of C[a, b] 

The Hahn-Banach theorem is a useful tool for many problems in classical 
analysis as well as for optimization problems. As an example of its use, we 
characterize the dual space of C[a, b]. This result is of considerable interest 
for applications since many problems are naturally formulated on C[a, b). 

Theorem 1. (Riesz Representation Theorem) Let f be a bounded linear 
functional on X = qa, b]. Then there is a function v of bounded variation 
on [a, b] such that for all x E X 

b 

f(x) = f x(t) dv(t) 
a 

and such that the norm off is the total variation of v on [a, b). Conversely, 
every function of bounded variation on [a, b] defines a bounded linear 
functional on X in this way. 

Proof Let B be the space of bounded functions on [a, b] with the 
norm of an element x e B defined as !lxliB = sup Ix(t)l. The space C[a, b) 

a:St:sb 
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can be considered as a subspace of B. Thus, if/is a bounded linear functional 
on X = C[a, b], there is, by the Hahn-Banach theorem, a linear functional 
F on B which is an extension of/and has the same norm. 

For any S E [a, b], define the function Us by Ua = 0, and by 

if a::.;; I::';; S 

ifs<t::.;;b 

for a < S ;S; b. Obviously, each Us E B. 
We define v(s) = F(u.) and show that v is of bounded variation on [a, b]. 

For this purpose, let a = 10 < t I, 12 , .•• , < In = b be a finite partition of 
[a, b]. Denoting 81 = sgn [V(tl} - v(tl-I)]' we may write 

n n 

L \v(ti} - V(t l _ I )\ == L 81[V(tI) - v(t,_t)] 
1=1 1= 1 

n 

= L 81[F(ur) - F(ur,_,)] 
1=1 

Thus, 

since 

IIFII = IIJII and 

and hence v is of bounded variation with T.V.(v) ::.;; Ilfll. 
Next we derive a representation for / on X. If x E X, let 

n 

z(t) = L X(tI-I)[Ur,(t) - ur,_,(t)] 
i= 1 

where {II} is again a finite partition of [a, b]. Then 

liz - xllB = max max IX(ti-I)- x(t)1 
1 r'-<:Sl'''' 

which (by the uniform continuity of x) goes to zero as the partition is made 
arbitrarily fine. Thus, since F is continuous, F(z) -+ F(x} = /(x). But 

n 

F(z) == L X(ti-I)[V(t/) - V(ti-I)] 
1= 1 
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and, by the definition of the Stieltjes integral, 
b 

F(z) -+ J x(t) dv(t). 
a 

Therefore, 
b 

f(x) = J x(t) dv(t). 
a 

It is a standard property of the Stieltjes integral that 

\ (X(t)dV(t)\ ~ Ilxll . T.V.(v) 

and, hence, II/II :s;; T.V.(v). On the other hand, we have Ilfll ~ T.V.(v) and, 
consequently, IIfll = T.V.(v). 

Conversely, if v is a function of bounded variation on [a, b], the functional 
b 

f(x) = J x(t) dv(t) 
a 

is obviously linear. Furthermore,fis bounded since If(x)1 ~ IlxIIT.V.(v). I 
It should be noted that Theorem 1 does not claim uniqueness of the 

function of bounded variation v representing a given linear functional f 
since, for example, the functional x(1/2) can be represented by a v which 
is zero on [0, 1/2), unity on (1/2, 1], and has any value between zero and 
unity at the point t = 1/2. To remove the ambiguity, we introduce the 
following subspace of BV[a, b]. 

Definition. The normalized space of functions of bounded variation denoted 
NBV[a, b] consists of all functions of bounded variation on [a, b] which 
vanish at the point a and which are continuous from the right on (a, b). 
The norm of an element v in this space is IIvll = T.V.(v). 

With the above definition the association between the dual of C [a, b] 
and NBV[a, b] is unique. However, this normalization is not necessary in 
most applications, since when dealing with a specific functional, usually 
any representation is: adequate. 

5.6 The Second Dual Space 

Let x* e X*. We often employ the notation (x, x*) for the value of the 
functional x* at a point x e X. Now, given x e XI the equation f(x*) = 
(x, x*) defines a functional on the space X*. The functionalfdefined on 
X* in this way is linear sinc~ 

f(rxx! + px!} = (x,rxx! + px~> = rx(x, xf) + P(x, xi> = rxf(x!) + P/(x!). 
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Furthermore, since I/(x*)1 = I(x, x*)1 s IIxll . IIx*lI, it follows that 
11/11 :::;; IIxli. By Corollary 2 of the Hahn-Banach theorem, there is a nonzero 
x* e X* such that (x, x*) = Ilxllllx*lI, so in fact 11/11 = !lxll. We see then 
that, depending on whether x or x* is considered fixed in (x, x*), both 
X and X* define bounded linear functionals on each other and this 
motivates the symmetric notation (x, x*). 

The space of all bounded linear functionals on X* is denoted X** and is 
called the second dual of X. The mapping cp:X -+ X** defined by x**= cp(x) 
where (x*, x**) = (x, x*) is called the natural mapping of X into X**. 
In other words, cp maps members of X into the functionals they generate 
on X* through the symmetric notation. This mapping is linear and, as 
shown in the preceding paragraph, is norm preserving (i.e., !!cp(x)\I = \Ix!!). 
Generally, however, the natural mapping of X into X** is not onto. 
There may be elements of X** that cannot be represented by elements in 
X. On the other hand, there are important cases in which the natural 
mapping is onto. 

Definition. A normed linear space X is said to be reflexive if the natural 
mapping cp: X -4 X** is onto. In this case we write X = X**. 

Example 1. The Ip and Lp spaces, 1 < p < 00, are reflexive since lp * = lq 
where lip + l/q == 1 and, thus, lp ** = lq * = lp. 

Example 2. II and LI are not reflexive. 

Example 3. Any Hilbert space is reflexive. 

Reflexive spaces enjoy a number of useful properties not found in 
arbitrary normed spaces. For instance, the converse of Corollary 2 of the 
Hahn-Banach theorem holds in a reflexive space; namely, given x* E X* 
there is an x e X with (x, x*) = Ilxl! IIx*lI. 

5.7 Alignment and Orthogonal Complements 

In general, for any x e X and any x*e X* we have (x, x*):::;; Ilx*llllxll. 
In Hilbert space we have equality in this relation if and only if the 
functional x* is represented by a nonnegative multiple of x, i.e., ifand only if 
(x, x*) = (x I a:x) for some a: ~ O. Motivated by the Hilbert space situa. 
tion, we introduce the following definition ... 

Definition. A vector x* e X* is said to be aligned with a vector x E X if 
(x, x*) = IIx*lIlIxll. 

Alignment is a relation between vectors in two distinct vector spaces: a 
normed space and its normed dual. 
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Example 1. Let X = Lp[a, b), I < p < 00, and X· = Lla, b), l/p + l/q= 1. 
The condition for two functions x E Lp, y E Lq to be aligned follow directly 
from the conditions for Ilquality in the Holder inequality, namely, 

S:X(t)y(t) dt = U:IX(tW dt} lIP. U:\y(tW dt} llq 

if and only if x(t) == K[sgn y(t)]ly(t)lqlp for some constant K. 

Example 2. Let x eX = C[a, b) and let r be the set of points t E [a, b) at 
which Ix(t)1 = Ilxll. In glmeral, r may be infinite or finite but it is always 
nonempty. A bounded linear functional x*(x) = $: x(t) dv(t) is aligned with 
x if and only if v varies only on r and v is nondecreasing at t if x(t) > 0 
and nonincreasing if x(t) < O. (We leave the details to the reader.) Thus, if 
r is finite, an aligned functional must consist of a finite number of step 
discontinuities. See Figure 5.1 

/-- - v(t) 
r-----, ,... I L ___ "''/ 

b 

Figure 5.1 Aligned junctions 

The notion of orthogol1ality can be introduced in normed spaces through 
the dual space. 

Definition. The vectors x e X and x* E X* are said to be orthogonal if 
(x, x*) = O. 

Since the dual of a Hilbert space X is itself X, in the sense described in 
Section 5.3 by the Riesz~Frechet theorem, the definition of orthogonality 
given above can be regarded as a generalization of the corresponding 
Hilbert space definition. 

Definition. Let S be a subset of a normed linear space X. The orthogonal 
complement l of S, denoted SJ., consists of all elements x* E X* orthogonal 
to every vector in S. 

Given a subset U of the dual space X*, its orthogonJI complement uJ. 
is in X**. A more useful concept in this case, however, is described below. 

I The term annihilator is often used in place of orthogonal complement. 
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Definition. Given a subset U of the dual space X*, we define the orthogonal 
complement of U in X as the set .L U c: X consisting of all elements in X 
orthogonal to every vector in U. 

The set .L Umay be thought of as the intersection of U.L with X, where X 
is considered to be imbedded in X** by the natural mapping. Many of the 
relations among orthogonal complements for Hilbert space generalize to 
normed spaces. In particular we have the following fundamental duality 
result. 

Theorem 1. Let M be a closed subspace of a normed space X. Then 
.L[M.L] = M. 

Proof. It is clear that M c: .L[M.L]. To prove the converse, let x rf= M. 
On the subspace [x + MJ generated by x and M, define the linear func­
tionalf(exx + m) = ex for m EM. Then , 

f(x + m) 1 
11111 = !~~ Ilx + mil = inf Ilx + mil 

m 

and since M is closed, IIfll < 00. Thus by the Hahn-Banach theorem, we 
can extendfto an x* E X*. Sincefvanishes on. M, we have x* E M.L. But 
also (x, x*) = 1 and thus x rf= .L[M.L]. I 

5.8 Minimum Norm Problems 

In this section we consider the question of determining a vector in a sub­
space M of a normed space which best approximates a given vector x in 
the sense of minimum norm. This section thus extends the results of Chap­
ter 3 for minimum norm problems in Hilbert space. 

We recall that if M is a closed subspace in Hilbert space, there is always a 
unique solution to the minimum norm problem and the solution satisfies 
an orthogonality condition. Furthermore, the projection theorem leads to 
a linear equation for determining the unknown optimizing vector. Even 
limited experience with nonquadratic optimization problems warns us that· 
the situation is likely to be more complex in arbitrary normed spaces. The 
optimal vector, if it exists, may not be unique and the equations for the 
optimal vector will generally be nonline~. Nevertheless, despite these 
difficulties, we find that the theorems of Chapter 3 have remarkable analogs 
here. As before, the key concept is that of orthogonality and our principal 
result is an analog of the projection theorem. 

As an example of the difficulties encountered in arbitrary norrned space, 
we consider a simple two-dimensional minimum norm problem that does 

. not have a unique solution. 
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Example 1. Let X be the space of pairs of real numbers x = (~1' ~2) with 
Ilxll = max I~ d. Let M be the subspace of X consisting of all those vectors 

1=1,2 .... 

having their second component zero, and consider the fixed point x = (2, 1). 
The minimum distance from x to M is obviously 1, but any vector in M of 
the form m = (a, 0) where 1 S; as; 3 satisfies Ilx - mil = 1. The situation 
is sketched in Figure 5.2. 

x 

~iZing vectors 

"'i4.L ... t~3 ... ~l 
Figure 5.2 Solution to Example 1 

The following two theorems essentially constitute a complete resolution 
of minimum norm problems of this kind. These theorems, when specialized 
to Hilbert space, contain all the conclusions of the projection theorem 
except the uniqueness of the solution. When uniqueness holds, however, it 
is fairly easy to prove separately. 

Furthermore, the following two theorems contain even more information 
than the projection theorem. They introduce a duality principle stating the 
equivalence of two extremization problems: one formulated in a normed 
space and the other in its dual. Often theransition from one problem to its 
dual results in significant simplification or enhances physical and mathe­
matical insight. Some infinite-dimensional problems can be converted to 
equivalent finite-dimensional problems by consideration of the dual problem. 

Theorem 1. Let x be an element in a real normed linear space X and let d 
denote its distance from the subspace M. Then, 

(1) d = inf Ilx - mil = max (x, x*) 
meM IIx·1I s 1 

x·eM'!' 

where the maximum on the right is achieved for some xci E Ml.. 
If the infimum on the left is achieved for some mo E M, then xci is aligned 

with x - mo. 

Proof For 8 > 0, let m. E M satisfy IIx - m.1I S; d + 8. Then for any 
x* E MJ.., IIx*1I S; 1, we have 

(x, x*) == (x - m., x*) S; Ilx*lllIx - m.11 S; d + 8. 

Since 8 waS arbitrary, we conclude that (x, x*) ::;; d. Therefore, the proof 
of the first part of the theorem is complete if we exhibit any xci for which 
(x, xci> = d. 
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Let N be the subspace [x + M]. Elements of N are uniquely represent­
able in the form n = ax + m, with m E M, a real. Define the linear func­
tional f on N by the equation fen) = ad. We have 

If(n)1 laid 
Ilfll = s~p Tnf = sup Ilax + mil 

laid d 

-,up 1.lll" +: r infll' +: r 1. 

Now form the Hahn-Banach extension, xci, of ffrom N to X. Then II xci 11 = 1 
and xci = f on N. By. construction, we have xci E M.l and (x, xci> = d; 
hence xci satisfies the requirements of the first part of the theorem. 

Now assume that there is an mo EM with \Ix - moll = d and let xci be 
any element such that xci E MJ., IIxci\l = 1, and <x, xci> = d-the xci con­
structed above being one possibility. Then 

<x - mo, xci> = (x, xci> = d = IIx6'lIlIx - moll 

and x6' is aligned with x - mo· I 
The reader should attempt to visualize the problem and the relation (1) 

geometrically. The theorem becomes quite clear if we imagine that the 
error x - mo is orthogonal to M. . 

Theorem 1 states the equivalence of two optimization problems: one in X 
called the primal problem and the other in X* called the dual problem. 
The problems are related through both the optimal values of their respective 
objective functionals and an alignment condition on their solution vectors. 
Since in many spaces alignment can be explicitly characterized, the solution 
of either problem often leads directly to the solution of the other. Duality 
relations such as this are therefore often of extreme practical as well as 
theoretical significance in optimization problems. 

lfwe take only a portion of the above theorem, we obtain a generalization 
of the projection theorem. 

Corollary 1. Let x be an element of a real normed linear vector space X 
and let M be a subspace of X. A vector mo E M satisfies Ilx - moll ::; IIx - mil , 
for all m E M if and only if there is a nonzero vector x* E MJ. aligned with 
x-mo· 

Proof The" only if" part follows directly from Theorem 1. To prove 
the" if" part, assume that x - mo is aligned with x* E M.l. Without loss 
of generality, take llx*ll = 1. For all mE M we have 

<x, x*> = <x - m, x*) ::; IIx - mil 



§5.8 MINIMUM NORM PROBLEMS 121 

whereas 
(x, X*) = (x - mo, x*) = IIx - moll. 

Thus, Ilx - moll ~ IIx - mil. I 
As a companion to Theorem 1, we have: 

Theorem 2. Let M be a subspace in a real normed space X. Let x* E X* 
. be a distance d from Ml.. Then 

(2) d = min Ilx* - m*11 = sup (x, x*) 
m*eML XliiM 

IIxll SI 

where the minimum on the left is achievedfor mri E Ml..lfthe supremum on 
the right is achieved for some Xo EM, ;'hen x* -m ~ is aligned with Xo. 

Proof We denote the right-hand side of relatior (2) by Ilx*IIM because 
it is the norm of the functional x* restricted to the subspace M. For any 
m* E Ml., we have 

Ilx* - m*11 = sup [(x, x*) - (x, m*)J ~ sup [(x, x*) - (x, m*)J 
IIxlI:s:! XGM 

IIxll S! 
= sup (x, x*) = IIx*IIM' 

XliiM 
IIxlI:s; ! 

Thus, Ilx* - m*11 ~ Ilx*IIM and the first part of the theorem is proved ifan 
m~ E Ml. can be found giving equality. 

Consider x* restricted to the subspace M. The norm of x* so restricted 
is IIx*IIM' Let y* be the Hahn-Banach extension to the whole space of the 
restriction of x*. Thus, IIY*II = Ilx*IIM and x* - y* = 0 on M. Put mri = 
x*- y*. Then m~ E Ml. and Ilx* - m~1I = Ilx*IIM' 

If the supremum on the right is achieved by some Xo EM, then obviously 
llxoll = 1 and I\x* - m~1l = (xo, x*) = (xo, x* - m~). Thus x* - mri is 
aligned with Xo· I 

Theorem 2 guarantees the existence of a solution to the minimum norm 
problem if the probl,em is appropriately formulated in the dual of a normed 
space. This result simply reflects the fact that the Hahn-Banach theorem 
establishes the existence of certain linear functionals rather than vectors 
and establishes the general rule, which we adhere to in applications, that 
minimum norm problems must be formulated in a dual space if one is to 
guarantee the existence of a solution. 

The duality of the above theorems can be displa.yed more explicitly in 
terms of some fairly natural notation. Assuming M to be a closed subspace, 
we write 

IlxilM = inf Ilx - mIl 
meM 
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since this is the norm of the coset generated by x in the space XI M. For an 
element x* e X*, we write, as in the proof of Theorem 2, 

Ilx*IIM == sup <x, x*) 
IIxll,; 1 
xeM 

since this is the norm of x* considered as a functional on M. In this notation, 
equations (1) and (2) become 

(3) 

(4) 

IlxilM = IlxllMl 

IIx*IIMl = Ilx*IIM 

where on the right side of(3) the vector x is regarded as a functional on X*. 

5.9 Applications 

In this section we present examples of problem solution by use of the theory 
developed in the last section. Three basic guidelines are applied to our 
analyses of the problems considered: (1) In characterizing optimum solu­
tions, use the alignment properties of the space and its dual. In the Lp and 
lp spaces, for instance, this amounts to the conditions for equality in the 
Holder inequality. (2) Try to guarantee the existence of a solution by 
formulating minimum norm problems in a dual space. (3) Look at the 
dual problem to see if it is easier than the original problem. The dual may 
have lower dimension or be more transparent. 

Example 1. (Chebyshev Approximation) Let I be a continuous function 
on an interval [a, b] of the real line. Suppose we seek the polynomial p of 
degree n (or less) that best approximates I in the sense of minimizing 
max I/(t) - p(t)I, i.e., minimizing the maximum deviation of the two 
dSISb 

functions. In the Banach space X = C[a, b], this problem is equivalent to 
finding the P in the n + I-dimensional subspace N of n-th degree poly­
nomials that minimizes III - pil. We may readily establish the existence of 
an optimal p, say Po, since the subspace N is finite dimensional. 

Suppose III - Poll = d> 0, and let r be the ~et of points t in [a, b] for 
which I/(t) - Po(t) I = d. We show that r contains at least n + 2 points. 

According to Theorem 1 of Section 5.8, the optimal solution Po must be 
such that f - Po is aligned with an element in NJ. c X* = NBV[a, b]. 
Assume that r contained m < n + 2 points ti : a:::;; tl < t2 < ... < tm :::;; b. 
If v E N B V[a, b] is aligned with I - Po, v varies only on these points (see 
Example 1, Section 5.7), and hence must consist of jump discontinuities 
at the t/s. Let tk be a point of jump discontinuity of v. Then the polynomial 
q(t) = ili¢k (t - t i ) is in N but has S:q dv =1= 0 and consequently, v ¢ NJ.. 
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Therefore,f - Po is not aligned with any nonzero element of NJ. and hence 
r must contain at least n + 2 points. We have therefore proved the classic 
result of Tonelli: If J is continuous on [a, b] and Po h the polynomial oj 
degree n (or less) minimizing max IJ(t) - p(t)l, then IAt) - Po(t) I 

t e[a, b] 

achieves its maximum at at least n + 2 points in [a, b]. 

Many problems amenable to the theory of the last section are most 
naturally formulated a.s finding the vector of minimum norm in a linear 
variety rather than as finding the best approximation on a subspace. A 
standard problem of this kind arising in several contexts is to find an element 
of minimum norm satisfying a finite number of linear constraints. To 
guarantee existence of a solution, we consider the unknown x\ in a dual 
space X* and express the constraints in the form 

(Yl' x*) = C1 

(Y2' x*) = c2 

If x* is any vector satisfying the constraints, we have 

d == min IIx*1I = min IIx* - m*1I 
(YI.X*)=CI m*eMJ. 

where M denotes the space generated by the Yi'S. From Theorem 2, 
. Section 5.8, this becomes 

d = min IIx* - m*1I = sup (x, x*). 
~eMJ. xeM 

IIxll Sl 

Any vector in M is of the form x = l:1 = 1 alYlor, symbolically, Ya; thus, 
since M is finite dimensional, 

d = min IIx*1I = max (Ya,x*) = max c'a, 
(YI. x*;. =CI 11 Yall S 1 II Yall:S t 

the last equality following from the fact that x* satisfies the constraints. 
The quantity c'a denotes the usual inner product of the two n-vectors a 
and c with components ai and ci . Furthermore, we have the alignment 
properties of Theorem 2, Section 5.8, and thus the following corollary. 

Corollary 1. Let Y 1 E X, i = I, 2, ... , n, and suppose the system oj linear 
equalities (YI' x*) = ('I' i = 1,2, ... , n is consistent; i.e., the set 

D = {x* e X *: (y I, x*) = c i' i = I, 2, ... , n} 
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is nonempty. Then 

min Ilx*11 = max c'a. 
x'eD IIYalls! 

Furthermore, the optimal x* is aligned with the optimal Ya. 

Example 2. (A Control Problem) Consider the problem of selecting the 
field current u(t) on [0, 1J to drive a motor governed by 

e(t) + O(t) = u(t) 

from the initial conditions e(O) = 0(0) = ° to e(1) == 1, O(l) == ° in such a 
way as to minimize max lu(t)l. This example is similar to Example 1, 

o st::>: 1 
Section 3.10, but now our objective function reflects a concern with 
possible damage due to excessive current rather than with total energy. 

The problem can be thought of as being formulated in CEO, 1J, but 
since this is not the dual of any normed space, we are not guaranteed that 
a solution exists in CEO, 1]. Thus, instead we take X = Ll [0, 1], X* = 
Loo[O, 1] and seek u E X* of minimum norm. The constraints are, as in 
Example 1, Section 3.10, 

From Corollary 1, 

1 

So e(t- J)u(t) dt = 0 

1 J {1 - e(l-l)}u(t) dt == 1. 
o 

min lIuli = max a2' 
!lalYI +a2Y211 S 1 

The norm on the right is the norm in X = L 1[0, 1J. Thus, the two con­
stants aI' a2 must satisfy 

! 

So I(a 1 - a2)e(t-l) + a21 dt s; 1. 

Maximization of a2 subject to this constraint is.a straightforward task, 
but we do not carry out the necessary computations. Instead we show 
that the general n:ature of the optimal control is easily deduced from the 
alignment requirement. Obviously, the function atYt(t) + a2yz(t), being 
the sum of a constant and an exponential term, can change sign at most 
once, and since the optimal u is aligned with this function, u must be 
"bang-bang" (Le., it must have values ±M for some M) and changes 
sign at most once. We leave it to the reader to verify this by characterizing 
alignment between L1[0, 1] and Loo[O, 1]. 
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Example 3. (Rocket Problem) Consider the problem of selecting the 
thrust program u(t) for a vertically ascending rocket-propelled vehicle, 
subject only to the f,orces of gravity and rocket thrust in order to reach a 
given altitude with minimum fuel expenditure. Assuming fixed unit mass, 
unit gravity, and zero initial conditions, the altitude x(t) is governed by a 
differential equation of the form 

j,(t) == u(t) - 1 x(o) = x(o) = 0. 

This equation can be! integrated twice (once by parts) to give 

T T2 
x(T) = fo (T - t)u(t) dt - '2 . 

Our problem is to attain a given altitude, say x(T) = 1, while minimizing 
the fuel expense. 

T fo lu(t)1 dt. 

The final time T is in general unspecified, but we approach the problem by 
finding the minimum fuel expenditure for each fixed T and then minimizing 
over T. 

For a fixed T the optimization problem reduces to that of finding u 
minimizing 

T fo lu(t)1 dt 

while satisfying the single linear constraint 

I
T T2 
(T - t)u(t) dt = 1 + -. 

o 2 

At first sight we might regard this problem as one in Ll [0, T]. Since, 
however, L1 [0, T] is not the dual of any normed space, we imbed our 
problem in the space NBV[O, T] and associate control elements u with 
the derivatives of ellements v in NBV[O, T]. Thus the problem becomes 
that of finding the I) e NBV[O, I] minimizing 

T f Idv(t)1 = T.V.(v) = I\vl\ 
o • 

subject to 

T T2 

f (T - t) dv(t) = 1 + - . 
o 2 
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According to Corollary 1, 

min Ilvll = max [a(l + T2)], 
II(T-r)alls;' 2 

which is only a one-dimensional problem. The norm on the right-hand 
side is taken in CEO, T], the space to which NBV[O, T] is dual. In CEO, T] 
we have 

II(T - t)all = max I(T - t)al == T lal 
os;rs;T 

since the maximum occurs at t = 0. Thus the optimal choice is a = liT 
and 

( T2) 1 
min IIvll = 1 + T T' 

The optimal v must be aligned with (T - t)a and, hence, can vary only 
at t = 0. Therefore, we conclude that v is a step function and u is an 
impulse (or delta function) at t = 0. The best final time can be obtained by 
differentiating the optimal fuel expenditure with respect to T. This leads 
to the final result 

anp 

T= J2 
min IIvll = J2 

v = {ft t = ° 
0< t ~ J2. 

Note that our early observation that the problem should be formulated 
in NBV[O, T] rather than L, [0, T] turned out to be crucial since the 
optimal u is an impulse. 

*5.10 Weak Convergence ... 

An interesting and important concept that arises naturally upon the intro­
duction of the dual space is that of weak convergence. It is important for 
certain problems in analysis and plays an indirect role in many optimiza­
tion problems. 

Definition_ A sequence {xnl in a normed linear vector space X is said to 
converge weakly to x E X if for every X* E X* we have (xn' x*) -+ (x, x*). 
In this case we write Xn -+ x weakly. 
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Our earlier notion of convergence, convergence in norm, is sometimes 
referred to as strong convergence. We have the following result. 

Proposition 1. If Xn -+ x strongly, then Xn -+ x weakly. 

Proof I(xn , x*) - (x, x*)I:::;; Ilx*llllxn - xll-+O. I 
There are, however,. sequences that converge weakly but not strongly. 

Example 1. In X = 12 consider the elements Xn = {O, 0, ... ,0, 1,0, ... } 
with the 1 in.the n-th place. For any y = {lh, '12' .•. } E 12 = X*, we have 
(xn Iy) = '1n -+ ° as n.-;> 00. Thus Xn -+ e weakly. However, Xn ++ e strongly 
since II xn 1\ = 1. 

Starting with a normed space X, we form X* and define weak con­
vergence on X in terms of X*. The same technique can be applied to X* 
with weak convergencc~ being defined in terms of X**. However, there is a 
more important notion of convergence in X* defined in terms of X rather 
than X**. 

Definition. A sequence {x:} in X* is said to converge weak-star (or weak*) 
to the element x* if for every x E X, (x, x:) -+ (x, x*). In this case we 
write x! -+ x* weak*. 

Thus in X* we have three separate notions of convergence: strong, 
weak, and weak*; fUirthermore, strong implies weak, and weak implies 
weak* convergence. In general, weak* convergence does not imply weak 
convergence in X *. 

Example 2. Let X = co, the space of infinite sequences convergent to 
zero, with norm equal to the maximum absolute value of the terms. Then 
X* = 'I' X** = ' 00 , (See Section 5.3.) In X* = 'I' let x: = {O, 0, 0, ... , 
0, 1,0,0,0, " .}, the term 1 being at the n-th place. Then x: -+ e weak* 
but x: ++ e weakly since (x:, x**) ++ ° for x** = {I, 1, 1, ... }. 

It was shown in Section 2.13 that a continuous functional on a compact 
set achieves a maximum and a minimum. However, the usual definition of 
compactness, i.e., compactness with respect to strong convergence, is so 
severe that this property can be used only in very special circumstances 
such as in finite-dimensional spaces. Weak compactness and weak* com­
pactness are less severe requirements on a set; indeed, such compactness 
criteria (especially weak*) provide alternative explanAtions for the exist­
ence of solutions to optimization problems. 

Definition. A set K c X* is said to be weak* compact if every infinite 
sequence from K contains a weak* convergent subsequence. 
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Theorem 1. (Alaoglu) Let X be a real normed linear space. The closed unit 
sphere in X* is weak* compact. 

Proof Although the theorem is true in general, we only prove it for 
the case where X is separable (although X* need not be separable), which 
is adequate for all of the examples treated in this book. 

Let {x:} be an infinite sequence in X* such that Ilx:11 ~ 1. Let {Xk} be a 
sequence from X dense in X. The sequence {(Xl' x:>} of real numbers is 
bounded and thus contains a convergent subsequence which we denote 
{(XI' X:l>}' Likewise the sequence {(x2 , x:1>} contains a convergent sub­
sequence {(X2' x:2>}. Continuing in this fashion to extract subsequences 
{(Xb X:k>}' we then form the diagonal sequence {x:n} in X *. 

The sequence {x:n} converges on the dense subset {Xk} of X; i.e., the 
sequence of real numbers {(Xk, x:,,>} converges to a real number for 
each Xk' The proof of the theorem is complete if we show that {x:n} con­
verges weak* to an element x* E X *. 

Fix x E X and e > O. Then for any n, m, k, 

I(x, x:n> - (x, x!m>1 ~ I(x, x:n> - (Xb x:n>1 + I(Xb x:n> - (Xb X!m> I 
+ I(Xk, x!m> - (x, x!m>1 

~ 211xk - xii + I(xk' x:n> - (Xk' x!m>l· 

Now choose k so that Ilxk - xii < 8/3 and then N so that for n, m > N, 
I(Xb x:n> - (Xb x!m>1 < 8/3. Then for n, m > N, we have I(x, x:.> -
(x, x!m> I < 8. Thus, {(x, x:n>} is a Cauchy sequence and consequently 
converges to a real number (x, x*>. 

The functional (x, x*> so defined is clearly linear and has Ilx*11 :s 1. I 
Definition. A functional (possibly nonlinear) defined on a normed space 
X is said to be weakly continuous at xoif given 8 > 0 there is a 0 > 0 and 
a finite collection {xf,xi', ... , x:} from X* such that I/(x)-f(xo)1 <8 
for all x such thatl(x-xo., x7>1< fJ for i =1,2, . .. ,n. Weak * continuity of 
a functional defined on X* is defined analogously with the roles of X 
and X* interchanged. ... 

The reader can easily verify that the above definition assures that if/is 
weakly continuous, Xn - x weakly implies thatf(xn} - f(x). We also leave 
it to the reader to prove the following result. 

Theorem 2. Let I be a weak* continuous real-valued lunctional on a weak* 
compact subset Sol X*. Then/is bounded on S and achieves its maximum 
on S. 

A special application of Theorems 1 and 2 is to the problem of maxi­
mizing (x, x*> for a fixed x E X while x* ranges over the unit sphere in X*. 
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Since the unit sphere in X* is weak* compact and <x, x*) is a weak* 
continuous functional on X*, the maximum is achieved. This result is 
equivalent to Corollary 2 of the Hahn-Banach theorem, Section 5.4. 

GEOMETRIC FORM OF THE HAHN-BANACH THEOREM 

S.11 Hyperplanes and Linear Functionals 

In the remaining sections of this chapter we generalize the results for 
minimum norm problt~ms from linear varieties to convex sets. The founda­
tion of this development is again the Hahn-Banach theorem but in the 
geometric rather than extension form. 

There is a major conceptual difference between the approach taken in 
the remainder of this chapter and that taken in the preceding sections. 
Linear functionals, rather than being visualized as elements of a dual space, 
are visualized as hyperplanes generated in the primal space. This difference 
in viewpoint combines the relevant aspects of both the primal and the 
dual into a single geometric image and thereby frees our intuition of the 
burden of visualizing two distinct spaces. 

Definition. A hyperplane H in a linear vector space X is a maximal proper 
linear variety, that is, a linear variety H such that H ~ X, and if V is any 
linear variety containing H, then either V = X or V = H. 

This definition of hyperplane is made without explicit reference to linear 
functionals and thus stresses the geometric interpretation of a hyperplane. 
Hyperplanes are intimately related to linear functionals, however, as the 
following three propositions demonstrate. 

Proposition 1. Let H be a hyperplane in a linear vector space X. Then there 
is a linear Junctional! on X and a constant c such that H = {x :J(x) = c}. 
Conversely, iJ J is a nonzero linear Junctional on X, the set {x :J(x) == c} 
is a hyperplane in X. 

Proof Let H be a hyperplane in X. Then H is the translation of a 
subspace M in X, say H == Xo + M. If Xo ¢ M, then [M + xo] = X, and 
for x = IXXo + m, with m EM we defineJCx) == IX. Then H = {x : J{x) = I}. 
If Xo EM, we take XI ¢ M, X =[M + xa, H = M, and define for 
x = IXXt + m,J(x) = IX. Then H = {x ;f{x) = OJ. 

Conversely, letJbe a nonzero linear functional on X and let M = {x: 
J(x) == O}. It is clear that M is a subspace. Let Xo e X with J(xo) = l. 
Then for any x E X" J [x - J(x)xo] = 0 and, hence, x - f(x)xo EM. 
Thus, X = [xo + M], and M is a maximal proper subspace. For any 
real c, let Xl be any element for which f(xj) = c. Then {x: f(x) = c} = 
{x :f(x - Xl) = O} = M + Xl which is a hyperplane. I 
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Hyperplanes that contain the origin represent a somewhat special case, 
but barring these it is possible to establish a unique correspondence 
between hyperplanes and linear functionals. 

Proposition 2. Let H be a hyperplane in a linear vector space X. If H does 
not contain the origin, there is a unique linear functional f on X such that 
H = {x :f(x) = I}. 

Proof By appropriate scaling, Proposition I guarantees the existence 
of at least one such functionalf Let 9 be any other such functional, so that 
in particular H = {x :f(x) = I} = {x: g(x) = I}. It is then clear that 
He {x :f(x) - g(x) = O}. Since the smallest subspace of X containing H 
is X, it follows thatf = g. I 

The above considerations are quite general in that they apply to hyper­
planes in an arbitrary linear vector space. A hyperplane H in a normed 
space X must be either closed or dense in X because, since H is a maximal 
linear variety, either H = H or H = X. For our purposes we are primarily 
interested in closed hyperplanes in a normed space X. These hyperplanes 
correspond to the bounded linear functionals on X. 

Proposition 3. Let f be a nonzero linear functional on a normed space X. 
Then the hyperplane H = {x :f(x) = c} is closed for every c if and only if 
f is continuous. 

Proof, Suppose first thatfis continuous. Let {x.} be a sequence from 
H. convergent to x E X. Then c = f(x.) -~ f(x) and thus x E Hand H is 
closed. Conversely, assume that M = {x :f(x) = O} is closed. Let X = 
[xo + M] and suppose x. -+ x in X. Then x. = 0(. Xo + m., x = O(xo + m, 
and letting d denote the distance of Xo from M (which is positive since M 
is closed), we have 10(. - O(ld ::;; Ilx. - xII -+ 0 and hence 0(.-+0(. Alsof(x.) = 
O(nf(xo) + f(m.) = O(J(xo) -+O(f(xo) =f(x). Thusfis continuous on X. I 

Iffis a nonzero linear functional on a linear vector space X, we associate 
with the hyperplane H = {x :f(x) = c} the four sets 

{x :f(x) ::;; c}, {x :f(x) < c}, {x :f(x);::: c}, {x :f(x) > c} 

called half-spaces determined by H. The first two of these are referred 
to as negative half-spaces determined by f and the second two as posi­
tive half-spaces. If f is continuous, then the half-spaces {x :f(x) < c}, 
{x :f(x) > c} are open and {x :f(x)::;; c}, {x :f(x);::: c} are closed. 

The results of this section establish a correspondence between hyper· 
planes and linear functionals, particularly between the closed hyperplanes 
and members of the dual X*. The fact that the correspondence is unique 
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for hyperplanes not containing the origin suggests that virtually all con­
cepts in which X* plays a fundamental role can be visualized in terms of 
closed hyperplanes or their corresponding half-spaces. 

5.12 Hyperplanes and Convex Sets 

In this section we prove the geometric form of the Hahn-Banach theorem 
which in simplest form says that given a convex set K containing an 
interior point, and given a point Xo not in 1<, there is a closed hyperplane 
containing Xo but disjoint from 1<.. 

If K were the unit sphere, this result would follow immediately from our 
earlier version of the Hahn-Banach theorem since it establishes the 
existence of an x~ aligned with Xo' For every x in the interior of the unit 
sphere, we then have (x, xti> ~ Ilx~lIllxll < IIx~lIlIxoll = (xo, x~> or 
(x, x~> < (xo, x~>, which implies. that the hyperplane {x: (x, x~> = 
(xo, x~>} is disjoint from the interior of the unit sphere. If we begin with 
an arbitrary convex set K, on the other hand, we might try to redefine the 
norm on X so that K, when translated so as to contain e, would be the 
unit sphere with respl~ct to this norm. The Hahn-Banach theorem could 
then be applied on thiH new normed space. This approach is in fact success­
ful for some special convex sets. To handle the general case, however, 
we must use the genl~ral Hahn-Banach theorem stated in terms of sub­
linear functionals instead of norms. 

Definition. Let K be a cop.vex set in a normed linear vector space X and 
suppose e is an interior point of K. Then the Minkowskifunctional p of K 
is defined on X by 

p(X)=inftr :;EK,r>o}. 

We note that for K equal to the unit s1,here in X the Minkowski func­
tional is IIxli. In the general case, p(x) defines a kind of distance from the 
origin to x measured with respect to Kj it is the factor by which K must 
be expanded so as to include x. See Figure 5.3. 

Lemma 1. Let K be a convex set containing e as an interior pOint. Then 
the M inkowski functional p of K satisfies: 

1. 00 > p(x) ~ 0for all x E X, 
2. p(rxx) = rxp(x) for rx > 0, 
3. P(XI + X2) ~P(XI) + P(X2), 
4. p is continuous" 
5. K = {x: p(x):-:; I}. K = {x : p(x) < I}. 
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Figure 5.3 The Minkowski Junctional oj a convex set 

1. Since K contains a sphere about e, given x there is an r> 0 such 
that xlr E K. Thus p(x) is finite for all x. Obviously, p(x) ~ O. 

2. For IX > 0, 

p(IXX) = inf {r: ~ e K, r > O} 
r 

= inf{lXr': :, E K, r' > O} 
r 

= IX inf {r': ~ E K, r' > O} = IXp(X). 
r 

3. Given Xl' X2 and 6 > 0, choose r l , r2 such thatp(xj) < rj < p(Xj) + 6, 
i = I, 2. By No.2, p(x£!r/) < 1 and so x;/ri E K. Let r = r 1 + r2. 
By convexity of K, (rt/r)(xt/r1) + (r2!r)(x2h) = (Xl + x2)!r E K. 
Thus, P(X/+X2)!r::;;1. Or by No.2, P(Xt-!-x2)sr<p(xl)+ 
P(X2) + 26. Since e was arbitrary, pis subadditive. 

4. Let e be the radius of a closed sphere centered at e and contained 
in K. Then for any X E X, 6x!lIxll E K and thus p(sx!llx!l) s 1. 
Hence, by No.2, p(x) ::;;(lfe)llxli. This shows that p is continuous at 
e. However, from No.3, we have p(x) = p(x - y + y) ::;; p(x - y) + 
p(y) and p(y) = p(y - X + x) s p(y - x) + p(x) or -p(y -~)::;; 
p(x) - p(y) ::;; p(x - y) from which continuity on X follows from 
continuity at fJ. 

5. This follows readily from No.4. I 
We can now prove the geometric form of the Hahn-Banach theorem. 
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Theorem 1. (Mazur's Theorem, Geometric Hahn-Banach Theorem) Let K 
be a convex set havin~q a nonempty interior in a real normed linear vector 
space X. Suppose V is a linear variety in X containing no interior points 
of K. Then there is a closed hyperplane in X containing V but containing no 
interior points of K; i.e., there is an element x* E X* and a constant c 
such that (v, x*) = c for all v E V and (k, x*) < c for all k E K. 

Proof By an appropriate translation we may assume that (} is an 
interior point of K. Let M be the subspace of X generated by V. Then V 
is a hyperplane in M and does not contain (}; thus there is a linear func­
tionalf on M such that V = {x :f{x) = 1}. 

Let p be the Minkowski functional of K. Since V contains no interior 
point of K, we have f{x) == 1 ~ p{x) for x E V. By homogeneity, f{rxx) = 
rx ~ p(rxx) for x E V and rx > O. While for rx < 0, f{rxx) ~ 0 ~ p{rxx). Thus 
f{x) ~ p{x) for all x EM. By the Hahn-Banach theorem, there is an 
extension F off from M to X with F{x) ~p{x). Let H= {x: F{x) = I}. 
Since F{x) ~ p{x) on X and since by Lemma 1 p is continuous, F is 
continuous, F(x) < 1 for x E K, therefore, H is the desired closed hyper­
plane·1 

There are several corollaries and modifications of this important 
theorem, some of whiich are discussed in the remaind,:r of this section. 

Definition. A closed hyperplane H in a normed space. X is said to be a 
support (or a supporting hjlperplane) for the convex set Kif K is contained 
in one of the closed half-spaces determined by li and H contains a point 
of K. 

Theorem 2. (Support Theorem) If x is not an interior point of a convex 
set K which contains interior points, there is a closed hyperplane H con­
taining x such that K lies on one side of H. 

As a consequence of the above theorem, it follows that, for a convex 
set K with interior points, a supporting hyperplane can be constructed 
containing any boundary point of K. 

Theorem 3. (Eidelheit Separation Theorem) Let Kl and K2 be convex sets 
in X such that Kl has interior points and K2 contains no interior point of KI. 
Then there is a closed hyperplane H separating KI and K2; i.e., there is an 
x* E X* such that sup <x, x*) S; inf <x, x*). In other words, Kl and K2 

xeKt "eK2 \ 
lie in opposite half-spaces determined by H. 

Proof Let K == KI - K2; then K contains an interior point and e is 
not one of them. By Theorem 2 there is an x* e X*, x* ::p. e, such that 
(x, x*) ~ 0 for x € K. Thus for XI E Kl, X2 E K2, (Xl' x*) ~ (X2 ,x*). 
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Consequently, there is a real number c such that sup <k1, x*) ~ c ~ 
KI 

inf <k2 , x*). The desired hyperplane is H = {x ; <x, x*) = c}. I 
kz 

Theorem 4. If K is a closed convex set and x ¢ K, there is a closed half­
space that conta~ns K but does not contain x. 

Proof. Let d = inf Ilx - kll. Then d> 0 since K is closed. Let S be 
keK 

the open sphere about x of radius d/2. Then apply Theorem 3 to Sand K. I 
The previous theorem can be stated in an alternative form. 

Theorem 5. If K is a closed convex set in a normed space, then K is equal 
to the intersection of all the closed half-spaces that contain it. 

Theorem 5 is often regarded as the geometric foundation bf duality 
theory for convex sets. By associating closed hyperplanes (or half-spaces) 
with elements of X*, the theorem expresses a convex set in X as a collection 
of elements in X * . 

The appeal of the above collection of theorems is that they have simple, 
geometrically intuitive interpretations. These apparently simple geometric 
facts lead to some fairly profound and useful principles of optimization. 

*5.13 Duality in Minimum Norm Problems 

In this section we generalize the duality principle for minimum norm 
problems to include the problem of finding the minimum distance from a 
point to a convex set. Our development of this generalization is based on 
the geometric notions of separating hyperplanes formulated in the last 
section. 

The basic principle of duality is illustrated in Figure 5.4: the minimum 
distance from a point to a convex set K is equal to the maximum of the 

Figure 5.4 Duality 
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distances from the point to hyperplanes separating the point and the 
convex set K. We translate this simple, intuitive, geometric relation 
into algebraic form and show its relation to our earlier duality result. 
Since the results of thi:s section are included in the more general theory of 
Chapter 7, and since the machinery introduced is not explicitly required 
for later portions of the book, the rea:ler may wish to skip this section. 

Definition. Let K be a. convex set in a real normed vector space X. The 
functional h(x*) = sup (x, x*) defineJ on X* is called the support 

xeK 

functional of K. 

In general, h(x*) may be infinite. 
The support functional is illustrated in Figure 5.5. It can be interpreted 

geometrically as follows: Given an element x* E X*, we consider the 
family of half-spaces {x: (x, x*) ::;; c} as the constant c varies. As c 
increases, these half-spaces get larger and h(x*) is defined as the infimum 

(x, x*) = h(x*) 

Figure 5.5 The support functional 

of those constants c such that K is contained within the half-space. (The 
reader should verify tllle equivalence of this last statement with the defini· 
tion above.) In view of this interpretation, it is clear that the support 
functional of a convex set K completely specifies the set-to within closure 
-since, according to Theorem 5 of the last section, 

K = n {x: (x, x*) :s: h(x*)}. 
x' 
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The support functional has other interpretations as well, some of which 
are discussed in the problems. Note, in particular, that if K is the unit 
sphere in X, then h(x*) is simply the norm in X*. 

There is a final interpretation of the support functional that directly 
serves our original objective of expressing in analytical form the duality 
principle for the minimum norm problem iIIustrated in Figure 5.4. Let 
K be a convex set which is a finite distance from e, let x* E X* have 
Ilx* II = 1, and suppose the hyperplane H = {x : (x, x*) :::: h(x*)} is a sup­
port hyperplane for K separating e from K; then the distance from e to H 
is -h(x*). This interpretation is both verified and applied to the minimum 
norm problem in the proof of the next theorem. Figure 5.6 iIIustrates the 
result and the method of proof. 

(x, x*) = II(x*) < 0, IIx* \I = I 

Figure 5.6 Proof of Theorem 1 

Theorem 1. (Minimum Norm Duality) Let Xl be a point in a real normed 
vector space X and let d> 0 denote its distance from the convex set K 
having support functional h; then \ 

d= infllx-xlll= max [<xl,x*)-h(x*)] 
xeK IIx*ll:S;l 

where the maximum on the right is achieved by some x~ E X*. 
If the infimum 011 the left is achieved by some Xo E K, then - xri is aligned 

with Xo - Xl' 

Proof For simplicity we take x t = 0 since the general case can then 
be deduced by translation. Thus we must show that 

d == inf Ilxll = max - h(x*). 
xeK Ilx*II:s;1 
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We first show that for any x* e X*, IIx*11 S; 1, we have d ~ -h(x*). 
For this we may obviously limit our attention to those x*'s which render 
h(x*) negative. If, however, h(x*) is negative, K is contained in the half­
space {x: (x, x*) S; h(x*)}. And since (e, x*) = 0, this half-space does 
not contain e. Therefore, if h(x*) is negative, the hyperplane H = {x : 
(x, x*> = h(x*)} separates K and e. 

Let See) be the sphere centered at e of radius e. For any x* e X*, having 
h(x*) < 0 and Ilx* II == 1, let e* be the supremum of the e's for which the 
hyperplane {x : (x, x*) = h(x*)} separates K and See). Obviously, we have 
Os; s* s; d. Also h(x*):= inf (x, x*) = -s*. Thus for every x* e X*, 

IIxll < •• 
Ilx*11 S; 1, we have -h(x*) S; d. 

On the other hand, since K contains no interior points of Sed), there 
is a hyperplane separating Sed) and K. Therefore, there is a X6 e X*, 
Ilx~11 = 1, such that -h(X6) = d. 

To prove the statement concerning alignment, suppose that Xo E K, 
IIxoll = d. Then (xo, X6> S; h(x~) = -d since Xo E K. However, 
-(xo, x~> S; IIx61111xoil = d. Thus -(xo, x~> = IIx61111xoII and -X6 is 
aligned with Xo' I 
Example 1. Suppose that K = M is a subspace of the normed space X 
and that x is fixed in X. Theorem 1 then states that 

inf Ilx - mil = max [(x, x*) - h(x*)]. 
mllM IIx*Usl 

It is clear, however, that, corresponding to M, h(x*) is finite only for 
x* E Ml., in which case it is zero. Therefore, we obtain 

inf Ilx - mil = max (x, x*) 
meM IIx*lIsl 

x·eMl. 

which is equivalent to our earlier duality result: Theorem 1, Section 5.8. 

The theorem of this section is actually only an intermediate result in 
the development of duality that continues through the next few chapters 
and as such it is not of major practical importance. Nevertheless, even 
though this result is superseded by more general and more useful duality 
relations, its simplicity and geometric character make it an excellent first 
example of the interplay between maximiz8tion, minimization, convexity, 
and supporting hyperplanes. 

5.14 Problems 

1. Define the linear functional! on L 2 [0, 1] by 
1 t 

f(x) = f aCt) f b(s)x(s) ds dt 
o 0 
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where a, bE L 2 [0, 1]. Show that f is a bounded linear functional on 
L 2 [0, 1] and find an element y E L2 such thatf(x) = (xly). 

2. Define the Banach space c as the space of all sequences x = 
{el' e2 , ••• } which converge to a limit (i.e., lim ek exists), with 

k-+oo 

IIxll = sup lekl. Define Co as the space of all sequences which con-
I :;;k< 00 

verge to zero (same norm as in c). Characterize the dual spaces of Co 
and c (with proofs). Warning: the dual spaces of Co and c are not 
identical. 

3. Let X* be the dual of the normed space X. Show that if X* is separ-
able, then X is separable. 

4. Show that the normed space C[a, b] is not reflexive. 
5. Verify the alignment criteria given in Examples 1 and 2, Section 5.7. 
6. Suppose we wish to bring a rocket car of unit mass, and subject only 

to the force of the rocket thrust, to rest at x = ° in minimum time by 
proper choice of the rocket thrust program. The available thrust u is 
limited to lu(t) 1 ~ I for each t. Assume that initially x(O) = 0, x(O) = 1. 
See Figure 5.7. 

Figure 5.7 A rocket car 

(a) Produce an argument that converts this problem to a minimum 
norm problem on a fixed interval [0, T]. 
(b) Solve the problem. 

7. The instantaneous thrust u(t) produced by, a rocket is a two-dimen-
. sional vector with components ul(t), u2(t). The instantaneous thrust 

magnitude is lu(t)12 == JUI2(t) + U2 2(t). Consideration of the maxi­
mum magnitude over an interval of time leads to a definition of a 
norm as 

IIuli = max lu(t)12' 
O:;;tSI 

Let C2
2[0, IJ = X be defined as the space of all ordered pairs u(t) = 

(ul(t), U2(t» of continuous functions with norm defined as above. 
Show that bounded linear functionals on X can be expressed in the 
form 

1 

J(u) = t ul(t) dvl(t) + U2(t) dV2(t) 
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where V l and V2 are fu:nctions of bounded variation and 

1 

IlfiII = L Jldvt\2 + Idvzl2
• 

8. Let X = CP"[O, 1J be defined as the space of all continuous functions 
from [0, IJ to n-dime:nsional space; i.e., each x E X is of the form 

x :5 (Xt(t), X2(t), ... , xn(t» 

where each Xj(t) is a continuous function on [0, 1], The norm on X is 

IIxli = sup Ix(t)lp 
Ostsl 

where 

Find X*. 

9. Let Xl and X2 denote horizontal and vertical position components in 
a vertical plane. A rocket of unit mass initially at rest at the point 
Xl = X2 = ° is to be propelled to the point Xl = X2 = 1 in unit time 
by a single jet with components of thrust ul , U2' Making assumptions 
similar to those of Example 3, Section 5.9, find the thrust program 
Ul(t), U2(t) that accomplishes this with minimum expenditure of fuel, 

1 L Ju/(t) + ul(t) dt. 

10. Let X be a normed space and M a subspace of it. Show that (within 
an isometric isomorphism) M* = X*/MJ. and MJ. = (XIM)*. (See 
Problem 15, Chapter 2.) 

11. Let {xt} be a bounded sequence in X* and suppose the sequence of 
scalars {(x, xt>} converges for each x in a dense subset of X. Show 
that {xt} converges weak* to an element x* E X*. 

12. In numerical computations it is often necessary to approximate certain 
linear functionals by simpler ones. For instance, for X = C[O, IJ, we 
might approximate 

1 

L(x) = S x(t) dt 
o 

by a formula of the form 
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The coefficients might be found by requiring that Ln(P) be exact for 
all polynomials P of degree n. Following the above scheme, find L2(X) 
(Simpson's Rule). 

13. Let X = C[O, I]. Suppose there is defined the two triangular arrays 
of real numbers 

tl1 a l1 

t21 t22 a21 a22 

t31 t32 t33 a31 a32 a33 

t41 a41 

and we construct the quadrature rules 
n 

LnCx) = Lank X(tnk) 
k=1 

which have the property that 
I 

Ln(P) = tp(t) dt 

for any polynomial p of degree n -1 or less. Suppose also that 

for all n. 

Show that for any x E X 
1 

Ln(x) ~ fo x(t) dt. 

14. Let K be a convex set in a real normed linear space X. Denote by 
v(K) the intersection of all closed linear varieties containing K. A 
point x in K is said to be a relative interior point of K if x is an interior 
point of K, regarded as a subset of v(K). See Section 2.7. Let y be a 
point in v(K) which is not in the relative interior of K and suppose K 
has relative interior points. Show that there is a closed hyperplane 
in X containing y and having K on one side of it. 

15. Let X be a real linear vector space and let 11'/2' ... ,In be linear 
functionals on X. Show that, for fixed IX/S, the system of equations 

fl(x) = IXI 1 s; is; n 

has a solution x E X if and only if for any n numbers AI' A2 , ... , An 
the relation 
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implies 

Hint: In the space en consider the subspace formed by all points of 
the form (ft(x),fix), ... ,j,,(x» as x varies over X and apply the 
Hahn-Banach thc~orem. 

16. Letgl> g2' ... , gIl be linearly independent linear functionals on a vector 
space X. Let I bc~ another linear functional on X such that for every 
x e X satisfying {heX) = 0, i = 1,2, ... , n, we have/(x) = O. Show that 
there are constants At, A2, ... , An such that 

17. Let X be a real l:inear vector space and let It, 12 , ... ,j" be linear fun­
tionals on X. Show that, for fixed cx/s, the system of inequalities 

fi(x) ~ CX i 

has a solution x e X if and only if fOf any n nonnegative numbers 
AI' A2 , ... , An the relation 

implies 

18. Many duality properties are not completely symmetric except in 
reflexive spaces where X = X** (under the natural mapping). The 
theory of weak duality with a deemphasis of the role of the norm is 
in many respects more satisfying although of somewhat less practical 
importance. This problem introduces the foundation of that theory. 
Let X be a normc~d space and let X* be its dual. Show that the weakly 
continuous linear functionals on X are precisely those of the form 
I(x) = (x, x*) where x* E X* and that the weak* continuous linear 
functionals on X* are precisely those of the form g(x*) = (x, x*) 
where x e X. Hilu: Use the result of Problem 16. 

19. Show that the support functional h of a convcyx set is sublinear. 
20. Show that the set in X* where the support functional is finite is a 

convex cone. 
21. Let h be the support functional of the convex set K. Find the support 

functional of the set K + x l' 
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22. Prove the duality theorem of Section 5.13 for the case Xl =F O. 
23. Let X be a real normed linear space, and let K be a convex set in X, 

having 0 as an interior point. Let h be the support functional of K 
and define KO = {x* E X*: h(x*) s I}. Now for X E X, let p(x) = 
sup (x, x*). Show that p is equal to the Minkowski functional of K. 
x·eK· 

24. Let X, K, KO, p, h be defined as in Problem 23, with the exception that 
K is now an arbitrary set in X. Show that {x: p(x) ~ I} is equal to 
the closed convex hull of K u to}. 
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6 
LINEAR OPERATORS 
AND ADJOINTS 

6.1 Introduction 

A study of linear operators and adjoints is essential for a sophisticated 
approach to many problems oflinear vector spaces. The associated concepts 
and notations of operator theory often streamline an otherwise cumber­
some analysis by eliminating the need for carrying along complicated 
explicit formulas and by enhancing one's insight of the problem and its 
solution. This chapter contains no additional optimization principles but 
instead develops results of linear operator theory that make the application 
of optimization principles more straightforward in complicated situations. 
Of particular importance is the concept of the adjoint of a linear operator 
which, being defined in dual space, characterizes many aspects of duality 
theory. 

Because it is difficult to obtain a simple geometric representation of an 
arbitrary linear operator, the material in this chapter tends to be somewhat 
more algebraic in character than that of other chapters. Effort is made, 
however, to extend some of the geometric ideas used for the study of linear 
functionals to general linear operators and also to interpret adjoints in 
terms of relations among hyperplanes. 

6.2 Fundamentals 

A transformation T is, as discussed briefly in Chapter 2, a mapping from 
one vector space to another. If T maps the space X into Y, we write 
T: X -+ Y, and if T maps the vector x F.: X into the vector Y E Y, we write 
y = T(x) and refer to y as the image of x under T. As before, we allow that 
a transformation may be defined only on a subset D C IX, called the domain 
of T, although in most cases D = X. The .. ,)Uection of an vectors Y E Y for 
which there is an xED with y = T(x) is called the range of T. 

If T : X -+ Yand S is a given set in X, we denote by T(S) the image of S 
in Y defined as the subset of Y consisting of points of the form y = T(s) 
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with s E S. Similarly, given any set P c: Y, we denote by T -1(p) the inverse 
image of P which is the set consisting of all points x E X satisfying 
T(x) EP. 

Our attention in this chapter is focused primarily on linear transforma­
tions which are alternatively referred to as linear operators or simply 
operators and are usually denoted by A, E, etc. For convenience we often 
omit the parentheses for a linear operator and write Ax for A(x). The range 
of a linear operator A : X -» Y is denoted ~(A) and is obviously a subspace 
of Y. The set {x : Ax = iI} corresponding to the linear operator A is called 
the nulls pace of A and denoted .;V(A). It is a subspace of X. 

Of particular importance is the case in which X and Yare normed 
spaces and A is a continuous operator from X into Y. The following result 
is easily established. 

Proposition 1. A linear operator on a normed space X is continuous at every 
point in X ifit is continuous at a single point. 

Analogous to the procedure for constructing the normed dual consisting 
of continuous linear functionals on a space X, it is possible to construct 
a normed space of continuous linear operators on X. We begin by defining 
the norm of a linear operator. 

Definition. A linear operator A from a normed space X to a normed space 
Y is said to be bounded if there is a constant M such that IIAxlls M Ilxll 
for all x E X. The smallest such M which satisfies the above condition is 
denoted II A II and called the norm of A. 

Alternative, but equivalent, definitions ofthe norm are 

IIAII = sup IIAxll 
Ilxll S 1 

IIAII = sup IIAxll. 
x¢8 IIx!! 

We leave it to the reader to prove the following proposition. 

Proposition 2. A linear operator is bounded (f and only if it is continuous. 

If addition and scalar multiplication are defined by 

(AI + A2)x = Alx + A2 x 

(aA)x == a(Ax) 

the linear operators from X to Y form a linear vector space. If X and Yare 
normed spaces, the subspace of continuous linear operators can be 
identified and this becomes a normed space when the norm of an operator 
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is defined according to the last definition. (The reader ciln easily verify that 
the requirements for a norm are satisfied.) 

Definition. The norffiied space of all bounded linear operators from the 
normed space X into the normed space Y is denoted B(X, Y). 

We note the following result which generalizes Theorem 1, Section 5.2 .. 
The proof requires only slight modification of the proof in Section 5.2 
and is omitted here. 

Theorem 1. Let X and Y be normed spaces with Y complete. Then the space 
B(X, Y) is complete. 

In general the space B(X, Y), although of interest by its own right, does 
not play nearly as dominant a role in our theory as that of the normed 
dual of X. Nevertheless, certain of its elementary properties and the defini­
tion itself are often convenient. For instance, we write A e B(X, Y) for, 
"let A be a continuous linear operator from the normed space X to the 
normed space Y." 

Finally, before turning to some examples, we observe that the spaces 
of linear operators have a structure not present in an arbitrary vector space 
in that it is possible Ito define products of operators. Thus, if S : X ~ Y, 
T: Y -+ Z, we define the operator TS : X -+ Z by the equation (TS)(x) = 
T(Sx) for all x e X. For bounded operators we have the following useful 
result. 

Proposition 3. Let X, Y, Z be normed spaces and suppose S e B(X, Y), 
Te B(Y, Z). Then IITSII :s; IITIIIISIi. 

Proof II TSxl1 :s; IITllllSxll :s; IITllllSllllxl1 for all x e X. I 
Example 1. Let X =: C[O, 1] and define the operator A: X ~ X by 
Ax = SA K(s, t)x(t) dt where the function K is contmuous on the unit 
square 0 :s; s :s; 1,0 :s; t :s; 1. The operator A is clearly linear. We compute 
IIAII. We have 

IIAxll= max I{K(S,t)X(t)dt\ 
o sss 1 0 

:s; max {f1IK(S, t)1 dt} max Ix(t)1 
OS.S1 0 OS!Sl 

1 

= max f IK(s, t)1 dt . IIxll. I 
o s.s 1 0 

Therefore, 
1 

IIAII :s; max f IK(s, t)1 dt. 
OSsSl 0 
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We can show that the quantity on the right-hand side is actually the 
norm of A. Let So be the point at which the continuous function 

1 

fo IK(s, 1)1 dt 

achieves its maximum. Given e > 0 let p be a polynomial which approxi­
mates K(so , . ) in the sense that 

max IK(so, t) - p(t)1 < e 
O~t~ 1 

and let x be a function in C [0, 1) with Ilxll ~ 1 which approximates the 
discontinuous function sgn p(t) in the sense that 

IS: p(t)x(t) dt - s: Ip(t)1 dt I < e. 

This last approximation is easily constructed since p has only a finite 
number of sign changes. 

For this x we have 

IS: K(so , t)x( t) dt I ~ IS: p(t)x(t) dt I-I s: [K(so, t) - p(t)Jx(t) dt I 
~ IS: p(t)x(t) dt /- e ~ J: Ip(t)1 dt - 2e 

~ (IK(So, t)1 dt -/ s: [IK(so, t)1 - lp(t)l] dt /- 2e 

1 

~ J IK(so, t)1 dt - 3e. 
D 

Thus, since IIxll ::; 1, 
1 

IIA" ~ J IK(so, t)1 dt - 3e. 
o 

But since e was arbitrary, and since the reverse inequality was established 
above, we have 

1 

IIAII = max f. IK(s, t)1 dt. 
o ~s~ 1 0 

Example 2. Let X = En and let A : X ~ X. Then A is a matrix acting on the 
components of x. We have llAx1l2 = (x I A' Ax) where A' is the transpose of 
the matrix A. Denoting A' A by Q, determination of IIAll is equivalent to 
maximizing (x I Qx) subject t6 IIxl12 ~ 1. This is a finite-dimensional 
optimization problem. Since Q is symmetric and positive semidefinite, it 
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has nonnegative eigenvalues and the solution of the optimization problem 
is given by x equal to the eigenvector of Q corresponding to the largest 
eigenvalue. 

We conclude that IIAII =-jXmax• 

Example 3. The operator Ax = did! x(t), defined on the subspace M of 
CEO, 1] consisting of all continuously differentiable functions, has range 
CEO, 1]. A is not bounded, however, since elements of arbitrarily small 
norm can produce elements of large norm when differentiated. On the 
other hand, if A is regarded as having domain D [0, IJ and range C [0, IJ, 
it is bounded with II A II = 1. 

~RSE OPERATORS 

6.3 Linearity of Invers,!s 

Let A : X -+ Y be a linear operator between two linear spaces X and Y. 
Corresponding to A we consider the equation Ax = y. For a given Y E Y 
this equation may: 

1. have a unique solution x E X, 
2. have no solution, 
3. have more than one solution. 

Many optimization problems can be regarded as arising from cases 2 or 
3; these are discussed in Section 6.9. Condition 1 holds for every Y E Y 
if and only if the mapping A from X to Y is one-to-one and has range equal 
to Y, in which case the operator A has an inverse A -I such that if Ax = y, 
then A -I(y) = x. 

Proposition 1. If a linear operator A : X -+ Y has an inverse, the inverse 
A -I is linear. 

Proof. Suppose A -1(YI) = Xl' A -1(Y2) = x2, then 

A(Xl) = Yl' A(x2) = Y2' 

and the linearity of A implies that A(OCIXI + OC2 X2) =octYt + OC2Y2' Thus 
A-I(OC1Yt + OC2Y2) = ocIA-I(YI) + oc2A-1(Y2)' I 

The solution of linear equations and the determination of inverse 
op~rators are, of course, important areas of pure and applied mathematics. 
For optimization theory,. however, we are not so much interested in solving 
equations as formulating the equations appropriate for characterizing an 
optimal vector. Once the equations are formulated, we may rely on standard 
techniques for their solution. There are important exceptions to this point 
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of view, however, since optimization theory often provides effective proce­
dures for solving equations. Furthermore, a problem can never really be 
regarded as resolved until an efficient computational method of solution is 
derived. Nevertheless, our primary interest in linear operators is their 
role in optimization problems. We do not develop an extensive theory 
of linear equations but are content with establishing the existence of a 
solution. 

6.4 The Banach Inverse Theorem 

Given a continuous linear operator A from a normed space X onto a 
normed space Y and assuming that A has an inverse A-I, it follows that 
A -1 is linear but not necessarily continuous. If, however, X and Yare 
Banach spaces, A -1 must be continuous ifit exists. This result, known as the 
Banach inverse theorem, is one of the analytical cornerstones of functional 
analysis. Many important, deep, and sometimes surprising results follow 
from it. We make application of the result in Section 6.6 and again in 
Chapter 8 in connection with Lagrange multipliers. Other applications to 
problems of mathematical analysis are discussed in the problems at the end 
of this chapter. 

This section is devoted to establishing this one result. Although the proof 
is no more difficult at each step than that of most theorems in this book, 
it involves a number of steps. Therefore, since it plays only a supporting 
role in the optimization theory, the reader may wish to simply scan the 
proof and proceed to the next section. I 

We begin by establishing the following lemma which itself is an impor­
tant and celebrated tool of analysis. 

Lemma 1. (Baire) A Banach space X is not the union of countably many 
nowhere dense sets in X. 

Proof Suppose that {E.} is a sequence of nowhere dense sets and let 
Fn denote the closure of En' Then Fn contains no sphere in X. It follows that 
each of the sets; n is open and dense in X. 

Let S(X1' r 1) be a sphere in F\ with center at Xl and radius r1. Let 
S(X" , r,,) be a sphere in P" (') S(x!, rd2). (Such a sphere exists since P 2 

is open and dense.) Proceeding inductively, let S(x., rn) be a sphere in 
S(x._1> r._ 1/2) (') p •. 

The sequence {xn} so defined is clearly a Cauchy sequence and, thus, 
by the completeness of X, there is a limit x; Xn -t x. This vector x lies in 
each of the S(xn' r.), because, indeed, x. +k ES(X., rn/2) for k ~ 1. 
Hence X lies in eachPn • Therefore, x E nn Fn. 



§6.4 THE BANACH INVERSE THEOREM 149 

It follows that the union of the original collection of sets {En} is not X 
since 

Theorem 1. (Banach InlJerse Theorem) Let A be a continuous linear operator 
from a Banach space X onto a Banach space Y and suppose that the inverse 
operator A -1 exists. ThEm A -1 is continuous. 

Proof In view of the linearity of A and therefore of A -1, it is only 
necessary to show that A -1 is bounded. For this it is only necessary to show 
that the image A(S) in Y of any sphere S centered at the origin in X contains 
a sphere P centered at the origin in Y, because then the inverse image of P 
is contained in S. The proof amounts to establishing the existence of a 
sphere in A(S). 

Given a sphere S, for any x E X there is an integer n such that x/n E S 
and hence A(x/n) E A(8) or, equivalently, A(x) E nA(S). Since A maps X 
onto Y, it follo:ws that 

00 

y = U nA(S). 
"=1 

According to Baire's l,emma, Y cannot be the union of countably many 
nowhere dense sets and, hence, there is an n such that the closure of nA(S) 
contains a sphere. It follows that A(S) contains a sphere whose center y 
may be taken to be in A(S). Let this sphere N(y, r) have radius r, and let 
y = A(x). Now as y' varies over N(y, r), the points y' - y cover the sphere 
N«(}, r) and the points of a dense subset of these are of the form A(x' - x) 
where A(x' ) = y', x' E S. Since x', XES, it follows that x' - x E 2S. Hence, 

the closure of A(2S) contains N«(}, r) (and by linearity A(S) contains 
N«(}, r/2». 

We have shown tha.t the closure of the image of a sphere centered at 
the origin contains such a sphere in Y, but it remains to be shown that 
the image itself, rather than its closure, contains a sphere. For any i:> 0, 
let S(8) and P(8) be the spheres in X, Y, respectively, of radii 8 centered 
at the origins. Let 80 > 0 be arbitrary and let '10 > 0 be chosen so that 
P('1o) is a sphere contained in the closure of the image of S(80). Let y 
be an arbitrary point in P('1o). We show that there is an x E S(280) such 
that Ax = y so that the image of the sphere of radius 2110 contains the 
sphere P('1o). I 

Let {Si} be a sequence of positive numbers such that Ii";,! 6; " 60' Then 
there is a sequence {'11}, with '11 > 0 and '11-+ 0, such that 
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Since A(S(llo)) is dense in peso), there is an Xo e S(60) such that y - Axo e 
P('1t). It follows that there is an XI e 5(61) with y - Axo - AXI eP('12)' 
Proceeding inductively, a sequence {x.} is defined with X. e S(6.) and 
y-A(l:r<=ox/)eP('1.+')' Let z.=xo+x,+"·+x •. Then evidently 
{z.} is a Cauchy sequence since form > n, liz,. - z.11 = Ilx.-, + X. -2 + ... + 
xmll <6.+1+6.+ 2 +···+6m • Thus there is an xeX such that 
Zn -+ x. Furthermore, Ilxll < 60 + 6, + ... + 6. + ... < 260; so X e 5(260)' 
Since A is continuous, Az. -+ Ax, but since Ily - Az.11 < '1.+ 1 -+ 0, 
Az. -+ y. Therefore, Ax = y. I 

ADJOINTS 

6.5 Definition and Examples 

The constraints imposed in many optimization problems by differential 
equations, matrix equations, etc., can be described by linear operators. 
The resolution of these problems almost invariably calls for consideration 
of an associated operator: the adjoint. The reason for this is that adjoints 
provide a convenient mechanism for describing the orthogonality and 
duality relations which permeate nearly every optimization analysis. 

Definition. Let X and Y be normed spaces and let A E B(X, Y). The adjoint 
operator A*: y* -+ X* is defined by the equation 

(x, A*y* > = (Ax, y*). 

This important definition requires a bit of explanation and justification. 
Given a fixed y* eY*, the quantity (Ax, y*) is a stalar for each x eX 
and is therefore a functional on X. Furthermore, by the linearity of y* and 
A, it follows that this functional is linear. Finally, since 

I(Ax, y*)1 :s; Ily*IIIIAxll :s; Ily*IIIIAllllxll, 
it follows that this functional is bounded and is thus an element x* of X*. 
We then define A*y* = x*. The adjoint is obviously unique and the reader 
can verify that it is linear. It is important to remember, as illustrated in 
Figure 6.1, thatA*: y* -+ X*. 

X*~ A* - r* 

Figure 6.1 An operator and its adjoint 



§6.5 DEFINITION AND EXAMPLES 151 

In terms of operator, rather than bracket, notation the definition of the 
adjoint satisfies the equation 

y*(Ax) = (A*y*)(x) 

for each x E X. Thus we may write 

y*A = A*y* 

where the left side denotes the functional on X which is the composition 
of the operators A and y* and the right side is the functional obtained by 
operating on y* by A * . 
Theorem 1. The adjoint ,operator A* of the linear operator A E B(X, Y) is 
linear and bounded with II A * II = II A II· 

Proof The proof of linearity is elementary and left to the reader. 
From the inequalities 

I(x, A*y*)1 == I(Ax, Y*)I ~ Ily*IIIIAxll ~ 1IY*IIIIAllllxll 
it follows that 

IIA*y*11 ~ IIAIlIIY*11 
which implies that 

IIA*II ~ IIAII· 
Now let Xo be any nonzero element of X. According to Corollary 2 of 

the Hahn-Banach theorem, there exists an element y~ E Y*, IIY~II == 1, 
such that (Axo , y~) = II Axo II. Therefore, 

IIAxo11 = I(xo, A*Y~)I ~ IIA*Y~llllxoll ~ IIA*llllxoll 
from which we conclude that 

IIAII~ IIA*II 
It now follows that IIA*II = IIAII· I 

In addition to the above result, adjoints enjoy the following algebraic 
relations which follow easily from the basic definition. 

Proposition 1. Adjoints satisfy the following properties: 

1. If I is the identity operator on a normed space X, then 1* == I. 
2. If A 1, A2 E B(X, Y), then (A1 + A 2)* = A! + A~. 
3. If A E B(X. Y)andrx isa real scalar, then (rxA)* == e<A*. 
4. If Al EB(X, Y), A~: E B(Y, Z), then (A2 A 1)* = A1A!. 
5. If A E B(X, Y) and A has a bounded inverse, then (A -1)* = (A *) -1. 
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Proof Properties 1-4 are trivial. To prove property 5, let A E B(X, Y) 
have a bounded inverse A -1. To show that A* has an inverse, we must show 
that it is one-to-one and onto. Let yt =/: y~ € Y*, then 

, ,'. \,' c' ':1,"".· <x, A*yt) - <x, A*y~> = (Ax, yt - y~> =/: ° 
for some x E X. Thus, A*yf =/: A*yi and A* is one-to-one. Now for any 
x* E X* and any x E X, Ax = y, we ha,ve 

(x, x*) = <A- 1y, x*) = <y, (A- 1)*x*) 

= <Ax, (A- 1)*.x*) = <x, A*(A- 1)*x*) 

which shows that x* is in ~(A*) and also that (A*) -1 = (A -1)*. I 
An important special case is that of a linear operator A : H ~ G where 

Hand G are Hilbert spaces. If Hand G are real, then they are their own 
duals in the sense of Section 5.3, and the operator A* can be regarded as 
mapping G into H. In this case the adjoint relation becomes (Ax I y) = 
(x I A*y). If the spaces are complex, the adjoint, as defined earlier, does not 
satisfy this relation and it is convenient and customary to redefine the 
Hilbert space adjoint directly by the relation (Ax I y) = (x I A * y). In our 
study, however, we restrict our attention to real spaces sO that difficulties 
of this nature can be ignored. 

Note that in Hilbert space we have the additional property: A** = A. 
Finally, we note the following two definitions. 

Definition. A bounded linear operator A mapping a real Hilbert space into 
itself is said to be self-adjoint if A * = A. 

Definition. A self-adjoint linear operator A on a fIilbert space H is said to 
be positive semidefinite if (x I Ax) 2 ° for all x E H. 

Example 1. Let X = Y = En. Then A: X -t X is represented by an n x n 
matrix. Thus the i-th component of Ax is 

n 
(Ax);= 'LaijXj. 

J=1 

WecomputeA*. Fory EYwe have 
n n n n 

(Axl y) = L LYialjXj = L Xj l>ijYi = (xIA*Y) 
1=1 j=1 j= 1 1"'1 

where A* is the matrix with elements au = ajl' Thus A* is the transpose 
of A. 

Example 2. Let X = Y = L2 [0, 1] and define 
1 

Ax = t K(t, s)x(s) ds, t E [0, 1J 
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where 
1 1 

fo fo IK(t, sW ds dt < 00. 

Then 

(Ax I y) = (y(t):J; K(t, S)X(s)dsidt 

1 1 

= f XeS) f K(t, s)y(t) dtds. 
o 0 

Or, by interchanging the roles of sand t, 

1 1 

(Ax I y) = fo x(t) fo K(s, t)y(s) ds dt = (x I A*y) 

where 
1 

A*y = fo K(s, t)y(s) ds. 

Therefore, the adjoint of A is obtained by interchanging sand tin K. 

Example 3. Again let X = Y = L 2 [0, 1] and define 
t 

Ax = foK(t, s)x(s) ds, t E [0, 1J, 

with 
1 1 

fo fo IK(t, sW dt ds < 00. 

Then 
1 t 

(Ax I y) = fo yet) fo K(t, s)x(s) ds dt 

1 t 

= fo fa y(t)K(t, s)x(s) ds dt. 
, 

The double integration represents integration over the triangular region 
shown in Figure 6.20, integrating vertically and then horizontally. Alter­
natively, the integration may be performed in the reverse order as in Figure 
6.2b, leading to 

1 1 t 

(Ax I y) = f f y(t)K(t, s)x(s) dt ds 
o a 

= (X(S)({K(t, s)y(t) dt) ds. 
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s s 

(0) (b) 

Figure 6.2 Region of integration 

Or, interchanging the roles of t and s, 

(Ax\y)= S:X(t)({K(S,t)y(S)dS) dt=(x\A*y) 

where 
1 

A * y = J K(s, t)y(s) ds. 
I 

This example comes up frequently in the study of dynamic systems. 

Example 4. Let X = C [0, 1], Y = en and define A : X -+ Y by the equation 

Ax = (x(t l ), x(t2), ... , x(tn» 

where ° :::;; t 1 < t2 < t2 < '" < tn :::;; 1 are fixed. It is easily verified that A 
is continuous and linear. Let y* = (YI' Y2' .. ~ , Yn) be a linear functional 
on En. Then 

n I 

(Ax, y*) = L YIX(t l ) = f x(t) dv(t) = (x, A,*Y*) 
1= 1 0 

where vet) is constant except at the points tt where it has a jump of magni­
tude Yi' as illustrated in Figure 6.3. Thus A*: en -+ NBV[O, 1] is defined 
by A*y* = v. 

v 

... r 
'-_L--___ ~ • •• 2 I I >- t 
o tl t2 tn 1 

Figure 6.3 The function v 
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6.6 Relations Between Range and Nullspace 

Adjoints are extremely useful in our recurring task of translating between 
the geometric properties and the algebraic description of a given problem. 
The following theorem and others similar to it are of particular interest. 

Theorem 1. Let X and Y be normed spaces and let A E B(X, Y). Then 

[.~(A)]l :0" ';v(A*). 

Proof. Let y* E .;V(A*) and y E 9P(A). Then y = Ax for some x EX. 

The calculation <y, y*) = <Ax, y*) = <_'i:', A*y*) = 0 shows that .;V(A*) c 
[9P(A)].l. 

Now assume y* e [9P(A)].l. Then for every x E X, <Ax, y*) = O. This 
implies <x, A*y*) = 0 and hence that [9P(A)].l c ';v(A*). I 

Example 1. Let us c:onsider the finite-dimensional version of Theorem 1. 
Let A be a matrix; A: En -+ Em. A consists of n column vectors aj, 
i = 1,2, ... , n, and ~(A) is the subspace of Em spanned by these vectors. 
[9l(A)].l consists of those vectors in Em that are orthogonal to each al. 

On the other hand, the matrix A* (which is just the transpose of A) has 
the a/s as its rows; hence the vectors in Em orthogonal to a/s comprise the 
nullspace of A*. The:refore, both [9P(A)].l and .;V(A*) consist of all vectors 
orthogonal to each Gf l • 

Our next theorem is a dual to Theorem 1. It should be noted, however, 
that the additional hypothesis that 9P(A) be closed, is required. Moreover, 
the dual theorem is much deeper than Theorem 1, since the proof requires 
both the Banach inverse theorem and the Hahn-Banach theorem. 

Lemma 1. Let X and Y be Banach spaces and let A e B(X, Y). Assume that 
9P(A) is closed. Then there is a constant K such that for each y E 9P(A) there 
is an x satisfying Ax = y and IIxlt ~ Kllyll. 

Proof Let N = .;V(A) and consider the space XI N consisting of equiva­
lence classes [x] modulo N. Define A: XIN -+ 9P(A) by A[x] = Ax. It is 
easily verified that ,4 is one-to-one, onto, linear; and bounded. Since 9P(A) 
closed implies that 9l(A) is a Banach space, it follows from the Banach 
inverse theorem th:at A has a continuous inverse. Hence, given y E 9l(A), 
there is [x] e XIN with \I[x]\I ~ \lJ-l\1\1y\l. Take x e [x] with 
\lxll ~ 2 II [x] II and then K = 211A- 1 11 satisfies the ~onditions stated in the 
lemma. I 

N oW we give the dual to Theorem 1. 
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Theorem 2. Let X and Y be Banach spaces and let A E B(X, Y). Let fA(A) be 
closed. Then 

~(A*) = [%(A)]J.. 

Proof Let x* E ~(A*). Then x* = A*y* for some y* E Y*. For any 
x E %(A), we have 

(x, x*) = (x, A*y*) = (Ax, y*) = O. 

Thus x* E [%(A)]J. and it follows that ~(A *) c:: [%(A)]J.. 
Now assume that x* E [%(A)]J.. For y E &leA) and each x satisfying 

Ax = y, the functional (x, x*) has the same value. Hence, define fey) = 
(x, x*) on ~(A). Let Kbe defined as in the lemma. Then for eachy E ~(A) 

there is an x with Ilxll ~ Kllyll, Ax = y. Therefore, If(y) I ~ Kllx*llllyll 
and thusfis a bounded linear functional on ~(A). Extendfby the Hahn­
Banach theorem to a functional y* E Y*. Then from 

(x, A*y*) = (Ax, y*) = (x, x*), 

it follows that A*y* = x* and thus ~(A*) .:J [%(A)]J.. I 

In many applications the range of the underlying operator is finite 
dimensional, and hence satisfies the closure requirement. In other problems, 
however, this requirement is not satisfied aid this generally leads to severe 
analytical difficulties. We give an example of an operator whose range is 
not closed. 

Example 2. Let X = Y = II with A: X -+ Y defined by 

Then ~(A) contains all finitely nonzero sequences and thus ~(A) = Y. 
However, 

{
II I } 

y = 1, 22 ' 32 "'" n2 "" ¢ ~(A) 

and thus ~(A) is not closed. 

In Hilbert space there are several additional useful relations between 
range and nullspace similar to those which hold in general normed space. 
These additional properties are a consequence of the fact that in Hilbert 
space an operator and its adjoint are defined on the same space. 
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Theorem 3. Let A be a bounded linear operator acting between two real 
Hilbert spaces. Then 

1. [&l(A)JJ. = %(A*). 

2. &leA) = [%(A*)]J.. 
3. [&l(A*)]J. = %(A). 

4. &l(A*) = [%(A)JJ.. 

Proof. Part 1 is just Theorem 1. To prove part 2, take the orthogonal 
complement of both sides of 1 obtaining [&l(A)]J.J. == [%(A*)JJ.. Since 
&leA) is a subspace, the result follows. Parts 3 and 4 are obtained from 
1 and 2 by use of the relation A** = A. I 

Example3. Let X = Y = 12, For x = {el> e2.·. ,},defineAx = {O, el, e2, .. . }. 
A is a shift operator (sometimes referred to as the creation operator because 
a new component is created). The adjoint of A is easily computed to be the 
operator taking y == {111> 11", ..• } into A*y = {11", 113' ... }, which is a 
shift in the other direction (referred to as the destruction operator). It is 
clear that [&l(A)JJ. consists of all those vectors in I" that are zero except 
possibly in their first component; this subspace is identical with %(A*). 

6.7 Duality Relations for Convex Cones 

The fundamental algebraic relations between nullspace and range for an 
operator and its adjoint derived in Section 6.6 have generalizations which 
often playa role in the analysis of problems described by linear inequalities 
analogous to the role of the earlier results to problems described by linear 
equalities. 

Definition. Given a set S in a normed space X, the set SfD = {x* e X*: 
(x, x*) ::::: 0 for all xeS} is called the positive conjugate cone of S. Like­
wise the set Sa == {x* e X* : (x, x*) s; 0 for all xeS} is called the 
negative conjugate cone of S. 

It is a simple matter to verify that SfD and Sa are in fact convex cones. 
They are nonempty since they always contain the zer9 functional. If S is a 
subspace of X, then obviously SfD = Sa = SJ.; hence, the conjugate cones 
can be regarded as generalizations of the orthogonal complement of a set. 
The definition is illustrated in Figure 6.4 for the Hilbert space situation 
where SfD and Sa can be regarded as subsets of X. The basic properties 
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\ 
\ 

/ 
I 

Figure 6.4 A set and its conjugate cones 

of the operation of taking conjugate cones are given in the following 
proposition. 

Proposition 1. Let Sand T be sets in a nor'{led space X. Then 

1. S$ is a closed conVeX cone in X*. 
2. IfS c: T, then T$ c: S$. 

In the general case the conjugate cone can be interpreted as a collection 
of half·spaces. If x* E S $, then clearly inf <x, x*) ~ 0 and hence the 

xeS 

hyperplane {x: <x, x*) = o} has S in its positive half-space. Conversely, 
if x* determines a hyperplane having S in its positive half-space, it is a 
member of S $. Therefore, S $ consists of all x* which contain S in their 
positive half-spaces. 

The following theorem generalizes Theorem I of Section 6.6. 

Theorem 1. Let X and Y be normed linear spaces and let A E R(X, Y). Let S 
be a subset of X. Then 

(where the inverse denotes the inverse image of SEll). 

Proof Assume y* E [A(S)]$ and s E S. Then <As, y*) ~ 0 and hence 
<s, A*y*) ~ O. Thus, since s is arbitrary in S, y* E A*-l(S$). The argu­
ment is reversible. I 
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Note that by putting S = X, SGl = {O}, the above result reduces to 
[B£(A)]i = ,Ai(A*). 

*6.8 Geometric Inlterpretation of Adjoints 

It is somewhat diffic:ult to obtain a clear simple visualization of the relation 
between an operat()r and its adjoint since if A : X ~ Y, A* : Y* .... X*, 
four spaces and two operators are involved. However, in view of the unique 
correspondence between hyperplanes not containing the origin in a space 
and nonzero elements of its dual, the adjoint A* can be regarded as map­
ping hyperplanes in Y into hyperplanes in X. This observation can be used 
to consolidate the adjoint relations into two spaces rather than four. We 
limit our discussion here to invertible operators between Banach spaces. 
The arguments can be extended to the more general case, but the picture 
becomes somewhat more complex. 

Let us fix our attention on a given hyperplane HeX having 0 ¢ H. 
The operator A maps this hyperplane point by point into a subsetL of Y. 
It follows from the linearity of A that L is a linear variety, and since A is 
assumed to be invertible, it follows that L is in fact a hyperplane in Y not 
containing 0 e Y. Therefore, A maps the hyperplane H point by point into 
a hyperplane L. 

The hyperplanes Hand L define unique elements x! e X* and y! e y* 
through the relations H = {x: (x, x!> = I}, L = {y: (y, y'l) = I}. The 
adjoint operator A* can then be applied to y! to produce an xt or, 
equivalently, A * maps L into a hyperplane in X. In fact, A * maps L back 
to H. For if A*yt := xt, it follows dim;tly from the definition of adjoints 
that {x: (x, xt> = I} = {x: (x, A*yt) = I} = {x: (Ax, y!> '= l} = H. 
Therefore, A * maps the hyperplane L, as a unit, ba~k to the hyperplane H. 
This interpretation is illustrated in Figure 6.5 where the dotted line arrows 
symbolize elements of a dual space. 

Another geometI'ic interpretation is discussed in Problem 13. 

'\ 
-----~.::----- - .............. ------ ...... 

... ..--~lt -""- ........ " 

'\~ 1 ~.:: . ' 9 

Figure 6.5 Geometric interpretation of adjoints 
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OPTIMIZATION IN HILBERT SPACE 

Suppose A is a bounded linear operator from a Hilbert space G into a 
Hilbert space H; A : G - H. Then, as pointed out previously, the linear 
equation Ax = y may, for a given Y E H, 

1. possess a unique solution x E G, 
2. possess no solution, 
3. possess more than one solution. 

Case 1 is in many respects the simplest. We found in Section 6.4 that in 
this case A has a unique bounded inverse A - 1. The other two cases are of 
interest in optimization since they allow some choice of an optimal x to 
be made. Indeed, most of the problems that were solved by the projection 
theorem can be viewed this way. 

6.9 The Normal Equations 

When no solution exists (case 2), we resolve the problem by finding an 
approximate solution. 

Theorem 1. Let G and H be Hilbert ~paces and let A E B(G, lJ). Then 
for a fixed y E H the vector x E G minimizes lIy - Axil if and only if 
A*Ax = A*y. 

Proof The problem is obviously equivalent to that of minimizing 
lIy - yll where y E ~(A). Thus, by Theorem 1, Section 3.3 (the projection 
theorem without the existence part), y is a minimizing vector if and only if 
y - y E [~(A)J.L. Hence, by Theorem 3 of Section 6.6, y - Y E ';v(A*). Or 
() = A*(y - y) = A*y - A*Ax. I 

Theorem I is just a restatement of the first form of the projection theorem 
applied to the subspace ~(A). There is no statement of existence in the 
theorem since in general ~(A) may not be closed. Furthermore, there is no 
statement of uniqueness of the minimizing vector x since, although 
y = Ax is unique, the preimage of y may not be unique. If a unique 
solution always exists, Le., if A * A is invertible, the solution takes the form 

x = (A*A)-IA*y. 

Example 1. We consider again the basic approximation problem in Hilbert 
space. Let {xl' X2' ... , x n} be an independent set of vectors in a real 
Hilbert space H. We seek the best approximation to y € H of the form 

y=t?=la,Xj. 
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Define the operator A : E" -+ H by the equation 

• 
Aa = L a/xI, 

i= I 

where a = (ai' "', a.). The approximation problem is equivalent to 
minimizing lIy - Aall. Thus, according to Theorem 1, the optimal solution 
must satisfy A * Aa =: A *y. 

It remains to compute the operator A*. Clearly, A*:H-tE·. For any 
x E H, a E E", we have 

" n 
(x I Aa) = (x I L a/ XI) = L al(x I Xi) = (z I a)En 

i= 1 i=l 

'. 
where z = «x I XI)' ... , (x I x.)). Thus, A*x == «x I XI)' (x I x 2 ), "', (x I x.)). 

The operator A*A maps E· into E· and is therefore represented by an 
n x n matrix. It is then easily deduced that the equation A * Aa = A*y i~ 
equivalent to 

[

(XIIXI) (x2Ixl) ... (X.IXI)]al] (YIXI)] 
(XI I x2) a2 (y I X2) 

: : = : ' . . . 
(xlix.) (X. I x") a. (y I x.) 

the normal equations. 
The familiar arguments for this problem show that the normal equations 

possess a unique solution and that the Gram matrix A * A is invertible. 
Thus, a = (A*A)-IA*y. 

The above example illustrates that operator notation can streamline an 
optimization analysis by supplying a compact notational solution. The 
algebra required to compute adjoints and reduce the equations to expres­
sions involving the original problem variables is, however, no shorter. 

6.10 The Dual Problem 

If the equation Ax = y has more than one solution, we may choose the 
solution having minimum norm. 

Theorem 1. Let G and H be Hilbert spaces and let A E B(G, H) with 
range closed in H. Then the vector x of minimum. norm satisfying Ax = y 
is gh'en by x = A*z where z is any solution of AA*z = y. 

Proof If XI hi a solution of Ax = y, the general solution is x = XI + u 

where U E %(A). Since %(A) is closed, it follows that there exists a unique 
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vector x of minimum norm satisfying Ax = y and that this vector is orthog­
onal to %(A). Thus, since ~(A) is assumed closed, 

x E [%(A)]l == ~(A*). 

Hence x = A*z for some z E II, and since Ax = y, we conclude that 
AA*z=y. I 

Note that if, as is frequently the case, the operator AA* is invertible, 
the optimal solution takes the form 

X == A*(AA*)-ly. 

Example 1. Suppose a linear dynamic system is governed by a set of 
differential equations of the form 

x(t) = Fx(t) + bu(t) 

where x is an n x I vector of time functions, F is an n x n matrix, b is an 
n X 1 vector, and u is a scalar control function. 

Assume that x(o) = () and that it is desired to transfer the system to 
x(T) = x I by application of suitable controL Of the class of controls which 
accomplish the desired transfer, we seek \he one of minimum energy 
Jl u2(t) dt. The problem includes the motor problem discussed in Chapter 3. 

The explicit solution to the equation of motion is 

T 
x(T) = J eF(T-t)bu(t) dt. 

o 

Thus, defining the operator A : L2 [0, TJ -+ En by 

T 
Au = fo eF(T-t)bu(t) dt, 

the problem is eqUivalent to that of determining the u of minimum norm 
satisfying Au == Xl' 

Since ~(A) is finite dimensional, it is closed. Thus the results of Theorem 
1 apply and we write the optimal solution as 

u = A*z 
where 

AA*z = Xl' 

It remains to calculate the operators A* and AA*. For any u E L 2' 

YE En 
T T 

(y I AU)En = y' fo eF(T-tlbu(t) dt = fo y' eF(T-t)bu(t) dt 

== (A*Y I U)L2 
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where 
A*y = b'eF'(T-t)y. 

Also, AA* is the n x n matrix, 
T 

AA* = fo eF(T-t)bb'eF'(T-t) dt. 

If the matrix AA* is inv,ertible, the optimal control can be found as 

u = A*(AA*)-IXI . 

6.11 Pseudoinverse Operators 

We now develop a mor.~ general and more complete approach to the prob­
lem of finding approximate or minimum norm solutions to Ax = y. The 
approach leads to the c:oncept of the pseudo inverse of an operator A. 

Suppose again that G and H are Hilbert spaces and that A e B(G, H) 
with E/9(A) closed. (In applications the Closure of E/9(A) is usually supplied 
by the finite dimensionality of either G or H). 

Definition. Among all vectors Xl e G satisfying 

IIAxI - yll = min IIAx - yll, 
" 

let Xo be the unique vector of minimum norm. The pseudoinverse A t of A 
is the operator mapping y into its corresponding Xo as y varies over H. 

To justify the above definition, it must be verified that there is a unique 
Xo corresponding to each y e H. We observe first that min IIAx - yll is 

" achieved since this amounts to approximating y by a vector in the closed 
subspace E/9(A). The approximation y = AXI is unique, although Xl may 
not be. 

The set of vectors Xl satisfying Ax 1 = y is a linear variety, a translation 
of the subspace .;V(A). Thus, since this variety is closed, it contains a 
unique Xo of minimum norm. Thus At iS,well defined. We show below that 
it is linear and bounded. 

The above definitio!tl of the pseudo inverse is somewhat indirect and 
algebraic. We can develop a geometric interpretation of At so that certain 
of its properties become more transparent. 

According to Theorem 1, Section 3.4, the space G can be expressed as 
I 

G = %(A) E6' %(A)J.. 

Likewise, since E/9(A) is assumed closed, 

H = 9l!(A) $ :;P(Al. 
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A 

Figure 6.6 The pseudo inverse 

The operator A restricted to ,AI'(A).L can be regarded as an operator from 
the Hilbert space ,AI'(A).L onto the Hilbert space &l(A). Between these 
spaces A is one-to-one and onto and hence has a linear inverse which, 
according to the Banach inverse theorem, is bounded. This inverse 
operator defines A t on &leA). Its domain is extended to all of H by defining 
Aty = () for y E &l(A).L, Figure 6.6 shows this sChematically and Figure 6.7 
gives a geometric illustration of the relation of the various vectors in the 
problem. 

It is easy to verify that this definition of A t is in agreement with that of 
the last definition. Any y E H can be expressed uniquely as y == y + Yl 
where ye &leA), Yl E &l(A).L, Thus y is the best approximation to y in 
&leA). Then Aty == At(y + YI) = Aty. Define Xo = Aty. Then by definition 
Axo = y. Furthermore, Xo E ,AI'(A).L and is therefore the minimum norm 
solution of Ax 1 = y. 

The pseudoinverse possesses a number of algebraic properties which are 
generalizations of corresponding properties for inverses. These properties 
are for the most part unimportant from our viewpoint of optimization; 
therefore they are not proved here but simply stated below. 

Figure 6.7 Relation between y and Xo 
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Proposition 1. Let A be a bounded linear operator with closed range and 
let A t denote its pseua'oinverse. Then 

1. A t is linear. 
2. A t is bounded. 
3. (At)t = A. 
4. (A*)t = (At)*. 
5. AtAAt = At. 
6. AAtA = A. 
7. (AtA)*=AtA. 
8. At = (A*A)tA*. 
9. At = A*(AA*)t. 

In certain limiting cases it is possible to give a simple explicit formula 
for At. For instance, if A * A is invertible, then At = (A * A) -I A *. If AA * is 
invertible, then At ==A*(AA*)-I. In general, however, a simple formula 
does not exist. 

Example 1. The pseudoinverse arises in connection with approximation 
problems. Let {Xl> X2'" •• xn} be a set of vectors in a Hilbert space H. 
In this example, however, these vectors are not assumed to be independent. 
As usual, we seek the best approximation of the form y = Li"1 al XI to 
the vector y. Or by dl:fining A: En -+ Hby 

n 

Aa = Laixj, 
1= 1 

we seek the approximation to Aa = y. If the vector a achieving the best 
approximation is not unique, we then ask for the a of smallest norm which 
givesy. Thus 

ao = Aty. 

The computation of A t can be reduced by Proposition 1 to 

At = (A*A)tA* 

so that the problem reduces to computing the pseudoinverse of the n x n 
Gram matrixA* A =: G(Xj' X2' ... , xn). 

6.12 Problems 

1. Let X = L 2 [0, 1] and define A on Xby 

1 

Ax = t K(t. S)X(S) ds 
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where 

1 1 

fo fo IK(t, s)1 2 dt ds < 00. 

Show that A : X ....... X and that A is bounded. 
2. Let X = LlO, I], I < p < 00, Y =:: LlO, 1], lip + I/q = 1. Define 

Aby 

1 

Ax = 50 K(t, s)x(s) ds. 

Show that A E R(X, Y) if SA HIK(t, s)lq dt ds < 00. 

3. Let A be a bounded linear operator from Co to 1(fJ' Show that cor­
responding to A there is an infinite matrix of scalars IXij' i, j = 
1, 2, ... , such that y = Ax is expressed by the equations 

where y = {Ili}' x = g i}, and the norm of A is given by 

00 

IIAII = sup I: IIXul. 
i j= 1 

4. Prove the two-norm theorem: If X is a Banach space when normed 
by 11111 and by II liz and if there is a constant c such that Ilxlll S c Ilxllz 
for all x E X, then there is a constant C such that Ilxll z s C Ilxll l for 
all x EX. 

5. The graph of a transformation T: X ....... Y with domain D c X is the 
set of points (x, Tx) E X X Y with xED. Show that a bounded linear 
transformation with closed domain has a closed graph. 

6. Let X = C [a, b] = Y and let D be the subspace of X consisting of all 
continuously differentiable functions. Define the transformation T on 
D by Tx = dx/dt. Show that the graph of Tis closed. 

7. Prove the closed graph theorem: If X and Yare Banach spaces and T 
is a linear operator from X to Y with closed domain and closed graph, 
then Tis bounded. 

8. Show that a linear transformation mapping one Banach space into 
another is bounded if and only if its nulls pace is closed. 

9. Let H be the Hilbert space of n-tuples with inner product (x I Y)Q = 
x' Qy where Q is a symmetric positive-definite matrix. Let an operator 
A on H be defined by an n x n matrix [aijJ in the usual sense. Find 
the matrix representation of A *. 
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10. Let X = Lp [0, 1], 1 < p < 00, Y = Lq [0,1], lip + llq = 1. Let 
A e B(X, Y) be d.efined. by Ax iF J& K(t, s)x(s) ds where 

1 1 f f IK(t, s)lq dt ds < 00. 
o 0 

(See Problem 2.) Find A*. 
11. Let X and Y be normed spaces and let A e B(X, Y). Show that 

.L[Bl(A*)] = %(A). (See Section 5.7.) 
12. Let X, Y be Banach spaces and let A e B(X, Y) have closed range. 

Show that 

inf IIxll = max (b, y*). 
Ax=b IIA·y·II:sI 

Use this result to reinterpret the solution of the rocket problem of 
Example 3, Section 5.9. 

13. Let X and Y be normed spaces and let G be the graph in X x Y of an 
operator A E B(X, Y). Show that G.L is the graph of -A* in X* x Y*. 

14. Prove the Minkowski-Farkas lemma: Let A be an m x n matrix and 
b an n-dimensicmal vector. Then Ax:;:; (J implies b'x :;:; 0 if and only 
ifb = A'A for s>ome m-dimensional vector A:2: (J. Give a geometric 
interpretation of this result. (Ineq.,alities among vectors are to be 
interpreted comjponentwise.) 

15. Let M be a closed subspace of a Hilbert space H. The operator P 
defined by Px == m, where x = m + n is the unique representation of 
x E H with m e M, n e M.L, is called the projection operator onto M. 
Show that a projection operator is linear and bounded with IIPII = 1 
if M is at least OIt1e dimensional. 

16. Show that a bounded linear operator on a Hilbert space H is a pro­
jection operator if and only if: 

1. pZ = P (idempotent) 
2. p* = P (self-adjoint). 

17. Two projection operators PI and Pz on a Hilbert space are said to be 
orthogonal if PIPZ = O. Show that two projection operators are 
orthogonal if and only if their ranges are orthogonal. 

18. Show that the sum of two projection operators is a projection operator 
if and only if th~~y· are orthogonal. 

19. Let G and H be Hilbert spaces and suppose A E B(G, H) with Bl(A) 
closed. Show that 

At = lim (A* A + 81)-1 A* = lim A*(AA* + 81)-1 
1:-+0+ £-+0+ 

where the limits represent convergence in B(H, G). 
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20. Find the pseudoinverse of the operator A on E 3 defined by the matrix 

[i i bj. 
J 1 0 

21. Let G, H, K be Hilbert spaces and let B E B(G, K) with range equal to 
K and C E B(K, H) with nulls pace equal to {O} (i.e., B is onto and C 
is one-to-one). Then for A = C B we have At = Bt ct. 
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OPTIMIZATION 
OF FUNCTIONALS 

7.1 Introduction 

7 

In previous chapters, while developing the elements of functional analysis, 
we often considered minimum norm optimization problems. Although the 
availability of a large variety of different norms provides enough flexibility 
for minimum norm problems to be of importance, there are many impor­
tant optimization problems that cannot be formulated in these terms. In 
this chapter we consider optimization of more general objective func­
tionals. However, much of the theory and geometric insight gained while 
studying minimum norm problems are of direct benefit in considering 
these more general problems. 

Our study is guided by two basic geometric representations of nonlinear 
functionals. Each of these representations has its own particular advantages, 
and often it is enlightening to view a given situation in both ways. The 
first, and perhaps most obvious, geometric representation of a nonlinear 
functional is in terms of its graph. Suppose f is a functional defined on a 
subset D of the vector space X. The space ~X is then imbedded in the 
product space R x X where R is the real line. Elements of this space consist 
of ordered pairs (r, x). The graph off is the surface in R x X consisting 
of the points (f(x), x) with XED. Usually the R axis (Le., points of the 
form (r, 0)) is regard,ed as the vertical axis, and the value of the functional 
at x is then regarded as the vertical distance of the graph above the point 
x E X. In this representation a typical functional is visualized as in Figure 
7.1. This representation is certainly familiar for one- or two-dimensional 
space. The point her,e is that it is convenient conceptually even in infinite­
dimensional space. 

The second representation is an extension of thl; technique of repre­
se'nting a linear functional by a hyperplane. A functional is described by 
its contours in the space X. A typical representation is shown in Figure 7.2. 
Iff is sufficiently smooth, it is natural to construct hyperplanes tangent to 
the contours and to define the gradient of f Again, this technique is 
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R 

Figure 7.1 The graph of a functional 

\ 

familiar in finite-dimensional space and is easily ,extended to infinite­
dimensional space. The principal advantage of the second representation 
over the first is that for a given dimensionality of X, one less dimension 
is required for the representation. 

The first half of this chapter deals with generalizations of the concepts of 
differentials, gradients, etc., to normed spaces and is essentially based on 
the second representation stated above. The detailed development is largely 
algebraic and manipulative in nature, although certain geometric interpre­
tations are apparent. From this apparatus we obtain the local or varia­
tional theory of optimization paralleling the familiar theory in finite 
dimensions. The most elementary portion of the classical calculus of 
variations is used as a principal example of these methods. 

The second half of the chapter deals with convex and concave fune­
tionals from which we obtain a global theory of optimization. This 

f(x) = c 

Figure 7.2 The contours of a functional 
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development, based essentially on the first representation for functionals, 
is largely geometric and builds on the theory of convex sets considered in 
Chapter 5. The interesting theory of conjugate functionals produces 
another duality theorem for a class of optimization problems. 

LOCAL THEORY 

7.2 Gateaux and Fll'echet Differentials 

In the following discussion let X be a vector space, Ya normed space, and 
T a (possibly nonlinear) transformation defined on a domain D c X and 
having range R c Y. 

Definition. Let xED c X and let h be arbitrary in X. If the limit_ 

(1) c5T(x; h) = lim! [T(x + rxh) - T(x)] 
«"'0 rx 

exists, it is called the Gateaux differential of T at x with increment h. If 
the limit (1) exists for each hEX, the transformation T is said to be 
Gateaux differentiable at x. 

We note that it makes sense to consider the limit (1) only if x + rxh E Dfor 
all 0( sufficiently small. The limit (1) is, of course, taken in the usual sense . 
of norm convergenc:e in Y. We observe that for fixed XED and h reg/l.rded 
as variable, the Gateaux differential defines a transformation from X to 
Y. In the particular case where T is linear, we have oT(x; h) = T(h). 

By far the most frequent application of this definition is in the case 
where Y is the real line and hence the transformation reduces to a (real­
valued) functional on X. Thus if f is a functional on X, the Gateaux 
differential of J, if it exists, is 

8f(x; h) = dd f(x + O(h)\ ' 
01. «=0 

and, for each fixed x E X, of (x; h) is a functional with respect to the 
variable hEX. 

Example 1. Let X =En and letf(x) = f(x l , X2, •.• , x
h

) be a functional on 
En having continuous partial derivatives with respect to each variable xi. 
Then the Gateaux differential off is I 

n of 
c5f(x; h) = L -;- hi. 

1=1 vXi 
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Example 2. Let X = C[O, 1] and Jet I(x) = fA g(x(t), t) dt, where it is 
assumed that the function Ux exists and is continuous with respect to x 
and t. Then 

(jj(x; h) = :rx (g(X(t) + rxh(t), t) dtla=o 

Interchange of the order of differentiation and integration is permissible 
under our assumptions on U and hence 

1 

()f(x; h) = fo uix, t)h(t) dt. 

Example 3. If X = En, Y = Em, and T is a continuously differentiable 
mapping of X into Y, then bT(x; h) exists. It is the vector in Yequal to 
the vector It E X multiplied by the matrix made up of partial derivatives 
of Tat x. ' 

The Gateaux differential generalizes the concept of directional derivative 
familiar in finite-dimensional space. The existence of the Gateaux differ­
ential is a rather weak requirement, however, since its definition requires 
no norm on X; hence, properties of the Gateaux differential are not easily 
related to continuity. When X is normed, a more satisfactory definition is 
given by the Frechet differential. 

Definition. Let T be a transformation defined on an open domain D in a 
normed space X and having range in a normed space Y. If for fixed XED 

and each hEX there exists ()T(x; h) E Y which is linear and continuous 
with respect to h such that 

lim IIT(x + h) - T(x) - bT(x; h)11 _ 0 
IIhll->O Ilh II - , 

then T is said to be Frechet differentiable at x and ()T(x; h) is said to be the 
Frechet differential of T at x with increment h. 

We use the same symbol for the Frechet and Gateaux differentials since 
generally it is apparent from the context which is meant. 

Proposition 1. If the transformation T has a Frechet differential, it is unique. 

Proof Suppose both bT(x; /1) and b'T(x; h) satisfy the requirements 
of the last definition. Then 

IIbT(x; It) - o'T(x; 11)11 ~ IIT(x + 11) - T(x) - oT(x; h) II 
+ IIT(x + h) - T(x) - o'T(x; h)11 

or II{)T(x; h) - ()'T(x; h)11 = o(llhll). Since ()T(x; h) - ()'T(x; h) is bounded 
and linear in h, it must be zero. I 
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Proposition 2. If the Frechet differential of T exists at x, then the Gateaux 
differential exists at x and they are equal. 

~roof. Denotc~ the Frechet differential by t5T(x; h). By definition we 
hav~ tor any h, 

1 
-IIT(x + exh) - T(x) - t5T(x; exh)ll ...... 0, 
ex 

as ex ...... 0. 

Thm, by the linearity of t5T(x; exh) with respect to ex, 

lim T(x + exh) - T(x) = t5T(x; h). I 
« ... 0 ex 

A:!inal property is given by the following proposition. 

Prop'Jsition 3. If the transformation T defined on an open set D in X has a 
Frecltet differential at x, then T is continuous at x . 

.Proof. Given s > 0, there is a sphere about x such that for x + h in 
thi~,;phere 

IIT(x + h) - T(x) - t5T(x; h) II < sllhll. 
1 

Thus IIT(x + h) - T(x) II <sllhll + IIt5T(x; h)1I < Mllhll· I 
W! are primarily concerned with Frechet differentials rather than 

Gateaux differentials and often assume their existence or, equivalently, 
aSSU:iYle the satisfaction of condition, which are sufficient to imply their 
existence. 

Example 4. We show that the differential 

/I of 
t5f(x; h) = L -;:- hi 

, .=1 vX. . 

in Example 1 (of the functionalf on En) is a Frechet differential. Obviously, 
t5f(x;h) is linear and continuous in h. It is therefore only necessary to 
verify the basic limit property required of Frechet differentials. 

Given s > 0, the continuity of the partial derivatives implies that there 
is a neighborhood S(x; 8) such that 

I 
of (x) _ of(y) I < ~ 
ox. oXi n 

foce all ye S(x; t5) and i = 1,2, ... , n. 
Define the unit vectors e. in the usual way, e; = (0,0, ... , 1,0, ... ,0), 

a:od for h = Li'=l hie. define go = e and 

for k = 1,2, ... , n. 
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We note that Ilok" ~ "hll for all k. Then 

If(X + h) - f(x) - t :1 hil = It {f(X + gk) - f(x + gk-I) - :f hk}1 
1=1 uXI k=1 uXk 

Now we examine the k-th term in the above summation. 1;'he vector x + gk 
differs from x + gk-l only in the k-th component. In· fact, x + gk = X + 
gk-t + hk ek. Thus, by the mean value theorem for functions of a single 
variable, \ 

for some (x, 0 ~ (X ~ hk • 

Also, x + gk-t + (Xek E Sex; c5) if Ilhll < c5. Thus 

jJ(X + gk) - f(x + gk-t) - o~~:) hk I < ~ Ilhll. 

Finally, it follows that 

I n of I f(x + h) - f(x) - i~1 OXk hi < ellhll 

for all h, Ilhll < c5. 

Example 5. We show that the differential 

c5f(x; h) = fotgxCX, t)h(t) dt 

in Example 2 is a Frechet differential. We have 

If(x + h) - f(x) - c5f(x; h)1 

= I ( {g(x + h, t) - g(x, t) - gx(x, t)h(t)} dt ,. 

For a fixed t we have, by the one-dimensional mean value theorem, 

g(x(t) + h(t), t) - g(x(t), t) = gx(x(t), t)h(t) 

where Ix(t) - x(t) I ~ Ih(t)l. Given e > 0, the uniform continuity of g" in x 
and t implies that there is a /j > 0 such that for IIhl! < c5, Igx<x + h, t) -
g,,(x, t)1 < e. Therefore, we have 

1/( .... + J.) -1(;0) - o/(x, h)( ~ I (fl1.(X, r) - uix, l);h(C) dtl ~ ellhll 

forllhll < c5. The result follows. 
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Example 6~: Let X = CI[O, I], the space of continuous n-vector functions 
on [0, 1]. tet Y = Cm[O, 1] and define T: X -+ Y by 

T(x) = f~F[X(r), or] dor 

where F = (fl,f2, ... ,fm) has continuous partial derivatives with respect 
to its arguments. The Gateaux differential of T is easily seen to be 

By combining the analyses of Examples 4 and 5, we can conclude that this 
is actually a Frechet dilfferential. Note also that since the partial derivatives 
of F are continuous, c5T(x; h) is continuous in the variable x. 

7.3 Frechet Derivatives 

Suppose that the tramformation T defined on. an open domain D c X is 
Frechet differentiable throughout D. At a fixed point XED the Frechet 
differential c5T(x; h) is then, by definition, of the form c5T(x; h) = Axh, 
where Ax is a bound€~d linear operator from X to Y. Thus, as x varies 
over D, the correspondence x -+ Ax defines a transformation from D into 
the normed linear space B (X, Y); this transformation is called the Frechet 
derivative T' of T. Thus we have, by definition, c5T(x; h) = T'(x)h. 

If the correspondenl~e x -+ T'(x) is continuous at the point Xo (i.e., if given 
B > ° there is c5 > ° such that Ilx - xoll < c5 implies I\T'(x) - T'(xo)1I < B), 
we say that the Frechet derivative of T is continuous at xo. This should 
not be confused with the statement that T'(xo) is a continuous mapping 
from X to Y, a property that is basic to the definition of the Frechet 
derivative. If the derivative of T is continuous on some open sphere 
S, we say that T is continuously Frechet differentiable on S. All of the 
examples of Frechet differentiable transformations in the last section are 
in fact continuously Frechet differentiable. 

In the special case where the original transformation is simply a func­
tional f on the space X, we have c5f(x; h) =f'(x)h where f'(x) E X* for 
each x. The elementf'(x) is called the gradient offat x and is sometimes 
denoted Vf(x) rather thanf'(x). We sometimes write (h,f'(x» for c5f(x; h) 
since f'(x) E X*, but usually we prefer f'(x)h which is consistent with the 
notation for differentials of arbitrary transformations. 

Much of the theory of ordinary derivatives can be generalized to Frechet 
derivatives. For instance, the implicit function theorem and Taylor series 
have very satisfactory extensions. The interested reader should consult the 



176 OPTIMIZATION OF FUNCTIONALS 7 

references cited at the end of the chapter. In this section we discuss the 
elementary properties of Frechet derivatives used in later sections. 

It follows immediately from the definition that if T( and T2 are Fnechet 
differentiable at xED, then rJ.( T( + CX2 T2 is Frechet differentiable at x and 
(a(T( + CX2 T2)'(x) = cx(T('(x) + CX 2 T2'{x). We next show that the chain rule 
applies to Frechet derivatives. 

Proposition 1. Let S be a transformation mapping an open set D c: X into 
an open set E c:: Y and let P be a transformation mapping E into a normed 
space Z. Put T = PS and suppose S i} Frechet differentiable at XED and P 
is Frechet differentiable at y = Sex) E E. Then Tis Frechet differentiable 
at x and T'(x) = P'(y)S'(x). 

Proof For hEX, X + h E D, we have 

T(x + h) - T(x) = P[S(x + h)] - P[S(x)] = P(y + g) - P(y) 

where g = Sex + h) - Sex). Thus IIT(x + h) - T(x) - P'(y)gll = o(llgll). 
Since, however, 

Ilg - S'(x)hll = o(llhll), 
we obtain 

II T(x + II) - T(x) ,- P'(y)S'(x)hll = o(IIhll) + o(lIgll). 

Since, according to Proposition 3 of Section 7.2, S is continuous at x, we 
conclude that IIgll = O(lIhll) and hence 

T'(x)h = P'(y)S'(x)h. I 

We now give a very useful inequality that replaces the mean value 
theorem for ordinary functions. 

Proposition 2. Let T be Frechet differentiable on an open domain D. Let 
xED and suppose that x + cxl! E D for all cx, 0 :S cx :S I. Then 

IIT(x + h) - T(x)" :S IIhll sup 1IT'(x + cxh)lI. 
0<<<< 1 

Proof Let y* be a nonzero element of y* aligned with the element 
T(x + h) - T(x). The function cp(cx) = y*[T(x + ah)] is defined on the 
interval [0, \] and, by the chain rule, has derivative 

cp'(rx) = y*[T'(x + rxh)h]. 

By the mean value theorem for functions of a real variable, we have 

0< CXo < 1, 
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and hence 

ly*[T(x + h) - T(x)] I ::;; IIy"1I sup IIT'(x + cth)II "hil, 
0<,,< 1 

and since y* is aligned with T(x + h) - T(x), 

IIT(x -I- h) - T(x)11 :::; Ilhll sup IIT'(x + cth)ll· I 
0<,,<1 

If T: X -+ Y is F'rechet differentiable on an open domain D c: X, the 
derivative T' maps D into B(X, Y) and may itself be Frechet differentiable 
on a subset Dl c: D. In this case the Frechet derivative of T' is called the 
second Frechet derivative of T and is denoted by T". 

Example 1. Let f be a functional on X = En having continuous partial 
derivatives up to second order. Then !"(xo) is an operator from En to En 
having matrix form 

f"(xo) = [02f (X)] , 
OXl ax j x=xo 

where Xi is the i-th component of x. 

The following inequality can be proved in a manner paralleling that of 
Proposition 2. 

Proposition 3. Let T be twice Frechet differentiable on an open domain D. 
Let xED and suppose that x + cth E D for all ct, 0 ::;; ct :::; 1. Then 

IIT(x + h) - T(x) - T'(x)hll :::; illhll2 sup IIT"(x + cth)ll. 
0<,,<1 

7.4 Extrema 

It is relatively simple to apply the concepts of Gateaux and Frechet 
differentials to the problem of minimizing or maximizing a functional on a 
linear space. The technique leads quite naturally to the rudiments of the 
calculus of variatio11s where, in fact, the abstract concept of differentials 
originated. In this section, we extend the familiar technique of minimizing 
a function of a single variable by ordinary calculus to a similar technique 
based on more general differentials. In this way we obtain analogs of the 
classical necessary conditions for local extrema and, in a later section, the 
Lagrange technique for constrained extrema. 

I 

Definition. Let f be a real-valued functional defined on a subset n of a 
normed space X. A point Xo E n is said to be a relative minimum off on n 
if there is an open sphere N containing Xo such th:..tf(xo) ::;;f(x) for all 
x E ~ r. N. The point Xo is said to be a strict relative minimum off on n 
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if f(xo) <f(x) for all x ¢ xo, x e n Ii N. Relative maxima are defined 
similarly. 

We use the term extremum to refer to either a maximum or a minimum 
over any set. A relative extremum (over a subset of a normed space) is 
also referred to as a local extremum. The set n on which an extremum 
problem is defined is sometimes calIed the admissible set. 

Theorem 1. Let the real-valued functional f have a Gateaux differential on 
a vector space X. A necessary condition for 'y to have an extremum at Xo e X 
is that lJf(xo; h) = 0 for all heX. 

Proof For every heX, the functionf(xo + ('J.h) of the real variable ('J. 
must achieve an extremum at ('J.. = O. Thus, by the ordinary calculus, 

d
d f(xo + ('J.h) I = O. I 

('J. ,,=0 

A point at which of (x; h) = 0 for all h is called a stationary point; 
hence, the above theorem merely states that extrema occur at stationary 
points. It should be noted that a similar result holds for a local extremum 
of a functional defined on an open subset of a normed space, the proof 
being identical for both cases. 

The simplicity of Theorem 1 can be misleading for it is a result of great 
utility. Much of the calculus of variations can be regarded as a simple 
consequence of this one result. Indeed, many interesting problems are 
solved by careful identification of an appropriate vector space X and 
some algebraic manipulations to obtain the differential. There are a 
number of useful generalizations of Theorem 1. We offer one of the 
simplest. 

Theorem 2. Let f be a real-valued functional defined on a vector space X. 
Suppose that Xo minimizes f on the convex set n c: X and that f is Gateaux 
differentiable at Xo. Then 

for all x e n. 

Proof Since n is convex, Xo + ('J.(x - xo) e n for 0 S ('J. S 1 and hence, 
by ordinary calculus, 

:('J. f(xo +()!(x - x~))Lo ~ 0 

for a minimum at xo' I 
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*7.5 Euler-Lagrange Equations 

'-The classical problem in the calculus of variations is that of finding a 
function x on the interval [t l' t 2J minimizing an integral functional of 
the form 

I'2 
J = f[x(t), x(t), tJ dt. 

1\ 

To specify the problem completely, we must agree on the class of 
functions within which we seek the extremum-the so-called admissible 
set. We assume that the function.f is continuous in x, X, and t and has 
continuous part'ial derivatives with respect to x and X. We seek a solution 
in the space D[t\l t2l In the simplest version of the problem, we assume 
that the end points x(t1) and x(t2) are fixed. This further restricts the 
admissible set. 

Starting with a given admissible vector x, we consider vectors of the 
form x + h that are admissible. The class of such vectors h is called the 
class of admissible variations. In the case of fixed end points, it is clear 
that the class of admissible variations is the subspace of D[t1, t2J, con­
sisting of functions which vanish at tl and t 2 . The necessary condition 
for the extremum problem is that for all such h, JJ(x; h) = o. 

The differential of J is 

d 12 I M(x; h) = -d I f(x + IXh, x + IXh, t) dt 
IX I. ,,=0 

or, equivalently, 

(1) M(x; h) = tfx(x, x, t)hU) dt + tfix, x, t)h(t) dt, 
I. " 

and it is easily verified that this differential is actually Prechet. Equating 
this differential to zero and assuming that the function fx has a con­
tinuous derivative with respect to t when the optimal solution is sub­
stituted for x, we may integrate by parts to obtain 

12 d \'2 M(x; h) = f [fix, x, t) - d fix, x, t)Jh(t) dt + fix, x, t)h(t) = O. 
1\ t 1\ 

The boundary terms vanish for admissible h and thus the necessary 
condition is I 

([fiX, x, t) - :t fix, x, t)]h(t) dt = 0 

for all h E D[t1, t2J vanishing at tl and t2 • 
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Since the term multiplying h(t) in the integrand is continuous, it readily 
follows (see Lemma I below) that it must vanish identically on [tt, t2]. 

Thus we conclude that the extremal x must satisfy the Euler-Lagrange 
equation 

(2) fix, x, t) - :t fix, x, t) = o. 

The above derivation of the Euler-Lagrange equations suffers from the 
weakness of the assumption that 

\ 

is continuous at the optimal solution. Actually we have no basis on which 
to assume that the solution is in fact smooth enough for this assumption 
to hold. The alternate derivation, given after the following three lemmas, 
avoids this drawback. 

Lemma 1. If aCt) is continuous on [t l , t2] and S:ia(t)h(t) dt = 0 for every 
he D[tt, t2 ] with h(tl) = h(t2 ) = 0, then aCt) == 0 on [t1> t2]. 

Proof Assume that aCt) is nOQzero, say positive, for some t E [tl> t2 ]. 

Then aCt) is positive on some interval [tt', t2 '] c [tt, t2]. Let 

tE[tt',t2'] 

otherwise. 

The function h satisfies the hypotheses of the lemma and 

12 f a(t)h(t) dt> O. I 
11 

Lemma 2. If aCt) is continuous in [tl> t2 ] and J:~a(t)h(t) dt = 0 for every 
he D[/t , 12 ] with hCtt) = h(t2 ) = 0, then aCt) == c in [tl> t2] where c is a 
constant. 

Proof Let c be the unique constant satisfying J:~ [aCt) - c] dt = 0 
and let 

h(t) = f [ae-r) - c] d1:. 
" Then 

I
'2 12 

[aCt) - C]2 dt = I [aCt) - c)]h(t) dt 
II II 

= f'Ci(t)h(t) dt - c[h(t2 ) - h(tt)] = 0, 
11 

and hence aCt) == c. I 
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Lemma 3. If aCt) and P( t) are continuous in [t 1> t 2] and 
\ 

(3) r [!X(t)h(t) + (J(t)h(t)] dt = 0 
tl 

for every hE D[tlo t2] with h(tt) = h(t2) == 0, then (J is differentiable and 
fi(t) =:: O(t) in [t 10 t21-

Proof Define 

ACt) = r aCt) dt. 
ft 

Then by integration by parts we have 

S
tl Itl 
!X(t)h(t) dt = - A(t)h(t) dt. 

tl tl 

Therefore (3) becomes 

t( -A(t) + fi(t)Jh(t) dt = 0 
tl 

which by Lemma 2 implies 

(J(t) = A(t) + c 

for some constant c. Hence, by the definition of A, ~(t) = O(t). I 
Now, in view of Lemma 3, it is clear that the Euler-Lagrange equation 

(2) follows directly from equation (1) without an a priori assumption of 
the differentiability of It . 
Example 1. (Minimum Arc Length) Given t1, t,. and x(tt), x(t2), let us 
employ the Euler-Lagrange equations to determine the curve in D[tt, t2] 

connecting these points with minimum arc length. We thus seek to minimize 

From (2) we obtain immediately 

or, equivalently, 

~ ~ J 1 + (X)2 = 0 dtox 

x = const. 

Thus the extremizing arc is the straight line connecting the two points. 



182 OPTIMIZA nON OF FUNCTIONALS 7 

Example 2. (Estate Planning) What is the lifetime plan of investment and 
expenditure that maximizes total enjoyment for a man having a fixed 
quantity of savings S? We assume that the man has no income other 
than that obtained through his investment. His rate of enjoyment (or 
utility) at a given time is a certain function U of r, his rate of expenditure. 
Thus, we assume that it is desired to maximize 

where the e- P1 term reflects the notion th~t future enjoyment is counted 
less today. 

If x(t) is the total capital at time t, then 

x(t) = ax(t) - ret) 

where (X is the interest rate of investment. Thus the problem is to maximize 

T 

fo e-P1V[ax(t) - x(t)] dt 

subject to x(O) = Sand x(T) = 0 (or some other fixed value). Of course, 
there is the additional constraint x(t) ;;::: 0, but, in the cases we consider, 
this turns out to be satisfied automatically. 

From the Euler·Lagrange equation (2), we obtain 

d 
ae-P1U'[ax(t) - x(t)] + dt e-P1U'[ax(t) - x(t)] = 0 

where U' is the derivative of the utility function U. This becomes 

(4) :t U'[cxx(t) - x(t)] = (P - cx)U'[cxx(t) - x(t)]. 

Hence, integrating (4), we find that 

(5) U'[r(t)] = U'[r(O)]e(P-a)l. 

Hence, the form of the time dependence of r can be obtained explicitly 
once U is specified. 

A simple utility function, which reflects both the intuitive notions of 
diminishing marginal enjoyment (i.e., V' decreasing) and infinite marginal 
enjoyment at zero expenditure (i.e., U'[O] =(0), is U[r] == 2r1/2. Sub­
stituting this in (5), we obtain 

cxx(t) - x(t) = ret) = r(0)e2(a- P)I. 
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Integrating this last equation, we have 

(6) 

x(t) = etZtx(O) + ~(O) [eal _ e2(a- P)I] 

a - 2P 

= {X(O) _ r(O) --'ea. + ~ e2(a-P)I. 

2P - af 2P - a 

Assuming a> fJ > a/2, we may find r(O) from (6) by requiring x(T) = O. 
Thus 

(2P - a)x(O) 
r(O) = 1 -(2p-a)T' -e 

The total capital grows initially and then decreases to zero. 

*7.6 Problems with Variable End Points 

The class of admissible functions for a given problem is not always a 
linear variety of functions nor even a convex set. Such problems may, 
however, generally be approached in essentially the same manner as 
before. Basically the technique is to define a continuously differentiable 
one-parameter family of admissible curves that includes the optimal curve 
as a member. A necessary condition is obtained by equating the derivative 
of the objective functional, with respect to the parameter, equal to zero. 
In the case whf~re the admissible class is a linear variety, we consider the 
family x + 8h and differentiate with respect to 8. In other cases, a more 
general family X(8) of admissible curves is considered. 

An interestil1lg class of problems that can be handled in this way is 
calculus of variations problems having variable end points. Specifically, 
suppose we seek an extremum of the functional 

12 

J = J f(x, ie, t) dt 
1\ 

where the interval [t1' t2], as well as the function x(t), must be chosen. 
In a typical problem the two end points are constrained to lie on fixed 
curves in the x - t plane. We assume here that the left end point is fixed 
and allow the right end point to vary along a curve S described by the 
function x =g(t), as illustrated in Figure 7.3. 

Suppose X(8, t) is a one-parameter family of If unctions emanating from 
the point 1 and terminating on the curve S. The termination point is 
X(8, t2(8» and satisfies X(8, t2(8» = g(t2(8»). We assume that the family is 
defined for 8 e [-a, a] for some a> 0 and that the desired extremal is the 
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glt) 

s 
Figure 7.3 A variable end-point problem 

curve corresponding to e = O. The variation oj of the functional J is defined 
as the first derivative of J with respect to e and must vanish at e =.0. 

Defining, in the obvious way, 

ox(t) = dd x(e, t)/ 
e 8=0 

we have 

'2«) 
J(e) = J f[x(t, e), x(t, e), t] dt 

'1 
OJ = f[x(t z), x(tz), tZJ012 + {2{f,,(X, x, t)ox + fix, x, t)ox} dt = O. 

'1 
Arguments similar to those of the last section lead directly to the 

necessary conditions 

(1) 
d 

f,,(x, x, t) = dt fix, x, t) 

and 

(2) f[x(t z), x(tz), tz]otz + f,,[x(t z), x(tz), tz]Dx(tz) = O. 

Condition (1) is again the Euler-Lagrange equation, but in addition we 
have the transversality condition (2) which must be employed to deter­
mine the termination point. The transversality condition (2) must hold for 
all admissible ox(tz) and 0/2 , These two quantities are not independent, 
however, since 

(3) 

Upon differentiating (3) with respect to B. we obtain the relation 

DX(t2) + X(tz)Dt2 == g(t2)DtZ 
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and hence the complete set of necessary conditions is (1) and the trans­
versality condition 

(4) {f(x, x, t) + [g - x]f,.{x, x, t)}lt=tz = o. 
Example 1. As an I!xample of the transversality condition, we consider the 
simple problem of finding the differentiable curve of minimum ar~ length 
from the origin (0,0) to the curve g. Thus we seek to extremize the 
functional 

h 
J = t Jt + (x)2 dt, 

where t2 is the point of intersection of the line. 
As in Example I of the last section, the Euler-Lagrange equation leads 

to x = const and, hence, the extremal must be a straight line. The trans­
versality condition in this case is 

or 
. 1 
X(t2) = - -. -. 

g(t2) 

Thus the extremal arc must be orthogonal to the tangent of gat t2 • (See 
Figure 7.4.) 

:< 

t 
" ... 

" " " 

Figure 7.4 Minimum distance to a curve 

7.7 Problems with Constraints 

In most optimization problems the optimal vector is required to satisfy 
some type of constraint. In the simplest calculus of variations problem, 
for instance, the end points of the curve are constrained to fixed points. 
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Such problems, and those of greater complexity, often can be resolved 
(in the sense of establishing necessary conditions) by considering a one­
parameter family of vectors satisfying the constraints which contains the 
optimal vector as a member. A complication arises, however, when the 
constraint set is defined implicitly in terms of a set of functional equations 
rather than explicitly as a constraint surface in the space. In such cases 
the one-parameter family must be constructed implicitly.,In this section 
we carry out the necessary construction for a finite number of functional 
constraints and arrive at our first Lagrange multiplier theorem. 

A more general discussion of constrained optimization problems, in­
cluding the material of this section as a special case, is given in Chapter 9. 
The later discussion parallels, but is much deeper than, the one given here. 

The problem investigated in this section is that of optimizing a functional 
f subject to n nonlinear constraints given in the implicit form: 

(1) 

gl(X) = 0 

gix) = 0 

These n equations define a region n in the space X within which the 
optimal vector Xo is constrained to lie. Throughout this section it is 
assumed that all functionalsf, OJ are continuous and Frechet differentiable 
on the normed space X. 

Before embarking on the general resolution of the problem, let us 
briefly consider the geometry of the problem. The case where X is two 
dimensional is depicted in Figure 7.5. If Xo is optimal, the functional f 
has an extremum at Xo with respect to small displacements along n. 
Under sufficient smoothness conditions, it seems that f has an extremum 
at Xo with respect to small displacements along T, the tangent to n at Xo . 

T 

g(x) = 0 

Figure 7.5 Constrained extremum 
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The utility of this observation is that the exact form of the surface n near 
Xo is replaced by the simple description of its tangent in the expression for 
the necessary conditions. In order for the procedure to work, however, it 
must be possible to express the tangent in terms of the derivatives of the 
constraints. For this reason we introduce the definition of a regular point. 

Definition. A point Xo satisfying the constraints (1) is said to be a regular 
point of these constraints if the n linear functionals gl'(XO), g2'(XO), ... , 
g"'(xo) are linearly independent. 

The following theorem gives the necessary conditions satisfied by the 
solution of the constrained extremum problem. 

Theorem 1. If Xo is an extremum of the functional f subject to the constraints 
g/(x) = 0, i = 1,2" ... , n; and if Xo is a regular point of these constraints, 
then 

(jf(xo; h) = 0 

for all h satisfyin!), (jg/(xo; h) = 0, i = 1,2, ... , n. 

Proof Choose heX such that (jgj(xo; h) = 0 for i = 1,2, ... , n. Let 
YI, Y2, ... , Y" e X be 11 linearly independent vectors chosen so that the 
n x n matrix 

[

(jgl(XO; YI) (jgl(XO; Y2) ... Ogl(XO; Y")] 
M = c5g2(Xr YI) c5g 2(xo; Y2) ... 15g2(xo; Y") 

.(jg"(xo; Y I) (jg"(xo; Y") 

is nonsingular. The existence of such a set of vectors Yi follows directly 
from the regularity of the point Xo (see Problem 11). 

We now introduce the n + 1 real variables e, CPI' CP2, ... , cp" and consider 
the n equations 

gl(XO + eh + CP1Yl + CP2Y2 + ... + cp"y") = 0 

g2(XO + eh + CPIYl + CP2 Y2 + ... + cp" Y") = 0 
(2) 

g"(xo + eh + CP1Yt + CP2Y2 + ... + cp"y") = O. 

The lacobianofthis set with respectto the variables CPj, at e = 0 and CPi == 0, 
is just the determi.nant of M and is therefore nonzel;O by assumption. Hence, 
the implicit function theorem (see, for example, Apostol [1 OJ and also Section 

9.2) applies and ~:uarantees the existence of n functions CPi(e) satisfying (2) 
and defined in some neighborhood of e = O. 



188 OPTIMIZATION OF FUNCTIONALS 7 

Denote by y(e) the vector l:?= 1 ep/(e)Yi and by ep(e) the n-dimensional 
vector having components epiCS). For each i we have 

(3) 0 = g/(xo + eh + ~ epjYj) 

= g/(xo) + sog/(xo; h) + ogj(xo ; y(e» + o(e) + o[lly(e)llJ. 

Or, writing all n equations simultaneously and taking into account the 
fact that the first two terms on the right side of (3) are zero, we have, 
after taking the norm of the result, 

(4) 0= II Mep(e) II + o(e) + o[lly(e)llJ. 

Since M is nonsingular, there are constants Cl > 0, C2 > 0 such that 
clllep(e)1I S; II Mep(e) II :;; c21Iep(e) II; and since th~ y/s are linearly independent, 
there are constants d, > 0, d2 > 0 such that dtlly(e) II S; Ilep(e)II S; d21Iy(e)ll. 
Hence, c1d1 1Iy(e)1I S; IIMep(e)1I S; c2d21Iy(e)11 and, therefore (4) implies 
Ily(e)11 = o(e). Geometrically, this result states that if one moves along the 
tangent plane of the constraint surface n from Xo to Xo + eh, it is possible 
to get back to n by moving to Xo + eh + y(e), where y(e) is small compared 
with sh. 

The points Xo + eh + y(e) define a one-parameter family of admissible 
vectors. Considering the functional f at these points, we must have 

d
d f[xo + eh + yes)] I = o. 
S 8=0 

Thus, since Ily(e)11 = o(e), of(xo; h) = o. I 

From Theorem 1 it is easy to derive a finite-dimensional version of the 
Lagrange multiplier rule by using the following lemma. 

Lemma 1. Let fo ,fl' ... ,/" be linear functionals on a vector space X and 
suppose thatj'o(x) = Of or every x E X satisfyingfl(x) =fJfor i = 1,2, ... , n. 
Then there are constants ..1.1' ..1.2, ..• , An such that 

fo + Adl + ..1.212 + . " + Anfn = O. 

Proof. See Problem 16, Chapter 5 (which is solved by use of the 
Hahn-Banach theorem). I 

Theorem 2. If Xo is an extremum of the functional f subject to the con­
straints 

g/(x) = 0, i = 1,2, ... , n, 
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and Xo is a regular point of these constraints, then there are n scalal 
AI> i = 1, 2, ... , n, that render the functional 

II 

f(x) + L A/ub) 
/=1 

stationary at Xo • 

Proof. By Theorem 1 the differential (jf(xo; h) is zero whenever ea 
of the differentials (jg/(xo; h) is zero. The result then follows immediately 
from Lemma 1. I 

Example 1. Constrained problems of the form above are called is ope 
metric problems in the calculus of variations since they were originally 
studied in connection with finding curves of given perimeter which rna: . 
mized some objective such as enclosed area. Here we seek the curve in t 
t -x plane having end points (-1,0), (1,0); length I; and enclosing 
maximum area between itself and the t-axis. Thus we wish to maximize1 

subject to 

1 

f JX2 + 1 dt = 1. 
-1 

Therefore, we seek a stationary point of 
1 1 

J(x) = f (x + AJ x2 + 1) dt = f f(x, x, t) dt. 
-1 -1 

Applying the Euler equations, we require 

f - df" =0 
" dt 

or 

d x 
1- A- .= 0 

dtJx2 +1 

or 

X 1 

J 2 =,. t + c. 
X + 1 A I 

1 See Problem 12 for a different formulation of this problem. 
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It is easily verified that a solution to this first-order differential equation 
is given by the arc 0:' a circle 

(x - Xl)1.+ (t - tlYZ = r2. 

The parameters Xl' t1> alld r are chosen to satisfy the boundary conditions 
and the condition on total length. 

GLOBAL THEORY 

7.8 Convex and Concave Functionals 

Definition. A real-valued functional I defined on a convex subset C of a 
linear vector space is said to be convex if 

f 

~ __ -L ____ -L ______ ~ ______ ~x 

Figure 7.6 A convex function 

for all Xl' X2 E C and all ex, 0 < ex < 1. If strict inequality holds whenever 
Xl ::j: X2 ,lis said to be strictly convex. A functional 9 defined on a convex 
set is said to be (strictly) concave if - 9 is (strictly) convex. 

Examples of convex functions in one dimension are I(x) = x 2
; I(x) = eX 

for X > 0; and th~ discontinuous function 

x=o 
x>O 



§7.8 CONVEX AND CONCAVE FUNCTIONALS 191 

defined on [0, 00). The functional 

1 

f(x) = So {x2(t) + Ix(t)l} dt 

defined on L2[0, 1] is convex and continuous (the reader may wish to 
verify this). Any norm is a convex functional. 

A convex functional defined on an infinite-dimensional normed space 
may be discontinuous everywhere since, for example, any linear functional 
is convex, and we constructed discontinuous linear functionals earlier. 

Convex functionals play a special role in the theory of optimization 
because most of the theory of local extrema for general nonlinear func­
tionals can be strengthened to become global theory when applied to 
convex functionals. Conversely, results derived for minimization of convex 
functionals often have analogs as local properties for mOre general prob­
lems. The study of convex functionals leads then not only to an aspect of 
optimization important in its own right but also to increased insight for 
a large portion of optimization theory. 

The following proposition illustrates the global nature of results for 
minimization problems ill1volving convex functionals. 

Proposition 1. Let f be a convex functional defined on a convex subset C 
of a normed space. Let !J. = inf f(x). Then 

xeC 

1. The subset n of C where f(x) = !J. is convex. 
2. If Xo is a local minimum off, then f(xo) = !J. and, hence Xo is a global 

minimum. 

Proof 

1. Suppose Xl' x2 E n. Then for X = IXX I + (l - IX)X2 , ° < IX < 1, we 
have f(x) S;; IXf(x:!) + (1 - lX)f(X2) =!J.. But for any x E C neces­
sarily f(x) ;;::: 11· Thus, f(x) = 11· 

2. Suppose N is a neighborhood about Xo in which Xo minimizes f 
For any XI E C, there is an X E N such that X = IXXo + (l - IX)XI for 
some IX, ° < IX < I. We have f(xo) S;; f(x) S;; IXf(xo) + (1 - r:t.)f(xI)' 
Or f(xo) s;;f(xI)' I 

The study of convex functiO'nals is quickly and effectively reduced to 
the study of convex sets by considering the region above the graph of the 
functional. 

Definition. In correspondence to a convex functional 1 defined on a convex 
set C in a vector space X, we define the convex set [I, C] in R x X as 

[f, C] = {(r, x) E R X X: x E C,J(x) s; r}. 
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Usually we think of the space R x X as being oriented so that the R 
axis, i.e., all vectors of the form (r, 0), is the vertical axis. Then the set 
[J, C] can be thought of as the region above the graph of J, as illustrated 
in Figure 7.7. This set [J, C] is sometimes called the epigraph off over C. 

-+---'---------------'--x 
~I<~-----c-----,>~I 

Figure 7.7 The convex region above the graph 

Although we have no occasion to do so, we could imagine forming the 
set [f, C] as in the above definition even iff were not convex. In any case, 
however, we have the following proposition. 

Proposition 2. The functional f defined on the convex domain C is convex 
if and only if [J, C] is a convex set. 

The major portion of our analysis of convex functionals is based on 
consideration of the corresponding convex set of the last definition. To 
apply our arsenal of supporting hyperplane theorems to this set, however, 
it must be determined under what conditions the set [J, C] contains 
interior points. The next section is devoted primarily to an analysis of this 
question. Since the results are so favorable-namely continuity of the 
functional at a single point guarantees an interior point-the reader need 
only glance through the proposition statements at first reading and proceed 
to the next section. 

*7.9 Properties of the Set [f, C] 

Proposition 1. If f is a convex functional on the convex domain C in a 
normed space and C has nonempty relative interior C, then the COnvex set 
[f, C] has a relative interior point (ro, xo) if and only iff is continuous at 
the pOint Xo e C. 
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Proof First assume that f is continuous at a point Xo E C. Denote by 
N(xo, J) the open spherical neighborhood of Xo with radius tJ. We note 
that v([f, e]), the linear variety generated by [f, e], is equal to R x v( e). 
Given e, 0 < e < I, tht~re is a 15 > 0 such that for x E N(xo, (5) (1 vee) we 
havex E C and If(x) - /(xo) I < e. Let ro = f(xo) + 2. Then the point (ro, xo) 
E [f, e] is a relative interior point of [f, e] since (r, x) E [f, e] for Ir -
rol < I and x E N(xo, (5) (1 vee). 

Now suppose that (ro, xo) is a relative interior point of [f, e]. Then 
there is eo> 0, 15 0 > 0 such that for x E N(xo, tJ o) (1 vee) and Ir - rol < eo 
we have r ;;::'f(x). Thusfis bounded above by f(xo) + eo on the neighb~r­
hood N(xo, (5 0) (1 vee). 

We show now that the above implifs thatfis continuous at Xo. Without 
loss of generality we may assume x 0 = 0 and fe", 0) = O. For any e, 0 < e < I, 
and for any x E N(xo, e15 o) (1 vee), we have 

where eo is the bound on f in N (x 0' (jo) (1 v( e). Furthermore, 

0=f(8)=f[-_1 x+ (1 __ 1 )(_!x)] :::;_1 f(x) 
1+e 1+e e 1+e 

or 

f(x);;::' -ef(-~x);;::, -eeo. 
e 'I. 

Therefore, for xEN(xo,e15o)(1v(e), we have If(x)l:::;eeo, Thusfis 
continuous at xo, I 

Convex functionals enjoy many of the properties of linear functionals. 
As an example, the following proposition is a generalization of Proposi­
tion I, Section 5.2, 

Proposition 2. A convex functional f defined on a convex domain e and 
continuous at a single point in the relative interior C of e is continuous 
throughout C. 

Proof Without loss of generality we may assume thatf is continuous 
at (J E C and thatf(O) = O. Furthermore, by restricting attention to vee), 
we may assume that e has interior points rather than relative interior 
points. 
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Let y be an arbitrary point in C. Since C is (relatively) open, there is a 
p > 1 such that py e C. Given e > 0, let 0 > 0 be such that Ilxll < 0 implies 
If(x) I < e. Then for liz - yll < (1 - P-l)O, we have 

I 

z = Y + (l - P-l)X == P-l(py) + (1 - P-l)X 

for some x e C with Ilxll < O. Thus z e C and 

f(z) S P-lf(Py) + (1 - P-l)f(x) < p-1j(py) + (1 - p-l)e. 

Thus f is bounded above in the sphere liz - yll < (1 - P-l)<5. It follows 
that for sufficiently large r the point (r, y) is an interior point of [J, C]; 
hence, by Proposition 1,J is continuous at y. I 

The proof of the following important corollary is left to the reader. 

Corollary 1. A convex functional defined on a finite-dimensional convex set C 
is continuous throughout 6. 

Having established the simple relation between continuity and interior 
points, we conclude this section by noting a property off which holds if 
[J, C] happens to be closed. As illustrated in Figure 7.8, closure of 
[I, C] is related to the continuity properties of f on the boundary of C. 

.r 

'-----'a-------bl--~.\' 

Figure 7.8 A nonclosed epigraph 

Proposition 3. If [J, C] is closed, then f is lower semicontinuous on C. 

Proof The set {(a, x) e R x x: x e X} is obviously closed for each 
a e R. Hence, if [J, C] is closed, so is 

[f, C] n {(a, x) : x e X} == {(a, x); x e C,f(x) ~ a} 
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for each a E R. It follows that the set 

Ta = {x : x E C,J(x) :5: a} 
is closed. 

Now suppose {Xi} is a sequence from C converging to x E C. Let 
b = lim inf f(x;). If b = - 00, then x E Ta = Ta for each a E R which is 

X,"" X 

impossible. Thus b> - 00 and x E Tb +. = Tb+. for all B > O. In other 
words,J(x):5: lim inff(x,) which proves thatfis lower semicontinuous. I 

Figure 7.9 shows thl! graph of a convex functional f defined on a disk C 
in E2 that has closed [j, C] but is discontinuous (although lower semi­
continuous) at a point x. 

)' 
X2 

f 

r---~I--------~Xl 
I x. 

Figure 7.9 

7.10 Conjugate Convex Functionals 

A purely abstract approach to the theory of convex functionals, including 
a study of the convex set [j, C] as in the previous section, leads quite 
naturally to an investigation of the dual representation of this set in terms 
of closed hyperplanes. The concept of conjugate functionals plays a natural 
and fundamental role in such a study. As an important consequence of this 
investigation, we obtain a very general duality principle for optimization 
problems which extends the earlier duality results for minimum norm 
problems. 

Definition. Let f be a convex functional defined on a convex set C in a 
normed space X. The conjugate set C * is defined as 

C* = {x* E X*: sup [(x, x*) - f(x)] < oo} 
xeC 
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and the junctional j* conjugate .0 j is defined on C * as 

f*(x*) = sup [(x, x*> - f(x)], 
xeC 

Proposition 1. The conjugate set C * and the conjugate junctional f* are 
convex and [f*, C*] is a closed convex subset of R x X*. 

Proof For any xr, x~ E X* and any ex, 0 < ex < 1, we have 

sup {(x, exx! + (1 - ex)xi> - f(x)} = sup {ex[ (x, xi> - f(x)] 
xeC xeC 

+ (1 - ex) [ (x, xi> - f(x)]} 

;s; ex sup [(x, xD - f(x)] 
xeC 

. + (1 - ex) sup [(x, xi> - f(x)] 
xeC 

from which it follows immediately that C* andf* are convex. 
Next we prove that [j*, C*] is closed. Let {CSt, xi)} be a convergent 

sequence from [j*, C*] with (st> xi) -+ (s, x*). We show now that 
(s, x*) E [j*, C*]. For every i and every x e C, we have 

Sl ~ f*(xi) ~ (x, xi> - f(x). 

Taking the limit as i ~ cx:>, we obtain 

s ~ (x, x*> - f(x) 

for all x E C. Therefore, 

s ~ sup [(x, x*> - f(x)] 
xeC 

from which it follows that x* e C* and s ~f*(x*). I 

We see that the conjugate functional defines a set [j*, C*] which is of 
the same type as [f, C]; therefore we write [f, C]* = [f*, C*]. Note that 
if f = 0, the conjurate functional f* becomes the support functional of C. 

Example 1. Let X = C = En ~ 'd define, for x;;:::: (Xl' Xz, ... , xn), f(x) = 
lip Li=l Ixi/P, I < P < cx:>. Then for x* = (el> e2 , ••• , en), 
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The supremum on the right is achieved by some x since the problem is 
finite dimensional. We find, by differentiation, the solution 

(;i = Ixi l
p

-
1 sgn Xi 

f*(x*) = L Ixd P 1 - - = - L ledq n ( 1) 1 n 

i=l p qi=l 

where lip + llq = 1. 

Let us investigate the relation of the conjugate functional to separating 
hyperplanes. On the space R x X, closed hyperplanes are represented by 
an equation of the form 

sr + (x, x*) = k 

where s, k, and x* determine the hyperplane. Recalling that we agreed to 
refer to the R axis as vertical, we say that a hyperplane is non vertical if it 
intersects the R axis at one and only one point. This is equivalent to the 
requirement that the deJlining linear functional (s, x*) have s #- o. If atten­
tion is restricted to nonvertical hyperplanes, we may, without loss of 
generality, consider only those linear functionals of the form (-1, x*). 
Any nonvertical closed hyperplane can then be obtained by appropriate 
choice of x* and k. 

To develop a geometric interpretation of the conjugate functional, note 
that as k varies, the solutions (r, x) of the equation 

(x, x*) - r = k 

describe parallel closed hyperplanes in R x X. The number f*(x*) is the 
supremum of the values of k for which the hyperplane intersects [f, C]. 
Thus the hyperplane (x, x*) - r = f*(x*) is a support hyperplane of 
[I, C]. 

In the terminology of Section 5.13, f*(x*) is the support functional 
h[( -1, x*)] of the functional (-1, x*) for the convex set [f, C]. The 
special feature here is that we only consider functionals of the form 
(-1, x*) on R x X and thereby eliminate the need of carrying an extra 
variable. 

For the application to optimization problems, the most important geo­
metric interpretation of the conjugate functional is that it measures vertical 
distance to the support hyperplane. The hyperplane 

(x, x*) - r = f*(x*) 

intersects the vertical axis (i.e., x = 8) at ( - J*(x*), 8). Thus, - J*(x*) is 
the vertical height of the: hyperplane above the origin. (See Figure 7.10.) 
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1' .... 
r = -f*(x*) 

r 

"- .... .... 
~----------~""~--~.x , ... .... 

.... .$.x, x*) - r = f*(x*) 

" 
Figure 7.](; A conjugate convex functional 

Another interpretation more clearly illuminates the duality between 
[f, C) and [f*, C *] in terms of the dual representation of a convex set 
as a collection of points or as the intersection of half-spaces. Given the 
point (s, x*) € R x X*, let us associate the half-space consisting of all 
(r, x) € R x X satisfying 

(x, x*) - r ~ s. 

Then the. set [f*, C *] consists of those (nonvertical) half-spaces that con­
tain the set [f, C]. Hence [f*, C*] is the dual representation of [f, C]. 

Beginning with an· arbitrary convex functional ({J defined on a convex 
subset r of a dual space X*, we may, of course, define the conjugate of ({J 
in X** or, alternatively, following the standard pattern for duality rela­
tions (e.g., see Section 5.7), define the set *r in X as 

*r = {x: sup [(x, x*) - ({J(x*)] < oo} 
xOe r 

and the convex functional 

*({J(x) = sup [(x, x*) - ({J(x*)] 
xOer 

on *r. We then write *[({J, r] = [*({J, *r]. With these definitions we have 
the following characterization of the duality between a convex functional 
and its conjugate. 

Proposition 2. Let f be a convex functional on the convex set C in a normed 
space X. If [f, C] is closed, then [J, C] = *[[f, C]*]. 

Proof We show first that [J, C] c: *[f*, C*] = *[[J, C]*]. Let 
(r, x) E [J, C]; then for all x* E C *, f*(x*) ~ (x, x*) - f(x). Hence, we 
have r ~f(x) ~ (x, x*) - f*(x*) for all x* € C*. Thus 

r;;:: sup [(x, x*) - f*(x*)] 
.nee· 

and (r, x) E *[f*, C *]. 
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We prove the converse by contraposition. Let (ro, xo) ¢ [f, C]. Since 
[f, CJ is closed, there is a hyperplane separating (ro, x o) and [f, C]. 
Thus there exist x* E X*, S, and c such that 

sr + <x, x*>:::;; c < sro +<xo, x*> 

for all (r, x) E [f, C]. It can be shown that, without loss of generality, this 
hyperplane can be assumed to be nonvertical and hence s=!:O (see Prob­
lem 16). Furthermore, since r can be made arbitrarily large, we must have 
s < O. Thus we take s = - 1. Now it follows that <x, x*> - f(x) :::;; c 
for all x e C, which implies that (c, x*) e [f*, C*J. On the other 
hand, c < <xo, x*) - r 0 implies <xo, x*) - c > ro, which implies that 
(ro,xo)¢*[f*,C*].1 

7.11 Conjugate Concave Functionals 

A development similar to that of the last section applies to concave fune­
tionals. It must be stressed, however, that we do not tre;;t concave func­
tionals by merely multiplying by - I and then applying the theory for 
convex functionals. There: is an additional sign change in part of the 
definition. See Problem 15. 

Given a concave functional 9 defined on a convex subset D of a vector 
space, we define the set 

[g, D] = {(r, x) : xED, r :::;; g(x)}. 

The set [g, DJ is convex and all of the results on continuity, interior points, 
etc., of Section 7.9 have direct extensions here. 

Definition. Let 9 be a concave functional on the convex set D. The con­
jugate set D* is defined as 

D* = {x* e X*: inf[<x, x*> - g(x)] > - OO}, 
xeD 

and the functional g* conjugate to 9 is defined as 

g*(x*) = inf[ <x, x*> - g(X)]. 
xeD 

We can readily verify that D* is convex and that g* is concave. We 
write [g, DJ* = [g*, D*]. 

Since our notation does not completely distinguish between the develop­
ment for convex and concave functiona\s, it is important to make clear 
which is being employed in any given context. This is particularly true when 
the original function is linear, since either definition of the conjugate 
functional might be employed and, in general, they are not equal. 
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The geometric interpretation for concave conjugate functionals is 
similar to that for convex conjugate functionals. The hyperplane <x, x*) -
r = g*(x*) supports the set [g, D]. Furthermore, - g*(x*) is the intercept 
of that hyperplane with the vertical axis. The situation is summarized in 
Figure 7.11. 

/" 

/" = -g*(.\"*) "'" 

"'" "'" "'" -+------.......... --"...,.---~---.,... .\' 

Figure 7.11 A conjugate concave functional 

7.12 Dual Optimization J'lroblems 

We come now to the application of conjugate functionals to optimization. 
Suppose we seek to minimize a convex functional over a convex domain. 
Or more generally, iff is convex over C and 9 is concave over D, suppose 
we seek 

inf [f(x) - g(x)]. 
C"D 

In standard minimization problems, 9 is usually zero. But as we shall see, 
the present generalization is conceptually helpful. The general problem is 
illustrated in Figure 7.12. The problem can be interpreted as that of finding 
the minimum vertical separation of the sets [J, C] and [g, D]. It is 
reasonably clear, from geometric intuition, that this distance is equal to 

---the maximum vertical separation of two parallel hyperplanes separating 
[j, C] and [g, D]. This relation, between a given minimization problem 
and an equivalent maximization problem, is a generalization of the duality 
principle for minimum norm problems. 

Conjugate functionals are precisely what is needed for expressing this 
duality principle algebraically. Since - f*(x*) is the vertical distance to a 
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,. 

> x 

Figure 7.12 

support hyperplane below [j. C], and - g*(x*) is the vertical distance to 
the parallel support hyperplane above [g, D], g*(x*) - f*(x*) is the ver­
tical separation of the two hyperplanes. The duality principle is stated in 
detail in the following theorem. 

Theorem 1. (Fenchel Duality Theorem) Assume that f and 9 are, respec­
tively, convex and concave functjonals on the convex sets C and D in a 
normed space X. Assume that C n D contains points in the relative interior 
of C and D and that either [j; C] 01' [g, D] has nonempty interior. Suppose 
further that p. = inf {f(x) - g(x)} is finite. Then 

xeCnD 

p. = inf {f(x) - g(x)} = max {g*(x*) - /*(x*)} 
xeCr.D x"'eC·nD'" 

where the maximum on the right is achieved by some X6 E C* n D*. 
If the infimum on the left is achieved by some Xo E C n D, then 

and 

max [<x, xri) - f(x)] = <xo, xri) - f(xo) 
xeC 

min [(x, X6) - g(x)] = <xo , X6) - g(Xo)· 
xeD 

Proof By definition, for all x* E C * n D*, x E C n D, 

f*(x*) ~ (x, x*) - f(x) 

g*(x*) ~ (x, x*) - g(x). 

Thus, 

f(x) - g(x) ~ g*(x*) - f*(x*) 
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and hence 

inf [f(x) - g(x)] ~ sup [g*(x*) - f*(x*)J. 
CnD COnDO 

Therefore, the equality in the theorem is proved if an X6 e C * n D* can 
be found for which inf [f(x) - g(x)] = g*(x~) - f*(x~). 

CnD 

The convex set [f - Il, C] is a vertical displacement of [f, C); by 
definition of Il the sets [f - Jl, C) and [g, D] are arbitrarily close but have 
disjoint relative interiors. Therefore, since one of these sets has nonempty 
interior, there is a closed hyperplane in R x X separating them. This 
hyperplane cannot be vertical because otherwise its vertical projection 
onto X would separate C and D. Since the hyperplane is not vertical, it 
can be represented as {(r, x) e R x X: (x; x~> - r = c) for some x~ e X* 
and c € R. Now since [g, D] lies below this hyperplane but is arbitrarily 
close to it; we have 

c == inf [(x, x~> - g(x)] = g*(X&). 
xeD 

Likewise, 
c == sup [<X, X~> - f(x) + Il] = f*(x~) + Il. 

xeC 

Thus Jl = g*(x~) - f*(x~). 
If the infimum Il on the left is achieved by some Xo e C ("\ D, the sets 

[f - Jl, C] and [g, D] have the point (g(xo), xo) in common and this 
point lies in the separating hyperplane. I 

In typical applications of this theorem, we consider minimizing a convex 
functional f on a convex domain D; the set D representing constraints. 
Accordingly, we take C = X and 9 = 0 in the theorem. Calculation of f* 
is itself an optimization problem, but with C = X (t is unconstrained. 
Calculation of g* is an optimization problem with a linear objective 
functional when 9 = O. 

Example 1. (An Allocation Problem) Suppose that there is a fixed quan­
tity Xo of some commodity (such as money) which is to be allocated among 
n distinct activities in such a way as to maximize the total return from 
these activities. We assume that the return associated with the i-th activity 
when allocated XI units is ;."JXI) where g/, due to diminishing marginal 
returns, is assumed to be an increasing concave function. In these terms 
the problem is one of finding x ::= (X., xz • ... , xn) so as to 

(1) {ma~imize g~x) = tlg/(X/) 

subject to LXI == Xo, XI ~ 0 i = 1,2, ... , n. 
1=1 ' 
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To solve this problem by conjugate functionals, we set D equal to the 
positive orthant,Jequal to the zero functional, and C = {x: L;'= 1 Xi = xo}. 
The functional conjugate to f is (for Y = (YI' Y2 , ... , Yn» 

j*(y) = sup y'x. 
I:Xi=,xO 

This is finite only jf Y = A(I, I, ... , I) in which case it is equal to AXo· 
Thus 

C*={Y:Y=A(I, 1, ... , I)} 

f*(A(l, 1, ... , 1, 1» = AXo . 

Also, for each i we define the conjugate functions (of a single variable) 

(2) gi(y/) = inf [Xi y/ - g/(x/)] x,.,o 
and it is clear that· 

n 

g*(y) ::;:: I gi(y/). 
i= 1 

The problem conjugate to (1) is therefore 

(3) min [AXo - ± gi(A)]. 
" i= 1 

In this form we n01le that to solve the allocation problem requires 
evaluation of the conjugate functions 91 and then solution of (3) which is 
minimization with respt:ct to the single variable A. Once the optimal value 
of A is determined the x;'s which solve (1) can be found to be those which 
minimize (2) with each Yi = A. 

This analysis can be modified in order to apply to a multistage allocation 
problem where there is the possibility of investment growth of uncom­
mitted resources. See Problem 19. 

Example 2. (Horse-Racing Problem) What is the best way to place bets 
totaling Xo dollars in a race involving n horses? Assume we know Pi' the 
probability that the i-th horse wins, and s/, the amount that the rest of 
the public is betting on the i-th horse. The track keeps a proportion 1 - C 
of the total amount belt (0 < I - C < 1) and distributes the rest among 
the public in proportion to the amounts bet on the winning horse. 

Symbolically, if we bl~t Xj on the i-til horse, i = 1, 2, ... , n, we receive 

c(xo+ ts/)~ 
1=1 Sj + Xi 
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if the j·th horse wins. Thus the expected net return, R, is 

(4) R = C Xo + L 51 L _'_I - Xo. ( n){ n p.x.} 
I 1=1. i'=1 51 + XI 

Our problem is to find Xi' i:::::: 1,2, ... , n, which maximize R subject to 
n 

(5) L XI::::: Xo, Xi;::: 0, i = 1,2, ... , n 
1=1 

or, equivalently, to maximize 

(6) 

subject to (5), where 

gi(Xi)::::: Pi XI . 
51 + XI 

This problem is exactly the type treated in Example I since each gj is 
conCave for positive Xi (as can be verified by observing that the second 
derivative is negative). Solution to the problem is obtained by calculating 
the functions conjugate to the g/s. 

A typical gi is shown in Figure 7.13. Its slope at Xi::::: 0 is Pi/SI and it 
approaches the value PI as XI ~oo. The value of the conjugate functional 
g~ at A is obtained by finding the lowest line of slope ..1. which lies above gj. 
It is clear from the diagram that forA ;::: Pi/SI, we have gt(),) = 0, and that 
forA < 0, gt(..1.) is not defined. For 0 < ..1. < pdSI' we have 

(7) g,/,(..1.) = min [..1.Xi - Olxj)J. 
,,/>0 

Pi 

------~------------------------~Xi 

Figure 7.13 
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Performing the minimization by differentiation, we have the equation 

A _ Si Pi 

- (SI + X/)2 

or 

(8) 

Substitution back into (7) yields 

(9) 

for 0< A < Pi 
Si 

p. 
for A ;;::: ....! 

s· I 

where XI is determined from equation (8). 
We can now deduce the form of the answer. Suppose that A has been 

found from (3). To simplify the notation, rearrange the indices so that 
Pl/SI > P2/S2 > .. , > Pn/sn (assuming strict inequality). For the given A, 
we define m as the largest index for which pt/s, :?! ).. Then, from equations 
(8) and (9), our solution may be written 

(10) 
for i = 1,2, ... , m 

for i = m + 1, ... , n. 

The parameter A in this section can be found from (3) or from the constraint 
(5). In other words, A is chosen so that 

(11) 

Now SeA) is easily verified to be continuous and S(O) = 00, S( (0) = O. Thus 
there is a A satisfying (11). 

Note that for small XCI (xo < < max Sj), the total amount should be 
b~t on a single horse, the horse corresponding to the maximum p;/Sj, 
or equivalently, the maximum Pi ri where rj := C Lj Sj/sl is the track odds. 

Example 3. Consider the minimum energy control problem discussed in 
Sections 3.10 and 6.10. We seek the element U E L 2 [O, I] minimizing 

1 

feu) = t t u2(t) dt, 
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while satisfying the linear constraints 

Ku=c 

where K: L2[0,' 1] -+ En. 
In Theorem 1, let C = L2 [O, 1], 9 = 0, and D = {u: Ku = c}. We 

assume that Dis nonempty. Then we can readily verify that 

C* =L2 [O, 1] 

and 

1 

f*<u*) = t fo [U*(t)]2 dt. 

Since 9 = 0, the conjugate functional of the set D is equal to the support 
functional. Thus 

D* = {u* ; u* = K*a, a e En} 

and g*(K*a) = (a I c). 
The dual problem is therefore the finite-dimensional problem in the 

vector a: 

ma {(a I c) - !(K*a I K*a)} 

which is solved by finding the n vector a satisfying 

KK*a = c 

where KK* is an n x n matrix. 
Finally, the solution to the original problem can be found in terms of 

the solution of the dual by application of the second part of Theorem 1. 
Thus . 

Uo = K*a. 

*7.13 Min-Max Theorem of Game Theory 

In this section we briefly introduce the classical theory of games and prove 
the fundamental min-max theorem. Our purpose is to show that the 
min-max theorem can be regarded as an example of the Fenchel duality 
theorem. 

Let X be a normed space and X* its normed dual. Let A be a fixed 
subset of X and B a fixed subset of X*. In the form of game that we 
consider, one player (player A) selects a vector from his strategy set A 
while his opponent (player B) selects a vector x* from his strategy set B. 
When both players have selected their respective vectors, the quantity 
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(x, x*) is computed and player A pays that amount (in some appropriate 
units) to player B. Thus A seeks to make his selection so as to minimize 
(x, x"'> while B seeks to maximize (x, x"'>. 

Assuming for the moment that the quantities 

fJ,0 = min max (x, x"'> 
xeA xOeB 

fJ,0 = max min (x, x"'> 
xOeB xeA 

exist, we first take the viewpoint of A in this game. By selecting x E A, he 
loses no more than max (x, x"'>; hence, by proper choice of x, say xo, 

x"eB 
he can be assured oflosing no more than fJ,0. On the other hand, player B 
by selecting x'" E B, wins at least min (x, x"'>; therefore, by proper choice 

xeA 

of x"', say X6, he can be assured of winning at least fJ,o. It follows that 
fJ,0 ~ (xo, X6> :s;; /1-0, and the fundamental question that arises is whether 
fJ,o = fJ,0 so that there is determined a unique pay-off value for optimal 
play by both players. 

The most interesting type of game that can be put into the form out­
lined above is the classical finite game. In a finite game each player has a 
finite set of strategies and the pay-off is determined by a matrix Q, the 
pay-off being qij if A uses strategy i and B uses strategy j. For example, 
in a simple coin-matching game, the players independentlY select either 
" heads" or " tails." If their choices match, A pays B 1 unit while, if they 
differ, B pays A 1 unit. The pay-off matrix in this case is 

Q = [ 1 -1] 
-1 1· 

Finite games of this kind usually do not have a unique pay-off value. 
We might, however, consider a long sequence of such games and" ran­
domized" strategies where each player determines his play in anyone 
game according to a fixed probability distribution among his choices. 
Assuming that A has n basic strategies, he selects an n vector of probabili­
ties x = (Xl' X2' ••• , xn) such that Xi;::: 0, 2:i,'1 Xi = 1. Likewise, if B has m 
strategies, he selects Y = (YI' Y2 , ... , Ym) such that Yi ;::: 0, Ii"= 1 Yi = 1. The 
expected (or average) pay-off is th.en (x I Qy). 

DefiningA = (x :XI~ O,LI'= 1 XI = I} c En,andB = {x'" :x'" = QY'Yi;::: 0, 
Liz 1 YI = I} c En, the randomized game takes the standard form given at 
the beginning of the section. Note that A and B are both bounded closed 
convex sets. Other game-type optimization problems with bilinear objec­
tives other than the classical randomized finite game also take this form. 

We now give a simple proof of the min-max theorem based on duality. 
For simplicity, our proof is for reflexive spaces, although more general 
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versions of the result hold. For the generalizations, consult the references 
at the end of the chapter. 

Theorem 1. (MiniMax) Let X be a reflexive normed space and let A and B 
be compact convex subsets of X and X*, respectively. Then 

min max (x, x*) = max min (x, x*). 
"eA "oeB "oeB "eA 

Proof. Define the functional f on X by 

f(x) = max (x, x*). 
"Oe B 

The maximum exists for each x e X since B is compact. The functional is 
easily shown to be convex Ilnd continuous on X. We seek an expression for 

min f(x) 
"sA 

which exists by the compactness of A and the continuity of f We now 
apply the Fenchel duality theorem with the associations: f -+ J, C -+ X, 
g -. 0, D -. A. We have immediately: 

(1) 

(2) 

D*=X* 

g*(x*) = mill (x, x*). 
"eA 

We claim that furthermore 

(3) 

(4) 

C* =B 

f*(X*) = o. 
To prove (3) and (4), let x! ¢ B, and by using the separating hyperplane 
theorem, let Xl e X and IX be such that (XI' xi) - (XI' x*) > IX > 0 for 
all x* E B. Ther. (x, xi> - max (x, x*) can be made arbitrarily large by 

"Oe B 

taking x = kXl with k > 0. rhus 

sup [(x, xi) - f(x)] == 00 

" 
and xi ¢ C*. 

Conversely, if x! E B, then (x, xi) - max (x, x*) achieves a maximum 
II'&B 

value of 0 at x = 9. This establishes (3) and (4). 
The final result follows easily from the equality 

minf(x) = max g*(x*) = max min (x, x*). I 
""A ,,·eBnXo "oeB "eA 
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An interesting special case of the min-max theorem is obtained by 
taking B to be the unit sphere in X*. In that case we obtain 

min Ilxll = max - h(x*) 
"eA 11"*11 s I 

where h is the support functional of the convex set A. This result is the 
duality theorem for minimum norm problems of Section 5.8. 

7.14 Problems 

1. On the vector space of continuous functions on [0, 1], define 

f(x) = max x(t). 
OSrSI 

Determine for which x the Gateaux differential l>j(x; h) exists and is 
linear in h. 

2. Repeat Problem 1 for 
I 

f(x)::; t Ix(t)1 dt. 

3. Show that the functional 

if XI = 0 

is Gateaux differentiable but not continuous at XI = Xl = o. 
4. On the space X = C [0, 1], define the functional f(x) = [X(!)]l. Find 

the Frechet differential and Frechet derivative off 
5. Let qJ be a function of a single variable having a continuous derivative 

and satisfying IqJWI < Klel. Find the Gateaux differential of the 
functionalj(x) = Ir; I qJ(e i) where X = gil Ell. Is this also a Frechet 
differential? 

6. Suppose the real-valued functionalj defined on an open subset D of a 
normed space has a relative minimum at Xo E D. Show that ifjis twice 
Gateaux differentiable at xo , then (h,f"(xo )h) ~ 0 for all hEX. 

7. Let f be a real-valued functional defined on an open region D in a 
normed space X. Suppose that at Xo E D the first Frechet differential 
vanishes identically on X; within a sphere, S(xo, e), f"(x) exists 
and is continuous in x; and the lower bound of (h,J"(xo)h) for 
IIhll = 1 is positive. Show that f obtains a relative minimum at Xo. 

8. Let A be a nonempty subset of a normed space X and let Xo EA. 
Denote by C(A, xo} the closed cone generated by A - Xo, i.e., the 
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intersection of all closed cones containing A - Xo' The local closed 
cone of A at Xo is the set 

LC(A, xo) == n C(A Ii N, xo) 
N e.f' 

where.¥ is the class of all neighborhoods of Xo. Suppose that over A 
the Frechet differentiar,;e functional f achieves a minimum at Xo. 
Show that 

9. In some problems in the calculus of variations, it is necessary to 
consider a broader class of functions than usual. Suppose that we 
seek to extremize 

b 

J = f P[x, x, t] dt 
a 

among all functions x for which x(a) = A, x(b) = B and which have 
continuous derivatives on [a, b] except possibly at a single point in 
[a, b]. If the extremum has a continuous derivative except at C E [a, b], 
show that Fx = dF;i;/dt on the intervals [a, c) and (c, b] and that the 
functions F;i; ,and F - XP;i; are continuous at c. These are called the 
Weierstrass-Erdman corner conditions. Apply these considerations to 
the functional 

x(-l) = 0, x(l) = 1. 

10. Consider the effect of an additional source of constant income in the 
estate-planning problem. 

11. LetfI' fl' ... ,In be linearly independent linear functionals on a vector 
space X. Show that there are n elements Xl> Xl, ••• , Xn in X such that 
the n x n matrix [/i(x})] is nonsingular. 

12. Formulate and solve the isoperimetric problem of Example I of 
Section 7.7 by using polar coordinates. 

13. Solve the candidates allocation problem described in Chapter 1. 
14. Let X = L 2 [O, 1] and define f(x) = SA (tx2(t) + 1x(t)1} dt on X. Find 

the conjugate functional off. 
15. Exhibit a convex set C having the property that the convex conjugate 

functional of 0 over C is not equal to the negative of the concave 
conjugate functional of 0 over C. 

16. Let M be a nonempty closed convex set in R x X, and assume that 
there is at least one nonvertical hyperplane containing M in one of its 
half-spaces. Show that for any (r o. xo) ¢ M there is a nonvertical hyper-



§7.14 PROBLEMS 211 

plane separating (ro, xo) and M. Hint: Consider convex combinations 
of hyperplanes. 

17. Let f be a convex functional on a convex set C in a normed space 
and let [1*, C*] = [f, C]*. For x E C, x* E C*, deduce Young's 
inequality 

(x, x*) !;,f(x) + f*(x*). 

Apply this result to norms in Lp spaces. 
18. Derive the minimum norm duality theorem (Theorem 1, Section 5.8) 

directly from the Fe:nchel duality theorem. 
19. Suppose a fixed quantity Xo of resource is to be allocated over a given 

time at n equally spaced time instants. Thus XI !;, Xo is allocated first. 
The remaining resource Xo - XI grows by a factor a so that at the 
second instant X2 s; a(xo - XI) may be allocated. In general, the 
uncommitted resource grows by the factor a between each step. Show 
that a sequence of allocations {xiH= I' Xi ;;:: 0 is feasible if and only if 

an-ixi + an-2x2 + '" + aXn_ 1 + xn!;, an-Ixo' 

Hence, show how to generalize the result of Example 1, Section 7.12, 
to multistage problems. 

20. The OWner of a small food stand at the beach is about to order his 
weekend supply of food. Mainly, he sells' ice cream and hot dogs 
and wishes to optimize his allocation of money to these two items. 
He knows from past experience that the demands for these items 
depend on the weather in the following way: 

Ice cream 
Hot dogs 

Hot Day 

1000 
400 

Cool Day 

200 
200 

He believes that a hot or a cool day is equally probable. Anything he 
doesn't sell he may return for full credit. His profit on ice cream is 
10 cents and on hot dogs it is 30 cents. He, of course, wishes to 
maximize his expected profit while remaining within his budget of 
$100. Ice cream costs him 10 cents and hot dogs 20 cents. 
(a) Formulate his problem and reduce it to the form 

maximizefl(xl) + fix2) 
subject to XI + X2 !;, Xo, XI ;;:: 0, X2 ;;:: O. 

(b) Solve the problem using conjugate functionals. 
21. Consider a control system governed by the n-dimensional set of 

differential equations 

x(t) = Ax(t) + hu(t) 
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which has solution 

T 

x(T) = <I>(T.)x(O) + fo <I>(T - t)bu(t) dt, 

where <I>(t) is a fundamental matrix of solutions. Using conjugate 
function theory and duality, find the control u minimizing 

T 

J = tllx(T)ll l + t So u2(t) dt. 

Hint: Assume first that x(T) is known and reduce the problem to a 
finite-dimensional one. Next optimize x(T). Alternatively, formulate 
the problem in E" X L2[O, T]. 
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8 

GLOBAL THEORY OF 
CONSTRAINED OPTIMIZATION 

8.1 Introduction 

The general optimization problem treated in this book is to locate from 
within a given subset of a vector space that particular vector which mini­
mizes a given functional. In some problems the subset of admissible vec­
tors competing for the optimum is defined explicitly, as in the case of a 
given subspace in minimum norm problems; in other cases the subset of 
admissible vectors is defined implicitly by a set of constraint relations. In 
previous chapters we: considered examples of both types) but generally we 
reduced a problem with implicit constraints to one with explicit constraints 
by finding the set of solutions to the constraint relations. In this chapter and 
the next we make a more complete study of problems with implicit Con­
straints defined by nonlinear equality or inequality relations. 

Deservedly dominating our attention) of course, are Lagrange multipliers 
which somehow almost always unscramble a difficult constrained problem. 
Although we encountered Lagrange multipliers at several points in previous 
chapters) they were treated rather naively as a convenient set of numbers or 
simply as the result of certain duality calculations. In a more sophisticated 
approach) we do not speak of individual Lagrange multipliers but instead of 
an entire Lagrange mUltiplier vector in an appropriate dual space. For 
example, the problem 

(1) {
minimize f(x) 
subject to H(x) = e, 

where H is a mapping from a normed space X into a normed space Z, has 
Lagrangian 

L(x, z*) = f(x) + (H(x), z*) 

and the Lagrange multiplier is some specific z* E Z*. (We also write the 
Lagrangian in the functional notation 

L(x) z*) = I(x) + z* H(x) 

since this is similar to the convention for the finite-dimensional theory.) 
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There are several important geometric interpretations of constrained 
problems and their corresponding Lagrange multipliers. For example, 
problem (1) can \,e viewed in the space X by studying the contours off, 
or in R x Xby studying the graph off Alternatively, however, the problem 
can be viewed in the constraint space Z or in R x Z, and these representa­
tions are in many respects more illuminating than those in the primal space 
X because the Lagrange multiplier is an element of Z * and appears directly 
as a hyperplane in Z. Lagrange multipliers cannot be thoroughly under­
stood without understanding each of these geometric interpretations. 

Because of the interpretation of a Lagrange multiplier as a hyperplane, 
it is natural to suspect that the theory is simplest and most elegant for 
problems involving convex functionals. Indeed this is so. In this chapter we 
therefore consider the global or convex theory based on the geometric 
interpretation in the constraint space where the Lagrange mUltiplier 
appears as a separating hyperplane. In the next chapter we consider the 
local theory and the geometric interpretation in the primal space X. 

8.2 Positive Cones and Convex Mappings 

By introducing a cone defining the positive vectors in a given space, it is 
possible to consider inequality problems in abstract vector spaces. 

Definition. Let P be a convex cone in a vector space X. For x, y E X, we 
write x ~ y (with respect to P) if x - yeP. The cone P defining this 
relation is called the positive cone in X. The cone· N = - P is called the 
negative cone in X and we write y ~ x for y - x e N. 

For example, in E" the convex cone 

(1) P = {xeE": x = (el , e2'"'' e,,); el ~ o for all i} 

dt:@es the ordinary positive Jrthant. In a space of functions defined on an 
interval of the real line, say [tu 12], it is natural to define the positive cone 
as consisting of all functions in the space that are nonnegative everywhere 
on the interval [t1> 12], 

We can easily verify that x ;::= y, y;::= z implies x;::= z and, since 0 e P, 
x ;::= x for all x e X. 

In a normed space it is sometimes important to define the positive cone 
by a closed convex cone. For example, in En the cone defined by (1) is 
closed, but if one or more of the inequalities in the description of the set 
were changed to strict inequality (and the point 0 adjoined), the resulting 
cone would not be closed. 

In the case of a normed space, we write x > () if x is an interior point of 
the positive cone P. For many applications it is essential that P possess an 
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interior point so that the separating hyperplane theorem can be applied . 
. Nevertheless, this is not possible in many common normed spaces. For 
instance, if X = Ll [11' t2 ] and P is taken as the subset of nonnegative 
functions on the interval [tl, t 2], we can easily show that P contains no 
interior point. On the other hand, in C[tl , t2 ] the cone of nonnegative 
functions does possess interior points; for this reason the space C [fl' t2 ] is 
of particular interest for problems involving inequalities. 

Given a normed space X together with a positive convex cone Pc X, it is 
natural to define a corre:sponding positive convex cone p$ in the dual space 
X* by 

(2) p$ = {x* E X*: <x, x*) ~ 0 for all x E P}. 

Example 1. If P is taken as given by (I), then p$ consists of all linear 
functionals represented by elements of En with nonnegative components. 

Example 2. If in the space C [t l' t 2] p is taken as the set of all nonnegative 
continuous functions on [tl, t2], then p$ consists of all linear functionals 
on C[tl' t2 ] represented by functions v of bounded variation and non­
decreasing on [tl> t2l 

We can easily show thatp$ is closed even if p is not. If P is closed, P and 
p$ are related through the following result. 

Proposition 1. Let the positive cone P in the normed space X be closed. If 
x E X satisfies 

<x, x*) ~ 0 for all x* ~ e, 
then x ~ e. 

Proof Assume x \~ P. Then by the separating hyperplane theorem 
there is an x* E X* such that <x, x*) < <p, x*) for all pEP. Since P 
is a cone, <p, x*) can never be negative because then <x, x*) > <ap, x*) 
for some a> O. Thus x* eP$. Also, since inf <p, x*) = 0, we have 

peP 

(x, x*) < O. I 
Since we have generalized the notion of inequality between vectors, it is 

possible to introduce a general definition of convexity for mappings. 

Definition. Let X be a vector space and let Z be a vector space having a 
cone P specified as the positive cone. A mapping G : X -+ Z is said to be 
convex if the domain n of G is a convex set and if G(exXl + (1 - ex)x2 ) :::;; 

aG(x l ) + (1 - 0:)G(X2) for all Xl> X2 E n and all ex, 0 < 0: < 1. 

We note that convexity is not an intrinsic property of a mapping but is 
dependent on the specified positive cone in the range space. 
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The following elementary property of convex mappings is obviously of 
particular interest in constrained optimization problems. 

Proposition 2. Let q be a convex mapping as in the last definition. Then for 
every Z EZ the set {x: x EO, Cfx)::;; z}is convex. 

8.3 Lagrange Multipliers 

The basic problem considered in the next few sections is: 

{
minimize f(x) .. . " 

(1) subject to x E 0, G(x) :s: 0, 

where ° is a convex subset of a vector space X, f is a real-valued convex 
functional on 0, and G is a Convex mapping from ° into a normed space Z 
having positive cone P. Problem (1) above is referred to as the general 
convex programming problem. 

We analyze problem (1) and develop the Lagrange multiplier theorem 
essentially by imbedding it in the family of problems 

minimize f(x) 
subject to x E 0, G(x) ::;; z 

where z is an arbitrary vector in Z. The solution to these problems depends 
on z and it is an examination of this dependency that guides our analysis. 

In view of the above remark, we define the set r c: Z as 

r = {z: There is an x EO with G(x) ::;; z}. 

The set r is convex since ZI' Z2 E r implies the existence of Xl' X2 E n 
with G(XI):S;; Zl' G(X2):S;; Z2; hence, for any (x, 0 < (X < 1, G«(xxi + 
(l - (X)x2)::;; (XZl + (1 - (X)Z2 which implies (XZI + (l - (X)Z2 E r. 

On the set r, we define the primal functional w (which may not be 
finite) as 

w(z) = inf {I(x): x eO, G(x) ~ z}. 

The original problem (1) can be regarded as determining the single value 
ro«(). The entire theory of this chapter is based on a study of roo 
Proposition 1. The functional w is convex. 

Proof 

W«(XZI + (I - (X)Z2) = inf {f(x) : x E 0, G(x):s;; (XZI + (1 - (X)Z2} 

::;; inf {f(x) : x = (xXI + (I - (x)x;z , Xl EO, X2 E 0, 
G(Xl) :s;; Z1' G(X2) ::;; Z2} 

:s: (X inf {I(xl) : Xl E 0, G(Xl) :s;; Zl} 

+(1 - (X) inf {f(x2): X2 e.Q, G(X2) ~ Z2} 

:s;; (XW(ZI) + (1 - (X)W(Z2)' I 
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Proposition 2. The functional co is decreasing; i:e., if Zl ~ Z2' then 
CO(Zl) :$ CO(Z2)' 

Proof. This is immediate. I 
A typical co for Z on~: dimensional is shown in Figure 8.1. 

I' 

w(Z) 

o 

Fi~7ure 8.1 The primal functional 

Conceptually the Lagrange multiplier theorem follows from the simple 
observation that since co is convex, there is a hyperplane tangent to co at 
Z = e and lying below w throughout its region of definition. If one were 
to tilt his head so that the tangent hyperplane became the new horizontal, 
it would appear that co was minimized at e or, said another way, by adding 
an appropriate linear functional <z, Z6) to co(z), the resulting combination 
co(z) + <z, Z6) is minimized at Z = e. The functional Z6 is the Lagrange 
multiplier for the problem; the tangent hyperplane illustrated in Figure 8.1 
corresponds to the element (1, zri) E R x Z*. 

The discussion above is made precise by the following theorem. 

Theorem 1. Let X be a linear vector space, Z a normed space, n a convex 
subset of X, and P the positive cone in Z. Assume that P contains an interior 
point. 

Letfbe a real-valued convexfunctional on nand G a convex mapping from 
n into Z. Assume the existence of a point XI E n jor which G(XI) < () (i.e., 
G(xl ) is an interior point oj N = -P). 

Let 

(2) 1-10 = infj(x) subject to x E n, G(x) ::;; e 
and assume 1-10 is finite. Then there is an element z~ ;;:: e in Z * such that 

(3) Po = inf {f(x) + <G(x), Z6)}. 
xeO 
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Furthermore, ~f the infimum is achieved in (2) by an Xo E n, G(xo) :::;; e, it is 
achieved by Xo in (3) and . 

(4) (G(xo), z~)=O 

Proof. In the space W = R x Z, define the sets 

A = {(r, z) : r '?:.!(x), z '?:. G(x) for some x E n} 

B = {(r, z) : r:::;; JJ.o, z:::;; e}. 

Since! and G are convex, both A and B are convex sets. (It should be 
noted that the set A is the convex region above the graph of the primal 
functional co.) The definition of JJ.o implies that A contains no interior points 
of B. Also, since N contains an interior point, the set B contains an interior 
point. Thus, according to the separating hyperplane theorem, there is a 
nonzero element w~ = (ro , z~) E w* such that 

rOr1 + (Zlo z~) '?:. rOr2 + (Z2' z~) 

for (rlo Zl) E A, (rz, zz) E B. 
From the nature of B it follows immediately that w~ '?:. e or, equivalently, 

that ro '?:. 0, z~ '?:. e. We now show that ro > O. The point (JJ.o, e) is in B; 
hence 

ror + (z, z~) '?:. roJJ.o 

for all (r, z) EA. If ro were zero, it would follow in particular that 
(G(Xl)' z~) ~ 0 and that zci :p. e. However, since G(Xl) is an interior point 
of N and z~ '?:. e, it follows that (G(X1), z~) < 0 (the reader should verify 
this), which is a contradiction. Therefore, ro > 0 and, without loss of 
generality, we may assume ro = 1. 

Since the point (JJ.o, e) is arbitrarily close to A and B, we have (with ro = 1) 

JJ.o = inf [r + (z, z~)] :::;; inf[f(x) + (G(x), z~)] 
(r.z)eA xeD 

:::;; inf f(x) == JJ.O . 
xeD 

G(x):S8 

Hence the first part of the theorem is proved. 
If there exists an Xo such that G(xo) :::;; e, JJ.o = !(xo), then 

JJ.o :::;;!(xo) + (G(xo), 4) :::;;!(xo) = JJ.o 

and hence (G(xo), z~) = O. I 
The proof of Theorem 1 depends partially on the convexity of set A. 

This set, being the region above the graph of the primal functional co, is 
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ConVex if and only if co is convex. This in turn is implied by, but weaker 
than, the assumption of convexity off and G. 

Aside from convexity there are two important assumptions in Theorem 1 
that deserve comment: the assumption that the positive cone P contains an 
interior point and the assumption that G(X'l) < e for some Xl E n. These 
assumptions are .introduced to guarantee the existence of a nonverticat" 
separating hyperplane. The requirement that the positive cone possess an 
interior point is fairly severe and apparently cannot be completely 
omitted. Indeed, in many applications this requirement is the determining 
factor in the choice of space in which a pro'blem is formulated and, of 
cou~se, C[a, b] is a natural candidate for problems involving functions on 
the interval [a, b]. The condition G(xl ) < e is called a regularity condition 
and is typical of the assumptions that must be made in Lagrange multiplier 
theorems. It guarantees that the separating hyperplane is nonvertical. 

We have considered only convex constraints of the form G(x) ~ e. An 
equality constraint H(x) = e with H(x) = Ax - b, where A is linear, is 
equivalent to the two convex inequalities H(x) ~ e and - H(x) ~ e and can 
thus be cast into the Dorm G(x) ~ e. One expects then that, as a trivial 
corollary to Theorem 1, linear equality constraints can be included together 
with their resulting Lagrange multipliers. There is a slight difficulty, how­
ever, since there never exists an Xl which simultaneously renders H(xt) < e 
and - H(xl ) < e. A composite theorem for inequality constraints and a 
finite number of equality constraints is given in Problem 7. 

Theorem 1 is a geometric version of the Lagrange multipliet theorem for 
convex problems. An equivalent algebraic formulation of the results is 
given by the following saddle-point statement. 

Corollary 1. Let everything be as in Theorem 1 and assume that Xo achieves 
the constrained minimum. Then there is a Z& ~ e such that the Lagrangian 

L(x, z*) = f(x) + <G(x), z*) 

has a saddle point at Xo ,. z&; i.e., 

L(xo, z*) ~ L(xo , z~) ~ L(x, z~) 

for all X En, z* ~ e. 
Proof Let z~ be ddined as in Theorem 1. From (3) we have imme­

diately L(xo, Z&) ~ L(x, z;n. By equation (4) we have 

L(xo, z*) - L(xo, z~) = <G(xo), z*) - <G(xo), z~) = <G(xo), z*) ::; O. I 

8.4 Sufficiency 

The conditions of convexity and existence of interior points cannot be 
omitted if we are to guarantee the existence of a separating hyperplane in the 
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space R x Z. If, however, the appropriate hyperplane does exist, despite 
the absence of these conditions, the Lagrange technique for location of the 
optimum still applies. The situation is illustrated in Figure 8.2, where again 

1 

co{z) = inf {I(x) : x en, G(x)::s;; z} 

w(z) w(z) 

--------~e------------~z --------e~----------~z 

(a) (b) 

Figure 8.2 Nonconvexity 

is plotted, but the convexity of co is not assumed. If, as in Figure 8.2a, 
an appropriate hyperplane exists, it is fairly clear that f(x) + (G(x), z~> 
attains a minimum at xo' In Figure 8.2b, no supporting hyperplane exists 
at z = e and the Lagrange statement cannot be made. 

These observations lead to the following sufficiency theorems. 

Theorem 1. Let f be a real~valued functional defined on a subset n of a 
linear space X. Let G be a mapping from n into the normed space Z having 
nonempty positive ;;one P. 

Suppose there exists an elen-ent z~ e Z*, z~ ~ 0, and an element XoE n 
such that 

f(xo) + < G(xo) , z~> ::s;; f(x) + < G(x), z~> 
for all x E n. Then Xo solves: . 

minimize f(x) 
subject to G(x) ::s;; G(xo), x e n. 

Proof Suppose there is an Xl en with !(Xl) <f(xo), G(Xl) ::s;; G(xo). 
Then, since z~ ~ e, it follows that 

< G(x1), z~> ~ < G(xo) , z~> 
and hence that 

[(Xl) + \v(Xl ), zo> < f(xo) + <.:G(xo), zo> 
which contradicts the hypothesis of the theorem. I 
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Theorem 2. Let X, Z, n, P, f, G be as above and assume that P is 
closed. Suppose there exIsts a zri E Z *, zri ~ e, and an Xo E n such that the 
Lagrangian L(x, z*) = f(x) + (G(x), z*) possess a saddle point at xo, zri; 
i.e., 

L(xo, z*) ~ L(xo , z~) ~ L(x, z~), 

for all x e n, z* ~ 8. Then Xo solves: 

minimize f(x) 
subject to G(x) ~ 8, xen. 

Proof The saddle-point condition with respect to z* gives 

(G(xo), z*) :::;; (G(xo), zri) 
for all z* ~ 8. Hence, in particular, for all zi ~ 8 

(G(xo), zt + z~) :::;; (G(xo), z~ ) 
or 

(G(xo), z!) :::;; O. 

We conclude by Proposition I, Section 8.2, that G(xo) ~ 8. The saddle­
point condition therefore implies that (G(xo), zri) = O. 

Assume now that Xl e n and that G(XI) ~ 8. Then, according to the 
saddle-point condition with respect to x, 

f(xo) =f(xo) + (G(xo), z~) ~f(XI) + (G(XI)' z~) ~f(XI)' 

Thus Xo minimizesf(x) subject to X En, G(x) ~ 8. I 
The saddle-point condition offers a convenient compact description of 

the essential elements of the Lagrangian results for convex programming. 
Iff and G are convex, the positive cone P c Z is closed and has nonempty 
interior, and the regularity condition is satisfied, then the saddle-point 
condition is necessary a,nd sufficient for optimality of Xo . 

8.5 Sensitivity 

The Lagrange theorems of the preceding sections do not exploit all of the 
geometric properties evident from the representation of the problem in 
R x Z. Two other properties, sensitivity and duality, important for both 
theory and application, are obtainable by visualization of the functional 
w. 

For any Zo the hyperplane determined by the Lagrange multiplier for the 
problem 

minimize f(x) 
subject to G(x) ~ Zo , xen 
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is a support hyperplane at ro(zo), and this hyperplane serves as a lower 
bound for ro as ill~lstrated in Figure 8.3. This observation produces the 
following sensitivity theorem. 

! 

w(::) 

--~z~o---+o----------------~Z 

Figure 8.3 Sensitivity 

Theorem 1. Let f and G be convex and suppose Xo., Xl are solutions to the 
problems 

minimize f(x) 
subject to x e nand G(x)::;; zo. G(x)::;; Zl. 

respectively. Suppose zri. zi are Lagrange multipliers corresponding to these 
problems. Then 

Proof The Lagrange multiplier zri makes 

!(xo) + (G(xo) - Zo, z~> ::;;!(x) + (G(x) - ZO, z~>, 

for all x en. In particular, setting x = Xl and taking account of (G(xo) -
zo, z~> = 0 yields 

!(xo) - !(Xl) ::;; < G(Xl) - Zo, zri> ::;; (z 1 - Zo, z~>. 

A similar argument applied to Xl' zT produces the other inequality. I 
A statement equivalent to that of Theorem 1 is that 

ro(z) - ro(zo) ~ (zo - z, z~>. 

Hence, if the fun.;;;tional ro is Frechet differentiable at Zo, it follows (see 
Prql>l .. ..,. 9) thAt 

'( ) - * ro Zo - -zo. 
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Therefore, the Lagrange: multiplier Z6 is the negative of the first-order 
sensitivity of the optimal objective with respect to the constraint term Zo • 

8.6 Duality 

Consider again the basic convex programming problem: 

minimize f(x) 
subject to G(x) ~ 0, XEn 

where/, G and n are convex. The general duality principle for this problem 
is based on the simple geometric properties of the problem viewed in R x Z. 
As in Section 8.3, we define the primal functional on the set r 
(1) w(Z) = inf {f(x) : G(x) ~ z, X En} 

and let flo = w(O). The duality principle is based on the observation that (as 
illustrated in Figure 8.4) flo is equal to the maximum intercept with the 

.-.,~-- w(z) ---
----~~------------~~z 

\ 
tI \ 

Figure 8.4 Duality 

vertical axis of all closed hyperplanes that lie below w. The maximum 
intercept is, of course, attained by the hyperplane determined by the 
Lagrange mUltiplier of the problem. 

To express the above duality principle analytically, we introduce the 
dual functional <p corresponding to (1) to be defined on the positive cone in 
Z* as 

(2) <p(Z*) =: inf [f(x) + < G(x), z*) J. 
xeO 

In general, cp is not finite throughout the positive cone in Z * but the region 
where it is finite is convex. 
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Proposition 1. The dual functional is concave and can be expressed as 

(3) q>(z*) = inf [w(z) + (z, z*)]. 
:er 

Proof The concavity of q> is easy to show and is left to the reader. For 
any z* ~ () and any z e r, we have 

q>(z*) = inf (f(x) + (G(x), z*)J ;S; inf {f(x) + (z, z*) : G(x);S; z, X E O} 
xell 

= w(z) + (z, z*). 

On the other hand, for any Xl EO we have, with Zl = G(Xl), 

f(xl) + (G(x1), z*> ~ inf {f(x) + (Zl> z*) : G(x);S; Zl' x eO} 

= W(Zl) + (Zl> z*) 
and hence 

q>(Z*) ~ inf [w(z) + (z, z*)]. 
zer 

Therefore, equality must hold in (3). I 
The element (1, z*) e R x Z * determines a family of hyperplanes in 

R x Z, each hyperplane consisting of the points (r, z) which satisfy 
r + (z, z*) = k where k is a constant. Equation (3) says that for k = q>(z*) 
this hyperplane supports the set [00, n, the region above the graph of w. 
Furthermore, at z = () we have r = q>(z*); hence, q>(z*) is equal to the 
intercept of this hyperplane with the vertical axis. It is dear then that the 
dual functional is precisely what is needed to express the duality principle. 

Referring to Section 7.10 we see that q> is essentially the conjugate 
functional of w. Unfortunately, as is often the case with theories that are 
developed independently and later found to be intimately linked, there is a 
discrepancy in sign convention between the dual functional and the con­
jugate functional but the essential concepts are identical. 

In view of the above discussion the following result establishing the 
equivalence of two extremization problems-the minimization of a convex 
functional and the maximization of a concave functional-should be self­
evident. 

Theorem 1. (Lagrange Duality) Let f be a real-valued convex functional 
defined on a convex subset n of a vector space X, and let G be a COnvex 
mapping of X into a normed space Z. Suppose there exists an Xl such that 
G(Xl) < e and that ito = inf {f(x) : G(x) ;S; e, x e n} is finite. Then 

(4) inf [(x) = max <p(z*) 
(1(X) SCI Z·~CI 

xd} 

and the maximum on the right is achieved by some z~ ~ 8. 
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If the infimum on the left is achieved by some Xo E fl, then 

<G(xo) , Z6) = 0 

and Xo minimizes f(x) + < G(x), z~), x E n. 
Proof For any z* 2'! 8 we have 

inf [J(x) + <G(x), z*)] S;; inf [J(x) + <G(x), z*)] s;; inf f(x) == J.lo· 
xen xen xen 

G(x) sO G(x) so 

Therefore, the right-hand side of the equation in the theorem statement is 
less than or equal to Ito. However, Theorem 1, Section 8.3, establishes the 
existence of an element Z6 which gives equality. The remainder of the 
theorem statement is givlen in Theorem 1, Section 8.3. I 

Since w is decreasing, w(8) ::s; w(z) for all z::S; 8; hence, an alternative 
symmetric formulation of (4) which emphasizes the duality (but which is 
one step removed from the original problem), is 

(5) min w(z) = max cp(z*). 
zso z*<!O 

As a final note we observe that even in nonconvex programming prob­
lems the dual functional can be formed according to (2). From the geo­
metric interpretation of cp in terms of hyperplanes supporting [w, r], 
it is clear that cp formed according to (2) will be equal to that which would 
be obtained by considering hyperplanes supporting the convex hull of 
[w, r]. Also from this interpretation it follows (provided cp(z*) is finite 
for some z* 2'! 8) that for any programming problem 

(6) max cp(z*) ::s; min w(z) 
z*<!O zso 

and hence the dual functional always serves as a lower bound to the value 
of the primal problem. 

Example 1. (Quadratic Programming) As a simple application of the 
duality theorem, we calculate the dual of the quadratic program: 

minimize lx'Qx - b'x 
subject to Ax S;; c 

where x is an n vector to be determined, b is an n vector, Q is an n x n 
positive-definite symmetric matrix, A is an m x n matrix, and c is an m 
vector. 

Assuming feasibility (i.e., assuming there is an x satisfying Ax < c), the 
problem is equivalent to 

(7) max min Hx'Qx - b'x + A.'[Ax - c]}. 
).2!O .~ 
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The minimization over x is unconstrained and is attained by 

x = Q -l(b - A').). 

Substituting this in Problem (7), the problem becomes 

max {-tA'PA. - A'd - tb'Q-1b}, 
).~o 

where 

Thus the dual is also a quadratic programming problem. Note that the dual 
problem may be much easier to solve than the primal problem since the 
constraint set is much simpler and the dimension is smaller if m < n. 

Example 2. (Quadratic Programming) Consider now the quadratic pro­
gramming problem: 

minimize tx' Qx - b' X 
subject to Ax ::s;; c, 

where Q is assumed to be only positive semidefinite rather than positive 
definite. The dual is again 

(8) max min {tx'Qx - b'x + A,[Ax - c]}, 
).~6 x 

but now the minimum over x may not be finite for every A. c; e. In fact, the 
minimization over; is finite if and only if there is an x ~atisfying 

Qx···b+A'A.=e 

and all x's satisfying this equation yield the minimum. With this equation 
substituted in (8), we obtain the dl.!al in the form 

maximize - A' c - tx' Qx 
subject to Qx - b + A'A. = e, 

where the maximum is taken with respect to both A and x. 

8.7 Applications 

In this section we use the theory developed in this chapter to solve several 
allocation and control problems involving inequality constraints. 

Although the theory of convex programming developed earlier does not 
require even continuity of the convex functionals involved, in most prob­
lems the functionals are not only continuous but Frechet differentiable. In 
such problems it is convenient to express necessary or sufficient conditions 
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in differential form. For this reason we make frequent use of the fol­
lowing lemma which generalizes the observation that if a convex funct,ion 
f on [0, ex::» achieves a minimum at an interior point Xo , then !'(xo) = 0, 
while if it achieves a minimum at Xo = 0, then !'(xo) ;:::: 0; in either case 
xo!,(xo) = 0. 

Lemma 1. Let f be a Frechet differentiable convex functional on a real 
normed space X. Let P be a convex cone in X. A necessary and sufficient 
condition that Xo E P minimize f over P is that 

(1) 

(2) 

(jf(xo; x) ;:::: 0 

of(xo; xo) = 0. 

all x E P 

Proof Necessity: If Xo minimizes/, then for any x E P we must have 

Hence 

(3) 

Setting x = xo/2 yields 

(4) 

while setting x = 2xo yields 

(5) 

Together, equations (3), (4), and (5) imply (1) and (2). 
Sufficiency: For xo, x E P and ° < IX < I we have 

or 

1 
f(x) - f(xo) ;:::: - [f(xo + IX(X - x o» - f(xo)]. 

IX 

As IX -+ ° +, the right sidle of this equation tends toward of(xo; x - xo); 
hence we have 

(6) f(x) - f(xo) ;:::: of(xo; x - Xo). 

If (1) and (2) hold, then of(xo; x - Xo) ;:::: ° for all x E P and, hence, 
from (6) 

f(x) - f(xo) ;:::: ° 
for all x E P. I 
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Note that the Frechet differentials can be replaced everywhere by 
Gateaux differentials in the lemma, provided the Gateaux differentials 
are linear. 

In many of the applications considered in this section, the unknown 
vector x is constrained to be positive so the constraint set n is a cone. In 
these cases, Lemma 1 is used to express the condition that/ex) + (G(x), z*) 
is minimized. 

Example 1. (Optimal Control) Consider a system governed by the set of 
differential equations 

(7) x(t) = A(t)x(t) + b(t)u(t), 

where x(t) is an n x 1 state vector, A(t) is an n x n matrix, bet) is an n x 1 
distribution matrix, and u(t) is a scalar control. 

Given the initial state x(to), we seek the control Uo minimizing 

(8) 
tl 

J = 1- I u2(t) dt, 
to 

while satisfying the terminal inequalities 

X(t1) ~ c, 

where c is a fixed n x 1 vector and t1 ;?! to is fixed. This problem might 
represent the selection of a thrust program for a rocket which must exceed 
certain altitude and velocity ~imits in a given time or the selection of a 
production program for a plant with constraints on the total amount 
produced in a given time. 

We can write the solution to equation (7) in the form 

I
t I 

x(t 1) == <1>(t1, to)x(to) + <1>(t1' t)b(t)u(t) dt, 
to 

(9) 

where <1> is the fundamental solution matrix of the corresponding homo­
geneous equation. We assume <1>(t1' t) and b(t) to be continuous. The 
original problem can now be expressed as: minimize 

subject to 

(10) Ku~d, 

where d = c - <1>(t1> to)x(to) and K is the integral operator defined as 

f
ll 

Ku = <1>(tl' t)b(t)u(t) dt. 
to 
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This is a convex programming problem defined on, say, L2 [tO , t1] with 
the constraint space being finite dimensional. Using the duality theorem, 
this infinite-dimensional problem can be reduced to a finite-dimensional 
one.1 

Denoting the minimum of (8) under the constraints (10) by 110' the 
duality theorem gives 

110 == max min {J(u) + X(d - Ku)}, 
).,,0 u 

where A is an n x 1 vector. More explicitly, 

(11) 110 = max min t[-!-u 2(t) - A'(J>(t 1 , t)b(t)u(t)] dt + Xd 
).,,0 u to 

and hence 

(12) 

where 

110 = max A'QA + It'd, 
).,,0 

t, 

Q = -1- f (J>(t j , t)b(t)b'(t)(J>'(tj> t) dt. 
to 

Problem (12) is a simple finite-dimensional maximization problem. Once 
the solution 11.0 is determined, the optimal control uo(t) is then given by the 
function that minimizes the corresponding term in (11). Thus 

uo(t) = Ao'(J>(tl, t)b(t). 

The Lagrange multiplier vector 11.0 has the usual interpretation as a sensi­
tivity. In this case it is the gradient of the optimal cost with respect to the 
target c. 

Example 2. (Oil Drilling) A company has located an underground oil 
deposit of known quantity IX. It wishes to determine the long-term oil 
extraction program that will maximize its total discounted profit. 

The problem may b(~ formulated as that of finding the integrable func­
tion x on [0, (0), repre:senting the extraction rate, that maximizes 

Ia<XlF[X(t)]V(t) dt 

subject to 

{"'x(t) dt::::;; IX, x(t) ~ o. 

1 A problem almost identical to this is solved in Section 7.12 by use of the Fenchel 
duality theorem. 



230 GLOBAL THEORY OF CONSTRAINED OPTIMIZATION g 

F[x] represents the profit rate associated with the extraction rate x, By 
assuming diminishing marginal returns, the function F can be argued to be 
strictly concave atld increasing on [0, co) with F[O] = O. We assume also 
that Fhas a continuous derivative. The" function vet) represents the discount 
factor and can be assumed to be continuous, positive, strictly decreasing 
toward zero, and integrable on [0, co). 

To apply the differentiability conditions, we first consider the problem 
with the additional restriction that x be continuous and x(t) = 0 for 
t ~ T where T is some fixed positive time. The constraint space Z then 
corresponds to the inequality g x dt :s; (X and is thus only one dimensional. 
The Lagrangian for this problem is 

(13) L(x, A) = (F[x(t)]V(t) dt - A[( x(t) dt - (X 1 
where the minus sign is used because we are maximizing a concave 
functional. In this case we want xo(t) ~ 0 and Ao such that 

min max L(x, A) = L(xo, Ao). 
),:1;0 X:1;O 

In view of the concavity of F and Lemma 1, maximization of L(x, Ao) over 
x ~ (J is equivalent to 

T 

(14) fa {Fx[xo(t)]v(t) - Ao}X(t) dt :s; 0 

for all x(t) ::::: 0, and 
T 

(15) fa {Fx[xo(t)]v(t) - AO}Xo(t) dt == 0 

where Fx is the derivative of F; 
It is clear that the solution will have Ao > 0; therefore we seek xo(t), AO' 

J.l.(t) satisfying, for t e [0, T], 
T 

(16) xo(t) ~ 0, Ao > 0, J.l.(t) ~ 0, J.l.(t)xo(t) = 0, faxo(t) dt = <x, 

(17) 

Since Fx is condnuous and strictly decreasing, it has an inverse Fx -1 which 
is continuous and strictly decreasing. From (16) and (17) we see immedi­
ately that on any interval Nhere xo(t) > 0 we have xo(t) = Fx -l{Ao/t>(t)} 
which is decreasing. Since we seek a continuous x, it follows that the 
maXimizing xo, if it exists, m'lst have the form 

to:::;; t:::;; T. 



§8.7 APPLICATIONS 231 

In this solution we may have to == T or, if to < T, continuity demands that 
Fx- 1{Ao/V(to)} = 0 and heillce that Ao = Fx[O]v(to). 

Defining 

J(t ) = ft o 
F - I {F x[O]v(to)} dt 

o 0 x v(t) , 

one can show (we leave it to the reader) that J is continuous and that lim 
to"" 0 

J(t 0) = 0 and lim J(t 0) = co. Hence, let us choose to such that J( t 0) = 0(, Then 
to-t- 00 

for T> to, the solution 

{

F; 1 {Fx[O]V(to») 
xo(t) = v(t) 

o 

o ::; t ::; to 

to ::; t ::; T 

satisfies (16) and (17). Since the Lagrangian is concave, these conditions 
imply that Xo is optimal for the problem on [0, T]. 

Given 8 > 0, however, any function y(t) for which 

(' y(t) dt = IX < co 

can be approximated by a continuous function x(t) vanishing outside a 
finite interval in such a way that 

(' {F[y(t)] - F[x(t)]} v(t)dt < e 
o 

and hence xo(t) is optimal with respect to this larger class. 
The Lagrange multiplier Ao in this case is the derivative of the total dis­

counted profit with respec:t to IX. 

Example 3. (The Farmer's Allqcation Problem) A farmer produces a 
single crop such as wheat. After harvesting his crop, he may store it or sell 
and reinvest it by buying additional land and equipment to increase his 
production rate. The farmer wishes to maximize the total amount stored 
up to time T. 

Letting 
x1(t) = rate of production 

X2(t) = rate of reinvestment 

X3(t) = rate of storage 
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changing the constraint 

to 

Xz(t) s Xl(t) + b(t - 't') 

where b is the delta function. According to the sensitivity result (which is 
exact for this problem), the corresponding change in the objective, total 
storage at t = T, is 

ill = (b(t - 't') dv(t) = dv(t) I 
o dt t"'! 

Thus dvldtlt=! represents the value, in units of final storage, of an oppor­
tunity to reinvest one unit of storage at time 't'. 

Example 4. (Production Planning) This example illustrates that the 
interior point assumptions in the Lagrange theorem can be important in 
even simple problems. Consider the following problem: 

1 

minimize 1- fo r2(t) dt 

subject to i(t) = ret), z(t)~ set), 

given z(O) > O. 
This problem may be regarded as a production-planning problem with 

no inventory costs but with known demand d(t) = s(t) (see Chapter 1). 
Thus at any t we must have 

z(o) + {r('t') d't' ~ {d('t') d't' 
o 0 

or, equivalently, z(t) ~ set). We solve this problem for the specific case: 

z(O) =! 

(

2t 
set) = 1 

O:::;;tS1-

-1<t:::;;1. 

Let us consider r as a member of a space X. The choice of X is somewhat 
free but we wish to choose it so that the corresponding constraint space Z 
can be taken to be CEO, 1]. In other words, we want a class of r's such that 

z(t) = z(O) + { reT) d't' 
• 0 

will be continuous. The choice X = L1[O, IJ is awkward because J& r2 dt 
does not exist for all r E L1[O, 1]. The choice X = CEO, 1] is feasible but, 
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as we see from Example 3, there may be no solution in this space. Two other 
possibilities are: (1) the space of piecewise continuous functions and (2) the 
space of bounded measurable functions. We may define the supremum 
norm on these last two spaces but this is unnecessary since Lemma 1 is 
valid for linear Gateaux differentials as well as Frechet differentials and 
this example goes through either way. Let us settle on piecewise continuous 
functions. 

The Lagrangian for this problem is 
1 1 

L(r, v) = t f r2(t) dt + f [set) - z(t)] dv(t), 
o 0 

where v E BV[O, IJ and is nondecreasing. We seek a saddle point ro ~ e, 
Vo ~ e. 

A more explicit formula for the Lagrangian is 
1 1 1 f 

L(r, v) = t fo r2(t) dt + fo [set) - z(O)J dv(t) - fa fa r(-c) dT dv(t) 

1 1 

= t fo r2(t) dt + fa [set) - z(O)J dv(t) 

1 ) 

+ fo r(t)v(t) dt - v(l) f~(t) dt. 

Using Lemma 1 to minimize L(r, vo) over r ~ e, we require that 

ro(t) + vo(t) - vo(l) ; 0 for all t 

ro(t)[ro(t) + vo(t) - vo(l)J = 0 for I' ~l t. 

Since set) S z(t) for all t, in order to maximize L(ro, v) we require that 
vo(t) varies only for those t with z(t) = set). 

The set offunctions satisfying these requirements is shown in Figure 8.5. 
Note that v is a step function and varies only at the single point t = 1. If a 
Lagrangian of the form 

1 1 

L(r, A) = t fo r2(t) dt + fo [set) - Z(t)]A(t) dt 

were considered, no saddle point could be found unless functions A. having 
delta functions were allowed. 

The economic interpre~tation of the Lagrange multiplier can be obtained 
rather directly. Suppose that the demand function were changed by lid(t). 
Letting liJ and lis be the corresponding changes in the total production cost 
and in the function s, wc~ have to first order 

1 1 

I:iJ == fo l:is(t) dv(t) = - fo Mv(t) dt + I:is(l)v(l)'-l:is(O)v(O). 
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z 

J *)­I~ 
o 1 

"2 

;;. t 

r(t) 

-11-----1 
vo(t) 

Figure 8.5 The solution to a production problem 

Since As(O) = 0, v( 1) = 0, the boundary t~rms vanish and hence 
1 

AJ = - fo Ad(t)v(t) dt. 

I 
r 
I 

Thus - vet) is the price per unit that must be charged for small additional 
orders at time t to recover the increased production cost. Note that in the 
particular example considered above this price is zerO for t > t. This is 
because the production cost has zero slope at r == 0. 

8.8 Problems 

1. Prove that the subset P of Lp[a, b], I $, p < 00, consisting of functions 
nonnegative almost everywhere on [a, b], contains no interior point. 

2. Prove that the subset P of C[a, b] or L\X)[a, b], consisting of nonnega­
tive functions on [a, b], contains interior points. 

3. Let P be the cone in C[a, bJ consisting of nonnegative (continuous) 
functions on [a, b]. Show that p'iIJ consists of those functions v of 
bounded variation on [a, bJ that are non decreasing. 

4. Show that the positive cone p'iIJ in X* is closed. 
5. Show that the sum of two convex mappings is also Convex. 
6. A cone is said to be pointed if it contains no one-dimensional subspace. 

If X is a vector space with positive cone P, show that x ;;:: () and x$,(} 

imply x = () if and only if P is pointed. 
7. Let Po = inf {I(x) : x € n, G(x) $, 0, H(x) = O}, where all entities are 

defined as in Theorem 1, Section 8.3, with the addition that H(x) = 
Ax + Yo (where A is linear) is a map of X into the finite-dimensional 
normed space Y. Assume that Po is finite, that () e Y is an interior 
pointof{y E Y:H(x)= y forsomexen}, and that there exists Xl ensuch 
that G(xl) < 0, H(x t ) == e. Show that there is z~ ~ e, y~ such that 

Po = inf {I(x) + <G(x), z&) + <H(x),y&) : x e il}. 
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8. Let I be a functional defined on a normed space X. An element 
x~ e X * is said to be a subgradient of I at Xo if 

f(x) - f(xo) ~ (x - Xo, x~> 
for all x eX. Show that if/has a gradient at xo, any sub gradient is in 
fact equal to the gradient. 

9. Show that in the sense of Theorem 1, Section 8.6, the dual to the linear 
programming problem: 

minimize b' x 
subject to Ax ;:::: c, x;:::: e, 

where x is an n vector, b is an n vector, c is an m vector, and A is an 
m x n matrix is the: problem: 

maximize c' A 
subject to A' A. ::5: b, 

10. Derive the minimum norm duality theorem from the Lagrange duality 
theorem. 

11. Derive necessary conditions for the problem: minimize I(x) , subject to 
x E n, G(x) ::5: z, z e: A, where both x and z are variable. Assume that 
all functions and sets are convex. 

12. Assuming that the interior point condition is satisfied, show that the 
dual of a convex-programming problem is also a convex-programming 
problem. Show that the dual of the dual, with variables restricted to X 
rather than X**, is, in some sense, the primal problem. 

13. Let G be a convex mapping from n c: X into a normed space Z and 
assume that a positive cone having nonempty interior is defined in Z. 
Show that the two regularity conditions are equivalent: 
(a) There is an Xl E n such that G(xl ) < e. 
(b) For every z* ;:::: 0, z* ::F e, there is an x En such that (G(x), z*) <0. 

14. Ifwe let 
z(t) = production rate 
d(t) = demand rate 
yet) = inventory stock, 

a simple production system is governed by the equation 
t 

yet) = yeO) + fo[z(r) - d(r)] dr. 

Find the production plan z(t) for the interval 0::;; t::;; T satisfying 
z(t) ;:::: 0, y(t) ;:::: 0, 0::;; t::5: T, and minimizing the stlm of the production 
costs and inventory costs 

T 

J = f [tz 2(t) + h . yet)] dt. 
o 
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Assume'that 

d(t) == 1, 2y(O)h> 1, 
1 

2h + y(O) > T, y(O) < T. 

Answer: 

z(t) = (
o 
h . (t - t1) 

where 

tl == T - J~ [T - y(O)]. 

IS. Repeat Problem 14 for 

d(t) == 1, 2y(O)h> I, 
1 
2h + y(O) S T, y(O) < T. 

It is helpful to define 

1 1 
tl == y(O) - -, t z == y(O) + -. 

2h 2h 
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9 
LOCAL THEORY OF 
CONSTRAINED OPTIMIZATION 

9.1 Introduction 

Historically, the local theory of Lagrange multipliers, stated in differential 
form, predates the global theory presented in Chapter 8 by almost a 
century. Its wider range of applicability and its general convenience for 
most problems continue to make the local theory the better known and 
most used of the two. 

The general underlying principles of the two theories are substantially 
the same. In fact the Lagrange multiplier result for inequality constraints 
goes through almost identically for both the local and global theories. But 
there are some important differences, particularly for equality constraints, 
stemming from the fact that the local theory is based on approximations in 
the primal space X and hence auxiliary analysis is required to relate these 
approximations to the constraint space Z or to Z *, the space in which the 
Lagrange multiplier is defined. For this reason, adjoint operators playa 
significant part in the development of the local theory since they enable 
us to transfer results in X * back to Z *. 

For problems with equality constraints only, the nicest result available 
is the general Lagrange multiplier theorem established by means of an 
ingenious proof devised by Liusternik. This theorem, which is by far the 
deepest Lagrange multiplier theorem in this book, is proved in Section 9.3. 
The difficult analysis underlying the theorem, however, is contained in a 
generalized inverse function theorem proved in Section 9.2. 

In Section 9.4 an analogous theorem is given for optimization problems 
subject only to inequality constraints. The proof of this result is similar to 
the proof of the global Lagrange multiplier theorem of Chapter 8. 

Following these general theorems on Lagrange multipliers, there are two 
sections devoted to optimal control theory. To some extent, this topic can 
be treated as a simple application of the general Lagrange multiplier 
theory. The structure of control problems, however, is worthy of special 

239 
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attention because additional results can be. derived for this important class 
of problems and additional insight into Lagrange multipliers is obtained 
from their a,nalysis. 

LAGRANGE MULTIPLIER THEOREMS 

9.2 Inverse hnction Theorem 

In this section we prove a rather deep generalization of the classical inverse 
function theorem that enables us to derive the generalized Lagrange 
mUltiplier theorem in the next section. The inverse function theorem is of 
considerable importance in its own right in analysis; some variations of it 
are discussed in the problems at the end of this chapter. The proof of the 
theorem is quite complex and may be omitted at first reading, but it is 
important to understand the statement of the theorem and, in particular, 
to be familiar with the notion of a regular point. 

Defillition. Let T be a continuously Frechet differentiable transformation 
from an open set D in a Banach space X into a Banach space Y. If Xo e: D 
is such that T'(xo) maps X onto Y, the point Xo is said to be a regular point 
of the transformation T. 

Example 1. If T is a mapping from En into Em, a point Xo e En is a regular 
point if the Jacobian matrix of T has rank m. 

Theorem 1. (Generalized Inverse Function Theorem) Let Xo be a regular 
point o/a transformation T mapping the Banach space X into the Banach 
.space Y. Then there is a neighborhood N(yo) of the point Yo = T(xo) (i.e., a 
sphere centered at Yo) and a constant K such that the equation T(x) = y has a 
solution for every y E N(yo) and the solution satisfies Ilx - Xo II :s; K Ily-Yo U· 

Proof Let Lo = nullspace of T'(xo)' Since Lo is closed, the quotient 
space X/Lo is a Banach space. Define the operator- A on this space by 
A[x] = T'(xo)x, where [x] denotes the class of elements equivalent to x 
modulo Lo. The operator A is well defined since equivalent elements x 
yield identical elements y E Y. Furthermore, this operator is linear, con­
tinuous, one-to-one, and onto; hence, by the Banach inverse theorem, A 
has a continuous linear inverse. 

Given y E Y sufficien, 'J close to Yo , we construct a sequence of elements 
{L,,} from XILo and a corresponding sequence {gn} with gn E Ln such that 
Xo + gn converges to a solution of T(x) = y. For fixed y E Y, let go = () E Lo 
ana aeflne tne sequences {Lni and {Un} recursively by 

(1) L" - L,,-1 = A- 1(y - T(xo + gn-1))' 
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and from the coset L. select g. such that 

Ilg. - g.-lll :::; 2 IlL. - L.-111 
(which is possible since IlL. - L.-111 = inf Ilg - g.-lll). Rewriting (1) 

geL" 
slightly, we have 

Ln == A- 1(y - T(xo + 9n-1) + T'(XO)Un-l) 

and similarly 

L.-1 == A-1(y - T(xo + gn-2) + T'(XO)g.-2)· 

Therefore, 

L. - L.-1 == -A -l(T(xo + g.-l) - T(xo + g.- 2) - T'(Xo)(g.-l - g.-2)). 

Define g, =:: fgn- 1 + (1 - t)gn-2. By the generalized mean value inequality 
(Proposition 2, Section 7.3) applied to the transformation 

r(x) == - A -l(T(x) - T'(xo)x), 

we obtain 

Since T' is continuous at xo , given B > 0, there is an r > 0 such that 
IIT'(x) - T'(xo) II < ,s for Ilx - xoll < r. Assuming Ilg.-lll < r, Ilgn-211 < r, 
we have Ilg,ll < r; therefore (2) implies that 

IlL. - Ln-111 :::; BIIA-1111Ign_1 - g.-211. 
Furthermore, 

Ilg. - gn-111 :::; 2 IlL. - L.-111 :::; 2BIIA-1111Ign_1 - g.-211 
and hence for sufficiently small B 

(3) 

Since IIg111 :::; 211L111 :~ 211A -llllly - Yo II, it follows that for lIy - Yo II suffi­
ciently small we hav(~ 

IIg1 11 < tr. 
Thus the conditions for (3) to be valid hold for n = 2 and, in fact, hold for 
all n since, by induction, the relation 

IIgnll = IIgl + (g2 - gl) + ... + (gn - gn-I)II 

$(1 + 1- + ... + 2n~I)llgll1:::; 211glll5. r 

shows that Ilgnll :::; r for aU n. 
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Thus 

, 
for all n and hence the sequence {gn} converges to an element g. Corre-
spondingly, the sequence {Ln} converges to a coset L. For these limits we 
have 

L = L I- A-1(y - T(xo + g» 

or, equivalently, 

. T(xo + g) = y; 

and 

IIgll :S: 211g111:s; 411A- 11111y - YolI, 

thus K can be taken to be 4I1A- 1 1I. I 

9.3 Equality Constraints 

Our aim now is to develop necessary conditions for an extremum of/subject 
to H(x) ='e where/is a real-valued functional on a Banach space X and H 
is a mapping from X into a Banach space Z. 

Lemma 1. Let/achieve a local extremum subject to H(x) = e at the point 
Xo and assume that / and H are continuously Frechet differentiable in an 
open set containing Xo and that Xo is a regular point 0/ H. Then/'(xo)h = 0 
for all h satisfying H'(xo)h = e. 

Proof To be specific, assume that the local .extremum is a local 
minimum. Consider the transformation T: X -+ R x Z defined by 
T(x) = (f(x), H(x». If there were an h such that H'(xo)h = e,f'(xo)h ¥: 0, 
then T'(xo) = (!'(xo), H'(xo»: X -+ R x Z would be onto R x Z since 
H'(xo) is onto Z. By the inverse function theorem, it would follow that for 
any B > 0 there exists a vector x and 15 > 0 with IIx - xoll < B such that 
T(x) = (f(xo) - 15, e), contradicting the assumption that Xo is a local 
minimum. I ' 

The above result can be visualized geometrically iIi the space X in terms of 
the concept of the tangent space of the consttaint surface. By the tangent 
space at xo, we mean the setof all vectors h for which H'(xo)h = e (Le., the 
nUllspace of H'(xo»' It is a subspace of X which, when translated to the 
point xo, can be regarded as the tangent of the surface N = {x : H(x) = 8} 
near Xo . An equivalent statement to that of Lemma 1 is that/ is stationary 
at Xo with respect to variation in the tangent plane. This is illustrated in 
Figure 9.1 where contours of/as well as the constraint surface for a single 
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functional constraint h(x) == 0 are drawn. The Lagrange multiplier theorem 
now follows easily from the duality relations between the range and null­
space of an operator and its adjoint. 

\ 
\ 
\ 

\ 
\ 
ex 

\ 
\ 

\ 
\ 

\ 
\ 

\ 
Tangent space 

\ 
\ 

lI(x) = e 

Figure 9.1 Constrained optimization 

Theorem 1. (Lagrange Multiplier) If the continuously Frechet differentiable 
functional f has a local extremum under the constraint H(x) = () at the regular 
point x o , then there exists an element Z6 E Z * such that the Lagrangian 
functionatl 

L(x) =f(x) + Z6H(x) 

is stationary at xo , i.e.,!,(xo) + Z6H'(Xo) = e. 
Proof From Lemma I it is clear that!'(xo) is orthogonal to the null­

space of H'(xo)' Since, however, the range of H'(xo) is closed, it follows 
(by Theorem 2, Section 6.6) that 

!'(xo) E PA [H'(xo)*J. 

Hence there is a Z6 E Z * such that 

f'(xo) == - H'(xo)*z6 

or, in an alternative notation, 

The second term of this last expression is to be interpreted in the usual 
sense of composition of linear transformations. I 

We may immediately rephrase this result to include the case when the 
constraint is not regular. 

1 When considering the local theory the necessary conditions are written !'(xo) + 
zo· H'(xo) = 6. Therefore we usually ,write the Lagrangian in the form indicated in the 
theorem statement rather than L(x) = I(x) + (H(x), Zo *>. 
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Corollary 1. Assuming all the hypotheses of TheQrem I with the exception 
-7TiQ:t the range 0/ H'(xo) is closed but perhaps not onto, there exists a nonzero 
element (ro, z~) e R x Z* such that the/unctional 

I 

rof(x) + z~H(x) 
is stationary at Xo . 

Proof. If Xo is regular, we may take ro == 1 and use Theorem 1. If Xo 
is not a regular point, let M = !J4(H'(xo»· There is a point z E Z such that 

inf liz - mil > O. 
meM 

and hence by Theorem 1, Section 5.8, there is Ii z~ e.MJ., z~ :F e. Since 
by Theorem 1, Section 6.6, MJ.=.K(H'(xo)*), this z~ together with ro == 0 
satisfies the requirements of the corollary. I 

Reviewing the arguments that led to the Lagrange multiplier theorem, it 
should be noted that the difficult task, requiring the regularity assumption, 
was to show that at an extremum/is stationary with respect to variations in 
the tangent pl"ne; in other words, justifying that a nonlinear constraint can 
be replaced by a lineariud version of it. From this result it is clear that 
!'(xo), the gradient of f, must be orthogonal to the tangent space. The 
Lagrange multiplier theorem then follows from the familiar adjoint relations. 

A slightly different but useful interpretation yields a more direct identi· 
fication of the Lagrange multiplier. In Figure 9.1 the constra~nt is described 
by a single functional equation h(x) = 0; it is clear on geometric grounds 
that, at the optimum, the gradient of h must be parallel to the gradient off. 
Thus/'(xo) + h'(xo)z = 0, where z is a scalar: the Lagrange multiplier. A 
similar figure can be drawn in three dimensions for the case where H 
consists of two functionals h1, hz . An example is shown in Figure 9.2. For 
optimality the gradient of/must lie in the plane generated by h1' and h/; 
hence !'(xo) + Z1hl'(XO) + Zz h/(xo) = 6. 

Figure 9.2 Two constraints 
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Example 1. (Constrained Problems in the Calculus of Variations) We 
consider the problem of finding x E Dn[fo, fa, the space of n-vector 
functions on [to, ta possessing continuous derivatives, having fixed end 
points x(to), X(t1), which minimizes 

(1) 
t, 

J = f f(x, x, t) dt 
to 

while satisfying the constraint 

(2) cp(x, t) = O. 

Both f and cp are real··valued functions and are assumed to have con­
tinuous partial derivatives of second order. Since the end points are fixed, 
we restrict OUr attention to variations lying in the subspace Xc:: Dn[fo, ta 
consisting of those functions that vanish at to and 11• As demonstrated in 
Section 7.5, the Frechet differential of J is 

(3) M(x; h) = r [fx(x, x, t)h(t) + fx(x, x, t)h(t)Jdt. 
to 

The function cp can be considered as a mapping H from X into Y where Y is 
the subspace of D[to, 11] consisting of those functions vanishing at 10 and 
fl. The Frechet differential of H is 

(4) bH(x; h) = CPx h(/). 

We assume that along the minimizing curve the n partial derivatives of cp 
(with respect to the n components of x) do not all simultaneously vanish at 
any point in [to, la. In this case the Frechet differential (4), evaluated at the 
minimizing x, defines a bounded linear mapping from X onto Y. To verify 
this we note that, since cp has continuous second partial derivatives, (4) 
defines an element of Y for each hEX. Also, given Y E Y, the selection 

(where CPx is represented as an n x 1 row vector and CPx' is its transpose) 
satisfies CPxh = y. Thus, according to Theorem 1, there exists a Lagrange 
multiplier for the problem. The multiplier is in this case an element of Y· 
which in gener,al can be represented in the form 

t, 

<y, y*) = f y(t) dz(t) 
to 



246 LOCAL THEORY OF CONSTRAINED OPTIMIZATION 9 

where Z e NBV[to, 11]' However, it can be shown that the multiplier for 
this problem actually takes the special form 

. f'l (y, y*) = y(t)A(t) dt 
to 

for some continuous function A. Hence the necessary conditions become 

(5) 
d 

fix, x, t) + A(t)cpx(X, x, t) = dt ft(x, x, t). 

Example 2. (Geodesics) Let x, y, z denote the coordinates of an arbitrary 
point in three-dimensional space. The distance between two given points 
along a smooth arc x(t), y(t), z(t) (parametrized by t, tl :::; t :::; t2) is 

Given a smooth surface defined by cp(x, y, z) = 0 and two points on this 
surface, the arc of minimum length lying inthe surface cp(x, y, z) = 0 and 
connecting the two points is called the geodesic between the points. If 
ICPxl + Icp,,1 + ICPzl =1= 0 along the geodesic, the method of Example 1 may be 
applied. 

Writing the Lagrangian in the form 

the equations corresponding to equation (5) are 

d x 
dt J.2 '2 '2 + A(t)cpx = 0 

x + y + z 

d y 
- + A{t),I,. - 0 
dt J x2 + y2 + Z2 '1'" -

d Z 
dtJ

.2 '2 '2 + A(t)cpz =0 
x +y +z 

which, together with the constraint; can be solved for the arc. 
In the special case of geodesics on a sphere, we have 

cp(x, y, z) = x2 + y2 + Z2 - r2 = 0 

CPx = 2x, Cp" = 2y, cpz = 2z. 
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Let the constants a, b, c be chosen so that the plane through the origin 
described by 

ax + by + cz = 0 

contains the two given points on the sphere. 
Corresponding to the extremal arc x(t), y(t), z(t), let p(t) = ax(t) + 

by(t) + cz(t). Then it can be seen that p satisfies 

d p 
-d- J + 2A(t)p(t) = 0 

t x2 + y2 + ;i2 

and P(t1) = p(tz) = O. It follows from the uniqueness of solutions to 
differential equations, that p(t) == 0 and hence that the geodesic lies in the 
plane. Therefore, the geodesic is a segment of a great circle on the sphere. 
The explicit dependence on t is, of course, somewhat arbitrary since any 
parametrization of the arc is allowed. 

9.4 Inequality Constraints (Kuhn-Tucker Theorem) 

In this section we derive the local necessary conditions for the problem 

(I) {
minimize f(x) 
subject to G(x) ~ e, 

wherefis defined on a vector space X and G is a mapping from X into the 
normed space Z having positive cone P. 

To see how the Lagrange multiplier technique can be extended to 
problems of this type, consider a problem in two dimensions having three 
scalar equations gj(x) ~ 0 as constraints. Figure 9.3a shows "the constraint 
region. In 9.3b, when~ it is assumed that the minimum occurs at a point Xo 

in the interior of the region, it is clear thatf'(xo) = O. In 9.3c, where it is 
assumed that the minimum occurs on the boundary gl (x)' = 0, it is clear 
thatf'(xo) must be orthogonal to the boundary and point inside. Therefore, 
in this case, f'(xo} + Alg1'(XO) = (J for some A1 ~ O. Similarly, in 9.3d, 
where it is assumed that the minimizing point Xo satisfies both gl(xO) = 0 
and gz(xo} == 0, we must have f'(xo) + A1g1 '(xo) + A2 g2'(XO) = (J with A1 
~ 0, A2 ~ O. All of these cases can be summarized by the general statement 

where A* ~ e and Ajgj(Xo) == 0, i = 1,2,3. The equality Ajgj(Xo) = 0 merely 
says that if gi(XO) < 0, then the corresponding Lagrange multiplier is absent 
from the necessary condition. 
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By considering various positive cones (such as P = {O}) or by considering 
constraints of the form H(x) ~ e. -H(x) ~ 0, problem (1), as stated. 
includes minimizat\on problems having equality constraints. It is therefore 
clear that a general attack on-roblem (1) would be at least as difficult to 
carry through as the corresponding attack on problems having only 
equality constraints. To avoid these difficulties, our approach excludes the 
possibility of equality constraints. As a consequence of this restriction, the 
results for problem (1). although analogous to those for problems having 
equality constraints, are far easier to obtain. This approach closely parallels 
the development of the global Lagrange multiplier theorem of Section 8.3. 

(b) 

(c) (d) 

Figure 9.3 Inequality constraints 

Defilfition. Let X be a vector space and let Z be a normed space with a 
positive cone P having nonempty interior. Let G he a mapping G : X -t Z 
which has a Gateaux differential that is linear in its increment. A point 
Xo E X is said to be a regular point of the inequality G(x) :s: e if G(xo) :s: 0 
and there is an hEX such that G(xo) + c5G(xo; h) < e. 

Thill d.Minitio1"l Lf 11 J'e81llllJ' "oint is a natural a114108 to the i11terior point 

condition employed for im'luality constraints in the global theory 
(Theorem 1. Section 8.3). Note that the definition excludes the possibility 
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of incorporating equality constraints by reducing the cone to a point or by 
including a constraint and its negative. 

The regularity condition essentially eliminates the possibility of the 
constraint boundary forming a cusp at a point. An example where the 
regularity condition fails is shown in Figure 9.4 where gl (x) = - X2 , 

Figure 9.4 The regularity condition violated 

g2(X) = -Xl' g3(X) = X2 + (Xl - 1)3. The point Xl = 1, X2 = 0 is not 
regular since the gradients of g2 and g3 point in opposite directions there. 

Theorem 1. (Generalized Kuhn-Tucker Theorem) Let X be a vector space 
and Z a normed space having positive cone P. Assume that P contains an 
interior point. 

Let f be a Gateaux dU.rerentiable real-valued functional on X and G a 
Gateaux durerentiable mapping from X into Z. Assume that the Gateaux 
dWerentials are linear in their increments. l Suppose Xo minimizes f subject to 
G(x)::s;; e and that Xo is a regular point of the inequality G(x) ::s;; e. Then there 
is a z~ E Z *, z~ ;;:; e such that the Lagrangian 

f(x) + <G(x), z~> 

is stationary at Xo; furthermore, < G(xo), z~> = o. 
Proof In the space W == R x Z, define the sets 

A = {(r, z) : r ;;:; of(xo; h), z ~ G(xo) + oG(xo; h) [or some hEX} 

B = {(r, z) : r ~ 0, z ~;;;; O}. 

1 As discusseed in Problem 9 at the end of this chapter, these hypotheses can be some­
what weakened. 
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The sets A and B are obviously convex;· in fact, both are convex cones 
although A does not necessarily have its vertex at the origin. The set B 
contains interior points since P does. . 

The set A does not contain any interior points of B because if (r, z) e A, 
with, < 0, z < 9, then there exists heX such that 

()f(xo; h) < 0, 

The point G(xo) + ()G(xo; h) is the center of some open sphere contained 
in the negative cone N in Z. Suppose this sphere has radius p. Then for 
0< oc < 1 the point oc[G(xo) + ()G(xo; h)] is the center of an open sphere of 
radius oc' p contained in N; hence so is the point (1 - oc)G(xo)+oc[G(xo) + 
()G(xo; h)] = G(xo) + oc . ()G(xo; h). Since for fixed h 

IIG(.Ji) + och) - G(xo) - oc' ()G(xo; h)1I = o(oc), 

it follows that for sufficiently s''''Lall oc, G(xo + och) < 8. A similar argument 
shows thatf(xo + och) <f(xo) for sufficiently small oc. This contradicts the 
optimality of Xo; therefore A contains no interior points of B. 
~cording to Theorem 3, Section 5.12, there is a closed hyperplane 

separating A and B. Hence there are '0, z~, () such that 

ro . r + (z, z~> ~ () 

ro' r + (z, z~> ~ () 

for all (r, z) e A 

for all (r, z) e B. 

Since (0. 8) is in both A and B, we have () = O. From the nature of B it 
follows at once that '0 ~ 0, z~ ~ 8. Furthermore, the hyperplane cannot be 
vertical because of the existence of h such that G(xo) + ()G(xo; h) < 8. 
Therefore, we take '0 = 1. 

From the separation property, we have 

()f(xo; h) + (G(xo) + ()G(xo; h), z~> ~ 0 

for all heX. Setting h == 9 gives (G(xo), z~> ~ 0 but G(xo) ~ 8, z~ ;;;:= 9 
implies (G(xo), z~> ~ 0 and hence (G(xo), z~> = O. It then follows from 
the linearity of the differentials with respect to their increments that 
()f(xo; h) + ({)G(xo; h), z~> == o. I 

Example 1. Suppose that X is a normed space (rather than simply a 
vector space) and that f and G are Frechet differentiable. Then if the solu­
tion is at a regular point, we may write the conclusion of Theorem 1 as 

!'(xo) + z~G'(xo) == 8 

< G(xo), z~> == O. 
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Example 2. Consider the n-dimensional mathematical programming 
problem 

minimize f(x) 
subject to G(x) ::s; 0 

X"2!O 

where x E En, G(x) E Em, ;and f and G have continuous partial derivatives 
with respect to the components of x. The constraint for this problem can be 
written in partitioned form as 

which has E"+m as the constraint space. Assuming satisfaction of the 
regularity condition, we have the existence of two Lagrange multiplier 
vectors ,.1,0 E Em, Jlo E En with ,.1,0 "2! 0, Jlo "2! 0 such that at the solution Xo 

(1) 

(2) 

fixo) + ,.1,0 Gixo) - Jlo ::;:: 0 

,.1,0 G(xo) - Jlo Xo = o. 
Since the first term of (2) is nonpositive and the second term is nonnegative, 
they must both be zero. Thus, defining the reduced Lagrangian 

L(x, A) == f(x) + A'G(x), 

the necessary conditions can be written as 

Lixo, ,.1,0) ~~ 0 

L;.(xo, Ao) ~:;; e 
Lx(xo , Ao)xo = 0 

L;.Cxo, Ao)Ao = 0 

X"2!O 

The top row of these equations says that the derivative of the Lagrangian 
with respect to Xi must vanish if Xi> 0 and must be nonnegative if Xi = O. 
The bottom row says that A j is zero if the j-th constraint is not active, i.e., 
if the j-th component of G is not zero. 

Example 3. Consider the: constrained calculus of variations problem 

(3) f
t

' minimize J = f(x, x, t) dt 
to 

(4) subject to 4>(x, t) ::s; o. 
Here to, t1 are fixed and X is a function of t. The initial value x(to) is fixed 
and satisfies ¢(x(to), to) < o. The real-valued functions f and 4> have con­
tinuous partial derivatives with respect to their arguments. We seek a 
continuous solution xU) having piecewise continuous derivative. We 
assume that, along the solution, 4>x ::j:. O. 
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We incorporate the fact that x(to) is fixed by restricting attention, in the 
variational analysis, to variations in the space X consisting of continuous 
functions vanishi~g at to and having piecewise continuous derivatives on 
[to, t1]. We consider the range of the constraint (4) to be C [to, 11]. The 
regularity condition is then equivalent to the existence of an heX such that 

cp(xo(t), t) + CP;r;(XO(t), t) . h(t) < 0 

for all t e [to, t1]. This condition is satisfied since it is assumed that 
cp(xo(to), to) < 0 and CP;r;(XO(t), t) :F O. 

We now obtain, directly from Theorem 1, the conditions 

(5) 
'I '1 f U;r;h(t) + !;i;h(t)] dt + J CP;r;h(t) d-t(t) = 0 
'0 '0 

for all heX with h(to) = 0, and 

'1 
(6) f cp(x, t) d-t = 0 

to 

where -t e NBV[to, ttl and is nondecreasing. 
Integrating (5) by parts, we have 

The function 

is bounded on [to, t1] and has at most a countable number of discontinui­
ties. However, with the ex:;;eption of the right end point, M must be 
continuous from the right. Therefore,·by a slightly strengthened version of 
Lemma2, Section 7.5, and by considering (7) for those particular he Xthat 
vanish at tl as well as at to, we have 

{S} 

for t e [to, t1). If A does not have a jump at tl> then (8) substituted into (7) 
yields 

!;i;(X, x, t)1 = 0 
t=t1 

because h(t1) is arbitrary. On the other hand, if -t has a jump at tl> then 
(0] ImpliCI5 tl1i:lt 

cp(x, t) I = O. 
''''II 
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Therefore, we obtain in I~ither case the boundary condition 

(9) q>(x, t) . fx(x, x, t) \1=11 = O. 

Together (6), (8), and (9) are a complete set of .necessary conditions for the 
problem. For a simple application of this result, see Problem 6. 

Example 4. As a specific instance ofthe above result, consider the problem 
1 

minimize J = fa [x(t) + !x(t)2] dt 

subjeict to x(t) ~ set). 

Here s is a given continuous function and the initial condition x(O) > s(O) is 
given. 

Such a formulation might result from considering the problem of main­
taining a work force X sufficient to handle a work level s when there is a 
linear salary cost and a quadratic cost for hiring and firing. 

From (8) we obtain 

(10) t - A(t) - x(t) = c 

where we have taken ),(0) = O. Thus initially, while x(t) > set), we have 
in view of equation (6) 

(11) x(t) = x(O) + t. 
Let us hypothesize that the constraint x(t) ~ set) is never achieved by 
equality. Then equation (11) must hold throughout [0, IJ and the terminal 
condition (9) implies in this case that x(l) = O. In other words, x(t) is a 
parabola with second derivative equal to unity and having horizontal slope 
at the right end point. 

If to is a point where the solution meets the cO)lstraint, it is clear from 
equation (10) that the derivative must not have a positive jump at to; hence, 
unless s(to) has a corner at to , x must be tangent to s at to . A typical solu­
tion is shown in Figure 9.5. 

)0 t 
o 

Fi{;/ure 9.5 Solution to Example 4. 
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OPTIMAL CONTROL THEORY 

9.5 Basic Necessary Conditions 

On an interval [to, t1] of the real line, we consider a set of differential 
equations of the form 

(1) x(t) = !(x(t), u(t», 

where x(t) is an n-dimensional" state" vector, u(t) is an m-dimensional 
"control" vector, and! is a mapping of En X Em into En. Equation (1) 
describes a dynamic system which, when supplied with an initial state 
x(to) and a control input function u, produces a vector-valued function 
x. 

We assume that the vector-valued function! has continuous partial 
derivatives with respect to x and u. The class of admissible control functions 
is taken to be Cm[to, td, the continuous m-dimensional functions on 
[to ,td, although there are other important alternatives. The space of 
admissible control functions is denoted U. 

Given any u E U and an initial condition x(to), we assume that equation 
(Ir-defines a unique continuous solution x(t), t > to. The function x 
resulting from application of a given control u is said to be the trajectory of 
the system produced by u. The class of all admissible trajectories which we 
take to be the continuous n-dimensional functions on [to , t1] is denoted X. 

In the classical optimal control problem, we are given, in addition to the 
dynamic equation (1) and the initial condition, an objective functional of 
the form 

(2) J,
tl 

J= l(x,u)dt 
to 

and a finite number of terminal constraints 

gi(X(t1» = c/ 

which we write in vector form as 

(3) 

i = 1,2, ... , r 

The functions I and G are assumed to possess continuous partial derivatives 
with respect to their arguments. The optimal control problem is then that 
of finding the pair of funct: Jns (x, u) minimizing J. while satisfying (1) 
and (3). 

TUI,;II,; arc: a number of OC'ncmliz;ation~ of thi~ problem, many of which 
can be reduced to this form by appropriate transformations. For example, 
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problems in which the obj<!ctive contains a function of the terminal state 
or problems in which the trajectoryis constrained to satisfy a finite number 
of relations of the form 

tk(x, u) dt = d 
to 

can be transformed into th~: form considered above by adjoining additional 
state variables (see Problem 13). Problems in which the control variables are 
restricted by inequalities such as lu(t)1 ::;; I are discussed in Section 9.6. 

When attempting to abstract the control problem so that the general 
variational theory can be applied, we discover several alternative view­
points. Perhaps the most natural approach is to consider the problem as 
one formulated in X x U and to treat the differential equation (1) and the 
terminal constraint (3) as constraints connecting u and x; we then apply 
the general Lagrange multiplier theorem to these constraints. Another 
approach, however, is to note that (I) uniquely determines x once u is 
specified and hence we really only need to select u. The problem can thus be 
regarded as formulated in U; the Lagrange multiplier theorem need only 
be applied to the terminal constraints. Still another approach is to view the 
problem in X by considering the implicitly defined set of all trajectories that 
can be obtained by application of admissible controls. Finally, in Section 
10.10 it is seen that it is sometimes profitable to view the problem in E', the 
finite-dimensional space corresponding to the constraint (3). Each of these 
approaches has theoretical advantages for the purpose of deriving necessary 
conditions and practical advantages for the purpose of developing compu­
tational procedures for obtaining solutions. In this section we approach the 
problem in the space X x U and in the next section in the space U. 

The differential equation (1) with initial condition x(to) is equivalent to 
the integral equation 

(4) 
t 

x(t) - x(to) - f f(x(-c), u(-c)) d-c = e 
to 

which we write abstractly as 

(5) A(x, u) = e. 
The transformation A is a mapping from X x U into X. If we take 
X = C"[to , ftJ, U = Cm[to, fd, then the Frechet differential of A exists, is 
continuous under our assumptions, and is given by the formula 

(6) c5A(x,u;h,v)=h(t)- ffxh(-c)d-C- ffuv(-c)d-c 
to to 

for (h, v) E X X U. 



256 LOCAL THEORY OF CONSTRAINED OPTIMIZATION 9 

The terminal constraint (3) is a mapping from X into e with Frechet 
differen tial 

(7) 

Together the transformations A and G define the constraints of the 
pl:oblem, and we must investigate the question of regularity of these 

~--constraints. We must ask if, at the optimal trajectory, the Frechet differ­
entials (6) and (7) taken as a pair map onto X x E' as (h, v) varies over 
Xx U. 

From the differential (7) it is immediately clear that we must assume that 
the r x n matrix G,,(X(tI» has rankr. In addition we invoke a controllability 
assumption on (6). Spedfically we assume that for any n-dimensional 
vector e it is possible to select a continuous function v such that the 
equation 

rl II 
h(t)- J fxh(r:)dr: - !"v(r:)dr:=O 

10 10 

has solution h with h(t1) = e. An intuitive way of describing this assumption 
is to say that the original system (1), linearized aboutthe optimal trajectory, 
can be driven from the origin to any point in En. 

With the above two assumptions we can show that the constraints are 
regular. For this it is sufficient to show that for any e E E" and any function 
ye X there is an (h, v) e X x U such that 

I I 

(8) h(t) - I f"h(r:) dr: - I fuv(r:) dr: = y(t) 
10 10 

(9) h(tl) = e. 

First, for v = 0 in equation (8), there is, by the fundamental existence 
theorem for linear Volterra integral equations (see Example 3, Section 
10.2), a solution 1i of (8). We may then write (8) as 

(10) 

where w(t) = h(t) -h(t). By the controllability assumption there is a v 
such that the solution to (10) has W(tl) = e -h(tl)' Then h(t) = w(t) + h(t) 
is the desired solution to equations (8) and· (9). 

Having examined the question of regularity, we now give the basic neces­
sary conditions satisfied by the solution to the optimal control problem. 

Theorem 1. Let xo, Uo minimize 

tl 

(2) J = J l(x, u) dt 
10 



subject to 

(1) 

(3) 
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*(t) =/(X, U), 

and assume that the regularity conditions are satisfied. Then there is an 
n-dimensional vector-valued/unction A(t) and an r-dimensional vector J1 such 
that for all t E [to , t 1] 

(I I) - ,l.(t) = [/x'(xo(t), Uo(t»]A(t) + fx'(xo(t), uo(t» 

(12) 

(13) 

';'(t l ) = Gx'(XO(tl»J1 

A'(t)j~(xo(t), uo(t» + lu(xo(t), uo(t» = e. 
Proof The Lagra.nge multiplier theorem (Theorem I, Section 9.3) 

yields immediately the existence of A E NBvn[to, t l ], J1 E E r such that 

(14) 
(lx(Xo, uo)h(t) dt + (dA'(t)[ h(t) - (f,(xo , uo)h(-c) d-c] 

+ J1'Gx(xo(tl»h(tl) = 0 

" I, I 

(15) J l.(xo, uo)v(t) dt - J dA'(t) J /u(xo, uo)v(-c) d-c = 0 
~ ~ ~ 

for all (h, v) E X X U. Without loss of generality, we may take A(tl) = e. 
Integrating (14) by parts, we have 

I, 'II I, J fixo, uo)h(t) dt + J dA'(t)h(t) + J A'(t)/x(xo, lIo)h(t) dt 
10 10 10 

(16) + J1'Gxh(tt) = o. 
It is clear that A can have no jumps in [to, t l ) since otherwise a suitable h 
could be constructed to make the second term of (16) large compared with 
the other terms. There must, however, be a jump at tl of magnitude 
-Gixo(tI»J1. Since (16) holds for all continuous h, it holds in particular 
for all continuously dijferentiable h vanishing at to . Therefore, integrating 
the second term by parts, we have for such functions 

I, f {lx(xo, uo)ft(t) - A'(t)h(t) + A'(t)/x(xo , uo)h(t)} dt = O. 
10 

Hence, by Lemma 3, Section 7.5, it follows that A is differentiable on 
[to, t l ) and that (11) holds. 

Integrating equation (15) by parts, (13) follows from Lemma I, Section 
7.5. Now by changing the boundary condition on A(tl) from A(lI) = e to 
A(11) = Gx'1l to account for the jump, A will be continuous throughout 

[t9 , ta· I 
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Note that the conditions (II), (12), and (13) together with the original 
constraints (1) and (3) and the initial condition form a complete system of 
equations: 2n first-order differential equations, 2n boundary conditions, 
r terminal constraints, and m instantaneous equations from which xo(t), 
,t(t), jl., and uo(t) can be found. 

Example 1. We now find the m-dimensional control function u that 
minimizes the quadratic objective functional 

(17) 
tl . 

J = t f [x'(t)Qx(t) + u'(t)Ru(t)] dt 
to 

subject to the linear dynamic constraint 

(18) x(t) = Fx(t) + Bu(t), x(to) fixed, 

where Q is an n x n symmetric positive-semidefinite matrix, R is an m x m 
symmetric positive-definite matrix, F is an n x n matrix, and B is an n x m 
matrix. This problem is of considerable importance in optimal control 
theory because it is sufficiently general to describe many practical problems 
adequately and is one of the few problems that can be solved explicitly. 

Applying the necessary conditions of Theorem 1, we have 

(19) 

(20) 

-let) = F',t(t) + Qx(t), ,t(tt) = () 

,t'(t)B + u'(t)R = O. 

Since R is positive definite, we have 

(21) u(t) = -R- 1B',t(t). 

Substituting equation (21) into (18), we obtain 

(22) x(t) = Fx(t} - BR- 1 B' A.(t), x(to) fixed. 

Together (19) and (22) form a linear system of differential equations in the 
variables x and A.. The system is complicated, however, by the fact that half 
of the boundary conditions are given at each end. To solve this system, we 
observe that the solution satisfies the relation 

(23) ,t(t) = P(t)x(t), 

where pet) is the n x n matrix solution of the Riccati differential equation 

(24) Pet) = - P(t)F - F' pet) + P(t)BR -1 B'P(t) - Q, 

The verification follows by direct substitution and is left to the reader. It 
nan h@ ihnwn that (24) haa a unique. symmetric. positive semidefinite 
solution on [to, t1]. 
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From equations (21) and (23) we then have the solution 

(25) u(t) = -R-IB'P(t)x(t) 

which gives the control input in feedback form as a linear function of the 
state. 

This solution is of great practical utility because if the solution pet) of 
equation (24) is found (as, for example, by simple backward numerical 
integration), the optimal control can be calculated in real time from 
physical measurements of x(t). 

Example 2. A rocket is to be launched from a point at time t = 0 with 
fixed initial velocity and direction. The rocket is propelled by thrust 
developed by the rocket motor and is acted upon by a uniform gravitational 
field and negligible atmospheric resistance. Given the motor thrust, we 
seek the thrust direction program that maximize'S the range of the rocket on 
a horizontal plane. 

The problem is sketchl~d in Figure 9.6. Note that the final time T is 
determined by the impact on the horizontal plane and is an unknown 
variable. 

y 

T 

Figure 9.6 The rocket example 

Letting VI = oX, Vz = y, the equations of motions are 

VI = fU) cos e, 
Vz = r(t) sin e - g, 

VI (0) given, 

V2(O) given, 

>" x 

where f(t) is the instantaneous ratio of rocket thrust to mass and g is the 
acceleration due to gravity. The range is 

T 

J = f VI(t) dt = x(T), 
o 

where T> 0 is the time at which y(T) = 0 or, equivalently, the time at 
which J~ vz(t) dt = O. 

We may regard the problem as formulated in the space CZ[O, To] of two­
dimensional continuous time functions where To is some fixed time greater 
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than the impact time of the optimal trajectory. Assuming a continuous 
nominal trajectory, VI' v2 with impact time T,. we can compute the Frechet 
differential of J by reference to Figure 9.7 which shows the continuous 
nominal and a perturbed trajectory V1 = V1 + h1' V2 = V2 + h2• The per­
turbed trajectory crosses the X axis at a different time T. Denoting by 
x(T), y(T) the x and y coordinates of the perturbed trajectory at time 1, we 
have, to first order, 

and 
, T 

J(v + h) - J(v) = x(T) - x(T)+(T- T)V1(T) =t h1(t) dt + (T -T)Vl<T). 

Combining these we have, to first order, 

T - f 'T 

M(v; h) =: J(v + h) - J(v) = fa h1(t) dt - ;:~T~ fo h2(t) dt. 

~--------~----~~----~~x 
T 

Figure 9.7 Calculation 0/ Frechet differential 

Therefore; the original problem is equivalent to finding a stationary point 
of the functional 

([v.(t) - :~~~~ V2(t)] dt 

which is an integral on the fixed interval [0, T]. This problem can be solved 
in the standard fashion. 

Following Theorem 1, we introduce the Lagrange variables 

J. 1 = -1 

J. _ V1(T) 
2 - v2(T) 

A,1(T) = 0 

A,2(T) = o. 
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Then AI(t) = (T - t), Ait) = [VI Cf)/v2(T)](t - T). The optimal O(t) satisfies 

-A1(t)f(t) sin O(t) + A2(t)f(t) cos O(t) = o. 
Thus we obtain the equation 

ii,(T) 
tan O(t) = - ii

2
(T) . 

We conclude that 0 is constant in time. The constant is determined 
implicitly by the particular nature of nt). 

*9.6 The Pontryagin Ma);imnm Principle 

The Pontryagin maximum principle gives a set of necessary conditions for 
control problems in which the control u(t) is constrained to a given set. In 
this section we develop one form of the maximum principle from an 
abstract viewpoint by exploiting the basic definition of an adjoint operator. 

Motivated by the framework of the optimal control problem discussed 
in Section 9.5, we let X and U be normed linear spaces and g[x, u] a cost 
functional on X x U, and we consider a constraint of the form 

(1) A[x, uJ = 0 

where A is a mapping from X x U into X. The transformation A describes 
the system equations and may represent a set of differential equations, 
integral equations, partial differential equations, difference equations, etc. 
We assume that (1) defines a unique implicit function x(u). Furthermore, 
we assume that A and 9 are Frechet differentiable with respect to x and that 
the derivatives Ax[x, uJ andgx[x, uJ are continuous on X x U. Finally, we 
assume that the implicit function x(u) satisfies a Lipschitz condition of the 
form 

(2) Ilx(u) - x(v)11 ::;; Kllu - vii. 
The control problem is to find (x, u) minimizing J = g[x, uJ while 

satisfying A[x, u] = 0 and u e n where n is a prescribed subset of U. Since 
x is uniquely determined from u, the objective functional J can be considered 
to be dependent only on u, it being understood that J(u) = g[x(u), u]. 

We now introduce the Lagrangian functional of our constrained optimi­
zation problem. For x eX, u e U, A* e X*, we define 

(3) L[x, u, A*] = A* A[x, u] + g[x, u]. 

The following proposition can be regarded as the basis of a number of 
necessary conditions for control problems connected with various types 
of systems. 
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Proposition 1. For q:ny u e n let l* be a solution oj the equation 

(4) A* A x[x(u) , u] + gx[x(u), u] = O. 

Then for v E 0, 

(5) J(u) - J(v) = L[x(u), u, A*] - L[x(u), v, A*] + o(lIu - viI). 

Proof By definition 

J(u) - J(v) = g[x(u), u] - g[x(v), v] 

= g[x(u), u] - g[x(u), v] + g[x(u), v] - g[x(v), v] 

= g[x(u), u] - g[x(u), v] + gx[x(u), u] . [x(u) - x(v)] 

+ (gx[x(v), v] -: gx[x(u), u])[x(u) - x(v)] + o<llx(u) - x(v)11) 

= g[x(u), u] - g[x(u), v] + gx[x(u), u][x(u) - x(v)] 

+ o(lIu - viI), 

where the last two steps follow from the continuity of gx and the Lipschitz 
condition (2), 

Likewise, 

IIA[x(u), u] - A[x(u), v] - Ax[x(u), u][x(v) - x,(u)]!1 = o(llv - ull). 

Therefore, 

J(u) - J(v) = L[x(u), u, A*] - L[x(u), v, A*] + o(lIu- viI). I 

The significance of the above result is that it gives, to first order, a way of 
determining the change in J- due to a change in u without reevaluating the 
implicit function x. The essence of the argument is brought out in Prob­
lem 18. We next apply this result to a system described by a system of 
ordinary differential equations of the form 

x =/(x, u), 

and an associated objective functional 

J = tl(X, u) dt. 
to 

It is assumed that the functions/and I are continuously differentiable with 
respect to x and that/satisfies a uniform Lipschitz condition with respect 
to x and u of the form 

11/(-'11, II) -/(y, v)1I ~ M[lIx -.vII -I- lIu - vII], 

where II II denotes the finite-dimensional norm. 
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Unlike in the previous section, we now take the admissible control 
functions u to be the piecewise continuous functions on the interval 
[to, t1], and require that for each t, u(t) E n where n is a prescribed subset 
of Em. 

Theorem 1. Let xo , Uo be optimal for the problem of minimizing 

I. 

J = f lex, u) dt 
10 

subject to x(t) = f(x, u), x(to) fixed, u(t) E n. Let A be the solution of the 
equation 

(6) -.le(t) =fx'A(t) + lx', 

where the partial derivatives are evaluated along the optimal trajectory, 
and define the Hamiltonian function 

(7) H(x, u, ,~, t) = A'(t)f(x, u) + lex, u). 

Then for all t E [to, t1], 

(8) H(xo(t), uo(t), AU» :::.; H(xo(t), u, A(t» 

for all u E n. 
Proof. For notational simplicity we assume m == 1; i.e., the controls 

are scalar functions. We take X = C"[to, (d, and for U we take the space 
of piecewise continuous functions with the L1 norm. Defining 

I 

A[x, u]= x(t) - x(to) - f f(x(-r:), u(-r:» d-r: 
10 

f
l. 

g[x, uJ = lex, u) dl, 
10 

we see that A and g are continuously Frechet differentiable with respect to x 
(although not with respect to u with the norm we are using). 

If x,x + t5x correspond to u, u + t5u, respectively, in {(x, u) : A[x, uJ =8}, 
we have 

IIt5x(t)IIEn =:;; (M~IIt5x(-r:)IIE" + lt5u(-r:)I} d-r: 

from which it follows that 

Ilox(t)IIE":::;; MeM(t1-tO
) f'lou(-r:)1 d-r:. 

10 

Therefore, IIt5xll =:;; K Iioull and the transformation A[x, uJ satisfies the 
Lipschitz condition requin~d of Proposition 1. 
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It is clear that (6) is equivalent to the adjoint equation A* Axlx, u] + 
gx[x, u] = e. The functional 

11 f H(x, u, A) dt 
10 

is then identical with the Lagrangian (3) except for a term J:~ x'(t)~(t) dt, 
which is not important since it does not depend explicitly on u. Proposition 
I gives us 

f
tl 

(9) J(uo) - J(u) = [H(xo, uo , A)':'" H(xo, u, A)] dt + o(lIu - uoll)· 
'0 

We now show that equation (9) implies (8). Suppose to the contrary that 
there is 1 e [to, t1] and u e n such that 

In view of the piecewise continuity of u and the continuity of x, A,f, and I, 
it follows that there is an interval [t', til] containing 1 and an 8 > 0 such that 

H(x o(t), I· it), A(t» - H(xo(t), u, A(t) > e 

for all t e [t', til]. 
Now let u(t) be the piecewise continuous function equal to uo(t) outside 

[t', tit] and equal to ii on [t', t"]. From (9) we have 

J(uo) - J(u) > 8(t" - t') + o(llu - uolI). 

But lIu - uoll =O([t" - t']); hence, by selecting [t', til] sufficiently small, 
J(uo) - J(u) can be made positive, which contradicts the optimality of Uo· I 

Before considering an example, several remarks concerning this result 
and its relation to other sets of necessary conditions are appropriate. 
Briefly, the result says that if a control function minimizes the objective 
functional, its values at each instant must also minimize the Hamiltonian. 
(Pontryagin's adjoint equation is defined slightly differently than ours with 
the result that his Hamiltonian must be maximized, thus accounting for 
the name maximum principle rather than minimum principle.) It should 

___ immediately be obvious that if the Hamiltonian is differentiable with 
respect to u as well as x and if the region n is open, the conditions of 
Theorem 1 are identical with those of Theorem 1, Section 9.5. The maxi~ 
mum principle can also be extended to problems having terminal con­
straints, but the proof is by no means elementary. However, problems of 
this type arising from applications are often convex and can be treated by 
the global theory developed in Chapter 8. 
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Example 1. We now solve the farmer's allocation problem (Example 3, 
Section 8.7) by the maximum principle. To formulate the problem as one 
of optimal control, we let u(t) denote the fraction of production rate that is 
reinvested at time t. The: problem then is described by' 

(10) 

(11) 

(12) 

x(t) = u(t)x(t), x(O) > 0 

T 

J = So (1 - u(t))x(t) dt 

O::5:u(t)::5:1. 

Here, as in Chapter 8, the farmer wishes to select u so as to maximize the 
total storage J. 

The adjoint equation for this problem is 

(13) -~(t):= U(t)A(t) + 1 - u(t), A(T) = 0 

and the Hamiltonian is 

(14) H(x, u, A) = A(t)U(t)x(t) + [1 - u(t)]x(t). 

An optimal solution xo , uo, A must satisfy (10), (12), and (13) and (14) 
must be maximized with respect to admissible u's. Since x(t) ;;::: 0 for all 
t E [0, T], it follows from (14) that 

A(t) > 1 

A(t) < 1. 

Then sinceA(T) = 0, we have uo(T) = 0, and equation (13) can be integrated 
backward from t = T. The solution is shown in Figure 9.8. We conclude 
that the farmer stores nothing until T - 1, at which point he stores all 
production. 

o 
Figure 9.8 Solution to adjoint equation 
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9.7 Problems 

1. Prove the following inverse function theorem. Let D .be an open subset 
of a Banach space X and let T be a transformation from D into X. 
Assume that Tis continuously Frechet differentiable on D and that ata 
point Xo eD, [T'(XO)]-l exists. Then: 
(i) There is a neighborhood P of Xo such that T is one-to-one on P. 

(ii) There is a continuous transformation F defined on a neighborhood 
N of T(xo) with range R c: P such that F(T(x» = x for all x e R. 

Hint: To prove uniqueness of solution to T(x) == yin P, apply the 
mean value inequality to the transformation q>(x) = [T'(xo)] -IT(x) - x. 

2. Prove the following implicit function theorem. Let X and Y be Banach 
spaces and let T be a continuously Frechet differentiable transforma­
tion from an open set D in X x Y with values in X. Let (xo, Yo) be a 
point in D for which T(xo ,Yo) = (J and for which [T/(xo, Yo)] -1 exists. 
Then there is a neighborhood N of Yo and a continuous transformation 
F mapping N into X such that F(yo) = Xo and T(F(y), y) = () for all 
yeN. 

3. Show that if all the hypotheses of Theorem 1, Section 9.4, are satisfied, 
except perhaps the regularity condition, then there is a nonzero, 
positive element (ro, z~) e R x Z* such that ro/(x) + <G(x), z~> is 
stationary at xo, and <G(x), z~> = o. 

4. Let gl' gz , ... , gn be real-valued Frechet differentiable functionals on a 
normed space X. Let Xo be a point in X satisfying 

(1) i == 1,2, ... ,no 

Let I be tr~e set of indices i for which gi(XO) = 0 (the so-called binding 
constraints). Show th?~ Xo is a regular point of the constraints (I) if and 
only if there is nO set of A./s, i e I satisfying 

~i~O for all i E I, 

5. Show that if in the generalized Kuhn-Tucker theorem X is normed, / 
and G are Frechet differentiable, and the vector x is required to lie in a 
given convex set 0 c: X (as well as to satisfy G(x) ::;; (J), then there is a 
Zd ~ 8 such that <G(xo), z~> = 0 and!'(xo) + z~G'(xo) e [0 - xo] al. 

6. A bomber pilot at a certain initial position above the ground seeks the 
path of shortest distance to put him over a certain target. Considering 
only two dimensions (vertical and horizontal), what is the nature of 
the solution to his problem when there are mountain ranges between 
him and his target? 
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7. Let X be a normed linear space and let Z be a normed linear space 
having positive cone P. Let G be a Frechet differentiable mapping of 
X" into Z. A point Xo is said to 'satisfy the Kuhn-Tucker constraint 
qualification relative to the inequality G(x) :::; e if G(xo) :::; e and if for 
every hEX satisfying G(xo) + G'(xo)h :::; e there is a differentiable arc 
x(t) defined for t E [0, I] such that 

(i) G(x{t)) :::; e for all t E [0, 1] 

(ii) dx(t) I := h 
dt 1=0 

(iii) x(O) = xo. 

Give an example of a finite-dimensional mapping G and a point Xo 
that satisfies the Kuhn-Tucker constraint qualification but is not 
regular. Give an example of a finite-dimensional mapping G and 
an xo, G(xo) :::; e that does not satisfy the Kuhn-Tucker constraint 
qualification. 

8. Let X, Z, P, and G be as in Problem 7 and let / be a real-valued 
functional on X. Suppose Xo minimizes / subject to the constraint 
G(x) :::; e and that Xo satisfies the Kuhn-Tucker constraint qualification. 
Show that /'(xo)h 2: ° for every h satisfying G(xo) + G'(xo)h :::; e. 
Using this result, prove a Lagrange multiplier theorem for finite­
dimensional spaces. 

9. Let T be a transformation mapping a vector space X into a normed 
space Z with positive cone P. We say that T has a convex Gateaux 
differential 

<5+T(x; h) = lim ~ [T(x + rxh) - T(x)] 
"->0+01: 

if the limit on the right exists for all hEX and if <5+T(x; h) is convex in 
the variable h. Let/be: a functional on X and G a transformation from 
X into Z. Assume that both / and G possess convex Gateaux differ­
entials. Let Xo be a solution'to the problem: 

minimize /(x) 
subject to G(x) ::;; e. 

Assume that there exists an h such that G(xo) + <5+G(xo, h) < e. Show 
that there is a z~ 2: e such that 

for all hEX. Give an example of a functional having a convex Gateaux 
differential but not a linear Gateaux differential. 
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10. After a heavy military campaign a certain army requires many new 
shoes. The ,?'lartermaster can order three sizes of shoes. Although he 
does not know precisely how many of each size are required, he feels 
that the demands for thl three sizes are independent and the demand 
for each size is uniformly distributed between zero and three thousand 
pairs. He wishes to allocate his shoe budget of four thousand dollars 
among the three sizes so as to maximize the expected number of men 
properly shod. Small shoes cost one dollar per pair, medium shoes 
cost two dollars per pair, and large shoes cOst four dollars per pair. 

__ How many pairs of each size should he order? 
11. Because of an increasing average demand for its product, a ~rm is 

considering a program of expansion. Denoting the firm's capacity at 
time t by e(t) and the rate of demand by d(t), the firm seeks the non­
decreasing function e(t) starting from e(O) that maximizes 

T fo {min [e(t), d(t)] - [C(t)]2} dt 

where the first term in the integrand represents revenue due to sales and 
the second represents expansion costs. Show that this problem can be 
stated as a convex programming problem. Apply the considerations of 
Problem 9 to this problem. 

12. Derive the necessary conditions for the problem of extremizing 

f
t. 
I(x, x, t) dt 

to 

subject to 

cf>(x, x, t) $ 0, 

making assumptions similar to those in Example 3, Section 9.4. 
13. Consider these two optimal control problems: 

t. 

(

minimize J lex, u, t) dt 
to 

A subject to x(t) = I(x, u, t), x(to) fixed, f
t
' K(x, u, t) dt = b 

to 

{
minimize ",(X(tl» 

B subject to x(/) = I(x, u, t), x(to) fixed, 

Show that by the introduction of additional components in the state 
vector. a problem of type A can be converted to one of type B. Show 
that if G and I/J have con:nuous partial derivatives, a problem of type B 
can be converted to one of type A. . 
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14. A discrete-time system is governed by the set of difference equations 

x(k + 1) = f(x(k), u(k», 

where x(k) is an n vector,. u(k) is m-vector control, andfhas continuous 
partial derivatives. Find a set of necessary conditions for the problem 
of controlling the system from a given x(O) so as to minimize 

N 

L l(x(k), u(k», 
k=O 

where the function I has continuous partial derivatives. 
15. Using the results of Problem 14, find an optimal feedback control law 

when 
f(x(k), u(k» = Ax(k) + Bu(k) 

l(x(k), u(k» = x'(k)Qx(k) + u'(k)Ru(k), 

where Q is positive semidefinite and R is positive definite. 
16. Show that in the one-dimensional optimal control problem: 

1 

minimize f lex, u) dt 
o 

subject to x(t) = -x(t) + u2(t) 

x(O) = 1 

x(l) = e- 1
, 

the constraints are not r<:::gular. 
17. Show that for the general optimal control problem discussed in Sec­

tion 9.5, a Lagrangian statement with an additional scalar multiplier 
can be made even if the system is not regular. 

18. Let X and V be normed spaces and let A [x, uJ = Bx + Cu where Band 
C are bounded linear operators with range in X. Assume that the 
equation A[x, uJ = () defines a unique implicit solution x(u). Show that 
for any pair (x, u) satisfying A[x, uJ = () and any b * E X*, c* E U*, 
we have <x, b*) +<u, c*) = (u, c* - C*A*) where B*A* = b*. Com­
pare with Proposition 1, Section 9.6. 
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10 
ITERATIVE METHODS 
OF OPTIMIZATION 

10.1 Introduction 

Although a number of interesting optimization problems can be completely 
resolved analytically, or reduced to simple finite-dimensional problems, the 
great majority of probkms arising from large industrial, aerospace, or 
governmental systems must ultimately be treated by computer methods. 
The reason for this is not that the necessary conditions are too difficult to 
derive but rather that solution of the resulting nonlinear equations is 
usually beyond analytic tractability. 

There are two basic approaches for resolving complex optimization 
problems by numerical tl~chniques: (I) formulate the necessary conditions 
describing' the optimal solution and solve these equations numerically 
(usually by some iterative scheme) or (2) bypass the formulation of the 
necessary conditions and implement a direct iterative search for the 
optimum. Both methods have their merits, but at present the second 
appears to be the most ejlfective since progress during the iterations can be 
measured by monitoring the corresponding values of the objective func­
tional. In this chapter WI! introduce some of the basic concepts associated 
with both procedures. Sections 10.2 and 10.3 discuss methods for solving 
nonlinear equations; the remaining sections discuss methods for minimizing 
objective functionals. 

The relevance of the material in the previous chapters to implementation 
of the first approach is obvious. In the second approach, however, since the 
necessary conditions ar'e abandoned, it is perhaps not clear that any 
benefit is derived from classical optimization theory. Nevertheless, 
adjoints, Lagrange multipliers, and duality nearly always enter any detailed 
analysis of an iterative technique. For instance, the Lagrange multipliers 
of a problem are often by-products of an iterative search procedure. The 
most important tie between the two aspects of optimization, however, is that 
much of the analytical machinery and geometric insight developed for the 

271 



272 ITERATIVE METHODS OF OPTIMIZATION 10 

theory of optimization underlies much of the reasoning that leads to new, 
effective, computational procedures. 

\\mTHODS FOR SOLVING EQUATIONS 

10.2 Successive Approximation 

In its general form the classical method of successive approximation applies 
to equations of the form x = T(x). A solution x to such an equation is said 
to be a fixed point of the transformation T since T leaves x invariant. To 
find a fixed point by successive approximation, we begin with an initial trial 
vector Xl and compute X:z = T(XI)' Continuing in this manner iteratively, 
we compute successive vectors Xn+ l = T(xn). Under appropriate conditions 
the sequence {xn} converges to a solution of the original equation. 

Definition. Let Sbe a subset ofa normed space X and let Tbe a transforma­
tion mapping S into S. Then T is said to be a contraction mapping if there is 
an oc, 0 S oc < 1 such that \IT(XI) - T(x:z)1I Soc \lxl - x:zII for all Xl' X:z E S. 

Note for example that a transformation having IIT'(x)1I Soc < 1 on a 
convex set S is a contraction mapping since, by the mean value inequality, 
IIT(Xl) - T(x:z)1I S sup IIT'(x)lllIxl - X:z1I Soc IIxl - x:zlI. 

Theorem 1. (Contraction Mapping Theorem) 1fT is a contraction mapping on 
a closed subse~ S of a Banach space, there is a unique vector Xo e S satisfying 
Xo = T(xo)· Furthermore, Xo can be obtained by the method of successive 
approximation starting fn.n an arbitrary initial vector in S. 

Proof Select an arbitrary element Xl e S. Define the sequence {xn} 
by the formula Xn+l = T(xn}. Then IIXn+1 - xnll == IIT(xn) - T(xn-I)11 ~ 
oclixn - xn-ili. Therefore, 

It follows that 

IIxn+p - xnll S Ilxn+ p - xn+p-lll + Ilxn+p-1 - Xn+p-2\1 + ... + Ilxn+ I - x.11 

S (ocn+p-:Z + ocn+p- 3 + '" + ocn-I)llx:z - xt\1 

00 n- 1 

S (ocn-\~ocxk)lIx:z - XIII ;:::; _ oc IIx:z - xdl, 

and hence we conclude that {xn} is a Cauchy sequence. Since S is a closed 
subset of a complete space, there is an element Xo E S such that Xn ~ Xo • 
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We now show that Xo == T(xo). We have 

Ilxo - T(xo) II = Ilxo - x. + Xn - T(xo) II ~ IIxo - x.1I + Ilx. - T(xo) II 
:::;; IIxo - x.11 + cxllxn_ , - xoli. 

By appropriate choice of 11 the right-hand side of the above inequality can 
be made arbitrarily small. Thus Ilxo - T(xo)1I = 0; Xo = T(xo). 

It remains only to show that Xo is unique. Assume that Xo and Yo are 
fixed points. Then 

Ilxo - Yoll = IIT(xo) - T(yo) II :::;; allxo - Yoll· 
Thus Xo = Yo' I 

The process of successive approximation is often illustrated by a diagram 
such as that of Figure 10.1. The figure represents the process of solving the 
one-dimensional equation x = f(x). On the diagram this is equivalent to 
finding the point of intersection of f(x) with the forty-five degree line 
through the origin. Starting with XI' we derive X2 = f(x ,) by moving along 
the curve as shown. Thefshown in the figure has slope less than unity and 
is thus a contraction. Figure 10.2 shows a case where successive approxima­
tion diverges. 

[(x) 

/ 
/ 

/ 
/ 

/ 
/ 

/ 

II 
/1 

// 1 
/ 1 

/ 1 
/ I 

/ I 
/ 

/ 
/ 

.f- - ......".. 
/~ I 

Figure 10.1 Successive approximation 

Example 1. (Linear Algebraic Equations) Consider the set of equations 
Ax = b where A is an 11 >< 11 matrix. A sequence of approximate solutions 
Xk = (x~ ,x~ , ... ,~), k = 1,2, ... , can be generated by solving the equations 

allx~+ I + al2x~ + ... + al.x~ = b, 

a2lx~ + a22x~+1 + ... + a2.x~ = b2 
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f(x) 

~---L----~~--~------~X 

Figure 10.2 Divergent case of successive approximation 

for Xk+ I given X k . In other words, the p-th equation is solved for the new 
component ~+ I by first setting all other components equal to their values 
at the last iteration. We analyze this method and show that it converges if A 
has a property called strict diagonal dominance. 

Definition. A matrix A is said to have strict diagonal dominance if 

latil > L: laijl 
j*1 

for each i. 

In what follows we assume that A has strict diagonal dominance and that 
each of the n equations represented by Ax;: b has been appropriately 
scaled so that ajj = 1 for each i. The equation may be rewritten as 

x = (I - A)x + b. 

Defining (I - A)x + b = T(x), the problem is equ.ivalent to that of finding a 
fixed point of T. Furthermore, the method of successive approximation 
proposed above for this problem is equivalent to ordinary successive 
approximation applied to T. Thus it is sufficient to show that T is a con­
traction mapping with respect to some norm on n-dimensional space. 

Let X be the space of n-tuples with norm defined by 

Ilxll = max IXII· 
I SISn 

This norm on X induces a horm on n x n matrices B; 
n 

UBII = max L: Ibljl· 
I j= 1 

For the mapping T defined above we have 

\IT(x) - T(y) II = II(A - I)(x - y)11 ::;;; IIA - IllUx - YII· 
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However, since ali = 1, the norm of A - I is 

IIA - III = max L laul == ee. 
I J*I 

By the assumption of strict diagonal dominance, ee < I and thus T is a 
contraction mapping. 

Example 2. Consider the itntegral equation 

b 

x(t) ,= f(t) + A J K(t, s)x(s) ds. 
a 

Let J:J~ Kl(S, t) dt ds = p2 < co, and assume that f EX:::= Ll[a, bJ. Then 
the integral on the right··hand side of the integral equation defines a 
bounded linear operator on X having norm less than or equal to p. It follows 
that the mapping 

b 

T(x) = f( t) + A. J K(t, s)x(s) ds 
a 

is a contraction mapping on X provided that 1.11 < liP. Thus, for this range 
of the parameter A the equation has a unique solution which can be deter­
mined by successive approximation. 

The basic idea of successive approximation and contraction mappings 
can be modified in severa~ ways to produce convergence theorems for a 
number of different situations. We consider one such modification below. 
Others can be found in th~: problems at the end of this chapter. 

Theorem 2. Let T be a continuous mapping from a closed subset S of a 
Banach space into S, and suppose that Tn is a contraction mapping for some 
positive integer n. Then T htls a unique fixed point in S which can be found by 
successive approximation. 

Proof. Let Xl be arbitrary in S. Define the sequence {Xi} by 

Xi+l = T(xJ 

Now since Tn is a contraction, it follows by Theorem 1 that the subsequence 
{Xnk} converges to an eleme:nt Xo E S which is a fixed point of Tn. We show 
that Xo is a unique fixed point of T. 

By the continuity of T, the element T(xo) can be obtained by applying 
Tn successively to T(xl)' Therefore, we have Xo = lim T"k(X t ) and 

k ... oo 
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T(xO) = T[ lim Tnk(x l )] = lim T"k[T(xl )]. Hence, again using the con-
k .. oo k"oo 

tinuity of T, 
I 

I\xo- T(xo)1\ == lim I\T nk(Xl) - Tnk[T(x])]1\ 
k-+oo 

== lim I\T"{T ft(k-l)(Xl) - T"(k-l)[T(Xl)]}1\ 
k .. oo 

S; odim I\T"(k-l)(Xl) - T"(/<-$>[T(Xl)]1\ 
k"oo 

,... ccllxo - T(xo)l\, 

where cc < 1. Thus Xo = T(xo). 
If xo, Yo are fixed points, then IIxo - Yo II = IIT"(xo) - T"(yo) II :::; 

cc IIxo - Yo II and hence Xo = Yo. Thus the Xo found by successive approxi­
mation is a unique fixed point of T. I 
Example 3. (Ordinary Differential Equations) Consider the ordinary 
differential equation 

x(t) = f[x(t), t]. 

The function x may be taken to be scalar valued or vector valued, but for 
simplicity we assume here thatit is scalar valued. Suppose that x(to) is 
specified. We seek a solution x(t) for to S; t S; t1• 

We show that under the assumption that the function f satisfies a 
Lipschitz condition on [to, t l ] of the form 

If[x" t] - f[Xl' t]1 S Mlxl - xli, 

a unique solution to the initial value problem exists and can be found by 
successive approximation. 

The differential equation is equivalent to the integral equation 

x(t) = Xo + f f[x(t), t] dt. 
to 

On the space X = C [to, t a let the mapping T be defined as 

T(x) = fI[x(t), t] dt. 
to 

Then 

II T(Xl) - T(x2)11 = II r {[[Xl' t] - [[Xl' t]} dt II 
to 

t 

S; IIJ Mllxl - x211 dt II S; M(t 1 - to)llxl - x211. 
to 
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Thus T is a contraction mapping if M < l/(t 1 - to). A simple calculation, 
however, shows that 

Since n! increases faster than any geometric progression, it follows that for 
sufficiently large n, Tn :is a contraction mapping. Therefore, Theorem 2 
applies and there is a unique solution to the differential equation which can 
be obtained by successive approximation. 

A slight modification of this technique can be used to solve the Euler­
Lagrange differential t:quation arising from certain optimal control 
problems. See Problem 5. 

For a successive approximation procedure applied to a contraction map­
ping T having fixed point xo, we have the inequalities 

(1) ex < 1, 

and 

(2) Ilx" - xoll ::; ex IlxlI - 1 - xoll· 

A sequence {xn} is said to converge linearly to Xo if 

. Ilx" - xoll 
lIm sup II I = ex 

X n - 1 - xol 

for some ex, 0 < ex < 1. Thus, in particular, (2) implies that a successive 
approximation procedure converges linearly. In many applications, how­
ever, linear convergence is not sufficiently rapid so faster techniques must 
be considered. . 

10.3 Newton's Method 

Newton's method is an iterative technique for solving an equation of the 
form P(x} ::;: e. As originally conceived, it applies to equations of a single 
real variable but it has a direct extension applicable to nonlinear transfor­
mations on normed spaces. 

The basic technique for a function of a real variable is illustrated in 
Figure 10.3. At a given pOint the graph of the function P is approximated 
by its tangent, and an approximate solution to the equation P(x) = 0 is 
taken to be the point where the tangent crosses the x axis. The process is 
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f(x) 

Figure 10.3 Newton's method 

then repeated from this new point. This procedure defines a sequence of 
points according to the recurrence relation 

P(Xn) 
Xn+ 1= Xn - P'(x

n
)' 

Example 1. Newton's method can be used to develop an effective iterative 
scheme for computing square roots. Letting P(x) = X2 - a, we obtain by 
Newton's method 

Xn+l = Xn _ xn
2 

- a = t[xn + !:]. 
2xn xn 

This algorithm converges quite rapidly, as illustrated below, for the com­
putation of .jiO, beginning with the initial approximation Xl = 3.0. 

Iteration Xn X2 
n 

1 3.0000000000 9.0000000000 
2 3.1666666667 10.0277777778 
3 3.1622807018 10.0000192367 
4 3.1622776602 10.0000000000 

When applied to equations of form P(x) = 8, where P is a nonlinear 
operator between Banach spaces, Newton's method becomes 

X,,+l = Xn - [P'(xn)]-lp(xn). 

An interpretation of the method is, of course, that the original equation is 
linearized about the point Xn and then solved for Xn+l' Alternatively, the 
method can be viewed as the method of successive approximation applied 
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to the operator T(x) == x - [P '(x)] -lp(X). A fixed point of T is a solution 
of P(x) = e. 

When analyzing the convergence of Newton's method, we assume that 
P is twice Frechet differentiable throughout the region of interest. Corre­
sponding to a point Xn, we denote by Pn the bounded linear operator P'(xn) 
and by P;; 1 its inverse [P '(x,,)] -1 ifitexists. Since Newton's method amounts 
to successive approximation with T(x) = x - [P '(x)] -1 P(X) , an initial ap­
proach at an analysis of convergence would be to determine if IIT'(x)1I < 1. 
Since 

T'(xn) = p,~ 1 P"(xn)p;; 1 [P(xn)], 

if lip;; 111 :;;; /3, liP "(X.) II ::; K, lip;; 1 [P(xn)]ll :;;; 11, h = /3YJK, we have 
IIT'(xn) II :;;; h. Therefore, by the contraction mapping principle, we expect 
to obtain convergence if h -< 1 for every point in the region of interest. In 
the following theorem it is shown that if h < t at the initial point, then 
h < t holds for all points in the iteration and Newton's method converges. 

Just as with the principle of contraction mapping, study of the conver­
gence of Newton's method answers some questions concerning existence 
and uniqueness of a solution to the original equation. 

Theorem 1. Let X and Y be Banach spaces and let P be a mapping from X to 
Y. Assume further that: 

1. P is twice Frechet differentiable and that IIP"(x)1I :;;; K. 
2. There is a point XI E X such that PI = P '(x 1) has a bounded inverse 

PI 1 with Ilpi 1 11 :;;; /31' IIpl l [P(X 1)] II :;;; 1]1' 

3. The constant hi = /31thK satisfies hI < t. 

Then the sequence Xn+ 1 = Xn - p;; 1 [P(xn)] exists for all n > 1 and converges 
to a solution of P(x) = e. 

Proof We show that if the point Xl satisfies 1, 2, and 3, the point 
Xz = Xl - Pl 1p(x1) satisfies the same conditions with new constants /3z, 
YJz, hz . 

Clearly, x z is well defined 'and II x z - X I II :;;; YJ l' We have, by the mean 
value inequality, 

IIpl 1[pl - Pz:J1I ;:; /31 sup 1IP"(x)llIl xz - XIII, 
x 

where x = Xl + IX(Xz - Xl), 0;:; IX:;;; 1. Thus Ilpl 1[pl - PzJII ;:; /31KI]I = hi' 
Since hI < 1, it follows that the linear operator 

H = 1·- Pl 1[Pl - Pl] = pjlpl 
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has a bounded inverse satisfying liB-III ~ 1/(1- h1)(see Problem 4). We 
have PlH = pz and (PIH)-1 = H- 1pl1 so pi1 exists. An estimate of its 
bound is 

Ilpilli ~ IIH- l llllpl 1 11 ~ 1 ~lhl = f3z· 

To obtain a bound for IIp;lp(xz)ll, we consider the operator Tl(x) = 
x ~ p~lp(X). Clearly, Tl(Xl ) = Xz and Tl'(Xl) = e. Thus 

Pl1p(xz) = Tl(xt) ~ Tl(xz) ~ Tl'(Xl)(xZ - Xl)' 

By applying Proposition 3, Section 7.3, we obtain 

Therefore, 

IIpl1p(xz)1I ~ t sup II T"(x) II Ilxz - xlll z 

= t sup ilPl1p"(x)lllIxz - xlli z 

::s;; tf31K'11 Z = th 1'11' 

IIPilP(xz)11 = IIH- lpl 1p(Xz)1I <tlh~'1~l ='1Z<t'11' 

Finally, setting hz = f3z'1zK, we have 

h z 
hz ::s; t (1 -\1)Z < t· 

Hence the conditions 1, 2, and 3 are satisfied by the point X z and the 
constants f3z, '1z, and hz . It follows by induction that Newton's process 
defines {xn}. 

SinCe'1n+l < t'1n ,it follows that'1n < (t)"-l '11' Also since IIXn+1 -xnll <'1n 
i~ follows that IIxn+k - xnll < 2'1n and hence that the sequence {xn} con· 
verges to a point Xo E X. 

To prove that Xo satisfies P(xo) = e, we note that the sequence {IIPnll} is 
bounded since 

and the sequence {IIxn - Xli\} b bounded since it is convergent. Now for 
each n, Pn(Xn+ 1 - Xn) + P(xn) := e; and since IIxn+ 1 - xnll ..:... 0 and IIPnll is 
bounded, it follows that IIP(xn)II -+ O. By the continuity of P, P(xo) = O. I 

It is assumed in the above theorem that P is defined throughout the 
Banach space X and that IIP"(x)1I :;;;; K everywhere. It is clear that these 

requirements are more severe than necessary since they are only used in the 
neighborhood of the points of the successive approximations. It can be 
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shown that jf P{x) is defined and liP "(x) II s; K in a neighborhood of Xl with 
radius 

1 
r> h; (l - )1 - 2h 1)'11' 

the successive approximations of Newton's method converge and remain 
within this neighborhood. 

The above theorem can be paraphrased roughly by simply saying that 
Newton's method converges provided that the initial approximation x 1 is 
sufficiently close to the solution Xo' Because if [P 'ex)] -I is bounded near 
xo, the quantity 11 = [p'(x)r1p(x) goes to zero as X~Xo; therefore 
h = /311K is small for x close to Xo. 

The most attractive feature of Newton's method, the reward for the 
high price paid for the possibly difficult job of solving a linearized version at 
each step, is its rate of convergence. Suppose that Newton's method con­
verges to a solution Xo E X where [P '(XO)] -I exists. Furthermore, assume 
that, within an open region R containing Xo and the sequence {xn}, the 
quantities II [P'(x)] -111, liP "(x) II, and liP II/(x) II are bounded. Then again 
defining T(x) == x - [P 'ex)] -IP(X), we have 

xn+ 1 - Xo ::::; xn - [P'(xn)]"clp(xn) - Xo 

Since T'(xo) ::::; e, 

= xn - [P'(x n)] -I P(xn) - {xo - [p'(xo)r l P(xo)} 

::::; T(xn) - T(xo)· 

Ilxn+ 1 - xoll :::; t sup IIT"(x)llllxn - xo11 2, 
x 

where x ::::; Xn + IX(Xn - Xo), 0 :::; IX :::; 1. Hence, 

(1) Ilxn+1 - xoll :::; c Ilxn - XOIl2, 

where c::::; t sup IIT"(x)II,.a bound depending upon liP I/I(X) II. Relation (1) 
xeR 

is referred to as quadratic convergence. 
The overall conclusion of the analysis of Newton's method is that, under 

mild restrictions, the method converges quadratically provided that the 
initial approximation is sufficiently near the solution. In practice the detailed 
criteria for convergence stated in this section are difficult to check, and it is 
often simpler to carry out the process than to verify beforehand that it will 
converge. Moreover, the method may converge even though the sufficiency 
conditions are violated. One device useful in these situations is to begin 
iterating with a slower but surer technique and then change over to 
Newton's method to gain the advantage of quadratic convergence near the 
end of the process. 
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Example Z. (Two-Point Boundary Value Problem) Newton's method can 
be used very effectively to compute solutions of nonlinear two-point 
boundary value Pfoblems such as those arising in connection with optimal 
control problems. 

Consider first 'Che linear two-point boundary value problem 

(2) x(t, = A(t)x(t) + vet), 

where x(t) is an n-dimensional vector function of t subject to the boundary 
conditions 

(3) 

(4) 

Cx(tl) = CI 

Dx(t2) = d2, 

where dim (el) + dim (d2 ) = n. Since the system is linear, we may write the 
superposition relation 

(5) 

where 4>(t2 , t) is the matrix function of t satisfying 

«1>(t2, t) = -4>(t2' t)A(t) 

4>(t2' t2) = [. 

Note that 4>(t2' t) can be found by integrating backward from t2. 
Defining b = J~~ 4>(t2' t)v(t) dt, the boundary conditions (3) and (4) can be 

expressed entirely in terms of t I 

Cx(tl) = CI 

D4>(t2, tl)X(tl) = d2 - Db. 

Therefore, assuming the existence of the appropriate inverse, we have 

(6) 
XUl) = [~ct>(t2' t1)r

1 

d2 _ ~lbl 
Having determined x(t l), the original equation (2) can be solved by a single 
forward integration. 

Now consider a similar, nonlinear, two-point boundary problem: 

x(t) = F(x, t) 

CX(tl):: cl 

Dx(t2) = d2 • 
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Although this problem cannot be solved by a single integration or by super­
position, it can often be solved iteratively by Newton's method. We start 
with an initial approximation Xt(t) and define 

Xn+l(t):::: F(xn, t) + Fix,p t)(X,,+I(t) - xn(t)) 

CXn+I(tI) = Cl 

DXn+I(t2) = d2· 

At each step of the iteration the linearized version of the problem is solved 
by the method outlined above. Then provided that the initial approxima­
tion is sufficiently close to the solution, we can expect this method to con­
verge quadratically to the solution. 

DESCENT METHODS 

10.4 General Philosophy 

Successive approximation, Newton's method, and other methods for 
solving nonlinear equations, when applied to an optimization problem, 
iterate on the equations derived as necessary conditions for an optimal 
solution. A major disadvantage of this approach is that these iterative 
techniques may converge only if the initial approximation is sufficiently 
close to the solution. With these methods only local convergence is 
guaranteed. 

A more direct approach for optimization problems is to iterate in such a 
way as to decrease the cost functional continuously from one step to the 
next. In this way global convergence, convergence from an arbitrary 
starting point, often can be insured. 

As a general framework for the method, assume that we seek to minimize 
a functional f and that an initial point Xl is given. The iterations are 
constructed according to an equation of the form 

where IXn is a scalar andpn is a (direction) vector. The procedure for selecting 
the vector Pn varies from technique to technique but, ideally, once it is 
chosen the scalar IXn is selected to minimize f(x" + IXPn), regarded as a 
function of the scalar IX. Generally, things are arranged (by multiplyingpn 
by - 1 if necessary) so that f(xn + aPn) < f(xn) for small positive IX. The 
scalar IXn is then often take:n as the smallest positive root of the equation 

d 
da f(xn + IXPn) = O. 
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In practice, of course, it is rarely possible to evaluate the minimizing a 
exactly. Instead, some iterative search or approximation is required. The 
essential point, however, is that after an OCn is selected, I(xn + ocnPn) is 
evaluated to veritY that the objective has in fact decreased from I(xn). If 
I has not decreased, a new value of OCn is chosen. 

The descent process can be visualized in the space X where the functional 
I is represented by its contours. Starting from a point Xl' one moves 
along the direction vector PI until reaching, as illustrated in Figure 10.4, 
the first point where the line Xl + OCPl is tangent to a contour of f Alter­
natively, the method can be visualized, as illustrated in Figure 10.5, in the 
space R x X, the space containing the graph off 

Figure 10.4 The descent process in X 

If/is bounded below, it is clear that the descent process defines a bounded 
Qecreasing sequence of functional values and hence that the objective values 
tend toward a limit/o . The difficulties remaining are those of insuring that 
10 is, in fact, the minimum off, that the sequence of approximations {xn} 
converges to a minimizing vector, and finally, the most difficult, that con­
vergence is rapid enough to make the whole scheme practical. 

Example 1. Newton's method can be modified for optimization problems 
to become a rapidly converging descent method. Suppose again that we seek 
to minimize the functional Ion a Banach space X. This might be accom­
plished by the ordinary Newton's method for solving the nonlinear equa­
tion F(x) = e where F(x) = I'(x), but this method suffers from the lack of a 
global convergence theorem. The method is modified to become the 
Newtonian descent method by selecting the direction vectors according to 
the ordinary Newton's method but moving along them to a point mini. 
mizing/in that direction. Thus the general iteration formula is 

and OCn is chosen to minimize/(xn+ 1). 
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I 
I 
I • Iii • X2 Xl 

Figure 10.5 The descent process in R X X 

10.5 Steepest Descent 

The most widely used descent procedure for minimizing a functionalf, the 
method of steepest descent, is applicable to functionals defined on a Hilbert 
space X. In this method the direction vector Pn at a given point Xn is chosen 
to be the negative of the gradient off at xn • If X is not a Hilbert space, the 
method can be modified by selecting Pn to be a vector aligned with, or 
almost aligned with, the negative gradient. In this section, however, we 
restrict our attention to functionals on a Hilbert space. 

An application of the method is to the minimization of a quadratic 
functional 

f(x) = (x I Qx) - 2(b I x), 

where Q is a self-adjoint positive-definite operator on the Hilbert space X. 
This problem is of particular theoretical interest because it is the only 
problem for which a detailed convergence analysis of steepest descent and 
other iterative methods is available. The problem therefore provides a 
comparison point for the st~veral methods. Of course the quadratic problem 
is of practical interest as well, as illustrated in Chapters 3 and 4. 

In analyzing the quadratic problem it is assumed that the constants 

. f (x I Qx) m=m 
~*9 (x I x) 

M = sup (x I Qx) 
~*9 (xix) 
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are positive, finite numbers. Under these 90nditions/is minimized by the 
unique vector Xo satisfying the equation 

(1) Qxo = b 

and. indeed. minimization of / is completely equivalent to solving the 
linear equation (1). It is convenient therefore to regard any approximation 
x to the point minimizing / as an approximate solution to equation (1). 
The vector 

r=b- Qx 

is called the residual of the approximation; inspection of/reveals that 2r is 
the negative gradient of/at the point x. 

The method of steepest descent applied to / therefore takes the form 

where rn = b - QXn and an is chosen to minimize/(xn+1). The value of exn 
can be found explicitly since 

/(Xn+l) = (xn + ar,. I Q(xn + ar,.» - 2(x,. + «r,.lb) 
= a2(rn I Qrn) - 2ex(rn I rn) + (Xn I QXn) - 2(xn I b), 

which is minimized by 

(2) 
(rn I rn) 

an = . 
(rnlQrn) 

Steepest descent for /(x) = (x I Qx) - 2(x I b) therefore progresses accord­
ing to . 

(3) 

where rn = b - Qxn • 

Theorem 1. For any Xl e X the sequence {XII} defined by (3) converges (in 
norm) to the unique solution Xo 0/ Qx = b. Furthermore, defining 

F(x) = (x - Xo I Q(x - xo» 

the rate 0/ convergence satisfies 

1 1 ( m)n-l 
(Yn I Y,.) ~ m F(x,.) ~ m 1 - MF(Xt) 

where YII = Xo - Xn· 
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Proof. Note that 

F(x) = (x - Xo I Q(x - xo» = (x I Qx) - 2(x 1 b) + (xo 1 Qxo) 

= lex) + (xo I Qxo) 

so that both/and Fachieve a minimum at Xo and the gradients of/and F 
are equal. 

We have 

F(xn) - F(x" + 1) 2etir n I QYn) - etn 2(r n I Qrn) 
F(xn) = (Yn I QYn) 

by direct calculation. Now 'n = QYn' so in terms of 'n 
2(rn lr")2 (rn l rn)2 

F(xn) - F(xn+ I) (r,,1 Qrn) (rn I Qrn) 
= 

F(xn) (Q Irnlrn) 

(r n I r II) (r n I r n) 
= (,,,I Qrn)· (Q-I rn I rn)· 

Using ('n I Q'n) ~ M('n I rn) . and (Q -1 'n I 'n) ~ ~ ('n I 'n), which follows 
m 

from the definition of m (see Problem 10), we obtain 

F(xn) - F(xn+ 1) m 
--'-----~ ~ -

F(xn) M 

And finally, 

This process of steepest descent is illustrated for a two-dimensional 
problem in Figure 10.6. Note! that, according to Theorem 1 and from the 
figure, the rate of convergence depends on the eccentricity of the elliptical 
contours off For m = M the contours are circular and convergence occurs 
in one step. 

Example 1. Consider the problem of solving the set of linear equations 
Ax = b where A is an N x N positive-definite matrix. We assume that the 



288 ITERATIVE METHODS OF OPTIMIZATION 10 

Figure 10.6 Steepest descent 

equations. have been scaled so that all = 1, i = 1,2, ... , N. According to 
the method of steepest descent (with Q = A), the approximate solutions are 
generated by 

x" + 1 = x" + IX" r" . 
Suppose that for simplicity (X"' instead of being calculated according to 
equation (2), is taken as !X" == 1. Then the method becomes 

x" + I = x" + r" = x" + b - Ax", 

or X"+l = (I - A)x" + b. This last equation is equivalent to the method of 
successive approximation given in Example 1, Section 10.2. 

The method of steepest descent is frequently applied to nonquadratic 
problems with great success; indeed, the method rarely fails to converge to 
at least a local minimum. The following theorem establishes conditions for 
which success is guaranteed. 

Theorem 2. Let f be a functional bounded below and twice Frechet differen­
tiable on a Hilbert space H. Given Xl e H, let S be the closed convex hull of 
{x :f(x} <f(XI}}' Assume that r(x} is self-adjoint and satisfies 0 < mI ~ 
r(x} S; MI throughout S (i.e., r(x) is uniformly bounded and uniformly 
positive definite}. If {x"} is the sequence generated by steepest descent 
applied to f starting at Xl' then f'(x"} --. e. Furthermore, there exists an 
Xo e S such that x" ~ Xo andf(xo} = inf {f(x} : x e H}. 

Proof. Given xeS, let us apply Taylor's expansion with remainder to 
the function g(t} = f(tx + (l - t)XI} obtaining 

g(1} - g(O) - g'(O) = t g"(l} 

for some t, 0 < t < 1. This leads immediately to 

f(x) - f(x t ) - f'(XI)(X ..,. Xl) ~ t m \Ix - XI liZ 

from which it follows that S is bounded. Therefore the steepest-descent 
process defines a bounded sequence {x"}. 
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As for any descent proc~~ss, the corresponding sequence {f(x.)} is non­
increasing and bounded bdow and therefore converges to some value [0 . 
Now assume that the sequ1ence of gradients {['(x.)} does not converge to 
zero. Then there is an e > 0 such that for any N there is an n > N with 
II ['(x.) II ~ e. Thus, choose n so large that 1I['(xn)1I ~ e and 1[(xlI) - [01 < 
e2/4M. For IX > 0 let XIX = x. - IX['(X.). We have by Taylor's expansion 
with remainder 

2 

f(xa) - f(x.) ~ --IX IIf'(x.)112 + ~ Ilr(x)II II[,(xn)II 2 

~ (-IX + ~ M)IIf'(X.)1I2, 

where x = tx. + (l - t)xa , 0 ~ t ~ 1. Therefore, for r:t. = 11M we have 

e2 

f(xa) - f(x.) ~ - 2M' 

which implies that f(x.+ 1) < fo. Since this is impossible, it follows that 
1I[,(x.) II --+ O. 

For any x, YES we have, by the one-dimensional mean value theorem, 

(f'(x) - ['(y) I x - y) = (x - y I f"(X)(X - y» ~ m Ilx _ yll2, 

where x = tx + (1 - t)y, 0 :s; t ~ 1. Thus 

or 

IIx.+k - x.11 2 .5: 2. (f'(x.+ k) - r(x.) I X.+k - xn) 
m 

IIX.+k - x.1I ~ 2. IIf'(x.+k) - f'(x.)II. 
m 

Since {f'(x.)} is a Cauchy sequence, so is {x.}; thus there exists Xo € S with 
x. --+ Xo. 

Obviously,f'(xo) = e. Given h such thatxo + h E S, there is t, 0 < t < 1, 
such that 

f(xo + h) =f(xo) + Hh If"(xo + th)h) 

m 
?;f(xo) + '2 IIhi/2 

so Xo minimizes f in S and hence in H. I 
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Example 2. Steepest descent can be applied to the optimal control problem 

j
tl 

minimize J = l(x(t), u(t» dt 
to 

(4) subject to x(t) = !(x(t), u(t», 

x(to} given, where x(t) is n dimensional and u(t) is, r dimensional. Under 
appropriate smoothness conditions it follows (see Section 9.5) that the 
gradient of J (with respect to u) is given by the function 

(5) l,.{x(t), u(t» + A'(t)!..(x(t), u(t», 

where the x(t) resulting from (4) when using the given control u is sub­
stituted in (5). The function ).,(t) is the solution of 

(6) -,1,(t) = fx'(x, u»).,(t) + lx'(x, u), 

Thus, in summary, given a contro' function u the corresponding gradient of 
J can be found by integrating (4) forward to. find x, then integrating (6) 
backward to find.t, and finally substituting the results in {5). This technique 
for calculating the gradient followed by the standard steepest.descent 
procedure is one of the most practical and efficient methods for solving 
unconstrained control problems. 

CONJUGATE DIRECTION METHODS 

10.6 Fourier Series 

The problem of minimizing a quadratic functional 011 a Hilbert space can, 
by an appropriate transformation, be fonnulated as a Hilbert ,space 
minimum norm problem. It is then natural to look to the machinery 
of orthogonalization, the Gram-Schmidt procf.dure,and Fourier series to 
obtain a solution. This philosophy underlies conjugate direction methods. 

Consider the quadratic objective functional j, defined on a Hilbert 
space H, 

f(x) = (x I Qx) - 2(x I b), 

where Q is a self-adjoint linear operator satisfying 

(I) 
(x I Qx) ::;,;; M(x I x) 

(xl Qx) ~ m(x I x) 

for all X e H and some M, m > O. Under these conditions the unique 
vector Xo minimizing f is the unique solution of the equation Qx = b. 
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We can view this problem as: a minimum norm problem by introducing the 
new inner product 

[xIY] = (xl Qy), 

since the problem is then equivalent to minimizing 

Ilx - x()ll~ == (x - Xo I Q(X - XO»· 

Suppose we have, or can generate, a sequence of vectors {PI' P2' ... } 
that are orthogonal with respect to the inner product [ I ]. Such a sequence 
is said to be Q-orthogonal or to be a sequence of conjugate directions. 
The vector xo can be expa.nded in a Fourier series with respect to this 
sequence. If the n-th partial sum of such an expansion is denoted X n , 

then we have, by the fundamental approximation property of Fourier 
series, that Ilx. - Xo II Q is minimized over the subspace [PI' pz , ... , P.]. 
Therefore, as n increases, the value of IIx. - Xo IIQ and the value of f 
decrease. If the sequence {Pi} is complete, the process converges to Xo. 

Of course, to compute the Fourier series of Xo with respect to the {Pi}, we 
must be able to compute inner products of the form [Pi I xo]. These are 
computable even though Xo is unknown since [Pi I xo] = (Pi I Qxo) = (Pi I b). 

Theorem 1. (Method of Conjugate Directions) Let {pd be a sequence in H 
such that (p i I Qp j) = 0, i:f= j, and such that the closed linear subspace 
generated by the sequence is H. Then for any XI E H the sequence generated 
by the recursion. 

(2) X.+ I = X. + (X.P. 

(3) 
(p.lr.) 

(X = 
• (P. I Qp.) 

(4) r. = b - Qx. 

satisfies (r. I Pk) = 0, k = I, 2, ... , n - I, and X. -+ xo-the unique solution of 
Qx=b. 

Proof Define Y. = X. -- Xl. The recursion is then equivalent to Yl = () 
and 

(5) (P. I b - Qx I - Qy.) 
Y.+I=Y.+ (P.IQPn) P., 

or in terms of the inner product [ I ], 

(6) 
[pRI Yo - Y.] 

Y.+l=Y.+ [ I ] P.· 
Pn Pn 
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Since Yn e [PI, P'}., ' . , ,Pn- tJ and since the p/s are Q-orthogonal, it follows 
that [Pn I Yn] = 0 and hence equation (6) becomes 

Thus 

[Pnl Yo] 
Yn+ 1 == Yn + [ I ] Pn' 

Pn Pn 

~ [Pkl.Yo] 
Yn+ 1 = "- [p I p ] Pk' 

k= 1 k k 

which is the n-th partial sum of a Fourier expansion of Yo' Since with our 
assumptions on Q, convergence with respect to II II is equivalent to con­
vergence with respect to II lIa, it follows that Yn -+ Yo and hence that 
xn-+ xo' 

The orthogonality relation (rn IpJ = ° follows from the fact that the error 
Yn-YO=xn-xO is Q-orthogonal to the subspace [Pl,P'}., ... ,Pn-lJ.1 

Example 1. Consider once again the basic approximation problem in a 
Hilbert space X. We seek the vector 

~=LaiYi 

in the subspace [Yl' Y'}., ., . , Yn] which best approximates a given vector x. 
This leads to the normal equations 

Ga=b, 

where G is the Gram matrix of {Yl' Y'}., . , ., Yn} and b is the vector with 
components b, = (xIYI)' 

The n-dimensional linear equation is equivalent to the unconstrained 
minimization of 

a'Ga - 2a'b 

with respect to a e En. This problem can be solved by using the method 
of conjugate directions. A set of linearly independent vectors {Pl'P'}." , "Pn} 
satisfying p,'GPJ = 0, i ::pj, can be constructed by applying the Gram­
Schmidt procedure to any independent set of n vectors in En, For instance, 
we may take the vectors e, = (0, ... , 1,0, ... ,0) (with the 1 in the i-th com­
ponent) and orthogonalize these with respect to G, The resulting iterative 
calculation for a has as its k-th approximation ak the vector such that 

n 

~k= LalYI 
1=1 

is the best approximation to x in the subspace [Yl' Y'}., ... , Yk]' In other 
words, this conjugate direction method is equivalent to solving the original 
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a.ppl'oximation problem by a Gram-Schmidt orthogonalization of the 
vectors {Yl' Y2, ... , Yn}· 

*10.7 Ortbogonalization of Moments 

The Q-orthogonal direction vectors for a conjugate direction method can 
be obtained by applying the Gram-Schmidt procedure to any sequence of 
vectors that generate a dense subspace of H. Thus, if {el} is such a sequence 
in H, we define 

(n> 1), 

where again [x I y] == (x I Qy). This procedure, in its most general form, is in 
practice rarely worth the efi'olrt involved. However, the scheme retains some 
of its attractiveness if, as practical considerations dictate, the sequence {en} 
is not completely arbitrary but is itself generated by a simple recurrence 
scheme. Suppose, in particullar, that starting with an initial vector el and a 
bounded linear self-adjoint operator B, the sequence {et} is generated by 
the relation en+ I = Ben. Such a sequence is said to be a sequence of 
moments of B. There appeal' to be no simple conditions guaranteeing that 
the moments generate a dense subspace of H, so we ignore this question 
here. The point of main interest is that a sequence of moments can be 
orthogonalized by a proc1edure that is far simpler than the general 
Gram-Schmidt procedure. 

Tbeorem 1. Let {el} be a sequence of moments of a self-adjoint operator B. 
Then the sequence 

[PIIBPI] 
P2 = BPI - ---- PI 

[PI I PI] 

B [Pn 1 BPn] [Pn-I 1 BPn] 
Pn+1 = Pn - -[-1-] Pn - [ I ] Pn-I 

Pn Pn Pn - I Pn - I 
(n ~ 2) 

defines a Q-orthogonal sequence in H such that for each n, [PI' P2, ... , Pn] = 
[el' e2, ... , en]' 

Proof Simple direct verification shows the theorem is true for PI' P2' 
We prove it for n> 2 by induction. Assume that the result is true for 
{p/}7= I' We prove that it is true for {PI}7:; f . 
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It is clear by inspection that PlIt! is nonzero and is in the subspace 
[el' e2' ... , en+l]. Therefore, it is only necessary to establish that Pn+1 is 
orthogonal to each PI' i :s; n. For any i :s; n we have , 

[ I ] [ I
B] [PnIBPn] [ I ] [PnIBPn-l] [I ] 

PI Pn+ I = PI Pn - [ I ] Pi Pn - [p I P ] PI Pn-I . 
Pn Pn n-I . n-I 

For i :s; n - 2 the second two terms in the above expression are zero by the 
induction hypothesis and the first term can be written as [BPIIPn] which is 
zero since BpI lies in the subspace [PI' P2 , ... , PI + I]. For i = n -1 the first 
and the third term cancel while the second term vanishes. For i = n the 
first and the second term cancel while the third term vanishes. I 

10.8 The Conjugate Gradient Method 

A particularly attractive method of selecting direction vectors when 
minimizing the functional 

/(X) = (x I Qx) - 2(b I x) 

is to choosepi = r l = b - QXI (the direction of the negative gradient of/at 
XI) and then, after moving in this direction to X2' consider the new negative 
gradient direction r2 = b - QX2 and choose P2 to be in the space spanned 
by rl' r2 but Q-orthogonal to PI' We continue by selecting the other p/s 
in a similar way. In other words, the sequence of p/s is a Q-orthogonalized 
version of the sequence of negative gradients {rl' r2 , .•• } generated as the 
descent process progresses. The method leads to the simple recursive form 

(1) (rnIPn) 
Xn + I = Xn + (Pn I QPn) Pn 

(2) 
(rn+11 QPn) 

Pn + I = r n + I - (Pn I QPn) Pn . 

This two-term formula for the next member of the Q-orthogonal 
sequence {Pj} can be considered a consequence of the theorem in the last 
section on orthogonalized moments. In the present case it is easily seen 
that rn +1 is in the subspace [rl' Qru ... , QnrtJ. Furthermore, because 
the direction vectors {Pn} are generated from the negative gradients, the 
resulting closed subspace generated by them is . always large enough so 
that the xn's converge to th0 optimal solution. 

Theorem 1. Let XI e H be given. Define PI = b - QXl and 
(3) I"n = b - QXn 

(4) 



(5) 

(6) 

(7) 
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P.+l = r.+ 1 - P.P. 

0(. = ~(---,-r .:....:.i..:..p.:.::..)_ 

(P. I Qp.) 

[3. = (r .+11 Qp.) . 
(P. I Qp.) 

Then the sequence {x.} converges to Xo = Q- 1b. 

Proof We first show that this is a method of conjugate directions. 
Assume that this assertion is true for {Pk}k= l' {xk}k~ t ; we shall show 
that it is true for one mone step. 

Since 0(.+ 1 is chosen in accordance with a method of conjugate directions 
we must only show that P.+l is Q-orthogonal to the previous direction 
vectors. We have from (5) 

(8) 

For k = n the two terms on the right of (8) cancel. For k < n the second 
term on the right is zero and the first term can be written as (QPk I r.+ 1). 

But QPk E [PI' P2' ... , PH 1] C [PI' P2 , ... ,P.] and for any conjugate 
direction method (r.+ 1 I Pi) = 0, i ~ n. Hence the method is a conjugate 
direction method. 

Next we prove that the sequence {x.} converges to xo. Define the func­
tional E by 

E(x) ,= (b - Qx I Q-l(b - Qx)). 

We have, by direct evaluation, 

E(x.) - E(x.+ 1) = O(.(r. Ip.). 

But by (5) and (r. Ip.-l) =: 0 we have (r. Ip.) = (r. I r.) and hence 

(9) ) ~( (r.lr.) 
E(x. - 1~ x.+ 1) = 0(. (I 1) E(x.). 

r. Q r. 

Now from (5) and the Q-orthogonality of Pn and P.-l we have 

(10) (r. I Qr.) = (P. I Qp?) + P;-I(P.-l I Qp.-l) 

;;:: (P. I Qp.). 

Also, by definition of m, Section 10.6, 

(11) 
(r. I r.) 

(r. I Q-1r.) ;;:: m. 
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Hence, combining (9), (10), and (11), we obtain 

E(Xn+l) s: (1 - ':)E(Xn). 

Thus E(xJ -+ 0 which implies rn -+ O. I 
The slight increase in the amount of computation required for the con­

jugate gradient method over that of steepest descent can lead to a significant 
improvement in the rate of convergence. It can be shown that for m(x I x) ~ 
(x I Qx) ~ M(x I~) the con ,.,rgence rate is 

2 4 (1-J~)2" 
IIxli +1 - xoll S in E(x1) 1 + Jc ' 

where c = m/M, whereas for steepest descent the best estimate (see 
Problem 11) is 

2 1 (1- C)'h 
IlxUl - xoll s: m E(xJ 1 + c 

In an n-dimensional quadratic problem the error tends to zero geometric­
ally with steepest descent, in one step with Newton's method, and within n 
steps with any conjugate direction method. 

The method of conjugate directions has several extensions applicable to 
the minimization of a nonquadratic functional f One such method, the 
method of parallel tangents (PARTAN), is based on the easily established 
geometric rel!ltion which exists among the direction vectors for the 
quadratic version of the conjugate gradient method (see Figure 10.7). 

B 

XII 1'" .\'11+1 

Figure 10.7 PARTAN 

Point A, the intersection of the line between (xn , Xn+ 2) with the line 
(xn+l> B) determined by the negative gradient offat Xn+lt is actually the 
minimum off along the line (xn+ 1, B). To carry outthe PARTAN procedure 
F<:u: wimwizan6 "" ","bit'""'"Y funvtiQnulf, the point xnH b found from Xn 

and Xn+l by first minimizingf along the negative gradient direction from 
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Xn+1 to find the point A and then minimizing f along the (dotted) line 
determined by Xn and A to find x n+ 2 . For a quadratic functional this 
method coincides with the conjugate gradient method. For nonquadratic 
functionals the process determines a decreasing sequence of functional 
values f(xn); practical experience indicates that it converges rapidly, 
although no sharp theoretical results are available. 

METHODS FOR SOLVING CONSTRAINED PROBLEMS 

Devising computati9nal procedures for constrained optimization prob­
lems, as with solving any difficult problem, generally requires a lot of 
ingenuity and thorough familiarity with the basic principles and existing 
techniques of the area. No general, all-purpose optimization algorithm 
has been devised, but a number of procedures are effective for certain 
classes of problems. Essentially all of these methods have strong connec­
tions with the general principles discussed in the earlier chapters. 

10.9 Projection Methods 

One of the most common techniques for handling constraints is to use a 
descent method in which the direction of descent is chosen to decrease the 
cost functional and to re:main within the constraint region. 

The simplest version of the method is designed for problems of the form 

minimize f(x) 
subject to Ax = b, 

wherefis a functional on the Hilbert space X, A is a bounded linear operator 
from H into a Hilbert space Y, and b is fixed in Y. We assume that A has 
closed range. The procedure begins by starting from a point XI satisfying 
the constraint. An ideal direction vector PI is found by some standard 
technique such as steepest descent or Newton's method. This vector is 
projected onto the nullspace of A, JV(A), giving the new direction vector 
91' The next point X2 is then taken as 

where (X) is chosen in the usual way to minimize f(x 2 ). Since 9) E %(A), 
the point X 2 also satisfies the constraint and the process can be continued. 

To project the negative gradient at the n-th step onto %(A), the com­
ponent of f'(xn) in al(A) must be added to the negative gradient. Thus the 
required projected negative gradient has the form 

9n = - f'(xn) + A*An 
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and An is chosen so that AU'(xn) - A*An} = (). Therefore, 

9n = -[1- A*(AA*)-1AJ!'(xn)· 

At the solution xo, !'(xo) will be orthogonal to .A'(A) and hence 

j'(xo) - A*,A,o = O. 

This last equation is the necessary <:ondition in terms of the Lagrange 
multiplier. Thus, as the method progr,esses, the computation of the projec­
tion of the gradient gives, in the limit, the Lagrange multiplier for the 
problem. 

Similar considerations apply to nonlinear constraints of the form 
H(x) = e and to inequality constraints of the form G(x) :$ e, but a number 
of additional calculations are required at each step. We do not discuss these 
techniques in detail here but merely indicate the general idea of one possible 
method. Additional information is c:ontained in the references and the 
problems. 

Suppose we seek to 

minimize j( x) 
'ubject to H(x) = 0, 

and that we have a point Xl satisfying the constraint. To obtain an improved 
vector X2 , we project the negative gradient of j onto the tangent space 
{x: H'(X1)x = O} obtaining the direction vector 91' Then XZ(l) is taken as 
Xl + IX l91 where IXl is chosen to minimilzej(xl(l». This new vector Xl(l) may 
not satisfy the constraint so it must be modified. One way is to employ a 
successive approximation technique to generate a sequence {Xl (k) } originating 
atxZ(l) ,which converges to a vector Xl satisfyingH(xl) = e. Of course, once 
Xz is finally obtained, it must be verified that j(Xl) s.j(Xt) so that Xl is 
indeed an improvement. Ifj(Xl) > j(JC1), /Xl must be reduced and a new X;z 
found. The method is illustrated in Figure 10.8. 

-j' 
\ 

\ 
\ 

\ 

\\x~ 

~ 
Xl ~ 

H(x) = {} 

Figure 10.8 Gradient projection 
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There are a number of techniques of successive approximation that can 
be employed to move from the tangent plane to the constraint surface. The 
most common methods are modifications of Newton's method (see Prob­
lem 9). 

10.10 The Primal-Dual Method 

Duality theorems supply the basis for a number of computational pro­
cedures. These procedures, like the duality theorems themselves, often can 
be justified only for convex problems, but in many cases the basic idea can 
be modified so as to be effective for other problems. 

We consider a dual method for the convex problem 

(1) {
minimize f(x) 
subject to G(x) s e, XEQ. 

Assuming that the constraint is regular, this problem is equivalent to 

(2) max inf {I(x) + (G(x), z*)}. 
z";:O;O xeO 

Or, defining the dual functional 

(3) qJ(Z*) = inf {f(x) + (G(x), z*)}, 
xeO 

the problem is equivalent to the dual problem 

(4) {
maximize qJ(z*) 
subject to z* ;;:::: e. 

The dual problem (4) has only the constraint z* ;;:::: e, hence, assuming that 
the gradient of qJ is available, the dual problem can be solved in a rather 
routine fashion. (Note that if the primal problem (1) has only equality 
constraints of the form Ax = b, the dual problem (4) will have no 
constraints.) Once the dual problem is solved yielding an optimal Z6, 
the primal problem can be solved by minimizing the corresponding 
Lagrangian. 

Example 1. (Hildreth's Quadratic Programming Procedure) Consider the 
constrained quadratic minimization problem: 

(5) {
minimize -lx'Qx - b'x 
subject to Ax s c. 

Here x is an n vector, Q an n x n positive-definite matrix, A an m x n 
matrix, and band c are given vectors of dimension nand m, respectively. 
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The dual problem (see Example 1, Section 8.6) is 

maximize -tA'PA - A'd - tb'Q- 1b 
subject to A ~ e, 

where P == AQ- 1A', d == AQ-1b + c. Or, equivalently, 

(6) {minimize tA'PA + A'd 
subject to A :2: O. 

After solving Problem (6), obtaining Ao, the solution to (5) is 

Xo = Q-l(b - A'Ao). 

To solve (6) we employ a descent procedure with direction vectors equal 
to the usual basis vectors ej == (0, 0, ... , 1,0, ... ,0). Specifically we let the 
infinite sequence of direction vectors be {elo ez, ... , en' eu ez , ... , en, ... }. 
Thus we vary the vector A one component at a time. 

At a given step in the process, having obtained a vector A ~ 8, we fix our 
attention on a single component Aj • The objective functional may be 
regarded as a quadratic function of this one component. We adjust Ai to 
minimize the function, or if that would require Ai < 0, we set Aj == 0. In any 
case, however, the objective functional is decreased. Then we consider the 
next component Aj+l' 

If we consider one complete cycle through the components to be 
one iteration taking the vector Ak to Ak+l, the method can be expressed 
explicitly as 

where 

k + 1 1 ( 1- 1 k + 1 n k) 
W, == -- dj + LPjJAj + L pjJAJ . 

Pii J=1 J=I+l 

Convergence of the metho~ is easily proved. 

Although the dual functional can be evaluated analytically in only a few 
special cases, solving the dual rather than the primal is often an efficient 
procedure. Each evaluation of the dual functional, however, requires 
solving an unconstrained minimization problem. 

An evaluation of the dual functional by minimization yields the gradient 
of the dual as well as its value. Suppose that Xl is a minimizing vector in 
(3) corresponding to zT. Then for arbitrary z* 

cp(z!) == !(Xl) + (G(Xl)' zr) 

cp(z*) -s.!(Xl) + (G(Xl)' z*). 
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Therefore, 

(7) 

and hence G(xl ) defines a hyperplane that bounds q> from above. If q> is 
differentiable, G(XI) is the (unique) gradient of q> at zt. (See Problem 8, 
Chapter 8.) 

In view of the above observation, it is not difficult to solve the dual 
problem by using some gradient-based technique modified slightly to 
account for the constraint z* ~ e. At each step of the process an uncon­
strained minimization is performed with respect to x in order to evaluate q> 
and its gradient. The minimization with respect to x must, of course, 
usually be performed by some iterative technique. 

Example 2. (Optimal Control) Suppose a dynamic system is governed by 
an n·th order set of ditre:rential equations 

x(t) = I(x, u, t). 

Given an initial state x(to), we consider the problem of selecting the 
m-dimensional control u(t), to ~ t ~ t I' such that u(t) E U c Rm so as to 
minimize the convex functional 

subject to the terminal constraints 

where G is a convex mapping of En into EY
• 

Let us partition the state vector into two parts, x = (y, z), where y is that 
part of the state vector that enters explicitly into the cost functional t/J and 
the constraints G. We write t/J(y), G(y) for t/J(x) , G(x), respectively. For 
many problems the dimension p of y is equal to m + I. For example, in 
optimizing the flight of a rocket to a given target, the components in x(t I) 
representing velocity do not explicitly enter the terminal position con­
straint. 

To apply the primal. dual algorithm to this problem, we define the set 

r == {y E EP : (y, z) = XUI), where X(tl) is the terminal point of some 
trajectory generated by a feasible control input u}. 

The control problem is then equivalent to the finite-dimensional problem 

minimize t/J(y) 
sut~ect to G(y) ::; 0, 
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This is a convex programming problem if r is convex. For many nonlinear 
systems, r can be argued to be convex if the dimension p of y is sufficiently 
low. By duality tl).e problem is then equivalent to the problem , 

max {min [",(y) + ),'G(Y)]} . 
..t~1I "Gr 

For fixed), the inner minimization over y is equivalent to an optimal control 
problem having terminal cost 

"'(x(tt» + ),'G(X(tl) 

but having no terminal constraints. This latter type of control problem can 
be solved by a stll!.ldard gradient method (see Example 2, Section 10.5). 

10.11 Penalty Functions 

It has long been common practice among optimizers to attack a problem 
such as 

(1) {
minimize f(x) 
subject to hi(x) = 0, i = 1,2, ... , p, 

by solving instead the unconstrained approximating problem 

(2) minimizej(x) + K L hi
2(X) 

i 

for some large positive constant K. For sufficiently large K it can be 
reasoned that the solutions to problems (1) and (2) will be nearly equal. 
The term KLi h;2(X) is referred to as a penalty function since in effect it 
assigns a specific cost to violations of the constraints. 

In the practical implementation of the penalty function method, we are 
driven on the one hand to select K as large as possible to enhance the degree 
of approximation, and on the other to keep K somewhat small so that when 
calculating gradients the penalty terms do not completely swamp out the 
original objective functional. A common technique is to progressively 
sowe problem (2), the unconstrained approximation, for a sequence of K's 
which tend toward infinity. The resulting sequence of approximate solutions 
can then be expected to converge to the solution of the original constrained 
problem. In this section we investigate this type of scheme as applied to 
inequality as well as equality constraints. 

At first the penalty function method may appear to be a simple algebraic 
device-a somewhat crude scheme for overcoming the difficulties imposed 
by constraints. There is a geometric interpretation ofthe method, however, 
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which illuminates its intimate relation with other optimization techniques 
and lends a degree of elegance to the scheme. Problem (1) is clearly 
equivalent to 

minimize f(x) 
(3) 

subject to L h/(x) ::;; 0, 
t 

and by this transformation we reduce the n constraints to a single con­
straint. This constraint, it should be noted, is not regular; i.e., there is no x 
such that Li h/(x) < O. The primal function for problem (3), 

w(z) == inf {I(x) : L h i
2(X) ::;; z}, 

looks something like that,:;hown in Figure 10.9. It is nonincreasing with 
z = 0 as a boundary point of its region of definition. The hyperplane 
(which in this case is merely a line since z is a real variable) supporting the 
shaded region at the point (w(O) , 0) may be vertical. 

Specifying K> 0 and minimizing I(x) + KLi h/2(X) determines, as 
shown in Figure 10.9, a supporting hyperplane and a value ({JK for the dual 
functional corresponding to problem (3). Provided w is continuous, it is 
clear that as K is increased, ({JK will increase monotonically toward w(O). 
No convexity requirements need be imposed; since 0 is a boundary point of 
the region of definition for w, a (perhaps vertical) support hyperplane 
always exists. 

There are numerous variations of this scheme. For instance, since the n 
original equality constraints are also equivalent to the single constraint 

w 

'", )0 :: 

Figure 10.9 The primal function 
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,the penalty term K L /hlx)/ can be used. If the h;'s have nonvanishill! first 
derivatives at the solution, the primal function will, in this case, as in Figure 
1O.10,havefinite slope at z = 0, and hence some finite value of K will yield 
a support hyperplane. This latter feature is attractive from a computational 
point of view but is usually offset by the difficulties imposed by non­
existence of a gradient of L Ih~x)l. 

\ w 
\ 
\ 

\ 

----L-----~------------______ ~z 
Figure 10.10 The primal function using Llhd 

For inequality constraints a similar technique applies. Given a functional 
9 on a vector space X, we define 

g+(x) = max {O, g(x)}. 

Let G be a mapping from X into RP, i.e., G(x) ::;: (g1(X), g2(X), ., ., gp(x». 
We define 

G+(x) = (g1 + (x), g2 + (x), ... , gp + (x». 

It is then clear the p inequalities G(x) s: 0 are equivalent to the single 
inequality 

G+(x)'G+(x);:: ~ [g/(X)]2 s: 0. 

Again this inequality does not satisfy the regularity condition. Since this 
form includes equality constraints, we consider only inequalities in the 
remainder of the section. Hence we analyze the method in detail for the 
problem 

(4) {
minimize f(x) 
subject to G(x) ~ e. 

The geometric interpretation of this problem is identical with that for 
equalities. ' 

Throughout the following it is assumed that {KII } is an increasing 
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sequence of positive constants tending toward infinity and that problem (4) 
has a solution. 

Lemma 1. Define 

Jlo = min {I(x) : G(x) :5 O}. 

For each n let Xn be a point minimizing 

Then 

1. fn+l(Xn+1) '?:.!,,(xn). 
2. flo '?:. !,,(xn)· 
3. lim Kn G+(xn),G+(x.) = O. 

n-+OO 

Proof 

1. fn+I(XQ +1) = f(XQ+l} + Kn+lG+(Xn+l)'G+(xn+l) 

'?:.f(X.+l) + K. G+(X.+l)'G+(Xn+l) 

'?:. !,,(xn). 

2. Let Xo solve (4). Thl~n Jlo = f(xo) = fn(xo) '?:. f,,(x.). 
3. For convenience define g(x) = G+(x)'G+(x). Since K. g(x) '?:. 0, it is 

only necessary to prove that lim sup K" g(xn) = O. Assume to the 
contrary that lim sup Kn g(x.) = 38 > O. Since by parts 1 and 2 the 
sequence {!,,(xn)} is nondecreasing and bounded, it therefore has a 
limit y. Select N such that 

y <fN(XN) + 8. 

Since Kn -t 00 and since lim sup Kn g(xn) := 38, there is an integer M 
such that 

and 

28 < KM g(XM) < 48. 

We then obtain a contradiction from the following string of in­
equalities: 

Y <!N(XN) + 8 :5!(XM) + KNg(XM) + 8 

=!(XM) + (~:)KM9(XM) + 8 <!(XM) + !KMU(XM) + 8 

<!(XM) + 28 <!(XM) + KMg(XM) =!M(XM):5 y. I 



306 ITERATIVE METHODS OF OPTIMIZATION 10 

Notice that part 3 of Lemma 1 is stronger than the statement 

G+(x,,)'G+(x,,} ~ O. 

Notice also that' no continuity, convergence, or convexity assumptions 
are required by Lemma 1. 

Theorem 1. Letf(x} and O+(x)'G+(x) be lower semicontinuousfunctionals. 
Ifxo is any limit point of the sequence {xn} defined in Lemma 1, then Xo solves 
problem (4). 

Proof Since g(xn} == G+ (x,,),G + (xn) -+ 0 by Lemma 1, it follows by 
tnelower semicontinuity of 9 that g(xo} = 0 and hence G(.~o} ~ e, We have 
Jl.o ~f(xo} since G(xo} ~ e. Alsof(xn} ~J,,(xn} ~ Jl.o and hence by the lower 
semicontinuity off, f(xo} ~ Jl.o· I 

It is remarkable and yet perhaps inevitable that the penalty function 
method, a method so simply conceived, is strongly connected with the 
theory of Lagrange multipliers. The connection is greatest for convex 
problems where, in fact, the penalty function method emerges as a par­
ticularly nice implementation of the primal-dual philosophy. 

Lemma 2. Let f and G be convex and continuous on the normed space X. If 
Xo minimizes 

(5) 

then it also minimizes 

(6) f(x} + .,1.o'G(x), 

where .,1.0 = 2G+(xo}. 

Proof The reader should find it simple but instructive to supply a 
proof assuming differentiab.'ity off and G. 

Without assuming differentiability, we construct a proof by contraposi­
tion. Suppose Xo does not minimize (6); specifically suppose there is Xl and 
8 > 0 such that 

f(Xl} + .,1.o'G(xl} <f(xo) + Ao'G(Xo} - 8. 

Let x« = a:X I + (1 - a:}xo. We write the identity (for 0 ~ a: ~ 1) 

f(x«} + G+(x«)'G+(x«} =f(xo) + G+(xo)'G+(xo} 

+ f(x«} + AO'G(X«) - f(xo} - AO'G(XO} 

+ IIG+(x«} - G+(xo)1I2 - A.o'[G(x«} - G+(xJ]. 

Because of the definition of Xl the second line of the expression is less than 
-a:8. Since a continuous convex functional satisfies a Lipschitz condition at 
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every point on the interior of its domain (see problem 19), the first term in 
the third line is O(1X2

). The last term is identically zero for ex sufficiently 
small. Thus 

f(x«) + G+(x"YG+(x«) $,f(xo) + G+(xo)'G+(xo) - ecx + O(1X2), 

and hence the left side is less than the right for sufficiently small ex showing 
that Xo does not minimizl~ (5). I 

Suppose we apply the penalty function method to a problem wherefand 
G are convex and continous. At the n-th step let Xn minimize 

and define 

An = 2Kn G+(xn)· 

Then applying Lemma 2 with G ~ Kn1/2G, it follows that Xn also minimizes 

or, in terms of the dual functional q> corresponding to problem 4, 

In other words, xn ' the nesult of the n-th penalty function minimization, 
determines a dual vector ,1.n and the corresponding value of the dual func­
tional. This leads to the interpretation that the penalty function method 
seeks to solve the dual. 

Theorem 2. Let f and G be convex and continuous. Suppose Xn minimizes 
f(x) + Kn G+(x)'G+(x) and define An = 2Kn G+(xn)· If Ao is any limit point 
of the sequence {An}, then .~o solves the dual problem 

maximize q>(A) 
subject to A ~ e. 

Proof. The dual functional q> is concave and, being a conjugate 
functional (except for sign), it is upper semicontinuous (see Sections 7.9 
and 7.10). Hence q>(,1,o);;::: lim sup q>(An). Now given any A ~ e and any 
6> 0, select N large enough so that for all n ~ N we have A.'G(xn) < 6. This 
choice is possible since G+(xn} ~ e. Then, since An'G(xn) ~ 0, we have 

q>(A) $,f(xn) + A'<J(xn) $,f(xn) + An'G(xn) + e = q>(An) + e 

for n ~ N. Therefore, sinc~! e was arbitrary, we have q>(A.) $, lim sup q>(A.n) $, 

q>(Ao)· I 
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10.12 Problems 

1. Let S be a closed subset of a Banach space. A mapping T from S 
onto a region r contai'ling S is an expansion. mapping if there is a 
constant K> 1 such that lIT(x) - T(Y)II :?: Kllx - yll for x =1= y. Show 
that an expansion mapping has a unique fixed point. 

2. Let S be a compact subset of a Banach space X and let T be a mapping 
of S into S satisfying IIT(x) - T(y)1I < IIx - yll for x =1= y. Show that T 
has a unique fixed point in S which can be found by the method of 
successive approximation. 

3. Let X = L2 [a, b]. Suppose the real-valued function [is such that for 
each xe X 

b f [(t, s, x{s» ds 
" 

is an element of X. Suppose also that I[{t, s, e) - [(t, s, 01 :s; 
K{t, s) Ie - e'l, where J!J! K(t, S)2 ds dt < 1. Show that the integral 
equation 

b 

x(t) = y(t) + J !(t, s, x(s»ds 
a 

has a unique solution x e X for every y e X. 
4. Let X be a Banach space and let A be a bounded linear operator from 

X into X. Using the contraction mapping theorem, show that if 
IIAII = a < 1, then (I - A)-l exists (where I is the identity operator) 
and 11(1 - A)-lll < I/O - a). 

5. Using a technique similar to that employed for solving Volterra 
integral equations, devise a successive approximation scheme with 
guaranteed convergence for solving the two-point boundary value 
problem associated with minimizing 

f
ll 

[x'(t)x(t) + u2(t)] dt 
to 

subject to X(t) = [[x(t)] + bu(t), x(to) fixed. 
6. Show that Newton's method applied to a function [ of the single 

real variable x converges monotonically after the second step if 
['(x) > 0 andf"{x) > o everywhere. 

7. In a modified Newton's method for solving P{x) = lJ, we iterate 
according te> 

(1) 
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Assume that P is Ftechet differentiable in a convex region D and that 
for some xl E D, [P'(XI)]-l exists. Assume that X2 calculated accord­
ing to equation (1) is in D, that 

p = II[P'(xl)J-lll sup IIP'(xl) - PI(x)11 < 1, 
xeD 

and that the sphere 

p 
S = {x: Ilx - x211 < -llxl - x211} 

1-p 

is contained in D. Show that the modified method converges to a 
solution Xo E S. 

8. Use the modified Newton's method to calculate J10 starting from 
Xl = 3 and from Xl :::; 1. 

9. Let X and Y be Hilbert spaces and let P be a transformation from X 
into Y. Suppose that P has a Frechet derivative P 'ex) at each point 
X E X and that P'(x) has closed range. Show that, under conditions 
similar to those of the standard Newton's method theorem, the 
sequence Xn+1 = Xn - [P'(xn)]tp(xn) converges to a point Xo satisfy­
ing P(xo) :::; e. (At denotes the pseudoinverse of A.) 

10: Suppose the boundt:d, self-adjoint operator Q on a Hilbert space X 
satisfies 

. (x I Qx) 
lnf (xix) = m > O. 

Show that Q has an inverse and that for all X 

1 
(x I Q-1x):$; - (xl x). 

m 

11. Use Kantorovich's inequality 

to obtain an improved estimate for the convergence rate of steepest 
descent over that given in Theorem 1, Section 10.5. Prove the inequality 
for positive-definite (symmetric) matrices. . 

12. Letfbe a functional defined on a normed space X and bounded below. 
Given Xl E X, let S be the closed convex hull of the set {x : I(x) </(x I)}' 
Assume that S is bounded and that I has a uniformly continuous 
Frt!chet derivative on S. Show that the method of steepest descent 
applied to ffrom XI generates a sequence {xn} such that III'(xn)1I -+ e. 
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13. Under the hypothesis of Theorem 2, Section 10.5, show that the sim­
plified steepest-descent process defined by Xn+1 = Xn -(l/M)f'(xn) 
converges tt> the point minimizing f 

14. Suppose a sequence {xn} in anormed space converges to a point Xo. 
The convergence is said to be weakly linear if there exists a positive 
integer N such that 

. Ilxn+N - xoll 
hm sup II II < 1. 
n .... oo Xn - Xo 

(a) Show that in Theorem 1, Section 10.5, the convergence is weakly 
linear. 
(b) Show I,hat in Theorem 2, Section 10.5, the convergence is weakly 
linear. 

15. Let B be a bounded hnear operator mapping a Hilbert space H into 
itself and let el be an arbitrary element of H. Let {ek} be the sequence 
of moments ek+l = Be,fe' Show that if en E Eel' e2' ... , en-l], then 
em E Eel' e2' ... , en-l] for all m > n. 

16. Show that in the method of conjugate gradients there is the relation 
(rn IPn) = (rl IPn)' 

17. Verify that the geometric relation of Figure 10.7 holds for the method 
of conjugate gradients. 

18. Show that even iff and G are not convex, if the primal-dual method 
converges in the sense that z: -I' z~ where z~;:: e, <p'(z~)::;; e, and 
<z~, <p'(4)> == 0, then the corresponding Xo minimizingf(x) + (G(x), 
z~> is optimal. 

19. Show that a continuous convex functional satisfies a Lipschitz condi­
tion at every point in the relative interior of its domain of definition. 
Hint: See the end of the Proof of Proposition 1, Section 7.9. 

20. An alternative penalty function method for minimizing f(x) over the 
constraint region 

n = {x: g,(x) ;:: 0, i = 1,2, ... , m} 

is to find a local minimum of 

over the interior of the region n. For small r the solutions to the two 
problems will be nearly equal. Develop a geometric interpretation of 
this method. 
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55-58,64-72,118-126,134-137, 
160-165 

Minimum-variance estima.te, 87-93 
Min-max theorem, 208 
Moments, 293 
Motor control problem, 66-67, 124, 

162-163 
Moving average process, 94 
Muntz's theorem, 74 

Newton's method, 277-284 
Norm, 22,47 

minimum (see Minimum norm 
problems) 

of coset, 42 
of linear functional, 10:5 
of linear operator, 144 
of product space, 37-38 

Normal equations, 55-58, 160-161,292 
Nullspace, 144 

relation to range, 155 
Null vector, 12 

Oil drilling problem, 299--231 
One-to-one, 27 
Onto, 27 
Open set, 24 
Orthogonal complement, 52, 117-118, 

157 
Orthogonal projection, 53 
Orthogonal vectors, 49. 117 
Orthonormal set, 53 
Orthonormal sequence, 59 

Parallelogram law, 48-49, 51-52, 70 
Parallel tangents, 296 
Parseval's inequality, 75 
Partition, 23 _ 
Penalty function, 302-307 
Polynomial approximation, 72-75, 

122-123 
Pontryagin maximum principle, 261-265 
Positive cone, 214 
Positive semidefinite, 152 
Pre-HUbert space, 46 
Primal-dual method, 299-302, 306 
Primal functional, 216, 303 
Probability distribution, 79 
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Production scheduling, 4. 234-238 
Product space, 14,37-38,44 
Projection, 53 
Projection operator, 167 
Projection theorem, 8,46,51-52,64, 

69, 120 
Pseudo inverse, 83, 163 
Pythagorean theorem, 49 

Quadratic convergence, 281 
Quadratic programming, 225-226, 

299-300 
Quotient space, 41-42 

Random variable, 79 
Range, 143 

closed, 156 
relation to nullspace, 155-157 

Reflexive space, 116 
Regression, 99-101 
Regular point, 187,219,240,244,248, 

256 
Relatively closed, 26 
Relative minimum, 177 
Reproducing kernel Hilbert space, 72 
Riccati equation, 258 
Riesz-Frechet theorem, 109 
Riesz representation theorem, 113 
Rocket problem,S, 125-126, 138-139, 

259-261 

Saddle-point condition, 219, 221 
Scalar, 11 
Scalar mUltiplication, 12 
Self-adjoint, 152 
Semicontinuity, 40, 194, 306-307 
Seminorm, 45 
Separable space, 42 
~eparating hyperplane theorem, 133 
Sequence, xvi 

bounded, 13, 35 
Cauchy, 33 
complete, 60-61 
convergent, 26 
finitely nonzero, 13, 105 
orthonormal, 59,61 

Series, 58 
Sphere, 24 
Stationary point, 178 
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Steepest descent, 285-290, 296 
Subgradient, 237 
Sub~ear functional, 110 
Subspace, 14 
Successive approximation, 272 
Sum of sets, 15 

direct, S3 
Support functional, 135, 141-142, 197 
Supporting hyperplane, 133 
Supremum, xv 

Tangent space, 242 
Topological properties, 11 
Total variation, 24, 115 
Transformation, 27, 143 

con';nuous, 28. 173 
linear, 28 

Triangle inequality, 1 
Triangulation problem, 6, 97-98 

Unbiased estimate, 85 
Union, xv 
Updating a linear estimate, 91-93, 

101-102 

Variance, 79 
Vector space, 11-12 
Vertical axis, 192 

Weak continuity, 127 
Weak convergence, 126 
Weierstrass approximation theorem, 

42-43,61 
Weierstrass-Erdman corner conditions, 

210 
Weierstrass maximum theorem, 39-40, 

128 

Young's inequality, 211 
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