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Preface

For some thirty years, I have taught two “Mathematical Physics” courses.
One of them was previously named “Engineering Analysis”. There are several
textbooks of unquestionable merit for such courses, but I could not find one
that fitted our needs. It seemed to me that students might have an easier
time if some changes were made in these books. I ended up using class notes.
Actually I felt the same about my own notes, so they got changed again and
again. Throughout the years, many students and colleagues have urged me to
publish them. I resisted until now, because the topics were not new and I was
not sure that my way of presenting them was really that much better than
others. In recent years, some former students came back to tell me that they
still found my notes useful and looked at them from time to time. The fact
that they always singled out these courses, among many others I have taught,
made me think that besides being kind, they might even mean it. Perhaps it
is worthwhile to share these notes with a wider audience.

It took far more work than expected to transcribe the lecture notes into
printed pages. The notes were written in an abbreviated way without much
explanation between any two equations, because I was supposed to supply
the missing links in person. How much detail I would go into depended on
the reaction of the students. Now without them in front of me, I had to
decide the appropriate amount of derivation to be included. I chose to err
on the side of too much detail rather than too little. As a result, the deriva-
tion does not look very elegant, but I also hope it does not leave any gap
in students’ comprehension.

Precisely stated and elegantly proved theorems looked great to me when
I was a young faculty member. But in later years, I found that elegance in
the eyes of the teacher might be stumbling blocks for students. Now I am
convinced that before the student can use a mathematical theorem with con-
fidence, he must first develop an intuitive feeling. The most effective way to
do that is to follow a sufficient number of examples.

This book is written for students who want to learn but need a firm hand-
holding. I hope they will find the book readable and easy to learn from.



VI Preface

Learning, as always, has to be done by the student herself or himself. No one
can acquire mathematical skill without doing problems, the more the better.
However, realistically students have a finite amount of time. They will be
overwhelmed if problems are too numerous, and frustrated if problems are
too difficult. A common practice in textbooks is to list a large number of
problems and let the instructor to choose a few for assignments. It seems to
me that is not a confidence building strategy. A self-learning person would
not know what to choose. Therefore a moderate number of not overly difficult
problems, with answers, are selected at the end of each chapter. Hopefully after
the student has successfully solved all of them, he will be encouraged to seek
more challenging ones. There are plenty of problems in other books. Of course,
an instructor can always assign more problems at levels suitable to the class.

Professor I.I. Rabi used to say “All textbooks are written with the principle
of least astonishment”. Well, there is a good reason for that. After all, text-
books are supposed to explain the mysteries and make the profound obvious.
This book is no exception. Nevertheless, I still hope the reader will find some-
thing in this book exciting.

On certain topics, I went farther than most other similar books. For
example, most textbooks of mathematical physics discuss viscous damping
of an oscillator, in which the friction force is proportional to velocity. Yet
every student in freshman physics learnt that the friction force is propor-
tional to the normal force between the planes of contact. This is known as
Coulomb damping. Usually Coulomb damping is not even mentioned. In this
book, Coulomb damping and viscous damping are discussed side by side.

Volume I consists of complex analysis and matrix theory. In this volume, we
discuss vector and tensor analysis, ordinary differential equations and Laplace
transforms. Fourier analysis and partial differential equations will be discussed
in volume III. Students are supposed to have already completed two or three
semesters of calculus and a year of college physics.

This book is dedicated to my students. I want to thank my A and B
students, their diligence and enthusiasm have made teaching enjoyable and
worthwhile. I want to thank my C and D students, their difficulties and mis-
takes made me search for better explanations.

I want to thank Brad Oraw for drawing many figures in this book, and
Mathew Hacker for helping me to typeset the manuscript.

I want to express my deepest gratitude to Professor S.H. Patil, Indian
Institute of Technology, Bombay. He has read the entire manuscript and
provided many excellent suggestions. He has also checked the equations and
the problems and corrected numerous errors.

The responsibility for remaining errors is, of course, entirely mine. I will
greatly appreciate if they are brought to my attention.

Tacoma, Washington K.T. Tang
December 2005
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Part I

Vector Analysis





1

Vectors

Vectors are used when both the magnitude and the direction of some physical
quantity are required. Examples of such quantities are velocity, acceleration,
force, electric and magnetic fields. A quantity that is completely character-
ized by its magnitude is known as a scalar. Mass and temperature are scalar
quantities.

A vector is characterized by both magnitude and direction, but not all
quantities that have magnitude and direction are vectors. For example, in the
study of strength of materials, stress has both magnitude and direction. But
stress is a second rank tensor, which we will study in a later chapter.

Vectors can be analyzed either with geometry or with algebra. The
algebraic approach centers on the transformation properties of vectors. It is
capable of generalization and leads to tensor analysis. Therefore it is funda-
mentally important in many problems of mathematical physics.

However, for pedagogical reasons we will begin with geometrical vectors,
since they are easier to visualize. Besides, most readers probably already have
some knowledge of the graphical approach of vector analysis.

A vector is usually indicated by a boldfaced letter, such as V, or an arrow
over a letter

−→
V . While there are other ways to express a vector, whatever

convention you choose, it is very important that vector and scalar quantities
are represented by different types of symbols. A vector is graphically repre-
sented by a directed line segment. The length of the segment is proportional
to the magnitude of the vector quantity with a suitable scale. The direction of
the vector is indicated by an arrowhead at one end of the segment, which
is known as the tip of the vector. The other end is called the tail. The
magnitude of the vector is called the norm of the vector. In what follows,
the letter V is used to mean the norm of V. Sometimes, the norm of V is also
represented by |V| or ‖V‖ .



4 1 Vectors

1.1 Bound and Free Vectors

There are two kinds of vectors; bound vector and free vector. Bound vectors
are fixed in position. For example, in dealing with forces whose points
of application or lines of action cannot be shifted, it is necessary to think
of them as bound vectors. Consider the cases shown in Fig. 1.1. Two forces of
the same magnitude and direction act at two different points along a beam.
Clearly the torques produced at the supporting ends and the displacements at
the free ends are totally different in these two cases. Therefore these forces are
bound vectors. Usually in statics, structures, and strength of materials, forces
are bound vectors; attention must be paid to their magnitude, direction, and
the point of application.

A free vector is completely characterized by its magnitude and direction.
These vectors are the ones discussed in mathematical analysis. In what follows,
vectors are understood to be free vectors unless otherwise specified.

Two free vectors whose magnitudes, or lengths, are equal and whose
directions are the same are said to be equal, regardless of the points in space
from which they may be drawn. In other words, a vector quantity can be
represented equally well by any of the infinite many line segments, all having
the same length and the same direction. It is, therefore, customary to say that
a vector can be moved parallel to itself without change.

1.2 Vector Operations

Mathematical operations defined for scalars, such as addition and multipli-
cation, are not applicable to vectors, since vectors not only have magnitude
but also direction. Therefore a set of vector operations must be introduced.
These operations are the rules of combining a vector with another vector or a
vector with a scalar. There are various ways of combining them. Some useful
combinations are defined in this section.

F F

Fig. 1.1. Bound vectors representing the forces acting on the beam cannot be moved
parallel to themselves
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1.2.1 Multiplication by a Scalar

If c is a positive number, the equation

A = cB (1.1)

means that the direction of the vector A is the same as that of B, and the
magnitude of A is c times that of B. If c is negative, the equation means that
the direction of A is opposite to that of B and the magnitude of A is c times
that of B.

1.2.2 Unit Vector

A unit vector is a vector having a magnitude of one unit. If we divide a vector
V by its magnitude V , we obtain a unit vector in the direction of V. Thus,
the unit vector n in the direction of V is given by

n =
1
V

V. (1.2)

Very often a hat is put on the vector symbol (n̂) to indicate that it is a unit
vector. Thus A = ÂA and the statement “n is an unit vector in the direction
of A” can be expressed as n = ̂A.

1.2.3 Addition and Subtraction

Two vectors A and B are added by placing the tip of one at the tail of the
other, as shown in Fig. 1.2. The sum A + B is the vector obtained by con-
necting the tail of the first vector to the tip of the second vector. In Fig. 1.2a,
B is moved parallel to itself, in Fig. 1.2b A is moved parallel to itself. Clearly

A + B = B + A. (1.3)

B

B

C = A + B

(a) (b) (c)

C = B + A C = A + B = B + A

BB

B

A A A A A

C C C

Fig. 1.2. Addition of two vectors: (a) connecting the tail of B to the tip of A;
(b) connecting the tail of A to the tip of B; (c) parallelogram law which is valid for
both free and bound vectors
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−B

−B

B

B

(a) (b) (c)

D = A + (−B)
= A − B

D + B = A
D = A − B

B + D = A
D = A − B

B B

A AA
D D D

Fig. 1.3. Subtraction of two vectors: (a) as addition of a negative vector; (b) as an
inverse of addition; (c) as the tip-to-tip vector which is the most useful interpretation
of vector subtraction

If the two vectors to be added are considered to be the sides of a parallelogram,
the sum is seen to be the diagonal as shown in Fig. 1.2c. This parallelogram
rule is valid for both free vectors and bound vectors, and is often used to
define the sum of two vectors. It is also the basis for decomposing a vector
into its components.

Subtraction of vectors is illustrated in Fig. 1.3. In Fig. 1.3a subtraction is
taken as a special case of addition

A − B = A + (−B) . (1.4)

In Fig. 1.3b, subtraction is taken as an inverse operation of addition. Clearly,
they are equivalent. The most often and the most useful definition of vector
subtraction is illustrated in Fig. 1.3c, namely A − B is the tip-to-tip vector
D, starting from the tip of B directed towards the tip of A.

Graphically it can also be easily shown that vector addition is associative

A + (B + C) = (B + A) + C. (1.5)

If A, B, and C are the three sides of a parallelepied, then A + B + C is the
vector along the longest diagonal.

1.2.4 Dot Product

The dot product (also known as the scalar product) of two vectors is defined
to be

A · B = AB cos θ, (1.6)

where θ is the angle that A and B form when placed tail-to-tail. Since it is a
scalar, clearly the product is commutative

A · B = B · A. (1.7)

Geometrically, A · B = ABA where BA is the projection of B on A, as
shown in Fig. 1.4. It is also equal to BAB, where AB is the projection of
A on B.
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A

B

A B =
 A

 co
s q

BA = B cos q

q

Fig. 1.4. Dot product of two vectors. A · B = ABA = BAB = AB cos θ

If the two vectors are parallel, then θ = 0 and A · B = AB. In particular,

A · A = A2, (1.8)

which says that the square of the magnitude of any vector is equal to its dot
product with itself.

If A and B are perpendicular, then θ = 90◦ and A · B = 0. Conversely, if
we can show A · B = 0, then we have proved that A is perpendicular to B.

It is clear from Fig. 1.5 that

A(B + C)A = ABA + ACA.

This shows that the distributive law holds for the dot product

A · (B + C) = A · B + A · C. (1.9)

With vector notations, many geometrical facts can be readily demon-
strated.

C

B

(B + C)A

A

BA CA

B + C

Fig. 1.5. Distributive law of dot product of two vectors. A · (B+C) = A ·B+A ·C
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Example 1.2.1. Law of cosines. If A, B, C are the three sides of a triangle,
and θ is the interior angle between A and B, show that

C2 = A2 + B2 − 2AB cos θ.

q

A

C
B

α

β

Fig. 1.6. The law of cosine can be readily shown with dot product of vectors, and
the law of sine, with cross product

Solution 1.2.1. Let the triangle be formed by the three vectors A, B, and
C as shown in Fig. 1.6. Since C = A − B,

C · C = (A − B)· (A − B) = A · A − A · B − B · A + B · B.

It follows
C2 = A2 + B2 − 2AB cos θ.

Example 1.2.2. Prove that the diagonals of a parallelogram bisect each other.

Solution 1.2.2. Let the two adjacent sides of the parallelogram be repre-
sented by vectors A and B as shown in Fig. 1.7. The two diagonals are A −B
and A + B. The vector from the bottom left corner to the mid-point of the
diagonal A − B is

B+
1
2
(A − B) =

1
2
(A + B),

which is also the half of the other diagonal A + B. Therefore they bisect each
other.

B

A

A − B

A + B

Fig. 1.7. Diagonals of a parallelogram bisect each other; diagonals of a rhombus
(A = B) are perpendicular to each other
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Example 1.2.3. Prove that the diagonals of a rhombus (a parallelogram with
equal sides) are orthogonal (perpendicular to each other).

Solution 1.2.3. Again let the two adjacent sides be A and B. The dot
product of the two diagonals (Fig. 1.7) is

(A + B) · (A − B) = A · A + B · A − A · B − B · B = A2 − B2.

For a rhombus, A = B. Therefore the dot product of the diagonals is equal
to zero. Hence they are perpendicular to each other.

Example 1.2.4. Show that in a parallelogram, the two lines from one corner
to the midpoints of the two opposite sides trisect the diagonal they cross.

A

B

P

M

N

O

R S

T

Fig. 1.8. Two lines from one corner of a parallelogram to the midpoints of the two
opposite sides trisect the diagonal they cross

Solution 1.2.4. With the parallelogram shown in Fig. 1.8, it is clear that
the line from O to the midpoint of RS is represented by the vector A + 1

2B.
A vector drawn from O to any point on this line can be written as

r(λ) = λ

(

A +
1
2
B
)

,

where λ is a real number which adjusts the length of OP. The diagonal RT
is represented by the vector B − A. A vector drawn from O to any point on
this diagonal is

r(µ) = A + µ (B − A) ,

where the parameter µ adjusts the length of the diagonal. The two lines meet
when

λ

(

A +
1
2
B
)

= A + µ (B − A) ,

which can be written as

(λ − 1 + µ)A +
(

1
2
λ − u

)

B = 0.
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This gives µ =
1
3

and λ =
2
3
, so the length of RM is one-third of RT. Similarly,

we can show the length NT is one-third of RT.

Example 1.2.5. Show that an angle inscribed in a semicircle is a right angle.

0

P

A

B

−A

B − A

B + A

Fig. 1.9. The circum-angle of a semicircle is a right angle

Solution 1.2.5. With the semicircle shown in Fig. 1.9, it is clear the magni-
tude of A is the same as the magnitude of B, since they both equal to the
radius of the circle A = B. Thus (B − A) · (B + A) = B2−A2 = 0. Therefore
(B − A) is perpendicular to (B + A) .

1.2.5 Vector Components

For algebraic description of vectors, we introduce a coordinate system for the
reference frame, although it is important to keep in mind that the magnitude
and direction of a vector is independent of the reference frame. We will first
use the rectangular Cartesian coordinates to express vectors in terms of their
components. Let i be a unit vector in the positive x direction, and j and k be
unit vectors in the positive y and z directions. An arbitrary vector A can be
expanded in terms of these basis vectors as shown in Fig. 1.10:

A = Axi + Ayj + Azk, (1.10)

where Ax, Ay, and Az are the projections of A along the three coordinate
axes, they are called components of A.

Since i, j, and k are mutually perpendicular unit vectors, by the definition
of dot product

i · i = j · j = k · k = 1, (1.11)

i · j = j · k = k · i = 0. (1.12)

Because the dot product is distributive, it follows that

A · i = (Axi + Ayj + Azk) · i
= Axi · i + Ayj · i + Azk · i = Ax,
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z

A

Ax i

Ay j

Az k

Ax

k

x

y
j

i

Fig. 1.10. Vector components. i, j, k are three unit vectors pointing in the direction
of positive x-, y- and z-axis, respectively. Ax, Ay, Az are the projections of A on
these axes. They are components of A and A =Axi + Ayj + Azk

A · j = Ay, A · k = Az,

the dot product of A with any unit vector is the projection of A along the
direction of that unit vector (or the component of A along that direction).
Thus, (1.10) can be written as

A = (A · i)i + (A · j)j + (A · k)k. (1.13)

Furthermore, using the distributive law of dot product and (1.11) and (1.12),
we have

A · B = (Axi + Ayj + Azk) · (Bxi + Byj + Bzk)
= AxBx + AyBy + AzBz, (1.14)

and
A · A =A2

x + A2
y + A2

z = A2. (1.15)

Since A · B =AB cos θ, the angle between A and B is given by

θ = cos−1 A · B
AB

= cos−1

(

AxBx + AyBy + AzBz

AB

)

. (1.16)

Example 1.2.6. Find the angle between A = 3i+6j+9k and B = −2i+3j + k.

Solution 1.2.6.

A = (32 + 62 + 92)1/2 = 3
√

14; B =
(

(−2)2 + 32 + 12
)1/2

=
√

14,

A · B =3 × (−2) + 6 × 3 + 9 × 1 = 21

cos θ =
A · B
AB

=
21

3
√

14
√

14
=

7
14

=
1
2
,

θ = cos−1

(

1
2

)

= 60◦.
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Example 1.2.7. Find the angle θ between the face diagonals A and B of a
cube shown in Fig. 1.11.

B

A - B

A

y
a

a

a

q

x

z

Fig. 1.11. The angle between the two face diagonals of a cube is 60◦

Solution 1.2.7. The answer can be easily found from geometry. The triangle
formed by A, B and A−B is clearly an equilateral triangle, therefore θ = 60◦.
Now with dot product approach, we have

A = aj + ak; B = ai + ak; A =
√

2a = B,

A · B =a · 0 + 0 · a + a · a = a2 = AB cos θ = 2a2 cos θ.

Therefore

cos θ =
a2

2a2
=

1
2
, θ = 60◦.

Example 1.2.8. If A = 3i + 6j + 9k and B = −2i + 3j + k, find the projection
of A on B.

Solution 1.2.8. The unit vector along B is

n =
B
B

=
−2i+3j + k√

14
.

The projection of A on B is then

A · n =
1
B

A · B =
1√
14

(3i+6j+9k)· (−2i+3j + k) =
21√
14

.

Example 1.2.9. The angles between the vector A and the three basis vectors
i, j, and k are, respectively, α, β, and γ. Show that cos2 α+cos2 β+cos2 γ = 1.
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Solution 1.2.9. The projections of A on i, j,k are, respectively,

Ax = A · i = A cos α; Ay = A · j = A cos β; Az = A · k = A cos γ.

Thus

A2
x+A2

y+A2
z = A2 cos2 α+A2 cos2 β+A2 cos2 γ = A2

(

cos2 α + cos2 β + cos2 γ
)

.

Since A2
x + A2

y + A2
z = A2, therefore

cos2 α + cos2 β + cos2 γ = 1.

The quantities cos α, cos β, and cos γ are often denoted l, m, and n, respec-
tively, and they are called the direction cosine of A.

1.2.6 Cross Product

The vector cross product written as

C = A × B (1.17)

is another particular combination of the two vectors A and B, which is also
very useful. It is defined as a vector (therefore the alternative name: vector
product) with a magnitude

C = AB sin θ, (1.18)

where θ is the angle between A and B, and a direction perpendicular to
the plane of A and B in the sense of the advance of a right-hand screw as
it is turned from A to B. In other words, if the fingers of your right hand
point in the direction of the first vector A and curl around toward the second
vector B, then your thumb will indicate the positive direction of C as shown
in Fig. 1.12.

A

B

C  = A  ×  B A B

C  = A  ×  B

Fig. 1.12. Right-hand rule of cross product A × B = C. If the fingers of your right
hand point in the direction of the first vector A and curl around toward the second
vector B, then your thumb will indicate the positive direction of C
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With this choice of direction, we see that cross product is anticommutative

A × B = −B × A. (1.19)

It is also clear that if A and B are parallel, then A × B = 0, since θ is equal
to zero.

From this definition, the cross products of the basis vectors (i, j, k) can
be easily obtained

i × i = j × j = k × k = 0, (1.20)

i × j= −j × i = k,

j × k= −k × j = i,

k × i = −i × k = j. (1.21)

The following example illustrates the cross product of two nonorthogonal
vectors. If V is a vector in the xz-plane and the angle between V and k, the
unit vector along the z-axis, is θ as shown in Fig. 1.13, then

k × V = V sin θj.

Since |k × V| = |k| |V| sin θ = V sin θ is equal to the projection of V on the
xy-plane, the vector k × V is the result of rotating this projection 90◦ around
the z axis.

With this understanding, we can readily demonstrate the distributive law
of the cross product

A× (B + C) = A × B + A × C. (1.22)

k × V

k V

V si
n 
q

q

y

z

x

Fig. 1.13. The cross product of k, the unit vector along the z-axis, and V, a vector
in the xz-plane
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C

M
B

Â

Â × (B + C) Â × B

Â × C

B + C

Q

Q9

Q0

P0

P9

P

O

Fig. 1.14. Distributive law of cross product A × (B + C) = A × B + A × C

Let the triangle formed by the vectors B,C, and B + C be arbitrarily oriented
with respect to the vector A as shown in Fig. 1.14. Its projection on the plane
M perpendicular to A is the triangle OP′Q′. Turn this triangle 90◦ around A,
we obtain another triangle OP′′Q′′. The three sides of the triangle OP′′Q′′ are
̂A×B, ̂A×C, and ̂A× (B + C) , where ̂A is the unit vector along the direction
of A. It follows from the rule of vector addition that

̂A× (B + C) =̂A×B+̂A×C.

Multiplying both sides by the magnitude A, we obtain (1.22).
With the distributive law and (1.20) and (1.21), we can easily express the

cross product A × B in terms of the components of A and B:

A × B = (Axi + Ayj + Azk)× (Bxi + Byj + Bzk)
= AxBxi × i + AxByi × j + AxBzi × k

+AyBxj × i + AyByj × j + AyBzj × k

+AzBxk × i + AzByk × j + AzBzk × k

= (AyBz − AzBy)i+ (AzBx − AxBz) j+ (AxBy − AyBx)k. (1.23)

This cumbersome equation can be more neatly expressed as the determinant

A × B =

∣

∣

∣

∣

∣

∣

i j k
Ax Ay Az

Bx By Bz

∣

∣

∣

∣

∣

∣

, (1.24)

with the understanding that it is to be expanded about its first row. The
determinant form is not only easier to remember but also more convenient to
use.

The cross product has a useful geometrical interpretation. Figure 1.15
shows a parallelogram having A and B as co-terminal edges. The area of
this parallelogram is equal to the base A times the height h. But h = B sin θ,
so



16 1 Vectors

B

A

h
q

Fig. 1.15. The area of the parallelogram formed by A and B is equal to the
magnitude of A × B

Parallelogram Area = Ah = AB sin θ = |A × B| . (1.25)

Thus the magnitude of A × B is equal to the area of the parallelogram formed
by A and B, its direction is normal to the plane of this parallelogram. This
suggests that area may be treated as a vector quantity.

Since the area of the triangle formed by A and B as co-terminal edges is
clearly half of the area of the parallelogram, so we also have

Triangle Area =
1
2
|A × B| . (1.26)

Example 1.2.10. The law of sine. With the triangle in Fig. 1.6, show that

sin θ

C
=

sin α

A
=

sinβ

B
.

Solution 1.2.10. The area of the triangle is equal to 1
2 |A × B| = 1

2AB sin θ.
The same area is also given by 1

2 |A × C| = 1
2AC sinβ. Therefore,

AB sin θ = AC sinβ.

It follows
sin θ

C
=

sin β

B
. Similarly,

sin θ

C
=

sin α

A
. Hence

sin θ

C
=

sin α

A
=

sinβ

B
.

Lagrange Identity

The magnitude of |A × B| can be expressed in terms of A,B, and A · B
through the equation

|A × B|2 = A2B2 − (A · B)2 , (1.27)

known as the Lagrange identity. This relation follows from the fact
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|A × B|2 = (AB sin θ)2 = A2B2(1 − cos2 θ)

= A2B2 − A2B2 cos2 θ = A2B2 − (A · B)2 .

This relation can also be shown by the components of the vectors. It follows
from (1.24) that

|A × B|2 = (AyBz − AzBy)2+ (AzBx − AxBz)
2 + (AxBy − AyBx)2 (1.28)

and

A2B2− (A · B)2 = (A2
x +A2

y +A2
z)(B

2
x +B2

y +B2
z)− (AxBx +AyBy +AzBz)2.

(1.29)
Multiplying out the right-hand sides of these two equations, we see that they
are identical term by term.

1.2.7 Triple Products

Scalar Triple Product

The combination (A × B) · C is known as the triple scalar product. A × B is
a vector. The dot product of this vector with the vector C gives a scalar. The
triple scalar product has a direct geometrical interpretation. The three vectors
can be used to define a parallelopiped as shown in Fig. 1.16. The magnitude
of A × B is the area of the parallelogram base and its direction is normal
(perpendicular) to the base. The projection of C onto the unit normal of the
base is the height h of the parallelopiped. Therefore, (A × B) · C is equal to
the area of the base times the height which is the volume of the parallelopiped:

Parallelopiped Volume = Area × h = |A × B|h = (A × B) · C.

The volume of a tetrahedron is equal to one-third of the height times the
area of the triangular base. Thus the volume of the tetrahedron formed by the

A 3 B

C

A

B

h

Fig. 1.16. The volume of the parallelopiped is equal to the triple scalar product of
its edges as vectors
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vectors A,B, and C as concurrent edges is equal to one-sixth of the scalar
triple product of these three vectors:

Tetrahedron Volume =
1
3
h × 1

2
|A × B| =

1
6
(A × B) · C.

In calculating the volume of the parallelopiped we can consider just as
well B × C or C × A as the base. Since the volume is the same regardless of
which side we choose as the base, we see that

(A × B) · C = A · (B × C) = (C × A) · B. (1.30)

The parentheses in this equation are often omitted, since the cross product
must be performed first. If the dot product were performed first, the expres-
sion would become a scalar crossed into a vector, which is an undefined and
meaningless operation. Without the parentheses, A × B · C = A · B × C, we
see that in any scalar triple product, the dot and the cross can be interchanged
without altering the value of the product. This is an easy way to remember
this relation.

It is clear that if h is reduced to zero, the volume will become zero also.
Therefore if C is in the same plane as A and B, the scalar triple product
(A × B) · C vanishes. In particular

(A × B) · A = (A × B) · B =0. (1.31)

A convenient expression in terms of components for the triple scalar prod-
uct is provided by the determinant

A · (B × C) = (Axi + Ayj + Azk) ·

∣

∣

∣

∣

∣

∣

i j k
Bx By Bz

Cx Cy Cz

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

Ax Ay Az

Bx By Bz

Cx Cy Cz

∣

∣

∣

∣

∣

∣

. (1.32)

The rules for interchanging rows of a determinant provide another verification
of (1.30)

(A × B) · C =

∣

∣

∣

∣

∣

∣

Cx Cy Cz

Ax Ay Az

Bx By Bz

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

Ax Ay Az

Bx By Bz

Cx Cy Cz

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

Bx By Bz

Cx Cy Cz

Ax Ay Az

∣

∣

∣

∣

∣

∣

.

Vector Triple Product

The triple product A × (B × C) is a meaningful operation, because B × C
is a vector, and can form cross product with A to give another vector
(hence the name vector triple product). In this case, the parentheses are
necessary, because A × (B × C) and (A × B) × C are two different vectors.
For example,

i × (i × j) = i × k = −j and (i × i)×j = 0 × j = 0.
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The relation

A × (B × C) = (A · C)B − (A · B)C (1.33)

is a very important identity. Because of its frequent use in a variety of prob-
lems, this relation should be memorized. This relation (sometimes known as
ACB–ABC rule) can be verified by the direct but tedious method of expand-
ing both sides into their cartesian components. A vector equation is, of course,
independent of any particular coordinate system. Therefore, it might be more
instructive to prove (1.33) without coordinate components.

Let (B × C) = D, hence D is perpendicular to the plane of B and C. Now
the vector A × (B × C) = A × D is perpendicular to D, therefore it is in the
plane of B and C. Thus we can write

A × (B × C) =αB + βC, (1.34)

where α and β are scalar constants. Furthermore, A × (B × C) is also per-
pendicular to A. So, the dot product of A with this vector must be zero:

A· [A × (B × C)] = αA · B + βA · C = 0.

It follows that
β = −α

A · B
A · C

and (1.34) becomes

A × (B × C) =
α

A · C [(A · C)B − (A · B)C]. (1.35)

This equation is valid for any set of vectors. For the special case B = A, this
equation reduces to

A × (A × C) =
α

A · C [(A · C)A − (A · A)C]. (1.36)

Take the dot product with C, we have

C · [A × (A × C)] =
α

A · C [(A · C)2−A2C2]. (1.37)

Recall the property of the scalar triple product C · (A × D) = (C × A) · D,
with D = (A × C) the left-hand side of the last equation becomes

C · [A × (A × C)] = (C × A) · (A × C) = − |A × C|2 .

Using the Lagrange identity (1.27) to express |A × C|2 , we have

C · [A × (A × C)] = −[(A2C2 − (A · C)2]. (1.38)

Comparing (1.37) and (1.38) we see that
α

A · C = 1,

and (1.35) reduces to the ACB–ABC rule of (1.33).
All higher vector products can be simplified by repeated application of

scalar and vector triple products.
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Example 1.2.11. Use the scalar triple product to prove the distributive law of
cross product: A × (B + C) = A × B + A × C.

Solution 1.2.11. First take a dot product D ·A × (B + C) with an arbitrary
vector D, then regard (B + C) as one vector:

D · A × (B + C)= D × A · (B + C) = D × A · B + D × A · C
= D · A × B + D · A × C = D · [A × B + A × C].

(The first step is evident because dot and cross can be interchanged in the
scalar triple product; in the second step we regard D × A as one vector and
use the distributive law of the dot product; in the third step we interchange
dot and cross again; in the last step we use again the distributive law of the
dot product to factor out D.) Since D can be any vector, it follows that
A × (B + C) = A × B + A × C.

Example 1.2.12. Prove the general form of the Lagrange identity:

(A × B) · (C × D) = (A · C)(B · D) − (A · D)(B · C).

Solution 1.2.12. First regard (C × D) as one vector and interchange the
cross and the dot in the scalar triple product (A × B) · (C × D):

(A × B) · (C × D) = A × B · (C × D) = A · B × (C × D).

Then we expand the vector triple product B × (C × D) in

A · B × (C × D) = A · [(B · D)C − (B · C)D].

Since (B · D) and (B · C) are scalars, the distributive law of dot product gives

A · [(B · D)C − (B · C)D] = (A · C)(B · D) − (A · D)(B · C).

Example 1.2.13. The dot and cross products of u with A are given by

A · u = C; A × u = B.

Express u in terms of A,B, and C.

Solution 1.2.13.

A × (A × u) = (A · u)A − (A · A)u =CA−A2u,

A × (A × u) = A × B.

CA−A2u = A × B

u =
1

A2
[CA − A × B].
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Example 1.2.14. The force F experienced by the charge q moving with velocity
V in the magnetic field B is given by the Lorentz force equation

F = q (V × B) .

In three separate experiments, it was found

V= i, F/q = 2k − 4j,

V= j, F/q = 4i − k,

V= k, F/q = j − 2i.

From these results determine the magnetic field B.

Solution 1.2.14. These results can be expressed as

i × B = 2k − 4j (1) ; j × B = 4i − k (2) ; k × B = j − 2i (3) .

From (1)

i × (i × B) = i × (2k − 4j) = −2j − 4k,

i × (i × B) = (i · B) i − (i · i)B =Bxi − B;

therefore,
Bxi − B = − 2j − 4k or B =Bxi + 2j + 4k.

From (2)

k · (j × B) = k · (4i − k) = −1,

k · (j × B) = (k × j) · B = −i · B.

Thus,
−i · B = −1, or Bx = 1.

The final result is obtained just from these two conditions

B = i+2j + 4k.

We can use the third condition as a consistency check

k × B = k× (i+2j + 4k) = j − 2i,

which is in agreement with (3) .
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Example 1.2.15. Reciprocal vectors. If a, b, c are three noncoplanar
vectors,

a′ =
b × c

a · b × c
, b′ =

c × a
a · b × c

, c′ =
a × b

a · b × c
are known as the reciprocal vectors. Show that any vector r can be expressed
as

r = (r · a′)a +
(

r · b′)b + (r · c′) c.

Solution 1.2.15. Method I. Consider the vector product (r × a) × (b × c) .
First, regard (r × a) as one vector and expand

(r × a) × (b × c) = [(r × a) · c]b− [(r × a) · b] c.

Then, regard (b × c) as one vector and expand

(r × a) × (b × c) = [(b × c) · r]a− [(b × c) · a] r.

Therefore,

[(r × a) · c]b − [(r × a) · b] c = [(b × c) · r]a − [(b × c) · a] r

or
[(b × c) · a] r = [(b × c) · r]a − [(r × a) · c]b + [(r × a) · b] c.

Since

− (r × a) · c = −r· (a × c) = r· (c × a) ,

(r × a) · b = r · (a × b),

it follows that

r =
r· (b × c)
(b × c) · aa +

r· (c × a)
(b × c) · ab +

r· (a × b)
(b × c) · ac

= (r · a′)a +
(

r · b′)b + (r · c′) c.

Method II. Let
r =q1a + q2b + q3c.

r · (b × c) = q1a · (b × c) + q2b · (b × c) + q3c · (b × c) .

Since (b × c) is perpendicular to b and perpendicular to c, therefore

b · (b × c) = 0, c · (b × c) = 0.

Thus

q1 =
r · (b × c)
a· (b × c)

= r · a′.
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Similarly,

q2 =
r · (c × a)
b · (c × a)

=
r · (c × a)
a · (b × c)

= r · b′,

q3 =
r · (a × b)
c · (a × b)

= r · c′.

It follows that
r = (r · a′)a +

(

r · b′)b + (r · c′) c.

1.3 Lines and Planes

Much of analytic geometry can be simplified by the use of vectors. In analytic
geometry, a point is a set of three coordinates (x, y, z) . All points in space
can be defined by the position vector r(x, y, z) (or just r)

r = xi + yj + zk, (1.39)

drawn from the origin to the point (x, y, z) . To specify a particular point
(x0, y0, z0), we use the notation r0(x0, y0, z0)

r0 = x0i + y0j + z0k. (1.40)

With these notations, we can define lines and planes in space.

1.3.1 Straight Lines

There are several ways to specify a straight line in space. Let us first consider
a line through a given point (x0, y0, z0) in the direction of a known vector
v = ai + bj + ck. If r(x, y, z) is any other point on the line, the vector r − r0

is parallel to v. Thus, we can write the equation of a straight line as

r − r0 = tv, (1.41)

where t is any real number. This equation is called the parametric form of a
straight line. It is infinitely long and fixed in space, as shown in Fig. 1.17. It
cannot be moved parallel to itself as a free vector. This equation in the form
of its components

(x − x0)i + (y − y0)j + (z − z0)k = tai + tbj + tck (1.42)

represents three equations

(x − x0) = ta, (y − y0) = tb, (z − z0) = tc. (1.43)
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r0

x

y

z

r

V

r = r0 + t V

r − r0

(x, y, z)

(x0, y0, z0)

Fig. 1.17. A straight line in the parametric form

Now if a, b, c are not zero, we can solve for t in each of the three equations.
The solutions must be equal to each other, since they are all equal to the
same t.

x − x0

a
=

y − y0

b
=

z − z0

c
. (1.44)

This is called the symmetric form of the equation of a line. If v is a normalized
unit vector, then a, b, c are the direction cosines of the line.

If c happens to be zero, then (1.43) should be written as

x − x0

a
=

y − y0

b
; z = z0. (1.45)

The equation z = z0 means that the line lies in the plane perpendicular to

the z-axis, and the slope of the line is
b

a
. If both b and c are zero, then clearly

the line is the intersection of the planes y = y0 and z = z0.
The parametric equation (1.41) has a useful interpretation when the para-

meter t means time. Consider a particle moving along this straight line. The
equation r = r0 + tv indicates when t = 0, the particle is at r0. As time goes

on, the particle is moving with a constant velocity v, or
dr
dt

= v.

Perpendicular Distance Between Two Skew Lines

Two lines which are not parallel and which do not meet are said to be skew
lines. To find the perpendicular distance between them is a difficult problem
in analytical geometry. With vectors, it is relatively easy.

Let the equations of two such lines be

r = r1 + tv1, (1.46)
r = r2 + t′v2. (1.47)
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Let a on line 1 and b on line 2 be the end points of the common perpendicular
on these two lines. We shall suppose that the position vector ra from origin
to a is given by (1.46) with t = t1, and the position vector rb, by (1.47) with
t′ = t2. Accordingly

ra = r1 + t1v1, (1.48)
rb = r2 + t2v2. (1.49)

Since rb − ra is perpendicular to both v1 and v2, it must be in the direction
of (v1 × v2) . If d is the length of rb − ra, then

rb − ra =
v1 × v2

|v1 × v2|
d.

Since rb − ra = r2 − r1 + t2v2 − t1v1,

r2 − r1 + t2v2 − t1v1 =
v1 × v2

|v1 × v2|
d. (1.50)

Then take the dot product with v1 × v2 on both sides of this equation. Since
v1 × v2 · v1 = v1 × v2 · v2 = 0, the equation becomes

(r2 − r1) · (v1 × v2) = |v1 × v2| d;

therefore,

d =
(r2 − r1) · (v1 × v2)

|v1 × v2|
. (1.51)

This must be the perpendicular distance between the two lines. Clearly, if
d = 0, the two lines meet. Therefore the condition for the two lines to meet is

(r2 − r1) · (v1 × v2) = 0. (1.52)

To determine the coordinates of a and b, take the dot product of (1.50)
first with v1, then with v2

(r2 − r1) · v1 + t2v2 · v1 − t1v1 · v1 = 0, (1.53)
(r2 − r1) · v2 + t2v2 · v2 − t1v1 · v2 = 0. (1.54)

These two equations can be solved for t1 and t2. With them, ra and rb can
be found from (1.48) and (1.49) .

Example 1.3.1. Find the coordinates of the end points a and b of the common
perpendicular to the following two lines

r = 9j + 2k + t(3i − j + k),
r = −6i − 5j + 10k + t′(−3i + 2j + 4k).
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Solution 1.3.1. The first line passes through the point r1(0, 9, 2) in the
direction of v1 = 3i − j + k. The second line passes the point r2(−6,−5, 10)
in the direction of v2 = −3i + 2j + 4k. From (1.53) and (1.54) ,

(r2 − r1) · v1 + t2v2 · v1 − t1v1 · v1 = 4 − 7t2 − 11t1 = 0,

(r2 − r1) · v2 + t2v2 · v2 − t1v1 · v2 = 22 + 29t2 + 7t1 = 0.

The solution of these two equations is

t1 = 1, t2 = −1.

Therefore, by (1.48) and (1.49) ,

ra = r1 + t1v1 = 3i + 8j + 3k,

rb = r2 + t2v2 = −3i − 7j + 6k.

Example 1.3.2. Find the perpendicular distance between the two lines of the
previous example, and an equation for the perpendicular line.

Solution 1.3.2. The perpendicular distance d is simply

d = |ra − rb| = |6i + 15j − 3k| = 3
√

30.

It can be readily verified that this is the same as given by (1.51). The perpen-
dicular line can be represented by the equation

r = ra + t(ra − rb) = (3 + 6t) i + (8 + 15t) j + (3 − 3t)k,

or equivalently
x − 3

6
=

y − 8
15

=
z − 3
−3

.

This line can also be represented by

r = rb + s (ra − rb) = (−3 + 6s) i + (−7 + 15s) j + (6 − 3s)k,

or
x + 3

6
=

y + 7
15

=
z − 6
−3

.

Example 1.3.3. Find (a) the perpendicular distance of the point (5, 4, 2) from
the line

x + 1
2

=
y − 3

3
=

z − 1
−1

,

and (b) also the coordinates of the point where the perpendicular meets the
line, and (c) an equation for the line of the perpendicular.
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Solution 1.3.3. The line passes the point r0 = −i + 3j + k and is in the
direction of v = 2i + 3j − k. The parametric form of the line is

r = r0 + tv = − i + 3j + k + t (2i + 3j − k) .

Let the position vector to (5, 4, 2) be

r1 = 5i + 4j + 2k.

The distance d from the point r1(5, 4, 2) to the line is the cross product of
(r1 − r0) with the unit vector in the v direction

d =
∣

∣

∣(r1 − r0) ×
v
v

∣

∣

∣ =
∣

∣

∣

∣

(6i + j + k) × 2i + 3j − k√
4 + 9 + 1

∣

∣

∣

∣

= 2
√

6.

Let p be the point where the perpendicular meets the line. Since p is on the
given line, the position vector to p must satisfy the equation of the given line
with a specific t. Let that specific t be t1,

rp= − i + 3j + k + t1 (2i + 3j − k) .

Since (rp − r0) is perpendicular to v, their dot product must be zero

(r1 − rp) · v = [6i + j + k − t1 (2i + 3j − k)] · (2i + 3j − k) = 0.

This gives t1 = 1. It follows that

rp = −i + 3j + k + 1 (2i + 3j − k) = i + 6j.

In other words, the coordinates of the foot of the perpendicular is (1, 6, 0) .
The equation of the perpendicular can be obtained from the fact that it passes
r1 (or rp) and is in the direction of the vector from rp to r1. So the equation
can be written as

r = r1 + t (r1 − rp) = 5i + 4j + 2k + t(4i − 2j + 2k)

or
x − 5

4
=

y − 4
−2

=
z − 2

2
.

1.3.2 Planes in Space

A set of parallel planes in space can be determined by a vector normal (per-
pendicular) to these planes. A particular plane can be specified by an addi-
tional condition, such as the perpendicular distance between the origin and
the plane, or a given point that lies on the plane.
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z

(x,y,z)

y

r

n
n

D

x

Fig. 1.18. A plane in space. The position vector r from the origin to any point
on the plane must satisfy the equation r · n =D where n is the unit normal to the
plane and D is the perpendicular distance between the origin and the plane

Suppose the unit normal to the plane is known to be

n =Ai + Bj + Ck (1.55)

and the distance between this plane and the origin is D as shown in Fig. 1.18.
If (x, y, z) is a point (any point) on the plane, then it is clear from the figure
that the projection of r(x, y, z) on n must satisfy the equation

r · n = D. (1.56)

Multiplying out its components, we have the familiar equation of a plane

Ax + By + Cz = D. (1.57)

This equation will not be changed if both sides are multiplied by the same
constant. The result represents, of course, the same plane. However, it is to
be emphasized that if the right-hand side D is interpreted as the distance
between the plane and the origin, then the coefficients A,B,C on the left-
hand side must satisfy the condition A2 + B2 + C2 = 1, since they should be
the direction cosine of the unit normal.

The plane can also be uniquely specified if in addition to the unit normal
n, a point (x0, y0, z0) that lies on the plane is known. In this case, the vector
r − r0 must be perpendicular to n. That means the dot product with n must
vanish,

(r − r0) · n = 0. (1.58)

Multiplying out the components, we can write this equation as

Ax + By + Cz = Ax0 + By0 + Cz0. (1.59)
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This is in the same form of (1.57) . Clearly the distance between this plane
and the origin is

D = Ax0 + By0 + Cz0. (1.60)

In general, to find distances between points and lines or planes, it is far
simpler to use vectors as compared with calculations in analytic geometry
without vectors.

Example 1.3.4. Find the perpendicular distance from the point (1, 2, 3) to the
plane described by the equation 3x − 2y + 5z = 10.

Solution 1.3.4. The unit normal to the plane is

n =
3√

9 + 4 + 25
i − 2√

9 + 4 + 25
j +

5√
9 + 4 + 25

k.

The distance from the origin to the plane is

D =
10√

9 + 4 + 25
=

10√
38

.

The length of the projection of r1 = i + 2j + 3k on n is

� = r1 · n =
3√
38

− 4√
38

+
15√
38

=
14√
38

.

The distance from (1, 2, 3) to the plane is therefore

d = |� − D| =
14√
38

− 10√
38

=
4√
38

.

Another way to find the solution is to note that the required distance is equal
to the projection on n of any vector joining the given point with a point on
the plane. Note that

r0 = Dn =
30
38

i − 20
38

j +
50
38

k

is the position vector of the foot of the perpendicular from the origin to the
plane. Therefore

d = |(r1−r0) · n| =
4√
38

.

Example 1.3.5. Find the coordinates of the foot of the perpendicular from the
point (1, 2, 3) to the plane of the last example.



30 1 Vectors

Solution 1.3.5. Let the position vector from the origin to the foot of the
perpendicular be rp. The vector r1−rp is perpendicular to the plane, therefore
it is parallel to the unit normal vector n of the plane,

r1 − rp = kn.

It follows that |r1 − rp| = k. Since |r1 − rp| = d, so k = d. Thus,

rp = r1 − dn = i + 2j + 3k − 4√
38

(

3√
38

i − 2√
38

j +
5√

9 + 4 + 25
k
)

.

Hence, the coordinates of the foot of the perpendicular are
(

26
38 , 84

38 , 94
38

)

.

Example 1.3.6. A plane intersects the x, y, and z axes, respectively, at (a, 0, 0) ,
(0, b, 0) , and (0, 0, c) (Fig. 1.19). Find (a) a unit normal to this plane, (b) the
perpendicular distance between the origin and this plane, (c) the equation for
this plane.

x

y

z

n

(a,0,0)

(0,b,0)

(0,0,c)

Fig. 1.19. The plane bcx + acy + abz = abc cuts the three axes at (a, 0, 0) ,
(0, a, 0) , (0, 0, a) , respectively

Solution 1.3.6. Let r1 = ai, r2 = bj, r3 = ck. The vector from (a, 0, 0)
to (0, b, 0) is r2 − r1 = bj − ai, and the vector from (a, 0, 0) to (0, 0, c) is
r3−r1 = ck−ai. The unit normal to this plane must be in the same direction
as the cross product of these two vectors:

n =
(bj − ai) × (ck − ai)
|(bj − ai) × (ck − ai)| ,

(bj − ai) × (ck − ai) =

∣

∣

∣

∣

∣

∣

i j k
−a b 0
−a 0 c

∣

∣

∣

∣

∣

∣

= bci + acj + abk,
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n =
bci + acj + abk

(

(bc)2 + (ac)2 + (ab)2
)1/2

.

If the perpendicular distance from the origin to the plane is D, then

D = r1 · n = r2 · n = r3 · n,

D =
abc

(

(bc)2 + (ac)2 + (ab)2
)1/2

.

In general, the position vector r = xi + yj + zk to any point (x, y, z) on the
plane must satisfy the equation

r · n = D,

xbc + yac + zab
(

(bc)2 + (ac)2 + (ab)2
)1/2

=
abc

(

(bc)2 + (ac)2 + (ab)2
)1/2

.

Therefore the equation of this plane can be written as

bcx + acy + abz = abc

or as
x

a
+

y

b
+

z

c
= 1.

Another way to find an equation for the plane is to note that the scalar triple
product of three coplanar vectors is equal to zero. If the position vector from
the origin to any point (x, y, z) on the plane is r = xi+yj+zk, then the three
vectors r − ai, bj − ai and ck − ai are in the same plane. Therefore,

(r − ai) · (bj − ai) × (ck − ai) =

∣

∣

∣

∣

∣

∣

x − a y z
−a b 0
−a 0 c

∣

∣

∣

∣

∣

∣

= bc (x − a) + acy + abz = 0

or
bcx + acy + abz = abc.

Exercises

1. If the vectors A = 2i + 3k and B = i−k, find |A| , |B| , A + B, A − B,
and A · B. What is the angle between the vectors A and B?
Ans.

√
13,

√
2, 3i + 2k, i + 4k, − 1, 101◦.
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2. For what value of c are the vectors ci + j + k and −i + 2k perpendicular?
Ans. 2.

3. If A = i + 2j + 2k and B =− 6i + 2j + 3k, find the projection of A on B,
and the projection of B on A.
Ans. 4/7, 4/3.

4. Show that the vectors A = 3i−2j+k, B = i−3j+5k, and C = 2i+j−4k
form a right triangle.

5. Use vectors to prove that the line joining the midpoints of two sides of
any triangle is parallel to the third side and half its length.

6. Use vectors to show that for any triangle, the medians (the three lines
drawn from each vertex to the midpoint of the opposite side) all pass the
same point. The point is at two-thirds of the way of the median from the
vertex.

7. If A = 2i − 3j − k and B = i + 4j − 2k, find A × B and B × A.
Ans. 10i + 3j + 11k, −10i − 3j − 11k.

8. Find the area of a parallelogram having diagonals A = 3i + j − 2k and
B = i − 3j + 4k.
Ans. 5

√
3.

9. Evaluate (2i − 3j) · [(i + j − k) × (3j − k)].
Ans. 4.

10. Find the volume of the parallelepied whose edges are represented by A =
2i − 3j + 4k, B = i + 2j − k, and C = 3i − j + 2k.
Ans. 7.

11. Find the constant a such that the vectors 2i − j + k, i + 2j − 3k and
3i + aj + 5k are coplanar.
Ans. a = −4.

12. Show that (a) (b × c) × (c × a) = c (a · b × c) ;
(b) (a × b) · (b × c) × (c × a) = (a · b × c)2 .

Hint: to prove (a) first regard (b × c) as one vector, then note b × c · c = 0
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13. If a,b, c are non-coplanar (so a · b × c �= 0), and

a′ =
b × c

a · b × c
, b′ =

c × a
a · b × c

, c′ =
a × b

a · b × c
,

show that
(a) a′ · a = b′ · b = c′ · c = 1,
(b) a′ · b = a′ · c = 0, b′ · a = b′ · c = 0, c′ · a = c′ · b = 0,
(c) if a · b × c = V then a′· b′×c′ = 1/V.

14. Find the perpendicular distance from the point (−1, 0, 1) to the line r =
3i + 2j + 3k + t (i + 2j + 3k) .
Ans.

√
10.

15. Find the coordinates of the foot of the perpendicular from the point
(1, 2, 1) to the line joining the origin to the point (2, 2, 5) .
Ans. (2/3, 2/3, 5/3).

16. Find the length and equation of the line which is the common perpendic-
ular to the two lines

x − 4
2

=
y + 2

1
=

z − 3
−1

,
x + 7

3
=

y + 2
2

=
z − 1

1
.

Ans.
√

35,
x − 2

3
=

y + 3
−5

=
z − 4

1
.

17. Find the distance from (−2, 4, 5) to the plane 2x + 6y − 3z = 10.
Ans. 5/7

18. Find the equation of the plane that is perpendicular to the vector i+ j−k
and passes through the point (1, 2, 1) .
Ans. x + y − z = 2.

19. Find an equation for the plane determined by the points (2,−1, 1) ,
(3, 2,−1), and (−1, 3, 2) .
Ans. 11x + 5y + 13z = 30.
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Vector Calculus

So far we have been discussing constant vectors, but the most interesting
applications of vectors involve vector functions. The simplest example is a
position vector that depends on time. Such a vector can be differentiated
with respect to time. The first and second derivatives are simply the velocity
and acceleration of the particle whose position is given by the position vector.
In this case, the coordinates of the tip of the position vector are functions of
time.

Even more interesting are quantities which depend on the position in space.
Such quantities are said to form fields. The word “field” has the connotation
that the space has some physical properties. For example, the electrical field
created by a static charge is that space surrounding the charge which has now
been given a certain property, known as the electrical field. Every point in this
field is associated with an electric field vector whose magnitude and direction
depend on the location of the point. This electric field vector will manifest
itself when another charge is brought to that point. Mathematically a vector
field is simply a vector function, each of its three components depends on the
coordinates of the point. The field may also dependent on time, such as the
electric field in the electromagnetic wave.

There are scalar fields, by which we mean that the field is characterized
at each point by a single number. Of course the number may change in time,
but usually we are talking about the field at a given instant. For example,
temperature at different point in space is different, so the temperature is a
function of the position. Thus temperature is a scalar field. It is possible to
derive one kind of field from another. For example, the directional derivatives
of a scalar field lead to a vector field, known as the gradient.

With vector differential calculus, we develop a set of precise terms, such as
gradient, divergence, and curl, to describe the rate of change of vector func-
tions with respect to the spatial coordinates. With vector integral calculus,
we establish relationships between line, surface, and volume integrals through
the theorems of Gauss and Stokes. These are important attributes of vector
fields, in terms of which many fundamental laws of physics are expressed.
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In this chapter, we shall assume that the vector functions are continu-
ous and differentiable, and the region of interests is simply connected unless
otherwise specified. However, this does not mean that singularities and
multiple connected regions are not of our concern. They have important impli-
cations in physical problems. We will more carefully define and discuss these
terms at appropriate places.

2.1 The Time Derivative

Differentiating a vector function is a simple extension of differentiating scalar
quantities. If the vector A depends on time t only, then the derivative of A
with respect to t is defined as

dA
dt

= lim
∆t→0

A(t + ∆t) − A(t)
∆t

= lim
∆t→0

∆A
∆t

. (2.1)

From this definition it follows that the sums and products involving vector
quantities can be differentiated as in ordinary calculus; that is

d
dt

(A + B) =
dA
dt

+
dB
dt

, (2.2)

d
dt

(A · B) = A
dB
dt

+
dA
dt

· B, (2.3)

d
dt

(A × B) = A × dB
dt

+
dA
dt

× B. (2.4)

Since ∆A has components ∆Ax,∆Ay, and ∆Az,

dA
dt

= lim
∆t→0

∆Axi+ ∆Ayj+ ∆Azk
∆t

=
dAx

dt
i+

dAy

dt
j+

dAz

dt
k. (2.5)

The time derivatives of a vector is thus equal to the vector sum of the time
derivative of its components.

2.1.1 Velocity and Acceleration

Of particular importance is the case where A is the position vector r,

r (t) = x (t) i + y (t) j + z (t)k. (2.6)

If t changes, the tip of r traces out a space curve as shown in Fig. 2.1. If a
particle is moving along this space curve, then dr/dt is clearly the velocity v
of the particle along this trajectory

v=
dr

dt
= lim

∆t→0

∆r

∆t
= lim

∆t→0

∆xi+ ∆yj+ ∆zk

∆t
=

dx

dt
i+

dy

dt
j+

dz

dt
k = vxi+ vyj+ vzk.

(2.7)
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x

y

z

r(t )

r(t  + ∆t )

∆r

Fig. 2.1. The tip of r traces out the trajectory of a particle moving in space, ∆r is
independent of the origin

It is important to note that the direction of ∆r is unrelated to the direction
of r. In other words the velocity is independent of the origin chosen. Similarly,
the acceleration is defined as the rate of change of velocity

a =
dv
dt

=
dvx

dt
i +

dvy

dt
j +

dvz

dt
k =

d2x

dt2
i +

d2y

dt2
j +

d2z

dt2
k =

d2r
dt2

. (2.8)

The acceleration is also independent of the origin.
Notation of differentiation with respect to time. A convenient and widely

used notation (Newton’s notation) is that a single dot above a symbol denotes
the first time derivative and two dots denote the second time derivative, and
so on. Thus

v =
dr
dt

=
�
r =

�
xi +

�
yj +

�
zk, (2.9)

a =
�
v =

��
r =

��
xi +

��
yj +

��
zk. (2.10)

2.1.2 Angular Velocity Vector

For a particle moving around a circle, shown in Fig. 2.2, the rate of change of
the angular position is called angular speed ω:

ω = lim
∆t→0

∆θ

∆t
=

dθ

dt
=

�
θ. (2.11)

The velocity v of the particle is, by definition,

v =
dr
dt

=
�
r, (2.12)
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w

n
a

r

∆s

∆q

O

r(t)

r(t + ∆t)

Fig. 2.2. Angular velocity vector ω. The velocity v of a particle moving around a
circle is given by v = ω × r

where r is the position vector drawn from the origin to the position of the
particle. The magnitude of the velocity is given by

v = |v| = lim
∆t→0

∆s

∆t
= lim

∆t→0

�∆θ

∆t
= �ω, (2.13)

where � is the radius of the circle. The direction of the velocity is, of course,
tangent to the circle.

Now, let n be the unit vector drawn from the origin to the center of
the circle, pointing in the positive direction of advance of a right-hand
screw when turned in the same sense as the rotation of the particle. Since
|n × r| = r sin α = �, as shown in Fig. 2.2, the magnitude of the velocity can be
written as

v = �ω = |n × r|ω. (2.14)

If we define the angular velocity vector ω as

ω = ωn, (2.15)

then we can write the velocity v as

v =
�
r = ω × r. (2.16)

Recalling the definition of cross product of two vectors, one can easily see that
both direction and magnitude of the velocity are given by this equation.

A particle moving in space, even though not in a circle, may always be
considered at a given instant to be moving in a circular path. Even a straight
line can be considered as a circle with infinite radius. The path, which the
particle describes during an infinitesimal time interval δt, may be represented
as an infinitesimal arc of a circle. Therefore, at any moment, an instantaneous
angular velocity vector can be defined to describe the general motion. The
instantaneous velocity is then given by (2.16).
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Example 2.1.1. Show that the linear momentum, defined as p = m
�
r, always

lies in a fixed plane in a central force field. (A central force field means that
the force F is in the radial direction, such as gravitational and electrostatic
forces, in other words F is parallel to r.)

Solution 2.1.1. Let us form the angular momentum L

L = r × p = r × m
�
r.

Differentiating with respect to time, we have

�
L =

�
r × p + r × �

p.

Now
�
r×p =

�
r×m

�
r = 0 and r× �

p = r×m
��
r. According to Newton’s second

law m
��
r = F and F is parallel to r, therefore r × F = r×m

��
r= 0. Thus,

�
L = 0.

In other words, L is a constant vector. Furthermore, L is perpendicular to p,
since r × p is perpendicular to p. Therefore p must always lie in the plane
perpendicular to the constant vector L.

Example 2.1.2. Suppose a particle is rotating around the z-axis with a con-
stant angular velocity ω as shown in Fig. 2.3. Find the velocity and acceleration
of the particle.

Y

X

r

V(x, y)

P

O

y

x
q = w t

Fig. 2.3. Particle rotating around z-axis with a constant angular velocity ω

Solution 2.1.2. Method I. Since the particle is moving in a circular path and
z is not changing in this motion, we will consider only the x and y components.
The angular velocity vector is in the k (unit vector along the z axis) direction,
ω = ωk, and the position vector r drawn from the origin to the point (x, y)
is perpendicular to k. Therefore

v = ω × r.
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The direction of v is perpendicular to k and perpendicular to r, that is, in
the tangential direction of the circle. The magnitude of the velocity is

v = ωr sin(π/2) = ωr.

Explicitly

v = ω × r =

∣

∣

∣

∣

∣

∣

i j k
0 0 ω
x y 0

∣

∣

∣

∣

∣

∣

= − ωyi+ωxj.

The acceleration is given by

a =
dv
dt

=
d
dt

(ω × r) =
�
ω × r + ω× �

r.

Since ω is a constant,
�
ω = 0. Moreover,

�
r= v = ω × r. Thus

a = ω × (ω × r) = ω2k × (k × r) .

Hence, a is in the −r direction and its magnitude is equal to ω2r.

Method II. The position vector can be explicitly written as

r = x(t)i + y(t)j = r cos ωti + r sin ωtj. (2.17)

The velocity and acceleration are, respectively,

v =
�
r =

�
xi+

�
yj = −ωr sin ωti+ ωr cos ωtj = ω(−yi+xj), (2.18)

v = (v · v)1/2 =
(

ω2r2 sin2 ωti + ω2r2 cos2 ωt
)1/2

= ωr (2.19)

a=
�
v = −ω2 cos ωti − ω2 sin ωtj = −ω2(xi+ yj) = − ω2r = −v2

r2
r. (2.20)

We see immediately that the acceleration is toward the center with a
magnitude of ω2r. This is the familiar centripetal acceleration.

Also the velocity is perpendicular to the position vector since

v · r =ω(−yi+xj) · (xi+ yj) = 0.

In this example, the magnitude of r is a constant, we have explicitly shown
that the velocity is perpendicular to r. This fact is also a consequence of the
following general theorem.

If the magnitude of a vector is not changing, the vector is always ortho-
gonal (perpendicular) to its derivative.
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This follows from the fact that if r · r = r2
0 and r0 is a constant, then

d
dt

(r · r) =
d
dt

r2
0 = 0,

d
dt

(r · r) =
dr
dt

· r + r · dr
dt

= 2
dr
dt

· r = 0.

When the dot product of two vectors is zero, the two vectors are perpendicular
to each other.

This can also be seen from geometry. In Fig. 2.1, if r (t) and r (t + ∆t) have
the same length, then ∆r is the base of an isosceles triangle. When ∆t → 0,
the angle between r (t) and r (t + ∆t) also goes to zero. In that case, the two
base angles approach 90◦, which means ∆r is perpendicular to r. Since ∆t
is a scalar, the direction of ∆r/∆t is determined by ∆r. Therefore dr/dt is
perpendicular to r.

This theorem is limited neither to the position vector, nor to the time
derivative. For example, if vector A is a function of the arc distance s measured
from some fixed point, as long as the magnitude of A is a constant, it can
be shown in the same way that dA/ds is always perpendicular to A. This
theorem is of considerable importance and should always be kept in mind.
Velocity Vector Field. Sometimes the name velocity (or acceleration) vector
field is used to mean that at every point (x, y, z) there is a velocity vector
whose magnitude and direction depend on where the point is. In other words,
the velocity is a vector function which has three components. Each component
can be a function of (x, y, z). For example, consider a rotating body. The
velocity of the material of the body at any point is a vector which is a function
of position. In general, a vector function may also explicitly dependent on
time t. For example, in a continuum, such as a fluid, the velocity of the
particles in the continuum is a vector field which is not only a function of
position but may also of time. To find the acceleration, we can use the chain
rule:

a =
dv
dt

=
∂v
∂x

dx

dt
+

∂v
∂y

dy

dt
+

∂v
∂z

dz

dt
+

∂v
∂t

. (2.21)

Since
dx

dt
= vx,

dy

dt
= vy,

dz

dt
= vz,

It follows that
a = vx

∂v
∂x

+ vy
∂v
∂y

+ vz
∂v
∂z

+
∂v
∂t

. (2.22)

Therefore the acceleration may also be a vector field.

Example 2.1.3. A body is rotating around the z-axis with an angular velocity
ω, find the velocity of the particles in the body as a function of the position,
and use (2.22) to find the acceleration of these particles.
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Solution 2.1.3. The angular velocity vector is ω = ωk, and the velocity of
any point in the body is

v = ω × r =

∣

∣

∣

∣

∣

∣

i j k
0 0 ω
x y z

∣

∣

∣

∣

∣

∣

= − ωyi+ωxj.

Thus the components of the velocity vector are

vx (x, y, z) = −ωy, vy(x, y, z) = ωx, vz(x, y, z) = 0,

and
∂v
∂x

= ωj,
∂v
∂y

= −ωi,
∂v
∂z

= 0,
∂v
∂t

= 0.

Hence according to (2.22)

a = (−ωy)ωj + (ωx) (−ωi) = −ω2 (xi + yj) .

If we define � = xi+ yj, then the magnitude of � is the perpendicular distance
between the particle and the rotating axis. Thus

a = −ω2�,

which shows that every particle has a centripetal acceleration ω2ρ, as
expected.

2.2 Differentiation in Noninertial Reference Systems

The acceleration a in Newton’s equation F = ma is to be measured in an
inertial reference system. An inertial reference system is either a coordinate
system fixed in space, or a system moving with a constant velocity relative
to the fixed system. A coordinate system fixed on the earth is not an inertial
system because the earth is rotating.

The derivatives of a vector in a noninertial system are, of course, different
from those in a fixed system. To find the relationships between them, let us
first consider a moving coordinate system that has the same origin as a fixed
system. Intuition tells us that, in this case, the only possible relative motion
between the coordinate systems is a rotation. To transform the derivatives
from one system to the other, we need to take this rotation into account.

Let us denote the quantities associated with the moving system by a prime.
The position vector of a particle expressed in terms of the basis vector of the
fixed system is

r = xi + yj + zk. (2.23)
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The same position vector expressed in the moving coordinate system whose
origin coincides with that of the fixed system becomes

r = x′i′ + y′j′ + z′k′, (2.24)

where i′, j′, k′ are the basis vectors of the moving system.
The velocity v is by definition the time derivative of the position vector

in the fixed system

v =
dr
dt

=
dx

dt
i +

dy

dt
j +

dz

dt
k. (2.25)

If we express the time derivative of r in the moving system, then with (2.24)
we have

v =
dr
dt

=
dx′

dt
i′ +

dy′

dt
j′ +

dz′

dt
k′ + x′ di

′

dt
+ y′ dj

′

dt
+ z′

dk′

dt
, (2.26)

since i′, j′, k′ are fixed in the moving system, so they are not constant in time.
Clearly, the velocity seen in the moving system is

v′ =
dx′

dt
i′ +

dy′

dt
j′ +

dz′

dt
k′ =

Dr
Dt

. (2.27)

This equation also defines the operation D/Dt, which simply means the time
derivative in the moving system. The notation

Dr
Dt

=
�
r (2.28)

is also often used. As mentioned earlier, a dot on top of a symbol means
the time derivative. In addition, it usually means the time derivative in the
moving system. Note that while the position vector has the same appearance
in both the fixed and the moving system as seen in (2.23) and (2.24), the
velocity vector, or any other derivative, has more terms in the moving system
than in the fixed system as seen in (2.26) and (2.25) . The three derivatives
(dx′/dt, dy′/dt, dz′/dt) are not the components of the velocity vector v in
the moving system, they only appear to be the velocity components to a
stationary observer in the moving system. The velocity vector v expressed in
the moving system is given by (2.26), which can be written as

v =
Dr
Dt

+ x′ di
′

dt
+ y′ dj

′

dt
+ z′

dk′

dt
. (2.29)

Since i′, j′, k′ are unit vectors, their magnitudes are not changing. Therefore
their derivatives must be perpendicular to themselves. For example, di′/dt is
perpendicular to i′, and lies in the plane of j′ and k′. Thus we can write

di′

dt
= cj′ − bk′, (2.30)
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where c and −b are two constants. (The reason for choosing these particular
symbols for the coefficients of the linear combination is for convenience, as
will be clear in a moment). Similarly

dj′

dt
= ak′ − f i′, (2.31)

dk′

dt
= ei′ − dj′. (2.32)

But i′ = j′×k′, so

di′

dt
=

dj′

dt
×k′+j′× dk′

dt
= (ak′ − f i′)×k′+j′×(ei′ − dj′) = f j′−ek′. (2.33)

Comparing (2.30) and (2.33), we see that f = c and e = b. Similarly, from
j′= k′ × i′ one can show that

dj′

dt
= dk′ − ci′. (2.34)

It is clear from (2.31) and (2.34) that d = a and c = f.
It follows that

x′ di
′

dt
+ y′ dj

′

dt
+ z′

dk′

dt
= x′ (cj′ − bk′) + y′ (ak′ − ci′) + z′ (bi′ − aj′)

= i′ (bz′ − cy′) + j′ (cx′ − az′) + k′ (ay′ − bx′)

=

∣

∣

∣

∣

∣

∣

i′ j′ k′

a b c
x′ y′ z′

∣

∣

∣

∣

∣

∣

. (2.35)

If we define
ω = ai′ + bj′ + ck′, (2.36)

with r given by (2.24), we can write (2.35) as

x′ di
′

dt
+ y′ dj

′

dt
+ z′

dk′

dt
= ω × r. (2.37)

The meaning of ω × r is exactly the same as in (2.16). We have thus demon-
strated explicitly that the most general relative motion of two coordinate
systems having a common origin is a rotation with an instantaneous angular
velocity ω. Furthermore, (2.29) becomes

v = v′ + ω × r. (2.38)

Often this equation is written in the form

dr
dt

=
(

D
Dt

+ ω×
)

r =
�
r + ω × r, (2.39)
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with the understanding that the time derivative on the left-hand side is in the
fixed system, and on the right-hand side, all quantities are to be expressed in
the rotating system.

This analysis is not limited to the position vector. For any vector A, we
can follow exactly the same procedure and show that

dA
dt

=
D
Dt

A + ω × A , (2.40)

where

D
Dt

A =
�
A =

�
A′

xi
′ +

�
A′

yj
′ +

�
A′

zk
′,

ω × A = A′
x

di′

dt
+ A′

y

dj′

dt
+ A′

z

dk′

dt
.

Example 2.2.1. Show that the time derivative of the angular velocity vector
is the same in either the fixed or the rotating system.

Solution 2.2.1. Since
dω

dt
=

D
Dt

ω + ω × ω,

but ω × ω = 0, therefore the time derivative in the rotating system
�
ω is the

same time derivative in the fixed system.

Example 2.2.2. If the rotating system and the fixed system have the same
origin, express the acceleration a in the fixed system in terms of a′, v′, ω,

�
ω

of the rotating system.

Solution 2.2.2. By definition a = dv/dt. So by (2.40)

a =
dv
dt

=
D
Dt

v + ω × v.

Since

v =
dr
dt

=
D
Dt

r + ω × r =
�
r+ω × r,

D
Dt

v =
D
Dt

(
�
r + ω × r) =

��
r +

�
ω × r + ω × �

r,

ω × v = ω× (
�
r + ω × r) = ω× �

r + ω× (ω × r) .
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Therefore,

a =
D
Dt

v + ω × v =
��
r +

�
ω × r + ω× �

r + ω× �
r + ω × (ω × r)

=
��
r +

�
ω × r + 2ω × �

r + ω × (ω × r) .

Since
��
r = a′ and

�
r = v′,

a = a′ +
�
ω × r + 2ω × v′ + ω × (ω × r) .

In general, the primed system may have both translational and rotational
motion. This can be thought as a translation followed by a rotation. It is clear
from Fig. 2.4 that r = r′ + r0, so

v =
dr
dt

=
dr′

dt
+

dr0

dt

=
(

Dr′

Dt
+ ω × r′

)

+
dr0

dt
. (2.41)

The translational velocity of the coordinates is simply v0 = dr0/dt.
Similarly the linear acceleration of the coordinates is a0 = d2r0/dt2. There-
fore, the acceleration of the particle is given by

a =
dv
dt

=
d
dt

(

Dr′

Dt
+ ω × r′

)

+
d2r0

dt2

=
D
Dt

(

Dr′

Dt
+ ω × r′

)

+ ω×
(

Dr′

Dt
+ ω × r′

)

+ a0. (2.42)
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Fig. 2.4. Geometry of the coordinate systems. The primed system is a noninertial
reference frame which has both translational and rotational motion relative to the
fixed system
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Therefore the general equations for the transformation from a fixed system
to a moving system are

v = v′ + ω × r′ + v0, (2.43)

a = a′ +
�
ω × r′ + 2ω × v′ + ω × (ω × r′) + a0. (2.44)

The term
�
ω×r′ is known as the transverse acceleration and the term 2ω × v′

is called the coriolis acceleration. The centripetal acceleration ω× (ω × r) is
always directed toward the center.

2.3 Theory of Space Curve

Suppose we have a particle moving on a space curve as shown in Fig. 2.5. At
certain time, the particle is at some point P . In a time interval ∆t the particle
moves to another point P ′ along the path. The arc distance between P and
P ′ is ∆s. Let t be the unit vector in the direction of the tangent of the curve
at P . The velocity of the particle is of course in the direction of t,

v =
dr
dt

= vt, (2.45)

where v is the magnitude of the velocity, which is given by

v = lim
∆t→0

∆s

∆t
=

ds

dt
. (2.46)

The point P can also be specified by s, the distance along the curve measured
from a fixed point to P . Then by chain rule,

v =
dr
dt

=
ds

dt

dr
ds

= v
dr
ds

. (2.47)
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Fig. 2.5. Space curve. The tangent vector t and the normal vector n determine the
osculating plane which may turn in space
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Comparing (2.45) and (2.47), we have

dr
ds

= t, (2.48)

hardly a surprising result. Clearly, as ∆s → 0,

∣

∣

∣

∣

∆r
∆s

∣

∣

∣

∣

= 1.

Now, t is a unit vector, which means its magnitude is not changing, there-
fore its derivative must be perpendicular to itself. Let n be a unit vector
perpendicular to t, so we can write

dt
ds

= κn, (2.49)

where κ is the magnitude of dt/ds and is called the curvature. The vector n
is known as the normal vector and is perpendicular to t. The reciprocal of the
curvature � = 1/κ is known as the radius of the curvature. Equation (2.49)
defines both κ and n, and tells us how fast the unit tangent vector changes
direction as we move along the curve.

The acceleration of the particle is

a =
dv
dt

=
d
dt

(vt) =
�
vt+ v

�
t,

where �
t =

dt
dt

=
ds

dt

dt
ds

= v
dt
ds

= vκn. (2.50)

Therefore the acceleration can be written as

a =
�
vt+ v2κn=

�
vt+

v2

�
n. (2.51)

The tangential component of a corresponds to the change in the magnitude
of v, and the normal component of a corresponds to the change in direction
of v. The normal component is the familiar centripetal acceleration.

For the circular motion in example 2.1.2, r = r cos ωti+ r sinωtj and
v = ωr,

t=
1
v
v =

1
ωr

(−rω sinωti+ rω cos ωtj) = − sin ωti+ω cos ωtj.

Since by (2.50),

dt
ds

=
1
v

dt
dt

=
1
ωr

(−ω cos ωti − ω sinωtj) = − 1
r2

(r cos ωti+ r sin ωtj) = − 1
r2

r.

But by definition, dt/ds = κn. So, in this case, n = −r/r, κ = 1/r, and
� = 1/κ = r. In other words, the radius of curvature in a circular motion is
equal to the radius of the circle.

In a small region, we can approximate ∆s by the arc of a circle. The radius
of this circle is the radius of curvature of the curve as shown in Fig. 2.5.
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The motion may not be confined in a plane, although both the velocity
and acceleration lie in the plane of t and n, known as the osculating plane.
In general, there is another degree of freedom for the motion, namely the arc
as a whole may turn. In other words, the osculating plane is not necessarily
fixed in space. We need another factor to compute the derivatives of the
acceleration.

Let us define a third vector, known as binormal vector ,

b = t × n. (2.52)

Since both t and n are unit vectors and they are perpendicular to each other,
therefore b is also a unit vector and is perpendicular to both t and n. It
follows from the definition that, in a right-hand system,

b × t = n, b × n = − t, n × t = − b. (2.53)

All vectors associated with the curve at the point P can be written as a linear
combination of t,n, and b which form a basis at P . Now we evaluate db/ds
and dn/ds.

Since b is perpendicular to t, so b · t = 0. Afer differentiating we have

d
ds

(b · t) =
db
ds

· t + b · dt
ds

=
db
ds

· t + b · κn = 0. (2.54)

Hence, db/ds · t= − κb · n. Since b is perpendicular to n, b · n = 0. Thus,
db/ds · t = 0, which means db/ds is perpendicular to t. On the other hand,
since b is a unit vector, so db/ds is perpendicular b. Therefore db/ds must
be in the direction of n. Let

db/ds = γn, (2.55)

where γ, by definition, is the magnitude of db/ds and is called the torsion of
the curve.

To obtain dn/ds, we use (2.53),

dn
ds

=
d
ds

(b × t) =
db
ds

× t + b× dt
ds

= γn× t + b×κn = −γb− κt. (2.56)

The set of equations

dt
ds

= κn,
dn
ds

= −(γb + κt),
db
ds

= γn (2.57)

are the famous Frenet–Serret formulas. They are fundamental equations in
differential geometry.
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Example 2.3.1. Find the arc length s of the curve r (t) = a cos ti + a sin tj
between t = 0 and t = T. Express r as a function of s.

Solution 2.3.1. Since ds/dt = v and v = (v · v)1/2 = (
�
r · �

r)1/2,

ds = v dt = (
�
r · �

r)1/2dt.

This seemingly trivial formula is actually very useful in a variety of problems.
In the present case

ds = [(−a sin ti+ a cos tj) · (−a sin ti+ a cos tj)]1/2 dt = a dt,

s =
∫ T

0

a dt = aT.

In general s = at and t = s/a, thus

r (s) = a cos
s

a
i + a sin

s

a
j.

Example 2.3.2. A circular helix is given by r = a cos ti+ a sin tj+ btk, calcu-
late t,n,b and κ, ρ, γ for this curve.

Solution 2.3.2.

v =
�
r = −a sin ti + a cos tj + bk,

v = (v · v)1/2 = [
(

a2 sin2 t + a2 cos2 t
)

+ b2]1/2 = (a2 + b2)1/2,

t =
1
v
v =

1
(a2 + b2)1/2

(−a sin ti + a cos tj + bk) .

Since

dt
dt

=
ds

dt

dt
ds

= v
dt
ds

,

dt
ds

=
1
v

dt
dt

=
1

(a2 + b2)
(−a cos ti − a sin tj) = κn,

κ2 = (κn ·κn) =
1

(a2 + b2)2
(a2 cos2 t + a2 sin2 t) =

a2

(a2 + b2)2
,

κ =
a

(a2 + b2)
, ρ =

1
κ

=
a2 + b2

a
,

n =
1
κ

dt
ds

= − cos ti − sin tj.
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b= t × n =
1

(a2 + b2)1/2

∣

∣

∣

∣

∣

∣

i j k
−a sin t a cos t b
− cos t − sin t 0

∣

∣

∣

∣

∣

∣

=
1

(a2 + b2)1/2
[b sin ti − b cos tj+ (a sin2 t + a cos2 t)k]

=
1

(a2 + b2)1/2
[b sin ti − b cos tj+ ak].

Use chain rule again,
db
dt

=
ds

dt

db
ds

= v
db
ds

,

so

db
ds

=
1
v

db
dt

=
b

(a2 + b2)
[cot ti + sin tj] = γn,

γ = − b

(a2 + b2)
.

2.4 The Gradient Operator

The application of vector methods to physical problems most frequently takes
the form of differential operations. We have discussed the rate of change with
respect to time which allows us to define velocity and acceleration vectors
for the motion of a particle. Now we begin a more systematic study of the
rate of change with respect to the spatial coordinates. The most important
differential operator is the gradient.

2.4.1 The Gradient of a Scalar Function

Before we discuss the gradient, let us briefly review the notation of derivative
and partial derivative in calculus

df(x)
dx

= lim
∆x→0

f(x + ∆x) − f(x)
∆x

= lim
∆x→0

∆f

∆x
.

If ∆x → 0 is implicitly understood, we can multiply both sides by ∆x and
write

∆f = f(x + ∆x) − f(x) =
df

dx
∆x. (2.58)

This equation can also be derived from the Taylor expansion of f(x + ∆x)
around x:

f(x + ∆x) = f(x) +
df

dx
∆x +

1
2

d2f

dx2
(∆x)2 + · · · ·

Equation (2.58) is obtained if one drops terms of (∆x)n with n � 2 as ∆x → 0.
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Similarly in terms of partial derivatives

f(x + ∆x, y) − f(x, y) =
∂f

∂x
∆x,

or
f(x, y + ∆y, z + ∆z) − f(x, y, z + ∆z) =

∂f

∂y
∆y.

Let the difference of the scalar function ϕ between two nearby points
(x + ∆x, y + ∆y, z + ∆z) and (x, y, z) be ∆ϕ:

∆ϕ = ϕ (x + ∆x, y + ∆y, z + ∆z) − ϕ (x, y, z) .

This equation can be written as

∆ϕ = ϕ (x + ∆x, y + ∆y, z + ∆z)
−[ϕ (x, y + ∆y, z + ∆z) − ϕ(x, y + ∆y, z + ∆z)]
−[ϕ (x, y, z + ∆z) − ϕ (x, y, z + ∆z)] − ϕ (x, y, z) ,

since the quantities in the two brackets cancel out. Removing the brackets,
we have

∆ϕ = ϕ (x + ∆x, y + ∆y, z + ∆z) − ϕ (x, y + ∆y, z + ∆z)
+ϕ(x, y + ∆y, z + ∆z) − ϕ (x, y, z + ∆z)
+ϕ (x, y, z + ∆z) − ϕ (x, y, z) .

With the definition of partial derivative, the above equation can be written
as

∆ϕ =
∂ϕ

∂x
∆x +

∂ϕ

∂y
∆y +

∂ϕ

∂z
∆z. (2.59)

The displacement vector from (x, y, z) to (x + ∆x, y + ∆y, z + ∆z) is, of
course,

∆r =∆xi + ∆yj + ∆zk.

One can readily verify that
(

i
∂ϕ

∂x
+ j

∂ϕ

∂y
+ k

∂ϕ

∂z

)

· (∆xi + ∆yj + ∆zk) =
∂ϕ

∂x
∆x +

∂ϕ

∂y
∆y +

∂ϕ

∂z
∆z.

Thus,

∆ϕ =
(

i
∂ϕ

∂x
+ j

∂ϕ

∂y
+ k

∂ϕ

∂z

)

· ∆r. (2.60)

The vector in the parenthesis is called the gradient of ϕ, and is usually written
as grad ϕ or ∇ϕ,

∇ϕ = i
∂ϕ

∂x
+ j

∂ϕ

∂y
+ k

∂ϕ

∂z
. (2.61)

Since ϕ is an arbitrary scalar function, it is convenient to define the differential
operation in terms of the gradient operator ∇ (sometimes known as del or
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del operator)

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
. (2.62)

This is a vector operator and obeys the same convention as the derivative
notation. If a function is placed on the left-hand side of it, ϕ∇ is still an opera-
tor and by itself means nothing. What is to be differentiated must be placed on
the right of ∇. When it operates on a scalar function, it turns ∇ϕ into a vector
with definite magnitude and direction. It also has a definite physical meaning.

Example 2.4.1. Show that ∇r = r̂ and ∇f(r) = r̂df/dr, where r̂ is a unit
vector along the position vector r =xi + yj + zk and r is the magnitude of r.

Solution 2.4.1.

∇r =
(

i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)

r,

i
∂r

∂x
= i

∂

∂x

(

x2 + y2 + z2
)1/2

=
ix

(x2 + y2 + z2)1/2
=

ix
r

, etc.

∇r =
ix
r

+
jy
r

+
kz

r
=

xi + yj + zk
r

=
r
r

= r̂.

∇f(r) = i
∂f

∂x
+ j

∂f

∂y
+ k

∂f

∂z
,

i
∂f

∂x
= i

df

dr

∂r

∂x
= i

df

dr

x

r
, etc.

∇f(r) = i
df

dr

x

r
+ j

df

dr

y

r
+ k

df

dr

z

r
=

xi + yj + zk
r

df

dr
= r̂

df

dr
.

Example 2.4.2. Show that (A · ∇) r = A.

Solution 2.4.2.

(A · ∇) r =
[

(Axi + Ayj + Azk) ·
(

i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)]

r

=
(

Ax
∂

∂x
+ Ay

∂

∂y
+ Az

∂

∂z

)

(xi + yj + zk)

= Axi + Ayj + Azk = A.

2.4.2 Geometrical Interpretation of Gradient

To see the physical meaning of ∇ϕ, let us substitute (2.61) into (2.60)

∆ϕ= ∇ϕ · ∆r.
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Taking the limit as ∆r approaches zero yields the differential form of this
equation:

dϕ = ∇ϕ · dr =
∂ϕ

∂x
dx +

∂ϕ

∂y
dy +

∂ϕ

∂z
dz. (2.63)

Now, ϕ(x, y, z) = C represents a surface in space. For example, ϕ(x, y, z) =
x + y + z and ϕ = C represents a family of parallel planes, as discussed in
the previous chapter. Different values of C simply mean the different per-
pendicular distances between the plane and the origin. Another example,
ϕ(x, y, z) = x2 + y2 + z2 = 4 is the surface of a sphere of radius 2. Changing
4 to 9 simply means another sphere of radius 3.

If the two near-by points lie on the same surface ϕ = C, then clearly
dϕ = 0, since ϕ(x + dx, y + dy, z + dz) = ϕ(x, y, z) = C. In this case dr is, of
course, a vector on this surface and

dϕ = ∇ϕ · dr =0. (2.64)

Since the dot product of ∇ϕ and dr is equal to zero, ∇ϕ must be perpendic-
ular to dr. Therefore ∇ϕ is normal (perpencicular) to the surface ϕ = C as
shown in Fig. 2.6.

We can look at it in another way. Let the unit vector in the direction dr
be d and the magnitude of dr be dr, then the dot product of (2.63) can be
written as

dϕ = ∇ϕ · d dr,

or
dϕ

dr
= ∇ϕ · d. (2.65)

This means that the rate of change of ϕ in the direction of d is equal to ∇ϕ ·d.
Furthermore, since

∇ϕ ·d = |∇ϕ| cos θ,

x

y

z

r + dr
r

dr

∇j
j = Constant

Fig. 2.6. Gradient of a scalar function. ∇ϕ is a vector normal to the surface of ϕ =
constant
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where θ is the angle between dr and ∇ϕ, the maximum rate of change occurs
at θ = 0. This means that if dr and ∇ϕ are in the same direction, the change
of ϕ is the largest. Therefore the meaning of ∇ϕ can be summarized as follows:

The vector ∇ϕ is in the direction of the steepest increase in ϕ and
the magnitude of the vector ∇ϕ is equal to the rate of increase in that
direction.

Example 2.4.3. Find the unit normal to the surface described by ϕ(x, y, z) =
2x2 + 4yz − 5z2 = −10 at (3,−1, 2).

Solution 2.4.3. First check the point (3,−1, 2) is indeed on the surface:
2(3)2 + 4(−1)2 − 5(2)2 = −10. Recall the unit normal to the surface at any
point is n= ∇ϕ/|∇ϕ|.

∇ϕ =
(

i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)

(

2x2 + 4yz − 5z2
)

= 4xi+ 4zj+ (4y − 10z)k.

n=
[

∇ϕ

|∇ϕ|

]

3,−1,2

=
12i+ 8j − 24k

(122 + 82 + 242)1/2
=

3i+ 2j − 6k√
46

.

Example 2.4.4. Find the maximum rate of increase for the surface ϕ(x, y, z) =
100 + xyz at the point (1, 3, 2). In which direction is the maximum rate of
increase?

Solution 2.4.4. The maximum rate of increase is |∇ϕ|1,3,2 .

∇ϕ =
(

i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)

(100 + xyz) = yzi+xzj+xyk,

|∇ϕ|1,3,2 = |6i+ 2j+ 3k| = (36 + 4 + 9)1/2 = 9.

The direction of the maximum increase is given by

∇ϕ|1,3,2 = 6i+ 2j+ 3k.

Example 2.4.5. Find the rate of increase for the surface ϕ(x, y, z) = xy2 + yz3

at the point (2,−1, 1) in the direction of i+ 2j+ 2k.

Solution 2.4.5.

∇ϕ =
(

i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)

(

xy2 + yz3
)

= y2i+
(

2xy + z3
)

j+ 3yz2k,

∇ϕ2,−1,1 = i − 3j − 3k.
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The unit vector along i+ 2j+ 2k is

n =
i+ 2j+ 2k√

1 + 4 + 4
=

1
3

(i+ 2j+ 2k) .

The rate of increase is

dϕ

dr
= ∇ϕ · n = (i − 3j − 3k) · 1

3
(i+ 2j+ 2k) = −11

3
.

Example 2.4.6. Find the equation of the tangent plane to the surface described
by ϕ(x, y, z) = 2xz2 − 3xy − 4x = 7 at the point (1,−1, 2) .

Solution 2.4.6. If r0 is a vector from the origin to the point (1,−1, 2) and r
is a vector to any point in the tangent plane, then r − r0 lies in the tangent
plane. The tangent plane at (1,−1, 2) is normal to the gradient at that point,
so we have

∇ϕ|1,−1,2 · (r − r0) = 0.

∇ϕ|1,−1,2 =
[(

2z2 − 3y − 4
)

i − 3xj − 4xzk
]

1,−1,2
= 7i − 3j + 8k.

Therefore the tangent plane is given by the equation

(7i − 3j + 8k) · [(x − 1) i + (y + 1) j + (z − 2)k] = 0,
7 (x − 1) − 3 (y + 1) + 8(z − 2) = 0,

7x − 3y + 8z = 26.

2.4.3 Line Integral of a Gradient Vector

Line integrals occur frequently in physical sciences. The most familiar is prob-
ably the work done by a force F between A and B along some path Γ :

Work(A → B) =
∫ B

A,Γ

F · dr,

where
dr = idx+ jdy +kdz

is the differential displacement vector from (x, y, z) to (x + dx, y + dy, z +
dz). Sometimes dl is used in place of dr to emphasize that the differential
displacement vector is along a certain path for the line integral. We will not
use this convention here.

For any vector field A(x, y, z), the line integral
∫ B

A,Γ

A · dr =
∫ B

A,Γ

(Ax dx + Ay dy + Az dz) (2.66)
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dr

B

A

Fig. 2.7. Path of a line integral. The differential displacement dr is along a specified
curve in space between A and B

B

A

(a)

Γ2

Γ1

B

A

(b)

Γ2

Γ1

B,A

(c)

Γ1

Fig. 2.8. Path independence of the line integral of ∇ϕ · dr. (a) The value of the
integral from A to B along Γ1 is the same as along Γ2. (b) They are still the same
even though Γ2 is much shorter. (c) As Γ2 shrinks to zero, the integral along Γ2

vanishes. The integral along Γ1, which becomes a loop integral, must also be zero

is the sum of contributions A · dr for each differential displacement dr along
the curve Γ in space from A to B as shown in Fig. 2.7. The line integral is
also called path integral because it is carried out along a specific path Γ .

In general, the result depends on the path taken between A and B.
However, if A = ∇ϕ for some scalar function ϕ, the integral is independent
of the path.

∫ B

A,Γ

A · dr =
∫ B

A,Γ

∇ϕ · dr =
∫ B

A

dϕ = ϕ (B) − ϕ (A) , (2.67)

where we have used (2.63) to convert ∇ϕ ·dr to the total differential dϕ. Since
the result depends only on the position of the two end points, the integral is
independent of path. In this case, the integral from A to B in Fig. 2.8 gives
the same value whether it is carried out along Γ1 or along Γ2. This remains
to be true as we bring the two points A and B closer, no matter how short
Γ2 becomes. When B is brought to the same place as A, the line integral over
Γ2 obviously vanishes because the length of Γ2 is equal to zero. So the line
integral over Γ1 must also be zero. The line integral over Γ1 is an integral
around a closed loop:

∮

∇ϕ · dr = 0. (2.68)
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The symbol
∮

means the integration is over a closed loop. The line integral

around the closed loop is called the circulation of the vector field A around
the closed loop Γ. Thus we have the following result:

When a vector field A is the gradient of a scalar function ϕ, the
circulation of A around any closed curve is zero.

Sometimes this is called the fundamental theorem of gradient. The argu-

ment can be reversed. If
∮

A ·dr = 0, then
∫ B

A

A ·dr is independent of path.

In that case, A is the gradient of some scalar function ϕ.

Example 2.4.7. Find the work done by the force F = 6xyi +
(

3x2 − 3y2
)

j in
a plane along the curve C : y = x2 − x from (0, 0) to (2, 2).

Solution 2.4.7. The work done is by definition the line integral

W =
∫

C

F · dr =
∫

C

[

6xyi +
(

3x2 − 3y2
)

j
]

· (i dx + j dy + kdz)

=
∫

C

[

6xy dx + (3x2 − 3y2) dy
]

.

There are more than one way to carry out this integration along curve C.
Method I. Change all variables into x.

y = x2 − x, dy = (2x − 1)dx,

W =
∫

C

[

6xy dx +
(

3x2 − 3y2
)

dy
]

=
∫ 2

0

{6x
(

x2 − x
)

dx + [3x2 − 3(x2 − x)2](2x − 1)}dx

=
∫ 2

0

{−6x5 + 15x4 − 6x2}dx =
[

−x6 + 3x5 − 2x3
]2

0
= 16.

Method II. The curve C can be considered as the trajectory described by the
tip of the position vector r(t) = x (t) i + y (t) j with t as a parameter. It can
be readily verified that with x = t and y = t2 − t, the curve y = x2 − x is
traced out. Therefore the curve C is given by

r(t) = x (t) i + y (t) j = ti +
(

t2 − t
)

j.

The point (0, 0) corresponds to t = 0, and (2, 2) corresponds to t = 2. Now
we can change all variables into t.
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F (x, y, z) · dr = F (x (t) , y (t) , z (t)) · dr
dt

dt,

dr
dt

= i + (2t − 1) j,

F = 6xyi +
(

3x2 − 3y2
)

j= 6t
(

t2 − t
)

i + [3t2 − 3
(

x2 − x
)2

]j,

F · dr = {6t
(

t2 − t
)

+ [3t2 − 3
(

x2 − x
)2

] (2t − 1)}dt,

W =
∫

C

F · dr =
∫ 2

0

{6t
(

t2 − t
)

+ [3t2 − 3
(

x2 − x
)2

] (2t − 1)}dt = 16.

Example 2.4.8. Calculate the line integral of the last example from the point
(0, 0) to the point (x1, y1) along the path which runs straight from (0, 0)
to (x1,0) and thence to (x1, y1). Make a similar calculation for the path
which runs along the other two sides of the rectangle, via the point (0, y1).
If (x1, y1) = (2, 2), what is the value of the integral?

Solution 2.4.8.

I1(x1, y1) =
∫

C1

F · dr =
∫

C1

[

6xy dx +
(

3x2 − 3y2
)

dy
]

,

C1 : (0, 0) → (x1, 0) → (x1, y1) .

From (0, 0) → (x1, 0) : y = 0, dy = 0,

∫ x1,0

0,0

[

6xy dx +
(

3x2 − 3y2
)

dy
]

= 0.

From (x1, 0) → (x1, y1) : x = x1, dx = 0,

∫ x1,y1

x1,0

[

6xy dx +
(

3x2 − 3y2
)

dy
]

=
∫ y1

0

(3x2
1 − 3y2)dy

=
[

3x2
1y − y3

]y1

0
= 3x2

1y1 − y3
1 ,

I1(x1, y1) =
[∫ x1,0

0,0

+
∫ x1,y1

x1,0

]

[

6xy dx +
(

3x2 − 3y2
)

dy
]

= 3x2
1y1 − y3

1 ,

I2(x1, y1) =
∫

C2

[

6xy dx +
(

3x2 − 3y2
)

dy
]

,

C2 : (0, 0) → (0, y1) → (x1, y1) .

From (0, 0) → (0, y1) : x = 0, dx = 0,

∫ 0,y1

0,0

[

6xy dx +
(

3x2 − 3y2
)

dy
]

=
∫ y1

0

(−3y2)dy = [−y3]y1
0 = −y3

1 .
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From (0, y1) → (x1, y1) : y = y1, dy = 0,

∫ x1,y1

0,y1

[

6xy dx +
(

3x2 − 3y2
)

dy
]

=
∫ x1

0

6xy1 dx = 3x2
1y1,

I2(x1, y1) =
[∫ 0,y1

0,0

+
∫ x1,y1

0,y1

]

[

6xy dx +
(

3x2 − 3y2
)

dy
]

= −y3
1 + 3x2

1y1.

Clearly I1(x1, y1) = I2(x1, y1), and I1(2, 2) = 3 (2)2 2 − (2)3 = 16.

Example 2.4.9. From the last two examples, it is clear that the line integral
∫

C

F · dr with F= 6xyi +
(

3x2 − 3y2
)

j depends only on the end points and is

independent of the path of integration, therefore F = ∇ϕ. Find ϕ(x, y) and
show that

∫ 2,2

0,0
F · dr = ϕ(2, 2) − ϕ(0, 0).

Solution 2.4.9.

∇ϕ = i
∂ϕ

∂x
+ j

∂ϕ

∂y
= 6xyi +

(

3x2 − 3y2
)

j = F,

∂ϕ

∂x
= 6xy =⇒ ϕ = 3x2y + f (y) ,

∂ϕ

∂y
= 3x2 − 3y2 = 3x2 +

df (y)
dy

,

df(y)
dy

= −3y2 =⇒ f(y) = −y3 + k (k is a constant).

Thus,

ϕ(x, y) = 3x2y − y3 + k.
∫ 2,2

0,0

F · dr =
∫ 2,2

0,0

∇ϕ · dr = ϕ(2, 2) − ϕ(0, 0) = 16 + k − k = 16.

Note that
∫ x1,y1

0,0

F · dr =ϕ(x1, y1) − ϕ(0, 0) = 3x2
1y1 − y3

1 ,

in agreement with the result of the last example.
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Example 2.4.10. Find the line integral
∫ 2,1

0,0

F · dr with F = xyi − y2j along

the path (a) y = (1/2)x, (b) y = (1/4)x2, (c) from (0, 0) straight up to (0, 1)
and then along a horizontal line to (2, 1).

Solution 2.4.10.
∫ 2,1

0,0
F · dr =

∫ 2,1

0,0

(

xy dx − y2 dy
)

along

(a) y =
1
2
x, so dy =

1
2
dx,

∫ 2,1

0,0

(

xy dx − y2dy
)

=
∫ 2

0

(

1
2
x2dx − 1

8
x2dx

)

=
[

3
8
· 1
3
x3

]2

0

= 1.

(b) y =
1

4
x2, so dy =

1

2
x dx,

∫ 2,1

0,0

(

xy dx − y2 dy
)

=

∫ 2

0

(

1

4
x3 dx − 1

32
x5 dx

)

=
[

1

16
x4 − 1

32 · 6x6
]2

0
=

2

3
.

(c) From (0, 0) straight up to (0, 1) : x = 0 so dx = 0;
then from (0, 1) along a horizontal line to (2, 1) : y = 1 and dy = 0,
∫ 2,1

0,0

(

xy dx − y2 dy
)

=
∫ 0,1

0,0

(

xy dx − y2 dy
)

+
∫ 2,1

0,1

(

xy dx − y2 dy
)

= −
∫ 1

0

y2 dy +
∫ 2

0

x dx = −1
3

+ 2 =
5
3
.

In general the line integral
∫

C

F · dr depends on the path of integration as

shown in the last example. However, if F = ∇ϕ, the line integral is indepen-
dent of the path of integration. We are going to discuss the condition under
which F can be expressed as the gradient of a scalar function.

2.5 The Divergence of a Vector

Just as we can operate with ∇ on a scalar field, we can also operate with ∇
on a vector field A by taking the dot product. With their components, this
operation gives

∇ · A =
(

i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)

· (iAx + jAy + kAz)

=
∂Ax

∂x
+

∂Ay

∂y
+

∂Az

∂z
. (2.69)
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Just as the dot product of two vectors is a scalar, ∇ · A is also a scalar.
This sum, called the divergence of A (or div A), is a special combination of
derivatives.

Example 2.5.1. Show that ∇ · r = 3 and ∇ · rf(r) = 3f(r) + r(df/dr).

Solution 2.5.1.

∇ · r =
(

i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)

· (ix + jy + kz)

=
∂x

∂x
+

∂y

∂y
+

∂z

∂z
= 3.

∇ · rf (r) =
(

i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)

· (ixf(r) + jyf(r) + kzf(r))

=
∂

∂x
[xf(r)] +

∂

∂y
[yf(r)] +

∂

∂z
[zf(r)]

= f(r) + x
∂f

∂x
+ f(r) + y

∂f

∂y
+ f(r) + z

∂f

∂z

= 3f (r) + x
df

dr

∂r

∂x
+ y

df

dr

∂r

∂y
+ z

df

dr

∂r

∂z
.

∂r

∂x
=

∂

∂x

(

x2 + y2 + z2
)1/2

=
1
2

2x

(x2 + y2 + z2)1/2
=

x

r
;

∂r

∂y
=

y

r
;

∂r

∂z
=

z

r
.

∇ · rf (r) = 3f (r) +
x2

r

df

dr
+

y2

r

df

dr
+

z2

r

df

dr

= 3f (r) +
x2 + y2 + z2

r

df

dr
= 3f (r) + r

df

dr
.

2.5.1 The Flux of a Vector Field

To gain some physical feeling for the divergence of a vector field, it is helpful
to introduce the concept of flux (Latin for “flow”). Consider a fluid of density
� moving with velocity v. We ask for the total mass of fluid which crosses
an area ∆a perpendicular to the direction of flow in a time ∆t. As shown in
Fig. 2.9a, all the fluid in the rectangular pipe of length v∆t with the patch ∆a
as its base will cross ∆a in the time interval ∆t. The volume of this pipe is
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v∆t v∆t

v

∆a

(a)

v

∆a

(b)
n

q

q

Fig. 2.9. Flux through the base. (a) Flux through ∆a = ρv∆a. (b) Flux through
the tilted ∆a = ρv · n∆a

v∆t∆a, and it contains a total mass �v∆t∆a. Dividing ∆t will give the mass
across ∆a per unit time, which by definition is the rate of the flow

Rate of flow through ∆a = �v∆a.

Now let us consider the case shown in Fig. 2.9b. In this case the area ∆a
is not perpendicular to the direction of the flow. The total mass which will
flow through this tilted ∆a in time ∆t is just the density times the volume
of this pipe with the slanted bases. That volume is v∆t∆a cos θ, where θ is
the angle between the velocity vector v and n, the unit normal to ∆a. But
v cos θ = v · n. So, multiplying by � and dividing ∆t, we have

Rate of flow through tilted ∆a = �v · n∆a.

To get the total flow through any surface S, first we divide the whole
surface into little patches which are so small that over any one patch the
surface is practically flat. Then we sum up the contributions from all the
patches. As the patches become smaller and more numerous without limit,
the sum becomes a surface integral. Accordingly,

Total flow through S =
∫∫

S

�v · n da. (2.70)

If we define J =�v, (2.70) is known as the flux of J through the surface S

Flux of J through S =
∫∫

S

J · n da. (2.71)

Originally it means the rate of the flow, the word flux is now generalized to
mean the surface integral of the normal component of a vector. For example,
the vector might be the electric field E. Although electric field is not flowing
in the sense in which fluid flows, we still say things like “the flux of E through
a closed surface is equal to the total charge inside” to help us to visualize the
electric field lines “flowing” out of the electric charges.
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Example 2.5.2. Let J =�v0k where � is the density of the fluid and v0k is its
velocity (k is the unit vector in the z direction). Calculate the flux of J (the
flow rate of the fluid) through a hemispherical surface of radius b.

z

x

y

dy
dx

da

n
k

(0, b, 0)

(0, 0, b)

(b, 0, 0)

Fig. 2.10. Surface element on a hemisphere. The projected area on the xy plane is
dx dy = cos θ da where θ is the angle between the tangent plane at da and the xy
plane

Solution 2.5.2. The equation of the spherical surface is ϕ (x, y, z) = x2 +
y2 + z2 = b2. Therefore the unit normal to the surface is

n =
∇ϕ

|∇ϕ| =
2xi + 2yj + 2zk

(4x2 + 4y2 + 4z2)1/2
=

xi + yj + zk
b

.

Let the flux of J through the hemisphere be Φ, which is given by

Φ =
∫∫

S

J · n da =
∫∫

S

�v0k · n da,

where da is an element of the surface area on the hemisphere as shown in
Fig. 2.10. This surface area projects onto dx dy in the xy plane. Let θ be the
acute angle between da (actually the tangent plane at da) and the xy plane.
Then we have dx dy = cos θ da. The integral becomes

Φ =
∫∫

S

�v0k · n da =
∫∫

S

�v0k · n 1
cos θ

dx dy,

where the limit on x and y must be such that we integrate over the projected
area in the xy plane which is inside a circle of radius b. The angle between
two planes is the same as the angle between the normals to the planes. Since
n is the unit normal to da and k is the unit normal to xy plane, the angle θ
is between n and k. Thus, cos θ = n · k. Therefore,
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Φ =
∫∫

S

�v0k · n 1
cos θ

dx dy =
∫∫

S

�v0 dx dy = �v0πb2.

Note that this result is the same as the flux through the circular flat area in
the xy plane. In fact, it is exactly the same as the flux through any surface
whose boundary is the circle of radius b in the xy plane, since we obtained
the result without using the explicit expression of n.

2.5.2 Divergence Theorem

The divergence theorem is also known as Gauss’ theorem. It relates the flux of
a vector field through a closed surface S to the divergence of the vector field
in the enclosed volume

∫∫

closed surface S

A · n da =
∫∫∫

vol. enclosed in S

∇ · A dV. (2.72)

The surface integral is over a closed surface as shown in Fig. 2.11. The unit
normal vector n is pointing outward from the enclosed volume. The right-
hand side of this equation is the integration of the divergence over the volume
that is enclosed in the surface.

To prove this theorem, we cut the volume V up into a very large number
of tiny (differential) cubes. The volume integral is the sum of the integrals
over all the cubes.

Imagine we have a parallelepiped with six surfaces enclosing a volume V .
We separate the volume into two cubes by a cut as in Fig. 2.12. Note that the
sum of the flux through the six surfaces of the cube on the left and the flux
through the six surfaces of the cube on the right is equal to the flux through
the six surfaces of the original parallelepiped before it was cut. This is because

n da

dv

Fig. 2.11. The divergence theorem. The volume is enclosed by the surface. The
integral of the divergence over the volume inside is equal to the flux through the
outside surface
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A

D

C

B

C

D

A

B

C

B

A

D

n n

(a) (b)

Fig. 2.12. The flux out of the touching sides of the two neighboring cubes cancel
each other

the unit normal vectors on the touching sides of the two neighboring cubes
are equal and opposite to each other. So the contributions to the flux for
the two cubes from these two sides exactly cancel. Thus it must be generally
true that the sum of the flux through the surfaces of all the cubes is equal to
the integral over those surfaces that have no touching neighbors, i.e., over the
original outside surface. So if we can prove the result for a small cube, we can
prove it for any arbitrary volume.

Consider the flux of A through the surfaces of the small cube of volume
∆V = ∆x∆y∆z shown in Fig. 2.13. The unit vector perpendicular to the sur-
face ABCD is clearly −j (n = − j). The flux through this surface is therefore
given by

A(x, y, z) · (−j)∆a = −Ay(x, y, z)∆x∆z.

The flux is defined as the outgoing “flow.” The minus sign simply means the
flux is flowing into the volume. Similarly, the unit normal to the surface EFGH
is j, and the flux through this surface is

A(x, y + ∆y, z) · j∆a = Ay(x, y + ∆y, z)∆x∆z.

x

y

z

∆z

∆y

∆x

Ay ∆x ∆z A(  y + ∆y ) ∆x ∆z

B

C

D

A E

F

G

H

∂y

∂Ay

Fig. 2.13. The flux through the left and right face of a infinitesimal cube
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Note that for every point (x, y, z) on ABCD, the corresponding point on EFGH
is (x, y + ∆y, z) . The net flux through these two surfaces is simply the sum
of the two:

[Ay(x, y + ∆y, z) − Ay(x, y, z)] ∆x∆z =
∂Ay

∂y
∆y∆x∆z =

∂Ay

∂y
∆V. (2.73)

By applying similar reasoning to the flux components in the two other direc-
tions, we find the total flux through all the surfaces of the cube is

∑

cube

A · n da =
(

∂Ax

∂x
+

∂Ay

∂y
+

∂Az

∂z

)

∆V = (∇ · A)∆V. (2.74)

This shows that the outward flux from the surface of an infinitesimal cube
is equal to the divergence of the vector multiplied by the volume of the cube.
Thus the divergence has the following physical meaning:

The divergence of a vector A at a point is the total outward flux of A
per unit volume in the neighborhood of that point.

For any finite volume, the total flux of A through the outside surface
enclosing the volume is equal to the sum of the fluxes out of all the infinitesimal
interior cubes, and the flux out of each cube is equal to the divergence of A
times the volume of the cube. Therefore the integral of the normal component
of a vector over any closed surface is equal to the integral of the divergence
of the vector over the volume enclosed by the surface,

∫∫

©
S

A · n da =
∫∫∫

V

∇ · A dV. (2.75)

The small circle on the double integral sign means the surface integral is over a
closed surface. The volume integral is understood to be over the entire region
inside the closed surface. This is the divergent theorem of (2.72), which is
sometimes called the fundamental theorem for divergence.

A flow field A is said to be solenoidal if everywhere the divergence of A
is equal to zero (∇ · A = 0) . An incompressible fluid must flow out of a given
volume as rapidly as it flows in. The divergence of such a flow field must be
zero, therefore the field is solenoidal.

On the other hand if A is such a field that at certain point ∇ ·A �= 0, then
there is a net outward flow from a small volume surrounding that point. Fluid
must be “created” or “put in” at that point. If ∇ ·A is negative, fluid must
be “taken out” at that point. Therefore we come to the following conclusion.

The divergence of flow field at a point is a measure of the strength of
the source (or sink) of the flow at that point.
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Example 2.5.3. Verify the divergence theorem by evaluating both sides of
(2.72) with A = xi + yj + zk over a cylinder described by x2 + y2 = 4
and 0 ≤ z ≤ 4.

Solution 2.5.3. Since ∇ · A =
(

i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)

· (xi + yj + zk) = 3, the

volume integral is
∫∫∫

V

∇ · A dV = 3
∫∫∫

V

dV = 3(π22)4 = 48π,

which is simply three times the volume of the cylinder. The surface of the
cylinder consists of the top, bottom, and curved side surfaces. Therefore the
surface integral can be divided into three parts
∫∫

©
S

A · n da =
∫∫

top

A · n da +
∫∫

bottom

A · n da +
∫∫

curved

A · n da.

For the top surface
∫∫

top

A · n da =
∫∫

top

(xi + yj + 4k) · k da = 4
∫∫

top

da = 4π22 = 16π.

For the bottom surface
∫∫

bottom

A · n da =
∫∫

bottom

(xi + yj + 0k) · (−k)da = 0.

For the curved side surface, we must first find the unit normal n. Since the
surface is described by ϕ (x, y) = x2 + y2 = 4,

n =
∇ϕ

|∇ϕ| =
2xi + 2yj

(4x2 + 4y2)1/2
=

xi + yj
2

,

A · n = (xi + yj + zk) · xi + yj
2

=
1
2
(

x2 + y2
)

= 2,

∫∫

curved

A · n da = 2
∫∫

curved

da = 2 (2π · 2) 4 = 32π.

Therefore
∫∫

©
S

A · n da = 16π + 0 + 32π = 48π,

which is the same as the volume integral.
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2.5.3 Continuity Equation

One of the most important applications of the divergence theorem is using it
to express the conservation laws in differential forms. As an example, consider
a fluid of density � moving with velocity v. According to (2.70), the rate at
which the fluid flows out of a closed surface is

Rate of outward flow through a closed surface =
∫∫

©
S

�v · n da. (2.76)

Now because of the conservation of mass, this rate of out flow must be equal
to the rate of decrease of the fluid inside the volume that is enclosed by the
surface. Therefore

∫∫

©
S

�v · n da = −
∫∫∫

V

∂�

∂t
dV. (2.77)

The negative sign accounts for the fact that the fluid inside is decreasing if
the flow is outward. Using the divergence theorem

∫∫

©
S

�v · n da =
∫∫∫

V

∇ · (�v) dV, (2.78)

we have
∫∫∫

V

[

∇ · (�v) +
∂�

∂t

]

dV = 0. (2.79)

Since the volume V in this equation, the integrand must equal to zero, or

∇ · (�v) +
∂�

∂t
= 0. (2.80)

This important equation, known as the continuity equation, relates the den-
sity and the velocity at the same point in a differential form. Many other
conservation laws can be similarly expressed.

For an incompressible fluid, � is not changing in time. In that case, the
divergence of the velocity must be zero,

∇ · v = 0. (2.81)

Singularities in the Field. In deriving these integral theorems, we require
the scalar and vector fields to be continuous and finite at every point. Often
there are points, lines, or surfaces in space at which fields become discon-
tinuous or even infinite. Examples are the electric fields produced by point,
line, or surface charges. One way of dealing with this situation is to eliminate
these volume elements, by appropriate surfaces, from the domain to which the
theorems are to be applied. Another scheme is to “smear out” the discontinu-
ous quantities, such as using charge densities, so that the fields are again well
behaved. Still another powerful way is to use Dirac delta function. Sect. 2.10.2
is a specific example of these procedures.
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2.6 The Curl of a Vector

The cross product of the gradient operator ∇ with vector A gives us another
special combination of the derivatives of the components of A

∇ × A =

∣

∣

∣

∣

∣

∣

∣

i j k
∂

∂x

∂

∂y

∂

∂z
Ax Ay Az

∣

∣

∣

∣

∣

∣

∣

= i
(

∂Az

∂y
− ∂Ay

∂z

)

+ j
(

∂Ax

∂z
− ∂Az

∂x

)

+ k
(

∂Ay

∂x
− ∂Ax

∂y

)

. (2.82)

It is a vector known as the curl of A. The name curl suggests that it has
something to do with rotation. In fact, in European texts the word rotation (or
rot) is used in place of curl. In Example 2.1.3, we have considered the motion
of a body rotating around the z-axis with angular velocity ω. The velocity
of the particles in the body is v = − ωyi+ωxj. The circular characteristic of
this velocity field is manifested in the curl of the velocity

∇ × v =

∣

∣

∣

∣

∣

∣

∣

i j k
∂

∂x

∂

∂y

∂

∂z
−ωy ωx 0

∣

∣

∣

∣

∣

∣

∣

= 2ωk, (2.83)

which shows that the curl of v is twice the angular velocity of the rotating
body.

If this velocity field describes a fluid flow, curl v is called the vorticity
vector of the fluid. It points in the direction around which a vortex motion
takes place and is a measure of the the angular velocity of the flow. A small
paddle wheel placed in the field will tend to rotate in regions where ∇ × v �= 0.
The paddle wheel will remain stationary in those regions where ∇ × v = 0.
If the curl of a vector field is equal to zero everywhere, the field is called
irrotational.

Example 2.6.1. Show that (a) ∇ × r = 0; (b) ∇ × rf(r) = 0 where r is the
position vector.

Solution 2.6.1. (a) Since r = xi + yj + zk, so

∇ × r =

∣

∣

∣

∣

∣

∣

∣

i j k
∂

∂x

∂

∂y

∂

∂z
x y z

∣

∣

∣

∣

∣

∣

∣

= 0.
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(b)

∇ × rf (r) =

∣

∣

∣

∣

∣

∣

∣

i j k
∂

∂x

∂

∂y

∂

∂z
xf (r) yf (r) zf (r)

∣

∣

∣

∣

∣

∣

∣

=
{

∂

∂y
[zf (r)] − ∂

∂z
[yf (r)]

}

i

+
{

∂

∂z
[xf (r)] − ∂

∂x
[zf (r)]

}

j +
{

∂

∂x
[yf (r)] − ∂

∂y
[xf (r)]

}

k

=
{

z
∂

∂y
f (r) − y

∂

∂z
f (r)

}

i +
{

x
∂

∂z
f (r) − z

∂

∂x
f (r)

}

j

+
{

y
∂

∂x
f (r) − x

∂

∂y
f (r)

}

k.

Since

∂

∂y
f (r) =

df

dr

∂r

∂y
and r =

(

x2 + y2 + z2
)1/2

,

∂

∂y
f (r) =

df

dr

(

− y

(x2 + y2 + z2)1/2

)

= −df

dr

y

r
,

∂

∂x
f (r) = −df

dr

x

r
;

∂

∂z
f (r) = −df

dr

z

r
.

Therefore

∇ × rf (r) =
df

dr

{

−z
y

r
+ y

z

r

}

i+
df

dr

{

−x
z

r
+ z

x

r

}

j+
df

dr

{

−y
x

r
+ x

y

r

}

k=0.

2.6.1 Stokes’ Theorem

Stokes’ theorem relates the line integral of a vector function around a closed
loop C to a surface integral of the curl of that vector over a surface S that
spans the loop. The theorem states that

∫

closed loop C

A · dr =
∫∫

area bounded by C

(∇ × A) · n da, (2.84)

where dr is a directed line element along a closed curve C and S is any
surface bounded by C. At any point on the surface, the unit normal vector n
is perpendicular to the surface element da at that point as shown in Fig. 2.14.
The sign of n is determined by the convention of the “right-hand rule.” Curl
the fingers of your right hand in the direction dr, then your thumb points in
the positive direction of n. If the curve C lies in a plane, the simplest surface
spans C is a flat surface. Now imagine the flat surface is a flexible membrane
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dr

n da

Fig. 2.14. Stokes’ theorem. The integral of the curl over the surface is equal to the
line integral around the closed boundary curve

which can continuously expand but remains attached to curve C. A sequence
of curved surfaces is generated. Stokes theorem applies to all such surfaces.
The positive direction of n for the flat surface is clear from the right-hand
rule. As the surface expands, n moves along with it. For example, with the
direction of dr shown in Fig. 2.14, the normal vector n of the nearly flat surface
bounded by C is pointing “downward” according to the right-hand rule. When
the surface is expanded into the final shape, n is turned to “outward” direction
as shown in the figure.

The surface in Stokes’ theorem must be two sided. A one-sided surface
can be constructed by taking a long strip of paper, giving it a half twist, and
joining the ends. If we tried to color one side of the surface we would find the
whole thing colored. A belt of this shape is called a Moebius surface. Such
a surface is not orientable since we cannot define the sense of the normal
vector n. Stokes’ theorem applies only to the orientable surface, furthermore,
the boundary curve of the surface must not cross itself.

To prove Stokes’ theorem, we divide the surface into a large number of
small rectangles. The surface integral on the right-hand side of (2.84) is of
course just the sum of the surface integrals over all the small rectangles. If the
line integrals around all the small rectangles are traced in the same direction,
each interior line will be traced twice – once in each direction. Thus the
line integrals of A · dr from all the interior lines will sum up to zero, since
each term will appear twice with opposite sign. Therefore the sum of the line
integrals around all the small rectangles will equal to the line integral around
the boundary curve C, as shown in Fig. 2.15. So if we prove the result for a
small rectangle, we will have proved it for any closed curve C.

Since the surface is to be composed of an infinitely large number of these
infinitesimal rectangles, we may consider each to be a plane rectangle. Let
us orient the coordinate axes so that one of these rectangles lies in the xy-
plane, the sides will be of length ∆x and ∆y as shown in Fig. 2.16. Let the
coordinates of the center of the loop be (x, y, z) . We designate the corners of
this rectangle by A, B, C, D. So, the line integral around this rectangle is

∮

ABCD

A · dr =

∫

AB

A · (i dx)+

∫

BC

A · (j dy)+

∫

CD

A · (−i dx)+

∫

DA

A · (−jdy).

(2.85)
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 =

Fig. 2.15. Proof of Stokes’ theorem. The surface is divided into differential surface
elements. Circulation along interior lines cancel and the result is a circulation around
the perimeter of the original surface

A

D C

B

y

x

∆y

∆x

(x, y)

Fig. 2.16. The line integral of A · dr around the four sides of the infinitesimal square
is equal to the surface integral of ∇ × A over the area of this square

We use the symbol
∮

to mean the line integral is over a closed loop.

Now we may approximate the integral by the average value of the integrand
multiplied by the length of the integration interval. The average value of A
on the line AB may be taken to be the value of A at the midpoint of AB. The
coordinates at the midpoint of AB is

(

x, y − 1
2∆y, z

)

. Thus
∫

AB

A · (i dx) =
∫

AB

Ax dx = Ax

(

x, y − 1
2
∆y, z

)

∆x.

Similarly,
∫

BC

A · (j dy) =
∫

BC

Ay dy = Ay

(

x +
1
2
∆x, y, z

)

∆y,

∫

CD

A · (−i dx) = −
∫

CD

Ax dx = −Ax

(

x, y +
1
2
∆y, z

)

∆x,

∫

DA

A · (−j dy) = −
∫

DA

Ay dy = −Ay

(

x − 1
2
∆x, y, z

)

∆y.
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Summing all these contributions, we obtain
∮

ABCD

A · dr =
(

Ax

(

x, y − 1
2
∆y, z

)

− Ax

(

x, y +
1
2
∆y, z

))

∆x

+
(

Ay

(

x +
1
2
∆x, y, z

)

− Ay

(

x − 1
2
∆x, y, z

))

∆y.

Since

Ay

(

x +
1
2
∆x, y, z

)

− Ay

(

x − 1
2
∆x, y, z

)

=
∂Ay

∂x
∆x,

Ax

(

x, y − 1
2
∆y, z

)

− Ax

(

x, y +
1
2
∆y, z

)

= −∂Ax

∂y
∆y,

so we have
∮

ABCD

A · dr =
(

∂Ay

∂x
− ∂Ax

∂y

)

∆x∆y. (2.86)

Next consider the surface integral of ∇ × A over ABCD. In this case the
unit normal n is just k. Again we take the integral to be equal to the average
value of the integrand over the area multiplied by the area of the integration.
The average value of A is simply the value of A evaluated at the center.
Therefore
∫∫

ABCD

(∇ × A) · n da = (∇ × A) · k∆x∆y =
(

∂Ay

∂x
− ∂Ax

∂y

)

∆x∆y,

(2.87)
which is the same as (2.86). This result can be interpreted as follows:

The component of ∇ × A in the direction of n at a point P is the
circulation of A per unit area around P in the plane normal to n.

The circulation of a vector field around any closed loop can now be easily
related to the curl of that field. We fill the loop with a surface S and add the
circulations around a set of infinitesimal squares covering this surface. Thus
we have

∑

∮

ABCD

A · dr =
∑

∫∫

ABCD

(∇ × A) · n da, (2.88)

which can be written as
∮

C

A · dr = =
∫∫

S

(∇ × A) · n da. (2.89)

This is Stokes’ theorem. Sometimes this theorem is referred to as the funda-
mental theorem for curls. Note that this theorem holds for any surface S as
long as the boundary of the surface is the closed loop C.
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Example 2.6.2. Verify Stokes’ theorem by finding the circulation of the vector
field A = 4yi+xj+2zk around a square of radius 2a in the xy plane, centered

at the origin and the surface integral
∫∫

(∇ × A) · n da over the surface of

the square.

Solution 2.6.2. We compute the circulation by calculating the line inte-
gral around each of the four sides of the square. From (a,−a, 0) to (a, a, 0),
x = a, dx = 0, z = 0:

I1 =
∫ a,a,0

a,−a,0

A · dr =
∫ a,a,0

a,−a,0

(4yi + xj + 2zk) · (i dx + j dy + k dz)

=
∫ a,a,0

a,−a,0

(4y dx + x dy + 2z dz) =
∫ a

−a

a dy = 2a2.

From (a, a, 0) to (−a, a, 0), y = a, dy = 0, z = 0:

I2 =
∫ −a,a,0

a,a,0

A · dr =
∫ −a

a

4a dx = −8a2.

From (−a, a, 0) to (−a,−a, 0), x = −a,dx = 0, z = 0:

I3 =
∫ −a,−a,0

−a,a,0

A · dr =
∫ −a

a

(−a)dy = 2a2.

From (−a,−a, 0) to (a,−a, 0), y = −a, dy = 0, z = 0:

I4 =
∫ a,−a,0

−a,−a,0

A · dr =
∫ a

−a

4(−a)dx = −8a2.

Therefore the circulation is
∮

C

A · dr = I1 + I2 + I3 + I4 = −12a2.

Now we compute the surface integral. First n da = k dx dy over the square
and the curl of A is

∇ × A =

∣

∣

∣

∣

∣

∣

∣

i j k
∂

∂x

∂

∂y

∂

∂z
4y x 2z

∣

∣

∣

∣

∣

∣

∣

= −3k.

Thus
∫∫

S

∇ × A · n da = −3
∫∫

S

dx dy = −3(2a)2 = −12a2,

which is the same as the circulation, satisfying Stokes’ theorem.
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Example 2.6.3. Verify Stokes’ theorem by evaluating both sides of (2.84) with
A =4yi+ xj+ 2zk. This time the surface is over the hemisphere described by
ϕ (x, y, z) = x2 +y2 +z2 = 4 and the loop C is given by the circle x2 +y2 = 4.

Solution 2.6.3. Since ∇ × A = − 3k,

∫∫

S

∇ × A · n da = −3
∫∫

S

k · n da.

The surface is over a hemisphere. The geometry is shown in Fig. 2.10. The
surface integral can be evaluated over the projection of the hemisphere on the
xy plane using the relation

da =
1

cos θ
dx dy =

1
k · ndx dy.

The integration is simply over the disk of radius 2:
∫∫

S

∇ × A · n da = −3

∫∫

k · n 1

k · ndx dy = −3

∫∫

dx dy = −3(4π) = −12π.

To evaluate the line integral around the circle, it is convenient to write the
circle in the parametric form

r = xi + yj, x = 2 cos θ, y = 2 sin θ, 0 ≤ θ ≤ 2π.

dr
dθ

= −2 sin θi + 2 cos θj, A = 4yi + xj + 2zk = 8 sin θi + 2 cos θj + 2zk.

∮

C

A · dr =
∮

C

A · dr
dθ

dθ=
∫ 2π

0

(−16 sin2 θ + 4 cos2 θ)dθ = −12π.

Thus, Stokes’ theorem is verified,
∮

C

A · dr =
∫∫

S

∇ × A · n da.

Example 2.6.4. Use Stokes’ theorem to evaluate the line integral
∮

C

A · dr

with A = 2yzi + xj + z2k along the circle described by x2 + y2 = 1.

Solution 2.6.4. The curl of A is

∇ × A =

∣

∣

∣

∣

∣

∣

∣

i j k
∂

∂x

∂

∂y

∂

∂z
2yz x z2

∣

∣

∣

∣

∣

∣

∣

= 2yj + (1 − 2z)k,
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and according to Stokes’ theorem
∮

C

A · dr =
∫∫

S

∇ × A · n da =
∫∫

S

[2yj + (1 − 2z)k] · n da.

Since S can be any surface as long as it is bounded by the circle, the simplest
way to do this problem is to use the flat surface inside the circle. In that case
z = 0 and n = k. Hence,

∮

A · dr =
∫∫

S

da = π.

Connectivity of Space. Stokes’ theorem is valid in a simply connected
region. A region is simply connected if any closed loop in the region can
be shrunk to a point without encountering any points not in the region. In a
simply connected region, any two curves between two points can be distorted
into each other within the region. The space inside a torus (doughnut) is
multiply connected since a closed curve surrounds the hole cannot be shrunk
to a point within the region. The space between two infinitely long concen-
tric cylinders is also not simply connected. However, the region between two
concentric spheres is simply connected.

If ∇ × F = 0 in a simply connected region, we can use Stokes’ theorem
∮

C

F · dr =
∫∫

S

∇ × F · n da = 0

to conclude that the line integral
∫ B

A
F · dr is independent of the path.

If ∇ × F = 0 in a multiply connected region, then
∫ B

A
F ·dr is not unique.

In such a case, we often “cut” the region so as to make it simply connected.
Then

∫ B

A
F ·dr is independent of the path inside the simply connected region,

but
∫ B

A
F · dr across the cut line may give a finite jump.

For example, consider the loop integral
∮

F · dr with

F = − y

x2 + y2
i +

x

x2 + y2
j

around a unit circle centered at the origin. Since

∇ × F =

∣

∣

∣

∣

∣

∣

∣

∣

i j k
∂

∂x

∂

∂y

∂

∂z
− y

x2+y2
x

x2+y2 0

∣

∣

∣

∣

∣

∣

∣

∣

= 0,

one might conclude that
∮

F · dr =
∫∫

S

∇ × F · n da = 0.
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y

x

Fig. 2.17. If the function is singular on the z-axis, the region is multiply connected.
A “cut” can be made to change it into a simply connected region. However, a lined
integral across the cut line may give a sudden jump

This is incorrect, as one can readily see that
∮

F · dr =
∮ (

− y

x2 + y2
dx +

x

x2 + y2
dy

)

.

With x = cos θ, y = sin θ, (so dx = − sin θ dθ, dy = cos θ dθ, and x2+y2 = 1),
this integral is seen to be

∮

F · dr =
∮

(

sin2 θ + cos2 θ
)

dθ =
∮

dθ = 2π,

which is certainly not zero. The source of the problem is that at x = 0 and
y = 0 the function blows up. Thus we can only say that the curl of the function
is zero except along the z-axis. If we try to exclude the z-axis from the region
of integration, the region becomes multiply connected. In a multiply connected
region, Stokes’ theorem does not apply.

To make it simply connected, we can cut the region, such as along the
y = 0 plane shown in Fig. 2.17 (or along any other direction). Within the
simply connected region

∫ B

A
F ·dr = θB − θA. It will be equal to zero if A and

B are infinitesimally close. However, if the integral is across the cut line, as
long as A and B are on the different side of the cut, no matter how close are
A and B, there is a sudden jump of 2π.

2.7 Further Vector Differential Operations

There are several combinations of vector operations involving the del ∇ oper-
ator which appear frequently in applications. They all follow the general rules
of ordinary derivatives. The distributive rules are straightforward. With the
definition the del operator ∇, one can readily verify

∇(ϕ1 + ϕ2) = ∇ϕ1 + ∇ϕ2; (2.90)
∇ · (A + B) = ∇ · A + ∇ · B; (2.91)

∇ × (A + B) = ∇ × A + ∇ × B. (2.92)

However, the product rules are not so simple because there are more than one
way to form a vector product.
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2.7.1 Product Rules

The following is a list of useful product rules:

∇ (ϕψ) = ϕ∇ψ + ψ∇ϕ, (2.93)
∇· (ϕA) = ∇ϕ · A+ ϕ∇ · A, (2.94)

∇× (ϕA) = ∇ϕ × A+ ϕ∇ × A, (2.95)
∇· (A × B) = (∇ × A) · B − (∇ × B) · A, (2.96)

∇× (A × B) = (∇ · B)A − (∇ · A)B + (B · ∇)A − (A · ∇)B, (2.97)
∇(A · B) = (A · ∇)B+ (B · ∇)A + A × (∇ × B) + B × (∇ × A). (2.98)

They can be verified by expanding both sides in terms of their Cartesian
components. For example,

∇ (ϕψ) = i
∂

∂x
(ϕψ) + j

∂

∂y
(ϕψ) + k

∂

∂z
(ϕψ)

= iϕ
∂

∂x
ψ + jϕ

∂

∂y
ψ + kϕ

∂

∂z
ψ

+iψ
∂

∂x
ϕ + jψ

∂

∂y
ϕ + kψ

∂

∂z
ϕ

= ϕ∇ψ + ψ∇ϕ. (2.99)

Similarly,

∇· (ϕA) =
∂

∂x
(ϕAx) +

∂

∂y
(ϕAy) +

∂

∂z
(ϕAz)

=
(

∂ϕ

∂x
Ax + ϕ

∂Ax

∂x

)

+
(

∂ϕ

∂y
Ay + ϕ

∂Ay

∂y

)

+
(

∂ϕ

∂z
Az + ϕ

∂Az

∂z

)

=
(

∂ϕ

∂x
Ax +

∂ϕ

∂y
Ay +

∂ϕ

∂z
Az

)

+ ϕ

(

∂Ax

∂x
+

∂Ay

∂y
+

∂Az

∂z

)

= ∇ϕ · A+ ϕ∇ · A. (2.100)

Clearly it will be very tedious to explicitly prove the rest of the product rules in
this way. More “elegant” proofs will be given in the chapter of tensor analysis.
Here, we will use the following formal procedure to establish these relations.
The procedure consists of (1) first using ∇ as a differential operator and
(2) then treating ∇ as if it were a regular vector. This procedure is a mnemonic
device to give correct results.

Since ∇ is a linear combination of differential operators, we require it to
obey the product rule of differentiation. When ∇ operates on a product, the
result is the sum of two derivatives obtained by holding one of the factors
constant and allowing the other to be operated on by ∇. As a matter of
notation, we attach to ∇ a subscript indicating the one factor upon which
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it is currently allowed to operate, and the other factor is kept constant. For
instance,

∇× (ϕA) = ∇ϕ× (ϕA) + ∇A× (ϕA) .

Since ∇A× (ϕA) means that ϕ is a constant, it is then clear

∇A× (ϕA) = ϕ∇A×A = ϕ∇ × A,

where the subscript A is omitted from the right-hand side, since it is clear what
∇ operates on when it is followed by just one factor. Similarly, ∇ϕ× (ϕA)
means A is constant. In this case it is easy to show

∇ϕ× (ϕA) =

∣

∣

∣

∣

∣

∣

∣

i j k
∂

∂x

∂

∂y

∂

∂z
ϕAx ϕAy ϕAz

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

i j k
∂ϕ

∂x

∂ϕ

∂y

∂ϕ

∂z
Ax Ay Az

∣

∣

∣

∣

∣

∣

∣

= ∇ϕ×A.

Thus,

∇× (ϕA) = ∇ϕ× (ϕA) + ∇A× (ϕA) = ∇ϕ×A+ ϕ∇ × A. (2.101)

For the divergence of a cross product, we start with

∇ · (A × B) = ∇A · (A × B) + ∇B · (A × B)
= ∇A · (A × B) − ∇B · (B × A) .

Recall the scalar triple product a · (b × c), the dot (·) and the cross (×) can
be interchanged a · (b × c) = (a × b) · c. Treating ∇A as a vector, we have

∇A · (A × B) = (∇A × A) · B =(∇ × A) · B,

where the subscript A is dropped in the last step because the meaning is clear
without it. Similarly,

∇B · (B × A) = (∇ × B) · A.

Therefore,
∇ · (A × B) = (∇ × A) · B − (∇ × B) · A. (2.102)

For the curl of a cross product, we will use the analogy of the vector triple
product a × (b × c) = (a · c)b− (a · b) c.

∇× (A × B) = ∇A× (A × B) + ∇B×(A × B),
∇A× (A × B) = (∇A · B)A − (∇A · A)B = (B · ∇A)A − (∇A · A)B.

In the last step, we have used the relation (∇A · B)A = (B · ∇A)A, since B
is regarded as a constant. Similarly,

∇B × (A × B) = (∇B · B)A − (∇B · A)B = (∇B · B)A − (A · ∇B)B.
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Therefore

∇× (A × B) = (B · ∇)A − (∇ · A)B + (∇ · B)A − (A · ∇)B, (2.103)

where we have dropped the subscripts because the meaning is clear without
them.

The product rule of the gradient of a dot product v is more cumbersome,

∇(A · B) = ∇A(A · B) + ∇B(A · B).

To work out ∇A(A · B), we use the property of the vector triple product
a × (b × c) = b(a · c) − (a · b)c,

A × (∇B × B) = ∇B(A · B) − (A · ∇B)B.

Hence,
∇B(A · B) = (A · ∇B)B + A × (∇B × B).

Similarly,

∇A(A · B) = ∇A(B · A) = (B · ∇A)A + B × (∇A × A).

Dropping the subscripts when they are not necessary, we have

∇(A · B) = (B · ∇)A + B × (∇ × A) + (A · ∇)B + A × (∇ × B). (2.104)

2.7.2 Second Derivatives

Several second derivatives can be constructed by applying ∇ twice. The fol-
lowing four identities of second derivatives are of great interests:

∇ × ∇ϕ = 0, (2.105)

∇ · ∇ × A=0, (2.106)

∇× (∇ × A) = ∇(∇ · A)−∇2A, (2.107)

∇ · (∇ϕ × ∇ψ) = 0. (2.108)

The first identity states that the curl of the gradient of a scalar function
is identically equal to zero. This can be shown by direct expansion.

∇ × ∇ϕ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

i j k
∂

∂x

∂

∂y

∂

∂z
∂ϕ

∂x

∂ϕ

∂y

∂ϕ

∂z

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= i
(

∂2ϕ

∂y∂z
− ∂2ϕ

∂z∂y

)

+ j
(

∂2ϕ

∂z∂x
− ∂2ϕ

∂x∂z

)

+ k
(

∂2ϕ

∂x∂y
− ∂2ϕ

∂y∂x

)

= 0, (2.109)
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provided the second cross partial derivatives of ϕ are continuous (which are
generally satisfied by functions of interests). In such a case, the order of dif-
ferentiation is immaterial.

The second identity states that the divergence of curl of a vector function
is identically equal to zero. This can also be shown by direct calculation.

∇ · ∇ × A =
(

i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)

·

∣

∣

∣

∣

∣

∣

∣

i j k
∂

∂x

∂

∂y

∂

∂z
Ax Ay Az

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂

∂x

∂

∂y

∂

∂z
∂

∂x

∂

∂y

∂

∂z
Ax Ay Az

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0. (2.110)

It is understood that the determinant is to be expanded along the first row.
Again if the partial derivatives are continuous, this determinant with two
identical rows is equal to zero.

The curl curl identity is equally important and is worthwhile to commit
to memory. For the mnemonic purpose, we can use the analogy of the vec-
tor triple product a × (b × c) = b(a · c) − (a · b)c, with ∇,∇,A as a,b, c,
respectively. Thus, the vector triple product suggests

∇× (∇ × A) = ∇ (∇ · A)−(∇ · ∇)A. (2.111)

The ∇ · ∇ is a scalar operator. Because it appears often in physics, it has
given a special name – the Laplacian, or just ∇2

∇ · ∇ =
(

i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)

·
(

i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)

=
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
= ∇2. (2.112)

Therefore, (2.111) can be written as

∇× (∇ × A) = ∇(∇ · A)−∇2A. (2.113)

Expanding both sides of this equation in rectangular coordinates, one can
readily verify that this is indeed an identity.

Since ∇2 is a scalar operator, when it operates on a vector, it means the
same operation on each component of the vector

∇2A = i∇2Ax + j∇2Ay + k∇2Az. (2.114)
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The identity (2.108) follows from ∇ · (A × B) = ∇ × A · B − ∇ × B · A.
Since ∇ϕ and ∇ψ are two different vectors,

∇ · (∇ϕ × ∇ψ) = ∇ × ∇ϕ · ∇ψ−∇ × ∇ψ · ∇ϕ.

Now ∇ × ∇ϕ = ∇ × ∇ψ = 0, therefore

∇ · (∇ϕ × ∇ψ) = 0. (2.115)

Example 2.7.1. Show that ∇ × A = B, if A = 1
2B × r and B is a constant

vector, first by direct expansion, then by the formula of the curl of a cross
product.

Solution 2.7.1. Method I

∇ × A =
1
2
∇× (B × r) =

1
2
∇×

∣

∣

∣

∣

∣

∣

i j k
Bx By Bz

x y z

∣

∣

∣

∣

∣

∣

=
1
2
∇× [i (Byz − Bzy) + j (Bzx − Bxz) + k (Bxy − Byx)]

=
1
2

∣

∣

∣

∣

∣

∣

∣

i j k
∂

∂x

∂

∂y

∂

∂z
(Byz − Bzy) (Bzx − Bxz) (Bxy − Byx)

∣

∣

∣

∣

∣

∣

∣

=
1
2

[i2Bx + j2By + k2Bz] = B.

Method II

1
2
∇× (B × r) =

1
2

[(∇ · r)B − (∇ · B)r+ (r · ∇)B − (B · ∇)r]

=
1
2

[(∇ · r)B − (B · ∇)r] (since B is a constant),

(∇ · r)B = 3B (see Example 2.5.1),
(B · ∇)r = B (see Example 2.4.2),

1
2
∇× (B × r) =

1
2
[3B − B] = B.
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Example 2.7.2. Show that ∇×
(

∇2A
)

= ∇2 (∇ × A) .

Solution 2.7.2. Since ∇× (∇ × A) = ∇(∇ · A)−∇2A,

∇2A = ∇(∇ · A) − ∇× (∇ × A) ,

∇×
(

∇2A
)

= ∇× [∇(∇ · A) − ∇× (∇ × A)] .

Since curl gradient is equal to zero, ∇ × ∇(∇ · A) = 0. Using curl curl
formula again, we have

∇×
(

∇2A
)

= −∇ × ∇× (∇ × A) = −
{

∇(∇ · (∇ × A)−∇2(∇ × A)
}

.

Since divergence of a curl is equal to zero, ∇ · (∇ × A) = 0, therefore

∇×
(

∇2A
)

= ∇2(∇ × A).

Example 2.7.3. If

∇ · E = 0, ∇ × E = − ∂

∂t
H,

∇ · H = 0, ∇ × H =
∂

∂t
E,

show that

∇2E =
∂2

∂t2
E; ∇2H =

∂2

∂t2
H.

Solution 2.7.3.

∇× (∇ × E) = ∇×
(

− ∂

∂t
H
)

= − ∂

∂t
(∇ × H) = − ∂

∂t

(

∂

∂t
E
)

= − ∂2

∂t2
E,

∇× (∇ × E) = ∇(∇ · E) −∇2E = −∇2E (since ∇ · E = 0).

Therefore

∇2E =
∂2

∂t2
E.

Similarly,

∇× (∇ × H) = ∇×
(

∂

∂t
E
)

=
∂

∂t
(∇ × E) =

∂

∂t

(

− ∂

∂t
H
)

= − ∂2

∂t2
H,

∇× (∇ × H) = ∇(∇ · H) −∇2H = −∇2H (since ∇ · H = 0).

It follows that

∇2H =
∂2

∂t2
H.
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2.8 Further Integral Theorems

There are many other integral identities that are useful in physical applica-
tions. They can be derived in a variety of ways. Here we discuss some of the
most useful ones and show that they all follow from the fundamental theorems
of gradient, divergence, and curl.

2.8.1 Green’s Theorem

The following integral identities are all named after George Green (1793–
1841). To distinguish them, we adopt the following terminology.

Green’s Lemma:
∮

C

[f(x, y) dx + g(x, y) dy] =
∫∫

S

(

∂g

∂x
− ∂f

∂y

)

dx dy, (2.116)

Green’s Theorem:
∫∫

©
S

ϕ∇ψ · nda =
∫∫∫

V

(∇ϕ · ∇ψ + ϕ∇2ψ) dV, (2.117)

Symmetrical form of Green’s Theorem:
∫∫

©
S

(ϕ∇ψ − ψ∇ϕ) · n da =
∫∫∫

V

(ϕ∇2ψ − ψ∇2ϕ) dV. (2.118)

To prove Green’s Lemma, we start with Stokes’ theorem
∮

C

A·dr =
∫

S

(∇ × A) · n da.

With the curve C lying entirely on the xy plane,

A·dr = (iAx + jAy + kAz) · (i dx + j dy) = Axdx + Aydy,

and n is equal to k, the unit vector in the z direction,

(∇ × A) · n da =

∣

∣

∣

∣

∣

∣

∣

i j k
∂

∂x

∂

∂y

∂

∂z
Ax Ay Az

∣

∣

∣

∣

∣

∣

∣

· kdx dy =
(

∂Ay

∂x
− ∂Ax

∂y

)

dx dy.

Thus we have
∮

C

(Axdx + Aydy) =
∫∫

S

(

∂Ay

∂x
− ∂Ax

∂y

)

dx dy.
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Since A in Stokes’ theorem can be any vector function, Green’s Lemma follows
with Ax = f(x, y), and Ay = g(x, y).

To prove Green’s theorem, we start with the divergence theorem
∫∫∫

V

∇ · (ϕ∇ψ)dV =
∫∫

©
S

ϕ∇ψ · n da.

Using the identity

∇ · (ϕ∇ψ) = ∇ϕ · ∇ψ + ϕ∇2ψ,

we have
∫∫∫

V

(∇ϕ · ∇ψ + ϕ∇2ψ)dV =
∫∫

©
S

ϕ∇ψ · n da, (2.119)

which is Green’s theorem (2.117).
Clearly (2.119) is equally valid when ϕ and ψ are interchanged

∫∫∫

V

(∇ψ · ∇ϕ + ψ∇2ϕ)dV =
∫∫

©
S

ψ∇ϕ · n da. (2.120)

Taking the difference of the last two equations, we obtain the symmetric form
of the Green’s theorem

∫∫∫

V

(ϕ∇2ψ − ψ∇2ϕ) dV =
∫∫

©
S

(ϕ∇ψ − ψ∇ϕ) · n da.

2.8.2 Other Related Integrals

The divergence theorem can take some other alternative forms. Let ϕ be a
scalar function and C be an arbitrary constant vector. Then,

∫∫∫

V

∇ · (ϕC)dV =
∫∫

©
S

ϕC · n da,

∇ · (ϕC) = ∇ϕ·C+ ϕ∇ · C = ∇ϕ · C,

since C is constant and ∇ · C =0.
∫∫∫

V

∇ · (ϕC)dV =
∫∫∫

V

∇ϕ · C dV = C·
∫∫∫

V

∇ϕ dV.

∫∫

©
S

ϕC · n da = C ·
∫∫

©
S

ϕn da.

Therefore the divergence theorem can be written as

C ·
[∫∫∫

V

∇ϕ dV −
∫∫

©
S

ϕn da

]

= 0.
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Since C is arbitrary, the terms in the brackets must be zero. Thus we have
another interesting relation between volume integral and surface integral

∫∫∫

V

∇ϕ dV =
∫∫

©
S

ϕn da. (2.121)

Similarly, let A be a vector function and C, an arbitrary constant vector.
A × C is another vector function. The divergence theorem can be written as

∫∫∫

V

∇ · (A × C)dV =
∫∫

©
S

(A × C) · n da.

Since

∇· (A × C) = (∇ × A) · C− (∇ × C) · A = (∇ × A) · C,

(A×C) · n = − (C × A) · n = −C · A × n,

therefore
∫∫∫

V

∇ · (A × C)dV = C ·
∫∫∫

V

∇ × A dV,

∫∫

©
S

(A × C) · n da = −C ·
∫∫

©
S

A × n da.

Thus we have another form of the divergence theorem
∫∫∫

V

∇ × A dV = −
∫∫

©
S

A × n da. (2.122)

This exploitation of the arbitrary nature of a part of a problem is a very
useful technique. In the following examples some alternative forms of Stokes’
theorem will be derived using this technique.

Example 2.8.1. Show that
∮

C

ϕ dr = −
∫∫

S

∇ϕ×nda.

Solution 2.8.1. Let C be an arbitrary constant vector. By Stokes’ theorem
we have

∮

C

ϕC · dr =
∫∫

S

∇× (ϕC) · nda.

Since C is a constant and ∇ × C = 0,

∇ × ϕC = ∇ϕ×C+ ϕ∇ × C = ∇ϕ×C,

∫∫

S

∇× (ϕC) · n da =
∫∫

S

∇ϕ×C · n da.
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Furthermore,

∇ϕ×C · n = −C × ∇ϕ·n = −C· (∇ϕ×n) .

Therefore
∫∫

S

∇× (ϕC) · n da = −C ·
∫∫

S

∇ϕ × n da.

With
∮

C

ϕC · dr = C ·
∮

C

ϕ dr,

we can write Stokes’ theorem as

C ·
∮

C

ϕ dr = − C ·
∫

S

∇ϕ×n da.

Again since C is an arbitrary constant vector, it follows that
∮

C

ϕ dr = −
∫∫

S

∇ϕ×n da. (2.123)

Example 2.8.2. Show that
∮

C

r× dr =2
∫

S

n da where r is the position vector

from an origin that can be chosen at any point in space.

Solution 2.8.2. To prove this, we use an arbitrary constant vector C and
start with Stokes’ theorem,

∮

C

(C × r) · dr =
∫∫

S

∇ × (C × r) · n da.

Since
∮

C

(C × r) · dr =
∮

C

C · r × dr = C·
∮

C

r × dr,

and

∇× ( C × r) = 2C (see example 2.7.1),

∫∫

S

∇ × (C × r) · n da =
∫∫

S

2C · n da = 2C ·
∫∫

S

n da,

it follows
C ·

∮

C

r× dr = C · 2
∫∫

S

n da.

Since C is an arbitrary constant vector, the integral identity
∮

C

r× dr = 2
∫∫

S

n da (2.124)
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must hold. This integral identity is of some importance in electrodynamics.
This integral also shows that the area A of a flat surface S enclosed by a curve
C is given by

A =
∫∫

S

da =
1
2

∣

∣

∣

∣

∮

C

r× dr
∣

∣

∣

∣

. (2.125)

2.9 Classification of Vector Fields

2.9.1 Irrotational Field and Scalar Potential

If ∇ × F = 0 in a simply connected region, we say F is an irrotational vector
field. An irrotational field is also known as a conservative vector field. We have
seen that if ∇ × F = 0, the line integral

∫ B

A
F ·dr is independent of path. This

means, as shown in Sect. 2.4.3, that F can be expressed as the gradient of a
scalar function ϕ, known as the scalar potential.

Because of Stokes’ theorem
∮

C

F · dr =
∫∫

S

∇ × F · n da,

an irrotational field F is characterized by any of the following equivalent
conditions:

(a) ∇ × F = 0,

(b)
∮

F · dr = 0 for any closed loop,

(c)
∫ B

A
F · dr is independent of path,

(d) F = − ∇ϕ .

The sign in (d) is arbitrary, since ϕ is yet to be specified. In hydrodynamics,
often a plus sign (+) is chosen for the velocity potential. Here we have followed
the convention in choosing a minus sign (−) for the convenience of establishing
the principle of conservation of energy.

Conservative Force Field. To see why an irrotational field is also called a
conservative vector field, consider F (x, y, z) as the force in Newton’s equation
of motion

F(x, y, z) = ma = m
dv
dt

. (2.126)

Since F is irrotational, so

F(x, y, z)= − ∇ϕ(x, y, z). (2.127)
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Therefore
m

dv
dt

= −∇ϕ. (2.128)

Take dot product of both sides with dr and integrate. The left-hand side
becomes

∫

m
dv
dt

· dr =
∫

m
dv
dt

· dr
dt

dt =
∫

m
dv
dt

· vdt

=
∫

d
dt

(

1
2
mv · v

)

dt =
∫

d
(

1
2
mv2

)

=
1
2
mv2 + constant. (2.129)

The right-hand side becomes
∫

(−∇ϕ) · dr = −
∫

dϕ = −ϕ + constant. (2.130)

Equating the results of the two sides of (2.128) gives

1
2
mv2 + ϕ = constant. (2.131)

The expression 1
2mv2 is defined as the kinetic energy and ϕ (x, y, z) is the

potential energy in classical mechanics. The sum of the two is the total energy.
The last equation says that no matter where and when the total energy is
evaluated, it must be equal to the same constant. This is the principle of
conservation of energy.

Although we have used classical mechanics to introduce the idea of con-
servative field, the idea can be generalized. Any vector field v (x, y, z) which
can be expressed as the gradient of a scalar field ϕ (x, y, z) is called a conser-
vative field and the scalar function ϕ is called the scalar potential. Since
∇ϕ = ∇ (ϕ + constant), the scalar potential is defined up to an additive
constant.

Example 2.9.1. Determine which of the following is an irrotational (or conser-
vative) field: (a) F1 = 6xyi + (3x2 − 3y2)j, (b) F2 = xyi − yj

Solution 2.9.1.

∇ × F1 =

∣

∣

∣

∣

∣

∣

∣

i j k
∂

∂x

∂

∂y

∂

∂z
6xy 3x2 − 3y2 0

∣

∣

∣

∣

∣

∣

∣

= −i
∂

∂z

(

3x2 − 3y2
)

+ j
∂

∂z
(6xy)

+k
(

∂

∂x

(

3x2 − 3y2
)

− ∂

∂y
(6xy)

)

= k (6x − 6x) = 0.
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∇ × F2 =

∣

∣

∣

∣

∣

∣

∣

i j k
∂

∂x

∂

∂y

∂

∂z
xy y 0

∣

∣

∣

∣

∣

∣

∣

= −i
∂

∂z
y + j

∂

∂z
(xy)

+k
(

∂

∂x
y − ∂

∂y
(xy)

)

= −xk �= 0.

Therefore F1 is an irrotational field and F2 is not an irrotational field. We
have shown explicitly, in the examples of Sect. 2.4.3, that the line integral
∫ B

A
F1 · dr is independent of path and

∫ B

A
F2 · dr is dependent on the path.

Example 2.9.2. Show that the force field F = − (2ax + by) i − bxj − ck is
conservative, and find ϕ such that −∇ϕ = F.

Solution 2.9.2.

∇ × F =

∣

∣

∣

∣

∣

∣

∣

i j k
∂

∂x

∂

∂y

∂

∂z
− (2ax + by) −bx −c

∣

∣

∣

∣

∣

∣

∣

= 0.

Therefore, F is conservative, there must exist a ϕ such that −∇ϕ = F.

−∂ϕ

∂x
= Fx = − (2ax + by) =⇒ ϕ = ax2 + bxy + f (y, z) .

−∂ϕ

∂y
= Fy = −bx, but − ∂ϕ

∂y
= −bx − ∂

∂y
f (y, z)

∂

∂y
f (y, z) = 0 =⇒ f (y, z) = g (z)

−∂ϕ

∂z
= Fz = −c, but − ∂ϕ

∂z
= − ∂

∂z
g(z)

∂

∂z
g(z) = c =⇒ g(z) = cz + k.

ϕ = ax2 + bxy + cz + k.

Example 2.9.3. Suppose a particle of mass m is moving in the force field of the
last example, and at t = 0 the particle passes through the origin with speed
v0. What will the speed of the particle be if and when it passes through the
point r = i + 2j + k?

Solution 2.9.3. The conservation of energy requires

1
2
mv2 + ϕ (r) =

1
2
mv2

0 + ϕ (0) .
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v2 = v2
0 +

2
m

[

k −
(

ax2 + bxy + cz + k
)]

.

At x = 1, y = 2, z = 1:

v2 = v2
0 +

2
m

(a + 2b + c) .

2.9.2 Solenoidal Field and Vector Potential

If the field F is divergence-less (that is ∇ · F = 0) everywhere in a simply con-
nected region, the field is called solenoidal. For a solenoidal field, the surface
integral of F · n da over any closed surface is zero, since by the divergence
theorem

∫∫

©
S

F · n da =
∫∫∫

∇ · F dV = 0.

Furthermore, F can be expressed as the curl of another vector function A,

F = ∇ × A.

The vector function A is known as the vector potential of the field F.
The existence of vector potentials for solenoidal fields can be shown in the

following way. For any given solenoidal field F (that is, Fx(x, y, z), Fy (x, y, z),
and Fz (x, y, z) are known), we shall first show that it is possible to find a
vector function A with one zero component to satisfy F = ∇ × A. Then a
general formula for all possible vector potentials can be found.

Let us take Az = 0, and try to find Ax and Ay in A =Axi + Ayj so that
∇ × A = F:

∇ × A =

∣

∣

∣

∣

∣

∣

∣

i j k
∂

∂x

∂

∂y

∂

∂z
Ax Ay 0

∣

∣

∣

∣

∣

∣

∣

= −i
∂

∂z
Ay + j

∂

∂z
Ax + k

(

∂

∂x
Ay − ∂

∂y
Ax

)

= iFx + jFy + kFz.

For this to hold, we must have

∂

∂z
Ay = −Fx,

∂

∂z
Ax = Fy,

∂

∂x
Ay − ∂

∂y
Ax = Fz. (2.132)

From the first two equations we have

Ay = −
∫

Fx(x, y, z)dz + f(x, y), (2.133)

Ax =
∫

Fy(x, y, z)dz + g(x, y). (2.134)
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With Ay and Ax so obtained, if we can show ∂
∂xAy − ∂

∂y Ax = Fz, then we
would have proved that ∇ × A = F.

Using (2.133) and (2.134), we have

∂

∂x
Ay − ∂

∂y
Ax = −

∫ (

∂

∂x
Fx +

∂

∂y
Fy

)

dz + h(x, y).

Since F is solenoidal, ∇ · F = 0 which can be written as

∂

∂x
Fx +

∂

∂y
Fy = − ∂

∂z
Fz.

Thus,
∂

∂x
Ay − ∂

∂y
Ax =

∫

∂

∂z
Fz dz + h(x, y).

With proper choice of h(x, y), we can certainly make
∫

∂

∂z
Fz dz + h(x, y) = Fz.

This proof clearly indicates that A is not unique. If A′ is another vector
potential, then both ∇ × A and ∇ × A′ are equal to F. Therefore ∇ × (A′−
A) = 0. Since (A′ − A) is irrotational, it follows that A′ − A = ∇ψ. Thus
we conclude that with one A obtained from the above procedure, all other
vector potentials are of the form A + ∇ψ where ψ is any scalar function.

It is also possible for us to require the vector potential to be solenoidal. If
we find a vector potential A which is not solenoidal (that is, ∇ × A = F and
∇ · A �= 0), we can construct another vector potential A′ which is solenoidal
(∇ · A′ = 0). Let

A′ = A + ∇ψ,

∇ × A′ = ∇ × A + ∇ × ∇ψ = ∇ × A,

∇ · A′ = ∇ · A+∇2ψ.

If we choose ψ such that ∇2ψ + ∇ · A =0, then we will have ∇ · A′ = 0. The
following example will make this clear.

Example 2.9.4. Show that F =x2i + 3xz2j − 2xzk is solenoidal, and find a
vector potential A such that ∇ × A = F and ∇ · A = 0.

Solution 2.9.4. Since

∇ · F =
∂

∂x
x2 +

∂

∂y

(

3xz2
)

+
∂

∂z
(−2xz) = 0,

this shows that F is solenoidal. Let A1 =Axi + Ayj and ∇ × A1 = F . By
(2.132)
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∂

∂z
Ay = −Fx = −x2, =⇒ Ay = −x2z + f(x, y),

∂

∂z
Ax = Fy = 3xz2, =⇒ Ax = xz3 + g(x, y),

∂

∂x
Ay − ∂

∂y
Ax = Fz = −2xz, =⇒ −2xy +

∂f

∂x
+

∂g

∂y
= −2xy.

Since f and g are arbitrary, the simplest choice is to make f = g = 0. Thus,
A1 =xz3i + −x2zj, but ∇ · A1 = z3 �= 0. Let

A = A1 +∇ψ, ∇ · A = ∇ · A1 + ∇2ψ = z3 +∇2ψ.

If ∇ · A = 0, then ∇2ψ = −z3. A simple solution of this equation is

ψ = − 1
20

z5.

Since

∇ψ = ∇
(

− 1
20

z5

)

= −1
4
z4k,

A = A1 + ∇ψ = xz3i − x2zj − 1
4
z4k.

It can be readily verified that

∇ · A =
∂

∂x

(

xz3
)

+
∂

∂y

(

−x2z
)

+
∂

∂z
(−1

4
z4) = 0,

∇ × A =

∣

∣

∣

∣

∣

∣

∣

i j k
∂

∂x

∂

∂y

∂

∂z
xz3 −x2z − 1

4z4

∣

∣

∣

∣

∣

∣

∣

= x2i + 3xz2j − 2xzk = F.

This vector potential is still not unique. For example, we can assume A2 = Ayj+
Azk and ∇ × A2 = F. Following the same procedure, we obtain

A2 = − x2zj − 3
2
x2z2k.

Now, ∇ · A2 = −3x2z �= 0. We can find A′ such that A′ = A2 + ∇ψ and
∇ · A′ = 0. It follows that ∇2ψ = −∇ · A2 = 3x2z. A simple solution is
ψ = 1

4x4z. Therefore ∇ψ = x3zi + 1
4x4k, and

A′= A2 + ∇ψ = x3zi − x2zj +
(

1
4
x4 − 3

2
x2z2

)

k.

Again, it can be readily verified that ∇ × A′ = F and ∇ · A′ = 0.
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Clearly, A and A′ are not identical. They must differ by an additive
gradient

A′= A + ∇χ. (2.135)

Now ∇ · A′ = ∇ · A + ∇2χ and ∇ · A′ = ∇ · A = 0. Therefore

∇2χ = 0. (2.136)

In this particular case,

∇χ = A′ − A =
(

x3z − xz3
)

i +
(

1
4
x4 − 3

2
x2z2 +

1
4
z4

)

k,

χ =
1
4
x4z − 1

2
x2z3 +

1
20

z5,

∇2χ =
(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)(

1
4
x4z − 1

2
x2z3 +

1
20

z5

)

= 0.

Equation (2.135) is an example of what is known as a gauge transfor-
mation. The requirement (2.136) leads to the so-called Coulomb gauge. The
vector potential is not as useful as the scalar potential in computation. It
is in the conceptual development of time-dependent problems, especially in
electrodynamics, that the vector potential is essential.

2.10 Theory of Vector Fields

2.10.1 Functions of Relative Coordinates

Very often we deal with functions that depend only on the difference of the
coordinates. For example, the electric field at the point (x, y, z) due to the
a point charge at (x′, y′, z′) is a function solely of (x − x′) , (y − y′) , (z − z′).
The point (x, y, z) is called the field point and the point (x′, y′, z′) is called
source point. The relative position vector R shown in Fig. 2.18 can be written
as

R = r − r′ = (x − x′) i + (y − y′) j + (z − z′)k. (2.137)

The distance between these two points is

R = |r − r′| = [(x − x′)2 + (y − y′)2 + (z − z′)2]1/2. (2.138)

Let f (R) be a function of the relative position vector. This function could
be a scalar or a component of a vector. Functions of this type have some
important properties. Let us define X = (x − x′) , Y = (y − y′) , Z = (z− z′).
Using the chain rule of differentiation, we find

∂f

∂x
=

∂f

∂X

∂X

∂x
=

∂f

∂X
;

∂f

∂x′ =
∂f

∂X

∂X

∂x′ = − ∂f

∂X
.
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x

y

z

r

R

r9

(x, y, z)

(x 9, y 9, z 9)

Fig. 2.18. Relative coordinates R = r − r′

Similar expressions can be found for the y and z derivatives. It follows

∂f

∂x
= − ∂f

∂x′ ,
∂f

∂y
= − ∂f

∂y′ ,
∂f

∂z
= − ∂f

∂z′
. (2.139)

Corresponding to the gradient ∇ with respect to the field point

∇f = i
∂f

∂x
+ j

∂f

∂y
+ k

∂f

∂z
,

we define the gradient ∇′ with respect to the source point

∇′f = i
∂f

∂x′ + j
∂f

∂y′ + k
∂f

∂z′
.

It follows from (2.139) that

∇f = −∇′f. (2.140)

This shows that when we deal with functions of the relative coordinates the
∇ and ∇′ operator can be interchanged provided the sign is also changed.
Similar calculations can be used to show

∇ · A(R) = −∇′ · A (R), (2.141)

∇ × A(R) = −∇′ × A (R), (2.142)

and
∇2f(R) = ∇′2f(R). (2.143)
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Example 2.10.1. Show that (a) ∇ · R = 3, (b) ∇ × R = 0,(c) ∇×f(R)

R = 0, and (d) ∇ · f(R)R =
d(R)
dR

R + 3f (R).

Solution 2.10.1.

∇ · R =
∂

∂x
(x − x′) +

∂

∂y
(y − y′) +

∂

∂z
(z − z′) = 3,

∇ × R =

∣

∣

∣

∣

∣

∣

∣

i j k
∂

∂x

∂

∂y

∂

∂z
(x − x′) (y − y′) (z − z′)

∣

∣

∣

∣

∣

∣

∣

= 0,

∇×f(R)R = ∇f(R) × R+ f(R)∇ × R

=
df (R)

dR
̂R × R = 0,

∇ · f(R)R = ∇f(R) · R+ f(R)∇ · R

=
df (R)

dR
̂R · R+ 3f(R) =

df(R)
dR

R + 3f (R) .

For functions that depend only on the distance between the two points,
the gradient takes a simple form:

∇f(R) = i
∂f(R)

∂x
+ j

∂f(R)
∂y

+ k
∂f(R)

∂z
.

By the chain rule
∂f(R)

∂x
=

df (R)
dR

∂R

∂x
,

∂R

∂x
=

∂

∂x

√

(x − x′)2 + (y − y′)2 + (z − z′)2 =
x − x′

R
.

With similar expressions for y and z derivatives, we have

∇f(R) =
df (R)

dR

(

i
x − x′

R
+ j

y − y′

R
+ k

z − z′

R

)

=
df (R)

dR

R
R

=
df (R)

dR
̂R, (2.144)
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where ̂R is the unit vector in the direction of R. In particular

∇R = ̂R, (2.145)

∇Rn = nRn−1
̂R. (2.146)

For n = −1
∇ 1

R
= − 1

R2
̂R. (2.147)

This last expression is an especially important case because −̂R/R2 is the
“radial inverse-square-law” field. This vector field (with appropriate multi-
plicative constants) describes two of the most important fundamental forces
in nature, namely the gravitational force field and the Coulomb force field
of a static electric charge. The divergence of this field requires our special
attention.

2.10.2 Divergence of ̂R/ |R|2 as a Delta Function

The divergence of ̂R/R2 has some peculiar and important properties. Calculated
directly

∇ ·
̂R
R2

= ∇ · 1
R3

R =
(

∇ 1
R3

)

· R+
1

R3
∇ · R

= −3
1

R4
̂R · R+ 3

1
R3

= 0,

we get zero. On the other hand, as we discussed earlier, the divergence is a
measure of the strength of the source of the vector field. If it were zero every-
where, how could there be any gravitational and electric fields? Furthermore,
if we apply the divergence theorem (2.72) to this function over a sphere of
radius R around the point (x′, y′, z′), we will get a nonzero result,

∫∫∫

V

∇ ·
̂R
R2

dV =
∫∫

©
S

̂R
R2

· n da =
1

R2

∫∫

©
S

̂R · ̂R da

=
1

R2

∫∫

©
S

da =
1

R2
4πR2 = 4π. (2.148)

In the integral, we have used the facts that on the surface of a sphere, the
unit normal n is equal to ̂R and R is a constant. This integral would be zero
if ∇ · (̂R/R2) were equal to zero everywhere.

The source of the problem is at the point R = 0 where ̂R/R2 blows up and
the derivative in the usual sense does not exist. Thus we can only say that the
divergence is zero everywhere except at R = 0. To find out the divergence at
R = 0, we note that the volume integral (2.148) of the divergence over a sphere
is equal to 4π no matter how small R is. Evidently the entire contribution must
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be coming from the point R = 0. A useful way to describe this behavior is
through the Dirac delta function δ3(r − r′).

A more detailed description of the delta function is given a later chapter.
Here it suffices to know that the delta function δ3(r − r′) is a sharply peaked
function at r = r′ with the properties

δ3(r − r′) =
{

0 r �= r′

∞ r = r′ (2.149)

and
∫∫∫

all space

δ3(r − r′)d3r =1, (2.150)

where d3r is a commonly used symbol for the volume element around the field
point d3r = dV = dx dy dz. It follows that the delta function is characterized
by the shifting property

∫∫∫

all space

f (r) δ3(r − r′)d3r =f (r′), (2.151)

because
∫∫∫

all space

f (r) δ3(r − r′)d3r =
∫∫∫

all space

f (r′) δ3(r − r′)d3r,

since the value of f (r) is immaterial for r �= r′ as the integrand is going to be
zero anyway. Furthermore,
∫∫∫

all space

f (r′) δ3(r − r′)d3r =f (r′)
∫∫∫

all space

δ3(r − r′)d3r =f (r′) ,

since the integration is over d3r. This property can also be written as
∫∫∫

all space

f (r′) δ3(r − r′)d3r′ = f (r) , (2.152)

where d3r′ = dx′ dy′ dz′.
With the delta function, the divergence of ̂R/R2 can be precisely expressed

as

∇ ·
̂R
R2

= ∇ · r − r′

|r − r′|3
= 4πδ3(r − r′). (2.153)

With this understanding, we see that

∫∫∫

V

∇ ·
̂R
R2

dV =
∫∫∫

V

∇ · r − r′

|r − r′|3
d3r = 4π

∫∫∫

V

δ3(r − r′)d3r

=
{

4π if the volume includes r′

0 if r′ is outside the body. (2.154)
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Since

∇ 1
R

= −
̂R
R2

,

it follows that the Laplacian of
(

1
R

)

is given by

∇2 1
R

= ∇ · ∇ 1
R

= −∇ ·
̂R
R2

= −4πδ3(r − r′). (2.155)

Example 2.10.2. Evaluate the integral

I =
∫∫∫

V

(r3 + 1)∇ · r̂
r2

dV,

where V is a sphere of radius b centered at the origin.

Solution 2.10.2. Method I. Use the delta function. Since

∇ · r̂
r2

= 4πδ3(r),

I =
∫∫∫

V

(r3 + 1)4πδ3(r)dV = 4π (0 + 1) = 4π.

Method II. Use integration by parts. Since f∇ · A = ∇· (fA) − ∇f · A,

I =
∫∫∫

V

(r3+1)∇ · r̂
r2

dV =
∫∫∫

V

∇ ·
[

(r3 + 1)
r̂
r2

]

dV−
∫∫∫

V

∇(r3+1) · r̂
r2

dV.

By the divergence theorem
∫∫∫

V

∇ ·
[

(r3 + 1)
r̂
r2

]

dV =
∫∫

©
S

(r3 + 1)
r̂
r2

· r̂ da =
∫∫

©
S

(r +
1
r2

)da,

where S is the surface of the sphere of radius b. Since on this surface r = b
everywhere, therefore
∫∫∫

V

∇ ·
[

(r3 + 1)
r̂
r2

]

dV =
(

b +
1
b2

)∫∫

©
S

da =
(

b +
1
b2

)

4πb2 = 4πb3 +4π.

Since ∇(r3 + 1) = 3r2r̂,
∫∫∫

V

∇(r3 + 1) · r̂
r2

dV =
∫∫∫

V

3r2r̂ · r̂
r2

dV = 3
∫∫∫

V

dV = 3
4
3
πb3 = 4πb3.

Thus we have
I = 4πb3 + 4π − 4πb3 = 4π,

which is the same as the result of delta function method. This example illus-
trates the validity and power of the delta function method. If the volume is
not a sphere, as long as it includes the origin, the delta function result is still
valid, but the direct integration will be much more difficult to do.
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2.10.3 Helmholtz’s Theorem

The Helmholtz theorem deals with the question of what information we need
to determine a vector field. Basically, the answer is that if the divergence and
the curl of a vector field are known, with some boundary conditions the vector
field can be found uniquely.

The Helmholtz theorem states that any vector field F may be decomposed
into the sum of two vectors, one is the gradient of a scalar potential ϕ and
the other the curl of a vector potential A,

F = − ∇ϕ + ∇ × A. (2.156)

Furthermore, if F → 0 on the surface at infinity faster than 1/R and ∇ · F
and ∇ × F are known everywhere, then

ϕ(r) =
1
4π

∫∫∫ ∇′ · F(r′)
|r − r′| d3r′, (2.157)

A(r) =
1
4π

∫∫∫ ∇′ × F(r′)
|r − r′| d3r′. (2.158)

To prove this theorem, we first construct a vector function G

G(r) =
∫∫∫

F(r′)
|r − r′|d

3r′. (2.159)

Let us apply the Laplacian ∇2 to both sides of this equation. Because ∇2

operates only on r and only |r − r′|−1 contains r, we have

∇2G(r) =
∫∫∫ (

∇2 1
|r − r′|

)

F(r′)d3r′. (2.160)

Since by (2.155)

∇2 1
|r − r′| = −4πδ3(r − r′),

it follows from the definition of the delta function that

∇2G(r) =
∫∫∫

(

−4πδ3(r − r′)
)

F(r′)d3r′ = −4πF(r). (2.161)

Therefore
F(r) = − 1

4π
∇2G(r). (2.162)

Using the vector identity ∇ × (∇ × G) = ∇ (∇ · G) −∇2G, we have

∇2G = ∇ (∇ · G) − ∇ × (∇ × G).
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Thus with
ϕ =

1
4π

(∇ · G), A =
1
4π

(∇ × G),

the first part of the theorem follows from (2.162)

F(r) = − 1
4π

∇2G(r) = −∇ϕ + ∇ × A.

To find the explicit expression for ϕ, we start with

ϕ (r) =
1
4π

(∇ · G) =
1
4π

∇ ·
∫∫∫

F(r′)
|r − r′|d

3r′.

Since ∇ operates only on r, and only |r − r′| contains r,

∇ ·
∫∫∫

F(r′)
|r − r′|d

3r′ =
∫∫∫

∇ · F(r′)
|r − r′|d

3r′ =
∫∫∫ (

∇ 1
|r − r′|

)

·F(r′)d3r′.

Now
∇ 1

|r − r′| = −∇′ 1
|r − r′|

and
(

∇′ 1
|r − r′|

)

·F(r′) = ∇′ · F(r′)
|r − r′| −

1
|r − r′|∇

′ ·F(r′),

so

ϕ (r) = − 1
4π

∫∫∫

∇′ · F(r′)
|r − r′|d

3r′ +
1
4π

∫∫∫

1
|r − r′|∇

′ ·F(r′)d3r′. (2.163)

The first integral on the right-hand side can be changed to a surface integral
at infinity by the divergence theorem

∫∫∫

all space

∇′ · F(r′)
|r − r′|d

3r′ =
∫∫

S→∞

1
|r − r′|F(r′) · n da′.

As r′ → ∞, F(r′) goes to zero faster than 1/r′. Hence the surface integral is
equal to zero. This follows from the fact that the surface is only proportional
to r′2, and F(r′)/ |r − r′| goes to zero faster than 1/r′2. Thus only the second
integral on the right-hand side of (2.163) remains

ϕ (r) =
1
4π

∫∫∫

1
|r − r′|∇

′ ·F(r′)d3r′.

Similarly, for the vector potential we start with

A (r) =
1
4π

(∇ × G) =
1
4π

∫∫∫

∇× 1
|r − r′|F(r′)d3r′

=
1
4π

∫∫∫

∇ 1
|r − r′| × F(r′)d3r′.
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Using the identities

∇ 1
|r − r′| × F(r′) = −∇′ 1

|r − r′| × F(r′),

∇′ 1
|r − r′| × F(r′) = ∇′× 1

|r − r′|F(r′) − 1
|r − r′|∇

′ × F(r′),

we have

A (r) = − 1
4π

∫∫∫

∇′ × 1
|r − r′|F(r′)d3r′ +

1
4π

∫∫∫

1
|r − r′|∇

′ ×F(r′)d3r′.

(2.164)
By the integral theorem (2.122)

∫∫∫

V

∇ × Pd3r′ = −
∫∫

S

P × n da,

the first integral on the right-hand side of (2.164) can be transformed into a
surface integral

− 1
4π

∫∫∫

all space

∇′ × 1
|r − r′|F(r′)d3r′ =

1
4π

∫∫

S→∞

1
|r − r′|F(r′) × n da′,

which is zero because F(r′) → 0 on the surface at infinity faster than 1/r′.
Thus (2.164) becomes

A (r) =
1
4π

∫∫∫

1
|r − r′|∇

′ ×F(r′)d3r′. (2.165)

This completes the proof. The divergence and curl of F are often called
the sources of the field, since F can be found from the knowledge of them.
The point r where we evaluate F is called the field point. The point r′ where
the sources are evaluated for the purpose of integration is called the source
point. The volume element d3r′ is at the source point. The function ϕ and
A are called scalar and vector potentials, respectively, because F is obtained
from them by differentiation.

It should be noted that while the field F(r) so determined is unique,
the potentials ϕ and A are not. Any constant can be added to ϕ, since
∇ (ϕ + C) = ∇ϕ. The gradient of any scalar function can be added to A,
since ∇× (A + ∇ψ) = ∇ × A.

Example 2.10.3. If A (r) =
1
4π

∫∫∫

1
|r − r′|∇

′ ×F(r′)d3r′ and F(r′) goes to

zero on the surface at infinity faster than 1/r′, show that ∇ · A (r) = 0.
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Solution 2.10.3. Since ∇ operates only on r,

∇ · A (r) =
1
4π

∫∫∫

∇ · 1
|r − r′|∇

′ ×F(r′)d3r′

=
1
4π

∫∫∫

∇ 1
|r − r′| · ∇

′ ×F(r′)d3r′.

Now
∇ 1

|r − r′| · ∇
′ ×F(r′) = −∇′ 1

|r − r′| · ∇
′ ×F(r′)

and

∇′ ·
[

1
|r − r′|∇

′ ×F(r′)
]

= ∇′ 1
|r − r′| · ∇

′ ×F(r′) +
1

|r − r′|∇
′ · ∇′ ×F(r′)

= ∇′ 1
|r − r′| · ∇

′ ×F(r′),

because the divergence of a curl is equal to zero. Therefore we have

∇ · A (r) = − 1
4π

∫∫∫ [

∇′ · 1
|r − r′|∇

′ ×F(r′)
]

d3r′

= − 1
4π

∫∫

©
S

1
|r − r′|∇

′ ×F(r′) · n da.

As S → ∞, ∇ · A (r) = 0.

2.10.4 Poisson’s and Laplace’s Equations

The Helmholtz’s theorem shows that the vector field is uniquely determined
by its divergence and curl. To derive the expressions for the divergence and
curl from experimental observations is therefore of great importance.

One of the most important vector fields is the radial inverse square law
field, which is the mathematical statement of the gravitational law and the
Coulomb’s law, the two fundamental laws in nature. For example, together
with the principle of superposition, the electric field E(r) produced by static
charges can be written as

E(r) =
1
4π

∫∫∫

�(r′)
̂R
R2

d3r′ =
1
4π

∫∫∫

�(r′)
r − r′

(r − r′)3
d3r′, (2.166)

where �(r′) is the charge density (electric charge per unit volume) in the
neighborhood of r′. The constant 1/4π is a matter of units and need not
concern us here. The divergence of E(r) is
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∇ · E(r) =
1
4π

∫∫∫

�(r′)

(

∇ ·
̂R
R2

)

d3r′,

since ∇ operates only on r. But,

∇ ·
̂R
R2

= 4πδ3(r − r′)

as shown in (2.153). Thus,

∇ · E(r) =
1
4π

∫∫∫

�(r′)4πδ3(r − r′)d3r′ = � (r) . (2.167)

The fact that we can relate the divergence of E at r to the charge density
at same point r is remarkable. Coulomb’s law of (2.166) is the experimental
result, which says that the electric field E at r is due to all other charges at
different places r′. Yet through vector analysis, we find ∇ · E at r is equal to
the charge density � (r) at the same place where E is to be evalued. This type
of equation is called field equation which describes the property of the field at
each point in space.

Since curl of (̂R/R2) is equal to zero, E can be expressed as the gradient
of scalar potential E = − ∇ϕ. Thus,

∇ · E = − ∇ · ∇ϕ =�.

Therefore,
∇2ϕ = −�. (2.168)

This result is known as Poisson’s equation which specifies the relationship
between the source density and the scalar potential for an irrotational field.

In that part of the space where there is no charge (� = 0), the equation
reduces to

∇2ϕ = 0, (2.169)

which is known as Laplace’s equation.
The equations of Poisson and Laplace are two of the most important equa-

tions in mathematical physics. They are encountered repeatedly in a variety
of problems.

2.10.5 Uniqueness Theorem

In the following chapters, we shall describe various methods of solving
Laplace’s equation. It does not matter which method we use, as long as we
can find a scalar function ϕ that satisfies the equation and the boundary con-
ditions, the vector field derived from it is uniquely determined. This is known
as uniqueness theorem.

Let the region of interests be surrounded by surface S, (if the boundary
consists of many surfaces including the surface at infinity, then S represents
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all of them). There are two kinds of boundary conditions (1) the values of
ϕ are specified on S, known as Dirichlet boundary condition and (2) the
normal derivatives ∂ϕ/∂n over S are specified, known as Neumann boundary
condition. The theorem says:

Two solutions ϕ1 and ϕ2of the Laplace equation which satisfy the first
kind of boundary conditions must be idential. Two solutions ϕ1 and
ϕ2 of the Laplace equation which satisfy the second kind of boundary
conditions can differ at most by an additive constant.

To prove this theorem, we define a new function Φ = ϕ1 − ϕ2. Obviously,
∇2Φ = ∇2ϕ1 −∇2ϕ2 = 0. Furthermore, either Φ or ∂Φ/∂n = ∇Φ ·n vanishes
on S. Applying the divergence theorem to Φ∇Φ, we have

∫∫∫

∇ · (Φ∇Φ) dV =
∫∫

S

Φ∇Φ · n da = 0,

since the integral on the right-hand side vanishes. But

∇ · (Φ∇Φ) = ∇Φ · ∇Φ + Φ∇2Φ

and ∇2Φ = 0 at all points, so the divergence theorem in this case becomes
∫∫∫

∇Φ · ∇Φ dV = 0.

Now ∇Φ · ∇Φ = (∇Φ)2 must be positive or zero, and since the integral is
zero, it follows that the only possibility is ∇Φ = 0 everywhere inside the
volume. A function whose gradient is zero at all points cannot change, hence
Φ has the same value that it has on the boundary S. For the first kind of
boundary condition, Φ = 0 on S, and Φ must equal to zero at every point in
the region. Therefore ϕ1 = ϕ2. For the second kind of boundary conditions,
∇Φ equal to zero at all points in the region and ∇Φ · n =0 on S, the only
possible solution is Φ equal to a constant. Thus ϕ1 and ϕ2 can differ at most
by a constant. In either case, the vector field ∇ϕ is uniquely defined.

Exercises

1. Find
dr
dt

,
d2r
dt2

,

∣

∣

∣

∣

dr
dt

∣

∣

∣

∣

,

∣

∣

∣

∣

d2r
dt2

∣

∣

∣

∣

, if r (t) = sin ti + cos tj + tk.

Ans. cos ti − sin tj + k, − sin ti − cos tj,
√

2, 1.

2. Show that A · dA
dt

= A
dA

dt
.



2.10 Theory of Vector Fields 107

3. A particle moves along the curve r (t) = 2t2i +
(

t2 − 4t
)

j + (3t − 5)k,
where t is time. Find its velocity and acceleration at t = 1.
Ans. 4i − 2j + 3k, 4i + 2j.

4. A particle moves along the curve r (t) =
(

t3 − 4t
)

i +
(

t2 + 4t
)

j +
(

8t2 − 3t3
)

k, where t is time. Find the magnitudes of the tangential and
normal components of its acceleration at t = 2.
Ans. 16, 2

√
73.

5. A velocity field is given by v =x2i − 2xyj + 4tk. Determine the acceler-
ation at the point (2, 1,−4) .
Ans. 16i + 8j + 4k.

Hint: a =∂v
∂x

dx
dt + ∂v

∂y
dy
dt + ∂v

∂z
dz
dt + ∂v

∂t

6. A wheel of radius b rolls along the ground with a constant forward speed
v0. Find the acceleration of any point on the rim of the wheel.
Ans. v2

0/b toward the center of the wheel.

Hint: Let the moving origin be at the center of the wheel with x′ axis
passing through the point in question, thus r′ = bi, v′ = 0, a′ = 0. The
angular velocity vector is ω = (v0/b)k′. Then use (2.44)

7. Find the arc length of r (t) = a cos ti + a sin tj + btk from t = 0 to t = 2π.
Ans. s = 2π

√
a2 + b2.

Hint: ds = v dt = (
�
r · �

r)1/2)dt

8. Find the arc length of r (t) = (cos t+ t sin t)i+(sin t− t cos t)j from t = 0
to t = π.
Ans. s = π2/2.

9. Given the space curve r = ti + t2j + 2
3 t3k, find (a) the curvature κ and

(b) the torsion γ.
Ans. 2

(1+2t2)2
, 2

(1+2t2)2
.

10. Show that
��
r=

�
vt+ v2κn.

11. Show that the curvature κ of a space curve r = r (t) is given by

κ =
∣

∣

∣

�
r × ��

r
∣

∣

∣ /
∣

∣

∣

�
r
∣

∣

∣

3

,

where dots denote differentiation with respect to time t.
Hint: first show that

�
r × ��

r = vt× (
�
vt + v2κn)
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12. Show that the torsion γ of a space curve is given numerically by

γ =
∣

∣

∣

�
r · ��

r × ���
r
∣

∣

∣ /
∣

∣

∣

�
r × ��

r
∣

∣

∣

2

.

Hint: first show that
�
r · ��

r × ���
r = −v6κ2γ, then use the result of the

previous problem

13. Find the gradient of the scalar field φ = xyz, and evaluate it at the point
(1, 2, 3), find the derivative of φ in the direction of i + j.
Ans. yzi + xzj + xyk, 6i + 3j + 2k, 9/

√
2.

14. Find the unit normal to each of the following surfaces at the point
indicated: (a) x2 + y2 − z = 0 at (1,1,2), (b) x2 + y2 = 5 at
(2, 1, 0) , and (c) y = x2 + z3 at (1, 2, 1) .
Ans. (2i + 2j − k) /3, (3i + 4j) /5, (−i − j − 3k) /

√
11.

15. The temperature T is given by T = x2 + xy + yz. What is the unit
vector that points in the direction of maximum change of temperature at
(2, 1, 4)? What is the value of the derivative of the temperature in the x
direction at that point?
Ans. (5i + 6j + k) /

√
62, 5.

16. Determine the equation of the plane tangent to the given surface at the
point indicated: (a) x2 + y2 + z2 = 25 (3, 4, 0) , and (b) x2 − 2xy = 0
(2, 2, 1).
Ans. 3x + 4y = 25, y = 2.

17. Find the divergence of each of the following vector fields at the point
(2, 1,−1) . (a) F = x2i + yzj + y2k, (b) F = xi + yj + yk, and (c) F =
r/r = (xi + yj + yk)/

√

x2 + y2 + z2.
Ans. 3, 3,

√
6/3.

18. Verify the divergence theorem by calculating both the volume integral and
the surface integral for the vector field F = yi + xj + (z − x)k and the
volume of the unit cube 0 ≤ x, y, z ≤ 1.

19. By using the divergence theorem, evaluate

(a)
∫∫

©
S

(xi + yj + zk) · n da,

where S is the surface of the sphere x2 + y2 + z2 = 9;

(b)
∫∫

©
S

(

xi + xj + z2k
)

· n da,
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where S is the surface of the cylinder x2 + y2 = 4, 0 ≤ z ≤ 8;

(c)
∫∫

©
S

(

x sin yi + cos2 xj − z sin yk
)

· n da,

where S is the surface of the sphere x2 + y2 + (z − 2)2 = 1.
Ans. 108π, 288π, 0.

20. Show that
∫∫

©
S

r · n da = 3V,

where V is the volume bounded by the closed surface S.

21. Recognizing that i · n da = dy dz; j · n da = dx dz; k · n da = dx dy
(see Example 2.5.2), evaluating the following integral using the divergence
theorem

∫∫

©
S

(x dy dz + y dx dz + z dx dy) ,

where S is the surface of the cylindr x2 + y2 = 9, 0 ≤ z ≤ 3.
Ans. 81π.

Hint: first show that (x dy dz + y dx dz + z dx dy) = (xi+yj+zk) ·n da
(see Example 2.5.2)

22. Evaluating the following integral using the divergence theorem
∫∫

©
S

(

x dy dz + 2y dx dz + y2 dx dy
)

,

where S is the surface of the sphere x2 + y2 + z2 = 4.
Ans. 32π.

23. Use the divergence theorem to evaluate the surface integral
∫∫

S

[(x + y)i + z2j + x2k] · n da,

where S is the surface of the hemisphere x2 + y2 + z2 = 1 with z > 0 and
n is the outward unit normal. Note that the surface is not closed.
Ans. 11

12π.

Hint: the integral is equal to the closed surface integral over the hemisphere
subtract the integral over the base.

24. Find the curl of each of the following vector fields at the point (−2, 4, 1).
(a) F = x2i + y2j + z2k and (b) F = xyi + y2j + xzk.
Ans. 0, −j + 2k.



110 2 Vector Calculus

25. Verify Stokes’ theorem by evaluating both the line and surface integral
for the vector field A = (2x − y) i − y2j + y2zk and the surface S given
by the disc z = 0, x2 + y2 ≤ 1.

26. Ampere’s law states that the total flux of electric current flowing through
a loop is proportional to the line integral of the magnetic field around
the loop, that is

∮

C
B · dr = µ0

∫∫

S
J · n da where B is the magnetic field,

J is the current density and µ0 is a proportional constant. If this is true
for any loop C, show that ∇ × B = µ0J.

27. Show that
∮

C
r · dr = 0 for any closed curve C.

28. Calculate the circulation of the vector F = y2i + xyj + z2k
(∮

F · dr
)

around a triangle with vertices at the origin, (2, 2, 0), and (0, 2, 0) by
(a) direct integration, and (b) using Stokes’ theorem.
Ans. 8/3.

29. Calculate the circulation of F = yi − xj + zk around a unit circle in the
xy plane with center at the origin by (a) direct integration and (b) using
Stokes’ theorem.
Ans. −2π.

30. Evaluate the circulation of the following vector fields around the curves
specified. Use either direct integration or Stokes’ theorem. (a) F = 2zi +
yj + xk around a triangle with vertices at the origin, (1, 0, 0) and (0, 0, 4) .
(b) F = x2i + y2j + z2k around a unit circle in the xy plane with center
at the origin.
Ans. 2, 0.

31. Check the product rule

∇ · (A × B) = (∇ × A) · B− (∇ × B) · A

by calculating each term separately for the functions A = y2i + 2xyj +
z2k, B = sin yi + sinxj + z3k.

32. Check the relation

∇× (∇ × A) = ∇ (∇ · A) −∇2A

by calculating each term separately for the function A = y2i + 2xyj + z2k.

33. Show that ∇× (ϕ∇ϕ) = 0.

34. Show that
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∫∫∫

V

(∇ × A) ·B dV =
∫∫∫

V

(∇ × B) ·A dV +
∫∫

©
S

(A × B) · n da,

where S is the surface bounding the volume V.

35. Show that for any closed surface S
∫∫

©
S

(∇ × B) · n da = 0.

36. For what values, if any, of the constants a and b is the following vector
field irrotational?
F = (y cos x + axz)i + (b sin x + z) j +

(

x2 + y
)

k.
Ans. a = 2, b = 1.

37. (a) Show that F = (2xy + 3)i +
(

x2 − 4z
)

j − 4yk is a conservative field.
(b) Find a scalar potential ϕ such that ∇ϕ = −F. (c) Evaluate the integral
∫ 2,1,−1

3,−1,2
F · dr.

Ans. ∇ × F = 0, ϕ = −x2y − 3x + 4yz, 6.

38. (a) Show that F = y2zi − (z2 sin y − 2xyz)j + (2z cos y + y2x)k is
irrotational.
(b) find a function ϕ such that ∇ϕ = F.
(c) Evaluate the integral

∫

Γ
F·dr where Γ is along the curve x =

sin (πt/2) , y = t2 − t, z = t4, 0 ≤ t ≤ 1.
Ans. ∇ × F = 0, ϕ = z2 cos y + xy2z, 1.

39. If A is irrotational, show that A × r is solenoidal.

40. Vector B is formed by the product of two gradients

B = (∇u) × (∇v) ,

where u and v are scalar functions. (a) Show that B is solenoidal.
(b) Show that

A =
1
2

(u∇v − v∇u)

is a vector potential for B in that B = ∇ × A.

41. Show that if ∇2ϕ = 0 in the volume V , then
∫∫

©
S

∇ϕ · n da = 0,

where S is the surface bounding the volume.
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42. Two fields f and g are related by Poisson’s equation, ∇2f = g. Show that
∫∫∫

V

g dV =
∫∫

©
S

∇f · n da,

where S is the bounding surface of V .

43. Use Stokes’ theorem to show that
∮

C

f∇g · dr = −
∮

C

g∇f · dr

for any closed curve C and differentiable fields f and g.
Hint: first show

∮

C
f∇g · dr =

∫∫

S
∇f × ∇g · n da
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Curved Coordinates

Up to now we have used only Cartesian (rectangular) coordinates with their
constant unit vectors. Frequently, because of the geometry of the problems,
other coordinate systems are much more convenient. There are many coordi-
nate systems, each of them can be regarded as a particular case of the general
curvilinear coordinate system. It would be most efficient if we first develop a
theory of curvilinear coordinates and then introduce each coordinate system
as a special example. However, for pedagogic reasons, we will do that after
we first directly transform the vector expressions of the rectangular coordi-
nates into the corresponding ones in the two most commonly used systems,
namely cylindrical and spherical coordinates. This procedure has the advan-
tage of emphasizing that the physical meaning of gradient, divergence, curl,
and Laplacian operations remain the same in different coordinate systems.
Their appearances are different only because they are expressed with different
notations. Furthermore, expressions in cylindrical and spherical coordinates
will serve as familiar examples to clarify the terms in the general curvilinear
system. As a further example, the elliptical coordinate system is discussed in
some detail because of its importance in dealing with two center problems.
Within the framework of curvilinear coordinates, we introduce the Jacobian
determinant for multiple integrals in Sect. 3.5.

3.1 Cylindrical Coordinates

The cylindrical coordinate system is formally known as the circular cylindrical
or cylindrical polar coordinate system. In this system, the position of a point
is specified by (ρ, ϕ, z) as shown in Fig. 3.1a: ρ is the perpendicular distance
from the z-axis, ϕ is the angle between the x-axis and the projection of ρ on the
xy-plane, and z is the same as in the rectangular coordinates. The three unit
vectors, eρ, eϕ, ez, point in the direction of increase of the corresponding
coordinates. The relation to Cartesian coordinates can be easily seen from
Fig. 3.1b where we have moved eρ, eϕ to the origin:
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Fig. 3.1. Cylindrical coordinates. (a) A point is specified by (ρ, ϕ, z) , the unit
vectors eρ, eϕ, ez are pointing in the direction of increase of the corresponding
coordinates, (b) eρ, eϕ are moved to the origin to find the relationships with i, j
of the rectangular coordinate system

x = ρ cos ϕ, y = ρ sinϕ, ρ = (x2 + y2)1/2, ϕ = tan−1 y

x
. (3.1)

eρ = cos ϕi+ sinϕj =
x

(x2 + y2)1/2
i +

y

(x2 + y2)1/2
j, (3.2)

eϕ = − sin ϕi+ cos ϕj =
−y

(x2 + y2)1/2
i +

x

(x2 + y2)1/2
j. (3.3)

i = cos ϕeρ − sinϕeϕ, (3.4)
j = sinϕeρ + cos ϕeϕ. (3.5)

It follows

∂x

∂ρ
= cos ϕ,

∂x

∂ϕ
= −ρ sin ϕ,

∂y

∂ρ
= sinϕ,

∂y

∂ϕ
= ρ cos ϕ, (3.6)

∂ρ

∂x
=

∂

∂x
(x2 + y2)1/2 =

x

(x2 + y2)1/2
=

ρ cos ϕ

ρ
= cos ϕ, (3.7)

∂ρ

∂y
=

∂

∂y
(x2 + y2)1/2 =

y

(x2 + y2)1/2
=

ρ sin ϕ

ρ
= sin ϕ, (3.8)

∂ϕ

∂x
=

∂

∂x
tan−1

(y

x

)

= − y

x2 + y2
= − sinϕ

ρ
, (3.9)

∂ϕ

∂y
=

∂

∂y
tan−1

(y

x

)

=
x

x2 + y2
=

cos ϕ

ρ
. (3.10)
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The relationships between eρ, eϕ, ez can be easily worked out, for example,

eρ · eρ = (cos ϕi+ sinϕj) · (cos ϕi+ sinϕj) = cos2 ϕ + sin2 ϕ = 1,

eρ · eϕ = (cos ϕi+ sinϕj) · (− sin ϕi+ cos ϕj) = 0,
eρ × eϕ = (cos ϕi+ sinϕj) × (− sin ϕi+ cos ϕj) = cos2 ϕk + sin2 ϕk = k = ez.

Taken together, they form an orthonormal basis set

eρ · eρ = eϕ · eϕ = ez · ez = 1,

eρ · eϕ = eϕ · ez = ez · eρ = 0, (3.11)
eρ × eϕ = ez, eϕ × ez = eρ, ez × eρ = eϕ.

The position vector r, from the origin to any point in space, is clearly seen in
Fig. 3.1 to be

r = ρeρ + zez. (3.12)

This expression can also be obtained from directly transforming r = xi+yj+zk
into the cylindrical coordinates.

Any vector can be expressed in terms of them. If the vector is a function
of the position, then

A (ρ, ϕ, z) = Aρ (ρ, ϕ, z) eρ + Aϕ (ρ, ϕ, z) eϕ + Az (ρ, ϕ, z) ez. (3.13)

In general, each component is a function of ρ, ϕ, z. Unlike the constant
unit vector i, j,k in the rectangular coordinate system, only ez = k is fixed
in space, the directions of eρ, eϕ change as the point is moved around. Note
that both eρ and eϕ depend on ϕ. In particular,

∂

∂ϕ
eρ =

∂

∂ϕ
(cos ϕi+ sin ϕj) = − sin ϕi+ cos ϕj = eϕ,

∂

∂ϕ
eϕ =

∂

∂ϕ
(− sin ϕi+ cos ϕj) = −(cos ϕi+ sin ϕj) = − eρ, (3.14)

∂

∂ρ
eρ =

∂

∂ρ
eϕ = 0.

Example 3.1.1. Show that the acceleration of a particle expressed in cylindri-
cal coordinates is given by

a =
(

��
ρ − ρ

�
ϕ

2
)

eρ +
(

ρ
��
ϕ + 2

�
ρ

�
ϕ
)

eϕ +
��
zez,

where dots denote differentiation with respect to time t.

Solution 3.1.1. Since the position vector is given by r = ρeρ + zez, the

velocity is v =
�
r,
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�
r=

�
ρeρ + ρ

�
eρ +

�
zez,

where ez is a constant unit vector and eρ depends on ϕ. Since by (3.14)

�
eρ =

deρ

dt
=

dϕ

dt

deρ

dϕ
=

�
ϕeϕ,

�
r=

�
ρeρ + ρ

�
ϕeϕ +

�
zez.

The acceleration is the rate of change of velocity, therefore a =
�
v =

��
r,

��
r =

��
ρeρ +

�
ρ

�
eρ +

�
ρ

�
ϕeϕ + ρ

��
ϕeϕ + ρ

�
ϕ

�
eϕ +

��
zez.

Again by (3.14),
�
eϕ =

deϕ

dt
=

dϕ

dt

deϕ

dϕ
=

�
ϕ(−eρ),

��
r =

��
ρeρ +

�
ρ

�
ϕeϕ +

�
ρ

�
ϕeϕ + ρ

��
ϕeϕ − ρ

�2
ϕeρ +

��
zez.

Therefore
a =

��
r=

(��
ρ − ρ

�
ϕ2
)

eρ + (2
�
ρ

�
ϕ + ρ

��
ϕ)eϕ +

��
zez.

3.1.1 Differential Operations

Gradient. Starting from the definition of gradient in the Cartesian coordi-
nates, we can use the coordinate transformation to express it in terms of
(ρ, ϕ, z) . Using (3.4) and (3.5),

∇Φ = i
∂Φ

∂x
+ j

∂Φ

∂y
+ k

∂Φ

∂z

= (cos ϕeρ − sinϕeϕ)
∂Φ

∂x
+ (sinϕeρ + cos ϕeϕ)

∂Φ

∂y
+ ez

∂Φ

∂z

=
(

cos ϕ
∂Φ

∂x
+ sinϕ

∂Φ

∂y

)

eρ +
(

− sin ϕ
∂Φ

∂x
+ cos ϕ

∂Φ

∂y

)

eϕ +
∂Φ

∂z
ez. (3.15)

By chain rule and (3.6)

∂Φ

∂ρ
=

∂x

∂ρ

∂Φ

∂x
+

∂y

∂ρ

∂Φ

∂y
= cos ϕ

∂Φ

∂x
+ sin ϕ

∂Φ

∂y
, (3.16)

∂Φ

∂ϕ
=

∂x

∂ϕ

∂Φ

∂x
+

∂y

∂ϕ

∂Φ

∂y
= −ρ sin ϕ

∂Φ

∂x
+ ρ cos ϕ

∂Φ

∂y
. (3.17)

With these expressions, (3.15) becomes

∇Φ =
∂Φ

∂ρ
eρ +

1
ρ

∂Φ

∂ϕ
eϕ +

∂Φ

∂z
ez. (3.18)
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Thus, the gradient operator in the cylindrical coordinates can be written as

∇ = eρ
∂

∂ρ
+ eϕ

1
ρ

∂

∂ϕ
+ ez

∂

∂z
. (3.19)

An immediate consequence is

∇ρ = eρ, ∇ϕ =
1
ρ
eϕ, ∇z = ez. (3.20)

This is not a surprising result. After all, ∇u is a vector perpendicular to the
surface u = constant.

Divergence. The divergence of a vector

∇ · V = ∇ · (Vρeρ + Vϕeϕ + Vzez)

can be expanded first by the distributive law of dot product. Now,

∇ · Vρeρ = ∇ · Vρ(eϕ × ez) = ∇ · Vρ(ρ∇ϕ × ∇z)
= ∇(ρVρ) · (∇ϕ × ∇z) + ρVρ∇ · (∇ϕ × ∇z).

But ∇ · (∇ϕ × ∇z) = ∇ × ∇ϕ · ∇z − ∇ × ∇z · ∇ϕ = 0, so

∇ · Vρeρ = ∇(ρVρ) · (∇ϕ × ∇z) = ∇(ρVρ) ·
(

1
ρ
eϕ × ez

)

=
1
ρ
∇(ρVρ) · eρ

=
1
ρ

(

eρ
∂ρVρ

∂ρ
+ eϕ

1
ρ

∂ρVρ

∂ϕ
+ ez

∂ρVρ

∂z

)

· eρ =
1
ρ

∂

∂ρ
(ρVρ). (3.21)

∇ · Vϕeϕ = ∇ · Vϕ(ez × eρ) = ∇ · Vϕ(∇z × ∇ρ)
= ∇Vϕ · (∇z × ∇ρ) + Vϕ∇ · (∇z × ∇ρ)
= ∇Vϕ · (∇z × ∇ρ) = ∇Vϕ · (ez × eρ) = ∇Vϕ · eϕ

=
(

eρ
∂Vϕ

∂ρ
+ eϕ

1
ρ

∂Vϕ

∂ϕ
+ ez

∂Vϕ

∂z

)

· eϕ =
1
ρ

∂Vϕ

∂ϕ
. (3.22)

Therefore,

∇ · V =
1
ρ

∂

∂ρ
(ρVρ) +

1
ρ

∂Vϕ

∂ϕ
+

∂Vz

∂z
. (3.23)

Laplacian. By definition the Laplacian of Φ is given by

∇2Φ = ∇ · ∇Φ = ∇ ·
(

∂Φ

∂ρ
eρ +

1
ρ

∂Φ

∂ϕ
eϕ +

∂Φ

∂z
ez

)

. (3.24)

Using the expression of the divergence, we have

∇ · ∇Φ =
1
ρ

∂

∂ρ

(

ρ
∂Φ

∂ρ

)

+
1
ρ

∂

∂ϕ

(

1
ρ

∂Φ

∂ϕ

)

+
∂

∂z

(

∂Φ

∂z

)

.
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Therefore

∇2Φ =
∂2Φ

∂ρ2
+

1
ρ

∂Φ

∂ρ
+

1
ρ2

∂2Φ

∂ϕ2
+

∂2Φ

∂z2
. (3.25)

Since the Laplacian is a scalar operator, it is instructive to convert it
directly from its definition in the rectangular coordinates

∇2Φ =
∂2Φ

∂x2
+

∂2Φ

∂y2
+

∂2Φ

∂z2
.

Now with chain rule and (3.7) and (3.9), we have

∂Φ

∂x
=

∂ρ

∂x

∂Φ

∂ρ
+

∂ϕ

∂x

∂Φ

∂ϕ
= cos ϕ

∂Φ

∂ρ
− sin ϕ

ρ

∂Φ

∂ϕ
,

∂2Φ

∂x2
=

∂

∂x

[

∂Φ

∂x

]

=
∂ρ

∂x

∂

∂ρ

[

∂Φ

∂x

]

+
∂ϕ

∂x

∂

∂ϕ

[

∂Φ

∂x

]

= cos ϕ
∂

∂ρ

[

cos ϕ
∂Φ

∂ρ
− sinϕ

ρ

∂Φ

∂ϕ

]

− sin ϕ

ρ

∂

∂ϕ

[

cos ϕ
∂Φ

∂ρ
− sinϕ

ρ

∂Φ

∂ϕ

]

= cos2 ϕ
∂2Φ

∂ρ2
+

cos ϕ sin ϕ

ρ2

∂Φ

∂ϕ
− cos ϕ sinϕ

ρ

∂2Φ

∂ρ∂ϕ

+
sin2 ϕ

ρ

∂Φ

∂ρ
− sin ϕ cos ϕ

ρ

∂2Φ

∂ϕ∂ρ
+

sin ϕ cos ϕ

ρ2

∂Φ

∂ϕ
+

sin2 ϕ

ρ2

∂2Φ

∂ϕ2
.

Similarly,
∂Φ

∂y
=

∂ρ

∂y

∂Φ

∂ρ
+

∂ϕ

∂y

∂Φ

∂ϕ
= sinϕ

∂Φ

∂ρ
+

cos ϕ

ρ

∂Φ

∂ϕ
,

∂2Φ

∂y2
=

∂

∂y

[

∂Φ

∂y

]

=
∂ρ

∂y

∂

∂ρ

[

∂Φ

∂y

]

+
∂ϕ

∂y

∂

∂ϕ

[

∂Φ

∂y

]

= sinϕ
∂

∂ρ

[

sin ϕ
∂Φ

∂ρ
+

cos ϕ

ρ

∂Φ

∂ϕ

]

+
cos ϕ

ρ

∂

∂ϕ

[

sin ϕ
∂Φ

∂ρ
+

cos ϕ

ρ

∂Φ

∂ϕ

]

= sin2 ϕ
∂2Φ

∂ρ2
− sin ϕ cos ϕ

ρ2

∂Φ

∂ϕ
+

sinϕ cos ϕ

ρ

∂2Φ

∂ρ∂ϕ

+
cos2 ϕ

ρ

∂Φ

∂ρ
+

cos ϕ sinϕ

ρ

∂2Φ

∂ϕ∂ρ
− cos ϕ sinϕ

ρ2

∂Φ

∂ϕ
+

cos2 ϕ

ρ2

∂2Φ

∂ϕ2
.

Thus,

∂2Φ

∂x2
+

∂2Φ

∂y2
= (cos2 ϕ + sin2 ϕ)

∂2Φ

∂ρ2
+

sin2 ϕ + cos2 ϕ

ρ

∂Φ

∂ρ

+
sin2 ϕ + cos2 ϕ

ρ2

∂2Φ

∂ρ2
=

∂2Φ

∂ρ2
+

1
ρ

∂Φ

∂ρ
+

1
ρ2

∂2Φ

∂ϕ2
.

Clearly the Laplacian obtained this way is identical to (3.25).
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Curl. The curl of a vector can be written as

∇ × V = ∇ × (Vρeρ + Vϕeϕ + Vzez). (3.26)

Now
∇ × Vρeρ = ∇ × Vρ∇ρ = ∇Vρ × ∇ρ + Vρ∇ × ∇ρ.

Since ∇ × ∇ρ = 0,

∇ × Vρeρ = ∇Vρ × ∇ρ = ∇Vρ × eρ

=
(

eρ
∂Vρ

∂ρ
+ eϕ

1
ρ

∂Vρ

∂ϕ
+ ez

∂Vρ

∂z

)

× eρ

= −1
ρ

∂Vρ

∂ϕ
ez +

∂Vρ

∂z
eϕ, (3.27)

∇ × Vϕeϕ = ∇ × Vϕ (ρ∇ϕ) = ∇(ρVϕ) × ∇ϕ + ρVϕ∇ × ∇ϕ

= ∇(ρVϕ) × ∇ϕ = ∇(ρVϕ) × 1
ρ
eϕ

=
1
ρ

(

eρ
∂ρVϕ

∂ρ
+ eϕ

1
ρ

∂ρVϕ

∂ϕ
+ ez

∂ρVϕ

∂z

)

× eϕ

=
1
ρ

∂ρVϕ

∂ρ
ez − 1

ρ

∂ρVϕ

∂z
eρ, (3.28)

∇×Vzez = ∇Vz × ez =
(

eρ
∂Vz

∂ρ
+ eϕ

1
ρ

∂Vz

∂ϕ
+ ez

∂Vz

∂z

)

× ez

= −∂Vz

∂ρ
eϕ +

1
ρ

∂Vz

∂ϕ
eρ.

Thus,

∇ × V =
(

1
ρ

∂Vz

∂ϕ
− 1

ρ

∂ρVϕ

∂z

)

eρ +
(

∂Vρ

∂z
− ∂Vz

∂ρ

)

eϕ

+
(

1
ρ

∂

∂ρ
(ρVϕ) − 1

ρ

∂Vρ

∂ϕ

)

ez. (3.29)

Example 3.1.2. (a) Show that the vector field

F =
(

A − B

ρ2

)

cos ϕeρ −
(

A +
B

ρ2

)

sin ϕeϕ

is irrotational (∇ × F = 0) . (b) Find a scalar potential Φ such that ∇Φ = F.
(c) Show that Φ satisfies the Laplace’s equation (∇2Φ = 0).
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Solution 3.1.2. (a) All derivatives with respect to z are equal to zero, since
there is no z dependence. Furthermore, Vz = 0. Therefore

∇ × F =
(

1
ρ

∂

∂ρ
(ρFϕ) − 1

ρ

∂Fρ

∂ϕ

)

ez

=
1
ρ

∂

∂ρ

[

ρ

(

−A − B

ρ2

)

sin ϕ

]

ez − 1
ρ

∂

∂ϕ

[(

A − B

ρ2

)

cos ϕ

]

ez

=
1
ρ

[(

−A +
B

ρ2

)

sin ϕ +
(

A − B

ρ2

)

sinϕ

]

ez = 0.

(b)

∇Φ = eρ
∂Φ

∂ρ
+ eϕ

1
ρ

∂Φ

∂ϕ
+ ez

∂Φ

∂z

=
(

A − B

ρ2

)

cos ϕeρ −
(

A +
B

ρ2

)

sinϕeϕ,

∂Φ

∂ρ
=
(

A − B

ρ2

)

cos ϕ;
1
ρ

∂Φ

∂ϕ
= −

(

A +
B

ρ2

)

sinϕ.

It is clear, up to an additive constant,

Φ =
(

Aρ +
B

ρ

)

cos ϕ.

(c)

∇2Φ =
1
ρ

∂

∂ρ

(

ρ
∂Φ

∂ρ

)

+
1
ρ2

∂2Φ

∂ϕ2
+

∂2Φ

∂z2

=
1
ρ

∂

∂ρ

[

ρ
∂

∂ρ

(

Aρ +
B

ρ

)

cos ϕ

]

+
1
ρ2

∂2

∂ϕ2

(

Aρ +
B

ρ

)

cos ϕ

=
1
ρ

(

A +
B

ρ2

)

cos ϕ − 1
ρ

(

A +
B

ρ2

)

cos ϕ = 0.

3.1.2 Infinitesimal Elements

When a point at (x, y, z) is moved to (x+dx, y +dy, z +dz), the infinitesimal
displacement vector is dr = idx + jdy + kdz. Similarly, when the point at
(ρ, ϕ, z) in the cylindrical coordinates is moved to (ρ + dρ, ϕ + dϕ, z + dz),
the infinitesimal displacement vector is

dr = eρdρ + eϕρ dϕ + ez dz. (3.30)

Notice the distance in eϕ direction is ρ dϕ as shown in Fig. 3.2. The infinites-
imal length element is
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x
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z

dz

dr
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r dj

rj

dj

Fig. 3.2. Differential elements in cylindrical coordinates. Note that the differential
length in the direction of increasing ϕ is ρ dϕ. The differential volume element is
ρ dϕ dρ dz.

ds = (dr·dr)1/2 =
[

(dρ)2 + (ρdϕ)2 + (dz)2
]1/2

. (3.31)

The gradient is defined as a vector of derivatives with respect to the
distances in three perpendicular directions. Thus the gradient in cylindrical
coordinates should be

∇ = eρ
∂

∂ρ
+ eϕ

1
ρ

∂

∂ϕ
+ ez

∂

∂z
,

which is, of course, identical to (3.19) obtained from direct transformation.
The infinitesimal volume element dV is the product of the perpendicular

infinitesimal displacements

dV = (dρ)(ρ dϕ)(dz) = ρ dρ dϕ dz. (3.32)

The possible range of ρ is 0 to ∞, ϕ goes from 0 to 2π, and z from −∞ to ∞.
The infinitesimal surface element depends on the orientation of the surface.
For example, on the side surface of a cylinder parallel to z-axis and of constant
radius ρ, the surface element directed outward is n da = ρ dϕ dzeρ.The surface
element on the xy-plane directed upward is n da = ρ dϕ dρ ez.

Example 3.1.3. Verify the divergence theorem
∫∫∫

V

∇ · F dV =
∫∫

©
S

F · n da

with a vector field

F =ρ
(

2 + sin2 ϕ
)

eρ + ρ sinϕ cos ϕ eϕ + 3z2 ez

over a cylinder with base of radius 2 and height 5.
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Solution 3.1.3.

∇ · F =
1
ρ

∂

∂ρ
(ρFρ) +

1
ρ

∂Fϕ

∂ϕ
+

∂Fz

∂z

=
1
ρ
2ρ

(

2 + sin2 ϕ
)

+
1
ρ
ρ
(

cos2 ϕ − sin2 ϕ
)

+ 6z

= 4 + sin2 ϕ + cos2 ϕ + 6z = 5 + 6z.

∫∫∫

V

∇ · F dV =
∫∫∫

V

(5 + 6z) ρ dϕ dρ dz

=
∫ 2π

0

dϕ

∫ 2

0

ρ dρ

∫ 5

0

(5 + 6z) dz = 400π.

∫∫

©
S

F · n da =
∫∫

S1

F · n da +
∫∫

S2

F · n da +
∫∫

S3

F · n da,

where S1 is the side surface of the cylinder, S2 and S3 are, respective, the
bottom and top surfaces of the cylinder.
∫∫

S1

F · n da =
∫∫

S1

F · eρ da =
∫ 2π

0

∫ 5

0

[

ρ
(

2 + sin2 ϕ
)

ρ
]

ρ=2
dϕ dz = 100π.

∫∫

S2

F · n da =
∫∫

S2

F·(−ez) da =
∫∫

S2

[

−3z2
]

z=0
da = 0,

∫∫

S3

F · n da =
∫∫

S3

F·(ez) da =
∫ 2π

0

∫ 2

0

[

3z2
]

z=5
ρ dϕ dρ = 300π.

Therefore,
∫∫

©
S

F · n da = 100π + 300π = 400π.

Clearly,
∫∫∫

V

∇ · F dV =
∫∫

©
S

F · n da.

3.2 Spherical Coordinates

The spherical polar coordinate system is commonly known just as the spherical
coordinates. The location of a point is specified by (r, θ, ϕ) as shown in Fig. 3.3,
where r is the distance from the origin, θ is the angle made by the position
vector r with the positive z-axis which is often called polar angle, and ϕ is the
angle made with the positive x-axis by the projection of r on the xy-plane,
this angle is known as azimuthal angle. The relations between the rectangular
and spherical coordinates are seen from Fig. 3.3b and c.
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Fig. 3.3. Spherical coordinates. (a) A point is specified by (r, θ, ϕ) where r is the
distance from the origin, θ is the angle made by r with the positive z-axis, and ϕ is
the angle made with the positive x-axis by the projection of r on the xy-plane. The
three unit vectors er, eθ, eϕ are in the direction of increasing r, θ, ϕ, respectively. The
auxiliary unit vector e� is in the direction of the projection of r on the xy-plane.
(b) The unit vectors er and eθ are moved to the origin in the AOB plane to find
their relationships with k and e�. (c) In the xy-plane, eϕ is moved to the origin to
find the relationships between eϕ, e� and i, j

x = r sin θ cos ϕ, y = r sin θ sinϕ, z = r cos θ (3.33)

and

r =
(

x2 + y2 + z2
)1/2

, tan θ =

(

x2 + y2
)1/2

z
, tan ϕ =

y

x
, (3.34)

sin θ =

(

x2 + y2
)1/2

(x2 + y2 + z2)1/2
, cos θ =

z

(x2 + y2 + z2)1/2
, (3.35)

sinϕ =
y

(x2 + y2)1/2
, cos ϕ =

x

(x2 + y2)1/2
. (3.36)

Figure 3.3 also shows a set of mutually perpendicular unit vectors er, eθ, eϕ

in the sense of increasing r, θ, ϕ, respectively. In this system, the position
vector r is simply

r = rr̂ = rer. (3.37)

The relations between the unit vectors in the spherical coordinates and those
in the Cartesian coordinates can be seen from Fig. 3.3b. In the plane AOB,
we have drawn er and eθ from the origin. It can be seen

er = sin θe�+ cos θk,

eθ = cos θe� − sin θk,

where e� is a unit vector along OB. In Fig. 3.3c, e� and eθ are drawn from
the origin, clearly
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e� = cos ϕi+ sin ϕj,

eϕ = − sin ϕi + cos ϕj.

Thus,

er = sin θ cos ϕi+ sin θ sin ϕj + cos θk,

eθ = cos θ cos ϕi+ cos θ sin ϕj − sin θk, (3.38)

eϕ = − sin ϕi + cos ϕj.

The inverse relations can either be read from the same figures, or be solved
for i, j, k from the above equations,

i = sin θ cos ϕer+ cos θ cos ϕeθ − sin ϕeϕ,

j = sin θ sin ϕer+ cos θ sin ϕeθ + cos ϕeϕ, (3.39)

k = cos θer − sin θeθ.

It can easily be verified that (er, eθ, eϕ) form an orthonormal basis set and
satisfy the following relations

er · er = eθ · eθ = eϕ · eϕ = 1,

er · eθ = eθ · eϕ = eϕ · er = 0, (3.40)

er × eθ = eϕ, eθ × eϕ = er, eϕ × er = eθ.

Any vector can be expressed in terms of them

A = Arer + Aθeθ + Aϕeϕ, (3.41)

where Ar, Aθ, Aϕ are the radial, polar, and azimuthal components of A. The
derivatives of the unit vectors are easily obtained from (3.38):

∂er

∂r
=

∂eθ

∂r
=

∂eϕ

∂r
=

∂eϕ

∂θ
= 0, (3.42)

∂er

∂θ
= cos θ cos ϕi+ cos θ sinϕj − sin θk = eθ, (3.43)

∂eθ

∂θ
= − sin θ cos ϕi − sin θ sinϕj − cos θk = −er, (3.44)

∂er

∂ϕ
= − sin θ sin ϕi + sin θ cos ϕj = sin θeϕ, (3.45)

∂eθ

∂ϕ
= − cos θ sin ϕi + cos θ cos ϕj = cos θeϕ, (3.46)

∂eϕ

∂ϕ
= − cos ϕi − sinϕj = −(sin θer + cos θeθ). (3.47)
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3.2.1 Differential Operations

Gradient. We are ready to express the gradient operator ∇ in the spherical
coordinates. Using (3.39), we have

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
= (sin θ cos ϕer+ cos θ cos ϕeθ − sin ϕeϕ)

∂

∂x

+(sin θ sin ϕer+ cos θ sinϕeθ + cos ϕeϕ)
∂

∂y
+ (cos θer − sin θeθ)

∂

∂z

= er

[

sin θ cos ϕ
∂

∂x
+ sin θ sinϕ

∂

∂y
+ cos θ

∂

∂z

]

+eθ

[

cos θ cos ϕ
∂

∂x
+ cos θ sin ϕ

∂

∂y
− sin θ

∂

∂z

]

+eϕ

[

− sin ϕ
∂

∂x
+ cos ϕ

∂

∂y

]

. (3.48)

The quantities in the brackets can be recognized if we use (3.33) and the chain
rule of derivatives

∂

∂r
=

∂x

∂r

∂

∂x
+

∂y

∂r

∂

∂y
+

∂z

∂r

∂

∂z

= sin θ cos ϕ
∂

∂x
+ sin θ sinϕ

∂

∂y
+ cos θ

∂

∂z
, (3.49)

∂

∂θ
=

∂x

∂θ

∂

∂x
+

∂y

∂θ

∂

∂y
+

∂z

∂θ

∂

∂z

= r cos θ cos ϕ
∂

∂x
+ r cos θ sinϕ

∂

∂y
− r sin θ

∂

∂z
, (3.50)

∂

∂ϕ
=

∂x

∂ϕ

∂

∂x
+

∂y

∂ϕ

∂

∂y
+

∂z

∂ϕ

∂

∂z

= −r sin θ sinϕ
∂

∂x
+ r sin θ cos ϕ

∂

∂y
. (3.51)

Thus (3.48) can be written as

∇ = er
∂

∂r
+ eθ

1
r

∂

∂θ
+ eϕ

1
r sin θ

∂

∂ϕ
. (3.52)

It follows that

∇r = er, ∇θ =
1
r
eθ, ∇ϕ =

1
r sin θ

eϕ. (3.53)
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Divergence. The divergence of a vector in the spherical coordinates is

∇ · V = ∇ · (Vrer + Vθeθ + Vϕeϕ)
= ∇Vr · er + Vr∇ · er + ∇Vθ · eθ + Vθ∇ · eθ

+∇Vϕ · eϕ + Vϕ∇ · eϕ. (3.54)

Although the divergence in the spherical coordinates can be worked out just as
we did for in the cylindrical coordinates, it is instructive to find the expression
by using the derivatives of (3.42)–(3.47),

∇ · er =
(

er
∂

∂r
+ eθ

1
r

∂

∂θ
+ eϕ

1
r sin θ

∂

∂ϕ

)

· er

= er ·
∂er

∂r
+

1
r
eθ ·

∂er

∂θ
+

1
r sin θ

eϕ · ∂er

∂ϕ

=
1
r
eθ · eθ +

1
r sin θ

eϕ · sin θeϕ =
2
r
, (3.55)

∇ · eθ =
(

er
∂

∂r
+ eθ

1
r

∂

∂θ
+ eϕ

1
r sin θ

∂

∂ϕ

)

· eθ

= er ·
∂eθ

∂r
+

1
r
eθ ·

∂eθ

∂θ
+

1
r sin θ

eϕ · ∂eθ

∂ϕ

=
1
r
eθ · (−er) +

1
r sin θ

eϕ · cos θeϕ =
1
r

cos θ

sin θ
, (3.56)

∇ · eϕ =
(

er
∂

∂r
+ eθ

1
r

∂

∂θ
+ eϕ

1
r sin θ

∂

∂ϕ

)

· eϕ

= er ·
∂eϕ

∂r
+

1
r
eθ ·

∂eϕ

∂θ
+

1
r sin θ

eϕ · ∂eϕ

∂ϕ

=
1

r sin θ
eϕ · (− sin θer + cos θeθ) = 0. (3.57)

Furthermore,

∇Vr · er =
(

er
∂Vr

∂r
+ eθ

1
r

∂Vr

∂θ
+ eϕ

1
r sin θ

∂Vr

∂ϕ

)

· er =
∂Vr

∂r
. (3.58)

Similarly,

∇Vθ · eθ =
1
r

∂Vθ

∂θ
, ∇Vϕ · eϕ =

1
r sin θ

∂Vϕ

∂ϕ
. (3.59)

Thus,

∇ · V =
∂Vr

∂r
+

2
r
Vr +

1
r

∂Vθ

∂θ
+

1
r

cos θ

sin θ
Vθ +

1
r sin θ

∂Vϕ

∂ϕ

=
1
r2

∂

∂r

(

r2Vr

)

+
1

r sin θ

∂

∂θ
(sin θ Vθ) +

1
r sin θ

∂

∂ϕ
Vϕ. (3.60)
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Laplacian. The Laplacian in spherical coordinates can be written as

∇2Φ = ∇ · ∇Φ = ∇ ·
(

er
∂Φ

∂r
+ eθ

1
r

∂Φ

∂θ
+ eϕ

1
r sin θ

∂Φ

∂ϕ

)

.

Regarding ∇Φ as a vector and using the expression of divergence, we have

∇ · ∇Φ =
1
r2

∂

∂r

(

r2 ∂Φ

∂r

)

+
1

r sin θ

∂

∂θ

(

sin θ
1
r

∂Φ

∂θ

)

+
1

r sin θ

∂

∂ϕ

(

1
r sin θ

∂Φ

∂ϕ

)

.

(3.61)
Therefore the Laplacian operator can be written as

∇2 =
1
r2

∂

∂r

(

r2 ∂

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

r2 sin2 θ

∂2

∂ϕ2
. (3.62)

Curl. The curl of a vector in the spherical coordinates can be written as

∇ × V = ∇×(Vrer + Vθeθ + Vϕeϕ)
= ∇Vr × er + Vr∇ × er + ∇Vθ × eθ + Vθ∇ × eθ

+∇Vϕ × eϕ + Vϕ∇ × eϕ. (3.63)

Again we will derive the expression of curl in the spherical coordinates with
the derivatives of (3.42)–(3.47).

∇ × er =
(

er
∂

∂r
+ eθ

1
r

∂

∂θ
+ eϕ

1
r sin θ

∂

∂ϕ

)

× er

= er ×
∂er

∂r
+

1
r
eθ ×

∂er

∂θ
+

1
r sin θ

eϕ × ∂er

∂ϕ

=
1
r
eθ × eθ +

1
r sin θ

eϕ × sin θeϕ = 0, (3.64)

∇ × eθ =
(

er
∂

∂r
+ eθ

1
r

∂

∂θ
+ eϕ

1
r sin θ

∂

∂ϕ

)

× eθ

= er ×
∂eθ

∂r
+

1
r
eθ ×

∂eθ

∂θ
+

1
r sin θ

eϕ × ∂eθ

∂ϕ

=
1
r
eθ × (−er) +

1
r sin θ

eϕ × cos θeϕ =
1
r
eϕ, (3.65)

∇ × eϕ =
(

er
∂

∂r
+ eθ

1
r

∂

∂θ
+ eϕ

1
r sin θ

∂

∂ϕ

)

× eϕ

= er ×
∂eϕ

∂r
+

1
r
eθ ×

∂eϕ

∂θ
+

1
r sin θ

eϕ × ∂eϕ

∂ϕ

=
1

r sin θ
eϕ × (− sin θer + cos θeθ) = −1

r
eθ +

1
r

cos θ

sin θ
er. (3.66)



128 3 Curved Coordinates

Furthermore

∇Vr × er =
(

er
∂Vr

∂r
+ eθ

1
r

∂Vr

∂θ
+ eϕ

1
r sin θ

∂Vr

∂ϕ

)

× er

= −1
r

∂Vr

∂θ
eϕ +

1
r sin θ

∂Vr

∂ϕ
eθ, (3.67)

∇Vθ × eθ =
(

er
∂Vθ

∂r
+ eθ

1
r

∂Vθ

∂θ
+ eϕ

1
r sin θ

∂Vθ

∂ϕ

)

× eθ

=
∂Vθ

∂r
eϕ − 1

r sin θ

∂Vθ

∂ϕ
er, (3.68)

∇Vϕ × eϕ =
(

er
∂Vϕ

∂r
+ eθ

1
r

∂Vϕ

∂θ
+ eϕ

1
r sin θ

∂Vϕ

∂ϕ

)

× eϕ

= −∂Vϕ

∂r
eθ +

1
r

∂Vϕ

∂θ
er. (3.69)

Combining these six terms, we have

∇ × V =
(

1
r

∂Vϕ

∂θ
− 1

r sin θ

∂Vθ

∂ϕ
+

1
r

cos θ

sin θ
Vϕ

)

er

+
(

1
r sin θ

∂Vr

∂ϕ
− ∂Vϕ

∂r
− 1

r
Vϕ

)

eθ +
(

∂Vθ

∂r
− 1

r

∂Vr

∂θ
+

1
r
Vθ

)

eϕ. (3.70)

3.2.2 Infinitesimal Elements

In spherical coordinates, the infinitesimal displacement vector between a point
at (r, θ, ϕ) and at (r + dr, θ + dθ, ϕ + dϕ) is

dr = er dr + eθr dθ + eϕr sin θ dϕ. (3.71)

Note from Fig. 3.4 that only in the er direction, the increment dr is an element
of length. Both dθ and dϕ are infinitesimal angles. They do not even have the
units of length. The element of length in the eθ direction is r dθ and in the eϕ

direction is r sin θ dϕ. Thus, one would expect the gradient in the spherical
coordinates to be

∇ = er
∂

∂r
+ eθ

1
r

∂

∂r
+ eϕ

1
r sin θ

∂

∂ϕ
,

which is indeed the case as shown in (3.52).
The infinitesimal volume element is the product of the three perpendicular

infinitesimal displacements

dV = (dr)(r dθ)(r sin θ dϕ) = r2 sin θ dr dθ dϕ. (3.72)
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x

y

z

dr

r

q

dq

dj

j

r sinq

dj

r sinq dj 

r dq

Fig. 3.4. Differential elements in the spherical coordinates. The differential length
in the direction of increasing θ is r dθ. The differential length in the direction of
increasing ϕ is r sin θ dϕ. The differential volume element is r2 sin θ dr dθ dϕ

The possible range of r is 0 to ∞, θ from 0 to π, and ϕ from 0 to 2π. Note
that θ goes from 0 to only π, and not 2π. If it goes to 2π, then every point
would be counted twice.

Example 3.2.1. Use spherical coordinates to find

∇r, ∇ · r, ∇rn, ∇ · rner, ∇2rn, ∇×f (r) er.

(We have found them in previous chapter with Cartesian coordinates. Using
spherical coordinates, the results can be easily obtained, almost by ins-
pection.)

Solution 3.2.1. Since these functions depend only on r, we need to retain
only terms involving r variable:

∇r = er
∂

∂r
r = er = r̂,

∇ · r =
1
r2

∂

∂r

(

r2r
)

= 3,

∇rn = er
∂

∂r
rn = ernrn−1,

∇ · rner =
1
r2

∂

∂r

(

r2rn
)

= (n + 2)rn−1,

∇2rn =
1
r2

∂

∂r

(

r2 ∂

∂r
rn

)

= n
1
r2

∂

∂r
rn+1 = n (n + 1) rn−2,
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∇×f (r) er =
1

r sin θ

∂f(r)
∂ϕ

eθ +
1
r

∂f(r)
∂θ

eϕ = 0.

Example 3.2.2. Express r×∇ in spherical coordinates. (In quantum mechan-
ics, the angular momentum operator L is defined as L = r×p, where p is the
linear momentum operator, given by −i�∇.)

Solution 3.2.2.

r × ∇ = rer ×
[

er
∂

∂r
+ eθ

1
r

∂

∂θ
+ eϕ

1
r sin θ

∂

∂ϕ

]

= r

[

eϕ
1
r

∂

∂θ
− eθ

1
r sin θ

∂

∂ϕ

]

= eϕ
∂

∂θ
− eθ

1
sin θ

∂

∂ϕ
.

3.3 General Curvilinear Coordinate System

3.3.1 Coordinate Surfaces and Coordinate Curves

In this section, we will develop the general theory of a curvilinear coordinate
system. Suppose there is a one to one relationship between the Cartesian
coordinate system (x, y, z) and another curvilinear system (u1, u2, u3). This
means that (x, y, z) can be written as functions of ui,

x = x (u1, u2, u3) , y = y (u1, u2, u3) , z = z (u1, u2, u3) , (3.73)

and conversely,

u1 = u1 (x, y, z) , u2 = u2 (x, y, z) , u3 = u3 (x, y, z) . (3.74)

The surfaces ui = constant are referred to as coordinate surfaces and the
intersections of these surfaces define the coordinate curves. For example, if the
curvilinear system is the cylindrical coordinate system, then u1 = ρ, u2 = ϕ,
u3 = z as shown in Fig. 3.5. Thus, u1 = constant is the surface of the cylinder,
u2 = constant is the vertical plane, and u3 =constant is the horizontal plane
shown in the figure. The intersection of the vertical plane and the horizontal
plane is the u1 curve which is the line shown as the ρ curve. The intersection
of the horizontal plane and the surface of the cylinder is the u2 curve which is
the circle shown as the ϕ curve. The intersection of the surface of the cylinder
and the vertical plane is the u1 curve which is the vertical line shown as the
z curve.
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x
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z

rj

z curve

j curve

r curve

z = const.

j = const.

r = const.

P ( r, j, z)

r
z

u1 = r curve

u3 = z curve

j curve

u3(= z) = const.

u2 (= j) = const.

er = e1

u1(= r) = const.

ej = e 2

ez = e3

(a) (b)

P

 

Fig. 3.5. Coordinate surfaces and coordinate curves of cylindrical coordinate sys-
tem. (a) The side surface of the cylinder (ρ = constant), the horizontal plane (z =
constant), and the plane containing z axis (ϕ = constant) are the coordinate surfaces.
The intersections of them are the coordinate curves. (b) Locally, the three unit
vectors along the coordinate curves form an orthogonal basis set

Now the position vector r can be expressed as a function of ui,

r = r (u1, u2, u3), (3.75)

dr =
∂r
∂u1

du1 +
∂r
∂u2

du2 +
∂r
∂u3

du3. (3.76)

The partial derivative
∂r
∂u1

means the rate of variation of r with u1, while u2

and u3 are held fixed. So, the vector
∂r
∂u1

lies in the u2 and u3 coordinate

surfaces and is, therefore, along the u1 coordinate curve. This enables a unit
vector e1 to be defined in the direction of the u1 curve,

e1 =
∂r
∂u1

/h1 (3.77)

where h1 is the magnitude of
∂r
∂u1

h1 =
∣

∣

∣

∣

∂r
∂u1

∣

∣

∣

∣

, (3.78)

known as the scale factor. The unit vectors e2 and e3 and the corresponding
scale factors h2 and h3 are defined in a similar way. In the case of cylindrical
coordinates, e1 is a unit vector along the ρ curve, which is previously defined as
eρ, e2 is a unit vector tangent to the ϕ curve, which is previously defined as eϕ,
and e3 is a unit vector along the z curve, which is previously defined as ez = k.
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e3

e1
e2

dr

h2 du 2

h1du1

h3 du3

Fig. 3.6. Volume element of an orthogonal curvilinear coordinate system. A change
in ui leads to a change of distance hi dui in the ei direction

With the unit vectors and scale factors, the displacement vector dr of
(3.76) can be written as

dr = e1h1 du1. + e2h2 du2 + e3h3 du3. (3.79)

If the unit vectors are orthogonal, that is

ei · ej =
{

1 i = j
0 i �= j

, (3.80)

then the coordinate curves are perpendicular to each other where they in-
tersect. Such coordinate systems are known as orthogonal curvilinear coor-
dinates. It will also be assumed that the coordinate system is right handed,
so that

e1 × e2 = e3, e2 × e3 = e1, e3 × e1 = e2. (3.81)

Thus, locally e1, e2, e3 form a set of unit orthogonal basis vectors for the co-
ordinate system (u1, u2, u3) , although they may change directions from point
to point. In this coordinate system, a change in ui of size dui leads to a change
of distance hi dui in the ei direction. Schematically this is shown in Fig. 3.6.

It follows from (3.79) and Fig. 3.6 that the arc length ds of a line element
along dr is given by

ds = (dr·dr)1/2 = [(h1 du1)
2 + (h2 du2)

2 + (h3 du3)
2]1/2. (3.82)

The directed surface element along e1 generated by the displacements du2

and du3 is
e1 da = e2h2 du2 × e3h3 du, (3.83)

and similarly for surface elements e2 da and e3 da. Finally, the volume
elements dV produced by the displacements du1,du2,du3 are given by

dV = |e1h1 du1. · (e2h2 du2 × e3h3 du)| = h1h2h3 du1 du2 du3, (3.84)

since e1 · (e2 × e3) = 1.
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3.3.2 Differential Operations in Curvilinear Coordinate Systems

Gradient. The gradient ∇Φ of a scalar function is a vector perpendicular to
the surface Φ = constant, defined by the equation

dΦ = ∇Φ · dr (3.85)

To find the expression of ∇Φ in a curvilinear coordinate system, let us assume

∇Φ = f1e1 + f2e2 + f3e3. (3.86)

Since
dr = h1 du1e1 + h2 du2e2 + h3 du3e3,

it follows that

∇Φ · dr = f1h1 du1 + f2h2 du2 + f3h3 du3. (3.87)

On the other hand

dΦ =
∂Φ

∂u1
du1 +

∂Φ

∂u2
du2 +

∂Φ

∂u3
du3. (3.88)

Equating the last two equations, we have

f1h1 =
∂Φ

∂u1
, f2h2 =

∂Φ

∂u2
, f3h3 =

∂Φ

∂u3
. (3.89)

Thus (3.86) becomes

∇Φ = e1
1
h1

∂Φ

∂u1
+ e2

1
h2

∂Φ

∂u2
+ e3

1
h3

∂Φ

∂u3
. (3.90)

Therefore the del operator in curvilinear coordinates can be written as

∇ = e1
1
h1

∂

∂u1
+ e2

1
h2

∂

∂u2
+ e3

1
h3

∂

∂u3
. (3.91)

In particular,

∇u1 = e1
1
h1

∂u1

∂u1
+ e2

1
h2

∂u1

∂u2
+ e3

1
h3

∂u1

∂u3
.

Since u1, u2, u3 are independent variables,

∂u1

∂u1
= 1,

∂u1

∂u2
= 0,

∂u1

∂u3
= 0.

Therefore
∇u1 = e1

1
h1

. (3.92)

Similarly,

∇u2 = e2
1
h2

, ∇u3 = e3
1
h3

. (3.93)
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Divergence. The expression of the divergence of a vector field A = A1e1 +
A2e2 + A3e3 in a curvilinear coordinates can be found by direct calculation
using the del operator.

∇ · A = ∇ · (A1e1 + A2e2 + A3e3),

∇ · A1e1 = ∇ · A1(e2 × e3) = ∇ · A1h2h3(∇u2 × ∇u3)
= (∇A1h2h3) · (∇u2 × ∇u3) + A1h2h3∇ · (∇u2 × ∇u3).

The term ∇ · (∇u2 × ∇u3) = ∇ × ∇u2 · ∇u3 − ∇ × ∇u3 · ∇u2 vanishes
because ∇ × ∇f = 0. Thus,

∇ · A1e1 = (∇A1h2h3) · (∇u2 × ∇u3)

= (∇A1h2h3) ·
e2 × e3

h2h3
= (∇A1h2h3) ·

e1

h2h3
.

Using the del operator of (3.91), we have

∇(A1h2h3) = e1
1
h1

∂(A1h2h3)
∂u1

+ e2
1
h2

∂(A1h2h3)
∂u2

+ e3
1
h3

∂(A1h2h3)
∂u3

,

(∇A1h2h3) ·
e1

h2h3
=

1
h1h2h3

∂(A1h2h3)
∂u1

.

Therefore,

∇ · A1e1 =
1

h1h2h3

∂(A1h2h3)
∂u1

. (3.94)

With similar expressions

∇ · A2e2 =
1

h1h2h3

∂(A2h3h1)
∂u2

,

∇ · A3e3 =
1

h1h2h3

∂(A3h1h2)
∂u3

,

we obtain

∇ · A =
1

h1h2h3

[

∂(A1h2h3)
∂u1

+
∂(A2h3h1)

∂u2
+

∂(A3h1h2)
∂u3

]

. (3.95)

Laplacian. The Laplacian follows from its definition

∇2Φ = ∇ · ∇Φ.

Since the ∇Φ is given by

∇Φ = e1
1
h1

∂Φ

∂u1
+ e2

1
h2

∂Φ

∂u2
+ e3

1
h3

∂Φ

∂u3
,
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the divergence of this vector is

∇ · ∇Φ =
1

h1h2h3

[

∂

∂u1

(

1
h1

∂Φ

∂u1
h2h3

)

+
∂

∂u2

(

1
h2

∂Φ

∂u2
h3h1

)

+
∂

∂u3

(

1
h3

∂Φ

∂u3
h1h2

)]

.

Hence

∇2Φ =
1

h1h2h3

[

∂

∂u1

(

h2h3

h1

∂Φ

∂u1

)

+
∂

∂u2

(

h3h1

h2

∂Φ

∂u2

)

+
∂

∂u3

(

h1h2

h3

∂Φ

∂u3

)]

.

(3.96)

Curl. The curl of a vector field in a curvilinear coordinates can also be cal-
culated directly,

∇ × A = ∇× (A1e1 + A2e2 + A3e3) ,

∇×A1e1 = ∇×A1h1∇u1 = ∇ (A1h1) × ∇u1 + A1h1∇ × ∇u1.

Since ∇ × ∇u1 = 0,

∇×A1e1 = ∇ (A1h1) × ∇u1 = ∇ (A1h1) ×
e1

h1

Now

∇ (A1h1) = e1
1
h1

∂ (A1h1)
∂u1

+ e2
1
h2

∂ (A1h1)
∂u2

+ e3
1
h3

∂ (A1h1)
∂u3

,

∇ (A1h1) ×
e1

h1
= −e3

1
h2h1

∂ (A1h1)
∂u2

+ e2
1

h3h1

∂ (A1h1)
∂u3

.

Therefore,

∇×A1e1 = −e3
1

h2h1

∂ (A1h1)
∂u2

+ e2
1

h3h1

∂ (A1h1)
∂u3

.

With similar expressions for ∇×A2e2 and ∇×A3e3, we have

∇ × A = e1

[

1
h2h3

∂ (A3h3)
∂u2

− 1
h2h3

∂ (A2h2)
∂u3

]

+ e2

[

1
h1h3

∂ (A1h1)
∂u3

− 1
h1h3

∂ (A3h3)
∂u1

]

+ e3

[

1
h2h1

∂ (A2h2)
∂u1

− 1
h2h1

∂ (A1h1)
∂u2

]

.

This expression can be put in a more symmetrical form, which is easier to
remember,
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∇ × A =
h1e1

h1h2h3

[

∂ (A3h3)
∂u2

− ∂ (A2h2)
∂u3

]

+
h2e2

h1h2h3

[

∂ (A1h1)
∂u3

− ∂ (A3h3)
∂u1

]

+
h3e3

h1h2h3

[

∂ (A2h2)
∂u1

− ∂ (A1h1)
∂u2

]

=
1

h1h2h3

∣

∣

∣

∣

∣

∣

∣

∣

h1e1 h2e2 h3e3

∂

∂u1

∂

∂u2

∂

∂u3

A1h1 A2h2 A3h3

∣

∣

∣

∣

∣

∣

∣

∣

. (3.97)

Example 3.3.1. For the cylindrical coordinates, x = ρ cos ϕ, y = ρ sinϕ, z = z.
With u1 = ρ, u2 = ϕ, u3 = z, (a) find the scale factors h1, h2, and h3,
(b) find the gradient, divergence, Laplacian, and curl in the cylindrical coor-
dinates from the general formulas derived in this section.

Solution 3.3.1. (a) Since r = xi + yj + zk and x, y, z are functions of
u1, u2, u3, so

∂r
∂ui

=
∂x

∂ui
i +

∂y

∂ui
j +

∂z

∂ui
k,

hi =
∣

∣

∣

∣

∂r
∂ui

∣

∣

∣

∣

=
∣

∣

∣

∣

∂r
∂ui

· ∂r
∂ui

∣

∣

∣

∣

1/2

=

[

(

∂x

∂ui

)2

+
(

∂y

∂ui

)2

+
(

∂z

∂ui

)2
]1/2

.

Now

∂x

∂u1
=

∂x

∂ρ
= cos ϕ,

∂y

∂u1
=

∂y

∂ρ
= sinϕ,

∂z

∂u1
=

∂z

∂ρ
= 0,

∂x

∂u2
=

∂x

∂ϕ
= −ρ sin ϕ,

∂y

∂u2
=

∂y

∂ϕ
= ρ cos ϕ,

∂z

∂u2
=

∂z

∂ϕ
= 0,

∂x

∂u3
=

∂x

∂z
= 0,

∂y

∂u3
=

∂y

∂z
= 0,

∂z

∂u3
=

∂z

∂z
= 1.

h1 =
(

cos2 ϕ + sin2 ϕ
)1/2

= 1,

h2 =
(

ρ2 cos2 ϕ + ρ2 sin2 ϕ
)1/2

= ρ,

h3 = (1)1/2 = 1.

(b)

∇Φ = e1
1
h1

∂Φ

∂u1
+ e2

1
h2

∂Φ

∂u2
+ e3

1
h3

∂Φ

∂u3

= eρ
∂Φ

∂ρ
+ eϕ

1
ρ

∂Φ

∂ϕ
+ ez

∂Φ

∂z
.
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∇ · A =
1

h1h2h3

[

∂(A1h2h3)
∂u1

+
∂(A2h3h1)

∂u2
+

∂(A3h1h2)
∂u3

]

=
1
ρ

[

∂(Aρρ)
∂ρ

+
∂(Aϕ)

∂ϕ
+

∂(Azρ)
∂z

]

=
1
ρ

∂

∂ρ
(ρAρ) +

1
ρ

∂Aϕ

∂ϕ
+

∂Az

∂z
.

∇2Φ =
1

h1h2h3

[

∂

∂u1

(

h2h3

h1

∂Φ

∂u1

)

+
∂

∂u2

(

h3h1

h2

∂Φ

∂u2

)

+
∂

∂u3

(

h1h2

h3

∂Φ

∂u3

)]

=
1
ρ

[

∂

∂ρ

(

ρ
∂Φ

∂ρ

)

+
∂

∂ϕ

(

1
ρ

∂Φ

∂ϕ

)

+
∂

∂z

(

ρ
∂Φ

∂z

)]

=
∂2Φ

∂ρ2
+

1
ρ

∂Φ

∂ρ
+

1
ρ2

∂2Φ

∂ϕ2
+

∂2Φ

∂z2
.

∇ × A =
1

h1h2h3

∣

∣

∣

∣

∣

∣

∣

∣

h1e1 h2e2 h3e3

∂

∂u1

∂

∂u2

∂

∂u3
A1h1 A2h2 A3h3

∣

∣

∣

∣

∣

∣

∣

∣

=
1
ρ

∣

∣

∣

∣

∣

∣

∣

∣

eρ ρeϕ ez

∂

∂ρ

∂

∂ϕ

∂

∂z
Aρ ρAρ Az

∣

∣

∣

∣

∣

∣

∣

∣

=
(

1
ρ

∂Az

∂ϕ
− 1

ρ

∂

∂z
(ρAϕ)

)

eρ +
(

∂Aρ

∂z
− ∂Az

∂ρ

)

eϕ

+
(

1
ρ

∂

∂ρ
(ρAϕ) − 1

ρ

∂Aρ

∂ϕ

)

ez.

Example 3.3.2. For the spherical coordinates, u1 = r, u2 = θ, u3 = ϕ, and
x = r sin θ cos ϕ, y = r sin θ sinϕ, z = r cos θ. (a) Find the scale factors
h1, h2, and h3, (b) find the gradient, divergence, Laplacian, and curl in the
spherical coordinates from the general formulas derived in this section.

Solution 3.3.2. (a)

hi =
∣

∣

∣

∣

∂r
∂ui

∣

∣

∣

∣

=
∣

∣

∣

∣

∂r
∂ui

· ∂r
∂ui

∣

∣

∣

∣

1/2

=

[

(

∂x

∂ui

)2

+
(

∂y

∂ui

)2

+
(

∂z

∂ui

)2
]1/2

.

Now

∂x

∂u1
=

∂x

∂r
= sin θ cos ϕ,

∂y

∂u1
=

∂y

∂r
= sin θ sinϕ,

∂z

∂u1
=

∂z

∂r
= cos θ,

∂x

∂u2
=

∂x

∂θ
= r cos θ cos ϕ,

∂y

∂u2
=

∂y

∂θ
= r cos θ sin ϕ,

∂z

∂u2
=

∂z

∂θ
= −r sin θ,

∂x

∂u3
=

∂x

∂ϕ
= −r sin θ sinϕ,

∂y

∂u3
=

∂y

∂ϕ
= r sin θ cos ϕ,

∂z

∂u3
=

∂z

∂ϕ
= 0.
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h1 = (sin2 θ cos2 ϕ + sin2 θ sin2 ϕ + cos2 θ)1/2 = 1,

h2 =
(

r2 cos2 θ cos2 ϕ + r2 cos2 θ sin2 ϕ + r2 sin2 θ
)1/2

= r.

h3 =
(

r2 sin2 θ sin2 ϕ + r2 sin2 θ cos2 ϕ
)1/2

= r sin θ.

(b)

∇Φ = e1
1
h1

∂Φ

∂u1
+ e2

1
h2

∂Φ

∂u2
+ e3

1
h3

∂Φ

∂u3

= er
∂Φ

∂r
+ eθ

1
r

∂Φ

∂θ
+ eϕ

1
r sin θ

∂Φ

∂ϕ
.

∇ · A =
1

h1h2h3

[

∂(A1h2h3)
∂u1

+
∂(A2h3h1)

∂u2
+

∂(A3h1h2)
∂u3

]

=
1

r2 sin θ

[

∂(Arr
2 sin θ)

∂r
+

∂(Aθr sin θ)
∂θ

+
∂(Aϕr)

∂ϕ

]

=
1
r2

∂

∂r

(

r2Ar

)

+
1

r sin θ

∂

∂θ
(sin θAθ) +

1
r sin θ

∂

∂ϕ
(Aϕ).

∇2Φ =
1

h1h2h3

[

∂

∂u1

(

h2h3

h1

∂Φ

∂u1

)

+
∂

∂u2

(

h3h1

h2

∂Φ

∂u2

)

+
∂

∂u3

(

h1h2

h3

∂Φ

∂u3

)]

=
1

r2 sin θ

[

∂

∂r

(

r2 sin θ
∂Φ

∂r

)

+
∂

∂θ

(

sin θ
∂Φ

∂θ

)

+
∂

∂ϕ

(

1
sin θ

∂Φ

∂ϕ

)]

=
1
r2

∂

∂r

(

r2 ∂

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

r2 sin2 θ

∂2

∂ϕ2
.

∇ × A =
1

h1h2h3

∣

∣

∣

∣

∣

∣

∣

h1e1 h2e2 h3e3

∂

∂u1

∂

∂u2

∂

∂u3
A1h1 A2h2 A3h3

∣

∣

∣

∣

∣

∣

∣

=
1

r2 sin θ

∣

∣

∣

∣

∣

∣

∣

er reθ r sin θeϕ

∂

∂r

∂

∂θ

∂

∂ϕ
Ar rAθ r sin θAϕ

∣

∣

∣

∣

∣

∣

∣

=
1

r2 sin θ

(

∂

∂θ
(r sin θAϕ) − ∂

∂ϕ
(rAθ)

)

er

+
1

r sin θ

(

∂

∂ϕ
(Ar) −

∂

∂r
(r sin θAϕ)

)

eθ +
1
r

(

∂

∂r
(rAθ) −

∂

∂θ
(Ar)

)

eϕ.

3.4 Elliptical Coordinates

There are many coordinate systems. In the classical text of Morse and
Feshbach, “Methods of Theoretical Physics,” no less than 13 coordinate sys-
tems are discussed. Each of them is particularly convenient for certain special
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problems. However, because of the development of high-speed computers, the
need for most of them has diminished. In this section, we will introduce only
the elliptical coordinate system as one more example of special coordinate
systems. The elliptical coordinate system is important in dealing with the
two center problems in diatomic molecules.

3.4.1 Coordinate Surfaces

Elliptical coordinates are families of confocal ellipses and hyperbolas in two
dimensions. Rotating them around the major axis of the ellipses, surfaces
of prolate spheroids and hyperboloids are generated. These surfaces together
with the planes containing the major axis form a three dimensional coordinate
system which is commonly known as the elliptical coordinates.

The coordinate surfaces are shown in Fig. 3.7a. Let r1 and r2 be the
distances from the two focal points which are separated by a distance 2c
on the z axis as shown in Fig. 3.7b. A point in space is determined by r1 and
r2, the distances from the two focal points, and the angle ϕ around the z axis.
The coordinates of the point are λ, µ and ϕ with

λ =
r2 + r1

2c
, (3.98)

µ =
r2 − r1

2c
. (3.99)

x

F

F

j

r

z(a)

y

j = const.

l = const.

P (λ, µ, j)  

j = const.

0

B

r
z

y
x

A
F

F

c r

r1

r2

z

(b)

r

z

B

A

0

Fig. 3.7. Elliptical Coordinate System. (a) The coordinate surfaces generated by
an ellipse, two hyperbolas and a plane containing the major axis of the ellipse.
(b) The confocal ellipse given by r2 + r1 = constant, and the confocal hyperbolas
given by r2 − r1 = constant
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For λ = constant, (3.98) maps out a prolate spheroid in space, on any
ϕ = constant plane, it is just an ellipse as shown in Fig. 3.7b. This can be
seen as follows:

r2 =
[

(z + c)2 + ρ2
]1/2

, (3.100)

r1 =
[

(z − c)2 + ρ2
]1/2

, (3.101)

r2 + r1 = 2cλ. (3.102)

Square both sides of r2 = 2cλ − r1, and collect terms, it becomes

z = cλ2 − λr1.

Square both sides again, we find

(λ2 − 1)z2 + λ2ρ2 = c2λ2
(

λ2 − 1
)

.

This equation can be written in the standard form of an ellipse,

z2

c2λ2 +
ρ2

c2
(

λ2 − 1
) = 1, (3.103)

which cuts the z axis at ±cλ, the ρ axis at ± c
(

λ2 − 1
)1/2

. The range of λ is
clearly ∞ ≥ λ ≥ 1. When λ = 1, the ellipse reduces to the line between the
two focal points.

Starting with
r2 − r1 = 2cµ

and following the same procedure, we get

z2

c2µ2
+

ρ2

c2 (µ2 − 1)
= 1,

which is of the same form as the ellipse. However, in this case it is clear from
Fig. 3.7b that

r1 + 2c ≥ r2,

which simply says that the sum of two sides of a triangle must be greater than
the third side. It follows that

2c ≥ r2 − r1 = 2cµ.

Therefore 1 ≥ µ. Thus the equation is seen to be in the form of a hyperbola:

z2

c2µ2
− ρ2

c2 (1 − µ2)
= 1, (3.104)
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which cuts the z axis at ±cµ. There are two sheets of hyperbola, one corres-
ponds to positive value of µ and the other, negative µ. Therefore the range
of µ is 1 ≥ µ ≥ −1. When µ = 0, the hyperbola reduces to a straight line
perpendicular to the z axis through the origin. When µ = 1, it reduces to a
line from z = c along the z axis to ∞. When µ = −1, it reduces to a line from
z = −c along the z axis to −∞.

Surfaces of hyperboloids are generated by rotating this family of hyper-
bolas around the z axis. The range of the angle of rotation ϕ is of course,
0 ≤ ϕ ≤ 2π.

3.4.2 Relations with Rectangular Coordinates

The transformation between (x, y, z) and (λ, u, ϕ) can be seen from (3.100)
and (3.101):

r2
2 = z2 + 2zc + c2 + ρ2,

r2
1 = z2 − 2zc + c2 + ρ2.

It follows that
r2
2 − r2

1 = 4zc.

Since
r2
2 − r2

1 = (r2 − r1) (r2 + r1) = (2cµ) (2cλ) ,

therefore 4zc = 4c2µλ which gives

z = cµλ. (3.105)

Putting this into (3.103), we have

c2µ2λ2

c2λ2 +
ρ2

c2
(

λ2 − 1
) = 1,

which gives
ρ2 = c2

(

λ2 − 1
) (

1 − µ2
)

. (3.106)

Now, from Fig. 3.7a
x = ρ cos ϕ, y = ρ sin ϕ. (3.107)

Therefore

x = c
[(

λ2 − 1
) (

1 − µ2
)]1/2

cos ϕ,

y = c
[(

λ2 − 1
) (

1 − µ2
)]1/2

sinϕ, (3.108)
z = cµλ.

From the position vector

r = x (λ, µ, ϕ) i + y (λ, µ, ϕ) j + z (λ, µ, ϕ)k, (3.109)
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we can find the unit vectors along the λ, µ, ϕ coordinate curves. The three
unit vectors are defined as

eλ =
∂r
∂λ

/hλ, eµ =
∂r
∂µ

/hµ, eϕ =
∂r
∂ϕ

/hϕ. (3.110)

Since

∂r
∂λ

=
∂x

∂λ
i+

∂y

∂λ
j+

∂x

∂λ
k =

cλ
(

1 − µ2
)

[(

λ2 − 1
)

(1 − µ2)
]1/2

cos ϕi

+
cλ

(

1 − µ2
)

[(

λ2 − 1
)

(1 − µ2)
]1/2

sin ϕj+cµk, (3.111)

∂r
∂µ

=
∂x

∂µ
i+

∂y

∂µ
j+

∂x

∂µ
k =

−cµ
(

λ2 − 1
)

[(

λ2 − 1
)

(1 − µ2)
]1/2

cos ϕi

+
−cµ

(

λ2 − 1
)

[(

λ2 − 1
)

(1 − µ2)
]1/2

sin ϕj+cλk, (3.112)

∂r
∂ϕ

=
∂x

∂ϕ
i+

∂y

∂ϕ
j+

∂x

∂ϕ
k = −c

[(

λ2 − 1
) (

1 − µ2
)]1/2

sinϕi

+c
[(

λ2 − 1
) (

1 − µ2
)]1/2

cos ϕj, (3.113)

the scale factors are seen to be

hλ =
∣

∣

∣

∣

∂r
∂λ

∣

∣

∣

∣

=

[

(

∂x

∂λ

)2

+
(

∂y

∂λ

)2

+
(

∂z

∂λ

)2
]1/2

=

[

c2
(

λ2 − µ2
)

λ2 − 1

]1/2

, (3.114)

hµ =

[

c2
(

λ2 − µ2
)

1 − µ2

]1/2

, hϕ =
[

c2
(

λ2 − 1
) (

1 − µ2
)]1/2

. (3.115)

It can be readily verified that

eλ × eϕ = eµ, eϕ × eµ = eλ, eµ × eλ = eϕ. (3.116)

Therefore eλ, eϕ, eµ form an orthogonal basis set. Note that in the right-hand
convention, the sequence is (eλ, eϕ, eµ) and not (eλ, eµ, eϕ) .

The volume element in this system is

dV = hλhϕhµ dλ dϕ dµ = c3
(

λ2 − µ2
)

dλ dϕ dµ. (3.117)



3.4 Elliptical Coordinates 143

Example 3.4.1. Use the elliptical coordinates to find the volume of the prolate
spheroid generated by rotating the ellipse

z2

a2
+

ρ2

b2
= 1

around its major axis z.

Solution 3.4.1. In terms of elliptical coordinates, the ellipse is given by

z2

c2λ2 +
ρ2

c2(λ2 − 1)
= 1,

where 2c is the distance between the two focal points. To find the upper limit
of λ, we note a2 = c2λ2, or

λ = a/c

Furthermore,

b2 = c2(λ2 − 1) = c2[(a/c)2 − 1] = a2 − c2.

The volume of the prolate spheroid is

V =
∫∫∫

dV =
∫ 2π

0

∫ 1

−1

∫ a/c

1

c3
(

λ2 − u2
)

dλ dµ dϕ

= 2πc3

[

∫ 1

−1

dµ

∫ a/c

1

λ2 dλ −
∫ a/c

1

dλ

∫ 1

−1

µ2 dµ

]

,

∫ 1

−1

dµ

∫ a/c

1

λ2 dλ =
2
3

[

(a

c

)3

− 1
]

,

∫ a/c

1

dλ

∫ 1

−1

µ2 dµ =
2
3

[a

c
− 1

]

.

V =
4π

3
c3

[

(a

c

)3

− a

c

]

=
4π

3
a
(

a2 − c2
)

=
4π

3
ab2.

Example 3.4.2. Evaluate the following integral over all space

I =
∫∫∫

e−r1e−r2 dV,

where r1 and r2 are distances from two fixed points separated by a distance
R. (This happens to be the overlap integral of the H+

2 molecular ion.)

Solution 3.4.2.

I =
∫∫∫

e−r1e−r2 dV =
∫∫∫

e−(r1+r2) dV.
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Using elliptical coordinates

r1 + r2 = 2cλ = Rλ,

I =
(

R

2

)3 ∫ 2π

0

∫ 1

−1

∫ ∞

1

e−Rλ(λ2 − µ2) dλ dµ dϕ

=
(

R

2

)3

2π

[∫ 1

−1

dµ

∫ ∞

1

e−Rλλ2 dλ −
∫ ∞

1

e−Rλ dλ

∫ 1

−1

µ2 dµ

]

= π(1 + R +
1
3
R2)e−R.

3.4.3 Prolate Spheroidal Coordinates

The transformation (3.108) can be expressed in a more compact form with
still another change of variables. Taking advantage of the identities

sin2 θ = 1 − cos2 θ, sinh2 η = 1 + cosh2 η,

we can set
λ = cosh η, µ = cos θ. (3.118)

With this set of variables, the transformation (3.108) becomes

x = c sinh η sin θ cos ϕ,

y = c sinh η sin θ sinϕ, (3.119)
z = c cosh η cos θ.

The set of coordinates (η, θ, ϕ) is known as the prolate spheroidal coordi-
nate system. The range of η is 0 ≤ η < ∞, the range of θ is 0 ≤ θ ≤ π. The
scale factors for this system is

hη = c
(

sinh2 η + sin2 θ
)1/2

, (3.120)
hθ = hη, hϕ = c sinh η sin θ. (3.121)

The volume element in this system is

dV = c3
(

sinh3 η sin θ + sin3 θ sinh η
)

dη dθ dϕ.

Note that hηhθhϕ �= hλhϕhµ, since dλ dµ is not equal to dη dθ.

3.5 Multiple Integrals

So far we have seen how to find surface and volume elements for a multiple
integral in an orthogonal coordinate system. In this section, we will show that
following the same line of reasoning, this method can also be used for any
change of variables in multiple integrals, regardless whether the new coordi-
nates are orthogonal or not.
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3.5.1 Jacobian for Double Integral

Consider the double integral in the Cartesian coordinates
∫∫

S
f(x, y)da where

the area element da is of course just dx dy. Very often the variables of
integration (x, y) are not the most convenient for evaluating the integral. It
is desirable to define double integrals in terms of a general pair of curvilinear
coordinates.

Let the curvilinear coordinates be (u, v) , and there be a one-to-one trans-
formation between (x, y) and (u, v):

x = x (u, v) , y = y (u, v) . (3.122)

The position vector from the origin to a point inside S is

r = x (u, v) i + y (u, v) j. (3.123)

Therefore, r can also be considered as a function of the curvilinear coordinates,
that is r = r (u, v) . Thus,

dr =
∂r
∂u

du +
∂r
∂v

dv. (3.124)

Now (∂r/∂u) du is an infinitesimal vector along the line where v in r (u, v) is
kept constant and (∂r/∂v) dv is an infinitesimal vector along the line where u
is kept constant. While they may not be orthogonal, the area of the paralle-
logram formed by these two vectors is still given by their cross product,

da =
∣

∣

∣

∣

∂r
∂u

du × ∂r
∂v

dv

∣

∣

∣

∣

=
∣

∣

∣

∣

∂r
∂u

× ∂r
∂v

∣

∣

∣

∣

du dv. (3.125)

It follows from (3.123),

∂r
∂u

=
∂x

∂u
i +

∂y

∂u
j, (3.126)

∂r
∂v

=
∂x

∂v
i +

∂y

∂v
j. (3.127)

Thus the cross product of these two vectors is

∂r
∂u

× ∂r
∂v

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

i j k
∂x

∂u

∂y

∂u
0

∂x

∂v

∂y

∂v
0

∣

∣

∣

∣

∣

∣

∣

∣

∣

= k

∣

∣

∣

∣

∣

∣

∣

∂x

∂u

∂y

∂u
∂x

∂v

∂y

∂v

∣

∣

∣

∣

∣

∣

∣

. (3.128)

The last determinant is called Jacobian determinant (or simply as Jacobian)

written as
∂ (x, y)
∂ (u, v)

,
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J =
∂ (x, y)
∂ (u, v)

=

∣

∣

∣

∣

∣

∣

∣

∂x

∂u

∂y

∂u
∂x

∂v

∂y

∂v

∣

∣

∣

∣

∣

∣

∣

. (3.129)

It follows from (3.125) that the area element is equal to the absolute value of
the Jacobian times du dv

da =
∂ (x, y)
∂ (u, v)

du dv. (3.130)

Therefore the double integral can be written as
∫∫

S

f(x, y)dx dy =
∫∫

S

f(x(u, v), y(u, v))
∂ (x, y)
∂ (u, v)

du dv. (3.131)

The integrand on the right-hand side is a function of u and v. Now suppose
we want to change it to an integral over x and y, we should have

∫∫

S

f(x(u, v), y(u, v)
∂ (x, y)
∂ (u, v)

du dv =
∫∫

S

f(x, y)
∂ (x, y)
∂ (u, v)

∂ (u, v)
∂ (x, y)

dx dy.

The right-hand side of this equation must be identical to the left-hand side of
(3.131). Therefore

∂ (x, y)
∂ (u, v)

∂ (u, v)
∂ (x, y)

= 1. (3.132)

This is a useful relation. Often we need
∂ (x, y)
∂ (u, v)

, but
∂ (u, v)
∂ (x, y)

is much easier

to calculate. In that case, we simply set

∂ (x, y)
∂ (u, v)

=
[

∂ (u, v)
∂ (x, y)

]−1

.

Now we must be careful not to assert that dx dy is equal to
∂ (x, y)
∂ (u, v)

du dv.

They are equal only in the sense that under the integral sign the area element

dx dy can be changed to
∂ (x, y)
∂ (u, v)

du dv, provided the area S covered by (x, y)

is the same as covered by (u, v) . Locally they cannot be equal.
From ( 3.122), we have

dx =
∂x

∂u
du +

∂x

∂v
dv, (3.133)

dy =
∂y

∂u
du +

∂y

∂v
dv. (3.134)

If we multiply dx by dy, it is certainly not equal to
∂ (x, y)
∂ (u, v)

du dv.
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Incidentally, the transformation of the differentials can be written as

(

dx
dy

)

=

⎛

⎜

⎝

∂x

∂u

∂x

∂v
∂y

∂u

∂y

∂v

⎞

⎟

⎠

(

du
dv

)

= (J)
(

du
dv

)

, (3.135)

where (J) is known as Jacobian matrix. It is the matrix associated with the

Jacobian determinant
∂ (x, y)
∂ (u, v)

. Jacobian determinant and Jacobian matrix are

named after the German mathematician Carl Jacobi (1804–1851). Both are
very useful, but we must not get confused by the two.

3.5.2 Jacobians for Multiple Integrals

The definition of the triple integral
∫∫∫

V
f (x, y, z) dV over a given region

V is entirely analogous to the definition of a double integral. If x, y, z are
rectangular coordinates, then dV = dx dy dz. Just as in double integral,
often the triple integral is much easier to evaluate with a set of curvilinear
coordinates u1, u2, u3. Again, let

x = x (u1, u2, u3) , y = y (u1, u2, u3) , z = z (u1, u2, u3) , (3.136)

and the position vector be

r = x (u1, u2, u3) i + y (u1, u2, u3) j + z (u1, u2, u3)k, (3.137)

then
dr =

∂r
∂u1

du1 +
∂r
∂u2

du2 +
∂r
∂u3

du3. (3.138)

The partial derivative (∂r/∂u1) is the rate of variation of r with u2 and u3 held
fixed. Therefore (∂r/∂u1) du1 is an infinitesimal vector along the u1 coordinate
curve. Similarly, (∂r/∂u2) du2 and (∂r/∂u3) du3 are, respectively, infinitesimal
vectors along the u2 and u3 coordinate curves. Regardless whether they are
orthogonal or not, the volume of parallelepiped formed by these three vectors
is equal to the scalar triple product of them

dV =
∂r
∂u1

du1 ·
(

∂r
∂u2

du2 ×
∂r
∂u3

du3

)

. (3.139)

It follows from (3.137) that

∂r
∂u1

=
∂x

∂u1
i +

∂y

∂u1
j +

∂z

∂u1
k. (3.140)

With similar expressions for ∂r/∂u2 and ∂r/∂u3, the scalar triple product can
be written as
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dV =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂x

∂u1

∂y

∂u1

∂z

∂u1
∂x

∂u2

∂y

∂u2

∂z

∂u2
∂x

∂u3

∂y

∂u3

∂z

∂u3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

du1 du2 du3. (3.141)

Again the determinant is known as the Jacobian determinant, written as

∂(x, y, z)
∂(u1, u2, u3)

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂x

∂u1

∂y

∂u1

∂z

∂u1
∂x

∂u2

∂y

∂u2

∂z

∂u2
∂x

∂u3

∂y

∂u3

∂z

∂u3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (3.142)

Thus, if the region covered by x, y, z and by u1, u2, u3 is the same, then
∫∫∫

V

f (x, y, z) dx dy dz =
∫∫∫

V

F (u1, u2, u3)
∂(x, y, z)

∂(u1, u2, u3)
du1 du2 du3,

(3.143)
where F (u1, u2, u3) = f (x(u1, u2, u3), y(u1, u2, u3), z(u1, u2, u3)) .

We mention in passing that it can shown by induction that a multiple
integral of n variables can be similarly transformed, that is

∫∫

· · ·
∫

V

f(x1, x2, . . . , xn)dx1dx2 · · · dxn

=
∫∫

· · ·
∫

V

F (u1, u2, . . . , u3)
∂(x1, x2, . . . , xn)
∂(u1, u2, . . . , un)

du1du2 · · · dun. (3.144)

Example 3.5.1. Evaluate the integral

I =
∫∫

x2y2dx dy

over the interior of the ellipse

x2

a2
+

y2

b2
= 1.

Solution 3.5.1. Parametrically, the coordinates of a point on the ellipse can
be written as

x = a cos θ, y = b sin θ,

since
x2

a2
+

y2

b2
=

a2 cos2 θ

a2
+

b2 sin2 θ

b2
= 1.
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a

b
θ

y

x

a cos θ

b sin θ

Fig. 3.8. Parametric form of an ellipse. Parametrically an ellipse can be written as
x = a cos θ, y = b sin θ

This is shown in Fig. 3.8. Any point inside the ellipse can be expressed as

x = γa cos θ, y = γb sin θ,

with γ < 1. Therefore, we can take γ and θ as curvilinear coordinates. (Note
that the ellipse of γ = constant, and the straight line of θ = constant are not
orthogonal unless a = b.) Thus, the integral can be written as

I =
∫∫

(γa cos θ)2 (γb sin θ)2
∂ (x, y)
∂ (γ, θ)

dγ dθ

where the Jacobian is given by

∂ (x, y)
∂ (γ, θ)

=

∣

∣

∣

∣

∣

∣

∣

∂x

∂γ

∂y

∂γ
∂x

∂θ

∂y

∂θ

∣

∣

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

a cos θ b sin θ
−γa sin θ γb cos θ

∣

∣

∣

∣

= γab.

Therefore

I =
∫ 1

0

∫ 2π

0

(γa cos θ)2 (γb sin θ)2 γab dγ dθ

= a3b3

∫ 1

0

γ5dγ

∫ 2π

0

cos2 θ sin2 θ dθ = a3b3

(

1
6

)

π

4
=

π

24
a3b3.
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Example 3.5.2. Evaluate the integral

I =
∫ ∞

0

∫ ∞

0

x2 + y2

1 + (x2 − y2)2
exp(−2xy)dx dy

by making a change of variable

u = x2 − y2, v = 2xy.

Solution 3.5.2. First note the range of u is from −∞ to ∞,

I =
∫ ∞

0

∫ ∞

−∞

x2 + y2

1 + (x2 − y2)2
exp(−2xy)

∂ (x, y)
∂ (u, v)

du dv.

The Jacobian
∂ (x, y)
∂ (u, v)

is not easy to calculate directly, but

∂ (u, v)
∂ (x, y)

=

∣

∣

∣

∣

∣

∣

∣

∂u

∂x

∂u

∂y
∂v

∂x

∂v

∂y

∣

∣

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

2x −2y
2y 2x

∣

∣

∣

∣

= 4
(

x2 + y2
)

.

Therefore,
∂ (x, y)
∂ (u, v)

=
[

∂ (u, v)
∂ (x, y)

]−1

=
1

4(x2 + y2)
.

Thus

I =
∫ ∞

0

∫ ∞

−∞

x2 + y2

1 + (x2 − y2)2
exp(−2xy)

1
4(x2 + y2)

du dv

=
1
4

∫ ∞

0

∫ ∞

−∞

1
1 + (x2 − y2)2

exp(−2xy)du dv

=
1
4

∫ ∞

0

∫ ∞

−∞

1
1 + u2

exp(−v)du dv =
1
4

∫ ∞

0

exp(−v)dv × 2
∫ ∞

0

1
1 + u2

du

=
1
4

[− exp(−v)]∞0 2
[

tan−1 u
]∞
0

=
π

4
.

Exercises

1. Express the vector v = 2xi − zj + yk in cylindrical coordinates.
Ans. v =

(

2ρ cos2 ϕ − z sin ϕ
)

eρ − (2ρ cos ϕ sin ϕ + z cos ϕ) eϕ + ρ sin ϕez.

2. Find the curl of A where A = ez ln (1/ρ) in cylindrical coordinates.
Ans. ∇ × A = eϕ

1
ρ . (The magnetic vector potentialof a long wire carrying



3.5 Multiple Integrals 151

a current I in the z direction is A = ez
µI
2π ln (1/ρ) . The magnetic field is

given by B = ∇ × A = eϕ
µI
2π ln (1/ρ) .)

3. Show that ln ρ satisfies the Laplace’s equation
(

∇2 ln ρ = 0
)

, (a) use cylin-
drical coordinates, (b) use spherical coordinates (ρ = r sin θ) , (c) use
Cartesian coordinates

(

ρ =
(

x2 + y2
)1/2

)

.

4. Show that 1/r satisfies the Laplace’s equation
(

∇2(1/r) = 0
)

for r �= 0, (a)

use cylindrical coordinates
(

r =
(

ρ2 + z2
)1/2

)

, (b) use spherical coordi-

nates, (c) use Cartesian coordinates
(

r =
(

x2 + y2 + z2
)1/2

)

.

5. (a) Show that in cylindrical coordinates

dr
dt

= eρ
dρ

dt
+ eϕρ

dϕ

dt
+ ez

dz

dt
,

ds

dt
=

[

(

dρ

dt

)2

+
(

ρ
dϕ

dt

)2

+
(

dz

dt

)2
]1/2

,

where ds is the differential arc length.
(b) Find the length of the spiral described parametrically by ρ = a,
ϕ = t, z = bt from t = 0 to t = 5.
Ans. 5(a2 + b2)1/2.

6. With the vector field A given by A = ρeρ + ez in cylindrical coordinates,
(a) show that ∇×A = 0. (b) Find a scalar potential Φ, such that ∇Φ = A.
Ans. 1

2ρ2 + z

7. Use the infinitesimal volume element ∆V of Fig. 3.2 and the definition of
the divergence

∇ · F =
1

∆V

∫∫

©
S

F · n da

to derive the expression of the divergence in the cylindrical coordinate
system.
Hint: Find the surface elements of the six sides of ∆V , then add pairwise
the surface integrals of opposite sides. For example,

∫∫

left

F · n da +
∫∫

right

F · n da = −Fρ(ρ, ϕ, z)ρ dϕ dz

+Fρ(ρ + dρ, ϕ, z)(ρ + dρ)dϕ dz =
∂

∂ρ
(ρFρ) dρ dϕ dz.

With the othertwo pairs, the result is seen identical to (3.23).
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8. A particle is moving in space. Show that the spherical coordinate compo-
nents of its velocity and acceleration are given by

vr =
�
r, vθ = r

�
θ, vϕ = r sin θ

�
ϕ,

ar =
..
r − r

.

θ
2
− r sin2 θ

.
ϕ

2
,

aθ = r
..

θ + 2
.
r

.

θ − r cos θ sin θ
.
ϕ

2
,

aϕ = r sin θ
..
ϕ + 2

.
r sin θ

.
ϕ + 2r cos θ

.

θ
.
ϕ.

9. Starting with the expression of ∇Φ in spherical system, express er, eθ, eϕ

in terms of i, j,k, then equate it with ∇Φ in rectangular coordinates.
In this way, verify that

∂Φ

∂x
= sin θ cos ϕ

∂Φ

∂r
+ cos θ cos ϕ

1
r

∂Φ

∂θ
− sinϕ

r sin θ

∂Φ

∂ϕ
,

∂Φ

∂y
= sin θ sinϕ

∂Φ

∂r
+ cos θ sinϕ

1
r

∂Φ

∂θ
+

cos ϕ

r sin θ

∂Φ

∂ϕ
,

∂Φ

∂z
= cos θ

∂Φ

∂r
− sin θ

1
r

∂Φ

∂θ
.

10. Use the infinitesimal volume element ∆V of Fig. 3.4 and the definition of
the divergence

∇ · F =
1

∆V

∫∫

©
S

F · n da

to derive the expression of the divergence in the spherical coordinate
system.

11. Find the expression of the Laplacian ∇2 in spherical coordinates by
directly transforming ∇2 = ∂2/∂x2 +∂2/∂y2 +∂2/∂z2 into spherical coor-
dinates using the results of the last problem.

12. Show that the following three forms of ∇2Φ (r) are equivalent:

(a)
1
r2

d
dr

[

r2 d
dr

Φ (r)
]

, (b)
d2

dr2
Φ (r) +

2
r

d
dr

Φ (r) , (c)
1
r

d2

dr2
[rΦ (r)] .

13. (a) Show that the vector field

F =
(

A − B

r3

)

cos θer −
(

A +
B

2r3

)

sin θeθ

is irrotational (∇ × F = 0) .

(b) Find a scalar potential Φ such that ∇Φ = F.
(c) Show that Φ satisfies the Laplace equation ∇2Φ = 0.

Ans. Φ =
(

Ar +
B

2r2

)

cos θ.
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14. Use spherical coordinates to evaluate the following integrals over a sphere
of radius R centered at the origin,

(a)
∫∫∫

dV, (b)
∫∫∫

x2 dV, (c)
∫∫∫

y2 dV, (d)
∫∫∫

r2 dV.

Ans.
4π

3
R3,

4π

15
R3,

4π

15
R3,

4π

5
R3.

15. Let

L = − i
(

eϕ
∂

∂θ
− eθ

1
sin θ

∂

∂ϕ

)

,

show that
(a) ez · L = −i ∂

∂ϕ ,

(b) L · L= −
[

1
sin θ

∂
∂θ

(

sin θ ∂
∂θ

)

+ 1
sin2 θ

∂2

∂ϕ2

]

.

(These are quantum mechanical Lz, L
2 angular momentum operators with

� = 1.)

16. Find the area of the Earth’s surface which lies further north than
the 45◦N latitude. Assume the Earth is a sphere of radius R.
Ans. πR2(2 −

√
2), which is only about 15% of the total surface area of

the earth (4πR2).

17. Use spherical coordinates to verify the divergence theorem
∫∫∫

V

∇ · F dV =
∫∫

©
S

F · n da

with
F = r2 cos θer + r2 cos ϕeθ − r2 cos θ sin ϕeϕ

over a sphere of radius R.
Ans. Both sides equal to 0.

18. Use elliptical coordinates to evaluate the following integral over all space

I =
∫∫∫

1
r2

exp (−2r1) dV,

where r1 and r2 are the distances from two fixed points which are sepa-
rated by a distance R. (This integral happens to be the so-called Coulomb
integral for the H2 molecule.)

Ans.
π

R

[

1
R

− exp (−2R)
(

1 +
1
R

)]

.

Hint: r2 = 1
2R (λ + µ) , r1 = 1

2R (λ − µ).
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19. Parabolic coordinates (u, v, w) are related to Cartesian coordinates (x, y, z)
by the relation x = 2uv, y = u2 − v2, z = w. (a) Find the scale factors
hu, hv, hw. (b) Show that the (u, v, w) coordinate system is orthogonal.
Ans. 2

(

u2 + v2
)1/2

, 2
(

u2 + v2
)1/2

, 1.

20. Show that in terms of prolate spheroidal coordinates, the Laplace equation
(

∇2Φ = 0
)

is given by

1
(

sinh2 η + sin2 θ
)

[

∂2

∂η2
Φ + coth η

∂

∂η
Φ +

∂2

∂θ2 Φ + cot θ
∂

∂θ
Φ

]

+
1

sinh2 η sin2 θ

∂2

∂ϕ2
Φ = 0.

21. An orthogonal coordinate system (u1, u2, u3) is related to Cartesian coor-
dinates (x, y, z) by

x = x (u1, u2, u3) , y = y (u1, u2, u3) , z = z (u1, u2, u3) .

Show that

(a)
∂r
∂u1

· ∂r
∂u2

× ∂r
∂u3

= h1h2h3, (b) ∇u1 · ∇u2 × ∇u3 =
1
h1

1
h2

1
h3

,

(c)
∂r

∂u1
· ∂r

∂u2
× ∂r

∂u3
=

∂(x, y, z)

∂(u1, u2, u3)
, (d) ∇u1 · ∇u2 ×∇u3 =

∂(u1, u2, u3)

∂(x, y, z)
.

22. Use the transformation x + y = u, x − y = v to evaluate the double
integral

I =
∫∫

(x2 + y2)dx dy

within a square whose vertices are (0, 0) , (1, 1) , (2, 0) , (1,−1).
Ans. 8/3.

Hint: Recall the Jacobian is the absolute value of the determinant
∣

∣

∣

∣

∣

∣

∣

∂x

∂u

∂y

∂u
∂x

∂v

∂y

∂v

∣

∣

∣

∣

∣

∣

∣

. Draw the square and show that the four sides of the square

are v = 0, u = 2, v = 2, u = 0.
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Vector Transformation and Cartesian Tensors

The universal validity of physical laws is best expressed in terms of
mathematical quantities that are independent of any reference frame. Yet
physical problems governed by these laws can be solved, in most cases, only if
the relevant quantities are resolved into their components in some coordinate
system. For example, if we consider a block sliding on an inclined plane, the
motion of the block is of course governed by Newton’s second law of dynamics
F = ma, in which no coordinates appear. However, to get the actual values
of velocity, acceleration, etc. of the block, we have to set a coordinate system.
We will obtain the correct answer no matter how we orient the axes, although
some orientations are more convenient than others. It is possible to take the
x-axis horizontal or along the incline. The components of F and a in the x
and y directions are of course different in these two cases, but they will com-
bine to give the same correct results. In other words, if the coordinate system
is rotated, the components of a vector will of course change. But they must
change in a specific way in order for the vector equation to remain valid. For
this reason, the vector field is best defined in terms of the behavior of its
components under axes rotation.

When the coordinate system is rotated, the transformation of the compo-
nents of the position vector r can be expressed in terms of a rotation matrix.
We will use this rotation matrix to define all other vectors. The properties of
this rotation matrix will be used to analyze a variety of ways of combining the
components of two or more vectors. This approach to vector analysis can be
easily generalized to vectors of dimensions higher than three. It also naturally
leads to tensor analysis.

Many physical quantities are neither vectors nor scalars. For example,
the electric current density J flowing in a material is linearly related to the
electric field E that drives it. If the material is isotropic, the three components
of J and E are related by the same constant σ in the Ohm’s law

Ji = σEi,
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where σ is known as the conductivity. However, if the material is anisotropic
(nonisotropic), the direction of the current is different from the direction of
the field. In that case, the Ohm’s law is described by

Ji =
3
∑

j=1

σijEj ,

where σij is the conductivity tensor. It is a tensor of rank two because it
has two subscripts i and j, each of them runs from 1 to 3. All together it
has nine components. The defining property of a tensor is that, when the
coordinate axes are rotated, its components must change according to certain
transformation rules, analogous to the vector transformation. In fact, a vector,
with one subscript attached to its components, is a tensor of rank one. A tensor
of nth rank has n subscripts. In this chapter, the mathematics of tensors will
be restricted to Cartesian coordinate systems, therefore the name Cartesian
tensors.

4.1 Transformation Properties of Vectors

4.1.1 Transformation of Position Vector

The coordinate frame we use to describe positions in space is of course
entirely arbitrary, but there is a specific transformation rule for converting
vector components from one frame to another. For simplicity, we will first
consider a simple case. Suppose the rectangular coordinate system is rotated
counterclockwise about the z-axis through an angle θ. The point P is at
the position (x, y, z) before the rotation. After the rotation, the same posi-
tion becomes (x′, y′, z′) , as shown in Fig. 4.1. Therefore the position vector r
expressed in the original system is

r = xi + yj + zk, (4.1)

and expressed in the rotated system is

r = x′i′ + y′j′ + z′k′, (4.2)

where (i, j,k) and (i′, j′,k′) are the unit vectors along the three axes of the
original and the rotated coordinates, respectively. The relationship between
primed and unprimed systems can be easily found, since

x′ = i′ · r = i′ · (xi + yj + zk) = (i′·i) x + (i′ · j) y + (i′ · k)z

= x cos θ + y cos
(π

2
− θ

)

= x cos θ + y sin θ (4.3)
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Fig. 4.1. The coordinate system is rotated around z-axis. The primed quantities
are those in the rotated system and the unprimed quantities are those in the original
system

and

y′ = j′ · r = j′ · (xi+yj+zk) = (j′ · i) x + (j′ · j) y + (i′ · k)z

= x cos
(π

2
+ θ

)

+ y cos θ = −x sin θ + y cos θ. (4.4)

Since k = k′,
z′ = z.

Of course, these relations are also geometrical statements of the rotation.
It is seen in Fig. 4.1

x′ = OA + AB =
OQ
cos θ

+ PA sin θ =
OQ
cos θ

+ (PQ − AQ) sin θ

=
x

cos θ
+ (y − x tan θ) sin θ = x

(

1
cos θ

− sin2 θ

cos θ

)

+ y sin θ

= x cos θ + y sin θ,

y′ = PA cos θ = (PQ − AQ) cos θ = (y − x tan θ) cos θ

= y cos θ − x sin θ,

which are identical to (4.3) and (4.4) .
With matrix, these relations can be expressed as

⎛

⎝

x′

y′

z′

⎞

⎠ =

⎛

⎝

cos θ sin θ 0
− sin θ cos θ 0

0 0 1

⎞

⎠

⎛

⎝

x
y
z

⎞

⎠ . (4.5)

The 3×3 matrix is known as rotation matrix.
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4.1.2 Vector Equations

Vector equations are used to express physical laws which should be indepen-
dent of the reference frame. For example, Newton’s second law of dynamics

F = ma, (4.6)

relates the force F on the particle of mass m and the acceleration a of the par-
ticle. No coordinates appear explicitly in the equation, as it should be since
the law is universal. However, often we find it easier to set up a coordinate
system and work with the individual components. In any particular coordi-
nate system, each vector is represented by three components. When we change
the refrence frame, these components will change. But they must change in a
specific way in order for (4.6) to remain true. The coordinates will be changed
by either a translation and/or a rotation of the axes. A translation changes
the origin of the coordinate system, resulting in some additive constants in
the components of r. Since the derivative of a constant is zero, the translation
will not affect vectors F and a. Therefore the important changes are due to
the rotation of the axes.

First we note that if (4.6) holds in one coordinate system it holds in all,
for the equation may be written as

F−ma = 0, (4.7)

and under axes rotation, the zero vector will obviously remain zero in the new
system. In terms of its components in Cartesian coordinate system, (4.7) can
be written as

(Fx − max)i + (Fy − may)j + (Fz − maz)k = 0, (4.8)

which leads to
Fx = max, Fy = may, Fz = maz. (4.9)

Now if the system is rotated counterclockwise about z-axis through an
angle θ as indicated in Fig. 4.1, (4.7) becomes

(F ′
x′ − ma′

x′)i′+(F ′
y′ − ma′

y′)j′+(F ′
z′ − ma′

z′)k′= 0, (4.10)

where by definition

a′
x′ =

d2

dt2
x′ =

d2

dt2
(x cos θ + y sin θ)

= ax cos θ + ay sin θ, (4.11)

a′
y′ =

d2

dt2
y′ =

d2

dt2
(−x sin θ + y cos θ)

= −ax sin θ + ay cos θ, (4.12)
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a′
z′ =

d2

dt2
z′ =

d2

dt2
z = az. (4.13)

Each component of (4.10) must be identically equal to zero. This gives

F ′
x′ = ma′

x′ = m(ax cos θ + ay sin θ),
F ′

y′ = ma′
y′ = m(−ax sin θ + ay cos θ),

F ′
z′ = ma′

z′ = maz.

Using (4.9), we have
F ′

x′ = Fx cos θ + Fy sin θ,

F ′
y′ = −Fx sin θ + Fy cos θ,

F ′
z′ = Fz.

Written in the matrix form, these relations are expressed as

⎛

⎝

F ′
x′

F ′
y′

F ′
z′

⎞

⎠ =

⎛

⎝

cos θ sin θ 0
− sin θ cos θ 0

0 0 1

⎞

⎠

⎛

⎝

Fx

Fy

Fz

⎞

⎠ . (4.14)

Comparing (4.5) and (4.14) , we see that the rotation matrix is exactly the
same. In other words, the components of the vector F transform in the same
way as those of the position vector r.

In physical applications, it means that in order for a quantity to be
considered as a vector, the measured values of its components in a rotated
system must be related in this way to those in the original system.

The orientation between two coordinate systems is of course not limited to
a single rotation around a particular axis. If we know the relative orientation
of the systems, we can follow the procedure of (4.3) to establish the relation

⎛

⎝

x′

y′

z′

⎞

⎠ =

⎛

⎜

⎝

(i′ · i)
(j′ · i)
(k′ · i)

(i′ · j)
(j′ · j)
(k′ · j)

(i′ · k)
(j′ · k)
(k′ · k)

⎞

⎟

⎠

⎛

⎝

x
y
z

⎞

⎠ .

In Sect. 4.1.3 we consider the actual rotation that will bring (i, j,k) into
(

i′, j′,k′) .

4.1.3 Euler Angles

Often we need to express the transformation matrix in terms of concrete rota-
tions which bring the coordinate axes into a specified orientation. In general,
the rotation can be regarded as a combination of three rotations, performed
successively, about three different directions in space. The most useful descrip-
tion of this kind is in terms of Euler’s angles α, β, γ, which we now define.
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Fig. 4.2. Euler angles. (a) Relative orientation of two rectangular coordinate
systems XYZ ang X ′Y ′Z′ with a common origin is specified by three Euler angles
α, β, γ. The line of nodes is the intersection of XY and X′Y′ planes. The transforma-
tion matrix is the product of the matrices representing the following three rotations.
(b) First rotate α along the Z axis, bring X axis to coincide with the line of nodes.
(c) Rotate β along the line of nodes. (d) Finally rotate γ along Z′ axis

The two-coordinate systems are shown in Fig. 4.2a. Let XYZ be the axes of
the initial system, X ′Y ′Z ′ be the axes of the final system. The intersection of
XY plane and X′Y′ plane is known as the line of nodes. The relative orientation
of the two systems is specified by the three angles α, β, γ. As shown in Fig. 4.2a,
α is the angle between X axis and the line of nodes, β is the angle between
Z and Z ′ axes, and γ is the angle between the line of nodes and X ′ axis.

The transformation matrix from XYZ to X′Y′Z′ can be obtained by writing
it as the product of the separate rotations, each of which has a relative simple
rotation matrix. First rotate the initial axes XY Z, by an angle α counterclock-
wise about the Z axis, bring the X axis to coincide with the line of nodes.
The resultant coordinate system is labeled the X1, Y1, Z1 axes, as shown in
Fig. 4.2b. In the second stage the intermediate axes are rotated about X1 axis
counterclockwise by an angle β to produce another intermediate X11, Y11, Z11

axes, as shown in Fig. 4.2c. Finally the X11, Y11, Z11 axes are rotated counter-
clockwise by an angle γ about the Z11 axis to produce the desired X ′Y ′Z ′

axes, as shown in Fig. 4.2d.
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After the first rotation, the coordinates (x, y, z) of r in the initial system
becomes (x1, y1, z1) in the X1 Y1 Z1 system. They are related by a rotation
matrix,

⎛

⎝

x1

y1

z1

⎞

⎠ =

⎛

⎝

cos α sin α 0
− sin α cos α 0

0 0 1

⎞

⎠

⎛

⎝

x
y
z

⎞

⎠ . (4.15)

The second rotation is about the X1 axis. After the rotation, (x1, y1, z1) be-
comes (x11, y11, z11) with the relation

⎛

⎝

x11

y11

z11

⎞

⎠ =

⎛

⎝

1 0 0
0 cos β sin β
0 − sin β cos β

⎞

⎠

⎛

⎝

x1

y1

z1

⎞

⎠ . (4.16)

After the final rotation about Z11 axis, the coordinates of r becomes (x′, y′, z′)
which is given by

⎛

⎝

x′

y′

z′

⎞

⎠ =

⎛

⎝

cos γ sin γ 0
− sin γ cos γ 0

0 0 1

⎞

⎠

⎛

⎝

x11

y11

z11

⎞

⎠ . (4.17)

It is clear from (4.15) to (4.17) that

⎛

⎝

x′

y′

z′

⎞

⎠ = (A)

⎛

⎝

x
y
z

⎞

⎠ , (4.18)

where

(A) =

⎛

⎝

cos γ sin γ 0
− sin γ cos γ 0

0 0 1

⎞

⎠

⎛

⎝

1 0 0
0 cos β sin β
0 − sin β cos β

⎞

⎠

⎛

⎝

cos α sin α 0
− sin α cos α 0

0 0 1

⎞

⎠ . (4.19)

Hence the 3×3 matrix (A) is the rotation matrix of the complete transfor-
mation. Multiplying the three matrices out, one can readily find the elements
of A,

(A) =

⎛

⎜

⎝

cos γ cos α − sin γ cos β sin α

− sin γ cos α − cos γ cos β sinα

sinβ sin α

cos γ sin α + sin γ cos β cos α

− sin γ sinα + cos γ cos β cos α

− sin β cos α

sin γ sin β

cos γ sinβ

cos β

⎞

⎟

⎠ (4.20)
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It is not difficult to verify that the product of matrix (A) and its transpose
(

AT
)

is the identity matrix (I) , (The transpose of (A) is the matrix (A) with
row and column interchanged.)

(A)
(

AT
)

= (I) .

Therefore the inverse (A)−1 is given by the transpose (A)T ,

⎛

⎝

x
y
z

⎞

⎠ =
(

AT
)

⎛

⎝

x′

y′

z′

⎞

⎠ .

These are general properties of a rotation matrix which we shall prove in
Sect. 4.1.4

It should be noted that different authors define Euler angles in slightly
different ways, because the sequence of rotations used to define the final orien-
tation of the coordinate systems is to some extent arbitrary. We have adopted
the definition used in most textbooks on classical mechanics.

4.1.4 Properties of Rotation Matrices

To study the general properties of vector space, it is convenient to use a more
systematic notation. Let (x, y, z) be (x1, x2, x3) ; (i, j,k) be (e1, e2, e3) , and
(Vx, Vy, Vz) be (V1, V2, V3) . The quantities in the rotated system are similarly
labeled as prime quantities. One of the advantages of the new notation is that
it permits us to use the summation symbol Σ to write the equations in a more
compact form. The orthogonality of (i, j,k) is expressed as

(ei · ej) = (e′i · e′j) = δij ,

where the symbol δij , known as the Kronecker delta, is defined as

δij =
{

1 i = j
0 i �= j

.

In general, the same position vector r, expressed in two different coordinate
systems can be written as

r =
3
∑

j=1

x′
je

′
j =

3
∑

j=1

xjej . (4.21)

Taking the dot product e′i · r, we have

e′i ·
3
∑

j=1

x′
je

′
j =

3
∑

j=1

(e′i · e′j)x′
j =

3
∑

j=1

δijx
′
j = x′

i. (4.22)
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The same dot product from (4.21) gives

e′i ·
3
∑

j=1

xjej =
3
∑

j=1

(e′i · ej)xj . =
3
∑

j=1

aijxj . (4.23)

It follows from (4.22) and (4.23) that

x′
i =

3
∑

j=1

(e′i · ej)xj =
3
∑

j=1

aijxj , (4.24)

where
aij = (e′i · ej) (4.25)

is the direction cosine between e′i and ej . Note that i in (4.24) remains as a
parameter which gives rise to three separate equations when it is set to 1, 2,
and 3. In matrix notation, (4.24) is written as

⎛

⎝

x′
1

x′
2

x′
3

⎞

⎠ =

⎛

⎝

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞

⎠

⎛

⎝

x1

x2

x3

⎞

⎠ . (4.26)

If, instead of e′i · r, we take ei · r and follow the same procedure, we will
obtain

xi =
3
∑

j=1

(ei · e′j)x′
j .

Since (ei · e′j) is the cosine of the angle between ei and e′j which can be
expressed just as well as (e′j · ei), and by definition of (4.25) (e′j · ei) = aji,
therefore

xi =
3
∑

j=1

ajix
′
j , (4.27)

or
⎛

⎝

x1

x2

x3

⎞

⎠ =

⎛

⎝

a11 a21 a31

a12 a22 a32

a13 a23 a33

⎞

⎠

⎛

⎝

x′
1

x′
2

x′
3

⎞

⎠ . (4.28)

Comparing (4.26) and (4.28) we see that the inverse of the rotation matrix
is equal to its transpose

(aij)
−1 = (aji) = (aij)T. (4.29)

Any transformation that satisfies this condition is known as an orthogonal
transformation.

Renaming the indices i and j, we can write (4.27) as

xj =
3
∑

i=1

aijx
′
i. (4.30)
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It is thus clear from (4.24) and the last equation that

aij =
∂x′

i

∂xj
=

∂xj

∂x′
i

. (4.31)

We emphasize this relation is true only in the Cartesian coordinate system.
The nine elements of the rotation matrix are not independent of each

other. One way to derive the relationships between them is to note that if the
two coordinate systems have the same origin then the length of the position
vector should be the same in both systems. This requires

r · r =
3
∑

i=1

x′2
i =

3
∑

j=1

x2
j . (4.32)

Using (4.24) , we have

3
∑

i=1

x′2
i =

3
∑

i=1

x′
ix

′
i =

3
∑

i=1

⎛

⎝

3
∑

j=1

aijxj

⎞

⎠

(

3
∑

k=1

aikxk

)

=
3
∑

j=1

3
∑

k=1

xjxk

3
∑

i=1

aijaik =
3
∑

j=1

x2
j .

This can be true for all points if and only if
3
∑

i=1

aijaik = δjk. (4.33)

This relation is known as the orthogonality condition. Any matrix whose
elements satisfy this condition is called an orthogonal matrix. The rotation
matrix is an orthogonal matrix. With all possible values of i and j, (4.33)
consists of a set of six equations. This set of equations is equivalent to

3
∑

i=1

ajiaki = δjk (4.34)

which can be obtained in the same way from (4.32) , but starting from right
to left with the transformation of (4.27) .

Example 4.1.1. Show that the determinant of an orthogonal transformation is
equal to either +1 or −1.

Solution 4.1.1. Let the matrix of the transformation be (A). Since (A)
(A−1) = (I) , the determinant of the identity matrix is of course equal to one,
∣

∣AA−1
∣

∣ = 1. For an orthogonal transformation A−1 = AT, so
∣

∣AAT
∣

∣ = 1.

Since
∣

∣AAT
∣

∣ = |A|
∣

∣AT
∣

∣ and |A| =
∣

∣AT
∣

∣ , it follows that |A|2 = 1. Therefore
|A| = ±1.
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Example 4.1.2. Show that the determinant of a rotation matrix is equal
to +1.

Solution 4.1.2. Express e′i in terms of {ek} : e′i =
∑3

i=1 bikek.

(e′i · ej) =
3
∑

i=1

bik(ek · ej) =
3
∑

i=1

bikδkj = bij .

But (e′i · ej) = aij , therefore bij = aij . So

e′1 = a11e1 + a12e2 + a13e3,

e′2 = a21e1 + a22e2 + a23e3,

e′3 = a31e1 + a32e2 + a33e3.

As we have shown in 1.2.7, the scalar triple product is equal to the determinant
of the components

e′1 · (e′2 × e′3) =

∣

∣

∣

∣

∣

∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣

∣

∣

∣

∣

∣

,

which is the rotation matrix. On the other hand,

e′1 · (e′2 × e′3) = e′1 · e′1 = +1.

Therefore
∣

∣

∣

∣

∣

∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣

∣

∣

∣

∣

∣

= +1.

4.1.5 Definition of a Scalar and a Vector in Terms
of Transformation Properties

Now we come to the refined algebraic definition of a scalar and a vector.
Under a rotation of axes, the coordinates of the position vector in the

original system xi transform to x′
i in the rotated system according to

x′
i =

∑

j

aijxj (4.35)

with
∑

i

aijaik = δjk. (4.36)
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If under such a transformation, a quantity ϕ is unaffected, then ϕ is called
a scalar. This means if ϕ is a scalar, then

ϕ(x1, x2, x3) = ϕ′(x′
1, x

′
2, x

′
3). (4.37)

Note that after the coordinates are transformed, the functional form may be
changed (therefore ϕ′), but as long as (x1, x2, x3) and (x′

1, x
′
2, x

′
3) represent

the same point, their value is the same.
If a set of quantities (A1, A2,A3) in the original system is transformed into

(A′
1, A

′
2, A

′
3) in the rotated system according to

A′
i =

∑

j

aijAj , (4.38)

then the quantity A = (A1, A2,A3) is called a vector. Since (aij)
−1 = (aji),

(4.38) is equivalent to
Ai =

∑

j

ajiA
′
j . (4.39)

This definition is capable of generalization and ensures that vector equa-
tions are independent of coordinate system.

Example 4.1.3. Suppose A and B are vectors. Show that the dot product
A · B is a scalar.

Solution 4.1.3. Since A and B are vectors, under a rotation their compo-
nents transform according to

A′
i =

∑

j

aijAj ; B′
i =

∑

j

aijBj .

To show the dot product
A · B =

∑

i

AiBi

is a scalar, we must show that its value in the rotated system is the same as
its value in the original system.

(A · B)′ =
∑

i

A′
iB

′
i =

∑

i

⎛

⎝

∑

j

aijAj

⎞

⎠

(

∑

k

aikAk

)

=
∑

j

∑

k

(

∑

i

aijaik

)

AjAk =
∑

j

∑

k

δjkAjBk =
∑

j

AjBj = A · B.

So A · B is a scalar.
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Example 4.1.4. Show that if (A1, A2, A3) is such that
∑

i AiBi is a scalar for
every vector B, then (A1, A2, A3) is a vector.

Solution 4.1.4. Since
∑

i AiBi is a scalar and B is a vector,
∑

i

AiBi =
∑

i

A′
iB

′
i =

∑

i

A′
i

∑

j

aijBj .

Now both i and j are running indices, we can rename i as j, and j as i. So
∑

i

AiBi =
∑

j

A′
j

∑

i

ajiBi =
∑

i

∑

j

ajiA
′
jBi.

It follows
∑

i

⎛

⎝Ai −
∑

j

ajiA
′
j

⎞

⎠Bi = 0.

Since this identity holds for every B, we must have

Ai =
∑

j

ajiA
′
j .

Therefore A1, A2, A3 are components of a vector.

Example 4.1.5. Show that, in Cartesian coordinates, the gradient of a scalar
function ∇ϕ is a vector function.

Solution 4.1.5. As a scalar it must have the same value at a given point in
space, independent of the orientation of the coordinate system

ϕ′(x′
1, x

′
2, x

′
3) = ϕ(x1, x2, x3). (4.40)

Differentiating with respect to x′
i and using the chain rule, we have

∂

∂x′
i

ϕ′(x′
1, x

′
2, x

′
3) =

∂

∂x′
i

ϕ(x1, x2, x3) =
∑

j

∂ϕ

∂xj

∂xj

∂x′
i

. (4.41)

It follows from (4.31) that in Cartesian coordinates

∂xj

∂x′
i

= aij ,

therefore
∂ϕ′

∂x′
i

=
∑

j

aij
∂ϕ

∂xj
. (4.42)
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Now the components of ∇ϕ are

(

∂ϕ

∂x1
,

∂ϕ

∂x2
,

∂ϕ

∂x3

)

.

They transform under a rotation of coordinates in exactly the same way as
the components of a vector, therefore ∇ϕ is a vector function.

A vector whose components are just numbers is a constant vector. All
constant vectors behave like a position vector. When the axes are rotated,
the components change into a new set of numbers in accordance with the
transformation rule. Therefore, any set of three numbers can be considered as
a constant vector.

For vector fields, the components are functions of (x1, x2, x3) themselves.
Under a rotation, not only (x1, x2, x3) will change to (x′

1, x
′
2, x

′
3), the appea-

rances of the component functions may also change. This leads to some
complications.

Mathematically the transformation rules place little restriction on what
we can call a vector. We can make any set of three functions the components
of a vector field by simply defining, in a rotated system, the corresponding
functions obtained from the correct transformation rules as the components
of the vector in that system.

However, if we are discussing a physical entity, we are not free to define
its components in various systems. They are determined by physical facts. As
we stated earlier, all properly formulated physical laws must be independent
of the coordinate system. In other words, the appearance of the equation
describing physical laws must be the same in all coordinate systems. If vector
functions maintain the same appearances in rotated systems, equations writ-
ten in terms of them will be automatically invariant under rotation. Therefore
we include in the definition of a vector field, an additional condition that the
transformed components must look the same as the original components.

For example, many authors describe

(

V1

V2

)

=
(

x2

x1

)

(4.43)

as a vector field in a two-dimensional space (see, for example, E.M. Purcell,
“Electricity and Magnetism”, McGraw-Hill Book Co. (1965), page 36;
D.A. McQuarrie, “Mathematical Methods for Scientists and Engineers,”
University Science Books, (2003), page 301), still many others would say that
(4.43) cannot be called a vector field (see, for example, G. Arfken, “Mathemat-
ical Methods for Physicists”, Academic Press, (1968), page 8; P.C. Mathews,
“Vector Calculus”, Springer, Berlin Heidelberg New York (2002), page 118).
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If we consider (4.43) as a vector, then the components of this vector in the
system where the axes are rotated by an angle θ, are given by

(

V ′
1

V ′
2

)

=
(

cos θ sin θ
− sin θ cos θ

)(

V1

V2

)

=
(

cos θ sin θ
− sin θ cos θ

)(

x2

x1

)

.

Furthermore, the coordinates have to change according to

(

x1

x2

)

=
(

cos θ − sin θ

sin θ cos θ

)(

x′
1

x′
2

)

.

One can readily show that

(

V ′
1

V ′
2

)

=
(

2x′
1 sin θ cos θ + x′

2(cos2 θ − sin2 θ)
x′

1(cos2 θ − sin2 θ) − 2x′
2 sin θ cos θ

)

. (4.44)

Mathematically one can certainly define (4.44) as the components of the vector
in the rotated system, but they do not look like (4.43) .

On the other hand, consider a slightly different expression

(

V1

V2

)

=
(

x2

−x1

)

. (4.45)

With the same transformation rules, we obtain

(

V ′
1

V ′
2

)

=
(

x′
2(cos2 θ + sin2 θ)

−x′
1(cos2 θ + sin2 θ)

)

=
(

x′
2

−x′
1

)

, (4.46)

which has the same form as (4.45) . In this sense, we say that (4.45) is invariant
under rotations

Under our definition, (4.45) is a vector and (4.43) is not.

4.2 Cartesian Tensors

4.2.1 Definition

The definition of a vector can be extended to define a more general class of
objects called tensors, which may have more than one subscript.

If in the rectangular coordinate system of three-dimensional space, under
a rotation of coordinates

x′
i =

3
∑

j=1

aijxj ,
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the 3N quantities Ti1,i2,··· ,iN
(where each of i1, i2, · · · , iN runs independently

from 1 to 3) transform according to the rule

T ′
i1,i2,··· ,iN

=
3
∑

j1=1

3
∑

j2=1

· · ·
3
∑

jN=1

ai1j1ai2j2 · · · aiN jN
Tj1,j2,··· ,jN

, (4.47)

then Ti1,i2,··· ,iN
are the components of a Nth rank Cartesian tensor. Since

we are going to restrict our discussion to Cartesian tensors, unless explicitly
otherwise specified, we shall drop the word Cartesian from here on.

The rank of a tensor is the number of free subscripts. Tensor of zeroth
rank has only one (30 = 1) component. So it can be thought as a scalar. A
tensor of first rank has three components (31 = 3). The rule of transformation
of these components under a rotation is the same as the rule for a vector. So
a vector is a tensor of rank one.

The most useful other case is the tensor of second rank. It has nine com-
ponents (32 = 9), Tij which obey the transformation rule

T ′
ij =

3
∑

l=1

3
∑

m=1

ailajmTlm. (4.48)

The components of a second rank tensor may be conveniently expressed as a
3 × 3 matrix:

Tij =

⎛

⎝

T11 T12 T13

T21 T22 T23

T31 T32 T33

⎞

⎠ .

However, this does not mean that any 3× 3 matrix forms a tensor. The
essential condition is that its components satisfy the transformation rule.

As a matter of terminology, a second-rank tensor in three-dimensional
space is a collection of nine components Tij . However, very often Tij is referred
to as “tensor” instead of “tensor components” for simplicity. In other words,
Tij is used to mean the totality of the components as well as the individual
component. The context will make its meaning clear. Another often used
symbol for tensors is a double bar over a letter, such as T .

Example 4.2.1. Show that in a two-dimensional space, the following quantity
is a second-rank tensor

Tij =
(

x1x2 −x2
1

x2
2 −x1x2

)

.

Solution 4.2.1. In a two-dimensional space, a second rank tensor has four
(22 = 4) components. If it is a tensor, in a rotated system it must look like

T ′
ij =

(

x′
1x

′
2 −x′2

1

x′2
2 −x′

1x
′
2

)

,
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where
(

x′
1

x′
2

)

=
(

a11 a12

a21 a22

)(

x1

x2

)

=
(

cos θ sin θ

− sin θ cos θ

)(

x1

x2

)

.

Now we must check if each component satisfies the transformation rule.

T ′
11 = x′

1x
′
2 = (cos θx1 + sin θx2)(− sin θx1 + cos θx2)

= − cos θ sin θx2
1 + cos2 θx1x2 − sin2 θx2x1 + sin θ cos θx2

2.

This is to be compared with

T ′
11 =

2
∑

l=1

2
∑

m=1

a1la1mTlm

= a11a11T11 + a11a12T12 + a12a11T21 + a12a12T22

= cos2 θx1x2 − cos θ sin θx2
1 + sin θ cos θx2

2 − sin2 θx1x2.

It is seen that these two expressions are identical. The same process will show
that other components will also satisfy the transformation rule. Therefore Tij

is a second rank tensor in the two-dimensional space.

This transformation property is not to be taken for granted. In the above
example, if one algebraic sign is changed, the transformation rule will not be
satisfied. For example if T22 is changed to x1x2,

Tij =
(

x1x2 −x2
1

x2
2 x1x2

)

, (4.49)

then

T ′
11 �=

2
∑

l=1

2
∑

m=1

a1la1mTlm.

Therefore (4.49) is not a tensor.

4.2.2 Kronecker and Levi-Civita Tensors

Kronecker delta tensor. The Kronecker delta which we have already encoun-
tered,

δij =
{

1 i = j
0 i �= j

,

is a second rank tensor. To prove this, consider the transformation

δ′ij =
3
∑

l=1

3
∑

m=1

ailajmδlm =
3
∑

l=1

ailajl = δij . (4.50)
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Therefore

δ′ij =
{

1 i = j
0 i �= j

.

Thus δij obeys the tensor transformation rule and is invariant under rotation.
In addition, it has a special property. The numerical values of its components
are the same in all coordinate systems. A tensor with this property is known
as an isotropic tensor.

Since
∑

k

Dikδjk = Dij ,

the Kronecker delta tensor is also known as the substitution tensor. It is also
called a unit tensor, because of its matrix representation:

δij =

⎛

⎝

1 0 0
0 1 0
0 0 1

⎞

⎠ .

Levi-Civita Tensor. The Levi-Civita symbol εijk,

εijk =

⎧

⎨

⎩

1 if (i, j, k) is an even permutation of (1, 2, 3)
−1 if (i, j, k) is an odd permutation of (1, 2, 3)
0 if any index is repeated

,

which we used for the definition of a third-order determinant, is a third rank
isotropic tensor. This is also known as the alternating tensor. To prove this,
recall the definition of the third-order determinant

3
∑

l=1

3
∑

m=1

3
∑

n=1

a1la2ma3nεlmn =

∣

∣

∣

∣

∣

∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣

∣

∣

∣

∣

∣

. (4.51)

Now if the row indices (1, 2, 3) are replaced by (i, j, k), we have

3
∑

l=1

3
∑

m=1

3
∑

n=1

ailajmaknεlmn =

∣

∣

∣

∣

∣

∣

ai1 ai2 ai3

aj1 aj2 aj3

ak1 ak2 ak3

∣

∣

∣

∣

∣

∣

. (4.52)

This relation can be demonstrated by writing out the nonvanishing terms of
both sides. It can also be proved by noting the following. First for i = 1, j = 2,
k = 3, it reduces to (4.51). Now consider the effect of interchanging i and j.
The left-hand side changes sign because

3
∑

l=1

3
∑

m=1

3
∑

n=1

ajlaimaknεlmn =
3
∑

l=1

3
∑

m=1

3
∑

n=1

ajmailaknεm ln

= −
3
∑

l=1

3
∑

m=1

3
∑

n=1

ailajmaknεlmn.



4.2 Cartesian Tensors 173

The right-hand side also changes sign because it is an interchange of two
rows of the determinant. If two indices of i, j, k are the same, then both sides
are equal to zero. The left-hand side is zero, since the quantity is equal to its
negative. The right-hand side is equal to zero since two rows of the determinant
are identical. This suffices to prove the result since all permutations of i, j, k
can be achieved by a sequence of interchanges.

It follows from the properties of determinants and the definition of εijk

that
∣

∣

∣

∣

∣

∣

ai1 ai2 ai3

aj1 aj2 aj3

ak1 ak2 ak3

∣

∣

∣

∣

∣

∣

= εijk

∣

∣

∣

∣

∣

∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣

∣

∣

∣

∣

∣

, (4.53)

and (4.52) becomes

3
∑

l=1

3
∑

m=1

3
∑

n=1

ailajmaknεlmn = εijk

∣

∣

∣

∣

∣

∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣

∣

∣

∣

∣

∣

. (4.54)

This relation is true for any determinant. Now if aij are elements of a rotation
matrix,

∣

∣

∣

∣

∣

∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣

∣

∣

∣

∣

∣

= 1,

as shown in example 4.1.2.
To decide if εijk is a tensor, we should look at its value in a rotated system.

The tensor transformation rules require

ε′ijk =
3
∑

l=1

3
∑

m=1

3
∑

n=1

ailajmaknεlmn.

But
3
∑

l=1

3
∑

m=1

3
∑

n=1

ailajmaknεlmn = εijk

∣

∣

∣

∣

∣

∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣

∣

∣

∣

∣

∣

= εijk.

Hence
ε′ijk = εijk. (4.55)

Therefore, εijk is indeed a third-rank isotropic tensor.
Relation between δij and εijk. There is an interesting and important rela-

tion between Kronecker delta and Levi-Civita tensors
3
∑

i=1

εijkεilm = δjlδkm − δjmδkl. (4.56)

After summed over i, there are four free subscripts j, k, l,m. Therefore (4.56)
represents 81 (34 = 81) equations. Yet it is not difficult to prove (4.56), when
we make the following observations.
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1. If either j = k or l = m, both sides of (4.56) are equal to zero. If j = k,
the left-hand side is zero, because εikk = 0. The right-hand side is also
equal to zero because δklδkm − δkmδkl = 0. The same result is obtained
for l = m. Therefore we only need to check the cases for which j �= k and
l �= m.

2. For the left-hand side not to vanish, i, j, k have to be different. Therefore
given j �= k, i is fixed. Consider εilm, since i is fixed and i, l, m have to be
different for nonvanishing εilm, therefore, l = j, m = k or l = k, m = j
are the only two nonvanishing options.

3. For l = j and m = k, εijk = εilm. Thus εijk and εilm must have the same
sign. (Either both equal to −1, or both equal to +1). Therefore on the
left-hand side of (4.56) , εijkεilm = +1. On the right-hand side of (4.56),
it is also equal to +1, since l �= m,

δjlδkm − δjmδkl = δllδmm − δlmδml = 1 − 0 = 1.

4. For l = k and m = j, εijk = εiml = −εilm. Thus εijk and εilm have
opposite sign. (one equal to −1 and the other +1, or vice versa). Therefore
on the left-hand side of (4.56) , εijkεilm = −1. On the right-hand side of
(4.56) , it is also equal to −1, since l �= m,

δjlδkm − δjmδkl = δmlδlm − δmmδll = 0 − 1 = −1.

This covers all 81 cases. In each case the left-hand side is equal to the
right-hand side. Therefore (4.56) is established.

4.2.3 Outer Product

If Si1i2···iN
is a tensor of rank N and Tj1j2···jM

is a tensor of Mth rank, then
Si1i2···iN

Tj1j2···jM
is a tensor of rank (N + M).

This is known as the outer product theorem. (Outer product is also known
as direct product.) This theorem can be easily demonstrated. First it certainly
has 3N+M components. Under a rotation

S′
i1i2···iN

=
∑

k1···kN

ai1k1 · · · aiN kN
Sk1···kN

,

T ′
j1j2···jM

=
∑

l1···lN

aj1l1 · · · ajM lM Tl1···lM ,

where we have written
3
∑

j1=1

3
∑

j2=1

· · · ·
3
∑

jN=1

as
∑

j1···jN

,

(Si1i2···iN
Tj1j2···jM

)′ = S′
i1i2···iN

T ′
j1j2···jM

=
∑

k1···kN

∑

l1···lN

ai1k1 · · · aiN kN
aj1l1 · · · ajM lM Sk1···kN

Tl1···lM , (4.57)

which is how a (M + N)th rank tensor should transform.



4.2 Cartesian Tensors 175

For example, the outer product of two vectors is a second rank tensor.
Let (A1, A2, A3) and (B1, B2, B3) be vectors, so they are first rank tensors.
Their outer product AiBj is a second rank tensor. Its nine components can
be displayed as a matrix

AiBj =

⎛

⎜

⎝

A1B1 A1B2 A1B3

A2B1 A2B2 A2B3

A3B1 A3B2 A3B3

⎞

⎟

⎠ .

Since A and B are vectors,

A′
i =

3
∑

k=1

aikAk; B′
j =

3
∑

l=1

ajlBl,

it follows

A′
iB

′
j =

3
∑

k=1

3
∑

l=1

aikajlAkBl,

which shows AiBj is a second rank tensor, in agreement with the outer product
theorem.

We mention in passing, the second rank tensor formed by two vectors A
and B is sometimes denoted as AB (without anything between them). When
written in this way, it is called a dyad. A linear combination of dyads is a
dyadic. Since everything that can be done with vectors and dyadics can also
be done by tensors and matrices, but not the other way around, we will not
discuss dyadics any further.

Example 4.2.2. Use the outer product theorem to show that the expression in
example 4.2.1

Tij =
(

x1x2 −x2
1

x2
2 −x1x2

)

is a second rank tensor in a two-dimensional space.

Solution 4.2.2. A two-dimensional position vector is given by
(

A1

A2

)

=
(

x1

x2

)

.

We have also shown in (4.46) that
(

B1

B2

)

=
(

x2

−x1

)

is a vector in the two-dimensional space. The outer product of these two
vectors is a second rank tensor

AiBj =
(

x1x2 −x2
1

x2
2 −x1x2

)

= Tij .
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4.2.4 Contraction

We can lower the rank of any tensor through the following theorem.
If Ti1i2i3···iN

is a tensor of Nth rank, then

Si3···iN
=
∑

i1

∑

i2

δi1i2Ti1i2i3···iN

is a tensor of rank (N − 2).
To prove this theorem, we first note that Si3···iN

has 3N−2 components.
Next we have to show that

S′
i3···iN

=
∑

i1

∑

i2

δ′i1i2T
′
i1i2i3···iN

(4.58)

satisfies the tensor transformation rule.
With

δ′i1i2 = δi1i2 ,

T ′
i1,i2,···iN

=
∑

j1···jN

ai1j1ai2j2 · · · aiN jN
Tj1,j2,···,jN

,

(4.58) becomes

S′
i3···iN

=
∑

i1i2

δi1i2

∑

j1···jN

ai1j1ai2j2 · · · aiN jN
Tj1,j2,···,jN

=
∑

j1···jN

(

∑

i1i2

δi1i2ai1j1ai2j2

)

ai3j3 · · · aiN jN
Tj1,j2,···,jN

.

Now
∑

i1i2

δi1i2ai1j1ai2j2 =
∑

i1

ai1j1ai1j2 = δj1j2 ,

so

S′
i3···iN

=
∑

j1···jN

δj1j2ai3j3 · · · aiN jN
Tj1,j2,···,jN

=
∑

j3···jN

⎛

⎝

∑

j1j2

δj1j2Tj1,j2,···,jN

⎞

⎠ ai3j3 · · · aiN jN

=
∑

j3···jN

ai3j3 · · · aiN jN
Sj3···jN

. (4.59)

Therefore Si3···iN
is a (N − 2)th rank tensor.

The process of multiplying by δi1i2 and summing over i1 and i2 is called
contraction. For example, we have shown that AiBj , the outer product of two
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vectors A and B, is a second rank tensor. The contraction of this second-rank
tensor is a zeroth rank tensor, namely a scalar.

∑

ij

δijAiBj =
∑

i

AiBi = A · B.

Indeed, this zeroth rank tensor is the dot product of A and B.
Simply stated, a new tensor of rank (N − 2) will be obtained if two of the

indices of a Nth rank tensor are set equal to each other and summed over.
(The German word for contraction is verjüngung, which can be translated
as rejuvenation.) If the rank of the tensor is 3 or higher, we can contract
over any two indices. In general we get different (N − 2)th rank tensors if we
contract over different pairs of indices. For example, in the third rank tensor
Ti1i2i3 = Ai1Bi2Ci3 , if i1 and i2 are contracted, we obtain a vector

∑

i

Tiii3 =
∑

i

AiBiCi3 = (A · B) Ci3 ,

(remember Ci3 could represent a particular component of C, it also could
represent the totality of the components, namely the vector C itself). On the
other hand, if i2 and i3 are contracted, we obtain another vector

∑

i

Ti1ii =
∑

i

Ai1BiCi = Ai1 (B · C) .

So contracting the first two indices we get a scalar times vector C, and con-
tracting the second and third indices we get another scalar times vector A.

Contraction is one of the most important operations in tensor analysis and
is worth remembering.

4.2.5 Summation Convention

The summation convention (invented by Einstein) gives tensor analysis much
of its appeal. We note that in the definition of tensors (4.47), all indices over
which the summation is to be carried out are repeated in the expression.
Moreover, the range of the index (such as from 1 to 3) is already known from
the context of the discussion. Therefore, without loss of information, we may
drop the summation sign with the understanding that the repeated subscripts
imply that the term is to be summed over its range. The repeated subscript
is referred to as a “dummy” subscript. It must appear no more than twice in
a term. The choice of dummy subscript does not matter. Replace one dummy
index by another is one of the most useful tricks in tensor analysis one should
learn. For example, the dot product A · B can be equally represented either
by AiBi or AkBk, since both of them mean the same thing, namely

AkBk =
3
∑

i=1

AiBi =
3
∑

j=1

AjBj = A1B1 + A2B2 + A3B3 = A · B .
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Example 4.2.3. Express the expression AiBjCi with summation convention in
terms of ordinary vector notation.

Solution 4.2.3.

AiBjCi =

(

3
∑

i=1

AiCi

)

Bj = (A · C) Bj .

Note that it is the subscripts that indicate which vector is dotted with
which, not the ordering of the components of the vectors. The ordering is
immaterial. So (A · C) Bj = AkCkBj is equally valid. The letter j is a free
subscript, it can be replaced by any letter other than the dummy subscript.
However, if the term is used in a equation, then the free subscript of every
term in the equation must be represented by the same letter.

From now on when we write down a quantity with N subscripts, if all N
subscripts are different, it will be assumed that it is a good Nth rank tensor.
If any two of them are the same, it is a contracted tensor of rank N − 2.

Example 4.2.4. (a) What is the rank of the tensor εijkAlBm? (b) what is the
rank of the tensor εijkAjBk? (c) Express εijkAjBk in terms of ordinary vector
notation.

Solution 4.2.4. (a) Since εijk is a third rank tensor and AlBm is a tensor
of rank 2, so by the outer product theorem εijkAlBm is a tensor of rank 5.
(b) εijkAjBk is twice contracted, so it is a first rank (5 − 4 = 1) tensor. (c)

εijkAjBk =
∑

j

∑

k

εijkAjBk.

If i = 1, the only nonzero terms come from j = 2 or 3, since εijk is equal to
zero if any two indices are equal. If j = 2, k can only equal to 3. If j = 3, k
has to be 2. So

ε1jkAjBk = ε123A2B3 + ε132A3B2 = A2B3 − A3B2 = (A × B)1.

Similarly,
ε2jkAjBk = (A × B)2, ε3jkAjBk = (A × B)3.

Therefore
εijkAjBk = (A × B)i.
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Example 4.2.5. Show that

εijkAiBjCk =

∣

∣

∣

∣

∣

∣

A1 A2 A3

B1 B2 B3

C1 C2 C3

∣

∣

∣

∣

∣

∣

.

Solution 4.2.5.

εijkAiBjCk = (εijkAiBj)Ck = (A × B)kCk = (A × B) · C

=

∣

∣

∣

∣

∣

∣

C1 C2 C3

A1 A2 A3

B1 B2 B3

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

A1 A2 A3

B1 B2 B3

C1 C2 C3

∣

∣

∣

∣

∣

∣

.

With the summation convention, (4.56) is simply

εijkεilm = δjlδkm − δjmδkl. (4.60)

Many vector identities can be quickly and elegantly proved with this equation.

Example 4.2.6. Show that

A× (B × C) = (A · C)B − C (A · B)

Solution 4.2.6.

(B × C)i = εijkBjCk

[A× (B × C)]l = εlmnAm (B × C)n = εlmnAmεnjkBjCk = εnlmεnjkAmBjCk

εnlmεnjkAmBjCk = (δljδmk − δlkδmj) AmBjCk

= AkBlCk − AjBjCl = (A · C) Bl − (A · B) Cl.

Since the corresponding components agree, the identity is established.

Example 4.2.7. Show that

(A × B) · (C × D) = (A · C) (B · D)− (A · D) (B · C) .

Solution 4.2.7.

(A × B) · (C × D) =εkijAiBjεklmClDm

= (δilδjm − δimδjl) AiBjClDm = AlBmClDm − AmBlClDm

= (A · C) (B · D)− (A · D) (B · C) .

4.2.6 Tensor Fields

A tensor field of Nth rank, Ti1···iN
(x1, x2, x3) is the totality of 3N functions

which for any given point in space (x1, x2, x3) constitute a tensor of Nth rank.
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A scalar field is a tensor field of rank zero. We have shown in example 4.1.5
that the gradient of a scalar field is a vector field. There is a corresponding
theorem for tensor fields.

If Ti1···iN
(x1, x2, x3) is a tensor field of rank N, then

∂

∂xi
Ti1···iN

(x1, x2, x3)

is a tensor field of rank N + 1.
The proof of this theorem goes as follows.
(

∂

∂xi
Ti1···iN

(x1, x2, x3)
)′

=
∂

∂x′
i

T ′
i1···iN

(x′
1, x

′
2, x

′
3)

=
∂

∂x′
i

∑

j1···jN

ai1j1 · · · aiN jN
Tj1···jN

(x1, x2, x3).

By chain rule and (4.31)

∂

∂x′
i

=
∑

j

∂xj

∂x′
i

∂

∂xj
=
∑

j

aij
∂

∂xj
,

so
(

∂

∂xi
Ti1···iN

(x1, x2, x3)
)′

=
∑

j

∑

j1···jN

aijai1j1 · · ·aiN jN

∂

∂xj
Tj1···jN

(x1, x2, x3),

(4.61)
which is how a tensor of rank N + 1 transforms. Therefore the theorem is
proven.

To simplify the writing, we introduce another useful notation. From now
on, the differential operator ∂/∂xi is denoted by ∂i. For example,

∂

∂xi
ϕ = ∂iϕ,

which is the ith component of ∇ϕ. Again it can also represent the totality of
(

∂ϕ

∂x1
,

∂ϕ

∂x2
,

∂ϕ

∂x3

)

.

Thus ∂iϕ is a vector. (Note it has one subscript.)
Similarly,

∇ × A =

∣

∣

∣

∣

∣

∣

e1 e2 e3

∂1 ∂2 ∂3

A1 A2 A3

∣

∣

∣

∣

∣

∣

,

∇ · A =
∑

i

∂Ai

∂xi
=
∑

i

∂iAi = ∂iAi,
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(∇ × A)i =
∑

j,k

εijk
∂

∂xj
Ak = εijk∂jAk

∇2ϕ = ∇ · ∇ϕ = ∂i(∇ϕ)i = ∂i∂iϕ.

With these notations, vector field identities can be easily established.

Example 4.2.8. Show that ∇ · (∇ × A) = 0.

Solution 4.2.8.

∇ · (∇ × A) = ∂i (∇ × A)i = ∂iεijk∂jAk = εijk∂i∂jAk

= εijk∂j∂iAk (∂i∂j = ∂j∂i)
= −εjik∂j∂iAk

= −εijk∂i∂jAk (rename i and j)
= −∇ · (∇ × A)

Thus 2∇ · (∇ × A) = 0. Hence ∇ · (∇ × A) = 0.

Example 4.2.9. Show that ∇ × (∇ϕ) = 0.

Solution 4.2.9.

[∇ × ∇ϕ]i = εijk∂j (∇ϕ)k = εijk∂j∂kϕ = −εikj∂j∂kϕ

= −εijk∂j∂kϕ (rename j and k)
= − [∇ × ∇ϕ]i .

It follows that ∇ × ∇ϕ = 0.

Example 4.2.10. Show that ∇ × (∇ × A) = ∇ (∇ · A) −∇2A.

Solution 4.2.10.

[∇ × (∇ × A)]i = εijk∂j (∇ × A)k = εijk∂jεklm∂lAm

= εkijεklm∂j∂lAm

= (δilδjm − δimδjl) ∂j∂lAm

= ∂m∂iAm − ∂l∂lAi = ∂i∂mAm − ∂l∂lAi

= [∇ (∇ · A)]i − (∇2A)i.

Hence ∇ × (∇ × A) = ∇ (∇ · A) − ∇2A, since corresponding components
from both sides agree.
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Example 4.2.11. Show that ∇ · (A × B) = (∇ × A) · B − A· (∇ × B) .

Solution 4.2.11.

∇ · (A × B) = ∂i (A × B)i = ∂iεijkAjBk = εijk∂i(AjBk)

= εijk(∂iAj)Bk + εijkAj(∂iBk) = (εijk∂iAj)Bk − Aj(εjik∂iBk)

= (∇ × A)k Bk − Aj (∇ × B)j = (∇ × A) · B − A· (∇ × B) .

Example 4.2.12. Show that

∇ × (A × B) = (∇ · B)A − (∇ · A)B + (B · ∇)A − (A · ∇)B.

Solution 4.2.12.

[∇ × (A × B)]i = εijk∂j (A × B)k = εijk∂jεklmAlBm

= εkijεklm∂j(AlBm) = εkijεklm(Bm∂jAl + Al∂jBm)

= (δilδjm − δimδjl) (Bm∂jAl + Al∂jBm)

= Bm∂mAi − Bi∂lAl + Ai∂mBm − Al∂lBi

= [(B · ∇)A − (∇ · A)B + (∇ · B)A − (A · ∇)B]i .

Since the corresponding components agree, the two sides of the desired
equation must be equal.

4.2.7 Quotient Rule

Another way to determine if a quantity with two subscripts is a second rank
tensor is to use the following quotient rule.

If for an arbitrary vector B, the result of summing over j of the product
KijBj is another vector A

Ai = KijBj , (4.62)

and (4.62) holds in all Cartesian coordinate systems, then Kij is a true second
rank tensor.

To prove the quotient rule, we examine the components of A in a rotated
system,

A′
i = ailAl = ailKlmBm.

Since B is a vector,
Bm = ajmB′

j .
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It follows
A′

i = ailKlmBm = ailKlmajmB′
j = ailajmKlmB′

j .

But since (4.62) holds for all systems,

A′
i = K ′

ijB
′
j .

Subtracting the last two equations,

(

K ′
ij − ailajmKlm

)

B′
j = 0.

Since B′
j is arbitrary,

K ′
ij = ailajmKlm.

Therefore Kij is a second rank tensor.
With a similar procedure, one can show that if an Mth rank tensor is

linearly related to an Nth rank tensor through a quantity T with M + N
subscripts, and the relation holds for all systems, then T is a tensor of rank
M + N.

Example 4.2.13. If Tijxixj is equal to a scalar S, show that Tij is a second
rank tensor.

Solution 4.2.13. Since xixj is the outer product of two position vectors, so
it is a second rank tensor. The scalar S is a zeroth rank tensor, therefore
by quotient rule Tij is a second rank (2 + 0 = 2) tensor. It is instructive to
demonstrate this directly by looking at the components in a rotated system.

S = Tijxixj = Tlmxlxm. xl = ailx
′
i; xm = ajmx′

j .

S = Tlmailx
′
iajmx′

j = ailajmTlmx′
lx

′
j ,

S′ = T ′
ijx

′
ix

′
j , S′ = S.

Therefore
(T ′

ij − ailajmTlm)x′
ix

′
j = 0; T ′

ij = ailajmTlm.

Hence Tij is a second rank tensor.

4.2.8 Symmetry Properties of Tensors

A tensor Sijk··· is said to be symmetric in the indices i and j if

Sijk··· = Sjik···.
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A tensor Aijk··· is said to be antisymmetric in the indices i and j if

Aijk··· = −Ajik···.

For example, the outer product of r with itself xixj is a second rank symmet-
rical tensor, the Kronecker delta δij is also a second rank symmetrical tensor.
On the other hand, the Levi-Civita symbol εijk is antisymmetric with respect
to any two of its indices, since εijk = −εjik.

Symmetry is a physical property of tensors. It is invariant to coordinate
transformation. For example, if Sij is a symmetrical tensor in certain coordi-
nate system, in a rotated system

S′
lm = aliamjSij = amjaliSji = S′

ml.

Therefore Sij is also a symmetric tensor in a new system. Similar results hold
also for antisymmetric tensors.

A symmetric second rank tensor Sij can be written in the form

Sij =

⎛

⎝

S11 S12 S13

S12 S22 S23

S12 S23 S33

⎞

⎠ ,

while an antisymmetric second rank tensor Aij is of the form

Aij =

⎛

⎝

0 A12 A13

−A12 0 A23

−A13 −A23 0

⎞

⎠ .

Thus a symmetric second rank tensor has six independent components, while
an antisymmetric second tensor has only three independent components.

Any second rank tensor Tij can be represented as the sum of a symmetric
tensor and an antisymmetric tensor. Given Tij , one can construct

Sij =
1
2

(Tij + Tji) , Aij =
1
2
(Tij − Tji).

Clearly Sij is symmetric and Aij is antisymmetric. Furthermore

Tij = Sij + Aij .

Therefore any second rank tensor has a symmetric part and an antisymmetric
part.

As shown in the theory of matrices, the six independent elements of a
symmetric matrix can be represented by a quadratic surface. In the same way,
a symmetric second rank tensor can be represented uniquely by an ellipsoid

Tijxixj = ±1,

where the sign is that of the determinant of |Tij | .
The three independent components of an antisymmetric second rank tensor

can also be represented geometrically by a vector.
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4.2.9 Pseudotensors

One of the reasons why tensors are useful is that they make it possible to
formulate the laws of physics in a way that is independent of any preferred
direction in space. One might also expect these laws to be independent of
whether we choose a right-handed system or a left-handed system of axes.
However, under a transformation from right-handed axes to left-handed axes
not all tensors transform in the same way.

So far our discussion has been restricted to rotations within right-handed
systems. The right-handed system is defined by naming the three basis
vectors e1, e2, e3 in such a way that the thumb of your right hand is pointing
in the direction of e3 if the other four fingers can curl from e1 toward e2

without passing through negative e2. A right-handed system can be rotated
into another right-handed system. The determinant of the rotation matrix is
equal to 1 as shown in example 4.1.2.

Now consider the effect of inversion. The three basis vectors e1, e2, e3 are
changed to e′1, e

′
2, e

′
3 such that

e′1 = −e1, e′2 = −e2, e′3 = −e3.

This new set of coordinate axes is a left-handed system. This is called a left-
handed system because only if you use your left hand, can the thumb point
in the positive e′3 direction while other four fingers curl from e′1 toward e′2
without passing through negative e′2. Note that one cannot rotate a right-
handed system into a left-handed system.

If we use the same right hand rule for the definition of vector cross products
in all systems, then with right-handed axes

(e1 × e2) · e3 = 1,

and with left-handed axis

(e′1 × e′2) · e′3 = −1.

The position vector

r = x1e1 + x2e2 + x3e3

expressed in the inverted system becomes

r′ = −x1e′1 − x2e′2 − x3e′3.

In other words, it is the same vector r = r′, except in the prime system
the coefficients become negative since the axes are inverted. Vectors behaving
this way when the coordinates are changed from a right-handed system to a
left-handed system are called polar vectors. They are just regular vectors.
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A fundamental difference appears when we encounter the cross product of
two polar vectors. The components of C = A × B are given by

C1 = A2B3 − A3B2,

and so on. Now when the coordinates axes are inverted, Ai goes to −Ai, Bi

changes to −Bi but Ci goes to +Ci since it is the product of two negative
terms. It does not behave like polar vectors under inversion. To distinguish,
the cross product is called a pseudo vector, also known as Axial vector.

In addition to inversion, reflection (reversing one axis) and interchanging
of two axes also transform a right-handed system into a left-handed system.
The transformation matrices of these right-left operations are as follows.

Inversion:
⎛

⎝

x′
1

x′
2

x′
3

⎞

⎠ =

⎛

⎝

−1 0 0
0 −1 0
0 0 −1

⎞

⎠

⎛

⎝

x1

x2

x3

⎞

⎠ .

Reflection with respect to the x2x3 plane:
⎛

⎝

x′
1

x′
2

x′
3

⎞

⎠ =

⎛

⎝

−1 0 0
0 1 0
0 0 1

⎞

⎠

⎛

⎝

x1

x2

x3

⎞

⎠ .

Interchange of x1 and x2 axes:
⎛

⎝

x′
1

x′
2

x′
3

⎞

⎠ =

⎛

⎝

0 1 0
1 0 0
0 0 1

⎞

⎠

⎛

⎝

x1

x2

x3

⎞

⎠ .

These equations can be written in the form

x′
i = aijxj .

It is obvious that the determinants |aij | of these transformation matrices are
all equal to −1. A left-handed system can be rotated into another left-handed
system with Euler angles in the same way as in the right-handed systems.
Hence, if a matrix (aij) transforms a right-handed system into a left-handed
system, or vice versa, the determinant |aij | is always equal to −1. Furthermore,
we can show, in the same manner as with the rotation matrix, that its elements
also satisfy the orthogonality condition:

aikajk = δij .

Therefore it is also an orthogonal transformation.
Thus the orthogonal transformations can be divided into two classes:

proper transformation for which the determinant |aij | is equal to one, and
improper transformation for which the determinant is equal to negative one.
If the transformation is a rotation, it is a proper transformation. If the
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transformation changes a right-handed system into a left-handed system, the
transformation is improper.

A pseudovector can now be defined as satisfying the transforming rule

V ′
i = |aij | aijVj .

If the transformation is proper, polar vectors and pseudovectors transform in
the same way. If the transformation is improper, polar vectors transform as a
regular vector, but pseudovectors will flip direction.

Pseudotensors are defined in the same way. The components of a Nth rank
pseudotensor transform according to the rule:

T ′
i1···iN

= |aij | ai1j1 · · · aiN jN
Tj1···jN

, (4.63)

which is exactly the same as a regular tensor, except for the determinant |aij | .
It follows from this definition that:

1. The outer product of two pseudotensors of rank M and N is a regular
tensor of rank M + N.

2. The outer product of a pseudotensor of rank M and a regular tensor of
rank N gives a pseudotensor of rank M + N.

3. The contraction of a pseudotensor of rank N gives a pseudotensor of rank
N − 2.

A zeroth rank pseudotensor is a pseudoscalar, which changes sign un-
der inversion, whereas a scalar does not. An example of pseudoscalar is the
scalar triple product (A × B) · C. The cross product of A × B is a first
rank pseudotensor, the polar vector C is a regular first rank tensor. Hence
(A × B)i ·Ci = (A × B) ·C is the contraction of a second rank pseudotensor
(A × B)i · Cj , therefore a pseudoscalar. If A,B,C are the three sides of a
parallelepiped, (A × B) ·C is the volume of the parallelepiped. Defined this
way, volume is actually a pseudoscalar.

We have shown εijk is an isotropic third rank tensor under rotations. We
will now show that if εijk is to mean the same thing in both right-handed
and left-handed systems, then εijk must be regarded as third rank pseudoten-
sor. This is because if we want ε′ijk = εijk under both proper and improper
transformations, then εijk must be expressed as

ε′ijk = |aij | ailajmankεlmn. (4.64)

Since
ailajmaknεlmn = εijk |aij | ,

as shown in (4.54) , it follows from (4.64) that

ε′ijk = |aij | εijk |aij | = |aij |2 εijk = εijk.

Therefore εijk is a third rank pseudotensor.



188 4 Vector Transformation and Cartesian Tensors

Example 4.2.14. Let T12, T13, T23 be the three independent components of an
antisymmetric tensor, show that T23,−T13, T13 can be regarded as the com-
ponents of a pseudovector.

Solution 4.2.14. Since εijk is a third rank pseudotensor, Tjk is a second rank
tensor, after contracting twice,

Ci = εijkTjk

the result Ci is a first rank pseudotensor, which is just a pseudovector. Since
Tij = −Tji, so

T21 = −T12, T31 = −T13, T32 = −T23.

Now

C1 = ε123T23 + ε132T32 = T23 − T32 = 2T23,

C2 = ε213T13 + ε231T31 = −T13 + T31 = −2T13,

C3 = ε312T12 + ε321T21 = T12 − T21 = 2T12.

Since (C1, C2, C3) is a pseudovector, (T23,−T13, T12) is also a pseudovector.

Example 4.2.15. Use the fact that εijk is a third rank pseudotensor to show
that A × B is a pseudovector.

Solution 4.2.15. Let C = A × B, so

Ci = εijkAjBk.

Expressed in a new coordinate system where A,B,C are, respectively, trans-
formed to A′,B′,C′, the cross product becomes C′= A′×B′ which can be
written in the component form

C ′
l = ε′lmnA′

mB′
n.

Since εijk is a pseudotensor,

ε′lmn = |aij | aliamjankεijk,

so C ′
l becomes

C ′
l = |aij | aliamjankεijkA′

mB′
n.

But
Aj = amjA

′
m, Bk = ankB′

n,

thus
C ′

l = |aij | aliεijkAjBk = |aij | aliCi.

Therefore C = A × B is a pseudovector.
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Since mathematical equations describing physical laws should be inde-
pendent of coordinate systems, we cannot equate tensors of different rank
because they have different transformation properties under rotation. Like-
wise, in classical physics, we cannot equate pseudotensors to tensors because
they transform differently under inversion. However, surprisingly nature under
the influence of weak interaction can distinguish a left-handed system from
a right-handed system. By introducing a pseudoscalar, the counterintuitive
events that violate parity conservation can be described. (See, T.D. Lee in
“Thirty Years Since Parity Nonconservation”, Birkhäuser, 1988, page 158).

4.3 Some Physical Examples

4.3.1 Moment of Inertia Tensor

One of the most familiar second rank tensors in physics is the moment of
inertial tensor. It relates the angular momentum L and the angular velocity
ω of the rotational motion of a rigid body. The angular momentum L of a
rigid body rotating about a fixed point is given by

L =
∫

r × vdm,

where r is the position vector from the fixed point to the mass element dm,
and v is the velocity of dm. We have shown

v = ω × r,

therefore

L =
∫

r × (ω × r)dm

=
∫

[(r · r)ω − (r · ω)r] dm.

Written in tensor notation with the summation convention, the ith component
of L is

Li =
∫

[r2ωi − xjωjxi]dm.

Since
r2ωi = r2ωjδij ,

Li = ωj

∫

[r2δij − xjxi]dm = Iijωj,

where Iij , known as the moment of inertia tensor, is given by

Iij =
∫

[xkxkδij − xjxi]dm. (4.65)
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Since δij and xixj are both second rank tensors, Iij is a symmetric second
rank tensor. Explicitly the components of this tensor are

Iij =

⎛

⎝

∫

(x2
2 + x2

3)dm −
∫

x1x2dm −
∫

x1x3dm
−
∫

x2x1dm
∫

(x2
1 + x2

3)dm −
∫

x2x3dm
−
∫

x3x1dm −
∫

x3x2dm
∫

(x2
2 + x2

1)dm

⎞

⎠ . (4.66)

4.3.2 Stress Tensor

The name tensor comes from the tensile force in elasticity theory. Inside a
loaded elastic body, there are forces between neighboring parts of the material.
Imagine a cut through the body, the material on the right exerts a force F
on the material to the left, and the material on the left exerts an equal and
opposite force −F on the material to the right.

Let us examine the force across a small area ∆x1∆x3, shown in Fig. 4.3, in
the imaginary plane perpendicular to the x2 axis. If the area is small enough,
we expect the force is proportional to the area. So we can define the stress P2

as the force per unit area. The subscript 2 indicates that the force is acting
on a plane perpendicular to the positive x2 axis. The components of P2 along
x1, x2, x3 axes are denoted as P12, P22, P32, respectively. Next, we can look at
a small area on the imaginary plane perpendicular to the x1 axis, and define
the stress components P11, P21, P31. Finally, imagine the cut is perpendicular
to the x3 axis, so the stress components P13, P23, P33 can be similarly defined.
If e1, e2, e3 are the unit bases vectors, these relations can be expressed as

Pj = Pijei. (4.67)

Thus the stress has nine components

Pij =

⎛

⎝

P11 P12 P13

P21 P22 P23

P31 P32 P33

⎞

⎠ . (4.68)

∆x1

∆x 3
P12

P22

P32

x1

x2

x3

P2 =  ∆x1 ∆x3

F*2

Fig. 4.3. Stress P2, defined as force per unit area, on a small surface perpendicular
to the x2 axis. Its components along the three axes are, respectively, P12, P22, P32
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P12

P22

P32

x 1

x2

x3

P12

P13

P23

P33

P32

P22

Fig. 4.4. The nine components of a stress tensor at a point can be represented as
normal and tangential forces on the surfaces of an infinitesimal cube around the
point

The first subscript in Pij indicates the direction of the force component, the
second subscript indicates the direction of the normal to the surface on which
the force is acted upon.

The physical meaning of Pij is as follows. Imagine an infinitesimal cube
around a point inside the material, Pij are the forces per unit area on the
faces of this cube, as shown in Fig. 4.4. For clarity, forces are shown only on
three surfaces. There are both normal forces Pii (tensions shown but they
could be pressures with arrows reversed) and tangential forces Pij (i �= j,
shears). Note that, in equilibrium, the forces on the opposite faces must be
equal and opposite. Furthermore, (4.67) is symmetric Pij = Pji, because of
rotational equilibrium. For example, the shearing force on the top surface in
the x2 direction is P23∆x1∆x2. The torque around x1 axis due to this force
is (P23∆x1∆x2)∆x3. The opposite torque due to the shearing force on the
right surface is (P32∆x3∆x1)∆x2. Since the net torque around x1 axis must
be zero, therefore

(P23∆x1∆x2)∆x3 = (P32∆x3∆x1)∆x1,

and we have
P23 = P32.

Similar argument will show that in general Pij = Pji, therefore (4.68) is
symmetric.

Now we are going to show that the nine components of (4.68) is a tensor,
known as the stress tensor. For this purpose, we construct an infinitesimal
tetrahedron with its edges directed along the coordinate axes as shown in
Fig. 4.5. Let ∆a1,∆a2,∆a3 denote the areas of the faces perpendicular to
the axes x1, x2, x3, respectively, the forces per unit area on these faces are
−P1,−P2,−P3, since these faces are directed in the negative direction of the
axes. Let ∆an denote the area of the inclined face with an unit exterior normal
n, and Pn be the force per unit area on this surface. The total force on these
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∆a3

∆a2

∆an

∆a1

n

x1

x2

x3

Pn

Fig. 4.5. Forces on the surfaces of an infinitesimal tetrahedron. The equilibrium
conditions show that the stress must be a second rank tensor

four surfaces must be zero, even if there are body forces, such as gravity. The
body forces will be proportional to the volume, whereas all the surface forces
are proportional to the area. As dimensions shrink to zero, the body forces
have one more infinitesimal, and can always be neglected compared with the
surface forces. Therefore

Pn∆an − P1∆a1 − P2∆a2 − P3∆a3 = 0. (4.69)

Since ∆a1 is the area of ∆an projected on the x2x3 plane, therefore

∆a1 = (n · e1) ∆an.

With similar expressions of ∆a2 and ∆a3, we can write (4.69) in the form

Pn∆an = P1 (n · e1) ∆an + P2 (n · e2) ∆an + P3 (n · e3) ∆an,

or
Pn = (n · ek)Pk. (4.70)

What we want to find is the stress components in a rotated system with axes
e′1, e

′
2, e

′
3. Now without loss of generality, we can assume that the jth axis of

the rotated system is directed along n, that is

n = e′j .

Therefore Pn is P′
j in the rotated system. Thus (4.70) becomes

P′
j =

(

e′j · ek

)

Pk. (4.71)

In terms of their components along the respective coordinate axes, as shown
in (4.67) ,

P′
j = P ′

ije
′
i, Pk = Plkel
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the last equation can be written as

P ′
ije

′
i =

(

e′j · ek

)

Plkel.

Take the dot product with e′i on both sides,

P ′
ij(e

′
i · e′i) =

(

e′j · ek

)

Plk(el · e′i),

we have
P ′

ij = (e′i · el)
(

e′j · ek

)

Plk.

Since (e′m · en) = amn, we see that

P ′
ij = ailajkPlk. (4.72)

Therefore the array of the stress components (4.68) is indeed a tensor.

4.3.3 Strain Tensor and Hooke’s Law

Under imposed forces, an elastic body will deform and exhibit strain. The
deformation is characterized by the change of distances between neighboring
points. Let P at r and Q at r + ∆r be two nearby points, as shown in Fig. 4.6.
When the body is deformed, point P is displaced by the amount u (r) to
P ′, and Q by u (r + ∆r) to Q′. If the displacements of these neighboring
points are the same, that is if u (r) = u (r + ∆r) , the relative positions of
the points are not changed. That part of the body is unstrained, since the
distances PQ and P ′Q′ will be the same. Therefore the strain is associated
with the variation of the displacement vector u (r) . The change of u (r) can
be written as

∆u = u (r + ∆r) − u (r) .

Q

0

P

P 9
Q9

∆r

r r + ∆r

u(r) u(r + ∆r)

r +
 u

(r)
r +

 ∆
r +

 u
(r

 +
 ∆

r)

∆r’

Fig. 4.6. The strain of a deformed elastic body. The body is strained if the relative
distance of two nearby points is changed. The strain tensor depends on the variation
of the displacement vector u with respect to the position vector r
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Neglecting second and higher terms, the components of ∆u can be written as

∆ui = ui (x1 + ∆x1, x2 + ∆x2, x3 + ∆x3) − ui (x1, x2, x3)

=
∂ui

∂x1
∆x1 +

∂ui

∂x2
∆x2 +

∂ui

∂x3
∆x3 =

∂ui

∂xj
∆xj .

Since ui is a vector and ∂/∂xj is a vector operator, ∂ui/∂xj is the outer
product of two first rank tensors. Therefore ∂ui/∂xj is a second rank tensor.
It can be decomposed into a symmetric part and an antisymmetric part

∂ui

∂xj
=

1
2

(

∂ui

∂xj
+

∂uj

∂xi

)

+
1
2

(

∂ui

∂xj
− ∂uj

∂xi

)

. (4.73)

We can also divide ∆u into two parts

∆u = ∆us + ∆ua,

where

∆us
i =

1
2

(

∂ui

∂xj
+

∂uj

∂xi

)

∆xj ,

∆ua
i =

1
2

(

∂ui

∂xj
− ∂uj

∂xi

)

∆xj .

The antisymmetric part of (4.73) does not alter the distance between P and
Q because of the following. Let the distance P ′Q′ be ∆r′. It is clear from
Fig. 4.6 that

∆r′ = [∆r + u (r + ∆r)] − u (r) .

It follows that

∆r′ − ∆r = u (r + ∆r) − u (r) = ∆u = ∆us + ∆ua.

Now

∆ua · ∆r =∆ua
i ∆xi =

1
2

(

∂ui

∂xj
− ∂uj

∂xi

)

∆xj∆xi = 0.

This is because in this expression, both i and j are summing indices and can
be interchanged. Thus ∆ua is perpendicular to ∆r, and it can be considered
as the infinitesimal arc length of a rotation around the tail of ∆r, as shown
in the following sketch.

∆r

∆r′ ∆u ∆ua

∆us

Fig. 4.7. The change of distance between two nearby points in an elastic body. It
is determined by the symmetric strain tensor
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Therefore ∆ua does not change the length ∆r. The change of distance
between two nearby points of an elastic body is uniquely determined by the
symmetric part of (4.73)

Eij =
1
2

(

∂ui

∂xj
+

∂uj

∂xi

)

. (4.74)

This quantity is known as the strain tensor. The stain tensor plays an
important role in the elasticity theory because it is a measure of the degree
of deformation.

Since in one-dimension the elastic force in a spring is given by the Hooke’s
law F = −kx, one might expect that in three-dimensional elastic media the
strain is proportional to the stress. For most solid materials with a relative
strain of a few percent, this is indeed the case. The linear relationship between
the strain tensor and the stress tensor is given by the generalized Hooke’s law

Pij = cijklEkl, (4.75)
where cijkl is known as the elasticity tensor. Since Pij and Ekl are both second
rank tensors, by the quotient rule, cijkl must be a fourth rank tensor. While
there are 81 components of a fourth rank tensor, but various symmetry con-
siderations will show that the number of independent components in a general
crystalline body is only 21. If the body is isotropic, the elastic constants are
further reduced to only two. While we are not going into these details which
are the subjects of books on elasticity, we only want to show that concepts of
tensor are crucial in describing these physical quantities.

Exercises

1. Find the rotation matrix for
(a) a rotation of π/2 about z axis,
(b) a rotation of π about x axis.

Ans.

⎛

⎝

0 1 0
−1 0 0
0 0 1

⎞

⎠ ;

⎛

⎝

1 0 0
0 −1 0
0 0 −1

⎞

⎠ .

2. With the transformation matrix (A) given by (4.20) , show that
(A)

(

AT
)

= (I) ,

where (I) is the identity matrix.

3. With the transformation matrix (A) given by (4.20) , explicitly verify that
3
∑

i=1

aijaik = δjk,

for (a) j = 1, k = 1, (b) j = 1, k = 2, (c) j = 1, k = 3.

4. With the transformation matrix (A) given by (4.20), show explicitly that
the determinant A is equal to 1.
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5. Show that there is no nontrivial isotropic first rank tensor.
Hint: (1) Assume there is an isotropic first rank tensor (A1, A2, A3). Under
a rotation, A′

1 = A1, A′
2 = A2, A′

3 = A3, since it is isotropic. (2) Consider
a rotation of π/2 about x3 axis, and show that A1 = 0, A2 = 0. (3) A
rotation about x1 axis will show that A3 = 0. (4) Therefore only the zero
vector is a first rank isotropic tensor.

6. Let

Tij =

⎛

⎝

1 0 2
0 2 1
1 2 3

⎞

⎠ , Ai =

⎛

⎝

3
2
1

⎞

⎠ .

Find the following contractions
(a) Bi = TijAj ,
(b) Cj = TijAi,
(c) S = TijAiAj .
Ans. (a) Bi = (5, 5, 10) , (b) Ci = (4, 6, 11) , (c) S = 35.

7. Let Aij and Bij be two second rank tensors, and let

Cij = Aij + Bij .

Show that Cij is also a second rank tensor.

8. The equation of an ellipsoid centered at the origin is of the form

Aijxixj = 1.

Show that Aij is a second rank tensor.
Hint: In a rotated system, the equation of the surface is A′

ijx
′
ix

′
j = 1.

9. Show that

Ai =
(

−x2

x1

)

is a two-dimensional vector.

10. Show that the following 2×2 matrices represent second rank tensors in
two-dimensional space:

(a)

(

−x1x2 x2
1

−x2
2 x1x2

)

, (b)

(

x2
2 −x1x2

−x1x2 x2
1

)

,

(c)

(

−x1x2 −x2
2

x2
1 x1x2

)

, (d)

(

x2
1 x1x2

x1x2 x2
2

)

.

Hint: Show that they are various outer products of the position vector
and the vector in the last question.
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11. Explicitly show that

3
∑

l=1

3
∑

m=1

3
∑

n=1

ailajmaknεlmn =

∣

∣

∣

∣

∣

∣

ai1 ai2 ai3

aj1 aj2 aj3

ak1 ak2 ak3

∣

∣

∣

∣

∣

∣

by (a) writing out all nonzero terms of

3
∑

l=1

3
∑

m=1

3
∑

n=1

ailajmaknεlmn,

and (b) expand the determinant
∣

∣

∣

∣

∣

∣

ai1 ai2 ai3

aj1 aj2 aj3

ak1 ak2 ak3

∣

∣

∣

∣

∣

∣

over the elements of the first row.

12. Show that εijk can be written as

εijk =

∣

∣

∣

∣

∣

∣

δi1 δi2 δi3

δj1 δj2 δj3

δk1 δk2 δk3

∣

∣

∣

∣

∣

∣

.

Hint: Show that the determinant has all the properties εijk has.

13. Show that
(a)

∑

ij εijkδij = 0;
(b)

∑

jk εijkεljk = 2δil;
(c)

∑

ijk εijkεijk = 6.

14. The following equations are written with summation convention, verify
them
(a) δijδjkδki = 3,
(b) εijkεklmεmni = εjnl.
Hint: (a) Recall δij is a substitution tensor, (b) Use (4.60) .

15. With the summation convention, show that
(a) Aiδij = Aj

(b) Bjδij = Bi

(c) δ1jδj1 = 1
(d) δijδji = δii = 3
(e) δijδjl = δil

16. With subscripts and summation convention, show that
(a) ∂ixj = δij

(b) ∂i (xjxj)
1/2 =

1

(xjxj)
1/2

xi.

Hint: (a) x1, x2, x3 are independent variables. (b) ∂i (xjxj) = 2xj∂ixj .
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17. The following equations are written with summation convention
(a) ∂ixi = 3, (b) ∂i(xjxj)1/2 = (xjxj)−1/2xi, translate them into ordi-
nary vector notation.
Ans. (a) ∇ · r = 3, (b) ∇r = r/r.

18. The following expressions are written with summation convention
(a) ViAjBiej ; (b) cAiBjδij ;
(c) AlBjεijkδliek; (d) εijkεlmkAiBjClDm,

translate them into ordinary vector notation.
Ans. (a) (V · B)A, (b) cA · B, (c) A × B, (d) (A × B) · (C × D).

19. Use the Levi-Civita tensor technique to prove the following identities:
(a) A × B = −B × A,
(b) A · (B × C) = (A × B) · C.

20. Use the Levi-Civita tensor technique to prove the following identity

∇× (φA) = φ (∇ × A) + (∇φ) × A.

21. Let

Tij =

⎛

⎝

1 2 3
0 4 5
0 0 6

⎞

⎠ .

Find the symmetric part Sij and the antisymmetric part Aij of the tensor
Tij .

Ans. Sij =

⎛

⎝

1 1 1.5
1 4 2.5

1.5 2.5 6

⎞

⎠ , Aij =

⎛

⎝

0 1 1.5
−1 0 2.5
−1.5 −2.5 0

⎞

⎠ .

22. If Sij is a symmetric tensor and Aij is an antisymmetric tensor, show that

SijAij = 0.

23. Let ϕ be a scalar, Vi be a pseudovector, Tij be a second rank tensor, and
let

Aijk = εijkϕ, Bij = εijkVk, Ci = εijkTjk.

Show that Aijk is a third rank pseudotensor, Bij is a second rank tensor,
and Ci is a pseudovector.

24. Find the strain tensor for an isotropic elastic material when it is subjected
to
(a) A stretching deformation u = (0, 0, αx3) ;
(b) A shearing deformation u = (βx3, 0, 0) .

Ans. (a) Eij =

⎛

⎝

0 0 0
0 0 0
0 0 α

⎞

⎠ ; (b) Eij =

⎛

⎝

0 0 β/2
0 0 0

β/2 0 0

⎞

⎠ .
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Differential Equations and Laplace Transforms





5

Ordinary Differential Equations

The laws of physics that govern important and significant problems in
engineering and sciences are most often expressed in the form of differen-
tial equations. A differential equation is an equation involving derivatives of
an unknown function that depends upon one or more independent variables.
If the unknown function depends on only one independent variable, then the
equation is called an ordinary differential equation.

In this chapter, after a review of the standard methods for solving
first-order differential equations, we will present a comprehensive treatment
of linear differential equations with constant coefficients, in terms of which
a great many physical problems are formulated. We will use mechanical
vibrations and electrical circuits as illustrative examples. Then we will dis-
cuss systems of coupled differential equations and their applications.

Series solutions of differential equations will be discussed in the chapter on
special functions. Another important method of solving differential equation
is the Laplace transformation, which we will discuss in the next chapter.

5.1 First-Order Differential Equations

To solve a differential equation is to find a way to eliminate the derivatives in
the equation so that the relation between the dependent and the independent
variables can be exhibited. For a first-order differential equation, this can
be achieved by carrying out an integration. The simplest type of differential
equations is

dy

dx
= f(x), (5.1)

where f(x) is a given function of x. We know from calculus that

y(x) =
∫ x

a

f(x′)dx′ (5.2)
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is a solution. Equation (5.1) contains only the first derivative of y, and is called
a first-order differential equation. The order of a differential equation is equal
to the order of the highest derivative in the equation. The solution (5.2) is
known as a general solution, and contains an arbitrary integration constant.
If the integral in (5.2) exists, then by definition there is a function F (x), such
that

d
dx

F (x) = f(x), dF (x) = f(x)dx

and

y(x) =
∫ x

a

dF (x′) = F (x) + F (a).

In this sense, we often use the notation of the indefinite integral

y(x) =
∫

f(x)dx + C

where C = F (a) is an arbitrary constant. If we know that y takes the value
y0 when x = x0, then the constant is determined. This condition “y = y0

when x = x0” is called either “initial condition” or “boundary condition.” To
satisfy both the equation and the boundary condition, we can carry out the
following definite integrals:

∫ y

y0

dy′ =
∫ x

x0

f(x′)dx′,

which can be written in the form of

y(x) =
∫ x

x0

f(x′)dx′ + y0.

This is known as the specific solution. (The term “particular solution” is
often used, however, this may cause confusion, since “particular solution”
is also used in the solution of nonhomogeneous equations, which we shall
discuss a little later.) In most physical applications, it is the specific solution
that is of interest. A physical problem, when formulated in the mathematical
language, usually consists of a differential equation and an appropriate number
of boundary and/or initial conditions. The problem is solved only after the
specific solution is found.

5.1.1 Equations with Separable Variables

If an equation can be written in the form

f(x)dx + g(y)dy = 0



5.1 First-Order Differential Equations 203

the solution can be immediately obtained in the form of
∫

f(x)dx +
∫

g(y)dy = C.

This method is called solution by the separation of variables and is one of the
most commonly used methods.

For example, the differential equation

dy

dx
= −x

y

can be solved by noting that the equation can be written as

y dy + xdx = 0.

Therefore the solution is given by
∫

y dy +
∫

xdx = C

or
1
2
y2 +

1
2
x2 = C.

This general solution can be written as

y(x) = (C ′ − x2)1/2

or equivalently as
F (x, y) = C ′

with
F (x, y) = x2 + y2.

Clearly this general solution represents a family of circles with radius
√

C ′

centered at the origin. If it is specified that x = 5, y = 0, is a point on the
circle, then the specific solution is

x2 + y2 = 25.

This specific solution can also be obtained from the definite integral
∫ y

0

y′dy′ +
∫ x

5

x′dx′ = 0,

which gives the same result by way of

1
2
y2 +

1
2
x2 − 1

2
52 = 0.
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5.1.2 Equations Reducible to Separable Type

Certain equations of the form

g(x, y)dy = f(x, y)dx (5.3)

that are not separable can be made separable by a change of variable. This
can always be done, if the ratio of f(x, y)/g(x, y) is a function of y/x.

Let u = y/x and the function of y/x be h(u), so that

dy

dx
=

f(x, y)
g(x, y)

= h(u).

Since y is function of x, so is u. It follows that y(x) = xu(x) and

dy

dx
= u + x

du

dx
.

Thus the differential equation can be written as

u + x
du

dx
= h(u),

or
x

du

dx
= h(u) − u

Clearly it is separable
du

h(u) − u
=

dx

x
.

So we can solve for u(x) and the solution of the original differential equation
is simply

y = xu(x).

For example, if
dy

dx
=

y2 + xy

x2
=

y2

x2
+

y

x
,

then with u = y/x, h(u) = u2 + u. Since h(u) − u = u2, so

du

u2
=

dx

x

and
∫

du

u2
=
∫

dx

x
,

which gives

− 1
u

+ C = ln x.

Since u = y/x, the solution of the original differential equation is therefore
given by

x

y
+ ln x = C.



5.1 First-Order Differential Equations 205

5.1.3 Exact Differential Equations

Suppose we want to find a differential equation that represents the following
family of curves:

F (x, y) = C.

First let us look at two nearby points (x, y) and (x + ∆x, y + ∆y), both on a
specific curve of this family. If the curve is characterized by C = k, then

F (x, y) = k, F (x + ∆x, y + ∆y) = k.

Clearly, the difference between the two is equal to zero

∆F = F (x + ∆x, y + ∆y) − F (x, y) = 0.

This difference can be written in the form of

F (x + ∆x, y + ∆y) − F (x, y) = F (x + ∆x, y + ∆y) − F (x, y + ∆y)
+F (x, y + ∆y) − F (x, y). (5.4)

With the understanding that ∆x and ∆y are approaching zero as a limit, we
can use the definition of partial derivative

F (x + ∆x, y + ∆y) − F (x, y + ∆y) =
∂F

∂x
∆x,

F (x, y + ∆y) − F (x, y) =
∂F

∂y
∆y

to write (5.4) as

∆F =
∂F

∂x
∆x +

∂F

∂y
∆y

or

dF =
∂F

∂x
dx +

∂F

∂y
dy.

This is known as the total differential. Since ∆F = 0, so we have

∂F

∂x
dx +

∂F

∂y
dy = 0. (5.5)

This is the differential equation representing the family of curves F (x, y) = C.
In other words, the solution of the differential equation in the form of (5.5) is
given by F (x, y) = C.

Now let
∂F

∂x
= f(x, y),

∂F

∂y
= g(x, y) (5.6)
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so

∂2F

∂y∂x
=

∂

∂y

∂F

∂x
=

∂

∂y
f(x, y),

∂2F

∂x∂y
=

∂

∂x

∂F

∂y
=

∂

∂x
g(x, y).

Since the order of differentiation can be interchanged as long as the function
has continuous partial derivatives

∂2F

∂y∂x
=

∂2F

∂x∂y
,

one has
∂

∂y
f(x, y) =

∂

∂x
g(x, y). (5.7)

Any differential equation of the form

f(x, y)dx + g(x, y)dy = 0

that satisfies (5.7) is known as an exact equation. An exact equation can be
expressed as dF = 0, where dF is a total differential and F (x, y) = C is
the solution. The function F (x, y) can be obtained by integrating the two
equations of (5.6).

For example, the differential equation

dy

dx
+

xy2

2 + x2y
= 0

can be written in the form

(2 + x2y)dy + xy2dx = 0.

Since
∂

∂x
(2 + x2y) = 2xy,

∂

∂y
(xy2) = 2xy

are equal, the differential equation is exact. Therefore, we can find the general
solution in the form of

F (x, y) = C

with
∂F (x, y)

∂y
= 2 + x2y,

∂F (x, y)
∂x

= xy2.
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The first equation yields

F (x, y) = 2y +
1
2
x2y2 + p(x).

The second equation requires

∂F (x, y)
∂x

= xy2 +
d
dx

p(x) = xy2.

Therefore
d
dx

p(x) = 0, p(x) = k.

Thus the solution is

F (x, y) = 2y +
1
2
x2y2 + k = C.

Combining the two constants, we can write the solution as

2y +
1
2
x2y2 = C ′.

5.1.4 Integrating Factors

A multiplying factor which will convert a differential equation that is not exact
into an exact one is called an integrating factor. For example, the equation

y dx + (x2y3 + x)dy = 0 (5.8)

is not exact. If, however, we multiply it by (xy)−2, the resulting equation

1
x2y

dx + (y +
1

xy2
)dy = 0

is exact, since

∂

∂y

(

1
x2y

)

=
−1

x2y2
,

∂

∂x

(

y +
1

xy2

)

=
−1

x2y2
.

Hence by definition, (xy)−2 is an integrating factor.
By the method of exact differential equation, we have

∂

∂x
F (x, y) =

1
x2y

,

F (x, y) = − 1
xy

+ q(y)
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and

∂

∂y
F (x, y) =

1
xy2

+
d
dy

q(y) = y +
1

xy2
,

d
dy

q(y) = y, q(y) =
1
2
y2.

Therefore the solution of the original equation is

− 1
xy

+
1
2
y2 = C.

It is sometimes possible to find an integrating factor by inspection. For
example, one may rearrange (5.8) into

(y dx + xdy) + x2y3dy = 0

and recognize y dx + xdy = d(xy). Then it is readily seen that the equation

d(xy) + x2y3dy = 0

can be solved by multiplying by a factor of (xy)−2, since it will change the
equation to

d(xy)
(xy)2

+ y dy = 0,

which immediately gives the result of

− 1
xy

+
1
2
y2 = C.

Theoretically an integrating factor exists for every differential equation of
the form f(x, y)dx + g(x, y)dy = 0. Unfortunately no general rule is known
to find it. For certain special type of differential equations, integrating factors
can be found systematically.

We assume that
f(x, y)dx + g(x, y)dy = 0

is not an exact differential equation. We wish to find an integrating factor µ,
so that

µf(x, y)dx + µg(x, y)dy = 0

is exact. For this equation to be exact, it must satisfy the condition

∂

∂y
(µf) =

∂

∂x
(µg)

which gives

µ

(

∂f

∂y
− ∂g

∂x

)

=
∂µ

∂x
g − ∂µ

∂y
f. (5.9)
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Now we consider the following possibilities.
The integrating factor µ is a function of x only. In this case, (5.9) becomes

1
g

(

∂f

∂y
− ∂g

∂x

)

=
1
µ

∂µ

∂x
.

If the left-hand side of this equation is also a function of x only

1
g

(

∂f

∂y
− ∂g

∂x

)

= G(x),

then clearly
dµ

µ
= G(x)dx,

which gives

lnµ =
∫

G(x)dx

or
µ = e

∫

G(x)dx.

For example, the differential equation

(3xy + y2)dx + (x2 + xy)dy = 0

is not exact. Written in the form of f(x, y)dx + g(x, y)dy = 0, we see that

∂f

∂y
=

∂

∂y
(3xy + y2) = 3x + 2y,

∂g

∂x
=

∂

∂x
(x2 + xy) = 2x + y

are not equal. But

1
g

(

∂f

∂y
− ∂g

∂x

)

=
3x + 2y − (2x + y)

x2 + xy
=

x + y

x(x + y)
=

1
x

is a function of x only. Therefore the integrating factor is given by

µ = e
∫

1
x dx = eln x = x.

Multiply the original differential equation by x, it becomes

(3x2y + xy2)dx + (x3 + x2y)dy = 0.

This equation is exact, since

∂

∂y
(3x2y + xy2) =

∂

∂x
(x3 + x2y).
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Integrating these two equations

∂F

∂x
= 3x2y + xy2,

∂F

∂y
= x3 + x2y.

we find
F (x, y) = x3y +

1
2
x2y2.

Therefore the solution is
x3y +

1
2
x2y2 = C.

The integrating factor µ is a function of y only. In this case, (5.9) becomes

1
f

(

∂f

∂y
− ∂g

∂x

)

= − 1
µ

∂µ

∂y
.

If the left-hand side of this equation is also a function of y only

1
f

(

∂f

∂y
− ∂g

∂x

)

= −H(y),

then clearly
dµ

µ
= H(y)dy,

which gives

ln µ =
∫

H(y)dy

or
µ = e

∫

H(y)dy.

5.2 First-Order Linear Differential Equations

A special type of first-order differential equation of some importance is of the
form

dy

dx
+ p(x)y = q(x), (5.10)

in which both the dependent variable y and its first derivative y′ are of the
first degree, and p(x) and q(x) are continuous functions of the independent
variable x. This type of equation is called linear differential equation of the
first-order. In what follows, we will derive a general solution for this equation.

First, if q(x) = 0, we have

dy

dx
= −p(x)y.
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In this case
y(x) = e−

∫ x
p(x)dx.

For the general case, we introduce a variable coefficient

y(x) = f(x)e−
∫ x

p(x)dx.

With this trial solution, (5.10) becomes

df(x)
dx

e−
∫ x

p(x)dx − p(x)f(x)e−
∫ x

p(x)dx + p(x)f(x)e−
∫ x

p(x)dx = q(x),

or
df(x)

dx
e−

∫ x
p(x)dx = q(x).

Thus

f(x) =
∫

q(x)e
∫ x

p(x)dxdx + C.

Hence the solution of the first-order linear differential equation (5.10) is
given by

y(x) = f(x)e−
∫ x

p(x)dx

= e−
∫

p(x)dx
∫

e
∫

p(x)dxq(x)dx + Ce−
∫

p(x)dx. (5.11)

To use this formula, it is important to remember to put the differential equa-
tion in the form of y′ + p(x)y = q(x). In other words, the coefficient of the
derivative must be one.

This solution enables us to see that

µ(x) = e
∫

p(x)dx

is the integrating factor of the equation. In terms of µ(x), (5.11) can be
written as

µ(x)y =
∫

µ(x)q(x)dx + C,

which is a solution of the differential equation

d
dx

[µ(x)y] = µ(x) q(x). (5.12)

Furthermore
d
dx

[µ(x)y] = µ(x)
dy

dx
+
[

d
dx

µ(x)
]

y,

d
dx

µ(x) =
d
dx

e
∫

p(x)dx = e
∫

p(x)dx [p(x)] = µ(x) p(x).
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Hence (5.12) becomes

µ(x)
dy

dx
+ µ(x) p(x)y = µ(x) q(x),

which clearly shows that µ(x) is a integrating factor of the original equation.
Thus, an easier way to make use of the complicated formula of (5.11) is to

write it in terms of the integrating factor

y(x) =
1

µ(x)

[∫

µ(x) q(x)dx + C

]

with
µ(x) = e

∫ x
p(x)dx.

Example 5.2.1. Find the general solution of the following differential equation:

x
dy

dx
+ (1 + x)y = ex.

Solution 5.2.1. This is a linear differential equation of first-order

dy

dx
+

1 + x

x
y =

ex

x
.

The integrating factor is given by

µ(x) = e
∫

1+x
x dx.

Since
∫ x 1 + x

x
dx =

∫ (

1
x

+ 1
)

dx = ln x + x,

µ(x) = eln x+x = xex.

It follows that:

y =
1

xex

[∫

xex ex

x
dx + C

]

=
1

xex

[∫

e2xdx + C

]

=
1

xex

[

e2x

2
+ C

]

.

Therefore the solution is given by

y =
ex

2x
+ C

e−x

x
.
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5.2.1 Bernoulli Equation

The type of differential equations

dy

dx
+ p(x)y = q(x)yn

is known as Bernoulli equations, named after Swiss mathematician James
Bernoulli (1654–1705). This is a nonlinear differential equation if n �= 0 or 1.
However, it can be transformed into a linear equation by multiplying both
sides with a factor (1 − n)y−n

(1 − n)y−n dy

dx
+ (1 − n)p(x)y1−n = (1 − n)q(x).

Since
(1 − n)y−n dy

dx
=

d
dx

(y1−n),

the last equation can be written as

d
dx

(y1−n) + (1 − n)p(x)y1−n = (1 − n)q(x),

which is a first-order linear equation in terms of y1−n. This equation can
be solved for y1−n, from which the solution of the original equation can be
obtained.

Example 5.2.2. Find the solution of

dy

dx
+

1
x

y = x2y3

with the condition y(1) = 1.

Solution 5.2.2. This a Bernoulli equation of n = 3. Multiplying this equation
by (1 − 3)y−3, we have

−2y−3 dy

dx
− 2

1
x

y−2 = −2x2,

which can be written as

d
dx

y−2 − 2
x

y−2 = −2x2.

This equation is first-order in y−2 and can be solved by multiplying it with
an integrating factor µ,

µ = e
∫

(− 2
x )dx = e−2 ln x =

1
x2

.
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Thus
1
x2

y−2 =
∫

1
x2

(−2x2)dx + C = −2x + C.

At x = 1, y = 1, therefore

1 = −2 + C, C = 3.

Hence the specific solution of the original nonlinear linear differential equa-
tion is

y−2 = −2x3 + 3x2

or written as
y(x) = (3x2 − 2x3)−1/2.

5.3 Linear Differential Equations of Higher Order

A great many physical problems can be formulated in terms of linear differen-
tial equations. A second-order differential equation is called linear if it can be
written

d2

dx2
y(x) + p(x)

d
dx

y(x) + q(x)y(x) = h(x) (5.13)

and nonlinear if it cannot be written in this form. To simplify the notation,
this equation is also written as

y′′ + p(x)y′ + q(x)y = h(x).

The characteristic feature of this equation is that it is linear in the unknown
function y and its derivatives. For example: y′2 = x is not linear because of
the term y′2. The equation yy′ = 1 is also not linear because of the product
yy′. The functions p and q are called coefficients of the equation.

If h(x) = 0 for all x considered, the equation becomes

y′′ + p(x)y′ + q(x)y = 0

and is called homogeneous. If h(x) �= 0, it is called nonhomogeneous.
Another convenient way of writing a differential equation is based on the

so-called operator notation. The symbol of differentiation d
dx is replaced by D:

dy

dx
= Dy,

d2y

dx2
= D2y,

and so on. Therefore (5.13) can be written as

D2y + p(x)Dy + q(x)y = h(x),
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or
[D2 + p(x)D + q(x)]y = h(x).

If we define
f(D) = D2 + p(x)D + q(x),

then the equation is simply

f(D)y = h(x).

A fundamental theorem about homogeneous linear differential equation is
the following. If f(D) is second-order, then there are two linearly independent
solutions y1 and y2. Furthermore, any linear combination of y1 and y2 is also
a solution. This means that if

f(D)y1 = 0, f(D)y2 = 0, (5.14)

then with any two arbitrary constants c1 and c2

f(D)(c1y1 + c2y2) = 0.

This is very easy to show,

f(D)(c1y1 + c2y2) = f(D)c1y1 + f(D)c2y2

= c1f(D)y1 + c2f(D)y2 = 0.

For the last step we have used (5.14). It is important to remember that this
theorem does not hold for nonlinear or nonhomogeneous linear differential
equations.

To discuss the general solution of the nonhomogeneous differential equa-
tion f(D)y = h(x), we define a complementary function yc and a particular
solution yp. The complementary function is the solution of the corresponding
homogeneous equation, that is

f(D)yc = 0.

If this is an nth order equation, then yc will contain n arbitrary constants.
The particular solution is a function when it is substituted into the original

nonhomogeneous equation, the result is an identity

f(D)yp(x) = h(x).

The particular solution can be found by various methods as we shall discuss
in later sections. There is no arbitrary constant in the particular solution.

The most general solution of the nonhomogeneous differential equation is
the sum of the complementary function and the particular solution

y(x) = yc(x) + yp(x). (5.15)



216 5 Ordinary Differential Equations

It is a solution since

f(D) [yc(x) + yp(x)] = f(D)yc(x) + f(D)yp(x) = h(x).

It is a general solution since the arbitrary constants, necessary for satisfying
boundary or initial conditions, are contained in the complementary function.

These general statements are also true for first-order linear equations. For
example, we have found that

y =
ex

2x
+ C

e−x

x

is the general solution of

x
dy

dx
+ (1 + x)y = ex.

It can be readily verified that
[

x
d
dx

+ (1 + x)
]

e−x

x
= 0,

[

x
d
dx

+ (1 + x)
]

ex

2x
= ex.

Therefore e−x/x is the complementary function and ex/(2x) is the particular
solution.

5.4 Homogeneous Linear Differential Equations
with Constant Coefficients

We will now focus our attention on linear homogeneous differential equations
with constant coefficients. In searching for the solution of a homogeneous
differential equation such as

y′′ − 5y′ + 6y = 0, (5.16)

it is natural to try
y = emx

where m is a constant, because all its derivatives have the same functional
form. Substituting into (5.16) and using the fact that y′ = memx and y′′ =
m2emx, we have

emx(m2 − 5m + 6) = 0.

This is the condition to be satisfied if y = emx is to be a solution. Since emx

can never be zero, it is thus necessary that

m2 − 5m + 6 = 0.
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This purely algebraic equation is known as the characteristic or auxiliary
equation of the differential equation. The roots of this equation are m = 2
and m = 3. Therefore y1 = exp(2x) and y2 = exp(3x) are two solutions of
(5.16). The general solution is then given by a linear combination of these two
functions

y = c1e2x + c2e3x. (5.17)

In other words, all solutions of (5.16) can be written in this form. For a
second-order linear differential equation, the general solution contains two
arbitrary constants c1 and c2. These constants can be used to satisfy the initial
conditions. For example, suppose it is given that at x = 0, y = 0 and y′ = 2,
then

y(0) = c1 + c2 = 0,

y′(0) = 2c1 + 3c2 = 2.

Thus c1 = −2, c2 = 2. So the specific solution for the differential equation
together with the given initial conditions is

y(x) = −2e2x + 2e3x.

To facilitate further discussion, we will repeat this process in the operator
notation. If we define

f(D) = D2 − 5D + 6, (5.18)

then (5.16) can be written as f(D)y = 0. Substituting y = emx into this
equation, we obtain f(m)emx = 0, where

f(m) = m2 − 5m + 6.

The characteristic equation f(m) = 0 has two roots; m = 2, 3. So the solution
is given by (5.17). Although obvious, it is useful to remember that to get the
characteristic equation, we need only to change D in the operator function of
(5.18) to m and set it to zero.

5.4.1 Characteristic Equation with Distinct Roots

Clearly this line of reasoning can be applied to any homogeneous linear differ-
ential equation with constant coefficients, regardless of its order. If f(D)y = 0
is a nth-order differential equation, then the characteristic equation f(m) = 0
is a nth-order algebraic equation. It has n roots, m = m1,m2, · · · ·mn. If they
are all distinct (different from each other), exactly n independent solutions
exp(m1x), exp(m2), · · · · exp(mnx) of the differential equation are so obtained
and the general solution is

y = c1em1x + c2em2x + · · · · +cnemnx.

However, if one or more of the roots are repeated, less than n independent
solutions are obtained in this way. Fortunately, it is not difficult to find the
missing solutions.
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5.4.2 Characteristic Equation with Equal Roots

To find the solutions when two or more roots of the characteristic equation
are the same, we first consider the following identities:

(D − a)xneax = Dxneax − axneax

= (nxn−1eax + axneax) − axneax

= nxn−1eax.

If we apply (D − a) once more to both side of this equation, we have

(D − a)2xneax = (D − a)nxn−1eax

= n(n − 1)xn−2eax.

It follows that:
(D − a)nxneax = n!eax.

Applying (D − a) once more

(D − a)n+1xneax = n!(D − a)eax = 0.

Clearly, if we continue to apply (D− a) to both the sides of the last equation,
they will all be equal to zero. Therefore

(D − a)lxneax = 0 for l > n.

This means that exp(ax), x exp(ax), · · · · xn−1 exp(ax) are solutions of the
differential equation (D−a)ny = 0. In other words, if the roots of the charac-
teristic equation are repeated n times, and the common root is a, then the
general solution of the differential equation is

y = c1eax + c2xeax + · · · · +cnxn−1eax.

5.4.3 Characteristic Equation with Complex Roots

If the coefficients of the differential equation are real and the roots of the
characteristic equation have an imaginary part, then from the theory of alge-
braic equations, we know that the roots must come in conjugate pairs such as
a ± ib. So the general solution corresponding to these two roots is

y = c1e
(a+bi)x + c2e

(a−bi)x. (5.19)

There are two other very useful equivalent forms of (5.19). Since

e(a±bi)x = eaxe±ibx = eax(cos bx ± i sin bx),
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we can write (5.19) as

y = eax[c1 cos bx + ic1 sin bx + c2 cos bx − ic2 sin bx]
= eax[(c1 + c2) cos bx + (ic1 − ic2) sin bx].

Since c1 and c2 are arbitrary constants, we can replace c1 + c2 and ic1 − ic2

by two new arbitrary constants A and B.Therefore

y = eax(A cos bx + B sin bx). (5.20)

We can write (5.20) in still another form. Recall

C cos(bx − φ) = C cos bx cos φ + C sin bx sin φ.

If we put
C cos φ = A, C sinφ = B,

then C = (A2 + B2)1/2 and φ = tan−1(B/A), and (5.20) becomes

y = Ceax cos(bx − φ). (5.21)

Therefore (5.19–5.21) are all equivalent. They all contain two arbitrary
constants. One set of constants can be easily transformed into another set.
However, there is seldom any need to do this. In solving actual problems we
simply use the form that seems best for the problem at hand, and determine
the arbitrary constants in that form from the given conditions.

We summarize in Table 5.1 the relationships between the roots of the
characteristic equation and the solution of the differential equation.

Table 5.1. Relationship between the roots of the characteristic equation and the
general solution of the differential equation

m y(x)

0 c1

0, 0 c1 + c2x
0, 0, 0 c1 + c2x + c3x

2

· · · · · ·
a c1e

ax

a, a c1e
ax + c2xeax

· · · · · ·
±ib c1 cos bx + c2 sin bx
±ib,±ib (c1 + c2x) cos bx + (c3 + c4x) sin bx
· · · · · ·
a ± ib eax(c1 cos bx + c2 sin bx)
a ± ib, a ± ib eax[(c1 + c2x) cos bx + (c3 + c4x) sin bx]
· · · · · ·



220 5 Ordinary Differential Equations

Example 5.4.1. Find the general solution of the differential equation

y′′′ = 0.

Solution 5.4.1. We can write the equation as

D3y = 0.

The characteristic equation is
m3 = 0.

The three roots are 0, 0, 0. Therefore the general solution is given by

y = c1e0x + c2xe0x + c3x
2e0x

= c1 + c2x + c3x
2.

This seems to be a trivial example. Obviously the result can be obtained by
inspection. Here, we have demonstrated that by using the general method, we
can find all the linear independent terms.

Example 5.4.2. Find the general solution of the differential equation

y′′′ − 6y′′ + 9y′ = 0.

Solution 5.4.2. We can write the equation as

(D3 − 6D2 + 9D)y = 0.

The characteristic equation is

m3 − 6m2 + 9m = m(m2 − 6m + 9)

= m(m − 3)2 = 0.

The three roots are 0, 3, 3. Therefore the general solution is

y = c1 + c2e3x + c3xe3x.

Again, for this third-order differential equation, the general solution has three
arbitrary constants. To determine these constants, we need three conditions.

Example 5.4.3. Find the solution of

y′′ + 9y = 0,

satisfying the boundary conditions y(π/2) = 1 and y′(π/2) = 2.
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Solution 5.4.3. We can write the equation as

(D2 + 9)y = 0.

The characteristic equation is

m2 + 9 = 0.

The two roots of this equation are m = ± 3i. Therefore the general solution
according to (5.20) is

y(x) = A cos 3x + B sin 3x.

We also need y′ to determine A and B

y′(x) = −3A sin 3x + 3B cos 3x.

The initial conditions require that

y
(π

2

)

= A cos
3π

2
+ B sin

3π

2
= −B = 1,

y′
(π

2

)

= −3A sin
3π

2
+ 3B cos

3π

2
= 3A = 2.

Thus A = 2/3, and B = −1. Therefore the solution is

y =
2
3

cos 3x − sin 3x.

We will get the same solution if we use either (5.19) or (5.21) instead of (5.20).

Example 5.4.4. Find the general solution of

y′′ + y′ + y = 0.

Solution 5.4.4. The characteristic equation is

m2 + m + 1 = 0.

The roots of this equation are

m =
1
2
(−1 ±

√
1 − 4) = −1

2
± i

√
3

2
.

Therefore the general solution is

y = e−x/2

(

A cos
√

3
2

x + B sin
√

3
2

x

)

.
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Example 5.4.5. Find the general solution of the differential equation

(D4 + 8D2 + 16)y = 0.

Solution 5.4.5. The characteristic equation is

m4 + 8m2 + 16 = (m2 + 4)2 = 0.

The four roots of this equation are m = ± 2i,± 2i. The two indepen-
dent solutions associated with the roots ± 2i are cos 2x, sin 2x. The other
two independent solutions corresponding to the repeated roots ± 2i are
x cos 2x, x sin 2x. Therefore the general solution is given by

y = A cos 2x + B sin 2x + x(C cos 2x + D sin 2x).

5.5 Nonhomogeneous Linear Differential Equations
with Constant Coefficients

5.5.1 Method of Undetermined Coefficients

We will use an example to illustrate that the general solution of nonhomo-
geneous differential equation is given by (5.15), namely the sum of the com-
plementary function and the particular solution. For an equation, such as

(D2 + 5D + 6)y = e3x (5.22)

it is not difficult to find the particular function yp(x). Because of e3x in the
right-hand side, we try

yp(x) = ce3x. (5.23)

Replace y by yp(x), (5.22) becomes

(D2 + 5D + 6)ce3x = e3x.

Since
(D2 + 5D + 6)ce3x = (9 + 5 × 3 + 6)ce3x = 30ce3x,

thus c = 1/30.The function yp(x) of (5.23) with c = 1/30 is therefore the
particular solution yp of the nonhomogeneous differential equation, that is

yp =
1
30

e3x.

Other than this particular solution, the nonhomogeneous equation has many
more solutions. In fact the general solution of (5.22) should also have two



5.5 Nonhomogeneous Linear Differential Equations 223

arbitrary constants. To find the general solution, let us first solve the corres-
ponding homogeneous differential equation

(D2 + 5D + 6)yc = 0.

The general solution of this homogeneous equation is known as the comple-
mentary function yc of the nonhomogeneous equation. Following the rules of
solving homogeneous equation, we find

yc = c1e−2x + c2e−3x.

Thus

y = yc + yp

= c1e−2x + c2e−3x +
1
30

e3x (5.24)

is the general solution of the nonhomogeneous equation (5.22).
First it is certainly a solution, since

(D2 + 5D + 6)(yc + yp) = (D2 + 5D + 6)yc + (D2 + 5D + 6)yp

= 0 + e3x = e3x.

Furthermore, it has two arbitrary constants c1 and c2. This means that every
possible solution of the nonhomogeneous equation (5.22) can be obtained
by assigning suitable values to the arbitrary constants c1 and c2 in (5.24).
Clearly this principle is not limited to this particular problem.

As we have already learnt how to solve homogeneous equations, we shall
now discuss some systematical ways of finding particular solutions.

Let us consider another nonhomogeneous equation

(D2 − 5D + 6)y = e3x. (5.25)

Since this equation is only slightly different from (5.22), to find the particular
solution yp of this equation, we may again try

yp = ce3x.

Putting it into (5.25), we find

(D2 − 5D + 6)ce3x = (9 − 15 + 6)ce3x = 0.

Obviously no value of c can make it equal to e3x. Clearly, we need a more
general method.
The idea is that if we can transform the nonhomogeneous equation into a
homogeneous equation, then we know what to do. First we note that

(D − 3)e3x = 0.
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Applying (D − 3) to both side of (5.25), we have

(D − 3)(D2 − 5D + 6)y = (D − 3)e3x = 0. (5.26)

Then we note that the general solution yc+yp of the nonhomogeneous equation
(5.25) must also satisfy the newly formed homogeneous equation (5.26), since

(D − 3)(D2 − 5D + 6)(yc + yp) = (D − 3)(0 + e3x) = 0, (5.27)

where we have used
(D2 − 5D + 6)yc = 0 (5.28)

and
(D2 − 5D + 6)yp = e3x. (5.29)

This means we can obtain the general solution yc+yp of the original nonhomo-
geneous equation (5.25) by assigning certain specific values to some constants
in the general solution of the newly formed homogeneous equation (5.26). For
example, since the roots of the characteristic equation (m−3)(m2−5m+6) = 0
of the newly formed homogeneous equation are

m = 2, 3, 3,

the general solution is

y = c1e2x + c2e3x + c3xe3x. (5.30)

But the complementary function given by (5.28) is

yc = c1e2x + c2e3x,

we see that the particular solution yp can be obtained by assigning an appro-
priate value to c3, since the general solution of the original nonhomogeneous
equation yc + yp is a special solution of the newly formed homogeneous equa-
tion. To determine c3, we substitute c3xe3x into (5.29)

(D2 − 5D + 6)c3xe3x = e3x.

Since

(D2 − 5D + 6)c3xe3x = c3[D(e3x + 3xe3x) − 5(e3x + 3xe3x) + 6xe3x]
= c3e3x,

clearly c3 = 1. Thus the particular solution is

yp = xe3x.

Hence the general solution of the nonhomogeneous differential equation (5.25) is
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y = c1e2x + c2e3x + xe3x.

Now we summarize the general procedure of solving a nonhomogeneous diff-
erential equation

f(D)y(x) = h(x).

1. The general solution is
y = yc + yp,

where yc is the complementary function and yp is the particular solu-
tion, and

f(D)yc = 0, f(D)yp = h(x).

2. Let the roots of f(m) = 0 be

m = m1,m2 . . . . . .

Complementary function yc is given by the linear combination of all the
linear independent functions arising from m.

3. To find yp, we first find another equation such that

g(D)h(x) = 0.

Applying g(D) to both sides of f(D)y(x) = h(x), we have

g(D)f(D)y = 0.

4. The general solution yc + yp of the original nonhomogeneous differen-
tial equation f(D)y(x) = h(x) is a special solution of the newly formed
homogeneous differential equation g(D)f(D)y = 0, since

g(D)f(D)(yc + yp) = g(D)[f(D)yc + f(D)yp]
= g(D)[0 + h(x)] = 0.

5. The general solution of g(D)f(D)y = 0 is associated with the roots of the
characteristic equation g(m)f(m) = 0.
Since the roots of f(m) = 0 lead to yc, the roots of g(m) = 0 must be
associated with yp.

6. Let the roots of g(m) = 0 be

m = m′
1,m

′
2 . . . ..

If there is no duplication between m′
1,m

′
2, · · · and m1,m2, · · · . . . .., then

the particular solution yp is given by the linear combination of all the
linear independent functions arising from m′

1,m
′
2, · · · .

If there is duplication between m′
1,m

′
2, · · · and m1,m2, · · · , then the func-

tions arising from m′
1,m

′
2, · · · must be multiplied by the lowest positive

integer powers of x which will eliminate all such duplications.
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7. Determine the arbitrary constants in the functions arising from m′
1,m

′
2 · · ·

from
f(D)yp = h(x).

This procedure may seem to be complicated. Once understood, the imple-
mentation is actually relative simple. This we illustrate with following
examples.

Example 5.5.1. Find the general solution of

(D2 + 5D + 6)y = 3e−2x + e3x.

Solution 5.5.1. The characteristic equation is

f(m) = m2 + 5m + 6 = 0

its roots are
m = −2,−3. (m1 = −2, m2 = −3).

Therefore
yc = c1e−2x + c2e−3x.

For
g(D)(3e−2x + e3x) = 0,

the roots of
g(m) = 0

must be
m = −2, 3 (m′

1 = −2, m′
2 = 3).

Since m′
1 repeats m1, the term arising from m′

1 = −2 must be multiplied
by x. Therefore

yp = c3xe−2x + c4e3x.

Since
(D2 + 5D + 6)(c3xe−2x + c4e3x) = c3e−2x + 30c4e3x,

(D2 + 5D + 6)yp = 3e−2x + e3x,

we have
c3 = 3; c4 =

1
30

.

Thus
y = c1e−2x + c2e−3x + 3xe−2x +

1
30

e3x.
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Example 5.5.2. Find the general solution of

(D2 + 1)y = x2.

Solution 5.5.2. The roots of the characteristic equation f(m)=m2+1=0 are

m = ±i,

therefore
yc = c1 cos x + c2 sin x.

For g(D)x2 = 0, we can regard x2 as c1 +c2x+c3x
2 with c1 = 0, c2 = 0, c3 = 1.

The roots of g(m) = 0, as seen in Table 5.1, are

m = 0, 0, 0.

Thus
yp = a + bx + cx2.

Substituting into the original equation

(D2 + 1)(a + bx + cx2) = x2,

we have
2c + a + bx + cx2 = x2.

Thus
2c + a = 0, b = 0, c = 1.

It follows that a = −2 and
yp = −2 + x2.

Finally
y = c1 cos x + c2 sin x − 2 + x2.

Example 5.5.3. Find the general solution of

(D2 + 4D + 5)y = 3e−2x.

Solution 5.5.3. The roots of f(m) = m2 + 4m + 5 = 0 are

m = −2 ± i.

Therefore
yc = e−2x(c1 cos x + c2 sin x).

For g(D)3e−2x = 0, g(D) = D + 2. Obviously, the root of g(m) = 0 is

m = −2.
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Thus
yp = Ae−2x.

With
(D2 + 4D + 5)Ae−2x = 3e−2x

we have
A = 3.

The general solution is therefore given by

y = e−2x(c1 cos x + c2 sin x) + 3e−2x.

Example 5.5.4. Find the general solution of

(D2 − 2D + 1)y = xex − ex.

Solution 5.5.4. The roots of m2 − 2m + 1 = 0 are

m = 1, 1 (m1 = 1, m2 = 1)

Hence
yc = c1ex + c2xex.

The characteristic equation of the differential equation for which xex − ex is
the solution

g(D)(xex − ex) = 0

is of course g(m) = 0. We can regard xex − ex as aex + bxex (with a = −1,
b = 1). We see from Table 5.1 that the roots of g(m) = 0 are

m = 1, 1 (m′
1 = 1, m′

2 = 1).

Therefore
yp = Ax2ex + Bx3ex.

With
(D2 − 2D + 1)(Ax2ex + Bx3ex) = xex − ex

we find
A = −1

2
, B =

1
6
.

The general solution is therefore given by

y = c1ex + c2xex − 1
2
x2ex +

1
6
x3ex.
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Example 5.5.5. Find the general solution of

(D2 + 1)y = sin x.

Solution 5.5.5. The roots of m2 + 1 = 0 are

m = ±i.
Therefore

yc = c1 cos x + c2 sin x.

To find
g(D) sin x = 0,

we can regard sin x as a cos x + b sin x with a = 0 and b = 1. From Table 5.1,
we see that the roots of g(m) = 0 are

m = ±i (m′ = ±i).

Thus
yp = Ax cos x + Bx sinx.

With
(D2 + 1)(Ax cos x + Bx sinx) = sin x

we find
A = −1

2
, B = 0.

Therefore
y = c1 cos x + c2 sin x − 1

2
x cos x.

5.5.2 Use of Complex Exponentials

In applied problems, the function h(x) is very often a sine or a cosine rep-
resenting alternating voltage in an electric circuit or a periodic force in a
vibrating system. The particular solution yp can be found more efficiently by
replacing sine or cosine by the complex exponential form.

In the last example, we can replace sin x by eix and solving the equation

(D2 + 1)Y = eix. (5.31)

The solution Y will also be complex. Y = YR + iYI. Since eix = cos x + i sin x,
the equation is equivalent to

(D2 + 1)YR = cos x,

(D2 + 1)YI = sin x.

Since the second equation is exactly the same as the original equation, we
see that to find yp, we can solve (5.31) for Y and take its imaginary part.
Following the procedure of the last section, we assume

Y = Axeix,
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so

DY = Aeix + iAxeix,

D2Y = 2iAeix − Axeix,

(D2 + 1)Y = 2iAeix − Axeix + Axeix = 2iAeix = eix.

Thus
A =

1
2i

.

Taking the imaginary part of

Y =
1
2i

xeix = −1
2
ix(cos x + i sin x),

we have
yp = −1

2
x cos x,

which is, of course, the same as obtained in the last example.

5.5.3 Euler–Cauchy Differential Equations

An equation of the form

anxn dny

dxn
+ an−1x

n−1 dn−1y

dxn−1
+ · · · a1x

dy

dx
+ a0y = h(x), (5.32)

where the ai are constants, is called Euler, or Cauchy, or Euler–Cauchy dif-
ferential equation. By a change of variable, it can be transformed into an
equation with constant coefficients which can then be solved.

If we set
x = ez, z = ln x,

then
dz

dx
=

1
x

= e−z.

With the notation D =
d
dz

, we can write

dy

dx
=

dy

dz

dz

dx
= e−zDy,

d2y

dx2
=

d
dx

dy

dx
=

d
dx

(e−zDy) =
d
dz

(e−zDy)
dz

dx

= (−e−zDy + e−zD2y)e−z = e−2zD(D − 1)y,

d3y

dx3
=

d
dz

[

e−2zD(D − 1)y
] dz

dx

=
[

−2e−2zD(D − 1)y + e−2zD2(D − 1)y
]

e−z

= e−3zD(D − 1)(D − 2)y.
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Clearly
dny

dxn
= e−nzD(D − 1)(D − 2) · · · (D − n + 1)y. (5.33)

Substituting (5.33) into (5.32) and using xn = enz, we have a differential
equation with constants coefficients,

anD(D − 1)(D − 2) · · · (D − n + 1)y + · · · a1Dy + a0y = h(ez).

If the solution of this equation is denoted

y = F (z),

then the solution of the original equation is given by

y = F (ln x).

The following example will make this procedure clear.

Example 5.5.6. Find the general solution of

x2 d2y

dx2
+ x

dy

dx
− y = x ln x.

Solution 5.5.6. With x = ez, this equation becomes

[D(D − 1) + D − 1] y = zez.

The complementary function comes from

m(m − 1) + m − 1 = m2 − 1 = 0, m = 1, −1,

which gives
yc = c1ez + c2e−z.

For g(D)zez = 0, g(D) must be (D − 1)2. The characteristic equation is then

(m′ − 1)2 = 0, m′ = 1, 1.

Therefore the particular solution is of the form

yp = c3zez + c4z
2ez.

Substituting it back into the differential equation

[D(D − 1) + D − 1] (c3zez + c4z
2ez) = zez,

we find
c3 = −1

4
, c4 =

1
4
.
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Therefore
y = c1ez + c2e−z − 1

4
zez +

1
4
z2ez.

For the general solution of the original equation, we must change z back to x.
With z = ln x

y(x) = c1x + c2
1
x
− 1

4
x ln x +

1
4
x(ln x)2,

which can be readily verified that this is indeed the general solution with two
arbitrary constants.

For a homogeneous Euler–Cauchy equation, the following procedure is
perhaps simpler. For example, to solve the equation

x2 d2y

dx2
+ x

dy

dx
− y = 0,

we can simply start with the solution

y(x) = xm.

So
x2m(m − 1)xm−2 + xmxm−1 − xm = 0

or
[m(m − 1) + m − 1] xm = 0.

Thus
m(m − 1) + m − 1 = m2 − 1 = 0,

m = 1, m = −1.

It follows that:
y(x) = c1x + c2

1
x

.

5.5.4 Variation of Parameters

The method of undetermined coefficients is simple and has important phys-
ical applications, but it applies only to constant coefficient equations with
special forms of the nonhomogeneous term h(x). In this section, we discuss
the method of variation of parameters, which is more general. It applies to
equations

(D2 + p(x)D + q(x))y = h(x), (5.34)

where p, q, and h are continuous functions of x in some interval. Let

yc = c1y1(x) + c2y2(x)

be the solution of the corresponding homogeneous equation
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(D2 + p(x)D + q(x))yc = 0.

The method of variation of parameters involves replacing the parameters c1

and c2 by functions u and v to be determined so that

yp = u(x)y1(x) + v(x)y2(x)

is the particular solution of (5.34). Now this expression contains two unknown
functions u and v, but the requirement that yp satisfies (5.34) imposes only
one condition on u and v. Therefore, we are free to impose a second arbitrary
condition without loss of generality. Further calculation will show that it is
convenient to require

u′y1 + v′y2 = 0. (5.35)

Now
Dyp = u′y1 + uy′

1 + v′y2 + vy′
2.

With the imposed condition (5.35), we are left with

y′
p = uy′

1 + vy′
2.

It follows that:
D2yp = u′y′

1 + uy′′
1 + v′y′

2 + vy′′
2 .

Substituting them back into the equation

(D2 + p(x)D + q(x))yp = h(x)

and collecting terms, we have

u(y′′
1 + py′

1 + qy1) + v(y′′
2 + py′

2 + qy2) + u′y′
1 + v′y′

2 = h.

Since y1 and y2 satisfy the homogeneous equation, the quantities in the paren-
thesis are equal to zero. Thus

u′y′
1 + v′y′

2 = h.

This equation together with the imposed condition (5.35) can be solved for
u′ and v′

u′ = − hy2

y1y′
2 − y2y′

1

, v′ =
hy1

y1y′
2 − y2y′

1

. (5.36)

The quantity in the denominator, known as the Wronskian W of y1 and y2,

W =
∣

∣

∣

∣

y1 y2

y′
1 y′

2

∣

∣

∣

∣

= y1y
′
2 − y2y

′
1
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will not be equal to zero as long as y1 and y2 are linearly independent. Inte-
gration of (5.36) will enable us to determine u and v

u = −
∫

hy2

W
dx, v =

∫

hy1

W
dx.

The particular solution is then

yp = −y1

∫

hy2

W
dx + y2

∫

hy1

W
dx.

Example 5.5.7. Use the variation of parameters method to find the general
solution of

(D2 + 4D + 4)y = 3xe−2x

Solution 5.5.7. This equation can be solved easily by the method of unde-
termined coefficients. But we want to show that the solution can also be found
by the variation of parameters method. Since

m2 + 4m + 4 = (m + 2)2 = 0, m = −2, − 2

the two independent solutions of the homogeneous equation are

y1 = e−2x, y2 = xe−2x.

The Wronskian of y1 and y2 is

W =
∣

∣

∣

∣

e−2x

−2e−2x
xe−2x

e−2x − 2xe−2x

∣

∣

∣

∣

= e−4x(1 − 2x) + 2xe−4x = e−4x

and u′ and v′ are given by

u′ = −3xe−2xy2

W
= −3xe−2xxe−2x

e−4x
= −3x2,

v′ =
3xe−2xy1

W
=

3xe−2xe−2x

e−4x
= 3x.

It follows that:

u = −
∫

3x2dx = −x3 + c1, v =
∫

3xdx =
3
2
x2 + c2.

Therefore

y = (−x3 + c1)e−2x +
(

3
2
x2 + c2

)

xe−2x

=
1
2
x3e−2x + c1e−2x + c2xe−2x.

This is the general solution. It is seen that this solution includes the comple-
mentary function

yc = c1e−2x + c2xe−2x
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and the particular solution

yp =
1
2
x3e−2x.

Example 5.5.8. Find the general solution of

(D2 + 2D + 1)y = h(x), h(x) =
2
x2

e−x.

Solution 5.5.8. This equation cannot be solved by the method of undeter-
mined coefficients, therefore we seek the solution by variation of parameters.
The complementary function is obtained from

m2 + 2m + 1 = (m + 1)2 = 0, m = −1, −1

to be
yc = c1y1 + c2y2 = c1e−x + c2xe−x.

Let
yp = uy1 + vy2.

From the Wronskian of y1 and y2

W =
∣

∣

∣

∣

e−x xe−x

−e−x e−x − xe−x

∣

∣

∣

∣

= e−2x(1 − x) + xe−2x = e−2x,

we have

u = −
∫

y2h

W
= −

∫

xe−x2x−2e−x

e−2x
dx = −2 ln x,

v =
∫

y1h

W
=
∫

e−x2x−2e−x

e−2x
dx = − 2

x
.

Thus
yp = −2e−x ln x − 2e−x.

Therefore the general solution is

y = c1e−x + c2xe−x − 2e−x ln x.

Note that we have dropped the term −2e−x, since it is absorbed in c1e−x.

5.6 Mechanical Vibrations

There are countless applications of differential equations in engineering and
physical sciences. As illustrative examples, we will first discuss mechanical
vibrations. Any motion that repeats itself after certain time interval is called
vibration or oscillation. A simple model is the spring–mass system shown in
Fig. 5.1. The block of mass m is constrained to move on a frictionless table and
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k m

x
Smooth

x = 0 +xm−xm

Fig. 5.1. A simple harmonic oscillator. The block moves on a frictionless table. The
equilibrium position of the spring is at x = 0. At t = 0, the block is released from
rest at x = xm

is fastened to a spring with spring constant k. The block is pulled a distance
xm from its equilibrium position at x = 0 and released from rest. We want to
know the subsequent motion of the block.

This system is simple enough for us to demonstrate the following steps in
mathematical physics:

– Formulate the physical problem in terms of mathematical language, usu-
ally in the form of a differential equation.

– Solve the mathematical equation.
– Understand the physical meaning of the mathematical solution.

5.6.1 Free Vibration

The first step is to observe that the only horizontal force on the block is coming
from the spring. According to the Hooke’s law, the force is proportional to
the displacement but opposite in sign, that is

F = −kx.

The motion of the block is governed by the Newton’s dynamic equation

F = ma.

Since the acceleration is equal to the second derivative of the displacement

a =
d2x

dt2
,

therefore

m
d2x

dt2
= −kx.

This is a second-order linear homogeneous differential equation. Since the
block is released from rest at x = xm, the velocity of the block, which is
the first derivative of the displacement, is zero at t = 0. Therefore the initial
conditions are

x(0) = xm, v(0) =
dx

dt

∣

∣

∣

∣

t=0

= 0.
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With the differential equation and the initial conditions, the mathematical
problem is uniquely defined.

The second step is to solve this equation. Since the coefficients are con-
stants, the solution of the differential equation is of the exponential form,
x = exp(αt) with α determined by the characteristic equation

mα2 = −k.

Clearly the roots of this equation are

α = ±
√

− k

m
= ±iω0, ω0 =

√

k

m
.

Thus the general solution of the differential equation is given by

x(t) = Aeiω0t + Be−iω0t.

The initial conditions requires that

x(0) = A + B = xm,

dx

dt

∣

∣

∣

∣

t=0

= iω0A − iω0B = 0.

Therefore A = B = 1
2xm, and

x(t) = xm cos ω0t.

The third step is to interpret this solution. The cosine function varies
between 1 and −1, it repeats itself when its argument is increased by 2π.
Therefore the block oscillates between xm and −xm. The period T of the
oscillation is defined as the time required for the motion to repeat itself, this
means

x(t + T ) = x(t).

Thus
cos(ω0t + ω0T ) = cos(ω0t).

Clearly
ω0T = 2π.

Therefore the period is given by

T =
2π

ω0
= 2π

√

m

k
.

The frequency f is defined as the number of oscillations in one second, that
is

f =
1
T

=
ω0

2π
=

1
2π

√

k

m
.
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Thus the block oscillates with a frequency that is prescribed by k and m.
Since ω0 = 2πf, ω0 is called angular frequency. Often ω0 is referred simply as
the natural frequency with the understanding that it is actually the angular
frequency.

From the solution of the differential equation, we can derive all attributes
of the motion, such as the velocity of the block at any given time. This type
of periodic motion is called simple harmonic motion. The mass–spring system
is known as a harmonic oscillator.

5.6.2 Free Vibration with Viscous Damping

In practical systems, the amplitude of the oscillation gradually decreases due
to friction. This is known as damping. For example, if the system is vibrating
in a fluid medium, such as air, water, oil, the resisting force offered by the
viscosity of the fluid is generally proportional to the velocity of the vibrating
body. Therefore with viscous damping, there is an additional force

Fv = −c
dx

dt

where c is the coefficient of viscous damping and the negative sign indicates
that the damping force is opposite to the direction of velocity. Thus the equa-
tion of motion of the mass–spring system becomes

m
d2x

dt2
= −kx − c

dx

dt

or

m
d2x

dt2
+ c

dx

dt
+ kx = 0.

This equation can be written in the form

d2x

dt2
+ 2β

dx

dt
+ ω2

0x = 0,

where β = c/2m, ω2
0 = k/m. With x = exp(αt), α must satisfy the equation

α2 + 2βα + ω2
0 = 0.

The roots of this equation are

α1 = −β +
√

β2 − ω2
0, α2 = −β −

√

β2 − ω2
0.

The solution is therefore given by

x(t) = A1eα1t + A2eα2t. (5.37)

Depending on the strength of damping, this solution takes the following three
forms.
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Over damping. If β2 > ω2
0, then the values of α1 and α2 are both negative.

Thus both terms in x exponentially go to zero as t → ∞. In this case, the
damping force represented by β overpowers the restoring force represented by
ω0 and hence prevents oscillation. The system is called overdamped.

Critical damping. In this case β2 = ω2
0, the characteristic equation has a

double root at α = −β twice. Hence the solution is of the form

x(t) = (A + Bt)e−βt.

Since β > 0, both e−βt and te−βt go to zero as t → ∞. The motion dies out
with time and is not qualitatively different from the overdamped motion. In
this case the damping force is just as strong as the restoring force, therefore
the system is called critically damped.

Under damping. If β2 < ω2
0, then the roots of the characteristic equation

are complex
α1, α2 = −β ± iω,

where

ω =
√

ω2
0 − β2.

Therefore the solution x = e−βt(Aeiωt + Be−iωt) can be written in the form
of

x(t) = Ce−βt cos(ωt + ϕ).

Because of the cosine term in the solution, the motion is oscillatory. Since
the maximum value of cosine is one, the displacement x must lie between
the curves x(t) = ±Ce−βt. Hence it resembles a cosine curve with decreasing
amplitude. In this case, the damping force represented by β is weaker than
the restoring force represented by ω and thus cannot prevent oscillation. For
this reason, the system is called under damped.

These three cases are illustrated in the following example with specific
parameters.

Example 5.6.1. The displacement x(t) of a damped harmonic oscillator satis-
fies the equation

d2x

dt2
+ 2β

dx

dt
+ ω2

0x = 0.

Let the initial conditions be

x(0) = x0; v(0) =
dx

dt

∣

∣

∣

∣

t=0

= 0.

Find x as a function of time t, if ω0 = 4, and (a) β = 5, (b) β = 4, (c) β = 1.
Show a sketch of the solutions of these three cases.
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Solution 5.6.1. (a) Since β = 5 and ω0 = 4, the motion is overdamped. The
roots of the characteristic equation are

α1, α2 = −5 ±
√

25 − 16 = −2, −8.

Thus
x(t) = A1e−2t + A2e−8t.

The initial conditions require A1 and A2 to satisfy

A1 + A2 = x0, −2A1 − 8A2 = 0.

Therefore

x(t) = x0

(

4
3
e−2t − 1

3
e−8t

)

.

The graph of this function is shown as the dotted line in Fig. 5.2.

(b) Since β = 4 and ω0 = 4, the motion is critically damped. The roots
of the characteristic equation are −β twice

α1, α2 = −β = −4.

Thus
x(t) = (A + Bt)e−4t.

From the initial conditions, we find

A = x0, B = 4x0.

Therefore
x(t) = x0(1 + 4t)e−4t.

The graph of this function is shown as the line of open circles in Fig. 5.2.
(c) For β = 1 and ω0 = 4, the motion is under damped. The solution can

be written as

t

x0

43210

1

0.5

0

−0.5

−1

Fig. 5.2. Free vibrations with viscous damping. Initially the block is at x0 and
released from rest. The dotted line is for the over damped motion, the line of open
circles is for the critically damped motion, the solid line is for the under damped
motion. The damped amplitude is shown as dashed lines
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x(t) = Ce−βt cos(ωt − φ),

where
ω =

√

ω2
0 − β2 =

√
15.

From the initial conditions

x(0) = C cos(−φ) = x0,

dx

dt

∣

∣

∣

∣

t=0

= −βC cos(−φ) − ωC sin(−φ) = 0,

we find
tan φ =

β

ω
=

1√
15

, C =
1

cos φ
x0.

Since cos φ = (1 + tan2 φ)−1/2,

C =

√

ω2 + β2

ω
x0 =

4√
15

x0.

Therefore

x(t) =
4√
15

x0e−t cos
(√

15t − tan−1 1√
15

)

.

The graph of this function is shown as the solid line in Fig. 5.2. The damped
amplitude Ce−βt is also shown as the dashed line.

In the over damped and critically damped cases, if there is a large negative
initial velocity, it is possible for the block to overshoot the equilibrium posi-
tion. In that case, it will come to a temporarily stop in a negative x position.
After that, it will return to x = 0 in a monotonically decreasing way. There-
fore even if it overshoots the equilibrium position, it can do that only once.
Hence the motion is not oscillatory.

The under damped motion is oscillatory although its amplitude is app-

roaching zero as time goes to ∞. The damped frequency
√

ω2
0 − β2 is always

less than the natural frequency ω0.

5.6.3 Free Vibration with Coulomb Damping

From the first course of physics, we all learned that the friction force of a block
sliding on a plane is proportional to the normal force acting on the plane of
contact. This friction force acts in a direction opposite to the direction of
velocity and is given by

Fc = µN

where N is the normal force and µ is the coefficient of friction. When the
motion is damped by this friction force, it is known as Coulomb damp-
ing. Charles Augustin Coulomb (1736–1806) first proposed this relationship,
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but he is much better known for his law of electrostatic force. His name is also
remembered through the unit of electric charge. Coulomb damping is also
known as constant damping, since the magnitude of the damping force is
independent of the displacement and velocity.

However, the sign of the friction force changes with the direction of the
velocity, and we need to consider the motion in two directions separately.

When the block moves from right to left, the friction force is pointing
toward the right and has a positive sign. With this friction force, the equation
of motion is given by

m
d2x

dt2
= −kx + µN.

This equation has a constant nonhomogeneous term. The solution is

x(t) = A cos ω0t + B sin ω0t +
µN

k
, (5.38)

where ω0 =
√

k/m, which is the same as the angular frequency of the
undamped oscillator.

When the block is moving from left to right, the friction force is pointing
toward the left and has a negative sign, and the equation of motion becomes

m
d2x

dt2
= −kx − µN.

The solution of this equation is

x(t) = C cos ω0t + D sin ω0t −
µN

k
. (5.39)

The constants A,B,C,D are determined by the initial conditions. For
example, if the block is released from rest at a distance x0 to the right of
the equilibrium position, then x(0) = x0 and the velocity v, which is the first
derivative of x, at t = 0 is zero. In this case, the motion starts from right to
left. Using (5.38), we have

v(t) =
dx

dt
= −ωA sin ω0t + ωB cos ω0t.

Thus the initial conditions are

x(0) = A +
µN

k
= x0, v(0) = ω0B = 0.

Therefore A = x0 − µN/k, B = 0, and

x(t) = (x0 −
µN

k
) cos ω0t +

µN

k
.

This equation represents a simple harmonic motion with the equilibrium
position shifted from zero to µN/k. However, this equation is valid only for
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the first half of the first cycle. When t = π/ω0, the velocity of the block is
equal to zero and the block is at its extreme left position x1 which is

x1 =
(

x0 −
µN

k

)

cos ω0
π

ω0
+

µN

k
= −x0 + 2

µN

k
.

In the next half cycle, the block moves from left to right, so we have to
use (5.39). To determine C and D, we use the fact x(t = π/ω0) = x1 and
v(t = π/ω0) = 0. With these conditions, we have

x

(

t =
π

ω0

)

= C cos ω0
π

ω0
+ D sinω0

π

ω0
− µN

k
= −C − µN

k
= x1,

v

(

t =
π

ω0

)

= −ω0C sin ω0
π

ω0
+ ω0D cos ω0

π

ω0
= −ω0D = 0.

Therefore C = −x1 − µN
k = x0 − 3µN

k , D = 0, and (5.39) becomes

x(t) =
(

x0 − 3
µN

k

)

cos ω0t −
µN

k
.

This is also a simple harmonic motion with the equilibrium position shifted
to −µN/k. This equation is valid for π/ω0 ≤ t ≤ 2π/ω0. At the end of this
half cycle, the velocity is again equal to zero

v

(

t =
2π

ω0

)

= −ω0

(

x0 − 3
µN

k

)

sinω0
2π

ω0
= 0

and the block is at x2 which is

x2 =
(

x0 − 3
µN

k

)

cos ω0
2π

ω0
− µN

k
= x0 − 4

µN

k
.

These become the initial conditions for the third half cycle, and the procedure
can be continued until the motion stops. The displacement x as a function of
time t of this motion is shown in Fig. 5.3.

It is to be noted that the frequency of a Coulomb damped vibration is the
same as that of the free vibration without damping. This is to be contrasted
with the viscous damping. Furthermore, if xn is a local maximum, then

xn − xn−2 = −4µN

k
.

This means that in each successive cycle, the amplitude of the motion is reduced
by 4µN/k in a time interval of 2π/ω0. Therefore the maxima of the oscillation
all fall on a straight line. The slope of this straight enveloping line is

−4µN/k

2π/ω0
= −2µNω0

πk
.
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x (t )

t

4µN

k
x0 −

2µN
k

x0 −

x0

−

µN
k

µN
k

2π
ω0

4π
ω0

Fig. 5.3. The displacement x of the block as a function of time t in the mass–spring
system with Coulomb damping. Initially the block is at x = x0 and is released from
rest

Similarly, all local minima must fall on a straight line with a slope of
2µNω0/πk. These characteristics are also shown in Fig. 5.3.

The motion stops when the velocity becomes zero and the restoring force
kx of the spring is equal or less than the friction force µN. Thus the number
of half cycles n0 that elapse before the motion ceases can be found from the
condition

k

(

x0 − n0
2µN

k

)

≤ µN.

If x0 ≤ µN/k, the motion will not even start. For µN/k < x0 < 2µN/k, the
block will stop before it reaches the equilibrium position. The final position
of the block is usually different from the equilibrium position and represents
a permanent displacement.

5.6.4 Forced Vibration without Damping

A dynamic system is often subjected to some type of external force. In this
section, we shall consider the response of a spring-mass system under the
external force of the form F0 cos ωt. First suppose there is no damping, then
the equation of motion is given by

m
d2x

dt2
+ kx = F0 cos ωt

or
d2x

dt2
+ ω2

0x =
F0

m
cos ωt,
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where ω0 = (k/m)1/2 is the natural frequency of the system. The general
solution is the sum of the complementary function xc and the particular
solution xp. The complementary function satisfies the homogeneous equation

d2xc

dt2
+ ω2

0xc = 0

and is given by
xc(t) = c1 cos ω0t + c2 sin ω0t.

Since the nonhomogeneous term has a frequency ω, the particular solution
takes the form

xp(t) = A cos ωt + B sin ωt.

Substituting it into the equation

d2xp

dt2
+ ω2

0xp =
F0

m
cos ωt

we find B = 0, and A = F0/[m(ω2
0 − ω2)]. Thus

xp(t) =
F0

m(ω2
0 − ω2)

cos ωt

and the general solution, given by xc + xp

x(t) = c1 cos ω0t + c2 sin ω0t +
F0

m(ω2
0 − ω2)

cos ωt

is the sum of two periodic motions of different frequencies.
Beats. Suppose the initial conditions are x(0) = 0 and v(0) = 0, then c1 and
c2 are found to be

c1 = − F0

m(ω2
0 − ω2)

, c2 = 0.

Thus the solution is given by

x(t) =
F0

m(ω2
0 − ω2)

(cos ωt − cos ω0t)

=
2F0

m(ω2
0 − ω2)

sin
ω0 − ω

2
t sin

ω0 + ω

2
t.

Let the forcing frequency ω be slightly less than the natural frequency ω0 so
that ω0 −ω = 2ε, where ε is a small positive quantity. Then ω0 + ω ≈ 2ω and
the solution becomes

x(t) ≈ F0

2mωε
sin εt sin ωt.

Since ε is small, the function sin εt varies slowly. Thus the factor

F0

2mωε
sin εt
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2π
ω

F0

2π

t

x(t )

Fig. 5.4. Beats produced by the sum of two waves with approximately the same
frequencies

can be regarded as the variable amplitude of the vibration whose period is
2π/ω. The oscillation of the amplitude has a large period of 2π/ε, which is
called the period of beats. This kind of motion is shown in Fig. 5.4.
Resonance. In the case that the frequency of the forcing function is the same
as the natural frequency of the system, that is ω = ω0, then the particular
solution takes the form

xp(t) = At cos ω0t + Bt sinω0t.

Substituting it into the original nonhomogeneous equation, we find A =
0, B = F0/(2mω0). Thus the general solution is given by

x(t) = c1 cos ω0t + c2 sinω0t +
F0

2mω0
t sin ω0t.

Because of the presence of the term t sin ω0t, the motion will become unboun-
ded as t → ∞. This is known as resonance. The phenomenon of resonance
is characterized by xp which is shown in Fig. 5.5. If there is damping, the

t 

xp(t )
F0t

2mw 0

2p
w 0

Fig. 5.5. Resonance without damping. When the forcing frequency coincide with
the natural frequency, the motion will become unbounded
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motion will remain bounded. However, there may still be a large response if
the damping is small and ω is close to ω0.

5.6.5 Forced Vibration with Viscous Damping

With viscous damping, the equation of motion of the spring–mass system
under a harmonic forcing function is given by

m
d2x

dt2
+ c

dx

dt
+ kx = F0 cos ωt. (5.40)

The solution of this equation is again the sum of the complementary func-
tion and the particular solution. The complementary function satisfies the
homogeneous equation

m
d2xc

dt2
+ c

dxc

dt
+ kxc = 0,

which represents free vibrations with damping. As discussed earlier, the free
vibration dies out with time under all possible initial conditions. This part of
the solution is called transient. The rate at which the transient motion decays
depends on the system parameters m, k, c.

The general solution of the equation eventually reduces to the particular
solution which represents the steady-state vibration.

The particular solution is expected to have the same frequency as the
forcing function, we can write the solution in the following form:

xp(t) = A cos(ωt − φ). (5.41)

Substituting it into the equation of motion, we find

A
[

(k − mω2) cos(ωt − φ) − cω sin(ωt − φ)
]

= F0 cos ωt.

Using the trigonometric identities

cos(ωt − φ) = cos ωt cos φ + sin ωt sin φ,

sin(ωt − φ) = sin ωt cos φ − cos ωt sin φ

and equating the coefficients of cos ωt and sinωt on both sides of the resulting
equation, we obtain

A
[

(k − mω2) cos φ + cω sin φ
]

= F0, (5.42a)

A
[

(k − mω2) sin φ − cω cos φ
]

= 0. (5.42b)

It follows from (5.42b) that:

(k − mω2) sin φ = cω cos φ,
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but sin2 φ = 1 − cos2 φ, so

(k − mω2)2(1 − cos2 φ) = (cω cos φ)2.

Therefore

cos φ =
k − mω2

[(k − mω2)2 + (cω)2]1/2
.

It follows that:
sin φ =

cω

[(k − mω2)2 + (cω)2]1/2
.

Substituting cosφ and sinφ into (5.42a), we find

A =
F0

[(k − mω2)2 + (cω)2]1/2
=

F0

[m2(ω2
0 − ω2)2 + c2ω2]1/2

, (5.43)

where ω2
0 = k/m. The particular solution xp(t) is, therefore, given by

xp(t) =
F0 cos(ωt − φ)

[

m2(ω2
0 − ω2)2 + c2ω2

]1/2
, (5.44)

where
φ = tan−1 cω

m(ω2
0 − ω2)

.

Notice that m2(ω2
0 − ω2)2 + c2ω2 is never zero, even for ω = ω0. Hence with

damping, the motion is always bounded. However, if the damping is not strong
enough, the amplitude can still get to be very large.

To find the maximum amplitude, we take the derivative of A with respect

to ω, and set it to zero. This shows that the frequency that makes
dA

dω
= 0

must satisfy the equation

2m2(ω2
0 − ω2) − c2 = 0.

Therefore the maximum amplitude occurs at

ω =

√

ω2
0 −

c2

2m2
. (5.45)

Note that for c2 > 2m2ω2
0, no real ω can satisfy this equation. In that case,

there will not be any maximum for ω �= 0. The amplitude is a monotonically
decreasing function of the forcing frequency.

However, if c2 < 2m2ω2
0, then there will be a maximum. Substituting

(5.45) into the expression of A, we obtain the maximum amplitude

Amax =
2mF0

c(4m2ω2
0 − c2)1/2

.
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Fig. 5.6. Forced vibration with viscous damping. Amplitude of the steady-state as
a function of ω/ω0, γ = (c/mω0)

2 represents the strength of damping. For γ ≥ 2,
there is no maximum

To see the relation between the amplitude A and the forcing frequency ω, it
is convenient to express A of (5.43) as

A =
F0

mω2
0

[

(

1 −
(

ω/ω0

)2)2 + γ
(

ω/ω0

)2
]1/2

,

where γ = c2/m2ω2
0. The graphs of A in units of F0/mω2

0 as functions of ω/ω0

are shown in Fig. 5.6 for several different values of γ. For γ = 0, it is the forced
vibration without damping and the motion is unbound at ω = ω0. For a small
γ, the amplitude still has a sharp peak at a frequency slightly less than ω0.
As γ gets larger, the peak becomes smaller and wider. When γ ≥ 2, there is
no longer any maximum.

In designing structures, we want to include sufficient amount of damping
to avoid resonance which can lead to disaster. On the other hand, if we design
a device to detect periodic force, we would want to choose m, k, c to satisfy
(5.45) so that the response of the device to such a force is maximum.

5.7 Electric Circuits

As a second example of application of theory of linear second-order differential
equations with constant coefficients, we consider the simple electric circuit
shown in Fig. 5.7.

It consists of three kinds of circuit elements; a resistor with a resistance
R measured in ohms, an inductor with an inductance L measured in henries,
and a capacitor with capacitance C measured in farads. They are connected
in series with a source of electromotive force (emf) that supplies at time t
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+

−

ε

I

R

L

C
Q

Q

Fig. 5.7. An oscillatory electrical circuit with resistance, inductance, and capacitance

a voltage V (t) measured in volts. The capacitor is a device to store electric
charges Q, measured in coulombs. If the switch is closed, there will be current
I(t), measured in amperes, flowing in the circuit. In elementary physics, we
learned that the voltage drop acrose the resistor is equal to IR, the voltage

drop across the inductor is L
dI

dt
, and the voltage acrose the capacitor is

1
C

Q.

The sum of these is equal to the applied voltage. Therefore

L
dI

dt
+ RI +

1
C

Q = V (t).

Furthermore, the rate of increase of the charge Q on the capacitor is, by
definition, equal to the current

dQ

dt
= I.

With this relation, we obtain the following second-order linear nonhomoge-
neous equation for Q:

L
d2Q

dt2
+ R

dQ

dt
+

1
C

Q = V (t).

Suppose the circuit is driven by a generator with a pure cosine wave oscillation,
V (t) = V0 cos ωt, then the equation becomes

L
d2Q

dt2
+ R

dQ

dt
+

1
C

Q = V0 cos ωt. (5.46)

5.7.1 Analog Computation

We see that the equation describing an LRC circuit is exactly the same as
(5.40), the equation describing the forced vibration of a spring–mass system
with viscous damping. The fact that the same differential equation serves to
describe two entirely different physical phenomena is a striking example of the
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Table 5.2. The analogy between mechanical and electrical systems

Mechanical Property Electrical Property

m
d2x

dt2
+ c

dx

dt
+ kx = F0 cos ωt L

d2Q

dt2
+ R

dQ

dt
+

1

C
Q = V0 cos ωt

displacement x charge Q

velocity v =
dx

dt
current I =

dQ

dt
mass m inductance L
spring constant k inverse capacitance 1/C
damping coefficient c resistance R
applied force F0 cos ωt applied voltage V0 cos ωt

resonant frequency ω2
0 =

k

m
resonant frequency ω2

0 =
1

LC

unifying role of mathematics in natural sciences. With appropriate substitu-
tions, the solution of (5.40) can be applied to electric circuits. The correspon-
dence between the electrical and mechanical cases are shown in Table 5.2.

The correspondence between mechanical and electrical properties can also
be used to construct an electrical model of a given mechanical system. This
is a very useful way to predict the performance of a mechanical system, since
the electrical elements are inexpensive and electrical measurements are usually
very accurate. The method of computing the motion of a mechanical system
from an electrical circuit is known as analog computation.

By directly converting xp(t) of (5.44) into its electrical equivalent, the
steady-state solution of (5.46) is found to be

Q(t) =
V0 cos(ωt − φ)

[

(

1
C − ω2L

)2 +
(

ωR
)2
]1/2

,

φ = tan−1 ωR
1
C − ω2L

= tan−1 R
1

ωC − ωL
.

Generally, it is the current that is of primary interests, so we differentiate Q
with respect to t to get the steady-state current

I(t) =
dQ

dt
=

−ωV0 sin(ωt − φ)
[

(

1
C − ω2L

)2 +
(

ωR
)2
]1/2

=
−V0 sin(ωt − φ)

[

(

1
ωC − ωL

)2 + R2
]1/2

.

To see more clearly the phase relation between the current I(t) and the applied
voltage V (t) = cos ωt, we would like to express the current also in terms of a
cosine function. This can be done by noting that

tan φ =
R

1
ωC − ωL

can be expressed geometrically in the following triangle.
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R
2  +

1
wC

− wL

2

1
wC

− wL

R

a

f

))

It is clear that φ = π
2 − α and

tan α =
1

ωC − ωL

R
.

Since sin(ωt − φ) = sin(ωt − π
2 + α) = − cos(ωt + α), it follows that:

I(t) =
V0 cos(ωt + α)

[

(

1
ωC − ωL

)2 + R2
]1/2

.

For reasons that will soon be clear, often I(t) is written in still another form:

I(t) =
V0 cos(ωt − β)

[

(

1
ωC − ωL

)2 + R2
]1/2

, (5.47)

where β = −α, and

tan β = tan(−α) = − tan α =
ωL − 1

ωC

R
.

5.7.2 Complex Solution and Impedance

The particular solution of (5.46) can be found by the complex exponential
method. This method offers some computational and conceptual advantages.
We can replace V0 cos ωt by V0eiω and solve the equation

L
d2Qc

dt2
+ R

dQc

dt
+

1
C

Qc = V0eiωt. (5.48)

The real part of the solution Qc is the charge Q, and the real part of Ic, defined

as
d
dt

Qc, is the current I. The time dependence of charges and currents must

also be in the form of eiωt

Qc = ̂Qeiωt, Ic = ̂Ieiωt,
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where ̂Q and ̂I are complex but independent of t. Since

dQc

dt
= iωQc,

d2Qc

dt2
= −ω2Qc,

the differential equation (5.48) becomes the algebraic equation

(−ω2L + iωR +
1
C

)Qc = V0eiωt.

Clearly

Qc =
V0eiωt

−ω2L + iωR + 1
C

,

and

Ic =
dQc

dt
=

iωV0eiωt

−ω2L + iωR + 1
C

=
V0eiωt

R + i(ωL − 1
ωC )

. (5.49)

Writing the denominator in the polar form

R + i(ωL − 1
ωC

) =
[

R2 + (ωL − 1
ωC

)2
]1/2

eiβ ,

β = tan−1 ωL − 1
ωC

R
,

We see that

Ic =
V0eiωt

[

R2 + (ωL − 1
ωC )2

]1/2
eiβ

=
V0ei(ωt−β)

[

R2 + (ωL − 1
ωC )2

]1/2
.

The real part of Ic is

I =
V0 cos(ωt − β)

[

R2 + (ωL − 1
ωC )2

]1/2
,

which is identical to (5.47).
In electrical engineering, it is customary to define V0eiωt as the complex

voltage Vc, and to define

Z = R + iωL +
1

iωC

as the complex impedance Z. With these notations, (5.49) can be written in
the form

Ic =
Vc

Z
.

Note that if the circuit element had consisted of the resistance R alone, the
impedance would be equal simply to R, so this relation would resembles Ohm’s
law for a direct current circuit: V = RI. Thus the role the impedance plays
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in an alternating circuit with a sinusoidal voltage is exactly the same as the
resistor in a direct current circuit.

It is a simple matter to show that if the circuit element consists only of the
inductance L, the impedance is simply iωL. Similarly, with only capacitance
C, the impedance is just 1/(iωC). Thus we see that when electrical elements
are connected in series, the corresponding impedances combine just as simple
resistances do.

In a similar way, we can show that when electrical elements are connected
in parallel, the corresponding impedances also combine just as simple resis-
tances do. For example, if R,L,C are connected in parallel, the complex cur-
rent can be found by dividing the complex voltage by the simple impedance
Z defined by the relation.

1
Z

=
1
R

+
1

iωL
+ iωC.

The real part of the result is the current in this AC circuit. This makes it very
easy to determine the steady state behavior of an electrical system.

5.8 Systems of Simultaneous Linear Differential
Equations

In many applications, it is necessary to simultaneously consider several
dependent variables, each depending on the same independent variable, usually
time t. The mathematical model is generally a system of linear differential
equations. The elementary approach of solving systems of differential equa-
tions is to eliminate the dependent variables one by one through combining
pairs of equations, until there is only one equation left containing one
dependent variable. This equation will usually be of higher order, and can
be solved by the methods we have discussed. Once this equation is solved, the
other dependent variables can be found in turn. This method is similar to the
solution of systems of simultaneous algebraic equations.

A closely related method is to find the eigenvalues of the matrix formed by
the differential equations. This method provides a mathematical framework
for the discussion of normal frequencies of the system, which are physically
important.

5.8.1 The Reduction of a System to a Single Equation

Let us solve the following system of equations with two dependent variables
x(t) and y(t):

dx

dt
= −2x + y, (5.50a)

dy

dt
= −4x + 3y + 10 cos t (5.50b)
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with the initial conditions

x(0) = 0, y(0) = −1.

From the first equation, we have

y =
dx

dt
+ 2x,

dy

dt
=

d2x

dt2
+ 2

dx

dt
.

Substitute them into the second equation

d2x

dt2
+ 2

dx

dt
= −4x + 3(

dx

dt
+ 2x) + 10 cos t

or
d2x

dt2
− dx

dt
− 2x = 10 cos t. (5.51)

This is an ordinary second-order nonhomogeneous differential equation, the
complementary function xc(t) and the particular solution xp(t) are found to
be, respectively, c1e−t + c2e2t and −3 cos t − sin t. Therefore

x = xc + xp = c1e−t + c2e2t − 3 cos t − sin t.

The solution for y(t) is then given by

y =
dx

dt
+ 2x = c1e−t + 4c2e2t − 7 cos t + sin t.

The constants c1, c2 are determined by the initial conditions

x(0) = c1 + c2 − 3 = 0,
y(0) = c1 + 4c2 − 7 = −1,

which gives c1 = 2, c2 = 1. Thus

x(t) = 2e−t + e2t − 3 cos t − sin t,

y(t) = 2e−t + 4e2t − 7 cos t + sin t.

If the number of coupled equations is small (2 or 3), the simplest method
of solving the problem is this kind of direct substitution. However, for a larger
system, one may prefer the more systematic approach of Sect. 5.8.2.

5.8.2 Cramer’s Rule for Simultaneous Differential Equations

We will use the same example of the last section to illustrate this method. First,
use the notation D to represent d

dt , and write the set of equations (5.50) as

(D + 2)x − y = 0, (5.52a)
4x + (D − 3)y = 10 cos t. (5.52b)
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Recall that for a system of algebraic equations

a11x + a12y = b1

a21x + a22y = b2,

the solution can be obtained by the Cramer’s rule

x =

∣

∣

∣

∣

b1 a12

b2 a22

∣

∣

∣

∣

∣

∣

∣

∣

a11 a12

a21 a22

∣

∣

∣

∣

, y =

∣

∣

∣

∣

a11 b1

a21 b2

∣

∣

∣

∣

∣

∣

∣

∣

a11 a12

a21 a22

∣

∣

∣

∣

.

We can use the same formalism to solve a system of differential equations.
That is, x(t) of (5.52) can be written as

x =

∣

∣

∣

∣

0 −1
10 cos t (D + 3)

∣

∣

∣

∣

∣

∣

∣

∣

(D + 2) −1
4 (D − 3)

∣

∣

∣

∣

,

or
∣

∣

∣

∣

(D + 2) −1
4 (D − 3)

∣

∣

∣

∣

x =
∣

∣

∣

∣

0 −1
10 cos t (D − 3)

∣

∣

∣

∣

.

Expanding the determinant, we have

[(D + 2)(D − 3) + 4]x = 10 cos t.

This means
(D2 − D − 2)x = 10 cos t,

which is identical to (5.51) of the last section. Proceeding in exactly the same
way as in the last section, we find

x(t) = xc + xp = c1e
−t + c2e

2t − 3 cos t − sin t.

Substituting it into the original differential equation, y(t) is found to be

y(t) = c1e−t + 4c2e2t − 7 cos t + sin t.

An alternative way of finding y(t) is to note that

y =

∣

∣

∣

∣

(D + 2) 0
4 10 cos t

∣

∣

∣

∣

∣

∣

∣

∣

(D + 2) −1
4 (D − 3)

∣

∣

∣

∣
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or
∣

∣

∣

∣

(D + 2) −1
4 (D − 3)

∣

∣

∣

∣

y =
∣

∣

∣

∣

(D + 2) 0
4 10 cos t

∣

∣

∣

∣

.

Expanding the determinant, we have

(D2 − D − 2)y = 20 cos t − 10 sin t.

The solution of this equation is

y(t) = yc + yp = k1e−t + k2e2t − 7 cos t + sin t.

Note that the complementary functions xc and yc satisfy the same homoge-
neous differential equation

(D2 − D − 2)xc = 0 (D2 − D − 2)yc = 0.

Since we have already written xc = c1e−t + c2e2t, we must avoid using c1

and c2 as the constants in yc. That is, in yc = k1e−t + k2e2t, k1 and k2

are not necessarily equal to c1 and c2, because there is no reason that they
should be equal. To find the relationship between them, we have to substitute
x(t) and y(t) back into one of the original differential equations. For example,
substituting them back into (D + 2)x = y, we have

c1e−t + 4c2e2t − 7 cot + sin t = k1e−t + k2e2t − 7 cos t + sin t.

Therefore
k1 = c1, k2 = 4c2.

Thus we obtain the same result as before.
It is seen that after the first dependent variable x(t) is found from Cramer’s

rule, it is simpler to find the second dependent variable y(t) by direct substi-
tution. If we continue to use Cramer’s rule to find y(t), we will introduce some
additional constants which must be eliminated by substituting both x(t) and
y(t) back into the original differential equation.

5.8.3 Simultaneous Equations as an Eigenvalue Problem

A system of simultaneous differential equations can be solved as an eigenvalue
problem in matrix theory. We will continue to use the same example to illus-
trate the procedures of this method. First write the set of equations (5.50) in
the following form:

−2x + y = x′,

−4x + 3y = y′ − 10 cos t.

With matrix notation, they become
(

−2 1
−4 3

)(

x
y

)

=
(

x′

y′ − 10 cos t

)

.
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Let
x = xc + xp, y = yc + yp.

The complementary functions xc and yc satisfy the equation
(

−2 1
−4 3

)(

xc

yc

)

=
(

x′
c

y′
c

)

, (5.53)

and the particular solutions xp and yp satisfy the equation
(

−2 1
−4 3

)(

xp

yp

)

=
(

x′
p

y′
p − 10 cos t

)

. (5.54)

Since these are linear equations with constant coefficients, we assume

xc = c1eλt, yc = c2eλt,

so
x′ =

dxc

dt
= λc1eλt, y′

c =
dyc

dt
= λc1eλt.

It follows that the matrix equation for the complementary functions is given
by:

(

−2 1
−4 3

)(

c1eλt

c2eλt

)

=
(

λc1eλt

λc2eλt

)

.

This is an eigenvalue problem
(

−2 1
−4 3

)(

c1

c2

)

= λ

(

c1

c2

)

with eigenvalue λ and eigenvector
(

c1

c2

)

. Therefore, λ must satisfy the secular

equation
∣

∣

∣

∣

−2 − λ 1
−4 3 − λ

∣

∣

∣

∣

= 0

or
(−2 − λ)(3 − λ) + 4 = 0.

The two roots λ1, λ2 of this equation are easily found to be

λ1 = −1, λ2 = 2.

Corresponding to each λi, there is an eigenvector
(

ci
1

ci
2

)

. The coefficients ci
1

and ci
2 are not independent of each other, they must satisfy the equation

(

−2 1
−4 3

)(

ci
1

ci
2

)

= λi

(

ci
1

ci
2

)

.
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It follows from this equation that for λ1 = −1, c1
2 = c1

1, and for λ2 = 2, c2
2 =

4c2
1. Therefore, other than some multiplicative constants, the eigenvector for

λ = −1 is
(

1
1

)

, and for λ = 2 is
(

1
4

)

.

The complementary functions xc and yc are given by the linear combina-
tions of the these two sets of solutions,

(

xc

yc

)

= c1

(

1
1

)

e−t + c2

(

1
4

)

e2t.

For the particular solution, because of the nonhomogeneous term 10 cos t,
we can assume xp = A cos t + B sin t and yp = C cos t + D sin t. However, it
is less cumbersome to make use of the fact that 10 cos t is the real part of
10eit. We can assume xp is the real part of Aceit and yp is the real part of
Bceit, where Ac and Bc are complex numbers. With these assumptions, (5.54)
becomes

(

−2 1
−4 3

)(

Aceit

Bceit

)

=
(

iAceit

iBceit − 10eit

)

.

Thus

−2Ac + Bc = iAc,

−4Ac + 3Bc = iBc − 10,

which yields

Ac = −3 + i, Bc = −7 − i.

Therefore

xp = Re(Aceit) = −3 cos t − sin t,

yp = Re(Bceit) = −7 cos t + sin t.

Finally, we have the general solution

(

x
y

)

=
(

xc

yc

)

+
(

xp

yp

)

=
(

c1e−t + c2e2t − 3 cos t − sin t
c1e−t + 4c2e2t − 7 cos t + sin t

)

,

which is what we had before.

5.8.4 Transformation of an nth Order Equation into a System of n
First-Order Equations

We have seen that a system of equations can be reduced to a single equation
of higher order. The reverse is also true. Any nth-order differential equation
can always be transformed into a simultaneous n first-order equations. Let us
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use this method to solve the second-order differential equation for the damped
harmonic oscillator

d2x

dt2
+

c

m

dx

dt
+

k

m
x = 0.

Let
x1 = x, x2 =

dx1

dt
.

It follows:
dx2

dt
=

d2x1

dt2
= − c

m

dx1

dt
− k

m
x1.

Thus the second-order equation can be written as a set of two first-order
equations:

x2 =
dx1

dt
,

− k

m
x1 −

c

m
x2 =

dx2

dt
.

With matrix notation, we have
(

0

− k

m

1
− c

m

)

(

x1

x2

)

=
(

x′
1

x′
2

)

.

Since the coefficients are constants, we can assume
(

x1

x2

)

=
(

c1

c2

)

eλt,

thus we have the eigenvalue problem
(

0

− k

m

1
− c

m

)

(

c1

c2

)

= λ

(

c1

c2

)

.

The eigenvalues λ can be found from the characteristic equation
∣

∣

∣

∣

∣

0 − λ

− k

m

1
− c

m
− λ

∣

∣

∣

∣

∣

= 0.

The two roots of this equation are

λ1, λ2 =
1

2m
(−c ±

√

c2 − 4km).

Thus the general solution of the original problem is given by

x(t) = x1 = c1eλ1t + c2eλ2t.

This result is identical to (5.37).
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The fact that a linear differential equation of nth-order can be transformed
into a system of n coupled first-order equations is of some importance because
mathematically one can show that there is an unique solution for a linear first-
order system, provided the initial conditions are specified. However, we are not
too concerned with uniqueness and existence because in physical applications,
the mathematical model, if formulated correctly, must have a solution.

5.8.5 Coupled Oscillators and Normal Modes

The motion of a harmonic oscillator is described by a second-order differential
equation. Its solution shows that the motion is characterized by a single nat-
ural frequency. A real physical system usually has many different characteristic
frequencies. A vibration with any of these frequencies is called a normal mode
of the system. The motion of the system is generally a linear combination of
these normal modes.

A simple example is the system of two coupled oscillators shown in Fig. 5.8.
The system consists of two identical mass–spring oscillators of mass m

and spring constant k. The two masses rest on a frictionless table and are
connected by a spring with spring constant K. When the displacements xA

and xB are zero, the springs are neither stretched or compressed. At any
moment, the connecting spring is stretched an amount xA −xB and therefore
pulls or pushes on A and B with a force whose magnitude is K(xA − xB).
Thus the magnitude of the restoring force on A is

−kxA − K(xA − xB).

The force on B must be

−kxB + K(xA − xB).

Therefore the equations of motion for A and B are

−kxA − K(xA − xB) = m
d2xA

dt2
,

−kxB + K(xA − xB) = m
d2xB

dt2
.

K k

xB xA

B A

k
m m

Fig. 5.8. Two coupled oscillators
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With matrix notation, these equations can be written as

⎛

⎜

⎝

− k

m
− K

m

K

m
K

m
− k

m
− K

m

⎞

⎟

⎠

(

xA

xB

)

=

⎛

⎜

⎜

⎝

d2xA

dt2

d2xB

dt2

⎞

⎟

⎟

⎠

.

To simplify the writing, let ω2
0 = k/m and ω2

1 = K/m. With the assumption
xA = aeλt and xB = beλt, the last equation becomes

(

−ω2
0 − ω2

1 ω2
1

ω2
1 −ω2

0 − ω2
1

)(

a
b

)

eλt = λ2

(

a
b

)

eλt.

This can be regarded as an eigenvalue problem. The secular equation
∣

∣

∣

∣

−ω2
0 − ω2

1 − λ2 ω2
1

ω2
1 −ω2

0 − ω2
1 − λ2

∣

∣

∣

∣

= 0

shows that λ2 satisfies the equation

(−ω2
0 − ω2

1 − λ2)2 − ω4
1 = 0

or
λ2 = −ω2

0 − ω2
1 ± ω2

1.

Thus
λ2 = −ω2

0, λ2 = −(ω2
0 + 2ω2

1).

The four roots of λ are

λ1, λ2 = ±iω0, λ3, λ4 = ±iωc,

where
ωc =

√

ω2
0 + 2ω2

1.

These frequencies, ω0 and ωc are known as the normal frequencies of the
system. The amplitudes a and b are not independent of each other, since they
must satisfy the equation

(

−ω2
0 − ω2

1 − λ2 ω2
1

ω2
1 −ω2

0 − ω2
1 − λ2

)(

a
b

)

= 0.

Thus for λ = λ1, λ2 = ±iω0, so λ2 = −ω2
0, the amplitudes a and b must satisfy

(

−ω2
0 − ω2

1 + ω2
0 ω2

1

ω2
1 −ω2

0 − ω2
1 + ω2

0

)(

a
b

)

= 0.

It follows that a = b.
Similarly, for λ = λ3, λ4 = ±iωc, the relation between a and b is given by
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(

−ω2
0 − ω2

1 + ω2
0 + 2ω2

1 ω2
1

ω2
1 −ω2

0 − ω2
1 + ω2

0 + 2ω2
1

)(

a
b

)

= 0,

which gives b = −a.
The displacements xA and xB are given by a linear combinations of these

four solutions,

xA = a1eλ1t + a2eλ2t + a3eλ3t + a4eλ4t,

xB = a1eλ1t + a2eλ2t − a3eλ3t − a4e
λ4t,

where we have substituted a1, a2 for b1, b2, and −a3,−a4 for b3, b4. Since
λ1 = iω0, λ2 = −iω0,

a1eλ1t + a2eλ2t = a1eiω0t + a2e
−iω0t = C cos(ω0t + α).

Similarly
a3eλ3t + a4eλ4t = D cos(ωct + β).

Thus xA and xB can be written as

xA = C cos(ω0t + α) + D cos(ωct + β),
xB = C cos(ω0t + α) − D cos(ωct + β).

The four constants a1, a2, a3, a4 (or C,α,D, β) depend on the initial condi-
tions. It is seen that both xA and xB are given by some combination of the
vibrations of two normal frequencies ω0 and ωc.

Suppose the motion is started when we pull both A and B toward the
same direction by an equal amount x0 and then release them from rest. The
distance between A and B equals the relaxed length of the coupling spring
and therefore it exerts no force on each mass. Thus A and B will oscillate
in phase with the same natural frequency ω0 as if they were not coupled.
Mathematically, we see that is indeed the case. With the initial conditions

xA(0) = xB(0) = x0 and
dxA

dt

∣

∣

∣

∣

t=0

= 0,
dxB

dt

∣

∣

∣

∣

t=0

= 0,

one can easily show that C = x0, D = 0, α = β = 0. Therefore

xA = x0 cos ω0t, xB = x0 cos ω0t.

This represents a normal mode of the coupled system. Once the system is
vibrating with a normal frequency, it will continue to vibrate with that fre-
quency.

Suppose initially we pull A and B in opposite direction by the same
amount xm and then release them. The symmetry of the arrangement tells
us that A and B will be mirror images of each other. They will vibrate with
certain frequency, which we might expect it to be ωc, since ωc is the only
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other normal frequency of the system. This is indeed the case. Since with the
initial conditions

xA(0) = −xB(0) = xm, and
dxA

dt

∣

∣

∣

∣

t=0

= 0,
dxB

dt

∣

∣

∣

∣

t=0

= 0,

one can show that C = 0, D = xm, α = β = 0. Therefore

xA = xm cos ωct, xB = −xm cos ωct.

They oscillate with the same frequency ωc but they are always 180◦ out of
phase. This constitutes the second normal mode of the system. The general
motion is a linear combination of these two modes.

For a real molecule or crystal, there will be many normal modes. Each
normal mode corresponds to a certain symmetry of the structure. The fact
that these modes can be excited by their corresponding normal frequencies is
widely used in scientific applications.

5.9 Other Methods and Resources for Differential
Equations

Many readers probably had previously taken a course in ordinary differential
equations. Here we just give a review so that even those who did not have
previous exposure can gain enough background to continue. The literature of
the theory and applications of differential equations is vast. Our discussion is
far from complete.

Among the methods we have not yet discussed are the Laplace transform,
Fourier analysis and power series solutions.

The Laplace transform is especially useful in solving problems with
nonhomogeneous terms of a discontinuous or impulsive nature. In Chap. 6
we will study these problems in detail.

If the nonhomogeneous term is periodic but not sinusoidal, Fourier series
method is particularly convenient. We will discuss this method after we study
the Fourier series.

In general, a differential equation with variable coefficients cannot be
solved by the methods of this chapter. The usual procedure for such equa-
tions is to obtain solutions in the form of infinite series. This is known as
series method. Some most important equations in physics and engineering
lead us to this type equations. The series so obtained can be taken as defin-
itions of new functions. Some important ones are named and tabulated. We
shall study this method in the chapter on special functions.

In addition, differential equations can be solved numerically. Sometimes
this is the only way to solve the equation. Digital computers have made
numerical solutions readily available. There are several computer programs
for the integration of ordinary differential equations in “Numerical Recipes”



5.9 Other Methods and Resources for Differential Equations 265

by William H. Press, Brian P. Flannery, Saul A. Teukolsky and William
T. Vetterling (Cambridge University Press, 1986). For a discussion of the
numerical methods, see R.J. Rice, “Numerical Methods, Software and Analy-
sis” (McGraw-Hill, New York, 1983).

Finally it should be mentioned that a number of commercial computer
packages are available to perform algebraic manipulations, including solv-
ing differential equations. They are called computer algebraic systems, some
prominent ones are Matlab, Maple, Mathematica, MathCad and MuPAD.

This book is written with the software “Scientific WorkPlace”, which also
provides an interface to MuPAD. (Before version 5, it also came with Maple).
Instead of requiring the user to adhere to a rigid syntax, the user can use
natural mathematical notations. For example, to solve the differential equation

d2y

dx2
+

dy

dx
= x + y

all you have to do is (1) type this equation in the math-mode, and (2) click
on the “Compute” button, and (3) click on the “Solve ODE” button in the
pull-down menu, and (4) click on the “Exact” button in the submenu. The
program will return with

Exact solution is: C1ex( 1
2

√
5− 1

2 ) − x + C2ex(− 1
2

√
5− 1

2 ) − 1.

Unfortunately, not every problem can be solved by a computer algebraic
system. Sometimes it fails to find the solution. Even worse, for a variety of
reasons, the intention of the user is sometimes misinterpreted, and the com-
puter returns with an answer to a wrong problem without the user knowing
it. Therefore these systems must be used with caution.

Exercises

1. Find the general solutions of the following separable differential equations:
(a) xy′ + y + 3 = 0,
(b) 2yy′ + 4x = 0.

Ans. (a) x(y + 3) = c, (b) 2x2 + y2 = c.

2. Find the specific solutions of the following separable differential equations:

(a)
dy

dx
=

x(1 + y2)
y(1 + x2)

, y(0) = 1,

(b) yex+ydy = dx, y(0) = 0.
Ans. (a) 1 + y2 = 2(1 + x2), (b) (1 − y)ey = e−x.
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3. Change the following equations into separable differential equations and
find the general solutions:
(a) xyy′ = y2 − x2,

(b)
dy

dx
=

x − y

x + y
.

Ans. (a) lnx + y2

2x2 = c, (b) y2 + 2xy − x2 = c.

4. Show that the following differential equations are exact and find the gen-
eral solutions:
(a) (2xy − cos x)dx + (x2 − 1)dy = 0,
(b) (2x + ey)dx + xeydy = 0.
Ans. (a) x2y − sin x − y = c, (b) x2 + xey = c.

5. Solve the following differential equations by first finding an integrating
factor:
(a) 2(y3 − 2)dx + 3xy2dy = 0,
(b) (b) (y + x4)dx − xdy = 0.

Ans. (a) µ = x, x2y3 − 2x2 = c, (b) µ = 1/x2, x3

3 − y
x = c.

6. Find the general solutions of the following first-order linear differential
equations:
(a) y′ + y = x,
(b) xy′ + (1 + x)y = e−x.
Ans. (a) y = x − 1 + ce−x, (b) y = e−x + ce−x/x.

7. Find the specific solutions of the following first-order linear differential
equations:
(a) y′ − y = 1 − x, y(0) = 1.
(b) y′ + 1

xy = 3x2, y(1) = 5.
Ans. (a) y = x + ex, (b) y = 3

4x3 + 17
4 x−1.

8. The RL circuit is described by the equation

L
di
dt

+ Ri = A cos t, i(0) = 0

where i is current. Find the current i as a function of time t.
Ans. i(t) = AR

R2+L2

[

cos t + L
R sin t − e−Rt/L

]

.

9. Find the general solutions of the following homogeneous second-order dif-
ferential equations:
(a) y′′ − k2y = 0,
(b) y′′ − (a + b)y′ + aby = 0,
(c) y′′ + 2ky′ + k2y = 0.
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Ans. (a) y(x) = c1ekx + c2e−kx, (b) y(x) = c1eax + c2ebx, (c) y(x) =
c1e−kx + c2xe−kx.

10. Find the specific solutions of the following homogeneous second-order dif-
ferential equations:
(a) y′′ − 2ay′ + (a2 + b2)y = 0, y(0) = 0, y′(0) = 1.
(b) y′′ + 4y = sinx, y(0) = 0, y′(0) = 0.
(c) y′′′ + y′ = e2z, y(0) = y′(0) = y′′(0) = 0.
Ans. (a) y(x) = 1

b eax sin bx, (b) y(x) = 1
3 sin x − 1

6 sin 2x,
(c) y(x) = 1

10e2x − 1
5 sin x + 2

5 cos x − 1
2 .

11. Find the general solutions of the following nonhomogeneous differential
equations:
(a) y′′ + k2y = a,
(b) y′′ − 4y = x,
(c) y′′ − 2y′ + y = 3x2 − 12x + 7.
Ans. (a) y(x) = c1 sin kx+c2 cos kx+a/k2, (b) y(x) = c1e

2x+c2e
−2x− 1

4x,
(c) y(x) = (c1 + c2x)ex + 3x2 + 1.

12. Find the general solutions of the following nonhomogeneous differential
equations:
(a) y′′ − 3y′ + 2y = e2x,
(b) y′′ − 6y′ + 9y = 4e3x,
(c) y′′ + 9y = cos(3x).
Ans. (a) y = c1e

x + c2e
2x + xe2x, (b) y = c1e

3x + c2xe3x + 2x2e3x,
(c) y = c1 cos(3x) + c2 sin(3x) + 1

6x sin(3x).

13. Find the specific solutions of the following nonhomogeneous differential
equations:
(a) y′′ + y′ = x2 + 2x, y(0) = 4, y′(0) = −2.
(b) y′′ − 4y′ + 4y = 6 sin x − 8 cos x, y(0) = 3, y′(0) = 4.
(c) y′′ − 4y = 8e2x, y(0) = 4, y′(0) = 6.
Ans. (a) y = 1

3x3 + 2e−x + 2, (b) y = (3 − 4x)e2x + 2 sin x, (c) y =
3e2x + e−2x + 2xe2x.

14. Solve the following differential equations with the method of variation of
parameters:
(a) y′′ + y = sec x,

(b) y′′ + 4y′ + 4y =
e−2x

x2
.

Ans. (a) y = c1 cos x + c2 sin x + cos x ln |cos x| + x sinx,
(b) y = c1e

−2x + c2xe−2x − e−2x ln x.

15. Solve the following set of simultaneous linear differential equation:
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y′(x) − z′(x) − 2y(x) + 2z(x) = 1 − 2x,

y′′(x) + 2z′(x) + y(x) = 0,

y(0) = z(0) = y′(0) = 0.

Ans. y(x) = −2e−x − 2xe−x + 2; z(x) = −2e−x − 2xe−x + 2 − x.

16. Solve the following set of simultaneous linear differential equation:

y′(x) + z′(x) + y(x) + z(x) = 1,

y′(x) − y(x) − 2z(x) = 0,

y(0) = 1, z(0) = 0.

Ans. y(x) = 2 − e−x; z(x) = e−x − 1.

17. In strength of materials, you will encounter the equation

d4y

dx4
= −4a4y

where a is a positive constant. Find the general solution of this equation.
(y(x) with four constants).
Ans. y(x) = eax(c1 cos ax + c2 sin ax) + e−ax(c3 cos ax + c4 sin ax)

18. Solve

y′′(t) + y(t) =
{

1 − t2

π2 if 0 ≤ t ≤ π,
0 if t > π,

}

y(0) = y′(0) = 0.

This may be interpreted as an undamped system on which a force acts
during some interval of time, for instance, the force acting on a gun barrel
when a shell is fired, the barrel being braked by heavy springs (and then
damped by a dashpot which we disregard for simplicity). Hint: at t = π
both y and y′ must be continuous.

Ans. y(t) =

{

−(1 + 2
π2 ) cos t + (1 + 2

π2 ) − 1
π2 t2 for 0 ≤ t ≤ π

[

1 − 2(1 + 2
π2 )

]

cos t + 2
π sin t for t ≥ π.

}

19. If Na(t), Nb(t), Nc(t) represent the number of nuclei of three radioactive
substances which decay according to the scheme

a → b → c

with decay constants λa and λb, the substance c is considered stable. Then
the functions are known to obey the system of differential equations
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dNa

dt
= −λaNa,

dNb

dt
= −λbNb + λaNa,

dNc

dt
= λbNb.

Assuming that Na(0) = N0, and Nb(0) = Nc(0) = 0, find Na(t), Nb(t)
and Nc(t) as functions of time t.

Ans. Na = N0e−λat; Nb = N0

[

λa

λb−λa
e−λat − λa

λb−λa
e−λbt

]

; Nc =

N0

[

1 − λb

λb−λa
e−λat + λa

λb−λa
e−λbt

]

.

20. Show that the particular solution of

m
d2x

dt2
+ c

dx

dt
+ kx = F0 cos ωt

can be written in the form of

xp(t) = C1 cos ωt + C2 sin ωt,

where

C1 =
(k − mω2)F0

(k − mω2)2 + (cω)2
, C2 =

(cω)F0

(k − mω2)2 + (cω)2
.

21. Show that the result of previous problem can be put in the form of

xp(t) = A cos(ωt − φ)

where

A =
F0

[(k − mω2)2 + (cω)2]1/2
, φ = tan−1 cω

m(ω2
0 − ω2)

.

22. For two identical undamped oscillators, A and B, each of mass m, and nat-
ural frequency ω0, show that each of them is governed by the differential
equation

m
d2x

dt2
+ mω2

0x = 0.

They are coupled in such a way that the coupling force exerted on A is
αm(d2xB/dt2), and the coupling force on B is αm(d2xA/dt2), where α is
the coupling constant with a magnitude less than one. Find the normal
frequencies of the system.
Ans. ω = ω0(1 ± α)−1/2.
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Laplace Transforms

Among the tools that are very useful in solving linear differential equations
is the Laplace transform method. The idea is to use an integral to trans-
form the differential equation into an algebraic equation, from the solution
of this algebraic equation we get the desired function through the inverse
transform. The Laplace transform is named after the eminent French mathe-
matician Pierre Simon Laplace (1749–1827), who is also remembered for the
Laplace equation which is one of the most important equations in mathemati-
cal physics.

Laplace first studied this method in 1782. However, the power and useful-
ness of this method was not recognized until 100 years later. The techniques
described in this chapter are mainly due to Oliver Heaviside (1850–1925), an
innovative British electrical engineer, who also made significant contributions
to electromagnetic theory.

The Laplace transform is especially useful in solving problems with
nonhomogeneous terms of a discontinuous or impulsive nature. Such prob-
lems are common in physical sciences but are relatively awkward to handle
by the methods previously discussed.

In this chapter certain properties of Laplace transforms are investigated
and relevant formulas are tabulated in such a way that the solution of ini-
tial value problems involving linear differential equations can be conveniently
obtained.

6.1 Definition and Properties of Laplace Transforms

6.1.1 Laplace Transform – A Linear Operator

The Laplace transform L[f ] of the function f(t) is defined as

L[f ] =
∫ ∞

0

e−stf(t) dt = F (s), (6.1)
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we assume that this integral exists. One of the reasons that Laplace transform
is useful is that s can be chosen large enough that (6.1) converges even if f (t)
does not go to zero as t → ∞. Of course, there are functions that diverge faster
than est. For such functions, the Laplace transform does not exit. Fortunately
such functions are of little physical interests.

Note that the transform is a function of s. The transforms of the functions
of our concern not only exist, but also go to zero (F (s) → 0) as s → ∞.

It follows immediately from the definition that the Laplace transform is a
linear operator, that is

L[af(t) + bg(t)] =
∫ ∞

0

e−st[af(t) + bg(t)]dt

= a

∫ ∞

0

e−stf(t) dt + b

∫ ∞

0

e−stg(t) dt

= aL[f ] + bL[g]. (6.2)

For simple functions, the integral of the Laplace transform can be readily
carried out. For example:

L[1] =
∫ ∞

0

e−st dt =
[

−1
s
e−st

]∞

0

=
1
s
. (6.3)

It is also very easy to evaluate the transform of an exponential function

L[eat] =
∫ ∞

0

e−st eat dt =
∫ ∞

0

e−(s−a)t dt =
[

− 1
s − a

e−(s−a)t

]∞

0

.

As long as s > a, the upper limit vanishes and the lower limit gives 1/(s−a).
Thus

L[eat] =
1

s − a
. (6.4)

Similarly

L[e−at] =
1

s + a
. (6.5)

With these relations, the Laplace transforms of the following hyperbolic
functions

cosh at =
1
2
(eat + e−at), sinh at =

1
2
(eat − e−at)

are easily obtained. Since Laplace transform is linear,

L [cosh at] =
1
2
{

L[eat] + L[e−at]
}

=
1
2

(

1
s − a

+
1

s + a

)

=
s

s2 − a2
. (6.6)
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Similarly
L [sinh at] =

a

s2 − a2
. (6.7)

Now the parameter a does not have to be restricted to real numbers. If a
is purely imaginary a = iω, we will have

L[eiωt] =
1

s − iω
.

Since
1

s − iω
=

1
s − iω

× s + iω
s + iω

=
s

s2 + ω2
+ i

ω

s2 + ω2
,

and
L[eiωt] = L[cos ωt + i sin ωt] = L[cos ωt] + iL[sin ωt],

equating the real part to real part and imaginary part to imaginary part we
have

L[cos ωt] =
s

s2 + ω2
, (6.8)

L[sin ωt] =
ω

s2 + ω2
. (6.9)

The definition of L[cos ωt] is, of course, still

L[cos ωt] =
∫ ∞

0

e−st cos ωt dt. (6.10)

With integration by parts, we can evaluate this integral directly,
∫ ∞

0

e−st cos ωt dt =
[

−1
s
e−st cos ωt

]∞

0

−
∫ ∞

0

1
s
e−stω sin ωt dt

=
1
s
− ω

s

∫ ∞

0

e−st sin ωt dt,

∫ ∞

0

e−st sinωt dt =
[

−1
s
e−st sinωt

]∞

0

+
∫ ∞

0

1
s
e−stω cos ωt dt

=
ω

s

∫ ∞

0

e−st cos ωt dt.

Combine these two equations,
∫ ∞

0

e−st cos ωt dt =
1
s
− ω2

s2

∫ ∞

0

e−st cos ωt dt.

Move the last term to the left-hand side,
(

1 +
ω2

s2

)∫ ∞

0

e−st cos ωt dt =
1
s
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or
∫ ∞

0

e−st cos ωt dt =
s

s2 + ω2
,

which is exactly the same as (6.8) , as it should be.
In principle, the Laplace transform can be obtained directly by carrying

out the integral. However, very often it is much simpler to use the properties of
the Laplace transform, rather than direct integration, to obtain the transform,
as shown in the last example.

The Laplace transform has many interesting properties, they are the
reasons that the Laplace transform is a powerful tool of mathematical analysis.
We will now discuss some of them, and use them to generate more transforms
as illustrations.

6.1.2 Laplace Transforms of Derivatives

The Laplace transform of a derivative is by definition

L[f ′] =
∫ ∞

0

e−st df(t)
dt

dt =
∫ ∞

0

e−stdf(t).

If we let u = e−st and dv = df(t), then du = −s e−stdt and v = f. With
integration by parts, we have u dv = d(uv) − v du, so

L[f ′] =
∫ ∞

0

{d[(e−stf(t)] + f(t)s e−stdt}

=
[

e−stf(t)
]∞
0

+ s

∫ ∞

0

e−stf(t) dt = −f(0) + sL[f ]. (6.11)

Clearly

L[f ′′] = L[(f ′)′] = −f ′(0) + sL[f ′]
= −f ′(0) + s (−f(0) + sL[f ]) = −f ′(0) − sf(0) + s2L[f ]. (6.12)

Naturally this result can be extended to higher derivatives

L[f (n)] = −f (n−1)(0) − · · · · −sn−1f(0) + snL[f ]. (6.13)

These properties are crucial in solving differential equations. Here we will
use them to generate L[tn].

First let f(t) = t, then f ′ = 1 and f(0) = 0. By (6.11)

L[1] = −0 + sL[t],

rearranging and using (6.3), we have

L[t] =
1
s
L[1] =

1
s2

. (6.14)
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If we let f(t) = t2, then f ′ = 2t and f(0) = 0. Again by (6.11)

L[2t] = −0 + sL[t2].

Thus, with (6.14)

L[t2] =
1
s
L[2t] =

2
s
L[t] =

2
s3

. (6.15)

Clearly this process can be repeated

L[tn] =
n!

sn+1
. (6.16)

6.1.3 Substitution: s-Shifting

If we know the Laplace transform F (s) of the function f(t), we can get the
transform of eatf(t) by replacing s with s − a in F (s). This can be easily
shown. By definition

F (s) =
∫ ∞

0

e−stf(t) dt = L [f(t)] ,

clearly

F (s − a) =
∫ ∞

0

e−(s−a)tf(t) dt =
∫ ∞

0

e−steatf(t) dt = L
[

eatf(t)
]

. (6.17)

This simple relation is sometimes known as s-shifting (or first shifting)
theorem.

With the help of the s-shifting theorem, we can derive the transforms of
many more functions without carrying out the integration. For example, it
follows from (6.16) and (6.17) that

L[e−attn] =
n!

(s + a)n+1
. (6.18)

It can also be easily shown that

L[e−at cos ωt] =
∫ ∞

0

e−ste−at cos ωt dt =
∫ ∞

0

e−(s+a)t cos ωt dt. (6.19)

Compare the integrals in (6.10) and (6.19), the only difference is that s is
replaced by s + a. Therefore the last integral must equal to the right-hand
side of (6.8) with s changed to s + a, that is

L[e−at cos ωt] =
s + a

(s + a)2 + ω2
. (6.20)

Similarly
L[e−at sinωt] =

ω

(s + a)2 + ω2
. (6.21)
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6.1.4 Derivative of a Transform

If we differentiate the Laplace transform F (s) with respect to s, we get

d
ds

F (s) =
d
ds

L [f(t)] =
d
ds

∫ ∞

0

e−stf(t) dt

=
∫ ∞

0

de−st

ds
f(t) dt =

∫ ∞

0

e−st(−t)f(t) dt = L [−tf(t)] . (6.22)

Continuing this process, we have

dn

dsn
L [f(t)] = L [(−t)nf(t)] . (6.23)

Many more formulas can be derived by taking advantage of this relation.
For example, differentiating both sides of (6.9) with respect to s, we have

d
ds

L[sin ωt] =
d
ds

ω

s2 + ω2
.

Since

d
ds

L[sin ωt] =
d
ds

∫ ∞

0

e−st sinωt dt = −
∫ ∞

0

t e−st sinωt dt = −L[t sin ωt],

d
ds

ω

s2 + ω2
= − 2sω

(s2 + ω2)2
,

therefore
L[t sin ωt] =

2sω

(s2 + ω2)2
. (6.24)

Similarly we can show

L[t cos ωt] =
s2 − ω2

(s2 + ω2)2
. (6.25)

6.1.5 A Short Table of Laplace Transforms

Since Laplace transform is a linear operator, two transforms can be combined
to form a new one. For example:

L[1 − cos ωt] =
1
s
− s

s2 + ω2
=

ω2

s(s2 + ω2)
, (6.26)

L[ωt − sinωt] =
ω

s2
− ω

s2 + ω2
=

ω3

s2(s2 + ω2)
, (6.27)

L[sin ωt − ωt cos ωt] =
ω

s2 + ω2
− ω(s2 − ω2)

(s2 + ω2)2
=

2ω3

(s2 + ω2)2
, (6.28)
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Table 6.1. A short table of Laplace transforms, in each case s is assumed to be
sufficiently large that the transform exists

f(t) F (s) = L[f(t)] f(t) F (s) = L[f(t)]

1
1

s
δ(t) 1

t
1

s2
δ(t − c) e−sc

tn n!

sn+1
δ′(t − c) s e−sc

eat 1

s − a
u(t − c)

1

s
e−sc

t eat 1

(s − a)2
(t − c)nu(t − c)

n!

sn+1
e−sc

tneat n!

(s − a)n+1
(t − c)nea(t−c)u(t − c)

n!

(s − a)n+1
e−sc

sin ωt
ω

s2 + ω2
sin ω(t − c)u(t − c)

ω

s2 + ω2
e−sc

cos ωt
s

s2 + ω2
cosh a(t − c)u(t − c)

s

s2 − a2
e−sc

sinh at
a

s2 − a2
sin ωt of period

π

ω

ω

s2 + ω2
coth

sπ

2ω

cosh at
s

s2 − a2
t of period p

1 − (1 + ps)e−ps

ps2(1 − e−ps)

eat sin ωt
ω

(s − a)2 + ω2

1

t
(ebt − eat) ln

s − a

s − b

eat cos ωt
s − a

(s − a)2 + ω2

2

t
(1 − cosh at) ln

s2 − a2

s2

t sin ωt
2ωs

(s2 + ω2)2

2

t
(1 − cos ωt) ln

s2 + ω2

s2

1 − cos ωt
ω2

s(s2 + ω2)

sin ωt

t
tan−1 ω

s

ωt − sin ωt
ω3

s2(s2 + ω2)
ta (a > −1)

Γ (a + 1)

sa+1

sin ωt − ωt cos ωt
2ω3

(s2 + ω2)2
t−1/2

√

π

s

sin ωt + ωt cos ωt
2ωs2

(s2 + ω2)2
t1/2 1

2

√
π

s3/2

cos at − cos bt

(

b2 − a2
)

s

(s2 + a2) (s2 + b2)
J0(at)

1

(s2 + a2)1/2
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L[sin ωt + ωt cos ωt] =
ω

s2 + ω2
+

ω(s2 − ω2)
(s2 + ω2)2

=
2ωs2

(s2 + ω2)2
, (6.29)

L[cos at − cos bt] =
s

s2 + a2
− s

s2 + b2
=

(b2 − a2)s
(s2 + a2)(s2 + b2)

. (6.30)

There are extensive tables of Laplace transforms (For example,
F. Oberherttinger and E. Badii, Tables of Laplace Transforms, Springer,
New York, 1973). A short list of some simple Laplace transforms is given in
Table 6.1. The items in the left-hand side of the table are the ones we have
shown so far. Items in the right-hand side are relations we are going to derive
in the following sections.

6.2 Solving Differential Equation with Laplace
Transform

6.2.1 Inverse Laplace Transform

In solving differential equation with Laplace transform, we encounter the
inverse problem of determining the unknown function f(t) which has a given
transform F (s). The notation of L−1[F (s)] is conventionally used for the
inverse Laplace transform of F (s). That is, if

F (s) = L[f(t)] =
∫ ∞

0

e−stf(t) dt, (6.31)

then
f(t) = L−1[F (s)]. (6.32)

Since
f(t) = L−1[F (s)] = L−1[L[f(t)]] = I[f(t)],

it follows that L−1L is the identity operator I. The inverse transforms are of
great practical importance and there are a variety of ways to get them. In
this section, we will first study the transform in the form of a quotient of two
polynomials

F (s) =
p(s)
q(s)

,

where p(s) and q(s) have real coefficients and no common factors. Since

lim
s→∞

F (s) = lim
s→∞

∫ ∞

0

e−stf(t) dt → 0,

it is clear that the degree of p(s) is lower than that of q(s). There are several
closely related methods to get the inverse of such a transform. For the sake of
clarity, we list them separately.
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By Inspection. If the expression is simple enough, one can get the inverse
directly from the table. This is illustrated in the following examples.

Example 6.2.1. Find (a) L−1

[

1
s4

]

; (b) L−1

[

4
(s + 4)3

]

; (c) L−1

[

1
s2 + 4

]

.

Solution 6.2.1.
(a) Since

L[t3] =
3!
s4

=
6
s4

, t3 = L−1

[

6
s4

]

,

we have

L−1

[

1
s4

]

=
1
6
L−1

[

6
s4

]

=
1
6
t3.

(b) Since

L[e−4tt2] =
2

(s + 4)3
, e−4tt2 = L−1

[

2
(s + 4)3

]

,

so

L−1

[

4
(s + 4)3

]

= 2L−1

[

2
(s + 4)3

]

= 2e−4tt2.

(c) Since

L[sin 2t] =
2

s2 + 4
, sin 2t = L−1

[

2
s2 + 4

]

,

so

L−1

[

1
s2 + 4

]

=
1
2
L−1

[

2
s2 + 4

]

=
1
2

sin 2t.

Example 6.2.2. Find (a) L−1

[

1
s2 + 2s + 5

]

; (b) L −1

[

2s + 1
s2 + 2s + 5

]

.

Solution 6.2.2. (a) First we note that

1
s2 + 2s + 5

=
1

(s + 1)2 + 4
=

1
2
× 2

(s + 1)2 + 4
.

Since

L[e−t sin 2t] =
2

(s + 1)2 + 4
, e−t sin 2t = L−1

[

2
(s + 1)2 + 4

]

,

so

L−1

[

1
s2 + 2s + 5

]

=
1
2
L−1

[

2
(s + 1)2 + 4

]

=
1
2
e−t sin 2t.
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(b) Recall

L[e−t sin 2t] =
2

(s + 1)2 + 4
,

L[e−t cos 2t] =
s + 1

(s + 1)2 + 4
,

so we write

2s + 1
s2 + 2s + 5

=
2(s + 1) − 1
(s + 1)2 + 4

= 2
(s + 1)

(s + 1)2 + 4
− 1

2
2

(s + 1)2 + 4
.

Thus

L−1

[

2s + 1
s2 + 2s + 5

]

= 2L−1

[

(s + 1)
(s + 1)2 + 4

]

− 1
2
L−1

[

2
(s + 1)2 + 4

]

= 2L−1[L[e−t cos 2t]] − 1
2
L−1[L[e−t sin 2t]]

= 2e−t cos 2t − 1
2
e−t sin 2t.

Partial Fraction Decomposition. Take the partial fractions of F (s) and then
take the inverse of each term. Most probably you are familiar with partial
fractions. We will use the following examples for review.

Example 6.2.3. Find L−1

[

s − 1
s2 − s − 2

]

.

Solution 6.2.3. First we note

s − 1
s2 − s − 2

=
s − 1

(s − 2)(s + 1)

=
a

(s − 2)
+

b

(s + 1)
=

a(s + 1) + b(s − 2)
(s − 2)(s + 1)

.

The following are three different ways to determine a and b.

• First note that
s − 1 = a(s + 1) + b(s − 2)

must hold for all s. One way is to set s = 2, then it follows that a = 1
3 .

Similarly if we set s = −1, we see immediately that b = 2
3 .

• Another way is to collect the terms with the same powers in s, and require
the coefficients of the corresponding terms on both sides of the equation
be equal to each other. That is,

s − 1 = (a + b)s + (a − 2b).

This means a + b = 1 and a − 2b = −1. Thus a = 1
3 and b = 2

3 .
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• Still another way is to note that

lim
s→2

{

(s − 2)
s − 1

(s − 2)(s + 1)

}

= lim
s→2

{

(s − 2)
[

a

(s − 2)
+

b

(s + 1)

]}

,

this means

lim
s→2

{

s − 1
(s + 1)

}

= lim
s→2

{

a + (s − 2)
b

(s + 1)

}

= a.

We see immediately that a = 1
3 . Similarly

lim
s→−1

{

(s + 1)
s − 1

(s − 2)(s + 1)

}

= lim
s→−1

{

(s + 1)
[

a

(s − 2)
+ b

]}

= b

gives b = 2
3 .

In some problems, one way is much simpler than others. Anyway, in this
problem

L−1

[

s − 1
s2 − s − 2

]

= L−1

[

1
3

1
(s − 2)

+
2
3

1
(s + 1)

]

=
1
3
L−1[L[e2t]] +

2
3
L−1[L[e−t]] =

1
3
e2t +

2
3
e−t.

Example 6.2.4. Find L−1

[

1
s (s2 + 4)

]

.

Solution 6.2.4. There are two ways for us to take partial fractions.

• If we use complex roots,

1
s (s2 + 4)

=
a

s
+

b

s − 2i
+

c

s + 2i
.

Multiplying by s and taking the limit with s → 0, we have

a = lim
s→0

1
s2 + 4

=
1
4
.

Multiplying by s − 2i and taking the limit with s → 2i, we have

b = lim
s→2i

1
s(s + 2i)

= −1
8
.

Multiplying by s + 2i and taking the limit with s → −2i, we have

c = lim
s→−2i

1
s(s − 2i)

= −1
8
.
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Therefore

L−1

[

1
s (s2 + 4)

]

=
1
4
L−1

[

1
s

]

− 1
8
L−1

[

1
s − 2i

]

− 1
8
L−1

[

1
s + 2i

]

=
1
4
− 1

8
e2it − 1

8
e−2it =

1
4
− 1

4
cos 2t.

• Another way to take partial fractions is to note that

b

s − 2i
+

c

s + 2i
=

b(s + 2i) + c(s − 2i)
(s − 2i)(s + 2i)

=
(b + c)s + 2i(b − c)

s2 + 4
.

If we let b + c = b′ and 2i(b − c) = c′, then

1
s (s2 + 4)

=
a

s
+

b′s + c′

s2 + 4
.

An important point we should note is that if the denominator is second
order in s, the numerator must be allowed the possibility of being first
order in s. In other words, it will not be possible for us to get the correct
answer if b′ term is missing. With this understanding, the partial fractions
can be taken directly as

1
s (s2 + 4)

=
a

s
+

bs + c

s2 + 4
=

a
(

s2 + 4
)

+ (bs + c)s
s (s2 + 4)

=
as2 + 4a + bs2 + cs

s (s2 + 4)
=

(a + b)s2 + cs + 4a

s (s2 + 4)
.

Therefore
1 = (a + b)s2 + cs + 4a.

The coefficients of s must be equal term by term. That is, a + b = 0, c = 0,
4a = 1. This gives a = 1/4, b = −1/4, c = 0. Thus

L−1

[

1
s (s2 + 4)

]

= L−1

[

1
4s

− 1
4

s

s2 + 4

]

=
1
4
− 1

4
cos 2t.

Example 6.2.5. Find L−1

[

1
s3(s − 1)

]

.

Solution 6.2.5.
1

s3(s − 1)
=

a

s
+

b

s2
+

c

s3
+

d

(s − 1)

=
as2(s − 1) + bs(s − 1) + c(s − 1) + ds3

s3(s − 1)

=
(a + d)s3 + (b − a)s2 + (c − b)s − c

s3(s − 1)
.

This requires a + d = 0, b − a = 0, c − b = 0, −c = 1. Thus c = −1,
b = −1, a = −1, d = 1. Hence
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L−1

[

1
s3(s − 1)

]

= L−1

[

−1
s

− 1
s2

− 1
s3

+
1

(s − 1)

]

= −1 − t − 1
2
t2 + et.

Example 6.2.6. Find L−1

[

2ω

(s2 + ω2)2

]

.

Solution 6.2.6.
2ω

(s2 + ω2)2
=

2ω

[(s − iω)(s + iω)]2

=
a

(s − iω)
+

b

(s − iω)2
+

c

(s + iω)
+

d

(s + iω)2
.

Multiplying both sides by (s − iω)2 and take the limit as s → iω, we have

lim
s→iω

{

2ω

(s + iω)2

}

= lim
s→iω

{

(s − iω)a + b +
(s − iω)2c
(s + iω)

+
(s − iω)2d
(s + iω)2

}

.

Clearly

b =
2ω

(2iω)2
= − 1

2ω
.

If after multiplying both sides by (s − iω)2, we take the derivative first and
then go to the limit s → iω, we have

lim
s→iω

{

d
ds

2ω

(s + iω)2

}

= lim
s→iω

{

a +
d
ds

[

(s − iω)2c
(s + iω)

+
(s − iω)2d
(s + iω)2

]}

.

This leads to

a = lim
s→iω

{

−4ω

(s + iω)3

}

=
1

2ω2i
.

Similarly, we can show

d = − 1
2ω

, c = − 1
2ω2i

.

Thus we have

L−1

[

2ω

(s2 + ω2)2

]

=

L−1

[

1
2ω2i

1
(s − iω)

− 1
2ω

1
(s − iω)2

− 1
2ω2i

.
1

(s + iω)
− 1

2ω

1
(s + iω)2

]

=

1
2ω2i

L−1

[

1
(s − iω)

− 1
(s + iω)

]

− 1
2ω

L−1

[

1
(s − iω)2

+
1

(s + iω)2

]

=

1
2ω2i

(

eiωt − e−iωt
)

− 1
2ω

(

t eiωt + t e−iωt
)

=
1
ω2

sin ωt − 1
ω

t cos ωt.
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The Heaviside Expansion. The Heaviside expansion is essentially a system-
atic way of taking partial fractions. In the partial fraction decomposition of
p(s)/q(s), an unrepeated factor (s − a) of q(s) gives rise to a single fraction
of the form A/(s − a). Thus F (s) can be written as

F (s) =
p(s)
q(s)

=
A

s − a
+ G(s), (6.33)

where G(s) is simply the rest of the expression. Multiplication by (s−a) gives

(s − a)p(s)
q(s)

= A + (s − a)G(s).

If we let s approach a, the second term in the right-hand side vanishes, since
G(s) has no factor that could cancel (s − a). Therefore

A = lim
s→a

(s − a)p(s)
q(s)

. (6.34)

Since q(a) = 0, because a is an unrepeated root of q(s) = 0, the limit in (6.34)
is an indeterminant of the form of 0/0. With the L’Hospital’s rule, we have

A = lim
s→a

p(s) + (s − a)p′(s)
q′(s)

=
p(a)
q′(a)

. (6.35)

Thus the constants in the partial fraction decomposition can be quickly
determined.

Example 6.2.7. Use the Heaviside expansion to find L−1

[

s − 1
s2 − s − 2

]

.

Solution 6.2.7. The roots of s2 − s − 2 = 0 are s = 2 and s = −1, and
d
ds (s2 − s − 2) = 2s − 1. Therefore

s − 1
s2 − s − 2

=
a

(s − 2)
+

b

(s + 1)
,

a = lim
s→2

s − 1
2s − 1

=
1
3
, b = lim

s→−1

s − 1
2s − 1

=
2
3
.

Thus

L−1

[

s − 1
s2 − s − 2

]

=
1
3
L−1

[

1
s − 2

]

+
2
3
L−1

[

1
s + 1

]

=
1
3
e2t +

2
3
e−t.

Example 6.2.8. Use the Heaviside expansion to find L−1

[

2s + 1
s2 + 2s + 5

]

.

Solution 6.2.8. The roots of s2 + 2s + 5 = 0 are s = −1 ± 2i, and d
ds (s2 +

2s + 2) = 2s + 2. Thus
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2s + 1
s2 + 2s + 5

=
a

s − (−1 + 2i)
+

b

s − (−1 − 2i)
,

a = lim
s→−1+2i

2s + 1
2s + 2

= 1 +
i
4
, b = lim

s→−1−2i

2s + 1
2s + 2

= 1 − i
4
.

Therefore

L−1

[

2s + 1
s2 + 2s + 5

]

=
(

1 +
1
4
i
)

L−1

[

1
s − (−1 + 2i)

]

+
(

1 − 1
4
i
)

L−1

[

1
s − (−1 − 2i)

]

.

Recall

L−1

[

1
s − c

]

= ect,

we have

L−1

[

1
s − (−1 + 2i)

]

= e(−1+2i)t = e−tei2t = e−t (cos 2t + i sin 2t) ,

and

L−1

[

1
s − (−1 − 2i)

]

= e−te−i2t = e−t (cos 2t − i sin 2t) .

Hence

L−1

[

2s + 1
s2 + 2s + 5

]

=
(

1 +
1
4
i
)

e−t (cos 2t + i sin 2t)

+
(

1 − 1
4
i
)

e−t (cos 2t − i sin 2t)

= 2e−t cos 2t − 1
2
e−t sin 2t.

In general, if q(s) is a polynomial with unrepeated roots, the Heaviside
expansion is the most efficient way in partial fraction decomposition. If q(s)
is already in the form of a product of factors (s − a1)(s − a2) · · · (s − an),
then other methods of partial fraction may be equally or more efficient. In
any case, if the complex roots are used, it is useful to keep in mind that if
the original function is real, the final result must also be real. If there is an
imaginary term in the final result, then there must be a mistake somewhere.

If q(s) has repeated roots, we can write it as

p(s)
q(s)

=
Am

(s − a)m
+

Am−1

(s − a)m−1
+ · · · + A1

(s − a)
.

With a similar argument, one can show that

Ak =
1

(m − k)!
lim
s→a

dm−k

dsm−k

[

(s − a)mp(s)
q(s)

]

, k = 1, . . . , m. (6.36)
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Unfortunately, in practice this formula is not necessarily simpler than other
partial fraction methods, such as the one shown in Example 6.2.6. In fact,
problems of that nature are best solved by using the derivatives of a transform.
Using Derivatives of the Transform. In Example 6.2.6, we used the partial
fraction to find L−1[1/(s2 + a2)2]. A simpler way to handle such problems is
to make use of the properties of derivatives. The procedures are illustrated in
the following examples.

Example 6.2.9. Find (a) L−1

[

1
(s2 + a2)2

]

, (b) L−1

[

s

(s2 + a2)2

]

,

(c) L−1

[

s2

(s2 + a2)2

]

, (d) L−1

[

s3

(s2 + a2)2

]

.

Solution 6.2.9. (a) Taking the derivative

d
da

a

s2 + a2
=

1
s2 + a2

− 2a2

(s2 + a2)2
,

we can write

1
(s2 + a2)2

=
1

2a2

(

1
s2 + a2

− d
da

a

s2 + a2

)

.

Since
L[sin at] =

a

s2 + a2
,

we have

1
(s2 + a2)2

=
1

2a2

(

1
a
L[sin at] − d

da
L[sin at]

)

=
1

2a3
L[sin at] − 1

2a2

d
da

∫ ∞

0

e−st sin at dt

=
1

2a3
L[sin at] − 1

2a2

∫ ∞

0

e−stt cos at dt

=
1

2a3
L[sin at] − 1

2a2
L[t cos at].

Therefore

L−1

[

1
(s2 + a2)2

]

= L−1

[

1
2a3

L[sin at] − 1
2a2

L[t cos at]
]

=
1

2a3
sin at − 1

2a2
t cos at.

(b) Take derivative with respect to s

d
ds

a

s2 + a2
=

−2as

(s2 + a2)2
,
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so

s

(s2 + a2)2
= − 1

2a

d
ds

a

s2 + a2
= − 1

2a

d
ds

L[sin at]

= − 1
2a

d
ds

∫ ∞

0

e−st sin at dt =
1
2a

∫ ∞

0

e−stt sin at dt

=
1
2a

L[t sin at].

Therefore

L−1

[

s

(s2 + a2)2

]

= L−1

[

1
2a

L[t sin at]
]

=
1
2a

t sin at.

(c) It follows from the result of (b),

sL

[

1
2a

t sin at

]

= s
s

(s2 + a2)2
=

s2

(s2 + a2)2
.

Recall

L

[

df

dt

]

= sL[f ] − f(0), sL[f ] = L

[

df

dt

]

+ f(0).

Let f =
1
2a

t sin at, so
df

dt
=

1
2a

sin at +
1
2
t cos at; f(0) = 0,

we have

sL

[

1
2a

t sin at

]

= L

[

1
2a

sin at +
1
2
t cos at

]

.

Therefore

L−1

[

s2

(s2 + a2)2

]

= L−1

[

sL

[

1
2a

t sin at

]]

=
1
2a

sin at +
1
2
t cos at.

(d) From the result of (c)

s3

(s2 + a2)2
= s

s2

(s2 + a2)2
= sL

[

1
2a

sin at +
1
2
t cos at

]

.

This time, let

f =
1
2a

sin at +
1
2
t cos at, so

df

dt
= cos at − a

2
t sin at; f(0) = 0,

thus

sL

[

1
2a

sin at +
1
2
t cos at

]

= L

[

cos at − a

2
t sin at

]

,

L−1

[

s3

(s2 + a2)2

]

= L−1
[

L

[

cos at − a

2
t sin at

]]

= cos at − a

2
t sin at.
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Relation satisfied by ƒ(t )
(like a DE)

Relation satisfied by F(s)
(hopefully simple)

 ƒ(t ) is found

Step 1: Transform.

F(s) is found
Step 3: Invert.

Step 2: Solve for F(s).(Direct solution difficult)

Fig. 6.1. Steps of using Laplace transform to solve differential equations

6.2.2 Solving Differential Equations

The idea of using Laplace transform to solve differential equation is expressed
in Fig. 6.1. Suppose we have a differential equation in which the unknown
function is f(t). The first step is to apply the Laplace transform to this dif-
ferential equation. The result is a relation satisfied by F (s) = L[f ]. Generally
this is an algebraic equation. The second step is to find F (s) by solving this
algebraic equation. The third and final step is to find the unknown function
f(t) by taking the inverse of the Laplace transform F (s).

A few example will make this procedure clear.

Example 6.2.10. Find the solution of the differential equation

y′′ + y = sin 2t,

satisfying the initial conditions

y(0) = 0, y′(0) = 1.

Solution 6.2.10. Applying Laplace transform to the equation ,

L[y′′ + y] = L[sin 2t],

we have
s2L[y] − sy(0) − y′(0) + L[y] =

2
s2 + 4

.

With the initial values of y(0) and y′(0), this equation can be written as

(s2 + 1)L[y] = 1 +
2

s2 + 4
.

This algebraic equation can be easily solved to give

L[y] =
s2 + 6

(s2 + 1) (s2 + 4)
.
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Thus

y(t) = L−1

[

s2 + 6
(s2 + 1) (s2 + 4)

]

.

Using methods of the last section, we find

y(t) =
5
3

sin t − 1
3

sin 2t.

Example 6.2.11. Find the solution of the differential equation

y′′ + 4y = sin 2t, y(0) = 10, y′(0) = 0.

Solution 6.2.11. Applying the Laplace transform to both sides of the
equation

L[y′′ + 4y] = L[sin 2t],

we have
s2L[y] − sy(0) − y′(0) + 4L[y] =

2
s2 + 4

.

With the initial values of y(0) and y′(0), this equation can be written as

(s2 + 4)L[y] = 10s +
2

s2 + 4
.

Therefore

y = L−1

[

10s

(s2 + 4)
+

2
(s2 + 4)2

]

.

This leads to
y = 10 cos 2t +

1
8

sin 2t − 1
4
t cos 2t.

Example 6.2.12. Find the solution of the differential equation

y′′ + 4y′ + 4y = t2e−2t, y(0) = 0, y′(0) = 0.

Solution 6.2.12. Applying the Laplace transform to the equation

L[y′′ + 4y′ + 4y] = L[t2e−2t],

With the initial values of y(0) and y′(0), we have

s2L[y] + 4sL[y] + 4L[y] =
2

(s + 2)3
.

Collecting terms

(s2 + 4s + 4)L[y] = (s + 2)2L[y] =
2

(s + 2)3
,
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or
L[y] =

2
(s + 2)5

.

The solution is the inverse transform

y =
2
4!

L−1

[

4!
(s + 2)5

]

=
1
12

t4e−2t.

Example 6.2.13. Find the solution of the set of the differential equations

y′ − 2y + z = 0,

z′ − y − 2z = 0,

satisfying the initial conditions

y(0) = 1, z(0) = 0.

Solution 6.2.13. Applying the Laplace transform to each of the equations

L[y′ − 2y + z] = L[0],
L[z′ − y − 2z] = L[0],

we obtain

sL[y] − y(0) − 2L[y] + L[z] = 0,
sL[z] − z(0) − L[y] − 2L[z] = 0.

After substituting the initial conditions and collecting terms, we have

(s − 2)L[y] + L[z] = 1,
L[y] − (s − 2)L[z] = 0.

This set of algebraic equations can be easily solved to give

L[y] =
s − 2

(s − 2)2 + 1
,

L[z] =
1

(s − 2)2 + 1
.

Thus

y = L−1

[

s − 2
(s − 2)2 + 1

]

= e2t cos t,

z = L−1

[

1
(s − 2)2 + 1

]

= e2t sin t.
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6.3 Laplace Transform of Impulse and Step Functions

Some of the most useful and interesting applications of the Laplace transform
method occur in the solution of linear differential equations with discontinuous
or impulsive nonhomogeneous functions. Equations of this type frequently
arise in the analysis of the flow of current in electric circuits or the vibrations
of mechanical systems, where voltages or forces of large magnitude act over
very short time intervals.

To deal effectively with functions having jump discontinuities, we first
introduce two functions known as delta function and step function.

6.3.1 The Dirac Delta Function

The delta function, δ(t), was first proposed in 1930 by Dirac in the develop-
ment of the mathematical formalism of quantum mechanics. He required a
function which is zero everywhere, except at a single point, where it is discon-
tinuous and behaved like an infinitely high and infinitely narrow spike of unit
area. Mathematicians were quick to point out that, strictly speaking, there is
no function which has these properties. But Dirac supposed there was, and
proceeded to use it so successfully that a new branch of mathematics was
developed to justify its use. This area of mathematics is called the theory
of distribution or of generalized functions. While it is nice to know that the
mathematical foundation of the delta function has been established in com-
plete details, for applications in physical sciences we need only to know its
operational definition.
Definition of δ Function. The delta function is a sharply peaked function
defined as

δ (t − t0) =
{

0 t �= t0
∞ t = t0,

(6.37)

but such that the integral of δ (t − t0) is normalized to unity:
∫ +∞

−∞
δ (t − t0) dt = 1. (6.38)

Clearly the limits −∞ and ∞ may be replaced by t0 − ε and t0 + ε as long
as ε > 0, since δ (t − t0) is equal to zero for t �= t0. We can think of it as an
infinitely high and infinitely narrow function shown in Fig. 6.2, where h → ∞
and τ → 0 in such a way that the area under it is equal to one.

Mathematically, the δ function is defined by how it behaves inside an
integral. In fact the first operation where Dirac used the delta function is the
integration

∫ +∞

−∞
f(t)δ (t − t0) dt,

where f(t) is a continuous function. This integral can be evaluated by the
following argument. Since δ (t − t0) is zero for t �= t0, the limit of integration
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h

t0

t

t

Fig. 6.2. A sharply peaked function. If h → ∞ and τ → 0 in such a way that the
area under it is equal to 1, then this function becomes a delta function δ(t − t0)

may be changed to t0 − ε and t0 + ε, where ε is a small positive number.
Moreover, since f(x) is continuous at t = t0, its values within the interval
(t0−ε, t0+ε) will not differ much from f(t0) and we can claim, approximately,
that
∫ +∞

−∞
f(t)δ (t − t0) dt =

∫ t0+ε

t0−ε

f(t)δ (t − t0) dt ≈ f(t0)
∫ t0+ε

t0−ε

δ (t − t0) dt

with the approximation improving as ε approaches zero. However,
∫ t0+ε

t0−ε

δ (t − t0) dt = 1

for all values of ε. It appears then that letting ε → 0, we have exactly
∫ +∞

−∞
f(t)δ (t − t0) dt = f(t0). (6.39)

This integral is sometimes referred to as the shifting property of the delta
function: δ (t − t0) acts as a sieve, selecting from all possible values of f(t) its
value at the point t = t0.
Delta Function with Complicated Arguments. In general the argument of the
delta function can be any function of the independent variable. It turns out
that such a function can always be rewritten as a sum of delta functions of
simple argument. Here are some examples.

• δ(−t)

Let t′ = −t, then dt = −dt′. We can write
∫ +∞

−∞
f(t)δ (−t) dt = −

∫ −∞

+∞
f(−t′)δ (t′) dt′ =

∫ +∞

−∞
f(−t′)δ (t′) dt′ = f(0).
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Since
∫ +∞

−∞
f(t)δ (t) dt = f(0),

therefore
δ (−t) = δ (t) . (6.40)

This result is almost self evident.

• δ(at)

Let t′ = at, then dt = dt′/a. Hence, if a > 0,

∫ +∞

−∞
f(t)δ (at) dt =

∫ +∞

−∞
f

(

t′

a

)

δ (t′)
1
a
dt′ =

1
a

∫ +∞

−∞
f

(

t′

a

)

δ (t′) dt′

=
1
a
f

(

0
a

)

=
1
a
f (0) .

Since
∫ +∞

−∞
f(t)

1
a
δ (t) dt =

1
a

∫ +∞

−∞
f(t)δ (t) dt =

1
a
f(0),

therefore
δ (at) =

1
a
δ (t) .

Since
δ (−at) = δ (at) ,

we can write
δ (at) =

1
|a|δ (t) . (6.41)

• δ(t2 − a2)

The argument of this function goes to zero when t = a and t = −a, which
seems to imply two δ functions. There can be contributions to the integral

∫ +∞

−∞
f(t)δ

(

t2 − a2
)

dt =
∫ +∞

−∞
f(t)δ[(t − a) (t + a)]dt

only at the zeros of the argument of the delta function. That is
∫ +∞

−∞
f(t)δ

(

t2 − a2
)

dt =
∫ −a+ε

−a−ε

f(t)δ
(

t2 − a2
)

dt +
∫ a+ε

a−ε

f(t)δ
(

t2 − a2
)

dt.

Near the two zeros, t2 − a2 can be approximated as

t2 − a2 = (t − a) (t + a) =
{

(−2a) (t + a) t → −a
(+2a) (t − a) t → +a

.
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In the limit as ε → 0, the integral becomes
∫ +∞

−∞
f(t)δ

(

t2 − a2
)

dt =
∫ −a+ε

−a−ε

f(t)δ ((−2a) (t + a)) dt

+
∫ a+ε

a−ε

f(t)δ ((2a) (t − a)) dt =
1

|2a|

∫ −a+ε

−a−ε

f(t)δ(t + a)dt

+
1

|2a|

∫ a+ε

a−ε

f(t)δ(t − a)dt =
∫ +∞

−∞
f(t)

1
|2a| [δ(t + a) + δ(t − a)]dt.

Therefore
δ
(

t2 − a2
)

=
1

|2a| [δ(t + a) + δ(t − a)]. (6.42)

The Laplace Transform of the Delta Function and Its Derivative. It follows
from the definitions of the Laplace transform and the delta function that the
Laplace transform of the delta function is given by

L[δ(t − a)] =
∫ ∞

0

e−stδ(t − a)dt = e−sa. (6.43)

The Laplace transform of the derivative of a delta function can be evalu-
ated using integration by parts:

L[δ′(t − a)] =
∫ ∞

0

e−st d
dt

δ(t − a)dt =
∫ ∞

0

e−std(δ(t − a))

=
[

e−stδ(t − a)
]∞
0

−
∫ ∞

0

δ(t − a)
d
dt

e−stdt.

Since δ(t − a) vanishes everywhere except at t = a, at both upper and lower
limits the integrated part is equal to zero. Therefore

L[δ′(t − a)] = s

∫ ∞

0

δ(t − a)e−stdt = s e−sa. (6.44)

In dealing with phenomena of an impulsive nature, this is a very useful
expression.

6.3.2 The Heaviside Unit Step Function

Definition of the Step Function. The Heaviside unit step function u(t− c) can
be defined from the integration of the delta function δ(t′ − c)

u(t − c) =
∫ t

−∞
δ(t′ − c)dt′. (6.45)

The delta function is identically equal to zero if t′ < c. The upper limit of the
integration variable t′ is t. If t is less than c, then all t′ will be less than c.
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c
t

y

1

Fig. 6.3. The Heaviside unit step function u(t − c)

The integral is equal to zero. If t is greater than c, the integral is equal to one
by the definition of the delta function. Thus

u(t − c) =
{

0 t < c
1 t > c

. (6.46)

The step function can be defined directly with (6.46) without referring to
(6.45) .However, with (6.45) , it is immediately clear that

d
dt

u(t − c) = δ(t − c). (6.47)

A plot of the Heaviside unit step function y = u(t− c) is shown in Fig. 6.3.
Interestingly, the function does not get its name because it is heavy on one
side, but, rather from the British engineer Oliver Heaviside. Very often this
function is simply called step function.

Very often we have to deal with a pulse of a finite duration. These step
functions are very convenient in such situation. For example, the square pulse

y(t) =

⎧

⎨

⎩

0 0 < t < π
1 π < t < 2π
0 2π < t < ∞

can be expressed as
y(t) = u(t − π) − u(t − 2π).

The sketch of this function is shown in Fig. 6.4.
Shifting Operation. In some problems a system which becomes active at t = 0,
because of some initial disturbance, is subsequently acted upon by another
disturbance beginning at a later time t = c. In this situation, the analytical
description is greatly facilitated by the function

y = f(t − c)u(t − c),

which represent a shifting operation. First, f(t − c) represents a translation
of f(t) by a distance c in the positive t-direction. Multiplying u(t− c) has the



296 6 Laplace Transforms

y

1

π 2π 3π
t

Fig. 6.4. The square impulse u(t − π) − u(t − 2π)

y y

ƒ(0) ƒ(0)

t t
c

(a) (b)

Fig. 6.5. A translation of a given function. (a) y = f(t); (b) y = f(t − c)u(t − c)

effect of “cutting off” or making everything vanish to the left of c. This is
shown in Fig. 6.5.
Laplace Transform Involving Step Function. The Laplace transform of the
step function is easily determined:

L[u(t − c)] =
∫ ∞

0

e−stu(t − c)dt =
∫ ∞

c

e−stdt

=
1
s
e−sc. (6.48)

The step function is particularly important in transform theory because
of the following relationship between the transform of f(t) and that of its
translation f(t − c)u(t − c).

L[f(t − c)u(t − c)] =
∫ ∞

0

e−stf(t − c)u(t − c)dt =
∫ ∞

c

e−stf(t − c)dt.

Making a change of variable t′ = t − c, we have
∫ ∞

c

e−stf(t − c)dt =
∫ ∞

0

e−s(t′+c)f(t′)dt′ = e−sc

∫ ∞

0

e−st′f(t′)dt′

= e−scL[f(t)].

Therefore
L[f(t − c)u(t − c)] = e−scL[f(t)]. (6.49)
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Its inverse is of considerable importance.

f(t − c)u(t − c) = L−1[e−scL[f(t)]]. (6.50)

This relationship is sometimes referred as t-shifting (or second shifting)
theorem.

6.4 Differential Equations with Discontinuous Forcing
Functions

In this section we turn our attention to some examples in which the nonho-
mogeneous term, or forcing function, is discontinuous.

We start with the simplest case. A particle of mass m initially at rest is
set into motion by a sudden blow at t = t0. Assuming no friction, we wish to
find the position as a function of time. Such a common every-day occurrence
is rather “awkward” for “ordinary” mathematics to deal with. However, with
Laplace transform and delta function, it becomes very easy.

In the Newton’s dynamic equation

m
d2x

dt2
= F, (6.51)

let us express the force of the sudden blow by the delta function

F = Pδ(t − t0). (6.52)

The initial conditions are

x(0) = 0, x′(0) = 0. (6.53)

Applying the Laplace transform to the differential equation

L[mx′′] = L[Pδ(t − t0)], (6.54)

we obtain
ms2L[x] = P e−st0 . (6.55)

So

x(t) =
P

m
L−1

[

e−st0

s2

]

=
P

m
L−1[e−st0L[t]]

=
P

m
(t − t0)u(t − t0). (6.56)

This means

x(t) =
{

0 t < t0
P
m (t − t0) t > t0

. (6.57)
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The result says that the particle will stay put until t0, after that the
distance will increase linearly with time. The velocity of the particle is given by

v =
dx

dt
=

P

m
, (6.58)

which is a constant. In fact we see that the amplitude P of the delta function
is equal to mv which is the momentum. This shows that what the sudden
blow did is to impart a momentum P to the particle. This momentum stays
the same with the particle thereafter.

Example 6.4.1. Let us consider the damped, driven, harmonic oscillator. The
mass m is driven by an applied force F (t). It also experiences the spring
force −kx(t) and a friction force −bx′(t), proportional to its velocity. The
differential equation describing the motion is

mx′′ + bx′ + kx = F (t).

If it is at rest initially
x(0) = 0, x′(0) = 0,

and the force function is an ideal impulse peaked at t0, that is

F (t) = P0δ (t − t0) ,

find the displacement x as a function of time t.

Solution 6.4.1. Applying the Laplace transform to both sides of the equation

L

[

x′′ +
b

m
x′ +

k

m
x

]

=
P0

m
L[δ (t − t0)]

leads to
s2L[x] +

b

m
sL[x] +

k

m
L[x] =

P0

m
e−st0 .

Therefore
L[x] =

P0

m

1
s2 + b

ms + k
m

e−st0 .

Let us write

s2 +
b

m
s +

k

m
= s2 +

b

m
s +

(

b

2m

)2

−
(

b

2m

)2

+
k

m

=
(

s +
b

2m

)2

+
k

m
−
(

b

2m

)2

,
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and simplify the notation with

α =
b

2m
, ω2 =

k

m
−
(

b

2m

)2

,

so we have
L[x] =

P0

mω

ω

(s + α)2 + ω2
e−st0 .

Three different cases arise:
(a) The oscillatory case, ω2 > 0.

x(t) = L−1

[

P0

mω

ω

(s + α)2 + ω2
e−st0

]

=
P0

mω
L−1

[

e−st0
ω

(s + α)2 + ω2

]

=
P0

mω
L−1

[

e−st0L[e−αt sinωt]
]

=
P0

mω
e−α(t−t0) sinω(t − t0)u(t − t0).

(b) The over-damped case ω2 < 0. Let β2 = − ω2,

x(t) = L−1

[

P0

mβ

β

(s + α)2 − β2 e−st0

]

=
P0

mβ
L−1

[

e−st0
β

(s + α)2 − β2

]

=
P0

mβ
L−1[e−st0L[e−αt sinhβt]] =

P0

mβ
e−α(t−t0) sinh β(t − t0)u(t − t0).

(c) The critically damped case ω2 = 0.

x(t) = L−1

[

P0

m

1
(s + α)2

e−st0

]

=
P0

m
L−1

[

e−st0
1

(s + α)2

]

=
P0

m
L−1[e−st0L[e−αtt]] =

P0

m
e−α(t−t0)(t − t0)u(t − t0).

Notice in all three cases, x(t) is equal to zero before t = t0, as you would
expect, because the system cannot respond until after the impulse has oc-
curred. This kind of behavior is often referred to as being causal. Causality,
a characteristic of solutions involving time, requires that there can be no re-
sponse before the application of a drive.

It is interesting to note that Newton’s equation is invariant under the
transformation of t → −t. Thus clearly causality is not implied by Newton’s
equation. The causality shown here is the result of the definition of the Laplace
transform. The fact that this important physical requirement is built in the
Laplace transformation is another reason that this method is so useful.

Example 6.4.2. A mass m = 1 is attached to spring with constant k = 4, and
there is no friction, b = 0. The mass is released from rest with x(0) = 3.At
the instant t = 2π the mass is struck with a hammer, providing an impulse
P0 = 8. Determine the motion of the mass.
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0
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5

4p2p 6p

x

t

Fig. 6.6. The plot of x(t) = 3 cos 2t + 4 sin 2(t − 2π)u(t − 2π)

Solution 6.4.2. We need to solve the initial value problem

x′′ + 4x = 8δ(t − 2π); x(0) = 3, x′(0) = 0.

Apply the Laplace transform to get

s2L[x] − 3s + 4L[x] = 8e−2πs,

so
(s2 + 4)L[x] = 3s + 8e−2πs.

Therefore

L[x] =
3s

(s2 + 4)
+

8e−2πs

(s2 + 4)
,

hence

x(t) = L−1

[

3s

s2 + 4

]

+ L−1

[

8e−2πs

s2 + 4

]

= 3L−1

[

s

s2 + 4

]

+ 4L−1

[

2e−2πs

s2 + 4

]

= 3L−1[L[cos 2t]] + 4L−1[e−2πsL[sin 2t]]
= 3 cos 2t + 4 sin 2(t − 2π)u(t − 2π)

or

x(t) =
{

3 cos 2t t < 2π
3 cos 2t + 4 sin 2(t − 2π) t > 2π

.

As 3 cos 2t + 4 sin 2t = 5 cos(2t − θ) and θ = tan−1(4/3), we see the effect
of the impulse at t = 2π. It instantaneously increases the amplitude of the
oscillations from 3 to 5. Although the frequency is still the same, there is a
discontinuity in velocity. The plot of x (t) is shown in Fig. 6.6.

Example 6.4.3. Consider the RLC series circuit shown in Fig. 6.7 with R =
110 Ω, L = 1 H, C = 0.001 F, and a battery supplying an emf of 90 V.
Initially there is no current in the circuit and no charge on the capacitor. At
t = 0 the switch is closed and at t = T (T = 1 s) the battery is removed from
the circuit in such a way that the RLC circuit is still closed but without emf.
Find the current i(t) as a function of time.
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εo

R

L

C

t = 0

t = T

i (t )

q (t )

−q (t )

Fig. 6.7. A RLC circuit. The open circuit without charge on the capacitor is closed
at t = 0. At t = T, the battery is removed from the circuit in such a way that the
circuit is closed but without emf

Solution 6.4.3. The circuit equation is given by

Li′ + Ri +
1
C

q = e(t)

i =
dq

dt

and the initial conditions are

i(0) = 0, q(0) = 0.

In this problem
e(t) = 90[u(t) − u(t − 1)].

Apply the Laplace transform to the two differential equations to get

LsL[i] + RL[i] +
1
C

L[q] = L[e(t)]

L[i] = sL[q].

Combine the two equations we obtain

LsL[i] + RL[i] +
1

Cs
L[i] = L[e(t)].

Putting in the R, L, C, and e(t) values in, we have

sL[i] + 110L[i] +
1

0.001s
L[i] = L[90[u(t) − u(t − 1)]]

= 90
1 − e−s

s
.
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Therefore

L[i] = 90
1 − e−s

s2 + 110s + 1000
.

Since
90

s2 + 110s + 1000
=

1
s + 10

− 1
s + 100

,

so we have

i(t) = L−1

[

1
s + 10

− 1
s + 100

− e−s

(

1
s + 10

− 1
s + 100

)]

= e−10t − e−100t − (e−10(t−1) − e−100(t−1))u(t − 1).

6.5 Convolution

Another important general property of the Laplace transform has to do with
the products of transforms. It often happens that we are given two transforms
F (s) and G(s) whose inverses f(t) and g(t) we know, and we would like to
calculate the inverse of the product F (s)G(s) from those known inverses f(t)
and g(t). The inverse is called the convolution of f(t) and g(t). In order
to understand the meaning of the mathematical formulation, we will first
consider a specific example.

6.5.1 The Duhamel Integral

Let us once again consider the damped driven oscillator

mx′′ + bx′ + kx = f(t) (6.59)

with x(0) = 0, x′(0) = 0. Applying the Laplace transform we get

L[x] =
L[f(t)]

m[(s + α)2 + ω2]
, (6.60)

where α = b
2m , ω2 = k

m − ( b
2m )2. If f(t) is a unit impulse at time τ ,

f(t) = δ(t − τ), (6.61)

then we have

L[x] =
e−sτ

m[(s + α)2 + ω2]
. (6.62)

Therefore

x(t) = L−1[e−sτL[
1

mω
e−αt sinωt]]

=
1

mω
e−α(t−τ) sin ω(t − τ)u(t − τ). (6.63)
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For t > τ,

x(t) =
1

mω
e−α(t−τ) sinω(t − τ)u(t − τ). (6.64)

If we designate the solution as g(t) in the particular case where τ is equal to
zero,

g(t) =
1

mω
e−αt sin ωt, (6.65)

so in general if τ is not equal to zero,

x(t) = g(t − τ). (6.66)

If the force function is

f(t) = Pδ(t − τ), (6.67)

the solution (or the response function) is clearly

x(t) = Pg(t − τ). (6.68)

Now we consider the response of the system under a general external force
function shown in Fig. 6.8.

This force may be assumed to be made up of a series of impulses of vary-
ing magnitude. As we have discussed, the impulse is actually momentum P
imparted. Since the change of momentum is equal to force (∆P/∆t = f) , the
impulse imparted during a short time interval is equal to force multiplied by
the time duration.

Assuming that at time τ , the force f(τ) acts on the system for a short
period of time ∆τ , the impulse acting at t = τ is given by f(τ)∆τ . At any
time t, the elapsed time since the impulse is t − τ , so the response of the
system at time t due to this impulse is

∆x(t) = f(τ)∆τg(t − τ). (6.69)

ƒ(t )

tO t

ƒ(τ)

∆τ

τ + ∆ττ

Fig. 6.8. An arbitrary forcing function
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The total response at time t can be found by summing all the responses due
to the elementary impulses acting all times

x(t) =
∑

f(τ)g(t − τ)∆τ . (6.70)

Letting ∆τ → 0 and replacing the summation by the integration, we obtain

x(t) =
∫ t

0

f(τ)g(t − τ)dτ (6.71)

or

x(t) =
1

mω

∫ t

0

f(τ)e−α(t−τ) sin ω(t − τ)dτ . (6.72)

This result is known as the Duhamel integral. In many cases the function
f(τ) has a form that permits an explicit integration. In the case such integra-
tion is not possible, it can be evaluated numerically without much difficulty.

6.5.2 The Convolution Theorem

The Duhamel integral can also be viewed in the following way. Since

g(t) =
1

mω
e−αt sinωt = L−1

[

1
m[(s + α)2 + ω2]

]

, (6.73)

and by (6.60)

L[x(t)] = L[f(t)]
1

m[(s + α)2 + ω2]
= L[f(t)]L[g(t)], (6.74)

it follows that
x(t) = L−1[L[f(t)]L[g(t)]]. (6.75)

On the other hand

x(t) =
∫ t

0

f(τ)g(t − τ)dτ , (6.76)

therefore
∫ t

0

f(τ)g(t − τ)dτ = L−1[L[f(t)]L[g(t)]]. (6.77)

It turns out, as long as these transforms exist, this relationship

L

[∫ t

0

f(τ)g(t − τ)dτ

]

= L[f(t)]L[g(t)]] (6.78)

is generally true for any arbitrary functions of f and g. It is known as the
convolution theorem. If this is true, then

L

[∫ t

0

f(t − λ)g(λ)dλ

]

= L[f(t)]L[g(t)]] (6.79)
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must also be true, since the roles played by f and g in the equation are
symmetric. This can be easily demonstrated directly by a change of variable.
Let λ = t − τ , then

∫ t

0

f(τ)g(t − τ)dτ =
∫ 0

t

f(t − λ)g(λ)d(−λ)

=
∫ t

0

f(t − λ)g(λ)dλ. (6.80)

The proof of the convolution theorem goes as follows.
By definition

L

[∫ t

0

f(t − λ)g(λ)dλ

]

=
∫ ∞

0

e−st

[∫ t

0

f(t − λ)g(λ)dλ

]

dt. (6.81)

Now with

u(t − λ) =
{

1 λ < t
0 λ > t

(6.82)

and

f(t − λ)g(λ)u(t − λ) =
{

f(t − λ)g(λ) λ < t
0 λ > t. (6.83)

We can write
∫ ∞

0

f(t − λ)g(λ)u(t − λ)dλ =
∫ t

0

f(t − λ)g(λ)u(t − λ)dλ

+
∫ ∞

t

f(t − λ)g(λ)u(t − λ)dλ, (6.84)

the second term on the right-hand side is equal to zero because the lower limit
of λ is t, so λ > t. In the first term on the right-hand side, the range of λ is
between 0 and t, so λ < t, using (6.83) we have

∫ ∞

0

f(t − λ)g(λ)u(t − λ)dλ =
∫ t

0

f(t − λ)g(λ)dλ. (6.85)

Putting (6.85) into (6.81)

L

[∫ t

0

f(t − λ)g(λ)dλ

]

=
∫ ∞

0

e−st

[∫ ∞

0

f(t − λ)g(λ)u(t − λ)dλ

]

dt, (6.86)

and changing the order of integration
∫ ∞

0

e−st

[∫ ∞

0

f(t − λ)g(λ)u(t − λ)dλ

]

dt

=
∫ ∞

0

g(λ)
[∫ ∞

0

e−stf(t − λ)u(t − λ)dt

]

dλ, (6.87)
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we obtain

L[
∫ t

0

f(t − λ)g(λ)dλ] =
∫ ∞

0

g(λ)
[∫ ∞

0

e−stf(t − λ)u(t − λ)dt

]

dλ. (6.88)

Because of the presence of u(t − λ), the integrand of the inner integral is
identically zero for all t < λ. Hence the inner integration effectively starts not
at t = 0 but at t = λ. Therefore

L

[∫ t

0

f(t − λ)g(λ)dλ

]

=
∫ ∞

0

g(λ)
[∫ ∞

λ

e−stf(t − λ)dt

]

dλ. (6.89)

Now in the inner integral on the right, let t − λ = τ and dt = dτ . Then

L

[∫ t

0

f(t − λ)g(λ)dλ

]

=
∫ ∞

0

g(λ)
[∫ ∞

0

e−s(τ+λ)f(τ)dτ

]

dλ

=
∫ ∞

0

e−sλg(λ)
[∫ ∞

0

e−sτf(τ)dτ

]

dλ

=
[∫ ∞

0

e−sτf(τ)dτ ]
] [∫ ∞

0

e−sλg(λ)dλ

]

= L[f(t)]L[g(t)] (6.90)

as asserted.
A common notation is to designate the convolution integral as

∫ t

0

f(t − λ)g(λ)dλ = f(t) ∗ g(t). (6.91)

So the convolution theorem is often written as

L[f ]L[g] = L[f ∗ g]. (6.92)

Example 6.5.1. Use convolution to find

L−1

[

1
s2(s − a)

]

.

Solution 6.5.1. Since

L[t] =
1
s2

, L[eat] =
1

s − a
,

we can write

L−1

[

1
s2(s − a)

]

= L−1

[

1
s2

· 1
s − a

]

= L−1[L[t]L[eat]].

Therefore

L−1

[

1
s2(s − a)

]

= t eat =
∫ t

0

τea(t−τ)dτ =
1
a2

(

eat − at − 1
)

.
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6.6 Further Properties of Laplace Transforms

6.6.1 Transforms of Integrals

From the property of the transform of a derivative, one can derive a formula
for the transform of an integral.

L

[∫ t

0

f(x)dx

]

=
∫ ∞

0

e−st

[∫ t

0

f(x)dx

]

dt.

Let

g(t) =
∫ t

0

f(x)dx,

then
g′(t) = f(t) and g(0) = 0.

Since
L [g′(t)] = sL [g(t)] − g(0),

we have

L [f(t)] = sL

[∫ t

0

f(x)dx

]

. (6.93)

Thus if F (s) = L [f(t)] ,

L

[∫ t

0

f(x)dx

]

=
L [f(t)]

s
=

1
s
F (s). (6.94)

This formula is very useful in finding the inverse transform of a fraction
that has the form of p(s)/ [snq(s)] . For example:

L−1

[

1
s(s − a)

]

= L−1

[

1
s
L
[

eat
]

]

= L−1L

[∫ t

0

eaxdx

]

=
∫ t

0

eaxdx =
1
a
(eat − 1).

Similarly

L−1

[

1
s2(s − a)

]

= L−1

[

1
s
L

[

1
a
(eat − 1)

]]

=
∫ t

0

1
a
(eax − 1)dx =

1
a2

(eat − at − 1).

This method is often more convenient than the method of partial fractions.

6.6.2 Integration of Transforms

Differentiation of F (s) corresponds to multiplication of f(t) by −t. It is natural
to expect that integration of F (s) will correspond to division of f(t) by t. This
is indeed the case, provided the limits of integration are appropriately chosen.
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If F (s′) is the Laplace transform of f(t), then
∫ ∞

s

F (s′)ds′ =
∫ ∞

s

[∫ ∞

0

e−s′tf(t)dt

]

ds′ =
∫ ∞

0

[∫ ∞

s

e−s′tf(t)ds′
]

dt

=
∫ ∞

0

f(t)
[∫ ∞

s

e−s′tds′
]

dt =
∫ ∞

0

f(t)
[

−1
t
e−s′t

]∞

s′=s

dt

=
∫ ∞

0

f(t)
1
t
e−stdt =

∫ ∞

0

e−st 1
t
f(t)dt = L

[

f(t)
t

]

. (6.95)

This relationship, namely

L

[

f(t)
t

]

=
∫ ∞

s

L [f(t)] ds′

is useful if L [f(t)] is known.

Example 6.6.1. Find (a) L

[

1
t
(e−at − e−bt)

]

, (b) L

[

sin t

t

]

.

Solution 6.6.1. (a)

L

[

1
t
(e−at − e−bt)

]

=
∫ ∞

s

L
[

e−at − e−bt
]

ds′ =
∫ ∞

s

(

1
s′ + a

− 1
s′ + b

)

ds′

= [ln(s′ + a) − ln(s′ + b)]∞s′=s =
[

ln
s′ + a

s′ + b

]∞

s′=s

= ln 1 − ln
s + a

s + b
= ln

s + b

s + a
.

(b)

L

[

sin t

t

]

=
∫ ∞

s

L [sin t] ds′ =
∫ ∞

s

1
s′2 + 1

ds′ =
[

tan−1 s′
]∞
s′=s

=
π

2
− tan−1 s = cot−1 s = tan−1 1

s
.

6.6.3 Scaling

If F (s) = L [f(t)] =
∫∞
0

e−stf(t)dt is already known, then L [f(at)] can be
easily obtained by a change of scale. By definition

L [f(at)] =
∫ ∞

0

e−stf(at)dt =
1
a

∫ ∞

0

e−(s/a)atf(at)d(at). (6.96)

Let t′ = at, the integral becomes
∫ ∞

0

e−(s/a)atf(at)d(at) =
∫ ∞

0

e−(s/a)t′f(t′)d(t′),
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which is just the Laplace transform of f with the parameter s replaced by
s/a. Therefore

L [f(at)] =
1
a
F
( s

a

)

. (6.97)

Example 6.6.2. If L [f(t)] is known to be
1

s(1 + 2s)
, Find L [f(2t)] .

Solution 6.6.2.

L [f(2t)] =
1
2

1
(s/2)[1 + 2(s/2)]

=
1

s(1 + s)
.

Example 6.6.3. Find L

[

sin ωt

t

]

.

Solution 6.6.3. Since L

[

sin t

t

]

= tan−1 1
s
, then

L

[

sinωt

ωt

]

=
1
ω

tan−1 ω

s
.

Therefore

L

[

sin ωt

t

]

= tan−1 ω

s
.

6.6.4 Laplace Transforms of Periodic Functions

Very often the input functions in physical systems are periodic functions.
A function is said to be periodic if there is a number p such that

f(t + p) = f(t).

The least value of p is called the period of f. A periodic function is one that
has the characteristic

f(t) = f(t + p) = f(t + 2p) = · · ·f(t + np) · · · . (6.98)

The Laplace transform of f(t) is a series of integrals

L [f ] =
∫ ∞

0

e−stf(t)dt

=
∫ p

0

e−stf(t)dt +
∫ 2p

p

e−stf(t)dt · · ·
∫ (n+1)p

np

e−stf(t)dt · · · . (6.99)
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It follows from a change of variable t = τ + np that
∫ (n+1)p

np

e−stf(t)dt =
∫ p

0

e−s(τ+np)f(τ + np)dτ = e−snp

∫ p

0

e−sτf(τ)dτ .

The dummy integration variable τ can be set equal to t, thus

L [f ] =
∫ p

0

e−stf(t)dt + e−sp

∫ p

0

e−stf(t)dt + · · · + e−snp

∫ p

0

e−stf(t)dt + · · ·

= (1 + e−sp + e−2sp + · · · + e−nsp + · · ·)
∫ p

0

e−stf(t)dt. (6.100)

With the series expansion, 1/(1−x) = 1+x+x2 + · · ·, this equation becomes

L [f ] =
1

1 − e−sp

∫ p

0

e−stf(t)dt. (6.101)

Example 6.6.4. Half-wave rectifier: Find the Laplace transform of the periodic
function (shown in Fig. 6.9) whose definition over one period is:

f(t) =

⎧

⎪

⎨

⎪

⎩

sinωt if 0 < t <
π

ω

0 if
π

ω
< t <

2π

ω

.

1

p 2p 3p 4p 5π

f(t )

wt

Fig. 6.9. Half-wave rectifier. The definition over one period is f(t) = sin ωt for
0 < t < π/ω and f(t) = 0 for π/ω < t < 2π/ω

Solution 6.6.4.

L [f ] =
1

1 − e−s2π/ω

∫ 2π/ω

0

e−stf(t)dt =
1

1 − e−s2π/ω

∫ π/ω

0

e−st sin ωt dt.

The integral can be evaluated with integration by parts. However, it is easier
to note that the integral is the imaginary part of

∫ π/ω

0

e−steiωtdt =
[

1
−s + iω

e−st+iωt

]π/ω

0

=
1

−s + iω

(

e−sπ/ω+iπ − 1
)

=
−s − iω
s2 + ω2

(

−e−sπ/ω − 1
)

.
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Thus

L [f ] =
1

1 − e−s2π/ω

ω(1 + e−sπ/ω)
s2 + ω2

=
ω

(s2 + ω2)(1 − e−sπ/ω)
.

Example 6.6.5. Full-wave rectifier: Find the Laplace transform of the periodic
function (shown in Fig. 6.10) whose definition over one period is:

f(t) = |sinωt| 0 < t <
π

ω
.

1

p 2p 3p 4p 5p

f(t )

wt

Fig. 6.10. Full-wave rectifier. The definition over one period is f(t) = |sin ωt| , for
0 < t < π/ω

Solution 6.6.5. In this case, the period is just π/ω. Therefore

L [f ] =
1

1 − e−sπ/ω

∫ π/ω

0

e−st sin ωt dt =
ω(1 + e−sπ/ω)

(s2 + ω2)(1 − e−sπ/ω)
.

This is a perfectly good result. It can be simplified somewhat by multiplying
both numerator and denominator exp( sπ

2ω )

L [f ] =
ω(esπ/(2ω) + e−sπ/(2ω))

(s2 + ω2)(esπ/(2ω) − e−sπ/(2ω))
=

ω

(s2 + ω2)
coth

sπ

2ω
.

6.6.5 Inverse Laplace Transforms Involving Periodic Functions

Any Laplace transform F (s) that either has a factor (1 − e−sp)−1, or can be
written in a form with such a factor as in the last example, indicates that its
inverse transform is a periodic function. However, its period may be a multiple
of p. This is illustrated in the following example.

Example 6.6.6. Find the inverse and its period of the Laplace transform

F (s) =
s

(s2 + 1)(1 − e−sπ)
.
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Solution 6.6.6.

f(t) = L−1

[

s

(s2 + 1)(1 − e−sπ)

]

= L−1

[

s

(s2 + 1)
(1 + e−sπ + e−2sπ + e−3sπ + · · ·)

]

= cos t + u(t − π) cos(t − π) + u(t − 2π) cos(t − 2π)
+u(t − 3π) cos(t − 3π) + u(t − 4π) cos(t − 4π) · · ·

= cos t − u(t − π) cos t + u(t − 2π) cos t − u(t − 3π) cos t + · · ·
= [1 − u(t − π)] cos t + [u(t − 2π) − u(t − 3π)] cos t + · · ·.

Therefore f(t) is a periodic function with period 2π, whose definition over one
period is

f(t) =
{

cos t if 0 < t < π
0 if π < t < 2π

.

6.6.6 Laplace Transforms and Gamma Functions

The Laplace transform of tn is defined as

L [tn] =
∫ ∞

0

e−sttn dt. (6.102)

If we make a change of variable and let st = x, the integral becomes

L [tn] =
∫ ∞

0

e−x
(x

s

)n

d
(x

s

)

=
1

sn+1

∫ ∞

0

e−xxndx. (6.103)

The last integral is known as the gamma function of n+1, written as Γ (n+1).
Gamma function occurs frequently in practice. It is given by

Γ (n) =
∫ ∞

0

e−xxn−1dx, (6.104)

this is well defined as long as n is not zero or a negative integer. For n = 1,

Γ (1) =
∫ ∞

0

e−xdx =
[

e−x
]∞
0

= 1. (6.105)

With integration by parts, one can easily show

Γ (n + 1) =
∫ ∞

0

e−xxndx =
[

−xne−x
]∞
0

+ n

∫ ∞

0

e−xxn−1dx = nΓ (n).

(6.106)
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Thus if n is a positive integer,

Γ (n + 1) = nΓ (n) = n(n − 1) · · · 1Γ (1) = n!, (6.107)

and according to (6.103)

L [tn] =
Γ (n + 1)

sn+1
=

n!
sn+1

(6.108)

in agreement with the result we obtained before. Since Γ (n) is a tabulated
function, as long as n > −1, L [tn] can still be evaluated even if n is not an
integer. For example

L

[

1√
t

]

=
Γ ( 1

2 )

s
1
2

=
√

π

s1/2
, (6.109)

L

[√
t
]

=
Γ (1 + 1

2 )

s1+ 1
2

=
1
2Γ ( 1

2 )

s
3
2

=
1
2

√
π

s3/2
, (6.110)

where we have used the well-known result Γ (1
2 ) =

√
π.

Example 6.6.7. Find the Laplace transform of eat(1 + 2at)/
√

πt.

Solution 6.6.7. Use s-shifting property

L

[

eat

√
πt

]

=
1

(s − a)1/2
,

L

[

eat2at√
πt

]

=
2a√
π

L

[

eat
√

t
]

=
a

(s − a)3/2
.

Thus

L

[

eat(1 + 2at)√
πt

]

=
1

(s − a)1/2
+

a

(s − a)3/2
=

s

(s − a)3/2
.

6.7 Summary of Operations of Laplace Transforms

The properties of the Laplace transform are not difficult to understand. How-
ever, because there are so many of them, it is not easy to decide which one to
use for a specific problem. In Table 6.2 we summarize these operations. In the
last column we give a simple example and in the first column we give a name
to characterize the operation. This classification is helpful in remembering the
details of each operation.

In Sect. 6.2.1, we discussed the inverse of the transform F (s) in the form
of a quotient of two polynomials. If F (s) is not in that form, sometimes we
can use the properties of the Laplace transforms to obtain the inverse.
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Table 6.2. Summary of Laplace transform operations

Name h(t) L [h(t)] Example: Let f(t) = t

Definition f(t) F (s) L [t] =
∫∞
0

e−stt dt =
1

s2
= F (s)

Multiply t tf(t) − d

ds
F (s) L [t · t] = − d

ds

1

s2
=

2

s3

Divide t
f(t)

t

∫∞
s

F (ς)dς L

[

t

t

]

=
∫∞

s

1

ς2
dς =

1

s

Derivative f ′(t) sF (s) − f(0) L

[

dt

dt

]

= s
1

s2
− 0 =

1

s

Integral
∫ t

0
f(τ)dτ

F (s)

s
L

[

∫ t

0
τ dτ

]

=
1/s2

s
=

1

s3

Shifting – s eatf(t) F (s − a) L
[

eatt
]

=
1

(s − a)2

Shifting – t u(t − a)f(t − a) e−saF (s) L [u(t − a)(t − a)] = e−sa 1

s2

Scaling f(at)
1

a
F
(

s

a

)

L [at] =
1

a

1

(s/a)2
= a

1

s2

Period – p periodic f(t)

∫ p

0
e−stf (t) dt

1 − e−ps
L [f ] =

1 − (1 + ps)e−ps

s2(1 − e−ps)

Convolution
∫ t

0
f(τ)g(t − τ)dτ F (s) · G(s) Let g(t) = f(t), G(s) = F (s)

L

[

∫ t

0
τ(t − τ)dτ

]

=
1

s2

1

s2
=

1

s4

Example 6.7.1. Find L−1

[

ln
s + a

s − b

]

.

Solution 6.7.1. The transform is not in the form of a quotient of two poly-
nomials, but its derivative is. Let

L [f(t)] = ln
s + a

s − b
, f(t) = L−1

[

ln
s + a

s − b

]

.

Since

L [tf(t)] = − d
ds

L [f(t)] = − d
ds

ln
s + a

s − b

= − d
ds

ln(s + a) +
d
ds

ln(s − b) =
1

s − b
− 1

s + a
,
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and

tf(t) = L−1

[

− d
ds

L [f(t)]
]

= L−1

[

1
s − b

− 1
s + a

]

,

therefore

L−1

[

ln
s + a

s − b

]

= f(t) =
1
t
L−1

[

1
s − b

− 1
s + a

]

=
1
t

(

ebt − e−at
)

.

Example 6.7.2. Find L−1

[

ln
s2 − a2

s2

]

.

Solution 6.7.2.

L−1

[

ln
s2 − a2

s2

]

=
1
t
L−1

[

− d
ds

ln
s2 − a2

s2

]

= −1
t
L−1

[

2s

s2 − a2
− 2s

s2

]

=
2
t

(1 − cosh at) .

Example 6.7.3. Find L−1

[

ln
s2 + ω2

s2

]

.

Solution 6.7.3.

L−1

[

ln
s2 + ω2

s2

]

=
1
t
L−1

[

− d
ds

ln
s2 + ω2

s2

]

= −1
t
L−1

[

2s

s2 + ω2
− 2s

s2

]

=
2
t

(1 − cos ωt) .

Example 6.7.4. Find L−1

[

tan−1 1
s

]

.

Solution 6.7.4.

L−1

[

tan−1 1
s

]

=
1
t
L−1

[

− d
ds

tan−1 1
s

]

= −1
t
L−1

[

1
(1/s)2 + 1

d
ds

1
s

]

=
1
t
L−1

[

1
1 + s2

]

=
1
t

sin t.
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6.8 Additional Applications of Laplace Transforms

6.8.1 Evaluating Integrals

Many integrals from 0 to ∞ can be evaluated by the Laplace transform
method.
By direct substitution. Integrals involving e−at can be obtained from the
Laplace transformation with a simple substitution.

∫ ∞

0

e−atf(t)dt =
{∫ ∞

0

e−stf(t)dt

}

s=a

= {L [f(t)]}s=a . (6.111)

Example 6.8.1. Find
∫∞
0

e−3t sin t dt.

Solution 6.8.1.
∫ ∞

0

e−3t sin t dt = {L [sin t]}s=3 =
{

1
s2 + 1

}

s=3

=
1
10

Example 6.8.2. Find
∫ ∞

0

e−2tt cos t dt.

Solution 6.8.2. Since
∫ ∞

0

e−2tt cos t dt = {L[t cos t]}s=2 ,

{L[t cos t]} = − d
ds

L[cos t] = − d
ds

s

s2 + 1
=

s2 − 1
(s2 + 1)2

,

therefore
∫ ∞

0

e−2tt cos t dt =
{

s2 − 1
(s2 + 1)2

}

s=2

=
3
25

.

Use integral of the transform. In Sect. 6.6.2 we have shown

L

[

f(t)
t

]

=
∫ ∞

s

F (s′)ds′,

where

L

[

f(t)
t

]

=
∫ ∞

0

e−st f(t)
t

dt, F (s) = L [f(t)] =
∫ ∞

0

e−stf(t)dt.

Setting s = 0, we obtain an equally important formula
∫ ∞

0

f(t)
t

dt =
∫ ∞

0

L [f(t)] ds. (6.112)

This formula can be used if the integral on left side is difficult to do directly.
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Example 6.8.3. Find
∫ ∞

0

[

e−t − e−3t

t

]

dt.

Solution 6.8.3.
∫ ∞

0

[

e−t − e−3t

t

]

dt =
∫ ∞

0

L
[

e−t − e−3t
]

ds =
∫ ∞

0

(

1
s + 1

− 1
s + 3

)

ds

= [ln(s + 1) − ln(s + 3)]∞0 =
[

ln
s + 1
s + 3

]∞

0

= ln 1 − ln
1
3

= ln 3.

Example 6.8.4. Find
∫ ∞

0

sin t

t
dt.

Solution 6.8.4.
∫ ∞

0

sin t

t
dt =

∫ ∞

0

L [sin t] ds =
∫ ∞

0

1
s2 + 1

ds

=
[

tan−1 s
]∞
0

=
π

2
. (6.113)

Use double integrals. We can solve the problem of the last example by a double
integral. Starting with

L [1] =
∫ ∞

0

e−st dt =
1
s
, (6.114)

if we rename t as x, and s as t, we have
∫ ∞

0

e−txdx =
1
t
. (6.115)

So
∫ ∞

0

sin t

t
dt =

∫ ∞

0

sin t

[

1
t

]

dt =
∫ ∞

0

sin t

[∫ ∞

0

e−txdx

]

dt. (6.116)

Interchanging the order of integration, we have
∫ ∞

0

sin t

t
dt =

∫ ∞

0

[∫ ∞

0

e−tx sin t dt

]

dx. (6.117)

The integral in the bracket is recognized as the Laplace transform of sin t with
the parameter s replaced by x, thus

∫ ∞

0

sin t

t
dt =

∫ ∞

0

1
1 + x2

dx =
[

tan−1 x
]∞
0

=
π

2
. (6.118)

This method can be applied to more complicated cases.
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Example 6.8.5. Find
∫ ∞

0

sin2 t

t2
dt.

Solution 6.8.5. First we note

sin2 t =
1
2
(1 − cos 2t),

then write
∫ ∞

0

sin2 t

t2
dt =

1
2

∫ ∞

0

(1 − cos 2t)
[

1
t2

]

dt.

With
1
t2

=
∫ ∞

0

e−txx dx,

we have
∫ ∞

0

sin2 t

t2
dt =

1
2

∫ ∞

0

(1 − cos 2t)
[∫ ∞

0

e−txx dx

]

dt

=
1
2

∫ ∞

0

[∫ ∞

0

e−tx(1 − cos 2t)dt

]

x dx.

Since
∫ ∞

0

e−tx(1 − cos 2t)dt = [L(1 − cos 2t)]s=x

=
1
x
− x

x2 + 4
=

4
x(x2 + 4)

,

∫ ∞

0

sin2 t

t2
dt =

1
2

∫ ∞

0

[

4
x(x2 + 4)

]

x dx

=
∫ ∞

0

2
(x2 + 4)

dx =
[

tan−1 x

2

]∞

0
=

π

2
.

Use inverse Laplace transform. If the integral is difficult to do, we can first
find its Laplace transform and then take the inverse.

Example 6.8.6. Find
∫ ∞

0

cos x

x2 + b2
dx

Solution 6.8.6. In order to use Laplace transform to evaluate this integral,
we change cos x to cos tx, and at the end we set t = 1. Let

I(t) =
∫ ∞

0

cos tx

x2 + b2
dx.
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L [I(t)] =
∫ ∞

0

1
x2 + b2

L [cos tx] dx =
∫ ∞

0

1
x2 + b2

s

s2 + x2
dx

=
s

s2 − b2

∫ ∞

0

[

1
x2 + b2

− 1
s2 + x2

]

dx

=
s

s2 − b2

{[

1
b

tan−1 x

b

]∞

0

−
[

1
s

tan−1 x

s

]∞

0

}

=
s

s2 − b2

{ π

2b
− π

2s

}

=
π

2b

1
s + b

.

I(t) = L−1

[

π

2b

1
s + b

]

=
π

2b
e−bt.

Thus
∫ ∞

0

cos x

x2 + b2
dx = I(1) =

π

2b
e−b.

6.8.2 Differential Equation with Variable Coefficients

If f(t) in the formula

L [tf(t)] = − d
ds

L [f(t)]

is taken to be the nth derivative of y(t), then

L

[

ty(n)(t)
]

= − d
ds

L

[

y(n)(t)
]

= − d
ds

{

snL [y(t)] − sn−1y(0) · · · −yn−1(0)
}

. (6.119)

This equation can be used to transform a linear differential equation with
variable coefficients into a differential equation involving the transform. This
procedure is useful if the new equation can be readily solved.

Example 6.8.7. Find the solution of

ty′′(t) − ty′(t) − y(t) = 0, y(0) = 0, y′(0) = 2.

Solution 6.8.7.

L [ty′′(t)] = − d
ds

{

s2L [y(t)] − sy(0) − y′(0)
}

.

Let L [y(t)] = F (s), with y(0) = 0 we have

L [ty′′(t)] = −2sF (s) − s2F ′(s),
L [ty′(t)] = −F (s) − sF ′(s).
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Therefore

L[ty′′(t) − ty′(t) − y(t)] = −s(s − 1)F ′(s) − 2sF (s) = 0.

It follows
dF (s)
F (s)

= −2
ds

s − 1
,

ln F (s) = ln(s − 1)−2 + ln C

F (s) =
C

(s − 1)2

y(t) = L−1 [F (s)] = L−1

[

C

(s − 1)2

]

= C ett.

Since
y′(t) = C ett + C et,

y′(0) = C = 2,

therefore
y(t) = 2ett.

It can be easily verified that this is indeed the solution, since it satisfies both
the equation and the initial conditions.

Example 6.8.8. Zeroth Order Bessel Function: Find the solution of

ty′′(t) + y′(t) + ty(t) = 0, y(0) = 1, y′(0) = 0.

Solution 6.8.8. With L [y(t)] = F (s) and y(0) = 1, y′(0) = 0,

L [ty′′(t) + y′(t) + ty(t)] = − d
ds

{

s2F (s) − s
}

+ sF (s) − 1 − d
ds

F (s) = 0.

Collecting terms

(s2 + 1)
d
ds

F (s) + sF (s) = 0,

or
dF (s)
F (s)

= − s ds

s2 + 1
= −1

2
ds2

s2 + 1
.

It follows
ln F (s) = −1

2
ln(s2 + 1) + ln C,

F (s) =
C

(s2 + 1)1/2
.

To find the inverse of this Laplace transform, we expand it in a series in the
case s > 1,
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F (s) =
C

s

[

1 +
1
s2

]−1/2

=
C

s

[

1 − 1
2s2

+
1 · 3

22 · 2!
1
s4

· · · +(−1)n(2n)!
(2nn!)2

1
s2n

+ · · ·
]

.

Inverting term by term, we have

y(t) = L−1 [F (s)] = C
∞
∑

n=0

(−1)nt2n

(2nn!)2
.

Since y(0) = 1, therefore C = 1. It turned out this series with C = 1 is known
as the Bessel function of zeroth order J0(t), that is,

J0(t) =
∞
∑

n=0

(−1)nt2n

(2nn!)2
,

which we will discuss in more detail in the chapter on Bessel functions. Thus
the solution of the equation is

y(t) = J0(t).

Furthermore, this development shows that

L [J0(t)] =
1

(s2 + 1)1/2
.

With the scaling property of the Laplace transform, we also have (for a > 0)

L [J0(at)] =
1
a

1
[(s/a)2 + 1]1/2

=
1

(s2 + a2)1/2
.

6.8.3 Integral and Integrodifferential Equations

Equations in which the unknown function appears under the integral are called
integral equations. If the derivatives are also in the equation, then they are
called integrodifferential equations. They are often difficult to solve. But if
the integrals are in the form of a convolution, then Laplace transform can be
used to solve them. The following example will make the procedure clear.

Example 6.8.9. Solve the integral equation

y(t) = t +
∫ t

0

y(τ) sin(t − τ)dτ .
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Solution 6.8.9.

L[y(t)] = L[t] + L

[∫ t

0

y(τ) sin(t − τ)dτ

]

= L[t] + L[y(t)]L[sin t] =
1
s2

+ L[y(t)]
1

s2 + 1
.

Solving for L[y(t)]
(

1 − 1
s2 + 1

)

L[y(t)] =
1
s2

.

So

L[y(t)] =
s2 + 1

s4
=

1
s2

+
1
s4

and

y(t) = L−1

[

1
s2

+
1
s4

]

= t +
1
6
t3.

Example 6.8.10. Find the solution of

y′(t) − 3
∫ t

0

e−2(t−τ)y(τ)dτ = z(t), y(0) = 4,

z(t) =
{

4e−2t 1 < t
0 0 < t < 1 .

Solution 6.8.10. First note

L [z(t)] = L
[

4e−2tu(t − 1)
]

= L

[

4e−2e−2(t−1)u(t − 1)
]

= 4e−2 1
s + 2

e−s,

L

[

3
∫ t

0

e−2(t−τ)y(τ)dτ

]

= 3
1

s + 2
L [y] .

Applying the Laplace transform to both sides of the equation leads to

sL [y] − 4 − 3
1

s + 2
L [y] = 4e−2 1

s + 2
e−s,

collecting terms

s2 + 2s − 3
s + 2

L [y] = 4 + 4e−2 1
s + 2

e−s,

or

L [y] =
4(s + 2) + 4e−2e−s

s2 + 2s − 3

=
3

s − 1
+

1
s + 3

+ e−2

(

1
s − 1

− 1
s + 3

)

e−s.

Thus
y(t) = 3et + e−3t + e−2

(

e(t−1) − e−3(t−1)
)

u(t − 1).
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6.9 Inversion by Contour Integration

As we have seen that to be able to invert a given transform F (s) to find
the function f (t) is the key of solving differential equations with the Laplace
Transform. For those familiar with the complex contour integration, we
present in this section a universal technique of finding the inverse of the
Laplace Transform. The derivation is highly imaginative, but the result is
elegantly simple.

First let us extend the Laplace transform to the complex domain. The
function F (z) is the same function as F (s) except with s replaced by z. In the
complex plane, F (z) will have some singular points. Let us choose a line x = b
in the complex plane such that all singular points of F (z) are in the left-hand
side of this line. Then F (z) is analytic on the line x = b and in the entire
half plane to the right of this line. If s is any point in this half plane, we can
choose a semicircular contour C = C1 + C2, as shown in Fig. 6.11, and apply
the Cauchy’s integral formula,

F (s) =
1

2πi

∮

C

F (z)
z − s

dz

=
1

2πi

∫ b−iR

b+iR

F (z)
z − s

dz +
1

2πi

∫

C1

F (z)
z − s

dz. (6.120)

Now if we let R go to infinity, (6.120) is still valid, but all values of z on
the semicircle C1 are infinitely large. Since F (z) → 0 as z → ∞,

lim
R→∞

∫

C1

F (z)
z − s

dz = 0.

b S

C1

C 2

R

y

x

Fig. 6.11. The first contour used to obtain the complex inversion of the Laplace
transform
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Therefore in this limit (6.120) becomes

F (s) =
1

2πi

∫ b−i∞

b+i∞

F (z)
z − s

dz =
1

2πi

∫ b+i∞

b−i∞

F (z)
s − z

dz.

In the last step we have changed the sign of the integrand and interchanged
the upper and lower limits of the integral.

Taking the inverse Laplace transform, we have

L−1[F (s)] = L−1

[

1
2πi

∫ b+i∞

b−i∞

F (z)
s − z

dz

]

.

Since the inverse Laplace operator L−1 refers only to the variable s, we can
write

L−1[F (s)] =
1

2πi

∫ b+i∞

b−i∞
F (z)L−1

[

1
s − z

]

dz.

Since

L−1

[

1
s − z

]

= ezt

we have

L−1[F (s)] =
1

2πi

∫ b+i∞

b−i∞
F (z)eztdz. (6.121)

This procedure is called the Mellin inversion. This integral is from b − i∞ to
b+i∞ along C2. Usually the evaluation of this integral is accomplished by the
residue theorem. To use the residue theorem, we must have a closed contour.
To close the contour, we have to add a returning line integral from b + i∞ to
b − i∞ in such a way that the value of the integral is not changed. This can
be done with the semicircular contour C3 in the left half-plane as shown in
Fig. 6.12, since

lim
R→∞

∫

C3

F (z)eztdz = 0. (6.122)

This can be understood from the fact that with a positive t, the integrand

F (z)ezt = F (z)ext+iyt

goes to zero as z goes to infinity. The factor eiyt is oscillatory with a maximum
value of 1. For x to change from b to −∞ as on C3, the factor ext is always
less than ebt. Therefore F (z)ezt will go to zero as long as F (z) is going to
zero. Note that this will not be the case in the right half plane where x will
go to positive infinite and ezt will blow up. Thus with C3, we have

L−1[F (s)] =
1

2πi

∫ b+i∞

b−i∞
F (z)eztdz.

=
1

2πi
lim

R→∞

[∫

C2

F (z)eztdz +
∫

C3

F (z)eztdz

]

=
1

2πi

∮

C

F (z)eztdz, (6.123)
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y

x

b

C3

C2

R

Fig. 6.12. The contour used in evaluating the complex inversion integral

where C = C2 + C3 as shown in Fig. 6.12 with R → ∞. This contour is also
called the Bromwich contour. Since b is on the right of all singular points of
F (z), the contour C encloses all singular points of eztF (z). Therefore by the
residue theorem

L−1[F (s)] =
1

2πi

∮

C

F (z)eztdz

=
∑

all residues of F (z)ezt. (6.124)

Example 6.9.1. Using the complex inversion integral to find

L−1

[

1
(s + a)2 + b2

]

.

Solution 6.9.1. Since

1
(s + a)2 + b2

=
1

[s − (−a + ib)] [s − (−a − ib)]
,

the residues of
ezt

(z + a)2 + b2

at the two singular points are

r1 = lim
z→−a+ib

[z − (−a + ib)]
ezt

[z − (−a + ib)] [z − (−a − ib)]

=
e(−a+ib)t

2ib
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and

r2 = lim
z→−a−ib

[z − (−a − ib)]
ezt

[z − (−a + ib)] [z − (−a − ib)]

=
e(−a−ib)t

−2ib
.

Therefore

L−1

[

1
(s + a)2 + b2

]

=
e(−a+ib)t

2ib
+

e(−a−ib)t

−2ib

=
1
b
e−at 1

2i
(

eibt − e−ibt
)

=
1
b
e−at sin bt.

This is a familiar result. This example shows that the complex inversion
integral is indeed another way of finding the inverse Laplace transform. In
more difficult applications, the use of the complex inversion integral and the
contour integration is either the only way or the simplest way of finding the
inverse Laplace transform.

6.10 Computer Algebraic Systems for Laplace
Transforms

Before closing this chapter, we should mention that a number of commercial
computer packages are available to perform algebraic manipulations, includ-
ing Laplace transforms. They are called computer algebraic systems, some
prominent ones are Matlab, Maple, Mathematica, MathCad, and MuPAD.

This book is written with the software “Scientific WorkPlace,” which also
provides an interface to MuPAD. (Before version 5, it also came with Maple).
Instead of requiring the user to adhere to a rigid syntax, the user can use
natural mathematical notations. For example, to compute L (cos t − 2 sin t) ,
all you have to do is (1) type cos t− 2 sin t in the math-mode, (2) click on the
“Compute” button, (3) click on the “Transforms” button in the pull-down
menu, and (4) click on the “Laplace” button in the submenu. The program
will return with

cos t − 2 sin t, Laplace transform is :
s

s2 + 1
− 2

s2 + 1
.

The program also recognizes the Laplace transform symbol. An alternative
way to do the same problem is to choose, from the “Miscellaneous Symbols”
panel, the Laplace transform symbol and type
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L(cos t − 2sin t)

in the math-mode, and click on “Compute” and then choose “Evaluate.” The
program will return with

L(cos t − 2sin t) =
s

s2 + 1
− 2

s2 + 1

Similarly, one can compute the inverse of the Laplace transform. For
example, type

L−1

(

s − 2
s2 + 1

)

and click on “Compute” and then on “Evaluate,” the program will return
with

L−1

(

s − 2
s2 + 1

)

= cos t − 2sin t

To compute the Laplace transform of a derivative, one has to define the
function first. For example, to find L (y′′′) , first type

y (t)

and click on “Compute”, then on “Definition” in the menu, then on “New
Definition” in the submenu. Then type

L(y′′′)

and click on “Compute” and then on “Evaluate”. The program will return
with

L(y′′′) = s3L(y) − sy′(0) − s2y(0) − y′′(0).

The program can also use Laplace transform to solve ordinary differential
equations. For example, to solve the equation

y′ + y = x + sin x,

first type this equation in math-mode, then click on “Compute.” In the pull-
down menu, click on “Solve ODE,” then click on “Laplace” in the submenu.
The program returns with a question asking which is the independent variable.
Type x and click on “OK.” The program will return with

Laplace solution is : x − 1
2

cos x +
1
2

sin x + e−x

(

y (0) +
3
2

)

− 1.

Unfortunately, not every problem can be solved by a computer algebraic
system. Sometimes it fails to find the solution. Even worse, for a variety of
reasons, the intention of the user is sometimes misinterpreted, and the com-
puter returns with an answer to a wrong problem without the user knowing
it. One should be aware of these pitfalls.

Computer algebraic systems are no substitute for the knowledge of the
subject matter, but they are useful supplements.
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Exercises

1. Find the Laplace transformation of each of the following functions by
direct integration.
(a) 1

2 t2, (b) e3t, (c) 3 sin (3t) .

Ans. (a) 1
s3 , (b) 1

s−3 , (c) 9
s2+9 .

2. Find the Laplace transformation of each of the following functions by
using the “Multiply t” operation (see Table 6.2).
(a) tet, (b) t cos t, (c) t2 cos t.

Ans. (a) 1
(s−1)2

, (b) s2−1
(s2+1)2

, (c)
2s(s2−3)
(s2+1)3

.

3. Find the Laplace transformation of each of the following functions by
using the “Divide t” operation (see Table 6.2).
(a) 1

t

(

e2t − e−2t
)

, (b) 2
t (1 − cos (2t)) , (c) 1

t sin (4t) .

Ans. (a) ln
(

s+2
s−2

)

, (b) ln
(

s2+4
s2

)

, (c) π
2 − tan−1

(

s
4

)

.

4. Find the Laplace transformation of each of the following functions by
using the “Shifting – s” operation (see Table 6.2).
(a) eat sin 3t, (b) e−2tt sin at, (c) sinh t cos t.

Ans. (a) 3
(s−a)2+9

, (b) 2a(s+2)
[(s+2)2+a2]2 , (c) s2−2

s4+4 .

5. Use the definition of Laplace transformation to show
(a) L[f ′] = sL[f ] − f(0);

use (a) to show

(b) L[f ′′] = s2L[f ] − sf(0) − f ′(0).

6. Use the results of previous problem and the fact that d2

dt2 cos at =
−a2 cos at and d2

dt2 sin at = −a2 sin at to show
(a) L[cos at] = s

s2+a2 , (b)L[sin at] = a
s2+a2 .

7. Differentiate both sides of part (b) of the previous problem with respect
to a, and show that
(a) L[t cos at] = 1

s2+a2 − 2a2

(s2+a2)2 ,

Differentiate both sides of part (a) of the previous problem with respect
to s, and show that
(b) L[−t cos at] = 1

s2+a2 − 2s2

(s2+a2)2 .

8. Use the results of problems 6 and 7 to show
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(a) L−1

[

1
(s2 + a2)2

]

= 1
2a3 (sin at − at cos at),

(b) L−1

[

s2

(s2 + a2)2

]

= 1
2

(

t cos at + 1
a sin at

)

.

9. Do problem 8 with convolution theorem.
Hint: you may need the following integral

∫ t

0

sin aτ cos aτ dτ =
1
4a

(1 − cos 2at);
∫ t

0

sin2 aτ dτ =
1
4a

(2at − sin 2at).

10. If f(t) = tn, g(t) = tm, n > −1, m > −1,

(a) show that
∫ t

0

τn(t − τ)mdτ = tn+m+1

∫ 1

0

yn(1 − y)mdy.

(b) By using the convolution theorem, show that
∫ 1

0

yn(1 − y)mdy =
n!m!

(n + m + 1)!
.

Hint: (a) let τ = yt, (b) use convolution theorem to evaluate
∫ t

0
τn

(t − τ)mdτ .

11. Find the Laplace transformation of each of the following functions by
direct integration.
(a) sin (t − a) u (t − a) ,

(b) f (t) =
{

cos (t − π) t > π
0 t < π

,

(c) f (t) =

⎧

⎨

⎩

0 0 ≤ t < 5
1 5 ≤ t < 10
0 10 ≤ t

.

Ans. (a) e−as 1
s2+1 , (b) e−πs s

s2+1 , (c) 1
s

(

e−5s − e−10s
)

.

12. Do the previous problem by using the “Shifting – t” operation (see
Table 6.2).

13. Use the partial fraction to find the inverse Laplace transform of the fol-
lowing expressions.
(a) L−1

[

4
s2−4s

]

, (b) L−1
[

1
s(s2+1)

]

, (c) L−1
[

1
s2(s2+1)

]

.

Ans. (a) e4t − 1, (b) 1 − cos t, (c) t − sin t.
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14. Do the previous problem by using the formula

L

[∫ t

0

f (τ) dτ

]

=
1
s
L [f (t)] .

15. Use the Heaviside expansion to solve the previous problem.

16. Use the Laplace transform to solve the following differential equations
(a) y′′ + 2y′ + y = 1, y (0) = 2, y′ (0) = −2,

(b) (b) y′′ + y = sin (3t) , y (0) = y′ (0) = 0.

Ans. (a) y (t) = 1 + (1 − t) e−t, (b) y (t) = 3
8 sin t − 1

8 sin 3t.

17. Use the Laplace transform to solve the following set of equations

dy

dt
= 2y − 3z,

dz

dt
= −2y + z,

y(0) = 8, z (0) = 3.

Ans. y (t) = 3e4t + 5e−t, z (t) = 5e−t − 2e4t.

18. Find the solution of the integrodifferential equation

y′ (t) −
∫ t

0

y (τ) cos (t − τ) dτ = 0, y (0) = 1.

Ans. y(t) = 1 + 1
2 t2.

19. Solve the following equations with the initial conditions at t = 0, both y
and all its derivatives are equal to zero.
(a) y′′ + 2y′ + y = Aδ (t − t0) ,
(b) y′′′′ − y = Aδ (t − t0) .

Ans. (a) y (t) = A (t − t0) e−(t−t0)u(t − t0),

(b) y (t) = 1
2A [sinh(t − t0) − sin (t − t0)] u(t − t0).

20. Consider a resistance R and an inductance L connected in series with a
voltage V (t). The equation governs the current is

L
di

dt
+ Ri = V (t).

Suppose i(0) = 0 and V (t) is a voltage impulse at t = t0 given by

V (t) = Aδ(t − t0).
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Find the current by the Laplace transform method.

Ans. i (t) =
A

L
e−R(t−t0)/Lu (t − t0) .

21. The damped harmonic oscillator is governed by

mx′′ + bx′ + kx = f(t); with x(0) = x′(0) = 0.

(a) Find the solution by convolution. (Express x(t) as an integral).
(b) If f(t) = Pδ(t − t0), find the solution by evaluating the convolution

integral.
(c) If b = 0, and f(t) = F0 sin ω0t where ω0 =

√

k/m, solve the problem
by Laplace transformation.

(d) If b = 0, and f(t) = F0u(t − t0) where u(t − t0) is the step function,
solve the problem.

Ans. (a) x (t) = 1
mω

∫ t

0
f (τ) e−α(t−τ) sinω (t − τ) dτ

where α = b
2m , ω2 = k

m −
(

b
2m

)2
,

(b) x (t) = P
mω e−α(t−t0) sin ω (t − t0) u (t − t0) ,

(c) x (t) = F0
2mω2

0
(sin ω0t − ω0t cos ω0t) ,

(d) x (t) = F0
mω2

0
[1 − cos ω0 (t − t0)] u (t − t0) .

22. Using the complex inversion integral, find the inverses of the following
Laplace transforms

(a) 1
(s+1)(s+3) , (b) 1

(s+2)2 , (c) 1
(s2+9)(s2+4) .

Ans. (a) 1
2 (e−t − e−3t), (b) t e−2t, (c) 1

30 (3 sin 2t − 2 sin 3t).





References

This bibliograph includes the references cited in the text and a few other books and
tables that might be useful.

1. M. Abramowitz, I.A. Stegun: Handbook of Mathematical Functions (Dover,
New York 1970)

2. G.B. Arfken, H.J. Weber: Mathematical Methods for Physicists, 5th edn.
(Academic Press, San Diego, 2001)

3. M. L. Boas: Mathematical Methods in the Physical Sciences, 3rd edn. (Wiley,
New York 2006)

4. W.E. Boyce, R.C. DiPrima: Elementary Differential Equations and Boundary
Value Problems, 4th edn. (Wiley, New York 1986)

5. T.C. Bradbury: Mathematical Methods with Applications to Problems in the
Physical Sciences (Wiley, New York 1984)

6. E. Butkov: Mathematical Physics (Addison-Wesley, Reading 1968)
7. F.W. Byron, Jr., R.W. Fuller: Mathematics of Classical and Quantum Physics

(Dover, New York 1992)
8. T.L. Chow: Mathematical Methods for Physicists: A Concise Introduction

(Cambridge University Press, Cambridge 2000)
9. R.V. Churchill: Operational Mathematics, 3rd edn. (McGraw-Hill, New York

1972)
10. H. Cohen: Mathematics for Scientists and Engineeers (Prentice-Hall, Englewood

Cliffs 1992)
11. R.E. Collins: Mathematical Methods for Physicists and Engineers (Reinhold,

New York 1968)
12. C.H. Edwards Jr., D.E. Penney: Differential Equations and Boundary Value

Problems (Prentice-Hall, Englewood Cliffs 1996)
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Acceleration vector, 36
Alternating Tensor, 172
Analog computation, 250
Angular frequency, 238
Angular velocity vector, 37
Arfken, G., 168
Axial vector, 186

Beats in forced vibration, 245
Bernoulli equation, 213
Bernoulli, James, 213
Binormal vector, 49
Bound vector, 4

Cartesian tensor, 169
Cauchy differential equation, 230
Cauchy’s integral formula, 323
Centripetal acceleration, 40, 47
Connectivity of space, 77
Conservative vector field, 89
Continuity equation, 69
Contraction, 176
Coordinate curves, 130
Coordinate surfaces, 130
Coriolis acceleration, 47
Coulomb damping

free vibration, 241
Coulomb gauge, 95
Coupled oscillation, 261
Coupled oscillators

normal modes, 261
Cross product, 13
Curl

curl curl identity, 82

fundamental theorem of, 74

in curvilinear coordinate systems, 135

in cylindrical coordinates, 119

in spherical coordinates, 127

of the gradient of a scalar function, 81

Curl of a vector, 70

Cylindrical coordinates, 113

curl, 119

divergence, 117

gradient, 116

infinitesimal elements, 120

Laplacian, 117

Damping

viscous damping in free vibration,
238

Damping

Coulomb damping in free vibration,
241

Delta function

as a divergence, 98

definition, 291

with complicated arguments, 292

Differential equation

Bernoulli equation, 213

Euler-Cauchy equation, 230

first-order

exact equation, 206

reducible to separable type, 204

separable variables, 203
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Differential equation (Continued)
force vibration

without damping, 244
forced bibration

with viscous damping, 247
homogeneous linear

constant coefficients, 216
homogeneous linear equation, 215
linear

first-order, 210
nonhomogeneous

variation of parameters, 232
nonhomogeneous linear

costant coefficients, 222
simultaneous equations

Cramer’s rule, 256
system of equations

reduction to a single equation, 254
system of simultaneous linear

equation, 254
with discontinuous forcing function,

297
Differential equation

Laplace transform method, 278
Differentiation in noninertial reference,

42
Dirac delta function, 291
Dirac, P.A.M., 291
Direct Product, 174
Dirichlet boundary condition, 106
Distance between two skew lines, 24
Divergence

fundamental theorem of, 67
in curvilinear coordinate systems, 134
in cylindrical coordinates, 117
in spherical coordinates, 126
of curl of a vector function, 82

Divergence of a vector, 61
Divergence theorem, 65

alternative forms, 86
Dot product, 6
Duhamel integral, 302
Dyad, 175
Dyadic, 175

Electrical circuit
complex solution

impedance, 252
LRC circuit, 249

Elliptical coordinates, 138
coordinate surfaces, 139
relation with rectangular coordinates,

141
Equation with separable variables, 202
Euler angles, 159
Euler differential equation, 230
Euler-Cauchy differential equation, 230
Exact differential equation, 205

Feshbach, Herman, 138
First-order differential equation, 201

Bernoulli equation, 213
exact equation, 205
integrating factor, 207
reducible to separable type, 204
separable variables, 202

First-order linear differential equation,
210

Flannery, Brian P., 265
Flux of a vector field, 62
Forced vibration

beats, 245
resonance, 246
with viscous damping, 247
without damping, 244

Free vector, 4
Free vibration, 236

Coulomb damping, 241
viscous damping

critical damping, 239
over damping, 239
under damping, 239

Frenet-Serrect formulas, 49
Frequency

angular frequency, 238
Frequency of simple harmonic motion,

238
Fundamental theorem of curls, 74

Gamma function, 312
Gauge transformation, 95
Gauss’ theorem, 65
General curvilinear coordinates, 130
Gradient

fundamental theorem of, 58
geometrical interpretation, 53
in curvilinear coordinate systems, 133
in cylindrical coordinates, 116
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in spherical coordinates, 125
of a scalar function, 51

Gradient operator, 51
Green’s lemma, 85
Green’s theorem, 85

symmetrical form, 85

Heaviside expansion, 284
Heaviside unit step function, 294
Heaviside, Oliver, 271
Helmholtz’s theorem, 101
Homogeneous differential equation

Euler-Cauchy equation, 232
Homogeneous linear differential

equation
fundamental theorem, 215
with constant coefficient, 216

Hooke’s Law
generalized, 193

Integrating factor, 207
Inverse Laplace transform, 278

by contour integration, 323
by partial fraction, 280
of periodic function, 311
using derivative of the transform, 286

Inverse Laplace transformation
Heaviside expansion, 284

Irrotational field, 70
Irrotational vector field, 89

Jacobi, Carl, 147
Jacobian for double integral, 145
Jacobian for multiple integral, 147
Jacobian matrix, 147

Kronecker Delta Tensor, 171
Kronecker tensor, 171

Lagrange identity, 16
Laplace transform

computer algebraic systems, 326
convolution, 302
convolution theorem, 304
definition, 271
derivative, 274
derivative of a transform, 276
differential equation with variable

coefficients, 319

evaluating integrals, 316
Gamma function, 312
integration of transforms, 307
inverse, 278
of delta function and its derivative,

294
of impulsive function, 291
of integrals, 307
s-shifting, 275
scaling, 308
solving differential equation, 288
solving integro-differential equation,

321
step function, 296
table of , 276

Laplace transform of periodic function,
309

Laplace transforms, 271
Laplace’s equation, 104
LaPlace, Pierre Simon, 271
Laplacian, 82

in curvilinear coordinate systems, 134
in cylindrical coordinates, 117
in spherical coordinates, 127

Law of cosines, 8
Law of sine, 16
Lee, T.D., 189
Levi-Civita Tensor, 172
Line integral

of a gradient vector, 56
Linear differential equation

first-order, 210
Linear differential equation

higher order, 214
Linear homogeneous differential

equation with constant coefficients
characteristic equation

complex conjugate roots, 218
distinct roots, 217
equal roots, 218

Maple, 265, 326
MathCad, 265, 326
Mathematica, 265
Mathews, P.C., 168
Matlab, 265, 326
McQuarrie, D.A., 168
Mechanical vibrations, 235
Mellin inversion, 324
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Moebius surface, 72
Moment of Inertia Tensor, 189
Morse, Philip M., 138
Multiple integrals, 144
Multiply connected region, 77
MuPAD, 265, 326

Neumann boundary condition, 106
Nonhomogeneous differential equation

variation of parameters, 232
Nonhomogeneous linear differential

equation
method of complex exponential, 229
with constant coefficients

method of undertermined coeffi-
cients, 222

Noninertial reference system
differentiation, 42

Numerical Methods, Software and
Analysis, 265

Numerical Recipes, 265

Ordinary differential equations, 201
Orientable surface, 72
Osculating plane, 49
Outer Product, 174

Partial fraction decomposition, 280
Path integral, 57
Period of oscillation, 237
Planes in space, 27
Poisson’s equation, 104
Polar vector, 185
Position vector, 23

transformation of, 156
Potential

vector, 92
Potential

scalar, 89
Press, William H., 265
Prolate Spheroidal coordinates, 144
Pseudoscalar, 187
Pseudotensor, 185
Pseudovector, 186
Purcell, E.M., 168

Reciprocal vectors, 22
Resonance in forced vibration, 246
Rice, R.J., 265

Rotation
Euler angles, 159
of coordinates, 156

Rotation matrix, 157
properties of , 162

Scalar, 3
definition

in terms of transformation
properties, 165

Scalar potential, 89
Scalar triple product, 17
Scientific WorkPlace, 265, 326
Shifting operation, 295
Simply connected region, 77
Simultaneous differential equations

as an eigenvalue problem, 257
Cramer’s rule, 255

Simultaneous linear differential
equations, 254

Singularities in the field, 69
Solenoidal field, 92
Spherical coordinates, 122

curl, 127
divergence, 126
gradient, 125
infinitesimal elements, 128
Laplacian, 127

Spherical polar coordinate system, 122
Step function

definition, 294
Stokes’ theorem, 71

alternative forms, 87
Straight lines, 23
Strain Tensor, 193
Stress Tensor, 190
Substitution Tensor, 172
Summation convention, 177

Tensor
cartesian, 169
contraction, 176
definition, 169
moment of inertia tensor, 189
outer product, 174
quotient rule, 182
rank , 170
Strain tensor, 193
stress tensor, 190
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summation convention, 177
symmetry properties, 183

Tensor components, 170
Tensor field, 179
Teukolsky, Saul A., 265
Theory of space curve, 47
Theory of vector field, 95
Torsion of the curve, 49
Transverse acceleration, 47

Uniqueness theorem, 105
Unit Tensor, 172
Unit vector, 5

Vector
addition, 5
cross product, 13
curl, 70
definition

in terms of transformation
properties, 165

divergence, 61
dot product, 6
multiplication by a scalar, 5

subtraction, 5
triple product, 17

Vector
components, 10
time derivative, 36

Vector calculus, 35
Vector equation, 158
Vector equation for lines, 23
Vector equation for planes, 23
Vector field, 35
Vector potential, 92
Vector triple product, 18
Vectors, 3

bound, 4
free, 4
product rules, 79
transformation properties, 156

Velocity vector, 36
Velocity vector field, 41
Vetterling, William T., 265
Viscous Damping

free vibration, 238

Wronskian, 233
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