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Preface

The idea of writing this digital book was born during discussions among a circle of
friends’' of the following questions:

(a) Why are physics and mathematics so unpopular at School?

(b) Why are there not more school leavers that are eager to study natural sciences
and technology?

(c) Why do the large majority of first year students dismiss the very good subject-
related and professional career opportunities in these professions?

Already, in the final years of school, mathematics and physics are considered to be
hard subjects. Universities grudgingly accept that the mathematical knowledge of
many school leavers is insufficient for taking up subject studies and needs to be
improved by bridging courses.

A shockingly large number of students already fail in the first semesters of univer-
sity. This will have serious consequences for the future welfare of our society, as we
urgently require a sufficient number of well qualified young professionals in scientific
and technical jobs to succeed the current generation of scientists and engineers.

It is easy to understand why the younger generation choose those soft sub jects at
university for which they feel better equipped and where they see better chances of
success. The fact that the monetary concerns of finding a job later are not considered
to be crucial in subject choice can actually be considered as a likeable attitude in
students.

Why is it that mathematics and physics are considered to be so difficult? In fact,
these should benefit from not being rote learning subjects: if one has understood a
specific physics or mathematics problem within its context, one can forget the small
details, since they can be reconstructed from the larger context.

It is obvious that, in our schools, one often does not manage to achieve this state
of understanding and insight into the mathematical structure and laws of nature; the
instruction therefore cannot provide the wonderful experience of having understood
something. Thus, physics can indeed become a cumbersome subject full of incompre-
hensible and disconnected formulas and tedious calculations, and mathematics an art
of computation that is build on memorization, and which increases in complexity from

1 Leading members of the Deutschen Physikalischen Gesellschaft (DPG; with 57000 members, the
largest society of its kind world wide), of the Wilhelm and Elve Heraeus Foundation (WEH-Stiftung),
and individual colleagues from the physics community, among them in particular Prof. Dr. Siegfried
Grossmann and Prof. Dr. Werner Martienssen.
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the times tables up to integration, while the fundamental ideas and deeper connections
never become clear to the learner.

As the PISA study showed in 2003, this dilemma has developed in recent decades
to such an extent that the level of mathematics and physics at German schools has
declined from an earlier assumed top position to a “measured” weak, mediocre level.
Similar declines in the standards of mathematics and physics have been reported in
other countries.

What is the reason for this problem? We think that one of the most important rea-
sons can be found in the subject-specific education of future teachers at the univer-
sities! Teacher training has often been treated as a stripped down appendix to the ed-
ucation of scientists. However, school teachers determine, in their respective subjects,
the quality of education and the interests of the next generation! Their very impor-
tant role in society as multiplicators has been neglected in relation to the education of
future researchers representing a given subject. The resulting lack of recognition for
students preparing to become teachers has certainly contributed to the lack of young
teachers available to fill open positions in physics and mathematics.

Two developments in the immediate past have worsened this situation and made it
clear that a turnaround is necessary:

« Educational policy has given, for good reason, more prominence to didactics and
pedagogical studies, but has limited the duration of studies very rigidly. This,
however, has meantthat not much time is left for studying the subject matter.

« Students experienced the Bologna process in Europe as a transformation of the

traditional freedom of academic study into stricter control, of a kind experienced
at the schools that they had just fled. Overloaded syllabuses, and nearly contin-
uous inspection of study progress with early crucial examinations led to early
selection and a high failure rate.
The attempt to serve “old wine in new skins”, that is, to cram the traditional de-
gree programs and the subject matter, which has grown due to scientific progress,
into a shorter bachelor degree, has led to partial chaos and a general unhappiness
with study conditions.

In 2005 Siegfried Grossman entered into discussions with the author with the conclu-
sion that it is a fundamental mistake to mix the subject-specific education of teachers
with that of researchers.? They demanded specially developed sui generis curricula for
studies preparing for the teaching professions, which are directed at the future teach-
ing job and that take into account the available time, which in Germany is limited by
trainee teachers having to study two different subjects.

2 S. Grossmann, D. Rdss: “Thesen zum Lehramisstudium Physik — Plidoyer fiir eine eigenstindige
Lehrerausbildung”, Physik Journal©® 2005 4 (2005) Nr. 10, page 49
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Understanding the subject and connections between different areas should be para-
mount, as opposed to detailed knowledge and specialized skills. In 2006, the DPG
produced a careful analysis and documentation and thus made sui generis studies
a general demand of colleagues involved in the DPG.

In order to realize this vision, it would be counterproductive to base our actions
in relation to schools and students on past conditions or wishful thinking. We need
to accept today’s conditions, as well as the technical possibilities, in a positive spirit.
The gymnasiums (German secondary schools that lead to the “Abitur”, their final
examination, allowing entrance to universities) should no longer be institutions for
the elite, but should, in future, lead half of all children to the “Abitur”. Access to a
high level education could be similarly improved in many other educational systems
around the world.

Our children and grandchildren are growing up in world with many stimulations
and diversions, but have media skills that neither their parents nor grandparents had,
for example their knowledge of, and playful dexterity with, the media and technolog-
ical devices. This digital book is the attempt to put the abovementioned studies on a
foundation that makes use of these skills and dexterity.

In this book, an important subset of the mathematical foundations is embedded in a
systematically evolving text and presented with the help of numerical simulations, and
is visualized in numerous ways. The PC takes care of the often tedious calculations.
Thus, the user can concentrate on understanding the subject matter, the context and
the algorithms used.

Since all the simulations are interactive and can, in many cases, also be used for sce-
narios that are totally different from those given, the students are thus given a quasi
“experimental” access to mathematics. We make use of the fact that a visual impres-
sion is more intensive and permanent than a heard or read one, and that experience
based on one’s own actions results in deeper understanding than the mere reception
of someone else’s knowledge. In addition, playfulness is given free range to visually
experience and grasp the intellectual stimulation and aesthetic beauty of mathematical
structures.

The book provides colleagues in physics and mathematics with a thesaurus of sim-
ulations for the development of their own curricula. In addition to textbooks, this
thesaurus gives physics students the possibility of a deepened understanding of fun-
damental mathematical notions and physical phenomena. Future teachers can, dur-
ing their own training, experience the potential of modern media for the realization
of interactive lessons in mathematics. Interested high school students can attempt a
light-hearted introduction to a higher level of mathematics; they will probably have
less trouble with the techniques used than some older people.

For the simulations, the package Easy Java Simulation (EJS) is used, which pro-
vides a simple fast-tracked introduction to the development of simulations in Java.
The files produced with EJS are very transparent, and can be easily changed and
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reused as building blocks for one’s own developments. The author considers EJS
to be a prime candidate to become the standard program for didactically oriented
simulations.

The authors of EJS, Francesco Esquembre and Wolfgang Christian, have allowed
me to supplement this text, which is primarily an introduction to mathematics, with
more than 2000 physics-based simulations, for which 1 owe them many thanks. Fran-
cesco Esquember has also assisted me personally in numerous ways with the cre-
ation of the mathematical simulations. I also thank Eugene Butikov for allowing me
to include his wonderful cosmological simulations.

I want to give many thanks to Siegfried Grossmann for the dedication and care
that he has applied to critically reading the text and simulations, and for the many
valuable hints, which have contributed to the final version. Ernst Dreisigacker, the
general manager of WEH-foundation, has supported me with the careful correction of
details and with lively discussions.

Over the last three years I have had many involved discussions with Werner Mar-
tienssen about a book with a similar goal, i.e. to assist in reforming and improving the
physics education of future teachers, and which is due to be published soon.> The idea
to write this digital introduction to mathematics came up during these discussions.

The staff members at De Gruyters have done a great job in the production of this
complicated publication. My special thanks go to Dr. von Friedeburg and to Ulrike
Swientek for their personal engagement and permanent encouragement. Katherine
Thomasset was a great partner in the final translation of the German original into
English.

I'wantto thank my wife Doris for the loving understanding with which she tolerated
my absentmindedness while this work was written. I promise improvement!

16 May 2011 Dieter Ross

3 *Physik im 21. Jahrhundert: Essays zum Stand der Physik”. Editors Werner Martienssen and Dieter
Rdss, Springer Berlin 2011



Contents

1

Introduction
1.1 Goal and structure of the digitalbook . . . .. ............
1.2 Directories. . . . . . . . i i i e e e e e e e e e e

1.3 Usage and technical conventions . . . . .. ..............
1.4 Example of a simulation: The Mébiushand . . . . . . . . ... ...

Physics and mathematics

2.1 Mathematics as the “Language of physics” . . . . .. ... ......
22 Physicsandcalculus . .. ... ... ... Lo
Numbers
31 Naturalnumbers. o . . v o v v s 5 wa o o 5w s s mow o 5 wwin
32 Wholenumbers . . . ... ... ... ... ...
3.3 Rationalnumbers . . . . . ... ... ... ...
34 Irrationalnumbers. . . . . . . . .. ...
34.1 Algebraicnumbers . . . ... .................

3.4.2 Transcendentalnumbers . . .. ................
3.43 m andthe quadrature of the circle, according to Archimedes .
3.5 Realnumbers . . . ... .. .. ... .. ... .. .. ... ...
36 Complexnumbers . . . . ... ... .. ...t
3.6.1 Representation as a pairof realnumbers . . . . . ... . ...
3.6.2 Normal representation with the “imaginary uniti” . ... ..
363 Complexplane . ... .....................
3.6.4 Representation in polar coordinates . . . ... ........
3.6.5 Simulation of complex addition and subtraction . . . . . ...
3.6.6 Simulation of complex multiplication and division . . . . ..

3.7 Extensionofarithmetic . . . . ... ..................

Sequences of numbers and series

4.1 Sequencesandseries . . ... .. ........ ...
4.1.1 Sequence and series of the natural numbers . . . . . ... ..
4.12 Geometricseries . . . . . . .. . ..

420 Lmits) o @ e b s e m s e m e s w8 e

43 Fibonaccisequence . . . . . . . ... ...

4.4 Complex sequencesand series . . . . . .. ... ... ... ... ..

44.1 Complex geometric sequence and series . . . . ... .....

10
10
11



Contents X
442 Complex exponential sequence and exponential series . . .. 44
4.5 Influence of limited accuracy of measurements and nonlinearity . . . 48
4.5.1 Numbers in mathematics and physics . . ... ........ 48
4.5.2 Real sequence with nonlinear creation law: Logistic sequence 50
4.53 Complex sequence with nonlinear creation law: Fractals . . . 56
5 Functions and their infinitesimal properties 61
S.1 Definitionof functions . . . . ... ... ... ... Lo L 61
5.2 Difference quotient and differential quotient . . . . . .. .. ... .. 62
5.3 Derivatives of a few fundamental functions . . . ... ... ... .. 63
5.3.1 Powersand polynomials . . .................. 63
5.3.2 Exponential function . . . ... .. ... ... . ..., .. 65
5.3.3 Trigonometric functions . . . ... .............. 65
5.3.4 Rules for the differentiation of combined functions . . . . . . 66
5.3.5 Derivatives of further fundamental functions . .. ... ... 66
5.4 Series expansion: the Taylorseries . . . .. .............. 67
5.4.1 Coefficients of the Taylorseries . ... ............ 67
5.4.2 Approximation formulas for simple functions . . . . . .. .. 71

5.4.3 Derivation of formulas and errors bounds for numerical
differentiation . . . . . ... ... . ... Lo Lo L. 72
5.4.4 Interactive visualization of Taylor expansions . . . . . .. .. 73
5.5 Graphical presentationof functions . . . . .. ... ... ....... 75
5.5.1 Functions of one to three variables . . . . . ... ....... 75
5.5.2  Functions of four variables: World line in the theory of relativity 78
5.53 General properties of functions y = f(x) . . ......... 80
5.5.4 Exoticfunctions . ... ... ......... . ....... 81
5.6 The limiting process for obtaining the differential quotient . . . . . . 82
5.7 Derivatives and differential equations . . . . ... ... ....... 84
5.8 Phasespacediagrams . . . . ... ... ... ... 85
59 Antiderivatives . . .. ... ... ... .. L oo 86
5.9.1 Definition of the antiderivative via its differential equation . . 86
5.9.2 Definite integral and initial value . . . . . ... ... ... .. 87
5.9.3 Integral aslimitofasum . . ... ... ............ 88
5.9.4 The definition of the Riemann integral . . . . . ... ... .. 90
59.5 Lebesgueintegral . . . . ... ................. 92
5.9.6 Rules for the analytical integration . . . . .. .. ....... 93
5.9.7 Numerical integration methods . . . . .. ... ... ..... 94
5.9.8 Error estimates for numerical integration . . ... .. .. .. 96
5.10 Series expansion (2): the Fourierseries . . . . .. ........... 98
5.10.1 Taylor series and Fourier series . . . .. ........... 98
5.102 Determination of the Fourier coefficients . . ... ... ... 99

5.10.3 Visualizing the calculation of coefficients and spectrum . . . . 103



Contents xi
5.10.4 Examples of Fourierexpansions . . . .. ........... 103
5.10.5 Complex Fourierseries . . . . ... .............. 105
5.10.6 Numerical solution of equations and iterative methods . . . . 106
6 Visualization of functions in the space of real numbers 108
6.1 Standard functions y = f(x). .. ... ...... .. ........ 108
6.2 Some functions y = f(x) that are important in physics . . . . . . .. 112
6.3 Standard functions of two variables z = f(x,y) ........... 115
64 Wavesinspace . .. ... .. ... ... 119
6.5 Parameter representation of surfaces: x = fx(p.q); y = f5(p.q);
2= f2(0.9) - 121
6.6 Parameter representation of curves and space paths: x = f,(t);
y=hH@xz=L0) . oo 123
7 Visualization of functions in the space of complex numbers 126
7.1 Conformalmapping . . . . .. .. ... ... ... ..., 126
7.2 Visualization of the complex power function . . . . . ... ... ... 127
7.3 Complex exponential function . ... ................. 131
7.4 Complex trigonometric functions: sine, cosine, tangent . . . . .. .. 133
7.4.1 Complexsine . . . ... ... ...t 134
742 Complexcosine. . .. ...........o.vuvunn.. 134
7.43 Complextangent . . . ... ..........0..00.0... 134
7.5 Complex logarithm . . .. ... .................... 136
8 Vectors 139
8.1 Vectors and operators as shorthand for n-tuples of numbers and
functions . . .. ... ... e 139
8.2 3D-visualizationof vectors . . . . .. ... ... .. ... ...... 140
8.3 Basic operationsof vectoralgebra . . . . ... ... ... ... ... 142
8.3.1 Multiplicationby aconstant . . . .. ... .......... 142
8.3.2 Addition and subtractionof vectors . . . ... .. ...... 143
8.3.3  Scalar product, inner product . . . ... ... ... ... ... 143
8.3.4 Vector product, outer product . . . .. ... ... ... ... 144
8.4 Visualization of the basic operations forvectors . . . . ... ... .. 145
8IS INE e 105 prr S e P PP b2 & 5 e sa o T e s 146
8.5.1 Scalar fields and vectorfields . . . ... ........... 146
8.5.2 Visualization possibilities for scalar and vector fields . . . . . 147
8.5.3 Basic formalism of vector analysis . . . . .. ... ...... 148
8.5.4 Potential fields of point sources as 3D surfaces . . ... ... 150
8.5.5 Potential fields of point sources as contour diagrams . . . . . 152
8.5.6 Planevectorfields . ...................... 154

8.5.7 3Dfielddueto pointcharges . . . . .. ............ 157



Contents xii

9

10

11

8.5.8 3D movement of a point charge in a homogeneous

electromagneticfield . . . .. ... .............. 157

Ordinary differential equations 161
9.1 General considerations . . . .. ... ..... .. .. ... ..., 161
9.2 Differential equations as generators of functions . . . . ... ... .. 162
9.3 Solution methods for ordinary differential equations . . . . . . .. .. 169
94 Numerical solution methods: initial value problem . . . . . ... ... 170
9.4.1 Explicit Eulermethod . .. .................. 172

942 Heunmethod . ... ...................... 174

943 Runge-Kuttamethod . . . ... ................ 175
9.4.4 Furtherdevelopments. . . . . ... .............. 177

9.5 Simulation of ordinary differential equations . . . . . . ... .. ... 177
9.5.1 Comparison of Euler, Heun and Runge-Kutta methods . . . . 177
9.5.2 First order differential equations . . . . ... ......... 179

9.5.3 Second order differential equations . . . ... ........ 183
9.5.4 Differential equations for oscillators and the gravity pendulum 187
9.5.5 Character of ordinary linear differential equations . . . . . . . 190

9.5.6 Chaotic solutions of coupled differential equations . . . . . . 190
Partial differential equations 196
10.1 Some important partial differential equations in physics . . . . . . .. 196
102 Simulation of the diffusion equation . . . . ... .. ......... 199
10.3 Simulation of the Schrédinger equation . . . . ... ... ...... 200
10.4 Simulation of the wave equation for a vibrating string . . . . . . . .. 201
Collection of physics simulations 204
11.1 Simulations via OSP/EJSprograms . . . . . ... .. ......... 204
11.2 A short introduction to EJS (Easy Java Simulation) . . ... ... .. 206
11.3 Published EJS simulations . . . ... ... .............. 213
11.3.1 Electrodynamics . . ...................... 214
11.3.2 Fieldsand potentials . . . ... ................ 214
11.3.3 Mathematics, differential equations . . . . ... ....... 214
11.34 Mechanics . . ......................... 217
1135 Newton . . . ... ... .. ... it 219
1136 Optics . . . . .. ... vnmmss smas sawss mmss 219
11.3.7 Oscillators and pendulums . . . . . ... ........... 220
11.3.8 Quantum mechanics . . ... ................. 222
11.3.9 Theoryofrelativity . . . . .. ................. 223
11.3.10Statistics . . . . . ... ... ... 223
11.3.11 Thermodynamics . . . . . . ... ... ... ... ... 224

I1L3.12Waves . . . . . . o csmm s 5 o 26 ot 8 5 b eim & 5 @ 5 6 224



Contents xiii

11.3.13Miscellaneous . . . .. ... ...... ... .. ....... 225
11.4 OSP Simulations that were notcreatedwith EJS . . . . . .. ... .. 228
11.4.1 List of OSP launcher packages . . . . .. ........... 229
11.5 EJS simulations packaged as launchers . . . . . .. ... ....... 233
11.6 Cosmological simulations by Eugene Butikov . . . ... ....... 234

12 Conclusion 239






Guide to simulation technique

Please use the deeply structured table of contents for the mathematical text, for the
e-book in addition the search function of the Acrobat Reader.

The following index is intended as a door opener to the simulation technique used
and to the mathematical simulations. In the e-book the specific pages can be directly
addressed with links.

The number of a simulation in the index corresponds to its order of appearance in
the text.

A - Simulations
I Why simulations? ........ ... vii
2 AUAIENCE . ...ttt i, vii
3 Method EJS . ..o i e e e vii
4 Introduction to EJS ... ... e 205
S EJS WindOW . . ..ottt e e e e 4
6 EJScontrol elements . .........uiiniiiiie ittt 4
7 EJS description Pages . ........vuiuiniitieiiiiii i 8
8 Admissible functions. ..... ..ot e 5

B - Prerequisites

O 1
2 Adobe Reader. ... .. ...ttt e e e 2
3 JavadRE . ... i 2

C - Directorles

1 Maindirectory tree. ... ....ooiuiiiiiiin ittt 3
2 Math simulations directory ...............cooiiiiiiiiiii i 3
3 Cosmology simulations ..............cooiiiiiiiiiiiiiiiiiiiiiiin., 235
D - Math
1 Moebiusband ... 7
2 Cardinal numbers. ...l 14
A Hlnonaaannacnnnasnaacasnaan0naaa6E6EA6a0RRANAAREAsAAGAAGAALAABAAGAARN 20
4 Complex addition. ..........ouiuiiiiiiiii i 31
S Complex subtraction.............c.oiiiiiiiiiiiiiiiiiiiii i 31

6 Complex multiplication ............ccoiuiuiiiiiiiiiii i, 32



Waegweiser zur Simulationstechnik xvi

7
8
9

10

11

12

13
14
15
16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Complex diViSION. . ......ouiuieiiiiiii it e 32
Mirroring & rotation . .......... ..ot 34
GEOMETICISETICS . . . ..t eie ettt etieiatataiiatetiaseaaieaiesiaseaeaacnsns 38
Complex gEOMELriC SEFIeS . ... ..vuinititiiiin i iiiieeaanass 43
Complex exponential SEries . .............vuiiiiiiiiiiiiiiiiiiineninn.. 45
|G 1Y 5 Ao aan 6 a0 AR RN A0 A A A A ACAA6 A0 A0AA00A06AA68 006000000 52
Logistic map athigh resolution....................coooiiiiiinii 53
Logisticmapisolated .................ooiiiiiiiiiiiii i 54
Fractal Mandelbrot .......... ... ..ottt 57
Fractal Mandelbrot-power................oiiiiiiiiiiiiiiiiiiii 58
| el )T R AA s AGARB A AARAGAR RS ABAARARAAAAGAABAASAARNAARAAGABARASAAAE 59
Derivationmachine . ............... ... i 70
Taylorseries 1. ... ..ottt ittt 73
Taylor SETEs 2. ..o v vttt i 74
Linear/log coordinates ...............coiiiiiiiiiiiiiiii i 76
Relativisticworld line.................ooooiiiiiiii 79
Limiting process of the derivative ...t 82
10\ 7 '\ 35600008000 80000006060 60060660008060086006000600006000000000 83
Phase Space . ........o.iuiuiiiiii i e 86
Limiting process of theintegral ..., 89
Riemann integral ....... ... ...t 91
Lebesgueintegral. . ..........ouiuiiiiuiiiiiiii ittt 92
Comparison of integration algorithms. ..................ooiiiiiinina, 95
Fourier seriesintegrals ...............oooi it 101
Fourier series coefficients ... 102
Fourier- approximation..............ooiiiiiiiiiiiiiiiiiiiiiiiiiaen 103
Iteration algorithms .. ....... ... ... i 107
Function plotter f(X)........ooiuiuiiiiiiiiiiiiiiiiiiii i 111
Some physics functions f(X)...... ..ot 114
Function plotter f(X, ¥).....ouiuiniiiiiiii ittt 116
Function plotter: 3D surface waves............c.covuiiiiieniniininen... 120
Function plotter of 3D parametric surfaces.....................coouue. 122
Function plotter of 3D parametric curves................ooeieeuenenen.. 124
COMPIEX POWET . ... e ettt ittt eii et iiaeeneaeenenns 129
Complex exponential ............covuiiiiiiiiiiiiiiiiiiiiiiiin 132
ComPIEX SINE ... oenttttiit ettt ittt 135
COmMPIEX COSINE .. .o vetttt ettt ettt ie i eaaenenn, 135
Complex ANZENE . .. ...vuttti ittt 136
Complex logarithm ........ .. ..ottt 138
Single vector 3D .. ... 141
Vectoralgebra. ..... ... ..ot 145



Wegweiser zur Simulationstechnik Xvii

48 Vector field of pointsourcesin 3D ..., 151
49 Contour field of point sources..............c.coviiiiiiiiiiiiiiiiiiiin, 153
50 Plane vectorfields. ... 156
51 3D vector fields of point SOUrCes . ...........cooviiiiiiniiniiiinininnn.. 158
52 Point source in homogeneous EM field ........................ ... ... 159
53 Differential equation numerical algorithms......................... ... 178
54 Differential equation comparison of algorithms......................... 179
55 Differential equation of firstorder.....................ooiiin 180
56 Differential equation of first order: phasespace......................... 181
57 Differential equation of second order..................... ...l 185
58 Differential equation of second order: oscillators........................ 188
59 Coupled nonlinear differential equations: chaotic double pendulum....... 191
60 Coupled nonlinear differential equations: chaotic reflections ............. 193
61 Coupled nonlinear differential equations: stable and unstable orbits....... 195
62 Partial differential equation: diffusion equation......................... 199
63 Partial differential equation: Schrodinger equation ...................... 200
64 Partial differential equation: Schrédingerequation 1l .................... 201
65 Partial differential equation: wave propagation.......................... 202

E - Physlcs-Simulations

1 Collection of physicssimulations ..., 212
2 Individual EJS-simulations ............ ...ttt 212
3 Older EJS-Simulations..............coooiiiiiiiiiiiiiiiiiiiiian, 226
4 Open Source Physics (OSP) ...ttt 227
5 Launcherpackages OSP................coiiiiiiiiiiiiiiiiiiiiiinn, 228
6 LauncherpackagesEJS ..., 232
7 Butikovcosmology . .........couiiiiiiiiiiii e 233

F — Developing simulations with EJS

O T 1 T ) P 2

2 SImMPIe EXEICISE . ..ottt 211
G-EJS

1 Easy Java programming .............o.iuiuinenneneninneneneneneannnn. 205

2 Console WiINAOW. . .....iutiiiiit ittt ittt aie e 206

3 Model WIndoW . ...ouiii it i e e e i e e 206

4 VieW WINAOW ..ottt ittt ettt ittt i i 209

S Elements Window . ........o.iiuiitiiiiiiiiiiiii ittt 210






1 Introduction

1.1 Goal and structure of the digital book

This book is available in two versions: a printed one and an electronic one. All users
can access the simulations at http://mathcsim.dcgruyter.de/jws_cn/. If you have cho-
sen the eBook, or are accessing it through your library, the PDF is linked to the simu-
lation files via the internet. The eBook also gives you, via the “supplemental material”
button, access to download the complete software package (> 700 MB) for offline-
use; the PDF in that package is linked to all simulations via hyperlinks. Buyers of the
print version who would like to download and install the software to their local system
can obtain access by contacting info@degruyter.com for registration. The directories
of Figures 1.1 and 1.2 correspond to the download solution. It illustrates selected
mathematical methods that are important for the presentation and the understanding
of the contexts of physics.

The foundations of these mathematical methods are introduced by example. The
programmability and computational power of the PC is used to visualize these meth-
ods, undertake calculations, change parameters, present connections interactively and
present computation processes via interactive simulation and animation, in an inter-
esting manner. In addition, playfulness is given free range. This presentation is also
intended to make the beauty and aesthetics of mathematics visible.

The material provided in this book allows the user to penetrate mathematical struc-
tures and tools in an experimental manner. In particular, topics have been chosen
that are difficult to imagine in an abstract manner, such as complex numbers, infinite
sequences, transitions to the limit, fields, solutions of differential equations and so on.

All individual simulations contain extensive descriptions and suggestions for exper-
iments. The user can always interactively engage with the simulations, and in many
cases pre-programmed functions can be edited or new ones can be introduced. After
some initial training in the EJS (Easy Java Simulation) program the user can open all
files, change them and develop them further.

With one exception, Java programs have been used that were either created from
scratch or taken from the freely available internet projects Open Source Physics (OSP)
and EJS.

Our own mathematical simulations were created with the EJS-program that has
been developed by Francisco Esquembre. Due to its graphical user interface, this pro-
gram immensely simplifies the development and modification of simulations in com-
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parison to “classical programming” in Java. This program and its documentation are
contained in this book, but are also freely available on the internet.

We will, however, abstain from explaining the mathematical and computational
techniques in systematic detail. The in-depth study of the mathematical and numerical
methods will be left to specialist textbooks*.

The pictures contained in the the pdf file mostly show screen shots of the respective
simulation. When in the caption of such a picture simulation is clicked at for the first
time a small context menu appears that asks, as a security measure against viruses,
whether this file should be opened. You may confirm this and mark a check box,
to avoid this dialog in future. The simulation will then be started immediately after
clicking on simulation.

Where the reader might wish to learn more about the topic, links to internet pages
have been inserted next to the text. They often point to Wikipedia-pages, from where
further navigation is easy. These links are resolved in the outlined text boxes on the
margin. All simulations can be accessed individually at http://mathcsim.degruyter.de/
jws_cn/. Buyers of the printed book can also ask for download of the complete file
package with interlinked text at info@degruyter.com for operation at their PC.

The appendix in Chapter 11 contains a short introduction to the EJS program and
an extensive collection of simulations from all areas of physics, which have mostly
been created using this tool. In order for these simulations to run on your computer,
the Java Runtime Environment (JRE) must be installed, which you can download
for free from the SUN-homepage in the latest version, using the link given at the
border.

It is advisable to follow the suggestion to install the JRE into \Programs\JAVA\.
For newer EJS simulations with 3D-Rendering you can download the Java 3D
program from the same page.

1.2 Directories
The book consists of 3 units:

* The continuous interlinked book text e-Exmat as a PDF file of around 30 MB.
* A secondary directory workspace containing a directory tree, which is ordered
according to topics and authors. It contains more than 2000 simulation files of
around 650 MB size, of which around 1000 are executable jar files that can be
activated from inside the text. The launcher files among them also link to many

4 Por example: Mathematischer Einfiihrungskurs fiir die Physik 9. Auflage, Siegfried Grossmann
(Teubner 2008) ISBN 3-519-33074-1; Open Source Physics — A User’s Guide With Examples
Wolfgang Christian (Pearson 2006) ISBN-10: 080537759X and ISBN-13: 9780805377590; Mathe-
matische Grundlagen fiir das Le hramtsstudium Physik, Franz Embacher (Vieweg + Teubner 2008),
ISBN 978-3-8348-0619-2.

5 jar files can be executed by themselves.
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Figure 1.1. Main directory tree.
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Figure 1.2. Directory tree of mathematical simulations.

secondary files for the individual simulations. The remainder are saved as xm!

files.®

* The EJS console for opening the xml files and working on the jar files, supple-
mented by documentation on the EJS program. The console does not have to be
installed. It is contained in the program and can be started directly.

6 xml is an abbreviation for Ex

ible Markup L

guage. For our purposes xml files are text files that

contain the instruction for the simulations. They cannot be executed by themselves, but are opened
from the EJS console, from where the corresponding jar file is easily created via assembling the
required Java library components. To view or directly change the xm! file one can, for example, open
it with notepad. An introduction to £JS is given in the appendix.
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The main directory e-ExMa, which can be copied to an arbitrary place on the hard
disk, contains the text file e-Roess_download.pdf the Ejs console and the directory
workspace, with all simulation files. In doc are some documentation files for EJS and
in bin, some configuration files and library files of the console. Workspace contains as
sub-directories export for all executable jar files and source for the xml files that are
meant to be opened from the console. In output, html files are saved while working
with the console.

Export is divided into RoessMa for the mathematical simulations of the ongoing
text, Butikov and compadre for the physics simulation files of the appendix. Other
in the directory source contains further physics simulations in xml- and jar-format.

It is advisable to create links for the pdf text file and the console on the screen
(in Windows: Desktop), in order to find these files quickly without searching for
them. Please take care not to change the deeper directory structures, otherwise some
hyperlinks will not work.

As long as the simulations are accessed from the text, you do not have worry about
the directory structure, since it is saved in the hyperlinks. However, as soon as you
want to edit a simulation from the console, you are asked for the location of the file.

The directories RoessMa in export and source are structured into directories in the
same way according to topics. This is illustrated in Figure 1.2 for the example of the
sub-directory Calculus with 6 individual simulations. The initially empty directory
Tests is intended to save the data for your own experiments. This setup prevents the
original files from being overwritten by mistake.

1.3 Usage and technical conventions

Most simulations are interactive. The user has several alternative ways of intervening,
although not necessarily in parallel.

Individual points or elements of the graphical presentation can be “pulled” with the
mouse and thus parameters can be changed. In this case, the mouse pointer changes
into a hand symbol when it is positioned on the element.

Numerical values of different parameters can be entered into number fields. How-
ever, this change only becomes active if the enter key has been pressed and the text
field, which turned yellow when entering text, becomes clear again. If the text field
turns red, a mistake with the input has occurred (often a comma has been used instead
of a full stop as decimal point; the correct format is, for example, 12.3 instead of 12,3).

From a list of options, given functions or parameter values can be selected with the
mouse.

With sliding controls, individual parameters can be changed continuously or in
steps.

Functions that are displayed in a text field can be changed or rewritten from scratch.
Again, the changed function is submitted with enter.
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When formulas are written in printed text, we often use short hand notation, by
unspoken convention:

« for items that are ambiguous and that can be misinterpreted as text, like ab for a
times b or sina for sin(a);

« foritems that can be misunderstood by software as formatting characters for text,
such as x2 for x*x or x"2;

» for those special characters that cannot be interpreted by programs, such as y for
% for derivatives with respect to time.

Forthe inputfornumerical programs such as EXCEL/VBA, Java, VBA or Mathematics
the notation must be unambiguous.

The fundamental rule is: all parts of the formula must be entered directly via the
keyboard without the use of special characters. Combined characters must be mapped
to an equivalent number of keyboard characters, in order for these to be correctly
identified by the program. (Example: y’ as a derivative combined from two keyboard
characters; a unique text like “derivative with respect to t” might also be interpreted
by a program). In particular, the following notations have to be noted:

¢ Addition and subtraction: a + b, a — b;
e Multiplication: a*b;

* Do not omit brackets: a*sin(b);

* Division:a/b; (a + b)/(c + d);

* Power: a”h;

« Exponential function: exp(a);

Many simulations use a parser to translate the formulas entered as text into Java
format. In this case, the following notation is permissible, which can also be used
recursively.

atanh(x) | ceil(x) | cos(x) cosh(x) exp(x) Sfrac(x)
Sloor(x) | int(x) In(x) log(x) random(x) | round(x)
ahs(x) acos(x) | acosh(x) asin(x) asinh(x) atanh(x)
sign(x) | sin(x) sinh(x) sqr(x) sqri(x) step(x)
tan(x) tanh(x) | atan2(x,y) | max(x,y) | min(x,y) | mod(x,y)

Here we have acos = arc cosine, cosh = hyperbolic cosine.

The important expression atan2(x,y) prevents the ambiguities of the arcran by
automatically yielding the correct angle in the second and third quadrant; here x and
y are the sides of the triangle involved and x is opposite to the angle.
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step(x) is a very interesting function in practice. It switches at x = 0 from 0 to
1. If one wants to superimpose the function f(x) to the function g(x) from x = x,
onwards, then this can be written as g(x) + f(x)*step(x — x1). For some simulations
the Math package is used together with Java for calculations. In this case, the functions
are prepended with Math as follows: Math.cos(x).

Further details about the functions and terminology used in Java can be found from
many sources on the internet, for example via searching for Java & Math. Just try the
link at the border.

1.4 Example of a simulation: The Mébius band

As an example of the possibilities of interactive simulations as they will be used in the
following chapters, Figure 1.3a shows a rotating Mdébius band in three dimensional
projection. Among the closed bands in space the Mobius band is characterized by the
fact that it makes half a twist, and thus, during one circulation, both sides are covered
by a traveller; it has “‘only one surface”. In the picture of the simulation, one sees the
formulas for the three spatial coordinates with the variables p and g, which contain
two parameters a and b, which can be changed with sliders. The slider for a changes
the number of half twists, while the other one changes the height of the band. If a
non-integer number is chosen for the number of half twists a, the band can be cut,
and rejoined with another number. If this number is even, one obtains normal bands
with 2 surfaces. It this number is odd, one obtains a Mobius band that has additional
twists.

The formulas for the three space coordinates, as well as the time dependent anima-
tion component, can be edited, i.e. they can be changed. Using the same simulation,
arbitrary animated surfaces in space can be visualized. The ability to edit opens a wide
training field for the advanced understanding of functions thatdescribe three and four
dimensional processes. Figure 1.3b shows two examples from the simulation of Fig-
ure 1.3a. On the left a simple band with a full twist, and on the right a Mobius band
with one and a half twists, were calculated.

The text pages of the simulation contain extensive descriptions, hints for many
alternatives of the 3D-projection, and suggestions for experiments. Figure 1.4 shows
the description window that appears next to the simulation when it is opened. In this
example, it contains 4 pages:

Introduction with a description of the simulation and its controls;
Visualization with hints about the possibilities of 3D projection;
Functions for discussions of the mathematical formalism;
Experiments with suggestions for experiments that make sense.
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Animated 3D strips o g X

fx(p.a.t)= fvp.qa.t= fz(p.a.t) =
cOS(P)*(1+a)(2*pi)*cos(al2*p-v*)  sin(p)™(1 +af(2*piy*cos(arz=p-v*Y) |b=qf(2*pH*sin(a2*p-vt)
half turns a = 1.00 height b = 1.00 speedv =05
r:O =——— CO
Mabius strip & other strips play reset | |show xyplane

Figure 13a. Simulation. The figure shows a simple Mdobius band in perspective 3D-
projection. The three function boxes contain the parameter representations for the space co-
ordinates. The variables p and ¢ vary in the range —x to 7. The parameter ¢ that determines
the number of twists (here 1/2) can be changed with a slider, as well as the parameter b that
controls the height of the band. The z-component can be periodically modulated for v > 0
with the angular velocity v (play button) in order to create the impression of a rotating band.
Using a check box, the xy-symmetry plane can be shown or suppressed.
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Figure 1.3b. Examples from the simulation in Figure 1.3a; on the left a simple loop with
a = 1, on the right, a Mdbius band with an additional twist (¢ = 1.5).

[Bocwcrptonor e cre coener S R

Description ‘Tllsudizdiion Functions | Experanents | Authors |

Visualization Alternatives

Rotation: Markany point within the tripod using the mouse pointer and draw (while
the left mouse key stays pressed).

Shift: Draw while the Strgkey is pressad.

Zoom: Draus while the Shift key ic pressed.
Correction: Toreturnto the default projection activate Reset. |

Show coordinates: Mark a point on the surface while pressing the Al¢- key. When
you draw, a cutting plane will pass through the surface, Diepending on orientation, |
different cuts can be evaluated.

Camera- Inspector: Press the right mouse key. A context menu will appear. Choos2 |||
Blements option/ drawing 3D panel/ Camera. The Camera Inspector will appear. It |||
will stay wisibla until it is deactivated. Tt offers the following options:

Perspective: distantlinesappear shorter than nearones

No perspective: no perspective distortion

Planar xy oder yz oder yx :one looks onto the respective planes
Other options: Degree and angle of perspective can be d2fined.

Optimizing Parameters. The spatial impression can be optimized by adjusting
parareters. The optimum will be different for different projections. ‘

Thecontext manualso offers programs for producing a picture or a video.

Figure 1.4. Description window of the simulation. Here it contains 4 pages, of which the
visualization page is opened. Please test the possibilities after opening the simulation!




1.4 Example of a simulation: The Mdbius band 9

In the figure, the page for Visualization is opened. It describes easy possibilities
for different three dimensional presentations:

« Rotation;

¢ Translation;

e Zoom;

* With or without perspective distortion;
* Projections along one of the three axes.

You are encouraged to use this example to try the different means of experimentation
before you start with the next chapter.



2 Physics and mathematics

2.1 Mathematics as the “Language of physics”

Physics (Greek guotki, “the natural”) researches the fundamental interactions in na-
ture. Already, the natural philosophers of antiquity thought at a deep level about the
phenomena in the cosmos as well as in nature as it surrounds us, and their methodology
was mostly of a qualitative, descriptive and often speculative nature.

The great progress of physics in modern times is due to capturing the natural
phenomena by measuring them quantitatively, and comparing the results of mea-
surements with assumed relationships (hypotheses). This process allows, via the in-
teraction of experiments and hypotheses, the evolutionary development of original
hypotheses to physical “theories” that are applicable in ever larger generality.

Thus theories are well-tested hypotheses for relationships in nature, which are for-
mulated in the language of mathematics. It is an initially startling result of the in-
teraction over hundreds of years between experimental and theoretical physics, that
a plethora of individual phenomena can be described in terms of standard theories,
whose mathematical formulation only require a few symbols or lines of symbols.
We list here the Schridinger equation as the fundamental equation of quantum me-
chanics, Maxwell’s equations of electrodynamics and the Navier-Stokes equation of
hydrodynamics.

These fundamental equations can become numerically difficult or sometimes even
close to unsolvable when applied to specific cases within the huge variety of phenom-
ena embraced by the original theoretical model.

However, a large number of phenomena of practical importance can be described by
very simple mathematical models, which are also easily applied to individual cases.
These include nearly all those phenomena that are important for engineering and its
effect on our daily life.

Using a suitable level of abstraction of the theories, one can model an ever larger
variety of phenomena in a single theory — it is for a reason that the world formula,
from which all theories of physics can be derived, is the ever desired, but not attained
goal of theoreticians.

It is an unanswered question of epistemology whether “the book of the universe
is written in the language of mathematics”, as expressed by Galileo Galilei’; that is,
whether physical theories describe the reality of nature, or whether, as formulated
by the positivists among the natural scientists, as long as the model has never been

7 Il Suggiatore 1623, paragraph 25
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falsified by detrimental experimental evidence. The first school of thought includes
the natural philosophers of antiquity as well as Einstein and Schrédinger, among the
modern scientists; the second school of thought is characterized by names such as
Born, Bohr and Heisenberg.

In any case, mathematics provides physics with a powerful tool.# On the one hand,
the corresponding methods were developed directly when studying physical ques-
tions, as was the case with calculus, developed by Isaac Newton (1663-1727) and
Gottfried Wilhelm Leibniz (1664-1716) while studying the movements of planets. On
the other hand physics, when studying new questions, sometimes makes use of meth-
ods that have been developed in the frame of pure mathematical and logical reflec-
tions, such as in the case of the general theory of relativity, which made use of the non-
Euclidean geometry developed by Georg Friedrich Bernhard Riemann (1826-1866).

The strict formulation of mathematical relationships in the highly specialized lan-
guage of mathematics appeals to the expert with its convincing stringency, trans-
parency and terseness. To the beginner, however, this kind of presentation may seem
confusing and too complex. In this text we will choose, as far as possible, a concrete
description, and otherwise refer to specialized textbooks and internet links.

2.2 Physics and calculus

The State of nature at a given point in time could be fixed via a photographic snapshot
and described with words. In a mathematical and physical picture, this would cor-
respond to a description of nature via formulas in which time does not appear. Thus,
already, many states, for example equilibria, can be described via simple mathematical
equations.

In addition, physics examines and describes changes in nature,” and, as a rule, these
changes happen as functions of time. This enables theories to describe the develop-
ment of a current state from its conditions at an earlier point in time. More important
is the ability to predict a future state from the knowledge of the current state; this
ability empowers the techniques based on it to achieve a desired, future effect.

For the deeper understanding and practical application of physics, the knowledge of
differential calculus is necessary, since the changes (derivatives) and the sum of their
effects (integrals) have to be considered. Without this understanding, physics becomes
a collection of more or less disconnected formulas, which are only applicable to very
limited cases. Thus the calculation of results may become a nuisance for school stu-
dents, and this blocks their insight into the simplicity and beauty of the relationships
between mathematics, physics and technology.

8 Immanuel Kant V, 14 (Akademie-Verlag edition) says: in every kind of philosophy of nature, only so
much science can be found, as there is mathematics to be found in it.

9 Immanuel Kant AA XXII, 134 (Akademie-Verlag edition): Physics ix the science of moving forces,
that are inherently connected to matter.
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But the mathematical operations and methods that are needed for a basic under-
standing of the subject are not really difficult. Using suitable visualizations, the no-
tions used can be easily grasped. Using a computer for calculation and for creating
the visualization media (diagrams, animations, simulations) it becomes easy to to put
this into practice.



3 Numbers

We first want to remind the reader of the different kinds of numbers that are used
in arithmetic and to visualize their relationships with the elementary arithmetic op-
erations. Here the number is the operand on which a certain operation is applied
(arithmetic operations such as +, —, *, /, *, =, >, <, and logical operations such as
and, or, not, if-then, otherwise, ...).

The definitions of numbers and arithmetic operations are, up to the complex num-
bers, synchronized in such a way that for any number z, the following fundamental
rules of arithmetic operations apply. Here ( ) means that the operation in brackets is
executed first.

ZI+22 =22+ 21 (Commutative law of addition)
Z1-23 =23-2; (Commutative law of multiplication)
(21 +22) + 23 = 21 + (22 + z3) (Associative law of addition)
(21-22)-23 =21 - (22 - 23) (Associative law of multiplication)

(21 + 22) - 23 = 2123 + 2323 (Distributive Law of multiplication)
Consequence: It does not matter in which sequence the operations are executed.

Shorthand notation in the text: z,z, = 2y - 25; 22 = 22; 23 = 222(= 2"3);....

The following sections will introduce different families of numbers in consecution of
their historical development. The requirement to apply certain operations, which had
been introduced for a certain kind of number, without restrictions, led to successive
extensions of the usual concepts of numbers.

3.1 Natural numbers

The natural numbersare 1,2,3,4,5, ... inthe set of natural numbers, which in math-
ematics is referred to as N.!" Additions can be executed without limit as well as
multiplications, which are to be understood as multiple additions: 3-4 = 4 + 4 + 4.

In using number notation, one differentiates between ordinal numbers (the third — in
an imagined sequence) and cardinal numbers (three pieces). Toddlers of 3—4 years of -
ten know the ordinal numbers up to 10 and they can also execute simple additions via
counting. The more abstract notion of the cardinal number children mostly understand
only when they start school; in addition, evenfor the adult, the number of units that can

10 Historically, special symbols have been introduced for the number sets (see link in the margin).
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3L Perception of cardinal numbers | =10 x|

steps per second = 2

% ., |Imadmum=5_|{¥]show number

Figure 3.1. Simulation. Spontaneous grasping of the number of elements in a set (cardinal
numbers) A random number generator produces red points, whose number lies between 1
and the maximum number in the number field (in the figure the maximum number is 5, 5 are
shown). The sets change with a frequency that can be adjusted with the slider from 1 to 10 per
second.

be grasped at a glance is quite limited (to around 5-7, which is also what intelligent
animals are capable of); for fast calculations with cardinal numbers, the relationship
is memorized or simplified in our thoughts (5+7 = 5+5+2 = 10+ 2 = 12). If one
realizes this fact, one gains a deeper understanding of the difficulty that children have
with learning the elementary rules of arithmetic. Simply assuming the memorized
routines, which are present in an educated adult, leads to severely underestimating the
natural hurdles of understanding that the children have to overcome when they learn
arithmetic.

The simulation in Figure 3.1 visualizes the sharp threshold that nature imposes for
spontaneously grasping the number of elements of a set. In this simulation, points
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are shown in a random arrangement that can be spontaneously grasped as a group.
The number changes with a frequency that can be specified between 1 and a max-
imum number. You can establish experimentally where your own grasping thresh-
old lies. The description pages of the simulation contain further details and hints for
experiments.

Even numbers are a multiple of the number 2; a prime number cannot be decom-
posed into a product of natural numbers, excluding 1.

The lower limit of the natural numbers is the unity 1. This number had a close to
mystical meaning for number theoreticians of antiquity, as the symbol for the unity of
the computable and the cosmos. It also has a special meaning in modern arithmetic as
that number which, when multiplied with another number, produces the same number
again.

There is, however, no upper limit of the natural numbers: for each number there
exists an even larger number. As a token for this boundlessness, the notion of infinity
developed, with the symbol oo, which does not represent a number in the usual sense.

Already, the preplatonic natural philosophers (Plato himself lived from 427-347 BC)
worked on the question of the infinite divisibility of matter (If one divides a sand grain
infinitely often, is it then still sand?) and time (if one adds to a given time interval
infinitely often half of itself, will that take infinitely long?)

Zenon of Elea (490430 BC) showed in his astute paradoxes, Achilles and the tor-
toise and the arrows,'! that the ideas of movement and number theory at the time were
in contradiction to each other.

Subtraction is the logical inversion of addition: for natural numbers it is only
permissible if the number to subtract is smaller than the original number by at least 1.

Division is the natural inversion of multiplication. For natural numbers it is permis-
sible if the dividend is an integer multiple of the divisor— 6 : 2 = 3.

3.2 Whole numbers

In order for the operation of subtraction to be always possible, we have the extend the
natural numbers by zero (the “neutral” element of addition) and the negative numbers
to the set Z of whole numbers.

The introduction of the zero as a number was, historically, not a trivial step. Zero
is connected with the notion of nothing, and for the pre-socratic natural philosophers

11 Achilles and the tortoise: during a footrace, Achilles allows the tortoise a head start. When he has
reached its starting point, the tortoise has already crawled a certain distance further. When he reaches
this point, the tortoise has again had a head start, and so on. Thus Achilles cannot reach the tortoise.
(Solution: Convergence of the geometric series, which had not been recognized at the time).

The flying arrow: at every instant, the arrow is situated at a certain point, which is fixed in space;
therefore, the arrow is at rest in every instant. Therefore the arrow cannot move. (Solution: In every
instant, the arrow does not have only a location but also a velocity; this differential concept was not
recognized.)
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it was a fundamental question, whether nothing (the emptiness, something that is not)
can exist or not.

Parmenides of Elea(around 600 BC) taughtthat nothing cannot exist, but that every
space has to filled by something, which leads to the paradoxical logical consequence
that movement is impossible and everything is unchangeable. The atomicists Leukipp
(5th century BC) and Democrit (460-371 BC) taught, however, that the world consists
mostly of nothing (today we would call it a vacuum), in which objects that consist of
material atoms can move.

In the 3rd century BC, the zero was imported from the east in connection with the
campaigns of Alexander the Great as a sign indicating the position in the decimal
number system (as today in 10,100). The concept of zero as a whole number was only
reached in the 17th century.

The set of whole numbers contains the natural numbers as a subset

Whole numbers: ...,-3,-2,-1,0,1,2,3,....

Multiplication is admissible without exception if one defines: (—=1) - 1 = —1;
(-1 (-1)=1land (0)-(1)=0.

In the domain of whole numbers, the symbol for positive infinity must be necessar-
ily supplemented by negative infinity —oc; both numbers are not numbers in the usual
sense.

Division can be applied for whole numbers, as for natural numbers, if the divi-
sor is contained as a factor in the dividend, i.e. if the division works out, as for
-30:5=—6.

Division by zero is not a well defined inversion of multiplication:

forintegersa. b, c
b

b

- = iquely leads toa = —

" ¢ uniquely leads to a -
0

for; =0 a can be any number.

and is therefore excluded. The expressions 0 - oo, 32 and % are not defined.

Whole numbers are visualized as a discrete ladder on the number line (see Fig-
ure 3.2). Arithmetic operations amount to jumping back and forth on this ladder —
in the same way that toddlers indeed make calculations with natural numbers by
counting.

5 -4 -3 -2 -1 0 +« +2+3 +4 +5

1 1 1 1 [ 1 1 1 1 1 L 1 1 1 1 1
T T T T T T T T T T T T T T T T

Figure 3.2. Number line with whole numbers.
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3.3 Rational numbers

In order for division to be admissible in all cases, except for division by zero, the
whole numbers have to supplemented by the “broken numbers” to form the set of
rational numbers Q. Rational numbers contain the whole numbers as a subset:

. whole number
rational number = whole number : whole number = —————
whole number

3
Examples: —5; _5; 1175/1176; 3; 1,1357; 5,28666666...; ....

When written as a decimal number, rational numbers are decimal numbers with a
remainder that has a finite length or with periodically repeating digits.

There is no largest rational number.

It is clear that whole numbers are rare, special cases of rational numbers. Between
two subsequent whole numbers, there are infinitely many rational numbers.

When dealing with the set of rational numbers, division by zero is still not a well
defined inversion of multiplication and remains formally excluded. If one starts from
the concept of zero as the limit of a sequence of nearly infinitely small positive or
negative rational numbers, then division by zero would be equivalent to the definition
of nearly infinite positive or negative numbers. In this symbolic sense, division by
zero can be associated with a sequence that has a limit of +o00.

Taking the power of a number is defined for rational numbers as repeated multipli-
cation, with the whole numbers n as exponent, by:

A"=A-A-A-A n times
A=1;, A" =—

Taking the nth root is the logical inversion of taking the power. In the domain of
rational numbers, root-taking is possible:

« if the exponent n of the rootis odd;

e or when foreven root exponents the original number (the radicand, the number
under the root sign) is positive;

* and if in both cases the operation results in a rational number, which is only the
case for rare radicands, that can be reduced to fractions of powers, for example

[625 _ 25
V6.25= /150 = 15 =25
3.4 Irrational numbers
If an operation applied to a rational number (e.g. root-taking, the limit of an infinite

sequence of rational numbers) leads to a number that is not a rational number, i.e. if
it cannot be written as a ratio of 2 integers that is representable as a finite or periodic
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decimal fraction, then this number is defined to be an irrational number. Here the
term irrational is given for historical reasons, as a demarcation from the rational
(numbers that are ratios) and has no secondary meaning of irrational = unreasonable
or unthinkable.

If one applies the operations mentioned above to irrational numbers, then this does
not lead to a more generalized number.

Rational numbers constitute a countable set — they can be ordered in such a way
that they constitute a countable sequence. The irrational numbers, on the other hand,
do not constitute a countable set. In this sense, there are more irrational than rational
numbers.

3.4.1 Algebraic numbers

The need to introduce numbers that are not rational was recognized by the Pythagore-
ans (Pythagoras, 570-510 BC, mathematician and natural philosopher in the Greek
colony Metapont in southern Italy) during their reflections on the calculation of right
triangles with a hypotenuse ¢ and legs a and b.

In the domain of integers, there are only a few solutions to a right triangle, the
Pythagorean triples, which are often used in homework problems: (3.4, 5;6, 8, 10;
5,12,13; 8,15,17; 7,24,25; 9, 12, 15; 10, 24, 26; etc.)

Theorem of Pythagoras: a+b?=c?>c=+a2+h?
Example of an integer solution: ¢ = v/32+42=25=5

3 2
Example of a rational solution: c= ‘/ (5) +22 = V? = %

Example of an irrational solution: ¢ = V12 + 12 = +/2

Numbers that are generally obtained as the solutions of polynomial equations with
rational coefficients, i.e. that are their roots, are designated as algebraic numbers.
They include both rational and irrational numbers.

3.4.2 Transcendental numbers

Irrational numbers that are not a root of a polynomial with rational coefficients are
called transcendental numbers.

Here transcendental simply means going beyond the rational numbers and does not
have any mystical connotation whatsoever.
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The most common transcendental numbers are the circle number 7 and the Euler
number e (written in blocks of five in the following)

7 = 3.1415926535 89793 23846 26433 8327950288 41971 69399 37510. ..
e = 2.71828 18284 59045 23536 02874 71352 66249 77572 47093 69995 ... ..

It is a characteristic feature of transcendental numbers that they are limits of in-
finitely often repeated operations (additions, multiplications, formations of continued
fractions, root taking, etc.; see below).

3.4.3 = and the quadrature of the circle, according to
Archimedes

Using the example of the number , it will be demonstrated how this transcendental
number of high practical importance can be obtained as the limit of a sequence. We
follow the famous train of thought originally devised by Archimedes.

Using the theorem of Pythagoras and the formula for the area of a triangles with
baseline a and height h, i.e. F = %ah the mathematicians and surveyors of Egypt
and antiquity were able to reduce the area of an arbitrary surface that is bounded
by straight lines to that of a square of the same area, whose length is given by a
square root, i.e., generally an irrational number; even today the unit of surface area
for arbitrarily bounded surfaces is still the “square meter”.

The “quadrature of the circle”, as a paradigm for calculating the area of a surface
that is bounded by curved lines, however, remained unsolved for a long time.

The famous inventor and mathematician Archimedes (287-221 BC), who lived
in the Greek colony Syracuse in Sicily, found a royal road to this end, which was
only further developed nearly 2000 years later, and which represents the beginning of
working with convergent, infinite sequences and with limits.

His method, which starts with a polygon that is inscribed or circumscribed to a
circle (Figure 3.3), will be demonstrated in brief due to its historical significance.
He uses the theorem of Pythagoras, the formula for the area of a right triangle, and
symmetry considerations. From the above it follows that the baselines of the triangles
constituting the polygons with n corners are given as a simple function of n when
doubling n. The following diagrams visualize the procedure. The first regular polygon,
a yellow square, is circumscribed around the circle filled in gray; a second colorless
square is inscribed in the circle.

The inscribed polygon has a smaller area then the circumscribed one; The true
value for the circle lies between the two. It is immediately evident that halving the
angle of division to obtain an octagon, which is blue filled, will make the differences
smaller, and that this goes on with further doubling of N (a polygon with 16 corners
also is shown in red). The sketch shows the first steps of the calculation for inscribed
polygons with 2V corners, with N > 2.
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Figure 3.3. Simulation. Approximation of the circle via inscribed and circumscribed poly-
gons. The simulation shows the approximations from the square to the polygon with 4096
comers.

The square, with which the calculation starts, consists of 4 equal right triangles,
whose cathetuses for the unit circle under consideration have length 1. According to
the theorem of Pythagoras, the hypotenuse of each triangle has the length V2. The
height h4 is obtained via the theorem of Pythagoras using s4 /2 and the hypotenuse 1
of the lower triangle. The distance z4 is the difference between the radius 1 and the
triangle height h4. The transition to the octagon again proceeds with the theorem of
Pythagoras via s4/2 and z4. As the following calculation shows, this algorithm can
be repeated in the same way in factors of 2 towards a subdivision of the surface of the
circle into ever smaller triangles. Thus this procedure results in recursion formulas,
with which one can obtain the results of the N th step from those of the (N — 1)st step.
We give the results for the inscribed polygon with n sides.

radiusr = 1; indexn =2V, with N =2.3,4,5,...

sg=VI+1=v2 h4=‘/1—(‘%‘)2; Z4=I—h4=l—‘/1—(‘f21)2
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recursive formula

h

==

circumference U, surface F: U;,

snhy
nINON

F: >

NET)
2

SN—-1 4
2

_2 2-(“”" 2.
2 2

In the following, the equations have been written out starting from the inscribed square
n = 4 to the polygon with n = 64 corners. One realizes the iterated characters of the
repeated root-taking of the side length +/2 of the triangles making up the inscribed

square.
S4=\/i h4=%\/§
4
Fa = 52 =2,0000
s8 = 2—4/5 hs=%
8
Fg=z~/§=2,8284
/ = 1
s16 = \2— 2+ /2 h16—§
Fns=176 2—+/2=3,0614
1
s32=\/2—\/2+\/2+ﬁ hs2 = 5|2+
F32=72\/2—\/2+~/§=3,1214
1
s64=J2—‘/2+ 24+ Y2+ 2 h64=§\12+

64/ /
Feu = |2~ 24 V2 + /2 = 3,1365.

These formulas are fascinating in their aesthetic symmetry!

\/2+ 2+ V2442
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“Quadrature of the circle”
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Figure 3.4. Approximate values for the area of the circle and its circumference resulting from
the “quadrature of the circle” according to Archimedes. The abscissa shows the number of
comers of the inscribed or circumscribed polygons. The circular points in the upper region of
the ordinate are the approximations for the circumference, those in the lower region are those
for the surface of the unit circle. The lines in the logarithmic scale show the difference in red
for the approximation from the inside, green from the outside and blue for the average.

With a simple spreadsheet, this calculation that was rather tedious for Archimedes
can be done quite quickly up to a high number of corners.

Then one sees how quickly the surface areas of the inscribed and circumscribed
polygon approximate the number & (3.14159...) and the corresponding circumfer-
ence approximates 2. In Figure 3.4 they are shown for the square up to the polygon
with 8192 corners (corresponding to N =2 to N = 13). In addition, the respective dif -
ferences of the surface area from m are given (logarithmic right-hand scale). Already
for the 10th approximation (polygon with 1024 corners) the difference is only 10~5.

Archimedes himself started with a hexagon and took the calculation up to a poly-
gon with 92 corners and obtained his value for the circular number of 3.141635 (the
symbol x for this number was only introduced in the 18th century);, we suggest that
you retrace the calculation of Archimedes.

3.5 Real numbers

Rational and irrational numbers together constitute the set of real numbers R. They
fill the number line densely (every arbitrarily small neighborhood of a real number on
the number line contains at least another real number).
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Figure 3.5. Number line with two transcendental irrational numbers.

Taking the power and root-taking with rational exponents is possible in the domain
of real numbers, if the root exponent is odd (J=1 = -1 J1 = 1) or, for even
exponents, if the argument of the root is positive via the following definitions:

. n .
rational number ¢ = —; n,m integer
m
— for real numbers x: x? = x™/™ = ¥/x" = (7/x)".

The real numbers constitute the largest possible ordered set of numbers. For two real
numbers a and b, it is clear whether a is larger than, equal to, or smaller than b:

a>bh or a=bh or a<hbh.

For applications in physics, the distinction between rational, irrational and transcen-
dental numbers plays an important role, as their symbols express relationships in a
formula that has been derived via a model. If the number & appears, circular symme-
try or periodicity plays a role, while the appearance of e points to a problem involving
growth or damping.

As soon as computations take place, irrational numbers are always approximated
with finite accuracy via rational numbers. The formally excluded division by zero in
the domain of real numbers loses its exceptional position, since it will always be the
division by a very small, but finite real number.

The arithmetic operations can be interpreted as transformations or mappings on
the number line. Addition and subtraction are translations where all numbers are
shifted by the absolute value of the summand. Multiplication and division by n lead
to stretching or compression of the number line by a factor n.

Divisionbya > 1 corresponds to a transformation of the range of numbers outside
of the dividend to the range of numbers between the dividend and zero.

For the example 1/a, a = 1 is mapped to itself, numbers a > 1 are mapped to the
range O to 1, the closer to zero, the larger a is. Numbers 0 < a < 1 are mapped to
the domain larger than 1 and the further away from 1, the closer a is to zero.

3.6 Complex numbers

3.6.1 Representation as a pair of real numbers

The evennumberedroot of a negative radicand cannot be represented in the domain of
real numbers, since for all real numbers x we always have x2? > 0. For a polynomial of
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second degree with real numbers x, the generally known solution only yields numbers
when the radicand is larger or equal to zero:

) . —b £ ¥b? —4ac
ax® + bx + ¢ = 0 has the two solutions x1,2 = — a3y

b2 > 4ac — real number as solution
b? < 4ac — no solution in the domain of the real numbers
in the simplest case x? + ¢ = 0 we would have x = +/—¢;
then there exists for positive c, i.e. ¢ > 0,
no solution in the domain of the real numbers.
To allow a solution for all ¢, including the positive ones, one extends the one-dimen-
sional space to two-dimensional number pairs of real numbers, thatare called complex
numbers C, and for which a special multiplication rule is agreed.
Complex numbers were first used in the 16th century in connection with roots of
negative radicands by the mathematicians Girolamo Gardano and Raffaele Bombelli.
Complex numbers satisfy the following rules:
General definition of the complex number z as an ordered pair of numbers
z = (a,b) a,b real numbers
addition rule 21 + 23 = (@1.h1) + (a2.h2) = (a1 + a2, b1 + b3)
multiplication rule  zy - z2 = (a1.h1) - (a2. b2) = (a1a2 — b1h2.a1b2 + a2by)
conjugate complex number definition: Z = (a, —b);
this leads to 2Z = (a,b) - (a, —b) = (a® + b2,0) = a® + b?
71 _ (a1.b1) _ (a1.h1) - (a2.—h3)

division: — = =
z2  (az.h2)  (a2.h2)-(az.—h2)
_ @192 + biba.—arby +ahy) _ 2172
aZ + b2 12573

The main innovation relative to the “one-dimensional” real numbers is the multiplica-
tion rule. For numbers whose second component vanishes, the familiar multiplication
rule for real numbers results; when their first components are zero, the product of 2
complex numbers is:

(a1.0)(a2.0) = aja; = sign(a1) sign(az)|a1|lazl:
with sign(a)): algebraic sign of a;

lai]: absolute value of a;.
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For the product of two numbers, whose first components vanish, one obtains from the
definition

(0,51)(0,b2) = —by by = —sign(hy) sign(h2)|by] |b2|-

The product is in both cases a one-dimensional, real number. The second case is equal
to the first case except for an additional signum.

The practical justification for these rules follows from their consequences, histor-
ically particularly from the fact that, in the domain of number pairs defined in this
way, the taking of roots with rational exponents is possible without restriction. In the
simplest example: one looks for the solution of z2 = —1:

22 = —1; the approach: z = (a.b) leads to

22 = (a,b) x (a.h) = (@% — b2,2ab) = —1 = (-1,0)
comparison of coefficients yields:

a? —b? = —1 und 2abh = 0.

The second equation gives a = 0 oder b = 0

the latter possibility is excluded, since we must have a? # —1
thereforea = 0 and thus b = 1

thus z, = (0, 1):z, = (0, —1).

The real numbers are a one-dimensional subset of the two-dimensional complex num-
bers (a, b), i.e. those with b = 0; thus the real numbers are rare exceptions among the
complex numbers. The complex numbers with a = 0, i.e. (0, b) are called “imaginary
numbers”. Their square is negative: (0, )(0,b) = —|b|? < 0.

3.6.2 Normal representation with the “imaginary uniti”

In the usual notation, the normal representation of complex numbers distinguishes
between the two components instead of their sequence in brackets via a marker in
front of the second component, for which, following Leonhard Euler (1707-1783),
the letter i is used (in electrical engineering one uses instead the letter j to distinguish
the marker from the current i ). The plus sign indicates that both components belong
together.

Unfortunately the term “imaginary” number has become common for the second
component, which may create mystical ideas about its specific character, as something
not as easy to understand as a real number. However, there is no class of “imaginary
numbers”; both components of the pair that form a complex number are real. The
notation 5i does not refer to a “multiplication of 5 with i, but means that the second
component of the complex number is 5.

The normal representation z = a + ib simplifies the calculations, since one can
use in it the usual multiplication rules for real numbers, if one takes into account the
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convention i2 = —1. Thus the following rules for the normal representation have to

be interpreted accordingly.
Let us consider an example:

2125 = (ay + ib1)(az + iby) = ayaz + i%b1by + i(ar1hy + azby)
= ayaz — h1h2 + i(a1h2 + az2h1)

complex number: z=(a.b)

real number: a=(a,0)

definition imaginary number: ib = (0,b)

definition: real component(z) = Re(z) = a

definition:  imaginary component(z) = Im(z) = b

definition imaginary unit: on=i

definition: z=Re(@)+ilm(z)=a+ib
definition conjugate complex number: zZ=Re(z)—-ilm(z) =a—ib
consequence: z2=a’®+bh?

definition absolute value: |z| = Vzz >0

computation rules in normal representation
n+z=a1+az+i(b+h)
2122 = (a1 + ib1)(az2 + ib2) = (a1a2 — b1h2) + i(a1h2 + azbh1)

21 _nZz _aaxthiby arby—azh

22_225_ a§+b§ a%-f-b%
_a1a2 + biby _ialbz—azbl
44 v44
i2=ii=(0,1)-(0,1) = (-=1,0) = -1

in this specific sense i is the square root of (—1).

Using the normal representation the solution of the square root problem becomes
clearer.

¢ real number
22=(a+ib)a+ib)=a’—-b*>+i2ab=c
creal > 2ab =0
a product vanishes if and only if one of the factors vanishes.
Therefore: 1st solutiona = 0 - —b% = ¢
b=%J=c=%JVc /ml=%ic z=0=%ic

forc <0
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or: 2nd solutionh =0 — a® = ¢

a=%+vc z=%Vc+i-0

forc > 0.

In the set of complex numbers, the square root of a real number always has two solu-
tions. They are either both purely real or imaginary, depending on the sign which the
root has taken.

The general solution for a quadratic polynomial with real coefficients a,b and c,
with which we started, now reads:

b JBE—dac _ -%i@ for b2 > 4ac

212 = —— _—=
2 2a A/ |b2—4ac|
2a

—L i for b < 4ac.

If a, b and c are themselves complex, the general formula is still valid, but not the
distinction between two cases since the order relations > and < are not applicable for
complex numbers.

What is the situation in the complex number space for the cube/third root and, in
general, for odd root exponents? In the space of real numbers, there is always one real
negative solution (¥/—c = — 3/c) for negative radicands. In the space of complex
numbers, however, we obtain the following:

P =¢ creal
(a +ib)(a + ib)(a + ib) = (a® — b + i2ab)(a + ib)
=a3—3ab® +i(3a’h-b¥) =c¢

since c is real > b(?m2 -b»)=0
either b = 0 or (3a%2 — %) =0

Ist solution b = 0 > a3 =¢

a= 2/; zZ=a= 2/;

this is the always existing real solution

2nd solution 3a® — b% = 0 — b2 = 342

a(a2—3b2) =c —>a(a2-9az) =-8a3=c¢
3/ —C 1,
a= _ = ——
8 ZJE

22=—%%+i?3/c_‘= «’/E(—%+iJT§)
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b2=%(%)2—>b=i?%
23=—%30—i?%= %(-%—i?)

two conjugate complex solutions

3
%- =5in120° = —sin240° z; = ¥ccos0°
3
Zy = %(cos 120° + i% sin 120°)

1 3
— = cos 120° = cos240° z3 = Yc (cos 240° + i% sin 240°) =7,
since sin240° = —sin 120°.

Thus three roots 21, 22, z3 of z3 = ¢ exist, of which one is real and the other two are
complex conjugates of each other.

3.6.3 Complex plane

The complex numbers are mapped for visualization purposes to points in a plane,
where the abscissa corresponds to the real number line and the ordinate corresponds
to the complex number line, and distances on both are measured using real numbers.

The simple cubic equation z3 = ¢ has three solutions in the space of complex
numbers, of which one is real, and two are complex. As the last representation for
¢ > 0 shows (for ¢ > 0 the points are mirrored on the imaginary axis), the roots are
situated symmetrically on a circle with radius 1.

In the diagram the cube roots are indicated as squares and the two square roots as
circles.

The general polynomial of nth degree has, in the space of complex numbers, n
roots according to Gauss’ fundamental theorem of algebra. Figure 3.6 shows this for
the second and third root of 1.

Taking into account the rules for addition and multiplication, all usual arithmetic
operations known for real numbers can also be applied to complex numbers.

The complex numbers densely cover the complex plane, as the real numbers cover
the number line densely. Unlike the real numbers, the complex numbers are, however,
no ordered set, since they each consist of two real numbers, and therefore the relation
z1 > z3 is not defined in general. However, they can be ordered according to absolute
values |z; |, which are real numbers.

The use of complex numbers (complex analysis) has many advantages in physics
and engineering.
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Figure 3.6. Roots in the complex plane: the blue circular points show ++/1, the red circular
points show & +/—1 and the squares show /1.

As shown for the example of the parabola, every algebraic equation has solutions in
the domain of complex numbers (property of algebraic closure; Gauss’ fundamental
theorem).

In addition, every complex function that can be differentiated once can be differ-
entiated an arbitrary number of times. Finally one can show with complex numbers
relationships between individual functions that are independent in the domain of real
numbers (e.g. exponential function and trigonometric function, see below).

3.6.4 Representation in polar coordinates

In the representation using polar coordinates, the absolute value |z| gives the distance
r from the origin and the ratio of the imaginary component to the real component is
equal to the tangent of the angle ¢ to the real axis.

The following definition for the polar representation is applicable:

z =r(cos¢ + ising)

To obtain r and ¢ from z or vice versa the following relations apply:

r =zl = +V727 = +/Re?(z) + Im?(2)

Im(z)
Re(z)’

Multiplication and division rules become:

2122 = rir2[(cos @1 cos ¢2 — sin ¢1 sin ) + i(cos ¢1 sin @2 + cos P2 sin ¢1)]

2122 = nir2[cos(¢1 + ¢2) + i sin(¢1 + ¢2)]
z r

= = Lfcos(pr — ¢2) + i sin(1 — ¢)].

1
Z2 2

tang =
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Figure 3.7. Complex numbers in representation via polar coordinates.

The polar representation shows a special position of the number zero in the domain
of complex numbers, which is not visible in the domain of real numbers. It is the only
complex number that does not have a direction associated with it, since z = 0 means
r = 0, irrespective of the value of ¢. This is also compatible with the tangent of ¢
being undetermined as a ratio of two zeros.

The number z corresponds in polar representation to the end point of a vector that
starts at the origin with length r and makes an angle ¢ with the real axis.

3.6.5 Simulation of complex addition and subtraction

Pressing the ctrl key and clicking on the following pictures’ simulation activates the
interactive Java simulations, which demonstrate the complex operations addition and
subtraction.

The operations are visualized in Figure 3.8 as mapping of a rectangular array of
points in the z-plane to a u-plane shown on the right-hand side. The points are colour
coded to show their assignment in the two planes. For the red point on the lower left
corner of the arrays, the position vector is indicated. On the z-plane you can change
the position of the red corner of the array as well as the tip of the green vector which
is linked to it by pulling with the mouse. The u-plane shows the result of the complex
operation. Clicking on the “initialize” button restores the original state. The distance
between the points in the array can be adjusted with the slider. In particular, you can
collapse the array to a single point.

In addition to the simulation, a text with several pages is shown. This text contains
a detailled description of the simulation and hints for possible experiments.

The windows can be hidden or blown up to full screen size with the usual symbols
on the top right; however, it makes more sense to blow up the simulation windows
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Figure 3.8. Simulation. Addition of a complex number z3 to all numbers z; of a point grid.
This grid is moved with the tip of the red arrow, which leads to the lower left comer of the
array in the z-plane; in the same way z; + z, moves for all complex z; the whole complex
plane. The supplementary sides of the parallelogram for the vector construction are drawn on
the right-hand side.
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Figure 3.9. Simulation. Subtraction of a complex number z, from all points of a grid. In the
left window the point array and the tip of the vector to be subtracted can be pulled with the
mouse. The supplementary sides of the parallelogram of the vector construction are shown on
the right-hand side.
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Figure 3.10. Simulation. The multiplication of z; with z, comesponds to a rotation of the
vector z; by the angle of the vector z, in the mathematical positive sense (anticlockwise),
while at the same time being stretched by the absolute value of z2 (compressed, if the absolute
value is smaller than 1). The point array and the complete plane is rotated via the angle of z
while being stretched by the absolute value of z3.
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Figure 3.11. Simulation. Division corresponds to the rotation of 2; in the mathematical neg-
ative sense (clockwise) by the angle of the vector z2 while undergoing compression by its
absolute value (stretching, if the absolute value is smaller than 1).
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by pulling on one corner in order to preserve the quadratic structure of the system of
coordinates. If you click on a point with the mouse, its coordinates appear in the win-
dow with a colored background. With the right mouse button you can access further
options in the context menus.

The addition of two numbers corresponds in the complex plane to the addition of
both vectors (according to absolute value and direction). The subtraction shown in
Figure 3.9 corresponds to a subtraction of both vectors. Considered as a mapping
of the z-plane, addition and subtraction are equivalent to a translation of the plane
without rotation or change of scale.

3.6.6 Simulation of complex multiplication and division

The following two interactive pictures deal with the simulation of complex multi-
plication (Figure 3.10) and division (Figure 3.11). The presentation and handling is
identical to that described above for addition and subtraction.

3.7 Extension of arithmetic

One can, of course, continue the extension of notion of a number from numbers to
number pairs. The next step would be quaternions, which consist of fourreal numbers.
Quaternions can be used for calculations in four dimensional spaces; for example
relativistic physical systems with spin can be described using quaternions. We here
refer to the subject literature.

When defining applicable rules for arithmetic operations, care is taken that the com-
plex numbers constitute a subset. However, for these higher dimensional numbers, not
all fundamental rules, which were given at the beginning of this chapter and remain
valid up to the complex numbers, will necessarily hold, for example the rule of the
commutativity of operations.

The group theory finally disassociates itself totally from the concept of the number,
and defines arithmetic rules for elements, that can be numbers, but do not have to be
numbers. A group (set) of elements is defined, and the rules for this group are defined
in such a way that the application to elements of the group always yields a member of
the group.

The rules applicable to groups are similar to those that we discussed at the beginning
of our discussion of numbers. However, the earlier implicitly assumed role of unity
(the neutral element) will be explicitly defined. For the example of the multiplicative
composition we shall assume by definition:

1. The composition of two elements a, b of the group G is again an element of the
same group (closedness)a x b =c € G.

2. The sequence of operations is unimportant as long as the order is preserved:
a x (b x ¢) = (a x b) x ¢ (associativity).

3. There is a neutral element e in the group G, for whicha xe = e xa = a.
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Figure 3.12. Simulation. Rotation and reflection of a pink equilateral triangle A. In the left
window rotation (R) happens before mirroring (M); in the right window mirroring happens
before rotation. The final result of the operations is colored in blue, the intermediate result in
green. The initial orientation of A and the rotation angle applied can be chosen with sliders.

4. For every element a in G, an inverse element (mirror image) a* exists, with the
property to yield, when combined with a the neutral element: axa* = a*xa =e.

A group is called Abelian or commutative if one is allowed to commute the oper-
ands: i.e. a x b = b x a (commutativity).

The set of integers Z with addition as the operation and zero as the neutral element
is an Abelian group. Somewhat more complicated is the situation with the set of ra-
tional numbers Q, multiplication as the operation, with 1 as the neutral element; here
0 would not have an inverse element.

The definition of group rules also makes it possible to have other objects than
numbers as members of a group, as long as they satisfy the requested properties.

An example for such a group is the set of symmetry transformations rotation, reflec-
tion and inversion, through which a topological object such as a polygon is mapped to
itself; compositions are then transformations that are applied consecutively. This ex-
ample is a non-Abelian group; rotation before reflection yields a different result from
reflection before rotation. This is visualized in the simulation shown in Figure 3.12.
It shows the consecutive operations rotation and reflection and reflection and rotation
applied to an equilateral triangle, whose initial orientation can be adjusted.

Group theory is one of the foundations of the arithmetic used in quantum theory;
you are encouraged to study the discussion in the essay by Schopper.'?

12 Physik im 21. Jahrhundert: Exsays zum Stand der Physik, edited by Werner Martienssen and Dieter
Rdss, Springer Berlin 2011.



4 Sequences of numbers and series

4.1 Sequences and series

By repeated application of the same arithmetic operations on an initial number A, one
creates a logically connected sequence of numbers, whichshow interesting properties
(to guess the formation law of a sequence and thus to continue the initial numbers of
a given sequence is a popular type of puzzle).

In the following the letters m, n, i, j are used to indicate the position of terms in
sequences. They can be 0 or positive integers.

If there is no upper limit for the number of terms in a sequence or for the terms in
aseries (m — 00), we refer to an infinite sequence or series.

4.1.1 Sequence and series of the natural numbers

The particularly simple arithmetic sequence of the natural numbers is created via the
repeated addition of the unit 1; the individual term is characterized by the lower index
(1,2,...), which itself is an increasing natural number.

A =1 A"+1=A,,+l forn > 1—
A, =1,2,3,4,5,6,....

We now define the difference quotient for the terms of an arbitrary sequence with
different indices ¢ and j. This number is a measure for the change between two terms
with different indices and thus for the growth of the sequence in the interval given by
the indices:

AAj=Ai— A Ay j=i—]j

AA; _A,'—A_,'
===

difference quotient: (
iJ

For consecutive terms, the index interval is 1 and the difference quotient is equal to
the difference between the terms:

Adiji1 = Ai —Ai1: Ay =i—@-1)=1

AA;i—
difference quotient: (A'—'l) = A; — Ai-1.

i,i—1



4.1 Sequences and series 36

For the sequence of the natural numbers, the difference between consecutive terms is
constant and equal to 1. Therefore their difference quotient is also constant and equal
to 1.

AA; i = A; — A;_; = 1 — difference quotient = 1.

The arithmetic sequence has constant growth of consecutive terms.

From the terms of a sequence one can, by repeated addition, obtain a logically
connected series, whose partial sums are again terms of a sequence. For the above
example this would be the arithmetic series S and the sequence of its partial sums Sp:

S=14+2+34+4+5+6+--
S|=l; S2=3; S3=6; S4=10; S5=]5.', SG=21;...

n
ZAm=A1+A2+A3+"'+An-

m=1

Sn

For the sum sign X (capital Greek letter Sigma (S)) the index m o f the sequence terms
Apm runs from the number on the bottom to the number on top.

For the arithmetic series, one can calculate the partial sums very easily from the
indices. This rule is thought to have been discovered by Gauss when he was asked in
school to sum up the numbers from 1 to 100. This rule is founded on the symmetry
of the series: two numbers that are symmetrically positioned relative to the middle of
the partial sum always add up to the same sum (n + 1) and there are n/2 such pairs.

n
Sn=30+1)

The sequence of the natural numbers does not have an upper limit. The sum over its
subsets increases faster with increasing index, in quadratic dependence on the index:

n>»1— S, ~n?/2.

4.1.2 Geometric series

As another example, we consider the sequence of powers of the real number a and the
geometric series that is created from it via addition:

Ap=1; Ay =a; Ay =a? A3 =d> Ag=a": ...

Ap=a" forn>0
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definition: AA;,j = Ai —Aji Aij=i—j

AA;; = d—al
(ﬂ) _d-d (a4 _a—a? =a%D@-1
AJi; i—j VA )i 1

n
Sn = Za’” =l+4+a+a’+a®+.. . +a"
m=0
For the special case of @ = 1 the partial sums of the geometric series become an
arithmetic sequence.

For a different from 1 the difference quotient depends on the index. Fora < 1
it keeps getting smaller; the terms of the sequence decrease, and the partial sums
increase ever slower. For a > 1 the difference quotient is positive and grows with the
index; the terms of the sequence increasse faster and faster, and the partial sums of the
series even more So.

4.2 Limits

What happens if theindex of the sequence or series becomes larger and larger, i.e. if it
goes to infinity. Are the terms of the sequence getting larger and larger (in this case we
call the sequence divergent), or do they approach a limiting value, i.e. the sequence is
convergent? Does the value of the series grow to infinity or does it remain bounded,
i.e. does it have a limit and is it convergent?

The sequence of the natural numbers obviously grows without limit as well as the
value of the series; both are divergent:

lim A, = lim n =00
n—00 n—00

lim S, = lim m = oo.
n—00 n n—00 Z
What about the geometric series?

=0 forla] <0

1 fora =1
oo fora>1

no limit fora < —1

lim A, = lim 4"
n—00 n—00

n = l_ia for |a] < 1
lim E a”{ > oc fora>1
n—00 P

m=0 no limit fora < —1

i 51
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For a > 1 the terms of the geometric sequence grow continuously, thus neither the
sequence not the resulting series has a finite limit. Fora = 1 the terms of the sequence
are constant; the partial sums of the series correspond to the sequence of the natural
numbers and thus the series is divergent.

{ Geometric sequence and series 7 ? Sl
Sequence Partial sum series
20 r T T 10 r r T
150 ol ]
10 4
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Figure 4.1a. Simulation. The first window shows the terms of the geometric sequence, the
second window the partial sums of the geometric series as a function of N, with the red line
as limit, provided the limit exists within the shown range of ordinates.
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Figure 4.1b. Simulation. The third window shows the limit of the series as a function of a
for |a| < 1. The red point marks the value of @ chosen with the slide control.
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For 0 < a < 1 the terms of the sequence are getting smaller and smaller and their
limit is zero. The series converges to the limit 1/ (1 — a), which is larger than 1.

For —1 < a < 0 the terms of the sequence are getting smaller and smaller while
changing sign and the series is convergent with the limit 1/(1 + |a|), which is smaller
than 1.

For a = —1 the sequence alternates between 1 and —1 and the partial sums (1 —
1+ 1—1=-..)is either 1 or 0 depending on the index. Therefore no limit exists.

Fora < —I the terms of the sequence, as well as the partial sums, have alternating
signs while growing in absolute value. Their absolute values go to infinity. Therefore
the sequence and series themselves do not have a limit.

The simulation of Figure 4.1a shows the behavior of the geometric sequence and
series as function of the parameter a, which can be adjusted with a slider.

What are the conditions for a series in order for it to have a limit? Obviously the
terms of the associated sequence must converge to 0. That is a necessary, but not yet
a sufficient condition. An example illustrating the difference is the harmonic series:

harmonic series A=1,-,-,-,-,—,...

23456
1
A1=1;, Ap =—; lim A, = lim - =0
n n—oo n—oon
1 1 1 1

1
Sa=l+-+z+-+z+-+ >0

While the terms of the sequence converge to 0, the series grows without limit and thus
does not have a limiting value.

This most easily becomes evident if one compares the harmonic series with a series
that obviously diverges, and whose suitably grouped terms are smaller than or equal
to those of the harmonic sequence:

s ‘—l+l l+1+l+1 l+1
harmonic = 2+3 4 5 6+7 8

+

9 10 11 12 13 14 15 16
1 1 1 1 1 1 1 1
Soompnrison 5 §+ Z-I-Z + §+§+§+§
1

+

( 1 1 1 111 w
TR TRARTRRT AR TAR AR TRRTI A

+

NS TS AR R S B
Q+—+—+—+—+—+—+—%m-

S comparison

Sharmonic > Scomparison = Sharmonic —> 0.

Thus, the terms of the harmonic sequence do not converge sufficiently strongly to zero
to ensure convergence.
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A sufficient criterion for convergence is that the ratio of successive terms of the
sequence is smaller than 1 forn — oo (quotient criterion of d’Alembert). For the two
series we have:

. . An+l o
harmonic series = ;o lim =
An n+1 n—oon + 1
. . An+1 an+! .
geometric series —— = =a; lima=a<lfora<]l.
n an x—00

While the consecutive terms of the geometric sequence decay fora < 1 in a con-
stant proportion for the geometric series, the terms of the harmonic sequence keep on
decaying but, in the limit of n — 00, consecutive terms are becoming “equal”.

Learning about Archimede’s calculus of x, it must have come as a surprise to an-
tique philosophers that an infinite number of zeros can be a well defined, finite number
(sidelength 0 - oo number of sides of the inscribed polygon, where both 0 and oo are
limits of an infinite series). The more difficult it is to understand that the sum of an
infinite number of elements, of which none is identical to zero, can be a finite number.
This was the base of Xenon's paradox, and even today one should carefully reflect
about it to understand limits in depth.

4.3 Fibonacci sequence

A particularly interesting sequence of natural numbers is called after its early discov-
erer Leonardo Fibonacci (ca. 1200). It is created by defining each terms as the sum of
its two predecessors. Thus the formation law reads:

Ao =0 A1 =1

A"+2 = A" + A"+1 forn > 0.
Thefirst 25 numbers in the sequence are:
0; 1; 1; 2; 3; 5; 8; 13; 21; 34; 55; 89; 144; 233; 377; 610; 987,
1597; 2584; 4181; 6765; 10946; 17711; 28657; 46368; 75025.

The ratio A, /A,—) of consecutive terms converges very quickly to the irrational value
of the golden mean. (In art, the golden mean is a criterion for the balance of propor-
tions: two dimension adhere to the golden mean if the ratio of the larger one to the
smaller one is the same as the ratio of the sum of both to the larger one.)

An/An—y — ® = 1.618033988. ...
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The first values, which can be easily obtained with an Excel spreadsheet are:

1.0; 2.0; 1.5; 1.6666666667; 1.6; 1.625; 1.6153846154;
1.6190476190; 1.6176470588; 1.6181818182; 1.6179775281;
1.6180555556; 1.6180257511; 1.6180371353; 1.6180327869;
1.6180344478; 1.6180338134; 1.6180340557; 1.6180339632.

It is evident that the differences of consecutive terms to ® alternate in sign. In this
sense, the approximation to the golden mean occurs in an oscillating manner.

This ratio can also be represented as a continued fraction with n—1 fractions (Please
try this out for the first few terms!):

AnfApa1 =14 —— > &

From this one easily obtains that & = 7% as positive root of the equation

1
d=1+_ > _d-1=0.
(b—)

For the exponential sequence we have, from the first term onwards:

n

An/An—y = =e=2718...

-1
While the sequence of ratios is constant from the beginning for the exponential se-
quence, the ratios for the Fibonacci sequence only approximate a constant value for
n — oo. For large n, both sequences are obviously similar. From this analogy one
can deduce that the Fibonacci sequence approximates an exponential sequence for
n — oc. This is an indication that the Fibonacci sequence can describe growth
processes, analogous to the exponential function.

There exist numerous arithmetic relationships between the terms of the Fibonacci
sequence. In addition, there are many interesting application to problems of symmetry
and growth, for which we refer to the given link.

4.4 Complex sequences and series

Wenow consider some examples of sequences z, and series of complex numbers with
partial sums S, = Y 1 _o Zm-

Their simulation and visualization in the complex plane provides a deeper under-
standing of the arithmetic operations. It shows a wealth of surprising as well as aes-
thetically pleasing phenomena, whose study leads to an improved understanding of the
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underlying mathematical questions. The examples forreal series considered above are
special cases of similar complex sequences.

A sequence is convergent if and only if it possesses one accumulation point; an ac-
cumulation point is defined such that an arbitrarily small vicinity of the accumulation
point, the accumulation interval, contains in the limit nearly all terms of the sequence.

For the sequences of real numbers that have been discussed above, the accumulation
point is with respect to the one dimensional domain of the F,, or S,. For the geometric
sequence or series with the parameter |a| < 1, the accumulation point of the sequence
is zero and the accumulation point of the series is the real number 1/(1 — a).

The concept of an accumulation point is especially descriptive for complex num-
bers, since it can be visualized as enclosed by a small circle in the complex plane.

As for the visualization of the elementary complex operations, we use two win-
dows, of which the left shows the terms of the sequence z, and the right shows the
partial sums S, of the series. The unit circle is marked red in both. In the left window
the point z; (second point of the sequence) corresponding to a for both the geometric
and the exponential series is shown enlarged. It can be pulled with the mouse in such
a way that a can be easily changed in this way.

In the right window, the first term of the sequence is drawn enlarged; an accumula-
tion point, if present, is encircled by a small green circle.

Remember that complex multiplication changes not only the absolute value but
also the angle, if the imaginary component is not zero. A similar thing happens when
adding the terms of the sequence. In general, sequences and series therefore develop
in spiral trajectories on the complex plane when their terms are generated by complex
multiplication.

The description in the text can be kept short, since the simulation includes a de-
scription window with several pages, of which one contains instructions for systematic
experiments.

The simulation calculates 1000 terms of the sequence. For strong convergence,
many points coincide close to the accumulation point, such that only a few points
can be seen separately on the screen.

4.4.1 Complex geometric sequence and series

The terms of the complex geometric sequence are created in analogy to the real case
with the rule:

Z9 = 1

Zny1 = Zp-a;n>0—z, =a".
Here zy is the nth term of the sequence. The parameter a is a complex number. The

terms are thus given by 1,a,a2.a3.a*... ; the first term zg is always equal to one
independent of a.
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The complex geometric series is created via continuous addition of the terms of the
complex sequence. Its partial sums are:

Sn=) a™ S,=1+a'+a’+a’ - +a"

The first partial sum (n = 0) is again, independent of a, always 1.

In the simulation shown i n Figure 4.2 you can move the point a (the second point in
the sequence) in the left complex plane with the mouse and observe the effect on the
terms of the sequence on the left-hand plane and on the partial sums of the complex
series on the right-hand plane.

The simulation is started via the ctrl key and clicking on Simulation. The complex
geometric series converges if the absolute value of a is smaller than 1, ie. if a lies
inside of the thin red unit circlethat is drawn in the left-hand plane.

In the case of convergence the limit of the series is:

4 1
lim S, = lim at = ——
n—o00

n—00 1—a’
m=0

It is situated in the center of the green accumulation circle drawn in the right window.
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Figure 4.2. Simulation. The left window shows the terms of the geometric sequence, the
second the partial sums of the series. The first point is 1 in both cases. The second point is a;
itis enlarged and circled in red. Pulling this point with the mouse allows a to be changed.
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For |a| > 1 the series diverges. The unit circle becomes smaller and smaller in the
growing domain of coordinates and the series runs away along a spiral to infinity.

The case of the real geometric series is obtained as special case of the complex
series if the point a is moved along the real axis. To look at the situation in more detail
you can maximize the simulation window to full screen size. On the inner boundary
of the unit circle, the convergence can be so slow that 1000 terms are not sufficient to
nearly reach the limit. This can lead to very interesting geometrical patterns.

4.4.2 Complex exponential sequence and exponential series

The terms of the complex exponential sequence are created with the following rule:

exponential sequence: Zn41 =2 -

R 38

geometric sequence for comparison: zp4; = z, -

Here z, is the nth term of the sequence. The parameter a can be a complex number.
We again have zg = 1
The terms thus have the form:

1,

'1-2°1.2.3'1.2-3.4

n factorial: n!'=1-2-3-4...n; O =11'=1.

a a2 a3 at a”
T Zn =

n!

The complex exponential series is created via continued addition of the terms of the
complex exponential sequence. Thus its partial sums are:

=3
m=0m!
Sn=l+£+gi+“'+£=l+a+a—2+"'+‘£
0! 1! 2! n! 2 n!
So=1

The complex sequence and series are shown in Figure 4.3.

The case of the real exponential series is obtained as a special case of the complex
series, if the point a is chosen on the real axis.

The terms of the exponential sequence always converge to zero. The exponential se-
ries converges forevery finite value of a. The convergence is so fast that the simulation
window will only show a few of the 1000 calculated terms separately.

Why does the exponential series converge so quickly as compared with the geomet-
ric series, and for any arbitrary z? In order to understand this we again consider the
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Figure 4.3. Simulation. In the simulation for the complex exponential series, which again
calculates 1000 points, a (red point) can be changed with the mouse in the left window and
one can see the effect on the terms of the sequence z,, and in the right window the effect on
the partial sums S, of the complex series. The zeroth terms of both sequences are 1 and thus
are situated on the red unit circle.

ratio of consecutive terms of both sequences:

. Zn+1
geometric sequence =a
Zn
. Zn+1 a
exponential sequence <
n

For the geometric series we must have a < 1 in order for the terms of the sequence
to decrease, and this applies to all terms. For the exponential series, the initial terms
of the series can even increase significantly! Irrespective of the size of |a|, as long as
it is finite, there is always an index n from which the terms get smaller and smaller
in absolute value, independent of the chosen a-value. Therefore we have z, — 0
irrespective of the chosen value of a.

One can easily generalize the statement concerning the convergence of the expo-
nential series: we are given a bounded sequence B, of numbers, which are multiplied
with the respective terms of the exponential sequence. The new series is thus given
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by:
am™ 2

o0
Z ——Bo+B|a+Bzﬁ+ +B

|Bm| < g with g real, positive number —

1S <gq Z —; § is convergent, since Z — convergeq

m—l) m=0

If the absolute values of the coefficients B, stay smaller than an arbitrary large real
number g, i.e. the sequence B,, does not diverge, then the series converges, since it
is smaller than the convergent exponential function multiplied by a real number. This
shows how strongly the exponential series itself converges. We will later apply this
result to the convergence of the Taylor expansion.

For the limit of the exponential series we have:

m
lim S, = lim E e €%, e =2.71828... Euler’s number.
n—00 n—o00 m'

If a = 1 one obtains
= 1

, 1 11
e=lm 3 —=l+s+c+,+

m=0

If one moves a in the simulation parallel to the imaginary axis, the limit of the series
moves periodically on a circle around the origin. Thus one obtains “experimentally”

the famous Euler formula:
Witha = x + iy
e® =e%e’Y = e*(cosy + isiny).

Forx =0— ¢ =cosy +isiny

2 3 4 5
o = P ARENFP SN NP A
1 +iy T 13'+ +15.:F
2 4 3 5
17 Y Y Y
=1 7+?:F +l(y—?+?:|: )

2n+1

l'a . ny
oy =2 " G s = Z( Ve

n=0
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Euler’s formula is useful for the easy derivation of relationships involving trigonomet-
ric functions. Two examples:

we are looking for: cos 2¢, sin 2¢

cos2¢ + isin2p = &2 = (6'%)? >

cos2¢ + i sin 2¢ = (cos ¢ + i sin p)(cos ¢ + i sin @)

= (cos @)2 — (sin@)? + i2cos psing
— cos2¢ = (cosp)? — (sin ¢)2
sin2¢ = 2cos ¢ sin ¢
we would like to evaluate: cos(¢1 + ¢2), sin(¢1 + ¢2)
cos(gr + ¢2) + i sin(py + g3) = e @192 = i1 e
= (cos ¢y + i sing;)(cos ¢, + i sing,)
— cos(@ + ¢2) = cos ) cos g, — sing sing;

sin(¢1 + ¢2) = cos @1 sin @2 + sing) cos @2.

Whenever one works with oscillations, i.e. with trigonometric functions, for example
in optics and electronics, the use of complex numbers has many practical advantages.
From Euler’s formula we obtain an elegant approximation formula for x if we put

y = m (you may convince yourself in the the simulation that the exponential function
indeed yields —I forz = im).

y=7r—>e”'=cosn+isinn=—]+i-0=—|

2 ;.3 4 5
L T P N L. S . S
SEltir— gy tatig g =
Separation in real and imaginary parts —

72 gt g6 g8 10
Re—»2=— 2 42 T % ..
I T T TR TR
. 5 ”3 Jl,5 ]T7+179 Jl,ll
mo>0=r——+ —— — + — — —
ETIR T TR R T
2 4 6 8 10
rE0—>0=1-_42 T T T 4

3! st 9 1

The equations are polynomials in 2. Neglecting all higher powers, the two series
yield in zeroth order the solutions ¥/4 = 2; ¥/6 = 2.449.... Using iterative meth-
ods of solution, for example fixed point iteration in Excel, one obtains the following
quickly converging values, which are listed below together with the highest powers
taken into account:
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Approximations using the last equations (in brackets the highest power of & kept):
(nz) - /6 = 2.4; (%) - 3.078; (nlo) — 3.1411; (n"‘) — 3.1415920.

Subtraction of both equations leads to a series that converges even faster, with the
zeroth order solution for the order 74: v/60 = 2.78.

4.5 Influence of limited accuracy of measurements
and nonlinearity

4.5.1 Numbers in mathematics and physics

In the domain of abstract mathematics the following relation applies exactly: 2-2 = 4.
Exactly means that, if one were to write all numbers as decimal numbers, there would
be an infinite number of zeros after the dot.

There is an old joke about the natural scientist who solved the same problem on his
slide rule and obtained 2 - 2 = 3.96. Where is the difference?

In mathematics, numbers and the operations between them are defined in such a
way that the repetition of the same procedure yields exactly the same result. When
transferring the mathematical rules for operations to the domain of the natural sci-
ences, there is often an unspoken assumption that not only are the operations exact and
unchangeable, but also the quantities to which the operations are applied as numbers.

This is, however, not the case. When repeating an experiment in the natural sci-
ences, one cannot assume that the natural situation in which the experiment takes
place stays exactly the same;'> above all, one has to take into account that there are
limits to the accuracy of a measurement; that, even assuming fictitious equal condi-
tions, the measured values describing the result will not be identical in a mathematical
sense.

The achievable relative accuracies of measurement are often in the range of 1076
to 10~2 with a corresponding inaccuracy of the single measurement. The highest ac-
curacy nowadays can be reached in laser spectroscopy for the measurement of fre-
quencies, with a relative error of 10718, For 2 consecutive measurements, one has to
expect a maximum difference of this order between the results of the measurement.
The result of a single measurement is only known with this accuracy.

It is the essential purpose of mathematical physical models to forecast, from the
knowledge of the current state, events in the future, or to reproduce from this knowl-
edge the past. That is the content of every formula in which the time t appears. The
limited accuracy of measurements puts a natural limit on this goal.

The predictability does, however, not only depend on the accuracy for the measure-
ments of numbers, but also on the mathematical operation that is applied to them. For
a formula, suchasa = (b + b - F)", where b is the “true” error-free value and F

13 Already, the philosopher Heraclitus (around 500 BC) of antiquity realized that one “cannot bathe
twice in the same river” Panta rhei (everything flows), all states are unique.
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is the relative measurement error, the result depends, in addition, on the parameter n,
which describes the relationship between a and b.

For an error that is small relative to the measured value, we can estimate the effect
of n easily:

8
I

(b+b-F)'=b"(1 + F)" =b"Z<Z)F"
(1)

n=1->a=>hb(l + F) linear relationship
1
l<n<K (F) —a=b"(1 +nF).

For a linear relationship (n = 1) and an accuracy of 1%, the result also has an
uncertainty of 1%. In the 18th century the thinking in the philosophy of natural sci-
ences was dominated by the conviction that the future could be forecast without limit
given sufficiently accurate knowledge about the current state (Laplace’s Demon);'*
this corresponds to linear thinking.

For nonlinear operations, the dependence of the results from the measurement error
is also nonlinear. For the power function a = b™(1 + F)”, with n > 1 used in the
example Figure 4.4 shows the dependence of the total error on the measurement error
for increasing powers of n.

The maximum relative total error'> grows with the power n; for the relatively small
error < 10% the growth is nearly a linear function of the power; a measurement error
of 1% leads, for the 10th power, to a total error of slightly over 10%.

So what? Then one has to make more accurate measurements!

However, many important and fundamental functions of physics, such as the trigo-
nometric function, the exponential function and 1/r-dependencies on the radius, are
highly nonlinear, if one does not restrict them to a small region of values.

Even relatively small nonlinearities become important if sequences are calculated
for which the next term depends on the previous term and its accuracy. This is, for
example, the case if differential equations have to be solved numerically, in which
hundreds of individual calculations may easily be concatenated.

Thus in view of the limited accuracy of measurements, one has to be careful for
what time horizon one makes predictions with mathematical models based on mea-
sured initial data, and one has to take nonlinearities in the model used into account.

14 Marquis Pierre Simon de Laplace: “We may regard the present state of the universe as the effect of
its past and the cause of its future. An intellect which at any given moment knew all of the forces
that animate nature and the mutual positions of the beings that compose it, if this intellect were vast
enough to submit the data to analysis, could condense into a single formula the movement of the
greatest bodies of the universe and that of the lightest atom; for such an intellect nothing could be
uncertain and the future just like the past would be present before its eyes.” (Essai philosophique sue
les probabilités 1814, Preface).

15 Forsimplicity we discuss the maximum error and do not discuss the statistically relevant mean error,
which would not lead to any other conclusion
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Figure 4.4. Measurement error and its effect for the relationship between measured quantity
and result for a power function. The measurement error is plotted on the abscissa and the error
of the result on the ordinate. The parameter is the power n.

In addition, one must not lose sight of how accurately the model used describes the
reality.

When using computational models, this caution is easily lost, since the computer
treats models and numbers within the limits of its computational accuracy as if they
were exact in the mathematical sense. One also uses the exactly same initial values
for repeated calculations.

4.5.2 Real sequence with nonlinear creation law: Logistic
sequence

Even in the abstract mathematical domain, nonlinear functions produce unexpected
and sometimes bizarre results. This has nothing to do with limited accuracy, but it
lies in the nature of the subject. However, the resulting dependence of the calculated
numbers on the initial values is so extreme that fundamental limits are imposed on
transferring these models to physics or technology. An in-depth discussion of these
matters can be found in Grossmann’s essay in Physik im 21. Jahrhundert (detailed
in the preface). We will visualize two of these phenomena using number sequences:
bifurcation and fractals. The first example is concerned with a real sequence, the
second one with a complex sequence.
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For the sequences with a free parameter a considered so far, the creation law for
the terms of the sequence depended linearly on a parameter:

Zn

geometric sequence 1 =a; exponential sequence

_a
n—1 Zn—1 n’

The behavior of the sequences and the resulting series was relatively simple and clear.
Is this still the case if the creation law is nonlinear? As an example we chose the
so-called logistic sequence. This is a model for the development of a population of
plants or animals under constant environmental conditions from an arbitrary initial
state xg for a given reproduction rate. (In agreement with the notation in the literature
we choose the letter x for the terms of the sequence):

Xn+1 = 4rxa(l — Xn) = 4r(xn — x2).

The factor 4 scales the sequence in such a manner that, for parameter values with
0 < r <1 all terms of the sequence satisfy 0 < xp < l.

The logistic sequence assumes firstly that the population in the next generation is
proportional to the already present population. This alone would lead to unbounded,
exponential growth. However, at the same time a death rate that depends quadratically
on the population already present is assumed (—4r x2); note that, due to the definitions
given above, we have x, < 1 and therefore always x2 < x».

The question that arises is: does the population for a given growth parameter under
equal conditions approach a stable limit for an infinite number of generations, and
how does this limit depend on the initial value xy and the growth parameter r?

Population growth only occurs if Xx,4+1 > xn, which means for r > 1/(4(1 — x»)).
Since 0 < x, < 1, all populations with r < 0.25 decay to zero independent of the
initial value. For larger growth rates, i.e. for r > 0.25, one would therefore expect that
the population would grow up to an asymptotic value larger than zero, or if initially
larger, would decay to this asymptotic value.

In the simulation in Figure 4.5, r is increased consecutively by 0.001 in the interval
0 < r < 1. Now a loop calculates 2000 terms of the sequence for constant r. Then
one proceeds in steps of 0.001 to the next value of r until r = 1 is reached. Each
calculation starts with a random value 0 < x; < 1 for the initial value. The first terms
of the sequence still depend on the initial value; therefore the first 999 iterations are
not shown in the figure. The iterations 1000 to 2000 are mapped to points in the figure.

For r < 0.75 these points coincide so closely that a limit line as function of r is
seen, comparable to 1/(1 — a) for the geometric sequence. Different initial values
do not lead to discernable differences for the shown terms of the sequence with high
indices.

For growth rates r > 0.75 the asymptotic orbit develops two branches (bifurcation),
which means the iteration creates two different accumulation points. This bifurcation
repeats itself until there are finally no accumulation points visible. Since 1000 itera-
tions are shown, there could be up to 1000 values for a given r. Thus in this region
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Figure 4.5. Sunulatlon. Variation of the logistic sequence with adjustable power k (in the
picture a standard sequence with k = 1). On the left-hand side the total range of the abscissa
is shown, on the right-hand side a stretched region after the first bifurcation. The play button
starts the animated calculation and the reser button resets the animation.

there cannot exist a unique limit. Surprisingly, some regions of r follow that show
fewer accumulation points. The determining factor for the growth limitation is the
growth rate r.

Bifurcation behavior does not depend on the growth limiting factor being exactly
1 — xa. Essential is the nonlinearity of the operation x, — x2 To make this experi-
mentally accessible, a generalized factor (1 — x") with k > 0 was chosen:

Xn+1 = 4rx, (1 — x,'f).

In the simulation example you can change k after resetting with the slider between
0.1 and 2. the default value is 1, which leads to the usual quadratic operation.

The left window shows for the classical case (k = 1) the total orbit as function of
r; the right window shows the bifurcation in larger resolution. For k # 1, the general
character of a bifurcation stays the same, but the characteristic parameter values are
moved relative to the logistic sequence and the abscissa range is adjusted accordingly.

For a more accurate viewing, the simulation window can be maximized.

In the total picture of the logistic sequence, compactified structures of accumulation
points appear, which are not visible if the number of iterations shown is so large that
the pixel resolution of the screen does not reveal any holes and if the resolution along
the x axis is small. The simulation in Figure 4.6 therefore shows the structure of the
picture with a very large horizontal resolution (~ 1000 points in the shown r-interval
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Figure 4.6. Simulation. Bifurcation region of the logistic sequence in high resolution. With
the left slider for the beginning and the right slider for the end of the shown abscissa, the
region can be adjusted such that particular regions can be stretched a great deal. This choice
can be made very accurately by entering numbers in the fields rmin and rmax.

and a limited number of 250 iterations shown. Please maximize the window before
the start of the simulation to full screen size in order to see the details. The lower and
upper boundary of the r-range can be adjusted with sliders.

What is thereason for the strange behavior which becomes deterministically chaotic
for large values of r? This becomes evident if one extends the simulation to show the
terms of the sequence with low indices, which are suppressed in the above presentation
to elucidate the limit of the sequence.

Thus one can consider individual terms of the sequence and investigate how the
bifurcation results from jumping between terms with different indices.

The simulation in Figure 4.7a and Figure 4.7b, which is a real mathematical exper-
imentation kit, calculates an adjustable number of terms. With the slider, the constant
initial value x¢ of the sequence for a total r-scan can be adjusted. In the image an
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Figure 4.7a. Simulation. Individual terms of the logistic sequence, xo: initial value; first text
field: number of supre.ssed iterations; second text field: number of iterations shown.

adjustable number of terms is shown. One can also choose the number of suppressed
terms in the image.

Thus you can view the first iterations as shown in the left window of Figure 4.7a or
you can look at a single iteration with a high index as in Figure 4.7b.

If one considers for example the first six terms xg to xs (suppressed = 0, shown =
6) of the sequence as shown in Figure 4.7a, one recognizes the different terms from the
increasing degree of the polynomial (The initial value as zeroth term is a straight line,
the first term a line with positive slope). If you use different initial values, the images
show differences in their detail. In the lowerregion of r one recognizes, however, how
already the lower iterations approach a limiting curve. The higher iterations are then
superimposed in such a way that there are nearly empty regions close to points that
nearly coincide. Here the bifurcations can be found at higher indices. For the higher
iterations the influence of different initial values becomes smaller and smaller.

If one shows for large indices only one term x,, such as in Figure 4.7b, no bifurca-
tion can be seen, but the curve shows kinks at the bifurcation points. If one increases
the index by one, the kinks turn in the opposite direction. If one shows two terms
Xn,Xp+1 With consecutive index, one sees the first bifurcation. This bifurcation is
thus the superposition of two r-scans with indices whose difference is 1.

Studying the conditions for lower indices one realizes that the bifurcation is caused
by the change from even to odd powers that determine the individual terms.

Thus the deeperreason for the strange topology is that, for suitably defined polyno-
mials of high order, limited regions exist, for which different orders and initial values
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Figure 4.7b. Example from the simulation in Figure 4.7a. The 51st iteration of the logistic
sequence is shown.

lead to practically identical values, while in other regions the values diverge, thus
deterministic chaos reigns. In the essay by Siegfried Grossmann, this is analyzed in a
general sense and in detail, and we suggest that at this point you study his contribution.

Remembering the starting point of the discussion, namely that the logistic curve
is a model for the development of populations, one can draw, for example, the fol-
lowing conclusions: For small growth rates the population converges in an oscillating
manner to a constant value at which the population and resources are in equilibrium
with each other. For a higher growth rate the population exceeds the value that would
be compatible with the resources. Therefore the next generation reverts to a lower
value, and this jumping back and forth is repeated: the system oscillates between
extremes.

The essential practical conclusion is that the result of computations for a nonlinear
system can depend so sensitively on parameters and progress of the calculation (the
iteration index), that a forecast is only possible for a limited number of generations. If
in a nonlinear model time is the essential parameter, then this is true for any forecast
over time.

It is therefore part of the art of engineering to avoid regions and dependencies in
which nonlinearities lead to non-predictable or non-unique results. This is no mean
feat, as most physical relationships are well determined, but nonlinear.
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4.5.3 Complex sequence with nonlinear creation law: Fractals

We conclude the chapter on sequences and series with an example of a complex se-
quence with a nonlinear creation law. Such sequences lead to the aesthetically pleas-
ing structures called fractals, of which the Mandelbrot set is probably the most well
known.

Its creation law reads:

2
In+1 =2, +C

z9=0; c: complex number.

For every point ¢ of the complex plane within a limited, but sufficiently large, closed
region around the origin, the sequence is calculated and it is checked to determine
whether it diverges (in the numerical calculation it is assumed that this is the case
as soon the absolute value exceeds 4; the corresponding points are colored blue),
or converges. Those points for which the sequence converges are colored red in the
graphical representation. The points that are converging to finite values (the boundary
of the red surface) constitute the Mandelbrot set. All points that do not belong to it
are, depending on the speed of divergence of the sequence, shown in different colors.

The interactive Figure 4.8a provides access to a slightly modified Mandelbrot frac-
tal, for which the initial value zo can be changed via pulling the white point with the
mouse; zo = 0 gives the well known Mandelbrot set, —2 < z < 2 covers the region
in which convergence happens at all. Resetting leads to the initial state.

The region of the calculation can be restricted by specifying a region with the
mouse; multiple restriction makes it possible to delve into deep regions of the fractal
ramifications (see as an example Figure 4.9b).

Figure 4.8b shows the modified Mandelbrot set for zg = i.

The topologically novel situation of the fractal structure i s that the boundary of a fi-
nite area is infinitely branched and shows self-similarity when delving deeper and
deeper, i.e. on all scales similar structures are visible. You will realize this when
selecting ever smaller sections.

It is not trivial to understand which mathematical relationship leads to the special
form and symmetry in the figure.

To simplify this task we generalize further, to use instead of the quadratic creation
rule an arbitrary power:

k
Zp+1 =2, +C
zo = 0; c¢: complex number

k>1

For k = 2 we find for the set of c-values for which z, does not diverge the Mandelbrot
set as discussed above.
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Figure 4.8a. Simulation. Modified Mandelbrot set with adjustable initial value zo (white
point) for the iteration (in the picture we have the standard set: zo = 0). The coordinates of zo
are shown in two output fields and can be adjusted via pulling the white point with the mouse
or via entering values.

In the simulation in Figurc 4.9a the power k can be changed by a slider to a rational
number between 1 and 10. In the number ficld values that arc unlimited can be entered
(after input you necd to press the enter key and must wait until the input ficld changes
color again!). For this simulation many trigonometric functions have to be calculated,
which requires a lot of cffort. Thus you necd to be patient after the first call or after
entering a new value. Depending on the resources of your computer this calculation
can take scveral seconds or even minutes.

Figurc 4.9a shows the modified Mandelbrot set of the c-values for which the com-
plex point sequence z, converges fork = 1000. The region of convergence to nonzero
nearly corresponds to the unit circle (as one expects for the gcometric series), but ex-
hibits further fractal branching at the boundary, as shown in Figurc 4.9b in higher
resolution.

An aesthetically particularly intcresting variant of a given complex fractal is its
Julia set. This is obtained by kceping the point ¢ fixed in the complex planc and
asking which points z in the planc lead to a divergent or convergent scquence. Thus
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Figure 4.8b. Simulation. Modified Mandelbrot set from simulation in Figure 4.8a for zg = i.

for the Mandclbrot sct and its Julia sct we havc:

crcation law of scquence  zZp41 = z,zl +c

Mandclbrot sct:

zy = constant = 0. For which points ¢ docs the scquence converge or diverge?
corresponding Julia sct:

¢ = constant; For which points z docs the scquence converge or diverge?

Thus onc can map cvery point ¢ of the Mandclbrot sct to its Julia set. In the simulation
of Figure 4.10 a small whitc point in the left window showing the Mandclbrot sct
can be moved with the mouse. The program calculates the corresponding Julia set,
which is shown in the right-hand window. Its appcarancc and symmetry change in a
characteristic manncr if onc moves ¢ around the Mandclbrot Sct. With the slider onc
can adjust the color shading for the diverging values.

¢ = 0 leads to the scquence z, 22,74 z%, ... which is the geometric scquence that
converges inside the unit circle and diverges outside it. The Julia sct is now identical

with the unit circle.
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Figure 4.9a. Simulation. Modified Mandelbrot set with adjustable power (1000 in the pic-
ture). The red surface fills the unit circle nearly completely; only at the boundary some branch-
ing can be seen. You can also choose rational numbers for the power. To get the original
Mandelbrot set enter the integer 2 in the number field.
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Figure 4.9b. Fractal branching of the boundary of Figure 4.9a, shown at corresponding high
resolution, obtained by specifying a rectangular region with the mouse and zooming twice.
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Figure 4.10. Simulation. Mandelbrot set and corresponding Julia set; the parameter ¢ of the
Julia set is adjusted by moving the white dot (in the left picture close to the upper incision
between “head” and “body™). By specifying bounding boxes with the mouse one can again
restrict the computation region in both fields. Using the slider the color mapping of conver-
gence for the Julia set can be adjusted leading to a variety of color patters symbolizing the

convergence.



5 Functions and their infinitesimal
properties

5.1 Definition of functions

Traditionally we speak of a function f(x) if every x satisfying x; < x < x2 is
mapped to another number y in a unique way; here y = f(x) is the mapping pre-
scription. An example is y = sin(x), with real numbers x and y, or ¥ = z" and
with complex numbers z, u and a real number n. For brevity one can also write y(x)
insteadof y = f(x).

In a more general manner, one can define the concept of a function by mapping
each element a of a set A uniquely to an element of the set B: the set A is mapped to
the set B via the function f:

B = f(4)

In this example, a € A can bereferred to as the preimage (or inverse image) point and
b € B as the image or image point.

Functions and mapping are synonymous concepts, the concept of which includes
the uniqueness of the mapping.

The converse assumption is, however, not necessarily true: an image point b can
have numerous preimages a.a’, . . .. For the sine function there is, for every x, a unique
value y = sin(x). Due to periodicity of the sine function modulo 27, every y can be
mapped to arbitrarily many x points.

The sequences and series discussed in Chapter 4 are examples of the mapping of
discrete numbers — that is, of functions whose domain of definition for x consists of
discrete values n.

In general, the domain of definition of the variable a of a function will be contin-
uous set, i.e. the set of real or complex numbers, or a limited region of one of these
sets.

A function is continuous in the domain of definition of its preimage if the set of
variables a € A is dense and, in addition, an arbitrarily small neighborhood of aq is
mapped to a dense neighborhood of the image point bg. Visually, this means that there
are no gaps or jumps in the curve corresponding to h(a).

The limit of the complex geometric series can be considered as the mapping of the
continuous complex domain a inside of the unit circle to the complex plane outside
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of the unit circle:

lal <1

n
1
z=f(a)=nl_i>ng°z:a’"= l_a—>I52<oo.
m=0

The function is continuous in its domain of definition |a| < 1.

5.2 Difference quotient and differential quotient

For a continuous function, the variable x can have any value within its domain of
definition X. As in sequences one can define a difference quotient as the difference
of two function values y, and y; with different values x> and x; of the independent
variable.

While the difference quotient for sequences was given by the difference of two
terms with an index difference of 1, i.e. Ap+1 — Ap, the difference y; —y; = f(x2)—
f(x1) can be defined for an arbitrarily small difference A x = x, — x; in the case of
continuous functions.

In addition one can define a differential quotient as the limit for an infinitesimal
distance between the variables A x. Thus it becomes a local property of the function
in every point x, in which such a unique value exists, i.e. at which the function is
differentiable.

Af _ fl) = fO) _ Sl + A = f(x),

difference quotient:

Ax X2 — X1 Ax
differential quotient: (ﬂ) = lim (A—f) = jim 1 T4 =)
dx x; B8x0\Ax/, ~ Ax—0 Ax

For Ax > 0 we refer to a right-hand difference — or differential quotient, for Ax < 0
to a left-hand one. If both differential quotients exist and are equal, then the function
is uniquely differentiable at this point.

If the function is uniquely differentiable in every point of its domain of definition —
it is then also continuous - its differential quotient is a continuous function of the
variable x, the first derivative of the function:

! ! d . -

As shorthand one writes the first derivative as y’ (y prime) or f'(x).
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If the differential quotient exists, it is a proper ratio of two numbers as their respec-
tive limits. Thus one can treat both denominator and numerator as such:

df = f'(x)dx

If the first derivative is uniquely differentiable in every point of the domain of defini-
tion one can define the second derivative, an so on:

df’

dy@=1
YE = [0 = @, e Y0 = TP =2

dx

Of particular practical importance are continuous functions that can be arbitrarily
often differentiated, also called “smooth” functions, such as the trigonometric func-
tions.

In physics the independent variable is often the time ¢. For the derivative with re-
spect to time the notation y (y dor) has been adopted in written and printed work. This
is somewhat unfortunate for our purposes, since this sign cannot be directly entered
on the keyboard of a PC, and also one cannot enter it as a character with two meanings
(y and derivative with respect to ¢). In this text we stick to the notation y', even if the
independent variable is the time .

(x).

5.3 Derivatives of a few fundamental functions

5.3.1 Powers and polynomials

Normally one finds the derivatives of the most important functions in tables or one has
learned them by heart in school. They are, however, very easy to calculate if one takes
into account that the limit Ax — 0 takes place and that therefore all higher powers of
Ax can be neglected.

We show this in detail for the example of the second power:

y(x) = x*
y(x + Ax) = (x + Ax)? = x2 + 2xAx + Ax?

y(x + Ax) — y(x) = 2xAx + Ax>

y(x + Ax) - y(x)

Ax =2x + Ax

Y = lim y(x + Ax) — y(x)

= lim (2x + Ax) = 2x.
Ax—0 Ax Ax—0

This can now be easily extended to arbitrary powers, if one takes into account that
the second term of the polynomial (x + Ax)" = x™ + nx""'Ax + ax"2Ax? +
bx"3Ax3 + .- isnx™1Ax.
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The coefficients of the further terms a, b, c,... do not have to be given explicitly,
since all these terms vanish in the limit Ax — 0, as they contain at least the factor
Ax%:

y(x)=x"

y(x + Ax) = (x + Ax)" = x" + nx" ' Ax +ax"2Ax2 + cx" A3 + -

y(x + Ax) — y(x) = nx"'Ax + ax™2Ax2 + bx"3AX3 + .-

Y+ 89—y

=nx"1 4+ Ax(@x™2+...)
Ax

T }’(X+Ax)—)’(x)_ : n—1 — -1
y = Al;:'-nw Ax = Al;n_lo(nx + Ax(...)) =nx""".
This also yields the rule for higher derivatives of powers:

y(x) =x", y =nx""!,

y™ =n(n—1)(n —2).....(1) = const
(n+1) =0.

yn =n(n - I)xn—z'

y

The derivative of a constant ¢, which has by definition the same value of all values of
the independent variable, is zero.
The rules obtained above also apply if the exponents are negative or rational:

1 n
- = ! = -n—=1 _ —n+1) _ __ "
y=x —;—)y = —nx = —nx = x"+l
1 1 1
= 3¥Yx = 1/3—> f= _x1/3-1 = _ —2/3=——_
y=vx=x y'=3x 3 Ve

With this result it is also easy to see how the derivatives of polynomials look; for
example:

y =3x" +4x* +3x -1
y = 15x* +16x° + 3
y" = 60x> + 48x2;  y" = 180x2 + 96x;
y@ =360x +96; y® =360, y© =o.
We have shown the formal differentiation of powers in so much detail because this

also allows us to treat functions for which a series expansion containing power terms
is known.
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5.3.2 Exponential function

In analogy to the exponential series, we can define the exponential function for a
continuous domain of the variable x. Since its series expansion consists of powers, we
can obtain its derivative immediately by differentiating its individual terms according
to the rule derived above.

e=271828...
L m 2 3 4

N . x x x x
= = = — ] =1 —_— _— -
y=e ,.'ll'éo(s" mz=:0m!) et et T2ttt
T ST S . SR SO A S
ry= 1271237 1.2.3.4 = 1.2 7 1.2.3°7 7
Y=y
y"=yl=y.

Thus the exponential function has the property that its derivatives and the function
are identical. The above derivation also shows that the coefficient of the nth term
of the exponential sequence % is given by the reciprocal of the nth derivative of its

respective power:
n ) , n- xn-l xn-l ™ xo -
Y=t Y E T Tasy Y ok
Upon differentiation, every term assumes the form of the previous term and the con-
stant term vanishes. This property results in the exponential function and its derivative

becoming identical.

y(n+l) =0.

5.3.3 Trigonometric functions

In an analogous manner we can obtain the derivatives of the trigonometric functions
from their series expansions. We start with the representations that we previously
obtained from the complex exponential function:

. x3 x5 n 2n+1
e T T Z( )(2n+l)'

, 3x2  s5x* x?

T L S DI B
< TR 2'+ 7 Z( (2)'

2 4 2n
- DTSN P Y. i
ymcosx=l-or+ g ¥ _Z( D
(1]

P 2x 43 _ 3 x5

_’y__a-’_T!:F”.__x_i—'-ﬁ:F”.

2n+l

= —Z( ])"(2n+ D1 = —sin x.
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By taking into account the signs all further derivatives can be established:
y=sinx > y' =cosx; y"=-—sinx; y” =—cosx; y" =sinx

! . " /4 . )
y=cosx -y = —sinx; y"=—cosx; y" =sinx; ¥ = cosx.

Using these results all functions, which can be described as series expansions in
terms of trigonometric functions, can be easily differentiated. These are, in the main,
functions that describe periodic phenomena.

5.3.4 Rules for the differentiation of combined functions
Combined functions are easy to differentiate if one knows the derivatives of the func-

tions that are combined. The following, immediately plausible, rules apply.

multiplicative constant ¢
y=c- f) >y =c f'x
additive composition
Y=/ +gx) >y =r1'(x)+g®
product rule
y=/f)-gx) >y = f'(x)-gx)+ S(x) g'(x)
quotient rule
_IW S -g(x) — f(x) - ')
g(x) (g(x))?
chain rule
y=s@x®)) >y = fx) gk

example y = sin(x3 + x) = y’ = cos(x® + x) - 3x2 + 1).

5.3.5 Derivatives of further fundamental functions

To be able to differentiate all “prevalent” functions formally, one needs a collection of
derivatives of additional fundamental functions. We list these here without comment
in the form of a table together with those obtained above. The derivatives of the hy-
perbolic functions at the end of the table are simply obtained from their definitions in

terms of exponential functions.
y =x" —>y'=nx""

y=e* >y =€ y=e"" >y =ae®*; y=a* >y =a*lna
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y =sinx - y' = cosx;

, 1
y=tanx >y = ]

y =cosx - y' = —sinx
1

y=cotx - y' = =

cos2x' sin? x
1 1
y=arcsinx—>y'=\/ﬁ; y=arccosx—>y'=—\/ﬁ
y =arctanx — y' = 1+lx2: y=arcc0tx—>y’=—ﬁ
y=]nx—>y’=£: y="logx—>y'=x]]na
y = sinh(x) = # — y' = ex.,_2_e—x = cosh(x)
y = cosh(x) = ﬂ - I e = sinh(x).

2 A
In contrast to the trigonometric functions sin(x) and cos(x), the derivatives of the
hyperbolic functions sinh(x) and cosh(x) show no additional sign change on differ-
entiation.

For the inverse functions of the trigonometric functions we make use of notations
such as arccos(x) that are employed in mathematical texts; in Java code we use instead
acos(x).

5.4 Series expansion: the Taylor series

5.4.1

In many cases it is useful to analyze instead of a function f(x) a series that ap-
proximates it. This is true particularly if the series converges to the function without
restrictions. Then the partial sums of the series can be considered as approximations
with increasing accuracy.

For the terms of the sequence that make up the series one will use such functions
in preference that can be differentiated and integrated easily. Especially suitable are
series whose terms are powers or trigonometric functions of the variables. The first
case leads to the Taylor series, whose coefficients are obtained via differentiation,
which we will study more closely in the following. The second case leads to the
Fourier series, which we will visualize after treating the integral, since its coefficients
are determined via integration.

Another argument for the choice of a particular series expansion can be to use
functions for the terms of the series that are particularly adapted to the symmetry of
the problem that is described by the function, e.g. Bessel functions for cylindrical
symmetry and spherical harmonics for point symmetry.

Coefficients of the Taylor series
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The Taylor series is an infinite series whose partial sums are an approximation for
the function y = f(x), that is exact at the point xo and approximate in the vicinity
of x = x¢, and the interval for an acceptable approximation becomes larger with
increasing index of the partial sum. The members of the sequence that constitutes
the series are powers of the distance from the computation point (x — xg). Thus the
function is approximated via a power series and the problem consists of finding the
coefficients of the individual terms.

To achieve this, we first equate the function formally to a power series with terms
an(x — x¢)" and parameters a,. We then differentiate both sides repeatedly. After
each step we put x = xq. Thus all powers containing x — x¢ drop out from the power
series for the respective derivatives and the coefficient of the remaining term can be
easily obtained:

ansatz: f(x) = z an(x — xo)"
0

= ao + a1(x — xo0) + a2(x —xu)2 + as(x —xo)3 + -
(x —x0) =0 — ag = f(xo)
J'(x) = ay + 2a2(x — xo) + 3a3(x — x0)* + 4as(x — x0)* +
S (xo)
1

(x—x)=0->a, =

S"(x) = 1-2a2 + 2-3a3(x — x0) + 3 - 4a4(x — x0)® +

(x—x)=0—>a2= fl ();0)
S"(x) =2-3a3 4+ 3-4-2a4(x — xo)' +
(x—x9)=0—>a3= fé).cs)

(n)

n!

f(n) = nla, +...+E(x —x0)+--—ap = !
Thus the coefficient of the nth power is proportional to the nth derivative of the func-
tion at the computation point and the factorial as a factor simply follows from differ-
entiating the nth power. The Taylor series of the function is then with 0! = 1, 1! =1
and £ (x0) = f(xo):

f(xo) S (Xo) f’( 0)

i {x — x0) + S (xa)

3!

flx) = (x — xo)* + (x —xg)* +---

Taylor series: f(x) = Z f ("’(xo)%
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zeroth approximation: f(x) = f(xo)
first approximation, in x linear: f(x) = f(x0) + f'(x0)(x — x0)

second approximation, in x quadratic:
f(x) = f(x0) + f'(x0)(x — x0) + ——

While f’(x) = df/dx(x) describes the slope of a differentlable function at each
point x in its domain of definition, f”(x) i.e. df'/dx(x) describes the slope of the
slope or the change of the slope of f(x). The slope changes if and only if the curve
f(x) has a curvature. Therefore f(x) is a measure of the curvature of f(x). If one
identifies x with the time t and y = f(¢#) with the distance traveled by an object
during the time ¢, the first derivative is denoted by velocity and the second derivative
is called acceleration of the object that is, at time ¢, at position x.

The first approximation of the Taylor series takes into account the slope of the
function at the computation point, the second one in addition to its curvature. The
higher approximations use higher derivatives and it makes sense to also visualize their
meaning.

In the simulation of Figure 5.1 the derivatives up to the ninth order are calculated
for a function that can be chosen from 9 given options and are shown as colored
curves in an abscissa region that depends on the function and also may have a shifted
origin. With the choice boxes at the top, the derivatives to be plotted in addition to
the function can be selected; all nine are shown in the figure. For the red point, which
can be moved with the mouse, the values of the local values of the derivatives are
calculated anew and displayed in the number fields on the left.

The derivatives are approximated numerically as differential quotients using both
neighboring points:

y(x + Ax)— y(x — Ax)

j"( .)

= xo)z.

Y'() = A
"(x Y'(x+ Ax) —y'(x — Ax) y(x + 2Ax) —2y(x) — y(x —2Ax)
Y = 2Ax 4(Ax)?

You will find further details about this in the description pages of the simulation.

In many simulations contained in this book it is possible to enter formulas for func-
tions directly in mathematical notation. For the program, the functions are initially
strings without meaning, which have to be interpreted by an additional program, a
parser, and translated to Java code. This is a relatively complex process. If the func-
tion is only translated once for a simulation the required time is not of concern and
one has, when using the parser for EJS, the advantage of being able to change the
function or enter a new one without having to open and edit the program itself.

The determination of higher derivatives with sufficient accuracy requires a con-
siderable computational effort. In the example of Figure 5.1 the function has to be
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Figure 5.1. Simulation. Derivatives of a given fundamental function (blue, chosen on the left-
hand side) up to the ninth order, drawn in the colors of the choice boxes above. For the red
computation point, which can be moved with the mouse, the values of derivatives are given in
the number fields on the left. The picture shows the derivatives of sin(x)/x.

evaluated 10000 times for one computation, which puts a strain on the computing
speed of a simple PC. Therefore, the functions are predetermined in our example.
If you want to analyze other functions you may open the simulation using the EJS
console and change the simple Java code of the preset functions.

In the upcoming simulations of Figure 5.2 and Figure 5.3, the approximations for
the derivatives are calculated once without using, and once using, the parser and you
will recognize the difference in the computation speed from these examples.

Convergence of the Taylor serles

It should not be taken for granted that the power series also approaches the function for
values of x outside the computation point x¢. During the discussion of the exponential
function, which has, as a power series, a large similarity with the Taylor series, we had,
however, already established that the series also has to converge within the vicinity of
the computation point if the factors attached to its term do not diverge. For the Taylor
series, these factors are the derivatives in the computation point. The Taylor series
converges in the neighbourhood of the computation point if in the limit n — oo
derivatives grow smaller than n.
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For many functions that are important in physics, as for example polynomials, ex-
ponential function, sine and cosine, the domain of convergence is unlimited. With
increasing order or number of terms the corresponding Taylor series approximates the
original function over a larger and larger interval and the domain of small deviations
becomes larger and larger. In practice one normally uses a partial sum of finite or-
der; then the partial sum is identical to the function at the point of computation and
increasingly deviates from the function with growing distance from it.

It is amusing to calculate the Taylor series of the exponential function. Since all it
derivatives are equal, the Taylor series coincides with the exponential series.

The power function of degree n has non-vanishing derivatives only up to order
n + 1. In this case, the Taylor series terminates after the (n + 1)th term. Its Taylor
expansion is thus identical to the original function.

The trigonometric functions, however, have an unlimited number of derivatives that
are repeated periodically, for example sin x, cos x, —sin x, — cos x, sin x,.... The
approximation will become better the more terms of the series expansion are retained.

Among the possible approximation functions, the Taylor series is characterized by
the fact that the coefficients can be determined from data at a computation point alone,
namely all the derivatives of the function as this point. This series has the great practi-
cal advantage that its terms are powers and can therefore be easily added to and mul-
tiplied with each other, and also easily integrated and differentiated; the derivatives
of the function at the computation point that appear in the coefficients are constants
for the operations listed above. Therefore, in physical analysis, complex functions
are often approximated by a Taylor series with a limited number of terms: linear
approximation with two terms and quadratic approximation with three terms.

5.4.2 Approximation formulas for simple functions

The linear term of the Taylor series already yields approximations that are often used
in practice: the derivation is shown for three basic functions; for other cases you may
easily derive this yourself. You may, for example, use x = xg for the computation
point and determine the next highest derivative.

Expansion around the computation point x = 0, applicable for |x| <« 1

1) y=vitx=(0+x1

1 11 1
y'=5(l+x)_% —»yzvl+0+ﬁ-§(l+0)_%x=l+§x
1
2) y=—=0-29"
I—x
y=(1-x)"2 Sy~l4x
3) y=sinx; y' =cosx; ->yx=0+1-x=x

4) y=cosx;y =—sinx: ->y=x1-0.x=1.
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5.4.3 Derivation of formulas and errors bounds for numerical
differentiation

Using the Taylor series, one can quickly obtain formulas for the numerical calculation
of the first derivative y’. This also yields a measure for the respective accuracy. We
show this for the linear approximation; the procedure can be easily extended to higher
approximations.

We assume, in the following, that both y(x) and y(x + Ax) are known.

Y'@)Ax  y"(x)Ax?

Taylor series y(x + Ax) = y(x) + 1 + 2
Y'@Ax>  yD(x)axt
+ 6 tT
o _ YEHAD) —y(x)  [y'eAx  y"(x)Ax?
y) = Ax 2 T T
oy _ Yx+Ax)—y(x) .
y (X) = A—X O(Ax),
14 n 2 14
with O(Ax) = 2 (’;)Ax R (’2“ Foon? ();)A".

The last but one line shows the usual definition for the difference quotient supple-
mented by the term O(Ax) (letter O), which gives the deviation from the differential
quotient due to neglecting the higher terms of the Taylor series. The deviation van-
ishes in the limit of Ax — 0, since all terms contained in O depend at least linearly
on Ax. For sufficiently small intervals, the higher powers of Ax can be neglected
against the linear term and one obtains the important conclusion, that the procedure
of differentiation according to the above formula becomes accurate linearly with Ax.
If one halves the width of the interval, the accuracy is doubled.

Using the Taylor series one can easily derive a method with better convergence for
the calculation of the derivative. We write down the Taylor series once for a point that
is Ax to the right of the computation point x and once for a point that is Ax to the left
of the computation point. Subtracting the two series from each other, the terms with
even powers drop out:

"(x)|Ax)?
[1y(x +18xD) = y() + y'lax| + 20X
L Y @IAP |y @IAxl
6 24
YAy @Iax
2 6

(2] y(x — |Ax]) = y(x) = y'(x)|Ax| +
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" A 3
(11-[2] = y(x + |Ax]) — y(x — |Ax]) = 2y'(x)|Ax| + 2%‘- e

s _ Y0+ [Ax]) = y(x— [Ax]) O(y"’(x)lelz . )
B 2|Ax| 6 '

The formula obtained in this way converges quadratically with the width of the inter-
val; halving the interval | A x| improves the accuracy by a factor of four.

One can interpret the formulas in geometric terms: the first one approximates the
value of the derivative at the beginning of the interval by the slope between beginning
and end. The second one approximates it by the slope between the beginning of an
interval to the left and the end of an interval to the right of the computation point.

One can continue with the above procedure and thus obtain even faster converg-
ing approximation formulas; however, one then needs values of the function at more
points to calculate the differential quotient. Therefore, one often sticks to the above
approximation with quadratic convergence.

5.4.4 Interactive visualization of Taylor expansions

In the following we consider two simulations for visualizing Taylor expansions. The
first, Figure 5.2, uses the same setup that was employed for the calculation of deriva-
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Figure 5.2. Simulation. Taylor expansions of the Gaussian (blue, selection on the left-hand
side) from zeroth to ninth order around the adjustable red computation point. The Taylor
coefficients f, can be read on the left.
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Figure 53. Simulation. Approximation of a function in the vicinity of an adjustable compu-
tation point via partial sums of the Taylor series; in the figure, the Gaussian is drawn in red,
the third degree approximation in blue and the deviation in green. The computation point in
magenta can be pulled with the mouse and the degree of approximation can be increased or
decreased by one with the +1 and —1 keys. Two free parameters ¢ and b can be continuously
adjusted with sliders and a third integer parameter m can be changed in the number field. The
formula in the function field can be edited arbitrarily.

tives up to ninth order in Figure 5.1. The formulas for the preset functions cannot be
edited. The speed of computation is so great that the approximating polynomial reacts
to moving the computation point with the mouse virtually in real time.

The figure shows the ninth approximation for the Gauss function, which can be se-
lected with the choice boxes above. In the number fields we now have the coefficients
of the Taylor series. They only differ from the values of the derivatives via the factor
% for the order n.

In the following simulation o f Figure 5.3 a parser is used to evaluate functions that
can be edited. Using this simulation you can study the Taylor expansion for arbitrary
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functions albeit at a slower speed of computation. Here the highest order is limited
to 7.
The Taylor approximation of the red function is shown in blue and the deviation

2
is plotted in green. Figure 5.3 shows a Gaussian function y = f(x) = ¢~ 5 with
the third approximation in the vicinity of the computation point, which is drawn in
magenta and can be pulled with the mouse along the function. Using the keys +1 and
—1, the approximation order can be increased and decreased.

This simulation allows for many possible experiments. In the selection field for
functions, a number of standard functions can be selected (sine, exponential function,
power function, Gaussian, hyperbolic functions, sin(x2)). They contain up to three
parameters and can be edited. You can also enter an arbitrary analytical function for
the computation.

Using a parser for the evaluation of the editable function slows down the computa-
tion considerably. Depending on the configuration of your computer, it can take up to
a few minutes until the result for the seventh approximation appears.

After opening the simulation you first call a function from the selection list for
which initially the third approximation is calculated for a computation point of x =
0.5. You can then move the computation point and change parameters, and the result is
still shown practically in real time for the third approximation. The description pages
of the simulation contain further details and suggestions for experiments that can be
done.

5.5 Graphical presentation of functions

In Chapter 6 we will show interactive simulations that visualize functions in the plane,
curves in space, surfaces and time-dependent surfaces. At this point we will give a
short overview of the basic possibilities for visualizing functions.

5.5.1 Functions of one to three variables

Functions of one varlable

Functions y = f(x) are represented graphically in a two-dimensional system of
coordinates, on which the independent variable is usually shown on the abscissa and
the dependent variable y = f(x) on the ordinate. An interval on the x-axis is mapped
to an interval on the y-axis. The mapping is only unique if there is only one function
value y; = f(x;) for acertain value x; of the independent variable. If one wants, for
example, to show a circle, one needs to use two unique functions y; and y, for the
parts of the circle above and below the abscissa:

2 +y2=r2 5y =+vVr2—x2; y, = —Vr2 —x2.
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Figure 5.4. Simulation. Choice of different functions in linear and logarithmic coordinates.
The picture shows the exponential function. ¢ and b are adjustable parameters.

y = f(x) with linear or logarithmic scaling of axes

The special character of a function can be underlined if one uses logarithmic scal-
ing on one or both axes. With single-logarithmic presentation, exponential functions
appear as lines and with double-logarithmic presentation, powers as lines. In addition,
one can highlight regions of interest on the abscissa or ordinate using logarithmic
stretching or compression. One also uses logarithmic scaling if one or both of the
variables cover a very large range of values.

Figure 5.4 provides a simulation showing a number of preset functions next to each
other in linear—linear, linear—logarithmic and double-logarithmic scales. The formula
field is editable, which allows you to study arbitrary functions in comparison.

Further details and suggestions for experiments are given in the description pages.

Parameter representation of curves In plane and space

To show curves in the plane, that are non-unique with respect to the mapping from x
to y, one uses the parameter representation, where both x and y are unique functions

of a third independent variable, namely the parameter p.
x=f(p) y=2g()
P 2p=p2.
For the circle around the origin with radius r this is, for example:
X =rcosg, y=rsing

> x2+y2=r2Gin? @+ cosp) =r2.1=1r2
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where the parameter ¢ is the angle between the radius vector to the computation point
and the x-axis.

Using the parameter representation one can represent functions in the plane, which
cover the coordinate ranges x and y multiple times, such as spirals.

Extending the parameter representation to the three coordinates of space one can
visualize space curves in this way:

x = f(p). y=2g(p) z=h(p).

Thus the number line is mapped to a line in the plane or in space.

Unique surfaces In space

With z = f(x,y) one can represent surfaces in a three-dimensional space. Thus
the surface is a mapping of the xy-plane with a height profile that depends on x
and y. On paper one can only show two-dimensional projections of this surface. The
technique of simulations extends this view quite dramatically, since it enables you
to change the projections interactively or automatically, such that the impression of
three dimensions being present is received; we will use this approach intensively in
the following subsection.

Parameter representation of surfaces In three-dimensional space

Using a parameter representation with two parameters one can represent surfaces in
spaces that are not unique with respect to a plane of reference, for example the surface
of a sphere or a torus with respect to the xy-plane. In these cases, one needs f;(x, y)
and f>(x, y). In parameter representation one writes:

x= f(p.q): y=2g(p.q9): z=h(p.q).

Thus the two number lines p and g are mapped to a surface that lies in space.

Functions of three variables

A density distribution, for example of charge or mass in space, is described using
a function D of the three spatial coordinates x, y and z, i.e. D(x, y,z). How can
such functions of three variables be visualized? One obviously needs another variable
beyond the three space coordinates.

A qualitative option consists of assigning to a regular space grid of points a color
coding for D(x, y, z) and choosing the density of points in such a way that the
space stays “transparent”. The grid is then projected on a surface, and changing the
projection as a function of time again increases the spatial impression.
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A second option is to use surfaces in space on which D(x, y, z) has a constant
value. One can then stagger semi-transparent surfaces inside each other, or the con-
stant value of each surface can be changed as function of time. In the moving projec-
tion both possibilities yield a quantitative picture. In the first case one uses the opacity,
and in the second case the time, as the additional variable.

5.5.2 Functions of four variables: World line in the theory
of relativity

A physical event such as the ticking of the watch on my wrist takes place in a three-
dimensional space (x, y, z) and, because it depends on the time ¢, it can be considered
as a four-dimensional function E:

E = f(x,y,z,1)

In a simulation this can be represented, for example, by calculating for a cohort of
three-dimensional functions E(x, y, z. ;) for a number of discrete points #; in time,
two-dimensional projections, and displaying these one after the other. In general this
method has, of course, limited applicability. It is relatively simple, when dealing with
a chain of events that have a lower dimensionality, for example in the case of a prop-
agating surface in space during an explosion. In general one will restrict this method
to a lower dimensional projection.

This is especially the case when describing phenomena in the special theory of rela-
tivity. In this theory, the time ¢ joins the three spatial dimensions as the “fourth dimen-
sion”. In order for this variable to have dimensions of length, one usually normalizes
t via multiplication with the velocity of light ¢ = 3 x 10® m/sec:

E = f(x,y,z,ct) or E = f(x1.X2,Xx3,X4).

A four-dimensional chain of events — for example an exploding supernova — can only
be visualized with difficulty as a whole. To capture this phenomenon in its entirety one
would like to imagine the whole explosion in a single moment. Indeed, Homer and
the pre-socratic philosophers speculated around 500 BC about the god-like possibility
of recognizing space and time as past, present and future, as a unit. Around the year
520, Boethius formulated such thoughts in his work Comfort of Philosophy.

One circumvents this problem by doing away with two space dimensions for vi-
sualizations in the theory of relativity and plotting the chain of events on a plane
diagram, for example with the time dimension ct on the ordinate and, on the abscissa,
the space dimensions, x, in which the event takes place. The event chain of a body
that is moving in the x-direction is then called the world line.

This will be visualized with an example in Figure 5.3, where a point object is mov-
ing with constant acceleration in the x-direction. The limiting velocity of light, i.e.
the world line of a light flash x = ct is shown in red; in black, the event chain that
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Figure 55. Simulation. World line (blue) of a point object (magenta) that is accelerated
uniformly in one dimension. The black line shows the classically “possible” orbit, the blue
line the orbit that can be realized according to the special theory of relativity. The red lines
delimit the light cone of a light signal sent at the same time. The arrows originating from the
object delimit its light cone. The constant acceleration can be adjusted with the slider.

would be possible according to classical mechanics, for which arbitrarily large veloc-
ities could be achieved; and in magenta, the actually possible event chain according
to the theory of relativity, for which the velocity will approach the velocity of light
but will not exceed it. The arrows show the respective light cones in which all events
caused by the object happen — all as seen from an observer at the origin.

In this simulation the movement of the objects is shown as a function of time.
Further details are given in the description of the interactive simulation.

In articles on the special theory of relativity the time is normally plotted on the
ordinate and the space on the abscissa, such that the light cone opens up to the top.
The classical acceleration parabola x = —grz is then open to the right.
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5.5.3 General properties of functions y = f(x)

In the following we define important properties of a function of one variable y = f(x)
on its domain of definition D. A function f(x) is:

bounded, if in the interval of definition D there is a maximum

value (supremum) and a minimum value (infimum);
one-sided continuous if f(x) continues smoothly in one direction;
continuous in xo, if f(x) continues smoothly in both directions;
continuous in the if f(x) is continuous at all points in the domain
domain of definition D, of definition, i.e. there is no jump;

one-sided differentiable in xo, if f(x) has at xo a unique derivative
in one direction;

differentiable in xg¢. if f(x)hasat x¢ the same derivative
in both directions;

differentiable in D, if f(x) is differentiable in every point of D.

Corresponding examples are shown in Figure 5.6:

curvature
second derivative £ (x)

f(x)

conunueas th e wntersal
|

laterval Iaterval
— §

Interval

Figure 5.6. Properties of function graphs f(x) in an interval of the variable x. In the example
on curvature the notations concave and convex are defined for a finite interval.

The slope of the curve at a point is characterized by the direction of the tangent in
the point and thus by the differential quotient f’(x). At the maximum and minimum,
i.e. at the extrema, the tangent is parallel to the x-axis and the tangent of the slope
angle is zero. At the turning point the slope attains its largest or smallest value with
respect to its vicinity; in the example we have a turning point with a positive slope.
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The curvature of the graph of a function on an interval is defined as follows:

Concave function graph (negative curvature): all points on the graph lie above the
chord connecting the end points of the graph on the interval; the slope increases with
increasing x.

Convex function graph (positive curvature): all points on the graph lie below the
chord connecting the end points of the graph on the interval; the slope decreases with
increasing x.

The curvature at a point (x, y), considered as an infinitesimal interval, is obtained
as a limit for the vanishing width of the interval. It describes the change of the slope
and therefore is equal to the second derivative f”(x). Thus this quantity, as well
as the curvature, is a local quantity and, in addition, a function of x itself for those
functions that can be differentiated twice. At the turning point the sign of the curvature
changes; the curvature and thus the second derivative f”(x) vanishes at the turning
point.

The red curve in the second example has a kink at xo where no unique slope is
defined, but only a right-sided and left-sided derivative exist. It is therefore only one-
sided differentiable; its derivative is not continuous at xo. The blue curve in the first
example diverges at the end of the interval; it is not bounded and has no supremum.

5.5.4 Exotic functions

Functions can be of many different types. One of these, which is often given in text-
books and is both simple and exotic, gives food for thought, but is very well defined;
itis given by

1 for x irrational,
0 for x rational

S(x)= {
domain of definition 0 > x > 1.

This function can obviously not be visualized graphically, since there are infinitely
many rational and irrational numbers in the domain of definition, such that the values
of 0 and 1 are nested indissolubly on the ordinate. This function is not continuous at
any point and cannot be differentiated anywhere.

A graphically attractive exotic function is the fractal Koch curve, which is obtained
as the limit of a combination of triangular lines. This function is, in contrast to the
above, continuous, but does not have a well defined slope and thus no derivative.

The functions that are important for physics are, however, mostly well-behaved,
with the exception of a few points. The following section demonstrates a few typical
properties.
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5.6 The limiting process for obtaining the differential
quotient

After these preliminary discussions we want to visualize the limiting process involved
in differentiation in a simulation for the sine function. Figure 5.7 shows the sine func-
tion y = sin x over somewhat more than a full period. The first (analytical) derivative,
the cosine function d(sinx)/dx = cosx, is drawn in yellow. A blue point, at which
the limiting process will be observed, can be adjusted with the slider on the plot of the
sine function. The large red point can also be adjusted along the sine curve. The line
connecting these two points is extended in green.

The red and blue arrows show the difference of the ordinates (Ay) and abscissae
(Ax) between the movable red and the fixed blue point. The magenta point indicates
the value of the difference quotient Ay /A x. If you pull the red point to the blue point
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Figure 5.7. Simulation. Visualization of how the difference quotient approaches the differ-
ential quotient in the limit of Ax — 0 for the example of the sine function (black) and its
first derivative (yellow). The position of the computation point in blue can be changed with
the slider and the red point can be moved with the mouse. The small magenta point indicates
the value of the respective difference quotient. With decreasing width of the abscissa interval
it approaches the analytical differential quotient.
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the line connecting them becomes the tangent and the point for the difference quotient
moves to the curve for the first derivative. This is the limiting process Ax — 0 of the
difference quotient. You can reconstruct the curve of the first derivative by moving
the blue computation point along the sine curve. In the description pages you will find
hints for furtheruseful experiments.

The difference quotient obviously does not change, if the curve of the function that
is drawn symmetrically to the red colored x-axis is moved up or down by a constant
value c, the same applies to the differential quotient. This corresponds to the rule that
the derivative of a constant vanishes. All functions that are different only by a constant
value in the y-direction have the same derivative:

d d
SV + ) = 7.
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function f(x) = sin ()+c*

Figure 5.8. Simulation. Limiting process for the calculation of the second derivative (blue)
for a sine function (black) that has been supplemented by a linear term. The computation point
and the width of the interval can be adjusted using the slider and pulling the red point with the
mouse and the linear term can be changed by pulling the rectangular purple marker. The first
derivative drawn in yellow is then moved in the y-direction.
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Applying the same line of thought to the determination of the second derivative (the
figure shown above is also valid if one interprets the black curve as the first derivative
and the yellow as the second derivative), it follows:

d? d?
ﬁ(f(x) +a +c2x) = ﬁf(xl

The second derivative (the curvature of the original function) is identical for all
functions that only differ by a constant ¢; and a linear term c,x.

This is visualized via the simulation in Figure 5.8, where the second derivative
—sin x is plotted in addition. A purple rectangle is also present, which can be pulled
to add a linear term c;x to the sine function. This results in the first derivative being
shifted by the value c; in the y-direction. The magenta colored point of the difference
quotient is again led to the curve of the first derivative via the limiting process. The
second derivative is not affected by changing c2.

The second derivative characterizes a function up to two constants, which are initial
values of the function, namely the value of the function itself and the first derivative
at a point chosen as x = 0, without loss of generality. From the cohort of all func-
tions that have the same second derivative, only the initial values determine a unique
function.

This train of thought can also be applied to higher derivatives. The nth derivative
characterizes a cohort of curves with n parameters.

5.7 Derivatives and differential equations

For the sine function we have a simple relationship between the function and its sec-
ond derivative; it is equal to the negative sine function. The same relationship applies
to the cosine function.

y = sin(x) = y' = cos(x) > y" = —sin(x) = y" = -y
y =cos(x) > y' = —sin(x) > y" = —cos(x) = y" = —y.

For these trigonometric functions, the differential equation expresses the fact that the
absolute value of the derivative is equal to the function value having the opposite sign.
What does this mean in concrete terms?

If the function value y is positive and large, the curvature is negative and large,
leading quickly to smaller values of y. If the function value is negative and has a
large absolute value, the large positive curvature quickly leads to a larger value. If
the function value is small, the curvature is also small and therefore an increase or
decrease continues nearly linearly as at a turning point.

The negative relationship between the function and its curvature thus leads to oscil-
lating behavior. You are encouraged to confirm these statements in the previous two
figures.
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The fact that both trigonometric functions sin x and cos x satisfy the same dif-
ferential equations shows their close relationship as oscillating functions. It follows
immediately that the sum of sine and cosine functions satisfies the same differential
equation. (Also check that this sum is, according to the addition rules for trigonomet-
ric functions, identical to a phase-shifted function.) As a second example we consider
the exponential function for both positive and negative exponents:

y=ex_’yl=ex: yll=ex_’yl=y and yll=y

X

y=e oy =—e Yy'=e*5y ==y and y' =y.
Now the second derivative also has the same sign as the original function. What do
these relationships mean in concrete terms?

The curvature is equal to the function value. The larger the function value, the
larger the curvature. Any curvature already present increases with increasing y. If the
slope (first derivative) has the same sign as the function, the function will grow faster
and faster beyond any boundaries - it diverges. If the slope has the opposite sign to
the function, the function decreases faster and faster to zero; it converges to 0. The
differential equation y” = y describes both behaviors.

As shown for the trigonometric functions, the differential equation is then also valid
for the sum of two exponential functions. If one takes exponents with different signs
for the two functions, the hyperbolic functions are covered:

X _ p—X ex —_X
sinh(x) = L: cosh(x) = L.
2 2
Thus the differential equation y” = y describes the exponential and hyperbolic

functions and this common property shows their close relationship.
Differential equations describe the local, internal structures of function, their
character, and they are the “generators” of cohorts of related functions.

5.8 Phase space diagrams

All variables of a system constitute its phase space. A selection of a few variables
is referred to as a phase space projection. For a differential equation y' = y’(y, x),
¥(x), y'(x) and y’(y) are three meaningful projections of the phase space.

The general characteristics divergent/convergent/oscillating of a differential equa-
tion can be visualized well in a diagram that shows, in addition to the function y(x)
and its derivative y’(x), the projection y’(y).

In Figure 5.9 the phase space projection for the system y(x) = sin(nx) with the

differential equation y’ = dy/dx = ncosnx = nv1—sinnx = ny1-y2is
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Figure 5.9. Simulation. Phase space projections for y = sin(nx) (n = 1 in the figure).
The left window shows y(x) in blue and y’(x) in green. The zero line is marked in magenta.
The right window shows y’(y). The parameter x range determines the size of the interval, the
parameter n the number of periods in the interval. The blue point in the phase space is the end
point of the interval.

shown in the right-hand window. The adjustable constant n determines the number of
periods in the interval 0 < x < 2.

For the case of the trigonometric function, y’(y) is for n = 1 a circle that is trans-
versed periodically; for n < 1 the curve becomes an ellipse because of the factor n,
and is not closed (why?). For n > 1 this ellipse is transversed multiple times.

In this case, the differential equation is particularly simple. More complex differ-
ential equations of order n define families of more involved functions. One can, how-
ever, always differentiate between solutions that converge, diverge or oscillate with
increasing variables, and the phase space projections y™)(y) make this difference
particularly apparent.

Later we will visualize solutions of differential equations in more detail.

5.9 Antiderivatives

5.9.1 Definition of the antiderivative via its differential equation

The first derivative, the differential quotient, describes the change of a given function
y = f(x) in its dependence from the variable x. We can now ask the converse ques-
tion: Is there a function F(x) whose change is described by f(x),and what properties
does this function have? If such a function exists, it is called the antiderivative of f(x)
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or its indefinite integral. It is described by a very simple differential equation:
F'(x) = f(x), f given, F wanted

F(x) = Integral of f(x) = / f(x)dx

= 2 [ roax = se0.

The integral sign serves as a reminder that the calculation proceeds via a summation
and the notation f(x)dx reminds us that a limiting process takes place for the calcula-
tion for which the variable interval becomes infinitesimally small, that is, Ax — dx;
we will visualize this shortly.

This differential equation obviously defines a whole cohort of functions, which can
differ by a constant value, because the derivative (change) of a constant vanishes. Thus
the indefinite integral of a given function is known up to a constant.

d d
i FO +C) =——F@x) = f(x).

If the differential equation has a meaningful solution, i.e. if the function is integrable,
the indefinite integral is analogous to the differential quotient of a function, which
describes, up to a constant, a local property of the integrated function f(x).

5.9.2 Definite integral and initial value

What is the meaning of the integration constant? As long as we do not decide on the
range of the variable x it is simply an arbitrary number.

If, however, we start at a certain initial value x; and take into account that f(x) is
the change F'(x) of the antiderivative, then the antiderivative describes the process of
the changes in F(x) given by f(x) from the variable value x; onwards.

We now show this in a simple example from physics: we assume that f(¢) is the
time-dependent velocity, v(t), of an object. The result of this time-dependent velocity,
which can also have negative values, is the distance traveled F(¢) i.e. x(t). Thus v(f)
determines the distance from the initial point as a function of time.

The constant C is the initial value F(x) of the integral for the variable x1, in our
example the position from which we start.

Provided the range of the variable is open, i.e. x > x1, the definite integral defined
in this way is a function of the variable x.

If we are interested in the behavior of the antiderivative in a closed interval x| <
Xx < X,, the definite integral becomes a fixed value. The value at the end of the inte-
gration range is the result of the initial value and of all changes until the final value
of x, and is given by the antiderivative F(x2). The change within the interval results
from the difference to the initial value. Calculating this difference also gets rid of the
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unknown integration constant, if we repeat the same line of thought for the initial and
final value with an arbitrary initial value outside the interval:

x2
[ F(x)dx = F(xz) + C — (F(n)) + C) = F(xz) = F(xy).

This relationship is known as main theorem of differential and integral calculus.

Thus, in order to calculate a definite integral we “only” need to know its antideriva-
tive. To determine the antiderivative for an arbitrary function f(x) is, in general, not
as easily possible as for the derivative. Basic functions can be easily integrated by in-
verting the well known relations for their derivatives; for many complicated functions
there are tables. There are also quite a few useful general rules, which can help to find
the antiderivative, for example “integration by parts”. But there is, unfortunately, no
rule that always succeeds.

Therefore, numerical methods play an especially important role for integration, as
we will discuss later.

5.9.3 Integral as limit of a sum

In analogy to calculating the partial sums of a series, in an x y-plot of the function one
can define the integral as the surface measure of the function value in an interval of
the variable. It is obvious that one cannot simply calculate a sum of function values,
since their number would be infinitely large. The factor to be used is analogous to the
index difference for series and is equal to the width of the interval. If one multiplies
this factor with a suitably chosen function value we obtain a measure for the surface
under the function in the interval.

Since functions change in general when the variable changes, choosing an arbitrary
function value from the interval (for example at the beginning, in the middle or at the
end) can only yield an approximation. In this case, one decomposes a larger interval
[x1: x2] into n intervals chosen equal for expedience of width n = (x2 — x;)/ Ax and
sums over the approximate measures of the sub-intervals. Then the integral is defined
as the limit of this sum for a vanishingly small sub-interval.

Measure of the sub-interval Ax:  f(x;)Ax; x; in Ax

n
Total measure of the region x2 > x > x1: z f(xi)Ax

i=1
x2 n

Integral: / f(x)dx = Alimoz f(xi)Ax.
x1 =0 o

The definite integral provides the area between the function f(x) and the x-axis in
the region of integration.
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Figure 5.10. Simulation. Limiting processes for the integration using the step function ap-
proximation (green), shown for the example of the sine function (blue). For each interval, the
initial value is assumed to be valid. The red curve is the antiderivative, the point filled in green
indicates the approximation for the definite integral in the integration region whose initial and
final point can be adjusted. The number of intervals n (n = 10 in the figure) can be adjusted
with the slider.

The limiting process is shown in the interactive simulation of Figure 5.10

The sine function to be integrated is drawn in blue, while the analytical integral
function is drawn in red. The small blue point, which can be moved with the slider,
indicates the initial point for the integration and thus, at the same time, the zero point
of the formal integral. The thick end point in magenta can be adjusted with the mouse.
The second slide determines the number of sub-intervals .

The green rectangles represent the contribution for the individual interval, if the
initial value of the function in the interval is assumed to be constant for the whole in-
terval. The sum of the contributions for all intervals yields the large green point. With
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decreasing width of the intervals, it approaches the analytically calculated integral.
For a sufficiently large number of intervals this value runs along the integral curve
when pulling the end point.

You will find further instructions for experiments in the description pages of the
simulation.

5.9.4 The definition of the Riemann integral

Westill require a criterion to enable us to decide whether a function can be integrated
at all in a given region. In the classical sense this is provided by the integral definition
of Riemann.

For this purpose we define for the intervals givenby xg < .-+ < x; < --+ < xp with
interval widths x; — x; -1 = Ax; two sums, namely the upper sum and the lower sum,
of which the first one uses the largest function value, the supremum, in each interval
and the second one uses the smallest function value, the infinum, in each interval. If
both sums converge to the same value for n — oo, the one from above the other one
from below, the function is considered as integrable in the Riemannian sense

First measure for sub-interval A;x: A;x - supremum of f(x) in (Aix)
Second measure for sub-interval A;x: A; x - infimum of f(x) in (A;x)

First sum measure for region x; > x > xy:

z A;x - supremum of f(x) in (A;x)
i=1

Second sum measure for region x; > x > xj:

n
> Aix - infimum of f(x) in (Aix)
i=1
x2
the Riemann Integral / f(x)dx exists, if

X1

n
nl_lmo Z A;x - supremum of f(x) in (A;x)
i=1 n
L T . .
= lim > Aix -infimum of f(x) in (Aix).

In the following interactive simulation shown in Figure 5.11, the construction of the
Riemannian sums is demonstrated using the example of the sine function. In the left
window the upper sum (supremum) is used and in the right window the lower sum
(infinum). The width of all intervals is the same. The analytical integral is shown in
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Figure 5.11. Simulation. Limiting process for the Riemann integral for the example of the
sine function (black); the antiderivative is yellow. Integration region and number of intervals
can be adjusted, 10 intervals in the figure. For the upper sum the highest value is used and for
the lower sum the smallest value is used in each interval. The rectangular markers indicate the
approximations for supremum (left window) and infimum (right window).

yellow. The initial and final x-values can again be adjusted as well as the number of
intervals. With increasing resolution both sums tend to the same value.

The initial x-value can again be adjusted with a slider and the final x-value (ma-
genta) can be pulled with the mouse. The number n of sub-intervals in the integration
region is adjusted with the second slider. The analytical determined integral is indi-
cated in yellow. Its initial value is given by the initial ordinate of the integration region.
The point that is surrounded by a square shows the sum of approximating intervals.

If it is known that a function is Riemann-integrable, then any sum that uses, as a
measure, any value of the function in the sub-intervals, converges against the inte-
gral. Thus one has a lot of freedom in the choice of numerical integration method.
You are urged to compare the last two figures. The step-function approximation is
neither equal to the approximation with the supremum nor to that via the infinum, but
converges to the same limit.

As an example for a function that cannot be integrated in the Riemannian sense,
the exotic function mentioned above, can be considered:

1 for x irrational,
0 for x rational

f(x) = {

domain of definition 0 > x > 1.

In its domain of definition it has obviously an upper sum 1 and a lower sum 0, since
there are both rational and irrational numbers in every interval of an arbitrarily small
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length Ax > 0, and thus there exist function values of 0 and 1. Thus the upper sum
and the lower sum converge, but not to the same value, and therefore the function is
not Riemann-integrable.

5.9.5 Lebesgue integral

The previous statement is not really satisfactory. The number of rational numbers is
much smaller than that of the irrational ones, and therefore the function f(x) has the
value 1 for nearly all values of x. Therefore, the integral of this function should be
close to 1.

This question can be more easily answered with the alternative notion of the Le-
besgue-integral. For this approach one subdivides the integration region in stripes
parallel to the x-axis and asks for the limit of the sum over these intervals, each inter-
val contributing the product of the function value in the interval and the corresponding
Lebesgue-measure of the interval on the ordinate:

#(Ay) = Measure of all x-values, whose f(x) lie in Ay.

In the exotic example the top stripe has the function value 1 and the measure of its
variable interval is (for the moment approximately) 1, since nearly all numbers are
irrational. The lowest strip has the function value 0, independent of the measure for
the variable interval.

The exotic function is therefore Lebesgue-integrable and the result is 1.

T2 Picinan and Lebesaue inlegral
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Figure 5.12. Simulation. Interval subdivision for Riemann and Lebesgue integral; the func-
tion is shown in blue, the antiderivative in yellow and the red points indicate the approximation
for the chosen number of points 7. The integration region can be adjusted. For the Lebesgue
integral the correct measure for the limit was already used.
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The advantage of the integral definition of Lebesgue is that, when using it, the
integral notion can go beyond the domain of numbers to sets in general, if these sets
can be decomposed into subsets, which can each be measured in the sense of a finite
area. The following holds: a function that is Riemann-integrable is also Lebesgue-
integrable but the converse is not always true. Thus the Lebesgue integral is the more
general notion.

In the simulation of Figure 5.12 we visualize the integration of a parabola on the
left-hand side using Riemann’s approach and on the right-hand side with Lebesgue’s
approach. For the Lebesgue integral, the interval measure was calculated in such a
way that the measure is exact irrespective of the width of the interval.

5.9.6 Rules for the analytical integration

As for derivatives, there are a number of important and general rules (we drop the
integration constant in the following for clarity).

/Cdt = C/dt = Ct constant C
with g = g(t) and h = h(r)

/(g(t) + h(t))dr = /g(t)dt +/h(t)dr Additivity
/ gdh = gh — / hdg Integration by parts

[ rwie = [ retng'wax
Introduction of a new variable x viar = g(x).

For the particularly useful rules of partial integration and substitution of a new vari-
able, it is important to find functions that can be easily integrated, as for example the
exponential function, powers of x and the trigonometric functions.

The following formulas for basic functions without the integration constant follow
very easily from the formulas given above for the first derivatives and therefore we
only list those with the greatest practical importance:

tu+l
/Cdr:Ct; /t"dt= +l; /e‘dt=e‘:
n
¢
/a'dt = /e”"“ = l:—a; /sintdt = —cost;

/;dt =Int; /costdt =sint.
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The analytical integration of complex functions that can be integrated in principle is,
as a rule, more tedious than the always easily achievable differentiation. Therefore
there exist voluminous collections of integrals in the corresponding text books, manu-
als and on the internet. Numerical computer programs such as Mathematica also have
a wide range of formal integrals built in, which one can access as formulas if one
enters the function to be integrated.

It is obvious that numerical integration methods play a very important role, since
it does not matter for their application whether an integral of the function to be inte-
grated is known analytically or not, and since one can even integrate functions that
are only known as discrete measured values f;.

5.9.7 Numerical integration methods

Integrals often have to be calculated numerically, if it is not possible to determine the
antiderivative analytically. In this case the sums obtained using step functions con-
verge only relatively slowly when decreasing the interval widths; one would therefore
have to subdivide the integration region into numerous sub-intervals to achieve a high
level of accuracy.

Therefore, approximations of the function f(x) other than by step functions can be
used in order to reach convergence faster. An obvious approximation when looking at
Figure 5.12 consists of not taking the value f(x;) at the beginning of the interval as
constant for the interval (step-function rectangle approximation), but to use the mean
value between the initial and final values % [f(xi) + f(xi + 1)]. This corresponds
to a trapezoidal approximation, where one adds to the staircase the triangle leading
to the next function value; the curve is now approximated via the initial value in the
interval and the secant connecting the final and initial value with the slope %

The approximation of the function becomes even more accurate if one uses a parab-
ola (Simpson’s/iKepler’s method) that is fixed via three consecutive function values.
This now also takes the curvature (second derivative) in each interval into account
approximately. Thus those regions of the function that possess, like a parabola, no
turning points in the respective sub-intervals (x;. X;41), are approximated well. One
can continue is this manner if one uses polynomials of third or fourth degree, which
then also allow for the representation of turning points. However, one then needs
to use more and more intermediate points in each sub-interval. Therefore, this ap-
proach is usually restricted to the parabola, where a sufficiently small interval is
chosen.

All these methods have the advantage that the approximation of the function in
terms of constants, secants and parabolas can be quite easily integrated in the interval.

xi+Aix [x|+A,-x
Rectangle approximation: y = y; — f ydx ~ J yidx = Ajx - y;
Xi x1
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Trapezoidal approximation: y = y; + %(X —x;) >
i
xi+Aix . —y: [(xi + A;x 2 _x2
/ ydx =~ Ajxy; + oo IO/ [( i) i —xi(x; + Ajx —xi)]
xi A,-x 2

Aijx Ajx
=A;xyi + %(Yx}l —-y)= %()’i + Yi+1)

xi+Aix xi+2Aix
Parabolic approximation: f ydx =~ / (ax? + bx + c)dx
X Xi

Aix
= T(Yx‘ + 4yit1 + yit2).

The simulation in Figure 5.13 compares the three methods for two adjacent sub-
intervals. As an example we again consider the sine function (blue) with its analytical
integral (red). Initial and end point of the integration region can be changed. The sum
of both sub-intervals is shown as a green point. The simulation shows the great supe-
riority of the parabolic approximation, whose result agrees with the red curve even for
a coarse subdivision of the interval.

Calculating the parameters of a parabola that goes through three points can be te-
dious, but this is only necessary if, as for this simulation, the osculating curves are
calculated. The following steps are required for the calculation in each sub-interval
X =x1, 3(Xi + Xit1) = X2, Xig1 = X3

coordinates in the interval x1, y; X2, Y2 X3. )3

withx; — x; = Ajx/2; X3 —x = A;jx/2; Ajx = x3— X

Trapezoid
W0 T T Tz T
185+ .
1.0 N &
- v L .\‘\ 7
L1 8 \\‘ //
10 e
RE1S BETS
-20 -20
10'13‘55? |0|23l557 |D|23l507
- dalla =13 x1=0.00
roset O =

Figure 5.13. Simulation. Step-function, trapezoidal and parabolic approximations for the nu-
merical integration of the sine function (blue) with two sub-intervals. When reducing the size
of the intervals one can compare the convergence of these approximations. The closer the
numerical value (green) point is to the known analytical curve, the better the approximation
method performs.
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general parabola y = ax?+bx +c
the parameters a, b, ¢ are determined from the function values:
1>y =ax2+bxy+¢, 2>y, =ax2+bxz+c,3>y;3 =ax§+bx3 +ec.

Solution for a, b, ¢ yields
a=-20n—2y2+y3)
=320 -2+
2
b= E(yZ_yl)-(xl + x2)a
2 2
=A_( }’1)——(«\’1 + x2)(y1 — 2y2 + y3)
=y1—axi—bx; =y - xlA (1 —2y2+ y3)
2
_XI[E(,VZ —y1)—(x1+ Xz)m()'l —2y2+ ys)]-

For the approximation to the integral over the sub-interval A;x one obtains, using the
parameters of the parabola and integrating a surprisingly simple formula, for which
only the three function values and the width of the interval are required.

x; x;

+1 i+1
f(x)dx ~ / (@x? + bx + c)dx

Xi

Ax;

parabolic approximation of /

Xi

i + 4yA x + Yi+1)-

5.9.8 Error estimates for numerical integration

To get an idea of the accuracy of the different integration methods, we expand the
function in a Taylor series and use, assuming the interval is sufficiently small, the first
neglected term as an estimate for the error. To simplify the notation, we expand the
function in a Taylor series around x = 0 up to the fifth order:

1) = Y0 = YO) + Y Ox + 'O 5 + 50

+y905 + y® (0)—

Ax (0)

1) f(x)dx = y(())Ax + (0)
0

3 Tk

" 4) (5)

y'O) , 4 yD0), s y®0), 6
AxS + 2N

T X Ty A T A

A L
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0 ’ 0 o
y"(0) y“’(O) y‘5>(0)
- At g At -
Ax Ax (]
s f(x)dx = f(x)dx +/A f(x)dx
M (O
= 2[y(0)Ax Ty 3('0)Ax3 o/ 5!( )Ax-"]

y"(0) { Ax y@©0) [ Ax\®

] (2) 225 ]

For the step-function method we use only the first term y(0) in 1). The error for
each interval is thus of the order Ax2. If one wants to know the error for the entire
integration region, one has to sum over the L/ Ax intervals. Thus the total error is
proportional to Ax. Doubling the resolution leads to halving of the error or doubling
of the accuracy.

For the trapezoidal method the first two terms are used in 1). The interval error then
is proportional to Ax3, thus the total error depends on A x2. Doubling the resolution
leads to an improvement in the accuracy by a factor of 4.

For the parabola method we expand the function from the middle of the double
interval once to the right and once to the left and the integral over the whole interval is
the sum over both sub-intervals. The result then only contains odd powers of Ax. For

Ax/2
/ f(x)dx = 2[y(0)— +

Ax/2

Accuracy in dependence on the number of intervals
1.E+00 oy
1.E-01 Tre

® T
1.E-02 - = —
1.E-08 C . e
1.E-04 '
1.E-05 {{  Parabola approximation —
1.E-08 nX4) e
a  Trapczoid approximation e
1.E-07 -2) g
1.E-08
1 10 100
Number of intervals

Figure 5.14. Comparison of accuracy achieved for the numerical integration using the trape-
zoidal and parabolic approximations as functions of the number of sub-intervals n. For 100
sub-intervals the parabolic approximation is at least five orders of magnitude more accurate.
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the parabola we also take into account the curvature, i.e. y”. The error for each interval
is then proportional to Ax>, the total error is thus proportional to Ax*; doubling the
resolution leads to an increase in the accuracy by a factor of 16. In addition, the large
factor 5! = 120 contributes to a small error.

Important hint: the approximating parabola used for the integration is not identical
with the third partial sum of the Taylor series. This one only agrees with the function
at the computation point, while the approximating parabola used for the integration is
equal to the function at all three points.

Figure 5.14 compares the deviation from the analytic integral for the sine function
in double logarithmic scale for the trapezoidal and parabolic methods as functions of
the resolution (number) of sub-intervals. The points represent the numerical integra-
tion results over a constant integration region, the lines represent the functions an=2
and bn ™4, with a and b chosen in such a way that both lines coincide with the numer-
ical error for the smallest number of intervals. The further behavior of both functions
and the points confirms the expected dependence on n.

This example should demonstrate to you how versatile already the Taylor series of
the fifth order is and, therefore, why we have treated it in such depth.

5.10 Series expansion (2): the Fourier series

5.10.1 Taylor series and Fourier series

The partial sums of the Taylor series approximate a function f(x) in the vicinity
of the computation point xg via partial sums of a power series. If it is necessary to
approximate a function over a larger interval, one would need terms of a very high
order. The polynomial obtained by truncating the Taylor series would have to have as
least as many turning points as the function. For periodical functions this would be
very tedious for intervals larger than the period.

Periodical functions have great practical importance in telecommunications and
electrical engineering. For such functions, approximation using the superposition of
periodical standard functions (sine and cosine) is much better suited. One expands the
function into a series that consists of the fundamental tone and the overtones, i.e. of
the functions sin nx and cos nx with integer values of n.

The analogy to the analysis of a vibrating string is immediately obvious: sinx de-
scribes the vibration of the fundamental tone, sin 2x that of the octave, sin 3x that of
the fifth above the octave and so on. For a string that is fixed at both ends x is twice
the string length. The variable x is now the product wt of the angular frequency w
and the time 1.

t AT
X =ot =2rvt = ZHT: v frequency of oscillation;

T duration of one period.
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Depending on the shape of f(¢), one superimposes more or fewer of these sine/cosine
oscillations of a certain amplitude. The set of amplitudes of the overtones, i.e. the
coefficients of the series expansion, represents the spectrum of the periodical oscil-
lation. Spectrum and oscillation forms are corresponding representations of the same
phenomenon. This representation in terms of superimposed sine and cosine functions
is called the Fourier series of f(t).

While the partial sums of the Taylor series approximate the function in the proximity
of a point, the partial sums of the Fourier series are approximations for the entire
interval of the fundamental period and therefore also — because of the periodicity of
the functions considered — for an unlimited region of the variable x. The Fourier series
does not have to coincide with the function at a specific computation point, unlike the
Taylor Series, which must coincide with the function at the computation point.

It depends on the properties of f(¢) how many overtones need to be superimposed
to approximate the function at nearly all points. If one does not interpret the notion
of convergence strictly, then Fourier series converge for all functions, even for non-
continuous ones. The convergence is then not necessarily monotone, i.e. it can be
better for some values of ¢ and worse for other values of ¢, and may even fail for
some values! At discontinuities one observes overshooting even for higher orders of
the series. This is called ringing in telecommunications.

Since the periodical phenomena that we consider here are mostly oscillations in
time, the variable is usually x = ot. To also model the phases of the individual
overtones, we use a sum of terms with sin nx and cos nx. The sum then represents a
phase-shifted sine or cosine function. Thus the general Fourier series reads:

£©) =5 + Y ancos(nor) + bn sin(nwr).

n=1

For a given spectrum ao.a;.bi, i = 1,2,..., one can calculate f(t). For a given
function f(¢), all coefficients can be determined and thus the spectrum is known.

5.10.2 Determination of the Fourier coefficients

How do we now obtain the coefficients an and ba?

For the Taylor series, we made use of the fact that, following differentiation, all
terms that still contain the distance x to the point of computation become zero, such
that the coefficient of the corresponding constant term gives up to a factor the corre-
sponding derivative at the point of computation.

For the Fourier series we instead begin by integrating the product of the function
and the overtones cos(mw?) or sin(mwt); m = 1,2, 3,... overone period T of the
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fundamental frequency (m = 1)

T T ao 00
/ cos(mot) f(t)dt = / cos(mm)(7 + ) an cos(not) + bn sin(mut))d!
(V] (]

n=1

T T 00
[ sinmon st = [ sintmon(% + Y- an costnon) + businuon) ar.
0 0

n=1

This initially looks a bit complicated; however, it turns out that the integral over the
constant, i.e. the first term before the sum symbol, nearly always vanishes, since the
integral over a period of cosine or sine is zero. Only for m = 0 does one obtain a
contribution, since we have: cos0 = 1 = const. Therefore the following applies:

a._ 1 T
7—;/(; f(t)dr.

In addition, the integral over the product of an overtone m and a second overtone n
is zero, if m and n are not equal. This also applies when a cosine and sine function
are multiplied, because of the sine functions are odd while the cosine function are
even with respect to x = 0. Therefore, we are left only with the integrals cos? nx
or sin? nx, which are both T/2. Thus the coefficients can be easily written down,
but this requires the determination of integrals, which often necessitates numerical
calculations.

an = % /cos(nwt)f(t)dt; bn = %/sin(na)t)f(t)dt.
The simulation in Figure 5.15 visualizes these circumstances that simplify the calcu-
lation of the Fourier coefficients. From a selection field, a product of periodic func-
tions of the general form that we are interested in is chosen: cos(mx)(a cos(nx) +
b sin(nx)).

With slides, the parameters a and b and the integers m and n can be chosen. The
function is drawn in red. After activating the field entitled inregral the blue integral
function is calculated over a period of the fundamental oscillation from O to 25r. The
final value is the definite integral of interest to us.

As afirst step, we convince ourselves that integrals over sine and cosine vanish and
that the addition of sine and cosine functions results in a phase-shifted sine or cosine
function, whose integral also vanishes. The calculation of the integral for the product
of the function defined above, with an overtone of initially unknown order, shows that
indeed all contributions vanish except for the one where the overtones are identical
and the function type (sine or cosine) is the same. One realizes that the symmetry of
the different functions with respect to the midpoint of the period on the x-axis is the
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FP Fourier series 1

Integrals of Fourier terms

-20+
X
function function type
sinm*x) *b * sin’x) w |sin{m) * sin(nd
a=1.00 m=8 n=6_
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function
Figure 5.15. Simulation. The simulation visualizes the orthogonality of the trigonomet-

ric functions. The red curve represents the product of cosmx and the adjustable overtone
acosnx + bsinnx; in the figure we have m = 10 and n = 8. The blue curve shows the
integral, whose final value (definite integral over one period of f(¢)) vanishes for m # n.
For m = n we obtain, when integrating over a cos mx cosmx, the result axr, while the inte-
gral over the mixed term b cos mx sinmx vanishes. The integration is started by selecting the
corresponding option box.

reason for this specific result. Thus we have:

T T
/ cos(mwt)dt = 0; f cos(mwt)sin(not)dt = 0;
° ()

0 form # n

T
t)cos(nwt)dt =
/(; cos(mwt) cos(nwt) {T/2 form = n.
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This property of the functions sine and cosine means that they are an example of an
orthogonal system of functions. Two functions are called orthogonal if the following
applies:

T
/0 AOLEOdE =0 for @) # f200).

In the description pages of the simulation, more detailed instructions and hints for
experiments are provided. After opening the simulation you choose the function type
and press the enter key. The integration process is animated in order for you to see the
difference between the integrals more easily when changing the functions.

Il
Calculation of the Fourier coefficients (*Pl)
20T+
161
1.0~
054+
JaVaY A
2 30 s | 4 ¢5| Ay
~ R /- \ /“‘ \
\}/ \
20+
X
function function type
a'(x-pi*h)* siu(n‘x)| ‘ w Sawtooth sin
a=100 b=0.00 c=1 ordern=10
‘ = — s |[O—ox | s el
(L I I I I L ) LU L I I I LI B | Fe ey g ey ey sy gy
jJ .2 101 2 3 6 -4.2-02 4 6 1 2 4 5 7 810 1 3 5 6 8 10
function 2 integyral

Figure 5.16. Simulation. Calculation of Fourier coefficients for a choice of functions f(¢), in
the figure for a sawtooth oscillation. f(t). sin(10¢) is drawn in red, and the integral function
is drawn in blue; its final value corresponds to the coefficient h1o of the 10¢h sine overtone.
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5.10.3 Visualizing the calculation of coefficients and spectrum

The simulation in Figure 5.16 visualizes the calculation of the Fourier coefficients for
the fundamental tone and the first nine overtones for the following typical periodical
functions: sawtooth, square wave, square-impulse and Gaussian impulse. To this end,
the product of the functions under the integral sign is determined and drawn in red
while the definite integral is shown in blue. The final value of the integral is, except
for a factor w that was suppressed to get more easily readable values, equal to the
coefficient of the selected order. The functions are provided with up to three param-
eters, a, b and c, that control the amplitude, the point of symmetry and the impulse
width. From the simulation, the spectra of the functions shown can be obtained in a
numerical and experimental manner.

The interactive figure of the simulation shows the situation for the sine coefficients
of 10th order of a symmetrical sawtooth. The simulation is started by choosing a
function and clicking on the enter key. The description pages and the instructions for
experiments contain further details.

5.10.4 Examples of Fourier expansions

In the following interactive examples (Figure 5.17a to Figure 5.17c) the calculation
of the coefficients takes place in the background. In the window the function is shown
in red and the partial sum of the desired order is shown in blue. The function window
is interactive such that many more functions can be entered and a few are suggested
in the description. In a text window, the order of the analysis can be adjusted; the
approximation order n to be used for the partial sum is selected with a slider. The
simulation allows the use of very high orders.

2 huurr aralysis

In T 3 I
10 {l%f Q,‘gp"\.’qj}lg SN .
05
|
g o ~
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10 A oo LA
VA i b\,v'*f""*‘“w ]
3 2 1 0 1 2 3 4 5 3 7 8 ]
x
fx)=|2*steap(e-pid-1 mo es4e max_order 5110 Srdus= 028 l reset

Figure 5.17a. Simulation. Periodical square impulse (red) and its Fourier approximation
(blue) of 28nd order. The calculated order n can be chosen.
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Figure 5.17b. Periodic sawtooth, modulated from the midd!le of the period by a high frequency
sine function (red) and Fourier approximation of 18th order (blue). The modulation frequency
can be chosen with the slider.
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Figure 5.17c. Frequency spectrum for the Fourier expansion of the modulated sawtooth in
Figure 5.17b. The abscissa shows the order n of the overtone (fundamental tone n = 1); on
the ordinate one can choose between displaying the individual coefficients or the total power
in a given order.

The calculation of the Fourier expansion of nth order follows immediately after
entering the function. The diagram extends beyond the integration region of 2x in
order to see the periodic continuation in both directions.

In Figure 5.17a the Fourier expansion of order 43 is shown as an approximation
for the symmetrical and periodic square impulse. For the square wave, one recognizes
very clearly the typical overshooting at discontinuities, which does not vanish even
for very high orders.
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In Figure 5.17b, using the same simulation, the approximation of 17th order is
shown for a sawtooth oscillation, which has been modulated in a nonlinear fashion
with a sine function of high frequency.

The spectrum is shown in a second window of the simulation (Figure 5.17c). It
can be changed between sine (an). cosine (b,) and power spectrum (s2 + b2). This
figure shows the spectrum of the modulated sawtooth, which is rich in overtones and
has a pronounced formant at the sixth and seventh overtone. In acoustics, formants
are defined as limited regions of overtones with large amplitude; they significantly
determine the tone quality.

The description of the simulation contains further instructions.

5.10.5 Complex Fourier series

In the space of complex numbers, the Fourier series can be formulated in a very
elegant way:

@) = z c"einwt

n=-—o00
1 d inwt
cn = ?[) f(@)e"“ dr.

The connection to the real representation is obtained via reordering the sum and com-
bining, starting with n = 1 terms with —n and n. Taking into account cos(—x) =
cos(x); sin(—x) = —sin(x) we get:

00 oo
J(@0 = z cne'"?t = Z cn(cosnowt + i sinnwt)
p=—00 p=—00
=co + (¢ +c—y1)cosnot +i(c; —c—y)sinnwt + ---
(e <]
f() =co+ Z(C,. + c_p)(cosnwt + i(cp — c—p) sin nwt).
p=1

As a connection between real and complex coefficients we obtain:
ap =2C0; An =cCn+C—pn: bn=i(cn—c-n).

The complex formulation is particularly used in electrical engineering. It has the ad-
vantage that calculations with exponentials are in general easier and more transparent
then those with trigonometric functions.

For the fast numerical computation of the components of a Fourier series, a special
algorithm has been developed, which is known as FFT (Fast Fourier Transformation).
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5.10.6 Numerical solution of equations and iterative methods

In mathematics and physics one often needs to determine the values of a variable,
for which a function depending on this variable has certain value C. An identical
problem, as far as the computation is concerned, is to find the value of the variable at
which two functions of one variable have the same value. One solves these problems
by looking for the zeros of a function.

We define y1 = f(x); y2 = g(x)
For which x is y1 = C? Answer: f(x)—C =0
For which x is y1 = y»? Answer: h(x) = f(x) — g(x) =0.

An analytical solution for finding zeros of a function can only be derived for very
simple functions, thus it is an exception. Therefore, one needs a numerical method of
solution that preferably works for all functions and all parameter values.

This is achieved with iterative methods that present a reversal of the question. One
initially takes a value of the variable, which is probably smaller than the estimated first
zero in the interval of interest, and calculates both the absolute value of the function
value and its sign. Then one increases the variable by a given interval (one can of
course also start from the right and decrease the variable step by step). If the sign
changes one has obviously crossed a zero. Now the direction of the movement is
inverted and the step width is multiplied by a factor < 1. Thus one finds boxes of
decreasing size containing the zero until the deviation of the function value from zero
becomes less than a predetermined tolerance. Then one continues with the process in
the original direction, until all zeros have been found or until a certain threshold for
the value of the variable or of the function itself has been exceeded, and thus one is
outside the region of interest.

For this iteration process, ready made algorithms are available in standard numer-
ical computer codes, which include further refinements. Thus one can, for example,
vary the width of the iteration intervals such that the character of the function is taken
into account. For example with the Newron method one uses its slope the first deriva-
tive to adjust these intervals. Given the speed of today’s computers, these refinements
are no problem for simple tasks. The following interactive example in Figure 5.18
determines the zeros of a function that can be entered at will. This function is preset
as a polynomial of fourth degree with irrational roots.

The sequence shows the progression of a very simple iteration algorithm. The speed
can be adjusted. The starting point of iteration (magenta) can be dragged with the
mouse. The iteration proceeds with a constant step width to larger x-values until the
sign of the function changes. The initial value is reset to the last value before the sign
change and the step width is decreased by a factor of 10 and the progression to larger
x-values is resumed. This is repeated until the deviation of the y-value from zero
falls below a given tolerance. In the simulation one can choose whether it stops after
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Figure 5.18. Simulation. Animated iterative calculation of the zeros of a function; a poly-
nomial of fourth degree is shown in the figure. The left window shows the whole calculation
interval, the right, a section whose scale conforms to the resolution achieved. The last itera-
tion point is shown in blue in both windows while the three predecessors are shown in red
in the “looking glass” window. The image shows a return after dividing the interval by 10.
The magenta point is the starting point of the iteration. It can be drawn with the mouse. The
desired precision delta, the number of time steps per second (speed) and the abscissa range
Xmax can be chosen. In the number fields the coordinates of the current iteration point x, y and
the initial point xo, yo of the iteration are shown. In the formula window, any functions can be
entered whose zeros are to be calculated.

reaching a certain accuracy, or whether all zeros in the variable interval are determined
in sequence. In a single calculation the magenta point jumps to the calculated value,
while the blue dot shows the first iteration value when determining multiple zeros.

To enable you to follow the progressive iteration with a high level of accuracy,
a section of the window is shown in detail like in a magnifying glass, and the scale
adjusts to the increasing accuracy.

From the zoom window of Figure 5.18 you can see that the curve is always nearly
linear close the root of the curve. The regula falsi uses, as the next iteration value
for x, the intersection of the secant formed from the two previous iteration points
with the x-axis. It therefore leads quickly to the solution. We have, however, chosen
the constant step width so that the process can be observed more easily.

Further details and hints for experiments can be found on the description pages of
the simulation.



6 Visualization of functions in the space
of real numbers

In this chapter simulation is used to represent different types of functions graphically
and to visualize them in their two or three-dimensional context. In most cases, the
functions have up to four parameters that can be varied.

Physical quantities, such as mass or length, are always associated with a dimen-
sion. It is our goal to convey an impression of the character and of the type of the
functions y = f(x). If one considers functions of physical quantities A, for example
temperature T, voltage U and mass M, one has to make the argument of the function
dimensionless, as a rule. Thus the x in f(x) is then understood as 7/K, U/V , M /kg
and so on, where K stands for Kelvin, V for Volt and kg for kilogram. The physical
quantities appearing in the following section are thus assumed to be made dimension-
less in this way. Hint: if the unit is changed then x also changes, forexample we have
L/cm = 100L/m.

For some simulation files, in particular those of functions of three variables, one
parameter is changed periodically as a function of time. The animation achieved in
this way enhances the spatial impression and rapidly conveys a sense of the influence
of that parameter. Animation is also used for the representation of parameter functions
as paths on the plane and in space.

Each file contains a description and hints for experiments.

In a selection window, a large number of standard functions y = f(x) are listed
according to their type (for example Poisson distribution, surface wave). In a text win-
dow the formula of the selected function is shown and can be edited or even rewritten
from scratch. Changes to the formula can be confirmed with enter.

The command panel below the plot mainly looks the same for all simulations; with
selection window and formula display, four sliders for adjusting the parameters ei-
ther continuously or as integer values, input fields for scales etc. and option fields
where needed for showing or suppressing additional functions such as the derivative
or integral. In the following first example this is discussed in detail.

6.1 Standard functions y = f(x)

The following simulation in Figure 6.1 is a plotter for arbitrary functions y = f(x).
From a selection menu you can choose preset functions, which can be changed. You
can also enter totally new analytic functions.
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The original function itself is shown in red. With option switches you can call sev-
eral functions to calculate and display them: inverse function, first derivative, second
derivative and integral.

The derivatives are calculated in secant approximation, the integrals in parabolic
approximation.

Inverse function: x = g(y). This involves the problem of finding, for a given
function y = f(x) for a certain image variable y, the preimage x. Graphically this
corresponds to a reflection of y = f(x) on the angle bisector y = x or swapping
of x and y. This line is shown in the corresponding plot (note that in this plot x and
y scales are not identical). In the following figure this is shown for a polynomial of
fifth order with three zeros. The angle bisector is shown in gray, the inverse function
in light brown. The plot of this function is an example of the situation in which the
function y = f(x) is unique, each x; is mapped to exactly one y;, but the inverse
function is not unique, i.e. there are many y; for which three x; exist.

First derivative: y = ad; f(x) is shown in magenta.
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Second derivative: y” = JA:: f(x) = 7‘1; y' is shown in green.

The integral f:.u.. f(x)dx with adjustable initial value Iy for x;,, is shown in
blue.

Figure 6.1. Plot of function (red), inverse function (light brown), first derivative (magenta),
second derivative (green) and integral (blue), shown for the example of the polynomial of fifth
degree y = —x5 — 0.2x2 + x.

When calculating the integral it is important to remember that the calculation starts
at x¢ with an initial value /. The variable region and the initial value must be chosen
in such a way that the integral curve stays in the window.

Figure 6.2 shows the Gaussian y = ex? with inverse function, first and second
derivative and integral.

The command panel allows for up to three parameters a, b and c, a continuous
variation, and for a fourth parameter, a choice of integers.
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Figure 6.2. Simulation. Function plotter for functions that can be specified at will; optionally,
the inverse function (light brown), the first derivative (magenta) and second derivative (green)
and the integral (blue) are drawn as well. The figure shows the example of a Gaussian, whose
amplitude, width and center can be adjusted with the sliders. The function can be edited.

With the colored option boxes, the inverse function, 1st and 2nd derivative and
integral, can be shown or suppressed.

The presentation shows the abscissa and ordinate symmetric to the origin. In the
first white field on the bottom you can adjust the variable range —x;,x < X < Xpax by
hand, in the second field the y-range and in the the third, the initial value of the integral
for —xmax. If the symmetric range of variation is not sufficient for your function, you
can increase or decrease it by entering factors in the formulas.
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As usual, the window can be pulled to full screen size and, after marking a point,
you may read off its coordinates on the lower boundary of the graphic.

The preset functions are:

Functions Formulas In Java-syntax
constant a

pthpower, p > 0 and integer a*x"p

bth power, (b rational; x > 0) a*x"h

sine sin(x)

cosine cos(x)

sine with three parameters
cosine with three parameters
power of sine

power of cosine

tangent with three parameters
exponential function
exponential decay

natural logarithm

hyperbolic sine

hyperbolic cosine
hyperbolic tangent

a*sin(b*x + ¢)

a*cos(b*x + ¢)
sin(a*x)"p

cos(a*x)"p

a*tan(b*x + ¢)
a*exp(x/b)

a*exp(—x/b)

In(x/a)

(exp(a*x) — exp(—a*x))/2
(exp(a*x) + exp(—a*x))/2
(exp(a*x) — exp(—a*x))/(exp(a*x) + exp(—a*x))

Gauss distribution with three parameters a*exp(—b*(x — ¢)"2

(sinx)/x

((sinx)/x)?

sin(a*x)/(a*x)
(sin(a*x)/(a*x))"2

In the simulation you may change the preset functions or enter new formulas from

scratch.

6.2 Some functions y = f(x) that are important

in physics

The following simulation shown in Figure 6.3 uses the basic structure of the previous

example.

In this simulation, some important formulas of physics of the type y = f(x) are

shown, whose parameters have been chosen in such a way that the variable x and the
adjustable parameters correspond to simple, physical quantities. In the second col-
umn of the following table, the well-known formulas from physics are given and the
formulation in the simulation syntax is given in the second line. Calling the function
random(n) creates a random number between 0 and n. A random distribution with
maximum deviation that is symmetric to zero is obtained as random(n) —n /2.

In the third column, the meaning of the corresponding variable x and the parameters
used are given.
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Gaussian, area 3 '“ P a = ¢: standard deviation

normalized to 1 b: symmetry variable
1/(a*sqrt(pi))

*exp(—((x — b)/a)"2)

Gaussian with additive
noise

7'”""(%"': + noise
1/(a*sqrt(pi))
*exp(—((x — b)/a)"2)

+ random(c/10) — ¢ /20

a = o: standard deviation
b: symmetry variable
¢/10: maximum added noise

Gaussian with
multiplicative noise

ﬁ’-’ e~ (1 + noise)

1/(a*sqrt(pi))
*exp(—((x — b)/a)"2)
*(1 + random(c/10) — ¢ /20)

a = o: standard deviation
b: symmetry variable
¢/10: maximum
multiplicative noise

Poisson distribution

(x+xg)P e—x+x0)
pl

(x +10)"p
*exp(—x — 10)/faculty(p)

X + xo: expectation value
of p
p=1223,...

amplitude modulation

sin(w 1) cos(w,t)

a*sin(10*x)*cos(b*x)

x = wt: angular frequency
10x: carrier frequency
bx: modulating frequency

phase modulation

sin(wy? + cos(wat))

a*sin(5*x + cos(2*h*x))

x = wt: angular frequency
5x: carrier frequency
2bx: modulating frequency

frequency modulation

sin(wy? - cos(ws?))
a*sin(5*x*cos(b/10*x))

x = wt: angular frequency
5x: carrier frequency
b/10x: modulating frequency

special theory of ‘/l -2 x=f8=v/c
relativity: length change . v: velocity
sqri(l — x"2) ¢: speed of light
special theory of 7% = x=p=v/c
relativity: mass change ) v: velocity

1/sqri(1 — x"2)

c: speed of light

Planck’s radiation law

2mhe? 1
X5 ehc/ART 1

a*23340/(x + 2)°5
/(exp(8.958/((x + 2)*h)) — 1)

X + 2: wavelength A in pm
a: scale factor
b: temperature
in 1000 Kelvin
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For calculating the factorial p! this file contains some special code; in other
simulation files this function cannot be used.

Figure 6.3 shows a normalized Gaussian impulse with additive noise superimposed
on it, and its integral, which in spite of the perturbation reaches 1 quite smoothly and
accurately. The formula field can be edited, such that functions can be changed or
other functions can be filled in.

JT Function plotter (physics) y = f(x) L = ;lglﬂ
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Figure 63. Simulation. Function plotter for some physically interesting functions y = f(x).
The figure shows a normalized Gaussian (definite integral = 1) with superimposed noise and
its integral function. Moving the slider p creates a new noise distribution.
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6.3 Standard functions of two variables z = f(x, y)

For the illustration of surfaces in space z = f(x, y), simulations are particularly use-
ful. Because of the amount of accumulated data, a numerical calculation of the graphs
by hand is virtually impossible. In addition, the EJS method makes it possible to ro-
tate the calculated two-dimensional projections of three-dimensional surfaces around
any spatial axis by simply dragging the mouse to create a lively three-dimensional im-
pression. If in addition another parameter, for example the extent along the z-axis, is
changed periodically (i.e. z = acos(pt) - f(x, y)), one experiences something close
to seeing three-dimensional objects.

The command panel of Figure 6.4a contains four sliders for changing continuously
adjustable parameters. The parameter p determines in general the velocity of anima-
tion. With the play button one starts the animation and it is halted with the stop but-
ton; the small text field shows the time. Reset returns all parameters to their original
values.

In the selection field a preset function type can be chosen, whose formula is shown
in the formula field below. The term cos(t) determines the animation in z-direction.
You can edit these formulas or enter new ones from scratch (you must not forget to
press enter to confirm changes!). Figure 6.4a shows a hyperbolic saddle as example.

In the following interactive figures, which show examples of the 3D function
plotter, the simulation controls have been suppressed, which correspond to those of
Figure 6.4a.

For the plots, the xy-plane z = 0 (light brown) was superimposed on the respec-
tive spatial surfaces; the origin is in the middle of this surface. The xy-plane can be
switched on or off with the option box show xy plane. The scales on the axes are
all equal and symmetric. You can create different scales via factors in the formulas.
The colored points on the z-axis mark the minimum and maximum values of the
presentation.

z = f(x,y) only allows for parts of a closed surfaces in space, for example the
sphere that is shown here, to be plotted (for example half a sphere). This corresponds
to the statement that, in the plane, a function y = f(x) can only represent half a
circle. To describe the full circle y; = +/r2 — x2; y, = —+/r? — x2 one requires
two functions in this representation. If the functions do not yield real values for z,
z = 0is shown in the simulations.

You may choose from the functions defined in the table on p. 117. The list of
formulas also gives the syntax that must be adhered to when editing.

You can use this file to train your spatial sense and to study the meaning of specific
equations, while at the same time having ample leeway to come up with your own
formulas. You may also study the influence of the signs and the powers appearing
in the formulas. If the uniform scaling used proves inconvenient, for example when
dividing by 0, you may adjust the scaling in the formulas accordingly with additive or
multiplicative constants in the formulas.
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Figure 6.4a. Simulation. Function plotter for animated spatial surfaces z = f(x, y); in the
figure a hyperbolic saddle is shown. Up to three parameters, 4, b, and ¢, can be adjusted with
sliders. The animation velocity is adjusted with the slider p. The xy-plane can be shown or

suppressed.

Further instructions can be found in the description pages of the simulation.
The EJS 3D projection offers, in the active simulation, many possibilities for visual
representation. We show this in the following non-interactive static pictures for the

example of the elliptic-hyperbolic saddle.

Default picture: when calling up the simulation you see, as in Figure 6.4a, the
projection of the spatial surface with a xyz-trihedron in a preset perspective, with the

more distant lines pictured smaller than those that are closer.

Rotation: With the mouse one can dock on to any of the axes and rotate the

projection at will.

Shifting: Whenpressingthe ctr! key, youcan move the representation of the projection

surface with the mouse and position it as desired.

Zoom: When pressing the shift key you may blow up or shrink the representation
by pulling with the mouse. You also may switch or pull the root window to full screen

size.
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Functions Formula in Java-syntax of the simulation
plane in space cos(p*t)*((b*x) + (a*y)) — ¢

paraboloid of revolution a*cos(p*t)*(x"2 4+ y2) —¢

general paraboloid cos(p*t)*((b*x)"2 + (a*y)2) - ¢
parabolic saddle cos(p*t)*((b*x)"2 — (a*y)2) — ¢

sphere sqrt((a)"2*abs(cos(p*t)) — x"2 — y°2)

ellipsoid of revolution
general ellipsoid
hyperboloid of revolution
general hyperboloid
elliptic hyperbolic saddle
hyperbolic saddle
standing wave

radial surface wave
(decay like 1/r)

sqri((b*c) 2*abs(cos(p*t)) — ((c + 1)*x)"2 = (c*y)
sqri(a*h — b*x"2 —a*y"2)

sqri(a*cos(p*1)2 + x"2 + y2) —¢

sqrti(a”2 + b*x"2 + c*y"2) — p

sqri(a“2 — cos(p*t)*(h*x*2 — c*y*2))
cos(p*t)*x*y

a*(sin(pi*x + p*t) + sin(—pi*x + p*t))
a*sin(pi*(x*2 + y*2) — p*t)/sqrt(0.1 + x*2 + y"2)

N

Figure 6.4b. Choice of different viewing directions for perspective distortion, shown for an
elliptic-hyperbolic saddle of the simulation in Figure 6.4a. The object can be tuned by pulling
the arrow inside the spatial trihedron with the mouse. With the perspective representation, the
more distant lines are pictured smaller than equally long lines that are closer.

Further special perspectives: are obtained with a context menu that appears when
pressing the right mouse button on the plot. In the upper line you follow the entries
elements option/drawingPanel3D/Camera and the following Camera Inspector
appears (see Figure 6.4c).

You may chose the following options with the projector:

No perspective: The presentation now does not show perspective distortion for the
same projection (Figure 6.4d).

Onthe xy-, yz- or x z-plane: Here you see the projection align an axis, namely the
one that is not mentioned (Figure 6.4e).
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Camera Inspector
Projection mode

- Perséd@ © Planar XY © Planar YZ
O No perspective ) Planar XZ

Camera parameters

X |-0.768 Focus X |-0.350
Y |-9.796 FocusY |-0.140
4 2.458 Focus Z |-0.500
Azimuth |-1.614 Rotation 0.000
Atitude |0.297 Screen [12.500
I Suggested camera settings

Figure 6.4c. Camera inspector, which is called with the right mouse key from the context
menu. One can choose between different perspectives and projections, enter the parameters of
a special projection as numbers, and return to the original state.

Figure 6.4d. Presentation without perspective distortion.

]
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Fligure 6.4e. Projections along the three axes.
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For the different representations, the optimal visualization depends on the parame-
ters used, which need to be changed when adjusting the representation.

Reset Camera resets the Camera inspector to a simple perspective. This is useful if
you have created a perspective, that is too confusing. Alternatively, you may switch to
another function and then back and recalculate the plot with the original parameters.

6.4 Waves in space

With the function plotter described above, waves in space can be presented quite
vividly. One or more space variables then appears in a periodic function, for example
as cos x. The spatial surface will then be periodic in one or two dimensions. In the
simulation for Figure 6.5, a number of such waves are preset.

We daily observe surface waves in a multitude of shapes on water. In general, these
waves propagate in time in one direction without changing their character noticeably
in small regions of space. In the simulation, this can be reproduced by adding a phase
pt and incrementing the time ¢ continuously and evenly: cos(x — pt). The wave
that is stationary for p = 0 moves for p > 0 with constant velocity in the positive x-
direction. The propagation velocity is set with p. This animation makes the projection
picture of the wave very vivid.

The following functions are preset in the selection field:

Functions Formula in simulation syntax

plane wave in x a*sin(b*x — p*t)

plane wave in y a*sin(b*y — p*t)

plane wave with arbitrary direction 0.3%sin(6* pi *a*(b*y + ¢*x)/sqrt(b*h + c*c) — p*t)
concurrent interference f1 a*(sin(b*y — p*t) + sin(b*y — p*t))

opposing interference fi a*(sin(b*y — p*t) + sin(—b*y — p*t))

concurrent interference f1 + f2  a*(sin(b*y — p*t) + sin(c*y — p*t))
opposing interference fi + f2 a*(sin(b*y — p*t) + sin(—c*y — p*t))
orthogonal interference fi1 + fo  a*(sin(b*x — p*t) + sin(c*y — p*t))

concurrent interference, a*(sin(b*(y — (¢ — pi) * x) — p*t)
adjustable angle ¢ + sin(b*(y + (¢ — pi) * x) — p*t))
opposing interference, a*(sin(b*(y — (¢ — pi) * x) — p*t)
adjustable angle ¢ + sin(b*(—y + (¢ — pi) * x) — p*t))
diverging radial wave a*sin(b*(x * x + y * y) — p*t)
converging radial wave a*sin(b*(x * x + y * y) + p*1)
stationary radial wave a*(sin(b*(x"2 + y*2) — p*t)
+ sin(b*(x"2 + ¥*2) + p*t))
diverging surface wave 0.4*a*sin(b*(x"2 + y“2) — p*t)/sqrt(0.1 + x*2 4+ y°2)

diverging space wave 0.2%a*sin(h*(x*2 + y2) — p*1)/(0.1 + x"2 + y°2)




6.4 Waves in space 120

The interference of waves with the same direction of propagation is referred to as
concurrent interference, that of opposite direction as opposing interference. We also
give examples for the interference of waves of the same frequency as well as of waves
of different frequencies, and finally the interference of waves under 90 degree and
under adjustable angles.

For radial waves, the simple radial wave with constant amplitude is physically not
possible; it is a unrealistic fiction. This is because the amplitude will decay as a func-
tion of the radius (distance from the excitation center), since the excitation energy is
distributed over a wider and wider circle. For the spatial radial wave, for example the
spatial compression wave originating from a nearly point-like source, the section of
the excitation is shown in the xy-plane; here the amplitude decays with the radius, i.e.
like 1/r2, since the energy is distributed over a spherical surface.

With this simulation you can train your spatial awareness for wave phenomena and
the corresponding understanding of formulas. When editing the formulas, you can
explore many possible ways of simulating natural phenomena. Remember that you
may also choose the velocity of propagation differently when superimposing several
waves and thus observe the phenomenon of dispersion. Further inswuctions can be
found in the description pages.

These animations start in a state of motion. You also may change parameters while
the animation is running and switch between function types. Figure 6.5 shows as an
example a radial wave in space.

a

Figure 6.5. Simulation. Function plotter for propagating waves in space. The figure shows a
diverging spatial wave excited at the origin.
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6.5 Parameter representation of surfaces:
x=f:(P,q);y = f,(P,9); z = f:(p,q)

Using the parameter representation it is possible to describe very complicated surfaces
in space. The functions f. f,. f; displayed in the three function windows of the
simulation map the pg-plane into the space described by x. y, z. If there are periodic
functions of the parameters among fx. fy. fz, closed or self penetrating surfaces in
space are created.

From the formula for the first surface in the list of functions, you realize that the pa-
rameter v periodically modulates the value z; of the z-function: z = z;a cos(vt). For
t = 0 the modulation factor is equal to 1. The parameter a determines the amplitude
of the modulation; a —0.6 fixes a reasonable initial value. The remaining parameters b
and ¢ are not used in this example; please observe for the individual functions which
quantities are modulated by a term containing cos v?.

The scale for the x, y and z-axes is adjusted in such a way that the interval —1 <
x,y,z < +1 is covered. The range of the parameters p and g is from —x to +m,
such that the simple trigonometric functions like cos p run through a full period in the
parameter interval.

By clicking on the selection window, the preset functions are called.

With the sliders a, b, and ¢ you can also change the parameters of the spatial sur-
faces during the animation. By editing the corresponding formulas you can also switch
the animation to other quantities.

You can edit the formulas in the formula window or enter formulas from scratch.
Do not forget to press the enter key after doing this.

Some elementary surfaces have already been covered by the basic functions z =
f(x.y); thus you may compare the formulas in both representations.

Since p and q are scaled by pi (), there always appears a factor of 1/ pi, when
p and q are directly connected with x, y, z, i.e. outside periodic functions. A factor
cos vt shows that the quantity that is multiplied by it is modulated in the animation.
Reset returns the value of cos vt to 1.

The following functions are preset in the selection windows (for the sake of clarity
we have left out the multiplication sign * in the simulation syntax).

Tilting plane x = p/pi.y=gq/p; z=cos(vt)(a/pi —0.6)p
Hyperbolicsaddle x = p/pi: y = q/pi; z = cos(vt) pq/pi*2
Cylinder x = cos(vt)acos(p): y = bsin(p); z = cq/(2pi)
Mabius strip x = acos(p)(1 + q/(2pi)cos(p/2)).

y = 2bsin(p)(1 + q/(@2pi)cos(p/2));
z =cq/(pi)sin(p/2t)
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x = cos(vt)acos(p)abs(cos(q));
y = cos(vt)asin(p)abs(cos(q)); z = cos(vt)asin(q)
x = acos(p)abs(cos(q));

y = cos(vt)bsin(p)abs(cos(q));
z = csin(q)

x = a/pi(l + qcos(p));

y = cos(vt)b/ pi(1 + gsin(p));
z=cq/pi

x = (a + cos(vt)bcos(q))sin(p);

y = (¢ + cos(vt)bcos(q))cos(p); z = bsin(q)

x = (a + bcos*(q))sin(p);
¥ = ((cos(vt)'2)e + beos(q))cos?(p); z = 0.6bsin(q)

x = (cos(vi)c + bcos(q))cos®(p);

y = (a + bcos(q))sin(p);
z = bsin(q)

S
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Figure 6.6. Simulation. Function plotter for animated 3D parameter surfaces; in the picture a
torus is shown, whose dimensions can be changed with sliders. This animation also contains
the Mdbius strip that was shown at the beginning of the book, in a simpler form.
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Boat_1 x=(c+ bcm(q))msa(p); ¥y = (a + bcos(q))sin(p);
z = cos(vt)bcos(q)

Boat_2 x = (¢ + bcos(q))cos*(p); y = (a + bcos(q))sin(p);
z = cos(vt)bcos?(q).

The formulas of the simulation contain additional fixed numbers, which guarantee
a reasonable size for the graphs when opening them.

Using the parameter representation, aesthetically very pleasing spatial surfaces can
be created, which can be used as an inspiration for design and construction, so that
the playful element is not short-changed. The simulation file may now be opened to
show the interactive graphic in Figure 6.6 of a forus.

The handling of the simulation in Figure 6.6 is analogous to that for the previous
3D presentations. Details and suggestions for experiments are given on the description

pages.

6.6 Parameter representation of curves and space
paths: x = f,(¢); y = fy(2); z = f:(2)

Using this parameter representation, very complicated curves (paths) in space can
be described. The functions fx, fy, fz, which are displayed in the three function
windows, map the interval covered by the only parameter ¢ uniquely to a curve x (¢),
y(t), z(t) in space. If fx. fy, f contain periodic functions of the parameters, closed
or self-intersecting space curves are created.

For the simulation in Figure 6.7, the one-dimensional parameter ¢ is interpreted as
time. This parameter is repeatedly incremented by a constant time-step, such that the
curve starting at the origin grows accordingly, until one of the coordinates becomes
larger than 2 and leaves the range of the figure and the animation stops.

The blue path marker is connected to the origin with a vector. The vector and the
xy-pane can be switched on and off with the option switch.

The program calculates the functions in time-steps of At = p x 0.1 milliseconds.
Thus animation speed canbe set with the slider p. For p = 0, the picture is static.

With the sliders a, b and c, up to three constants in the parameter functions can
be adjusted between 0 and 1. The sliders actually determine integers 0 < N < 100,
such that the constants 1/ N, as well as the ratio of two of these constants, are rational
numbers. This leads to closed orbits in the case of oscillation plots. In the second
example the irrational number ~/2 is added to the rational number ¢, which results in
the orbit not being closed. This shows how you can, in general, create orbits that are
not closed. You may increase the animation speed to recognize this quickly. For the
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Figure 6.7. Simulation. Function plotter for animated space curves; the figure shows the
superposition of a periodic orbit that travels on a hyperboloid and an orbit that travels on a
torus.

detailed observation the projection settings of the camera inspector are useful. In the
xy-plane one sees the corresponding plane orbits, i.e. plane Lissajous figures.

Choose after the first animation the constants a, b, ¢ such that the range of coor-
dinates is fully used. Many plots become graphically interesting only if the constants
a, b, c are chosen differently. The default value for all of them is 0.5, to show the basic
functions during the first run.

You can edit the formulas or enter new ones from scratch.

The scale has been chosen in such a way that, for all three axes, the range —1 to +1
is available. The xy-plane is intersected by the z-axis in the middle of the z-vectors.
Maximum and minimum values are marked on the z-axis by a red and green point
respectively.

With the sliders a, b and ¢ you may, even during the animation, change the param-
eters of the space curves. With suitable entries of time-dependent functions you can
also switch the animation to other quantities.

The handling of the simulation is otherwise again analogous to that of the previous
3D presentations. Details are given in the description pages.

There are, however, two keys for starting the simulation with slightly different
functions:

Start startsthe simulation and erases all the curves that are present.

Play does not delete previous curves, continues for equal parameters with the simu-
lation and superimposes old and new curves for changed parameters or changed
function types.
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Stop is a second functionality of the play button; the simulation can be continued by
pressing play again.

Clear deletes all curves.

Reseta b c resets a. b, c to the default values.

This simulation also gives ample opportunities for creative and playful experiments.
Figure 6.7 shows the simulation, with interleaved orbits; in one of these, the hyper-
bolic envelope is already closed, while in the other, the envelope, in the shape of a
torus, is still open.



7 Visualization of functions in the space
of complex numbers

7.1 Conformal mapping

Complex functions ¥ = F(z) map the points z of their domain of definition to points
u within their range in the complex plane (to distinguish these functions from real
functions we arbitrarily use capital letters for the function):

u = F(z).

Important complex functions, such as powers, the exponential function and its de-
scendants, among them trigonometric functions and hyperbolic functions, satisfy the
property of being holomor phic, which means, according to the definition, that they
are complex differentiable. This means that these functions are differentiable in ev-
ery point of the complex plane and are also independent of the direction along which
one approaches the respective point. Such functions can be diff erentiated an arbitrary
number of times and, therefore, can also be expanded into a power series (Taylor
series).

Figure 7.1 from the simulation shown in Figure 7.2a, which will be described
shortly, shows how this looks for the concrete case of the mapping u = z2.

The mapping u = F(z) with a holomorphic function is conformal, which means
angle-preserving: curves in the u plane intersect under the same angle as the pre-
image curves in the z-plane. This is initially baffling, since the shapes consisting of
the curves are in general distorted by the mapping.

The left window shows the z-plane, the right one the u-plane. In the z-plane a
quadratic grid of points, that lies on parallels to the real and imaginary axis, is shown,
which is mapped into the u-plane, undergoing rotation, stretching (for points outside
of the indicated unit circle) or compression (for points inside the unit circle) and re-
sulting in a rhombic shape with curved grid lines. In this case, the points on the real
axis are transformed to the real axis and therefore the real-valued side of the square
remains straight.

On closer examination, it becomes evident that the lines connecting the points in the
image plane indeed intersect each other under right angles; the 4 points corresponding
to a square of neighboring points in the preimage constitute a square in the image
with increasing accuracy for decreasing distance of the points. The conformal angle-
preserving property is to be understood in the limit of infinitesimal distances.
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Figure 7.1. Conformal mapping of a quadratic point grid (left window) with the holomorphic
function ¥ = z* to the image plane (right window). Due to stretching, compression and
rotation, distortions take place.

The angle-preserving property of conformal mappings is used for practical pur-
poses in engineering, for example to map the solutions of hydrodynamic problems for
simple situations to more complex situations. Complex functions are thus not only an
abstract mathematical concept, but they have very useful applications.

7.2 Visualization of the complex power function

The following visualization example in Figure 7.2a shows powers for arbitrary positive
or negative, integer or fractional, exponents:

u=z.

Thus we have, for example,
N 1 3 _ 2
u=z% u=z3=—; u=z"%=2% = Y23,

The control elements for the different simulations of conformal mappings are mostly
identical. We describe them in detail for this first example, and refer only to dif-
ferences later. Extensive details are given in the respective description pages of the
simulation.

A quadratic point-grid with preset side length is located in the z-plane. One of the
corners is marked in red and connected to the origin by a vector. Using the mouse, the
square can be moved in the z-plane while maintaining its orientation by grabbing it on
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the red corner. While the other coordinate remain exactly the same, you can change
one of the coordinates with the sliders x, y. Very accurate values can be defined in the
number fields x, y. One can also enter values that go beyond the range of the sliders.
Points with different imaginary parts are differentiated by color in order to be able to
follow the mapping point by point. The color coding can be seen most clearly if you
pull the window to full screen size. The side length of the square can be grown or
shrunk to a point using the slider.

In addition a circular color coded point grid is located around the origin with a
default radius that depends on the function. The center of the circle is marked in blue;
it can be moved with the mouse. The points of the circle that are initially on the real
axis and mirror images of each other, are highlighted. The right point that is marked
by a red disk is connected to the origin by a vector, which can be pulled with the
mouse. Using a second slider, the radius of the circle can be grown or pulled together
to a point.

By collapsing the square or circle to a point you can plot the other function more
clearly and study the mapping of a single point.

The scale can be adjusted separately in both windows in the number fields scale_z
and scale_u.

In the u-plane you see the mapping of the individual points of the square or circle
via the chosen function. Accurate coordinates are shown if you click on the points.
An animation is started by pressing the play button, which moves the corner point of
the square arrays step by step.

Even during the animation, the coordinates of the corner points can be changed
with the mouse, the sliders or by entering numbers, so that the whole plane can be
scanned in strips.

With pause/play the animation is stopped. With the initialization button you can
reset the grid, the circle and scale to its original state.

For the power function of Figure 7.2a you may enter an arbitrary positive or neg-
ative power n, and also rational numbers. The changes become effective on pressing
the Enter button. We have:

u = z" = (re’®)" = r"e™ = r™(cos ng + i sinng).

The mapping 2" rotates a point z = re‘® from the preimage plane to the image plane
by n — 1 times its angle. Its absolute value increases to r™ for n > 1 and decreases for
n < 1. The unit circle is mapped to itself under rotation.

Due to the angular rotation, it follows that for n > 1 the simple u-plane is not
sufficient to accommodate the mapping of all z-values. Forn = 2 orn = 3, the
mapping provides for a two-or threefold coverage. In complex analysis, one refers to
n Riemannian sheets of the u-plane. On these sheets the function u(z) is unique: each
point on the z-plane leads to one point on the u-plane. The same is true for the inverse
function z (). In the simulation picture the Riemannian sheets are superimposed, as
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Figure 7.2a. Simulation. Complex power function u = z”; conformal mapping of a point
grid and of a circle for n = 2. In the left window, for the z-plane, the lower left comer of the
grid can be pulled with the mouse and the distance between the points can be adjusted with the
lower left slider. The center of the circle can be pulled and its radius can be adjusted with the
lower right slider. The yellow point marks the point that has been turned by 7 in the preimage
of the circle. The power n can be chosen at will in the simulation (in the figure n = 2).

one can easily see from the mapping of the circle: the two loops belong to different
sheets.

For fractional exponents n and negative real values the mapping splits the point
grid in two sections, which is initially surprising. On one section lie the transformed
points from the positive imaginary half plane, on the second section, the points of the
negative imaginary half plane. Whether the u-plane is covered only partially or many
times depends on whether n is larger or smaller than 1. Figure 7.2b shows the picture
forn =0.5u = 205 = /7).

With a bit of calculation, it is easy to see that the splitting has to be as observed for
n=05ieforu=z%= %/z. The point z = i (angle of 90°) is mapped to the

pointu = /i = % with the angle of 45°, as we show by inverting the function:

[L(|+')]2—'| 2+ = 0 +2i-1=i qed
S +D| =30 +2+)=30+2%-D=i ged

How is the point —i transformed? We assume that it is mapped to a point that is
complimentary to the one obtained above, (same real component, opposite sign of the
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Figure 7.2b. Example from simulation in Figure 7.2a: conformal mapping with the holomor-
phic function u = 2% for a point grid on a square and a circle (left window). The z-plane
is mapped to the positive real half of the u-plane. The mapping splits the z-plane into two
sections for positive and negative imaginary parts.

imaginary component) and again prove this via the inverse function:

2
[%(1 —i)] B -;(1 -2 +i%) = -;(1 —2i-1)=—i qed.
Thus we indeed have the following situation: the point —i and all other points with
negative imaginary components are mapped to the section of the u-plane where the
imaginary component is negative and all points with positive imaginary components
are mapped to a section with a positive imaginary component, which is its mirror
image.

For the circle around the origin, the situation can be most easily understood. For
n = 2 the circle is mapped to two segments, as soon as individual points have a
negative imaginary component. By counting you may convince yourself that there are
equally many points on the two partial curves if the setup is symmetric to the origin.

For suitable parameters, the conformal mapping yields very interesting symmetries.
Figure 7.2c shows on the left-hand side for the 17th and on the right-hand side for the
60th power, the superimposed mapping of 100 points of a circular array of radius 1 on
as many Riemannian sheets. The array is slightly shifted from the origin. Remember
that the unshifted unit circle is mapped to itself, and thus the shifted one will be
mapped to its immediate vicinity.
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Figure 7.2c. Example from simulation in Figure 7.2a: u = z" for a circle with radius 1 that
has been slightly shifted from the origin. On the left forn = 17 and on the right forn = 60
with different shift.

The simulation provides many opportunities for experiments, which can be ac-
cessed with the interactive simulation in Figure 7.2a. The description pages contain
further details and suggestions for experiments.

7.3 Complex exponential function

As second example of conformal mapping, we show the complex exponential func-
tion. We generalize it to an arbitrary basse a:
u=a?=ée* Ina_

With a = e we obtain the normal exponential functions, with a = % we obtain the
exponential decay function.

a=e—>u=e*(cosy +isiny)
a=l—->u=e_"(cosy—isiny);
e

(because of cos(—y) = cos(y); sin(—y) = —sin(y))
in general u=a?= (elna)z = e(lna)(x+iy) = exlnaeiylna

= ¢*™% . (cos(y Ina) + i sin(y In a)).



7.3 Complex exponential function 132

y000 2P1ane u-Plane
‘ — T T 30

s
20t
2 s
10
03
s

im@
i

03
“o0f
2 15
-20
-8
4 -30p

4 3 a2 a4 0. v 2 3 a -30.26.20.15-10.05 0 05 10 18 20 25
mal ronl(u)

=0000 [x=0000 [scalez=4 n-000 scale_u = 3fa=100|
I

W ) eyman 100 (Shcerema 100

Figure 7.3a. Simulation. Conformal mapping with the complex exponential functionu = e*;
mapping of a point grid and of a circular array with radius 1 around the origin of the z-plane
to the u-plane. The unit circle is drawn in black. Play shifts the array along the imaginary axis.
The parameter a can be chosen in the number field a.
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Figure 7.3b. Conformal mapping with the complex exponential function u = e*; Mapping of
a circular array with radius 1 and a point grid that has been shifted by 2z along the imaginary
axis. The image in the u-plane is identical to the image in Figure 7.3a, where the point grid
is located at the origin. The unit circle is drawn in black. The boundaries of a period that is
symmetric to the origin are marked in red.
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Thus the choice of a base # e can be compensated for via a coordinate transformation:
x' = xIna; y' = yIna. The simulation uses the same setup as for the power function,
and is shown in Figure 7.3a for the simple exponential function witha = e.

The real point 1 is mapped to the real point e = 2.718.... Negative real parts
x < 0of z = x + iy lead to a mapping into the inside of the unit circle, positive ones
to a mapping into the outside of the unit circle (marked in the picture by a circle). This
is for the following reason:

i i ot
io Su= ee = eDOSW+lSIn¢;

z=¢
however, we have cos < 1 inthe range 7/2 < ¢ < 3/2 suchthat we have e**% < 1.

The fundamental peculiarity of the complex exponential function is made clear in
this simulation: If one moves the point grid along the imaginary axis, it is turned in
the image plane without additional distortion around the origin and arrives, following
a shift by 24, at its original position. A strip of the z-plane that is parallel to the real
axis of width 2x fills a complete Riemannian sheet in the u-plane. This also shows
the periodicity of the trigonometric functions. Figure 7.3b shows the case in which
the simulation in Figure 7.3a is shifted by 27i.

A shift of the grid array along the real axis in positive direction results in exponen-
tial expansion, a shift in negative direction in exponential decay.

Interesting results are observed for rational or negative values of a (e.g. Ina =
—5/3;a = 0.1888. . .). The description pages contain additional information.

7.4 Complex trigonometric functions: sine, cosine,
tangent

From the complex exponential function, it is only one step to the complex trigono-
metric function. In addition to the Euler formula e!? = cos z + i sin z, we require the
definitions of the hyperbolic functions sinh and cosh:

iz

é? =cosz +isinz; e % = cos(—z) + i sin(—z) = cosz — i sin z;

. iz _ p-iz &7 4 o7l
—sinz = ?; cosz = —
i
. e —e~? e +e? .
sinhz = T: coshz = T:—» cosh? z —sinh?z = 1;

auxiliary results: cos z = cosh(iz); sinz = 1/i sinh(iz);

cos(iz) = cosh(z); sin(iz) = i sinhz

With &' =7 = e7%e'* = ¥ (cos x + i sinx)

e = 7MY = 0¥ = ¢¥(cosx — i sinx) it follows that
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e’ +e7” e’ —e?
sinz = sinx(+—) +i cosx(—z) = sinx cosh y + i cosx sinh y
@ +e?) (@ —e) N
cosz = cosx——— —1 sinx———— = cos x cosh y — i sinx sinh y

sin z sin x cosh y + i cos x sinh y

tanz = ———»
cosx cosxcoshy —isinxsinhy

(sin x cosh y + i cos x sinh y)(cos x cosh y + i sin x sinh y)

~ (cosx cosh y — i sinx sinh y)(cos x cosh y + i sinx sinh y)
;= sinx cos x + i sinh y cosh y

cos2 x + sinh? y

7.41 Complex sine

When shifting the point arrays parallel to the real axis, one observes their periodic
mapping. The square array is then mapped into a region that is bounded by orthogonal
ellipses and hyperbolas. Further details and hints for experiments are given in the
description pages of the simulation.

7.4.2 Complex cosine

As is to be expected, the mapping via the cosine for a phase shiftby /2 on the real
axis leads to the same result as the mapping for the sine. Figure 7.5 shows this for
the same configuration of the u-plane as in Figure 7.4. Further details and hints for
experiments are given in the description pages of the simulation.

7.4.3 Complex tangent

In addition to the expected periodicity under shifts parallel to the real axis, the com-
plex tangent shows, because of its divergence with sign change at odd multiples of
n/2, a wealth of interesting phenomena. Because of the high sensitivity close to the
divergences you should, in addition to the sliders for the coordinates of the grid array
in the z-plane, also use the two number fields, in which exact values for x and y can
be entered. They can be chosen outside the intervals covered by the sliders.

Straight lines parallel to the real and imaginary axes are mapped into closed curves
around and through the points +i and —i. The region with imaginary values larger
than & is mapped to the point i, the region with imaginary values smaller than x is
mapped to the point —i. Further details and hints for experiments are given in the
description pages of the simulation.
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Figure 7.4. Simulation. Conformal mapping with the complex trigonometric function u =
sin z; mapping of a point grid and a circular array around the origin with radius /2 from the
z-plane to the u-plane. The circle with radius 7 /2 in the z-plane and the unit circle in the
u-plane are drawn in black. In the z-plane, the boundaries of a period are drawn in red. The
Play button shifts the square array along the real axis.
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Figure 7.5. Simulation. Conformal mapping with the complex trigonometric function ¥ =
cos z; mapping of a point grid that has been shifted by /2, relative to the origin, to the u-
plane. The circle with radius /2 in the z-plane and the unit circle in the u-plane are drawn
in black. In the z-plane the boundaries of a period are drawn in red.
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Figure 7.6. Simulation. Conformal mapping with the complex trigonometric function u =
tan z; mapping of square point grid and a circular array around the origin of the z-plane to the
u-plane. A circle with radius /2 and in the z-plane and the unit circle are drawn in black.
The boundaries of a period are drawn in red. Play shifts the square array parallel to the real
axis.

7.5 Complex logarithm

We conclude the chapter on conformal mapping with the natural logarithm. It is well
known that there exists no logarithm for negative numbers in the space of real num-
bers, since the inverse function e* always leads to a positive number. This limitation
is lifted in the space of complex number, in which the logarithm is well defined for all
numbers.

Tocalculate the complex logarithm, one has to use the complex number z in a form
that allows for the separation of real and imaginary parts when taking the logarithm.
This is not the case for the form z = x + iy, butin polar coordinates it works out as:

z =ré'?; r=|z|=,/x2+y2; ¢=a:ctan%;
Inz =1Inx2+ y2+i(¢p+ k2n); k integer
1
in value fork = 0: Inz = In \/x2 + y2 + ip = = In(x? + y2) + ig.
main value for nz=1Iny/x%+y%+i¢ 3 n(x“+y“)+i¢

Because of the periodicity of the exponential function with a period of 2xi, the z
plane is mapped identically to an infinite number of strips parallel to the real axis in
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the u-plane of width 2x. The main value for k = 0 maps the z-planeto pi < y < &
on the u-plane.

In Figure 7.7 one sees for the quadratic point array the logarithmic compression
along the real axis and the compression due to the arc-tangent along the imaginary
axis.

For the logarithmic mapping, one distinguishes four regions according to the real
component of z in the z-plane:

e x > l: for these values the logarithm is positive in the space of real numbers.
Complex numbers in this region are transformed to a region with x > 0, which
is bounded by the green curve in Figure 7.7. The numbers with equal imaginary
components lie on curves orthogonal to the green curve and are marked by the
yellow line for y = 1 in Figure 7.7.

* x < —1: for these numbers the logarithm does not yield a real solution. Numbers

in this region are transformed to regions with x > 0 and imaginary parts that lie

on the boundaries of the strip. The bounding curves are analogous but shifted and
reflected with respect to the first case. An interesting caseis In(—1) = 0+ inx =

i, the symmetric solutions are Ini = %i:r and In(—i) = %in’.

0 < x < I: here we have, for real numbers, real negative values of the logarithm.

Numbers in this region are, depending on the imaginary component, transformed

into the positive or negative half of the strip.

* —1 < x < 0: here the logarithm has noreal values. Depending on their imaginary
component, numbers in this region are transformed to the negative or positive
half plane of the strip and we have § < |y| < x forall y. The bounding curves
are continuations of the first case.

A circle around the origin is transformed into a line parallel to the imaginary axis,
since the real component of the logarithm 0.51n(x2 + y2) = Inr is constant on it.
Changing the radius shifts the line in the x-direction.

How are the curves defined, which are shown in Figure 7.7 and appear after ac-
tivating the switch visible? In the z-plane, x = 1 is the boundary for positive
logarithms. Therefore, the coordinates of the bounding curve in the u-plane are:
x = 0.5In(1 4+ y2); y = arctan y;. For a line with an imaginary component y = 1
in the z-plane, we obtain, in the u-plane, x = 0.5In(x2 + 1); y = arctan(,—'c). These
two curves are orthogonal to each other.

Further details and hints for experiments can be found in the description pages of
the simulation.

This relatively complex example demonstrates quite clearly the advantage of an in-
teractive simulation over a discussion with formulas and words. When moving the
arrays parallel or at a right angles to the imaginary axis, the context is immedi-
ately grasped visually, which could otherwise only be described in lengthy and time
consuming verbal descriptions.
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Figure 7.7. Simulation. Conformal mapping with the complex function ¥ = In z: mapping
of a point grid and of a circular array around the origin with radius x in the z-plane to the u-
plane. A circle with radius e in the z-plane and a circle with radius 7 in the u-plane are drawn
in black. The red lines in the z-plane mark the boundaries of the main value of the logarithm.
Visible shows the transformed curves of parallels to the x and y axes in the z-plane. Play shifts
the array parallel to the real axis.

From the many examples shown above, it should have become clear how to cal-
culate and visualize conformal mappings in general. The examples include, in the
custom page of the EJS console, the code for the other functions that fit on a few lines
in an inactive mode. In addition the code for cot(z) and for the complex hyperbolic
functions sinh(z), cosh(z), tanh(z) and coth(z) is found there.

From this, it is easy to derive the code for further conformal mappings.



8 Vectors

8.1 Vectors and operators as shorthand for n-tuples
of numbers and functions

In secondary school the discussion of functions is mostly restricted to functions of one
variable, i.e. to y = f(x) in Cartesian coordinates or r = g(¢) in polar coordinates.
Therefore, one gets used at school to the visualization of functional relationships in
the xy-plane.

Real events cannot be described is this way, since they always take place in three-
dimensional space with coordinates x, y, z or in a four-dimensional continuum, de-
noted by the space coordinates x, y, z and the time ¢. As an auxiliary workaround, one
uses only a restricted projection to a plane in space. This is possible if one assumes
that some variables are constant. One example would be y = f(¢) for the move-
ment along a straight path that is mapped to the y-axis and, instead of the x-variable,
the parameter ¢ is changing. One can possibly take into account a second quantity x
that is changing in discrete steps, by plotting a family of curves in a plane system of
coordinates, forexample y = f(z,x;),i =1,2,3,....

As soon as one wants to present events in space it becomes more complicated.
The uniform movement of a point mass, i.e. without the influence of any force, re-
quires three “plane” parameter equations, for example x = at + ag; y = bt + bg;
Z = ct + c¢g. If one wants to describe its movement under the influence of a force
that changes from point to point, one requires equations that describe for every point
in space both the absolute values as well as the direction of the force on the moving
body. In coordinate notation this becomes easily messy and not at all vivid.

To come close to the vividness of two-dimensional presentations, one instead uses
a kind of shorthand, which combines the three space components in a vector and the
functions connected to it or acting on it in an operator. If one combines the three co-
ordinates in the vector X and three functions of time in the operator F, one can com-
bine the above three equations as X = F(t), which is considerably clearer. Whether
it makes sense depends on the specific problem at hand, i.e. on whether the three com-
ponents of F have a logical connection with each other. This is obviously the case for
the simple movement considered above.

As soon as one starts to substitute numbers and to do calculations with them, one
can find ways of decomposing the relationship into its individual components and
to formulate the corresponding algorithms. However, this process still often greatly
benefits from the symbolic grouping of the individual relationships. Because of the
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repeated appearance of the always identical formalisms for physical problems, the
formulation often becomes routine.

This approach does not have to be restricted to three-dimensional descriptions, but
can, in principle, be extended to an arbitrary number of dimensions. One can for
example describe the position of two points in the three-dimensional space via wo
arrows or vectors starting at the origin (x1. 1. z1 and x2, y2. z2) in this space or via
one vector in the six-dimensional space (x1. y1. 21, X2. y2. Z2). In quantum mechanics
one works with vectors in the infinitely dimensional Hilbert space. Plane problems can
be described by two-dimensional vectors that can be considered to lie in the complex
plane.

Vector algebra and vector analysis, in which partial differentiations take place, are
an especially important mathematical tool of theoretical physics and therefore are
often treated in depth in many textbooks for first year students.Their objects and oper-
ations are not easily accessible to the untrained imagination. Therefore, the following
sections concentrate only on the interactive visualization of fundamental aspects.

8.2 3D-visualization of vectors

The classical visual presentation of a vector is an arrow in space, whose length defines
an absolute value and whose orientation defines a direction. The place at which the
arrow is situated is arbitrary; one can, for example, let it start as a zero-point vector
from the origin of a Cartesian system of coordinates. Thus its endpoint (the tip of the
arrow) is described by the three space coordinates x, y, z in this system of coordinates.
Its length a, also referred to as the absolute value of the vector, is obtained from the
theorem of Pythagoras as a = /x2 + y? + z2.

It obviously does not matter how the system of coordinates, with respect to which
the coordinates of the vector are defined, is orientated in space. Under a change of the
coordinate system (translation or rotation), the individual coordinates also change, but
the position and length of the vector are not affected by this. They are invariant under
translation and rotation. This property provides the definition of a vector.

Quantities that can be characterized by specifying a single number for every point
in space are called scalar, in contract to vectors; an example would be a density- or
temperature distribution.

The three-dimensional zero-point vector represents the position coordinates of a
point in space. It is customary to write them as a matrix with only one column or line.
As symbols one often uses aj.a;.a3 for the vector a or x),, x2. x;3 for the vector
x; . Thus the following representations are synonymous:

ay

a= \az = (a1.a2.a3), absolute value |a| = /a2 + a? + a2

as



8.2 3D-visualization of vectors 141

x11
x1 = | x12 | = (x11.x12,x13), absolute value |x1| = /x3, + x3, + xI5.
x13

Symbols for the vector as a whole, such as a and x;, were introduced at a time when
they were written by hand. Some of the formats used back then, such as cursive letters
with an arrow on top, nowadays lead to a somewhat inconvenient typesetting situ-
ation, since they cannot be entered quickly on the the PC keyboard. Thus we use,

30 vectors and their components - =10/ x|

componeints

of the red vector A

3.000

3.000

-4.000
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Figure 8.1. Simulation. 3D visualization of vectors in space: presentation of the components.
The orientation of the projection can be adjusted with the mouse. The components of the red
vectors can either be entered as numbers or created by a random number generator. The option
boxes allow the selection of different projections.
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corresponding to the vector format of the formula editor MathType, bold letters in the
font Times New Roman.

The absolute value of the vector (the length of the arrow) is symbolized by sur-
rounding the vector by |-signs. This is analogous to the notation for the absolute value
of complex numbers, but the notions of absolute value are not quite identical. The
length of a vector is independent of its position relative to the origin of a coordi-
nate system, while the absolute value of a complex number is always calculated from
the origin. This difference falls away if one writes a vector that starts from a point
Xx1.y1.21 and leads to a point x5, y2, z5 as the difference of two zero-point vectors,
i.e.x2 —X1.yY2— V1.22 — 2.

The interactive 3D simulation in Figure 8.1 trains the spatial perception of vectors.
Pressing the Random vector button generates a zero-point vector with random integer
coordinates (minimum —5, maximum 5) and represents it as a red arrow, embedded
into a spatial tripod and supplemented by projections on the various coordinate planes,
which can be switched on or off. It is advisable to pull this simulation to full screen
size.

The coordinates of the vector are shown as projections onto the planes x = 0,
y = 0and z = 0 and are given in three coordinate fields. In these fields different
arbitrary coordinates can be entered in order to study the effect on the position of the
vector.

Alternatively the tip of the vector can be pulled with the mouse and the effect on
the coordinates can be studied in two planes. The 3D projection can be also be rotated
in space with the mouse. In addition, certain well-defined projections can be directly
obtained via option switches.

Instructions for experiments can be found on the description pages of the simula-
tion.

8.3 Basic operations of vector algebra

8.3.1 Multiplication by a constant

For vectors one can define the multiplication by a constant k and the addition of
vectors in a meaningful way. For multiplication by a constant this is immediately
obvious:

ai kay
ka=k|ay| =kaz|,
a3 kas

kla] = /(ka1)? + (kaz)? + (kas)® = k/a? + a2 + a3 =kla|. ged.
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8.3.2 Addition and subtraction of vectors

For addition and subtraction the following definitions apply:

ay by a; + b
at+b=|a]|+|b2]|=|az+h

as b3 03+b3

a; by a; — b by —a
a-b=Jax|-|b2]=|az-b2] =-|b2—az2 ] =—-(b-a).

as b3 asz —bs b3 —a;3

The rules for multiplication by a constant and for addition and subtraction formally
correspond to those for complex numbers, which one can write in analogy to the vector
notation above as a matrix with one column/line and two lines/columns. Thus these
vector operations are also commutative, associative and distributive, i.e. the sequence
of the vectors does not matter.

Vectors, however, do not constitute an extension of the complex number space to
higher dimensions. Vectors cannot be multiplied with each other according to the rules
of complex numbers, and the division of one vector by another one cannot be defined.

In the following, we will define two diff erent kinds of multiplications between vec-
tors. These are operations that do not have an analogue in the space of the real or
complex numbers. They are, rather, newly introduced for reasons of expediency. It is
somewhat unfortunate that the term multiplication has been used. Experts also feel
this way, which can be seen from the fact that what used to be referred to as the scalar
product in earlier times, is nowadays preferably called the inner product, and what
used to be called the vector product is nowadays referred to as the outer product. This
is, however, only a semantic problem, as soon as one understands the specifics.

8.3.3 Scalar product, inner product

For the vector addition we assume that both vectors are similar quantities, that is, for
example, that they represent two forces or two distances. It would not make sense to
add a force to a distance, although they are both represented by vectors.

However, in physics one would like to combine two vectors of different types with
each other. Force and distance are suitable examples. We define work = force times
distance, where the quantities of force and distance enter with the length of the corre-
sponding vectors. For this easy formula we assume that the directions of the force and
distance vectors coincide. If, however, the force acts in another direction, for example
at a right angle to the direction of movement, the force acting at a right angle does not
perform any work. The interplay between the force- and distance vectors thus depends
not only on the absolute value of the two vectors but also on the angle between them.
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The corresponding combination of two vectors a and b is denoted as the scalar
product or inner product and is defined by

ay bl
a*b = |a||b|cos(a,b) = |ay | * | b2
as b3

= a1h; + azb; + ashy = bya; + byas + bsaz =bea,

where (a, b) is used as a sign for the angle between a and b. For the combination sign,
adotis used and the combination is read as a dot b.

The inner product is a maximum if both vectors are parallel (cos(0) = cos(x) = 1)
and is equal to zero if they are orthogonal to each other (cos(w/2) = cos(gz’l = 0).
It is a number, a scalar,'S not a vector. This product is commutative, i.e. it does not
matter which vector appears first in the product. The resulting number is equal to the
length of one of the vectors multiplied by the projection of the other vector onto it.

8.3.4 Vector product, outer product

A second well defined way to combine two vectors of different types defines a vector
as the result of a multiplication. Its direction is orthogonal to both input vectors and
therefore also on the plane defined by the two vectors. Its absolute value is |a| x
|b| sin(a, b). The product is a maximum if both vectors are orthogonal to each other.
An example from physics is the deflecting force on a moving charge in a magnetic
field.

For this outer product or vector product the following definitions apply:

a; by azhs — ash ashy — axbs
c=axb= az | x bz = 03})1—111})3 = - a|b3—03b1 =-b xa,
as b arhy —axhy azby —arhy

|e] = |a| |b| sin(a,b).

This initially slightly confusing formula for the resulting vector can easily be analyzed
mnemonically: in the first component the first coordinate of the input vector does not
appear, and in its negative term the indices are simply exchanged. For the second and
third component the indices are cyclically changed.

a x bisread as a cross b (versus a * b as a dot b).

The vector product is not commutative; it does indeed depend on the sequence of the
vectors. Swapping the sequence changes the sign.

Since a x b is a vector one can multiply this resulting vector with a third vector ¢
both in the inner as well as the outer sense. Then we have:

(a x b) * cis a scalar, (a x b) x cis a vector.

16 In mathematics a scalar is a quantity which is fully determined by specifying a number.
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8.4 Visualization of the basic operations for vectors

The basic operations for vectors, i.e. summation, subtraction, and inner and outer
product, which have been sketched above, are visualized in the following interactive
3D simulation, Figure 8.2. This simulation starts by creating two randomly orientated
position vectors (zero-point vectors) a and b of length 1, which are embedded in a
transparent sphere of radius 1. In the figure the summation of these two vectors is
shown.

The orientation of the axes in space can be adjusted with the mouse and will be
perceived as rotation of the sphere. Every activation of the button new vectors creates
a new pair of vectors. The coordinates of these vectors are shown on the right.

Using the option switches on the left, different well-defined viewing projections
can be selected.

Next to the vector switch, the angle between the vectors, the product of their ab-
solute values (here always | because of normalization), the scalar product and the
absolute value of the vector product, are displayed.

30 vector calculus in 3D
ector selection [asb a-b b-a [Jaxb [ Ibxa [ as+b+c
view ab
al=-0.76
® perspective
¥ a2=029
o perspective L/
\1 (a
i
WA ] a3=-058
I J
Xy projection \
\
o4 b1=008
¥z projection
b2= 062
Xz projection
b3=0.78
— angle (degn =109 ‘ |allb] =1.00 scalar product=-0.33| |vector product] =0.94

Figure 8.2. Simulation. 3D presentation of vectors, their sum, difference, outer product and
multiple sum. The vector coordinates are shown on the right, the angle between the vectors,
their inner product and the absolute value of the outer product on the bottom. On the left,
different projections can be chosen. The Figure shows the perspective representation of the
vector sum a + b. Pushing the button new vectors creates randomly orientated vectors.



8.5 Fields 146

With the option switches on top the different vector operations are visualized and
superpositions are possible.

For addition and subtraction the input vectors are complemented by lines related
through parallel translation. This visualizes the construction of the red result vector
from the parallelograms.

a x b creates the vector product a cross b and displays it as black arrow. If the
sphere is rotated in such a way that the plane defined by the two input vectors lies in
the figure plane, then these vectors just touch the equator of the sphere and one looks
along the direction of the resulting vector. This demonstrates the orthogonal direction.
If one moves with the right-hand side from a via b to the vector product one completes
aright handed screw.

Performing the same experiment with b x a, one completes a left handed screw.
This is the meaning of the non-commutativity of the vector product: the direction of
the vector product b x a is opposite to that of a x b, thus we have b x a = —a x b. If
one displays a x b next to b x a, one sees that both vectors have the same length, but
point in opposite directions.

Finally a + b + c creates three random vectors and their red sum vector. If one
activates a + b in addition, one recognizes the partial construction of the sum of the
first two vectors and one can implement the completion to the total sum vector in ones
imagination.

In the description of the simulation you find further details and suggestions for
experiments.

8.5 Fields

8.5.1 Scalarfields and vector fields

In practical situations, the simple case that a single force vector acts on an object
will occur relatively seldom. An approximate example of this would be the collision
of two bodies in outer space sufficiently far away from other bodies, such that their
influence can be neglected. One could then consider one of the bodies to be at rest and
characterize the other one with a vector whose absolute value and direction correspond
to its momentum p = mv.

Much more common is the situation where there are influences atevery r = (x, y, 2)
in space on the object of interest. They can either be described by vectors, having
length and direction, for example the gravitational force in the vicinity of a planet, or
by scalars, which have no direction, such as the density of an atmosphere or the tem-
perature. Both quantities, force and density, influence the movement of a test body
in the vicinity of the planet. The gravitation has the effect of a directed acceleration,
while the density causes a deceleration independent of the direction of movement but
dependent on the position.
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In the first case we call it a vector field and in the second, a scalar field. In both
cases the characteristic quantities depend on the space coordinates, thus for the vector
field the absolute value and direction, and for the scalar field, the value. For the case
of a non-stationary field they also depend on the time.

We visualize both distributions in such a way that you will have the opportunity to
edit formulas for the position dependence of absolute value and direction, or to design
them yourself. This will give you a feeling for the characteristics of typical fields.

8.5.2 Visualization possibilities for scalar and vector fields

To visualize a scalar field in all generality one would need four variables, three for the
position coordinates and one for the position dependent scalar itself. This information
can obviously not be represented with a 3D simulation that is projected on a plane. In
addition some fields will change with time as a fifth variable. Thus one has to work
with certain restrictions for the visualization.

For stationary problems, the time does not play a role as variable.

For problems with rotational symmetry, for example the gas density distribution p
around a planet with rotational symmetry around an axis, one can restrict the presen-
tation to a cross section through the center of the planet at a right angle to this axis and
plot the gas density p as third coordinate over the cross section x y. Thus one obtains
a 3D surface in the space xyp. The field distribution in space then shows rotational
symmetry with respect to the distribution on the cross section.

A second possibility for this example would be to ask where the curves of equal
density are located and to create a family of such curves as a contour plot. This task
can be solved computationally by intersecting the planes p = constant for values on
an equidistant p-grid with the 3D surface xyp and finding the intersection curves. This
contour plot then has the familiar appearance of a geographical contour lines display.

In the general case one would have to produce a family of such presentations for the
different values of those variables that have been neglected so far. Fortunately, how-
ever, the cases of practical interest are mostly stationary and possess high symmetry,
such that the methods described above can visualize the important characteristics quite
well.

For vector fields, one has to show in addition the direction of the vectors localized in
space and their absolute value. This requires further restrictions for the visualization.

One is mostly interested in the general structure of the field, which can be shown
by putting arrows on a regular grid that show directions and absolute values at the
respective positions. If one only wants to show the direction of the vectors, one can
use the same length for all arrows, which makes the presentation clearer. To indicate
the absolute value one can then use different shades of color.

For the presentation of a three-dimensional vector field one can stack several such
cross sections over each other. As a static picture such a 3D projection is often quite
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confusing. However, if one moves the projection direction interactively, either with
the mouse or automatically around an axis, one obtains a rather good idea of the
distribution.

All these tools are provided by common numerical programs and we will show
examples for these in the following.

8.5.3 Basic formalism of vector analysis

Pure scalar fields without relation to a vector field, (the density distribution is such an
example), are not very interesting. Much more interesting are scalar fields, from which
vector fields can be deduced. This simplifies their description greatly and shows them
as originating from one position dependent parameter only.

We refer to a scalar potential field P, if the components of a vector field V are
obtained by taking partial derivatives with respect to x, y, z of P,'” i.e. via differ-
entiation after one variable at a time, while the other variables are considered as
constant. The underlying questions is, then, how the scalar value changes if one
moves from a space point r = (x, y, z) to a neighboring space point r + dr =
(z+dx,y +dy,z + dz). Thus one can take, for each variable, i.e. partially, the first
term of the Taylor expansion, if dr is small enough. One then obtains:

dP = P(x +dx,y +dy.z+dz)— P(x. y,2)

p WP P cpapap)jx — orad P e dr
=T x+d—y y+E z= dx'dy’ dz d.z =g .

The vector called grad P denotes the change of the scalar P in the three spatial di-
rections. For a given space point, its direction depends on the change of potential in
the three directions; it points in the direction of maximum change. Its absolute value
depends on the absolute values of these changes.

aP
x

aP\%2 [aP\? [aP\?
VoemdP = |8 'V'=\/(ﬁ) *(a—) *(a—z)'
ap Y
v

-

As shorthand for the partial differentiation with respect to all three coordinates, that
is applied to the scalar potential, one uses the symbol nabla (V), an overturned Greek
letter A. This symbol reminds one of the form of an antique harp (vafA« in Greek,
nablium in Latin). Nabla symbolizes a vector operator, which is therefore written as
a matrix with one column or one line. To stress the vector character of this operator,

17 The symbol for the partial derivative of a quantity A (x, y, z) after the variable x is ?,—‘:
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one usually puts an arrow on top of it.

d ) aP

x x x

V=2 | v=vr=|L|P=|2|: VP = grad P.

3 9 aP

9z iz 3z
Using the nabla notation has the advantage that it also allows a unified notation for
other differential operators, for which different symbols are traditionally used, which
hide their common origin. For example the vector field characterized by VP is tradi-
tionally denoted by grad P (gradient of P) and referred to as gradient field, because
if characterizes the steepness of the potential field.

We will now show some further applications of the nabla symbol and its traditional
synonyms. In the first two examples, the operator will not be applied to a scalar field
but to a vector field. In analogy to the gradient of a scalar field we now deal with the
change of a vector field from a space point r to a neighboring point r + dr.

d
ax ay
- dax day daz
Vea= il . = — e —— —_
a » (“y) = Ty T a:
9z

B da da
(3\ far\ (B~
Vxa= % x|ay| = %"z—x—%‘;—’
) az da,, dayx
oz x ~ By
V x a = curla curl (vector field) of a
) d
S 1 1 e
Ve = ,(? . ? =W+W+8_zz; V* = A Laplace operator
9z 9z

V2P = AP =div grad P; Laplace P (referred to as the “Laplacian”,
which is a scalar field).

The meanings of the symbols and operations are, in short, as follows:

The divergence of a vector field in Cartesian coordinates is obtained computation-
ally as the (symbolic) scalar multiplication of the nabla operator with the vector and
therefore it is a scalar field. It describes the source strength of the vector field. Where
it does not vanish, field lines either originate or converge.

An example from the Maxwell equations: divD = p; the charges p are the sources
of the electrical vector field D.
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The curl of a vector field is obtained computationally as (symbolic) vectorial mul-
tiplication of the nabla operator with the vector field, thus at every space point, it is
a vector. The curl of a vector field describes the vorticity of a vector field, which has
closed field lines, unless curla = 0 everywhere.

Another example from the Maxwell equations: curlH = j; the current density j
determines the vector field H that is orthogonal to the current density and has closed
field lines everywhere.

The Laplace operator is obtained via (symbolic) scalar multiplication of the nabla
operator with itself and therefore yields a scalar field.

An example for its application: underthe assumption that the electrical field strength
is the gradient field of an electrostatic potential, i.e. E = — grad &, we obtain from
one of the Maxwell equations, namely divD = p, the Poisson equation A® = —p/eq.
Using this equation the electrostatic potential due to a given charge density p can
be calculated, and from this the electrical vector field. In a portion of space without
charges the potential equation A® = 0 applies.

Between the different operators, the following general relations apply:

For every scalar field V we have: curlgrad V = Vx W = 0, i.e. for a gradient
field the (local) curl is zero, there are no vortices.

divcurla = 0. The (local) divergence of the curl field of a vector field is zero,
because a pure vortex field does not have any sources.

8.5.4 Potential fields of point sources as 3D surfaces

Particularly elementary, simple, and at the same time important, are the potential fields
that are caused by point sources in space. They describe both the gravitational attrac-
tion between masses m; as well as the attraction or repulsion between charges e;,
which can be positive or negative. The common property of these forces is that,
with growing distance, the effect of the point source is spread over the surface of
a sphere and therefore decreases like 1/4r2. The potential field then has, apart from
an additive constant as integral of the vector field in polar coordinates, the form:
mi ei
—— r ——

1

r r

The effect on a similar object increases with decreasing distance, because 1/r be-
comes larger, when the distance becomes smaller. The minus sign has the effect that
the force F = —grad P = (m/r?)ry is positive if m; is positive. In the case of grav-
itation, this is always the case. In the electrostatic example, the increasing repulsion
of equally charged objects turns into an increasing attraction, if they are of opposite
charge.
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The following interactive simulation of scalar fields shows as examples:

« the potential field of a point source;

* the potential field of two point sources of equal sign at a distance of r, with
adjustable mass ratio (charge ratio) b;

* the potential field of three symmetrically located point sources of equal sign at
a pairwise distance r, with adjustable mass ratios b = my/my,c = m3z/m; or
charge ratios b = e3/e;,c = es/ea;

* the potential field of a dipole consisting of a negative and equally large positive
charge at a distance of r;

* the potential field of a quadrupole consisting of two dipoles arranged symmetri-
cally at a distance r.
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Figure 8.3. Simulation. 3D plot of the potential field of point sources lying in a plane. The
figure shows the field of three similar point sources. With the right slider the mass or charge
can be fixed, with the left slider the yellow intersection plane can be shifted and with the
bottom sliders b, ¢ the mass or charge ratios can be set. In addition, different projections of
the 3D field can be chosen.
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The first object is normalized to 1; the distance r can be changed continuously with
a slider.

The potential distribution (the value P can be chosen with the left slider), is cal-
culated for planes in an adjustable distance z to the xy-plane, which can be set with
the right slider. The potential distribution in the z-plane is shown by the intersection
curve between the potential surface and the z-plane.

The fields diverge at the respective point sources, since lim;_o (%) = 00. In the
simulation, this is prevented by excluding the plane z = 0. For a realistic field distri-
bution one would have to work with extended charged objects instead of with point
sources.

This simulation provides many possibilities, whose detailed description cannot be
given here. The formulas are editable, such that, in addition to the given fields, ad-
ditional fields can be calculated. In the description pages we discuss this further and
useful experiments are proposed.

In Figure 83 you can see the whole interactive appearance for the three body prob-
lem with three equal objects. We show a potential cross section in the plane z = 0 in
the “far field”, where the potential surface has not yet split into partial surfaces.

8.5.5 Potential fields of point sources as contour diagrams

The visualization of potential curves in cross sectional planes shown above is very
flexible. However, it takes some careful thought to understand what is actually being
calculated and what one sees. The extensive details in the description pages will assist
in this regard.

This is the advantage of presentation as a contour diagram. It immediately shows a
family of potential curves of equal potential distance in a plane.

For the computation, the same algorithm as above is used. However, now we only
show the intersection of the yellow plane from Figure 8.3 with the potential surface
and at the same time we show a number of potential lines (here 35, they cannot all be
separated with the eye). The following interactive diagram Figure 8.4a shows in the
xy-plane equipotential lines for a large mass with two smaller masses in its vicinity.
One recognizes at the same time the near field, where the equipotential lines encir-
cle the individual objects, and the far field, where the equipotential lines encircle all
objects, as well as the neutral points, with grad P = 0, in which an object without
its own momentum would not know where to turn (the force as gradient acts in the
direction of the largest potential change).

The three following static pictures show next to each other the three-body potential
of three equal bodies in a plane with distance z = 0.42 to the xy-plane, as well
as a dipole and a quadrupole field, which have a very instructive appearance in this
presentation. One must, however, take into account that the equipotential lines in the
individual z-planes do not represent identical potentials. The 35 potential lines are
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Figure 8.4a. Simulation. Contour representation of a potential field, in the picture the field of
a point source with two smaller satellites (mass ratio 0.2) is shown. The scanning plane can
be moved with the right slider. Thirty-five potential lines are calculated. That these appear to

have comers at small distances is an artifact of the calculation.

Figure 8.4b. Examples: contour diagrams for three point masses, for a dipole of a positive

and a negative charge and a quadrupole formed from two neighboring dipoles.
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determined separately for each layer. Thus one obtains a qualitative picture, while the
3D presentation is quantitative.

By moving the z-plane, one quickly obtains in this simulation an idea about the
spatial distribution of the potential.

8.5.6 Plane vector fields

In reality, vector fields have many components, derivatives and variables: three for
the position, and three for the components of the direction, the absolute value and the
time. For numerical calculation this does not really pose a problem; one simply needs
to do the calculation with the required number of dimensions.

However, one has to accept many limitations for the visualization, since the desired
relationships have to be shown as a projection on a plane. It becomes relatively easy
if one assumes that the vector field is in a stationary state (no time dependence of the
direction or absolute value) and if we restrict ourselves to vectors in a plane, as we
will do in this subsection.

The local distribution of the vector direction can be shown quite clearly with ar-
rows, whose origins are placed on a regular grid in the plane. The pictorial presenta-
tion of the absolute value of the vector is, however, less convincing. If one chooses
the length of the arrows to show this, the arrangement easily becomes unclear, since
the dependence on the position can be quite strong, for example for a quadratic de-
pendence from the distance to the source. If one chooses different shades of color, the
achievable range is small and the presentation is only of a qualitative nature.

We have chosen a uniform arrow length. Color shading gives a qualitative hint about
the absolute value of the vector field. For the quantitative presentation of the absolute
value of the vector, we use the velocity of a test object that moves in the vector field
(ax.ax). Thus the time is used as another dimension of the presentation.

The red test ob ject moves from the start along the field lines with a velocity that is
determined from the components of the vector field ax.ay according to very simple,
coupled ordinary differential equations (see Chapter9):

dax day
UVx = —, Vy = ——.,
T dr 7T dr

In two dimensions, particularly, the formula for the curl becomes clearer:

L] 0
curla=V xa= (?)x(zx)= , 0 :
y a day
L7 =
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The curl has only one component, namely in the z-direction, since it needs to be
orthogonal to the xy-plane of the vector field. The source strength only depends on
the changes in the x-and y-directions.

In general, the components of the vectors will be functions of both variables x and
¥, ax = ax(x,y); ay = ay(x,y), such that the scalar divergence and the absolute
value of the cur! depend on the position. The direction of the curl is for a plane field
always the orthogonal axis, normally called the z-axis.

In two dimensions, the curl can be calculated easily for given formulas of the com-
ponents. Remember that one treats the respective second variable as constant for the
partial differentiation with respect to the first one.

Vortices in the vector field can be easily recognized in the chosen presentation.

A vector field is vortex free if its curl is vanishes everywhere:

da, dax day dax

curla=0 for— - —=0—> = :
ax dy ox dy

This is for example the case, if ax = ax(x); ay = ay(y) i.e. if the components only
depend on their own coordinate. In this case, the partial derivatives vanish identically
(further details are given in the simulation description).

Sources in a vector field can be recognized visually by sequences of vectors, i.e.
field lines that start or end at them. A field is free of sources and sinks (negative
sources), if the divergence vanishes everywhere.

dax day dax day

d‘ =0 f — —=O —_— —) .
v a or e + ay - ax ay

This is, for example, the case when the vector components are independent of the
coordinates, i.e. if the derivatives vanish identically.

In other cases, one needs to examine critically if the formally satisfied condition
provides an answer that make sense in all points of the vector field. This is, for exam-
ple, not the case if the limiting process when calculating the derivative results in an
undetermined expression (0/0). A secure statement is obtained if one surrounds the
suspected source with a circle (a sphere in three dimensions) and sums up the number
of field lines that cross the curve while taking the signs into account. If the number
of field lines entering the circle is the same as the number of field lines leaving it, the
corresponding point is free of sources. This statement becomes exact when integrating
over the volume and taking the limit of vanishing radius.

Figure 8.5, which shows at the start a vector field with two vortices, leads to the
interactive simulation. The test object, which is initially at rest (initial velocity 0),
can be moved to an arbitrary position in the field using the mouse, prior to the time
simulation, in order to investigate the total field in detail.

With the selection field one can choose one of a number of typical fields. The for-
mulas for the components, as well as the respective divergence and curl, are then given
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Figure 8.5. Simulation. Animated movement of a test body in a given vector field. The top-
most, non-editable, text field shows preset field types and their vector components a ., ay. The
components can be edited separately in the small text fields, such that arbitrary fields can be
created. The right slider controls the zoom factor, the lower slider, the arrow length that is
constant over the whole plane. For the preset fields, divergence and rotation are displayed.

in text fields. The formulas field can be edited, so that arbitrary component formulas
can be entered to study the corresponding fields.

The scale slider zoom on the right allows the investigation of the field on larger or
smaller scales. This variation possibility is important, because the number of arrows
shown is constant for clarity, but at a larger scale, details such as vortices and sources
can be lost.

The arrow length, which is constant for the whole plane, can be adjusted with the
second slider.

Further details and suggestions for experiments are given in the description pages
of the simulation.
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8.5.7 3D field due to point charges

Figure 8.6 shows the vector field of a quadrupole. It leads to the simulation of the gen-
eral electric vector field of point charges. The distribution of its direction is visualized
through a periodic grid of arrows having constant length, which show the local direc-
tion of the electric field strength vector in every point. The vector length is adjustable,
but constant everywhere within the picture.

The absolute value of the field strength is indicated by color shading. In addition,
a threshold value for the lowest absolute value for which vectors are shown can be
selected. This provides a field strength dependent envelope surface for the whole field.

The opaque yellow plane can be shifted parallel to the z-axis, such that a spatial
cross section through the vector field is shown.

The space orientation of the presentation can be adjusted with the mouse; in
addition, defined projections can be selected.

The number of objects can be chosen freely, and one can switch between particles of
the same or opposite polarity. This shows the considerable difference in fields between
multipoles of opposite polarity and particle configurations of uniform polarity, most
distinctly recognized in the far field.

In the initial state, all particles are positioned unif ormly on a circle around the origin
in the xy-plane. They can be individually moved with the mouse, such that arbitrary
configurations are possible.

A convincing visualization of a situation that depends on so many parameters via
projection to the observation plane requires a careful coordination of point distance,
arrow length, threshold level and observation angle. The spatial impression becomes
quite vivid if one changes the orientation of the projection slowly by pulling with the
mouse.

The description contains further details and suggestions for experiments.

8.5.8 3D movement of a point charge in a homogeneous
electromagnetic field

The movement of a charge in an electric field is quite easy to understand. It follows
the direction of the electric field and the charge is accelerated proportionally to the
absolute value of the electric field vector.

The movement in a magnetic field is much more complicated. In this case, the vec-
tor product of magnetic field and velocity determines the acceleration of the charged
test mass. Thus the charge is deflected at a right angle both to the magnetic field and
the direction of its velocity, and the strength of the deflection depends on the angle
between magnetic field and current direction of movement, namely F ~ v xB. The ef-
fect of this force is that the orbit moves in spirals around the direction of the magnetic
field lines.
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Figure 8.6. Simulation. 3D field of point sources that are located at arbitrary positions; in the
figure a quadrupole consisting of two positive and and two negative point charges. Using the
sliders the arrow length, the threshold of the displayed field strength level, and the position of
the yellow scanning plane, can be adjusted. The number of charges is entered by hand in the
number field while the switch determines whether the charges all have the same or alternating
opposite signs. On the top, different projections can be selected. All individual particles, as
well as the 3D projection, can be moved or adjusted with the mouse.

Through the combined effect of magnetic and electric fields, the accelerations are
added and very different movement patterns can come about. We want to visualize this
for the simple example of a homogeneous field, for which the electric and magnetic
field are constant in absolute value and direction in the whole space.

The interactive Figure 8.7 shows after opening the movement of a charge, whose
initial velocity vector has components in the positive y-direction and negative z-direc-
tion, and which is subject to the accelerating effect of the green electric field vector
and the “rolling up” effect of the red magnetic field. The spiral drawn in magenta
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Figure 8.7. Simulation. Movement of a charge with given initial velocity vector in a homo-
geneous electromagnetic field. The components of the homogeneous fields and of the velocity
vector are shown in the sliders at the right and can be set as initial values before starting the
simulation. The velocity vector for the simulation is set with the lower slider. The simulation
is started with the Start button.

is stretched in the direction of the E field. The axis of the spiral is parallel to the
red vector of the magnetic field, as becomes apparent if turning the 3D simulation
appropriately.

Arbitrary initial conditions can be set with three sliders each for the homogeneous
vector components of electric field, magnetic field and for the initial velocity of the
point charge. After pushing the Start button, which triggers the calculation of the orbit
using the respective differential equations, the sliders for the velocity components
move according to their changes as function of time. The speed of calculation can be
adjusted.

The start point of the charge can be adjusted with the mouse. ResetObject moves
the start point to the origin, while leaving all other settings unchanged. Reser changes



8.5 Fields 160

all parameters back to their default settings. Clear erases all orbits. Thus one can also
superimpose orbits with different settings.

The simulation provides a wealth of possibilities, of which a few limiting cases are
named below:

* No fields: uniform movement of the charged particle with the initial velocity and
no acceleration;

¢ Only E field: uniformly accelerated deflection of the object;

¢ Only B field and velocity parallel to the magnetic field: field has no effect on the
movement;

e Only B field and velocity vector orthogonal to it: circular orbit;

* B field and E field orthogonal to each other and velocity vector orthogonal to B
field: spirals.

The description of the simulation contains further details and suggestions for experi-
ments.



9 Ordinary differential equations

9.1 General considerations

In connection with the differential quotient we have introduced the notion of differen-
tial equations and briefly described the particularly simple and important differential
equations for trigonometric and exponential functions.

In this chapter we want to deal extensively with this “magic wand” of infinitesimal
calculus, which provides the key to a deeper understanding of physical relationships.

Which concrete meaning can be associated in ones imagination with the first and
second differential quotients y and y” of a function y (higher differential quotients
barely play a role).

We consider a graphical presentation of the function y = f(x) in a plane coordi-
nate system.

The first derivative y'(x) = % (x) is the slope or stee pness of the curve describing
the function at position x. It indicates how strongly y changes for a given x as a
function of x. Positive values signify an increase, negative values a decrease.

The second derivative y”(x) = :—i{(x) = %vi—’(x) describes the change of slope
and thus the local curvature. Positive values mean an increase of the slope and
thus concave curvature, while negative values signify a decrease of the slope and thus
convex curvature.

We now want to interpret especially the variable x as time t; we thus consider
changes of the quantity y as function of time. An example would be a driving car, for
which y is the distance traveled during the time interval £: y = f(¢). Thus at time
t = 0 the position of the car is y(0) = f(0).

The first derivative y'(t) = % is then the change in the distance traveled per
infinitesimal time interval, measured at a certain time point ¢, and thus has the meaning
of the instantaneous velocity v of the car.

PR " d? dy’ . ;

The second derivative y” (1) = #(t) = —j"— describes the change of velocity
and thus the instantaneous acceleration a of the car. Positive acceleration means an
increase in the velocity, negative acceleration means a decrease in the velocity, i.e.
deceleration.

Thus, for the illustrative description of differential quotients (derivatives), the des-
ignations slope or steepness are equivalent, as well as the designations curvature and
acceleration.

We demonstrate here the strength of the predictive power of an extremely sim-
ple differential equation, the example of a driving car. In school we learn with great
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effort the formula for the time dependence of the traveled distance s with ve as initial
velocity and sg as initial value of s:

s(t) = %t’ + vt + So.

We also learn the restrictive condition, that the acceleration a must be constant for the
equation to be correct at all (every child knows, however, that this does not happen in
reality). The simple differential equation:

=a

does not only apply in the same situation, but is also valid if the acceleration is not
constant, but is an arbitrary function of time a(t). To distinguish between all individual
events that satisfy the differential equation, it is sufficient to know the respective initial
values vg and sq.

To calculate the time dependence from the differential equation is a routine job that
is identical for all differential equations, and for which one can use the analytical tools
of integral calculus, or which is just left to a numerical computational code.

In physics we often do not wish to calculate the values that result in a special
case, but to primarily understand which causal relationships are behind a certain phe-
nomenon. The example of distance traveled simply provides the answer: the acceler-
ation is important.

This statement in its formal simplicity is also valid if we examine a “curved” three-
dimensional orbit in space under the influence of different forces! For the force vector
F that acts on the object with mass m we have:

F = ma,

where a is the acceleration vector. This was one of Isaac Newton’s greatest insights.

9.2 Differential equations as generators of functions

The example of the distance traveled also gives an easy answer to the question: how
does one find the functions that are important in physics? How are functions defined
that describe certain situations? How does one find the relationship between variable
and function value that is expressed in the function, i.e. the “character” of a special
function type?

Differential equations are the parents of the functions, and we will soon see that
a single differential equation, i.e. a simple relationship, creates many related children —
read functions.

As discussed in Chapter 5, functions describe the dependence of a quantity y on one
or more other quantities, which are called variables of the function, or more correctly
independent variables.
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For one variable, which we call ¢, these functions shows y in its dependence from
this single variable z. (We here choose ¢ as symbol of the variable, since many ex-
amples will demonstrate a dependence on time.) The curve of the function can be
visualized with a y () plot. Changes are described by derivatives with respect to the
single variable 7.

Function y = y(¢), variable: )y <t < 12,

d d? dy’

slope y'(¢) = d—'r: curvature y"(t) = Ti = d_);
What happens if several variables need to be taken into account in the example of
a time dependent function of two position variables,i.e x = f(x, y,t), which we

have visualized above? Here the partial differential quotients appear, which describe
the change of the function value z when varying one of the variables. For the partial
derivative of a function with respect to one of the variables, all other independent
variables are treated as constants.

z=2z(x,y,t)
variable: x; <X <Xx2i y1 <y <yat) <t<ty

dz 9z dz 822_ Bzz. 822_ 8%z .

3’ ax’ 3y’ a2’ ax2' 9y2’ axdy’
We now go back to relationships for one independent variable and consider a simple
example: we know about the exponential function, that its instantaneous growth, the
growth rate or slope, is exactly the same as its function value. The growth rate is
identical to the first differential quotient:

fory = e’ wehavey’ = d_y =¢f;
dt
Y =y.
This differential equation (relationship between the function andits derivatives) char-
acterizes the nature of all growth functions (exponential functions) in a unique way.
To fix a specific growth function, one only requires its initial value.

If, as above, we only deal with the differential dependence on one variable, we refer
to an ordinary differential equation. Partial differential quotients appear when there is
a dependence on more than one variable and we refer to a partial differential equation
(see below).

There is no other function that shows the same property of the derivative as the
exponential function. This applies irrespective of its “amplitude”, i.e. a multiplicative

factor C, because:
d
fory = Ce’ wehavey’ = d_}t, =Ce=y—>) =y.

In general, every linear differential equation is independent of multiplicative factors.



9.2 Differential equations as generators of functions 164

It is quite easy to formally derive the exponential function as a solution from the
knowledge of the differential equation, using elementary integrals.

dy
=9 _ .
yEysog =y
the solution method of choice is the seperation of variables
d
& = dt,
integration of left-hand side
Y1
[ Sdy=my—tnye withy© = ya.
y@ Y
integration of right-hand side

¢
/ di=t—0->Iny=t+Inyy y=etn70 =gt
0
The basis exponential function y = € is the result for the initial value yo = 1. From

the last equation, one can see that multiplication with the initial value yields the same
function as translation along the ¢-axis by the logarithm of the initial value.

Solutions Ae*x of y' =y

Figure 9.1. Family of solutions y = Ae* of y' = y. The parameter of the curves is the initial
value A = y(0) (intersaction with the ordinate), which takes on the integer values from —20
to +20.



92 Differential equations as generators of functions 165

For different initial values, the differential equation describes a family of expo-
nential functions, which are distinguished by a multiplicative factor. The diagram in
Figure 9.1 shows this family of curves for positive and negative initial values between
—20 and 20 with step width 1.

In general, an ordinary differential equation is defined by a functional relationship
between a function, its derivatives and the variable t:

general F(t,y,y'.y"....,y™) =0,
explicit y™ = Fy Yy y" ... y@ D).

A differential equation is called explicit if the highest derivative can be expressed as a
function of the lower derivatives.

The above equation for the exponential function is an ordinary explicit linear first
order differential equation. The equation is:

e ordinary, because it only has one variable;

* explicit, because the derivative of highest order can be expressed as a function
that does not contain itself;

e linear, since the function itself and all derivatives except for the highest order
enter in a linear fashion;

* of first order, since only the first derivative appears in it.

These criteria are important for finding an analytical solution and are also important
for numerical solution with limited computational power. In the case of explicit equa-
tions and important numerical methods, only previously calculated data enter the pro-
cedure to calculate a solution step by step. For implicit equations (an exotic example
is y" cos y” + x¥ = 0) one has to solve for every step of the calculation an equation
that already contains the results for the next step. This is, in general, not possible in
closed form, but only through iteration. With sufficient computational capacity, how-
ever, this dilemma loses its importance. We have already shown above how to solve
complicated equations with iterative methods.
One could, of course, also describe the exponential function via a differential equa-

tion of second, or even higher order, because we have

y=e5y =% y' =% ...

— forexample )" =y.

If one asks which functions satisfy this second order differential equation one realizes,
maybe initially surprisingly, that it is not satisfied only by the simple exponential
function but, in addition, by a multitude of functions that are related to it.
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Indeed we have with A and B as constants:
Fory = Ae' — y' = Aé' — y" = Ae’ = y=y"(=y).

Fory=Ae™ > y'=—Ae™ > y" = Ae”* =2y=y"Fy).
Fory=Ae'—Be™ - y' = Ae’ + Be™ — y"' = Ae* —Be™ = y = y"(# ")

in particular for4 = B = 1/2:

t, -t t_ -t ' -t
y=cosh(t)=%—>y’=e 2e —>y”=% =y=)y"Gy)
e —et & +et ef—e™t
y =sinh(r) = -y = S y'= 5 =y=y"(Fy).

In addition to the simple exponential function with a positive exponent, this also in-
cludes exponential functions with a negative exponentand also all linear combinations
of these two components, of which we have formulated cosh ¢ and sinh ¢ at the end of
the list.

In the diagram Figure 9.2, which is not active, we show the families of the functions
described above. First the family of exponential functions with positive and negative
exponents and initial values is shown.

Figure 9.3 then shows the hyperbolic functions that are either symmetric or anti-
symmetric to x = 0 and are determined by a single initial value A:

eX—e™* ef +e ¥

Asinh(x) = A———:  Acosh(x) = A—

Finally Figure 9.4 shows the general solutions with two parameters A and B:

Ae* — Be™; Ae* + Be™™
withA=1,223,...,10
and B = 1,5, 10.

The choice of the parameters A and B, including their signs, determines which indi-
vidual function, from the abundance of functions that satisfy the differential equation
y" =y, is realized. One obtains al/ functions for which the curvature has the same
sign and absolute value as the function value.

In this simple case it is immediately obvious that one could, instead of the second
order differential equation, also use two first order differential equations:

!

y =-y
"o__ .t ol yn — _y/.
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Solutions Ae*x und Ae*(-x) of y”“ =y

-20.00

Figure 9.2. Family of solutions y = Ae* and y = Ae™ of y” = y fordifferent initial values
y
of A = y(0). A covers all integer values from —20 to +20.

Hyperbolic sinhx und coshx as solutions of y~=y

%——-—’"/

Figure 9.3. Family of solutions of y” = y: the function y(x) = A sinh x goes through (0,0)
and y(x) = Acosh x goes through (0, A) with initial value y(0) = A. A changes in integer
steps from —20 to +20.
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Solutions of y* = y with 2 parameters

20 1.8 12 -08 0.4 0.0 04 08 x 12 18 20
80 1

Figure 9.4. Two-parameter family of solutions of y” = y. The vales of A and B determine
for example the two initial values y(0) = A+ B and y'(0) = A — B.

In general, one can reduce an ordinary differential equation of nth order to a system
of n equations of first order:

Y = £y oy YD)

D y=mn
2 =y
) y=»
49 3=y

YO = fOL Y1 Y2930 Yner )
Since the differential equation is explicit, f(...) does not depend on y,.

The differential equation of nth order has n parameters of initial values, which are in
general different from each other. By fixing specific numbers for the initial values, one
selects a specific function out of all the innumerable functions that satisfies the differ-
ential equation. The physical solution is thus obtained from the differential equations
and the initial values.

The beauty and descriptive power of mathematics with its application in physics
shines in a very specific manner for differential equations. One single, formally quite
simple, relationship can include a multitude of solution possibilities, out of which the
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selection of a few parameters picks the specific solution. Understanding the relation-
ships of differential equations, therefore, is much more important than the knowledge
of a large number of formulas for limited problem areas.

The differential equation y” = —y describes all phenomena in connection with
undamped, sine-shaped oscillations. A factor a (y" = —ay) does not change anything
fundamental, since scaling the time with t = ,/at transforms the differential equation
back to y = —y. What is the visual meaning of this equation? The curvature y” is
equal to the negative function value. This means that, for a large positive function
value, the curvature will finally reduce the function value, and for a negative value the
absolute value finally decreases. However, this is exactly the hallmark of a periodic
oscillation: the values do not go beyond a maximum or minimum value, but are always
led from one to the other. For damped oscillations or those whose amplitude increases
with time, one uses the more general law y” = ay’ — by. This states that fora > 0
the curvature increases with time, and thus the oscillation grows, while fora < 0 the
curvature decreases, and thus the oscillation decays.

Other classes of phenomena can be described using different classes of differential
equations. For example. the Newton equation of motion mj—f{ = F(r) governs the
huge class of all possible movements of a mass under the influence of a given force
field F(r). This includes, for example, planetary movements. The resulting mechanical
movements depend on the form of the force field and, particularly, on the initial values.

Thus differential equations can be viewed as condensed information that classifies
a wide range of physical phenomena with some related characteristic. They also have
a wide range of applicability as well as high aesthetic appeal, and provide order in the
plethora of natural phenomena.

9.3 Solution methods for ordinary differential
equations

If one wants to obtain from the differential equation a closed form for y(¢), then it
needs to be solved analytically, as shown for the particularly easy case of the expo-
nential function. If the function y does not appear on the right-hand side of the dif-
ferential equation, i.e. if the differential equation reads y’ = f(z), then y is obtained
via the normal integration method. We can immediately verify this for the traveled
distance problem. For constant acceleration b we obtain for the traveled distance s(t)
the following:

t t
s" =b; s’=v=/ bdt'=b/ dt’ = bt + v,
0 0
t b2
s = / (bt' + ve)dt' = > + vot + So-
.

Here the two initial values are the initial position sg and the initial velocity v.
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For the general case, the art of solving differential equations analytically fills entire
books. The solution methods for those differential equations that are important in
physics mostly follow simple patterns, for which there are standard methods. We refer
here to a few of the books cited in the introduction. In general, all ordinary differential
equations can be treated analytically. For this endeavor, an approach quite similar
to the integration of non-standard functions is applied: one tries to guess a specific
solution systematically and then tries to obtain a general solution with the variation
or determination of parameters, which can be an exact, an approximate or a series
solution of the differential equation.

If one does not need to obtain the solution as an analytical expression, but can be
satisfied with calculating its numerical values as a function of the initial values and
variables, and thus also to represent its general behavior graphically, then one can
solve the differential equation numerically, irrespective of its complexity. All popular
programs like Mathematica or Java/EJS provide a number of methods with different
degrees of accuracy, which can be easily used. However, the algorithms use stay hid-
den in the background (black box), which is why we will be describing and visualizing
the most important ones in the following paragraphs.

In practice, it is quite important to become familiar with the numerical methods of
solution for first order differential equations, since all other ordinary differential equa-
tions can be reduced to them, if one allows several dependent variables. We visualize
this in the following for equations of first order and also show in detail the applica-
tion to differential equations of second order. All the following extensions work in a
similar manner.

9.4 Numerical solution methods: initial value problem

If one also allows for nonlinear relationships, most of the differential equations that
are important for physics are surprisingly simple. This may not really be a surprise, but
nature in its deepest relationships is really simple! The causes and effects expressed
via differential equations can thus be clearly and quickly derived and understood from
physics.

In spite of this simplicity, the analytical solution of differential equations can be-
come highly complex, especially if they are nonlinear. In all generality they can only
be solved (integrated) in individual cases. Therefore, one makes simplifying assump-
tions about the form of the differential equations or first makes calculations for simply
solvable special cases, and uses these to treat general cases that deviate only a little
from these, using the so-called “perturbation theory”.

Due to the ubiquity of the personal computer, many of these restrictions fall away.
Suitable numerical programs can calculate the solutions of nonlinear and implicit dif-
ferential equations as quickly and accurately as the solution of those equations, which
can be easily solved in the classical analytical way.
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Using a computer itis also possible to solve systems of many differential equations
in reasonable time. An example of this would be where it is necessary to calculate
the interaction between numerous bodies. In this case, an N-body problem leads in
general to 6N differential equations and a corresponding number of initial conditions,
since eachbody has six degrees of freedom, namely three for the position and three for
the momentum. An extreme example is a simulation of the gravitational collapse in
the early cosmos, which was conducted at the Max Planck Institute for Astrophysics in
Munich.'® In this calculation, the interaction between 10'® ma.ss points was simulated
and the calculation time of the supercomputer used was about one month! On the data
carrier for the digital version of the essay edited by Martienssen and Rdss, which
was announced in the introduction to the present volume, there is a video of this
simulation, which is described in a contribution by Giinter Hasinger.

In the following, we sketch the general approach to the solution first for the example
of the explicit first order differential equation, and then compare it with the familiar
integration approach.

Given an initial value of the function and the relationship between derivative,
function and variable we proceed as follows:

direct integration differential equation
differential equation y' = f(x) differential equation

Y = f(x,y) > yo = f(0. y0)
initial value yo = C initial value yq

solution y = f: f(x)dx = g(x) + C required: solution for y(x) with y(0) = y,.
with f(x) = 4

For the normal integration task, the derivative is a priori known in the whole interval
as a function of the variable, while for the differential integration it can initially only
be computed from the differential equation and the given initial value. For other values
of x one does not yet know y, and therefore also y’. Thus one has to determine for the
whole interval y and y’ at the same time. To achieve this one has available, in addition
to the differential equation, which is valid everywhere, only the initial value, together
with the initial value of the derivative obtained from the differential equation.

The numerical methods correspond to a careful step from the first to the second
point, from there to the next, and from there to the one after that, and so on. Thus,
depending on the method, one arrives at a more or less suitable guess, as to where the
next point could lie, given the initial values and the initial slope. For this point one uses
the diff erential equation to calculate an estimate of the next point. In every step errors
are created, and therefore it is quite astonishing what accuracy can be reached with

18 See Hasinger’s Essay in Physik im 21. Jahrhundert — Essays zum Stand der Physik, Martienssen, W.;
Ross, D. (editors), Springer, 2011, ISBN 978-3-642-05190-6.
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advanced methods for rather simple algorithms. This is helped by the fact that many
interesting tasks deal with periodic problems (orbits of planets, pendulums, periodic
electric fields), where positive and negative errors from the two half periods often
compensate for one another.

9.4.1 Explicit Euler method

Forthe simplest method, the classical Euler method, one assumes that the next value
of y lies on the tangent that starts at the initial value yq and has a slope of y’(0):

initial value given as yo

differential equation y’ = f(x, y) — yo = f(x0.Y0)
y1=Yyo+ Ax-y,

x1=x0+ Ax > y| = f(x1.0)
Y2 =y1+Ax-y

Yo =yn-1+Ax -y,
.V;’; = f(xn.yn).

The method is called “explicit”, since only data from the (n — 1)th point are used to
calculate the nth point.

The Euler method is analogous to the integration of a known function y using the
previously discussed method of trapezoidal steps. The additional complication with
the analogous use for the initial value problem of a differential equation is that both
the function as well as its derivative are unknown except for the initial point. The
knowledge of the relationship between function and derivative is, however, sufficient
to determine both of them approximately. However, one pays the price that the deter-
mination of y] at the first point is affected by the error committed when estimating y,
itself from the initial values.

In Figure 9.5 the situation is clarified graphically for the example of the exponential
function drawn in red. At the initial abscissa xg, the initial value of the function yo
is known. The differential equation yields the slope of the tangent drawn in blue. Its
intersection with the interval boundary x; gives the next value according to the Euler
method y; marked by a blue circle. In this example, this value is clearly smaller then
the actual value y; of the exact curve, since the exponential function does not have
a constant, but rather a constantly increasing, slope. The Euler method does not take
into account changes in the derivative during the interval. Therefore one must make
Ax as small as possible, to limit the error.
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Step of the Euler method (red: y = e*x)
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Figure 9.5. One step for the Euler method: see the text for details.

According to the construction of the algorithm, one does not use the slope of the
curve at the initial point x; of the new interval, but a value that is obtained from
abscissa and ordinate of the point via the differential equation, i.e. y; = f(x1. J1).

We have chosen the exponential function as an example, since the ordinate x does
not appear explicitly in the corresponding differential equation. Therefore, a simple
graphical construction is possible for the second value of the derivative: it is equal to
the slope of the dashed green tangent on the red curve at the ordinate of the second
point ¥;. With this slope we continue (blue) parallel to the dashed green line from the
first calculated point to the next one.

In the general case the relationship would be less clear.

As known from the analogous integration method, the error in this simple method
is quite substantial. It can be controlled to some extent at the price of larger com-
putational effort by choosing the intervals Ax sufficiently small, and decreases lin-
early with the width of the integration intervals. With growing resolution the method
converges linearly to the correct solution. For periodic functions, the errors partially
compensate for each other in the half periods, since the deviation is negative for a
concave graph, while it is positive for a convex one.
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9.4.2 Heun method

The Heun method also calculates the corresponding next point in such a way that it lies
on a straight line through the initial point xo (This also applies for the Runge—Kutta
method, which is described next and has particular practical importance). In contrast
to the Euler method, a more favorable angle is used. For the Euler method, this angle
was simply determined as the result of the differential equation at the respective ini-
tial point of the new interval. For so-called multi-stage methods, of which the Heun
method is one, this angle is determined as the mean value of several calculations. Thus
the slope is obtained in more than one point using the differential equation.

As shown in Figure 9.6 the Heun method uses for one step of the method the differ-
ential equation both at the initial point and at the endpoint of the interval. As with the
Euler method, it first calculates the so-called Euler point (the blue point in Figure 9.6)
using the slope of the tangent at the start point. It then calculates the corresponding
derivative at this point. In the figure this slope corresponds to the dashed blue tan-
gent. Now the mean value of these two slopes (not of the angles, but rather of their
tangents) is calculated, which is indicated by a dashed line with the corresponding
slope in magenta. With this average slope, one now calculates in the forward direc-
tion from the initial point (solid green line, which has been shifted in parallel). Its
intersection with the interval boundary at x; is the next point of the Heun method
(green point). It is considerably closer to the “true” value than the result of the Euler
approximation.

Expressed in formulas:

forward Yo = f(xo.y0)
Y1.kuer = Yo + Ax -y, Euler point as intermediate step

y;,l;‘uler = f(yl,l:‘uler)

calculation of the mean value

_ yl+yl‘ pu—
y{,=% - y1=yo+ Ax-yhi ¥y, = fOn).

In the form presented above, the Heun method is implicit, since the new point to be
calculated appears on both sides of the equation. The equations therefore have to be
solved with iterative methods.

The Heun method proceeds analogously to the integration of a known function with
the help of the trapezoidal chord method. As shown when this method was discussed,
the accuracy is considerably better then for the Euler method. The error of the Heun
method thus decreases quadratically with the interval width, the method converges
quadratically. It takes the change of the derivative within the interval into account in
a linear approximation, thus it considers a kink.
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Step of the Heun method (red: y = e*x)
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Figure 9.6. One step for the Heun-method: see the text for details.

9.4.3 Runge—Kutta method

The Euler and Heun methods have been described for historical systematic reasons,
but even more so for didactic reasons. In their simple form they are no longer gener-
ally used, since the larger computational effort per interval for more advanced multi-
stage methods is no longer an issue today, and therefore one can achieve much more
accurate results for the same interval width.

The most popular route to the integration of differential equations is the Runge—
Kutta method. In its four-step basic version it is analogous to the parabolic approxi-
mation for the integration of known functions, and takes into account the change of the
slope within in the interval in a quadratic approximation; thus it uses a parabolic cur-
vature. As for integration using parabolic approximation, it converges with the fourth
power of the interval width o Ax*.

For the parabolic method one uses, as described above, three points to fix the
parabola, that approximate the true curvature in the interval: the initial point xg, the
midpoint of the interval xy/, and the endpoint x1.
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For the integration, the value of the derivative of the antiderivative to be determined
is known across the whole interval, thus also at those three points. When solving the
differential equation, the derivative is initially only known at the start-point of the first
interval. The derivatives at the following points first need to be found. We now first
compare for the start-point yg and the interval width Ax = § the structure of the
formulas for calculating the next point y; .

Integration using parabolic method Runge-Kutta method
Yo = y(x0) Yo = y(x0)
§ § .
y1=Yyo+ 0o +4y1,+ ) n=yo+cbo+20,+ 2y, + 50

One can recognize the formal similarity. However, for the Runge—Kutta method the
listed derivatives are not the actual differential quotients of the desired solutions, but
auxiliary variables which are obtained using the differential equation. In addition,
we use instead of the derivative in the middle of the interval the mean value of two
corresponding quantities with indices a, b.

Runge—Kutta method for an interval

interval width §

initial variable xq

initial ordinate yg

Yo = y(xo) - yo= f(xo.y0)
§ §

Y =Yo+3% > M=o+ 3551
§ 8

Yij2 = Yo + 55172 — W= S+ 550

Yi=Yo+ Sy;l;z: =y = flxo+5, ,Vf/z)

5
y1=yo+ 0o +2y1, + 2E, ) > Y= fe+ ).

One defines an auxiliary abscissa in the middle of the interval and calculates for it
in a two step procedure two points a and b with their ordinates and derivatives. The
first intermediate auxiliary point in the middle of the interval (index a) corresponds to
the Euler point for half the interval width. Using the derivative at the Euler point one
determines, beginning at the initial point, a second point in the middle of the interval
(b). With the derivative at this point, one determines a third point at the end point
of the interval with its associate derivative (c). After taking the average of the two
derivatives at the midpoint, one has three points for the integration according to the
parabolic method.
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9.4.4 Further developments

The four-stage Runge—Kutta method described above converges so well that it is used
for many applications.

One can improve the convergence of the method further by including additional
points — similar to an approximation using polynomials of a higher order.

The speed of computation can be increased considerably by choosing the interval
width not constant, but adapting it to the slope and curvature of the function to be
integrated (“adaptive interval width™). This possibility is contained in popular five-
stage Runge—Kutta programs and other numerical programs. Thus the interval can be
selected automatically in such a way that a given error per interval is not exceeded.

The approximation rules used in the Runge—Kutta method have been well tested,
but they are not the only feasible ones. One can work with other, more favorable,
criteria, for specific classes of functions. In addition, there are quite a few approxima-
tion methods that have been derived in a very different way and that are also part of
commercial programs and are discussed in the literature.

The computation speed of all methods depends on whether one works in higher-
level languages or with languages that are closer to the operating system. Programs
in Java or in Mathematica therefore run faster then algorithms written for example in
Visual Basic for EXCEL. The speed of the following Java simulations is not limited
by the computation speed, but is selected in such a way that one can easily follow the
time development.

A program that one has written from scratch has, compared with using pre-built
algorithms that run in the background, the didactic advantage that one can accurately
follow the development and intervene in it.

9.5 Simulation of ordinary differential equations

9.5.1 Comparison of Euler, Heun and Runge—Kutta methods

The interactive image in Figure 9.7a leads to a simulation which shows the three
methods in parallel for the example of the exponential function. The initial value for
x = 0is yo = | but can also be chosen differently. The number of intervals in the
variable region can be chosen between 1 and 24.

There are four straight lines in the picture, which can be drawn and turned with the
mouse. These allows the construction of the approximations to be easily visualized.

For the initially shown roughresolution one clearly recognizes the different conver-
gence quality of the methods and the large superiority of the Runge—Kutta method —
with the eye its error can no longer be noticed.

The description of the simulation contains further details and suggestions for ex-
periments. It also contains a description of the complete codes, which are in each
case a few lines that are repeated in a loop once for each point of computation. The
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Figure 9.7a. Simulation. Comparison of the convergence of Euler (blue), Heun (green) and
Runge-Kutta (red) methods for y’ = y (exponential function, blue line). The green lines can
be pulled with the mouse to make the construction of the methods for one interval by hand
possible. With a slider the number of intervals in the constant variable region can be changed
(number of points # = number of intervals +1). With the second slider yo is adjusted (in the
picture yo = 1).

calculation happens so quickly that one does not notice the time development in this
example. For the commercial programs one can specify how many points must be
calculated per minute in order to create, in the resulting graphs, the impression of a
temporal sequence.

In practice nowadays one does not need to make the effort to write computational
algorithms for the solution of ordinary differential equations, since they can simply
be called up in all numerical programs by specifying a name. However, it is important
that one understands how this “witchcraft” actually comes to be.

In Figure 9.7b the relative error of the three methods discussed in Figure 9.7a is
shown, i.e. for example (Jiuler — yoe™)/yoe*. The ordinate region has been spread,
such that the differences are more visible. For the small number of two to three points
(one to two intervals) in the variable region even the small error in the Runge—Kutta
method becomes noticeable in the plot. In order to also rate the error for a larger
resolution, a number field of the simulation shows the relative deviation at the end of
the last interval with high accuracy.
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Figure 9.7b. Simulation. Comparison of the relative error for four intervals in the variable
region (blue Euler, green Heun, red Runge—Kutta). The points show the relative deviations
from the analytical value of the exponential function, which is shown with as a blue line. For
the Runge—Kutta method the error at the end of the interval is shown in a number field. The
scale on the y-axis depends on the accuracy achieved via the Euler method.

9.5.2 First order differential equations

We use here a Runge—Kutta procedure, which is integrated into EJS, to visualize ex-
plicit differential equations of first order. Implicit equations play a minor role in ele-
mentary physics. Their numerical solution can be achieved via iterations that are built
into the computational algorithms.

In the graphs we use for the variable the symbol x and for the ordinate the symbol y.

The following interactive Figure 9.8a shows the graph of a transient process, which
is defined by the differential equation that is shown in the text field y’. In this presenta-
tion the individual computation points are shown; one can switch to aline presentation
using the option boxes.
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Figure 9.8a. Simulation. Animated solution of first order differential equations. The picture
shows a convergent transient process. The range of the variable x, the initial value yo and
the step width for the calculation can be chosen. One can select either a point presentation
or a smoothing line presentation. With the option boxes one can select a new calculation or a
superposition of calculations with different settings.

y = xTsing x0=0.0

The differential equation shown in a text field can be edited or entered from scratch,
so that you can investigate arbitrary explicit first order differential equations. The
speed of the animation and the accuracy of the calculation that is related to it can be
varied with the slider for the step width.
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Figure 9.8b. Simulation. Phase-space y’ versus y of first order differential equations for
the example in Figure 9.8a. The green point shows the current computation point during the
animation, which starts at (1,1).

The option box allows for selection among a number of elementary differential
equations, which are preset with initial value, for example:

 exponential function y’ = y;

« exponential decay y' = —y;

 transient processes;

« constant velocity y’ = C with C constant;
 constant acceleration y’ = Cx with C constant.

In the last two cases the solution of the differential equation is reduced to the nor-
mal integration process, since it does not contain y, and therefore these differential
equations have as solutions the anti-derivatives of C and Cx.

The examples are classified according to the following characteristics:

e divergent (as the exponential function);
e convergent (as the exponential decay);
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Figure 9.9. Family of solutions from the simulation in Figure 9.8a for the preset example
y' = ax (constant acceleration a) with parametera = 0,1, ..., 10 and yo = 5. Interpretation:
x = time (¢), y = distance, yo = start position.

e periodic;
e oscillating and divergent;
e oscillating and convergent.

In Figure 9.8b a phase space projection y’ versus y is shown. This shows the char-
acter of the differential equation and of its solution, here oscillating convergent, quite
clearly. The green point designates the current endpoint of the calculation. In this
example y converges against a finite value, while y’ converges to zero.

The initial value yg and the initial abscissa xo can be chosen at will. The formulas
are editable, such that you may enter arbitrary analytic functions and study them.

Multiple runs can be organized with the switches in order to compare the curves for
different initial values, initial abscissae or differential equations. The passive picture
in Figure 9.9 shows a simple example for constant acceleration a with the differential
equation y’ = at. Here the acceleration a is increased over 11 steps from O to 10. The
initial value stays at yo = 5.

The description pages of the simulation contain further details and numerous
suggestions for experiments.
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During the initial work with the simulation one is often surprised by the totally
unexpected results when entering a specific equation for y’ or even only changing
the value of a parameter in the equation. One is used to have a mental picture of
dependencies of the form y(x), but this is not the case for y’ = f(x, y), if one is not
familiar with this.

Thorough experimentation with this simulation and the following examples for sec-
ond order differential equations is therefore necessary to obtain a thorough under-
standing of the relationships that are described by the differential equations.

These examples demonstrate that a single differential equation defines a relation-
ship, which contains an unlimited number of specific solutions. The initial values
fix a particular solution from the family of possible solutions. The parameter that
determines the specific solution does not have to be the initial value of the solution.
One can also demand that the value of the function must be y; at a later time #; . For
the numerical solution one then solves the differential equation starting from y, first
in the direction of increasing t > #; and then in the direction of decreasing t < f;.

For a first order differential equation, the family of solutions has one parameter, for
second order differential equations the family of solutions has two parameters (see the
following subsection).

9.5.3 Second order differential equations

Numerous relationships in physics are described by second order differential equa-
tions. In addition to the acceleration (second derivative) they also enable you to take
velocity dependent interactions into account (first derivative), which include fric-
tion processes. They also cover all undamped, purely periodic functions as special
cases. The inclusion of damping makes realistic models of pendulums and oscillators
possible.

The elementary functions described by first order differential equations are covered
by analogous second order differential equations. We have already discussed how the
differential equation of a similar structure will then contain additional functions. The
solutions of second order differential equations constitute a two parameter family.

Only with two initial values, yo and y{,, for the start value x¢ of the variable, a
specific solution is fixed. Thus a single initial value still allows an entire one-parameter
family of solutions.

Among the explicit differential equations, a very important one is the simple equa-
tion whose solutions are the trigonometric functions:

n

y'==y o Y +y=0

y = sint y = cost y = e =cost +isint
y' = cost y = —sint y =ie
y'=—sint =—y y’'=—cost=—y y"=i%=—¢"=—y.

It describes many oscillation processes.
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As already discussed towards the end of Section 9.2, one reduces this differential
equation for the numerical solution to a system of two coupled first order differential
equations.

general y" = f(y,y".x)

Ist definition: y(x) = y;(x)

2nd definition: y' = y; =y

- y2=0 =Y"=f1.y2.x).

The first equation defines the first of the new functions using the original function.
The second equation defines the second new function as the derivative of the first one.
The original differential equation connects y; with y1, y2 and x. From the solution
for y1. y2 one recovers y and y’.

Thus the two coupled first order differential equations
@ yi=r2
(b) yé = f(y1.y2. x) for the two functions y1, y2

are equivalent to the single differential equations of second order for y(x)
Y= .y ).
special case: y" = —yviay = yjandy = Y1 = y2 becomes
the system of two differential equations for y and y»
@ yy=y2 () y,=-n.

The steps by which the two equations are solved for subsequent points have to be
nested in a suitable way. Using equation (a) one first calculates an approximation
for the derivative, which is then substituted in equation (b) instead of the formally
required derivative. In practice this algorithm is contained in all popular numerical
programs. We again use for our examples an £JS simulation, for which we only add
equation (a) in an additional line. (As designation for the first derivative we use in the
formula field “yStrich” (= yprime) since Java cannot understand “y".)

For a differential equation of higher order this method would have to be repeated
for every further order and chained in an equivalent manner. Differential equations of
higher order do not, however, play a major role in physics.

The following interactive picture in Figure 9.10a leads to a simulation for second
order differential equations. It shows an exponentially damped periodical oscillation.
In the differential equation y” = —y’ — 0.2y shown in the text box the first term
—y is responsible for generating a periodic function and the second term —y’ for the



95 Simulation of ordinary differential equations

185

FT ordinary differential equations N

Explicit, second order

20f
18}
16+
14}
121
10F
ost 1\

06+ ! 1
= | 3

04t i /\

0 z‘i/ %

00t \
02t 3 /
04f
06} \/
08+
10|

Damped_Oscillation

¥ =-y- 0.2%Stich x0=0.0 xm:

initial_value_y=0 |
) 0.000

; ’:(ari - I backj 7[7 erase Iires!.'( - Phase db

initial_value_y" = 1.
= )

14 16 18 20

w functiontype @ points O trace

step 0.050
ax= 20 Q“’

1.000

agr. W20 W 3D

Figure 9.10a. Simulation. Animated simulation of the solution of second order differential
equations. Example: damped oscillation with the initial values yo = 0 and yg = 1. The arrow
shows the two initial values for value and derivative. Variable range, initial values, step width
and presentation type can be set. In addition, the pha.se space diagrams can be shown in a 2D

or a 3D presentation.

exponential decay, as familiar from the first order differential equations. The factor

0.2 determines the speed of decay.

The control of this simulation is quite similar to the case of first order differen-
tial equations; only control elements for the second initial value y’ are added. In the
selection box differential equations and initial values for the following functions are

preset:

e cosine
e sine
 exponential function
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Figure 9.10b. Animated phase spaces for the differential equations of Figure 9.10a. The left
windows plots y'(y) in blue and y” (y) in red. The respective end points are highlighted and
marked in color. In the right windows y, y’ and y” are mapped to the three space axes. The
red curve thus represents the total differential equation y” = f(y, y). The 3D projection is
rotated in the animation.

* exponential damping
* hyperbolic sine

« hyperbolic cosine

* delayed oscillation

* accelerated oscillation
¢ damped oscillation

¢ growing oscillation.

All parameters can be changed. In the text field the differential equation can be
changed or a totally new one can be entered, such that you may investigate arbitrary
second order differential equations using this simulation.

With two switches a 2D presentation y’(y) and " (¥) and/or a rotating 3D presen-
tation y”(y, y) of the phase spaces can be chosen. This window of the simulation is
shown in Figure 9.10b

The two-dimensional phase diagram now shows two curves y’(y) inred and y"(y)
in blue. In this example one recognizes the damped transient process as a double
exponential spiral.

The three-dimensional phase diagram shows y” = f(y, y) as a plane spiral in
phase space. Its rotation during the animation increases the spatial impression.

The description pages of the simulation file contain further details and suggestions
for experiments.
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9.5.4 Differential equations for oscillators and the gravity
pendulum

The second order differential equations discussed in Section 9.5.3 describe, among
other systems, all possible kinds of oscillator, including also the classical mathemat-
ical gravity pendulum (called mathematical because it treats the pendulum as a mass
point on a mass-less stiff rod in abstraction from its real construction). For these cases,
the differential equations and initial conditions of the following simulation are pre-
formulated but, in other respects, the simulation is very similar to the previous one.

The interactive image in Figure 9.11a shows the example of a damped oscillator,
which initially oscillates in its eigen frequency until x = 30, when an external force
at double the frequency is added to the system. One sees the transition from the free
oscillation to the forced oscillation at double the frequency including interferences.
The free oscillation finally decays away totally. The driven oscillation remains with
double the frequency and a constant amplitude.

The corresponding phase space curve in Figure 9.11b is quite confusing as a static
picture. If, however, one observes the dynamic flow, one recognizes the different
transitions quite easily.

When cleared of factors that scale the graphics or are needed for the formula to be
recognized (yStrich instead of y'), the differential equation reads: y" = —y — y’ +
sin 2x step(x — 30).

The term —y produces a periodic oscillation with period 2, the term —y’ an expo-
nential damping and the term sin 2x a driving force with constant amplitude and the
period 7. The very useful step function switches at the given point in time x = 30
from O to 1. The damped oscillation of the free pendulum simply continues, while the
periodic driving force is added at this point.

In the phase space diagram shown in Figure 9.11b, one also recognizes the tran-
sition between the two kinds of oscillations, from the initially free and damped os-
cillation (initial plane spiral) to the forced oscillation. After a sufficiently long time,
the free oscillation has been damped away and the oscillator moves periodically with
constant amplitude a the frequency of the driving force.

The simulation contains the following pre-defined oscillators:

« free oscillator with adjustable eigen frequency;

* dissonant driving force with adjustable frequency;
 resonant driving force;

* dissonant driving force with damping;

e resonant driving force with damping.

In addition, for the gravitation pendulum as second pendulum (full period of 2 s at
small amplitude), the following situations are preset:

* deflection of a few degrees;
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Figure 9.11a. Simulation. The figure shows the solution of an oscillation equation with damp-
ing, which is driven by an external force at double the eigen frequency and supplied with
energy starting at x = 30. The differential equation and all parameters can be changed.

« deflection nearly up to the rollover, i.e. angular deflection from the rest point of
nearly
« shortly after the rollover, i.e. residual velocity at the turning point.

The plots of phase space curves for the gravity pendulum in the passive Figure 9.11c
show in the left window the situation for a deflection of 5.7 degrees, for which the
oscillation is still practically sinusoidal (red curve y” =~ —y) and in the right window
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Figure 9.11b. Phase space plots for the oscillation equation of Figure 9.11a. On the left pro-
jections y’ versus y in blue and y” versus y in red, on the right y versus y’ and y”. The picture
shows the state shortly after adding the external driving force, on the left as lines, on the right

as sequence of calculated points.
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Figure 9.11c. Phase space curves of y’ versus y in blue and of y” versus y in red for the
pendulum example of the simulation in Figure 9.11a: shown on the left for small and on the
right for large deflections. Please note the different scales on the axes, especially the ordinate
scale. The red line in the left window shows the negative linear relationship between accel-
eration and angle of deflection. In the right window one recognizes the large nonlinearity for
large deflections. Therefore only pendulums with deflections of a few degrees can be used for

accurate clocks.
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for a deflection of 9 degrees, for which the oscillation deviates quite clearly from it.
Thus the blue curve is therefore for the small deflection a circle which is traversed
with constant angular velocity (please note the different scales on the axes!). For the
large deflection on recognizes in the animated simulation the extended time spent in
the vicinity of the turning points.

The formulas and initial values can again be changed. In the vicinity of the unstable
equilibrium (deflection of ) the solutions become extremely sensitive to the initial
values, but also to the accuracy of the computation, which can be adjusted with the
step width slider.

The description pages contain again exact details and hints for experiments.

9.5.5 Character of ordinary linear differential equations

From the experimental analysis of different explicit linear second order differential
equations we can draw a few general conclusions:

the following term in the differential equation means respectively:

y =-y —  periodic function with period 27

y" = —a’y —  periodic function with period 27ra

y'=—y —  exponential decay with x

Y=y —  exponential growth with x

y' =y —  exponential change with x

y" = const. —  constant acceleration

y'=0 —  constant velocity (0 acceleration)

Y= f(x) —  x-dependent driving force, characterized by f(x)
y'=—yf(x) — periodic oscillation, moderated by f(x)

" =—y'g(x) — exponential decay, moderated by g(x).

The points to which convergent or divergent solutions move in the phase diagram are
referred to as point attractors and the closed target curves of periodic solutions are
called periodic attractors.

9.5.6 Chaotic solutions of coupled differential equations

A new phenomenon appears if three or more first order differential equations are cou-

pled and contain terms that are nonlinear in the variables. For certain parameter re-

gions or regions of the initial values, or even for all initial values, their solutions show

chaotic behavior. This is especially attractive for oscillating systems that are char-

acterized by second order differential equations with the fundamental dependence
n

y' ' =-y +....



9.5 Simulation of ordinary differential equations 191

Driven double pendulum

As a first example we want to investigate in Figure 9.12a the simulation of a double
pendulum, for which a second mathematical pendulum is fixed to the end of a primary
mathematical pendulum (mathematical means here: the total mass is concentrated at
the end of a stiff mass- and weightless pendulum rod).

The primary pendulum can be driven by a periodic force. The secondary pendulum
is driven by the primary pendulum. Both are subject to gravity.

Each pendulum is described by a second order ordinary differential equation, which
corresponds to four first order differential equations, and the differential equations are
coupled; thus they also contain variables of the corresponding other pendulum. It is
now essential that these differential equations are coupled by trigonometric functions
and quadratic terms:

¥y = fiyr.siny2, ya.sin(y2 — y1), y 2. y3)
¥ = fa(yr.sin y1, ya.sin(yz — y1), yi2. ).

The exact formulas are discussed in the description pages of the simulation.
The ratio of the pendulum lengths and the pendulum masses can be adjusted as well
as the speed of the animation.

3% Double pendulum (with periodic drive) 1 :lg]ﬂ
plu prcjtction

f
angular velocityy

o 20 16 10 -05 0 05 10 15 20
angle 4

|
reset J clear play | (v] 3D-phase space

Figure 9.12a. Simulation. Chaotic movement of a driven double pendulum with adjustable
length and masses (red curve). In the left window the double pendulum is shown (pivot point
in green, mass point of the primary pendulum in blue, mass point of the secondary pendulum
in yellow, vector of the external driving force as a blue arrow). In the right window the phase
space projection angular velocity d¢/dt versus angle of deflection ¢ is shown.

L21.1=0.500 m2an1 = 1.00 A=0.5 delta=1.48 F’.ﬂ 5
O 9! O L O
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Figure 9.12b. 3D phase space diagrams for the double pendulum, on the left red for the end
of the primary pendulum and on the right for the end of the double pendulum.

The indirect external driving force modulates the angular velocity of the primary
pendulum with a sine function of adjustable frequency. The blue arrow shows direction
and absolute value of the external driving force.

The red curve shows the orbit of the secondary pendulum, that is, of the mass point
at the end of the mass-less pendulum rod of length /5. It is possible to superimpose
orbits for different initial values and thus to study at the same time the influence of
small changes in the initial conditions on the long-term behavior.

In the right coordinate system of Figure 9.12a a plane phase space projection for
the orbit of the primary pendulum is plotted. In addition a rotating presentation of
the three-dimensional phase space )" versus y’ versus y can be switched on (see
Figure 9.12b).

There is obviously no periodic attractor. One refers to a strange attractor if the
phase space orbits of the process described are limited to a certain region of the phase
space, and do not become periodic, but show a fractal character and therefore cannot
be described in an analytic closed form.

Together with adjusting the ratios of pendulum length and mass, one obtains a rich
spectrum of oscillation processes that happen chaotically but strictly deterministically.

The Reser button resets the simulation exactly (within the accuracy of the PC) to
the same initial conditions. You may convince yourself that the time development,
which looks so confused, is indeed repeated, and thus happens deterministically and
not controlled by chance (this observation is achieved easily by calling the simulation
twice and letting it run twice).
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You may, however, also adjust the initial conditions for the position manually by
pulling the yellow point; you will not achieve an exact reproduction, and two simula-
tions running in parallel will soon run apart from each other. Thus the chaotic—deter-
ministic character is connected to an extreme dependence on the initial conditions.

The simulation description contains numerous suggestions for experiments.

For the double pendulum with its many nonlinear connections, it will be barely
possible to find a setting that leads to a periodic solution.

In other cases there are regions of chaotic behavior next to regions of periodic
behavior.

Reflection of a ball between sloping walls

For the second example, shown in Figure 9.13, it is obvious that there must also be
periodic solutions.

In this ball in wedge simulation, a ball is reflected back and forth between two
infinitely extended planes. For an initial orbit that starts symmetrically to the axis of
symmetry and ends orthogonal to one of the surfaces, the orbit is already closed after
hitting both surfaces once. It can be suspected that there are further periodic orbits
with many reflections. In general, however, the orbits are chaotic. The pitch of the
surfaces and the position and initial velocity of the ball can be adjusted by pulling

i
time=21.36

play l reset Jangle=0 385 high speed

Figure 9.13. Simulation. Reflection of a ball between two sloping walls. In addition to chaotic
orbits there also are periodic solutions, for which the ball jumps regularly back and forth on
periodical orbits between the walls.
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with the mouse. The nonlinearity of the connections lies here in the trigonometric
functions used in the three coupled first order diff erential equations.

The example also demonstrates the use of the Poincaré section for the visualization
of chaotic or periodic orbits and its use for the determination of periodic initial con-
ditions. It shows the intersection point of the orbit in the symmetry plane. Periodic
orbits lead to a finite number of intersection points with regular patterns.

Many-body problem of gravitation

Chaotic behavior is not only an interesting theoretical problem, but is of large practi-
cal importance, since many phenomena in physics and engineering are described by
more than two coupled nonlinear differential equations. This includes, for example,
the gravitational processes in three dimensions. In this case the differential equations
are nonlinear and of the following type for each Cartesian coordinate:

" Y Y

e R e

Because of the basic type y = —y, one expects that periodic oscillations (orbits)
should be possible for certain initial conditions. This is indeed the case for two bodies
(in addition there are the cases of a collision for finite size of the bodies and the “scat-
tering” for the case of a body that passes by). For three and more bodies there exist,
except for very specific initial conditions, no long-term periodic orbits, but only more
or less chaotic orbits, which can sometimes become quasi-periodic. The apparent reg-
ularity of the many-body planet system is a deception. This is due to the relatively
short observation time, which is small relative to the time scale, in which the orbits
will develop in a chaotic manner.

The situation becomes a bit simpler if one assumes, for the theoretical computation,
that all bodies move in one plane, since then the number of coupled differential equa-
tions becomes smaller. If one assumes in addition that all bodies have the same size
and the same mass m, one can for certain very specific initial conditions (symmetric
configurations) also create periodic orbits for more than two bodies. The following
simulation in Figure 9.14 shows such special cases.

Different scenarios canbe selected using the slider on the left. One can pullindivid-
ual bodies with the mouse and change the specific initial conditions. This leads very
soon to a decay of the symmetric configuration. In addition, it turns out that even un-
der such artificial assumptions there exists no long-term stability for more than three
bodies, provided the simulation proceeds for a sufficiently long time. The following
development can be easily observed when one zooms into the picture with the slider
on the right.

How could any relatively stable and bound systems develop in the cosmos under
these circumstances? One has to consider this as the result of a long-term evolution,
with a multitude of collisions and disintegrations that provide for “friction”, from
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Figure 9.14. Simulation. Stable and non-stable solutions of the many-body problem of gravi-
tation for movement in a plane: in the figure an example with five equal masses is shown. With
the left slider different initial patterns can be chosen. The right slider allows you to zoom in
or out of the image. The initial position of the bodies can be pulled with the mouse.

which those remnants are bound for a limited time to quasi-periodic orbits, which
satisfy suitable initial conditions. Most remnants, however, vanished into the distance,
until they interacted again with other systems under the exchange of energy. On the
other hand, new candidates entered the original region from other regions leading to a
change of initial conditions.

At this point you should againstudy the essay by Siegfried Grossmann,'? who stud-
ies the question of chaotic systems very thoroughly. In the contribution by Guenther
Hasinger you can see in detail how chaos and collisions can at least lead to order and
structure in the cosmos for limited time periods. The simulations by Eugene Butikov
simulate a wealth of many-body problems with partially periodic and partially chaotic
behavior.

19 Physik im 21. Jahrhundert: Essays zum Stand der Physik edited by Wemner Martienssen and Dieter
Réss, Springer Berlin 2010.



10 Partial differential equations

10.1 Some important partial differential equations
in physics

Physical events @ generally take place in the three space dimensions x, y, z and the
time r: & = &(x, y, 2, t). The spatial and time development are coupled to each other.
The differential equations describing the phenomena then contain partial derivatives
with respect to the space coordinates and with respect to time, and therefore are re-
ferred to as partial differential equations. The functional relationship for a general
partial differential equation of second order for a physical quantity ®(x, y, z, y) reads:
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withae =xoryorzortand =xoryorzort, f #a.

To keep the presentation readable, we have not shown all terms in the brackets, but
only one of each type. This type is characterized by one of the variables or, in the
case of mixed derivatives, by two of them. Thus, in addition to first and second partial
derivatives, all mixed second derivatives can also appear.

Fortunately, the partial differential equations important in physics and engineering
are much simpler than this general form, as the following examples will show. They
are, however, still rather complicated and only allow an analytical solution and simple
interpretation in very elementary cases. In the following we only cite a few important
partial differential equations in physics and want to make you aware of the crucial
differences between the boundary value problem/initial value problem for ordinary
and for partial differential equations. For further information we refer to the specialist
literature.

The simulation examples show specific solutions of the corresponding one-dimen-
sional:

» diffusion equation for point-like initial impulse (delta impulse);
» Schrédingerequation for a point mass and for different oscillators;
* wave equation for a vibrating string.

a) wave equation

®(x, y, z. t) describes the deviation of the physical quantity at time ¢,
for example of the field strength, the pressure and so on.
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and in one dimension: an = czﬁ.

The general, easy to check solution is then ®(x,?) = f(x + ct) + g(x —ct).

The differential equation reads

The very general one-dimensional solution of the wave equation contains two arbi-
trary functions f(x) and g(x), which are propagated along the x-axis with velocity
¢ in a negative/positive direction without changing their form. This example already
demonstrates an important difference to solutions of second order ordinary differen-
tial equations: while there a solution was determined via two initial values yo. yq. it
is now fixed via two initial functions g(x,0) and f(x, 0). The second order ordinary
differential equation has as the solution a family of functions with two arbitrary num-
ber parameters. The solution of this partial differential equation is described via a
family of functions with two initial functions. For the one-dimensional case those are
defined along the x-axis, for example a wave packet, in the simplest case a sine wave
of undetermined position or a Gaussian impulse.

In the three-dimensional case, initial functions can be defined on a boundary, a
surrounding surface, or in a volume.

b) one-dimensional heat conduction equation

The field ®(x, ) is here the temperature that depends on space and time coordinates.

The differential equation read: i Cikd
i ial equation reads — = a—.
q a  Tox2

For its analytical solution for a delta-pulse as initial function one obtains:

K(x,t) = ! e dar,

vAnat
The heat conduction equation, also called the diffusion equation, describes equilibra-
tion processes in time (here along a line, the x-axis). The special solution K(x,?) in
the example starts with the delra impulse as initial function. This means that the total
heat is first concentrated in the point x = 0. This amount is then spread over time as
a Gaussian distribution, while the integral (the amount of heat) stays the same. Thus
the temperature maximum at x = 0 decreases accordingly.

c) Schrédinger equation
The probability amplitude or wave function is ¥ (x, y, z,1);
and the potential is V(x, y, z.t);
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The form of the Schrédinger equation given above is valid in the non-relativistic case
for a particle of mass m in a potential V. It describes the relationship between time
and space development of its complex wave function .

d) Maxwell equations for the electromagnetic fields E,D.B, H

1) divD=p V.-D=p,

2) divB=0 V-B=0,
B B

3) cnrlE+E=0 VxE+E=0‘

4 1H=j oD VxH=j 4D

) cur —j+m x —J+E.

The Maxwell equations, which are very important in practice, describe the interac-
tion between the magnetic and electric fields (2 and 3) and their connection with the
charge density p and current density j. The first equation means that charges are the
sources of the electric fields, from which field lines emanate and where they end. The
second equation means that magnetic sources (monopoles) do not exist and therefore
magnetic field lines are always closed.

On the left, the traditional notation, and on the right the formally quite uniform
notation with the nabla operator, are given.

The electrical flux density D is connected to the electrical field strength E via the
material properties electrical permeability of the vacuum &g and electric polariza-
tionP: D=¢)E+P

The magnetic flux density B is connected to the magnetic field strength H via the
material properties magnetic permeability of the vacuum pg and magnetic polariza-
tion J (written in capitals, as opposed to the current density j): B = poH +J

Since D, B.E and H are vectors, we have to deal with a system of coupled par-
tial differential equations for all field components, which therefore has a wealth of
solutions. Therefore the mathematical solution can become very complex.

Numerical solution methods are therefore even more important for partial differen-
tial equations than for ordinary differential equations. While one starts for ordinary
differential equations from one or more initial values and iteratively proceeds from
point to point for the independent variable, one has to cover the whole space of vari-
ables with a grid of computation points. For a two-dimensional problem one then deals
with a plane grid and for a three-dimensional one with a three-dimensional space grid.
One starts from one point of the initial function, calculates the neighboring points us-
ing suitable procedures, which together constitute the initial values for the next step,
always while taking into account the connections provided by the differential equa-
tions. In technical applications and engineering one refers in this connection to the
method of finite elements.
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For visualization one simplifies the conditions radically. Already in Section 8.5.8
we had simulated the movement of an electron in a three-dimensional homogeneous
electromagnetic field, which is stationary, i.e. is constant as a function of time.

10.2 Simulation of the diffusion equation

The following simulation in Figure 10.1 of one-dimensional equilibration or diffusion
processes shows, for example, the time and space dependence of the temperature after
heating a homogeneous thermally insulated thin wire at a point with a short pulse.

According to the above mentioned special solution, an approximated delta function
at the origin is used as the initial function, which spreads in Gaussian shape under
conservation of the area under the curve (the amount of heat). The arrows indicate the
1/e-width, the number field the respective point in time. The diffusion constant a can
be adjusted with the slider over a wide range of values.

The description pages contain further hints.
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Figure 10.1. Simulation. Animated solution of the diffusion equation with the delta impulse
fort = 0 at x = 0. The picture shows the state at ¢ = 2. The arrow indicates the width, where
the function has decayed to 1/e of the maximum.
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10.3 Simulation of the Schrédinger equation

The interactive Figure 10.2a show the solution to the one-dimensional Schrédinger
equation for a particle in an infinitely deep rectangular potential well, whose width
can be adjusted with a slider. The square of the absolute value of the complex wave
function |y (x)|? gives the probability density for the particle at position x. It is nor-
malized to 1, which means that the particle can be found inside the box with certainty,
irrespective of the spatial distribution.

The two curves in Figure 10.2a show the real component of the wave function
(probability amplitude) ¥ (x) in red and the imaginary component in blue.

In Figure 10.2b, a second presentation mode that is popular in quantum mechanics
is used, for which the absolute value of the wave function || (square root of the prob-
ability density) is shown as the envelope. Inside, the phase angle @ = arcmn(%) is
indicated by color shading.

The phase angle « is indicated by the following colors:

e blue @ = 0 or 27 (Y positive real);

e golden yellow a = m (¥ real negative);

* rose coloured @ = &r/2 (Y positive imaginary);
e green a = 37 /2 (Y negative imaginary).

Position space wave function

T T T T T

-10 -05 0 05 1.0
X
Figure 10.2a. Simulation. Animated solution y (x) of the Schridinger equation for the devel-
opment of an initial distribution (symmetric Gaussian) in a box. The real component is in red
and the imaginary component in blue. The probability density consists of the sum of squares
of these two parts: ¥ (x)? = (Rey(x))? + (Imy (x))2.
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Figure 10.2b. Simulation. The function |y (x)| for Figure 10.2a; The color shading indicates

the ratio of imaginary to real components. | (x)| = /probability density. In the blue inner
region the real component dominates, while the imaginary component dominates in the red
regions.

This simulation allows you to choose among many examples of potential wells,
in which quantum particles can move. It was developed by the pioneer of the OSP
program, Wolfgang Christian, and slightly simplified by us. The description pages in
Figure 11.2 contain detailed hints about theory and usage.

10.4 Simulation of the wave equation for a vibrating
string

At the end of this chapter we consider in Figure 10.3b the simulation of a vibrat-
ing string as a solution of the wave equation. Figure 10.3a shows three snapshots as
examples from the simulation in Figure 10.3b. The left-hand panel shows the “start
impulse”, a Gaussian concentrated in the middle of the string with maximum 1. The
middle panel follows the situation shortly after the start: two Gaussian impulses of
height 1/2 run into opposite directions. They are finally reflected at the ends of the
string and interfere with each other in the right-hand panel, which results in the re-
construction of the original form and amplitude, but with a negative sign after the first
reflection.

Gaussian impulses and symmetric wave functions propagate on thestringunchanged
provided that no damping is taken into account in the wave equation.

The interactive Figure 10.3b show the situation a short time after the start of the
triangular impulse, which was originally concentrated at the end of the string. After
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Figure 10.3a. Propagation of an excitation on a string that is fixed at both ends; Gaussian as
initial impulse for¢ = 0 on the left; two pulses run in opposite direction in the middle; on the
right the reconstruction with negative amplitude after reflection at the ends.
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Figure 10.3b. Simulation. Time development of an original short triangular pulse at the end
of the string. The picture shows the state after the first reflection at the end of the string.

some time one observes deviations, which are due to the discontinuity of the first
derivative at the beginning and end of the impulse. This demonstrates limits of the
numerical computation.

A selection menu contains the following start functions for the initial deflection of
the string:

¢ Gaussian impulse of adjustable within the middle of the string;
¢ Gaussian impulse not in the middle of the string;

* symmetric triangle in the middle of the string;

o triangle at the end of the string;
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e sawtooth;
* sawtooth of adjustable width;
e sine wave.

There is a parameter a in most of the functions, which can be changed. The formulas
for the initial deflections themselves are editable, so that many more start situations
can be simulated.

The description pages contain further details and suggestions for experiments. This
animation is aesthetically quite pleasing, because it gives the music lover hints about
tone qualities, which are possible as a result of very different overtone mixtures. More
details are given in the description pages.

This simulation was originally developed by Francisco Esquembre, the pioneer of
the EJS program and extended by us.



11 Appendix
Collection of physics simulations

11.1 Simulations via OSP/EJS programs

The interactive simulation of complex mathematical or physical objects is an attractive
programming task, which provides a deeper understanding of the problems treated. It
is a wonderful tool for the illustration of objects that are abstract or difficult to imag-
ine, or which can only be calculated with difficulty by hand. It appeals to the play-
fulness of the user and leads to intensive preoccupation with the subject. Therefore,
simulation can be viewed as an effective didactic tool. Great efforts have been directed
to this end and the German ministry of research and education has, to some extent,
supported these efforts financially.

Commonly used high-level standard programs, such as Microsoft Excel with Vi-
sual Basic for Applications (VBA), were candidates to use for these simulations.
One finds many interesting examples of this approach on the Internet. A fundamen-
tal advantage of such technically relatively simple programming is that the user has
open access to the code via the standard program. In addition, samples that are taken
by third parties are therefore reasonably transparent, and the user can thus develop
or modify the code, if the manufacturer has not built in artificial barriers. A ma-
jor disadvantage is that files created in this way are platform dependent, and thus
run only if the same operating system and application program (which are subject
to licensing) are used. It even turns out that successive versions of standard appli-
cation programs are not fully compatible. For example, a file developed with Ex-
cel 2005 and VBA under Windows XP can be incorrectly formatted if run on an-
other computer with Windows Vista. A technical disadvantage is that the comput-
ing speed of a program developed in a high-level tool such as Excel is much lower
than that of a low-level program running close to operating system level for the same
task.

Therefore, efforts were made early on to use platform-independent and operating
system-level programming languages, and the Java royalty-free language is consid-
ered to be particularly suitable. However, simulation with common object-oriented
Java requires programming experience of considerable depth. It would have appeared
justified to narrow down Java in line with the limited issues involved. Unfortunately,
there has been no systematic effort in Germany for defining a standard for mathemat-
ical and physical simulations. Rather, the results of different schools have originated
more or less independently of one another. As a result, there has not been a resounding
success in the didactic use of simulations, or at least not in any obvious way.
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A large body of preliminary work towards such a standardization has been done in
the USA by the Open Source Physics (OSP) program, which was supported among
others by the National Science Foundation. Its goal was to create a thesaurus of par-
tial solutions specifically for use in physical simulations, which could then be used
in an object oriented way for programming specific simulations. The programs are
made generally available under the GNU license-free open source model, with the
obligation that the same applies to new third party solutions built on OSP.

GNU defines its goal as follows: “The GNU General Public License is intended to
guarantee the freedom, to share and change all versions of a program. It aims to ensure
that the software remains free for all its users. We, the Free Software Foundation, use
the GNU General Public License for most of our software, it applies also to any other
works, the authors of which have released in this way.”

A leading pioneer of the OSP project was Wolfgang Christian at Davidson Col-
lege, who built on a family of Java-Physlets, which he had developed previously.
Together with his colleagues he created a number of program packages for the cal-
culation and visualization of physics and engineering simulations, which included
specific methods.

This was connected with the development of a curriculum for an introduction to the
structure and technique of programming with OSP, and the development of a launcher
by Doug Brown, which allows you to combine a whole sequence of simulations on
similar topics as a course, inclusive of explanations, in a single file. This can be done
quite compactly, since the simulations share a common set of data, which are only
needed once in the launcher package. Individual simulations can be called from this
file or can be isolated.

There is a wealth of partially simple and partially very refined physics simula-
tions to be found in the OSP program and, in the following sections, we will briefly
introduce the most important packages that are now available.

If one wants to fully understand a simulation file that has been created with OSP,
one has to become quite familiar with its html source code. This is quite possible
to do when using the teaching material, although it is still a difficult task. A second
limitation of its general applicability lies in the fact that the visualization requires a
great deal of effort and its development in html source code can be confusing for the
less experienced user.

In this regard, the development of the EJS package (Easy Java Programming)
by Francisco Esquembre was a further breakthrough for OSP. This package consists
of a graphical user interface, which we briefly describe in the following. Its particular
appeal is the possibility of taking the building blocks of the simulation from a large
pre-built stock and to construct a realization tree from them via drag and drop. The
individual icons are then connected to the simulation variables and to the easily se-
lectable standard methods. For the creation of the proper calculation code, visual tools
have also been provided. It is easy to become familiar with EJS using already existing
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examples, so that one does not need extensive technical knowledge of JAVA to develop
simulations. Therefore EJS appears quite suitable for students of physics, whose main
interest is in building physical models, rather than programming techniques.

Another big advantage of the EJS program in its current version is that, from inside
the individual simulations, one can access the universal creation program, the EJS
console via mouse click, so that one can immediately dive into the programming,
make changes or take individual building blocks for one’s new developments.

Thus the combination of EJS + OSP seems to be destined to become the standard
program for didactically orientated simulations in the domain of physics and math-
ematics. We have used it almost exclusively in this work, although the author was
previously more familiar with Excel/VBA and he first needed to become familiar with
the new methods. The two links EJS basic and EJS introduction at the side margins
lead to a description of EJS by Wolfgang Christian and Francisco Esquembre. In the
same directory you will also find further documentation.

EJS and OSP are under active development, and thus are a work in progress:
you are therefore advised to make yourself familiar with the current status using the
supplied internet pages.

To use the Java simulations, the Java Runtime Environment must be installed at
least in version Java/re5. You might want to install the free-of-charge current version
(June 201 I: Java 6/update 24) via the link on the margin.

11.2 A short introduction to EJS (Easy Java
Simulation)

You reach the up-to-date description of the EJS program via the home page given in
the link on the side. Here we give a very brief overview and suggest you have a close
look at this program. When calling the EJS program on the lower boundary of the
screen, the EJS console appears, as shown in Figure 11.1.

In the first line of the main window, one enters the directory where the Java-JRE
(Java runtime environemt) is located, if the program does not find it by itself. In the
second line, an arbitrary directory can be defined as workspace for EJS; the program
then automatically creates two directories in this directory:

¢ Source: for *.xIm files;
» Export: for compressed *.jar files.

The program stores new or changed files automatically in these directories, unless
other paths for saving are specified in individual cases. The two directories can contain
a hierarchy of further directories. Files that have been automatically stored can later
be copied or moved to other places.
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Figure 11.1. EJS console.
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Figure 112. Simulation. The figure shows a page for the definition of parameters (variables).
The simulation calls a working EJS console with editing window. It either contains no data,
or those from the last simulation. You can browse through the individual pages and change
entries. You may study the many possibilities in the main window View. Please be careful
when saving in order not to overwrite any files; you should choose a name that does not
already exist!

With Launch Easy Java Simulation, the editing window in Figure 11.2 is created.
The console can be configured in such a way that this step happens automatically
whenever it is called.

Figure 11.2 shows its visual interface. The main menu in the top line contains three
sections, each of which can consist of several pages.
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* Description as text;
e Model (Code),
« View (optical surface for the creation of the visualization tree).

For many simulations only a few pages are active. Simple function plotters, for exam-
ple, do not require any special code and can be realized using view alone.

In the following line of the menu model in Figure 11.2 the sub-menu Variables is
highlighted. The page Other for the simulaion Double_pendulum_driven is shown.

The individual pages of Model have the following meaning:

Variables: Global variables, which do not appear only locally in individual code
methods. These are designated as decimal number (double), integers (int), symbolic
text (string), logical variable (boolean) and are also classified according to their
dimensions (for example number of computation loops with indices i, j, k: [i] or
[(1[/][k]...). It is important to note that the decimal point appears as point, as is
standard in the USA, andnotas a comma as in German.

Initialization: Here the starting conditions are entered, for example specific values
for variables, equations involving the variables or calls to methods listed on other
pages, which have to take place at the start. This also includes logical equations that
select from different possibilities. Help is provided via the context menu, which can
be called with the right mouse button. The following example puts the two initial
velocities v, of the pendulum bobs and the time ¢ at the start of the simulation to
zero:

t =0.0;
val = 0.0;
va2 = 0.0.

Evolution: Controls the succession of events, for example for an animation. It is
particularly important that differential equations can be entered here, that are then
automatically solved via a choice of different methods . Typical example:

d
% = va; tobe solved with Runge—Kutta 4.

Fixed Relations: Here relationships between the variables can be entered, which
are always valid and provide input to the calculation. The following example from the
simulation connects variables with trigonometric functions of other variables. (Please
note that the function name must start with Math. in Java code).

x1 = L1*Math.sin(al);
yl = —L1*Math.cos(al);
x2 = L2*Math.sin(a2);
y2 = —L2*Math.cos(a).
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Custom: Here special methods are formulated in Java code, which are called, for
example, from the initialization page or by the control elements. The following exam-
ple defines the action of the clear button in the view. It deletes all lines and resets the
variables to their initial values.

public void clear(){_resetView();_initialize();}.

Here the methods _resetView() and _initialize() can be selected from a large number
of prepared subroutines and one does not have to program these.
We now describe the functions of the icons on the right-hand side. The shorthand
*, stands, as is usual for files, for an arbitrary filename before the file type (e.g. xml
or jar).
Line 2, on the right: information about author and file;
Line 3 from thetop: open new file;
Line 4 from the top: open *.xml-files;
Line 5 from the top: (Opening, with screen) leads to the homepage of EJS and a
current library of EJS simulations;
Line 6 from the top: saving at the original location and under the same name as
* xml file, which can be opened from the console. *.xml files cannot be activated
by themselves, but are very compact;
Line 7 from the top: saving the file at another location or under a different name
as *.xml file;
Line 8 from the top: Searching help. After entering the keyword, it shows where
it appears in the file;
Line 9 from the top (green triangle): creates the active simulation or gives an
error message with hints;
Line 10 from the top: compressing the EJS file as *.jar file. Such files can be
called as stand-alone applications and contain all required codes except for Java,
which has to be installed on the computer. Alternatively html-pages or applets can
be created;
Line 11 from the top: Opens general editing options, which are not required for
creating files;
Line 12 from the top: Calling the internet help page of the EJS program.

View

Figure 11.3 shows a typical View page. The visualization tree is only partly visible.
On the right there are three menus below each other with a few pages each. They
contain numerous icons that can be put together with drag and drop on the visualiza-
tion tree.
The top menu, which is called Interface, includes containers as superior parents
of the Java hierarchy, and pre-assembled control elements as children to be contained
inside it.
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Figure 11.3. View page of EJS. On the right are the selection menus of the icons, which can
be pulled with drag and dropinto the visualization tree on the left.

The second menu 2D Drawables contains icons that can be inserted for two-dimen-
sional visualizations. The third menu 3D Drawables contains icons for three-dimen-
sional visualizations. In addition to icons that symbolize a single element, there are
some that represent whole families of elements, for example arrows, points or curves.

Every icon used on the tree is showing after double clicking a large menu for for-
matting and for connecting to variables and methods. Figure 11.4 shows this for the
relatively simple icon P1, which represents the bob of the main pendulum in the dou-
ble pendulum simulation. The coordinates x; and y; are connected to the elements
Posx and Pesy. In the element Size the same dimensions are fixed in both directions.
Draggable True means that the point can be pulled with the mouse, which automati-
cally gives a new value to the variable. On Drag Pendel() calls the procedure Pendel()
when the mouse is pulled (deleting previous traces and restarting the calculations).
Many open positions can be used for further formatting.

The exact definition of individual elements appears if one holds the mouse pointer
on the designation on the left. If one points at the label Visible, the message The
visibility of the element (boolean) appears. If one double clicks on the first icon at
the right of an element, either the existing choices (for visible true, false are shown,
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Figure 11.4. Window for fixing the properties of a visualization element (here of a point P1).

or assistance for entering information is given. The second icon contains a list of
permitted quantities or methods, each of which can be selected with a click.

The next Figure 11.5 finally shows the appearance of the main window in the active
simulation. You can certainly identify elements of the visualization tree, especially on
the left-hand side (L1 and L2 are the pendulum bars, P1 and P2 are the pendulum
bobs, Pfad_P2, the red orbit of the secondary pendulum, and so on).

You actually do not need to know any more to start with the simulations that have
been developed for this book, and to use and change them. The same applies to other
simulations that have been created with EJS. The EJS console required for this pur-
pose is contained in the data carrier for this book in the version of February 2011. You
can download a possibly newer version from the EJS homepage.

Start with something simple, for example with the calculation of the geometric
series. Pressing the ctrl key and clicking on Simulation in the caption of Figure 11.6
opens the working EJS simulation as an independent *.jar file.

Now click with the right mouse button on the simulation and choose Open EJS
Model in the context menu that appears. A menu will pop up, which shows how an
* xml file is extracted and stored. The standard storage location is the directory source
in the EJS workspace; you may also choose a different one.

After confirming your input, the EJS console appears with the editing window as
in Figure 11.3. The previously active simulation vanishes into the background, and
a passive EJS window appears. You may see the configuration of the elements, but the
simulation cannot run in these windows.

Now save under another name (the *.xml file is saved). Pressing the icon in the
shape of a green triangle creates an active simulation under a new name.

Now change individual elements in the pages of the editing console and then save
the *.xml file under a new name. If you close the old version and click on the green
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Figure 11.5. Simulation. Visualization window for the simulation of the double pendulum.
The left side of the window shows the two masses (primary pendulum as small blue circle,
secondary pendulum as large yellow circle) of the double pendulum, which is fixed and rotat-
able in the green point. The plane orbit of the yellow pendulum mass is drawn in red; it is very
irregular. The right side of the window shows the phase-space of the primary pendulum.
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Figure 11.6. Simulation. Geometric sequence and series as a simple practice example. After
starting, the EJS window is opened by clicking on the simulation window with the right mouse
button.
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triangle, your version becomes active, or you get an error message with solution hints
if you have built a bug into the program. Initially, just go into View and change the
colors or the thickness of lines. This way nothing can really break.

With some more insight you can also change the simple formulas in Custom and
Fixed Relations and thus calculate a different series. Frequent saving under different
names allows you to find working versions when encountering errors.

The help function, which can be called with the link on the margin or directly from
the console, contains details on all individual elements. At this point you also find
extensive documentation, for example for an introductory course.

11.3 Published EJS simulations

The following list consists of 100 EJS simulation that were available directly from
the OSP home page in 2009. The list contains the title, link and the beginning of the
description, as taken from the home page. After following links, further details can be
found on the OSP homepage:

* complete description

« level and user

* keywords about the specialization area
* authors

« often a typical picture.

Following the links coupled to the names within the list takes you to the download
pages, where you have two options:

Firstly: loading of the executable * jar file of typically 1-2 MB. Secondly: Load-
ing of the *.xml file of typically 10-100 kB, optionally with additional picture files,
packaged into a *.zip file, which can be opened by the EJS console. The picture files
contain elements of the description pages that do not belong to the standard thesaurus,
such as formulas in special formats, pictures, drawings, and so on.

Files thathave been opened with the console can be saved as compressed *.jar files,
such that a duplication of the download is not necessary.

On the other hand, it is is possible for all *.jar files contained in the list to generate
the *.xml file and the picture files from inside the active simulation using the context
menu of the right mouse button, or to open the console.

The following list is roughly ordered according to subjects, to provide an easy
overview. The numbers next to the titles correspond to their position on the OSP
homepage.

You can quickly and directly call the *. jar files via the links that are shown next
to the list at the margin. They immediately lead to a file that is already saved on
your data carrier, and which is already executable and interactive.
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11.3.1 Electrodynamics

28. Magnetic Field from Loops Model

The EJS Magnetic Field from Loops model computes the B-field created by an electric
current through a straight wire, a closed loop, and a solenoid.

62. Electromagnetic Wave Model

The EJS Electromagnetic Wave model displays the electric field and magnetic field
of an electromagnetic wave. The simulation allows an arbitrarily polarized wave to be
created.

11.3.2 Fields and potentials

9. Scalar Field Gradient Model

The Scalar Field Gradient Model displays the gradient of a scalar field using a numer-
ical approximation to the partial derivatives. This simple teaching model also shows
how to display and model scalar and ...

30. Lennard-Jones Potential Model

The EJS Lennard-Jones Potential model shows the dynamics of a particle of mass m
within this potential. You can drag the particle to change its position and you can drag
the energy-line to change its total energy. The ...

31. Molecular Dynamics Model

The EJS Molecular Dynamics model is constructed using the Lennard-Jones potential
truncated at a distance of three molecular diameters. The motion of the molecules is
governed by Newton’s laws, approximated using ...

33. Molecular Dynamics Demonstration Model

The EJS Molecular Dynamics Demonstration model is constructed using the Lennard-
Jones potential truncated at a distance of three molecular diameters. The motion of the
molecules is governed by Newton’s laws, approximated . ..

11.3.3 Mathematics, differential equations

1. Linear Congruent Number Generator

The Linear Congruent Number Generator Model. The method generates a sequence
of integers X; over the interval 0, m — 1 by the recurrence relation x; + 1 = (ax; + ¢)
mod m where the modulus m is greater ...

3. Uniform Spherical Distribution Model

The EJS Uniform Spherical Distribution Model shows how to pick a random point
on the surface of a sphere. It shows a distribution generated by (incorrectly) picking
points using a uniform random distribution . ..
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6. Binomial Distribution Model

The EJS Binomial Distribution Model calculates the binomial distribution. You can
change the number of trials and probability. You can modify this simulation if you
have EJS installed by rightclicking within ...

16. Great Circles Model

The EJS Great Circles model displays the frictionless motion of a particle that is
constrained to follow the surface of a perfect sphere. The sphere rotates underneath
the particle, but since there isno ...

20. Cellular Automata Rules Model

The EJS Cellular Automata Rules Model shows a spatial lattice which can have any
one of a finite number of states and which are updated synchronously in discrete time
steps according to a local (nearby neighbor) ...

21. Cellular Automata (Rule 90) Model

The EJS Cellular Automata (Rule 90) model displays a lattice with any one of a finite
number of states which are updated synchronously in discrete time steps according to
a local (nearby neighbor) rule. Rule ...

24. Special Functions Model

The EJS Special Functions Model shows how to access special functions in the OSP
numerics package. The simulation displays a graph of the special function over the
given range as well as the value of the selected . ..

37. Harmonics and Fourier Series Model

The EJS Harmonics and Fourier Series model displays the sum of harmonics via a
Fourier series to yield a new wave. The amplitude of each harmonic as well as the
phase of that harmonic can be changed via sliders ...

60. Fourier Sine Series

The Fourier sine series model displays the sine series expansion coefficients of an
arbitrary function on the interval [0, 2 pi].

90. Poincare Model

The EJS Poincare model computes the solutions to the set of non-linear equations,
X =x(@a—-b+z4+d(1-2%))—-cy,y =y@a—-hb+z+d(-z%)+ecx,
z'=az—(x%...

91. Hénon-Heiles Poincare Model

The EJS Hénon-Heiles Poincare model computes the solutions to the non-linear
Hénon-Heiles Hamiltonian, which reads 1/2(px2 + py? + x2 4+ y2) +2 y— ...
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92. Duffing Poincare Model

The EJS Duffing Poincare model computes the solutions to the non-linear Duffing
equation, which reads x” 4+ 2yx’ —x(1 —x2) = f cos(wt), where each prime denotes
a time derivative. ...

93. Duffing Phase Model

The EJS Duffing Phase model computes the solutions to the non-linear Duffing equa-
tion, which reads x” + 2yx’ — x(1 — x2) = f cos(et), where each prime denotes a
time derivative. ...

94. Duffing Measure Model

The EJS Duffing Measure model computes the solutions to the non-linear Duffing
equation, which reads x” 4 2yx’ —x(1 —x?) = f cos(wt), where each prime denotes
a time derivative. ...

95. Duffing Chaos Model

The EJS Duffing Chaos model computes the solutions to the non-linear Duffing equa-
tion, which reads x” + 2yx’ — x(1 — x2) = f cos(wt), where each prime denotes a
time derivative. ...

96. Duffing Baker's Map Model

The EJS Duffing Baker’s Map model computes the solutions to the non-linear Duffing
equation, whichreads x” +2yx’ —x(1 —x2) = f cos(ot), whereeach prime denotes
a time derivative. ...

97. Duffing Attractor Model

The EJS Duffing Attractor model computes the solutions to the non-linear Duffing
equation, which reads x” + 2yx’ —x(1 —x2) = f cos(wt), whereeach prime denotes
a time derivative. ...

98. Duffing Oscillator Model

The EJS Duffing Oscillator model computes the solutions to the non-linear Duffing
equation, whichreads x” + 2yx’ —x(1—x?) = f cos(wt), whereeach prime denotes
a time derivative. ...

99. Baker's Map Model

The EJS Baker’s Map model computes a class of generalized baker’s maps defined
in the unit square. The simulation displays the resulting points as well as the distance
between adjacent points. The starting . ..
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11.3.4 Mechanics

7. Mechanics Package: Challenging Intro Physics Topics

The EJS Mechanics Package: Challenging Intro Physics Topics contains Easy Java
Simulations (EJS) models used in a high-level Introductory Physics course for physics
majors. The topics include vector kinematics ...

11. Slipping and Rolling Wheel

The EJS Slipping and Rolling Wheel Model shows the motion of a wheel rolling on a
floor subject to a frictional force as determined by the coefficient of friction 115 . The
simulation allows the user to change ...

23. Ceiling Bounce Model
The EJS Ceiling Bounce Model shows a ball launched by a spring-gun in a building

with a very high ceiling and a graph of the ball’s position or velocity as a function of
time. Students are asked to set the ball’s ...

25. Two Particle Elastic Collision Model

The EJS Elastic Collision Model allows theuser to simulate a two-dimensional elastic
collision between hard disks. The user can modify the mass, position and velocity of
each disk using the sliders. Both ...

41. Baton Throw Model

The EJS Baton Throw model displays a baton thrown up in the air about its center of
mass. The baton is modeled by two masses separated by massless rigid rod. The path
of the center of mass of the baton and ...

42. Rocket Car on an Inclined Plane Model

The EJS Rocket Car on an Inclined Plane model displays a car on an inclined plane.
When the car reaches the bottom of the incline, it can be set to bounce (elastic colli-
sion) with the stop attached to the ...

43. Car on an Inclined Plane Model

The EJS Caron an Inclined Plane model displays a car on an incline plane. When the
car reaches the bottom of the incline, it can be set to bounce (elastic collision) with
the stop attached to the bottom ...

44. Kinematics of a Translating and Rotating Wheel Model

The EJS Kinematics of a Trainslating and Rotating Wheel model displays the model
of wheel rolling on a floor. By controlling three variables, the kinematics of the wheel
can be changed to present sliding, ...

46. Roller Coaster

The EJS Roller Coaster Model explores the relationship between kinetic, potential,
and total energy as a cart travels along a roller coaster. Users can create their own
roller coaster curve and observe the ...
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47. Energizer

The EJS Energizer model explores the relationship between kinetic, potential, and
total energy. Users create a potential energy curve and observe the resulting motion.
The Energizer model was created using ...

53. Inelastic Collision of Particles with Structure Model

The EJS Inelastic Collision of Particles with Structure model displays the inelastic
collision between two equal “particles” with structure on a smooth horizontal surface.
Each particle has two microscopic ...

55. Platform on Two Rotating Cylinders Model

The EJS Platform on Two Rotating Cylinders model displays the model of a platform
resting on two equal cylinders are rotating with opposite angular velocities. There is
kinetic friction between each cylinder ...

67. Two Falling Rods Model

The EJS Two Falling Rods model displays the dynamics of tworods which are dropped
on a smooth table. In one case the end point on the table slides without friction, while
in the other case it rotates about. ..

68. Coin Rolling without Sliding on an Accelerated Platform Model

The EJS Coin Rolling without Sliding on an Accelerated Platform model displays the
dynamics of a coin rolling without slipping on an accelerated platform. The simulation
dis-plays the motion of the coin as ...

69. Coin Rolling with and without Sliding Model

The EJS Coin Rolling with and without Sliding model displays the dynamics of an
initially rotating, but not translating, coin subject to friction. The simulation displays
the motion of the coin as well as ...

70. Orbiting Mass with Spring Force Model

The EJS Orbiting Mass with Spring Force model displays the frictionless dynamics
of a mass constrained to orbit on a table due to a spring. The simulation displays the
motion of the mass as well as the effective ...

85. Symmetric Top Model

The EJS Symmetric Top model displays the motion of a top, in both the space frame
and body frame, with no net toque applied. The top has an initial angular speed in the
X, y, and z directions. The moments ...

86. Lagrange Top Model

The EJS Lagrange Top model displays the motion of a heavy symmetric top under the
effect of gravity. The top has an initial angular speed that provides the precessional,
nutational, and rotational speeds ...
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87. Torque Free Top Model

The EJS Torque Free Top model displays the motion of a top, in both the space frame
and body frame, with no net toque applied. The top has an initial angular speed in the
X, ¥, and z directions. The moments ...

88. Falling Rod Model

The EJS Falling Rod model displays the dynamics of a falling rod which rotates about
apivot point as compared to a falling ball. The simulation allows computing fall times
and trajectories. The initial ...

89. Spinning Dumbbell Model

The EJS Spinning Dumbbell model displays the motion of a dumbbell spinning around
the fixed vertical axis z with constant angular velocity. The trajectories of each mass
as well as the system’s angular velocity, . ..

11.3.5 Newton

8. Classical Helium Model

The EJS Classical Helium Model is an example of a three-body problem that is similar
to the gravitational three-body problem of a heavy sun and two light planets. The
important difference is that the helium ...

71. Two Orbiting Masses with Relative Motion Model

The EJS Two Orbiting Masses with Relative Motion model displays the dynamics of
two masses orbiting each other subject to Newtonian gravity. The simulation displays
the motion of the masses in the inertial ...

72. Orbiting Mass with Constant Force Model

The EJS Orbiting Mass with Constant Force model displays the dynamics of an orbit-
ing mass due to a constant force (a linear potential energy function). The simulation
displays the motion of the mass as well ...

100. Newtonian Scattering Model

The EJS Newtonian Scattering model displays the gravitational scattering of a mul-
tiple masses incident on a target mass. The simulation displays the motion of the
smaller. The number of particles and their ...

11.3.6 Optics

2. Two-Color Multiple Slit Diffraction

The Two-Color Multiple Slit Diffraction Model allows users to explore multiple slit
diffraction by manipulating characteristics of the aperture and incident light to observe
the resulting intensity. An exploration ...
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26. Multiple Slit Diffraction Model

The EJS Multiple Slit Diffraction model allows theuser to simulate Fraunhofer diffrac-
tion through single or multiple slits. The user can modify the number of slits, the slit
width, the slit separation and ...

40. Thick Lens Model

The EJS Thick Lens model allows the user to simulate a lens (mirror) by adjusting
the physical properties of a transparent (reflecting) object and observing the object’s
effect on a beam of light. The user ...

48. Optical Resolution Model

The EJS Optical Resolution model computes the image from two point sources as
seen through a circular aperture such as a telescope or a microscope. The simulation
allows the user to vary the distance between . ..

64. Brewster's Angle Model

The EJS Brewster’s Angle model displays the electric field of an electromagnetic
wave incident on a change of index of refraction. The simulation allows an arbitrarily
linearly (in parallel and perpendicular ...

78. Interference with Synchronous Sources Model

The EJS Interference with Synchronous Sources model displays the interference pat-
tern on a screen due to between one and twenty point sources. The simulation allows
an arbitrarily superposition of the sources ...

83. Two Source Interference Model

The EJS Two Source Interference model displays the interference pattern on a screen
due to two point sources. The simulation allows an arbitrarily superposition of the two
sources and shows both the current ...

11.3.7 Oscillators and pendulums

15. Inertial Oscillation Model

The EJS Inertial Oscillation model displays the motion of a particle moving over the
surface of an oblate spheroid. The spheroid is flattened to an ellipsoid of revolution
because it is rotating, just as the ...

17. Foucault Pendulum Model

The EJS Foucault Pendulum model displays the dynamics of a Foucault pendulum.
The simulation is designed to show the dynamical explanation of why precession of
the Foucault pendulum is slower at lower latitudes . ..
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18. Circumnavigating Pendulum Model

The EJS Circumnavigating Pendulum model displays the dynamics of a mechanical
oscillator in uniform circular motion. The mechanical oscillator is free to move in two
directions. This 2-dimensional simulation ...

34. Strange Harmonic Oscillator Model
The EJS Strange Harmonic Oscillator model displays the motion of two masses con-
nected by a massless rigid rod, and the masses may move without friction along two
perpendicular rails in a horizontal table ...

35. Quartic Oscillator Model

The EJS Quartic Oscillator model displays the motion of a bead moving without fric-
tion along a horizontal rod, while tied to two symmetric springs. Both the motion of
the masses and the phase space plot are ...

36. Damped Driven Harmonic Oscillator Phasor Model

The EJS Damped Driven Harmonic Oscillator Phasor model displays the motion of
damped driven harmonic oscillator. The resulting differential equation can be ex-
tended into the complex plane, and the resulting ...

38. Spring Pendulum Model

The EJS Spring Pendulum model displays the model of a hollow mass that moves
along a rigid rod that is also connected to a spring. The mass, therefore, undergoes a
combination of spring and pendulum oscillations ...

39. Oscillator Chain Model

The EJS Oscillator Chain model shows a one-dimensional linear array of coupled
harmonic oscillators with fixed ends. This model can be used to study the propagation
of waves in a continuous medium and the ...

45. Pendulum on an Accelerating Train Model

The EJS Pendulum on an Accelerating Train model displays the model of a pendulum
on an accelerating train. The problem assumes that the pendulum rod is rigid and
massless and of length L = 2, and the pendulum ...

50. Coupled Oscillators and Normal Modes Model

The EJS Coupled Oscillators and Normal Modes model displays the motion of cou-
pled oscillators, two masses connected by three springs. The initial position of the two
masses, the spring constant of the three ...

51. Spinning Hoop Model

The EJS Spinning Hoop model displays the model of a bead moving along a hoop
which is spinning about its vertical diameter with constant angular velocity. Friction
is negligible. The simulation displays ...
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56. Anisotropic Oscillator Model

The EJS Anisotropic Oscillator model displays the dynamics of a mass connected to
two opposing springs. The simulation displays the motion of the mass as well as the
trajectory plot. The initial position ...

58. Oscillations and Lissajous Figures Model

The EJS Oscillations and Lissajous Figures model displays the motion of a superpo-
sition of two perpendicular harmonic oscillators. The simulation shows the result of
the superposition. The amplitude and ...

73. Action for the Harmonic Oscillator Model

The EJS Action for the Harmonic Oscillator model displays the trajectory of a simple
harmonic oscillator by minimizing the classical action. The simulation displays the
endpoints of the motion (¢, x) which...

11.3.8 Quantum mechanics

27. Circular Well Superposition Model

The Circular Well Superposition simulation displays the time evolution of the position-
space wave functionin an infinite 2D circular well. The default configuration shows the
first excited state with zero ...

49. QM Eigenstate Superposition Demo Model

The EJS QM Eigenstate Superposition Demo model displays the time dependence of
a variety of superpositions of energy eigenfunctions for the infinite square well and
harmonic oscillator potentials. One of ...

54. Barrier Scattering model

The EJS Barrier Scattering model shows a quantum mechanical experiment in which
an incident wave (particle) traveling from the left is transmitted and reflected from a
potential step at x = 0. Although ...

59. Free Particle Eigenstates

The free particle energy eigenstates model shows the time evolution of a superpos-
tion of free particle energy eigenstates. A table shows the energy, momentum, and
amplitude of each eigenstate.

61. Eigenstate Superposition

The fundamental building blocks of one-dimensional quantum mechanics are energy
eigenfunctions Psi(x) and energy eigenvalues E. The user enters the expansion coef-
ficients into a table and the simulation ...
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74. Wave Packet Model

The EJS Wave Packet model displays the motion of an approximate wave packet.
The simulation allows an arbitrarily wave packet to be created. The default dispersion
relation, with the frequency equal to the ...

11.3.9 Theory of relativity

65. Einstein’s Train and Tunnel Model

The EJS Einstein’s Train and Tunnel model displays the famous thought experiment
from special relativity where a train enters a tunnel as seen from two points of view.
In one case the train is seen in the ...

66. Simultaneity Model

The EJS Simultaneity model displays the effect of relative motion on the relative
ordering of the detection of events. The wave source and two equidistant detectors are
at rest in reference frame S’, which ...

11.3.10 Statistics

4. Random Walk 2D Model

The EJS Random Walk 2D Model simulates a 2-D random walk. You can change the
number of walkers and the probability of going a given direction. You can modify this
simulation if you have EJS installed by right-clicking . ..

5. Random Walk 1D Continuous Model

The EJS Random Walk 1D Continuous Model simulates a 1-D random walk with a
variable step size. You can change the number of walkers and the probability of going
right and left. You can modify this simulation if ...

29. Balls in a Box Model

The Balls in a Box model shows that a system of particles is very sensitive to its
initial conditions. In general, an isolated system of many particles that is prepared in
anonrandom configuration will change ...

32. Multiple Coin Toss Model

The EJS Multiple Coin Toss model displays the result of the flipping of N coins. The
result of each set of coin flips is shown by the image of the pennies on the screen and
the complete results of the tossing ...
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11.3.11 Thermodynamics

10. Kac Model

The EJS Kac Model simulates the relaxation of a gas to equilibrium by randomly
selecting and then colliding gas molecules but without keeping track of the molecules’
positions. As long as the collisions are ...

12. 2D-Ising Model

The EJS 2D-Ising model displays a lattice of spins. You can change the lattice size,
temperature, and external magnetic field. You can modify this simulation if you have
EJS installed by right-clicking within ...

11.3.12 Waves

52. Beats Model

The EJS Beats model displays the result of adding two waves with different frequen-
cies. The simulation displays the superposition of the two waves as well as a phasor
diagram that shows how the waves add ...

57. Normal Modes on a Loaded String Model

The EJS Normal Modes on a Loaded String model displays the motion of a light
string under tension between two fixed points. The string is also loaded with N masses
located at regular intervals. The number ...

63. Doppler Effect Model

The EJS Doppler Effect model displays the detection of sound waves from a moving
source and the change in frequency of the detected wave via the Doppler effect. In
addition to the wave fronts from the source ...

75. Waveguide Model

The EJS Waveguide model displays the motion of a traveling wave forced to move
between two walls in a waveguide. The two walls are located at y = 0 and a, so that
its normal modes are u(t, x) = Asin(nnx ...

76. Waves and Phasors Model

The EJS Waves and Phasors model displays the motion of a transverse wave on a
string and the resulting phasors for the wave amplitude. The simulation allows an
arbitrarily polarized wave to be created. The ...

77. Transverse Wave Model

The EJS Transverse Wave model displays the motion of a transverse wave on a string.
The simulation allows an arbitrarily polarized wave to be created. The magnitude of
the components of the wave and the ...
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79. Reflection and Refraction between Taut Strings Model

The EJS Reflection and Refraction between Taut Strings model displays the motion
of a traveling pulse on a string when it is incident on a change of string density ...
80. Standing Waves on a String Model

The EJS Standing Waves on a String model displays the motion of a standing wave
on a string. The standing wave can be augmented by adding the zero line and the
maximum displacement of the string. The number ...

81. Resonance in a Driven String Model

The EJS Resonance in a Driven String model displays the displacement of taut string
with its right end fixed while the leftend is driven sinusoidally. The driving frequency,
amplitude, and the simulation’s ...

82. Standing Waves in a Pipe Model

The EJS Standing Waves in a Pipe model displays the displacement and pressure
waves for a standing wave in a pipe. The pipe can be closed on both ends, on one end,
or open on both ends. The number of nodes ...

84. Group Velocity Model

The EJS Group Velocity model displays the time evolution for the superposition of
two traveling waves of similar wave numbers and frequencies. The simulation allows
an arbitrarily superposition of two waves...

11.3.13 Miscellaneous

13. Radioactive Decay Events Model

TheEJS Radioactive Decay Events Model simulates the decay of a radioactive sample
using discrete random events. It displays the number of events (radioactive decays) as
a function of time in a given time . ..

14. Radioactive Decay Distribution Model

The EJS Radioactive Decay Distribution Model simulates the decay of a radioactive
sample using discrete random events. It displays the distribution of the number of
events (radioactive decays) in a fixed time ...

19. Game of Life Model

The EJS Game of Life Model simulates a popular 2D cellular automaton of a lattice
in a finite state which is updated in accordance with a set of nearby-neighbor rules.
The universe of the Game of Life, developed ...

22. Radioactive Decay Model

The EJS Radioactive Decay Model simulates the decay of a radioactive sample using
discrete random events. It displays the number of radioactive nuclei as a function of
time. You can change the initial number-. ..
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A large number of older EJS examples, among them very elementary ones, are found
in the users directory that belongs to the directory tree of this book. They can also
be downloaded together with the EJS console from the EJS home page. In the users
directory the files are ordered by author. There are .xIm files in this directory, which
are not executable by themselves and have to be loaded by the EJS console. The
following Figure 11.7 of the directory tree will facilitate the orientation.

The directories of the authors are located below the directory source/users. In Fig-
ure 11.7 the directory tree details the sub-directory of Francisco Esquembre: Murcia/
Fem (University of Murcia, Spain).

- ) e-ExMa
1) bin
# ) doc
=11 workspace
L) config
#: | export
E D) output
(= i) source
B O oOther
4 () ModelingSoence
# |0 ModelizandoLaCiencia
= () users
[+ () bogota
& () davidson
# ) ehu
E (D murda
- ) fem
3 |2 biology
+ L) chemistry
¥ D mathematics
=) () physics
= | astronomy
(O EarthandMoon
) PlanetaryMotion
& ) electromagnetism
1+ |_) mechancs
®E (O ntnu
& D) uned
&) wy
# ) RoessMa
Figure 11.7. e-ExMath is the root directory of this work with the corresponding textfile and
the EJS console. In doc you will find the program descriptions of EJS. In workspace the
executable *.jar files are in the directory export, while the directory source contains the *.xml
files that have to be loaded from the EJS console. Other contains simulations from different
sources: for the University of Murcia (Esquembre) the directory tree is recursed down to the
actual simulation.
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Figure 11.8. The directory Export/Others/EHS contains directly executable *.jar files.

To enable the user to get an overview of the large number of simulations available,
the directory export contains in its sub-directory Others/EJS directly runnable *.jar
files of the simulations next to the corresponding *.xml files (see Figure 11.8).

Using the hyperlink on the margin next to Figure 11.9 one reaches an overview
file, which contains information on 144 simulations ordered according to 16 top-
ics, supplemented with short comments and a reference for the respective source.
The individual simulations can be called quickly and directly via clicking on the file
name.

These files are of very different levels of complexity. In addition to a few child-
friendly simulations, there are simple examples for the demonstration of certain vi-
sualization possibilities. The majority of the files contains rather complex simula-
tions of physical problems, with optical visualizations that are, in a number of cases,
quite convincing. Some of the simulations can also be found under the new individual
files, which were discussed at the beginning of the chapter. Some of these have been
developed further.

Many of the files contain no description pages. Testing which elements of the graph-
ics can be pulled with the mouse often reveals initially unexpected design possibilities.

The files can be edited and further developed, if the corresponding *.xml file is
called from the EJS console.

List of selected simulations from the LJS package (" jar- files) Dieter Roess
The corresponding on! - files have the same name, with capttal first letter
The 144 files are sorted into 16 thematic groups
Close the running simulation before opening another one

Theme Remarks Hyperiink to jar- file Authors
1 - Mechanics Tor jue, pont of aztion al moment VonSiebenthal
1 - Mechanics Fegular and chaotic oscil=tions ball in Wedge ejs_tpt_modeling
1 - Mechamcs 2D Tolbsior. vasiable colision2D e FuKwuHwang
1 - Mechanics Gyrn with gramation lagrange ehu_jma
1 - Mechamucs  Collis:on, also with repulsion! multiple Collisions ¢s_crcExamples
1 - Mechanics ievAon cradle, vanable newtonsCraddle murcia_fem

Figure 11.9. Beginning of the overview table.
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Figure 11.10. Opening page of the launcher package on the theory of relativity.

11.4 OSP Simulations that were not created with EJS

A large number of OSP Java simulations are present in a group of Launcher packages,
structured according to themes, which can be obtained at the OSP homepage.

Many of the packages have been developed as courses. Figure 11.10 shows the
typical appearance when opening one of them. This launcher has three directories
that can be opened by clicking on the buttons or with the file menu.

The directory Relativity Workshop, which can be called from the list at the bottom,
contains a complete course on special and general theory of relativity, subdivided into
chapters ordered according to topics. Some of them contain descriptive text with static
pictures, theory and problems, many contain, in addition, interactive simulations.

The directory About OSP contains details about the authors, about the launcher
method, with which many individual files can be combined into a package, and about
options for the presentation, among them language selection, provided this was en-
abled by the authors of the simulations.
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Figure 11.11. Directory structure of the page Programs of a typical Launcher. On the left
a directory tree with numerous simulation files is shown. On the right a picture and a short
description is shown for a selected simulation. The picture shows light rays that originate
radially from a body in the vicinity of a black hole. Double clicking on the green triangle
activates the simulation.

The directory Programs contains many interactive cosmological simulations from
Newtonian mechanics to Kerr and Rain metrics. For a number of simulations, the
version created by the lecturer are next to versions that were produced by students.

The directory Programs has the structure as shown in Figure 11.11, with many
sub-directories.

The File menu on top of Figure 11.11 contains options for editing and for exporting
individual simulations.

11.4.1 List of OSP launcher packages

In the following list we again show a table of the titles linked to the OSP homepage
and the author’s homepage, as well as a short description. In the margin is a link to
directly access the launcher package on the data carrier.
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1. Symmetry Breaking on a Rotating Hoop

The Rotating Hoop Launcher package shows the dynamics of a mass that is con-
strained to move on a rotating hoop. The rotating hoop model is an excellent mechan-
ical model of first- and second-order phase transitions ... Wolfgang Christian

2. Modeling a Changing World

Modeling a Changing World written by mathematics professor Tim Chartier and his
student Nick Dovidio presents curricular material in an OSP Launcher package to
motivate the need for numerically solving ordinary ... Tim Chartier

3. Hasbun Classical Mechanics Package

The Hasbun Classical Mechanics Package is a self-contained Java package of OSP
programs in support of the textbook “Classical Mechanics with MATLAB Applica-
tions”. Classical Mechanics with MATLAB Applications ... Javier Hasbun

4. Tracker Demo Package

The Tracker Sampler Package contains several video analysis experiments from me-
chanics and spectroscopy. It is distributed as a ready-to-run (compiled) Java archive
containing the Tracker video analysis application, ... Douglas Brown

5. Tracker Air Resistance Model

The Tracker Air Resistance Model asks students to explore air resistance of falling
coffee cups by considering both viscous (linear) and drag (quadratic) models. Students
see a video of falling cups and explore ... Douglas Brown

6. General Relativity (GR) Package
The General Relativity (GR) Package is a self-contained file for the teaching of gen-
eral relativity. The file contains ready-to-run OSP programs and a set of curricular
materials. You can choose from a variety ...

Wolfgang Christian, Mario Belloni, Anne Cox

7. OSP QuILT Package
The OSP QulLT package is a self-contained file for the teaching of time evolution of
wave functions in quantum mechanics. The file contains ready-to-run OSP programs

and a set of curricular materials.
Chandralekha Singh, Mario Belloni, Wolfgang Christian

8. Phase Matters Package
The Phase Matters package is a self-contained file for the teaching of phase and time

evolution in quantum mechanics. The file contains ready-to-run OSP programs and a
set of curricular materials. The material ... Mario Belloni, Wolfgang Christian

9. Spins Package

The Spins package is a self-contained file for the teaching of measurement and time
evolution of spin-1/2 systems in quantum mechanics. The file contains ready-to-run
OSP programs and a set of curricular ... Mario Belloni, Wolfgang Christian



11.4 OSP Simulations that were not created with EJS 231

10. Statistical and Thermal Physics (STP) Application

The Statistical and Thermal Physics (STP) Application is a self-contained file for
the teaching of statistical and thermal physics. The file contains ready-to-run OSP
programs and a set of curricular materials. ... Harvey Gould, Jan Tobochnik
11. Momentum Space Package

The Momentum Space package is a self-contained file for the teaching of the time evo-
lution and visualization of energy eigenstates and their superpositions via momentum
space in quantum mechanics. The file ... Mario Belloni, Wolfgang Christian
12. Position Carpet Package

The Position Carpet package is a self-contained file for the teaching of the time evo-
lution and visualization of energy eigenstates and their superpositions via quantum
space-time diagrams or quantum carpets ... Mario Belloni, Wolfgang Christian
13. Wigner Package

The Wigner package is a self-contained file for the teaching of the time evolution and
visualization of energy eigenstates and their superpositions in quantum mechanics.
The file contains ready-to-run OSP ... Mario Belloni, Wolfgang Christian
14. Modeling Physics with Easy Java Simulations: TPT Package

This Javaarchive contains a collection of simple Easy Java Simulations (EJS) programs
for the teaching of computer-based modeling. The materials and text of this resource
appeared in an article of the same ... Wolfgang Christian, Francisco Esquembre
15. Superposition Package

The Superposition package is a self-contained file for the teaching of the time evo-
lution and visualization of energy eigenstates and their superpositions in quantum
mechanics. The file contains ready-to-run ... Mario Belloni, Wolfgang Christian
16. Demo Package

The Demo package is a self-contained file for the teaching of orbits, electromagnetic
radiation from charged particles and quantum mechanical bound states. The file con-
tains ready-to-run OSP programs and ... Mario Belloni, Wolfgang Christian
17. Computer Simulation Methods Examples

Ready to run Launcher package containing examples for an Introduction to Computer
Simulation Methods by Harvey Gould, Jan Tobochnik, and Wolfgang Christian
18. OSP User's Guide Examples

Ready to run Launcher package containing examples for Open Source Physics: A
User’s Guide with Examples by Wolfgang Christian
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19. Numerical Time Development in Quantum Mechanics Using a Reduced
Hilbert Space Approach

This self-contained file contains Open Source Physics programs for the teaching of
time evolution and visualization of quantum-mechanical bound states. The suite of
programs is based on the ability to expand ... Mario Belloni, Wolfgang Christian

Here you should again look directly at the OSP homepage, where new packages or
versions are present.

In addition, the comfortable search function of the home page allows you to search
for certain topics, levels and intended audiences. Figure 11.12 shows the search tree.
The individual selection boxes are each structured into numerous categories. For the
topics this is shown in Figures 11.12 and 11.13.

Onthe OSP homepage you also may find isolated simulations (429, as of November
2010). To find these you choose the search function under OSP type Java Model, as
shown in Figure 11.14
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Figure 11.12. Search window on the Compadre homepage.
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General Subject:
Specific Subject:
Subject Detail:
Cost:

Resource Type:

Astronomy

Classical Mechanics
Education Foundations
Education Practices
Electricity & Magnetism

Fluid Mechanics

General Physics

Modern Physics

Optics

Oscillations & Waves

Other Sciences

Quantum Physics

Relativity
_Thermodynamics & Statistical Mechanics

TargetLevel:

Figure 11.13. Topic selection on the Compadre homepage.

OSP Type: [Java Model l-
No Preference
Launcher Package
EJS Model

General Subject:
Specific Subject:
Tracker
Subject Detail: Source Code

Cost: Documentation I

Figure 11.14. Method selection on the Compadre homepage.

Credit: We thank Wolfgang Christian and Francisco Esquembre for the permission
to use the files as available on the OS P homepage (2010) in this book.

11.5 EJS simulations packaged as launchers

A number of physics courses, which demonstrate the application of the EJS program
for the simulation of elementary and advanced physical problems, are also combined
as Launcher packages. Individual solutions contained in them can be called via dou-
ble click. The packages that are briefly described in the following are by Wolfgang
Christian, Francisco Esquembre and their colleagues. They can be called directly via
the link on the margin.

Ehu_mechanics-waves

course in mechanics, oscillations and waves Juan M. Aguirregabiria

Ejs_crcExamples

description of EJS, many examples Francisco Esquembre, Wolfgang Christian
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Ejs_demo

description of EJS, simple examples from mechanics and thermodynamics, 3D visu-
alizations Francisco Esquembre
Ejs_mabelloni_pendula

Lagrangian Mechanics, simple and complicated pendulums Mario Mabelloni

Ejs_mechanics
Basic course in mechanics and gas dynamics, with hints about the modeling technique
Wolfgang Christian, Francisco Esquembre
Ejs_stp
Statistics and thermodynamics, FPU problem Wolfgang Christian
Ejs__tpt_modeling
Introduction to EJS and launcher packages, simple and advanced models from me-
chanics and heat Wolfgang Christian, Francisco Esquembre
Ejs_wochristian_chaos
Complexroots, Mandelbrot set, driven pendulum, phase space
Wolfgang Christian
Ejs_wochristian_examples
Advanced models, Fourier analysis, Lennard-Jones potential, oscillator chains
Wolfgang Christian
Ejs_wochristian_odeflow
Some solutions of ordinary differential equations Wolfgang Christian

The advantage of these EJS launcher packages in comparison to the OSP packages
discussed above, is that changing the simulations does not require advanced JAVA
knowledge.

An active individual simulation can be transferred into the EJS console via the
context menu (callable by clicking on the simulation with the right mouse button). In
its windows, code and visualization elements can be seen and edited. Thus an existing
solution can be quite easily used as starting point for further developments.

11.6 Cosmological simulations by Eugene Butikov

Because of their operating system independence we have, so far, only used Java
simulations or given links to them.

Eugene Butikov (University of Petersburg) has created a large number of simula-
tions for cosmological and other physical problems based on Windows and Visual
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4. Plancts and Satcellites

PLANETS AND SATELLITES
Eugene Butikov

St. Petersburg State University

Figure 11.15. Simulation. Opening window of the Butikov simulations.

Basic. Their design is so convincing that we want to add them to our overview, al-
though they will only be accessible to uscrs who work with Windows. The Butikov
program must be installed once for the simulations to run on your computer. You start
the installation with the link B. install at the margin. After installation you can activatc
the simulations via Simulation in the figurc captions.

Becausc of the numcrous possibilitics, we will facilitatc user access with a bricf
description. Figurc 11.15 shows the start page of the program Plunets und Satellites,
whosc content far exceeds what the title promises. Thus, in addition to clementary
problems (Kcepler's laws), it also trcats many-body problems with their nonlincar and
complex orbits, for example the passage of two stars with plancts under Planet rob-
bery. The graphical presentations arc didactically very versatile. They show, for cx-
amplc, thc time devclopment, from the perspective of the star, of the planct or of
the center of mass of the system (menu View), and at the same time yiclding some-
times surprising orbits. The individual simulations (menu Examples) allow for many
adjustments of all important paramctcrs, so that the user can cxperiment frecly.

The three parts of the package contain:

Getting started: Extcnsive hints for oricntation; glossary of tcchnical terms; and
links to particularly appealing cxamples from the multitude of simulations.

Tutorial: Glossary; short overview of the course text; an extensive coursc text (ac-
cessible via the Mcnu Help topics/Content) and a linked table of contents, which
Icads dircctly to the individual simulations; didactic questions; help for handling the
simulation.
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v Slar (v = 0 50)

Figure 11.18. Simulation. Orbit of a planet in a double star system. seen in the coordinate
system of the star with double the mass (red in the center). The lighter star travels around it on
a close to circular orbit. The planet. which is very light in comparison with both stars. starts
its yellow orbit on top around the blue star. This orbit is perturbed by the red central star and
then moves over to a green orbil around it. Alter a few turns the perturbation by the blue star
is sufficient to temporarily bind it to the blue star again (blue orbit).
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Simulations: Access to the individual simulations, structured into seven classes, as
shown in Figure 11.16.

Figure 11.17 (a screen-shot from Tutorial) shows the structure of the total program.

The link on the margin Butikov provides access to Butikov’s homepage, from
where you can see the programs he has published. There you will also find Java ap-
plets for many physics problems. The link PAS leads to the homepage of Physics
Academics Software (PAS), where the simulations were originally published.

With the permission of the author Eugene Butikov and the PAS editor Jon Risley,
our collection contains the cosmological simulation program. You may call it with the
interactive Figure 11.18.

It shows as an example a system of two stars of unequal mass with a common
planet, whose orbits move from the one to the other star. This is displayed as seen
from the coordinate system of the more massive star. The calculation of the orbit
around the smaller star in yellow starts on top; the color changes to green when the
planet moves into a orbit around the inner main star. Later, the planet again moves to
the secondary star (blue section) of the orbit.



12 Conclusion

The development of this book has given me deeper insight into some foundations of
mathematics, and has also given me great intellectual pleasure when experimenting
with the didactic possibilities of the simulations. I wish the reader may benefit in his or
her own striving for knowledge and be provided with a similar sense of achievement.
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