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Preface 

The idea of writing this digital book was born during discussions among a circle of 
friends I of the following questions: 

(a) Why are physics and mathematics so unpopular at School'] 
(b) Why are there not more school leavers that are eager to study natural sciences 

and technology? 
(c) Why do the large majority of first year students dismiss the very good subject­

related and professional career opportunities in these professions? 

Already, in the final years of school, mathematics and physics are considered to be 
hard subjects. Universities grudgingly accept that the mathematical knowledge of 
many school leavers is insufficient for taking up subject studies and needs to be 
improved by bridging courses. 

A shockingly large number of students already fail in the first semesters of univer­
sity. This will have serious consequences for the future welfare of our society, as we 
urgently require a sufficient number of well qualified young professionals in scientific 
and technical jobs to succeed the current generation of scientists and engineers. 

It is ea�y to understand why the younger generation choose those soft subjects at 
university for which they feel better equipped and where they see better chances of 
success. The fact that the monetary concerns of finding a job later are not considered 
to be crucial in subject choice can actually be considered as a likeable attitude in 
students. 

Why is it that mathematics and physics are considered to be so difficult? In fact, 
these should benefit from not being rote learning subjects: if one has understood a 
specific physics or mathematics problem within its context, one can forget the small 
details, since they can be reconstructed from the larger context. 

It is obvious that, in our schools, one often does not manage to achieve this state 
of understanding and insight into the mathematical structure and laws of nature; the 
instruction therefore cannot provide the wonderful experience of having understood 

something. Thus, physics can indeed become a cumbersome subject full of incompre­
hensible and disconnected formulas and tedious calculations, and mathematics an art 
of computation that is build on memorization, and which increa�es in complexity from 

I Leading members of the Deul.,·(·hen PhY.I"ilcali. .. ;hen Ge.l"elL,ehuft (DPG; with 57000 members, the 

largest society ofil' kind world wide), of the WilheimanJ EI.,·e Heraeu.,· f(J/mdalion (WEH-Stiftung). 

and individual colleagues from the physics community, among them in particular Prof. Dr. Siegfried 

Grossmann and Prof. Dr. Werner Martienssen . 
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the times tables up to integration, while the fundamental ideas and deeper connections 
never become clear to the learner. 

As the PISA study showed in 2003, this dilemma ha� developed in recent decades 
to such an extent that the level of mathematics and physics at German schools has 
declined from an earlier assumed top position to a "measured" weak, mediocre level. 
Similar declines in the standards of mathematics and physics have been reported in 
other countries. 

What is the reason for this problem? We think that one of the most important rea­
sons can be found in the subject-specific education of future teachers at the univer­

sities! Teacher training ha� often been treated as a stripped down appendix to the ed­
ucation of scientists. However, school teachers determine, in their respective subjects, 
the quality of education and the interests of the next generation ! Their very impor­
tant role in society a� mulliplicators ha� been neglected in relation to the education of 
future researchers representing a given subject. The resulting lack of recognition for 
students preparing to become teachers has certainly contributed to the lack of young 
teachers available to fill open positions in physics and mathematics. 

Two development� in the immediate pa�t have worsened this situation and made it 
clear that a turnaround is necessary: 

• Educational policy ha� given, for good reason, more prominence to didactics and 
pedagogical studies, but ha� limited the duration of studies very rigidly. This, 
however, has meant that not much time is left for studying the subject matter. 

• Students experienced the Bologna process in Europe as a transformation of the 
traditional freedom of academic study into stricter control, of a kind experienced 
at the schools that they had just fled. Overloaded syllabuses, and nearly contin­
uous inspection of study progress with early crucial examinations led to early 
selection and a high failure rate. 
The attempt to serve "old wine in new skins", that is, to cram the traditional de­
gree programs and the subject matter, which ha� grown due to scientific progress, 
into a shorter bachelor degree, has led to partial chaos and a general unhappiness 
with study conditions. 

In 2005 Siegfried Grossman entered into discussions with the author with the conclu­
sion that it is a fundamental mistake to mix the subject-specific education of teachers 
with that of researchers. 2 They demanded specially developed sui generis curricula for 
studies preparing for the teaching professions, which are directed at the future teach­
ing job and that take into account the available time, which in Germany is limited by 
trainee teachers having to study two different subjects. 

2 S. Grossmann, D. RlIss: ''Thesen zum LehramL.studium Physik - Pllidoyer fIIr eine eigenstllndige 

Lehrerausbildung", Physik Jouma1@ 2005 4 (2005) Nr. 10, page 49 
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Understanding the subject and connections between different areas should be para­
mount, as opposed to detailed knowledge and specialized skills. In 2006, the DPG 
produced a careful analysis and documentation and thus made sui generis studies 
a general demand of colIeagues involved in the DPG . 

In order to realize this vision, it would be counterproductive to base our actions 
in relation to schools and students on past conditions or wishful thinking. We need 
to accept today's conditions, as well as the technical possibilities, in a positive spirit. 
The gymnasiums (German secondary schools that lead to the "Abitur", their final 
examination, allowing entrance to universities) should no longer be institutions for 
the elite, but should, in future, lead half of all children to the "Abitur". Access to a 
high level education could be similarly improved in many other educational systems 
around the world. 

Our children and grandchildren are growing up in world with many stimulations 
and diversions, but have media skills that neither their parents nor grandparents had, 
for example their knowledge of, and playful dexterity with, the media and technolog­
ical devices. This digital book is the attempt to put the abovementioned studies on a 
foundation that makes use of these skills and dexterity. 

In this book, an important subset of the mathematical foundations is embedded in a 
systematically evolving text and presented with the help of numerical simulations, and 
is visualized in numerous ways. The PC takes care of the often tedious calculations. 
Thus, the user can concentrate on understanding the subject matter, the context and 
the algorithms used. 

Since all the simulations are interactive and can, in many cases, also be used for sce­
narios that are totalIy different from those given, the students are thus given a quasi 
"experimentaf' access to mathematics. We make use of the fact that a visual impres­
sion is more intensive and permanent than a heard or read one, and that experience 
based on one's own actions results in deeper understanding than the mere reception 
of someone else's knowledge. In addition, playfulness is given free range to visually 
experience and grasp the intellectual stimulation and aesthetic beauty of mathematical 
structures. 

The book provides colleagues in physics and mathematics with a thesaurus of sim­
ulations for the development of their own curricula. In addition to textbooks, this 
thesaurus gives physics students the possibility of a deepened understanding of fun­
damental mathematical notions and physical phenomena. Future teachers can, dur­
ing their own training, experience the potential of modern media for the realization 
of interactive lessons in mathematics. Interested high school students can attempt a 
light-hearted introduction to a higher level of mathematics; they will probably have 
less trouble with the techniques used than some older people. 

For the simulations, the package Easy Java Simulation (ElS) is used, which pro­
vides a simple fa.�t-tracked introduction to the development of simulations in Java. 

The files produced with ElS are very transparent, and can be ea.�ily changed and 
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reused as building blocks for one's own developments. The author considers EJS 
to be a prime candidate to become the standard program for didactically oriented 
simulations. 

The authors of EJS, Francesco Esquembre and Wolfgang Christian, have allowed 
me to supplement this text, which is primarily an introduction to mathematics, with 
more than 2000 physics-based simulations, for which lowe them many thanks. Fran­

ce.ICO Esquember has also assisted me personally in numerous ways with the cre­
ation of the mathematical simulations. I also thank Eugene Butiiwv for allowing me 
to include his wonderful cosmological simulations. 

I want to give many thanks to Siegfried Grossmann for the dedication and care 
that he has applied to critically reading the text and simulations, and for the many 
valuable hints, which have contributed to the final version. Ernst Dreisigacker, the 
general manager of WEH-foundation, ha� supported me with the careful correction of 
details and with lively discussions. 

Over the last three years I have had many involved discussions with Werner Mar­
tienssen about a book with a similar goal, i.e. to assist in reforming and improving the 
physics education of future teachers, and which is due to be published soon.3 The idea 
to write this digital introduction to mathematics came up during these discussions. 

The staff members at De Gruyters have done a great job in the production of this 
complicated publication. My special thanks go to Dr. von Friedeburg and to Ulrike 
Swientek for their personal engagement and permanent encouragement. Katherine 
Thomasset wa� a great partner in the final translation of the German original into 
English. 

I want to thank my wife Doris for the loving understanding with which she tolerated 
my absentmindedness while this work was written. I promise improvement ! 

1 6  May 20 1 1 Dieter Ross 

3 "Phy,ik im 21. lahrhundert: E.,say, zum Stand der Phy.ik". Editor, Werner Martien .. en and Dieter 

R1I .. , Springer Berlin 2011 
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1 Introduction 

1.1 Goal and structu re of the digital book 

This book is available in two versions: a printed one and an electronic one. All users 
can access the simulations at http://mathcsim.dcgruytcr.dc/jws_cn!. If you have cho­
sen the eBook, or are accessing it through your library, the PDF is linked to the simu­
lation files via the internet. The eBook also gives you, via the "supplemental material" 
button, access to download the complete software package (> 700 MB) for offtine­
use; the PDF in that package is linked to all simulations via hyperlinks. Buyers of the 
print version who would like to download and install the software to their local system 
can obtain access by contacting info@degruyter.com for registration. The directories 
of Figures 1 .1 and 1.2 correspond to the download solution. It illustrates selected 
mathematical methods that are important for the presentation and the understanding 
of the contexts of physics. 

The foundations of these mathematical methods are introduced by example. The 
programmability and computational power of the PC is used to visualize these meth­
ods, undertake calculations, change parameters, present connections interactively and 
present computation processes via interactive simulation and animation, in an inter­
esting manner. In addition, playfulness is given free range. This presentation is also 
intended to make the beauty and aesthetics of mathematics visible. 

The material provided in this book allows the user to penetrate mathematical struc­
tures and tools in an experimental manner. In particular, topics have been chosen 
that are difficult to imagine in an abstract manner, such as complex numbers, infinite 
sequences, transitions to the limit, fields, solutions of differential equations and so on. 

All individual simulations contain extensive descriptions and suggestions for exper­
iment�. The user can always interactively engage with the simulations, and in many 
cases pre-programmed functions can be edited or new ones can be introduced. After 
some initial training in the EJS (Easy Java Simulation) program the user can open all 
files, change them and develop them further. 

With one exception, Java programs have been used that were either created from 
scratch or taken from the freely available internet projects Open Source Physics (aSP) 

and EJS. 
Our own mathematical simulations were created with the EJS-program that has 

been developed by Francisco Esquembre. Due to its graphical user interface, this pro­
gram immensely simplifies the development and modification of simulations in com-
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parison to "classical programming" in Java. This program and it� documentation are 
contained in this book, but are also freely available on the internet. 

We will. however. abstain from explaining the mathematical and computational 
techniques in systematic detail. The in-depth study of the mathematical and numerical 
methods will be left to specialist textbooks4. 

The pictures contained in the the pdf file mostly show screen shots of the respective 
simulation. When in the caption of such a picture simulation is clicked at for the first 
time a small context menu appears that asks, a� a security mea�ure against viruses, 
whether this file should be opened. You may confirm this and mark a check box, 
to avoid this dialog in future. The simulation will then be started immediately after 
clicking on simulation. 

Where the reader might wish to learn more about the topic, links to internet pages 
have been inserted next to the text. They often point to Wikipedia-pages, from where 
further navigation is easy. These links are resolved in the outlined text boxes on the 
margin. All simulations can be accessed individually at http://mathcsim.dcgruytcr.dc/ 

jWS3n!. Buyers of the printed book can also ask for download of the complete file 
package with interlinked text at info@degruyter.com for operation at their PC. 

The appendix in Chapter I I  contains a short introduction to the EJS program and 
an extensive collection of simulations from all areas of physics, which have mostly 
been created using this tool. In order for these simulations to run on your computer, 
the Java Runtime Environment (JRE) must be installed, which you can download 
for free from the SUN-homepage in the latest version. using the link given at the 
border. 

It is advisable to follow the suggestion to install the JRE into \Programs\JAVA \. 
For newer EJS simulations with 3D-Rendering you can download the Java 3D 

program from the same page. 

1.2 Directories 

The book consists of 3 units: 

• The continuous interlinked book text e·ExltUll as a PDF file of around 30 MB. 
• A secondary directory workspace containing a directory tree, which is ordered 

according to topics and authors. It contains more than 2000 simulation files of 
around 650 MB size, of which around 1000 are executable jar filess that can be 
activated from inside the text. The launcher files among them also link to many 

4 Por �xample: Mathemali .• eher EinfohrungJwr Jfor die Ph}· .• ilc9. Auftag�. Si�grried Grossmann 

(T�ubner 2(08) ISBN 3·519·33074·1; Open Sour,:e PhYJit',' - A User'., Guide With Example.,' 

Wolfgang Christian (pc!arSon 20(6) ISBN-IO: 080537759X and ISBN- 13: 9780805377590; Mathe· 

ma/i.,ehe GrunJ!LJgenfortk.., Lehramt . ..,tudium PhpiJc, pranz Embacher (Vieweg + Teubn�r 2(08), 

ISBN 978·3-8348-0619-2. 

5 jar files can be execut�d by them>lelves. 
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Figure 1.1. Main directory tree. 
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Figure 1.2. Directory tree of mathematical simulations. 

secondary files for the individual simulations. The remainder are saved as .unl 

files. 6 

• The EJS console for opening the xml files and working on the jar files, supple­
mented by documentation on the EJS program. The console does not have to be 
installed. It is contained in the program and can be started directly. 

6 xml i< an abbreviation for Extensible Markup Language. Por our purpo,;e� xml file� are text files that 

contain the instruction for Lhe simulation.<. They cannot be execured by Lhem,;elve�, but are opened 

from Lhe EJS con.<ole, from where the corresponding jar file i� ea.<ily creared via as.<embling the 

required Java library components. To view or directly change Lhe.unl file one can, for example, open 
it wiLh ru'lepud. An introduction to E./S is given in Lhe appendix. 
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The main directory e-ExMa. which can be copied to an arbitrary place on the hard 
disk, contains the text file e-Roess_download.pdf the Ejs console and the directory 
workspace. with all simulation files. In doc are some documentation files for EJS and 
in bin. some configuration files and library files of the console. Workspace contains as 
sub-directories export for all executable jar files and source for the xml files that are 
meant to be opened from the console. In output. html files are saved while working 
with the console. 

Export is divided into RoessMa for the mathematical simulations of the ongoing 
text, Butikov and compadre for the physics simulation files of the appendix. Other 

in the directory source contains further physics simulations in xml- and jar-format. 
It is advisable to create links for the pdf text file and the console on the screen 

(in Windows: Desktop), in order to find these files quickly without searching for 
them. Plea�e take care not to change the deeper directory structures, otherwise some 
hyperlinks will not work. 

As long as the simulations are accessed from the text, you do not have worry about 
the directory structure. since it is saved in the hyperlinks. However. as soon as you 
want to edit a simulation from the console, you are a�ked for the location of the file. 

The directories RoessMa in export and source are structured into directories in the 
same way according to topics. This is illustrated in Figure 1.2 for the example of the 
sub-directory Calculus with 6 individual simulations. The initially empty directory 
Tests is intended to save the data for your own experiments. This setup prevent� the 
original files from being overwritten by mistake. 

1.3 Usage and techn ical conventions 

Most simulations are interactive. The user ha� several alternative ways of intervening. 
although not necessarily in parallel. 

Individual point� or elements of the graphical presentation can be "pulled" with the 
mouse and thus parameters can be changed. In this ca�e, the mouse pointer changes 
into a hand symbol when it is positioned on the element. 

Numerical values of different parameters can be entered into number field.f. How­
ever, this change only becomes active if the enter key ha� been pressed and the text 
field, which turned yellow when entering text, becomes clear again. If the text field 
turns red, a mistake with the input ha� occurred (often a comma has been used instead 
of a full stop as decimal point; the correct format is, for example, 12.3 instead of 12,3). 

From a list of options, given functions or parameter values can be selected with the 
mouse. 

With sliding controls, individual parameters can be changed continuously or in 
steps. 

Functions that are displayed in a text field can be changed or rewritten from scratch. 
Again, the changed function is submitted with enter. 
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When formulas are written in printed text, we often use short hand notation, by 
unspoken convention: 

• for items that are ambiguous and that can be misinterpreted as text, like ab for a 

times b or sin a for sin(a) ; 
• for items that can be misunderstood by software as formatting characters for text, 

such as x 2 for x*x or x'2; 
• for those special characters that cannot be interpreted by programs, such as y for * for derivatives with respect to time. 

For the input for numerical programs such as EXCEUVBA, Java, VBA or Mathematics 

the notation must be unambiguous. 
The fundamental rule is: all parts of the formula must be entered directly via the 

keyboard without the use of special characters. Combined characters must be mapped 
to an equivalent number of keyboard characters, in order for these to be correctly 
identified by the program. (Example: y' as a derivative combined from two keyboard 
characters; a unique text like "derivative with respect to tn might also be interpreted 
by a program). In particular, the following notations have to be noted: 

• Addition and subtraction: a + b, a - b;  

• Multiplication: a*b;  
• Do not omit brackets: a*sin(b) ;  

• Division: alb ;  (a + b)/(c + d) ;  
• Power: a'b; 
• Exponential function: exp(a) ;  

Many simulations use a parser to translate the formulas entered a� text into Java 

format. In this ca�e, the following notation is permissible, which can also be used 
recursively. 

atanh(x) ceil(x) cos(x) cosh(x) e.xp(x) frac(x) 

jloor(x) in/ex) In(x) log(x) random (x) round(x) 

abs(x) acos(x) acosh(x) asin(x) asinh(x) atanh(x) 

sign (x) sin(x) sinh(x) sqr(x) sqn(x) step(x) 

tan(x) tanh(x) atan2(x , y) ma.x(x , y) min(x , y) mod(x , y) 

Here we have acos = arc cosine, cosh = hyperbolic cosine. 

The important expression atan2(x , y) prevents the ambiguities of the arctan by 
automatically yielding the correct angle in the second and third quadrant; here x and 
y are the sides of the triangle involved and x is opposite to the angle. 
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step(x) is a very interesting function in practice. It switches at x 0 from 0 to 
I .  If one wants to superimpose the function l(x) to the function g(x) from x = XI 
onwards, then this can be written as g(x) + l(x)*step(x -XI ) ' For some simulations 
the Math package is used together with Java for calculations. In this case, the functions 
are prepended with Math as follows: Math.cos(x) .  

Further details about the functions and terminology used in Java can be found from 
many sources on the internet, for example via searching for Java & Math. Just try the 
link at the border. 

1.4 Example of a simu lation : The Mobius band 

As an example of the possibilities of interactive simulations as they will be used in the 
following chapters, Figure 1.3a shows a rotating Mobius band in three dimensional 
projection. Among the closed bands in space the Mobius band is characterized by the 
fact that it makes half a twist, and thus, during one circulation, both sides are covered 
by a traveller; it has "only one surface". In the picture of the simulation, one sees the 
formulas for the three spatial coordinates with the variables p and q, which contain 
two parameters a and h, which can be changed with sliders. The slider for a changes 
the number of half twists, while the other one changes the height of the band. If a 
non-integer number is chosen for the number of half twists a, the band can be cut, 
and rejoined with another number. If this number is even, one obtains normal bands 
with 2 surfaces. It this number is odd, one obtains a Mobiu.� band that has additional 
twists. 

The formulas for the three space coordinates, as well as the time dependent anima­
tion component, can be edited, i.e. they can be changed. Using the same simulation, 
arbitrary animated surfaces in space can be visualized. The ability to edit opens a wide 
training field for the advanced understanding of functions that describe three and four 
dimensional processes. Figure 1 .3b shows two examples from the simulation of Fig­
ure 1.3a. On the left a simple band with a full twist, and on the right a Mobius band 
with one and a half twist�, were calculated. 

The text pages of the simulation contain extensive descriptions, hints for many 
alternatives of the 3D-projection, and suggestions for experiments. Figure 1.4 shows 
the description window that appears next to the simulation when it is opened. In this 
example, it contains 4 pages: 

Introduction with a description of the simulation and its controls; 
VISualization with hints about the possibilities of 3D projection; 
Functions for discussions of the mathematical formalism; 
Experiments with suggestions for experiments that make sense. 
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Figure l.3a. Simulation. The figure shows a simple Mobius band in perspective 3D­

projel-1ion. The three function boxes contain the parameter representations for the space co­

ordinates. The variables p and q vary in the range -rr to rr. The parameter a that determines 

the number of twists (here 1 / 2)  can be changed with a slider. as well as the parameter h that 

controls the height of the band. The z -component can be periodically modulated for \! > 0 
with the angular velocity v (play button) in order to create the impression of a rotating band. 
Using a check box. the xy -symmelr)' plane can be shown or suppressed. 
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Figure 1.3b. Examples from the simulation in Figure l .3a; on the left a simple loop with 

a = 1. on the right, a Mobius band with an additional twist (a = 1 .5). 

D o�sc:rIPtion ror �_Eye_c ... tche:r 
Description tVi5Uali� Function' I Exper.nent's � 

Visua l i zat ion Alternat i ves 
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you draw,  a cutting pl.ne will pass though the surf.,e. Depending on orientation, 
dIfferent cut; can be evaluated . 
Camera· Inspector: Press tte right  mouse key. A context menu wdl appear. Choose 
5:ements option! drawmg 3D paneV Camera. The Ca mera Inspector will appear. It 
w · 1 I  stey visible unti l it is d".ctiv.r.d. :t off.rs th .. fol . owing  options:  

Perspe tive:  d,stant hnes appear shortor than noar on"; 
o pentpective: no perspechve dist rlton 

Planar xv oder Y2 oder yx : OM looks onto the "".pective planqs 
Other options: Degree and angle of perspective �n be deEned. 
Optimizing Parameters. The spati,l lmpression �n be opllmi,ed by adjusting 
parameters. The op imum will be dlFerent for differen rrojec ions. 

Tne context menu also offers programs for producing a picture or a video. 

Figure 1 .4. Description window of the simulation. Here it contains 4 pages, of which the 

visualization page is  opened. Please test the possibi lities after opening the simulation ! 
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In the figure, the page for VlSualizatiou is opened. It describes easy possibilities 
for different three dimensional presentations: 

• Rotation; 
• Translation; 
• Zoom; 
• With or without perspective distortion; 
• Projections along one of the three axes. 

You are encouraged to use this example to try the different means of experimentation 
before you start with the next chapter. 



2 Physics and mathematics 

2.1 Mathematics as the "Lang uage of physics" 

Physics (Greek rpUU1K�, "the natural") researches the fundamental interactions in na­
ture. Already, the natural philosophers of antiquity thought at a deep level about the 
phenomena in the cosmos as well as in nature as it surrounds us, and their methodology 
was mostly of a qualitative, descriptive and often speculative nature. 

The great progress of physics in modern times is due to capturing the natural 
phenomena by measuring them quantitatively, and comparing the results of mea­
surement� with assumed relationships (hypotheses). This process allows, via the in­
teraction of experiments and hypotheses, the evolutionary development of original 
hypotheses to physical "theories" that are applicable in ever larger generality. 

Thus theories are well-tested hypotheses for relationships in nature, which are for­
mulated in the language of mathematics. It is an initially startling result of the in­
teraction over hundreds of years between experimental and theoretical physics, that 
a plethora of individual phenomena can be described in terms of standard theories, 
whose mathematical formulation only require a few symbols or lines of symbols. 
We list here the Schmdinger equation as the fundamental equation of quantum me­
chanics, Maxwell's equations of electrodynamics and the Navier-Stokes equation of 
hydrodynamics. 

These fundamental equations can become numerically difficult or sometimes even 
close to unsolvable when applied to specific cases within the huge variety of phenom­
ena embraced by the original theoretical model. 

However, a large number of phenomena of practical importance can be described by 
very simple mathematical models, which are also easily applied to individual cases. 
These include nearly all those phenomena that are imponant for engineering and its 
effect on our daily life. 

Using a suitable level of abstraction of the theories, one can model an ever larger 
variety of phenomena in a single theory - it is for a reason that the world formula, 
from which all theories of physics can be derived, is the ever desired, but not attained 
goal of theoreticians. 

It is an unanswered question of epistemology whether "the book of the universe 
is written in the language of mathematics", as expressed by Galileo Galilei7 ; that is, 
whether physical theories describe the reality of nature, or whether, as formulated 
by the positivists among the natural scientists, as long as the model ha� never been 

7 /I Saggiatore 1623, paragrnph 25 
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falsified by detrimental experimental evidence. The first school of thought includes 
the natural philosophers of antiquity as well as Einstein and Schriidinger, among the 
modem scientists; the second school of thought is characterized by names such as 
Born, Bohr and Heisenberg. 

In any case, mathematics provides physics with a powerful too1.8 On the one hand, 
the corresponding methods were developed directly when studying physical ques­
tions, as was the case with calculus, developed by Isaac Newton ( \  663- 1 727) and 
Gottfried Wilhelm Leibniz ( \ 664- 1 7 1 6) while studying the movements of planets. On 
the other hand physics, when studying new questions, sometimes makes use of meth­
ods that have been developed in the frame of pure mathematical and logical reflec­
tions, such as in the case of the general theory of relativity, which made use of the non­
Euclidean geometry developed by Georg Friedrich Bernhard Riemann ( 1 826-- 1 866). 

The strict formulation of mathematical relationships in the highly specialized lan­
guage of mathematics appeals to the expert with its convincing stringency, trans­
parency and terseness. To the beginner, however, this kind of presentation may seem 
confusing and too complex. In this text we will choose, as far as possible, a concrete 
description, and otherwise refer to specialized textbooks and internet links. 

2.2 Physics and calculus 

The State of nature at a given point in time could be fixed via a photographic snapshot 
and described with words. In a mathematical and physical picture, this would cor­
respond to a description of nature via formulas in which time does not appear. Thus, 
already, many states, for example equilibria, can be described via simple mathematical 
equations. 

In addition, physics examines and describes changes in nature,9 and, as a rule, these 
changes happen as functions of time. This enables theories to describe the develop­
ment of a current state from its conditions at an earlier point in time. More important 
is the ability to predict a future state from the knowledge of the current state; this 
ability empowers the techniques based on it to achieve a desired,future effect. 

For the deeper understanding and practical application of physics, the knowledge of 
differential calculus is necessary, since the changes (derivatives) and the sum of their 
effects (integrals) have to be considered. Without this understanding, physics becomes 
a collection of more or less disconnected formulas, which are only applicable to very 
limited ca�es. Thus the calculation of results may become a nuisance for school stu­
dents, and this block.� their insight into the simplicity and beauty of the relationships 
between mathematics, physics and technology. 

8 Immanuel Kant V, 14 (Akademie-Verlag edition) says: in evel)' kind 'if phi/o.mplry 'if nature, only .m 

much .\·c;nu.:e can he found, a." there i.\· mathemali(: ... to be fowui in iI. 
9 Immanuel Kant AA XXII, 134 (Akademie-Verlag edition): Ph),sin i.l· the ., .. ienee 'ifm(Jving jorce.I·, 

that are inherently ('onnt!(:tt!d to matter. 
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But the mathematical operations and methods that are needed for a ba.�ic under­
standing of the subject are not really difficult. Using suitable visualizations, the no­
tions used can be easily grasped. Using a computer for calculation and for creating 
the visualization media (diagrams, animations, simulations) it becomes easy to to put 
this into practice. 



3 Num bers 

We first want to remind the reader of the different kinds of numbers that are used 
in arithmetic and to visualize their relationships with the elementary arithmetic op­
erations. Here the number is the operand on which a certain operation is applied 
(arithmetic operations such as +, -, ", /' " =, >, <, and logical operations such as 
and, or, not, if-then, otherwise, . . .  ) . 

The definitions of numbers and arithmetic operations are, up to the complex num­
bers, synchronized in such a way that for any number z, the following fundamental 
rules of arithmetic operations apply. Here ( ) means that the operation in brackets is 
executed first. 

ZI + Z2 = Z2 + ZI 
ZI . Z2 = Z2 . ZI 

(Commutative law of addition) 

(Commutative law of multiplication) 

(Z I + Z2) + Z3 = ZI + (Z2 + Z3) (Associative law of addition) 

(ZI . Z2) • Z3 = ZI . (Z2 . Z3) 
(ZI + Z2) ' Z3 = ZI Z3 + Z2Z3 

(Associative law of multiplication) 

(Distributive Law of multiplication) 

Consequence: It does not matter in which sequence the operations are executed. 

Shorthand notation in the text: ZI Z2 = ZI . Z2 ; Z2 = ZZ ; z3 = Z2 Z (= z·3) ; . . . .  

The following sections will introduce different families of numbers in consecution of 
their historical development. The requirement to apply certain operations, which had 
been introduced for a certain kind of number, without restrictions, led to successive 
extensions of the usual concepts of numbers. 

3.1 Natural num bers 

The natural numbers are 1 , 2 , 3 , 4 , 5 , . . .  in the set of natural numbers, which in math­
ematics is referred to as N. IO  Additions can be executed without limit as well as 
multiplications, which are to be understood as multiple additions: 3 . 4 = 4 + 4 + 4. 

In using number notation, one differentiates between ordinal numbers (the third - in 
an imagined sequence) and cardi/UJ[ numbers (three pieces). Toddlers of 3-4 years of­
ten know the ordinal numbers up to 1 0  and they can also execute simple additions via 
counting. The more abstract notion of the cardinal number children mostly understand 
only when they start school; in addition, even for the adult, the number of units that can 

10 Historically, special symbols have been introduced for the num�r sel< (see link in the margin). 
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gr Perception of cardmal numbers 
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Figure 3.1. Simulation. Spontaneous grasping of the number of elements in a set (cardinal 
numbers) A random number gener.ltor produce., red points, whose number lies between 1 
and the maximum number in the number field (in the figure the maximum number is 5, 5 are 
shown). The sets change with a frequency that can be adjusted with the slider from 1 to 10 per 
second. 

be grasped at a glance is quite limited (to around 5-7, which is also what intelligent 
animals are capable of); for fast calculations with cardinal numbers, the relationship 
is memorized or simplified in our thoughts (5 + 7 = 5 + 5 + 2 = 10 + 2 = 1 2). If one 
realizes this fact, one gains a deeper understanding of the difficulty that children have 
with learning the elementary rules of arithmetic. Simply assuming the memorized 
routines, which are present in an educated adult, leads to severely underestimating the 
natural hurdles of understanding that the children have to overcome when they learn 
arithmetic. 

The simulation in Figure 3 . 1  visualizes the sharp threshold that nature imposes for 
spontaneously grasping the number of elements of a set. In this simulation, points 



3.2 Whole numbers 1 5  

are shown i n  a random arrangement that can be spontaneously grasped as a group. 
The number changes with a frequency that can be specified between I and a max­
imum number. You can establish experimentally where your own grasping thresh­
old lies. The description pages of the simulation contain further details and hints for 
experiments. 

Even numbers are a multiple of the number 2; a prime number cannot be decom­
posed into a product of natural numbers, excluding I .  

The lower limit of the natural numbers i s  the unity I .  This number had a close to 
mystical meaning for number theoreticians of antiquity, as the symbol for the unity of 
the computable and the cosmos. It also has a special meaning in modem arithmetic as 
that number which, when multiplied with another number, produces the same number 
again. 

There is, however, no upper limit of the natural numbers: for each number there 
exists an even larger number. As a token for this boundlessness, the notion of infinity 
developed, with the symbol 00, which does not represent a number in the usual sense. 

Already, the preplatonic natural philosophers (Plato himself lived from 427-347 Be) 
worked on the question of the infinite divisibility of matter (If one divides a sand grain 
infinitely often, is it then still sand?) and time (if one adds to a given time interval 
infinitely often half of itself, will that take infinitely long?) 

Zenon of Elea (490-430 Be) showed in his a.�tute paradoxes, Achilles and the tor­

toise and the arrows, I I  that the ideas of movement and number theory at the time were 
in contradiction to each other. 

Subtraction is the logical inversion of addition: for natural numbers it is only 
permissible if the number to subtract is smaller than the original number by at least I .  

Division is the natural inversion of multiplication. For natural numbers it is permis­
sible if the dividend is an integer multiple of the divisor - 6 : 2 = 3. 

3.2 Whole numbers 

In order for the operation of subtraction to be always possible, we have the extend the 
natural numbers by zero (the "neutral" element of addition) and the negative numbers 
to the set Z of whole numbers. 

The introduction of the zero as a number was, historically, not a trivial step. Zero 
is connected with the notion of nothing, and for the pre-socratic natural philosophers 

I I  Achille., unJ Ihe tNwi.,e: during a foouace, Achilles allows the tonoi� a head �tan. When he ha.< 

reached il< starting point, the tortoise has already crawled a certain disLance funher. When he reaches 

this point, the tonoi� ha.< again had a head stan, and so on. ThlL< Achilles cannot reach the tonoi�e. 

(Sa/utian: Canvel'1fence af lhe gearne,,;,: .,erie.,·, which had nal been Tt!('()gnized al lhe rime). 

The flying armw: aI every inslant, the arrow is siluated aI a cenain point, which is fixed in �pace; 

therefore, the arrow is al rest in every instant. Therefore the arrow cannot move. (Sa/urian: /n every 
in .... tanl. the arrow Jiles nOl have only u II)cation but aLw u velocity; thi.. .. dijfeRntiai ('(Incept wu. .. fUJt 

Tt!('()gnized. ) 
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it was a fundamental question, whether nothing (the emptiness, something that is not) 
can exist or not. 

Pannenides of Elea (around 600 Be) taught that nothing cannot exist, but that every 
space ha� to filled by something, which lead� to the paradoxical logical consequence 
that movement is impossible and everything is unchangeable. The atomicists Leukipp 
(5th century Be) and Democrit (460-37 1 Be) taught, however, that the world consists 
mostly of nothing (today we would call it a vacuum), in which objects that consist of 
material atoms can move. 

In the 3rd century Be, the zero was imponed from the ea�t in connection with the 
campaigns of Alexander the Great as a sign indicating the position in the decimal 
number system (as today in 1 0, I (0). The concept of zero a� a whole number was only 
reached in the 1 7th century. 

The set of whole numbers contains the natural numbers as a subset 

Whole numbers: . . . . -3 . -2, - 1 . 0, 1 , 2 . 3 • . . . .  

Multiplication is admissible without exception if one defines: (- I )  . I = - I ;  
(- I ) · (- I )  = I and (0) · ( I ) = O. 

In the domain of whole numbers, the symbol for positive infinity must be necessar­
ily supplemented by negative infinity -00; both numbers are not numbers in the usual 
sense. 

Division can be applied for whole numbers, as for natural numbers, if the divi­
sor is contained as a factor in the dividend, i.e. if the division works out, a� for 
-30 : 5 = -6. 

Division by zero is not a well defined inversion of multiplication: 

for integers a . b,  c 

b 
- = c 
a 

o 

. b 
umquely leads to a = -

c 

for - = 0 a can be any number. 
a 

and is therefore excluded. The expressions 0 . 00, � and g are not defined. 
Whole numbers are visualized as a discrete ladder on the number line (see Fig­

ure 3.2). Arithmetic operations amount to jumping back and fonh on this ladder -
in the same way that toddlers indeed make calculations with natural numbers by 
counting. 

-5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 

Figure 3.2. Number line with whole numbers. 
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3.3 Rational num bers 

In order for division to be admissible in all cases, except for division by zero, the 
whole numbers have to supplemented by the "broken numbers" to form the set of 
rational numbers Q. Rational numbers contain the whole numbers as a subset: 

whole number 
rational number = whole number : whole number = -:---:---:-­

whole number 
3 

Examples: -5; - 2 ;  1 1 75/1 1 76; 3; 1 . 1 357; 5.28666666 . . .  , . . . .  

When written as a decimal number, rational numbers are decimal numbers with a 
remainder that has a finite length or with periodically repeating digits. 

There is no largest rational number. 
It is clear that whole numbers are rare, special cases of rational numbers. Between 

two subsequent whole numbers, there are infinitely many rational numbers. 
When dealing with the set of rational numbers, division by zero is still not a well 

defined inversion of multiplication and remains formally excluded. If one starts from 
the concept of zero a� the limit of a sequence of nearly infinitely small positive or 
negative rational numbers, then division by zero would be equivalent to the definition 
of nearly infinite positive or negative numbers. In this symbolic sense, division by 
zero can be associated with a sequence that has a limit of ±oo. 

Taking the power of a number is defined for rational numbers as repeated multipli­
cation, with the whole numbers n as exponent, by: 

A" = A ·  A ·  A ·  A n times 

r" = ....!.... . A" 
Taking the nth root is the logical inversion of taking the power. In the domain of 
rational numbers, root-taking is possible: 

• if the exponent n of the root is odd; 
• or when for even root exponents the original number (the radicand, the number 

under the root sign) is positive; 
• and if in both cases the operation results in a rational number, which is only the 

ca�e for rare radicands, that can be reduced to fractions of powers, for example 

./6.25 = /Wo = � = 2 .5 .  

3.4 I rrational numbers 

If an operation applied to a rational number (e.g. root-taking, the limit of an infinite 
sequence of rational numbers) lead� to a number that is not a rational number, i .e. if 
it cannot be written as a ratio of 2 integers that is representable a� a finite or periodic 
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decimal fraction, then this number is defined to be an irrational number. Here the 
term irrational is given for historical reasons, as a demarcation from the rational 

(numbers that are ratios) and ha� no secondary meaning of irrational = unreasonable 
or unthinkable. 

If one applies the operations mentioned above to irrational numbers, then this does 
not lead to a more generalized number. 

Rational numbers constitute a countable set - they can be ordered in such a way 
that they constitute a countable sequence. The irrational numbers, on the other hand, 
do not constitute a countable set. In this sense, there are more irrational than rational 
numbers. 

3.4.1 Algebraic numbers 

The need to introduce numbers that are not rational was recognized by the Pythagore­
ans (Pythagoras, 570-5 10 Be, mathematician and natural philosopher in the Greek 
colony Metapont in southern Italy) during their reflections on the calculation of right 
triangles with a hypotenuse c and legs a and b. 

In the domain of integers, there are only a few solutions to a right triangle, the 
Pythagorean triples, which are often used in homework problems: (3 , 4 . 5 ; 6, 8. 10 ; 
5 , 1 2 , 1 3 ; 8. 1 5 . 1 7 ;  7. 24 , 25 ;  9, 1 2 . 1 5 ;  10 , 24 . 26; etc.) 

Theorem of Pythagoras: 

Example of an integer solution: 

Example of a rational solution: 

a2 + b2 = c2 � C = vfa 2 + b2 

c = vf 32 + 42 = 55 = 5 

c = JGr + 22 = fi = � 
Example of an irrational solution: c = Ji2"+I2 = .J2 

Numbers that are generally obtained as the solutions of polynomial equations with 
rational coefficients, i.e. that are their roots, are designated a� algebraic numbers. 
They include both rational and irrational numbers. 

3.4.2 Transcendental numbers 

Irrational numbers that are not a root of a polynomial with rational coefficients are 
called transcendental numbers. 

Here transcendental simply means going beyond the rational numbers and does not 
have any mystical connotation whatsoever. 
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The most common transcendental numbers are the circle number 7r and the Euler 
number e (written in blocks of five in the following) 

7r = 3 . 1 4 1 59 26535 89793 23846 26433 83279 50288 4 1 97 1  69399 375 I O  . . . 

e = 2 .7 1 828 1 8284 59045 23536 02874 7 1 352 66249 77572 47093 69995 " " 

It is a characteristic feature of transcendental numbers that they are limits of in­
finitely often repeated operations (additions, multiplications, formations of continued 
fractions, root taking, etc. ;  see below). 

3.4.3 1r and the q uadrature of the circle, according to 
Archimedes 

Using the example of the number 7r ,  it will be demonstrated how this transcendental 
number of high practical importance can be obtained as the limit of a sequence. We 
follow the famous train of thought originally devised by Archimedes. 

Using the theorem of Pythagoras and the formula for the area of a triangles with 
baseline a and height h, i .e. F = !ah the mathematicians and surveyors of Egypt 
and antiquity were able to reduce the area of an arbitrary surface that is bounded 
by straight l ines to that of a square of the same area, whose length is given by a 
square root, i .e . ,  generally an irrational number; even today the unit of surface area 
for arbitrarily bounded surfaces is still the "square meter" . 

The "quadrature of the circle", as a paradigm for calculating the area of a surface 
that is bounded by curved lines, however, remained unsolved for a long time. 

The famous inventor and mathematician Archimedes (287-22 1 Bq, who lived 
in the Greek colony Syracuse in Sicily, found a royal road to this end, which wa� 
only further developed nearly 2000 years later, and which represents the beginning of 
working with convergent, infinite sequences and with limits. 

His method, which starts with a polygon that is inscribed or circumscribed to a 
circle (Figure 3 .3), will be demonstrated in brief due to its historical significance. 
He uses the theorem of Pythagoras, the formula for the area of a right triangle, and 
symmetry considerations. From the above it follows that the baselines of the triangles 
constituting the polygons with n corners are given a� a simple function of n when 
doubling n. The following diagrams visualize the procedure. The first regular polygon, 
a yellow square, is circumscribed around the circle filled in gray; a second colorless 
square is inscribed in the circle. 

The inscribed polygon has a smaller area then the circumscribed one; The true 
value for the circle lies between the rwo. 11 is immediately evident that halving the 
angle of division to obtain an octagon, which is blue filled, will make the differences 
smaller, and that this goes on with further doubling of N (a polygon with 1 6  corners 
also is shown in red). The sketch shows the first steps of the calculation for inscribed 
polygons with 2N corners, with N > 2. 



3.4 I rrational numbers 20 

Figure 3.3. Simulation. Appro�imation of the circle via ins(.:ribed and circumscribed poly. 
gons. The simulation shows the appro�imations from the square to the polygon with 4096 

comers. 

The square, with which the calculation starts, consists of 4 equal right triangles, 
whose cathetuses for the unit circle under consideration have length I .  According to 
the theorem of Pythagoras, the hypotenuse of each triangle has the length h. The 
height h4 is obtained via the theorem of Pythagoras using s4 /2 and the hypotenuse I 
of the lower triangle. The distance Z4 is the difference between the radius I and the 
triangle height h4 . The transition to the octagon again proceeds with the theorem of 
Pythagoras via S4/2 and Z4 '  As the following calculation shows, this algorithm can 
be repeated in the same way in factors of 2 towards a subdivision of the surface of the 
circle into ever smaller triangles. Thus this procedure results in recursion formulas, 

with which one can obtain the results of the Nth step from those of the (N - I )st step. 
We give the results for the in.fcribed polygon with n sides. 

radius r = l ; index n = 2N •  with N = 2 . 3 , 4, 5 . . . .  

S4 = JT+T = h; h4  = J I - (� r Z4 = I - h4 = I - J I - ( � r 
Sg = (�r + z� = hJ - Fro; 
hg = J I - (�r = � I + J I - ( � r 
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recursive formula s� = .J2  1 - VI - C�2-
1 )\ 

h� = VI - C; r = :n 1 +  ( S�_1 ) 2 1 - --2 
circumference U, surface F: u1 = nSN = 2NsN = 2N .J2 J I - J I - (T ) 2 

Fi = n SNhN = 2N SNhN = 2N V2 - (SN_I ) 2 . " 2  2 2 2 
In the following, the equations have been written out starting from the inscribed square 
n = 4 to the polygon with n = 64 comers. One realizes the iterated characters of the 
repeated root-taking of the side length .J2 of the triangles making up the inscribed 
square. 

S4 = .J2 
4 F4 = 42 = 2,0000 

$s = J2 - .J2  
8 Fs = 4.J2 = 2,8284 

SI 6 = J2 - b+ .J2  
FI6 = I: H = 3,06 14 
S32 = V2 - J2 + r;;h 
F32 = 3: J2 - r;;h = 3 , 1 2 1 4  

S64 = J 2 - V2 +  J2 + b+ .J2 

hs = ! b+ .J2 2 

These formula.� are fascinating in their aesthetic symmetry ! 



3.5 Real numbers 22 
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Figure 3.4. Approximate values for the area of the circle and its circumference resulting from 
the "quadmture of the circle" according to Archimedes. The abscissa shows the number of 
comers of the inscribed or drcums<-Tibed polygons. The circular points in the upper region of 
the ordinate are the approximations for the circumference. those in the lower region are those 
for the surface of the unit circle. The lines in the logarithmic scale show the difference in red 
for the approximation from the inside. green from the outside and blue for the avemge. 

With a simple spreadsheet. this calculation that wa� rather tedious for Archimedes 
can be done quite quickly up to a high number of corners. 

Then one sees how quickly the surface areas of the inscribed and circumscribed 
polygon approximate the number 1C (3 . 1 4 1 59 . . . ) and the corresponding circumfer­
ence approximates 21C . In Figure 3 .4 they are shown for the square up to the polygon 
with 8 1 92 corners (corresponding to N = 2 to N = 1 3) .  In addition. the respective dif­
ferences of the surface area from 1C are given (logarithmic right-hand scale). Already 
for the l Oth approximation (polygon with 1 024 comers) the difference is only 1 0-5 . 

Archimedes himself started with a hexagon and took the calculation up to a poly­
gon with 92 corners and obtained his value for the circular number of 3 . 1 4 1 635 (the 
symbol 1C for this number was only introduced in the 1 8th century); we suggest that 
you retrace the calculation of Archimedes. 

3.5 Real numbers 

Rational and irrational numbers together constitute the set of real numbers JR. They 
fill the number line densely (every arbitrarily small neighborhood of a real number on 
the number line contains at lea�t another real number). 
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Figure 3.5. Number line with two transcendental irrational numbers. 

Taking the power and root-taking with rational exponents is possible in the domain 
of real numbers, if the root exponent is odd ( N  = - I ;  VI = I) or, for even 
exponents, if the argument of the root is positive via the following definitions: 

. be n . rational num r q = - ; n ,  m IOteger 
m 

.... for real numbers x : xq = x,,/m = � = ( 'VX)" . 
The real numbers constitute the largest possible ordered set of numbers. For two real 
numbers a and b, it is clear whether a is larger than, equal to, or smaller than b:  

a > b or a = b or a < b.  

For applications in physics, the distinction between rational, irrational and transcen­
dental numbers plays an important role, as their symbols express relationships in a 
formula that ha� been derived via a model. If the number 11: appears, circular symme­
try or periodicity plays a role, while the appearance of e points to a problem involving 
growth or damping. 

As soon as computations take place, irrational numbers are always approximated 
with finite accuracy via rational numbers. The formally excluded division by zero in 
the domain of real numbers loses its exceptional position, since it will always be the 
division by a very small, but finite real number. 

The arithmetic operations can be interpreted a� transformations or mappings on 
the number line. Addition and subtraction are translations where all numbers are 
shifted by the absolute value of the summand. Multiplication and division by n lead 
to stretching or compression of the number line by a factor n .  

Division by  a > I corresponds to  a transformation of  the range of  numbers outside 
of the dividend to the range of numbers between the dividend and zero. 

For the example I /a ,  a = I is mapped to it�elf, numbers a > I are mapped to the 
range 0 to I ,  the closer to zero, the larger a is. Numbers 0 < a < I are mapped to 
the domain larger than I and the further away from I ,  the closer a is to zero. 

3.6 Complex numbers 

3.6.1 Representation as a pai r  of real numbers 

The even numbered root of a negative radicand cannot be represented in the domain of 
real numbers, since for all real numbers x we always have x2 > O. For a polynomial of 
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second degree with real numbers x,  the generally known solution only yields numbers 
when the radicand is larger or equal to zero: 

-b ± ;,tb2 - 4ac 
ax2 + bx + c = 0 has the two solutions X I  2 = ---2:-----. a 
b2 � 4ac _ real number as solution 

b2 
< 4ac _ no solution in the domain of the real numbers 

in the simplest case x2 + c = 0 we would have X = Fe; 
then there exists for positive c,  i.e. c > 0, 

no solution in the domain of the real numbers. 

To allow a solution for all c, including the positive ones, one extends the one-dimen­
sional space to two-dimensional number pairs of real numbers, that are called complex 

numbers C ,  and for which a special multiplication rule is agreed. 
Complex numbers were first used in the 1 6th century in connection with roots of 

negative radicand� by the mathematicians Girolamo Gardano and Raffaele Bombelli. 
Complex numbers satisfy the following rules: 

General definition of the complex number Z as an ordered pair of numbers 
z = (a , b) a , b real numbers 

addition rule ZI + Z2 = (a I , bl ) + (a2 . b2 ) = (a l + a2 . b l + �) 
multiplication rule ZI ' Z 2  = (a I ,  bl ) . (a2 ' b2) = (a l  a2 - b l � .  a l � + a2bl ) 

conjugate complex number definition: z = (a . -b) ; 
this leads to z1 = (a , b) . (a , -b) = (a2 + b2 , 0) = a2 + b2 

ZI (a l .  bd (aI , bl ) · (a2 '  -b2) division: - - -:---:,....,..----,--� Z2 - (a2 . b2 ) - (a2 '  b2) · (a2 '  -b2) 

The main innovation relative to the "one-dimensional" real numbers is the multiplica­
tion rule. For numbers whose second component vanishes, the familiar multiplication 
rule for real numbers results; when their first components are zero, the product of 2 
complex numbers is: 

(a I , 0)(a2 ' 0) = a l a2 = sign(al ) sign(a2) la l l la2 1 ; 
with sign(a l ) : algebraic sign of al 
la I I : absolute value of a I . 
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For the product of two numbers, whose first components vanish, one obtains from the 
definition 

The product is in both cases a one-dimensional, real number. The second case is equal 
to the first case except for an additional signum. 

The practical justification for these rules follows from their consequences, histor­
ically particularly from the fact that, in the domain of number pairs defined in this 
way, the taking of roots with rational exponents is possible without restriction . In the 
simplest example: one looks for the solution of z2 = - I :  

z2 = - I ;  the approach: z = (a , h) leads to 
z2 = (a ,  h) x (a , h) = (a2 - b2 ,  2ah) = - I  = (- 1 , 0) 

comparison of coefficients yields: 
a2 - h2 = -I und 2ah = O. 
The second equation gives a = 0 oder h = 0 

the latter possibility is excluded, since we must have a2 ", - I 

therefore a = 0 and thus h = ± I 

thus z, = (O, I ) ; z2 = (0, - 1 ) . 

The real numbers are a one-dimensional subset of the two-dimensional complex num­
bers (a , h) , i.e. those with h = 0; thu.� the real numbers are rare exceptions among the 
complex numbers. The complex numbers with a = 0, i .e. (0, h) are called "imaginary 
numbers". Their square is negative: (0, h) (O, h) = -lh l2  < O. 

3.6.2 Normal representation with the " imaginary unit i "  
In the usual notation, the normal representation of complex numbers distinguishes 
between the two components instead of their sequence in brackets via a marker in 
front of the second component, for which, following Leonhard Euler ( 1 707-1 783), 

the letter i is used (in electrical engineering one uses instead the letter j to distinguish 
the marker from the current i ). The plus sign indicates that both components belong 
together. 

Unfortunately the term "imaginary" number ha.� become common for the second 
component, which may create mystical ideas about its specific character, a.� something 
not as ea.�y to understand a.� a real number. However, there is no class of "imaginary 
numbers"; both components of the pair that form a complex number are real. The 
notation Si does not refer to a "multiplication of 5 with i" ,  but means that the second 
component of the complex number is S. 

The normal representation z = a + ih simplifies the calculations, since one can 
use in it the usual multiplication rules for real numbers, if one takes into account the 
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convention i 2 = - I .  Thus the following rules for the normal representation have to 
be interpreted accordingly. 

Let us consider an example: 

Z) Z2 = (a) + ib) (a2 + ib2 ) = a)a2 + i 2b) b2 + i (a )�  + a2b) 
= a ) a2 - b) b2 + i (a ) b2 + a2b) 

complex number: z = (a , b) 

real number: a = (a , 0) 

definition imaginary number: ib = (0, b) 
definition: real component(z) = Re(z) = a 
definition: imaginary component(z) = Im(z) = b 
definition imaginary unit: (0, I) = i 

definition: 

definition conjugate complex number: 

consequence: 

z = Re(z) + i Im(z) = a + i b  
1 = Re(z) - i Im(z) = a - ib 

z1 = a2 + b2 
definition absolute value: I z l  = Jfi � 0 

computation rules in normal representation 

z) + Z2 = a) + a2 + i (b) + �) 
Z) Z2 = (a) + ib ) (a2 + ib2) = (a ) a2 - b )�) + i (a ) � + a2b) 

z) z) Z2 a )a2 + b )b2 . a) � - a2b) 
- = - - = - 1 .....:...-::----,,.::-� Z2 Z2 Z2 ai + bi ai + bi 

a ) a2 + b) b2 . a )�  - a2b) --------- - 1 ---------
z1 z1 

i2 = i i  = (0, 1 ) · (0, 1 )  = (- 1 , 0) = - 1 

in this specific sense i is the square root of (- I ) .  

Using the normal representation the solution of  the square root problem becomes 
clearer. 

e real number 

z2 = (a + ib) (a + ib) = a2 - b2 + i 2ab = e 

e real -->- 2ab = 0 

a product vanishes if and only if one of the factors vanishes. 

Therefore: 1 st solution a = 0 -->- _b2 = e 

b = ± Fc = ± �.J= I  = ±i e  

for e < 0 

z = O ± i � 
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or: 2nd solution b = 0 .... a2 = e 

a = ± ../c 

for e � O. 

z = ± "/c + i · O  
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In the set of complex numbers, the square root of a real number always has two solu­
tions. They are either both purely real or imaginary, depending on the sign which the 
root has taken. 

The general solution for a quadratic polynomial with real coefficient� a ,b and c, 
with which we started, now reads: 

1 b 
� 

b Jb2 - 4ae -lQ ± 20 Zl 2 = -- ± = , 2a 2a 
b 

. �  
-lQ ± I 0 

for b2 > 4ac 

for b2 < 4ac . 

If a, b and c are themselves complex, the general formula is still valid, but not the 
distinction between two cases since the order relations > and < are not applicable for 
complex numbers. 

What is the situation in the complex number space for the cube/third root and, in 
general, for odd root exponents? In the space of real numbers, there is always one real 
negative solution ( Fc  = - Vc) for negative radicands. In the space of complex 
numbers, however, we obtain the following: 

Z3 = e; c real 

(a + ib)(a + ib)(a + ib) = (a 2 - b2 + i 2ab) (a + ib) 
= a3 _ 3ab2 + i (3a2b - b3) = c 

since e is real .... b(3a 2 - b2 ) = 0 

either b = 0 or (3a2 - b2) = 0 

1 st solution b = 0 .... a3 = e 

a = Vc 

this is the always existing real solution 

2nd solution 3a2 - b2 = 0 .... b2 = 3a2 

a (a2 - 3b2 ) = C .... a (a2 - 9a2) = -Sa3 = c 

a = fI = -� Vc 

Z2 = -� Vc + i .J3 Vc = Vc(-� + j .J3) 
2 2 2 2 
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two conjugate complex solutions 

J3 = sin 1 200 = - sin 2400 ZI = .vc cos Oo 
2 

Z2 = .vc(cos 1 200 + i � sin 1 200) 
-� = cos 1 200 = cos 2400 Z3 = .vc(COS 2400 + i � sin 2400 ) = 12. 

since sin 2400 = - sin 1 200 • 
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Thus three roots ZI . Z2 . Z3 of z3 = c exist, of which one is real and the other two are 
complex conjugates of each other. 

3.6.3 Complex plane 

The complex numbers are mapped for visualization purposes to points in a plane, 
where the abscissa correspond� to the real number line and the ordinate corresponds 
to the complex number line, and distances on both are measured using real numbers. 

The simple cubic equation z3 = c has three solutions in the space of complex 
numbers, of which one is real, and two are complex. As the last representation for 
c > 0 shows (for c > 0 the points are mirrored on the imaginary axis), the roots are 
situated symmetrically on a circle with radius I .  

In the diagram the cube roots are indicated as squares and the two square roots as 
circles. 

The general polynomial of nth degree ha�, in the space of complex numbers, n 

roots according to Gau.�s · funikJmentai lheorem of algebra. Figure 3 .6 shows this for 
the second and third root of I .  

Taking into account the rules for addition and multiplication, all usual arithmetic 
operations known for real numbers can also be applied to complex numbers. 

The complex numbers densely cover the complex plane, a� the real numbers cover 
the number line densely. Unlike the real numbers, the complex numbers are, however, 
no ordered set, since they each consist of two real numbers, and therefore the relation ZI > Z2 is not defined in general. However, they can be ordered according to absolute 
values I z; I, which are real numbers. 

The use of complex numbers (complex analysis) has many advantages in physics 
and engineering. 
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Figure 3.6. Roots in the complex plane: the blue circular point� show ±.J1, the red circular 
points show ± J=I and the squares show �. 

As shown for the example of the parabola, every algebraic equation ha.� solutions in 
the domain of complex numbers (property of algebraic closure; Gauss ' /undiJmental 

theorem). 
In addition, every complex function that can be differentiated once can be differ­

entiated an arbitrary number of times. Finally one can show with complex numbers 
relationships between individual functions that are independent in the domain of real 
numbers (e.g. exponential function and trigonometric function, see below). 

3.6.4 Representation in polar coordinates 

In the representation using polar coordinates, the absolute value I z l gives the distance 
, from the origin and the ratio of the imaginary component to the real component is 
equal to the tangent of the angle tfJ to the real axis.  

The following definition for the polar representation is applicable: 

z = , (cos tfJ + j sin tfJ) 
To obtain , and tfJ from z or vice versa the following relations apply: 

, = I z l  = +.Jfl = + JRe2 (z) + Im2 (z) 
Im(z)  tan tfJ = --. 
Re(z)  

Multiplication and division rules become: 
Zl Z2 = '1 '2 [(COS tfJl cos tfJ2 - sin tfJl sin 1/12) + j (COS tfJl sin tfJ2 + cos 1/12 sin tfJl ») 
Zl  Z2 = '1 '2 [COS(tfJl + 1/12) + j sin(tfJl + 1/12») 

Zl � . . 
- = - [COS(tfJl - 1/12) + I sm(tfJ l - 1/12») . 
Z2 '2 
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z 

Figure 3.7. Complex numbers in representation via polar coordinates. 

The polar representation shows a special position of the number zero in the domain 
of complex numbers, which is not visible in the domain of real numbers. It is the only 
complex number that does not have a direction associated with it, since z = 0 means 
r = 0, irrespective of the value of 1/>. This is also compatible with the tangent of I/> 
being undetermined as a ratio of two zeros. 

The number z corresponds in polar representation to the end point of a vector that 
starts at the origin with length r and makes an angle I/> with the real axis. 

3.6.5 Simu lation of complex addition and subtraction 

Pressing the ctrl key and clicking on the following pictures' simulation activates the 
interactive Java simulations, which demonstrate the complex operations addition and 
subtraclion. 

The operations are visualized in Figure 3 .8 as mapping of a rectangular array of 
points in the z-plane to a u-plane shown on the right-hand side. The points are colour 
coded to show their assignment in the two planes. For the red point on the lower left 
comer of the arrays, the position vector is indicated. On the z-plane you can change 
the position of the red corner of the array as well as the tip of the green vector which 
is linked to it by pulling with the mouse. The u-plane shows the result of the complex 
operation. Clicking on the "initialize" button restores the original state. The distance 
between the points in the array can be adjusted with the slider. In particular, you can 
collapse the array to a single point. 

In addition to the simulation, a text with several pages is shown. This text contains 
a detailled description of the simulation and hints for possible experiments. 

The windows can be hidden or blown up to full screen size with the usual symbols 
on the top right; however, it makes more sense to blow up the simulation windows 
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Figure 3.8. Simulation_ Addition of a complex number Z2 to all numbers z , of a point grid. 
This grid is moved with the tip of the red arrow, which leads to the lower left comer of the 
arr.ty in the z-plane; in the same way z , + Z2 moves for all complex z, the whole complex 
plane. The supplementary sides of the parallelogr.tm for the vector consttuction are dr.twn on 
the right-hand side. 
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Figure 3.9. Simulation. SubtrdCtion of a complex number Z2 from all points of a grid In the 
left window the point arr.ty and the tip of the vector to be subtrdCled can be pulled with the 
mouse. The supplementary sides of the pardllelogr.tm of the vector consttuction are shown on 
the right-hand side. 
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Figure 3.10. Simulation. The multiplication of z, with Z2 correspond. to a rotation of the 
vector z , by the angle of the vector z2 in the mathematical positive sense (anticlockwise). 
while at the same time being stretched by the absolute value of Z2 (compressed. if the absolute 
value is smaller than I ). The point arnlY and the complete plane is rotated via the angle of Z2 
while being stretched by the absolute value of Z2. 

ti j 

.�.t -I,t ., .. 4.S II co! , .. 1.$ U 
.. ..  

., . ...... " ... 

" 

..• 
' .' 

. . . 

. , . 

. ,. 

·34 -15 -1, ·1.$ -" -11$ • U 10 1.5 U U .... 

? 

. .. 

Figure 3.11. Simulation. Division corresponds to the rotation of z, in the mathematical neg­
ative sense (clockwise) by the angle of the vector Z2 while undergoing compression by its 
absolute value (stretching. if the absolute value is smaller than I ). 
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by pulling on one comer in order to preserve the quadratic structure of the system of 
coordinates. If you click on a point with the mouse, its coordinates appear in the win­
dow with a colored background. With the right mouse button you can access further 
options in the context menus. 

The addition of two numbers corresponds in the complex plane to the addition of 
both vectors (according to absolute value and direction). The subtraction shown in 
Figure 3.9 corresponds to a subtraction of both vectors. Considered a� a mapping 
of the z-plane, addition and subtraction are equivalent to a translation of the plane 
without rotation or change of scale. 

3.6.6 Simu lation of complex multipl ication and division 

The following two interactive pictures deal with the simulation of complex multi­
plication (Figure 3 . 1 0) and division (Figure 3 . 1 1 ) . The presentation and handling is 
identical to that described above for addition and subtraction. 

3.7 Extension of arith metic 

One can, of course, continue the extension of notion of a number from numbers to 
number pairs. The next step would be quafemions, which consist of four real numbers. 
Quatemions can be used for calculations in four dimensional spaces; for example 
relativistic physical systems with spin can be described using quatemions. We here 
refer to the subject literature. 

When defining applicable rules for arithmetic operations, care is taken that the com­
plex numbers constitute a subset. However, for these higher dimensional numbers, not 
all fundamental rules, which were given at the beginning of this chapter and remain 
valid up to the complex numbers, will necessarily hold, for example the rule of the 
commutativity of operations. 

The group theory finally disassociates itself totally from the concept of the number, 
and defines arithmetic rules for elements, that can be numbers, but do not have to be 
numbers. A group (set) of elements is defined, and the rules for this group are defined 
in such a way that the application to element� of the group always yields a member of 
the group. 

The rules applicable to groups are similar to those that we discussed at the beginning 
of our discussion of numbers. However, the earlier implicitly assumed role of unity 
(the neutral element) will be explicitly defined. For the example of the multiplicative 
composition we shall assume by definition: 

I. The composition of two elements a, b of the group G is again an element of the 
same group (closedness) a x b = C E G .  

2. The sequence of operations i s  unimportant a s  long as the order i s  preserved: 
a x (b x c) = (a x b) x c (associativity). 

3. There is a neutral element e in the group G, for which a x e = e x a = a .  
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Figure 3.12. Simulation. Rotation and reflection of a pink equilateral triangle A. In the left 
window rotation (R) happens before mirroring (M); in the right window mirroring happens 
before rotation. The final result of the oper.ltions is colored in blue, the intermediate result in 
green. The initial orientation of A and the rotation angle applied can be chosen with sliders. 

4. For every element a in G, an inverse element (mirror image) a* exist�, with the 
property to yield, when combined with a the neutral element: a xa * = a * xa = e . 

A group is called Abelian or commutative if one is allowed to commute the oper­
ands: i.e. a x b = b x a (commutativity). 

The set of integers Z with addition a.� the operation and zero a.� the neutral element 
is an Abelian group. Somewhat more complicated is the situation with the set of ra­
tional numbers Q, multiplication a.� the operation, with I as the neutral element; here 
o would not have an inverse element. 

The definition of group rules also makes it possible to have other objects than 
numbers as members of a group, as long as they satisfy the requested properties. 

An example for such a group is the set of symmetry transformations rotation, reflec­

tion and inversion, through which a topological object such as a polygon is mapped to 
itself; compositions are then transformations that are applied consecutively. This ex­
ample is a non-Abelian group; rotation before reflection yield..� a different result from 
reflection before rotation. This is visualized in the simulation shown in Figure 3 . 1 2. 
It shows the consecutive operations rotation and reflection and reflection and rotation 

applied to an equilateral triangle, whose initial orientation can be adjusted. 
Group theory is one of the foundations of the arithmetic used in quantum theory; 

you are encouraged to study the discussion in the essay by Schopper. 12 

1 2  Ph)'Jik im 2/. Jahrhund",t: /:.'''''0),., zum Stand der Phpil<, edited by Werner Manienll<en and Dieter 

RlIss, Springer Berlin 201 1 .  



4 Sequences of numbers and series 

4.1 Sequences and series 

By repeated application of the same arithmetic operations on an initial number A , one 
creates a logically connected sequence of numbers, which show interesting properties 
(to guess the formation law of a sequence and thus to continue the initial numbers of 
a given sequence is a popular type of puzzle). 

In the following the letters m ,  n ,  i, j are used to indicate the position of terms in 
sequences. They can be 0 or positive integers. 

If there is no upper limit for the number of terms in a sequence or for the terms in 
a series (m --+ (0), we refer to an infinite sequence or series. 

4.1 .1 Sequence and series of the natural numbe rs 

The particularly simple arithmetic sequence of the natural numbers is created via the 
repeated addition of the unit 1; the individual term is characterized by the lower index 
( I ,  2, . . .  ), which itself is an increasing natural number. 

AI = 1 ; A,,+I = A,, + I for n � I --+  

A" = J ,  2 , 3 ,  4, 5, 6,  . . . .  

We now define the difference quotient for the terms of an arbitrary sequence with 
different indices i and j .  This number is a measure for the change between two terms 
with different indices and thus for the growth of the sequence in the interval given by 
the indices: 

6 Ai,i = A i - A i ; 6i ,i = i - j 

difference quotient: __ ' ,_J = _� __ ._J • 
(6 A " ) A ' - A -

6i ,i 1 - } 
For consecutive terms, the index interval is I and the difference quotient is equal to 
the difference between the terms: 

6 Ai,i-1 = Ai - Ai -I ; 6i ,i- 1  = i - (i - I ) = I 

. . (6 Ai,i- l ) 
difference quottent: --- = A i - Ai -I . 

6i, i- 1 
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For the sequence of the natural numbers, the difference between consecutive terms is 
constant and equal to I . Therefore their difference quotient is also constant and equal 
to I .  

� Ai,i- I  = A i - Ai - I  = I .... difference quotient = I .  
The arithmetic sequence has constant growth of consecutive terms. 

From the terms of a sequence one can, by repeated addition, obtain a logically 
connected series, whose partial sums are again terms of a sequence. For the above 
example this would be the arithmetic series S and the sequence of its partial sums S,, : 

S = I + 2 + 3 + 4 + 5 + 6 + · . .  
SI = I ; S2 = 3; S3 = 6; S4 = 10; S5 = 15 ; S6 = 2 1 ;  

" 
S" = L A m  = A I  + A 2 + A 3 + . . .  + A" . 

m= 1  

For the sum sign I: (capital Greek letter Sigma (S) the index m o f  the sequence terms 
Am runs from the number on the bottom to the number on top. 

For the arithmetic series, one can calculate the partial sums very ea.�ily from the 
indices. This rule is thought to have been discovered by Gauss when he wa.� asked in 
school to sum up the numbers from I to 1 00. This rule is founded on the symmetry 
of the series: two numbers that are symmetrically positioned relative to the middle of 
the partial sum always add up to the same sum (n + I) and there are n/2 such pairs. 

n 
S" = 2 (n + I )  

The sequence of th e  natural numbers does not have an upper limit. The sum over its 
subsets increases fa.�ter with increasing index, in quadratic dependence on the index: 

4.1 .2 Geometric series 

As another example, we consider the sequence of powers of the real number a and the 
geometric series that is created from it via addition: 

Ao = I ; A I = a ; A2 = a2
; A 3 = a3

; A4 = a4 ; . . . 

A " = a" for n � 0 



4.2 limits 

definition: fl.Ai,i = Ai - A i : fl.i ,i = i - j fl.Ai,i = ai - a .i 
(fl.A ) ai - a.i 
T i ,i - -

j
-

-
-

j
-

" 
( fl.fl.A\,i_ 1 

S" = L am = I + a + a2 + a3 + . . .  + a" . 
".=0 
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For the special case of a = I the partial sums of the geometric series become an 
arithmetic sequence. 

For a different from I the difference quotient depend� on the index. For a < I 
it keeps getting smaller; the terms of the sequence decrease, and the partial sums 
increase ever slower. For a > I the difference quotient is positive and grows with the 
index; the terms of the sequence increa�e faster and faster, and the partial sums of the 
series even more so. 

4.2 Limits 

What happens if the index of the sequence or series becomes larger and larger, i .e. if it 
goes to infinity. Are the terms of the sequence getting larger and larger (in this case we 
call the sequence divergent), or do they approach a limiting value, i.e. the sequence is 
convergent? Does the value of the series grow to infinity or does it remain bounded, 
i.e. does it have a limit and is it convergent? 

The sequence of the natural numbers obviously grows without limit as well as the 
value of the series; both are divergent: 

lim A" = lim n = 00 n400 11-+00 " 
lim S" = lim '""' m = 00. n400 11-+00 � ".= 1 

What about the geometric series? 1 = 0 for la l  < 0 ) . A I · " = I for a = I 
hm " = 1m a "--+00 "--+00 = 00 for a > I 

no limit for a :::: - I  " { = I�a for l a l  < I } 
Iim S" = lim '""' a'" � oo  for a � l  . 11-+00 11-+00 � ".=0 no limit for a :::: - I  
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For a > I the tenns of the geometric sequence grow continuously, thus neither the 
sequence not the resulting series has a finite limit. For a = I the tenns of the sequence 
are constant; the partial sums of the series correspond to the sequence of the natural 
numbers and thus the series is divergent. 

1§3 Geometric sequence and series : . . . c< rzf 181 
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Figure 4.1a. Simulation. The first window shows the terms of the geometric sequence, the 
second window the partial sums of the geometric series as a function of N, with the red line 
as limit, provided the limit exists within the shown nmge of ordinates. 
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Figure 4.1b. Simulation. The third window shows the limit of the series as a function of a 
for la I < I .  The red point marks the value of a chosen with the slide control. 
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For 0 < a < I the terms of the sequence are getting smaller and smaller and their 
limit is zero. The series converges to the limit 1 /  (I - a). which is larger than I .  

For - I  < a < 0 the terms of the sequence are getting smaller and smaller while 
changing sign and the series is convergent with the limit I / ( I  + la l } .  which is smaller 
than I .  

For a = - I  the sequence alternates between I and - I  and the partial sums ( I  -
I + I - I ± . . .  ) is either I or 0 depending on the index. Therefore no limit exists. 

For a < -I the terms of the sequence, as well as the partial sums. have alternating 
signs while growing in absolute value. Their absolute values go to infinity. Therefore 
the sequence and series themselves do not have a limit. 

The simulation of Figure 4. 1 a shows the behavior of the geometric sequence and 
series as function of the parameter a. which can be adjusted with a slider. 

What are the conditions for a series in order for it to have a limit? Obviously the 
terms of the associated sequence must converge to O. That is a necessary. but not yet 
a sufficient condition. An example illustrating the difference is the harmonic series: 

I I I I I 
harmonic series A = I .  2 '  3 '  :4 '  5 '  (; . " . 

A I  = I ;  A" = - ; lim A" = lim � = 0 
n n�oo n�oo n 

I I I I I S" = I + - + - + - + - + - + . . .  _ 00. 
2 3 4 5 6 

While the terms of the sequence converge to 0, the series grows without limit and thus 
does not have a limiting value. 

This most easily becomes evident if one compares the harmonic series with a series 
that obviously diverges, and whose suitably grouped terms are smaller than or equal 
to those of the harmonic sequence: 

Shannonic = I + � + (� + �) + (� + � + � + �) 
2 3 4 5 6 7  8 ( I I I I I I I I ) + 9 + t o  + IT + 'i2 + 'i3 + 14 + 'is + 1 6  + " . 

I I ( I I ) ( I I I I ) Scamp"ri",n = 2 + 2 + 4 + 4 + 8 + 8 + 8 + 8 ( I I I I I I I I ) + 1 6  + 1 6  + 1 6  
+ 16 + 

1 6  
+ 16 + 

1 6  
+ 

1 6  
+ . . .  

I I I I I S . = - + - + - + - + - + " ' _ 00  compa"",n 2 2 2 2 2 

Shannonic > Scamp"ri",n => Shannonic _ 00. 
Thus, the terms of the harmonic sequence do not converge sufficiently strongly to zero 
to ensure convergence. 
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A sufficient criterion for convergence is that the ratio of successive tenns of the 
sequence is smaller than I for n .... 00 (quotient criterion of d'Alembert). For the two 
series we have: 

hannonic series 

geometric series 
A,,+I  a

,,+1 

lim _
n
_ =  I "-+00 n + I 

-- = -- = a ; 
A" a" lim a = a < I for a < I .  %-+00 

While the consecutive tenns of the geometric sequence decay for a < I in a con­
stant proportion for the geometric series, the tenns of the hannonic sequence keep on 
decaying but, in the limit of n .... 00, consecutive tenns are becoming "equal". 

Learning about Archimede 's calculus of 1r, it must have come a� a surprise to an­
tique philosophers that an infinite number of zeros can be a well defined, finite number 
(sidelength 0 . 00 number of sides of the inscribed polygon, where both 0 and 00 are 
limits of an infinite series). The more difficult it is to understand that the sum of an 
infinite number of elements, of which none is identical to zero, can be a finite number. 
This was the base of Xenon's paradox, and even today one should carefully reflect 
about it to understand limits in depth. 

4.3 Fibonacci seq uence 

A particularly interesting sequence of natural numbers is called after its early discov­
erer Leonardo Fibonacci (ca. 1 200). It is created by defining each tenns as the sum of 
its two predecessors. Thus the fonnation law reads: 

Ao = 0; A l = I 

A,,+2 = A" + A,,+I for n � O. 

The first 25 numbers in the sequence are: 

0; I ; I ;  2; 3 : 5; 8; 1 3 ; 2 1 ;  34; 55; 89; 1 44; 233; 377; 6 1 0; 987; 

1 597; 2584; 4 1 8 1 ;  6765; 1 0946; 1 7 7 1 1 ;  28657; 46368; 75025. 

The ratio A" / A,,_I of consecutive tenns converges very quickly to the irrational value 
of the golden mean. (In art, the golden mean is a criterion for the balance of propor­
tions: two dimension adhere to the golden mean if the ratio of the larger one to the 
smaller one is the same as the ratio of the sum of both to the larger one.) 

A,, /A,,_I .... � = 1 .6 1 8033988 . . . .  
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The first values, which can be ea.�ily obtained with an Excel spreadsheet are: 

1 .0; 2 .0; 1 .5 ;  1 .6666666667; 1 .6; 1 .625; 1 .6 1 53846 1 54; 

1 .6 1 90476 1 90; 1 .6 1 76470588; 1 .6 1 8 1 8 1 8 1 82; 1 . 6 1 7977528 1 ; 

1 .6 1 80555556; 1 .6 1 802575 1 1 ; 1 .6 1 8037 1 353; 1 .6 1 80327869; 

1 .6 1 80344478; 1 .6 1 80338 1 34; 1 .6 1 80340557; 1 .6 1 80339632. 

It  is evident that the differences of consecutive terms to � alternate in sign. In this 
sense, the approximation to the golden mean occurs in an oscillating manner. 

This ratio can also be represented as a continued fraction with n - I  fractions (Please 
try this out for the first few terms!) :  

A,, /A,,_I = 1 + 1 � �. 
I + '+'"i:;:�I;:= 1 + 1 + I 

1 +7'?T"" 1 + 'TT" 

From this one easily obtains that � = +. as positive root of the equation ,, 5 - 1  

I 2 � = I + ';j) � � - � - I = O. 

For the exponential sequence we have, from the first term onwards: 

e" 
A,,/A,,_I = --I = e = 2 .7 1 8  . . .  

e"-

While the sequence of ratios is constant from the beginning for the exponential se­
quence, the ratios for the Fibonacci sequence only approximate a constant value for 
n � 00 .  For large n,  both sequences are obviously similar. From this analogy one 
can deduce that the Fibonacci sequence approximates an exponential sequence for 
n � 00. This is an indication that the Fibonacci sequence can describe growth 
processes, analogous to the exponential function. 

There exist numerous arithmetic relationships between the terms of the Fibonacci 
sequence. In addition, there are many interesting application to problems of symmetry 
and growth, for which we refer to the given link. 

4.4 Complex sequences and series 

We now consider some examples of sequences Z" and series of complex numbers with 
partial sums S" = L::'=o Zm . 

Their simulation and visualization in the complex plane provides a deeper under­
standing of the arithmetic operations. It shows a wealth of surprising as well as aes­
thetically pleasing phenomena, whose study leads to an improved understanding of the 
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underlying mathematical questions. The examples for real series considered above are 
special cases of similar complex sequences. 

A sequence is convergent if and only if it possesses one accumulation point; an ac­
cumulation point is defined such that an arbitrarily small vicinity of the accumulation 
point, the accumulation interval, contains in the limit nearly all terms of the sequence. 

For the sequences of real numbers that have been discussed above, the accumulation 
point is with respect to the one dimensional domain of the F" or S" . For the geometric 
sequence or series with the parameter la 1 < I , the accumulation point of the sequence 
is zero and the accumulation point of the series is the real number 1 / ( 1  - a) . 

The concept of an accumulation point is especially descriptive for complex num­
bers , since it can be visualized as enclosed by a small circle in the complex plane. 

As for the visualization of the elementary complex operations, we use two win­
dows, of which the left shows the terms of the sequence z" and the right shows the 
partial sums S" of the series. The unit circle is marked red in both. In the left window 
the point ZI (second point of the sequence) corresponding to a for both the geometric 
and the exponential series is shown enlarged. It can be pulled with the mouse in such 
a way that a can be easily changed in this way. 

In the right window, the first term of the sequence is drawn enlarged; an accumula­
tion point, if present, is encircled by a small green circle. 

Remember that complex multiplication changes not only the absolute value but 
also the angle, if the imaginary component is not zero. A similar thing happens when 
adding the terms of the sequence. In general, sequences and series therefore develop 
in spiral trajectories on the complex plane when their terms are generated by complex 
multiplication. 

The description in the text can be kept short, since the simulation includes a de­
scription window with several pages, of which one contains instructions for systematic 
experiments. 

The simulation calculates I ()()() terms of the sequence. For strong convergence, 
many points coincide close to the accumulation point, such that only a few points 
can be seen separately on the screen. 

4.4.1 Complex geometric sequence and series 

The terms of the complex geometric sequence are created in analogy to the real case 
with the rule: 

Zo = I 
Z,,+ I = Z" . a ; n � 0 "'* Z" = a" . 

Here z" is the nth term of the sequence. The parameter a is a complex number. The 
terms are thus given by l , a , a2 , a3 . a 4 

• . . .  ; the first term Zo is always equal to one 
independent of a . 
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The complex geometric series is created via continuous addition of the terms of the 
complex sequence. Its partial sums are: 

" 

Sn = L am ; SIt = I + a l + a
2 

+ a
3 

• • .  + a" . 

m=O 

The first partial sum (n = 0) is again, independent of a ,  always I .  
In the simulation shown i n  Figure 4.2 you can move the point a (the second point in 

the sequence) in the left complex plane with the mouse and observe the effect on the 
terms of the sequence on the left-hand plane and on the partial sums of the complex 
series on the right-hand plane. 

The simulation is started via the ctrl key and clicking on Simulation. The complex 
geometric series converges if the absolute value of a is smaller than I, i.e. if a lies 
inside of the thin red unit circle that is drawn in the left-hand plane. 

In the ca�e of convergence the limit of the series is: 

n 
lim SIt = lim " am = -1_

1
_ .  n�oo n�oo L..J - a 

m=O 

It is situated in the center of the green accumulation circle drawn in the right window. 
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Figure 4.2. Simulation. The left window shows the tenns of the geometric sequence, the 
second the partial sums of the series. The first point is 1 in both cases. The second point is a ;  
i t  i s  enlarged and circled i n  red. Pulling this point with the mouse allows a to be changed. 
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For la l > I the series diverges. The unit circle becomes smaller and smaller in the 
growing domain of coordinates and the series runs away along a spiral to infinity. 

The ca�e of the real geometric series is obtained a� special case of the complex 
series if the point a is moved along the real axis. To look at the situation in more detail 
you can maximize the simulation window to full screen size. On the inner boundary 
of the unit circle, the convergence can be so slow that 1000 terms are not sufficient to 
nearly reach the limit. This can lead to very interesting geometrical patterns. 

4.4.2 Complex exponential sequence and exponential series 

The terms of the complex exponential sequence are created with the following rule: 

exponential sequence: 

geometric sequence for comparison: 

a 
Z,,+ l  = Z,, · ­

n 

Z,,+ l  = z" · a . 

Here z" is the nth term of the sequence. The parameter a can be a complex number. 
We again have Zo = I 

The terms thus have the form: 

a a2 a3 a4 a" 
1 , - , -- , --- , · · · Z" = -I 1 · 2 1 · 2 · 3  1 · 2 · 3 · 4  n !  

n factorial: n ! = 1 · 2 · 3 · 4 · · · n ; 0! = 1 ; 1 ! = 1 .  

The complex exponential series is created via continued addition of the terms of the 
complex exponential sequence. Thus its partial sums are: 

" m 
S" = L � 

m=O m !  

I a a2 a" a 2 a" 
S" = m + I! + 2! + . . .  + n !  

= I + a + "2 + . . .  + n !  
So = 1 .  

The complex sequence and series are shown in Figure 4.3 .  
The case of  the real exponential series is obtained as  a special case of  the complex 

series, if the point a is chosen on the real axis. 
The terms of the exponential sequence always converge to zero. The exponential se­

ries converges for every finite value of a .  The convergence is so fast that the simulation 
window will only show a few of the 1000 calculated terms separately. 

Why does the exponential series converge so quickly as compared with the geomet­
ric series, and for any arbitrary z? In order to understand this we again consider the 
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Figure 4.3. Simulation. In the simulation for the complex exponential series. which again 
calculates 1000 points. a (red point) can he changed with the mouse in the left window and 
one can see the effect on the terms of the sequence Z n. and in the right window the effect on 
the partial sums Sn of the complex series. The zeroth terms of both sequences are I and thus 
are situated on the red unit circle. 

ratio of consecutive terms of both sequences: 

geometric sequence 

exponential sequence 

z,,+t -- = a  z" 
z,,+t a -- = -z" n 

For the geometric series we must have a < I in order for the terms of the sequence 
to decrease, and this applies to all terms. For the exponential series. the initial terms 
of the series can even increa.�e significantly! Irrespective of the size of la I, as long a.� 
it is finite. there is always an index n from which the terms get smaller and smaller 
in absolute value, independent of the chosen a-value. Therefore we have z" � 0 
irrespective of the chosen value of a .  

One can easily generalize the statement concerning the convergence of  the expo­
nential series: we are given a bounded sequence B" of numbers, which are multiplied 
with the respective terms of the exponential sequence. The new series is thus given 
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by: 

I Bm l  < q with q real, positive number --+ 

00 m 00 m 
l S I  < q " � ; S is convergent, since " � converges. � m!  � m!  m=O m=O 
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If the absolute values of the coefficient� Bm stay smaller than an arbitrary large real 
number q, i .e. the sequence Bm does not diverge, then the series converges, since it 
is smaller than the convergent exponential function multiplied by a real number. This 
shows how strongly the exponential series it�elf converges. We will later apply this 
result to the convergence of the Taylor expansion. 

For the limit of the exponential series we have: 

n m 
lim S" = lim ,, � = eQ ; e = 2 . 7 1 828 . . .  Euler's number. ,.400 n�oo L...J m !  m=O 

If a = l one obtains 

n I I I I 
e = lim ,, - = I + - + - + - + . . . . "400 � m!  2 6 24 m=O 

If one moves a in the simulation parallel to the imaginary axis, the limit of the series 
moves periodically on a circle around the origin. Thus one obtains "experimentally" 
the famous Euler formula: 

With a = x + iy 

eQ = e"eiy = eX (cos y + i sin y) .  

For x = 0 --+ eiy = cos y + i sin y 

i . y2 . y3 y4 . y5 e y = 1 +  ly - - - 1 - + - + 1- Of . . .  
2 !  3 !  4 !  5 !  

y2 y4 . ( Y 3 y5 ) = I - 2 !  + 4! Of · · ·  + 1 Y - 3! + 51 Of • • •  

00 2" 
--+ cos y = L (- I )" -y_ ·  

,, =0 (2n) ! '  

00 y2"+! 
sin y = L (- I )" (2n + I ) ! ·  ,,=0 
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Euler's formula is useful for the easy derivation of relationships involving trigonomet­
ric functions. Two examples: 

we are looking for: cos 2q;, sin 2q; 

cos 2q; + i sin 2q; = ei2'P = (ei'P )2 � 

cos 2'11 + i sin 2'11 = (cos '11 + i sin q;)(cos q; + i sin q;) 

= (cos q;)2 - (sin q;f + i 2 cos q; sin q; 

� cos 2q; = (cos q;) 2 - (sin q;)2 

sin 2q; = 2 cos q; sin q; 

we would like to evaluate: cos (<pI + q(2) ,  sin(q;1 + q(2) 

COS(q;1 + q(2) + i sin(q;1 + q(2) = ei ('P1 +'PV = ei'P l  ei'P2 

= (cos q;1 + i sin q;l )(cos f{i2 + i sin q(2) 

� COS(q;1 + q(2) = cos <PI cos f{i2 - sin q; 1 sin f{i2 

sin(<PI + q(2) = cos q;1 sin q;2 + sin q;1 cos f{i2 .  

Whenever one works with oscillations, i.e. with trigonometric functions, for example 
in optics and electronics, the use of complex numbers has many practical advantages. 

From Euler's formula we obtain an elegant approximation formula for 1C if we put 
y = 1C (you may convince yourself in the the simulation that the exponential function 
indeed yields -I for z = i 1C). 

y = 1C � eirr = cos 1C + i sin 1C = -I + i · 0  = - I  

1C2 i 1C3 1C4 1C5 1C6 1C 7 eirr = I + i1C - - - - + - + i - - - - i - · · ·  = - 1 
2 !  3 !  4! 5! 6! 7 !  

Separation in real and imaginary parts � 

1C 2 1C4 1C6 1C8 1C IO 
Re � 2 =  - - - + - - - + - Of · · · 

2 !  4! 6! 8 !  1 O! 
1C3 1C5 1C 7 1C9 1C 1 1  

1m � 0 = 1C - - + - - - + - - - ± . . . 3 !  5 !  7 !  9! I I ! 

1C2 1C4 1C6 1C8 1C 1 0 
1C � O � O =  1 - - + - - - + - - - ± . . . . 

3 !  5 !  7 !  9! I I ! 

The equations are polynomials in 1C2
• Neglecting all higher powers, the two series 

yield in zeroth order the solutions V4 = 2; V6 = 2 .449 . . . .  Using iterative meth­
ods of solution, for example fixed point iteration in Excel, one obtains the following 
quickly converging values, which are listed below together with the highest powers 
taken into account: 
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Approximations using the laM equations (in brackets the highest power of 1T kept): 
(1T2 ) .... .j6 = 2 .4; (1T6) .... 3.078; (1T 10) .... 3 . 1 4 1 1 ;  (1T 14) .... 3 . 1 4 1 5920. 

Subtraction of both equations leads to a series that converges even faster, with the 
zeroth order solution for the order 1T4 : -V6O = 2 .78. 

4.5 Influence of l i m ited accu racy of measu rements 
and nonl inearity 

4.5.1 Numbers in mathematics and physics 

In the domain of abstract mathematics the following relation applies exactly: 2 · 2  = 4. 
Exactly means that, if one were to write all numbers as decimal numbers, there would 
be an infinite number of zeros after the dot. 

There is an old joke about the natural scientist who solved the same problem on his 
slide rule and obtained 2 · 2  = 3 .96. Where is the difference? 

In mathematics, numbers and the operations between them are defined in such a 
way that the repetition of the same procedure yields exactly the same result. When 
transferring the mathematical rules for operations to the domain of the natural sci· 
ences, there is often an unspoken assumption that not only are the operations exact and 
unchangeable, but also the quantities to which the operations are applied a� numbers. 

This is, however, not the ca�e. When repeating an experiment in the natural sci· 
ences, one cannot assume that the natural situation in which the experiment takes 
place stays exactly the same; 1 3  above all, one has to take into account that there are 
limit� to the accuracy of a measurement; that, even assuming fictitious equal condi­
tions, the measured values describing the result will not be identical in a mathematical 
sense. 

The achievable relative accuracies of measurement are often in the range of 1 0-6 
to 1 0-2 with a corresponding inaccuracy of the single measurement. The highest ac­
curacy nowadays can be reached in laser spectroscopy for the measurement of fre­
quencies, with a relative error of 1 0-1 6 • For 2 consecutive measurements, one has to 
expect a maximum difference of thi s  order between the results of the measurement. 
The result of a single measurement is only known with this accuracy. 

It is the essential purpose of mathematical physical models to forecast, from the 
knowledge of the current state, events in the future, or to reproduce from this knowl· 
edge the past. That is the content of every formula in which the time t appears. The 
limited accuracy of mea�urements puts a natural limit on this goal . 

The predictability does, however, not only depend on the accuracy for the measure· 
ments of numbers, but also on the mathematical operation that is applied to them. For 
a formula, such as a = (b + b . F)" , where b is the "true" error-free value and F 

1 3  Already, the philO!lopher HeradillL< (around 500 BC) of antiquily realized that one "cannol bathe 
twice in the .,·ame river" Punta rhei (everything ftows), all Slales are unique. 
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is the relative measurement error, the result depends, in addition, on the parameter n ,  
which describes the relationship between a and b. 

For an error that is small relative to the mea.�ured value, we can estimate the effect 
of n easily: 

a = (b + b ·  F)" = b" ( 1 + F)" = b" � (;) F" 

n = I � a = b( I + F) linear relationship 

I < n « (� ) � a R:: b" ( 1 + nF) .  

For a linear relationship ( n  = I )  and an accuracy of  I %, the result also has an 
uncertainty of I %. In the 1 8th century the thinking in the philosophy of natural sci­
ences was dominated by the conviction that the future could be forecast without limit 
given sufficiently accurate knowledge about the current state (Laplace's Demon); 14 
this corresponds to linear thinking. 

For nonlinear operations, the dependence of the results from the measurement error 
is also nonlinear. For the power function a = b" ( 1 + F)", with n > I used in the 
example Figure 4.4 shows the dependence of the total error on the measurement error 
for increasing powers of n .  

The maximum relative total errorl S grows with the power n ;  for the relatively small 
error < 1 0% the growth is nearly a linear function of the power; a measurement error 
of I % leads, for the 1 0th power, to a total error of slightly over 1 0%. 

So what? Then one ha.� to make more accurate measurements! 
However, many important and fundamental functions of physics, such as the trigo­

nometric function, the exponential function and 1 /  r-dependencies on the radius, are 
highly nonlinear, if one does not restrict them to a small region of values. 

Even relatively small nonlinearities become important if sequences are calculated 
for which the next term depends on the previous term and its accuracy. This is, for 
example, the case if differential equations have to be solved numerically, in which 
hundred.� of individual calculations may easily be concatenated. 

Thus in view of the limited accuracy of measurements, one has to be careful for 
what time horizon one makes predictions with mathematical models ba.�ed on mea­
sured initial data, and one ha.� to take nonlinearities in the model used into account. 

14 Marqui� Pierre Simon de Laplace: ''We may regard the present slate of the universe a< the effect of 

il< past and the cause of il< future. An intellect which al any given moment knew all of the forces 

that animate nature and the mutual positions of the beings that compose it, if this inteliecl were va<t 

enough to submit the data to analy�is, could condense into a �ingle fonnula the movement of the 

greate�t bodies of the universe and that of the lightest atom; for such an intellect nothing could be 

uncertain and the future just like the pa<t would be present before il< eyes." (E...,ai phil(Js(Jphique .''Ue 
Ie., pmbabi!iles 1814, Preface). 

15 Por �implicity we discuss the maximum error and do nOI disclL<s the �tatistically relevant mean error, 

which would not lead to any other concllL<ion 
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Figure 4.4. Measurement error and its effect for the relationship between measured quantity 
and result for a power function. The measurement error is plotted on the abscissa and the error 
of the result on the ordinate. The parameter is the power n .  

In addition. one must not lose sight of how accurately the model used describes the 
reality. 

When using computational models. this caution is easily lost. since the computer 
treats models and numbers within the limits of its computational accuracy as if they 
were exact in the mathematical sense. One also uses the exactly same initial values 
for repeated calculations. 

4.5.2 Real sequence with nonlinear creation law: Logistic 
sequence 

Even in the abstract mathematical domain. nonlinear functions produce unexpected 
and sometimes bizarre result� .  This has nothing to do with l imited accuracy, but it 
lies in the nature of the subject. However, the resulting dependence of the calculated 
numbers on the initial values is so extreme that fundamental limits are imposed on 
transferring these models to physics or technology. An in·depth discussion of these 
matters can be found in Grossmann 's essay in Physik im 21. Jahrhurukrt (detailed 
in the preface). We will visualize two of these phenomena using number sequences: 
bifurcation and fractals. The first example is concerned with a real sequence, the 
second one with a complex sequence. 
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For the sequences with a free parameter a considered so far, the creation law for 
the terms of the sequence depended linearly on a parameter: 

. A" 'aI z" a 
geometnc sequence -- = a ;  exponenu sequence -- = - .  A,,_I Z,,_I n 

The behavior of the sequences and the resulting series was relatively simple and clear. 
Is this still the case if the creation law is nonlinear? As an example we chose the 
so-called logistic sequence. This is a model for the development of a population of 
plants or animals under constant environmental conditions from an arbitrary initial 
state Xo for a given reproduction rate. (In agreement with the notation in the literature 
we choose the letter x for the terms of the sequence): 

X,,+I = 4r x,, ( 1  - x,, ) = 4r (x" - x�) .  

The factor 4 scales the sequence in such a manner that, for parameter values with 
o � r � I all terms of the sequence satisfy 0 � x" � I .  

The logistic sequence assumes firstly that the population i n  the next generation is 
proportional to the already present population. This alone would lead to unbounded, 
exponential growth. However, at the same time a death rate that depends quadratically 
on the population already present is assumed (-4r x2) ;  note that, due to the definitions 
given above, we have x" < I and therefore always x� < x" . 

The question that arises is: does the population for a given growth parameter under 
equal conditions approach a stable limit for an infinite number of generations, and 
how does this limit depend on the initial value Xo and the growth parameter r '! 

Population growth only occurs if X,,+I > x" , which means for r > 1 / (4( 1 - x,,». 
Since 0 :::: x" :::: I ,  all populations with r < 0.25 decay to  zero independent of  the 
initial value. For larger growth rates, i.e. for r > 0.25, one would therefore expect that 
the population would grow up to an asymptotic value larger than zero, or if initially 
larger, would decay to this asymptotic value. 

In the simulation in Figure 4.5, r is increased consecutively by 0.00 1  in the interval 
o :::: r :::: I .  Now a loop calculates 2000 terms of the sequence for constant r. Then 
one proceeds in steps of 0.00 1 to the next value of r until r = I is reached. Each 
calculation starts with a random value 0 < XI < I for the initial value. The first terms 
of the sequence still depend on the initial value; therefore the first 999 iterations are 
not shown in the figure. The iterations 1000 to 2000 are mapped to points in the figure. 

For r < 0.75 these points coincide so closely that a limit line as function of r is 
seen, comparable to 1 / ( 1  - a) for the geometric sequence. Different initial values 
do not lead to discemable differences for the shown terms of the sequence with high 
indices. 

For growth rates r > 0.75 the asymptotic orbit develops two branches (bi/urcation), 
which means the iteration creates two different accumulation points. This bifurcation 
repeat� itself until there are finally no accumulation points visible. Since 1000 itera­
tions are shown, there could be up to 1000 values for a given r. Thus in this  region 
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Figure 4.5. Simulation. Variation of the logistic sequence with adjLL'table power k (in the 
picture a standard sequence with k = 1 ) .  On the left-hand side the total range of the abscissa 
is shown. on the right-hand side a stretched region after the first bifurcation. The play button 
starts the animated calculation and the reset button resets the animation. 

there cannot exist a unique limit. Surprisingly, some regions of r follow that show 
fewer accumulation points. The determining factor for the growth limitation is the 
growth rate r .  

Bifurcation behavior does not depend on  the growth limiting factor being exactly 
I - X" . Essential is the nonlinearity of the operation x" - x; . To make this experi­
mentally accessible, a generalized factor ( I  - x!) with k > 0 wa.� chosen: 

X,,+1 = 4rx,, ( 1  - x!) .  

In  the simulation example you can change k after resetting with the slider between 
0. 1 and 2. the default value is I .  which leads to the usual quadratic operation. 

The left window shows for the classical case (k = I )  the total orbit as function of 
r ;  the right window shows the bifurcation in larger resolution. For k i' I ,  the general 
character of a bifurcation stays the same, but the characteristic parameter values are 
moved relative to the logistic sequence and the abscissa range is adjusted accordingly. 

For a more accurate viewing. the simulation window can be maximized. 
In the total picture of the logistic sequence, compactified structures of accumulation 

points appear, which are not visible if the number of iterations shown is so large that 
the pixel resolution of the screen does not reveal any holes and if the resolution along 
the x axis is small. The simulation in Figure 4.6 therefore shows the structure of the 
picture with a very large horizontal resolution (� 1 000 points in the shown r-interval 
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Figure 4.6. Simulation. Bifurcation region of the logistic sequence in high resolution. With 
the left slider for the beginning and the right slider for the end of the shown abscissa, the 
region can be adjusted such that particular regions can be sttetched a great deal. This choice 
can be made very accur.uely by entering numbers in the fields nnin and rmall. 

and a limited number of 250 iterations shown. Please maximize the window before 

the start of the simulation to full screen size in order to see the details. The lower and 

upper boundary of the r -range can be adjusted with sliders. 

What is the reason for the strange behavior which becomes deterministically chaotic 

for large values of r? This becomes evident if one extends the simulation to show the 

terms of the sequence with low indices, which are suppressed in the above presentation 

to elucidate the limit of the sequence. 

Thus one can consider individual terms of the sequence and investigate how the 

bifurcation results from jumping between terms with different indices. 

The simulation in Figure 4.7a and Figure 4.Th, which is a real mathematical exper­
imentation kit, calculates an adjustable number of terms. With the slider, the constant 

initial value Xo of the sequence for a total r-scan can be adjusted. In the image an 
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Figure 4.7a. Simulation. Individual tenns of the logistic sequence, Xo: initial value; first text 
field: number of supre.�sed iterations; second text field: number of iter-ltions shown. 

adjustable number of terms is shown. One can also choose the number of suppressed 
terms in the image. 

Thus you can view the first iterations a� shown in the left window of Figure 4.7a or 
you can look at a single iteration with a high index as in Figure 4.7b. 

If one considers for example the first six terms Xo to Xs (suppressed = 0, shown = 

6) of the sequence as shown in Figure 4.7a, one recognizes the different terms from the 
increa�ing degree of the polynomial (The initial value as zeroth term is a straight line, 
the first term a line with positive slope). If you use different initial values, the images 
show differences in their detail. In the lower region of r one recognizes, however, how 
already the lower iterations approach a limiting curve. The higher iterations are then 
superimposed in such a way that there are nearly empty regions close to points that 
nearly coincide. Here the bifurcations can be found at higher indices. For the higher 
iterations the influence of different initial values becomes smaller and smaner. 

If one shows for large indices only one term Xn , such as in Figure 4.7b, no bifurca­
tion can be seen, but the curve shows kinks at the bifurcation points. If one increases 
the index by one, the kinks turn in the opposite direction. If one shows two terms 
xn • xn+t with consecutive index, one sees the first bifurcation. This bifurcation is 
thus the superposition of two r -scans with indices whose difference is I .  

Studying the conditions for lower indices one realizes that the bifurcation i s  caused 
by the change from even to odd powers that determine the individual terms. 

Thus the deeper reason for the strange topology is that, for suitably defined polyno­
mials of high order, limited regions exist, for which different orders and initial values 
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Figure 4.7b. Example from the simulation in Figure 4.7a. The 5 1 st iter.ltion of the logistic 
sequence is shown. 

lead to practically identical values. while in other regions the values diverge. thus 
deterministic chaos reigns. In the essay by Siegfried Grossmann. this is analyzed in a 
general sense and in detail, and we suggest that at this point you study his contribution. 

Remembering the starting point of the discussion, namely that the logistic curve 
is a model for the development of populations, one can draw. for example, the fol­
lowing conclusions: For small growth rates the population converges in an oscillating 
manner to a constant value at which the population and resources are in equilibrium 
with each other. For a higher growth rate the population exceeds the value that would 
be compatible with the resources. Therefore the next generation reverts to a lower 
value. and this jumping back and forth is repeated: the system oscillates between 
extremes. 

The essential practical conclusion is that the result of computations for a nonlinear 
system can depend so sensitively on parameters and progress of the calculation (the 
iteration index). that a foreca.�t is only possible for a limited number of generations. If 
in a nonlinear model time is the essential parameter. then this is true for any forecast 
over time. 

It is therefore part of the art of engineering to avoid regions and dependencies in 
which nonlinearities lead to non-predictable or non-unique results. This is no mean 
feat. a.� most physical relationships are well determined, but nonlinear. 
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4.5.3 Complex sequence with nonl inear creation law: Fractals 

We conclude the chapter on sequences and series with an example of a complex se­
quence with a nonlinear creation law. Such sequences lead to the aesthetically pleas· 
ing structures called fractals, of which the Mandelbrot set is probably the most well 
known. 

Its creation law reads: 

Z,, + 1  = z; + c 

Zo = 0; c: complex number. 

For every point c of the complex plane within a limited, but sufficiently large, closed 
region around the origin, the sequence is calculated and it is checked to determine 
whether it diverges (in the numerical calculation it is a�sumed that this is the case 
a� soon the absolute value exceeds 4; the corresponding points are colored blue), 
or converges. Those points for which the sequence converges are colored red in the 
graphical representation. The points that are converging to finite values (the boundary 
of the red surface) constitute the Mandelbrot set. All points that do not belong to it 
are, depending on the speed of divergence of the sequence, shown in different colors. 

The interactive Figure 4.8a provides access to a slightly modified Mandelbrot frac­
tal, for which the initial value Zo can be changed via pulling the white point with the 
mouse; Zo = 0 gives the well known Mandelbrot set, -2 < Z < 2 covers the region 
in which convergence happens at all .  Resetting leads to the initial state. 

The region of the calculation can be restricted by specifying a region with the 
mouse; multiple restriction makes it possible to delve into deep regions of the fractal 
ramifications (see as an example Figure 4.9b). 

Figure 4.8b shows the modified Mandelbrot set for Zo = i .  
The topologically novel situation of the fractal structure i s  that the boundary of a fi­

nite area is  infinitely branched and shows self-similarity when delving deeper and 
deeper, i.e. on all scales similar structures are visible. You will realize this when 
selecting ever smaller sections. 

It is not trivial to understand which mathematical relationship leads to the special 
form and symmetry in the figure. 

To simplify this task we generalize further, to use instead of the quadratic creation 
rule an arbitrary power: 

Z,, + 1  = z! + c 

Zo = 0; c: complex number 

k ?! l . 

For k = 2 we find for the set of c-values for which z" does not diverge the Mandelbrot 
set as discussed above. 
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Figure 4.8a. Simulation. Modified Mandelbrot set with adjustable initial value Zo (white 
point) for the itenltion (in the picture we have the standard set: Zo = 0). The coordinates of Zo 
are shown in two output fields and can be adjusted via pulling the white point with the mou.o;e 
or via entering values. 

In the simulation in Figure 4.9a the power k ean be ehanged by a slider to a rational 
number between I and 1 0. In the number field values that are unlimited can be entered 
(after input you need to press the enter key and must wait until the input field changes 
color again!) .  For this simulation many trigonometric functions have to be calculated, 
which requires a lot of effort. Thus you need to be patient after the first call or after 
entering a new value. Depending on the resources of your computer this calculation 
can take several seeonds or even minutes. 

Figure 4.9a shows the modified Mandelbrot set of the c-values for which the com­
plex point sequence z" converges for k = 1000. The region of convergence to nonzero 
nearly corresponds to the unit circle (as one expects for the geometric series), but ex­
hibits further fractal branching at the boundary, as shown in Figure 4.9b in higher 
resolution. 

An aesthetically particularly interesting variant of a given complex fractal is its 
Julia set. This is obtained by keeping the point c fixed in the complex plane and 
asking which points z in the plane lead to a divergent or convergent sequence. Thus 
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Figure 4.8b. Simuilltion. Modified Mandelbrot set from simulation in Figure 4.8a for Zo = i .  

for the Mandelbrot set and its Julia set we have: 

creation law of sequence z" + 1 = z; + c 

Mandelbrot set: 

Zo = constant = O. For which points c docs the sequence converge or diverge? 

corresponding Julia set : 

c = constant; For which points z docs the sequence converge or diverge? 

Thus one can map every point c of the Mandclbrot set to its Julia set. In the simulation 
of Figure 4. 1 0  a small white point in the left window showing the Mandelbrot set 
can be moved with the mouse . The program calculates the corresponding Julia set, 
which is shown in the right-hand window. Its appearance and symmetry change in a 
characteristic manner if one moves c around the Mandelbrot Set. With the slider one 
can adjust the color shading for the diverging values. 

c = 0 leads to the sequence z. z2 . Z4 . Z8 • . . .  , which is the geometric sequence that 
converges inside the unit circle and diverges outside it. The Julia set is now identical 
with the unit circle. 
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Figure 4.9a. Simulation. Modified Mandelbrot set with adjustable power (1000 in the pic­
ture). The red surface fills the unit drcle nearly completely; only at the boundary some branch­
ing can be seen. You can also choose mtional numbers for the power. To get the original 
Mandelbrot set enter the integer 2 in the number field. 
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Figure 4.9b. Fm(.1a1 bmnching of the boundary of Figure 4.9a, shown at corresponding high 
resolution. obtained by specifying a re(.1angular region with the mouse and zooming twice. 
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Figure 4.10. Simuhltiun. Mandelbmt set and curresponding Julia set; the parameter c uf the 
Julia set is adjusted by moving the white dot (in the left picture close to the upper incision 
between "head" and '"body''). By specifying bounding boxes with the mouse one can again 
restrict the computation region in both fields. Using the slider the color mapping of conver­
gence for the Julia set can be adjusted leading to a variety of color patters symbolizing the 

convergence. 



5 Functions and their infinitesimal 
properties 

5.1 Defin ition of functions 

Traditionally we speak of a function f(x) if every x satisfying XI < X < X2 is 
mapped to another number y in a unique way; here y = f(x) is the mapping pre­
scription. An example is y = sin(x),  with real numbers x and y, or u = z" and 
with complex numbers z, u and a real number n. For brevity one can also write y (x) 
instead of y = f(x). 

In a more general manner, one can define the concept of a function by mapping 
each element a of a set A uniquely to an element of the set B :  the set A is mapped to 
the set B via the/unction f :  

B = f(A) 

In this example, a E A can be referred to as the preimage (or inverse image) point and 
b E B as the image or image point. 

Functions and mapping are synonymous concepts, the concept of which includes 
the uniqueness of the mapping. 

The converse assumption is, however, not necessarily true: an image point b can 
have numerous pre images a .  a '  . . . . .  For the sine function there is, for every x. a unique 
value y = sin(x). Due to periodicity of the sine function modulo 2lT. every y can be 
mapped to arbitrarily many x points. 

The sequences and series discussed in Chapter 4 are examples of the mapping of 
discrete numbers - that is. of functions whose domain of definition for x consists of 
discrete values n . 

In general, the domain of definition of the variable a of a function will be contin­
uous set, i.e. the set of real or complex numbers. or a limited region of one of these 
sets. 

A function is continuous in the domain of definition of its preimage if the set of 
variables a E A is dense and. in addition. an arbitrarily small neighborhood of ao is 
mapped to a dense neighborhood of the image point bo o Visually. this  means that there 
are no gaps or jumps in the curve corresponding to b(a) . 

The limit of the complex geometric series can be considered as the mapping of the 
continuous complex domain a inside of the unit circle to the complex plane outside 
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of the unit circle: 

la l < I 
If I Z = l(a) = lim � am = -- _ I :::: Z < 00. "-+00 L I - a m=O 

The function is continuous in its domain of definition la I < I .  

5.2 Difference quotient and differential quotient 
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For a continuous function, the variable x can have any value within its domain of 
definition X .  As in  sequences one can define a difference quotient as the difference 
of two function values Y2 and YI with different values X2 and XI of the independent 
variable. 

While the difference quotient for sequences was given by the difference of two 
terms with an index difference of I ,  i .e. A"+I - A,,, the difference Y I - YI = l(X2 ) ­
l(xl ) can be defined for an arbitrarily small difference 6 x  = X2 - XI in the case of 
continuous functions. 

In addition one can define a differential quotient a.� the limit for an infinitesimal 
distance between the variables 6x. Thus it becomes a local property of the function 
in every point x, in which such a unique value exists, i .e. at which the function is 
differentiable. 

difference quotient: 

differential quotient: 

6l l(X2) - l(xl ) l(x l + 6x) - l(x l ) 
6x = x2 - XI 

= 6x ; 

(dl ) = lim (6l ) = lim !(xl + 6x) - l(x l ) . dx x , <1x-+O 6x x , <1x-+O 6x 

For 6x > 0 we refer to a right-hand difference - or differential quotient, for 6x < 0 
to a left-hand one. If both differential quotients exist and are equal, then the function 
is uniquely differentiable at thi s  point. 

If the function is uniquely differentiable in every point of its domain of definition -
it is then also continuous - its differential quotient is a continuous function of the 
variable x, the first derivative of the function: 

Y' (x) = !' (x) = dl (x) = lim !(x + 6x) - !(x) 
dx <1;0;-+0 6x 

As shorthand one writes the first derivative as y' (Y prime) or f'(x) . 
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If the differential quotient exists, it is a proper ratio of two numbers as their respec­
tive limits. Thus one can treat both denominator and numerator as such: 

df = f'(x)dx 

If the first derivative is uniquely differentiable in every point of the domain of defini­
tion one can define the second derivative, an so on: 

dl' 
y"(X) = f"(X) = dx (x) , 

Of panicular practical importance are continuous functions that can be arbitrarily 
often differentiated, also called "smooth" functions, such as the trigonometric func­
tions. 

In physics the independent variable is often the time t . For the derivative with re­
spect to time the notation y (y dot) has been adopted in written and printed work. This 
is somewhat unfortunate for our purposes, since this sign cannot be directly entered 
on the keyboard of a PC, and also one cannot enter it as a character with two meanings 
(y and derivative with respect to t). In this text we stick to the notation y', even if the 
independent variable is the time t . 

5.3 Derivatives of a few fundamental fu nctions 

5.3.1 Powers and polynomials 

Normally one find� the derivatives of the most important functions in tables or one has 
learned them by hean in school. They are, however, very easy to calculate if one takes 
into account that the limit I:!.x .... 0 takes place and that therefore all higher powers of 
I:!.x can be neglected. 

We show this in detail for the example of the second power: 

y (x) = x2 

y (x + I:!.x) = (x + I:!.x)2 = x2 + 2xl:!.x + I:!.x2 

y (x + I:!.x) - y(x) = 2xl:!.x + I:!.x2 

.<..,y..:....(x_+,,--I:!.
,....
x..:....)_-....:.y--,(x--'.) 

= 2x + I:!.x I:!. x 
y (x + I:!.x) - y(x) 

y ' = lim = lim (2x + I:!.x) = 2x . dx-+O I:!. x dx-+O 

This can now be ea.�i1y extended to arbitrary powers, if one takes into account that 
the second term of the polynomial (x + I:!.x)" = x" + nx,,-l l:!.x + ax,,-2I:!.x2 + 
bx,,-3I:!.x3 + " .  is nx,,-l l:!.x. 
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The coefficients of the further terms a , b, c , . . .  do not have to be given explicitly, 
since all these terms vanish in the l imit �x .... 0, as they contain at least the factor 
�x2 : 

y (x) = x" 

y (x + �x) = (x + �x)" = x" + nx,,-I �x + ax,,-2 �x2 + cx,,-3 �x3 + . . . 

y(x + �x) - y (x) = nx,,-I �x + ax,,-2 �x2 + bx,,-3 �x3 + . . . 
y (x + �x) - y (x) ,,-I A ( "-2 ) '--'-------'-- = nx + uX ax + . . .  

�x 
, r y (x + �x) - y (x) r ( ,,-I + � ( »  ,,-I y = 

<1��O �x = 
<1��O 

nx x . . .  = nx . 

This also yields the rule for higher derivatives of powers: 

y (x) = x" , y ' = nx"-I , y" = n (n - l )x"-2 , 
y(II) = n (n - I ) (n - 2) . . . . . ( I )  = const 

/"+ 1 ) = o.  

The derivative of a constant c , which has by definition the same value of all values of 
the independent variable, is zero. 

The rules obtained above also apply if the exponents are negative or rational: 

_II I , -,,-I -(11 + 1 ) n y = x = x" .... y = -nx = -nx = -X,,+I 

Y = :;;x = x l /3 .... y ' = !x I /3-1 = !x-2/3 = -- . 3 3 3 -VX2 

With this result it is also ea.�y to see how the derivatives of polynomials look; for 
example: 

y = 3xs + 4X4 + 3x - I 

y' = 1 5x4 + 1 6x3 + 3 
y" = 60x3 + 48x2 ; y lll = 1 80x2 + %x; 

y<4) = 360x + 96; y(5) = 360; y <6) = O. 

We have shown the formal differentiation of powers in so much detail because this 
also allows us to treat functions for which a series expansion containing power terms 
is known. 
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5.3.2 Exponential function 

In analogy to the exponential series, we can define the exponential function for a 
continuous domain of the variable x. Since its series expansion consists of powers. we 
can obtain it� derivative immediately by differentiating its individual terms according 
to the rule derived above. 

e = 2.7 1 828 . . .  ( " xm ) x2 x3 X4 Y = eX = ,,�oo S" = L 
m! 

= I + x + 'j"":2 + � + I . 2 . 3 . 4 
+ . . .  m=O 

2x 3x2 4x3 x2 x3 
/ = 0 + 1 + - + -- + + , , · = I + x + - + -- + , , · 

1 · 2 1 · 2 · 3 1 · 2 · 3 · 4 1 · 2 1 · 2 · 3  
/ = y 
11 I Y = Y = y. 

Thus the exponential function ha� the property that its derivatives and the function 
are identical. The above derivation also shows that the coefficient of the nth term 
of the exponential sequence ;h is given by the reciprocal of the n th derivative of its 
respective power: 

x" 
y = 

n !
; 

, n · x,,-I X,,-I 
y = -- = -- ; 

n !  (n - I) !  
XO 

y(") = - = I ; 
O! 

/"+0 = o. 

Upon differentiation. every term assumes the form of the previous term and the con­
stant term vanishes. This  property results in the exponential function and it� derivative 
becoming identical. 

5.3.3 Trigonometric functions 

In an analogous manner we can obtain the derivatives of the trigonometric functions 
from their series expansions. We start with the representations that we previously 
obtained from the complex exponential function: 

x3 xS 00 X2,,+1 
y = sin x = x -

3 !  
+ 5! 'I' " . = L (- I)" (2n + I ) ! o 

3x2 5x4 x2 X4 00 x2" 
� / = 1 - - + - '1" " = 1 - - + - '1' ' ' , = L (- I)"-- = cos x 

3 !  5 !  2! 4! ° (2n) !  

x2 x4 00 x2" 
Y = cos x = 1 - 2!' + 

4! 'F ' " = L (-I)" (2n) ! ° 

� / = _ 
2x + 4x3 'F ' "  = -(x _ 

x3 
+ x

S 
'I' . , , ) 

2!  4! 3 !  5 !  
00 X2,,+1 

= - L (- I)" = - sin x . 
° (2n + I ) !  
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By taking into account the signs all further derivatives can be established: 

y = sin x � y' = cos x ;  

y = cos x � y' = - sin x ;  

" . y = - SIO X ; 
" y = - cos x ;  

ylll = - cos x ;  ylll' = sin x 

y'" = sin x ;  III( Y = cos x .  
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Using these results all functions, which can be described as series expansions in 
terms of trigonometric functions, can be easily differentiated. These are, in the main, 
functions that describe periodic phenomena. 

5.3.4 Ru les for the d ifferentiation of combined functions 

Combined functions are ea�y to differentiate if one knows the derivatives of the func­
tions that are combined. The following, immediately plausible, rules apply. 

multiplicative constant c 
y = c ·  f(x) � y' = c · f' (x) 
additive composition 

y = f(x) + g(x) � y' = f'(x) + g' (x) 
product rule 

y = f(x) · g(x) � y' = f'(x) · g(x) + f(x) · g' (x) 
quotient rule 

f(x) , f' (x) · g(x) - f(x) · g'(x) 
y = g(x) � y = (g (x» 2 
chain rule 

y = f(g(x» � y' = !'(g(x» . g'(x) 
example y = sin(x3 + x) � y' = cos(x3 + x) · (3x2 + I ) .  

5.3.5 Derivatives of further fundamental functions 

To be able to differentiate all "prevalent" functions formally, one needs a collection of 
derivatives of additional fundamental functions. We list these here without comment 
in the form of a table together with those obtained above. The derivatives of the hy­
perbolic functions at the end of the table are simply obtained from their definitions in 
terms of exponential functions. 

y = x" � y ' = nx .. -I 

y = eX � y' = eX ; y = eax � y' = aeax ; y = aX � y' = aX In a 
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y = sin x � y' = cos x ;  

, I 
y = tan x � Y = 

COS2 X ; 
. , I 

Y = arcsm x � y = ,===:;:= 
VI - sin2 x 

I 
y = arctan x � y' = --- ; I + x2 

, I 
y = In x � y = - ; 

x 
eX _ e-x 

y = sinh(x) = 2 
e X + e-x 

y = cosh(x) = 2 � 

y = COS X -)0- y' = - sin x 

, I 
Y = cot x � y = - -.-­

sm2 x 

y = arccos x � y' = 
VI - sin2 x 

, I 
Y = arccot x � y = - I + x2 

I 
Y =Q log x � y' = -­

x ln a  
eX + e -x 

y ' = = cosh(x) 2 

eX _ e -x 
y ' = 2 = sinh(x) .  
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In contra.�t to the trigonometric functions sin(x) and cos(x),  the derivatives of the 
hyperbolic functions sinh(x) and cosh(x) show no additional sign change on differ­
entiation. 

For the inverse functions of the trigonometric functions we make use of notations 
such as arccos(x) that are employed in mathematical texts; in Java code we use instead 
acos(x) . 

5.4 Series expansion : the Taylor series 

5.4.1 Coefficients of the Taylor series 

In many ca.�es it i s  useful to analyze instead of a function !<x) a series that ap­
proximates it. This is true particularly if the series converges to the function without 
restrictions. Then the partial sums of the series can be considered as approximations 
with increasing accuracy. 

For the terms of the sequence that make up the series one will use such functions 
in preference that can be differentiated and integrated ea.�ily. Especially suitable are 
series whose terms are powers or trigonometric functions of the variables. The first 
case leads to the Taylor series, whose coefficients are obtained via differentiation, 
which we will study more closely in the following. The second case leads to the 
Fourier series, which we will visualize after treating the integral, since its coefficients are determined via integration. 

Another argument for the choice of a particular series expansion can be to use 
functions for the terms of the series that are particularly adapted to the symmetry of 
the problem that is described by the function, e.g. Bessel functions for cylindrical 
symmetry and spherical harmonics for point symmetry. 
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The Taylor series is an infinite series whose partial sums are an approximation for 
the function y = f(x) . that i s  exact at the point Xo and approximate in the vicinity 
of x = Xo. and the interval for an acceptable approximation becomes larger with 
increasing index of the partial sum. The members of the sequence that constitutes 
the series are powers of the distance from the computation point (x - xo) . Thus the 
function is approximated via a power series and the problem consists of finding the 
coefficients of the individual terms. 

To achieve this. we first equate the function formally to a power series with terms 
a" (x - xo)" and parameters a" . We then differentiate both sides repeatedly. After 
each step we put x = Xo . Thus all powers containing x - Xo drop out from the power 
series for the respective derivatives and the coefficient of the remaining term can be 
easily obtained: 

00 
ansatz: f(x) = L a,, (x - xo)" 

o 
= ao + a l (x - xo )  + a2(x - xo)2 + a3(x - xo)3 + " .  

(x - xo ) = 0 - ao = f(xo) 
f'(x) = a l + 2a2 (X - xo) + 3a3 (X - xo )2 + 4a4(X - xo )3 + . . .  

f' (xo) (x - xo ) = 0 _ a l = --
I 

f"(X) = I . 2a2 + 2 ·  3a3 (X - xo )  + 3 . 4a4 (X - xo)2 + . . .  
f" (XO ) (x - xo )  = 0 - a2 = IT 

flll(X) = 2 ·  3a3 + 3 · 4 ·  2a4 (X - xo) 1 + . . .  
fill (Xo) (X - Xo ) = 0 - a3 = � 

n ' f(") f (") = n !a" + " .  + -2' (x - xo) + . . .  - a" = -,- . 
n .  

Thus the coefficient of the n th power is proportional to the nth derivative of the func­
tion at the computation point and the factorial as a factor simply follows from differ­
entiating the nth power. The Taylor series of the function is then with O! = I .  I ! = I 
and f(O) (xo ) = f(xo) :  

f(xo) l' (xo) f"(XO) 2 f'''(xo) 3 f(x) = ()! + -
I
-! - (x - xo ) + -2-! -(x - xo) + -3-! - (x - xo) + " .  

Loo ( ) (x - xo)" 
Taylor series: f(x) = f " (xo)-'------,--

n !  ,,=0 
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zeroth approximation: [(x) = [(xo) 
first approximation, in x linear: [(x) = [(xo) + /'(xo)(x - xo) 
second approximation, in x quadratic: 

, ["(XO) [(x) = [(xo) + [ (xo)(x - xo) + -2-(x - xo)2 . 
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While ['(x) = dfldx (x) describes the slope of a differentiable function at each 
point x in its domain of definition, ["(x) i .e. d[' /dx (x) describes the slope of the 
slope or the change of the slope of [(x) . The slope changes if and only if the curve 
[(x) has a curvature. Therefore ["(X) is a mea�ure of the curvature of [(x). If one 
identifies x with the time t and y = [(t) with the distance traveled by an object 
during the time t ,  the first derivative is denoted by velocity and the second derivative 
is called acceleration of the object that is, at time t ,  at position x .  

The first approximation of the Taylor series takes into account the slope of the 
function at the computation point, the second one in addition to it� curvature. The 
higher approximations use higher derivatives and it makes sense to also visualize their 
meaning. 

In the simulation of Figure 5 . 1  the derivatives up to the ninth order are calculated 
for a function that can be chosen from 9 given options and are shown as colored 
curves in an abscissa region that depends on the function and also may have a shifted 
origin. With the choice boxes at the top, the derivatives to be plotted in addition to 
the function can be selected; all nine are shown in the figure. For the red point, which 
can be moved with the mouse, the values of the local values of the derivatives are 
calculated anew and displayed in the number fields on the left. 

The derivatives are approximated numerically as differential quotients using both 
neighboring points :  

'( )  y (x + �x) - y(x - �x) y x � 26x 
"( ) y'(x + �x) - y'(x - �x) y(x + 2�x) - 2y(x) - y (x - 2�x) y X <l:: 2�x <l:: 4(�x)2 

You will find further details about this in the description pages of the simulation. 
In many simulations contained in this book it is possible to enter formulas for func­

tions directly in mathematical notation. For the program, the functions are initially 
strings without meaning, which have to be interpreted by an additional program, a 
parser, and translated to Java code. This is a relatively complex process. If the func­
tion is  only translated once for a simulation the required time is not of concern and 
one has, when using the parser for EJS, the advantage of being able to change the 
function or enter a new one without having to open and edit the program itself. 

The determination of higher derivatives with sufficient accuracy requires a con­
siderable computational effort. In the example of Figure 5. 1 the function ha� to be 
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Figure 5.1. Simulation. Derivatives of a given fundamental function (blue. chosen on the left­
hand side) up to the ninth order. drawn in the colors of the choice boxes above. For the red 
computation point. which can be moved with the mouse. the values of derivatives are given in 
the number fields on the left. The picture shows the derivative.. of sin(x)/x. 

evaluated 1 0000 times for one computation. which puts a strain on the computing 
speed of a simple PC. Therefore. the functions are predetermined in our example. 
[f you want to analyze other functions you may open the simulation using the EJS 
console and change the simple Java code of the preset functions. 

[n the upcoming simulations of Figure 5.2 and Figure 5.3. the approximations for 
the derivatives are calculated once without using. and once using. the parser and you 
will recognize the difference in the computation speed from these examples. 

Convergence of the Taylor serIes 

[t should not be taken for granted that the power series also approaches the function for 
values of x outside the computation point xu. During the discussion of the exponential 
function, which ha�, a� a power series, a large similarity with the Taylor series, we had, 
however, already established that the series also has to converge within the vicinity of 
the computation point if the factors attached to its tenn do not diverge. For the Taylor 
series, these factors are the derivatives in the computation point. The Taylor series 
converges in the neighbourhood of the computation point if in the limit n � 00 
derivatives grow smaller than n.  
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For many functions that are important in physics, a� for example polynomials, ex­
ponential junction, sine and co.�ine, the domain of convergence is unlimited. With 
increasing order or number of terms the corresponding Taylor series approximates the 
original function over a larger and larger interval and the domain of small deviations 
becomes larger and larger. In practice one normally uses a partial sum of finite or­
der; then the partial sum is identical to the function at the point of computation and 
increasingly deviates from the function with growing distance from it. 

It is amusing to calculate the Taylor series of the exponential function. Since all it 
derivatives are equal, the Taylor series coincides with the exponential series. 

The power function of degree n has non-vanishing derivatives only up to order 
n + I .  In this case, the Taylor series terminates after the (n + I )th term. It� Taylor 
expansion is thus identical to the original function. 

The trigonometric functions, however, have an unlimited number of derivatives that 
are repeated periodically, for example sin x .  cos x .  - sin x ,  - cos x .  sin x ,  . . . .  The 
approximation will become better the more terms of the series expansion are retained. 

Among the possible approximation functions, the Taylor series is characterized by 
the fact that the coefficients can be determined from data at a computation point alone, 
namely all the derivatives of the function as this point. This series has the great practi­
cal advantage that it� terms are powers and can therefore be ea�ily added to and mul­
tiplied with each other, and also easily integrated and differentiated; the derivatives 
of the function at the computation point that appear in the coefficients are constants 
for the operations listed above. Therefore, in physical analysis, complex functions 
are often approximated by a Taylor series with a limited number of terms: linear 
approximation with two terms and quadratic approximation with three terms. 

5.4.2 Approximation formulas for simple fu nctions 

The linear term of the Taylor series already yields approximations that are often used 
in practice: the derivation is shown for three ba�ic functions; for other cases you may 
ea�ily derive this yourself. You may, for example, use x = Xo for the computation 
point and determine the next highest derivative. 

Expansion around the computation point x = 0, applicable for Ix l « I 
1 .) y = ...Ii"'+X = (I + x) ! 

2 .) 

, I  I 
Y = 2 ( 1 + X)-2 

y = _1 - = ( I - x)-I I - x 
y' = ( I  - x)-2 

� I I I I 
� Y "" .... 1 + 0 + - . - (I + 0)-2 X  = I + -x I !  2 ·  2 

3 .) Y = sin x;  y' = cos x;  � y "" 0 + I . x = x 
4 .) Y = cos x ;  y' = - sin x : � y "" I - O · x  = I .  
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5.4.3 Derivation of formu las and errors bounds for numerical 
differentiation 

72 

Using the Taylor series, one can quickly obtain formulas for the numerical calculation 
of the first derivative y' . This also yields a measure for the respective accuracy. We 
show this for the linear approximation; the procedure can be easily extended to higher 
approximations. 

We a.�sume. in the following, that both y(x) and y(x + 6x) are known. 

y'(x)6x y"(x)6x2 
Taylor series y (x + 6x) = y(x) + --1 - + 2 

ylll(x)6x3 y(4) (x)6x4 + 
6 + 24 + . . .  -

'( )  y (x + 6x) - y(x) [y"(X)6X ylll(x)6x2 ] y X = 6x - 2 + 6 
+ . . .  

'( )  y (x + 6x) - y(x) O(A ) Y X = 6x - ux ; 

. y"(x)6x ylll(x)6x2 y"(x)6x 
with O(6x) = 2 + 6 + "

. 
� 2 . 

The last but one line shows the usual definition for the difference quotient supple­
mented by the term O(6x) (letter 0). which gives the deviation from the differential 
quotient due to neglecting the higher terms of the Taylor series. The deviation van­
ishes in the limit of 6x _ 0, since all terms contained in 0 depend at lea.�t linearly 
on 6x. For sufficiently small intervals. the higher powers of 6x can be neglected 
against the linear term and one obtains the important conclusion. that the procedure 
of differentiation according to the above formula becomes accurate linearly with 6x. 
If  one halves the width of the interval, the accuracy is  doubled. 

Using the Taylor series one can easily derive a method with better convergence for 
the calculation of the derivative. We write down the Taylor series once for a point that 
is 6x to the right of the computation point x and once for a point that is 6x to the left 
of the computation point. Subtracting the two series from each other. the terms with 
even powers drop out: 

y"(x) 16x I 2 
( I )  y (x + 1 6x l) = y(x) + y'(x) 16x l + 2 

ylll(x) 16x I 3  ylll' (x) 16x I4 + 
6 

+ 24 + " .  
Y"(x) 16x I 2 ylll(x) 16x I3 (2) y (x - 16x l) = y(x) - y'(x) 16x l + - ± . . .  2 6 
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yllf(x) l�x I 3  [ I ] - [2] � y(x + I � x l) - y (x - 1 �x D = 2y' (x) l�x l  + 2 
6 

+ . . .  

, = y (x + l�xD  - y(x - I �x l) _ O (yllf(X) I �X I
2 

. . .  ) y 2 1 �x l 6 
+ . 
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The fonnula obtained in this way converges quadratically with the width of the inter­
val; halving the interval 1 �x 1 improves the accuracy by a factor of four. 

One can interpret the fonnula� in geometric terms: the first one approximates the 
value of the derivative at the beginning of the interval by the slope between beginning 
and end. The second one approximates it by the slope between the beginning of an 
interval to the left and the end of an interval to the right of the computation point. 

One can continue with the above procedure and thus obtain even faster converg­
ing approximation fonnulas; however, one then needs values of the function at more 
point� to calculate the differential quotient. Therefore, one often sticks to the above 
approximation with quadratic convergence. 

5.4.4 Interactive visual ization of Taylor expansions 

In the following we consider two simulations for visualizing Taylor expansions. The 
first, Figure 5.2, uses the same setup that was employed for the calculation of deriva-
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Figure 5.2. Simulation. Taylor expansions of the Gaussian (blue, selection on the left-hand 
side) from zeroth to ninth order around the adjustable red computation point. The Taylor 
coefficient.. In can be read on the left. 
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Figure 5.3. Simulation. Approximation of a funl.:tion in the vicinity of an adjustable compu­
tation point via partial sums of the Taylor series; in the figure, the fr.1ussian is dr.1wn in red, 
the third degree approximation in blue and the deviation in green. The computation point in 
magenta can be pulled with the mouse and the degree of approximation can be increased or 
decrea.o;ed by one with the + 1 and - I  keys. Two free par.lIDeters a and b can be continuously 
adjusted with sliders and a third integer par.lIDeter m can be changed in the number field. The 
formula in the function field can be edited arbitr.uily. 

lives up to ninth order in Figure 5 . 1 .  The formulas for the preset functions cannot be 
edited. The speed of computation is so great that the approximating polynomial reacts 
to moving the computation point with the mouse virtually in real time. 

The figure shows the ninth approximation for the Gauss function, which can be se­
lected with the choice boxes above. In the number fields we now have the coefficients 
of the Taylor series. They only differ from the values of the derivatives via the factor 
� for the order n .  

I n  the following simulation o f  Figure 5 . 3  a parser i s  used to evaluate functions that 
can be edited. Using this simulation you can study the Taylor expansion for arbitrary 
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functions albeit at a slower speed of computation. Here the highest order is limited 
to 7. 

The Taylor approximation of the red function is shown in blue and the deviation 
2 

is plotted in green. Figure 5.3 shows a Gaussian function y = f(x) = e-'fi with 
the third approximation in the vicinity of the computation point, which is drawn in 
magenta and can be pulled with the mouse along the function. Using the keys + I and 
- I ,  the approximation order can be increased and decreased. 

This simulation allows for many possible experiments. In the selection field for 
functions, a number of standard functions can be selected (sine, exponential function, 
power function, Gaussian, hyperbolic functions, sin(x2» .  They contain up to three 
parameters and can be edited. You can also enter an arbitrary analytical function for 
the computation. 

Using a parser for the evaluation of the editable function slows down the computa­
tion considerably. Depending on the configuration of your computer, it can take up to 
a few minutes until the result for the seventh approximation appears. 

After opening the simulation you first call a function from the selection list for 
which initially the third approximation is calculated for a computation point of x = 
0.5. You can then move the computation point and change parameters, and the result is 
still shown practically in real time for the third approximation. The description pages 
of the simulation contain further details and suggestions for experiments that can be 
done. 

5.5 Graph ical presentation of functions 

In Chapter 6 we will  show interactive simulations that visualize functions in the plane, 
curves in space, surfaces and time-dependent surfaces. At this point we will give a 
short overview of the basic possibilities for visualizing functions. 

5_5_1 Functions of one to three variables 

Functions of one variable 

Functions y = f(x) are represented graphically in a two-dimensional system of 
coordinates, on which the independent variable is usually shown on the abscissa and 
the dependent variable y = f(x) on the ordinate. An interval on the x-axis is mapped 
to an interval on the y-axis. The mapping is only unique if there is only one function 
value YI = f(xl ) for a certain value X I of the independent variable. If one wants, for 
example, to show a circle, one needs to use two unique functions Y I  and Y2 for the 
parts of the circle above and below the abscissa: 
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Figure SA. Simulation. Choice of different functions in linear and logarithmic coordinates. 
The picture shows the exponential function. a and b are adjustable pardITIeters. 

y = f(x)  with l inear or logarithmic scaling of axes 

The special character of a function can be underlined if one uses logarithmic seal· 
ing on one or both axes. With single-logarithmic presentation, exponential functions 
appear as lines and with double-logarithmic presentation, powers as lines. In addition, 
one can highlight regions of interest on the abscissa or ordinate using logarithmic 
stretching or compression. One also uses logarithmic scaling if one or both of the 
variables cover a very large range of values. 

Figure 5 .4 provides a simulation showing a number of preset functions next to each 
other in linear-linear, linear-logarithmic and double-logarithmic scales. The formula 
field is editable, which allows you to study arbitrary functions in comparison. 

Further details and suggestions for experiments are given in the description pages. 

Parameter representation of curves In plane and space 

To show curves in the plane, that are non-unique with respect to the mapping from x 
to y, one uses the parameter representation, where both x and y are unique functions 
of a third independent variable, namely the parameter p.  

x = f(p) ; y = g(P) 

For the circle around the origin with radius r this is, for example: 

x = r cos q> ;  y = r sin q> 

-+ x2 + y2 = r2 (sin2 q> + cos2 q» = r2 . I = r2 
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where the parameter tP is the angle between the radius vector to the computation point 
and the x-axis. 

Using the parameter representation one can represent functions in the plane, which 
cover the coordinate ranges x and y multiple times, such a.� spirals. 

Extending the parameter representation to the three coordinates of space one can 
visualize space curves in this way: 

x = I(p) ; y = g (p) ; z = h(p) . 

Thus the number line is mapped to a line in the plane or in space. 

Unique surfaces In space 

With z = I(x , y) one can represent surfaces in a three-dimensional space. Thus 
the surface is a mapping of the xy-plane with a height profile that depends on x 
and y. On paper one can only show two-dimensional projections of this surface. The 
technique of simulations extends this view quite dramatically, since it enables you 
to change the projections interactively or automatically, such that the impression of 
three dimensions being present is received; we will use this approach intensively in 
the following subsection. 

Parameter representation of surfaces In three-dImensional space 

Using a parameter representation with two parameters one can represent surfaces in 
spaces that are not unique with respect to a plane of reference, for example the surface 
of a sphere or a torus with respect to the x y-plane. In these cases, one needs II (x , y) 
and h(x ,  y) . In parameter representation one writes: 

x = I(p, q) ; y = g (p, q) ;  z = h (p , q) .  

Thus the two number lines p and q are mapped to  a surface that lies in  space. 

Functions of three variables 

A density distribution, for example of charge or mass in space, is described using 
a function D of the three spatial coordinates x , y and z, i .e. D(x , y . z) . How can 
such functions of three variables be visualized? One obviously needs another variable 
beyond the three space coordinates. 

A qualitative option consists of a.�signing to a regular space grid of points a color 
coding for D(x , y, z) and choosing the density of points in such a way that the 
space stays "transparent". The grid is then projected on a surface, and changing the 
projection as a function of time again increa.�es the spatial impression. 



5.5 Graphical presentation of functions 78 

A second option is to use surfaces in space on which D(x ,  y, z) has a constant 
value. One can then stagger semi-transparent surfaces inside each other, or the con­
stant value of each surface can be changed as function of time. In the moving projec­
tion both possibilities yield a quantitative picture. In the first case one uses the opacity, 
and in the second case the time, as the additional variable. 

5.5.2 Functions of four variables: World l ine i n  the theory 
of relativity 

A physical event such as the ticking of the watch on my wrist takes place in a three­
dimensional space (x , y, z) and, because it depends on the time t, it can be considered 
as a four-dimensional function E :  

E = j(x , y , z , t) 

In a simulation this can be represented, for example, by calculating for a cohort of 
three-dimensional functions E(x,  y ,  z ,  ti ) for a number of discrete points ti in time, 
two-dimensional projections, and displaying these one after the other. In general this 
method has, of course, limited applicability. It is relatively simple, when dealing with 
a chain of events that have a lower dimensionality, for example in the ca�e of a prop­
agating surface in space during an explosion. In general one will restrict this method 
to a lower dimensional projection. 

This is especially the case when describing phenomena in the special theory of rela­
tivity. In this theory, the time t joins the three spatial dimensions as the "fourth dimen­
sion". In order for this variable to have dimensions of length, one usually normalizes 
t via mUltiplication with the velocity of light c = 3 X 1 08 m/sec: 

A four-dimensional chain of events - for example an exploding supernova - can only 
be visualized with difficulty a� a whole. To capture this phenomenon in its entirety one 
would like to imagine the whole explosion in a single moment. Indeed, Homer and 
the pre-socratic philosophers speculated around 500 Be about the god-like possibility 
of recognizing space and time as past, present and future, a� a unit. Around the year 
520, Boethius formulated such thoughts in his work Comfort of Philosophy. 

One circumvents this problem by doing away with two space dimensions for vi­
sualizations in the theory of relativity and plotting the chain of events on a plane 
diagram, for example with the time dimension c t on the ordinate and, on the abscissa, 
the space dimensions, x ,  in which the event takes place. The event chain of a body 
that is moving in the x-direction is then called the world line. 

This will be visualized with an example in Figure 5 .3, where a point object is mov­
ing with constant acceleration in the x-direction. The limiting velocity of light, i.e. 
the world line of a light flash x = ct is shown in red; in black, the event chain that 
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figure 5.5. Simulation. World line (blue) of a point object (magenta) that is acceler.lted 
unifonnly in one dimension. The black line shows the classically "possible" orbit. the blue 
line the orbit that can be realized according to the special theory of relativity. The red lines 
delimit the light cone of a light signal sent at the same time. The arrows originating from the 
object delimit its light cone. The constant acceleration can be adjusted with the slider. 

would be possible according to cla�sical mechanics. for which arbitrarily large veloc­
ities could be achieved; and in magenta. the actually possible event chain according 
to the theory of relativity. for which the velocity will approach the velocity of light 
but will not exceed it. The arrows show the respective light cotU!s in which all events 
caused by the object happen - all as seen from an observer at the origin. 

In this simulation the movement of the objects is shown as a function of time. 
Funher details are given in the description of the interactive simulation. 

In articles on the special theory of relativity the time is normally plotted on the 
ordinate and the space on the abscissa, such that the light cone opens up to the top. 
The classical acceleration parabola x = �t2 is then open to the right. 
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5.5.3 General properties of functions y = f (x) 
In the following we define imponant propenies of a function of one variable y = f(x) 
on its domain of definition D .  A function f(x) is :  

bounded. 

one-sided continuous 

continuous in Xo . 

continuous in the 
domain of definition D. 

one-sided differentiable in Xo . 

differentiable in Xo . 

differentiable in D. 

i f  in the interval of  definition D there i s  a maximum 
value (supremum) and a minimum value (infimum); 

if f(x) continues smoothly in one direction; 

if f(x) continues smoothly in both directions; 

if f(x) is continuous at all points in the domain 
of definition, i.e. there is no jump; 

if f(x) has at Xo a unique derivative 
in one direction; 

if f(x) has at Xo the same derivative 
in both directions; 

if f(x) is differentiable in every point of D. 

Corresponding examples are shown in Figure 5.6: 
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Figure 5.6. Properties of function gmphs f(x) in an interval of the variable x. ln the example 
on curvature the notations concave and convex are defined for a finite interval. 

The slope of the curve at a point is characterized by the direction of the tangent in 
the point and thus by the differential quotient f' (x) . At the maximum and minimum, 
i.e. at the extrema, the tangent is parallel to the x-axis and the tangent of the slope 
angle is zero. At the turning point the slope attains its largest or smallest value with 
respect to its viciniry; in the example we have a turning point with a positive slope. 
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The curvature of the graph of a function on an interval is defined as follows: 
Concave function graph (negative curvature): all points on the graph lie above the 

chord connecting the end points of the graph on the interval; the slope increases with 
increasing x .  

Convex function graph (positive curvature): all points on  the graph lie below the 
chord connecting the end point� of the graph on the interval ; the slope decreases with 
increasing x .  

The curvature at a point (x .  y), considered as an infinitesimal interval. is obtained 
as a limit for the vanishing width of the interval. It describes the change of the slope 
and therefore is equal to the second derivative I"(x) . Thus this quantity, as well 
a� the curvature, is a local quantity and. in addition, a function of x it�elf for those 
functions that can be differentiated twice. At the turning point the sign of the curvature 
changes; the curvature and thus the second derivative I" (x) vanishes at the turning 
point. 

The red curve in the second example has a kink at Xo where no unique slope is 
defined, but only a right-sided and left-sided derivative exist. It is therefore only one­
sided differentiable; its derivative is not continuous at Xo . The blue curve in the first 
example diverges at the end of the interval; it is not bounded and has no supremum. 

5_5_4 Exotic functions 

Functions can be of many different types. One of these, which i s  often given in text­
books and is both simple and exotic, gives food for thought, but is very well defined; 
it is given by 

I
(x) = 

{ I  for :c i�tional, 

o for :c ral10nal 

domain of definition 0 � :c � I .  
This function can obviously not be visualized graphically, since there are infinitely 
many rational and irrational numbers in the domain of definition, such that the values 
of 0 and I are nested indissolubly on the ordinate. This function is not continuous at 
any point and cannot be differentiated anywhere. 

A graphically attractive exotic function is the fractal Koch curve, which is obtained 
a� the limit of a combination of triangular lines. This function is. in contra�t to the 
above, continuous, but does not have a well defined slope and thus no derivative. 

The functions that are important for physics are, however, mostly well-behaved, 
with the exception of a few points. The following section demonstrates a few typical 
properties. 
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5.6 The l i m iting process for obtaining the differential 
quotient 
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After these preliminary discussions we want to visualize the limiting process involved 
in differentiation in a simulation for the sine function. Figure 5.7 shows the sine func­
tion y = sin x over somewhat more than a full period. The first (analytical) derivative. 
the cosine function d(sin x)/dx = cos x.  is drawn in yellow. A blue point. at which 
the limiting process will be observed. can be adjusted with the slider on the plot of the 
sine function. The large red point can also be adjusted along the sine curve. The line 
connecting these two poinl� is extended in green. 

The red and blue arrows show the difference of the ordinates (�y) and abscissae 
(�x) between the movable red and the fixed blue point. The magenta point indicates 
the value of the difference quotient �y / �x. (f you pull the red point to the blue point 
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· 1 . 2  
· 1 . 4  

D ifference and differential qu otient 

· 1 0 ·0. 5 0 0 5  1 .0 1 .5 2.0 2 5  3 0  3.5 4.0 4 .5 5. 0 5 5  e o  
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Figure 5.7. Simulation. Visualization of how the difference quotient approaches the differ­
ential quotient in the limit of t)oX _ 0 for the example of the sine function (black) and il, 
/iINt derivative (yellow). The position of the computation point in blue can be changed with 
the slider and the red point can be moved with the mouse. The small magenta point indicates 
the value of the respective difference quotient. With decreasing width of the abscissa interval 
it approaches the analytical differential quotient. 
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the line connecting them becomes the tangent and the point for the difference quotient 
moves to the curve for the first derivative. This is the limiting process L'..x --+ 0 of the 
difference quotient. You can reconstruct the curve of the first derivative by moving 
the blue computation point along the sine curve. In the description pages you will find 
hints for further useful experiment.� . 

The difference quotient obviously does not change, if the curve of the function that 
is drawn symmetrically to the red colored x-axis is moved up or down by a constant 
value c, the same applies to the differential quotient. This corresponds to the rule that 
the derivative of a constant vanishes. All functions that are different only by a constant 
value in the y-direction have the same derivative: 

2t Olffctcnbal quotient 

d d 
dx (f(x) + c» = dx f(x) . 

D ifference q u otient and differential qu otie nt 

• 
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Figure s.s. Simulation. Limiting process for the calculation of the second derivative (blue) 
for a sine function (black) that has been supplemented by a linear term. The computation point 
and the width of the interval can be adjusted using the slider and pulling the red point with the 
mouse and the linear term can be changed by pulling the rectangular purple marker. The first 
derivative drawn in yellow is then moved in the y-direction . 
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Applying the same line of thought to the determination of the second derivative (the 
figure shown above is also valid if one interprets the black curve as the first derivative 
and the yellow as the second derivative), it follows: 

d 2 d 2 

dx2 (f(x) + CI + C2X) = 
dx2 f(x).  

The second derivative (the curvature of the original function) is identical for all 
functions that only differ by a constant CI and a linear term C2X ' 

This is visualized via the simulation in Figure 5.8, where the second derivative 
- sin x is plotted in addition. A purple rectangle is also present, which can be pulled 
to add a linear term C2X to the sine function. This results in the first derivative being 
shifted by the value C2 in the y-direction. The magenta colored point of the difference 
quotient is again led to the curve of the first derivative via the limiting process. The 
second derivative is not affected by changing C2 . 

The second derivative characterizes a function up to two constants, which are initial 

values of the function, namely the value of the function itself and the first derivative 
at a point chosen a� x = 0, without loss of generality. From the cohort of all func­
tions that have the same second derivative, only the initial values determine a unique 
function. 

This train of thought can also be applied to higher derivatives. The nth derivative 
characterizes a cohort of curves with n parameters. 

5.7 Derivatives and d ifferential equations 

For the sine function we have a simple relationship between the function and il� sec­
ond derivative; it is equal to the negative sine function. The same relationship applies 
to the cosine function. 

y = sin(x) � y' = cos(x) � y" = - sin (x) => y" = -y 

y = cos(x) � y' = - sin (x) � y" = - cos(x) => y" = -y o 

For these trigonometric functions, the differential equation expresses the fact that the 
absolute value of the derivative is equal to the function value having the opposite sign. 
What does this mean in concrete terms? 

If the function value y is positive and large, the curvature is negative and large, 
leading quickly to smaller values of y. If the function value is negative and has a 
large absolute value, the large positive curvature quickly leads to a larger value. If 
the function value is small, the curvature is also small and therefore an increa�e or 
decrea�e continues nearly linearly as at a turning point. 

The negative relationship between the function and its curvature thus leads to oscil­
lating behavior. You are encouraged to confirm these statemenl� in the previous two 
figures. 
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The fact that both trigonometric functions sin x and cos x satisfy the same dif­
ferential equations shows their close relationship as oscillating functions. It follows 
immediately that the sum of sine and cosine functions satisfies the same differential 
equation. (Also check that this sum is, according to the addition rules for trigonomet­
ric functions, identical to a phase-shifted function.) As a second example we consider 
the exponential function for both positive and negative exponents: 

y = eX � y' = eX ; y" = eX � y' = y and y" = y 
y = e-x � y' = _e-x

; y" = eX � y' = -y and y" = y . 

Now the second derivative also has the same sign as the original function. What do 
these relationships mean in concrete terms? 

The curvature is equal to the function value. The larger the function value, the 
larger the curvature. Any curvature already present increases with increasing y .  If the 
slope (first derivative) ha� the same sign a� the function, the function will grow faster 
and faster beyond any boundaries - it diverges. If the slope ha� the opposite sign to 
the function, the function decreases faster and faster to zero; it converges to O. The 
differential equation y" = y describes both behaviors. 

As shown for the trigonometric functions, the differential equation is then also valid 
for the sum of two exponential functions. If one takes exponent� with different signs 
for the two functions, the hyperbolic functions are covered: 

eX _ e-x 
sinh(x) = 2 ; 

eX + e-x 
cosh(x) = 2 

Thus the differential equation y" = y describes the exponential and hyperbolic 
functions and this common property shows their close relationship. 

Differential equations describe the local, internal structures of function, their 
character, and they are the "generators" of cohorts of related functions. 

5.8 Phase space diagrams 

All variables of a system constitute it� phase space. A selection of a few variables 
is referred to as a phase space projection. For a differential equation y' = y' (y, x), 
y (x), y'(x) and y'(y) are three meaningful projections of the phase space. 

The general characteristics divergent/convergent/oscillating of a differential equa­
tion can be visualized well in a diagram that shows, in addition to the function y(x) 
and its derivative y' (x), the projection y'(y) . 

In Figure 5.9 the phase space projection for the system y(x) = sin(nx) with the 

differential equation y' = dy/dx = n cos nx = n J I - sin2 nx = n � is 
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Figure 5.9. Simulatiun. Phase space projections for y = sin(nx) (n = I in the figure). 
The left window shows y (x) in blue and y'(x) in green. The zero line is marked in magenta, 
The right window shows y' (y). The parameter x range detennines the size of the interval. the 
pardmeter n the number of periods in the interval. The blue point in the pha..e space is the end 
point of the interval. 

shown in the right-hand window, The adjustable constant n determines the number of 
periods in the interval 0 :s: x :s: 21f, 

For the case of the trigonometric function, y' (y) is for n = I a circle that is trans­
versed periodically; for n < I the curve becomes an ellipse because of the factor n ,  
and i s  not closed (why?). For n > I this ell ipse i s  transversed multiple times. 

In this case, the differential equation is particularly simple. More complex differ­
ential equations of order n define families of more involved functions. One can, how­
ever, always differentiate between solutions that converge, diverge or oscillate with 
increasing variables, and the phase space projections y <n) (y) make this difference 
particularly apparent. 

Later we will visualize solutions of differential equations in more detail .  

5.9 Antiderivatives 

5.9.1 Defin ition of the antiderivative via its differential equation 

The first derivative, the differential quotient, describes the change of a given function 
y = f(x) in its dependence from the variable x. We can now a.�k the converse ques­
tion: Is there a function F(x) whose change is described by f(x) , and what properties 
does this function have? If such a function exists, it is called the antiderivative of f(x) 
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or it� indefinite integral. It is described by a very simple differential equation: 

F'(x) = f(x).  f given, F wanted 

F(x) = Integral of f(x) = f f(x)dx 

.... :x 
f f(x)dx = f(x) .  
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The integral sign serves as a reminder that the calculation proceeds via a summation 
and the notation f(x )dx reminds us that a limiting process takes place for the calcula­
tion for which the variable interval becomes infinitesimally small. that is. 6x .... dx ; 
we will visualize this shortly. 

This differential equation obviously defines a whole cohort of functions. which can 
differ by a constant value. because the derivative (change) of a constant vanishes. Thus 
the indefinite integral of a given function is known up to a constant. 

d d 

dx 
(F(x) + C) = 

dx 
F(x) = f(x) .  

If  the differential equation has a meaningful solution. i.e. if  the function is integrable. 

the indefinite integral is analogous to the differential quotient of a function. which 
describes. up to a constant, a local property of the integrated function f(x) .  

5.9.2 Defin ite integral and in itial value 

What is the meaning of the integration constant? As long a� we do not decide on the 
range of the variable x it is simply an arbitrary number. 

If. however. we start at a certain initial value XI and take into account that f(x) is 
the change F' (x) of the antiderivative, then the antiderivative describes the process of 
the changes in F(x) given by f(x) from the variable value XI onwards. 

We now show this in a simple example from physics: we assume that f(t) is the 
time-dependent velocity. v (t). of an object. The result of this time-dependent velocity. 
which can also have negative values. is the distance traveled F(t) i .e. x (t) .  Thus v (t) 

determines the distance from the initial point a� a function of time. 
The constant C is the initial value F(x l ) of the integral for the variable XI . in our 

example the position from which we start. 
Provided the range of the variable is open. i.e. X > XI . the definite integral defined 

in this way is a function of the variable x .  

i f  we  are interested i n  the behavior of the antiderivative in a closed interval X I =:: 
X =:: X2 . the definite integral becomes afixed value. The value at the end of the inte­
gration range is the result of the initial value and of all changes until the final value 
of x. and is given by the antiderivative F(X2) .  The change within the interval results 
from the difference to the initial value. Calculating this difference also gets rid of the 
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unknown integration constant, if we repeat the same line of thought for the initial and 
final value with an arbitrary initial value outside the interval: 

This relationship is known as main theorem of differential and integral calculus. 
Thus, in order to calculate a definite integral we "only" need to know it� antideriva­

tive. To determine the antiderivative for an arbitrary function f(x) is, in general, not 
as ea�i1y possible a� for the derivative. Ba�ic functions can be easily integrated by in­
verting the well known relations for their derivatives; for many complicated functions 
there are tables. There are also quite a few useful general rules, which can help to find 
the antiderivative, for example "integration by parts". But there is, unfortunately, no 
rule that always succeeds. 

Therefore, numerical methods play an especially important role for integration, as 
we will discuss later. 

5.9.3 Integral as l i m it of a sum 

In analogy to calculating the partial sums of a series, in an x y-plot of the function one 
can define the integral as the surface measure of the function value in an interval of 
the variable. It is obvious that one cannot simply calculate a sum of function values, 
since their number would be infinitely large. The factor to be used is analogous to the 
index difference for series and is equal to the width of the interval. If one multiplies 
this factor with a suitably chosen function value we obtain a mea�ure for the surface 
under the function in the interval. 

Since functions change in general when the variable changes, choosing an arbitrary 
function value from the interval (for example at the beginning, in the middle or at the 
end) can only yield an approximation. In this case, one decomposes a larger interval 
[XI : X2] into n intervals chosen equal for expedience of width n = (X2 - XI )/ 6x and 
sums over the approximate measures of the sub-intervals. Then the integral is defined 
as the limit of this sum for a vanishingly small sub-interval. 

Measure of the sub-interval 6x: f(x; }6x; Xi i n  6x 
n 

Total measure of the region X2 > X > X I :  L f(Xi )6x 
i= 1  

Integral: lX2 f(x)dx = lim t f(Xi )6x . X I I'u-+° i= 1 
The definite integral provides the area between the function f(x) and the x-axis in 
the region of integration. 
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Figure S_IO_ Simulation. Linriting processes for the integration using the step function ap­
proximation (green). shown for the example of the sine function (blue). For each interval. the 
initial value is assumed to be valid. The red curve is the antiderivative. the point filled in green 
indicates the approximation for the definite integral in the integnltion region whose initial and 
final point can be adjusted. The number of intervals n (n = 10 in the figure) can be adjusted 
with the slider. 

The limiting process is shown in the interactive simulation of Figure 5. 1 0  

The sine function to be  integrated i s  drawn in blue. while the analytical integral 

function is drawn in red. The small blue point. which can be moved with the slider. 
indicates the initial point for the integration and thus. at the same time, the zero point 
of the formal integral. The thick end point in magenta can be adjusted with the mouse. 
The second slide determines the number of sub-intervals . 

The green rectangles represent the contribution for the individual interval. if the 
initial value of the function in the interval is assumed to be constant for the whole in­
terval. The sum of the contributions for all intervals yields the large green point. With 
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decreasing width of the intervals, it approaches the analytically calculated integral. 
For a sufficiently large number of intervals this value runs along the integral curve 
when pulling the end point. 

You will find further instructions for experiments in the description pages of the 
simulation. 

5.9.4 The defin ition of the Riemann integral  

We still require a criterion to enable us  to  decide whether a function can be integrated 
at all in a given region. In the classical sense this is provided by the integral definition 
of Riemann. 

For this purpose we define for the intervals given by Xo < . . . < Xj < . . . < x" with 
interval widths Xj - Xj -I = llxj two sums, namely the upper sum and the lower sum. 
of which the first one uses the largest function value, the supremum, in each interval 
and the second one uses the smallest function value, the infinum. in each interval. If 
both sums converge to the same value for n � 00, the one from above the other one 
from below. the function is considered as integrable in the Riemannian sense 

First measure for sub-interval lljx :  ll jx . supremum of I(x) in (lljx) 
Second mea�ure for sub-interval llj x :  llj x . infimum of I (x) in (llj x) 
First sum measure for region X2 > x > XI : 

" L lljx . supremum of I(x) in (llj x) 
i = 1 

Second sum measure for region X2 > x > XI :  
" L lljx . infimum of I(x) in (lljx) 

i = 1 lX2 
the Riemann Integral I(x)dx exists. if 

x \  
" 

lim " lljx . supremum of I(x) in (llj x) 11400 L...J j = 1 
" 

J, lim " llj x . infimum of I(x) in (lljx) . n-+oo � i = 1  
I n  the following interactive simulation shown i n  Figure 5 . 1 1 . the construction of the 
Riemannian sums is demonstrated using the example of the sine function. In the left 
window the upper sum (supremum) is used and in the right window the lower sum 
(infinum). The width of all intervals is the same. The analytical integral is shown in 
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Figure S.lI. Simulation. Limiting process for the Riemann integr.tl for the example of the 
sine function (black); the antiderivative is yellow. Integration region and number of intervals 
can be adjusted. 10 intervals in the figure. For the upper sum the highest value is used and for 
the lower sum the smallest value is used in each interval. The re<.;tangular markers indicate the 
approximations for supremum (left window) and infimum (right window). 

yellow. The initial and final x-values can again be adjusted as well as the number of 
intervals. With increasing resolution both sums tend to the same value. 

The initial x-value can again be adjusted with a slider and the final x-value (ma­
genta) can be pulled with the mouse. The number n of sub-intervals in the integration 
region is adjusted with the second slider. The analytical determined integral is indi­
cated in yellow. lt� initial value is given by the initial ordinate of the integration region. 
The point that is surrounded by a square shows the sum of approximating intervals. 

If it is known that a function is Riemann-integrable. then any sum that uses, as a 
measure, any value of the function in the sub-intervals. converges against the inte­
gral. Thus one has a lot of freedom in the choice of numerical integration method. 
You are urged to compare the last two figures. The step-function approximation is 
neither equal to the approximation with the supremum nor to that via the infinum. but 
converges to the same limit. 

As an example for a function that cannot be integrated in the Riemannian sense, 
the exotic function mentioned above, can be considered: 

f(x) = { I  for x i�tional. 

o for x ratIonal 

domain of definition 0 � x � I .  

In its domain of definition it has obviously an upper sum I and a lower sum 0, since 
there are both rational and irrational numbers in every interval of an arbitrarily small 
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length llx > 0, and thus there exist function values of 0 and t .  Thus the upper sum 
and the lower sum converge, but not to the same value, and therefore the function is 
not Riemann-integrable. 

5_9_5 Lebesgue i ntegral 

The previous statement is not really satisfactory. The number of rational numbers is 
much smaller than that of the irrational ones, and therefore the function f(x) has the 
value I for nearly all values of x. Therefore, the integral of this function should be 
close to I .  

This question can be more easily answered with the alternative notion of the Le­
besgue-integral. For this approach one subdivides the integration region in stripes 
paraUel to the x-axis and a�ks for the limit of the sum over these intervals, each inter­
val contributing the product of the function value in the interval and the corresponding 
Lebesgue-measure of the interval on the ordinate: 

1L(lly) = Measure of all x-values, whose f(x) lie in lly . 

In the exotic example the top stripe has the function value I and the measure of its 
variable interval is (for the moment approximately) I ,  since nearly all numbers are 
irrational .  The lowest strip has the function value 0, independent of the measure for 
the variable interval. 

The exotic function is therefore Lebesgue-integrable and the result is I . 
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Figure S.12. Simulation. Interval subdivision for Riemann and Lebesgue integml; the func­
tion is shown in blue, the antiderivative in yellow and the red points indicate the approximation 
for the chosen number of points n. The integration region can be adjusted. For the Lebesgue 
integral the correct measure for the limit was already used. 
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The advantage of the integral definition of Lebesgue is that, when using it, the 
integral notion can go beyond the domain of numbers to sets in general, if these sets 
can be decomposed into subsets, which can each be measured in the sense of a finite 
area. The following holds: a function that is Riemann-integrable is also Lebesgue­
integrable but the converse is not always true. Thus the Lebesgue integral is the more 
general notion. 

In the simulation of Figure 5. 1 2  we visualize the integration of a parabola on the 
left-hand side using Riemann's approach and on the right-hand side with Lebesgue's 
approach. For the Lebesgue integral, the interval measure was calculated in such a 
way that the measure is exact irrespective of the width of the interval. 

5.9.6 Ru les for the analytical integration 

As for derivatives, there are a number of important and general rules (we drop the 
integration constant in the following for clarity). 

f Cdt = C f dt = Ct constant C 

with g = g(t ) and h = h(t) f (g(t) + h(t» dt = f g(t)dt + f h(t )dt Additivity 

f gdh = gh - f hdg Integration by parts 

f j(t)dt = f j(g(x» g'(x)dx 
Introduction of a new variable x via t = g(x) . 

For the particularly useful rules of partial integration and substitution of a new vari­
able, it is important to find functions that can be easily integrated, as for example the 

exponential function. power.� of x and the trigonometric functions. 

The following formulas for ba�ic functions without the integration constant follow 
very easily from the formulas given above for the first derivatives and therefore we 
only list those with the greatest practical importance: 

f Cdt = Ct ; f t ,,+ 1 t "dt = -- '  
n +  I ' f atdt = f et 1no  = l:�; f sin tdt = - cos t ;  

f �dt = In t ; f cos tdt = sin t . 
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The analytical integration of complex functions that can be integrated in principle is, 
as a rule, more tedious than the always easily achievable differentiation. Therefore 
there exist voluminous collections of integrals in the corresponding text books, manu­
als and on the internet. Numerical computer programs such as Mathematica also have 
a wide range of formal integrals built in, which one can access as formulas if one 
enters the function to be integrated. 

It is obvious that numerical integration methods play a very imponant role, since 
it does not matter for their application whether an integral of the function to be inte­
grated is known analytically or not, and since one can even integrate functions that 
are only known as discrete measured values f; . 

5.9.7 N u merical i ntegration methods 

Integrals often have to be calculated numerically, if it is not possible to determine the 
anti derivative analytically. In this ca�e the sums obtained using step functions con­
verge only relatively slowly when decreasing the interval widths; one would therefore 
have to subdivide the integration region into numerous sub-intervals to achieve a high 
level of accuracy. 

Therefore, approximations of the function f(x) other than by step functions can be 
used in order to reach convergence faster. An obvious approximation when looking at 
Figure 5. 1 2  consists of not taking the value f(Xi ) at the beginning of the interval as 
constant for the interval (step{unction rectangle approximation), but to use the mean 
value between the initial and final values 4 If(Xi )  + f(Xi + I » ) .  This corresponds 
to a trapezoidal approximation, where one adds to the staircase the triangle leading 
to the next function value; the curve is now approximated via the initial value in the 
interval and the secant connecting the final and initial value with the slope Yil::;Yi . 

The approximation of the function becomes even more accurate if one uses a parab­
ola (Simpson 'sIKep/er's method) that is fixed via three consecutive function values. 
This now also takes the curvature (second derivative) in each interval into account 
approximately. Thus those regions of the function that possess, like a parabola, no 
turning points in the respective sub-intervals (Xi . Xi + I )' are approximated well .  One 
can continue is this manner if one uses polynomials of third or fourth degree, which 
then also allow for the representation of turning points. However, one then needs 
to use more and more intermediate points in each sub-interval. Therefore, this ap­
proach is usually restricted to the parabola, where a sufficiently small interval is 
chosen. 

All these methods have the advantage that the approximation of the function in 
terms of constants, secants and parabola� can be quite easily integrated in the interval. 

Xj+djX  X I +dj X  
Rectangle approximation: Y = Yi � r ydx � r Y l dx = 8iX . Yi lXi }XI 
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lXi +6iX Yi+ 1 - Yi [ (Xi + �iX)2 - x
? ] ydx ::::: � ' xy ' + I - x · (x ·  + � ·x - x · ) Xi I I �i X 2 I I I I 

�i X �i X = �iXYi + -2- (Yi+ 1 - Yi )  = -2- (Yi + Yi+ l ) rXi +6i X 1Xi +26iX 
Parabolic approximation: lXi ydx ::::: Xi (ax2 + bx + c)dx 

�i X  = -3- (Yi + 4Yi+ 1 + Yi+2) . 

The simulation in  Figure 5. 1 3  compares the three method.� for two adjacent sub­
intervals. As an example we again consider the sine function (blue) with its analytical 
integral (red). Initial and end point of the integration region can be changed. The sum 
of both sub-intervals is shown as a green point. The simulation shows the great supe­
riority of the parabolic approximation, whose result agrees with the red curve even for 
a coarse subdivision of the interval. 

Calculating the parameters of a parabola that goes through three points can be te­
dious, but this is only necessary if, as for this simulation, the osculating curves are 
calculated. The following steps are required for the calculation in each sub-interval 
Xi = X I , 

! (Xi + Xi+ l ) = X2, Xi+ 1 = X3 : 
coordinates in the interval X I . YI X2 . Y2 X3 . Y3 

with X2 - XI = �ix/2: X3 - X2 = �i x/2: �iX = X3 - XI 

hi&l;;U;lIlIill���""""""""���""""""""���"·· � 
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Figure 5.13. Simulation. Step-function, tmpezoidaJ and pambolic approximations for the nu· 
merical integrdtion of the sine function (blue) with two sub-intervals. When reducing the size 
of the intervals one can compare the convergence of these approximations. The closer the 
numerical value (green) point is to the known analytical curve. the better the approximation 
method performs. 
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general parabola Y = ax2 + bx + c 
the parameters a, b, c are determined from the function values: 

I � YI = ax; + bX I + c , 2 � Y2 = ax� + bX2 + c , 3 � Y3 = ax; + bX3 + C . 
Solution for a , b, c yields 

2 a = �x2 (YI - 2Y2 + n) 
2 b = -(Y2 - YI ) - (X I + x2 )a �X 
2 2 = �x (Y2 - YI ) - �x2 (XI + X2)(Y I - 2Y2 + Y3) 

2 2 2 c = Y I - aXI - bXI = Y I - XI �x2 (YI - 2Y2 + n) 

- XI [:X (Y2 - YI )  - (X I + X2) ��2 (YI - 2Y2 + n)] . 

For the approximation to the integral over the sub-interval �iX one obtains, using the 
parameters of the parabola and integrating a surprisingly simple formula, for which 
only the three function values and the width of the interval are required. lXi+ 1 lxi+ 1 

parabolic approximation of Xi f(x)dx � Xi (ax2 + bx + c)dx 

�Xi = 7(Yi + 4y¥ + Yi+ I ) . 

5.9.8 Error estimates for n umerical integration 

To get an idea of the accuracy of the different integration methods, we expand the 
function in a Taylor series and use, a.�suming the interval is sufficiently small, the first 
neglected term as an estimate for the error. To simplify the notation, we expand the 
function in a Taylor series around X = 0 up to the fifth order: 

x2 x3 f(x) = y(x) = y(O) + y'(O)x + y"(O) 2! + y"'(O) 3 ! 
x. xS + y(4

)
(0)_ + y (S

)
(O)_ 4! 5 ! 

I) f(x)dx = y(O)�x + _Y_�x2 + _Y_�x3 
16x ' (0) " (0) 

o 2 3 ·  2! 
y"'(O) y (4

)
(0) y (S

)
(O) + --�x. + ___ �xs + ___ �x

6 
4 · 3 ! 5 ·  4! 6 ·  5 !  
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I<1X f(x)dx = f<1X f(x)dx + 10 f(x)dx -<1x 10 -<1x 
[ , 11 (0) (4) (0) ] 

= 2 y (O)�x + ��x3 + ��x
5 

l<1x/2 [ �X y"(O) ( �X ) 3 y (4) (0) ( �X )
5
] f(x)dx = 2 y (O)- + -- - + -- - . -<1x/2 2 31 2 51 2 
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For the slep{unction method we use only the first term y(O) in I ). The error for 
each interval is thus of the order �x2 . If one wants to know the error for the entire 
integration region, one ha� to sum over the L/ �x intervals. Thus the total error is 
proportional to �x. Doubling the resolution leads to halving of the error or doubling 
of the accuracy. 

For the trapezoidal method the first two terms are used in I ). The interval error then 
is proportional to �x3 , thus the total error depend� on �x2 . Doubling the resolution 
leads to an improvement in the accuracy by a factor of 4. 

For the parabola method we expand the function from the middle of the double 
interval once to the right and once to the left and the integral over the whole interval is 
the sum over both sub-intervals, The result then only contains odd powers of �x,  For 

Accuracy in dependence on the number of intervals 
1 . E+00 ,----_""""----------,-------------, 
l . E·01 +---�------'-::! .. "" .. ---"'='_II_----------_1 

." "  
1 . E.02 +-___ --"".�-----+---'C':":"O" __ �------__I 

�'" 
1 . E·03 +---------" ...... ---11---------""-_-..., 
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Figure 5.14. Comparison of accuracy achieved for the numerical integmtion using the trape· 
zoidal and parabolic approximations as functions of the number of sub-intervals n .  For 100 

sub·intervals the pambolic approximation is at least jive orders of magnitude more accumte. 



5. 1 0  Series expansion (2) :  the Fourier series 98 

the parabola we also take into account the curvature, i.e. y". The error for each interval 
is then proportional to lns , the total error is thus proportional to �X4 ; doubling the 
resolution leads to an increase in the accuracy by a factor of 1 6. In addition, the large 
factor 5! = 120 contributes to a small error. 

Important hint: the approximating parabola used for the integration is nOI identical 
with the third partial sum of the Taylor series. This one only agrees with the function 
at the computation point, while the approximating parabola used for the integration is 
equal to the function at all three points. 

Figure 5 . 1 4  compares the deviation from the analy1ic integral for the sine function 
in double logarithmic scale for the trapezoidal and parabolic methods a� functions of 
the resolution (number) of sub-intervals. The points represent the numerical integra­
tion results over a constant integration region, the lines represent the functions a n-2 

and bn -4, with a and b chosen in such a way that both lines coincide with the numer­
ical error for the smallest number of intervals. The further behavior of both functions 
and the points confirms the expected dependence on n .  

This example should demonstrate to you how versatile already the Taylor series of 
the fifth order is and, therefore, why we have treated it in such depth. 

5.1 0 Series expansion (2) : the Fourier series 

5.1 0.1 Taylor series and Fourier series 

The partial sums of the Taylor series approximate a function /(x) in the vicinity 
of the computation point Xo via partial sums of a power series. If it is necessary to 
approximate a function over a larger interval, one would need terms of a very high 
order. The polynomial obtained by truncating the Taylor series would have to have as 
least as many turning points as the function. For periodical functions this would be 
very tedious for intervals larger than the period. 

Periodical functions have great practical importance in telecommunications and 
electrical engineering. For such functions, approximation using the superposition of 
periodical standard functions (sine and cosine) is much better suited. One expands the 
function into a series that consists of the fundamental tone and the overtones, i.e. of 
the functions sin nx and cos nx with integer values of n.  

The analogy to the analysis of a vibrating string is immediately obvious: s in  x de­
scribes the vibration of the fundamental tone, sin 2x that of the octave, sin 3x that of 
the fifth above the octave and so on. For a string that is fixed at both ends x is twice 
the string length. The variable x is now the product wI of the angular frequency w 
and the time I .  

I x = wI = 21f VI  = 21f T ;  v frequency of oscillation; 

T duration of one period. 
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Depending on the shape of f(t) ,  one superimposes more or fewer of these sine/cosine 
oscillations of a certain amplitude. The set of amplitudes of the overtones, i.e. the 
coefficients of the series expansion, represents the spectrum of the periodical oscil­
lation. Spectrum and oscillation forms are corresponding representations of the same 
phenomenon. This representation in terms of superimposed sine and cosine functions 
is called the Fourier series of f(/) . 

While the partial sums of the Taylor series approximate the function in the proximity 

of a point, the partial sums of the Fourier series are approximations for the entire 
interval of the fundamental period and therefore also - because of the periodicity of 
the functions considered - for an unlimited region of the variable x. The Fourier series 
does not have to coincide with the function at a specific computation point, unlike the 
Taylor Series, which must coincide with the function at the computation point. 

It depends on the properties of f(t) how many overtones need to be superimposed 
to approximate the function at nearly all points. If one does not interpret the notion 
of convergence strictly, then Fourier series converge for all functions, even for non­
continuous ones. The convergence is then not necessarily monotone, i.e. it can be 
better for some values of t and worse for other values of t, and may even fail for 
some values ! At discontinuities one observes overshooting even for higher orders of 
the series. This is called ringing in telecommunications. 

S ince the periodical phenomena that we consider here are mostly oscillations in 
time, the variable is usually x = wI. To also model the phases of the individual 
overtones, we use a sum of terms with sin nx and cos n x. The sum then represents a 
phase-shifted sine or cosine function. Thus the general Fourier series reads: 

00 
f(t) = 

a; + La" cos(nw/ ) + b" sin(nwt) . 
,,=1  

For a given spectrum ao , aj , bj , i = 1 , 2 , . . .  , one can calculate f(/) .  For a given 
function f(t) ,  all coefficients can be determined and thus the spectrum is known. 

5.1 0.2 Determination of the Fourier coefficients 

How do we now obtain the coefficient� a" and b" ? 
For the Taylor series, we made use of the fact that, following differentiation, all 

terms that still contain the distance x to the point of computation become zero, such 
that the coefficient of the corresponding constant term gives up to a factor the corre­
sponding derivative at the point of computation. 

For the Fourier series we instead begin by integrating the product of the function 
and the overtones cos(mw I) or sin(mw I) ;  m = I ,  2, 3, . . .  over one period T of the 
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fundamental frequency (m = I )  

T T OO ) [ cos(mwt)f(t)dt = [ cos(mwt)(au 
+ L a" cos(nwt) + h" sin(nwt)  dt 

Jo Jo 2 ,,=1  
T T OO ) [ sin(mwt)f(t)dt = [ Sin(mwt ) (ao + La" cos(nwt) + h" sin(nwt)  dt .  

Jo Jo 2 ,,=1  
This initially looks a bit complicated; however, i t  turns out that the integral over the 
constant, i .e. the first term before the sum symbol, nearly always vanishes, since the 
integral over a period of cosine or sine is zero. Only for m = 0 does one obtain a 
contribution, since we have: cos O = I = const. Therefore the following applies : au I iT 

- = - f(t)dt.  
2 T 0 

In addition, the integral over the product of an overtone m and a second overtone n 
is zero, if m and n are not equal. This also applies when a cosine and sine function 
are multiplied, because of the sine functions are odd while the cosine function are 
even with respect to x = O. Therefore, we are left only with the integrals cos2 n x  
or sin2 n x ,  which are both T /2. Thus the coefficients can be easily written down, 
but this requires the determination of integrals, which often necessitates numerical 
calculations. 

a" = % J cos(nwt)f(t)dt ;  b" = % J sin(nwt)f(t)dt .  

The simulation in Figure 5 . 1 5  visualizes these circumstances that simplify the calcu­
lation of the Fourier coefficients. From a selection field, a product of periodic func­
tions of the general form that we are interested in is chosen: cos(mx)(a cos(nx) + 
h sin(n x» . 

With slides, the parameters a and h and the integers m and n can be chosen. The 
function is drawn in red. After activating the field entitled integral the blue integral 
function is calculated over a period of the fundamental oscillation from 0 to 2Jr. The 
final value is the definite integral of interest to us. 

As a first step, we convince ourselves that integrals over sine and cosine vanish and 
that the addition of sine and cosine functions results in a pha.�e-shifted sine or cosine 
function, whose integral also vanishes. The calculation of the integral for the product 
of the function defined above, with an overtone of initially unknown order, shows that 
indeed all contributions vanish except for the one where the overtones are identical 
and the function type (sine or cosine) is the same. One realizes that the symmetry of 
the different functions with respect to the midpoint of the period on the x-axis is the 
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Figure S.IS. Simulation. The simulation visualizes the orthoK01Ullity of the trigonomet­
ric functions. The red curve represents the product of cos mx and the adjustable overtone 
a cos nx + b sin nx; in the figure we have m = 10 and n = 8. The blue curve shows the 
integml, whose final value (definite integral over one period of f(t» vanishes for m f n .  
For m = n we obtain, when integrating over a cos mx cos mx,  the result aIr, while the inte­
gnu over the mixed term b cos mx sin mx vanishes. The integmtion is started by selecting the 
corre�ponding option box. 

reason for this specific result. Thus we have: 

loT cos(mwt)dt = 0; loT cos(mwt) sin(nwt)dt = 0; 

loT {o for m f n 
cos(mwt) cos(nwt)dt = 

o T/2 for m = n . 
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This property of the functions sine and cosine means that they are an example of an 
orthogonal system of functions. Two functions are called orthogonal if the following 
applies: 

T 10 t. (t) h  (t)dt = 0 for h (t) i: h (t) .  

In the description pages of the simulation. more detailed instructions and hints for 
experiments are provided. After opening the simulation you choose the function type 
and press the enter key. The integration process is animated in order for you to see the 
difference between the integrals more easily when changing the functions. 

2 0  

1 5  

·2.0 

Calculation of the F o uri e r  c o effi ci ents ('P I) 

functlon fimctlon typlt 
18 '  IX · pi . b) ' sinln 'lC)l I y JsawtoOlll Sin 

Ea= l.o== I I b =QOO � C = I � r.;;;;:;;;;;order n = 1 0Q 
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Figure 5.16. Simulation. Calculation of Fourier coefficients for a choice of functions l(t ). in 
the figure for a sawtooth oscillation. fIt ) .  sin( lOt )  is drawn in red. and the integrdi function 
is drawn in blue; its final value corresponds to the coefficient blO of the 10th sine overtone. 



5. 1 0  Series expansion (2) :  the Fourier series 1 03 

5.1 0.3 Visualizing the calculation of coefficients and spectrum 

The simulation in Figure 5 . 1 6  visualizes the calculation of the Fourier coefficients for 
the fundamental tone and the first nine overtones for the following typical periodical 
functions: sawtooth, square wave, square· impulse and Gaussian impulse. To this end, 
the product of the functions under the integral sign is determined and drawn in red 
while the definite integral is shown in blue. The final value of the integral is, except 
for a factor 1C that was suppressed to get more easily readable values, equal to the 
coefficient of the selected order. The functions are provided with up to three param­
eters, a, b and c, that control the amplitude, the point of symmetry and the impulse 
width. From the simulation, the spectra of the functions shown can be obtained in a 
numerical and experimental manner. 

The interactive figure of the simulation shows the situation for the sine coefficients 
of l Oth order of a symmetrical sawtooth. The simulation is started by choosing a 
function and clicking on the enter key. The description pages and the instructions for 
experiments contain further details. 

5.1 0.4 Examples of Fourier expansions 

In the following interactive examples (Figure 5. 1 7a to Figure 5. 1 7c) the calculation 
of the coefficients takes place in the background. In the window the function is shown 
in red and the partial sum of the desired order is shown in blue. The function window 
is interactive such that many more functions can be entered and a few are suggested 
in the description. In a text window, the order of the analysis can be adjusted; the 
approximation order n to be used for the partial sum is selected with a slider. The 
simulation allows the use of very high orders. 

FIgure 5.17a. Simulation. Periodical square impulse (red) and il� Fourier approximation 
(blue) of 28nd order. The calculated order n can be chosen. 
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Figure S.l7h. Periodic sawtooth, modulated from the middle of the period by a high frequency 
sine function (red) and Fourier approximation of 1 8th order (blue). The modulation frequency 
can be chosen with the slider. 

Power .pectrum 

I :� r I I  ! I J I i ! , 1 
5 IttQutntY 10 

Figure S.17c. Frequency spectrum for the Fourier expansion of the modulated sawtooth in 
Figure 5 . 1 7b. The abscissa shows the order n of the overtone (fundamental tone n = 1 ); on 
the ordinate one can choose between displaying the individual coefficients or the total power 
in a given order. 

The calculation of the Fourier expansion of nth order follows immediately after 
entering the function. The diagram extends beyond the integration region of 2rr in 
order to see the periodic continuation in both directions. 

In Figure 5. 1 7a the Fourier expansion of order 43 is shown as an approximation 
for the symmetrical and periodic square impulse. For the square wave, one recognizes 
very clearly the typical overshooting at discontinuities, which does not vanish even 
for very high orders. 
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In Figure 5. 1 7b, using the same simulation, the approximation of 1 7th order is 
shown for a sawtooth oscillation, which has been modulated in a nonlinear fashion 
with a sine function of high frequency. 

The spectrum is shown in a second window of the simulation (Figure 5 . 1 7c). It 
can be changed between sine (0,, ), cosine (b,, ) and power spectrum (s� + b� ). This 
figure shows the spectrum of the modulated sawtooth, which is rich in ovenones and 
has a pronounced formant at the sixth and seventh ovenone. In acoustics, formant� 
are defined a� limited regions of ovenones with large amplitude; they significantly 
determine the tone quality. 

The description of the simulation contains further instructions. 

5.1 0.5 Complex Fourier series 

In the space of complex numbers, the Fourier series can be formulated in a very 
elegant way: 

ex> 
f(t) = L c" ei""'t 

n=-oo 
I loT 

c" = - /(/)ei""" dl. T 0 

The connection to the real representation is obtained via reordering the sum and com­
bining, starting with n = I terms with -n and n. Taking into account cos(-x) 
cos(x) ;  sin(-x) = - sin(x) we get: 

ex> ex> 
j'(/) = L c" ei""'t = L c,, (cos nwl + i sin nwt ) 

p=-ex> p=-ex> 

= Co + (c) + c_d cos nwl + i (c) - c_ ) sin nwl + . . .  

ex> 
/(/) = Co + L (c" + c_,, ) (cos nwt + i (c" - c_,, ) sin nwl) .  

p= ) 

As a connection between real and complex coefficients we obtain: 

00 = 2co ; 0" = c" + c_,, ; b" = i (c" - c_,, ) .  

The complex formulation i s  particularly used in  electrical engineering. I t  has the ad­
vantage that calculations with exponentials are in general easier and more transparent 
then those with trigonometric functions. 

For the fost numerical computation of the components of a Fourier series, a special 
algorithm has been developed, which is 1cnown as FFT (Fast Fourier Transformation). 
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5.1 0.6 Numerical solution of equations and iterative methods 

In mathematics and physics one often needs to determine the values of a variable, 
for which a function depending on this variable has certain value C .  An identical 
problem, a.� far as the computation is concerned, is to find the value of the variable at 
which two functions of one variable have the same value. One solves these problems 
by looking for the zeros of a function. 

We define Y I = [(x); Y2 = g(x) 
For which x is YI = C ?  Answer: [(x) - C = 0 

For which x is YI = Y2? Answer: h (x) 5' [(x) - g(x) = o. 
An analytical solution for finding zeros of a function can only be derived for very 
simple functions, thus it is an exception. Therefore, one needs a numerical method of 
solution that preferably worb for all functions and all parameter values. 

This is achieved with iterative methods that present a reversal of the question. One 
initially takes a value of the variable, which is probably smaller than the estimated first 
zero in the interval of interest, and calculates both the absolute value of the function 
value and its sign. Then one increa.�es the variable by a given interval (one can of 
course also start from the right and decrease the variable step by step). If the sign 
changes one has obviously crossed a zero. Now the direction of the movement is 
inverted and the step width is multiplied by a factor < I . Thus one finds boxes of 
decreasing size containing the zero until the deviation of the function value from zero 
becomes less than a predetermined tolerance. Then one continues with the process in 
the original direction, until all zeros have been found or until a certain threshold for 
the value of the variable or of the function itself ha.� been exceeded, and thus one is 
outside the region of interest. 

For this iteration process, ready made algorithms are available in standard numer­
ical computer codes, which include further refinements. Thus one can, for example, 
vary the width of the iteration intervals such that the character of the function is taken 
into account. For example with the Newton method one uses its slope the first deriva­

tive to adjust these intervals. Given the speed of today's computers, these refinement� 
are no problem for simple tasks. The following interactive example in Figure 5 . 1 8  
determines the zeros of afunclion that can be entered a t  will. This function i s  preset 
a.� a polynomial of fourth degree with irrational roots. 

The sequence shows the progression of a very simple iteration algorithm. The speed 
can be adjusted. The starting point of iteration (magenta) can be dragged with the 
mouse. The iteration proceeds with a constant step width to larger x-values until the 
sign of the function changes. The initial value is reset to the Ia.�t value before the sign 
change and the step width is decreased by a factor of 10 and the progression to larger 
x·values is resumed. This is repeated until the deviation of the y-value from zero 
falls below a given tolerance. In the simulation one can choose whether it stops after 
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Figure 5.18. Simulation. Animated iter-ltive calculation of the zeros of a function; a poly­
nomial of fourth degree is shown in the figure. The left window shows the whole calculation 
interval. the right. a section whose scale confonos to the resolution achieved. The last iterd' 
tion point is shown in blue in both windows while the three predecessors are shown in red 
in the "looking glass" window. The image shows a return after dividing the interval by 10. 
The magenta point is the starting point of the iteration. It can be dr-lwn with the mouse. The 
desired precision delta. the number of time steps per second (speed) and the abscissa rmge 
Xmu can be chosen. In the number fields the coordinates of the current iter.1tion point x. y and 
the initial point Xo. yo of the iteration are shown. In the fonoula window, any functions can be 
entered whose zeros are to be calculated. 

reaching a cenain accuracy. or whether all zeros in the variable interval are determined 
in sequence. In a single calculation the magenta point jumps to the calculated value. 
while the blue dot shows the first iteration value when determining multiple zeros. 

To enable you to follow the progressive iteration with a high level of accuracy. 
a section of the window is shown in detail like in a magnifying glass. and the scale 
adjusts to the increasing accuracy. 

From the zoom window of Figure 5 . 1 8  you can see that the curve is always nearly 
linear close the root of the curve. The regula falsi uses, as the next iteration value 
for x, the intersection of the secant formed from the two previous iteration points 
with the x-axis. It therefore lead.� quickly to the solution. We have, however. chosen 
the constant step width so that the process can be observed more easily. 

Further details and hints for experiments can be found on the description pages of 
the simulation. 



6 Visualization of functions i n  the space 
of real numbers 

In this chapter simulation is used to represent different types of functions graphically 
and to visualize them in their two or three-dimensional context. In most cases, the 
functions have up to four parameters that can be varied. 

Physical quantities, such as mass or length, are always associated with a dimen­
sion. It is our goal to convey an impression of the character and of the type of the 
functions y = f(x).  If one considers functions of physical quantities A, for example 
temperature T, voltage U and mass M, one has to make the argument of the function 
dimensionless, as a rule. Thus the x in f(x) is then understood a� T jK, U jV , M jkg 
and so on, where K stands for Kelvin, V for Volt and kg for kilogram. The physical 
quantities appearing in the following section are thus assumed to be made dimension­
less in this way. Hint: if the unit is changed then x also changes, for example we have 
Ljcm = I OOLjm. 

For some simulation files, in particular those of functions of three variables, one 
parameter is changed periodically as a function of time. The animation achieved in 
this way enhances the spatial impression and rapidly conveys a sense of the influence 
of that parameter. Animation is also used for the representation of parameter functions 
as paths on the plane and in space. 

Each file contains a description and hint� for experiments. 
In a selection window, a large number of standard functions y = f(x) are listed 

according to their type (for example Poisson distribution, surface wave). In a text win­
dow the fonnula of the selected function is shown and can be edited or even rewritten 
from scratch. Changes to the formula can be confirmed with enter. 

The command panel below the plot mainly looks the same for all simulations ;  with 
selection window and formula display, four sliders for adjusting the parameters ei­
ther continuously or a� integer values, input fields for scales etc. and option fields 
where needed for showing or suppressing additional functions such a� the derivative 
or integral. In the following first example this is discussed in detail .  

6.1 Standard functions y = f(x)  
The following simulation i n  Figure 6. 1 i s  a plotter for arbitrary functions y = f(x) . 
From a selection menu you can choose preset functions, which can be changed. You 
can also enter totally new analytic functions. 
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The original function itself is shown in red. With option switches you can call sev­
eral functions to calculate and display them: inverse junction. first derivative, second 
derivative and integral. 

The derivatives are calculated in secant approximation, the integrals in parabolic 
approximation. 

Inverse function: x = g (y) .  This involves the problem of finding. for a given 
function y = f(x) for a certain image variable y, the preimage x. Graphically this 
corresponds to a reflection of y = f(x) on the angle bisector y = x or swapping 
of x and y. This line is shown in the corresponding plot (note that in this plot x and 
y scales are not identical). In the following figure this is shown for a polynomial of 
fifth order with three zeros. The angle bisector is shown in gray, the inverse function 
in light brown. The plot of thi s  function is an example of the situation in which the 
function y = f(x) is unique, each Xi is mapped to exactly one Yi . but the inverse 
function is not unique, i.e. there are many Yi for which three X i exist. 

-- - -1..D 

1 .1  

First derivative: Y = 1; f(x) is shown in magenta. 

n ,  
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Second derivative: y "  = � f(x) = fxyl is shown in green. 
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The integral 1:"." f(x)dx with adjustable initial value 10 for Xmin, is shown in 
blue. 

1 0  

.C -0 0 ·o.e -0.. ·0. 

Figure 6.1. Plot of function (red). inven;e function (light brown). first derivative (magenta). 
second derivative (green) and integr.tl (blue). shown for the example of the polynomial of fifth 
degree y = _xs - O.2x2 + x. 

When calculating the integral it is important to remember that the calculation starts 
at Xo with an initial value 10 , The variable region and the initial value must be chosen 
in such a way that the integral curve stays in the window. 

Figure 6.2 shows the Gaussian y = e-x:2 with inverse function, first and second 
derivative and integral. 

The command panel allows for up to three parameters a, b and c, a continuous 
variation, and for a fourth parameter, a choice of integers. 
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J: I un(tlon platter y = f(x) 
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Figure 6.2. Simulation. Function plotter for functions that can be specified at will; optionally. 
the inverse function (light brown), the first derivative (magenta) and second derivative (green) 
and the integr.t1 (blue) are dr.lwn as well. The figure shows the example of a Gaussian. whose 
amplitude, width and center can be adjusted with the sliders. The function can be edited 

With the colored option boxes, the inverse function, 1 st and 2nd derivative and 
integral, can be shown or suppre.�sed. 

The presentation shows the abscissa and ordinate symmetric to the origin_ In the 
first white field on the bottom you can adjust the variable range -xmax < X < Xmax by 
hand, in the second field the y-range and in the the third, the initial value of the integral 
for -Xmax . If the symmetric range of variation is not sufficient for your function, you 
can increa�e or decrease it by entering factors in the formulas. 
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As usual, the window can be pulled to full screen size and, after marking a point, 
you may read off its coordinates on the lower boundary of the graphic. 

The preset functions are: 

Functions 
constant 

pth power, p > 0 and integer 

bth power, (b r<ltional; x > 0) 

sine 

Formulas iD Java-syntax 

a 
a*x"p 
a*x"b 
sin(x) 

cosine em(x) 
sine with three panuneters a*sin(b*x + c) 
cosine with three pardffieters a*cos(b*x + c) 
power of sine sin(a * x)" p 
power of cosine em (a * x)" p 
tangent with three pardffieters a*tan(b*x + c) 
exponential function a*exp(x/b) 
exponential decay a*exp(-x/b) 
natural logarithm In(x/a) 
hyperbolic sine (exp(a *x) - exp(-a*x»/2 
hyperbolic cosine (exp(a *x) + exp(-a *x»/2 
hyperbolic tangent (exp(a *x) - exp(-a*x»/(exp(a*x) + exp(-a *x» 
Gauss distribution with three pardffieters a*exp(-b*(x - c)"2 
(sin x)/x sin(a *x)/(a*x) 
«sin x)/x)2 ( .• in(a*x)/(a*x)f2 

In the simulation you may change the preset functions or enter new formula� from 
scratch. 

6.2 Some functions y = f(x )  that are important 

in physics 

The following simulation shown in Figure 6.3 uses the ba�ic structure of the previous 
example. 

In this simulation, some important formulas of physics of the type y = f(x) are 
shown, whose parameters have been chosen in such a way that the variable x and the 
adjustable parameters correspond to simple, physical quantities. In the second col­
umn of the following table, the well-known formulas from physics are given and the 
formulation in the simulation syntax is given in the second line. Calling the function 
random(n) creates a random number between 0 and n. A random distribution with 
maximum deviation that is symmetric to zero is obtained as random(n)  - n/2. 

In the third column, the meaning of the corresponding variable x and the parameters 
used are given. 
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Gaussian, area 
nonnalized to I 

Gau.�sian with additive 
noise 

Gaussian with 
multiplicative noise 

Poisson distribution 

amplitude modulation 

phase modulation 

frequency modulation 

special theory of 
relativity: length change 

special theory of 
relativity: mass change 

Planck's mdiation law 

_t_ e -(� )2 
tr.j1i 
I /(a*sqrt(pi »  
*exp(-« x - b)/a),2) 

_t_ e -(� )2 
+ noise tr.j1i 

I / (a*sqrt(pi))  
*exp(-« x - b)/a),2) 
+ random(c/I O) - cl20 

t (=)2 
tr.j1i e- a (I + noise) 

I I (a * " qrt(pi » 
*exp(-« X - b)/af2) 
*(1 + random(c 1 10) - c 120) 

(x+xo)P It'-(X+.ro) p! 
(x + l O)'p 
*exp(-x - 1 O)/Jacult)'(p) 

sin(wt l)  cos(w21 )  

a*sin( IO* x)*cos(b*x) 

sin(wt l + COS(Wl'» 

a *sin(5*x + cos(2*b*x» 

sin(Wt l . COS(WlI» 
a*sin(5* x*cos(bII O* x» 

JI - (� )2 

sqrt( I - x'2) 

t 
Jt-(¥)2 

I lsqrt( 1 - x'2) 

a*23340/(x + 2)'5 
I (exp(S.95S1 « x  + 2)*b» - 1 ) 

1 1 3  

a = IT :  standard deviation 
b: symmetry variable 

a = IT: standard deviation 
b: symmetry variable 
clIO: maximum added noise 

a = IT: standard deviation 
b: symmetry variable 
clIO: maximum 
multiplicative noise 

x + xo: expectation value 
of p 
p = 1 , 2 , 3, . . .  

x = w I :  angular frequency 
l Ox:  carrier frequency 
bx: modulating frequency 

x = wt: angular frequency 
5x : carrier frequency 
2bx: modulating frequency 

x = wI :  angular frequency 
5x: carrier frequency 
bll Ox: modulating frequency 

x = P = vic 
v: velocity 
c: speed of light 

x = P = vic 
v: velocity 
c: speed of light 

x + 2: wavelength ). in jl11l 
a: scale factor 
b: temper.lture 
in 1000 Kel vin 



6.2 Some lunctions Y = ( xl that are important in physics 1 1 4  

For calculating the factorial p !  this file contains some special code; i n  other 
simulation files this function cannot be used. 

Figure 6.3 shows a normalized Gaussian impulse with additive noise superimposed 
on it. and its integral. which in spite of the perturbation reaches I quite smoothly and 
accurately. The formula field can be edited, such that functions can be changed or 
other functions can be filled in. 

_ o � 
� __________________________ F��cUon. 

y - f(x) 
1 .0 

-0.2 

-0. 4 

-0.6 

-0.6 

- 1 .0 

X AXl s  
b ••• ItI1t1I." .... , G-.. -,.-.-Ia-n-'-add--'U--lIO noI--.-. -------r" . I 'ormula 1 1(. · sqrt(p�) • exp(- «><-b)/,),2) • ","dem(c/S) - <11 0 

I �, l [ �'!;?·:":�I " ' I ' I;I 
o 1 2. -lI-5-4-S-Z-1-0 1 Z 3 4 5 6  

II!I!l!IlI:IIml ,.- . . anax= 4.0 

Figure 6.3. Simulation. Function plotter for some physically interesting functions y = f(x)­
The figure shows a normalized Gaussian (definite integral = \ )  with superimposed noise and 
its integral function. Moving the slider p creates a new noise disnibution. 
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6.3 Standard fu nctions of two variables z = f(x , y ) 
For the illustration of surfaces in space z = f(x .  y). simulations are particularly use­
ful. Because of the amount of accumulated data, a numerical calculation of the graphs 
by hand is virtually impossible. In addition. the EJS method makes it possible to ro­
tate the calculated two-dimensional projections of three-dimensional surfaces around 
any spatial axis by simply dragging the mouse to create a lively three-dimensional im­
pression. If in addition another parameter. for example the extent along the z-axis. is 
changed periodically (i.e. z = a cos(pt) . f(x , y». one experiences something close 
to seeing three-dimensional objects. 

The command panel of Figure 6.4a contains four sliders for changing continuously 
adjustable parameters. The parameter p determines in general the velocity of anima­
tion. With the play button one starts the animation and it is halted with the stop but­
ton; the small text field shows the time. Reset returns all parameters to their original 
values. 

In the selection field a preset function type can be chosen. whose formula is shown 
in the formula field below. The term cos(t) determines the animation in z-direction. 
You can edit these formulas or enter new ones from scratch (you must not forget to 
press enter to confirm changes !) .  Figure 6.4a shows a hyperbolic saddle a� example. 

In the following interactive figures. which show examples of the 3D function 
plotter. the simulation controls have been suppressed. which correspond to those of 
Figure 6.4a. 

For the plots. the xy-plane z = 0 (l ight brown) wa� superimposed on the respec­
tive spatial surfaces; the origin is in the middle of this surface. The xy-plane can be 
switched on or off with the option box show xy plane. The scales on the axes are 
all equal and symmetric. You can create different scales via factors in the formula�. 
The colored points on the z-axis mark the minimum and maximum values of the 
presentation. 

z = f(x .  y) only allows for parts of a closed surfaces in space. for example the 
sphere that is shown here. to be plotted (for example half a sphere). This corresponds 
to the statement that. in the plane. a function y = f(x) can only represent half a 
circle. To describe the full circle YI = ../r2 - x2 ; Y2 = _../r2 _ x2 one requires 
two functions in this representation. If the functions do not yield real values for z. 
z = 0 is shown in the simulations. 

You may choose from the functions defined in the table on p. 1 1 7.  The list of 
formulas also gives the syntax that must be adhered to when editing. 

You can use this file to train your spatial sense and to study the meaning of specific 
equations. while at the same time having ample leeway to come up with your own 
formulas. You may also study the influence of the signs and the powers appearing 
in the formulas. If the uniform scaling used proves inconvenient. for example when 
dividing by O. you may adjust the scaling in the formula� accordingly with additive or 
multiplicative constants in the formulas. 
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Figure 6.4a. Simulation, Function plotter for animated '-patiai surfaces z = f(x, y) ;  in the 
figure a hyperbolic saddle is shown. Up to three parameters, a, h, and c, can be adjusted with 
sliders. The animation velocity is adjusted with the slider p. The xy-plane can be shown or 
suppressed. 

Further instructions can be found in the description pages of the simulation. 
The EJS 3D projection offers, in the active simulation, many possibilitie.� for visual 

representation. We show this in the following non-interactive static pictures for the 
example of the elliptic-hyperbolic saddle. 

Defanlt picture: when calling up the simulation you see, as in Figure 6.4a, the 
projection of the spatial surface with a x y z-trihedron in a preset perspective, with the 
more distant lines pictured smaller than those that are closer. 

Rotation: With the mouse one can dock on to any of the axes and rotate the 
projection at will. 

Shifting: When pressing the ctri key, you can move the representation of the projection 
surface with the mouse and position it as desired. 

Zoom: When pressing the shift key you may blow up or shrink the representation 
by pulling with the mouse. You also may switch or pull the root window to full screen 
size. 
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Functions 

plane in space 

parolboloid of revolution 

generoll paraboloid 

parolbolic saddle 
�'Phere 

ellipsoid of revolution 

generoll ellipsoid 

hyperboloid of revolution 

generoll hyperboloid 
elliptic hyperbolic saddle 

hyperbolic saddle 

standing wave 

roldial surface wave 

(decay like Ilr) 

\. 

" ',,-
." . . 

"'" "' , 

Formula In Java",yntax of the simulation 

cos(p*t)*«b*x) + (a*y» - c 
a*cos(p*t)*(x"2 + y"2) - c 

cos(p*t)*«b*x)"2 + (a*yp) - c 
cos(p*t)*«b*x)"2 - (a*y)"2) - c 
sqn«ap*abs(cos(p*t» - x"2 - y"2) 

sqn«b*cp*abs(cos(p*t» - «c + I )*xp - (c*y) 

sqn(a*b - b*x"2 - a*y"2) 
sqn(a*cos(p*t)"2 + x"2 + y"2) - c 
sqn(a"2 + b*x"2 + c*y"2) - p 
sqn(a"2 - cos(p*t)*(b*x"2 - c*y"2» 
cos(p*t)*x*y 
a*(sin(pj *x + p*t)  + sin(-pi *x + p*t» 
a*sin(pj *(x"2 + y"2) - p*t)/sqn(O. J + x"2 + y"2) 

1 1 7  

Figure 6.4h. Choice of different viewing directions for perspective distortion, shown for an 
elliptic-hyperbolic saddle of the simulation in Figure 6.4a. The object can be turned by pulling 
the arrow inside the spatial trihedron with the mouse. With the perspective representation, the 
more distant lines are pictured smaller than equally long lines that are closer. 

Further special perspectives: are obtained with a context menu that appears when 

pressing the right mouse button on the plot. In the upper line you follow the entries 

elements optioo/drawingPanel3D/Camera and the following Camera Inspector 

appears (see Figure 6.4c). 
You may chose the following options with the projector: 

No perspective: The presentation now does not show perspective distortion for the 

same projection (Figure 6.4d). 
On the xy-, yz- or x z-p/ane: Here you see the projection align an axis, namely the 

one that is not mentioned (Figure 6.4e). 
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Figure 6.4c. Camera inspector. which is called with the right mouse key from the context 
menu. One caD choose between different perspectives aDd projections. enter the parameters of 
a special projection as numbers. aDd return to the original state . 

.............. ,. 

FIgure 6.4d. Presentation without perspective distortion . 

• . ' 

FIgure 6.4e. Projections along the three axes. 
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For the different representations, the optimal visualization depends on the parame­
ters used, which need to be changed when adjusting the representation. 

Reset Camera reset� the Camera inspector to a simple perspective. This is useful if 
you have created a perspective, that is too confusing. Alternatively. you may switch to 
another function and then back and recalculate the plot with the original parameters. 

6.4 Waves in space 

With the function plotter described above. waves in space can be presented quite 
vividly. One or more space variables then appears in a periodic function. for example 
as cos x .  The spatial surface will then be periodic in one or two dimensions. In the 
simulation for Figure 6.5, a number of such waves are preset. 

We daily observe surface waves in a multitude of shapes on water. In general, these 
waves propagate in time in one direction without changing their character noticeably 
in small regions of space. In the simulation. this can be reproduced by adding a phase 
pt and incrementing the time t continuously and evenly: cos(x - pt) . The wave 
that is stationary for p = 0 moves for p > 0 with constant velocity in the positive x­

direction. The propagation velocity is set with p.  This animation makes the projection 
picture of the wave very vivid. 

The following functions are preset in the selection field: 

Functions Formula In sImulation syntax 
plane wave in x a*sin(h*x - p*t) 
plane wave in y a*sin(h*y - p*t)  
plane wave with arbitrary direction O.3*sin(6*pi *a*(h*y + c*x)fsqrt(h*h + c*c) - p*t)  
concurrent interference /1 a*(sin(h*y - p*l) + sin(h*y - p*t» 
opposing interference /1 a*(sin(h*y - p*l) + sin(-h*y - p*t)) 
concurrent interference /1 + h a*(sin(h*y - p*l) + sin(c*y - p·t» 
opposing interference /1 + h a*(sin(h*y - p*l) + sin(-c*y - p*l» 
orthogonal interference /1 + h a*(sin(h*x - p*t) + sin(c* y - p*t)) 
concurrent interference, a*(sin(h*(y - (c - pi )  * x) - p*t) 
adjustable angle c + .fin(h*(y + (c - pi ) * x) - p*l» 
opposing interference, a*(sin(h*(y - (c - pi )  * x) - p*t) 
adjustable angle c + .fin(h*(-y + (c - pi)  * x) - p*t» 
diverging mdial wave 

converging radial wave 

stationary mdial wave 

diverging surface wave 

diverging space wave 

a*sin(h*(x * x + y * y) - p*t) 
a*sin(h*(x * x + Y * y) + p*t) 
a*(sin(h*(x'2 + )" 2) - p*t ) 
+ .fin(h*(x'2 + y'2) + p*l» 

O.4*a*sin(h*(x'2 + )" 2) - p*t)fsqrt(O. 1 + x'2 + )" 2) 
O.2*a*.fin(h*(x'2 + y'2) - p*t)f(O. 1 + x'2 + )" 2) 
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The interference of waves with the same direction of propagation is referred to as 

concurrent interference, that of opposite direction as opposing interference. We also 

give examples for the interference of waves of the same frequency as well as of waves 

of different frequencies, and finally the interference of waves under 90 degree and 

under adjustable angles. 

For radial waves, the simple radial wave with constant amplitude is physically not 

possible; it is a unrealistic fiction. This is because the amplitude will decay as a func­

tion of the radius (distance from the excitation center), since the excitation energy is 

distributed over a wider and wider circle. For the spatial radial wave, for example the 

spatial compression wave originating from a nearly point-like source, the section of 

the excitation is shown in the xy -plane; here the amplitude decays with the radius, i.e. 

like 1 / r 2, since the energy is distributed over a spherical surface. 

With this simulation you can train your spatial awareness for wave phenomena and 

the corresponding understanding of formulas. When editing the formulas, you can 

explore many possible ways of simulating natural phenomena. Remember that you 

may also choose the velocity of propagation differently when superimposing several 

waves and thus observe the phenomenon of dispersion. Further instructions can be 

found in the description pages. 

These animations start in a state of motion. You also may change parameters while 

the animation is running and switch between function types. Figure 6.5 shows as an 

example a radial wave in space. 

Figure 6.S. Simulation. Function plotter for propagating waves in space. The figure shows a 
diverging spatial wave excited at the origin. 
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6.5 Parameter representation of su rfaces: 

x = /x (p, q) ; y = /y (p, q) ; z = /z(p, q) 
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Using the parameter representation it is possible to describe very complicated surfaces 
in space. The functions fx . fy . fz displayed in the three function windows of the 
simulation map the pq-plane into the space described by x .  y . z. If there are periodic 
functions of the parameters among fx . fy . fz . closed or self penetrating surfaces in 
space are created. 

From the formula for the first surface in the list of functions. you realize that the pa­
rameter v periodically modulates the value Zi of the z-function: z = zia cos(v/) .  For 
I = 0 the modulation factor is equal to I .  The parameter a determines the amplitude 
of the modulation; a -0.6 fixes a reasonable initial value. The remaining parameters b 
and C are not used in this example; please observe for the individual functions which 
quantities are modulated by a term containing cos vi . 

The scale for the x, y and z-axes is adjusted in such a way that the interval - I  � 

x .  y , z � + I is covered. The range of the parameters p and q is from -1C to + 1C • 

such that the simple trigonometric functions like cos p run through a full period in the 
parameter interval. 

By clicking on the selection window. the preset functions are called. 
With the sliders a. b. and c you can also change the parameters of the spatial sur­

faces during the animation. By editing the corresponding formulas you can also switch 
the animation to other quantities. 

You can edit the formulas in the formula window or enter formula� from scratch. 
Do not forget to press the enter key after doing this. 

Some elementary surfaces have already been covered by the basic functions z = 
f(x . y) ;  thus you may compare the formulas in both representations. 

Since p and q are scaled by pi (1C). there always appears a factor of 1 / pi . when 

p and q are directly connected with x. y . z . i.e. outside periodic functions. A factor 
cos vt shows that the quantity that is multiplied by it is modulated in the animation. 
Reset returns the value of cos vi to I . 

The following functions are preset in the selection windows (for the sake of clarity 
we have left out the multiplication sign " in the simulation syntax). 

Tilting plane x = p/ pi ; y = q/ p ; z = Cos(v I) (a/ pi - 0.6)p 

Hyperbolic saddle x = p/ pi ; y = q/ pi ;  z = cos(v/)pq/ pi '2 

Cylinder x = Cos(v/)acos(p) ; y = bsin(p) ;  z = cq/(2pi) 

Mobius strip x = acos(p) ( 1  + q/(2pi )cos(p/2» ;  
y = 2bsin(p)( 1 + q/ (2pi)cos(p/2» ; 
z = cq/(pi )sin(p/2/) 
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Sphere 

Ellipsoid 

Double cone 

Toms 

8-Toms 

''Mouth'' 

x = cos(vt)acos(p)ab,�(cos(q» ; 
y = cos(v t)asin(p)abs(cos(q» ; z = cos(v t)asin(q) 

x = acos(p)abs(cos(q»; 
y = cos(vt)bsin(p)abs (cos(q» ; 
z = csin(q) 

x = a/pi ( l + qcos(p» ;  
y = cos(v t)b/pi ( l + qsin(p» ;  
z = cq/pi 

x = (a + cos(vt)bcos(q» sin(p) ; 
y = (c + cos(v t)bcos(q»cos(p) ; z = bsin(q) 

x = (a + bcoi(q» sin(p); 

y = «cos(vtp)c + bcos(q» cos2 (p) ;  z = O.6bsin(q) 

x = (cos(vt)c + bcos(q» cos3(p); 
y = (a + bcos(q»sin(p) ;  
z = bsin(q) 

Figure 6.6. Simulation. Function plotter for animated 3D pardllleter surfaces; in the picture a 
torus is shown, whose dimensions can be changed with sliders. This animation also contains 
the Mobiu •• .• trip that was shown at the beginning of the book. in a simpler form. 
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BoaCI 

BoaC2 

x = (c + bco.v(q» cos\ p) ; y = (a + bcos(q»sin(p) ; 

z = cos(v t)bcos(q) 

x = (c + bcos(q» cos3 (p); y = (a + bcos(q» sin(p) ; 

z = cos(v t)bcos2 (q) .  
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The formulas of the simulation contain additional fixed numbers, which guarantee 
a reasonable size for the graphs when opening them. 

Using the parameter representation, aesthetically very pleasing spatial surfaces can 
be created, which can be used as an inspiration for design and construction, so that 
the playful element is not short-changed. The simulation file may now be opened to 
show the interactive graphic in Figure 6.6 of a torus. 

The handling of the simulation in Figure 6.6 is analogous to that for the previous 
3D presentations. Details and suggestions for experiments are given on the description 
pages. 

6.6 Parameter representation of cu rves and space 
paths : x = /x (t ) ;  y = /y (t ) ;  z = /:(t ) 

Using this parameter representation, very complicated curves (paths) in space can 
be described. The functions /x, /y, /z , which are displayed in the three function 
windows, map the interval covered by the only parameter r uniquely to a curve x (t),  

y (r), z (t )  in space. If lx , /Y' j� contain periodic functions of the parameters, closed 
or self-intersecting space curves are created. 

For the simulation in Figure 6.7, the one-dimensional parameter t is interpreted as 
time. This parameter is repeatedly incremented by a constant time-step, such that the 
curve starting at the origin grows accordingly, until one of the coordinates becomes 
larger than 2 and leaves the range of the figure and the animation stops. 

The blue path marker is connected to the origin with a vector. The vector and the 
x y-pane can be switched on and off with the option switch. 

The program calculates the functions in time-steps of 6r = p x 0. 1 mil1isecond�. 
Thus animation speed can be set with the slider p. For p = 0, the picture is static. 

With the sliders a, b and c, up to three constants in the parameter functions can 
be adjusted between 0 and I .  The sliders actually determine integers 0 < N < 1 00, 
such that the constants 1 /  N, as well as the ratio of two of these constants, are rational 
numbers. This leads to closed orbits in the case of oscillation plots. In the second 
example the irrational number ,J2 is added to the rational number c, which results in 
the orbit not being closed. This shows how you can, in general, create orbits that are 
not closed. You may increase the animation speed to recognize this quickly. For the 
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Figure 6.7. Simulatiun. Function plotter for animated space curves; the figure shows the 
superposition of a periodic orbit that travels on a hyperboloid and an orbit that travels on a 
torus. 

detailed observation the projection settings of the camera inspector are useful. In the 
xy-plane one sees the corresponding plane orbits, i.e. plane Lissajous figures. 

Choose after the first animation the constants a, h, c such that the range of coor­
dinates is fully used. Many plot� become graphically interesting only if the constants 
a, h, c are chosen differently. The default value for all of them is 0.5, to show the ba�ic 
functions during the first run. 

You can edit the formulas or enter new ones from scratch. 
The scale has been chosen in such a way that, for all three axes, the range - 1  to + I 

is available. The xy-plane is intersected by the z-axis in the middle of the z-vectors. 
Maximum and minimum values are marked on the z-axis by a red and green point 
respectively. 

With the sliders a, h and c you may, even during the animation, change the param­
eters of the space curves. With suitable entries of time-dependent functions you can 
also switch the animation to other quantities. 

The handling of the simulation is otherwise again analogous to that of the previous 
3D presentations. Details are given in the description pages. 

There are, however, two keys for starting the simulation with slightly different 
functions: 

SlOTt starts the simulation and erases all the curves that are present. 
Play does not delete previous curves, continues for equal parameters with the simu­

lation and superimposes old and new curves for changed parameters or changed 
function types. 
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Stop is a second functionality of the play button; the simulation can be continued by 
pressing play again. 

Clear deletes all curves. 
Reset a b c  resets a .  b. c to the default values. 

This simulation also gives ample opportunities for creative and playful experiments. 
Figure 6.7 shows the simulation. with interleaved orbits; in one of these, the hyper­
bolic envelope is already closed. while in the other. the envelope, in the shape of a 
torus, is still open. 



7 Visualization of functions in the space 
of complex num bers 

7.1 Conformal mapping 

Complex functions u = F(z) map the points z of their domain of definition to points 
u within their range in the complex plane (to distinguish these functions from real 
functions we arbitrarily use capital letters for the function): 

u = F(z) .  

Important complex functions, such a� powers, the exponential function and i ts  de­
scendants, among them trigonometric functions and hyperbolic functions, satisfy the 
property of being holomorphic, which means, according to the definition, that they 
are complex differentiable. This means that these functions are differentiable in ev­
ery point of the complex plane and are also independent of the direction along which 
one approaches the respective point. Such functions can be differentiated an arbitrary 
number of times and, therefore, can also be expanded into a power series (Taylor 
series). 

Figure 7 . 1  from the simulation shown in Figure 7.2a, which will be described 
shortly, shows how this looks for the concrete case of the mapping u = z2 . 

The mapping u = F(z) with a holomorphic function is conformal, which means 
angle-preserving: curves in the u plane intersect under the same angle as the pre­
image curves in the z-plane. This is initially baffling, since the shapes consisting of 
the curves are in general distorted by the mapping. 

The left window shows the z-plane, the right one the u-plane. In the z-plane a 
quadratic grid of points, that lies on parallels to the real and imaginary axis, is shown, 
which is mapped into the u-plane, undergoing rotation, stretching (for points outside 
of the indicated unit circle) or compression (for points inside the unit circle) and re­
sulting in a rhombic shape with curved grid l ines. In this case, the points on the real 
axis are transformed to the real axis and therefore the real-valued side of the square 
remains straight. 

On closer examination, it becomes evident that the lines connecting the points in the 
image plane indeed intersect each other under right angles; the 4 points corresponding 
to a square of neighboring points in the preimage constitute a square in the image 
with increa�ing accuracy for decrea�ing distance of the points. The conformal angle­
preserving property is to be understood in the limit of infinitesimal distances. 
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Figure 7.1. Confonnal mapping of a quadr.ltic point grid (left window) with the holomorphic 
function u = z2 to the image plane (right window). Due to stretching, compression and 
rotation, distortions take place. 

The angle-preserving propeny of conformal mappings is used for practical pur­
poses in engineering, for example to map the solutions of hydrodynamic problems for 
simple situations to more complex situations. Complex functions are thus not only an 
abstract mathematical concept, but they have very useful applications. 

7.2 Visual ization of the complex power function 

The following visualization example in Figure 7 .2a shows powers for arbitrary positive 
or negative, integer or fractional, exponents: 

u = z" . 

Thus we have, for example, 

I u = z-3 = 3 ;  
z 

u = z l .S = z� = �. 

The control elements for the different simulations of conformal mappings are mostly 
identical. We describe them in detail for this first example, and refer only to dif­
ferences later. Extensive details are given in the respective description pages of the 
simulation. 

A quadratic point-grid with preset side length is located in the z-plane. One of the 
comers is marked in red and connected to the origin by a vector. Using the mouse, the 
square can be moved in the z-plane while maintaining its orientation by grabbing it on 
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the red corner. While the other coordinate remain exactly the same, you can change 
one of the coordinates with the sliders x, y. Very accurate values can be defined in the 
number fields x, y. One can also enter values that go beyond the range of the sliders. 
Points with different imaginary parts are differentiated by color in order to be able to 
follow the mapping point by point. The color coding can be seen most clearly if you 
pull the window to full screen size. The side length of the square can be grown or 
shrunk to a point using the slider. 

In addition a circular color coded point grid is located around the origin with a 
default radius that depends on the function. The center of the circle is marked in blue; 
it can be moved with the mouse. The points of the circle that are initially on the real 
axis and mirror images of each other, are highlighted. The right point that is marked 
by a red disk is connected to the origin by a vector, which can be pulled with the 
mouse. Using a second slider, the radius of the circle can be grown or pulled together 
to a point. 

By collapsing the square or circle to a point you can plot the other function more 
clearly and study the mapping of a single point. 

The scale can be adjusted separately in both windows in the number fields scale_z 
and scale_u. 

In the u-plane you see the mapping of the individual points of the square or circle 
via the chosen function. Accurate coordinates are shown if you click on the points. 
An animation is started by pressing the play button, which moves the corner point of 
the square arrays step by step. 

Even during the animation, the coordinates of the corner points can be changed 
with the mouse, the sliders or by entering numbers, so that the whole plane can be 
scanned in strips. 

With pause/play the animation is stopped. With the initialization button you can 
reset the grid, the circle and scale to its original state. 

For the power function of Figure 7.2a you may enter an arbitrary positive or neg­
ative power n, and also rational numbers. The changes become effective on pressing 
the Enter button. We have: 

u = z" = (rei'l' )" = r"ei,,'I' = r" (cos nrp + i sin nrp) . 

The mapping z" rotates a point z = rei'l' from the preimage plane to the image plane 
by n - I times its angle. Its absolute value increases to r" for n > I and decreases for 
n < I .  The unit circle is mapped to itself under rotation . 

Due to the angular rotation, it follows that for n > I the simple u-plane is not 
sufficient to accommodate the mapping of all z-values. For n = 2 or n = 3, the 
mapping provides for a two-or threefold coverage. In complex analysis, one refers to 
n Riemannian sheets of the u-plane. On these sheets the function u (z) is unique: each 
point on the z-plane leads to one point on the u-plane. The same is true for the inverse 
function z (u) .  In the simulation picrure the Riemannian sheets are superimposed, as 
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Figure 7.2a. Simulation. Complex power function u = zn ; conformal mapping of a point 
grid and of a circle for n = 2. In the left window. for the z-plane. the lower left comer of the 
grid can be pulled with the mouse and the distance between the poinL. can be adjusted with the 
lower left slider. The center of the circle can be pulled and its radius can be adjusted with the 
lower right slider. The yellow point marks the point that has been turned by rr in the preimage 
of the circle. The power n can be chosen at will in the simulation (in the figure n = 2). 

one can easily see from the mapping of the circle: the two loops belong to different 
sheets. 

For fractional exponents n and negative real values the mapping splits the point 
grid in two sections. which is initially surprising. On one section lie the transformed 
points from the positive imaginary half plane, on the second section. the points of the 
negative imaginary half plane. Whether the u-plane is covered only partially or many 
times depends on whether n is larger or smaller than I .  Figure 7 .2b shows the picture 
for n = 0.5 (u = ZO.5 = Vz). 

With a bit of calculation, it is easy to see that the splitting has to be as observed for 

n = 0.5, i .e. for u = zt = Vz. The point z = j (angle of 90°) is mapped to the 
point u = ..Ii = h with the angle of 45°, a.� we show by invening the function: 

[ I ] 2 I I 
- ( I  + i) = - ( I  + 2j + j 2) = - ( I + 2j - I )  = i 
.,fi 2 2 

q.e.d . 

How is the point -j transformed? We assume that it is mapped to a point that i s  
complimentary to the one obtained above. (same real component, opposite sign of the 
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Figure 7.2b. Example from simulation in Figure 7.2a: confonnal mapping with the holomor­
phic function u = zO.s for a point grid on a square and a circle (left window). The z-plane 
is mapped to the positive real half of the u-plane. The mapping ''Plits the z-plane into two 
sections for positive and negative imaginary parts. 

imaginary component) and again prove this via the inverse function: [ I ] 2 I I 
- ( I - i) = - ( 1 - 2; + i2) = - ( 1 - 2i - 1 ) = -i 
.J2 2 2 

q.e.d . 

Thus we indeed have the following situation: the point -i and all other points with 
negative imaginary components are mapped to the section of the u-plane where the 
imaginary component is negative and all points with positive imaginary components 
are mapped to a section with a positive imaginary component. which is il� mirror 
image. 

For the circle around the origin. the situation can be most easily understood. For 
n = 2 the circle is mapped to two segments. as soon as individual points have a 
negative imaginary component. By counting you may convince yourself that there are 
equally many points on the two partial curves if the setup is symmetric to the origin. 

For suitable parameters, the conformal mapping yields very interesting symmetries. 
Figure 7.2c shows on the left-hand side for the 1 7th and on the right-hand side for the 
60th power, the superimposed mapping of 100 points of a circular array of radius 1 on 
as many Riemannian sheets. The array is slightly shifted from the origin. Remember 
that the unshifted unit circle is mapped to itself, and thus the shifted one will be 
mapped to its immediate vicinity. 
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Figure 7.2c. Example from simulation in Figure 7.2a: u = zn for a circle with radius 1 that 
ha., been slightly shifted from the origin. On the left for n = 1 7  and on the right for n = 60 
with different shift. 

The simulation provides many opportunities for experiments, which can be ac­
cessed with the interactive simulation in Figure 7 .2a. The description pages contain 
further details and suggestions for experimenl�. 

7.3 Complex exponential function 

As second example of conformal mapping, we show the complex exponential func­
tion. We generalize it to an arbitrary ba�e a :  

With a = e we obtain the normal exponential functions, with a = � we obtain the 
exponential decay function. 

a = e ---+ u = eX (cos y + i sin y) 

I -X ( . . ) a = - ---+ u = e  COS Y - I SID Y ; 
e 

(because of cos(-y) = cos(y); sin(-y) = - sin(y» 

in general u = a Z = (e lna)z = e(ln a)(x+iy) = ex lnaeiy ln a 

= ex ln a • (cos(y In a) + i sin(y ln a» . 
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Figure 7.38. Simulation. Conformal mapping with the complex exponential function u = eZ ; 
mapping of a point grid and of a circular arrdY with rddius I around the origin of the z -plane 
to the u-plane. The unit circle is drdwn in black. Play shifts the arrdY along the imaginary axis. 
The panuneter a can be chosen in the number field a. 
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FIgure 7.3b. Conformal mapping with the complex exponential function u = eZ ; Mapping of 
a circular arrdY with rddius I and a point grid that has been shifted by 211' along the imaginary 
axis. The image in the u-plane is identical to the image in Figure 7.3a, where the point grid 
is located at the origin. The unit circle is drdwn in black. The boundaries of a period that is 
symmetric to the origin are JruIl'ked in red. 
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Thus the choice of a base l' e can be compensated for via a coordinate transformation: 
x

' = x In a; y' = y In a. The simulation uses the same setup as for the power function. 
and is shown in Figure 7.3a for the simple exponential function with a = e. 

The real point I is mapped to the real point e = 2 .7 1 8  . . . . Negative real parts 
x < 0 of z = x + i Y lead to a mapping into the inside of the unit circle, positive ones 
to a mapping into the outside of the unit circle (marked in the picture by a circle). This 
is for the following reason: 

however. we have cos < I in the range 1f /2 < I{i < 31f /2 such that we have e"" rp < I .  
The fundamental peculiarity of the complex exponential function i s  made clear in 

this simulation: If one moves the point grid along the imaginary axis, it is turned in 
the image plane without additional distortion around the origin and arrives, following 
a shift by 21f i , at its original position. A strip of the z -plane that is parallel to the real 
axis of width 21f fills a complete Riemannian sheet in the u-plane. This also shows 
the periodicity of the trigonometric functions. Figure 7.3b shows the ca�e in which 
the simulation in Figure 7.3a is shifted by hi . 

A shift of the grid array along the real axis in positive direction results in exponen­
tial expansion, a shift in negative direction in exponential decay. 

interesting result� are observed for rational or negative values of a (e.g. In a 
-5/3; a = 0. 1 888 . . . ). The description pages contain additional information. 

7.4 Complex trigonometric functions: s ine, cosine, 
tangent 

From the complex exponential function. it is only one step to the complex trigono­
metric function. In addition to the Euler formula eiz = cos z + i sin z. we require the 
definitions of the hyperbolic functions sinh and cosh: 

eiz = cos z + i sin z ;  e-iz = cos(-z) + i sin(-z) = cos z - i sin z ;  

eiz _ e-iz eiz + e-iz 
-+ sin z = ;. cos z = ----,--

2i 2 
eZ _ e-z eZ + e-z 

sinh z = --2-- ; cosh z = 
2 

; -+ cosh2 z - sinh2 z = I ;  

auxiliary results: cos z = cosh(iz) ;  sin z = I / i  sinh(iz) ;  

cos(iz) = cosh(z) ;  sin(iz)  = i sinh z 

With eiz = eix-y = e-Yeix = e-Y (cos x + i sin x) 

e-iz = e-ix+y = eYe-ix = eY (cos x - i sin x) it follows that 
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. . (eY + e-Y ) . (eY - e-Y ) . . ,  
sm z = sm x 

2 
+ I cos x 

2 
= sm x cosh y + I cos x smh y 

(eY + e-Y ) . , (eY - e-Y ) . ,  . 
cos z = cos x 

2 
- I sm x 

2 
= cos x cosh y - I sm x smh y 

sin z sin x cosh y + i cos x sinh y 
tan z = -- = -----'------� 

cos x cos x cosh y - i sin x sinh y 

(sin x cosh y + i cos x sinh y)(cos x cosh y + i sin x sinh y)  

(cos x cosh Y - i s in  x sinh y) (cos x cosh Y + i sin x sinh y) 

s in x cos x + i sinh y cosh y 
tan z = ----:------:::--� 

cos2 X + sinh2 y 

7.4.1 Complex sine 

When shifting the point arrays parallel to the real axis, one observes their periodic 
mapping. The square array is then mapped into a region that is bounded by orthogonal 
ellipses and hyperbolas. Further details and hints for experiments are given in the 
description pages of the simulation. 

7.4.2 Complex cosine 

As is to be expected, the mapping via the cosine for a pha�e shift by 1C/2 on the real 
axis leads to the same result as the mapping for the sine. Figure 7.5 shows this for 
the same configuration of the u-plane as in Figure 7.4. Further details and hints for 
experiments are given in the description pages of the simulation. 

7.4.3 Complex tangent 

In addition to the expected periodicity under shifts parallel to the real axis, the com­
plex tangent shows, because of its divergence with sign change at odd multiples of 
1C /2, a wealth of interesting phenomena. Because of the high sensitivity close to the 
divergences you should, in addition to the sliders for the coordinates of the grid array 
in the z-plane, also use the two number fields, in which exact values for x and y can 
be entered. They can be chosen outside the intervals covered by the sliders. 

Straight lines parallel to the real and imaginary axes are mapped into closed curves 
around and through the points +i and -i . The region with imaginary values larger 
than 1C is mapped to the point i ,  the region with imaginary values smaller than 1C is 
mapped to the point -i . Further details and hints for experiments are given in the 
description pages of the simulation. 
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Figure 7A. Simulation. ConfonnaJ mapping with the complex trigonometric function u 
sin z; mapping of a point grid and a circular amlY around the origin with ntdius 7r /2 from the 
z-plane to the u-plane. The circle with ntdius 7r /2 in the z-plane and the unit circle in the 
u-plane are dnlwn in black. In the z-plane, the boundaries of a period are dnlwn in red. The 
Play bolton shifts the square amlY along the real axis. 
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Figure 7.5. Simulation. ConfonnaJ mapping with the complex trigonometric function u 
cos z ;  mapping of a point grid that has been shifted by 7r/2, relative to the origin, to the u­
plane. The circle with mdius 7r /2 in the z-plane and the unit circle in the u-plane are dr-lwn 
in black. In the z-plane the boundaries of a period are drdwn in red. 
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Figure 7.6. Simulation. ConfonnaJ mapping with the complex trigonometric function u = 
tan z; mapping of square poinl grid and a circular arnlY around the origin of the z-plane 10 the 
u-plane. A circle with radius 1f /2 and in the z-plane and the unit circle are dr.twn in black. 
The boundaries of a period are drawn in red. Play shifts the square amlY parallel to the real 
axis. 

7.5 Complex logarithm 

We conclude the chapter on conformal mapping with the natural logarithm. It is well 
known that there exist� no logarithm for negative numbers in the space of real num­
bers, since the inverse function e" always leads to a positive number. This limitation 
is lifted in the space of complex number, in which the logarithm is well defined for all 
numbers. 

To calculate the complex logarithm, one ha� to use the complex number z in a form 
that allows for the separation of real and imaginary parts when taking the logarithm. 
This is not the case for the form z = x + iy, but in polar coordinates it works out as: 

r = lz l = JX2 + y2 ; 

In z = In JX2 + y2 + i (t/> + k2Jf) ;  k integer 

main value for k = 0: In z = In J x2 + y2 + it/> = � In(x2 + y 2) + it/> .  

Because of the periodicity of the exponential function with a period of 21f i ,  the z 

plane is mapped identically to an infinite number of strips parallel to the real axis in 
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the u-plane of width 2J!". The main value for k = 0 maps the z-plane to pi < Y < J!" 
on the u-plane. 

In Figure 7.7 one sees for the quadratic point array the logarithmic compression 
along the real axis and the compression due to the arc-tangent along the imaginary 
axis. 

For the logarithmic mapping, one distinguishes four regions according to the real 
component of z in the z-plane: 

• x � I :  for these values the logarithm is positive in the space of real numbers. 
Complex numbers in this region are transformed to a region with x > 0, which 
is bounded by the green curve in Figure 7.7. The numbers with equal imaginary 
components lie on curves orthogonal to the green curve and are marked by the 
yellow line for y = I in Figure 7.7. 

• x � - I :  for these numbers the logarithm does not yield a real solution. Numbers 
in this region are transformed to regions with x > 0 and imaginary parts that lie 
on the boundaries of the strip. The bounding curves are analogous but shifted and 
reflected with respect to the first case. An interesting case is In( - I )  = 0 + i J!" = 
i J!" , the symmetric solutions are In i = �i J!" and In( -i ) = � i J!" . 

• 0 < x � I :  here we have, for real numbers, real negative values of the logarithm. 
Numbers in this region are, depending on the imaginary component, transformed 
into the positive or negative half of the strip. 

• - I  � x < 0: here the logarithm ha� no real values .  Depending on their imaginary 
component, numbers in this region are transformed to the negative or positive 
half plane of the strip and we have � < Iy 1 < J!" for all y. The bounding curves 
are continuations of the first case. 

A circle around the origin is transformed into a line parallel to the imaginary axis, 
since the real component of the logarithm 0.5 In(x2 + y2) = In r is constant on it. 
Changing the radius shifts the line in the x-direction. 

How are the curves defined, which are shown in Figure 7.7 and appear after ac­
tivating the switch visible? In the z-plane, x = I is the boundary for positive 
logarithms. Therefore, the coordinates of the bounding curve in the u-plane are: 
x = O.5 ln( I + y; ) ;  y = arctan Yz . For a line with an imaginary component y = I 
in the z-plane, we obtain, in the u-plane, x = 0.5 In(x; + I ) ;  Y = arctan(� ) . These 
two curves are orthogonal to each other. 

Further details and hints for experiments can be found in the description pages of 
the simulation. 

This relatively complex example demonstrates quite clearly the advantage of an in­
teractive simulation over a discussion with formulas and words. When moving the 
arrays parallel or at a right angles to the imaginary axis, the context is immedi­
ately grasped visually, which could otherwise only be described in lengthy and time 
consuming verbal descriptions. 
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Figure 7.7. Simulation. Conformal mapping with the complex function u = In z: mapping 
of a point grid and of a circular arrdY around the origin with r.idius x in the z-plane to the u­
plane. A circle with r.idius e in the z-plane and a circle with radius 1f in the u-plane are drdwn 
in black. The red lines in the z -plane mark the boundaries of the main value of the logarithm. 
Visible shows the trdDsformed curves of par.tllels to the x and y axes in the z -plane. Play shifts 
the arrdY parallel to the real axis. 

From the many examples shown above. it should have become clear how to cal­
culate and visualize conformal mappings in general. The examples include. in the 
custom page of the EJS console. the code for the other functions that fit on a few lines 
in an inactive mode. In addition the code for cot(z) and for the complex hyperbolic 
functions sinh(z). cosh(z). tanh(z) and coth(z) is found there. 

From this. it is easy to derive the code for further conformal mappings. 



8 Vectors 

8.1 Vectors and operators as shorthand for n -tuples 
of numbers and functions 

In secondary school the discussion of functions is mostly restricted to functions of one 
variable, i.e. to y = f(x) in Cartesian coordinates or r = g(lp) in polar coordinates. 
Therefore, one gets used at school to the visualization of functional relationships in 
the xy-plane. 

Real events cannot be described is this  way, since they always take place in three­
dimensional space with coordinates x, y, z or in a four-dimensional continuum, de­
noted by the space coordinates x, y, z and the time t. As an auxiliary workaround, one 
uses only a restricted projection to a plane in space. This is possible if one assumes 
that some variables are constant. One example would be y = f(t) for the move­
ment along a straight path that is mapped to the y-axis and, instead of the x-variable, 
the parameter t is changing. One can possibly take into account a second quantity x 
that is changing in discrete steps, by plotting a family of curves in a plane system of 
coordinates, for example y = f(t , Xi ) ,  i = I ,  2, 3, . . . .  

As soon as one wants to present events in space it becomes more complicated. 
The uniform movement of a point mass, i.e. without the influence of any force, re­
quires three "plane" parameter equations, for example x = at  + ao ; y = bt + bo ; 

z = ct + Co . If one wants to describe its movement under the influence of a force 
that changes from point to point, one requires equations that describe for every point 
in space both the absolute values as well as the direction of the force on the moving 
body. In coordinate notation this becomes easily messy and not at all vivid. 

To come close to the vividness of two-dimensional presentations, one instead uses 
a kind of shorthand, which combines the three space components in a vector and the 
functions connected to it or acting on it in an operator. If one combines the three co­
ordinates in the vector X and three functions of time in the operator F, one can com­
bine the above three equations a� X = F(t), which is considerably clearer. Whether 
it makes sense depends on the specific problem at hand, i .e. on whether the three com­
ponents of F have a logical connection with each other. This is obviously the case for 
the simple movement considered above. 

As soon as one starts to substitute numbers and to do calculations with them, one 
can find ways of decomposing the relationship into its individual components and 
to formulate the corresponding algorithms. However, this process still often greatly 
benefits from the symbolic grouping of the individual relationships. Because of the 
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repeated appearance of the always identical formalisms for physical problems, the 
formulation often becomes routine. 

This approach does not have to be restricted to three-dimensional descriptions, but 
can, in principle, be extended to an arbitrary number of dimensions. One can for 
example describe the position of two points in the three-dimensional space via two 

arrows or vectors starting at the origin (XI . Y I . ZI and X2 .  Y2 . Z2) in this space or via 
one vector in the six-dimensional space (X I .  YI . ZI .  X2 . Y2 . z2). ln quantum mechanics 
one works with vectors in the infinitely dimensional Hilbert space. Plane problems can 
be described by two-dimensional vectors that can be considered to lie in the complex 
plane. 

Vector algebra and vector analysis, in which partial differentiations take place, are 
an especially important mathematical tool of theoretical physics and therefore are 
often treated in depth in many textbooks for first year students.Their objects and oper­
ations are not easily accessible to the untrained imagination. Therefore, the following 
sections concentrate only on the interactive visualization of fundamental a.�pects. 

8.2 3D-visualization of vectors 

The classical visual presentation of a vector is an arrow in space, whose length defines 
an absolute value and whose orientation defines a direction. The place at which the 
arrow is situated is arbitrary; one can, for example, let it start as a zero·point vector 

from the origin of a Cartesian system of coordinates. Thus its endpoint (the tip of the 
arrow) is described by the three space coordinates x, Y, Z in this system of coordinates. 
Its length a, also referred to a.� the absolute value of the vector, is obtained from the 
theorem of Pythagoras as a = .jx2 + y2 + Z2 . 

It obviously does not matter how the system of coordinates, with respect to which 
the coordinates of the vector are defined, is orientated in space. Under a change of the 
coordinate system (translation or rotation), the individual coordinates also change, but 
the position and length of the vector are not affected by this. They are invariant under 
translation and rotation. This property provides the definition of a vector. 

Quantities that can be characterized by specifying a single number for every point 
in space are called scalar, in contract to vectors; an example would be a density· or 
temperature distribution. 

The three-dimensional zero·point vector represents the position coordinates of a 
point in space. It is customary to write them as a matrix with only one column or line. 
As symbols one often uses a I , a2 . a3 for the vector a or XI I ,  X 1 2. XI 3 for the vector 
Xi . Thus the following representations are synonymous: 

absolute value la l  = J ai + ai + a� 
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Symbols for the vector as a whole, such as 8 and X I , were introduced at a time when 
they were written by hand. Some of the formats used back then, such as cursive letters 
with an arrow on top, nowadays lead to a somewhat inconvenient typesetting situ­
ation, since they cannot be entered quickly on the the PC keyboard. Thus we use, 

Jt Vecto,� and the" components 

components 

of the red vector 

� 
� 
8 

with xyz projection 

hllldom vector 

view 
perspectl .. . 

0 110 persp .. . 
o leY projectM. 
o yz project ... 
o xz projectM. 

z 

Figure 8.1. Simulation. 3D visualization of vecton; in space: presentation of the components. 
The orientation of the projection can be adjusted with the mouse. The components of the red 
vecton; can either be entered as numben; or created by a random number genemtor. The option 
boxes allow the selection of different projections. 



8.3 Basic operations of vector algebra 1 42 

corresponding to the vector format of the formula editor MathType, bold letters in the 
font Times New Roman. 

The absolute value of the vector (the length of the arrow) is symbolized by sur­
rounding the vector by I -signs. This is analogous to the notation for the absolute value 
of complex numbers, but the notions of absolute value are not quite identical. The 
length of a vector is independent of its position relative to the origin of a coordi­
nate system, while the absolute value of a complex number is always calculated from 
the origin. This difference falls away if one writes a vector that starts from a point 
X I .  YI .  ZI  and leads to a point X2 . Y2 . Z2 as the difference of two zero-point vectors, 
i .e. X2 - XI • Y2 - )'1 . Z2 - ZI ' 

The interactive 3D simulation in Figure 8 . 1  trains the spatial perception of vectors. 
Pressing the Random vector button generates a zero-point vector with random integer 
coordinates (minimum -5, maximum 5) and represenl� it as a red arrow, embedded 
into a spatial tripod and supplemented by projections on the various coordinate planes, 
which can be switched on or off. It is advisable to pull this simulation to full screen 
size. 

The coordinates of the vector are shown a� projections onto the planes X = 0, 
)' = 0 and Z = 0 and are given in three coordinate fields. In these fields different 
arbitrary coordinates can be entered in order to study the effect on the position of the 
vector. 

Alternatively the tip of the vector can be pulled with the mouse and the effect on 
the coordinates can be studied in two planes. The 3D projection can be also be rotated 
in space with the mouse. In addition, certain well-defined projections can be directly 
obtained via option switches. 

Instructions for experimenl� can be found on the description pages of the simula­
tion. 

8.3 Basic operations of vector algebra 

8.3.1 M u ltipl ication by a constant 

For vectors one can define the multiplication by a constant k and the addition of 
vectors in a meaningful way. For multiplication by a constant this is immediately 
obvious: 

ka = k (::) = (Z::) . 
a3 ka3 
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8.3.2 Addition and subtraction of vectors 

For addition and subtraction the following definitions apply: 
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= - (b - a) . 

The rules for multiplication by a constant and for addition and subtraction formally 
correspond to those for complex numbers, which one can write in analogy to the vector 
notation above as a matrix with one columnlline and two lines/columns. Thus these 
vector operations are also commutative, associative and distributive, i .e. the sequence 
of the vectors does not matter. 

Vectors, however, do not constitute an extension of the complex number space to 
higher dimensions. Vectors cannot be multiplied with each other according to the rules 
of complex numbers, and the division of one vector by another one cannot be defined. 

In the following, we will define two different kinds of multiplications between vec­
tors. These are operations that do not have an analogue in the space of the real or 
complex numbers. They are, rather, newly introduced for reasons of eXpediency. It is 
somewhat unfortunate that the term multi plical ion has been used. Experts also feel 
this way, which can be seen from the fact that what used to be referred to as the scalar 

product in earlier times, is nowadays preferably called the inner product, and what 
used to be called the vector product is nowadays referred to as the outer product. This 
is, however, only a semantic problem, as soon as one understands the specifics. 

8.3.3 Scalar product, inner product 

For the vector addition we assume that both vectors are similar quantities, that is, for 
example, that they represent two forces or two distances. It would not make sense to 
add a force to a distance, although they are both represented by vectors. 

However, in physics one would like to combine two vectors of different types with 
each other. Force and distance are suitable examples. We define work = force times 

distance, where the quantities of force and distance enter with the length of the corre­
sponding vectors. For this easy formula we a.�sume that the directions of the force and 
distance vectors coincide. If, however, the force acts in another direction, for example 
at a right angle to the direction of movement, the force acting at a right angle does not 
perform any work. The interplay between the force- and distance vectors thus depends 
not only on the absolute value of the two vectors but also on the angle between them. 
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The corresponding combination of two vectors a and b is denoted as the scalar 

product or inner product and is defined by 

a · b = la l lb l cos(a, b) = GD · GD 
= a l b) + a2b2 + a3b3 = b)a )  + b2a2 + b3a3 = b .  a, 

where (a, b) is used as a sign for the angle between a and b. For the combination sign, 
a dot is used and the combination is read a� a dOl b. 

The inner product is a maximum if both vectors are parallel (cos(O) = cos(ll') = I )  
and i s  equal t o  zero i f  they are orthogonal to each other (cos(1l'/2) = cos(¥ = 0). 
It is a number, a scalar, 16 not a vector. This product is commutative, i.e. it does not 
matter which vector appears first in the product. The resulting number is equal to the 
length of one of the vectors multiplied by the projection of the other vector onto it. 

8.3.4 Vector product, outer product 

A second well defined way to combine two vectors of different types defines a vector 

as the result of a multiplication. Its direction is orthogonal to both input vectors and 
therefore also on the plane defined by the two vectors. Its absolute value is la l  x 
Ib l  sin(a, b) . The product is a maximum if both vectors are orthogonal to each other. 
An example from physics is the deflecting force on a moving charge in a magnetic 
field. 

For this outer product or vector product the following definitions apply: 

e = a x b = (::) x (::) = (:::� = :��) = - (:�� = ::�) 
a3 b3 a ) b2 - a2 b) a2 b) - a ) �  

le i = la l lb l  sin(a, b) .  

= -b x a, 

This initially slightly confusing formula for the resulting vector can easily be analyzed 
mnemonically: in the first component the first coordinate of the input vector does not 
appear, and in its negative term the indices are simply exchanged. For the second and 
third component the indices are cyclically changed. 

a x b is read as a cross b (versus a ·  b as a dOl b). 

The vector product is not commutative; it does indeed depend on the sequence of the 
vectors. Swapping the sequence changes the sign. 

Since a x b is a vector one can multiply this resulting vector with a third vector e 
both in the inner a� well as the outer sense. Then we have: 

(a x b) • e is a scalar. (a x b) x e is a vector. 

t 6  In mathematics a scafar is a quantity which is fully cklennined by specifying a number. 



8.4 Visualization of the basic operations for vectors 1 45 

8.4 Visual ization of the basic operations for vectors 

The basic operations for vectors, i.e. summa/ion, subtraction, and inner and outer 

product, which have been sketched above, are visualized in the following interactive 
3D simulation, Figure 8.2. This simulation starts by creating two randomly orientated 
position vectors (zero-point vectors) a and b of length I ,  which are embedded in a 
transparent sphere of radius I .  In the figure the summation of these two vectors is 
shown. 

The orientation of the axes in space can be adjusted with the mouse and wiIl be 
perceived a� rotation of the sphere. Every activation of the button new vectors creates 
a new pair of vectors. The coordinates of these vectors are shown on the right. 

Using the option switches on the left, different well-defined viewing projections 
can be selected. 

Next to the vector switch, the angle between the vectors, the product of their ab­
solute values (here always I because of normalization), the scalar product and the 
absolute value of the vector product, are displayed. 

view -, -

@ p<orspeallie 
3 1 = ·0 78 

32= 0.29 
o no porcpecttJa 

33 =· 0 58 
o xy proledion 

b 1 . 0.08 

o yz projection 
b2= 0 62  

o Xl projection 

bJ; 0 18 

Figure 8.2. Simulation. 3D presentation of vectors, their sum, difference, outer product and 
multiple sum. The ve�"tor coordinates are shown on the right, the angle between the vectors, 
their inner product and the absolute value of the outer product on the bottom. On the left, 
different projections can be chosen. The Figure shows the perspective representation of the 
vector sum a + b. Pushing the button new vectors creates mndomly orientated vectors. 
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With the option switches on top the different vector operations are visualized and 
superpositions are possible. 

For addition and subtraction the input vectors are complemented by lines related 
through parallel translation. This visualizes the construction of the red result vector 
from the parallelograms. 

8 x b creates the vee/or product 8 cross b and displays it as black arrow. If the 
sphere is rotated in such a way that the plane defined by the two input vectors lies in 
the figure plane, then these vectors just touch the equator of the sphere and one looks 
along the direction of the resulting vector. This demonstrates the orthogonal direction. 
If one moves with the right-hand side from 8 via b to the vector product one completes 
a right handed screw. 

Performing the same experiment with b x 8, one completes a left handed screw. 
This is the meaning of the non-commutativity of the vector product: the direction of 
the vector product b x 8 is opposite to that of 8 x b, thus we have b x 8 = -8 X b. If 
one displays 8 x b next to b x 8, one sees that both vectors have the same length, but 
point in opposite directions. 

Finally 8 + b + c creates three random vectors and their red sum vector. If one 
activates 8 + b in addition, one recognizes the partial construction of the sum of the 
first two vectors and one can implement the completion to the total sum vector in ones 
imagination. 

In the description of the simulation you find further details and suggestions for 
experiment�. 

8.5 Fields 

8.5.1 Scalar fields and vector fields 

In practical situations, the simple ca�e that a single force vector acts on an object 
will occur relatively seldom. An approximate example of this would be the collision 
of two bodies in outer space sufficiently far away from other bodies, such that their 
influence can be neglected. One could then consider one of the bodies to be at rest and 
characterize the other one with a vector whose absolute value and direction correspond 
to its momentum p = my. 

Much more common is the siruation where there are influences at every r = (x , y, z) 
in space on the object of interest. They can either be described by vectors, having 
length and direction, for example the gravitational force in the vicinity of a planet, or 
by scalars, which have no direction, such as the density of an atmosphere or the tem­
perature. Both quantities, force and density, influence the movement of a test body 
in the vicinity of the planet. The gravitation ha� the effect of a directed acceleration, 
while the density causes a deceleration independent of the direction of movement but 
dependent on the position. 
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In the first case we call it a vector field and in the second, a scalar field. In both 
cases the characteristic quantities depend on the space coordinates, thus for the vector 
field the absolute value and direction, and for the scalar field, the value. For the case 
of a non-stationary field they also depend on the time. 

We visualize both distributions in such a way that you will have the opportunity to 
edit formulas for the position dependence of absolute value and direction, or to design 
them yourself. This will give you a feeling for the characteristics of typical fields. 

8.5.2 Visualization possibi l ities for scalar and vector fields 

To visualize a scalar field in all generality one would need four variables, three for the 
position coordinates and one for the position dependent scalar it�elf. This information 
can obviously not be represented with a 3D simulation that is projected on a plane. In 
addition some fields will change with time as a fifth variable. Thus one has to work 
with certain restrictions for the visualization. 

For stationary problems, the time does not play a role as variable. 
For problems with rotational symmetry, for example the gas density distribution p 

around a planet with rotational symmetry around an axis, one can restrict the presen­
tation to a cross section through the center of the planet at a right angle to this axis and 
plot the ga� density p a� third coordinate over the cross section x y. Thus one obtains 
a 3D surface in the space xyp. The field distribution in space then shows rotational 
symmetry with respect to the distribution on the cross section. 

A second possibility for this example would be to ask where the curves of equal 
density are located and to create a family of such curves a� a contour plot. This ta�k 
can be solved computationally by intersecting the planes p = constant for values on 
an equidistant p-grid with the 3D surface xyp and finding the intersection curves. This 
contour plot then has the familiar appearance of a geographical contour lines display. 

In the general case one would have to produce a family of such presentations for the 
different values of those variables that have been neglected so far. Fortunately, how­
ever, the cases of practical interest are mostly stationary and possess high symmetry, 
such that the methods described above can visualize the important characteristics quite 
well. 

For vector fields, one has to show in addition the direction of the vectors localized in 
space and their absolute value. This requires funher restrictions for the visualization. 

One is mostly interested in the general structure of the field, which can be shown 
by putting arrows on a regular grid that show directions and absolute values at the 
respective positions. If one only wants to show the direction of the vectors, one can 
use the same length for all arrows, which makes the presentation clearer. To indicate 
the absolute value one can then use different shades of color. 

For the presentation of a three-dimensional vector field one can stack several such 
cross sections over each other. As a static picture such a 3D projection is often quite 
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confusing. However, if one moves the projection direction interactively, either with 
the mouse or automatically around an axis. one obtains a rather good idea of the 
distribution. 

All these tools are provided by common numerical programs and we will show 
examples for these in the following. 

8.5.3 Basic formalism of vector analysis 

Pure scalar fields without relation to a vector field. (the density distribution is such an 
example). are not very interesting. Much more interesting are scalar fields. from which 
vector fields can be deduced. This simplifies their description greatly and shows them 
as originating from one position dependent parameter only. 

We refer to a scalar potential field P .  if the components of a vector field V are 
obtained by taking partial derivatives with respect to x. y, z of P .1 7  i.e. via differ­
entiation after one variable at a time. while the other variables are considered as 
constant. The underlying questions is, then. how the scalar value changes if one 
moves from a space point r = (x , y, z) to a neighboring space point r + dr = 
(z + dx. y + dy. z + dz) . Thus one can take. for each variable. i.e. partially. the first 
term of the Taylor expansion. if dr is small enough. One then obtains: 

dP = P(x + dx , y + dy . z + dz) - P (x .  y, z) 

fJP fJP fJP ( fJP fJP fJP ) (dX) 
= - dx + - dy + - dz = - , - , - dy = grad P · dr. 

dx dy dz dx dy dz 
dz 

The vector called grad P denotes the change of the scalar P in the three spatial di­
rections. For a given space point. its direction depends on the change of potential in 
the three directions; it points in the direction of maximum change. Its absolute value 
depends on the absolute values of these changes. 

As shorthand for the partial differentiation with respect to all three coordinates, that 
is applied to the scalar potential. one uses the symbol nabla (V). an overturned Greek 
letter 1:1. This symbol reminds one of the form of an antique harp (vaf3)"a in Greek. 
nablium in Latin). Nabla symbolizes a vector operator, which is therefore written as 
a matrix with one column or one line. To stress the vector character of this operator. 

1 7  The �ymbol for the partial derivative of a quanti!)' A (x. y. z) after the variable x is � 
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one usually puts an arrow on top of it. 

Using the nabla notation ha� the advantage that it also allows a unified notation for 
other differential operators, for which different symbols are traditionally used, which 
hide their common origin. For example the vector field characterized by V P is tradi­
tionally denoted by grad P (gradient of P) and referred to a� gradient field, because 
if characterizes the steepness of the potential field. 

We will now show some further applications of the nabla symbol and its traditional 
synonyms. In the first two examples, the operator will not be applied to a scalar field 

but to a vector field. In analogy to the gradient of a scalar field we now deal with the 
change of a vector field from a space point r to a neighboring point r + dr. 

ax ax a a a - ax a az 
V · a = Iv • (ay) = - + ----L + - ; 

( a )  
y ax ay az a az 1fZ _ 

V • a = div a divergence (scalar field) of a 

V x a = (t) x (::) = (t ��) : a az aa , � 
1fZ ax - ay 

V x a = curl a curl (vector field) of a 

V2 - a • a - _ + _ + _ .  V2 = II Laplace operator 
(Ix) (Ix) a2 a2 a2 - � � - ax2 ay2 az2 . 

V2 P = llP = div grad P ; Laplace P (referred to a� the "Laplacian", 

which is a scalar field). 

The meanings of the symbols and operations are, in short, as follows: 
The divergence of a vector field in Cartesian coordinates is obtained computation­

ally as the (symbolic) scalar multiplication of the nabla operator with the vector and 
therefore it is a scalar field. It describes the source strength of the vector field. Where 
it does not vanish, field lines either originate or converge. 

An example from the Maxwell equations: div D = p: the charges p are the sources 
of the electrical vector field D. 
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The curl of a vector field is obtained computationally as (symbolic) vectorial mul­
tiplication of the nabla operator with the vector field, thus at every space point, it is 
a vector. The curl of a vector field describes the vorticity of a vector field, which has 
closed field lines, unless curi a = 0 everywhere. 

Another example from the Maxwell equations: curl H = j; the current density j 

determines the vector field H that is orthogonal to the current density and has closed 
field lines everywhere. 

The Laplace operator is obtained via (symbolic) scalar multiplication of the nabla 
operator with itself and therefore yields a scalar field. 

An example for its application: under the a�sumption that the electrical field strength 
is the gradient field of an electrostatic potential, i .e. E = - grad <1>, we obtain from 
one of the Maxwell equations, namely div D = p, the Poisson equation �<I> = -p/e.o . 

Using this equation the electrostatic potential due to a given charge density p can 
be calculated, and from this the electrical vector field. In a portion of space without 
charges the potential equation � <I> = 0 applies. 

Between the different operators, the following general relations apply: 
For every scalar field V we have: curl grad V = V x VV = 0, i .e. for a gradient 

field the (local) curl is zero, there are no vortices. 
div curl a = O. The (local) divergence of the curl field of a vector field is zero, 

because a pure vortex field does not have any sources. 

8.5.4 Potential fields of point sources as 3D surfaces 

Particularly elementary, simple, and at the same time important, are the potential fields 
that are caused by point sources in space. They describe both the gravitational attrac­
tion between masses mi as well as the attraction or repulsion between charges ei , 
which can be positive or negative. The common property of these forces is that, 
with growing distance, the effect of the point source is spread over the surface of 
a sphere and therefore decrea�es like 1 /411" r2 . The potential field then has, apart from 
an additive constant as integral of the vector field in polar coordinates, the form: 

m, i ei 
or -- . 

, , 

The effect on a similar object increases with decreasing distance, because I / r  be­
comes larger, when the distance becomes smaller. The minus sign has the effect that 
the force F = - grad P = (m / r2)ro is positive if mi is positive. In the ca�e of grav­
itation, this is always the case. In the electrostatic example, the increasing repulsion 
of equally charged objects turns into an increasing attraction, if they are of opposite 
charge. 
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The following interactive simulation of scalar fields shows as examples: 

• the potential field of a point source; 
• the potential field of two point sources of equal sign at a distance of r, with 

adjustable mass ratio (charge ratio) b ; 
• the potential field of  three symmetrically located point sources of  equal sign at 

a pairwise distance r, with adjustable mass ratios b = m2/ m ) ,  c = m3/ m2  or 
charge ratios b = e2/e )  , c = e3/e2 ; 

• the potential field of a dipole consisting of a negative and equally large positive 
charge at a distance of r ;  

• the potential field of a quadrupole consisting of two dipoles arranged symmetri­
cally at a distance r .  
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Figure 8.3. Simulation. 3D plot of the potential field of point sources lying in a plane. The 
figure shows the field of three similar point sources. With the right slider the mass or charge 
can be fixed, with the left slider the yellow intersection plane can be shifted and with the 
bottom sliders b,  c the mass or charge ratios can be set. In addition, different projections of 
the 3D field can be chosen. 
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The first object is normalized to I ;  the distance r can be changed continuously with 
a slider. 

The potential distribution (the value P can be chosen with the left slider), is cal­
culated for planes in an adjustable distance z to the xy-plane, which can be set with 
the right slider. The potential distribution in the z-plane is shown by the intersection 
curve between the potential surface and the z-plane. 

The fields diverge at the respective point sources, since Iimr-->o (� ) = 00. In the 
simulation, this is prevented by excluding the plane z = O. For a realistic field distri­
bution one would have to work with extended charged objects instead of with point 
sources. 

This simulation provides many possibilities, whose detailed description cannot be 
given here. The formulas are editable, such that, in addition to the given fields, ad­
ditional fields can be calculated. In the description pages we discuss this further and 
useful experiments are proposed. 

In Figure 8.3 you can see the whole interactive appearance for the three body prob­
lem with three equal objects. We show a potential cross section in the plane z = 0 in 
the "far field", where the potential surface has not yet split into partial surfaces. 

8.5.5 Potential fields of point sou rces as contour diagrams 

The visualization of potential curves in cross sectional planes shown above is very 
flexible. However, it takes some careful thought to understand what is actually being 
calculated and what one sees. The extensive details in the description pages will assist 
in this regard. 

This is the advantage of presentation as a con/our diagram. It immediately shows a 
family of potential curves of equal potential distance in a plane. 

For the computation, the same algorithm as above is used. However, now we only 
show the intersection of the yellow plane from Figure 8.3 with the potential surface 
and at the same time we show a number of potential lines (here 35, they cannot all be 
separated with the eye). The following interactive diagram Figure 8.4a shows in the 
xy-plane equipotential lines for a large mass with two smaller ma�ses in its vicinity. 
One recognizes at the same time the near field, where the equipotential lines encir­
cle the individual objects, and the far field, where the equipotential lines encircle all 
objects, as well as the neutral points, with grad P = 0, in which an object without 
its own momentum would not know where to tum (the force as gradient acts in the 
direction of the largest potential change). 

The three following static pictures show next to each other the three-body potential 
of three equal bodies in a plane with distance z = 0.42 to the xy-plane, as well 
as a dipole and a quadrupole field, which have a very instructive appearance in this 
presentation. One must, however, take into account that the equipotential lines in the 
individual z-planes do not represent identical potentials .  The 35 potential lines are 
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Figure 8.40. Simuh,tion. Contour representation of a potential field. in the picture the field of 
a point source with two smaller satel lites (mass mtio 0.2) is shown. The scanning plane can 
be moved with the right slider. Thirty-five potential lines are calculated. That these appear to 

have comers at small distances is an artifact of the calculation . 
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Figure 8.4h. Examples: contour diagrams for three point masses, for a dipole of a positive 

and a negative charge and a quadrupole formed from two neighboring dipoles. 
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determined separately for each layer. Thus one obtains a qualitative picture, while the 
3D presentation is quantitative. 

By moving the z-plane, one quickly obtains in this simulation an idea about the 
spatial distribution of the potential. 

8_5_6 Plane vector fields 

In realiry, vector fields have many components, derivatives and variables: three for 
the position, and three for the components of the direction, the absolute value and the 
time. For numerical calculation this does not really pose a problem; one simply needs 
to do the calculation with the required number of dimensions. 

However, one has to accept many limitations for the visualization, since the desired 
relationships have to be shown as a projection on a plane. It becomes relatively easy 
if one assumes that the vector field is in a stationary state (no time dependence of the 
direction or absolute value) and if we restrict ourselves to vectors in a plane, as we 
will do in this subsection. 

The local distribution of the vector direction can be shown quite clearly with ar­
rows, whose origins are placed on a regular grid in the plane. The pictorial presenta­
tion of the absolute value of the vector is, however, less convincing. If one chooses 
the length of the arrows to show this, the arrangement ea�ily becomes unclear, since 
the dependence on the position can be quite strong, for example for a quadratic de­
pendence from the distance to the source. If one chooses different shades of color, the 
achievable range is small and the presentation is only of a qualitative nature. 

We have chosen a uniform arrow length. Color shading gives a qualitative hint about 
the absolute value of the vector field. For the quantitative presentation of the absolute 
value of the vector, we use the velociry of a test object that moves in the vector field 
(ax . ax). Thus the time is used as another dimension of the presentation. 

The red test object moves from the start along the field lines with a velociry that is 
determined from the component� of the vector field ax . a y according to very simple, 
coupled ordinary differential equations (see Chapter 9) : 

da x 
Vx = Tt ; 

da y 
Vy = Tt . 

In two dimensions, particularly, the formula for the curl becomes clearer: 

curI a = V x a = (+) x (ax) = ( � ) ; 
av ay aa, aax y rx - ay-
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The curl has only one component, namely in the z-direction, since it needs to be 
orthogonal to the xy-plane of the vector field. The source strength only depends on 
the changes in the x-and y-directions. 

In general, the components of the vectors will be functions of both variables x and 
y, ax = ax (x , y);  ay = ay (x , y),  such that the scalar divergence and the absolute 
value of the curl depend on the position. The direction of the curl is for a plane field 
always the orthogonal axis, normally called the z-axis. 

In two dimensions, the curl can be calculated easily for given formula� of the com­
ponents. Remember that one treats the respective second variable a� constant for the 
partial differentiation with respect to the first one. 

Vortices in the vector field can be ea�ily recognized in the chosen presentation. 
A vector field is vortex free if its curl is vanishes everywhere: 

cori a = 0 for 
aay _ aax 

= 0 .... 
aay 

= 
aax 

ax ay ax ay 

This is for example the case, if ax = ax (x) ; ay = ay(y) i.e. if the components only 
depend on their own coordinate. In this case, the partial derivatives vanish identically 
(further details are given in the simulation description). 

Sources in a vector field can be recognized visually by sequences of vectors, i.e. 
field lines that start or end at them. A field is free of sources and sinks (negative 
sources), if the divergence vanishes everywhere. 

aax aay aax aay 
div a = O  for - + - = 0  .... - = -- . 

ax ay ax ay 

This is, for example, the case when the vector components are independent of the 
coordinates, i .e. if the derivatives vanish identically. 

In other cases, one needs to examine critically if the formally satisfied condition 
provides an answer that make sense in al/ points of the vector field. This is, for exam­
ple, not the case if the limiting process when calculating the derivative results in an 
undetermined expression (0/0). A secure statement is obtained if one surrounds the 
suspected source with a circle (a sphere in three dimensions) and sums up the number 
of field lines that cross the curve while taking the signs into account. If the number 
of field lines entering the circle is the same as the number of field lines leaving it, the 
corresponding point is free of sources. This statement becomes exact when integrating 
over the volume and taking the limit of vanishing radius. 

Figure 8.5, which shows at the start a vector field with two vortices, leads to the 
interactive simulation. The test object, which is initially at rest (initial velocity 0), 
can be moved to an arbitrary position in the field using the mouse, prior to the time 
simulation, in order to investigate the total field in detail. 

With the selection field one can choose one of a number of typical fields. The for­
mulas for the components, as well as the respective divergence and curl, are then given 
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Figure 8.5. Simulation. Animated movement of a test body in a given vector field. The top­
most. non-editable. text field shows preset field types and their vector components ax . a y "  The 
components can be edited sepamtely in the small text fields. such that arbitrary field. can be 
created The right slider controls the zoom factor. the lower slider. the arrow length that is 
constant over the whole plane. For the preset fields. divergence and rotation are displayed. 

in text fields. The formulas field can be edited, so that arbitrary component formulas 
can be entered to study the corresponding fields. 

The scale slider zoom on the right allows the investigation of the field on larger or 
smaller scales. This variation possibility is important, because the number of arrows 
shown is constant for clarity. but at a larger scale, details such as vortices and sources 
can be lost. 

The arrow length, which is constant for the whole plane. can be adjusted with the 
second slider. 

Further details and suggestions for experiments are given in the description pages 
of the simulation. 
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8.5.7 3D field due to point charges 

Figure 8.6 shows the vector field of a quadrupole. It leads to the simulation of the gen­
eral electric vector field of point charges. The distribution of its direction is visualized 
through a periodic grid of arrows having constant length, which show the local direc­
tion of the electric field strength vector in every point. The vector length is adjustable, 
but constant everywhere within the picture. 

The absolute value of the field strength is indicated by color shading. In addition, 
a threshold value for the lowest absolute value for which vectors are shown can be 
selected. This provides a field strength dependent envelope surface for the whole field . 

The opaque yellow plane can be shifted parallel to the z-axis, such that a spatial 
cross section through the vector field is shown. 

The space orientation of the presentation can be adjusted with the mouse; in 
addition, defined projections can be selected. 

The number of objects can be chosen freely, and one can switch between particles of 
the same or opposite polarity. This shows the considerable difference in fields between 
multipoles of opposite polarity and particle configurations of uniform polarity, most 
distinctly recognized in the far field. 

In the initial state, all particles are positioned uniformly on a circle around the origin 
in the xy -plane. They can be individually moved with the mouse, such that arbitrary 
configurations are possible. 

A convincing visualization of a situation that depends on so many parameters via 
projection to the observation plane requires a careful coordination of point distance, 
arrow length, threshold level and observation angle. The spatial impression becomes 
quite vivid if one changes the orientation of the projection slowly by pulling with the 
mouse. 

The description contains further details and suggestions for experiments. 

8.5.8 3D movement of a point charge in a homogeneous 
electromagnetic field 

The movement of a charge in an electric field is quite easy to understand. It follows 
the direction of the electric field and the charge is accelerated proportionally to the 
absolute value of the electric field vector. 

The movement in a magnetic field is much more complicated. In this case, the vec­
tor product of magnetic field and velocity determines the acceleration of the charged 
test mass. Thus the charge is deflected at a right angle both to the magnetic field and 
the direction of its velocity, and the strength of the deflection depends on the angle 
between magnetic field and current direction of movement, namely F � v x B. The ef­
fect of this force is that the orbit moves in spirals around the direction of the magnetic 
field lines. 
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FIgure 8.6. SimulatioD. 3D field of point sources that are located at arbitrary positions; in the 
figure a quadrupole consisting of two positive and and two negative point charges. Using the 
sliders the arrow length, the threshold of the displayed field strength level, and the position of 
the yellow scanning plane, can be adjusted. The number of charges is entered by hand in the 
number field while the switch detennines whether the charges all have the same or alternating 
opposite signs. On the top, different projections can be selected. All individual particles, as 
well as the 3D projection, can be moved or adjusted with the mouse. 

Through the combined effect of magnetic and electric fields, the accelerations are 
added and very different movement patterns can come about. We want to visualize this 
for the simple example of a homogeneous field, for which the electric and magnetic 
field are constant in absolute value and direction in the whole space. 

The interactive Figure 8.7 shows after opening the movement of a charge, whose 
initial velocity vector has components in the positive y-direction and negative z-direc­
tion, and which is subject to the accelerating effect of the green electric field vector 
and the "rolling up" effect of the red magnetic field. The spiral drawn in magenta 
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FIgure 8.7. Simulation. Movement of a charge with given initial velocity vector in a homo­
geneous electromagnetic field. The componenL, of the homogeneous fields and of the velocity 
vector are shown in the sliders at the right and can be set as initial values before starting the 
simulation. The velocity vector for the simulation is set with the lower slider. The simulation 
is started with the Stan button. 

is stretched in the direction of the E field. The axis of the spiral is parallel to the 
red vector of the magnetic field, as becomes apparent if turning the 3D simulation 
appropriately. 

Arbitrary initial conditions can be set with three sliders each for the homogeneous 
vector components of electric field, magnetic field and for the initial velocity of the 
point charge. After pushing the Start button, which triggers the calculation of the orbit 
using the respective differential equations, the sliders for the velocity components 
move according to their changes as function of time. The speed of calculation can be 
adjusted. 

The start point of the charge can be adjusted with the mouse. ReselObjecl moves 
the start point to the origin, while leaving all other settings unchanged. Reset changes 
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all parameters back to their default settings. Clear era�es all orbits. Thus one can also 
superimpose orbits with different settings. 

The simulation provides a wealth of possibilities, of which a few limiting cases are 
named below: 

• No fields: uniform movement of the charged particle with the initial velocity and 
no acceleration; 

• Only E field: uniformly accelerated deflection of the object; 
• Only B field and velocity parallel to the magnetic field: field has no effect on the 

movement; 
• Only B field and velocity vector orthogonal to it: circular orbit; 
• B field and E field orthogonal to each other and velocity vector orthogonal to B 

field: spirals. 

The description of the simulation contains further details and suggestions for experi­
ments. 



9 Ordinary differential equations 

9.1 General considerations 

In connection with the differential quotient we have introduced the notion of differen­

tial equations and briefly described the particularly simple and important differential 
equations for trigonometric and exponential functions. 

In this chapter we want to deal extensively with this "magic wand" of infinitesimal 
calculus, which provides the key to a deeper understanding of physical relationships. 

Which concrete meaning can be associated in ones imagination with the first and 
second differential quotients y ' and y" of a function y (higher differential quotients 
barely play a role). 

We consider a graphical presentation of the function y = f(x) in a plane coordi­
nate system. 

The first derivative y' (x) = * (x) is the slope or steepness of the curve describing 
the function at position x. It indicates how strongly y changes for a given x as a 
function of x .  Positive values signify an increase, negative values a decrease. 

The second derivative y"(x) = �(x) = �(x) describes the change of slope 
and thus the local curvature. Positive values mean an increase of the slope and 
thus concave curvature, while negative values signify a decrease of the slope and thus 
convex curvature. 

We now want to interpret especially the variable x as time t ;  we thus consider 
changes of the quantity y a� function of time. An example would be a driving car, for 
which y is the distance traveled during the time interval t :  y = f(t) . Thus at time 
t = 0 the position of the car is yeO) = f(O). 

The first derivative y' (t) = *" is then the change in the distance traveled per 
infinitesimal time interval, measured at a certain time point t, and thus ha� the meaning 
of the instantaneous velocity v of the car. 

The second derivative y" (t) = � (t) = <!fr describes the change of velocity 

and thus the instantaneous acceleration a of the car. Positive acceleration means an 
increa�e in the velocity, negative acceleration means a decrease in the velocity, i .e. 
deceleration. 

Thus, for the illustrative description of differential quotients (derivatives), the des­
ignations slope or steepness are equivalent, as well as the designations curvature and 
acceleration. 

We demonstrate here the strength of the predictive power of an extremely sim­
ple differential equation, the example of a driving car. In school we learn with great 
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effon the formula for the time dependence of the traveled distance s with Vo as initial 
velocity and So as initial value of s :  

a 2 s(t) = '2t + vo t + So · 

We also learn the restrictive condition, that the acceleration a must be constant for the 
equation to be correct at all (every child knows, however, that this does not happen in 
reality). The simple differential equation: 

.�/I = a 

does not only apply in the same situation, but is also valid if the acceleration is not 
constant, but is an arbitrary function of time a (t) . To distinguish between all individual 
events that satisfy the differential equation, it is sufficient to know the respective initial 
values Vo and so . 

To calculate the time dependence from the differential equation is a routine job that 
is identical for all differential equations, and for which one can use the analytical tools 
of integral calculus, or which is just left to a numerical computational code. 

In physics we often do not wish to calculate the values that result in a special 
case, but to primarily understand which causal relationships are behind a cenain phe­
nomenon. The example of distance traveled simply provides the answer: the acceler­
ation is important. 

This statement in its formal simplicity is also valid if we examine a "curved" three­
dimensional orbit in space under the inftuence of different forces !  For the force vector 
F that acts on the object with mass m we have: 

F = ma, 

where a is the acceleration vector. This was one of Isaac Newton's greatest insights. 

9.2 Differential equations as generators of functions 

The example of the distance traveled also gives an easy answer to the question: how 
does one find the functions that are imponant in physics? How are functions defined 
that describe cenain situations? How does one find the relationship between variable 
and function value that is expressed in the function, i.e. the "character" of a special 
function type? 

Differential equations are the parents of the functions, and we will soon see that 
a single differential equation, i .e. a simple relationship, creates many related children ­
read functions. 

As discussed in Chapter 5,funclions describe the dependence of a quantity y on one 
or more other quantities, which are called variables of the function, or more correctly 
independent variables. 
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For one variable. which we call t .  these functions shows y in its dependence from 
this single variable t .  (We here choose t as symbol of the variable. since many ex­
amples will demonstrate a dependence on time.) The curve of the function can be 
visualized with a y et)  plot. Changes are described by derivatives with respect to the 
single variable t . 

Function y = yet) .  

, dy 
slope Y (t) = 

dt
; 

variable: tl < t < t2 . 

11 d 2y dy' 
curvature y (t) = 

dt2 
= dt '  

What happens if several variables need to be taken into account i n  the example of 
a time dependent function of two position variables,i.e x = lex .  y. t) .  which we 
have visualized above? Here the partial differential quotients appear. which describe 
the change of the function value z when varying one of the variables. For the partial 
derivative of a function with respect to one of the variables. all other independent 
variables are treated as constants. 

z = z (x . y . t ) 

variable: XI < X < X2 ; Y I < Y < Y2 ; tl < t < t2 ; 

az az az a2z a2 z a2z a2z 

at ;  ax
; 

ay
; 

at2 ; 
ax2 ; 

ay 2 ; 
axay

; 
" "  

We now go back to relationships for one independent variable and consider a simple 
example: we know about the exponential function. that its instantaneous growth. the 
growth rate or slope. is exactly the same as it� function value. The growth rate is 
identical to the first differential quotient: 

dy 
for y = et we have y ' = _ = et ; 

dt 

y' = y. 

This differential equation (relationship between the function and its derivatives) char­
acterizes the nature of all growth functions (exponential functions) in a unique way. 
To fix a specific growth function. one only requires its initial value. 

If. as above. we only deal with the differential dependence on one variable. we refer 
to an ordinary differential equation. Partial differential quotients appear when there is 
a dependence on more than one variable and we refer to a partial differential equation 
(see below). 

There is no other function that shows the same property of the derivative as the 
exponential function. This applies irrespective of its "amplitude". i .e. a multiplicative 
factor C .  because: 

for y = Cet we have y' = dy = Cet = y � y' = y .  
dt  

In general. every linear differential equation is independent of  multiplicative factors. 
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It is quite easy to fonnally derive the exponential function as a solution from the 
knowledge of the differential equation, using elementary integrals. 

dy 
y
' = y == dt 

= y ; 

the solution method of choice is the seperation of variables 

dy - = dt ,  
y 

integration of left-hand side 

f.y .!.dy = In y - In yo 
y(O) y 

integration of right-hand side 

with y(O) = Yo , 

1'
dt  = t - 0 � In y = t + In yo ; y = eHln Yo = yoe' . 

The basis exponential function y = e' is the result for the initial value Yo = I .  From 
the last equation, one can see that multiplication with the initial value yields the same 
function as translation along the t -axis by the logarithm of the initial value. 

Solutions A.Ax of y ' = Y 

Figure 9.1. Family of solutions y = Aex of y' = y. The panllneter of the curves is the initial 
value A = y(O) (intersection with the ordinate), which takes on the integer values from -20 
to +20. 
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For different initial values, the differential equation describes a family of expo­
nential functions, which are distinguished by a multiplicative factor. The diagram in 
Figure 9. 1 shows this family of curves for positive and negative initial values between 
-20 and 20 with step width I .  

In general, an ordinary differential equation i s  defined by afunctional relationship 
between afunction, its derivatives and the variable t :  

general F(t, y, y '. y" . . . . , y In»� = O. 

explicit y<n) = f(t. y . l. y"  . . . .  , y<,,-I» . 

A differential equation is called explicit if the highest derivative can be expressed as a 
function of the lower derivatives. 

The above equation for the exponential function is an ordinary explicit linear first 
order differential equation. The equation is: 

• ordinary, because it only has one variable; 
• explicit, because the derivative of highest order can be expressed as a function 

that does not contain itself; 
• linear, since the function itself and all derivatives except for the highest order 

enter in a linear fa�hion; 
• of first order, since only the first derivative appears in it. 

These criteria are important for finding an analytical solution and are also important 
for numerical solution with limited computational power. In the case of explicit equa­
tions and important numerical methods, only previously calculated data enter the pro­
cedure to calculate a solution step by step. For implicit equations (an exotic example 
is y" cos y" + xy = 0) one has to solve for every step of the calculation an equation 
that already contains the results for the next step. This is, in general, not possible in 
closed form, but only through iteration. With sufficient computational capacity. how­
ever, this dilemma loses its importance. We have already shown above how to solve 
complicated equations with iterative methods. 

One could, of course, also describe the exponential function via a differential equa­
tion of second, or even higher order. because we have 

y = eX ; y ' = eX ; y" = eX ; 
---+ for example y" = y. 

If one a�ks which functions satisfy this second order differential equation one realizes, 
maybe initially surprisingly, that it is not satisfied only by the simple exponential 
function but, in addition, by a multitude of functions that are related to it. 
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Indeed we have with A and B as constants: 

For y = Aet � y ' = Ai � y" = Aet => y = y"(= y ') .  

For y = Ae-t � y ' = -Ae-t � y" = Ae-t => y = y"(,c y ') .  

For y = Aet _ Be-t � y' = Aet  + Be-t � y" = Aet _ Be-t => y = y"(,c y ') 

in particular for A = B = 1 /2: 

et + e-t et _ e-t et + e-t 
y = cosh(t) = --- � y' = --- � y" = --- => y = y"(,c y ') 

2 2 2 

. et - e-t , et + e-t " et _ e-t 
y = slDh(t) = --- � y = --- � y = --- => y = y"(,c y ') .  

2 2 2 

In addition to the simple exponential function with a positive exponent, this also in­
cludes exponential functions with a negative exponent and also all linear combinations 
of these two components. of which we have formulated cosh t and sinh t at the end of 
the list. 

In the diagram Figure 9.2. which is not active, we show the families of the functions 
described above. First the family of exponential functions with positive and negative 
exponents and initial values is shown. 

Figure 9.3 then shows the hyperbolic functions that are either symmetric or anti­
symmetric to x = 0 and are determined by a single initial value A :  

eX _ e-x 
A sinh(x) = A 

2 
; 

e" + e-x 
A cosh(x) = A 

2 

Finally Figure 9.4 shows the general solutions with two parameters A and B :  

Ae" - Be-X ; Aex + Be-X 

with A = I .  2, 3, . . .  , 1 0  

and B = I .  5 ,  10 .  

The choice of the parameters A and B.  including their signs. determines which indi­
vidual function. from the abundance of functions that satisfy the differential equation 
y" = y, is realized. One obtains all functions for which the curvature has the same 
sign and absolute value as the function value. 

In this simple case it is immediately obvious that one could. instead of the second 
order differential equation. also use two first order differential equations: 

y ' = y 

y" = y' or 
y' = -y 

y" = -y'. 
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Solutions AeAX und Ae,,(·x, of y" 
= y 

FIgure 9.2. Family of solutions y = Ae'" and y = Ae-x of y" = y for different initial values 
of A = y (O). A covers all integer values from -20 to +20. 

Hyperbole sinh. und eoshx as solutions of y.'=y 

Y oill �.x 

Figure 9.3. Family of solutions of y" = y: the function y(x) = A sinh x goes through (0, 0) 
and y(x) = A cosh x goes through (0, A) with initial value y (O) = A. A changes in integer 
steps from -20 to +20. 
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Figure 9.4. Two-par-uneter family of solutions of y" = y. The vales of A and B detennine 
for example the two initial values y (O) = A + B and y'(O) = A - B. 

In general, one can reduce an ordinary differential equation of nth order to a system 
of n equations of first order: 

y <") = f(y , y' , y" ,  . . .  , y("-I) , /) .... 
I )  y' = Y l  
2) Y; = Y2 
3) y� = Y3 
4) Y; = Y4 

y<") = f(Y , Y l , Y2 , Y3 , · · ·  , Y,,-l , t) · 
Since the differential equation is explicit, f( . . .  ) does not depend on y" . 

The differential equation of nth order has n parameters of initial values, which are in 
general different from each other. By fixing specific numbers for the initial values, one 
selects a specific function out of all the innumerable functions that satisfies the differ­
ential equation. The physical solution is thus obtained from the differential equations 
and the initial values. 

The beauty and descriptive power of mathematics with its application in physics 
shines in a very specific manner for differential equations. One single, formally quite 
simple, relationship can include a multitude of solution possibilities, out of which the 
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selection of a few parameters picks the specific solution. Understanding the relation­
ships of differential equations, therefore, is much more imponant than the knowledge 
of a large number of formulas for limited problem areas. 

The differential equation y" = -y describes all phenomena in connection with 
undamped, sine-shaped oscillations. A factor a (y" = -a y) does not change anything 
fundamental, since scaling the time with t = Jat transforms the differential equation 
back to y" = -yo What is the visual meaning of this equation? The curvature y" is 
equal to the negative function value. This means that, for a large positive function 
value, the curvature will finally reduce the function value, and for a negative value the 
absolute value finally decreases. However, this is exactly the hallmark of a periodic 
oscillation: the values do not go beyond a maximum or minimum value, but are always 
led from one to the other. For damped oscillations or those whose amplitude increases 
with time, one uses the more general law y" = ay ' - by . This states that for a > 0 
the curvature increases with time, and thus the oscillation grows, while for a < 0 the 
curvature decreases, and thus the oscillation decays. 

Other classes of phenomena can be described using different classes of differential 

equations. For example. the Newton equation of motion m � = F(r) governs the 
huge class of all possible movements of a mass under the influence of a given force 
field F(r) . This includes, for example, planetary movements. The resulting mechanical 
movements depend on the form of the force field and, particularly, on the initial values. 

Thus differential equations can be viewed a� condensed information that classifies 
a wide range of physical phenomena with some related characteristic. They also have 
a wide range of applicability as well as high aesthetic appeal, and provide order in the 
plethora of natural phenomena. 

9.3 Sol ution methods for ordinary differential 
equations 

If one wants to obtain from the differential equation a closed form for y (t} ,  then it 
needs to be solved analytically, a� shown for the particularly easy case of the expo­
nential function. If the function y does not appear on the right-hand side of the dif­
ferential equation, i .e. if the differential equation reads y' = f(t} ,  then y is obtained 
via the normal integration method. We can immediately verify this for the traveled 
distance problem. For constant acceleration b we obtain for the traveled distance s(t) 
the following: 

s" = b ;  s' = v = fot bdt ' = b fot dt' = bt + Vo : 

1t bt2 
s = (bt ' + vo}dt' = - + vot + So . 

o 2 

Here the two initial values are the initial position So and the initial velocity Vo . 
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For the general case, the art of solving differential equations analytically fills entire 
books. The solution methods for those differential equations that are imponant in 
physics mostly follow simple patterns, for which there are standard methods. We refer 
here to a few of the books cited in the introduction. In general, all ordinary differential 
equations can be treated analytically. For this endeavor, an approach quite similar 
to the integration of non-standard functions is applied: one tries to guess a specific 
solution systematically and then tries to obtain a general solution with the variation 
or determination of parameters, which can be an exact, an approximate or a series 
solution of the differential equation. 

If one does not need to obtain the solution as an analytical expression, but can be 
satisfied with calculating its numerical values a� a function of the initial values and 
variables, and thus also to represent its general behavior graphically, then one can 
solve the differential equation numerically, irrespective of its complexity. All popular 
programs like Mathematica or Java/EJS provide a number of methods with different 
degrees of accuracy, which can be easily used. However, the algorithms use stay hid­
den in the background (black box), which is why we will be describing and visualizing 
the most imponant ones in the following paragraphs. 

In practice, it is quite important to become familiar with the numerical methods of 
solution for first order differential equations, since all other ordinary differential equa­
tions can be reduced to them, if one allows several dependent variables. We visualize 
this in the following for equations of first order and also show in detail the applica­
tion to differential equations of second order. All the following extensions work in a 
similar manner. 

9.4 Nu merical solution methods: i n itial value problem 

If one also allows for nonlinear relationships, most of the differential equations that 
are important for physics are surprisingly simple. This may not really be a surprise, but 
nature in its deepest relationships is really simple! The causes and effects expressed 
via differential equations can thus be clearly and quickly derived and understood from 
physics. 

In spite of this simplicity, the analytical solution of differential equations can be­
come highly complex, especially if they are nonlinear. In all generality they can only 
be solved (integrated) in individual cases. Therefore, one makes simplifying assump­
tions about the form of the differential equations or first makes calculations for simply 
solvable special cases, and uses these to treat general ca�es that deviate only a little 
from these, using the so-called "perturbation theory". 

Due to the ubiquity of the personal computer, many of these restrictions fall away. 
Suitable numerical programs can calculate the solutions of nonlinear and implicit dif­
ferential equations a� quickly and accurately as the solution of those equations, which 
can be ea�ily solved in the classical analytical way. 
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Using a computer i t  i s  also possible to  solve systems of  many differential equations 
in reasonable time. An example of this would be where it is necessary to calculate 
the interaction between numerous bodies. In this ca�e, an N -body problem leads in 
general to 6N differential equations and a corresponding number of initial conditions, 
since each body ha� six degrees offreedom. namely three for the position and three for 
the momentum. An extreme example is a simulation of the gravitational collapse in 
the early cosmos. which was conducted at the Max Planck In,�titUle for Astrophysics in 
Munich. l s  In this calculation. the interaction between 1 01

0 
ma�s points was simulated 

and the calculation time of the supercomputer used was about one month ! On the data 
carrier for the digital version of the essay edited by Martienssen and Ross, which 
wa� announced in the introduction to the present volume, there is a video of this 
simulation. which is described in a contribution by Gunter Ha,�inger. 

In the following, we sketch the general approach to the solution first for the example 
of the explicit first order differential equation. and then compare it with the familiar 
integration approach. 

Given an initial value of the function and the relationship between derivative, 
function and variable we proceed as follows: 

direct integration 

differential equation y' = f(x) 

initial value yo = C 
solution y = J: f(x)dx = g(x) + C 

with f(x) = d��) . 

differential equation 

differential equation 

y' = f(x , y) � y� = f(O, yu) 
initial value Yo 
required: solution for y(x) with y (O) = Yo .  

For the normal integration task, the derivative i s  a priori known in the whole interval 
as a function of the variable, while for the differential integration it can initially only 
be computed from the differential equation and the given initial value. For other values 
of x one does not yet know y , and therefore also y' . Thus one has to determine for the 
whole interval y and y' at the same time. To achieve this one has available, in addition 
to the differential equation, which is valid everywhere, only the initial value, together 
with the initial value of the derivative obtained from the differential equation. 

The numerical method.� correspond to a careful step from the first to the second 
point, from there to the next. and from there to the one after that, and so on. Thus, 
depending on the method, one arrives at a more or less suitable guess, as to where the 
next point could lie, given the initial values and the initial slope. For this point one uses 
the differential equation to calculate an estimate of the next point. In every step errors 
are created, and therefore it is quite a�tonishing what accuracy can be reached with 

1 8  See Hasinger's Essay in Phy.,ik im 2 J .  lahrhunderl - /i.,.wry.,· URn Stand ckr Phy.,·ik, Martienssen, W.; 

R� .. , D. (editors), Springer, 201 1 ,  ISBN 978·3-642-05 1 90-6. 
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advanced methods for rather simple algorithms. This is helped by the fact that many 
interesting ta�ks deal with periodic problems (orbits of planets, pendulums, periodic 
electric fields), where positive and negative errors from the two half periods often 
compensate for one another. 

9.4.1 Expl icit Euler method 

For the simplest method, the classical Euler method, one assumes that the next value 
of y lies on the tangent that starts at the initial value Yo and has a slope of y '(O) : 

initial value given as yo 
differential equation y' = f(x, y) � y� = f(xo . yo ) 

YI = Yo + /1x . y� 
X I = Xo + /1x � y; = f(x l . yt } 

Y2 = YI + /1x . y; 

y .. = Y .. _I + /1x ·  y�_1 
y� = f(x .. . y .. ) .  

The method i s  called "explicit", since only data from the (n  - l )th point are used to 
calculate the nth point. 

The Euler method is analogous to the integration of a known function y using the 
previously discussed method of trapezoidal steps. The additional complication with 
the analogous use for the initial value problem of a differential equation is that both 
the function as well as its derivative are unknown except for the initial point. The 
knowledge of the relationship between function and derivative is, however, sufficient 
to determine both of them approximately. However, one pays the price that the deter­
mination of y ; at the first point is affected by the error committed when estimating YI 
itself from the initial values. 

In Figure 9.5 the situation is clarified graphically for the example of the exponential 
function drawn in red. At the initial abscissa Xo, the initial value of the function yo 
is known. The differential equation yields the slope of the tangent drawn in blue. Its 
intersection with the interval boundary XI gives the next value according to the Euler 
method y. marked by a blue circle. In this example, this value is clearly smaller then 
the actual value YI of the exact curve, since the exponential function does not have 
a constant, but rather a constantly increasing, slope. The Euler method does not take 
into account changes in the derivative during the interval. Therefore one must make 
/1x as small as possible, to limit the error. 
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Step of the Euler method (red : y = eAx ) 
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Figure 9.5. One step for the Euler method: see the text for details. 

According to the construction of the algorithm, one does not use the slope of the 
curve at the initial point X I of the new interval, but a value that is obtained from 
abscissa and ordinate of the point via the differential equation, i .e. y; = [(X I . YI ) ' 

We have chosen the exponential function as an example, since the ordinate X does 
not appear explicitly in the corresponding differential equation. Therefore, a simple 
graphical construction is possible for the second value of the derivative: it is equal to 
the slope of the dashed green tangent on the red curve at the ordinate of the second 
point Yt . With this slope we continue (blue) parallel to the da.�hed green line from the 
first calculated point to the next one. 

In the general ca.�e the relationship would be less clear. 
As known from the analogous integration method, the error in this simple method 

is quite substantial. It can be controlled to some extent at the price of larger com­
putational effort by choosing the intervals l:!.x sufficiently small, and decrea.�es lin­
early with the width of the integration intervals. With growing resolution the method 
converges linearly to the correct solution. For periodic functions, the errors partially 
compensate for each other in the half periods, since the deviation is negative for a 
concave graph, while it is positive for a convex one. 
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9.4.2 Heun method 

The Heun method also calculates the corresponding next point in such a way that it lies 
on a straight line through the initial point Xo (This also applies for the Runge-Kutta 
method, which is described next and has particular practical importance). In contrast 
to the Euler method, a more favorable angle is used. For the Euler method, this angle 
was simply determined as the result of the differential equation at the respective ini­
tial point of the new interval. For so-called multi-stage methods, of which the Heun 
method is one, this angle is determined as the mean value of several calculations. Thus 
the slope is obtained in more than one point using the differential equation. 

As shown in Figure 9.6 the Heun method uses for one step of the method the differ­
ential equation both at the initial point and at the endpoint of the interval. As with the 
Euler method, it first calculates the so-called Euler point (the blue point in Figure 9.6) 
using the slope of the tangent at the start point. It then calculates the corresponding 
derivative at this point. In the figure this slope corresponds to the dashed blue tan­
gent. Now the mean value of these two slopes (not of the angles, but rather of their 
tangents) is calculated, which is indicated by a da�hed line with the corresponding 
slope in magenta. With this average slope, one now calculates in the forward direc­
tion from the initial point (solid green line, which has been shifted in parallel). Its 
intersection with the interval boundary at XI is the next point of the Heun method 
(green point). It is considerably closer to the ''true'' value than the result of the Euler 
approximation. 

Expressed in formula�: 

forward y� = f(xo . Yo) 
YI ,Eule, = Yo + D.x . y� Euler point a� intermediate step 

Y; ,Eule, = f(Y I ,Eule,) 

calculation of the mean value 

I Y� + Y; ,Eule, -
Yo = 2 --+ YI = Yo + D.x . y� ; Y ; = f(YI ) ' 

In the form presented above, the Heun method is implicit, since the new point to be 
calculated appears on both sides of the equation. The equations therefore have to be 
solved with iterative methods. 

The Heun method proceeds analogously to the integration of a known function with 
the help of the trapezoidal chord method. As shown when this method wa� discussed, 
the accuracy is considerably better then for the Euler method. The error of the Heun 
method thus decreases quadratically with the interval width, the method converges 
quadratically. It takes the change of the derivative within the interval into account in 
a linear approximation, thus it considers a kink. 
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Step of the Heun method (red : y = eAx) 
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FIgure 9.6. One step for the Heun-method: see the text for details. 

9.4.3 Runge-Kutta method 

1 75 

The Euler and Heun methods have been described for historical systematic reasons, 
but even more so for didactic reasons. In their simple form they are no longer gener­
ally used, since the larger computational effon per interval for more advanced multi­
stage methods is no longer an issue today, and therefore one can achieve much more 
accurate results for the same interval width. 

The most popular route to the integration of differential equations is the Runge­
Kutta method. In its four-step ba.�ic version it is analogous to the parabolic approxi­
mation for the integration of known functions, and takes into account the change of the 
slope within in the interval in a quadratic approximation; thus it uses a parabolic cur­
vature. As for integration using parabolic approximation, it converges with the fourth 
power of the interval width ()( �x4.  

For the parabolic method one uses, as described above, three points to fix the 
parabola, that approximate the true curvature in the interval: the initial point xu , the 
midpoint of the interval xl/2 and the endpoint XI . 
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For the integration, the value of the derivative of the antiderivative to be determined 
is known across the whole interval, thus also at those three points. When solving the 
differential equation, the derivative is initially only known at the start-point of the first 
interval. The derivatives at the following points first need to be found. We now first 
compare for the start-point yo and the interval width t::.x = S the structure of the 
formulas for calculating the next point YI . 

Integration using parabolic method 

Yo = y (xo } 
Runge-Kutta method 

Yo = y (xo} 
B ,  'a fh Ie YI = Yo + 6 (Yo + 21 /2 + 2YI/2 + Y I } . 

One can recognize the formal similarity. However, for the Runge-Kulla method the 
listed derivatives are not the actual differential quotient� of the desired solutions, but 
auxiliary variables which are obtained using the differential equation. In addition, 
we use instead of the derivative in the middle of the interval the mean value of two 
corresponding quantities with indices a , b. 

Runge-Kutta method for an interval 

interval width S 
initial variable xo 
initial ordinate Yo 

yo = y (xo} 
a S I YI /2 = yo + 2Yo 

b S la YI /2 = yo + 2YI /2 
Y.c 

_ Y + .y,lb . I - 0 0 1/2 ' 
. S ( ' 2 la 2 Ib IC ) Y I = Yo + 6 Yo + Y I/2 + YI /2 + YI 

� 

� 

� 

� 

� 

y� = f(xo .  yo} 
la S a YI/2 = f(xo + 2 ' )'1/2} 

Ib s b YI/2 = f(xo + 2 ' )'1/2} 

y�C = f(xo + s , yf/2} 

y� = f(xo + S , YI } '  

One defines an auxiliary abscissa in the middle of  the interval and calculates for it 
in a two step procedure two points a and b with their ordinates and derivatives. The 
first intermediate auxiliary point in the middle of the interval (index a) corresponds to 
the Euler point for half the interval width. Using the derivative at the Euler point one 
determines, beginning at the initial point. a second point in the middle of the interval 
(b). With the derivative at this point, one determines a third point at the end point 
of the interval with its associate derivative (c). After taking the average of the two 
derivatives at the midpoint. one has three points for the integration according to the 
parabolic method. 
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9.4.4 Further developments 

The four-stage Runge-Kutta method described above converges so well that it is used 
for many applications. 

One can improve the convergence of the method further by including additional 
points - similar to an approximation using polynomials of a higher order. 

The speed of computation can be increa�ed considerably by choosing the interval 
width not constant, but adapting it to the slope and curvature of the function to be 
integrated ("adaptive interval width"). This possibility is contained in popular five­
stage Runge-Kutta programs and other numerical programs. Thus the interval can be 
selected automatically in such a way that a given error per interval is not exceeded. 

The approximation rules used in the Runge-Kutta method have been well tested, 
but they are not the only feasible ones. One can work with other, more favorable, 
criteria, for specific c1a�ses of functions. In addition, there are quite a few approxima­
tion methods that have been derived in a very different way and that are also part of 
commercial programs and are discussed in the literature. 

The computation speed of all methods depends on whether one works in higher­
level languages or with languages that are closer to the operating system. Programs 
in Java or in Mathematica therefore run faster then algorithms written for example in 
Visual Basic for EXCEL. The speed of the following Java simulations is not limited 
by the computation speed, but is selected in such a way that one can ea�ily follow the 
time development. 

A program that one has written from scratch has, compared with using pre-built 
algorithms that run in the background, the didactic advantage that one can accurately 
follow the development and intervene in it. 

9.5 Simu lation of ordinary differential  equations 

9.5.1 Comparison of Euler, Heun and Runge-Kutta methods 

The interactive image in Figure 9.7a leads to a simulation which shows the three 
methods in parallel for the example of the exponential function. The initial value for 
x = 0 is yo = I but can also be chosen differently. The number of intervals in the 
variable region can be chosen between I and 24. 

There are four straight lines in the picture, which can be drawn and turned with the 
mouse. These allows the construction of the approximations to be ea�i1y visualized. 

For the initially shown rough resolution one clearly recognizes the different conver­
gence quality of the methods and the large superiority of the Runge-KUlla method -
with the eye its error can no longer be noticed. 

The description of the simulation contains further details and suggestions for ex­
periments. It also contains a description of the complete codes, which are in each 
ca�e a few lines that are repeated in a loop once for each point of computation. The 
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Figure 9.7a. Simulation. Comparison of the convergence of Euler (blue), Heun (green) and 
Runge·Kutta (red) methods for y' = y (exponential function, blue line). The green lines can 
be pulled with the mOlLo;(l to make the construction of the methods for one interval by hand 
possible. With a slider the number of intervals in the constant variable region can be changed 
(number of points n = number of intervals + \ ) .  With the second slider yo is adjusted (in the 
picture yo = I ). 

calculation happens so quickly that one does not notice the time development in this 
example. For the commercial programs one can specify how many points must be 
calculated per minute in order to create, in the resulting graphs, the impression of a 
temporal sequence. 

In practice nowadays one does not need to make the effort to write computational 
algorithms for the solution of ordinary differential equations, since they can simply 
be called up in all numerical programs by specifying a name. However, it is important 
that one understands how this "witchcraft" actually comes to be. 

In Figure 9.7b the relative error of the three methods discussed in Figure 9.7a is 
shown, i.e. for example (YEule, - yoeX )/yoex . The ordinate region has been spread, 
such that the differences are more visible. For the small number of two to three points 
(one to two intervals) in the variable region even the small error in the Runge-Kutta 
method becomes noticeable in the plot. In order to also rate the error for a larger 
resolution, a number field of the simulation shows the relative deviation at the end of 
the last interval with high accuracy. 
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Figure 9.7h. Simulation. Comparison of the relative error for four intervals in the variable 
region (blue Euler, green Heun, red Runge-Kutta). The points show the relative deviations 
from the analytical value of the exponential function, which is shown with as a blue line. For 
the Runge-Kutta method the error at the end of the interval is shown in a number field. The 
scale on the y-axis depends on the accuracy achieved via the Euler method. 

9.5.2 First order differential equations 

We use here a Runge-Kulla procedure, which is integrated into EJS, to visualize ex­
plicit differential equations of first order. Implicit equations play a minor role in ele­
mentary physics. Their numerical solution can be achieved via iterations that are built 
into the computational algorithms. 

In the graphs we use for the variable the symbol x and for the ordinate the symbol y .  

The following interactive Figure 9.8a shows the graph of  a transient process, which 
is defined by the differential equation that is shown in the text field y'. In this presenta­
tion the individual computation point� are shown; one can switch to a line presentation 
using the option boxes. 
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Figure 9.88. Simulation. Animated solution o f  first order differential equations. The picture 
shows a convergent tnlJlsient process. The range of the variable x, the initial value yo and 
the step width fOT the calculation can be chosen. One can select either a point presentation 
or a smoothing line presentation. With the option boxes one can select a new calculation or a 
superposition of calculations with different settings. 

The differential equation shown in a text field can be edited or entered from scratch, 
so that you can investigate arbitrary explicit first order differential equations. The 
speed of the animation and the accuracy of the calculation that is related to it can be 
varied with the slider for the step width. 



9.5 Simulation of ordinary differential equations 

Jt: Phas.e space prOjection - 0 29 

-l:l 
� 
'> 

y ' ( y )  . . . .1 
2.0 

1 .5 

. . .
. . 1 

+ 

1 .0 

0.5 

0 

-0.5 

- 1 .0 

1 .0 1 . 5 2 . 0  2.5 3 . 0  3 . 5  4 .0 4 . 5  5 .0  5.5 6 . 0  

Y 

1 81 

FIgure 9.8b. Simulation. Phase-space y' ven;us y of fin;t order differential equations for 
the example in Figure 9.8a. The green point shows the current computation point during the 
animation, which starts at ( 1 ,  1 ) .  

The option box allows for selection among a number of elementary differential 
equations, which are preset with initial value, for example: 

• exponential function y ' = y ;  

• exponential decay y' = -y ; 
• transient processes; 
• constant velocity y' = e with e constant; 
• constant acceleration y' = ex with e constant. 

In the last two ca.�es the solution of the differential equation is reduced to the nor­
mal integration process, since it does not contain y, and therefore these differential 
equations have as solutions the anti-derivatives of e and ex. 

The examples are cla.�sified according to the following characteristics :  

• divergent (a.� the exponential function); 
• convergent (a.� the exponential decay); 
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Figure 9.9. Family of solutions from the simulation in Figure 9.8a for the preset example 
y' = ax (constant acceleration a) with parol/neter a = 0, 1 ,  . . . • to and yo = 5. Interpretation: 
x = time (I), y = distance, yo = stmt position. 

• periodic; 
• oscillating and divergent; 
• oscillating and convergent. 

In Figure 9.8b a phase space projection y' versus y is shown. This shows the char­
acter of the differential equation and of its solution. here oscillaling convergent. quite 
clearly. The green point designates the current endpoint of the calculation. In this 
example y converges against a finite value. while y

' converges to zero. 
The initial value Yo and the initial abscissa Xo can be chosen at will. The formulas 

are editable, such that you may enter arbitrary analytic functions and study them. 
Multiple runs can be organized with the switches in order to compare the curves for 

different initial values, initial abscissae or differential equations. The passive picture 
in Figure 9.9 shows a simple example for constant acceleration a with the differential 
equation y' = at .  Here the acceleration a is increased over I I  steps from 0 to 10 .  The 
initial value stays at Yo = 5. 

The description pages of the simulation contain further details and numerous 
suggestions for experiments. 
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During the initial work with the simulation one is often surprised by the totalty 
unexpected results when entering a specific equation for y ' or even only changing 
the value of a parameter in the equation. One is used to have a mental picture of 
dependencies of the form y (x), but this is not the case for y ' = f(x , y), if one is not 
familiar with this. 

Thorough experimentation with this simulation and the foltowing examples for sec­
ond order differential equations is therefore necessary to obtain a thorough under­
standing of the relationships that are described by the differential equations. 

These examples demonstrate that a single differential equation defines a relation­
ship, which contains an unlimited number of specific solutions. The initial values 
fix a particular solution from the family of possible solutions. The parameter that 
determines the specific solution does not have to be the initial value of the solution. 
One can also demand that the value of the function must be YI at a later time II . For 
the numerical solution one then solves the differential equation starting from YI , first 
in the direction of increasing 1 > I I and then in the direction of decreasing t < 11 . 

For a first order differential equation, the family of solutions has one parameter, for 
second order differential equations the family of solutions has two parameters (see the 
following subsection). 

9.5.3 Second order differential equations 

Numerous relationships in physics are described by second order differential equa­
tions. In addition to the acceleration (second derivative) they also enable you to take 
velocity dependent interactions into account (first derivative), which include fric­
tion processes. They also cover all undamped, purely periodic functions as special 
ca�es. The inclusion of damping makes realistic models of pendulums and oscillators 
possible. 

The elementary functions described by first order differential equations are covered 
by analogous second order differential equations. We have already discussed how the 
differential equation of a similar structure will then contain additional functions. The 
solutions of second order differential equations constitute a two parameter family. 

Only with two initial values, Yo and y�, for the start value Xo of the variable, a 
specific solution is fixed. Thus a single initial value still allows an entire one-parameter 
family of solutions. 

Among the explicit differential equations, a very important one is the simple equa­
tion whose solutions are the trigonometric functions: 

y" = -y or y" + y = 0 

y = sin t y = cos I 

y' = cos 1 y' = - sin t 
y" = - sin t = -y y" = - cos l = -y 

It describes many oscillation processes. 

y = eit = cos t + i sin t 
y' = j eit 
y" = j 2eit = _eit  = -y o 
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As already discussed towards the end of Section 9.2, one reduces this differential 
equation for the numerical solution to a system of two coupled first order differential 
equations. 

general Y" = /(y , y '. x) 
1 st definition: y (x) = Y I  (x) 
2nd definition: y' = y� = Y2 
� y� = y�' = Y" = /(Y I . Y2 . X) . 

The first equation defines the first of the new functions using the original function. 
The second equation defines the second new function a� the derivative of the first one. 
The original differential equation connects y� with Y I .  Y2 and x. From the solution 
for YI . Y2 one recovers Y and y' . 

Thus the two coupled first order differential equations 

(a) y� = Y2 
(b) y� = /(Y I .  Y2 . x) for the two functions Y t . Y2 
are equivalent to the single differential equations of second order for y(x) 

Y" = /(y , y '. x) . 
special ca�e: Y" = -y via y = Y I and y' = y� = Y2 becomes 

the system of two differential equations for YI and Y2 

The steps by which the two equations are solved for subsequent points have to be 
nested in a suitable way. Using equation (a) one first calculates an approximation 
for the derivative. which is then substituted in equation (b) instead of the formally 
required derivative. In practice this algorithm is contained in all popular numerical 
programs. We again use for our examples an EJS simulation, for which we only add 
equation (a) in an additional line. (As designation for the first derivative we use in the 
formula field "yStrich" (R: yprime) since Java cannot understand "y''' .) 

For a differential equation of higher order this method would have to be repeated 
for every further order and chained in an equivalent manner. Differential equations of 
higher order do not, however, play a major role in physics. 

The following interactive picture in Figure 9. l Oa leads to a simulation for second 
order differential equations. It shows an exponentially damped periodical oscillation. 
In the differential equation y" = -y' - 0.2y shown in the text box the first term 
-y is responsible for generating a periodic function and the second term -y' for the 
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FIgure 9.108. Simulation. Animated simulation of the solution of second order differential 
equations. Example: damped oscillation with the initial values Yo = 0 and Yo = 1 .  The arrow 
shows the two initial values for value and derivative. Variable mnge, initial values, step width 
and presentation type can be set. In addition, the pha..e space diagrams can be shown in a 2D 
or a 3D presentation . 

exponential decay, as familiar from the first order differential equations. The factor 
0.2 determines the speed of decay. 

The control of this simulation is quite similar to the case of first order differen­
tial equations; only control elements for the second initial value y' are added. In the 
selection box differential equations and initial values for the following functions are 
preset: 

• cosine 
• sine 
• exponential function 
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Figure 9.10b. Animated phase spaces for the differential equations of Figure 9. l frd. The left 
windows plots y' (y) in blue and y" (y) in red. The re.-pective end points are highlighted and 
marked in color. In the right windows y, y' and y "  are mapped to the three space axes. The 
red curve thus represents the total differential equation y" = f(y. y'). The 3D projection is 
rotated in the animation. 

• exponential damping 
• hyperbolic sine 
• hyperbolic cosine 
• delayed oscillation 
• accelerated oscillation 
• damped oscillation 
• growing oscillation. 

All parameters can be changed. In the text field the differential equation can be 
changed or a totally new one can be entered, such that you may investigate arbitrary 
second order differential equations using this simulation. 

With two switches a 20 presentation y' (y) and y" (y) and/or a rotating 3D presen­
tation y" (y , y') of the phase spaces can be chosen. This window of the simulation is 
shown in Figure 9. \ Ob 

The two-dimensional phase diagram now shows two curves y' (y) in red and y"(y) 
in blue. In this example one recognizes the damped transient process as a double 
exponential spiral. 

The three-dimensional phase diagram shows y" = f(Y, y') as a plane spiral in 
phase space. Its rotation during the animation increases the spatial impression. 

The description pages of the simulation file contain further details and suggestions 
for experiments. 



9.5 Simulation of ordinary differential equations 

9.5.4 Differential equations for osci l lators and the gravity 
pendulum 

1 87 

The second order differential equations discussed in Section 9.5.3 describe, among 
other systems, all possible kind� of oscillator, including also the classical mathemat­
ical gravity pendulum (called mathematical because it treats the pendulum as a mass 
point on a mass-less stiff rod in abstraction from its real construction). For these cases, 
the differential equations and initial conditions of the following simulation are pre­
formulated but, in other respects, the simulation is very similar to the previous one. 

The interactive image in Figure 9. l l a shows the example of a damped oscillator, 
which initially oscillates in its eigen frequency until x = 30, when an external force 
at double the frequency is added to the system. One sees the transition from the free 
oscillation to the forced oscillation at double the frequency including interferences. 
The free oscillation finally decays away totally. The driven oscillation remains with 
double the frequency and a constant amplitude. 

The corresponding phase space curve in Figure 9. l l b  is quite confusing as a static 
picture. If, however, one observes the dynamic flow, one recognizes the different 
transitions quite ea�ily. 

When cleared of factors that scale the graphics or are needed for the formula to be 
recognized (yStrich instead of y'), the differential equation reads: y"  = -y - y

' 
+ 

sin 2x step(x - 30) . 
The term -y produces a periodic oscillation with period 211", the term -y

' an expo­
nential damping and the term sin 2x a driving force with constant amplitude and the 
period 11". The very useful step function switches at the given point in time x = 30 
from 0 to I .  The damped oscillation of the free pendulum simply continues, while the 
periodic driving force is added at this point. 

In the phase space diagram shown in Figure 9. 1 1  b, one also recognizes the tran­
sition between the two kinds of oscillations, from the initially free and damped os­
cillation (initial plane spiral) to the forced oscillation. After a sufficiently long time, 
the free oscillation ha� been damped away and the oscillator moves periodically with 
constant amplitude a the frequency of the driving force. 

The simulation contains the following pre-defined oscillators: 

• free oscillator with adjustable eigen frequency; 
• dissonant driving force with adjustable frequency; 
• resonant driving force; 
• dissonant driving force with damping; 
• resonant driving force with damping. 

In addition, for the gravitation pendulum as second pendulum (full period of 2 s at 
small amplitude), the following situations are preset: 

• deflection of a few degrees; 
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FIgure 9.1 1a. Simulation. The figure shows the solution of an oscillation equation with damp­
ing, which is driven by an external force at double the eigen frequency and supplied with 
energy starting at x = 30. The differential equation and all par.uneters can be changed . 

• deflection nearly up to the rollover, i.e. angular deflection from the rest point of 
nearly 11' ;  

• shortly after the rollover, i.e. residual velocity at the turning point. 

The plots of phase space curves for the gravity pendulum in the passive Figure 9. l l c  
show in th e  left window the situation for a deflection of 5.7 degrees, for which the 
oscillation is still practically sinusoidal (red curve y" � - y) and in the right window 
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FIgure 9.1 lb. Phase space plots for the oscillation equation of Figure 9. 1 1  a. On the left pro­
jections y' versus y in blue and y " versus y in red, on the right y versus y' and y". The picture 
shows the state shonly after adding the external driving force, on the left a.� lines, on the right 
as sequence of calculated points. 
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Figure 9.lIe. Phase space curves of y' versus y in blue and of y" versus y in red for the 
pendulum example of the simulation in Figure 9. l l a: shown on the left for small and on the 
right for large deHections. Please note the different scales on the axes, eh-pecially the ordinate 
scale. The red line in the left window shows the negative linear relationship between accel­
erdtion and angle of deflection. In the right window one recognizes the large nonlinearity for 
large deflections. Therefore only pendulums with deflection.� of a few degrees can be used for 
aCCUT'dte clocks_ 
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for a deftection of 90 degrees, for which the oscilIation deviates quite clearly from it. 
Thus the blue curve is therefore for the small deftection a circle which is traversed 
with constant angular velocity (please note the different scales on the axes !). For the 
large deftection on recognizes in the animated simulation the extended time spent in 
the vicinity of the turning points. 

The formulas and initial values can again be changed. In the vicinity of the unstable 
equilibrium (deftection of Jr) the solutions become extremely sensitive to the initial 
values, but also to the accuracy of the computation, which can be adjusted with the 
step width slider. 

The description pages contain again exact details and hints for experiments. 

9.5.5 Character of ord i nary l inear differential equations 

From the experimental analysis of different explicit linear second order differential 
equations we can draw a few general conclusions: 

the following term in the differential equation means respectively: 

" periodic function with period 2Jr y = -y -+ 

y" = _a2y -+ periodic function with period 21Ta 

y" = -y' -+ exponential decay with x 

y" = y -+ exponential growth with x 

y" = y' -+ exponential change with x 
y" = const. -+ constant acceleration 

y" = 0 -+ constant velocity (0 acceleration) 

y" = f(x) -+ x-dependent driving force, characterized by f(x) 
y" = -yf(x) -+ periodic oscillation, moderated by f(x) 
y" = -y'g(x) -+ exponential decay, moderated by g(x) . 

The points to which convergent or divergent solutions move in the phase diagram are 
referred to a.� point allrac/ors and the closed target curves of periodic solutions are 
called periodic attrac/ors. 

9.5.6 Chaotic solutions of coupled differential equations 

A new phenomenon appears if three or more first order differential equations are cou­
pled and contain terms that are nonlinear in the variables. For certain parameter re­
gions or regions of the initial values, or even for all initial values, their solutions show 
chaotic behavior. This is especially attractive for oscillating systems that are char­
acterized by second order differential equations with the fundamental dependence 
y" = -y ± . . . . 
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Driven double pendulum 

As a first example we want to investigate in Figure 9. 1 2a the simulation of a double 
pendulum. for which a second mathematical pendulum is fixed to the end of a primary 
mathematical pendulum (mathematical means here: the total mass is concentrated at 
the end of a stiff mass- and weightless pendulum rod). 

The primary pendulum can be driven by a periodic force. The secondary pendulum 
is driven by the primary pendulum. Both are subject to gravity. 

Each pendulum is described by a second order ordinary differential equation, which 
corresponds to four first order differential equations, and the differential equations are 
coupled; thus they also contain variables of the corresponding other pendulum. It is 
now essential that these differential equations are coupled by trigonometric functions 
and quadratic terms: 

y;' = It (Yt . sin Y2 . Y2 . sin(Y2 - yt > , y ;2 . y�2) 
y; = !2 (y \ . sin y t . Y2 . sin(Y2 - yt > , y;2 . y�2) . 

The exact formulas are discussed in the description pages of the simulation. 
The ratio of the pendulum lengths and the pendulum masses can be adjusted as well 

as the speed of the animation. 
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Figure 9.12a. Simulation. Chaotic movement of a driven double pendulum with adjustable 
length and masses (red curve). In the left window the double pendulum is shown (pivot point 
in green, mass point of the primary pendulum in blue, mass point of the secondary pendulum 
in yellow. vector of the external driving force as a blue arrow). In the right window the phase 
space projection angular velocity dt/J / d t versus angle of deflection t/J is shown. 
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Figure 9.12b. 3D phase space diagrams for the double pendulum, on the left red for the end 
of the primary pendulum and on the right for the end of the double pendulum. 

The indirect external driving force modulates the angular velocity of the primary 
pendulum with a sine function of adjustable frequency. The blue arrow shows direction 
and absolute value of the external driving force. 

The red curve shows the orbit of the secondary pendulum, that is, of the mass point 
at the end of the mass-less pendulum rod of length h. It is possible to superimpose 
orbits for different initial values and thus to study at the same time the influence of 
small changes in the initial conditions on the long-term behavior. 

In the right coordinate system of Figure 9. 1 2a a plane pha�e space projection for 
the orbit of the primary pendulum is plotted. In addition a rotating presentation of 
the three-dimensional phase space y" versus y

' versus y can be switched on (see 
Figure 9. 1 2b). 

There is  obviously no periodic allractor. One refers to a strange allractor if the 
phase space orbit� of the process described are limited to a certain region of the pha�e 
space, and do not become periodic, but show a fractal character and therefore cannot 
be described in an analytic closed form. 

Together with adjusting the ratios of pendulum length and ma�s, one obtains a rich 
spectrum of oscillation processes that happen chaotically but strictly deterministically. 

The Reset button resets the simulation exactly (within the accuracy of the PC) to 
the same initial conditions. You may convince yourself that the time development, 
which looks so confused, is indeed repeated, and thus happens deterministically and 
not controlled by chance (this observation is achieved easily by calling the simulation 
twice and letting it run twice). 
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You may, however, also adjust the initial conditions for the position manually by 
pulling the yellow point; you will not achieve an exact reproduction, and two simula­
tions running in parallel will soon run apart from each other. Thus the chaotic-deter­
ministic character is connected to an extreme dependence on the initial conditions. 

The simulation description contains numerous suggestions for experiments. 
For the double pendulum with its many nonlinear connections, it will be barely 

possible to find a setting that leads to a periodic solution. 
In other cases there are regions of chaotic behavior next to regions of periodic 

behavior. 

Reflection of a ball  between sloping walls 

For the second example, shown in Figure 9. 1 3, it is obvious that there must also be 
periodic solutions. 

In this ball in wedge simulation, a ball is reflected back and forth between two 
infinitely extended planes. For an initial orbit that starts symmetrically to the axis of 
symmetry and ends orthogonal to one of the surfaces, the orbit is already closed after 
hitting both surfaces once. It can be suspected that there are further periodic orbits 
with many reflections. In general, however, the orbits are chaotic. The pitch of the 
surfaces and the position and initial velocity of the ball can be adjusted by pulling 

pi 

.dgJ� !timc-2 1 . 36! 

I reset I angle=lo.385 ! 0 high speed 

Figure 9.13. Simulation. Reflection of a ball between two sloping walls. In addition to chaotic 
orbits there also are periodic solutions, for which the ball jumps regularly back and forth on 
periodical orbits between the walls. 
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with the mouse. The nonlinearity of the connections lies here in the trigonometric 
functions used in the three coupled first order differential equations. 

The example also demonstrates the use of the Poincart! section for the visualization 
of chaotic or periodic orbits and its use for the determination of periodic initial con­
ditions. It shows the intersection point of the orbit in the symmetry plane. Periodic 
orbits lead to a finite number of intersection point� with regular patterns. 

Many-body problem 01 gravitation 

Chaotic behavior is not only an interesting theoretical problem, but is of large practi­
cal importance, since many phenomena in physics and engineering are described by 
more than two coupled nonlinear differential equations. This includes, for example, 
the gravitational processes in three dimensions. In this case the differential equations 
are nonlinear and of the following type for each Cartesian coordinate: 

y" = -gMl... = -gM y . r 3 [x2 + y2 + z2]3/2 

Because of the basic type y" = -y .  one expects that periodic oscillations (orbits) 
should be possible for certain initial conditions. This is indeed the case for two bodies 
(in addition there are the cases of a collision for finite size of the bodies and the "scat­
tering" for the ca�e of a body that pa�ses by). For three and more bodies there exist. 
except for very specific initial conditions, no long-term periodic orbits, but only more 
or less chaotic orbits. which can sometimes become qua�i-periodic. The apparent reg­
ularity of the many-body planet system is a deception. This is due to the relatively 
short observation time. which is small relative to the time scale. in which the orbits 
will develop in a chaotic manner. 

The situation becomes a bit simpler if one assumes, for the theoretical computation. 
that all bodies move in one plane, since then the number of coupled differential equa­
tions becomes smaller. If one assumes in addition that all bodies have the same size 
and the same mass m. one can for certain very specific initial conditions (symmetric 
configurations) also create periodic orbits for more than two bodies. The following 
simulation in Figure 9. 14  shows such special cases. 

Different scenarios can be selected using the slider on the left. One can pull individ­
ual bodies with the mouse and change the specific initial conditions. This leads very 
soon to a decay of the symmetric configuration. In addition. it turns out that even un­
der such artificial assumptions there exists no long-term stability for more than three 
bodies. provided the simulation proceeds for a sufficiently long time. The following 
development can be ea�i1y observed when one zooms into the picture with the slider 
on the right. 

How could any relatively stable and bound systems develop in the cosmos under 
these circumstances? One has to consider this as the result of a long-term evolution. 
with a multitude of collisions and disintegrations that provide for "friction", from 
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Figure 9.14. Simulation. Stable and non-stable solutions of the many-body problem of gr.lvi­
tation for movement in a plane: in the figure an example with five equal ma. .. o;es is shown. With 
the left slider different initial patterns can be chosen. The right slider allows you to zoom in 
or out of the image. The initial position of the bodies can be pulled with the mou.o;e. 

which those remnants are bound for a l imited time to quasi-periodic orbits, which 
satisfy suitable initial conditions. Most remnants, however, vanished into the distance. 
until they interacted again with other systems under the exchange of energy. On the 
other hand. new candidates entered the original region from other regions leading to a 
change of initial conditions. 

At this point you should again study the essay by Siegfried Grossmann.19  who stud­
ies the question of chaotic systems very thoroughly. In the contribution by Guenther 
Hasinger you can see in detail how chaos and col\isions can at lea.�t lead to order and 
structure in the cosmos for l imited time periods. The simulations by Eugene Butikov 
simulate a wealth of many-body problems with partially periodic and partially chaotic 
behavior. 

19 PhYJik im 21. luhrhundert: t:".<uy., zum Stand der Ph)'l'iIc edited by Werner Martienssen and Dieler 

R�s. Springer Berlin 2010. 



1 0  Partial  differential equations 

10.1 Some important partial d ifferential equations 
i n  physics 

Physical events <I> generally take place in the three space dimensions x , y , z and the 
time t : <I> = <I>(x , y , z, t ) .  The spatial and time development are coupled to each other. 
The differential equations describing the phenomena then contain partial derivatives 
with respect to the space coordinates and with respect to time, and therefore are re­
ferred to as partial differential equations. The functional relationship for a general 
partial differential equation of second order for a physical quantity <I> (x , y ,  z, y) reads: 

(iY<I> a <1>2 a<l> ) F aa2 ' aaap ' aa , <I>, x , y , Z , ( = 0  

with a = x or y or z or t and P = x or y or z or t ,  p i- a. 

To keep the presentation readable, we have not shown all terms in the brackets, but 
only one of each type. This type is characterized by one of the variables or, in the 
case of mixed derivatives, by two of them. Thus, in addition to first and second partial 
derivatives, all mixed second derivatives can also appear. 

Fortunately, the partial differential equations important in physics and engineering 
are much simpler than this general form, as the following examples will show. They 
are, however, still rather complicated and only allow an analytical solution and simple 
interpretation in very elementary cases. In the following we only cite a few important 
partial differential equations in physics and want to make you aware of the crucial 
differences between the boundary value problem/initial value problem for ordinary 
and for partial differential equations. For further information we refer to the specialist 
literature. 

The simulation examples show specific solutions of the corresponding one-dimen­
sional: 

• diffusion equation for point-like initial impulse (delta impulse); 
• Schrtidinger equation for a point mass and for different oscillators; 
• wave equation for a vibrating string. 

a) wave equation 

<I> (x , y , Z, t) describes the deviation of the physical quantity at time t ,  

for example of the field strength, the pressure and so on. 
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a2c1> a2c1> a2c1> a2c1> 
The differential equation reads d(ct )2 = dx2 + dy2 + dz2 ' 

. . . a2c1> 2 a2c1> 
and In one dimension: ([i2 = C dx2 ' 
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The general, easy to check solution is then cI>(x . t )  = f(x + ct) + g(x - C/) .  
The very general one-dimensional solution of  the wave equation contains two arbi­
trary functions f(x) and g (x), which are propagated along the x-axis with velocity 
c in a negative/positive direction without changing their form. This example already 
demonstrates an important difference to solutions of second order ordinary differen­
tial equations: while there a solution was determined via two initial values yo . y�, it 
is now fixed via two initial functions g (x,  0) and f(x .  0). The second order ordinary 
differential equation has as the solution a family of functions with two arbitrary num­
ber parameters. The solution of this partial differential equation is described via a 
family of functions with two initial functions. For the one-dimensional case those are 
defined along the x-axis, for example a wave packet, in the simplest case a sine wave 

of undetermined position or a Gaussian impuLfe. 
In the three-dimensional case, initial functions can be defined on a boundary, a 

surrounding surface, or in a volume. 

b) one-dimensional heat conduction equation 

The field cI>(x, t) is here the temperature that depends on space and time coordinates. 

acl> a2c1> 
The differential equation reads at = a ax2 . 
For its analytical solution for a delta-pulse a� initial function one obtains: 

I x2 
K(x , t) = � e- 401 . 

'" 4Jrat 

The heat conduction equation, also called the diffusion equation, describes equilibra­
tion processes in time (here along a line, the x-axis). The special solution K(x . / ) in 
the example starts with the delta impulse as initial function. This means that the total 
heat is first concentrated in the point x = O. This amount is then spread over time as 
a Gaussian distribution, while the integral (the amount of heat) stays the same. Thus 
the temperature maximum at x = 0 decreases accordingly. 

c) SchrOdinger equation 

The probability amplitude or wave function is 1/! (x . y. z , t ) ;  
and the potential is Vex , y .  Z ./ ) ;  
i h  a1/! ( h ) 2 I ( a2 1/! a21/! a21/! ) 
2Jf dt = 

- 2Jf 2m dx2 + dy2 + dz2 + V1/!. 



1 0. 1  Some important partial differential equations in physics 1 98 

The form of the Schrodinger equation given above is valid in the non-relativistic case 
for a particle of mass m in a potential V. It describes the relationship between time 
and space development of its complex wave function ", .  

d )  Maxwell equations for the electromagnetic fields E,  D, B ,  H 

I )  div D = p 

2) div B = 0 

aB 
3) cnrI E + - = 0  dt 

aD 
4) cnrl H = j  + -dt 

'il · D = p, 

'il · B = O, 

aB 
'il x E + dt = 0, 

aD 
'il x H = j + dt ' 

The Maxwell equations, which are very important in practice, describe the interac­
tion between the magnetic and electric fields (2 and 3) and their connection with the 
charge density p and current density j. The first equation means that charges are the 
sources of the electric fields, from which field lines emanate and where they end. The 
second equation means that magnetic sources (monopoles) do not exist and therefore 
magnetic field lines are always closed. 

On the left, the traditional notation, and on the right the formally quite uniform 
notation with the nabla operator, are given. 

The electrical flux density D is connected to the electrical field strength E via the 
material properties electrical permeability of the vacuum EO and electric polariza­

tion P: D = EoE + P 

The magnetic flux density B is connected to the magnetic field strength H via the 
material properties magnetic permeability of the vacuum /Lo and magnetic polariza­
tion J (written in capitals, as opposed to the current density j): B = /LoH + J 

Since D, B ,  E and H are vectors, we have to deal with a system of coupled par­
tial differential equations for all field components, which therefore ha� a wealth of 
solutions. Therefore the mathematical solution can become very complex. 

Numerical solution methods are therefore even more important for partial differen­
tial equations than for ordinary differential equations. While one starts for ordinary 
differential equations from one or more initial values and iteratively proceeds from 
point to point for the independent variable, one has to cover the whole space of vari­
ables with a grid of computation points. For a two-dimensional problem one then deals 
with a plane grid and for a three-dimensional one with a three-dimensional space grid. 
One starts from one point of the initial function, calculates the neighboring points us­
ing suitable procedures, which together constitute the initial values for the next step, 
always while taking into account the connections provided by the differential equa­
tions. In technical applications and engineering one refers in this connection to the 
method ofjinite elements. 
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For visualization one simplifies the conditions radically. Already in Section 8 .5 .8 
we had simulated the movement of an electron in a three-dimensional homogeneous 
electromagnetic field. which is stationary. i.e. is constant as a function of time. 

10.2 Simulation of the diffusion equation 

The following simulation in Figure 1 0. 1  of one-dimensional equilibration or diffusion 
processes shows. for example. the time and space dependence of the temperature after 
heating a homogeneous thermally insulated thin wire at a point with a short pulse. 

According to the above mentioned special solution. an approximated delta function 
at the origin is used as the initial function. which spreads in Gaussian shape under 
conservation of the area under the curve (the amount of heat). The arrows indicate the 
l Ie-width. the number field the respective point in time. The diffusion constant a can 
be adjusted with the slider over a wide range of values. 

The description pages contain further hints. 

One d i m e n s ion , detta p u l s e  as initia.l functi o n  
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Figure 10.1. Simulation. Animated solution of the diffusion equation with the delta impulse 
fOT I = 0 at x = O. The picture shows the state at t = 2. The arrow indicates the width. where 
the function has decayed to 1 /  e of the maximum. 
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10.3 Simulation of the Schrodinger equation 

The interactive Figure JO.2a show the solution to the one-dimensional Schrodinger 
equation for a particle in an infinitely deep rectangular potential well, whose width 
can be adjusted with a slider. The square of the absolute value of the complex wave 
function 1 ", (x) 12 gives the probability density for the particle at position x. It is nor­
malized to I ,  which means that the particle can be found inside the box with certainty, 
irrespective of the spatial distribution. 

The two curves in Figure I O.2a show the real component of the wave function 
(probability amplitude) ", (x) in red and the imaginary component in blue. 

In Figure J O.2b, a second presentation mode that is popular in quantum mechanics 
is used, for which the absolute value of the wave function 1 "' 1  (square root of the prob­
ability density) is shown a� the envelope. Inside, the phase angle a = arctan(� ) is 
indicated by color shading. 

The pha�e angle a is indicated by the following colors: 

• blue a = 0 or 21T ('" positive real); 
• golden yellow a = 1T (1/1 real negative); 
• rose coloured a = 1T /2 (1/1 positive imaginary); 
• green a = 31T/2 (1/1 negative imaginary). 

Position space wave function 

;' 
.' 

· 1 .0 ·0.5 0.5 1 . 0 

FIgure 10.2a. Simulation. Animated solution .p (x) of the SchrOdinger equation for the devel­
opment of an initial distribution (symmetric Gaussian) in a box. The real component is in red 
and the imaginary component in blue. The probability density consists of the sum of squares 
of the-,e two parts: .p (x)2 = (Re .p (x»2 + (Im .p (x» 2. 
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Position SPICO _YO funcuon 

· 1 .0 ·0.5 0 .5  1 .0 

Figure IO.2b. Simulation. The fun(.1ion I '"  (x) I for Figure I O.2a; The color shading indicate.. 
the rdtio of imaginary to real components. 11fr(x) 1 = ,Jprobability density. In the blue inner 
region the real component dominates, while the imaginary component dominate.. in the red 
regions. 

This simulation allows you to choose among many examples of potential wells, 
in which quantum particles can move. It was developed by the pioneer of the asp 
program, Wolfgang Christian, and slightly simplified by us. The description pages in 
Figure 1 1 .2 contain detailed hints about theory and usage. 

10.4 Simulation of the wave equation for a vibrating 
stri ng 

At the end of this chapter we  consider i n  Figure I O.3b the simulation of a vibrat­
ing string as a solution of the wave equation. Figure 10.3a shows three snapshots as 
examples from the simulation in Figure 1 0.3b. The left-hand panel shows the "start 
impulse", a Gaussian concentrated in the middle of the string with maximum I .  The 
middle panel follows the situation shortly after the start: two Gaussian impulses of 
height 1 /2  run into opposite directions. They are finally reflected at the ends of the 
string and interfere with each other in the right-hand panel, which results in the re­
construction of the original form and amplitude, but with a negative sign after the first 
reflection. 

Gaussian impulses and symmetric wave functions propagate on the string unchanged 
provided that no damping is taken into account in the wave equation. 

The interactive Figure 10.3b show the situation a short time after the start of the 
triangular impulse, which was originally concentrated at the end of the string. After 
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Figure 10.3&. Propagation of an excitation on a string that is fixed at both end.; cr .. ussian as 
initial impulse for t = 0 on the left; two pulses run in opposite direction in the middle; on the 
right the reconstruction with negative amplitude after reftection at the ends. 
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Figure 10.3b, Simulation. TIme development of an original short triangular pulse at the end 
of the string. The picture shows the state after the first reftection at the end of the string. 

some time one observes deviations, which are due to the discontinuity of the first 
derivative at the beginning and end of the impulse. This demonstrates limits of the 
numerical computation. 

A selection menu contains the following stan functions for the initial deflection of 
the string: 

• Gaussian impulse of adjustable within the middle of the string; 
• Gaussian impulse not in the middle of the string; 
• symmetric triangle in the middle of the string; 
• triangle at the end of the string; 
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• sawtooth; 
• sawtooth of adjustable width; 
• sine wave. 

There is a parameter a in most of the functions, which can be changed. The formula� 
for the initial deflections themselves are editable, so that many more start situations 
can be simulated. 

The description pages contain further details and suggestions for experiment�. This 
animation is aesthetically quite pleasing, because it gives the music lover hints about 
tone qualities, which are possible a� a result of very different overtone mixtures. More 
details are given in the description pages. 

This simulation was originally developed by Francisco Esquembre, the pioneer of 
the E1S program and extended by us. 
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Col lection of physics simulations 

1 1 .1 Simulations via OSP/EJS programs 

The interactive simulation of complex mathematical or physical object� is an attractive 
programming task, which provides a deeper understanding of the problems treated. It 
is a wonderful tool for the illustration of objects that are abstract or difficult to imag­
ine, or which can only be calculated with difficulty by hand. It appeals to the play­
fulness of the user and leads to intensive preoccupation with the subject. Therefore, 
simulation can be viewed a� an effective didactic tool . Great efforts have been directed 
to this end and the German ministry of research and education has, to some extent, 
supported these efforts financially. 

Commonly used high-level standard programs, such as Microsoft Excel with Vi­

sual Basic for Applications (VBA), were candidates to use for these simulations. 
One finds many interesting examples of this approach on the Internet. A fundamen­
tal advantage of such technically relatively simple programming is that the user has 
open access to the code via the standard program. In addition, samples that are taken 
by third panies are therefore reasonably transparent, and the user can thus develop 
or modify the code, if the manufacturer has not built in anificial barriers. A ma­
jor disadvantage is that files created in this way are platform dependent, and thus 
run only if the same operating system and application program (which are subject 
to licensing) are used. It even turns out that successive versions of standard appli­
cation programs are not fully compatible. For example, a file developed with Ex­
cel 2005 and VBA under Windows XP can be incorrectly fonnatted if run on an­
other computer with Windows Vis/a. A technical disadvantage is that the comput­
ing speed of a program developed in a high-level tool such as Excel is much lower 
than that of a low-level program running close to operating system level for the same 
ta�k. 

Therefore, efforts were made early on to use platform-independent and operating 
system-level programming languages, and the Java royalty-free language is consid­
ered to be panicularly suitable. However, simulation with common object-oriented 
Java requires programming experience of considerable depth. It would have appeared 
justified to narrow down Java in line with the limited issues involved. Unfonunately, 
there has been no systematic effort in Germany for defining a standard for mathemat­
ical and physical simulations. Rather, the results of different schools have originated 
more or less independently of one another. As a result, there has not been a resounding 
success in the didactic use of simulations, or at least not in any obvious way. 
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A large body of preliminary work towards such a standardization has been done in 
the USA by the Open Source Physics (OSP) program, which was supported among 
others by the National Science Foundation. Its goal wa� to create a thesaurus of par­
tial solutions specifically for use in physical simulations, which could then be used 
in an object oriented way for programming specific simulations. The programs are 
made generally avai lable under the GNU license-free open source model, with the 
obligation that the same applies to new third party solutions built on OSP. 

GNU defines its goal a� follows: ''The GNU General Public License is intended to 
guarantee the freedom, to share and change all versions of a program. It aims to ensure 
that the software remains free for all its users. We, the Free Software Foundation, use 
the GNU General Public License for most of our software, it applies also to any other 
works, the authors of which have released in this way." 

A leading pioneer of the OSP project was Wolfgang Chris/ian at Davidson Col­

lege, who built on a family of lava-Physlets, which he had developed previously. 
Together with his colleagues he created a number of program packages for the cal­
culation and visualization of physics and engineering simulations, which included 
specific methods. 

This was connected with the development of a curriculum for an introduction to the 
structure and technique of programming with asp, and the development of a launcher 
by Doug Brown, which allows you to combine a whole sequence of simulations on 
similar topics as a course, inclusive of explanations, in a single file. This can be done 
quite compactly, since the simulations share a common set of data, which are only 
needed once in the launcher package. Individual simulations can be called from this 
file or can be isolated. 

There is a wealth of partially simple and partially very refined physics simula­
tions to be found in the OSP program and, in the following sections, we will briefly 
introduce the most important packages that are now available. 

If one wants to fully understand a simulation file that has been created with OSP, 
one has to become quite familiar with its hlml source code. This is quite possible 
to do when using the teaching material, although it is still a difficult task. A second 
limitation of its general applicability lies in the fact that the visualization requires a 
great deal of effort and its development in html source code can be confusing for the 
less experienced user. 

In this regard, the development of the EJS package (Easy Java Programming) 

by Francisco Esquemhre was a further breakthrough for OSP. This package consists 
of a graphical user interface, which we briefly describe in the following. Its particular 
appeal is the possibility of taking the building blocks of the simulation from a large 
pre-built stock and to construct a realization tree from them via drag and drop. The 
individual icons are then connected to the simulation variables and to the easily se­
lectable standard methods. For the creation of the proper calculation code, visual tools 
have also been provided. It is easy to become familiar with E.JS using already existing 
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examples, so that one does not need extensive technical knowledge of JAVA to develop 
simulations. Therefore EJS appears quite suitable for students of physics, whose main 
interest is in building physical models, rather than programming techniques. 

Another big advantage of the EJS program in its current version is that, from inside 
the individual simulations, one can access the universal creation program, the EJS 

console via mouse click, so that one can immediately dive into the programming, 
make changes or take individual building blocks for one's new developments. 

Thus the combination of EJS + OSP seems to be destined to become the standard 
program for didactically orientated simulations in the domain of physics and math­
ematics. We have used it almost exclusively in this work, although the author was 
previously more familiar with ExceWBA and he first needed to become familiar with 
the new methods. The two links EJS basic and EJS introduction at the side margins 
lead to a description of EJS by Wolfgang Christian and Francisco Esquembre. In the 
same directory you will also find further documentation. 

EJS and OSP are under active development, and thus are a work in progress: 

you are therefore advised to make yourself familiar with the current status using the 
supplied internet pages. 

To use the Java simulations, the Java Runtime Environment must be installed at 
least in version Java/re5. You might want to install the free-of-charge current version 
(June 201 J: Java 6/upda/e 24) via the link on the margin. 

1 1 .2 A short introduction to EJS (Easy Java 
Simulation) 

You reach the up-to-date description of the EJS program via the home page given in 
the link on the side. Here we give a very brief overview and suggest you have a close 
look at this program. When calling the EJS program on the lower boundary of the 
screen, the EJS console appears, as shown in Figure 1 1 . 1 .  

In the first line of the main window, one enters the directory where the Java-JRE 

(Java runtime environemt) is located, if the program does not find it by itself. In the 
second line, an arbitrary directory can be defined as workspace for EJS;  the program 
then automatically creates two directories in this directory: 

• Source: for *.xlm files; 
• Export: for compressed *.jar files. 

The program stores new or changed files automatically in these directories, unless 
other paths for saving are specified in individual cases. The two directories can contain 
a hierarchy of further directories. Files that have been automatically stored can later 
be copied or moved to other places. 
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FIgure H.2. Simulation. The figure shows a page for the definition of parameters (variables). 
The simulation calls a working EJS console with editing window. It either contains no data, 
or those from the last simulation. You can browse through the individual pages and change 
entries. You may study the many possibilities in the main window VIew. Please be careful 
when saving in order not to overwrite any files; you should choose a name that does not 
already exist! 

With Launch Easy Java Simulation, the editing window in Figure 1 1 .2 is created. 
The console can be configured in such a way that this step happens automatically 
whenever it is called. 

Figure 1 1 ,2 shows its visual interface. The main menu in the top line contains three 
sections, each of which can consist of several pages. 
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• Description as text; 
• Model (Code); 
• View (optical surface for the creation of the visualization tree). 

For many simulations only a few pages are active. Simple function plotters. for exam­
ple. do not require any special code and can be realized using view alone. 

In the following line of the menu model in Figure 1 1 .2 the sub-menu Variables is 
highlighted. The page Other for the simulaion Double_pendulum_driven is shown. 

The individual pages of Model have the following meaning: 
Variables: Global variables. which do not appear only locally in individual code 

methods. These are designated as decimal number (double). integers (int). symbolic 
text (string). logical variable (boolean) and are also classified according to their 
dimensions (for example number of computation loops with indices i. j . k: [i ) or 
[i ) [j ) [k) . . . ). It is important to note that the decimal point appears as point. as is 
standard in the USA. and not as a comma as in German. 

Initialization: Here the starling conditions are entered. for example specific values 
for variables. equations involving the variables or calls to methods listed on other 
pages. which have to take place at the starl. This also includes logical equations that 
select from different possibilities. Help is provided via the context menu. which can 
be called with the right mouse button. The following example puts the two initial 
velocities Va of the pendulum bobs and the time t at the starl of the simulation to 
zero: 

t = 0.0; 

va l = 0.0; 

va2 = 0.0. 

Evolution: Controls the succession of events. for example for an animation. It is 
parlicularly important that differential equations can be entered here. that are then 
automatically solved via a choice of different methods . Typical example: 

dYI dt = va l to be solved with Runge-Kutta 4 .  

Fixed Relations: Here relationships between the variables can be entered. which 
are always valid and provide input to the calculation. The following example from the 
simulation connects variables with trigonometric functions of other variables. (Please 
note that the function name must stan with Math. in Java code). 

x l  = L I *Math.sin(a l ) ;  

y l = - L 1 *Math.cos(a l ) ;  

x2 = L2*Math.sin(a2) ;  

y2 = - L2*Math.cos(a2). 
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Custom: Here special methods are formulated in Java code. which are called. for 
example. from the initialization page or by the control elements. The following exam­
ple defines the action of the clear button in the view. It deletes all lines and resets the 
variables to their initial values. 

public void c1earOLresetView(kinitializeO; } .  

Here the  methods _resetViewO and _initializeO can be  selected from a large number 
of prepared subroutines and one does not have to program these. 

We now describe the functions of the icons on the right-hand side. The shorthand 
*. stand�, as is usual for files. for an arbitrary filename before the file type (e.g. xml 
or jar). 

Line 2, on the rigbt: information about author and file; 
Line 3 from the top: open new file; 
Line 4 from the top: open * .xml-files; 
Line 5 from tbe top: (Opening. with screen) leads to the homepage of EJS and a 
current library of EJS simulations; 
Line 6 from the top: saving at the original location and under the same name as 
*.xml file. which can be opened from the console. * .xml files cannot be activated 
by themselves. but are very compact; 
Line 7 from the top: saving the file at another location or under a different name 
as * .xml file; 
Line 8 from the top: Searching help. After entering the keyword. it shows where 
it appears in the file; 
Line 9 from the top (green triangle): creates the active simulation or gives an 
error message with hints; 
Line 10 from the top: compressing the EJS file a� * .jar file. Such files can be 
called as stand-alone applications and contain all required codes except for Java, 
which ha� to be installed on the computer. Alternatively html-pages or applets can 
be created; 
Line 11 from the top: Opens general editing options. which are not required for 
creating files; 
Line 12 from the top: Calling the internet help page of the EJS program. 

View 

Figure 1 1 .3 shows a typical View page. The visualization tree is only partly visible. 
On the right there are three menus below each other with a few pages each. They 

contain numerous icons that can be put together with drag and drop on the visualiza­
tion tree. 

The top menu. which is called Interface. includes containers as superior parents 
of the Java hierarchy. and pre-assembled control elements a� children to be contained 
inside it. 
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Figure 11 .3. View page of EJS. On the right are the selection menus of the irons, which can 
be pulled with dmg and drop into the visualization tree on the left. 

The second menu 2D Drawables contains icons that can be inserted for two-dimen­
sional visualizations. The third menu 3D Drawables contains icons for three-dimen­
sional visualizations. In addition to icons that symbolize a single element, there are 
some that represent whole families of elements, for example arrows, points or curves. 

Every icon used on the tree is showing after double clicking a large menu for for­
matting and for connecting to variables and methods. Figure 1 1 .4 shows this for the 
relatively simple icon PI, which represents the bob of the main pendulum in the dou­
ble pendulum simulation. The coordinates X I and YI are connected to the elements 
Posx and Posy. In the element Size the same dimensions are fixed in both directions. 
Draggable True means that the point can be pulled with the mouse, which automati­
cally gives a new value to the variable. 00 Drag PendelO calls the procedure PendelO 

when the mouse is pulled (deleting previous traces and restarting the calculations). 
Many open positions can be used for further formatting. 

The exact definition of individual elements appears if one holds the mouse pointer 
on the designation on the left. If one points at the label Visible, the message The 

visibility of the element (boolean) appears. if one double clicks on the first icon at 
the right of an element, either the existing choices (for visible true, false are shown, 
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Figure 11.4. Window for fixing the properties of a visualization element (here of a point PI). 

or assistance for entering information is given. The second icon contains a list of 
permitted quantities or methods, each of which can be selected with a click. 

The next Figure 1 1 .5 finally shows the appearance of the main window in the active 
simulation. You can certainly identify elements of the visualization tree, especially on 
the left-hand side (L 1 and L2 are the pendulum bars, P I  and P2 are the pendulum 
bobs, Pfad_P2, the red orbit of the secondary pendulum, and so on). 

You actually do not need to know any more to start with the simulations that have 
been developed for this  book, and to use and change them. The same applies to other 
simulations that have been created with ElS. The EJS console required for this pur­
pose is contained in the data carrier for this book in the version of February 20 I I . You 
can download a possibly newer version from the EJS homepage. 

Start with something simple, for example with the calculation of the geometric 

series. Pressing the etrl key and clicking on Simulation in the caption of Figure 1 1 .6 
opens the working EJS simulation as an independent *.jar file. 

Now click with the right mouse button on the simulation and choose Open EJS 

Model in the context menu that appears. A menu will pop up, which shows how an 
*.xml file is extracted and stored. The standard storage location is the directory source 

in the EJS workspace; you may also choose a different one. 
After confirming your input, the EJS console appears with the editing window as 

in Figure 1 1 .3 . The previously active simulation vanishes into the background, and 
a passive EJS window appears. You may see the configuration of the elements, but the 
simulation cannot run in these windows. 

Now save under another name (the * .xml file is saved). Pressing the icon in the 
shape of a green triangle creates an active simulation under a new name. 

Now change individual elements in the pages of the editing console and then save 
the • .xml file under a new name. If you close the old version and click on the green 
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Phase space projection 
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Figure 1 1.S. Simulation. Visualization window for the simulation of the double pendulum. 
The left side of the window shows the two masses (primary pendulum as small blue circle. 
secondary pendulum as large yellow circle) of the double pendulum. which is fixed and rotat­
able in the green point. The plane orbit of the yellow pendulum mass is drdwn in red; it is very 
irregular. The right side of the window shows the phase-space of the primary pendulum. 
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Figure lUi. Simulation. Geometric sequence and series as a simple prdctice example. After 
starting. the EJS window is opened by clicking on the simulation window with the right mouse 
button. 
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triangle. your version becomes active, or you get an error message with solution hints 
if you have built a bug into the program. Initially, just go into View and change the 
colors or the thickness of lines. This way nothing can really break. 

With some more insight you can also change the simple formulas in Custom and 
Fixed Relations and thus calculate a different series. Frequent saving under different 
names allows you to find working versions when encountering errors. 

The help function, which can be called with the link on the margin or directly from 
the console. contains details on all individual elements. At this point you also find 
extensive documentation. for example for an introductory course. 

1 1 .3 Publ ished EJS simu lations 

The following list consists of 1 00  EJS simulation that were available directly from 
the OSP home page in 2009. The list contains the title, link and the beginning of the 
description, as taken from the home page. After following links, further details can be 
found on the OSP homepage: 

• complete description 
• level and user 
• keywords about the specialization area 
• authors 
• often a typical picrure. 

Following the links coupled to the names within the list takes you to the download 

pages. where you have two options: 
Firstly: loading of the executable · .jar file of typically 1-2 MS. Secondly: Load­

ing of the * .xml file of typically 1 0-- 100 kB, optionally with additional picture files, 
packaged into a • .zip file. which can be opened by the EJS console. The picture files 
contain elements of the description pages that do not belong to the standard thesaurus, 
such as formulas in special formats, picrures. drawings, and so on. 

Files that have been opened with the console can be saved as compressed * .jar files, 
such that a duplication of the download is not necessary. 

On the other hand, it is is possible for all • .jar files contained in the list to generate 
the • .xml file and the picture files from inside the active simulation using the context 
menu of the right mouse button, or to open the console. 

The following list is roughly ordered according to subject�, to provide an easy 
overview. The numbers next to the titles correspond to their position on the OSP 
homepage. 

You can quickly and directly call the * .jar files via the links that are shown next 

to the list at the margin. They immediately lead to a file that is already saved on 

your data carrier, and which is already executable and interactive. 



1 1 .3 Published EJS simulations 214  

1 1 .3.1  Electrodynam ics 

28. Magnetic Field from Loops Model 

The EJS Magnetic Field from Loops model computes the B-field created by an electric 
current through a straight wire, a closed loop. and a solenoid. 

62. Electromagnetic Wave Model 

The EJS Electromagnetic Wave model displays the electric field and magnetic field 
of an electromagnetic wave. The simulation allows an arbitrarily polarized wave to be 
created. 

1 1 .3.2 Fields and potentials 

9 .  Scalar Field G radient Model 

The Scalar Field Gradient Model displays the gradient of a scalar field using a numer­
ical approximation to the partial derivatives. This simple teaching model also shows 
how to display and model scalar and . . .  

30. Lennard-Jones Potential Model 

The EJS Lennard-Jones Potential model shows the dynamics of a particle of mass m 
within this potential . You can drag the particle to change its position and you can drag 
the energy-line to change its total energy. The . . .  

31 . Molecular Dynamics Model 

The EJS Molecular Dynamics model is constructed using the Lennard-Jones potential 
truncated at a distance of three molecular diameters. The motion of the molecules is 
governed by Newton's laws, approximated using . . .  

33. Molecular Dynamics Demonstration Model 

The EJS Molecular Dynamics Demonstration model is constructed using the Lennard­
Jones potential truncated at a distance of three molecular diameters. The motion of the 
molecules is governed by Newton's laws, approximated . . .  

1 1 .3.3 Mathematics, d ifferential equations 

1 .  Linear Congruent N umber Generator 

The Linear Congruent Number Generator Model. The method generates a sequence 
of integers Xi over the interval 0, m - I by the recurrence relation Xi + I = (axi + c) 
mod m where the modulus m is greater . . .  

3. Un iform Spherical Distribution Model 

The EJS Uniform Spherical Distribution Model shows how to pick a random point 
on the surface of a sphere. It shows a distribution generated by (incorrectly) picking 
points using a uniform random distribution . . .  
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6.  Binomial Distribution Model 

The EJS Binomial Distribution Model calculates the binomial distribution. You can 
change the number of trials and probability. You can modify this simulation if you 
have EJS installed by right-clicking within . . .  

1 6. G reat Circles Model 

The EJS Great Circles model displays the frictionless motion of a particle that is 
constrained to follow the surface of a perfect sphere. The sphere rotates underneath 
the particle, but since there is no . . .  

20. Cel lular Automata Rules Model 

The EJS Cellular Automata Rules Model shows a spatial lattice which can have any 
one of a finite number of states and which are updated synchronously in discrete time 
steps according to a local (nearby neighbor) . . .  

2 1 . Cel lu lar Automata (Rule 90) Model 

The EJS Cellular Automata (Rule 90) model displays a lattice with any one of a finite 
number of states which are updated synchronously in discrete time steps according to 
a local (nearby neighbor) rule. Rule . . .  

24. Special Functions Model 

The EJS Special Functions Model shows how to access special functions in the OSP 
numerics package. The simulation displays a graph of the special function over the 
given range as well a..� the value of the selected . . .  

37. Harmon ics and Fourier Series Model 

The EJS Harmonics and Fourier Series model displays the sum of harmonics via a 
Fourier series to yield a new wave. The amplitude of each harmonic a..� well as the 
pha..�e of that harmonic can be changed via sliders . . .  

60. Fourier Sine Series 

The Fourier sine series model displays the sine series expansion coefficient� of an 
arbitrary function on the interval [0, 2pi J .  

90. Poincare Model 

The EJS Poincare model computes the solutions to the set of non-linear equations, 
x' = x (a - b + z + d ( 1  - Z2» - ey , y' = y ea - b + z + d( 1  - z2» + ex, 
z' = az - (x2 . . .  

9 1 . Henon-Heiles Poincare Model 

The EJS Henon-Heiles Poincare model computes the solutions to the non-linear 
Henon-Heiles Hamiltonian, which reads 1 /2 (px2 + py2 + x2 + y2) +2 y- . . .  
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92. Duffing Poincare Model 

The EJS Duffing Poincare model computes the solutions to the non-linear Duffing 
equation, which reads x" + 2yx' - x ( l -x2) = f cos(wt), where each prime denotes 
a time derivative . . . .  

93. Duffing Phase Model 

The EJS Duffing Pha�e model computes the solutions to the non-linear Duffing equa­
tion, which reads x" + 2yx' - x ( 1  - x2 ) = f cos(wt), where each prime denotes a 
time derivative . . . .  

94. Duffing Measure Model 

The EJS Duffing Meamre model computes the solutions to the non-linear Duffing 
equation, which reads x" + 2yx' - x ( l -x2) = f cos(wt), where each prime denotes 
a time derivative . . . .  

95. Duffing Chaos Model 

The EJS Duffing Chaos model computes the solutions to the non-linear Duffing equa­
tion, which reads x" + 2yx' - x ( 1  - x2 ) = f cos(wt), where each prime denotes a 
time derivative . . . .  

96. Duffing Baker's Map Model 

The EJS Duffing Baker's Map model computes the solutions to the non-linear Duffing 
equation, which reads x" + 2yx' - x ( l -x2) = f cos(wt), where each prime denotes 
a time derivative . . . .  

97. Duffing Attractor Model 

The EJS Duffing Attractor model computes the solutions to the non-linear Duffing 
equation, which reads x" + 2yx' - x ( l -x2) = f cos(wt), where each prime denotes 
a time derivative . . . .  

98. Duffing Oscil lator Model 

The EJS Duffing Oscillator model computes the solutions to the non-linear Duffing 
equation, which reads x" + 2yx' - x ( l _x2) = f cos(wt),  where each prime denotes 
a time derivative . . . .  

99. Baker's Map Model 

The EJS Baker's Map model computes a c\a�s of generalized baker's maps defined 
in the unit square. The simulation displays the resulting points as well as the distance 
between adjacent points. The starting . . .  
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1 1 .3.4 Mechanics 

7. Mechanics Package: Challenging Intro Physics Topics 

The EJS Mechanics Package: Challenging Intro Physics Topics contains Ea�y Java 
Simulations (EJS) models used in a high-level Introductory Physics course for physics 
majors. The topics include vector kinematics . . .  

1 1 .  Sl ipping and Roll ing Wheel 

The EJS Slipping and Rolling Wheel Model shows the motion of a wheel rolling on a 
floor subject to a frictional force a� determined by the coefficient of friction ILk ' The 
simulation allows the user to change . . .  

23. Cei l ing Bounce Model 

The EJS Ceiling Bounce Model shows a ball launched by a spring-gun in a building 
with a very high ceiling and a graph of the ball 's position or velocity as a function of 
time. Student� are a�ked to set the ball's . . .  

25. Two Particle Elastic Coll ision Model 

The EJS Elastic Collision Model allows the user to simulate a two-dimensional elastic 
collision between hard disks. The user can modify the ma�s, position and velocity of 
each disk using the sliders. Both . . .  

4 1 . Baton Throw Model 

The EJS Baton Throw model displays a baton thrown up in the air about its center of 
mass. The baton is modeled by two ma�ses separated by massless rigid rod. The path 
of the center of mass of the baton and . . .  

42. Rocket Car on an Incl ined Plane Model 

The EJS Rocket Car on an Inclined Plane model displays a car on an inclined plane. 
When the car reaches the bottom of the incline, it can be set to bounce (elastic colli­
sion) with the stop attached to the . . .  

43. Car on an I ncl ined Plane Model 

The EJS Car on an Inclined Plane model displays a car on an incline plane. When the 
car reaches the bottom of the incline, it can be set to bounce (elastic collision) with 
the stop attached to the bottom . . .  

44. Kinematics of a Translating and Rotating Wheel Model 

The EJS Kinematics of a Trainslating and Rotating Wheel model displays the model 
of wheel rolling on a floor. By controlling three variables, the kinematics of the wheel 
can be changed to present sliding, . . .  

46. Rol ler Coaster 

The EJS Roller Coaster Model explores the relationship between kinetic, potential, 
and total energy a� a cart travels along a roller coaster. Users can create their own 
roller coaster curve and observe the . . .  
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47. Energizer 

The EJS Energizer model explores the relationship between kinetic. potential, and 
total energy. Users create a potential energy curve and observe the resulting motion. 
The Energizer model was created using . . .  

53. Inelastic Coll ision of Particles with Structu re Model 

The EJS Inela�tic Collision of Particles with Structure model displays the inelastic 
collision between two equal "particles" with structure on a smooth horizontal surface. 
Each particle ha� two microscopic . . .  

55. Platform on Two Rotat ing Cylinders Model 

The EJS Platform on Two Rotating Cylinders model displays the model of a platform 
resting on two equal cylinders are rotating with opposite angular velocities. There is 
kinetic friction between each cylinder . . .  

67. Two Fal l ing Rods Model 

The EJS Two Falling Rods model displays the dynamics of two rods which are dropped 
on a smooth table. In one case the end point on the table slides without friction, while 
in the other case it rotates about . . .  

68. Coin Rol l ing without Sl iding on an Accelerated Platform Model 

The EJS Coin Rolling without Sliding on an Accelerated Platform model displays the 
dynamics of a coin rolling without slipping on an accelerated platform. The simulation 
dis-plays the motion of the coin as . . .  

69. Coin Rol l ing with and without Sliding Model 

The EJS Coin Rolling with and without Sliding model displays the dynamics of an 
initially rotating, but not translating, coin subject to friction. The simulation displays 
the motion of the coin as well as . . .  

70. Orbiting Mass with Spring Force Model 

The EJS Orbiting Mass with Spring Force model displays the frictionless dynamics 
of a ma�s constrained to orbit on a table due to a spring. The simulation displays the 
motion of the mass as well a� the effective . . .  

85. Sym metriC Top Model 

The EJS Symmetric Top model displays the motion of a top, in both the space frame 
and body frame, with no net toque applied. The top has an initial angular speed in the 
x. y .  and z directions. The moments . . .  

86. Lagrange Top Model 

The EJS Lagrange Top model displays the motion of a heavy symmetric top under the 
effect of gravity. The top ha� an initial angular speed that provides the precessional, 
nutational. and rotational speeds . . .  
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87. Torque Free Top Model 

The EJS Torque Free Top model displays the motion of a top, in both the space frame 
and body frame, with no net toque applied. The top has an initial angular speed in the 
x, y, and z directions. The moments . . .  

88. Fal l ing Rod Model 

The EJS Falling Rod model displays the dynamics of a falling rod which rotates about 
a pivot point as compared to a falling ball. The simulation allows computing fall times 
and trajectories. The initial . . .  

89. Spinning Dumbbell  Model 

The EJS Spinning Dumbbell model displays the motion of a dumbbell spinning around 
the fixed vertical axis z with constant angular velocity. The trajectories of each mass 
as well as the system's angular velocity, . . .  

1 1 .3.5 Newton 

8. Classical Hel ium Model 

The EJS Classical Helium Model is an example of a three-body problem that is similar 
to the gravitational three-body problem of a heavy sun and two light planets. The 
important difference is that the helium . . .  

71 . Two Orbiting Masses with Relative Motion Model 

The EJS Two Orbiting Masses with Relative Motion model displays the dynamics of 
two masses orbiting each other subject to Newtonian gravity. The simulation displays 
the motion of the ma�ses in the inertial . . .  

72. Orbiting Mass with Constant Force Model 

The EJS Orbiting Ma�s with Constant Force model displays the dynamics of an orbit­
ing ma�s due to a constant force (a linear potential energy function). The simulation 
displays the motion of the mass as well . . .  

1 00.  Newtonian Scattering Model 

The EJS Newtonian Scattering model displays the gravitational scattering of a mul­
tiple ma�ses incident on a target mass. The simulation displays the motion of the 
smaller. The number of particles and their . . .  

1 1 .3.6 Optics 

2.  Two-Color M u ltiple Sl it  Diffraction 

The Two-Color Multiple Slit Diffraction Model allows users to explore multiple slit 
diffraction by manipulating characteristics of the aperture and incident light to observe 
the resulting intensity. An exploration . . .  
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26. M ultiple Slit Diffraction Model 

The EJS Multiple Slit Diffraction model allows the user to simulate Fraunhofer diffrac­
tion through single or multiple slits. The user can modify the number of slits, the slit 
width, the slit separation and . . .  

40. Thick Lens Model 

The EJS Thick Lens model allows the user to simulate a lens (mirror) by adjusting 
the physical properties of a transparent (reflecting) object and observing the object's 
effect on a beam of light. The user . . .  

48.  Optical Resolution Model 

The EJS Optical Resolution model computes the image from two point sources as 
seen through a circular aperture such a� a telescope or a microscope. The simulation 
allows the user to vary the distance between . . .  

64. Brewster's Angle Model 

The EJS Brewster's Angle model displays the electric field of an electromagnetic 
wave incident on a change of index of refraction. The simulation allows an arbitrarily 
linearly (in parallel and perpendicular . . .  

78. I nterference with Synch ronous Sou rces Model 

The EJS Interference with Synchronous Sources model displays the interference pat­
tern on a screen due to between one and twenty point sources. The simulation allows 
an arbitrarily superposition of the sources . . .  

83. Two Source Interference Model 

The EJS Two Source Interference model displays the interference pattern on a screen 
due to two point sources. The simulation allows an arbitrarily superposition of the two 
sources and shows both the current . . .  

1 1 .3.7 Oscillators and pendulums 

1 5. I nertial Oscil lation Model 

The EJS Inertial Oscillation model displays the motion of a particle moving over the 
surface of an oblate spheroid. The spheroid is flattened to an ellipsoid of revolution 
because it is rotating, just a� the . . .  

1 7 . Foucault Pendulum Model 

The EJS Foucault Pendulum model displays the dynamics of a Foucault pendulum. 
The simulation is designed to show the dynamical explanation of why precession of 
the Foucault pendulum is slower at lower latitudes . . .  
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1 8 . Circumnavigating Pendulum Model 

The EJS Circumnavigating Pendulum model displays the dynamics of a mechanical 
oscillator in uniform circular motion. The mechanical oscillator is free to move in two 
directions. This 2-dimensional simulation . . .  

34. Strange Harmonic Oscil lator Model 

The EJS Strange Harmonic Oscillator model displays the motion of two masses con­
nected by a massless rigid rod, and the masses may move without friction along two 
perpendicular rails in a horizontal table . . .  

35. Quartic Osci l lator Model 

The EJS Quartic Oscillator model displays the motion of a bead moving without fric­
tion along a horizontal rod, while tied to two symmetric springs. Both the motion of 
the ma�ses and the phase space plot are . . .  

36. Damped Driven Harmonic Osci llator Phasor Model 

The EJS Damped Driven Harmonic Oscillator Phasor model displays the motion of 
damped driven harmonic oscillator. The resulting differential equation can be ex­
tended into the complex plane, and the resulting . . .  

38. Spring Pendulum Model 

The EJS Spring Pendutum model displays the model of a hollow mass that moves 
along a rigid rod that is also connected to a spring. The mass, therefore, undergoes a 
combination of spring and pendulum oscillations . . .  

39. Oscil lator Chain Model 

The EJS Oscillator Chain model shows a one-dimensional linear array of coupled 
harmonic oscillators with fixed ends. This model can be used to study the propagation 
of waves in a continuous medium and the . . .  

45. Pendu lum on an Accelerating Train Model 

The EJS Pendulum on an Accelerating Train model displays the model of a pendulum 
on an accelerating train. The problem a�sumes that the pendulum rod is rigid and 
massless and of length L = 2, and the pendulum . . .  

50. Coupled Osci l lators and Normal Modes Model 

The EJS Coupled Oscillators and Normal Modes model displays the motion of cou­
pled oscillators, two masses connected by three springs. The initial position of the two 
ma�ses, the spring constant of the three . . .  

5 1 . Spinning Hoop Model 

The EJS Spinning Hoop model displays the model of a bead moving along a hoop 
which is spinning about it� vertical diameter with constant angular velocity. Friction 
is negligible. The simulation displays . . .  



1 1 .3 Published EJS simulalions 222 

56. Anisotropic Osci l lator Model 

The EJS Anisotropic Oscillator model displays the dynamics of a mass connected to 
two opposing springs. The simulation displays the motion of the ma.�s a.� well as the 
trajectory plot. The initial position . . .  

58. Oscil lations and Lissajous Figures Model 

The EJS Oscillations and Lissajous Figures model displays the motion of a superpo­
sition of two perpendicular harmonic oscillators. The simulation shows the result of 
the superposition. The amplitude and . . .  

73. Action for the Harmonic Oscil lator Model 

The EJS Action for the Harmonic Oscillator model displays the trajectory of a simple 
harmonic oscillator by minimizing the cla.�sical action. The simulation displays the 
endpoints of the motion (t, x) which . . .  

1 1 .3.8 Quantum mechan ics 

27. Circular Wel l  Superposition Model 

The Circular Well Superposition simulation displays the time evolution of the position· 
space wave function in an infinite 20 circular well. The default configuration shows the 
first excited state with zero . . .  

49. OM Eigenstate Superposition Demo Model 

The EJS QM Eigenstate Superposition Demo model displays the time dependence of 
a variety of superpositions of energy eigenfunctions for the infinite square well and 
harmonic oscillator potentials. One of . . .  

54. Barrier Scattering model 

The EJS Barrier Scattering model shows a quantum mechanical experiment in which 
an incident wave (particle) traveling from the left is transmitted and reflected from a 
potential step at x = O. Although . . .  

59. Free Particle Eigenstates 

The free particle energy eigenstates model shows the time evolution of a superpos­
tion of free particle energy eigenstates. A table shows the energy, momentum, and 
amplitude of each eigenstate. 

61 . Eigenstate Superposition 

The fundamental building blocks of one-dimensional quantum mechanics are energy 
eigenfunctions Psi(x) and energy eigenvalues E. The user enters the expansion coef­
ficients into a table and the simulation . . .  
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74. Wave Packet Model 

The EJS Wave Packet model displays the motion of an approximate wave packet. 
The simulation allows an arbitrarily wave packet to be created. The default dispersion 
relation, with the frequency equal to the . . .  

1 1 .3.9 Theory of relativity 

65. Einstein's Train and Tunnel Model 

The EJS Einstein's Train and Thnnel model displays the famous thought experiment 
from special relativity where a train enters a tunnel as seen from two points of view. 
In one case the train is seen in the . . .  

66. Simultaneity Model 

The EJS Simultaneity model displays the effect of relative motion on the relative 
ordering of the detection of events. The wave source and two equidistant detectors are 

at rest in reference frame Sf, which . . .  

1 1 .3. 1 0  Statistics 

4.  Random Walk 2D Model 

The EJS Random Walk 2D Model simulates a 2-D random walk. You can change the 
number of walkers and the probability of going a given direction. You can modify this 
simulation if you have EJS installed by right-clicking . . .  

5. Random Walk  1 D Continuous Model 

The EJS Random Walk 10 Continuous Model simulates a 1 -0 random walk with a 
variable step size. You can change the number of walkers and the probability of going 
right and left. You can modify this simulation if . . .  

29. Balls in a Box Model 

The Balls in a Box model shows that a system of particles is very sensitive to its 
initial conditions. In general, an isolated system of many particles that is prepared in 
a nonrandom configuration will change . . .  

32. M u ltiple Coin Toss Model 

The EJS Multiple Coin Toss model displays the result of the flipping of N coins. The 
result of each set of coin flips is shown by the image of the pennies on the screen and 
the complete results of the tossing . . .  
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1 1 .3.1 1 Thermodynam ics 

1 0 . Kac Model 

The ElS Kac Model simulates the relaxation of a gas to equilibrium by randomly 
selecting and then colliding gas molecules but without keeping track of the molecules' 
positions. As long as the collisions are . . .  

1 2 . 2D- lsing Model 

The ElS 2D-lsing model displays a lattice of spins. You can change the lattice size, 
temperature, and external magnetic field. You can modify this simulation if you have 
ElS installed by right-clicking within . . .  

1 1 .3. 1 2  Waves 

52. Beats Model 

The ElS Beats model displays the result of adding two waves with different frequen­
cies. The simulation displays the superposition of the two waves as well as a phasor 
diagram that shows how the waves add . . .  

57. Normal Modes on a Loaded String Model 

The ElS Normal Modes on a Loaded String model displays the motion of a light 
string under tension between two fixed points. The string is also loaded with N ma.�ses 
located at regular intervals. The number . . .  

63. Doppler Effect Model 

The ElS Doppler Effect model displays the detection of sound waves from a moving 
source and the change in frequency of the detected wave via the Doppler effect. In 
addition to the wave fronts from the source . . .  

75. Waveguide Model 

The ElS Waveguide model displays the motion of a traveling wave forced to move 
between two walls in a waveguide. The two walls are located at y = 0 and a ,  so that 
its normal modes are u (t ,  x) = A sin (nrr . . .  

76. Waves and Phasors Model 

The ElS Waves and Phasors model displays the motion of a transverse wave on a 
string and the resulting phasors for the wave amplitude. The simulation allows an 
arbitrarily polarized wave to be created. The . . .  

77. Transverse Wave Model 

The ElS Transverse Wave model displays the motion of a transverse wave on a string. 
The simulation allows an arbitrarily polarized wave to be created. The magnitude of 
the components of the wave and the . . .  
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79. Reflection and Refraction between Taut Strings Model 

The EJS Reflection and Refraction between Taut Strings model displays the motion 
of a traveling pulse on a string when it is incident on a change of string density . . .  

80. Standing Waves on a String Model 

The EJS Standing Waves on a String model displays the motion of a standing wave 
on a string. The standing wave can be augmented by adding the zero line and the 
maximum displacement of the string. The number . . .  

81 . Resonance in a Driven String Model 

The EJS Resonance in a Driven String model displays the displacement of taut string 
with its right end fixed while the left end is driven sinusoidally. The driving frequency, 
amplitude, and the simulation's . . .  

82. Standing Waves in a Pipe Model 

The EJS Standing Waves in a Pipe model displays the displacement and pressure 
waves for a standing wave in a pipe. The pipe can be closed on both ends, on one end, 
or open on both ends. The number of nodes . . .  

84. G roup Velocity Model 

The EJS Group Velocity model displays the time evolution for the superposition of 
two traveling waves of similar wave numbers and frequencies. The simulation alIows 
an arbitrarily superposition of two waves . . .  

1 1 .3. 1 3  Miscel laneous 

1 3. Radioactive Decay Events Model 

The EJS Radioactive Decay Events Model simulates the decay of a radioactive sample 
using discrete random events. It displays the number of events (radioactive decays) a.� 
a function of time in a given time . . .  

1 4 . Radioactive Decay Distribution Model 

The EJS Radioactive Decay Distribution Model simulates the decay of a radioactive 
sample using discrete random events. It displays the distribution of the number of 
events (radioactive decays) in a fixed time . . .  

1 9 . Game of Life Model 

The EJS Game of Life Model simulates a popular 20 cellular automaton of a lattice 
in a finite state which is updated in accordance with a set of nearby-neighbor rules. 
The universe of the Game of Life, developed . . .  

22.  Radioactive Decay Model 

The EJS Radioactive Decay Model simulates the decay of a radioactive sample using 
discrete random events. It displays the number of radioactive nuclei as a function of 
time. You can change the initial number . . .  
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A large number of older EJS examples, among them very elementary ones, are found 
in the users directory that belongs to the directory tree of this book. They can also 
be downloaded together with the EJS console from the EJS home page. In the users 
directory the files are ordered by author. There are .xlm files in this directory, which 
are not executable by themselves and have to be loaded by the EJS console. The 
following Figure 1 1 .7 of the directory tree will facilitate the orientation. 

The directories of the authors are located below the directory source/users. In Fig­
ure 1 1 .7 the directory tree details the sub-directory of Francisco Esquembre: MurcioJ 
Fem (University of Murcia, Spain). 

oJ ....l • .£xMa 
:+J 10 bin 

:.J 'u do< 
:=J Iu wor!<spoc. 

u....l confiQ 

1+; b .xport 
� 0 outpo.t 
� IU sourc. 

E] .::l Other 
:.J U ModeIir¢oenc. 

:+J 10 ModeIizandoLaCiencia 

:=I � us ... s 

r< U boQo(a 
I!: 0 davidson 
1+' U ehu 
E O  roorcia 

H '....l fem 

:!l a bioloQy 
:.J U chemistry 

:+J eI lMti">ematics 
:oJ U physics 

F 0 astronomy 
b EarthArocM>on 
U PianetaryMotlon 

� U mechMocs 
I!: 0 ntnu 

I!: U lIled 
r< U �v 

I±I u RoessMa 
Figure 1 1.7. e-ExMath is the root directory of this work with the corresponding textfile and 
the EJS console. In doc you will find the program descriptions of EJS. In workspace the 
executable * .jar files are in the directory export, while the directory source contains the * .xml 
files that have to be loaded from the EJS console. Other contains simulations from different 
sources: for the University of Murcia (Esquembre) the directory tree is recun;ed down to the 
actual simulation. 
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Figure 11.8. The directory ExportlOrher.f!EHS contains directly executable " .jar files. 

To enable the user to get an overview of the large number of simulations available, 
the directory export contains in its sub-directory OlherslEJS directly runnable ".jar 
files of the simulations next to the corresponding " .xml files (see Figure 1 1 .8). 

Using the hyperlink on the margin next to Figure 1 1 .9 one reaches an overview 
file, which contains information on 144 simulations ordered according to 1 6  top­
ics, supplemented with short comments and a reference for the respective source. 
The individual simulations can be called quickly and directly via clicking on the file 
name. 

These files are of very different levels of complexity. In addition to a few child­
friendly simulations, there are simple examples for the demonstration of certain vi­
sualization possibilities. The majority of the files contains rather complex simula­
tions of physical problems, with optical visualizations that are, in a number of cases, 
quite convincing. Some of the simulations can also be found under the new individual 
files, which were discussed at the beginning of the chapter. Some of these have been 
developed further. 

Many of the files contain no description pages. Testing which elements of the graph­
ics can be pulled with the mouse often reveals initially unexpected design possibilities. 

The files can be edited and further developed, if the corresponding • .xml file is 
called from the EJS console. 

Theme 
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Figure 11.10. Opening page of the launcher package on the theory of relativity. 

11.4 OSP Simulations that were not created with EJS 

A large number of OSP Java simulations are present in a group of Launcher package..�, 
structured according to themes, which can be obtained at the OSP homepage. 

Many of the packages have been developed as courses. Figure 1 1 . 1 0  shows the 
typical appearance when opening one of them. This launcher has three directories 
that can be opened by clicking on the buttons or with the file menu. 

The directory Relativity Workslwp, which can be called from the list at the bottom, 
contains a complete course on special and general theory of relativity, subdivided into 
chapters ordered according to topics. Some of them contain descriptive text with static 
pictures, theory and problems, many contain, in addition, interactive simulations. 

The directory About asp contains details about the authors, about the launcher 
method, with which many individual files can be combined into a package, and about 
options for the presentation, among them language selection, provided this was en­
abled by the authors of the simulations. 
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Figure 11.11. Directory structure of the page Pro1(rams of a typical Launcher. On the left 
a directory tree with numerous simulation files is shown. On the right a picture and a short 
description is shown for a selected simulation. The picture shows light mys that originate 
radially from a body in the vicinity of a black hole. Double clicking on the green triangle 
activates the simulation. 

The directory Programs contains many interactive cosmological simulations from 
Newtonian mechanics to Kerr and Rain metrics. For a number of simulations, the 
version created by the lecturer are next to versions that were produced by students. 

The directory Programs has the structure as shown in Figure 1 1 . 1 1 ,  with many 
sub·directories. 

The File menu on top of Figure 1 1 . 1 1  contains options for editing and for exporting 
individual simulations. 

1 1 .4.1 List of OSP launcher packages 

In the following list we again show a table of the titles linked to the asp homepage 
and the author's homepage, as well as a short description. In the margin is a link to 
directly access the launcher package on the data carrier. 
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1 .  Symmetry Breaking on a Rotating Hoop 

The Rotating Hoop Launcher package shows the dynamics of a mass that is con­
strained to move on a rotating hoop. The rotating hoop model is an excellent mechan­
ical model of first- and second-order pha.�e transitions . . . Wolfgang Christian 

2. Modeling a Changing World 

Modeling a Changing World written by mathematics professor Tim Chartier and his 
student Nick Dovidio presents curricular material in an OSP Launcher package to 
motivate the need for numerically solving ordinary . . . Tim Chartier 

3. Hasbun Classical Mechanics Package 

The Hasbun Classical Mechanics Package is a self-contained Java package of OSP 
programs in support of the textbook "Classical Mechanics with MATLAB Applica­
tions". Classical Mechanics with MATLAB Applications . . .  Javier Hasbun 

4. Tracker Demo Package 

The Tracker Sampler Package contains several video analysis experiments from me­
chanics and spectroscopy. It is distributed as a ready-to-run (compiled) Java archive 
containing the Tracker video analysis application. . . . Douglas Brown 

5. Tracker Air Resistance Model 

The Tracker Air Resistance Model asks students to explore air resistance of falling 
coffee cups by considering both viscous (linear) and drag (quadratic) models. Students 
see a video of falling cups and explore . . . Dougla.� Brown 

6. General Relativity (GR) Package 

The General Relativity (GR) Package is a self-contained file for the teaching of gen­
eral relativity. The file contains ready-to-run OSP programs and a set of curricular 
materials. You can choose from a variety . . .  

Wolfgang Christian. Mario Belloni. Anne Cox 

7. OSP QuiLT Package 

The OSP QuILT package is a self-contained file for the teaching of time evolution of 
wave functions in quantum mechanics. The file contains ready-to-run OSP programs 
and a set of curricular materials. 

Chandralekha Singh. Mario Belloni. Wolfgang Christian 

8. Phase Maners Package 

The Pha.�e Matters package is a self-contained file for the teaching of phase and time 
evolution in quantum mechanics. The file contains ready-to-run OSP programs and a 
set of curricular materials . The material . . . Mario Belloni. Wolfgang Christian 

9. Spins Package 

The Spins package is a self-contained file for the teaching of measurement and time 
evolution of spin- I /2 systems in quantum mechanics. The file contains ready-to-run 
OSP programs and a set of curricular . . . Mario Belloni. Wolfgang Christian 
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1 0 . Statistical and Thermal Physics (STP) Appl ication 

The Statistical and Thermal Physics (STP) Application is a self-contained file for 
the teaching of statistical and thermal physics. The file contains ready-to-run OSP 
programs and a set of curricular materials. . . . Harvey Gould, Jan Tobochnik 

1 1 .  Momentum Space Package 

The Momentum Space package is a self-contained file for the teaching of the time evo­
lution and visualization of energy eigenstates and their superpositions via momentum 
space in quantum mechanics. The file . . . Mario Belloni, Wolfgang Christian 

1 2 . Position Carpet Package 

The Position Carpet package is a self-contained file for the teaching of the time evo­
lution and visualization of energy eigenstates and their superpositions via quantum 
space-time diagrams or quantum carpets . . . Mario Belloni. Wolfgang Christian 

1 3. Wigner Package 

The Wigner package is a self-contained file for the teaching of the time evolution and 
visualization of energy eigenstates and their superpositions in quantum mechanics. 
The file contains ready-to-run OSP . . . Mario Belloni, Wolfgang Christian 

1 4 . Modeling Physics with Easy Java Simulations: TPT Package 

This Java archive contains a collection of simple Easy Java Simulations (EJS) programs 
for the teaching of computer-based modeling. The materials and text of this resource 
appeared in an article of the same . . . Wolfgang Christian, Francisco Esquembre 

1 5 . Superposition Package 

The Superposition package is a self-contained file for the teaching of the time evo­
lution and visualization of energy eigenstates and their superpositions in quantum 
mechanics. The file contains ready-to-run . . . Mario Belloni. Wolfgang Christian 

1 6 . Demo Package 

The Demo package is a self-contained file for the teaching of orbit�. electromagnetic 
radiation from charged particles and quantum mechanical bound states. The file con­
tains ready-to-run OSP programs and . . . Mario Belloni. Wolfgang Christian 

1 7. Computer Simu lation Methods Examples 

Ready to run Launcher package containing examples for an introduction to Computer 
Simulation Methods by Harvey Gould. Jan Tobochnik, and Wolfgang Christian 

1 8 . asp User's Gu ide Examples 

Ready to run Launcher package containing examples for Open Source Physics: A 
User's Guide with Examples by Wolfgang Christian 
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1 9. Numerical Time Development in Quantum Mechanics Using a Reduced 
H i lbert Space Approach 

This self-contained file contains Open Source Physics programs for the teaching of 
time evolution and visualization of quantum-mechanical bound states. The suite of 
programs is based on the ability to expand . . . Mario Belloni. Wolfgang Christian 

Here you should again look directly at the OSP homepage. where new packages or 
versions are present. 

In addition. the comfortable search function of the home page allows you to search 
for certain topics. levels and intended audiences. Figure 1 1 . 1 2  shows the search tree. 
The individual selection boxes are each structured into numerous categories. For the 
topics this is shown in Figures 1 1 . 1 2  and I I . 1 3 .  

O n  the OSP homepage you also may find isolated simulations (429. a s  of November 
20 1 0). To find these you choose the search function under OSP type Java Model. a� 
shown in Figure 1 1 . 14 

Sl!�n:.h Terms: 

______________________________________________________ �I � ••  rch l l 
(;' Search the Open S o u rce I"hyslcs C.ollc ttl o n  

r � �arch all com .... UWI:: l o llections: 

Target Role: r l.�rnel" 
r Educator 
r Researche.-
r Protetitilona lJPrilct'Ho ner 
r Administrator 
r Gene.".1 Public 
r Pdln!nt/Gudrdidll 

Figure 1 1.12. Search window on the Compadre homepage. 
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General Subjed: 

Specific Subject: 

Subjed D etail: 

C o st: 

Resourc e  Type: 

Target level: 

Astronomy 
Classi�1 Mechanics 
Education Foundations 
Education Practices 
Electricity & Magnetism 
Fluid Mechanics 
Genera l Physics 
Modern Physics 
Optics 
Oscillations & Waves 
Other Saences 
Quantum Physics 
Relativity 

. Thermodynamics & Statistical Mech an.ics 

Figure H.13. Topic selection on the Compadre homepage. 

OSP Type : pava Mode l I .  
General S u bject: 

Spec ific S u bject: 

Subject Detai l :  

C o st: 

No Preference 
Launcher Pad<age 
EJS Model 
Trad<er 
Source Code 
Documentabon 

Figure H.14. Method selection on the Compadre homepage. 
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Credit: We thank Wolfgang Christian and Francisco Esquembre for the permission 
to use the files as available on the asp homepage (20 1 0) in this book. 

11.5 EJS simu lations packaged as launchers 

A number of physics courses, which demonstrate the application of the EJS program 
for the simulation of elementary and advanced physical problems, are also combined 
as Launcher packages. Individual solutions contained in them can be called via dou­
ble click. The packages that are briefly described in the following are by Wolfgang 
Christian, Francisco Esquembre and their colleagues. They can be called directly via 
the link on the margin. 

Eh u_mechanics-waves 

course in mechanics, oscillations and waves Juan M. Aguirregabiria 

Ejs3rcExampies 

description of EJS, many examples Francisco Esquembre, Wolfgang Christian 
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Ejs_demo 

description of EJS, simple examples from mechanics and thermodynamics, 3D visu­
alizations Francisco Esquembre 

Ejs_mabelloni_pendula 

Lagrangian Mechanics, simple and complicated pendulums 

Ejs_mechanics 

Mario Mabelloni 

Basic course in mechanics and gas dynamics, with hints about the modeling technique 
Wolfgang Christian, Francisco Esquembre 

Ejs_stp 

Statistics and thermodynamics, FPU problem 

Ejs_tp,-model ing 

Wolfgang Christian 

Introduction to EJS and launcher packages, simple and advanced models from me­
chanics and heat Wolfgang Christian, Francisco Esquembre 

Ejs_wochristian3haos 

Complex roots, Mandelbrot set, driven pendulum, phase space 
Wolfgang Christian 

Ejs_wochristian_examples 

Advanced models, Fourier analysis, Lennard-Jones potential, oscillator chains 
Wolfgang Christian 

Ejs_wochristian_odeflow 

Some solutions of ordinary differential equations Wolfgang Christian 

The advantage of these EJS launcher packages in comparison to the asp packages 
discussed above, is that changing the simulations does not require advanced JAVA 
knowledge. 

An active individual simulation can be transferred into the EJS console via the 
context menu (callable by clicking on the simulation with the right mouse button). In 
its windows, code and visualization elements can be seen and edited. Thus an existing 
solution can be quite easily used as starting point for further developments. 

11 .6 Cosmolog ical simu lations by Eugene Butikov 

Because of their operating system independence we have, so far, only used Java 
simulations or given links to them. 

Eugene BUli/cov (University of Petersburg) has created a large number of simula­
tions for cosmological and other physical problems based on Windows and Visual 
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Figure 1 1 . 15. Simulation. Opening ,,'indow of the IJlltiiwv simulations. 

Basic. Their design is so convincing that we want to add them to our overview, al· 

though they will only be accessible to users who work with Windows. The Butikov 

program must be installed once for the simulations to run on your eomputer. You start 

the instal lation with the link B. ins/ail at the margin. After installation you can aetivate 

the simulations via Siml/lalioll in the figure captions .  

Bccause of the numerous possibilities. we wil l  facilitate user access with a brief 

description. Figure 1 1 . 1 5  shows the start page of the program Planers alld Sareili/es, 

whose content far exceeds what the title promises. Thus, in addition to elementary 

problems ( Kepler's laws), it also treats many·body problems with their nonlinear and 

complex orbits. for example the passage of two stars with planets under Planet rob· 
bery. The graphical presentations are didactically very versatile. They show, for ex· 

ample, the time development, from the perspective of the star, of the planet or of 

the center of mass of the system (menu View). and at the same time yielding some· 

times surprising orbits. The individual simulations (menu Examples) al low for many 

adjustments of al l important parameters. so that the user can expcriment freely. 

The three parts of the package contain: 

Getting started: Extensivc hints for orientation; glossary of tcchnical tcrms; and 

links to particularly appealing cxamples from the multintdc of simulations.  

Tutorial: Glossary; short overview of the course text; an cxtensive course text (ac· 

ccssible via thc Mcnu Hdp /opics/Con/ent) and a linked table of contents. which 

leads direetly to the individual simulations:  didactic questions; hclp for handling thc 

simulation.  
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!�,�',-,.��r.-���;-;;� ' \ ;p'" n t-ru:.,nll lll nlllJ 

I �;�';:=�" 

Figure 11.16. A selection window for charolCteristic groups of Butiknv simulations. After 

choosing the group on the left-hand side. a typical picture with description appears on the 
right. 

Tuloria/ and Review of the Simulation Programs 
j_� 8tt 10 '�:a tEd u ()\'.;tr{ ';1'1:', 
K '�r r> r' :  -wo,t 1 ,1 "1'4 
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Figure 1I.l7. Topics of individual simulations in the Butiknv prognull and their descriptions. 
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Figun! 1 1. 1 8. S imulation. Orbi t of a p lanet in a double star sy stem. seen in the coordinate 

system of the star with double the ma." ( red in the center) . The l ighler star travel s  around it on 

a dose 10 circular orbit .  The p l anet. which is  very l ighl in comparison wi lh both stars. slarts 

ils ye l low orbi l on top around Ihe blue slar. This orbit is  perturbed by the red central star and 

then moves over to a green orbi t around i t .  Afler a few lums Ihe perturbalion by the b l ue star 

is sufticient to temporari ly bind il to Ihe b l ue sial' agai n ( b l ue orbit) .  
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Simulations: Access to the individual simulations, structured into seven classes, as 
shown in Figure 1 1 . 1 6. 

Figure 1 1 . 1 7  (a screen-shot from TUloriaf) shows the structure of the total program. 
The link on the margin Butikov provides access to Butikov's homepage, from 

where you can see the programs he ha� published. There you will also find Java ap­
plets for many physics problems. The link PAS leads to the homepage of Physics 

Academics Software (PAS), where the simulations were originally published. 
With the permission of the author Eugene BUlikov and the PAS editor Jon Risley, 

our collection contains the cosmological simulation program. You may call it with the 
interactive Figure 1 1 . 1 8 .  

I t  shows as  an  example a system of two stars of  unequal ma�s with a common 
planet, whose orbits move from the one to the other star. This is displayed as seen 
from the coordinate system of the more massive star. The calculation of the orbit 
around the smaller star in yellow star1s on top; the color changes to green when the 
planet moves into a orbit around the inner main star. Later, the planet again moves to 
the secondary star (blue section) of the orbit. 



1 2  Conclusion 

The development of this book ha� given me deeper insight into some foundations of 
mathematics. and has also given me great intellectual pleasure when experimenting 
with the didactic possibilities of the simulations. I wish the reader may benefit in his or 
her own striving for knowledge and be provided with a similar sense of achievement. 
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