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Listen, mate, I’ve traveled every road in this here land.

—Geoff Mack, Lyrics to “I’ve Been Everywhere.”





Contents

Preface xi

1 Challenges 1
Tour of the United States 2
An Impossible Task? 6
One Problem at a Time 10
Road Map of the Book 16

2 Origins of the Problem 19
Before the Mathematicians 19
Euler and Hamilton 27
Vienna to Harvard to Princeton 35
And on to the RAND Corporation 38
A Statistical View 39

3 The Salesman in Action 44
Road Trips 44
Mapping Genomes 49
Aiming Telescopes, X-rays, and Lasers 51
Guiding Industrial Machines 53
Organizing Data 56
Tests for Microprocessors 59
Scheduling Jobs 60
And More 60

4 Searching for a Tour 62
The 48-States Problem 62
Growing Trees and Tours 65
Alterations While You Wait 75
Borrowing from Physics and Biology 84
The DIMACS Challenge 91
Tour Champions 92



viii Contents

5 Linear Programming 94
General-Purpose Model 94
The Simplex Algorithm 99
Two for the Price of One: LP Duality 105
The Degree LP Relaxation of the TSP 108
Eliminating Subtours 113
A Perfect Relaxation 118
Integer Programming 122
Operations Research 125

6 Cutting Planes 127
The Cutting-Plane Method 127
A Catalog of TSP Inequalities 131
The Separation Problem 137
Edmonds’s Glimpse of Heaven 142
Cutting Planes for Integer Programming 144

7 Branching 146
Breaking Up 146
The Search Party 148
Branch-and-bound for Integer Programming 151

8 Big Computing 153
World Records 153
The TSP on a Grand Scale 163

9 Complexity 168
A Model of Computation 169
The Campaign of Jack Edmonds 171
Cook’s Theorem and Karp’s List 174
State of the TSP 178
Do We Need Computers? 184

10 The Human Touch 191
Humans versus Computers 191
Tour-finding Strategies 192
The TSP in Neuroscience 196
Animals Solving the TSP 197

11 Aesthetics 199
Julian Lethbridge 199



Contents ix

Jordan Curves 201
Continuous Lines 205
Art and Mathematics 207

12 Pushing the Limits 211

Notes 213
Bibliography 223
Index 225





Preface

The star of Geoff Mack’s song has been to Reno, Chicago, Fargo, Buffalo,
Toronto, Winslow, Sarasota, Wichita, Tulsa, Ottawa, Oklahoma, Tampa,
Panama, Mattawa, LaPaloma, Bangor, Baltimore, Salvador, Amarillo, To-
capillo, Barranquilla, and Padilla.

One night in February 1988, my friend Vašek Chvátal and I decided to
follow in the footsteps of mathematical giants and take a crack at finding
the shortest way around such destinations. Next day we met at Tri-State
Camera, a computer vendor in lower Manhattan. When the technician
learned we were mathematicians in need of a speedy computer, he looked
us in the eye and warned, “You guys aren’t trying to solve that traveling
salesman problem, are ya?" Quite a bit of foresight there. This was the first
of many computers we ground to a halt, spending the better part of the next
twenty years searching for solutions.

The notorious problem is to compute the shortest route to visit
each city on a specified list and return to the starting point. In
the case of Geoff Mack’s traveler, one could conceivably check all
51,090,942,171,709,440,000 tours through the twenty-two cities. This com-
putation would require even the fastest of supercomputers to roll up its
sleeves and prepare for a hard day’s work, but with patience it may be
possible to carry out the search. If, however, we had one hundred cities
or so, then checking all routes to select the shortest is out of the question,
even devoting the entire planet’s computing resources to the task.

This observation on sorting through all possible solutions is by no
means a convincing argument that the salesman problem is actually dif-
ficult. There are similar problems that are very easy to solve and yet have
far more candidate solutions than the number of ways to route a salesman.
What sets the traveling salesman problem apart is the fact that despite
decades of research by top applied mathematicians around the world, in
general it is not known how to significantly improve upon simple brute-
force checking. It is a real possibility that there may never exist an efficient
method that is guaranteed to solve every example of the problem. This is a
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deep mathematical question: is there an efficient solution method or not?
The topic goes to the core of complexity theory concerning the limits of
feasible computation. For the stouthearted who would like to tackle the
general version of the problem, the Clay Mathematics Institute will hand
over a $1,000,000 prize to anyone who can either produce an efficient
method or prove that this is impossible.

The complexity question that is the subject of the Clay Prize is the
Holy Grail of traveling-salesman-problem research and wemay be far from
seeing its resolution. But this is not to say mathematicians have thus far
come away empty-handed. Indeed, the problem has led to a large number
of results and conjectures that are both beautiful and deep. In the arena of
exact computation, an 85,900-city challenge problem was solved in 2006,
when the optimal tour was pulled out of a mind-boggling number of
candidates in a computation that took the equivalent of 136 years on top-
of-the-line computer workstations. On the practical side, solution methods
are used to compute optimal or near-optimal tours for a host of applied
models on a daily basis.

One of the enduring strengths of the traveling salesman problem has
been its remarkable success as an engine of discovery in applied mathemat-
ics and its fields of operations research and mathematical programming.
And many more discoveries could be waiting just around the corner. A
primary goal of the book is to stimulate readers to pursue their own ideas
for the solution of this mathematical challenge.

In setting down these notes I have had the pleasure of receiving help
and support from many people. First of all, I thank my comrades David
Applegate, Robert Bixby, and Vašek Chvátal, for over twenty years of fun
and work toward unraveling part of the traveling salesman mystery. I also
thank Michel Balinsky, Mark Baruch, Robert Bland, Sylvia Boyd, William
Cunningham, Michel Goemans, Timothy Gowers, Nick Harvey, Keld
Helsgaun, Alan Hoffman, David Johnson, Richard Karp, Mitchel Keller,
Anton Kleywegt, Bernhard Korte, Harold Kuhn, Jan Karel Lenstra, George
Nemhauser, Gary Parker, William Pulleyblank, Andre Rohe, Lex Schrijver,
Bruce Shepherd, Stan Wagon, David Shmoys, Gerhard Woeginger, and
Phil Wolfe for discussions of the problem and its history.

Images and historical material used in the presentation were provided
by Hernan Abeledo, Leonard Adleman, David Applegate, Masashi Aono,
Jessie Brainerd, Robert Bixby, Adrian Bondy, Robert Bosch, John Bartholdi,
Nicos Christofides, Sharlee Climer, James Dalgety, Todd Eckdahl, Daniel
Espinoza, Greg Fasshauer, Lisa Fleischer, Philip Galanter, Brett Gibson,
Marcos Goycoolea, Martin Grötschel, Merle Fulkerson Guthrie, Nick
Harvey, Keld Helsgaun, Olaf Holland, Thomas Isrealsen, David Johnson,
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Michael Jünger, Brian Kernighan, Bärbel Klaaßen, Bernhard Korte, Drew
Krause, Harold Kuhn, Pamela Walker Laird, Ailsa Land, Julian Lethbridge,
Adam Letchford, Panagiotis Miliotis, J. Eric Morales, Randall Munroe,
Yuichi Nagata, Denis Naddef, Jaroslav Nešetřil, Manfred Padberg, Elias
Pampalk, Rochelle Pluth, Ina Prinz, William Pulleyblank, Gerhard Reinelt,
Giovanni Rinaldi, Ron Schreck, Éva Tardos, Mukund Thapa, Michael
Trick, Marc Uetz, Yushi Uno, Günter Wallner, Jan Wiener, and Uwe
Zimmermann. I thank them all for their kindness.

This book was written in the great environments of the H. Milton
Stewart School of Industrial and Systems Engineering at Georgia Tech
and the Department of Operations Research and Financial Engineering
at Princeton University. My work on the traveling salesman problem is
funded by grants from the National Science Foundation (CMMI-0726370)
and the Office of Naval Research (N00014-09-1-0048), and by a generous
endowment from A. Russel Chandler III. I am grateful for their continued
support.

Finally, I thank my family, Monika, Benny, and Linda, for years of
patiently listening to salesman stories.





In Pursuit of the Traveling Salesman





1: Challenges
It grew out of the trio’s efforts to find solutions for a classic
mathematical problem—the “Traveling Salesman”
problem—which has long defied solution byman, or by the fastest
computers he uses.

—IBM Press Release, 1964.1

A n advertising campaign by Procter & Gamble caused a stir among
applied mathematicians in the spring of 1962. The campaign featured

a contest with a $10,000 prize. Enough to purchase a house at the time.
From the official rules:

Imagine that Toody andMuldoon want to drive around the country
and visit each of the 33 locations represented by dots on the contest
map, and that in doing so, they want to travel the shortest possible
route. You should plan a route for them from location to location
which will result in the shortest total mileage from Chicago, Illinois
back to Chicago, Illinois.

Police officers Toody and Muldoon navigated Car 54 in a popular
American television series. Their 33-city task is an instance of the traveling
salesman problem, or TSP for short. In its general form, we are given a
collection of cities and the distance to travel between each pair of them.
The problem is to find the shortest route to visit each city and to return to
the starting point.

Is the general problem easy, hard, or impossible? The short answer is
that no one really knows. This is both the mystery and attraction of this
famous challenge in computational mathematics. And much more than a
struggling salesman is at stake. The TSP is the focal point of a larger debate
on the nature of complexity and possible limits to human knowledge. If you
are ready for action, then a sharp pencil and a clean piece of paper are all
youmay need to give a helping hand to the salesman and possibly tomake a
quantum leap in our understanding of the world in which he or she travels.
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Figure 1.1
Car 54 contest. Image

courtesy of Procter &

Gamble.

Tour of the United States

Despite its nasty reputation, the TSP is an easy enough task from one
perspective: there are only finitely many possible routes through a given
set of cities. So a 1962-era mathematician could have checked each possible
Toody-Muldoon tour, recorded the shortest, sent the solution to Procter
& Gamble, and waited for the $10,000 check to arrive in the mail. A simple
and flawless strategy.With one possible catch. The number of distinct tours
is exceedingly large to consider checking one by one.

This difficulty was noticed in 1930 by the Austrian mathematician and
economist Karl Menger, who first brought the challenge of the TSP to
the attention of the mathematics community. “This problem is of course
solvable by finitely many trials. Rules that give a number of trials below the
number of permutations of the given points are not known.”2 A tour can
be specified by announcing the order in which the cities are to be visited.
For example, if we label the 33 destinations of Toody and Muldoon as A
through Z and 1 though 7, that is, A for Chicago, B for Wichita, etc., then
we can record a possible tour as
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ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567

or any other arrangement of the 33 symbols. Each such arrangement is a
permutation of the symbols. The ordering implied by the arrangement is
circular, in that we travel from the last city back to the first. So we can
record the same tour in 33 ways, depending on which city we put in the
first position. To avoid such overcounting, we may as well always start with
city A. This leaves 32 choices for the second city, 31 choices for the third
city, and so on. Altogether, we have 32× 31× 30× · · ·× 3× 2× 1 tours
to consider. This is the total number of permutations of 32 objects. It is
written as 32! and spoken as 32 factorial.

In the Procter & Gamble contest we can save effort by noting that the
distance to travel between Chicago and Wichita is the same as the distance
between Wichita and Chicago, and this is true also for every other pair of
cities. With such symmetry it does not matter in which direction we travel
around a tour, so an ordering

ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567

is the same as its reverse

7654321ZYXWVUTSRQPONMLKJIHGFEDCBA.

We can therefore cut down by half our count of the 33-city tours, leaving
only 32!/2 orderings to check. Before you go ahead and get out your
Ticonderoga #2 pencil, note that this is

131,565,418,466,846,765,083,609,006,080,000,000

distinct tours that we must examine.
These days we would of course employ a computer to run through the

list. So let’s choose a big one, the $133,000,000 IBM Roadrunner Cluster
of the United States Department of Energy. This 129,600-core machine
topped the 2009 ranking of the 500 world’s fastest supercomputers, deliv-
ering up to 1,457 trillion arithmetic operations per second.3 Let’s assume
we can arrange the search for tours such that examining each new one
requires only a single arithmetic operation.Wewould then need roughly 28
trillion years to solve the 33-city TSP on the Roadrunner, an uncomfortable
amount of time, given that the universe is estimated to be only 14 billion
years old. No wonder Menger was unsatisfied with the brute-force solution
to the problem.

When considering the implications of this quick analysis, we must
keep in mind that Menger writes only that faster rules for solving the
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Figure 1.2
Drummer’s Delight. Newsweek,

July 26, 1954, page 74.

salesman problem are unknown, not that such rules are out of the question.
John Little and coauthors sum this up nicely in the following comment
on the Procter & Gamble contest. “A number of people, perhaps a little
over-educated, wrote the company that the problem was impossible—an
interesting misinterpretation of the state of the art.”4 Little et al. went on to
describe a breakthrough in TSP solution methods, but they could not push
their computer codes far enough to actually solve the 33-city challenge. It
appears that no one in the country was able to produce a route that could be
guaranteed to be the shortest of all possible tours for Toody and Muldoon.

The 33-city problem was definitely a tough nut to crack, but if we turn
back the clock to 1954, then we find a team that almost certainly would
be able to deliver the optimal route, together with a written guarantee that
their solution is the shortest. The team tackled a larger touring problem
through the United States, visiting a city in each of the 48 states, as well as
Washington, D.C. This particular challenge had been circulating through
themathematics community since themid-1930s. Its solution was reported
in Newsweek.5

Finding the shortest route for a traveling salesman—starting from
a given city, visiting each of a series of other cities, and then
returning to his original point of departure—is more than an
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after-dinner teaser. For years it has baffled not only goods- and
salesman-routing businessmen but mathematicians as well. If a
drummer visits 50 cities, for example, he has 1062 (62 zeros) possible
itineraries. No electronic computer in existence could sort out such
a large number of routes and find the shortest.

Three Rand Corp. mathematicians, using Rand McNally road-map
distances between the District of Columbia and major cities in each
of the 48 states, have finally produced a solution. By an ingenious
application of linear programming—a mathematical tool recently
used to solve production-scheduling problems—it took only a few
weeks for the California experts to calculate “by hand” the shortest
route to cover the 49 cities: 12,345 miles.

The California experts were George Dantzig, Ray Fulkerson, and Selmer
Johnson, part of an exceptionally strong and influential center for the new
field of mathematical programming, housed at the RAND Corporation in
Santa Monica.

The RAND team’s guarantee involves some pretty mathematics that we
take up later in the book. For now it is best to think of the guarantee as a
proof, like those we learned in geometry class. The Dantzig et al. proof es-
tablishes that no tour through the 49 cities can have length less than 12,345
miles. Matching the proof with their tour of precisely this length shows that
this particular instance of the TSP has been settled, once and for all.

Dantzig and company missed out on the $10,000 contest, but we can
report that a computer implementation of their ideas makes easy work of
the 33-city TSP. A shortest route for Toody and Muldoon is depicted in
Figure 1.3. Although no one in 1962 knew for certain that this was the
shortest possible tour, a number of contestants did find and report this

Figure 1.3
Optimal tour for

Car 54 contest.
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same ordering. Among the people tied for first place in the contest were
mathematicians Robert Karg and Gerald Thompson, who created a hit-
or-miss heuristic strategy that produced the winning solution.6 And the
story has a happy ending, at least for the mathematics community. As a
tiebreaker, contestants were asked to write a short essay on the virtues of
one of Procter & Gamble’s products. Thompson’s prose on soaps took a
grand prize.

An Impossible Task?

The RAND team’s work put an end to the 48-states challenge, but it did
not finish off the TSP. One big success did not imply the team could handle
other, possibly larger, instances of the problem. In fact, if Las Vegas were
taking bets on the outcome, the odds-on favorite among mathematicians
would be that we will never fully solve the TSP.Wemust be careful here. By
a solutionwemean an algorithm, that is, a step-by-step recipe for producing
an optimal tour for any example we may throw at it. Just finding the best
route through the United States or any other country does not do the job.

Picking up on the expected difficulty of the general TSP challenge, the
science-fiction story “Antibodies”, by Charles Stross, chronicles doomsday
events following the discovery of an efficient solution method for the
salesman.7 One can hope that a brilliant insight into the TSP will not signal
the end of the world as we know it, but it will certainly turn the planet
upside down and give it a good shake. To see why, let’s start with a series of
quotes.

‘It seems very likely that quite a different approach from any yet
used may be required for successful treatment of the problem. In
fact, there may well be no general method for treating the problem
and impossibility results would also be valuable.’

—Merrill Flood, 1956.8

‘I conjecture that there is no good algorithm for the traveling
salesman problem.’

—Jack Edmonds, 1967.9

‘In this paper we give theorems which strongly suggest, but do not
imply, that these problems, as well as many others, will remain
intractable perpetually.’

—Richard Karp, 1972.10
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The authors of these remarks are three giants of traveling-salesman
research. Merrill Flood rallied support for the problem in the 1940s; more
than anyone else, Flood is responsible for the emergence of the TSP as a
fundamental topic of study. Discussing the state of the problem in 1956,
Flood first raised the possibility that efficient methods may simply never
exist. This point was hammered home by Jack Edmonds a decade later
in what amounts to a mathematical bet against the hope for a general
solution method. Edmonds was modest in describing the support for his
bet: “My reasons are the same as for any mathematical conjecture: (1) It
is a legitimate mathematical possibility, and (2) I do not know.” But he
is teasing us with these words: Edmonds is one of the profound thinkers
in twentieth-century mathematics and he certainly had something deep in
mind when placing money against the TSP. Five years later, the true nature
of the bet was made clear in a publication by the great computer scientist
Richard Karp, connecting the TSP with a host of other computational
problems. We save the details of Karp’s theory for chapter 9, but a quick
account will be enough to understand why the characters of “Antibodies”
shuddered at the announcement of a fast TSP algorithm.

Good and Bad Algorithms

When Edmonds writes “good algorithm,” he uses the word good in the
same way as you and I: an algorithm is good if it can solve problems in an
amount of time we find acceptable. For this to make sense in mathematics,
however, he had to make “good” into a formal notion. Clearly, we cannot
expect every example of the TSP to be solved, say, in under a minute by a
human or by one of our machines. We must at least be willing to allow for
the solution time to grow as the number of cities grows. The point to be
decided is what rate of growth is acceptable.11

Figure 1.4
Jack Edmonds, 2009.

Photograph courtesy

of Marc Uetz.



8 Chapter 1

Table 1.1
Running time on a 109-operations-per-second computer.

n = 10 n = 25 n = 50 n = 100

n3 0.000001 seconds 0.00002 seconds 0.0001 seconds 0.001 seconds

2n 0.000001 seconds 0.03 seconds 13 days 40 trillion years

Let’s use the symbol n to indicate the size of a problem; for the TSP
this is the number of cities. Reading a list of locations to visit takes time
proportional to n, so a tough manager might demand that we produce
an optimal tour also in time proportional to n. Such a manager would be
wildly optimistic. Edmonds himself allows for faster rates of growth in the
running time, but with an insightful break between good and bad. A good
algorithm is one that comes with a guarantee to complete its work in time
at most proportional to nk for some power k. The power k can be any value,
such as 2, 3, or more, but it must be a fixed number—it cannot increase as
n gets larger. Thus, a growth rate of n3 is good, but growth rates of nn and
2n are bad. To give you a feeling for this, in table 1.1 we have calculated the
running times for a few values of n, assuming a computer can handle 109
instructions per second. If n = 10, the bad algorithm is fine. But you don’t
want to be stuck behind a 2n algorithm if n gets up to 100 or so.

Edmonds’s formal notion of “good” might not always agree with
our intuition. An algorithm that requires n1000 steps is not appealing if
we need to solve an instance of the TSP with 100 cities. Nonetheless,
his idea revolutionized the study of computing. The precise good/bad
dichotomy creates real targets for mathematicians, fueling great interest in
computational issues. And on the practical side, once a problem is shown
to have a good algorithm, researchers pull out all stops in a race to decrease
the value of the power k, typically getting down to running-time bounds
proportional to n2, n3, or n4, and computer codes capable of handling large
instances.

Figure 1.5
Travelling Salesman

Problem. Image

courtesy of Randall

Munroe, xkcd.com.
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Unfortunately for TSP fans, no good algorithm is known for the
problem. The best result thus far is a solution method, discovered in 1962,
that runs in time proportional to n22n. Although not good, this growth rate
is much smaller than the total number of tours through n points, which we
know is (n− 1)!/2, perhaps satisfying the curiosity of Menger.

The Complexity ClassesP andNP

Edmonds’s dichotomy carries over to computational problems, dividing
them into those for which good algorithms exist and those for which they
do not. The former problems are the ones we like, and they are known
collectively as the class P .

Why P and not G? Well, researchers were not entirely comfortable
with the emotional charge that comes with the word “good,” and it became
standard to use the term polynomial-time algorithm. So P for polynomial.

The definition of P is clear-cut, but it can be tricky to tell whether
or not a given problem belongs to this “good” class. It may well be that
the TSP is in P and we just haven’t yet discovered the good algorithm
to prove its membership. A glimmer of hope is that at least we know
a good tour when we see one. Indeed, suppose our challenge is to find
a tour, say, of length less than 100 miles. If someone hands us such a
solution, then we can check easily that it does indeed beat the 100-mile
target. This property makes the TSP a member of the class known as NP ,
consisting of all problems for which we can check the correctness of a
solution in polynomial time. The pair of letters stands for non-deterministic
polynomial. The unusual name aside, this is a natural class of problems:
when we make a computational request, we ought to be able to check that
the result meets our specifications.

The Big Question

Could it be that P andNP are two names for the same class of problems?
It is possible. An approach for proving this was laid out in a breakthrough
result by Stephen Cook in 1971. (No relation tome, although I have enjoyed
a number of free dinners due to mistaken identity.) Cook’s Theorem states
that there exists a problem in NP such that if we have a good algorithm
for this single problem, then there is a good algorithm for every problem in
NP . In fact, Cook, Karp, and others have shown that there are many such
NP-complete problems, the most prominent being the TSP itself.

Finding a good algorithm for an NP-complete problem would show
that P is equal toNP . Thus, the first person to discover a general method
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for the TSP will bring home considerably more cash than the winner of
the Procter & Gamble contest: the Clay Mathematics Institute has offered a
$1,000,000 prize for either a proof or disproof that P =NP .

The betting line is that the two problem classes are not equal, but there
is no great theoretical reason for thinking this is the case. It is simply a
feeling that equality is too much to ask: any problem we can formulate
in a verifiable manner would immediately have an efficient method of
solution. In fact, current encryption systems make use of the assumption
that certain NP problems are difficult to solve. Internet commerce would
grind to a halt if there were quick algorithms for these members of NP ;
this would be like handing code breakers and hackers a Swiss Army knife
for snooping data.

The downfall of society in “Antibodies” was more insidious, however,
than simply failures in encryption—artificial intelligence programs sud-
denly became greatly more effective and took over their biological masters.
It seems probable we could deal with such pesky machines, and it is likely
the good consequences of P =NP would greatly outweigh the bad. In a
2009 survey article, Lance Fortnow wrote: “Many focus on the negative,
that if P =NP then public-key cryptography becomes impossible. True,
but what we will gain from P =NP will make the whole Internet look
like a footnote in history.”12 His argument is that optimization becomes
easy, thus salesmen can find their shortest routes, factories can run at peak
capacity, airlines can manage their schedules without delays, and so on.
Simply put, we will better utilize the resources available in our world. Vastly
more powerful tools would also be available in science, economics, and
engineering, providing a steady flow of breakthroughs to keep Nobel Prize
committees busy for years to come. A rosy world, but the bets are against it.

The resolution of P versusNP is clearly one of the great challenges of
our time. In approaching anNP-complete problem like the TSP, however,
it is important not to get too caught up in possible ramifications of a
good solution method. The lofty implications aside, the problem comes
down to a simple routing of a salesman. An ingenious idea could turn
the scales.

One Problem at a Time

Until someone steps forward with a possibly earth-shattering result on the
general complexity question, what is to be done with the TSP? Well, facing
the salesman head on, the clear target is the solution of larger and more
difficult instances of the problem.
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The TSP is the standard bearer of a pragmatic school of research
known as algorithm engineering.13 The motto here is to not take no for
an answer. Theoretical considerations may suggest that once we reach
a certain size there exist instances of the TSP that necessarily take an
exorbitant amount of computation, but this does not imply that whenever
we see a specific large example we must give up and resort to a rough guess
for a tour. Indeed, this take-no-prisoners attitude has led the community
to techniques and computer codes capable of solving examples of almost
unbelievable complexity.

Knocking off a previously unsolved challenge instance is a heralded
event among researchers, akin to scaling a new Himalayan peak or running
the 100-meter dash in record time. It is not that we have a desperate thirst
for the details of particular optimal tours, but rather a desperate need to
know that the TSP can be pushed back just a bit further. The salesman may
defeat us in the end, but not without a good fight.

From 49 to 85,900

The heroes of the field are Dantzig, Fulkerson, and Johnson. Despite the
dawning of the computer age and a steady onslaught of new researchers
tackling the TSP, the 49-city example that Dantzig et al. solved by hand
stood as an unapproachable record for seventeen years. Algorithms were
developed, computer codes written, and research reports published, but
year after year their record held its ground. The long run was finally
snapped in 1971 by IBM researchers Michael Held and Richard Karp; the
same Karp who studied TSP impossibility results, clearly not satisfied with
theory alone. The test instance in this case consisted of 64 points dropped
at random into a square region, with travel costs set to the straight-line
distances between pairs of points.

The algorithm of Held and Karp reigned supreme for several years, with
a number of teams tweaking the method in attempts to squeeze out greater
performance. But the Dantzig et al. approach struck back in 1975, when
PanagiotisMiliotis eclipsed theHeld-Karp record by employing a variant of
the original RAND idea to compute the shortest route through 80 random
points.

The Miliotis work hinted at the fact that the Dantzig et al. approach
might offer possibilities to push well beyond the expected limits of TSP
computation. This was reinforced shortly thereafter by theoretical studies
byMartin Grötschel andManfred Padberg, who laid foundations for a great
expansion of the basic methodology. This pair of mathematicians went
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Figure 1.6
A new TSP record, 3,038 cities.

Discover, January 1993.

on to dominate the TSP scene for the next fifteen years. Their successes
began with Grötschel’s construction of an optimal 120-city tour through
Germany, published in his 1977 doctoral thesis. Padberg then teamed up
with IBM researcher Harlan Crowder, computing the optimal solution
for a 318-city example that arose in a circuit-board drilling application.
These two results, although great in their own right, turned out to be
only preliminary steps toward a series of startling announcements in 1987,
a banner year for the TSP. Working independently on opposite sides
of the Atlantic, Grötschel and Padberg led teams that solved in rapid
succession instances consisting of 532 cities in the United States, 666
locations in the world, and 1,002-city and 2,392-city drilling problems;
Grötschel worked with doctoral student Olaf Holland at the University of
Bonn, and Padberg worked with Italian mathematician Giovanni Rinaldi
at New York University.

Riding this wave of excitement, Vašek Chvátal and I decided to join the
TSP-computation race in early 1988. We were in the unenviable position
of trying to catch up to the fantastic efforts of Grötschel-Holland and
Padberg-Rinaldi, but we had the luxury of working alongside a broad and
active worldwide community delving ever deeper into the theoretical side
of the problem. Sifting through the growing body of research on the TSP
would provide powerful tools for use in a computational attack. Before
getting into the process, however, we made the single most important step
in the overall effort, recruiting to our team David Applegate and Robert
Bixby, two of the strongest computational mathematicians of our time.
Things started slowly and we had several false starts, but in 1992 we solved
a record 3,038-city drilling problem, utilizing a large network of computers
working in parallel. With the pieces now in place, the team computed an
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Figure 1.7
Solution of an 85,900-city TSP arising

in a computer-chip application.

Figure 1.8
Close-up view of a portion of the

85,900-city tour.

optimal 13,509-city tour through the United States in 1998, an optimal
24,978-city tour of Sweden in 2004, and, finally, an optimal tour for an
85,900-city applied instance in 2006. The computer code used in these
solutions is called Concorde and it is available over the internet.

The 85,900 cities in the record problem represent locations of connec-
tions that must be cut by a laser to create a customized computer chip. The
TSP in this casemodels themovement of the laser from location to location.
Although movements are measured in fractions of an inch, the total travel
time was a major contributor to the chip’s production cost. The optimal
route for the laser is illustrated in figure 1.7, with a close-up view of a small
region in figure 1.8.
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Commis Tour

15,112-city Tour

Grötschel’s 120-city Tour

Figure 1.9
Three tours of Germany.

The World TSP

The grid-like distribution of points evident in the 85,900-city example,
and in some of the drilling problems, does not really capture the traveling
spirit of the 48-states tour that started the long TSP research program.
But it is easy to appreciate the increased complexity of modern solutions
by examining the three tours through Germany illustrated in figure 1.9.
The small 33-city Commis tour was described in an 1832 book on tips
for salesmen; the blue tour is Grötschel’s 120-city record; and the tour in
the background is an optimal route through 15,112 cities, computed with
Concorde in 2001.
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The 15,112-city route may be the final tour of Germany, but for an
ultimate traveling challenge we put together a 1,904,711-city problem
consisting of every city, town, and village in the world, including several
research bases in Antarctica. Since 2001, this problem has withstood attacks
by Concorde and by computer codes from around the globe. If the million-
dollar Clay Prize is not to your taste, perhaps you would like to take on
thisWorld TSP Challenge. At the time of publication of this book, the best-
known tour for the problem was produced by Danish computer scientist
Keld Helsgaun. His tour of length 7,515,790,345 meters was found on
October 10, 2010. This is almost certainly not the best-possible result, but
we do know that no tour can be of length less than 7,512,218,268 meters, a
bound computed with the Concorde code. Thus Helsgaun’s tour is nomore
than 0.0476% longer than an optimal tour. That is close, but there is plenty
of room for shortcuts.

Drawing theMona Lisa

An optimal tour for the World TSP would be fantastic, but we are very
likely more than a decade away from having the tools needed to make
a serious attempt at its solution. Fortunately, there is no shortage of
interesting problems to tackle along the way to conquering the world. A
pretty example is the 100,000-city Mona Lisa TSP displayed in figure 1.10.

Figure 1.10
Leonardo da

Vinci’sMona Lisa

as a TSP. Tour found

by Yuichi Nagata.
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This data set was developed in February 2009 by Robert Bosch, to create
a continuous-line drawing of da Vinci’s famous portrait. The current
best Mona Lisa tour was found by Yuichi Nagata of the Japan Advanced
Institute of Science and Technology. His tour is known to be at most
0.003% longer than an optimal solution. This is tantalizingly close, but we
are not yet home. As an incentive to anyone who might want to weigh in
on this problem, there is a $1,000 prize offered to the first person who can
improve on Nagata’s tour. A nice trophy, but keep in mind that the real
goal of problem-by-problem challenges is to gather ideas for use in general
solution methods for the salesman, and beyond to application areas well
outside the TSP. New avenues of attack are the name of the game.

RoadMap of the Book

The T-shirt displayed in figure 1.11, with artwork by Jessie Brainerd, a
2007 Budapest Semester in Mathematics student, would be interpreted
immediately as the TSP by every recent graduate of applied mathematics
or computer science who is worth his or her salt.14 Study of the salesman is
a rite of passage in many university programs, and short descriptions have
even worked their way into recent texts for middle school students.

With the existing wide coverage of the problem, what am I trying to
accomplish with this book? The answer is simple: I plan to take the reader
on a path that goes well beyond basic familiarity of the TSP, moving right
up to current theory and state-of-the-art solution machinery. The ultimate
goal is to encourage readers to take up their own pursuit of the salesman,
with the hope that a knockout blow will come from an as yet unknown
corner.

Figure 1.11
The TSP on Halloween 2007.

Photograph courtesy of Jessie

Brainerd.
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We begin in chapter 2 by examining the roots of the salesman problem
from both the mathematical and applied perspectives; the presentation of
TSP history allows us to introduce basic themes picked up in later chapters.
This is followed, in chapter 3, by a selection of the many applications of
the TSP, including trip planning, genome sequencing, planet finding, and
music arranging.

The heart of our technical treatment of the problem is the material
presented in chapters 4 through 7, followed by a discussion of how TSP
computer codes stack up to the task of solving large examples in chapter 8.

The $1,000,000 theoretical issue of a polynomial-time general method
for the TSP is presented in chapter 9. If cold cash is what you desire, this
is the chapter for you. I do not, however, recommend jumping ahead, even
if your bank account is in desperate need of deposits. Indeed, the seeds of
a successful theoretical attack may well be in methods that have proved
themselves in the computational field of play. And if you are going for
an impossibility result, you will need to handle the successful practical
techniques in your proof.

Moving away from direct mathematics, in chapter 10 we cover studies
on how humans, unaided by computers, go about solving the TSP; this area
brings the problem into the realm of psychologists and neuroscientists. In
chapter 11 we turn to the adoption of TSP tours in works of art, from the
beautiful abstract paintings of Julian Lethbridge to the Jordan curves of
Robert Bosch. Finally, chapter 12 wraps things up with a call for readers
to take up the TSP challenge.

Figure 1.12
Left: W. Cook, far left, and V. Chvátal, far right, presenting author J. P. Donleavy a chamber pot, 1987.

Photograph by Adrian Bondy. All rights reserved. Right: Postcard from J. P. Donleavy, 1987.

To view this image,

 please refer to the print 

version of this book
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Bashing on Regardless

A bit of advice. When faced with an overwhelming number of slings and
arrows, Irish writer J. P. Donleavy’s character Rashers Ronald would vow
to “Bash on regardless.”15 This became the rallying cry of the computational
study of the TSP by Applegate et al. I recommend the reader, too, adopt this
attitude when approaching the problem. We will cover work of numerous
experts who have made huge advances, but the TSP remains essentially
open. A new point of view could be just what is needed to dramatically
alter our ability to tackle the salesman.



2: Origins of the Problem
It appears to have been discussed informally bymathematicians at
mathematics meetings for many years.

—George Dantzig, Ray Fulkerson, and Selmer Johnson, 1954.1

T he traveling salesman problem is known far and wide, but the path it
has taken to such mathematical prominence is somewhat obscure. For

example, we cannot say for certain when the problem’s lively name first
came into use. Nevertheless, most of the story can be told, albeit with
the help of an educated guess here and there. Its telling serves the useful
side purpose of getting our TSP feet wet before jumping in with details of
current attempts to crack the notorious problem.

Before the Mathematicians

As a practical matter, the TSP was tackled by humans long before it
became a fashionable topic of study in mathematics. Our cave-dwelling
elders no doubt solved small versions while out hunting and gathering,
but likely without the aid of much in the way of long-term planning. In
recent centuries, however, members of certain professions clearly did take
advantage of carefully planned routes. An examination of their tours is a
good place to begin our discussion.

Salesmen

Foremost among the route planers is the namesake of the TSP. Consider
the list of cities given in the sheet displayed in figure 2.1. This item is
part of the correspondence of salesman H. M. Cleveland in the year 1925.2
Mr. Cleveland worked for the Page Seed Company, gathering orders for
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Figure 2.1
Page Seed Company salesman

list for Maine, 1925. One of five

sheets.

corn and other products. His list of cities is one of five sheets outlining a
tour of Maine. The full trip ran from July 9 through August 24, covering an
amazing 350 stops.

Two observations make it clear that Mr. Cleveland and the Page Seed
Company were interested in minimizing time spent on the road. First, the
drawing of the tour, displayed in figure 2.2, reveals a remarkable efficiency
in the itinerary; the portions where the tour appears to backtrack are all
due to the available road network, where one town can only be reached by
traveling to and from another town. Second, examine the following letter
fromMr. Cleveland to his employer.

July 15, 1925

Dear Sirs

My route list is balled up the worst I ever saw. Will take half
as long again to work it as last year. I have changed it some
beginning with Stockton Springs, Frankfort, Winterport, Hampden
Highlands, Bangor, Stillwater, Orono, Oldtown, Millford, Bradley,
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Brewer, So Brewer, Orrington, So Orrington, Bucksport, then to
original at Orland.

I wish you would send memy old list 1924 fromDexter on as it is
much better than this. I don’t see how you could break it out as you
did especially from Albion to Madison would be jumping all over
the map. This section I changed.

The river from Bangor down has no bridge and you have those
towns down as if I could cross it anywhere. Last season’s list was
made out the best of any one and I can’t see the object of changing
it over. I think I have made myself plain.

—Yours truly, H. M. Cleveland

Mr. Cleveland wasmost unhappy with part of the tour and went ahead with
his own improvements in its design.

Maine was just one of the destinations ofMr. Cleveland in 1925. He also
traveled through Connecticut, Massachusetts, New York, and Vermont,
making over 1,000 stops in total. And he was far from being the only
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person making the rounds. Timothy Spears’s book 100 Years on the Road:
The Traveling Salesman in American Culture cites an 1883 estimate by
Commercial Travelers Magazine of 200,000 traveling salesmen working in
the United States, and a further estimate of 350,000 by the turn of the
century. This number continued to grow through the early 1900s, and in
Mr. Cleveland’s day the salesman was a familiar site in most American
towns and villages.

Spears describes how these salesmen used aids such as L. P. Brockett’s
Commercial Traveller’s Guide Book to map out routes through their re-
gions. Often, however, tours were planned in a central office, such as was
done in the Page Seed Company. The images in figure 2.3 indicate one way
such tours were optimized, using pins and strings to plot potential routes
on a map.

An important reference in this discussion is the 1832 German hand-
book Der Handlungsreisende—Von einem alten Commis-Voyageur.3 The
Commis-Voyageur describes the need for good tours.4

Business leads the traveling salesman here and there, and there is
not a good tour for all occurring cases; but through an expedient
choice and division of the tour so much time can be won that we
feel compelled to give guidelines about this. Everyone should use as
much of the advice as he thinks useful for his application.We believe
we can ensure as much that it will not be possible to plan the tours
throughGermany in consideration of the distances and the traveling

Figure 2.3
RandMcNally map cabinet and pin map. Secretarial

Studies, 1922.
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Figure 2.4
1832 German

salesman book.

back and forth, which deserves the traveler’s special attention, with
more economy. The main thing to remember is always to visit as
many localities as possible without having to touch them twice.

This is an explicit description of the TSP, made by a traveling salesman
himself!

The Commis-Voyageur book presents five routes through regions of
Germany and Switzerland. Four of these routes include return visits to an
earlier city that serves as a base for that part of the trip. The fifth route,
however, is indeed a traveling salesman tour, indicated in figure 2.5. (The
position of the route within Germany can be seen in the three-tours map
displayed in figure 1.9.) As the Commis-Voyageur suggests, the tour is very
good, perhaps even optimal, given road conditions at the time.

Numerous volumes written later in the century describe well-chosen
routes in the United States, Britain, and other countries. The romantic
image of the traveling salesman is captured, too, in stage, film, literature,
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Figure 2.6
Commercial Traveller, McLoughlin Brothers,

1890. Courtesy of Pamela Walker Laird.

and song. The following is a typical turn-of-the-century salesman poem,
taken from a compilation published in 1892.5

Those who think a Drummer’s life
Is free from hardship, toil and strife,
Are mistaken, for he has to go
Through mud and rain, through sleet and snow.
He sallies forth, gripsack in hand
To seek for custom through the land.

The struggling drummer and his route-finding task were even featured in
a board game, Commercial Traveller, created by McLoughlin Brothers in
1890, that asked players to build their own tours through a rail system. The
choice of the salesman as the representative for the TSP is definitely well
founded.

Lawyers

The salesman may have top billing, but other groups also traveled the
land. The Oxford English Dictionary cites examples of the use of the word
“circuit” as far back as the fifteenth century, concerning judicial districts
in the United Kingdom. Traveling judges and lawyers served their districts
by riding a circuit of the towns and villages, where court was held during
specified times of the year. This practice was later adopted in the United
States, where regional courts are still referred to as circuit courts, even
though judges no longer take to the road.
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Easily the best-known circuit rider in the history of the United States
is the young Abraham Lincoln, who practiced law before becoming the
country’s sixteenth president. Lincoln worked the Eighth Judicial Circuit
in the state of Illinois, covering fourteen county courthouses. His travel is
described by Guy Fraker in the following passage.6

Each spring and fall, court was held in consecutive weeks in each
of the 14 counties, a week or less in each. The exception was
Springfield, the state capital and the seat of Sangamon County. The
fall term opened there for a period of two weeks. Then the lawyers
traveled the fifty-five miles to Pekin, which replaced Tremont as
the Tazewell County seat in 1850. After a week, they traveled the
thirty-fivemiles toMetamora, where they spent three days. The next
stop, thirty miles to the southeast, was Bloomington, the second-
largest town in the circuit. Because of its size, it would generatemore
business, so they would probably stay there several days longer.
From there they would travel to Mt. Pulaski, seat of Logan County,
a distance of thirty-five miles; it had replaced Postville as county
seat in 1848 and would soon lose out to the new city of Lincoln,
to be named for one of the men in this entourage. The travelers
would then continue to another county and then another and
another until they had completed the entire circuit, taking a total
of eleven weeks and traveling a distance of more than four hundred
miles.

Fraker writes that Lincoln was one of the few court officials who regularly
rode the entire circuit. A drawing of the route used by Lincoln and
company in 1850 is given in figure 2.7. The tour is not quite the shortest
possible (at least as the crow flies), but it is clear that it was constructed
with an eye toward minimizing the travel of court personnel.

Preachers

The word circuit may have originated with the travel of judges and lawyers,
but as a group they are rivaled in fame by the circuit-riding Christian
preachers of the eighteenth and nineteenth centuries. JohnHampson wrote
the following passage in his 1791 biography of John Wesley, the founder
of the Methodist church. “Every part of Britain and America is divided
into regular portions, called circuits; and each circuit, containing twenty
or thirty places, is supplied by a certain number of travelling preachers,
from two to three or four, who go around it in a month or six weeks.”7 The
conditions under which these men traveled is folklore in Britain, Canada,
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Figure 2.7
Eighth Judicial
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and the United States. A feeling for the extent of their tours can be gathered
from the following quotes.

I travelled about five thousand miles, preached about five hundred
sermons, visitedmost of the circuits in Virginia andNorth Carolina.

—Freeborn Garrettson, 1781.8

Our circuit at that time, was five hundred miles around it, and for
me to preach as I did sixty-three sermons in four weeks, and travel
five hundred miles, was too hard. But I cried unto the Lord and he
heard me; for as my day was, so was my strength.

—Billy Hibbard, 1825.9

I have not been able to obtain detailed itineraries of any of the longer
circuits traveled by these Methodist preachers, but it is safe to assume that
some planning went into the selection of the routes. A goal of their work
was to reach as many church members as possible, so minimizing time on
the trail would have been an important consideration.
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Euler and Hamilton

Back in the realm of mathematics, the plight of salesmen, lawyers, and
preachers did not capture the attention of busy researchers, who had their
hands full, laying down fundamentals for the rapidly expanding fields of
the physical sciences. Two of the leading figures of the era did, however,
explore aspects of the TSP, and they are rightly viewed as the grandfathers
of traveling-salesman research.

Graph Theory and the Bridges of Königsberg

The great Leonhard Euler wrote the most important of all early mathemati-
cal papers describing touring problems. The Euler Archive cites an estimate
by historian Clifford Truesdell that “in a listing of all of the mathematics,
physics, mechanics, astronomy, and navigation work produced during the
18th Century, a full 25% would have been written by Leonhard Euler.”
History’s most prolific mathematician studied a vast array of topics, includ-
ing a puzzle that was a longstanding challenge to the residents of the town
of Königsberg in East Prussia.

A satellite image of Königsberg, now called Kaliningrad, reveals the
elaborate waterway formed by the River Pregel. The rectangular island
created by the splitting of the river is called the Kneiphof; the large
island to the east of the Kneiphof is called Lomse; the region north
of the river is the Altstadt; and the region south of the river is the
Vorstadt.10

In Euler’s day, the Pregel was crossed by seven walkways: the Green
and Köttel bridges joined the Kneiphof to the Altstadt, the Krämer and

Figure 2.8
Königsberg and the River

Pregel, TerraServer.com, 2011.
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Figure 2.9
Euler’s drawing of

the Königsberg

bridges.

Schmiede bridges joined the Kneiphof to the Vorstadt, the Honey bridge
joined the Kneiphof and the Lomse, the High bridge joined the Lomse and
the Altstadt, and the Wood bridge joined the Lomse and the Vorstadt. The
good citizens of Königsberg enjoyed strolls through their town, crisscross-
ing the Pregel via the Green, Köttel, Krämer, Schmiede, Honey, Lomse,
and Wood. The tale is that the Königsbergers had a standing challenge of
crossing each of the seven bridges exactly once on a single walk through the
town.

Euler weighed in on the Königsberg problem with a paper presented
to the Academy of Sciences in Saint Petersburg on August 26, 1735.11
His treatment follows a classic mathematical line of abstracting just the
necessary information to capture the essence of the problem, and in so
doing he laid the foundation for an important new branch of mathematics
known as graph theory.12

To begin, Euler removed the physical nature of the challenge, sketching
the town, river, and bridges, as displayed in figure 2.9. (This is a cleaned-up
version of a computer scan taken from a copy of Euler’s original published
paper.) Euler labeled the regions of Königsberg as A, B , C , and D, and the
seven bridges as a through g . These labels are enough to describe any route
through the town, such as A to C via the c bridge, C to D via the g bridge,
D to B via the f bridge, and B to A via the b bridge. A shorthand for
this route would be AcCg D f BbA. Euler’s arguments are based entirely
on manipulating the routes as strings of symbols, rather than as walkers
crossing the town.

The size of the land regions does not play a role in Euler’s work, so the
arguments can be visualized by a simple diagram, where A, B ,C , and D are
drawn as points, and a through g are drawn as lines joining pairs of these
points, as in figure 2.10. The interpretation of the drawing is not influenced
by the shape or length of the points and lines, but only by which pairs of
points are joined. An object such as this is called a graph. The points of the
graph are called vertices, the lines are called edges, and each edge has as its
ends two of the vertices.
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Königsberg bridges.

In this stripped-down setting, a walk through Königsberg trans-
lates to movement from vertex to vertex in the graph, traveling along
the graph’s edges. A possible walk, starting at B and ending at D, is
BaAcCg DeAbB f D. In this walk, three edges meet vertex B , namely a,
b, and f ; four edges meet vertex A, namely a, c , e, and b; two edges meet
vertex C , namely c and g ; and three edges meet vertex D, namely g , e, and
f . The key observation of Euler is that the odd-even-even-odd pattern to
these numbers is no accident: in any walk between two distinct points, the
starting and ending vertices meet an odd number of edges and all other
vertices meet an even number of edges. Furthermore, if we have a closed
walk, that is, we start and end at the same point, then every vertex meets an
even number of edges. So we have either all “even” vertices or exactly two
“odd” vertices.

This is bad news for the Königsbergers. All four vertices of their bridge
graph meet an odd number of edges, thus there can be no walk using each
edge exactly once. Euler’s short argument put an end to the Königsberg
debate.

The Knight’s Tour

Several years after settling the Königsberg puzzle, Euler wrote on a second
touring challenge, known as the knight’s tour problem in chess.13 The
task here is to find a sequence of knight’s moves that take the piece from
a starting square on a chessboard, through every other square exactly
once, and then back to the starting square. Euler’s solution is depicted
in figure 2.11, where the order of moves is indicated by numbers on the
squares.

The idea of a traveling knight appealed to Euler, who also laid out
routes for boards of nonstandard size. These problems can be framed nicely
using the language of graphs. In this case, we have a vertex for each square
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Figure 2.11
Euler’s solution to the

knight’s tour problem.
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Knight’s tour in the
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on the board, with two vertices joined by an edge if a knight can travel
between the squares in a single move. A knight’s tour is a closed walk that
visits each vertex exactly once. (Note the similarity with the Königsberg
problem, where we sought a walk traversing each edge exactly once.) The
particular graph for the full chessboard is displayed in figure 2.12, together
with Euler’s route for the knight.

The Icosian

Ireland’s Sir William Rowan Hamilton was also drawn to a question in-
volving tours in a particular graph. A century after Euler, Hamilton studied
ways to visit all twenty corner points of the dodecahedron, the twelve-
sided Platonic solid. Hamilton made use of an abstract drawing he dubbed
the Icosian, displayed in figure 2.13. The lines of the Icosian represent the
dodecahedron’s geometric edges and the circles represent its corners.
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The Icosian.

Figure 2.14
W. R. Hamilton commemorative

stamp, Irish An Post, 2005.

Portrait of Hamilton courtesy of

the Royal Irish Academy.

The Icosian is a graph, and Hamilton’s tours also proceed from vertex
to vertex, always traveling along the graph’s edges. Interestingly, Hamilton
used an algebraic system to view this travel, in an approach similar in spirit
to his defining equations for quaternions. He describes this in a formal
letter to his friend John T. Graves in 1856.14

As in the little paper which I lately sent you, let me continue to
assume three symbols, i , j, k, which shall satisfy the four following
equations:

i 2 = 1, j3 = 1, k5 = 1, k = ij.

What I have first to show, by one or two examples, is that the
symbols so defined have curious but determinate properties, making
them the legitimate instrument of a calculus: every symbolic result
of which, so far as I can judge, and I have examined a great number
of them, admits of easy and often interesting interpretation, with
reference to the passage from face to face, or from corner to corner,
of one or other of the solids considered in the ancient geometry.

The three symbols correspond to operations in the Icosian; when symbols
are multiplied, the operations are made one after the other.15 Through his
calculus on these symbols, Hamilton showed that no matter what path
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Figure 2.15
Left: The Icosian Game. Right: The Traveller’s Dodecahedron.
c© 2009 Hordern-Dalgety Collection, puzzlemuseum.com.

of five vertices is chosen as a start, it is always possible to complete a
tour through the remaining vertices of the Icosian. Fascinated with this
structure, Hamilton concluded his letter to Graves with a description of
a game to be played on the Icosian graph.

I have found that some young persons have been much amused
by trying a new mathematical game which the Icosian furnishes,
one person sticking five pins in any five consecutive points, such
as abcde, or abcde ′, and the other player then aiming to insert,
which by the theory in this letter can always be done, fifteen other
pins, in cyclical succession, so as to cover all the other points, and
to end in immediate proximity to the pin wherewith his antagonist
had begun.

Two versions of the game were later marketed by a British toy merchant.
One variant, called the Icosian Game, consists of a wooden board with
ivory pegs to mark visited points. The second variant, called the Traveller’s
Dodecahedron: A Voyage Round the World, is a handheld device, shaped
as a partially flattened dodecahedron, with pegs for the points and a string
to trace out the tour.16

Despite Hamilton’s enthusiasm, the games were a flop in the com-
mercial market. If you try a few rounds of play you will see quickly the
problem: finding tours in the Icosian graph is too easy. Hamilton was quite
defensive about this point, stating that the puzzles were not at all easy for
him. This odd status, where the game is simple for children but challenging
for Ireland’s greatest mathematician, may have been due to Hamilton’s
algebraic view of things. Perhaps Hamilton was solving the puzzles through
mental manipulation of i , j, and k, rather than tracing the tours visually.
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Figure 2.16
Worried Woodworm.
c© 2009 Hordern-Dalgety

Collection,

puzzlemuseum.com.

On a happier note, a twentieth-century variant of Hamilton’s game did
manage to bring in a significant number of sales. James Dalgety’s Worried
Woodworm puzzle, from 1975, asks for walks in a particular graph, but in
this case the routes are tricky to spot. Dalgety’s wooden board is displayed
in figure 2.16. The main goal is to discover a path starting in the bottom
left, ending at the top right, and visiting every hole along the way.

The Concorde code was used recently to settle additional Worried
Woodworm challenges posed by Dalgety, but fair-minded players would,
no doubt, frown on employing a state-of-the-art TSP solver and a high-
powered computer to plot the worm’s path through the twenty-three
points.

Hamiltonian circuits

Euler’s knights andHamilton’s game-playing children both search for tours
in graphs, but what about a general question? Not all graphs possess a tour
through their vertices and a challenge is to decide which do and which
do not. Hamilton’s fame added considerable luster to this challenge at a
time when graph theory was just beginning to find its place within the
mathematical world. This explains why his name gets top billing when
describing the problem. But do not jump in alarm at the snub of Euler.
Graph theorists reserve Euler’s name for closed walks that model the
sought-after trip through Königsberg. Thus, a Hamiltonian circuit in a
graph is a closed walk that visits each vertex exactly once, while a Eulerian
walk is a closed walk that travels along each edge exactly once. Both walks
are fundamental concepts in graph theory, but there is a world of difference
between the two, despite the obvious similarities.

Deciding whether or not a graph has a Hamiltonian circuit is an N P -
complete problem, capturing much of the complexity of the general TSP.
On the other hand, there is a simple rule for determining if a graph has an
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Figure 2.17
Coloring a map via a

Hamiltonian circuit.

Eulerian walk, namely, except for vertices meeting no edges at all, the graph
must be connected, that is, it consists of a single piece, and each vertex must
be the end of an even number of edges.

So we understand Euler, but not Hamilton. Indeed, year after year,
brave mathematicians have suggested conditions guaranteeing Hamil-
tonian circuits, only to see their conjectures fail. A famous example is due
to P. G. Tait in the 1880s. Tait was caught up in the excitement of Alfred
Kempe’s announced proof of the four-color theorem. This result states that
the regions (countries) of any map can be colored with at most four colors
in such a way that any two regions sharing a border receive different colors.
Looking for an alternative proof that four colors suffice, Tait conjectured
that a certain type of graph always has a Hamiltonian circuit.

To see the connection between traveling and map coloring, think of the
boundaries of a map’s regions as the edges of a graph, with the intersection
points as vertices. AHamiltonian circuit through this boundary graph gives
a way to color the map, as illustrated in figure 2.17, where the red edges
form a Hamiltonian circuit. Such a circuit does not cross itself, so it has
an inside and an outside. Moreover, the border edges on the inside, that
are not part of the circuit, cut across the inner area. We can thus color
these inner regions with two colors, switching every time we cross one of
the non-circuit edges. The same trick allows us to two-color the regions
lying outside of the Hamiltonian circuit, yielding altogether a four-coloring
of the map. In the example, the inner regions are colored dark yellow
and light yellow, and the outer regions are colored dark blue and light
blue.

Tait knew that not all maps have Hamiltonian circuits through their
borders (the map of the continental United States is a ready example),
but available tricks allowed the four-color problem to be restricted to
maps such that each vertex of the border graph meets exactly three edges.
Furthermore, the border graph could be assumed to be three-connected,
that is, it is impossible to break the graph into two parts by deleting one or
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two vertices. Restricted to these three-regular, three-connected maps, Tait
expected Hamiltonian circuits would always be available.

William Tutte, the great graph theorist and Bletchley Park code breaker,
eventually showed Tait’s conjecture to be false in 1946. That is too bad, but
at least the circuit problem stood its ground longer thanKempe’s four-color
proof, which was shown to be incorrect by P. J. Heawood in 1890.

A historical footnote is that the first recorded description of the four-
color problem is in a letter to Hamilton, written by Augustus De Morgan
in 1852. Hamilton was not impressed with the problem, replying, “I am not
likely to attempt your ‘quaternion of colours’ very soon.”17

Mathematical Genealogy

Mathematicians enjoy tracing their academic heritage, following their
Ph.D. thesis adviser to their adviser’s adviser, and so on back through time.
The Mathematics Genealogy Project Web site run by North Dakota State
University contains over 130,000 records of Ph.D. advisers, with a goal to
compile information on all the world’s mathematicians. I am proud to trace
my own roots back to Victorian-era mathematician Arthur Cayley, with an
informal leap over to Sir Hamilton himself.

The path to Cayley is direct: W. Cook to U.S.R. Murty to C. R.
Rao to Ronald Fisher to James Jeans to Edmund Whittaker to Andrew
Forsyth to Arthur Cayley. The formal path stops here, since Cayley was
trained in the law and did not obtain a Ph.D. degree. Cayley had great
interest in mathematics, however, and in 1848 he traveled to Dublin to
attend Hamilton’s lectures on quaternions at Trinity College. Influenced
byHamilton, Cayley went on to write several hundredmathematical papers
while practicing law, leading up to his appointment to the Sadleirian chair
of mathematics at Cambridge in 1863. Cayley did not pick up Hamilton’s
interest in TSP-related problems, but he is a well-known figure in graph
theory, introducing the notion of “trees” that we cover later in the book.

Vienna to Harvard to Princeton

Euler and Hamilton studied tours, but chessboards and dodecahedrons are
a far cry from a salesman out on the road. A salesman is not satisfied with
any old tour, she wants one of shortest possible length.

To bring in travel costs, we must jump ahead another century to Karl
Menger and his work in Vienna. One of Menger’s favorite topics in the
1920s was the study of techniques to measure lengths of curves in space.
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This esoteric research likely provided inspiration for his announcement of
a close relative of the TSP,made at a colloquium held on February 5, 1930.18

We use the term Messenger problem (because this question is faced
in practice by every postman, and, by the way, also by many
travelers) for the task, given a finite number of points with known
pairwise distances, to find the shortest path connecting the points.

The problem is to find a path through the points, without a return trip to
the start. This is easily converted to the TSP by adding an extra “dummy”
city that serves to link the ends of the path. The cost of travel between the
dummy and each of the real cities can be set to zero, so that visiting the
extra city will not influence the choice of the path’s starting point or ending
point.

Menger’s “messenger problem” is recorded, in German, as part of the
published documentation of the Vienna Mathematics Colloquium. The
announcement is of clear historical importance, but it does not appear to
have been the direct source of interest in the TSP among researchers in
the United States. This honor goes to a lecture presented by prominent
Harvard mathematician Hassler Whitney, cited in the following passage
from Dantzig, Fulkerson, and Johnson’s classic paper.19

Merrill Flood (Columbia University) should be credited with stimu-
lating interest in the traveling-salesman problem in many quarters.
As early as 1937, he tried to obtain near optimal solutions in
reference to routing of school buses. Both Flood and A. W. Tucker
(Princeton University) recall that they heard the problem first in
a seminar talk by Hassler Whitney at Princeton in 1934 (although
Whitney, recently queried, does not seem to recall the problem).

Merrill Flood himself also credits Whitney’s lecture when describing the
history of the TSP in a 1956 research paper. “The problem was posed, in
1934, by Hassler Whitney in a seminar talk at Princeton University.”20
Even well after the fact, Flood refers to the TSP as the “48-states problem of
Hassler Whitney” in an interview with Albert Tucker in 1984.21

It is natural to speculate on a possible connection between Menger’s
Vienna colloquium and Whitney’s Princeton seminar. Support for such
a connection was found by Alexander Schrijver, who notes that Menger
and Whitney met at Harvard University in 1930–31, during a semester-
long visit by Menger.22 It is unclear, however, if the two actually exchanged
information directly related to the salesman/messenger problem.

It also remains a question whether Whitney did in fact discuss the
TSP at Princeton. There unfortunately is not an accessible record at
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Figure 2.18
Hamiltonian circuit

through Africa.

Princeton University covering the seminars delivered in the Department
of Mathematics in the 1930s. The Pusey Library at Harvard University
does, however, contain an archive of 3.9 cubic feet of Whitney’s papers,
and within the archive there is a set of handwritten notes that appear to
be preparation for a seminar by Whitney, written sometime in the years
shortly after 1930. The notes present an introduction to graph theory,
including the following paragraph.

A similar, but much more difficult problem is the following. Can we
trace a simple closed curve in a graph through each vertex exactly
once? This corresponds to the following problem. Given a set of
countries, is it possible to travel through them in such a way that
at the end of the trip we have visited each country exactly once?

In Whitney’s problem, a graph is formed by placing a single vertex in each
country, and joining two vertices by an edge if the countries share a border.
A trip through the countries is a Hamiltonian circuit in the graph. This is an
unusual choice as an example to describe the Hamiltonian-circuit problem
and it is clearly not a far step from the TSP.

The geographic aspect of this example matches Flood’s recollection
of the “48-states problem.” Indeed, Whitney’s illustration of Hamiltonian
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circuits may well be the starting point of TSP research in the United States.
In the words of Alan Hoffman and Philip Wolfe, Whitney served “possibly
as a messenger fromMenger” in bringing the salesman to the mathematics
community.23

And on to the RAND Corporation

There is not a record of the study of the salesman problem, under the TSP
name, in the late 1930s and into the 1940s, but by the end of the 1940s
it had become a known challenge. At this point the center of TSP action
had moved from Princeton to RAND, coinciding with Flood’s relocation
to California.

PrincetonUniversity’s Harold Kuhnwrites the following in a December
2008 e-mail letter.

The traveling salesman problem was known by name around Fine
Hall by 1949. For instance, it was one of a number of problems for
which the RAND corporation offered a money prize. I believe that
the list was posted on a bulletin board in Fine Hall in the academic
year 1948–49.

The RAND prize list! The TSP literature is peppered with mention of
these prizes, but it is no longer easy to track down a copy of the original
RAND document. Hoffman and Wolfe describe the RAND prize as one
“for a significant theorem bearing on the TSP.” The list, together with the
great reputation of the RAND research group, played an important role in
spreading the news of the TSP, although the prize itself was never awarded.

Within RAND, a prize is mentioned by famed mathematician Julia
Robinson, in remarks concerning her research into the theory of games.
“And RAND was offering a $200 prize for its solution. In my paper, ‘An
iterative method of solving a game,’ I showed that the procedure did indeed
converge, but I didn’t get the prize, because I was a RAND employee.”24
Likely inspired by another problem on the list, Robinson took up the study
of the TSP in 1949. Her work on the salesman is in tune with a general
approach to mathematics she describes in handwritten notes from this
period. “I prefer working on problems whose statement is comparatively
simple but where nothing is known about what sort of methods might
lead to a solution, to working on those requiring extensions of existing
methods.”25 The TSP certainly fit the bill—no progress on the problem
was reported in the nearly twenty years since Menger’s colloquium. As
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we will see in chapter 5, her contributions to the salesman provided the
background for the RAND breakthrough several years later.

Whence the TSP?

In a 1949 research paper, Robinson uses “traveling salesman problem” in an
offhand way, suggesting it was a familiar concept at the time. In fact, until
a copy of the RAND prize list is uncovered from its likely hiding place in
some archive or other, Robinson’s report is the earliest known reference to
the TSP by name. Robinson formulates the problem as finding “the shortest
route for a salesman starting fromWashington, visiting all the state capitals
and then returning toWashington,” matching both Flood’s description and
the data set used by Dantzig et al.

Robinson’s language connects the TSP and the “48-states problem,” but
we do not know when and where the salesman name first came into play.
Merrill Flood would seem to be the person to have this information, but
unfortunately he does not, as he explained to Albert Tucker. “I don’t know
who coined the peppier name Traveling Salesman Problem for Whitney’s
problem, but that name certainly caught on, and the problem has turned
out to be of very fundamental importance.” Whatever the origin, except for
small variations in spelling and punctuation, “traveling” versus “travelling,”
“salesman” versus “salesman’s,” etc., by the mid-1950s the TSP name was
in wide use, and the problem was beginning to pick up its notorious
reputation. The table was set for Dantzig et al.

A Statistical View

Many important problems in mathematics are attacked from all sides,
sometimes without the attacking teams knowing others have joined the
fray. Such is the case with the salesman problem. At about the time Flood
and company were struggling with the TSP in the United States, on the
other side of the world, statistician P. C. Mahalanobis took on the problem
from a different mathematical point of view and with a far different
application in mind.

Bengali Jute Farms

Mahalanobis is known as the Father of Statistics in India, founding both the
Indian Statistical Institute and the Sankhya journal of statistics. One of his
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Figure 2.19
Prasanta Chandra

Mahalanobis. Photograph

on right taken while on a

farm sample survey. Courtesy

Mahalanobis Museum,

Indian Statistical Institute,

Kolkata, India.

main interests was the development of techniques for carrying out sample
surveys, and it is here he made a connection to the TSP.

A major source of revenue in India during the 1930s was obtained
from its jute crop, accounting for roughly one quarter of total exports. The
majority of India’s jute was grown in the Bengal region and an important
practical question was how to collect data to make accurate forecasts of the
crop.

A complete survey of Bengali land used in jute production was imprac-
tical, owing to the fact that jute was grown on roughly six million small
farms. Mahalanobis proposed instead to make a random sample survey,
dividing the country into zones comprising land of similar characteristics,
and within each zone selecting a random number of points to inspect for
jute cultivation. Amajor component in the cost of making the survey would
be the time spent in moving men and equipment from one sample area to
the next. This is the TSP aspect of the application, to find efficient routes
between the selected sites in the field. Concerning this, Mahalanobis writes
the following in a 1940 research paper.26

It is also easy to see in a general way how the journey is likely
to behave. Let’s suppose that n sampling units are scattered at
random within any area; and let’s suppose that we may treat each
such sample as a geometrical point. We may also assume that
arrangements will usually be made to move from one sample point
to another in such a way as to keep the total distance travelled as
small as possible; that is, we may assume that the path traversed in
going from one sample point to another will follow a straight line.
In this case it is easy to see that the mathematical expectation of the
total length of the path travelled inmoving from one sample point to
another will be (

√
n− 1/

√
n). The cost of the journey from sample

to sample will therefore be roughly proportional to (
√
n− 1/

√
n).

When n is large, that is, when we consider a sufficiently large area,
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we may expect the time required for moving from sample to sample
will be roughly proportional to

√
n, where n is the total number of

samples in the given area.

The term expectation refers to the average length of the optimal tours
we would see if we repeated many times the experiment of taking n
random points and solving the TSP. Perhaps owing to his research interests
as a statistician, Mahalanobis does not discuss the operational task of
actually finding tours for specific data. He focuses instead on making
statistical estimates of the lengths of optimal routes. This is quite a different
angle on the problem than that taken up by researchers at Princeton and
RAND.

Mahalanobis’s estimates were included in the projected costs of carry-
ing out sample surveys in Bengal, and these projections were an important
consideration in the decision to implement a small test in 1937 and a large
survey in 1938.

Verifying the Tour Estimates

Mahalanobis did not give a precise analysis of his TSP formula, but his
research set up a nice target for further work by the statistics community.
The object of this work was to learn more about tours that arise when city
locations are chosen at random in a unit square, that is, each point (x, y)
with both x and y between 0 and 1 is equally likely to be chosen as a sample
location. In particular, what can be said about the lengths of optimal tours
through such point sets?

Researchers approached the problem from two directions. Eli Marks
showed, in 1948, that the expected length of an optimal tour through a
random set of points is at least

1√
2

(√
n− 1√

n

)

and M. N. Ghosh showed, in 1949, that the expected length is at most
1.27

√
n. For large n, these results combine to prove that Mahalanobis’s

intuition was correct; the expected length of the tour is indeed proportional
to

√
n.
In his research paper on the upper bound, Ghosh made a point to

comment on the operational task of producing results for specific data.
“After locating the n randompoints in amap of the region, it is very difficult
to find out actually the shortest path connecting the points, unless the
number n is very small, which is seldom the case for a large-scale survey.”27
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Figure 2.20
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It is interesting that he observed the heart of the TSP challenge of finding
optimal tours, apparently without connection to Menger, Whitney, and
Flood.

The TSP Constant

The Mahalanobis-Marks-Ghosh result gives an estimate for the average
tour length, but it does not say anything about the range of lengths we
are likely to see in a series of experiments: some random point sets might
have long optimal tours, while others could have tours that are quite short.
This in fact does not happen, if n is reasonably large. To understand this
point, examine the histogram given in figure 2.20, displaying the optimal
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tour lengths divided by
√
1, 000 for 10,000 random geometric instances,

each with 1,000 cities. The results form a nice bell curve around the mean
0.7313. With only 1,000 cities there is still some variance in the tour values,
but a famous theorem of Beardwood, Halton, and Hammersley, published
in 1959, implies that as n gets large, the distribution of tour lengths will
spike around a particular number called b, the TSP constant.28

An intriguing question is to determine the value of b. Its investigation
has led to an important subfield of probability, but proven estimates do not
come close to pinning it down. So we have a natural constant whose actual
value is unknown.

In an ongoing study of b with David Applegate, David Johnson, and
Neil Sloane, we have solved over 600,000,000 geometric instances of the
TSP. This has given Concorde quite a workout, but the mountain of
computation alone cannot prove any definitive results. Nonetheless, plots
such as the one displayed in figure 2.21 strongly suggest a steady decrease
in the average tour length divided by

√
n as n increases, pointing toward an

ultimate value of approximately 0.712 for b.29



3: The Salesman in Action
Becausemymathematics has its origin in a real problem doesn’t
make it less interesting tome—just the other way around.

—George Dantzig, 1986.1

T he name itself announces the applied nature of the traveling salesman
problem. This has surely contributed to a focus on computational issues,

keeping the research topic well away from perils famously described in John
von Neumann’s essay “The Mathematician”. “In other words, at a great
distance from its empirical source, or after much ‘abstract’ inbreeding, a
mathematical subject is in danger of degeneration”. Indeed, a strength of
TSP research is the steady stream of practical applications that breathe new
life into the area.

Road Trips

In our roundup of TSP applications, let’s begin with a sample of tours taken
by humans, including the namesake of the problem.

Salesmen in the Digital Age

An automobile equipped with a global positioning system (GPS) device
is the mode of transportation typically chosen by local traveling
salesmen. Mapping software running on the GPS unit often includes a
TSP solver for small instances having a dozen or so cities, and this is
usually adequate for daily trips. Detailed maps stored in the unit can be
used to deliver accurate estimates of the time to travel from point to
point, allowing TSP solutions to reflect actual driving conditions faced by
travelers.
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Alain Kornhauser of Princeton University, an expert on the application
of mapping technology, described an interesting, reverse, use of GPS
equipment. When a user specifies a destination with a latitude and lon-
gitude, it is sometimes impossible to project the point onto the known grid
of roads and highways—there just isn’t a way to get to the location. But if
a package must be delivered, then a local trucker will often find a route,
perhaps using a small lane that is not on the grid. In such a case, the GPS
system reports back to a central server and a link is added into the grid,
tracing the path traveled by the vehicle. Next time a delivery is requested
for the location, the mapping software makes use of the newly inserted
road.

Pick-ups and Deliveries

A common use of small-scale TSP models is the routing of buses and vans
to pick up and deliver people and packages. Merrill Flood wrote that a
school bus–routing problem provided his initiation into the study of the
TSP. Another early team, George Morton and Ailsa Land of the London
School of Economics, was drawn to the problem by a laundry-van applica-
tion. In amore recent example, the firmRapidis employed Concorde to plot
routes for their customer Forbruger-Kontakt, a distributor of advertising
material and samples, operating in Denmark and several other countries.
The image in figure 3.1 is a drawing made from a screen dump of the
routing software created by Rapidis. The route in the drawing obeys one-
way streets and other travel restrictions, making the cost to travel between
two points depend on the direction that is chosen.

Figure 3.1
TSP tour for deliveries by

Forbruger-Kontakt. Courtesy

of Thomas Isrealsen.
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Meals on Wheels

A team from Georgia Tech described a successful application of a fast TSP
heuristic algorithm for constructing the routes of aid workers in a “Meals
onWheels” program in Atlanta.2 Each driver in the program delivers meals
to 30 to 40 locations out of a total of 200 or so that are served daily. To
construct routes for the drivers, all 200 locations are placed in a tour that is
divided into segments of the appropriate lengths. The overall tour is found
with the aid of the spacefilling curve illustrated in figure 3.2. Ever-finer
versions of the curve will eventually include any point in the city, and the
heuristic tour through the 200 locations is obtained by taking the order in
which the locations appear on the curve.

The simplicity of the tour-finding method allowed the manager of
the program to easily update the tour by hand as new clients joined the
system and existing clients left the system. The process runs as follows.
The position of a point in the tour depends only on its relative position h

on the spacefilling curve. The Georgia Tech team precomputed the value
of h for a fine grid of (x, y) locations from a standard map of Atlanta.
The list of active clients was stored on two sets of index cards, one sorted
alphabetically and the other stored in the tour order, that is, by increasing
value of h. To delete a client, his two cards are simply removed. To insert

Figure 3.2
Spacefilling curve for

Atlanta region. Image

courtesy of John Bartholdi.
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a new client, the map is used to determine the (x, y) coordinates of the
client’s location, the table is used to look up the corresponding value of h,
and h is used to insert the client’s card into the tour order. An ingenious,
low-tech solution for a practical TSP application.

Farms, Oil Platforms, and Blue-claw Crabs

The farming study of Mahalanobis in the 1930s is an early example of
the use of the TSP in planning inspections of remote sites. This type of
logistical application occurs in many other contexts as well. For example,
William Pulleyblank reports the use of TSP software to plan routes for
an oil firm to visit a set of 47 platforms off the coast of Nigeria. In this
instance, the platforms are visited via a helicopter flying from an onshore
base. In another example, a group at the University of Maryland modeled
the problem of scheduling boat-crew visits to approximately 200 stations
in the Chesapeake Bay. The purpose of the boat trips was to monitor the
blue-claw crab population in the bay; the researchers turned to the TSP
after having difficulty completing trips quickly enough to permit frequent
monitoring of all sites.

Book Tours

Manil Suri, the author of the novel The Death of Vishnu and a professor of
mathematics, made the following remark in SIAM News.3

The initial U.S. book tour, which starts January 24, 2001, will cover
13 cities in three weeks. When my publisher gave me the list of
cities, I realized something amazing. I was actually going to live the
Traveling Salesman Problem! I tried conveying my excitement to
the publicity department, tried explaining to them themathematical
significance of all this, and how we could perhaps come up with
an optimal solution, etc., etc. They were quite uneasy about my
enthusiasm and assured me that they had lots of experience in
planning itineraries, and would get back to me if they required
mathematical assistance. So far, they haven’t.

Despite the reluctance of Suri’s publishers, book touring is a natural setting
for the TSP.
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Extra Miler Club

Themotto of the ExtraMiler Club is “because the shortest distance between
two points is no fun.” Nonetheless, members do like to plan their tours,
aiming to visit all 3,100+ counties in the United States. This is not exactly a
TSP, since crossing any point of a county line is sufficient, although some
members prefer to visit each county seat of government.

The Wall Street Journal reported that one Extra Miler proposed to eat
a Big Mac in each of the over 13,000 McDonald’s in North America.4 That
would be a nice application of the TSP, but the club Web site reports the
member “has now set forth upon a less gastronomically challenging goal.”

The Iron Butt Rally

While the Extra Milers typically travel by automobile, the vehicle of choice
for the 35,000-member strong Iron Butt Association is the motorcycle. One
of their many challenges is the 48 States in 10 Days ride, where riders must
visit all 48 continental states in the United States. Any route through the
states is acceptable, but riders must obtain printed documentation, such as
a gasoline receipt, verifying each state on their trip. Rider Maura Gatensby
sent an e-mail letter in February 2009, asking about the city locations used
in the Dantzig-Fulkerson-Johnson TSP tour.

Most of us work on the problem by taking existing routes and trying
to trim them somehow, but after reading about the existence of
this problem in mathematics, I would like to make the Dantzig
route my base route, and then perhaps try and reduce distance by
moving some of the Dantzig locations. If the Dantzig route is not
too long, I would like to just ride this route, because of its historical
significance. Sometimes the shortest route isn’t the “best” route,
there is more poetry in walking in the footsteps of giants.

This is certainly a great use of their optimal solution.
Ms. Gatensby writes that the shortest distance known for the 48/10

ride is 6,967 miles. Although 48 cities is easy for today’s TSP solvers, the
problem is complicated by the fact that there are many choices for potential
stops in each state. It would be an interesting challenge to find the optimal
route with some fixed constraint, such as requiring each state visit to be
among a list of known gasoline stations.



The Salesman in Action 49

Figure 3.3
En route with theMiss Izzy.

Photograph courtesy

of Ron Schreck.

Flight Times

For record speed, it is hard to beat Ron Schreck, who uses the RV-8
airplane Miss Izzy for his tours. In 2007, Schreck had the idea to visit in
a single day all 109 public airports in his home state of North Carolina.
Concorde provided an optimal tour that Ron modified slightly to reach
before sunrise several airports having lighted runways. His trip was made
on July 4, a public holiday in the United States, which helped in avoiding
delays. Schreck’s total flight covered 1,991 miles in seventeen hours, with
the time between landings averaging only nine and a half minutes. Landing
here typically meant touching the wheels on the ground and bouncing back
into the air.

Mapping Genomes

Turning away from themovement of people and vehicles we find surprising
uses of the TSP model. One of the most interesting of these arises in
genetics research, where a focus over the past decade has been the accurate
placement ofmarkers that serve as landmarks for genome maps.

A genome map has for each chromosome a sequence of markers
with estimates of the distances between adjacent markers. The markers in
these maps are segments of DNA that appear exactly once in the genome
and can be reliably detected in laboratory work. The ability to recognize
these unique segments allows researchers to use them to verify, compare,
and combine physical maps created across different laboratories. It is
particularly useful to have accurate information on the order in which the
markers appear on the genome, and this is where the TSP comes into play.
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Figure 3.4
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One of the primary techniques for obtaining laboratory data on the
relative position of markers is known as radiation hybrid (RH) mapping.
This process exposes a genome to high levels of X-rays to break it into
fragments. The fragments are then combined with genetic material, taken
from rodents, to form hybrid cell lines that can be analyzed for the presence
of markers. A simple illustration of the two steps is given in figure 3.4.

The central theme in RH mapping is that positional information can
be gleaned from an analysis of which pairs of markers appear together in
cell lines. If two markers A and B are close on the genome, then they are
unlikely to be split apart in the radiation step. Thus, in this case, if A is
present in a cell line, it is likely that B is present as well. On the other hand,
if A and B are far apart on the genome, then we can expect to have cell
lines that contain just A or just B , and only rarely a cell line containing
both A and B . This positional reasoning can be crafted into a notion of an
experimental distance between two markers.

Using the experimental distances, the problem of finding the genome
order can be modeled as a TSP. Indeed, a genome ordering can be viewed
as a path traveling through each marker in the collection. As usual, such a
Hamiltonian path is readily converted to a tour by adding an extra city to
permit the ends of the path to be joined.

A group at the National Institutes of Health (NIH), led by Richa
Agarwala and Alejandro Schäffer, has developed methods and software
for handling these genome TSP problems in practical settings, including
procedures for dealing with erroneous data (a common occurrence in
laboratories).5 The NIH package uses Concorde to permit the software to



The Salesman in Action 51

find optimal tours; it has been adopted in a number of important studies,
including the construction of human, macaque, horse, dog, cat, mouse, rat,
cow, sheep, and river buffalo maps.

Aiming Telescopes, X-rays, and Lasers

Although we normally associate the TSP with applications that require
physical visits to remote locations, the problem also arises when sites can
be observed from afar, without actual travel. A natural example is when the
sites are planets, stars, and galaxies, and the observations are to be made
with some form of telescope.

The process of rotating equipment into position tomake an observation
is called slewing. For large-scale telescopes, slewing is a complicated and
time-consuming procedure, handled by computer-driven motors. In this
setting, a TSP tour that minimizes the total slewing time for a set of
observations can be implemented as part of an overall scheduling process.
The cities in the TSP are the objects to be imaged and the travel costs are
estimates of the slewing times to move from one object to the next.

In a Scientific American article, Shawn Carlson describes how a TSP
heuristic came to his aid in scheduling a fragile, older telescope to image
approximately 200 galaxies per night. Concerning the need for good TSP
tours, Carlson writes the following. “Because large excursions from horizon
to horizon sent the telescope’s 40-year-old drive system into shock, it was
vital that the feeble old veteran be moved as little as possible”.6 Modern
telescope installations are certainly not feeble, but good solutions to the
TSP are vital for the efficient use of very costly equipment.

Finding Planets

Interesting examples of the TSP have been considered in planning work for
space-based telescope missions by NASA. Martin Lu of the Jet Propulsion
Laboratory calls this study the “traveling planet-finder problem” since a
major goal is the discovery of Earth-like planets in orbit around nearby
stars.

As in the case of ground-based equipment, the TSP is used to determine
the sequence of observations to be made by the telescopes. In this setting,
however, the sequencing of observations is made well in advance of the
mission, rather than on a nightly basis. This preplanning is due to the great
amount of fuel consumed in slewing operations and to the length of time
needed to study each star.Martin Lu estimates that approximately fifty stars
would be observed in a three-year mission.
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Figure 3.5
Two-occulter formation visiting 80 stars, by E. Kolemen and N. J. Kasdin.

A difficulty with observing a possible Earth-like planet is that light
directly from its star washes out any image of the planet itself. A pro-
posed solution consists of using a space telescope together with a large
occulter stationed 50,000 to 100,000 kilometers away. Robert Vanderbei
of Princeton University describes this as holding a giant thumb in front of
the telescope’s eye to block out starlight. The telescope remains in a fixed
orbit, while the occulter moves from one position to another, setting up the
observations.

A detailed study of the sequencing of occulter-based telescopes has
been carried out at Princeton University by Egemen Kolemen and Jeremy
Kasdin.7 They use a sequence of optimization models to estimate fuel costs
in moving the occulter from star to star. The image in figure 3.5 depicts
their solution when a single telescope works with two occulters, alternating
the observations from one to another; the colored paths represent the tours
taken by the occulters. Note that sub-paths that appear to be isolated in the
figure are actually connected around the back of the sphere. In this test,
the solution picks out 80 of the top 100 candidate stars in a NASA target
list.

X-ray Crystallography

The ground-based telescope TSP is similar to a study by Robert Bland
and David Shallcross in a different domain.8 Working with a team at
Cornell University in the mid-1980s, Bland and Shallcross used the TSP
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Figure 3.6
Crystal image drawn by laser.

to guide a diffractometer in X-ray crystallography. The travel costs in this
case are estimates of the time for computer-driven motors to reposition
sample crystals and to aim the X-ray equipment; experiments can consist
of up to 30,000 observations per crystal. Bland and Shallcross reported
improvements of up to 46% in total slewing time with the help of TSP
methods.

Lasers for Crystal Art

The use of pulsed lasers in manufacturing settings provides another oppor-
tunity for this type of “aiming” TSP. A nice example is in the production of
models and artwork burned into clear solid crystals, such as the pla85900
object produced by Mark Dickens of Precision Laser Art, displayed in
figure 3.6. The focal point of a laser beam is used to create fractures at
specified three-dimensional locations in the crystal, creating tiny points
that are visible in the clear material. The TSP is to guide the laser through
the points to minimize production time.

Dickens has adopted heuristic methods from Concorde to handle
very large sets of points needed to obtain high-quality reproductions
of elaborate images. This application holds a place of honor as having
generated the largest industrial instances of the TSP we have encountered
to date, with some examples exceeding one million cities.

Guiding Industrial Machines

In modern manufacturing, machines are often adopted to perform re-
peated tasks, such as drilling holes or attaching items. This is a common
setting for TSP applications.
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Figure 3.7
Printed circuit board with 441

holes. Photograph courtesy of

Martin Grötschel.

Drilling Circuit Boards

Printed circuit boards contained in common electronic devices often have
numerous holes for mounting computer chips or for making connections
between layers. The holes are produced by automated drilling machines
that move between specified locations to create one hole after another,
and a classic application of the TSP is to minimize the travel time of the
drill head during the production process. Gerhard Reinelt’s TSPLIB test set
contains a number of examples of this type, including an instance based on
the board displayed in figure 3.7.

The use of TSP algorithms has led to improvements of approximately
10% in the overall throughput of circuit-board production lines.9 Typical
problems in this class range in size from several hundred cities up to several
thousand cities.

Soldering a Printed Circuit Board

Wladimir Nickel, an electronics engineer in Germany, wrote that he has
adopted Concorde in a follow-up step in circuit-board production, where
items are soldered onto the surface of the board. He uses a computer
numerical controlled (CNC) machine, equipped with a solder paste dis-
penser, to print solder at specified locations. His machine is displayed in
the photographs given in figure 3.8; the board being created has 256 solder
locations and the TSP solution provides the quickest way to move the
dispenser through the full set of points.
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Figure 3.8
Applying solder to a printed circuit board. Courtesy of Wladimir Nickel.

Engraving Brass

Brass dies are used in printing raised images, such as those found on boxes
of chocolates. The dies were once made by hand, but now they are typically
engraved with heavy-duty CNC milling machines. When a CNC machine
has completed the cutting of a letter or design element, the spindle is raised
and the device moves to the next letter or element. Additional flexibility
in this case comes from the fact that elements to be cut are not single
points, so the machine can be guided to any location above the element.
CNC engraver Bartosz Wucke wrote in 2008 that the application of the
TSP reduced the working time by half in cases where dies have significant
amounts of text or where there are abstract patterns of many points.

Customized Computer Chips

The same class of application, on a much smaller physical scale, arose in
work at Bell Laboratories in the mid-1980s. Bell researchers developed a
technique for the quick production of customized computer chips. The
process starts with a basic chip having a network of simple building blocks,
called logic gates. Portions of the network are then cut with a laser to create
individual groups of gates that allow the chip to perform some described
function. In this case, the TSP is to guide the laser through the locations that
need to be cut. Jon Bentley and David Johnson provided fast TSP heuristic
methods that lowered the slewing time by over 50% on typical examples,
providing an important speedup in the production process.

This application also holds a place of honor as the source of the record
85,900-city TSP instance displayed in figure 1.7.
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Figure 3.9
Gene expression data. Image courtesy of Sharlee Climer and Weixiong Zhang.

Cleaning Silicon Wafers

Another TSP application arises earlier in the production of computer chips.
Standard chips are etched into large circular wafers of silicon and these
wafers must be free of all impurities. The nanomanufacturing firm Applied
Materials has a technique for cleaning defects on wafers and they have used
Concorde to guide the machinery from one defect to another.

Organizing Data

Organizing information into groups of elements with similar properties is a
basic tool in data mining, the process of extracting patterns from data. The
TSP has been adopted in such efforts when there is a good measure of the
similarity between pairs of data points. Using the similarity values as travel
costs, a Hamiltonian path of maximum cost places similar points near to
one another (since closely related points have high similarity measures),
and thus segments in the path can be used as candidates for clusters. The
final splitting into segments is typically done by hand, selecting natural
breakpoints in the ordering.10

An elegant alternative to this two-stage method was proposed by
researchers Sharlee Climer andWeixiong Zhang.11 In their approach, k+ 1
dummy cities are added when creating the TSP, rather than just a single
city. Each of the dummy cities is assigned a travel cost of zero to all other
cities. The additional cities serve as breakpoints to identify k clusters, since
a good tour will use the zero-cost connections to dummy cities to replace
large travel costs between clusters of points.

Climer and Zhang use their TSP+k method as a tool for clustering gene
expression data, adopting Concorde to compute optimal tours and varying
k to study the impact of different cluster counts. The image in figure 3.9 was
produced with their software. The data set displayed in the figure consists
of 499 genes from the plant Arabidopis under five different environmental
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Figure 3.10
The MusicRainbow

device. Courtesy of

Elias Pampalk.

conditions; the shades of gray represent gene expression values; the clusters
are indicated by solid white lines.

Musical Tours

The TSP has also been used to make sense out of vast collections of
computer-encoded music. Elias Pampalk and Masataka Goto, working out
of the National Institute of Advanced Industrial Science and Technology
in Japan, created theMusicRainbow system to support users in discovering
new artists that may appeal to their musical tastes. Pampalk and Goto took
a collection of 15,336 tracks from 558 artists and developed a similarity
measure between each pair of artists, computed by comparing audio
properties of the tracks in the collection. The TSP was then used to arrange
the artists in a circular order, such that similar artists are near to one
another. In this application the cities are the musicians and the travel costs
are the similarity measures.

Using the circular ordering, the music collection can be navigated by
turning a knob, with artist information displayed on a computer screen.
Various identifiers associated with the artists are indicated via a set of
concentric colored rings corresponding to high-level classifications, such
as rock and jazz. A nice feature of MusicRainbow is that all identifier
information is obtained automatically via a search for Web pages, allowing
the system to be easily deployed on any music collection.

Elias Pampalk was involved in a second music-related TSP applica-
tion, together with colleagues Tim Pohle and Gerhard Widmer from the
University of Linz in Austria. The idea this time is to organize a collection
of music tracks into a circular list, such that similar pieces are near to one
another. Such an arrangement allows a user to spin a wheel to pick a piece
suiting their current mood, and the player follows this with a sequence of
similar tracks. In their Traveller’s Sound Player demonstration, the team
used timbral similarities to measure the distance between pairs of tracks.
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A test case included over 3,000 tracks, and the TSP was used to minimize
the total distance in the circular order.

On a more local level, New York University’s Drew Krause adopts the
TSP as an aid in creating individual compositions. Smooth transitions in
music are called conjunct melodies, and they are associated with pleasing
sound. In Krause’s process, Concorde is used to build arrangements with
minimum transitions from one chord to the next; the cities are a collection
of chords and the travel costs are defined as the sum of the half-step
distances between the corresponding notes.

Speeding Up Video Games

Modern video games use large amounts of data to give objects in their
displays an appearance of physical material, such as wood or metal. The
basic components of this display data are called textures and libraries of
thousands of textures are available, ranging from bricks to rust. Any scene
in a game requires a specific set of textures to render the displayed objects,
and a challenge is to get the texture data onto the video monitor as quickly
as possible, to give smooth transitions from scene to scene. This is where
the TSP can help.

A basic property of data access on digital video disks (DVD) is that
reading items stored sequentially is much faster than accessing items from
random locations. It follows that the layout of texture data on a disk can
have a large impact on the time needed to render a game scene. It is highly
desirable to have sets of textures used in the game residing sequentially,
but this is typically not possible unless textures are duplicated on the disk,
greatly increasing the storage requirement. As an alternative, the layout
can be chosen such that the total number of breaks is minimized, where
a break occurs when a set of textures needed in the game is stored in more
than one location on the disk. If a texture set is split into k intervals, then
it contributes k− 1 breaks to the layout. This is the same measure used
in the genome-mapping application, where texture sets correspond to cell
lines. In this TSP setting, the cities are the textures and the cost of travel
between two textures is the number of sets that contain one of the textures
but not the other. Like the genome problem, this application calls for a
Hamiltonian path rather than a tour, which is handled in the usual manner
via the addition of an extra city.

This application was described by Glen Miner of the Canadian firm
Digital Extremes. Digital Extremes has experimented with the Concorde
code for producing texture layouts, reporting significant improvements
through the use of the TSP.
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Figure 3.11
Scan chain.

Tests for Microprocessors

The computing technology firm NVIDIA recently adopted Concorde in
optimizing the on-chip circuitry used to test their graphics processors. This
is a common use of the TSP in the design of modern computer chips, where
post-manufacturing testing is a critical step in the production process.

To facilitate such testing, scan chains were introduced in the 1980s to
link components, or scan points, of a computer chip in a path having input
and output connections on the chip’s boundary, as illustrated in figure 3.11.
A scan chain permits test data to be loaded into the scan points through the
input end, and after the chip performs a series of test operations the data
can be read and evaluated at the output end.

The TSP is used to determine the ordering of scan points to make
the chain as short as possible. Minimizing the chain length helps to meet
a number of goals, including saving valuable wiring space on the chip
and saving time in the testing phase by allowing signals to be sent more
quickly.

In most cases chip manufacturing technology allows only horizontal
and vertical connections, thus the distance between two points in a scan-
chain TSP is measured using paths that travel only horizontally or verti-
cally, such as walking the streets of Manhattan. A drawing of an optimal
path for a 764-city scan-chain problem is given in figure 3.12. This example

Out

In

Figure 3.12
Scan-chain TSP

with 764 cities.
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was provided by Michael Jacobs and Andre Rohe of Sun Microsystems and
it was solved using the Concorde code. To reduce the time required for
testing, a modern computer chip will typically have multiple scan chains;
the 764-city example was one of twenty-five chains on the given chip.

Scheduling Jobs

The German firm BÖWE CARDTEC delivers hardware and software
products for managing the production of smart cards, such as credit cards
and identification cards. Their customers typically produce many types
of cards on the same hardware and this requires reconfiguration steps
between production runs, such as a change in the ribbon color and the
insertion of the correct blank cards. The setup time between different jobs
is significant and reduces the overall daily production. To address this,
BÖWE CARDTEC software uses the TSP to sequence jobs in an order that
minimizes the total setup time: the cities are the jobs and the travel cost
between jobs i and j is the time it takes to reconfigure themachine for job j
after it has completed job i . The firm reports that using tours obtained with
Concorde reduced the total setup time by up to 65% in typical applications,
resulting in significant gains in the overall rate of production.

This type of scheduling application was first described by Merrill Flood
in a lecture given in 1954. In typical examples, the setup time to move from
job i to job j is different than the time tomove from job j back to job i . The
TSP thus takes the asymmetrical form, where the cost of a tour depends on
the direction of travel.

AndMore

The areas of application we have described by no means exhaust the reach
of the traveling salesman. Indeed, intriguing new uses for the model appear
regularly in the applied mathematics literature. Successful projects that
have been reported include the following:12

• planning hiking paths in a nature park
• minimizing wallpaper waste
• picking items in a rectangular warehouse
• cutting patterns in the glass industry
• constructing universal DNA linkers
• estimating the trenching costs for connecting a telescope array
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• studying problems in evolutionary change
• assembling a genome map from a library of known subsequences
• gathering geophysical seismic data
• compressing large data sets of zero-one-valued arrays

Some of these settings are wildly distant from actual salesmen planning
their tours.



4: Searching for a Tour
We do not claim that our program is infallible, but rather that it
gives good answers in a computationally feasible amount of
computer time.

—Robert Karg and Gerald Thompson, 1964.1

A salesman on the road will not be impressed by a claim of TSP unsolv-
ability. She will nonetheless start up the car and get on with the task

of visiting customers. This practical mind-set argues for an alternative
approach to the problem: let’s give up for now the notion that only the
absolute best solution will do, and focus on delivering, as quickly as
possible, a near-optimal route. Such a view opens the door to all sorts of
creative ideas for getting the salesman home in time for dinner. Indeed,
some of the techniques developed and employed in this branch of TSP
research are now workhorses in computational science, such as simulated
annealing, genetic algorithms, and local search. Tour finding serves as a
sandbox for testing methods that aim to select a good solution from a large
population. It is the playground of TSP studies, albeit one with serious
consequences for numerous disciplines.

The 48-States Problem

The challenge of the 1940s was to route a salesman fromWashington, D.C.,
through each of the 48 states in the United States, and back toWashington.
Julia Robinson narrowed this down by proposing the salesman visit each of
the state capitals, but it does not appear that anyone took the step of writing
out a table of travel distances to specify completely the problem, most likely
because a solution for such a large instance of the TSP appeared well out of
reach.

Dantzig, Fulkerson, and Johnson clearly had a different opinion of the
solvability of the challenge, and, without access to a standard set of travel
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Figure 4.1
Cities in the 48-States Problem.

distances, went ahead and created their own version of the data. They
opted for the quite different selection of cities displayed in figure 4.1; they
hit every state, but only twenty of the locations are capitals. Despite this
deviation, there is no mystery to their choice. “The reason for picking this
particular set was that most of the road distances were easy to get from an
atlas.”2 Fair enough, but the selection did give the researchers an immediate
head start in the TSP computation: in the standard RandMcNally atlas they
consulted, the shortest drive from Washington to Boston passed through
seven other cities on the salesman’s list. In a bit of a gamble, Dantzig
et al. decided to drop these seven northeastern locations. Their reasoning
is as follows. If the optimal tour through the remaining cities includes
the direct link from Washington to Boston, then the RAND team could
solve the original problem by rolling down the window and waving at
Baltimore, Wilmington, Philadelphia, Newark, New York, Hartford, and
Providence as they drove by. On the other hand, the 42-city tour might
reach Washington by some other route, in which case it would have been
back to the drawing board.

As you can guess by looking at the map, the optimal tour does indeed
use the Washington-Boston link, and thus Dantzig et al. were justified in
working with the reduced set of locations. We should point out that things
are not so convenient today; using Google Maps, the direct route from
Washington to Boston is 451 miles, while adding the remaining seven stops
brings the trip to 491 miles. Much of the savings, however, comes from
using Interstate 84 through Connecticut and into Massachusetts, and this
section of the highway first opened for traffic in 1967.
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The data collected from Dantzig’s Rand McNally atlas is symmetric,
giving distances that do not depend on the direction of travel. (Throughout
the chapter we will assume that travel costs are symmetric.3) Dantzig et al.
adjusted these values by subtracting 10 from each number, then dividing
by 17 and rounding the result to the nearest integer. “This particular
transformation was chosen to make the di j of the original table less than
256, which would permit compact storage of the distance table in binary
representation; however, no use was made of this.”4 The full table of
adjusted distances is contained in their research paper, making precise the
problem that had been solved.

Pegs and String

Dantzig et al.’s data distorts somewhat the natural geometry of the problem,
but the Euclidean version, where straight-line distances are used, can
nonetheless be an effective tool in comparing potential tours. Indeed, the
tour-finding approach adopted by the team is based entirely on straight-
line approximations.

No hint as to how the USA tour was originally obtained is given in the
famous Dantzig et al. paper, but in subsequent lectures Dantzig revealed
that a physical device was used. The team constructed a wooden model of
the problem, placing pegs at each of the 49 locations, and used a string, tied
to a starting city, to wrap around the pegs and trace out a tour. Dantzig
described this as a great aid in working with problems by hand; the taut
string quickly measures possible routes and identifies likely continuations
of subpaths. The model does not provide a solution algorithm in any sense,
but with its help Dantzig et al. managed to locate the tour that later proved

Figure 4.2
A peg-and-string tour

through Germany. Courtesy

of Konrad-Zuse-Zentrum

für Informationstechnik

Berlin.
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to be the optimal route through the 49 cities. Their solution weighed in at
699 units, as measured by the table. Translating this back to atlas distances,
the tour covered the United States in 12,345 miles.

Growing Trees and Tours

There is something refreshing about taking a clean sheet of paper, or
perhaps a wooden model, and attempting to lay out a good tour. The
inclination is to pick a starting point and grow a path, adding one city after
another, or, from another point of view, adding one road segment after
another. Dantzig et al. relied on intuition to stretch their string from city to
city, but simple algorithms can perform the task fairly well.

Nearest Neighbor

If you want to construct a tour, the simplest idea is to always drive to the
closest city among those not yet visited. This nearest-neighbor algorithm is
sensible, although it only rarely finds a shortest-possible solution.

The drawings in figure 4.3 illustrate nearest neighbor in action on
the 42-city version of the USA problem, using the distances provided by
Dantzig et al. The tour starts in Phoenix and spreads quickly across the
southern part of the country. It looks very good for many steps, but when
we arrive in the Pacific North West we have no place to go other than
to travel all the way back to the East Coast to pick up cities carelessly
skipped over during the first pass through the region. This is typical of the
algorithm, where we paint ourselves into a corner by not looking ahead
when moving from city to city. The final tour in figure 4.3 measures 1,013
units, compared with Dantzig et al.’s optimum of 699 units.

Now, if you are a devil’s advocate, you can easily create a TSP instance
where nearest neighbor returns a tour that is as bad as you can imagine in
comparison to an optimal solution. The point to note is that the algorithm
will be forced to take the last leg of the journey, back to the starting city,
regardless of its travel cost. So if we increase by 1,000,000 the cost of travel
between Montpelier and Phoenix, then poor nearest neighbor will still
select the same tour, this time at a total cost of 1,001,013, while the optimal
solution remains at 699.

This nasty modification produces a legitimate instance of the TSP, but it
does not resemble the types of travel distances we see in road versions of the
problem. Indeed, any reasonable instance will satisfy the triangle inequality:
for any three cities A, B , and C , the cost to travel from A to B plus the cost
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Figure 4.3
A nearest-neighbor tour.

Figure 4.4
The triangle inequality.

CA

cost(A,B) + cost(B,C)
no less than

cost(A,C)

B

to travel from B toC must not be less than the cost to travel from Adirectly
to C . This condition rules out our nasty case. In fact, it can be shown that
with the triangle inequality, and, as usual, symmetric travel costs, nearest
neighbor will never do worse than 1+ log (n)/2 times the cost of an optimal
tour for an n-city TSP.5 So a fifty-city nearest-neighbor tour is guaranteed
to be no longer than four times an optimal route, and a million-city tour
no worse than eleven times optimal. Perhaps not a great comfort if you
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Figure 4.5
A greedy tour.

are depending on the algorithm for your travel plans, but we will see soon
methods with better guarantees.

The Greedy Algorithm

Nearest neighbor grows a single path that eventually snakes around and vis-
its every city. Themethod is a greedy one, extending the path in the shortest
possible manner at each step. The name greedy is, however, reserved
for an alternative algorithm that grows many subpaths simultaneously,
adding shortest available road segments wherever they may be found. The
operation of the algorithm on the USA problem is illustrated in figure 4.5;
the subpaths grow across the map and eventually link up into a tour.

When describing TSP methods such as greedy, it is convenient to
adopt graph-theory terminology, with cities being the vertices of the graph
and city-to-city road segments the edges. A tour is a Hamiltonian circuit,
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consisting of a selection of edges corresponding to road segments traveled
by the salesman.

The greedy algorithm considers edges in a shortest-first order, adding
an edge to the solution only if it joins two subpaths into a longer subpath.
The progress of the algorithm looks fantastic early on; the first twenty edges
or so in the USA example are very short indeed. The difficulty arises late in
the process, when we are forced to accept several very long edges to make
the final connections, bringing the tour length up to 995 units.

On large test instances greedy almost always significantly outperforms
nearest neighbor. For example, if we drop cities randomly into a square
and take straight-line travel distances, then greedy regularly finds tours of
length no more than 1.15 times the optimal value, while nearest neighbor
produces results in the range of 1.25 times optimal. Unfortunately, this is
only an empirical observation. As far as worst-case guarantees go, greedy is
known only to do no worse than 1/2+ log (n)/2 times optimal on instances
satisfying the triangle inequality. So just a tiny bit better than the guarantee
for nearest neighbor.

Inserting Cities Into a Partial Tour

An immediate question in 1954 was to determine to what extent the
Dantzig et al. success relied on the fact that the peg and string model
provided an optimal tour, something that could not be counted upon in
further studies. In reply, young RAND associate John Robacker jumped
in with a series of tests the following summer, solving several 9-city
instances with the Dantzig et al. method, starting with random tours. The
small examples in his study were not very convincing, but Robacker also
described a general tour-finding method that could be automated when
attacking large data sets.6

In connection with these experiments, A. W. Boldyreff suggested
an approximation procedure, the merit of which lies in its inherent
simplicity and in the rapidity with which it may be applied. An
application of this approximation method to the 49-city problem
of [1] gave a tour of 851 units as compared with the optimal of 699
units, an error of 20%.

The idea is to start with a subtour through a small number of cities and
stretch it out, like a rubber band, to enclose one additional city after
another.

The Boldyreff/Robacker technique suggests a class of methods called
insertion algorithms. The algorithms come in different flavors, cheapest,
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Figure 4.6
A farthest-insertion tour.

nearest, farthest, and random, depending on the rule for selecting the next
city to add to the growing subtour. In each of these methods the new city
is inserted into the spot that causes the smallest increase in the subtour’s
length.

Robacker described and tested cheapest insertion, where each new
city is chosen to be the one that keeps the subtour as short as possible.
Nearest insertion chooses the city that gives the shortest distance to any
city currently in the subtour; farthest insertion chooses the city that is
farthest from the subtour cities; and random insertion selects the next city
at random from among those not yet in the subtour.

My favorite among these algorithms is farthest insertion; it obtains a
good overall shape for a tour early on, and then completes the details as the
last cities are added. The growth process for this variant is illustrated on
the USA problem in figure 4.6, starting at Phoenix, expanding out to New
Orleans, Minneapolis, and the two Portlands in stage five, and gradually
building a tour of length 778.
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Cheapest and nearest insertion have both been shown to produce tours
no worse than twice the length of optimal solutions when the triangle
inequality holds.7 This is quite nice, but it is curious that farthest insertion
comes with only a log (n) guarantee, even though it is generally the best-
performing variant in practice.

Mathematical Trees

Nearest neighbor and greedy typically end up with disappointing tours,
despite their beautiful-looking early selections. Greed does not pay in rout-
ing the salesman. Surprisingly, a greedy method does produce guaranteed
optimal solutions to the related problem of selecting a minimum-cost set of
roads to connect a group of cities. Such a minimum-cost structure for the
USA data set is displayed in figure 4.7. It has length 591 units, and is thus a
good bit shorter than an optimal tour.

My academic great-great-great-great-great-grandfather, Arthur Cayley,
studied graphs such as that in figure 4.7. Note that the structure is con-
nected and contains no circuits. Cayley used the wholesome name trees for
such graphs. His mathematics writing has a nice botanical flavor, referring
to vertices as “knots.” “In a tree of N knots, selecting any knot at pleasure
as a root, the tree may be regarded as springing from this root, and it is
then called a root-tree.”8 Rather than springing from a root, we will use the
structure to fashion a TSP solution, also guaranteed to be no longer than
twice the length of an optimal tour. Trees, by the way, were the subject of
the mysterious mathematical problem solved by Matt Damon’s character
in the film Good Will Hunting. The notes drawn by Damon in the scene
displayed in figure 4.8 describe Cayley’s formula for the number of trees
with n vertices, together with several small examples.

Figure 4.7
Optimal tree.
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Figure 4.8
Matt Damon in Good

Will Hunting. Copyright

Miramax Films.

You likely have already convinced yourself that an optimal solution to
the connection problem will indeed be a tree. The point is that we should
never complete a circuit when building a network, since the ends of the final
edge are already connected. The greedy algorithm in this case, working in a
shortest-first order, includes an edge in the solution only if it is not possible
to travel from one of its ends to the other using previously selected edges.
The algorithm grows larger and larger connected components until a tree
spanning the entire set of cities is produced. It is remarkable, and not too
difficult to prove, that this simple method always produces a spanning tree
of minimum cost.9

A tree is not a tour, but it does give a means to travel from city to city.
One way to arrange this is as follows. Whenever we reach a new city, check
if it is an end of an unexplored tree edge and, if so, choose such an edge and
move along it to reach another city. If, on the other hand, we have already
traveled along each of the tree edges meeting the new city, then backtrack
until we return to a city that meets unexplored edges. Such a trip is called
a depth-first-search traversal of the tree. It eventually reaches all cities and
backtracks to the start.

The operation of depth-first search is illustrated on a 6-city tree in
figure 4.9; the doubled edges are the ones along which we have backtracked.
Notice that when the process ends we have traveled along each edge exactly

Figure 4.9
Walking along a

tree to build a tour.
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Figure 4.10
Tour created from

an optimal tree.

two times, implying the cost of the trip is twice the cost of the tree. This
is good news, since the cost of an optimal tree cannot be more than the
cost of an optimal tour. Now, to obtain a tour from the traversal, we simply
shortcut over the backtracking steps. These shortcuts are drawn in red in
the final tour in figure 4.9.

Applying the algorithm to the USA problem produced the tour of
length 823 units displayed in figure 4.10. The depth-first-search traversal
in this case started in Phoenix; whenever there was more than one choice
for a tree edge to explore, the edge leading to the subtree having the smallest
number of cities was taken.

Christofides’ Algorithm

Growing a tree to guide a salesman is a nice idea, but to realize its full power
we need to step back and view things from the perspective of Leonhard
Euler. A depth-first-search traversal of the tree is in fact a Eulerian walk
through the graph obtained by duplicating the tree’s edges. The duplication
step ensures that each vertex of the graph meets an even number of edges,
the condition unfortunately violated by the bridges of Königsberg.

Rather than duplicating the tree, we can instead add a set of edges that
meets every odd vertex exactly once, where we call a vertex odd if it is
the end of an odd number of tree edges. The resulting graph has no odd
vertices, and therefore admits a Eulerian walk that can be shortcutted into
a tour.

To illustrate the idea, figure 4.11 displays the twenty-six odd vertices
in the USA tree, and a set of thirteen edges, in red, that meet each of
these vertices exactly once. Such a set of edges is called a perfect matching,
and Jack Edmonds showed how to compute, in polynomial time, a perfect
matching of minimum cost. Edmonds’s result is a milestone in the field
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Figure 4.11
Aminimum-cost perfect matching of the odd-degree vertices.

Figure 4.12
Nicos Christofides, 1976.

of optimization discussed in chapter 6. For now we note only that this
is what the doctor ordered, since, as we argue below, the cost of such an
optimal matching can be at most half the cost of an optimal tour. Adding
the matching to the tree and shortcutting a Eulerian walk in the resulting
graph, we obtain a tour of cost no more than one-and-a-half times that
of an optimal solution to the TSP. This is a nice guaranteed performance,
and in practice the algorithm typically produces even better solutions. Its
operation on the USA problem is displayed in figure 4.13, resulting in a
final tour of length 759 units.

Now, to estimate the cost of the optimal matching in general, note first
that walking around a TSP tour will take us from odd vertex to odd vertex,
with a few even vertices in-between. Shortcutting the even vertices results
in a circuit through the odd vertices only, and such a circuit is the union of
two perfect matchings, taking every other edge, starting with either the first
edge or the second. One of these two matchings must have cost no greater
than half the cost of the tour, and Edmonds’s optimal matching can only
be cheaper still. Voila! This three-step argument is illustrated in figure 4.14,
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Figure 4.13
A Christofides tour.

Figure 4.14
Two perfect matchings from an optimal 42-city tour.
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where we start with an optimal USA tour, shortcut it to a circuit through
the odd vertices, and split the circuit into two matchings.

The full process of combining Euler and Edmonds was strung together
by Nicos Christofides in 1976, and it holds a place of honor in the pantheon
of the TSP: no polynomial-time algorithm is known to have a better worst-
case guarantee than Christofides’ method.10

New Ideas?

The purity of laying down a tour, piece by piece, is what often attracts
people and ideas to the TSP. And it is certainly a good place to gain
firsthand experience with the complexity of the problem.

If you want to take a shot at the problem, then improving the perfor-
mance guarantee of Christofides is a clear target. I must, however, warn
you that it may be difficult to beat the factor of one-and-a-half times
optimal, as we discuss in chapter 9. On the other hand, it would not be
surprising to see new methods that fare well in practical competitions with
existing tour-growing algorithms. Alongside the well-known methods we
have discussed, TSP fans and researchers have proposed numerous alter-
natives, including clustering techniques, partitioning methods, spacefilling
curves, and more. To date, none of these tour-growing algorithms can
beat in practical computation the tour-improvement techniques we treat
in the next section, but new ideas could certainly narrow the performance
gap.

Alterations While YouWait

A spiffy drawing of a USA tour, displayed in figure 4.15, accompanied
Martin Gardner’s TSP article in Discover, April 1985. The combination
of a popular journal and renowned problem solver brought considerable
attention to the salesman, but it also stirred up trouble with readers. A close
look at the drawing reveals the source of the hubbub: there are obvious
shortcuts in the route through the cities!

In a phone conversation with IBMmathematician Ellis Johnson shortly
after the article appeared, Gardner described that the tour was in fact
obtained from the work of Dantzig et al. The problem did not lie with the
tour, but rather with an overzealous editor who went ahead and shifted the
locations of the cities over to the 48 state capitals. The Discover caption
is as follows. “The traveling salesman problem is one of math’s most
enduring unsolved puzzles. Here’s the shortest route for a salesman—or
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Figure 4.15
United States tour.

Nina Wallace, illustrator,

Discover, April 1985,

page 87.

Figure 4.16
Optimal United States

tour. Ron Barrett, illustrator,

Discover, July 1985,

page 16.

salesperson—visiting 48 state capitals.” Bad luck. Dantzig et al.’s choice
of convenience in 1954 left Gardner scrambling for a correction to his
publication. This is what led to the phone conversation with Johnson, who
directed Gardner to TSP star Manfred Padberg.

Padberg would certainly have been able to solve the 48-capitals prob-
lem, but he presumably could not be reached. In the end it was Shen Lin,
of Bell Labs, who stepped up with a new tour, published in Discover four
months after the original. Lin did not have an exact-solution procedure,
but he was a master of tour-improvement methods.

The journal was careful in describing the tour this second time around.
“Is he right? Lin is sure of it. So convinced of his results is he that he’s
personally offering a prize of $100 to anyone who can find a route for the
salesman, using his distances between capitals, shorter than 10,628 miles.”
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The editors sent a table of travel distances to anyone interested in taking up
Lin’s challenge, but his money was safe. The tour is in fact optimal.

Exchanging Edges

Tour-improvement methods, championed by Lin, do exactly what the
name implies. They take as input a tour, search for flaws, and correct them
if possible. For example, the spike in the initial Discover tour reaching into
Tennessee suggests something is wrong with that portion of the route, and
the steps outlined in figure 4.18 show how to correct it. We first delete the
two edges in the spike and a third edge just to the north, breaking the tour
into three segments, one of which is the isolated capital of Tennessee. The
segments are rejoined using three new edges, indicated in red. Since the
three new edges are together much shorter than the three deleted edges,
this 3-opt move improves the tour.

Figure 4.17
Shen Lin, 1985.

Photograph courtesy

of David Johnson.

Figure 4.18
Improving the Discover tour

with a 3-opt move.
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Lin’s computation for Discover involved an extensive search for tour
improvements, including 2-opt moves, where two edges in a tour are
deleted and the tour is reconnected with two shorter edges, 3-opt moves,
and more. To explore the ideas he brought to bear on the problem, let’s
return to the nearest-neighbor tour constructed in our first attempt at the
42-city USA example, a fine candidate for improvement.

Perhaps the oldest theorem concerning the TSP is the fact that for
Euclidean instances of the problem an optimal tour will never cross itself.
The way to prove this is with a 2-opt move: replacing a crossing pair of
edges will always shorten a tour. An obvious move of this type is indicated
in figure 4.19. This exchange saves 31 units, bringing the total cost of the
tour down to 982 units. And many more such exchanges are available.

By repeatedly making improving 2-opt moves (27 of them altogether),
we arrive at the tour of cost 758 displayed in figure 4.20. At this point
there exist no further improving moves with just two edges, but this simple
process has brought our faulty nearest-neighbor tour to within 8% of the
optimal route for the salesman.

Figure 4.19
An improving 2-opt move for the nearest-neighbor tour.

Figure 4.20
Tour with no further improving

2-opt moves.
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Figure 4.21
Shen Lin and Brian Kernighan, Bell Labs

News, January 3, 1977. Image courtesy

of Brian Kernighan. Reprinted with

permission of Alcatel-Lucent USA Inc.

Lin-Kernighan

Bashing on, we could now consider all possible 3-opt moves, checking if
any might lead to further improvements. Then 4-opt moves, 5-opt moves,
and so on up the line. Success with 3-opt was indeed reported by Lin
in the mid-1960s, but the computational burden of searching directly
for improving k-opt moves makes the process impractical for k much
larger than 2 or 3. Nonetheless, Lin and computer-science pioneer Brian
Kernighan accomplished this in a beautifully constructed algorithm.11
Their work is one of the great achievements of TSP research.

The Lin-Kernighan method is elaborate, but the main idea can be
gathered from the sketches in figure 4.22. In the display, the initial tour
is laid out as a circle; this makes the process easier to follow, but be aware
that the lengths of edges in the sketches are not meant to indicate travel
costs.

The search begins by selecting a home city, as well as a tour edge
meeting the selected city and a non-tour edge meeting the selected edge’s
other end. These are indicated by the red city, red edge, and blue edge in
the second sketch. Such a triple is considered only if the travel cost of the
blue edge is less than the travel cost of the red edge, with the plan being to
remove reds and add blues. In the first step we can accomplish such a red-
blue exchange by removing also an appropriate tour edge at the far blue
end and adding the return segment to the home city, as indicated in the
sketch. If this 2-opt move improves the tour, then great, we record how
much it saves, but we continue the search in the hope of finding a greater
improvement later on.
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Figure 4.22
Lin-Kernighan search

for a k-opt move.

(5)

(4)

(1) (2)

(6)

(3)

The next step, illustrated in the third sketch, is to paint the second tour
edge red (the one we just tried to delete), and to consider a blue alternative
to the direct route home. This extension is explored only if the two blue
edges together have cost less than the two red edges. Again in this case, it
is possible to come home by removing a tour edge at the far blue end and
adding the indicated return segment. We record this potential 3-opt move
if it gives the biggest savings thus far.

The search continues to further red-blue pairs, as long as the sum
of blue costs is less than the sum of red costs. If we reach the end of
the line, where it is no longer possible to add another pair of edges,
then we backtrack and explore alternative blue candidates at earlier levels.
Eventually we halt the process, either due to time considerations or by
running out of edges to consider.
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Figure 4.23
Five iterations of Lin-Kernighan.

At the end of the search we take the recorded move yielding the biggest
savings, apply it to our tour, and begin again from the newly improved
solution. If we failed to find any improving moves, then we return to our
starting tour, select a new home city, and attempt another search.

Red-blue, check the home route. Red-blue, check the home route.
Sounds easy enough, but there are plenty of devils in the details. Fortu-
nately, together with great computational results, Lin and Kernighan layed
out a crystal-clear exposition of their many ideas for implementing and
enhancing the search algorithm. With their original paper as a guide, over
the past forty years Lin-Kernighan has been engineered to precision, with
current implementations capable of producing very good tours to huge TSP
instances, having ten million cities and more.

The operation of Lin-Kernighan on the USA data set is illustrated in
figure 4.23, starting with the tour obtained from repeated 2-opt moves. The
algorithm finds an optimal solution in five iterations; in each step the edges
colored red are those that are deleted from the tour.

It should not come as a surprise that the original computer code of Lin
and Kernighan also makes short work of the USA example, using random
starting tours. “The probability of obtaining optimum solutions in a single
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trial is close to 1 for small-to-medium problems, say up to the 42-city
problem.”12 It is remarkable, however, that their basic method, designed
for instances with only several hundred cities or fewer, has served as the
cornerstone for the majority of the most successful TSP heuristic methods
developed in the past several decades, even as much larger examples have
been tackled.

We must note that the great practical performance of k-opt methods
is unfortunately not accompanied by great worst-case guarantees. For
example, repeatedly making improving 2-opt moves is only guaranteed to
produce a solution no worse than 4

√
n times longer than an optimal tour

on instances satisfying the triangle inequality.13 This is the dark side of Lin-
Kernighan, but don’t be overly concerned when applying the algorithm:
this king of methods typically produces very good solutions indeed.

Lin-Kernighan-Helsgaun: LKH

The long reign of Lin-Kernighan in practical computation has been aided
by a steady stream of enhancements supplied by the research community.
Most of these are tweaks of the original ideas, but computer scientist Keld
Helsgaun came along with a bombshell in 1998.

Helsgaun’s main contribution was a reworked version of the core search
engine, something that had remained basically intact for twenty-five years.
Whereas standard Lin-Kernighan can be viewed as a search for a sequence
of 2-opt exchanges that taken together result in an improving k-opt move,
the new method searches for a sequence of 5-opt exchanges. That is, rather
than adopting the step-by-step red-blue search, Helsgaun devised a scheme
to consider ten edges at a time, five reds and five blues.

Ten edges. The first thing you should think when you see this is “that’s
a lot of edges.” Indeed, looking at every possibility for five reds and five
blues would slow the algorithm to a crawl. To get around this, Helsgaun
limits his search to those sets of reds and blues that could potentially be
created by a step-by-step red-blue search, if we ignored the condition that
the blues must have cost less than the reds at each step. By considering any
such sequential 5-opt exchange in a stroke, Helsgaun’s method can explore
improving moves that simply cannot be found by the standard algorithm.

The 5-opt moves, combined with a bag of assorted tricks, allowed LKH
to set a new standard in tour finding. “For a typical 100-city problem the
optimal solution is found in less than a second, and for a typical 1000-
city problem [the] optimum is found in less than a minute.”14 This was
an amazing jump in practical performance, in a field of study considered to
be quite mature at the time.
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Pancake Flipping, Bill Gates, and Big LKH Steps

When news broke that Helsgaun was putting up improved tours for a
number of well-known challenge problems, there was plenty of speculation
as to how he was able to successfully employ the 5-opt strategy in practical
computation. To understand this, I must point out that in the twenty-five
years between Lin and Kernighan’s research paper and the announcement
of LKH, there had been only a small handful of efficient computer codes
implementing the standard algorithm. The Lin-Kernighan search method,
although well described, is difficult to convert into software that can be run
on large data sets.

Lin-Kernighan may be difficult, but LKH would appear to be impossi-
ble. Indeed, a great feature of working with a red-blue sequence is that at
each step there is only one way to come home. In other words, if we remove
two edges from a tour, then there is a unique way to hook up the resulting
subpaths to obtain a new tour. A quick calculation shows that LKH, on the
other hand, must handle 148 possibilities for joining up the five subpaths
involved in a sequential 5-opt move. So 1 versus 148, or difficult versus
very, very difficult.

Helsgaun’s secret was revealed when he made his entire computer code
available to researchers. Going through his files, Dave Applegate and I
realized that in fact there was no stealthy method: the code contained a full
listing of the 148 cases, independently covering each possibility. Helsgaun
had put in a Herculean effort to write a correct and efficient code to
implement an extremely complex algorithm.

Helsgaun’s code and the performance of LKH were exciting, but it left
one wondering if moving up to 6-opt exchanges might be better yet. Dave
wrote a small computer code and calculated that sequential 6-opt moves
created 1,358 possibilities for reconnecting a tour. That would be daunting
enough, but why stop at 6-opt? Well, by the time we get to 9-opt there are a
whopping 2,998,656 cases that must be treated. That would be a job indeed.

Not all was lost, however. Dave’s code was able to list the reconnection
tasks that must be handled, one by one. And an examination of LKH
showed a regular pattern in the instructions needed to reconnect the tour.
Combining these, we were able to create a computer program that could
produce the actual computer code to handle a k-opt move, for any value of
k. A computer code building a computer code.

This sounds good, but it resulted in lots of code: 6-opt, 120,228 lines;
7-opt, 1,259,863 lines; and 8-opt, 17,919,296 lines. This was all in the
C programming language. Although difficult to compile into a machine
workable form, the codes did run and produce interesting results. But 8-opt
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as a limit was no more satisfying intellectually than 5-opt, and generating
the full list for 9-opt was out of the question.

Dave kept up his courage. He had the idea that if we could make the
generating code more efficient, then there would be no need to write out
the full list of cases. The code-generation method could instead produce
the steps needed to handle each case on-the-fly during an execution of a
k-opt search. The method would still be limited by the computing time
required to execute the search steps, but it potentially permitted the use of
much larger moves.

Speeding up these code-generation calculations is closely related to the
pancake-flipping problems famously studied by Microsoft’s William Gates
and TSP expert Christos Papadimitriou, while Gates was an undergraduate
student at Harvard University. A flip of a top portion of a stack of pancakes
corresponds to a reversal of a subpath in a tour, which is what happens
in a 2-opt move. An implementation of a k-opt code generator calls for
an algorithm to find a minimum number of flips to rearrange a tour in
the order produced by a k-opt move, and this is a variant of the Gates-
Papadimitriou work.15 We managed to get this running, resulting in an
efficient on-the-fly search mechanism for sequential k-opt.

Helsgaun incorporated similar ideas into a powerful upgrade to his
LKH code, allowing users to specify the size of moves that will be strung
together. Demonstrating the reach of the new software, Helsgaun employed
10-opt moves in a computation on a 24,978-city Sweden data in 2003,
producing a tour that was shown to be optimal in the following year.

Borrowing from Physics and Biology

Taking a big picture of tour finding, viewing the TSP as just one example of
a general search problem, proves to be useful both in finding good tours and
in devising multipurpose techniques. The idea is to producemetaheuristics,
that is, heuristic methods for the design of heuristic methods. The general
nature of this work has brought in researchers from fields of science to join
in the hunt for good tours.

Local Search and Hill Climbing

A useful analog in this arena is to think of tours as lying on a landscape,
with the elevation of each tour corresponding to its quality. The type of
picture to have in mind is one like the Gasherbrum group of mountains
displayed in figure 4.24: good tours correspond to peaks of the mountains,
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Figure 4.24
Gasherbrum group. Image

by Florian Ederer.

with the optimal tour lying on top of mighty Gasherbrum II. A heuristic
algorithm can be viewed as moving through the landscape in search of high
land.

For this picture to make sense there should be a notion of when two
tours are located near to one another. This is typically handled by creating
neighborhoods around each tour. For example, two tours can be defined to
be neighbors if one can be reached from the other via a 2-opt exchange, or
via an exchange found by Lin-Kernighan. Large neighborhoods are useful
for navigating around a landscape, but they should be constructed so that
algorithms can view and evaluate neighbors.

Tour-improvement methods, such as repeatedly making improving
2-opt moves, are often called hill-climbing algorithms, since they can be
viewed as walking up a sequence of neighboring tours, always moving to
higher ground. At each step we do a local search for a nearby higher point. If
we are thorough in our search, then the algorithm will terminate at a peak,
or at least a plateau, since at this point all local moves will be either downhill
or flat. A full run of the algorithm begins at the point corresponding to the
starting tour and then scoots up a slope to reach a local peak.

Note that the choice of a starting tour can determine the fate of a hill-
climbing approach: if the starting tour lands midway up a small hill, then
the algorithmwill be limited to reaching the modest-quality tour associated
with the hill’s peak. For this reason Lin and Kernighan proposed to carry
out repeated runs of their algorithm from random starting solutions. The
idea is to throw darts into the landscape. If we toss enough darts, then there
is a decent chance of hitting a slope leading to a peak of good height.

Random tours provide a nice distribution of darts, but they have the
disadvantage of typically starting far down in valleys, due to their poor tour
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quality. For a large TSP instance it can take a long time to walk from a valley
to a peak. A compromise approach is to use nearest-neighbor darts, gaining
randomization from the selection of the starting city.

Simulated Annealing

In simulated annealing heuristics, the hill-climbing strategy is relaxed to
allow the algorithm to accept with a certain probability a neighbor that is
worse than the current solution. At the start the probability of acceptance
is high, but it is gradually decreased as the run progresses. The idea is to
allow the algorithm to jump over to a better hill before switching to a steady
climb.

The paper of Scott Kirkpatrick, Daniel Gelatt, and Mario Vecchi that
introduced the simulated-annealing paradigm studied the TSP, reporting
on heuristic tours for a 400-city problem.16 The authors of the paper write
that themotivation for themethod comes from a connection with statistical
mechanics, where annealing is the process of heating a material and then
allowing it to slowly cool to refine its structure.

For the salesman, the achievements of the paradigm have to date been
rather modest. But as a general search tool simulated annealing has been
a spectacular success. Google Scholar lists over 18,700 citations to the
original research paper, an almost unheard of number.

Chained Local Optimization

The greatest impact of simulated annealing on current tour-finding meth-
ods is perhaps not the technique itself, but rather the fact that it brought
the thinking of physics into the TSP arena. Indeed, it was a second
major contribution from physicists that first pushed computational results
beyond the limits of repeated Lin-Kernighan.

In the late 1980s, Olivier Martin, Steve Otto, and Edward Felten, from
the physics department at Caltech, proposed an alternative to the dart-
throwing strategy. The idea is to take advantage of the fact that a strong
local-search algorithm, such as Lin-Kernighan, will typically take us up
into the high-elevation region of the tour landscape. Rather than starting a
second run of the algorithm from a random location, Martin et al. suggest
we first look around our current peak to see if there might not be a way to
jump over a few local barriers to reach a new slope to take us to an even
better location.

The specific proposal is to kick the Lin-Kernighan solution to obtain a
new starting tour, rather than throwing a dart. The overall process repeats
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Figure 4.25
A double-bridge kick.

thismany times, replacing the solutionwhenever we reach a better tour. For
the method to work, a kick must take the solution out of its neighborhood,
so it should be a modification that Lin-Kernighan cannot easily undo.
Martin et al. found that a random 4-opt exchange of the type indicated
in figure 4.25 does the job nicely.

The resulting algorithm is dubbed Chained Lin-Kernighan and its
performance is outstanding. The stars were aligned for this idea. First,
Martin et al.’s intuition was correct: visiting the nearby region via the
kicking mechanism is a better way to sample the peaks in the landscape; we
use Lin-Kernighan itself to guide us to the highest elevations. Second, the
reapplication of Lin-Kernighan to a kicked tour runs much more quickly
than an application to a random tour. This is simply due to the fact that
much of a kicked tour remains in good shape, so the algorithm does not
need many iterations to reach a locally optimal result.

For most of the 1990s, implementations of Chained Lin-Kernighan
ruled the world of tour finding. The version included in the Concorde
code routinely finds, in one or two seconds, solutions within 1% of the
cost of optimal tours for instances with up to 100,000 cities. For even
better solutions, one can turn to LKH, but Chained Lin-Kernighan remains
dominant on very large data sets. For example, the plot in figure 4.26
shows the results of a run on a 25,000,000-city Euclidean instance, with city
locations having integer coordinates drawn at random from a 25,000,000×
25,000,000 square. In eight days, on a computer from the year 2000, a tour
that is approximately 0.3% greater than optimal was found.17

Genetic Algorithms

An alternative to the landscape view is to consider a salesman’s route as a
living organism, mutating and evolving over time. This way of thinking
is taken up in a class of methods known as genetic algorithms, inspired
by John Holland’s landmark book Adaptation in Natural and Artificial



88 Chapter 4

Figure 4.26
Chained Lin-Kernighan

on a 25,000,000-city

Euclidean instance.
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Systems published in 1975.18 Holland did not treat the TSP, but his ideas
quickly made their way into the tour-finding literature.

A general outline of a genetic algorithm, as applied to the salesman,
is the following. We begin by generating a starting population of tours,
say by repeatedly applying nearest neighbor with random starting cities.
In a general step, we select some pairs of members of the population and
mate them to produce child tours.19 A new population of tours is then
selected from the old population and the children. The process is repeated
a large number of times and the best tour in the population is chosen as the
winner.

The spirit of genetic algorithms is to mimic evolutionary processes
found in nature. The analogy is fun, but keep in mind that merely adopting
the language of Darwin does not imply we end up with a good tour.
Indeed, early genetic algorithms for the TSP were not especially successful,
even while restricted to very small instances of the problem. But the
idea of maintaining a population of tours has considerable merit and the
general approach can be crafted into very strong heuristics, particularly in
combination with local-search procedures.

The genetic-algorithm outline leaves plenty of freedom for selecting
methods to evolve a tour population. Besides the mating process, we also
get to choose a fitness measure for selecting the next population. Some cool
ideas have been developed for suchmeasures, seeking to balance the quality
of solutions with the need for a diverse population.

For mating itself, early schemes attempted to find subpaths in one
parent tour that could be substituted for subpaths in the other parent. This
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(1 () 2)

(3 () 4)

(5 () 6)

Figure 4.27
Mating two tours.

was rather restrictive, particularly in larger instances. A more successful
approach is to create a new tour by choosing a subpath in parent A and
extending it to a tour using, when possible, edges of parent B or edges
of parent A, with preference given to the edges of B . Another mating
technique, known as edge-assembly crossover (EAX), is illustrated on a pair
of USA tours in figure 4.27. To combine the blue and red solutions in the
example, we form the graph consisting of the union of their edges and select
a circuit, displayed in the third sketch in figure 4.27, that alternates between
blue and red. We then delete from the blue tour each of the circuit’s blue
edges and add to the blue tour each of the circuit’s red edges, as illustrated
in the fourth sketch. The process creates subtours that are combined into
a tour via a 2-opt move, displayed in the fifth and sixth sketches in the
figure.

The EAX mating scheme was adopted by Yuichi Nagata in one of
the most successful tour-finding procedures proposed to date.20 His im-
plementation relies on a very fast implementation of EAX, allowing the
algorithm to proceed through many generations of tours. Among Nagata’s
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achievements is his discovery of the best-known tour for the 100,000-city
Mona Lisa TSP.

Ant Colonies

At some point in your life you likely had the misfortune of losing food
to a group of hungry ants. Typically the pests arrive in your home or
garden via a long thin train of individuals, constantly moving back and
forth in a nearly straight line. A single antmoves haphazardly, but the entire
group, communicating via pheromone trails, finds an efficient route. This
collective behavior is the inspiration for a class of TSP heuristics known as
ant-colony optimization (ACO).

The leader of ACO research is Belgium’s Marco Dorigo, who developed
the ideas in his 1992 Ph.D. thesis.21 His algorithms work with a small army
of ant agents moving along the edges of a graph. Each agent traces out a
tour, selecting at each new vertex an edge chosen among those leading to
vertices not yet visited. The key to the process is the selection rule, which
makes use of a pheromone value associated with each edge; if an edge has a
high pheromone value then it has a high probability of being selected. After
the agents have all completed tours, the pheromone values are adjusted
using a rule that adds values proportional to the lengths of the computed
tours; edges in good tours get their values increased more than those in
poor tours.

The approach is both intuitive and appealing, but thus far ACO has not
proved to be competitive with Lin-Kernighan-based methods. In recent
years, however, the paradigm has been applied effectively to problems in

Figure 4.28
Ants working on the TSP.

Image by Günter Wallner.

Originally appeared in the

book Bilder der Mathematik
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Polthier.



Searching for a Tour 91

other areas, such as scheduling, graph coloring, classification, and protein
folding. The active research topic is a good example of how a focus on the
salesman can lead researchers to interesting general-purpose methods for
attacking optimization problems arising in diverse applications.

And Many More

We have touched on only the best-performing applications of metaheuris-
tic ideas for the TSP. Other schemes include neural networks, tabu search,
and honeybee models, to name just a few. If you have a general search
mechanism in mind, the TSP is a great place to develop, polish, test, and
compare your strategy, even if your planned domain of application is far
away from the humble routing of a salesman.

The DIMACS Challenge

The breadth of activity in tour finding is a strength of the area, but it has in
the past led to misunderstandings concerning the state of the art. Indeed, in
the 1980s research papers appeared in premier scientific journals, such as
Nature, describing computations on TSP instances having 30 or 50 cities.
The reported results were typically weak approximations, at a time when
Lin-Kernighan could reliably deliver optimal solutions in a blink of an eye,
and Martin Grötschel and Manfred Padberg were tackling instances with
hundreds of cities via exact methods.

This difficulty was addressed by two important events in the following
decade. The first of these was the TSP 90 conference held at Rice Univer-
sity’s Center for Research in Parallel Computing. The organizers brought
together exact-solution experts such as Grötschel and Padberg, together
with tour-finding teams from around the world. An important outgrowth
of the meeting was the establishment of the TSPLIB collection of test
problems by Gerhard Reinelt from the University of Heidelberg. Reinelt’s
library was published in 1991, containing over 100 challenge instances
of the TSP gathered from academic and industrial sources. The TSPLIB
collection provides a common test bed for researchers around the world
and across academic disciplines.22

The second event was the DIMACS TSP Challenge, led by David S.
Johnson of AT&T Research. DIMACS is the short name for the Center
for Discrete Mathematics and Theoretical Computer Science, housed at
Rutgers University. In the 1990s DIMACS ran a series of implementation
challenges, the best known of which is the TSP Challenge.23
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Figure 4.29
Left: Martin Grötschel, Gerhard Reinelt, and Manfred Padberg.

Right: Robert Tarjan, Dorothy Johnson, Al Aho, and David Johnson.

One goal of this Challenge is to create a reproducible picture of the
state of the art in the area of TSP heuristics (their effectiveness, their
robustness, their scalability, etc.), so that future algorithm designers
can quickly tell on their own how their approaches compare with
already existing TSP heuristics.

DIMACS made a call to the world’s tour finders, and the world responded
with 130 different algorithms and implementations. A great outcome of
the challenge is a Web site that allows for direct comparisons between
methods. The results are also gathered together in a very nice survey paper
by Johnson and co-organizer Lyle McGeogh.24

Johnson’s efforts in organizing the challenge, as well as his own detailed
computational studies of tour-finding methods, have been a great force in
shaping the current area of algorithm engineering. In 2010 he received
the Knuth Prize from the Association for Computing Machinery, cited
for his contributions to the theoretical and experimental analysis of algo-
rithms. A well-deserved recognition for one of the world’s leaders in TSP
research.

Tour Champions

Heuristic methods must strike a balance between running time and tour
quality. At the highest end of the scale we are willing to spend enormous
amounts of time to deliver the best solution that is practically possible. This
is Formula One racing, with participants in a no-holds-barred contest to
push down the lengths of best-known tours through challenge data sets.
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Figure 4.30
Left: Keld Helsgaun.

Right: Yuichi Nagata.

The world champions in this area are without a doubt Keld Helsgaun
of Denmark and Yuichi Nagata of Japan. Helsgaun’s LKH code has been
the gold standard in tour finding since its introduction in 1998, and he
has continued to extend and improve his algorithm with many new ideas.
Helsgaun is the current holder of the best-known tour in the World TSP
challenge, he provided the optimal tour for the record 85,900-city TSP, and
his name peppers the leader board for the VLSI Test Collection.25 Not to
be outdone, Nagata’s implementation of a genetic algorithm for the TSP
has produced the best-known tour in the Mona Lisa TSP challenge as
well as record solutions for the two largest examples in the National TSP
Collection.26 If you want a good solution to a large problem, these are the
people to call.



5: Linear Programming
The development of linear programming is—inmy opinion—the
most important contribution of themathematics of the 20th
century to the solution of practical problems arising in industry and
commerce.

—Martin Grötschel, 2006.1

S electing the best tour through a set of points and knowing it is the best is
the full challenge of the TSP. Users of a brute-force algorithm that sorts

through all permutations can be certain they have met the challenge, but
such an approach lacks both subtlety and, as we know, practical efficiency.
What is needed is a means to guarantee the quality of a tour, short of
inspecting each permutation individually. In this context, the tool of choice
is linear programming, an amazingly effectivemethod for combining a large
number of simple rules, satisfied by all tours, to obtain a single rule of the
form “no tour through this point set can be shorter than X .” The number X
gives an immediate quality measure: if we can also produce a tour of length
X then we can be sure that it is optimal.

Sounds like magic, but linear programming is indeed the method
adopted in Concorde and in all of themost successful exact TSP approaches
proposed to date. Moreover, its application to problems beyond the TSP
has made it one of the great success stories of modern mathematics.

General-Purpose Model

The tale of linear programming has a nice start, with a young George
Dantzig arriving late for a class given by Jerzy Neyman at the University
of California at Berkeley in 1939. The first-year graduate student hurriedly
copied down two problems he found written on the board and turned in
solutions several days later. “To make a long story short, the problems on
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the blackboard that I had solved thinking they were homework were in fact
two famous unsolved problems in statistics.”2 Not a bad week’s work. The
solutions ended up being the main content of Dantzig’s Ph.D. thesis.

After Berkeley, Dantzig spent the years of World War II studying
programming problems for the United States Air Force. In this military
context, program is not a reference to a set of computer instructions, but
rather to “proposed schedules of training, logistical supply and deployment
of combat units.”3 Dantzig became an expert at delivering such programs,
using desk calculators to crunch numbers provided by various reporting
systems.

At the conclusion of the war effort, Dantzig was offered an attractive
position to keep him at the Pentagon. Together with a nice salary, the
offer came with a specific research target: his colleagues Dal Hitchcock
and Marshall Wood set Dantzig the goal of mechanizing the military’s
program-planning process. Not one to hide from a challenge, Dantzig took
the bull by the horns and devised the far-reaching theory that became
known as linear programming, or LP for short.

Linear Programming

Dantzig’s LP research was strongly influenced by the work of Wassily
Leontief, who in the 1930s developed an economic model specifying a
balance between inputs and outputs of production. Dantzig extended
this idea with a general notion of constraining choices in economic
activities.

Figure 5.1
George Dantzig. Photograph

courtesy of Mukund Thapa.
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Three elements are key In Dantzig’s model. First, rather than dealing
with balance equations only, his LP constraints may also include inequal-
ities, expressing that one quantity must be at least as large as another.
A main use of this feature is to state that the amount of some item must be
at least zero, as Dantzig explained with the Mad Hatter’s help.4

“Take some more tea,” the March Hare said to Alice, very
earnestly.

“I’ve had nothing yet,” Alice replied in an offended tone, “so I
can’t take more.”

“You mean you can’t take less,” said the Hatter: “it’s very easy to
takemore than nothing.”

Precisely so. Some items, such as the quantity of tea consumed, only make
sense if they are nonnegative.5 Thus, if a variable T represents the quantity
of tea taken by Alice, then we have as a constraint that T must be at least
0. The shorthand for writing such a constraint is T ≥ 0, where the symbol
“≥” stands for greater-than-or-equal-to.

The second key idea is a restriction to linear constraints. William Safire,
in his “On Language” column, weighed in on the use of the word. “Linear
thinking is generally a put-down, synonymous with ‘unimaginative’ or ‘too
logical,’ but linear programming tries to deal with the way all parts of a
system interact with all the other parts over time.”6 In Dantzig’s logic,
activities are assumed to consume resources in proportion to their levels.
If Alice takes two lumps of sugar in one cup of tea, then we assume she
would like four lumps of sugar in two cups of tea: doubling the level
requires double the resources. The expression in this case is S = 2T , that is,
S−2T =0, where S is the quantity of sugar. You will recognize S−2T =0
as an equation of a line, and hence the name “linear.”

In a general constraint, a collection of variables representing levels of
activities can be combined by taking multiples of the variables and adding
them up. So, if we have variables A through Z , possible constraints in an
LP model include

A+ B +C + D ≥ 100,

2E + 8G − H = 50,
and

1.2Y − 3.1X + 40Z ≥ 0.

It is not permitted tomultiply variables together, such as XY ≥ 0, or to take
square roots or other fancy constructions you might be tempted to include.
This is a real limitation, but it is this linear restriction that ties the model
together from a computational perspective.
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The third key element of linear programming is the inclusion of an
explicit objective to provide a means for ranking candidate solutions.
Dantzig viewed this as one of his great practical accomplishments, forcing
officers and managers to be precise in expressing what they want to
achieve. In specifying this objective, the value of an activity is assumed to
be proportional to its level. We thus require the objective to be a linear
expression of the variables in the model, and this expression is maximized,
or minimized, over all allowable assignments of levels to the activities. An
optimal solution to an LP model is an assignment such that the objective is
as large, or small, as possible.

This is the full framework, but to meet the challenge of Hitchcock
and Wood, Dantzig also needed a means to deliver optimal solutions
to modeled problems. His answer in this case is a computational tool
called the simplex algorithm. You feed the algorithm LP data and it pops
out an optimal solution. The algorithm is too important, both in general
applications and for the TSP in particular, to cover in a short description,
so let’s postpone a discussion until the next section.

Widget Incorporated

Given the large number of definitions in the past couple of pages, it may
be useful to consider a small example to demonstrate how everything fits
together. To keep things simple, suppose we manufacture three types of
widgets, the items so loved by economists. Call them widget A, widget
B , and widget C , with their names associated to variables specifying
the quantities of each. Widget production requires the input of two raw
materials, say nickel and steel, and we have in stock 100 pounds of the first
and 200 pounds of the second. To manufacture widget Awe need 3 pounds
of nickel and 4 pounds of steel; widget B requires 3 pounds of nickel and 2
of steel; widget C requires 1 pound of nickel and 8 of steel.

Total profit earned through widget production and sale is 10A+ 5B +
15C , that is, model A brings in $10 per unit, model B brings in $5 per
unit, and model C brings in $15 per unit. The problem is to find levels
of production that earn as much money as possible, without exceeding
our stocks of raw materials. For example, focusing on the most profitable
model, we could produce 25 units of widget C before we run out of steel.
This plan brings in $375, but linear programming tells us how to do
better. The model is the following, where the symbol “≤” means less-than-
or-equal-to:

maximize 10A+ 5B + 15C
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subject to

3A+ 3B + 1C ≤ 100 (nickel constraint)

4A+ 2B + 8C ≤ 200 (steel constraint)

A≥ 0, B ≥ 0,C ≥ 0.

The first constraint ensures we have a sufficient supply of nickel to meet
our production plan, and the second constraint ensures we have a sufficient
supply of steel.

An optimal solution to the LP model is to earn $450 by producing
30 units of widget A, none of widget B , and 10 units of widget C . Easy
enough, even without the help of the simplex algorithm. But an actual
production problem can include hundreds of thousands of variables and
constraints. Not something you would want to try to solve in your head.

A Linear World

News of the general linear-programmingmodel, and the simplex algorithm
for its solution, was delivered by Dantzig in 1948 at a meeting held at the
University of Wisconsin. The event was a defining moment for Dantzig,
who has described often its proceedings. Like many good stories, repeated
telling may have shifted a few details over the years, but all versions
capture the spirit of a nervous rising star facing a large and distinguished
group ofmathematicians and economists.7 During the discussion following
Dantzig’s lecture, Harold Hotelling, great in both academic stature and
physical size, rose from his seat, stated simply, “But we all know the world
is nonlinear,” and sat down. Dantzig was lost for a reply to such a sweeping
criticism.8

Suddenly another hand in the audience was raised. It was von
Neumann. “Mr. Chairman, Mr. Chairman,” he said, “if the speaker
does notmind, I would like to reply for him.” Naturally I agreed. von
Neumann said: “The speaker titled his talk ‘linear programming’
and carefully stated his axioms. If you have an application that
satisfies the axioms, well use it. If it does not, then don’t.”

Fortunately for the world, many of its complexities can in fact be described
in sufficient detail by linear models. The episode with Dantzig, Hotelling,
and John von Neumann is summed up nicely by a cartoon Dantzig’s
Stanford colleagues reported as hanging outside his office.9 It featured the
Peanuts character Linus in his traditional pose, sucking his thumb and
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holding a blanket. The caption read, “Happiness is assuming the world is
linear.”

Applications

George Dantzig’s classic book Linear Programming and Extensions begins
with the following statement. “The final test of a theory is its capacity
to solve the problems which originated it.”10 This is a bold way to open a
600-page volume, but sixty years of experience has shown repeatedly that
his theory of linear programming and the accompanying simplex algorithm
pass the test beyond all expectations.

The scope of the use of linear programming in industry is breathtaking,
covering pretty much any sector you can name. Although it is difficult to
quantify, it is clear that planning via linear programming saves enormous
amounts of the world’s natural resources every day. It terms of money, a
New York Times article by Gina Kolata states, “Solving linear programming
problems for industry is a multibillion-dollar-a-year business.”11 Take that,
Professor Hotelling.

Readers interested in learning the art of capturing problems with linear
constraints can find what they are looking for in Paul Williams’s excellent
book Model Building in Mathematical Programming.12 Williams’s exam-
ples include food manufacturing, refinery optimization, farm planning,
mining, airline pricing, power generation, and on and on.

The Simplex Algorithm

How often do you see mathematics described on the front page of the
New York Times? The proof of Fermat’s Last Theorem made the cut, but
the Four-Color Theorem missed out. It is with some pride that linear-
programming researchers point to two cover stories.

A surprise discovery by an obscure Soviet mathematician has rocked
the world of mathematics and computer analysis, and experts have
begun exploring its practical applications.

—MalcolmW. Browne, New York Times, November 7, 1979.

A 28-year-oldmathematician at A.T.&T. Bell Laboratories hasmade
a startling theoretical breakthrough in the solving of systems of
equations that often grow too vast and complex for the most
powerful computers.

—James Gleick, New York Times, November 19, 1984.
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Each announces a new polynomial-time algorithm to solve LP problems,
the first by Leonid Khachiyan of the former Soviet Union and the second
by Narendra Karmarkar of Bell Labs.

Both front-page articles suggest, somewhat aggressively, the imminent
demise of the simplex algorithm for the practical solution of large-scale
problems. But Dantzig’s method was not to be dethroned so easily. New
computer implementations in the late 1980s, including Bob Bixby’s CPLEX
code at Rice University and John Forrest’s OSL code at IBM, showed the
algorithm had plenty of punch left. Indeed, in the year 2000 it was named
one of “The Top Ten Algorithms of the Century” and it remains the
workhorse of the field of mathematical optimization.13

Pivoting to a Solution

A generation of applied mathematicians and engineers have learned the
nitty-gritty of the simplex algorithm. There are a number of fine texts
offering a wide range of schemes for presenting the step-by-step procedure,
but none better than Vašek Chvátal’s beautifully written book Linear
Programming.14 We follow his presentation by means of an example,
supplied by our widget manufacturer.

The variables A, B , and C in the widget LP indicate the levels of
production for the three models offered for sale. These values are enough to
specify completely the problem, but in a report to management we would
probably like to include as additional information the total profit, say Z ,
and the remaining stocks of nickel and steel, say N and S . The new variables
Z , N , and S are defined by equations

Z = 0+ 10A+ 5B + 15C

N = 100− 3A− 3B −C

S = 200− 4A− 2B − 8C

that serve as a dictionary for looking up their values.
A natural, although disappointing, assignment associated with the

dictionary is to set each of A, B , andC to zero, and read off the profit Z = 0,
the nickel stock N = 100, and the steel stock S = 200. Disappointing, but
easy to improve. For example, since we have the term 10A in the profit
equation, if A is increased from its current zero level then additional money
rolls into the firm. But to what level can we increase A while satisfying
the model’s constraints? Keeping B = 0 and C = 0 will maintain the three
nonnegativity constraints, but we must also ensure that we do not overuse
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the stocks of raw materials, that is, we must have N ≥ 0 and S ≥ 0. The
first of these two constraints implies 100− 3A≥ 0, or, in other words, we
can increase A to at most 331

3 before we run out of nickel. Similarly, the
inequality for S implies we can increase A to at most 50 before we exhaust
our stock of steel. In this case nickel is the binding constraint, so let’s go
ahead and set

A= 33
1
3
, B = 0, C = 0,

bringing in a profit of $3331
3 .
15

Now, what about increasing B or C from their current zero levels? It is
not so easy to see what will happen in this case, since we will be forced to
also decrease the level of widget A to free up the depleted stock of nickel.
To make the dependence on A clear, we can rewrite things, moving A over
to the left-hand side of the dictionary.We do this by moving N to the right-
hand side, since it is now at the zero level.

The dictionary’s equation for N is

N = 100− 3A− 3B −C,

or, changing the sides of A and N and dividing by three,

A= 33
1
3

− 1
3
N − B − 1

3
C .

We will use this definition of A in a new dictionary, but we need first to
substitute the expression for the appearance of A in the definitions of the
profit Z and the stock variable S . Doing so yields the system of equations

Z = 333
1
3

− 3
1
3
N − 5B + 11

2
3
C

A = 33
1
3

− 1
3
N − B − 1

3
C

S = 66
2
3

+ 1
1
3
N + 2B − 6

2
3
C .

This operation of switching the roles of A and N is known as pivoting;
A is called the incoming variable and N the leaving variable. Note that
although we have new equations for Z and S , the variables still measure
our total profit and our stock of steel, respectively. Indeed, since we used
an equation satisfied by all assignments to rewrite the expressions, the
variables maintain their old meanings.
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With this new dictionary, the natural solution is to set N , B , and C to
zero, and to read off the values

Z = 333
1
3
, A= 33

1
3
, S = 66

2
3
.

A profit of $3331
3 is more than a profit of zero, but we can do better.

Examining the rewritten profit equation, we see negative terms for N
and B , implying that profit will decrease if we attempt to raise either of
their levels. Fortunately, the term for C is positive, so we should attempt to
increase its value with another pivot operation.

Let’s go through the steps to pivot on C as the incoming variable. First,
keeping N and B at zero levels, the new dictionary tells us

A= 33
1
3

− 1
3
C ≥ 0

and thus C can be increased to at most 100. Similarly,

S = 66
2
3

− 6
2
3
C ≥ 0,

implying C can be increased to at most 10. Now 10 is smaller than 100, so
S is the leaving variable in the pivot operation.

The next step is to rewrite the dictionary, exchanging the roles of C and
S . Skipping over the arithmetic, we arrive at the new set of equations

Z = 450− N − 3
2
B − 7

4
S

A= 30− 2
5
N − 11

10
B − 1

20
S

C = 10− 1
5
N − 3

10
B − 3

20
S.

The natural solution corresponding to this dictionary is

N = B = S = 0, Z = 450, A= 30, C = 10.

This is the assignment we claimed was optimal in the previous section.
And now you need not take my word for it: the profit equation Z =
450− N − 3

2 B − 7
4 S is proof that the widget producer can never earn more

than $450. Indeed, N , B , and S must all be nonnegative in any assignment,
thus our profit is $450 minus a nonnegative number. And that is that.

The simplex algorithm thus proceeds from dictionary to dictionary via
pivot operations, attempting to increase the objective at each step. The
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process ends when the objective equation proves that the current natural
solution is optimal. Easy enough, but we are sweeping a few details under
the rug: How do we in general find a starting dictionary? How can we be
sure the method eventually terminates? These can both be handled, but
allow me to point you to Chvátal’s book for a full analysis.

If you would like to work out additional examples, but don’t find
appealing the idea of carrying out so much arithmetic by hand, then pop
over to the Web page for Bob Vanderbei’s Simplex Pivot Tool.16 The small
tool allows you to set up your own LP model as a dictionary and to carry
out pivots by selecting the incoming and leaving variables. The Web page
will even warn you if you make a mistake, that is, if your choice of a leaving
variable is not one corresponding to a binding constraint.

A Polynomial-time Pivot Rule?

Dantzig delivered an algorithm, but why should we think it is practical for
solving a problem of any respectable size? A fair question.

In 2009 Richard Karp presented the opening lecture at a meeting
held in Atlanta to celebrate the fiftieth anniversary of the Foundations
of Computer Science conferences. His lecture was titled “What makes
an algorithm great?” and first on his list of examples was the simplex
algorithm, cited for its practical efficiency and its wide use. Karp had to
point out, however, that the method is not known to be great from the
complexity point of view. Indeed, the simplex algorithm comes without a
guarantee of polynomial running time.

The issue is that although the number of possible dictionaries is finite,
there are exponentially many of them. It is not known if there exists a plan
for choosing the incoming and leaving variables at each step in such a way
that we are sure to reach an optimal dictionary after only a polynomial
number of pivots. In fact, it is known that several natural pivot rules are not
polynomial, that is, specific pathological examples have been constructed
that cause the simplex algorithm, equipped with the particular rule, to run
through an exponentially long sequence of pivots.

So why did Dantzig have so much faith in the algorithm? The answer is
that he did not, at least not initially.17

At first I thought that the method might be efficient but not nec-
essarily practical. For a big problem there could be many combina-
tions (corner points)—perhaps as many as the stars in the heavens.
It might require a million steps to solve it. That might be considered
efficient, since this number is small relative to the number of
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combinations involved, but hardly practical. So I continued to look
for a better alternative algorithm.

It was only after his Pentagon colleagues succeeded in solving problem after
problem that the algorithm eventually won Dantzig’s endorsement.

This remains the situation today. The simplex algorithm is one of the
most widely used tools in mathematics, but we don’t know for sure that it
will continue to solve all of the instances that arise in practical models. This
is the real content of the front-page stories in the New York Times. Fame,
and perhaps practical fortune, awaits anyone who can discover a pivot rule
that is guaranteed to reach an optimal solution in a polynomial number of
steps.

A Million Times Faster

The short abstract describing Dantzig’s lecture at the Econometrica Soci-
ety’s 1948 meeting concludes with the following line. “It is proposed that
computational techniques such as those developed by J. von Neumann and
by the author be used in connection with large scale digital computers to
implement the solution of programming problems.”18 The dawn of digital
computing was an exciting time for applied mathematicians, and Dantzig
was pushing the simplex algorithm to the head of the line for a possible
computer implementation.

The first large-scale test of the simplex algorithm was, however, accom-
plished without the use of a computer. The computation was carried out
at the National Bureau of Standards in 1947, involving a team working
away with hand-operated desk calculators for a total of 120 man/woman
days.19 The test instance modeled a problem of selecting an adequate
diet at minimum cost, and contained 9 constraints and 77 nonnegative
variables. That is large, although a far cry from the hundreds of thousands
of constraints and variables that go into current industrial LP models.
Fortunately, in the years between this diet-problem computation and the
release of modern LP software, plenty of brain power has gone into tuning
and shaping the simplex algorithm for computer implementation.

A particularly important period in this development followed the
announcement of the competing LP algorithm of Karmarkar in 1984. The
news surrounding his interior-point method drew great attention to linear
programming, just at a time when powerful desktop workstations and
personal computers were becoming widely available. This combination
sent the LP world into hyperdrive. Indeed, Bob Bixby details a million-
fold speedup in simplex LP solvers during the period 1987 to 2002. “Three
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orders of magnitude in machine speed and three orders of magnitude in
algorithmic speed add up to six orders of magnitude in solving power.
A model that might have taken a year to solve 10 years ago can now
solve in less than 30 seconds.”20 Now that is a considerable improvement
in LP horsepower. Things have quieted down in subsequent years, but
there is every reason to expect further periods of rapid growth with
continued research efforts. The National Science Foundation and the
Office of Naval Research, in particular, are funding projects to set the
stage for a new generation of simplex solvers, aiming to take advantage
of the many-core capabilities planned for future computer chips. If the
past is any guide, LP researchers will respond to improved hardware with
improved implementations, driving Dantzig’s simplex algorithm to both
faster solutions and larger models.

Behind the Name

The name of the algorithm sounds like a modern corporate term, playing
on the word “simple.” In fact, the first few hits with a Google search
are precisely that. But in geometry a simplex is a classical object, namely
an n-dimensional polytope having n+ 1 corner points. That is a plate of
undefined terms, but in 2-dimensional space a simplex is just a triangle and
in 3-dimensional space a tetrahedron. Dantzig’s friend Theodore Motzkin
proposed that he borrow this geometric object’s name. “The term simplex
method arose out of a discussionwith T.Motzkin who felt that the approach
that I was using, when viewed in the geometry of the columns, was best
described as a movement from one simplex to a neighboring one.”21 A pity
this was adopted. “Dantzig’s algorithm” has a nice ring to it and it would
be a fitting tribute to his contributions.

Two for the Price of One: LP Duality

An optimal dictionary provides a proof that the simplex algorithm pro-
duced a best-possible solution. But we might have a difficult time con-
vincing our manager that the result is in fact correct. Indeed, we probably
would not want to ask him or her to go through the entire sequence of
pivot steps, checking the arithmetic along the way. Nor could we request
an examination of the 100,000 or so lines of computer code in Bob Bixby’s
LP solver, verifying that it correctly implements Dantzig’s algorithm.What
we need is a concise route to the dictionary’s proof. Providing such a route
is the role of duality in linear programming.
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Let’s consider again the widget LP model and its final profit equation

Z = 450− N − 3
2
B − 7

4
S.

We obtained this expression from the original definition of Z by adding
equations satisfied by all allowable assignments. We know this is true, but
unfortunately our manager does not. But not to worry. If in this final Z
equation we substitute for N and S their definitions from the original
dictionary, then we get back the original expression for total profit. This
should convince our manager that we haven’t pulled any tricks. There is
a cleaner way to do this, however, making a direct argument that earning
profit greater than $450 is impossible.

To build the argument, we take the original constraints for nickel and
steel and multiply them by the values we find in front of N and S in the
final profit equation, not including the negative signs, that is,

1× (3A+ 3B + 1C ≤ 100)

and

7
4

× (4A+ 2B + 8C ≤ 200).

Carrying out this arithmetic and adding together the resulting two inequal-
ities, we obtain the single inequality

10A+ 6
1
2
B + 15C ≤ 450,

which our manager must agree is satisfied by any allowable level of widget
production. But comparing this with our total profit 10A+ 5B + 15C ,
we see that we cannot earn more than $450, even if the profit margin
on widget B were increased to $6.50 per unit. A few multiplications and
additions allowed us to conclude that our proposed production schedule is
optimal.

Let’s review the important points in the above argument. First, the
values we extract from in front of N and S , call them yN and yS , are both
nonnegative, allowing us to use them as multipliers for the nickel and steel
constraints. Second, whenwe add the two resulting constraints the values in
front of A, B , and C are each at least as large as the profits for the respective
widgets.
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These rules governing our use of yN and yS are in fact the constraints
for another LP problem:

minimize 100yN + 200yS

subject to

3yN + 4yS ≥ 10

3yN + 2yS ≥ 5

1yN + 8yS ≥ 15

yN ≥ 0, yS ≥ 0.

The three constraints correspond to the variables A, B , and C , ensuring
that the multipliers deliver an inequality with values at least as large as
the per unit profits of the three widgets. An assignment of values yN and
yS satisfying these constraints tells us that profit can be no greater than
100yN + 200yS . Thus, in order to obtain a convincing argument to present
to the manager, we seek to minimize this quantity.

The new LP model is called the dual problem, and, following a sugges-
tion of Dantzig’s father Tobias, the original problem is referred to as the
primal problem. The constraints of the dual LP are such that any allowable
assignment of values to the dual variables provides a bound on the primal
objective. In our case we have

10A+ 5B + 15C ≤ 100yN + 200yS .

The optimal simplex dictionary gives values

A= 30, B = 0, C = 10, yN = 1, yS = 7
4

that make both sides of this inequality equal to 450, proving that 450 is the
optimal value for the primal objective and also that 450 is the optimal value
for the dual objective. Two LP solutions for the price of one.

It is remarkable that there always exists such a simple and elegant proof
of optimality: the simplex algorithm constructs multipliers that can be used
to combine the primal LP constraints into a convincing statement that no
solution gives an objective value greater than that supplied by the final
dictionary. Moreover, the multipliers are themselves an optimal solution
to the dual LP problem and the optimal primal and dual objective values
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are equal. This beautiful result is known as the strong duality theorem, first
stated and proved by John von Neumann.22

Strong duality gets top billing in LP theory, but in our TSP discussion
we really only need the much easier statement that any dual LP solution
provides a bound on the primal objective; this is called the weak duality
theorem. And don’t worry if you missed a few details in our rush through
material in the past few pages: in the special case of the TSP we provide
an intuitive explanation of duality, showing how to trap the salesman with
linear inequalities.

The Degree LP Relaxation of the TSP

It didn’t take long for LP techniques to enter the TSP world. Dantzig’s
encounter with Hotelling and von Neumann took place on September 9,
1948, and in the fall of the following year Julia Robinson published the first
LP-based method for the TSP.

On the surface, the salesman problem does not appear to fit into the
general economic-planning model considered by Dantzig. Indeed, if you
put five TSP researchers in a room they will likely come up with five
different explanations of why linear programming is natural as a TSP
framework. The view I like best is the one mentioned in the opening
paragraph of the current chapter, namely, considering LP as a means to
obtain quality guarantees by combining simple rules satisfied by all tours.
This is straight from the duality playbook: the rules are combined by an
assignment of values to dual variables and the guarantee pops out via the
weak duality theorem.

Let’s take a look at this in action. As usual, we consider the symmetric
version of the TSP, where costs do not depend on the direction of travel.
The use of graph-theory terminology for such instances should now be
familiar, with cities corresponding to vertices and roads corresponding
to edges. A tour is a selection of edges that together form a Hamiltonian
circuit, as illustrated by the red lines in the 24-city complete graph displayed
in figure 5.2.

Grey edges and red edges are fine in a drawing, but to specify a
mathematical formulation of the problem we are better off using zeros
and ones: the edges assigned value one are those that are in the tour.
The 24-city example would have 276 such values. That is way too many
to consider without getting trapped in a pile of notation, so let’s go back
to a more humble six cities, as indicated in figure 5.3. In this case we need
fifteen values to specify a tour. Call these values xi j for each pair of vertices
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Figure 5.2
Tour edges in a complete

graph.
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Figure 5.3
Complete graph with six

vertices.

i and j , that is, x12, x13, x14, x15, x16, x23, x24, x25, x26, x34, x35, x36, x45, x46,
and x56. These are the variables in our LP model, measuring, if you like, the
“economic activity” of whether or not the edge joining the pair of vertices
is used in a tour.

Denoting by ci j the cost of travel between each pair of cities, the cost of
a tour can be written as the linear expression c12x12 + c13x13 + · · · + c56x56,
since ci j multiplied by xi j has the value ci j if the edge is in the tour and the
value zero otherwise. This expression is what we minimize in the TSP.

Thus we have our variables and our objective. What about constraints?
Oops. We can’t say simply that we want the solution to pick out a tour; to
use the tools of linear programming we must stick with Dantzig’s model
and apply linear rules only. Finding such rules is the art and science of our
approach.
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Degree Constraints

To get things going, the Mad Hatter would note that each of the variables
in the LP must be nonnegative. That is fine, but to make real progress we
must look into what is special about subsets of edges that form tours. Some
subsets are tours, while others are not. How can we make this distinction
with linear constraints?

This is the starting point for Julia Robinson’s work. She notes that every
vertex of the graph meets exactly two edges in any tour. This is not itself
a linear rule, but it implies that if we add up the xi j values for all edges
meeting a given vertex, then the sum must be exactly two. Thus we have a
degree constraint for each city, giving us the LP model:

minimize c12x12 + c13x13 + · · · + c56x56

subject to

x12 + x13 + x14 + x15 + x16 = 2

x12 + x23 + x24 + x25 + x26 = 2

x13 + x23 + x34 + x35 + x36 = 2

x14 + x24 + x34 + x45 + x46 = 2

x15 + x25 + x35 + x45 + x56 = 2

x16 + x26 + x36 + x46 + x56 = 2

xi j ≥ 0 for each pair of vertices (i, j ).

This model is called the degree LP relaxation of the TSP.
An optimal solution to the relaxation will itself not typically be a tour,

but it nonetheless provides valuable information. Indeed, every tour is an
allowable solution to the LP problem, so the optimal LP objective can never
be greater than the cost of an optimal tour. This is themost important point
to understand. In the LP problem we optimize over a larger set of allowable
solutions and we thus obtain a bound on how cheap a tour can possibly be.
The bound is a number X such that no tour can have cost less than X , just
as we were sure that sales of widgets could not exceed $450.
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Control Zones

This bounding concept is important enough to be worth a second view.
So let’s take another angle on the degree LP relaxation, this time looking
directly at the dual problem. The idea here is a nifty technique for geometric
TSP instances introduced byMichael Jünger andWilliam Pulleyblank.23 In
this description we assume our TSP instance consists of a set of points with
straight-line distances as travel costs.

To begin, suppose we draw a disk of radius r centered at a city in such a
way that the disk does not touch any of the remaining cities, as in figure 5.4.
The salesman must at some point in his or her tour visit this city, and to do
so he or she will need to travel at least distance r to arrive at the city and at
least distance r to leave the city. We can conclude that every tour has length
at least 2r . Moreover, we can draw a separate disk of radius ri for each city i ,
as long as the disks don’t overlap, as illustrated in figure 5.5. In this way we
get twice the sum of the radii of the disks as a bound on the length of any
TSP tour. Jünger and Pulleyblank call these disks control zones.

We want the control-zone bound to be as large as possible, so we should
choose the radii of the disks so as to maximize twice their sum, subject to
the condition that disks do not overlap. The nonoverlapping condition can
be expressed succinctly as follows: for each pair of cities i and j , the sum of
the radii ri and r j must be no greater than the distance between the cities,
that is, ri and r j must satisfy

ri + r j ≤ ci j .

r
Figure 5.4
A control zone.

Figure 5.5
Six control zones.
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Figure 5.6
Left: Michael Jünger.

Photograph by

Regine Strobl. Right:

William Pulleyblank.

Photograph by

Nick Harvey.

Thus, to obtain the best-possible packing of control zones, we solve the
following LP problem:

maximize 2r1 + 2r2 + 2r3 + 2r4 + 2r5 + 2r6
subject to

r1 + r2 ≤ c12, r1 + r3 ≤ c13, r1 + r4 ≤ c14,

r1 + r5 ≤ c15, r1 + r6 ≤ c16, r2 + r3 ≤ c23,

r2 + r4 ≤ c24, r2 + r5 ≤ c25, r2 + r6 ≤ c26,

r3 + r4 ≤ c34, r3 + r5 ≤ c35, r3 + r6 ≤ c36,

r4 + r5 ≤ c45, r4 + r6 ≤ c46, r5 + r6 ≤ c56.

Any allowable solution to this model gives a nonoverlapping collection of
control zones and thus a bound on the length of any TSP tour; an optimal
solution to the model gives a strongest-possible control-zone bound.

The above statements should remind you of the weak duality theorem.
Indeed, the zone-packing problem is precisely the dual of the degree LP
relaxation! To see this, note that the dual problem has a multiplier yi
for each vertex i , corresponding to the i th degree constraint. When we
multiply the constraints by the yi ’s and add them up, the resulting linear
formmust have value no greater than ci j in front of each variable xi j . Thus,
since the variable xi j appears in the i th constraint and in the j th constraint,
we require yi + y j ≤ ci j . Exactly the nonoverlapping condition, with each
radius ri now named yi .

We must admit that we are cheating a bit, since the dual LP allows
control zones with negative radii. These possibly negative values are due to
the fact that the degree constraints are equations rather than inequalities,
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and it is perfectly legal to multiply an equation by a negative number. This
is only a technical point, however, since with the triangle inequality one can
prove that there exists always an optimal set of dual multipliers such that
each value is nonnegative, even though this is not an explicit restriction in
the model.

Eliminating Subtours

The next step in the LP approach to the TSP is the introduction of a
simple but powerful collection of additional rules. To motivate these rules,
consider again the packing of control zones in the six-city example of
figure 5.5. This packing creates a ring, making it easy to trace out a tour
that moves from zone to zone without any wasted space in between. This
unfortunately is not the typical situation. More common is the behavior
exhibited in figure 5.7, where zones bump into each other, forcing us to
leave a large gap between clusters of cities. It is this gap that is exploited by
the new rules.

The geometric version of the idea is the following. In the gap left over
from the zone packing we can draw a strip encircling a cluster of points,
as illustrated in figure 5.8. Any tour must at some time visit the cluster,
so a salesman must cross over the strip at least twice, once on the way in
and once on the way out. We can thus add twice the smallest width of the
strip to our bound. Jünger and Pulleyblank call such a strip amoat, like the
waterways surrounding castles.

Figure 5.7
Bad example of control

zones.

Width

Figure 5.8
Amoat.
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Figure 5.9
Use of moats to fill a gap.

Figure 5.10
Packing of moats and

control zones.

The use of two moats to close the gap in the six-city example is
illustrated in figure 5.9. In this case there is again no wasted space as the
tour moves from city to city. Although we are not always so fortunate, a
careful packing of moats and control zones will often provide a very strong
bound. For example, the 100-city packing displayed in figure 5.10 is good
enough to prove that a tour is no more than 0.65% longer than optimal.

This 100-city example is pretty, but you can get a better feeling for the
bound by playing around with smaller instances. For this I recommend the
software package Geodual created by Mike Jünger’s team at the University
of Cologne in Germany.24 Their package finds optimal tours for TSP
instances with up to twenty cities or so, together with beautiful drawings
of moats and zones. A sample of their work is displayed in figure 5.11.
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Figure 5.11
Screen shot of Geodual in

action on a 15-city example.

Subtour Inequalities

In a TSP instance such as the six-city example of figure 5.7, the degree
LP relaxation plays a trick on us if we try to use its primal solution
to construct a tour. Indeed, given the large travel costs associated with
the edges spanning the gap, the simplex algorithm will deliver a solution
consisting of two triangles, rather than a single circuit through the six
points. This is an allowable solution to the relaxation, but it is certainly
not allowable for the salesman.

The quick remedy is to note that any tour must include at least two of
the edges crossing the gap between the clusters, that is, at least two of the
green edges indicated in figure 5.12. Analogous to Jünger and Pulleyblank’s
moat construction, we can impose the rule that the sum of the variables
corresponding to these inter-cluster edges be at least two:

x13 + x14 + x15 + x23 + x24 + x25 + x63 + x64 + x65 ≥ 2.

Figure 5.12
Edges in a subtour inequality.
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Figure 5.13
Green edges in a sub-

tour inequality.

S

Figure 5.14
Left: Sylvia Boyd and Richard

Haynes, Bellairs Workshop

2007. Photograph by

Nick Harvey. Right: 4/3rds

Conjecture T-shirt designed

by Bill Pulleyblank.

Combined with the degree constraints, this inequality forbids a solution
that includes the subtours indicated by the red edges in the left-hand side
of figure 5.12. Hence the name subtour-elimination constraint, or simply
subtour inequality.

We can create a subtour inequality for any proper subset S of cities,
stating that the sum of the variables corresponding to edges having one
end in S and the other end not in S must be at least two. In figure 5.12 we
have S = {1, 2, 6}. A larger example is displayed in figure 5.13, where the
set S consists of the vertices in the rectangular region and the variables in
the subtour inequality are those corresponding to the green edges.

These additional rules are simple, but they pack a big punch when com-
bined via linear programming. Indeed, the quality of the bounds obtained
by the subtour LP relaxation, consisting of the degree LP relaxation plus all
possible subtour inequalities, is a key ingredient in the success of the entire
LP approach to solving the TSP in practice. For example, the subtour-
relaxation bound is almost always within 1% of the length of an optimal
tour for randomly generated geometric instances. In the specific case of the
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42-city USA data set, the bound is 697 units, compared with the optimal
tour length of 699 units. In this instance, the tour is only 0.3% longer than
the quality guarantee.

The 4/3rds Conjecture

Such strong guarantees do not hold in general, but bad examples seem to be
the exception rather than the rule. An interesting question is to determine
just how good or bad the bound can be for instances satisfying the triangle
inequality. On the positive side, it is known that the cost of an optimal tour
is never more than 3/2 times the subtour bound. This is a nice theoretical
result, particularly when compared to the theorem of Christofides we cited
in the previous chapter.

On the negative side, there is a known family of instances such that
the ratio between the cost of an optimal tour and the value of the subtour
bound gets closer and closer to 4/3 as the number of cities gets larger and
larger. But is this the worst-possible case? The question is known as the
“4/3rds Conjecture” and the reigning expert on the topic is Sylvia Boyd
from the University of Ottawa in Canada. Together with colleagues, she has
verified the conjecture for all instances having at most ten cities and she has
posed a sharper question that may provide the angle needed to finally prove
the full result.25

It might appear to be a small step, but a move from a guarantee of 3/2 to
a guarantee of 4/3 will almost certainly require a deep understanding of the
structure of the allowable solutions to the subtour LP relaxation.26 Such an
understanding would in turn yield new methods for producing TSP rules
that could possibly push the limits of practical computation.

Upper Bounds on Variables

We did not mention this earlier, but the degree LP relaxation is rather
special in that there always exist optimal solutions such that every variable
has value 0, 1, or 2; we do not need to worry about fractional edges. This is
not true for the subtour relaxation, where variables are sometimes assigned
nasty-looking fractional values. We have to deal with this in general, but
an important special case gets us off to a nice start. Indeed, a variable xi j
assigned a value 2 in the degree LP solution corresponds to a subtour that
goes from city i to city j and then immediately back to city i . The subtour
inequality determined by S = {i, j}will forbid such an assignment, but it is
slightly more efficient to deal with this via the simple rule xi j ≤ 1. Imposing
such upper bounds on all variables gives a better starting point than the
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degree LP relaxation alone, and this is what is typically used in practice.
Moreover, for this improved starting model there exists always an optimal
solution such that every variable is either 0, 1/2, or 1. Not quite integer
valued, but pretty close.

A Perfect Relaxation

Subtour inequalities bound a salesman solution to within a small factor of
optimality, but can we hope for much better results with additional rules?
Good grief, yes! It takes a bit of mathematics to get there, but you will soon
see what I mean.

The Geometry of Linear Programming

Up to this point we have been treating linear programming as a purely
algebraic topic, dealing with variables, equations, and their manipulation.
This is unfair to George Dantzig and most LP researchers, who view their
subject as one possessing its own geometric elegance.

To see what we have been missing, let’s consider a small example:

maximize x + 2y
subject to
x + y ≤ 13

x ≤ 8, y ≤ 8

x ≥ 0, y ≥ 0.

An allowable solution to this model can be considered as a point (x, y) in
two-dimensional space, where the horizontal axis indicates the value of x
and the vertical axis indicates the value of y.

The full set of allowable points is called the feasible region of the
model. To obtain a view of this region, focus first on the single constraint
x + y ≤ 13. The corresponding line x + y = 13 separates points (x, y) into
two sets, those on the forbidden side of the line and those on the allowable
side, where points on the line itself are also allowable. The allowable
side is called a halfspace and it is indicated in two ways in figure 5.15;
on the left by red arrows pointing in the allowable direction and on the
right by red shading.

The feasible region for the example LP problem consists of the inter-
section of five halfspaces corresponding to the problem’s five constraints,
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Figure 5.15
Halfspace defined by a linear inequality.

Figure 5.16
Geometric view of an LP problem.

as displayed in figure 5.16. In this geometry, the LP problem is to push the
line of the objective, indicated by the blue line in the right-hand side of
the figure, as far up as possible, while still hitting the feasible region. Thus
the red point, (5, 8), is the optimal solution in this example.

Note that the optimal point is one of the five corners of the feasible
region; the others are (8, 5), (8, 0), (0, 0), and (0, 8), going clockwise around
the border. An important observation is that no matter what objective is set
for the LP model, we can be sure that one of these five corner points will be
an optimal solution. Indeed, changing the objective means a change in the
slope of the blue line, but if we push any line as far as we can it will always
meet one of the corners just before leaving the feasible region.

This is a very nice general property. It means that an LP problem,
which has an infinite collection of allowable solutions, can be solved by
considering only the finite number of corner points. Indeed, the simplex
algorithm can be viewed as a method for moving from corner to corner
along the edges of the feasible region.

You might ask why we bother with the simplex algorithm when an
LP problem can be solved by creating a list of corners. It comes down
to numbers, keeping in mind the quote from George Dantzig: “For a big
problem there could be many combinations (corner points)—perhaps as
many as the stars in the heavens.” A corner is determined by intersecting
the bounding planes for a collection of d halfspaces when we are in d
dimensions. Not every such intersection will lie in the LP feasible region,
but enough of them will be allowable to cause a headache for anyone trying
to produce a full list.
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Minkowski’s Theorem

This discussion of corner points for LP problems is fine, but for the TSP
the geometry is the other way around, that is, we have already a full list of
points, corresponding to the tours in the graph. We have the list, but we
do not have an LP feasible region. In this view the search for TSP rules is a
search for halfspaces that trap in the tours.

Let’s look at this more closely. Every tour for a six-city TSP corresponds
to a point in 15-dimensional space, that is, one dimension for each pair of
cities. Each tour point consists of zeros and ones, with the ones indicating
the tour edges. This large set of zero/one-valued points is sitting in 15-
dimensional space, but without any geometric structure to allow us to pick
out the point corresponding to a shortest-possible tour. It is the role of
linear programming to provide this missing structure.

We cannot draw pictures of 15-dimensional space, so consider instead
a similar problem in two dimensions, that is, from a list of (x, y) points
we would like to choose one having the greatest value for some specified
objective. In this case we are looking for linear inequalities satisfied by every
point on the list, or, in other words, halfspaces with all of our points on
the allowable side. The process of building inequalities tailored for such a
problem is illustrated in figure 5.17; the six halfspaces encircle our point
set, and each corner of the enclosed region is itself one of our points. This

Figure 5.17
Collecting linear

constraints.
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Figure 5.18
The convex hull.

is great news from the LP perspective: the simplex algorithm applied to the
region will deliver an optimal solution to our problem.

The construction of the perfectly fitting region, drawn again in
figure 5.18, is not just a lucky case. It is in fact possible to enclose any set of
points in an LP feasible region such that each corner of the region is a point
in the set. In two dimensions you can think of stretching out a rubber band
and letting it snap back to enclose the points. In three dimensions imagine
shrink-wrapping the points, again giving a perfect fit. Going on to higher
dimensions is tough to visualize, but the result, described by Hermann
Minkowski at the turn of the twentieth century, is not difficult to prove
by making a connection between algebra and geometry.

The perfectly fitting enclosed region for a set of points is called the
convex hull of the set. In two-dimensional space a convex hull is a special
type of solid polygon and in three dimensions a convex hull is a faceted
object like the Platonic solids or a cut diamond. The objects in general are
called convex polytopes and they have long been the subject of study by
mathematicians. The text Lectures on Polytopes by Günter Ziegler gives a
fantastic technical presentation of this research area; the details in the book
are advanced, but the introduction and first few chapters will give you a
good idea about what keeps mathematicians interested in these classical
geometric structures.27

The TSP Polytope

The upshot of Minkowski’s theorem is no less than the fact that any TSP
can be modeled precisely as a linear-programming problem! This puts
the search for TSP rules on firm theoretical ground: the necessary linear
inequalities are out there, we just have to find them.

Now, before you get too excited, I must point out a potential difficulty
in that the number of halfspaces one needs to describe a TSP polytope is
enormous. By the time we get up to ten cities it is known that at least
51,043,900,866 inequalities are required.28 Still, numbers alone will not
defeat us. Harold Kuhn emphasizes this point in notes from a George
Dantzig Memorial Lecture delivered in 2008; in the text Kuhn refers to his
own TSP studies carried out in 1953.
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I had a number of contacts with George throughout the summer
discussing this and other problems. And I know that George at-
tended my lecture at the end of the summer (as did Selmer Johnson,
Ray Fulkerson, and Alan Hoffman). We were both keenly aware
of the fact that, although the complete set of faces (or constraints)
in the linear programming formulation of the Traveling Salesman
Problem was enormous, if you could find an optimal solution to a
relaxed problem with a subset of the faces that is a tour, then you
had solved the underlying Traveling Salesman Problem.

What we need is a good understanding of how to work with the inequalities,
that is, how to produce an inequality when it is useful for the TSP instance
we are trying to solve. This gets to the heart of the LP approach to the TSP,
as we discuss in chapter 6.

Integer Programming

If the linear-programming users of the world could be granted a wish,
they would with one voice shout out for whole-number solutions from
the LP genie. An obvious reason is to avoid nastiness like dealing with
a production schedule calling for 331

3 widgets. But the main point is
to capture decisions that come down to individual choices. Should we
build an additional factory? Yes or no. Should we bring a new product
to market? Yes or no. Such decisions can be brought into an LP model
if we are permitted to include variables that take on values zero or
one only, no fractions accepted. This is a powerful extension of linear
programming, but one that for the present comes at great computational
cost.

The restriction to integers does not fit into Dantzig’s theory and it
cannot be directly handled by the simplex algorithm or other LP methods.
Thousands of LP users nonetheless go ahead and include such restrictions
in their models everyday, unable to resist the flexibility that integer-only
variables bring to the table. The extended framework is known as integer
programming, or IP for short.

Dantzig himself was the first to document how versatile integer pro-
gramming can be. In a paper that is fundamental in both the field of
optimization and the field of complexity theory, he showed how each
member of a long list of important optimization problems can be modeled
as an IP problem.29 Dantzig described his work as follows in his 1963 LP
book.30
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Figure 5.19
Four-coloring of a graph.

Our purpose is systematically to review and classify problems that
can be reduced to linear programs, some or all of whose variables
are integer valued. We shall show that a host of difficult, indeed
seemingly impossible, problems of a nonlinear, nonconvex, and
combinatorial character are now open for direct attack.

His problem classes include the TSP and optimally coloring maps.
The coloring problem is a good example to see integer programming in

action. Rather than coloring amap, let’s consider themore general problem
of assigning colors to the vertices of a graph in such a way that any two
vertices joined by an edge receive different colors. This captures the map
problem by placing a single vertex in each region of the map and creating
an edge joining two vertices if their regions share a border.

An example of a graph with a four-coloring is displayed in figure 5.19. It
is easy to see that this particular graph cannot be colored with three colors,
but in general it is a difficult problem to determine if three colors suffice.
Let’s set it up as an IP model. For each vertex i we create three nonnegative
variables, xi,r ed , xi,gr een, and xi,blue , with the interpretation that xi,r ed is set
to 1 if vertex i receives the color red and xi,r ed is 0 otherwise, and similarly
for green and blue. Since we must assign vertex i one of the three colors, we
have the constraint

xi,r ed + xi,gr een + xi,blue = 1.

Now for any edge (i, j ) the vertices i and j cannot both be assigned the
same color, so we have the three constraints

xi,r ed + x j,r ed ≤ 1

xi,gr een + x j,gr een ≤ 1

xi,blue + x j,blue ≤ 1.
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An integer-valued solution to this system of equations and inequalities
gives a valid coloring with red, green, and blue. Note, however, that an
LP solution to the model without the integer restrictions would be to set
all variables equal to 1/3, providing no information that could be used to
assign colors to the vertices. The integer variables rule the day.

The TSP as an IP

In one sense we have already modeled the TSP as an integer-programming
problem. Indeed, with integer variables, the combination of the degree
constraints and the subtour inequalities is enough to ensure that any
solution will be a tour. This is an IP model, but it is not one that could
be handed over directly to an IP solver. The difficulty is that the collection
of subtour inequalities numbers approximately 2n/2 for an n-city TSP.

For this reason Dantzig described an alternative model of the TSP,
using n3 nonnegative variables but only n+ n2 constraints. The idea is that
rather than specifying only whether or not we use an edge between two
cities, we also specify its position in the tour. Other early TSP researchers,
such as Albert Tucker, discovered IP models with even fewer variables and
constraints, but we do not want to emphasize these as practical tools for the
salesman. Thus far, all alternative models are dominated, in terms of prac-
tical performance, by the subtour formulation and themethods we describe
in the next chapter. The existence of compact models should, however,
convince you that solving IP problems is in general difficult: a polynomial-
time IP solver would give directly a polynomial-time TSP solver.

IP Solvers

The difficulty of solving general IP models has not stopped the world from
creating them over and over again in numerous business applications. Like
in the case of the TSP, it is of no use to throw our hands in the air and
tell the world that general IP may be impossible to solve. The problem
needs to be addressed in an algorithm-engineering approach. And indeed
it is. This work is what often pays the bills for TSP researchers: nearly all
known general IP methods were discovered first in pursuit of solutions for
the salesman.

For the business IP models created worldwide, several very sophisti-
cated solvers duel in the commercial marketplace. These computer codes
have seen great advances in practical performance over the past two
decades, and there should be more improvements to come, as we better
understand how to tackle the salesman and its IP brother.
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Operations Research

Linear and integer programmers can be found in departments of math-
ematics, computing, business, science, and engineering. The discipline
most closely associated with LP and IP, however, is one called operations
research.

Operations research traces its roots to work on military planning
in the mid-1900s, hence the “operations” part of the name. There are
now departments and centers of study throughout the world. In the
United States, operations research programs can be found at Berke-
ley, Carnegie Mellon, Columbia, Cornell, Florida, Georgia Tech, Lehigh,
Michigan, MIT, Northwestern, Princeton, Rutgers, Stanford, and many
other universities.

The name operations research is perhaps not one a marketing agency
would suggest. Actually, a slogan for the field developed by a marketer
is “The Science of Better.” This was the centerpiece of a promotional
campaign run by the professional society INFORMS (Institute for Opera-
tions Research and Management Science). The campaign material answers
the question “What is operations research?” as follows: “In a nutshell,
operations research (O.R.) is the discipline of applying advanced analytical
methods to help make better decisions.” This sums up the field very nicely,
bringing home the point that the use of operations-research techniques
cuts across industries, from health care to transportation, from finance to
forestry. Any place where decisions are made, operations research can be
applied. In operations research studies, optimization tools, such as linear
and integer programming, are combined with modeling techniques drawn
from probability theory, game theory, and elsewhere.

Figure 5.20
Michael Trick, 2010.
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To get a feeling for the excitement and breadth of the field, there is
no better place to start than the writings of Carnegie Mellon Professor
Michael Trick. Trick, a former president of INFORMS, maintains a lively
blog on everything OR, including his specialty, operations research applied
to sports scheduling.31 Trick has a great talent for spotting practical
opportunities for optimization techniques, so keep an eye on his blog for
new applications of the TSP.32



6: Cutting Planes
Starting from a solution worked out with strings on amodel (which
was in fact optimal), Dantzig, Fulkerson, and Johnson had
nevertheless to face the possibility that billions of cuts might be
needed.

—Alan Hoffman and Philip Wolfe, 1985.1

T he linear-programming relaxations associated with the traveling sales-
man problem are wildly complex: the simplex method is no match

for problems with constraints numbering in the billions. Fortunately,
Dantzig, Fulkerson, and Johnson put forth an elegant idea for handling
such complexity. Their cutting-plane method does not attempt to solve the
full LP problem in a stroke, but rather computes LP bounds on a pay-as-
you-go basis, generating specific TSP inequalities only as they are needed.
This is a game changer, and not for the salesman alone.

The Cutting-Plane Method

The road to Dantzig et al.’s tour through the United States begins with
the degree LP relaxation and its solution displayed in figure 6.1. The edges
drawn in red carry the LP value 1/2 and the edges drawn in black carry the
value one, with all other variables assigned the value zero.

You see directly that the simplex algorithm does not lie: every city meets
edges of total value two, that is, either two black edges or two reds and one
black. You also see that the solution is certainly not a tour. One obvious
point is the island of four cities in the northeast, where the split salesman
refuses to take any of the roads leading out of the island. This difficulty will
disappear if we roll out the full set of subtour-elimination constraints, but
that means adding 2,199,023,254,648 inequalities to the model. A tall order
for an LP solver.
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Figure 6.1
Solution of the degree LP

relaxation with variable

upper bounds.

There is no denying the RAND team’s talent for by-hand calculations,
but they obviously did not handle directly two trillion subtour inequalities.
No, their approach was much more subtle: using the LP solution as a guide,
they set out to find just enough inequalities, valid for all tours, so that the
simplex algorithm returns an optimal solution that is itself a tour. Since
all tours are potential solutions to the LP model, the one identified by the
simplex algorithm must be optimal.

To get things rolling, as a first step we select the single subtour-
elimination constraint corresponding to the northeastern island, as illus-
trated in the first drawing in figure 6.2. After adding the inequality to the LP
model, the simplex method pops out the solution indicated in the second
drawing. Another island has appeared, so we stamp it out with a second
subtour inequality, corresponding to the seven cities in the Great Lakes
region. The simplex method responds this time with a new solution that
contains, yet again, an island of four cities in the center of the country. This
may seem like plugging holes in an aging dam: whenever we repair one leak
another appears. In fact, the original draft of the Dantzig et al. paper stated
that the process was called the “finger in the dike method” by fellow RAND
researcher Edwin Paxson.2

But looks are deceiving. Although the solution may appear to be no
closer to a tour, we are nonetheless making great progress. The initial LP
model delivered a solution with objective value 641, but adding the single
northeastern subtour inequality raised this to 676 and the second inequality
further raised the bound to 681. We are clearly on the right track, despite
the pesky islands appearing in each new solution. The next five steps,
indicated in figure 6.2, continue with bounds of 682.5, 686, 686, 688, and
697, respectively.

The final solution in the sequence has value only two units less than the
length of an optimal tour. This is great, but how to continue? There are no
islands in the solution, but that in itself is not a problem. Indeed, if you
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Figure 6.2
First seven steps of the cutting-plane method.

look carefully at figure 6.2 you see that in step four we also had a connected
solution. In that case there was a cluster of cities having a total value of one
going from the cluster to the remaining cities, that is, exactly two red edges.
No such set is apparent in the final LP solution. In fact, we will see later that
this solution actually satisfies every subtour-elimination constraint. This
by itself is quite interesting. It means that we have computed an optimal
solution to the full set of over two trillion subtour-elimination constraints
by adding only seven inequalities! Quite interesting, but not sufficient to
solve the 42-city instance of the TSP. We somehow have to raise the bound
to 699, the length of the optimal tour.

Okay, we have run out of useful subtour-elimination constraints, but
there are many, many other inequalities to choose from in a description of
the 42-city TSP polytope. We just need to find one that is not satisfied by
our LP solution. Dantzig et al. used creative ad hoc arguments to formulate
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Figure 6.3
Configuration of four sets

that must be crossed at

least ten times.

Figure 6.4
Eighth and ninth steps of the

cutting-plane method.

8

9

two such constraints, but we can replace these with a general rule involving
four subsets of cities, arranged as in the Venn diagram indicated in the left-
hand side of figure 6.3. Playing around with possible tour routes such as
the one indicated in the right-hand side of the figure, you should be able
to convince yourself that every tour must cross the four boundaries of the
sets at least ten times. In other words, every tour must satisfy the constraint
obtained by adding together the four subtour inequalities and replacing the
right-hand side by the value ten.3

Equipped with this four-set configuration, we can finish off the USA
problem. As our eighth constraint we take the inequality corresponding to
the sets indicated in the first drawing in figure 6.4. The border of the yellow
set is crossed by three black edges, the borders of two of the blue sets are
each crossed by one black edge and two red edges, and the border of the
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third blue set is crossed by four red edges. Summing these up, the borders
of the four sets are crossed by five black edges and eight red edges, for a total
LP value of nine.4 This is less than the required ten crossings, so we add the
four-set inequality to our LP model, resulting in the solution of value 698
displayed in the second drawing in figure 6.4. Adding a second four-set
configuration wraps thing up: the simplex algorithm delivers a tour. At this
point we bring in the dual LP solution to convince one and all that 699 is
indeed the optimal value for this instance of the TSP.

Nine inequalities together settle the challenge of routing a salesman
through the United States. That is amazing. Nine inequalities from trillions
and trillions. The RAND team had tremendous intuition to even attempt
such a step-by-step process, particularly when you realize the amount of
work needed to carry out computations with by-hand calculations.

The chosen nine inequalities are called cutting planes, since at each
step the corresponding halfspace cuts off the current LP solution from the
feasible region of the model. The full procedure is called the cutting-plane
method; less flowery than Paxson’s suggestion, but also less pessimistic.

Dantzig et al. conclude their famous paper with the following modest
remark.5

It is clear that we have left unanswered practically any question
one might pose of a theoretical nature concerning the traveling-
salesman problem; however, we hope that the feasibility of attacking
problems involving a moderate number of points has been success-
fully demonstrated, and that perhaps some of the ideas can be used
in problems of similar nature.

Successful indeed! Repercussions of the work are still being felt in the world
of applied mathematics.

A Catalog of TSP Inequalities

The first of the two non-subtour inequalities employed by Dantzig et al. is
a disguised form of the first of our four-set configurations. Their second
non-subtour inequality was quite different, however, and a footnote points
to Irving Glicksberg as an unsung hero in the effort: “We are indebted to
I. Glicksberg of Rand for pointing out relations of this kind to us.”6

Knowing it may be best not to rely on ad hoc arguments, even those
produced by their friend Glicksberg, Fulkerson composed a letter to TSP
expert Isidor Heller, dated March 11, 1954; the object he refers to as “Cn”
is the convex hull of tours for an n-city problem.
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Figure 6.5
George Dantzig, Ray Fulkerson, and Selmer Johnson. Courtesy of the National

Academy of Engineering, Mrs. Merle Fulkerson Guthrie, and the University of

Texas Center for American History, respectively.

Recently, G. Dantzig, S. Johnson, and I have been working on
computational aspects of the problem via linear programming tech-
niques even though we don’t know, of course, all the faces of the
convex Cn of tours for general n. The methods we have been using
seem hopeful, however; in particular, an optimal tour has been
found by hand computation for a large scale problem using 48 cities,
rather quickly. We have found it convenient in translating Dantzig’s
simplex algorithm in terms of the map of points, to identify tours
which differ only in direction of traversal. For example, C5 can
be characterized by a system of 25 hyperplanes in 10 dimensional
space. We don’t know very much about Cn in general, but thought
we might learn more from reading your papers, if they are available.

Similar requests were sent from Dantzig to Harold Kuhn, March 11, 1954,
and from Dantzig to Albert Tucker, March 25, 1954. It is clear the RAND
researchers were actively seeking information on the structure of the TSP
polytope, to better equip their cutting-plane method.

Comb Inequalities

Dantzig et al. called for help, but the research community was slow in
responding. Being far ahead of your time does have its disadvantages.
Vašek Chvátal finally picked up the theme in the early 1970s; his work on
comb inequalities started the research ball rolling again, nearly two decades
after the RAND study.7 Martin Grötschel and Manfred Padberg followed
quickly with an extension and analysis of combs that served as a template
for future studies.8
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Figure 6.6
Vašek Chvátal. Photograph

by Adrian Bondy. All rights

reserved.

By a comb we refer to a collection of subsets of vertices arranged as in
the Venn diagram displayed in figure 6.7. The yellow set, called the handle
of the comb, intersects each of the disjoint blue sets, called the teeth of the
comb. We require that the number k of teeth be odd and at least three.
It takes some care to cover all possible cases, but one can show that every
tour must cross the borders of the comb at least 3k+ 1 times, extending the
observation on four-set configurations.

To get a feeling for the 3k+ 1 requirement, take a close look at the
drawings in figure 6.8. The top image shows how a tour could possibly trace
through the vertices in a five-tooth comb. Counting the border crossings
you see they total 16, that is 3× 5+ 1. In the bottom figure we trace through
a configuration having six teeth. This is a no-no, since six is not an odd
number, and the tour crosses the borders only 18 times, one less than the
3k+ 1 rule would require. In this even case we were able to pair up the
teeth, avoiding the extra exit from the handle.

We have seen that combs finish off the 42-city USA data set. In a
second demonstration, Grötschel set a new TSP record with an optimal
tour through 120 cities in Germany. Grötschel’s hand drawing of an LP
solution with possible cutting planes is displayed in figure 6.9. It is great
to see this original work: 1/2-valued edges are indicated by wiggly lines,
violated subtour inequalities are indicated by red enclosures, and violated

Figure 6.7
Venn diagram of a

comb with five teeth.

To view this image,

 please refer to the print 

version of this book



134 Chapter 6

Figure 6.8
Tour crossing

borders of five teeth

and six teeth.

combs are indicated by blue enclosures for the handle and teeth. In each
round of his computationGrötschel addedmultiple cutting planes, which is
highly recommended when facing large instances of the salesman problem.

Facets of the TSP Polytope

Grötschel’s computational success served as a call to the research commu-
nity to push ahead with a study of further classes of TSP inequalities. The
first results in this effort were obtained by Grötschel himself together with
William Pulleyblank, extending combs to multiple-handle configurations.9
Their structure is called a clique tree due to the tree-like nature of the
permitted Venn diagrams, such as the example displayed in figure 6.10.

The work of Grötschel and Pulleyblank was followed by other groups
with ever more wild-looking constructions. The inequalities may be wild,
but the work was guided by the fundamental structure of the TSP polytope.
This particular geometry is tough to describe in the high-dimensional
world of the TSP, but the idea is clear when we step back to two
dimensions.

Consider the convex hull displayed in figure 6.11. Each of the indicated
halfspaces touch at least one point in the set, but everyone would agree that
the halfspace at the top is the more fundamental of the two. Indeed, there
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Figure 6.9
Martin Grötschel’s cutting

planes. Image courtesy of

Martin Grötschel.

Figure 6.10
A clique tree.

Figure 6.11
Facet-defining and

non-facet-defining

inequalities.
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are only six halfspaces of this type and they provide a full description of the
convex hull. The six halfspaces are called facet-defining inequalities, and the
six borders they create are called the facets of the polytope.

We cannot draw a nice picture of the TSP polytope, but the notion of
a facet carries over to the high-dimensional setting.10 The facet-defining
TSP inequalities, together with the degree constraints, provide a complete
description of the convex hull of tours. And each of these inequalities
must be included in any such description. Thus, although we do not know
the full structure of the polytope, we can say for certain that particular
inequalities must be part of any complete list that perfectly traps in the set
of tours.

Harold Kuhn and others studied facets of small TSP polytopes in
the 1950s, but it was Grötschel and Padberg who first proposed that the
community focus on facet-defining inequalities when building a catalog of
potential cutting planes.11

Our interest in establishing this fact is twofold: Firstly, it is of math-
ematical interest to know which ones of the proposed inequalities
really matter in defining this incredibly complex polytope. Secondly,
facets are “strongest cutting planes” in an integer programming
sense and it is thus natural to expect that such inequalities are of
substantial computational value in the numerical solution of this
hard combinatorial optimization problem.

They showed subtour inequalities and comb inequalities are facet defining,
and Grötschel and Pulleyblank proved that clique-tree inequalities too are
in this elite club.

Figure 6.12
Left: Egon Balas, Suzy Mouchet-Padberg, Harold Kuhn, Manfred Padberg, and

Martin Grötschel, Berlin, 2001. Courtesy of Martin Grötschel. Right: Giovanni Rinaldi

and Denis Naddef, Aussois, 2008. Courtesy of Uwe Zimmermann.
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The hunt for facets was pursued through the 1990s, with Denis Naddef
of Grenoble and Giovanni Rinaldi of Rome leading the charge.12 This work
has provided a wealth of information that has not yet been fully exploited in
computational studies, but our knowledge of the TSP polytope is far from
complete: the general theory explains only a small fraction of the fifty-one
billion facets that are known for the ten-city polytope. Putting a positive
spin on this, we know that much remains to be discovered. A target-rich
environment for future TSP work.

The Separation Problem

A large catalog of inequalities is at the disposal of anyone ready to take on
the TSP, but using the catalog effectively is not an easy task. Indeed, this is
a point where more attention is needed if we are to push the salesman to
new heights.

The task is to find from among the known TSP inequalities one or more
that are violated by a specified LP solution. This is called the separation
problem, since we think of the corresponding halfspaces as “separating”
the solution from the convex hull of tours. Separation is the heart of
the cutting-plane method: computer codes such as Concorde are basically
wrappers for calling separation routines. If you want to join in on the TSP
party, there is no better topic to study than fast and efficient separation
methods.

Maximum Flow and Minimum Cuts

The worker bees of the cutting-plane method are the subtour-elimination
constraints, and in this case, at least, the separation problem is well
understood. The techniques employed here date back to Cold War–era
mathematicians, who studied the movement of equipment through the
Eastern European rail network on one side and efficient bombing cam-
paigns to destroy the network on the other side.13

Rather than moving to Europe, let’s stick with our 42-city TSP, exam-
ining again the LP solution obtained after the addition of the first seven
cutting planes. In the corresponding LP graph displayed in figure 6.13, we
have indicated four paths from Phoenix in the south to Montpelier in the
north. Think of sending some item, such as oil, along each of these paths,
where through each edge we are permitted to send at most its xi j value, that
is, xi j measures the capacity of a pipe between i and j . Sending a value of
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Figure 6.13
Four paths between Phoenix

and Montpelier.

1/2 along each of the four paths, we have a flow of total value two between
the source and destination.

The dual concept to a flow is a cut separating two vertices, that is,
a set of edges whose deletion will split the graph into two islands, one
containing the source and the other containing the destination. Summing
the capacities of the edges in a cut gives a bound on the maximum possible
flow, since all oil must at some point move from one island to the other. In
the 42-city example we can take as a cut the set of edges meeting Phoenix;
the capacity of this cut is two, which, not coincidentally, matches our flow
value.

The main theorem of flows and cuts is a “strong duality” result, that
is, for any graph and any choice of source and destination, the maximum
value of a flow is equal to the minimum capacity of a cut. Furthermore,
standard polynomial-time algorithms to compute the maximum flow also
compute a minimum cut.

Note that the capacity of a cut is precisely the evaluation of the subtour
inequality corresponding to one of the two islands that are created. Thus,
the flow of value two between Phoenix and Montpelier implies there are
no violated subtour inequalities corresponding to sets containing one of
these cities but not the other. Repeating this construction for each of the
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remaining forty choices for the destination vertex demonstrates that there
are no violated subtour inequalities at all.14

In general, we solve the subtour-separation problem by choosing a
source vertex and computing a maximum flow to each other vertex, that
is, by solving n− 1 maximum-flow problems. If each of the results is of
value two, then we can be sure there are no violated subtour inequalities.
On the other hand, if any of the results is less than two, then the corre-
sponding minimum cut yields a violated inequality.15 It might sound time
consuming, but the process can be made to run very fast.

Comb Separation

Subtour-elimination constraints? No problem. Comb inequalities? Not
so good. At the moment there is no known polynomial-time algorithm
that is guaranteed to spot a violated comb inequality if one exists. The
comb-separation problem is also not known to be in the NP-complete
complexity class, so its status is wide open. A great need coupled with
inconclusive results translates into an important research problem.

This is not to say that combs are currently skipped over in computa-
tions. By hook or by crook computer codes must generate combs to push
LP bounds after subtour-elimination constraints fail. This is accomplished
by hit-or-miss strategies for growing handles, shrinking teeth, splicing sets,
and a host of other operations. This can get messy, but at the start violated
combs are actually quite easy to spot. Indeed, the form of the inequality
suggests that as potential teeth we should consider sets having borders that
are crossed by a value close to two in the current LP solution. A ready
supply of such potential teeth are sets S = {i, j} where xi j = 1 in the LP
solution, that is, the ends of black edges in the LP graph. So, as a first step
we can delete all black edges and examine the remaining red islands. If the
borders of any of these are met by an odd number of deleted black edges,
then we have a violated comb inequality: the island is the handle and the
black edges are the teeth. The process is illustrated in figure 6.14, where
we find two potential comb inequalities in the solution of the subtour LP
relaxation; in our computation we chose the one having three teeth.

Besides the quick method we just described, there are a number of
fancier heuristic algorithms for combs with single-edge teeth, as well as an
exact-separation method that runs in polynomial time. These techniques
are quite successful and, in true algorithm-engineering fashion, researchers
have exploited their success in hit-or-miss algorithms for general combs.
The idea is to replace clusters of cities by single vertices and then search
for single-edge combs in the shrunken graph. Any combs that are found
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Figure 6.14
Two combs from red islands.

can be expanded back to general combs in the original. The art here is
to select clusters in a creative way, typically using methods that search
for sets having borders of value close to two in the LP solution. It was a
shrinking heuristic of this type that delivered the large three-tooth comb
that completed our 42-city computation.

Non-crossing LP Solutions

The search for comb-separation algorithms might appear to be a dirty
business, but it can lead to very interesting mathematics, bringing in
methods and structures from various fields of study. A nice example
is the work of Lisa Fleischer and Éva Tardos at Cornell University in
the late 1990s.16 In an area dominated by the immediate algorithm-
engineering needs arising in computational studies, the two researchers
took a step back and achieved an elegant and precise theoretical result,
rather than a hit-or-miss heuristic algorithm, the first of its kind for general
combs.
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Figure 6.15
Solution of subtour LP relaxation

for a 1,000-city instance.

The main idea in the Fleischer-Tardos work is to focus attention on
LP solutions that can be drawn as graphs without crossing edges, such as
the 42-city solutions we saw earlier or the 1,000-city solution displayed
in figure 6.15. This is a nice restriction. Geometric instances of the TSP
often have LP solutions that are non-crossing, or nearly so, and this
structure can be exploited by tools from the theory of graphs that are
not available in the general case. The Fleischer-Tardos analysis yields a
separation algorithm that runs in polynomial time, but we must be careful
in stating a qualification on the combs that are delivered.

Every tour crosses the boundaries of a k-toothed comb at least 3k+ 1
times. It is also true that any LP solution satisfying all subtour-elimination
constraints will evaluate to at least 3k, that is, a comb inequality can be

Figure 6.16
Lisa Fleischer. Éva Tardos. Adam Letchford.
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violated by at most one. Now, presented with a non-crossing LP solution
such that there exist combs that evaluate to 3k, the Fleischer-Tardos
algorithm is guaranteed to produce one. The method may, however, fail
to spot combs violated by 1− d for a small number d. This is a mixed
blessing. On the one hand it is good news that the algorithm will find a
comb having maximum violation, but on the other hand it is bad news,
from a practical view, to miss out on the many other combs that may exist
when the algorithm fails.

It is an open research question to construct a polynomial-time al-
gorithm to solve the full comb-separation problem for non-crossing LP
solutions. Such a result would be an important theoretical achievement
and it would likely have a direct practical impact on TSP computation.
Exploring this question, Adam Letchford of Lancaster University in Eng-
land took the Fleischer-Tardos ideas in another direction, developing a new
class of constraints designed from the ground up to permit polynomial-
time separation in the non-crossing case.17 Letchford’s constraints are
called domino-parity inequalities and they include combs and many more
structures as well.

This “many more” sounds like a good thing, but the practical conse-
quences were not so clear. From numerous computational studies we know
that comb inequalities pack a big punch, but Letchford’s polynomial-time
algorithm delivers more general constraints, sometimes not facet defining,
even if violated combs are available. The Canadian team of Sylvia Boyd,
Sally Cockburn, and Danielle Vella cleared up this matter several years
later with an impressive study, combining a computer implementation
with by-hand computations to show that Letchford’s algorithm works like
a charm on modest-sized test instances.18 Their work was followed by a
large computational study led by Daniel Espinoza and Marcos Goycoolea
at Georgia Tech, fully automating the algorithm.19 The end result was an
important new module for the Concorde code that played a big role in the
sprint up to the record 85,900-city solution.

Edmonds’s Glimpse of Heaven

Better inequalities lead to better bounds, and better bounds lead to faster
computer codes. But can this route lead to the million-dollar prize? There
is a precedent in the stunning solution of the perfect-matching problem by
Jack Edmonds.20

A perfect matching in a graph is a set of edges that pair up the vertices,
that is, each vertex is the end of exactly one edge in the perfect matching. If
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costs are assigned to the edges, then the problem is to find a perfect match-
ing such that the total cost of the edges in the matching is as small as possi-
ble. Like the TSP, it is not at all clear how to efficiently find such amatching.

Since we do not know how to optimize, we better call in LP duality.
Indeed, perfect matchings satisfy a form of the degree constraints, namely,
the edges meeting each vertex must sum to one. This is a good starting
point, but cutting planes are needed. And Edmonds delivered. His blossom
inequalities capture the fact that a graph with an odd number of vertices
cannot have a perfect matching. Thus, for any odd cluster of vertices, a
perfect matching must contain at least one edge connecting the cluster to
the remainder of the graph. The corresponding linear inequality has the
form of a subtour-elimination constraint, but this time we ask only that the
sum of variables be at least one rather than at least two.

Edmonds adds in the full set of blossom inequalities, one for each odd
set S , in a single wave of cutting planes, and proves that the resulting
polytope is in fact the convex hull of the perfect matchings of the graph.
With such a description, he is able to directly apply LP duality to obtain a
polynomial-time algorithm to compute minimum-cost perfect matchings,
avoiding a step-by-step cutting-plane process. This is a remarkable result
that Edmonds sums up as follows. “But here is a good algorithm, here is
a solved integer program. And, you know, this was a sermon, this was a
real sermon. Here is a solved integer program. It was my first glimpse of
heaven.”21

Can this possibly work for the TSP? In 1964, Edmonds discussed the
fact that the corner points of the TSP polytope have a simple character-
ization, despite their huge number, and thus the facets might too have a
simple characterization. He writes: “At least we should hope they have,
because finding a really good traveling salesman algorithm is undoubtedly
equivalent to finding such a characterization.”22 This is a bold statement,
but his insight was right on the money. Indeed, the LP algorithm of
Khachiyan, that made the New York Times front page in 1979, has the
interesting property that it can be executed without an explicit list of the
constraints of the LP problem, as long as a separation routine is available.23
Thus, subject to a few technical conditions, Khachiyan’s work can be
used to show that a good separation algorithm yields a good optimization
algorithm, and, vice versa, a good algorithm for optimization yields a good
algorithm for separation. This is a deep mathematical result, proven in its
most complete form by Martin Grötschel, László Lovász, and Alexander
Schrijver in the 1980s.24

It follows that to solve the TSP we must have a characterization of
the convex hull of tours, equipped with a polynomial-time separation
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algorithm. Beautiful! The practical, algorithm-engineering side of the TSP
calls for faster and better separation algorithms, and themillion-dollar Clay
Prize is tied to this same strategy. It would be great if this could be worked
out, giving another peak at heaven!

Cutting Planes for Integer Programming

Returning to earth, the cutting-plane method is no exception to the rule
that successful techniques in integer programming have their roots in
TSP research. Cutting planes are far and away the most important tool in
modern IP solvers. Subtours, combs, clique trees, et al. are TSP-specific, but
the overall method of improving an LP relaxation step-by-step via cutting
planes carries over to the general IP setting.

Ralph Gomory was the first person to investigate IP cutting planes
in earnest. In later years he would go on to be the senior vice president
for science and technology at IBM and the president of the Alfred P.
Sloan Foundation, but in the mid-1950s Gomory was tucked away in the
mathematics department at Princeton University as a postdoctoral fellow,
attempting to squeeze out whole-number solutions from LP problems.
Trained in classical mathematics, Gomory sought to apply the theory
of Diophantine analysis, that is, the study of integer solutions to linear
equations. An extension to the linear inequalities used in LPmodels seemed
promising, but a week of long days and longer nights produced only a set
of partially worked-out examples.25

Late in the afternoon of the eighth day of this I had run out of
ideas. Yet I still believed that, if I had to, in one-way or another,
I would always be able to get at an integer answer to any particular
numerical example. At this point I said to myself, suppose you really
had to solve some particular problem and get the answer by any
means, what would be the first thing you would do? The immediate
answer was that as a first step I would solve the linear programming
(maximization) problem, if the answer turned out to be 7.14, then I
would at least know that the integer maximum could not be more
than 7. No sooner had I made this obvious remark to myself than I
felt a sudden tingling in two of my left toes, and realized that I had
just done something different, and something that certainly was not
part of classical Diophantine analysis.

The idea is that if we know an inequality 3x + 2y ≤ 7.14 is satisfied by all
solutions to an LP problem, then we know also that 3x + 2y ≤ 7 is satisfied
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by all integer solutions. Thus, a halfspace that touches the border of the LP
feasible region can be pushed in a small amount without cutting off integer
solutions.26

Gomory worked this observation into an algorithm for solving pure
IP problems, that is, LP problems where all variables are required to take
on integer values. His method utilizes the form of the simplex algorithm,
deriving a cutting plane whenever a dictionary assigns a non-integer value
to a variable. Gomory’s short paper on the work turned the field of integer
programming upside down for a number of years, but once computers
became speedy enough to tackle large instances it became apparent that
the algorithm did not behave well in practice. Nonetheless, the story has a
happy ending: a variant of the mechanism for creating cutting planes, also
developed by Gomory, is now the workhorse of commercial IP solvers.



7: Branching
The basic methodwill be to break up the set of all tours into smaller
and smaller subsets and to calculate for each of them a lower
bound on the cost of the best tour therein.

—John Little et al., 1963.1

I n the Dark Age of TSP cutting planes, between the work of Dantzig
et al. in 1954 and Chvátal in 1973, researchers focused on a variety

of alternative solution methods. Chief among these is the divide-and-
conquer approach known as branch-and-bound, another general-purpose
tool developed first in the context of the salesman. In state-of-the-art TSP
software, branch-and-bound is combined with the cutting-planemethod to
produce a powerhouse capable of solving instances of the problem having
thousands of cities.

Breaking Up

The search for an optimal tour hidden in an LP relaxation is a search for
the best needle in a large haystack. With patience and a sufficient supply of
inequalities, the cutting-plane method will eventually solve the problem by
exposing a shiny needle at the top of the stack.

Sounds good, but at some point it may happen that each new cutting
plane removes only a tiny amount of hay. Rather than continue to cut,
cut, cut, we can instead consider splitting the remaining haystack into
two smaller stacks. A good division of this type can shine a light on the
collection of needles, making each of the two newly created subproblems
much easier to solve than a search of the full stack. The splitting step is
known as branching; Dantzig et al. described the idea in general terms and
Willard Eastman worked it into a complete TSP algorithm.2

We present the method in the next section, but to start let’s take a
detailed look at a single branching step for the 42-city USA problem.
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Carson City

Boise

Figure 7.1
Solution after adding

three subtour-elimination

constraints.

Cutting planes alone make short work of this example, so let’s handicap the
process and permit as cuts only those subtour inequalities that correspond
to islands in the LP solution. Such an approach takes us through the
first three steps of the computation documented in the previous chapter,
resulting in an LP bound of 682.5 units and the connected graph displayed
in figure 7.1.

The displayed LP solution sits atop the haystack, so it makes sense to
split the problem in such a way that this piece of hay, at least, will disappear.
The standard method to accomplish this is quite simple. We select one of
the red edges and force the problem to decide to use the edge or not, that
is, we split the set of tours into those that do not contain the edge and those
that do contain the edge. This works beautifully in the LP model, since we
can create the first subproblem by adding the constraint xi j = 0 and the
second subproblem by adding the constraint xi j = 1, where city i and city
j are the ends of the red edge. The newly created subproblems are called
the 0-side and 1-side of the branch.

In our example we use the connection between Boise and Carson City
as a branching edge; the resulting LP solutions are displayed in figure 7.2.
Note that the Boise to Carson City edge, indicated by the yellow region,
does not appear in the LP solution for the 0-side of the branch, but it does
appear in the solution for the 1-side. Again, the simplex method does not
lie. The 0-side solution has objective value 687.5 and the 1-side solution has
objective value 686. Thus, since each tour through the forty-two cities is a
feasible solution to either one or the other of the two LP models, we now
know that no tour can have value less than 686 units.

We have increased the 682.5 bound to 686 via the branch, but the
situation is even better: the LP solution in the 1-side has islands that can
be stamped out with additional subtour-elimination constraints. Doing so
results in the new LP solution displayed in the figure, yielding a bound of
703.5. That is good. We know already a tour of length 699, so in searching
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682.5

687.5

703.5

686.0

Figure 7.2
Branching on the Boise to Carson City edge.

for a possibly better tour there is no need to look further into this side of the
branch. This allows us to prune the 1-side subproblem, discarding it from
our search.

Summing things up, we split the haystack in two, added a few cutting
planes, and then tossed out one of the two resulting stacks. Such a good
turn of events is not always possible, but the example should convince you
that branching can indeed be a useful tool in a TSP solution process.

The Search Party

The search strategy that grew out of Eastman’s work was dubbed branch-
and-bound by TSP researchers Little et al.3 The idea is straightforward. We
begin with our original problem, which we call the root relaxation. If at
any point the LP bound associated with a subproblem is greater than or
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688.5

687.5

700.5

701.0

690.0

712.0

694.0

699.0

696.0

694.0

688.0

Figure 7.3
Branch-and-bound search tree for the 42-city USA problem.

equal to the length of a known tour, then we prune the subproblem from
further consideration. At each step we choose a remaining subproblem and
branch, creating two new child subproblems. The process stops when each
unbranched subproblem has been pruned.

Simple enough, but the method can only succeed if we have a high-
quality bounding mechanism. Weak bounds lead to very large search trees,
while strong bounds allow for quick pruning and a short path to the optimal
solution. Eastman himself did not consider the idea of improving the
degree-constraint bounds with cutting planes, and thus he achieved only
modest computational success, limited to a ten-city instance worked out in
his Ph.D. thesis.

In contrast, the drawings in figure 7.3 show how branch-and-bound
solves the 42-city example, starting with the 687.5 model as the root and
stamping out subtours whenever they appear in unpruned subproblems.
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We have followed Eastman’s lead and displayed the search process as a
tree, with child subproblems connected to their parent. Note that each
branching step leads to children with substantial improvements in the
corresponding LP bounds. This is what we like to see.

Branch-and-Cut

Despite an initial rivalry between cutting and branching, the techniques are
natural partners. Indeed, the combination of methods swept into power
in the 1980s, with Manfred Padberg and Giovanni Rinaldi leading the
way. These researchers coined the term branch-and-cut and their careful
implementation made the process fly for the salesman, smashing previous
records with the solution of a 2,392-city test instance.4

Padberg and Rinaldi did not handicap the cutting-plane side of their
computations. Just the opposite, they unleashed whatever cuts they could
obtain in order to improve the LP models. With this approach they found
it useful to store their cuts in a pool to share among subproblems, that is,
cutting planes that improve the LP bound in one subproblem are stored
for possible use when processing other subproblems. The purpose of the
pool is twofold. First, searching the pool can be much faster than carrying
out elaborate separation algorithms. Second, most separation algorithms
employed in TSP computations are hit-or-miss heuristic methods. And
sometimes they miss at one subproblem but hit at another. By collecting
the inequalities into a pool, we gather the hits and see what they can do at
other parts of the search tree.

Strong Branching

Vašek Chvátal likes to equate the branching step to marriage. Once we
decide to branch we are committed to the new view of the problem; there is
no undoing what branching has done. Adopting this metaphor, we can say
that early branch-and-bounders typically employed a system of marrying
the first potential partner they met on a street, that is, spotting an edge that
is assigned a fractional value in the LP solution, they immediately create a
pair of subproblems by forcing the edge to go one way or the other. This
is a quick method, but in branch-and-cut the bounding process is quite
time consuming and it pays to make a greater effort in the selection of a
branching edge. Padberg and Rinaldi do this with a technique that we liken
to using a dating service to screen potential mates. In Concorde we took
this a step further and proposed to first go out on a few dates with a number
of candidates before making a selection. Later we went all-in and decided
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it was best to go ahead and live together with several top choices before
committing to the branching marriage.

Let’s start with the dating service. Padberg and Rinaldi employed a
statistical scheme for building a group of the most-fractional edges, that
is, edges having value far away from zero and far away from one. From
among these, they select the edge having greatest travel cost. This makes a
lot of sense. Branching on a long edge will tend to have a greater impact on
the LP bounds than branching on a short edge.

The Concorde idea, called strong branching, is to take some of the
guesswork out of the selection by calling on the LP solver to give a strong
hint as to the values that would be obtained by the simplex method. The
hint is provided by carrying out a limited number of simplex pivots, say
fifty, for each pair of children determined by the branching candidates.
With these values in hand, we select the branch that appears to give the
greatest increase in the LP bounds. This computation can take considerable
time, but it is well worth the effort to avoid a bad split that can potentially
double the size of a search tree.

The “all-in” upgrade is to select the top few choices produced by
strong branching, then actually solve the corresponding LP subproblems,
including a limited application of cutting planes for each potential child.
This procedure gives an accurate indication of the bounds we can expect
to obtain, but it comes at a great computational cost that pays off only on
the most difficult instances. Purists might say we are cheating by trying out
branches before making our final selection, but all is fair in the struggle
against the salesman.

Branch-and-Bound for Integer Programming

From its TSP roots, branch-and-bound quickly made its way over to
general integer programming. The pioneers in this case were Ailsa Land
and Alison Doig from the London School of Economics.5

In a memoir published in 2010, the two researchers discussed their
procedure.6

Figure 7.4
Ailsa Land, Banff,

1977.
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We did not initially think of the method as “branch and bound”, but
rather in the “geometrical” interpretation of exploring the convex
feasible region defined by the LP constraints. We are not sure if
“branch and bound” was already in the literature, but, if so, it
had not occurred to us to use that name. We remember Steven
Vajda telling us that he had met some French people solving ILPs
by “Lawndwa,” and realizing that they were applying a French
pronunciation to “Land-Doig,” so we don’t think they knew it as
branch and bound either.

The basic Land-Doig process dominated the practical world of IP computa-
tion in a way that Gomory’s algorithm failed to do, and it was well into the
1990s before branch-and-cut took hold in commercial IP software, finally
bringing together the IP rivals.



8: Big Computing
I don’t think any of my theoretical results have provided as great a
thrill as the sight of the numbers pouring out of the computer on
the night Held and I first tested our boundingmethod.

—Richard Karp, 1985.1

T he combination of ever-improving mathematical techniques, careful
algorithm engineering, and powerful computing platforms has taken the

TSP to dizzying heights, but the struggle with the salesman is far from over.
Let’s see where we stand.

World Records

When it comes to TSP records, nothing comes close to topping the work of
Dantzig, Fulkerson, and Johnson.

It is absolutely astonishing that the three authors were able to find
an optimal solution of such a large TSP instance and to prove its
optimality by manual computation.

—George Nemhauser and Martin Grötschel, 2008.2

Dantzig, Fulkerson, and Johnson showed a way to solve large
instances of the TSP; all that came afterward is just icing on the cake.

—David Applegate et al., 1995.3

The world eventually understood and digested the work of the RAND
team, pushing their techniques in many directions and achieving notable
results. But for breadth of new ideas, wide-ranging impact, and quality of
exposition, their 1954 paper stands alone as the greatest achievement in the
history of the salesman problem.
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64 Random Locations

The years immediately following the Dantzig et al. work were quiet ones
on the TSP front. Various methods were explored, but computational
tests were typically limited to instances of the problem having ten or
so cities. Michael Held and Richard Karp finally brought this period of
drought to an end in 1971, initiating a big push to larger and more difficult
computations.4

In his 1985 Turing Award Lecture, Karp stated clearly the intentions
of the Held-Karp study. “A few years earlier, George Dantzig, Raymond
Fulkerson, and Selmer Johnson at the RAND Corporation, using a mixture
of manual and automatic computation, had succeeded in solving a 49-city
problem, and we hoped to break their record.”5

Break it they did, first solving again the 49-city problem, then moving
on to a 57-city instance through the United States and a 64-city random
Euclidean instance. The algorithm and code that won the day were based
on a sophisticated bounding mechanism derived from spanning trees. This
bound was incorporated into a branch-and-bound search that produced
remarkably small search trees for their test problems.6

It was exciting. We had a lot of trouble and then one day it started
working like a charm. The branch-and-bound trees tended to be
rather narrow and didn’t have many deviations; the bounds were
good enough that you went more or less directly to the solution.

The Held-Karp study is unique among the record-setting TSP com-
putations in that it did not directly utilize the cutting-plane method.
Their bounding mechanism does, however, have a connection with linear
programming and the work of Dantzig et al. Indeed, the Held-Karp bound
is an approximation to the optimal objective value of the subtour LP
relaxation, and their entire approach can be seen as ameans to avoid the use
of general LP software. This is not a reflection of the quality of LP solvers
at the time, but it was true that available software was difficult to use in the
iterative fashion required to run the cutting-plane method.

80 Random Locations

A number of research groups improved on the details of the Held-Karp
branch-and-bound process, resulting in the solution of a 67-city Euclidean
instance by an Italian team in 1975.7 But it was inevitable that the cutting-
plane method would strike back: the inclusion of inequalities beyond
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Figure 8.1
Top: Held and Karp’s optimal 57-city

tour. Bottom: Michael Held, Richard

Shareshian, and Richard Karp, 1964.

Courtesy of IBM Corporate Archives.

Figure 8.2
Panagiotis Miliotis,

1974.

subtour-elimination constraints offers too much additional power over
bounds that can be achieved with the Held-Karp approach.

The punch landed at the London School of Economics in the group led
by Ailsa Land. Her student Panagiotis Miliotis solved a collection of ran-
dom Euclidean instances having up to 80 cities, utilizing a hybrid of cutting
planes and general integer programming, first proposed in the mid-1960s
by Glenn Martin.8 The process runs roughly as follows. Starting with the
degree LP relaxation, restrict all variables to take on zero or one values only
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Figure 8.3
Martin Grötschel, 2008.

Courtesy of Konrad-

Zuse-Zentrum für

Informationstechnik Berlin.

and apply Gomory’s IP cutting-plane algorithm. If the solution is a tour, it
must be optimal; otherwise, add a number of violated subtour-elimination
constraints, call Gomory’s algorithm again, and repeat the process.

The total running time needed byMiliotis to handle the 80-city example
was under one minute, suggesting larger instances could also be tackled.
Miliotis, however, made the following remark.

It is unfortunate that the cuts occupy lots of space in the A matrix
(the matrix of the coefficients of the constraints). It is characteristic
that a 90 cities random Euclidean problem failed with the cutting
planes because the non-zero elements in the A matrix exceeded
30,000, most of these occurring in the cutting plane constraints.

This is an unfortunate feature of Gomory’s method: each additional cutting
plane involves nearly all of the variables in an LP model, which eventually
slows the simplex algorithm to such an extent that further progress is
impossible. In contrast, the beauty of the pure Dantzig et al. approach
is that TSP-specific inequalities tend to assign most edges the value zero,
resulting in LP models that are relatively easy to solve.

120 Cities in Germany

Martin Grötschel was the next to step up with a new TSP record. His
approach was pure cutting planes: he used LP software to solve his models,
but found his inequalities with by-hand calculations, much in the spirit of
the 1954 study. We have already seen his optimal 120-city tour of Germany
in the three-tours map displayed in figure 1.9 in chapter 1.

In the record-setting computation, Grötschel solved thirteen LP relax-
ations, using a total of 36 subtour-elimination constraints and 60 comb
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inequalities. Each of the thirteen rounds took between thirty minutes and
three hours of by-hand computations, and between thirty seconds and two
minutes of computer time.9 His LP solver was the IBM package called
MPSX. Grötschel described the overall process as follows in an e-mail
message from June 11, 2005.

After an MPSX-run I printed the solution and drew the corre-
sponding solution picture. Then I made some copies of the solution
picture and tried to detect cutting planes. Of course, after having
gained some experience, I could find lots of violated inequalities. But
in those days MPSX was not able to handle very large scale linear
programs so that I restricted myself to adding something like 5 to
20 cuts per run making educated choices as to which of the cutting
planes that I spotted would do a reasonable job.

It was a great achievement, demonstrating the power of comb inequalities
in solving large-scale instances of the TSP.

318 Holes in a Circuit Board

Hot on the heels of Grötschel’s 120-city computation, Manfred Padberg
initiated a joint study with Saman Hong, a recent Ph.D. graduate from
Johns Hopkins University. Their project was a computational success,
automating the cutting-plane algorithm, solving instances with up to
75 cities, and computing good lower bounds on other instances.10 The
largest example treated in the study was a 318-city drilling problem con-
sidered earlier by Shen Lin and Brian Kernighan.

Not satisfied with good approximations, Padberg continued his pursuit
for a solution to the Lin-Kernighan example several years later, this time
together with IBM’s Harlan Crowder.11

One evening we had it all together and submitted a computer run
for the 318-city symmetric TSP. We figured it would take hours to
solve and went to the “Side Door”, a restaurant not far from IBM
Research, to have dinner. On the way back we discussed all kinds of
“bells and whistles” we might want to add to the program in case of
a failure. When we got to IBM Research and checked the Computer
Room for output it was there. The program proclaimed optimality
of the solution it had found in under 6minutes of computation time!

The Crowder-Padberg study concludedwith the solution to the 318-city
instance and a large collection of smaller examples.12
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Figure 8.4
Left: Optimal solution of a 318-city drilling problem. Right: Manfred Padberg (second

from right) and Harlan Crowder (sitting), 1982. Courtesy of Manfred Padberg.

666 World Locations

This brings us to 1987, a high point in TSP computation rivaled only
by the Big Bang of 1954. In the first of two major studies announced
that year, Martin Grötschel and Olaf Holland tackled a large set of test
instances, the most difficult of which consisted of 666 cities chosen from
around the world. Bible scholars will recognize 666 as “the number of the
beast,” and, indeed, Grötschel selected the cities with the idea of creating
a beastly challenge for TSP computations.13 Grötschel and Holland met
the challenge with a hybrid of the cutting-plane method and general
integer programming, this time with IBM’s MPSX-MIP/370 code as the
IP solver. Their computational success centered around a host of new exact
and heuristic separation algorithms for comb inequalities, allowing their
code to obtain very strong LP relaxations.

Figure 8.5
Left: Grötschel and Holland’s 666-city tour. Right: Olaf Holland, 2010.
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2,392 Holes in a Circuit Board

The hybrid approaches adopted in work by Glen Martin, by Panagiotis
Miliotis, and by Grötschel and Holland permit the use of high-powered
IPmachinery, but the secondmajor study of 1987, byManfred Padberg and
Giovanni Rinaldi, demonstrated clearly the benefits of keeping the solution
process squarely in the TSP arena. Branch-and-cut was the method wielded
by Padberg and Rinaldi. Their computer code solved test instances that
included a 532-city USA tour, the Grötschel-Holland 666-city challenge
problem, and drilling problems with 1,002 cities and 2,392 cities. The
solution of the 2,392-city TSP was a stunning accomplishment and easily
the most complex attack on an optimization problem up to that time.14

The high-profile Padberg-Rinaldi study brought in major computing
hardware, including a CDC Cyber 205 supercomputer at the National
Bureau of Standards and the vector-processing IBM 3090/600 computer
at the IBM T. J. Watson Research Center. But it was the algorithmic
work that pushed the TSP results forward, including new separation
heuristics for combs and clique trees and numerous innovations in imple-
menting branch-and-cut. Their paper concludes with the optimistic note,
“the problem with 2392 cities should not be the end of the ongoing saga of
the symmetric traveling salesman.”

Figure 8.6
Top: Optimal tour of a 2,392-hole

printed circuit board. Bottom:

Manfred Padberg and

Giovanni Rinaldi, 1985. Courtesy

of Manfred Padberg.
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3,038 Holes in a Circuit Board

Dave Applegate, Bob Bixby, Vašek Chvátal, and I began our joint work in
1988, hoping indeed to continue the saga. We initially attempted to avoid
the cutting-plane method, adopting the motto that if other people have
tried something then it was not for us. It didn’t take long to realize this
was a big mistake and by 1989 we were immersed in the details of branch-
and-cut. Our initial code was called “Subtour,” since it was first created only
as a means to compute the optimal solution of the subtour LP relaxation,
which we used as a measure of the performance of our non-cutting-plane
bounds. It eventually grew to include an array of new separation routines,
as well as the strong-branching methods we described earlier.

The home for our computational work was the Bellcore research lab in
New Jersey, which housed fifty or so desktop workstations that could be
harnessed when their owners were away from their offices. These machines
on their own were not comparable to the big-iron hardware employed in
the Grötschel-Holland and Padberg-Rinaldi studies, but working together
on a network they could be a speed demon. It was thus natural to develop
a parallel-processing approach, dividing up the work of finding cutting
planes and processing subproblems.

Unfortunately we were not the only ones hunting for free computer
cycles. The rival was Arjen Lenstra, who led the computation to factor
the 129-digit RSA challenge number into its prime components.15 The
contest for computing time was not entirely friendly, but in the end both
teams came away with big slices of the available hardware. Our strategy was
simple: we only started our software on a machine if it was currently free,
other than the pesky factoring code run by Lenstra, and we terminated the
code as soon as we sniffed the owner returning to his or her desk. Dave
Applegate implemented this strategy with a small code that checked for
user input, such as a mouse movement or a keyboard stroke, several times
a second. Dave’s code made it extremely difficult for a user to even know
that we had taken over his or her machine: if the user issued a command
to see what was running, then our code disappeared before the command’s
results could be delivered to the screen.

Using this Bellcore network, our first result came in 1992 with the
solution of a 3,038-city circuit-board drilling problem from Gerd Reinelt’s
TSPLIB. With various tweaks to the code and algorithms, we were able to
move up to a 4,461-city tour through the old East Germany in 1993, and a
7,397-city solution to a computer-circuit problem in 1994. At this point we
agreed to conclude our TSP project, but, perhaps fortunately, the wrapping-
up process did not work out as planned.
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Figure 8.7
Left: David Applegate.

Right: Robert Bixby.
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Erlangen, 2010.

13,509 Cities in the United States

With the conclusion of our computations, we set out to document the
techniques employed in the run up to the 7,397-city TSP. Here we ran
into a problem. It would be difficult to convince other researchers that
we had developed a solid approach when we ourselves were not happy
with the details of the work; the Subtour code had grown in spurts as we
discovered new techniques and it did not capture well our global view of
TSP computation. Faced with this fact, we did the only sensible thing and
threw it away. Rather than writing up documentation, we began work from
scratch on a new code than we called “Concorde.”

This restart of the project was a luxury and we took advantage of
the opportunity to include algorithms and techniques aimed at much
larger TSP instances. One of the key new components was a “local cuts”
separation routine based on shrinking clusters of cities to obtain very small
graphs, allowing us to apply a time-consuming LP-based method to obtain
cutting planes.

The main target of our computational study was a 13,509-city tour
through the United States that was solved in 1998. In the years following
this result we continued to work, but it was mainly work to understand
what we already had in place, similar to a race car driver getting used to a
new vehicle. Along the way we computed optimal tours for 15,112 cities in
Germany in 2001 and 24,979 cities in Sweden in 2004.

85,900 Gates on a Computer Chip

The Sweden TSP computation pushed the Concorde code to its limit.
The work was carried out on a cluster of 96 dual-processor computers at
Georgia Tech, running as a background process when the machines were
not otherwise active. The total amount of computing time was a whopping
84.8 years.
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Figure 8.8
A tour of all 13,509 USA cities having population of at least 500.

Figure 8.9
Left: Daniel Espinoza.

Right: Marcos Goycoolea.

We were quite proud of the Sweden tour, but the TSPLIB contained
two larger instances, having 33,810 cities and 85,900 cities respectively,
and these appeared to be beyond the reach of Concorde. Fortunately,
Daniel Espinoza and Marcos Goycoolea’s implementation of Letchford’s
separation algorithm came online at about this point (see the discussion at
the end of the separation problem section in chapter 6), giving us enough
horsepower to take a shot at completing the solution of Reinelt’s TSPLIB
collection.

The final run on the 85,900-city TSP was begun in February 2005 and it
concluded with an optimal tour in April 2006. A plot of the steadily rising
LP bound is given in figure 8.10; the data points are taken from the nearly
daily logs of the computations, with a break in December 2005 when the
cluster of machines was down for repair. The bound eventually grew to
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Figure 8.10
Progress in LP bound

for 85,900-city TSP.

within 0.001% below the length of the best-known tour found in 2004 by
Keld Helsgaun. This was close enough for a short branch-and-cut search to
close the remaining gap and prove that Helsgaun’s tour was indeed optimal.

The 136 years of computing time used in the calculations made it
difficult, of course, for anyone to verify our claim that we had actually
solved the problem. Thus, in keeping with its record status, in 2009 we
published a computer code and data set that together certify the optimality
of the 85,900-city tour.16 The data consists of the cutting planes and dual LP
solutions for each subproblem in the branch-and-cut search. The computer
code, a relatively svelte 6,646 lines in the C programming language, runs
through the subproblems and establishes that the dual LP solutions provide
bounds to allow each of them to be pruned. Not as clean, perhaps, as a proof
of the Pythagorean theorem, but it does set down enough information for
future TSP researchers to dig through the results of the huge computation.

The TSP on a Grand Scale

The beauty of the computational side of the TSP is the simple fact that there
is always a larger problem.

Bosch’s Art Collection

Moving just beyond the TSPLIB test collection, I really like the chal-
lenge instances created by Bob Bosch, using a technique we describe in
chapter 11. His six problems range in size from the 100,000-city Mona Lisa
up to a 200,000-city rendering of Vermeer’s Girl with a Pearl Earring. The
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data sets are on the Web, available to anyone wanting to take a crack at
finding better tours or establishing bounds on possible tour lengths.17

Among Bosch’s test problems, the Mona Lisa TSP has attracted by far
the most attention, sitting as it does just tantalizingly above the 85,900-city
record solution. The small difference between 85,900 cities and 100,000
cities may be misleading, however. It seems likely that by almost any
measure the Mona Lisa TSP is much more challenging than the current
world record computer-circuit example. Indeed, the image displayed in
figure 1.8 reveals many cities close together on straight lines. This geometry
suggests that the 85,900-city instance may be somewhat easy relative to
its size, whereas the distribution of points in the Mona Lisa TSP looks as
complicated as one might imagine.

We mentioned in chapter 1 that there is a $1,000 bounty for a
Mona Lisa tour shorter than the current best found by Yuichi Nagata on
March 17, 2009. Nagata’s computation culminated a flurry of activity
among the world’s top tour finders in February and March of 2009, just
after Bosch created his data sets. The record for the best solution changed
hands six times during this period, with Nagata’s tour coming in at length
5,757,191, an improvement of eight units over a tour found the previous
day by Keld Helsgaun. But is Nagata’s tour optimal?

On January 18, 2010, a bound of 5,757,044 was established for the
Mona Lisa TSP, leaving a gap of only 147 units to Nagata. This seems
tiny, indeed only 0.0026%, but a gap is still a gap. The bound was obtained
via a Concorde branch-and-cut search having 1,065 subproblems, run over
the course of 66 days and 4.37 years of computer time. Further runs with
Concorde could probably push the gap down a few more units, but to
conclude things we almost certainly need new ideas, particularly in cutting-
plane separation. For computation nuts like me, this is where the fun
begins.

The World

The World TSP challenge awaits anyone with ideas for big-time im-
provements in TSP computation. The data for the 1,904,711-city instance
was obtained from the National Imagery and Mapping Agency and the
Geographic Names Information System. At the time of its creation in 2001,
the problem covered every point on the globe populated by humans. The
points are specified by their latitude and longitude, and the cost of travel
between pairs is given by an approximation of the great circle distance,
treating the earth as a ball; this cost function is a variation of the TSPLIB
GEO-norm, scaled to provide distances inmeters rather than in kilometers.
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Figure 8.11
A tour of every city in the world. Image courtesy of David Applegate.

An initial tour of length 7,539,742,312 meters and a 7,504,218,236
bound established an optimality gap of 0.47% in the fall of 2001. This
has been chipped away steadily over the past decade, primarily by Keld
Helsgaun on the tour side and Concorde on the bound side. A chart of
the progress in the gap is displayed in figure 8.12; the red bars indicate
improvements through better bounds and the grey bars indicate improve-
ments through better tours. The current status is Helsgaun’s tour of length
7,515,790,345 and Concorde’s LP bound of 7,512,218,268, yielding a gap of
0.0476%.

The narrowing of the gap over the past decade to just over one-tenth
of its original value is nice progress. An interesting fact is that nearly 75%
of this improvement was achieved through better tours. The TSP world
in 2001 would not have thought this to be possible: the commonly held
view was that state-of-the-art TSP heuristics produced near-optimal tours
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Figure 8.12
Decreasing optimality gap for World TSP.

and thus the initial optimality gap must be due to a weak LP bound.
Helsgaun’s LKH code changed this perception, demonstrating that there
is still room for improvement in tour-finding methods. At this point
I would not be able to guess where the optimal value lies, either closer
to the tour of 7,515,796,609 or closer to the bound of 7,512,218,268.
It is certainly true, however, that the LP bound can be raised through
engineering improvements in Concorde. For example, currently it is not
possible to employ the domino-parity-separation module due to the size of
the data set. This is good news. More work to do!

The Stars

As perhaps a final stop, at least for the foreseeable future, Dave Applegate
and I created in 2003 a TSP instance for the 526,280,881 celestial objects in
the United States Naval Observatory A2.0 catalog. We initially wanted to
include estimates on distances between pairs of objects, thinking it would
be fun to send the Enterprise on an optimal tour in its next five-year
mission. But the coarseness of the data would place all stars on a small
number of concentric spheres, so we opted instead to model the movement
of a telescope. Thus the data specifies cities as locations in the sky, with
travel costs given by a measure of the angle determined by each pair of
cities.

The Star TSP is very difficult to handle in one piece; even an n2 running
time is enormous when n is five hundred million. Thus the goal for now is
to develop methods that split the data set apart, establish bounds and tours
in the components, and then piece things back together. Dave Applegate,
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Figure 8.13
Skymap. Image courtesy of NASA/Goddard Space Flight Center Scientific Visualization Studio.

Keld Helsgaun, Andre Rohe, and I made initial experiments with this
approach, establishing in 2007 an optimality gap of 0.410%. This puts the
problem about ten years behind the World TSP, so if you have wild ideas
for tours or bounds, please keep this big data set in mind.



9: Complexity
Is there or is there not a polynomial-time algorithm for obviously
finite bounded integer programming? I mean, this is my sermon:
Is there or is there not?

—Jack Edmonds, 1991.1

T he pursuit of the salesman through ever larger numbers of cities has led
to breakthroughs in mathematics, computing, and engineering, as well

as advances in numerous practical applications. This is the pride and joy
of TSP researchers. But the step-by-step approach has not answered the
mother-of-all complexity questions: can we efficiently solve every instance
of the TSP?

The fate of the salesman from this complexity point of view is tied to
that of many other problems, including general integer programming, via
the theory of Stephen Cook and Richard Karp. Indeed, the TSP is rolled
into the P vs. NP question, one of the seven Millennium Problems for
which the Clay Mathematics Institute offers a $1,000,000 prize. The Clay
Web site introduces the challenge as follows.

If it is easy to check that a solution to a problem is correct, is it
also easy to solve the problem? This is the essence of the P vs. NP
question. Typical of the NP problems is that of the Hamiltonian
Path Problem: given N cities to visit (by car), how can one do this
without visiting a city twice? If you give me a solution, I can easily
check that it is correct. But I cannot so easily (given the methods I
know) find a solution.

This is typical of public descriptions of P vs.NP , where the TSP or one of
its variants is used to motivate the question. In this chapter we discuss what
we know and do not know about the general complexity of the salesman.
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AModel of Computation

To have meaning, mathematical statements must be precise, or at least it
must be true that they can be made precise. The million-dollar complexity
question is no exception. Here we need to be precise in what wemean by an
algorithm, that is, what does it mean to be computable? This issue came to
the forefront in the early 1900s with David Hilbert’s Entscheidungsproblem,
that asks, roughly, whether there exists an algorithm that can decide if
any given statement is, or is not, provable from a set of axioms. The
development of theory to handle such questions is a beautiful achievement
of twentieth-centurymathematics, with giants Kurt Gödel, Alonzo Church,
and Alan Turing leading the way.

The intuitive concept of an algorithm is that of a list of simple steps that
together produce a solution to a problem. Euclid gave us an algorithm for
greatest common divisors some 2,300 years ago, but at the time of Hilbert it
was not clear how an algorithm should in general be defined. In his famous
paper from 1936, Turing provided an answer, introducing a mathematical
model known as a Turing machine.2

Turing’s machine has a tape for holding symbols, a head that moves
along the tape reading and writing symbols in individual cells, and a
controller to guide the read/write head. The machine also has a finite set
of states, with two special states being initial and halt. The controller is
actually a table that indicates what the machine should do if it is in a
particular state s and it reads a particular symbol x. The “what it should do”
is to print a new symbol x ′ on the cell of the tape, move the head either left
or right one cell, and enter a new state s ′. To solve a problem, the machine
starts in its initial state, with the input to the problem written on the tape;
it terminates when it reaches the halt state.

It is fun to think about a physical version of a Turing machine, with a
read/write head zipping around a long, thin tape full of symbols. Indeed,
there are photographs on the Web of students gathered around modified
shoe boxes with rolls of tape sticking out the ends, recording transitions
from one state to the next on a scratch pad. Turing himself does not
mention physical machines, but rather emphasizes, by means of examples
in his paper, the fact that a machine can be fully described by writing down
its table of transitions from one state to another.

Let’s consider a simple case: given a string of 0’s and 1’s, determine if
the number of 1’s is odd or even. To construct a Turing machine for this
problem we can have four states, initial, odd, even, and halt, two symbols,
0 and 1, and the transition table displayed in figure 9.1. The table has a
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initial odd even

0 _, right, even _, right, odd _, right, even

1 _, right, odd _, right, even _, right, odd

_ 0, _, halt 1, _, halt 0, _, halt

Figure 9.1
Transition table for a parity-checking Turing machine.

row for each symbol (including a blank “_”) and a column for each state
other than halt. The entry in the table is a triple, giving the symbol to
write, the direction to move on the tape, and the next state. For example,
if the machine is in state odd and we read the symbol 1, then we write a
blank symbol in the cell, move one cell to the right, and change the state to
even. Presented with a string of 0’s and 1’s, arranged in consecutive cells on
the tape, and with the read/write head positioned on the leftmost symbol,
our Turing machine will move to the right until it reaches a blank cell,
indicating the end of the string. When it halts, a 0 is written on the tape
if the number of 1’s is even, and a 1 is written on the tape if the number of
1’s is odd. Simple enough, but it illustrates the idea of operating via a table
of transitions.

A next step up is to build a Turing machine that can add two numbers
given in binary notation. This is a common exercise in university-level
courses in computational complexity, and it is kind of fun, as far as such
exercises can be. If you want to get a better feeling for the operation of
a machine, I recommend you give it a try. One thing you will notice is
that it would be convenient to have a second tape to use for intermediate
calculations. Such multiple-tape Turing machines are defined in a natural
way, with separate read/write heads for each tape. Although extra tapes are
convenient, anything we can compute on a multiple-tape machine can also
be computed on a machine with a single tape, albeit a bit more slowly.

This last point, about simulating a multiple-tape machine with a single
tape, is important. We would like to define an algorithm as something that
can be carried out on a single-tape Turing machine, but does this capture
everything we might want in an algorithm? All we can say is that, so far,
Turing machines have been able to handle everything that has been thrown
at them. If something is computable on a modern-day computer, then a
lightning-fast Turing machine could also carry out the computation.

The working assumption that we can equate algorithms and Turing
machines is known as the Church-Turing Thesis.3 This thesis is widely
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accepted and it gives the formal model of an algorithm that is used to make
preciseP vs.NP and other complexity questions. Perhaps, one day, exotic
computing capabilities will come along to cause us to consider an expanded
definition of an algorithm, but for over seventy years Turing has served up
just what the research community has needed.

Universal Turing Machines

There is a fundamental difference between a modern telephone, such as
the iPhone, and, say, a pair of shoes. Shoes are designed for the single duty
of protecting your feet, whereas the hundreds of thousands of applications
available for the iPhone allow it to take on tasks that were not imagined
when the hardware was designed. This is something we take for granted,
but the creation of programmable machines was an intellectual leap, made
by Turing in his original paper.

A Turing machine is a great model for describing what we mean by
an algorithm, but a Turing machine is designed for a single task, such as
adding two numbers. In this sense, Turing machines are closer to a pair
of shoes than to an iPhone. A crucial point made by Turing, however, is
that one can design aUniversal Turing machine capable of simulating every
Turing machine.

It is possible to invent a single machine which can be used to
compute any computable sequence. If this machine U is supplied
with a tape on the beginning of which is written the S.D of some
computing machineM, then U will compute the same sequence
asM.

The “S.D” in the quote is short for “standard description,” Turing’s name
for a transition table. The concept is thus to include the table as part
of the input on the tape, just like we include a program on a modern
computer. Turing’s idea, and plenty of hard work by Konrad Zuse, John
von Neumann, and others, ushered in the age of computing.

The Campaign of Jack Edmonds

Turing answered brilliantly David Hilbert’s call for a theory of algorithms.
Once digital computers started to appear, however, the issue of efficiency
soon became of fundamental importance. It is one thing to know a problem
can be solved by a Turing machine, it is another altogether to know the
Turing machine will deliver its solution during our lifetime.
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Early discussions on the efficiency of algorithms centered around the
TSP and other integer-programming models. A typical quote from this
period is the following from Martin Beckmann and Nobel Prize winner
Tjalling Koopmans, taken from a 1953 research paper.4

It should be added that in all the assignment problems discussed,
there is, of course, the obvious brute force method of enumerating
all assignments, evaluating the maximand at each of these, and
selecting the assignment giving the highest value. This is too costly
in most cases of practical importance, and by a method of solution
we have meant a procedure that reduces the computational work to
manageable proportions in a wider class of cases.

Beckmann and Koopmans considered a family of problems, including both
the TSP and the standard assignment problem of matching workers to
jobs. The following year, Merrill Flood made a case for efficient solution
methods.5

There is a rumor that the Navy is building a computer to handle
various versions of the tanker scheduling problem. The important
thing gained by this would not be economy in carrying out the
calculations but rather a shortening of the length of time it would
take to recompute the operation. I can’t stress this point too much
. . . use of a high speed computer may indeed cost more dollars yet
make the calculation possible in time.

With this need-for-speed in mind, Flood goes on to comment that there
“are as yet no acceptable computation methods” for the TSP. So finite is
not good enough, but what should be our target when judging the quality
of an algorithm? Despite the great need, no clear concept emerged in the
1950s.

This is where Jack Edmonds came onto the scene. We use the word
“campaign” in the title of this section, and wemean this literally—Edmonds
had to fight against a consensus that better-than-finite was not something
to be handled by the mathematics community. Flood himself made the fol-
lowing remark in 1954. “The problem of finding a solution that is practical
for use with available computing machinery is, to the pure mathematician,
not normally an interesting problem.” This was precisely the difficulty. It is
true that Flood, Koopmans, Kuhn, and others were interested in practical
solution techniques, but here the amazing success of the simplex method
for linear programming may have held back direct discussions of better-
than-finite algorithms. The troublesome point was that the simplexmethod
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Figure 9.2
National Bureau of Standards workshop, 1964; Jack Edmonds on far right.

Photograph courtesy of William Pulleyblank.

appeared to solve every linear-programming problem in sight, although
it could not be proven to always run efficiently. This led to an over-
comfortable acceptance of algorithms whose performance could not be
guaranteed.

Edmonds had his work cut out for him. His efforts of persuasion began
at the RAND Corporation in the summer of 1961, where he joined a
group of young researchers invited to take part in a workshop together
with leading figures such as Dantzig, Fulkerson, Hoffman, and others.
Edmonds’s RAND lecture concerned the problem of finding optimal
matchings in a graph. During the course of the workshop he succeeded
in producing a good algorithm for the problem, that is, an algorithm whose
number of steps grows at a rate at most proportional to n4, where n is the
number of vertices of the graph. This deep result served as the focal point
of Edmonds’s campaign, and the beauty of his mathematics helped sway
opinions. But it was not without a series of trials for Edmonds, who writes
the following in a highly recommended memoir.6

The reactions I would get when I was ranting about this at the
time—I remember my obsessions and my talking at full tilt—the
biggest reaction I got is: “Well, it’s kind of silly to expect such a
thing, and let us see, it doesn’t have any real meaning, oh, and so
what, if it were n to the 28th, you know, that doesn’t . . . ”, and all
that kind of stuff.

No one questions his theory today. Edmonds is the hero of algorithms and
computational complexity.
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One thing that did not stick is the use of the word “good” to describe an
algorithm that comes with a guarantee to complete its work in time at most
proportional to nk , where n is a measure of the size of the problem and k is
some fixed power. As we mentioned in chapter 1, the standard term is now
polynomial-time algorithm. This was probably a change for the better, since
it is a bit harsh to say an algorithm as successful as the simplex method is
bad.

Cook’s Theorem and Karp’s List

Things moved quickly in the early days of computational complexity.
In 1967, fresh from successes with matchings and other combinatorial
problems, Edmonds turned things upside down by conjecturing that there
will never be a good algorithm for the TSP. Why would he expect his
polyhedral methods to fail on the salesman, after working spectacularly in
other cases? Edmonds was coy with his explanation, noting only that it was
a legitimate possibility that no good algorithm exists. Four years after this
bet, Stephen Cook and Richard Karp developed their theory placing the
question in the larger world of P vs.NP .

The Complexity Classes

Mathematicians like to keep things tidy, and in the case of complexity
theory this has led to a focus on decision problems, that is, a focus on
problems having yes or no answers. So, for example, does a graph have
a Hamiltonian circuit? Yes or no. Or, given a set of cities, is there a tour of
length less than 1,000 miles? Yes or no.7

Among decision problems, Richard Karp introduced the short notation
P to denote those that have good algorithms. Formally, P is the class of
problems that can be solved in polynomial time on a single-tape Turing
machine, that is, if n is the number symbols on the input tape, then the
machine is guaranteed to halt after a number of steps that is at most C
times nk , for some power k and some constant C . This definition of P
is certainly tidy: we could replace the single-tape Turing machine by a
multiple-tape machine, or even by a powerful modern digital computer,
without altering the class. Indeed, the simulation of a modern computer
via a Turing machine will slow down computations, but the slow-down
factor is only polynomial in n. So if we have a polynomial-time algorithm
on a modern computer, then we also have a polynomial-time algorithm on
a single-tape Turing machine.



Complexity 175

Belonging to P is the gold standard for decision problems, but Stephen
Cook studied a possibly larger class that arises in a natural way. Encapsu-
lating a notion of Edmonds, Cook considered the problems such that yes
answers can be verified in polynomial time. To verify an answer, we provide
a certificate together with the statement of the problem, allowing a Turing
machine to check that the answer is indeed yes. For example, to verify that
a set of cities can be visited in less than 1,000 miles, we can provide the
machine with such a tour.8

An alternative view of verifications is via nondeterministic Turing
machines. Such “machines” are not part of the physical world, since they
have the capability of duplicating themselves during a computation. If there
is a polynomial-time verification, then a nondeterministic machine can
guess the correct certificate in one of its many copies and determine that the
answer to the problem is yes. This view led Karp to propose the shorthand
NP for Cook’s class of problems.

On the surface, it would appear to be much easier to be a member of
NP than to be a member ofP . The TSP is a case where checking a solution
is easy, but finding the solution may be difficult. As a second example,
consider the factoring problem of writing a whole number as the product
of two smaller whole numbers. This may be a difficult task (no polynomial-
time algorithm is known), but it is a simple matter to check that an answer
is correct. Manymore examples can be constructed, but these only hint that
NP is a larger class than P . An amazing fact is that we do not know of a
problem that is inNP but definitely not in P .

Reducing One Problem to Another

In the paper that began the formal study of NP , Stephen Cook put forth
a certain problem in logic as a candidate for a member that may itself not
be in P . “Furthermore, the theorems suggest that {tautologies} is a good
candidate for an interesting set not in L∗ and I feel it is worth spending
considerable effort trying to prove this conjecture. Such a proof would
be a major breakthrough in complexity theory.”9 Indeed, a proof of his
conjecture is now worth a million dollars. Cook’s paper predates Karp’s
introduction of the now standard terminology—his L∗ is what we call
P and his {tautologies} is commonly known as the satisfiability problem.
This problem is to determine whether or not true and false values can be
assigned to a collection of logical variables so as to make a given formula
evaluate to true. The components of the formula are the variables and their
negations, joined up by logical and’s and logical or’s. More important than



176 Chapter 9

the problem itself is Cook’s reason for making the conjecture: his theorems
show that every problem in NP can be formulated as a satisfiability
problem.

The key component of Cook’s theory is the idea of reducing one
problem to another.We have seen this in practice several times in the book.
For example, Karl Menger’s Vienna colloquium presented the problem of
finding a shortest path through a set of points. This is not exactly the TSP,
since we are not required to return to the starting point. But if we know
how to solve the TSP, then we can solve Menger’s problem by adding a
dummy city with zero travel costs between the dummy and each of the
original points.

Formally, a problem reduction is defined as a polynomial-time Turing
machine that takes any instance of problem A and creates an instance of
problem B , such that the answers to A and B are the same, either both yes
or both no. In reducing Menger’s problem to the TSP, we add one extra
city and n extra distances, so we can build a Turing machine to carry out
the reduction in a number of steps proportional to n, the number of points
in the problem. This is typical of problem reductions, where all you really
need to keep in mind is that the size of problem B should not be too much
larger than the size of problem A.

It is clear that reductions are useful in sorting out the many members
ofNP . To show a problem is easy, you can try to reduce it to another easy
problem. To show a problem is hard, you can try to reduce a known hard
problem to your problem. But the amount of order provided by reductions
is surprising: Cook proved that every problem inNP can be reduced to the
satisfiability problem.

The notion that there could be one problem to rule them all is
exceptionally deep thinking, but the proof of Cook’s theorem turns out
not to be that difficult. You can start a proof by noting that since there
will be only polynomially many Turing-machine steps in a verification of
an NP problem, to reduce such a problem to satisfiability we can include
logical variables for every step of the verification, indicating the state of the
machine and the symbol that is read. We will not go into the details here,
but we note that the full proof in Cook’s original paper occupies less than a
page (albeit in a rather small typeface).

Now we can understand Cook’s reasoning. A problem reduction from
A to B implies that if B is in P , then so is A. Thus, if satisfiability is in
P , then there exist polynomial-time algorithms for every problem in NP .
Cook thought it unlikely that P =NP , hence the conjecture.
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Twenty-oneNP-complete Problems

Calling satisfiability the “one problem to rule them all” fits Cook’s result,
but it does not capture the full import of his theory of problem reductions.
Indeed, knowing satisfiability rules all of NP gives a direct route for
showing that other problems too have this property.

An NP problem is called NP-complete if every member of NP
can be reduced to it. Cook followed his proof that satisfiability is
NP-complete with a quick argument that a graph-theory problem known
as subgraph isomorphism is alsoNP-complete: he showed that satisfiabil-
ity can be reduced to subgraph isomorphism. So, any member of NP can
be first reduced to satisfiability and then reduced to subgraph isomorphism.
Building a single Turing machine to carry out both problem reductions,
one after the other, shows that subgraph isomorphism isNP-complete.

This idea of chaining together problem reductions created an explosion
of interest in complexity theory, led by a research paper of Richard
Karp, written one year after the announcement of Cook’s results.10 Karp
gives a delightful technical exposition of P , NP , Turing machines, and
reductions. His paper also presents a now famous list of twenty-one
NP-complete problems, together with their reductions from Cook’s
satisfiability problem. The list includes two versions of the TSP: the
Hamiltonian-circuit problem for undirected graphs and the Hamiltonian-
circuit problem for directed graphs.

Once Karp’s paper hit the streets, reductions to other difficult prob-
lems followed left and right. Hundreds of problems were shown to be
NP-complete, and in 1979 Michael Garey and David Johnson published
a landmark book titled Computers and Intractability: A Guide to the Theory
of NP-Completeness. Their volume lives on the shelf of nearly everyone
working in algorithms; when presented with a new problem, one first scans
the Garey-Johnson catalog ofNP-complete members for likely candidates
to use in a problem reduction.11

A Million Dollars

As a practical matter, once a problem is shown to be NP-complete,
researchers assume it will be nasty to solve and turn either to quick-and-
dirty heuristic methods or to one of the heavy-duty approaches pioneered
by attacks on the TSP. The working hypothesis is that there can be no
efficient polynomial-time algorithm for an NP-complete problem. But
there is no compelling evidence that P and NP are actually distinct. So,
which side do you cheer for? P =NP or P �=NP?
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The ever-growing influence of computation has made the P vs. NP
question perhaps the most prominent open problem in all of mathematics.
Although there has been no shortage of attempts to settle the issue,
Lance Fortnow, writing on its status in 2009, summed up his article with
two words: “Still open.” Nonetheless, with the big $1,000,000 Clay Prize
looming, one can hope for progress on the horizon. As Douglas Adams’s
characterWowbagger the Infinitely Prolonged from TheHitchhiker’s Guide
to the Galaxy said when questioned about the feasibility of his own TSP
project of insulting every man and woman in the universe: “A man can
dream, can’t he?”

State of the TSP

Eindhoven University of Technology’s GerhardWoeginger is the unofficial
archivist of numerous brave claims for the Clay Prize. The highlight of his
P vs.NP Web page is a chronological list of milestones, tagged as “Equal”
or “Not equal” according to the purported result:

44. [Not equal]: In September 2008, J. J. proved . . .
45. [Not equal]: In October 2008, S. T. established . . .
46. [Equal]: In November 2008, Z. A. proved . . .

and so on. Woeginger provides links to research papers and, in some
cases, further links to refutations of the claimed results.12 The scorecard
is evenly split, with twenty-five papers claiming P =NP and twenty-four
claiming P �=NP . It makes for fascinating reading, but, thus far, none of
the arguments has survived a serious review.

Nine of the twenty-five “Equal” results in Woeginger’s list are estab-
lished by delivering good algorithms for variants of the TSP. The meth-
ods employed vary from simple enumeration methods, to sophisticated
attempts to obtain complete, but polynomial-sized, linear-programming
formulations of the salesman problem. Each of the works appears to have
serious flaws, but attacking the salesman is indeed an attractive route to
proving P =NP .

Hamiltonian Circuits

If you are inclined to take up the search for a polynomial-time TSP
algorithm, as part of a plan to earn $1,000,000, then it is useful to keep
in mind that it is sufficient to focus on restricted versions of the problem.
A common choice is to study methods for determining whether or not
a graph has a Hamiltonian circuit. We know this variant of the TSP is
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Figure 9.3
A grid graph.

itselfNP-complete. Even better, the Hamiltonian-circuit problem remains
NP-complete if we assume the input graph is bipartite, that is, the vertices
of the graph can be colored either red or blue in such a way that each edge
has a red end and a blue end. This specialization gives structure one can
exploit in an algorithm, but, as far as polynomial solvability goes, it is just
as difficult as the full TSP.

Alon Itai, Christos Papadimitriou, and Jayme Szwarcfiter pushed this
further, proving that we can specialize the Hamiltonian-circuit problem
to graphs that arise as finite subsets of the infinite grid of squares. An
example of such a grid graph is displayed in figure 9.3, where we take
a large rectangular grid and delete a subset of its vertices. Grid graphs
present an attractive NP-complete target for circuit-finding algorithms;
David Johnson and Christos Papadimitriou call this the “ultimate special
case of the TSP.”13

Geometric Problems

The Hamiltonian-circuit problem is clean and tidy; no need to worry
about evaluating travel costs. For most of us, however, it may be easier to
develop intuition for the Euclidean version of the TSP, where the problem
is specified by (x, y) locations and travel costs are equal to the straight-line
distances between cities. Solving this version of the problem will also prove
P =NP , and fetch $1,000,000.14

Besides the bigmoney, there is a second important open question in this
setting: it is currently unknown if the Euclidean TSP is actually a member
of the class NP . This is at first sight shocking. The decision version of the
problem asks if there is a tour of length at most a specified number K , so
the natural certificate is a listing of the cities in an order that gives such a
tour. We may assume each of the (x, y) coordinates are integers, so there is
no problem representing the data. The technical difficulty arises from the
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square roots that must be computed. It is a simple matter to approximate
any square root to as much precision as we need, but the sum of the square
roots may add up to a value very, very close to K . It is not known if we can
in polynomial time obtain a sufficiently accurate approximation to the tour
length to decide if it is actually no larger than K .

Ronald Graham popularized this sum-of-square-roots problem in the
early 1980s, and illustrated its possible difficulty with the following exam-
ple. Add 1,000,000 to each of the numbers in the two lists below, then take
the sum of their square roots.

1 25 31 84 87 134 158 182 198
2 18 42 66 113 116 169 175 199

For example, the first sum is
√
1000001+ √

1000025 + . . .+ √
1000198.

These are innocent-looking computations, but the two resulting values

9000.4499835688397309490268288613590291912
9000.4499835688397309490268288613590291915

differ first in the 37th place after the decimal point. In general, it is not
known if a polynomial number of digits is sufficient to decide if a sum of
square roots is no larger than a supplied number K ; here the size of the
input is the sum of the number of digits in the (x, y) coordinates and the
number of digits in K .

Settling the sum-of-square-roots problem is the direct route to proving
the Euclidean TSP to beNP , but it is not the only possibility. Perhaps there
is an alternative means to show that a set of points has a tour of length
at most K , making use of some, as yet unknown, geometric structure.
This would be a very interesting development, and, as far as the TSP
goes, perhaps more interesting than the important number-theoretic work
needed in the sum-of-square-roots approach.

The Held-Karp Record

It will likely take a revolutionary idea to decide the polynomial solvability
of the salesman, one way or the other. There is, however, the less lofty goal
of slowly chipping away at the complexity of the problem by repeatedly
improving the best-known running-time bounds for TSP algorithms. This
gradual approach has the appealing aspect that methods achieving faster
time bounds could be suitable in applications, enhancing the practical side
of the TSP.

Faster and faster yet is indeed a good motto for complexity analysis,
but for the TSP we seem to have reached a barrier with the 1962 work
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of Michael Held and Richard Karp.15 This team’s dynamic-programming
algorithm solves any n-city TSP instance in time proportional to n22n, and
this is where we still stand, after nearly fifty years. A revolution may be
overstating what is needed to push beyondHeld-Karp, but it clearly is going
to take an exciting new idea.

Given the record status of Held and Karp, it is only fitting to give a full
description of their algorithm. For the presentation, we consider an n-city
problem, with cities named 1 through n and with travel costs denoted by
cos t(1, 2), cos t(1, 3), and so on, for each pair of cities.

Fixing city 1 as the origin for the salesman, the Held-Karp solution
is built from optimal subpaths, constructed for every subset of cities,
excluding city 1, and for each possible ending point within the subset. As
an example, take the subset {2, 3, 4, 5, 6}, with city 6 as the chosen ending
point. A subpath for these cities is optimal, in the sense we mean here, if it
is cheapest among all paths that begin at city 1, end at city 6, and visit cities
2, 3, 4, and 5, in any order, along the way. We denote the cost of such an
optimal subpath as tr i p({2, 3, 4, 5, 6}, 6). To compute this value, we find
the minimum of the four sums

trip({2, 3, 4, 5}, 2) + cost(2,6)
trip({2, 3, 4, 5}, 3) + cost(3,6)
trip({2, 3, 4, 5}, 4) + cost(4,6)
trip({2, 3, 4, 5}, 5) + cost(5,6)

corresponding to the possible choices for the next-to-last city in the
subpath from 1 to 6, that is, we optimally travel to the next-to-last city then
travel over to city 6.

This construction of a five-city tr i p-value from several four-city val-
ues is the heart of the Held-Karp method. The algorithm proceeds as
follows. We first compute all one-city values: these are easy, for example,
tr i p({2}, 2) is just cos t(1, 2). Next, we use the one-city values to compute
all two-city values. Thenwe use the two-city values to compute all three-city
values, and on up the line. When we finally get to the (n− 1)-city values,
we can read off the cost of an optimal tour: it is the minimum of the sums

trip({2,3,. . . , n}, 2) + cost(2,1)
trip({2,3,. . . , n}, 3) + cost(3,1)

· · ·
trip({2,3,. . . , n}, n) + cost(n,1)

where the cost term accounts for the return trip back to city 1.
That is all there is to it. The running-time bound arises from the fact

that in an n-city problem there are 2n−1 subsets that do not contain the
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origin. For each of these we consider at most n choices for the end city
(actually, the number of choices is only the cardinality of the subset, but to
make the counting easy we increase this to n), and the computation of the
trip value involves fewer than n additions and n comparisons. Multiplying
2n−1 times n times 2n, we see that the total number of steps is no more
than n22n.

The running-time bound is better than checking all tours, once you
get beyond ten cities, but it would be disappointing if Held-Karp is the
best we can do. In looking to beat the record, one needs to focus on the
2n term: replacing n22n by n2n would not be considered an important
step. But a bound of n2(1.99)n or n22

√
n would be newsworthy indeed,

possibly signalling an era where future improvements could push us toward
practical methods with strong running-time guarantees.16

Cutting Planes

If we want to beat Held-Karp, why not turn to the cutting-plane method?
The writer/creator of xkcd.com, Randall Munroe, came right to this point
in the publication of the TSP comic strip displayed in figure 1.5 in chapter 1.
“What’s the complexity class of the best linear programming cutting-plane
techniques? I couldn’t find it anywhere. Man, the Garfield guy doesn’t have
these problems.”17

As the undisputed champion of practical computation, the cutting-
plane method is indeed a natural candidate to consider in a complexity
analysis of the TSP.

Unfortunately, it does not appear to be easy to get a handle on the
worst-case performance of cutting planes. In 1987, Vašek Chvátal, Mark
Hartmann, and I showed that a strong variant of branch-and-cut requires
at least 2n/72

n2 operations to solve a specially constructed nasty instance of the
Hamiltonian-circuit problem; other TSP instances may require even more
steps. The analysis, however, leaves open the possibility that new classes
of cutting planes could result in a much better running-time bound. This
is a nice theoretical target to complement the ongoing search for better-
performing practical implementations of branch-and-cut.

Near-optimal Tours

A proof showing P �=NP would put to rest any hope for a good
TSP algorithm, but it may still leave a window open for the salesman.
For example, the tree-based heuristic of Nicos Christofides, described in
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chapter 4, is guaranteed to deliver a tour of cost no more than 1.5 times
the cost of an optimal tour. What if this result could be improved to a
1.01-approximation algorithm, guaranteeing a tour within one percent of
optimality? A fast computer implementation of such a method would be a
fantastic practical tool in many applications of the problem.

Such approximation algorithms are definitely an interesting avenue to
explore, even whileP vs.NP remains undecided. To study these methods,
however, we must restrict the allowed travel costs to exclude difficult
yes/no problems.18 The standard choice here, adopted by Christofides, is
to assume costs are symmetric and satisfy the triangle inequality, that is,
for any three cities A, B , and C , the cost to travel from A to B plus the cost
to travel from B toC must not be less than the cost to travel from Adirectly
to C . Problems meeting this natural condition are called metric instances
of the TSP.

Christofides’ algorithm first appeared in a Carnegie Mellon University
research report in 1976. At the time, the result seemed easy enough.
Thirty years later, with no improvements in sight, it no longer seems so
simple. Indeed, it is a pressing open problem to find a polynomial-time α-
approximation algorithmwithα less than 1.5, capable of handing all metric
instances.

To keep things fair and balanced, we must point out that it may, in
fact, be impossible to defeat Christofides. On this negative side, Christos
Papadimitriou and Santosh Vempala proved that, unless P = NP , there
can be no polynomial-time α-approximation algorithm for the metric TSP
with α less than 1.0045.19 Their work kills the idea of obtaining a super-
good approximation method in the face of P �=NP , but it is not clear
where the real computational barrier lies, closer to 1.0045 or closer to 1.5.
It is disturbing that we cannot narrow this range, but you can add it to the
list of interesting open research topics.

Arora’s Theorem

Princeton’s Sanjeev Arora proved a remarkable theorem that illustrates
both the hopes and pitfalls of approximation methods. Arora showed
that no matter what α we choose, as long as α is greater than 1.0, there
exists a polynomial-time α-approximation algorithm for the Euclidean
TSP.20 Notice the contrast with the metric case, where, unless there ex-
ists a polynomial-time method to compute an optimal tour, we cannot
hope for such a result. This is an interesting aspect of Arora’s theorem,
suggesting the Euclidean TSP may be more tractable than the general
metric problem.
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The potential pitfall is the following. Although Arora’s theorem is
a great theoretical result, the running times of the algorithms increase
dramatically as α gets close to 1.0, and experimental results have been
discouraging. This is a common feature of approximation methods, where
very fine divisions of space are used to obtain high-quality solutions, at the
expense of long search times. It remains an open problem to craft Arora’s
geometric technique into a practical TSP tool.

DoWe Need Computers?

Neil Stephenson’s science-fiction novel Anathem describes an exotic
machine for solving the “Lazy Peregrin” problem, his fictional name for
the TSP.

“That’s the one where a wandering fraa needs to visit several
maths, scattered randomly around a map.”

“Yes, and the problem is to find the shortest route that will take
him to all of the destinations.”

“I kind of see what you mean,” I said. “One could draw up an
exhaustive list of every possible route—”

“But it takes forever to do it that way,” Orolo said. “In a Saunt
Grod’s Machine, you could erect a sort of generalized model of
the scenario, and configure the machine so that it would, in effect,
examine all possible routes at the same time.”

The Saunt Grod’s machine is magic, but physical analogs of such
all-tours-at-once devices have been conceived for, and in some cases tested
on, the TSP. We should not forget that Turing-style computing is by no
means the only tool for tackling the salesman problem.

DNA for the TSP

A biological candidate for Saunt Grod was proposed by University of
Southern California professor Leonard Adleman in 1994.21 Adleman is an
award-winning computer scientist, well known as the “A” in the RSA cryp-
tography system. His TSP device works at the molecular level, attempting
to harness the immense information that can be stored in tiny amounts of
DNA.

The variant of the TSP tackled by Adleman is a version of the
Hamiltonian-path problem. Given as input a graph, the goal is to find a
path to travel from a specified starting vertex to a specified finishing vertex,
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visiting every other vertex along the way; no travel costs are involved.
The seven-city instance used in Adleman’s DNA experiment is drawn in
figure 9.4; the starting point is city 0 and the ending point is city 6. In this
example, most of the edges model one-way streets and the Hamiltonian
path through the verticesmust obey the indicated directions; travel in either
direction is permitted on the edges between vertices 1 and 2 and between
vertices 2 and 3, while travel is permitted in only one direction on the
remaining edges.

Adleman created a molecular encoding of the problem, assigning each
of the seven vertices to a random string of twenty DNA letters. For example,
vertex 2 was assigned to

T ATCGG ATCG |g tatatccga
and vertex 3 was assigned to

GCT ATTCG AG |cttaaagcta.

By considering the twenty-letter tags as the combination of two ten-letter
tags, indicated above by the groups of capital and lower case letters, an edge
directed from vertex a to vertex b is represented by the string consisting of
the second half of the tag for a and the first half of the tag for b. For example,
an edge from vertex 2 to vertex 3 would be

g tatatccga|GCT ATTCG AG,

taking the second group from vertex 2 and the first group from vertex 3.
The only exceptions to this rule are edges involving the starting and ending
points, 0 and 6, where the entire twenty-letter tag is used rather than just
the first or second half. To capture cases where travel along either direction
is possible, a pair of edges is created, one in each direction.

The next step in Adleman’s approach is to provide a mechanism for
joining edges together into a path. For each vertex, other than 0 and 6, the
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Figure 9.5
Bacterial computation of Hamiltonian paths. Images courtesy of Todd Eckdahl.

complementary DNA sequence for the tag is created. Such sequences act
as “splints” to pair up edges in their proper orientation. For example, the
complementary sequence for vertex 3 could serve to join the edges (2, 3)
and (3, 4), since the first half of the sequence would pair up with the second
half of the encoding of (2, 3) and the second half of the sequence would pair
up with the first half of the encoding of (3, 4).

In the experiment, many copies of the DNA for edges and splints
were produced in the laboratory and mixed together. After careful work
over a seven-day period, a double strand yielding a Hamiltonian path was
identified.

Bacteria

Adleman’s experiment involved a week’s effort in the laboratory as a mad
scientist. An appealing alternative is to let a living organism handle the
DNA manipulation, since that is their stock and trade. A research group
of undergraduate students and faculty advisors from Davidson College,
Johnson C. Smith University, Missouri Western State University, and
North Carolina Central University did just this, setting up DNA in bacteria
to solve a small instance of the Hamiltonian-path problem.22

Of course, working with bacterial computers presents its own challenge:
how can one identify the DNA corresponding to a path if it is buried
inside the living organism? The idea proposed by the research team is
to use fluorescence properties to force a bacterial colony to light up if
its DNA correctly identifies a path. They demonstrate the method on a
three-city problem, where red and green fluorescence combine to produce
yellow colonies when two directed edges line up in a Hamiltonian path.
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The experimental results displayed in figure 9.5 show the idea. In the
left-hand picture the DNA was initialized to be in the Hamiltonian-path
order, and many yellow colonies are present after growth of the bacteria. In
the right-hand picture the DNAwas initialized in the wrong order, but after
a sequence of mutations a number of colonies display the telltale yellow
coloring.

Okay, three cities is not much of a TSP. The idea however is cool, and
you have to start somewhere. The exponential growth of bacteria cells could
possibly be utilized in larger computations, adopting more sophisticated
methods for sorting through the produced colonies.

Amoeba Computing

Moving up the food chain, a research team in Japan demonstrated how a
single-cell amoeba can be adopted to solve general instances of the TSP,
not just Hamiltonian-path problems.23 The centerpiece of their amoeba
computer is displayed in figure 9.6. On the left is an amoeba and on the
right a plastic structure with a star-like opening. An amoeba placed in the
structure will, over time, modify its shape to fill the available star-like area.
This shape-shifting process can be guided by turning lights on and off in
each of the structure’s radial arms, since an amoeba shrinks away from
sources of light. The idea is to harness the amoeba’s ability to optimize its
shape in response to a changing environment.

An implementation of a four-city TSP solver on an amoeba computer
is illustrated in figure 9.7. A star-like structure with sixteen radial arms
is used, with each city represented by four arms. The arms for city A are
labeled A1, A2, A3, and A4, indicating the position of city A in the tour;
if the amoeba selects A2 then A is second in the tour order. An hour and
fourteen minutes into the experiment, the amoeba begins to grow a branch
in the A4 arm. At this point, the computer program turns on light sources

Figure 9.6
Unicellular amoeba

and a barrier

structure. Images

courtesy of

Masashi Aono.
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Figure 9.7
Amoeba solution

of a four-city TSP.

Images courtesy

of Masashi Aono.

at A1, A2, and A3, to enforce the rule that city A can only appear once
in the tour. Also, lights are turned on at B4, C4, and D4, enforcing the
rule that only one city can be fourth in the tour. These lighting steps are
not enforced strictly during the shape-shifting process, giving the amoeba
a chance to explore alternatives for the fourth position when lights are
temporarily turned off. To guide the amoeba to short tours, after A4 is
selected the cities furthest from A are periodically illuminated in positions 1
and 3, discouraging branches in these arms. Eventually the amoeba reaches
a stable solution, corresponding to the tour D-C -B-A.

Again, four cities is not a legitimate computational challenge—the
important part of the research is the creation of a new working computer
with a biological component.

Optics

A light-based candidate for a Saunt Grod’s machine made a big splash
on the Web in the summer of 2007.24 Applied to the Hamiltonian-path
problem, the idea is to build a physical version of a graph, with fiber-
optic cables as edges and delay devices as vertices. When the machine is
in operation, light arrives at a vertex and is delayed for a fixed amount of
time before being split into rays that are sent along each outgoing edge.
The delay device serves as a signature to indicate that the light ray has
passed through the individual vertex. Let D be equal to the sum of the
delays incurred if we pass through each vertex exactly once. To solve the
Hamiltonian-path problem, we send light through the starting vertex and
check if light arrives, after D time units, at the finishing vertex.

This light-based machine appears to solve an n-city problem in a
number of steps proportional to the size of the graph. This is what attracted
all of the attention. A careful analysis by Romanian computer scientist
Mihai Oltean, however, showed that in choosing the delays to give unique
signatures, we necessarily have D at least as large as 2n time units.25 Current
oscilloscopes cannot distinguish two rays arriving any closer than 10−12

seconds apart, so the time to solve a problem must be at least 2n × 10−12
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seconds, an exponential growth rate. Still, the numbers are small enough
that modest-size problems could be solved rather quickly.

Oltean estimates that a 33-vertex graph could be handled in one second.
Not bad, but he also computes that implementing the delay devices in
this case would require 8× 1011 meters of cable. Moreover, the number of
photons required for an instance of several hundred vertices would exceed
the annual output of the sun. That begins to be problematic.

Quantum Computers

DNA, bacteria, amoeba, and optical TSP solvers all have an all-tours-at-
once aspect, but they also require resources that grow exponentially with
the number of cities. For a genuine Saunt Grod’s machine, we may need to
leave behind biology and classical physics. Indeed, a more likely candidate
arises through the adoption of properties of quantum mechanics, first
proposed for use in computing devices by Richard Feynman.

The basic component of a quantum computing device is the qubit, an
unusual analog of the 0/1-bits used to represent information on classical
computers. A qubit can hold the value 0 or the value 1, but it can also take
on both these values simultaneously. Some magic via quantum mechanics
gives the real possibility of examining all TSP tours at once: if we have 100
qubits, then together they can simultaneously encode 2100 possibilities.

Research groups around the world are working hard to solve the physics
and engineering tasks that could lead to a functioning model of a quantum
computer. Such a computer would give fast methods for factoring integers,
via a famous result of Peter Shor, but it is a misconception that the salesman
problem will be solved easily once we have access to a great many qubits.
True, a million qubits would be enough to encode every tour through 1,000
cities, but there is a catch in the physics. Although all tours are represented
simultaneously, when we actually examine the states of the qubits, all but
one of the tours will vanish. Given this disappearing act, how can we
guide the machine to select the best tour? It is not at all clear that this is
possible.

Scott Aaronson, considering this point in a Scientific American article,
describes possible limits of quantum computing.26 He makes the fol-
lowing comment concerning the difficulty of producing polynomial-time
quantum algorithms forNP-complete problems.

If such algorithms existed, however, they would have to exploit the
problems’ structure in ways that are unlike anything we have seen,
in much the same way that efficient classical algorithms for the same
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problems would have to. Quantummagic by itself is not going to do
the job.

Quantum computers offer intriguing capabilities beyond Turing-style
computing, but it remains to be seen if these can be harnessed to improve
significantly our ability to route the salesman.

Closed Timelike Curves

Aaronson’s article includes a discussion of several exotic computing mod-
els, including a favorite of mine, the time-traveling solver. The idea is
simple enough. Start Concorde running on a reliable computer and set the
program to deliver the solution, found sometime far into the future, back
to the present time. Speedy, but a natural question is whether we can go
ahead and turn off the computer once we receive the solution from our time
machine. If we do, then how did Concorde find the solution we received?

People that ponder seriously these ideas consider a concept known as
closed timelike curves, that is, paths through space and time that return to
their starting point, forming a closed loop.27 If such loops exist, then the
salesman could be pursued along the curve, possibly allowing us to pick off
the solution on the return journey.

Strings and Pegs

Coming back to earth, we should not fail to mention the physical device
employed by Dantzig, Fulkerson, and Johnson, as well as by teams of
assistants supporting actual salesmen in the early 1900s. Namely, a map
with pins or pegs at the destination cities, and a string to lay out potential
tours. This is a device to speed up by-hand computations, measuring the
length of a tour by keeping a grip on the far end of the string. A bit easier
to build than a time-traveling quantum computer, and the most practical
physical TSP aid devised to date.



10: The Human Touch
Here is what we do. We take a group of talented young people, and
we expose them to the history and theory of some famousNP
problem. The traveling salesman problemwill do nicely.

—Charles Sheffield, 1996.1

S alesmen, lawyers, preachers, authors, and tourists have been plotting
tours for years, not to mention all of those tennis players collecting balls

after long practice sessions.With all this experience, could the humanmind
be a viable non-computer platform for cracking the general TSP?

Humans versus Computers

Like any good sporting event, the 1997 chess match between World
Champion Gary Kasparov and IBM’s Deep Blue drew vocal supporters for
both contestants. Those hoping to keep machines at bay for a few more
years pulled for the human, while hardware and software fans aligned
themselves with the computer. Science-fiction writer Charles Sheffield,
covering the match for IBM, did not choose a favorite, but he was struck by
the fact that a human could go toe-to-toe with a massive computing device
on what is essentially a computational problem. He speculated whether
humans could also compete successfully on other nasty computational
challenges, such as the TSP.

Without specific training, as proposed by Sheffield, my money would
be placed on the computer in a TSP showdown. One reason for this is
a personal experience. At a mathematics workshop in 2007, Sylvia Boyd
issued a fifty-city TSP challenge, with the rule that all calculations had to be
by-hand only. The contest ran for a day andDave Applegate and I produced
the winning tour shown in figure 10.1, narrowly beating out fellow TSP
researcher Gérard Cornuéjols. But, sadly, our tour was not optimal. After
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Figure 10.1
Winning tour from a

mathematics conference.

Figure 10.2
Smithsonian TSP exhibit. Pho-

tograph by Bärbel Klaaßen.

twenty years of research on the problem, we did not have the skill to match
what the computer could knock out in under a second.

Tour-finding Strategies

Wemay not have talent for finding optimal tours, but humans do quite well
in other aspects of the problem. The Smithsonian Air and Space Museum
has an exhibit that challenges visitors to find a tour through a selection of
airport locations in the United States. The display, shown in figure 10.2,
has a touch-screen computer monitor that allows a tour to be built step-
by-step, choosing one airport after another. In challenges such as this,
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human subjects consistently produce good-quality tours for modest-sized
examples. And although many mathematical methods can easily match
these results, it seems clear that humans use a smaller number of explicit
calculations in arriving at their good tours. This phenomenon has been
studied by teams of psychologists, aiming to develop an understanding of
human problem-solving abilities.2

Tour Gestalt

One of the findings of the psychology community is that high-quality
geometric tours “feel right” when compared with tours of lesser quality,
perhaps indicative of human desire for minimal structures. This theme
was emphasized in an experiment led by Douglas Vickers at the University
of Adelaide in Australia.3 In the study, two groups were presented with
identical 10-city, 25-city, and 40-city instances of the TSP (two of each
size), but with different instructions on how to proceed. The Optimization
group was asked to find the shortest tour in each example, while theGestalt
group was asked to find a tour such that “the overall pathway looked
most natural, attractive, or aesthetically pleasing.” The results showed a
striking similarity in the quality of tours obtained by the two groups. The
champion tour finder in the test was in fact a fashion designer belonging
to the Gestalt group; she produced the shortest tours in five of the six
examples.

Tours Found by Children

A study led by Iris van Rooij at the University of Victoria in Canada
examined how children perform in tour-finding experiments, compared
with adults facing the same examples.4 This approach gave researchers a
means to consider perceptual versus cognitive skills, since young children
would be expected to rely primarily on their perception of good structure
when searching for tours.

The participants in the study were 7-year-old and 12-year-old elemen-
tary school students, and a group of university students; the elementary
school participants received a sticker as a reward for their work. The
TSP test set consisted of randomly generated 5-city, 10-city, and 15-city
instances, including five of each size; the performance was measured as the
percentage by which the lengths of the tours produced exceeded optimal
values. The results, displayed in table 10.1, indicate an improvement in
performance as we move from children to adults, but even young children
obtained reasonably short tours.



194 Chapter 10

Table 10.1
Average percent over optimal tour lengths found by children and adults.

Number of Cities 7-Year-Olds 12-Year-Olds Adult

5 3.8% 2.5% 1.7%

10 5.8% 3.4% 1.7%

15 9.4% 5.0% 2.7%

The Convex-hull Hypothesis

James MacGregor and Thomas Ormerod at Lancaster University in Eng-
land focused on the degree to which the global shape of a set of points serves
as a guide in tour finding.5 A measure of this shape can be obtained by
considering how a rubber bandwill enclose the set of cities, as in figure 10.3.
The curve traced by the rubber band is the border of the convex hull of the
cities. The border is usually not itself a tour, but it is easy to check that,
in order to avoid crossings, an optimal tour must trace the border cities in
the order in which they appear as we walk around the border. This convex-
hull rule is indicated in figure 10.4 with the optimal tour for the 33-city
Procter & Gamble TSP: the twelve points on the border appear in the same
order as in the optimal tour, and the remaining cities are picked up by
moving in from the border on short subpaths. In this context, cities not
on the border are called interior points.

Following a detailed analysis of experimental results on human solu-
tions to 10-city and 20-city examples, MacGregor and Ormerod conclude

Figure 10.3
Convex hull of a set of

points.

Figure 10.4
Optimal tour

following the

convex-hull ordering.
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Figure 10.5
A human TSP

experiment.

Photograph courtesy

of Jan Wiener.

that the complexity of finding an approximate solution to an instance of
TSP is determined by the number of its interior points. Moreover, the
researchers write the following: “The evidence presented here indicates that
human subjects reach solutions based on the perception of global spatial
properties of a TSP, and in particular, of the boundary of the convex hull.”
The degree to which this hypothesis holds is the subject of a lively debate in
the human-problem-solving community. Much of the technical discussion
centers on the types of data sets used in experimental studies, but there is
also the general question of whether humans make use of global-to-local
strategies or rather local-to-global strategies. In the former we perceive
an overall structure and then make local choices to fit the cities into this
structure, while in the latter we carry out local analysis (such as clustering
points) and then try to best put the local information into an overall tour.

Physical TSP Instances

The TSP instances in these human studies are visual, in the sense that
the problem is presented as tracing a tour on a piece of paper or on a
computer screen. Jan Wiener and a team at the University of Tübingen
in Germany contrasted this with human performance on a physical TSP,
where participants were asked to navigate a 6.0× 8.4 meter room to visit a
list of targets.6 In their experiment, twenty-five pillars were arranged with a
colored symbol on each pillar. The participants were given a start location
and a list of up to nine symbols that they should visit before returning to
the start. The results again support the claim that humans are quite good
at solving small instances of the TSP—in this case for a wage of eight euros
per hour.
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The TSP in Neuroscience

Examples of the TSP that are either very small or constructed with a large
proportion of the cities on the convex-hull border are routinely solved
by humans, with little variation among study participants. Individual
differences in performance arise quickly, however, when general problem
instances have twenty or more cities, as the fashion designer in the study of
Vickers et al. demonstrates. On even larger examples, having fifty cities, a
second study led by Vickers found consistent differences in the tour quality
produced by individuals.7 The researchers also noted a modest correlation
between TSP ability and scores on a standard nonverbal intelligence test.

Trail Making

Differences in human performance on TSP-like problems have long been
a resource for clinical studies in neuropsychology. A prime example is the
Trail Making test from the Halstead-Reitan Battery.8

The first part of Trail Making consists of the twenty-five labeled cities
displayed in the left-hand side of figure 10.6. The test is administered
by asking the subject to draw a path connecting the cities in consecutive
order, requesting that the drawing be completed as quickly as possible
and pointing out errors as they occur. The correct path, displayed in
the right-hand side of figure 10.6, is clearly not an optimal route through

Figure 10.6
Trail Making (Part A).
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the cities, but it is a relatively short route without crossings. A second part
of Trail Making consists of a similar task, but where the cities are labeled
1, A, 2, B, . . . , 12, L , 13. The two-part test was developed by US Army
psychologists in the 1940s; the commonly used scoring system introduced
by Reitan is based entirely on the times taken by the subject to complete the
tasks.

Numerous experiments point to the sensitivity of Trail Making in
identifying patients suffering from brain damage. In fact, a 1990 survey
singled out Trail Making as the most widely used test among members of
the International Neuropsychological Society.9 It is interesting that Trail
Making alwaysmakes use of the specific distributions of city locations given
in the two parts of the test; there does not appear to be a reliable method to
generate alternative placements of the cities with good clinical properties.

Animals Solving the TSP

Humans are pretty good TSP solvers, so how about beasts? The question
was posed in the 1973 study by Emil Menzel, working with a team of
chimpanzees.10 Menzel devised an ingenious scheme to coax the subjects
into traveling along an efficient tour, since neither a payment of eight euros
nor a reward of a sticker would likely do the job. To begin a trial, six
chimpanzees were kept in a cage at the edge of a field. A trainer would take a
selected animal from the cage and carry it around the field while an assistant
hid eighteen pieces of fruit at random locations. The animal was returned
to the cage and after a two-minute waiting period all six chimpanzees were
released. The selected animal would make use of its memory of the food
locations to quickly gather the treats before the other animals located them
by simple foraging.

The route taken by Bido, one of the chimpanzees in the study, is
depicted in figure 10.7. Bido began at the point marked “Start” on the
boundary of the field and finished at the location marked “Finish”; the
arrows on some of the links indicate the direction of travel. The chimpanzee
missed four pieces of fruit, but altogether Bido made a remarkably good
tour working from its memory of the food locations.

Finish

Start

Figure 10.7
Tour found by Bido

the chimpanzee.
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Figure 10.8
Pigeon solving a TSP.

Images courtesy of

Brett Gibson.

Other studies of animals solving the TSP include vervet monkeys, mar-
mosets, and rats. The reported experiments all involve physical instances
of the problem, with animals gathering food from scattered locations. A
different approach was taken in a pigeon study led by Brett Gibson of
the University of New Hampshire.11 In his work, birds were trained to
select Hamiltonian paths by pecking locations displayed on a touch screen
monitor, as shown in figure 10.8. When all displayed cities were visited, the
pigeon received two food pellets. The birds selected significantly shorter
paths than random choices would produce, but typically longer than a
nearest-neighbor approach. To encourage the birds to find shorter tours,
a second experiment was carried out where food pellets were given only if
the constructed solution was of sufficiently high quality. Not to be denied
their snacks, the pigeons stepped up and developed good strategies for the
small TSP instances in the test set.

In each of these studies, the simplicity of the rules for the problem
allowed researchers to set up non-trivial experiments, and the TSP task
provided a good means for testing the spatial cognitive skill of the various
animal participants.



11: Aesthetics
Mathematics was always a source of complex
(for outsiders, mystical) patterns.

—Jaroslav Nešetřil, 1993.1

W hen a mathematician refers to a particular item of study as beautiful,
it comes without any implication that the beauty can be realized in a

physical form. This holds true for the TSP. A tour through a set of points
may have a pleasing shape, but it is the combined beauty of the geometry
and complexity of the problem, not the tour itself, that attracts mathemati-
cians. Nevertheless, the TSP has been adopted in several engaging works of
art, in some cases successfully capturing the mathematical essence that has
brought so much attention to the salesman.

Julian Lethbridge

I was delighted to discover the Traveling Salesman paintings by Julian
Lethbridge. Lethbridge is a celebrated contemporary artist, whose work is
included in collections of the National Gallery of Art in Washington, the
Metropolitan Museum of Art in New York, the Art Institute of Chicago,
and the Tate Gallery in London. An impression of his style can be gathered
from the following comments.

Julian Lethbridge seems determined to demonstrate all the things
you could possibly do with intersecting curves.

—New York Times, 1995.2

Lethbridge’s abstraction is cerebral, often based on mathematical or
natural principles.

—ULAE, 1997.3
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Figure 11.1
Traveling Salesman,

Julian Lethbridge, 1995,

lithograph, 43.75× 42

inches. Image courtesy

of Julian Lethbridge

and United Limited Art

Editions.

His vocabulary often originates from random or naturally occurring
patterns, such as shattered glass or a spider’s web.

—Paula Cooper Gallery, 1999.4

Straight, curved, gridded, circular, organic, ordered, chaotic, in-
cised, built up, drawn, painted, assertive, delicate—these kinds of
lines and more are the basis of Lethbridge’s pictorial systems, and
are the elements with which he constructs his portrayals of nature.

—Art in America, 2007.5

The remarks hint at concepts familiar to mathematicians. Indeed, in a
meeting with Mr. Lethbridge in New York, our discussion began on the
topic of his artwork, but moved quickly to general mathematics, where
Lethbridge has interest in, and intuition for, the aesthetics of our discipline.

When discussing his Traveling Salesman series, Lethbridge explained
that he came upon a description of the TSP in a journal and was struck
immediately by the economy of thought and space provided by good
solutions to the problem. Two beautiful examples from his series are
displayed in figures 11.1 and 11.2. Reviewers in the New York Times and
the Baltimore Sun compare these to the map paintings of Jasper Johns
and to Jean Dubuffet’s Compagnie Fallacieuse.6 Such references would be
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Figure 11.2
Traveling Salesman 4,

Julian Lethbridge,

1995, oil on linen, 72×
72 inches. The Robert

and Jane Meyerhoff

Collection, photograph

by Adam Reich.

disappointing to fans of the TSP, however, since neither of the cited works
displays the organization of space provided by the tour in Lethbridge’s
images.

In the first of the two paintings, note that the non-crossing tour forms
a simple closed curve, known as a Jordan curve, partitioning space into
two regions, one bounded and the other unbounded; the bounded region is
the one we think of as the interior of the curve. The painting captures this
partition, using textures to highlight the interior and exterior, separated by
a white rendering of the tour.

The same tour is displayed in a much different way in the second
piece. Here the myriad of choices presented in alternative paths through
the point set is suggested by multiple paint strokes radiating from unseen
city locations. This large painting is part of the Meyerhoff Collection of the
National Gallery of Art.

Jordan Curves

A tour drawn on a sphere would not have an interior or exterior, just two
regions, linked together like pieces in a puzzle. This symmetry between the
sides of a Jordan curve is apparent in Robert Bosch’s Embrace sculpture,
shown in the photograph displayed in the left-hand side of figure 11.3.
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Figure 11.3
Left: Embrace TSP sculpture. Right: Symmetric rings. Images courtesy of Robert Bosch.

This work is not on a sphere, and the outer ring makes it clear which of
the two regions is actually the exterior, but the symmetric view from the
center is striking. Embrace was honored by the American Mathematical
Society and the Mathematics Association of America in 2010, receiving the
Mathematical Art Exhibition First Prize.

The artist is the same Robert Bosch who created the 100,000-city Mona
Lisa TSP described in chapter 1. Bosch is a research mathematician and the
current chairman of the Department of Mathematics at Oberlin College.
His Ph.D. thesis is in mathematical optimization, and Bosch wields this as
a tool in his art.7

After I get an idea for a piece, I translate the idea into amathematical
optimization problem. I then solve the problem, render the solution,
and see if I’m pleased with the result. If I am, I stop. If not,
I revise the mathematical optimization problem, solve it, render
its solution, and examine it. Often, I need to go through many
iterations to end up with a piece that pleases me. I do this out of a
love of mathematical optimization—the theory, the algorithms, the
numerous applications.

One of the optimization methods favored by Bosch is the use of exact and
heuristic algorithms for the TSP. The Mona Lisa image from chapter 1 and
a drawing of Botticelli’s The Birth of Venus, presented in the next section of
this chapter, are two of the numerous TSP Art pieces created by Bosch with
his optimization tools. Together with University of Waterloo computer
scientist Craig Kaplan, Bosch has developed sophisticated techniques for
placing cities in such a way that a good tour produces an interesting
rendering of an original image.8
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The Bosch-Kaplan process will create a working TSP drawing of the
interlocking rings that make up the Embrace sculpture, but the resulting
Jordan curve may put adjacent arms of the rings into the same region of
space, either the interior or the exterior. This is where Bosch steps in with
a problem revision, employing an integer-programming technique he calls
“bending the curve to our will.”9 Bosch selects two points in space that he
would like to have on opposite sides of the Jordan curve formed by the
TSP tour. This geometric requirement is equivalent to stating that the line
segment joining the two points must cross the TSP tour an odd number
of times, and this is a condition that can be modeled as an additional
constraint in an integer-programming formulation of the TSP. So Bosch
adds the side constraint, solves the new optimization problem with an
integer-programming code, and takes another look at the resulting Jordan
curve.

The Embrace sculpture is created from quarter-inch-thick pieces of
metal; the inside region is stainless steel and the outer region is brass.
A water-jet cutter was used to cut along the 726-city TSP tour in each of
the two types of metal, creating two versions of Embrace by pairing the
copies of the two regions. In the cutting process, a narrow band of metal
was removed from each of the pieces, resulting in the empty space that
highlights the path through the sculpture.

Bosch also produced a larger version of a symmetric-ring Jordan curve,
displayed in the right-hand side of figure 11.3. Concerning this piece, Bosch
writes the following in an e-mail message.

I added side constraints to the TSP to force the edges of the tour to
have 5-fold rotational symmetry in both the center of the circle and
near its edge, and 10-fold rotational symmetry in between. I added
additional side constraints to achieve the appearance of interlacing
when the inside and outside were colored.

The TSP in this case contains 2,840 cities, making it difficult to solve exactly
the resulting integer-programming problems; the tour used in the image
was created with a heuristic algorithm built into the software.

Philip Galanter’s TSP Murals

Bosch and Lethbridge each make subtle use of the TSP and the resulting
Jordan curves: in Bosch’s case the subtlety comes from symmetry in design
and in Lethbridge’s case the subtlety arises in texturing of the painting.
A more stark approach is employed by Philip Galanter in a series of large
TSP murals. An example of Galanter’s work is displayed in the photograph
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Figure 11.4
TSP mural. Courtesy

of Philip Galanter.

in figure 11.4, where a TSP tour is used to paint a wall in two highly
contrasting colors.

Galanter is an assistant professor in the Department of Visualization at
Texas A&MUniversity; his work centers around the use of complexity and
automation in art and music. Concerning his TSP pieces, Galanter made
the following comments in an introduction to his work at an exhibition in
Lima, Peru.10

The Traveling Salesmanmural series explores emergence in a differ-
ent way. The design for each mural is uniquely generated for each
specific wall. A large number of random points are generated, and
then a computer program calculates the optimally shortest line that
connects each point once and only once. Somewhat mysteriously,
each resulting mural exhibits a shared visual style. In nature the
beauty of a tree or a plant is the result of nature solving an
optimization problem; how can the plant gather as much sunlight
as possible using the minimum amount of organic resources? Both
optimization examples suggest that beauty is not meaningless, nor
is it the exclusive province of individual genius. Beauty is posited as
being both meaningful and publicly understandable.
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Figure 11.5
Incredulous MJ.

Copyright J. Eric Morales,

www.labyrinthineprojection.com.

Galanter plans for a number of further pieces in his TSP series, including a
16-foot-diameter metal sculpture and a tour drawn on a large campus lawn
using equipment designed for marking lines on football fields.

Continuous Lines

Portland-based artist J. Eric Morales, known professionally as Mo, uses
hand-drawn Jordan curves in an art form he calls Labyrinthine Projection.
Drawing with one continuous line, Mo is able to capture intense expres-
sions in his portraits. His technique has received considerable attention,
with pieces appearing on popular Nike shoes and iPod covers, and in
drawings commissioned by star basketball player Michael Jordan.

Mo writes that as a boy he would spend endless hours filling the
screen of an Etch-A-Sketch with a nonintersecting line that meandered
randomly over the toy’s surface. The idea returned to him while studying
art and learning of the formal principles of line density and light value; he
realized that he could create images of photo-like quality by modulating a
continuous line’s distance from itself—closer for dark areas and further for
lighter ones. The resulting curves have clear similarities to short TSP tours.

Mo has many ideas for extending his TSP-like work into other media.
His latest work uses sunlight passing through labyrinth-inspired sculp-
tural objects that project shadow images of recognizable faces. In another
application he is developing Labyrinth Man, a headless humanoid with
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Figure 11.6
Botticelli’s The Birth of Venus as a TSP. Courtesy of Robert Bosch.

translucent skin animated by a morphing color labyrinth that visually
mimics its environment and represents text on its surface to communicate.

Bosch-Kaplan Drawings

In an e-mail letter, Morales comments on a connection with the Bosch-
Kaplan TSP Art mentioned in the previous section.

I am quite familiar with the TSP, having been acquainted with Craig
Kaplan many years ago who came across a 70′ × 40′ Labyrinthine
Projection of professional skater Paul Rodriguez I created for Nike
in Los Angeles for the X-Games. Kaplan’s algorithm is particularly
notable to me as it is the computer generated solution that most
resembles my hand-drawn process.

The TSP Art project aims to create continuous-line reproductions of
original images, using a heuristic algorithm to produce short tours through
carefully selected sets of city locations. A 140,000-city example is displayed
in figure 11.6.
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The project began at Oberlin College, where Bosch and student Adri-
anne Herman developed a procedure for placing cities in proportion to
the various shades of gray in a digital image. More precisely, Bosch and
Herman divide an image into a grid and place between 0 and k cities at
random locations in each grid cell, depending on the average level of gray
in the cell, where 0 is nearly white and k is nearly black; the value of k and
the size of the grid control the number of cities in the resulting TSP.

A short tour through a Bosch-Herman point set produces a drawing
where the original image can be recognized, but the clustered points often
create jagged paths that do not capture well the continuous color tone of the
original. Bosch and Kaplan greatly improved this aspect of the drawings,
adopting a multiple-round algorithm for distributing the cities, based on
computing centers of gravity. In their calculations, the tone of the original
image is used to weight the geometric distances, so that points migrate to
dark regions. Overall, the process avoids abrupt transitions in the density
of the cities, allowing for subtle transitions from dark to light tones.11

Art and Mathematics

The epigraph of this chapter is taken from an essay by Jaroslav Nešetřil
exploring connections between the thought processes of artists and
mathematicians. Nešetřil, from Charles University in Prague, is a leading
researcher in the field of discrete mathematics, as well as a successful artist,
together with his longtime collaborator, the professional and well-known
artist Jiří Načeradský. An example of Načeradský and Nešetřil’s work is
displayed in figure 11.7; this piece features a continuous curve wandering
in three-dimensional space.

Figure 11.7
Jiří Načeradský and

Jaroslav Nešetřil, 1997,

mixed media, 100× 120 cm.

Image courtesy of Jaroslav

Nešetřil.
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Figure 11.8
Research Institute for

Discrete Mathematics

and Arithmeum, Bonn,

Germany. Image courtesy

of Bernhard Korte.

In his essay on connections, Nešetřil notes the unifying idea expressed
by the Church-Turing Thesis in mathematics, which states that all algo-
rithmic work takes a common form, captured by the execution of a Turing
machine. He speculates whether a similar Creative Thesis may hold for
general human activity. “All sufficiently deep activities, all sufficiently deep
understandings have profound similarities. This is exhibited in the way the
work (knowledge) is organized, in the way it is revealed and in the way
it interacts with other activities”.12 Nešetřil draws his thesis from parallel
developments in art and mathematics over the past two centuries, where
both fields freed themselves of long-existing constraints, only to see new
common forms arise, such as surrealism, on the art side, and modern set
theory, on the mathematics side.

Constructivist Art and VLSI

Nešetřil has been a long-term visitor to the Research Institute for Discrete
Mathematics in Bonn, Germany. The director of the institute, Bernhard
Korte, is another person who lives in both the mathematics and art
worlds. The Bonn institute is a top center for discrete optimization, but
it also houses the Arithmeum museum for computing, art, and music.
A photograph of the institute building is displayed in figure 11.8; the layout
of the floors has mathematics researchers working among the museum’s
collections.

The Arithmeum includes numerous pieces of particular interest to
mathematicians. Indeed, Bernhard Korte explains a museum focus on
constructivist art as follows. “First and foremost we must confess that we
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Figure 11.9
Design of the Philipp

VLSI chip. Images by

Ina Prinz.

feel an affinity for geometric and constructivist art forms. Why? Perhaps
because absolute geometric forms combined with colours chosen from
a basic colour scale are balsam to the naive soul of a mathematician”.13
The Bonn collection includes work of Josef Albers, Max Bill, Jean Gorin,
Richard Paul Lohse, Leon Polk Smith, and Charmion von Wiegand, to
name just a few. It is a great pleasure to visit the institute and study
while surrounded by the beautiful exhibits; the unique setting is a clear
contributor to the academic vitality of discrete mathematics in Bonn.

In the realm of applications, Bonn’s speciality is the optimal design
of integrated circuits, that is, the design of computer chips that make
up the heart of modern electronic devices. This area is known as very-
large-scale integration (VLSI) and Bonn researchers are the world’s leaders
in applying discrete mathematics to improve the speed and organization
of the billion or so transistors that make up complex VLSI chips. The
engineering involved in this work is overwhelmingly complex, but the
end results can be aesthetically pleasing, without any knowledge of the
mathematics behind the scenes. Arithmeum catalogs make this point clear
with numerous interesting images obtained from completed VLSI projects.
Two examples of this work are displayed in figure 11.9; the geometric
patterns are representations of the layout of components in a particular
computer chip, while the range of colors was selected by museum director
Dr. Ina Prinz.
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Nešetřil makes the following observation on the VLSI design process,
bringing this applied research into the framework of his Creative Thesis.14

Chip design represents one of the most concentrated of human
activities. This activity is interdisciplinary with methods spanning
computer science, mathematics, physics and even philosophy. It is
no wonder that the interplay of these activities displays some affinity
to artistic works.

We can express similar feelings for the traveling salesman problem, and
hope to see further connections between the TSP and art, as progress is
made in understanding the problem’s fundamental complexity.



12: Pushing the Limits
The problem is certainly not a closed one, and I hopemore research
will be done, both toward finding better computational methods,
and toward a better mathematical understanding of the problem.

—Delbert Ray Fulkerson, 1956.1

T he beauty of the TSP will no doubt continue to attract mathematicians
and computer scientists for years to come.

Christos Papadimitriou toldme that the traveling salesman problem
is not a problem, it’s an addiction.

—Jon Bentley, 1991.2

It’s addictive. No matter how much progress you make, you always
have the nagging feeling that you still did not nail down a couple of
hunches that could bring about another quantum leap.

—Vašek Chvátal, 1998.3

We offer no tips for breaking a TSP addiction. Far from it. I wouldn’t
hesitate to include small TSP challenges on the backs of candy wrappers,
if given a chance.

Although there is no candy on the menu, throughout the book we have
touched upon open research questions, such as the Mona Lisa and World
TSP challenges, the 4/3rds Conjecture, beating the Held-Karp running-
time bound, and improving Christofides’ approximation barrier. Bouncing
around ideas for such topics is fun, but I don’t want to disguise the fact
that long hours may be needed for a breakthrough: fuller understanding of
the TSP will only come through a passionate desire to dig deeply into the
computational mystery surrounding the problem.
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The Role of the Salesman

Computer-science giant Avi Widgerson has suggested links between
complexity theory and potential limits of human knowledge. Indeed,
if it is shown that P =NP , then a new era will be ushered in,
with efficient computational tools to model and understand the world
around us. On the other hand, if P �=NP , as most experts expect,
then numerous important questions may go unanswered indefinitely:
increasingly fast computing machines can never overcome an exponential
rate of growth in the running time of a solution method.

So how should we address the challenges ahead? One answer lies in the
take-no-prisoners approach adopted in computational studies of the TSP.
If P �=NP , then there are limits to general-purpose solution techniques,
in science and elsewhere. But what are these limits and how widely do they
constrain our quest for knowledge? The salesman can play a crucial role
in this context, demonstrating whether or not focused efforts on a single,
possibly unsolvable, problem will produce results beyond our expectations.

Let’s close on this note, with the hope that readers may be encouraged
to take up the study of the TSP, both with an eye on the million-dollar
complexity prize and on the practical, step-by-step, computational attack.
The traveling salesman problem is as tough as it gets, but, as Rashers Ronald
would say, bash on regardless.
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