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balázs szendró́i is a Faculty Lecturer in the Mathematical Institute, University of Oxford,
and Martin Powell Fellow in Pure Mathematics at St Peter’s College, Oxford





Geometry and
Topology

Miles Reid
Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK

Balázs Szendró́i
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Preface

What is geometry about?

Geometry ‘measuring the world’ attempts to describe and understand space around
us and all that is in it. It is the central activity and main driving force in many branches
of math and physics, and offers a whole range of views on the nature and meaning
of the universe. This book treats geometry in a wide context, including a wealth of
relations with surrounding areas of math and other aspects of human experience.

Any discussion of geometry involves tension between the twin ideals of intuition
and precision. Descriptive or synthetic geometry takes as its starting point our ideas
and experience of the observed world, and treats geometric objects such as lines and
shapes as objects in their own right. For example, a line could be the path of a light
ray in space; you can envisage comparing line segments or angles by ‘moving’ one
over another, thus giving rise to notions of ‘congruent’ figures, equal lengths, or equal
angles that are independent of any quantitative measurement. If A, B, C are points
along a line segment, what it means for B to be between A and C is an idea hard-wired
into our consciousness. While descriptive geometry is intuitive and natural, and can
be made mathematically rigorous (and, of course, Euclidean geometry was studied in
these terms for more than two millennia, compare 9.1), this is not my main approach
in this book.

My treatment centres rather on coordinate geometry. This uses Descartes’ idea
(1637) of measuring distances to view points of space and geometric quantities in
terms of numbers, with respect to a fixed origin, using intuitive ideas such as ‘a bit
to the right’ or ‘a long way up’ and using them quantitatively in a systematic and
precise way. In other words, I set up the (x, y)-plane R2, the (x, y, z)-space R3 or
whatever I need, and use it as a mathematical model of the plane (space, etc.), for
the purposes of calculations. For example, to plan the layout of a car park, I might
map it onto a sheet of paper or a computer screen, pretending that pairs (x, y) of real
numbers correspond to points of the surface of the earth, at least in the limited region
for which I have planning permission. Geometric constructions, such as drawing an
even rectangular grid or planning the position of the ticket machines to ensure the
maximum aggravation to customers, are easier to make in the model than in real

xiii



xiv PREFACE

z

x

y

A coordinate model of space.

life. We admit possible drawbacks of our model, but its use divides any problem into
calculations within the model, and considerations of how well it reflects the practical
world.

Topology is the youngster of the geometry family. Compared to its venerable
predecessors, it really only got going in the twentieth century. It dispenses with
practically all the familiar quantities central to other branches of geometry, such
as distance, angles, cross-ratios, and so on. If you are tempted to the conclusion
that there is not much left for topology to study, think again. Whether two loops of
string are linked or not does not depend on length or shape or perspective; if that
seems too simple to be a serious object of study, what about the linking or knotting
of strands of DNA, or planning the over- and undercrossings on a microchip? The
higher dimensional analogues of disconnecting or knotting are highly nontrivial and
not at all intuitive to denizens of the lower dimensions such as ourselves, and cannot
be discussed without formal apparatus. My treatment of topology runs briefly through
abstract point-set topology, a fairly harmless generalisation of the notion of continuity
from a first course on analysis and metric spaces. However, my main interest is in
topology as rubber-sheet geometry, dealing with manifestly geometric ideas such as
closed curves, spheres, the torus, the Möbius strip and the Klein bottle.

Change of coordinates, motions, group theory
and the Erlangen program

Descartes’ idea to use numbers to describe points in space involves the choice of
a coordinate system or coordinate frame: an origin, together with axes and units of
length along the axes. A recurring theme of all the different geometries in this book
is the question of what a coordinate frame is, and what I can get out of it. While
coordinates provide a convenient framework to discuss points, lines, and so on, it
is a basic requirement that any meaningful statement in geometry is independent of
the choice of coordinates. That is, coordinate frames are a humble technical aid in
determining the truth, and are not allowed the dignity of having their own meaning.

Changing from one coordinate frame to another can be viewed as a transformation
or motion: I can use a motion of space to align the origin and coordinate axes of two
coordinate systems. A statement that remains true under any such motion is indepen-
dent of the choice of coordinates. Felix Klein’s 1872 Erlangen program formalises
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this relation between geometric properties and changes of coordinates by defining
geometry to be the study of properties invariant under allowed coordinate changes,
that is, invariant under a group of transformations. This approach is closely related to
the point of view of special relativity in theoretical physics (Einstein, 1905), which
insists that the laws of physics must be invariant under Lorentz transformations.

This course discusses several different geometries: in some case the spaces them-
selves are different (for example, the sphere and the plane), but in others the differ-
ence is purely in the conventions I make about coordinate changes. Metric geometries
such as Euclidean and hyperbolic non-Euclidean geometry include the notions of dis-
tance between two points and angle between two lines. The allowed transformations
are rigid motions (isometries or congruences) of Euclidean or hyperbolic space. Affine
and projective geometries consider properties such as collinearity of points, and the
typical group is the general linear group GL(n), the group of invertible n × n ma-
trixes. Projective geometry presents an interesting paradox: while its mathematical
treatment involves what may seem to be quite arcane calculations, your brain has a
sight driver that carries out projective transformations by the thousand every time
you recognise an object in perspective, and does so unconsciously and practically
instantaneously.

The sets of transformations that appear in topology, for example the set of all
continuous one-to-one maps of the interval [0, 1] to itself, or the same thing for the
circle S1 or the sphere S2, are of course too big for us to study by analogy with trans-
formation groups such as GL(n) or the Euclidean group, whose elements depend on
finitely many parameters. In the spirit of the Erlangen program, properties of spaces
that remain invariant under such a huge set of equivalences must be correspondingly
coarse. I treat a few basic topological properties such as compactness, connectedness,
winding number and simple connectedness that appear in many different areas of
analysis and geometry. I use these simple ideas to motivate the central problem of
topology: how to distinguish between topologically different spaces? At a more ad-
vanced level, topology has developed systematic invariants that apply to this problem,
notably the fundamental group and homology groups. These are invariants of spaces
that are the same for topologically equivalent spaces. Thus if you can calculate one
of these invariants for two spaces (for example, a disc and a punctured disc) and
prove that the answers are different, then the spaces are certainly not topologically
equivalent. You may want to take subsequent courses in topology to become a real
expert, and this course should serve as a useful guide in this.

Geometry in applications

Although this book is primarily intended for use in a math course, and the topics are
oriented towards the theoretical foundations of geometry, I must stress that the math
ideas discussed here are applicable in different ways, basic or sophisticated, as stated
or with extra development, on their own or in combination with other disciplines,
Euclidean or non-Euclidean, metric or topological, to a huge variety of scientific and
technological problems in the modern world. I discuss in Chapter 8 the quantum
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mechanical description of the electron that illustrates a fundamental application of
the ideas of group theory and topology to the physics of elementary particles. To
move away from basic to more applied science, let me mention a few examples
from technology. The typesetting and page layout software now used throughout the
newspaper and publishing industry, as well as in the computer rooms of most univer-
sity departments, can obviously not exist without a knowledge of basic coordinate
geometry: even a primary instruction such as ‘place letter A or box B, scaled by such-
and-such a factor, slanted at such-and-such an angle, at such-and-such a point on the
page’ involves affine transformations. Within the same industry, computer typefaces
themselves are designed using Bezier curves. The geometry used in robotics is more
sophisticated. The technological aim is, say, to get a robot arm holding a spanner into
the right position and orientation, by adjusting some parameters, say, angles at joints
or lengths of rods. This translates in a fairly obvious way into the geometric prob-
lem of parametrising a piece of the Euclidean group; but the solution or approximate
solution of this problem is hard, involving the topology and analysis of manifolds,
algebraic geometry and singularity theory. The computer processing of camera im-
ages, whose applications include missile guidance systems, depends among other
things on projective transformations (I say this for the benefit of students looking
for a career truly worthy of their talents and education). Although scarcely having
the same nobility of purpose, similar techniques apply in ultrasonic scanning used
in antenatal clinics; here the geometric problem is to map the variations in density
in a 3-dimensional medium onto a 2-dimensional computer screen using ultrasonic
radar, from which the human eye can easily make out salient features. By a curious
coincidence, 3 hours before I, the senior author, gave the first lecture of this course in
January 1989, I was at the maternity clinic of Walsgrave hospital Coventry looking
at just such an image of a 16-week old foetus, now my third daughter Murasaki.

About this book

Who the
book is for

This book is intended for the early years of study of an undergraduate math course.
For the most part, it is based on a second year module taught at Warwick over many
years, a module that is also taken by first and third year math students, and by students
from the math/physics course. You will find the book accessible if you are familiar
with most of the following, which is standard material in first and second year math
courses.

Coordinate geometry How to express lines and circles in R2 in terms of coordi-
nates, and calculate their points of intersection; some idea of how to do the same in
R3 and maybe Rn may also be helpful.

Linear algebra Vector spaces and linear maps over R and C, bases and matrixes,
change of bases, eigenvalues and eigenvectors. This is the only major piece of math
that I take for granted. The examples and exercises make occasional reference to
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vector spaces over fields other than R or C (such as finite fields), but you can always
omit these bits if they make you uncomfortable.

Multilinear algebra Bilinear and quadratic forms, and how to express them in ma-
trix terms; also Hermitian forms. I summarise all the necessary background material
in Appendix B.

Metric spaces Some prior familiarity with the first ideas of a metric space course
would not do any harm, but this is elementary material, and Appendix A contains all
that you need to know.

Group theory I have gone to some trouble to develop from first principles all
the group theory that I need, with the intention that my book can serve as a first
introduction to transformation groups and the notions of abstract group theory if you
have never seen these. However, if you already have some idea of basic things such
as composition laws, subgroups, cosets and the symmetric group, these will come in
handy as motivation. If you prefer to see a conventional introduction to group theory,
there are any number of textbooks, for example Green [10] or Ledermann [14]. If you
intend to study group theory beyond the introductory stage, I strongly recommend
Artin [1] or Segal [22]. My ideological slant on this issue is discussed in more detail
in 9.2.

How to use
the book

Although the thousands queueing impatiently at supermarkets and airport bookshops
to get their hands on a copy of this book for vacation reading was strong motivation
for me in writing it, experience suggests the harsher view of reality: at least some of
my readers may benefit from coercion in the form of an organised lecture course.

Experience from teaching at Warwick shows that Chapters 1–6 make a reasonably
paced 30 hour second year lecture course. Some more meat could be added to subjects
that the lecturer or students find interesting; reflection groups following Coxeter [5],
Chapter 4 would be one good candidate. Topics from Chapters 7–8 or the further
topics of Chapter 9 could then profitably be assigned to students as essay or project
material. An alternative course oriented towards group theory could start with affine
and Euclidean geometry and some elements of topology (maybe as a refresher), and
concentrate on Chapters 3, 6 and 8, possibly concluding with some material from
Segal [22]. This would provide motivation and techniques to study matrix groups
from a geometric point of view, one often ignored in current texts.

The author’s
identity
crisis

I want the book to be as informal as possible in style. To this end, I always refer
to the student as ‘you’, which has the additional advantage that it is independent of
your gender and number. I also refer to myself by the first person singular, despite
the fact that there are two of me. Each of me has lectured the material many times,
and is used to taking personal responsibility for the truth of my assertions. My model
is van der Waerden’s style, who always wrote the crisp ‘Ich behaupte . . . ’ (often
when describing results he learned from Emmy Noether or Emil Artin’s lectures). I
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leave you to imagine the speaker as your ideal teacher, be it a bearded patriarch or a
fresh-faced bespectacled Central European intellectual.

Acknowledge-
ments

A second year course with the title ‘Geometry’ or ‘Geometry and topology’ has
been given at Warwick since the 1960s. It goes without saying that my choice of
material, and sometimes the material itself, is taken in part from the experience of
colleagues, including John Jones, Colin Rourke, Brian Sanderson; David Epstein has
also provided some valuable material, notably in the chapter on hyperbolic geom-
etry. I have also copied material consciously or unconsciously from several of the
textbooks recommended for the course, in particular Coxeter [5], Rees [19], Nikulin
and Shafarevich [18] and Feynman [7]. I owe special thanks to Katrin Wendland, the
most recent lecturer of the Warwick course MA243 Geometry, who has provided a
detailed criticism of my text, thereby saving me from a variety of embarrassments.

Disclaimer Wen solche Lehren nicht erfreun,
Verdienet nicht ein Mensch zu sein.

From Sarastro’s aria, The Magic Flute, II.3.

This is an optional course. If you don’t like my teaching, please deregister before the
deadline.



1 Euclidean geometry

This chapter discusses the geometry of n-dimensional Euclidean space En , together
with its distance function. The distance gives rise to other notions such as angles and
congruent triangles. Choosing a Euclidean coordinate frame, consisting of an origin
O and an orthonormal basis of vectors out of O , leads to a description of En by
coordinates, that is, to an identification En = Rn .

A map of Euclidean space preserving Euclidean distance is called a motion or rigid
body motion. Motions are fun to study in their own right. My aims are

(1) to describe motions in terms of linear algebra and matrixes;
(2) to find out how many motions there are;
(3) to describe (or classify) each motion individually.

I do this rather completely for n = 2, 3 and some of it for all n. For example, the
answer to (2) is that all points of En , and all sets of orthonormal coordinate frames at
a point, are equivalent: given any two frames, there is a unique motion taking one to
the other. In other words, any point can serve as the origin, and any set of orthogonal
axes as the coordinate frames. This is the geometric and philosophical principle that
space is homogeneous and isotropic (the same viewed from every point and in every
direction). The answer to (3) in E2 is that there are four types of motions: translations
and rotations, reflections and glides (Theorem 1.14).

The chapter concludes with some elementary sample theorems of plane Euclidean
geometry.

1.1 The metric on Rn

Throughout the book, I write Rn for the vector space of n-tuples (x1, . . . , xn) of real
numbers. I start by discussing its metric geometry. The familiar Euclidean distance
function on Rn is defined by

|x − y| =
√(∑

(xi − yi )
2
)

, where x =

x1
...

xn

 and y =

y1
...

yn

. (1)

1
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Figure 1.1 Triangle inequality.

The relationship between this distance function and the Euclidean inner product (or
dot product) x · y =∑ xi yi on Rn is discussed in Appendix B.2. The more important
point is that the Euclidean distance (1) is a metric on Rn . If you have not yet met
the idea of a metric on a set X , see Appendix A; for now recall that it is a distance
function d(x, y) satisfying positivity, symmetry and the triangle inequality. Both the
positivity |x − y| ≥ 0 and symmetry |x − y| = |y − x| are immediate, so the point is
to prove the triangle inequality (Figure 1.1).

Theorem (Triangle inequality)

|x − y| ≤ |x − z| + |z − y|, for all x, y, z ∈ Rn, (2)

with equality if and only if z = x + λ(y − x) for λ a real number between 0 and 1.

Proof Set x − z = u and z − y = v so that x − y = u + v; then (2) is equivalent
to √∑

u2
i +
√∑

v2
i ≥

√(∑
(ui + vi )

2
)

. (3)

Note that both sides are nonnegative, so that squaring, one sees that (3) is equivalent
to ∑

u2
i +
∑

v2
i + 2

√(∑
u2

i ·
∑

v2
i

)
≥
∑

(ui + vi )
2

=
∑

u2
i +
∑

v2
i + 2

∑
ui vi . (4)

Cancelling terms, one sees that (4) is equivalent to√(∑
u2

i ·
∑

v2
i

)
≥
∑

ui vi . (5)

If the right-hand side is negative then (5), hence also (2), is true and strict. If the
right-hand side of (5) is ≥ 0 then it is again permissible to square both sides, giving∑

u2
i ·
∑

v2
j ≥
(∑

ui vi

) (∑
u j v j

)
. (6)
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You will see at once what is going on if you write this out explicitly for n = 2 and
expand both sides. For general n, the trick is to use two different dummy indexes i, j
as in (6): expanding and cancelling gives that (6) is equivalent to∑

i> j

(ui v j − u j vi )
2 ≥ 0. (7)

Now (7) is true, so retracing our steps back through the argument gives that (2) is
true. Finally, equality in (2) holds if and only if ui v j = u j vi for all i, j (from (7))
and

∑
ui vi ≥ 0 (from the right-hand side of (5)); that is, u and v are proportional,

u = µv with µ ≥ 0. Rewriting this in terms of x, y, z gives the conclusion. QED

1.2 Lines and collinearity in Rn

There are several ways of defining a line (already in the usual x, y plane R2); I choose
one definition for Rn .

Definition Let u ∈ Rn be a fixed point and v ∈ Rn a nonzero direction vector.
The line L starting at u ∈ Rn with direction vector v is the set

L := {u + λv
∣∣ λ ∈ R

} ⊂ Rn.

Three distinct points x, y, z ∈ Rn are collinear if they are on a line.

If I choose the starting point x, and the direction vector v = y − x, then
L = {(1 − λ)x + λy}. To say that distinct points x, y, z are collinear means that z =
{(1 − λ)x + λy} for some λ. Writing

[x, y] = {x + λ(y − x)
∣∣ 0 ≤ λ ≤ 1

}
for the line segment between x and y, the possible orderings of x, y, z on the line L
are controlled by

λ ≤ 0

0 ≤ λ ≤ 1

1 ≤ λ

 ⇐⇒


x ∈ [z, y]

z ∈ [x, y]

y ∈ [x, z].

Together with the triangle inequality Theorem 1.1, this proves the following result.

Corollary Three distinct points x, y, z ∈ Rn are collinear if and only if (after a
permutation of x, y, z if necessary)

|x − y| + |y − z| = |x − z|.

In other words, collinearity is determined by the metric.
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1.3 Euclidean space En

After these preparations, I am ready to introduce the main object of study: Euclidean
n-space (En, d) is a metric space (with metric d) for which there exists a bijective
map En → Rn , such that if P, Q ∈ En are mapped to x, y ∈ Rn then

d(P, Q) = |y − x|.

In other words, (En, d) is isometric to the vector space Rn with its usual distance
function, if you like this kind of language.

Since lines and collinearity in Rn are characterised purely in terms of the Euclidean
distance function, these notions carry over to En without any change: three points of
En are collinear if they are collinear for some isometry En → Rn (hence for all
possible isometries); the lines of En are the lines of Rn under any such identification.
For example, for points P, Q ∈ En , the line segment [P, Q] ⊂ En is the set

[P, Q] = {R ∈ En
∣∣ d(P, R) + d(R, Q) = d(P, Q)

} ⊂ En.

Remark The main point of the definition of En is that the map En → Rn iden-
tifying the metrics is not fixed throughout the discussion; I only insist that one such
isometry should exist. A particular choice of identification preserving the metric is
referred to as a choice of (Euclidean) coordinates. Points of En will always be de-
noted by capital letters P, Q; once I choose a bijection, the points acquire coordinates
P = (x1, . . . , xn). In particular, any coordinate system distinguishes one point of En

as the origin (0, . . . , 0); however, different identifications pick out different points of
En as their origin. If you want to have a Grand Mosque of Mecca or a Greenwich
Observatory, you must either receive it by Divine Grace or make a deliberate extra
choice. The idea of space ought to make sense without a coordinate system, but you
can always fix one if you like.

You can also look at this process from the opposite point of view. Going from Rn

to En , I forget the distinguished origin 0 ∈ Rn , the standard coordinate system, and
the vector space structure of Rn , remembering only the distance and properties that
can be derived from it.

1.4 Digression: shortest distance

As just shown, the metric of Euclidean space En determines the lines. This section
digresses to discuss the idea summarised in the well known cliché ‘a straight line is
the shortest distance between two points’; while logically not absolutely essential in
this chapter, this idea is important in the philosophy of Euclidean geometry (as well
as spherical and hyperbolic geometry).

Principle The distance d(P, Q) between two points P, Q ∈ En is the length of
the shortest curve joining P and Q. The line segment [P, Q] is the unique shortest
curve joining P, Q.
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Sketch proof This looks obvious: if a curve C strays off the straight and narrow
to some point R /∈ [P, Q], its length is at least

d(P, R) + d(R, Q) > d(P, Q).

The statement is, however, more subtle: for instance, it clearly does not make
sense without a definition of a curve C and its length. A curve C in En from P to
Q is a family of points Rt ∈ En , depending on a ‘time variable’ t such that R0 = P
and R1 = Q. Clearly Rt should at least be a continuous function of t – if you allow
instantaneous ‘teleporting’ between far away points, you can obviously get arbitrarily
short paths.

The proper definition of curves and lengths of curves belongs to differential geom-
etry or analysis. Given a ‘sufficiently smooth’ curve, you can define its length as the
integral

∫
C ds along C of the infinitesimal arc length ds, given by ds2 =∑n

i=1 dx2
i .

Alternatively, you can mark out successive points P = R0, R1, . . . , RN+1 = Q along
the curve, view the sum

∑N
i=0 d(Ri , Ri+1) as an approximation to the length of C , and

define the length of C to be the supremum taken over all such piecewise linear ap-
proximations. To avoid the analytic details (which are not at all trivial!), I argue under
the following weak assumption: under any reasonable definition of the length of C ,

for any ε > 0, the curve C can be closely approximated by a piecewise linear path made up of
short intervals [P, R1], [R1, R2], etc., such that

length of C ≥ sum of the lengths of the intervals − ε.

However, by the triangle inequality d(P, R2) ≤ d(P, R1) + d(R1, R2), so that the
piecewise linear path can only get shorter if I omit R1. Dealing likewise with R2, R3,
etc., it follows that the length of C is≥ d(P, Q) − ε. Since this is true for any ε > 0, it
follows that the length of C is ≥ d(P, Q). Thus the line interval [P, Q] joining P, Q
is the shortest path between them, and its length is d(P, Q) by definition. QED

1.5 Angles

The geometric significance of the Euclidean inner product x · y = ∑n
i=1 xi yi on Rn

(Section B.2) is that the inner product measures the size of the angle ∠xyz based at
y for x, y, z ∈ Rn:

cos(∠xyz) = (x − y) · (z − y)

|x − y||z − y| . (8)

By convention, I usually choose the angle to be between 0 and π . In particular, the
vectors x − y, z − y are orthogonal if (x − y) · (z − y) = 0.

The notion of angle is easily transported to Euclidean space En . Namely, the angle
spanned by three points of En is defined to be the corresponding angle in Rn under
a choice of coordinates. The angle is independent of this choice, because the inner
product in Rn is determined by the quadratic form (Proposition B.1), and so ultimately
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P

R

Q

Figure 1.5 Angle with direction.

Γ T Γ

Figure 1.6 Rigid body motion.

by the metric of En . In other words, the notion of angle is intrinsic to the geometry
of En .

There is one final issue to discuss regarding angles that is specific to the Euclidean
plane E2. Namely, once I fix a specific coordinate system in E2, angles ∠P Q R acquire
a direction as well as a size, once we agree (as we usually do) that an anticlockwise
angle counts as positive, and a clockwise angle as negative. In Figure 1.5,

∠P Q R = −∠RQ P = θ.

Under this convention, angles lie between −π and π . Of course formula (8) does not
reveal the sign as cos θ = cos(−θ). It is important to realise that the direction of the
angle is not intrinsic to E2, since a different choice of coordinates may reverse the sign.

1.6 Motions

A motion T : En → En is a transformation that preserves distances; that is, T is
bijective, and

d(T (P), T (Q)) = d(P, Q) for all P, Q ∈ En .

The word motion is short for rigid body motion; it is alternatively called isometry or
congruence. To say that T preserves distances means that there is ‘no squashing or
bending’, hence the term rigid body motion; see Figure 1.6.

I study motions in terms of coordinates. After a choice of coordinates En → Rn , a
motion T gives rise to a map T : Rn → Rn , its coordinate expression, which satisfies

|T (x) − T (y)| = |x − y| for all x, y ∈ Rn .
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The first thing I set out to do is to get from the abstract ‘preserves distance’ definition of
a motion to the concrete coordinate expression T (x) = Ax + b with A an orthogonal
matrix. In the case of the Euclidean plane E2, the result is even more concrete; A is
either a rotation matrix or a reflection matrix:(

cos θ − sin θ

sin θ cos θ

)
or

(
cos θ sin θ

sin θ − cos θ

)
.

1.7 Motions and collinearity

Proposition A motion T : En → En preserves collinearity of points, so it takes
lines to lines.

Proof P, Q, R ∈ En are collinear if and only if, possibly after a permutation of
P, Q, R,

d(P, R) + d(R, Q) = d(P, Q).

But T preserves the distance function, so this happens if and only if, possibly after a
permutation,

d(T (P), T (R)) + d(T (R), T (Q)) = d(T (P), T (Q))

which is equivalent to T (P), T (Q), T (R) collinear. QED

The point is of course that, as we saw in 1.3, collinearity can be defined
purely in terms of distance; since a motion T preserves distance, it preserves
collinearity.

1.8 A motion is affine linear on lines

Proposition If T : Rn → Rn is a motion expressed in coordinates, then

T ((1 − λ)x + λy) = (1 − λ)T (x) + λT (y)

for all x, y ∈ Rn and all λ ∈ R.

Proof A calculation based on the same idea as the previous proof: let z =
(1 − λ)x + λy. If x = y there is nothing to prove; set d = |x − y|. Assume first that
λ ∈ [0, 1], so that z ∈ [x, y]. Then, as in the previous proposition, T (z) ∈ [T (x), T (y)],
so T (z) = (1 − µ)T (x) + µT (y) for some µ. But |z − x| = λd, so T (z) is the point
at distance (1 − λ)d from T (y) and λd from T (x), that is, µ = λ.

If λ < 0, say, then x ∈ [y, z] with x = (1 − λ′)y + λ′z and the same argument gives
T (x) = (1 − λ′)T (y) + λ′T (z), and you can derive the statement as an easy exercise.
(The point is to write λ′ as a function of λ; see Exercise 1.3.) QED
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1.9 Motions are affine transformations

Definition A map T : En → En is an affine transformation if it is given in a co-
ordinate system by T (x) = Ax + b, where A = (ai j ) is an n × n matrix with nonzero
determinant and b = (bi ) a vector; in more detail,

x = (xi ) �→ y =
( n∑

j=1

ai j x j + bi

)
, or

x1
...

xn

 �→ A

x1
...

xn

+

b1
...

bn

 . (9)

Proposition Let T : En → En be any map. Equivalent conditions:

(1) T is given in some coordinate system by T (x) = Ax + b for A an n × n matrix.
(2) For all vectors x, y ∈ Rn and all λ, µ ∈ R we have

T
(
λx + µy

)− T (0) = λ
(
T (x) − T (0)

)+ µ
(
T (y) − T (0)

)
.

(3) For all x, y ∈ Rn and all λ ∈ R

T
(
(1 − λ)x + λy

) = (1 − λ)T (x) + λT (y).

that is, T is affine linear when restricted to any line.

Discussion The point of the proposition is that condition (3) is a priori much
weaker than the other two; it only requires that the map T is affine when restricted
to lines. Note also that using the origin 0 in (2) seems to go against my expressed
wisdom that there is no distinguished origin in the geometry of En . However, recall
that any point P ∈ En can serve as origin after a suitable translation.

Proof (1) =⇒ (2) is an easy exercise. (2) means exactly that if after performing
T we translate by minus the vector b = T (0) to take T (0) back to 0, then T becomes
a linear map of vector spaces. Thus (2) =⇒ (1) comes from the standard result of
linear algebra expressing a linear map as a matrix.

(3) is just the particular case λ+ µ = 1 of (2). Thus the point of the proposition
is to prove (3) =⇒ (2).

Statement (2) concerns only the 2-dimensional vector subspace spanned by x, y ∈
V . We use statement (3) on the two lines 0x and 0y (see Figure 1.9), to get

T (2λx) = (1 − 2λ)T (0) + 2λT (x)

and

T (2µy) = (1 − 2µ)T (0) + 2µT (y).

Now apply (3) again to the line spanned by 2λx and 2µy:
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0 y y

λx +   y
x

λx

2λx

2 y

Figure 1.9 Affine linear construction of λx+ µy.

T
(
λx + µy

) = 1

2
T (2λx) + 1

2
T (2µy)

= 1

2

(
(1 − 2λ)T (0) + 2λT (x)

)+ 1

2

(
(1 − 2µ)T (0) + 2µT (y)

)
= T (0) + λ

(
T (x) − T (0)

)+ µ
(
T (y) − T (0)

)
,

as required. QED

Remark Dividing by 2 here is just for the sake of an easy life: { 1
2 , 1

2 } is a conve-
nient solution of λ+ µ = 1. The point is just that λx + µy lies on a line containing
chosen points of 0x and 0y. The argument for (3) =⇒ (2) can be made to work
provided every line has ≥ 3 points, that is, over any field with > 2 elements.

Corollary A Euclidean motion T : En → En is an affine transformation, given
in any choice of coordinates En → Rn by T (x) = Ax + b.

This follows at once from Proposition 1.7, the implication (3) =⇒ (1) in the
previous proposition, and the fact that T is bijective, so the matrix A must be invertible.

1.10 Euclidean motions and orthogonal transformations

This section makes a brief use of the relationship between the standard quadratic
form |x|2 =∑ x2

i on Rn and the associated inner product x · y =∑ xi yi . If this is
not familiar to you, I refer you once again to Appendix B for a general discussion.

Proposition Let A be an n × n matrix and T : Rn → Rn the map defined by
x �→ Ax. Then the following are equivalent conditions:

(1) T is a motion T : En → En.
(2) A preserves the quadratic form; that is, |Ax| = |x| for all x ∈ Rn.
(3) A is an orthogonal matrix; that is, it satisfies tAA = In.
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Proof (1) =⇒ (2) is trivial. Conversely,

|Ax − Ay|2 = |A(x − y)|2 = |x − y|2,

where the first equality is linearity, and the second follows from (2). Thus T preserves
length, so it is a motion. (2) ⇐⇒ (3) is proved in Proposition B.4, where you can
also read more about orthogonal matrixes if you wish to. QED

Together with Corollary 1.7, this proves the following very important statement:

Corollary A Euclidean motion T : En → En is expressed in coordinates as

T (x) = Ax + b

with A an orthogonal matrix, and b ∈ Rn a vector.

An immediate check shows that an orthogonal matrix A has determinant det A =
±1 (see Lemma B.4).

Definition Let T : En → En be a motion expressed in coordinates as T (x) =
Ax + b. I call T direct (or orientation preserving) if det A = 1 and opposite (or
orientation reversing) if det A = −1.

The meaning of this notion in E2 and E3 is familiar in terms of left–right orientation,
and it may seem pretty intuitive that it does not depend on the choice of coordinates.
However, I leave the proof to Exercise 6.8.

1.11 Normal form of an orthogonal matrix

The point of this section is to express an orthogonal map α : Rn → Rn in a simple form
in a suitable orthonormal basis of Rn . This section may seem an obscure digression
into linear algebra, but the result is central to understanding motions of Euclidean
space.

1.11.1
The 2 × 2
rotation and
reflection
matrixes

As a prelude to an attack on the general problem, consider the instructive case n = 2.
The conditions for a 2 × 2 matrix A = ( a b

c d

)
to be orthogonal are:

tAA = 1 ⇐⇒
(

a c
b d

)(
a b
c d

)
=
(

1 0
0 1

)
⇐⇒


a2 + c2 = 1

ab + cd = 0

b2 + d2 = 1.

Now (a, c) ∈ R2 is a point of the unit circle, so I can write a = cos θ , c = sin θ

for some θ ∈ [0, 2π ) (Figure 1.11a). Then there are just two possibilities for b, d,
giving

A =
(

cos θ − sin θ

sin θ cos θ

)
or

(
cos θ sin θ

sin θ − cos θ

)
.
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(0, 1)

(1, 0)

(cos θ, sin θ)

(− sin θ, cos θ)
θ

θ

Figure 1.11a A rotation in coordinates.

Γ

Γ

Rot(O, θ)

θ/2
y = 0

ΓΓ

Γ

L
Refl(L)

θ/2

θ
O

Figure 1.11b The rotation and the reflection.

The first of these corresponds to a direct motion (because det A = 1), and you
recognise it as a rotation around the origin through θ . In fact it takes(

1
0

)
�→
(

cos θ

sin θ

)
and

(
0
1

)
�→
(− sin θ

cos θ

)
.

The second matrix gives an opposite motion (det A = −1), and you can understand
it in several ways; for example, write

A =
(

cos θ sin θ

sin θ − cos θ

)
=
(

cos θ − sin θ

sin θ cos θ

)(
1 0
0 −1

)
.

This says: first reflect in the x-axis, then rotate through θ . It is easy to see geo-
metrically that this is the reflection in the line L through the origin 0 at angle θ/2
to the x-axis. Indeed, every point on L is fixed, and the line perpendicular to L is
reversed, as in Figure 1.11b.

In coordinates, this says that f1 = (cos(θ/2), sin(θ/2)) is an eigenvector of A with
eigenvalue 1, and f2 = (sin(θ/2),− cos(θ/2)) an eigenvector with eigenvalue −1.
The pair (f1, f2) gives a vector space basis of R2, and in this new basis the map
is given by the matrix

(
1 0
0 −1

)
. You can readily check these statements by matrix

multiplication and the rules of trig, but the geometric argument is simpler and more
convincing.
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1.11.2 The
general case

In the general case I control orthogonal matrixes using a slightly more involved
argument.

Theorem (Normal form of orthogonal matrix) Let α : Rn → Rn be a linear map
given by an orthogonal matrix A. Then there exists an orthonormal basis of Rn in
which the matrix of α is

B =



Ik+

−Ik−

B1

. . .

Bl


where Bi =

(
cos θi − sin θi

sin θi cos θi

)
.

Here k+ + k− + 2l = n, and Ik± is the k± × k± identity matrix.

Discussion The rotation matrix
(

cos θ − sin θ
sin θ cos θ

)
has two special cases θ = 0 (giving

the identity) and θ = π :(−1 0
0 −1

)
=
(

cos π − sin π

sin π cos π

)
= 180◦ rotation.

These trivial cases introduce a minor ambiguity in the normal form. The most natural
convention seems to be to disallow θ = 0, thus taking k+ as big as possible, but to
use θ = π wherever possible, so that k− = 0 or 1.

Proof In sketch form, this holds because A is orthogonal, so its eigenvalues
have absolute value 1. Therefore they are either ±1, or come in complex conjugate
pairs {λ, λ} = exp(±iθ ); after this, it is enough simply to build up a basis of Rn

consisting either of real eigenvectors of A, or of real and imaginary parts of complex
eigenvectors.

Now I say the same thing again in more detail in 5 steps; the sketch proof just
given already reveals that complex numbers are closely involved, so I may as well
extend the action of A to the complex vector space Cn , which I can do without any
problems.

Step 1 If λ is a real eigenvalue of A then λ = ±1, because

Ax = λx and A orthogonal =⇒ |x|2 = |Ax|2 = λ2|x|2.

Step 2 If λ is a complex eigenvalue of A then |λ| = 1 and λ = λ−1 is also an
eigenvalue (the bar denotes complex conjugate). Indeed, given 0 �= z ∈ Cn such that
Az = λz (recall I write z = t(z1, . . . , zn) a column vector), write z = t(z1, . . . , zn).
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Because A is a real matrix,

Az = Az = λz = λz.

Now write zi = xi + iyi , so that tzz =∑ |zi |2 =
∑

(x2
i + y2

i ) > 0. Using the fact
that A is orthogonal,

λλtzz = t(Az)Az = tz t AAz = tzz, and thus λλ = 1.

Step 3 If λ = cos θ + i sin θ is a complex eigenvalue of A (with θ �= 0, π ) and
z = x + iy ∈ Cn a complex eigenvector then taking real and imaginary parts in the
equality A(x + iy) = Az = λz = (cos θ + i sin θ)(x + iy) gives

Ax = cos θx − sin θy, Ay = sin θx + cos θy. (10)

Now I claim that |x|2 = |y|2 and x · y = 0, so that scaling makes x, y ∈ Rn into a pair
of orthonormal vectors. This is an exercise for the reader. [Hint: write out the condition
for (10) (with θ �= 0, π ) to preserve |x|2, |y|2 and x · y. See Exercises 1.5–1.6.]

Step 4 If α preserves a subspace W of Rn , then it preserves its orthogonal com-
plement under the inner product (compare B.3)

W⊥ = {x ∈ Rn
∣∣ x · w = 0 for all w ∈ W

}
.

In symbols,

α(W ) = W =⇒ α(W⊥) = W⊥.

This is obvious from the definition of W⊥. Look at Figure 1.15b for an example: if a
motion preserves the horizontal plane W and its translates, then it will also preserve
the orthogonal complement W⊥, the vertical lines.

Step 5. Proof of the theorem Eigenvalues of A come from the polynomial equa-
tion p(λ) = det(A − λ1) = 0, so that at least one real or complex eigenvalue λ exists.
Step 1 or Steps 2–3 as appropriate gives a 1- or 2-dimensional subspace W with
AW = W on which the action of A is as indicated. By induction on the dimension, I
can assume that the action of A on W⊥ is OK; the induction starts with dim W = 0
or 1. QED

Complex numbers make their first incursion into real geometry during the above
proof, and it is worth pondering why; quaternions also appear in a similar context
in 8.5 below.



14 EUCLIDEAN GEOMETRY

P = P0

P2

QP1

P' = P'
0

P'
1 Q'P''2

P'
2

Figure 1.13 The Euclidean frames P0, P1, P2 and P ′
0, P

′
1 , P

′
2.

1.12 Euclidean frames and motions

Definition A Euclidean frame of En is a set of n + 1 points Q0, Q1, . . . , Qn of En

such that d(Q0, Qi ) = 1 and the lines Q0 Qi are pairwise orthogonal for 1 ≤ i ≤ n.

Remark The point of the definition is that if Q0, . . . , Qn is a Euclidean frame
then it is possible to choose coordinates so that Q0 becomes the origin 0 ∈ Rn and
the n vectors ei = −−−→

Q0 Qi form an orthonormal basis of Rn .

Theorem If we fix one Euclidean frame P0, P1, . . . , Pn, then Euclidean motions
are in one-to-one correspondence with Euclidean frames.

Proof The correspondence is given by T �→ T (P0), T (P1), . . . , T (Pn). It is clear
that the image of the Euclidean frame P0, P1, . . . , Pn under a motion is again a
Euclidean frame. The converse, that is, the fact that two Euclidean frames are mapped
to each other by a unique motion, follows from the previous Remark and Appendix B,
Proposition B.5. QED

1.13 Frames and motions of E2

It is worth noting two useful consequences of Theorem 1.12, whose proofs are left as
easy exercises (see Figure 1.13 and Exercise 1.12):

Corollary

(1) Suppose that [P, Q] and [P ′, Q′] are two line segments in E2 of the same length
d(P, Q) = d(P ′, Q′) > 0. Then there exist exactly two motions T : E2 → E2 such
that T (P) = P ′, and T (Q) = Q′.

(2) Let �P Q R and �P ′Q′R′ be two triangles in E2 with all sides equal:

d(P, Q) = d(P ′, Q′), d(P, R) = d(P ′, R′), d(Q, R) = d(Q′, R′).

(I assume that the three vertexes of each triangle are distinct and noncollinear.) Then
there is a unique motion T : E2 → E2 such that T (P) = P ′, T (Q) = Q′, T (R) = R′.
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Figure 1.14a Rot(O, θ ) and Glide(L, v).
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Figure 1.14b Construction of glide.

1.14 Every motion of E2 is a translation, rotation, reflection or glide

Let us list the motions of E2 we know, expressed in coordinates (see Figure 1.14a).

1. The translation Trans(b) : x �→ x + b for b ∈ R2.
2. The rotation through angle θ about a point O ∈ E2; if O is the origin of the coordinate

system, this is written

Rot(O, θ ) :

(
x1

x2

)
�→
(

cos θ − sin θ

sin θ cos θ

)(
x1

x2

)
.

3. The reflection in a line L; if L is the x1-axis (x2 = 0) then

Refl(L) :

(
x1

x2

)
�→
(

x1

−x2

)
.

4. The glide (or glide reflection) in a line L through a vector v along L . Reflect in L and
translate in v. If L is the x1-axis (x2 = 0) and v = (a, 0) then this is given by:

Glide(L , v) :

(
x1

x2

)
�→
(

x1 + a
−x2

)
.

Here v is parallel to L , and the reflection and translation commute.

I use self-documenting notation such as Rot(O, θ ) and Glide(L , v) for these mo-
tions. In each case, I have chosen coordinates in an obvious way to make the for-
mula as simple as possible. Obviously (1) and (2) are direct motions, and (3) and
(4) opposite. Note that (3) is a particular case of (4) (where the translation vec-
tor is 0). It is sometimes convenient to view (1) as a limiting case of (2), when
the centre of rotation is very far away and the angle of rotation correspondingly
small.

Theorem That’s all, folks!



16 EUCLIDEAN GEOMETRY
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Figure 1.14c Construction of rotation.

Proof There are several ways of proving this. (Why not devise your own? See
Exercises 1.8 and 1.9 for an argument in terms of x �→ Ax + b, and Exercise 2.11 for
an argument in terms of composing reflections.)

The proof given here is based on the following geometric idea taken from Nikulin
and Shafarevich [18]: let P, Q and P ′, Q′ be two pairs of distinct points with
d(P, Q) = d(P ′, Q′) �= 0. By Corollary 1.13, we know that there are exactly two
motions of E2 such that T (P) = P ′ and T (Q) = Q′. In Step 1 below, I construct
a reflection or glide, and in Step 2 a rotation or translation. Now if T is any mo-
tion, pick any two distinct points P �= Q, and set P ′ = T (P), Q′ = T (Q). Then
T must be one of the two motions constructed in Steps 1–2, both of which are in
my list.

Step 1 I first find a reflection or glide. Write u = −→
P Q and u′ = −−→

P ′Q′. First I need
to find the line of reflection L . The direction of L and of v is the vector bisecting the
angle between u and u′ (that is, 1

2 (u + u′) if the vectors are not opposite). Doing this
arranges that the reflection or glide reflection in any line parallel to L takes

−→
P Q into

a vector parallel to
−−→
P ′Q′. Now choose L among lines with the given direction so that

d(L , P) = d(L , P ′), and write A and A′ for the feet of the respective perpendiculars
from P and P ′ to L and v = −−→

AA′ (see Figure 1.14b). Since reflection in L takes u
into a vector parallel to u′ by construction, and d(P, Q) = d(P ′, Q′), it is clear that
Glide(L , v) does what I want.

Step 2 There exists a rotation or translation T : E2 → E2 such that P �→ P ′ and
Q �→ Q′. I suppose first that P �= P ′, and that the lines P Q and P ′Q′ intersect at a
single point in an angle θ .

Then the (signed) angle of rotation must be θ ; the centre must be the point O of the
perpendicular bisector of the line P P ′ determined by P O P ′ = θ (see Figure 1.14c).
Then by construction Rot(O, θ ) takes P �→ P ′, and the interval [P, Q] to an interval
out of P ′ of the same length with d(P, Q) = d(P ′, Q′) and the same direction as
[P ′Q′]; hence it takes Q �→ Q′.
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Figure 1.15a Twist (L, θ , v) and Rot-Refl (L, θ ,�).

Figure 1.15b A grid of parallel planes and their orthogonal lines.

The proof just given does not work if P = P ′, or if the lines P Q and P ′Q′ are
parallel, but these special cases are easy to deal with, and I leave them as exercises
(see Exercise 1.10). QED

1.15 Classification of motions of E3

Theorem A motion T : E3 → E3 is one of the following:

1. Translation by a vector v.
2. Rotation about a directed line L as axis through an angle θ .
3. Twist: the same followed by a translation along L (Figure 1.15a).
4. Reflection in a plane.
5. Glide: a reflection in a plane followed by a translation by a vector in the plane.
6. Rotary reflection: the rotation through θ about a directed axis L followed by a reflec-

tion in a plane � perpendicular to L (Figure 1.15a).

(2) is a special case of (3), and (4) is a special case of (5). In all cases where a
motion is defined as a composite of two others, these two commute. (6) is also called
a rotary inversion, because it is also the rotation around the directed axis L through
π + θ , followed by a point reflection in L ∩�. Clearly (1)–(3) are direct motions
and (4)–(6) opposite. Notice that any motion leaves invariant a grid of parallel planes
and their orthogonal lines (Figure 1.15b).
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Proof See, for example, Exercise 1.11 or Rees [19], p. 16, Theorem 17 for a
geometric proof. I give a coordinate geometry proof based on the use of the nor-
mal form of Theorem 1.11. Let T : E3 → E3 be a motion expressed in coordinates
as T : x �→ Ax + b; write T = T1 ◦ T2 where Ti are given (in the same coordinate
system) by

T2 : x �→ Ax and T1 : y �→ y + b.

Then by Theorem 1.11, there exists an orthogonal coordinate system such that

A =
(±1

B

)
, where B =

(
cos θ − sin θ

sin θ cos θ

)
.

In these coordinates, T has the form

T :

x1

x2

x3

 �→

 ±x1(
cos θ − sin θ

sin θ cos θ

)(
x2

x3

)+
b1

b2

b3

 . (11)

For the proof, I have to verify that this map is a motion of one of types (1)–(6).
This can be done, for example, by a direct coordinate calculation. It is better to
argue using the following separation of variables: (11) breaks T up as a product (not
composite) of two motions T = t ′ × t ′′ : E1 × E2 → E1 × E2, where T ′ : E1 → E1

and T ′′ : E2 → E2 are given in coordinates by

T ′ : x1 �→ ±x1 + b1 and T ′′ :
(

x2

x3

)
�→
(

cos θ − sin θ

sin θ cos θ

)(
x2

x3

)
+
(

b2

b3

)
.

In other words, (11) separates the 3 variables in such a way that T (x) = y with
y = (y1, y2, y3), where y1 is a function of x1 only, and y2, y3 functions of x2, x3 only.
Now both T ′ and T ′′ are motions in their own right. This is the real point of the
theorem. (It is easy to generalise the result to all dimensions; compare Theorem 2.5.)

T ′′ is a direct motion, and is a translation if θ = 0 or rotation if θ �= 0; this follows
by Theorem 1.14, or by direct observation. In terms of coordinates (x2, x3) of E2, it
is the rotation through an angle θ about the point determined by(

x2

x3

)
=
(

cos θ − sin θ

sin θ cos θ

)(
x2

x3

)
+
(

b2

b3

)
,

that is, solving for x2, x3 by inverting a 2 × 2 matrix:(
x2

x3

)
= −1

2 − 2 cos θ

(
cos θ − 1 − sin θ

sin θ cos θ − 1

)(
b2

b3

)
.

The theorem follows easily on sorting out the cases. QED
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Figure 1.16a Pons asinorum.

1.16 Sample theorems of Euclidean geometry

This chapter has mainly been concerned with the foundations of Euclidean geometry
and a description of Euclidean motions. I do not have time to give many results of
substance from Euclidean geometry, either the theory of Euclid’s Elements, or the
much more extensive nineteenth century subject, but I do not want to omit to mention
it altogether. Coxeter [5] is very entertaining on this subject.

1.16.1
Pons
asinorum

Proposition Pons asinorum, ‘Bridge of asses’. Equivalent conditions on a triangle
�ABC:

1. d(A, B) = d(A, C);
2. θ = ∠ABC = θ ′ = ∠AC B;
3. there exists a motion T : �ABC �→ �AC B.

Proof (1) ⇐⇒ (2) is an easy consequence of trigonometry, because in Fig-
ure 1.16a,

d(A, O) = d(A, B) sin θ = d(A, C) sin θ ′.

From our point of view, (3) =⇒ (1) or (2) is obvious, and (1) or (2) =⇒ (3) follows
by Corollary 1.13. You can also directly invoke the motion of the plane consisting of
picking up the triangle and laying it down over itself so that A, B, C match up with
A, C, B in order; alternatively, you can drop a perpendicular AO from A to BC , and
argue on congruent triangles. QED

1.16.2
The angle
sum of
triangles

Theorem The sum of angles in a triangle is equal to π .

Proof Let �ABC be a given triangle. Consider the motion T = Trans(
−→
AC) and

set �A′B ′C ′ = T (�ABC) as in Figure 1.16b. Then because T is a motion, I get
�A′B ′C ′ ≡ �ABC , where ≡ is congruence (see Exercise 1.16). Also, since T is a
Euclidean translation, d(B, B ′) = d(A, C), therefore also�ABC ≡ �B A′B ′. Hence

α + β + γ = ∠B ′CC ′ + ∠BC B ′ + ∠AC B = π

since the angles combine to form a straight line. QED
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Figure 1.16b Sum of angles in a triangle is equal to π .
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Figure 1.16c Parallel lines fall on lines in the same ratio.

Remark The statement the sum of angles in a triangle equals π is equivalent to the
parallel postulate (see 3.13 and 9.1.2). The proof used translation in E2, coming from
the coordinate model. Figure 1.16b makes sense in spherical geometry (or hyperbolic
geometry), but there d(A, A′) > d(B, B ′) (respectively d(A, A′) < d(B, B ′)).

1.16.3
Parallel
lines and
similar
triangles

A distinguishing feature of Euclidean geometry is the existence of unique parallel lines
(compare 9.1.2). Parallel lines fall on lines in the same ratio, and conversely; they
are also responsible for the existence of similar triangles. The following proposition
makes these statements precise.

Proposition

(1) If L1, L2, L3 are three parallel lines in E2, and they meet a line M in P1, P2, P3,
then the (signed) ratio of distances d(P1, P2) : d(P2, P3) is independent of M (Fig-
ure 1.16c).

(2) Consider the two triangles �ABC and �AB ′C ′ of Figure 1.16d. The following are
equivalent:

(a) BC is parallel to B ′C ′.
(b) Equality of ratios: d(A, B) : d(A, B ′) = d(A, C) : d(A, C ′).
(c) Equality of angles: ∠ABC = ∠AB ′C ′ and ∠AC B = ∠AC ′B ′.
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Figure 1.16d Similar triangles.
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Figure 1.16e The centroid.

Proof All this is trivial in coordinate geometry; see Exercise 1.17.

Two triangles satisfying the conditions of the second part are called similar. Cor-
responding pairs of angles of a pair of similar triangles are equal.

1.16.4
Four centres
of a triangle

Proposition (Centroid) The three medians of a triangle ABC meet in a point G
(Figure 1.16e).

Proof (See 4.7 for a slightly different proof.) Let A′, B ′, C ′ be the midpoints of
BC , AC , AB and let G be the point on AA′ with d(A, G) = 2d(G, A′). If L , M are
the midpoints of AG and CG, then by similar triangles

L M ‖ AC ‖ A′C ′ and LC ′ ‖ G B ‖ M A′,

(where ‖ is parallel), so that L M A′C ′ is a parallelogram, G is its centre, so MGC ′ is
a straight line. Hence G lies on each of AA′, B B ′, CC ′, so it is the centroid. QED

Proposition (Circumcentre) The three perpendicular bisectors of sides AB, BC
and AC meet in a point O. This is the centre of the circle circumscribed around ABC
(Figure 1.16f).
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Figure 1.16f The circumcentre.
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Figure 1.16g The orthocentre.

Proof This is almost obvious, since the perpendicular bisector of AB is deter-
mined as the locus of points equidistant from A and B, so that any two of the per-
pendicular bisectors intersect at the point O determined by d(A, O) = d(B, O) =
d(C, O). QED

Proposition (Orthocentre) The three perpendiculars dropped from a vertex onto
the opposite side intersect in a point H.

Proof In vector notation, H is the point given by
−−→
O H = 3

−−→
OG, where O is

the circumcentre and G the centroid. Indeed, in Figure 1.16g, B B ′ is the median
and O B ′ the perpendicular bisector of AC ; since

−→
G B = 2

−−→
B ′G and

−−→
G H = 2

−−→
OG,

it follows that the two triangles �G B ′O and �G B H are similar. Therefore the line
B H is perpendicular to AC , and H lies on this perpendicular. H lies on each of the
other two perpendiculars for similar reasons. QED

Note that, as a byproduct of the above proof, we also see that the centroid G lies on
the segment [O, H ] determined by the circumcentre and the orthocentre, and divides
it into the ratio (1 : 2).
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Figure 1.16h The Feuerbach 9-point circle.

Proposition (Incentre) The angle bisectors of the three angles ∠C AB, ∠ABC and
∠AC B meet in a point K . This is the centre of the circle inscribed into ABC.

Proof This is exactly analogous to the case of the circumcentre above (see Ex-
ercise 1.18). QED

1.16.5
The
Feuerbach
9-point
circle

Theorem (The Feuerbach circle)1 The following 9 points lie on a circle (see Fig-
ure 1.16h):

3 feet P, Q, R of the perpendiculars dropped from a vertex to the opposite side;
3 midpoints A′, B ′, C ′ of the sides;
3 midpoints D, E, F of AH, B H, C H, where H is the orthocentre.

Proof The intellectual achievement here is the statement, of course. The proof is
rather easy because there are so many parallel and perpendicular lines in Figure 1.16h.
By similar triangles, the following lines are parallel:

A′B ′ ‖ DE ‖ AB and A′E ‖ B ′D ‖ C R.

But AB ⊥ C R by construction, hence A′B ′DE is a rectangle. Thus the circle with
diameter A′D also has B ′E as diameter; arguing in the same way one sees that
A′C ′DF is also a rectangle, so that the same circle with diameter A′D also has C ′F
as diameter. Finally, ∠A′P D = 90◦, which is a sufficient condition for the circle with
diameter A′D to pass through P , so that this same circle passes also through the feet
of the perpendiculars. QED

1 The Feuerbach circle is alternatively called the Euler circle, because it was discovered by Poncelet and
Brianchon. The reason why the young Bavarian schoolmaster Feuerbach’s name appears in the context
is his beautiful theorem that the circle touches the inscribed circle of the triangle. Purists may prefer the
noncommital name 9-point circle.
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Exercises

1.1 Redo the proof of Theorem 1.1 in detail in the cases n = 1 and n = 2.
1.2 The angle between nonzero vectors u, v ∈ Rn can be defined by

cos θ =
∑

ui vi/|u||v|.
Prove that the right-hand side is in the interval [−1,+1], so that its arccos is defined.

1.3 The line L = xy in Rn is the set {(1 − λ)x + λy|λ ∈ R}. If z ∈ L , write y in terms of
x and z. Complete the proof of Proposition 1.8.

1.4 Show that the assumption that T is bijective in the definition of motion of Euclidean
space is superfluous; that is, a map T : En → En that preserves distances is bijective,
therefore a motion. [Hint: prove that T is affine linear. Compare Exercise A.1.]

1.5 Complete the proof of Step 3 in Theorem 1.11 using the hint given in the text.
1.6 Let A be a (real) orthogonal matrix.

(a) If e, f ∈ Rn are eigenvectors of A belonging to distinct eigenvalues λ �= µ, prove
that e · f = 0.

(b) If z ∈ Cn is a complex eigenvector with complex eigenvalue λ /∈ R, prove that
z · z = 0. (Here x · y =∑ j x j y j is the usual inner product.) Use this to give a
better proof of Step 3 in Theorem 1.11.

1.7 (a) Let T : E2 → E2 be the motion obtained by reflecting in the x-axis then rotating
through θ around the origin. Show that T is the reflection in a certain line (to be
specified).

(b) Calculate the eigenvalues and eigenvectors of the reflection matrix A =(
cos θ sin θ
sin θ − cos θ

)
.

(c) Relate (a) and (b).
1.8 (a) Let θ be a nonzero angle and b a translation vector in the plane. Give a geometric

construction for a point P ∈ E2 such that

Rot(O, θ )(P) = Trans(−b)(P).

[Hint: draw a picture, to find points P, Q with b = −→
Q P such that O is on the

perpendicular bisector of P Q and ∠P O Q = θ .]
(b) By solving linear equations, find x, y such that

A

(
x1

x2

)
+
(

b1

b2

)
=
(

x1

x2

)
, where A =

(
cos θ sin θ

sin θ − cos θ

)
.

(c) Express the motion T : E2 → E2 defined in coordinates by T (x) = Ax + b in the
form T = Rot(P, θ ).

(d) Relate (a) and (b).
1.9 Let A = ( cos θ sin θ

sin θ − cos θ

)
be the reflection matrix of 1.11.1, and consider the motion

T (x) = Ax + b; give a proof in coordinates that it is a glide reflection. [Hint: you
need to turn Figure 1.14b into coordinates.]

1.10 In the proof of Theorem 1.14, Step 2, there are 3 special cases:
(a) P = P ′,
(b) P Q and P ′Q′ are parallel,
(c) and P Q and P ′Q′ are opposite (that is P Q and Q′P ′ parallel).
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Complete the proof of Step 2 in any of these cases by constructing a suitable translation
or rotation taking P �→ P ′ and Q �→ Q′.

1.11 Find the two motions E2 → E2 taking (0, 0) �→ (1, 2) and (0,
√

2 ) �→ (2, 3). Write
each as x �→ Ax + b. [Hint: the easy way: for the direct motion, translate then rotate;
for the opposite motion, reflect then translate then rotate.] Express them as rotation
and glide.

1.12 Prove Corollary 1.13 (1). [Hint: as in Figure 1.13, make a Euclidean frame with

P0 = P ,
−−→
P0 P1 =

−→
P Q

d(P,Q) and P2 a third point; if I do the same for P ′, Q′, there are
2 choices for P ′

2, one on either side of the line P ′Q′. The statement now follows by
Theorem 1.12.]

1.13 Let P0, P1, P2 ∈ E2 be distinct noncollinear points. Show that there is a unique
Euclidean frame so that P0 = (0, 0), P1 = (a, 0) with a > 0 and P2 = (b, c) with
c > 0. Deduce that a motion of E2 is uniquely determined by its effect on any 3
distinct noncollinear points.

1.14 Let P0, P1, P2 and P ′
0, P ′

1, P ′
2 ∈ E2 be two pairs of distinct noncollinear points

such that d(Pi , Pj ) = d(P ′
i , P ′

j ) for all i, j . Prove that there exists a unique mo-
tion T : E2 → E2 taking Pi �→ P ′

i for i = 1, 2, 3. [Hint: you know enough motions
to send P0 �→ P ′

0. Then fixing P0 = P ′
0, to send P1 �→ P ′

1 in exactly 2 different ways.
Where does this leave P2?]

1.15 Let P0, . . . , Pn be n + 1 points spanning En . Prove that a point Q ∈ En is uniquely
determined by its distances from all of the Pi . [Hint: take P0 as origin; the n vectors
ei = −−→

P0 Pi are linearly independent. The vector f = −−→
P0 Q is determined by f · ei , so it

is enough to determine f · ei from distances in �P0 Pi Q.]
1.16 Let �ABC and �DE F be two triangles in E2. Prove that the following 4 conditions

are equivalent:
(a) 3 sides are equal AB = DE , BC = E F , C A = F D;
(b) equal side–angle–side: AB = DE , C A = F D and ∠C AB = ∠F DE ;
(c) angle–side–angle: ∠ABC = ∠DE F , BC = E F and ∠BC A = ∠E F D;
(d) there exists a motion T taking A �→ D, B �→ E , C �→ F .
The triangles�ABC and�DE F are congruent if these conditions hold; in symbols,
�ABC ≡ �DE F .

1.17 Prove Proposition 1.16.3 by computing in a suitably chosen coordinate system.
1.18 By analogy with the proof of Proposition 1.16.4 (Circumcentre), prove that the three

angle bisectors of angles ∠C AB, ∠ABC and ∠AC B meet in a point K . Show also
that this is the centre of the circle inscribed in ABC (a circle touching all sides of
�ABC).



2 Composing maps

This brief chapter takes up some examples and simple applications of composition of
maps. The aim is to clarify and review some results about motions from Chapter 1,
and to prepare some foundational points for later chapters. Composing maps is the
idea of taking ‘a function of a function’, a procedure familiar from first year calculus:
if y = f (x) and z = g(y), then you can write z = g( f (x)) = (g ◦ f )(x). The chain
rule, for example, calculates the derivative dz

dx in terms of dy
dx and dz

dy .

2.1 Composition is the basic operation

One may consider the fundamental objects in math to be numbers of various kinds;
the basic operations on them are then addition and multiplication (together with sub-
traction, division, taking roots, etc., which are in some sense the inverses of the basic
operations). There would be no point in having numbers if you could not calculate
with them. The reason that we use numbers to model the real world is precisely that it
is easier to perform operations on numbers than make the corresponding constructions
on objects out there in the wild.

However, at another level, the fundamental objects might be maps between sets.
Then the basic operation is composition of maps. Let X, Y, Z be sets, and f : X → Y
and g : Y → Z two maps between them.

Definition The composite of f and g is the map

g ◦ f : X → Z defined by (g ◦ f )(x) = g( f (x)). (1)

This may look like an associative law – but in reality it is just the definition of the
left-hand side. The left-hand side is pronounced ‘g follows f , applied to x’.

The first point is that composition is a basic operation, comparable to addition and
multiplication of numbers.

26
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1. Composing two translations of En means adding the corresponding vectors:

Trans(v) ◦ Trans(u) = Trans(u + v).

Indeed, either side is the operation x �→ x + u + v.
2. Composing two rotations of E2 (about the same centre) means adding the correspond-

ing angles (modulo 2π ):

Rot(θ ) ◦ Rot(ϕ) = Rot(θ + ϕ).

This is clear if you draw the picture; it gives the identity(
cos θ − sin θ

sin θ cos θ

)(
cos ϕ − sin ϕ

sin ϕ cos ϕ

)
=
(

cos(θ + ϕ) − sin(θ + ϕ)
sin(θ + ϕ) cos(θ + ϕ)

)
.

3. In linear algebra, a matrix corresponds to a linear map; the product of two matrixes
is the composite of the corresponding linear maps (see Exercise 2.1).

4. One way to introduce complex numbers is as similarities of E2: a complex num-
ber z = r exp(iθ) corresponds to rotation by θ together with a dilation by a fac-
tor r . In these terms, product of complex numbers is composite of maps (see
Exercise 2.2).

2.2 Composition of affine linear maps x �→ Ax + b

An affine linear map T : Rn → Rn is given by T (x) = Ax + b where A is an n × n
matrix and b is a vector (see 1.8). If T1(x) = A1x + b1 and T2(x) = A2x + b2 then

(T2 ◦ T1)(x) = A2T1(x) + b2 = A2(A1x + b1) + b2 = (A2 A1)x + (A2b1 + b2).

Thus if we write TA,b for the map x �→ Ax + b, composition is given by the rule
TA2,b2 ◦ TA1,b1 = TA2 A1,A2b1+b2 . Note that the first component A2 A1 is just the product,
whereas in the second component, the matrix A2 of TA2,b2 first acts on the translation
vector b1 before the vectors are added. I return to this composition rule in 6.5.3 below;
compare also Exercise 6.1.

2.3 Composition of two reflections of E2

Consider the reflections of E2 in two lines L1, L2. There are two cases (see Figure 2.3):

1. If L1 and L2 meet in a point P and θ is the angle at P from L1 to L2 then
Refl(L2) ◦ Refl(L1) = Rot(P, 2θ ).

2. If L1 and L2 are parallel and v is the perpendicular vector from L1 to L2 then
Refl(L2) ◦ Refl(L1) = Trans(2v).
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L1 L2

ΓΓ Γ

Trans(2v)

v

θ L2

L1

ΓΓ

Γ

Rot(P,2θ)
P

Figure 2.3 Composite of two reflections.

2.4 Composition of maps is associative

I want to consider the composite of many maps in what follows, for example the
composite of 3 reflections Refl(L3) ◦ Refl(L2) ◦ Refl(L1). As a preliminary step, a
point of set theory: suppose that X, Y, Z , T are sets, and that

f : X → Y, g : Y → Z , h : Z → T

are three maps. The associative law is the tautology that there is only one way of
getting from X to T using f, g, h in that order, namely

x �→ f (x) �→ g( f (x)) �→ h(g( f (x))). (2)

The composite h ◦ g ◦ f is the map X → T defined by (2). Thus the expression
h ◦ g ◦ f does not admit any possible ambiguity.

In the tradition of abstract algebra, the associative law is the headache of how to
bracket h ◦ g ◦ f . It occurs if we think of the composite of only two maps as the basic
operation, and interpret a composite of three or more maps in a recursive way, such as
h ◦ (g ◦ f ), presumably to economise on definitions. In this case, one first constructs
a map g ◦ f : X → Z , then links it with the third map to get the repeated composite
h ◦ (g ◦ f ) : X → Z → T . However, as my tautology says, whatever brackets you
put in, h ◦ g ◦ f has only one possible meaning, namely (2). You can think through
a few of these identities as exercises, see Exercise 2.3. (I warn you, it is exceedingly
boring.)

Another abstract algebraic notion, the ‘commutative law’, is discussed in Exer-
cise 2.4.

2.5 Decomposing motions

This section introduces the first way of decomposing a motion of En as a composite
of ‘elementary’ motions. Although there are more powerful decompositions around
(see for example the next section), the one given here already illustrates some basic
features of any such decomposition. To start with, let us make a list of motions of En

that could reasonably be called ‘elementary’.
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An affine linear subspace 
 ⊂ En of Euclidean space is the image U ⊂ Rn of
a vector subspace under some choice of coordinates. The dimension of 
 is the
dimension dim U of U . (These notions will be investigated in much more detail in
4.3 below.) In particular, a hyperplane of En is an (n − 1)-dimensional affine linear
subspace � ⊂ En .

Definition The reflection in a hyperplane � is the motion that fixes � pointwise
and reverses orthogonal vectors to �. In coordinate form, if � is given by x1 = 0,
and x2, . . . , xn are coordinates on � ∼= En−1, then

Refl(�) :

x1
...

xn

 �→


−1

1
. . .

1


x1

...
xn

 .

In other words, the defining property of ρ = Refl(�) is that it fixes every point
of �, and takes P /∈ � into the point Q = ρ(P) such that � is the perpendicular
bisector of P Q. Note that if P and Q are two distinct points of En , there is a unique
hyperplane � such that Refl(�) takes P to Q, namely the perpendicular bisector of
P Q; this is also determined as the locus of points equidistant from P and Q.

Definition Let 
 be an (n − 2)-dimensional affine linear subspace of En . The
rotation around the axis
 through (signed) angle θ is the motion that fixes
 pointwise
and rotates by θ in planes orthogonal to 
.

In coordinates, if 
 is given by x1 = x2 = 0, then the planes orthogonal to 
 are
described by x3 = c3, . . . , xn = cn for c3, . . . , cn real constants (draw a picture for
n = 3!). Hence the coordinate form is

Rot(
, θ) :

x1
...

xn

 �→


cos θ − sin θ

sin θ cos θ

1
. . .

1


x1

...
xn

 .

Finally, there are also translations Trans(v) : x �→ x + b for b ∈ Rn .

Theorem Every motion T of En is a composite of a translation, k reflections and
l rotations, where k + 2l ≤ n.

Proof Convince yourself that this is really a restatement of the fact that every
orthogonal matrix has a normal form described in Theorem 1.11. QED

2.6 Reflections generate all motions

Here we aim to improve the statement of the previous section, using geometric rather
than algebraic reasoning.
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Theorem Every motion T of En is a composite of at most n + 1 reflections,

T = ρ1 ◦ ρ2 ◦ · · · ◦ ρk, with k ≤ n + 1.

Proof The rough idea is simple: if every point P ∈ En is fixed by T , then T =
id, so it is a composite of no reflections at all. Otherwise, choose any P so that
T (P) = Q �= P; then, by what I just said, there is a reflection ρ1 taking Q back to
P , namely the reflection in the perpendicular bisector of P Q. Then T (P) = Q and
ρ1(Q) = P , so that T1 = ρ1 ◦ T is a new motion fixing P . Now it turns out (see below)
that T1 still fixes any point already fixed by T , so that T1 fixes strictly more than T .
I can repeat this argument, obtaining T2 = ρ2 ◦ T1 fixing even more points, and so on
inductively until Tk = ρk ◦ Tk−1 fixes every point of En . Putting this together gives
ρk ◦ · · · ◦ ρ1 ◦ T = id.

Now precomposing the equation T1 = ρ1 ◦ t with ρ1 gives

ρ1 ◦ T1 = (ρ1 ◦ ρ1) ◦ T,

and since ρ1 ◦ ρ1 = id, we get T = ρ1 ◦ T1. Arguing in the same way gives T =
ρ1 ◦ T1 = ρ1 ◦ ρ2 ◦ T2 = · · · , which concludes the proof.

To go through the argument in more detail, I assert first that the set Fix(T ) of fixed
points of any motion T is (either empty or) an affine linear subspace of En . This
follows from Proposition 4.3 (2), and the fact that if two distinct points P , Q are fixed
by T , then so is any point R on the line P Q: if R ∈ [P, Q] then

d(P, R) + d(R, Q) = d(P, Q) and T (P) = P, T (Q) = Q

=⇒ d(P, T (R)) + d(T (R), Q) = d(P, Q),

so T (R) ∈ [P, Q] and T (R) = R, and similarly if P, Q, R are collinear but in some
other order.

Now to get a neat induction, I add a slightly stronger clause to the theorem:

Claim Moreover, if Fix(T ) has dimension n − l (for some l = 0, . . . , n) then T
is a composite of at most l reflections.

As argued above, if T �= id then I choose a point P /∈ Fix(T ), set Q = T (P) and
� the perpendicular bisector of P Q, and let ρ be the reflection in �. The point of the
construction is that ρ(Q) = P , so that T1 = ρ ◦ T fixes P .

Now the perpendicular bisector � is characterised as the set of points of En

equidistant from P and Q. Moreover, every point R ∈ Fix(T ) is equidistant from P
and Q, because d(P, R) = d(T (P), T (R)) = d(Q, R). Therefore Fix(T ) ⊂ �, and
ρ = Refl(�) fixes every point of Fix(T ). It follows that Fix(T1) ⊃ Fix(T ) ∪ {P}.

The claim now follows by induction on l. If l = 0 then T = id. If l = 1 then
Fix(T ) = � is a hyperplane, and T = Refl(�). Otherwise, as just proved, I can find
ρ so that T1 = ρ ◦ T fixes a strictly bigger set than T , and therefore Fix(T1) has
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Figure 2.7 Composite of a rotation and a reflection.

dimension (n − l ′) with l ′ < l. By induction, I can assume the result for T1, that is,
T1 = ρ1 ◦ ρ2 ◦ · · · ◦ ρk with k ≤ l ′ so that T = ρ ◦ T1 is the composite of at most
l ′ + 1 ≤ l reflections, as required. This proves the claim. If Fix(T ) = ∅ then Fix(T1)
is at least one point, so that by the claim, T1 is a composite of at most n reflections,
and T the composite of at most n + 1 reflections, which proves the theorem. QED

2.7 An alternative proof of Theorem 1.14

Theorem(=Theorem1.14) Every motion of E2 is a rotation, reflection, translation
or a glide.

Proof Every motion of E2 is the composite of at most 3 reflections. As we saw
in 2.3, the composite of 2 reflections is a translation if the 2 axes are parallel, and
a rotation if they meet at a point P . It only remains to prove that the composite of
3 reflections ρ3 ◦ ρ2 ◦ ρ1 is a glide or reflection. Suppose for simplicity that the axes of
ρ1 and ρ2 meet at a point P , and make an angle θ there, so that ρ2 ◦ ρ1 = Rot(P, 2θ )
(see Figure 2.3). Suppose also that P /∈ L3 (the case P ∈ L3 is easier). The problem
then is to learn how to compose Rot(P, 2θ ) with ρ3 = Refl(L).

In Figure 2.7, L is the axis of the third reflection ρ3, and Q = ρ3(P). Draw the
line M passing through the midpoint of P Q, such that the angle from M to L is θ ; if
we consider the rectangle P AQ B with P Q as a diagonal line, and sides P A and B Q
parallel to M , it is easy to see that Refl(L) ◦ Rot(P, 2θ ) = Glide(M, v) is the glide
with axis the line M and translation vector the median vector v. QED

2.8 Preview of transformation groups

As we have seen in this chapter, the composite of maps g ◦ f is a basic, simple and
familiar idea having many useful applications. From an algebraic point of view, the
composite of Euclidean motions defines a product

Eucl(n) × Eucl(n) → Eucl(n)
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on the set Eucl(n) of motions of En , which is associative (see 2.4), has an identity
element and inverses. In other words, motions form a transformation group of En .
This idea is taken up again in Chapter 6 when we are ready for serious applications.

Exercises

2.1 A standard result of linear algebra identifies an m × n matrix A = (ai j ) with a linear
map α : Rn → Rm (taking the standard basis of column vectors to the columns of
A). If B = (b jk) is an l × m matrix giving a linear map β : Rm → Rl , verify that the
product matrix B A corresponds to the composite β ◦ α.

2.2 The (nonzero) complex numbers can be viewed as a set of similarities of E2:
regard z = x + iy as the map Tz : R2 → R2 given by the matrix

( x y
−y x

)
. Write

z = r exp(iθ ) where r = |z| and θ = arg z, and interpret the map Tz geometrically.
Prove that Tz is a similarity in the sense that there exists λ for which d(T (x), T (y)) =
λd(x, y). Show how to obtain multiplication of complex numbers as composition of
similarities.

2.3 In the notation of 2.4, prove that h ◦ g ◦ f = (h ◦ g) ◦ f . Prove that for 4 consecutive
maps f, g, h, k, we have

(k ◦ h) ◦ (g ◦ f ) = k ◦ ((h ◦ g) ◦ f ).

Generalise the statement to any number of maps and any bracketing. Please be sure
to dispose of your solution in the paper recycling bin.

2.4 In the notation of 2.4, find the conditions for the domain and range of f, g so that the
commutative law

g ◦ f
?= f ◦ g

makes sense as a question. Show that the commutative law holds for the set of trans-
lations in En , as well as the set of rotations of E2 about a fixed point. Show that it
does not hold for the set of all motions of Euclidean space En .

2.5 Verify by calculation that the usual definition of matrix multiplication AB = (cik =∑
j ai j b jk) is associative. Use Exercise 2.1 and the associativity of maps to show that

you do not need to do the calculation.
By 2.2, affine linear maps TA,b : Rn → Rn compose according to the rule TA2,b2 ◦

TA1,b1 = TA2 A1,A2b1+b2 ; verify that this formula defines an associative multiplication
rule.

Exercises in composing motions of E2.

2.6 The half-turn about P is the rotation through 180◦. Prove the following.
(a) The composite of 2 half-turns is a translation.
(b) Every translation is a composite of 2 half-turns.
(c) The composite of 3 half-turns is a half-turn.
(d) If L is a line and P a point then

Refl(L) and Halfturn(P) commute ⇐⇒ P ∈ L .
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2.7 Prove that every opposite motion of E2 is the composite of a half-turn and a reflection.
2.8 Give a geometric treatment of the composition of a rotation with a glide, to get another

glide or reflection. When is Glide(L , v) ◦ Rot θ a reflection? [Hint: draw a diagram
similar to Figure 2.7.]

2.9 Show that any composite T1 ◦ T2 with either T1 or T2 a reflection or glide can be
understood by drawing a diagram like Figure 2.7. [Hint: to view g = Glide(L , v) and
its effect on a point P /∈ L , draw a rectangle with the line PT (P) as a diagonal and
v as a median. The best way to see g1 ◦ g2 is to draw two such rectangles with a
common diagonal and the vectors v1, v2 as respective medians. For glide composed
with rotation or translation, you guess that the answer is g1 ◦ t = g2, which you can
rewrite as T = g−1

1 ◦ g2 and treat similarly.]
2.10 (Harder) Use Claim 2.6 to study motions of E3 fixing a point O , and compare with

the conclusion of Theorem 1.11. [Hint: a composite of 2 reflections in planes �1, �2

through O is a rotation about a line through O . For 3 reflections, you need to prove
that Refl(�) ◦ Rot(L , θ ) is a rotary reflection, or in other words, to find a plane which
is rotated into itself by the composite.]

2.11 (Harder) Give a proof of Theorem 1.15 using Theorem 2.6. In other words, study the
possibilities for the composite of≤ 4 reflections of E3, and show that they lead to the
6 cases listed in Theorem 1.15. [Hint: see Rees [19].]

2.12 You can move a heavy piece of furniture (e.g. a bedroom wardrobe) by lifting the
front and rotating it about the two back corners. Convince yourself that you can ‘walk’
your wardrobe anywhere in the Euclidean plane. (Ignore doors and stairs.)

Let P, Q ∈ E2 be two distinct points. Prove that every direct motion of E2 is a
composite of sufficiently many rotations about P and Q.
[Hint: what kind of answer is required? First show that it is enough to prove that you
can carry out any translation and any rotation about P . For the translations, think how
you shift your wardrobe – easy does it!]



3 Spherical and hyperbolic
non-Euclidean geometry

Together with plane Euclidean geometry, spherical and hyperbolic geometry are
2-dimensional geometries with the following properties:

(1) distance, lines and angles are defined and invariant under motions;
(2) the motions act transitively on points and directions at a point;
(3) locally, incidence properties are as in plane Euclidean geometry.

In more detail, (2) means that if P, P ′ are points, and λ, λ′ directions at these
points, then there exists a motion T taking P to P ′ and λ to λ′; in other words, the
geometry is homogeneous (the same at every point) and isotropic (the same in every
direction). (3) means that in sufficiently small open sets, a line is uniquely specified
by a point and a direction, or by two points P, Q, and two lines li meet in at most one
point (see Figure 3.0).

However, the geometries also differ in several respects:

(1) the global incidence properties of lines, that is, the existence of parallel and non-
intersecting lines;

(2) intrinsic curvature properties: the perimeter of a circle, and the sum of angles in a
triangle;

(3) the possibility of defining a unit of length intrinsic to the geometry.

Euclidean geometry in the plane was described in detail in Chapter 1. Although cer-
tainly not the same thing as plane geometry, spherical geometry is still very intuitive,
because every definition and statement can be readily visualised on the very concrete
model S2 ⊂ R3, which you can hold in your hand or kick around a playing field.
I discuss spherical lines (great circles), distances, angles and triangles, the classi-
fication of motions in terms of rotations and reflections, frames of reference and
angular excess.

In contrast, plane hyperbolic geometry originally arose in axiomatic geometry
(compare 9.1.2); the coordinate model I treat in this chapter is not immediately famil-
iar, and was discovered many decades after axiomatic hyperbolic geometry. Although
my model of hyperbolic geometry is not intuitive, essentially every step in my treat-
ment is parallel to spherical geometry. Once you are sure you know what you are

34
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Figure 3.0 Plane-like geometry.

doing, you can just replace x2 + y2 = 1 by −t2 + x2 = −1, and the trig functions
sin and cos by the hyperbolic trig functions sinh and cosh, and everything extends
more or less word-for-word. This is the essential content of the prophetic suggestion
by J. H. Lambert (1728–1777) that non-Euclidean geometry ‘should be related to the
geometry on a sphere of radius i = √−1’ (see Coxeter [5], p. 299).

In Chapter 1 on Euclidean geometry, I discussed n-dimensional Euclidean space En

along with the more familiar planar version. There is no logical reason to discontinue
this practice, but for ease of digestion as well as notation, all definitions in this
chapter are given in two dimensions. You will benefit immensely by generalising the
definitions and, in some cases, the theorems to the higher dimensional setup; you are
explicitly encouraged to do so in Exercise 3.10. Higher dimensional spheres appear
in later chapters (see for example 7.4.2 and 8.5); unfortunately there is no space in the
book for a detailed treatment of higher dimensional hyperbolic space and a discussion
of its significance.

3.1 Basic definitions of spherical geometry

The sphere S2 ⊂ R3 of radius r centred at the origin O is defined by the equation
x2 + y2 + z2 = r2. I will often refer to points P ∈ S2 via their position vector

−→
O P =

p. A spherical line or great circle in S2 is the intersection of S2 with a plane � = R2

through the origin; thus it is a circle in � centred at O and with the same radius
r as S2. Two points P, Q ∈ S2 are antipodal if their position vectors p, q satisfy
p = −q. Through any two distinct points P, Q ∈ S2 which are not antipodal, there
is a unique great circle or spherical line L = P Q. The (spherical) distance d(P, Q)
between points P, Q ∈ S2 is the distance measured along the shorter arc of a great
circle through P and Q; that is, it is radius r times ∠P O Q, the angle at O between
O P and O Q, where the angle is always interpreted as the absolute value in the range
[0, π ]. For ease of notation, I usually fix the radius r = 1 from now on.

Remarks

(1) If you go back to the chapter on Euclidean geometry and compare the treatment of
1.1–1.3 to the one given here, you may notice that I have been a bit sloppy here. To
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be consistent, I should have defined ‘model’ S2 to be the sphere {x2 + y2 + z2 = r2}
in R3 with its inherited spherical distance, and ‘abstract’ S2 to be a metric space
isometric to ‘model’ S2 but without a fixed choice of identification. Spelling this
out explicitly leads to rather clumsy notation, but implicitly I am still following this
procedure; in particular, I reserve the right to choose different coordinates on my
‘abstract’ metric S2 if so needed. This remark applies equally well to the treatment
of hyperbolic geometry in 3.9 below.

(2) The sphere S2 is defined as the subset {x2 + y2 + z2 = 1} of R3. On the northern
hemisphere {z ≥ 0} I can rewrite this as z =

√
1 − x2 − y2. This gives a fairly good

coordinate representation of S2 near the north pole, but a fairly bad one in moderate
or tropical regions. What is wrong with it? Well, if the model is the whole of R2, it is
much too big; if we take only the disc D2 : x2 + y2 ≤ 1, crossing the equator in S2

corresponds to falling off the edge of the world in the model. Furthermore, distances,
angles, areas, curvature are all screwed up.

It is a basic problem in cartography to map regions of the surface of the Earth onto
a plane. However, the map based on z =

√
1 − x2 − y2 is one of the most primitive

and useless ways to do this. Over the course of time, several much better ways have
been invented; see the references in the introduction of Chapter 9 for a starting point
on this.

(3) The distance d(P, Q) is defined as (radius times) the angle of the P Q arc, α =
∠P O Q. It is useful to know how to translate between this angle and the coordinates
of P, Q. In vector notation, the dot product of unit vectors equals the cosine of the
angle between them: that is, if P, Q have position vectors p, q then α = ∠P O Q is
given by

p · q = cos α, that is, d(P, Q) = α = arccos(p · q). (1)

(I have set r = 1, so that p and q are unit vectors.) Recall that arccos = cos−1 is the
inverse function of cos, so that α = arccos x is defined by the property x = cos α;
similarly for arcsin. Here I choose α in the range [0, π ].

Given P and Q, I can choose coordinates so that P = (0, 0, 1) and O P Q is the
(x, z)-plane {y = 0}; then Q = (sin α, 0, cos α). This is a parametrisation of the great
circle, with parameter α. Points with x < 0 can also be included, by allowing α < 0
to run through the range [−π, π], but then d(P, Q) = |α|.

In fact (sin α, 0, cos α) is a parametrisation by arc length: if you think of (part of)
the sphere S2 as the graph of z =

√
1 − x2 − y2 as in (2), then d(P, Q) = ∫ Q

P ds
where the infinitesimal arc length ds is determined by ds2 = dx2 + dy2 + dz2. Thus
the length of arc P Q is

∫ sin α

0

dx√
1 − x2

= arcsin(sin α) = α.
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Geometers like to distinguish the intrinsic geometric properties of S2 from those
related to the embedding S2 ⊂ R3. It is important in this context to notice that the
natural distance in spherical geometry is the intrinsic distance, that is, the length of
a certain curve traced in the surface S2, as opposed to the distance in the ambient
Euclidean space; you go from London to Singapore by plane, not by tunnel.

3.2 Spherical triangles and trig

The convention r = 1 is still in force. A spherical triangle �P Q R consists of 3
vertexes P, Q, R and 3 arcs of great circle P Q, P R, Q R joining them. These do not
have to be the shorter arcs; P , Q are allowed to be antipodal, and then you have to
specify one of the great circles to be the arc P Q.

The spherical angle a at P between the two lines P Q and P R is equal to the
dihedral angle between the two planes O P Q, O P R in R3, in other words it is the
angle between two lines cut out by the two planes in an auxiliary plane orthogonal to
O P . You can take this as a definition if you like, and then you do not have to worry
about how the angle between two curves is defined. More precisely, the tangent plane
to S2 at P is the 2-plane TP S2 defined by z = 1, and the tangent vectors to the two
curves P Q and P R are the two lines in TP S2 cut out by these two planes. They are
orthogonal to the axis O P , so the angle between the two curves equals the dihedral
angle a between the two planes.

Proposition (Main formula of spherical trig) The side Q R of the triangle is deter-
mined by the other two sides P Q and P R and the dihedral angle a. More precisely,
write

α = ∠QO R = d(Q, R), β = ∠P O Q = d(P, Q), γ = ∠P O R = d(P, R).

(Recall that I have fixed the radius r = 1.) Then

cos α = cos β cos γ + sin β sin γ cos a. (2)

Proof Although the statement looks complicated, the proof is easy 3-dimensional
coordinate geometry. In Figure 3.2, let Q′ and R′ be the points on great circles at
distance π/2 from P , so that

−−→
O Q′ is orthogonal to O P . Choose coordinates (x, y, z)

so that P = (0, 0, 1) (the north pole), and the equator is given by z = 0. Then Q′ is a
point on the equator, so I can choose Q′ = (1, 0, 0), and R′ = (cos a, sin a, 0). This
determines the coordinates of all the points in the figure; by definition of β, γ , the
following relations hold between the position vectors:

q = cos βp + sin βq′ = (sin β, 0, cos β),
r = cos γ p + sin γ r′ = (sin γ cos a, sin γ sin a, cos γ ).
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Q' = (1,0,0)

R' = (cos a, sin a, 0)

P = (0,0,1)

Q

R

Figure 3.2 Spherical trig.

Now α is the angle between the two unit vectors q and r, so

cos α = q · r = cos β cos γ + sin β sin γ cos a. QED

3.3 The spherical triangle inequality

Corollary (Triangle inequality) In any triangle �P Q R whose sides are shorter
arcs given by α, β, γ ≤ π as above,

α ≤ β + γ,

with equality if and only if P Q R are collinear with P on the shorter arc Q R.

Proof This follows at once from the main formula (2) and calm reflection on the
range of values for the angles α, β, γ and a. Notice that α, β, γ ∈ [0, π ] essentially
by convention: in defining distance I always take ∠P O Q to be the angle in the shorter
arc. If β or γ = 0 or π , it is easy to read off the conclusion, so that I can assume that
α, β, γ ∈ (0, π ). On the other hand, in Figure 3.2, it is clear I want to have a ∈ [0, 2π ).
Now compare (2) with the standard trig formula

cos(β + γ ) = cos β cos γ − sin β sin γ.

We know that sin β, sin γ ∈ (0, 1]; thus cos α ≥ cos(β + γ ), with equality if and
only if cos a = −1. Now cos α is a strictly decreasing function in the range [0, π ], so
that cos α ≥ cos(β + γ ) gives α ≤ β + γ . Equality holds only under the aforestated
condition cos a = −1, that is, if the short arcs P Q and P R are opposite when viewed
from P . QED

It is trivial that d(P, Q) is symmetric, nonnegative, and positive unless P = Q,
so that Corollary 3.3 proves that S2 with the spherical distance is a metric space (see
Appendix A).

3.4 Spherical motions

A spherical motion or isometry is of course just a map T : S2 → S2 preserving
spherical distance.
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Theorem

(1) A motion T : S2 → S2 takes pairs of antipodal points to pairs of antipodal points,
and spherical lines (great circles) to spherical lines.

(2) Any motion is given in coordinates by x �→ Ax, where A is a 3 × 3 orthogonal
matrix.

Proof Two points of the sphere are antipodal if and only if they are a maximum
distance apart (at distance πr , half a world away), so the first sentence is clear. The
rest of the proof is very similar to the Euclidean proof in Chapter 1. For (1), exactly
as in Corollary 1.7, the arcs of spherical lines [P, Q] are determined purely by the
metric: three points P, Q, R are collinear (that is, on a spherical line or great circle)
if and only if

d(P, Q) + d(Q, R) + d(R, P) = 2πr or ± d(P, R) ± d(R, Q) ± d(P, Q) = 0.

Here the first equality is the statement that P, Q, R are on a great circle and not in
any shorter great arc, and the second is the equality case of Corollary 3.3 for some
permutation of P, Q, R. A spherical motion T preserves these equalities, so takes a
spherical line L to a spherical line L ′ = T (L).

For (2), note first that because T : S2 → S2 takes antipodal points to antipodal
points, it extends in a unique way to a map T : R3 → R3 by radial extension. I claim
that T is linear. For this, it is enough to see that T is linear when restricted to any
plane � through the origin.

Suppose L = � ∩ S2 and T (L) = L ′ = �′ ∩ S2. A spherical line L = � ∩ S2 is
parametrised by arc length: a variable point of L is cos θ f1 + sin θ f2, where f1, f2, f3

is an orthogonal basis of R3 with f1, f2 ∈ L , and θ equals the arc length along L .
Since T preserves distance, it preserves arc length along a spherical line, so that its
restriction TL : L → L ′ is given by

T (cos θ f1 + sin θ f2) = cos θ f ′1 + sin θ f ′2.

Here f ′1, f ′2, f ′3 is a new orthogonal frame, with f ′1 = T (f1) and f ′2 = T (f2) ∈ L ′. Stated
differently, T (λf1 + µf2) = λf ′1 + µf ′2, so T is linear. QED

3.5 Properties of S2 like E2

The following statements are either obvious, or can be done as easy exercises. Use
them to refresh your memory of the case of E2, or as a warm-up for the case of
the hyperbolic plane H2. The spherical statements are if anything a little simpler:
for example, the distinction between translation and rotation disappears, and the
classification of motions comes directly from the normal form of Theorem 1.11.

(1) The sphere S2 is a metric geometry with a distance function d(P, Q), and motions
given by 3 × 3 orthogonal matrixes.
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(2) The motions act transitively on S2 and on spherical lines through a given point P ∈ S2.
(3) Every motion of S2 is either a rotation Rot(P, θ ), or a reflection Refl(L) in a

line (= great circle) or a glide Glide(L , θ ) (the restriction of a Euclidean rotary
reflection).

(4) Given two pairs of points P, Q and P ′, Q′, there exist exactly two motions g of S2

such that g(P) = g(P ′), g(Q) = g(Q′), of which one is a rotation and the other a
reflection or glide.

(5) Motions come in two kinds, direct and opposite. Every direct motion is the identity
or a composite of 2 reflections; every opposite motion is a reflection or a composite
of 3 reflections.

(6) The spherical distance d(P, Q) between two points P, Q ∈ S2 is the length of the
shortest curve C in S2 joining P and Q.

3.6 Properties of S2 unlike E2

(1) Incidence of lines. Any two spherical lines intersect in a pair of antipodal points.
(Proof: if L1 = �1 ∩ S2 and L2 = �2 ∩ S2, consider the Euclidean line �1 ∩�2 in
R3.) Therefore spherical geometry has no parallel lines.

(2) Intrinsic distance. If you live on S2, it makes sense to take the circumference of S2 (or
the length of any great circle) as a unit of distance; recall that the kilometre, adopted
during the French revolution, was defined by setting the circumference of our own
parochial sphere to be 40 000 km. Another aspect of the same phenomenon is that
distances are bounded: d(P, Q) ≤ πr (=: 20 000 km).

(3) Spherical frames. If you try to define a spherical frame of reference by analogy with
the Euclidean notion, you get involved with the intrinsic distance. For example, if your
unit of measurement is very big compared to the radius of the sphere, you will end
up with your unit vector P0 Q0 wrapping the sphere several times. Taking a small unit
of measurement, you can define a spherical frame P0 P1 P2 and prove the analogue of
Corollary 1.13 (a motion takes any frame into any other, and is uniquely determined
by what it does to a frame) as an easy exercise. But there is an even better solution,
which actively exploits the intrinsic distance: I can take the length P0 P1 to be 1/4 of
the circumference, and get a spherical frame which coincides with an orthonormal
frame of the ambient R3, so that the result about motions and frames is contained in
Corollary 1.13.

(4) Intrinsic curvature. To say that the sphere S2 ⊂ R3 is curved, you could calculate the
radius of curvature of lines relative to the ambient space R3. However, the geometry
of S2 also displays intrinsic curvature, as you can see in several ways. In E2 the
perimeter of a Euclidean circle of radius ρ is 2πρ. By contrast, a spherical circle of
radius ρ has perimeter 2π sin ρ, as discussed in Exercise 3.1.

(5) Sum of angles in a triangle. Let S2 be the sphere of radius r = 1, and �P Q R a
spherical triangle. Then

∠P + ∠Q + ∠R = π + area�P Q R.
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Figure 3.6 Overlapping segments of S2.

Thus the sum of angles in a spherical triangle never equals 180◦. For very small
triangles, you can view the discrepancy as a reflection of intrinsic curvature as in the
preceding point.

Proof I prove the last point, because it is not obvious at first sight, and because the
proof is very elegant. It is a ‘Venn diagram’ argument on the partition of S2 obtained
by slicing it up along the great circles which are the sides of �P Q R. Write 
a for
the part of S2 contained between the two planes O P Q and O P R (that is, the union
of the two opposite segments) with a the dihedral angle between these planes, and
similarly for 
b and 
c. Then by circular symmetry, clearly

area 
a = 2a

2π
area S2. (3)

Now I claim that 
a, 
b, 
c cover S2 and overlap exactly in�P Q R and its antipodal
triangle �P ′Q′R′ (see Figure 3.6).

Summing (3) for 
a , 
b and 
c gives

area S2 + 4 area� = area 
a + area 
b + area 
c = (2a + 2b + 2c)
area S2

2π

(points in � and its antipodal triangle are covered 3 times, while the rest of S2 is
covered once). Therefore a + b + c − π = (4π/area S2) area� = area�. QED

3.7 Preview of hyperbolic geometry

The remainder of this chapter introduces a coordinate model for hyperbolic geometry
which is entirely parallel to spherical geometry. First, I review the ingredients of
spherical geometry in one dimension.

(1) R2 with coordinates x, y and the ordinary Euclidean norm x2 + y2.
(2) The functions cos θ = eiθ+e−iθ

2 and sin θ = eiθ−e−iθ

2i , which satisfy the relation
cos2 + sin2 = 1, and d

dθ
sin θ = cos θ , d

dθ
cos θ = − sin θ .

(3) The circle S1 defined by x2 + y2 = 1 is parametrised by x = sin θ , y = cos θ , and
the arc length is

√
dx2 + dy2 = dθ , so that θ is the arc length parameter for S1.
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(0, 1)

(sinh s, cosh s)
t

x

Figure 3.7 The hyperbola t2 = 1+ x2 and t > 0.

(4) Symmetries are the set O(2) of rotation and reflection matrixes(
cos θ − sin θ

sin θ cos θ

)
and

(
cos θ sin θ

sin θ − cos θ

)
.

Now the ingredients of hyperbolic geometry in one dimension.

(1) R2 with coordinates t, x and the Lorentz pseudometric −t2 + x2. Here I choose a
‘time-like’ coordinate t and a ‘space-like’ coordinate x . A vector is space-like if it
has positive squared length (for example (0, x)) and time-like if it has negative square
(for example, (t, 0) has squared length −t2).

The Lorentz space R2 is the ambient space for the hyperbola H1 defined by t2 =
1 + x2 and t > 0 (see Figure 3.7). The tangent space toH1 at any point P0 = (t0, x0) ∈
H1 is the line t = (x0/t0)x , which is space-like, because t0 > |x0|. Therefore although
the Lorentz pseudometric −t2 + x2 is not positive definite, the geometry of H1 itself
contains only space-like directions.

(2) The functions cosh s = es+e−s

2 and sinh s = es−e−s

2 , which satisfy the relation
cosh2 − sinh2 = 1, and d

ds sinh s = cosh s, d
ds cosh s = sinh s. It is useful to notice

that sinh is a one-to-one map from the whole of R1 to the whole of R1.
(3) The hyperbola H1 defined by t2 = 1 + x2 is parametrised by x = sinh s, t = cosh s,

and the arc length in the Lorentz pseudometric is
√−dt2 + dx2 = ds, so that s is the

arc length parameter for H1.
(4) Symmetries are the set O+(1, 1) of Lorentz translation and reflection matrixes(

cosh s sinh s
sinh s cosh s

)
and

(
cosh s − sinh s
sinh s − cosh s

)
.

3.8 Hyperbolic space

Consider R3 with the Lorentz quadratic form qL (v) = −t2 + x2 + y2 (compare B.2).
The cone {qL (v) < 0} breaks up into two subsets

{t > +
√

x2 + y2} ∪ {t < −
√

x2 + y2}.

I fix the positive choice t > 0 throughout.
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Figure 3.8 Hyperbolic spaceH2.

Hyperbolic space H2 ⊂ R3 is the upper sheet of the hyperboloid of two sheets
given by qL (v) = −1:

H2 = {(t, x, y)
∣∣ −t2 + x2 + y2 = −1 and t > 0

}
.

In other words, t =
√

1 + x2 + y2 (see Figure 3.8). This is the analogue of the
sphere S2 of radius 1, which is parametrised (in the northern hemisphere) by
z =

√
1 − x2 − y2. If you want the analogue of the sphere of radius r , just take the

hyperboloid qL (v) = −r2. The coordinate t on R3 is ‘time-like’ and the coordinates
x, y are ‘space-like’ (compare 3.7).

A line L of hyperbolic geometry is the hyperbola H1 obtained as the intersection
of H2 with a 2-dimensional vector subspace � ⊂ R3 which is a Lorentz plane, in the
sense that it contains time-like vectors, so that L = � ∩H2 �= ∅; the restriction of qL

to � has signature (−1,+1). It is obvious that there is a unique line P Q through any
two distinct points P, Q ∈ H2, since the 2-dimensional vector subspace � through
P , Q in R3 is unique. The analogy with the lines of S2 is clear, and I could reasonably
call the lines of L great hyperbolas.

3.9 Hyperbolic distance

To define the hyperbolic distance function, I start with the formal analogue of formula
(1) of Remark 2 in 3.1, replacing the Euclidean inner product with the Lorentz inner
product ·L (see B.2). Thus let P and Q be points of H2 given by the vectors v =
(t1, x1, y1) and w = (t2, x2, y2). I define the hyperbolic distance d(P, Q) between
two points by

−v ·L w = cosh d(P, Q), so that d(P, Q) = arccosh(−v ·L w); (4)

in other words, d(P, Q) = arccosh(t1t2 − x1x2 − y1 y2).

Lemma The Lorentz inner product satisfies

−v ·L w = t1t2 − x1x2 − y1 y2 ≥ 1,

with equality only if P = Q. (See also Exercise 3.11.) Hence the distance d(P, Q) is
defined and positive unless P = Q.
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Proof This clearly follows from the stronger statement.

Claim Given two points P �= Q ∈ H2, there is a Lorentz basis f0, f1, f2 of
R3 giving rise to a new coordinate system in which P = (1, 0, 0) and Q =
(cosh α, sinh α, 0), with α = d(P, Q) > 0.

This is simply Appendix B, Theorem B.3 (4), but I need one point of the proof,
so I repeat it here. Set f0 = v the position vector of P; since P ∈ H2, this vector has
Lorentz norm −1. The vector w′ = w + (w ·L f0)f0, where w is the position vector
of Q, is orthogonal to f0 with respect to ·L (just compute the product w′ ·L f0)), and
is nonzero because P �= Q. Hence by Theorem B.3 (3), qL (w′) > 0. So I can set
f1 = w′/

√
qL (w′), and

w = cf0 + sf1, where c = −v ·L w and s = √
qL (w′) > 0. (5)

I find the remaining basis element by the usual method of making an orthonormal
basis: choose u ∈ R3 not in the span of v and w, set w′′ = u + (u ·L f0)f0 − (u ·L f1)f1

and finally f2 = w′′/
√

qL (w′′).
The Lorentz basis f0, f1, f2 defines a new coordinate system on the hyperbolic plane

H2. In this coordinate system P = (1, 0, 0) and Q = (c, s, 0), the latter by the first
equality in (5). As Q ∈ H2, c > 0 and its position vector has Lorentz norm −1, so
−c2 + s2 = −1. By (5), s > 0 and hence c > 1. So c = cosh α, s = sinh α for some
α > 0, and in this coordinate system it is easy to compute d(P, Q) = α. Hence the
distance function is meaningful and positive unless P = Q. QED

Compare Remark 3.1 (2) for the spherical analogy; the purist may want to reread
Remark 3.1 (1) at this point.

Remark This proof illustrates the fact that in the treatment of hyperbolic geometry
given here, the methods of linear and quadratic algebra are our main weapons of
attack. The arguments are similar to their Euclidean and spherical analogues, the
only difference being the issue of the extra sign in the Lorentz form, along with the
additional care it needs.

The question of signs is important later: in (5), s = sinh α > 0 was part of the
construction of the vector f1. Notice that cosh α is a symmetric function and sinh α

is an antisymmetric function. This is good, because I am measuring distances from
the base point P = (1, 0, 0) in terms of cosh α, and using sinh α to parametrise the
hyperbola by arc length α.

3.10 Hyperbolic triangles and trig

This section is the analogue of 3.2. A hyperbolic triangle �P Q R in H2 consists
of 3 vertexes P, Q, R and 3 hyperbolic lines P Q, P R, Q R joining them. Choose
coordinates as in Lemma 3.9 so that P = (1, 0, 0) and P Q is on the hyperbolic line
{y = 0}; set Q′ = (0, 1, 0).
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Figure 3.10 Hyperbolic trig.

The hyperbolic angle a at P between the two lines P Q and P R is defined to be
the dihedral angle between the two planes O P Q, O P R (see Figure 3.10). The point
is that this is a Euclidean angle, namely, the angle between two lines O Q′ and O R′ in
the space-like plane t = 0; in other words, the line P R is in the plane O P R′ spanned
by P and R′ = (0, cos a, sin a).

Proposition (Main formula of hyperbolic trig) In a hyperbolic triangle �P Q R, the
side Q R is determined by the two sides P Q and P R and the dihedral angle a: if
α = d(Q, R), β = d(P, Q), γ = d(P, R), then

cosh α = cosh β cosh γ − sinh β sinh γ cos a. (6)

Proof In the notation developed above, P = (1, 0, 0), Q = (cosh β, sinh β, 0)
and

R = (cosh γ, sinh γ cos a, sinh γ sin a);

here, as in (5), sinh γ > 0 is part of the definition of the angle a. Thus calculating the
Lorentz dot product of the two vectors representing Q and R gives

cosh α = cosh β cosh γ − sinh β sinh γ cos a. QED

Corollary (Triangle inequality) d(Q, R) ≤ d(P, Q) + d(P, R), with equality if
and only if P is on the interval [Q, R] (that is, the segment of line joining Q and R).

Proof This is exactly as before: compare (6) with the standard formula of hyper-
bolic trig:

cosh(β + γ ) = cosh β cosh γ + sinh β sinh γ.

Both sinh β and sinh γ are positive, so that cosh(β + γ ) ≥ cosh α, with equality if
and only a = π . Since cosh α is an increasing function for α > 0, it follows that
β + γ ≥ α, with equality if and only if P ∈ [Q, R]. QED

Remark An important corollary of the triangle inequality, in complete analogy
with Euclidean and spherical geometry, is the fact that the hyperbolic distance d(P, Q)
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between two points P, Q ∈ H2 is the length of the shortest curve C in H2 joining P
and Q, this shortest curve being the hyperbolic line segment [P, Q]. The proof, with
the usual assumptions about the meaning of the statement, is word for word the same
as in 1.4.

3.11 Hyperbolic motions

A hyperbolic motion T : H2 → H2 is a map preserving hyperbolic distance. As
before, my first aim is to get from this definition to a manageable description of
T in terms of a suitable matrix. Read the homework on Lorentz matrixes in B.4–B.5,
before you continue.

Theorem

1. Every hyperbolic motion preserves hyperbolic lines.
2. Every hyperbolic motion T : H2 → H2 is given in coordinates by x �→ Ax, where

(a) A is a Lorentz matrix, that is

tA

−1 0 0
0 1 0
0 0 1

 A =
−1 0 0

0 1 0
0 0 1

 , and

(b) A preserves the two halves of the cone {qL (v) < 0}.

Proof The proofs are almost the same as in the Euclidean and spherical cases
(see 1.7 and Theorem 3.4 (2)). Since lines are determined by the distance function,
a motion T takes a hyperbolic line to another hyperbolic line, proving (1). Since
a hyperbolic line L is a hyperbolic arc in a Lorentz plane � = R2 with arc length
parametrisation (cosh s, sinh s), it follows that T is linear when restricted to each �,
therefore linear on R3.

More formally, I can extend T from H2 to the upper half-cone by radial extension;
write T̃ for this extension. Give a Lorentz plane �, choose a Lorentz basis f0, f1 so
that L is parametrised as

Ps = (cosh s)f0 + (sinh s)f1 for s ∈ R;

here the time-like vector f0 is the coordinate of a point P0 ∈ L , and the space-like
vector f1 is the tangent direction to L at P0, with s the distance function along L .
Then T takes L to the line L ′ parametrised as P ′

s = (cosh s)f′0 + (sinh s)f′1, so that T̃
is given by a linear map on �. Since this holds for any line L , it follows that T̃ is
linear within the upper half-cone (that is,

T̃ (λu + µv) = λT̃ (u) + µT̃ (v)

whenever u, v and λu + µv are in the upper half-cone). Now, although T̃ is only
defined in the half-cone, the usual linear algebra argument shows that it is given by a
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matrix A (just choose a basis of the vector space R3 consisting of three vectors in the
upper half-cone). Moreover, A must be Lorentz since T̃ preserves the Lorentz form
(compare B.4–B.5). QED

Remark In proving Theorem 3.4, I extended T to R3 by radial extension, then
used linearity on each plane �, which holds because the distance function determines
everything about motions in 1 dimension. In the hyperbolic case, the awkward point
is that radial extension only gives T̃ defined on the upper half-cone; my argument is
that it is linear in the upper half-cone, and so given by a matrix.

A Lorentz matrix A preserves the two halves of the cone {qL (v) < 0} if and only if
its top left entry a00 > 0; such a matrix defines a Lorentz transformation of R3. The set
O+(1, 2) of Lorentz transformations is entirely analogous to the set Eucl(2) of motions
of the Euclidean plane. It is easy to state and prove the following assertions, all of
which are analogues of the corresponding statements in plane Euclidean geometry
(compare also 3.5).

1. The hyperbolic plane H2 is a metric geometry with a distance function d(P, Q) and
a set of motions O+(1, 2).

2. The motions act transitively on H2 and the set of lines through a given point P ∈ H2.
3. Every element of O+(1, 2) is either a rotation Rot(P, θ ), a Lorentz translation

Transl(L , α) along an axis L , a Lorentz reflection Refl(L) or a Lorentz glide. For
example, if L = {y = 0}, the translation and glide are given bycosh s sinh s 0

sinh s cosh s 0
0 0 1

 and

cosh s sinh s 0
sinh s cosh s 0

0 0 −1

 .

(Compare Exercise B.3.)
4. Given two pairs of points P, Q and P ′, Q′, there exist exactly two motions g ∈

O+(1, 2) such that g(P) = g(P ′), g(Q) = g(Q′), of which one is a rotation or Lorentz
translation and the other a Lorentz reflection or glide.

5. O+(1, 2) has two types of elements, direct and indirect. Every direct motion is the
identity or a composite of 2 reflections; every opposite motion is a reflection or a
composite of 3 reflections.

3.12 Incidence of two lines inH2

In 3.6 (1) I showed that two lines (great circles) of S2 meet in a pair of antipodal points,
by taking L1 = �1 ∩ S2, L2 = �2 ∩ S2, then constructing the line V = �1 ∩�2 in
the ambient R3, which of course meets S2 in two points. Two familiar facts follow:
(1) the orthogonal complement V⊥ ⊂ R3 is a plane cutting out a line M = V⊥ ∩ S2,
the unique common perpendicular to L1 and L2; (2) L1, L2 generate a pencil of lines,
that pass through the same intersection points and are perpendicular to M . If I choose
coordinates so that V is the z-axis, the intersection points are the poles (0, 0,±1), M
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Figure 3.12 (a) Projection to the (x, y)-plane of the spherical lines y = c z . (b) Projection to the
(x, y)-plane of the hyperbolic lines y = c t.

is the equatorial plane z = 0, and the family of lines containing L1, L2 is the pencil
of meridians (sin θ)x = (cos θ)y (Figure 3.12).

The same arguments apply to lines in H2, but the conclusions are different, since
the ambient R3 is now Lorentz space: as before, let L1 = �1 ∩H2, L2 = �2 ∩H2,
and consider the line V = 〈v〉 = �1 ∩�2 ⊂ R3. There are 3 cases.

(i) V is space-like: qL (v) > 0. Then L1, L2 are disjoint, since V ∩H2 = ∅. In this case,
the orthogonal complement V⊥ with respect to the Lorentz inner product ·L is a
Lorentz plane (the restriction of qL has signature (−1,+1), so that it contains time-
like vectors), and hence M = V⊥ ∩H2 is a line of H2, and is the unique common
perpendicular to L1, L2. For example, if V is the x-axis, the lines L1, L2 are among
the meridian lines y = ct , having the common perpendicular M : (x = 0).

(ii) V is time-like: qL (v) < 0. Then L1, L2 intersect in P = V ∩H2. They do not have a
common perpendicular, because the plane V⊥ ⊂ R3 is space-like, so does not meet
H2. For example, if V is the t-axis, L1, L2 intersect at P = (1, 0, 0) and the pencil
of lines through P is (sin θ )x = (cos θ )y.

(iii) V is actually on the light cone: qL (v) = 0. Then L1, L2 are disjoint in H2, but are
asymptotic, in the sense that they approach indefinitely at one end. For example,
V = 〈(1, 1, 0)〉 is the common asymptotic direction of the lines Lc : (y = c(t − x))
with |c| < 1. The plane V⊥ : (x = t) is tangent to the light cone along V , so does not
correspond to a line in H2, and L1, L2 do not have a common perpendicular.

Definition I say that L1 and L2 diverge in case (i). A simple calculation shows
that, if L1 and L2 are parametrised by arc length as P1(s), P2(s) then d(P1(s), P2(s))
grows linearly in s as s � 0; for details, see Exercise 3.21.

Case (iii) is the limiting case that separates (i) and (ii): although L1, L2 are disjoint,
they ‘approach one another at infinity’. I say that L1, L2 are ultraparallel. To make
this precise, it is useful to introduce the formal idea that each line L = � ∩H2 of H2

has two ‘ends’, the two rays in which the plane � intersects the null-cone q(v) = 0,
or the asymptotic lines of the hyperbola L ⊂ �. One views an end as an ‘ideal point’
of L or ‘point at infinity’, not a point of H2, but rather an asymptotic direction.
Case (iii) above, can be described by saying that L1 and L2 have a common end
V = 〈v〉 = �1 ∩�2. By convention, ultraparallel lines L1 and L2 have angle 0 at
this end. All the lines Lc : y = c(t − x) are ultraparallel, with the ray (1, 1, 0) as a
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common end. These lines all approach one another arbitrarily closely as they head
out to infinity, as described in Exercise 3.20.

3.13 The hyperbolic plane is non-Euclidean

As discussed in the introduction to this chapter and at the end of 3.11, hyperbolic
geometry shares many features with Euclidean and spherical geometry; the differ-
ences are also striking. The incidence properties of lines in H2 just established are
qualitatively quite different from the Euclidean case. Two lines L1 and L2 of H2

have a common perpendicular M if and only if V = �1 ∩�2 is space-like, which is
clearly an open condition: L1 and L2 remain disjoint even if we move them a little,
for example, tilting one of them about a point. The parallel postulate thus fails, as I
discuss below in more detail. The next section 3.14 treats the angular defect formula,
expressing the sum of angles in a triangle in terms of its area; this sum is always < π .
The hyperbolic non-Euclidean world also differs from the Euclidean in the exis-
tence of an intrinsic distance, by analogy with the spherical world (compare 3.6),
and the negative curvature of hyperbolic space (compare Exercise 3.13 (c) and
9.4).

Euclid’s parallel postulate states that given a line L of the planar geometry and a
point P not on it, there is one and only one line M through P and disjoint from L . This
holds in plane Euclidean geometry (and indeed in affine geometry, compare 4.3); in
spherical geometry it is obviously false as there are no disjoint lines. What happens
in H2? A plausible attempt to find a parallel line M through a point P /∈ L is to drop
a perpendicular P Q onto L , then take M perpendicular to P Q; as we know from the
above, this is indeed a line not meeting L , but not the only one.

Theorem Let L be a hyperbolic line and P a point not lying on L. Then there
exists a unique perpendicular line P Q to L through P. Moreover,

(1) if M is orthogonal to P Q in P, then the lines L and M diverge;
(2) there exists an angle θ < π

2 with the property that if L ′ is a line through P, then
L ′ meets L if and only if the angle of L ′ and P Q at P is less than θ . (See
Figure 3.13.)

Remark In axiomatic geometry, the logical self-consistency of this picture was
the focal point of the 2000 year old controversy concerning Euclid’s parallel postulate
(compare 9.1.2). In the present coordinate construction of H2, there is nothing to
dispute: everything follows at once from the case division of 3.12. Whether Euclidean
or hyperbolic geometry or some other theory is a better approximate mathematical
model for the real world in different applications is an entirely separate question,
discussed in 9.4.

Proof I give the coordinate proof. The line L corresponds to a Lorentz orthogonal
decomposition R3 = �⊕�⊥ where L = � ∩H2. The coordinate vector p of P can
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Figure 3.13 The failure of the parallel postulate inH2.

be written

p = q + v with q ∈ � and v in �⊥;

here v is nonzero and space-like, and q �= 0 because p is time-like. Choosing Lorentz
coordinates in R3 with e0 the unit time-like vector proportional to q and f2 proportional

to v makes L into the line y = 0, Q = (1, 0, 0) and P = (t0, 0, y0) with t0 =
√

1 + y2
0 .

The perpendicular line P Q is x = 0, and the line M perpendicular to it at P is y = y0

t0
t .

The two planes of L and M intersect in the x-axis of R3, so L and M diverge.
Any line through P = (t0, 0, y0) is given by (sin ϕ)x = (cos ϕ)(y0t − t0 y); in R3,

this plane intersects y = 0 in the line 〈(tan ϕ, y0, 0)〉, which is time-like if and only
if | tan ϕ| > y0. This proves the claim (together with the actual value θ = arccot y0,
compare Exercise 3.17). QED

Discussion A second ‘proof’ in more geometric terms is much closer to the
historical context, if trickier to argue convincingly; please refer to Figure 3.13 during
the argument. The existence and uniqueness of the orthogonal P Q can be proved by
minimising the distance from P to L , as discussed in Exercise 3.15 (b); (1) follows
from the case division in 3.12, and is proved again in Exercise 3.21.

For (2), note first that some lines L ′ through P certainly meet L . On the other hand,
as (1) shows, there exists a line M through P that does not meet L . It is also easy to
see that there cannot be a ‘last’ line L ′ through P which meets L: if L ′ ∩ L = R then
there are points R′ along L and further away from Q, and hence further lines P R′

meeting L . From this, a least upper bound argument shows that there must be a ‘first’
line M̃ (one on either side of P Q) which fails to meet L .

This proves almost all of (2); the only remaining point to clear up is the statement
that the angle θ between P Q and the ‘first’ nonintersecting line M̃ is less than π/2.
However, the line M at angle exactly π/2 diverges from L by (1), whereas M̃ is
asymptotic to L; hence the angle θ must be less than π/2. Lines L ′ having angle less
than θ at P with P Q are of type (i) and so intersect L; lines having angle greater than
θ are of type (ii) and are disjoint from L .
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Othermodels There are several alternative models of non-Euclidean geometry in
addition to the hyperbolic model in Lorentz space discussed here. Beltrami’s model
as the interior of an absolute conic in P2

R
is treated in Rees [19]; it has the great ad-

vantage of making the incidence of lines completely transparent. An alternative is the
Lobachevsky or Poincaré model as the upper half-space in the complex plane, which
makes asymptotically converging ultraparallel lines easy to visualise, and which is
important in other mathematical contexts; Exercises 3.23–25 lead you through the
construction of this model.

3.14 Angular defect

The remainder of this chapter discusses two proofs of the famous angular defect
formula of Gauss and Lobachevsky.

Theorem In a hyperbolic triangle �P Q R with angles a, b, c,

a + b + c = π − area�P Q R. (7)

In addition to finite hyperbolic triangles �P Q R with P, Q, R ∈ H2, I generalise
the statement to allow ideal triangles, with one or more vertexes ideal points ‘at
infinity’. An ideal triangle has 3 sides which are lines of H2, and any 2 sides either
intersect, or are ultraparallel in the sense of Definition 3.13, with every pair of sides
intersecting in distinct (ideal) points. Remember that 2 lines meeting at an ideal point
have angle 0 there.

3.14.1
The first
proof

There are two points in this proof.

I. First, an explicit integration calculates the area of the particular triangle �P Q R of
Figure 3.14a. The crucial point here is that the area of a triangle remains bounded,
even though one of its vertexes goes off to infinity.

II. Next, area of polygons and sum of angles of polygons have the simple additivity
property illustrated in Figure 3.14b: if you subdivide A as a union of two adjacent
polygons A = B ∪ C , then area A = area B + area C . The sum of angles also adds,
except that you subtract π if two angles coalesce to form a straight line (because the
common point is no longer viewed as a vertex).

3.14.2
An explicit
integral

Proposition Let a ∈ (0, π/2) be a given angle. Consider�P Q R in H2 bounded
by the three lines y = 0, y = (tan a)x and x = (cos a)t (see Figure 3.14a). Then

area�P Q R = π/2 − a = π − angle sum(�P Q R).

Proof The triangle has two vertexes P = (1, 0, 0) and Q = 1
sin a (1, cos a, 0) in

H2 and one ideal vertex R = (1, cos a, sin a). We know that ∠R P Q = a for the
same reason as in 3.2 and 3.10, because the angle in H2 is the dihedral angle in R3,
which equals the angle in the plane {t = 0}. I have drawn Figure 3.14a with symmetry
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Figure 3.14a The hyperbolic triangle� PQR with one ideal vertex.

angle sum(B) + angle sum(C) − π
angle sum(B � C) =

area(B � C) = area(B) + area(C)

B C

Figure 3.14b Area and angle sums are ‘additive’.

about the x-axis so that we see at once that ∠P Q R = π/2. Finally, ∠P RQ = 0 by
definition. Hence

angle sum(�P Q R) = π/2 + a

which proves the second equality.
To calculate the area, I write down an element of area, and integrate it as a double

integral over the triangle �P Q R. It is convenient to work in polar coordinates

x = r cos θ, y = r sin θ, so that t = √
1 + r2.

In these coordinates, the element of area in H2 is r dr dθ/
√

1 + r2 (see Exercise 3.22
and compare also Exercise 3.8). It is easy to integrate this element of area as an
indefinite integral, since

r dr√
1 + r2

dθ = d
√

1 + r2 dθ.



3.14 ANGULAR DEFECT 53

The more subtle point is to get an explicit expression for the domain of integration.
Since the two sides out of P in Figure 3.14a are given by y = 0, y = (tan a)x , the angle
θ runs through the interval [0, a]. For fixed θ , the point (

√
1 + r2, r cos θ, r sin θ ) runs

through the line P Qθ of Figure 3.14a. The condition to be under the hyperbola is
x ≤ (cos a)t , giving

r cos θ ≤
√

1 + r2 cos a =⇒ r2 ≤ cos2 a

cos2 θ − cos2 a
.

Therefore

area�P Q R =
∫∫

�P Q R

r dr dθ

t
=
∫∫

�P Q R

d
√

1 + r2 dθ

=
a∫

θ=0

[√
1 + r2

]r2= cos2 a
cos2 θ−cos2 a

r2=0
dθ

=
∫ a

0

−1 +
√

cos2 θ

cos2 θ − cos2 a

 dθ.

Now I am in luck, and the integrand is an exact differential: indeed, consider
ϕ = arcsin(sin θ/ sin a) as a function of θ . Then differentiating the defining relation
(sin a)(sin ϕ) = sin θ gives

dϕ

dθ
= cos θ

(sin a)(cos ϕ)
=
√

cos2 θ

cos2 θ − cos2 a
.

It follows that the above integral evaluates to

area�P Q R = −a +
[
arcsin

(
sin θ

sin a

)]a

0
= −a + π/2. QED

3.14.3
Proof by
subdivision

The calculation of Proposition 3.14.2 implies at once the following result for ideal
triangles with two or more ideal vertexes.

Lemma

(1) Let�P R R′ be an ideal triangle ofH2 with one vertex P ∈ H2 and two ideal vertexes;
if ∠P = a then

area�P R R′ = π − a. (8)

(2) Let �P Q R be an ideal triangle of H2 with all three vertexes P, Q, R ideal points at
infinity. Then

area�P Q R = π. (9)
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Figure 3.14c The subdivision of� PQR.

Proof (1) Drop a perpendicular P Q from P onto the opposite side R R′. By
Claim 3.9, I can choose coordinates such that P = (1, 0, 0) and P Q is the x-axis y =
0. This subdivides triangle�P R R′ symmetrically about the x-axis as in Figure 3.14a
into two triangles �P Q R and �P Q R′, each having angle a/2 at P . Thus applying
Proposition 3.14.2 to each gives

area�P R R′ = area�P Q R + area�P Q R′ = 2(π/2 − a/2),

as required.
(2) Choose any interior point S of the ideal triangle �P Q R with 3 ideal vertexes,

and draw in the 3 hyperbolic line segments P S, QS, RS. These subdivide�P Q R into
3 triangles �S P Q, �SQ R, �S R P of the type considered in (1), as on Figure 3.14c.
If a, b, c are the angles at S in each of these, then

area�P Q R = area�S P Q + area�SQ R + area�S R P

= π − a + π − b + π − c,

which gives what I want, in view of a + b + c = 2π . QED

Proof of Theorem 3.14 Starting from a finite triangle �P Q R, extend sides R P ,
Q R and P Q to infinity to get Figure 3.14d. Now the whole triangle has area equal to
π by (2) of the lemma, and it is subdivided into �P Q R plus three triangles with two
ideal vertexes which have areas a, b, c by (1) of the lemma. Thus the area of �P Q R
is π − a − b − c. QED

3.14.4
An
alternative
sketch proof

The above proof depended on an explicit integration. This dependence can be substan-
tially reduced, by an elegant argument making more systematic use of the additivity
of angle sums. The alternative is due to David Epstein (who acknowledges hints from
C. F. Gauss and N. I. Lobachevsky).

Lemma 1 Given any two ideal triangles �P Q R and �P ′Q′R′ having three
ideal vertexes, there is a Lorentz transformation A : H2 → H2 taking �P Q R into
�P ′Q′R′.
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Figure 3.14d The angular defect formula.

This is an easy exercise in linear algebra: given any three distinct lines V1, V2, V3

of R3 contained in the cone {qL (v) = 0}, there is a Lorentz basis e0, e1, e2 of R3 for
which

V1 = 〈e0 + e2〉 , V2 = 〈e0 + e1〉 , V3 = 〈e0 − e2〉 . (10)

Lemma2 Any ideal triangle�P Q R with three ideal vertexes at infinity has finite
area π .

It follows by Lemma 1 that all ideal triangles are congruent, so the key point
is that the area is finite (the π can be viewed as an arbitrary scaling factor).
There is a beautiful axiomatic geometry proof due to Gauss in Coxeter [5], Figure
16.4a.

Now consider an ideal triangle�P Q R with P ∈ H2, and two ideal vertexes Q, R.
Let a = ∠Q P R, and write �P Q R = �(a). I wish to prove that area�P Q R =
π − a. For this purpose, define L(a) = π − area�P Q R.

Lemma3 L(a) is an additive function of a, that is, if a = b + c with 0 < a, b, c <

π then L(a) = L(b) + L(c).

Proof Immediate from Figure 3.14e:

area�O P Q + area�O Q R = area�O P R + area�P Q R = area�O P R + π,

since all vertexes of �P Q R are ideal. QED

Lemma 4 L(a) is a monotonic function of a, that is, if a > b then L(a) > L(b).
Moreover, L(0) = 0 and L(π ) = π .
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Figure 3.14e Area is an additive function.
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Figure 3.14f Area is a monotonic function.

Proof There are several ways of proving that a > b in a figure such as Figure 3.14f
consisting of two ideal triangles: if a ≤ b then the lines out of P and P ′ diverge, as
discussed in Theorem 3.13. Note that as a → 0 the triangle �(a) tends to the whole
of the ideal triangle, and as a → π it tends to a line. QED

It is obvious that Lemmas 3 and 4 imply that L(a) = a, so that area�(a) = π − a
for all a ∈ (0, π ). The proof then concludes as before by referring to Figure 3.14d.

Exercises

In Exercises 3.1–3.10, consider the geometry of the sphere S2 ⊂ R3 of radius 1 with
the intrinsic (spherical) metric.

3.1 (a) Define, by analogy with Euclidean geometry, the notions of spherical circle and
spherical disc with centre P ∈ S2 and radius ρ.

(b) Prove that a spherical circle with radius ρ < π has circumference 2π sin ρ.
(c) Prove that a spherical disc of radius ρ < π has area 2π (1 − cos ρ).
[Hint: for (c), integrate (b).]

3.2 Deduce from Exercise 3.1 that there does not exist an isometric map from any region
of S2 to a region of the Euclidean plane R2.

3.3 (a) State and prove Pons Asinorum (1.16.1) in spherical geometry.
(b) Let P1, P2 ∈ S2 be distinct points. Prove that the set of points equidistant from

P1, P2 is a spherical line (great circle). [Hint: use the ambient metric of R3 to find
the locus, and (i) to prove in terms of the intrinsic geometry of S2 that every point
equidistant from P1, P2 is on it.]

3.4 Let � ⊂ S2 be a spherical n-gon, with internal angles a1, . . . , an at its vertexes.
Guess and prove a formula for the area of� in terms of

∑
ai . (Assume that the figure
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� does not overlap itself to avoid complicated explanations of how you count the
area.)

3.5 Let α, β, γ be the side lengths of a spherical triangle �P Q R and a, b, c the opposite
angles. Use the main formula

cos α = cos β cos γ − sin β sin γ cos a

to prove that |β − γ | < α < β + γ and α + β + γ < 2π .
Prove that every triple with α, β, γ < π satisfying the above inequalities are the

sides of a spherical triangle.
3.6 In the same notation, prove the sine rule for spherical triangles

sin α

sin a
= sin β

sin b
= sin γ

sin c
.

[Hint: using the notation p, q, r for the vertexes of �P Q R as in 3.2, prove that the
matrix with rows p, q, r has determinant det(p, q, r ) = sin a sin β sin γ .]

3.7 Prove that if � is an acute angled spherical triangle whose angles are submultiples
π/p, π/q, π/r of π , then

(p, q, r ) = (2, 2, n) or (2, 3, 3) or (2, 3, 4) or (2, 3, 5).

Prove that if � is a triangle in R2 with the same properties, then the possibilities are

(p, q, r ) = (3, 3, 3) or (2, 4, 4) or (2, 3, 6).

[Hint: using the formula area� = a + b + c − π , get 1
p + 1

q + 1
r > 1.]

3.8 Show that in polar coordinates

x = r cos θ, y = r sin θ, z =
√

1 − r2

on the sphere S2 of unit radius, the element of area in S2 is

dA = r dr dθ√
1 − r2

.

[Hint: consider a small sector [θ, θ + δθ ] × [r, r + δr ] in R2. Prove that the sector
of S2 lying over it is very close to a spherical rectangle with length of sides equal to
r δθ and δr/

√
1 − r2.]

3.9 Here is a general project: take any result you know in plane Euclidean geometry,
find an analogue for spherical geometry, and either prove or disprove it. As concrete
exercises, prove or deny the following:
(a) the 3 medians of a triangle intersect in a point G;
(b) the 3 perpendicular bisectors of a triangle intersect in a point O;
(c) (harder) the 3 heights of a triangle intersect in a point H .

3.10 Another general project: set up definitions and notation for the geometry of the n-
dimensional sphere Sn . [Hint: the ambient space is Rn+1 and the distance function
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comes from the Euclidean inner product.] State and prove some theorems in this more
general setting in analogy with the treatment of Chapter 1; in particular, if you feel
brave, you can classify completely motions of the 3-sphere S3 following 1.15.

In Exercises 3.11–3.21, consider the geometry of hyperbolic plane H2 with the
hyperbolic metric.

3.11 Hyperbolic distance is defined by d(P, Q) = arccosh(−v ·L w). Adapt the argument
of the proof of Theorem B.3 (3) to prove directly that −v ·L w ≥ 1 for v, w ∈ H2.

3.12 Prove that P(s) = (cosh s, sinh s) is the parametrisation of the hyperbola

H1 : (−t2 + x2 = −1) ⊂ R2

by arc length in the Lorentz pseudometric q = −t2 + x2; put more simply, P(s +
ds) − P(s) is ds times a vector tangent to Q at P(s) of unit length for q . [Hint: if
P(s) = (cosh s, sinh s) then dP

ds = (cosh s, sinh s), a unit space-like vector.]
3.13 (a) Let P = (1, 0, 0) ∈ H2; show how to parametrise the circle centre P and radius

r < π in H2 ⊂ R3. Deduce that a circle of radius r has circumference 2π sinh r ;
and that a disc with centre P of radius r < π has area 2π (1 + cosh r ). Your
formulas should be analogous to those for S2 ⊂ R3 in Exercise 3.1.

(b) Deduce from (a) that there does not exist an isometric map from any region of
H2 to a region of the Euclidean plane R2 or of the sphere S2.

(c) A Pringle’s potato chip is a reasonably accurate model in Euclidean 3-space of
a hyperbolic disc of radius r = 1 (isometrically embedded). What happens if we
try to make one of radius r = 100?

3.14 Define a reflection of H2, and prove properties analogous to those of reflections of
R2: there exists a reflection taking P1 to P2, any direct motion of H2 is a composite
of 2 reflections, any opposite motion is a composite of 3 reflections, Pons Asinorum,
etc. [Hint: follow the spherical case in Exercise 3.3.]

3.15 (a) Use the main formula

cosh α = cosh β cosh γ − sinh β sinh γ cos a

to prove that in a right-angled hyperbolic triangle, the hypotenuse is longer than
either of the other two sides. If L ⊂ H2 is a line and P ∈ H2 a point not on L ,
deduce that the length of the perpendicular dropped from P to L (if it exists) is
the shortest distance from P to L .

(b) Consider the function d(P, Q) for Q ∈ L; prove that d(P, Q) takes a minimum
value. [Hint: fix attention to a suitable closed ball around P and use the fact that
a function on a closed interval attains its bounds.] Deduce that a perpendicular
from P to L exists and is unique.

(c) If L , M ⊂ H2 are lines not meeting in H2 and not ultraparallel, prove that L and
M have a unique common perpendicular.

3.16 Interpret the matrixescosh s sinh s 0
sinh s cosh s 0

0 0 1

 and

cosh s sinh s 0
sinh s cosh s 0

0 0 −1

 ,

as hyperbolic translation and glide.
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3.17 In Figure 3.13, let Q = (1, 0, 0) and P = (t0, 0, y0), so that the matrix
( t0 0 y0

0 1 0
y0 0 t0

)
defines a hyperbolic translation taking Q to P . Show that the line L : (y = 0) goes to
M : (t0 y = y0t), and the line y = (tan ϕ)x through Q at angle ϕ to L (parametrised
by (t, (cos ϕ)r, (sin ϕ)r ) with −t2 + r2 = −1) goes to (sin ϕ)x = (cos ϕ)(y0t − t0 y).
Conclude that the limiting angle θ in Theorem 3.13 is given by cot θ = y0.

3.18 (Harder) The formula cosh α = cosh β cosh γ gives the hypotenuse α of a right-
angled hyperbolic triangle in terms of the other two sides β, γ . Prove that this is
always longer than the corresponding Euclidean result

√
β2 + γ 2.

3.19 Let α, β, γ be the sides (lengths) of a hyperbolic triangle �P Q R and a, b, c the
opposite angles. Prove the hyperbolic sine rule

sinh α

sin a
= sinh β

sin b
= sinh γ

sin c
.

[Hint: argue as in 3.10 and Exercise 3.6.]
3.20 The hyperbolic lines Lc : (y = c(t − x)) with |c| < 1 are ultraparallel, tending to

(1, 1, 0) at infinity (see Definition 3.12). Verify that Lc is parametrised by arc length
as

Lc : Pc(s) =
(

t0 e−s + 1

t0
sinh s,

1

t0
sinh s, y0 e−s

)
,

where y0 = c√
1−c2 and t0 = 1√

1−c2 (so that c = y0

t0
and Pc(0) = (t0, 0, y0) ∈ Lc). Cal-

culate d(Pc(s), P−c(s)) and show that the two curves L±c approach asymptotically as
s →∞.

Since L0 : (y = 0) is sandwiched between L±c for any c (e.g. c = 1/2), it follows
that L0 and Lc are asymptotically close. (But you have to start the parametrisation by
arc length at an appropriate point to make the two parametrised curves converge.)

3.21 Suppose that L1 and L2 are divergent hyperbolic lines as in Definition 3.12. Set up a
parametrisation by arc length as L1 : P(s), L2 : P ′(s) and prove that d(P(s), P ′(s))
must grow at least linearly in the variable s.

3.22 (a) Show that in polar coordinates

x = r cos θ, y = r sin θ, t =
√

1 + r2,

the element of area in H2 is

dA = r dr dθ√
1 + r2

.

[Hint: consider a small sector [θ, θ + δθ ] × [r, r + δr ] in the space-like Euclidean
R2. Prove that the sector of H2 lying over it is very close to a hyperbolic rectangle
with length of sides equal to r δθ and δr/

√
1 + r2.]

(b) By writing down the Jacobian determinant for the change of coordinates, check
that the element of area in H2 in the usual coordinates (t, x, y) is

dA = dx dy

t
.
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L2

L1

Figure 3.15 H-lines.

The final set of exercises 3.23–3.26 aim to give an alternative model of hyperbolic
geometry, which may help you visualise some of its properties. I set up a geometry
on the complex upper half-plane H (Exercise 3.23), show that it is the same geometry
as the hyperbolic plane H2 (Exercise 3.24), and investigate the failure of the parallel
postulate in the new model (Exercise 3.25). If you want to read further on this, look
at Beardon [2], Chapter 7.

3.23 Let

H = {z = x + iy ∈ C | y > 0}

be the upper half-plane in the complex plane. Define H-lines to be of two kinds (see
Figure 3.15): either vertical Euclidean half-lines L1 = {x + iy ∈ H | x = c} for a
real constant c, or half-circles L2 = {x + iy ∈ H | (x − a)2 + y2 = c2} with centre
(a, 0) on the real axis {y = 0}.
Show, algebraically or by drawing pictures, that
(a) two H-lines meet in at most one point;
(b) every pair of distinct points of H lies on a unique H-line.

3.24 (a) Consider the map ϕ defined by

ϕ : (T, X, Y ) �→
(−Y + i

T − X

)
.

Show that if (T, X, Y ) ∈ H2 then T − X > 0 hence ϕ is a map from the hyperbolic
plane H2 ⊂ R2,1 to the upper half-plane H.

(b) Consider the map ψ defined by

ψ : (x + iy) �→
(

1 + x2 + y2

2y
,
−1 + x2 + y2

2y
,
−x

y

)
.

Show that if x + iy ∈ H then its image (T, X, Y ) ∈ H2 hence ψ is a map from
H to H2.

(c) Show that φ and ψ are inverse bijections between H and H2.
(d) Show that the image of a hyperbolic line L ∈ H2 is an H-line and conversely.
(e) Let z1, z2 ∈ H be points of the upper half-plane, and let vi = ψ(zi ) be their images

under ψ . Show, using the formulas above, that

−v1 ·L v2 = 1 + |z1 − z2|2
2 Im(z1) Im(z2)

.
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Deduce that setting

dH(z1, z2) = arccosh

(
1 + |z1 − z2|2

2 Im(z1) Im(z2)

)
,

makes (H, dH) into a metric space isometric to (H2, dH2 ).

Therefore H has a metric geometry, isometric to the hyperbolic plane H2. In particu-
lar, it has its own symmetries, the H-motions. Sketch some cases like the hyperbolic
translations and reflections on a sheet of paper, starting from their geometric defini-
tions. As a matter of fact, any direct H-motion is of the form

z �→ az + b

cz + d

for a real matrix (
a b
c d

)
with ad − bc > 0; indirect motions are given by

z �→ a(−z̄) + b

c(−z̄) + d
.

If you feel brave, try your hand at proving that these maps preserve H and its metric;
consult Beardon [2], section 7.4 for the full story.

One further point deserves special mention: although there appear to be two dif-
ferent types of H-lines, the set of H-motions acts transitively on the set of H-lines.
This holds because the analogous statement is true in H2, and the two are the same!

3.25 (Graphical exercise) Draw a point P ∈ H and anH-line L not containing P . (To make
your picture pretty, choose L to be a half-circle and P to be lying over its centre; of
course you know that all configurations are like that up to H-motions!) Draw some
lines through P meeting L . Shade the region ofH covered by lines through P meeting
L . Draw the ultraparallel lines (see Definition 3.12) to L from P . For educational
purposes, repeat the exercise with L a ‘vertical’ line. Now stare at your drawings and
contemplate the vast regions in hyperbolic space not contained in lines incident with
P and L , as opposed to the case of E2 where this set is a line.

3.26 (Another graphical exercise) Do Exercise 3.15 (b–c) on H without any computation,
by drawing the appropriate diagrams.



4 Affine geometry

Affine geometry is the geometry of an n-dimensional vector space together with
its inhomogeneous linear structure. Accordingly, this chapter covers basic material
on linear geometries and linear transformations. The inhomogeneous linear maps
that we allow as transformations of affine space include translations such as (x, y) �→
(x + a, y + b), dilations such as (x, y) �→ (2x, 2y) and ‘shear’ maps such as (x, y) �→
(x, x + y). It is impossible to define an origin, distances between points, or angles
between lines in a way which makes them invariant under these transformations, or
to compare ratios of distances in different directions. However, the line P Q through
two points P and Q of An makes perfectly good sense; this is also called the affine
span 〈P, Q〉 of P and Q. An affine line is a particular case of an affine linear subspace
E ⊂ An; I can view an affine linear subspace as the affine span 〈P1, . . . , Pk〉 of a finite
set of points, or as the set of solutions of a system of inhomogeneous linear equations
Mx = b. Arbitrary affine linear maps take affine linear subspaces into one another,
and also preserve collinearity of points, parallels and ratios of distances along parallel
lines; all of these are thus well defined notions of affine geometry.

4.1 Motivation for affine space

As before, I write Rn for the set of n-tuples (x1, . . . , xn) of real numbers and V ∼=
Rn for an n-dimensional vector space over R. The rest of this chapter discusses
the same set under the name of affine n-space An; Chapter 1 called it Euclidean
n-space En . Before giving the formal definitions, let me explain briefly the point of
having so many alternative names and notations for what are basically all the same
thing.

The set Rn of n-tuples (x1, . . . , xn) is an n-dimensional vector space over the field
R of real numbers: I can add two n-tuples and multiply an n-tuple by a real number.
These notions have a physical meaning: in mechanics, for example, you could think
of adding vectors in a parallelogram of forces or velocities. A vector space V is the
abstract structure in which the operations of linear algebra make sense: addition of
vectors and multiplication of vectors by scalars are defined in V , and satisfy some
rules. Once I know that V has dimension n, I can choose a basis {e1, . . . , en} and
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identify a vector

v =
n∑

i=1

xi ei ∈ V

with the n-tuple (x1, . . . , xn), so that V = Rn . However, there may be practical or
theoretical reasons for not wanting to fix a basis at the outset: a proof, or the answer
to a calculation, may turn out to be much nicer in a well chosen basis. In mechanics,
for example, you might want to distinguish forces in the direction of motion from
forces perpendicular to the motion.

Similarly, working in coordinate geometry of Rn (even R2, of course), there may
be reasons to choose coordinates

x ′i = xi − ai for i = 1, . . . , n (1)

centred at some point P = (a1, . . . , an). In mechanics, for example, if two particles
at points P and Q exert forces on one other, you may want to take either P or Q as the
origin of coordinates, or you may prefer to take their centre of gravity, or some other
point. The coordinate change (1) is however not a linear map or change of basis of the
vector space V ; for example, it has the effect of changing the origin of coordinates to
make P = (0, . . . , 0). Indeed, two different choices of origin differ by a translation of
the form (1). Just as the laws of physics should not depend on the choice of origin, we
require that geometric properties of affine space are invariant under affine coordinate
changes, which include maps of the form (1).

The same issue commonly arises, from a slightly different point of view, in prob-
lems where we are interested in some space that is clearly linear in some sense, but has
no preferred origin. The model case is the space of solutions to a system of inhomo-
geneous linear equations Ax = b: as you know, the space of all solutions is given
by a particular solution x0 plus the general solution of the homogenised equations
Ax = 0 (the kernel of the matrix A). Solutions of the homogeneous linear equations
form a vector space; the particular solution x0 provides an identification of the set of
all solutions with a vector space U . There is no preferred particular solution x0, and
a different particular solution x′0 gives another identification of the solution set with
U , differing by a translation as in (1), with a = x′0 − x0.

4.2 Basic properties of affine space

This section lists basic properties that I take as the definition of affine space An .

(I) Affine space has a set of points P ∈ An in one-to-one correspondence with position
vectors p ∈ V in an n-dimensional vector space V over R. The one-to-one correspon-
dence P ↔ p between points and vectors is not fixed; rather, I am always allowed to
translate it by a fixed vector b, so that the new identification is P ↔ p′ = p + b.
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P

PQ = x

Q = P + x

→

Figure 4.2 Points, vectors and addition.

(II) Further, a choice of basis of V leads to an identification V = Rn , and thus to a
coordinate system on An , in which points P ∈ An are represented by coordinates

P ↔ p =

x1
...

xn

 ∈ Rn where xi ∈ R.

(III) Two points P, Q ∈ An determine a vector
−→
P Q ∈ V as in Figure 4.2. This vector is

independent of the identifications discussed in (I).
(IV) Conversely, a vector x ∈ V can be added to a point P ∈ An to get a new point

Q = P + x ∈ An , and then
−→
P Q = x; see again Figure 4.2. This operation is also

independent of the identifications discussed in (I).

As with the definition of En in 1.3, the definition of An involves an identification
An = V or An = Rn , followed by the assurance that any other identification would
do just as well provided that it is related to the first by a suitable transformation, in
this case an affine linear transformation. How to define affine space in abstract algebra
(without explicit mention of any origin or coordinates) is a slightly arcane issue, and
is discussed in 9.2.4.

Remarks In most of what follows, you can replace R by other fields. The most
obviously useful case is an n-dimensional vector space over C, giving rise to An

C
, but

affine geometries over finite fields Fpn , or over other fields, also have applications in
many areas of math and science. I do not intend to labour this point, because doing it
properly would involve a lot of algebra of fields, and because the course is directed
more towards metric geometries, which are ‘real’ subjects.

Note also that I work here from the outset in a finite dimensional space V . However,
in many areas of math, affine spaces appear as the set of solutions of inhomogeneous
linear equations in infinite dimensional spaces: there is no preferred solution, but the
differences x − x′ between any two solutions form a vector space (finite dimensional
or otherwise). This happens, for example, in solving Dx(t) = y(t) for functions x =
x(t) in a suitable space of differentiable functions, where D is a linear differential
operator and y(t) a given function. The spaces of functions we work in, and sometimes
also our affine space of solutions, are often infinite dimensional.
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4.3 The geometry of affine linear subspaces

An affine linear subspace E ⊂ An is a nonempty subset of the form

E = P +U = {P + v
∣∣ v ∈ U

}
,

with P ∈ An and U ⊂ V a vector subspace. By Proposition (1) below, any point of
E will do equally well in place of P , so there is no unique origin specified in E .

Let P, Q ∈ An be two distinct points. The line spanned by P and Q is

P Q = {P + λ
−→
P Q

∣∣ λ ∈ R
}
.

The definition clearly shows that P Q is an affine linear subspace, with U the one
dimensional vector subspace of V generated by

−→
P Q ∈ V . As in 1.2, we have the line

segment or interval

[P, Q] = {P + λ
−→
P Q

∣∣ 0 ≤ λ ≤ 1
}
.

It is useful to spell this out in vector notation. If P, Q ∈ An correspond to position
vectors p, q, their affine span is the set

pq = {p + λ(q − p)
∣∣ λ ∈ R

} = {(1 − λ)p + λq
∣∣ λ ∈ R

}
.

The latter is the form of the linear span construction most commonly used. The line
segment now becomes

[p, q] = {(1 − λ)p + λq
∣∣ 0 ≤ λ ≤ 1

}
,

as shown in Figure 4.3a.
Three points P, Q, R are collinear if they lie on the same line. If I represent the

points by position vectors p, q, r, this means that r = (1 − λ)p + λq; as we saw in
1.2, there are three subcases here:

λ ≤ 0

0 ≤ λ ≤ 1

1 ≤ λ

 ⇐⇒


p ∈ [r, q] so P ∈ [R, Q]

r ∈ [p, q] so R ∈ [P, Q]

q ∈ [p, r] so Q ∈ [P, R].

Proposition

(1) Let E = P0 +U be an affine linear subspace of An. Then the vector space U is
uniquely defined by E; explicitly

U = {−→P Q
∣∣ P, Q ∈ E

}
.

In other words, E = P +U for any P ∈ E.
(2) A necessary and sufficient condition for a nonempty subset E ⊂ An to be an affine

subspace is that the line P Q is contained in E for all P, Q ∈ E.
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1 − λ

λ

p

q

(1 − λ)p + λq

Figure 4.3a The affine construction of the line segment [p, q].

P2 + U

P1 + U P1

P2

Figure 4.3b Parallel hyperplanes.

(3) A necessary and sufficient condition for E to be an affine subspace is that it is
nonempty, and defined by a set of inhomogeneous linear equations in a coordinate
system.

The proofs are easy exercises in linear algebra. (1) states that E can be translated
back to the vector space U choosing any point P ∈ E ; informally, any point P ∈ E
can serve as origin. (3) spells out the other easy way of specifying an affine linear
subspace using coordinates; examples can be found in Exercises 4.1 and 4.5.

Write dim E = dim U for the dimension of a nonempty affine linear subspace
E . The only n-dimensional affine linear subspace is An itself; dim E = 0 means
simply that E consists of a single point, whereas a one dimensional affine linear
subspace is simply a line. The last interesting case with a name of its own is an affine
linear subspace of dimension n − 1 (that is, codimension one), a hyperplane. Two
hyperplanes E1, E2 are parallel, if they are translates of the same vector subspace of
V , that is E1 = P1 +U , E1 = P2 +U with dim U = n − 1, as in Figure 4.3b. An
equivalent condition is to ask that the two hyperplanes should either coincide or have
no common point.

Definition Let 
 ⊂ An be any set; an affine linear combination of 
 is any point
P ∈ An of the form

P = P0 +
k∑

i=1

λi
−−→
P1 Pi , where Pi ∈ 
 and λi ∈ R. (2)

Using position vectors pi of points Pi simplifies this expression once more; an
affine linear combination of 
 is any point P ∈ An of the form
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p =
k∑

i=0

µi pi , where pi ∈ 
 and µi ∈ R with
k∑

i=0

µi = 1. (3)

This generalises the expression (1 − λ)p + λq used to parametrise points of the affine
line P Q. The points Pi appear in the form (3) with (λ0, . . . , λk) = (0, . . . , 1, . . . , 0);
this confirms that I really mean = 1 in (3) rather than = 0.

The affine span 〈
〉 of any subset is the set of affine linear combinations of 
. By
the previous remark, 〈
〉 contains all lines spanned by pairs of points in 
. If P ∈ 


then 〈
〉 = P +U , where U ⊂ V is the vector subspace spanned by the vectors−→
P Q for Q ∈ 
. Thus 〈
〉 ⊂ An is an affine linear subspace, in fact the smallest one
containing all the points of 
.

4.4 Dimension of intersection

The formula

dim U + dim W = dim U ∩ W + dim(U + W ) (4)

for vector subspaces U, W of a finite dimensional vector space is familiar from linear
algebra. You remember the proof: pick a basis of U ∩ W , extend to two bases of U
and W , and the union is a basis of U + W .

Theorem Let E, F ⊂ An be affine subspaces. Then

dim E ∩ F = dim E + dim F − dim 〈E, F〉 , (5)

provided that E ∩ F �= ∅.
The exceptional case E ∩ F = ∅ happens if and only if E, F are contained in

parallel hyperplanes. This can happen essentially whatever the dimension of E and F;
more precisely, there exist affine linear subspaces E, F with dim E = a, dim F = b,
E ∩ F = ∅ and dim 〈E, F〉 = c for any a, b < n and any c with

max{a, b} + 1 ≤ c ≤ min{n, a + b + 1}.

Proof The proof of the first statement is almost trivial: if P ∈ E ∩ F then the
four affine subspaces in question are translates of the four vector subspaces

E ′, F ′, E ′ ∩ F ′, E ′ + F ′ ⊂ V

so that the result follows at once from the linear algebra formula (4).
The counterexamples involve affine subspaces E , F of An contained in parallel

hyperplanes. To be specific, I choose coordinates and put

E ⊂ {x1 = 0} and F ⊂ {x1 = 1}.

Then certainly E ∩ F = ∅. The converse is proved in Exercise 4.3.
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Assume that (0, . . . , 0) ∈ E = E ′ and (1, 0, . . . , 0) ∈ F ; then F is the translation
by (1, 0, . . . , 0) of a vector subspace F ′ ⊂ V contained in {x1 = 0}. The equality (4)
holds, but the point is that E ∩ F = ∅ takes no account of dim E ′ ∩ F ′. Now E ′ and
F ′ are any vector subspaces contained in the hyperplane given by x1 = 0, so that
dim E ′, dim F ′, dim(E ′ + F ′) can be anything up to and including n − 1. QED

You will find it instructive to spell out the theorem in a few concrete cases. For
example, if n = 2 and E , F are distinct lines, then dim 〈E, F〉 = 2 and so the conclu-
sion is that E ∩ F is zero dimensional (that is, a point) unless it is empty, the standard
dichotomy of intersecting and parallel lines. For n = 3, see Exercise 4.2.

4.5 Affine transformations

Recall the following definition, which I repeat here for completeness.

Definition A map T : An → An is an affine transformation if it is given in a co-
ordinate system by T (x) = Ax + b, where A = (ai j ) is an n × n matrix with nonzero
determinant and b = (bi ) a vector; in more detail,

x = (xi ) �→ y =
( n∑

j=1

ai j x j + bi

)
, or

x1
...

xn

 �→ A

x1
...

xn

+

b1
...

bn

 . (6)

The set Aff(n) of affine transformations is the set of ‘allowed symmetries’ of
affine space An . This set consists of invertible maps from An to An (because I require
det A �= 0). It acts transitively on An; that is, a suitable affine transformation maps
any point to any other. In particular, there is no distinguished origin, as I said before:
every point is like every other. Contrast this with the situation in linear algebra, where
the allowed maps V → V are the homogeneous linear maps, all mapping the origin
0 ∈ V to itself.

It is immediate that an affine transformation takes an affine linear subspace to an
affine linear subspace; that is, it preserves the incidence geometry of affine linear
subspaces. In Proposition 1.9, I proved a converse statement, under the additional
assumption that T restricts to an affine linear map on each line. In fact, one can prove
that, for n ≥ 2, a bijective map T : An → An that preserves lines and is continuous is
actually affine linear. (This is a point where working over R is essential; for a proof,
see Exercise 5.22.)

4.6 Affine frames and affine transformations

Definition A set of points {P0, . . . , Pk} of An is affine linearly independent if the
k vectors

−−→
P0 P1, . . . ,

−−→
P0 Pk are linearly independent in V . In other words, a set 
 ⊂ An

is affine linearly dependent if there exists a nontrivial relation
∑k

i=0 λi pi = 0 between
position vectors p0, . . . , pk of points in 
, with λi ∈ R and

∑k
i=0 λi = 0; 
 is affine

linearly independent if no such relation exists.
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A set 
 ⊂ An is an affine frame of reference if it is affine linearly independent
and spans An (compare the notion of Euclidean frame in 1.12). This means that every
point P ∈ An can be written in the form (2) of 4.3 in a unique way; that is, no proper
subset of 
 can span An . Equivalently, 
 = {P0, P1, . . . , Pn} where P0 ∈ 
 is any
point, and the vectors

−−→
P0 P1, . . . ,

−−→
P0 Pn form a basis of V .

In view of the correspondence between bases in a vector space and linear maps,
the last clause gives the following.

Proposition Fix one affine frame of reference P0, . . . , Pn. Then

T �→ T (P0), . . . , T (Pn)

defines a one-to-one correspondence between affine transformations and affine frames
of reference of An.

4.7 The centroid

The following proposition is usually thought of as part of (plane) Euclidean geometry;
however, it only involves ratios along lines and incidence of lines, so in fact it belongs
to affine geometry. The other ‘famous’ centres of a triangle described in 1.16.4 use
notions such as angle or distance that have no meaning in affine geometry.

Proposition Let P, Q, R be three points of An. Then the three medians of�P Q R,
that is, the three lines connecting each vertex to the midpoint of the opposite side,
meet in a common point S.

Proof Write p, q, r for the position vectors of P, Q, R. Write p′ = 1
2 (q + r) for

the midpoint of q and r and s = 2
3 p′ + 1

3 p for the point dividing the segment between
p and p′ in ratio one to two. Then s = 1

3 (p + q + r) is symmetric in p, q, r, so lies
on the lines joining q and q′ = 1

2 (p + q) and r and r′ = 1
2 (p + q). Hence the point S

with position vector s lies on all medians of �P Q R. QED

To reiterate the point: the statement that this is a theorem of affine geometry means
that applying any affine transformation takes Figure 4.7 to a figure with the same
properties, and in particular takes the centroid of a triangle to the centroid.

Exercises

4.1 Consider the 3 planes

�1 : {x − 2 = 1
2 (y − z)}, �2 : {x + 2 = y}, �3 : {3(2x + z) = 3y + 1}

in affine space A3. Calculate �1 ∩�2 and 〈�1, �2〉 and find out whether the dimen-
sion of intersection formula works; if not, why not? (Compare Theorem 4.4.) Ditto
for �1 ∩�3 and 〈�1, �3〉.
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Figure 4.7 The affine centroid.
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Figure 4.8 A weighted centroid.

4.2 Experiment with 4.4, formula (5) for n = 3 and different E , F . For example, classify
pairs of lines of A3 into three types, namely intersecting, parallel and skew, drawing
pictures for each case.

4.3 Suppose that E, F ⊂ An are disjoint affine linear subspaces; prove that there is a
linear form ϕ on An such that ϕ(E) = 0 and ϕ(F) = 1. [Hint: let P ∈ E , Q ∈ F and
v = −→

P Q. Then E = P +U for a vector subspace U ⊂ V , and v /∈ U . Deduce that
there exists a linear form on V that is zero on U but nonzero on v.]

4.4 Write down the affine transformation taking

(0, 0), (1, 0), (0, 1) �→ (2, 1), (5,−1), (3, 8).

Can you map the same points (0, 0), (1, 0), (0, 1) to (2, 1), (5,−2), (3, 0) by an affine
transformation? Why?

4.5 Determine the dimension of the affine linear subspace E of A5 given by the equations

x1 + x3 − 2x5 = 1

x2 − 2x4 + x5 = −2

x1 + 2x2 + x3 − 4x4 = −3.
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Find an affine transformation taking E to an affine linear subspace given by x1 =
· · · = xk = 0 for some value of k. [Hint: choose a suitable affine frame consisting of
points on and off the subspaces, compare 4.6.]

4.6 Give a determinantal criterion in coordinates for n + 1 points of An to be affine
linearly dependent (Definition 4.6). [Hint: start by saying how you tell whether
3 points of A2 are collinear.]

4.7 In �P Q R of Figure 4.8, take points dividing the three sides in the ratios 1 : 2, 1 : 2,
n : m. Assume that the three lines connecting the vertexes to the points on the opposite
sides have a common point. Calculate the value of the ratio m : n. [Hint: follow the
proof of Proposition 4.7. Answer: the ratio is 4 : 1.]

4.8 A general project: set up affine geometry over the finite field Fp of integers modulo
the prime p. Count the number of points of affine space An , and prove analogues of
the theorems of the text. Check that everything remains true, with a single exception
(harder): the statement concerning the centroid fails for one value of p.



5 Projective geometry

The affine geometry studied in Chapter 4 provided one possible solution to the problem
of inhomogeneous linear geometry. However, this turns out not to be the only one.
This chapter treats the alternative: it introduces projective space Pn as another equally
natural linear geometry. The construction of Pn can be motivated starting from affine
geometry in terms of adding ‘points at infinity’.

Projective geometry is simple to study as pure homogeneous linear algebra, ignor-
ing the motivation; ‘linear algebra continued’ or ‘more things to do with matrixes’
would be accurate subtitles for this chapter. In Pn , the statement of affine geometry
analogous to the dimension of intersection formula of Theorem 4.4 holds without
the ‘inhomogeneous’ conditions of Chapter 4, so that, for example, two distinct lines
L1, L2 ⊂ P2 meet in a point P = L1 ∩ L2 without exception.

Projective geometry has lots of applications in math and other subjects. Projective
transformations include the perspectivities, or projections from a fixed viewpoint from
one plane to another, that form the foundation of perspective drawing; the fact that
you can readily recognise an object from any angle, or a photograph taken from any
point (and viewed at any angle) indicates that your brain processes perspectivities
automatically and instantaneously.

5.1 Motivation for projective geometry

5.1.1
Inhomo-
geneous to
homoge-
neous

Recall from Chapter 4 that if E , F are affine linear subspaces of affine space An , then
there is a nice formula 4.4 expressing the dimension of their intersection provided
that E ∩ F �= ∅. One of the points of projective geometry is to get rid of this un-
pleasant condition. The trouble all comes from the inhomogeneity of the equations:
simultaneous inhomogeneous equations include, say, x1 = 0 and x1 = 1, where only
two equations reduce An to the empty set.

The solution is the following formal trick. Suppose
∑

ai j x j = bi is a set of in-
homogeneous equations in n unknowns x1, . . . , xn defining an affine linear subspace
E ⊂ An . Replace these by homogeneous equations

∑
ai j x j = bi x0 in n + 1 un-

knowns x0, x1, . . . , xn . The solutions with x0 �= 0 give ratios x1/x0, . . . , xn/x0 that

72
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give a faithful picture of E ⊂ An . But there are also the solutions with x0 = 0, called
‘points at infinity’. Including these points adds information to the set of ordinary
solutions; namely, information about all the ways the ratios x1 : · · · : xn can behave
as the xi tend to infinity. A solution 0, ξ1, . . . , ξn (with some ξi �= 0) corresponds
not to a point of E , but to an (n − 1)-dimensional family of all parallel lines with
slope ξ1 : · · · : ξn satisfying the homogenised equations

∑
ai jξ j = 0, that is, parallel

to some line in E (compare Figure 5.8).
The set E together with these extra solutions is a projective linear subspace of

projective space; the intersection of projective linear subspaces is then governed
by the formula of 4.4 without exception. This does not mean that two projective
linear subspaces cannot have empty intersection; it only means that they have empty
intersection exactly when they have a numerical reason to do so. In modern language,
the quantity dim E + dim F − dim 〈E, F〉 on the right-hand side of formula 4.4 is
called the expected dimension of the intersection of E and F ; in projective geometry,
linear subspaces always intersect in a subspace whose dimension equals the expected
dimension.

5.1.2
Perspective

You recognise Figure 5.1a as a plane picture of a cube in R3. The way it is drawn, the
horizontal parallel edges appear to meet in points of the plane.

Suppose I fix the origin O ∈ A3 and map points of a plane � ⊂ A3, to another
plane �′ ⊂ A3 by taking P ∈ � into the point of intersection P ′ = O P ∩�′ of the
line O P with �′. A map of this kind is called a perspectivity. It corresponds to putting
your eye at O , with �′ a glass plate, � behind it with a figure on it, and drawing
faithfully the figure on the glass as you see it (see Figure 5.1b).

I get a map f : � → �′ between two planes. It is easy to see that f maps lines
of � to lines of �′, and parallel or concurrent lines L , L ′, L ′′, on � to parallel or
concurrent lines M, M ′, M ′′ on �′. Here I am ignoring practicalities, such as the
finite extent of the plane represented by a physical piece of glass, or the possibility
that some of � might poke out in front of �′ rather than behind (see Exercise 5.1 for
details). Strictly speaking, f is only locally defined, and the conclusions should be
qualified by adding ‘within the domain of definition’; the activity takes place in the
real world, and set theoretic niceties do not cause us undue discomfort.

The map f : P �→ P ′ is constructed in linear terms, but is not actually linear
(see Exercise 5.1): choosing coordinates on �, �′ = A2, it can be shown that f is
fractional linear, that is, of the form

f (x) = Ax + b

Lx + c

where A, b, L and c are 2 × 2, 2 × 1, 1 × 2 and 1 × 1 matrixes. Note that these can
be assembled into a 3 × 3 matrix

(
A b
L c

)
.

5.1.3
Asymptotes

Figure 5.1c depicts the hyperbola xy = 1 and the parabola y = x2. Viewed from a
long way off, the hyperbola is very close to the line pair xy = 0. In fact, outside a
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Figure 5.1a A cube in perspective.

P

Π
subject

Π'

drawing

P'

artist's eye

Figure 5.1b Perspective drawing.

hyperbola xy = 1
‘asymptotically xy = 0’

parabola y = x2

‘asymptotically x2 = 0’

Figure 5.1c Hyperbola and parabola.

big circle of radius R, either |x | > R and |y| < 1/R or vice versa. One can argue
that, in turn, the parabola is asymptotic to the line x = 0, in the sense that the tangent
line at the point (x0, x2

0 ) gets steeper and steeper. This argument is not actually very
convincing: when both x, y � 0, all you can say is y = x2 � x . Nevertheless, in
the theory of conic sections, it is said, for example, that ‘the two branches of the
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parabola meet at infinity’, or that the parabola ‘passes through the point at infinity
corresponding to lines parallel to x = 0.’

The statements on asymptotes are qualitative views of what happens to the curves
when x or y is large (quite vague, even arguable for those in quotes). But we have
not so far said what asymptotic directions or points at infinity actually are, which is a
disadvantage in discussing asymptotes formally or in calculating with them. Making
sense of asymptotes (of algebraic plane curves), and providing a simple framework
for calculating with them is one thing that projective geometry does very well.

5.1.4
Compact-
ification

Here I assume that you know some topology; read this section after Chapter 7 if you
prefer.

Affine space An is not compact; in contrast, projective space Pn is compact, as are
its closed subsets, including all projective algebraic varieties. Compact sets are much
more convenient than noncompact ones in many contexts of geometry, topology,
analysis and algebraic geometry. Given a closed set X ⊂ An , you can compactify it
by extending An to Pn; then X ⊂ An ⊂ Pn and the closure X ⊂ Pn is compact. The
points at infinity of the closure X correspond in a very precise sense to the asymptotic
lines of X , and are calculated by the same simple trick of adding a homogenising
coordinate x0. For example, the hyperbola xy = 1 is compactified to the circle S1 by
adding the two points (∞, 0) and (0,∞), and the parabola is compactified to S1 by
adding the single point (0,∞) at which the two branches are said to meet.

5.2 Definition of projective space

Provided you forget about the motivation, the definition is very simple: introduce the
equivalence relation ∼ on Rn+1 \ 0 defined by

(x0, . . . , xn) ∼ (y0, . . . , yn) ⇐⇒
{

(x0, . . . , xn) = λ(y0, . . . , yn)

for some 0 �= λ ∈ R.

In other words x ∼ y if the two vectors x and y are proportional, or span the same line
(1-dimensional vector subspace) through 0 in Rn+1. Then define projective space to
be

Pn
R
= Pn = (Rn+1 \ 0

)/∼ = {lines through 0 in Rn+1
}
.

I write (x0 : · · · : xn) for the equivalence class of (x0, . . . , xn); this is the usual notion
of relative ratios of n + 1 real numbers. x0, . . . , xn are homogeneous coordinates on
Pn . For example, P1 is the set of ratios (x0 : x1). If x0 �= 0 you might as well just
consider x1/x0, but then you are missing one point corresponding to the ratio (0 : 1),
where x1/x0 = ∞.

In coordinate free language, if V is an (n + 1)-dimensional vector space over R,
write P(V ) for the set of lines of V through 0 (that is, nonzero vectors up to the equiv-
alence v ∼ λv for λ �= 0). Of course, V ∼= Rn+1 (by a choice of basis), so P(V ) ∼= Pn .
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A point P ∈ P(V ) is an equivalence class of vectors v ∈ V , or a line Rv through
0; several kinds of notation are popularly used to indicate that v = (x0, . . . , xn) is a
vector in the equivalence class defining P , for example:

P = Pv, P = [v], v = P̃, Pv = (x0 : · · · : xn), etc.

To return to the motivation, Pn contains the subset (x0 �= 0) consisting of ratios
that can be written (1 : x1 : · · · : xn), which is thus naturally identified with An . The
language used for motivating projective geometry is quite unsuitable for developing
the theory systematically. For example, the terminology of ‘points at infinity’ is
cumbersome and gives a distorted view of the symmetry of the situation.

The formal language of projective geometry is simply a reinterpretation of the
ideas of linear algebra; the subset with x0 �= 0 is not distinguished in Pn , and there
is no discrimination against points of the complement (with x0 = 0). Working with
the definitions of projective geometry and formal calculations in homogeneous co-
ordinates is in many ways easier to understand than how it relates to the motivation
discussed in 5.1.1, and I proceed with this, returning to the motivation in 5.8. So for
the time being, I discuss the geometry of Pn in terms of the vector space Rn+1, and I
advise you to forget the motivation.

5.3 Projective linear subspaces

The only structures enjoyed by P(V ) are derived from V . Thus all statements or
calculations for P(V ) must reduce to linear algebra in V and the equivalence relation
∼ on points of V .

As a first example, here is the definition of the line P Q through two points P =
(x0 : · · · : xn) and Q = (y0 : · · · : yn) of Pn . First lift to Rn+1 by setting P̃ =
(x0, . . . , xn) and Q̃ = (y0, . . . , yn) (that is, pick values of xi and yi in the given
ratio), then set

P Q = 〈P, Q〉 = {ratios (λx0 + µy0 : · · · : λxn + µyn) for all (λ, µ) �= (0, 0)
}
.

The point to notice is that λP + µQ is meaningless as a point of Pn , because the
ratio (λx0 + µy0 : · · · : λxn + µyn) depends on the choice of P̃ and Q̃ within the
equivalence classes of P and Q. However, the set of all λP̃ + µQ̃ is a well defined
2-dimensional vector subspace of V = Rn+1, and ratios in it form the line P Q.

Thinking in a purely formal way about vector subspaces of a vector space V gives
the obvious notion of projective linear subspace: if U ⊂ V is a vector subspace, P(U )
is the subset (U \ 0)/∼ ⊂ P(V ) of lines through 0 in U . In other words, if U ⊂ Rn+1

then P(U ) is the set of ratios (x0 : · · · : xn) with (x0, . . . , xn) ∈ U . The dimension of
P(U ) is defined to be dim P(U ) = dim U − 1. Thus dim Pn = n.

A 0-dimensional subspace is a single point; a 1- or 2-dimensional projective linear
subspace is called a line or plane; an (n − 1)-dimensional subspace is a hyperplane.
I sometimes say k-plane to mean k-dimensional projective linear subspace.

Note that the empty set ∅ is a projective linear subspace: the trivial vector subspace
0 ⊂ Rn+1 has P(0) = ∅ ⊂ Pn . By convention we write dim∅ = −1, to agree with the
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general definition just given. As a rule, prudence might suggest that in mathematical
arguments, we avoid attaching excessive weight to mumbo-jumbo concerning the
empty set or the elements thereof, but here the convention dim ∅ = −1 has a precise
and useful meaning (in the context of the geometry of linear subspaces only!).

Definition If 
 ⊂ P(V ) is a set, write 
̃ ⊂ V for the union of the lines in 
; let
U be the vector subspace of V spanned by 
̃, and define the span or linear span of

 to be 〈
〉 = P(U ). This is the smallest projective linear subspace containing 
.

If P0, . . . , Ps are (s + 1) points then dim 〈P0, . . . , Ps〉 ≤ s; equality holds if
and only if the vectors P̃0, . . . , P̃s ∈ Rn+1 are linearly independent. In this case,
P0, . . . , Ps are said to be linearly independent in Pn .

5.4 Dimension of intersection

Theorem Let E, F ⊂ Pn be projective linear subspaces. Then

dim E ∩ F = dim E + dim F − dim 〈E, F〉 ; (1)

here the convention dim∅ = −1 is in use.

Proof Write Ẽ, F̃ ⊂ Rn+1 for the vector subspaces overlying E and F . Then
E ∩ F = P(Ẽ ∩ F̃) and 〈E, F〉 = P(Ẽ + F̃). By the linear algebra formula 4.4 (4)
we have

dim(Ẽ ∩ F̃) = dim Ẽ + dim F̃ − dim(Ẽ + F̃), (2)

and since dim P(U ) = dim U − 1 for every vector subspace U ⊂ Rn+1, (1) follows
by subtracting 1 from each term on the left- and right-hand sides of (2). QED

5.5 Projective linear transformations and projective frames of reference

A nonsingular linear map Rn+1 → Rn+1 represented by an invertible matrix A acts
in an obvious way on the set of lines of Rn+1 through 0: namely, it takes the line Rv
to R(Av) for every 0 �= v ∈ Rn+1. A map T : Pn → Pn is a projective transformation
(also called projectivity or projective linear map) if it arises in this way from a linear
map. In other words, if we write Pv ∈ Pn for the point represented by v ∈ Rn+1, then
T is a projective transformation if there is an invertible matrix A such that

T (Pv) = PAv for all v ∈ Rn+1.

Here Av is the product of A and v, viewed as a column vector. The set of all projective
transformations is written PGL(n + 1).

Because v and λv represent the same point of Pn , a scalar matrix λ · id =
diag(λ, . . . , λ) with λ �= 0 acts as the identity. Moreover, if A is an invertible



78 PROJECTIVE GEOMETRY

matrix and λ ∈ R and λ �= 0, then A and the product λA have exactly the same
effect on every point of Pn . Thus the set of projective transformations is

PGL(n + 1) = {invertible (n + 1) × (n + 1) matrixes
}
/R∗

where R∗ = {λ · id | 0 �= λ ∈ R
}
.

The following definition, which may seem unexpected at first, is quite characteristic
of projective geometry.

Definition A projective frame of reference (or simplex of reference) of Pn is a set
{P0, . . . , Pn+1} of n + 2 points such that any n + 1 are linearly independent, that is,
span Pn .

This means

1. there exists a basis e0, . . . , en of Rn+1 such that Pi = Pei for i = 0, . . . , n;
2. the final point Pn+1 is Pen+1 , where

en+1 =
n∑

i=0

λi ei , with λi �= 0 for every i .

Indeed, the first n + 1 points P0, . . . , Pn are linearly independent, and the final point
Pn+1 is not contained in any of the n + 1 hyperplanes {xi = 0}. The standard frame
of reference is

Pi = (0 : · · · : 1 : · · · : 0) (with 1 in the i th place)

and Pn+1 = (1 : 1 : · · · : 1).
(3)

That is, ei for i = 0, . . . , n is the standard basis of Rn+1 and en+1 =
∑n

i=0 ei . The
final point Pn+1 = (1 : · · · : 1) is there to ‘calibrate’ the coordinate system.

Theorem Let {P0, . . . , Pn+1} be the standard frame of reference. Then there
is a one-to-one correspondence between projective transformations and frames of
reference, defined by T �→ T (P0), . . . , T (Pn+1).

Proof Write e0, . . . , en for the standard basis of Rn+1, and set en+1 =
∑n

i=0 ei .
Now let {Q0, . . . , Qn+1} be a different frame of reference, and choose representatives
f0, . . . , fn , fn+1 ∈ Rn+1 of the points Q0, . . . , Qn+1.

Since e0, . . . , en and f0, . . . , fn are two bases of Rn+1, the usual result of linear
algebra is that there is a uniquely determined linear map A : Rn+1 → Rn+1 such that
Aei = fi for i = 0, . . . , n. If f0, . . . , fn are column vectors, A is the matrix with the
given columns fi . However, that is not what is given, and not what is required! If you
understand that, you have understood the proof.

Indeed, the fi are determined only up to scalar multiples. Start again: for any
nonzero multiples λi fi of fi (for i = 0, . . . , n), there is a uniquely determined linear
map A : Rn+1 → Rn+1 such that Aei = λi fi for i = 0, . . . , n, given by the matrix
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A with columns λi fi . Using the assumption that f0, . . . , fn is a basis, I choose the
λi such that fn+1 =

∑n
i=0 λi fi . Then, because Q0, . . . , Qn+1 is a frame of reference,

λi �= 0 for i = 0, . . . , n, and Aen+1 = fn+1 by choice of A. Since A : Rn+1 → Rn+1

is a linear map with ei �→ λi fi and en+1 �→ fn+1, it defines a projective linear map
T : Pn → Pn taking Pi �→ Qi for i = 0, . . . , n + 1.

For the uniqueness, let us look back through the construction: first, the condition
T (Pi ) = Qi for i = 0, . . . , n determines the columns of A up to multiplying each
column by a scalar λi ; so far, any λi will do (possibly different choices for different
columns). Next, the condition T (Pn+1) = Qn+1 fixes the λi up to a common scalar
factor: because we must send en+1 =

∑
ei into a multiple of fn+1 =

∑n
i=0 λi fi , we

have to choose these values of λi . The only remaining choice in A would be to multiply
the whole thing through by a scalar. Thus T is uniquely determined. QED

5.6 Projective linear maps of P1 and the cross-ratio

Corollary There exists a unique projective linear transformation of P1 taking
any 3 distinct points P, Q, R ∈ P1 to any other 3.

Since any 3 distinct points go into any other 3 points, I can say that projective
linear transformations act 3-transitively on P1 (Figure 5.6a). This means that there
can be no nontrivial function d(P, Q) of 2 points or σ (P, Q, R) of 3 points that is
invariant under these transformations.

However, there is a function of 4 distinct points invariant under projective linear
transformations, namely their cross-ratio {P, Q; R, S}. To define it, note that any
choices of representatives p, q ∈ R2 \ 0 of P, Q form a basis. Choosing this basis
gives

P = (1 : 0), Q = (0 : 1), R = (1 : λ) and S = (1 : µ) (4)

for some λ, µ. Set {P, Q; R, S} = λ/µ.
Changing the representative q �→ µq sets µ = 1 so that S = (1 : 1). Thus the def-

inition amounts to taking P, Q, S as the frame of reference of P1, and then defining
{P, Q; R, S} = λ, where R = (1 : λ). Since by Theorem 5.5, the projective transfor-
mation taking P, Q, S to (1 : 0), (0 : 1), (1 : 1) is unique, {P, Q; R, S} is well defined,
and invariant under transformations in PGL(2).

Remark To see the point of cross-ratio, it is useful to compare the invariant
quantities in A1 and in P1. In A1, to be able to measure, you need to fix the points 0
and 1, then any other point P is fixed by λ = (x − 0)/(1 − 0). In P1 you need also to
fix the point at infinity.

Proposition Consider four distinct lines of R2 through O = (0, 0) that are the
equivalence classes of P, Q, R, S, and let L be any line of R2 not through the origin
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Figure 5.6a The 3-transitive action of PGL(2) on P1.
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Figure 5.6b The cross-ratio {P, Q; R, S}.

intersecting these four lines in p, q, r, s respectively (see Figure 5.6b). Then

{P, Q; R, S} = p − r
p − s

· q − s
q − r

. (5)

Here the quotients on the right-hand side are ratios of vectors along L. You could
equally take them as ratios of x-coordinates or y-coordinates of the points; or equally,
the ratio of (signed) lengths ±|p−r|

±|p−s| · ±|q−s|
±|q−r| .

Proof As in the definition of {P, Q; R, S}, choose p and q as the standard basis
of R2. Then L is given by x + y = 1. If λ, µ are as in (4) then r ∈ R2 is in the
equivalence class of (1 : λ) and is on L , so that necessarily

r = (1, λ)

1 + λ
; similarly s = (1, µ)

1 + µ
. (6)

The remaining calculation is very easy:

p − r = λ
1+λ

(1,−1), q − r = −1
1+λ

(1,−1)

p − s = µ

1+µ
(1,−1), q − s = −1

1+µ
(1,−1)

 =⇒ p − r
p − s

· q − s
q − r

= λ

µ
. (7)

This proves the proposition. QED
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5.7 Perspectivities

Let �, �′ be hyperplanes in Pn and let O be a point outside � and �′. The perspec-
tivity f : � → �′ from O is obtained by mapping P ∈ � to the point of intersection
f (P) of the projective line O P with �′. Note that since O is not on �′, the line O P
cannot be contained in �′, and hence the intersection of O P with �′ is a single point
by the dimension of intersection formula Theorem 5.4. The case n = 3, perspectivity
between two planes in 3-space, was described in 5.1.2 and illustrated on Figure 5.1b.
As opposed to the example in 5.1.2 (compare Exercise 5.1), the map f is everywhere
defined, since new points have been added to affine space to form projective space;
this will be discussed further below.

It is easy to write a perspectivity in terms of suitable coordinates. Choose
coordinates (x0 : x1 : · · · : xn) so that � = {x0 = 0}, �′ = {x1 = 0} and O =
(1, 1, 0, . . . , 0). Then for a point P = (0 : x1 : · · · : xn) of �, the line O P is the set
of points {(λ : λ+ µx1 : µx2 : · · · : µxn)} ⊂ Pn (compare the first paragraph of 5.3).
The intersection point with �′ is then at (λ : µ) = (−x1 : 1), so

f : (0 : x1 : · · · : xn) �→ (−x1 : 0 : x2 : · · · : xn).

In particular, you can view the perspectivity f as a projective transformation
from � = Pn−1 with coordinates (x1 : · · · : xn) to �′ = Pn−1 with coordinates
(x0 : x2 : · · · : xn) given by the matrix A = diag(−1, 1, . . . , 1).

Proposition The cross-ratio of four points on a line is invariant under perspec-
tivities; namely, if L is a line in � and P, Q, R, S ∈ L are four points on the line,
then

{P, Q; R, S} = { f (P), f (Q); f (R), f (S)}.

Proof First of all, the right-hand side of this expression is defined, since the image
of L is a line in �′; this follows from the fact that f is a projective transformation,
but as an exercise you can check that it also follows from the definition of f and the
dimension of intersection formula. Then f : L → f (L) is a projective transformation
between lines; the cross-ratio is preserved under projective transformations of P1, so
it is preserved under perspectivities also. Note that the equality of cross-ratios also
follows from Figure 5.6b and the discussion of Proposition 5.6, once you restrict the
discussion to the plane P2 ⊂ Pn spanned by O and L , and interpret O in Figure 5.6b
as a point of this P2 rather than the affine origin (0, 0) ∈ R2. QED

5.8 Affine space An as a subset of projective space Pn

A hyperplane H ⊂ Pn corresponds to an n-dimensional subspace W ⊂ Rn+1, the
kernel of a linear form α : Rn+1 → R. Then Pn \ H can be naturally identified with
An , and H = Pn−1 with sets of parallel lines in An . The point is very simple: given
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Q = [v]

point at
infinity

P

An

v

x0 = 1

x0 = 0

Figure 5.8 The inclusion An ⊂ Pn .

�, I can choose coordinates in Rn+1 so that

α(x0, . . . , xn) = x0

is the first coordinate. Then

Pn \ H = {ratios (x0 : · · · x1 : · · · : xn)
∣∣ x0 �= 0

}
=
{

n-tuples
( x1

x0
, . . . ,

xn

x0

)}
= An.

In Figure 5.8, P is a point with x0 �= 0, so its equivalence class contains a unique
point in the affine hyperplane An defined by (x0 = 1). A point Q with x0 = 0 does
not correspond to any actual point of An; instead, it corresponds to all the lines of An

parallel to v = Q̃.
Note that this discussion reverses the process of ‘going from inhomogeneous to

homogeneous’ sketched in 5.1.1; the points of the hyperplane H ⊂ Pn are at infinity
when viewed from the affine space An defined by (x0 = 1). However, splitting points
into ‘finite’ and ‘infinite’ is not intrinsic to projective space, but depends on the choice
of H (or the linear form α).

5.9 Desargues’ theorem

Theorem (Desargues’ theorem) Let �P Q R and �P ′Q′R′ be 2 triangles in Pn

with n ≥ 2. Suppose that �P Q R and �P ′Q′R′ are in perspective from some point
O ∈ Pn (that is, O P P ′, O Q Q′ and O R R′ are lines). Then the corresponding sides
of �P Q R and �P ′Q′R′ meet in 3 collinear points. In other words,

Q R and Q′R′ meet in A
P R and P ′R′ meet in B
P Q and P ′Q′ meet in C

 and A, B, C are collinear (8)
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Figure 5.9a The Desargues configuration in P2 or P3.

(see Figure 5.9a). The converse also holds: condition (8) implies that �P Q R and
�P ′Q′R′ are in perspective from some point O.

Proof If the two triangles are in perspective from O , the linear subspaces〈
O, P, Q, P ′, Q′〉 and

〈
O, P, R, P ′, R′〉 are planes that have at least the line

〈
O, P, P ′〉

in common. Hence

dim
〈
O, P, Q, R, P ′, Q′, R′〉 = 2 or 3

by Theorem 5.4. Also, the construction of A, B, C in (8) makes sense: the two lines
P Q and P ′Q′ are coplanar (contained in the plane

〈
O, P, Q, P ′, Q′〉), so meet in a

unique point C , and similarly for the other pairs of sides.

Step 1 Suppose first that P, Q, R and P ′, Q′, R′ span a 3-dimensional space P3

so are not in any P2, and that they are in perspective from O . Set L = 〈P, Q, R〉 ∩〈
P ′, Q′, R′〉. This is the intersection of two distinct planes in P3, and is therefore a

line by Theorem 5.4. But by construction, A ∈ L since A = Q R ∩ Q′R′. The same
applies to B and C , so that also B, C ∈ L and the 3 points are collinear.

Step 2 We reduce to the first case. Thus suppose that P, Q, R and P ′, Q′, R′ are
in the plane � = 〈O P Q R P ′Q′R′〉. Let M ∈ P3 \� be any point, and lift R, R′ off
the plane: pick S, S′ as in Figure 5.9b in perspective from O such that S and R are in
perspective from M , and S′ and R′ are likewise in perspective from M . Then �P QS
and �P ′Q′S′ are as in Step 1. So the 3 points

QS ∩ Q′S′ = Ã, P S ∩ P ′S′ = B̃ and P Q ∩ P ′Q′ = C

are collinear in P3, so lie on a line L̃ ⊂ P3. But it is easy to see from the construction
that Ã, B̃ lie above A, B in perspective from M , so A, B, C are collinear.
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Figure 5.9b Lifting the Desargues configuration to P3.

For proofs of the converse see Exercises 5.14–5.15 and 5.11. QED

It is interesting to note exactly what is used in the proof of Desargues’ theorem
just given. It is pure incidence geometry in Pn with n ≥ 3, in the sense that it uses
nothing beyond particular cases of formula (1) of Theorem 5.4: two distinct points of
Pn span a line, two concurrent lines span a plane, two distinct lines in a plane intersect
in a point, two distinct planes of P3 intersect in a line, etc. The final part of the proof,
Step 2, assumes also that there exists a point not in the plane � (that is, that we are
in Pn with n ≥ 3), and that the two lines M R and M R′ each have at least one point
in addition to M, R and M, R′.

5.10 Pappus’ theorem

Theorem (Pappus’ theorem) Let L, L ′ ⊂ P2 be two lines and

P, Q, R ⊂ L and P ′, Q′, R′ ⊂ L ′

two triples of distinct points on L and L ′ (not equal to L ∩ L ′). Then the 3 points

Q R′ ∩ Q′R = A, P R′ ∩ P ′R = B and P Q′ ∩ P ′Q = C

are collinear (see Figure 5.10). Notice that the figure is a configuration of 9 lines and
9 points with 3 lines through each point and 3 points on each line.

Proof This can also be proved via a lifting to P3, but this requires a bit more
information about P3 (specifically, quadric surfaces in P3 and properties of lines on
them). I sketch the easy proof in coordinates.

By Theorem 5.5, I can choose homogeneous coordinates (x : y : z) such that

P = (1 : 0 : 0), Q = (0 : 1 : 0), P ′ = (0 : 0 : 1) and Q′ = (1 : 1 : 1).
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Figure 5.10 The Pappus configuration.

Then

L = P Q : {z = 0}, P ′Q : {x = 0}, L ′ = P ′Q′ : {x = y} and P Q′ : {y = z}.

Therefore

C = P ′Q ∩ P Q′ = (0 : 1 : 1).

Now let R = (1 : β : 0) and R′ = (1 : 1 : γ ). Then easy calculations give

P R′ : {z = γ y} P ′R : {y = βx}
so that B = (1 : β : (βγ )) and

Q R′ : {z = γ x} Q′R : {y − z = β(x − z)}
so that A = (1 : (β + γ − βγ ) : γ ). Finally, A, B, C are all on the line

{y − z = β(1 − γ )x}. QED

5.11 Principle of duality

Projective duality is based on the idea that the space (Rn+1)∗ of linear forms
α : Rn+1 → R is also isomorphic to Rn+1. Namely, if e0, . . . , en+1 is a basis of Rn+1

then the dual basis is given by the linear form

e∗i : Rn+1 → R defined by e∗i (e j ) = δi j =
{

1 if i = j

0 if i �= j .
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Further, there is a natural one-to-one correspondence between subspaces of Rn+1

and its dual: a subspace V ⊂ Rn+1 corresponds to its annihilator (perpendicular)
subspace V⊥, that is, the set of linear forms α : Rn+1 → R vanishing on V . By
elementary linear algebra, dim V + dim V⊥ = n + 1. Hence we obtain the following
correspondence between elements of the geometry of projective linear subspaces of
Pn = P(Rn+1) and those of (Pn)∗ = P(Rn+1)∗:

E = P(V ) = Pd ⊂ Pn ←→ E⊥ = Pn−d−1 = P(V⊥) ⊂ (Pn)∗

point P = P0 ∈ Pn ←→ hyperplane Pn−1 = � ⊂ (Pn)∗

subspace E1 ⊂ E2 ←→ supspace E⊥
1 ⊃ E⊥

2

intersection E1 ∩ E2 ←→ span
〈
E⊥

1 , E⊥
2

〉
span 〈E1, E2〉 ←→ intersection E⊥

1 ∩ E⊥
2 .

The case of P2 is special and particularly illustrative: hyperplanes in P2 are simply
lines L = P1 ⊂ P2; points are dual to lines, and the line through two points is dual to
the intersection of two lines.

Proposition (Principle of duality for P2) Every theorem concerning points and
lines in P2 has a dual theorem, obtained from the original one via the following
substitutions:

points P ←→ lines L

lines L ←→ points P

line P1 P2 (= the span 〈P1, P2〉) ←→ point of intersection L1 ∩ L2

intersection L1 ∩ L2 ←→ line P1 P2.

This means that given a theorem and its proof about points and lines in P2, you get a
new theorem and its proof by replacing points by lines etc., in a completely automatic
way. For example, the dual of Desargues’ theorem in P2 is its converse (which is why
I omitted the proof in 5.9). For the dual of Pappus’ theorem, see Exercise 5.16.

5.12 Axiomatic projective geometry

An axiomatic projective plane � (Figure 5.12a) consists of two sets

Points(�) and Lines(�)

and a relation

Incidence(�) ⊂ Points(�) × Lines(�),

usually called an incidence relation. If (P, L) ∈ Incidence(�), we say that ‘point P
is on line L’ or ‘line L passes through point P’; because this is an axiomatic system,
we might as well say with David Hilbert ‘beer mug P is on table L’.
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line PQ
P

Q
L

M

point L ∩ M

Figure 5.12a Axiomatic projective plane.

This data is subject to the following axioms.

1. Every line has at least 3 points.
2. Every point has at least 3 lines through it.
3. Through any 2 distinct points there is a unique line.
4. Any 2 distinct lines meet in a unique point.

Note that these axioms are obviously dual: you can replace the beer mugs on the
tables throughout, and vice versa, and the axioms continue to hold.

More generally an axiomatic projective space has a lattice of projective linear
subspaces, the incidence relation⊂, intersection and linear span, and suitable axioms.
It is best not to insist a priori that the dimension of the space or its projective linear
subspaces is specified. The most important case is the infinite dimensional case,
which von Neumann used to give axiomatic foundations to quantum mechanics,
when dimensions of projective linear subspaces can take values in R or the value ∞.

Introducing coordinates in axiomatic projective planes The real projective plane
P2 = P2

R
discussed thus far is certainly not the only axiomatic projective plane: given

any field k, you can take P2
k =

(
k3 \ {0})/∼ where (x0, x1, x2) ∼ (λx0, λx1, λx2) for

0 �= λ ∈ k. It is an easy exercise to show that axioms 1 to 4 continue to hold in P2
k . For

example, if k = F2 you get an axiomatic projective plane with 7 points and 7 lines
(see Exercise 5.21).

For this purpose, k has to be a division ring, meaning that ax = b has a solution
for every a, b ∈ A with a �= 0, but it is not necessary that k is commutative: you just
have to take care that in the equivalence relation (x0, x1, x2) ∼ (λx0, λx1, λx2) only left
multiplication by λ ∈ k∗ is allowed, and the linear subspaces of k3 used to define lines
are right k-subspaces. Indeed, even the associative law on k can be weakened, although
some kind of associativity is required in order that (x0, x1, x2) ∼ (λx0, λx1, λx2) is an
equivalence relation. For a nontrivial example, do Exercise 8.23. In this course, I do
not have time for a detailed discussion of the following result, one of the most beautiful
contributions of geometry to pure algebra; for details, consult Hartshorne [12].
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R∞Q∞

y x + yx0 L

P∞

Figure 5.12b Geometric construction of addition.

Theorem (Hilbert’s construction) An axiomatic projective plane � gives rise to a
division ring A such that � = P2

A. Moreover,

A is an associative ring ⇐⇒ Desargues’ theorem holds in �;

A is a commutative ring ⇐⇒ Pappus’ theorem holds in �.

Flavourofproof We must make a number of choices in �. Pick a line L∞ to serve
as the line at infinity, three points P∞, Q∞ and R∞ on it, and a line L through P∞,
distinct from L∞. The elements of the division algebra A are the points of L except
for ∞ = L ∩ L∞. Now pick 2 different points of L \∞, and call them 0 and 1. The
algebraic operation + is constructed in terms of parallels (since we have fixed L∞,
two lines of � are parallel if their intersection is on L∞) and× in terms of similarity.
For example, addition is defined as in Figure 5.12b.

Exercises

5.1 Let x, y, z be coordinates in R3, and � : (z = 1), �′ : (y = 1) two hyperplanes. Write
down the perspectivity ϕ : � → �′ from O = (0, 0, 0) in terms of coordinates (x, y)
on � and (x, z) on �′. Find and describe the points of � where ϕ is not defined.
Prove that ϕ takes a line L ⊂ � to a line L ′ = ϕ(L) ⊂ �′ (with a single exception).
Consider the pencil of parallel lines y = mx + c of � (for m fixed and c variable),
and determine how ϕ maps.

5.2 In the notation of the preceding exercise, let S : (x2 + y2 = 1) ⊂ �. Understand the
effect of the perspectivity ϕ on S, both geometrically and in coordinates. Show that
a circle and a hyperbola in R2 correspond to projectively equivalent curves in P2

R
.

Account for the 4 asymptotic directions of the hyperbola in terms of S.
5.3 In P2, write down the equation of the line joining P = (1 : 1 : 0) and (α : 0 : β); write

down the point of intersection of the 2 lines x + y + z = 0 and αx + βy = 0.
5.4 Let �i ⊂ R3 be the 3 planes of Exercise 4.1. Construct P3 by introducing a fourth

coordinate t , write down the planes of P3 by homogenising the equations of �i , and
calculate again the intersections and spans.
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5.5 Prove that 3 lines L , M, N of Pn that intersect in pairs are either concurrent (have a
common point) or coplanar. [Hint: use dimension of intersection.]

5.6 Suppose that L , M, N are 3 lines of P4 not all contained in any hyperplane. Prove that
there exists a unique line meeting all 3 lines. [Hint: consider first the span 〈L , M〉 =
P3.]

5.7 Write down all the projective linear maps ϕ of P2 taking

(1 : 0 : 0) �→ (1 : 2 : 3), (0 : 1 : 0) �→ (2 : 1 : 3), (0 : 0 : 1) �→ (3 : 1 : 2).

Now write down the unique projective linear map taking the standard frame of refer-
ence

(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1), (1 : 1 : 1)

into

(1 : 2 : 3), (2 : 1 : 3), (3 : 1 : 2), (1 : 2 : 2)

respectively. [Hint: reread the proof of Theorem 5.5.]
5.8 Consider the affine linear map ϕ0 : A2 → A2 given by

(x, y) �→ (3x − 2, 4y − 3).

Prove that ϕ0 has a unique fixed point in A2. [Hint: you can do this by linear algebra,
or by using the contraction mapping theorem from metric spaces.]
Write down the projective linear map ϕ of P2 extending ϕ0. Find the locus of fixed
points of ϕ on P2. [Hint: either find the fixed points ‘by observation’, or prove that
(x : y : z) is a fixed point of a projective linear map x �→ Ax if and only if x = (x, y, z)
is an eigenvector of A.]

5.9 Repeat the previous question for the map

(x, y) �→ (x − y + 2, x + y + 3).

5.10 Suppose z = (1 − λ)x + λy. Write y = (1 − λ′)x + λ′z; find λ′ as a function of λ.
Similarly, determine the effect of each permutation of x, y, z on the affine ratio
λ = (z − x)/(y − x). Thus permuting the 3 points x, y, z defines an action of the
symmetric group S3 on the set of values of λ.

5.11 Let P, Q, R = (1 : 0), (0 : 1), (1 : 1) be the standard frame of reference of P1.
(a) Find the projective linear map that takes P, Q, S to Q, P, S (in that order); next

P, Q, S to P, S, Q. What is the effect of your map on the affine coordinate of a
point R = (1 : λ) ∈ P1?

(b) Verify that the matrixes
(

0 1
1 0

)
and

(
1 −1
0 −1

)
generate a group under matrix multipli-

cation isomorphic to the symmetric group S3.
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(c) The cross-ratio of 4 points p, q, r, s on a line is defined to be

{p, q; r, s} = p − r
p − s

· q − s
q − r

.

Explain what happens when p, q, r, s are permuted. Prove that there are in general
6 values

λ,
1

λ
, 1 − 1

λ
, λ− 1

λ
,

1

1 − λ
,

λ

1 − λ

for the cross-ratio, and the group fixing one value is a 4-group V4.

5.12 Deduce Proposition 1.16.3 (1) from the invariance of cross-ratio under perspec-
tivity. [Hint: interpret one of the four lines in Proposition 5.6 as the line at
infinity.]

5.13 Desargues’ theorem 5.9 states that if �P Q R and �P ′Q′R′ are 2 triangles in per-
spective from a point then the 3 points of intersection (e.g., C = P Q ∩ P ′Q′) of
corresponding sides are collinear. See Figure 5.9a. Give the coordinate proof. [Hint:
as in the proof of Theorem 5.10, take 4 of the points as frame of reference, choose
convenient notation for the 3 remaining points, find the coordinates of A, B, C and
prove they are collinear.]

5.14 Modify the argument to prove the converse of Desargues’ theorem.
5.15 State and prove the dual of Desargues’ theorem. Use the same Figure 5.9a.
5.16 State and prove the dual of Pappus’ theorem. [Hint: with care you can choose notation

exactly dual to that in 5.10, e.g., p : (x = 0), L = p ∩ q = (0 : 0 : 1), etc.]
5.17 State and prove the dual of the statement of Exercise 5.6. [Hint: . . . given three 2-planes

of P4 not . . . ]
5.18 Do the same for Exercise 5.5.
5.19 Let L , L ′ ⊂ P2 be two lines. Prove that a projective linear map ϕ : L → L ′ can be

written as the composite of at most 2 perspectivities L → M and M → L ′ from
suitably chosen points of P2. [Hint: Step 1. If the point of intersection L ∩ L ′ = P is
mapped to itself by ϕ, show that ϕ is a perspectivity because you can fix the centre
O to deal with 3 points. Step 2. In general, choose a third line M and a centre O so
that ϕ composed with the perspectivity ψ : M → L is as in Step 1.]

5.20 Prove that Pn has a decomposition as a disjoint union of n + 1 subsets

Pn = {pt}  A1  A2  · · ·  An.

[Hint: Pn = An  hyperplane at ∞.]
5.21 If k is a finite field with q elements, find 2 different proofs of

#(Pn
k ) = 1 + q + q2 + · · · + qn.

[Hint: the ‘topological’ proof uses the decomposition of the preceding exercise. The
‘arithmetic’ method just counts using the definition Pn

k =
(
kn+1 \ 0

)
/k∗.]
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5.22 Prove the following statement, announced in 4.5. For n ≥ 2, a bijective map T : An →
An , which preserves the incidence geometry of affine linear subspaces of An and is
continuous, is affine linear. [Hint: it is clearly sufficient to restrict to n = 2. Use the
idea of the sketch proof of Hilbert’s theorem 5.12 to show that any such map is affine
linear, possibly composed with a continuous field automorphism of R. Conclude by
showing that R has no nontrivial continuous field automorphisms.]



6 Geometry and group theory

The substance of this chapter can be expressed as the slogan

Group theory is geometry and geometry is group theory.

In other words, every group is a transformation group: the only purpose of being
a group is to act on a space. Conversely, geometry can be discussed in terms of
transformation groups. Given a space X and a group G made up of transformations of
X , the geometric notions are quantities measured on X which are invariant under the
action of G. This chapter formalises the relation between geometry and groups, and
discusses some geometric issues for which group theory is a particularly appropriate
language.

The action of a transformation group on a space is another way of saying symmetry.
To say that an object has symmetry means that it is taken into itself by a group action:
rotational symmetry means symmetry under the group of rotations about an axis.
As a frivolous example, Coventry market pictured in Figure 6.0 has (approximate)
rotational symmetry: if you stand at the centre, all directions outwards are virtually
indistinguishable; you can understand a coordinate frame as a signpost to break the
symmetry, and to enable people to find their way around.

Each of the geometries studied in previous chapters had transformations associated
with it: Euclidean motions of E2, orthogonal transformations as motions of S2, Lorentz
transformations as motions of H2, and affine and projective linear transformations
of An and Pn . In each case, the transformations form a group. I have already studied
aspects of this setup: for example, several theorems state that transformations are
uniquely determined by their effect on a suitable coordinate frame.

Whenever two branches of mathematics relate in this way, both can benefit from
the cooperation. The repercussions of symmetry extend into many areas of math and
other sciences. Some examples:

1. The basic idea of the Galois theory of fields is to view the roots of a polynomial as
permuted amongst themselves by the symmetry group of a field extension.

2. Crystallography makes essential use of group theory to understand and classify the
symmetries of lattice structures formed by crystals, and their impurities.

92
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Figure 6.0 The plan of Coventry market.

3. Requiring the laws of physics to be invariant under a symmetry group has been one
of the most fertile sources of new ideas in math physics:

(a) The assumption in Newtonian dynamics that the laws of motion are invariant under
Euclidean changes of inertial frames leads directly to conservation of momentum
and angular momentum; this will be discussed further in 9.3.1.

(b) The fact that Maxwell’s equations of electromagnetism are not invariant under the
Galilean group of symmetries of classical Newtonian dynamics, but are invariant
under Lorentzian symmetries, led Einstein to the idea of special relativity.

(c) Modern particle physics classifies elementary particles in terms of irreducible
representations of symmetry groups. Several particles were first predicted from
a knowledge of group representations, before being discovered experimentally.
(See 9.3.3–9.3.4 for more details.)

(d) In general relativity, Einstein’s field equation for the curvature tensor of spacetime
was discovered as the only possible partial differential equation invariant under the
pseudo-group of local diffeomorphisms. Einstein himself understood a great deal
more about the principles underlying symmetry in physics than about curvature
in Riemannian geometry.

We divide math up into separate areas (analysis, mechanics, algebra, geometry,
electromagnetism, number theory, quantum mechanics, etc.) to clarify the study of
each part; but the equally valuable activity of integrating the components into a work-
ing whole is all too often neglected. Without it, the stated aim of ‘taking something
apart to see how it ticks’ degenerates imperceptibly into ‘taking it apart to ensure it
never ticks again’.

6.1 Transformations form a group

A transformation of a set X is a bijective map T : X → X . (We could equally well
say permutation of X , although this is mainly used for finite sets.) If T is bijective,
then so is its inverse T−1. If T1 and T2 are maps from X to itself then, as discussed
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in 2.1, the composite T2 ◦ T1 means ‘T2 follows T1’ or ‘first do T1, then do T2’. If T1

and T2 are bijective then so is T2 ◦ T1; thus composition ◦ is a binary operation

Trans X × Trans X → Trans X,

where Trans X is just the set of all transformations of X .

Proposition Transformations of a set X form a group Trans X, with composition
of maps as the group operation, idX : X → X as the neutral element and T �→ T−1

as the inverse.

Proof This is absolutely content free, but let us check the group axioms anyway.

Associative As discussed in 2.4, T3 ◦ T2 ◦ T1 has no meaning other than the map
X → X taking x �→ T3(T2(T1(x))), so that composition of maps is associative.

Inverse T ◦ T−1 = T−1 ◦ T = idX . By definition T−1(x) = y if and only if
T (y) = x . So T (T−1(x)) = T (y) = x and T−1(T (y)) = T−1(x) = y.

Identity idX ◦ T = T ◦ idX = T . The left-hand side says ‘first do T , then do
nothing’. In view of which, you might as well omit the second step. QED

6.2 Transformation groups

A transformation group is a subgroup of Trans X for some set X . In other words, it
is a subset G ⊂ Trans X of bijections T : X → X , containing idX , and closed under
composition T1, T2 �→ T2 ◦ T1 and inverse T �→ T−1.

Discussion Usually X has extra structures (for example: distance, algebraic struc-
ture, collinearity structure, topology, distinguished elements or subsets), and we take
the set of transformations that preserve these structures:

G = {T ∈ Trans X
∣∣ T preserves the given structures of X

}
.

It will usually be obvious that

T preserves structures =⇒ so does T−1;

T1, T2 preserve structures =⇒ so does T2 ◦ T1;
(1)

so that we get for free that G is a subgroup. This notion includes the symmetry group
of an object, automorphisms in algebra, and many other notions you will meet later
in math and other subjects.

Example 1. ‘No structure’ Let X be a finite set containing n elements labelled
{1, . . . , n}. The symmetric group Sn is the group of all permutations of X .
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Example 2. Euclidean motions Motions of En form a group Eucl(n). You can
verify this by using the result that a motion T is of the form T (x) = Ax + b, and
write out the composition and inverse in this form (compare 2.2). However, this is
completely unnecessary: the result is a standard consequence of what I just said,
because motions are defined explicitly as transformations that preserve distance, so
that (1) holds. The group Eucl(n) has a subgroup consisting of elements T fixing
a chosen point P ∈ En; if P is the origin, then T (x) = Ax with A an orthogonal
matrix. Hence this subgroup is isomorphic to the orthogonal group O(n) of n × n
real orthogonal matrixes. (See 6.5.3 for more on this point.)

Example 3. Symmetry groups Let S be a subset of Euclidean space En , and let
G be the set of isometries of En which map points of S to points of S. Again, the
general discussion implies that G is a group, since it is the set of transformations of
En preserving the metric and points of S. G is called the symmetry group of S. To
get interesting groups, one chooses special S (see Exercises 6.5–6.6); for a ‘potato-
shaped’ set S, there will be no nontrivial symmetries at all.

Example 4. Linear maps If V is a vector space over the reals, a transformation
T : V → V is linear if and only if T (λx + µy) =what you think; that is, T preserves
the vector space structure. Thus invertible linear transformations form a group GL(V ),
the general linear group of V . If V has finite dimension, a basis in V gives an
identification V = Rn; invertible linear maps are then represented by n × n invertible
matrixes which form the general linear group GL(n, R). Closely related to the group
GL(n + 1, R) is the projective linear group PGL(n) of projective transformations
discussed in 5.5.

We will see that many of the results of the previous chapters, and many other
questions at the heart of geometry, can be stated as properties of groups such as
Eucl(n), GL(V ) or PGL(V ).

6.3 Klein’s Erlangen program

Around 1870, Felix Klein formulated the following meta-definition:

Geometry is the study of properties invariant under a transformation group.

I have used this principle throughout the previous chapters; for example, distances
and angles are geometric properties in Euclidean geometry exactly because they are
invariant under motions.

In this context, consider the chain

Euclidean geometry En → affine geometry An → projective geometry Pn . (2)

The corresponding groups of transformations can be expressed as an increasing chain

Eucl(n) ⊂ Aff(n) ⊂ PGL(n + 1).
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Here the inclusion of Aff(n) as a subgroup of PGL(n + 1) results from the inclusion
An ⊂ Pn as the set of points with x0 �= 0: writing T ∈ Aff(n) as usual in the form
T (x1, . . . , xn) = Ax + b gives

t


x1
...

xn

1

 =
(

A b
0 1

)
x1
...

xn

1

 ,

so that T ∈ Aff(n) corresponds to
(

A b
0 1

)
. It is clear that an element of PGL(n + 1) is

in Aff(n) if and only if it takes the hyperplane {x0 = 0} into itself.
The Erlangen program explains the relation between the three geometries in (2) by

saying that as the transformation group gets larger, the invariant properties become
fewer: Euclidean geometry has distances and angles; these are no longer invariants
of affine geometry, but An has parallels and ratios of parallel vectors; neither of these
notions survives in Pn . As I said in 5.6, the action of the projective group PGL(2) on
P1 is 3-transitive, and it is precisely the size of this symmetry group that says that
there can be no distance function d(P, Q) of two points, and no ratio of distances
d(P, Q) : d(P, R) along lines defined in projective geometry. The group action was
prominently involved in the definition of the cross-ratio in 5.6 and in the deduction
that it is a well defined function of 4 collinear points.

6.4 Conjugacy in transformation groups

In general, let X be a set and G ⊂ Trans X a transformation group of X as in 6.1.
Suppose that T ∈ G is a transformation we want to study, and g ∈ G any element.

Question What is the conjugate element gT g−1?

Answer gT g−1 is just T viewed from a different angle. We can think of gT g−1

as acting on elements gx ∈ gX , rather than x ∈ X , by the rule gx �→ g(T x). In fact,
the calculation is not very difficult:

gT g−1(gx) = gT (gg−1)x = g(T (x)). (3)

Thus we can think of g as a ‘change of view’, and gT g−1 as T expressed in the new
view. In many cases, g will actually be a change of basis in a vector space, and gT g−1

the same map T written out in terms of the new basis.

Example1. Transpositions in Sn Consider the transposition (12) in the symmetric
group Sn of all permutations of {1, . . . , n}, the element which transposes 1 and 2 and
leaves everything else fixed. Let g ∈ Sn be any permutation. Then by what I just said,
g(12)g−1 should also be a transposition, because it is just (12) viewed from another
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P θ
L

M

Q

t(Q)

Rot(P, θ)

g(P)

g(θ)

Rot(g(P), g(θ))

g(t(Q))

g(Q)

g(M)

g(L)

Figure 6.4a The conjugate rotation g Rot(P, θ )g−1 = Rot(g(P ), g(θ )).

angle. In fact

g(12)g−1 = (ab), where a = g(1), b = g(2).

Proof I give the proof, at the risk of spelling out the really obvious:

g(12)g−1 :
g(1) �→ 1 �→ 2 �→ g(2),

g(2) �→ 2 �→ 1 �→ g(1),
(4)

and if c �= g(1), g(2) then g−1(c) �= 1, 2 so that (12) fixes it, and therefore c �→
g−1(c) �→ itself �→ c. QED

Example 2. Fixed point Finding the fixed point (or fixed points) of a transforma-
tion is an important issue in many geometric contexts. If T fixes P then gT g−1 fixes
g(P). The calculation is again really obvious, see (3).

Example3. Rotation Let T = Rot(P, θ ) be a rotation of E2 and g ∈ Eucl(2) any
motion. I determine gT g−1. In order to see the action, consider any line L through P ,
and let M be the line such that ∠L P M = θ . Then T is determined as taking a point
Q ∈ L into the corresponding point of M (that is, T (Q) is the same distance along
M).

Now, as I said, we should view gT g−1 as acting on g(E2). So draw g(P), g(L)
and g(M). Then gT g−1 fixes g(P), and takes points of g(L) into the corresponding
points of g(M) (see Figure 6.4a). This shows that gT g−1 = Rot(g(P), g(θ )), where I
write g(θ ) for the angle ∠g(L)g(P)g(M); in fact g(θ) = ±θ (according as g is direct
or opposite).

Example4. Translation Let T : An → An be the translation x �→ x + b and sup-
pose that g ∈ Aff(n) is given by x �→ Ax + c. By what I said, there is only one thing
gT g−1 could possibly be – please guess it before reading further.

Now g−1 is given by y �→ A−1(y − c). So gT g−1 is the map

y �→ A−1(y − c) �→ A−1(y − c) + b �→ A
(

A−1(y − c) + b
)+ c. (5)
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P

Q

P'

Q'

g(P)

g(Q')

g(P')
g(Q)

Figure 6.4b Action of Aff(n) on vectors of An .

Multiplying this out gives simply y + Ab. That is, if T is the translation by b then
gT g−1 is the translation by Ab.

Remark It is easy to argue that we can write Ab = g(b). In fact g acts on
points of An , so it also acts on based vectors

−→
P Q; if b = −→

P Q then Ab = −−−−−−→
g(P)g(Q)

(see Figure 6.4b). With this convention, we can state the conclusion in the form
g(Transl(b))g−1 = Transl(g(b)).

I summarise the discussion of this section with the following principle, which is
extremely general in scope.

Principle Let X be a set and g, T : X → X transformations of X. Suppose that
T has some properties (or is determined by some properties) expressed in terms of
data from X.

Then the conjugate transformation gT g−1 : X → X has, or is determined by, the
same properties expressed in terms of g applied to the same data.

Thus T fixes P gives that gT g−1 fixes g(P), and T = Rot(P, θ ) gives gT g−1 =
Rot(g(P), g(θ)).

6.5 Applications of conjugacy

6.5.1
Normal
forms

A standard ‘softening up’ before attacking any kind of geometric object is first to
make it as simple as possible by a good choice of coordinates. We have already seen
this several times in Chapter 1. For example, in 1.14 I expressed any rotation or glide
of the Euclidean plane E2 in the form(

x
y

)
�→
(

cos θ − sin θ

sin θ cos θ

)(
x
y

)
or

(
x
y

)
�→
(

x + a
−y

)
(6)

with respect to a suitable Euclidean coordinate system. For the glide, you just choose
coordinates so that the reflection line is the x-axis. Here the object under study is a
Euclidean motion T ∈ Eucl(2), the change of Euclidean coordinates is also an element
g ∈ Eucl(2) by the discussion in 1.12, and Theorem 1.14 says that gT g−1 equals one
of the normal forms (6).
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Similar remarks apply to Theorem 1.11. Let T : Rn → Rn be the orthogonal trans-
formation of Rn under study. The result is that in a suitable orthonormal basis, T takes
the block diagonal form of Theorem 1.11. Now T ∈ O(n), and the change of basis is
also given by an orthogonal matrix A ∈ O(n) (because it expresses the standard basis
{e1, . . . , en} of Rn in terms of the special basis of Theorem 1.11, and both bases are
orthogonal). Thus another way of stating the result is that AT A−1 equals the block
diagonal matrix of Theorem 1.11.

The Jordan normal form of a matrix should be viewed as another example of
conjugation. Consider any linear map θ : V → V of an n-dimensional complex vector
space V . After a choice of basis, the map θ is represented by a matrix T ∈ Mn×n(C).
The theorem is that in a suitable basis, θ has the diagonal block form

T̃ =


T1

T2

. . .

Tk

 with Ti =


λi 1

λi 1
. . .

λi 1
λi

 . (7)

Recall where this form comes from: the original aim is to choose a basis of V consisting
of eigenvectors, which would reduce the matrix to a diagonal matrix of eigenvalues.
The Jordan normal form is the next best thing if complete diagonalisation turns out
to be impossible.

A coordinate change in Cn changes T into AT A−1, where A ∈ GL(n) expresses
the change of basis; remember that separate coordinate changes in the domain and
target are not allowed, because they are both the same vector space V . Hence the
theorem on Jordan normal form states that if T is any matrix, for suitable choice
of A the matrix AT A−1 has the shape of (7). If we restrict to a nonsingular matrix
T ∈ GL(n, C), then T �→ AT A−1 is just conjugacy in GL(n, C).

As a final example, consider permutations T ∈ Sn of {1, . . . , n}. Write T as

t = (a1a2 · · · ak)(ak+1ak+2 · · · ak+l) . . .

(recall this means that under T , (a1 �→ a2 �→ · · · �→ ak �→ a1) and so on). If g is the
permutation ai �→ i then

gT g−1 = (12 . . . k)(k + 1 . . . k + l) · · · .

Hence writing a permutation as a product of disjoint cycles can be thought of as
describing conjugacy in the group Sn .

Remark In all the examples discussed here, finding a normal form of a trans-
formation T ∈ G is almost the same thing as listing the elements of G modulo the
equivalence relation T ∼ gT g−1. In group theory, the equivalence classes are called
conjugacy classes of G. For example, the above argument gives that the conjugacy
classes of GL(n, C) are exactly the Jordan normal forms (with all λi �= 0). The set of
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conjugacy classes of a group G is one of the main protagonists in the representation
theory of G.

6.5.2
Finding
generators

It happens in lots of problems that we have a subset 
 of elements of a group G, and
we want to know what subgroup 〈
〉 ⊂ G they generate. I give two quite amusing
examples.

Example 1. How to walk a wardrobe The problem of Exercise 2.12 was to prove
that rotations about any two points P �= Q of E2 generate all direct motions of Eucl(2).
I give here a solution based on conjugacy.

How to prove that I can get all the translations? First, I certainly get some transla-
tions, since the composite Rot(P, θ ) ◦ Rot(Q,−θ) is a translation in a vector bθ . The
length of bθ is a continuous function of θ , and is sometimes nonzero (for example,
b90◦ has length

√
2d(P, Q)). It follows by the intermediate value theorem that we can

get a translation by a vector of any fairly short length.
Now I use conjugacy: let T = Transl(bθ ) be a translation, and g = Rot(P, ψ)

a rotation. Then the conjugate gT g−1 is a translation by the vector g(bθ ) (see 6.4
Example 4):

gT g−1 = Transl
(
g(bθ )

)
.

Thus I can get a translation by any fairly short vector in any direction as a composite
of my generators.

Example 2. The 15-puzzle You can buy this puzzle in toy shops, and I am sure
you all know it:

HOURS OF FUN

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

A legal move is to slide the blocks, restoring the blank to the bottom right. As a
result of a legal move you permute the 15 numbered squares, so that clearly

G = {legal moves
} ⊂ S15.

Proposition G is the alternating group G = A15.

Proof. Step 1 There exists a 3-cycle T = (11, 12, 15). Just rotate the three
blocks in the bottom right corner.
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Step 2 For any three distinct elements a, b, c ∈ {1, . . . , 15}, there exists a legal
move g taking 11 �→ a, 12 �→ b, 15 �→ c (moving the other blocks any-old-how). I
omit the proof, which is not hard: if you have played with the puzzle, you know from
experience that you can put any 6 or 7 of the blocks anywhere you like.

Step 3 The point of this discussion: by Principle 6.4, gT g−1 is the 3-cycle (abc).
This is easy, please think it through: a �→ 11 �→ 12 �→ b, . . . .

End of proof For any n, the alternating group An is obviously generated by all
3-cycles, so that I have proved G ⊃ A15. Finally, G ⊂ A15. Indeed, writing 16 for
the blank tile, and removing the restriction that it is always restored to the bottom
right allows us to view G as a subgroup of S16. But in S16, every element of G is a
composite of transpositions (AB) where A is the current position of the blank tile,
and you must have evenly many to restore the blank to the bottom right. QED

Note that the Proposition does not immediately explain how to solve the puzzle:
knowing a group up to isomorphism does not tell you how to express its elements as
words in a given set of generators.

6.5.3
The
algebraic
structure
of trans-
formation
groups

The group Aff(n) has two distinguished subgroups:

1. the translation subgroup x �→ x + b, isomorphic to Rn; and
2. the subgroup GL(n)0 of linear maps x �→ Ax, isomorphic to GL(n) (here linear

means homogeneous linear, that is, fixing 0).

Every element of g ∈ Aff(n) can be written in a unique way in the form g : x �→
Ax + b, that is, g = Tb ◦ m A, where m A is multiplication by A, and Tb is translation
by b. I write g = (A, b) for short. It follows that

Aff(n) = GL(n) × Rn (direct product of sets). (8)

However, (8) is definitely not a direct product of groups, because the group law
is not just term by term composition: as we saw in 2.2, the composite g2 ◦ g1 of
g2 = (A2, b2) and g1 = (A1, b1) is calculated as follows:

x �→ A1x + b1 �→ A2(A1x + b1) + b2 = (A2 A1)x + (b2 + A2b1), (9)

so that the group law is

(A2, b2) ◦ (A1, b1) = (A2 A1, b2 + A2b1). (10)

This is a bit like a direct product, but the first factor A2 interferes with the second
factor b1 before the second factors combine.
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I summarise the properties of the group given by the product (8) with the group law
(10). Recall first that a normal subgroup of a group G is a subgroup H � G which is
taken to itself by conjugacy in G; that is, gHg−1 = H for all g ∈ G.

Proposition This setup has the following properties.

(i) The translation subgroup Rn ⊂ Aff(n) is a normal subgroup.
(ii) GL(n)0 =

{
(A, 0)

∣∣ A ∈ GL(n)
}

is a subgroup of Aff(n), and is not normal.
(iii) The first projection (A, b) �→ A of the direct product of sets (8) defines a surjective

group homomorphism Aff(n) → GL(n), under which the subgroup GL(n)0 maps
isomorphically to GL(n).

(iv) The kernel of Aff(n) → GL(n) is Rn.
(v) The action of GL(n) on Rn can be described as conjugacy in Aff(n).

The dramatis personae of the proposition are summarised in the diagram:

Rn � Aff(n) → GL(n)⋃ ↗ ∼=
GL(n)0

(11)

Proof (i) follows from the discussion in 6.4 Example 4: the conjugate of a trans-
lation by a vector b is another translation, by the vector g(b). (ii) is the same argument,
although the conclusion is different: GL(n)0 preserves 0 ∈ Rn; therefore by Princi-
ple 6.4, the conjugate subgroup g GL(n)0g−1 preserves g(0). Now in general g(0) �= 0,
and therefore g GL(n)0g−1 �= GL(n)0, so that it is not a normal subgroup.

(iii) and (iv) are obvious from the group law. For (v), note that as discussed in
the remark in 6.4 Example 4, the affine group Aff(n) acts on An , and also acts on
vectors of An , taking

−→
P Q to

−−−−−−→
g(P)g(Q). This gives a well defined action of Aff(n) on

Rn: indeed
−→
P Q = −−→

P ′Q′ means that P Q Q′P ′ is a parallelogram; an affine map takes
a parallelogram into another parallelogram, so that also

−−−−−−→
g(P)g(Q) = −−−−−−−→

g(P ′)g(Q′)
(compare Figure 6.4b). Thus the projection (A, b) �→ A is just the action of Aff(n)
on Rn (thought of as the free vectors of An). But this is also the action of Aff(n) by
conjugacy on translations by vectors in Rn . QED

Remarks

1. The same holds for the Euclidean group, with O(n) in place of GL(n). That is, the
same scenario can be replayed word for word with the new cast of players:

Rn � Eucl(n) → O(n)⋃ ↗ ∼=
O(n)0

(12)
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2. Philosophy: the groups are contained in the geometry, as transformation groups.
However, the geometry is also contained in the algebra: the vector space Rn and the
action of GL(n) on it are contained in the group structure of Aff(n). To spell this out,
Rn is the subgroup of translations in Aff(n), and the action of GL(n) on Rn is the
conjugacy action of Aff(n) on the translations.

The affine space An and the action of Aff(n) on it are also buried in the group
structure of Aff(n). Indeed, GL(n)0 is the subgroup of elements preserving 0, and its
conjugates are the subgroups GL(n)P preserving other points P ∈ An . Thus An is in
one-to-one correspondence with these conjugates.

3. This remark is intended for students who know about abstract groups, and what it
means for an abstract group to act on a mathematical structure. (Some details of
what is involved are discussed in Exercise 6.17; see also Section 9.2.) There is a
general notion of semidirect product G � H of abstract groups: if a group G acts
on a group H by group homomorphisms, then G � H is the set of pairs (A, b) with
A ∈ G and b ∈ H with the group law (A2, b2) ◦ (A1, b1) = (A2 A1, b2(A2b1)). It is
an easy exercise in abstract groups (Exercise 6.17) to see that this makes G � H into
a group, which fits into a diagram like (11).

6.6 Discrete reflection groups

Recall from 2.6 that reflections generate all motions of Euclidean space. In general,
a group generated by some set of reflections of En is called a reflection group. Of
special interest are relatively ‘small’ reflection groups; in Example 1, the group is
finite; in Examples 2–3 it is infinite but ‘discrete’ that is, group elements are in a
sense ‘well spaced’. I do not have space here to elaborate on the theory but I give the
most basic examples.

Example1. Kaleidoscope Two planar reflections in Euclidean lines�1, �2 meet-
ing at an angle θ = π/n generate a finite group (Figure 6.6a). If s1 and s2 are the two
reflections then s2 ◦ s1 is a rotation through 2π/n, so (s2 ◦ s1)n = id. As an abstract
group this is the dihedral group D2n , containing the cyclic group generated by the
rotation s2 ◦ s1 as a subgroup of index 2; see Exercise 6.5 for details.

By contrast, to get an idea of what I mean by ‘well spaced’ group elements, think
of the group generated by reflections in two lines that meet at an angle that is an
irrational multiple of π .

Example 2. Barber’sshop Reflections in two parallel mirrors �1, �2. This is the
infinite dihedral group D2∞ generated by s1 and s2 with s2

1 = s2
2 = id, and no other

relations. It contains the infinite cyclic group generated by the translation s1 ◦ s2 as a
subgroup of order 2.

Example 3. Musée Grévin The Musée Grévin is the Paris equivalent of Madame
Tussaud’s (the waxworks). They have a spectacular show in which members of the
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symmetries ‘  ’ us

Figure 6.6a Kaleidoscope.

Figure 6.6b ‘Musée Grévin’.

paying public and their children stand inside a kaleidoscope made of mirrors forming a
regular hexagon. At the angles of the hexagon they put exotically decorated columns
(Figure 6.6b). When the lights come on, you have the impression of standing in
an infinite honeycomb pattern containing periodically arranged family groups with
babies in pushchairs. The reflection group here is the group generated by reflections
in the six sides of the hexagon. See Exercise 6.6 for details.

Reflection groups turn up all over the place in mathematics, from the theory of
Platonic solids through the theory of crystals, Coxeter groups, Lie theory (the Weyl
group), to Riemann surfaces, which are related to Fuchsian groups acting on hyper-
bolic rather than Euclidean space. For a first port of call, consult Coxeter [5].

Exercises

6.1 Prove that (n + 1) × (n + 1) matrixes with the block form
(

A b
0 1

)
where A is n × n

and b is n × 1 form a group isomorphic to Aff(n). Verify Proposition 6.5.3 in these
terms.

6.2 A similarity s : En → En is a transformation which scales distances by a constant
factor λ > 0 (that is, d(s(x), s(y)) = λd(x, y) for all x, y). Here λ depends on s only.

(a) Prove that the set of similarities is a transformation group Sim(n) of En .
(b) Sim(n) does not preserve distances in En . Prove that it preserves angles.
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(c) Show how to use the scaling factor λ to define a group homomorphism Sim(n) �
R>0 with Eucl(n) as its kernel.

6.3 Prove that the diagonal scalar matrixes diag(λ, λ, . . . , λ) form a subgroup of GL(n),
equal to the centre (= the set of elements that commute with every matrix). Prove
that PGL(n + 1) is the quotient of GL(n + 1) by its centre (compare 5.5).

6.4 Let G be a finite group of motions of E2. Prove that there is a point of E2 fixed by
every element of G. [Hint: take the average.] Deduce a description of every element
of Eucl(n) of finite order.

6.5 Let Sn be the regular n-gon in E2, for n ≥ 3, and let D2n be the symmetry group of
Sn . Show that
(a) every element of D2n fixes the centre of S;
(b) D2n contains n rotations (including the identity), which form a subgroup Hn of

D2n isomorphic to the cyclic group of order n;
(c) D2n also contains n reflections, and no further elements, hence has order 2n;
(d) D2n is isomorphic to the reflection group of 6.6 Example 1.
Denoting by a one of the reflections and by b a rotation by a smallest angle, write
out the group elements in terms of a, b. Find the relations holding between a and b.
Deduce from your relations that Hn is a normal subgroup of D2n . [Hint: if you get
stuck, first do the case of the square � in E2 with vertexes (±1,±1); here it is easy
to write out the elements of D8 as a set of matrixes, and doing this case gives you all
the psychological support needed to do the general case.]

The group D2n is called the dihedral group of order 2n, a group which occurs in
many guises in and out of geometry.

6.6 The reflection group G corresponding to the Musée Grévin described in 6.6 Exam-
ple 3 and Figure 6.6b is the group generated by reflections in the sides of a regular
hexagon H , which acts on E2 preserving the honeycomb tiling by regular hexagons.
Show that
(a) G contains the reflections in the 3 diagonals of H , generating a group of symme-

tries of H isomorphic to S3.
(b) Translations in G form a normal subgroup Z⊕ Z ∼= T"G, with quotient G/T ∼=

S3.
(c) G is of index 2 in the full group of symmetries of the hexagonal tiling.

[Hint: colour vertexes of the honeycomb tiling alternately black and white.]

Exercises in conjugacy.

6.7 Write StabG(x) ⊂ G for the set of elements of G that fix x (the stabiliser of x in G);
prove that StabG(x) is a subgroup.

Let G ⊂ Trans X be a transformation group of a set X . For x ∈ X and g, t ∈ G,
prove that t fixes x if and only if gtg−1 fixes g(x) (compare 6.4 (3)).

Deduce that StabG(gx) is the conjugate subgroup g StabG(x)g−1.
6.8 Prove that the distinction between direct and opposite motion (Definition 1.10) is in-

dependent of the choice of coordinates. [Hint: let T be the motion in question, and g ∈
Eucl(n) a coordinate change. By the principle of 6.4, T is expressed in the new coor-
dinates by gT g−1. It remains to calculate the linear part of gT g−1 and its determinant.]
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6.9 G is a group. Prove that conjugacy is an equivalence relation on G. That is, the relation
g ∼ g′ if and only if g and g′ are conjugate in G is an equivalence relation. Determine
all the conjugacy classes in the symmetric group S4.

6.10 Prove that any two translations Transl(b) by a nonzero vector b are conjugate in
Aff(2). (Compare 6.4 Example 4.) Which translations in Eucl(2) are conjugate?

6.11 Prove that two rotations of E2 are conjugate in Eucl(2) if and only if the absolute
value of the angles are equal.

6.12 Use Principle 6.4 and Theorem 1.14 to list the conjugacy classes of Eucl(2). [Hint:
every motion is conjugate to a standard type. You have to say when two standard types
are conjugate, and to choose exactly one normal form from each conjugacy class.]

6.13 Consider the field Fp = Z/p with p elements. The projective line P1
Fp

over Fp is the

set of 1-dimensional vector subspaces of F2
p, or equivalently, the set (F2

p \ 0)/∼. It
has p + 1 elements, called 0, 1, 2, . . . , p − 1,∞. Use Theorem 5.5 to prove that the
general linear group PGL(2, Fp) has order (p + 1) · p · (p − 1).

6.14 Specialise to p = 5, and the action of PGL(2, F5) on the 6 points {0, 1, 2, 3, 4,∞} of
P1

F5
. Write down the 3 maps

x �→ x + 1, x �→ 2x and x �→ 2 − 2/x

(where x is an affine coordinate) as permutations of these 6 elements.
6.15 Determine the subgroup of S6 (the symmetric group on 6 elements) generated by the

2 elements σ = (abcd) and τ = (cde f ). [Hint: if you play around for a while with
lots of combinations of the generators, you will notice that it is 3-transitive, but you
only get a few cycle types, so it is probably quite a bit smaller than the whole of S6.]

6.16 (Harder) Determine the subgroup G of the symmetric group S7 generated by σ =
(1234) and τ = (34567). [Hint: the answer is S7. Indeed, G is obviously 3 or 4-
transitive: as with the 15 puzzle (6.5.2 Example 2), you can put any 3 elements
anywhere you like by messing around with the given generators. G also contains an
odd permutation σ , so is not contained in the alternating group A7. To complete the
proof, you need to find a transposition or a 3-cycle; then G must contain A7 by the
same principle as 6.5.2 Example 2.]

6.17 (Assumes abstract group theory) Let G and H be abstract groups. Say what it means
for G to act on H by group homomorphisms (A, b) �→ Ab. Under this assumption,
prove that the multiplication

(A2, b2) ◦ (A1, b1) = (A2 A1, b2(A2b1)) for Ai ∈ G and bi ∈ H

makes the direct product G × H into an abstract group G � H , such that the assertions
of Proposition 6.5.3 hold for it.



7 Topology

The word topology in the context of this course has two quite different meanings:

‘Point-set topology’ Slogan: a topological space is a ‘metric space without a
metric’. In analysis, this idea leads to a fairly minor generalisation of the definition of
metric space, but the definition of topology has applications in other areas of math,
where it turns out to be logical or algebraic in content. I give the abstract definition
and some examples of topological spaces that are definitely not metric. This is an
important ingredient in all advanced math (algebra, analysis, arithmetic, geometry,
logic, etc.). Topology has lots of advantages even when the only spaces of interest are
metric spaces. It provides, in particular, a simple rigorous language for ‘sufficiently
near’ without epsilons and deltas.

‘Rubber-sheetgeometry’ The abstract language gives us tools to study spaces that
are geometric in origin, such as the torus and the Möbius strip. Geometric concepts
in topology include the winding number and the number of holes of a surface.

Here is a sample of the results proved in this chapter.

1. If f : S1 → 
 ⊂ R2 is bijective and continuous, then the inverse map f −1 : 
 → S1

is also continuous; that is, f is a homeomorphism. Joke: topology is geometry in
which

♥ = 0.

Imagine trying to prove this from first principles! The point is that f can be very
complicated, and f −1 might not be given by any simple function.

2. The cylinder is different from the Möbius strip.
3. The winding number: let ϕ : [0, 1] → R2 \ (0, 0) be a continuous map with ϕ(0) =

ϕ(1). Then the number of times ϕ winds around the origin is not changed by deforming
the loop continuously; in other words, the winding number is a homotopy invariant
of the map ϕ.

107
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7.1 Definition of a topological space

Let X be a set. A topology on X is a collection T of subsets of X satisfying the
following three axioms:

� finite intersection U1, . . . , Un ∈ T =⇒ U1 ∩ · · · ∩Un ∈ T ;
� arbitrary union Uλ ∈ T for λ ∈ � =⇒ ⋃

λ∈� Uλ ∈ T , where � is an arbitrary
indexing set;

� conventions on empty set ∅, X ∈ T .

A topological space is a pair X, T consisting of a set X and a topology T = TX on
it. U ∈ T is called an open set of the topology T . We often speak of the topological
space X and its open sets U , omitting T from the notation when it is clear what
topology is intended. V ⊂ X is closed if its complement is open; the topology could
be specified equally well by the collection of closed sets, which enjoys finite union
and arbitrary intersection. If Z ⊂ X , the closure of Z , denoted Z , is the intersection
of all closed sets containing Z . By the arbitrary intersection property of closed sets,
Z is closed; it clearly contains Z . A neighbourhood of a point x ∈ X is any subset
V ⊂ X containing an open set containing x .

We will see presently that if X is a metric space then there is a natural choice of
open sets of X which form a topology. Here are some simpler examples.

Example 1 Let X = {P1, P2, P3} be a set consisting of 3 points, and

TX = {∅, {P1}, {P1, P2}, X}.

Then {P1} is open, but every neighbourhood of P2 contains P1, and every neighbour-
hood of P3 contains both P1, P2.

Example 2 There are two extreme topologies defined on any set X . The discrete
topology has every subset open. The indiscrete topology has no open sets except ∅ and
X itself.

Example 3 The cofinite topology on an infinite set X is the topology for which the
open sets are ∅ or the complements of finite sets; that is, U ⊂ X is open if and only if
either U = ∅ or X \U is finite; it is obvious that this satisfies finite intersection and
arbitrary union. In this topology, if x ∈ U and y ∈ V are neighbourhoods of any two
points then U ∩ V is also the complement of a finite set, and hence nonempty.

7.2 Motivation frommetric spaces

Let (X, d) and (Y, d ′) be metric spaces (see Appendix A if you need reminding what
this means) and f : X → Y a map. By definition, f is continuous if
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for every x ∈ X and for any given ε > 0, there exists δ > 0 such that d(x, y) <

δ =⇒ d ′( f (x), f (y)) < ε.

The intuitive meaning is clear without epsilons and deltas: if x ∈ X is any given point,
I can guarantee that f (y) is arbitrarily close to f (x) by forcing y to be sufficiently
close to x .

The idea of topology on a space is to break up the definition of continuity into two
steps. First use the metric to derive the open sets and neighbourhoods of points; then
describe continuity in terms of open sets.

Definition If (X, d) is a metric space, a set U ⊂ X is a neighbourhood of x if
B(x, ε) ⊂ U for some ε. Here B(x, ε) is the open ball of radius ε centred at x ; if you
cannot guess the formal definition, look in Appendix A. A set U ⊂ X is open if it
is a neighbourhood of every one of its points, that is, for all x ∈ U , B(x, ε) ⊂ U for
some ε. The open sets U of X form a topology on X , the metric topology of (X, d).
(See Exercise 7.1.)

Equivalent conditions Standard easy result on metric spaces:

f is continuous ⇐⇒ ∀ x ∈ X and ∀ neighbourhood V ⊂ Y ,
f −1V ⊂ X is a neighbourhood of x

⇐⇒ ∀ open V ⊂ Y , f −1V ⊂ X is open.

In other words, the ‘epsilon-delta’ definition of continuity for metric spaces can
be replaced by an equivalent condition which involves only open sets of the metric
topology. I will adopt this equivalent condition in 7.3 to define continuity for a map
between arbitrary abstract topological spaces.

The idea of a topological space is a natural abstraction and generalisation of the
idea of a metric space. When going from a metric space (X, d) to the corresponding
topological space, we forget the metric, and keep only the notion of neighbourhoods,
or equivalently open sets. There are several advantages. In the context of metric
spaces, closeness means that the distance d(x, y) is small. But just as some things
in life have a value that cannot be expressed as a sum of money, in some contexts
closeness cannot always be expressed as a distance measured as a real number. In
particular, the following three properties are forced on metric spaces by definition,
but are optional for topological spaces.

1. Symmetry: in a metric space, x is close to y if and only if y is close to x .
2. Hausdorff property: given two points x �= y ∈ X , there exist disjoint open sets x ∈ U

and y ∈ V (see Figure 7.2a).
3. Countable neighbourhoods: given a point x ∈ X of a metric space, consider the family

Bn = B(x, 1
n ). Then Bn are neighbourhoods of x ; they are countable in number; every
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Figure 7.2a Hausdorff property.

=

identify

Figure 7.2b S 1 = [0, 1] with the ends identified.

neighbourhood of x contains a Bn; and
⋂

Bn = {x}. This can be used in convergence
arguments in analysis (see Exercise 7.4).

The idea of having the open sets specified as the basic construction is of course more
abstract and less intuitive than definitions in first analysis or metric spaces courses,
but abstractness has its own advantages. In many cases, the spaces I am interested in
may actually be metric spaces, but I may not really care about the distances, just in
what it means for d(x, y) % 1. For example, if you think of the circle S1 ⊂ R2 as the
identification space obtained by glueing together the ends of the interval [0, 1], then
S1 is a metric space, with metric

dS1 (P, Q) = min

(
d[0,1](P, Q), d[0,1](0, P) + d[0,1](Q, 1),

d[0,1](0, Q) + d[0,1](P, 1)

)
,

which is a fairly tedious expression to work with; but I really do not care about
the metric, only the system of arbitrarily small neighbourhoods of points. A small
neighbourhood of any point other than the ‘seam’ P0, the image of the endpoints
0, 1, is given by (x − ε, x + ε) from the interior of the interval. For P0, you
glue together small neighbourhoods of the glued endpoints: [0, ε) ∪ (1 − ε, 1]; see
Figure 7.2b.

As a final example, note that the discrete topology on any set X , defined in 7.1
Example 2, is metric: just set d(x, y) = 1 for every x �= y. On the other hand, the
indiscrete topology is not metric.
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7.3 Continuous maps and homeomorphisms

7.3.1
Definition of
a contin-
uous map

If X and Y are topological spaces, a map f : X → Y is continuous if

f −1(U ) ⊂ X is open for every open U ⊂ Y .

Notice that I am already omitting mention of the topologies TX and TY . To use the
language literally, I should have said the following: let X, TX and Y, TY be topological
spaces, then f is continuous if

U ∈ TY =⇒ f −1(U ) ∈ TX .

Example 1 If X is any set with the discrete topology of 7.1 Example 2, then every
map X → Y from X to any topological space is continuous. If X has the indiscrete
topology, then every map Y → X from any topological space to X is continuous.

Example 2 Consider an infinite field k with the cofinite topology on it (see 7.1
Example 3). Let f : k → k be a polynomial map given by a �→ f (a), where f is a
polynomial in one variable. Then f is continuous. For U ⊂ k is open if and only
if U = ∅ or U is the complement of a finite set, say U = k \ {b1, . . . , bn}; then
f (x) = bi has at most deg f solutions, so that f −1(U ) is also the complement of a
finite set.

7.3.2
Definition of
a homeo-
morphism

A map f : X → Y is a homeomorphism if f is bijective, and both f and f −1 are
continuous. This means that

f : X ↔ Y and TX ↔ TY ,

or in other words, f is an isomorphism of all the structure there is. X and Y are
homeomorphic, written X � Y , if there exists a homeomorphism f : X → Y .

Example 3 An open interval (a, b) is homeomorphic to the real line, (a, b) � R.
For example, the map

f : (0, 1) → R defined by f (x) = −1

x
+ 1

1 − x
= 2x − 1

x(1 − x)

is a homeomorphism, illustrated in Figure 7.3a.

Example 4 The square is homeomorphic to the circle in R2. To see this, put the
square inside the circle and project out from an interior point (see Figure 7.3b). A
similar radial projection argument shows also that the full square is homeomorphic to
the closed disc {x2 + y2 ≤ 1} ⊂ R2. In Theorem 7.14 below I show that if f : S1 →
R2 is any one-to-one and continuous map (that is, a simple closed curve) then f is a
homeomorphism.
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Figure 7.3a (0, 1) � R.

O

Figure 7.3b Squaring the circle.

Example 5 If (X, d) and (Y, d ′) are metric spaces and f : X → Y is an isometry,
then f is a homeomorphism. Note however a map f can set up a homeomorphism
between (the metric topologies of) metric spaces without being an isometry, as in
Examples 3 and 4 above. Being homeomorphic is a much coarser relation on met-
ric spaces than being isometric. Example 7.4.2 discusses this issue from a slightly
different point of view.

7.3.3
Homeomor-
phisms and
the Erlangen
program

The group Homeo(X ) of self-homeomorphisms is a transformation group of the
topological space X (compare 6.1). In the framework of the Erlangen program
of Section 6.3, topology can be viewed as the study of properties invariant under
Homeo(X ).

The homeomorphism group of X = R is already an uncomfortably large infinite
group, and its action mixes up the points of R like anything, so at first sight it seems
hard to imagine how any invariant properties can survive. However, such properties
do exist; one example is between-ness, or separation, derived from the order relation
of R: a homeomorphism f takes three real numbers x, y, z with y between x and z
into f (x), f (y), f (z) with f (y) between f (x) and f (z); this follows at once from the
intermediate value theorem.



7.4 TOPOLOGICAL PROPERTIES 113

If a geometry has lines which are homeomorphic copies of the real line R, then the
separation property can be formulated in the geometry: a point cuts a line into two
disconnected subsets, and hence it makes sense to ask whether a point Q on a line
lies between two other points P, R. Euclidean and hyperbolic geometry are examples
where this property holds. In contrast, the lines (great circles) of spherical geometry
have the topology of the circle S1, so they have the ‘no separation’ property: cutting a
point leaves behind a set which is still connected. See 9.1 for the historic significance
of this issue.

7.3.4
The homeo-
morphism
problem

The following 5 spaces are not homeomorphic (for proofs, please be patient
until 7.4.4):

(1) the closed interval [a, b];
(2) the open interval (a, b) � R;
(3) the circle S1;
(4) the plane R2;
(5) the sphere S2 ⊂ R3.

The examples here and in 7.3.2 illustrate an important general point. If you want to
prove that two given topological spaces X and Y are homeomorphic, then it is your job
to supply a homeomorphism f : X → Y , for example by a geometric construction;
or at least, to prove that one exists. On the other hand, to prove that X and Y are not
homeomorphic, you need to find some property of spaces that is the same for
homeomorphic spaces, but different for X and Y . This is called the ‘homeomorphism
problem’.

The next few sections introduce some basic notions of topology and use them to
prove assertions of this type. Algebraic topology has as one of its main aims to develop
systematic invariants of topological spaces that can be used to prove that spaces are
not homeomorphic, notably the fundamental group π1(X, x0) and homology groups
Hi (X, Z); but in this book I work only with very simple ideas.

7.4 Topological properties

Some properties of a topological space depend only on the topology. A topological
property of topological spaces is a property that can be expressed in terms of points
and open sets only. Homeomorphisms preserve topological properties.

For example, if X is a metric space, then bounded is not a topological property: it
depends on distance (d(x, y) ≤ K for some K ), and not just on the topology. Thus
(a, b) � R (see Figure 7.3a), but the left-hand side is bounded, while the right-hand
side is not.

7.4.1
Connected
space

A topological space X is connected, if it cannot be written as a disjoint union of two
nonempty open subsets; that is, there does not exist any decomposition

X = U1  U2 with U1, U2 open,

where  denotes disjoint union.
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x1

x2

Figure 7.4a Path connected set.

A path in a space X is a continuous map ϕ : [0, 1] → X ; X is path connected if for
any two points x1, x2 ∈ X , there exists a path ϕ with ϕ(0) = x1 and ϕ(1) = x2 (that
is, any two points can be joined by a path). (See Figure 7.4a.)

Connected and path connected are both topological properties, since only open
sets and continuous maps appear in their definitions. Thus given two spaces X, Y , if
X � Y then X and Y are either both (path) connected or both (path) disconnected.

Lemma

(1) The interval [0, 1] is connected.
(2) A path connected set is connected.

Proof For (1), suppose [0, 1] = U1  U2 with opens U1, U2 � [0, 1]. Say 0 ∈ U1,
and consider

z = sup
{

x
∣∣ [0, x] ⊂ U1

}
,

where sup is least upper bound from your first analysis course. The sup exists by
the completeness axiom of the reals. If z ∈ U1, then because U1 is open, there is a
neighbourhood of z in U1, that is, [z, z + ε) ⊂ U1 for some ε > 0, so z is not an upper
bound. If z ∈ U2, there is a neighbourhood of z in U2, so an interval (z − ε, z] disjoint
from U1 and so z − ε is a strictly smaller lower bound, which also contradicts the
definition of z as sup. (The proof is the same as that of the intermediate value theorem
in a first analysis course.)

To show (2), suppose X is path connected and X = U1  U2 with opens U1, U2 �
X . Then choose x ∈ U1 and y ∈ U2 and apply the definition of path connected, so
that there is a continuous map ϕ : [0, 1] → X with ϕ(0) = x and ϕ(1) = y. Then
[0, 1] = ϕ−1(U1)  ϕ−1(U2) is a disjoint union, with both ϕ−1(U1) and ϕ−1(U2) open
and nonempty, which contradicts (1). QED

If X is any topological space, define a relation on X by setting x ∼ y if and only if
there is a connected subset U of X containing x, y. It is clear that∼ is symmetric and
reflexive, and a bit of thought tells you that it is also transitive, hence it is an equivalence
relation. Equivalence classes of ∼ are called components of the topological space X .
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Remark The property used to define a path connected space corresponds to our
usual perception of ‘connectedness’: you can get from point A to point B using
an unbroken ‘path’. In the context of surface travel, mainland Eurasia forms a path
connected space but the United States does not: you cannot get from New York to
Alaska without crossing Canada or going by air or sea. However, in the context
of general topological spaces, connectedness as defined above, without reference to
paths, is preferable. By the Lemma, path connectedness implies this more general
form of connectedness. Similar remarks apply to components: the definition is a
natural extension of the obvious notion under which the connected components of
the United Kingdom include mainland Britain and mainland Northern Ireland, along
with any number of smaller islands around the coast.

7.4.2
Compact
space

The space X is compact if

for every cover X =⋃λ∈� Uλ of X by an arbitrary collection of opens
Uλ, there exists a finite number of indexes λ1, . . . , λn ∈ � such that X =⋃n

i=1 Uλi .

(Slogan: every open cover has a finite subcover.) This property manifestly depends
only on open sets.

A sequence of points a1, a2, . . . in a topological space X converges to a limit
l ∈ X , written ain → l, if for any neighbourhood U of l, the ai are eventually all in
U. In other words,

for every open set U of X with l ∈ U , there exists n0 such that ai ∈ U for
all i ≥ n0.

In other words, a1, a2, . . . tend to l ∈ X if, for any measure of closeness, the ai are
eventually all close to l.

The space X is sequentially compact if every sequence has a convergent sub-
sequence, that is, for every infinite sequence a1, a2, . . . of points of X , there exists a
point x ∈ X and a sequence i1, i2, . . . of indexes such that ain → x . (Slogan: every
sequence has a convergent subsequence.)

The following statement relates these notions to each other and to more familiar
ones in metric spaces.

Proposition

(1) For V a subset of Rn with its usual (Euclidean) metric,

V is closed and bounded ⇐⇒ V is sequentially compact.

(2) For X any metric space and V ⊂ X a subset,

V is sequentially compact ⇐⇒ V is compact.
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Here is a brief discussion of where you can find this in the literature. Compactness is
the subject of Sutherland [24], Chapter 5. The statement that a closed bounded subset
of Rn is compact is the Heine–Borel theorem, proved in [24], Theorem 5.3.1 for n = 1,
and in general (by reducing to the case n = 1) in Theorem 5.7.1. Compact implies se-
quentially compact (in a metric space) is proved in [24], Theorem 7.2.6. The other way
round, sequentially compact implies compact (in a metric space), is proved in [24],
Chapter 7. The proof is a bit tricky, but Sutherland breaks it up into 3 self-contained
steps, each of which takes a half-page. (See also, for example, Rudin [21], 2.31–2.40.)

This is not primarily a course on foundational stuff in metric spaces, and I take
a common sense approach: when I am working in a metric space, I use compact or
sequentially compact more-or-less interchangeably. With general topological spaces,
the language of compactness is more natural and more convenient.

Example Consider the n-sphere

Sn = {(x1, . . . , xn) ∈ Rn | x2
1 + · · · + x2

n = 1}.
You have already seen two different metrics on Sn: one is the Euclidean distance of
points on Sn ⊂ Rn , and the other one is the spherical distance d(x, y) = arccos(x · y)
(see 3.1 and compare Exercise 3.10). However, points are close to each other in one
of the metrics if and only if they are close in the other; said differently, the metric
topologies given by the two metrics are the same. Under the Euclidean metric inherited
from Rn , the set Sn is bounded (distance 1 from the origin) and closed (clearly) so Sn

is compact by (1) of the Proposition.

7.4.3
Continuous
image of a
compact
space is
compact

Proposition Let X, Y be topological spaces and f : X → Y a surjective contin-
uous map. Then if X is compact, so is Y .

Proof You just have to write out the definitions: if Y =⋃ Vλ, an arbitrary union
of open sets, let Uλ = f −1(Vλ). Then Uλ is open, and X =⋃Uλ. Therefore there
exists a finite set of indexes λ1, . . . , λn such that X =⋃n

i=1 Uλi . Finally,

Y = f (X ) =
n⋃

i=1

f (Uλi ) =
n⋃

i=1

Vλi . QED

Pretty easy wasn’t it? This shows what a convenient property compactness is.
Compare the result in analysis: a continuous function f : [a, b] → R is bounded and
attains its bound. This is hard to prove from first principles, but is really easy once
you have established the definition of compactness, and proved Proposition 7.4.2.

The notion of compactness is a powerful tool, and you should learn to use it,
even if you put off studying the proofs until later. A typical use is the kind of ‘con-
tinuity implies uniform continuity’ argument used all over the place in analysis. If
f : [a, b] → R is continuous, then given ε > 0, for all x ∈ [a, b], you can force f (x ′)
that close to f (x) by squeezing x ′ within δ of x ; here δ depends on x , but compactness
allows you to choose one δ that works uniformly for all x ∈ [0, 1].
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There is a famous Bertrand Russell quotation about the advantages of the axiomatic
method: they are the advantages of theft over honest labour. You must either under-
stand a proof of the Heine–Borel theorem (e.g. Sutherland [24], Theorem 5.7.1), or
take it on trust as an axiom and accept the advantages.

7.4.4
An
application
of topo-
logical
properties

The notions set up so far are already enough to give a proof of the statement in 7.3.4.
For example, the topological nature of connectedness implies that (a, b) �� [a, b],
because any point disconnects the left-hand side. In more detail, if x ∈ (a, b) is any
point then it disconnects (a, b) into two disjoint open intervals (a, x) and (x, b);
if ϕ : [a, b] → (a, b) were a homeomorphism, then ϕ(a) = x ∈ (a, b) would be an
interior point, so (a, b) \ x would be disconnected, whereas [a, b] \ {a} = (a, b] is
connected. For exactly similar reasons,

S1 �� [a, b], R2, S2 (any 2 points disconnect the left-hand side)

R �� R2 (any point disconnects the left-hand side)

[a, b] �� R2 or S2 (any 3 points disconnect the left-hand side).

To complete the argument, note that

[a, b], S1, S2 �� (a, b), R, R2;

because all the spaces on the left-hand side are compact, and all those on the right are
not.

7.5 Subspace and quotient topology

If X is a topological space and Z ⊂ X a subset, write i : Z ↪→ X for the inclusion
map, that is i(z) = z ∈ X for every z ∈ Z . Then the subspace topology of Z is the
topology whose open sets are of the form U ∩ Z , where U is an open of X . If X is a
metric space with the topology defined by the metric d, then the subspace topology
of Z is also metric, defined by the same metric restricted to Z . This definition of
the topology of Z has U ∩ Z = i−1(U ) as open sets, so that the inclusion map i is
continuous. It has no other opens, so it is the topology with the fewest open sets needed
to make i continuous.

Now let X be a set and∼ an equivalence relation on X . Consider the set Y = X/∼
of equivalence classes of ∼. That is, in Y , if I write x for the class of x , I have x = y
if and only if x ∼ y, so that Y is obtained by identifying or ‘glueing together’ points
x and y when x ∼ y. Every surjective map f : X → Y of X to a set Y is obtained in
this way, by just declaring ∼ to be the relation x ∼ y ⇐⇒ f (x) = f (y).

Now suppose that X is a topological space, and let ∼ and f : X � Y = X/∼ be
as before. The quotient topology of Y has open sets defined by

U ⊂ Y is open ⇐⇒ f −1(U ) is open in X .
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It is easy to see that this satisfies the axioms for a topology. Clearly f is continuous,
and this is the topology with the most open sets for which f is continuous. It often
happens that the quotient topology of Y is not a metric topology, as we see presently.

As above, let X be a topological space, and ∼ an equivalence relation.

Proposition The quotient space Y = X/∼ has the following properties.

(1) There is a continuous map f : X → Y such that

x ∼ y =⇒ f (x) = f (y)

(that is, f is constant on equivalence classes of ∼).
(2) Given a space Z and a continuous map g : X → Z that is constant on equivalence

classes of ∼, there exists a unique continuous map h : Y → Z such that g = h ◦ f.

Proof (1) comes from the definition as I discussed above.
(2) Given g, the map h must take f (x) ∈ Y to g(x). In other words, an element of

Y is an equivalence class [x] of elements of X under ∼, so choose x in that class, and
set h([x]) = g(x). This is well defined because of the assumption that g is constant
on equivalence classes. Why is h continuous? For U ⊂ Z open, g−1(U ) is open in
X , so that f −1(h−1(U )) is open in X , and h−1(U ) is open in Y by definition of the
quotient topology of Y . QED

This property of the topological space Y and the quotient map f : X → Y is called
a universal mapping property or UMP. Constructions throughout abstract math can
be specified in terms of UMPs: you say what you want to do (in this case, find a
continuous map that is constant on equivalence classes), and then ask for the solution
of a UMP. In the present case, the universal mapping property says that f does not do
anything that is not forced by the conditions that f is constant on equivalence classes
of ∼, and is continuous. In other words, f identifies exactly the equivalence classes
of ∼, and makes no more identifications, and Y has the most open sets subject to f
being continuous. It is interesting to analyse the above proof to see that this is exactly
what is required to make h well defined and continuous.

7.6 Standard examples of glueing

The quotient topology on X/∼ provides the definition of ‘glueing’, the space obtained
from X by glueing together points x ∼ y. Here I discuss some basic examples; see
Exercises 7.18–7.19 below for more.

Example 1 S1 = [0, 1]/∼ where ∼ glues the endpoints (see Figure 7.2b).

Example2 Let X be the unit square [0, 1] × [0, 1]. The Möbius strip M is defined
by glueing some of the sides of X as in Figure 7.6a. More formally, consider the
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Figure 7.6a The Möbius strip M .

gl
ue ≅

Figure 7.6b The cylinder S 1 × [0, 1].

following equivalence relations on X :

(x, y) ∼ (x ′, y′) ⇐⇒


either (x, y) = (x ′, y′)
or x = 0, x ′ = 1 and y = 1 − y′

or vice versa,

and define the Möbius strip M by M = X/∼, with the quotient topology. By definition
of the quotient topology, a point on the glued line has a neighbourhood obtained from
neighbourhoods of its two inverse images in X .

Example3 The cylinder S1 × [0, 1] is obtained by glueing the unit square [0, 1] ×
[0, 1] as in Figure 7.6b.

Example4 The torus T � S1 × S1 is obtained from the unit square [0, 1] × [0, 1]
by the glueing of Figure 7.6c. By definition of the quotient topology, the four corners
of the square correspond to a point of the torus, and a neighbourhood of it is obtained
from neighbourhoods of the four corners in X . You can regard this as a surface of
rotation in R3, or the surface in R4 given by x2

1 + y2
1 = x2

2 + y2
2 = 1.

Example 5 The surface with g handles. The picture is as in Figure 7.6d: you get it
by starting from S2, marking 2g distinct points on S2, cutting out small discs around
these, and glueing back in g small cylinders. See Exercise 7.19 as well as 9.4 for
further discussion.

Notice that all these spaces can easily be made into metric spaces, but you do not
really gain anything by doing so.

Proposition The Möbius strip M, the cylinder N = S1 × [0, 1] and the torus T
are not homeomorphic.
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Figure 7.6c The torus.
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Figure 7.6d Surface with g handles.

I can almost prove this now, though I relegate one crucial statement to the end of
the chapter. The proof consists of the following steps.

Step 1. Main claim Points of the boundary ∂ M ⊂ M and ∂ N ⊂ N are distin-
guished from points of the interior by their topological properties.

Step2 Therefore, if there exists a homeomorphism ϕ : M → N , it must map ∂ M
to ∂ N , and the restriction must define a homeomorphism ∂ M � ∂ N .

Step 3 ∂ M is path connected, whereas ∂ N is disconnected; hence a homeo-
morphism M � N as in Step 2 cannot exist. In the same way, ∂T = ∅, so that T �� M
and T �� N .

Given the main claim, Steps 2–3 are obvious, and the point is therefore to under-
stand Step 1. How do I distinguish points of the interior of a surface from points on
the boundary? The point is that every small neighbourhood U \ P of an interior point
P contains a small punctured disc D∗ about P; the punctured disc is the topological
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P P

U U

U \ P � U \ P �

Figure 7.6e Boundary and interior points.

space {0 < x2 + y2 < 1} ⊂ R2. On the other hand, if P is a boundary point, it has
an arbitrarily small neighbourhood homeomorphic to a closed half-disc, that can be
written in polar coordinates

U � {(r, θ )
∣∣ 0 ≤ r < 1, θ ∈ [−π/2, π/2]

}
with P at the centre of the half-disc. Hence U \ P is homeomorphic to

U \ P � {(r, θ )
∣∣ 0 < r < 1, θ ∈ [−π/2, π/2]

}
which in turn is homeomorphic to a closed disc with parts of the boundary removed,
as in Figure 7.6e. Hence the essential content of telling interior and boundary points
apart consists in showing that the punctured disc D∗ is not homeomorphic to the
disc D. Think it through yourself to see whether you find this statement intuitive;
see 7.15.4, Corollary 1 for the proof.

7.7 Topology of Pn
R

Recall 5.2: projective n-space, as a set, is defined to be the set of lines of Rn+1 through
the origin, or in other words, the quotient of Rn+1 \ {0} by the equivalence relation
which identifies x with λx for λ �= 0. The topology of Pn is the quotient topology of
Rn+1 \ {0}. This section considers various ways of looking at this topology.

Write Sn = {x ∈ Rn+1 | ∑ x2
i = 1} ⊂ Rn+1 for the n-sphere. Obviously Sn meets

every line of Rn+1 through 0 in a pair of antipodal points. Therefore, as a set, Pn
R
=

Sn/±, where ± is the equivalence relation identifying antipodal points of the sphere
(that is, pairs ±x of opposite points). The topology of Pn coincides with the quotient
topology of Sn/±; indeed, a subset of the lines through 0 is open in Rn+1 \ 0 if and only
if its intersection with Sn is open in the subspace topology of Sn . Note that Sn ⊂ Rn+1

is closed and bounded hence compact (Example 7.4.2); thus Pn , being the continuous
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disk

Möbius strip

Figure 7.7 Topology of P2
R
: Möbius strip with a disc glued in.

image of a compact space, is also compact by the tautological Proposition 7.4.3. This
was one of the motivations for constructing projective space discussed in 5.1.4.

There are many ways of understanding the quotient, by choosing a closed subset
of Sn that picks out just one of each pair of antipodal points for a big open subset
and then glueing around the boundary: for example, the closed northern hemisphere
of Sn contains one of each pair of antipodal points, except that I still have to identify
antipodal points of the equatorial sphere Sn−1.

In the case n = 2, we can do the following: view S2 as the union of 3 pieces, a
cap around the north pole, a band around the equator, and a cap around the south
pole (see Figure 7.7). Every point in the southern cap is equivalent to a point in the
northern cap, so the southern cap is not needed. Now cut the equatorial band into its
front and back halves; as before, every point in the back half is equivalent to a point
in the front half, so this piece is also not needed. Now ± glues together the left and
right intervals of the front half to give a Möbius strip; this glueing is the same as in
Figure 7.6a. The northern cap is a disc, with boundary a circle; the Möbius strip also
has boundary a circle, and P2 is obtained by glueing these two pieces together along
their boundaries. Note that this is an abstract construction: you cannot do it in R3

without allowing self-crossing.
It is an interesting exercise to see the components of this construction as the result

of cutting P2 along a line and along a conic. See Exercise 7.17(a).

7.8 Nonmetric quotient topologies

Example 1 (The mousetrap topology) X = {P, Q} is a space with only 2 points
and open sets

TX =
{
∅, {P}, X

}
.

Here P is an open point, but not Q. Every neighbourhood of Q (there is only one)
contains P . In terms of convergence, the constant sequence P, P, . . . converges both
to P and to Q (please check this as an instant exercise; refer back to 7.4.2 for the
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Q

P

Figure 7.8a The mousetrap topology.

definition of convergence if needed). This implies, of course, that the topology of X
is not metric. X is a quotient topology: introduce the equivalence relation ∼ on C
defined by

x ∼ y ⇐⇒ x = λy with λ ∈ C, λ �= 0.

Then there are only two equivalence classes, Q = [0] and P = [λ ∈ C \ {0}]; {P} is
obviously open while {Q} is not. The point is that if you are at 0 then any arbitrarily
small perturbation takes you into a nonzero number; that is, viewed from Q, the point
P is infinitely close. But if you are at a nonzero number λ, all the points in a small
neighbourhood are also nonzero, so viewed from P , the point Q is far away. Being
zero is an unstable, or closed condition; being nonzero is a stable or open condition.

I call this the mousetrap topology (Figure 7.8a) because if you are at Q (outside
the trap), it is no distance at all to get into the trap. But if you are at P (inside the
trap), then it is a long way out. Thus the content of the topology is more logical than
geometric.

There are many equivalence relations of interest with this kind of behaviour. One
example is the equivalence relation on R with

{x ∈ R | x > 0}, {0}, {x ∈ R | x < 0}

as its 3 equivalence classes.

Example 2 (Quadratic forms) A similar but more substantial example: consider
quadratic forms q(x, y) = ax2 + 2bxy + cy2 on R2. There is a coordinate change
that puts q(x, y) in one of the 6 normal forms:

q1 = x2 + y2, q2 = x2 − y2, q3 = −x2 − y2, q4 = x2, q5 = −x2, or q0 = 0.

All the quadratic forms on R2 are parametrised by (a, b, c) ∈ R3, corresponding
to the symmetric matrix A = ( a b

b c

)
. Now introduce the equivalence relation on R3
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q3

q1

q0

q5

q4
q2

a b
b c

= ac − b2 = 

Figure 7.8b Equivalence classes of quadratic forms ax 2 + 2bx y + c y2.

corresponding to a coordinate change:

A ∼ B ⇐⇒ ∃M ∈ GL(2, R) such that A = tM B M .

(Here GL(2, R) is the group of 2 × 2 invertible matrixes.) This means exactly that I
consider quadratic forms up to change of basis. So there are exactly the 6 classes, the
strata of Figure 7.8b. The quotient topology on the set

X = R3/∼ = {q1, q2, q3, q4, q5, q0
}

has open sets

{q1}, {q2}, {q3}, {q4, q1, q2}, {q5, q2, q3}, X

and their unions. For example, every neighbourhood of q4 contains q1, q2.

7.9 Basis for a topology

This is a formal idea for constructing topologies. Let B be a collection of subsets of
X . Then B is a basis for a topology if it satisfies the three axioms

1. finite intersections:

U1, . . . , Un ∈ B =⇒ U1 ∩ · · · ∩Un ∈ B;

2. involves every point: for all x ∈ X there exists U ∈ B such that x ∈ U ;
3. empty convention: ∅ ∈ B.
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Construction If B is a basis for a topology, the family of subsets

T =
{⋃

λ∈�

Uλ : Uλ ∈ B, � arbitrary index set
}

of X is a topology on X , the topology generated by B.

Proof This is entirely formal. X ∈ T using axiom 2 and the construction. T is
closed under arbitrary unions by construction. To show that T is closed under finite
intersections, note that(⋃

λ∈�

Uλ

)
∩
(⋃

µ∈M

Uµ

)
=
⋃
λ,µ

Uλ ∩Uµ. QED

I can save time by listing only a basis for the topology, rather than by saying what
all the open sets are. The idea here is that a topology is specified by the neighbour-
hoods of each point (because an open set is determined by the condition that it is a
neighbourhood of each of its points). In turn it is enough to specify any system of
sufficiently small neighbourhoods of each point.

Example 1 In 7.8, Example 2, I described the quotient topology on X = R3/∼
by telling you that its open sets are unions of

{q1}, {q2}, {q3}, {q4, q1, q2}, {q5, q2, q3}, {q0, q1, q2, q3, q4, q5}.

Example 2 Let X, d be a metric space, and

B = {B(x1, ε1) ∩ · · · ∩ B(xn, εn)
}

be the set of finite intersection of open balls B(x, ε) = {y | d(x, y) < ε}. Then B is
a basis for a topology T , the usual metric topology.

Example 3. Profinite topology of an infinite group Another more substantial ex-
ample. Take any group G; recall that a subgroup H ⊂ G is normal (written H � G
) if gH = Hg for every g ∈ G, that is, its right and left cosets coincide. A normal
subgroup H � G of finite index n is the kernel of a surjective homomorphism G → �

to a finite group of order n. For example, if G = Z then every normal subgroup of
finite index is just nZ for some integer n.

Let G be a group, with e ∈ G the identity element. Then there is a topology on G
such that:

(a) normal subgroups H � G of finite index form a set of sufficiently small neighbour-
hoods of e;

(b) the right translation maps rg : G → G defined by f �→ f g are homeomorphisms.

It follows from (a) and (b) that a set of sufficiently small neighbourhoods of any
g ∈ G are given by cosets gH , where the H are as in (a). So take

B = {∅} ∪ {cosets of normal subgroups of finite index}
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δx2 + δy2 < ε|δx| + |δy| < ε|δx|, |δy| < ε

Figure 7.10 Balls for product metrics.

as a basis for a topology. I check that this is a basis by going through the three
axioms. Indeed, ∅, G ∈ B. Also if H1, . . . , Hn are normal subgroups of finite index
then so is H1 ∩ · · · ∩ Hn , clearly, and if g1 H1, . . . , gn Hn are their cosets then either
g1 H1 ∩ · · · ∩ gn Hn = ∅, or ∃g ∈ g1 H1 ∩ · · · ∩ gn Hn , in which case

g1 H1 ∩ · · · ∩ gn Hn = gH1 ∩ · · · ∩ gHn = g(H1 ∩ · · · ∩ Hn).

The topology generated by this basis is called the profinite topology of G. Note that
if H � G is a normal subgroup of finite index then its cosets form a partition of G
by finitely many disjoint open sets. Therefore any of these cosets is also closed.

Remark Profinite topologies on groups have lots of applications in algebra and
number theory. For example, in number theory, you may want to solve an equation
f (x, y) = 0 in Z, knowing that you can solve it modulo all N . Another example
occurs in Galois theory. The idea is that if k ⊂ L is an infinite Galois field extension,
the finite extension fields k ⊂ K ⊂ L correspond to subgroups of finite index in the
infinite Galois group Gal(L/k). The Galois group Gal(L/k) is automatically profinite,
in the sense that it is defined by its finite quotient groups.

7.10 Product topology

Let X and Y be topological spaces; I show how to put a topology on X × Y . Take the
set of subsets

B = {U × V ⊂ X × Y } with U ⊂ X and V ⊂ Y open.

Then

(U1 × V1) ∩ (U2 × V2) = (U1 ∩U2) × (V1 ∩ V2)

gives the finite intersection property; the other two axioms are obvious, so B is a
basis for a topology on X × Y . The product topology on X × Y is defined to be the
topology generated by B.

If X and Y are metric spaces, it is easy to see that the product topology on X × Y

is the topology defined by any of the metrics max(dX , dY ), dX + dY ,
√

d2
X + d2

Y , etc.
(see Figure 7.10). It follows that for n, m positive integers, the product topology on
Rn × Rm is the same as the metric topology on Rn+m . For example, on R2 = R× R,
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the sets (a1, b1) × (a2, b2) provide arbitrarily small open sets, but obviously not all
open sets are of this form.

7.11 The Hausdorff property

A topological space is Hausdorff 1 if for all x �= y ∈ X , there exist disjoint open sets
U, V ⊂ X with x ∈ U , y ∈ V . (See Figure 7.2a.) This is clearly another topological
property.

If X is Hausdorff then every point x ∈ X is closed: for if x �= y there exists an open
set containing y and not x , and therefore X \ x is open. This is a weaker separation
axiom,

∀x �= y ∈ X, ∃ an open set U containing y and not x

called Hausdorff’s T1 condition. (The Hausdorff condition on X introduced here is
sometimes also called T2.)

Example 1 A metric space X is automatically Hausdorff: just choose ε > 0 with
ε < 1

2 d(x, y) and set U = B(x, ε), V = B(y, ε).

Example 2 Examples 1 and 2 of 7.8 are clearly not Hausdorff. The cofinite topol-
ogy of an infinite set X (7.1 Example 2) is not Hausdorff either: a nonempty open
set is the complement of a finite set, so the intersection of any two open sets is again
the complement of a finite set, so nonempty. Thus these are certainly not metric
topologies.

Example 3 A topology on a finite set X is Hausdorff if and only if it is the discrete
topology. Indeed, if X is Hausdorff then any point x ∈ X is closed, so every subset
of X is closed.

Proposition A topological space X is Hausdorff if and only if the diagonal

�X = {(x, x) | x ∈ X} ⊂ X × X

is closed in the product topology of X.

Proof Note first that for any subsets U, V ⊂ X ,

U × V ∩�X = {(x, x) | x ∈ U ∩ V },

in other words, U × V ∩�X is just the diagonal embedding of U ∩ V into X × X .
A point of X × X \�X is just a pair (x, y) with x �= y. Consider the problem

of finding an open neighbourhood W of (x, y) in the product topology such that

1 Felix Hausdorff (1868–1942) was the originator of many of the basic ideas of metric and topological
spaces, and the author of a famous and influential book Grundzüge der Mengenlehre. He was Professor at
the University of Bonn until he was forced out as a Jew in 1935. He committed suicide in January 1942,
together with several members of his family, to avoid being sent to a Nazi internment camp.
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Figure 7.12 Separating a point from a compact subset.

W ∩�X = ∅. By definition of the product topology, an arbitrary small neighbourhood
of (x, y) is U × V with U, V ⊂ X open and x ∈ U , y ∈ V . Now by the first remark,
U × V ∩�X = ∅ if and only if U ∩ V = ∅.

Since �X is closed if and only if X × X \�X is open, this happens if and only if
for every (x, y) with x �= y there exist open sets U, V ⊂ X open, with x ∈ U , y ∈ V
and U ∩ V = ∅. QED

7.12 Compact versus closed

Proposition Let X be a topological space, and Y ⊂ X a subset with the subspace
topology.

(i) If X is a compact topological space and Y ⊂ X is closed, then Y is also compact.
(ii) If X is Hausdorff and Y ⊂ X is compact, then Y is closed.

(iii) In particular, if X is compact and Hausdorff, then Y ⊂ X is compact if and only if it
is closed.

Proof (i) Suppose that Vλ for λ ∈ � are open subsets of Y , in the subspace
topology, such that Y =⋃ Vλ. Then by definition of the subspace topology 7.5, for
eachλ there exists an open set Uλ of X such that Vλ = Y ∩Uλ. Now also X \ Y is open,
by the assumption that Y is closed. Therefore X =⋃Uλ ∪ (X \ Y ) is an open cover of
X . By definition of compactness, a finite cover will do, say X =⋃n

i=1 Uλi ∪ (X \ Y ),
and then obviously Y =⋃n

i=1 Vλi .
(ii) Fix x ∈ X \ Y . For every y ∈ Y , using the Hausdorff assumption on X , choose

disjoint open sets Uy and Vy with x ∈ Uy and y ∈ Vy . By construction, y ∈ Vy , so
that Y ⊂⋃ Vy , or equivalently Y =⋃(Y ∩ Vy). But since Y is compact, a finite
number of the open sets Y ∩ Vy cover it, and hence there is a finite set of Vyi with Y ⊂⋃n

i=1 Vyi . Set U =⋂n
i=1 Uyi , which is a finite intersection of opens, therefore open.

Since Uy ∩ Vy = ∅ for each y, it follows that U ∩⋃n
i=1 Vyi = ∅, and in particular

U ∩ Y = ∅. (See Figure 7.12.) This proves that for any x /∈ Y , there exists an open
set U containing x disjoint from Y , and therefore Y is closed. QED
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f(V)

V ∩ I × [a, b]

V f: R × [a, b] → R

Figure 7.13a Closed map.

)(

xy = 1

f(V) = R \ {0}

f f: R2 → R

Figure 7.13b Nonclosed map.

7.13 Closed maps

A map f : X → Y between topological spaces is closed, if f (V ) ⊂ Y is closed for
every closed set V ⊂ X .

Example 1 Consider the closed interval [a, b] ⊂ R. Then the second projection
π : [a, b] × R → R is a closed map (Figure 7.13a).

Proof Start with a closed set V ⊂ [a, b] × R and a point x ∈ π (V ) of the closure
of π (V ). Take a closed interval I containing x , and restrict attention to the second
projection

B = [a, b] × I → I.

Then B is closed and bounded in R2, so compact (see Proposition 7.4.2); hence
V ∩ B is compact by Proposition 7.12 (i). Therefore by Proposition 7.4.3, f (V ∩ B)
is a compact subset of I , therefore closed in I . Therefore x ∈ π (V ), and π (V ) is
closed. QED

Example 2 The projection to the x-axis R2 → R is not closed. For consider the
hyperbola C : (xy = 1); it is closed in R2, but its image in R is R \ 0 (Figure 7.13b).

Proposition If X is compact and Y Hausdorff then any continuous map f : X →
Y is closed.
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Proof V ⊂ X closed implies V compact by Proposition 7.12 (i). Therefore
f (V ) is compact by Proposition 7.4.3, and f (V ) ⊂ Y is closed by Proposi-
tion 7.12 (ii). QED

7.14 A criterion for homeomorphism

Let X and Y be topological spaces and f : X → Y a map. I claim that

f is a homeomorphism ⇐⇒ f is bijective, continuous, and closed.

=⇒ is of course clear. If f is bijective, then f closed means exactly that f −1 is
continuous: for U ⊂ X open gives X \U closed, which implies that f (X \U ) is
closed; but f (X \U ) = Y \ f (U ) because f is bijective, so f (U ) is open, that is,
f −1 is continuous.

Theorem (♥ = 0) If X is compact and Y Hausdorff, then a continuous bijective
map f : X → Y is a homeomorphism.

Proof f is closed by Proposition 7.13. QED

Example A simple closed curve in R2 is a continuous map f : [0, 1] → R2 that is
one-to-one except for f (0) = f (1). Write∼ for the equivalence relation that glues the
endpoints of the interval as in Figure 7.2b. Clearly f defines a continuous one-to-one
map f ′ : [0, 1]/∼ = S1 → R2. I claim that f ′ : S1 → f ′(S1) is a homeomorphism.
Indeed, it is a continuous one-to-one map from a compact space S1 to a Hausdorff
space f ′(S1) ⊂ R2. This proves that ♥ = 0.

7.15 Loops and the winding number

Let D = {(x, y) ∈ R2
∣∣ x2 + y2 < 1

}
be the unit disc in R2 and D∗ = D \ (0, 0) the

punctured disc. This final section will answer the following question, left open in the
proof of Proposition 7.6.

Question How can we tell that D∗ is not homeomorphic to D?

Answer D is simply connected: any loop in D (starting and ending at P0, say)
can be contracted in D to the constant loop; on the other hand, a loop in D∗ has a
winding number n around the puncture (0, 0), and the loop can be contracted if and
only if n = 0.

The intuitive picture is clear: think of taking a dog on a long lead for a walk in a
park having a tall pole in the middle. In classical math, the winding number n is the
ambiguity of 2πn in the functions arcsin x and arccos x and the ambiguity of n(2π i)
in the complex function log z. The content of the following sections is the first step in
the theory of the fundamental group π1(X, P0) in algebraic topology; Theorem 7.15.3
on the winding number is closely related to the statement that π1(D∗, P0) = Z.
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↑
s

t →
ϕs

Figure 7.15a Continuous family of paths.

7.15.1
Paths, loops
and families

Recall that a path in a topological space X is a continuous map ϕ : [0, 1] → X , written
t �→ ϕ(t). Fix a base point P0 ∈ X . A loop in X based at P0 is a path starting and
ending at P0; in other words, a continuous map f : [0, 1] → X such that f (0) =
f (1) = P0. These are called based loops (as opposed to free loops where we insist
that f (0) = f (1), but allow this to be any point in X ). A loop is allowed to cross over
itself any number of times, or even to stop for a while or go back along itself.

A family of paths (or loops) (ϕ(s)) depending on a parameter s ∈ [0, 1] is just an
indexed family of paths (or loops), one for each s ∈ [0, 1]. Write It for the interval
[0, 1] of the path parameter t , and Is for the interval [0, 1] of the family parameter s.

Tentativedefinition Let X be a metric space. A family of paths (ϕ(s)) is continuous
at s if for every ε > 0, there exists a δ such that

|s − s ′| < δ =⇒ d(ϕ(s)(t), ϕ(s ′)(t)) < ε for all t ∈ [0, 1].

We say that (ϕ(s)) is a continuous family of paths if it is continuous at all s ∈ [0, 1].
The definition applies in exactly the same way to a family of based loops, except that
I insist that ϕ(s)(0) = ϕ(s)(1) = P0 for every s.

Note that the continuity assumption is uniform in t (the same δ is supposed to
guarantee closeness for all t). The hard thing is to understand why the definition just
given is the right one. The point is that to say that the path ϕ(s) moves just a little, we
have to guarantee that every step ϕ(s)(t) for fixed t should move just a little, bounded
in t (compare Exercise 7.20).

Lemma Corresponding to a family of paths (ϕ(s)), consider the map

� : Is × It = [0, 1] × [0, 1] → X given by �(s, t) = ϕ(s)(t).

Then (ϕ(s)) is a continuous family of paths if and only if � is continuous. See
Figure 7.15a.

Remark Notice that � continuous is a topological property. The point of the
lemma is that it makes the notion of continuous family of paths purely topological.
If X is a topological space, the ‘uniform’ definition of a continuous family of paths
is not applicable (it depends on the metric in X ); in the Definition below I define a
family of paths ϕ(s) to be continuous by the property that � is continuous.
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Proof =⇒ A standard ‘divide the ε in two’ argument. Suppose we are given
(s0, t0) ∈ Is × It and ε > 0. First, because ϕ(s0) is continuous, there exists δ such that

d(t, t0) < δ =⇒ d(ϕ(s0)(t), ϕ(s0)(t0)) < ε/2.

Next, because ϕ(s) is a continuous family of paths at s0, there exists a δ such that

d(s, s0) < δ =⇒ d(ϕ(s)(t), ϕ(s0)(t)) < ε/2 for all t .

Therefore max{d(s, s0), d(t, t0)} < δ implies both of these inequalities, so that

d((s, t), (s0, t0)) = max{d(s, s0), d(t, t0)} < δ =⇒
d(�(s, t), �(s0, t0)) ≤ d(ϕ(s0)(t), ϕ(s0)(t0)) + d(ϕ(s)(t), ϕ(s0)(t)) < ε.

This proves � is continuous as a function of (s, t).
⇐= In this direction, I have to use compactness of It to get uniformity in t . If �

is continuous, each ϕ(s) : It → X is obviously continuous. I fix some s0 ∈ Is , and try
to prove that (ϕ(s)) is a continuous family of paths at s0. Suppose given ε > 0. Start
by working in a neighbourhood of a fixed t ∈ It .

Then because � is continuous at (s0, t), there exists some δ (possibly depending
on t) such that

d((s, t ′), (s0, t)) < δ =⇒ d(ϕ(s)(t ′), ϕ(s0)(t)) < ε/2.

Therefore d(s, s0) < δ and d(t ′, t) < δ implies that ϕ(s)(t ′) is close to ϕ(s0)(t) is close
to ϕ(s0)(t ′). In other words, for all t ′, there is a δ neighbourhood of t ,

d(s, s0) < δ =⇒ d(ϕ(s)(t ′), ϕ(s0)(t ′)) < ε.

Now I have proved that every point of the t-interval has a δ neighbourhood with
this property; by compactness the t-interval is covered by finitely many of these, and
by taking δ to be the minimum of finitely many δi I get ϕ(s)(t) close to ϕ(s0)(t) for all
t and all s close to s0. QED

Definition Let X be a topological space and P0 ∈ X a base point. A family of
loops ϕ(s) in X based at P0 is continuous, if the map

� : [0, 1] × [0, 1] defined by �(s, t) = ϕ(s)(t)

is continuous. A loop ϕ : [0, 1] → X based at P0 is contractible in X , if there is a
continuous family of loops joining ϕ to the constant loop ϕ0 (defined by ϕ0(t) = P0

for all t). A path connected space X is simply connected if every loop in X (with
every possible base point, though see Exercise 7.21) is contractible.

A homeomorphism f : X → Y takes paths and continuous families of paths in X
into paths and continuous families of paths in Y . In particular, being simply connected
is a topological property.
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Example Every loop in the unit disc D ∈ R2 is contractible. This is obvious on
a sheet of paper; formally, it is best to use vector notation: if x0 is the base point,
and ϕ(t) = xt is the loop then �(s, t) = x0 + s(xt − x0) gives a continuous family of
paths connecting ϕ to the constant path at x0. The point is just that D is convex; the
same argument gives the same conclusion for any convex subset of Rn .

7.15.2
The winding
number

To discuss the winding number formally, I use ordinary Cartesian coordinates (x, y)
on the disc D, and polar coordinates (r, θ ) on the punctured disc D∗. Note that r > 0,
and that polar coordinates do not really work at the origin. The two coordinate systems
are related by the usual rules x = r sin θ , y = r cos θ .

What values do we allow for θ? Since sin and cos are periodic with period
2π , the right answer is an equivalence class of R modulo 2πZ. Note that every
equivalence class of R/2πZ has a unique representative θ ∈ [0, 2π ); in applications
θ ∈ (−π, π] may be more convenient. If you want θ to be unique, you should insist
that (x, y) �= (0, 0), and choose the representative θ ∈ [0, 2π ). But if you want θ to
vary continuously with (x, y), you should arrange that (x, y) stays well away from
(0, 0) and choose θ ∈ R.

Proposition Suppose that the base point P0 is in the x-axis (so that θ = 0 is
a possible choice). Let ϕ : [0, 1] → D∗ be a path with ϕ(0) = P0. Then there exist
unique continuous functions r : [0, 1] → R+ and � : [0, 1] → R such that

ϕ(t) = (r (t), �(t)) for all t ∈ [0, 1].

If ϕ is a loop, then the end point is ϕ(1) = P0; hence the value �(1) is of the form
2πn for some integer n.

Definition The integer number n in the expression �(1) = 2πn is the winding
number of the loop ϕ, written n = ν(ϕ).

Proof Write ϕ(t) = (x(t), y(t)) and set r (t) =
√

x(t)2 + y(t)2 for t ∈ [0, 1].
Clearly r (t) is continuous and strictly positive. Since [0, 1] is compact, r (t) is bounded
above and below by some R, ρ > 0. Define

ϕ1 : [0, 1] → S1 by ϕ1(t) =
(

x(t)

r (t)
,

y(t)

r (t)

)
.

Then ϕ1 is continuous, because x, y and r are, and r (t) is bounded away from 0.
Now ϕ1(t) ∈ S1 is certainly of the form (sin θ, cos θ ) for some θ = θ (t) ∈ R. The

problem is that θ (t) is determined up to addition of multiples of 2π , and we have to
choose the value for each t to make the function continuous.

Clearly the map e : R → S1 defined by

e : θ �→ (sin θ, cos θ )
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∆+

∆–

Figure 7.15b D∗ covered by overlapping open radial sectors.
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Figure 7.15c Overlapping intervals.

defines a homeomorphism of any open interval (a, b) ⊂ R of length b − a < 2π onto
an open sector of the circle S1 (similarly for closed). To prove the proposition, it is
enough to chop up [0, 1] into finitely many short intervals Ui so that ϕ1 maps each
Ui into such a sector, then take a suitable branch of e−1 on each of these.

To do this very explicitly, cover D∗ by a number of overlapping open radial sectors.
To be definite, say, the ‘top’ and ‘bottom’ 200◦ sectors

�+ : −10◦ < θ < 190◦, �− : 170◦ < θ < 370◦,

as in Figure 7.15b (or make your own choice). Let me write ε = 10◦ = π/18, so that
the sector intervals are (0 − ε, π + ε) and (π − ε, 2π + ε). Then R is divided up into
countably many intervals

I l
+ = (2lπ − ε, (2l + 1)π + ε) and I l

− = ((2l − 1)π − ε, 2lπ + ε)

for l ∈ Z, in such a way that the restriction of e to each interval I l
± is a homeomorphism

el
± : I l

± → �±.
For every t ∈ [0, 1], the image ϕ1(t) ∈ D∗ is in one of the �±. Since ϕ1 is con-

tinuous, ϕ−1
1 (�±) is open, so there exists a neighbourhood U (t) ⊂ [0, 1] of t with

ϕ1(U (t)) ⊂ �±. I can assume that each of the U (t) is an open interval of [0, 1] (ex-
cept the first and last, which are half-open intervals). The U (t) form an open cover of
[0, 1], so by compactness it has a finite subcover. It follows that I can choose a cover
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of [0, 1] by a finite number of overlapping open intervals (Figure 7.15c)

[0, 1] =
m⋃

i=0

Ui ,
with U0 = [0, b1), Ui = (ai , bi+1), Un = (am, 1], and
0 < a1 < b1 < a2 < · · · < bm−1 < an < bm < 1,

such that ϕ1(Ui ) ⊂ �±. (For each Ui , if there is any doubt, make the choice of ± at
the outset.)

Now since el
± : I l

± → �± is a homeomorphism, we clearly define � over Ui ⊂ �±
to be (el

±)−1 ◦ ϕ1, and the only remaining question is the choice of l. First, ϕ(0) = P0

has θ = 0 by assumption, so that either U0 ⊂ �+ or U0 ⊂ �−. In the first case, choose
I 0
+, in the second choose I 0

−. These are forced by the requirement that �(0) = 0. Next,
suppose by induction that � is defined and continuous on U0 ∪U1 ∪ · · · ∪Ui−1. The
initial point ai of Ui is in the overlap with Ui−1, so that � is already defined there.
This determines the choice of I l

±. QED

7.15.3
Winding
number is
constant in
a family

Theorem Let (ϕ(s)) be a continuous family of loops ϕ(s) : [0, 1] → D∗. Then
the winding number of the loop ϕ(s) is constant (independent of s). In particular
ν(ϕ(0)) = ν(ϕ(1)).

Proof Write ν(ϕ) for the winding number of a loop ϕ. The point is to show that
ν(ϕ) depends continuously on the path ϕ : [0, 1] → D∗.

For some value s, suppose that ν(ϕ(s)) = n. I claim that there is a neighbourhood
Vs = (s − δ, s + δ) such that ν(ϕ(s ′)) = n for all s ′ ∈ Vs . In other words, the subset


n =
{
s
∣∣ ν(ϕ(s)) = n

} ⊂ [0, 1]

is open. This claim proves the theorem, because the interval [0, 1] is connected, and
is a disjoint union of the open sets 
n , therefore only one value of n occurs.

First, as in the proof of Proposition 7.15.2, I normalise all the paths by dividing by
the factor r (s)(t), so that each ϕ(s) maps to S1. The normalisation factor is bounded
away from 0 because Is × It = [0, 1] × [0, 1] is compact and � : Is × It → D∗ is
continuous. Thus I assume from now on that ϕ(s) : [0, 1] → S1.

Recall the construction of Proposition 7.15.2 for ϕ(s). There is a cover of [0, 1] = It

by a finite chain of overlapping open intervals Ui = (ai , bi+1) such that ϕ
(s)
1 (Ui ) ⊂

�±. After this, the map � just lifts �± to I n
±, where the value of n is determined

inductively by the already known value of the starting point �(ai ).
Now I choose slightly bigger ‘top’ and ‘bottom’ sectors �′

± of S1; to be explicit,
choose

�′
+ : −20◦ < θ < 200◦, �′

− : 160◦ < θ < 380◦,

or in the previous notation �′
+ = (0 − 2ε, π + 2ε), etc. As far as ϕ(s) is concerned,

nothing has changed: I still have ϕ
(s)
1 (Ui ) ⊂ �± ⊂ �′

±, and the construction of � can
be made equally well with the bigger intervals.
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However, by the definition of continuous family of loops, there exists a small
neighbourhood s ∈ Vs ⊂ [0, 1] such that also ϕ(s ′)(Ui ) ⊂ �′

± for all s ′ ∈ Vs . Thus I
can use the same collection of intervals Ui to construct the argument function �(s ′)

of ϕ(s ′) for all s ′ ∈ Vs .
Then �(s ′)(t) on Vs ×Ui is equal to the composite en

± ◦�(s ′, t), and hence it is
a continuous function of (s ′, t) ∈ Vs ×Ui . It follows that �(s ′)(t) is a continuous
function of s ′ ∈ Vs for any t . In particular, �(s ′)(1) is a continuous function of s ′ ∈ Vs .
However, it is an integer multiple of 2π . Therefore it is constant for s ′ ∈ Vs . This
proves the claim. QED

7.15.4
Applications
of the
winding
number

Corollary 1 The punctured disc D∗ is not homeomorphic to the disc D.

Proof By Theorem 7.15.3, a loop ϕ in D∗ of winding number �= 0 is not con-
tractible. On the other hand, every loop in D is contractible (Example 7.15.1). The
property that a loop is contractible is a topological property, so is preserved by
homeomorphism. Therefore there does not exist a homeomorphism between D and
D∗. QED

Remark The same proof shows that the punctured disc D∗ is not homeomorphic
to the disc D with some of its boundary added, since loops in the latter are still
contractible. This concludes the proof of the main claim in Proposition 7.6: a boundary
point of a surface is topologically different from an interior point.

Corollary 2 (‘Fundamental theorem of algebra’) Let

f (z) = zn + an−1zn−1 + · · · + a1z + a0

be a polynomial of degree n ≥ 1 in z, with complex coefficients ai ∈ C. Then there
exists a complex number ζ such that f (ζ ) = 0. In other words, C is algebraically
closed.

Proof Write C∗ = C \ {0}. Obviously C∗ is homeomorphic to D∗, so that the
definition and properties of the winding number apply also to C∗.

I first give the proof forgetting the small detail of the base point P0, then explain
how to patch this up. For K ∈ R, K ≥ 0, define

ϕK : [0, 1] → C by t �→ f (K exp(2π it)).

If ϕK (t) = 0 for some K and some t then f (ζ ) = 0 for ζ = K exp(2π it). Assume by
contradiction that this never happens. Then ϕK : [0, 1] → C∗ is a continuous family
of loops in C∗. When K = 0 it is the constant loop: ϕ0(t) = a0 for all t . When K � 0
it has winding number n. Indeed, if K > 1 +∑n−1

i=0 |ai | the term zn in f (z) is bigger
than all the other terms put together, so that the loop looks like K n(sin nt + i cos nt)
plus a smaller error term that does not allow the path to reach to the origin.
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However, by Theorem 7.15.3, if we assume that ϕK maps [0, 1] to C∗, the wind-
ing number must be constant, independent of K . This is a contradiction. Therefore,
sometimes f (z) = 0.

The proof just given does not work as it stands, because Theorem 7.15.3 dealt only
in based loops. There are several ways of dealing with this; one method would be
to reprove Theorem 7.15.3 without base points, or to prove that the winding number
does not depend on the choice of a base point.

An easy ad hoc method is to define a new family of paths ϕK starting from the base
point P0 = a0 in the following way: we spend the first 1/3 of the time in the interval
[0, 1] plodding out from f (0) = a0 to f (K ) = ϕK (0) along the path f (R); then we
pursue the loopϕK at 3 times the original speed, returning to f (K ) = ϕK (1) at time t =
2/3; then we spend the final 1/3 of the time returning from f (K ) to f (0) by retracing
our steps along the same path f (R). The new path has the same winding number as
the old, because any change in the argument θ made in plodding out to f (K ) is exactly
cancelled when we retraced our steps. The details are easy to work out. QED

Exercises

7.1 Let (X, d) be a metric space. Check that Definition 7.2 does indeed define a topology
on X ; in other words, check that the set T of open sets in the metric sense is a topology.
[Hint: use the triangle inequality.]

Questions on point-set topology.

7.2 X, Y, Z are topological spaces and f : X → Y , g : Y → Z continuous maps. Prove
that g ◦ f is continuous. Count the lines of your proof, and compare with the same
proof in a standard analysis or metric spaces course.

7.3 X is a metric space with metric topology TX . Prove that a sequence of points ai ∈ X
converges to l in the sense of the metric if and only if it converges in the sense of
topology as in 7.4.2.

7.4 By definition, a sequence of points {xi }i=1,2,... converges to x ∈ X in a topological
space if every neighbourhood U of x contains all but finitely many of the xi . Let X, Y
be topological spaces and f : X → Y continuous.

(a) Prove that {xi } converge to x implies { f (xi )} converge to f (x). That is, ‘continuity
implies sequential continuity’ for topological spaces.

(b) Conversely, prove that for a metric space X , this convergence for all sequences
implies that f is continuous. In other words, ‘sequential continuity implies con-
tinuity’ for metric spaces.

(c) Now let X be a topological space, not necessarily metric, in which every point x ∈
X has a countable basis of neighbourhoods (referred to in 7.2). Prove sequential
continuity implies continuity.

(d) Prove that if X is an uncountable set with the cofinite topology (7.1 Example 2),
then there does not exist a countable basis for the neighbourhoods of x ∈ X .

(e) (Harder) Find a topological space and a map f : Y → X which is sequentially
continuous but not continuous.
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7.5 X is a metric space, x, y ∈ X and a1, a2, . . . a sequence of points of X . Which of the
following are topological properties?

(a) X \ x is disconnected.
(b) ai → x as i →∞.
(c) x is in the closure of {y}.
(d) ai is a Cauchy sequence.
(e) The ball B(x, 1) is compact.
(f) Every neighbourhood of x is a countable set.
(g) The closure of the ball B(x, 1) is connected.
(h) For every compact subset V ⊂ X , the complement X \ V is disconnected.

For each statement, give a proof or a counterexample, or both.
7.6 How many capital letters of the alphabet are there up to homeomorphism in a typeface

without knobs on, such as

ABCDEFGHIJKLMNOPQRSTUVWXYZ?

Scrabble players do it with K and Q.
7.7 X and Y are topological spaces and f : X → Y a continuous surjective map. Prove

that if X is sequentially compact, so is Y . [Hint: consider a sequence in Y and use the
stated properties of f and X . Compare the proof of Proposition 7.4.2.]

7.8 Prove that a continuous function f : X → R on a compact space X is bounded, and
achieves its bounds. [Hint: to get bounded, just say balls, lots of balls, . . . as before.
Let K = sup f (X ) ∈ R, which exists by the completeness axiom. By contradiction
assume that f (x) �= K for all x ∈ X ; consider the open sets Uε ⊂ X defined by
Uε =

{
x
∣∣ f (x) ≤ K − ε

}
.]

7.9 Prove that a continuous function f : [a, b] → R is uniformly continuous. [Hint: for
a given ε, the definition of continuity gives balls B(x, δx ), . . . ]

7.10 X is a topological space and Y ⊂ X a subset with the subspace topology; prove that
every closed subset of Y is of the form Y ∩ V with V closed in X .

7.11 X is a metric space and Y ⊂ X a subset. Prove that the following two topologies on
Y are identical.

(a) Take the metric topology TX and the subspace topology TY,1 on Y .
(b) Restrict the metric dX to Y to get a metric dY , then take the metric topology TY,2

on Y corresponding to dY .

7.12 Find all the possible topologies on a set {x, y} with two points.
7.13 Study the possible topologies on a finite set.

(a) If a topological space is not T1 (see 7.11) then there exist x �= y such that the
constant sequence y, y, . . . converges to x . That is, x is in the closure of the set
{y}.

(b) Write x C y if x is in the closure of y, and think of this as a relation between x
and y. Prove that C is a transitive relation.

(c) Define the relation x R y by

x R y ⇐⇒ x C y and y C x .
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Prove that R is an equivalence relation.
(d) Let Y ⊂ X be an equivalence class of R; prove that the subspace topology on Y

is the indiscrete topology (no opens other than ∅ and X ).
(e) (Harder) Use steps (a)–(d) to describe all possible topologies on a finite set Y .

7.14 Let X be a topological space, ∼ an equivalence relation on X and Y = X/∼ the
quotient topological space. Think of the relation ∼ as the subset

Z (∼) = {(x, y)
∣∣ x ∼ y

} ⊂ X × X

where X × X is given the product topology.
(a) By imitating the proof of Proposition 7.11, prove that Y is Hausdorff if and only

if Z (∼) ⊂ X × X is closed.
(b) Let Z ⊂ X × X be the closure of the diagonal, considered as a relation (x ∼ y if

and only if (x, y) ∈ Z ); describe what x ∼ y means in terms of neighbourhoods
of x and y, and prove that ∼ is an equivalence relation.

(c) Prove that X has a continuous map f : X → X ′ to a Hausdorff space which has
the UMP for such maps.

Exercises on surfaces.

7.15 Write down equations for a torus, a solid torus and a Möbius strip in terms of Cartesian
coordinates (x, y, z) or cylindrical polar coordinates (r, θ, z) for R3. [Hint: you get
a torus by rotating a circle about an axis outside it, and a Möbius strip by letting a
diameter of the circle rotate simultaneously to get 1, 3, 5, . . . half-twists.]

7.16 Prove that S2 \ {2 points} is homeomorphic to the cylinder S1 × R. [Hint: let the two
points be the poles N and S, and think of Mercator’s projection.]

7.17 Using Figure 7.7, prove the following statements.
(a) If L = P1 is the line obtained from the equatorial circle, then P2 \ L is topologi-

cally a disc (the upper half-sphere), and a neighbourhood of L in P2 is a Möbius
strip.

(b) If Q = {x2 + y2 = z2} ⊂ P2 is a conic curve, then P2 \ Q consists of two pieces,
one a Möbius strip and the other a disc; a neighbourhood of Q in P2 is a
cylinder.

Draw pictures illustrating the following statement: cutting P2 along a line is like
cutting a Möbius strip along its central curve, whereas cutting P2 along a conic is like
cutting a Möbius strip along the curve trisecting the width of the strip.

7.18 In 7.6, I obtained the Möbius strip, the cylinder and the torus from a square by glueing
its edges in a particular fashion. In Figure 7.16a, I give two other glueing rules.
(a) Show that the first pattern builds a surface homeomorphic to the projective plane

P2.
(b) Show that the second pattern corresponds to a surface that you can build in two

steps, first glueing a cylinder as in Figure 7.6c and then identifying the circles at
the ends, carefully remembering their orientation. This surface is called the Klein
bottle. It shares with P2 the property that it cannot be embedded in R3 without
self-crossing.

7.19 The top panel of Figure 7.16b shows a surface with two handles, with a set of circles
marked on its surface, in analogy with the last panel of Figure 7.6c.
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Figure 7.16a Glueing patterns on the square.

Figure 7.16b The surface with two handles and the 12-gon.

(a) Verify that cutting the surface along the marked circles leads to the 12-gon on
the bottom panel of Figure 7.16b, with the edges identified as shown. Hence
conversely, glueing the 12-gon with the given pattern leads to a surface with two
handles!

(b) Triangulate the surface by triangulating the 12-gon. Compute the Euler number
‘faces − edges + vertexes’. Compare 9.4.

Exercises on loops

7.20 Draw the graph of the function

f (s)(t) =


4t/s for 0 ≤ t ≤ s/4

2 − 4t/s for s/4 ≤ t ≤ s/2

0 for s/2 ≤ t ≤ 1.

Here s ∈ (0, 1]. Have you seen anything like this before? Set f (0)(t) = 0, and prove
the following:
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(a) for any fixed s ∈ [0, 1] the formula ϕ(s)(t) = ( f (s)(t), t) defines a path
ϕ(s) : [0, 1] → R2 (i.e. it is continuous);

(b) for fixed t ∈ [0, 1] the map s �→ ϕ(s)(t) is continuous;
(c) ϕ(s) is not a continuous family of paths in R2 in the sense of Definition 7.15.1;
(d) ϕ(s) is something you would not do to a dog lead;
(e) �(s, t) = f (s)(t) is not a continuous function of s, t near (0, 0).
The point of the question is to justify the tentative definition in 7.15.1, in particular
to convince you of the requirement for uniformity in t .

7.21 Suppose that X is a path connected topological space and pick two points P0, Q0 ∈ X .
Prove that all loops in X based at P0 are contractible if and only if all loops in X
based at Q0 are contractible. [Hint: compare the end of 7.15.4.]



8 Quaternions, rotations and the geometry
of transformation groups

Chapters 1– 5 discussed transformations that depend continuously on parameters: for
example, Euclidean rotations in the plane that depend on the centre and the angle
of rotation. I stressed that composition of transformations is a natural operation, an
idea that led in Chapter 6 to the definition of a geometric transformation group. Here
I focus on groups with a continuous family of elements, especially some examples
arising in geometry where the group of transformations has an interesting geometry of
its own. The discussion is a first introduction to some of the basic ideas of ‘continuous
transformation groups’. The formal definition and a detailed treatment of this type
of ‘group-manifold’ (or Lie group) is beyond the scope of this book, but see 8.8 and
Segal [22].

As an example, recall that a rotation of E2 around a fixed point P is given by
the matrix

(
cos θ − sin θ
sin θ cos θ

)
, and so depends continuously on the real parameter θ . This

parameter takes values in a circle. Thus the group of rotations of E2 around a fixed
point has a geometry of its own, that of the circle, as shown in Figure 8.0. The relation
between rotations in the plane and the circle can be conveniently expressed in terms of
complex numbers, with the action of rotation by θ on the column vector

( x
y
)

written
as multiplication of the complex number x + iy by the complex number exp(iθ ) of
absolute value 1. On the other hand, the set of unit complex numbers is the circle S1

in the complex plane.
A highlight of this chapter is Corollary 8.5.3, which applies the homeomorphism

criterion Theorem 7.14 (one of the main results of Chapter 7) to give a description in
similar terms of the topology of the groups of rotations of E3 and E4 around a fixed
point. The algebra of complex numbers is replaced by the algebra of quaternions

H = {a + bi + cj + dk
}

with a, b, c, d ∈ R,

where i, j, k all square to −1 and multiply together wisely. Corollary 8.5.3 describes
the topology of the group of three- and four-dimensional rotations in terms of the
sphere S3 of unit quaternions.

The group of three dimensional rotations is of basic importance in many areas of
mechanics and physics, describing symmetries of Euclidean space E3, a space that
old-fashioned empiricists believe we inhabit. The quantum mechanical treatment of

142



8.1 TOPOLOGY ON GROUPS 143

1

cos θ − sin θ
sin θ cos θ( )

S θ

Figure 8.0 The geometry of the group of planar rotations.

the spin of the electron is a pretty illustration of my treatment of the topology of
the group of three-dimensional rotations. As most ingredients are at hand already, I
cannot resist the temptation to include a section on this, cribbed more or less directly
from Feynman [7]. The discussion puts together in a very satisfactory way ideas from
algebra (groups, algebra of quaternions), analysis (topology, compactness), geometry
(rotations of E3) and quantum physics (wave function, spin of the electron).

8.1 Topology on groups

A group G is a topological group if it has a topology defined on it so that multiplication
and inverse are continuous. In more detail, a topological group is an object G having
two quite different structures: a collection of open subsets satisfying the axioms for
a topology, and a multiplication map with identity and inverse satisfying the group
axioms. I require the group structure to respect the topological structure in the sense
that

mult : G × G → G and inv: G → G
(g, h) �→ gh g �→ g−1

are both continuous maps of topological spaces; here G × G has the product topology
of 7.10.

Example 1 Any finite group G is a topological group under the discrete topology.

Example 2 The groups (R,+) and (R∗,×) are topological groups with respect
to the usual topology of R. This is just a fancy way of restating the fact, used all
over the place in a first analysis course, that the four operations addition, subtraction,
multiplication and division are continuous on the reals.

Example 3 A substantial generalisation of the previous example brings us back
to the linear geometries of Chapters 1–5. Recall the general linear group GL(n, R)
of n × n real invertible matrixes. Note that GL(n, R) is a subset of the set of real
matrixes M(n × n, R) = Rn2

. This latter is a metric space, and therefore has a natural
metric topology. Moreover, it is an easy fact that matrix multiplication and inverse
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are continuous. Hence GL(n, R) is a topological group. As a consequence, affine
transformations Aff(n, R) (compare 4.5) also form a topological group.

The group R∗ of constant diagonal matrixes is a subgroup of GL(n + 1, R), the
centre of GL(n + 1, R), that is, the subgroup of elements commuting with every
element g ∈ GL(n + 1, R) (see 5.5 and Exercise 6.3). The quotient

PGL(n + 1, R) = GL(n + 1, R)/R∗

is a topological group with the quotient topology. This is of course the group of
projective linear transformations of Pn familiar from 5.5, the projective linear group.

Example 4 The orthogonal group

O(n) = {A ∈ GL(n, R)
∣∣ tAA = 1n

}
,

the group of orthogonal n × n matrixes, is a topological group in the subspace topol-
ogy. Hence also Eucl(n), the group of Euclidean motions, and the group of motions
of S2 (see 3.5) are topological groups.

Example 5 Hyperbolic motions form a matrix group, the Lorentz group or group
of Lorentz transformations (see 3.11 for the notation and compare Theorem 3.11 and
Exercise 8.5)

O+(1, 2) =
{

A ∈ GL(3, R)

∣∣∣∣ tAJ A = J , and A preserves the
halves of the cone qL (v) < 0

}
.

This is also a topological group. It and its higher dimensional colleagues O+(1, n)
are important in special relativity and related areas of physics.

The topological groups in Examples 2–5 have an interesting ‘continuous’ geom-
etry. Here is a simple example (see Figure 8.0): recall that O(2) is the group of all
rotation matrixes

(
cos θ − sin θ
sin θ cos θ

)
and reflection matrixes

(
cos θ sin θ
sin θ − cos θ

)
. Thus O(2) is a

union of two connected components, each a copy of the circle S1 parametrised by the
angle θ . One aim of this chapter is to generalise this nice description to some other
orthogonal groups.

8.2 Dimension counting

Here I begin the study of some particular aspects of the geometry of transformation
groups. In this section I want to concentrate on a measure of their size. Recall that
O(2) can be described geometrically as the union of two circles. The circle S1 is a one
dimensional geometric object in the sense that its points depend on one real parameter
θ ; standing at a point of the circle, there is one direction in which you can move.

Without going into rigorous details, by dimension of a transformation group G,
denoted dim G, I understand the number of continuous real parameters needed to
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characterise an element g ∈ G. The previous paragraph then shows that dim O(2) = 1.
Do not get confused by the fact that O(2) has two components; to characterise elements
of O(2), I need one continuous real parameter (the angle θ ) and a discrete parameter
(the choice of one of the components, equivalently the sign of the determinant, or its
value ±1).

I proceed to compute the dimension of transformation groups in some nontrivial
cases. The computations will be performed by describing elements of the groups in a
way which makes it possible to count the parameters involved directly.

Proposition An element g ∈ Eucl(n) depends on
(n+1

2

)
real parameters, so

dim Eucl(n) = (n+1
2

)
. Further,

dim O(n) =
(

n

2

)
, dim GL(n, R) = n2, dim PGL(n + 1, R) = n(n + 2).

Proof The language of Euclidean frames from 1.12 gives a way of specifying
elements of the Euclidean group. Choose a reference frame {P0, P1, . . . , Pn}; then by
Theorem 1.12, elements of the Euclidean group Eucl(n) correspond one-to-one with
the set of Euclidean frames {Q0, Q1, . . . , Qn}. Now calculate:

� Q0 ∈ En is any point, so depends on n parameters;
� Q1 ∈ En is any point with d(Q0, Q1) = 1, that is, it is any point of the unit sphere

Sn−1 with centre Q0, hence depends on n − 1 real parameters;
� writing e1 = −−→

P0 P1 and e⊥1 = En−1 ⊂ En for the orthogonal complement, Q2 is given
by a point of the unit sphere Sn−2 ⊂ En−1, so depends on n − 2 real parameters;

� similarly, Qi is given by a point of Sn−i , and hence depends on n − i real parameters;
� in particular, Qn is one of two points, so has no continuous parameter.

Thus a Euclidean frame depends on

dim Eucl(n) = n + (n − 1) + · · · + 1 + 0 =
(

n + 1

2

)
parameters.

An element of O(n) fixes the origin, which I can take to be P0 = Q0 in the above
argument. Hence the dimension count is

dim O(n) = (n − 1) + · · · + 1 + 0 =
(

n

2

)
,

agreeing with dim O(2) = 1. Said slightly differently, O(n) and Eucl(n) differ by the
translation part (compare Proposition 6.5.3), which accounts for n parameters:

dim O(n) = dim Eucl(n) − n =
(

n + 1

2

)
− n =

(
n

2

)
.

The dimension of the general linear group can be calculated in exactly the same
way. Elements of GL(n, R) correspond to invertible maps of the vector space Rn . Such



146 GEOMETRY OF TRANSFORMATION GROUPS

a map is determined by the images of the n usual basis vectors in Rn , parametrised
by a total of n2 numbers (the entries of the matrix representing the map). Not all
parametrisations give invertible maps, but most do: I only have to exclude matrixes
with zero determinant. Hence there are n2 real parameters involved, so

dim GL(n, R) = n2.

Finally by Theorem 5.5 there are as many projective transformations as projective
frames of reference. Hence I have to pick n + 2 general points in Pn , leading to

dim PGL(n + 1, R) = (n + 2)n

parameters. Incidentally, the dimension of the projective group can also be calculated
from its definition PGL(n + 1, R) = GL(n + 1, R)/R∗, which gives

dim PGL(n + 1, R) = dim GL(n + 1, R) − 1

= (n + 1)2 − 1 = (n + 2)n. QED

You can design your own parameter counts for some other groups not mentioned
in the proposition; for example, do and generalise Exercise 8.3.

8.3 Compact and noncompact groups

Proposition The orthogonal group O(n) is a compact topological space.

Proof This is a simple application of Proposition 7.4.2. The orthogonal group
is a matrix group: it is a subspace of the space Rn2

of real matrixes. Hence it is
enough to show that it is closed and bounded. The equation tAA = 1n defines a closed
subset of Rn2

, so the main issue is boundedness. However, if A = (ai j ) is orthogonal,
then its columns form an orthonormal basis and in particular for every 1 ≤ k ≤ n,∑n

i=1 a2
ik = 1. Hence

n∑
i,k=1

a2
ki = n

which just says that every orthogonal matrix A is contained in a ball of radius
√

n in
Rn2

. QED

A compact space is often much more pleasant to work with than a noncompact one.
However, many transformation groups are visibly noncompact, such as the additive
group R. On the other hand, the topology and geometry of R are very simple (for
example, R is simply connected, and can be parametrised by a real parameter without
overlap). Most transformation groups are of course more complicated; however, in
a suitable sense they can be topologically decomposed as a compact group times a
group homeomorphic to Rn .
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Example 1 The simplest example is the multiplicative group R∗ of nonzero real
numbers. There is a homeomorphism (in this case, an isomorphism of groups)

R+ × {±1} → R∗;

in plain English, every nonzero number is the product of a positive number and a sign.
The space R+ is homeomorphic to R; the group {±1} is finite so clearly compact.

Example 2 Although the next example looks similarly innocent, it appears in
many different guises throughout geometry, Fourier analysis, Lie groups, representa-
tion theory, complex analysis and number theory. Consider the multiplicative group
C∗ of nonzero complex numbers. This is a topological group; for example, I can
view C as the plane R2 and take the subspace topology. The space C∗ is obviously
noncompact. However, there is a homeomorphism (even a group isomorphism)

S1 × R+ → C∗

(θ, r ) �→ r exp(iθ ).

Here S1 is compact (and definitely not homeomorphic to a product of copies of R,
which is the essential content of 7.15.4, Corollary 1) and R+ is homeomorphic to R.

Example 3 The final example is more substantial, and deals with the difference
between the groups GL(n, R) and O(n). Write T+(n) ⊂ GL(n, R) for the set of upper
triangular matrixes with positive diagonal entries:

T+(n) = {M = (mi j ) ∈ GL(n, R)
∣∣ mi j = 0 for all i > j , and mii > 0

}

=



+ ∗ · · ·
0 + ∗ · · ·
0 · · · . . . ∗
0 · · · 0 +


 .

It is easy to see that T+(n) ⊂ GL(n, R) is a subgroup.

Theorem Every element A ∈ GL(n, R) can be written in a unique way in the form
A = BC, where B ∈ O(n) is an orthogonal matrix and C ∈ T+(n) is an upper trian-
gular matrix with positive diagonal entries. Moreover, B and C depend continuously
on A. The map

GL(n, R) → O(n) × T+(n) given by A �→ (B, C)

is a homeomorphism (see 7.3, but not a group homomorphism!).

Discussion The space O(n) is compact by the above Proposition. The space T+(n)
is homeomorphic to RN , where N = (n+1

2

)
. Many geometric questions on GL(n, R)
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reduce to similar questions on O(n); for a simple example, compare Remark 8.4. Note
also the dimension count:

dim O(n) + dim T+(n) =
(

n

2

)
+
(

n + 1

2

)
= n2 = dim GL(n, R).

Proof I view the n × n matrix A as a row made up of n column vectors fi . Thus
{f1, . . . , fn} is a basis of Rn because A ∈ GL(n, R). If it is an orthonormal basis then
there is no problem: A ∈ O(n), and we must take B = A and C = 1. If A is not
orthogonal to start with, then the Gram–Schmidt process described in the proof of
Theorem B.3 (1) produces an orthonormal basis. Set B to be the matrix formed from
the new basis vectors as columns, and C to be the matrix describing the change of
basis. Clearly B ∈ O(n); I leave you to check (see Exercise 8.6) that C ∈ T+(n) and
that B, C depend continuously on A. Then the map A �→ (B, C) is continuous, and
its inverse is matrix multiplication (B, C) �→ BC . QED

8.4 Components

Recall from 7.4.1 that every topological space can be decomposed into a number of
components, which are themselves connected. I repeatedly discussed the geometry
of O(2): a union of two circles. A circle S1 is connected, so O(2) has two connected
components. This is typical:

Proposition The group O(n) has two connected components, distinguished by
det A = ±1.

Remark One can use Theorem 8.3 to show that GL(n, R) also has two connected
components, that are distinguished by det A > 0 and det A < 0; see Exercise 8.4. The
group O(1, 2) of all Lorentz matrixes has 4 components, as discussed in Exercise 8.5.

Proof An orthogonal matrix has determinant ±1. (Compare 1.10; recall that I
called A direct if det A = 1 and opposite if det A = −1.) The function

det : O(n) → {±1}
is continuous, so the two possibilities det A = ±1 determine two disjoint open and
closed sets of O(n). It remains to show that each of these sets is path connected.

Fix a matrix A ∈ O(n). By the normal form theorem 1.11, A can be written with
respect to a suitable orthonormal basis in the diagonal block form with 2 × 2 diagonal
blocks

Bi =
(

cos θi − sin θi

sin θi cos θi

)
,

and one optional block ±1. For t varying from 0 to 1, let A(t) be the matrix with the
same block form as A, but with blocks

Bi (t) =
(

cos tθi − sin tθi

sin tθi cos tθi

)
.
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The rule t �→ A(t) gives a continuous path [0, 1] → O(n) joining A either to the
identity or to the element diag(1, . . . , 1,−1). Therefore, the two subsets of O(n)
defined by det A = ±1 are both path connected. A path connected space is connected
by Lemma 7.4.1 (2). QED

The special orthogonal group is the group

SO(n) = {A ∈ O(n)
∣∣ det A = 1

}
.

By the Proposition, this is a connected component of O(n). Since it is the kernel of a
group homomorphism det : O(n) → {±1}, it is also a normal subgroup of index 2 in
O(n).

In the special case n = 3, the elements of SO(3) can be described explicitly. By the
normal form theorem 1.11, any orthogonal 3 × 3 matrix of determinant 1 has the form 1

cos θ − sin θ

sin θ cos θ


in a suitable basis. If l is the line through the origin with direction vector given by
the first basis element, then the motion of E3 described by this matrix is the rotation
Rot(l, θ ) around the line l. Hence SO(3) is the group of rotations of E3 about axes
passing through O .

8.5 Quaternions, rotations and the geometry of SO(n)

As I discussed before, for n = 2 the group SO(2) is homeomorphic to the circle S1.
The purpose here is to find a similar description of the special orthogonal groups
SO(3) and SO(4) in terms of the 3-sphere. I start with a small detour to introduce
the quaternions, the main protagonists in the game. Note that SO(n) is the group
of direct motions of En with a fixed point, or in other words the group of rotations
of En; hence the aim is to find a connection between quaternions and rotations (for
n = 3, 4).

8.5.1
Quaternions

The algebra of quaternions is the real vector space

H = {a + bi + cj + dk
}

with a, b, c, d ∈ R,

with the multiplication law

i2 = j2 = k2 = −1, i j = k, jk = i, ki = j, j i = −k, k j = −i, ik = − j.

The cyclic symmetry makes this easy to remember.
Some terminology, similar to the traditional language of complex numbers: if

q = a + bi + cj + dk, write q∗ = a − bi − cj − dk for the conjugate quaternion.
We say that q is real if b = c = d = 0 and pure imaginary if a = 0.
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Proposition

(1) H is an associative noncommutative R-algebra of dimension 4 over R.
(2) The conjugation q �→ q∗ is an antiinvolution, meaning

(pq)∗ = q∗ p∗ for all p, q ∈ H.

(3) |q|2 = qq∗ = q∗q = a2 + b2 + c2 + d2 is a positive definite quadratic form on H;
therefore for any nonzero q ∈ H, the element

q−1 = q∗/|q|2

is a 2-sided inverse of q. Hence H is a division algebra or skew field.
(4) If q ∈ H and q /∈ R, then q = A + B I with I pure imaginary, I 2 = −1 and A, B ∈ R.

Hence the subalgebra R[q] of H generated by q is of the form R[q] ∼= C ⊂ H.
(5) If I is pure imaginary with I 2 = −1, there exists J, K ∈ H such that I, J, K have the

same multiplication table as i, j, k, that is I 2 = J 2 = K 2 = −1 and I J = K , etc.

Proof (1) Noncommutativity is clear from the multiplication table: i j = k �=
−k = j i .

Because everything is R-linear, it is enough to check the associative law a(bc) =
(ab)c for the basis elements a, b, c ∈ {1, i, j, k}. If any of a, b, c is 1 then it is OK.
By the cyclic symmetry, I can assume that the first term a = i ; if only i appears, then
I am working in a copy of C. This leaves only 8 cases to check by brute force:

i(i j) = ik = − j = (i2) j ; i(ik) = i(− j) = −k = (i2)k;
i( j i) = i(−k) = j = ki = (i j)i ; i( j2) = −i = k j = (i j) j ;

i( jk) = i2 = −1 = k2 = (i j)k; i(ki) = i j = k = − j i = (ik)i ;
i(k j) = −i2 = 1 = − j2 = (ik) j ; i(k2) = −i = − jk = (ik)k.

This is of course pure gobbledygook. A much more convincing argument is to say that
i, j, k are maps of something, such that multiplication coincides with composition of
maps, so is associative for a fundamental reason; see Exercise 8.8.

(2) Again because everything is R-linear, it is enough to check that (pq)∗ = q∗ p∗

for basis elements a, b ∈ {1, i, j, k}. The brute force method is an easy exercise:
(1i)∗ = −i = (i∗)(1∗), (i j)∗ = −k = (− j)(−i), etc.; see Exercise 8.9.

(3) On multiplying out the product (a + bi + cj + dk)(a − bi − cj − dk), the
terms a2 + b2 + c2 + d2 appear in the obvious way from the squared terms. The
cross terms all cancel out, either as (a ×−bi) + (bi × a) = 0 or (bi ×−cj) +
(cj ×−bi) = −bc(i × j + j × i) = 0.

(4) Note that q + q∗ = 2a and qq∗ = |q|2 ∈ R, so that q and q∗ are the two roots
of a quadratic polynomial x2 − 2ax + |q|2 with real coefficients. Also, q − q∗ =
2(bi + cj + dk) is pure imaginary, and an easy calculation similar to that in (3) shows
that (q − q∗)2 = −4(b2 + c2 + d2) < 0 (because q /∈ R), so that this has no real roots.
Thus q = A + B I where A = a, B =

√
(b2 + c2 + d2) and I is pure imaginary with

I 2 = −1.
(5) is worked out as an exercise in Exercise 8.12. QED
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Remark (3) says that the Euclidean distance on R4 = H is determined by the
algebra structure of H together with the antiinvolution q �→ q∗. This has various nice
corollaries. For example, the direct sum decomposition

H = {real quaternions} ⊕ {imaginary quaternions} = R⊕ R3

is orthogonal. Also, two imaginary vectors p, q anticommute pq = −pq if and only
if the corresponding vectors of R3 are orthogonal. This point is the main reason that
quaternions can be applied to rotations of E3 and E4.

8.5.2
Quaternions
and
rotations

Set

U = {unit quaternions} = {q ∈ H | qq∗ = 1} = S3 ⊂ R4

for the unit quaternions. Note that U has two structures: it is a group under mul-
tiplication, and also has its own geometry as the sphere S3. The two structures are
compatible as in 8.1. The group U generalises the multiplicative group of complex
numbers of modulus 1, which is the unit circle S1 ⊂ C.

For the next theorem, identify H and its quadratic form |q| with E4 and its Eu-
clidean distance. The purely imaginary quaternions form a linear subspace which gets
identified with E3.

Theorem

(1) For any p ∈ U, left multiplication ap : x �→ px defines a map H → H which is a
direct motion of H = E4 fixing the origin; the same holds for right multiplication
bq : x �→ xq∗.

(2) The group homomorphism ϕ : U ×U → SO(4) defined by

ϕ(p, q) = ap ◦ bq : x �→ pxq∗

is surjective, and ϕ(p, q) = idH if and only if (p, q) = (1, 1) or (p, q) = (−1,−1).
(3) For any q ∈ U, the map rq : x �→ qxq∗ is a direct motion of H = E4, which is the

identity on real elements of H and takes pure imaginary quaternions of H to pure
imaginary quaternions. Thus it defines a rotation of the subspace E3 ⊂ H of pure
imaginary quaternions.

(4) Any q ∈ U with q /∈ R has a unique expression in the form q = cos θ + I sin θ , where
I ∈ U is a pure imaginary quaternion and θ ∈ (0, π ). Then rq = Rot(I, 2θ ) is the
rotation of R3 about the directed axis defined by I through the angle 2θ .

(5) The group homomorphism ψ : U = S3 → SO(3) defined by

ψ(q) = rq

is surjective, and ψ(q1) = ψ(q2) if and only if q1 = ±q2.
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Proof (1) It is clear that ap is a motion, since it fixes 0 and |px |2 = |x |2. Moreover,
it must be a direct motion, for example, because det(aq ) is a continuous map from the
connected set U = S3 to ±1. (Several other proofs are possible, see Exercise 8.15.)

I relegate (2) to Exercise 8.22.
(3) is obvious, since a ∈ R commutes with quaternion multiplication, so rq (a) =

qaq∗ = aqq∗ = a. Also, if p∗ = −p, then rq (p) = qpq∗ has (rq (p))∗ = (qpq∗)∗ =
qp∗q∗ = −qpq∗, so qpq∗ is pure imaginary.

(4) follows from Proposition 8.5.1 (4): R[q] ∼= C. The equation x2 = −1 has
exactly two roots±I in C, and choosing the appropriate sign gives q = cos θ + I sin θ

with θ ∈ (0, π ). Then rq (I ) = I follows because R[q] ∼= C, so that q∗ = q−1 and
q I q−1 = I .

Now let J, K be as in Proposition 8.5.1 (5). Then

q Jq∗ = (cos θ + I sin θ )J (cos θ − I sin θ)

= (cos2 θ − sin2 θ )J + (2 sin θ cos θ )K ,

and similarly q K q∗ = −(2 sin θ cos θ )J + (cos2 θ − sin2 θ )K . Thus rq fixes the di-
rected axis defined by I , and performs a rotation by 2θ in the plane spanned by J, K .

Finally (5) follows by (4); every rotation is hit exactly twice because of the
2θ . QED

8.5.3
Spheres and
special
orthogonal
groups

After all this algebra, come the relations between groups of rotations and the sphere
S3.

Corollary

(1) There is a homeomorphism

SO(3) � S3/∼,

where ∼ is the equivalence relation on S3 that identifies antipodal points x and −x.
(2) There is a homeomorphism

SO(4) � (S3 × S3)/≈,

where ≈ is the equivalence relation on S3 × S3 that identifies (x, y) with (−x,−y).

Proof Both statements are direct corollaries of the previous theorem together
with Theorem 7.14 and the definition of the quotient topology and its UMP discussed
in 7.5.

In more detail, by Theorem 8.5.2 (5) there is a continuous surjective map
ψ : S3 → SO(3), with ψ(x) = ψ(y) if and only if x = y or x = −y. By the uni-
versal mapping property 7.5 of the quotient topology, there is consequently a con-
tinuous map ψ : (S3/∼) → SO(3) that is clearly a bijection. Now S3 is compact,
and therefore so is S3/∼ by Proposition 7.4.3. Also the subspace topology of

SO(3) ⊂ R9 = {3 × 3 matrixes} is metric and therefore Hausdorff. Therefore all the
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assumptions of Theorem 7.14 are satisfied, ψ is a homeomorphism, and (1) follows.
(2) is proved in exactly the same way using the map ϕ : U ×U → SO(4) of Theo-
rem 8.5.2 (2). QED

Remark The statements of the corollary generalise for all n; namely, there ex-
ists a compact topological group Spin(n) called the spinor group with a surjective
homomorphism π : Spin(n) → SO(n) with kernel 〈ι〉 of order 2, so that π induces
an isomorphism of groups Spin(n)/ 〈ι〉 → SO(n) that is also a homeomorphism [15].
The pleasant thing about low dimensions is the fact that the spinor groups are spheres
or products of spheres: Spin(2) � S1, Spin(3) � S3, Spin(4) � S3 × S3.

8.6 The group SU(2)

In this brief section, I identify the group U of unit quaternions of 8.5 as a matrix
group. This involves more linear algebra over the complex numbers, a subject that
already made a brief but important appearance in 1.11.

Let V be a 2-dimensional C-vector space together with a positive definite Hermitian
form, represented in some basis by |z1|2 + |z2|2, or the matrix

(
1 0
0 1

)
(see B.6 for more

details on Hermitian forms). A complex linear transformation of V that preserves this
form is unitary: thus a matrix A ∈ GL(2, C) is unitary if it satisfies hAA = In , where
hA is the Hermitian conjugate defined by (hA)i j = A ji . The group of all such matrixes
is the unitary group U(2). I am interested in its subgroup, the special unitary group

SU(2) = {A ∈ U(2)
∣∣ det A = 1

}
.

As matrix groups, both U(2) and SU(2) are topological groups in an obvious way.

Remark A unitary matrix A has | det A| = 1; see Exercise B.4. Thus the set of
possible values for the determinant is the unit circle S1, which is connected. Thus
SU(2) is a normal subgroup, but not a connected component of U(2) in the same way
as SO(2) is in O(2).

I write out explicitly the condition for a matrix A ∈ GL(2, C) to be special unitary
(compare 1.11.1). If A = ( a b

c d

)
, the equations are

aa + cc = 1,

ab + cd = 0,

bb + dd = 1,

and det A = ad − bc = 1. (1)

One solves these equations more-or-less as in 1.11.1 to get d = a and c = −b, where
aa + bb = 1; see Exercise 8.20. Thus

SU(2) =
{(

a b
−b a

)∣∣∣∣ a, b ∈ C, |a|2 + |b|2 = 1

}
.

This description has an important corollary.
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Corollary The map
( a b
−b a

) �→ a + bj defines an isomorphism from SU(2) to the
group U of unit quaternions of 8.5.2.

Proof Write a = a1 + a2i and b = b1 + b2i . Then a + bj = a1 + a2i + b1 j +
b2k using quaternion multiplication. The condition |a|2 + |b|2 = 1 becomes |a1|2 +
|a2|2 + |b1|2 + |b2|2 = 1 hence a + bj has quaternion norm 1. The map SU(2) → U
is clearly a bijection. It remains to check that the map respects multiplication, so that
it becomes a group isomorphism; this is a special case of Exercise 8.14. QED

Theorem 8.5.2 (5) on the description of SO(3) can thus be reformulated as say-
ing that there exists a two-to-one surjective group homomorphism SU(2) → SO(3)
(compare also Exercise 8.3). The two groups are now matrix groups (over different
fields), but the existence of the two-to-one map is by no means obvious from the
matrix description: the most convincing way of going from complexes to reals is via
quaternions.

8.7 The electron spin in quantummechanics

This section relates the geometry of SO(3) to a fundamental attribute of elementary
particles: their spin. All the mathematics needed is at hand already; however, there is no
space in the present book to introduce all the necessary background from quantum me-
chanics. For more information and insight, see Feynman’s classic [7], Chapters 1–3.

8.7.1
The story of
the electron
spin

The story begins in 1925. Two Dutch doctoral students George Uhlenbeck and Samuel
Goudsmit, halfway through their Ph.D. program, noted that the electron inside the
atom appeared to have, besides the three known ‘quantum numbers’ associated with
the position of the electron, its angular momentum around the nucleus and its magnetic
field, an extra degree of freedom. They postulated the existence of an extra ‘quantum
number’, which they called the electron spin. This new quantum number seemed
to behave in many ways like angular momentum, so they gave the interpretation
that it corresponds to some kind of intrinsic rotational motion. However, the quantum
number appeared to have just two possible values (+) and (−), and the rotation seemed
not to have a definite axis; strange facts for a ‘spinning’ particle. Their advisor Paul
Ehrenfest is said to have commented: ‘You are both young enough to be able to afford
a stupidity!’ (he realised soon afterwards though that his students had in fact made
an important discovery).

Unknown to Uhlenbeck and Goudsmit, the experimental verification of their dis-
covery had been around for three years in the form of the Stern–Gerlach experiment.
In 1922 the German scientists Otto Stern and Walther Gerlach built the device illus-
trated schematically in Figure 8.7a. The source emits a beam of silver atoms. The
beam is directed between the poles of a magnet, which produces a magnetic field
orthogonal to the direction of the path. As the atoms are electrically neutral, they
are not expected to experience force; they should thus pass through the device with-
out any change in their direction. However, a screen on the other side of the device
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Figure 8.7a The Stern–Gerlach experiment.

reveals that the atoms are in fact deflected by the magnetic field, and moreover that
they follow one of two possible paths.

The experiment can only be understood in terms of the notion of spin. A silver
atom has an electron on an outer shell, whose intrinsic spin interacts with the magnetic
field. Atoms whose outer electron is in the (+) spin state follow a different path from
those in the (−) spin state.

The mid-1920s was of course the time when quantum mechanics was invented.
Soon after Uhlenbeck and Goudsmit’s proposal, Pauli and Dirac incorporated elec-
tron spin into the quantum mechanical theory of the electron, also known as the
Schrödinger equation. Since this is not a course about the electron, I do not need to
worry unduly with the details.

8.7.2
Measuring
spin: the
Stern–
Gerlach
device

In the following, I assume a modified form of the Stern–Gerlach (SG) device, illus-
trated in Figure 8.7b. This is only a thought experiment1, explained in detail in [7],
pp. 5-1 and 5-2. An electron beam arrives from the left, and separates inside the device
S into two beams according to its spin under the action of the left-hand ‘magnet’. A
combination of other ‘magnets’ forces the electrons back into their horizontal path;
the outcoming beam still consists of a mixture of electrons in the two spin states.

Assume now that I block the path of one of the beams inside the device, as in the
case of device S of Figure 8.7c. Then the electrons leaving the device S are all in a
definite spin state (+). In this sense, I have now ‘measured’ the spin of this beam of

1 The experiment cannot be carried out as described here: the electron’s wave function is too fuzzy because
of quantum mechanical effects, and the separation into two rays is not apparent. The point about the silver
atom featuring in the original Stern–Gerlach experiment is that it is electrically neutral, but has a relatively
free electron on an outer shell; its motion between magnets is thus governed by the spin of the outer
electron. In the text I stick to the thought experiment involving free electrons.



156 GEOMETRY OF TRANSFORMATION GROUPS

N S N

NS S

electron beam

Figure 8.7b The modified Stern–Gerlach device.
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Figure 8.7c Two identical SG devices.

electrons: I know precisely what state they are in. (Unfortunately, I have lost about
half my electrons along the way, but that seems to be unavoidable in this kind of game.
Compare with a large accountancy firm hired to count your money.) In particular, if I
attach another SG device S′ in the same position after the first as in Figure 8.7c, then
I know the path of all the electrons inside the device; blocking the other path then
makes no difference.

However, let us now put another SG device T in a different spatial position in the
path of my uniform spin electron ray; see Figure 8.7d. The ray now separates again;
the electrons choose two different paths in a specific ratio (which can be measured
again by blocking one or other of the paths) depending on the position of the new
SG device. Hence knowing that the electron is in spin state (+) in one direction does
not mean that it is in spin state (+) in all directions. It registers as spin (+) or (−) in
some different direction following, it seems, a fixed dress code.

8.7.3
The spin
operator

As both experiment and speculation confirm, the electron spin takes two possible
values+1 and−1, where I ignore unnecessary constants. In the framework of quantum
mechanics, such a two-state system is modelled on a 2-dimensional complex vector
space V with a definite Hermitian form on it, which I denote by bracket ( , ). Every
electron in this simple model is described by its wave function ψ ∈ V, which we
normalise to unit length (ψ, ψ) = 1.
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S
T

Figure 8.7d Two different SG devices.

An SG device S in a fixed spatial position corresponds to a linear operator
OS : V → V . The possible spin states with respect to this spatial direction corre-
spond to the different eigenvalues of this map. In the present case, the eigenvalues
must therefore be±1. There are corresponding normalised eigenvectors ψ+

S and ψ−
S :

OS(ψ+
S ) = ψ+

S , OS(ψ−
S ) = −ψ−

S .

Quantum mechanics postulates that the operator OS is Hermitian (Exercise 8.24).
It follows that the eigenvectors are orthogonal (ψ+

S , ψ−
S ) = 0. Thus {ψ+

S , ψ−
S } is a

Hermitian basis in the 2-dimensional vector space V.
The electron with wave function ψ+

S is in the (+) spin state and that with wave
function ψ−

S is in the (−) spin state. These electrons are in eigenstates of the spin
operator OS . An arbitrary electron has a wave function ψ ∈ V which is a linear
combination of the basis vectors:

ψ = αψ+
S + βψ−

S .

Such a state is referred to as a mixed state.
An electron in a mixed state ψ = αψ+

S + βψ−
S arriving at our SG device S passes

along the (+) or (−) path in the device with probability |α|2 or |β|2 respectively.
These numbers are called probability amplitudes. Because both basis vectors ψ±

S and
the vector ψ are normalised to unit length, |α|2 + |β|2 = 1; thus these probabilities
add to one.

Once we block the (−) path, the outcoming electrons are all in the (+) eigenstate:
their wave function is the eigenvector ψ+

S ∈ V . This explains their behaviour in a
next SG device S′ in the same spatial position as S, pictured in Figure 8.7c. The
operator corresponding to the device S′ is OS′ = OS , and the electrons are all in the
(+) eigenstate of this operator. So they choose the two paths with probability |α|2 = 1,
respectively |β|2 = 0; in other words, their path through S′ is determined.

8.7.4
Rotate the
device

To perform our next thought experiment, imagine a beam of electrons leaving a device
in one of the definite eigenstates, and arriving at another device in a different spatial
position as in Figure 8.7d. The new SG device T corresponds to an operator OT and
hence to a new Hermitian basis {ψ+

T , ψ−
T } of V consisting of eigenvectors of OT .
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I wish to study an electron ray in one of the spin eigenstates ψ±
S , when it passes

through T . The experiment says that electrons will follow one of two possible paths
in T , and I want the probability of its taking one or other of the paths. According to
the rule spelled out in the last section, I should write the vector ψ+

S (and also ψ−
S ) in

terms of the new basis {ψ+
T , ψ−

T } to find the probability amplitudes. This is simply a
change of basis, given by a 2 × 2 matrix AS→T , an element of GL(2, C) (in fact U(2)
as both bases are Hermitian). The task is to find AS→T from S, T .

To proceed, I need to make precise the geometry of an SG device in 3-space.
Note that an SG device in physical space E3 determines two distinguished orthogonal
directed lines; namely, there is the distinguished direction of the electron beam, and
the distinguished direction of the magnetic field orthogonal to it; see Figure 8.7a. I can
think of these directed lines as two coordinate axes in a coordinate system, and there
is a unique way of adding a third directed coordinate axis orthogonal to the first two to
make a right-handed coordinate system in 3-space. The new system T determines in
the same way a new right-handed coordinate system in E3. The transformation which
gets me from S to T is a direct motion of E3, and thus a rotation g ∈ SO(3). (Note
that only directions matter in this discussion; the origin of the coordinate system is
not important, and I ignore translations.)

According to the earlier discussion, I need a recipe associating an element of
GL(2, C) with a transformation S → T , presumably in a continuous manner. In other
words, I need a map

A : SO(3) → GL(2, C).

It can also be argued from basic principles of quantum mechanics that the map A
should respect composition; after all, S → T followed by T → R should be the
same as S → R. Hence the map A should be a group homomorphism. This however
presents a puzzle: there is no obvious way to map SO(3) to the group of linear maps
on a 2-dimensional C-vector space (apart from the map which takes every rotation
to the identity matrix, which would contradict the experimentally observed fact that
spin does depend on direction). In fact there is absolutely no such map at all.

8.7.5
The solution

Although the expressions for ψ±
T in terms of ψ±

S and the rotation taking S to T
can be derived from first principles, I cannot improve on Feynman’s beautiful and
self-contained account (in pp. 6-1 to 6-14 of [7]), and I just state the result: namely,
although there is no map A : SO(3) → GL(2, C), there is an obvious map

Ã : SU(2) → GL(2, C)

from the group SU(2) to GL(2, C); a 2 × 2 unitary matrix is certainly invertible, so
the inclusion map will do. On the other hand, SU(2) is not too different from SO(3);
by Corollary 8.5.3, they are related by a two-to-one map. Thus Ã can be thought of
as a two-valued function on SO(3).

Up to a knowledge of the explicit form of the map SU(2) → SO(3) that can easily
be derived from the expressions in 8.5.2, this answers the original question of how
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to compute the ratio of electrons following the two paths of Figure 8.7d: S → T is
given by an element of SO(3), and there are two possible changes of basis

ψ+
T = α+ψ+

S + β+ψ−
S

ψ−
T = α−ψ+

S + β−ψ−
S

for matrixes (
α+ α−
β+ β−

)
∈ SU(2)

which differ from each other only in a change of sign; the eigenvectors are in any
case determined only up to sign, and the physical meaning is only carried by the
amplitudes |α±| and |β±| which are independent of the choice of signs made.

One way to think of the process is to start with an SG device S and then start to
turn it around a fixed axis. This determines a path in the group SO(3) starting from the
identity. Starting from the identity matrix in SU(2), I can follow this path in SU(2),
and see what happens to the transformation matrix. It turns out that after a full turn
by 2π of my device, that is, after a loop in SO(3) returning to the identity, my path
in SU(2) takes me to the negative of the identity matrix. Following the loop in SO(3)
once again, I can continue my path in SU(2), and lo and behold! a turn of 4π returns
me to the identity matrix in SU(2).

This thought experiment with paths reflects the topological fact that the funda-
mental group of SO(3) is Z/2, and its universal cover is the map S3 → SO(3) of
8.5–8.6 (see a first course in topology for the language). It is also responsible for the
mysterious statement turning up frequently in physics texts, that ‘rotation by 2π does
not leave the wave function of the electron invariant, but multiplies it by (−1)’. As I
am told, this can be directly demonstrated by experiment.

As a final comment, note that in this chapter I dealt with spin for a ‘spin 1
2 ’ particle

such as the electron, whose spin can take two values (+) or (−). There are also
‘spin 1’ particles such as the heavy particles Z , W± which are responsible for nuclear
forces. Their spin can take the values (+), 0 or (−). Much of the discussion of this
chapter applies to such three-state systems; compare [7], Chapter 5. Their spin can
be measured by a three-way SG device. The vector space W representing spin states
is now 3-dimensional over C, and the transformation S → T between SG devices
corresponds to a map B : SO(3) → GL(3, C). In this case, there is no great mystery:
this map is, up to conjugation, the obvious inclusion map, where I think of a 3× 3 real
orthogonal matrix as a 3 × 3 complex invertible matrix (the ‘vector representation’).
For this reason spin 1 particles are often called ‘vector particles’.

8.8 Preview of Lie groups

The topological groups GL(n, R) and O(n) are examples of Lie groups, groups whose
elements depend on a finite number of continuous parameters. Examples of Lie groups
include the Euclidean group Eucl(n), the Lorentz group O+(1, 2), the special linear
group SL(n) (the group of invertible n × n matrixes with determinant 1), the spinor
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groups Spin(n), and groups defined using the complex numbers such as the group
GL(n, C) of invertible matrixes over C. Here is a list of features of general Lie group
theory that made an appearance in this chapter:

Dimension The geometry of the group around any point can be described by d
parameters, where the number d is independent of the point chosen, and is called the
dimension of the group. Examples from Proposition 8.2 are

dim O(n) =
(

n

2

)
and dim Eucl(n) =

(
n + 1

2

)
.

Components A Lie group G has a number of connected components (finite or
infinite), all of them geometrically the same (homeomorphic). The component con-
taining the identity is a normal subgroup, and the other components are its cosets.
See 8.4 for O(n) and Exercise 8.5 for the group O+(1, 2).

Maximal compact subgroup A connected Lie group G is homeomorphic to a
product H × RN of a compact Lie group H and a space RN in which all loops are
contractible (compare 7.15). The examples of 8.3 are typical: compactness is achieved
by imposing a positive definite orthogonal or Hermitian form.

The universal cover A connected Lie group G has a cover G̃ → G by a simply
connected Lie group G̃ (possibly G itself). The typical examples are the exponential
map C → C∗ and the two-to-one spinor covers S3 → SO(3) and S3 × S3 → SO(4)
discussed in 8.5.3.

Complexification and real forms The group GL(n, C) is the complexification of
the group GL(n, R): the latter is a matrix group, and I can simply take complex instead
of real entries. Conversely, we say that GL(n, R) is a real form of GL(n, C). Along the
same lines, the group O(n, C) of n × n complex matrixes, which leave the standard
quadratic (!) form

∑
i x2

i invariant, is a complexification of the group O(n). However,
O(n) is not the only real form: over the complex numbers, there is no difference
between the forms

∑
i x2

i and −x2
1 +

∑
i>1 x2

i . Thus the Lorentz group O(1, n − 1)
is also a real form of O(n, C).

Linear representations Just as finite groups, Lie groups are often studied via their
linear (matrix) representations. In plain language, we associate to every group element
g ∈ G an n × n (complex) matrix Ag so that Ah Ag = Ahg . In fancier language, this is
nothing but a group homomorphism G → GL(n, C); one familiar example is the map
Ã : SU(2) → GL(2, C) from 8.7.5. I recommend Fulton and Harris [9] for further
study.

Symmetry groups in physics Lie groups commonly appear as symmetry groups
of interesting physical systems. The mathematics of the group and the physics of the
system are often related in beautiful and nontrivial ways. The interaction occurs on
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two levels: ‘classical’ (meaning Newtonian dynamics and Maxwell electromagnetic
theory) and ‘modern’ (meaning relativity theory or quantum mechanics, possibly
both). The story of the electron in 8.7.5 is the starting point of the ‘quantum’ level of
this interaction; for more discussion, turn to 9.3 and Sternberg [23].

Exercises

8.1 How much bigger is the affine group Aff(n) than the Euclidean group Eucl(n)? [Hint:
compare GL(n) and O(n) in 8.3.]

8.2 (a) Show that rotations, translations, reflections and glides of E2 (Theorem 1.14)
depend respectively on 3, 2, 2 and 3 parameters.

(b) Count parameters for each of the types of motion of Theorem 1.15. (Answers:
(1) translation 3; (2) rotation 5; (3) twist 6; (4) reflection 3; (5) glide 5; (6) rotary
reflection 6. For example, a rotation is specified by a line of 3-space, which
depends on 4 parameters, plus an angle.)

8.3 Count the number of real parameters for the groups SO(3) and SU(2); verify that they
depend on the same number of parameters, as you would expect from the two-to-one
cover discussed in 8.6. [Hint: use Proposition 8.2, respectively the results of 8.6.]

8.4 Determine the connected components of GL(n, R) using Theorem 8.3 and
Proposition 8.4.

8.5 Let

O(1, 2) = {A ∈ GL(3, R)
∣∣ tAJ A = J

}
be the group of all Lorentz matrixes, which contains the Lorentz group O+(1, 2)
introduced in 8.1, Example 5. Show that this group has four connected components,
distinguished by whether a matrix preserves the cone qL (v) < 0 or maps it to qL (v) >

0 (that is, whether it is in O+(1, 2)), and det A = ±1. [Hint: imitate the proof of
Proposition 8.4, using the Lorentz normal form statement of Exercise B.3. Distinguish
carefully between four types of possible diagonal matrixes arising as end products.]

8.6 Let A ∈ GL(n, R) be a matrix with columns fi . Following the proof of Theorem B.3
(1) carefully, show that it is possible to construct an orthonormal basis {ei } of Rn , so
that in each step

ei = ci1f1 + · · · + cii fi

with cii > 0. Let C = (ci j ) and B the matrix with columns ei ; check that A = BC
and that B ∈ O(n), C ∈ T+(n) (compare 8.3). Check also that the entries of B and C
depend continuously on those of A.

8.7 Write the following matrixes in the form BC of Theorem 8.3 with B ∈ O(n) and
C ∈ T+(n):

(
1 1 +√

3√
3 −1 +√

3

)
,

(
1 3
1 4

)
,

1 0 3
2 −1 4
2 1 2

 .
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Exercises on quaternions.

8.8 Show that 4 complex matrixes

1 =
(

1 0
0 1

)
, I =

(
i 0
0 −i

)
, J =

(
0 1
−1 0

)
, K =

(
0 i
i 0

)
multiply together by the same rules as the 4 basic quaternions 1, i, j, k. Since matrix
multiplication is associative, use this to give a better proof of Proposition 8.5.1 (1).

8.9 Complete the proof by brute force of (pq)∗ = q∗ p∗ for quaternion conjugation
(Proposition 8.5.1 (2)). Give a better proof along the lines of the previous exercise.

8.10 Study the group G8 = {±1,±i,± j,±k} of unit quaternions. Write out the group
multiplication table, and find a convincing reason (or failing that, any reason) why
G8 is not isomorphic to the dihedral group D8 appearing in Exercise 6.5.

8.11 If p = ai + bj + ck and q = di + ej + f k are two pure imaginary quaternions, cal-
culate pq + qp directly using the definition of quaternion multiplication.

8.12 Prove that a pure imaginary quaternion p satisfies p2 = −|p|2. Also if p, q are
pure imaginary then pq + qp = 0 if and only if they are orthogonal with respect to
the quadratic form a2 + b2 + c2 + d2. [Hint: orthogonal with respect to a quadratic
form Q is expressed in terms of the associated bilinear form ϕ(p, q) = Q(p + q) −
Q(p) − Q(q); apply this with Q(q) = qq∗ = −q2.]

Deduce that 3 vectors I, J, K ∈ H have the same multiplication table as the quater-
nion basis i, j, k if and only if they are an oriented orthonormal frame of R3. Prove
Proposition 8.5.1 (5).

8.13 Show how to express C in terms of 2 × 2 matrixes over R of the form
(

a b
−b a

)
.

8.14 Show that the algebra of 2 × 2 matrixes over C of the form
( a b
−b a

)
is an algebra

isomorphic to the quaternions H. [Hint: consider the basis given in Exercise 8.8 and
compare also 8.6.]

8.15 Consider left multiplication by M = ( a+ib c+id
−c+id a−ib

)
acting on C2. Write out the action

of M on C2 = R4 in terms of the R-basis (1, 0), (i, 0), (0, 1), (0, i) of C2. Prove that
the determinant of the map on R4 is (a2 + b2 + c2 + d2)2. Use this to give another
proof that aq is direct in Theorem 8.5.2 (1).

8.16 Prove that 2 × 2 matrixes over R of the form
(

a b
b a

)
form an algebra B, and study its

properties. Why is it not very interesting? [Hint: show that B is closed under addition
and multiplication of matrixes. Find a basis over R, and write out the multiplication
table.]

8.17 By analogy with the previous question, investigate the algebra of 2 × 2 matrixes over
C of the form

(
a b
−b a

)
.

8.18 Use the argument of Theorem 8.5.2 to find a unit quaternion q so that the rotation
rq : x �→ qxq∗ is (x, y, z) �→ (y,−x, z).

8.19 Find a unit quaternion q so that the rotation rq : x �→ qxq∗ is x �→ y �→ z �→ x .
[Hint: the effort intensive method is to use brute force. The thinking person’s method
is to represent x �→ y �→ z as a rotation through angle θ about directed axis L , then
use Theorem 8.5.2.]
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8.20 By analogy with 1.11.1, solve the relations (1) of 8.6 to get d = a, c = −b. [Hint:
for example, do second line × d − third line × c, then substitute ad − bc = 1 on the
right-hand side.]

8.21 (Harder) Using the results of the two preceding exercises, show how to find a subgroup
BO48 of the unit quaternions which has a surjective two-to-one map to the group of
rotations of the cube in SO(3).

8.22 (Harder) Complete the proof of Theorem 8.5.2 (2).
(a) Prove that ϕ(p, q) = idH if and only if (p, q) = (1, 1) or (p, q) = (−1,−1).

[Hint: p1q∗ = 1 if and only if p = q, and pip∗ = i if and only if pi = i p if and
only if p = a + bi , etc.] Deduce that ϕ induces an injective map (S3 × S3)/±1 →
SO(4).

(b) Prove that ϕ is surjective. [Hint: find a suitable ϕ(p, q) to send 1 to a given
unit vector r ∈ H. Now compose with r∗ to assume that 1 �→ 1, and apply
Theorem 8.5.2 (4).]

8.23 (Harder) Consider the algebra O of 2 × 2 matrixes over the quaternions H of the form(
a b
−b∗ a∗

)
where a∗ is the quaternion conjugate of a as in 8.5.1.

(a) Show that O is an 8-dimensional division algebra (algebra with two-sided multi-
plicative inverses for nonzero elements) over R. Find an explicit basis for O and
write out some of the multiplication table.

(b) Show that multiplication in O is not associative, but it satisfies the identity

x(xy) = (xx)y for x, y ∈ O.

(c) Contemplate on the possibility of doing projective geometry over the division
algebra O (compare the end of 5.12).

O is the algebra of Cayley numbers or octonions. For much more on this, see Conway
and Smith [4].
[Hint: you get a division algebra by introducing an octonion conjugate â such that
aâ = |a|2 is positive definite, as in 8.5.1. It is easy to find examples of nonassociative
octonion multiplication; to prove the weaker identity, one possibility is to use your
basis for O over R in a brute-force proof similar to that of Proposition 8.5.1 (1) given
in the text. To do projective geometry, you have to start by thinking about the relation
x ∼ λx used to define projective space. Do not be surprised if you run into difficulty.]

Hermitian matrixes.

8.24 An n × n complex matrix A is called Hermitian, if hA = A. (See 8.6 for the Hermitian
conjugate hA.) Show that
(a) every eigenvalue of a Hermitian matrix is real;
(b) eigenvectors for different eigenvalues are orthogonal with respect to the Hermitian

form on Cn (compare Step 3 in the proof of Theorem 1.11!).



9 Concluding remarks

This final chapter is quite different from the earlier ones in style and intention: I
let my hair down with a number of informal fairy stories on different topics, tying
together loose strands in the historical and mathematical argument of the book, and
opening up some new directions. In particular, I give a ‘popular science’ discussion
of some of the surprising and amazingly fertile links between the geometry, topology
and Lie group theory discussed in this book and different aspects of twentieth century
physics.

There are many other topics closely related to the main text, both frivolous and
serious, that I would have liked to write about. But life is short, and I confine myself
to a brief list of a few directions and developments. Several of these topics can form
the basis for undergraduate essays or projects.

� The classification of locally Euclidean geometries in the style of Nikulin and Sha-
farevich [18].

� Spherical trig and geometry in the history of navigation. Modern developments: GPS
(global positioning system) devices.

� Spherical geometry and cartography (map making): Mercator’s and other projections,
as discussed for example in [6].

� Plane and spherical geometry and plate tectonics, following for example [8], Chapter
2. Why South America and West Africa fit together like pieces of a spherical jigsaw
puzzle; Euler’s theorem and the classification of fault types.

� SO(3) and Euler angles, mechanics in moving frames, Coriolis forces.
� Symmetry groups in geometry. This is a vast subject, relating regular polyhedra and

polytopes, crystallography [5, 18], the geometric patterns of the Alhambra and other
Islamic art, Escher’s art and Penrose tilings.

164
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� Subgroups of the symmetric group in puzzles and toys. Examples include the perfect
shuffle groups and moves of the Rubik cube, as in [17] Chapter 19.

� Axiomatic projective geometry, leading to von Neumann’s foundations of quantum
theory, C∗ algebras and ‘noncommutative geometry’.

� Geometry and dynamics: Newton’s equations, planetary motion and conics.
� Differential geometry of curves and surfaces. The Frénet frame, intrinsic curvature

and the Gauss–Bonnet formula.

I leave you to explore details of these fascinating topics, as well as those
sketched below, in or out of the confines of a degree course and its attendant exami-
nations.

9.1 On the history of geometry

9.1.1
Greek
geometry
and rigour

Geometry has a very special place in the history and culture of western mathematics.
Coming at the dawn of western civilisation (350 ± 200 BC), Greek philosophy and
geometry, passed on to us by the more advanced culture of the Islamic world at the
time of the Renaissance, has played a central role in the development of western
culture, not merely for its content, but for its idea of rigour. The Greeks were not the
first to attempt to describe the world around them by ‘geometry’: that credit goes to
the ancient Mesopotamians (from 2500 BC), followed by the Egyptians (from 2000
BC). However, before the Greeks, geometry largely consisted of a bag of tricks for
calculation that worked in practice most of the time. In contrast, Greek mathematicians
elaborated the notion of logical argument. By this I do not mean the elementary
and often hairsplitting logic of a ‘Foundations’ or ‘Set theory’ or ‘Abstract algebra’
course, but the idea that understanding steps at different stages in an argument from
the ground up is at least as important as somehow getting an approximately correct
answer. This is one of the fundamental items of intellectual equipment that set western
mathematics and science apart from (and in the course of time well above) that of India
and China.

Building on sources largely unknown to us, the geometer Euclid, probably working
in Alexandria in the fourth century BC, summarised the mathematical knowledge of
the time in his 13 volume Elements. Book I deals with the basic definitions of geometry.
Euclid introduces notions such as point, line, plane, distance, angle and meets, whose
meaning is supposed to be self-evident, and enunciates certain postulates (in modern
language, axioms) concerning these notions. Lengths and angles are to be thought
of as geometric quantities in their own right, not related to any algebraic or numeric
representation. For example, one of the postulates states that two line segments are
equal if they are congruent, which makes perfect sense without having to consider
the length of a line as a number.
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Figure 9.1a The parallel postulate. To meet or not to meet?

9.1.2
The parallel
postulate

Most of Euclid’s postulates were for a long time beyond doubt, but the last one stood
out from the beginning as far less obvious:

If a line falls on two lines, with interior angles on one side adding to less than two right angles,
the two lines, if extended indefinitely, meet on the side on which the angles add to less than
two right angles.

This is nonobvious. Behold Figure 9.1a! Euclid’s ‘extended indefinitely’ makes it
clear that the statement involves arguing on objects that are arbitrarily distant, so
that it is in principle not verifiable. Through the ages, many alternative axioms were
formulated, which can be proved to be equivalent to Euclid’s on the basis of the other
axioms, such as:

given a line L in the plane, and a point P not on L , there exists one and only one line through
P not meeting L

(compare Figure 9.1b and Figure 3.13). Or

the sum of the angles of a triangle is equal to two right angles

(see Figure 1.16b and Theorem 3.14).
After arguably the longest dispute in intellectual history, it was discovered between

about 1810 and 1830 by Bolyai, Gauss, Lobachevsky and Schweikart (independently,
alphabetical order) that the parallel postulate cannot be a consequence of Euclid’s
other axioms: axiomatic geometries exist which are in many ways similar to Euclidean
plane geometry, sharing its aesthetic appeal and simplicity, but which do not satisfy
the parallel postulate. As János Bolyai wrote to his father,

ollyan felséges dolgokat hoztam ki, hogy magam elbámultam, s örökös kár volna elveszni; ha
meglátja Édes Apám megesméri; most többet nem szólhatok, tsak annyit: hogy semmiből egy
ujj más világot teremtettem; mind az, valamint eddig küldöttem, tsak kártyaház a toronyhoz
képest. . .
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these lines all
meet L

the unique line
not meeting L

P

L

Figure 9.1b The parallel postulate in the Euclidean plane.

Or, translated from the nineteenth century Hungarian:

I deduced things so marvellous that I was enchanted myself, and it would be an eternal loss
to let them pass; Dear Father, once you see them, you will recognise their greatness yourself;
now I cannot tell you more, only this: out of the void I created a new, a different world; all that
I sent you before is like a house of cards to a tower. . .

The discovery of non-Euclidean hyperbolic geometry was indeed a landmark in
modern scientific thinking, as revolutionary and as far reaching in its implications
as the Copernican model of the solar system or Darwin’s theory of evolution. For
an account of the very interesting history, see Greenberg [11] and Bonola [3]. The
early models of hyperbolic geometry were abstract; simple coordinate models, such
as that used in Chapter 3 of this course, were developed later in the second half
of the nineteenth and the early twentieth centuries. As I said, the coordinate model
of hyperbolic geometry constructed in Chapter 3 satisfies all of Euclid’s postulates
except for the parallel postulate; the parallel postulate is therefore certainly not a
logical consequence of the others. Hyperbolic geometry soon found many applications
in different areas of mathematics and science; in particular, the notion of curvature
in differential geometry and of curved space plays a foundational role in Einstein’s
general relativity (1916).

Spherical geometry seems to have been excluded from consideration in descriptive
or axiomatic geometry from the time of Euclid for two reasons.

(a) More obviously, any two lines meet in two points (a pair of antipodal points); this is
not a very serious defect, because you can pass to the geometry of S2/{±1} = P2

R
, in

which every pair of lines meets in just one point.
(b) Its lines do not satisfy the order condition implicit in Euclid: given three points P ,

Q, R on a spherical line (great circle), it is impossible to say which of the three is
‘between’ the other two. Equivalently, a point P of a spherical line (great circle) does
not divide it into disconnected sets. That is, given a line L and a point P not on it,
every line M through P meets L both over there to the left and over there to the right
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every line

meets L
P

L

through P

Figure 9.1c The ‘parallel postulate’ in spherical geometry.

(see Figure 9.1c). In spherical geometry these are antipodal points; in the geometry
of S2/{±1} = P2

R
, the same point.

Euclid’s postulates did not discuss the separation properties of points on a line:
it was supposed to be understood what it meant for A to be between P and Q on
the line segment P Q. (Compare the discussion in 7.3.3; separation is a topological
statement about the geometry.) Thus it is not surprising that spherical geometry was
overlooked; however, this is a fair indication that Euclid’s claim to rigour in a modern
sense was never really watertight.

Nevertheless, spherical geometry has been around in an ‘applied’ form for cen-
turies. Spherical trigonometry was studied in amazing detail by the great medieval
Islamic geometers in the context of qibla (the sacred direction to Mecca, see for
example [16], and again from the time of Newton, to aid British ships engaged in
piracy or the slave trade to navigate around the oceans of the world and return to
the other origin at Greenwich. Because of winds and currents though, the lines of
spherical geometry, great circles, are not always the fastest way to travel. These days,
great circles are the routes taken for preference by airlines, except when no-fly zones
intervene.

9.1.3
Coordinates
versus
axioms

Descartes’ invention of coordinate geometry is another key ingredient in modern
science. It is scarcely an accident that calculus was discovered by Leibnitz and Newton
(independently, alphabetical order) in the fifty years following the dissemination of
Descartes’ ideas. Interactions between the axiomatic and the coordinate-based points
of view go in both ways: coordinate geometry gives models of axiomatic geometries,
and conversely, axiomatic geometries allow the introduction of number systems and
coordinates. There are several excellent books giving systematic treatments of these
very interesting issues; I warmly recommend Hilbert’s classic [13].

As in art or music or politics, attitudes and fashions in mathematics vary quite
sharply from one generation to the next. In the second half of the nineteenth century,
up to the time of Hilbert and Poincaré, geometry was without doubt at the centre of
mathematics and of large areas of theoretical physics. This position was overturned
with the rise of abstract algebra, topology and set theoretic foundations of mathematics
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around the 1920s. The blame for this lies in part with the geometers themselves, who
developed a sloppy attitude to correct statements and proofs of theorems. One example
is the type of argument that involved a ‘sufficiently general position’, which might
in favourable cases have a precise meaning within an epsilon neighbourhood of the
author. In England, there was a brilliant school of geometers between the wars in
Cambridge, which seems to have been broken up when the participants were drafted
into code breaking or aeronautics during the second world war. When the senior
author was an undergraduate at Cambridge (late 1960s), geometry in the sense of this
course was universally considered a terribly dull fuddy-duddy subject. The position
has been entirely turned around in the last 30 years, and at present geometry in
its various manifestations again claims centre stage in mathematics and theoretical
physics.

9.2 Group theory

9.2.1
Abstract
groups
versus
transforma-
tion
groups

According to the abstract definition (which is comparatively recent), an abstract group
is a set with a composition law satisfying a couple of well known axioms. However,
from the beginnings of the subject in the nineteenth century, the groups studied were
always thought of as symmetry groups, that is, as transformation groups preserving
some structure or other. For example, Ruffini, Abel and Galois considered permuta-
tions of the roots of a polynomial equations, and the subgroup of permutations that
preserve the rules of arithmetic. From the mid-nineteenth century, many other groups
arose as geometric symmetries: finite groups such as the symmetries of the regular
polyhedra, infinite but discrete groups in the study of crystallography, that contain
translations by a lattice as a subgroup, and Lie groups such as the Euclidean group.
The idea that a group can be treated as an abstract composition law without reference
to the nature of the operators that make it up was first introduced by Cayley in 1854,
but its significance was not recognised until much later.

Let G be a group and 
 a set; I say that 
 is a G-set or that G acts on 
, if a
group homomorphism

ϕ : G → Trans 


is given from G to the group of transformations of 
 (see 6.1). That is, each g ∈ G
corresponds to a transformation (bijective map) ϕg : 
 → 
, in such a way that the
abstract composition law in G corresponds to composition of transformations of 
.
In other words, G is trying to fulfil its destiny as a transformation group of 
, as
discussed in Chapter 6. One usually writes simply ϕg(x) = gx or g(x) for the action
of g ∈ G on x ∈ 
.

The requirement that the map ϕ is a homomorphism is written (gh)x = g(hx).
This looks like an associative law, but it just means that the abstract product in G cor-
responds to composition of maps 
 → 
; compare the discussion in 2.4. Evaluating
g ∈ G on x ∈ 
 provides a map � : G ×
 → 
 given by �(g, x) = ϕg(x); I leave
it to you to express the condition (gh)x = g(hx) in these terms.
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9.2.2
Homo-
geneous and
principal
homo-
geneous
spaces

Definition Let 
 be a G-set. I say that G acts transitively on 
 if the action takes
any point of 
 to any other. In this case 
 is a homogeneous space under G.

This idea has already appeared many times: the geometries in the earlier chapters of
the book were homogeneous under appropriate groups. For example, the Euclidean
group acts transitively on En: any point of En goes to the origin under a suitable
Euclidean motion. The affine group Aff(n) acts transitively on pairs of distinct points
of An; as discussed at several points of the book, this is closely related to the fact that
affine geometry does not have an invariant distance function.

If 
 is a G-set and x ∈ 
, the stabiliser subgroup of x is the set of elements of G
that fix x , that is

StabG(x) = {h ∈ G
∣∣ h(x) = x

}
.

For example, the stabiliser subgroup of the origin 0 ∈ En in Eucl(n) is the group O(n)
of orthogonal matrixes.

If G acts transitively on 
, the map ex : G → 
 defined by g �→ gx is surjective.
Moreover elements g1, g2 ∈ G map to the same point of 
 if and only if g2 = g1h
for some h ∈ StabG(x); thus ex induces a bijection G/ StabG(x)

�−→ 
. (Here G/H
stands for the quotient of G by the equivalence relation g ∼ gh for h ∈ H , or the set
of left cosets of H .)

Definition A homogeneous space 
 under G is a principal homogeneous space
under G or a G-torsor if the stabiliser StabG(x) is trivial for every x ∈ 
. Since the
stabilisers of x and gx are conjugate (by the same argument as in Exercise 6.7), it is
enough to verify that StabG(x) is trivial for a single x ∈ 
.

For example, affine space An is a homogeneous space under Aff(n), but is a torsor
under the translation subgroup Rn ⊂ Aff(n).

According to the previous discussion, if 
 is a G-torsor, then ex : G → 
 is a
bijection from G to 
, and I could use this to identify G and 
. However, differ-
ent elements of 
 give different bijections: the set 
 has no distinguished identity
element.

Example Let 
 consist of the vertexes of a regular n-gon in the plane E2, G ⊂
Eucl(2) the group of symmetries of 
 (the dihedral group D2n , see Exercise 6.5),
and let H be the cyclic subgroup of G of order n consisting of rotations. (Draw a
picture!) Then the geometric action of G on 
 is transitive, since the polygon is
regular. Thus 
 is a homogeneous space under G. The stabiliser StabG(P) of a vertex
P ∈ 
 is of order two, consisting of the identity and the reflection in the axis through
P . The subgroup H acts transitively and without stabilisers (since it does not contain
reflections). Thus 
 is an H -torsor: there are as many vertexes as rotations, but no
vertex is distinguished over the others.
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9.2.3
The
Erlangen
program
revisited

Recall Klein’s Erlangen program of Section 6.3: the slogan is that geometry is the study
of properties invariant under a transformation group G. The introduction to Chapter 1
discussed the basic geometric and philosophical principles: space should be

(1) homogeneous (the same viewed from every point), and
(2) isotropic (the same in every direction).

In terms of the group of transformations, (1) says that the group G acts transitively
on points of space, whereas (2) says that it also acts transitively on coordinate frames
based at every point. Helmholtz’ axiom of free mobility requires slightly more: it
also says that, given two points of the space and sets of coordinate frames based at
these points, there is a unique element of G mapping one to another. In other words,
the set of all coordinate frames at all points is a G-torsor (principal homogeneous
space under G). Thus

� Euclidean space En is a homogeneous space under the Euclidean group Eucl(n). The
stabiliser of a point P ∈ En is isomorphic to the group O(n), the group of rotations
and reflections fixing P . By Theorem 1.12, the set of Euclidean frames forms a torsor
under Eucl(n).

� The sphere Sn is a homogeneous space under the group O(n + 1) of spherical motions
(Theorem 3.4 for n = 2; the general case is identical). For P ∈ Sn , the stabiliser group
is isomorphic to the group O(n). (It is the group of orthogonal matrixes in the Rn that
is the orthogonal complement of O P .)

� Hyperbolic space Hn is homogeneous under the Lorentz group O+(n, 1). The sta-
biliser of a point P is again isomorphic to the group O(n).

� Projective space Pn is homogeneous under the projective linear group PGL(n + 1).
The stabiliser of a point P ∈ Pn is PGL(n). By Theorem 5.5, the set of projective
frames of reference forms a PGL(n + 1)-torsor.

9.2.4
Affine space
as a torsor

The notion of torsor formalises the ad hoc definition of affine space I gave in Chapter 4.
Let V be a vector space; an affine space A(V ) is just a torsor under V . In other words,
A(V ) is a set with an action of V (‘by translation’), and this action is simply transitive:
for P, Q ∈ V there is a unique vector x ∈ V such that Q = P + x.

Looking back to 6.5.3, I can say all this slightly differently: the transformation
groups in Euclidean and affine geometry are semidirect products. For example, the
Euclidean group

Eucl(n) = O(n) � Rn

is the semidirect product of the normal subgroup of translations and the group of
rotations. From the analysis of 6.5.3, it follows that the subgroup O(n) is not normal.
The conjugation construction (see 6.4) allows me to define Euclidean space to be the
space of all conjugates of a fixed copy of O(n) ⊂ Eucl(n), and notions of Euclidean
geometry to be all notions that can be defined on this space invariantly under the
group Eucl(n). This is of course the Erlangen program repeated once again.



172 CONCLUDING REMARKS

I can say the same words starting from the group of affine transformations Aff(V )
(see 4.5). This contains copies of GL(V ), the group of invertible linear maps of V , as
affine transformations fixing a point, and these subgroups are once again nonnormal.

From the group theory it follows then that the group of translations V acts transi-
tively with trivial stabiliser on A(V ); thus A(V ) is a V -torsor (a principal homogeneous
space under the group of translations). In other words, we have an action ϕv : P �→
P + v of the additive group of V defined on points of affine space. For P ∈ A(V ),
we get a bijection eP : V → A(V ) mapping v ∈ V to P + v; two such identifica-
tions differ by an element of V acting by translation. The bijections eP are differ-
ent coordinate systems on affine space, differing by a translation; in the coordinate
system eP , the point P plays the role of origin. We also see that two points
P, Q ∈ A(V ) determine a vector eP (Q) = −→

P Q ∈ V (cf. Figure 4.2).
The point here is that for the cases I am interested in, I can recover the geometry

from the group or the group from the geometry. For example, if the Euclidean group
Eucl(n) and its subgroup O(n) are given, En is the homogeneous space Eucl(n)/ O(n),
where O(n) = Stab(x); alternatively, En is the set of subgroups conjugate to O(n).

9.3 Geometry in physics

Some of the most substantial applications of geometric ideas come from physics.
Recall the grandiose aim expressed in my first sentence:

Geometry attempts to describe and understand space around us and all that is in it.

You may well object that most of the work so far has gone into describing the space, so
it is about time I told you something about what is in it. The discussion is necessarily
somewhat sketchy and in places wildly over-simplified; at the end I give references
to the literature for further study.

9.3.1
The Galilean
group and
Newtonian
dynamics

The dynamics of Galileo and Newton takes Euclidean three space E3 as the funda-
mental model of physical space, and time t as a universal parameter with a preferred
directionality. Thus spacetime is modelled by E3 × R, with coordinates (x, t). Spatial
lengths are measured with respect to the Euclidean metric of 1.1, and involve only the
x-coordinate; events also have a time separation t2 − t1 (no absolute value is taken
here). Valid coordinate systems describing Newtonian dynamics are based on inertial
frames in uniform relative motion with respect to each other, in which spatial lengths
and time differences are unchanged. Transformations to a different coordinate system
are therefore given by maps

(x, t) �→ (Ax + gt + b, t + s),

where A ∈ O(3) is a 3 × 3 orthogonal matrix, g and b are 3 × 1 column vectors, and
s ∈ R is a scalar. Such transformations collectively form the Galilean group Gal(3, 1)
of classical (3 + 1)-dimensional spacetime E3 × R. A simple parameter count shows
that the Galilean group depends on 3 + 3 + 3 + 1 = 10 parameters. You recognise
Eucl(3) as a subgroup of Gal(3, 1) consisting of time-independent transformations
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Table 9.3 Symmetries and conservation laws

Conserved
Symmetry quantity Name

spatial translation
(x, t) �→ (x + b, t)

∑
i

mi
dxi

dt
momentum

spatial rotation
(x, t) �→ (Ax, t)

∑
i

mi xi × dxi

dt
angular momentum

Galilean boost
(x, t) �→ (x + gt, t)

−pt +
∑

i

mi xi centre of mass (where
p is the total momen-
tum)

time translation
(x, t) �→ (x, t + s)

∑
i

1

2
mi

∣∣∣dxi

dt

∣∣∣2 energy

(x, t) �→ (Ax + b, t),

with g = 0 and s = 0. Transformations with nonzero g correspond to a change to a
new reference frame in uniform movement of speed g with respect to the old one; such
group elements are usually called Galilean boosts. Elements of Gal(3, 1) with s �= 0
correspond to moving the origin of time; Newtonian physics has no fixed Creation
or Big Bang. It is however not possible to stretch or reverse time, however much you
might wish it during an exam.

The shape of the Galilean group determines Newton’s equation of motion, in the
form familiar to you from a first mechanics course. For a single particle with mass m
and position vector x(t) at time t , with no external forces acting, the equation simply
says

m
d2x(t)

dt2
= 0.

Note that this equation is indeed invariant under the Galilean group.
Emmy Noether’s principle of conserved quantities says that for a physical system

with a symmetry group, there are as many conserved quantities (constants of the
system unchanged as a function of time) as parameters for the group. As noted above,
the Galilean group depends on 10 parameters, so we are looking for 10 conserved
quantities. For a system with n particles having masses mi and position vectors xi (t),
Table 9.3 describes the conserved quantities of Newtonian dynamics.

9.3.2
The
Poincaré
group and
special
relativity

Newtonian dynamics functioned well as a description of spacetime up until the
late nineteenth century. At that time however, two new developments shattered its
foundations. The first nail in its coffin was the famous Michelson–Morley experiment
(1887), which refuted the best current explanation of the properties of light within
Newtonian theory in terms of the ‘theory of ether’. The simplest interpretation of
their result was that the speed of light was independent of the speed of the observer,
in stark contradiction with the Galilean group, which obviously cannot accommodate
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such behaviour. A second (closely related) fact involves Maxwell’s equations of
electromagnetism, which are not invariant under the Galilean group.

After an exciting decade of developments, best summarised elsewhere, Einstein’s
1905 foundational paper spelled out a new theory, special relativity, based on a
different set of principles. Four dimensional spacetime is henceforth to be mod-
elled on R1,3, which is shorthand for a space with coordinates x = (t, x1, x2, x3) and
Lorentz pseudometric

ds2 = −c2dt2 + dx2
1 + dx2

2 + dx2
3 ;

or, if the infinitesimal notation is unfamiliar, you can write the Lorentz distance of
vectors x = (t, xi ), y = (s, yi ) ∈ R1,3 as

d(x, y) = −c2(t − s)2 +
∑

i

(xi − yi )
2.

(The sign we adopt is the opposite to most physics texts.) Here the constant c, with
the classical dimensions length/time, is the speed of light, postulated to be universal
in all inertial coordinate systems. In theoretical discussions, one often sets c = 1 for
reasons of convenience.

In special relativity, the only restriction on changes of reference frame is that the
Lorentz (pseudo-)distance on R1,3 (and the ‘positive light-cone’) is preserved; this
is Einstein’s relativity principle. The group of such transformations is the Poincaré
group1 Poin(1, 3) consisting of maps

x �→ Ax + b,

where A ∈ O+(1, 3) is a Lorentz matrix (preserving the positive cone), and b ∈ R1,3.
This group can be studied in complete analogy with the treatment of 6.5.3: it is the
semidirect product

Poin(1, 3) ∼= O+(1, 3) � R1,3

of a normal subgroup, the group R1,3 of spacetime translations, and the four dimen-
sional Lorentz group O+(1, 3). Also, for fixed values of the time variable t , the metric
reduces to the Euclidean metric on a copy of R3. Hence Poin(1, 3) contains a subgroup
Eucl(3) of Euclidean transformations. However, since the Poincaré group mixes t and
x coordinates, this splitting of spacetime into ‘time’ and ‘space’ is not canonical, but
depends on the choice of coordinate frame (observer).

Hyperbolic geometry is contained in the Lorentz space R1,n of special relativity
as the space-like hypersurface

qL (t, xi ) = −1 with t > 0.

1 The naming of concepts during these exciting years was rather haphazard, often respecting accident
and scientific standing more than historical accuracy. In particular, the so-called Lorentz metric appears
to have been proposed first (albeit implicitly) by the Irish physicist George FitzGerald, followed (now
explicitly) by another Irishman, Sir Joseph Larmor and only for the third time by Lorentz himself. Poincaré
came very close to inventing special relativity in the years 1900–1904, showing in particular that Lorentz
transformations form a group; hence in the case of the Poincaré group, the name is accurate.
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The distinction of time-like and space-like vectors in the Lorentz model of hyperbolic
geometry derives exactly from this physical interpretation.

9.3.3
Wigner’s
classifica-
tion:
elementary
particles

As discussed above, the Poincaré group Poin(1, 3) contains the Euclidean group
Eucl(3), hence also the Euclidean rotation group SO(3). As you recall from 8.5–8.6,
the latter group has a double cover SU(2) → SO(3), that is, a two-to-one surjective
group homomorphism with kernel ±1. It turns out that this double cover extends to
a double cover

P̃oin(1, 3) → Poin(1, 3)

of the Poincaré group, which can be constructed using the group SL(2, C) of
2 × 2 complex matrixes of determinant 1 (which obviously contains the group SU(2)
covering SO(3)).

One of the first spectacular uses of group theory in theoretical physics was Wigner’s
insight of the 1940s, which relates ‘symmetries of spacetime’ to ‘things in it’ (parti-
cles), and can be summarised as follows (see Sternberg [23] for the physical intuition
and more details).

(1) An ‘elementary particle’ of nature is a (finite dimensional, irreducible, unitary) rep-
resentation of the symmetry group of spacetime, satisfying certain ‘physical restric-
tions’.

(2) The symmetry group of spacetime is the Poincaré group, or more precisely its universal
cover P̃oin(1, 3).

(3) The classification of the relevant representations of the Poincaré group thus leads to
a classification of all elementary particles.

Recall from 8.8 that a (linear) representation of a group G is a group homomorphism
from G to a group of (complex) matrixes; a unitary representation is one where the
image of every element of G is a unitary matrix (the latter restriction arises from
quantum mechanics, which need not unduly worry us at this point).

Wigner proved that ‘physically relevant’ representations of P̃oin(1, 3) are classified
by

� a continuous nonnegative parameter m ≥ 0, called the rest mass of the particle, and
� a half-integer s, called particle spin, that is allowed to take nonnegative values

0, 1
2 , 1, . . . for particles of mass m > 0, and all values 0,± 1

2 ,±1, . . . for those with
m = 0.

Integral spin particles correspond to representations for which the kernel ±1 =
ker(P̃oin(1, 3) → Poin(1, 3)) acts trivially, so really representations of Poin(1, 3);
whereas for particles with half-integral spin, the double covering is necessary.
Examples of the two kinds are photons, which are massless (that is, m = 0) and
have integral spin s = 1, and electrons with s = 1

2 and a certain positive value of m.
(The phenomenon of spin 1

2 particles was the main point of the discussion of 8.7.)
The group P̃oin(1, 3) has additional ‘nonphysical’ representations with m2 < 0; these
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are called tachyons (mythical particles travelling faster than the speed of light), and
are relegated to the world of science fiction in most current theories (but not all).

9.3.4
The
Standard
Model and
beyond

The importance of Wigner’s insight in the development of modern physics can hardly
be overstated: in a sense, it concludes another 2000 plus year old story, the search for
the ultimate building blocks of the physical universe, and does so in mathematical
terms. Of Wigner’s program, (1) and (3) have stood as cornerstones of most theories
of particle physics proposed in the last 50 years. Only (2), the specific choice of the
symmetry group, has changed during the course of subsequent developments.

One thing that was clear already at the outset is that Wigner’s original discussion
does not incorporate the electromagnetic interactions of elementary particles. This
however only requires a minor modification, taking into account an additional internal
symmetry group U(1). This group is no longer a geometric symmetry of spacetime,
but rather a symmetry of the whole theory of electromagnetism in spacetime, used to
encode additional data. Representations of the combined group P̃oin × U(1) are now
parametrised by a triple of numbers (m, q, s), with the additional quantum number
q, the electric charge, taking integer values. In fact, internal symmetry groups such
as the U(1) of electromagnetism do not have to appear as a single group for the
whole theory; much more powerfully, each particle can have a fibre bundle of these
symmetry groups over the whole of spacetime, leading to the idea of gauge theory.

As the particle accelerators of the 1950s and 1960s grew capable of producing
faster and faster particles and slamming them into one another at higher and higher
energies, the zoo of known elementary particles grew accordingly. Alongside this, the
internal symmetry group also changed, accommodating various features of particles
to do with newly discovered forces, the strong and weak nuclear forces of particle
physics. In Wigner style, new groups led in turn to the prediction of new particles,
and their existence was in many cases confirmed in subsequent accelerator experi-
ments. There is really no space here to elaborate on this development; I recommend
Sternberg [23] as a good source. Let me only say that the most popular current theory
is the Standard Model, based on the Poincaré group augmented by the internal sym-
metry group U(1) × SU(2) × SU(3); roughly, the three factors are responsible for the
electromagnetic, weak and strong forces (this is of course a gross over-simplification).

Embedding the internal symmetry group U(1) × SU(2) × SU(3) into an even larger
group, mixing all three forces (electromagnetic, weak and strong) completely, come
under the name Grand Unification Theory (GUT), a sometime favourite pastime of
‘armchair physics’. Popular GUT groups include the special unitary group SU(5),
the group SO(10), and even more exotic constructs such as the ‘exceptional’ groups
called E6 and E8. It is hard, however, for any of these exotic theories to establish
a domination over their rivals; part of the problem seems to be that the Standard
Model works so well, and explains to remarkable accuracy almost everything one
could hope to see in experiments using accelerators of the present and near future;
thus anomalous measurements against which you can check your latest GUT group
are few and far between.
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9.3.5
Other
connections

The connections between geometry and physics extend beyond the relationship
between spacetime symmetries and particles. The two crowning achievements
of early twentieth century physics, quantum theory and general relativity, are
inextricably linked to the ideas of geometry in a number of ways. The influence
of the discovery of hyperbolic geometry on relativity has already been mentioned:
the fact that hyperbolic geometry has intrinsic curvature changed physical intuition,
culminating in Einstein’s insight that gravity, instead of acting as a classical ‘force’,
is better described as encoded into the local curved structure of space itself (for more
on this, see the next section). Quantum mechanics, invented by Schrödinger and
Heisenberg in the 1920s, was axiomatised by Dirac and von Neumann, building on
the Hilbert incidence axioms for projective geometry (see 5.12). Much more recently,
the essential incompatibility between general relativity and quantum theory has led
to the introduction and study of string theory, which builds on and generalises all of
classical and modern geometry as we know it; this is however well beyond the scope of
this book.

9.4 The famous trichotomy

9.4.1
The
curvature
trichotomy
in geometry

The metric geometries of this course come in a triad: spherical, Euclidean and hy-
perbolic. In terms of curvature, the three geometries correspond to the three cases
of Figure 9.4a, having local curvature positive, zero or negative. You can determine
which geometry you are in locally by measuring the perimeter of a circle of radius
R, which, as you remember from Exercises 3.1 and 3.13, comes out to be 2π sin R,
2π R and 2π sinh R in the three cases. The key point here is that the perimeter of a
circle or the area of a disc grows exponentially with the radius in hyperbolic space,
making hyperbolic space ‘much bigger’ than the sphere or the Euclidean plane. The
curvature can also be detected by measuring the angle sum of a triangle � of the
geometry, which is > π , equal to π and < π in the three cases, where the excess or
defect is proportional to the area of �. Globally, as discussed at several points, the
difference is visible also in the incidence properties of lines: in the sphere two lines
always meet, in the Euclidean they either meet or are precisely parallel, whereas the
hyperbolic plane has plenty of pairs of lines that diverge.

Topologically, the Euclidean plane E2, the sphere S2 and hyperbolic space H2

are all simply connected (cf. 7.15; for H2, use the homeomorphic model H of Exer-
cises 3.23–3.26 if you wish). As well as these simply connected geometries however,
we can also consider compact ones; for simplicity we only discuss the oriented sur-
faces here. The sphere is already compact; the compact version of the plane is the
one-holed torus, obtained from the plane by an equivalence relation which identifies
points which are related to each other by translation by vectors in a fixed parallelo-
gram lattice. The most exciting story is that of the hyperbolic plane, which by itself
can give rise to a multitude of compact geometric spaces: it can be shown that all
compact geometric surfaces with ≥ 2 holes can be derived from the hyperbolic plane
(Figure 9.4b). The number of holes in a compact surface is called its genus; so in
terms of the genus, our trichotomy becomes g = 0, g = 1 or g > 1. To return to the
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Figure 9.4a The cap, flat plane and Pringle’s chip.

g = 0, χ = 2

g = 1, = 0 g 1, <> 0

2E2

S2

. . .

H

χ χ

Figure 9.4b The genus trichotomy g = 0, g = 1, g ≥ 2 for oriented surfaces.

basic trichotomy of positive, zero or negative curvature, we can take the Euler number
χ = 2 − 2g of the surface, which is simply the quantity ‘faces − edges + vertexes’
in Euler’s formula for a triangulated surface. Then χ = 2 for a sphere, as everyone
knows; also χ = 0 for a torus and χ < 0 for the geometric surfaces with more than
one hole. It is a fun exercise to triangulate a surface with two holes and check Euler’s
formula for it! (See Exercise 7.19 for the details.)

The classification of three dimensional geometries that extend our two dimensional
curvature trichotomy rejoices in the name of Thurston’s geometrisation conjecture
(late 1970s). This includes as a humble first case the Poincaré conjecture characterising
the 3-sphere; this may well turn out to be the first of the Clay Mathematical Institute’s
million-dollar Millennium Prize Problems to be solved. In a different direction, my
own subject of classification of varieties in algebraic geometry studies geometric
shapes defined in space by several polynomial equations; the curvature trichotomy
reappears there in an algebraic form.

9.4.2
On the
shape and
fate of the
universe

Much was written up to the turn of the twentieth century on the subject of whether
our own three dimensional universe is Euclidean, spherical or hyperbolic; Poincaré’s
extended essay La science et l’hypothèse (1902) points out that the question itself
begs a number of conventions, for example on how the objects of geometry (straight
lines, distance) are realised as physical objects (light rays, observations of astronomy).
Maybe the answer to the question depends on our choice of conventions.
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The universe has grown in size and complexity since Poincaré’s day, an expansion
that continues apace to this day. According to special relativity (1905), it does not
make sense to consider space as a separate entity from spacetime. General relativity
(1916) says that spacetime is not flat or even of constant curvature, but is curved by
the presence of matter; this resolves the instantaneous action-at-a-distance that was a
philosophical contradiction implicit in Newton’s theory of gravitation. The existence
of black holes seems to be acknowledged by the majority of astrophysicists and
cosmologists, and the origin of the universe in the Big Bang some 13 × 109 years ago
(give or take the odd billion years) is current orthodoxy. On a simple-minded view,
these extreme events of spacetime can only be represented in geometry as singularities
localised around isolated points. However, it is possible that the singularity is only
in our representation, much as Mercator’s projection presents a distorted view of the
North pole.

A separate trichotomy concerns the long-term future of the universe – will gravity
eventually slow down the expansion of the universe, causing it to collapse back on
itself to a Big Crunch, so that time is also bounded in the future? will the expansion
continue indefinitely, with the universe getting bigger and bigger and emptier and
emptier? or are we precisely on the boundary between the two cases, so that expansion
slows down to nothing? The two trichotomies are possibly logically independent, but
who am I to judge?

One could believe that the general relativistic curvature effects of mass can be
envisaged as merely minor localised disturbances, and that space in the large is nev-
ertheless Euclidean; this is possibly the view held by many practising cosmologists
(I have not carried out a scientific poll). However, it seems that the same population
cheerfully admits that something like 80–90% of the mass of the universe is not ac-
counted for by current theories (‘black matter’ and ‘black energy’). Some will even
admit to not having any very specially well informed view on whether spacetime is
4-dimensional or really 10- or 11-dimensional. Just a little overall curvature or cos-
mological constant could go a long way (compare Exercise 3.13 (c)). Given all the
surprises that the study of science has brought to light in recent centuries, it might
seem premature to commit oneself to an excessively firm view. There is a flourishing
popular science literature on all these topics; perhaps the best informed books are
those of Martin Rees, for example [20].

9.4.3
The snack
bar at the
end of the
universe

Even if one admits the flat and boring possibility that the universe is asymptotically
Euclidean, and its expansion exactly fine tuned to slow down but never reverse, it might
still happen that we get sucked into a black hole, and (who knows?) are resurrected
to come out the other side as a new baby universe. At this point, you can pick and
choose what you want to believe, making this a nice optimistic note on which to end
my fairy story.



Appendix A Metrics

Definition A metric on a set X is a specification of a distance d(x, y) between
any two points x, y ∈ X , in other words a map d : X × X → R, required to satisfy
the following axioms for all x, y, z ∈ X :

1. d(x, y) ≥ 0 and d(x, y) = 0 if and only if x = y;
2. d(x, y) = d(y, x);
3. the triangle inequality d(x, y) ≤ d(x, z) + d(z, y).

For example, the real line R with d(x, y) = |x − y| is a metric space. The epsilon-
delta definition of continuity of a function in a first calculus course uses that R is a
metric space (compare 7.2). Theorem 1.1, Corollary 3.3 and Corollary 3.10 say that the
vector space Rn and hence Euclidean space En , the sphere S2 and the hyperbolic plane
H2 are all metric spaces with their respective distance functions. The set of complex
numbers C is also a metric space under the distance function d(z1, z2) = |z2 − z1|.
Some frivolous examples show that many distance functions in use in the real world
are not metrics:

1. Air fares: let d(x, y) be the price of an airline ticket from x to y; this is usually
unsymmetric, and does not satisfy the triangle inequality.

2. The distance you travel by car to go from one point of a town to another; this is not
symmetric, because of one-way traffic systems. However, it satisfies the triangle in-
equality, because you take the minimum over paths, at least if your taxi driver is honest.

3. For a cyclist, up a hill is of course much further than down.

I use the following simple definition to pass from a metric space to the slightly
more general notion of topological space in Chapter 7 (see Section 7.2).

Definition Let X be a metric space, x ∈ X a point and ε > 0 a real number. The
ball in X of radius ε centred at x is the subset

B(x, ε) = {y ∈ X
∣∣ d(x, y) < ε

} ⊂ X.
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For example, if X = R is the real line, then B(x, ε) is the usual open interval
(x − ε, x + ε). All the definitions of continuity of f (x) in the first calculus course
can be expressed in terms of these intervals.

Definition Let (X, d) and (Y, dY ) be metric spaces. An isometry is a bijective
map f : X → Y satisfying the condition

dY ( f (x), f (y)) = d(x, y).

The meaning of this definition is that the two spaces (X, d) and (Y, dY ) are ‘the
same’ as far as their metric properties are concerned. An example that is used very
often is the fact that the complex numbers C and the vector space R2 are isometric
under the map x + iy �→ (x, y). Note that seemingly different metric spaces can be
isometric under some weird or ingenious map; see for example Exercise A.3 and, for
a geometric example, Exercise 3.24.

A slightly different case of this definition that comes up all the time in geometry
is when (X, d) = (Y, d ′) and f is a bijection. Then f is viewed as a selfmap of X
‘preserving all the metric geometry’. The motions of geometries studied throughout
this book provide examples.

Exercises

A.1 Let X be a metric space and t : X → X a map that preserves distances d(t(x), t(y)) =
d(x, y). Prove that t is injective. Give an example in which t is not bijective; in other
words, X can be isometric to a strict subset of itself, just as in set theory, an infinite
set can be in bijection with a strict subset. [Hint: think of ‘Hilbert’s hotel’.]

A.2 Let S = [1, . . . , n] be a set containing n elements, and X the set of all subsets of S.
For x, y ∈ X , write d(x, y) for the size of the symmetric difference of x and y (the
number of elements of S contained in one of x, y but not the other). Show that d is a
metric on the set X . What happens to the construction if S is infinite? What happens
if S is infinite but I insist that X consists only of the finite subsets of S?

A.3 Let P be the set of polynomials in one variable with coefficients in Z/2; remember,
this means that we work over the field {0, 1} with two elements where the addition
law includes 1 + 1 = 0. If f and g are two polynomials, let d( f, g) be the number
of nonzero terms in the difference f − g. Show that d is a metric on P . Show also
that P with this metric is isometric to some metric space appearing in the previous
exercise.

A.4 Prove that a metric space with exactly 3 points is isometric to a subset of E2.
A.5 Let X = {A, B, C, D}with d(A, D) = 2, but all the other distances equal to 1. Check

that d is a metric. Prove that the metric space X is not isometric to any subset of En

for any n. Can you realise X as a subset of a sphere S2 of appropriate radius, with
the spherical ‘great circle’ metric? [Hint: I am sure you know the riddle: an explorer
starts out from base camp, walks 10 miles due South, meets a bear, runs 10 miles due
West, then 10 miles due North and finds himself back at base camp. What colour was
the bear? If in doubt, turn to Figure A.1.]
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Figure A.1 The bear.



Appendix B Linear algebra

The distance function in Rn is given by the norm |x|2 =∑ x2
i , which comes from the

standard inner product x · y =∑ xi yi . The ideas here are familiar from Pythagoras’
theorem and the equations of conics in plane geometry, and from the vector manipu-
lations in R3 used in applied math courses. A quadratic form in variables x1, . . . , xn

is simply a homogeneous quadratic function in the obvious sense. For clarity I recall
the formal definitions and results from linear algebra.

B.1 Bilinear form and quadratic form

Definition Let V be a finite dimensional vector space over R. A symmetric bi-
linear form ϕ on V is a map ϕ : V × V → R such that

(i) ϕ is linear in each of the two arguments, that is

ϕ(λu + µv, w) = λϕ(u, w) + µϕ(v, w)

for all u, v, w ∈ V , λ, µ ∈ R, and similarly for the second argument,
(ii) ϕ(u, v) = ϕ(v, u) for all u, v ∈ V .

A quadratic form q on V is a map q : V → R such that

q(λu + µv) = λ2q(u) + 2λµϕ(u, v) + µ2q(v)

for all u, v ∈ V , λ, µ ∈ R, where ϕ(u, v) is a symmetric bilinear form.

Proposition A quadratic form is determined by a symmetric bilinear form and
vice versa by the rules

q(x) = ϕ(x, x) and ϕ(x, y) = 1

2

(
q(x + y) − q(x) − q(y)

)
.
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Choosing a basis e1, . . . , en of V, a quadratic form q or its associated symmetric
bilinear form ϕ are given by

q(x) =
∑
i, j

ai j xi x j = txK x, ϕ(x, y) =
∑
i, j

ai j xi y j = txK y.

Here x = t(x1, . . . , xn) =∑ xi ei , y = t(y1, . . . , yn) =∑ yi ei and K = (ki j ) is a
symmetric matrix whose entries are given by ki j = ϕ(ei , e j ).

B.2 Euclid and Lorentz

There are two special bilinear forms that are useful in geometry. To see the first, let
V = Rn be the vector space with the standard basis

e1 = t(1, 0, . . . , 0), . . . , en = t(0, . . . , 0, 1).

The Euclidean inner product corresponds to the matrix

I = diag(1, 1, . . . , 1).

It is the familiar

ϕE (x, y) = x · y = txI y =
∑

i

xi yi ,

with corresponding quadratic form

qE (x) = |x|2 =
∑

i

x2
i .

As you know, an orthonormal basis of Rn is a set of n vectors f1, . . . , fn ∈ Rn such
that

fi · f j = δi j =
{

0 for i �= j

1 for i = j .

The model for this definition is the usual basis ei = (0, . . . , 1, 0, . . . ) of Rn (with 1
in the i th place). The inner product ϕE expressed in terms of an orthonormal basis
f1, . . . , fn of V still has matrix I.

For the indefinite case, it is convenient to change notation slightly, so let V = Rn+1

be the vector space with the standard basis e0, . . . , en . The Lorentz dot product is the
symmetric bilinear form given by the matrix

J = diag(−1, 1, . . . , 1).

If x = (t, x1, . . . , xn) and y = (s, y1, . . . , yn) then

ϕL (x, y) = (t, x1, . . . , xn) ·L (s, y1, . . . , yn) = −ts +
∑

xi yi .

The Lorentz norm is the associated quadratic form qL : V → R, defined by

qL (t, x1, . . . , xn) = −t2 +
∑

x2
i .
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A Lorentz basis f0, f1, . . . , fn is a basis of V as a vector space, with respect to which
qL has the standard diagonal matrix J ; that is,

qL (f0) = −1, qL (fi ) = 1 for i ≥ 1 and fi ·L f j = 0 for i �= j .

B.3 Complements and bases

Let (V, ϕ) be a vector space with bilinear form.

Definition For a vector subspace W ⊂ V , define the complement of W with
respect to ϕ to be

W⊥ = {x ∈ V
∣∣ ϕ(x, w) = 0 for all w ∈ W

}
.

In general, complements need not have any particularly nice properties; notice
for example that the zero inner product (with matrix K = 0) gives W⊥ = V for all
subspaces W . However, for ‘nice’ inner products the situation is completely different.
I write this section explicitly with the minimal generality needed for the geometric
applications; all this can be souped up to obtain the general Gram–Schmidt process,
Sylvester’s law of inertia, etc.

Theorem Let ϕ be the Euclidean inner product on V = Rn. Let W be a subspace
of Rn. Then

(1) W has an orthonormal basis f1, . . . , fk ,
(2) any vector v ∈ Rn has a unique expression v = w + u with w ∈ W and u ∈ W⊥; in

other words, Rn is the direct sum W ⊕ W⊥.

Proof Suppose that W is not the zero vector space, take a nonzero v1 ∈ V and let
f1 = v1/|v1| be a vector with unit length in the direction of v1. If f1 spans W then I am
home. If not, take v2 outside the span of f1 and let f2 be a unit vector in the direction
of v2 − (v2 · f1)f2. Then, as you can check, the cunning choice of the direction of f2

ensures that it is orthogonal to f1, and it lies in W . Now continue this way by induction.
Either the constructed f1, . . . , fk generate W , or you can find vk+1 ∈ W outside their
span, and then a unit vector in the direction of vk+1 −

∑
(vk+1 · fi )fi can be added to

the collection.
For the second statement, find an orthonormal basis f1, . . . , fk of W , and extend it

using the same method to an orthonormal basis f1, . . . , fn of Rn . Then every vector
v ∈ Rn has a unique expression

v =
n∑

i=1

λi fi

and then

w =
k∑

i=1

λi fi , u =
n∑

i=k+1

λi fi

is the only possible choice. QED
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The procedure of the proof is algorithmic, so lends itself easily to calculations; to
make sure that you understand it, do Exercise B.1.

Theorem Let V = Rn+1 with the Lorentz dot product and form.

(3) Let v ∈ Rn+1 be any vector with qL (v) < 0. Then qL (w, w) > 0 for w a nonzero vector
in the Lorentz complement v⊥.

(4) Let f0 ∈ Rn+1 be a vector with qL (f0) = −1. Then f0 is part of a Lorentz basis f0, . . . , fn

of Rn+1.

Proof For (3), suppose that v = (t, x1, . . . , xn) and w = (s, y1, . . . , yn) satisfy
qL (v) < 0 and v ·L w = 0, that is

−t2 +
n∑

i=1

x2
i < 0 (1)

and

−st +
n∑

i=1

xi yi = 0. (2)

Then (1) and (2) give that

(
−s2 +

n∑
i=1

y2
i

)
t2 = −s2t2 + t2

( n∑
i=1

y2
i

)
> −

( n∑
i=1

xi yi

)2
+
( n∑

i=1

x2
i

)( n∑
i=1

y2
i

)
,

provided that the yi are not all 0. But we know that the last line is ≥ 0 (in fact it is
equal to

∑
(xi y j − x j yi )2, compare 1.1), so

−s2 +
n∑

i=1

y2
i > 0

which is the statement.
For (4), pick v1 ∈ Rn+1 linearly independent of f0 and set

w1 = v1 + (f0 ·L v1)f0.

Then w1 is a nonzero element of f⊥0 , so by (3) it has positive Lorentz norm. Hence I
can set f1 = v1/

√
qL (v1). Then by construction f0, f1 are part of a Lorentz basis. Now

continue with the inductive method used in the proof of the previous theorem. QED

B.4 Symmetries

Return to the case of a general symmetric bilinear form ϕ on the vector space V , and
its associated quadratic form q .
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Proposition Let α : V → V be a linear map. Then equivalent conditions:

1. α preserves q, that is, q(α(x)) = q(x) for all x ∈ V ,
2. α preserves ϕ, that is, ϕ(α(x), α(y)) = ϕ(x, y) for all x, y ∈ V .

Proof The equivalence simply follows from the fact that q is determined by ϕ

and conversely, ϕ is determined by q from Proposition B.1. QED

Now identify V with Rn using the standard basis e1, . . . , en . Let K = {ϕ(ei , e j )}
be the matrix of ϕ.

Proposition (continued) Let A be the n × n matrix representing α in the given
basis. Then the previous two conditions are also equivalent to

3. A satisfies the matrix equality tAK A = K .

Proof Recall ϕ(x, y) = txAy. Hence

ϕ(α(x), α(y)) = ϕ(x, y) ⇐⇒ t(Ax)K (Ay) = txtAK Ay = txK y

and the latter holds for all x and y if and only if tAK A = K . QED

A useful observation is the following.

Lemma If det K �= 0 (we say that the form ϕ is nondegenerate) then the equivalent
conditions above imply det A = ±1.

Proof From (3) and properties of the determinant it follows that

(det A)2 det K = det K .

If det K �= 0 then I can divide by it. QED

B.5 Orthogonal and Lorentz matrixes

Consider Rn with the Euclidean inner product, and let e1, . . . , en with ei =
(0, . . . , 1, 0, . . . ) be the usual basis. If f1, . . . , fn ∈ Rn are any n vectors, there is
a unique linear map α : Rn → Rn such that α(ei ) = fi for i = 1, . . . , n. Namely
write f j as the column vector f j = (ai j ); then α is given by the matrix A = (ai j )
with columns the vectors f j . Now, by Proposition B.4 and by direct inspection, the
following conditions are equivalent:

1. f1, . . . , fn is an orthonormal basis;
2. the columns of A form an orthonormal basis;
3. tAA = I ;
4. α preserves the Euclidean inner product.

We say that α is an orthogonal transformation and A an orthogonal matrix if these
conditions hold. We get the following result.
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Proposition α �→ (α(e1), . . . , α(en)) establishes a one-to-one correspondence{
orthogonal transformations

α of Rn

}
↔
{

orthonormal bases
f1, . . . , fn ∈ Rn

}
.

If (V, ϕ) is Lorentz, a matrix A satisfying the condition tAJ A = J of Propo-
sition B.4 (3) is called a Lorentz matrix. I leave you to formulate the analogous
correspondence between Lorentz bases and Lorentz matrixes.

B.6 Hermitian forms and unitary matrixes

This section discusses a slight variant of the above material, for vector spaces over
the field C of complex numbers. Let V be a finite dimensional vector space over C.
A Hermitian form ϕ : V × V → C is a map satisfying the conditions

ϕ(λu + µv, w) = λϕ(u, w) + µϕ(v, w)

and

ϕ(u, λv + µw) = λϕ(u, v) + µϕ(u, w),

where λ, µ ∈ C; note the appearance of the complex conjugate in the first row. The
corresponding Hermitian norm q on V is

q(v) = ϕ(v, v).

The relation between ϕ and q is slightly more complicated than in the real case; I
leave you to check the rather daunting looking identity

ϕ(u, v) = 1

4

(
q(u + v) − q(u − v) + iq(u + iv) − iq(u − iv)

)
.

The terms in the identity are not so important; what is important is the fact that q
gives back ϕ.

Since I am only interested in a special case, I choose a basis {e1, . . . , en} of V
straight away and assume that

ϕ(λ1e1 + · · · + λnen, µ1e1 + · · · + µnen) = λ1µ1 + · · · + λnµn.

Such a form is called a definite Hermitian form. Under ϕ, e1, . . . , en form a Hermitian
or orthonormal basis: ϕ(ei , e j ) = δi j .

The following is completely analogous to Proposition B.4.

Proposition Let α : V → V be a linear map represented by the n × n matrix A
in the given basis. Then the following are equivalent:

1. α preserves the norm q;
2. α preserves the Hermitian form ϕ;
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3. A satisfies hAA = In, where hA is the Hermitian conjugate defined by hA = tA; that
is, (hA)i j = A ji .

The transformation α or the matrix A representing it is unitary if it satisfies these
conditions; the set of n × n unitary matrixes is denoted U(n). Unitary transformations
(possibly on infinite dimensional spaces) have many pleasant properties which makes
them ubiquitous in mathematics. They are also the basic building blocks of quantum
mechanics and hence presumably nature; in this book I discuss one tiny example of
this in 8.7.

Exercises

B.1 Let f1 = (2/3, 1/3, 2/3) and f2 = (1/3, 2/3,−2/3) ∈ R3; find all vectors f3 ∈ R3 for
which f1, f2, f3 is an orthonormal basis.

B.2 By writing down explicitly the conditions for a 2 × 2 matrix to be Lorentz, show that
any such matrix has the form(

cosh s sinh s

sinh s cosh s

)
or

(
cosh s − sinh s

sinh s − cosh s

)
.

B.3 This exercise is a generalisation of the previous one; it shows that any Lorentz matrix
can be put in a simple normal form in a suitable Lorentz basis; the Euclidean case is
included in the main text in 1.11. Let α : Rn+1 → Rn+1 be a linear map given by a
Lorentz matrix A. Prove that there exists a Lorentz basis of Rn+1 in which the matrix
of α is

B =


±1

Ik+

−Ik−

B1

. . .
Bl

 or B =


B0

Ik+

−Ik−

B1

. . .
Bl−1


where B0 = ± ( cosh θ0 sinh θ0

sinh θ0 cosh θ0

)
, Bi =

( cos θi − sin θi
sin θi cos θi

)
for i > 0, and Ik± are identity ma-

trixes. [Hint: argue as in the Euclidean case in 1.11.2; the only extra complication is
that you have to take into account the sign of the Lorentz form on the eigenvectors.
The statement follows by sorting out the cases that can arise.]

B.4 Prove that a unitary matrix has determinant det A ∈ C of absolute value 1.
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point at, 48–49, 51, 53, 55, 59, 73, 75, 76,

79
intersection, see dimension of –, 108
intrinsic

curvature, 34, 40, 177
distance, 40
unit, 34, 49

isometry, see motion, preserves distances, 4, 6,
112, 181

Klein bottle, xiv, 139

length of path, 5
Lie group, see compact –, 142–164, 169
line, 4, 65

hyperbolic, 44
segment, 3, 65
spherical, 35

loop, 107–137, 140, 159
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Lorentz
basis, 44, 55, 185, 186, 188, 189
complement, 48, 186
dot product ·L , 43, 184, 186
form qL , 42, 47, 184, 186, 189
group, 93, 159, 161
matrix, 42, 46–47, 161, 188, 189
norm, 44, 184, 186
orthogonal, 44

matrix, 187
pseudometric, 42, 58, 174
reflection, 47
space, 42, 46, 188
transformation, 47, 54, 92, 144
translation, see hyperbolic –

maximal compact subgroup, 160
Mercator’s projection, 139, 164, 179
metric, 180–182

geometry, 64, 177
space, 1, 4, 38, 180–182
topology, 109, 125, 143, 152

minimum over paths, 5, 180
Möbius strip, xiv, 107, 118–119, 122, 139
motion, xiv, 1, 6, 7, 9–11, 14–19, 24–26, 28–34,

38–40, 46, 47, 58, 61, 93, 95, 97, 98, 100,
103, 105, 106, 144, 149, 151, 152, 154,
158, 161

mousetrap topology, 122–123
Musée Grévin, 103, 105

Newtonian dynamics, 93, 161, 172–173
non-Euclidean geometry, 34–61, 167
normal form of a matrix, 10–13, 18, 29, 98–99,

148, 189

open set, 108–111, 113–115, 117, 118, 121, 125,
143, 148

opposite motion, 10, 15, 17, 148
orthocentre, 22–23
orthogonal, see Lorentz –

axes, 1
complement V⊥, 13, 47, 145, 171, 185
direct sum, 151
frame, 39
group O(n), 144–152
line, 158
magnetic field, 154, 158
matrix, 7, 9–13, 24, 29, 39, 99, 144, 146–149,

159, 187
plane, 29
transformation, 9, 92, 99, 187
vector, 5, 29, 37, 151, 162, 185

Pappus’ theorem, 84–85, 88, 90
parallel

axes, 31
hyperplanes, 17, 64, 66, 67
lines, 15–17, 20–23, 27, 34, 40, 49, 62, 68, 70,

73, 82, 166
mirrors, 103
postulate, 20, 49, 60, 166
sides, 31
vector, 16, 96

path, see length of path, minimum over paths, 114,
131, 159

connected, 114, 120, 132, 141, 149
perpendicular bisector, 16, 21, 22, 24, 29, 30,

57
perspective, 73, 74, 81–83, 88, 90
physics, xv, xvi, 93, 160, 172–179
Poincaré group, 173–176
point at infinity, see infinity, point at
preserves distances, 6–7, 24, 39, 181
principal homogeneous space, see torsor
Pringle’s potato chip, 58, 178
product topology, 126–127, 139, 143
profinite topology, 125, 126
projective

frame, 78, 79, 90, 106, 146
geometry, 72–91
linear group PGL(n), 77, 95, 105, 106, 144,

146, 171
linear subspace, 73–77

punctured disc D∗, 120, 130, 133, 136

quadratic form, 5, 9, 42, 123, 150, 151, 183
quaternions, 149–152
quotient topology, 110, 117–119, 121–125,

139–140, 144, 152

reflection, 1, 11, 15–17, 24, 27–30, 33, 34, 40, 58,
103, 105

group, 103–105
matrix, 7, 10, 24, 42, 144

relativity, see special –, general –, 161
rigid body motion, see motion
rotary reflection, 33, 40
rotation, 1, 11, 15–18, 24, 25, 27, 29, 31–34, 39,

40, 47, 97, 100, 103, 142, 143, 149–152,
154, 158, 161

group, 152
matrix, 7, 10, 42, 144

rubber-sheet geometry, xiv, 107

sequentially compact, 115–116, 138
shortest distance, see minimum over paths, 4, 5,

40, 46, 58
similar triangles, 21–23
simplex of reference, see projective frame
simply connected, 130, 132, 146, 160
spacetime, 93, 172–176, 178, 179
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special
linear group SL(n), 159, 175
orthogonal group SO(n), 149, 152
relativity, xv, 93, 144, 173–174, 178
unitary group SU(n), 153, 176

sphere S2, 35, 36, 39, 40, 43, 56, 58, 113, 180, 181
sphere Sn , 57, 58, 116, 121, 122, 145, 151
spherical

disc, 56
distance, 36–38, 40, 56, 116
frame, 34, 40
geometry, 4, 20, 34–41, 45, 56, 57, 164, 167,

182
line, 39, 40
motion, 38, 39
triangle, 37–38, 40, 41, 57, 182
trig, 37, 167

spin, 143, 154, 155
spinor group Spin(n), 153, 159
Standard Model, 176
subspace topology, 117, 121, 128, 144, 147, 152
symmetry, 92–95, 160, 164, 169, 173–176

topological
group, 143–144, 159
property, xv, 113, 127, 131, 136, 167

topology, 94, 107–141, 143
of P

n , 90, 121, 139
of SO(3), 142, 143, 149
of S3, 152

torsor, 169–170
torus, 119, 120, 139, 177, 178
transformation group, 26–33, 92, 94–96, 101, 104,

112, 142–163
translation, 1, 15–19, 25, 29, 31–33, 39, 68, 97,

98, 100–103, 106, 158, 161
map, 125
subgroup, 101, 105
vector, 15, 24, 27, 31

triangle inequality, 1–5, 38, 45, 180
trichotomy, 177–179

ultraparallel lines, 48–51, 59, 61
UMP, see universal mapping property
unitary

group, 153, 176
matrix, 153, 158, 188–189
representation, 175

universal mapping property, 118, 139,
152

winding number, xv, 107, 130–137


