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Preface

Discrepancy theory is also called the theory of irregularities of distribution.
Here are some typical questions: What is the “most uniform” way of dis-
tributing n points in the unit square? How big is the “irregularity” necessarily
present in any such distribution? For a precise formulation of these questions,
we must quantify the irregularity of a given distribution, and discrepancy is
a numerical parameter of a point set serving this purpose.

Such questions were first tackled in the thirties, with a motivation com-
ing from number theory. A more or less satisfactory solution of the basic
discrepancy problem in the plane was completed in the late sixties, and the
analogous higher-dimensional problem is far from solved even today. In the
meantime, discrepancy theory blossomed into a field of remarkable breadth
and diversity. There are subfields closely connected to the original number-
theoretic roots of discrepancy theory, areas related to Ramsey theory and to
hypergraphs, and also results supporting eminently practical methods and
algorithms for numerical integration and similar tasks. The applications in-
clude financial calculations, computer graphics, and computational physics,
just to name a few.

This book is an introductory textbook on discrepancy theory. It should be
accessible to early graduate students of mathematics or theoretical computer
science. At the same time, about half of the book consists of material that up
until now was only available in original research papers or in various surveys.

Some number of people may be interested in discrepancy theory with
some specific application in mind, or because they want to do research in it.
But, in my opinion, discrepancy theory can also serve as an example of “live
mathematics” for students completing the basic math courses. The problems
in discrepancy are natural, easy to state, and relatively narrowly focused.
The solutions, although some of them are quite deep and clever, can often
be explained in several pages with all the details. Hence, the beginner need
not feel overwhelmed by the volume of material or by a technical machinery
towering above him like a Gothic cathedral. At the same time, many notions
and theorems the student has to learn in the basic curriculum can be seen
in action here (such as calculus, geometry of the Euclidean space, harmonic
analysis, elementary number theory, probability theory and the probabilistic
method in combinatorics, hypergraphs, counting and asymptotic estimates,
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linear algebra, finite fields, polynomial algebra, and algorithm design). The
Fourier series is encountered not because the next item in the course outline
is called the Fourier series, but because one needs it to answer a seemingly
unrelated question about points in the unit square. In my opinion, such ex-
amples “from the outside” are very important and refreshing in learning a
mathematical discipline, but the basic courses can seldom include them.

Based on the book, it is possible to teach a one-semester or two-semester
“special topic” course (experiments in this direction have been kindly per-
formed by Joram Lindenstrauss and by Nati Linial). For a general course on
discrepancy, I suggest covering Section 1.1 (perhaps omitting Weyl’s crite-
rion), the Van der Corput and Halton–Hammersley constructions (Sec. 2.1),
maybe Beck’s upper bound for discs (Sec. 3.1), definitely Roth’s lower bound
(Sec. 6.1), the notion of combinatorial discrepancy (Sec. 1.3), basic combina-
torial upper bounds (Sec. 4.1), the lower bound using eigenvalues (Sec. 4.2),
and the partial coloring method (Sec. 4.5). If time permits, the next recom-
mendations are Halász’ lower bound proof (Sec. 6.2) and Alexander’s lower
bound (Sec. 6.4 or 6.5). I leave further extension to the instructor’s judgment.
For those wishing to pursue the subject of quasi-Monte Carlo methods, the
main recommended parts are Section 1.4 and the whole of Chapter 2. Con-
vinced combinatorialists are invited to read mainly Chapters 4 and 5. The
latter discusses the Vapnik–Chervonenkis dimension, which is of considerable
interest in statistics, computational learning theory, computational geometry,
etc.

Sections usually consist of three parts: the main text (what I would talk
about in a course), bibliographic references and remarks intended mainly for
specialists, and exercises. The exercises are classified by difficulty as no-star,
one-star, and two-star (but this classification is quite subjective). No-star
exercises should be more or less routine, and two-star ones often contain
a clever idea that had once been enough for a publication, although the
difficulty may now be greatly reduced by a suggestive formulation. More
difficult exercises are usually accompanied by hints given at the end of the
book. Rather than seriously expecting anyone to solve a large part of the
exercises, I used the exercise-hint combination as a way of packing lots of
results into a much smaller space than would be required for writing them
out according to the customary way of mathematical presentation. This, of
course, greatly enlarges the danger of introducing errors and making false
claims, so the reader who wants to use such information should check carefully
if the hint really works.

The book contains two tables summarizing some important asymptotic
bounds in discrepancy theory, an index, and a list of references with cross-
references to the pages where they are cited. I consider this last provision
convenient for the reader, but it has the unfortunate aspect that the authors
mentioned in the references can immediately find where their work is cited
and conclude that their results were misquoted and insufficiently appreci-
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ated. I apologize to them; my only excuse is that such shortcomings are not
intentional and that I simply did not have as much time to devote to each of
the referenced papers and books as it would have deserved.

If you find errors in the book, especially serious ones, please let me know
(Email: matousek@kam.mff.cuni.cz). A list of known errors is posted at
http://kam.mff.cuni.cz/~matousek/di.html.

Acknowledgment. For invaluable advice and/or very helpful comments
on preliminary versions of this book, I would like to thank József Beck, Jo-
hannes Blömer, William L. Chen, Vsevolod Lev, Joram Lindenstrauss, János
Pach, Maxim Skriganov, Vera T. Sós, Joel Spencer, Shu Tezuka, and Henryk
Woźniakowski. I am grateful to Anand Srivastav and his associates for great
work in the organization of a discrepancy theory workshop in Kiel, where I
learned many things now stored in this book. I also wish to thank many other
people for their friendly support; this group is too precious and too fuzzy to
be defined by enumeration.

Prague, January 1999 Jiř́ı Matoušek
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Notation

For a real number x, �x� denotes the largest integer ≤ x, �x� means the
smallest integer ≥ x, and {x} = x − �x� is the fractional part of x.

The letters N, Z, Q, and R are reserved for the set of all natural numbers,
integers, rationals, and reals, respectively. The symbol Rd denotes the d-di-
mensional Euclidean space. For a point x = (x1, x2, . . . , xd) ∈ Rd, ‖x‖ =√

x2
1 + x2

2 + · · · + x2
d is the Euclidean norm of x, and for x, y ∈ Rd, 〈x, y〉 =

x1y1+x2y2+ · · ·+xdyd is the scalar product. The symbol B(x, r) denotes the
ball of radius r centered at x in some metric space (usually in Rd with the
Euclidean distance), i.e. the set of all points with distance at most r from x.

If X is a set, the symbol |X| denotes the number of elements (or car-
dinality) of X. For a measurable set A ⊆ Rd, vol(A) is the d-dimensional
Lebesgue measure of A. (We use this notation to indicate that in all specific
instances in geometric discrepancy, we deal with very simple sets for which
the Lebesgue measure is just volume or area in the usual intuitive sense.)
Since we will often consider the intersection of some sets with the unit cube
[0, 1]d, we introduce the notation

vol�(A) = vol(A ∩ [0, 1]d).

Let f and g be real functions (of one or several variables). The notation
f = O(g) means that there exists a number C such that |f | ≤ C|g| for all
values of the variables. Normally C should be an absolute constant, but if f
and g depend on some parameter(s) which we explicitly declare to be fixed
(such as the space dimension d), then C may depend on these parameters
as well. The notation f = Ω(g) is equivalent to g = O(f), and f = Θ(g)
means that both f = O(g) and f = Ω(g). Finally f(n) = o(g(n)) means
limn→∞

f(n)
g(n) = 0.

For a random variable X, the symbol E [X] denotes the expectation of X,
and Pr[A] stands for the probability of an event A.



1. Introduction

In this chapter, we introduce the concept of discrepancy. We formulate a basic
problem concerning discrepancy for rectangles, we show its connections to the
discrepancy of infinite sequences in the unit interval, and we briefly comment
on the historical roots of discrepancy in the theory of uniform distribution
(Section 1.1). In Section 1.2, we introduce discrepancy in a general geometric
setting, as well as some variations of the basic definition. Section 1.3 defines
discrepancy in a seemingly different situation, namely for set systems on finite
sets, and shows a close relationship to the previously discussed “Lebesgue-
measure” discrepancy. Finally, Section 1.4 is a mosaic of notions, results, and
comments illustrating the numerous and diverse connections and applications
of discrepancy theory. Most of the space in that section is devoted to applica-
tions in numerical integration and similar problems, which by now constitute
an extensive branch of applied mathematics, with conventions and methods
quite different from “pure” discrepancy theory.

1.1 Discrepancy for Rectangles and Uniform

Distribution

The word discrepancy means “disagreement” (from Latin discrepare—to
sound discordantly). In our case it is a “disagreement between the ideal sit-
uation and the actual one,” namely a “deviation from a perfectly uniform
distribution.”

We will investigate how uniformly an n-point set can be distributed in
the d-dimensional unit cube [0, 1]d. For d = 1, the set of n equidistant points
as in the following picture

0 1

hardly finds serious competitors as a candidate for the most uniformly dis-
tributed n-point set in the unit interval. But already in dimension 2, one can
come up with several reasonable criteria of uniform distribution, and sets
that are very good for some may be quite bad for others.

J. Matoušek, Geometric Discrepancy, Algorithms and Combinatorics 18,
DOI 10.1007/978-3-642-03942-3 1, c© Springer-Verlag Berlin Heidelberg 2010



2 1. Introduction

Here is one such criterion: “uniformly” means, for the moment, “uniformly
with respect to axis-parallel rectangles.” Let P be an n-point set in the
unit square [0, 1]2. Let us consider an axis-parallel rectangle1 R = [a1, b1) ×
[a2, b2) ⊆ [0, 1]2:

R

0 a1 a2 1

b1

b2

1

0

For a uniformly distributed set P , we expect that the number of points of P
that fall in the rectangle R is approximately n ·vol(R), where vol(R) denotes
the area of R. (Note that n · vol(R) is the expected number of points hitting
R if we pick n points in the unit square uniformly and independently at
random.) Let us call P justly distributed if the deviation

∣∣n · vol(R) − |P ∩ R|
∣∣

is at most 100 for all axis-parallel rectangles R. Do arbitrarily large justly
distributed set exist? (Or, should the constant 100 be too small, we can ask
if the deviation can be bounded by some other constant, possibly large but
independent of n, P , and R.) This is one of the fundamental questions that
gave birth to discrepancy theory. Since we do not hope to keep the reader in
suspense until the end of the book by postponing the answer, we can just as
well state it right away: no, just distribution is impossible for sufficiently large
sets. Any distribution of n points in the unit square has to display a significant
irregularity for some rectangle R, and the magnitude of the irregularity must
grow to infinity as n → ∞. For this particular two-dimensional problem, it
is even known fairly precisely how large this irregularity must be, and we
will see the corresponding lower and upper bound proofs later in this book.
The proofs may perhaps seem simple, but one should not forget that the
presentation is based on the work of outstanding mathematicians and that
originally the problem looked formidably difficult. To put these results into
a better perspective, we remark that already the obvious generalization of
the problem in dimension 3 has so far defied all attempts at obtaining a
quantitatively precise answer.
1 For technical reasons, we take semi-open rectangles—the left side and the bottom

side are included, the right and top sides are not. For the discrepancy this doesn’t
matter much; we only accept this convention for simplifying some formulas in
the sequel.
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Here is some notation for expressing these questions and answers. First
we introduce the symbol D(P,R) for the deviation of P from uniform distri-
bution on a particular rectangle R, namely

D(P,R) = n · vol(R) − |P ∩ R|.

Let R2 denote the set of all axis-parallel rectangles in the unit square. The
quantity

D(P,R2) = sup
R∈R2

|D(P,R)|

is called the discrepancy of P for axis-parallel rectangles, and the function

D(n,R2) = inf
P⊂[0,1]2

|P |=n

D(P,R2)

quantifies the smallest possible discrepancy of an n-point set. The above
question about a just distribution can thus be re-formulated as follows:

1.1 Problem. Is D(n,R2) bounded above by a constant for all n, or does
lim supn→∞ D(n,R2) = ∞ hold?

In this book, we will judge the uniformity of distribution exclusively in
terms of discrepancy, but we should remark that there are also other sensible
criteria of uniform distribution. For example, one such criterion might be the
minimum distance of two points in the considered set. This concept is also
studied quite extensively (in the theory of ball packings, in coding theory,
and so on), but it is quite distinct from the uniform distribution measured by
discrepancy. For example, the set in the unit square maximizing the minimum
interpoint distance is (essentially) a triangular lattice:

As it turns out, this set is quite bad from the discrepancy point of view: it
has discrepancy about

√
n, while in Chapter 2 we will learn how to produce

sets with only O(log n) discrepancy. On the other hand, a set with a very
good discrepancy may contain two very close points.

Uniform Distribution of Infinite Sequences. The question about the
“most uniform” distribution in the one-dimensional interval [0, 1] is trivial
for an n-point set, but it becomes quite interesting for an infinite sequence
u = (u1, u2, . . .) of points in [0, 1]. Here we want that if the points of u are
added one by one in the natural order, they “sweep out” all subintervals
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of [0, 1] as evenly as possible. This is actually the setting where discrepancy
theory began. So let us outline the definitions concerning uniform distribution
of sequences.

The sequence u = (u1, u2, . . .) is called uniformly distributed in [0, 1] if we
have, for each subinterval [a, b) ⊂ [0, 1],

lim
n→∞

(
1
n

∣∣{u1, . . . , un} ∩ [a, b)
∣∣
)

= b − a. (1.1)

Uniformly distributed sequences have the following seemingly stronger prop-
erty (which is actually not difficult to prove from the just given definition of
uniform distribution). For any Riemann-integrable function f : [0, 1] → R, we
have

lim
n→∞

(
1
n

n∑

i=1

f(ui)
)

=
∫ 1

0

f(x) dx. (1.2)

Note that (1.1) is a particular case of the last equation, with the characteristic
function of the interval [a, b) in the role of f . Thus, in order to test the
validity of (1.2) for all Riemann-integrable functions f , it suffices to consider
all characteristic functions of intervals in the role of f .

Another interesting class of functions which are sufficient for testing (1.1)
are the trigonometric polynomials, i.e. functions of the form

f(x) =
n∑

k=0

(
ak sin(2πkx) + bk cos(2πkx)

)

with real or complex coefficients a0, a1, . . . , an and b0, b1, . . . , bn. More con-
veniently, a trigonometric polynomial can be written using the complex ex-
ponential: f(x) =

∑n
k=−n cke2πikx, with i standing for the imaginary unit.

From a basic approximation theorem involving trigonometric polynomials
(a suitable version of Weierstrass’ approximation theorem), it can be shown
that if (1.2) holds for all trigonometric polynomials f , then the sequence u
is uniformly distributed. Since any trigonometric polynomial is a linear com-
bination of the functions x �→ e2πikx for various integers k, and since for
k = 0, the condition (1.2) with the function f(x) = e2πi0x = 1 is trivially
satisfied by any sequence u, the following criterion is obtained: a sequence
u = (u1, u2, . . .) is uniformly distributed in [0, 1] if and only if we have, for
all integers k �= 0,

lim
n→∞

(
1
n

n∑

j=1

e2πikuj

)
=
∫ 1

0

e2πikx dx = 0.

This result is called Weyl’s criterion. Here is a simple but lovely application:

1.2 Theorem. For each irrational number α, the sequence u = (u1, u2, . . .)
given by un = {αn} is uniformly distributed in [0, 1]. (Here {x} denotes the
fractional part of x.)
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− 1
2

0

− 1
2

0

a b0 1

− 1
2

−1
− 1

2
−1

1
2

Fig. 1.1. Adding the terms of a sequence one by one; the numbers on the right
are the deviations n(b − a) − |{u1, . . . , un} ∩ [a, b)| for the marked interval [a, b) of
length 1

2
.

Proof. We use Weyl’s criterion. This is particularly advantageous here since
we have e2πikun = e2πikαn, with the unpleasant “fractional part” operation
disappearing. Putting Ak = e2πikα, we calculate

n∑

j=1

e2πikuj =
n∑

j=1

Aj
k =

An+1
k − Ak

Ak − 1
.

We have |Ak| = 1, and since α is irrational, kα is never an integer for a

nonzero k, and so Ak �= 1. Therefore,
∣∣∣
An+1

k
−Ak

Ak−1

∣∣∣ ≤ 2
|Ak−1| is bounded by a

number independent of n, and we have

lim
n→∞

(
1
n

n∑

j=1

e2πikuj

)
= 0

as required. �

Discrepancy of Sequences: a “Dynamic” Setting. We now know that
all the sequences ({nα}) with α irrational are uniformly distributed, but if
one looks into the matter more closely, one finds that some are more uni-
formly distributed than the others. Discrepancy was first introduced as a
quantitative measure of non-uniformity of distribution for infinite sequences.
We define the discrepancy of an infinite sequence u in [0, 1] as the function

Δ(u, n) = sup
0≤a≤b≤1

∣∣∣n(b − a) −
∣∣{u1, . . . , un} ∩ [a, b)

∣∣
∣∣∣

(see Fig. 1.1). The original formulation of Problem 1.1 actually was: does
there exist a sequence u with Δ(u, n) bounded by a constant for all n?

Let us sketch the connection of this formulation concerning infinite se-
quences to the formulation with axis-parallel rectangles. First, suppose that
u is some given sequence in [0, 1]. We claim that for every natural number n,
there exists an n-point set P ⊂ [0, 1]2 with
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D(P,R2) ≤ 2max{Δ(u, k): k = 1, 2, . . . , n} + 2. (1.3)

A suitable set P can be defined as the “graph” of the first n terms of u.
Namely, we put

P =
{
( 1

n , u1), ( 2
n , u2), ( 3

n , u3), . . . , (n
n , un)

}
.

We leave it as Exercise 1(a) to verify that (1.3) indeed holds for this P .
Conversely, suppose that we have an n-point set P in [0, 1]2. Let us list
the points of P in the order of increasing x-coordinates; that is, write P =
{(x1, y1), (x2, y2), . . . , (xn, yn)}, where x1 ≤ x2 ≤ · · · ≤ xn. Then it is not
difficult to verify that if u is a sequence with y1, y2, . . . , yn as the first n
terms, we have

Δ(u, k) ≤ 2D(P,R2) for all k = 1, 2, . . . , n (1.4)

(Exercise 1(b)). Finally, with a little more work one can show that if we have
D(n,R2) ≤ f(n) for some nondecreasing function f and for all n, then there
exists a sequence u with Δ(u, n) = O(f(n)). Therefore, the question about an
infinite sequence with bounded discrepancy and Problem 1.1 are equivalent
in a strong sense—even the quantitative bounds are the same up to a small
multiplicative constant.

The difference between the discrepancy D(P,R2) of a finite point set
and the discrepancy Δ(u, n) of an infinite sequence is not so much in the
finite/infinite distinction (note that Δ(u, n) is well-defined even for a finite
sequence with at least n terms), but rather, it distinguishes a “static” and a
“dynamic” setting. In the definition of the discrepancy for rectangles, we deal
with the behavior of the whole set P , whereas in the definition of Δ(u, n),
we look at all the initial segments {u1}, {u1, u2},. . . , {u1, u2, . . . , un} simul-
taneously. If we start with the empty interval [0, 1] and add the points of
the sequence one by one in the natural order, the current set should be uni-
formly distributed all the time. Note that the discrepancy of a sequence can
change drastically by rearranging the terms into a different order (while the
discrepancy of a set does not depend on any ordering of the points). As the
above reductions show, the dynamic problem in dimension 1 is more or less
equivalent to the static problem in dimension 2, and similar reductions are
possible between dynamic settings in dimension d and static settings in di-
mension d + 1. In this book, we will mostly treat the static case.

Bibliography and Remarks. Discrepancy theory grew out of the
theory of uniform distribution. A nice and accessible book where this
development can be followed is Hlawka [Hla84]. The fact that the dis-
crepancy for axis-parallel rectangles grows to infinity, in the equivalent
formulation dealing with one-dimensional infinite sequences, was con-
jectured by Van der Corput [Cor35a], [Cor35b] and first proved by Van
Aardenne-Ehrenfest [AE45], [AE49]. Her lower bound for the discrep-
ancy was improved by Roth [Rot54], who invented the two-dimensional
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formulation of Problem 1.1 and used it to establish a much stronger
lower bound for the discrepancy in question2 (see Section 6.1).

A foundational paper in the theory of uniform distribution is due
to Weyl [Wey16]. Earlier, uniform distribution of one-dimensional se-
quences ({nα}) with irrational α was proved by several authors by el-
ementary means, but the criterion involving exponential sums enabled
Weyl to establish a multidimensional analogue—uniform distribution
of Kronecker sequences; see Section 2.5.

Weyl’s criterion uses trigonometric polynomials for testing uni-
form distribution of a sequence. There are also sophisticated results in
this spirit bounding the discrepancy of a sequence in terms of certain
trigonometric sums. The most famous of such theorems is perhaps the
Erdős–Turán inequality: for any sequence u = (u1, u2, . . .) of points in
[0, 1] and any integer H ≥ 1, we have

Δ(u, n) ≤ 10n

H + 1
+

4
π

H∑

h=1

1
h

∣
∣∣∣∣

n∑

k=1

e2πihuk

∣
∣∣∣∣

(Hlawka [Hla84] has a masterly exposition). A multidimensional ver-
sion of this inequality is due to Koksma, and various other estimates
of this type are known (see e.g. [DT97]). Such inequalities are useful
but in general they need not give tight bounds and sometimes the
trigonometric sums may be too difficult to estimate.

There is an extensive literature and many beautiful results con-
cerning the uniform distribution and various kinds of discrepancy of
specific sequences, such as the sequences ({nα}) for irrational α and
their higher-dimensional analogues. A minor sample of theorems will
be mentioned in Section 2.5; much more material and citations can be
found in the books Drmota and Tichy [DT97] or Kuipers and Nieder-
reiter [KN74], or also in the lively surveys Sós [Sós83a] and Beck and
Sós [BS95].

Some of these results are closely connected to ergodic theory and
similar branches of mathematics. Some well-known low-discrepancy
sequences can be obtained from the initial point by iterating a suit-
able ergodic transform, and the ergodicity of the transform is directly
related to the uniform distribution of the sequence. For example, for α
irrational and for any x0 ∈ {0, 1}, the sequence ({nα + x0})∞n=0 is uni-
formly distributed in [0, 1). Consequently we have, for any Riemann-
integrable function f and all x0 ∈ [0, 1),

lim
n→∞

(
1
n

n∑

i=1

f(T ix0)
)

=
∫ 1

0

f(x) dx, (1.5)

2 The significance of this paper of Roth is also documented by the subsequent
popularity of its title in discrepancy theory—look, for instance, at the list of
references in [BC87].
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where T : [0, 1) → [0, 1) is given by Tx = {x + α}. This T is obviously
a measure-preserving transform of [0, 1), and (1.5) is the conclusion
of Birkhoff’s ergodic theorem for this T (more precisely, the ergodic
theorem would only imply (1.5) for almost all x0). And indeed, T
is and important example of an ergodic transform. The connection
of other low-discrepancy sequences to ergodic transforms has been
investigated by Lambert [Lam85]. On the other hand, some results
first discovered for the ({nα}) sequences were later generalized to flows
(see [DT97] or [Sós83a] for some references).

The notion of uniform distribution of a sequence can be gener-
alized considerably, for instance to sequences in a compact topologi-
cal group X, by requiring that limn→∞

(
1
n

∑n
i=1 f(ui)

)
=
∫

X
f(x) dx

for all continuous functions f . Or, instead of a discrete sequence u,
one can look at the uniform distribution of a function u: [0,∞) →
Rd, where uniform distribution can be defined by the condition
limt→∞

(
1
t

∫ t

0
f(u(t)) dt

)
=
∫
Rd f(x) dx, and so on.

Books and Surveys. A basic source on older results in geomet-
ric discrepancy theory, more comprehensive in this respect than the
present text, is a book by Beck and Chen [BC87]. A newer excellent
overview, with many references but only a few proofs, is a handbook
chapter by Beck and Sós [BS95]. Alexander et al. [ABC97] also give
a brief but delightful survey. An extensive recent monograph with an
incredible count of 2000 bibliography references is Drmota and Tichy
[DT97]. It covers results from many directions, but its main focus is
the classical uniform distribution theory (investigation of the discrep-
ancy of particular sequences etc.). The books Spencer [Spe87], Alon
and Spencer [AS00], Montgomery [Mon94], and Pach and Agarwal
[PA95] have nice but more narrowly focused chapters on discrepancy.
Chazelle [Cha00] is a monograph on discrepancy and its relations to
theoretical computer science. Discrepancy theory is now an extensive
subject with many facets, reaching to a number of mathematical dis-
ciplines. The amount of available material and literature makes any
account of the size of a normal book necessarily incomplete. It is no
wonder that more narrowly focused subfields tend to single out and
the communication and flow of results and ideas between these areas
are often nontrivial.

Exercises

1. Let u = (u1, u2, . . .) be an infinite sequence of real numbers in the inter-
val [0, 1].
(a) Verify that if an n-point set P is constructed from u as in the text
above then (1.3) holds. (Consider the rectangles [0, i

n ) × [a, b) first.)
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(b)∗ Show that if P is a given n-point set in [0, 1]2 and u is a sequence
with the first n terms defined as in the text above then (1.4) holds.
(c)∗ Show that if D(n,R2) ≤ f(n) for some nondecreasing function f
and for all n, then there exists a sequence u with Δ(u, n) = O(f(n)),
where the constant of proportionality depends on f .

2. (Three-distance theorem)
(a)∗∗ Let α be a real number, let n be a natural number, and let 0 ≤
z1 ≤ z2 ≤ · · · ≤ zn < 1 be the first n terms of the sequence ({iα})∞i=1

listed in a nondecreasing order. Prove that the differences |zj+1 − zj |,
j = 1, 2, . . . , n−1, attain at most three distinct values. Moreover, if there
are three values δ1 < δ2 < δ3, then δ3 = δ1 + δ2. It may be instructive
to imagine that the real axis with the numbers 0, α, 2α,. . . , nα on it is
wound around a circle of unit length, which produces a picture similar
to the following one (here α = 1/

√
2):

0
10α

3α
6α

9α
2α

5α

8α
α 4α

7α

(b)∗∗ Let α be irrational, and p be the permutation of the set {1, 2, . . . , n}
such that 0 < {p(1)α} < {p(2)α} < · · · < {p(n)α} < 1. Show that the
whole of p can be determined by the knowledge of p(1) and p(n) (without
knowing α). (This illustrates that the sequence ({iα})∞i=1 is highly non-
random in many respects, although it might perhaps look random-like at
first sight.)
These results are due to Sós [Sós58], and we refer to that paper for a
solution of this exercise.

1.2 Geometric Discrepancy in a More General
Setting

Discrepancy is also studied for classes of geometric figures other than the
axis-parallel rectangles, such as the set of all balls, or the set of all boxes,
and so on. For discrepancy, only the part of a set A ∈ A lying in the unit cube
[0, 1]d is important. We are interested in finding an n-point set P ⊂ [0, 1]d

such that the fraction of points of P lying in A is a good approximation of
the volume of A∩ [0, 1]d, and the discrepancy measures the accuracy of such
an approximation. For more convenient notation, let us write vol�(A) for
vol(A ∩ [0, 1]d).
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For an n-point set P ⊂ [0, 1]d and A ∈ A, we put

D(P,A) = n · vol�(A) − |P ∩ A|
D(P,A) = sup

A∈A
|D(P,A)|.

The quantity D(P,A) is called the discrepancy of P for A. Further we define
the discrepancy function of A:

D(n,A) = inf
P⊂[0,1]d

|P |=n

D(P,A).

Hence, in order to show that D(n,A) is small (an upper bound), we must
exhibit one n-point set and verify that it is good for all A ∈ A. To prove that
D(n,A) is large (lower bound), we have to demonstrate that for any n-point
set P , given by the enemy, there exists a bad A ∈ A.

A Warning Concerning Notational Conventions. Let us stress that
in this book, the discrepancy is measured in units of points of P . Often it is
more natural to work with the relative error, i.e. with the quantity 1

nD(P,A),
and this is also what one finds in a significant part of the literature. Indeed,
1
nD(P,A) is the relative error made by approximating vol�(A) by the fraction
of points of P falling into A, and in many applications, the relative error is
prescribed and we are looking for the smallest point set providing the desired
accuracy. This interpretation becomes somewhat obscured by the definition
of discrepancy we use, with the unit of one point. Nevertheless, we stick to
the more traditional way, which usually leads to nicer formulas.

Two Basic Types of Behavior of the Discrepancy Function. One
can try to classify the various classes A of geometric shapes according to the
behavior of their discrepancy function. Here is perhaps the most significant
(and a bit vague) division. On the one hand, we have classes consisting of
scaled and translated copies of a fixed polygon or polytope, such as the class
Rd of all axis-parallel boxes (no rotation is allowed). Two such families in
the plane are indicated below:

discrepancy
about log n

For such classes, as a rule, the discrepancy function is bounded from above
and from below by some constant powers of log n. On the other hand, for
rotationally invariant classes, such as halfspaces or rectangular boxes in ar-
bitrarily rotated positions, the discrepancy function behaves like a fractional
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power of n, and in higher dimensions it is quite close to
√

n. Similar behavior
occurs for translated, or translated and scaled, copies of a set with a smooth
curved boundary, such as a disc or an ellipsoid. Three examples are schemat-
ically depicted below:

discrepancy
about n1/4

The middle example, the family of all triangles with two sides parallel to the
axes, is particularly striking when compared with the case of axis-parallel
rectangles. There are point sets giving small discrepancy, of the order log n,
for all axis-parallel rectangles, but if we slice each rectangle by its diagonal,
some of the resulting triangles have much larger discrepancy.

Surprisingly, no natural classes of geometric objects are known with an
intermediate behavior of discrepancy (larger than a power of log n but smaller
than any fixed power of n).

The just indicated basic classification of shapes also strongly influences
the subdivision of this book into chapters and sections: the two cases, classes
with polylogarithmic discrepancy and classes with much larger discrepancy,
usually involve distinct techniques and are mostly treated separately. Another
general wisdom to remember for the study of discrepancy is this: look at
the boundary . The irregularity of distribution always “happens” close to the
boundary of the considered set, and the boundary length and shape influence
the magnitude of the irregularity. The area of the considered sets, for example,
is much less significant. Again, I know of no suitable exact formulation of this
principle, but we will see some examples throughout the book.

More Generalizations and Variations. Clearly, discrepancy can be de-
fined in yet more general situations. One obvious generalization is to replace
the unit cube [0, 1]d by other domains (a frequently investigated case is the
d-dimensional unit sphere Sd), or even by complicated sets like fractals. In
this book, we mostly keep working with the unit cube, since this setting seems
appropriate for the first encounter with most of the ideas, and also most of
the known results are formulated for the unit cube situation.

Later we will meet interesting generalizations of discrepancy in other di-
rections, such as average discrepancy, combinatorial discrepancy, discrepancy
of weighted point sets, discrepancies with respect to classes of functions,
toroidal discrepancy, etc.

Decomposing Geometric Shapes for Bounding Discrepancy. We now
mention a simple observation, which often allows us to simplify the class of
sets for which the discrepancy is studied.
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1.3 Observation. If A,B are disjoint (and measurable) sets, then |D(P,A∪
B)| = |D(P,A) + D(P,B)| ≤ |D(P,A)| + |D(P,B)|, for an arbitrary finite
set P . Similarly for A ⊆ B, we have |D(P,B \A)| ≤ |D(P,A)|+ |D(P,B)|. �

As an example, we express axis-parallel rectangles (and boxes in higher
dimensions) using simpler sets. For a point x = (x1, . . . , xd) ∈ [0, 1]d, we
define the corner3 with vertex at x as the set

Cx = [0, x1) × [0, x2) × · · · × [0, xd).

This corner is also written C(x1,x2,...,xd). Let Cd = {Cx: x ∈ [0, 1]d} be the set
of all d-dimensional corners.

1.4 Observation. For any finite set P ⊆ [0, 1]d we have

D(P, Cd) ≤ D(P,Rd) ≤ 2dD(P, Cd)

(Rd stands for the set of all (semi-open) axis-parallel boxes in dimension d).

Sketch of Proof. The first inequality is obvious (each corner is an axis-
parallel box). To see the second inequality, we express any axis-parallel box
R using 2d corners. For instance, in the plane we have

[a1, b1) × [a2, b2) =
(
C(b1,b2) \ C(a1,b2)

)
\
(
C(b1,a2) \ C(a1,a2)

)
,

pictorially

=

⎛

⎝ \

⎞

⎠ \

⎛

⎝ \

⎞

⎠ .

Finding the expression for a d-dimensional box using 2d corners is left as an
exercise. �

Thus, if we are not interested in the exact constant of proportionality,
we can estimate the discrepancy for corners instead of that for axis-parallel
rectangles.

Let us remark that the discrepancy for corners is frequently treated in the
literature, and it is often denoted by D∗ and called, for historical reasons,
the star-discrepancy.

Average Discrepancy. In our definition above, the discrepancy D(P,A) is
taken as a supremum over all sets A ∈ A, so it is a discrepancy in the worst
case. In order to show a lower bound for discrepancy of some point set, it
suffices to exhibit a single bad set A from the class A of allowed shapes. In
most of the known proofs, one actually shows that a “random” or “average”
3 In the literature, corners are sometimes called anchored boxes.
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set from A must be bad. For this, and also for various applications, we need
to define an average discrepancy. Since the set A is, in general, infinite, in
order to speak of an average over A, we have to fix a measure ν on A. For
convenience we assume that it is a probability measure, i.e. that ν(A) = 1.
For the time being, we give only one example of such a measure ν, namely
a measure on the set Cd of all d-dimensional corners. Since each corner Cx

is determined by its vertex x ∈ [0, 1]d, we can define the measure of a set of
corners K ⊆ Cd as vol({x ∈ [0, 1]d: Cx ∈ K}).

For a given number p, 1 ≤ p < ∞, and for a probability measure ν on A
we define the p-th degree average discrepancy (also called the Lp-discrepancy)
as follows:

Dp,ν(P,A) =
(∫

A
|D(P,A)|pdν(A)

)1/p

Dp,ν(n,A) = inf
P⊂[0,1]d

|P |=n

Dp,ν(P,A).

If the measure ν is clear from the context, we only write Dp instead of Dp,ν .
For example, the concrete formula for the Lp-discrepancy for corners is

Dp(P, Cd) =
(∫

[0,1]d
|D(P,Cx)|p dx

)1/p

.

It is easy to see that for any p and any ν, we have Dp,ν(P,A) ≤ D(P,A)
(the integral over a region of unit measure is upper-bounded by the maximum
of the integrated function). By a well-known inequality for Lp-norms, we also
have Dp,ν(P,A) ≤ Dp′,ν(P,A) whenever p ≤ p′.

Some people may find it convenient to think about the Lp-discrepancy
using a probabilistic interpretation. If the set P is fixed and A ∈ A is chosen at
random according to the probability measure ν, then the discrepancy D(P,A)
is a random variable, and Dp,ν(P,A)p is its pth (absolute) moment. (Note
that the expectation of D(P,A) need not be 0 in general, and so the L2-dis-
crepancy is not the same as the variance.) The L2-discrepancy is the most
important one among the various average discrepancies. It is usually the
easiest to handle analytically, mainly because we need not take any absolute
values in the definition.

In many papers, mainly in more practically oriented ones, the L2-discrep-
ancy for corners is used as the main measure of non-uniformity of distribution
of a point set. (Part of its popularity can be attributed to its efficient com-
putability; see Section 2.4 and, in particular, Exercise 2.4.11.) However, it
can be argued that the L2-discrepancy for corners does not capture the intu-
itive notion of uniform distribution too well, especially in higher dimensions.
Roughly speaking, it exaggerates the importance of points lying close to the
vertex (0, 0, . . . , 0) of the unit cube, and, in high dimension, a “typical” cor-
ner has a very small volume. Moreover, the directions of the coordinate axes
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play a significant role in the definition, and the L2-discrepancy for corners
says very little concerning the uniform distribution with respect to halfplanes,
for instance. Modifications have been proposed that address some of these
shortcomings; more details are given in the remarks below.

Bibliography and Remarks. The question of discrepancy for
classes of shapes other than axis-parallel boxes was first raised by
Erdős [Erd64]. For the special case where the point set is (a part
of) the lattice Z2 or other lattices, discrepancy for right-angled tri-
angles was considered much earlier (Hardy and Littlewood [HL22a],
[HL22b]), and an extensive theory concerning the number of lattice
points in various convex bodies has been developed ([Skr98] provides
a list of references).

The rough classification of shapes according to the behavior of their
discrepancy function emerged from fine works of several researchers,
most notably of Roth, Schmidt, and Beck; references will be given in
the subsequent chapters.

The L2-discrepancy for corners was introduced by Roth [Rot54],
first as a technical device for a lower-bound proof. Since then, it has
been used widely in numerous theoretical and empirical studies. As
was remarked above, it has some disadvantages. If the dimension is
not very small in terms of the number of points, say if n ≤ 2d (which
is often the case in applications), then the L2-discrepancy for corners
gives very little information about uniform distribution, essentially be-
cause the average volume of a corner is very small; see Exercise 2.4.5
or [Mat98c]. A notion of L2-discrepancy favoring larger corners can be
found in Hickernell [Hic98], [Hic96]. We will consider a particular in-
stance of Hickernell’s notion in the discussion of Zaremba’s inequality
(1.8) in Section 1.4 and in Exercise 2.4.6.

Another counterintuitive feature of the L2-discrepancy for corners
is the lack of translation invariance: D2(P, Cd) may be very different
from D2({P + x} , Cd), where {P + x} arises from P by translation by
the vector x and then reducing all coordinates of each point modulo 1
(Lev [Lev95] makes this observation and notes some other undesirable
properties). In fact, a surprising result of [Lev96] shows that for any
n-point set P ⊂ [0, 1]d, there exists a translation vector x such that

D2({P + x} , Cd) = Ω(D(P, Cd)),

with the constant of proportionality depending on d. That is, for any
point set there is a translated copy whose L2-discrepancy is nearly as
bad as the worst-case discrepancy!

An alternative notion, advocated in [Lev95], is the L2-discrepancy
with respect to the class

R̃d = {{Bx,a} : x, a ∈ [0, 1]d},
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where Bx,a stands for the box [x1, x1 + a1) × [x2, x2 + a2) × · · · ×
[xd, xd + ad) and {Bx,a} is Bx,a reduced modulo 1 in each coordinate:

x

x + a
Bx,a

0

= {Bx,a}

The measure of a set R ⊆ R̃d is the 2d-dimensional Lebesgue measure
of the corresponding set of pairs (x, a) ∈ [0, 1]d × [0, 1]d. The dis-
crepancy D2(P, R̃d) is translation-invariant. Moreover, it always lies
between suitable constant multiples of another discrepancy-like quan-
tity, the diaphony of P (where the constants depend on the dimension;
see Exercise 7.1.6). This rather technical-looking notion, introduced by
Zinterhof [Zin76], is motivated by many proofs where estimates on the
(usual) discrepancy are obtained via Fourier analysis. The diaphony
of P is ( ∑

m∈Zd\{0}

|P̂ (m)|2
∏d

k=1 max(|mk|2, 1)

)1/2

,

where P̂ (m) is the exponential sum
∑

p∈P e−2πi〈m,p〉, with i denoting
the imaginary unit and 〈., .〉 the usual scalar product in Rd. Thus,
the L2-discrepancy D2(P, R̃d) provides a convenient geometric inter-
pretation of diaphony (up to a constant factor, that is). Lev [Lev95]
suggests to call the discrepancy for R̃d the Weyl discrepancy , because
Weyl’s foundational paper [Wey16] also considers the (worst-case) dis-
crepancy for intervals taken modulo 1, i.e. on the unit circle. A formula
for an efficient computation of this kind of discrepancy can be found
in Exercise 7.1.8.

To conclude this discussion of alternatives to the L2-discrepancy
for corners, let us remark that the latter has its advantages too: it
is well-established in the literature, and it is perhaps more intuitive
and sometimes technically simpler than the alternative notions men-
tioned above (Hickernell’s generalized discrepancy or the discrepancy
for R̃d). For most of the questions studied in this book, the differ-
ences between these notions are not very important. In any case, for
measuring the irregularity of distribution, the choice of the “right”
discrepancy should be guided by the particular application, and there
is probably no single optimal definition.

The discrepancy for the class R̃d of boxes reduced modulo 1 is a
special case of the so-called toroidal discrepancy. For an arbitrary class
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A of shapes, we can define the corresponding class Ã = {{A} : A ∈
A}. That is, instead of cutting off the parts of a set A protruding
out from the unit cube, we wrap them around. In other words, the
unit cube is replaced by (or interpreted as) the torus Rd/Zd, which
has some technical advantages for methods involving Fourier analysis.
Toroidal discrepancy has been used for a long time, especially in proofs
of lower bounds (e.g., in Schmidt [Sch69c]). We will return to this in
the remarks to Section 7.1.

The second most important domain in which discrepancy is stud-
ied, besides the unit cube, is probably the unit sphere Sd. Various
notions of discrepancy for this situation, and their applications to nu-
merical integration, are surveyed in Grabner et al. [GKT97]. A very
natural and much investigated notion is the discrepancy for spherical
caps (i.e. intersections of Sd with halfspaces). A little more about this
will be said in the remarks to Section 3.1.

Exercises

1. Prove that any axis-parallel box R = [a1, b1) × . . . × [ad, bd) can be ex-
pressed by 2d corners, using the operations of disjoint union and “encap-
sulated difference” (meaning the difference of two sets A,B with B ⊆ A).

2. Let A be some class of measurable sets in Rd.
(a) Prove that for each n, D(n,A) − 1 ≤ D(n + 1,A) ≤ D(n,A) + 1.
(b) Is the function D(n,A) necessarily nondecreasing in n?

3. Check that Dp(P, R̃2) = Dp({P + x} , R̃d) for any finite P ⊂ [0, 1]d, any
x ∈ Rd, and any p ∈ [1,∞), where R̃d is as in the remarks above.

1.3 Combinatorial Discrepancy

In this section, we start considering a seemingly different problem. Let X be
an n-element set, and let S be a system of subsets4 of X. We want to color
each point of X either red or blue, in such a way that any of the sets of S has
roughly the same number of red points and blue points, as in the following
(schematic and possibly misleading) picture:

4 Sometimes we will write “a set system (X,S),” meaning that X is a set and S
is a system of subsets of X. This notation is analogous to the standard notation
(V, E) for graphs, where V is the vertex set and E is the edge set. In fact, our
notion of “set system” is fully synonymous to the notion of “hypergraph,” and
for hypergraphs, the notation (X,S) is quite standard. On the other hand, when
the underlying set is understood (usually it is the union of all sets in S), we will
say “the set system S” only.
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X

red

blue

Easy considerations reveal that it is not always possible to achieve an exact
splitting of each set. The error for some sets may even be arbitrarily large—in
fact, if we take all subsets of X for S, then there will always be a completely
monochromatic set of size at least n

2 . The maximum deviation from an even
splitting, over all sets of S, is the discrepancy of the set system S. We now
express this formally. A coloring of X is any mapping χ:X → {−1,+1}. The
discrepancy of S, denoted by disc(S), is the minimum, over all colorings χ,
of

disc(χ,S) = max
S∈S

|χ(S)| ,

where we use the shorthand χ(S) for
∑

x∈S χ(x). (If +1’s are red and −1’s
are blue then χ(S) is the number of red points in S minus the number of blue
points in S.)

To distinguish this notion of discrepancy from the one introduced previ-
ously, we sometimes speak of combinatorial discrepancy.5 Our earlier notion
of discrepancy, where we approximate the continuous Lebesgue measure by a
discrete point set, may be referred to as Lebesgue-measure discrepancy (also
“measure-theoretic discrepancy” or “continuous discrepancy” in the litera-
ture). Here we mention just a few facts and definitions concerning combina-
torial discrepancy; Chapter 4 is devoted to a more systematic treatment.

Combinatorial discrepancy can be transferred to a geometric setting as
well. The following is a typical example of a geometrically defined problem in
combinatorial discrepancy: given an n-point set P in the plane, we want to
color each point of P red or blue in such a way that the maximum difference,
over all halfplanes h, in the number of red points and blue points in h is as
small as possible. Such a problem can be re-phrased using the combinatorial
discrepancy of the set system induced by halfplanes.

If (X,A) is a set system, with X possibly infinite, and Y ⊆ X is a set,
we define the set system induced by A on Y as the set system

A|Y = {A ∩ Y : A ∈ A}.

(We remark that A|Y is sometimes called the trace of A on Y .) In a geometric
setting, A is a system of subsets of Rd, such as the system of all halfspaces,
or the system of all balls, and so on, and we will investigate the combinatorial
5 Also the name “red-blue discrepancy” is used in the literature.
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discrepancy of set systems A|P , where P ⊆ Rd is a finite set. For a more
convenient notation, we will also write disc(P,A) for disc(A|P ). Explicitly,
disc(P,A) is the minimum, over all colorings χ:P → {−1, 1}, of

disc(χ, P,A) = max
A∈A

∣∣χ(P ∩ A)
∣∣.

Further we define the discrepancy function of A by

disc(n,A) = max
|P |=n

disc(P,A).

Combinatorial discrepancy in a geometric setting is worth investigating
for its own sake, but moreover, there is a close connection with the Lebesgue-
measure discrepancy. Roughly speaking, upper bounds for the combinatorial
discrepancy for some class A imply upper bounds for the Lebesgue-measure
discrepancy for A. (The reverse direction does not work in general.) This
relation is used in many proofs; currently it appears convenient to prove many
upper bounds in the combinatorial setting, and some lower bounds, even
for combinatorial discrepancy, are proved via the Lebesgue-measure setting.
Before giving a precise formulation of this relationship, we introduce another
useful notion.

A Common Generalization. The ε-approximation, a notion with ori-
gins in probability theory, can be regarded as a generalization of both the
Lebesgue-measure discrepancy and the combinatorial discrepancy. It is de-
fined in the following setting: X is some finite or infinite ground set, μ is a
measure on X with μ(X) < ∞, and S is a system of μ-measurable subsets
of X. Let ε ∈ [0, 1] be a real number. We say that a finite subset Y ⊆ X is
an ε-approximation for the set system (X,S) with respect to the measure μ
if we have, for all S ∈ S,

∣∣
∣∣
|Y ∩ S|
|Y | − μ(S)

μ(X)

∣∣
∣∣ ≤ ε.

This means that the fraction of the points of Y lying in S should approximate
the relative measure of S with accuracy no worse than ε. If the phrase “with
respect to μ” is omitted, we always mean the counting measure on X given
by μ(S) = |S| (we thus also assume that X is a finite set). For example, if X
are the inhabitants of some country, the sets in S are various interest groups,
and Y are the members of the parliament, then Y being a 1

100 -approximation
means that all interest groups are represented proportionally, with deviation
at most 1% of the total population.

The connection to the Lebesgue-measure discrepancy is fairly obvious:

1.5 Observation. If A is a class of Lebesgue-measurable sets in Rd and
P ⊂ [0, 1]d is an n-point set, then D(P,A) ≤ εn if and only if P is an ε-ap-
proximation6 for (Rd,A) with respect to the measure vol�. �

6 If we measured discrepancy as a relative error, rather than in the units of points,
and if the term ε-approximation were not well-established, we could naturally
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The relationship of ε-approximations to combinatorial discrepancy is a
bit more complicated.

1.6 Lemma (Combinatorial discrepancy and ε-approximations). Let
S be a system of subsets of a 2n-point set X.

(i) If Y ⊂ X is an n-point set that is an ε-approximation for (X,S) then
disc(S) ≤ 2εn. (By the above agreement, we mean ε-approximation with
respect to the counting measure on X.)

(ii) If S is such that X ∈ S and disc(S) ≤ εn then there exists an n-point
set Y ⊂ X that is an ε-approximation for (X,S).

Proof. In (i), the mapping χ with disc(χ,S) ≤ εn is given by χ(x) = 1 for
x ∈ Y and χ(x) = −1 for x �∈ Y . Indeed, for any S ∈ S we have

χ(S) = |S ∩ Y | − (|S| − |S ∩ Y |) = 2|S ∩ Y | − |S|, (1.6)

and since we assume
∣∣∣∣
|Y ∩ S|
|Y | − |S|

|X|

∣∣∣∣ =
1
2n

∣∣∣2|Y ∩ S| − |S|
∣∣∣ ≤ ε,

the required bound |χ(S)| ≤ 2εn follows.
As for (ii), consider a coloring χ with disc(χ,S) ≤ εn, and let Y0 be

the larger of the two color classes χ−1(1) and χ−1(−1). Since we assume
X ∈ S, we have, using (1.6) with S = X, |χ(X)| =

∣∣2|Y0| − 2n
∣∣ ≤ εn, and

consequently n ≤ |Y0| ≤ n + ε
2n. Let Y be a set of exactly n points arising

from Y0 by removing some arbitrary |Y0| − n ≤ ε
2n points. For S ∈ S, we

calculate

∣∣∣∣
|Y ∩ S|
|Y | − |S|

|X|

∣∣∣∣ =
1
2n

∣∣∣2|Y ∩ S| − |S|
∣∣∣

≤ 1
n

∣∣∣|Y ∩ S| − |Y0 ∩ S|
∣∣∣+

1
2n

∣∣∣2|Y0 ∩ S| − |S|
∣∣∣

≤ ε

2
+

1
2n

|χ(S)| ≤ ε.

�

Somewhat imprecisely, this proof can be summarized by saying “if χ is
a coloring with small discrepancy, then each of the color classes χ−1(1) and
χ−1(−1) makes a good ε-approximation.” But the two color classes of a
coloring need not be exactly of the same size, and this is a technical nuisance
in the proof.

Another fairly trivial but useful observation about ε-approximations is

call an ε-approximation for a set system (X,S) with respect to a measure μ a set
with discrepancy at most ε for (X,S) with respect to μ. This gives a fairly general
definition of discrepancy, although certainly not the most general reasonable
definition.
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1.7 Observation (Iterated approximation). Let Y0 be an ε-approximat-
ion for (X,S) with respect to some measure μ, and let Y1 be a δ-approximat-
ion for the set system (Y0,S|Y0

). Then Y1 is an (ε + δ)-approximation for

(X,S) with respect to μ. �

After this digression concerning ε-approximations, we return to discrep-
ancy.

Upper Bounds for Combinatorial Discrepancy Imply Upper Bounds
for Lebesgue-Measure Discrepancy. Here is one possible precise formu-
lation of the relationship of the combinatorial and Lebesgue-measure discrep-
ancies.

1.8 Proposition (Transference lemma). Let A be a class of Lebesgue-
measurable sets in Rd containing a set A0 with [0, 1]d ⊆ A0. Suppose that
D(n,A) = o(n) as n → ∞, and that disc(n,A) ≤ f(n) for all n, where f(n)
is a function satisfying f(2n) ≤ (2 − δ)f(n) for all n and some fixed δ > 0.
Then we have

D(n,A) = O(f(n)).

On the other hand, if we know that D(n,A) = o(n) and D(n,A) ≥ f(n) for
all n, with a class A and a function f(n) as above, then disc(n,A) ≥ cf(n)
holds for infinitely many n with a suitable constant c = c(δ) > 0.

All sublinear bounds f(n) for discrepancy we are likely to encounter, such
as n1/2, log n, etc., satisfy the condition in the proposition. Also the require-
ment that D(n,A) = o(n) is usually quite weak: it only requires that the
Lebesgue measure on the sets of A can be approximated with an arbitrarily
good relative accuracy by the uniform measure concentrated on a finite point
set, but there is no condition on the size of the finite set. Except for quite
wild sets, a fine enough regular grid of points suffices for such an approx-
imation. So essentially the proposition says that D(n,A) = O(disc(n,A)),
except possibly for some pathological situations.

Proof of Proposition 1.8. Let f(n) be a function as in the proposition
and let n be a given number. We set ε = f(n)

n and we choose a sufficiently
large natural number k so that

D(2kn,A)
2kn

≤ ε.

In other words, there exists a set P0 of 2kn points that is an ε-approximation
for (Rd,A) with respect to the measure vol�. We have thus approximated
the continuous measure vol� by the possibly very large but finite set P0.

Next, we are going to reduce the size of this approximating set to n
by a repeated halving, using Lemma 1.6(ii). Namely, we consider the set
system (P0,A|P0

) and we take a coloring χ0 for it with discrepancy at most
f(|P0|) = f(2kn). By Lemma 1.6(ii), such a coloring yields a subset P1 ⊂
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P0 of 2k−1n points that is an ε0-approximation for (P0,A|P0
), where ε0 =

f(2kn)/2kn. We repeat this step with the set system (P1,A|P1
), obtaining a

set P2 ⊂ P1 of 2k−2n points that is an ε1-approximation for (P1,A|P1
) with

ε1 = f(2k−1n)/2k−1n, and so on. Schematically, this procedure is indicated
in the following picture:

halve color colorhalve halve result

initial set

color

We make k such halving steps. The resulting set Pk has n points, and by
Observation 1.7, it is an η-approximation for the original set system (X,S)
with respect to the measure vol�, where

η = ε +
k−1∑

i=0

εi =
f(n)

n
+

k−1∑

i=0

f(2k−in)
2k−in

≤ f(n)
n

(
1 +

∞∑

j=1

(
2 − δ

2

)j)
= O

(
f(n)

n

)
.

In view of Observation 1.5, this implies the first part of the proposition. The
second part is a contraposition of the first part and we leave it to the reader.

�

Of course, the same proof could be phrased without introducing ε-approx-
imations, but without such a notion, it would become somewhat obscure.

Combinatorial Lp-Discrepancy. This is similar to the Lp-discrepancy in
the Lebesgue-measure setting. For a set system S on a finite set X and a
coloring χ of X, we put

discp(χ,S) =

(
1
|S|
∑

S∈S
|χ(S)|p

)1/p

.

More generally, if A is a family of subsets of a set X, ν is a probability
measure on A, P is a finite subset of X, and χ is a coloring of P , we set

discp,ν(χ, P,A) =
(∫

A
|χ(P ∩ A)|pdν(A)

)1/p

.

Thus, each subset S of P induced by A is counted with weight equal to
ν({A ∈ A: A ∩ P = S}).
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Bibliography and Remarks. A close relation of the combinato-
rial discrepancy to the Lebesgue-measure one has been folklore for
some time; M. Simmonovits (private communication) attributes this
observation to V. T. Sós. A written version of this idea appears in
Beck [Bec81a], where it is used to lower-bound the combinatorial dis-
crepancy for axis-parallel rectangles in the plane (Tusnády’s problem)
using classical lower bounds on the Lebesgue-measure discrepancy.
A quite general version of this “transference principle,” dealing with
classes of convex sets in the plane, was formulated by Lovász et al.
[LSV86] (with the proof phrased slightly differently from our proof of
Proposition 1.8).

The ε-approximations were defined and used by Vapnik and Cher-
vonenkis [VC71] (the name itself was given by Haussler and Welzl
[HW87]). We will hear more about them in Chapter 5.

Exercises

1. Prove the second part of Proposition 1.8 (beginning with “On the other
hand,. . . ”) from the first part.

2. Let K2 denote the collection of all closed convex sets in the plane. Show
that D(n,K2) = o(n) and disc(n,K2) ≥ n

2 .
3. Find a class A of measurable sets in the plane such that D(n,A) = Ω(n).

1.4 On Applications and Connections

Sets with small discrepancy, that is, “very uniformly distributed,” have con-
siderable theoretical and practical significance. Moreover, discrepancy theory
uses various nice and important mathematical ideas and techniques (some
of which we intend to demonstrate in the subsequent chapters), and these
ideas have numerous applications in other branches of mathematics. Also,
in theoretical computer science, discrepancy theory methods became crucial
in many results in recent years. In this section, we mainly discuss relations
of discrepancy to numerical integration and to Ramsey theory. A few more
applications and connections will be addressed in the remarks.

Numerical Integration. One of the most important applications of low-
discrepancy sets is to numerical integration in higher dimensions. In numer-
ical integration, the definite integral of a given function over some region,
such as the unit cube, is approximated by the arithmetic mean of the func-
tion’s values at suitably chosen points. A basic problem is which points are
to be chosen for calculating the function’s values so that the error of the
approximation is as small as possible. The points of a regular grid, or other
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straightforward generalizations of classical one-dimensional quadrature rules,
do not work well in higher dimensions. On the other hand, point sets with
small discrepancy are suitable candidates from both theoretical and practical
points of view.

A well-known estimate for the integration error via discrepancy is the
so-called Koksma–Hlawka inequality. Let f : [0, 1]d → R be the integrated
function and let P ⊂ [0, 1]d be an n-point set used for the approximation.
Then the inequality says

∣∣
∣∣

∫

[0,1]d
f(x) dx − 1

n

∑

p∈P

f(p)
∣∣
∣∣ ≤

1
n

D(P, Cd)V (f). (1.7)

On the right-hand side, the first term (the discrepancy for corners) only
depends on P , while the second term V (f) is determined solely by f . For
d = 1, V (f) is the variation of f ; for a continuously differentiable function
f , we have V (f) =

∫ 1

0
|f ′(x)|dx. For higher dimensions, V (f) denotes an

appropriate generalization of variation, the so-called variation in the sense
of Hardy and Krause, which we will not define here. Although the Koksma–
Hlawka inequality is tight in the worst case, it is often very far from being
tight for functions encountered in practice.

By now, there is a large body of theory concerning error estimates in the
Koksma–Hlawka spirit. These inequalities bound the maximum (or average)
integration error for functions from some class in terms of various kinds of
discrepancy of the point set used to approximate the integral. Some of them
even exactly characterize discrepancy as the worst-case integration error, or
the average-case integration error, for very natural classes of functions.

Such results can be considered as a part of a general theory of optimal nu-
merical integration. Here, roughly speaking, a function f from some suitable
class is given by a black box, which is a hypothetical device computing f(x)
for any given input point x. The basic question is, what is the minimum neces-
sary number of calls to the black box that allows one to calculate the integral
of f with error at most ε. Here one need not restrict oneself to the particular
algorithm approximating the integral of f by the average 1

n

∑
P f(p). It is

allowed to combine the values of f obtained from the black box in any other,
perhaps nonlinear, way. Moreover, the points are input to the black box one
by one, with each point possibly depending on the values of f at the previous
points (an adaptive algorithm). However, it turned out that for “reasonable”
classes7 of functions, neither nonlinearity nor adaptivity helps. However, it
may be truly helpful to combine the computed function’s values with weights
other than 1

n .

Discrepancy of Weighted Point Sets. As the reader may know from nu-
merical analysis, more sophisticated one-dimensional quadrature rules (Simp-
7 Here “reasonable” means closed on convex combinations and on the operation

f �→ −f .
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son’s rule, Gauss quadrature, etc.) use non-uniform weights. They approxi-
mate the integral by ∑

p∈P

w(p)f(p),

where P is a suitable n-point set and w(p) ∈ R are real weights, generally
distinct from 1

n . Such formulas achieve error bounds that are not attainable
with the uniform weights 1

n . Not surprisingly, in the literature related to
numerical integration, discrepancy is often investigated for weighted point
sets. For a point set P with a weight function w:P → R, the quantity |P ∩A|
is replaced by w(P ∩ A) =

∑
p∈P∩A w(p) in the definition of discrepancy in

Section 1.2. Thus, we approximate the continuous measure vol� by a (signed)
measure concentrated on an n-point set. Actually, there are at least four
different notions of discrepancy involving weighted point sets: we may require
the weights to be nonnegative and to sum up to n = |P |, or we may drop
one of these two conditions or both (negative weights are not as absurd as
it might seem, since some of the classical quadrature formulas, such as the
Newton–Cotes rule, involve negative coefficients). For discrepancy theory, the
generalization to weighted point sets is usually not too significant—most of
the lower bounds in this book, say, go through for weighted point sets without
much difficulty.

Discrepancy for Classes of Functions. The discrepancy of a point set,
say the discrepancy for axis-parallel boxes, can obviously be viewed as the
maximum integration error for a class of functions, namely for the class of
characteristic functions of axis-parallel boxes. But in practice, one often in-
tegrates functions with much better smoothness properties, for example con-
tinuous functions, functions with continuous derivatives of rth order, or func-
tions with “nice” Fourier series. In such cases, the integration method should
ideally take some advantage of the nice behavior of the function. Therefore,
it is natural to consider various “smoother analogues” of discrepancy as the
maximum integration error for suitable classes of functions, hopefully resem-
bling the functions we are likely to encounter in applications. Specifically, let
F be a class of real Lebesgue-integrable functions on [0, 1]d. For a function
f ∈ F , we can set

D(P, f) = n

∫

[0,1]d
f(x) dx −

∑

p∈P

f(p),

and proceed to define D(P,F) = supf∈F |D(P, f)| and so on. Note that this
definition includes the discrepancy for a class A of sets as a special case:
use the characteristic functions of the sets in A as F . Interestingly, for some
natural classes F of smooth functions, the standard notion of discrepancy for
axis-parallel boxes is recovered (such an alternative characterization of the
L2-discrepancy for boxes is presented in the remarks below).

Another example of a class F considered in the literature are the charac-
teristic functions of axis-parallel boxes smoothed out by r-fold integration:
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for a parameter r ≥ 0 and for a point y ∈ [0, 1]d, define a function hy by
setting hy(x) =

∏d
k=1 max(0, xk − yk)r, and let F = {hy: y ∈ [0, 1]d}. The

resulting notion of discrepancy is called the r-smooth discrepancy. In general,
the goal is to choose the discrepancy-defining function class small and simple,
so that the corresponding discrepancy notion can be handled reasonably, but
in such a way that it provides strong “Koksma–Hlawka” type inequalities,
i.e. supplies good error bounds for numerical integration of a possibly much
wider class of functions. A modern approach to this issue uses the so-called
reproducing kernels in Hilbert spaces of functions; a little more on this can
be found in the remarks below.

Irregularities of Partitions and Ramsey Theory. The preceding part
of this section discussed things quite close to practical applications. Now,
for a change, let us mention relationship of discrepancy theory to some fast-
growing areas of combinatorics. The fact that some set system (X,S) has
large combinatorial discrepancy can be rephrased as follows: for any color-
ing of X by two colors, there is a set where one color prevails significantly.
This relates the discrepancy problem to the question of 2-colorability of a
set system. Namely, (X,S) is 2-colorable if there is a coloring of X by two
colors with no set of S completely monochromatic. So, in a sense, the lack
of 2-colorability can be regarded as an ultimate case of large discrepancy: for
any coloring by two colors, there is a set with one color prevailing completely.

As an example, let us consider the set X = {1, 2, . . . , n} and the set system
A of all arithmetic progressions on X; that is, of all the sets {a, a + d, a +
2d, . . .}∩X, a, d ∈ N. A theorem of Roth states that the discrepancy of A is
at least of the order n1/4. On the other hand, if Ak denotes the subsystem of
all A ∈ A of size at most k, a famous theorem of Van der Waerden asserts that
for any k, there exists an n = n(k) such that Ak is not 2-colorable. That is,
if a sufficiently large initial segment of the natural numbers is colored by two
colors, then there is always a long monochromatic arithmetic progression. Van
der Waerden’s theorem is one of the significant results in the so-called Ramsey
theory. In a typical Ramsey-theory question, we consider some sufficiently
large combinatorial or algebraic structure X (such as a graph, a finite vector
space, etc.) and we color some small substructures of X by two colors (so we
may color graph edges, lines in a vector space, etc.). We ask if there always
exists a substructure of a given size with all the small substructures having
the same color (so we may look for a large subgraph in the given graph
with all edges monochromatic, or for a k-dimensional vector subspace with
all lines of the same color, and so on). These problems can be formulated as
questions about 2-colorability of certain set systems. (Of course, questions
involving colorings with more than two colors are studied as well.)

Both discrepancy theory and Ramsey theory can thus be regarded as parts
of theory of “irregularities of partition.” For each Ramsey-theory question,
we automatically get a corresponding discrepancy-theoretic question for the
same set system, and vice versa. The case of arithmetic progressions is a
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model example. Clearly, some questions that are interesting for Ramsey the-
ory have a trivial or not so interesting discrepancy theory counterpart, and
similarly for the other way round. Even if both versions are interesting, the
methods of solution maybe vastly different (this is what happens for arith-
metic progressions). Nevertheless, this connection can be inspiring and useful
to keep in mind.

Another area related to combinatorial discrepancy theory but with math-
ematical life of its own is the theory of totally unimodular set systems and
matrices. Here one is interested in set systems whose each subsystem has
discrepancy at most 1. This subject will be briefly touched on in Section 4.4.

More Applications. Without going into details, let us mention that dis-
crepancy theory has also been applied in such diverse areas as computer
graphics, image processing, statistics, complexity of algorithms (in particu-
lar, replacing probabilistic algorithms by deterministic ones), graph theory,
number theory, spectral theory of operators, and Tarski’s problem of “squar-
ing the circle” (partition the circle of area 1 into finitely many parts and move
each part rigidly so that they together fill the unit square without overlap).

Bibliography and Remarks.
Quasi-Monte Carlo. Sets with low discrepancy can be used for nu-
merical integration in higher dimensions, thus competing with (and of-
ten beating) random point sets employed in the popular Monte Carlo
method. The replacement of random point sets by deterministic (or
semi-random) constructions, with a presumably greater “uniformity,”
is usually called quasi-Monte Carlo methods. Such methods are not
limited to integration; they can help in numerical solution to differen-
tial and integral equations, in optimization, and in other problems.

A concise survey of quasi-Monte Carlo methods is Spanier and
Maize [SM94]; newer ones are James et al. [JHK97] and Morokoff and
Caflisch [MC95], both written from a practical (computational physi-
cist’s) point of view. Tezuka [Tez95] has another brief introduction,
also more on the practitioner’s side. A more theoretically oriented and
considerably more comprehensive (and also technically more demand-
ing) is a monograph by Niederreiter [Nie92].

The study of efficient algorithms for approximating the integral of
a function given by a black box is a part of the theory of information-
based complexity . This theory considers the complexity of algorithms
for “continuous” problems, such as computing derivatives, integrals,
evaluating various linear operators on function spaces, etc. Two books
covering this area are Traub et al. [TWW88] and the newer Traub and
Werschulz [TW98].

The area of quasi-Monte Carlo methods is certainly related to dis-
crepancy, but it has somewhat distinct flavor and distinct goals. In
“pure” discrepancy theory, as it has been developing so far, one is
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mainly interested in asymptotic results, such as that for any fixed di-
mension d, one can construct an n-point set in [0, 1]d with discrepancy
O(logd−1 n) for axis-parallel boxes, where the constant of proportion-
ality depends on d. Since a random point set would only give about
O(

√
n) discrepancy, the just mentioned construction is better—period.

But if one wants to use such a construction for numerical integration,
asymptotic results do not suffice. One has to ask—for how large n is
the discrepancy of the constructed set significantly better than the
discrepancy of a random point set? Even for not too large dimen-
sion, such as 10, an astronomically large n may be required to show
the superiority over the random points for some asymptotically good
constructions. Moreover, one cannot simply say “the smaller discrep-
ancy, the better set,” since the Koksma–Hlawka inequality and its
relatives often grossly overestimate the error. Nevertheless, point sets
constructed as examples of low-discrepancy sets for axis-parallel boxes
proved quite successful in many practical applications.

In this book, we restrict ourselves to a few occasional remarks con-
cerning relations of discrepancy to quasi-Monte Carlo methods. For
studying the quasi-Monte Carlo papers, a warning concerning differ-
ent conventions might perhaps be helpful. In the discrepancy-theory
literature, one usually looks at the discrepancy of sets (as defined
above), while for quasi-Monte Carlo methods, the authors more often
work with low-discrepancy sequences (where every initial segment is
required to be a low-discrepancy set). There is a simple theoretical re-
lation between these two settings. Essentially, good sets in dimension
d correspond to good sequences in dimension d−1 (see Section 1.1 for
the case d = 2). But from the practical point of view, the sequences
are often preferable.
What Dimension? For various applications in physics, several authors
have argued that the advantage of quasi-Monte Carlo methods over
the Monte Carlo method (random points) becomes negligible from
the practical point of view for dimensions over 20, say (e.g., [JT93]).
Also, Sloan and Woźniakowski [SW97] show that numerical integration
using fewer than 2d sample points in dimension d is hopeless in the
worst case for certain quite nice classes of functions: no algorithm can
do better in the worst case than the trivial algorithm that always
outputs 0 as the answer! The threshold 2d is very sharp, since there
exist algorithms with much smaller error using exactly 2d points.

On the other hand, quasi-Monte Carlo methods have recently been
applied successfully for problems of very high dimensions in financial
computations (where even small errors may cost big money!); see,
for instance, [PT95], [NT96]. A typical dimension appearing in these
applications is 360, which is the number of months in 30 years—
a typical period for which U.S. banks provide loans. These very
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high-dimensional integrals can be seen as approximations to infinite-
dimensional path-integrals (also some path-integrals in physics have
been handled successfully; see [MC95] for references). Here the success
of the quasi-Monte Carlo approach should probably be attributed to
a special low-dimensional structure of the integrated functions. A par-
tial theoretical explanation of this phenomenon was found by Sloan
and Woźniakowski [SW98].
Error of Integration and Discrepancies. The notion of discrepancy
with respect to a given class of functions is very natural in the context
of quasi-Monte Carlo methods. It appears in numerous papers, often
without references to previous literature with similar concepts. The
earliest reference I found is Hlawka [Hla75], who considered the one-
dimensional case with F = {x �→ xk: k = 0, 1, 2, . . .}. This polynomial
discrepancy and its higher-dimensional analogues have been studied
further by Schmidt, Klinger, Tichy, and others; recent results and ref-
erences can be found in [KT97]. The r-smooth discrepancy mentioned
in the text was considered by Paskov [Pas93].

The one-dimensional Koksma–Hlawka inequality is due to Koksma
[Kok43], and the multidimensional version was derived by Hlawka
[Hla61].

We have not defined the variation in the sense of Hardy and
Krause occurring in the Koksma–Hlawka inequality. Now we pick an-
other among the numerous generalizations and modifications of the
Koksma–Hlawka inequality and state it precisely. We begin with some
notation, which will allow us to formulate the results more compactly
and make them look less frightening. Through this and a few subse-
quent paragraphs, f is a real function on [0, 1]d. We recall the notation,
for a finite P ⊂ [0, 1]d, D(P, f) = n

∫
[0,1]d

f(x) dx−
∑

p∈P f(p), which
is n-times the integration error. We let [d] = {1, 2, . . . , d}, and for an
index set I = {i1, i2, . . . , ik} ⊆ [d], we put

∂|I|f(x)
∂xI

=
∂kf(x1, x2, . . . , xd)
∂xi1∂xi2 · · · ∂xik

.

The notation QI stands for the |I|-dimensional cube

QI = {x ∈ [0, 1]d: xi = 1 for all i �∈ I}.
And here is the promised inequality, derived by Zaremba [Zar68], in-
volving the L2-discrepancy for corners:

|D(P, f)| ≤ D2,proj(P )V2(f). (1.8)

The quantity V2(f) only depends on f :

V2(f) =

(
∑

∅�=I⊆[d]

∫

QI

(
∂|I|f(x)

∂xI

)2

dx

)1/2

.
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And D2,proj is a certain L2-discrepancy of P for corners, taking into
account all the coordinate projections of P :

D2,proj(P )2 =
∑

∅�=I⊆[d]

D2(πI(P ), C|I|)2,

with πI denoting the projection on the coordinates (xi: i ∈ I). Some
assumptions on f are needed for Zaremba’s inequality, of course; for
instance, it is enough that the mixed partial derivative ∂d

∂x[d]
exist and

be continuous on [0, 1]d, but this requirement can be further relaxed.
A proof is indicated in Exercise 1.
Reproducing Kernels. Next, we indicate a fairly general approach
to deriving Koksma–Hlawka type inequalities, which subsumes many
earlier results and notions of discrepancy. We essentially follow Hick-
ernell [Hic98] and Sloan and Woźniakowski [SW98] (the exposition in
[SW98] is somewhat simpler). Hoogland and Kleiss [HK96] and James
et al. [JHK97] present interesting and somewhat related ideas (using
generating functions and Feynmann diagrams).

Let (X, 〈., .〉) be a Hilbert space of (some) real-valued functions on
[0, 1]d. A reproducing kernel on X is a bivariate function η:X×X → R
such that the function ηx: y �→ η(y, x) is in X for all x ∈ [0, 1]d,
and the scalar product with ηx represents the evaluation at x: for all
f ∈ X and x ∈ [0, 1]d, we have f(x) = 〈f, ηx〉. (To see what is go-
ing on here, one can work out simple examples in Exercise 2 below,
and, for instance, [Wah90] provides a more comprehensive introduc-
tion to reproducing kernels.) For a reproducing kernel to exist, it is
necessary and sufficient that the evaluation operators Tx: f �→ f(x)
be all bounded (by the Riesz representation theorem). For example,
the perhaps most usual function space L2([0, 1]) with scalar product
〈f, g〉 =

∫ 1

0
f(x)g(x) dx does not have any reproducing kernel (why?).

Spaces with reproducing kernels mostly involve functions with some
smoothness requirements (such as various Sobolev spaces), and the
formulas for the scalar product usually contain derivatives.

For a fixed point set P ⊂ [0, 1]d, the integration error D(P, f) is a
linear functional on X, and it can be represented as D(P, f) = 〈ξP , f〉,
where ξP (x) = D(P, ηx). The Cauchy–Schwarz inequality then gives

|D(P, f)| ≤ ‖ξP ‖X · ‖f‖X .

Here ‖.‖X is the norm derived from the scalar product in X. The quan-
tity ‖f‖X is an abstract version of V (f) from the Koksma–Hlawka in-
equality, and ‖ξP ‖X can be interpreted as a discrepancy of P . More-
over, ξP is a worst-case integrand, where the inequality holds with
equality, and so we get a characterization of the discrepancy as a worst-
case integration error. These ideas mechanize the process of deriving
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Koksma–Hlawka type bounds greatly, but one has to find interesting
spaces and reproducing kernels and calculate concrete formulas.

Using the Cauchy–Schwarz inequality in the above considerations
leads to various notions of L2-discrepancy; to obtain notions of Lp-
discrepancy, one uses Hölder’s inequality (see [Hic98], [SW98]).

Characterizations of discrepancy as an integration error found nice
applications in discrepancy theory. Examples are Frolov [Fro80] and,
in particular, Wasilkowski and Woźniakowski [WW95], [WW97], who
upper-bound the L2-discrepancy for corners using algorithms for ap-
proximate numerical integration.

As an example, we state a characterization of the usual L2-dis-
crepancy for corners as integration error for a natural class of smooth
functions:

D2(P, Cd) = sup
f

|D(P, f)|. (1.9)

The supremum is taken over all functions f such that f(x) = 0 for any
x with at least one component equal to 1, the mixed partial derivative
∂df
∂x[d]

exists and is continuous, and

∫

[0,1]d

(
∂df(x)
∂x[d]

)2

dx ≤ 1.

The scalar product is 〈f, g〉 =
∫
[0,1]d

∂df(x)
∂x[d]

· ∂df(x)
∂x[d]

dx, and the re-

producing kernel is very simple: η(x, y) =
∏d

k=1 min(1 − xk, 1 − yk)
(Exercise 2). Zaremba’s inequality (1.8), for instance, can be obtained
by this approach as well, together with an example showing it to be
tight. The appropriate the scalar product has to consider other mixed
derivatives as well: 〈f, g〉 =

∑
I⊆[d]

∫
QI

∂|I|f(x)
∂xI

· ∂|I|g(x)
∂xI

dx. The repro-

ducing kernel is then
∏d

k=1 min(2 − xk, 2 − yk); see [SW98].
Random Functions and Average-Case Error. There are also charac-
terizations of discrepancy as the expected (average-case) integration
error for a random function. Let us begin with some motivation of
this approach. For the Monte Carlo method of integration, one can
estimate the error (with a reasonable confidence) by choosing several
random sets and comparing the results. This cannot easily be done
for a quasi-Monte Carlo method that produces just one set of a given
size, say. For this reason, error estimates have been theoretically in-
vestigated in another setting, namely when the point set is fixed and
the integrated function is chosen “at random.” Since natural classes of
functions usually form infinite-dimensional spaces with no “canonical”
measure on them, it is not clear what should a random function mean.

Woźniakowski [Woź91] obtained a very nice result for one possible
definition of a “random function,” the so-called Wiener sheet measure
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or multidimensional Brownian motion. Instead of a precise definition
of the appropriate class of functions and of the measure on it, we
present an informal description of a random function from this class.
To approximately plot the graph of a one-dimensional random func-
tion, start at the point (1, 0) and proceed in N steps. In each step,
choose one of the possibilities “up” or “down” at random with equal
probability, and go left by 1

N and either up or down, according to the
random choice, by 1√

N
:

−0.5
0

0.5
1

1
N = 50 N = 2000−1

0 1

For large N , the resulting plot is approximately the graph of a ran-
dom f . (The boundary condition f(1) = 0 is a consequence of the
choice of boxes anchored at 0 in the definition of discrepancy.) For a
2-dimensional random function, subdivide the unit square [0, 1]2 into
an N × N square grid, and for each square s of this grid, indepen-
dently choose a number δs ∈ {− 1

N ,+ 1
N } at random, both possibilities

having probability 1
2 . Now define the values of f at all the vertices of

the little squares: for each grid square, require the condition indicated
in the following picture

a b

cd

s f(a) − f(b) + f(c) − f(d) = δs

and also use the boundary condition f(x, 1) = f(1, y) = 0 for all x, y.
(It is easy to see that given the δs’s, these conditions determine the
values of f at all the vertices uniquely.) A result for N = 80 is shown
below:

0
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This can be generalized to dimension d in a straightforward manner.
Woźniakowski proved that for any fixed n-point set P ⊂ [0, 1]d and

f random in this sense, the expected integration error satisfies

E [D(P, f)] = D2(P, Cd).

Earlier, similar results for various notions of a random function
in the one-dimensional case were established by Sacks and Ylvisaker
[SY70]. Woźniakowski [Woź91] has the d-dimensional statement and,
moreover, directly relates the L2-discrepancy to the average-case algo-
rithmic complexity of numerical integration. Alternative derivations of
this average-case characterization of discrepancy, as well as some gen-
eralizations, can be found in [MC94] and [JHK97].

Functions occurring in practical problems seldom resemble random
functions in the sense discussed above; for instance, the latter ones
are continuous but typically nowhere differentiable. Paskov [Pas93]
derived an analogue of Woźniakowski’s result for random functions
with a given degree r of smoothness.

A general relation of the worst-case and average-case error esti-
mates is considered in Wahba [Wah90] or in Traub et al. [TWW88].

Ramsey Theory. Nice overviews of Ramsey theory are Graham et al.
[GRS90] or Nešetřil [Neš95]. An inspiring account of the connections of
discrepancy theory to Ramsey theory is Sós [Sós83a] (a shorter version
is in [BS95]). The Ω(n1/4) lower bound for discrepancy of arithmetic
progressions is from Roth [Rot64]. This bound is asymptotically tight;
we will say more about this problem in Sections 4.2, 4.5, and 4.6.
Number Theory. As an example of a result related to number theory,
we can quote Beck’s solution of a problem of Erdős concerning “flat”
polynomials on the unit circle. Using discrepancy theory methods,
Beck [Bec91a] proved that there are constants c, α > 0 such that
whenever ξ1, ξ2, . . . , ξn are complex numbers with |ξi| = 1 for all i
and we define polynomials p1(z), p2(z),. . . , pn(z) by setting pi(z) =∏i

j=1(z − ξj), then

max
1≤i≤n

max
|z|=1

|pi(z)| ≥ cnα.

Geometry. The beautiful “squaring the circle” result mentioned in
the text is due to Laczkovich [Lac90].

Here are two combinatorial geometry problems related to discrep-
ancy. One of them asks for an n-point set on the unit d-dimensional
sphere such that the sum of all the

(
n
2

)
Euclidean distances determined

by these points is maximal. An exact solution appears very difficult in
most cases. Stolarsky [Sto73] discovered a relation of this problem to a
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certain kind of discrepancy, and Beck [Bec84] used results in discrep-
ancy theory to give good asymptotic bounds for the maximum sum of
distances.

Another problem concerns the approximation of the unit ball in
Rd by a zonotope. A zonotope is a special type of a convex polytope
that can be defined as a d-dimensional projection of an n-dimensional
cube, and for the approximation we want to have n as small as pos-
sible. This problem has several equivalent formulations, one of them
being a “tomography” question (Betke and McMullen [BM83]): find
the minimum number n of directions y1, . . . , yn ∈ Sd−1 (where Sd−1

is the unit sphere in Rd), such that the surface area of any convex
body K in Rd can be determined, up to a relative error of ε, by the
knowledge of the volumes of the (d− 1)-dimensional projections of K
on the hyperplanes {x ∈ Rd: 〈yi, x〉 = 0}.8 Using harmonic analysis
techniques similar to those employed for discrepancy lower bounds,
Bourgain et al. [BLM89] established lower bounds for this problem,
and these were shown to be asymptotically tight or almost tight in
a sequence of papers (also applying various discrepancy theory meth-
ods): Bourgain and Lindenstrauss [BL88], Wagner [Wag93], Bourgain
and Lindenstrauss [BL93], and Matoušek [Mat96b].
Graph Theory. Discrepancy of a certain kind also appears in graph
theory. For instance, Chung [Chu97] defines the discrepancy of a graph
G as

max
S⊆V

∣∣e(S, S) − ρ|S|2
∣∣,

where V is the vertex set of G, e(S, S) is the number of ordered pairs
(u, v) ∈ S×S such that {u, v} is an edge of G, and ρ = e(V, V )/|V |2 is
the density of G. Thus, in a graph with small discrepancy, the number
of edges on each subset S is close to the expected number of edges
on a random subset of size |S|. The discrepancy of a graph can be
bounded in terms of the second largest eigenvalue of its adjacency
matrix. For graphs of density about 1

2 , the best possible discrepancy
is of the order n3/2. If a graph is a good expander then it has small
discrepancy. Expanders are a very important type of “random-like”
graphs, with numerous applications (in communication networks, par-
allel computing, sorting networks, pseudorandom generators, error-
correcting codes, and so on), and the reader can learn about them in
[AS00] or in [Chu97], for instance.
Computer Science. As we mentioned at the beginning of this section,
discrepancy theory methods gained in importance in computer sci-

8 To appreciate this formulation, one should know that if we are given the volumes
of all the (d − 1)-dimensional projections of a convex body K then the surface
area is determined exactly by Cauchy’s surface area formula. For instance, in R3,
the surface area equals 4 times the expected area of the projection in a random
direction; see [San76].
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ence in recent years, as is successfully illustrated by the book [Cha00].
Whenever a small sample is needed that represents well a large col-
lection of objects, which is a very frequent situation in the search for
efficient algorithms, connections to discrepancy theory may appear,
and they often do.

For instance, geometric discrepancy turned out to be relevant in
several results in computational geometry. This field of computer sci-
ence considers the design of efficient algorithms for computing with
geometric objects in the Euclidean space, usually of a low dimension
(see also the remarks to Section 5.2). Lower bounds for geometric dis-
crepancy have been used by Chazelle [Cha98] to show lower bounds for
the computational complexity of a geometric database problem (the
so-called range searching), and for another version of this problem,
a set with low discrepancy for axis-parallel rectangles has been em-
ployed in a lower-bound proof (see [Cha00]). The ε-approximations in
geometrically defined set systems play a key role in the so-called deran-
domization of computational geometry algorithms; that is, replacing
probabilistic algorithms by deterministic ones. For more information
see the survey [Mat96a] or the book [Cha00].

In another subfield of computer science, derandomizing combina-
torial algorithms, the questions have discrepancy-theory flavor too but
often they concern spaces of very high dimensions. For example, Linial
et al. [LLSZ97] construct n-point subsets of the d-dimensional grid
{1, 2, . . . , q}d uniformly distributed with respect to the combinato-
rial rectangles, where a combinatorial rectangle is a set of the form
S1 × S2 × · · · × Sd, with S1, . . . , Sd ⊆ {1, 2, . . . , q} being arbitrary
subsets. (In out terminology, they construct an ε-approximation for
combinatorial rectangles.) In contrast to the “classical” discrepancy
theory setting, where the dimension is considered fixed, they need to
investigate the situation where d is large (comparable to n and q, say).
The main challenge here is to approach the quality of a random set
by a deterministic construction, while in classical discrepancy, one can
usually beat random sets. Also various constructions of approximately
k-wise independent random variables on small probability spaces can
be viewed as (explicit) constructions of small ε-approximations for
certain set systems. An introduction to k-wise independence in deran-
domization can be found in Alon and Spencer [AS00] or in Motwani
and Raghavan [MR95], and a sample of papers devoted to such con-
structions are [AGHP92], [EGL+92].

Another interesting example of an explicit construction of an ε-
approximation is provided by Razborov et al. [RSW93], who describe
a set A ⊂ {1, 2, . . . , n − 1} of size bounded by a polynomial in log n
and in 1

ε that is an ε-approximation for the system of all arithmetic
progressions (modulo n). Here it is easy to show that a random A will
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work with high probability; the point is to avoid randomness. This
result was applied by Alon and Mansour [AM95] in a fast deterministic
algorithm for interpolating multivariate polynomials.

Exercises

1. (Zaremba’s inequality) Let f : [0, 1]d → R have a continuous mixed partial
derivative ∂df

∂x[d]
(notation as in the remarks above).

(a)∗ Derive the following identity for the integration error, by repeated
integration by parts:

D(P, f) =
∑

∅�=I⊆[d]

(−1)|I|
∫

QI

D(P,Cx) · ∂|I|f(x)
∂xI

dx.

Try to get at least the cases d = 1 (where nothing too interesting hap-
pens) and d = 2.
(b) Using Cauchy–Schwarz, derive Zaremba’s inequality (1.8) from (a).

2. (Reproducing kernels) Consider the Hilbert space X of absolutely con-
tinuous functions f : [0, 1] → R such that f(1) = 0 and f ′ ∈ L2(0, 1)
(i.e.

∫ 1

0
f ′(x)2 dx < ∞). The scalar product is 〈f, g〉 =

∫ 1

0
f ′(x)g′(x) dx.

Recall that an absolutely continuous function f is differentiable almost
everywhere, and we have

∫ b

a
f ′(x) dx = f(b) − f(a). Functions with a

continuous first derivative form a dense subspace in X.
(a) Check that η(x, y) = min(1− x, 1− y) is a reproducing kernel in X.
(b) Calculate ξP , and check that the corresponding discrepancy is just
the L2-discrepancy of P for corners.
(c)∗ Generalize (a) and (b) to an arbitrary dimension d (try at least
d = 2), with the reproducing kernel η(x, y) =

∏d
k=1 min(1 − xk, 1 − yk),

scalar product 〈f, g〉 =
∫
[0,1]d

∂df(x)
∂x[d]

· ∂dg(x)
∂x[d]

dx, and functions f satisfying
f(x) = 0 for all x with at least one component equal to 1. Derive (1.9).

Remark. The functions with ∂df
∂x[d]

continuous form a dense set in the
appropriate Hilbert space in (c). To describe the functions in the resulting
(Sobolev) space, one needs the notion of distributional derivatives, and
the definitions are not entirely simple (see a book dealing with Sobolev
spaces, such as [Ada75], [Wah90]). But for this exercise, such a description
is not really needed, and all the functions actually encountered in the
proof are piecewise polynomial.



2. Low-Discrepancy Sets for Axis-Parallel

Boxes

What should a planar set with small discrepancy for axis-parallel rectangles
look like? Maybe the first thing coming to mind would be the regular

√
n×√

n
grid, placed in the unit square in an appropriate scale, as in Fig. 2.1(a). It
is easy to see that this gives discrepancy of the order

√
n. Another attempt

might be n independent random points in the unit square as in Fig. 2.1(b),
but these typically have discrepancy about

√
n as well. (In fact, with high

probability, the discrepancy is of the order
√

n log log n; a result well-known
to probabilists under the name law of the iterated logarithm comes into play.)
It turns out that a far better discrepancy can be achieved, of the order log n.
This chapter is devoted to various constructions of such sets and to their
higher-dimensional generalizations. In dimension d, for d arbitrary but fixed,
the best known sets have discrepancy for axis-parallel boxes of the order
logd−1 n.

In Section 2.1, we show perhaps the simplest construction of such sets.
First we treat the planar case, due to Van der Corput, and then the d-dimen-
sional generalization due to Hammersley and Halton.

Section 2.2 focuses on the L2-discrepancy. We explain a modification of
the Halton–Hammersley construction which provides sets with L2-discrepan-

(a) (b)

Fig. 2.1. The grid points (a) and random points (b) for n = 64.

J. Matoušek, Geometric Discrepancy, Algorithms and Combinatorics 18,
DOI 10.1007/978-3-642-03942-3 2, c© Springer-Verlag Berlin Heidelberg 2010
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cy for corners of the order O(log(d−1)/2 n) only. This is considerably better
than the worst-case discrepancy.

In the rest of this chapter, we treat some alternative constructions of low-
discrepancy sets. These do not achieve better asymptotic bounds than those
from the first two sections, but they involve nice mathematics and they are
significant for applications. Using such constructions, the computation for
some problems in physics, financial mathematics, and other areas can some-
times be accelerated by a factor of hundreds or thousands compared to the
traditional Monte-Carlo approach employing random point sets. The prac-
tical behavior of constructions of low-discrepancy sets in such computations
is also influenced by other factors besides discrepancy for axis-parallel boxes
and the differences among various methods can be vast. None of the known
approaches is fully satisfactory in all respects, and the research in this area
is still active. Our treatment is just a brief introduction concentrating on the
discrepancy bounds.

In Section 2.3, we discuss a class of constructions which can be seen
as a generalization of some ideas from the Van der Corput and Halton–
Hammersley constructions. The constructions are based on suitable collec-
tions of matrices over a finite field. Section 2.4 discusses the so-called scram-
bling, a way of adding randomness to the constructions from the preceding
sections. This approach is quite recent and the sets produced in this way are
among the most successful ones in practical applications. We also show that
random scrambling leads to sets with asymptotically optimal L2-discrepancy,
giving an alternative proof of the result from Section 2.2.

In Section 2.5, we look at a different class of constructions of low-
discrepancy sets, with strong number-theoretic flavor. These are based on
lattices, i.e. images of the integer grid Zd under suitable bijective linear maps.

2.1 Sets with Good Worst-Case Discrepancy

The following is perhaps the simplest example of a set with only logarithmic
discrepancy for axis-parallel rectangles in the plane.

2.1 Example (Van der Corput set). This set, P = {p0, p1, . . . , pn−1} ⊂
[0, 1]2, is described by the formula

pi =
(

i
n , r(i)

)
, i = 0, 1, . . . , n − 1, (2.1)

where r(i) is a function defined as follows. We write the number i in binary,
then we write its digits in the reverse order (e.g., for i = 13, binary 1101, we
would write 1011), and finally we prefix this by “ 0” and “.” (for i = 13 we
obtain 0.1011). The result is read as a real number from the interval [0, 1)
written in binary, and this number is the value of r(i).
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(a) (b)

Fig. 2.2. The Van der Corput set for n = 8 (a) and for n = 64 (b).

As a reminder of this construction, the sequence r(0), r(1), r(2), . . . is
sometimes called the bit reversal sequence. More formally, the definition of
r(i) can be written as follows: if i = a0 + 2a1 + 22a2 + 23a3 + · · ·, where
aj ∈ {0, 1}, then

r(i) =
a0

2
+

a1

22
+

a2

23
+

a3

24
+ · · · .

2.2 Proposition. The discrepancy of the n-point Van der Corput set P for
axis-parallel rectangles satisfies D(P,R2) = O(log n).

Proof. By a canonical interval we mean one of the intervals [0, 1), [0, 1
2 ),

[12 , 1), [0, 1
4 ), [14 , 1

2 ), [12 , 3
4 ), [34 , 1), [0, 1

8 ), [18 , 1
4 ),. . . ; in general an interval of

the form [
k

2q
,
k + 1

2q

)
with 0 ≤ k < 2q,

as in the following picture:

0 1

...
...

The proof of Proposition 2.2 follows from Claim I and Claim II below.

Claim I. For any rectangle R of the form [0, a) × I, where I is a canonical
interval and a ∈ (0, 1] is arbitrary (as in the following illustration),
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a0

I
R

we have |D(P,R)| ≤ 1.

Proof. Let I = [k/2q, (k + 1)/2q). The points pi ∈ P whose y-coordinates
lie in I are those with r(i) ∈ I. This means that the first q binary digits of
r(i) are fixed while the remaining ones can be arbitrary. This in turn says
that the q least significant binary digits of i are fixed. In other words, we get
i ≡ k̄ (mod 2q), for a certain integer k̄ (we have k̄ = 2qr(k) but this is not
important here). Therefore, the x-coordinates of the points of P lying in the
strip S = [0, 1) × I are regularly spaced with step 2q

n . If we subdivide the
strip S into rectangles of length 2q

n in the x-direction

0 1
2q

n
a

Sinterval I
of length 2−q

then each such rectangle has area 1
n and exactly one point of P inside, so its

discrepancy is 0. One such strip S, with q = 3, is drawn by dotted line in
Fig. 2.2(b).

The strip [0, a) × I (shaded in the picture above) can be partitioned in
several of these zero-discrepancy rectangles plus a remainder with discrepancy
at most 1. This proves Claim I.

Claim II. Any corner C(x,y) can be expressed as a disjoint union of at most
�log2 n� rectangles as in Claim I plus a set M with |D(P,M)| ≤ 1.

Proof. Let m be the smallest integer with 2m ≥ n and let y0 be the largest
integer multiple of 2−m not exceeding y. Then M is the rectangle [0, x) ×
[y0, y), as in the following picture (with m = 4):

M
y0

(x, y)
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The area of M is at most y − y0 < 2−m ≤ 1
n , and M contains at most one

point of P , since any two y-coordinates of points in P differ by at least 2−m.
Consequently, |D(P,M)| ≤ 1.

Next, we observe that the interval [0, y0) can be partitioned into at most m
canonical intervals. This can be seen by induction on m: by possibly removing
one canonical interval of length 2−m from the end of the interval [0, y0), we
obtain an interval [0, y1) with y1 being an integer multiple of 2−(m−1), and
so on. This proves Claim II.

Claims I and II together imply that the discrepancy of the Van der Corput
set P for corners is at most log2 n + 2. By Observation 1.3, the discrepancy
for axis-parallel rectangles is also bounded by O(log n), and this is the end
of the proof of Proposition 2.2. �

Let us remark that the consideration in the proof of Claim II about de-
composing an interval [0, k/2m) into at most m canonical intervals is worth
remembering very well. This trick recurs again and again, not only in dis-
crepancy theory but also in combinatorics, computer science, and elsewhere.
Later on, we will encounter more sophisticated examples of “canonical de-
compositions.”

Next, we consider a higher-dimensional generalization of the Van der Cor-
put construction.

2.3 Example (Halton–Hammersley set). We choose d−1 distinct primes
p1, p2, . . . , pd−1 (say the first d− 1 primes, p1 = 2, p2 = 3,. . . ). The ith point
of the constructed set is

(
i
n , rp1(i), rp2(i), . . . , rpd−1(i)

)
, i = 0, 1, . . . , n − 1.

Here the function r2(i) = r(i) is as in Example 2.1, and, in general, rp(i) is
obtained by writing the digits of the p-ary notation for i in the reverse order:
for i = a0 + pa1 + p2a2 + p3a3 + · · ·, where aj ∈ {0, 1, . . . , p − 1}, we set

rp(i) =
a0

p
+

a1

p2
+

a2

p3
+

a3

p4
+ · · · .

2.4 Theorem. For any fixed d and any fixed distinct primes p1, . . . , pd−1,
the discrepancy of the n-point Halton–Hammersley set for axis-parallel boxes
is O(logd−1 n).

Proof. This is a generalization of the proof given above for the Van der
Corput set. We write it down for d = 3, p1 = 2, and p2 = 3 only, since the
idea should be sufficiently apparent and the notation is much simpler.

For an integer b ≥ 2, let us define a b-ary canonical interval as an interval
[

k

bq
,
k + 1

bq

)
for integers q ≥ 0 and k ∈ {0, 1, . . . , bq − 1}.
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(The canonical intervals in the proof of Proposition 2.2 are just binary canon-
ical intervals.)

Claim I. For any box R of the form [0, a)×I×J , where I is a binary canonical
interval, J is a ternary canonical interval, and a ∈ (0, 1] is arbitrary, we have
|D(P,R)| ≤ 1.

Proof. Let I = [k/2q, (k + 1)/2q) and J = [�/3r, (� + 1)/3r), and let S
denote the box [0, 1) × I × J . This time, we obtain that the ith point of P
falls into S if i ≡ k̄ (mod 2q) and i ≡ �̄ (mod 3r) for certain integers k̄, �̄. By
the Chinese remainder theorem, the set {0, 1, 2, . . . , 2q3r−1} contains exactly
one number with remainder k̄ modulo 2q and with remainder �̄ modulo 3r.
(Invoking the Chinese remainder theorem is the main new feature compared
to the proof in the plane.) Therefore, the points of P lying in S are evenly
spaced in the x-direction with step 2q3r

n . The box S can again be divided
into boxes of length 2q3r

n in the x-direction, and each of these boxes has zero
discrepancy. Similar to the planar case, it follows that the discrepancy of the
box [0, a) × I × J considered in Claim I is at most 1.

Claim II. Any corner C(x,y,z) can be expressed as a disjoint union of at
most �log2 n� · 2�log3 n� boxes as in Claim I, plus a set M ⊂ [0, 1]3 with
|D(P,M)| ≤ 2.

Sketch of Proof. Let y0 be the largest integer multiple of 2−m not exceeding
y, where m = �log2 n�, and let z0 be the largest integer multiple of 3−m′

not
exceeding z, with m′ = �log3 n�. The corner C(x,y0,z0) can be sliced into at
most 2mm′ boxes as in Claim I (see Fig. 2.3). The remaining part of the corner
C(x,y,z) is contained in the set ([0, 1]× [y0, y]× [0, 1])∪ ([0, 1]× [0, 1]× [z0, z]).
This set has volume at most (y − y0) + (z − z0) ≤ 2−m + 3−m′ ≤ 2

n , and
it contains at most 2 points of P . We leave the details to the reader. This
finishes the proof of Claim II and of Theorem 2.4 as well. �

Bibliography and Remarks. The Van der Corput construction
with the O(log n) discrepancy bound is from [Cor35a], [Cor35b]. It was
originally presented as an infinite one-dimensional sequence. For the
sequences {nα}, which will be discussed in Section 2.5, it was known
much earlier that the discrepancy is at most O(log n) for suitable ir-
rational numbers α. Actually, it seems difficult to decide whom this
result should be attributed to, since the notion of discrepancy was
not explicitly introduced at that time. In some form, it was proved
by Ostrowski [Ost22] in 1922 (also see Behnke [Beh22],[Beh24]) and
by Hardy and Littlewood [HL22a] in the same year. But, for exam-
ple, already in 1904 Lerch probably possessed the ideas needed for the
proof (in [Ler04], he proved that

∣∣∣
∑n

i=1({iα}− 1
2 )
∣∣∣ = O(log n) for any

α with bounded partial quotients of the continued fraction).
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x
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M

Fig. 2.3. Illustration for the proof of Claim II in dimension 3.

Hammersley [Ham60] proposed a generalization of the Van der Cor-
put construction to higher dimensions as in Example 2.3 and asked for
a discrepancy estimate. This was provided by Halton [Hal60], who also
suggested that for practical purposes, infinite d-dimensional sequences
as in Exercise 2 below may be more useful.

Detailed calculations of the constants of proportionality in the the-
oretical bounds for the discrepancy of the Halton–Hammersley con-
struction can be found in Niederreiter [Nie92]. Although the results
are not very favorable in comparison with other constructions, the
Halton–Hammersley sets usually show a fairly good behavior in prac-
tice.

In the plane, it is known that the discrepancy functions for cor-
ners and for axis-parallel rectangles are bounded by multiples of log n
both from above and from below, but the best possible constants
of proportionality, let alone the precise values of the discrepancy
functions, appear difficult to determine. According to Niederreiter
[Nie92], the best known constructions in this respect in the plane,
due to Faure [Fau81] [Fau92], give D(n,R2) ≤ 0.337 ln n+ o(ln n) and
D(n, C2) ≤ 0.224 ln n + o(ln n).

Exercises

1. (a) If you connect the 8 points in Fig. 2.2(a) by suitable segments, you
get a picture of the 3-dimensional cube. Can you explain why?
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(b) Show that the Van der Corput set with 2m points is a projection of
the vertex set of an m-dimensional cube, and write the projection down
explicitly in coordinates.

2. (Halton–Hammersley sequence) Let Pn ⊂ Rd be the n-point set whose
ith point is (rp1(i), rp2(i), . . . , rpd

(i)), i = 0, 1, . . . , n − 1, where the pj

and the rpj
are as in Example 2.3. Show that D(Pn, Cd) = O(logd n). (So

we have an infinite sequence of points in [0, 1]d such that the n initial
terms constitute a set of discrepancy O(logd n), for all n.)

3.∗ Show that the n-point Van der Corput set P is bad as far as the dis-
crepancy for arbitrarily rotated rectangles is concerned: there exists a
rectangle R in the unit square (not an axis-parallel one) of area Ω(n−1/2)
containing no point of P .
This result is due to Wernisch [Wer92].

2.2 Sets with Good Average Discrepancy

In the previous section, we have been considering the worst-case discrepancy
for corners, and we have derived the upper bound D(n, Cd) = O(logd−1 n),
for any fixed d. Here we demonstrate the existence of sets for which most of
the corners, although not all of them, have considerably smaller discrepancy.

2.5 Theorem. For any fixed d ≥ 2, the L2-discrepancy for corners satisfies

D2(n, Cd) = O(log(d−1)/2 n).

Later on, we will see that this bound is best possible (Theorem 6.1).
Currently, several different proofs of Theorem 2.5 are known. Here we

show one based on a suitable probabilistic modification (“randomization”) of
the Van der Corput and Halton–Hammersley sets. It may be instructive to
first look why the Van der Corput set itself fails in this respect.

Why the Van der Corput Set Isn’t Good Enough. Let P ⊂ [0, 1]2 be
the n-point Van der Corput set as in Example 2.1, and let m be the smallest
integer with 2m ≥ n. Consider a corner C = C(x,y). We may assume that y
is a multiple of 2−m, since changing C by a strip of width smaller than 2−m

changes the discrepancy by at most 1.
Let y written in the binary notation have the form 0.a1a2 . . . am, where

the ai ∈ {0, 1} are binary digits. As in the upper bound for the worst-case
discrepancy of P (proof of Proposition 2.2), we decompose the interval [0, y)
into (binary) canonical intervals. It is easy to see that the canonical intervals
used in this decomposition are, written in binary,

Iq = [0.a1a2 . . . aq−10, 0.a1a2 . . . aq−11), q ∈ {1, 2, . . . ,m}, aq = 1.

(Note that Iq has length 2−q.)
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Fig. 2.4. (a) The sawtooth function s(t) = t − �t� + 1
2
; (b) the functions Δq(x)

for y = 0.1011.

Let Sq be the horizontal strip [0, x) × Iq, and let kq denote the integer
whose binary notation is aq−1aq−2 . . . a2a1. By the formula for the points of
the Van der Corput set P , the strip Sq contains exactly the points of P whose
first coordinate is i

n , where i ≡ kq (mod 2q) and i < nx. The number of such
points is �nx−kq

2q �.
Let Δq denote the contribution of the strip Sq to the discrepancy of the

corner Cx,y; that is,

Δq = n vol(Sq) − |P ∩ Sq| =
nx

2q
−
⌈

nx − kq

2q

⌉
.

For y = 0.1011, the quantities Δ1, Δ3, and Δ4 as functions of x are drawn in
Fig. 2.4(b); note that they are negative most of the time. They are all shifted
and stretched copies of the “sawtooth function” s(t) = t − �t� + 1

2 shown in
Fig. 2.4(a). More precisely, denoting κq = kq/2q, we have

Δq = s

(
nx

2q
− κq

)
+ κq −

1
2
.

Assume for simplicity that n = 2m. The expression s
(

nx
2q − κq

)
, regarded

as a function of x, has period 2q

n = 2q−m. So the interval [0, 1) contains an
integral number of periods, and since the average of the sawtooth function s
over each period is 0, we get that the average of Δq over x ∈ [0, 1) is κq − 1

2 .
Recall that κq, written in binary, has the form 0.0aq−1aq−2 . . . a1. Thus,

whenever aq = 1 and aq−1 = 0, the contribution of Δq to the average is at
most − 1

4 . Since “most” of binary digit sequences a1a2 . . . am have at least
m
8 alterations 01 in their binary notation, we see that even the L1-average
of D(P,C(x,y)) over (x, y) ∈ [0, 1)2 has the order Ω(m) = Ω(log n). This
argument is admittedly somewhat informal but it can be made rigorous easily.
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Iq

Rq

ξq
2q

n

Sq

0 1x2q

n

Fig. 2.5. Discrepancy of the strip [0, 1) × Iq.

Solution: a Random Cyclic Shift. First we prove the two-dimension-
al case of Theorem 2.5. The basic idea is to shift the Van der Corput set
cyclically by a random amount in the x-direction, and show that the expected
square of the L2-discrepancy is O(log n).

As usual, let m be the smallest integer with 2m ≥ n, and set N = 2m;
this will be the period of the cyclic shift. For a real parameter t ∈ [0, N), we
define an n-point set Pt ⊂ [0, 1)2 by

Pt =
{(

(i + t) (mod N)
n

, r(i)
)

: i = 0, 1, . . . , N − 1
}
∩ [0, 1)2 .

Here r(.) denotes the “bit-reversal” function as in the definition of the Van
der Corput set. So, expressed in words, we take the N -point Van der Corput
set and re-scale it in the x-coordinate in such a way that exactly the first
n points lie in the unit square. Then we shift it cyclically by t

n within the
interval

[
0, N

n

)
, and finally we intersect it with the unit square. (Note that

the “unit” of the shift t is 1
n , i.e. “one point.”)

Let C = C(x,y) be a fixed corner. The plan is to prove that for t chosen at
random from [0, N), the expected squared discrepancy D(Pt, C)2 is O(log n).
If this is true for any fixed corner C, then there exists some specific t with
D2(Pt, C2) = O(

√
log n) and we are done.

Let us adopt some of the notation introduced in the first part of this
section. So we assume that y = 0.a1a2 . . . am in binary, Iq are the binary
canonical intervals in the decomposition of the interval [0, y), Sq = [0, x)× Iq

is the horizontal strip corresponding to Iq, and Δq = n vol(Sq) − |Pt ∩ Sq| is
the contribution of the strip Sq to the discrepancy of the corner C.

As in the proof of Proposition 2.2, we decompose the horizontal strip
[0, 1) × Iq (containing Sq) into rectangles of height 2−q and width 2q

n as in
Fig. 2.5. Each of these rectangles contains exactly one point of Pt. Let Rq

denote the rectangle that is only partially contained in the strip Sq (this is
the only rectangle in this strip contributing to the discrepancy), and let ξq

be the fraction of Rq contained in Sq. The value of Δq is ξq if the (single)
point of Pt lying in Rq is to the right of Sq, and it is ξq − 1 if this point lies
within Sq.

As the shift value t runs from 0 to N (think of t as time), the points of Pt

move to the right. From the point of view of the rectangle Rq, a point enters
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it through the left boundary at some moment t1, it moves through Rq to the
right at uniform speed, and exits on the right at the moment t1 + 2q; at the
same moment, another point is entering Rq on the left. Hence Δq, regarded
as a function of t, can be expressed

Δq(t) = f2q,ξq,kq
(t),

where fa,ξ,−t0 is the periodic function with period a whose each period con-
sists of two constant portions of length (1 − ξ)a and ξa with values ξ and
ξ − 1, respectively, and whose period starts at t0:

ξ − 1

ξ

a

(1 − ξ)a

0

t0

ξa

Note that the integral of fa,ξ,−t0 over any interval of length a is 0.
For our fixed corner C, let us now bound the expectation E

[
D(Pt, C)2

]

with respect to a random choice of t ∈ [0, N). We have

E
[
D(Pt, C)2

]
= E

[(∑

q

Δq(t)
)2
]

=
∑

q1,q2

E [Δq1(t)Δq2(t)]

where the sum is over all q1 and q2 corresponding to the canonical intervals
in the decomposition of [0, y). We have

E [Δq1(t)Δq2(t)] =
1
N

∫ N

0

f2q1 ,ξq1 ,kq1
(t)f2q2 ,ξq2 ,kq2

(t) dt.

For brevity, write f1 = f2q1 ,ξq1 ,kq1
and f2 = f2q2 ,ξq2 ,kq2

; so f1 has period 2q1

and f2 has period 2q2 . Suppose that q1 ≤ q2, say. Each period of f1 on which
f2 is constant contributes 0 to the integral

∫ N

0
f1(t)f2(t) dt. Periods of f1

containing jumps of f2 may give nonzero contributions, but since |f1f2| ≤ 1
the contribution of each such period is at most its length, i.e. 2q1 . The function
f2 has 2N/2q2 jumps on [0, N), and hence

∣
∣∣E [Δq1(t)Δq2(t)]

∣
∣∣ =

1
N

∣∣
∣∣∣

∫ N

0

f1(t)f2(t) dt

∣∣
∣∣∣
≤ 2q1

2
2q2

= O(2−(q2−q1)).

Therefore

E
[
D(C,Pt)2

]
≤

m∑

q1,q2=1

O(2−|q1−q2|) = O(m) = O(log n)
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and the planar case of Theorem 2.5 is proved. �

Higher Dimension. Instead of giving the proof for a general dimension d,
we present it for the 3-dimensional case. Here the basis of the construction
is the 3-dimensional Halton–Hammersley set from Example 2.3. We let m be
the smallest integer with 2m ≥ n, and m′ the smallest integer with 3m′ ≥ n.
This time the period of the cyclic shift is N = 2m3m′

. We thus define the
shifted set

Pt =
{(

(i + t) (mod N)
n

, r2(i), r3(i)
)

: i = 0, 1, . . . , N − 1
}
∩ [0, 1)3.

We again consider a fixed corner C = C(x,y,z), assuming that y is a multiple
of 2−m and z is a multiple of 3−m′

. This time the rectangle [0, y) × [0, z) is
decomposed into a collection B of canonical boxes (rectangles in this case)
as in Fig. 2.3. The sides of each rectangle B ∈ B are 2−q and 3−r for some
integers q ≤ m and r ≤ m′. The 3-dimensional box [0, 1) × B can be parti-
tioned into boxes of length 2q3r

n in the x-coordinate (a 3-dimensional analogue
of Fig. 2.5), each of them containing exactly one point of each Pt. Setting
SB = [0, x)×B and ΔB = n vol(SB)− |Pt ∩ SB |, we find (precisely as in the
planar case) that

ΔB(t) = f2q3r,ξB ,kB
(t)

for a suitable ξB ∈ [0, 1) and an integer kB ∈ {0, 1, . . . , 2q3r}.
This time we need to estimate

E
[
D(C,Pt)2

]
= E

[(∑

B∈B
ΔB(t)

)2
]

=
∑

B1,B2∈B
E [ΔB1(t)ΔB2(t)] .

Let B1 ∈ B be a 2−q1 × 3−r1 rectangle and let B2 ∈ B be a 2−q2 × 3−r2

rectangle. Define the distance of B1 and B2 as

δ(B1, B2) = max(|q1 − q2|, |r1 − r2|).

We want to show ∣∣∣E [ΔB1(t)ΔB2(t)]
∣∣∣ ≤ 2−δ(B1,B2). (2.2)

This will be sufficient, since then we obtain

∑

B1,B2∈B
E [ΔB1(t)ΔB2(t)] ≤

m∑

q1,q2=1

m′
∑

r1,r2=1

2 · 2−max(|q1−q2|,|r1−r2|)

= O(mm′) = O(log2 n),

as is not difficult to calculate.
To prove (2.2), we again write
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E [ΔB1(t)ΔB2(t)] =
1
N

∫ N

0

f1(t)f2(t) dt,

where f1 = f2q13r1 ,ξB1 ,kB1
and similarly for f2. This time, the simple-minded

approach we have used to show the “near-orthogonality” of f1 and f2 in the
2-dimensional case fails (both f1 and f2 may have too many jumps), and we
need a more clever argument. Here is the idea: If we reduce all the points
of jumps of f1 modulo the period of f2, they are quite uniformly distributed
within the period of f2, and their contributions nearly cancel out. A detailed
argument follows.

Let us suppose r1 ≤ r2 and |r1 − r2| ≥ |q1 − q2|, say (the other cases are
symmetric). Let a2 = 2q23r2 be the (smallest) period of f2. Let K > 1 be an
integer, and consider K equidistant points with spacing a2/K, of the form t,
t + 1

K a2, t + 2
K a2,. . . , t + K−1

K a2. We observe that the sum of the values of
f2 at these points is always at most 1 in absolute value:

∣
∣∣∣

K−1∑

j=0

f2(t + j
K a2)

∣
∣∣∣ ≤ 1. (2.3)

The following picture, for K = 9, tries to indicate why:

ξ − 1

ξ

t t + a2
9 t + 8

9a2

t + 3
9a2 . . .

t + a2

Set K = 3r2−r1 and M = 2m3r1 . When i runs through 0, 1, . . . ,K −
1, the expression iM (mod a2) runs through the multiples of gcd(M,a2) =
2q23r1 , i.e. through the numbers 0, 1

K a2,
2
K a2, . . . ,

K−1
K a2 (although typically

in a different order)—this is a simple consequence of the Chinese remainder
theorem. Therefore we have

K−1∑

i=0

f2(t + iM) =
K−1∑

j=0

f2(t + j
K a2). (2.4)

As a final observation, we note that the integral
∫ N

0
f1(t + x)f2(t + x) dt

is independent of x because the period of the function f1(t)f2(t) divides N .
We are ready to estimate

∫ N

0
f1(t)f2(t) dt by an averaging trick:

∫ N

0

f1(t)f2(t) dt =
1
K

K−1∑

i=0

∫ N

0

f1(t + iM)f2(t + iM) dt

=
1
K

∫ N

0

f1(t)

(
K−1∑

i=0

f2(t + iM)

)

dt
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because f1(t + M) = f1(t). According to (2.3) and (2.4), the absolute value
of the sum in parentheses is always at most 1, and hence the integral is at
most N . From this equation (2.2) follows, and the proof of (the 3-dimensional
case of) Theorem 2.5 is finished. �

Remark: Lp-Discrepancy. It is known that for any fixed p ≥ 1, the Lp-
discrepancy for corners is of the order O(log(d−1)/2 n) as well. This means
that for suitable point sets, a great majority of corners have much smaller
discrepancy than the best known worst-case bound. And, as we will see later,
in the plane such a behavior is unavoidable, since the worst-case discrepancy
really is of the order log n, while the Lp-discrepancy for any fixed p is of the
order

√
log n.

Bibliography and Remarks. The two-dimensional case of The-
orem 2.5 was proved by Davenport [Dav56]. He used (essentially)
the explicitly given 2n-point set P ∪ P �, where P = {( i

n , {iα}): i =
0, 1, . . . , n − 1} is a lattice set as in Example 2.19, with α irrational
and having bounded partial quotients of its continued fraction, and
P � = {(x, 1 − y): (x, y) ∈ P}. The proof employs harmonic analysis
and can be admired, e.g., in [Cha00]. (Interestingly, P itself is not
good, as can be shown by an argument similar to the one at the be-
ginning of this section.) As was shown by Chen and Skriganov (private
communication from September 1998), if P is the 2m-point Van der
Corput set then P ∪ P � works too.

In [Rot79], Roth proved the 3-dimensional case of Theorem 2.5,
and in [Rot80] he developed the method we have presented and proved
the general case ([BC87] gives more information on the history of this
result). At about the same time and independently of Roth, Frolov
[Fro80] gave another construction with an optimal L2-discrepancy
bound (see Section 2.5). The Lp-analogue of Theorem 2.5 for every
fixed p was obtained by Chen [Che81] (Chen [Che83] has an alterna-
tive proof, and another proof was given by Skriganov—see Section 2.5).

Exercises

1. Let P ⊂ [0, 1]2 denote the 2m-point Van der Corput set.
(a) Complete the proof sketched in the text of the fact that the L1-dis-
crepancy of P for corners is Ω(m).
(b) Write down a specific corner C ∈ C2 such that |D(P,C)| = Ω(m).
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2.3 More Constructions: b-ary Nets

The Halton–Hammersley set defined Section 2.1 shows the current best
asymptotic upper bound for the discrepancy function of axis-parallel boxes:
D(n,Rd) = O(logd−1 n). But because of the great practical significance of
uniformly distributed point sets, a large number of alternative constructions
have been invented. Some of them behave better in practice than the Halton–
Hammersley points, and they also have much better constants of proportion-
ality in the asymptotic estimates of discrepancy.

In this section we will discuss low-discrepancy sets somewhat resembling
the Halton–Hammersley set. First, let us recall the proof of the discrepancy
upper bound (Theorem 2.4), again working with the specific case d = 3,
p1 = 2, and p2 = 3. We observe that the second part, i.e. Claim II, works
in the same way for any set P satisfying the following condition: any box
B = K×I×J contains exactly one point of P , where I = [k/2q, (k+1)/2q) is a
binary canonical interval, J = [�/3r, (�+1)/3r) is a ternary canonical interval,
and K = [m2q3r/n, (m + 1)2q3r/n) for some m < n/2q3r. This property can
thus be taken as an axiom, and one can study ways of constructing various
such sets. The next observation is that in this abstract setting, it is no longer
important that p1 and p2 are primes. This was only needed to guarantee
the just described property of the specific “bit reversal” sets, i.e. in order to
apply the Chinese remainder theorem in the proof of Claim I. And, indeed,
it turns out that one can construct such sets with all the pi being the same,
equal to some suitable number b. Moreover, if we assume that n = bm is a
power of this b, then the special role of the first coordinate in the construction
disappears.

Let b ≥ 2 be an integer; mostly we will assume that it is a prime power so
that the finite field GF (b) with b elements exists. A b-ary canonical interval, as
defined in Section 2.1, is an interval [k/bq, (k+1)/bq) for an integer q ≥ 0 and
k = 0, 1, . . . , bq − 1. We define a b-ary canonical box in [0, 1]d as a Cartesian
product of d b-ary canonical intervals.

2.6 Definition (b-ary nets). Let b, d,m, λ ≥ 1 be integer parameters. Call
a set P ⊂ [0, 1]d a b-ary net with λ points per box of volume b−m if 1 (what
would you expect?) each b-ary canonical box of volume b−m contains exactly
λ points of P . Note that the size of P is already determined by this condition:
we have |P | = λbm.

Fig. 2.6 shows a simple example.
Proceeding in a way similar to the discrepancy estimate for the Halton–

Hammersley sets, it is not difficult to show that if P ⊆ [0, 1]d is a b-ary net

1 This concept appears under different names in the literature. In [BC87] it would
be called something like a λ-set of class m with respect to b, b, . . . , b. In [Nie92]
and in many related recent works, it would be called a (t, m + t, d)-net in base
b, provided that λ = bt.
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Fig. 2.6. A binary net with 1 point per box of volume 2−4 (a shifted copy of the
Van der Corput set). Five copies are shown, with all the canonical binary boxes of
volume 2−4.

with λ points per box of volume b−m, where d, b, λ are all considered fixed,
then D(P,Rd) = O(logd−1 |P |), i.e. P has asymptotically the smallest known
discrepancy for axis-parallel boxes. The constant of proportionality can be
bounded by an expression of the form B(d, b)λ, where B(d, b) depends on b
and d but not on λ. Hence it would be best to have λ = 1. The reason for
introducing the λ parameter is that if b and λ are both too small then the
appropriate b-ary nets do not exist. For instance, b-ary nets with 1 point per
box can only exist if b ≥ d − 1 (Exercises 3 and 4).

A Construction with Matrices Over GF (b). The definition of b-ary nets
captures an useful property of point sets, but it is an “empty form,” so to
speak—one has to come up with specific sets having this property, with favor-
able values of parameters. One construction, or rather a class of constructions,
is based on a suitable collection C =

(
C(1), C(2), . . . , C(d)

)
of m×m matrices

over GF (b).
From a given collection C of d matrices, we are going to construct a set

P (C) of bm points in [0, 1]d. The matrices C(1), C(2),. . . , C(d) are called the
generator matrices of the set P (C). It is convenient to index the points of
P (C) by m-component vectors from GF (b)m. For each vector h ∈ GF (b)m,
we define a point x(h) ∈ [0, 1)d. To obtain the kth component of x(h), we first
compute a vector gk = C(k)h ∈ GF (b)m, with the matrix-vector multiplica-
tion in GF (b). Then we read the components of gk as b-ary digits of x(h)k, i.e.
we set x(h)k = 〈gk, (b−1, b−2, . . . , b−m)〉, where 〈., .〉 denotes the real scalar
product, in which the entries of gk are interpreted as integer numbers. That
is, we fix a bijection between GF (b) and the set {0, 1, . . . , b − 1} of integers.
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If b is a prime then GF (b) is canonically identified with {0, 1, . . . , b− 1}; this
is the case the reader may want to think of. For b being a prime power, some
bijection has to be chosen.

Under suitable conditions on the matrix collection C, the resulting set
P (C) turns out to be a b-ary net. To state the result, we define a number
ρ(C) characterizing the quality of C. For nonnegative integers m1,m2, . . . ,md

with mk ≤ m for all m, let C[≤ m1,≤ m2, . . . ,≤ md] be the matrix

row 1 of C(1)

row 2 of C(1)

. . . . . .

row m1 of C(1)

row 1 of C(2)

row 2 of C(2)

. . . . . .

row m2 of C(2)

...
...

row 1 of C(d)

row 2 of C(d)

. . . . . .

row md of C(d)

Then ρ(C) is defined as the maximum number ρ ≤ m such that whenever
m1 + m2 + · · · + md = ρ, the matrix C[≤ m1,≤ m2, . . . ,≤ md] has the full
rank ρ. In particular, ρ(C) = m means that whenever we piece together a
square matrix from upper portions of the C(k)’s, this matrix is nonsingular.

2.7 Proposition. For any d-tuple C of m × m matrices as above, the set
P (C) is a b-ary net with bm−ρ(C) points per box of volume b−ρ(C).

Proof. The connection between matrix rank and b-ary net properties may
look mysterious at first sight, but actually it is quite natural once the def-
initions are unwrapped. Set ρ = ρ(C). Let us fix a b-ary canonical box
B of volume b−ρ. Let the kth side of this box have length b−mk , so that
m1 + m2 + · · · + md = ρ. The condition that x(h) lie in B means that for
each k, the first mk b-ary digits of x(h)k have some prescribed values. The
jth digit of x(h)k is the scalar product of h with the jth row of C(k). Hence
the values of h with x(h) ∈ B are the solutions to the linear system Ch = z,
where z ∈ GF (b)m is some fixed vector and C = C[≤ m1,≤ m2, . . . ,≤ mk].
Since we assume that C has full rank, the solution space of this system has
dimension m− ρ, and hence the number of solutions is bm−ρ as claimed. �

2.8 Example (Faure’s construction). Let d ≥ 1 be an integer, let b ≥ d
be a prime number, and let m ≥ 2 be an integer. Define the entry at position
(i, j) of the m×m matrix C(k) as 0 for j < i and as

(
j−1
i−1

)
(k−1)j−i for j ≥ i,

k = 1, 2, . . . , d, where the arithmetic is in GF (b) and 00 means 1. Then the
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collection C =
(
C(1), C(2), . . . , C(d)

)
has ρ(C) = m, and hence P (C) is a b-ary

net with 1 point per box of volume b−m.

Sketch of Proof. The block of the first mk rows of C(k) looks as follows:
⎛

⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

(
0
0

) (
1
0

)
zk

(
2
0

)
z2

k

(
3
0

)
z3

k . . .
(
m−1

0

)
zm−1

k

0
(
1
1

) (
2
1

)
zk

(
3
1

)
z2

k . . .
(
m−1

1

)
zm−2

k

0 0
(
2
2

) (
3
2

)
zk . . .

(
m−1

2

)
zm−3

k

...
...

...
...

...
...

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

,

with zk = k − 1. A square matrix consisting of several blocks of this form
is called a generalized Vandermonde matrix, and it can be shown that its
determinant is ∏

1≤i<j≤d

(zj − zi)mimj

(we omit a proof since the assertion of this example is a special case of a
general result we prove later). In our case, each zj − zi is an integer between
1 and b − 1, and since we assumed b is a prime, the determinant is nonzero
over GF (b) too. �

Adding an Extra Dimension. In the construction of the set P (C),
we haven’t used the idea of the “bit-reversal sequence” employed in the
Van der Corput and Halton–Hammersley constructions. By applying this
idea suitably, one can add an extra dimension: from a collection C of
d − 1 matrices (rather than d as before), we construct a d-dimensional
set P++(C). If the matrices are m × m, we again get bm points. We put
P++(C) = {x(h): h ∈ GF (b)m}, where x(h)1 through x(h)d−1 are defined
using C(1) through C(d−1) exactly as in the construction of P (C) above, and
x(h)d = 〈h, (b−m, b−m+1, . . . , b−1)〉 (again scalar product over the reals!), i.e.
the components of h are interpreted as b-ary digits in the reverse order. This
time we not only need to assume that ρ(C) is large, but we also have to con-
sider ρ(C|j) for j = 1, 2, . . . ,m, where C|j is the collection of j × j matrices
obtained by taking each of the matrices of C and removing all rows but the
first j and all columns but the first j.

2.9 Theorem. Let C be a (d− 1)-tuple of m×m matrices over GF (b), and
suppose that ρ(C|j) ≥ j − q for all j = 1, 2, . . . , m. Then the set P++(C) ⊂
[0, 1]d is a b-ary net with bq points per box of volume bq−m.

The proof of this theorem is not difficult, and we leave it to Exercise 2.
Note that in Faure’s construction 2.8, we get that ρ(C|j) = j with no

extra effort, since C|j is the same collection of matrices as the C obtained for
m = j. (This will also be the case in the more general constructions of C
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considered below.) Therefore, we get that if b is a prime and d ≤ b + 1 then
b-ary nets with 1 point per box of volume b−m exist for all m. It can be shown
that this remains true if we only assume that b is a prime power rather than
a prime (Exercise 8). As was remarked above, d ≤ b + 1 is also necessary for
the existence of b-ary nets with 1 point per box.

Constructions via Polynomials Over a Finite Field. Faure’s construc-
tion can be seen as a special case of a more general class of constructions. A
convenient way to express these constructions is using the so-called formal
Laurent series over finite fields. We thus present the definition and a few
properties of these series in a micro-course below.

One can perhaps start by recalling that a polynomial p(x) = a0 + a1x +
· · ·+anxn over a finite field F must be formally be regarded as an (n+1)-tuple
of coefficients, and not as a function F → F , because there are only finitely
many functions but infinitely many polynomials. For a power series over F ,∑∞

i=0 aix
i, it is not even clear what function it should represent (we would

have to define some kind of convergence first), and so we consider it purely
formally; it means nothing more or less than the sequence (a0, a1, a2, . . .) of
coefficients. Such series can still be added and multiplied together (formally
but, of course, in a manner inspired by the “usual” power series over the
real or complex numbers, where these operations correspond to addition and
multiplication of analytic functions). Power series are multiplied in a way
similar to polynomials: if we write

(∑∞
i=0 aix

i
)(∑∞

j=0 bjx
j
)

=
∑∞

k=0 ckxk

then the ck are given by
ck =

∑

i,j≥0
i+j=k

aibj . (2.5)

It is not difficult to check that a formal power series a(x) =
∑∞

i=0 aix
i has

a multiplicative inverse, i.e. a series b(x) with a(x)b(x) = 1, if and only if
a0 �= 0 (Exercise 7). Hence the set of all formal power series over F forms a
ring, even an integrality domain (no zerodivisors), but not a field.

A suitable extension that embeds this ring into a field are the formal
Laurent series over F . These are objects of the form

∞∑

i=i0

aix
i

with i0 being an arbitrary (possibly negative) integer. So we may have finitely
many negative powers of x in such a series. In complex analysis, such series
locally represent meromorphic functions, but here we again take them purely
formally. Having agreed on this, we omit the adjective “formal” for the formal
Laurent series from now on.

The Laurent series are added and multiplied analogously to the power
series: the Laurent-series analogue of (2.5) is
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ck =
∑

i≥i0, j≥j0
i+j=k

aibj .

Having the above-mentioned result about multiplicative inverses of power
series at disposal, it is straightforward to check that any Laurent series over
F has a multiplicative inverse and all Laurent series over F form a field.

Another field we need to mention is that of rational functions over F . A
rational function is a fraction p(x)/q(x) of two polynomials with q(x) �= 0;
we again regard it formally. The rational functions are the quotient field of
the ring of polynomials. Since the ring of polynomials is a subring of the
field of the Laurent series (a polynomial over F can be regarded as a Laurent
series with finitely many nonzero terms), it follows from simple results of
algebra that there is a unique isomorphic embedding of the field of rational
functions into the field of Laurent series. Let us denote this embedding by L0,
so L0(p(x)/q(x)) denotes the Laurent series representing the rational function
p(x)/q(x). It is not difficult to give an algorithm for computing the first n
terms of L0(p(x)/q(x)) given the coefficients of p(x) and q(x).

The Laurent series we have introduced so far were Laurent series “at 0.”
For the subsequent construction of generator matrices, it is notationally more
convenient to work with Laurent series “at ∞,” which have the form

∞∑

i=i0

aiz
−i

(finitely many positive exponents and infinitely many negative ones). To this
end, we simply substitute z = x−1, and note that this substitution converts
a rational function of x into a rational function of z. So we define

L∞(p(z)/q(z)) =
∞∑

i=i0

aiz
−i

where
∑∞

i=i0
aix

i = L0(p(x−1)/q(x−1)).
Let us return to constructing generator matrices. Suppose that b is a

prime power. The construction we are going to present requires d polynomials
p1(z), p2(z), . . . , pd(z) over the field GF (b) as input data, such that no two
of them have a nontrivial common divisor (of degree ≥ 1). Let δk denote the
degree of pk; we also require δk ≥ 1 for all k. In order to make the quality
parameter, ρ(C), of the resulting matrix collection C as large as possible, the
degrees δk should be small. For example, Faure’s construction corresponds (in
the case of a prime b) to letting all the pk be linear, namely pk(z) = z−(k−1).
But this need not be the best way, since taking all the degrees small forces
us to have the field size b sufficiently large, and this makes the resulting
discrepancy estimate worse again. Hence a suitable compromise has to be
found between the degrees of the pk and the field size b.
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Suppose the polynomials pk(z) as above have been fixed, and let m ≥ 1
be an integer parameter. We define a collection C of d m × m matrices over
GF (b). The kth matrix C(k) is constructed from pk(z). Let

L∞

(
1

pk(z)

)
=

∞∑

i=i0

aiz
−i;

then the first row of C(k) is set to (a1, a2, . . . , am). In general, each row of
C(k) contains the coefficients of the powers z−1, z−2,. . . , z−m in the Laurent
series of a suitable rational function. The rational functions for the first δk

rows are
1

pk(z)
,

z

pk(z)
, . . . ,

zδk−1

pk(z)
,

for the next δk rows they are

1
pk(z)2

,
z

pk(z)2
, . . . ,

zδk−1

pk(z)2
,

and so on; in the jth block by δk rows we have pk(z)j in the denominator. We
use �m/δk� blocks, the last one with possibly fewer than δk rows. We have

2.10 Theorem. The collection C =
(
C(1), C(2), . . . , C(d)

)
constructed as

above satisfies ρ(C) ≥ m −
∑d

k=1(δk − 1).

Let use remark that the same estimate for ρ(C) also holds for a yet more
general version of the construction. In the description above, we have used
the polynomials 1, z, z2, . . . , zδk−1 in the numerators in each block; one can
replace them by other suitable collections of polynomials. Namely, for the
block of the rows in C(k) with pk(z)j in the denominators, the numerators can
be any δk polynomials uk,j,1(z), uk,j,2(z),. . . , uk,j,δk

(z), provided that they
are pairwise relatively prime modulo pk(z) (for given k and j). The claim of
Theorem 2.10 continues to hold, and the proof remains much the same as
presented below, only the notation gets progressively more complicated.

Proof of Theorem 2.10. Let ρ = m −
∑d

k=1(δk − 1). We should prove
that for any partition ρ = m1 + m2 + · · · + md, the matrix C = C[≤ m1,≤
m2, . . . ,≤ md] has rank ρ. Let ci denote the ith row of C. We must show that
if α = (α1, α2, . . . , αρ) ∈ GF (b)ρ is a vector with

∑ρ
i=1 αici = 0 then α = 0.

The entries of ci are the first m coefficients of the negative powers of the
Laurent series L∞(fi(z)) for a certain rational function fi(z). The equal-
ity
∑ρ

i=1 αici = 0 means that
∑ρ

i=1 αiL∞(fi(z)) has the coefficients of
z−1, . . . , z−m all 0. Since each fi(z) has zero polynomial part (the degree
of the numerator is smaller than the degree of the denominator), the coeffi-
cients of all nonnegative powers are also 0. We can write

ρ∑

i=1

αiL∞(fi(z)) = O(z−(m+1)), (2.6)
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where the O(z−j) symbol has the obvious formal meaning for Laurent series.
We want to show that the left-hand side must in fact be the zero Laurent
series.

Let D(z) be the least common denominator of the fi(z), i = 1, 2, . . . , ρ.
By inspecting the construction of the matrices in C, we see that the largest
power of the polynomial pk(z) occurring in the denominators of the fi(z) is
�mk/δk�. Therefore

deg D(z) =
d∑

k=1

δk�mk/δk� ≤
d∑

k=1

(mk + δk − 1) = m.

By multiplying both sides of (2.6) by D(z), we obtain a polynomial on the
left-hand side, while the right-hand side is O(z−1), and so both sides must be
0 as Laurent series. Since the rational functions are a subfield of the Laurent
series, we can infer

ρ∑

i=1

αifi(z) = 0. (2.7)

It remains to show that the rational functions fi(z) are linearly independent,
which is a simple exercise in polynomial algebra. It is perhaps best to look
at a particular example (the same argument works in general). Let d = 3,
δ1 = 4, δ2 = 3, δ3 = 1, m = 13, ρ = 8, m1 = 2, m2 = 5, m3 = 1. Then the
rational functions in question are

f1(z) =
1

p1(z)
, f2(z) =

z

p1(z)
,

f3(z) =
1

p2(z)
, f4(z) =

z

p2(z)
, f5(z) =

z2

p2(z)
,

f6(z) =
1

p2(z)2
, f7(z) =

z

p2(z)2
,

f8(z) =
1

p3(z)
.

Multiplying (2.7) by the least common denominator D = p1p
2
2p3, we get

(α1 + α2z)p2
2p3 + (α3 + α4z + α5z

2)p1p2p3 + (α6 + α7z)p1p3 + α8p1p
2
2 = 0.

Since all terms but possibly the first one are divisible by p1, the first term
is divisible by p1 as well, but this is only possible if α1 = α2 = 0 (since
deg p1 = 4 and p1 has no common factor with either p2 or p3). By a similar
argument with divisibility by p2, we derive that α6 = α7 = 0, and then
divisibility by p2

2 forces α3 = α4 = α5 = 0, etc. This concludes the proof of
Theorem 2.10. �
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Bibliography and Remarks. The constructions of b-ary nets orig-
inated by a paper of Sobol [Sob67], who gave essentially the construc-
tion explained above Theorem 2.10 for the case b = 2, but with a
different presentation not using the formal Laurent series. Example
2.8 is from Faure’s work [Fau82]. Theorem 2.10 is due to Niederreiter
[Nie87] (see also [Nie92] for an account and references). He and his
coworkers have analyzed various constructions of this type with the
goal of obtaining the smallest possible constants in the leading term
in the discrepancy bound (tables of numerical values are provided in
Mullen et al. [MMN95]). A recent construction, with significantly bet-
ter results in this direction than the previous ones, is by Niederreiter
and Xing [NX96]; it uses advanced algebraic tools that are beyond
the scope of the present book. A very recent survey of the results in
this area is [Nie98]. The combined result of the various powerful con-
structions can be summarized, in our terminology, as follows: b-ary
nets with bt points per box of volume b−m exist for all m ≥ 0 pro-
vided that t ≥ C d−1

log ppmin(b) + 1. Here C is an absolute constant and
ppmin(b) = min{pα1

1 , . . . , pαm
m }, where b = pα1

1 . . . pαm
m is the prime

factorization of b (on the other hand, t ≥ d−1
b − logb

(b−1)(d−1)+b+1
2 is

a necessary condition).
The relation of b-ary nets and projective planes in Exercise 3 below

is from Niederreiter [Nie92]. The condition b ≥ d− 1 for the existence
of b-ary nets with 1 point per box following from that correspondence
was already proved by Chen [Che83]. Exercise 5 (a fast algorithm for
computing b-ary nets from generator matrices) is based on ideas of
Antonov and Saleev [AS79], who suggested a similar implementation
for Sobol’s construction in base 2, and of Bratley and Fox [BF88]. Our
presentation follows Tezuka [Tez95]. Properties of point sets generated
from a random collection C of m×m matrices have been analyzed by
Niederreiter (see [Nie92]), who has shown an O(logd n) upper bound
for the expected discrepancy for corners by a method resembling a
discrete Fourier transform (Exercise 6 suggests a simple calculation
establishing a weaker upper bound).

Exercises

1. (a) Prove the claim made after Definition 2.6, namely that for fixed b, d,
and λ and for m → ∞, a b-ary net P ⊂ [0, 1]d with λ points per box of
volume b−m has discrepancy D(P,Rd) = O(logd−1 n), where n = |P | =
λbm. (Begin with the d = 2 case.)
(b) Show that if b and d are fixed and λ is arbitrary, then D(P,Rd) =
O(λ logd−1 n).
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2. Prove Theorem 2.9. Very little needs to be added to the considerations
in the proof of Proposition 2.7.

3. Consider the following statements for given integers b, d ≥ 2:
(i) A b-ary net with 1 point per box of volume b−2 exists in dimension d.
(ii) There exist d mutually orthogonal b2-tuples with entries 0, 1, . . . ,

b − 1. Here two b2-tuples (x1, x2, . . . , xb2) and (y1, y2, . . . , yb2) are
called orthogonal if the b2 ordered pairs (xi, yi), i = 1, 2, . . . , b2, are all
distinct (and hence exhaust all pairs of elements of {0, 1, . . . , b− 1}).

(a)∗ Prove that (i) implies (ii).
(b)∗ Prove that (ii) implies (i).
Remark. As is well-known in combinatorics, and easy to see, (ii) can
only hold for d ≤ b + 1. Moreover, the validity of (ii) for d = b + 1 is
equivalent to the existence of a finite projective plane of order b.

4. Show that if a b-ary net with λ points per box of volume b−m exists in
dimension d, then also a b-ary net with λ points per box of volume b−m′

exists in dimension d′ for any m′ ≤ m and d′ ≤ d. Using the previous
exercise, derive that a b-ary net with one point per box of volume b−m

in dimension d does not exist unless b ≥ d − 1 (where m ≥ 2).
5. (Efficient computation) An attractive feature of the set P (C) constructed

from a collection C of matrices is its very efficient computability. Consider
the following algorithm.
Initialize vectors v1, v2, . . . , vd ∈ GF (b)m to zeros (b is a prime). Then
perform the following for i = 0, 1, . . . , bm − 1:

Output the point xi whose kth coordinate is 〈vk, (b−1, b−2, . . . , b−m)〉
(where the entries of vk are interpreted as integers in range 0..b− 1).
Let j be the minimum index with aj �= b − 1, where i = a1 + a2b +
a3b

2 + · · · is the b-ary expansion of i (the aj ’s are the b-ary digits).
For k = 1, 2, . . . , d, add the jth column of C(k) to vk.

(a)∗ Verify that if C(1) is the identity matrix then the vector v1 runs
through all vectors in GF (b)m in some order (for b = 2, the resulting
order is the well-known Gray code).
(b)∗ Prove that the algorithm correctly outputs all the points of P (C) in
some order, each of them exactly once.

6. (Random generator matrices)
(a)∗ Find the probability that a k×m matrix over GF (b), k ≤ m, whose
entries are chosen at random and independently of each other, has full
rank (i.e. rank k).
(b) Show that if a collection C of d m×m matrices over GF (b) is chosen
at random, with b, d regarded as constants and m → ∞, then

ρ(C) ≥ m − (d − 1) logb m − O(1)

holds with probability at least 1
2 , say. Deduce that the point set P (C)

generated from C has discrepancy D(P (C),Rd) = O(log2d−2 n), where
n = bm.
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This is a rough bound only; the best known estimate is O(logd n) (see
[Nie92]).

7. (a) Check that a formal power series
∑∞

i=0 aix
i over a field F has a

multiplicative inverse if and only if a0 �= 0.
(b) Verify that the formal Laurent series over a field form a field.

8. (a) Let b be a prime, and put pk(z) = z − (k − 1) in the construction de-
scribed above Theorem 2.10. Show that the generator matrices obtained
in this way are those from Faure’s construction.
(b) Prove that if b is a prime power, d ≤ b + 1, and m ≥ 1, then there
exists a b-ary net with 1 point per box of volume b−m in dimension d.

2.4 Scrambled Nets and Their Average Discrepancy

Scrambled b-ary Nets. Both theoretical results and empirical studies in-
dicate that for numerical integration, it is desirable that the low-discrepancy
point sets used have a some “randomness” in them. Here is one reason: if
a multidimensional definite integral is approximated using a Monte-Carlo
method, the error can be estimated statistically by repeating the computa-
tion several times because the result is a nicely enough distributed random
variable. In contrast, deterministic constructions of low-discrepancy sets, such
as the Halton–Hammersley set, provide only one set for a given size and di-
mension. Hence only various theoretical worst-case estimates are available
for the error, and these are often unnecessarily pessimistic. By introducing
randomness into the low-discrepancy constructions, one can hope to recover
the possibility of estimating the error by repeated experiments.

We consider the following question: how can one modify a given b-ary net
P with λ points per box of volume b−m so that it is guaranteed to remain
a b-ary net with the same parameters? More specifically, we will consider
“coordinate-wise” changes to P , i.e. mappings σ: [0, 1) → [0, 1) such that
if the kth coordinate of each point p = (p1, p2, . . . , pd) ∈ P is replaced by
σ(pk) then the b-ary net property is preserved. For example, by inspecting
the definition we see that if x is a coordinate of a point of P and I is the
b-ary canonical interval of length b−m containing x, we can replace x by any
x′ ∈ I with no harm.

Here is a more general class of mappings preserving the b-ary net property.
We say that a mapping σ: [0, 1) → [0, 1) is a b-ary scrambling of depth m if it
satisfies the following condition: any b-ary canonical interval I of length b−i

with 0 ≤ i ≤ m is mapped by σ into a b-ary canonical interval I ′ of the same
length, and distinct I are mapped into distinct I ′. A short reflection about
definitions reveals the truth of the following:

2.11 Observation. Let P ⊂ [0, 1)d be a b-ary net with λ points per box of
volume b−m, and let σσ = (σ1, σ2, . . . , σd) be a d-tuple of b-ary scramblings of
depth m. Then the set
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σσ(P ) = {(σ1(p1), σ2(p2), . . . , σd(pd)) : p ∈ P}

is a b-ary net with the same parameters.

First, let us give a simple example of a b-ary scrambling.

2.12 Example (Digit-scrambling). Let π1, π2, . . . , πm be arbitrary per-
mutations of the set {0, 1, . . . , b − 1}. Define a mapping σ: [0, 1) → [0, 1) as
follows: if x ∈ [0, 1) has b-ary representation 0.a1a2a3 . . ., then σ(x) has b-ary
representation 0.b1b2b3 . . ., where bj = πj(aj) for 1 ≤ j ≤ m, and bj = aj for
j > m. Such a σ can naturally be called a b-ary digit-scrambling (of depth m).

It is easy to see that such a σ is a b-ary scrambling of depth m (note that
a b-ary canonical interval of length b−j consists exactly of numbers having
certain fixed sequence of the first j b-ary digits). Also, the choice of the
digits bm+1, bm+2, . . . of σ(x) does not really matter and it can be completely
arbitrary.

Let us describe a general form of a b-ary scrambling of depth m. First,
according to the definition, the b-ary canonical intervals of length b−1 are
permuted in some way by σ. This means that if 0.a1a2a3 . . . is the b-ary
representation of a number x ∈ [0, 1), then the first b-ary digit of σ(x) is π(a1),
for some fixed permutation π of {0, 1, . . . , b − 1}. Similarly, the second b-ary
digit of σ(x) is given as πa1(a2), where πa1 is a permutation of {0, 1, . . . , b−1},
this time depending on the first digit a1. In general, the jth digit of σ(x) is
given as πa1,a2,...,aj−1(aj), j = 1, 2, . . . , m, for some permutation πa1,a2,...,aj−1

depending on the first j − 1 digits of x.
Finally, each canonical interval I of length b−m is mapped by σ into a

canonical interval I ′ of the same length. According to the definition of a b-ary
scrambling of depth m, the mapping of I into I ′ may be arbitrary. This means
that the first m b-ary digits of σ(x) are determined from the first m b-ary
digits of x based on the various permutations πa1,a2,...,aj−1 , and the sequence
of digits of σ(x) from the (m + 1)st on is chosen arbitrarily.

A b-ary scrambling σ of depth m can be visualized using a complete b-ary
tree of depth m, as in the following drawing (for b = 3 and m = 3):

0
1 2

π

π0 π1

π0,0

π0,2

0 1 2 . . .

. . .

[0, 1
27 )

[ 1
27 , 2

27 )

. . . [ 8
27 , 9

27 )
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The leaves correspond to the b-ary canonical intervals of length b−m. Initially,
the leaves are labeled by these intervals in the natural order from left to right,
and a b-ary scrambling of depth m is allowed to permute the left-to-right
order of the subtrees of any node arbitrarily (and then do whatever it pleases
within each interval in a leaf).

We can now proceed to define various types of random b-ary scramblings.
In these definitions, we will not define the whole mapping σ; we will only
say how to map a finite set of numbers (this is sufficient for the intended
applications, since we always scramble finite point sets only).

For a random b-ary digit-scrambling of depth m, we pick m permutations
of the set {0, 1, . . . , b − 1} independently at random (for each πj , all the b!
possible permutations have the same probability). Then, in order to map
numbers of a finite set F ⊂ [0, 1), we proceed as follows. For x ∈ F with b-
ary representation 0.a1a2a3 . . ., we define σ(x) = σ0(x) + b−my, where σ0(x)
has b-ary representation 0.π1(a1)π2(a2) . . . πm(am) and y is chosen uniformly
at random in [0, 1), these choices being independent for distinct x ∈ F .

Similarly, we define a fully random b-ary scrambling of depth m. We pick
the permutations πa1,a2,...,aj

, j = 0, 1, . . . ,m− 1, a1, a2, . . . ∈ {0, 1, . . . , b− 1}
independently at random. This determines the first m b-ary digits of the
image of each number, and the subsequent digits are chosen at random as in
the previous definition.

Having defined these random scramblings, we can define the correspond-
ing randomly scrambled b-ary nets. That is, if P is a b-ary net with λ points
per box of volume b−m and σσ is a d-tuple of mutually independent random
b-ary digit-scramblings of depth m, we call σσ(P ) a randomly digit-scrambled
version of P . Similarly we define a fully randomly scrambled version of P .
The following picture shows the 128-point Van der Corput set and a fully
randomly scrambled version of it.

The following theorem gives fairly precise information about the expected
L2-discrepancy for corners of randomly scrambled b-ary nets. In particular,
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we obtain another proof of the asymptotically tight upper bound for the L2-
discrepancy for corners (as in Theorem 2.5).

2.13 Theorem. Let P ⊂ [0, 1)d be a b-ary net with 1 point per box of volume
b−m, and let σσ = (σ1, σ2, . . . , σd) be a d-tuple of independent random b-ary
digit-scramblings of depth m. Then the expected squared L2-discrepancy of
σσ(P ) for corners, the expectation being with respect to the random choice of
σσ, can be expressed solely in terms of d, b, and m (thus, it does not depend
on the particular choice of P ), and for b, d fixed and m → ∞, we have

E
[
D2(σσ(P ), Cd)2

]
= O(md−1) = O(logd−1 |P |).

Remarks. The expected squared L2-discrepancy considered in the theorem
can be expressed by a finite formula (to be presented below), and it can be
quickly evaluated by a computer even for very large sizes of P . According to
numerical studies, these values are very good compared to other constructions
of low-discrepancy sets.

The theorem is formulated for randomly digit-scrambled b-ary nets, but
the expected squared L2-discrepancy remains exactly the same if we replace
random digit-scrambling by fully random scrambling. In fact, it suffices that
the random scrambling is drawn from some probability distribution satisfying
certain simple conditions, which can be read off from the proof below.

Readers who dislike longer (although pretty) calculations should better
skip the proof of Theorem 2.13. We begin the proof with deriving a formula
for the L2-discrepancy for corners of an arbitrary finite set.

2.14 Lemma (Warnock’s formula). Let P ⊂ [0, 1]d be a finite set. Then
we have

D2(P, Cd)2 =
n2

3d
− 2n

2d

∑

p∈P

d∏

k=1

(
1 − p2

k

)
+
∑

p,q∈P

d∏

k=1

(1 − max(pk, qk)) .

Note that this immediately gives an algorithm for evaluating the L2-
discrepancy for corners using O(dn2) arithmetic operations (an asymptoti-
cally even faster algorithm, with O(n(log n)d−1) operations for a fixed d, is
presented in Exercise 11 below). In contrast, no similarly efficient algorithm
is known for the worst-case discrepancy or for the Lp-discrepancy with p �= 2.

Proof. This is a straightforward calculation. We have

D2(P, Cd)2 =
∫

[0,1]d
(nx1x2 · · ·xd − |P ∩ Cx|)2 dx

= n2

∫

[0,1]d
x2

1x
2
2 · · ·x2

d dx − 2n

∫

[0,1]d
x1x2 · · ·xd · |P ∩ Cx|dx

+
∫

[0,1]d
|P ∩ Cx|2 dx. (2.8)
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The first integral is easily calculated, giving the n2/3d term in the formula.
To evaluate the second and third integrals, we write |P ∩Cx| =

∑
p∈P Ip(x),

where Ip(x) = 1 if p ∈ Cx and Ip(x) = 0 otherwise. For the third integral, we
thus get ∫

[0,1]d
|P ∩ Cx|2 dx =

∑

p,q∈P

∫

[0,1]d
Ip(x)Iq(x) dx.

For given p and q, the integral inside the sum is the volume of the set

{x ∈ [0, 1]d: p ∈ Cx, q ∈ Cx}

= {x ∈ [0, 1]d: xk ≥ max(pk, qk), k = 1, 2, . . . , d} =
d∏

k=1

[max(pk, qk), 1].

Hence
∫
[0,1]d

|P ∩Cx|2 dx =
∑

p,q∈P

∏d
k=1(1−max(pk, qk)), yielding the third

term in the formula being proved. Checking that the second integral in (2.8)
equals the middle term in Warnock’s formula is left to the reader. �

Next, we derive some properties of random digit-scramblings.

2.15 Lemma. (i) Let x ∈ [0, 1) be a fixed real number, and let σ stand for
a random b-ary digit-scrambling (of any depth m ≥ 0). Then the random
variable σ(x) is uniformly distributed in [0, 1).

(ii) Let x, x′ ∈ [0, 1) be two distinct real numbers, and let t = t(x, x′)
denote the number of b-ary digits shared by x and x′; that is, we assume
that the b-ary representations of x and x′ are 0.a1a2 . . . atat+1at+2 . . . and
0.a1a2 . . . ata

′
t+1a

′
t+2 . . . with at+1 �= a′

t+1. Then

E
[
|σ(x) − σ(x′)|

]
=

b + 1
3b

b−t,

where the expectation is with respect to a random b-ary digit-scrambling σ
of depth m ≥ t + 1.

Proof. Write B = {0, 1, . . . , b − 1}. If a ∈ B is fixed and π is a random
permutation of B then π(a) is random uniformly distributed in B. Hence
for a random b-ary digit-scrambling σ, σ(x) =

∑m
j=1 bjb

−j + b−my, where
(b1, b2, . . . , bm) is random uniformly distributed in Bm and y is uniformly
distributed in [0, 1). This gives (i).

Concerning (ii), let us write bj for πj(aj). By the definition of a random
b-ary digit-scrambling, we have

|σ(x) − σ(x′)| = b−(t+1)
∣
∣bt+1 − b′t+1

∣
∣+ sgn±(bt+1 − b′t+1)

×
( m∑

j=t+2

b−j(bj − b′j) + b−m(y − y′)
)

,
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where sgn±(z) = 1 for z ≥ 0 and sgn±(z) = −1 for z < 0, and y, y′ are
independent uniformly distributed in [0, 1). For a random permutation π of
B and two distinct elements a, a′ ∈ B, one has E [π(a) − π(a′)] = 0 and
E
[
|π(a) − π(a′)|

]
= b+1

3 (Exercise 7). Moreover, E [π(a) − π(a′)] = 0 obvi-
ously holds for a = a′ as well. By the mutual independence of the πj ’s and
by linearity of expectation, we obtain

E
[
|σ(x) − σ(x′)|

]
= b−(t+1)E

[
|bt+1 − b′t+1|

]
+ E

[
sgn±(bt+1 − b′t+1)

]

×
( m∑

j=t+2

b−jE
[
bj − b′j

]
+ b−mE [y − y′]

)

=
b + 1
3b

b−t.

�

As the next step, we re-express the expected squared L2-discrepancy of
σσ(P ) using Warnock’s formula and Lemma 2.15(i). By Lemma 2.14, by lin-
earity of expectation, and by the mutual independence of the scramblings
σ1, σ2, . . . , σd, we have

E
[
D2(σσ(P ), Cd)2

]
=

n2

3d
− 2n

2d

∑

p∈P

d∏

k=1

E
[
1 − σk(pk)2

]
(2.9)

+
∑

p,q∈P

d∏

k=1

(1 − E [max(σk(pk), σk(qk))]) .

(recall that the expectation of a product of independent random variables
equals the product of expectations). Now for x uniformly distributed in [0, 1),
we have E

[
x2
]

= 1
3 , and since σk(pk) is uniformly distributed in [0, 1) by

Lemma 2.15(i), E
[
1 − σk(pk)2

]
= 2

3 and the middle addend in (2.9) equals
−2n2/3d. Hence, we have E

[
D2(σσ(P ), Cd)2

]
= −n2/3d + R where R denotes

the third addend in (2.9).
Using the equality max(x, y) = 1

2 (x + y + |x − y|), we rewrite

R =
∑

p,q∈P

d∏

k=1

(
1 − 1

2
(
E [σk(pk)] + E [σk(qk)] + E

[
|σk(pk) − σk(qk)|

])
)

= 2−d
∑

p,q∈P

d∏

k=1

(
1 − E

[
|σk(pk) − σk(qk)|

])
.

By multiplying out the product over k and moving the sum over p and q
inside, we derive

R = 2−d
∑

S⊆{1,2,...,d}
(−1)|S|

∑

p,q∈P

∏

k∈S

E
[
|σk(pk) − σk(qk)|

]
.
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By Lemma 2.15(ii), we know that E
[
|σk(pk) − σk(qk)|

]
only depends on

t(pk, qk), the number of initial b-ary digits shared by pk and qk. Hence we
can group the pairs (p, q) in the inner sum according to the values of the
vector (indexed by S)

tS(p, q) = (t(pk, qk): k ∈ S) .

Putting
FS(t) = {(p, q) ∈ P × P : tS(p, q) = t}

and applying Lemma 2.15(ii) we have

∑

p,q∈P

∏

k∈S

E
[
|σk(pk) − σk(qk)|

]
=
∑

t

|FS(t)|
∏

k∈S

b + 1
3b

b−tk

=
(

b + 1
3b

)|S|∑

t

|FS(t)| b−|t|,

where the sum is over all nonnegative |S|-component integer vectors t and
|t| stands for the sum of the components of t.

2.16 Lemma. We have |FS(t)| = f|S|,m(|t|), where

fs,m(t) = bm
s∑

r=0

(
s

r

)
(−1)r�bm−t−r�.

Note that |FS(t)| does not depend on the specific choice of the b-ary net
P ; this already implies that the expected squared L2-discrepancy of σσ(P )
does not depend on the choice of P . We postpone the proof of Lemma 2.16 a
little, and we finish the derivation of a formula for E

[
D2(σσ(P ), Cd)2

]
. There

are
(
t+s−1
s−1

)
different choices of an s-component vector t with |t| = t, and

(
d
s

)

choices of the set S of cardinality s. Therefore

E
[
D2(σσ(P ), Cd)2

]
= −n2

3d
+ 2−d

d∑

s=0

(
d

s

)(
−b + 1

3b

)s

×
∞∑

t=0

(
t + s − 1

s − 1

)
b−tfs,m(t), (2.10)

with fs,m(t) as in Lemma 2.16.
We observe that for t ≥ m, we have fs,m(t) = 0. This can be seen from

the formula for fs,m(t) because
∑s

r=0

(
s
r

)
(−1)r = (1 − 1)s = 0, or it follows

from the meaning of fs,m(t) and the fact that if two points of P share at least
m initial b-ary digits (together in all coordinates) then they are necessarily
equal. Therefore, the sum over t in (2.10) can actually be written with upper
bound m−1, and (2.10) becomes the promised exact formula for the expected
squared discrepancy of σσ(P ).
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It remains to prove Lemma 2.16, and to derive the asymptotics of (2.10)
for d, b fixed and m → ∞.

Proof of Lemma 2.16. Let GS(t) be the set of all pairs (p, q), p �= q, of
points that share at least tk initial digits in the kth coordinate for all k ∈ S.
Written formally, GS(t) =

⋃
r≥t FS(r), where the inequality among vectors

means the inequality in all components simultaneously. For a fixed p, the set

{x ∈ [0, 1]d: tS(p, x) ≥ t},

i.e. the points sharing at least tk initial digits with p in the kth coordinate
for all k ∈ S, is a b-ary canonical box of volume b−|t|. Since P is a b-ary net
with 1 point per box of volume b−m, such a box contains bm−|t| points of P
for |t| ≤ m and 1 point of P (namely p itself) for |t| > m. We obtain

|GS(t)| = bm
(
�bm−|t|� − 1

)
.

Lemma 2.16 can be derived follows from the following general statement:

2.17 Lemma (A particular case of the Möbius inversion formula).
Let f be a real function defined on the set of all nonnegative s-component

integer vectors, and put

g(t) =
∑

r≥t

f(r).

Assuming that f is nonzero for finitely many values of t only, we have

f(t) =
∑

r∈{0,1}s

(−1)|r|g(t + r).

A proof is left as Exercise 9 (or, one can look up a general case of the
Möbius inversion formula for partially ordered sets in a suitable book). Not
surprisingly, the inversion formula also holds under more relaxed assumptions
on f , but here we suffice with the simple finite case.

To prove Lemma 2.16, we apply Lemma 2.17 with f(t) = |FS(t)| and
g(t) = |GS(t)|. Lemma 2.16 follows by a simple formula manipulation, using
the already mentioned fact that

∑s
r=0

(
s
r

)
(−1)r = 0. �

Asymptotics. The formula (2.10) expresses the expected squared L2-
discrepancy, which turns out to be of the order logd−1 n, as a difference of
two terms. The first term has the order of magnitude n2, and hence these
two terms have to nearly cancel each other. Thus, deriving the asymptotic
behavior is a somewhat subtle matter. The trick is to write the first term,
−n2/3d, as a sum with structure similar to the second term, in such a way
that the corresponding terms nearly cancel each other.

Here is an intuitive explanation of the method. The point set P can be
thought of as a discrete n-point approximation to the (continuous) uniform
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distribution of mass n in [0, 1]d. If P̃ stands for this continuous uniform
distribution, then every canonical box of volume b−t contains mass precisely
bm−t of P̃ , for all t ≥ 0 (while the discrete P achieves this for t ≤ m only).
For such a P̃ replacing P , the analogue of the function fs,m(t) in Lemma 2.16
is

f̃s,m(t) = bm
s∑

r=0

(
s

r

)
(−1)rbm−t−r = b2m−t

(
1 − 1

b

)s

.

Using the binomial formula (1 − x)−s =
∑∞

t=0

(
t+s−1
s−1

)
xt, we arrive at

∞∑

t=0

(
t + s − 1

s − 1

)
b−tf̃s,m(t) = b2m

(
1 − 1

b

)s ∞∑

t=0

(
t + s − 1

s − 1

)
b−2t

= b2m

(
1 +

1
b

)−s

.

Hence, after replacing f by f̃ , the second term in (2.10) becomes

n2

2d

d∑

s=0

(
d

s

)(
−b + 1

3b

)s(
1 +

1
b

)−s

=
n2

2d

d∑

s=0

(
d

s

)(
−1

3

)s

=
n2

3d
,

and so (2.10) with f̃ instead of f gives 0 in accordance with the intuition.
Therefore,

E
[
D2(σσ(P ), Cd)2

]
= 2−d

d∑

s=0

(
d

s

)(
−b + 1

3b

)s

E(s),

where we put

E(s) =
∞∑

t=0

(
t + s − 1

s − 1

)
b−t
(
fs,m(t) − f̃s,m(t)

)

=
∞∑

t=0

(
t + s − 1

s − 1

)
bm−t

s∑

r=0

(
s

r

)
(−1)r

(
�bm−t−r� − bm−t−r

)

=
s∑

r=0

(
s

r

)
(−1)r

∞∑

t=0

(
t + s − 1

s − 1

)
bm−t

(
�bm−t−r� − bm−t−r

)
.

For t ≤ m − r, bm−t−r is an integer, and hence the inner summation can
start from t = max(0,m− r +1). Since we are now interested in the behavior
of the discrepancy for n (and hence m) large and d fixed, we may assume
m ≥ d ≥ r. Then

|E(s)| ≤
s∑

r=0

(
s

r

)
bm

∞∑

t=m−r+1

(
t + s − 1

s − 1

)
b−t.

We need one last technical lemma.
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2.18 Lemma. For any b > 1 and integers s, t0 ≥ 0, we have

∞∑

t=t0

(
t + s − 1

s − 1

)
b−t ≤ b−t0

(
t0 + s − 1

s − 1

)(
1 − 1

b

)−s

.

Leaving the proof as yet another exercise, we thus obtain

|E(s)| ≤
s∑

r=0

(
s

r

)
br−1

(
m − r + s

s − 1

)(
1 − 1

b

)−s

.

Considering d and b as constants and m → ∞, we have |E(s)| = O(ms−1)
and finally E

[
D2(σσ(P ), Cd)2

]
= O(md−1) = O(logd−1 n). This proves Theo-

rem 2.13. �

Bibliography and Remarks. The idea of improving the properties
of the constructed sets by adding randomness in some way was present
in several constructions following the Halton–Hammersley sets.

Fully random b-ary scramblings in the above-defined sense were
studied by Owen ([Owe97] and other papers), who also investigated
the influence of random scrambling to error estimates in numerical
integration. The terminology and the definition are slightly modified
here compared to Owen’s presentation. He essentially works with b-ary
scramblings of infinite depth, given by countably many permutations
πa1,...,aj−1 ; in such a situation, one has slight formal problems with
numbers having all b-ary digits from some position on equal to b − 1.
The difference is unessential; our treatment emphasizes the finitary
nature of random b-ary scramblings in applications to finite sets.

Theorem 2.13 for fully random scrambling was proved by Hickernell
[Hic96]. The validity for random digit-scrambling (and for other types
of random scrambling which are easier to implement than a fully ran-
dom scrambling, as in Exercise 8(b)) was noted in [Mat98c]. Much ear-
lier Chen [Che83] considered modifications of the Halton–Hammersley
construction which, in our terminology, can be described as applying a
digit-scrambling to each coordinate, where the kth coordinate associ-
ated with the prime pk is scrambled by a pk-ary digit-scrambling with
πj(aj) = aj + cj , with cj ∈ GF (pk) chosen independently at random.
Chen proved that the expected squared L2-discrepancy of the result-
ing set is asymptotically optimal, i.e. O(logd−1 n) (also in [BC87]).

Hickernell [Hic96] determined, by slightly more careful estimates,
the constant in the leading term of the bound in Theorem 2.13:
E
[
D2(σσ(P ), Cd)2

]
= C(b, d)md−1 + o(md−1) for b and d fixed and

m → ∞, with

C(b, d) =

(
b − 1

b

)d−1

6d(d − 1)! logd−1 b
.
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But a full asymptotic analysis of the formula, for all of b, d, and m as
parameters, is still missing.

The formula in Lemma 2.14 for the L2-discrepancy for corners was
first derived, to my knowledge, by Warnock [War72]. Morokoff and
Caflisch [MC94] derive an analogous formula for the L2-discrepancy
for axis-parallel boxes, and Hickernell [Hic98] provides a formula for
his generalized notion of L2-discrepancy (see Exercise 6 for a simple
instance). Another formula of this type, expressing the toroidal L2-
discrepancy for boxes, will be presented Exercise 7.1.8.

Exercises

1. (Generalized Faure sets) Let C be a collection of d m × m matrices over
GF (b) with ρ(C) = ρ. Let L(1), . . . , L(d) be nonsingular lower-triangular
m × m matrices over GF (b).
(a) Prove that the collection C1 =

(
L(1)C(1), L(2)C(2), . . . , L(d)C(d)

)
has

ρ(C1) ≥ ρ. (In particular, if C is the collection of matrices for the Faure
set in Example 2.8, the sets generated by the resulting C1 are known as
generalized Faure sets; they were suggested by Tezuka [Tez95].)
(b) Is it true that any generalized Faure set in the sense of (a) arises from
a Faure set by an application of a b-ary scrambling to each coordinate?

2. (Scrambled Halton–Hammersley set) Let P be the n-point Halton–Ham-
mersley set as in Example 2.3. Let σj be a pj-ary scrambling of depth
mj ≥ logpj

n + 1, j = 1, 2, . . . , d− 1, and let P ′ arise from P by applying
σj to the (j + 1)st coordinate, for j = 1, 2, . . . , d − 1. Check that P ′ has
discrepancy for axis-parallel boxes of the order O(logd−1 n), similar to
the original P .

3. Complete the proof of Warnock’s formula (Lemma 2.14).
4. Find the expectation E

[
D2(P, Cd)2

]
for a random n-point set P ⊂ [0, 1]d

(the points of P are chosen uniformly at random and independently).
5. (Limits of usefulness of the L2-discrepancy for corners) Consider a patho-

logical n-point set P ⊂ Rd, whose all points lie at the point (1, 1, . . . , 1)
(or very near to it).
(a) Compute D2(P, Cd)2.
(b) For how large n (in terms of d) does this become larger than the
expected squared discrepancy of a random point set (determined in Ex-
ercise 4)? Evaluate the bound for d = 5, 10, 20, 50, 100.
This indicates that if the dimension is large and the number of points not
too large, then smaller L2-discrepancy for corners does not necessarily
mean a more uniform distribution in the intuitive sense. See [Mat98c] for
more observations in this spirit.

6. (Modified L2-discrepancy for corners)
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From the remarks to Section 1.4, recall the definition of the discrepancy
D2,proj(P ) (below Eq. (1.8)). Derive an analogue of Warnock’s formula
for D2,proj(P )2, and show that it can be evaluated using O(dn2) arith-
metic operations.
Remark. This kind of discrepancy, inspired by Zaremba’s inequality
(1.8), fixes the problems with the L2-discrepancy for corners indicated
in Exercise 5 to some extent, and it seems to be more suitable for high-
dimensional settings than the usual L2-discrepancy for corners.

7. Let B = {0, 1, . . . , b − 1}, let a, a′ ∈ B be two distinct elements of B,
and let π be a random permutation of B. Prove E [π(a) − π(a′)] = 0 and
E
[
|π(a) − π(a′)|

]
= (b + 1)/3.

8. (a) Check that Lemma 2.15 remains valid if σ is chosen as a fully random
b-ary scrambling of depth m ≥ t + 1.
(b)∗ Suppose that b is a prime. Modify the definition of a random b-ary
digit-scrambling as follows. Each permutation πj is given by the for-
mula πj(a) = (ha + gj) mod b, where h is chosen uniformly at random
from {1, 2, . . . , b − 1} and the gj are chosen uniformly at random from
{0, 1, . . . , b − 1}, mutually independent and also independent of h. Show
that Lemma 2.15 still holds with this kind of random scrambling.

9.∗ Prove Lemma 2.17 (the Möbius inversion formula).
10. Prove Lemma 2.18.
11. (Heinrich’s algorithm for the L2-discrepancy for corners [Hei96]) Let

P ⊂ [0, 1]d be an n-point set.
(a)∗∗ Design an algorithm for evaluating

∑
p,q∈P

∏d
k=1 min(pk, qk) in time

O(n logd n), for any fixed d. Begin with the d = 1 case, and work by in-
duction on the dimension. For simplicity, assume that no two coordinates
of points in P coincide.
(b) Explain how to use such an algorithm for evaluating D2(P, Cd).

12.∗ Let x1, x2, . . . , xn ∈ [0, 1] be numbers in increasing order (x1 ≤ x2 ≤
· · · ≤ xn). Give an algorithm for evaluating

∑n
i,j=1 min(xi, xj) in O(n)

time. (This gives a faster algorithm for the d = 1 case in Exercise 11, and
allows one to reduce the running time in that exercise to O(n logd−1 n)
for higher dimensions d.)
This result is from Frank and Heinrich [FH96].

2.5 More Constructions: Lattice Sets

Another interesting class of low-discrepancy sets for axis-parallel boxes is
obtained by intersecting suitable lattices with the unit cube. Discrepancy
estimates for lattices use number-theoretic methods, and they were studied
long before discrepancy theory emerged and before discrepancy was defined
for arbitrary point sets or sequences.

We begin with a simple planar example.
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Fig. 2.7. The set {( i
n
, {iα}): i = 0, 1, . . . , n − 1} for α = 1

2
(
√

5 + 1) and n = 64.

2.19 Example. Let α > 0 be a fixed irrational number. We construct the
set

P =
{
( i

n , {iα}): i = 0, 1, . . . , n − 1
}

,

where {x} stands for the fractional part of x; see Fig. 2.7. For a suitable
choice of the number α, the discrepancy of this set is of the order log n.

The essential property of α used in estimating the discrepancy are the par-
tial quotients of the continued fraction of α. These are the integers a0, a1, . . .,
defined recursively as follows: α0 = α, ai = �αi�, αi+1 = 1/(αi − ai). It
can be shown that if all the ai are bounded above by some constant, then
D(P,R2) = O(log n). The proof is not too difficult, and we leave it as Ex-
ercise 3. One class of numbers α with bounded partial quotients of their
continued fraction are the quadratic irrationalities, which are numbers of the
form u +

√
v, with u, v rational and

√
v irrational. For example, the number

1
2 (1 +

√
5), the famous golden section, has all the ai equal to 1. For n = 64,

the corresponding set is depicted in Fig. 2.7.
How should this construction be generalized to higher dimensions? It is

very natural to choose d − 1 real numbers α1, . . . , αd−1, such that 1 and
α1, . . . , αd−1 are linearly independent over the rationals (and they perhaps
satisfy some additional conditions) and construct the d-dimensional n-point
set {

( i
n , {iα1} , . . . , {iαd−1}): i = 0, 1, . . . , n − 1

}
. (2.11)

These sets are well-known to be uniformly distributed (this can be shown ele-
gantly by higher-dimensional Weyl’s criterion, as was done in Weyl [Wey16]).
It is even known that the discrepancy is close to O(logd−1 n log log n) for al-
most all vectors (α1, . . . , αd−1) ∈ [0, 1)d−1, but no such good bounds seem
to be known for any explicit α1, . . . , αd−1. We describe, without proof, an-
other recent construction of a similar type, for which the known discrepancy
bounds match the best results obtained by other methods.
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Lattices. At the beginning of this chapter, we noted that the “ordinary”
integer lattice has a bad discrepancy. By looking at Fig. 2.7, the reader may
suspect that the set from the above example is a lattice (the set of all integer
linear combinations of two linearly independent vectors), or, more precisely,
the part of such a lattice lying in [0, 1]2. It is indeed the case (Exercise 1).
Let us recall the definition of a lattice in an arbitrary dimension. A lattice Λ
in Rd is a set of the form

Λ = Λ(b1, b2, . . . , bd) =
{ d∑

j=1

ijbj : i1, . . . , id ∈ Z
}

,

where b1, b2, . . . , bd ∈ Rd are linearly independent vectors, called a basis of Λ.
A lattice has many different bases.2

If B is the d × d matrix with b1, b2, . . . , bd as the columns, we can also
write Λ = BZd. The determinant of a lattice Λ = Λ(b1, b2, . . . , bd), denoted by
det(Λ), is the volume of the parallelepiped spanned by the vectors b1, . . . , bd.
In other words, det(Λ) = |det(B)|. It is not hard to prove that the value of
the determinant is a property of the lattice as a point set, and it does not
depend on the particular choice of the basis.

We define the norm of Λ

Nm(Λ) = inf
x∈Λ\{0}

|x1x2 . . . xd|

(x1, . . . , xd are the coordinates of the point x). Geometrically, Nm(Λ) ≥ ε
means that the lattice points distinct from 0 avoid a region near the coor-
dinate hyperplanes, delimited by the hyperbolic surfaces x1x2 . . . xd = ±ε.
Here is a planar illustration:

It turns out that lattices with Nm(Λ) > 0 are good from the discrepancy
point of view. Namely, if we re-scale such a lattice so that the unit cube
contains n of its points, then this n-point set has discrepancy O(logd−1 n):

2 In fact, a lattice can be defined in a seemingly more general way, as a full-dimen-
sional discrete subgroup of (Rd, +). Then it is a moderately nontrivial theorem
that every lattice has a basis.
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2.20 Theorem. If Λ is a lattice in Rd such that Nm(Λ) > 0 and det(Λ) = 1,
and if we set Pt = [0, 1]d ∩ 1

t Λ (where t > 0 is a real parameter), then

D(Pt,Rd) = O(logd−1 |Pt|) as t → ∞. The constant of proportionality in
this bound depends on d and on Nm(Λ) (tending to ∞ as Nm(Λ) → 0).

The known proofs are too complicated to explain here, unfortunately.
(The hard part is to get the exponent d − 1 of the logarithm; proving a
bound like O(logd n) is less difficult.) But we at least describe some lattices
Λ with nonzero norm.

For the planar lattice Λ = Λ((1, 1), (
√

2,−
√

2)), Nm(Λ) > 0 is easy to see:

Nm(Λ) = inf
(i,j) �=(0,0)

∣
∣∣(i + j

√
2)(i − j

√
2)
∣
∣∣ = inf

(i,j) �=(0,0)

∣
∣i2 − 2j2

∣
∣ = 1,

because i2−2j2 is integral and nonzero, since i2 = 2j2 would mean i
j = ±

√
2.

For a larger dimension d, we take a suitable degree d polynomial p(x) with
integer coefficients, with leading coefficient 1, irreducible over the rationals,
and with d distinct real roots α1, . . . , αd. (Or, more scientifically speaking,
we consider some totally real number field of degree d over the rationals.)
For d = 3, an example of such a polynomial is x3 − 3x + 1, and Exercise 11
indicates one possible systematic method for producing such polynomials for
higher dimensions. From the roots of such a p(x), a lattice is produced as
follows:

Λ = Λ((1, 1, . . . , 1), (α1, α2, . . . , αd), (α2
1, . . . , α

2
d), . . . , (α

d−1
1 , . . . , αd−1

d )).

Let us note that the above example for d = 2 was like that with p(x) = x2−2.

2.21 Proposition. If p(x) is a monic irreducible polynomial of degree d
with integer coefficients and with distinct real roots α1, α2, . . . , αd and if Λ
is constructed from the αi as above then Nm(Λ) > 0.

Proof. By definition, Nm(Λ) is the infimum, over all choices of nonzero
integer vectors (i1, i2, . . . , id), of the absolute value of

d∏

j=1

(
i1 + i2αj + i3α

2
j + · · · + idα

d−1
j

)
. (2.12)

First we note that the value of (2.12) is never 0 unless all the ik are 0. This
is because, by the irreducibility of p(x), the αj are not roots of any integer
polynomial of degree smaller than d, and so none of the terms i1 + i2αj +
· · · + idα

d−1
j can be 0 unless all the ik are 0.

Next, we claim that for integral i1, . . . , id, the value of (2.12) is always an
integer. We note that (2.12) is a polynomial in i1, i2, . . . , id, each of whose
coefficients is a symmetric polynomial in α1, . . . , αd with integer coefficients.
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We recall a theorem of Newton on symmetric polynomials, in the following
form (see [Sti94]). Let p(x) = xd + ad−1x

d−1 + · · ·+ a0 be a polynomial with
roots α1, . . . , αd. Then any symmetric polynomial in the αj with integer coef-
ficients can be written as a polynomial in the ai, also with integer coefficients.
In our case this means that the coefficient of each monomial iν1

1 iν2
2 . . . iνd

d in
(2.12) is an integer. This concludes the proof of Nm(Λ) > 0. �

According to an unproved conjecture (a generalization of Littlewood’s
conjecture), for d > 2, the lattices obtained by the above construction are
essentially the only ones with nonzero norm (this is not true for d = 2; see
Exercise 10).

Strong results (asymptotically tight ones, in fact) are also known about
the Lp-discrepancy of lattices with Nm(Λ) > 0:

2.22 Theorem. Let Λ be a lattice in Rd with det(Λ) = 1 and Nm(Λ) > 0,
let p ≥ 1 be a fixed real number, and let t > 0 be a real parameter. Then
there exists a vector x ∈ Rd such that the set

Px,t = [0, 1]d ∩ 1
t
(Λ + x)

has Lp-discrepancy O(log(d−1)/2 |Px,t|) as t → ∞, where the constant of
proportionality depends on Nm(Λ) and on p.

Again, we omit a proof. Note that this theorem provides a third proof of
the optimal upper bound for the L2-discrepancy (Theorem 2.5). As in the
previous two proofs shown, we do not get an explicitly described set here,
because the existence of a suitable translation x is proved nonconstructively.

Bibliography and Remarks. We have already encountered re-
sults about the distribution of the sets like the one in Example 2.19,
or equivalently, of the sequences ({nα}), in Section 1.1. This is a clas-
sical theme in uniform distribution theory and these sequences and
their multidimensional versions (the Kronecker sequences) have been
studied in great detail from various points of view. Here we quote just
a small assortment of remarkable theorems in this area (for more in-
formation and references see, for instance, [DT97], [Sós83b]; or also
[KN74] for older material).

It is known that the discrepancy of the ({nα}) sequence achieves
the asymptotically optimal O(log n) bound if and only if the sequence
of the Cesàro means of the partial quotients of the continued fraction
for α is bounded (Drmota and Tichy [DT97] attribute this result to
Behnke [Beh22], [Beh24]). Kesten [Kes66] proved that, for each α, the
only intervals for which the sequence ({nα}) has bounded discrepancy
are those of length {kα} for some integer k. This theorem has a gener-
alization to arbitrary sequences as well as interesting generalizations
in ergodic theory (see [DT97] or [BS95] for references).
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Recently, many difficult and often surprising results on the detailed
behavior of the discrepancy of the sequence ({nα}) were discovered
by Beck. Among others, he proved several “deterministic central limit
theorems,” showing that in many cases the discrepancy behaves as if
it were a sum of log n independent random variables. For example, let
α =

√
2 and let D(y) = vol(Ty)− |Ty ∩ (Z2 + (1

2 , 1
2 ))|, where Ty is the

gray right triangle in the picture:

0

y

y
√

2

Then there is a constant c such that the distribution of D(y)/c
√

log n,
for y varying in [0, n], approaches the standard normal distribution
N(0, 1) as n → ∞. These results, together with several other exciting
discrepancy-theoretic results and problems, are surveyed in [Bec01],
and they are the topic of Beck’s forthcoming book [Becb].

For higher-dimensional Kronecker sequences, the theory is not so
well-developed, mainly because a higher-dimensional analogue of the
continued fractions is missing. As was proved by Khintchine [Khi23],
[Khi24] for d = 1 and by Beck [Bec94] for higher dimensions, the dis-
crepancy of the d-dimensional Kronecker sequence ({nα1} , . . . , {nαd})
is between Ω(logd n(log log n)1−ε) and O(logd n(log log n)1+ε) for al-
most all (α1, . . . , αd) ∈ [0, 1]d, with an arbitrarily small constant ε > 0
(earlier higher-dimensional results of this type are due to Schmidt
[Sch64]). Note that, by the correspondence of sequences in dimension
d and sets in dimension d + 1 mentioned in Section 1.1, this implies
that the discrepancy of the n-point set (2.11) is almost always around
logd−1 n log log n. The use of certain Kronecker sequences for numeri-
cal integration was suggested by Richtmyer [Ric51], and they behave
quite well in practice [JHK97].

Sets somewhat similar to initial segments of Kronecker sequences
are obtained by taking suitable rational numbers for the αj . One
chooses a d-dimensional integer vector a ∈ {0, 1, . . . , n − 1}d and con-
siders the n-point set

{({
i
a1

n

}
, . . . ,

{
i
ad

n

})
: i = 0, 1, . . . , n − 1

}
. (2.13)

For a randomly chosen vector a, the expected discrepancy for corners is
O(logd n). It is even known that a vector a achieving this low discrep-
ancy can be chosen of the form (1, g, g2, . . . , gd−1) mod n for a suitable
integer g [Kor59], which makes computer search for a good a more fea-
sible. An advantage of sets of this type for numerical integration is that
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they achieve higher order convergence for sufficiently smooth and pe-
riodic functions. The error of approximating the integral of a function
f by the average over the point set (2.13) can be simply expressed
using the Fourier coefficients of f . Suppose that f : [0, 1)d → R can be
represented by its Fourier series: f(x) =

∑
k∈Zd f̂ke2πi〈k,x〉. It is easy

to derive that
∫

[0,1)d

f(x) dx − 1
n

n−1∑

j=0

f
({a

n
j
})

= −
∑

k∈Zd\{0}, 〈k,a〉≡0 (mod n)

f̂k.

The smoother f (or, rather, its periodic extension to Rd) is, the faster
the coefficients f̂k tend to 0 as ‖k‖ → ∞, and this is the reason for
such point sets being advantageous for smooth functions. The choice
of a ∈ Zd should be such that 〈k, a〉 is not congruent to 0 modulo n
for k with small norm, since then the Fourier coefficients of f with
small indices are neutralized. This is just a very rough outline of the
main idea.

These constructions are known under the name “good lattice
points.” Their investigation was initiated by Korobov [Kor59]. A quick
introduction to the method can be found in [SM94], and the books
[SJ94], [FW94], or [Nie92] offer more detailed treatments. Good lattice
points are also related to another interesting field, namely to lattice
packings—see the book of Conway and Sloane [CS99].

A pleasant introduction to the geometry of lattices is Siegel [Sie89].
Theorems 2.20 and 2.22 are due to Skriganov [Skr94]. For the

L2-discrepancy, a result analogous to Theorem 2.22 (but with spe-
cific lattices constructed in a way similar to the one shown in the
text) was proved in an earlier work of Frolov [Fro80], and it is also
contained in [Skr90]. The latter paper proves the weaker O(logd n)
worst-case discrepancy bound as well. The main ideas of that proof,
which we very briefly outline below, are not too complicated (cer-
tainly much simpler than proofs of the O(logd−1 n) bound) but there
are numerous technical details. For a fixed axis-parallel box R, let
ϕ(x) = vol(R) − |(R + x) ∩ Λ| be the discrepancy of R translated by
x (here Λ is a lattice with Nm(Λ) > 0 and det(Λ) = 1). We have
ϕ(x+v) = ϕ(x) for any v ∈ Λ, and so ϕ can be regarded as a function
on the compact Abelian group G = Rd/Λ. In the proof, the Fourier
series of ϕ is considered (see page 214 for the definition of the Fourier
transform on an Abelian group), namely

∑
u∈Λ∗ ϕ̂(u)e−2πi〈u,x〉, where

Λ∗ is the lattice dual to Λ (see Exercise 4 for definition) and where
ϕ̂(u) =

∫
G

ϕ(x)e2πi〈u,x〉 dx. In order to get sufficiently nice Fourier
series, the characteristic function of the box R is approximated from
below and from above by suitable smooth functions. A key step in the
proof, where the order of magnitude of the resulting bound appears,
is showing that

∑
x∈Λ: 0<‖x‖<ρ

1
x1x2···xd

= O(logd(ρ + 2)). We refer to
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[Skr90] for more information. The proofs of the L2-discrepancy bound
in [Skr90] and in [Fro80] are somewhat similar.

A new proof of Theorem 2.20 (on the worst-case discrepancy) was
given by Skriganov in [Skr98], via ergodic theory and Fourier analysis.
The paper also shows that for almost all lattices, the discrepancy is
very close to O(logd−1 n). To state this precisely, we need to define
the appropriate measure on lattices. Any lattice Λ with det(Λ) = 1
can be written Λ = BZd with B ∈ SL(R, d). Here SL(R, d) is the
special linear group of all real d × d matrices with determinant 1 and
with matrix multiplication as the group operation. Moreover, two such
matrices B and B′ give the same lattice if and only if B′ = ±TB for
some T ∈ SL(Z, d) (these are integer matrices with determinant 1;
see Exercise 5). Hence a lattice with determinant 1 can be regarded
as an element of Ld = SL(R, d)/SL(Z, d). (Note that this is not a
group!) This (noncompact) quotient space admits a unique proba-
bilistic invariant measure. Lattices with nonzero norm form a null set
in Ld, but as is proved in [Skr98], for almost all Λ ∈ Ld, the discrep-
ancy of the intersection of Λ appropriately scaled with the unit cube
is O(logd−1 n(log log n)1+ε) for an arbitrarily small constant ε > 0.
Similar results hold for the family of translated and scaled copies of
any fixed convex polytope (here the discrepancy bound is actually
formulated in the “whole-space setting” explained in the remarks to
Section 7.1). The behavior of the discrepancy for a lattice Λ ∈ Ld

is shown to depend on the orbit of the dual lattice Λ∗ in Ld under
the action of the group of diagonal matrices. This orbit is bounded if
and only if Nm(Λ) > 0. The faster the orbit recedes to the “infinity”
in Ld, the worse the discrepancy becomes. Moreover, for any fixed
lattice Λ, almost all rotations of Λ produce sets with discrepancy at
most O(log2d−2 n(log log n)1+ε). A proof dealing with a similar phe-
nomenon in a different and much simpler setting (only involving the
standard planar lattice Z2) will be shown in Section 3.2. Let us stress
that all the results mentioned in this paragraph concern the worst-case
discrepancy, and the analogous questions for the Lp-discrepancies are
open.

Skriganov [Skr94] also proves that the sets Pt,x as in Theorem 2.22
have the asymptotically smallest possible error for integrating smooth
functions from a certain class. More precisely, if f : [0, 1]d → R is a
function such that for some k ≥ 1, the mixed derivative ∂kdf(x)

∂xk
1∂xk

2 ···∂xk
d

exists for all x ∈ [0, 1]d and has a bounded Lp-norm for some fixed
p < ∞, then the integration error converges as O(n−k log(d−1)/2 n) for
n = |Pt,x| → ∞. This compares favorably with the known good lattice
points methods, but I am aware of no numerical comparisons.

In higher dimensions, it may be difficult to generate the points of
a given lattice lying in the unit cube efficiently, without considering
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many more lattice points outside of the cube. For example, the problem
of finding, for a given d-dimensional lattice Λ, the smallest a > 0 such
that the cube [−a, a]d contains a point of Λ distinct from 0 (in other
words, computing the shortest vector of Λ in the L∞-norm) is known
to be NP-hard if d is a part of input (Lagarias [Lag85]; Lovász [Lov86]
is a gentle introduction to algorithmic problems for lattices). This and
some related algorithmic hardness results indicate that the difficulty
with finding the points of a given lattice that lie in the unit cube might
be essential.

Exercises

1. Show that the set in Example 2.19 equals Λ∩ [0, 1)2, where Λ is a lattice,
i.e. Λ = {(ib1 + jb2): i, j ∈ Z} for suitable vectors b1, b2 ∈ R2.

2. (a) Show that any real number is uniquely determined by its continued
fraction.
(b)∗ Show that the continued fraction of a quadratic irrationality is even-
tually periodic.
(c)∗ Show that infinite periodic continued fractions determine quadratic
irrationalities.

3.∗ Let α be as in Example 2.19, i.e. with bounded partial quotients of its
continued fraction. Prove that the discrepancy for axis-parallel rectan-
gles of the set constructed in that example is O(log n). Follow the basic
scheme of the proof of Proposition 2.2, but replace the canonical inter-
vals by intervals [k/qj , (k + 1)/qj), where the qj are denominators of the
convergents of α, defined by q0 = 1, q1 = a1, and qn = anqn−1 + qn−2.
(You may want to begin with the case α = 1

2 (
√

5 + 1).) A detailed proof
can be found in several books, such as [Hla84].

4. Let Λ be a lattice in Rd, Λ = BZd. Show that the following two definitions
of a set Λ∗ ⊂ Rd are equivalent. This Λ∗ is called the dual lattice to Λ.
(i) Λ∗ = {y ∈ Rd: 〈x, y〉 ∈ Z for all x ∈ Λ}.
(ii) Λ∗ = (B−1)T Zd.

5. Let Λ = BZd be a lattice in Rd, let T be a d×d matrix, and put B′ = TB.
Show that B′Zd = Λ if and only if T ∈ SL(Z, d) or −T ∈ SL(Z, d),
meaning that T is an integer matrix with determinant ±1.

6. (Norm and the shortest vector) Show that the following are equivalent
for a lattice Λ in Rd:
(i) Nm(Λ) > 0.
(ii) There exists an ε > 0 such that for any d × d diagonal matrix D
with determinant 1, all nonzero vectors of the lattice DΛ have length at
least ε.

7. (Shortest vector in the dual lattice) Show that if a lattice Λ contains
a linearly independent set {v1, . . . , vd} of d vectors, each of length at
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most r, then all the nonzero vectors of the dual lattice Λ∗ have length at
least 1

r .
8.∗ Prove that for any d and any ε > 0, there is a number R = R(d, ε)

with the following property. If Λ is a d-dimensional lattice in Rd with
determinant 1 such that any nonzero v ∈ Λ has length at least ε, then
the ball B(0, R) contains d linearly independent vectors v1, . . . , vd ∈ Λ.
You may want to use the following version of Minkowski’s First Theorem
from the geometry of numbers (see [Sie89]): If Λ is a lattice in Rd and
C ⊂ Rd is a convex body centrally symmetric about 0 and with vol(C) >
k2d det(Λ), for a natural number k, then |Λ ∩ C| ≥ k + 1. This result is
usually stated with k = 1, but the generalization to an arbitrary k is easy.
Let us remark that much more is known about the existence of “short”
bases for lattices, and that such problems are studied in the theory of
basis reduction (see [Lov86], [Sie89]).

9. Using Exercises 6, 7, and 8, show that a lattice Λ in Rd satisfies Nm(Λ) >
0 if and only if Nm(Λ∗) > 0. (For a more systematic approach, using
Minkowski’s Second Theorem, see [Skr94].)

10. (Planar lattices with nonzero norm) Show that a lattice Λ((a, b), (c, d)) ⊂
R2 has nonzero norm if and only if both the numbers a

b and c
d are badly

approximable. A real number α is badly approximable if |mq −α| > c
q2 for

all integers q > 0 and m, c > 0 a constant.
11. (Polynomials suitable for constructing lattices with large norm) In this

exercise, let p ≥ 5 be a prime and let ω = e2πi/p be a primitive pth root
of unity. Although completely elementary proofs are possible, a natural
solution requires some basic field theory, such as can be found in Stillwell
[Sti94], for instance.
(a)∗ Write p = 2d + 1 and put αj = ωj + ω−j , j = 1, 2, . . . , d. Show that
these αj are real numbers and that the polynomial q(x) =

∏d
j=1(x−αj)

is irreducible over the rationals and has integer coefficients.
(b)∗ More generally let p = 2md + 1 for some integer m, and let r be a
primitive element modulo p, meaning that the powers r0, r1, . . . , rp−2 are
all distinct modulo p (in other words, r is a generator of the multiplicative
group of the field Z/pZ). Put αj =

∑2m−1
k=0 ωrkd+j

, j = 1, 2, . . . , d. For
these αj , show the same claim as in (a).



3. Upper Bounds in the Lebesgue-Measure

Setting

In this chapter we start proving upper bounds for the discrepancy for objects
other than the axis-parallel boxes. We will encounter a substantially different
behavior of the discrepancy function, already mentioned in Section 1.2. For
axis-parallel boxes, the discrepancy is at most of a power of log n, and similar
results can be shown, for example, for homothets of a fixed convex polygon.
The common feature is that the directions of the edges are fixed. It turns out
that if we allow arbitrary rotation of the objects, or if we consider objects
with a curved boundary, discrepancy grows as some fractional power of n.
The simplest such class of objects is the set H2 of all (closed) halfplanes, for
which the discrepancy function D(n,H2) is of the order n1/4. For halfspaces in
higher dimensions, the discrepancy is of the order n1/2−1/2d; so the exponent
approaches 1

2 as the dimension grows. Other classes of “reasonable” geometric
objects, such as all balls in Rd, all cubes (with rotation allowed), all ellipsoids,
etc., exhibit a similar behavior. The discrepancy is again roughly n1/2−1/2d,
although there are certain subtle differences.

Since upper bounds for discrepancy in the axis-parallel case were obtained
by various constructions of algebraic or number-theoretic nature, one might
expect that similar sets will also work for balls, say. Interestingly, results in
this spirit for other classes of objects are scarce and quite difficult, and they
lead to suboptimal bounds. The methods used (so far) for obtaining strong
upper bounds are quite different and essentially combinatorial. Combinatorial
methods, in particular various semi-random constructions, currently yield the
best known asymptotic upper bounds in most cases. The axis-parallel boxes
in Rd are a (weak) exception, since there the combinatorial methods only
provide an O(logd+1/2 n) bound while the best known explicit constructions
give O(logd−1 n). The class of the convex sets in the plane can be regarded as
another significant exception; for them, the best known construction combines
number-theoretic and combinatorial methods (see Section 3.1).

In the first section of this chapter, we present an upper bound on the
discrepancy for discs in the plane. The construction is random and the proof
is a probabilistic argument, but we still remain in the “Lebesgue-measure”
setting. Later on, mainly in Chapter 5, we will see purely combinatorial gen-
eralizations of this approach.

J. Matoušek, Geometric Discrepancy, Algorithms and Combinatorics 18,
DOI 10.1007/978-3-642-03942-3 3, c© Springer-Verlag Berlin Heidelberg 2010
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The methods in Section 3.2 are quite different. We consider the Lebesgue-
measure L1-discrepancy for halfplanes, and show that it is only O(log2 n).
This contrasts with the worst-case discrepancy, or even the L2-discrepancy,
for halfplanes, which are of the order n1/4 (see Chapters 5 and 6). The set
with this low L1-discrepancy is the regular

√
n ×√

n grid. The proof is of a
number-theoretic nature and it employs a suitable Fourier series expansion.
The method is specific for the Lebesgue-measure setting, and it is quite pos-
sible that this result has no combinatorial analogue.

3.1 Circular Discs: a Probabilistic Construction

Here we exhibit the existence of an n-point set in the plane whose discrepancy
for the family B2 of all circular discs is O(n1/4

√
log n). As we will see in Chap-

ter 6, there is an Ω(n1/4) lower bound for this discrepancy, and so the upper
bound is nearly the best possible. We consider discs for simplicity only; it will
be apparent that a similar argument works for upper-bounding the discrep-
ancy for other “reasonable” shapes as well. Moreover, a relatively straight-
forward generalization into higher dimensions gives a discrepancy bound of
O(n1/2−1/2d

√
log n) for any fixed d for balls in Rd and for many other fami-

lies.

3.1 Theorem. D(n,B2) = O(n1/4
√

log n).

We begin with a simple lemma, whose proof is left as Exercise 1.

3.2 Lemma. Consider a k×k grid of squares (like a k×k chessboard). Any
circle intersects the interiors of at most 4k squares of the grid. �

Proof of Theorem 3.1. As the first step, we are going to approximate the
continuous Lebesgue measure in [0, 1]2 by a measure concentrated on a large
but finite point set Q. A suitable choice for Q is a sufficiently fine grid, and
for definiteness we can take the n × n grid:

Q =
(
( 1
2n , 1

2n ) + 1
nZ2

)
∩ [0, 1]2.

In Fig. 3.1, we have n = 16 and Q is the fine 16 × 16 grid.
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Fig. 3.1. A random construction of a low-discrepancy set for discs, with n = 16.

First we observe that Q has discrepancy at most O(n) for discs, i.e. for
any disc B ∈ B2, we have

|D(Q,B)| =
∣∣
∣n2 · vol�(B) − |Q ∩ B|

∣∣
∣ = O(n), (3.1)

which means, in the terminology of Section 1.3, that Q is a 1
n -approximation

for discs with respect to the measure vol�. This is not a particularly good
achievement for an n2-point set, but it is good enough as a starting point for
the subsequent proof.

To see that (3.1) holds, draw a little square of side 1
n centered at q for

each point q ∈ Q, and make q “responsible” for the area of its square. Given
a disc B ∈ B2, the points q whose little squares fall completely outside B or
completely inside B fulfill their duty perfectly, contributing 0 to the difference
n2 · vol�(B)− |Q∩B|, and the discrepancy can only be caused by the points
whose little squares intersect the boundary of B. The number of such little
squares is O(n) by Lemma 3.2, and so |D(Q,B)| = O(n) as claimed.

We are now going to select a random n-point subset P of Q in a suitable
way and show that its discrepancy will typically be small. The finiteness of Q
allows us to carry out a simple probabilistic argument. Suppose that n is a
perfect square (this is no loss of generality; see Exercise 2). We divide the
unit square into a

√
n ×√

n grid G of squares, as in Fig. 3.1. Each square G
in this grid contains exactly n points of Q. Let us put QG = Q ∩ G. For
each G ∈ G, we are going to pick one point, qG ∈ QG, to “represent” the n
points in QG. This qG is chosen from QG uniformly at random, the choices
being independent for distinct squares G ∈ G (a typical result of such random
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choice is illustrated in Fig. 3.1). Taking the points qG for all G ∈ G yields a
(random) n-point set P .

Let us put Δ = Cn1/4
√

log n, where C is a sufficiently large constant (to
be fixed later). We prove that with a positive probability we have, for all
discs B ∈ B2 simultaneously,

∣∣∣∣
1
n
|Q ∩ B| − |P ∩ B|

∣∣∣∣ ≤ Δ. (3.2)

An n-point set P satisfying this condition is a (Δ/n)-approximation for the
set system induced by discs on Q, and by Observation 1.7 (iterated approx-
imation), P is also a (Δ

n + 1
n )-approximation for discs with respect to the

measure vol�. Hence D(P,B2) = O(Δ + 1), and so establishing (3.2) for all
B is enough to prove Theorem 3.1.

Let us first consider the disc B arbitrary but fixed, and let us bound
the probability that (3.2) is violated for this particular B if P is chosen at
random in the above-described way. To this end, we consider the

√
n × √

n
grid G again. We recall that for each square G ∈ G we have one point qG ∈ P
to represent the n points of QG in G; we can think of the points of QG as
having weight 1

n each, while qG has weight 1. If G ⊆ B or B ∩ G = ∅, the
point qG certainly represents its n points of QG perfectly, so we only need to
worry about the set GB ⊆ G of squares intersecting the boundary of B, as in
the following picture:

B

For G ∈ GB , let kG = |QG ∩B| be the number of points of QG falling into B.
The total contribution of these points to the quantity 1

n |Q∩B| is kG

n . On the
other hand, the point qG contributes either 1 or 0 to |P ∩B|. Let XG be the
deviation of the contribution of qG from the contribution of QG (i.e. by how
much qG deviates from representing its points perfectly):

XG =
{

−kG

n if qG �∈ B

1 − kG

n if qG ∈ B.

Note that X =
∑

G∈GB
XG = 1

n |Q∩B|−|P ∩B| is the left-hand side of (3.2),
and so we need to show that |X| ≤ Δ with high probability.

Since qG was chosen from QG uniformly at random, the event qG ∈ B
has probability pG = kG

n . Hence XG is a random variable attaining value
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1 − pG with probability pG and value −pG with probability 1 − pG. We are
in a situation fairly typical in combinatorial applications of probability. We
have a random variable X that is the sum of m = |GB | independent random
variables, and Lemma 3.2 tells us that m = O(

√
n). The expectation of each

XG, and hence also of X, is 0, and we need to estimate the probability of X
deviating from its expectation by more than Δ.

Here is a rough picture of the situation. Being a sum of independent ran-
dom variables, X has an approximately normal distribution with mean 0.
The variance of each XG is clearly at most 1, so the variance of X is no
more than m and the standard deviation of X is at most

√
m = O(n1/4)

(this is where the mysterious exponent 1
4 first appears). And for a normally

distributed random variable X with zero mean, the probability of |X| exceed-
ing the standard deviation λ-times behaves roughly like exp(−λ2/2), so we
may hope that in our situation, with λ = C

√
log n and C large, Pr[|X| > Δ]

is bounded by something like n−c for a large constant c. To get a rigorous
bound on Pr[|X| > Δ], we use an inequality of a Chernoff type, namely The-
orem A.4 in Alon and Spencer [AS00]. This inequality says that if X is a
sum of m independent random variables Xi, where Xi takes value −pi with
probability 1 − pi and value 1 − pi with probability pi (for some pi ∈ [0, 1]),
then for any Δ > 0, we have Pr[|X| > Δ] < 2 exp(−2Δ2/m).

For our carefully chosen value Δ = Cn1/4
√

log n, this yields that for any
fixed disc B, the probability that

∣∣ 1
n |Q ∩ B| − |P ∩ B|

∣∣ > Δ is at most
n−c, where the constant c can be made as large as we wish by choosing C
suffciently large. It remains to observe that although there are infinitely many
discs, we only need to consider polynomially many (in n) of them. Namely,
we have

3.3 Lemma. Let Q be an arbitrary m-point set in the plane. Call two discs
B and B′ equivalent if B ∩ Q = B′ ∩ Q. Then there are at most O(m3)
equivalence classes. In other words, at most O(m3) distinct subsets of Q can
be “cut off” by a circular disc.

The proof of this lemma is simple but it deserves some attention, so we
postpone it a little and we finish the proof of Theorem 3.1. If we have two
discs B and B′ with B ∩Q = B′ ∩Q, then the required discrepancy estimate
(3.2), i.e.

∣∣ 1
n |Q∩B|− |P ∩B|

∣∣ ≤ Δ, either holds for both or for none of them,
and so B and B′ are equivalent for our purposes. By Lemma 3.3, there are
at most O(|Q|3) = O(n6) equivalence classes, and if F denotes a family of
discs containing one representative from each equivalence class, we have

Pr [(3.2) fails for some B] = Pr [(3.2) fails for some B ∈ F ] ≤
∑

B∈F
Pr [(3.2) fails for B] = O(n6) · n−c < 1

is c is large enough. Theorem 3.1 is proved, up to the proof of Lemma 3.3. �
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Proof of Lemma 3.3. Somewhat informally, one can argue that any given
disc can be moved and expanded or shrunk, while still defining the same
subset of Q, until it has 3 points of Q on the boundary or 2 points determining
a diameter. Since there are O(m3) triples and pairs of points of Q, there are
no more than O(m3) equivalence classes. But this argument is somewhat
dubious; for instance, we may sometimes have a point of Q “just hitting” the
boundary from outside but we don’t want it to lie in the considered disc.

To give a more rigorous proof, we first observe that Q can be assumed
to be in general position (having no 3 collinear and no 4 cocircular points).
Namely, if a (closed) disc B defines certain subset S = B ∩Q, we can replace
B by a concentric disc B′ with a little larger radius such that B′ ∩ Q = S.
Consequently, if we perturb the points of Q by a sufficiently small amount,
each subset that could have been cut off by a disc before the perturbation
can still be cut off by some disc. (This perturbation argument is not strictly
necessary here, since the proof can be done for a not necessarily general
position as well, but assuming general position is convenient and it is useful
to have this idea at hand.)

Next, it is helpful visualize the situation in the “space of discs.” Each
disc B ∈ B2 can be represented by the triple (x, y, r), where x and y are the
coordinates of its center and r is its radius. For a point p = (p1, p2) ∈ Q, the
set of all discs containing p is the cone {(x, y, r): (x− p1)2 + (y − p2)2 ≤ r2}.
The m points of Q define m (congruent) cones in the (x, y, r)-space with
apexes in the r = 0 plane, and we want to bound the maximum possible
number of regions defined by these cones. Note that it suffices to count the
3-dimensional connected regions arising by removing the surfaces of the m
cones from the (x, y, r)-space (because for every subset S ⊆ Q defined by a
circular disc, the set of all discs B with B∩Q = S contains a small open ball,
as is easy to check). The picture below illustrates the subdivision of space by
5 such conic surfaces:

(of course, the cones should extend up to infinity, but then the reader wouldn’t
be able to admire the regions inside the cones). The general position assump-
tion on the point set implies that no 4 of these conic surfaces have a point in
common.



3.1 Circular Discs: a Probabilistic Construction 89

One way of counting the regions is using their lowest points. The closure
of each region, except for the one outside of all the cones, has a unique
lowest point. Each such lowest point is defined geometrically by at most 3
cones (it may be the apex of a cone, or the intersection of the surfaces of
3 cones, or the lowest point in the intersection of 2 cones), and one lowest
point is adjacent to at most a constant-bounded number of regions (by the
general position assumption). Finally, each subset of at most 3 cones defines
a constant-bounded number of candidates for a lowest point, and so it follows
that the total number of regions is O(m3). This type of argument could be
phrased in terms of discs and points, but it would become much less intuitive.

Another, more geometric proof proceeds by induction on m, showing that
by deleting one cone out of m, at most O(m2) pairs of regions are merged.
This is because the intersections with the surfaces of the m − 1 remaining
cones subdivide the surface of the deleted cone into O(m2) regions. We omit
further details here. We will return to similar considerations in more general
context in Chapter 5. �

The family F constructed in the proof approximates the family of all discs
“combinatorially” with respect to the finite point set Q. For any disc, there is
a disc in F having the same intersection with Q. Alternatively, we could also
use a family F1 of discs approximating the family of all discs “geometrically,”
in the sense of measure. This means that each disc B can approximated by a
disc Bin ∈ F1 from inside and by a disc Bout ∈ F1 from outside, in such a way
that the area of Bout \Bin is sufficiently small. Then, instead of sampling the
points of P from the auxiliary finite set Q as in the proof above, we would
sample each point qG directly from the continuous uniform distribution in
the little square G. The reader is invited to try this approach in Exercise 5.
Both this method with continuous sampling and the one shown above have
their advantages and possibilities of generalization, and none can be said to
supersede the other.

Remark on Convex Sets. This is perhaps a suitable place to mention
that the discrepancy has also been studied for the class of all convex sets in
[0, 1]d. Here the behavior of the discrepancy function is considerably different
from the case of balls, or rotated boxes or, more generally, geometric objects
described by a bounded number of real parameters. The discrepancy for con-
vex sets has order of magnitude roughly n1−2/(d+1) (see remarks below and
Exercise 6).

Bibliography and Remarks. Historically, the correct bounds
for discrepancy with rotation allowed were first approached by lower
bounds, which will be discussed in Chapters 6 and 7. The first near-
tight upper bounds were obtained by Beck (published in [BC87] and
[Bec87]) by an argument based on continuous sampling from the grid
squares and a geometric approximation argument, as was explained in
the text following the proof.
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Incidentally, random sampling similar to the one employed in
Beck’s proof is used in computer graphics in certain algorithms for
improving image quality (jittered sampling).

In Chapter 5, we will consider a combinatorial generalization of
the proof method shown in this section. For example, we will be
able to deal with discrepancy with respect to arbitrary measures. But
there are generalizations of Beck’s original method (with geometric
approximation arguments) which are not captured by the combina-
torial approach. For instance, let C be a convex body in Rd that
is not too small, meaning that it contains a ball of radius n−1/d.
Beck proved [Bec87], [BC87] that the discrepancy for the family of
all translated, rotated, and scaled-down copies of C is bounded above
by O(n1/2−1/2d

√
S log n), where S is the surface area of the set C. This

result has no direct combinatorial counterpart—see Exercise 5.2.2.
We have derived an upper bound on the worst-case discrepancy

(for discs, but the discussion again applies for various other shapes as
well). This implies upper bounds for the Lp-discrepancy for all p, and
for p ≥ 2, this bound is nearly tight, i.e. n1/4 is roughly the correct
order of magnitude in the plane. In fact, one can even prove that for
any fixed p < ∞, the Lp-discrepancy is bounded by O(n1/4), without
any logarithmic factors (which is tight for p ≥ 2). For p = 2, this has
been proved by Beck and Chen [BC90] by a method similar to Roth’s
one (Section 2.2), and it can also be established without much trouble
using the construction presented in the current section. Exercise 5.4.3
shows a simple result on Lp-discrepancy in a combinatorial setting.

There are some explicit constructions of low-discrepancy sets in
settings other than for the axis-parallel boxes. Perhaps most notably,
Lubotzky et al. [LPS86], [LPS87] construct an n-point set on the two-
dimensional sphere S2 with discrepancy O(n2/3) for spherical caps (in-
tersections of S2 with halfspaces) using very beautiful and advanced
mathematics. Note that the asymptotic bound remains far behind the
straightforward O(

√
n log n) bound for a random point set, not speak-

ing of the near-tight O(n1/4
√

log n) bound which can be obtained by
the method of the present section. But an explicit construction has
some advantages and certainly it provides new insights. Also, the con-
struction is near-optimal in certain sense for numerical integration of
functions on S2.

The construction can be described quite concisely. Let ρx, ρy,
and ρz denote the rotation in R3 by the angle arccos(− 3

5 ) around
the x-axis, y-axis, and z-axis, respectively. By a k-step rotation, we
mean any composition τ = τ1 ◦ τ2 ◦ · · · ◦ τk, where each τi is one of
ρx, ρ−1

x , ρy, ρ−1
y , ρz, and ρ−1

z , and where τi �= τ−1
i+1. Fix a starting

point p ∈ S2 lying on none of the coordinate axes, and form the set
{τ(p): τ is a k-step rotation}. It can be proved that this set has ex-
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Fig. 3.2. Lubotzky–Phillips–Sarnak sets in S2 for k = 2 and 3.

Fig. 3.3. A Lubotzky–Phillips–Sarnak set in S2 for k = 4.

actly n = 3
2 (5k −1) points and discrepancy O(n2/3) for spherical caps.

Figs. 3.2 and 3.3 show such sets for a randomly chosen initial point p.
(Of course, the construction is just the simplest one from an infinite
family; for each prime q congruent to 1 modulo 4, there is a construc-
tion involving q + 1 generator rotations, which correspond to ways of
writing q as a sum of 4 squares of integer with the first addend being
positive and odd.) In the proof, the operator T :L2(S2) → L2(S2)
given by Tf(x) =

∑
τ f(τx) is analyzed (where τ in the summa-

tion runs through the six 1-step rotations). From Ramanujan’s con-
jecture concerning the modular group, established by Deligne in the
1970s, Lubotzky et al. prove that the second largest eigenvalue of T
is bounded away from the largest one (which is 6), and they derive
the discrepancy bound and the quadrature error bound from this.
The underlying mathematics resembles constructions of explicit ex-
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pander graphs (by the same authors). The proof is also presented in
Chazelle [Cha00].

The indicated proof of Lemma 3.3 via the geometric approach is a
small sample of investigating the number of certain geometric config-
urations using arrangements of suitable surfaces. An extensive back-
ground and recent results in this area can be found in Sharir and
Agarwal [SA95].

The discrepancy for convex sets was introduced by Zaremba [Zar70]
under the name isotropic discrepancy. Schmidt [Sch75] proved a lower
bound of Ω(n1−2/(d+1)) for it by a method indicated in Exercise 6.
Stute [Stu77] showed that for any fixed dimension d ≥ 3, if n points are
drawn from the uniform distribution in the unit cube independently at
random, then the discrepancy matches this lower bound up to a small
logarithmic factor with high probability. In contrast, in the plane a
random point set cannot work, because the correct bound is only of the
order n1/3, while a random set gives discrepancy at least of the order√

n. Beck [Bec88c] showed by an ingenious semi-random construction
that the discrepancy for convex sets in the plane is O(n1/3 log4 n), and
so Schmidt’s lower bound is nearly sharp in the plane as well.

The discrepancy of any n-point set P ⊂ [0, 1]d for convex sets
can be bounded in terms of the discrepancy of P for rectangles: it is
at most O(n1−1/dD(P,Rd)1/d), with the constant of proportionality
depending on d. This was proved by Hlawka and further generalized
by several researchers (see [DT97] or [KN74] for proofs and references,
and Laczkovich [Lac95] for a recent result in this direction). Note,
though, that even for the best sets for axis-parallel boxes, the resulting
bound for convex sets is quite weak, and, on the other hand, random
sets achieving almost tight bounds for convex sets behave poorly for
axis-parallel boxes.

Exercises

1. Prove Lemma 3.2.
2. Show that if we know D(n,A) ≤ f(n) for all n of the form 4k (the

number 4 is not important here, we could take any integer constant),
where A is a class of sets and f is a nondecreasing function, we have
D(n,A) = O(f(n) + f(�n/4�) + f(�n/42�) + · · ·) for all n.

3. Generalize the proof of Theorem 3.1 to dimension d, showing that the
discrepancy for balls in Rd is bounded by O(n1/2−1/2d

√
log n). (For an

analogoue of Lemma 3.3, you may use results of Section 5.1.)
4. The boundary of any convex set in the plane intersects at most O(

√
n)

of the little squares used in the proof, which is the same bound as that
for a circle, and yet the discrepancy for convex sets has a larger order
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of magnitude than that for discs. Where does the upper bound proof for
discs fail for convex sets?

5. (Proof of Theorem 3.1 without the discretization step)
(a) Let n be a natural number. Show that there exists a collection F1 of
discs in the plane, with |F1| bounded by a fixed polynomial function of
n, such that for any disc B ∈ B2 there are Bin, Bout ∈ F1∪{∅} such that
Bin ∩ [0, 1]2 ⊆ B ∩ [0, 1]2 ⊆ Bout ∩ [0, 1]2 and vol�(Bout \ Bin) ≤ 1

n .
(b)∗ Use (a) to prove Theorem 3.1 without introducing the auxiliary set
Q; let each point qG be sampled from the continuous uniform distribution
in the grid square G.

6. (a)∗∗ Show that the discrepancy of any n-point set P in [0, 1]2 for the
class of all convex sets is Ω(n1/3). To find a bad convex set, use a circular
disc C inscribed into the unit square with suitable disjoint caps sliced off
(depending on the point set).
(b)∗ Generalize (a) to any fixed dimension d, heading for the bound
Ω(n1−2/(d+1)).

3.2 A Surprise for the L1-Discrepancy for
Halfplanes

Here we present a result showing that the L1-discrepancy can behave in a
manner completely different from the worst-case discrepancy or even the L2-
discrepancy. The results concerns the discrepancy for halfplanes. In order
to speak about L1-discrepancy or L2-discrepancy for halfplanes, we have to
introduce some probability measure on the halfplanes intersecting the unit
square. There is a very natural measure on halfplanes which will be mentioned
at the end of this section and discussed in more detail in Section 6.4. But
here we use a slightly different (and a little unnatural) measure, which allows
us to simplify the calculations significantly and to concentrate on the basic
ideas.

Let us assume that n, the number of points, is of the form n = m2 for an
even integer m. Let P be the n-point grid set {( j

m , k
m ): j, k = 0, 1, . . . ,m−1},

and let S be the unit square shifted so that P lies symmetrically within it,
namely S = [0, 1]2 − ( 1

2m , 1
2m ), as in Fig. 3.4. For the L1-discrepancy, we

consider only the lower halfplanes ha,b = {y ≤ ax + b} with 0 ≤ a ≤ 1
3 and

0 ≤ b ≤ 1
2 . Note that the bounding lines of all these halfplanes intersect both

the vertical sides of the square S. The measure ν0 on this set of halfplanes is
given by the Lebesgue measure on the rectangle {(a, b): 0 ≤ a ≤ 1

3 , 0 ≤ b ≤ 1
2}

scaled by the factor 6 (so that we obtain a probability measure), and all other
halfplanes receive measure 0. In this way, of course, we have omitted lots of
interesting halfplanes from our considerations, and the reader may wonder if
this omission is not critical for the L1-discrepancy estimate. Well, it is not
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y

x

y = ax + b

j

S

0 m − 1

Fig. 3.4. The situation in Proposition 3.4.

(see Theorem 3.5 below) but it saves us some work in the proof. The result
we are going to prove is

3.4 Proposition. The L1-discrepancy of the set P for halfplanes with the
measure ν0 defined above is at most O(log2 n). Explicitly, this means that

∫ 1/3

0

∫ 1/2

0

|D(P, ha,b)| db da = O(log2 n),

where1 ha,b denotes the halfplane {(x, y) ∈ R2: y ≤ ax + b}.
Why should this result be interesting? Note that the set P in the proposi-

tion is fairly bad concerning the worst-case discrepancy, which is about
√

n.
One can also calculate that the L2-discrepancy of P is of the order n1/4 (see
Exercise 1), and using the methods of Section 6.6, it can even be shown that
the L2-discrepancy of any n-point set with respect to the measure ν0 is at
least of the order n1/4. So there is a substantial difference between the L1-
discrepancy and L2-discrepancy.

Proof of Proposition 3.4. Let us introduce the shorthand D(a, b) =
D(P, ha,b). To express D(a, b) explicitly, divide the unit square into vertical
strips of width 1

m (drawn by dashed lines in Fig. 3.4) and number these strips
0, 1, . . . ,m − 1 from left to right. The middle line of the strip number j has
x-coordinate j

m , and the line {y = ax + b} intersects it at the point with
y-coordinate a j

m + b. From this we get

D(a, b) = m2 vol(ha,b ∩ S) − |P ∩ ha,b|

=
m−1∑

j=0

(
aj + mb +

1
2
− �aj + mb�

)

1 Here and in the proof of this proposition, the discrepancy D is meant with
respect to the Lebesgue measure on the shifted unit square S, and not on the
square [0, 1]2 as usual. The shifted coordinate system is more convenient for the
subsequent calculation.
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1 20

0.5

−0.5

Fig. 3.5. The sawtooth function s(x) and its approximation by the terms of the
Fourier series for |k| ≤ 20.

=
m−1∑

j=0

s(aj + mb),

where s(x) = x − �x� + 1
2 is the sawtooth function (as in Section 2.2).

As a function of b, D(a, b) is obviously periodic with period 1
m . Introducing

the substitution β = mb and putting g(a, β) = D(a, β
m ), the integral from

the proposition is rewritten as
∫ 1/3

0

∫ 1/2

0

|D(a, b)| db da =
∫ 1/3

0

(
m

2

∫ 1/m

0

|D(a, b)| db

)

da

=
1
2

∫ 1/3

0

∫ 1

0

|g(a, β)| dβ da.

The behavior of the function g(a, β) looks fairly erratic. Fig. 3.6 shows the
whole graph for m = 10, and Fig. 3.7 the dependence on a for a fixed value
of β with m = 30. With these pictures in mind, one can perhaps better
appreciate the subsequent application of the Fourier series.

We recall that any “reasonable” periodic function f :R → R with period 1
can be expressed by the Fourier series:

f(x) =
∑

k∈Z

cke2πikx.

Here “reasonable” may mean, for instance, piecewise continuous with a piece-
wise continuous derivative (this is fully sufficient for our purposes although
much more refined sufficient conditions are known). For such an f , the Fourier
series converges for all x ∈ [0, 1) and its sum equals f(x) at all points of
continuity of f (of course, if f is discontinuous, the convergence cannot be
uniform; see Fig. 3.5). The (complex) coefficients ck can be calculated as
ck =

∫ 1

0
f(x)e−2πikx dx. Crucially, we will make use of the Parseval equality:

∫ 1

0

f(x)2 dx =
∑

k∈Z

|ck|2.
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Fig. 3.6. The function g(a, β) for a ∈ [0, 1
3
] and β ∈ [0, 1], with m = 10.

In our case, we need to expand g(a, β) as a function of the variable β. By
some integration per partes or by looking in a handbook of mathematical
functions, we first find the Fourier series for the sawtooth function:2

s(x) =
∑

k∈Z\{0}
−e2πikx

2πik
.

And from the expression g(a, β) =
∑m−1

j=0 s(aj + β) we find the expansion
g(a, β) =

∑
k∈Z cke2πikβ , where c0 = 0 and

ck = − 1
2πik

m−1∑

j=0

e2πikaj = − 1
2πik

· e2πikam − 1
e2πika − 1

2 The Parseval equality for the sawtooth function happens to give a short and
sweet proof of the well-known equality ζ(2) =

∑∞
k=1

k−2 = π2/6, as the reader
is invited to check.
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a

m = 30, β = 0.31415

g(a, β)

Fig. 3.7. The function g(a, β): dependence on a with β fixed.

(note that the ck are actually functions of a). From the first expression for ck

above, we see that |ck| ≤ m
2πk . On the other hand, a little calculation reveals

that for all x ∈ R,
∣∣e2πix − 1

∣∣ = 2| sin πx| ≥ δ(x), where δ(x) denotes the
distance of x to the nearest integer. From the second expression for ck, we
thus obtain

|ck| ≤
1

2πk
· 2
|e2πika − 1| = O

(
1

k · δ(ka)

)
.

Now we estimate, using the inequality between L1-norm and L2-norm and
the Parseval equality for the function g(a, .),

∫ 1

0

|g(a, β)|dβ ≤
(∫ 1

0

g(a, β)2 dβ

)1/2

=
(∑

k∈Z

|ck|2
)1/2

.

From the estimate |ck| ≤ m
2πk , we get

∑
|k|>m2 |ck|2 = O(1). Writing n instead

of m2, we have

(∑

k∈Z

|ck|2
)1/2

≤
( ∑

|k|≤n

|ck|2 + O(1)
)1/2

≤
∑

|k|≤n

|ck| + O(1).

Now it is time to integrate over a. This gives

∫ 1/3

0

∫ 1

0

|g(a, β)|dβ da ≤ O(1) +
∫ 1/3

0

∑

|k|≤n

|ck|da

≤ O(1) + O(1)
n∑

k=1

1
k

∫ 1

0

min
(

m,
1

δ(ka)

)
da. (3.3)

By the substitution ka = x and then by periodicity of the function δ, we
calculate that the integral over a in (3.3) equals
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∫ k

0

min
(

m,
1

δ(x)

)
1
k

dx = 2
∫ 1/2

0

min
(

m,
1
x

)
dx = 2(1 + ln

m

2
).

Finally the summation over k in (3.3) gives the overall bound of O(ln n ln m) =
O(log2 n). Proposition 3.4 is proved. �

In conclusion, let us formulate the general result concerning the distribu-
tion of points in an arbitrary planar convex set U of unit area (instead of the
unit square). For an angle ϕ ∈ [0, 2π) and a radius r > 0, let h(r, ϕ) be the
halfplane {(x, y) ∈ R2: x cos ϕ + y sin ϕ ≥ r}. Geometrically:

ϕ
r

0

h(r, ϕ)

Moreover, suppose that 0 ∈ U and let RU (ϕ) be the largest r for which
h(r, ϕ) ∩ U �= ∅.

3.5 Theorem. For any convex set U ⊂ R2 of unit area and every n ≥ 2,
there exists an n-point set P ⊂ U with

∫ 2π

0

∫ RU (ϕ)

0

|D(P, h(r, ϕ))|dr dϕ = O(log2 n),

where the constant of proportionality depends on U and where D(P, h) =
n vol(h ∩ U) − |P ∩ h|.

The underlying measure in the definition of L1-discrepancy in this theo-
rem is the motion-invariant measure on lines (appropriately scaled) we will
discuss in Section 6.4. The point set P providing the upper bound is again
essentially the regular square grid, but some adjustments must be made near
the boundary of U . Namely, we first put in all the points p of the grid 1√

n
Z2

such that the square of side 1√
n

centered at p is contained in U . Next, we re-
move all these squares from U , and we sweep the remaining region U1 along
the boundary by a semiline σ rotating around its origin, which is placed
somewhere “near the center” of U :

σ0

U

U1

σ
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We start the sweep at some arbitrary position σ0 of σ and we keep track
the swept area of U1. Whenever we sweep through an area 1

n , we insert one
point somewhere into the just swept part of U1. The proof of Theorem 3.5
is considerably more complicated than in the simple case of Proposition 3.4,
although the basic approach is similar.

Bibliography and Remarks. This section is based on Beck and
Chen [BC93b], who established Theorem 3.5. The paper [BC93a]
proves some other, similar results.

Earlier, Randol [Ran69] proved a somewhat related result. Namely,
let C be a fixed polygon in the plane containing 0 in its interior, and
let Cϕ denote C rotated by the angle ϕ around 0. Then

∫ 2π

0

∣
∣∣t2 vol(C) − |(tCϕ) ∩ Z2|

∣
∣∣ dϕ = O(log3+ε t)

as t → ∞, with ε > 0 arbitrarily small (and the constant of propor-
tionality depending on ε > 0). Also, instead of fixing the lattice and
letting the polygon rotate, we could fix the polygon and let the lattice
rotate; results in this direction are mentioned in the remarks to Sec-
tion 2.5.

It is not known whether the upper bound in Theorem 3.5 (or even
in Proposition 3.4) can be improved, for example, to O(log n). Also,
it is not clear to what extent the phenomenon of the small L1-dis-
crepancy can be generalized beyond the case of the Lebesgue-measure
for halfplanes. For instance, does anything like that happen for the
combinatorial discrepancy? The paper [Mat97] gives a partial negative
result concerning a possible combinatorial generalization.

Exercises

1. Let P be the n-point set as in Proposition 3.4.
(a) By modifying the proof of Proposition 3.4, show that the L2-discrep-
ancy of P for halfplanes, with respect to the measure ν0, is O(n1/4).
(b)∗ Show that the L2-discrepancy as in (a), for the particular set P , is
also at least Ω(n1/4).
(c) Generalizing (b), show that the Lp-discrepancy of P is Ω(n1/2−1/2p)
for any fixed p ∈ (1,∞), with the constant of proportionality depending
on p.
(d) Show that the bound in (c) is asymptotically tight for all p ∈ (1, 2].



4. Combinatorial Discrepancy

In this chapter, we are going to investigate the combinatorial discrepancy,
an exciting and significant subject in its own right. From Section 1.3, we
recall the basic definition: If X is a finite set and S ⊆ 2X is a family of sets
on X, a coloring is any mapping χ:X → {−1,+1}, and we have disc(S) =
minχ maxS∈S |χ(S)|, where χ(S) =

∑
x∈S χ(x).

In Section 4.1, we prove some general upper bounds for disc(S) expressed
in terms of the number and size of the sets in S, and also a bound in terms
of the maximum degree of S. Section 4.2 discusses a technique for bounding
discrepancy from below, related to matrix eigenvalues. Section 4.3 reviews
variations on the notion of discrepancy, such as the linear discrepancy and
the hereditary discrepancy, and it gives another general lower bound, in terms
of determinants. The subsequent section considers set systems with discrep-
ancy 0 and those with hereditary discrepancy at most 1. (The material in
Sections 4.2 through 4.4 will not be used in the rest of this book.)

In Section 4.5, we introduce one of the most powerful techniques for upper
bounds in discrepancy theory: the partial coloring method. Section 4.6 deals
with a refinement of the partial coloring method, called the entropy method.
With this approach, bounds obtained by the partial coloring method can
often be improved by logarithmic factors. For several important problems,
this it is the only known technique leading to asymptotically tight bounds.

4.1 Basic Upper Bounds for General Set Systems

We begin with the following question. Let X be an n-point set and let S be a
set system on X having m sets. What is the maximum possible value, over all
choices of S, of disc(S)? We will be most interested in the case when n ≤ m
(more sets than points). This is what we usually have in geometric situations,
and it also turns out that the m < n case can essentially be reduced to the
m = n case (see Theorem 4.9).

A quite good upper bound for the discrepancy is obtained by using a
random coloring.

4.1 Lemma (Random coloring lemma). Let S be a set system on an
n-point set X. For a random coloring χ:X → {+1,−1}, the inequalities

J. Matoušek, Geometric Discrepancy, Algorithms and Combinatorics 18,
DOI 10.1007/978-3-642-03942-3 4, c© Springer-Verlag Berlin Heidelberg 2010
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|χ(S)| ≤
√

2|S| ln(4|S|)

hold for all sets S ∈ S simultaneously with probability at least 1
2 .

Note that if we know that S has at most m sets and have no information
about their sizes, we get the upper bound disc(S) = O(

√
n log m). Moreover,

the above formulation shows that a random coloring gives better discrepancy
for smaller sets, and this may be useful in some applications.

Proof. This is similar to considerations made in the proof of Theorem 3.1
(upper bound for the discrepancy for discs), and actually simpler. For any
fixed set S ⊆ X, the quantity χ(S) =

∑
x∈S χ(x) is a sum of s = |S| inde-

pendent random ±1 variables. Such a sum has a binomial distribution, with
standard deviation

√
s, and the simplest form of the Chernoff tail estimate

(see Alon and Spencer [AS00]) gives

Pr
[
|χ(S)| > λ

√
s
]

< 2e−λ2/2.

Hence, if we set λ =
√

2 ln(4|S|), the above bound becomes 1/(2|S|),
and, with probability at least 1

2 , a random coloring satisfies |χ(S)| ≤√
2|S| ln(4|S|) for all S ∈ S. �

The following theorem is a small improvement over the lemma just proved,
at least if the set sizes are not much smaller than n:

4.2 Theorem (Spencer’s upper bound). Let S be a set system on an
n-point set X with |S| = m ≥ n. Then

disc(S) = O
(√

n log(2m/n)
)

.

In particular, if m = O(n) then disc(S) = O(
√

n).

We will prove this result in Section 4.6. A probabilistic construction shows
that this bound is tight in the worst case (see Exercise 1 or Alon and Spencer
[AS00]). For m = n, there is a simple constructive lower bound based on
Hadamard matrices, which we present in Section 4.2.

Another important upper bound, which we will not use but which is
definitely worth mentioning, is this:

4.3 Theorem (Beck–Fiala theorem). Let S be a set system on an arbi-
trary finite set X such that degS(x) ≤ t for all x ∈ X, where degS(x) =
|{S ∈ S: x ∈ S}|. Then disc(S) ≤ 2t − 1.

Proof. Let X = {1, 2, . . . , n}. To each j ∈ X, assign a real variable xj ∈
[−1, 1] which will change as the proof progresses. Initially, all the xj are 0. In
the end, all xj will be +1 or −1 and they will define the required coloring.
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At each step of the proof, some of the variables xj are “fixed” and the
others are “floating;” initially all variables are floating. The fixed variables
have values +1 or −1 and their value will not change anymore. The floating
variables have values in (−1, 1). At each step, at least one floating variable
becomes fixed. Here is how this happens.

Call a set S ∈ S dangerous if it contains more than t elements j with
xj currently floating, and call S safe otherwise. The following invariant is
always maintained:

∑

j∈S

xj = 0 for all dangerous S ∈ S. (4.1)

Let F be the current set of indices of the floating variables, and let us regard
(4.1) as a system of linear equations whose unknowns are the floating vari-
ables. This system certainly has a solution, namely the current values of the
floating variables. Since we assume −1 < xj < 1 for all floating variables, this
solution is an interior point of the cube [−1, 1]F . We want to show that there
also exists a solution lying on the boundary of this cube, i.e. such that at least
one unknown has value +1 or −1. The crucial observation is that the number
of dangerous sets at any given moment is smaller than the number of floating
variables (this follows by a simple double counting of incidences of the float-
ing indices j with the dangerous sets). Hence our system of linear equations
has fewer equations than unknowns, and therefore the solution space contains
a line. This line intersects the boundary of the cube [−1, 1]F at some point z.
The coordinates of this point specify the new value of the floating variables
for the next step; however, the variables xj for which zj = ±1 become fixed.

This step is iterated until all the xj become fixed. We claim that their
values specify a coloring with discrepancy at most 2t − 1. Indeed, consider
a set S ∈ S. At the moment when it became safe, it had discrepancy 0 by
(4.1). At this moment it contained at most t indices of floating variables. The
value of each of these floating variables might have changed by less than 2 in
the remaining steps (it might have been −0.999 and become +1, say). This
concludes the proof. �

Remark. Beck and Fiala conjectured that in fact disc(S) = O(
√

t) holds
under the assumptions of their theorem but no proof is known. The Beck–
Fiala theorem remains the best known bound in terms of the maximum degree
alone (except for a tiny improvement of the bound 2t − 1 to 2t − 3).

Remark on Algorithms. For statements establishing upper bounds for
discrepancy of a set system (X,S), it is interesting to learn whether they
provide a polynomial-time algorithm (polynomial in |X| and |S|) for com-
puting a coloring with the guaranteed discrepancy. For the Random coloring
lemma, a randomized algorithm is obvious, and it can be made deterministic
(slower but still polynomial) by the method of conditional probabilities; see
[AS00]. The proof of the Beck–Fiala theorem 4.3 also provides a polynomial
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algorithm, but the proof of Spencer’s upper bound 4.2 does not—it is a big
challenge to find one.

Bibliography and Remarks. Spencer’s theorem 4.2 is from
Spencer [Spe85]; alternative proofs were given by Gluskin [Glu89] via
Minkowski’s lattice point theorem and by Giannopoulos [Gia97] using
the Gaussian measure. The Beck–Fiala theorem is from [BF81] (and
the improvement from 2t−1 to 2t−3 is in [BH97]). Exercise 1 is in the
spirit of a lower-bound proof presented in [AS00]. For more bounds
related to the Beck–Fiala theorem see the remarks to Section 4.3 and
the end of Section 5.5.

In theoretical computer science, an intriguing question is an effi-
cient computation of a coloring with small discrepancy for a given set
system. In cases where randomized algorithms are easy, such as for the
Random coloring lemma, the task is to find an efficient deterministic
counterpart (i.e. to derandomize the algorithm). A related question is
to parallelize the algorithms efficiently. Some such issues are treated
in Spencer [Spe87] already; a sample of newer references are Berger
and Rompel [BR91] and Srinivasan [Sri97].

Exercises

1. (a)∗ Let S =
∑n

i=1 Si be a sum of n independent random variables,
each attaining values +1 and −1 with equal probability. Let P (n,Δ) =
Pr [S > Δ]. Prove that for Δ ≤ n/C,

P (n,Δ) ≥ 1
C exp

(
−Δ2

Cn

)
,

where C is a suitable constant. That is, the well-known Chernoff bound
P (n,Δ) ≤ exp(−Δ2/2n) is close to the truth. (For very precise lower
bounds, proved by quite different methods, see Feller [Fel43].)
(b)∗ Let X = {1, 2, . . . , n} be a ground set, let χ:X → {+1,−1} be any
fixed coloring of X, and let R be a random subset of X (a random subset
means one where each i is included with probability 1

2 , the choices being
independent for distinct i). Prove that for any Δ ≥ 0, Pr [|χ(R)| ≥ Δ] ≥
P (n, 2Δ), where P (., .) is as in (a).
(c) Let R be a system of m ≥ n independently chosen random subsets of
{1, 2, . . . , n}, and let c1 > 0 be a sufficiently small constant. Use (a), (b) to
show that disc(R) > c1

√
n log(2m/n) holds with a positive probability,

provided that m ≤ 2c1n; that is, Theorem 4.2 is asymptotically tight.
2. (Discrepancy of the product of set systems) Let S and T be set systems

(on finite sets). We let S × T = {S × T : S ∈ S, T ∈ T }.
(a) Show that disc(S × T ) ≤ disc(S) disc(T ).
(b)∗ Find an example with disc(S) > 0 and disc(S × S) = 0.
These results are due to Doerr; see [DSW04].
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4.2 Matrices, Lower Bounds, and Eigenvalues

Let (X,S) be a set system on a finite set. Enumerate the elements of X as
x1, x2, . . . , xn and the sets of S as S1, S2, . . . , Sm, in some arbitrary order. The
incidence matrix of (X,S) is the m×n matrix A, with columns corresponding
to points of X and rows corresponding to sets of S, whose element aij is given
by

aij =
{

1 if xj ∈ Si

0 otherwise.

As we will see, it is useful to reformulate the definition of discrepancy of S in
terms of the incidence matrix. Let us regard a coloring χ:X → {−1,+1} as
the column vector (χ(x1), χ(x2), . . . , χ(xn))T ∈ Rn. Then the product Aχ is
the row vector (χ(S1), χ(S2), . . . , χ(Sm)) ∈ Rm. Therefore, the definition of
the discrepancy of S can be written

disc(S) = min
x∈{−1,1}n

‖Ax‖∞,

where the norm ‖.‖∞ of a vector y = (y1, y2, . . . , ym) is defined by ‖y‖∞ =
maxi |yi|. The right-hand side of the above equation can be used as a defini-
tion of discrepancy for an arbitrary real matrix A.

Expressing discrepancy via incidence matrices helps in obtaining lower
bounds. For many lower bound techniques, it is preferable to consider the
L2-discrepancy instead of the worst-case discrepancy. In our case, this means
replacing the max-norm ‖.‖∞ by the usual Euclidean norm ‖.‖, which is
usually easier to deal with. Namely, we have

disc(S) ≥ disc2(S) = min
χ

(
1
m

m∑

i=1

χ(Si)2
)1/2

=
1√
m

· min
x∈{−1,1}n

‖Ax‖.

Since ‖Ax‖2 = (Ax)T (Ax) = xT (AT A)x, we can further rewrite

disc2(S) =
(

1
m

min
x∈{−1,1}n

xT (AT A)x
)1/2

. (4.2)

Now we present the example of n sets on n points with discrepancy about√
n promised in Section 4.1. To this end, we first recall the notion of an

Hadamard matrix. This is an n×n matrix H with entries +1 and −1 such that
any two distinct columns are orthogonal; in other words, we have HT H = nI,
where I stands for the n × n identity matrix. Since changing all signs in a
row or in a column preserves this property, one usually assumes that the first
row and the first column of the considered Hadamard matrix consist of all
1’s. We will also use this convention.

Hadamard matrices do not exist for every n. For example, it is clear that
for n ≥ 2, n has to be even if an n × n Hadamard matrix should exist. The
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existence problem for Hadamard matrices is not yet fully solved, but various
constructions are known. We recall only one simple recursive construction,
providing a 2k × 2k Hadamard matrix for all natural numbers k. Begin with
the 1 × 1 matrix H0 = (1), and, having defined a 2k−1 × 2k−1 matrix Hk−1,
construct Hk from four blocks as follows:

(
Hk−1 Hk−1

Hk−1 −Hk−1

)
.

Thus, we have

H1 =
(

1 1
1 −1

)
, H2 =

⎛

⎜⎜
⎝

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞

⎟⎟
⎠ .

The orthogonality is easy to verify by induction.

4.4 Proposition (Hadamard set system). Let H be an n×n Hadamard
matrix, and let S be the set system with incidence matrix A = 1

2 (H + J),
where J denotes the n× n matrix of all 1’s (in other words, A arises from H

by changing the −1’s to 0’s). Then disc(S) ≥ disc2(S) ≥
√

n−1
2 .

Proof of Proposition 4.4. We have AT A = 1
4 (H+J)T (H+J) = 1

4 (HT H+
HT J + JT H + JT J) = 1

4 (nI + nR + nRT + nJ), where R = 1
nHT J is the

matrix with 1’s in the first row and 0’s in the other rows. Therefore, for any
x ∈ {−1, 1}n, we get

1
n
· xT (AT A)x =

1
4

( n∑

i=1

x2
i + 2x1

( n∑

i=1

xi

)
+
( n∑

i=1

xi

)2)

=
1
4

( n∑

i=2

x2
i + (2x1 + x2 + · · · + xn)2

)

≥ 1
4

( n∑

i=2

x2
i

)
=

n − 1
4

,

and so disc(S) ≥
√

n−1
2 follows from (4.2). �

A slightly different treatment of this result is outlined in Exercise 3. The
proof just given used the estimate disc(S) ≥

(
1
m minx∈{−1,1}n xT (AT A)x

)1/2.
Often it is useful to take the minimum on the right-hand side over a larger
set of vectors: instead of the discrete set {−1, 1}n, we minimize over all real
vectors with Euclidean norm

√
n. (Combinatorially, this means that we allow

“generalized colorings” assigning real numbers to the points of X, and we
only require that the sum of squares of these numbers is the same as if we
used ±1’s.) So we have
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disc2(S) ≥
(

1
m

· min
‖x‖=√

n
xT (AT A)x

)1/2

=
(

n

m
· min
‖x‖=1

xT (AT A)x
)1/2

. (4.3)

The right-hand side of this inequality can naturally be called the eigenvalue
bound for the discrepancy of S. This is because for any real m×n matrix A,
the matrix B = AT A is positive semidefinite, it has n nonnegative eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0, and for the smallest eigenvalue λn we have λn =
min‖x‖=1 xT Bx. (The eigenvalues of AT A are often called the singular values
of the matrix A.) All this is well-known in linear algebra, and not too difficult
to see, but perhaps it is useful to recall a geometric view of the situation.
For simplicity, suppose that m = n. Then the mapping x �→ Ax is a linear
mapping of Rn into Rn, and it maps the unit sphere onto the surface of an
ellipsoid (possibly a flat one if A is singular). The quantity min‖x‖=1 ‖Ax‖
is the length of the shortest semiaxis of this ellipsoid. At the same time, the
lengths of the semiaxes are

√
λ1,

√
λ2,. . . ,

√
λn, where the λi are eigenvalues

of AT A as above. Here is an illustration for n = 2:

x2

x1
A
→

x2

x1

√
λ1

√
λ2

For m > n, the mapping x �→ Ax maps Rn to an n-dimensional linear
subspace of Rm, and the image of the unit ball is an ellipsoid in this subspace.

The eigenvalue bound can be smaller than the L2-discrepancy, but the
eigenvalues of a matrix are efficiently computable and there are various tech-
niques for estimating them. The following theorem summarizes our discus-
sion:

4.5 Theorem (Eigenvalue bound for discrepancy). Let (S,X) be a
system of m sets on an n-point set, and let A denote its incidence matrix.
Then we have

disc(S) ≥ disc2(S) ≥
√

n

m
· λmin,

where λmin denotes the smallest eigenvalue of the n × n matrix AT A.

A very neat application of the eigenvalue bound concerns the discrepancy
of a finite projective plane (Exercise 5.1.5). A more advanced example is the
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lower bound for the discrepancy of arithmetic progressions (a version due to
Lovász; see Exercise 5). Moreover, numerous lower bounds in the Lebesgue-
measure setting are in fact continuous analogues of the eigenvalue bound,
in the sense that they hold for the L2-discrepancy and for point sets with
arbitrary weights, although they usually are not stated in this form (see Chap-
ters 6 and 7). On the other hand, we should remark that for the Hadamard
set system from Proposition 4.4, the eigenvalue bound fails miserably (Exer-
cise 4). This can be fixed by deleting one set and one point (Exercise 3).

Bibliography and Remarks. An early result in combinatorial dis-
crepancy was Roth’s Ω(n1/4) lower bound on the discrepancy of arith-
metic progressions [Rot64]. This beautiful proof uses harmonic analy-
sis. Lovász suggested a version based on the eigenvalue bound, which is
outlined in Exercise 5. Roth thought that the bound n1/4 was too small
and that the discrepancy was actually close to n1/2. This was disproved
by Sárközy (see [ES74]), who established an O(n1/3+ε) upper bound.
Beck [Bec81b] obtained the near-tight upper bound of O(n1/4 log5/2),
inventing the powerful partial coloring method (see Section 4.5) for
that purpose. The asymptotically tight upper bound O(n1/4) was fi-
nally proved by Matoušek and Spencer [MS96]. (Proofs of slightly
weaker upper bounds are indicated in Exercises 4.5.7 and 5.5.4.)
Knieper [Kni98] generalized Roth’s lower bound to the set system
of multidimensional arithmetic progressions; these are the subsets of
{1, 2, . . . , n}d of the form A1×A2×· · ·×Ad, where each Ai is an arith-
metic progression in {1, 2, . . . , n} (note that the size of the ground set
is nd rather than n). The lower bound is Ω(nd/4) (d fixed), and this
is easily seen to be asymptotically tight, using the O(n1/4) bound for
the case d = 1 and the observation on product hypergraphs in Exer-
cise 4.1.2 .

Proposition 4.4, with the approach as in Exercise 3 below, is due
to Olson and Spencer [OS78]. The eigenvalue bound (Theorem 4.5)
is attributed to Lovász and Sós in [BS95]. For another convenient
formulation of the eigenvalue bound see Exercise 1.

Exercises

1. Let (X,S) and A be as in Theorem 4.5. Show that if D is a diago-
nal matrix such that AT A − D is positive semidefinite, then disc2(S) ≥√

1
m trace(D), where trace(M) denotes the sum of the diagonal elements

of a square matrix M .
2. Let the rows of a 2k × 2k matrix H be indexed by the k-component 0/1

vectors, and let the columns be indexed similarly. Let the entry of H
corresponding to vectors x and y be +1 if the scalar product 〈x, y〉 is
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even and −1 if 〈x, y〉 is odd. Check that H is a Hadamard matrix (in
fact, the same one as constructed recursively in the text).

3. Let H be a 4n×4n Hadamard matrix, and let A be the (4n−1)×(4n−1)
matrix arising from H by deleting the first row and first column and
changing the −1’s to 0’s.
(a) Verify that A is the incidence matrix of a 2-(4n − 1, 2n − 1, n − 1)-
design, meaning that there are 4n − 1 points, all sets have size 2n − 1,
and any pair of distinct points is contained in exactly n − 1 sets.
(b) Show that the eigenvalue bound (Theorem 4.5) gives at least

√
n for

the matrix A.
4.∗ Let A = 1

2 (H +J) be the incidence matrix of the set system as in Propo-
sition 4.4. Show that the eigenvalue bound (Theorem 4.5) is quite weak
for A, namely that the smallest eigenvalue of AT A is O(1). (Note that
in the proof of Proposition 4.4, we used the fact that all components of
x are ±1.)

5. (Discrepancy of arithmetic progressions) Let k be an integer; let n = 6k2,
and define the set system A0 on {0, 1, . . . , n − 1} (“wrapped arithmetic
progressions of length k with difference ≤ 6k”) as follows:

A0 = {{i, (i + d)mod n, (i + 2d)mod n, . . . ,

(i + (k − 1)d)mod n}: d = 1, 2, . . . , 6k, i = 0, 1, . . . , n − 1}

(a)∗∗ Use Theorem 4.5 to prove that disc(A0) = Ω(n1/4).
(b) Deduce that the system of all arithmetic progressions (without wrap-
ping) on {0, 1, . . . , n − 1} has discrepancy Ω(n1/4).

6. Call a mapping χ:X → {+1,−1, 0} perfectly balanced on a set system
(X,S) if χ(S) = 0 for all S ∈ S. Define g(m) as the maximum possible
size of X such that there exists a system S of m sets on X for which any
perfectly balanced mapping χ is identically 0.
(a)∗ Show that g(m) equals the maximum number n of columns of an
m×n zero-one matrix A such that

∑
i∈I ai �=

∑
j∈J aj whenever I, J are

distinct subsets of {1, 2, . . . , n}, where ai denotes the ith column of A.
(b) Deduce the bound g(m) = O(m log m) from (a).
(c) Prove that the discrepancy of an arbitrary system of m sets is always
bounded by the maximum possible discrepancy of m sets on g(m) points.

These results are from Olson and Spencer [OS78]. They also show that
the bound in (b) is asymptotically tight.

4.3 Linear Discrepancy and More Lower Bounds

The discrepancy of a set system S can be thought of as a certain measure of
“complexity” of S. But from this point of view, it is not a very good measure,
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since disc(S) may happen to be small just “by chance.” For example, let X
be a disjoint union of two n-point sets Y and Z, and let S consist of all sets
S ⊆ X with |S ∩ Y | = |S ∩ Z|. Then disc(S) = 0 although we feel that S
is nearly as complicated as the system of all subsets of X. A better concept
from this point of view is the hereditary discrepancy of S, defined as

herdisc(S) = max
Y ⊆X

disc(S|Y ).

(Or, using our previously introduced notation, we can also write herdisc(S) =
max0≤m≤n disc(m,S).) As the just mentioned example shows, the hereditary
discrepancy can be much larger than the discrepancy.

Another useful concept is the linear discrepancy of S. It arises in the in
the following “rounding” problem. Each point x ∈ X is assigned a weight
w(x) ∈ [−1, 1]. We want to color the points by +1’s and −1’s in such a way
that the sum of the colors in each set S ∈ S is close to the total weight of its
points. The discrepancy of S with respect to the given weights is thus

min
χ:X→{−1,1}

max
S∈S

|χ(S) − w(S)| ,

and the linear discrepancy of S is the supremum of this quantity over all
choices of the weight function w:X → [−1, 1]. (The usual discrepancy corre-
sponds to the case w(x) = 0 for all x.) The linear discrepancy can again be
defined for an arbitrary matrix A. Namely, we have

lindisc(A) = max
w∈[−1,1]n

min
x∈{−1,1}n

‖A(x − w)‖∞.

Clearly lindisc(A) ≥ disc(A) for any matrix A, and one cannot expect to
bound lindisc in terms of disc. But, perhaps surprisingly, the following bound
in terms of the hereditary discrepancy holds:

4.6 Theorem (lindisc≤ 2·herdisc). For any set system S, we have

lindisc(S) ≤ 2 herdisc(S).

The same inequality holds between the linear and hereditary discrepancies
for an arbitrary real matrix A.

This result can be proved in way somewhat similar to the proof of the
transference lemma (Proposition 1.8). A proof in this spirit can be found in
Spencer [Spe87], but here we give another proof using a geometric interpreta-
tion of the various notions of discrepancy. Unlike to the geometric discrepancy
mostly treated in this book, the geometry here is introduced into the picture
somewhat artificially, but once it is there it constitutes a powerful tool.

Let A be an m × n matrix, and let us define the set

UA = {x ∈ Rn: ‖Ax‖∞ ≤ 1}.

This UA is a convex polyhedron symmetric about the origin, as is illustrated
in the following picture for n = 2:
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UA

〈a1, x〉 ≤ 1

〈a1, x〉 ≥ −1

If ai denotes the ith row of A, UA is the intersection of the 2m halfspaces
〈ai, x〉 ≤ 1 and 〈ai, x〉 ≥ −1, as is marked in the picture for i = 1. For any
vector x ∈ Rn, we have ‖Ax‖∞ = min{t ≥ 0: x ∈ tUA}, and so disc(A) is
the smallest t such that the convex body tUA contains a vertex of the cube
[−1, 1]n. In other words, disc(A) is the smallest t such that for some vertex
a ∈ {−1, 1}n, the translated body tUA+a contains the origin. This geometric
interpretation of disc(A) allows perhaps the best comparison with the other
notions of discrepancy introduced above. Their geometric interpretation is
indicated in the following picture:

0

disc
herdisc lindisc

0

We can imagine that at time t = 0, we start growing a similar copy of UA

from each vertex of the cube [−1, 1]n, in such a way that at time t, we have
a congruent copy of tUA centered at each vertex. The reader is invited (and
recommended) to check that

• disc(A) is the first moment when some of the growing bodies swallows
the origin,

• herdisc(A) is the first moment such that for each face F of the cube (of
each possible dimension), the center of F is covered by some of the bodies
centered at the vertices of F , and

• lindisc(A) is the first moment such that the whole cube is covered.

Proof of Theorem 4.6 (lindisc≤ 2·herdisc). In view of the above geo-
metric interpretation, it suffices to prove the following statement.

If U is a closed convex body such that
⋃

a∈{−1,1}n(U + a) covers all

the points of {−1, 0, 1}n then the set C =
⋃

a∈{−1,1}n(2U +a) covers

the whole cube [−1, 1]n.
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Indeed, if herdisc(A) ≤ t then the body U = tUA satisfies even a stronger
assumption, namely that each point v ∈ {−1, 0, 1}n is covered by the copy
of U centered at one of the vertices closest to v.

Since U is closed, it is enough to prove that C covers all dyadic rational
points in [−1, 1]n, i.e. all points v = z

2k ∈ [−1, 1]n for some integer vector z ∈
Zn. We proceed by induction on k, where the case k = 0 follows immediately
from the assumption. Consider some v = z

2k ∈ [−1, 1]n. Since all components
of 2v are in the interval [−2, 2], there is a vector b ∈ {−1, 1}n such that
2v − b ∈ [−1, 1]n. Since 2v − b = z+2k−1b

2k−1 , the inductive hypothesis for k − 1
provides a vector a ∈ {−1, 1}n such that 2v − b ∈ 2U + a. Therefore, we
obtain

v ∈ U +
a + b

2
.

The vector a+b
2 has all entries in {−1, 0, 1}, and so by the assumption on U ,

it is covered by some U + c for c ∈ {−1, 1}n. Hence

v ∈ U + (U + c) = 2U + c,

where the last equality uses the convexity of U . This proves Theorem 4.6. �

A Lower Bound in Terms of Determinants. The hereditary discrepancy
of a set system can be lower-bounded in terms of determinants of submatrices
of the incidence matrix.

4.7 Theorem (Determinant lower bound). For any set system S, we
have

herdisc(S) ≥ 1
2

max
k

max
B

|det(B)|1/k,

where B ranges over all k × k submatrices of the incidence matrix of S. An
analogous bound also holds for the hereditary discrepancy of an arbitrary
m × n real matrix A.

This is a consequence of the bound “lindisc≤ 2·herdisc” (Theorem 4.6)
and of the following lemma:

4.8 Lemma. Let A be an n × n matrix. Then lindisc(A) ≥ |det(A)|1/n.

Proof. Let t = lindisc(A) and set U = tUA. By the above geometric inter-
pretation of the linear discrepancy, the sets U + a for a ∈ {−1, 1}n cover the
whole cube [−1, 1]n, and therefore the sets U +a for a ∈ 2Zn cover the whole
space. Hence

vol(U) = tn vol(UA) ≥ vol([−1, 1]n) = 2n.

On the other hand, the linear mapping x �→ Ax changes the volume by the
factor |det(A)| (since it maps the unit cube to a parallelepiped of volume
|det(A)|), and since UA is the inverse image of the cube [−1, 1]n, we get
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vol(UA) = |det(A)|−12n. Together with the previous inequality for vol(UA),
this gives t ≥ |det(A)|1/n. �

It is instructive to compare the determinant lower bound and the eigen-
value lower bound (Theorem 4.5). For simplicity, let us consider the case of
a square matrix A first, in which case the eigenvalue bound becomes

√
λmin.

We recall the geometric interpretation of the eigenvalue bound:
√

λmin is the
length of the shortest semiaxis of the ellipsoid E that is the image of the unit
ball B(0, 1) under the linear mapping x �→ Ax. The ratio vol(E)/ vol(B(0, 1))
equals, on the one hand, the product of the semiaxes of E, i.e.

√
λ1λ2 · · ·λn,

and on the other hand, it is equal to |det A|. Therefore, since λmin is the
smallest among the n eigenvalues of AT A, we get

√
λmin ≤ |det A|1/n. Thus,

for a square matrix, the determinant lower bound for discrepancy is never
weaker than the eigenvalue lower bound (and it can be much stronger if the
ellipsoid E happens to be very flat). Also for non-square matrices A, the de-
terminant lower bound is never smaller than the eigenvalue bound, possibly
up to a small constant multiplicative factor; see Exercise 7. But one should
not forget that the eigenvalue bound estimates discrepancy, while the deter-
minant bound only applies to hereditary discrepancy.

Few Sets on Many Points. Set systems coming from geometric settings
typically have more sets than points, so we are mainly interested in this case.
For studying discrepancy of set systems with few sets and many points, the
following result is important:

4.9 Theorem. Let (X,S) be a set system such that disc(S|Y ) ≤ K for all
Y ⊆ X with |Y | ≤ |S|. Then disc(S) ≤ 2K.

Proof. This is a nice application of the concept of linear discrepancy. We
note that if w and w0 are two weight functions on X such that w(S) = w0(S)
for all S ∈ S then the discrepancy of any coloring χ for w is the same as that
for w0. We also have

4.10 Lemma. Let (X,S) be a set system, |X| = n ≥ |S| = m, and let
w:X → [−1, 1] be a weight function. Then there exist an n-point set Y ⊆ X
and a weight function w0:X → [−1, 1] such that w0(S) = w(S) for all S ∈ S
and w0(x) = ±1 for all x ∈ X \ Y .

The proof of this lemma is quite similar to the proof of the Beck–Fiala the-
orem 4.3 and we leave it as Exercise 1. From the lemma and the observation
above it, we get that lindisc(S) ≤ supY ⊆X, |Y |=n lindisc(S|Y ). The left-hand
side of this inequality is at least disc(S) while the right-hand side is at most
2maxY ⊆X, |Y |≤n disc(S|Y ) by the bound “lindisc≤ 2·herdisc” (Theorem 4.6).
This proves Theorem 4.9. �

The theorem just proved plus Spencer’s upper bound (Theorem 4.2) imply
that an arbitrary set system with m sets has discrepancy O(

√
m).



114 4. Combinatorial Discrepancy

Bibliography and Remarks. Hereditary discrepancy and linear
discrepancy were introduced by Lovász et al. [LSV86]. (In [BS95],
linear discrepancy is called the inhomogeneous discrepancy.) Lovász
et al. [LSV86] also established Theorem 4.6 and Theorem 4.7, and our
presentation mostly follows their proofs.

We should remark that they use definitions of discrepancy giving
exactly half of the quantities we consider. They work with 0/1 vectors
instead of −1/1 vectors, which is probably somewhat more natural in
the context of linear discrepancy.

Another potentially useful lower bound for the discrepancy of an
m × n matrix A is

lindisc(A) ≥ 2 vol(conv(±A))1/n

c
2/n
n

. (4.4)

Here cn = πn/2/Γ(n
2 + 1) is the volume of the n-dimensional unit

ball and conv(±A) denotes the convex hull of the 2m vectors a1, −a1,
a2, −a2, . . . , am, −am, where ai ∈ Rn stands for the ith row of A.
This lower bound is obtained from lindisc(A) ≥ 2 vol(UA)−1/n (see the
proof of Lemma 4.8) using so-called Blaschke’s inequality, stating that
vol(K) vol(K∗) ≤ c2

n holds for any centrally symmetric convex body
K in Rn. Here

K∗ = {x ∈ Rn: 〈x, y〉 ≤ 1 for all y ∈ K}

is the polar body of K. For K = UA, it turns out that U∗
A = conv(±A).

The inequality (4.4) is due to Lovász and Vesztergombi [LV89], who
used it to estimate the maximum possible number m(n, d) of distinct
rows of an integral m×n matrix A with herdisc(A) ≤ d. They proved
that this m(n, d) is between

(
n+d

n

)
and

(
n+2πd

n

)
. If one asks a similar

question for a set system, i.e. what is the maximum possible number
of distinct sets in a set system S on n points with herdisc(S) ≤ d,
then a precise answer can be given—see Exercise 5.2.5.

The next few remarks concern the relationship of the linear and
hereditary discrepancies. In the inequality lindisc(S) ≤ 2 herdisc(S)
(Theorem 4.6), the constant 2 cannot be improved in general; see
Exercise 3. On the other hand, the inequality is always strict, and in
fact, lindisc(S) ≤ 2(1− 1

2m ) herdisc(S) holds for any set system S with
m sets (Doerr [Doe00]).

There is a simple example showing that the hereditary discrepancy
of a matrix cannot be bounded in terms of the linear discrepancy
[LSV86], namely the single-row matrix (1, 2, 4, . . . , 2n−1) (Exercise 4).
The question of whether the hereditary discrepancy of a set system
can be estimated by a function of the linear discrepancy seems to be
open. On the one hand, there is a set system such that any system
containing it as an induced subsystem has linear discrepancy at least 2



4.3 Linear Discrepancy and More Lower Bounds 115

[Mat00]. On the other hand, the hereditary discrepancy can be strictly
bigger than the linear discrepancy (Exercise 6), and so the situation
cannot be too simple.

The fact that the determinant lower bound for the hereditary dis-
crepancy in Theorem 4.7 is never asymptotically smaller than the
eigenvalue lower bound for disc2 in Theorem 4.5 (Exercise 7) is a sim-
ple consequence of observations of Chazelle [Cha99] (I haven’t seen it
explicitly mentioned anywhere). Chazelle’s result actually says that if
the eigenvalue lower bound for some system S on n points equals some
number Δ then there is a subsystem S0 ⊆ S of at most n sets with
herdisc(S0) = Ω(Δ). So, in some sense, the eigenvalue bound is always
“witnessed” by the hereditary discrepancy of at most n sets, no mat-
ter how many sets the original set system may have. Little seems to
be known about possible strengthenings and analogues of this result.
One related observation is that for a set system S on an n-point set
with a large eigenvalue bound, all the systems S ′ ⊆ S consisting of n
sets may have the eigenvalue bound very small (Exercise 8).

A result somewhat weaker than Theorem 4.9, namely that the
discrepancy of a system of m sets is always bounded by the maximum
possible discrepancy of m sets on O(m log m) points, was first obtained
by Olson and Spencer [OS78] (see Exercise 4.2.6). The fact that any
m sets have discrepancy O(

√
m) was proved by Spencer [Spe85].

We have mentioned a natural generalization of the notion of dis-
crepancy from incidence matrices of set systems to arbitrary real ma-
trices. A different and interesting notion of matrix discrepancy arises
from vector sum problems. Having n vectors v1, . . . , vn ∈ Rm of norm
at most 1, we ask for a choice of n signs ε1, . . . , εn so that the vec-
tor w =

∑n
i=1 εivi is as short as possible. We have a whole class of

problems, since the vectors vi can be measured by one norm in Rm

(supremum norm, L1-norm, Euclidean norm, etc.) and the vector w
can be measured by another, possibly different, norm. Let us mention
that for the case when both the norms are the supremum norm, an
extension of Spencer’s theorem shows that the norm of w can be made
O(

√
m).

A famous conjecture of Komlós asserts that if all the vi have
Euclidean length at most 1 then the supremum norm of w can be
bounded by an absolute constant (this is a generalization of the
Beck–Fiala conjecture mentioned in Section 4.1; see Exercise 9).
The current best result on Komlós’ conjecture is due to Banaszczyk
[Ban98]. He proves the following more general result: There is an
absolute constant c such that if K is a convex body in Rm with
γm(K) ≥ 1

2 , then for any vectors v1, v2, . . . , vn ∈ Rm of Euclidean
norm at most 1 there exist signs ε1, ε2, . . . , εn ∈ {−1,+1} such that
v1ε1 + v2ε2 + · · · + vnεn ∈ cK. Here γm denotes the m-dimensional
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Gaussian measure whose density at a point x is (2π)−m/2e−‖x‖2/2; this
is the density of the normalized normal distribution. This theorem im-
proves an earlier result of Giannopoulos [Gia97], where the conclusion
was that v1ε1+v2ε2+· · ·+vnεn ∈ c(log n)K (this was already sufficient
for proving Spencer’s upper bound 4.2). Banaszczyk’s result easily im-
plies that in the situation of Komlós’ conjecture, ‖w‖∞ = O(

√
log n)

can be achieved. Further, for the Beck–Fiala conjecture, this yields
that the discrepancy of a set system of maximum degree t on n points
is O(

√
t log n), which is the best known bound in a wide range of the

parameters n and t. (We will prove a weaker bound in Section 5.5.)
More about these and related subjects can be found, for instance, in

Beck and Sós [BS95], Alon and Spencer [AS00], Bárány and Grinberg
[BG81], and Spencer [Spe87].

Exercises

1. Prove Lemma 4.10.
2. Find a set system (X,S) and a set A ⊆ X such that disc(S) = 0 but

disc(S ∪ {A}) is arbitrarily large.
Remark. It is not known whether an example exists with herdisc(S) ≤ 1
and with disc(S ∪ {A}) large.

3. Show that the the set system {{1}, {2}, . . . , {n}, {1, 2, . . . , n}} has hered-
itary discrepancy 1 and linear discrepancy at least 2 − 2

n+1 .
4. Show that the 1 × n matrix (20, 21, 22, . . . , 2n−1) has hereditary discrep-

ancy at least 2n−1 and linear discrepancy at most 2.
5. Let A be an m × n real matrix, and set

Δ = max
w∈{−1,0,1}

min
x∈{−1,1}

‖A(x − w)‖∞

(“linear discrepancy with weights −1, 0, 1”). Prove that lindisc(A) ≤ 2Δ.
6. Show that the set system {{1, 2}, {1, 3}, {2, 3, 4}} has hereditary discrep-

ancy 2 and linear discrepancy strictly smaller than 2.
7. (Relation of the determinant and eigenvalue bounds) Let (X,S) be a

system of m sets on an n-point set, m ≥ n, and let A be the incidence
matrix of S.
(a)∗ Put Δ =

(
n
m det(AT A)1/n

)1/2
. Prove the existence of a subsystem

S0 ⊆ S consisting of n sets with herdisc(S0) = Ω(Δ). Use the Binet–
Cauchy theorem from linear algebra, asserting that for any m × n real
matrix A, m ≥ n, we have det(AT A) =

∑
B det(B)2, where B ranges

over all n × n submatrices of A.
(b)∗ Prove that if Δeig is the eigenvalue lower bound from Theorem 4.5
and Δdet is the determinant lower bound from Theorem 4.7 then Δeig =
O(Δdet).
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(c) Show that the lower bound in Theorem 4.7 for herdisc(S), and con-
sequently also the eigenvalue bound in Theorem 4.5, is never bigger than
O(

√
n).

8. Let A be an (n + 1) × n zero-one matrix obtained from an (n + 2) ×
(n + 2) Hadamard matrix by deleting the first row and the first two
columns and changing −1’s to 0’s. Show that the eigenvalue lower bound
for A is Ω(

√
n) (this is similar to Exercise 4.2.3), and that for any n× n

submatrix B of A, the eigenvalue bound is only O(1). Therefore, unlike
the determinant lower bound, the eigenvalue lower bound for n + 1 sets
on n points need not be “witnessed” by n sets on these points.

9. Verify that Komlós’ conjecture implies the Beck–Fiala conjecture. Kom-
lós’ conjecture says that there is a constant K such that for any vectors
v1, v2, . . . , vn of unit Euclidean norm, there exist signs ε1, ε2, . . . , εn such
that ‖ε1v1 + ε2v2 + · · ·+ εnvn‖∞ ≤ K. The Beck–Fiala conjecture states
that disc(S) ≤ C

√
t for any set system S of maximum degree t.

10. Let A = 1
2 (H + J) be the n × n incidence matrix of a set system as

in Proposition 4.4. Derive an Ω(
√

n) lower bound for herdisc(A) using
the determinant lower bound (Theorem 4.7); use the specific Hadamard
matrices Hk of size 2k×2k whose construction was indicated above Propo-
sition 4.4.

4.4 On Set Systems with Very Small Discrepancy

A very important class of set systems are those with hereditary discrepancy
at most 1 (note that requiring hereditary discrepancy to be 0 leads to rather
trivial set systems). Such set systems are called totally unimodular. They are
of interest in polyhedral combinatorics, theory of integer programming, etc.,
and there is an extensive theory about them, which has been developing more
or less independently of discrepancy theory. Here we only touch this subject
very briefly, but it is useful to be aware of its existence.

An Example Destroying Several Conjectures. The following question
has been open for some time: if S1 and S2 are two set systems on the same
ground set, can disc(S1 ∪S2) be upper-bounded by some function of disc(S1)
and disc(S2)? The following important example shows that this is not the
case. Even the union of two set systems with the best possible behavior in
terms of discrepancy, namely with herdisc = 1, can have arbitrarily large
discrepancy.

4.11 Proposition (Hoffman’s example). For an arbitrarily large number
K, there exist set systems S1, S2 such that herdisc(S1) ≤ 1, herdisc(S2) ≤ 1,
and disc(S1 ∪ S2) ≥ K.

Proof. The ground set of both set systems is the set of edges of the complete
K-ary tree T of depth K (a picture shows the case K = 3).
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The sets in S1 are the edge sets of all root-to-leaf paths (the picture shows
one of them drawn thick). The sets of S2 are the “fans” in the tree: for each
non-leaf vertex v, we put the set of the K edges connecting v to its successors
into S2. The bound herdisc(S2) ≤ 1 is obvious, and herdisc(S1) ≤ 1 is simple
and it is left as Exercise 1. Finally disc(S1 ∪S2) ≥ K follows from a Ramsey-
type observation: whenever the edges of T are each colored red or blue, there
is either a red root-to-leaf path or a vertex with all successor edges blue. �

Based on this example, one can refute several other plausible-looking con-
jectures about discrepancy (see Exercises 2 and 3).

An Etude in Discrepancy Zero. We consider the following function: let
f(n) denote the smallest number of sets of size n each that constitute a system
with nonzero discrepancy. For instance, we have f(n) = 1 for every odd n.
The question is whether f(n) can be bounded by some universal constant K
for all n. The answer is negative:

4.12 Theorem. We have lim supn→∞ f(n) = ∞.

This theorem is included mainly because of the beauty of the following
proof.

Proof. For contradiction, suppose that f(n) ≤ K for all n. This means that
for every n there is a set system S(n) = {S(n)

1 , S
(n)
2 , . . . , S

(n)
K } consisting of K

n-element sets such that disc(S(n)) ≥ 1. Let us fix one such S(n) for each n.
A system of 3 sets, say, can be described by giving the number of elements

in each field of the Venn diagram, as an example illustrates:

3
2

4 5
3

56

Similarly, the system S(n) = {S(n)
1 , S

(n)
2 , . . . , S

(n)
K } is determined by an inte-

ger vector indexed by nonempty subsets of {1, 2, . . . ,K}. Namely, for each
nonempty index set I ⊆ {1, 2, . . . ,K}, we let s

(n)
I be the number of elements

that belong to all S
(n)
i with i ∈ I and to no S

(n)
j with j �∈ I. In this way,

the set system S(n) determines an integer vector s(n) ∈ R2K−1. The con-
dition that all sets of S(n) have size n implies that

∑
I: j∈I s

(n)
I = n for all

j = 1, 2, . . . ,K.
Similarly, a red-blue coloring χ of the ground set S(n) can be described

by an integer vector c ∈ R2K−1, where this time the component cI tells us
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how many elements colored red lie in all the sets S
(n)
i with i ∈ I and in none

of the sets S
(n)
j with j �∈ I.

Let us put σ(n) = 1
ns(n), and let us consider the following system of linear

equations and inequalities for an unknown vector γ ∈ R2K−1:

0 ≤ γI ≤ σ
(n)
I for all nonempty I ⊆ {1, 2, . . . ,K}∑

I: j∈I γI = 1
2 for j = 1, 2, . . . ,K.

(4.5)

Let Γ(n) ⊆ R2K−1 denote the set of all real vectors γ satisfying the system
(4.5) for a given n. If c were an integer vector encoding a coloring of the
ground set of S(n) with zero discrepancy, then we would conclude that 1

nc ∈
Γ(n). But we assume that no such c exists, and so Γ(n) contains no vector γ
with nγ integral.

To arrive at a contradiction, we will look at the values of n of the form
q! for q = 1, 2, . . .; the important thing about these values is that all the
numbers up to q divide q!. So let us consider the vectors σ(q!), q = 1, 2, 3, . . ..
This is an infinite and bounded sequence of vectors in R2K−1, and hence it
has a cluster point; call it σ. Let (n1, n2, . . .) be a subsequence of the sequence
(1!, 2!, 3!, . . .) such that the σ(nk) converge to σ.

Let us choose a rational vector σ̄ with 1
2σ ≤ σ̄ ≤ 2

3σ (the inequalities
should hold in each component), and let Γ̄ denote the solution set of the
system (4.5) with σ̄ replacing σ(n). We have 1

2σ ∈ Γ̄ and so Γ̄ �= ∅. At
the same time, the inequalities and equations defining Γ̄ have all coefficients
rational, and hence Γ̄ contains a rational vector γ̄. This γ̄ satisfies γ̄I < σI

(strict inequalities) for all I with σI �= 0, and hence also γ̄ ∈ Γ(nk) for all large
enough k. But since the nk were selected among the numbers 1!, 2!, 3!,. . . ,
we get that for sufficiently large k, nkγ̄ is a vector of integers and hence it
encodes a zero-discrepancy coloring of S(nk). This contradiction finishes the
proof of Theorem 4.12. �

Bibliography and Remarks. For a basic overview and references
concerning the theory of total unimodularity, the reader may consult
Schrijver [Sch95]. A matrix A is called totally unimodular if the de-
terminant of each square submatrix of A is 0, 1 or −1 (this implies, in
particular, that the entries of A are 0’s and ±1’s). A famous theorem of
Ghouila-Houri [GH62] asserts, in our terminology, that a matrix con-
sisting of 0’s and ±1’s is totally unimodular if and only if its hereditary
discrepancy is at most 1; see Exercise 4. On the other hand, the linear
discrepancy of a totally unimodular matrix can be arbitrarily close
to 2; see Exercise 4.3.3.

The question about bounding disc(S1 ∪ S2) in terms of bounding
disc(S1) and disc(S2) was raised by Sós. Hoffmann’s example is cited
as an oral communication from 1987 in Beck and Sós [BS95]. The
conjectures in Exercises 2 and 3 were stated in Lovász et al. [LSV86].
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Theorem 4.12 is due to Alon et al. [AKP+87], who also give fairly
precise quantitative bounds for f(n) in terms of the number-theoretic
structure of n, more precisely in terms of the smallest number not
dividing n.

Exercises

1. Verify the assertion herdisc(S1) ≤ 1 in the proof of Proposition 4.11.
2. Let (X,S) be a set system and let (S,S∗) be the set system dual to

S; explicitly S∗ = {{S ∈ S: x ∈ S}: x ∈ X}. Using Proposition 4.11,
show that herdisc(S∗) cannot in general be bounded by any function of
herdisc(S).

3. Using Proposition 4.11, show that herdisc(S) cannot be bounded from
above by any function of maxk maxB |det(B)|1/k, i.e. of the right-hand
side of the inequality in Theorem 4.7, where B is a k × k submatrix of
the incidence matrix of S.

4. (On Ghouila-Houri’s theorem)
(a) Show that if A is a nonsingular n × n totally unimodular matrix
(the definition was given above the exercises), then the mapping x �→ Ax
maps Zn bijectively onto Zn.
(b)∗ Show that if A is an m × n totally unimodular matrix and b is an
m-dimensional integer vector such that the system Ax = b has a real
solution x, then it has an integral solution as well.
(c)∗ (Kruskal–Hoffmann theorem—one implication) Let A be an m × n
totally unimodular matrix and let u, v ∈ Zn and w, z ∈ Zm be integer
vectors. Show that if the system of inequalities u ≤ x ≤ v, w ≤ Ax ≤ z
(the inequalities should hold in each component) has a real solution then
it has an integer solution as well. Geometrically speaking, all the vertices
of the polytope in Rn determined by the considered system are integral.
(d)∗ Prove that the discrepancy of a totally unimodular set system with
all sets of even size is 0.
(e) Prove that the hereditary discrepancy of a totally unimodular set
system is at most 1 (this is one of the implications in Ghouila-Houri’s
theorem for 0/1 matrices).

4.5 The Partial Coloring Method

Here we introduce one of the most powerful methods for producing low-
discrepancy colorings.

Let X be a set. A partial coloring of X is any mapping χ:X → {−1, 0,+1}.
For a point x ∈ X with χ(x) = 1 or χ(x) = −1, we say that x is colored by
χ, while for χ(x) = 0 we say that x is uncolored.
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4.13 Lemma (Partial coloring lemma). Let F and M be set systems1

on an n-point set X, |M| > 1, such that |M | ≤ s for every M ∈ M and
∏

F∈F
(|F | + 1) ≤ 2(n−1)/5. (4.6)

Then there exists a partial coloring χ:X → {−1, 0,+1}, such that at least
n
10 elements of X are colored, χ(F ) = 0 for every F ∈ F , and |χ(M)| ≤√

2s ln(4|M|) for every M ∈ M.

For brevity, let us call a partial coloring that colors at least 10% of the
points a no-nonsense partial coloring.

Intuitively, the situation is as follows. We have the “few” sets of F , for
which we insist that the discrepancy of χ be 0. Each such F ∈ F thus puts one
condition on χ. It seems plausible that if we do not put too many conditions
then a coloring χ randomly selected among those satisfying the conditions
will still be “random enough” to behave as a true random coloring on the
sets of M. In the lemma, we claim something weaker, however: instead of a
“true” coloring χ:X → {+1,−1} we obtain a no-nonsense partial coloring χ,
which is only guaranteed to be nonzero at a constant fraction of points. (And,
indeed, under the assumptions of the Partial coloring lemma, one cannot hope
for a full coloring with the discrepancy stated. For example, although every
system of n

10 log n sets on n points has a no-nonsense partial coloring with zero
discrepancy, there are such systems with discrepancy about

√
n/ log n.)

Proof of Lemma 4.13. Let C0 be the set of all colorings χ:X → {−1,+1},
and let C1 be the subcollection of colorings χ with |χ(M)| ≤

√
2s ln(4|M|) for

all M ∈ M. We have |C1| ≥ 1
2 |C0| = 2n−1 by the Random coloring lemma 4.1.

Now let us define a mapping b: C1 → Z|F|, assigning to a coloring χ the
|F|-component integer vector b(χ) = (χ(F ): F ∈ F) (where the sets of F are
taken in some arbitrary but fixed order). Since |χ(F )| ≤ |F | and χ(F ) − |F |
is even for each F , the image of b contains at most

∏

F∈F
(|F | + 1) ≤ 2(n−1)/5

distinct vectors. Hence there is a vector b0 = b(χ0) such that b maps at least
24(n−1)/5 elements of C1 to b0 (the pigeonhole principle!). Put C2 = {χ ∈
C1: b(χ) = b0}. Let us fix an arbitrary χ1 ∈ C2 and for every χ2 ∈ C2, let us
define a new mapping χ′:X → {−1, 0, 1} by χ′(x) = 1

2 (χ2(x)−χ1(x)). Then
χ′(F ) = 0 for all F ∈ F , and also χ′(M) ≤

√
2s ln(4|M|) for all M ∈ M.

Let C′
2 be the collection of the χ′ for all χ2 ∈ C2.

To prove the lemma, it remains to show that there is a partial coloring
χ′ ∈ C′

2 that colors at least n
10 points of X. The number of mappings X →

{−1, 0,+1} with fewer than n
10 nonzero elements is bounded by

1 F for “few” sets, M for “minute” (or also “many”) sets.
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N =
∑

0≤q<n/10

(
n

q

)
2q;

we will show that N < |C′
2|. We may use the estimate

∑

0≤i≤z

(
n

i

)
ai ≤

(ean

z

)z

(4.7)

(valid for any n ≥ z > 0 and any real a ≥ 1),2 which in our case yields that

N <

(
2en

n/10

)n/10

< 60n/10 < 26n/10 < 24(n−1)/5 ≤ |C′
2|.

Hence there exists a partial coloring χ′ ∈ C′
2 with at least n

10 points colored.
�

Suppose that we want a low-discrepancy coloring of a set system (X,S).
How do we apply the Partial coloring lemma? Usually we look for an auxiliary
set system F such that

• F has sufficiently few sets. More exactly, it satisfies the condition∏
F∈F (|F | + 1) ≤ 2(n−1)/5, where n = |X|.

• Each set S ∈ S can be written as a disjoint union of some sets from F ,
plus some extra set MS which is small (smaller than some parameter s,
for all S ∈ S).

We then define M = {MS : S ∈ S}. The Partial coloring lemma yields a
partial coloring χ which has zero discrepancy on all sets of F , and so |χ(S)| =
|χ(MS)| = O(

√
s log |S|). In this way, some 10% of points of X are colored.

We then look at the set of yet uncolored points, restrict the system S on these
points, and repeat the construction of a partial coloring. In O(log n) stages,
everything will be colored. This scheme has many variations, of course.

Here we describe an application in an upper bound for the so-called
Tusnády’s problem: What is the combinatorial discrepancy for axis-parallel
rectangles in the plane, i.e. disc(n,R2)? By the transference lemma (Propo-
sition 1.8), this discrepancy is asymptotically at least as large (for infinitely
many n) as the Lebesgue-measure discrepancy D(n,R2), and the latter quan-
tity is known to be of the order log n (see Proposition 2.2 and Schmidt’s
theorem 6.2). But obtaining tight bounds for Tusnády’s problem seems quite
hard, and the subsequent theorem gives nearly the best known upper bound.

2 Here is a few-line proof of (4.7): By the binomial theorem, we have (1 + ax)n ≥∑
0≤i≤z

(
n
i

)
aixi, so for 0 < x ≤ 1 we get

∑
0≤i≤z

(
n
i

)
ai ≤

∑
0≤i≤z

(
n
i

)
aixi−z ≤

(1 + ax)n/xz ≤ eaxn/xz (since 1 + y ≤ ey for all real y). The estimate follows by
substituting x = z/an.
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4.14 Theorem. The combinatorial discrepancy for axis-parallel rectangles
satisfies

disc(n,R2) = O(log5/2 n
√

log log n ).

The
√

log log n factor can be removed from the bound by a more sophisti-
cated method (Exercise 5.5.2) but currently it is not known how to improve
the exponent of log n, let alone what the correct bound is.

Proof. First we construct a partial coloring. Let P ⊂ R2 be an n-point
set, and let p1, p2, . . . , pn be its points listed in the order of increasing
x-coordinates (without loss of generality, we may assume that all the x-
coordinates and all the y-coordinates of the points of P are pairwise distinct).
Define a canonical interval of P in the x-direction as a subset of P of the
form {pk2q+1, pk2q+2, . . . , p(k+1)2q}. Here is a schematic illustration:

Let C be the collection of all canonical intervals of P in the x-direction, of all
possible lengths 2q with 1 ≤ 2q ≤ n. By considerations analogous to the ones
in the proof of Proposition 2.2 (Claim II), we see that any interval in P , of
the form {pi, pi+1, . . . , pi+j}, can be expressed as a disjoint union of at most
2�log2 n + 1� ≤ 2 log 2n sets of C.

For each canonical interval C ∈ C, consider the collection of all canon-
ical intervals of C in the y-direction (defined analogously to the canonical
intervals in x-direction). Discard those of size smaller than t, where t is a
threshold parameter (to be determined later). Call the collection of the re-
maining canonical intervals in the y-direction FC , and put F =

⋃
C∈C FC .

Let R2|P be the set system defined on P by axis-parallel rectangles. We
claim that for any rectangle R ∈ R2, the set P ∩R can be written as a disjoint
union of some sets from F plus a set of at most s = 4t log2 2n extra points.
To see this, we extend the rectangle R to an infinite vertical strip V . The
set P ∩ V can be decomposed into at most 2 log2 2n disjoint sets from C. For
any C in this decomposition, C ∩ R is in fact an intersection of C with an
infinite horizontal strip, and can thus be decomposed into disjoint sets from
FC plus an extra set consisting of at most 4t points. Such a decomposition
is schematically depicted below:
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R

V

From this, the claim follows.
For the considered rectangle R, let MR denote the set of the at most

s = O(t log n) extra points, i.e. the points of R ∩ P that are not covered by
the sets from F in the decomposition (these are the points of P in the gray
region in the above schematic picture). Define M = {MR: R ∈ R2}. We have
|M| ≤

∣∣R2|P
∣∣ = O(n4). We plan to apply the Partial coloring lemma for the

set systems F and M, so we need to choose the parameter t in such a way
that

∏
F (|F | + 1) ≤ 2(n−1)/5. If C ∈ C has 2q points, then FC contains 2q−i

sets of size 2i, �log2 t� ≤ i ≤ q. Thus,

log2

( ∏

F∈FC

(|F | + 1)
)

≤
q∑

i=�log2 t�
2q−i log2(2

i + 1) = O

(
2q log t

t

)
.

The system C contains �n/2q� sets C of size 2q, so we have

log2

( ∏

F∈F
(|F | + 1)

)
≤

�log2 n�∑

q=�log2 t�

n

2q
O

(
2q log t

t

)
= O

(
n log n log t

t

)
.

We see that in order to satisfy the assumption
∏

F (|F | + 1) ≤ 2(n−1)/5 of
the Partial coloring lemma, t should be chosen as K log n log log n, for a
sufficiently large constant K. Then the size of sets in M is bounded by
s = O(t log n) = O(log2 n log log n).

From the Partial coloring lemma, we obtain a no-nonsense partial col-
oring χ satisfying disc(χ,M) = O(

√
s log n) = O(log3/2 n

√
log log n ) and

disc(χ,F) = 0. For any rectangle R ∈ R2, we thus have |χ(P ∩ R)| =
|χ(MR)| = O(log3/2 n

√
log log n ).

To prove Theorem 4.14, we apply the construction described above iter-
atively, as the following drawing indicates:
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Y1Y2
Y3

χk

χ2

χ1

P

We set P1 = P , and we construct a partial coloring χ1 as above. Let Y1 be
the set of points colored by χ1 and let P2 = P \ P1 be the uncolored points.
We produce a partial coloring χ2 of P2 by applying the above construction to
the set system R2|P2

, and so on. We repeat this construction until the size of
the set Pk becomes trivially small, say smaller than a suitable constant—this
means k = O(log n). Then we define Yk = Pk and we let χk be the constant
mapping with value 1 on Yk. Finally we put χ(p) = χi(p) for p ∈ Yi.

Let R ∈ R2 be a rectangle. We have

|χ(P ∩ R)| ≤
k∑

i=1

|χi(Yi ∩ R)| ≤
O(log n)∑

i=1

O(log3/2 n
√

log log n )

= O(log5/2 n
√

log log n ).

�

Remark on Algorithms. The method of partial colorings is not algorith-
mic; the problem stems from the use of the pigeonhole principle in the proof
of the Partial coloring lemma. (In fact, the problem mentioned earlier, with
making Spencer’s upper bound 4.2 effective, comes from the same source.) In
some of the applications, the use of partial colorings can be replaced by the
Beck–Fiala theorem 4.3. While one usually loses a few logarithmic factors,
one obtains a polynomial-time algorithm—see Exercises 4 and 6.

Bibliography and Remarks. The partial coloring method was
invented by Beck [Bec81b]; this is the paper with the first near-optimal
upper bound for the discrepancy of arithmetic progressions (see the
remarks to Section 4.2). The method was further elaborated by Beck
in [Bec88a]. For other refinements see Section 4.6.

In 1980, Tusnády raised the question whether, in our terminology,
the combinatorial discrepancy for axis-parallel rectangles is bounded
by a constant (the question originated in an attempt to generalize
results of Komlós et al. [KMT75] to higher dimensions). This was
answered negatively by Beck [Bec81a], who also proved the upper
bound of O(log4 n). (The order of magnitude of the discrepancy is
not interesting from the point of view of Tusnády’s application but
it is an intriguing problem in its own right.) This was improved to
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O((log n)3.5+ε) by Beck [Bec89a] and to O(log3 n) by Bohus [Boh90]
via a bound for the “k-permutation problem” (Exercise 5). The pos-
sibility of a further slight improvement, to O(log5/2 n

√
log log n ), was

noted by the author of this book in a draft of this chapter. Indepen-
dently, an O(log5/2 n) bound was recently proved by Srinivasan [Sri97]
by a related but different method (see also Exercise 5.5.2). However, a
generalization of the proof method shown above for Tusnády’s problem
gives an O(logd+1/2 n

√
log log n ) bound in dimension d (see Exercise 1

or [Mat99]), while the method of Srinivasan and the one indicated in
Exercise 5.5.2 lead to worse bounds for d > 2. Another challenging
problem is to determine the combinatorial L2-discrepancy for axis-
parallel boxes: while in the continuous setting, the L2-discrepancy
bounds are considerably better than the bounds for the worst-case
discrepancy, no such improvement is known in the combinatorial set-
ting.

Beck [Bec88a] investigated, as a part of more general questions,
the Lebesgue-measure discrepancy for the family of translated and
scaled copies of a fixed convex polygon P0 in the plane and he proved
an O(log4+ε n) upper bound, with the constant of proportionality de-
pending on ε and on P0 (also see Beck and Chen [BC89]). His re-
sult in fact applies to a somewhat larger family. For a finite set H
of hyperplanes in Rd, let POL(H) denote the set of all polytopes⋂�

i=1 γi, where each γi is a halfspace with boundary parallel to some
h ∈ H (obviously, for each h ∈ H, it suffices to consider at most two
γi parallel to h in the intersection). Beck’s upper bound is valid for
any family POL(H) with H a finite set of lines in the plane. Károlyi
[Kár95a] studied a d-dimensional analogue of the problem and proved
the upper bound D(n,POL(H)) = O((log n)max(3d/2+1+ε,2d−1)) for
any fixed H and an arbitrarily small ε > 0, with the constant of
proportionality depending on H and on ε. He uses the partial color-
ing method plus a sophisticated way of decomposing the polytopes in
POL(H) into “canonical” ones. Exercises 2 and 3 below indicate proofs
of similar but quantitatively somewhat better bounds for the combi-
natorial discrepancy of POL(H) (at least for dimensions 2 and 3).
A detailed discussion of these bounds is in [Mat99]. The best esti-
mates for the Lebesgue-measure discrepancy for POL(H) have re-
cently been obtained by Skriganov [Skr98], whose results imply an
O(logd−1 n(log log n)1+ε) upper bound, for any fixed finite H in Rd

(this paper is discussed in the remarks to Section 2.5).
The 3-permutation problem discussed in Exercise 5 and Exer-

cise 5.5.3 remains one of the most tantalizing questions in combinato-
rial discrepancy.
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Exercises

1.∗ Consider a d-dimensional version of Tusnády’s problem; generalize the
method shown for the planar case to prove the upper bound disc(n,Rd) =
O(logd+1/2 n

√
log log n ) for any fixed d.

2. (Discrepancy for translates I)
(a)∗ Let T0 be a triangle in the plane, and let T denote the family of all
translated and scaled copies of T (no rotation allowed). Show that there is
a plane ρ ⊂ R3 such that if R2 is identified with ρ then any triangle T ∈ T
can be written as T = ρ ∩ R for some axis-parallel box R ∈ R3. By the
result of Exercise 1, this implies that disc(n, T ) = O(log3.5 n

√
log log n).

(b) More generally, let H be a finite set of hyperplanes in Rd, and define
POL(H) as in the remarks above, i.e. as the set of all polytopes

⋂�
i=1 γi,

where each γi is a halfspace with boundary parallel to some h ∈ H.
Using a suitable embedding of Rd into R|H| and Exercise 1, derive that
disc(n,POL(H)) = O((log n)|H|+1/2

√
log log n).

3. (Discrepancy for translates II)
(a) Modify the proof of Theorem 4.14 to show that if H1,H2, . . . , Hk are
families consisting of two lines each, where k is considered as a constant,
then

disc(n,POL(H1) ∪ POL(H2) ∪ · · · ∪ POL(Hk)) = O(log5/2 n
√

log log n)

(the same bound as for axis-parallel rectangles), with the constant of
proportionality depending on k. The notation POL(H) is as in Exer-
cise 2(a).
(b)∗ Using (a), improve the result of Exercise 2(a) to disc(n, T ) =
O(log5/2 n

√
log log n).

(c)∗ More generally, if H is a set of k lines in the plane, with k a con-
stant, prove disc(n,POL(H)) = O(log5/2 n

√
log log n), with the constant

of proportionality depending on k.
(d)∗∗ Generalize part (c) to dimension 3 (or even higher). That is, if
H is a family of k planes in R3 with k fixed, then disc(n,POL(H)) =
O(log3.5 n

√
log log n). (Details of this can be found in [Mat99].)

4.∗ Prove an upper bound disc(n,R2) = O(log4 n) by using the Beck–Fiala
theorem 4.3 instead of the Partial coloring lemma.

5. (The k-permutation problem) Let X = {1, 2, . . . , n}, and let π1, . . . , πk

be arbitrary permutations of X (bijective mappings X → X). De-
fine a set system Pk = P(π1) ∪ P(π2) ∪ . . . ∪ P(πk), where P(π)
denotes the family of all initial segments along π; that is, P(π) =
{{π(1), π(2), π(3), . . . , π(q)}: 1 ≤ q ≤ n}.
(a)∗ Show that for k = 2, disc(P2) ≤ 1 (for all choices of π1, π2).
(b)∗ Use the Partial coloring lemma to prove disc(Pk) = O(log n) for any
fixed k. What is the dependence of the constant of proportionality on k
in the resulting bound? (Also see Exercise 5.5.3.)
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(c) Prove that disc(Pk) is not bounded by a constant independent of k.
Let us remark that the question whether disc(P3) is bounded by some
constant is well-known and probably difficult (the three-permutation
problem).

6.∗ Prove an upper bound of O(log2 n) for the discrepancy of a set system
defined by 3 permutations as in Exercise 5 using the Beck–Fiala theo-
rem 4.3 instead of the Partial coloring lemma.

7. Consider the set system An consisting of all arithmetic progressions in
{1, 2, . . . , n}, that is,

An = {{a0, a0 + d, a0 + 2d, . . .} ∩ {1, 2, . . . , n}: a0, d ∈ N}.

(a)∗ Prove that An has a no-nonsense partial coloring with discrepancy
O(n1/4 log3/4 n) (if you can’t get this try to get at least a bigger power
of log n).
(b) Explain why (a) cannot be used iteratively in a straightforward man-
ner to conclude that disc(An) = O(n1/4 log7/4).
(c)∗ Let X ⊆ {1, 2, . . . , n} be an m-element set. Show that the restriction
of An on X also has a no-nonsense partial coloring with discrepancy
O(n1/4 log3/4 n). This already implies disc(An) = O(n1/4 log7/4 n).
(d) Why doesn’t the Beck–Fiala theorem seem to be directly applicable
for getting a bound close to n1/4 in this problem?
Remark. A slightly better upper bound will be proved in Exercise 5.5.4.

4.6 The Entropy Method

We are going to discuss a refinement of the Partial coloring lemma 4.13
which can often save logarithmic factors in discrepancy bounds. For instance,
suppose that we have a set system S and two auxiliary set systems F and
M as in the Partial coloring lemma, such that any set of S can be expressed
as a disjoint union of a set from F and a set from M. If the assumptions
of the Partial coloring lemma are met (in particular, this means that F has
somewhat fewer than n sets) then the lemma gives us a partial coloring where
the sets of F have zero discrepancy, while the sets of M have discrepancy
roughly as if colored randomly. The exactly zero discrepancy of the sets of
F is somewhat wasteful, however, since it would be quite sufficient to make
their discrepancy of the same order as the discrepancy of the sets of M. With
this idea in mind, let us look at the proof of the Partial coloring lemma again.

In that proof, we have exhibited two (full) colorings χ1 and χ2 differning
on many elements and satisfying χ1(S) = χ2(S) for all sets S ∈ F . We now
want to relax the latter condition, and only require that |χ1(S) − χ2(S)| <
2ΔS , where ΔS is the required bound for the discrepancy of S. If this
condition is satisfied, then the “difference coloring” χ = 1

2 (χ1 − χ2) has
|χ(S)| < ΔS .
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If we fix some discrepancy bound ΔS for each of the considered sets S,
we need not distinguish between sets of two types anymore as we did in the
Partial coloring lemma. The sets F ∈ F in that lemma would simply have
ΔF = 1, while the sets M ∈ M would have ΔM =

√
2s ln(4|M|). So we

work with a single set system S, but we will typically need some knowledge
about the distribution of the sizes of sets.

For an application of the pigeonhole principle as in the proof of the Partial
coloring lemma, we need to replace the inequality |χ1(S)−χ2(S)| < 2ΔS by
an equality condition (so that we can assign a pigeonhole to every coloring).
A suitable replacement for this inequality is

round
(

χ1(S)
2ΔS

)
= round

(
χ2(S)
2ΔS

)
,

where round(x) = �x + 1
2� denotes rounding to the nearest integer.

For a coloring χ:X → {−1,+1} and a set S ∈ S, let us put

bS = bS(χ) = round
(

χ(S)
2ΔS

)
,

and let b = b(χ) be the vector (bS : S ∈ S) (the sets of S are taken in some
order fixed once and for all). The value of b(χ) is the pigeonhole where the
pigeon χ is supposed to live.

The set C of all possible colorings χ:X → {−1,+1} is partitioned into
classes according to the value of the vector b(χ). We want to show that there
exists a big class, since in a big class we have two colorings χ1, χ2 differing
in sufficiently many points. Their difference coloring 1

2 (χ1 − χ2) will be the
partial coloring giving discrepancy below ΔS to each set S ∈ S. Up to the
definition of the classes, this is the same argument as in the proof of the
Partial coloring lemma, and we have already calculated how big a big class
should be: a class containing at least 24n/5 colorings has some two colorings
χ1, χ2 differing in at least n

10 components, and hence provides a no-nonsense
partial coloring, i.e. one that colors at least n

10 points.
Thus, it remains to show the existence of a big class. To this end, it is

very convenient to use entropy.

Entropy. Let Z be a discrete random variable attaining values in a finite
set V . (Our main example of such a variable will be the b(χ) defined above,
which is a function of the random coloring χ.) For v ∈ V , let pv denote the
probability of the event “Z = v.” The entropy of Z, denoted by H(Z), is
defined by

H(Z) = −
∑

v∈V

pv log2 pv.

One can think of entropy as the average number of bits of information we
gain by learning the value of Z. For instance, if there are m equally likely
values, then by learning which one was actually attained we gain log2 m bits
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of information. If there are only two possible values, rain tomorrow and no
rain tomorrow, and we’re in the middle of a rainy season, then rain tomorrow
brings almost no information, and a sunny day is a big surprise but extremely
unlikely, so the total entropy is small (here entropy measures the “expected
surprise,” so to speak).

We need three basic properties of entropy.

1. (Good chance) If H(Z) ≤ K then some value v ∈ V is attained by Z
with probability at least 2−K .

2. (Uniformity optimal) If Z attains at most k distinct values, then H(Z) ≤
log2 k (with equality when Z is uniformly distributed on k values).

3. (Subadditivity) Let Z1, Z2, . . . , Zm be arbitrary discrete random vari-
ables, and let Z = (Z1, Z2, . . . , Zm) be the random vector with compo-
nents Z1, Z2, . . . , Zm. Then we have H(Z) ≤ H(Z1) + H(Z2) + · · · +
H(Zm).

The first property is immediate from the definition of entropy. The other
two need some work to prove but are not difficult either. The subadditivity is
intuitively obvious from the “average information” interpretation of entropy.
The inequality may be strict, for instance if the vector consists of several
copies of the same random variable.

Partial Coloring from Entropy. Let a set system S and numbers ΔS

be given, and let the vector b = b(χ) be defined as above. If χ is a random
coloring, then b(χ) is a random variable. If we could prove that its entropy
H(b) is at most n

5 , then by the first property of entropy (good chance), some
value b̄ is attained by b(χ) with probability at least 2−n/5. This means that
the class of colorings with b(χ) = b̄ has at least 24n/5 members. Together
with the previous considerations, we obtain

4.15 Lemma. If H(b) ≤ n
5 then there exists a no-nonsense partial coloring

χ such that |χ(S)| < ΔS holds for all S ∈ S. �

To apply the method in specific examples, we need to estimate H(b). As a
first step, we use subadditivity: H(b) ≤

∑
S∈S H(bS). It remains to estimate

the entropies H(bS) for the individual sets and sum up. A large part of this
calculation can be done once and for all. The distribution of bS , and thus
also its entropy, only depends on the size of S and on ΔS . Our aim is thus to
estimate the function h(s,Δ) defined as the entropy of bS with |S| = s and
ΔS = Δ.

As we know, for large s and for χ random, χ(S) behaves roughly as a
normal random variable with standard deviation

√
s. By passing from χ(S)

to bS , we “shrink” all values of χ(S) from an interval [(2i − 1)Δ, (2i + 1)Δ) to
the single value i, thus forgetting some information about χ(S) (and thereby
lowering the entropy).

Let us put λ = Δ/
√

s. For estimating h(s,Δ), we distinguish two cases.
If λ ≥ 2, then χ(S) almost always lies in the interval [−Δ,Δ) where bS is 0,
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1

0

1

(a) (b)

−1 1 0 2 4−4 −2

Fig. 4.1. Probability distributions of χ(S)/2Δ and of bS for λ = 2 (a), and for
λ = 0.4 (b).

so the entropy will be small. Fig. 4.1(a) shows the probability distribution of
χ(S)/2ΔS and the distribution of bS for λ = 2 (with s large). On the other
hand, for λ < 2, bS has reasonable chance of attaining nonzero values, so the
entropy will be larger (Fig. 4.1(b)). In other words, we do not violate the
natural order of things so much by insisting that |χ(S)| < 10

√
s holds for

the partial coloring, say, since a random coloring typically has this property
anyway, and so we do not pay much entropy. On the other hand, requiring
that |χ(S)| <

√
s

10 already imposes quite a strong condition, so we need more
entropy to compensate.

Having indicated what to expect, we do the actual calculation now.
The Case λ ≥ 2. Let pi denote the probability of bS = i. We want to show
that p0 is very close to 1 and that the other pi are small (Fig. 4.1(a)). For
i ≥ 1, we have

pi ≤ Pr [χ(S) ≥ (2i − 1)ΔS ] = Pr
[
χ(S) ≥ (2i − 1)λ

√
s
]
≤ e−(2i−1)2λ2/2

by Chernoff’s inequality. By elementary calculus, the function x �→ −x log2 x
is nondecreasing on (0, 1

e ), and hence

−
∞∑

i=1

pi log2 pi ≤
∞∑

i=1

(2i − 1)2λ2

2 ln 2
e−(2i−1)2λ2/2.

It is easy to check that the ratio of two successive terms in this series is
smaller than 1

4 , and so by comparing the series with a geometric series we
get that the sum is no larger than λ2e−λ2/2. By symmetry, the same bound
applies for the contribution of the terms with i ≤ −1.
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For p0 we derive

p0 ≥ 1 − Pr [|χ(S)| ≥ ΔS ] ≥ 1 − 2e−λ2/2.

To estimate log2 p0, we calculate that 2e−λ2/2 < 1
3 for λ ≥ 2, and we check

that log2(1 − x) ≥ −2x holds for 0 < x < 1
3 (more calculus). Therefore we

have
−p0 log2 p0 ≤ − log2 p0 ≤ − log2

(
1 − 2e−λ2/2

)
≤ 4e−λ2/2.

Altogether we obtain the estimate h(s,Δ) = H(bS) ≤ 6λ2e−λ2/2. As one can
check (by a computer algebra system, say), 6λ2e−λ2/2 is bounded above by
the simpler function 10e−λ2/4 for all λ ≥ 2.
The Case λ < 2. Here we can make use of the calculation done in the previous
case, by the following trick. Let us decompose bS into two parts bS = b′S +b′′S .
The first addend b′S is bS rounded to the nearest integer multiple of L = � 2

λ�;
that is,

b′S = L round
(

bS

L

)
= L round

(
χ(S)
2LΔ

)
.

Hence by the result of the λ ≥ 2 case, we have H(b′S) = h(s, LΔ) ≤
10e−(Lλ)2/4 ≤ 4, as Lλ ≥ 2. The second component, b′′S = bS − b′S , can
only attain L different values, and thus its entropy is at most log2 L. Finally
we obtain, by subadditivity,

h(s,Δ) = H(bS) ≤ H(b′S) + H(b′′S) ≤ 4 + log2 L

≤ 4 + log2

(
2
λ

+ 1
)

≤ log2

(
16 +

32
λ

)
.

The estimates in both cases can be combined into a single formula, as the
reader is invited to check: h(s,Δ) ≤ Ke−λ2/4 log2(2 + 1/λ) for an absolute
constant K. (This formula is a bit artificial, but it saves us from having to
distinguish between two cases explicitly; it is a matter of taste whether it
is better to write out the cases or not.) Plugging this into Lemma 4.15, we
arrive at the following convenient device for applying the entropy method:

4.16 Proposition (Entropy method—quantitative version). Let S be
a set system on an n-point set X, and let a number ΔS > 0 be given for each
S ∈ S. Suppose that

∑
S∈S h(|S|,ΔS) ≤ n

5 holds, where the function h(s,Δ)
can be estimated by

h(s,Δ) ≤ Ke−Δ2/4s log2

(
2 +

√
s

Δ

)

with an absolute constant K. Then there exists a no-nonsense partial coloring
χ:X → {+1,−1, 0} such that |χ(S)| < ΔS for all S ∈ S.
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Often one only has upper bounds on the sizes of the sets in S. In such a
case, it is useful to know that the entropy contribution does not increase by
decreasing the set size (while keeping Δ fixed). It suffices to check by elemen-
tary calculus that the function s �→ e−Δ2/4s log2(2+

√
s/Δ) is nondecreasing

in s.

Proof of Spencer’s Upper Bound 4.2. We have a set system S on n
points with m sets, m ≥ n. We want to prove disc(S) = O(

√
n ln(2m/n)).

The desired coloring is obtained by iterating a partial coloring step based on
Proposition 4.16.

To get the first partial coloring, we set ΔS = Δ = C
√

n ln(2m/n) for all
S ∈ S, with a suitable (yet undetermined but sufficiently large) constant C.
For the entropy estimate, we are in the region λ ≥ 2, and so we have

∑

S∈S
h(|S|,Δ) ≤ m · h(n,Δ) ≤ m · 10e−Δ2/4n = m · 10

( n

2m

)C2

<
n

5

for a sufficiently large C. Therefore, an arbitrary set system on n points
with m ≥ n sets has a no-nonsense partial coloring with discrepancy at most
C
√

n ln(2m/n).
Having obtained the first partial coloring χ1 for the given set system

(S,X1), we consider the set system S2 induced on the set X2 of points uncol-
ored by χ1, we get a partial coloring χ2, and so on. The number of sets in Si

is at most m and the size of Xi is at most
(

9
10

)i
n. We can stop the iteration

at some step k when the number of remaining points drops below a suitable
constant. The total discrepancy of the combined coloring is bounded by

k∑

i=1

C

√(
9
10

)i
n ln
((

10
9

)i 2m/n
)
.

After the first few terms, the series decreases geometrically, and thus the total
discrepancy is O

(√
n ln(2n/m)

)
as claimed. �

Bibliography and Remarks. A refinement of Beck’s partial color-
ing method similar to the one shown in this section was developed by
Spencer [Spe85] for proving that the discrepancy of n sets on n points
is O(

√
n). His method uses direct calculations of probability; the appli-

cation of entropy, as suggested by Boppana for the same problem (see
[AS00]), is a considerable technical simplification. As was remarked in
Section 4.1, alternative geometric approaches to Spencer’s result have
been developed by Gluskin [Glu89] and by Giannopoulos [Gia97]; the
latter paper can be particularly recommended for reading.

The possibility of taking set sizes into account and thus unifying
the method, in a sense, with Beck’s sophisticated applications of the
partial coloring methods was noted in [Mat95]. Matoušek and Spencer
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[MS96] use the method is a similar way, with an additional trick needed
for a successful iteration of the partial coloring step, for proving a
tight upper bound on the discrepancy of arithmetic progressions (see
the remarks to Section 4.2). More applications of the entropy method
can be found in [Sri97], [Mat96b], and [Mat98a].

Spencer’s founding paper [Spe85] has the title “Six standard devi-
ations suffice,” indicating that the constant of proportionality can be
made quite small: for instance, the discrepancy for n sets on n points is
below 6

√
n. The calculation shown above yields a considerably worse

result. We were really wasteful only in the proof of the Partial col-
oring lemma, at the moment when we had a class of at least 24n/5

colorings and concluded that it must contain two colorings at least
n
10 apart. In reality, for instance, a class of this size contains colorings
at least 0.48n apart. This follows from an isoperimetric inequality for
the Hamming cube due to Kleitman [Kle66], which gives a tight bound
on the number of points in a subset of the Hamming cube of a given
diameter. Namely, any C ⊆ {−1,+1}n of size bigger than

∑�
j=0

(
n
j

)

with � ≤ n
2 contains two points differing in at least 2� coordinates.

This sum of binomial coefficients is conveniently bounded above by
2H(�/n)n, where H(x) = −x log2 x − (1 − x) log2(1 − x) (here the cus-
tomary notation H(x) stands for a real function, not for the entropy
of a random variable!). Using this result, it is sometimes possible to
produce partial colorings with almost all points colored, say with at
most n0.99 uncolored points. Then much fewer than log n iterations of
the partial coloring step are needed. An application, noted by Spencer,
is given in Exercise 4.

Exercises

1. Prove the subadditivity property of entropy.
2. Prove that if a random variable Z attains at most k distinct values then

H(Z) ≤ log2 k.
3. (a) Let S be a system of n sets on an n-point set, and suppose that each

set of S has size at most s. Check that the entropy method provides a
no-nonsense partial coloring where each set of S has discrepancy at most
O(

√
s).

(b) Why can’t we in general conclude that disc(S) = O(
√

s) for an S as
in (a)? Show that this estimate is false in general.

4. (The discrepancy for m sets of size s) The goal is to show that for any m
sets of size at most s, where s ≤ m, the discrepancy is O(

√
s log(2m/s) ).

The important case, dealt with in (c), is an unpublished result of Spencer
(private communication from September 1998).
(a) Show that this bound, if valid, is asymptotically the best possible (at
least for m bounded by a polynomial function of s, say).
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(b) Why can we assume that n, the size of the ground set, equals m, and
that Cs ≤ m ≤ s1+ε for arbitrary constants C and ε > 0?
(c)∗ With the assumptions as in (b), use Kleitman’s isoperimetric in-
equality mentioned at the end of the remarks to this section to show that
there is a partial coloring with at most s uncolored points for which each
set has discrepancy at most O(

√
s log(2m/s) ).

(d) Using (a)–(c), prove the bound claimed at the beginning of this ex-
ercise.



5. VC-Dimension and Discrepancy

In this chapter, we introduce combinatorial parameters measuring the com-
plexity of a set system: the shatter functions and the Vapnik–Chervonenkis
dimension. These concepts have recently become quite important in several
branches of pure and applied mathematics and of theoretical computer sci-
ence, such as statistics, computational learning theory, combinatorial geom-
etry, and computational geometry.

We will mainly consider them in connection with discrepancy. Recall that
a general system of, say, n2 sets on n points may have discrepancy as high as
c
√

n log n, i.e. the random coloring is essentially optimal. But if, moreover, the
shatter functions of the considered system are polynomially bounded, which
is the case in most geometric settings, we obtain a discrepancy upper bound
of O(n1/2−δ) for some fixed δ > 0. It even turns out that many of the current
best upper bounds on the discrepancy for various families of geometric shapes,
and sometimes provably tight bounds, can be derived solely from two general
results using the shatter functions of the considered geometric families.

In Section 5.1, we define the shatter functions, we state the two upper
bounds for discrepancy, and we review theorems that can be helpful for
bounding the shatter functions for specific geometric families.

In Section 5.2, we introduce the Vapnik–Chervonenkis dimension, relate
it to the shatter functions, and prove basic results about these concepts.
Section 5.3 presents another auxiliary result with a more complicated proof.
Then we finally get back to discrepancy and, in Sections 5.4 and 5.5, we prove
the two upper bounds stated in Section 5.1.

5.1 Discrepancy and Shatter Functions

We have already derived the upper bound D(n,B2) = O(n1/4
√

log n) for the
discrepancy for discs in the plane in Section 3.1. Such a bound holds for the
combinatorial discrepancy for discs as well. It turns out that this bound is
implied by a simple combinatorial property of the set systems induced by
discs on finite point sets, and that upper bounds of this type can be applied
for quite general geometric situations. In order to describe these results, we
begin with the necessary definitions.

J. Matoušek, Geometric Discrepancy, Algorithms and Combinatorics 18,
DOI 10.1007/978-3-642-03942-3 5, c© Springer-Verlag Berlin Heidelberg 2010
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Let (X,S) be a set system, where the ground set X may be finite or
infinite.

5.1 Definition (Primal shatter function). The primal shatter function
of (X,S) is a function, denoted by πS , whose value at m (m = 0, 1, 2, . . .) is
defined by

πS(m) = max
Y ⊆X, |Y |=m

∣∣S|Y
∣∣ .

In words, πS(m) is the maximum possible number of distinct intersections of
the sets of S with an m-point subset of X. If X is finite, then the domain of
πS is {0, 1, 2, . . . , |X|}, and for X infinite, the domain is N.

Another way to understand the primal shatter function is via the incidence
matrix A of the set system (X,S), with rows indexed by sets of S and columns
indexed by points of X. The value πS(m) is the maximum number of distinct
rows appearing in any m-column submatrix of A.

For example, in Lemma 3.3 we have we have shown that at most O(m3)
subsets can be defined by circular discs on an m-point set in the plane.
In terms of the primal shatter function, this says that πB2(m) = O(m3),
where B2 denotes the family of all closed discs in the plane. A similar (but
simpler) argument can be used for showing that for the system H2 of all
closed halfplanes in the plane, we have πH2(m) = O(m2). That is, for any
m-point set Y in the plane, at most O(m2) subsets of Y can be “cut off” by
a halfplane. Below we describe general tools for bounding shatter functions
of various geometric families, and the bounds for halfplanes and for discs are
simple consequences.

An example of a different nature is the family of all convex sets in the
plane. Here the primal shatter function is 2m (see Exercise 5.2.2).

Next, we define the dual shatter function. This is just the primal shat-
ter function of the set system dual to S, whose incidence matrix arises by
transposing the incidence matrix of S (and possibly deleting repeated rows).
Formulating this explicitly, we get

5.2 Definition (Dual shatter function). The dual shatter function of a
set system (X,S) is a function, denoted by π∗

S , whose value at m is defined as
the maximum number of equivalence classes on X defined by an m-element
subfamily Y ⊆ S, where two points x, y ∈ X are equivalent with respect to Y
if x belongs to the same sets of Y as y does. In other words, π∗

S(m) is the
maximum number of nonempty cells in the Venn diagram of m sets of S.
If S is finite, the domain of π∗

S is {0, 1, 2, . . . , |S|}, and for an infinite S the
domain is N.

The dual shatter function is perhaps more intuitive in geometric setting
than the primal shatter function. For example, for determining π∗

H2
(m), the

dual shatter function for (closed) halfplanes, we are simply asking what is
the maximum number of regions into which m halfplanes partition the plane.
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Here two points belong to the same region if they lie in the same subset of
the given m halfplanes. Such regions for 4 halfplanes are illustrated below:

Since adding an mth halfplane to any given m− 1 halfplanes divides at most
m of the existing regions into two pieces, induction gives π∗

H2
(m) = O(m2).

Similarly, for discs one finds that π∗
B2

(m) = O(m2).

Discrepancy Bounds. The following two theorems bound the discrepancy
of a set system on an n-point set in terms of its shatter functions. Perhaps
surprisingly, these bounds are often tight or near-tight for many geometrically
defined set systems.

5.3 Theorem (Primal shatter function bound). Let d > 1 and C be
constants, and let S be a set system on an n-point set X with primal shatter
function satisfying πS(m) ≤ Cmd for all m ≤ n. Then

disc(S) ≤ C ′n1/2−1/2d,

where the constant C ′ depends on C and d.

Since πH2(m) = O(m2), this theorem implies an O(n1/4) upper bound
for the combinatorial discrepancy of halfplanes. In Section 6.4, we show that
this bound is the best possible up to the multiplicative constant. Similarly,
for halfspaces in Rd, the primal shatter function is O(md), and so we get an
O(n1/2−1/2d) bound for their discrepancy, which is also asymptotically tight.
Therefore, the bound in Theorem 5.3 is the best possible in general for all
integers d ≥ 2. In Exercise 5 below, we indicate how to prove this last fact
in a more direct way, using a purely combinatorial argument instead of a
geometric one.

On the other hand, discs in the plane have the primal shatter function of
the order m3, and so Theorem 5.3 only gives an O(n1/3) discrepancy upper
bound, which is way off the mark—we already know that an O(n1/4

√
log n)

bound holds true, at least for the Lebesgue-measure discrepancy. The same
bound in the more general combinatorial setting follows from the next theo-
rem.

5.4 Theorem (Dual shatter function bound). Let d > 1 and C be
constants and let S be a set system on an n-point set X with dual shatter
function satisfying π∗

S(m) ≤ Cmd for all m ≤ |S|. Then
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disc(S) ≤ C ′n1/2−1/2d
√

log n,

where the constant C ′ depends on C and d.

For halfplanes in the plane, the dual shatter function is O(m2), and so
this theorem gives a slightly worse bound than Theorem 5.3 above, only
O(n1/4

√
log n). On the other hand, the dual shatter function for discs is

O(m2) as well, and so we get the bound of O(n1/4
√

log n) for the discrepancy
for discs from Theorem 5.4, and this is currently the best result. It is a
tantalizing open problem whether it can be improved, perhaps by removing
the

√
log n factor. The best known lower bound is Ω(n1/4) only, the same as

that for halfplanes.
Concerning Theorem 5.4 itself, it is known that it is asymptotically tight

for all integers d ≥ 2, including the
√

log n factor. A proof for d = 2 is
indicated in Exercise 6 below. The set systems used in the proof are not of a
geometric origin, and so they shed no light on the question of the discrepancy
for discs in the plane.

Bounding the Dual Shatter Function for Geometric Families. A half-
plane can be defined by a linear inequality. A circular disc in the plane can
be written as {(x, y) ∈ R2: (x−a)2 +(y−b)2 ≤ r2} for three real parameters
a, b, r. Many other simple geometric shapes can be defined by a polynomial
inequality with several real parameters, or sometimes by a Boolean combi-
nation of several such polynomial inequalities (for example, a square in the
plane is defined by 4 linear inequalities).

Let us first consider bounding the dual shatter function of a set system
(S,Rd), where each set S ∈ S is defined by a single polynomial inequality
of degree at most D. That is, we have S = {x ∈ Rd: fS(x) ≥ 0} where
fS ∈ R[x1, . . . , xd] is a d-variate real polynomial of degree at most D. For
example, if S were the disc of radius 2 centered at (4, 5) then fS(x) = 22 −
(x1 − 4)2 − (x2 − 5)2.

For determining the dual shatter function, we ask, what is the largest
number of regions that can be induced in Rd by m sets S1, S2, . . . , Sm ∈ S?
Two points x, y ∈ Rd lie in the same region if and only if fSi

(x) and fSi
(y)

are both nonnegative or both negative, for all i = 1, 2, . . . ,m. This is closely
related to the notion of sign patterns for a collection of polynomials.

Consider m real polynomials f1(x1, x2, . . . , xd),. . . , fm(x1, x2, . . . , xd) in
d variables, each fi of degree at most D. Let us call a vector σ ∈ {−1, 0,+1}
a sign pattern of f1, f2, . . . , fm if there exists an x ∈ Rd such that the sign
of fi(x) is σi, for all i = 1, 2, . . . ,m. Trivially, the number of sign patterns
for any m polynomials is at most 3m. For d = 1, it is easy to see that the
actual number of sign patterns is much smaller than 3m for m large. Namely,
m univariate polynomials of degree D have altogether at most mD real roots
which partition the real axis into at most mD + 1 intervals. In each of these
intervals, the sign pattern is fixed. Hence there are O(m) sign patterns for
d = 1 and D fixed. The following very important theorem of real-algebraic
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geometry shows that in any fixed dimension d, there are at most O(md) sign
patterns:

5.5 Theorem. The maximum number of sign patterns for a collection
f1, f2, . . . , fm of d-variate polynomials of degree at most D is bounded by

(
CDm

d

)d

,

where C is an absolute constant.

This is not an easy result, and we omit the proof. We stated the bound
more precisely than we need, as it is interesting in various other applications.
We only need the fact that the number of sign patterns is O(md) for D
and d fixed. This also follows from older, somewhat easier, and less precise
estimates.

To have a geometric picture of the situation in the theorem, consider the
zero sets of the fi: Zi = {x ∈ Rd: fi(x) = 0}. We can think of them as
hypersurfaces in Rd (although in some cases they can be disconnected, have
singularities, or have dimension smaller than d− 1). These sets partition Rd

into cells of various dimensions; the following drawing illustrates a possible
situation with 3 polynomials in R2:

Z1

Z1

Z2

Z3

+ + +

+ − +

− + +

−− +

− + + − + +

− + −

+ + −
+ −−

The sign patterns remain constant within each cell (they are marked in the
picture for the 2-dimensional cells), and so the number of sign patterns is no
bigger than the number of cells. On the other hand, several cells may have
the same sign pattern. It is known that the maximum number of cells can be
bounded by the same expression as in the theorem.

Important special cases of the theorem can be proved by elementary geo-
metric arguments. For example, if all the fi are linear polynomials, it suffices
to show that m hyperplanes partition Rd into O(md) cells. This is a well-
known fact about the so-called arrangements of hyperplanes, and it can be
proved easily by double induction on d and on m.

Returning to the dual shatter function, Theorem 5.5 and the discussion
above it give the following corollary.
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5.6 Corollary. If (S,Rd) is a set system in which each set is defined as
a Boolean combination of at most k polynomial inequalities of degree at
most D, where k and D are considered as constants, then π∗

S(m) = O(md).
In particular, the dual shatter function for halfspaces and balls in Rd is
O(md).

(Strictly speaking, we have only discussed the relation of sign patterns
to the dual shatter function in the case of sets defined by a single polyno-
mial inequality, but the extension to sets defined by Boolean combinations of
several polynomial inequalities is immediate and we leave it to the reader.)
Roughly, this theorem says that for “reasonable” geometric families in Rd,
the dual shatter function is essentially determined by the space dimension d.

Bounding the Primal Shatter Function. The primal shatter function
depends mainly on the number of real parameters determining a set in a
given family. For example, a disc in the plane has 3 parameters, since it can
be written as {(x, y) ∈ R2: (x − a)2 + (y − b)2 ≤ r2} for some a, b, r ∈ R.

Let us again consider a family of geometric shapes determined by a single
polynomial inequality. This time we let f(x1, x2, . . . , xd, a1, a2, . . . , ap) be a
fixed real polynomial in d + p variables, and for a parameter vector a =
(a1, a2, . . . , ap) ∈ Rp we put

Sf (a) = {x = (x1, x2, . . . , xd) ∈ Rd: f(x1, . . . , xd, a1, . . . , ap) ≥ 0}.

We let Sf be the set system {Sf (a): a ∈ Rp}. For example, the system of all
discs in the plane can be written as Sf with

f(x1, x2, a1, a2, a3) = a2
3 − (x1 − a1)2 − (x2 − a2)2.

How many distinct subsets can be defined by Sf on an m-point set
{x(1), . . . , x(m)} ⊂ Rd? This number is bounded by the number of sign pat-
terns of the p-variate polynomials f1, f2, . . . , fm ∈ R[a1, a2, . . . , ap], where
fi(a1, . . . , ap) = f(x(i)

1 , . . . , x
(i)
d , a1, . . . , ap). According to Theorem 5.5, we

thus obtain

5.7 Corollary. Let f(x1, . . . , xd, a1, . . . , ap) be a (d + p)-variate polynomial
of degree bounded by a constant. Then we have πSf

(m) = O(mp), where the
set system Sf is defined as above. In particular, the primal shatter function
for halfspaces in Rd is O(md), and for balls in Rd it is O(md+1).

The result for halfspaces can again be derived by an elementary geometric
argument; in this case, the primal and dual shatter functions are exactly
equal (this follows from geometric duality). But the bound for halfspaces,
too, follows from the general result stated in the corollary. Although the
family Hd of all halfspaces cannot be written as Sf for a (d + d)-variate
polynomial f , the family of all upper halfspaces, say, can be so expressed,
and for d fixed, Hd is a union of a constant-bounded number of such families.
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The bound follows since, clearly, πS1∪S2(m) ≤ πS1(m) + πS2(m) for any set
systems (X,S1) and (X,S2).

Also, we should remark that the result in Corollary 5.7 does not need the
assumption that f(x1, . . . , xd, a1, . . . , ap) depend polynomially on x1, . . . , xd.
It suffices to assume that it is a polynomial of a constant-bounded degree in
a1, . . . , ap for each fixed value of x = (x1, . . . , xd) ∈ Rd.

Bibliography and Remarks. The history of the concept of the
shatter functions will be briefly considered in the remarks to the next
section.

The relation of the shatter functions to discrepancy was observed
by Matoušek, Wernisch, and Welzl [MWW93] who proved the stated
bound in terms of the dual shatter function (Theorem 5.4) and a
weaker version of the primal bound (Theorem 5.3). Some of the ideas
used in the proof of the dual bound were noted independently by
Beck [Bec91b] in a particular geometric situation. The tight bound
in Theorem 5.3 was obtained in Matoušek [Mat95]. The tightness of
the dual bound for d = 2, 3 was proved in [Mat97], and results of
Alon et al. [ARS99] (based on previous work by Kollár et al. [KRS96])
supplied a missing combinatorial ingredient for extending the proof to
an arbitrary integer d ≥ 2.

Theorem 5.5 is from Pollack and Roy [PR93]. Basu et al. [BPR96]
showed that the number of sign patterns defined by m polynomials
of degree at most D on a k-dimensional algebraic variety V ⊆ Rd,
where V can be defined by polynomials of degree at most D, is at
most

(
m
k

)
O(D)d.

The original bounds on the number of sign patterns, less precise
than Theorem 5.5 but still implying Corollaries 5.6 and 5.7, were given
independently by Oleinik and Petrovskǐı [OP49] (also see [Ole51]),
Milnor [Mil64], and Thom [Tho65]. Quantitatively somewhat weaker
versions of Corollaries 5.6 and 5.7 can be derived without the real-
algebraic machinery, by embedding the set system Sf into a set system
defined by halfspaces in a suitable higher-dimensional space.

A far-reaching generalization of the results on the number of sign-
patterns for polynomials has recently been achieved by Wilkie [Wil99],
culminating a long development in model theory. These results con-
sider geometric shapes defined by functions from more general classes
than polynomials. Perhaps the most important of such classes are the
Pfaffian functions; roughly speaking, these are functions definable by
first-order differential equations, and a prominent example is the ex-
ponential function ex. Wilkie’s results imply that the shatter functions
for geometric shapes defined by bounded-size formulas from Pfaffian
functions are polynomially bounded. More special but quantitatively
sharper results in this spirit were obtained by Karpinski and Mac-
intyre ([KM97b]; also see [KM97a] for algorithmic applications). The
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subtlety of these results can be illustrated by remarking that the func-
tion sinx, which is not a Pfaffian function but seems to be of nature
similar to ex (at least in the complex domain), leads to families with
non-polynomial shatter functions (see Exercise 5.2.3 in the next sec-
tion).

Exercises

1. Show that the primal shatter function πB2(m) for discs is at least Ω(m3).
2. For each of the following classes of shapes, determine the discrepancy

upper bounds provided by Theorems 5.3 and 5.4 (if you can’t bound the
shatter functions exactly give at least some estimates):
(a) all axis-parallel rectangles in the plane;
(b) all rectangles (arbitrarily rotated) in the plane.

3. Define the discrepancy of a set D of n circular discs in the plane as the
minimum, over all red-blue colorings of the discs in D, of the maximum
possible difference of the number of red discs containing a point x and the
number of blue discs containing that x. (Note that here, exceptionally,
we color discs rather than points.) What upper bounds can be obtained
for this discrepancy from Theorems 5.3 and 5.4?

4. Let Φ(X1,X2, . . . , Xt) be a fixed set-theoretic expression (using the op-
erations of union, intersection, and difference) with variables X1, . . . Xt

standing for sets, for instance,

Φ(X1,X2,X3) = (X1 ∪ X2 ∪ X3) \ (X1 ∩ X2 ∩ X3).

Let S be a set system on a set X. Let T consist of all sets Φ(S1, . . . , St),
for all possible choices of S1, . . . , St ∈ S.
(a) Suppose that π∗

S(m) ≤ Cmd for all m. Prove π∗
T (m) = O(md), with

the constant of proportionality depending on C, d, and Φ.
(b) Suppose that πS(m) ≤ Cmd for all m. Prove πT (m) = O(mtd).
(c) Show that the bound in (b) is asymptotically tight in the worst case.
This exercise consists of variations on ideas appearing in Dudley [Dud78].

5. Let (X,P) be a finite projective plane of order q (i.e. a system of n =
q2 + q + 1 sets of size q + 1 on n points such that any two sets intersect
at exactly one point and for every two points, there is exactly one set
containing both).
(a) Determine the order of magnitude of the shatter functions πP and π∗

P .
(b) Show that disc(P) = Ω(

√
q) (follow the proof method of Proposi-

tion 4.4). Deduce that for d = 2, the bound in Theorem 5.3 is asymptot-
ically the best possible in general, and that the bound in Theorem 5.3 is
tight up to the

√
log n factor.

(c) Show that the L1-discrepancy of P is upper-bounded by a constant
independent of q.
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(d)∗ Generalize (a) and (b) for the system of all hyperplanes in a finite
projective d-space of order q.

6. Let F be a q-element finite field. Let P2 be the set of all univariate
quadratic polynomials over F . For a polynomial p ∈ P2, define a set
Sp ⊆ X = F × F as the graph of p, i.e. Sp = {(x, p(x)): x ∈ F}. Let
S = {Sp: p ∈ P2}.
(a) Show that |Sp ∩ Sp′ | ≤ 2 for any two distinct p, p′ ∈ P2. Infer that
π∗
S(m) = O(m2).

(b) For each p ∈ P2, define Rp as a random subset of Sp, where all
subsets are taken with equal probability and the choices are mutually
independent for distinct p. Put R = {Rp: p ∈ P2}. Show that π∗

R(m) =
O(m2).
(c)∗ Use the method and results of Exercise 4.1.1 to prove that disc(R) =
Ω(

√
q log q) holds with a positive probability. This means that Theo-

rem 5.4 is tight for d = 2.

5.2 Set Systems of Bounded VC-Dimension

In this section we introduce the concept of Vapnik–Chervonenkis dimension,
which is closely related to the shatter functions and provides new insight
into their behavior. Then we prove some important results concerning these
notions, which will be used later on in the proofs of the discrepancy bounds.

5.8 Definition (VC-dimension). Let S be a set system on a set X. Let
us say that a subset A ⊆ X is shattered by S if each of the subsets of A
can be obtained as the intersection of some S ∈ S with A, i.e. if S|A = 2A.
We define the Vapnik–Chervonenkis dimension (or VC-dimension for short)
of S, denoted by dim(S), as the supremum of the sizes of all finite shattered
subsets of X. If arbitrarily large subsets can be shattered, the VC-dimension
is ∞.

An immediate reformulation of the definition is

dim(S) = sup {m: πS(m) = 2m}.

Somewhat surprisingly, the order of growth of shatter functions cannot be
quite arbitrary. It turns out that they can be either polynomially bounded or
exponential, but nothing in between. This is a consequence of a key lemma
below relating the VC-dimension and the primal shatter function.

5.9 Lemma (Shatter function lemma). For any set system S of VC-di-
mension at most d, we have

πS(m) ≤ Φd(m)

for all m, where
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Φd(m) =
(

m

0

)
+
(

m

1

)
+ · · · +

(
m

d

)
.

Thus, the primal shatter function for any set system is either 2m (the case
of infinite VC-dimension) or it is bounded by a fixed polynomial.

Proof. Since VC-dimension does not decrease by passing to a subsystem,
it suffices to show that any set system of VC-dimension ≤ d on an n-point
set has no more than Φd(n) sets. We proceed by induction on d, and for a
fixed d we use induction on n.

Consider a set system (X,S) of VC-dimension d, with |X| = n, and fix
some x ∈ X. In the induction step, we would like to remove x and pass to
the set system S1 = S|X \ {x} on n − 1 points. This S1 has VC-dimension
at most d, and hence |S1| ≤ Φd(n − 1) by the inductive hypothesis. How
many more sets can S have compared to S1? The only way the number of
sets decreases by removing the element x is when two sets S, S′ ∈ S give
rise to the same set in S1, which means that S′ = S∪̇{x} (or the other way
round). This suggests that we define an auxiliary set system S2 consisting
of all sets in S1 that correspond to such pairs S, S′ ∈ S, that is, we set
S2 = {S ∈ S: x �∈ S, S ∪ {x} ∈ S}.

By the above discussion, we have |S| = |S1| + |S2|. Crucially, we observe
that dim(S2) ≤ d− 1, since if A ⊆ X \ {x} is shattered by S2 then A∪{x} is
shattered by S. Therefore |S2| ≤ Φd−1(n − 1). This gives a recurrence from
which the asserted formula is verified by an easy manipulation of binomial
coefficients. �

Another Proof. Lemma 5.9 can also be proved using linear algebra. It
would be a pity to omit this pretty proof.

Suppose that X = {1, 2, . . . , n}. For each set S ∈ S, define a polynomial
pS in variables x1, x2, . . . , xn:

pS(x1, x2, . . . , xn) =
(∏

i∈S

xi

)(∏

i�∈S

(1 − xi)
)

.

For a set S ∈ S, let vS ∈ {0, 1}n denote the characteristic vector of S, with
(vS)i = 1 if i ∈ S and (vS)i = 0 otherwise, and let VS = {vS : S ∈ S}. Each
polynomial pS can be regarded as a real function defined on the set VS ; the
value at a vector vT ∈ VS is naturally pS((vT )1, (vT )2, . . . , (vT )n). All real
functions with domain VS constitute a vector space (with pointwise addition
and multiplication by a real number), which we denote by F , and we let L
be the linear span in F of the set {pS : S ∈ S}.

First we note that the pS ’s are all linearly independent in F . This is
because pS has value 1 at vS and value 0 at the characteristic vectors of all
other S′ ∈ S; hence no pS can be a linear combination of others. Therefore
dim(L) = |S|.

To prove the lemma, we now show that dim(L) ≤ Φd(n). We claim that L
is contained in the linear span of all monomials of the form xi1xi2 · · ·xik

with
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1 ≤ i1 < i2 < · · · < ik ≤ n and k ≤ d (call them multilinear monomials of
degree at most d). Note that once we show this we are done since the number
of such monomials is just Φd(n).

By multiplying out the parentheses in the definition of pS we see that
each pS is a linear combination of some multilinear monomials. It suf-
fices to show that any multilinear monomial of degree d + 1, regarded as
a function on VS , is a linear combination of multilinear monomials of de-
gree ≤ d. So let xi1xi1 · · ·xid+1 be a multilinear monomial of degree d + 1.
At this moment we use (finally) the definition of VC-dimension: there ex-
ists a set B ⊆ {i1, i2, . . . , id+1} = A that is not of the form S ∩ A for
any S ∈ S, for otherwise A would be shattered. Define a polynomial
q(x1, x2, . . . , xn) =

(∏
j∈B xj

)(∏
j∈A\B(xj − 1)

)
. A little thought reveals

that the value of q is 0 for all characteristic vectors of sets from S; so q re-
garded as an element of F is the zero function. At the same time, q can be
written as q(x1, x2, . . . , xn) = xi1xi2 · · ·xid+1 + r(x1, x2, . . . , xn), where r is a
linear combination of multilinear monomials of degree at most d. Hence our
monomial xi1xi1 · · ·xid+1 is a linear combination of multilinear monomials of
degree at most d as claimed. This proves the Shatter function lemma. �

Taking all subsets of X of size at most d for S shows that the bound in the
Shatter function lemma 5.9 is tight in the worst case. However, the primal
shatter function is often considerably smaller than the upper bound derived
from the VC-dimension. For instance, the set system H2 of all halfplanes has
VC-dimension 3, as is easily checked, but we know that πH2 is only quadratic.

Another interesting result obtained via VC-dimension is the following:

5.10 Lemma (Dual set system lemma). Let (X,S) be a set system, and
let (S,S∗) denote the dual set system: S∗ = {{S ∈ S: x ∈ S}: x ∈ X}
(the incidence matrix of S∗ is a transpose of the incidence matrix of S, with
repeated rows deleted). Then

dim(S∗) < 2dim(S)+1.

Thus, if πS(m) ≤ Cmd for all m and for some constants C, d, then π∗
S(m) =

πS∗(m) ≤ C ′md′
, where C ′, d′ are constants depending on C, d only. The

primal and dual shatter function are either both polynomially bounded or
both equal to 2m.

We leave a proof as Exercise 4.

Epsilon-Nets. For a set system (X,S), we often need a set intersecting
all sets in S, the so-called transversal of S. Of course, the whole X is a
transversal, but one of the key problems in combinatorics of set systems is
the existence of a small transversal. The ε-nets we are going to consider now
are transversals for all “large” sets in S.

Let (X,S) be a set system with X finite. A set N ⊆ X (not necessarily
one of the sets of S) is called an ε-net for (X,S), where ε ∈ [0, 1] is a real
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number, if each set in S ∈ S with |S| ≥ ε|X| intersects N . Sometimes it will
be convenient to write 1

r instead of ε, with r > 1 a real parameter.
More generally, an ε-net can be defined for a set system (X,S) with a

probability measure μ on X (i.e. μ(X) = 1). A set N ⊆ X is an ε-net for
(X,S) with respect to μ if it intersects all S ∈ S with μ(S) ≥ ε.

The ε-nets are a concept somewhat akin to the ε-approximations intro-
duced in Section 1.3. Recall that Y ⊆ X is an ε-approximation if

∣∣∣∣
|Y ∩ S|
|Y | − μ(S)

∣∣∣∣ ≤ ε

for all S ∈ S. It is easy to see that an ε-approximation is also an ε-net, but
the converse need not be true in general.

First we prove the following simple probabilistic bound for the size of
ε-nets:

5.11 Lemma (Easy ε-net lemma). Let X be a set, μ a probability mea-
sure on X, and S a finite system of μ-measurable subsets of X. Then, for
every real number r > 1, there exists a 1

r -net N for (X,S) with respect to μ
with |N | ≤ r ln |S|.

Proof. Let N be a random sample drawn from X by s independent random
draws (thus, elements may be drawn several times); each of the s elements
is sampled according to the distribution μ. Then for any given S ∈ S with
μ(S) ≥ 1

r , Pr[S ∩N = ∅] ≤ (1− 1
r )s < e−s/r. The probability that any of the

sets of S is missed by N is thus smaller than |S| · e−s/r. For s ≥ r ln(|S|) this
is at most 1, so N is a 1

r -net with a positive probability. �

It turns out that for set systems of bounded VC-dimension, a significant
improvement over the Easy ε-net lemma 5.11 is possible. Namely, if the VC-
dimension is bounded, one can get ε-nets whose size depends on ε and on
the VC-dimension but not on the size of X or S. So, for example, there is an
absolute constant C such that for any finite set X in the plane, there exists
a C-point subset N ⊆ X such that any triangle containing at least 1% of the
points of X intersects N . Note that the Easy ε-net lemma would only give
an O(log |X|) bound for the size of such an N .

5.12 Theorem (Epsilon-net theorem). For every d ≥ 1 there exists a
constant C(d) such that if X is a set with a probability measure μ, S is
a system of μ-measurable subsets of X with dim(S) ≤ d, and r ≥ 2 is a
parameter, then there exists a 1

r -net for (X,S) with respect to μ of size at
most C(d)r ln r.

It is known that one can take C(d) = d + o(d). More precisely, for any
d > 1 there exists an r0 > 1 such that for any r > r0, each set system of
VC-dimension d admits a 1

r -net of size at most dr ln r.
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We will only prove an important special case of this result, where X is
finite and μ is the counting measure on X. The following proof is conceptually
simple and related to discrepancy, but it gives a somewhat worse value of C(d)
than the best known bounds.

First we establish an analogous result with ε-approximations instead of
ε-nets. For simplicity, we will assume that the size of the ground set X is a
power of 2 (but the proof can be modified to the general case without much
work).

5.13 Lemma. Let X be a set of n = 2k points, let S be a set system of
VC-dimension at most d on X, and let r ≥ 2. Then a 1

r -approximation for
(X,S) exists of size at most C(d)r2 log r.

We should remark that this lemma, even with a better bound for the size
of the 1

r -approximation, is an immediate consequence of Theorem 5.3, the
Shatter function lemma 5.9, and Lemma 1.6(ii) (on the relation of combina-
torial discrepancy and ε-approximations); see Exercise 7. But since the proof
of Theorem 5.3 is not simple, we give another, self-contained proof.

Proof. The proof resembles the proof of the transference lemma (Proposi-
tion 1.8)—we proceed by repeated halving, using a random coloring at each
halving step. Let us set Y0 = X and S0 = S. Having constructed the set sys-
tem (Yi,Si), with ni = |Yi| = 2k−i, we apply the Random coloring lemma 4.1
to (Yi,Si), obtaining

disc(Si) ≤
√

2ni ln(4|Si|) ≤
√

2ni ln(4πS(ni)) = O(
√

ni ln ni )

by the Shatter function lemma 5.9 (the constant of proportionality depends
on d). From Lemma 1.6, we know that a low-discrepancy coloring can be con-
verted to an ε-approximation. In our case, there exists an εi-approximation
Yi+1 for (Yi,Si) of size |Yi+1| = ni

2 , where εi ≤ disc(Si)/ni = O(
√

ln ni/ni ).
We stop the construction as soon as ni+1, the size of Yi+1, drops be-

low Cr2 ln r for a sufficiently large constant C (depending on d). Suppose
that we have stopped after the �th step. The resulting set Y�+1 has size
n�+1 < Cr2 ln r and it is an ε-approximation for (X,S) by Observation 1.7
(on iterated approximations), where

ε ≤
�∑

i=0

εi = O(1) ·
�∑

i=0

√
ln ni

ni
= O

(√
ln n�

n�

)

= O

(√
ln(2Cr2 ln r)

Cr2 ln r

)

= O

(√
ln C

C
· 1
r

)

≤ 1
r

if C was chosen sufficiently large. Lemma 5.13 is proved. �

Proof of Theorem 5.12 for the counting measure case. Let (X,S)
be the considered set system with n = |X|. Add at most n− 1 more dummy
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points to X, lying in no set of S, obtaining a set X ′ with n′ = 2k points.
Obviously, a 1

2r -net for (X ′,S) is also a 1
r -net for X.

Using Lemma 5.13, we find a 1
4r -approximation Y for the set system

(X ′,S) of size O(r2 log r). Next, apply the Easy ε-net lemma 5.11 to the set
system (Y,S|Y ), obtaining a 1

4r -net N for (Y,S|Y ), of size O(r ln πS(|Y |)) =
O(r ln r). It is easy to check that N is also a 1

2r -net for (X ′,S) (this is analo-
gous to Observation 1.7) and consequently a 1

r -net for (X,S). Theorem 5.12
is proved. �

Bibliography and Remarks. The notion now commonly called
VC-dimension originated in statistics. It was introduced by Vapnik
and Chervonenkis [VC71]. Under different names, it also appeared in
other papers (I am aware of Sauer [Sau72] and Shelah [She72]), but
the work [VC71] was probably the most influential for the subsequent
developments. The name VC-dimension and some other, by now more
or less standard terminology was introduced in a key paper of Haussler
and Welzl [HW87].

The VC-dimension and related concepts have been applied and
further developed in several areas of mathematics and computer sci-
ence. For most of them, we only give a few pointers to the extensive
literature. In statistics, the VC-dimension is used mainly the theory of
so-called empirical processes ([Vap82], [Dud84], [Dud85], [Pol90]). In
computational learning theory, VC-dimension is one of the main con-
cepts ([BEHW89], [AB92], [Hau92]). In combinatorics of hypergraphs,
set systems of VC-dimension d can be viewed as a class of hypergraphs
with a certain forbidden subhypergraph (the complete hypergraph on
d+1 points), which puts this topic into the broader context of extremal
hypergraph theory (see for instance [Fra83], [WF94], [DSW94]).

The above-mentioned paper of Haussler and Welzl [HW87] belongs
to computational geometry (this field was discussed a little in the re-
marks to Section 1.4). Chazelle and Friedman [CF90] is another signif-
icant paper applying combinatorial properties of geometric set systems
(similar to polynomially bounded shatter functions) in computational
geometry.

The Shatter function lemma 5.9 was independently found in the
three already mentioned papers [VC71], [Sau72], [She72]. The linear-
algebraic proof is due to Frankl and Pach [FP83]. A forthcoming mono-
graph by Babai and Frankl [BF92] is an excellent source for applica-
tions of linear algebra in this spirit. The shatter functions were defined
and applied by Welzl [Wel88]. I am not aware of any earlier explicit
reference but implicitly these notions have been used much earlier, for
instance by Dudley [Dud78]. In the literature, the shatter functions ap-
pear under various names, such as the growth functions, and a related
dimension concept, where the dimension is defined as the degree of a
polynomial bounding the primal shatter function, was re-discovered
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several times. The Dual set system lemma 5.10 was noted by Assouad
[Ass83].

The notions of shattering and of VC-dimension can also be used for
a family F :X → {0, 1} of two-valued functions on a set X, since such
functions are in a one-to-one correspondence with subsets of X. There
are several generalizations of these notions to k-valued functions. Two
of them are mentioned in Exercise 10, and more information and ref-
erences can be found, e.g., in Haussler and Long [HL95].

The ε-approximations were introduced by Vapnik and Chervo-
nenkis [VC71]. They also proved a more general version of Lemma 5.13,
analogous to Theorem 5.12: If X is a set with a probability measure
μ then there exist 1

r -approximations for (X,S) with respect to μ of
size at most C(d)r2 log r, where d = dim(S). The idea of their proof
is indicated in Exercise 8, for the technically simpler case of ε-nets.
The notion of ε-net and the Epsilon-net theorem 5.12 (for the case of
the counting measure) are due to Haussler and Welzl [HW87]. They
proved the theorem directly, imitating the proof of Vapnik and Cher-
vonenkis for ε-approximations, instead deriving the ε-net result from
the ε-approximation result as we did above. The dependence of the
bound in Theorem 5.12 on d was subsequently improved by Blumer
et al. [BEHW89] and then by Komlós et al. [KPW92], who also give a
matching lower bound (Exercise 6). The proof of the Epsilon-net the-
orem 5.12 presented in the text is a simplification of an algorithmic
method for computing ε-approximations from [Mat96a].

Let us remark that finite VC-dimension characterizes set systems
(X,S) where all subsystems induced by finite sets have a sublinear
combinatorial discrepancy, i.e. such that disc(m,S) = o(m) as m →
∞. Indeed, if dim(S) = d < ∞, then disc(m,S) = O(

√
m log m) by the

Random coloring lemma 4.1 and by the Shatter function lemma 5.9
(or, we can even do slightly better using Theorem 5.3). On the other
hand, if dim(S) = ∞ then there is an m-point shattered shattered
subset for all m, and so disc(m,S) = �m/2� for all m.

An interesting example in which small ε-approximations exist, al-
though the VC-dimension is not bounded, was discovered by Chazelle
[Cha93]. Let L be a set of n lines in the plane in general position, and
let A ⊆ L be an ε-approximation for the set system induced on L by
line segments (that is, for each segment s, the set {� ∈ L: �∩ s �= ∅} is
included in the set system). Then A can be used to estimate the num-
ber of intersections of the lines of L within any convex set C ⊆ R2.

C
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Namely, if V (L) denotes the set of all intersections of the lines of L,
and similarly for V (A), we have

∣∣∣
∣
|V (A) ∩ C|
|V (A)| − |V (L) ∩ C|

|V (L)|

∣∣∣
∣ ≤ 2ε.

Note that the set system induced by convex sets on V (L) has an
arbitrarily large VC-dimension. But, for set systems of small VC-
dimension, small ε-approximations exist for subsystems induced by ar-
bitrary subsets of the ground set, whereas in the above case, only some
special subsets of V (L) can be obtained as V (L′) for some L′ ⊆ L.
A similar result is valid for hyperplanes in Rd. A more general ver-
sion of Chazelle’s result is treated in [BCM99]. Given two set systems
(X,S) and (Y, T ), their product set system has X × Y as the ground
set and it contains all sets Q ⊆ X × Y all of whose “slices” lie in S or
in T . Formally, if we put xQ = {y ∈ Y : (x, y) ∈ Q} for x ∈ X, and
Qy = {x ∈ X: (x, y) ∈ Q} for y ∈ Y , then the product set system
contains all the Q ⊆ X × Y such that xQ ∈ T for all x ∈ X and
Qy ∈ S for all y ∈ Y . Now if A ⊆ X is an ε-approximation for (X,S)
and B ⊆ Y is a δ-approximation for (Y, T ) then A × B is an (ε + δ)-
approximation for the product set system.

Exercises

1. Let S1,S2 be set systems on a set X and let S = S1 ∪ S2.
(a) Bound πS in terms of πS1 and πS2 .
(b) If dim(S1) = d1 and dim(S2) = d2, what is the maximum possible
value of dim(S)?
(c) Bound π∗

S in terms of π∗
S1

and π∗
S2

.
2. (a) Show that for the set system consisting of all convex sets in the plane,

the VC-dimension is infinite.
(b)∗ Show that for any integer d there exists a convex set C in the plane
such that the family of all isometric copies of C has VC-dimension at
least d.
(c)∗∗ Show that for the family of all translated and scaled copies of a
fixed convex set in the plane, the VC-dimension is bounded by a universal
constant.

3.∗ Let S be the family of all subsets of the real line of the form Sa = {x ∈
R: sin(ax) ≥ 0}, a ∈ R. Prove that dim(S) = ∞.

4. (a) Prove the Dual set system lemma 5.10.
(b) Prove that the bound 2dim(S)+1 for the VC-dimension of the dual
system cannot be improved in general.

5. (a) Prove that any set system S on n points with hereditary discrepancy
at most d has no more than Φ2d(n) =

∑2d
i=0

(
n
i

)
distinct sets.
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(b)∗∗ Show that the upper bound in (a) is the best possible.
The results in this exercise are from Lovász and Vesztergombi [LV89].

6.∗ (Lower bounds for ε-net size) Let X be an n-point set (n large) and let
R be a set system obtained by drawing a random subset of size s from X
m times (independently and with possible repetitions). Show that with
n large, m = n3/4, and s = n0.3, the following holds with a positive
probability.
(i) There exists no k-element set N ⊆ X intersecting each set of R with
k ≤ cn

s log n
s , c > 0 a constant.

(ii) No 3-point set A ⊆ X is shattered by R.
Thus, the bound for ε-net size in the Epsilon-net theorem 5.12 is tight
for d = 3 up to the value of C(3). A similar lower bound proof works for
an arbitrary d > 1.

7. (Improved bounds for the size of ε-approximations) Use Theorems 5.3
and 5.4 to show the following improvements over the O(r2 log r) bound
for the size of a 1

r -approximation (Lemma 5.13). If the primal shatter
function of a set system (X,S) is bounded by Cmd for all m and for some
constants C, d > 1, then 1

r -approximations exist of size O(r2−2/(d+1)),
with the constant of proportionality depending on C and d. Similarly,
if the dual shatter function is bounded by Cmd, then 1

r -approximations
exist of size O(r2−2/(d+1)(log r)1−1/(d+1)).

8. (An alternative proof of the Epsilon-net theorem) Complete the follow-
ing outline of the Haussler-Welzl original proof of the Epsilon-net theo-
rem 5.12.
Pick a random sample N ⊆ X by s independent random draws (according
to the probability distribution μ), where s = C(d)r log r. The goal is to
show that N is a 1

r -net with high probability.
(a)∗ By s more independent random draws, pick another sample M .
Regard both N and M as multisets. Show that the probability of N not
being a 1

r -net is at most

O
(
Pr
[
∃S ∈ S: S ∩ N = ∅ and |S ∩ M | ≥ s

r

])
.

(b)∗ Let N0 be a fixed multiset of 2s elements of X. Put s randomly
selected elements of N0 into a multiset N and the remaining s elements
into a multiset M . For any fixed subset R ⊆ N0, show that the probability
of R ∩ N = ∅ and |R ∩ M | ≥ s

r is o(s−d).
(c)∗ Find how (a), (b), and the Shatter function lemma 5.9 imply that a
multiset N obtained by s independent random draws from X according
to μ is a 1

r -net with a positive probability.
9. (A quantitative Ramsey-type result for bipartite graphs)

(a) Let A be a d-point set, and let G be the bipartite graph of incidence
of the set system (A, 2A). That is, the vertices of one class are the points
of A, the vertices of the other class are the subsets of A, and edges
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correspond to membership. Let H be any bipartite graph with classes of
size a and b, where a+log2 b ≤ d. Prove that G contains an induced copy
of H.
(b)∗ Let H be a fixed bipartite graph with classes of size a and b, and let
d = a+ �log2 b�. Let m be an integer and let n > (m−1)Φd−1(2m−1) =
O(md). Prove that any bipartite graph G with 2m−1 vertices in one class
and n vertices in the other class and with no induced copy of H contains a
homogeneous subgraph on m+m vertices (that is, the complete bipartite
graph Km,m or the discrete bipartite graph on m + m vertices).
Remark. There is a general Ramsey-type result saying that a bipartite
graph on n+n vertices contains a homogeneous subgraph on m+m ver-
tices if n is sufficiently large in terms of m, but the quantitative bound
is only m ≈ log n. The above result, due to Hajnal and Pach (oral com-
munication), shows that if any small induced subgraph H as above is
forbidden, the guaranteed size of a homogeneous subgraph is at least
Ω(n1/d). Erdős and Hajnal [EH77] conjectured a similar result for non-
bipartite graphs: Given any fixed graph H, there is a δ > 0 such that
any graph on n vertices with no induced copy of H contains a complete
graph on Ω(nδ) vertices or its complement. Also see Erdős and Hajnal
[EH89] for partial results.

10. (Generalization of VC-dimension to k-valued functions) Let X be an n-
point set and let F be a family of functions X → {1, 2, . . . , k}, where
k ≥ 2 is an integer parameter.
(a) We say that a subset A ⊆ X is k-shattered by F if for each function
f :A → {1, 2, . . . , k}, a function f̄ ∈ F exists such that f̄ |A = f . For
k = 2, how does this correspond to the notion of shattering of a set by a
set system on X?
(b)∗ The family F0 consisting of all functions f :X → {1, 2, . . . , k} attain-
ing the value k at most d times shows that for k ≥ 3, there exist families
of size exponential in n with no k-shattered subset of size d + 1, even for
d = 0. (This makes the notion of dimension based on the k-shattering
for k ≥ 3 much less useful than the VC-dimension.) Extend the linear
algebra proof of the Shatter function lemma 5.9 to show that no family
without a k-shattered subset of size d + 1 has more functions than the
family F0 defined above.
(c)∗ Let us say that a subset A ⊆ X is 2-shattered by a family F as
above if for each x ∈ A, there exist a 2-element subset Vx ⊆ {1, 2, . . . , k}
such that for each combination of choices vx ∈ Vx, x ∈ A, the family
F contains a function f with f(x) = vx for all x ∈ A. Generalizing the
first proof of the Shatter function lemma 5.9, prove that for d fixed, the
maximum size of a family F on an n-point set X with no 2-shattered
subset of size d + 1 is O(k2dnd).
(d) In the situation as in (c), show that F can have size at least Ω(kdnd).
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Remark. It is not known whether the bound in (c) is tight, even for
d = 1 and n = 3. The construction in the hint to (d) can be improved by
a factor somewhat smaller than k but nothing better is known.

5.3 Packing Lemma

As a motivating example, consider n lines in the plane in general position. If
they are removed from the plane, we obtain a collection R of convex regions
(a simple induction on the number of lines shows that |R| =

(
n+1

2

)
+ 1). One

can naturally define a metric on these regions: the distance of two regions
R1, R2 ∈ R is the number of lines crossed by a segment connecting a point
in R1 to a point in R2.

R1

R2

In the proofs of the upper bounds in Theorems 5.3 and 5.4, we are interested
in properties of this metric space. In particular, we ask the following question.
Suppose that for a given integer δ, we have a subset P ⊆ R of regions such
that any two regions in P have distance greater than δ (we call such a P
δ-separated). What is the maximum possible cardinality of P?

This is actually a question about packing of disjoint balls. For a region
R ∈ P, let B(R, ρ) be the ball of radius ρ centered at R; that is, the set of all
regions R′ ∈ R at distance at most ρ from R. If P is a 2ρ-separated set, all
the balls B(R, ρ) for R ∈ P are disjoint, and conversely, a disjoint collection
of ρ-balls defines a (2ρ)-separated set.

This ball-packing question can be answered concisely: as far as ball pack-
ing is concerned, the metric space of regions in a line arrangement behaves
in a way similar to the square Q of side n with the usual Euclidean metric.
In the Euclidean plane, a disc B of radius ρ has area πρ2, and if its center
lies in the square Q, then the area of B ∩ Q is at least π

4 ρ2 = Ω(ρ2). Con-
sequently, one cannot place more than O((n/ρ)2) centers of disjoint discs of
radius ρ into Q. Similarly, as a special case of the Packing lemma below, we
will see that no more than O((n/ρ)2) disjoint ρ-balls can be placed into the
considered metric space R of regions.

The Packing lemma is stated and proved for general set systems. Let
(X,S) be a set system on a finite set X. We define a metric on S: the distance
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of two sets S1, S2 ∈ S is |S1�S2|, where S1�S2 = (S1∪S2)\(S1∩S2) denotes
the symmetric difference. In other words, this is the L1-distance, or Hamming
distance, of the characteristic vectors of S1 and S2.

The Packing lemma says that a set system on an n-point set with the
primal shatter function bounded by O(md) behaves, as far as the ball packing
problem is concerned, in a way similar to the cube with side n in the Euclidean
space Rd.

5.14 Lemma (Packing lemma). Let d > 1 and C be constants, and let
(X,S) be a set system on an n-point set whose primal shatter function satis-
fies πS(m) ≤ Cmd for all m = 1, 2, . . . , n. Let δ be an integer, 1 ≤ δ ≤ n, and
let P ⊆ S be δ-separated (any two distinct sets of P have distance greater
than δ). Then |P| = O((n/δ)d).

Let us remark that the original formulation of the Packing lemma, due
to Haussler, assumes that the set system has VC-dimension d and yields the
bound |P| ≤ (cn/(δ + d))d, with c an absolute constant (independent of d).

Proof of a Weaker Bound. It is instructive to prove a weaker result first,
namely

|P| = O

((n

δ

)d

logd n

δ

)
,

using the Epsilon-net theorem 5.12. So let d be a constant, and let P satisfy
|S1�S2| > δ for all S1 �= S2 ∈ P.

Consider the set system D = {S1�S2: S1, S2 ∈ S}. This D has a bounded
VC-dimension since its primal shatter function is polynomially bounded. Set
r = n

δ , and fix a 1
r -net N of size O(r log r) for D, according to the Epsilon-net

theorem 5.12.
Whenever the symmetric difference of any two sets S1, S2 ∈ S has

more than n
r = δ elements, it contains a point of N . In particular, we

get S1 ∩ N �= S2 ∩ N for any two distinct sets S1, S2 ∈ P. Therefore, the
set system induced by S on N has at least |P| elements, and so we get
|P| ≤ πS(|N |) = O((n/δ)d logd(n/δ)) as claimed. �

To get the better bound as in the Packing lemma, we first prove an auxil-
iary result. For a set system (X,S), we define the unit distance graph UD(S).
The vertex set of UD(S) is S, and a pair {S, S′} is an edge if S and S′

have distance 1; that is, |S�S′| = 1. Thus, each edge e can be written as
e = {S, S∪̇{y}}.

5.15 Lemma. If S is a set system of VC-dimension d0 on a finite set X then
the unit distance graph UD(S) has at most d0|S| edges.

Proof. This is very similar to the proof of the Shatter function lemma 5.9.
We proceed by induction on n = |X| and d0. The case n = 1 is trivial, and
the case d0 = 1 is easy to discuss. Hence we assume n > 1, d0 > 1.
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Fix an element x ∈ X, and define set systems S1 and S2 as in the proof
of the Shatter function lemma 5.9:

S1 = S|X \ {x}, S2 = {S ∈ S: x �∈ S, S ∪ {x} ∈ S}.

We know that |S| = |S1|+ |S2|. Let E be the edge set of UD(S), E1 the edge
set of UD(S1), and E2 the edge set of UD(S2). By the inductive hypothesis,
we have |E1| ≤ d0|S1|, and |E2| ≤ (d0 − 1)|S2| since S2 has VC-dimension
≤ d0 − 1.

Consider an edge e = {S, S′} of UD(S), and let ye be the element with
S�S′ = {ye}. There are at most |S2| edges e with ye = x. Next, we assume
that ye �= x. We want to find an edge e′ in E1 or in E2 to pay for e, in such a
way that no edge in E1 or in E2 pays for more than one e ∈ E. If we succeed,
we obtain |E| ≤ |S2|+ |E1|+ |E2| ≤ |S2|+ d0|S1|+ (d0 − 1)|S2| ≤ d0|S|, and
the induction step will be finished.

A natural candidate for paying for the edge e = {S, S′} is the edge e′ =
{S \ {x}, S′ \ {x}}. We have e′ ∈ E1, but it may happen that two distinct
edges e1, e2 ∈ E lead to the same edge e′ in this way. This happens if and
only if e1 = {S, S′} and e2 = {S \ {x}, S′ \ {x}}. But this is exactly the case
when e′ is present in E2 as well, and so it can pay for both e1 (as a member
of E1) and for e2 (as a member of E2). Lemma 5.15 is proved. �

Proof of the Packing Lemma 5.14. The Packing lemma is proved by
a probabilistic argument which looks like a magician’s trick. Let (X,S) be
a set system and let P ⊆ S be a δ-separated subsystem of S. We choose a
random s-element subset A ⊆ X, where the size s is chosen suitably; later on
we will see that a good choice is s = �4d0n/δ�, where d0 is the VC-dimension
of P. Set Q = P|A, and for each set Q ∈ Q define its weight w(Q) as the
number of sets S ∈ P with S ∩ A = Q. Note that

∑
Q∈Q w(Q) = |P|.

Let E be the edge set of the unit distance graph UD(Q), and define the
weight of an edge e = {Q,Q′} as min(w(Q), w(Q′)). Put W =

∑
e∈E w(e);

note that W is a random variable depending on the random choice of A. The
bound on P in the Packing lemma is obtained by estimating the expectation
of W in two ways.

First, we claim that for any set A ⊆ X, we have

W ≤ 2d0

∑

Q∈Q
w(Q) = 2d0|P|. (5.1)

This is because by Lemma 5.15, the unit distance graph UD(Q) has some
vertex Q0 of degree at most 2d0. By removing Q0, the total vertex weight
drops by w(Q0) and the total edge weight by at most 2d0w(Q0). Repeating
this until no vertices are left we see that the sum of edge weights is at most
2d0 times the sum of vertex weights as claimed.

Next, we bound the expectation E [W ] from below. Imagine the following
random experiment. First, we choose a random (s − 1)-element set A′ ⊂ X,
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P1

P2

...

Pi
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Fig. 5.1. Dividing the sets of P into classes according to A′, and then refining by
a random a ∈ X \ A′.

and then we choose a random element a ∈ X \ A′. The set A = A′ ∪ {a}
is a random s-element subset of X, and we consider the corresponding unit
distance graph on Q = P|A as above. Each edge of this graph is a pair of
sets of Q differing in exactly one element of A. We let E1 ⊆ E be the edges
for which the difference element is a, and let W1 be the sum of their weights.
By symmetry, we have E [W ] = s · E [W1].

We are going to bound E [W1] from below. Let A′ ⊂ X be an arbitrary but
fixed (s− 1)-element set. We estimate the conditional expectation E [W1|A′];
that is, the expected value of W1 when A′ is fixed and a is random.

Divide the sets of P into equivalence classes P1,P2, . . . ,Pt according to
their intersection with the set A′. We have t ≤ πS(s − 1) ≤ C2(n/δ)d for a
constant C2.

Let Pi be one of the equivalence classes, and let b = |Pi|. (The situation
is perhaps best visualized using the incidence matrix of the set system P; see
Fig. 5.1.) Suppose that an element a ∈ X \ A′ has been chosen. If b1 sets of
Pi contain a and b2 = b− b1 sets do not contain a then the class Pi gives rise
to an edge of E1 of weight min(b1, b2). (Note that b1 and b2 depend on the
choice of a while b does not.)

For any nonnegative real numbers b1, b2 with b1 + b2 = b, we have
min(b1, b2) ≥ b1b2/b. The value b1b2 is the number of ordered pairs of sets
(S1, S2) with S1, S2 being two sets from the class Pi which differ in a (one of
them contains a and the other one does not). Let us look at this differently:
if S1, S2 ∈ Pi are two distinct sets, we know that they differ in at least δ
elements (by the assumption on P), and therefore the probability that S1

and S2 differ in a random element a ∈ X \ A′ is at least δ
n−s+1 ≥ δ

n . Hence
the expected contribution of each pair (S1, S2) of distinct sets of Pi to the
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quantity b1b2 is at least δ
n , and so E [b1b2] ≥ b(b − 1) δ

n . This further means
that the expected contribution of the equivalence class Pi to the sum of edge
weights W1 is at least (b− 1) δ

n . Summing up over all equivalence classes, we
find that

E [W1] ≥
δ

n

t∑

i=1

(|Pi| − 1) =
δ

n

(
|P| − t

)
≥ δ

n

(
|P| − C2

(n

δ

)d
)

.

Combining this with the estimate (5.1), i.e. s · E [W1] = E [W ] ≤ 2d0|P|,
leads to the inequality

2d0|P| ≥ sδ

n

(
|P| − C2

(n

δ

)d
)

≥ 4d0|P| − 4d0C2

(n

δ

)d

.

The rabbit is out of the hat: we have |P| = O((n/δ)d) as claimed. �

Bibliography and Remarks. Haussler [Hau95] attributes the idea
of the proof of the quantitatively weaker version of the Packing lemma
shown above to Dudley. The result was re-discovered by Welzl [Wel88].
The tight bound was first proved in certain geometric cases (e.g., as
in Exercise 1) by Chazelle and Welzl [CW89]. The general case is due
to Haussler [Hau95]; his proof was simplified by Chazelle in an un-
published manuscript [Cha92] whose presentation we have essentially
followed.

Exercises

1. In this exercise, we indicate a simpler proof of the Packing lemma 5.14
for the case when S is the set system defined by halfplanes on a finite
point set in the plane.
(a)∗ Let L be a set of n lines in the plane in general position, let x be a
point, and let r < n

2 be a number. Show that the number of intersections
of the lines of L lying at distance at most r from x (that is, intersections
v such that the open segment vx is intersected by at most r lines of L)
is at least cr2, with an absolute constant c > 0.
(b) Prove the Packing lemma 5.14 for a set system of the form H2|P for
an n-point set P in the plane. If convenient, assume that P is in general
position.
(c)∗ Extend (a) for hyperplanes in Rd (there are at least cdr

d vertices at
distance ≤ r from any point), and (b) for halfspaces in Rd.

5.4 Matchings with Low Crossing Number

In this section, we establish Theorem 5.4, the upper bound for discrepancy
in terms of the dual shatter function. The main tool for the proof are the
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so-called matchings with low crossing number. First, we consider a particular
geometric setting.

5.16 Problem. Let X be an n-point set in the plane, where the number
n of points is even. Moreover, assume for simplicity that X is in general
position, with no 3 points collinear. Partition the points of X into pairs (in
other words, fix a perfect matching M on the vertex set X), and connect the
points in each pair by a straight segment. Let κ(M) denote the maximum
possible number of these segments that can be intersected by a common line.
For a given set X, we take a matching M minimizing κ(M). What is the best
upper bound for κ(M), in terms of n, that can be guaranteed for all n-point
sets X?

For example, in the following picture, the line intersects the 4 thicker
segments, and no 5 segments can be intersected by a single line (I hope), and
hence κ(M) = 4 for this particular matching M .

A particular case of a theorem below asserts that we can always get a match-
ing M with κ(M) = O(

√
n).

The problem of finding such a good matching can be considered for an
arbitrary set system. To this end, we define the notion of a crossing number.1

We formulate the definition for a general graph although we will only need
to consider perfect matchings. Let (X,S) be a set system and let G = (X,E)
be a graph with vertex set X. We say that a set S ∈ S crosses an edge {u, v}
of G if |S ∩ {u, v}| = 1. This is illustrated in the following drawing:

S

The connecting segments have no geometric meaning here and they just mark
the point pairs. The segments for the crossed pairs are again drawn thicker.
The crossing number of G with respect to the set S is the number of edges of
1 Not to be confused with the crossing number of a graph G considered in the

theory of graph drawing (the minimum number of edge crossings present in a
drawing of G in the plane). For the crossing number in the sense of this section,
the term stabbing number is also used in the literature.
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G crossed by S, and the crossing number of G is the maximum of crossing
numbers of G with respect to all sets of S.

Problem 5.16 above corresponds to the general definition for the case
where S is the set system induced on X by halfplanes. In degenerate cases,
such as when a segment is completely contained in the boundary of the con-
sidered halfplane, the geometric notion of “crossing” may become unclear but
the general set-theoretic definition of crossing can always be applied unam-
biguously.

Theorem 5.4, the bound for discrepancy in terms of the dual shatter
function, can be easily derived from the following result:

5.17 Theorem. Let S be a set system on an n-point set X, n even, with
π∗
S(m) ≤ Cmd for all m, where C and d > 1 are constants. Then there exists a

perfect matching M on X (i.e. a set of n
2 vertex-disjoint edges) whose crossing

number is at most C1n
1−1/d, where C1 = C1(C, d) is another constant.

This is a nice and nontrivial result even in the simple geometric case
in Problem 5.16 above. Even for this particular case, I know of no proof
substantially different from the general one shown below.

Proof of the Dual Shatter Function Bound (Theorem 5.4). Let
(X,S) be a set system satisfying the assumptions of Theorem 5.4. Suppose
that n is even (if not add one point lying in no set of S). Fix a perfect
matching M with edges {u1, v1}, {u2, v2}, . . . , {uk, vk}, k = n

2 , on X with
crossing number O(n1−1/d). Define a random coloring χ:X → {+1,−1} by
coloring the points u1, . . . , uk randomly and independently and by setting
χ(vi) = −χ(ui) for all i, as in the picture:

+1

−1
+1

−1
S

−1

+1 +1

+1 +1

+1

−1

−1

−1

−1

Look at a fixed set S ∈ S, and classify the edges of M to two types:
those with both points inside S or both points outside S, and those crossed
by S. The edges of the former type contribute 0 to χ(S). The contributions
of the edges of the latter type to χ(S) are, by the definition of χ, indepen-
dent random variables attaining values +1 and −1 with equal probability.
The number of these variables is O(n1−1/d). Thus, the situation is as if we
had a random coloring of |S| sets of size O(n1−1/d) each, and the Random
coloring lemma 4.1 tells us that disc(χ,S) = O(n1/2−1/2d

√
log |S|) with a

positive probability. Finally, we have log |S| = O(log n) by the Dual set sys-
tem lemma 5.10. Theorem 5.4 is proved. �



162 5. VC-Dimension and Discrepancy

To prove the Theorem 5.17, we need the following lemma:

5.18 Lemma (Short edge lemma). Let S be a set system as in Theo-
rem 5.17. Then for any set (or multiset2) Q ⊆ S, there exist points x, y ∈ X
such that the edge {x, y} is crossed by at most

C2
|Q|
n1/d

sets of Q, C2 being a suitable constant.

The proof will be discussed later. In the setting of Problem 5.16 for lines,
the lemma implies the following: if X is an n-point set in the plane and we
select arbitrary m lines (not passing through any of the points of X, say),
then there exist two distinct points of X separated by O(m/

√
n) lines only.

Proof of Theorem 5.17. The basic strategy is to select the edges of the
matching M one by one, always taking the “shortest” available edge. The
first edge, {u1, v1}, is selected as one crossed by the smallest possible number
of sets in S. We could now select {u2, v2} as a pair of the remaining points
such that {u2, v2} is crossed by the smallest possible number of sets of S, etc.
This guarantees a good behavior of the resulting matching on the average,
i.e. an average set of S would cross the right number of edges. However, it
might happen that a few exceptional sets of S would cross many more edges.

The selection strategy is thus improved to penalize the sets of S that
already cross many of the edges selected so far (this “re-weighting strategy”
is useful in several proofs in combinatorics). Specifically, suppose that edges
{u1, v1},. . . , {ui, vi} have already been selected. Define the weight wi(S) of a
set S ∈ S as 2κi(S), where κi(S) is the number of edges among {u1, v1},. . . ,
{ui, vi} crossed by S. In particular, w0(S) = 1 for all S ∈ S. We select
the next edge {ui+1, vi+1} as a pair of points among the points of Xi =
X\{u1, v1, . . . , ui, vi} with the total weight of sets crossing {ui+1, vi+1} being
the smallest possible. We continue in this manner until n

2 edges have been
selected.

We need to bound the crossing number κ of the resulting matching M .
To this end, we estimate the final total weight of all sets of S, i.e. wn/2(S) =∑

S∈S wn/2(S). By the definition of wn/2, we have κ ≤ log2 wn/2(S).
Let us investigate how wi+1(S) increases compared to wi(S). Let Si+1

denote the collection of the sets of S crossing {ui+1, vi+1}. For the sets of
Si+1, the weight increases twice, and for the others it remains unchanged.
From this we get

wi+1(S) ≤ wi(S) − wi(Si+1) + 2wi(Si+1) = wi(S)
(

1 +
wi(Si+1)
wi(S)

)
.

2 Multiset means that Q may contain several copies of the same set S ∈ S. The
cardinality of Q is counted with these multiplicities.
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Next, we want to estimate the ratio wi(Si+1)/wi(S) using the Short edge
lemma. To this end, we define a multiset Qi of sets. We restrict each set S ∈ S
to the set Xi, and we add S∩Xi to Qi with multiplicity wi(S). We apply the
Short edge lemma 5.18 to this Qi. This shows that wi(Si+1) ≤ C2wi(S)/n

1/d
i ,

where ni = |Xi| = n − 2i. Hence

wi+1(S) ≤ wi(S)
(

1 +
C2

(n − 2i)1/d

)
,

and so

wn/2(S) ≤ w0(S)
n/2−1∏

i=0

(
1 +

C2

(n − 2i)1/d

)
= |S| ·

n/2−1∏

i=0

(
1 +

C2

(n − 2i)1/d

)
.

Taking logarithms and using the inequality ln(1 + x) ≤ x we obtain

κ ≤ log2 wn/2(S) ≤ log |S| + C2

n/2−1∑

i=0

1
(n − 2i)1/d

≤ log |S| + C2

n/2∑

j=1

1
j1/d

.

Bounding the last sum by an integral, we finally obtain κ = O(log |S| +
n1−1/d). It remains to apply the Dual set system lemma 5.10 to conclude
that the number of sets in S is polynomial in n. We get log |S| = O(log n)
and Theorem 5.17 follows. �

Proof the Short Edge Lemma 5.18. This lemma is a straightforward
consequence of the Packing lemma 5.14. First, we form a set system D dual
to Q. We consider the multiset Q as the ground set (if some set appears
in Q several times, it is considered with the appropriate multiplicity). For
each x ∈ X, we let Dx be the set of all sets of Q containing x, and we put
D = {Dx: x ∈ X}.

The symmetric difference Dx�Dy of two sets from D consists of the sets
in Q crossing the pair {x, y}. We thus want to show that Dx�Dy is small for
some x �= y. We may assume Dx �= Dy for x �= y, for otherwise we are done,
and hence |D| = |X| = n.

The primal shatter function πD is certainly no larger than the dual shat-
ter function π∗

S , and hence πD(m) ≤ Cmd by the assumption on π∗
S . Suppos-

ing that any two sets Dx,Dy ∈ D have symmetric difference at least δ,
the Packing lemma 5.14 implies n = |D| = O((|Q|/δ)d), and therefore
δ = O(|Q|/n1/d). �

Remark on Algorithms. The proof given in this section easily leads to a
randomized polynomial-time algorithm for finding a coloring as in the dual
shatter function bound (Theorem 5.4). A deterministic algorithm can be
obtained by the method of conditional probabilities.

Bibliography and Remarks. Matchings with low crossing number
were invented by Welzl [Wel88] for the purpose of the range searching
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problem in computational geometry. He actually worked with spanning
trees with low crossing number instead of matchings. Welzl’s existence
proof was similar to the one presented above, but with a weaker ver-
sion of the Short edge lemma. The Short edge lemma was subsequently
improved by a logarithmic factor, first by Chazelle and Welzl [CW89]
in some geometric cases, and then in general as an immediate conse-
quence of the Packing lemma 5.14.

Exercises

1.∗ Prove that there exist 2n points in the plane such that for any perfect
matching on them there is a line crossing at least c

√
n edges. This means

that Theorem 5.17 is asymptotically optimal for d = 2.
2. Prove that any set system (X,S) as in Theorem 5.17 admits a spanning

path with crossing number O(n1−1/d). A spanning path is a path con-
necting all the points of X in some order.

3. (a) Let S = S1 + · · · + Sn be the sum of n uniformly distributed inde-
pendent random 0/1 variables. Calculate the expected value of S2.
(b) Let (X,S) be a set system with |X| = n and with π∗

S(m) ≤ Cmd

(d > 1) for all m. Prove that the L2-discrepancy of S is O(n1/2−1/2d).
Show that this result remains valid with an arbitrary measure (weights)
on S.
Remark. This shows that one cannot hope to prove a better lower bound
than n1/4 for the discrepancy for discs in the plane by methods based on
L2-discrepancy.
(c)∗ Generalize (b) for Lp-discrepancy with an arbitrary fixed p ∈ [1,∞),
again showing O(n1/4) upper bound, with the constant of proportionality
depending on p.

5.5 Primal Shatter Function and Partial Colorings

Theorem 5.3 asserts the O(n1/2−1/2d) bound for the discrepancy of a set
system on n points with the primal shatter function bounded by O(md).
First we prove a weaker bound of O(n1/2−1/2d(log n)1/2+1/2d) under the same
conditions, using the Partial coloring lemma 4.13. Then we establish the tight
bound by the entropy method. Finally we show one more application of the
entropy method.

Proof of the Weaker Bound. Let (X,S) be the considered set system
with πS(m) = O(md). The idea is to fix a suitable not too large family of
“basic sets,” and to express each set of S as an appropriate basic set modified
by adding and subtracting suitable small “correction sets.” The basic sets will
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be used as F in the Partial coloring lemma, and we enforce zero discrepancy
for them. The correction sets will play the role of M, and their discrepancy
will be as if the coloring were random. Such a partial coloring step is iterated
in a standard manner.

Let δ be some yet unspecified parameter bounding the size of the “cor-
rection sets.” We choose F ⊆ S as an inclusion-maximal collection of sets
in S such that any two sets of F have distance (symmetric difference size)
greater than δ. By inclusion-maximality, we infer that for each set S ∈ S,
there exists a set F = F (S) with |F�S| ≤ δ, for otherwise we could add S
to F . We fix one such F (S) ∈ F for each S ∈ S.

Next, we define the correction sets. Put A = {S \ F (S): S ∈ S} and
B = {F (S) \S: S ∈ S}, and finally M = A∪B. Note that any set S ∈ S can
be written as

S = (F ∪̇A) \ B (5.2)

for some F ∈ F and A,B ∈ M, where B is completely contained in F ∪̇A, as
in the following picture:

F SB A

In order to apply the Partial coloring lemma on F and M, F must be suf-
ficiently small. The size of F is bounded according to the Packing lemma 5.14:
we have |F| = O((n/δ)d). A simple calculation shows that in order to satisfy
the condition

∏
F∈F (|F | + 1) ≤ 2(n−1)/5 in the Partial coloring lemma, we

should set δ = C2n
1−1/d log1/d n for a sufficiently large constant C2.

We can now apply the Partial coloring lemma, obtaining a no-nonsense
partial coloring χ1 such that the sets of F have zero discrepancy, while the
discrepancy of the sets of M is bounded by O(

√
δ log |M| ) = O(

√
δ log n ).

In view of (5.2), we also have

|χ1(S)| ≤ |χ1(F )| + |χ1(A)| + |χ1(B)|
= O(

√
δ log n) = O(n1/2−1/2d(log n)1/2+1/2d)

for each S ∈ S.
To get a (full) coloring with the asserted O(n1/2−1/2d(log n)1/2+1/2d) dis-

crepancy, we iterate the construction described above as usual. This presents
no problem here since the shatter function condition is hereditary. We let Y1

be the set of points colored by χ1, and let X2 be the set of the uncolored
points. We repeat the argument for the set system S restricted to X2, obtain-
ing a partial coloring χ2, and so on. Note that the auxiliary set systems F
and M are constructed anew in each partial coloring step, and the maximum
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size δ of the “correction sets” is getting smaller and smaller as the iterations
progress. Having reached a set X� of size below a suitable constant, we com-
bine all the partial colorings constructed so far into a single full coloring χ;
the points of X� are colored arbitrarily.

We have, for any S ∈ S,

|χ(S)| ≤
�∑

i=1

|χi(S ∩ Yi)| ≤
�∑

i=1

O
(
n

1/2−1/2d
i (log ni)1/2+1/2d

)
,

where ni = |Xi| ≤ ( 9
10 )i−1n. Since d > 1, the summands on the right-hand

side decrease geometrically, and we obtain the claimed bound for disc(S). �

The Tight Bound via Entropy. In the previous proof, we have expressed
each S ∈ S in the form S = (F ∪̇A) \ B, a “basic set” with a “correction.”
For the improved bound, we will use about log n successive corrections of a
smaller and smaller size:

S = (. . . (((A1 \ B1)∪̇A2) \ B2)∪̇ · · · ∪̇Ak) \ Bk, (5.3)

where each Bi is subtracted from a set containing it.
Here is the construction providing such decompositions. Let us set k =

�log2 n + 1�, and for each i = 0, 1, . . . , k, let Fi be an inclusion-maximal
subfamily of S in which every two sets have distance (symmetric difference)
greater than n/2i. In particular, we may assume that F0 consists of the empty
set, and we have Fk = S.

For every set F ∈ Fi, there exists a set F ′ ∈ Fi−1 with |F�F ′| ≤ n/2i−1.
This follows by inclusion-maximality of Fi−1 as in the previous proof. We fix
one such F ′ for each F ∈ Fi and we set A(F ) = F \F ′ and B(F ) = F ′\F . We
form auxiliary set systems Ai = {A(F ): F ∈ Fi} and Bi = {B(F ): F ∈ Fi},
for i = 1, 2, . . . , k. Note that each set F ∈ Fi can be turned into a set
F ′ ∈ Fi−1 by adding a Bi ∈ Bi and subtracting an Ai ∈ Ai. Since F0 = {∅}
and Fk = S, we get the decomposition (5.3) for each S ∈ S with Ai ∈ Ai

and Bi ∈ Bi.
Let us set Mi = Ai∪Bi and M =

⋃k
i=1 Mi. For each i, we are going to fix

a suitable bound Δi for the discrepancy of the sets of Mi, and then we will
apply the entropy method (Proposition 4.16) to the auxiliary set system M.
This gives us a no-nonsense partial coloring χ1 on X such that each Mi has
discrepancy at most Δi. In view of the decomposition (5.3), the discrepancy
of S under χ1 is at most Δ = 2(Δ1 + Δ2 + · · · + Δk). If we can manage
to get Δ = O(n1/2−1/2d), we can iterate the partial coloring step as in the
preceding proof and we get a full coloring with discrepancy O(n1/2−1/2d).

What are the restriction on the Δi? By the construction, the sizes of the
sets in Mi are at most si = n/2i−1. By the Packing lemma 5.14, we see
that |Fi| = O(2di), and consequently also |Mi| = O(2di). Let us write the
constant explicitly as C, i.e. |Mi| ≤ C · 2di. The quantitative formulation of
the entropy method, Proposition 4.16, tells us we should have
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k∑

i=1

C · 2idh (si,Δi) ≤
n

5
. (5.4)

Let us look at a particular value i0 of the index i, namely the value where the
number of sets in Mi0 , C ·2i0d, first exceeds n. The size si0 of the sets for such
i0 is about n1−1/d. The entropy contribution of each of these ≥ n sets must be
considerably smaller than 1, for otherwise the total entropy would be larger
than n

5 . By inspection of the estimates for h(s,Δ) in Proposition 4.16, we find
that Δi0 must exceed the square root of the set size, i.e. n1/2−1/2d. This is
the total discrepancy we would like to get, so we have very little maneuvering
room for choosing Δi0—only the constant factor can be adjusted.

Fortunately, as i gets larger or smaller than i0, the room for the choice of
Δi gets bigger. If i > i0, we have more sets in Mi but their size decreases,
and the entropy contribution of each individual set tends to 0 much faster
than the number of sets grows. On the other hand, if i gets smaller than i0,
we have fewer sets; these get bigger but the entropy contribution grows very
slowly with the size.

One suitable specific choice for Δi is

Δi = C1n
1/2−1/2dϕ(i)

where ϕ(i) = (1 + |i − i0|)−2 and C1 is a sufficiently large constant. As a
function of i, ϕ(i) is a “hill” with peak at i0. Since the sum

∑∞
i=−∞ ϕ(i) ≤

2
∑∞

j=1 j−2 converges, we have
∑k

i=1 Δi = O(Δi0) = O(n/12−1/2d) and the
overall discrepancy bound is as desired.

Let Hi = |Mi| · h(si,Δi) denote the total entropy contribution for the
sets of Mi. Invoking Proposition 4.16, we obtain

Hi ≤ K · C · 2ide−Δ2
i /4si log2

(
2 +

√
si

Δi

)

= K · C · 2ide−λ2
i /4 log2

(
2 +

1
λi

)
,

where λi = Δi/
√

si = C1ϕ(i)2(i−1)/2/n1/2d. For i = i0, we calculate that λi0

is a constant which can be made as large as we wish by setting C1 sufficiently
large. For other values of i, λi behaves roughly like 2(i−i0)/2λi0 (the influence
of the ϕ(i) factor is negligible). Therefore for i growing above i0, the value of
Hi decreases superexponentially fast. On the other hand, for i < i0, h(si,Δi)
behaves roughly like log(1/λi) ≈ (i0 − i)/2, and we have Hi ≈ 2−d(i0−i)(i0 −
i)λi0 , which decreases exponentially with i. Altogether we derive that the
total entropy bound (5.4) can be made an arbitrarily small fraction of n by
choosing C1 sufficiently large. I believe it is better for the reader to complete
this rough argument by a detailed proof by himself/herself, in case of interest,
rather than reading a tedious precise calculation. This concludes the proof of
Theorem 5.3. �
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A Discrepancy Bound in Terms of Degree: Entropy Again. We
demonstrate another application of the entropy method. Let (X,S) be a
set system and and let t be its maximum degree (i.e. the maximum, over
all x ∈ X, of the number of sets of S containing x). The Beck–Fiala theo-
rem 4.3 claims disc(S) ≤ 2t − 1, and it is not known how to improve this
bound substantially in terms of t alone. However, if we also allow a moderate
dependence on |X|, we can do better for a wide range of values of n and t:

5.19 Theorem. Let S be a set system on an n-point set X, and let t be the
maximum degree of S. Then disc(S) = O(

√
t · log n).

A still better bound, of O(
√

t log n), was recently obtained by geometric
methods; see the remarks to Section 4.3.

Sketch of Proof. We prove that under the conditions of the theorem,
there exists a no-nonsense partial coloring with discrepancy O(

√
t). The final

bound then follows by a standard iteration of the partial coloring step.
We note that if the maximum degree is t, then the sum of the sizes of the

sets in S is at most nt. Let Si ⊆ S consist of the sets of S of size between
2i and 2i+1; the degree condition thus gives |Si| ≤ nt/2i. Set Δ = C

√
t for

a sufficiently large absolute constant C. A calculation similar to the one in
the previous proof but simpler (the ϕ(i) factor is not present, for instance)
shows that

log2 n∑

i=0

|Si| · h(2i+1,Δ) ≤ n

5
.

and the existence of the no-nonsense partial coloring follows from Proposi-
tion 4.16. �

Bibliography and Remarks. The proof of the weaker bound for
discrepancy from the primal shatter function follows [MWW93]. The
tight bound is from [Mat95], but here the proof looks simpler because
a big part of the work has already been done in previous sections.

Theorem 5.19 was proved by Srinivasan [Sri97], who improved a
slightly weaker bound of O(

√
t log t log n) due to Beck and Spencer

(see [Spe87]). Srinivasan’s proof is different from the one presented
above; it uses a relation of the problem to the k-permutation prob-
lem (see Exercise 4.5.5) noted by Bohus [Boh90]. The best known
O(

√
t log n) bound is a consequence of a recent result of Banasz-

czyk[Ban98]; see the remarks to Section 4.3.

Exercises

1. Complete the calculation in the proof of Theorem 5.19 and/or in the
proof of Theorem 5.3.
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2. (Tusnády’s problem revisited) Use the entropy method to prove an
O(log5/2 n) bound for Tusnády’s problem (combinatorial discrepancy for
axis-parallel rectangles), improving Theorem 4.14 slightly. Consider the
set system F as in the proof of that theorem, but with t = 1, and par-
tition the sets by sizes, prescribing a suitable discrepancy bound Δi for
each size 2i.

3.∗ (The k-permutation problem revisited) Let Pk be a set system on
{1, 2, . . . , n} defined by k permutations as in Exercise 4.5.5. By the en-
tropy method, prove disc(Pk) = O(

√
k · log n), with the the constant of

proportionality independent of k. Use canonical intervals along each per-
mutation.

4. (Arithmetic progressions revisited) Let An be the set system of all arith-
metic progressions on the set {1, 2, . . . , n} as in Exercise 4.5.7.
(a)∗ Using the entropy method and a suitable decomposition of arithmetic
progressions into canonical intervals, show that An has a no-nonsense
partial coloring with discrepancy O(n1/4).
(b)∗ Show that An restricted to an arbitrary m-point subset X of
{1, 2, . . . , n} has a no-nonsense partial coloring with discrepancy O(n1/4)
as well, and hence that disc(An) = O(n1/4 log n).
(c)∗∗ Can you improve the O(n1/4 log n) upper bound from (b)? A bound
of O(n1/4 log log n) is not too difficult, while the tight O(n1/4) bound re-
quires additional consideration of the structure of arithmetic progressions
restricted to a subset of {1, 2, . . . , n}; see [MS96].



6. Lower Bounds

In this chapter, we finally begin with the mathematically most fascinating
results in geometric discrepancy theory: the lower bounds (we have already
seen some lower bounds in Chapter 4 but not in a geometric setting). So far
we have not answered the basic question, Problem 1.1, namely whether the
discrepancy for axis-parallel rectangles must grow to infinity as n → ∞. An
answer is given in Section 6.1, where we prove that D(n,R2) is at least of
the order

√
log n. Note that, in order to establish a such a result, we have

to show that for any n-point set P in the unit square, some axis-parallel
rectangle exists with a suitably high discrepancy. So we have to take into
account all possible sets P simultaneously, although we have no idea what
they can look like. The proof is a two-page gem due to Roth, based on a
cleverly constructed system of orthogonal functions on the unit square. In
dimension d, the same method gives D(n,Rd) = Ω((log n)(d−1)/2).

In Section 6.2, we present a proof of a great result of Schmidt: an asymp-
totically tight lower bound for the discrepancy for axis-parallel rectangles
in the plane, D(n,R2) = Ω(log n). Orthogonal functions from Roth’s proof
are employed again, but they are combined in a more sophisticated manner.
Unlike to the previous section, the proof only works in the plane. Obtaining
an improvement over Roth’s lower bound in dimension d seems considerably
more difficult, and so far the success has been moderate.

After these two intellectually challenging proofs, the reader can take a
breath while studying Section 6.3. There, we derive a lower bound by a simple
(but clever) reduction from the results already proved. Namely, we obtain
an Ω(log n) estimate for the Lebesgue-measure discrepancy for axis-parallel
squares within the unit square.

Next, we tackle lower bounds for discrepancy for objects with rotation
allowed. With the current knowledge, the simplest case is the combinatorial
discrepancy for halfplanes in the plane. In Section 6.4, we show a proof for-
mally similar to Roth’s method from Section 6.1, and Section 6.5 explains
a conceptually somewhat different approach to the same result (although
leading to almost identical calculations). This method involves no auxiliary
functions but it replaces the given point set by the union of several of its
slightly shifted copies.

J. Matoušek, Geometric Discrepancy, Algorithms and Combinatorics 18,
DOI 10.1007/978-3-642-03942-3 6, c© Springer-Verlag Berlin Heidelberg 2010
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In Section 6.6, we give a tight lower bound for the Lebesgue-measure
discrepancy for halfplanes, based on the point-replication method from Sec-
tion 6.5. As we know, combinatorial lower bounds can be derived from
Lebesgue-measure ones (Proposition 1.8), and so the separate treatment of
the combinatorial case in the previous two sections is, strictly speaking, un-
necessary. But it is a good introduction to the Lebesgue-measure discrepancy
setting which, perhaps surprisingly, turns out to be more challenging than
the combinatorial case. In the proof, we have to deal with a substantial new
phenomenon in the estimates, involving the nonnegativity of a rather com-
plicated function. This nonnegativity can be proved via elementary calculus,
but it also follows from an interesting theory of so-called positive definite
functions. We present a very small fragment of this theory in Section 6.7.
First we derive the nonnegativity result we need for the discrepancy lower
bound, and then, for reader’s interest, we describe a nice application in a geo-
metric problem (unrelated to discrepancy) concerning isometric embeddings
of metric spaces.

6.1 Axis-Parallel Rectangles: L2-Discrepancy

In this section, we explain the arguably simplest known lower-bound proof
in geometric discrepancy, showing that the discrepancy D(n,R2) for axis-
parallel rectangles is at least of the order

√
log n and so, in particular, it

grows to infinity as n → ∞.
First, we need to recall that the L2-discrepancy of a point set P ⊂ [0, 1]d

for corners is

D2(P, Cd) =

√∫

[0,1]d
D(P,Cx)2 dx,

where Cx =
∏d

i=1[0, xi) is the corner defined by x and D(P,Cx) = n·vol(Cx)−
|P ∩ Cx|.

The L2-discrepancy for corners (and, consequently, the worst-case dis-
crepancy for axis-parallel boxes) can be estimated as follows:

6.1 Theorem (Roth’s lower bound for corners). For any fixed d, the
L2-discrepancy for corners in dimension d satisfies

D2(n, Cd) = Ω(log(d−1)/2 n).

Therefore, we also have D(n,Rd) = Ω(log(d−1)/2 n) for the worst-case dis-
crepancy for axis-parallel boxes.

As we know from Section 2.2, the lower bound in this theorem for the
L2-discrepancy is asymptotically the best possible. On the other hand, the
consequent lower bound for the worst-case discrepancy is not tight and better
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lower bounds are known (although for dimension d ≥ 3, the improvement
established so far is very slight).

We demonstrate the proof of the theorem only in the plane. For higher
dimensions, the notation and calculations become more complicated, but no
essential new idea is required, and the proof for an arbitrary dimension is left
as Exercise 1.

Proof of Theorem 6.1 for d = 2. Let P ⊂ [0, 1]2 be an arbitrary n-point
set in the unit square, fixed throughout the proof. We use the shorthand
D(x) for the (signed) discrepancy of the corner Cx, i.e. D(x) = D(P,Cx) =
n · vol(Cx) − |P ∩ Cx|. Our goal is to lower-bound the integral

∫

[0,1]2
D(x)2 dx.

We proceed as follows. We choose a suitable auxiliary function F : [0, 1]2 → R,
and we use the Cauchy–Schwarz inequality in integral form, which in our case
says that

∫
FD ≤

√∫
F 2

√∫
D2

for any square-integrable functions F and D. For simpler notation, we leave
out the domain of integration, which is [0, 1]2, and the integration variable.
We thus have

D2(P, C2) =

√∫
D2 ≥

∫
FD

√∫
F 2

.

The heart of the proof is in the choice of the auxiliary function F . This
function will be “small on the average,” meaning that

∫
F 2 = O(log n), but

the integral
∫

FD will be “large,” of the order log n. The function F depends
on the set P , and it “collects” its discrepancy in a suitable sense.

Let us choose an integer m such that 2n ≤ 2m < 4n, and let us put
N = 2m. For j = 0, 1, . . . ,m, we define functions fj : [0, 1]2 → {−1, 0, 1}.
In order to do this, we subdivide the unit square into a grid of 2m small
rectangles. We use 2j rectangles horizontally and 2m−j rectangles vertically;
the following drawing illustrates the definition for n = 4, m = 3, and j = 2:

−1

−1+1

+1 −1

−1+1

+1

−1

−1+1

+1 −1

−1+1

+1

−1

−1+1

+1

0

0

0
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If a small rectangle R in this grid contains at least one point of P , we define
the value of fj as 0 everywhere on R. On the other hand, each empty R is
further subdivided into four congruent quadrants. The function fj is equal to
1 in the upper right and lower left quadrants, and it equals −1 in the upper
left and lower right quadrants.

An important property of the functions fj is their orthogonality : for any
i < j we have

∫
fifj = 0. Indeed, by overlaying the grid of 2i×2m−i rectangles

used in the definition of fi and the 2j ×2m−j grid appearing in the definition
of fj , we obtain a 2j × 2m−i grid of smaller rectangles. It is easily checked
that on each of these rectangles, either the product fifj is identically 0, or it
looks as is indicated in the following schematic drawings:

−1

−1+1

+1

or

+1

+1−1

−1

.

In any case, the integral of fifj over each rectangle of the combined grid is 0.
We now define the function F by setting F = f0 + f1 + · · · + fm. First,

using the orthogonality of the functions fj , we estimate

∫
F 2 =

m∑

i,j=0

∫
fifj =

m∑

i=0

∫
f2

i ≤
m∑

i=0

1 ≤ log2 n + 3.

It remains to prove
∫

FD = Ω(log n). To this end, it is enough to bound∫
fjD from below by a positive constant c > 0 for each j = 0, 1, . . . , m. Let

us consider the function fjD on one of the small rectangles R appearing in
the definition of fj . We are only interested in empty rectangles R (containing
no points of P ), because we have fj = 0 on the other rectangles. Since there
are N ≥ 2n rectangles R in total, and at most n of them may contain points
of P , there exist at least n empty rectangles R, and thus it suffices to prove
that

∫
R

fjD = Ω( 1
n ) for each empty rectangle R. Let RLL denote the lower

left quadrant of the rectangle R, and similarly for RLR, RUL, RUR, as in this
picture:

RRUL RUR

RLL RLR

x

a

b

x + b
x + a + b

x + a

Let a and b be the vectors defined by the horizontal and vertical sides of
RLL, as in the drawing, and let a = 2−j−1 and b = 2j−m−1 be their lengths.
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We rewrite
∫

R

fjD =
∫

RLL

D −
∫

RLR

D −
∫

RUL

D +
∫

RUR

D

=
∫

RLL

[
D(x) − D(x + a) − D(x + b) + D(x + a + b)

]
dx.

We expand the expression under the integration sign using the definition of
the function D(x); we obtain

n

[
vol(Cx) − vol(Cx+a) − vol(Cx+b) + vol(Cx+a+b)

]

−
[
|P ∩ Cx| − |P ∩ Cx+a| − |P ∩ Cx+b| + |P ∩ Cx+a+b|

]
.

A short consideration reveals that the combination of the areas in the first
square brackets equals the area of the rectangle [x1, x1 + a) × [x2, x2 + b),
which is the same as the area of RLL, i.e. ab = 2−m−2. Similarly one finds
that the contribution of any point p ∈ P to the expression in the second
pair of square brackets is nonzero only if the point p lies in the rectangle
[x1, x1 + a) × [x2, x2 + b), but there are no points in this rectangle (since it
is contained in the empty rectangle R). Hence

∫

R

fjD =
∫

RLL

n · vol(RLL) = n · vol(RLL)2 =
n

22m+4
= Ω

(
1
n

)
.

This finishes the proof of Theorem 6.1 in dimension 2. �

Bibliography and Remarks. Theorem 6.1 and the presented proof
are due to Roth [Rot54] (the paper only treats the planar case but
the d-dimensional generalization is straightforward). Other proofs of
Theorem 6.1 are possible using Fourier transform methods, which give
the result even for the family of all axis-parallel cubes in [0, 1]d instead
of all axis-parallel boxes (see Section 7.2), but Roth’s approach is much
simpler.

Exercises

1.∗ Prove Theorem 6.1 for an arbitrary dimension d (you may want to try
the case d = 3 first). Estimate the constant of proportionality obtained
at the leading term of the resulting bound for D2(n, Cd).
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6.2 Axis-Parallel Rectangles: the Tight Bound

Here we prove the asymptotically optimal lower bound for the discrepancy
for axis-parallel rectangles (or for corners):

6.2 Theorem (Schmidt’s lower bound for corners). For any n-point set
P ⊂ [0, 1]2, there is an axis-parallel rectangle R with discrepancy |D(P,R)| ≥
c log n, for a suitable constant c > 0. That is, D(n,R2) = Ω(log n) (and
D(n, C2) = Ω(log n) as well).

Recall that there are sets whose L2-discrepancy for corners is O(
√

log n)
(Section 2.2). For such sets, the worst-case discrepancy Ω(log n) must be
caused by a very small fraction of “very bad” corners. This, of course, makes
Theorem 6.2 the more difficult to prove.

Schmidt’s result improves Roth’s lower bound in the plane by a factor
of

√
log n. A similar improvement in higher dimensions turns out to be

much more challenging (although it is widely believed that it should be
possible). The current best lower bound for any fixed dimension d ≥ 3 is
Ω((log n)(d−1)/2+η), where η = η(d) is a (small) positive constant depending
on d.

Proof of Theorem 6.2. We use the ideas and notation from the above
proof of Theorem 6.1. In particular, we take over the definition of the function
D(x), of the numbers m,N , and of the functions fj without any modification.
However, we employ another auxiliary function G. This time we base the
lower bound on the obvious inequality

∫
DG ≤ (sup |D|)

∫
|G|;

thus, we will estimate

D(P, C2) = sup
x∈[0,1]2

|D(x)| ≥
∫

DG∫
|G| .

The function G is

G = (1 + cf0)(1 + cf1) · · · (1 + cfm) − 1,

where c ∈ (0, 1) is a certain small constant (later on we will see how small c
must be chosen).1 After multiplying out the parentheses, the function G has
the form G1 + G2 + · · · + Gm, where

Gk = ck
∑

0≤j1<j2<···<jk≤m

fj1fj2 · · · fjk
.

1 For the peace of mind of a reader wondering how anyone could ever come up
with such a proof, we remark that functions defined by products of this type
were used in analysis earlier, under the name Riesz product .
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First we consider a product fj1fj2 · · · fjk
, as we did in the proof of Theo-

rem 6.1 in the special case k = 2. By overlaying the rectangular grids from
the definition of the functions fji

, we obtain a 2jk × 2m−j1 grid of rectangles.
By induction on k, one can check that on each of these rectangles, the prod-
uct fj1fj2 · · · fjk

either is identically 0 (this happens whenever the rectangle
contains a point of P , but it may also happen for some empty rectangles of
the combined grid), or it has the form

−1

−1+1

+1

or

+1

+1−1

−1

(6.1)

there. In particular, we have
∫

fj1fj2 · · · fjk
= 0 (a “generalized orthogonal-

ity”), and consequently
∫

Gk = 0 for all k > 0.
We estimate
∫

|G| ≤
∫

1 +
∫

(1 + cf0) · · · (1 + cfm) = 1 + 1 +
m∑

k=1

∫
Gk = 2.

It remains to bound the integral of the function DG = D ·(G1+G2+ · · ·+
Gm) from below. The function G1 is just the F from the proof of Theorem 6.1
multiplied by c, and so we already know that

∫
DG1 ≥ cc0 log n, where

c0 > 0 is an absolute constant (independent of c). It remains to show that
the integrals of the remaining terms, G2D, . . . , GmD, are all considerably
smaller in absolute value.

We know that on each rectangle R of the 2jk × 2m−j1 grid, the product
fj1fj2 · · · fjk

either is 0 or looks like (6.1); in the latter case, R contains no
points of P . The integral over the rectangle R of the product of the function
D with a function of the form (6.1) was calculated above in the proof of
Theorem 6.1. Its absolute value equals 1

16n · vol(R)2, and so the integral over
all rectangles R together is at most O(n · vol(R)) in absolute value (note
that all the rectangles R have the same area). For convenience, let us put
q = jk − j1. We have n · vol(R) = n2−jk2j1−m = O(2−q). The rest of the
proof is a summation of all terms in a suitable order:

m∑

k=2

∣
∣∣∣

∫
GkD

∣
∣∣∣ ≤

m∑

k=2

ck
∑

0≤j1<···<jk≤m

∣
∣∣∣

∫
fj1 · · · fjk

D

∣
∣∣∣

≤
m∑

k=2

ck
∑

0≤j1<···<jk≤m

O(2jk−j1)

≤
m∑

k=2

ck
m−k+1∑

j1=0

m−j1∑

q=k−1

∑

j1<j2<···<jk−1<j1+q

O(2−q) .

In the innermost sum, the indices j2, . . . , jk−1 can be chosen, among the q−1
numbers lying between j1 and j1 +q, in

(
q−1
k−2

)
ways. To simplify the formulas,
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we can let the indices j1 and q in the sums run up to m. Then we change the
order of summation. We thus upper-bound the previous sum by

O(1) ·
m∑

k=2

ck
m∑

j1=0

m∑

q=k−1

2−q

(
q − 1
k − 2

)
= O(1) ·

m∑

j1=0

m∑

q=1

2−q

q+1∑

k=2

(
q − 1
k − 2

)
ck.

The innermost sum equals

c2

q+1∑

k=2

(
q − 1
k − 2

)
ck−2 = c2

q−1∑

j=0

(
q − 1

j

)
cj = c2(1 + c)q−1.

From the second innermost sum, we obtain

m∑

q=1

2−q

q+1∑

k=2

(
q − 1
k − 2

)
ck = c2

m∑

q=1

(1 + c)q−12−q =
c2

2

m−1∑

�=0

(
1 + c

2

)�

= O(c2)

(assuming c < 1
2 , say). Finally the whole sum over j1 is O(mc2) = O(c2 log n),

where the constant of proportionality hidden in the O(.) notation does not
depend on c. Thus, for a sufficiently small but fixed c we have

∫
GD ≥∫

G1D−
∑m

k=2

∣∣∫ GkD
∣∣ ≥ cc0 log n−O(c2 log n) = Ω(log n). Schmidt’s lower

bound is proved. �

Bibliography and Remarks. Theorem 6.2 was first proved by
Schmidt [Sch72], and the (different) proof presented above was found
by Halász [Hal81]. In the same paper, Halász also proved the lower
bound of Ω(

√
log n) for the L1-discrepancy (Exercise 1). Another ver-

sion of the proof of Schmidt’s lower bound, due to Liardet, is repro-
duced in [DT97].

Previously, it was known that for any fixed p > 1 and for any fixed
d ≥ 2, the Lp-discrepancy for corners in Rd is at least Ω(log(d−1)/2 n),
with the constant of proportionality depending on p and d. For p ≥ 2,
this follows from Roth’s theorem discussed in the preceding section,
and for p ∈ (1, 2) it was proved by Schmidt [Sch77a] (see Exercise 3).
As we know from Section 2.2, this bound is tight.

The (worst-case) discrepancy for axis-parallel boxes in Rd for
d > 2 remains an intriguing open problem (called “the great open
problem” by Beck and Chen [BC87]). The first progress since Roth’s
Ω(log(d−1)/2) lower bound and the Halton–Hammersley O(logd−1 n)
upper bound in the 1950s was Beck’s mathematically very impres-
sive but quantitatively small improvement of the lower bound in R3,
from Ω(log n) to Ω(log n(log log n)1/8−ε) for an arbitrarily small ε > 0
[Bec89c]. The current best bound of Ω((log n)(d−1)/2+η) mentioned in
the text was established by Bilyk, Lacey, and Vagharshakyan [BLV08]
uing fairly advanced harmonic analysis.
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Also the problem of determining the L1-discrepancy in higher di-
mensions remains, to my knowledge, wide open.

Let us mention one interesting question of Erdős [Erd64] related
to the result of this section (strengthening it in a certain sense). If
x1, x2, . . . is any infinite sequence in [0, 1), does there exist an a ∈ [0, 1)
such that lim supn→∞ |D({x1, x2, . . . , xn}, [0, a))| = ∞?

The answer is yes, and the correct order of magnitude of the dis-
crepancy is log n [Sch77b]. In fact, the discrepancy is at least Ω(log n)
for almost all a. This was proved by Sós [Sós76] for the ({nα}) se-
quences and by Tijdeman and Wagner [TW80] for arbitrary sequences
(also see [BC87] or [DT97] for more information).

Exercises

1. Modify the method presented in the text to prove a lower bound for
the L1-discrepancy of corners: D1(n, C2) = Ω(

√
log n). Use the auxiliary

function H =
(∏m

j=0(1 + γfj)
)
− 1, where γ = ic/

√
log n, i standing for

the imaginary unit. Apply the inequality
∣∣∫ HD

∣∣ ≤ (sup |H|)
∫
|D|, valid

for any (complex and measurable) functions H, D.
2. (Orthogonality of r-functions) For an integer r ≥ 0, the one-dimensional

Rademacher function Rr is defined by Rr(x) = (−1)�2
r+1x�, and for

a nonnegative integer vector r = (r1, r2, . . . , rd) and for x ∈ Rd, we
put Rr(x) =

∏d
k=1 Rrk

(xk). An r-function is any function f : [0, 1)d →
{−1, 0, 1} such that for any binary canonical box2 B of size 2−r1 ×2−r2 ×
· · · × 2−rd , f restricted to B equals either 0, or Rr, or −Rr.
(a) Let r(1), r(2), . . . , r(�) be nonnegative integer vectors, and let fj be an
r(j)-function, j = 1, 2, . . . , �. Prove that if the following condition does
not hold then

∫
[0,1]d

f1(x)f2(x) · · · f�(x) dx = 0: for each k, each number

occurs an even number of times in the the sequence (r(1)
k , r

(2)
k , . . . , r

(�)
k ).

(b)∗ Give an example of a collection r(1), . . . r(�) of distinct nonzero 3-di-
mensional vectors, all of them with the same sum of coordinates, such
that the product of the corresponding Rademacher functions Rr(j) has
nonzero integral over [0, 1)3. (This indicates one source of problems with
generalizing the lower bound to higher dimensions.)

3. (Lp-discrepancy lower bound)
(a)∗ Let Y be a set of d-component nonnegative integer vectors, each of
them having the sum of components equal to m. For each r ∈ Y , let fr

be an r-function (as in Exercise 2). Prove the following inequality for an
arbitrary integer t ≥ 1 (Schmidt’s lemma):

2 We recall that a binary canonical box is a Cartesian product of binary canonical
intervals, and a binary canonical interval has the form [k/2q, (k + 1)/2q).
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∫

[0,1]d

(∑

r∈Y

fr(x)
)2t

dx ≤ (2t)t(d−1)(m + 1)t(d−1).

(b) Let d = 2, let D(x) be the discrepancy function for an n-point set
P ⊂ [0, 1]2 as in Section 6.1, and let F be the auxiliary function as in
that section. Use (a) and Hölder’s inequality to conclude that Dp(P, C2) =
Ω(

√
log n) for any fixed p > 1.

(c) Generalize (b) to an arbitrary fixed dimension d ≥ 2, heading for the
bound Ω(log(d−1)/2 n) (do Exercise 6.1.1 first).

6.3 A Reduction: Squares from Rectangles

What is the discrepancy for axis-parallel squares? First of all, if we allow for
arbitrary squares in the plane, we can obtain any corner as the intersection of
a square with the unit square, so the discrepancy for all axis-parallel squares
is, according to our definition, clearly of the order log n by Theorem 6.2. A
much more interesting question is obtained if we restrict ourselves to the axis-
parallel squares completely contained in the unit square. There is a surprising
elementary argument proving that the discrepancy is of the same order of
magnitude as that for rectangles. We haste to remark that no such direct
reduction is known in higher dimensions relating axis-parallel cubes to axis-
parallel boxes.

6.3 Theorem. The Lebesgue-measure discrepancy for axis-parallel squares
contained in [0, 1]2 is at least Ω(log n).

Proof. Let P be a fixed n-point set in [0, 1]2, set M = D(P,R2), and let
R0 ∈ R2 be a rectangle with |D(P,R0)| = M . By Theorem 6.2, we know
M = Ω(log n). Moreover, by decreasing M by an arbitrarily small amount,
we may assume that R0 is chosen in such a way that no point of P lies on
its boundary or on the boundaries of the finitely many auxiliary rectangles
constructed in the sequel.

Let Δ be the largest absolute value of the discrepancy of an axis-parallel
square contained in [0, 1]2. For contradiction, let us suppose that Δ is much
smaller than M .

First, assume that the rectangle R0 can be completed to a square
Q0 ⊆ [0, 1]2 as in Fig. 6.1(a), and that the longer side of R0 is at least twice
as long as the shorter one (later we show how to eliminate these assump-
tions). Moreover, suppose that D(P,R0) = +M (the case D(P,R0) = −M
is handled symmetrically). In the rest of this proof, let us write D(R) for
D(P,R), for any rectangle R.

Divide the square Q0 into two squares, Q1 and Q2, and two rectangles,
using the upper horizontal side of R0 as one of the dividing segments; see
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R0

Q0

(a)

R1

Q0

Q1

Q2

(b)

Fig. 6.1. Deriving the discrepancy of squares I.

Q3

R1

R2

Q4

Q5

(a)

R3

R2

(b)

Fig. 6.2. Deriving the discrepancy of squares II.

Fig. 6.1(b). The rectangle R1, marked by thick lines in the picture, can be
expressed as R1 = (Q0 \ R0) \ Q2, and hence D(R1) = D(Q0) − D(R0) −
D(Q2) ≤ −M + 2Δ. So the (signed) discrepancy of R1 is about the same
as that of R0 but with opposite sign. Complete R1 to another square Q3

(Fig. 6.2(a)), and subdivide Q3 in the way we subdivided Q0, obtaining two
smaller squares Q4 and Q5. Let R2 be the rectangle (marked thick) R2 =
((Q3\R1)\Q5)∪Q4. We then derive D(R2) ≥ M−5Δ. Consider the rectangle
R3 arising from R0 by cutting off a square on the right (Fig. 6.2(b)); we have
D(R3) ≥ M − Δ. Finally, for the rectangle R4 = R3 ∪̇R2 we have D(R4) ≥
M − Δ + M − 5Δ = 2M − 6Δ. Since M was assumed to be the maximum
possible discrepancy (in absolute value), we must have |D(R4)| ≤ M , and so
2M − 6Δ ≤ M . Therefore Δ ≥ M

6 .
It remains to show how to get rid of our restrictive assumptions on the

initial rectangle R0. First of all, if its side ratio is smaller than 2, we can start
with its complement in the square Q0 (with discrepancy at least M − Δ). It
remains to handle the case when both the possible squares extending R0 (the
one going up and the one going down—that is, assuming that R0 is longer
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in the horizontal direction) reach out of the unit square. This is left as an
exercise. �

Bibliography and Remarks. The lower bound Ω(log n) for axis-
parallel squares was first established by Halász (unpublished; the proof
is reproduced in [BC87]) by modifying the method used for rectan-
gles. A surprising elementary argument similar to the one given above
was found by Ruzsa [Ruz93]. This was motivated by a question of
Laczkovich: can the discrepancy of any set for axis-parallel cubes be
much smaller than that for axis-parallel boxes? Ruzsa’s result shows
that the answer is no in the plane, but the problem remains open
in higher dimensions. For an arbitrary dimension d, there is a direct
lower bound of Ω(log(d−1)/2 n) for axis-parallel cubes due to Beck (see
Section 7.2).

Exercises

1. Complete the proof of Theorem 6.3, i.e. given a rectangle R0 with dis-
crepancy M , find a rectangle R′

0 with discrepancy at least M − O(Δ)
whose completion to a square (as in Fig. 6.1(a)) is contained in [0, 1]2.

2. Not everything has discrepancy going to infinity!
(a) Let R = [0, a) × [0, b) be a fixed axis-parallel rectangle, and let T
denote the family of all parallel translates of R that are completely con-
tained in [0, 1]2. Show that D(n, T ) = O(1) (for any fixed R).
(b)∗∗ Let T be an arbitrary fixed triangle and let T be the family of
all parallel translates of T that are completely contained in [0, 1]2. Show
D(n, T ) = O(1) (it may be a good idea to start with some particular
triangles).
The result in (b) is due to G. Wagner (unpublished) and it was commu-
nicated to me by W. L. Chen.

6.4 Halfplanes: Combinatorial Discrepancy

The discrepancy lower bounds derived so far, concerning axis-parallel ob-
jects, have polylogarithmic orders of magnitude. Now we start dealing with
halfplanes, one of the simplest classes of geometric objects invariant under
rotation and translation, and the lower bound we are aiming at is of a much
larger order: n1/4. We prove

6.4 Theorem (Alexander’s lower bound for halfplanes). For each n,
there exists an n-point set P in the plane whose combinatorial discrepancy for
halfplanes satisfies disc(P,H2) = Ω(n1/4). That is, for any red-blue coloring
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of P , there exists a halfplane in which one color outnumbers the other by at
least Ω(n1/4).

The proof, similar to many other lower-bound proofs in discrepancy the-
ory, actually bounds the L2-discrepancy. We thus have to define an appropri-
ate measure on the set of halfplanes. Although various more or less reasonable
choices may come to mind, it turns out that there is an essentially unique
“nicest” measure. This is a classical tool and object of study in geometry,
with many applications.

Invariant Measure on Lines. We introduce a measure ν on the set of all
lines in the plane. We ignore the set of lines passing through the origin (it
has measure 0). Any other line � is uniquely determined by its point x closest
to the origin. We express x in polar coordinates. This defines a mapping Ψ,
assigning to each line � a pair (r, ϕ) ∈ R2, where r and ϕ are the polar
coordinates of x (with 0 ≤ ϕ < 2π):

�

ϕ
r

0 r

ϕ
Ψ

Ψ(�)x

Now if L is a set of lines, we define ν(L) as the Lebesgue measure of the
set Ψ(L) in the (r, ϕ) plane, where r and ϕ are interpreted as Cartesian
coordinates. For instance, the set {(r, ϕ): 0 ≤ r ≤ 1, 0 ≤ ϕ < 2π} is a
rectangle, not a disc!

The first pleasant property of the measure ν is motion invariance: if L′

arises from L by a rigid motion (i.e., without changing the relative position of
the lines) then ν(L′) = ν(L). This is not difficult to see. Clearly, the measure
does not change by rotating L around the origin, since this corresponds to
a parallel translation of Ψ(L) in the ϕ-direction in the (r, ϕ)-plane. Any
rigid motion can be obtained by composing such rotations with translations
parallel to the x-axis, so let us check how a translation of L by a vector (a, 0)
works in the (r, ϕ)-plane. In the following drawing, we see that ϕ remains
fixed and r changes to r + a cos ϕ:

0
ϕ

x
x′

� �′

a

Therefore, each slice of Ψ(L′) by a line parallel to the r-axis has the same
one-dimensional measure as the corresponding slice of Ψ(L), and so the two-
dimensional measures are the same as well.
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Let us remark that up to scaling, our measure is the only “reasonable”
motion-invariant measure on the lines in the plane (similar to the Lebesgue
measure being the only motion-invariant measure on the points of the plane).
There are elegant, although less elementary, ways of deriving the concrete
formula for ν from the motion-invariance requirement (the Haar measure on
the group of rigid motions is used as an intermediate step).

Here is another remarkable property of the measure ν:

6.5 Theorem (Perimeter formula). For any convex set K ⊆ R2, the
ν-measure of the set of all lines intersecting K equals the perimeter of K.

We actually need a very special case of Theorem 6.5 only, namely for K
being a segment (then the measure should be twice the length of the segment).
This is quite easy (Exercise 1).

A Side Remark. Let us note Theorem 6.5 immediately implies that if K ⊆ K ′

are both convex, then the perimeter of K is no larger than the perimeter of
K ′. This result is not as easy to prove without such an aid as it might seem.

Finite Differencing. We need one more detour, this time leading us into
calculus. The forward differencing operator Δh acts on a real function f as
follows:

Δhf(x) = f(x + h) − f(x).

Its t-fold iteration can be expressed as

Δt
hf(x) =

t∑

i=0

(−1)t−i

(
t

i

)
f(x + ih). (6.2)

We will need to estimate the tth difference using derivatives. For h small,
Δhf(x)

h approximates the derivative f ′(x); indeed, the Mean value theorem
gives Δhf(x0) = hf ′(ξ) for some ξ ∈ (x0, x0 + h) if f is differentiable in
(x0, x0 + h). For a larger order t, intuitively, Δt

h(x)
ht should approximate the

tth derivative f (t)(x). Precisely, we have the following generalization of the
Mean value theorem:

Δt
hf(x0) = htf (t)(ξ) for some ξ ∈ (x0, x0 + th) (6.3)

provided that f is t-times continuously differentiable on the interval (x0, x0 +
th). The proof is left as Exercise 3. For the purposes of this section, we will
only need that

Δt
hf(x0) = O

(
ht sup

ξ∈(x0,x0+th)

∣∣
∣f (t)(ξ)

∣∣
∣
)
,

with the constant of proportionality depending on t only, which is somewhat
more straightforward to prove.



6.4 Halfplanes: Combinatorial Discrepancy 185

Proof of Theorem 6.4. The set P with large combinatorial discrepancy
for halfplanes can be taken as the

√
n × √

n regular grid placed within the
square S = [0, 1

4 ]2 (the side 1
4 is chosen so that the perimeter is 1 and,

consequently, ν is a probability measure on the set of lines intersecting S).
We will assume that

√
n is integral and even, since the modifications for the

general case are easy and would just complicate the notation. In such case, we
put P =

(
( 1
8
√

n
, 1

8
√

n
) + 1

4
√

n
Z2
)
∩ S, as in the following picture3 for n = 16:

0 1
4

S

Let U denote the set of all upper halfplanes (ones lying above their bound-
ary line) whose boundary lines intersect the square S. Ignoring vertical lines
(which have measure 0), the lines are in a bijective correspondence with their
upper halfplanes, and so ν can be regarded as a probability measure on the
set U of upper halfplanes.

Let χ:P → {−1,+1} be any given coloring. To establish Theorem 6.4,
we are going to prove disc2,ν(χ, P,U) = Ω(n1/4); recall that disc2,ν(χ, P,U)
is defined as (∫

U
χ(P ∩ γ)2 dν(γ)

)1/2

.

In this formula, we integrate the discrepancy over all halfplanes γ ∈ U . Thus,
we are going to deal with various auxiliary functions defined on U . (Note that
in Roth’s proof in Section 6.1, we have been working with functions defined
on the set of all corners, although this was somewhat obscured by the one-
to-one correspondence of corners with the points of the unit square.) First,
we formally introduce a function D:U → R expressing the discrepancy of a
given halfplane, by setting D(γ) = χ(P ∩ γ). This function is the sum of the
contributions of individual points, namely D(γ) =

∑
p∈P χ(p)Ip(γ), where

Ip:U → {0, 1} is the indicator function defined by

Ip(γ) =
{

1 for p ∈ γ
0 for p �∈ γ.

3 Let us remark that the same proof goes through for more general sets P . Let δ
and δ′ be, respectively, the largest and the smallest distance between any pair
of distinct points in a set P . We say that P is dense if the ratio δ/δ′ is less than
C
√

n, for some constant C > 0. (Clearly, this is asymptotically the smallest ratio
one can have.) The lower bound in Theorem 6.4 holds for any dense set P in the
plane. On the other hand, in order to get a lower bound for the combinatorial
discrepancy for halfplanes, some requirement on P is necessary, since if the points
of P are in convex position, then there is a coloring with discrepancy at most 2.
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Next, we introduce functions fp:U → R, p ∈ P . These play the role of
the orthogonal functions fi from Roth’s proof in Section 6.1, but they are
not really orthogonal, at least not exactly so. Instead, we will show that
they are near-orthogonal, meaning that the cross-terms

∫
fpfq for p �= q are

sufficiently small compared to the quadratic terms
∫

f2
p .

Set w = cn−1/2, where c > 0 is a sufficiently small positive constant, and
let w be the vertical vector (0, w). For each point p, we consider the auxiliary
points p + iw, for i = −2,−1, . . . , 2, as in the following picture:

p

p + w

p + 2w

p − w

p − 2w1

−4
6

−4
1

The point p+ iw is assigned the weight (−1)i
(

4
i+2

)
; these weights are written

near the points. The value of the function fp for an upper halfplane γ is
defined as the sum of weights of the points among p + iw, i = −2,−1, . . . , 2,
that are contained in γ. Written by a formula,

fp = Ip−2w − 4Ip−w + 6Ip − 4Ip+w + Ip+2w. (6.4)

The weights of the points come from the fourth-order differencing formula,
and the role they play in the proof will become apparent later. Finally, we
set F =

∑
p∈P χ(p)fp.

As in Section 6.1, we will use the inequality
√∫

D2 ≥
∫

FD/
√∫

F 2

(again omitting the integration domain, which is U , and the integration vari-
able γ). This time we estimate the numerator first.

We have
∫

FD =
∫ (∑

p∈P

χ(p)fp

)(∑

q∈P

χ(q)Iq

)

=
∑

p∈P

χ(p)2
∫

fpIp +
∑

p,q∈P, p �=q

∫
χ(p)χ(q)fpIq

≥
∑

p

∫
fpIp −

∑

p�=q

∣
∣∣∣

∫
fpIq

∣
∣∣∣. (6.5)

Before immersing into the calculations, let us present an informal view of
the proof. The functions Ip and fp are defined on the domain U , which is the
set of all the upper halfplanes intersecting the square S, but for simplicity, we
will consider them defined on the set of all upper halfplanes in this informal
outline (it turns out that the restriction to the domain U does not really
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matter for the calculation). These functions can be illustrated graphically
in the (r, ϕ)-plane used in the definition of the invariant measure ν on lines
(recall that each line not passing through the origin corresponds to a point
in the (r, ϕ)-plane). The set of all lines lying below a point p is delimited by
parts of a sine curve in the (r, ϕ)-plane, as in the following picture:

0 π−π
ϕ

r

p
Ip = 1

Ip = 1x

y

The function Ip is 1 in the gray areas and 0 in the white areas. The function
fp is a linear combination of several functions Ip+iw. In the picture, fp is only
nonzero in a narrow band along the curve delimiting the region Ip = 1. The
following picture shows a magnified small region near this boundary, with
the values of fp in the four bands:

−1
3
−3 1

fp =

Ip = 1

The reason for
∫

fpIp being “large” is that within the region Ip = 1, fp is +3
in one of the bands and only −1 in the other band, so there is a significant
positive excess. On the other hand, if we plot fp and Iq for two points p and
q lying sufficiently far apart, we get a picture like this:

p
q

0 π−π
ϕ

r

Iq = 1

Iq = 1
x

y

the bands with fp �= 0
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Here is a detail of the marked area where the boundary of the region Iq = 1
crosses the bands with fp �= 0:

0

0
−1
3
−3 1

In such a situation, the contribution of the four bands to
∫

fpIq very nearly
cancels out, and so

∫
fpIq is very small. One can say that fp is “focused on”

Ip, following the boundary and making a significant contribution, but any
other Iq gets “blurred” with respect to fp. Of course, this fairy-tale has to
be substantiated by an actual calculation, which we do next.

A formula and an estimate for
∫

fpIq are provided by the following lemma,
in which the finite differencing enters the stage:

6.6 Lemma. (i) For any two points p, q ∈ S, we have

∫
fpIq = −g(−2) + 4g(−1) − 6g(0) + 4g(1) − g(2) = −Δ4

1g(−2),

where g(x) = gp,q,w(x) = ‖p − q − xw‖.
(ii) For p, q with ‖p − q‖ ≥ 4w, we have

∣∣∣
∣

∫
fpIq

∣∣∣
∣ = O

(
w4

‖p − q‖3

)
.

Proof of Part (i). First we calculate
∫

(Ip1 − Ip2)Iq, where p1, p2 ∈ S
and p1 lies vertically above p2. The integrand is always either 0 or 1 (since
Ip1 ≥ Ip2), and as is easy to check, it is 1 exactly for the upper halfplanes
whose boundary intersects the triangle p1qp2 but doesn’t intersect the side
p1q:

q

p1

p2
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Using the perimeter formula (Theorem 6.5), we derive
∫

(Ip1 − Ip2)Iq = ‖p1 − p2‖ + ‖p2 − q‖ − ‖p1 − q‖. (6.6)

The definition (6.4) of fp can we rewritten to

fp = −(Ip−w − Ip−2w) + 3(Ip − Ip−w) − 3(Ip+w − Ip) + (Ip+2w − Ip+w).

Substituting the right-hand side for fp into
∫

fpIq and using (6.6), we obtain
part (i) of the lemma.

Proof of Part (ii). If α denotes the angle of the vectors w and q − p and
if δ = ‖p − q‖ as in the picture,

q

p + iw

p
α

δ

then the cosine theorem yields ‖p − q + iw‖ =
√

δ2 + i2w2 − 2δiw cos α.
With this notation, the quantity

∣∣∫ fpIq

∣∣ depends on the three parameters
w, δ, and α, and we would like to bound it by O(w4/δ3) uniformly for all
α. First, we reduce this to an essentially univariate problem (with α as an
extra, and harmless, parameter) by a suitable change of variable. Namely,
we put h = w

δ . Note that the assumption ‖p − q‖ ≥ 4w implies h ≤ 1
4 . We

obtain ‖p + iw − q‖ = δ · g1(ih), where g1(x) =
√

1 + x2 − 2x cos α, and∫
fpIq = −δ · Δ4

hg1(−2h).
Now it suffices to prove

∣
∣Δ4

hg1(−2h)
∣
∣ ≤ Ch4 for all h ∈ [0, 1

4 ], with a
constant C independent of α. A brute-force approach is to calculate the
Taylor formula at h = 0 with terms up to h3 and a remainder term of the
order O(h4). It turns out that all the terms up to h3 have zero coefficients
and that the O(h4) term is bounded uniformly for all α. The Taylor formula
calculation is a bit laborious but possible, and it even becomes easy using a
computer algebra system.

A proof without any calculation uses the knowledge about finite differ-
encing presented at the beginning of the section. It is easy to see that the
function g1(x) has a continuous fourth derivative on [− 1

2 , 1
2 ] for all α, and

that this derivative depends on α continuously. By (6.3), we have

Δ4
hg1(−2h) = h4g

(4)
1 (ξ)

for some ξ ∈ (−2h, 2h). Since |g(4)
1 (x)| is a continuous function of x and α

on the compact set [− 1
2 , 1

2 ]× [0, 2π], it is bounded by some constant C there,
and

∣∣Δ4
hg1(−2h)

∣∣ ≤ Ch4 follows. Part (ii) of Lemma 6.6 is proved. �



190 6. Lower Bounds

End of the Proof of Theorem 6.4. From the explicit formula in part (i)
of Lemma 6.6, we calculate

∫
fpIp = 4w, and hence

∑
p∈P

∫
fpIp = 4nw.

Next, we want to show that
∑

p�=q

∣∣∫ fpIq

∣∣ is considerably smaller than
4nw. To compute this sum, we fix p, and we divide the points q into groups.
The kth group is

Gk =
{

q ∈ P : ‖p − q‖ ∈
[

k

4
√

n
,
k + 1
4
√

n

)}

k = 1, 2, . . ., as in the following picture:

p

G1

G2

G3

We observe that |Gk| = O(k), as can be seen by the following standard
volume argument. For each point q ∈ Gk, consider the disc of radius 1

8
√

n
,

say, centered at q. These discs do not overlap and they are all contained in
the annulus with center p, inner radius k−1

4
√

n
, and outer radius k+2

4
√

n
. The area

of such annulus is O(k/n) and hence it can only contain O(k) disjoint discs
of area Ω( 1

n ) each.
Since ‖p − q‖ ≥ 4w for any two distinct points p, q ∈ P , the estimate

|
∫

fpIq| = O(w4/‖p − q‖3) in Lemma 6.6(ii) applies, and so

∑

q∈P\{p}

∣∣∣∣

∫
Ipfq

∣∣∣∣ ≤
∞∑

k=1

|Gk|
O(w4)

(k/4
√

n)3
= O(n3/2w4)

∞∑

k=1

1
k2

= O(n3/2w4).

By the formula (6.5) for
∫

FD, we obtain
∫

FD ≥ 4wn − C1n
5/2w4 =

√
n · (4c − C1c

4)

with some absolute constant C1. By choosing c sufficiently small in terms of
C1, we get

∫
FD = Ω(

√
n).

It remains to bound
∫

F 2 =
∑

p,q∈P

∫
fpfq. By substituting for fq from

(6.4), we have
∫

F 2 ≤
2∑

i=−2

O(1) ·
∑

p,q∈P

∣∣∣∣

∫
fpIq+iw

∣∣∣∣ .
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For i = 0, we have already calculated that the inner sum over p, q ∈ P is
O(

√
n). The sums for the other i can be estimated in almost exactly the same

way; we leave the details to the reader.
Altogether we have derived

∫
F 2 = O(

√
n), and so

√∫
D2 ≥

∫
FD

√∫
F 2

= Ω(n1/4).

Theorem 6.4 is proved. �

Higher Dimensions. It is not difficult to extend the above lower-bound
proof to halfspaces in an arbitrary fixed dimension d. First, we need a motion-
invariant measure ν on the set of all hyperplanes in Rd. The measure intro-
duced for lines in this section can be generalized as follows. A hyperplane h
not containing the origin is again characterized by the points x closest to the
origin. The point x can be determined by its distance to the origin, r = ‖x‖,
and by the point ξ = x

r of the unit sphere Sd−1. For such a hyperplane h, we
put Ψ(h) = (r, ξ). The range of the mapping Ψ is thus [0,∞) × Sd−1. The
ν-measure of a set of hyperplanes is given by the measure of its Ψ-image,
where on [0,∞) we take the usual (Lebesgue) measure, and on the sphere
Sd−1 we also take the “usual” measure (surface area for d = 3), but we scale
it by a suitable constant factor. Such a measure on hyperplanes is invariant
under rigid motions; this can be verified in the same way as we did for lines.
Therefore, the measure of the set of all hyperplanes intersecting any given
segment is proportional to its length. Here we fix the scaling so that this
measure equals twice the length as was the case in the plane (this is different
from the scaling usually used in the integral-geometry literature).

To prove the d-dimensional analogue of Theorem 6.4, we let P be a d-
dimensional n1/d × · · · × n1/d grid placed in a suitable cube. The side of this
cube is chosen in such a way that the total measure of the hyperplanes inter-
secting the cube is 1. The functions fp are defined analogously to the planar
case, but the finite differencing formula of order d+2 is taken as a basis. This
order is just enough to make the sum of the terms

∫
fpIq sufficiently small.

All this leads to the asymptotically tight discrepancy bound Ω(n1/2−1/2d) for
halfspaces in Rd.

Bibliography and Remarks. Theorem 6.4 was proved by Alexan-
der [Ale90], using some ideas from earlier work of his and Stolarsky
(e.g. Stolarsky [Sto73]; see [Ale90] for more references). Some of the
precursors of this result will be mentioned in the remarks to Sec-
tion 7.1, where we also give a brief overview of lower bounds for var-
ious classes of geometric figures. A new presentation of Alexander’s
result was given by Chazelle et al. [CMS95]; the main new ingredient
in this paper is an explicit use of finite differencing. This method will
be explained below in Section 6.5. The proof in the present section is
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another modification, due to the author this book, of the basic ideas
of Alexander [Ale90] and of Chazelle et al. [CMS95]. Being formulated
in terms of suitable near-orthogonal functions, the proof becomes per-
haps more natural for a reader familiar with Roth’s proof for axis-
parallel rectangles.

More on the motion-invariant measure for lines and related sub-
jects can be found in Santaló’s book [San76] or, with a more advanced
and more demanding presentation, in Schneider and Wieacker [SW93].
The perimeter formula (Theorem 6.5) is sometimes called Crofton’s
formula in the literature. But there are several other Crofton’s for-
mulas, and also the perimeter formula goes back at least to Cauchy
[Cau50], so here we use the more neutral name for the formula.

In dimensions d > 2, the measure of hyperplanes intersecting a
given convex body K is not related to the surface area of K anymore.
It is proportional to the expected width of K in a randomly chosen
direction (the width in direction x is the distance of the two support-
ing hyperplanes perpendicular to x), and for bodies with a smooth
boundary, it is also proportional to the mean curvature (see [San76]).

Exercises

1. (a) Prove that for any segment s in R2, the ν-measure of the set of lines
intersecting s equals twice the length of s.
(b) Prove the perimeter formula (Theorem 6.5) with K being a convex
polygon.
(c)∗ Prove Theorem 6.5.

2. Consider the definition of the motion-invariant measure ν on the set of
all planes in R3.
(a) Prove in detail that the measure of the set of planes intersecting any
given segment is proportional to its length.
(b) Calculate the total measure that should be assigned to the unit sphere
S2 in the definition of ν so that the measure of the planes intersecting a
segment equals twice its length.

3. (a) Show that Δt
hp(x) is identically 0 for any polynomial p(x) of degree

smaller than t.
(b)∗ Prove that for any fixed t and any function f , t-times continuously
differentiable on (x0, x0 + th), we have

|Δt
hf(x0)| ≤ Cth

t sup
ξ∈(x0,x0+th)

|f (t)(ξ)|,

for some suitable constant Ct independent of f . (This is somewhat easier
than (6.3) and suffices for the proof in this section.)
(c)∗∗ Prove the formula (6.3).
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4.∗ Go through the proof of the d-dimensional lower bound sketched at the
end of the section carefully, including all the calculations. Note that the
elementary calculus approach to (the higher-dimensional analogue of)
Lemma 6.6 becomes unmanageable for high dimensions, while the finite-
differencing argument works unchanged.

6.5 Combinatorial Discrepancy for Halfplanes
Revisited

In this section, we present another proof of Theorem 6.4, closer in spirit
to the original proof of Alexander. Although the approach is conceptually
somewhat different, it leads to nearly identical calculations and estimates.
The finite differencing effect is achieved not by employing auxiliary functions
as in the preceding proof, but by replacing the considered point set by several
slightly shifted copies of it, each copy being assigned an appropriate weight.

From the previous section, we will need the material concerning the
motion-invariant measure ν on lines (and on upper halfplanes) and some ba-
sically self-contained parts of the proof given there. A significant part of the
notation and definitions are also taken over. In particular, we let S = [0, 1

4 ]2

and we write U for the set of upper halfplanes with boundary intersecting S.
For a point p ∈ S and a halfplane γ ∈ U , Ip(γ) = 1 if p ∈ γ and Ip(γ) = 0
otherwise.

The Alexander–Stolarsky Formula. Our first additional tool is an ele-
gant formula expressing the L2-discrepancy of a point set in S using certain
signed distance sums. In the sequel, we will also need it for generalized color-
ings. By a generalized coloring of a point set P , we mean an arbitrary mapping

χ:P → R. We also recall that disc2,ν(P,U , χ) =
(∫

U χ(P ∩ γ)2 dν(γ)
)1/2

.

6.7 Lemma (Alexander–Stolarsky formula). Let P be a finite point set
in the square S and let χ:P → R be a mapping (generalized coloring) such
that (important assumption!) χ(P ) =

∑
p∈P χ(p) = 0. Then we have

disc2,ν(P,U , χ)2 = −
∑

p,q∈P

χ(p)χ(q)‖p − q‖.

Proof. Since χ(P ) = 0, we have χ(P ∩ γ) = −χ(P ∩ (R2 \ γ)) for any
halfplane γ. We rewrite

χ(P ∩ γ)2 = −χ(P ∩ γ)χ(P ∩ (R2 \ γ))

= −
∑

p,q∈P

χ(p)χ(q)Ip(γ)[1 − Iq(γ)].
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For p = q, the term in the above sum is 0. If {p, q} is an unordered pair
of distinct points of P , the sum contains two terms involving p and q:
χ(p)χ(q)Ip(γ)[1 − Iq(γ)] and χ(p)χ(q)Iq(γ)[1 − Ip(γ)]. The first term con-
tributes 1 for the halfplanes γ containing p but not q, and the second term
contributes 1 for the γ containing q but not p. Hence the sum of the two
terms is 1 exactly if the boundary line of γ intersects the segment pq, and
the ν-measure of the set of these γ is 2‖p − q‖. Therefore,

disc2,ν(P,U , χ)2 =
∫

U
χ(P ∩ γ)2 dν(γ)

= −
∑

{p,q}⊆P, p �=q

χ(p)χ(q) · 2‖p − q‖

= −
∑

p,q∈P

χ(p)χ(q)‖p − q‖.

�

As was advertised above, the proof of Theorem 6.4 will be based on finite
differencing, and the finite differencing effect will be achieved by considering
several slightly shifted copies of the given set P . First we check that such a
replication of the point set cannot decrease the L2-discrepancy by much.

6.8 Lemma (Replication lemma). Let P be a finite point set in the
square S, and let χ:P → R be a (generalized) coloring with χ(P ) = 0. Let
w1,w2, . . . ,wk be translation vectors and let c1, c2, . . . , ck be real weights,
where both k and c1, . . . , ck are considered as constants. Put Pi = P + wi

and define a (multi)set P̃ as the disjoint union P1∪̇P2∪̇ · · · ∪̇Pk. Suppose that
no points have been shifted outside S, that is, P̃ ⊆ S. Finally, define a gen-
eralized coloring χ̃:P → R by setting χ̃(p +wi) = ciχ(p) for each p ∈ P and
each i = 1, 2, . . . , k; see a picture:

p χ(p) � p

w1

w2w3

c3χ(p)

c2χ(p)

c1χ(p)

Then the L2-discrepancy of P under χ has at least the same order of magni-
tude as that of P̃ under χ̃:

disc2,ν(P,U , χ) = Ω(disc2,ν(P̃ ,U , χ̃)).

Proof. By the Alexander–Stolarsky formula, if χ(P ) = 0, then the L2-dis-
crepancy of P under χ does not change by translating P provided that the
translated set remains within the square S. That is, if χi is the coloring of
Pi defined by χi(p + wi) = χ(p) then
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disc2,ν(P,U , χ)2 = −
∑

p,q∈P

χ(p)χ(q)‖p − q‖

= −
∑

p,q∈Pi

χi(p)χi(q)‖p − q‖ = disc2,ν(Pi,U , χi)2.

By the Cauchy–Schwarz inequality, we obtain

χ̃(P̃ ∩ γ)2 =
( k∑

i=1

ckχi(Pi ∩ γ)
)2

≤
( k∑

i=1

c2
k

)( k∑

i=1

χi(Pi ∩ γ)2
)

.

Consequently,

disc2,ν(P̃ ,U , χ̃)2 ≤
( k∑

i=1

c2
k

)( k∑

i=1

disc2,ν(Pi,U , χi)2
)

= k

( k∑

i=1

c2
k

)
disc2,ν(P,U , χ)2.

�

Second Proof of Theorem 6.4. Many parts of the proof are almost
identical to the proof in the previous section. We again assume that n is a
perfect square and we take the same

√
n × √

n grid in the square S for P .
We also put w = cn−1/2 and w = (0, w).

Let χ:P → {−1,+1} be a fixed coloring. In order to apply the fine tools
just developed, we would need that χ(P ) = 0, which in general need not
be the case. This is easy to rectify, however. Suppose, for instance, that
the points of P colored by 1 outnumber the points colored by −1 by some
Δ > 0. If Δ > cn1/4 for a suitable positive constant c then any halfplane
containing the whole P has large enough discrepancy, so we may disregard
such a coloring χ. Otherwise, recolor some Δ

2 points of P colored by 1. If we
now show that the discrepancy of this modified χ is at least 2Δ, then the
original discrepancy was at least Δ.

Thus, assume χ(P ) = 0. From the set P , we pass to a set P̃ and a
generalized coloring χ̃ by replicating each point p ∈ P three times, as in the
drawing:

p χ(p) �

χ(p)

χ(p)

−2χ(p)p
w

−w

This is as in the Replication lemma 6.8 with k = 3, w1 = −w, w2 = 0,
w3 = w, c1 = c3 = 1, and c2 = −2. This time, the coefficients c1, c2 and
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c3 are taken from the finite-differencing formula of order 2. (In this proof
method, the differencing order will effectively be doubled, and so we end up
with the fourth-order differencing as in the former proof.)

By the Replication lemma 6.8, it suffices to prove disc2,ν(P̃ ,U , χ̃) =
Ω(n1/4). We use the Alexander–Stolarsky formula for expressing the L2-dis-
crepancy of P̃ under χ̃, and we group together the terms coming from copies
of the same original point p ∈ P :

disc2,ν(P̃ ,U , χ̃)2 = −
∑

p̃,q̃∈P̃

χ̃(p̃)χ̃(q̃) ‖p̃ − q̃‖

=
∑

p,q∈P

χ(p)χ(q)J(p, q),

where

J(p, q) = −‖p−q−2w‖+4‖p−q−w‖−6‖p−q‖+4‖p−q+w‖−‖p−q+2w‖.

This formula for J(p, q) is perhaps best explained by the following picture:

−2

1

1

−2

1

1p

q
w

For a pair of original points p, q ∈ P , we are summing the distances drawn
there, and the weight of a distance is the product of the weights of its end-
points. (The calculation of J(p, q) hides the passage from the second-order
differencing implicit in the coefficients used in the definition of χ̃ to the
fourth-order differencing. The reader may want to contemplate how J(p, q)
corresponds to two successive applications of the second-order differencing
operator Δ2

1 to the function g(x) = ‖p − q + xw‖.)
As it happens, the quantity J(p, q) is identical to

∫
fpIq considered in the

previous proof, as can be seen by comparing the above formula for J(p, q) with
the formula for

∫
Ipfq in Lemma 6.6. Hence, exactly the same calculations

yield

disc2,ν(P̃ ,U , χ̃)2 ≥
∑

p∈P

J(p, p) −
∑

p,q∈P, p �=q

|J(p, q)| = Ω(
√

n).

Theorem 6.4 is proved once again. �

Remarks. Here is an intuitive view of the presented proof. The set P̃ is
composed of triples of close points, and the weights of the points in each triple
compensate. If a halfplane crosses some triple (i.e. contains some of its points
but not all of them) then this triple contributes 1 to the “imbalance” of this
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halfplane. A random halfplane is likely to cross about wn ≈ √
n triples (by

the Perimeter formula 6.5). The proof shows that the contributions of these
triples behave somewhat like independent random variables (the randomness
comes from the halfplane!); we can interpret J(p, q) as the covariance of the
contribution of the triple coming from the point p and the triple coming
from the point q. The proof shows that the covariances are sufficiently small
compared to the expected contributions of the individual triples.

In the proof in higher dimension, the set P̃ is formed according to the
finite differencing formula of order t = �(d + 2)/2�, and this leads to J(p, q) =
−Δ2t

1 g(x) with g(x) = ‖p − q + xw‖.

Bibliography and Remarks. This section follows the presentation
of Chazelle et al. [CMS95] quite closely. That paper contains still an-
other version of the proof, due to Chazelle, with an interesting relation
to the famous “Buffon needle” experiment.

6.6 Halfplanes: the Lebesgue-Measure Discrepancy

In this section we prove

6.9 Theorem. For all n ≥ 1, the discrepancy of any n-point set P in the
unit square for halfplanes satisfies D(P,H2) = Ω(n1/4).

The basic approach to the proof is the same as in the previous section
(point replication), but if we did the replication in exactly the same way as
before, an essential part of the forthcoming proof would fail! The key new
idea is to step out of the plane and to shift the replicated points in the 3-di-
mensional space in the direction perpendicular to the original plane.

Proof. Let P ⊆ [0, 1]2 be an arbitrary n-point set, fixed throughout the
proof. By the conventions introduced in Section 1.2, D(P,A) stands for the
“signed discrepancy” of a set A. Since P is fixed, we omit it from the notation;
that is, we put

D(A) = n · vol�(A) − |P ∩ A|
for a (Lebesgue-measurable) set A ⊆ R2. We thus want to prove that there
exists a halfplane γ with |D(γ)| = Ω(n1/4).

In this proof (as well as in some subsequent ones), it is useful to view the
function A �→ D(A) as a signed measure (a signed measure is a countably
additive real function defined on a σ-algebra of sets; it is like a measure but
without the requirement of nonnegativity). Part of this signed measure is
concentrated on the point set P , and another part is a continuous measure
on the unit square. In particular, we can integrate various functions according
to D; we have
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∫

X

f(x) dD(x) = n ·
∫

X

f(x) dx −
∑

p∈P

f(p)

(a reader not feeling at ease with signed measures can just regard the left-
hand side as a textual abbreviation of the right-hand side).

Similar to the previous section, we are going to replicate the set P and
the corresponding signed measure D, but here we also increase the dimension
of the ambient space. First, we think of the square [0, 1]2 as lying in the z = 0
plane in R3, and we regard D as a signed measure in the 3-dimensional space
(concentrated in the z = 0 plane).

Instead of the discrepancy for 2-dimensional halfplanes, we will consider
the discrepancy for 3-dimensional halfspaces. At the end of Section 6.4, we
introduced the motion-invariant measure ν on the set of all planes in R3,
and we remarked that the ν-measure of all planes intersecting a segment s is
twice the length of s. Let U3 be the set of all upper halfspaces in R3 whose
bounding planes intersect the cube [0, 1]2× [− 1

2 , 1
2 ]. Obviously, since the cube

has 12 edges, we have ν(U3) ≤ 24 (we do not need the exact ν-measure of
U3 although it is possible to calculate it). We will work with L2-discrepancy
averaged over the halfspaces of U3. The measure ν restricted to U3 is not a
probability measure, but it could be rescaled by a constant factor to become
one. Note that if we find a halfspace γ ∈ U3 with the discrepancy |D(γ)|
large, then intersecting this γ with the z = 0 plane yields a halfplane with
the same large discrepancy.

We now describe the replication of D. We fix w = cn−1/2 as in the previous
proofs, and this time we let w = (0, 0, w). We replicate the 2-dimensional
signed measure D, by shifting one copy from the z = 0 plane by w upwards
and one copy by −w downwards, and we assign the middle copy in the z = 0
plane the weight −2, as the following picture indicates:

z = 0

−w
w

�
+D

−2D
+D

D

Thus, we formally define

D̃(A) = D(A + w) − 2D(A) + D(A − w)

for a set A ⊆ R3 (we will use this definition for halfspaces only).
In the proof, we will show that the quadratic average over γ ∈ U3 of

D̃(γ) is Ω(n1/4), and analogous to the preceding section, this will allow us
to conclude that there exists a halfspace γ with |D(γ)| = Ω(n1/4). To this
end, we need analogies of the Alexander–Stolarsky formula 6.7 and of the
Replication lemma 6.8.



6.6 Halfplanes: the Lebesgue-Measure Discrepancy 199

For the Alexander–Stolarsky formula, the counterpart of the generalized
coloring χ in Lemma 6.7 is the signed measure D̃ here. Namely, we have

∫

U3

D̃(γ)2 dν(γ) = −
∫

R3

∫

R3
‖p̃ − q̃‖dD̃(p̃) dD̃(q̃). (6.7)

The proof is exactly the same as before, with summation replaced by inte-
gration (note that we have D̃(R3) = 0). Using the definition of D̃, (6.7) can
also be rewritten, as in the previous section, to

∫

U3

D̃(γ)2 dν(γ) =
∫

R2

∫

R2
J(p, q) dD(p) dD(q),

where J(p, q) is formally the same as before:

J(p, q) = −‖p − q − 2w‖ + 4‖p − q − w‖ − 6‖p − q‖ (6.8)
+4‖p − q + w‖ − ‖p − q + 2w‖.

The crucial advantage over the previous section is that the vectors q − p and
w are now always orthogonal.

The analogy of the Replication lemma 6.8, again with the same proof,
reads ∫

U3

D(γ)2 dν(γ) = Ω
(∫

U3

D̃(γ)2 dν(γ)
)

(6.9)

and so for proving Theorem 6.9, it suffices to show that
∫

R2

∫

R2
J(p, q) dD(p) dD(q) = Ω(n1/2).

By the definition of the signed measure D, we can rewrite
∫

R2

∫

R2
J(p, q) dD(p) dD(q) = Eλλ + EλP + EP2 + EPP , (6.10)

where

Eλλ = n2 ·
∫

[0,1]2

∫

[0,1]2
J(x, y) dx dy,

EλP = −n ·
∑

p∈P

∫

[0,1]2
J(p, x) dx,

EP2 =
∑

p∈P

J(p, p), and

EPP =
∑

p,q∈P
p�=q

J(p, q)

(here the λ in the subscripts refers to the Lebesgue measure).
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We estimate these terms one by one. As for EP2, J(p, p) always equals
4w, so EP2 = 4nw = 4cn1/2. This is the substantial positive contribution we
need for lower-bounding the L2-discrepancy, and it remains to show that the
other terms cannot cancel it out.

The magnitude of term EλP can be bounded using the estimates for
J(p, q) derived earlier. We have

|EλP | ≤ n
∑

p∈P

∫

[0,1]2
|J(p, x)|dx ≤ n

∑

p∈P

∫

R2
|J(p, x)|dx.

Obviously, the integral in the last expression does not depend on p. For the x
with ‖p−x‖ ≤ 4w, we use the estimate |J(p, x)| = O(w), which immediately
follows from the definition (6.8) of J(p, q). For ‖p − x‖ > 4w, we apply the
bound |J(p, q)| = O(w4/‖p − q‖3) from Lemma 6.6(ii). Therefore,
∫

R2
|J(p, x)|dx ≤

∫

‖p−x‖≤4w

O(w) dx +
∫

‖p−x‖>4w

O

(
w4

‖p − x‖3

)
dx

= O(w3) + O(w4) ·
∫ ∞

4w

2πr

r3
dr

= O(w3).

Consequently, |EλP | = O(w3n2) = O(c3n1/2), and so for a small enough c,
|EλP | is much smaller than EP2.

Now we get to the term EPP , and this is where the situation becomes
more interesting. Formally, the sum

∑
p,q∈P, p �=q J(p, q) looks the same as the

one we handled successfully in the previous section. But there the set P was
chosen at our will, but now we have no control over its distribution! This is
really a problem; for example, the reader may want to check that if all the
points of P coincide, or lie in a tiny cluster, then EPP is as big as Ω(n3/2).
Of course, one can immediately object that if all points are tightly clustered
then P cannot have low discrepancy for halfplanes. Indeed, low discrepancy
for halfplanes means some kind of uniform distribution. But it is not at
all obvious how one should derive a good enough estimate for the order of
magnitude of EPP even under the low-discrepancy assumption, since a low-
discrepancy set might still possibly contain small local clusters of points that
kill the summation.

The following lemma saves the situation, showing that the term EPP , even
though possibly large, is always nonnegative, and consequently harmless in
(6.10). (The same result also gives us Eλλ ≥ 0 for free.)

6.10 Lemma (Nonnegativity lemma). For any two points p, q in the
z = 0 plane, we have J(p, q) ≥ 0.

Let us remark that the nonnegativity fails in the setting of the previous
section, when the vector w lies in the plane and need not be orthogonal to
q − p (Exercise 5).
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For the planar case we are dealing with, this lemma can be proved by an
ad hoc approach using elementary calculus. The function J(p, q) depends on
w and on δ = ‖p − q‖. Using the substitution h = w

δ as in Section 6.4, we
can calculate from (6.8) that

J(p, q) = 2δ ·
(
3 − 4

√
1 + h2 +

√
1 + 4h2

)
.

Having plotted a graph of the function in parentheses, one may start believing
that it is indeed nonnegative for all h > 0. This can be verified by elementary
calculus, and this concludes the proof of Theorem 6.9. �

The conclusion of the previous proof cannot really satisfy a curious reader.
First of all, if we try to generalize the result for halfspaces in an arbitrary
dimension d, everything else goes through easily, but it is not obvious how to
prove the higher-dimensional analogue of the nonnegativity lemma—at least
the approach via elementary calculus seems inadequate. And second, it is
not clear why such a property should hold: is it purely by chance, or is it a
manifestation of some interesting general phenomenon?

The first problem, the higher-dimensional generalization, can be dealt
with by changing the definition of the replicated signed measure D̃, which
leads to an expression whose non-negativity for an arbitrary dimension fol-
lows by an easy calculation. This route is indicated in Exercise 3 below. But
in this method the nonnegativity phenomenon also looks like a miraculous
coincidence. In the next section, we thus show another proof of the Nonneg-
ativity lemma 6.10, which provides some insight into this miracle and shows
connections of the Nonnegativity lemma to geometric properties of the Eu-
clidean space and to other interesting results.

Bibliography and Remarks. Here we again follow Alexander’s
ideas [Ale90], with some additional twists from [CMS95]. In Alexan-
der [Ale90], the Nonnegativity lemma 6.10 was proved for dimension 2
only (using elementary calculus). In [Ale91] it was established in gen-
eral, by methods presented in the next section. An alternative, more
elementary way of obtaining the bound for higher dimensions, outlined
in Exercise 3 below, is due to Chazelle et al. [CMS95].

In [Ale91], Alexander states the results of his method in a con-
siderable geometric generality (instead of the unit cube, he considers
domains on convex surfaces). Actually, the method depends very little
on the specific properties of the Lebesgue measure. It turns out that
the d-dimensional Lebesgue measure can be replaced by an arbitrary
probability measure μ in Rd with bounded support, and the lower
bound depends on the μ-volume of balls—see Exercise 2 for a pre-
cise formulation. (We mostly discuss the combinatorial and Lebesgue-
measure discrepancy in this book, but here the method works in such
a simple way for arbitrary measures that this generalization is perhaps
worth mentioning.)
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Another interesting generalization was investigated by Rogers [Rog94].
He considers an m×m chessboard, consisting of n = m2 unit squares,
where each of these squares is colored red or blue. By extending
Alexander’s method, he proves that there is a halfplane for which
the difference of red and blue areas contained in it is at least Ω(n1/4).

Exercises

1. Go through the proof of the Alexander–Stolarsky formula and of the
Replication lemma, and modify them to obtain (6.7) and (6.9).

2. (A lower bound for approximating arbitrary measures by finite sets)
(a)∗ Let μ be a probability measure with support contained in [0, 1]2,
such that all halfplanes are μ-measurable, and suppose that α ∈ (1, 2]
and C are constants such that μ(B(x, r)) ≤ Crα holds for all points
x ∈ R2 and all radii r > 0 (recall that B(x, r) denotes the ball of radius
r centered at x). For an n-point set P ⊂ [0, 1]2, define the signed measure
D by D(A) = n · μ(A) − |P ∩ A|. By generalizing the proof given in this
section, show that there exists a halfplane γ with |D(γ)| = Ω(n1/2−1/2α),
where the constant of proportionality depends on α. (A d-dimensional
analogue can be proved in a very similar way.)
(b)∗ Show that it is sufficient to assume the condition μ(B(x, r)) ≤ Crα

only for r = c1n
−1/α with a suitable sufficiently small constant c1 > 0.

Remark. Nontrivial examples of measures μ with 0 < α < d are pro-
vided by various fractal sets. One of them is the Sierpiński Carpet, which
arises by subdividing the unit square into a 3 × 3 square grid, deleting
the middle square, and repeating this construction recursively in each of
the 8 remaining squares. Here α = log 8/ log 3 = 1.89 . . . coincides with
the Hausdorff dimension. Also for many other fractals, the assumption
in this exercise is satisfied for α being the Hausdorff dimension. Unfortu-
nately, a matching upper bound for the discrepancy is not known. The
question of determining the discrepancy for halfplanes with respect to
fractal measures was communicated to me by Robert Tichy.

3. Complete the following outline of another version of the proof of Theo-
rem 6.9. (This is perhaps the shortest and most elementary way known.)
Embed R2 into R4 as the plane x3 = x4 = 0. With w1 = (0, 0, w, 0) and
w2 = (0, 0, 0, w), set D̃(A) =

∑1
i1,i2=0(−1)i1+i2D(A−i1w1−i2w2). Give

a formula for
∫
U4

D̃(γ)2 dν(γ) analogous to (6.10), with an appropriate
version of J(p, q), where U4 is the set of the upper halfspaces intersecting
the cube [0, 1]2 × [− 1

2 , 1
2 ]2 and ν is the measure on U4 induced by the

translation-invariant measure on the hyperplanes in R4. Check that the
estimates for EP2 and EλP go through, and establish the nonnegativity
of J(p, q) using the formula (6.3) on page 184. ∗Generalize the proof to
an arbitrary dimension d.
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4. Calculate the measure of the set of all planes intersecting the unit cube
[0, 1]3 (how many times bigger it is than the measure of the planes inter-
secting a unit-length segment?).

5. Show that the function J(p, q) defined in Section 6.4 need not be non-
negative if we do not assume that w and q − p are orthogonal vectors.
Thus, adding an extra dimension is crucial for the proof method in the
current section.

6.7 A Glimpse of Positive Definite Functions

In this section, we derive the Nonnegativity lemma 6.10 as a simple conse-
quence of a theory concerning the so-called positive definite functions. We
present only a small part of this theory, in a very special setting just suffi-
cient for our application. In the second part of the section, we leave our main
theme of discrepancy and look at some problems on isometric embeddings
that motivated the development of the techniques explained in the first part.

At the very beginning, we recall the definition of the one-dimensional
Fourier transform. Here we will need to know very little about it besides the
definition, but in the subsequent chapter we will meet the Fourier transform
again (in a higher-dimensional setting) and we will use it for proving discrep-
ancy lower bounds and other interesting results.

The Fourier Transform. Let f be a real or complex function of one
real variable with f ∈ L1(R) , which means that the Lebesgue integral∫∞
−∞ |f(x)|dx exists and is finite. The Fourier transform of f , denoted by

f̂ , is a function defined by

f̂(ξ) =
1√
2π

∫ ∞

−∞
f(x) e−ixξ dx,

where i stands for the imaginary unit. The Fourier transform of a real function
is, in general, a complex-valued function of the real variable ξ. This transform
enjoys a number of interesting properties, and we will encounter some of them
later. Here we only mention the fact (not needed in this section) that if also
f̂ ∈ L1(R), then f can be recovered from f̂ by means of the following inversion
formula:

f(x) =
1√
2π

∫ ∞

−∞
f̂(ξ) eixξ dξ.

The proof is not as simple as one might suspect at first sight, since if one
tries to verify the formula by a direct substitution of the definition of f̂ , one
gets the divergent integral

∫∞
−∞ ei(ξ1−ξ2)xdx. The proof is usually done by a

limit argument; see Rudin [Rud74] for one.

Positive Definite Functions. A function f :R → R is called positive
definite if we have, for any numbers x1, . . . , xn ∈ R and τ1, . . . , τn ∈ R,
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n∑

j,k=1

τjτkf(xj − xk) ≥ 0. 4

Let us note that this concept can be related to the perhaps better known
notion of positive definite matrices. Namely, for x1, x2, . . . , xn ∈ R, define
the n× n matrix A = A(f ;x1, x2, . . . , xn) by setting ajk = f(xj − xk). Then
f being positive definite means that A is a positive semidefinite matrix for
any choice of x1, x2, . . . , xn; that is, τT Aτ ≥ 0 for any real column vector
τ ∈ Rn. (In analogy with the terminology for matrices, it would perhaps
be more appropriate to say “a positive semidefinite function” instead of “a
positive definite function,” but we stick to the traditional terminology.)

Nontrivial examples of positive definite functions are not obvious. The
following lemma gives a method for producing some using the Fourier trans-
form.

6.11 Lemma. Suppose that a real function ϕ = ψ̂ is the Fourier transform
of a nonnegative real function ψ ∈ L1(R). Then ϕ is positive definite.

Proof. Let x1, . . . , xn ∈ R and τ1, . . . , τn be given. We calculate

n∑

j,k=1

τjτkϕ(xj − xk) =
1√
2π

∫ ∞

−∞
ψ(ξ)

∑

j,k

τjτke−i(xj−xk)ξ dξ

=
1√
2π

∫ ∞

−∞
ψ(ξ)

(∑

j

τje
−ixjξ

)(∑

j

τje
ixjξ

)
dξ.

Since all the xj and τj are real, the sum in the second pair of parentheses
is the complex conjugate of the one in the first pair of parentheses, and we
obtain

n∑

j,k=1

τjτkϕ(xj − xk) =
1√
2π

∫ ∞

−∞
ψ(ξ)

∣
∣∣∣
∑

j

τje
ixjξ

∣
∣∣∣

2

dξ ≥ 0.

�

The following lemma provides one of the most important examples of a
positive definite function.

6.12 Lemma. The function h(x) = e−x2
is positive definite.

4 This definition is appropriate if we wish to stay in the domain of real numbers.
Sometimes it is useful to consider complex-valued functions as well; then positive
definiteness means

∑n

j,k=1
τjτkf(xj − xk) ≥ 0 for all complex τ1, . . . , τn, where

the bar over τk denotes complex conjugate. Also, the definition can be formulated
for a function f : G → R, where G is an (additively written) commutative group,
in which case the xj are chosen in G while the τj remain real or complex.
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Sketch of Proof. We claim that h is the Fourier transform of the function
e−x2/4 (and thus the previous lemma applies). We have

∫ ∞

−∞
e−x2/4 · e−ixξ dx =

∫ ∞

−∞
e−x2/4−ixξ dx

= e−ξ2 ·
∫ ∞

−∞
e−(x/2+iξ)2 dx.

Since we are integrating in the complex plane, it is not really honest to say
that the last integral is transformed by the substitution y = (x/2 + iξ) to
the classical integral

∫∞
−∞ e−y2

dy =
√

π. Nevertheless, such a transformation
is possible using some simple considerations with Cauchy’s theorem about
holomorphic functions. In any case, for showing the positive definiteness of
h, we do not really need the value of the integral

∫∞
−∞ e−(x/2+iξ)2 dx, we only

need that it is a positive constant independent of ξ, and for those familiar
with the basics of complex analysis, this is quite easy to check. �

Next, we introduce a concept similar to positive definite functions, which
is already intimately related to the Nonnegativity lemma from the previous
section. Namely, we say that a function g:R → R is of negative type if we
have, for any n points x1, . . . , xn ∈ R and any real numbers τ1, . . . , τn with
τ1 + · · · + τn = 0 (this last condition should not be overlooked!),

n∑

j,k=1

τjτkg(xj − xk) ≤ 0.

6.13 Observation. If f(x) is a positive definite function then the function
g(x) = 1 − f(x) is of negative type.

Proof. With τ1 + · · · + τn = 0, we have

n∑

j,k=1

τjτkg(xj − xk) =
( n∑

j=1

τj

)2

−
n∑

j,k=1

τjτkf(xj − xk) ≤ 0.

�

In order to establish the Nonnegativity lemma 6.10, we prove the following
statement:

6.14 Proposition. The function x �→
√

1 + x2 is of negative type.

To see the relevance of this result for the Nonnegativity lemma, we recall
that the function J(p, q) in that lemma arose as a signed sum of the distances
drawn in the following picture (also see Section 6.4):
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−2

1

1

−2

1

1

p q
w

Namely, we have

J(p, q) = −
3∑

j,k=1

τjτk · ‖p − q − (j − k)w‖

= −‖p − q‖ ·
3∑

j,k=1

τjτk

√
1 + h2(j − k)2

with h = w/‖p − q‖, τ1 = τ3 = 1 and τ2 = −2. The way Proposition 6.14
implies J(p, q) ≥ 0 for all p, q should now be clear. The nonnegativity of the
higher-dimensional version of J(p, q) follows from the proposition in the same
way.

For the proof of Proposition 6.14, we need

6.15 Lemma. If f :R → [0,∞) is a nonnegative function such that the

function gλ(x) = e−λ2f2(x) is positive definite for each value of the parameter
λ ∈ R then f is of negative type.

Since e−x2
is positive definite by Lemma 6.12, also e−λ2(1+x2) is obviously

positive definite, and Proposition 6.14 follows from Lemma 6.15 with f(x) =√
1 + x2.

Proof of Lemma 6.15. Let us enjoy some magic of real analysis. We
first re-express the considered function f as a suitable integral. Set ϕ(x) =
(1−e−x2

)/x2. As is easy to check, the integral
∫∞
0

ϕ(x) dx converges to some
positive constant C (whose value is not important for us). Now let t be any
fixed positive real number and let λ be a new variable. By the substitution
x = tλ we obtain

C =
∫ ∞

0

ϕ(x) dx =
∫ ∞

0

ϕ(tλ)t dλ =
1
t

∫ ∞

0

1 − e−t2λ2

λ2
dλ,

and therefore

t =
1
C

∫ ∞

0

1 − e−t2λ2

λ2
dλ.

Using this for t = f(x), we find the integral representation

f(x) =
1
C

∫ ∞

0

1 − e−λ2f(x)2

λ2
dλ.

If we prove that the integrand is, for each value of λ, a function of x of nega-
tive type, we can infer that f is of negative type too (this can easily be seen



6.7 A Glimpse of Positive Definite Functions 207

from the definition of a function of negative type). But the integrand is of
negative type because of the assumption that e−λ2f2

is positive definite and
by Observation 6.13. This concludes the alternative proof of the Nonnegativ-
ity lemma 6.10. �

An Application Concerning Isometric Embeddings. Although it may
be unnecessary for most readers, we first recall that a metric space is a pair
(X, ρ), where X is a set and ρ:X × X → R is a nonnegative real function,
the metric, satisfying ρ(x, y) = ρ(y, x), ρ(x, y) = 0 if and only if x = y, and
ρ(x, y) + ρ(y, z) ≥ ρ(x, z). A mapping f :X → Y is an isometric embedding
of a metric space (X, ρ) into a metric space (Y, σ) if σ(f(x), f(y)) = ρ(x, y)
for all x, y ∈ X. Such an isometric embedding can be thought of as finding
an exact copy of (X, ρ) in (Y, σ).

Questions about isometric embeddability of various metric spaces are im-
portant in several branches of analysis and also in applications. As a sample,
let us look at the following question. Consider the real line R with the met-
ric ρ(x, y) =

√
|x − y| (one can check that it is really a metric). Can it be

embedded into a Euclidean space equipped with the usual Euclidean metric?
Intuitively, the embedding must locally “stretch” the line (since x, y lying very
close together have ρ(x, y) much bigger than |x − y|) but, on larger scales,
the image of the line must be somehow “wound together.” It turns out that
an isometric embedding into Rd is not possible for any d (Exercise 1), but
there exists an isometric embedding into the separable Hilbert space �2. We
recall that �2 is defined as the space of all infinite sequences x = (x1, x2, . . .)
with x1, x2, . . . ∈ R and

∑∞
i=1 x2

i < ∞, and with the distance of two such se-

quences x, y ∈ �2 given by ‖x − y‖ =
(∑∞

i=1(xi − yi)2
)1/2. For our purposes,

�2 can be thought of as a kind of limit of the Euclidean spaces Rd for d → ∞.
The existence of an isometric embedding of the line with the metric ρ defined
above into �2 can be proved very elegantly via positive definite functions. The
following more general result holds:

6.16 Theorem (Schoenberg). Let 0 < γ < 1 and let ρ be the distance
function on Rd given by ρ(x, y) = ‖x − y‖γ . Then the metric space (Rd, ρ)
can be isometrically embedded into �2.

We will only prove the particular case with d = 1 and γ = 1
2 mentioned

above the theorem, but it is not difficult to extend the proof method shown
below to arbitrary d and γ ∈ (0, 1).

Before we begin with the proof, we generalize the definition of a positive
definite function. A bivariate function K:X ×X → R, where X is some set,
is called a (real) positive definite kernel if

n∑

j,k=1

τjτkK(xj , xk) ≥ 0
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holds for any choice of elements x1, x2, . . . , xn ∈ X and all τ1, . . . , τn ∈ R.5

If (X, ρ) is a metric space and f :R → R is a real function, then f is
called positive definite on (X, ρ) if (x, y) �→ f(ρ(x, y)) is a positive definite
kernel on X. A kernel of negative type and a function of negative type on a
metric space are defined analogously.

For proving the promised special case of Theorem 6.16, we first derive the
following criterion for isometric embeddability into �2:

6.17 Proposition (Schoenberg). A separable6 metric space (X, ρ) admits
an isometric embedding into the separable Hilbert space �2 if and only if the
function x �→ x2 is of negative type on (X, ρ).

As a first step towards proving this proposition, we need a “compactness”
lemma, saying that the embeddability is determined by embeddability of
finite subsets.

6.18 Lemma (Menger). Let X be a separable metric space such that any
n-point subspace of X can be isometrically embedded into Rn, n = 1, 2, . . ..
Then X can be isometrically embedded into �2.

We leave the proof of this lemma for Exercise 2.
For the proof of Proposition 6.17, it will be notationally convenient to

consider n + 1 points x0, x1, . . . , xn ∈ X. Also, for brevity, we write ρjk for
ρ(xj , xk). The condition in Proposition 6.17 that the function x �→ x2 be of
negative type on (X, ρ) can be written as follows:

n∑

j,k=0

τjτkρ2
jk ≤ 0 (6.11)

holds for all real τ0, τ1, . . . , τn with
∑n

j=0 τj = 0.
This condition can be neatly reformulated using the so-called Gram ma-

trix, which is a generally useful tool in distance-related problems in Euclidean
spaces. We thus make a small detour to introduce this concept. For given n
vectors v1, v2, . . . , vn in Rd, the Gram matrix is the n × n matrix G with
elements gjk = 〈vj , vk〉, with 〈., .〉 denoting the usual scalar product in Rd.
Since we have 〈x, y〉 = 1

2 (‖x‖2 + ‖y‖2 −‖x− y‖2) by the cosine theorem, the
Gram matrix can be expressed solely in terms of distances, namely we have
gjk = 1

2 (‖vj‖2 + ‖vk‖2 − ‖vj − vk‖2).
Returning to our embedding condition, we define, for the given n + 1

points x0, x1, . . . , xn ∈ X, the n × n matrix G = (gjk)n
j,k=1 by setting

5 Reproducing kernels on Hilbert spaces mentioned in Section 1.4 are examples
of positive definite kernels, as is not difficult to check. Indeed, positive definite
kernels in the just defined sense are sometimes called “reproducing kernels” in
the literature.

6 A metric space (X, ρ) is separable if it has a countable dense subset, where a
subset A ⊆ X is called dense if for each point x ∈ X, there are points of A
arbitrary close to x.
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gjk =
1
2
(
ρ2

j0 + ρ2
0k − ρ2

jk

)
. (6.12)

Whenever f : {x0, x1, . . . , xn} → Rn is an isometric embedding, this G is the
Gram matrix of the vectors f(x1)− f(x0), f(x2)− f(x0),. . . , f(xn)− f(x0).

Next, we note that the condition (6.11) holds for all τ0, . . . , τn if and
only if the matrix G is positive semidefinite, i.e.

∑n
j,k=1 τjτkgjk ≥ 0 for all

τ1, τ2, . . . , τn ∈ R. This follows by substituting −(τ1 + τ2 + · · · + τn) for τ0

into (6.11) and rearranging.
Hence, proving Proposition 6.17 amounts to showing that the points

x0, x1, . . . , xn ∈ X can be isometrically embedded into Rn if and only if
the matrix G given by (6.12) is positive semidefinite.7 We prove only the “if”
direction, which gives us the “if” direction in Proposition 6.17, the one we
need for establishing Theorem 6.16. The “only if” part is left as Exercise 3.

Now we need the fact that any positive semidefinite and symmetric ma-
trix G can be written in the form G = MT DM , where M is a nonsingular
n × n matrix and D is a diagonal matrix whose diagonal consists of r ones
followed by n−r zeros, with r standing for the rank of G. This fact is usually
mentioned in a more general setting, in connection with the Sylvester law of
inertia for quadratic forms. What we need here can be proved by a simple
diagonalization algorithm resembling the Gauss elimination but done sym-
metrically on both rows and columns so that the matrix stays symmetric.
We should perhaps stress that M is not required to be orthogonal (and, in
general, it cannot be), so the matters are simpler than when dealing with
diagonalizations of the form G = M−1DM .

Having a matrix M = (mjk)n
j,k=1 with G = MT DM at our disposal

for the matrix G considered above, we define points y0, y1, . . . , yn ∈ Rr by
setting y0 = 0 and yj = (m1j ,m2j , . . . ,mrj), j = 1, 2, . . . , n. We claim that
this configuration of n + 1 points in Rr is isometric to x0, x1, . . . , xn ∈ X.
From the identity G = MT DM , we see that the Gram matrix of the vectors
y1, . . . , yn is just G, and this implies ‖yj − yk‖ = ρjk for all j, k = 0, 1, . . . , n.
This proves the “if” part of Proposition 6.17. �

The proof of Theorem 6.16 for d = 1 and γ = 1
2 is now immediate. To

prove that R with the metric (x, y) �→
√
|x − y| embeds isometrically into

�2, it is enough to show, by Proposition 6.17, that the function x �→ |x|
is of negative type. But this is a direct consequence of Lemma 6.12 and
Lemma 6.15. �

7 Thus, the scalar product on the Hilbert space is an example of a positive definite
kernel. In some sense, it is “the” example, since a theorem of Moore says that
any positive definite kernel K(x, y) on a set X can be represented as K(x, y) =
〈Tx, Ty〉, where T is a mapping of X into a Hilbert space (of a sufficiently
large cardinality, so not necessarily the separable one). See, e.g., Aharoni et al.
[AMM85] for a proof (in the complex case) and references.
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Bibliography and Remarks. Alexander [Ale91] showed that re-
sults and methods of Schoenberg [Sch37], [Sch38] concerning positive
definite functions provide the nonnegativity results needed for the dis-
crepancy lower-bound proof. Here we have only discussed particular
cases of Schoenberg’s and Alexander’s results.

The material concerning isometric embeddings into the separa-
ble Hilbert space is mostly taken from Schoenberg’s papers [Sch37],
[Sch38]; the reader can also find references to previous work on the
subject (by Wilson, von Neumann, Menger, and others) there. Schoen-
berg’s results are more general than Theorem 6.16, also involving met-
ric spaces arising by transformations of the Euclidean metric by func-
tions other than x �→ xγ . In [Sch38], Schoenberg proved another ver-
sion of Proposition 6.17, namely that a separable metric space (X, ρ)
is embeddable into the separable Hilbert space if and only if the func-
tions x �→ e−λx2

are positive definite on (X, ρ) for all λ > 0. This
criterion has been generalized by Bretagnolle et al. [BDCK66] to em-
bedding into the function spaces Lp(0, 1), 1 ≤ p ≤ 2. For instance,
they show that for p ∈ [1, 2], a separable Banach space X can be
isometrically embedded into Lp(0, 1) if and only if x �→ e−|x|p is a
positive definite function on X. A more recent application of methods
involving positive definite functions to embeddability questions was
presented by Aharoni et al. [AMM85], who consider questions about
uniformly continuous embeddability in Banach spaces. This paper also
lists various interesting properties of positive definite functions. A re-
cent book concerning isometric embeddings, and embeddings into �1
in particular, is Deza and Laurent [DL97].

Exercises

1.∗ For a natural number d, consider the metric space ({0, 1, 2, . . . , d+1}, ρ)
with ρ(i, j) =

√
|i − j|. Prove that this metric space cannot be isometri-

cally embedded into Rd with the usual Euclidean metric. Use the Gram
matrix.

2. Prove Lemma 6.18. You may use the fact that if A,B are two finite sets
in Rn and f :A → B is a bijective isometric mapping then f can be
extended to an isometry f̄ :Rn → Rn.

3.∗ Show that the Gram matrix of arbitrary n vectors v1, v2, . . . , vn ∈ Rd is
positive semidefinite. (Together with the considerations made in the text
above, this establishes the “only if” part of Proposition 6.17.)

4. (a)∗ Prove that the function x �→ e−x2
is positive definite on the metric

space Rd with the usual Euclidean metric, for any d ≥ 1. Generalize
Lemma 6.11 suitably to functions on Rd.
(b) Use (a) to prove Theorem 6.16 with d ≥ 1 arbitrary and γ = 1

2 .
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5. (a) Prove the following analogue of Lemma 6.15: Let α ∈ (0, 2). If f :R →
[0,∞) is a nonnegative function such that the function gλ(x) = e−λ2f2(x)

is positive definite for each value of the parameter λ ∈ R then fα is of
negative type. Where does the proof fail for α ≥ 2?
(b) Use (a) to prove Theorem 6.16 for d = 1 and γ ∈ (0, 1) arbitrary.



7. More Lower Bounds and the Fourier

Transform

In the previous chapters, we have seen several approaches to lower bounds
in combinatorial and geometric discrepancy. Here we are going to discuss
another, very powerful method developed by Beck, based on the Fourier
transform. Although one can argue that, deep down, this method is actu-
ally related to eigenvalues and proofs using orthogonal or near-orthogonal
functions, proofs via the Fourier transform certainly look different, being less
geometric and more akin to classical harmonic analysis. For many results
obtained by this method, such as the tight lower bound for the discrepancy
for discs of a single fixed radius, no other proofs are known.

We are going to demonstrate the method on two examples (belonging to
the technically simplest ones). In Section 7.1, we estimate the discrepancy for
arbitrarily rotated squares, and in Section 7.2, we show an Ω((log n)(d−1)/2)
lower bound for axis-parallel cubes in Rd, an analogue of Roth’s bound for
axis-parallel boxes. These two examples by far do not exhaust all the signifi-
cant ideas in this area. There are numerous other and more general results,
and they are by no means routine generalizations; in many of them, nice new
tricks appear. But since these proofs are usually technically somewhat de-
manding and appear difficult to present convincingly in one or two lectures,
we prefer to refer to the existing literature for more proofs via the Fourier
transform method (Beck [Bec88b] can be particularly recommended as fur-
ther reading).

Instead, we present another application of harmonic analysis, in the Eu-
clidean Ramsey theory (which is a field not so remote from discrepancy the-
ory). In Section 7.3, we reproduce Bourgain’s proof of a theorem of Katznel-
son and Weiss, saying that any set of positive upper density in the plane
contains a pair of points of any prescribed sufficiently large distance.

7.1 Arbitrarily Rotated Squares

Let Q denote the family of all squares in the plane (with arbitrary orienta-
tions). Since we study the discrepancy of point sets in the unit square, and
since the intersection of any halfplane with the unit square can be simulated
by the intersection with a large enough square, the discrepancy for Q is at

J. Matoušek, Geometric Discrepancy, Algorithms and Combinatorics 18,
DOI 10.1007/978-3-642-03942-3 7, c© Springer-Verlag Berlin Heidelberg 2010
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least Ω(n1/4) by Theorem 6.9. We re-derive this result here, and we also get
extra information, namely about the discrepancy for “small” squares. For a
real number R, let QR denote the family of all squares with side in the in-
terval [R, 2R].

7.1 Theorem. For any R ∈ [ 1√
n
, 1

2 ] we have D(n,QR) ≥ cn1/4
√

R for a
constant c > 0.

For the proof, we need some preparation.

Fourier Transform in the Plane. Let L1(R2) denote the set of all mea-
surable real or complex functions such that the integral of |f | over R2 is
finite. For a function f ∈ L1(R2), the Fourier transform f̂ is a function on
the plane, generally complex-valued even if f is real, defined by

f̂(ξ) =
1
2π

∫

R2
f(x) e−i〈x,ξ〉 dx,

where 〈x, ξ〉 = x1ξ1+x2ξ2 is the scalar product.1 For completeness, we should
also mention the inversion formula, although we do not need it in this section.
In this case, it reads

f(x) =
1
2π

∫

R2
f̂(ξ) ei〈x,ξ〉 dξ (7.1)

What we do need is the Parseval–Plancherel theorem. For a real or complex
function on R2, let us write ‖f‖2 =

(∫
R2 |f(x)|2 dx

)1/2, and let L2(R2)be
the set of all complex measurable functions on R2 with ‖f‖2 finite.

7.2 Theorem (Parseval–Plancherel theorem). Under suitable assump-
tions, the Fourier transform preserves the norm ‖.‖2. Namely, if f ∈ L1(R2)∩
L2(R2) then also f̂ ∈ L2(R2) and ‖f‖2 = ‖f̂‖2.

1 To put the Fourier series expansion and the one-dimensional Fourier transform
we have encountered earlier and the two-dimensional transform treated here into
a wider perspective, it might be useful to mention a general setting. Let G be
a locally compact Abelian topological group. Let G∗ stand for the group of all
continuous characters of G, i.e. continuous homomorphisms γ mapping G into
the multiplicative group of complex numbers of absolute value 1. For instance,
for G being the real numbers with addition, G∗ consists of all maps x �→ e−iyx,
y ∈ R, and hence G∗ can be identified with G—this is the case of the one-
dimensional Fourier transform. If G is the interval [0, 1) with addition modulo 1,
G∗ is isomorphic to (Z, +), and the Fourier transform is the usual Fourier series
of a periodic function.

The Fourier transform of a complex function f with domain G is a complex
function with domain G∗ defined by

f̂(γ) =

∫

G

f(g)γ(g) dμ(g),

where μ is a translation-invariant (Haar) measure on G, usually normalized suit-
ably. Of course, the defining integral need not exist for all f .
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The proof is not quite straightforward. A proof of an analogous statement
for the one-dimensional Fourier transform can be found in [Rud74], and a
version (very similar) for Rd is in [Rud91]. Also see Exercise 2.

We will also make use of the convolution theorem. For f, g ∈ L1(R2),
the convolution f ∗ g is defined by (f ∗ g)(y) = 1

2π

∫
R2 f(x)g(y − x) dx, and

the theorem claims that f̂ ∗ g = f̂ · ĝ, i.e. the Fourier transform converts the
convolution into a pointwise product. We will actually use this in a situation
when one of the functions is not an “honest function” but rather a so-called
distribution (like the Dirac delta function). In order to avoid introducing the
somewhat sophisticated notion of distributions (which are not really neces-
sary here), we will re-derive the particular convolution result we need.

Two Lemmas for Translates of a Set. Let P ⊂ [0, 1]2 be an n-point
set which we consider fixed throughout the proof, and let A be a bounded
Lebesgue-measurable set. For definiteness, suppose that A is contained in the
unit disc B(0, 1) centered at the origin. Later in the proof, A will be a square
centered at the origin, but here we prove some statements in general in order
to emphasize where the “squareness” really enters into play.

Let A + x stand for A translated by the vector x, and let ΔA(x) =
D(P,A + x) = n · vol�(A + x) − |(A + x) ∩ P | be the discrepancy of P for
A + x. Note that ΔA(x) = 0 as soon as A + x does not intersect the unit
square, which is certainly the case for x �∈ B(0, 3). We are going to investigate
the L2-norm ‖ΔA‖2 =

(∫
R2 Δ2

A(x) dx
)1/2. This is not quite the kind of L2-

discrepancy we have been working with earlier since the measure used for
the integration is not a probability measure. But since we can restrict the
integration domain to B(0, 3), it follows that if we prove ‖ΔA‖2 ≥ M for
some number M then there is a translated copy A+x of A with discrepancy
at least a constant multiple of M .

The following lemma by no means provides a large discrepancy lower
bound, but nevertheless, it is an important ingredient in the proof. It elabo-
rates on the observation that any set of area between δ and 1− δ in the unit
square has discrepancy at least δ (where 0 < δ ≤ 1

2 ).

7.3 Lemma (Trivial discrepancy lemma). Let A ⊆ B(0, 1
4 ) be a mea-

surable set with 1
5n ≤ vol(A) ≤ 4

5n . Then we have ‖ΔA‖2 ≥ c1 for a constant
c1 > 0 (independent of A).

Proof. For all x in the disc B((1
2 , 1

2 ), 1
4 ), we have A + x ⊂ [0, 1]2. But

if A + x ⊆ [0, 1]2 then |ΔA(x)| ≥ 1
5 , since either P ∩ (A + x) = ∅ and

then ΔA(x) = n · vol(A + x) ≥ 1
5 , or P ∩ (A + x) �= ∅ and then ΔA(x) ≤

n · vol(A + x) − 1 ≤ − 1
5 . Hence

∫
R2 Δ2

A ≥ 1
25 vol(B(( 1

2 , 1
2 ), 1

4 )) = c2
1. �

Next, we approach one of the key ideas of the proof of Theorem 7.1.
To formulate it, it is convenient to think of the discrepancy D(P,X) for a
set X as a signed measure of X, as in Section 6.6. That is, for a (Lebesgue-
measurable) set X ⊆ R2, and considering P fixed, we set D(X) = D(P,X) =
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n · vol�(X)− |P ∩X|. We also recall how a function f :R2 → R is integrated
according to D:

∫

R2
f(x) dD(x) = n ·

∫

[0,1]2
f(x) dx −

∑

p∈P

f(p).

In particular, we can define the Fourier transform of D by setting

D̂(ξ) =
1
2π

∫

R2
e−i〈y,ξ〉 dD(y).

Denoting the characteristic function of the set A by IA, we have

7.4 Lemma (Point component/shape component separation). Let
A ⊆ R2 be a measurable and bounded set. Then we have

2π‖ΔA‖2 = ‖D̂ · Î−A‖2 =
(∫

R2
|D̂(ξ)|2 · |Î−A(ξ)|2 dξ

)1/2

.

Before proving this lemma, which is easy, let us explain its name and
meaning a little. The L2-norm of the function ΔA is expressed using an
integral of a product of two real functions, |D̂|2 and |Î−A|2. The first of them
is fully determined by the set P and has nothing to do with A, so we can
call it the point component of the discrepancy. The other function, |Î−A|2,
depends on A but not on the point distribution, and we suggest to call it the
shape component . In a lower bound proof, we usually have little control over
the point component, but the shape component can sometimes be expressed
explicitly or estimated suitably. In a moment we will learn more about this,
but first we prove the lemma.

Proof of Lemma 7.4. We have

ΔA(x) = D(A + x) =
∫

R2
IA+x(y) dD(y) =

∫

R2
I−A(x − y) dD(y),

and so

Δ̂A(ξ) =
1
2π

∫

R2
ΔA(x)e−i〈x,ξ〉 dx

=
1
2π

∫

R2

∫

R2
I−A(x − y)e−i〈x,ξ〉 dD(y) dx

=
1
2π

∫

R2

∫

R2
I−A(x − y)e−i〈x,ξ〉 dxdD(y)

(exchanging the order of integration is allowed by Fubini’s theorem). This is
further rewritten to
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∫

R2

(
1
2π

∫

R2
I−A(x − y)e−i〈x−y,ξ〉 dx

)
e−i〈y,ξ〉 dD(y)

=
∫

R2
Î−A(ξ) e−i〈y,ξ〉 dD(y)

= 2π · Î−A(ξ) · D̂(ξ).

The lemma now follows from the Parseval–Plancherel theorem.2 �

Back to Squares. Let us write Q(r, ϑ) for the square of side 2r centered at
the origin such that the angle of its side with the x-axis is ϑ, where 0 ≤ ϑ ≤ π

4 :

ϑ
0

2r
x

From now on, we are going to use Q(r, ϑ) in the role of the set A. The area
of Q(r, ϑ) is 4r2, and so the Trivial discrepancy lemma 7.3 tells us that for

1
2
√

5n
≤ r ≤ 1√

5n
, we have ‖ΔQ(r,ϑ)‖2 ≥ c1. And from Lemma 7.4, we get

4π2‖ΔQ(r,ϑ)‖2
2 =

∫

R2
|D̂(ξ)|2 · gr,ϑ(ξ) dξ (7.2)

with gr,ϑ(ξ) =
∣∣ÎQ(r,ϑ)(ξ)

∣∣2.
Here is the basic strategy of the proof of Theorem 7.1. Suppose for a

moment we could show that the function gr,ϑ(ξ) increases significantly enough
by increasing the argument r; say that we had, in some improbable TV world,
gar,ϑ(ξ) ≥ a·gr,ϑ(ξ) for all factors a ≥ 1 and all r, ϑ, and ξ. Then, by increasing
the side of the considered square a times, the integrand on the r.h.s. of (7.2)
would grow at least a times at each point, and so the squared norm ‖ΔQ(r,ϑ)‖2

2

would increase at least a times as well (note that D̂ stays the same). Starting
with the side length r = 1√

5n
and setting a = R, we would get that the

L2-discrepancy for squares of side R is Ω(n1/4
√

R).
Why is this scenario too optimistic? One answer is, because the conclusion

is simply not true: so far we were dealing with the family of all translates of
a single square (the side was fixed, and the argument did not use ϑ in any
way), and the discrepancy for translates of a single square is at most O(log n).

2 This was the promised hidden application of the convolution theorem. A formal
problem here is that there is no function ϕ, in the usual sense, representing our
signed measure D, i.e. such that D(X) =

∫
X

ϕ(x) dx, because a part of D is
concentrated in the points of P . To use the convolution theorem explicitly, we
would need to introduce distributions.
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Another, perhaps more intuitive explanation in terms of the behavior of the
function gr,ϑ(ξ) will be given in remarks below.

To repair the failure of the above argument, we will not try to bound the
ratio gar,ϑ(ξ)/gr,ϑ(ξ), but we will first take averages of both the numerator
and denominator over ϑ and over a suitable range of r. We put

GR(ξ) = ave
r∈(R/2,R)

ave
ϑ

gr,ϑ(ξ) =
2
R

∫ R

R/2

4
π

∫ π/4

0

gr,ϑ(ξ) dϑ dr.

(Depending on personal taste, one may also think of choosing r ∈ (R
2 , R)

and ϑ ∈ (0, π
4 ) uniformly at random, and write the expectation operator E [.]

instead of the averages.) And this way, everything works!

7.5 Lemma (Amplification lemma). For any R > 0 and a ≥ 1, we have

GaR(ξ) ≥ c2a · GR(ξ),

for all ξ ∈ R2 and an absolute constant c2 > 0.

Before proving this lemma, let us finish the proof of Theorem 7.1. It
suffices to modify the failed scenario above a little, by involving Fubini’s
theorem at a suitable moment. Let R0 = 1√

5n
and R ∈ [R0,

1
2 ]. We have

ave
r∈[ R

2 ,R)
ave

ϑ
‖ΔQ(r,ϑ)‖2

2 = ave
r∈( R

2 ,R)
ave

ϑ

∫

R2
|D̂(ξ)|2gr,ϑ(ξ) dξ

=
∫

R2
|D̂(ξ)|2 GR(ξ) dξ (Fubini)

≥ c2
R

R0
·
∫
R2 |D̂(ξ)|2 GR0(ξ) dξ (Lemma 7.5)

= c2R
√

5n ave
r∈(

R0
2 ,R0)

ave
ϑ

‖ΔQ(r,ϑ)‖2
2 (Fubini)

= Ω (R
√

n) (Lemma 7.3).

Therefore, we have D(P,QR) = Ω(n1/4
√

R). This proves Theorem 7.1. �

Proof of the Amplification Lemma 7.5. This is an exercise in calculus,
but not a trivial one. First we determine the Fourier transform of IQ(r,ϑ). By
symmetry, it suffices to calculate it for ϑ = 0 and then rotate. By definition,
we obtain

ÎQ(r,0)(ξ) =
1
2π

∫ r

−r

∫ r

−r

e−i(x1ξ1+x2ξ2) dx1 dx2

=
1
2π

(∫ r

−r

e−ix1ξ1 dx1

)(∫ r

−r

e−ix2ξ2 dx2

)
,
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where ξ = (ξ1, ξ2). With some effort, one can evaluate the integral, obtaining

ÎQ(r,0)(ξ) =
1
2π

· 4 sin(ξ1r) sin(ξ2r)
ξ1ξ2

.

To express ÎQ(r,ϑ)(ξ), we rotate the system of coordinates by the angle
−ϑ (note that the Fourier transform commutes with rotations of the plane
around the origin). Namely, we have ÎQ(r,ϑ)(ξ) = ÎQ(r,0)(ξ′), where (ξ′1, ξ

′
2) =

(ξ1 cos ϑ+ ξ2 sinϑ,−ξ1 sin ϑ+ ξ2 cos ϑ). Since we average over all directions ϑ
in the definition of GR(ξ), it suffices to prove the Amplification lemma with
ξ1 > 0, ξ2 = 0. For such a ξ = (ξ1, 0) we have

GR(ξ) =
4
π2

ave
r∈(R/2,R)

ave
ϑ

sin2(rξ1 cos ϑ) sin2(rξ1 sin ϑ)
ξ4
1 cos2 ϑ sin2 ϑ

.

For the considered range 0 ≤ ϑ ≤ π
4 , we have sinϑ ≈ ϑ and cos ϑ ≈ 1, where

f ≈ g means that f is bounded by constant multiples of g from both above
an below. So we can simplify a little:

GR(ξ) ≈ ave
ϑ

ave
r∈(R/2,R)

sin2(rξ1 cos ϑ) sin2(rξ1 sin ϑ)
ξ4
1ϑ2

. (7.3)

We distinguish two cases. First, let ξ1 ≤ 1
R . Then we have, for any r ∈

(R
2 , R) and any ϑ ∈ [0, π

4 ], sin(rξ1 cos ϑ) ≈ Rξ1 and sin(rξ1 sinϑ) ≈ Rξ1ϑ.
From (7.3), we calculate

GR(ξ) ≈ ave
ϑ

(Rξ1)2(Rξ1ϑ)2

ξ4
1ϑ2

= R4.

Next, let ξ1 > 1
R . We split the integration interval (0, π

4 ) for ϑ in (7.3)
into two subintervals, 0 ≤ ϑ ≤ 1

Rξ1
and 1

Rξ1
≤ ϑ ≤ π

4 . For the second
subinterval, we only calculate an upper bound on the integral, and for this
we use the simple estimates | sin(rξ1 sin ϑ)| ≤ 1, | sin(rξ1 cos ϑ)| ≤ 1. For the
first subinterval 0 ≤ ϑ ≤ 1

Rξ1
, we have sin(rξ1 sin ϑ) ≈ Rξ1ϑ as before, but

moreover, we claim that

ave
r∈(R/2,R)

sin2(rξ1 cos ϑ) ≈ 1.

for any ϑ ∈ [0, π
4 ]. The upper bound is clear since the sine function is ≤ 1.

For a lower bound, we observe that as r runs from R
2 to R, the argument of

the sine function, rξ1 cos ϑ, varies over an interval of length at least 1
4 (say),

therefore over at least a fixed fraction of the period of the sine function. (This
is where the averaging over r becomes important in the proof.) Substituting
these estimates into (7.3), we find
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GR(ξ) ≈
∫ π/4

0

ave
r∈(R/2,R)

sin2(rξ1 cos ϑ) sin2(rξ1 sin ϑ)
ξ4
1ϑ2

dϑ

≈
∫ 1/Rξ1

0

R2

ξ2
1

· ave
r∈(R/2,R)

sin2(rξ1 cos ϑ) dϑ + O

(∫ π/4

1/Rξ1

1
ξ4
1ϑ2

dϑ

)

≈
[
ϑR2

ξ2
1

]1/Rξ1

ϑ=0

+ O

([
− 1

ϑξ4
1

]π/4

ϑ=1/Rξ1

)
≈ R

ξ3
1

.

Recall that this is valid for ξ = (ξ1, 0) and ξ1 > 1
R . Combining this with the

estimate GR(ξ) ≈ R4 for ξ1 ≤ 1
R derived earlier, we obtain

GR(ξ) ≈ min
(

R4,
R

ξ3
1

)

for all R. From this, the desired estimate GaR(ξ) = Ω(a ·GR(ξ)) for any a ≥ 1
follows. �

The proof method shown for squares is quite general, but for more com-
plicated shapes, technical problems arise in the proof of the Amplification
lemma. It is seldom possible to calculate the Fourier transform explicitly.
Even for such simple shapes as discs, one already has to deal with Bessel
functions.

Illustrations. Let us try to illustrate pictorially the reasons for the averaging
over ϑ and r in the above proof. The squared Fourier transform gr,ϑ(ξ) =
|ÎQ(r,ϑ)(ξ)|2 for r = 1 and ϑ = 0 is shown below:
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The central peak has height ≈ 0.4 and is trimmed. Choosing another ϑ simply
means rotating the graph around the origin. The effect of making r 10 times
smaller, say, is stretching the graph in the horizontal plane 10 times (so
that the whole coordinate region shown in the picture, the [−15, 15]2 square,
would be in the area of the middle peak of the function g0.1,0). The ratio of
g1,0/g0.1,0 thus oscillates quite wildly and cannot be expected to be bounded
away from 0 uniformly, as the following picture illutrates (the vertical range
is trimmed to [0, 10]).
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As was mentioned in the proof above, this has to be the case, because the
average squared discrepancy for translates of a single square can be made
quite small.

Also, if we attempted to work only with an average over r, trying to
avoid the averaging over ϑ, then we cannot succeed in getting discrepancy
of the order n1/4, again because the discrepancy for axis-parallel squares
is of much smaller order of magnitude, as we know. Finally, if we average
gr,ϑ(ξ)2 over ϑ only (and not over r), we get a function rotationally symmetric
around the origin. It can be shown that the “amplification” effect still fails
at some points, i.e. it is not true that ave

ϑ
gr,ϑ(ξ) grows linearly with r for

all ξ (Exercise 5). This time, the failure is an artifact of the proof method,
since the discrepancy for arbitrarily rotated squares with side 1 (or any given
positive constant) must be Ω(n1/4). This is because the intersection of any
halfplane with the square [0, 1]2 can be subdivided into O(1) intersections of
squares of side 1 with [0, 1]2. The following diagram shows the graph of the
ratio ave

ϑ
g1,ϑ(ξ)/ ave

ϑ
g0.1,ϑ(ξ) along the ξ1-axis:
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In this connection, it is also interesting to look at the “point component”
of the Fourier transform, that is, the function |D̂(ξ)|2. The subsequent figures
show this function for various 16-point sets in the unit square (note that the
origin is in the front corner of the plots). For the 4 × 4 grid set, high peaks
along the axes correspond to its bad discrepancy for certain axis-parallel
squares (the peaks are trimmed; their height is about 6 in this picture):
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Another lattice set from Example 2.19, not surprisingly, has similar high
peaks but off the axes:
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The Van der Corput set shows a more irregular structure but it also has lower
regions along the axes:

-40

-20

0

10

20

30

40

50

0

1

2

3

-40

-20

0



224 7. More Lower Bounds and the Fourier Transform

A randomly scrambled Van der Corput set (as in Section 2.4) looks still
less regular and a little more leveled:
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Finally a set constructed as in the proof of the O(n1/4) bound for discs
(Theorem 3.1), by choosing a random point in each square of a 4 × 4 grid,
shows a generally more uniform behavior (since it is tailored for shapes with
rotation allowed):
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A AA

(a) (b) (c)

Fig. 7.1. Three kinds of discrepancy: for intersections with the unit square (a),
toroidal (b), whole plane (c).

(I hope that all this may be a sufficient excuse for including several nice pic-
tures.) Of course, for 16-point sets, the differences in discrepancies of various
sets are not so drastic, but for larger sets the pictures of the Fourier transform
have too erratic structure to be presented reasonably.

Bibliography and Remarks. The material of this section is based
on Beck’s results as presented in [BC87].

The Fourier transform method was introduced to discrepancy the-
ory by Roth [Rot64], for proving a lower bound for the discrepancy
of arithmetics progressions. Beck developed it to considerable extent
for proving lower bounds in Lebesgue-measure discrepancy ([Bec87],
[Bec88a]; most of the material is also in [BC87]). Independently, Mont-
gomery [Mon89] obtained many similar results in the planar case (some
are nicely presented in [Mon94]).

Let us give a brief overview of some known lower bounds for
the Lebesgue-measure discrepancy (excluding the case of axis-parallel
boxes). This is complicated, among others, by the fact that the lower
bounds were proved in several similar but technically different set-
tings. For introducing these settings, let us speak about discs in the
plane for definiteness, with obvious possibilities of generalization to
other shapes and higher dimensions.
Four Settings for Discrepancy Lower Bounds. The first setting is the
one we have used throughout the text. Speaking about the discrep-
ancy for discs, we actually mean the discrepancy for intersections of
discs with the unit square, as in Fig. 7.1(a). Next, one can insist that
the discs be completely contained in the unit square (so we restrict
the considered family); lower bounds in this setting are stronger and
generally more difficult. Let us refer to this setting by phrases like “the
discrepancy for completely contained discs.”

Another setting, intermediate between these two, is the so-called
toroidal discrepancy. Here the point set and the discs reside in the
unit torus Rd/Zd. This can be visualized as in Fig. 7.1(b): we can
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imagine that the point set P still lies in the unit square but instead
of intersecting the discs with the unit square, we take them “mod-
ulo 1.” That is, instead of the set A ∩ [0, 1]2 we consider the set
{A} = {({x} , {y}): (x, y) ∈ A}.3 Lower bounds for the toroidal dis-
crepancy imply lower bounds in the first setting (for sets of bounded
diameter, that is) but not for the completely contained case. The
toroidal discrepancy is technically advantageous since the group of
translations in the unit torus is compact, and as a consequence, one
gets a discrete-valued Fourier transform .

Finally, Beck considered, in several of his works, what one might
call a “whole-space setting” (Fig. 7.1(c)). Here the point set is infinite
and spread out to the whole plane, and the discs have a constant-
bounded diameter (in Beck’s papers, the situation is also re-scaled by
a factor of n1/d, so that there is about one point per unit volume
of space; here, for simplicity, we do not re-scale). Note that here n
only enters the situation as the factor multiplying the volume in the
definition of discrepancy. The toroidal discrepancy can be regarded as
a special case of the whole-plane setting, where the plane is periodically
tiled with copies of the unit square with the considered n-point set in
it.
Discs and Balls. The crucial difference between the discrepancy for
axis-parallel boxes (logarithmic behavior) and the discrepancy with
rotation allowed (grows like a fractional power of n) was first shown by
Schmidt, answering a question of Erdős [Erd64]. In [Sch69a], Schmidt
proved that the toroidal discrepancy for arbitrarily rotated boxes in
R3 is at least Ω(n1/6) (recall that the near-tight bound is Ω(n1/3)). In
[Sch69c], he established the bound Ω(n1/2−1/2d−ε), with an arbitrarily
small fixed ε > 0, for the toroidal discrepancy for balls in Rd. This is
already tight up to the ε in the exponent. He also obtained a nontrivial
bound, although with a much smaller exponent, for the discrepancy for
balls completely contained in the unit cube. Here a near-tight bound
of Ω(n1/2−1/2d−ε) is due to Beck [Bec87],[BC87].
Halfspaces and Spherical Caps. We recall that the tight Ω(n1/2−1/2d)
lower bound for halfspaces was established by Alexander [Ale90],
[Ale91]. A predecessor of this result was the bound of Ω(n1/4 log−7/2 n)
for Roth’s disc segment problem proved by Beck. Here n points are
placed in the disc of unit area (instead of the unit square), and the
discrepancy for halfplanes is considered, or rather the discrepancy
for the intersections of the disc with halfplanes—the “disc segments”
(more details can be found in [BC87]). Note that this result implies
the slightly suboptimal Ω(n1/4 log−7/2 n) lower bound for the combi-
natorial discrepancy for halfplanes.

3 Recall that {x} denotes the fractional part of x. Toroidal discrepancy was already
mentioned in the remarks to Section 1.2.
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Schmidt [Sch69b], [Sch69c] considered the discrepancy for spherical
caps on the sphere Sd, as well as the discrepancy for spherical slices,
which are the intersections of two hemispheres in Sd. He proved the
Ω(n1/2−1/2d−ε) bound in both cases. For caps, this was subsequently
improved by Beck [Bec84] to the near-tight Ω(n1/2−1/2d). For spherical
slices, the same lower bound was shown much later by Bümlinger
[Blü91]. He defined a suitable measure on the slices and established
the following surprising fact: for any point set P ⊂ Sd, the L2-discrep-
ancy of P for slices is at least a constant multiple of the L2-discrepancy
of P for caps (it would be interesting to find a simple proof). The lower
bound for slices then follows from Beck’s result for caps.
Copies of a Fixed Convex Set. Beck [Bec87],[BC87] showed that the
family of all translated, rotated, and scaled-down copies of an arbitrary
convex body C in Rd has discrepancy Ω(n1/2−1/2d

√
S) in the whole-

space model, where S is the surface area of C. Here one has to assume
that C is not too small or too flat, namely that it contains a ball of
radius n−1/d. Note that this strongly generalizes the results of this
section. In the plane, similar results for the toroidal discrepancy were
independently obtained by Montgomery [Mon89], [Mon94].
Discs of a Fixed Radius. In the paper [Bec88b], Beck studied the dis-
crepancy for discs of a single (fixed) radius. He proved an Ω(n1/4) lower
bound in the weakest setting (intersections with the unit square). For
toroidal discrepancy, Montgomery ([Mon89], [Mon94]) earlier proved
the existence of a disc of radius either 1

4 or 1
2 with Ω(n1/4) discrep-

ancy. These mysterious two radii appear in the result since a certain
linear combination of two Bessel functions turns out to be nonnega-
tive, while the sign of a single Bessel function varies and hence the
method doesn’t work for a single radius.
Translated and Scaled Copies of a Fixed Convex Set. Let A be a
compact convex set in Rd, and let TA be the family of all translated
and scaled-down copies of A (no rotation allowed!). Beck [Bec88a]
(also [BC87]) investigated the discrepancy for such families TA in the
plane, again in the whole-plane model. Here the discrepancy behavior
strongly depends on the smoothness of the boundary of A.

As one extreme, one has a logarithmic upper bound for the square.
Also for convex polygons with a fixed number of sides, the discrepancy
is O(log n) (see the remarks to Section 4.5). From below, Beck shows
an Ω

(√
log(n vol(A))

)
lower bound for any A with vol(A) ≥ 2

n (note
that this includes the case of axis-parallel squares).

On the other hand, if the boundary curve of A is twice continu-
ously differentiable and the ratio of its maximum and minimum cur-
vatures is bounded by a constant, then the discrepancy is at least
Ω
(
n1/4

√
vol(A)/ log(n vol(A))

)
, i.e. essentially the same as that for

circular discs. In general, Beck’s upper and lower bounds can be stated
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in terms of certain “approximability numbers” for A. Namely, let ξn(A)
denote the smallest integer � ≥ 3 for which there exists a convex �-
gon A� inscribed into A such that the area of A \ A� is at most �2/n.
Then we have D(n, TA) = Ω

(√
ξn(A) · log−1/4 n

)
from below and

D(n, TA) = O
(
ξn(A) log4.5 n

)
from above [Bec88a]. The upper bound

is obtained by the partial coloring method and a suitable approxima-
tion argument.

Károlyi [Kár95b] extended these investigations to translated and
scaled-down copies of a d-dimensional convex body, establishing up-
per bounds in terms of suitable approximability by convex polytopes.
The key new part of the proofs are certain geometric decomposition
and approximation results for convex polytopes which become con-
siderably more complicated than in the planar case. Drmota [Drm93]
considered translated and scaled copies of a fixed smooth convex body.
He removed the logarithmic factor in Beck’s planar lower bound and
extend it to higher dimensions: for a fixed sufficiently smooth convex
body A ⊂ Rd, he proved D(n, TA) ≥ c(A)n1/2−1/2d for a suitable con-
stant c(A) > 0.
L1-Discrepancy and One-Sided Discrepancy. Most of these lower
bounds are established for the L2-discrepancy. As for the L1-discrep-
ancy, Beck [Bec89b] proves an Ω(log1/2−ε n) lower bound for discs in
the plane (toroidal discrepancy) by modifying the method of Halász
[Hal81]. The paper [Bec89b] actually aimed at showing that there is al-
ways a disc with large “positive discrepancy” (excess of area compared
to the number of points) and a disc with large “negative discrepancy.”
Perhaps the correct order of magnitude for this question of Schmidt
cannot be gained via the L1-discrepancy.

We should also mention the paper Bourgain et al. [BLM89] dis-
cussed in Section 1.4 as another nice example of discrepancy-type lower
bounds via harmonic analysis.

Exercises

1. Check that the application of Fubini’s theorem in the proof of Theo-
rem 7.1 is legitimate, i.e. that for each ξ ∈ R2, the function F (x, y) =∣∣I−A(x − y)e−i〈x,ξ〉∣∣ has a finite integral over R2 × R2.

2. Let f ∈ L1(R2) ∩ L2(R2) be a real function for which the inversion
formula for Fourier transform holds, i.e. such that

f(x) =
1
2π

∫

R2
f̂(ξ) ei〈x,ξ〉 dξ

for all x ∈ R2. Prove the Parseval–Plancherel equality ‖f‖2 = ‖f̂‖2 under
these assumptions. (Let us remark that he function for which we have
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applied Parseval–Plancherel in the proof is not in L2(R2)! One has to
use a suitable limit argument or something similar.)

3. By modifying the proof shown in this section, prove that for any n-point
set P ⊂ [0, 1]2 there exists a rectangle R with one side of length 1√

n
such

that |D(P,R)| = Ω(n1/4). (See [Cha00].)
4. Show that the lower bound in Theorem 7.1 is tight up to a factor

of
√

log n, i.e. prove that D(n,QR) = O(n1/4
√

R log n) (where 1√
n

≤
R ≤ 1).

5. The goal of this exercise is to show that the averaging over r used in
the proof in this section is indeed essential for this proof method. With
notation as in the proof, define a function

hr(ξ) = ave
ϑ

gr,ϑ(ξ).

Show that for any positive real numbers r1 < r2 and any positive constant
C > 0 there exists a ξ ∈ R2 such that the“amplification” fails at ξ by a
factor of at least C, that is, hr2(ξ)/hr1(ξ) ≤ 1

C
r2
r1

.
6.∗ (Diaphony) Recall the notion of diaphony of a point set and the class

R̃d of axis-parallel boxes modulo 1 introduced in the remarks to Sec-
tion 1.2. Prove that the diaphony of any finite set P ⊂ [0, 1]d is between
two constant multiples of D2(P, R̃d), where the constants depend on the
dimension. Use the Fourier transform on the compact group [0, 1)d with
componentwise addition modulo 1, i.e. the d-dimensional Fourier series
of a d-variate periodic function.
This result and those in the next exercise are from [Lev95].

7. (More on diaphony)
(a)∗ From the remarks to Section 1.2, recall the notion of diaphony of a
point set. Prove that the diaphony of P equals

(
−n2 +

∑

p,q∈P

d∏

k=1

(
1 + 2π2B2({p − q})

))1/2

,

where B2(x) = x2−x+ 1
6 is the Bernoulli polynomial of degree 2. (This is

analogous to Warnock’s formula 2.14 for the L2-discrepancy for corners.)
(b) Show that diaphony is translation-invariant; that is, the diaphony of
P equals that of of {P + x}.

8.∗ (Toroidal L2-discrepancy for boxes) Derive the following analogue of
Warnock’s formula 2.14 for the L2-discrepancy for the class R̃d of axis-
parallel boxes “modulo 1” discussed in the remarks to Section 1.2:

D2(P, R̃d)2 = −n2

3d
+
∑

p,q∈P

d∏

k=1

(1
3

+ B2({pk − qk})
)
,

where B2(x) = x2 − x + 1
6 is the Bernoulli polynomial of degree 2.

This formula was calculated by Lev (private communication).
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7.2 Axis-Parallel Cubes

Here we prove the following result, thereby also providing an alternative proof
of Roth’s lower bound for axis-parallel boxes (Theorem 6.1):

7.6 Theorem. For any n-point set P in the unit cube [0, 1]d, there exists an

axis-parallel cube Q contained in [0, 1]d with |D(P,Q)| = Ω(log(d−1)/2 n).

Let us remark that for d = 2, Theorem 6.3 gives a better (and tight)
bound by a completely elementary argument, by a reduction from Schmidt’s
lower bound for rectangles. On the other hand, no similar reduction relating
the discrepancy for cubes to that for axis-parallel boxes is known for higher
dimensions. Theorem 7.6 can also be turned, with little more work, into an
L2-discrepancy lower bound.

As usual, we present the proof of Theorem 7.6 in the planar case, since
the higher-dimensional generalization brings nothing really new.

A large part of the setup for the proof is taken over from the preced-
ing section. We consider an arbitrary but fixed n-point set P in the unit
square, and we let D be the corresponding signed measure, given by D(A) =
D(P,A) = n · vol�(A) − |P ∩ A|. The function D̂(ξ) =

∫
R2 e−i〈x,ξ〉 dD(x) is

the Fourier transform of D. For a set A, ΔA denotes the discrepancy function
for translates of A, i.e. ΔA(x) = D(A + x). Let us write Q(a) for the square
[−a, a]2.

In order to handle squares crossing the boundary of [0, 1]2, we will consider
the discrepancy for squares that are not too big, namely with side at most
s = n2/5. The heart of the proof is

7.7 Lemma. We have

ave
r∈(0,s)

∥∥ΔQ(r)

∥∥2
2

= Ω(log n).

Proof of Theorem 7.6 for d = 2 from Lemma 7.7. This is simple
but there is a small subtlety in handling the squares on the boundary (recall
that the theorem claims the existence of a square with large discrepancy lying
within [0, 1]2). We distinguish two cases: either all axis-parallel squares of side
at most s have discrepancy below 5ns2, or there is an axis-parallel square Q0,
not necessarily fully contained in [0, 1]2, with discrepancy at least 5ns2. In
the former case, for r ≤ s, the set

{x ∈ R2: Q(r) + x intersects the boundary of [0, 1]2}

has measure O(r) and so its contribution to ‖ΔQ(r)‖2
2 is at most O(r) ·

(5ns2)2 = O(n2s5) = O(1). Hence there must be squares with Ω(
√

log n)
discrepancy fully contained in [0, 1]2. In the latter case, illustrated in the fol-
lowing picture,
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Q0

Q1

consider a square Q1 ⊂ [0, 1]2 with side s and containing Q0 ∩ [0, 1]2. Since
the discrepancy of Q0 is larger than n · vol�(Q0) ≤ 4ns2, it must be caused
by excess of points of P in Q0, and in particular, |Q0 ∩ P | ≥ 5ns2. It follows
that Q1 has discrepancy at least ns2 = n1/5 = Ω(

√
log n). �

Remark. Here we could get rid of the squares intersecting the boundary
easily, since the discrepancy for small squares (of side about s = n2/5) is still
large enough. On the other hand, for squares with rotation allowed, say, we
need squares with side Ω(1) to get the tight lower bound for discrepancy,
and these large squares are harder to prevent from intersecting the bound-
ary. Similar effects make it difficult to achieve tight lower bounds when the
discrepancy grows as a power of n and we insist that the shape with large
discrepancy be fully contained in the unit square.

Proof of Lemma 7.7. By the point component/shape component separa-
tion lemma 7.4 and by Fubini, we have

ave
r∈(0,s)

‖ΔQ(r)‖2
2 =

∫

R2

(
ave

r∈(0,s)
|ÎQ(r)(ξ)|2

)
· |D̂(ξ)|2 dξ.

Write G(ξ) = ave
r∈(0,s)

|ÎQ(r)(ξ)|2. The general strategy is to exhibit a “magic”

function H(ξ) for which we know, on the one hand, that
∫
R2 H(ξ) · |D̂(ξ)|2 dξ

is large, and for which we prove, on the other hand, that G(ξ) = Ω(H(ξ))
uniformly for all ξ.

We define H(ξ) =
∑

j∈J |ĥj(ξ)|2, where J is an index set with about
log n elements and the hj are certain suitable functions. More precisely, we
let m be the smallest integer with 2m ≥ 40n, and we let J denote the set
of all ordered pairs j = (j1, j2) of integers with j1 + j2 = m, 2−j1 ≥ s and
2−j2 ≥ s. (For our planar case, we could obviously index the pairs in J by
the j1-component only, but for higher dimensions, we do need indexing by
vectors.) The function hj is given by

hj(x) = exp
(
− 1

2 (22j1x2
1 + 22j2x2

2)
)
.

The level sets of hj are ellipses; for example, the set {x ∈ R2: hj(x) ≥ e−1/2}
is the ellipse with semiaxes 2−j1 and 2−j2 .

To see what is going on, let us imagine for a moment, just for the sake
of illustration, that we used the characteristic function IRj

of the rectangle
Rj = [−2−j1 , 2−j1 ] × [−2−j2 , 2−j2 ] instead of hj (on a very crude level, hj

and IRj
are somewhat similar as density functions in the plane, as Fig. 7.2
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Fig. 7.2. The functions hj and IRj for j1 = 1 and j2 = 2.

indicates4). The rectangle Rj has area 4·2−m ∈ [ 1
10n , 1

20n ]. By a consideration
similar to the proof of the Trivial discrepancy lemma 7.3, we see that a large
fraction of the translated copies of Rj have discrepancy at least a small
positive constant, and so ‖ΔRj

‖2 = Ω(1). By the point component/shape
component separation, we also have

‖ΔRj
‖2
2 =

∫

R2
|ÎRj

(ξ)|2 · |D̂(ξ)|2 dξ,

and so by putting H̃(ξ) =
∑

j∈J |ÎRj
(ξ)|2, we obtain a function H̃ with

∫

R2
H̃(ξ) · |D̂(ξ)|2 dξ = Ω(|J |) = Ω(log n).

This is all fine, but unfortunately, it is not true that H̃(ξ) = O(G(ξ)) for all
ξ. On the other hand, the situation is not so bad, since the estimate of H̃(ξ)
by a multiple of G(ξ) only fails for ‖ξ‖ large. Here an old wisdom in harmonic
analysis helps: the smoother a function f is the faster the Fourier transform
f̂(ξ) converges to 0 as ‖ξ‖ → ∞. This is the reason for replacing the highly
non-smooth characteristic function IRj

by the very smooth function hj and
defining H(ξ) =

∑
j∈J |ĥj(ξ)|2.

In order to mimic the “trivial discrepancy” lower bound with the functions
hj , we need to generalize our notation a little. Namely, for a function f :R2 →
R, we set

Δf (x) =
∫

R2
f(y − x) dD(y)

4 And, the system of the rectangles Rj somewhat resembles the rectangles appear-
ing in the proof of Roth’s lower bound for corners (Theorem 6.1).
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(note that for the characteristic function IA of a set A, ΔIA
in the new

notation is the same as ΔA in the previous notation). We can state two
lemmas which together imply Lemma 7.7 in the manner indicated above.

7.8 Lemma (Trivial discrepancy for the hj). For all j ∈ J , we have
‖Δhj

‖2 = Ω(1).

7.9 Lemma (Pointwise bound). For an absolute constant C, we have
H(ξ) ≤ C · G(ξ) for all ξ ∈ R2.

Before proving these lemmas, we recall two facts from calculus concerning
the function e−x2

(applied in our specific setting). These have already been
addressed in Section 6.7 and so we omit further discussion here.

7.10 Fact.

(i) ĥj(ξ) =
1

2j12j2
exp
(
−1

2

( ξ2
1

22j1
+

ξ2
2

22j2

))
.

(ii)

∫

R2
hj(x) dx =

2π

2j12j2
.

Proof of Lemma 7.8. Let Ej denote the level set {hj ≥ e−1/2}, i.e. the
already mentioned ellipse with semiaxes 2−j1 and 2−j2 . We calculate

−Δhj
(x) = −

∫

R2
hj(y − x) dD(y)

=
∑

p∈P

hj(p − x) − n

∫

[0,1]2
hj(y − x) dy

≥ |(P − x) ∩ Ej | · e−1/2 − n

∫

R2
hj(z) dz

≥ 1
2 |(P − x) ∩ Ej | − 1

4

(we have used Fact 7.10(ii) and 2π
2j12j2 = 2π

2m ≤ 1
4n ). Hence |Δhj

(x)| ≥ 1
4 |(P −

x) ∩ Ej | for all x ∈ R2, and integration gives

‖Δhj
‖2
2 ≥ 1

16

∫

R2
|(P − x) ∩ Ej |2 dx ≥ 1

16

∫

R2
|(P − x) ∩ Ej |dx

= 1
16 n · vol(Ej) = 1

16 n · π · 2−j12−j2 = Ω(1).

This proves Lemma 7.8. �

Sketch of Proof of Lemma 7.9. This is again a good training in estimates.
We have, by Fact 7.10(i),

H(ξ) =
∑

j∈J

|ĥj(ξ)|2 =
∑

j∈J

(
e−ξ2

1/4j1

4j1

)(
e−ξ2

2/4j2

4j2

)

≤
( ∑

2j1≥1/s

e−ξ2
1/4j1

4j1

)( ∑

2j2≥1/s

e−ξ2
2/4j2

4j2

)
.
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A further calculation gives (see Exercise 1(a)) the estimate H(ξ) = O(F (ξ))
with

F (ξ) = min
(

s2,
1
ξ2
1

)
min

(
s2,

1
ξ2
2

)
.

As the next step, we want to show that F (ξ) = O(G(ξ)). The Fourier trans-
form of IQ(r) has already been calculated in the proof of the Amplification
lemma 7.5, and also the estimates made there are similar to those needed
here, so we leave the remaining calculation as Exercise 1(b). �

Bibliography and Remarks. This section again follows Beck and
Chen [BC87]. The proof is also reproduced, with detailed calculations
and with all constants made explicit, in Drmota and Tichy [DT97]. A
slightly different proof for the planar case was given by Montgomery
[Mon94].

Exercises

1. (a) Prove the estimate
∑

i∈N: 2i≥a e−4−it2/4i ≤ C min(a−2, t−2), a ≥ 1,
with some constant C.
(b) Prove that

ave
r∈(0,s)

[sin2(rξ1) sin2(rξ2)/ξ2
1ξ2

2 ] ≥ cmin(s2, ξ−2
1 )min(s2, ξ−2

2 )

for a suitable constant c > 0 and all ξ1, ξ2, and s > 0. Finish the proof
of Lemma 7.9.

2. Generalize the proof of Theorem 7.6 to an arbitrary fixed dimension d.

7.3 An Excursion to Euclidean Ramsey Theory

This section is a detour from our main theme. But it shows a nice application
of harmonic analysis similar to those in discrepancy lower bounds. The result
is not so far away from discrepancy theory either, since it is a Ramsey-type
theorem—see Section 1.4.

The result to be discussed belongs to the field of Euclidean Ramsey theory.
Here is a simple illustrative problem in this area. Suppose that each point in
the plane is colored either red or blue. Can we always find two points with unit
distance having the same color? Oh yes, we can: consider the three vertices
of an equilateral triangle. What if we have 3, 4, or more colors? For 3 colors,
the answer is still positive (Exercise 1), but for 7 colors it is negative—there
exists a 7-coloring of R2 such that no two points with unit distance have the
same color. What happens for 4, 5, or 6 colors is still an open problem.
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More generally, Euclidean Ramsey theory is concerned with problems of
the following sort. Let K be a finite configuration of points in Rd, and suppose
that each point of Rd is colored by one of r colors. Does there necessarily
exist a congruent copy of K (i.e. translated and rotated, no scaling) with
all points having the same color? In particular, a finite set K ⊆ Rd is called
Ramsey if for any number r of colors there exists a dimension d′ ≥ d such that
for any r-coloring of Rd′

we can find a monochromatic congruent copy of K.
Ramsey sets have been investigated intensively but so far only partial results
are known. For a set to be Ramsey, it has to be spherical, meaning that all
points of K lie on a common sphere. All affinely independent sets, vertex
sets of regular n-gons, and Cartesian products of Ramsey sets are known
to be Ramsey, but it is not known whether all spherical sets are Ramsey.
The reader can try to discover some of the simpler results of the Euclidean
Ramsey theory in the exercises, or look them up in [GRS90].

One may wonder what happens if we look for a monochromatic parallel
translate of a given configuration K, or for a monochromatic similar copy of K
(instead of a monochromatic congruent copy as above). Here the situation is
much easier. For all configurations K with at least two points, there exists a
coloring of Rd by two colors with no monochromatic parallel translate of K.
On the other hand, a monochromatic similar copy exists for any coloring
(for all d, r, and K), by so-called Gallai’s theorem, which is a relatively easy
generalization of Van der Waerden’s theorem on arithmetic progressions.

After our brief overview, let us proceed to the main theme of this section.
This is a “density” Ramsey-type result. Density results say that if one of the
colors occupies a “big part” of space, then the desired configuration can be
found in that color. In the discussed case, “big part” means a set of positive
upper density, where the upper density δ(A) of a Lebesgue measurable set
A ⊆ Rd is defined by

δ(A) = lim sup
R→∞

vol(B(0, R) ∩ A)
vol(B(0, R))

,

with B(0, R) denoting the ball of radius R centered at 0.

7.11 Theorem (Bourgain’s density Ramsey theorem). Let K be a set
of d affinely independent points in Rd (for example, the vertices of a triangle
in R3), and let A ⊆ Rd be a measurable set of positive upper density. Then
there exists a number λ0 such that for any λ ≥ λ0 the set A contains a
congruent copy of the set λK.

It is not known what other configurations K have this “density-Ramsey”
property.

Although Bourgain emphasizes in his paper that the proof of this theorem
only uses elementary harmonic analysis, I do not dare to present the proof of
the general case. We only prove the planar case of this result, first established
by Katznelson and Weiss by ergodic theory methods:
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7.12 Theorem (Katznelson–Weiss theorem). For every measurable set
A ⊆ R2 of positive upper density there exists a number λ0 such that for any
λ ≥ λ0 the set A contains two points with distance exactly λ.

This theorem will be proved from the following “bounded” version:

7.13 Proposition. For any ε > 0 there exists a natural number j0 = j0(ε)
such that the following is true. Let A ⊆ B(0, 1) be a measurable set with
vol(A) = ε, and let t0 = 1 > t1 > t2 > · · · be a decreasing sequence of real
numbers such that tj+1 ≤ 1

2 tj for all j. Then for some j ≤ j0, the set A
contains two points with distance tj .

The proof of the Katznelson–Weiss theorem 7.12 from Proposition 7.13
proceeds by contradiction, and it is left as Exercise 7.

Fourier Transform of the Unit Circle. From Section 7.1, we will need the
definition of the (two-dimensional) Fourier transform, the inversion formula
(7.1), the Parseval–Plancherel identity ‖f‖2 = ‖f̂‖2, and the convolution
formula f̂ ∗ g = f̂ · ĝ, where (f ∗ g)(y) = 1

2π

∫
R2 f(x)g(y − x) dx.

Let S1 denote the unit circle in R2 centered at 0, and let σ be the one-
dimensional Lebesgue measure on S1 (the whole S1 has measure 2π). It will
be convenient to consider σ as a measure in the whole R2 concentrated on
S1 (everything but the circle has σ-measure 0). The Fourier transform can
also be defined for a measure in R2, instead of for a function. In particular,
for the measure σ we have

σ̂(ξ) =
1
2π

∫

R2
e−i〈x,ξ〉 dσ(x) =

1
2π

∫ 2π

0

e−i(ξ1 cos ϑ+ξ2 sin ϑ) dϑ.

Since the Fourier transform commutes with rotations around the origin
(right?), σ̂ is rotationally symmetric, i.e. σ̂(ξ) only depends on ‖ξ‖. And
since for a real-valued function f (or for a measure, the argument is the
same), f̂(−ξ) is the complex conjugate of f̂(ξ) (Exercise 8), σ̂ is real-valued.
Writing x = ‖ξ‖, we get

σ̂(ξ) = σ̂(x, 0) =
1
2π

∫ 2π

0

Re e−ix cos ϑ dϑ =
1
2π

∫ 2π

0

cos(x cos ϑ) dϑ.

Now this last integral happens to be known as the Bessel function J0(x)
(shown in Fig. 7.3), and one can look up the following estimates (and much
more precise ones) in almost any handbook of mathematical formulas:

|1 − σ̂(ξ)| = O (‖ξ‖) as ‖ξ‖ → 0, (7.4)
|σ̂(ξ)| = O

(
‖ξ‖−1/2

)
as ‖ξ‖ → ∞. (7.5)

But one can also obtain these estimates without relying on the work of old
masters on Bessel functions; it is not impossibly difficult (Exercises 9 and 10).
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Fig. 7.3. Graph of the Bessel function J0(x).

Proof of Proposition 7.13. We have a set A of measure ε > 0 in the unit
disc B(0, 1) and a sequence 1 = t0 > t1 > t2 > · · · with tj+1 ≤ 1

2 tj . The idea
is to introduce a measure on the set of all pairs of points of distance tj and
show that for some j, the set of all pairs with distance tj with both points in
A has a positive measure.

Two points with distance t can be written as x and x − tu, where u is
a point of the unit circle S1 (the unnatural-looking sign “−” will pay off
later, making the notation more convenient). A pair of points with distance
t is thus represented by coordinates (x, u) with x ∈ R2 and u ∈ S1, and
this defines a natural product measure on the considered pairs. We use the
usual planar Lebesgue measure for the x-component and the above-discussed
Lebesgue measure σ for the u-component. The measure of the set of ordered
pairs with distance t and with both points lying in A can be written as

M =
∫

R2

∫

R2
IA(x)IA(x − tu) dxdσ(u), (7.6)

with IA standing for the characteristic function of A (recall that we regard
σ as a measure on R2). We note that the inner integral is a convolution of
two functions. Namely, if we put

F (y) =
∫

R2
IA(x)I−A(y − x) dx,

then F (y) = 2π · (IA ∗ I−A)(y). This is where the two-dimensional Fourier
transform enters the stage. By the convolution theorem, we have F̂ (ξ) =
2πÎA(ξ)Î−A(ξ) = 2π|ÎA(ξ)|2, because Î−A(ξ) = ÎA(−ξ) is the complex con-
jugate of ÎA(ξ). By the inversion formula,

F (y) =
∫

R2
|ÎA(ξ)|2 ei〈y,ξ〉 dξ.

We substitute this into (7.6) and change the order of integration, obtaining
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M =
∫

R2
F (tu) dσ(u)

=
∫

R2
|ÎA(ξ)|2

(∫

R2
ei〈u,tξ〉 dσ(u)

)
dξ =

∫

R2
|ÎA(ξ)|2σ̂(tξ) dξ.

We want to bound M away from 0 for a suitable value of t ∈ {t1, t2, . . . , tj0}.
More precisely, we show that M = Ω(ε2) for some t = tj .

Let us fix a parameter η = cε2, where c is a sufficiently small positive
constant. Let t be some yet unspecified value for which we only assume t ≤ η.
We divide the plane into three regions R1, R2, R3 (depending on t):

0R1
R2

R3

1
ηt

η
t

Let Mi =
∫

Ri
|ÎA(ξ)|2σ̂(tξ) dξ be the integral of our function over Ri. The

plan is to show that M1 is positive and of the order Ω(ε2), and that both M2

and M3 are much smaller in absolute value than M1, whence M = Ω(ε2).
For ξ lying in the inner region R1, we have ‖tξ‖ ≤ η ≤ c, and so by (7.4)

we may assume σ̂(tξ) ≥ 1
2 , say (recall that σ̂ is real-valued). The disc B(0, 1)

is contained in R1, and thus

M1 ≥ 1
2

∫

B(0,1)

|ÎA(ξ)|2 dξ. (7.7)

We claim that ∣
∣ÎA(ξ) − ε

∣
∣ = O(‖ξ‖ε) as ‖ξ‖ → 0, (7.8)

leaving verification to Exercise 9(c). Once one believes in (7.8) it is easy to
see that the right-hand side of (7.7) is at least c1ε

2 for an absolute positive
constant c1.

Next, we show that M3, the integral over the outer region R3, is negligible
compared to ε2, for all t ≤ η. By (7.5), we have |σ̂(tξ)| = O(

√
η) uniformly

for all ξ in R3, and hence

|M3| = O(
√

η)
∫

R3

|ÎA(ξ)|2 dξ

≤ O(
√

η)
∫

R2
|ÎA(ξ)|2 dξ = O(ε

√
η)

because
∫
R2 |ÎA(ξ)|2 dξ =

∫
R2 |IA(x)|2 dx = vol(A) = ε by Parseval–Planche-

rel. By the choice η = cε2 we get that |M3| is much smaller than M1.
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It remains to handle the middle region R2. Here we cannot say much for
one particular t. Certainly

|M2| = O(1)
∫

R2

|ÎA(ξ)|2 dξ

since |σ̂| is uniformly bounded, but, in principle, the integral of |ÎA|2 over R2

could be nearly as large as the integral over the whole plane, which is ε. Here
we must use the possibility of choosing t.

We recall that the annulus region R2 = R2(t) = {ξ: η
t ≤ ‖ξ‖ ≤ 1

ηt depends
on t, and we note that if t′ < η2t then R2(t) and R2(t′) are disjoint. Having
sufficiently many such disjoint regions for various values of t, the integral of
|ÎA|2 over at least one of them must be small. More precisely, we fix integer
parameters q and m (depending on ε) with 2−q < η2 = c2ε4 and m ≥ C

ε
for a large constant C, and we consider the m values tq, t2q, . . . , tmq. The
parameter q was selected so that the respective regions R2(tjq) are mutually
disjoint (recall the assumption tj+1 ≤ 1

2 tj), and hence there is a j ≤ mq such
that

∫
R2(tj)

|ÎA(ξ)|2 dξ ≤ ε
m . This is much smaller than M1 and so we get

that M , the measure of pairs with distance tj with both points in A, has the
order Ω(ε2) for this tj , where j ≤ qm. This concludes the proof. �

Bibliography and Remarks. The ergodic theory proof of The-
orem 7.12, due to Katznelson and Weiss, was published in [FKW90]
long after its discovery, together with several related results. The proof
in this section is adapted from Bourgain [Bou86]. Yet another proof is
due to Falconer and Marstrand [FM86].

An overview of the Euclidean Ramsey theory can be found in
Graham et al. [GRS90]; more recent results are surveyed in Graham
[Gra94]. The fact that all affinely independent sets are Ramsey was
established by Frankl and Rödl [FR90], and regular n-gons being Ram-
sey is a particular case of results of Kř́ıž [Kri91].

Exercises

1. Prove that if the plane is colored by 3 colors, one can always find two
points with unit distance having the same color.

2.∗ Find a 7-coloring of the plane with no monochromatic unit-distance pair.
3.∗ Can you find an r-coloring of the plane such that no color contains two

points with distance 2 together with their midpoint?
4. Find a coloring of the plane by 2 colors such that no color contains 3

points forming the vertex set of an equilateral triangle with unit side.
5. Prove that the vertex set of any regular simplex is Ramsey.
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6.∗∗Prove that if K ⊆ Rs and L ⊆ Rt are Ramsey (and finite) configurations,
then the set

K × L = {(x1, x2, . . . , xs, y1, y2, . . . , yt) ∈ Rs+t: (x1, x2, . . . , xs) ∈ K,

(y1, y2, . . . , yt) ∈ L}

is Ramsey as well. Use Ramsey’s theorem.
7. Prove the Katznelson–Weiss theorem 7.12 from Proposition 7.13.
8. Verify that if f :R2 → R2 is a real-valued function then f̂(−ξ) is the

complex conjugate of f̂(ξ). (And check that this fails for a complex-
valued f in general.)

9. (a) Prove the estimate (7.4).
(b) Prove |eix − 1| = O(|x|) for all real x (in fact, |eix − 1| ≤ |x| is true).
(c) Prove the estimate (7.8); part (b) may be useful.

10.∗ Prove the estimate σ̂(ξ) = 1
2π

∫ 2π

0
cos(‖ξ‖ cos ϑ) dϑ = O(‖ξ‖−1/2).



A. Tables of Selected Discrepancy Bounds

The tables on the next pages summarize some discrepancy bounds for various
set systems and geometric families. Also citations of the original proofs are
shown (where I could find them), as well as references to the relevant parts
of this book. A reference in parentheses, like “(Th. 8.12),” means that the
bound is a simple consequence of another result. For each result, only the
first source (according to my knowledge) is shown, although several proofs
may be known. Sources for earlier, weaker bounds are not given in the tables
either.

An upper bound written as f actually means O(f). A lower bound written
as f means that the considered discrepancy is at least cf infinitely often, for
some positive constant c > 0. But in many cases, one can get an Ω(f) lower
bound as well.

The parameters d and p are considered fixed, and the constants of pro-
portionality may depend on them. The number ε > 0 in the bounds is an
arbitrarily small constant, and the constant of proportionality may again de-
pend on it. Another fixed parameter is the size of the collection H in POL(H)
on page 243.

J. Matoušek, Geometric Discrepancy, Algorithms and Combinatorics 18,
DOI 10.1007/978-3-642-03942-3, c© Springer-Verlag Berlin Heidelberg 2010
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Combinatorial discrepancy: asymptotic bounds
Set system Lower bound Upper bound

Arbitrary m sets
√

m
[OS78], Prop. 4.4

√
m

[Spe85], Th. 4.9

Arbitrary m sets on n
points, m ≥ n

√
n log(2m/n)

Ex. 4.1.1

√
n log(2m/n)

[Spe85], Th. 4.2

Arbitrary m sets of
size ≤ s, m ≥ s

√
s log(2m/s)

(Ex. 4.1.1)

√
s log(2m/s)

Ex. 4.6.4

Set system with max.
degree t

√
t

(Prop. 4.4)
2t − 1
[BF81], Th. 4.3

Set system on n points
with max. degree t

√
t

(Prop. 4.4)

√
t log n

[Ban98]

Set system on n points
with primal shatter
function O(md)

n1/2−1/2d

(Th. 6.4)
n1/2−1/2d

[Mat95], Th. 5.3

Set system on n
points with dual shat-
ter function O(md)

n1/2−1/2d
√

log n
[Mat97],[ARS99]
Ex. 5.1.6

n1/2−1/2d
√

log n
[MWW93], Th. 5.4

Arithmetic progres-
sions on {1, 2, . . . , n}

n1/4

[Rot64], Ex. 4.1.5
n1/4

[MS96], Ex. 5.5.4

Intervals in k permu-
tations on n points

√
k

(Ex. 4.5.5)

√
k · log n

[Sri97], Ex. 5.5.3
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Geometric discrepancy: asymptotic bounds

Discrepancy
type Lower bound Upper bound

Axis-parallel boxes (Rd) and corners (Cd)

D(n,R2)
log n
[Sch72], Th. 6.2 (a)

log n
Prop. 2.2

D(n,Rd),
d ≥ 3

(log n)(d−1)/2+η,
η=η(d)>0 [BLV08]

logd−1 n
[Hal60], Th. 2.4

D2(n, Cd)
log(d−1)/2 n
[Rot54], Th. 6.1 (b)

log(d−1)/2 n
[Dav56],[Rot80],[Fro80],
Th. 2.5

Dp(n, Cd),
p > 1

log(d−1)/2 n
[Sch77a], Ex. 6.2.3

log(d−1)/2 n
[Che81]

D1(n, Cd)
√

log n
[Hal81], Ex. 6.2.1

(log n)(d−1)/2

from D2 bound

disc(n,R2)
log n [Bec81a]
(Prop. 1.8+Th. 6.2)

log2.5 n
[Sri97], Ex. 5.5.2

disc(n,Rd),
d ≥ 3

(log n)(d−1)/2+η,
(Prop. 1.8+[BLV08])

logd+1/2 n
√

log log n
Ex. 4.5.1

Convex polytopes in Rd with given facet normals (POL(H); see p. 126)

D(n,POL(H)) same as for D(n,Rd)
logd−1 n (log log n)1+ε

[Skr98]

disc(n,POL(H)) same as for D(n,Rd)
logd+1/2 n

√
log log n

[Mat99], Ex. 4.5.3

Halfspaces (Hd)

D(n,Hd)
n1/2−1/2d

[Ale90],[Ale91], Th. 6.9
n1/2−1/2d

via disc(n,Hd)

D1(n,H2) ?? log2 n
[BC93b], Th. 3.5

disc(n,Hd)
n1/2−1/2d

[Ale90], Th. 6.4
n1/2−1/2d

[Mat95], Th. 5.3

(a) The lower bound also holds for axis-parallel squares (Th. 6.3).
(b) The lower bound also holds for axis-parallel cubes (see Th. 7.6). Only the

2-dimensional case is explicitly treated in [Rot54].
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Geometric discrepancy: asymptotic bounds (cont’d)

Discrepancy
type Lower bound Upper bound

Balls (Bd), arbitrary radius

D(n,Bd)
n1/2−1/2d

via D(n,Hd) (c)
n1/2−1/2d

√
log n

[Bec87], Th. 3.1

Dp(n,Bd),
p ≥ 2

n1/2−1/2d [Bec87] n1/2−1/2d

[BC90], Ex. 5.4.3

D1(n,B2) log1/2−ε n [Bec89b] n1/4

disc(n,Bd)
n1/2−1/2d

from D(n,Bd)
n1/2−1/2d

√
log n

[MWW93], Th. 5.4

Circular discs, fixed radius (BF2)

D(n,BF2)
n1/4

[Bec88b]
n1/4

[Mat95], Th. 5.3

Scaled-down copies of a compact convex A ⊂ Rd, with rotation (SA)

D(n,SA) n1/2−1/2d
√

S
[Bec87] (d)

n1/2−1/2d
√

S log n
[Bec87] (d)

Scaled-down copies of a compact convex A ⊂ Rd, no rotation (TA)

D(n, TA),
d = 2

√
ξn(A) · log−1/4 n

[Bec88a] (e)
ξn(A) log4+ε n
[Bec88a] (e)

D(n, TA),
A smooth

c(A)n1/2−1/2d

[Drm93]
C(A)n1/2−1/2d

√
log n

[Drm93]

Convex sets (Kd)

D(n,K2)
n1/3

[Sch75], Ex. 3.1.6
n1/3 log4 n
[Bec88c]

D(n,Kd),
d ≥ 3

n1−2/(d+1)

[Sch75], Ex. 3.1.6
n1−2/(d+1) logc n
[Stu77] (f)

(c) The bound holds in the whole-space model as well. For balls completely
contained in [0, 1]d, the lower bound is n1/2−1/2d−ε [Bec87].

(d) Here S is the surface area of A, and for the lower bound, it is assumed that
A contains a ball of radius n−1/d. Both bounds are in the whole-space model.

(e) Here ξn(A) is the “approximability number” of A: the smallest � ≥ 3 such
that there is a convex �-gon inscribed to A such that the area of the difference is
≤ �2/n. Károlyi [Kár95b] has upper bounds for the analogous problem in Rd which
are too complicated to state here.

(f) Here c = 3
2

for d = 3 and c = 2/(d + 1) for d ≥ 4.
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Geometric discrepancy is a lively field and many things have happened since
the first appearance of this book ten years ago. In the present revised print-
ing, scheduled to appear in 2009 or 2010, I decided to add this appendix
mentioning some of the new results, rather than trying to insert dispersed
remarks into the old text.

I should perhaps begin with a disclaimer. I have been following the de-
velopment in discrepancy theory only cursorily, devoting most of my time to
other subjects. The following remarks should not be regarded as a serious
survey. Among the results I happened to learn about, I’ve selected according
to strictly objective scientific criteria: the results I liked best, those I con-
sidered interesting, unexpected, or particularly difficult, those easy to write
about, those proved by me or my friends, and so on.

Boxes in dimensions 3 and more. The closest to the heart of a classical
discrepancy theorist are probably two recent papers improving lower bounds
on D(n,Rd), the Lebesgue-measure discrepancy for axis-parallel boxes.

We recall that Roth’s lower bound for the L2 average discrepancy gives
D(n,Rd) = Ω((log n)(d−1)/2) for every fixed d ≥ 2. A common belief, sup-
ported by a proof only for d = 2, is that the order of D(n,Rd) is at least by
the factor of

√
log n larger. For many years the only step in this direction for

d ≥ 3 had been Beck’s [Bec89c] magnificent proof improving Roth’s bound
in dimension 3 by the factor of roughly (log log n)1/8.

In 2006 Bilyk and Lacey [BL08] simplified and greatly developed Beck’s
approach, improving the 3-dimensional lower bound to Ω((log n)1+η) for a
small constant η > 0 (which they didn’t compute explicitly). Similar to Beck’s
proof, the the core of their method is a so-called small ball inequality, an in-
equality for multidimensional Haar functions i.e., higher-dimensional analogs
of the functions fj from Halász’s proof (see Section 6.2 and its Exercise 2).

To state the inequality, let r = (r1, . . . , rd) be a d-dimensional vector
of nonnegative integers, let us write |r| = r1 + · · · + rd, and let Rr be the
appropriate Rademacher function, given by Rr(x) =

∏d
i=1(−1)�2

ri+1xi�. A
weighted r-function is a function f : [0, 1]d → R such that on every binary
canonical box B of size 2−r1 ×2−r2 ×· · ·×2−rd , the function f coincides with
αBRr for some real αB (depending on the box B). (The r-function defined
in Exercise 6.1.1 is a special case with αB ∈ {−1, 0,+1} for all B.) In the
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small ball inequality we seek, for given natural numbers d and k, the smallest
C = Cd,k such that for every choice of weighted r-functions fr, for all r with
|r| ≥ k, we have

∑

r:|r|=k

‖fr‖1 ≤ C

∥
∥∥∥
∑

r:|r|≥k

fr

∥
∥∥∥
∞

.

A Roth-like L2 averaging argument shows that C = O(k(d−1)/2) for every
fixed d, the small ball conjecture asserts C = O(k(d−2)/2) for all d ≥ 2 (which
is known only for d = 2), and [BL08] proved C3,k = O(k1−η). The small ball
inequality is of fundamental nature and it has applications in other fields
(probability theory, approximation theory) as well. In particular, the name
“small ball” comes from a probabilistic setting, concerning the behavior of
the d-dimensional Brownian random walk.

The paper [BL08], available on ArXiv, uses lots of beautiful mathemat-
ics, mostly harmonic analysis (e.g., the Littlewood–Paley theory), and it is
written in a way that looks quite accessible even to us non-experts in this
field. Later Bilyk, Lacey, and Vagharshakyan [BLV08] extended the method
to higher dimensions, obtaining D(n,Rd) = Ω((log n)(d−1)/2+η) for every
fixed d and some positive η = η(d), again through the corresponding small
ball inequality.

The discrepancy function for corners in the plane. Bilyk, Lacey, Paris-
sis, and Vagharshakyan [BLPV08] improved our understanding of the dis-
crepancy function for two-dimensional corners. We recall that D(n, C2), the
worst-case, or L∞, discrepancy for corners, is of order log n, while the Lp

average discrepancy Dp(n, C2) is of order
√

log n for every fixed p ∈ [1,∞).
Bilyk et al. proved bounds that, in a sense, smoothly interpolate between

these two results: they obtained a tight bound, of order (log n)1−1/α, for the
Orlicz norms ‖.‖exp(Lα) of the discrepancy function, for every fixed α ∈ [2,∞).
We recall that the Orlicz norm is a generalization of the Lp norm where the
numeric parameter p is replaced with a (convex) real function ψ. The Orlicz
norm of a function f (defined on a space X with measure μ) equals inf{t >
0:
∫

X
ψ(|f(x)|/t) dμ(x) ≤ 1}; the Lp norm is recovered for ψ(x) = |x|p. In

the result cited above we have ψ(x) = e|x|
α

, which means that the norm is
even much more influenced by large fluctuations that the Lp norms and thus
it is a “closer approximation” of the L∞ norm.

Explicit constructions for Lp discrepancy. Chen and Skriganov [CS02]
obtained an explicit construction of a set meeting Roth’s lower bound for
the L2 discrepancy for corners, in every fixed dimension (while all of the sev-
eral constructions known before had some probabilistic component); also see
[CS08] for a substantial simplification of the proof. We won’t describe the
construction here; we just mention that it has some features in common with
the construction of b-ary nets in Section 2.3, dealing with a suitable vector
subspace of GF (b)md (for a prime b) and then mapping it to a point set in
[0, 1]d in the usual way, by reading the components as digits in base b. Skrig-
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anov [Skr06] constructed explicit sets in the unit cube with asymptotically
optimal Lp discrepancy for every fixed p ∈ (1,∞) and every fixed dimen-
sion d.

Extra-large discrepancy for hyperbolic needles. Beck [Beca], [Becb] in-
vestigated, in our language, the discrepancy for translated and rotated copies
of the hyperbolic needle Hγ(n) = {(x, y) ∈ R2: x ∈ [1, n], |xy| ≤ γ}. We note
that the area vol(Hγ(n)) = 2γ ln n. The number of integer points in such ro-
tated and translated hyperbolic needle (essentially) corresponds to the num-
ber of integer solutions (x, y) with x ≥ 1, 1 ≤ y ≤ n of the inhomogeneous
Pell equation |(x+β)2−αy2| ≤ γ, which is a quantity of considerable interest
in number theory.

Beck established an “extra-large discrepancy” phenomenon. If P is the
integer lattice Z2 or, more generally, a set in R2 of density 1 in which every
two points have distance at least σ (a positive constant), then for 99 percent
of rotational angles θ, there is a translated copy H of Hγ(n) rotated by θ
such that |P ∩ H| differs from vol(H) by Ω(log n), i.e., by a fixed fraction of
the area, the constant depending on γ and σ. (We gloss over some subtleties
of Beck’s result; see his Theorem 4 for a stronger formulation.)

Now let γ > 0 be fixed and, for β ∈ [0, 1], let H̃β
γ (n) be Hγ(n) ro-

tated by 45 degrees and translated by β in the positive x-direction. We set
Fn(β) := |Z2∩ H̃β

γ (n)|. Beck [Becb] discovered that, for β ∈ [0, 1] chosen uni-
formly at random, the distribution of Fn(β) suitably normalized tends to the
standard normal distribution (and in particular, the “typical” discrepancy of
H̃β

γ (n) is of order
√

log n). Moreover, Fn(β) also satisfies a law of the iterated
logarithm.

L1 discrepancy for halfspaces and lattice points in polyhedra. Chen
and Travaglini [CT09b] extended Proposition 3.4 to an arbitrary dimension,
showing that the L1 discrepancy for halfspaces in Rd is at most O(logd n),
attained for appropriately re-scaled Zd. The proof is based on results of Bran-
dolini, Colzani, and Travaglini [BCT97] (plus some “boundary effects” have
to be dealt with). In the latter paper it was proved, among others, that if
C is a fixed polyhedron in Rd (not necessarily convex), then the expected
discrepancy of a randomly rotated and translated copy of C w.r.t. the lattice
1
mZd is bounded by O(logd m).

The main theme of [BCT97] is the “average decay” of a Fourier transform,
a more or less classical topic. Letting C be a compact set in Rd, one studies
the behavior of χ̂C , the Fourier transform of the characteristic function of
C. In particular, in the setting of [BCT97], one takes some Lp average of χ̂C

over the sphere of radius R and investigates how fast it tends to 0 as R → ∞.
This is highly relevant for discrepancy lower bounds in the style of Chapter 7,
as well as for questions about lattice point distributions in copies of C; see
Travaglini [Tra04] for a nice survey.
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More on lattice points. The last few results mentioned above are relevant
for geometric discrepancy, but they really belong to the geometry of numbers
or, more precisely, theory of irregularities of distribution for the integer lat-
tice Zd. This is an extensive area on its own, of much more number-theoretic
nature than discrepancy theory in general, and with deep connections to har-
monic analysis and other fields. Here we mention two interesting discrepancy-
related topics.

Let p = p(x1, . . . , pd) be a d-variate polynomial with integer coefficients. A
fundamental problem in number theory is to find integer solutions of p(x) =
λ, where λ ∈ Z. Geometrically, one looks for integer points on the level surface
{x ∈ Rd: p(x) = λ}. Magyar [Mag07] studied the equidistribution of these
point sets for the case of p positive and homogeneous, and in particular, their
discrepancy for caps (i.e., intersections of the level surface with halfspaces).
Among other amazing results he proved, that for p(x) = x2

1 + · · ·+x2
d, where

the level surface is a sphere, these sets have an almost optimal discrepancy,
up to an nε factor (among all possible sets of the same size in the sphere), for
almost all caps. Roughly speaking, the exceptional caps not covered by this
bound have normal directions that are “too well approximable” by rational
directions.

The next topic concerns the L2 discrepancy for balls. For definiteness, let
us consider the toroidal discrepancy; see the notes to Section 7.1. Let P be
a fixed n-point set in the unit torus T d = Rd/Zd, let r ∈ (0, 1

2 ) be a given
radius, and let D2(r) denote the L2 average of the discrepancy of a ball of
radius r centered at x, averaged over x uniformly distributed in T d. Results
of Beck and of Montgomery (see [BC87], [Mon94]) show that the average of
D2(r) over r ∈ (0, 1

2 ) is at least of order n1/2−1/2d.
Now let the set P be the scaled grid 1

mZd, with an integer m; this is
an n-point set in T d, n = md. It is known that this P matches, up to a
constant factor, the just mentioned lower bound (for the average over r).
However, a surprising phenomenon, discovered by Parnovski and Sobolev
[PS01] (Section 3), appears when one considers D2(r) for r ∈ (0, 1

2 ) fixed.
The behavior depends on the remainder of the dimension d modulo 4: for
d �≡ 1(mod 4), D2(r) behaves “regularly”, being always of order n1/2−1/2d,
but for d ≡ 1(mod 4) there are infinitely values of m for which D2(r) is
asymptotically smaller, namely, of order at most n1/2−1/2d(log n)−cd (with
an explicit constant cd > 0). From below Parnovski and Sobolev proved
D2(r) = Ω(n1/2−1/2d−δ) for every fixed δ > 0; Konyagin, Skriganov, and
Sobolev [KSS03] improved this, replacing n−δ by e−O((log log n)4)).

This phenomenon plays a significant role in Chen and Travaglini [CT09a],
who also considered the L2 toroidal discrepancy for balls and whose goal was
comparing a deterministic construction, namely, the scaled grid as above,
with a randomized construction in the spirit of “jittered sampling”, where one
starts with the grid points and randomly perturbs each of them independently
of the others. They found that the grid is better in small dimensions, while
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the randomized construction wins in large dimensions, except for dimensions
d ≡ 1(mod 4), where the grid is better for infinitely many values of m due to
the Parnovski–Sobolev result. Similar investigations in a more general setting
were undertaken by Brandolini et al. [BCGT09].

Discrepancy for high-dimensional corners. An interesting question is,
how D(n, Cd), the (worst-case) discrepancy for corners, behaves for d large,
say comparable to n? In particular, Heinrich et al. [HNWW01] investigate the
quantity n∞(d, ε) = min{n: D(n, Cd)/n ≤ ε}; that is, the smallest number of
points in [0, 1]d that can approximate the measure of all corners with relative
accuracy ε. Perhaps surprisingly, n∞(d, ε) is polynomially bounded in d and
1
ε . (This should be contrasted with the fact that for d = log2 n, say, we
have D(n, Cd) = 2Ω(d), as can be calculated from Roth’s lower bound—see,
e.g., [Mat98b] for the appropriate formulas.) Indeed, a straightforward VC-
dimension argument yields n∞(d, ε) ≤ Cdε−2 log d

ε , with an explicit constant
C (independent of d, of course!), and using a deep result of Talagrand, this
can be improved to Cdε−2—see [HNWW01].

The best known lower bound is due to Hinrichs [Hin04]: n∞(d, ε) ≥ cd/ε,
for some constant c > 0, all ε > 0 smaller than a suitable constant, and all d.
The idea of this lower bound is simple. One constructs a large set Nε ⊂ Cd of
corners such that the symmetric difference of every two has volume exceeding
ε. If P is an n-point set with discrepancy at most εn, then P ∩C �= P ∩C ′ for
every two corners C �= C ′ in Nε. Finally, the number of different intersections
of P with corners is estimated using a VC-dimension argument.

The cited polynomial upper bounds are probabilistic—they hold for a typ-
ical random n-point set. An interesting open problem is obtaining an explicit
construction of polynomial size. What is meant by “explicit”? This word is
often used in an informal sense, but theoretical computer science offers a
formal definition: explicit means computable by a deterministic polynomial-
time algorithm, in our case in time polynomial in d and 1

ε . Methods of the-
oretical computer science, developed mainly for the purpose of derandom-
izing probabilistic algorithms, have also led to the strongest results so far.
Namely, the work of Even et al. [EGL+92] provides explicit sets witnessing
n∞(d, ε) ≤ (d/ε)O(log d), and also n∞(d, ε) ≤ (d/ε)O(log(1/ε)) (which is poly-
nomial in d for ε fixed).1 The second bound has later been improved; to my
knowledge, the best result is n∞(d, ε) ≤ dO(1)ε−O(

√
log(1/ε)) following from

Lu [Lu02]. All of these constructions are actually formulated for the discrete
grid; that is, instead of the Lebesgue measure on [0, 1]d one approximates
the counting measure on the grid {1, 2, . . . , q}d (for converting this to the
Lebesgue-measure case, one needs to set q = Cd/ε). The constructions work
not only for corners, but also for combinatorial rectangles; see the notes on
page 34.

1 In contrast, the bounds known for the usual constructions for fixed d, such as
the Halton–Hammersley sets, have at least exponential dependence on d.
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There are also nontrivial results concerning deterministic computation of
sets witnessing n∞(d, ε) = O(dε−2 log 1

ε ), almost matching the best known
probabilistic bound, but the running time of these algorithms are exponential
in d; see, e.g., Doerr and Gnewuch [DG08].

The trace bound. An interesting lower bound technique for combinatorial
discrepancy, the so-called trace bound, was developed by Chazelle and Lvov
[CL01], which, for example, yields direct proofs for some results where previ-
ously one had to go via the Lebesgue-measure discrepancy. It asserts that, for
a set system S on n points, with at most n sets, and with incidence matrix
A, we have

disc(S) ≥ 1
4
· 324−n·tr((AT A)2)/t2

√
t/n,

where t = tr(AT A) and tr(M) denotes the trace (sum of diagonal elements)
of a matrix M .

Adding a single set. A tantalizing open question in combinatorial discrep-
ancy is, by how much can the hereditary discrepancy of a set system on n
points increase by adding a single set? The truth could perhaps be an addi-
tive constant, but the current best result of Kim, Matoušek, and Vu [KMV05]
gives only a multiplicative factor of O(log n), with a half-page proof.

Linear discrepancy versus hereditary discrepancy. We have seen that
the linear discrepancy of any set system, or more generally, of any matrix, is
no more than twice the hereditary discrepancy. Spencer conjectured that the
factor 2 can be improved to 2(1− 1

n+1 ) for all matrices with n columns (which,
if true, is tight). Doerr [Doe04a] and, later but independently, Bohman and
Holzman [BH05] proved the special case of this conjecture with A totally
unimodular. Both proofs are nice and the second one is also quite short.

Multicolor discrepancy. The notion of combinatorial discrepancy has been
generalized from two colors to k colors. That is, we want to color the ground
set with k colors so that each set has roughly 1

k fraction of each color; see
Doerr and Srivastav [DS03] for a survey. While many of the results are direct
generalizations from the 2-color case, some interesting phenomena have been
found. In particular, Doerr [Doe04b] showed, with a neat proof employing the
k-color linear discrepancy, that the hereditary discrepancy of a set system S
is nearly independent of the number of colors; that is, for every k, � ≥ 2 there
is a constant C = C(k, �) such that the �-color hereditary discrepancy of S
is at most C-times the k-color hereditary discrepancy. On the practical side,
multicolor discrepancy turned out to be important in a problem of storing
data on parallel disks, as was observed independently by Chen and Cheng
[CC04] and by Doerr, Hebbinghaus, and Werth [DHW06].
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embedding. In Limit Theorems Probab. Theor., Keszthely 1974,
pages 149–165. J. Bolyai Math. Soc., Budapest, 1975. (ref:
p. 125)
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‖f‖2, 214
〈x, y〉, xiii
f ≈ g, 219
f ∗ g, 215
A|Y , 17
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f̂ , 203
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ΔA(x), 215
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Θ(.), xiii
δ(A), 235
πS(m), 138(5.1)
π∗
S(m), 138

ρ(C), 53
ξn(A), 228

adaptive algorithm, 23
Alexander’s theorem, 182(6.4)
Alexander–Stolarsky formula,

193(6.7)
algebra, linear, application, 146
algorithm, 26, 34, 60(Ex. 5), 64,

72(Ex. 12), 103, 125, 163

— adaptive, 23
— derandomization, 34, 104
— hardness for lattices, 80
— Heinrich’s, 72(Ex. 11)
amplification lemma, 218(7.5)
anchored box, see corner
approximability number, 228
ε-approximation, 18
— size, 149(5.13), 151, 153(Ex. 7)
arithmetic progressions
— discrepancy, 25, 108, 109(Ex. 5),

128(Ex. 7), 169(Ex. 4)
— monochromatic, 25
— multidimensional, 108
average discrepancy, 13

B2, 84
B(x, r), xiii
badly approximable number,

81(Ex. 10)
Beck–Fiala conjecture, 103, 115
Beck–Fiala theorem, 102(4.3)
— application, 127(Ex. 4),

128(Ex. 6)
Bessel function, 220, 227, 236
Binet–Cauchy theorem, 116(Ex. 7)
bipartite graph, 153(Ex. 9)
bit reversal sequence, 39
Blaschke’s inequality, 114
block design, 109(Ex. 3)
body, convex
— polar, 114
— similar copies, discrepancy, 227

273
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— translated and scaled copies,
discrepancy, 227

box, b-ary canonical, 51
boxes, axis-parallel
— combinatorial discrepancy,

127(Ex. 1)
— discrepancy, 41(2.4), 75(2.20),

172(6.1), 178, 245
— toroidal discrepancy, 15,

229(Ex. 8)
Brownian motion, 31

Cd, 12
C[≤ m1, . . . ,≤ md], 53
Cx, 12
canonical box, b-ary, 51
canonical interval, 39
— b-ary, 41
— for a finite set, 123
caps, spherical, discrepancy, 16, 90,

227
Cauchy’s surface area formula, 33
character, continuous, 214
Chernoff inequality, 87, 102,

104(Ex. 1), 131
circle, squaring, 26
code, Gray, 60(Ex. 5)
2-colorability, 25
coloring, 17
— generalized, 193
— partial, 120
— — no-nonsense, 121
— random, 101(4.1)
combinatorial discrepancy, 17
— for axis-parallel boxes, 127(Ex. 1)
— for axis-parallel rectangles,

123(4.14), 127(Ex. 4), 169(Ex. 2)
— for halfplanes, 182–197
— for halfspaces, 191
— geometric interpretation, 111
— lower bound, 104(Ex. 1), 105–108,

112(4.7), 114, 145(Ex. 6)
— of a product, 104(Ex. 2)

— upper bound, 101–103, 120–136,
139(5.4), 139(5.3), 164(Ex. 3),
168(5.19)

combinatorial rectangle, 34
complexity, information-based, 26
computational geometry, 34, 150,

164
computational learning theory, 150
conditional probabilities (method),

103
conjecture
— Beck–Fiala, 103, 115
— Komlós, 115
continued fraction, 73
continuous character, 214
continuous discrepancy,

see Lebesgue-measure dis-
crepancy

convex body
— similar copies, discrepancy, 227
— translated and scaled copies,

discrepancy, 227
convex polygons, discrepancy, 126,

127(Ex. 3)
convex polytopes, discrepancy, 126,

127(Ex. 3)
convex set, perimeter, 184(6.5)
convex sets
— discrepancy, 22(Ex. 2), 89, 92,

93(Ex. 6)
— VC-dimension, 152(Ex. 2)
convolution, 215
corner, 12
corners
— L1-discrepancy, 179(Ex. 1)
— L2-discrepancy, 13, 44–50, 63–70,

172(6.1)
— — disadvantages, 14, 71(Ex. 5)
— — modification, 71(Ex. 6)
— Lp-discrepancy, 50, 76(2.22), 178
— measure, 13
criterion, Weyl’s, 4
crossing number, 160
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cubes, axis-parallel, discrepancy,
230–234

D(P,A), 10
D(P,A), 10
D(n,A), 10
Dp,ν(P,A), 13
Dp,ν(n,A), 13
D2,proj(P ), 29
D(A), 197
D∗(.), 12
degS(x), 102
density, upper, 235
derandomization, 34, 104
design, block, 109(Ex. 3)
det(Λ), 74
determinant bound, 112(4.7),

116(Ex. 7), 120(Ex. 3)
determinant of a lattice, 74
diaphony, 15, 229(Ex. 6), 229(Ex. 7)
differencing, finite, 184
digit-scrambling, b-ary, 62(2.12)
— random, 63(2.12)
digital net, see net, b-ary
dim(S), 145(5.8)
dimension, Vapnik–Chervonenkis,

see VC-dimension
disc segment problem, 226
disc(S), 17
disc(P,A), 18
disc(n,A), 18
disc(χ, P,A), 18
discp(χ,S), 21
discp,ν(χ, P,A), 21
discrepancy
— applications, 22–35
— average, 13
— combinatorial, 17
— — for axis-parallel boxes,

127(Ex. 1)
— — for axis-parallel rectangles,

123(4.14), 127(Ex. 4),
169(Ex. 2)

— — for halfplanes, 182–197
— — for halfspaces, 191

— — geometric interpretation, 111
— — lower bound, 104(Ex. 1), 105–

108, 112(4.7), 114, 145(Ex. 6)
— — of a product, 104(Ex. 2)
— — upper bound, 101–103,

120–136, 139(5.4), 139(5.3),
164(Ex. 3), 168(5.19)

— continuous, see Lebesgue-measure
discrepancy

— for arbitrary rectangles,
44(Ex. 3), 229(Ex. 3)

— for arbitrary squares, 213–225
— for axis-parallel boxes, 41(2.4),

75(2.20), 172(6.1), 178, 245
— for axis-parallel cubes, 230–234
— for axis-parallel rectangles,

39(2.2), 176–178
— for axis-parallel squares, 180–182,

230–234
— for class of functions, 24, 28
— for convex polygons, 126,

127(Ex. 3)
— for convex polytopes, 126,

127(Ex. 3)
— for convex sets, 22(Ex. 2), 89, 92,

93(Ex. 6)
— for discs, 84–89, 140
— for halfplanes, 197–202
— for halfspaces, 201, 202(Ex. 3)
— — w.r.t. arbitrary measure,

202(Ex. 2)
— for similar copies, 227
— for spherical caps, 16, 90, 227
— for spherical slices, 227
— for translated and scaled copies,

227
— for translated copies, 182(Ex. 2)
— function, 10
— function (combinatorial), 18
— hereditary, 110, 152(Ex. 5), 250
— inhomogeneous, see linear

discrepancy
— L1

— — for corners, 179(Ex. 1)
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— — for discs, 228
— — for halfplanes, 93–99
— L2

— — combinatorial, 105–108,
164(Ex. 3)

— — computation, 64, 72(Ex. 11)
— — for corners, 13, 14(Ex. 5),

44–50, 63–70, 71(Ex. 5),
172(6.1)

— — modification, 71(Ex. 6)
— Lp, 13
— — combinatorial, 21
— — for corners, 50, 76(2.22), 178
— — for discs, 90
— — for halfplanes, 99(Ex. 1)
— Lebesgue-measure, 17
— linear, 110, 116(Ex. 3),

116(Ex. 4), 116(Ex. 6)
— negative, 228
— of k permutations, 127(Ex. 5),

128(Ex. 6), 169(Ex. 3)
— of a matrix, 105
— of a set system, 17
— of arithmetic progressions, 25,

108, 109(Ex. 5), 128(Ex. 7),
169(Ex. 4)

— of few sets, 113(4.9)
— of infinite sequence, 5, 27, 179
— of weighted sets, 23
— positive, 228
— r-smooth, 25, 28
— toroidal, 15, 225
— — for axis-parallel boxes, 15,

229(Ex. 8)
— whole-space setting, 226
discs
— discrepancy, 84–89, 140
— L1-discrepancy, 228
distance
— Hamming, 156
— in a line arrangement, 155
distance sum problem, 32
dual lattice, 80(Ex. 4)
dual set system, 120, 138, 147(5.10)

dual shatter function, 138(5.2)
— bound, 142(5.6)

E [X], xiii
eigenvalue bound, 107(4.5),

117(Ex. 7), 117(Ex. 8)
embedding, isometric, 207
— into �2, 207–209
— into Lp, 210
entropy, 129
entropy method, 132(4.16)
— application, 133, 166–169
ε-approximation, 18
— size, 149(5.13), 151, 153(Ex. 7)
ε-net, 147
— size, 148(5.12), 153(Ex. 6)
epsilon-net theorem, 148(5.12),

153(Ex. 8)
equality, Parseval, 95
equation, Pell, inhomogeneous, 247
Erdős–Turán inequality, 7
ergodic theory, 7, 76
Euclidean Ramsey theory, 234–240
example, Hoffmann’s, 117(4.11)
expander, 33, 92
extremal hypergraph theory, 150

Faure set, 53(2.8), 56, 61(Ex. 8)
— generalized, 71(Ex. 1)
financial computations, 27
finite differencing, 184
finite projective plane, 60(Ex. 3)
— discrepancy, 144(Ex. 5)
flat polynomials, 32
formal Laurent series, 55
formal power series, 55
formula
— Alexander–Stolarsky, 193(6.7)
— Cauchy’s, surface area, 33
— inversion, for Fourier transform,

203, 214
— Möbius, 68(2.17)
— perimeter, 184(6.5)
— Warnock’s, 64(2.14)
Fourier series, 78, 95
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Fourier transform
— in the plane, 214
— in the unit torus, 226
— inversion formula, 203, 214
— one-dimensional, 203
fractal, 202(Ex. 2)
fraction, continued, 73
Fubini’s theorem, 216
fully random b-ary scrambling, 63
function
— Bessel, 220, 227, 236
— discrepancy, 10
— dual shatter, 138(5.2)
— — bound, 142(5.6)
— of negative type, 205
— Pfaffian, 143
— positive definite, 203
— — on a metric space, 208
— primal shatter, 138(5.1)
— — bound, 142(5.7), 144(Ex. 1)
— Rademacher, 179(Ex. 2)
— random, 31
— rational, 56
— k-valued, 151, 154(Ex. 10)

Gallai’s theorem, 235
Gaussian measure, 116
generalized coloring, 193
generalized Faure set, 71(Ex. 1)
generalized Vandermonde matrix, 54
generator matrices, 52
— random, 59
geometry, computational, 34, 150,

164
GF (b), 51
Ghouila-Houri’s theorem, 119,

120(Ex. 4)
good lattice points, 78
Gram matrix, 208
graph
— bipartite, 153(Ex. 9)
— unit distance, 156
Gray code, 60(Ex. 5)
growth function, see shatter function

Hd, 83
h(s,Δ), 130
H(Z), 129
Haar measure, 214
Hadamard matrix, 105, 108(Ex. 2),

109(Ex. 3), 117(Ex. 8), 117(Ex. 10)
halfplanes
— combinatorial discrepancy,

182–197
— discrepancy, 197–202
— L1-discrepancy, 93–99
— Lp-discrepancy, 99(Ex. 1)
halfspaces
— combinatorial discrepancy, 191
— discrepancy, 201, 202(Ex. 3)
— — w.r.t. arbitrary measure,

202(Ex. 2)
Halton–Hammersley sequence,

44(Ex. 2)
Halton–Hammersley set, 41(2.3),

48–50
— scrambled, 71(Ex. 2)
Hamming distance, 156
Heinrich’s algorithm, 72(Ex. 11)
herdisc(S), 110
hereditary discrepancy, 110,

152(Ex. 5), 250
Hilbert space, 207
Hoffmann’s example, 117(4.11)
hyperbolic needle, 247
hypergraph, 16
— extremal theory, 150

IA, 216
incidence matrix, 105
inequality
— Blaschke’s, 114
— Chernoff, 87, 102, 104(Ex. 1), 131
— Erdős–Turán, 7
— Kleitman’s, 134
— Koksma–Hlawka, 23, 28
— Koksma–Hlawka type, 29
— small ball, 245
— Zaremba’s, 28, 35(Ex. 1)
information-based complexity, 26
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inhomogeneous discrepancy,
see linear discrepancy

integration, numerical, 22, 79
interval, canonical, 39
— b-ary, 41
— for a finite set, 123
intervals, d-dimensional, see boxes,

axis-parallel
invariant measure
— on hyperplanes, 191
— on lines, 183
inversion formula
— for Fourier transform, 203, 214
— Möbius, 68(2.17)
irrationality, quadratic, 73, 80(Ex. 2)
isometric embedding, 207
— into �2, 207–209
— into Lp, 210
isotropic discrepancy, see discrep-

ancy for convex sets

J0(x), 236

Katznelson–Weiss theorem,
236(7.12)

kernel
— positive definite, 207
— reproducing, 25, 29, 35(Ex. 2)
Kleitman’s inequality, 134
Koksma–Hlawka inequality, 23, 28
Koksma–Hlawka type inequality, 29
Komlós conjecture, 115
Kronecker sequence, 76
Kruskal–Hoffmann theorem,

120(Ex. 4)

Ld, 79
L1-discrepancy
— for corners, 179(Ex. 1)
— for discs, 228
— for halfplanes, 93–99
L1(R), 203
�2, 207
L2-discrepancy
— combinatorial, 105–108,

164(Ex. 3)

— computation, 64, 72(Ex. 11)
— for corners, 13, 44–50, 63–70,

172(6.1)
— — disadvantages, 14, 71(Ex. 5)
— — modified, 71(Ex. 6)
L2(R2), 214
Lp-discrepancy, 13
— combinatorial, 21
— for corners, 50, 76(2.22), 178
— for discs, 90
— for halfplanes, 99(Ex. 1)
lattice, 74
— algorithmic hardness, 80
— and discrepancy, 72–80
— dual, 80(Ex. 4)
lattice points, good, 78
lattices, measure on, 79
Laurent series, 55
learning theory, computational, 150
Lebesgue-measure discrepancy, 17
lemma
— amplification, 218(7.5)
— packing, 156(5.14)
— — for halfplanes, 159(Ex. 1)
— partial coloring, 121(4.13)
— — application, 122–125,

127(Ex. 1), 127(Ex. 3),
127(Ex. 5), 128(Ex. 7), 164–
166, 228

— random coloring, 101(4.1)
— Schmidt’s, 179(Ex. 3)
— trivial discrepancy, 215(7.3)
lindisc(A), 110
linear algebra, application, 146
linear discrepancy, 110, 116(Ex. 3),

116(Ex. 4), 116(Ex. 6)

Möbius inversion formula, 68(2.17)
mapping, perfectly balanced,

109(Ex. 6)
matching with low crossing number,

159–164
— lower bound, 164(Ex. 1)
matrix
— discrepancy, 105



Index 279

— generator, 52
— — random, 59
— Gram, 208
— Hadamard, 105, 108(Ex. 2),

109(Ex. 3), 117(Ex. 8),
117(Ex. 10)

— incidence, 105
— positive semidefinite, 204
— Vandermonde, generalized, 54
mean value theorem, generalization,

184
measure
— Haar, 214
— invariant
— — on hyperplanes, 191
— — on lines, 183
— on corners, 13
— on lattices, 79
— signed, 197
— Wiener, sheet, 30
method
— Monte Carlo, 26
— of conditional probabilities, 103
— quasi-Monte Carlo, 26
metric, 207
— in a line arrangement, 155
Minkowski’s theorem, 81(Ex. 8)
Monte Carlo method, 26
Moore’s theorem, 209
motion, Brownian, 31
multiset, 162(5.18)

N, xiii
negative discrepancy, 228
net
— b-ary, 51(2.6), 60(Ex. 3),

60(Ex. 4)
— — computation, 60(Ex. 5)
— — scrambled, 61–71
ε-net, 147
— size, 148(5.12), 153(Ex. 6)
Newton’s theorem, 76
Nm(Λ), 74
no-nonsense partial coloring, 121
norm of a lattice, 74

number
— badly approximable, 81(Ex. 10)
— crossing, 160
— stabbing, see crossing number
numerical integration, 22, 79

O(.), xiii
o(.), xiii
Oleinik–Petrovskǐı–Milnor–Thom

theorem, 143

P (C), 52
packing lemma, 156(5.14)
— for halfplanes, 159(Ex. 1)
Parseval equality, 95
Parseval–Plancherel theorem,

214(7.2), 228(Ex. 2)
partial coloring, 120
— no-nonsense, 121
partial coloring lemma, 121(4.13)
— application, 122–125, 127(Ex. 1),

127(Ex. 3), 127(Ex. 5),
128(Ex. 7), 164–166, 228

pattern, sign, 140
Pell equation, inhomogeneous, 247
perfectly balanced mapping,

109(Ex. 6)
perimeter, of a convex set, 184(6.5)
permutation, k-permutation

problem, 127(Ex. 5), 128(Ex. 6),
169(Ex. 3)

Pfaffian function, 143
physics (computational), 27
POL(H), 126
polar body, 114
polygons, discrepancy, 126,

127(Ex. 3)
polynomial
— flat, 32
— symmetric, 76
— trigonometric, 4
polynomial discrepancy, 28
polytopes, discrepancy, 126,

127(Ex. 3)
positive definite function, 203
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— on a metric space, 208
positive definite kernel, 207
positive discrepancy, 228
positive semidefinite matrix, 204
power series, 55
Pr[A], xiii
primal shatter function, 138(5.1)
— bound, 142(5.7), 144(Ex. 1)
problem
— Roth’s disc segment, 226
— Tusnády’s, 122–125, 127(Ex. 4),

169(Ex. 2)
— — d-dimensional, 127(Ex. 1)
product of set systems, 104(Ex. 2)
projective plane, 60(Ex. 3)
— discrepancy, 144(Ex. 5)

Q, xiii
QI , 28
QR, 214
Q(r, ϑ), 217
quadratic irrationality, 73, 80(Ex. 2)
quasi-Monte Carlo method, 26

R, xiii
R2, 3
Rd, 10
R̃d, 14
r(i), 39
rp(i), 41
Rademacher function, 179(Ex. 2)
Ramsey set, 235
Ramsey theory, 25, 32, 153(Ex. 9)
— Euclidean, 234–240
random coloring lemma, 101(4.1)
random function, 31
random generator matrix, 59
range searching, 164
rational functions, 56
rectangle, combinatorial, 34
rectangles, arbitrary, discrepancy,

44(Ex. 3), 229(Ex. 3)
rectangles, axis-parallel
— combinatorial discrepancy,

123(4.14), 127(Ex. 4), 169(Ex. 2)

— discrepancy, 39(2.2), 176–178
reproducing kernel, 25, 29, 35(Ex. 2)
Roth’s disc segment problem, 226
Roth’s lower bound for corners,

172(6.1)
round(x), 129

Sd, 11
Schmidt’s lemma, 179(Ex. 3)
Schmidt’s lower bound for corners,

176(6.2)
Schoenberg’s theorem, 207(6.16)
scrambled b-ary net, 61–71
scrambled Halton–Hammersley set,

71(Ex. 2)
scrambling, b-ary, 61
— fully random, 63
sequence
— {nα}, 4(1.2), 7, 9(Ex. 2), 76
— bit reversal, 39
— discrepancy, 5, 27, 179
— Halton–Hammersley, 44(Ex. 2)
— Kronecker, 76
— uniformly distributed, 4
series
— Fourier, 78, 95
— Laurent, 55
— power, 55
set
— convex, perimeter, 184(6.5)
— Faure, 53(2.8), 56, 61(Ex. 8)
— — generalized, 71(Ex. 1)
— Halton–Hammersley, 41(2.3),

48–50
— — scrambled, 71(Ex. 2)
— Ramsey, 235
— spherical, 235
— Van der Corput, 38(2.1),

44(Ex. 1), 44(Ex. 3), 44–48
set system, 16
— dual, 120, 138, 147(5.10)
— induced, 17
sets, convex
— discrepancy, 22(Ex. 2), 89, 92,

93(Ex. 6)
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— VC-dimension, 152(Ex. 2)
shatter function
— dual, 138(5.2)
— — bound, 142(5.6)
— primal, 138(5.1)
— — bound, 142(5.7), 144(Ex. 1)
shattered set, 145(5.8)
Sierpiński Carpet, 202(Ex. 2)
sign pattern, 140
signed measure, 197
singular value, 107
SL(K, d), 79
slices, spherical, discrepancy, 227
small ball inequality, 245
r-smooth discrepancy, 25, 28
space
— Hilbert, 207
— metric, 207
spanning path, with low crossing

number, 164(Ex. 2)
spanning tree, with low crossing

number, 164
Spencer’s upper bound, 102(4.2)
spherical caps, discrepancy, 16, 90,

227
spherical set, 235
spherical slices, discrepancy, 227
squares, arbitrary, discrepancy,

213–225
squares, axis-parallel, discrepancy,

180–182, 230–234
squaring the circle, 26
stabbing number, see crossing

number
star-discrepancy, 12
statistics, 150
symmetric polynomial, 76

Tarski’s problem, 26
theorem
— Alexander’s, 182(6.4)
— Beck–Fiala, 102(4.3)
— — application, 127(Ex. 4),

128(Ex. 6)
— Binet–Cauchy, 116(Ex. 7)

— epsilon-net, 148(5.12), 153(Ex. 8)
— Fubini’s, 216
— Gallai’s, 235
— Ghouila-Houri’s, 119, 120(Ex. 4)
— Katznelson–Weiss, 236(7.12)
— mean value, generalization, 184
— Minkowski’s, 81(Ex. 8)
— Moore’s, 209
— Newton’s, 76
— Oleinik–Petrovskǐı–Milnor–

Thom, 143
— Parseval–Plancherel, 214(7.2),

228(Ex. 2)
— Roth’s, 172(6.1)
— Schmidt’s, 176(6.2)
— Schoenberg’s, 207(6.16)
— three-distance, 9(Ex. 2)
— Van der Waerden’s, 25, 235
three-distance theorem, 9(Ex. 2)
tomography, 33
toroidal discrepancy, 15, 225
— for axis-parallel boxes, 15,

229(Ex. 8)
total unimodularity, 26, 117, 119,

120(Ex. 4), 250
trace (of a set system), 17
trace(M), 108(Ex. 1)
transform, Fourier
— in the plane, 214
— in the unit torus, 226
— one-dimensional, 203
transversal, 147
triangles, discrepancy, 182(Ex. 2)
trigonometric polynomial, 4
trivial discrepancy lemma, 215(7.3)
Tusnády’s problem, 122–125,

127(Ex. 4), 169(Ex. 2)
— d-dimensional, 127(Ex. 1)
2-colorability, 25

UA, 110
U , 185
U3, 198
uncolored point, 120
uniformly distributed sequence, 4
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unimodularity, total, 26, 117, 119,
120(Ex. 4), 250

unit distance graph, 156
upper density, 235

k-valued functions, 151, 154(Ex. 10)
Van der Corput set, 38(2.1),

44(Ex. 1), 44(Ex. 3), 44–48
Van der Waerden’s theorem, 25, 235
Vandermonde matrix, generalized,

54
Vapnik–Chervonenkis dimension,

see VC-dimension
variation, 23
VC-dimension, 145(5.8)

— for k-valued functions, 151,
154(Ex. 10)

vector sum problems, 115
vol(A), xiii
vol�(A), xiii

Warnock’s formula, 64(2.14)
weighted sets, discrepancy, 23
Weyl’s criterion, 4
Wiener measure, 30

Z, xiii
Zaremba’s inequality, 28, 35(Ex. 1)
zonotope, 33



Hints

1.1.1(b). First note that the x-coordinate of the kth point of P lies in the
interval [ k

n − M
n , k

n + M
n ], where M = D(P,R2).

1.1.1(c). If f(n) is bounded, then use (b) and a compactness argument.
Otherwise let ni = min{n: f(n) ≥ 2i}; construct initial segments of length
ni with discrepancy ≤ 2f(ni) using (b) and concatenate them.
1.2.1. By induction on d.
1.2.2(b). No, take A = {[0, 1] × [0, 1/2]}, n = 1, 2.
1.3.2. For D(.), you may use a rectangular grid of points. To lower-bound
disc(.), consider the vertex set of a convex n-gon.
1.3.3. The complements of finite sets.

1.4.2(a). We have 〈f, ηx〉 =
∫ 1

0
f ′(y) · ∂ min(1−x,1−y)

∂y dy = −
∫ 1

x
f ′(x) dx =

f(x).
2.1.2. Define P ′

n ⊂ [0, 1]d+1 by appending the (d + 1)st coordinate equal to
i
n to the ith point of Pn, and use the result of Example 2.3.
2.1.3. Show that any point not lying on the diagonal x = y has vertical
distance at least Ω(n−1/2) from the diagonal, and take R as a long narrow
rectangle parallel to the diagonal.
2.3.2. In order that x(h) lie in a b-ary canonical box of size b−m1×· · ·×b−md ,
m1 + · · · + md = ρ, a system of linear equations must be satisfied whose
matrix consists of C[≤ m1, . . . ,≤ md−1] plus md more rows, which are the
last md rows of the m × m identity matrix. By the assumption on C|j for
j = m1 + · · · + md−1, the upper left j × j submatrix is nonsingular, and so
the whole matrix of the linear system is nonsingular.
2.3.3(a). Let xi ∈ [0, 1]d be the ith point of a b-ary net, i = 1, 2, . . . , b2.
Define the jth b2-tuple as

(
�b · (x1)j�, �b · (x2)j�, . . . , �b · (xb2)j�

)
.

2.3.3(b). Each coordinate of xi, the ith point of the b-ary net, will have only
two b-ary digits after the b-ary point. The first digit of (xi)j is the ith entry
of the jth b2-tuple; this guarantees that all b-ary canonical boxes with two
sides b−1 and others 1 are fine. The second digit of (xi)j may be chosen to be
the number of indices � < i for which (x�)j has the same first digit as (xi)j ;
this takes care of the canonical boxes with one side b−2 and others 1.
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2.3.4. The dimension reduction is clear (use orthogonal projection). To re-
duce the size parameter m, use an affine map mapping a b-ary canonical box
of volume bm′−m onto the unit cube.
2.3.5. Induction on m.
2.3.6(a). The total number of k×m matrices is bkm. Counting the full-rank
ones: if i rows have already been fixed to linearly independent vectors, then
their linear span has bi vectors, and these must be avoided by the (i + 1)st
row, hence the number of full-rank matrices is

∏k
i=1(b

m − bi−1).
2.3.6(b). There are M = O(ρd−1) partitions of the integer ρ into d
nonnegative summands. The matrix for each partition is random, and by
(a), the probability that one such matrix does not have a full rank is
1 −

∏ρ
i=1(1 − b−m+i−1) ≤

∑ρ
i=1 b−m+i−1 ≤ b−m+ρ. Hence if M/bm−ρ ≤ 1

2
then at least half of the choices of C have ρ(C) ≥ ρ.
2.3.7(a). One obtains a system of equations for the coefficients bj of the
inverse. The first equation is a0b0 = 1, showing the necessity of a0 �= 0,
and the sufficiency follows by induction (having determined b0, b1, . . . , bj0 ,
the term bj0+1 can always be expressed from the first equation it occurs in).
2.3.8(b). Use all the b linear polynomials z − a, a ∈ GF (b), in the construc-
tion above Theorem 2.10. Apply Theorem 2.9.
2.4.1(a). Multiplying a matrix C(k) by a lower triangular matrix from the
left is equivalent to a sequence of row operations on C(k), where a row may
be multiplied by a nonzero number or a multiple of some row may be added
to a row below it . These operations do not decrease the rank of any matrix
C[≤ m1,≤ m2, . . . ,≤ mk].
2.4.1(b). Yes. Here each permutation πa1,a2,...,aj−1(aj) in the description of
a scrambling (for the kth coordinate, say) is a linear function (over GF (b)) of
a1, . . . , aj of the form

∑j
i=1 �

(k)
ji ai, where �

(k)
ji denotes an entry of the lower-

triangular matrix L(k).
2.4.4. Use Lemma 2.14. The result is n(2−d − 3−d).
2.4.5(a). n23−d.

2.4.6. The formula is n2(4/3)d−2n
∑

p∈P

∏d
k=1((3−p2

k)/2)+
∑

p,q∈P

∏d
k=1(2−

max(pk, qk)).
2.4.8(b). For any given a �= a′ ∈ GF (b) and b �= b′ ∈ GF (b), the system of
equations ah + g = b, a′h + g = b′ has a unique solution (h, g), h, g ∈ GF (b),
h �= 0. From this, with notation as in the proof of Lemma 2.15(ii), one can
conclude that for at+1 �= a′

t+1 and for h and gt+1 random, the pair (bt+1, b
′
t+1)

is uniformly distributed on the set of all pairs (q, q′) with q �= q′, q, q′ ∈ GF (b),
and hence E

[
|bt+1 − b′t+1|

]
= b+1

3 . Moreover, for any j > t + 1, any aj , a
′
j ,

and any fixed value of h, we find that the expectation of bj − b′j for a random
choice of gj is 0.
2.4.9. An easy proof is via generating functions. Let
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F (x1, x2, . . . , xs) =
∑

t1,t2,...,ts

f(t1, . . . , ts)xt1
1 xt2

2 · · ·xts
s

be the multivariate generating function for f , and similarly for G(x1, . . . , xs).
We get G(x) = F (x)/

∏s
i=1(1 − xi).

2.4.10. Use
(
t+s−1
s−1

)
/
(
t−t0+s−1

s−1

)
= (t+s−1)(t+s−2)···(t−t0+s)

t(t−1)···(t−t0+1) ≤
(
t0+s−1

s−1

)
and

∑∞
t=t0

(
t−t0+s−1

s−1

)
b−t = b−t0(1 − 1/b)−s.

2.4.11(a). Generalize the problem as follows. Given point sets P and Q
and weight functions v:P → R, w:Q → R, calculate fd(P, v,Q,w) =∑

p∈P

∑
q∈Q v(p)w(q)

∏d
k=1 min(pk, qk). Let c be the median of the xd-co-

ordinates of the points of P , and let P≤ = {p ∈ P : pd ≤ c}, Q≤ = {q ∈
Q: qd ≤ c}, and similarly for P> and Q>. Then

fd(P, v,Q,w) = fd(P≤, v≤, Q≤, w≤) + fd(P>, v>, Q>, w>)

+fd−1(P̄≤, ṽ≤, Q̄>, v>) + fd−1(P̄>, v>, Q̄≤, w̃≤),

where v≤ denotes the restriction of v to P≤ (and similarly for w≤, v>, w>), a
bar above a set X ⊆ Rd denotes its projection onto the first d−1 coordinates,
and ṽ≤(p̄) = pdv(p) for p ∈ P≤, w̃≤(q̄) = qdw(q) for q ∈ Q≤. Prove by
induction that using this formula, fd(P, v,Q,w) can be evaluated in time
O((m + n) logd(m + n)), where m = |P |, n = |Q|.
2.5.2(c). If (a0, a1, . . .) is periodic, then α = αi for some i; derive a quadratic
equation for α.
2.5.3. Show that the discrepancy of any rectangle [0, x) × [k/qj , (k + 1)/qj)
is O(1), and that a general corner can be sliced into O(log n) of these plus a
small remainder.
2.5.4. Let Λ∗

(i) stand for the Λ∗ from (i), and similarly for Λ∗
(ii). Clearly,

Λ∗
(ii) ⊆ Λ∗

(i). As for ⊇, a y ∈ Λ∗
(i) can be written as

∑d
k=1 αkb∗k, where αk ∈ R

and b∗k is the kth row of (B−1)T . And 〈y, bk〉 = αk must be integral by (i).
2.5.6. If x ∈ Λ and we put δ = |x1 · · ·xd|1/d then for the D with δ

x1
, . . . , δ

xd

on the diagonal, the point DxT = (δ, . . . , δ) ∈ DΛ has length δ
√

d.
2.5.7. If z ∈ Λ∗ satisfies ‖z‖ < 1

r then |〈vi, z〉| is an integer bounded above
by ‖vi‖ · ‖z‖ < 1, and hence it is 0. Then z = 0 by the linear independence
of the vi.
2.5.8. By the theorem, B(0, r) encloses Ω(rd) lattice points, with the constant
of proportionality only depending on d. If there are no d linearly independent
vectors in B(0, r), Λ∩B(0, r) is contained in a hyperplane, and since any two
points of Λ are at least ε apart, a volume argument with balls of radius ε

2
around the points gives |Λ ∩ B(0, r)| = O((r/ε)d−1). For r sufficiently large,
we get a contradiction.
2.5.9. Prove (ii) in Exercise 6 for Λ∗ using Exercise 7, establishing the as-
sumption via Exercise 8.



286 Hints

2.5.11(a). Clearly αj ∈ R. The automorphism of Q(ω) given by ω �→ ωj

sends α1 to αj , and hence all the αj are conjugate. Thus, the degree of each
αj over Q is at least d. On the other hand, the degree of Q(ω) over Q(α1) is 2,
because we have g(ω) = 0 for g(x) = x2−α1x+1 and clearly ω �∈ Q(α1) ⊂ R.
Since the degree of Q(ω) over Q is p − 1 = 2d, the degree of each αj is d.
Hence α1, . . . , αd are the roots of a monic irreducible polynomial of degree
d with rational coefficients (the minimal polynomial), and this polynomial
must be q(x). Finally, since ω is an algebraic integer, meaning that its (monic)
minimal polynomial has integer coefficients, the αj are algebraic integers too,
because algebraic integers form a ring. The solution in (b) applies as well,
but it requires a little more of the Galois theory.
2.5.11(b). To see that the αj are real, note that rmd = r(p−1)/2 ≡
−1 (mod p). The automorphism given by ω �→ ωrj−1

sends α1 to αj , and
each of the automorphisms of Q(ω) (given by ω �→ ωr�

for some �) maps α1

to some αj . Since there are no other automorphisms a subfield of Q(ω) may
have, the minimal polynomial has degree d and it equals q(x).
3.1.1. Count the intersections between the circle and the sides of the small
squares, using the fact that any line is only intersected twice by the circle. Or
observe that all intersected squares lie in an annulus of width a · 2

√
2, where

a is the side of a grid square, and use a volume argument.
3.1.2. Decompose n into summands of the form 4k, take a small-discrepancy
set for each of them, perturb a little to have them disjoint, and observe that
|D(P1 ∪̇P2, A)| ≤ |D(P1, A)| + |D(P2, A)|.
3.1.5(a). For discs B of not too large radius, use discs with center coordinates
and radii being integer multiples of n−2, say. For huge discs B, use a suitable
discrete collection of discs of a fixed large radius.
3.1.5(b). The proof that all discs in F1 as in (a) have, with a positive
probability, the right discrepancy is almost identical to the proof in the text.
It remains to prove that if Bin and Bout have discrepancy at most Δ then B
has discrepancy at most Δ + 1.
3.1.6(a). Choose a collection of as many disjoint caps (parts of the disc C
cut off by suitable chords), each of area 1

2n , as possible; calculation shows
that about n1/3 can be chosen. Let C1 be C minus the caps containing at
least one point of P , and let C2 be C minus the caps containing no points
of P . Check that (|P ∩C1| − n vol(C1))− (|P ∩C2| − n vol(C2)) ≥ M , where
M = Ω(n1/3) is the number of caps.
3.2.1(a). It suffices to show that the function g(a, β) is Ω(m) for all (a, β) ∈
[0, c

m ] × I, where c > 0 is a positive constant and I is an interval of length
Ω(1).
3.2.1(c). Same as (b).

3.2.1(d). As in the proof of Proposition 3.4, but use
∫
|g|p ≤

(∫
g2
)p/2.
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4.1.1(a). An elementary proof: assuming n even, the probability is at least

2−n
∑n/2+2Δ

j=n/2+Δ

(
n
j

)
≥ 2−nΔ

(
n

n/2

) (
n−4Δ
n+4Δ

)2Δ

. Using the estimate 1−x
1+x ≥ e−3x

(valid for x small enough) and
(

n
n/2

)
≥ 2n/2

√
n (easily verified from tail

estimates for the binomial distribution), this is ≥ (Δ/2
√

n) exp(−24Δ2/n).
For Δ ≤ √

n, use monotonicity and this bound for Δ =
√

n.
4.1.1(b). Let u = |χ−1(−1)|. Then χ(R) is the sum of u independent random
variables with values −1, 0 and n − u variables with values 0, 1. Thus S′ =
2χ(R) + 2u − n behaves as a sum of n independent random ±1 variables. If
e.g., u ≤ n/2 then Pr[χ(R) ≥ Δ] = Pr[S′ ≥ 2Δ − 2u − n] ≥ Pr[S′ ≥ 2Δ].
4.1.1(c). Calculate that Pr[disc(R, χ) ≤ c1

√
n log(2m/n) ] < 2−n for any

fixed χ; then there is a choice of R for which no χ works.
4.1.2. If X is the ground set of S and Y the ground set of T , color (x, y) ∈
X×Y by χ(x)ξ(y), where χ is a coloring witnessing disc(S) and ξ is a coloring
witnessing disc(T ).
4.1.2(b). {{0, 1}, {0, 2}, {0, 3}, {0, 4}, {1, 2, . . . , 6}}.
4.2.3(b). By (a), we have AT A = nI + (n − 1)J .
4.2.4. By the proof of Proposition 4.4, it suffices to find a vector x with
‖x‖ = 1 and 1 − x2

1 + (2x1 + x2 + · · · + xn)2 small. A suitable choice is
x1 =

√
1 − 4/(n + 3) and x2 = x3 = · · · = xn = − 2

n−1x1.

4.2.5. Show that AT A, where A is the incidence matrix, is a circulant matrix.
Its eigenvectors are of the form (1, ω, ω2, . . . , ωn−1), where ω is an nth root

of 1. The corresponding eigenvalues are
∑6k

d=1

∣
∣∣
∑k−1

j=0 ωjd
∣
∣∣
2

. It is enough to

show that there is a d0 (for each root ω) such that the inner sum is Ω(k2).
By the pigeonhole principle, there is a d0 ≤ 6k with − π

3k ≤ arg(ωd0) ≤ π
3k ,

so the real part of each ωjd0 is at least 1
2 .

4.2.6(b). There are 2n index sets I and only at most (n+1)m possible values
of the row sum.
4.3.2. Let A and B be disjoint n-point sets. Put S = {S ⊆ A∪B: |S ∩A| =
|S ∩ B|}.
4.3.3. Use weights 1 − 2

n+1 for all points.
4.3.5. The proof of Theorem 4.6 goes through unchanged.
4.3.6. A case analysis shows that the linear discrepancy is 4

3 . For hereditary
discrepancy, delete the point 4.
4.3.7(a). Binet–Cauchy implies the existence of an n× n submatrix B of A

with |det(B)|1/n ≥ Δ
√

m
n /
(
m
n

)1/2n. A calculation using the estimate
(
m
n

)
≤

(em/n)n (see the proof of Lemma 4.13) gives |det(B)|1/n ≥ Δ/
√

e. Let S0

be the set system with incidence matrix B and apply Theorem 4.7.
4.3.7(b). Since det(AT A) is the product of the eigenvalues of AT A, we have
Δeig ≤ Δ =

(
n
m det(AT A)1/n

)1/2
. And from the proof in (a) we know that

Δ = O(Δdet).
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4.3.7(c). Spencer’s upper bound 4.2. A direct proof is possible using Hada-
mard’s bound for the determinant of a k × k matrix: det(B) ≤

∏k
i=1 ‖bi‖,

where bi is the ith row of B.
4.3.8. We have AT A = kI+(k−1)J , where k = n+2

4 , and BT B = AT A−vT v,
where v is a row vector with 2k − 1 ones and 2k zeros. Hence xT BT Bx =
(k−1)

(∑n
i=1 xi

)2 +k‖x‖2−
(∑

i∈K xi

)2, where |K| = 2k−1. Find an x such
that this is O(1).
4.3.10. Let f(k) = |det(Hk)| and g(k) = |det((Hk +J)/2)|. We have f(k) =
2k−1f(k − 1)2 and g(k) = g(k − 1)f(k − 1). We get det(Hk) = nn/2/2n−1,
n = 2k.
4.4.1. To get a coloring for S1|Y , contract all edges not belonging to Y .
Color the edges of the resulting tree by levels: even level red, odd level blue.
4.4.2. Show that the set system dual to Hoffmann’s example is totally uni-
modular (has hereditary discrepancy at most 1).
4.4.3. The bound would be the same for S and for S∗; use Exercise 2.
4.4.4(a). The image of Zn is a sublattice of Zn. A volume argument shows
that a large ball must contain about the same number of points of Zn and of
AZn and hence the lattices coincide. Alternatively, the total unimodularity
of A easily implies that A−1 is integral.
4.4.4(b). We need to show that each integral point b ∈ ARn is the image of
an integer point. Let Ā be a regular k × k submatrix of A with k = rank(A);
we may assume that Ā is contained in the first k rows and in the first k
columns of A. Let b̄ consist of the first k components of b; then x̄ = Ā−1b̄ is
integral by (a). Append n − k zero components to x̄. The resulting vector is
mapped to b by A.
4.4.4(c). The solution set is bounded, and so if it is nonempty then it has
some vertices. A vertex is determined by some n of the inequalities holding
with equality. Use (b).
4.4.4(d). The desired zero-discrepancy coloring is equivalent to a 0/1 solu-
tion to the system Ax = b with b = A1

2 ∈ Zm, where A is the incidence
matrix and 1

2 stands for the vector of 1
2 ’s. Apply (c) with u = 0, v = 1, and

w = z = b.
4.4.4(e). Add a new point to each set of odd size; this preserves the total
unimodularity. Use (d). Or, (c) can be used directly with w = �1

2A� and
z = �1

2A�.
4.5.1. To produce F in dimension d, start with the canonical intervals in the
x1-direction; for each of them, take the canonical intervals in the x2-direction;
for each of these, consider the canonical intervals in the x3-direction, etc.
The logarithm of the product of the sizes of the canonical sets larger than
t created in this manner is O(n

t logd−1 n log t). The parameter t is set to
K logd−1 n log log n, and the size of sets in M is O(t logd−1 n). See [Mat99]
for details.
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4.5.2(a). Let T0 = γ1 ∩ γ2 ∩ γ3, where γi is the halfplane given by γi =
{(x, y) ∈ R2: aix+biy ≤ ci}. Define the embedding f :R2 → R3 by f(x, y)i =
aix + biy, i = 1, 2, 3, and set ρ = f(R2).
4.5.2(b). Similar to (a), if h ∈ H is given by 〈a, x〉 ≤ b, the coordinate of
the embedding Rd → R|H| corresponding to h is given by 〈a, x〉.
4.5.3(a). Treat each family POL(Hi) independently in the same way as the
axis-parallel rectangles, defining auxiliary set systems Fi and Mi. To obtain
a partial coloring, combine all the Fi’s into F and all the Mi’s into M.
4.5.3(b). Let T0 be the triangle in the definition of T , let a, b, c be its sides
(segments), and let ha be the line extending the segment a (and similarly for
hb, hc). Suppose that a is vertical and that b lies above c, say. Then T0 can
be expressed as the difference of two semiinfinite trapezoids T1 \ T2, where
T1 is the set of points lying vertically below the segment b and T2 are the
points vertically below c. Similarly, any T ∈ T can be written using a set
from POL({ha, hb}) and a set from POL({ha, hc}).
4.5.3(c). Given a convex polygon A ∈ POL(H), let B be the set of all points
lying vertically below A. Write A as the difference (A ∪ B) \ B. Each of the
sets B and A ∪ B is a disjoint union of at most k semiinfinite trapezoids.
These trapezoids belong to POL(H1) ∪ POL(H2) ∪ · · · ∪ POL(Hk), where
each Hi consists of one vertical line and one line of H.
4.5.3(d). Similar to (c), define B as the set of points lying vertically below a
given convex polytope A ∈ POL(H). Decompose both the sets B and A ∪B
into semiinfinite vertical prisms, each bounded from above by a facet of A.
Decompose the vertical projection of each of these prisms using semiinfinite
trapezoids in the xy-plane, as in (c), and lift vertically to get a decomposition
for each vertical prism. Each set in the resulting expression for A belongs
to a family POL(G) for a set G of 3 planes. It remains to check that the
total number of such triples G needed in the decompositions for all A ∈
POL(H) is bounded by a function of k. A similar approach works in any
fixed dimension d, but some basic knowledge about convex polytopes may be
needed for the proof.
4.5.4. Take the system F of canonical intervals as was done in the proof using
the Partial coloring lemma, but with threshold t = 1 (all canonical intervals
on both levels). Apply Beck–Fiala on F (max degF (x) = O(log2 n)). Each
rectangle is a disjoint union of O(log2 n) sets of F .
4.5.5(a). Define a graph on {1, . . . , n} with edge set

{{πi(2j − 1), πi(2j)}: 1 ≤ j ≤ n

2
, i = 1, 2}.

Show that it is bipartite; color one class by +1 and one by −1.
4.5.5(b). Let u be a suitable parameter (depending on k), and let F consist
of canonical intervals of length 2u along each πi, i.e. sets of the form {πi(j2u+
1), πi(j2u + 2), . . . , πi((j + 1)2u)}. Each set of P can be written as a disjoint
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union of sets of F plus O(2u) remaining points. The Partial coloring lemma
with M = ∅ gives a partial coloring with zero discrepancy for all sets of F .
Iterate. The resulting bound is O(k log n) by this method.
4.5.5(c). The permutations can be chosen so that the resulting set system
contains some arbitrary k prescribed sets. Use some set system of k sets with
discrepancy about

√
k (such as the set system obtained from the Hadamard

matrix).
4.5.6. Consider the system of all canonical intervals along each permutation.
The maximum degree is O(log n), so this system has discrepancy O(log n),
and each interval is a disjoint union of O(log n) canonical intervals.
4.5.7(a). Let t be a suitable threshold parameter (the appropriate value
turns out to be C

√
n log n). Define F as the system of all canonical intervals

of length t in the arithmetic progressions of An, i.e. sets of the form {ktd +
r, (kt+1)d+r, (kt+2)d+r, . . . , (k+1)td+r} ⊆ {1, 2, . . . , n}, where d = 1, 2, . . .,
r = 1, 2, . . . , d, and k = 0, 1, . . .. Each set in An is a disjoint union of sets in
F plus a remainder of < 2t points. Let the remainders be M, and use the
Partial coloring lemma.
4.5.7(b). An restricted to an m-point subset of {1, 2, . . . , n} no longer be-
haves as Am, the arithmetic progressions on m points.
4.5.7(c). Proceed as in (a), but take intervals consisting of t points from X.
Observe that the total number of such intervals for all canonical progressions
with one given difference d is at most m

t .
4.6.2. If there are two values with distinct probabilities p1, p2, show that the
entropy decreases by replacing both probabilities by (p1 + p2)/2.
4.6.3. The problem is with the iteration of the partial coloring, since one
cannot guarantee that the size of the sets decreases as points get colored. As
we know, if n = s2, say, then we can take n sets of size s on 2s points with
discrepancy Ω(

√
s log s).

4.6.4(a). Exercise 4.1.1.
4.6.4(b). For n < m, add dummy points, and for n > m, use Theorem 4.9. If
m = O(s), Spencer’s upper bound 4.2 will do, and for m > s1+ε, the Random
coloring lemma 4.1 is sufficient.
4.6.4(c). For ΔS = C

√
s log(2m/s) and set size s, the total entropy required

for all sets is ≤ m(s/m)A with a constant A as large as desired (if C is
sufficiently large). Hence the number of colorings giving the same discrepancy,
up to ΔS , to all the sets, is at least 2m(1−(s/m)A) (recall that n = m). By
Kleitman’s inequality, a partial coloring with at most 2αm uncolored points
exists provided that H(1

2 − α) ≤ 1− (s/m)A. Since we have 1−H( 1
2 − α) =

2
ln 2α2 + O(α4) (Taylor series), we conclude that α = O((s/m)A/2). Also see
[AS00] for similar calculations. (Alternatively, one could use the elementary
tail estimates derived in Exercise 4.1.1 for estimating the sum of binomial
coefficients in Kleitman’s inequality.)
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5.1.4(a). Each cell in the Venn diagram of m sets of T is a disjoint union of
some cells in the Venn diagram of the ≤ tm sets of S used in the definition
of the considered m sets.
5.1.4(b). For any Y, S1, . . . , St ⊆ X, we have

Φ(S1, . . . , St) ∩ Y = Φ(S1 ∩ Y , . . . , St ∩ Y )

(verify by induction on the structure of Φ). From N sets on an m-point
Y ⊆ X, at most N t sets can be defined using Φ.
5.1.5(b). If A is the incidence matrix of the projective plane, we get AT A =
qI + J , where I is the identity matrix and J is the matrix of all 1’s, hence
xT AT Ax = q〈x, x〉 + (

∑
xi)

2 ≥ q‖x‖2.
5.1.5(c). Fix one point, x, and color half of the q + 1 lines passing through
x by +1 and the other half by −1 (x is colored arbitrarily). All lines not
containing x have discrepancy 0.
5.1.5(d). The dual of a projective d-space is also a projective d-space, so
it suffices to consider the primal shatter function, say. Let A ⊆ X be an
m-point subset of the projective d-space. For a hyperplane h, fix a maximal
subset Bh ⊆ A of affinely independent points in h ∩ A. Then |Bh| ≤ d, and
h∩A equals the intersection of the affine hull of Bh with A. Hence the primal
shatter function is O(md).
5.2.1(b). �log2(2d1 + 2d2)� ≤ 1 + max(d1, d2) by (a).
5.2.1(c). We have π∗

S(m) ≤ π∗
S1

(m)π∗
S2

(m); a little more precise bound is
π∗
S(m) ≤ max{π∗

S1
(m1)π∗

S2
(m2): m1 + m2 = m}.

5.2.2(a). Any set in convex position is shattered.
5.2.2(b). Place the d-point set A to be shattered on a short arc of a circle.
Make C nearly a circular disc, and for each B ⊆ A, construct a piece of the
boundary of C that cuts off exactly the points of B from A when C is rotated
appropriately.
5.2.2(c). Argue that the dual shatter function is O(m2).
5.2.3. By induction on d, prove that there exists a d-point set A ⊂ R and
an εd > 0 such that for any B ⊆ A, Sa ∩ A = B holds for all a from an
interval of length εd. In the inductive step, add a number to A much larger
than max A.
5.2.4(a). Let A be the incidence matrix of S. A shattered subset in S∗ of
size 2d means a 2d×22d

submatrix M in A whose columns are all possible 0/1
vectors of length 2d. One can select a 2d × d submatrix from M whose rows
are all possible 0/1 vectors of length d, which yields a d-element shattered
subset for S.
5.2.4(b). Consider the set system dual to (X, 2X).
5.2.5(b). Take all subsets of {1, 2, . . . , n} consisting of at most d intervals of
consecutive numbers.
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5.2.6. For (i), lower-bound the probability q that a random set of size s misses
a fixed k-point set. This q can be made at least n−δ for any prescribed δ > 0
by choosing c small enough. The probability that (i) fails is ≤ nk(1 − q)m.
For (ii), consider a fixed 3-point set and independent random sets R1, . . . , R4

of size s; estimate the probability q1 that R1 contains all the 3 points and
R2, R3, R4 each contain at least 2 of the 3 points. One gets q1 = O((s/n)9).
The probability that (ii) fails is ≤ n3m4q1.
5.2.8(a). For each fixed s-element multiset N that is not a 1

r -net, fix a
“witness set,” i.e. a set SN ∈ S with μ(SN ) ≥ 1

r and SN ∩N = ∅. Show that
the probability of (random) M hitting SN in ≥ s

r elements is Ω(1). This is a
calculation with a binomial distribution, and Chernoff type estimates can be
used.
5.2.8(c). The random N and M as in (a) can be obtained by first selecting
a random N0 by 2s draws and then randomly dividing it into N and M . For
every fixed N0, there are O(sd) distinct intersections of the form R = S ∩N0

with S ∈ S. For each such intersection R, use (b). This yields that for any
fixed N0, the probability of “∃S ∈ S: S∩N = ∅ and |S∩M | ≥ s

r ” conditioned
on N ∪ M = N0 is o(1). Hence the r.h.s. in (a) is o(1).
5.2.9(a). In terms of the incidence matrix: we are given b a-element 0/1
vectors. Append d− a elements to each of these b vectors in such a way that
b distinct d-element vectors are obtained. These all occur as rows in the 2d×d
incidence matrix of G.
5.2.9(b). Call two vertices from A, the class with n vertices, equivalent if
the have the same neighborhood in the other class B. If any equivalence
class has at least m vertices, we find a homogeneous subgraph on m + m
vertices. Otherwise, there are more than Φd−1(2m − 1) equivalence classes.
Each of them defines a subset of B, and by the Shatter function lemma 5.9,
B contains a d-element set shattered by these subsets. By (a), this gives an
induced copy of H, a contradiction.
5.2.10(b). To each function f in a given family F , assign the polynomial
pf =

∏n
i=1

∏
1≤j≤k, j �=f(i)(xi − j). Check that they are linearly independent

in the vector space of real functions with domain F , and consider their linear
span. Show that this space is generated by the monomials in x1, . . . , xn in
which at most d of the xi occur in power k − 1 and the others in powers at
most k − 2. To reduce a monomial in which the xi with i ∈ A have powers
k − 1, |A| = d + 1, use a suitable multiple of

∏
i∈A

∏
1≤j≤k, j �=fA(i)(xi − j),

where fA:A → {1, 2, . . . , k} witnesses that A is not k-shattered by F .
5.2.10(c). Induction on n for d fixed: Choose some x ∈ X. Let F1 consist
of the functions of F restricted to X \ {x}, and for each 2-element subset
{i, j} ⊆ {1, 2, . . . , k}, let Fi,j consist of the functions on X \ {x} such that
their extension to X with value i at x lies in F and also the extension with
value j at x is in F . No Fi,j has a 2-shattered subset of size d.
5.2.10(d). Consider all functions attaining at most d values �= 1.
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5.3.1(a). Fix an intersection v at distance r
2 from x and a line � passing

through v. Go from v along � in a suitable direction, and count r
2 intersections

v1, . . . , vr/2. From each vi, follow the line intersecting � at vi and mark r
2

intersections along that line. Quadratically many intersections are marked,
each at most twice.
5.4.1. Take about

√
n halfplanes in general position, and place a point into

each 2-dimensional cell of the arrangement of their bounding lines. Each edge
of any matching crosses some boundary, so some boundary crosses Ω(

√
n)

edges.
5.4.2. Construct a matching with the appropriate crossing number, delete
one endpoint of each edge, and iterate.
5.4.3(a). We have E [SiSj ] = 1

4 for i �= j, and E
[
S2

i

]
= 1

2 . Thus, E
[
S2
]

=
1
4n(n + 1).
5.4.3(b). Use Theorem 5.17 and a random coloring as in the proof of Theo-
rem 5.4. Compute the expected value of the L2-discrepancy using (a).
5.4.3(c). The expectation of Sp can be calculated as in (a) for p an even
integer. A perhaps simpler approach is to use the Chernoff tail estimate as
in Section 4.1 for S.
5.5.2. Let Fi be the sets of size 2i; we have |Fi| = O((n/2i) log n), and the de-
composition of a rectangle uses at most about log n sets of each Fi. Hence the
resulting discrepancy of the partial coloring for rectangles is O(log n

∑
i Δi).

Let i0 be such that 2i0 ≈ log n (this is the critical size since we have about
n sets in Fi0), and set Δi = C

√
log n ϕ(i) with ϕ(i) as in the proof of Theo-

rem 5.3 and C a sufficiently large constant. This leads to a partial coloring
with O(log3/2 n) discrepancy.
5.5.3. Let Si be the canonical intervals of size 2i; we have |Si| ≤ kn/2i.
For i0 with 2i0 ≈ k we have about n sets in Si0 ; this is the critical size.
Set the discrepancy bound Δi for Si to C

√
k ϕ(i) with ϕ(i) as in the proof

of Theorem 5.3, and show the existence of a partial coloring with O(
√

k)
discrepancy. Iteration presents no problem since Pk restricted to a subset is
again induced by k permutations on that subset.
5.5.4(a). Define canonical arithmetic progressions as sets the form

{k2qd + r, (k2q + 1)d + r, (k2q + 2)d + r, . . . , (k + 1)2qd + r},

where d = 1, 2, . . ., r = 1, 2, . . . , d, q = 0, 1, 2 . . .. Each set of An can be
decomposed into canonical progressions using at most two canonical progres-
sions of each size. Let Sj be the system of canonical progressions of size 2j .
Check that |Sj | = O(n2/22i). Hence, substituting i = log2 n− j, the number
of sets of a given size is exactly as in the proof shown in the text (for d = 2),
and the choice of Δi and the entropy calculation can be just copied.
5.5.4(b). Use canonical progressions similar to (a), but only “counting” the
numbers present in X. Show that this time the number of canonical progres-
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sions of size 2j is O(nm/22j), and the entropy calculation works out with the
same Δj .
6.1.1. Let N and m be as in the planar proof, and for each d-tuple of indices
(i1, . . . , id) with ik ≥ 0 and

∑
ik = m, define one function fi1,...,id

on the
2i1 ×· · ·×2id grid of small boxes, analogously to the planar case. The number
of these functions is M =

(
m+d−1

d−1

)
, and the resulting bound is

∫
D2 ≥

c2−4dM with an absolute constant c > 0.
6.2.2(a). Consider the coordinate index k in which the condition is violated,
and let s be the largest integer occurring among r

(1)
k , . . . , r

(�)
k an odd number

of times. The one-dimensional integral of f with all coordinates except for
xk fixed and with xk running through a binary canonical interval of length
2−s is always 0.
6.2.2(b). Example: (6, 6, 3), (6, 1, 8), (12, 1, 2), (7, 6, 2), (12, 0, 3), (7, 0, 8).
6.2.3(a). Expanding the (2t)-th power, we need to count the number of
ordered (2t)-tuples of nonnegative integer vectors with component sum m
that satisfy the condition in (a) of the previous exercise. It suffices to fix the
first d− 1 coordinates of each vector (the dth one can be calculated). In each
coordinate, there are t pairs of equal entries, each entry between 0 and m.
First fix the pairing (at most (2t)t choices) and then the entries in each pair
(at most (m + 1)t choices).
6.2.3(b). Let q be the conjugate exponent to p, i.e. with 1

p + 1
q = 1. We

may assume that q = 2t is an even integer. Hölder gives
(∫

|D|p
)1/p ≥

∫
FD/

(∫
|F |q

)1/q. Use (a) to estimate the denominator.
6.3.1. If R0 cannot be completed to a square contained in [0, 1]2 then its
shorter side is at least 1

3 . Subtract 1 or 2 squares from R0, obtaining a good
starting rectangle.
6.3.2(a). Let P = [0, 1)2 ∩ {ia + j

na : i, j ∈ Z}.
6.3.2(b). Let � be a line passing through one vertex of T and through the
midpoint of the opposite side. Another line �′ is parallel to � and passes
through another vertex of T . Consider the family of evenly spaced parallel
lines containing � and �′ as neighboring lines, and place points of P equidis-
tantly along lines of this family with a suitable spacing.
6.4.1(a). By motion invariance, s may be taken as the segment from (0, 0)
to (0, a).
6.4.1(b). Each line intersecting K, up to a set of measure 0, intersects exactly
2 sides, so the sets for sides form a “double cover.”
6.4.1(c). Use (b) and a limit argument.
6.4.2(b). 8.
6.4.3(c). See e.g. the book [BFR89].
6.6.2(a). Define D̃ exactly as in the proof in the text. A formula analo-
gous to (6.10) is obtained, with the integration according to the Lebesgue
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measure replaced by integration according to μ. Only the “mixed” term has
to be estimated, and here one has

∫
R2 |J(p, x)|dμ(x) ≤ O(w)μ(B(p, 4w)) +

∫
‖p−x‖>4w

O
(

w4

‖p−x‖3

)
dμ(x) = O

(
w1+α +

∑∞
k=0

w4

(2k+2w)3
μ(B(p, 2k+3w))

)
=

O(w1+α). The total contribution of the mixed term is O(n2w1+α), and set-
ting w = cn−1/α will do.
6.6.2(b). Note that a ball of radius mr can be covered by O(m2r) balls of
radius r. Thus, the sum

∑∞
k=0

w4

(2k+2w)3
μ(B(p, 2k+3w)) is still dominated by

the first term, and the estimate of the mixed term remains the same.
6.6.3. In this case, J(p, q) = −4‖p−q‖Δ2

1g2(0), where g2(x) =
√

1 + xh2 with
h = w/‖p−q‖. By (6.3), we get Δ2

1g2(0) = g′′2 (ξ) for some ξ ∈ (0, 2), and since
g′′2 (x) = −h4/4(1+xh2)3/2 is clearly ≤ 0 for all x and all h (this is the advan-
tage of this approach—the derivatives are very simple), J(p, q) ≥ 0 follows.
For the proof in dimension d, let t = �d/2�+1, embed Rd into Rd+t, and set

D̃(A) =
∑

b∈{0,1}t(−1)
∑t

j=1
bj D(A−

∑t
j=1 bjwj), where wj has w at position

d+j and 0’s elsewhere. This leads to J(p, q) = (−1)t+12t‖p−q‖Δt
1g2(0). The

derivative g
(t)
2 (x) is (−1)t+1Cth

2t(1+xh2)−t+1/2 with a positive constant Ct,
hence J(p, q) ≥ 0. See [CMS95] for details (in that paper, the proof is pre-
sented with a discrete set Q replacing the continuous Lebesgue measure, but
conceptually it is the same).
6.6.4. Three times the measure of the planes intersecting a unit segment.
6.6.5. Take q = p + w.
6.7.1. We get gij = max(i, j). The Gram matrix has rank d + 1, and this is
not possible for vectors in Rd.
6.7.2. Let D = {x1, x2, . . .} be a countable dense set in X. Put Xn =
{x1, x2, . . . , xn}, and by induction on n, construct isometries fn:Xn → �2
such that fn+1 restricted to Xn coincides with fn, using the fact stated in
the exercise. Then f =

⋃∞
n=1 fn is an isometric embedding D → �2. Extend

f to the whole X by sending the limit of each Cauchy sequence to the limit
of the image of the sequence.
6.7.3. Use the inequality ‖y‖2 ≥ 0 with y =

∑n
i=1 τivi.

6.7.5(a). Follow the proof of Lemma 6.15 but use the function ϕ(x) =
(1 − e−x2

)/x1+α.

7.1.2. First prove that if g, h are such that g, h, gh ∈ L1(R2), then
∫
R2 gĥ =

∫
R2 ĝh. Apply this with g = f , h = f̂ (the complex conjugate of the Fourier

transform).
7.1.4. Proceed as in the proof of Theorem 3.1 and take advantage of the fact
that a small square intersects fewer squares of the grid.
7.1.5. Choose ξ = (ξ1, 0) with ξ1 large, and such that r2ξ1 is an integer
multiple of π and (r1ξ1 mod π) ∈ [π/4, 3π/4], say. By similar estimates as
in the proof of the Amplification lemma, show that hr1(ξ) ≈ r1/ξ3

1 (use that
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sin2(r1ξ1 cos ϑ) ≈ 1 for 0 ≤ ϑ ≤ 1/r1ξ1) but hr2(ξ) is much smaller than
r2/ξ3

1 (here sin2(r2ξ1 cos ϑ) is close to 0 for 0 ≤ ϑ ≤ C/r2ξ1, for C sufficiently
large, and the integral over C/r2ξ1 ≤ ϑ ≤ π/4 is always small).
7.1.6. Evaluate the Fourier series of f(x) = D(P,Bx,a) (with a fixed). Use
the Parseval equality and then integrate over a ∈ [0, 1]d. This leads to the
expression

D2(P, R̃d)2 = 3−d
∑

m∈Zd\{0}

|P̂ (m)|2
∏d

k=1 max(|mk|2, 1)
·
(

3
2π2

)nnz(m)

,

where nnz(m) is the number of nonzero components of m.
7.1.7(a). Use the Fourier expansion B2(x) =

∑
m∈Z\{0}

1
2π2m2 e2πimx.

7.1.8. Use the expansion of B2(x) in the hint to Exercise 7(a) and the hint
to Exercise 6.
7.2.1(a). For t2 ≤ a2, simply use e−4−it2 ≤ 1. Otherwise, the largest term is
the one with 2i ≈ t, giving about t−2, and for i getting larger or smaller the
terms decrease fast enough.
7.2.1(b). For ξi ≤ s−1 use sin(rξi) ≈ rξi. In the case ξ1, ξ2 > s−1, one can
argue (for instance) that for at least 3

4 of the r in (0, s), we have sin2(rξ1) ≥
1
10 , say, and similarly for at least 3

4 of the r we have sin2(rξ2) ≥ 1
10 .

7.3.1. Use a suitable 7-point configuration (arising by gluing 4 equilateral
triangles).
7.3.3. Use a pattern of concentric annuli whose width decreases with radius;
see [GRS90].
7.3.4. Use strips of width

√
3/2.

7.3.5. Consider the regular simplex of a suitable larger dimension.
7.3.6. See [GRS90].
7.3.7. The negation of the theorem means that there exists a set A with
δ(A) > 2ε and a sequence λ1 < λ2 < · · · of numbers tending to infinity such
that no two points of A have distance λj for any j. We may assume λj+1 ≥
2λj . For j0(ε) as in the proposition, let R > λj0 be such that vol(B(0, R) ∩
A)/ vol(B(0, R)) ≥ ε. Apply the proposition with ( 1

RA) ∩ B(0, 1) in the role
of A and with tj = λj/R, obtaining a contradiction.
7.3.9(a). For instance: Set f(r) = σ̂(r, 0). We have f(0) = 1, and f is
differentiable at 0 (even analytic); by the symmetry of σ̂, the derivative at
r = 0 must be 0. Therefore even |f(r) − f(0)| = o(r) as r → 0.

7.3.9(c). We have ÎA(0) = ε, and
∣∣∣ÎA(ξ) − ÎA(0)

∣∣∣ = 1
2π

∣∣∫
A

ei〈x,ξ〉 − 1 dx
∣∣ ≤

1
2π

∫
A
|〈x, ξ〉|dx by (b), and since A ⊆ B(0, 1) the last integral is bounded by

‖ξ‖ vol(A). Part (a) can also be done in much the same way.
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