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7.1 Arbitrarily Rotated Squares 225

A AA

(a) (b) (c)

Fig. 7.1. Three kinds of discrepancy: for intersections with the unit square (a),
toroidal (b), whole plane (c).

(I hope that all this may be a sufficient excuse for including several nice pic-
tures.) Of course, for 16-point sets, the differences in discrepancies of various
sets are not so drastic, but for larger sets the pictures of the Fourier transform
have too erratic structure to be presented reasonably.

Bibliography and Remarks. The material of this section is based
on Beck’s results as presented in [BC87].

The Fourier transform method was introduced to discrepancy the-
ory by Roth [Rot64], for proving a lower bound for the discrepancy
of arithmetics progressions. Beck developed it to considerable extent
for proving lower bounds in Lebesgue-measure discrepancy ([Bec87],
[Bec88a]; most of the material is also in [BC87]). Independently, Mont-
gomery [Mon89] obtained many similar results in the planar case (some
are nicely presented in [Mon94]).

Let us give a brief overview of some known lower bounds for
the Lebesgue-measure discrepancy (excluding the case of axis-parallel
boxes). This is complicated, among others, by the fact that the lower
bounds were proved in several similar but technically different set-
tings. For introducing these settings, let us speak about discs in the
plane for definiteness, with obvious possibilities of generalization to
other shapes and higher dimensions.
Four Settings for Discrepancy Lower Bounds. The first setting is the
one we have used throughout the text. Speaking about the discrep-
ancy for discs, we actually mean the discrepancy for intersections of
discs with the unit square, as in Fig. 7.1(a). Next, one can insist that
the discs be completely contained in the unit square (so we restrict
the considered family); lower bounds in this setting are stronger and
generally more difficult. Let us refer to this setting by phrases like “the
discrepancy for completely contained discs.”

Another setting, intermediate between these two, is the so-called
toroidal discrepancy. Here the point set and the discs reside in the
unit torus Rd/Zd. This can be visualized as in Fig. 7.1(b): we can
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imagine that the point set P still lies in the unit square but instead
of intersecting the discs with the unit square, we take them “mod-
ulo 1.” That is, instead of the set A ∩ [0, 1]2 we consider the set
{A} = {({x} , {y}): (x, y) ∈ A}.3 Lower bounds for the toroidal dis-
crepancy imply lower bounds in the first setting (for sets of bounded
diameter, that is) but not for the completely contained case. The
toroidal discrepancy is technically advantageous since the group of
translations in the unit torus is compact, and as a consequence, one
gets a discrete-valued Fourier transform .

Finally, Beck considered, in several of his works, what one might
call a “whole-space setting” (Fig. 7.1(c)). Here the point set is infinite
and spread out to the whole plane, and the discs have a constant-
bounded diameter (in Beck’s papers, the situation is also re-scaled by
a factor of n1/d, so that there is about one point per unit volume
of space; here, for simplicity, we do not re-scale). Note that here n
only enters the situation as the factor multiplying the volume in the
definition of discrepancy. The toroidal discrepancy can be regarded as
a special case of the whole-plane setting, where the plane is periodically
tiled with copies of the unit square with the considered n-point set in
it.
Discs and Balls. The crucial difference between the discrepancy for
axis-parallel boxes (logarithmic behavior) and the discrepancy with
rotation allowed (grows like a fractional power of n) was first shown by
Schmidt, answering a question of Erdős [Erd64]. In [Sch69a], Schmidt
proved that the toroidal discrepancy for arbitrarily rotated boxes in
R3 is at least Ω(n1/6) (recall that the near-tight bound is Ω(n1/3)). In
[Sch69c], he established the bound Ω(n1/2−1/2d−ε), with an arbitrarily
small fixed ε > 0, for the toroidal discrepancy for balls in Rd. This is
already tight up to the ε in the exponent. He also obtained a nontrivial
bound, although with a much smaller exponent, for the discrepancy for
balls completely contained in the unit cube. Here a near-tight bound
of Ω(n1/2−1/2d−ε) is due to Beck [Bec87],[BC87].
Halfspaces and Spherical Caps. We recall that the tight Ω(n1/2−1/2d)
lower bound for halfspaces was established by Alexander [Ale90],
[Ale91]. A predecessor of this result was the bound of Ω(n1/4 log−7/2 n)
for Roth’s disc segment problem proved by Beck. Here n points are
placed in the disc of unit area (instead of the unit square), and the
discrepancy for halfplanes is considered, or rather the discrepancy
for the intersections of the disc with halfplanes—the “disc segments”
(more details can be found in [BC87]). Note that this result implies
the slightly suboptimal Ω(n1/4 log−7/2 n) lower bound for the combi-
natorial discrepancy for halfplanes.

3 Recall that {x} denotes the fractional part of x. Toroidal discrepancy was already
mentioned in the remarks to Section 1.2.
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Schmidt [Sch69b], [Sch69c] considered the discrepancy for spherical
caps on the sphere Sd, as well as the discrepancy for spherical slices,
which are the intersections of two hemispheres in Sd. He proved the
Ω(n1/2−1/2d−ε) bound in both cases. For caps, this was subsequently
improved by Beck [Bec84] to the near-tight Ω(n1/2−1/2d). For spherical
slices, the same lower bound was shown much later by Bümlinger
[Blü91]. He defined a suitable measure on the slices and established
the following surprising fact: for any point set P ⊂ Sd, the L2-discrep-
ancy of P for slices is at least a constant multiple of the L2-discrepancy
of P for caps (it would be interesting to find a simple proof). The lower
bound for slices then follows from Beck’s result for caps.
Copies of a Fixed Convex Set. Beck [Bec87],[BC87] showed that the
family of all translated, rotated, and scaled-down copies of an arbitrary
convex body C in Rd has discrepancy Ω(n1/2−1/2d

√
S) in the whole-

space model, where S is the surface area of C. Here one has to assume
that C is not too small or too flat, namely that it contains a ball of
radius n−1/d. Note that this strongly generalizes the results of this
section. In the plane, similar results for the toroidal discrepancy were
independently obtained by Montgomery [Mon89], [Mon94].
Discs of a Fixed Radius. In the paper [Bec88b], Beck studied the dis-
crepancy for discs of a single (fixed) radius. He proved an Ω(n1/4) lower
bound in the weakest setting (intersections with the unit square). For
toroidal discrepancy, Montgomery ([Mon89], [Mon94]) earlier proved
the existence of a disc of radius either 1

4 or 1
2 with Ω(n1/4) discrep-

ancy. These mysterious two radii appear in the result since a certain
linear combination of two Bessel functions turns out to be nonnega-
tive, while the sign of a single Bessel function varies and hence the
method doesn’t work for a single radius.
Translated and Scaled Copies of a Fixed Convex Set. Let A be a
compact convex set in Rd, and let TA be the family of all translated
and scaled-down copies of A (no rotation allowed!). Beck [Bec88a]
(also [BC87]) investigated the discrepancy for such families TA in the
plane, again in the whole-plane model. Here the discrepancy behavior
strongly depends on the smoothness of the boundary of A.

As one extreme, one has a logarithmic upper bound for the square.
Also for convex polygons with a fixed number of sides, the discrepancy
is O(log n) (see the remarks to Section 4.5). From below, Beck shows
an Ω

(√
log(n vol(A))

)
lower bound for any A with vol(A) ≥ 2

n (note
that this includes the case of axis-parallel squares).

On the other hand, if the boundary curve of A is twice continu-
ously differentiable and the ratio of its maximum and minimum cur-
vatures is bounded by a constant, then the discrepancy is at least
Ω
(
n1/4

√
vol(A)/ log(n vol(A))

)
, i.e. essentially the same as that for

circular discs. In general, Beck’s upper and lower bounds can be stated
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in terms of certain “approximability numbers” for A. Namely, let ξn(A)
denote the smallest integer � ≥ 3 for which there exists a convex �-
gon A� inscribed into A such that the area of A \ A� is at most �2/n.
Then we have D(n, TA) = Ω

(√
ξn(A) · log−1/4 n

)
from below and

D(n, TA) = O
(
ξn(A) log4.5 n

)
from above [Bec88a]. The upper bound

is obtained by the partial coloring method and a suitable approxima-
tion argument.

Károlyi [Kár95b] extended these investigations to translated and
scaled-down copies of a d-dimensional convex body, establishing up-
per bounds in terms of suitable approximability by convex polytopes.
The key new part of the proofs are certain geometric decomposition
and approximation results for convex polytopes which become con-
siderably more complicated than in the planar case. Drmota [Drm93]
considered translated and scaled copies of a fixed smooth convex body.
He removed the logarithmic factor in Beck’s planar lower bound and
extend it to higher dimensions: for a fixed sufficiently smooth convex
body A ⊂ Rd, he proved D(n, TA) ≥ c(A)n1/2−1/2d for a suitable con-
stant c(A) > 0.
L1-Discrepancy and One-Sided Discrepancy. Most of these lower
bounds are established for the L2-discrepancy. As for the L1-discrep-
ancy, Beck [Bec89b] proves an Ω(log1/2−ε n) lower bound for discs in
the plane (toroidal discrepancy) by modifying the method of Halász
[Hal81]. The paper [Bec89b] actually aimed at showing that there is al-
ways a disc with large “positive discrepancy” (excess of area compared
to the number of points) and a disc with large “negative discrepancy.”
Perhaps the correct order of magnitude for this question of Schmidt
cannot be gained via the L1-discrepancy.

We should also mention the paper Bourgain et al. [BLM89] dis-
cussed in Section 1.4 as another nice example of discrepancy-type lower
bounds via harmonic analysis.

Exercises

1. Check that the application of Fubini’s theorem in the proof of Theo-
rem 7.1 is legitimate, i.e. that for each ξ ∈ R2, the function F (x, y) =∣∣I−A(x − y)e−i〈x,ξ〉∣∣ has a finite integral over R2 × R2.

2. Let f ∈ L1(R2) ∩ L2(R2) be a real function for which the inversion
formula for Fourier transform holds, i.e. such that

f(x) =
1
2π

∫

R2
f̂(ξ) ei〈x,ξ〉 dξ

for all x ∈ R2. Prove the Parseval–Plancherel equality ‖f‖2 = ‖f̂‖2 under
these assumptions. (Let us remark that he function for which we have
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applied Parseval–Plancherel in the proof is not in L2(R2)! One has to
use a suitable limit argument or something similar.)

3. By modifying the proof shown in this section, prove that for any n-point
set P ⊂ [0, 1]2 there exists a rectangle R with one side of length 1√

n
such

that |D(P,R)| = Ω(n1/4). (See [Cha00].)
4. Show that the lower bound in Theorem 7.1 is tight up to a factor

of
√

log n, i.e. prove that D(n,QR) = O(n1/4
√

R log n) (where 1√
n

≤
R ≤ 1).

5. The goal of this exercise is to show that the averaging over r used in
the proof in this section is indeed essential for this proof method. With
notation as in the proof, define a function

hr(ξ) = ave
ϑ

gr,ϑ(ξ).

Show that for any positive real numbers r1 < r2 and any positive constant
C > 0 there exists a ξ ∈ R2 such that the“amplification” fails at ξ by a
factor of at least C, that is, hr2(ξ)/hr1(ξ) ≤ 1

C
r2
r1

.
6.∗ (Diaphony) Recall the notion of diaphony of a point set and the class

R̃d of axis-parallel boxes modulo 1 introduced in the remarks to Sec-
tion 1.2. Prove that the diaphony of any finite set P ⊂ [0, 1]d is between
two constant multiples of D2(P, R̃d), where the constants depend on the
dimension. Use the Fourier transform on the compact group [0, 1)d with
componentwise addition modulo 1, i.e. the d-dimensional Fourier series
of a d-variate periodic function.
This result and those in the next exercise are from [Lev95].

7. (More on diaphony)
(a)∗ From the remarks to Section 1.2, recall the notion of diaphony of a
point set. Prove that the diaphony of P equals

(
−n2 +

∑

p,q∈P

d∏

k=1

(
1 + 2π2B2({p − q})

))1/2

,

where B2(x) = x2−x+ 1
6 is the Bernoulli polynomial of degree 2. (This is

analogous to Warnock’s formula 2.14 for the L2-discrepancy for corners.)
(b) Show that diaphony is translation-invariant; that is, the diaphony of
P equals that of of {P + x}.

8.∗ (Toroidal L2-discrepancy for boxes) Derive the following analogue of
Warnock’s formula 2.14 for the L2-discrepancy for the class R̃d of axis-
parallel boxes “modulo 1” discussed in the remarks to Section 1.2:

D2(P, R̃d)2 = −n2

3d
+
∑

p,q∈P

d∏

k=1

(1
3

+ B2({pk − qk})
)
,

where B2(x) = x2 − x + 1
6 is the Bernoulli polynomial of degree 2.

This formula was calculated by Lev (private communication).
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7.2 Axis-Parallel Cubes

Here we prove the following result, thereby also providing an alternative proof
of Roth’s lower bound for axis-parallel boxes (Theorem 6.1):

7.6 Theorem. For any n-point set P in the unit cube [0, 1]d, there exists an

axis-parallel cube Q contained in [0, 1]d with |D(P,Q)| = Ω(log(d−1)/2 n).

Let us remark that for d = 2, Theorem 6.3 gives a better (and tight)
bound by a completely elementary argument, by a reduction from Schmidt’s
lower bound for rectangles. On the other hand, no similar reduction relating
the discrepancy for cubes to that for axis-parallel boxes is known for higher
dimensions. Theorem 7.6 can also be turned, with little more work, into an
L2-discrepancy lower bound.

As usual, we present the proof of Theorem 7.6 in the planar case, since
the higher-dimensional generalization brings nothing really new.

A large part of the setup for the proof is taken over from the preced-
ing section. We consider an arbitrary but fixed n-point set P in the unit
square, and we let D be the corresponding signed measure, given by D(A) =
D(P,A) = n · vol�(A) − |P ∩ A|. The function D̂(ξ) =

∫
R2 e−i〈x,ξ〉 dD(x) is

the Fourier transform of D. For a set A, ΔA denotes the discrepancy function
for translates of A, i.e. ΔA(x) = D(A + x). Let us write Q(a) for the square
[−a, a]2.

In order to handle squares crossing the boundary of [0, 1]2, we will consider
the discrepancy for squares that are not too big, namely with side at most
s = n2/5. The heart of the proof is

7.7 Lemma. We have

ave
r∈(0,s)

∥∥ΔQ(r)

∥∥2
2

= Ω(log n).

Proof of Theorem 7.6 for d = 2 from Lemma 7.7. This is simple
but there is a small subtlety in handling the squares on the boundary (recall
that the theorem claims the existence of a square with large discrepancy lying
within [0, 1]2). We distinguish two cases: either all axis-parallel squares of side
at most s have discrepancy below 5ns2, or there is an axis-parallel square Q0,
not necessarily fully contained in [0, 1]2, with discrepancy at least 5ns2. In
the former case, for r ≤ s, the set

{x ∈ R2: Q(r) + x intersects the boundary of [0, 1]2}

has measure O(r) and so its contribution to ‖ΔQ(r)‖2
2 is at most O(r) ·

(5ns2)2 = O(n2s5) = O(1). Hence there must be squares with Ω(
√

log n)
discrepancy fully contained in [0, 1]2. In the latter case, illustrated in the fol-
lowing picture,
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Q0

Q1

consider a square Q1 ⊂ [0, 1]2 with side s and containing Q0 ∩ [0, 1]2. Since
the discrepancy of Q0 is larger than n · vol�(Q0) ≤ 4ns2, it must be caused
by excess of points of P in Q0, and in particular, |Q0 ∩ P | ≥ 5ns2. It follows
that Q1 has discrepancy at least ns2 = n1/5 = Ω(

√
log n). �

Remark. Here we could get rid of the squares intersecting the boundary
easily, since the discrepancy for small squares (of side about s = n2/5) is still
large enough. On the other hand, for squares with rotation allowed, say, we
need squares with side Ω(1) to get the tight lower bound for discrepancy,
and these large squares are harder to prevent from intersecting the bound-
ary. Similar effects make it difficult to achieve tight lower bounds when the
discrepancy grows as a power of n and we insist that the shape with large
discrepancy be fully contained in the unit square.

Proof of Lemma 7.7. By the point component/shape component separa-
tion lemma 7.4 and by Fubini, we have

ave
r∈(0,s)

‖ΔQ(r)‖2
2 =

∫

R2

(
ave

r∈(0,s)
|ÎQ(r)(ξ)|2

)
· |D̂(ξ)|2 dξ.

Write G(ξ) = ave
r∈(0,s)

|ÎQ(r)(ξ)|2. The general strategy is to exhibit a “magic”

function H(ξ) for which we know, on the one hand, that
∫
R2 H(ξ) · |D̂(ξ)|2 dξ

is large, and for which we prove, on the other hand, that G(ξ) = Ω(H(ξ))
uniformly for all ξ.

We define H(ξ) =
∑

j∈J |ĥj(ξ)|2, where J is an index set with about
log n elements and the hj are certain suitable functions. More precisely, we
let m be the smallest integer with 2m ≥ 40n, and we let J denote the set
of all ordered pairs j = (j1, j2) of integers with j1 + j2 = m, 2−j1 ≥ s and
2−j2 ≥ s. (For our planar case, we could obviously index the pairs in J by
the j1-component only, but for higher dimensions, we do need indexing by
vectors.) The function hj is given by

hj(x) = exp
(
− 1

2 (22j1x2
1 + 22j2x2

2)
)
.

The level sets of hj are ellipses; for example, the set {x ∈ R2: hj(x) ≥ e−1/2}
is the ellipse with semiaxes 2−j1 and 2−j2 .

To see what is going on, let us imagine for a moment, just for the sake
of illustration, that we used the characteristic function IRj

of the rectangle
Rj = [−2−j1 , 2−j1 ] × [−2−j2 , 2−j2 ] instead of hj (on a very crude level, hj

and IRj
are somewhat similar as density functions in the plane, as Fig. 7.2
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Fig. 7.2. The functions hj and IRj for j1 = 1 and j2 = 2.

indicates4). The rectangle Rj has area 4·2−m ∈ [ 1
10n , 1

20n ]. By a consideration
similar to the proof of the Trivial discrepancy lemma 7.3, we see that a large
fraction of the translated copies of Rj have discrepancy at least a small
positive constant, and so ‖ΔRj

‖2 = Ω(1). By the point component/shape
component separation, we also have

‖ΔRj
‖2
2 =

∫

R2
|ÎRj

(ξ)|2 · |D̂(ξ)|2 dξ,

and so by putting H̃(ξ) =
∑

j∈J |ÎRj
(ξ)|2, we obtain a function H̃ with

∫

R2
H̃(ξ) · |D̂(ξ)|2 dξ = Ω(|J |) = Ω(log n).

This is all fine, but unfortunately, it is not true that H̃(ξ) = O(G(ξ)) for all
ξ. On the other hand, the situation is not so bad, since the estimate of H̃(ξ)
by a multiple of G(ξ) only fails for ‖ξ‖ large. Here an old wisdom in harmonic
analysis helps: the smoother a function f is the faster the Fourier transform
f̂(ξ) converges to 0 as ‖ξ‖ → ∞. This is the reason for replacing the highly
non-smooth characteristic function IRj

by the very smooth function hj and
defining H(ξ) =

∑
j∈J |ĥj(ξ)|2.

In order to mimic the “trivial discrepancy” lower bound with the functions
hj , we need to generalize our notation a little. Namely, for a function f :R2 →
R, we set

Δf (x) =
∫

R2
f(y − x) dD(y)

4 And, the system of the rectangles Rj somewhat resembles the rectangles appear-
ing in the proof of Roth’s lower bound for corners (Theorem 6.1).
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(note that for the characteristic function IA of a set A, ΔIA
in the new

notation is the same as ΔA in the previous notation). We can state two
lemmas which together imply Lemma 7.7 in the manner indicated above.

7.8 Lemma (Trivial discrepancy for the hj). For all j ∈ J , we have
‖Δhj

‖2 = Ω(1).

7.9 Lemma (Pointwise bound). For an absolute constant C, we have
H(ξ) ≤ C · G(ξ) for all ξ ∈ R2.

Before proving these lemmas, we recall two facts from calculus concerning
the function e−x2

(applied in our specific setting). These have already been
addressed in Section 6.7 and so we omit further discussion here.

7.10 Fact.

(i) ĥj(ξ) =
1

2j12j2
exp
(
−1

2

( ξ2
1

22j1
+

ξ2
2

22j2

))
.

(ii)

∫

R2
hj(x) dx =

2π

2j12j2
.

Proof of Lemma 7.8. Let Ej denote the level set {hj ≥ e−1/2}, i.e. the
already mentioned ellipse with semiaxes 2−j1 and 2−j2 . We calculate

−Δhj
(x) = −

∫

R2
hj(y − x) dD(y)

=
∑

p∈P

hj(p − x) − n

∫

[0,1]2
hj(y − x) dy

≥ |(P − x) ∩ Ej | · e−1/2 − n

∫

R2
hj(z) dz

≥ 1
2 |(P − x) ∩ Ej | − 1

4

(we have used Fact 7.10(ii) and 2π
2j12j2 = 2π

2m ≤ 1
4n ). Hence |Δhj

(x)| ≥ 1
4 |(P −

x) ∩ Ej | for all x ∈ R2, and integration gives

‖Δhj
‖2
2 ≥ 1

16

∫

R2
|(P − x) ∩ Ej |2 dx ≥ 1

16

∫

R2
|(P − x) ∩ Ej |dx

= 1
16 n · vol(Ej) = 1

16 n · π · 2−j12−j2 = Ω(1).

This proves Lemma 7.8. �

Sketch of Proof of Lemma 7.9. This is again a good training in estimates.
We have, by Fact 7.10(i),

H(ξ) =
∑

j∈J

|ĥj(ξ)|2 =
∑

j∈J

(
e−ξ2

1/4j1

4j1

)(
e−ξ2

2/4j2

4j2

)

≤
( ∑

2j1≥1/s

e−ξ2
1/4j1

4j1

)( ∑

2j2≥1/s

e−ξ2
2/4j2

4j2

)
.
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A further calculation gives (see Exercise 1(a)) the estimate H(ξ) = O(F (ξ))
with

F (ξ) = min
(

s2,
1
ξ2
1

)
min

(
s2,

1
ξ2
2

)
.

As the next step, we want to show that F (ξ) = O(G(ξ)). The Fourier trans-
form of IQ(r) has already been calculated in the proof of the Amplification
lemma 7.5, and also the estimates made there are similar to those needed
here, so we leave the remaining calculation as Exercise 1(b). �

Bibliography and Remarks. This section again follows Beck and
Chen [BC87]. The proof is also reproduced, with detailed calculations
and with all constants made explicit, in Drmota and Tichy [DT97]. A
slightly different proof for the planar case was given by Montgomery
[Mon94].

Exercises

1. (a) Prove the estimate
∑

i∈N: 2i≥a e−4−it2/4i ≤ C min(a−2, t−2), a ≥ 1,
with some constant C.
(b) Prove that

ave
r∈(0,s)

[sin2(rξ1) sin2(rξ2)/ξ2
1ξ2

2 ] ≥ cmin(s2, ξ−2
1 )min(s2, ξ−2

2 )

for a suitable constant c > 0 and all ξ1, ξ2, and s > 0. Finish the proof
of Lemma 7.9.

2. Generalize the proof of Theorem 7.6 to an arbitrary fixed dimension d.

7.3 An Excursion to Euclidean Ramsey Theory

This section is a detour from our main theme. But it shows a nice application
of harmonic analysis similar to those in discrepancy lower bounds. The result
is not so far away from discrepancy theory either, since it is a Ramsey-type
theorem—see Section 1.4.

The result to be discussed belongs to the field of Euclidean Ramsey theory.
Here is a simple illustrative problem in this area. Suppose that each point in
the plane is colored either red or blue. Can we always find two points with unit
distance having the same color? Oh yes, we can: consider the three vertices
of an equilateral triangle. What if we have 3, 4, or more colors? For 3 colors,
the answer is still positive (Exercise 1), but for 7 colors it is negative—there
exists a 7-coloring of R2 such that no two points with unit distance have the
same color. What happens for 4, 5, or 6 colors is still an open problem.
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More generally, Euclidean Ramsey theory is concerned with problems of
the following sort. Let K be a finite configuration of points in Rd, and suppose
that each point of Rd is colored by one of r colors. Does there necessarily
exist a congruent copy of K (i.e. translated and rotated, no scaling) with
all points having the same color? In particular, a finite set K ⊆ Rd is called
Ramsey if for any number r of colors there exists a dimension d′ ≥ d such that
for any r-coloring of Rd′

we can find a monochromatic congruent copy of K.
Ramsey sets have been investigated intensively but so far only partial results
are known. For a set to be Ramsey, it has to be spherical, meaning that all
points of K lie on a common sphere. All affinely independent sets, vertex
sets of regular n-gons, and Cartesian products of Ramsey sets are known
to be Ramsey, but it is not known whether all spherical sets are Ramsey.
The reader can try to discover some of the simpler results of the Euclidean
Ramsey theory in the exercises, or look them up in [GRS90].

One may wonder what happens if we look for a monochromatic parallel
translate of a given configuration K, or for a monochromatic similar copy of K
(instead of a monochromatic congruent copy as above). Here the situation is
much easier. For all configurations K with at least two points, there exists a
coloring of Rd by two colors with no monochromatic parallel translate of K.
On the other hand, a monochromatic similar copy exists for any coloring
(for all d, r, and K), by so-called Gallai’s theorem, which is a relatively easy
generalization of Van der Waerden’s theorem on arithmetic progressions.

After our brief overview, let us proceed to the main theme of this section.
This is a “density” Ramsey-type result. Density results say that if one of the
colors occupies a “big part” of space, then the desired configuration can be
found in that color. In the discussed case, “big part” means a set of positive
upper density, where the upper density δ(A) of a Lebesgue measurable set
A ⊆ Rd is defined by

δ(A) = lim sup
R→∞

vol(B(0, R) ∩ A)
vol(B(0, R))

,

with B(0, R) denoting the ball of radius R centered at 0.

7.11 Theorem (Bourgain’s density Ramsey theorem). Let K be a set
of d affinely independent points in Rd (for example, the vertices of a triangle
in R3), and let A ⊆ Rd be a measurable set of positive upper density. Then
there exists a number λ0 such that for any λ ≥ λ0 the set A contains a
congruent copy of the set λK.

It is not known what other configurations K have this “density-Ramsey”
property.

Although Bourgain emphasizes in his paper that the proof of this theorem
only uses elementary harmonic analysis, I do not dare to present the proof of
the general case. We only prove the planar case of this result, first established
by Katznelson and Weiss by ergodic theory methods:
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7.12 Theorem (Katznelson–Weiss theorem). For every measurable set
A ⊆ R2 of positive upper density there exists a number λ0 such that for any
λ ≥ λ0 the set A contains two points with distance exactly λ.

This theorem will be proved from the following “bounded” version:

7.13 Proposition. For any ε > 0 there exists a natural number j0 = j0(ε)
such that the following is true. Let A ⊆ B(0, 1) be a measurable set with
vol(A) = ε, and let t0 = 1 > t1 > t2 > · · · be a decreasing sequence of real
numbers such that tj+1 ≤ 1

2 tj for all j. Then for some j ≤ j0, the set A
contains two points with distance tj .

The proof of the Katznelson–Weiss theorem 7.12 from Proposition 7.13
proceeds by contradiction, and it is left as Exercise 7.

Fourier Transform of the Unit Circle. From Section 7.1, we will need the
definition of the (two-dimensional) Fourier transform, the inversion formula
(7.1), the Parseval–Plancherel identity ‖f‖2 = ‖f̂‖2, and the convolution
formula f̂ ∗ g = f̂ · ĝ, where (f ∗ g)(y) = 1

2π

∫
R2 f(x)g(y − x) dx.

Let S1 denote the unit circle in R2 centered at 0, and let σ be the one-
dimensional Lebesgue measure on S1 (the whole S1 has measure 2π). It will
be convenient to consider σ as a measure in the whole R2 concentrated on
S1 (everything but the circle has σ-measure 0). The Fourier transform can
also be defined for a measure in R2, instead of for a function. In particular,
for the measure σ we have

σ̂(ξ) =
1
2π

∫

R2
e−i〈x,ξ〉 dσ(x) =

1
2π

∫ 2π

0

e−i(ξ1 cos ϑ+ξ2 sin ϑ) dϑ.

Since the Fourier transform commutes with rotations around the origin
(right?), σ̂ is rotationally symmetric, i.e. σ̂(ξ) only depends on ‖ξ‖. And
since for a real-valued function f (or for a measure, the argument is the
same), f̂(−ξ) is the complex conjugate of f̂(ξ) (Exercise 8), σ̂ is real-valued.
Writing x = ‖ξ‖, we get

σ̂(ξ) = σ̂(x, 0) =
1
2π

∫ 2π

0

Re e−ix cos ϑ dϑ =
1
2π

∫ 2π

0

cos(x cos ϑ) dϑ.

Now this last integral happens to be known as the Bessel function J0(x)
(shown in Fig. 7.3), and one can look up the following estimates (and much
more precise ones) in almost any handbook of mathematical formulas:

|1 − σ̂(ξ)| = O (‖ξ‖) as ‖ξ‖ → 0, (7.4)
|σ̂(ξ)| = O

(
‖ξ‖−1/2

)
as ‖ξ‖ → ∞. (7.5)

But one can also obtain these estimates without relying on the work of old
masters on Bessel functions; it is not impossibly difficult (Exercises 9 and 10).
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Fig. 7.3. Graph of the Bessel function J0(x).

Proof of Proposition 7.13. We have a set A of measure ε > 0 in the unit
disc B(0, 1) and a sequence 1 = t0 > t1 > t2 > · · · with tj+1 ≤ 1

2 tj . The idea
is to introduce a measure on the set of all pairs of points of distance tj and
show that for some j, the set of all pairs with distance tj with both points in
A has a positive measure.

Two points with distance t can be written as x and x − tu, where u is
a point of the unit circle S1 (the unnatural-looking sign “−” will pay off
later, making the notation more convenient). A pair of points with distance
t is thus represented by coordinates (x, u) with x ∈ R2 and u ∈ S1, and
this defines a natural product measure on the considered pairs. We use the
usual planar Lebesgue measure for the x-component and the above-discussed
Lebesgue measure σ for the u-component. The measure of the set of ordered
pairs with distance t and with both points lying in A can be written as

M =
∫

R2

∫

R2
IA(x)IA(x − tu) dxdσ(u), (7.6)

with IA standing for the characteristic function of A (recall that we regard
σ as a measure on R2). We note that the inner integral is a convolution of
two functions. Namely, if we put

F (y) =
∫

R2
IA(x)I−A(y − x) dx,

then F (y) = 2π · (IA ∗ I−A)(y). This is where the two-dimensional Fourier
transform enters the stage. By the convolution theorem, we have F̂ (ξ) =
2πÎA(ξ)Î−A(ξ) = 2π|ÎA(ξ)|2, because Î−A(ξ) = ÎA(−ξ) is the complex con-
jugate of ÎA(ξ). By the inversion formula,

F (y) =
∫

R2
|ÎA(ξ)|2 ei〈y,ξ〉 dξ.

We substitute this into (7.6) and change the order of integration, obtaining
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M =
∫

R2
F (tu) dσ(u)

=
∫

R2
|ÎA(ξ)|2

(∫

R2
ei〈u,tξ〉 dσ(u)

)
dξ =

∫

R2
|ÎA(ξ)|2σ̂(tξ) dξ.

We want to bound M away from 0 for a suitable value of t ∈ {t1, t2, . . . , tj0}.
More precisely, we show that M = Ω(ε2) for some t = tj .

Let us fix a parameter η = cε2, where c is a sufficiently small positive
constant. Let t be some yet unspecified value for which we only assume t ≤ η.
We divide the plane into three regions R1, R2, R3 (depending on t):

0R1
R2

R3

1
ηt

η
t

Let Mi =
∫

Ri
|ÎA(ξ)|2σ̂(tξ) dξ be the integral of our function over Ri. The

plan is to show that M1 is positive and of the order Ω(ε2), and that both M2

and M3 are much smaller in absolute value than M1, whence M = Ω(ε2).
For ξ lying in the inner region R1, we have ‖tξ‖ ≤ η ≤ c, and so by (7.4)

we may assume σ̂(tξ) ≥ 1
2 , say (recall that σ̂ is real-valued). The disc B(0, 1)

is contained in R1, and thus

M1 ≥ 1
2

∫

B(0,1)

|ÎA(ξ)|2 dξ. (7.7)

We claim that ∣
∣ÎA(ξ) − ε

∣
∣ = O(‖ξ‖ε) as ‖ξ‖ → 0, (7.8)

leaving verification to Exercise 9(c). Once one believes in (7.8) it is easy to
see that the right-hand side of (7.7) is at least c1ε

2 for an absolute positive
constant c1.

Next, we show that M3, the integral over the outer region R3, is negligible
compared to ε2, for all t ≤ η. By (7.5), we have |σ̂(tξ)| = O(

√
η) uniformly

for all ξ in R3, and hence

|M3| = O(
√

η)
∫

R3

|ÎA(ξ)|2 dξ

≤ O(
√

η)
∫

R2
|ÎA(ξ)|2 dξ = O(ε

√
η)

because
∫
R2 |ÎA(ξ)|2 dξ =

∫
R2 |IA(x)|2 dx = vol(A) = ε by Parseval–Planche-

rel. By the choice η = cε2 we get that |M3| is much smaller than M1.
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It remains to handle the middle region R2. Here we cannot say much for
one particular t. Certainly

|M2| = O(1)
∫

R2

|ÎA(ξ)|2 dξ

since |σ̂| is uniformly bounded, but, in principle, the integral of |ÎA|2 over R2

could be nearly as large as the integral over the whole plane, which is ε. Here
we must use the possibility of choosing t.

We recall that the annulus region R2 = R2(t) = {ξ: η
t ≤ ‖ξ‖ ≤ 1

ηt depends
on t, and we note that if t′ < η2t then R2(t) and R2(t′) are disjoint. Having
sufficiently many such disjoint regions for various values of t, the integral of
|ÎA|2 over at least one of them must be small. More precisely, we fix integer
parameters q and m (depending on ε) with 2−q < η2 = c2ε4 and m ≥ C

ε
for a large constant C, and we consider the m values tq, t2q, . . . , tmq. The
parameter q was selected so that the respective regions R2(tjq) are mutually
disjoint (recall the assumption tj+1 ≤ 1

2 tj), and hence there is a j ≤ mq such
that

∫
R2(tj)

|ÎA(ξ)|2 dξ ≤ ε
m . This is much smaller than M1 and so we get

that M , the measure of pairs with distance tj with both points in A, has the
order Ω(ε2) for this tj , where j ≤ qm. This concludes the proof. �

Bibliography and Remarks. The ergodic theory proof of The-
orem 7.12, due to Katznelson and Weiss, was published in [FKW90]
long after its discovery, together with several related results. The proof
in this section is adapted from Bourgain [Bou86]. Yet another proof is
due to Falconer and Marstrand [FM86].

An overview of the Euclidean Ramsey theory can be found in
Graham et al. [GRS90]; more recent results are surveyed in Graham
[Gra94]. The fact that all affinely independent sets are Ramsey was
established by Frankl and Rödl [FR90], and regular n-gons being Ram-
sey is a particular case of results of Kř́ıž [Kri91].

Exercises

1. Prove that if the plane is colored by 3 colors, one can always find two
points with unit distance having the same color.

2.∗ Find a 7-coloring of the plane with no monochromatic unit-distance pair.
3.∗ Can you find an r-coloring of the plane such that no color contains two

points with distance 2 together with their midpoint?
4. Find a coloring of the plane by 2 colors such that no color contains 3

points forming the vertex set of an equilateral triangle with unit side.
5. Prove that the vertex set of any regular simplex is Ramsey.
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6.∗∗Prove that if K ⊆ Rs and L ⊆ Rt are Ramsey (and finite) configurations,
then the set

K × L = {(x1, x2, . . . , xs, y1, y2, . . . , yt) ∈ Rs+t: (x1, x2, . . . , xs) ∈ K,

(y1, y2, . . . , yt) ∈ L}

is Ramsey as well. Use Ramsey’s theorem.
7. Prove the Katznelson–Weiss theorem 7.12 from Proposition 7.13.
8. Verify that if f :R2 → R2 is a real-valued function then f̂(−ξ) is the

complex conjugate of f̂(ξ). (And check that this fails for a complex-
valued f in general.)

9. (a) Prove the estimate (7.4).
(b) Prove |eix − 1| = O(|x|) for all real x (in fact, |eix − 1| ≤ |x| is true).
(c) Prove the estimate (7.8); part (b) may be useful.

10.∗ Prove the estimate σ̂(ξ) = 1
2π

∫ 2π

0
cos(‖ξ‖ cos ϑ) dϑ = O(‖ξ‖−1/2).



A. Tables of Selected Discrepancy Bounds

The tables on the next pages summarize some discrepancy bounds for various
set systems and geometric families. Also citations of the original proofs are
shown (where I could find them), as well as references to the relevant parts
of this book. A reference in parentheses, like “(Th. 8.12),” means that the
bound is a simple consequence of another result. For each result, only the
first source (according to my knowledge) is shown, although several proofs
may be known. Sources for earlier, weaker bounds are not given in the tables
either.

An upper bound written as f actually means O(f). A lower bound written
as f means that the considered discrepancy is at least cf infinitely often, for
some positive constant c > 0. But in many cases, one can get an Ω(f) lower
bound as well.

The parameters d and p are considered fixed, and the constants of pro-
portionality may depend on them. The number ε > 0 in the bounds is an
arbitrarily small constant, and the constant of proportionality may again de-
pend on it. Another fixed parameter is the size of the collection H in POL(H)
on page 243.

J. Matoušek, Geometric Discrepancy, Algorithms and Combinatorics 18,
DOI 10.1007/978-3-642-03942-3, c© Springer-Verlag Berlin Heidelberg 2010
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Combinatorial discrepancy: asymptotic bounds
Set system Lower bound Upper bound

Arbitrary m sets
√

m
[OS78], Prop. 4.4

√
m

[Spe85], Th. 4.9

Arbitrary m sets on n
points, m ≥ n

√
n log(2m/n)

Ex. 4.1.1

√
n log(2m/n)

[Spe85], Th. 4.2

Arbitrary m sets of
size ≤ s, m ≥ s

√
s log(2m/s)

(Ex. 4.1.1)

√
s log(2m/s)

Ex. 4.6.4

Set system with max.
degree t

√
t

(Prop. 4.4)
2t − 1
[BF81], Th. 4.3

Set system on n points
with max. degree t

√
t

(Prop. 4.4)

√
t log n

[Ban98]

Set system on n points
with primal shatter
function O(md)

n1/2−1/2d

(Th. 6.4)
n1/2−1/2d

[Mat95], Th. 5.3

Set system on n
points with dual shat-
ter function O(md)

n1/2−1/2d
√

log n
[Mat97],[ARS99]
Ex. 5.1.6

n1/2−1/2d
√

log n
[MWW93], Th. 5.4

Arithmetic progres-
sions on {1, 2, . . . , n}

n1/4

[Rot64], Ex. 4.1.5
n1/4

[MS96], Ex. 5.5.4

Intervals in k permu-
tations on n points

√
k

(Ex. 4.5.5)

√
k · log n

[Sri97], Ex. 5.5.3
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Geometric discrepancy: asymptotic bounds

Discrepancy
type Lower bound Upper bound

Axis-parallel boxes (Rd) and corners (Cd)

D(n,R2)
log n
[Sch72], Th. 6.2 (a)

log n
Prop. 2.2

D(n,Rd),
d ≥ 3

(log n)(d−1)/2+η,
η=η(d)>0 [BLV08]

logd−1 n
[Hal60], Th. 2.4

D2(n, Cd)
log(d−1)/2 n
[Rot54], Th. 6.1 (b)

log(d−1)/2 n
[Dav56],[Rot80],[Fro80],
Th. 2.5

Dp(n, Cd),
p > 1

log(d−1)/2 n
[Sch77a], Ex. 6.2.3

log(d−1)/2 n
[Che81]

D1(n, Cd)
√

log n
[Hal81], Ex. 6.2.1

(log n)(d−1)/2

from D2 bound

disc(n,R2)
log n [Bec81a]
(Prop. 1.8+Th. 6.2)

log2.5 n
[Sri97], Ex. 5.5.2

disc(n,Rd),
d ≥ 3

(log n)(d−1)/2+η,
(Prop. 1.8+[BLV08])

logd+1/2 n
√

log log n
Ex. 4.5.1

Convex polytopes in Rd with given facet normals (POL(H); see p. 126)

D(n,POL(H)) same as for D(n,Rd)
logd−1 n (log log n)1+ε

[Skr98]

disc(n,POL(H)) same as for D(n,Rd)
logd+1/2 n

√
log log n

[Mat99], Ex. 4.5.3

Halfspaces (Hd)

D(n,Hd)
n1/2−1/2d

[Ale90],[Ale91], Th. 6.9
n1/2−1/2d

via disc(n,Hd)

D1(n,H2) ?? log2 n
[BC93b], Th. 3.5

disc(n,Hd)
n1/2−1/2d

[Ale90], Th. 6.4
n1/2−1/2d

[Mat95], Th. 5.3

(a) The lower bound also holds for axis-parallel squares (Th. 6.3).
(b) The lower bound also holds for axis-parallel cubes (see Th. 7.6). Only the

2-dimensional case is explicitly treated in [Rot54].
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Geometric discrepancy: asymptotic bounds (cont’d)

Discrepancy
type Lower bound Upper bound

Balls (Bd), arbitrary radius

D(n,Bd)
n1/2−1/2d

via D(n,Hd) (c)
n1/2−1/2d

√
log n

[Bec87], Th. 3.1

Dp(n,Bd),
p ≥ 2

n1/2−1/2d [Bec87] n1/2−1/2d

[BC90], Ex. 5.4.3

D1(n,B2) log1/2−ε n [Bec89b] n1/4

disc(n,Bd)
n1/2−1/2d

from D(n,Bd)
n1/2−1/2d

√
log n

[MWW93], Th. 5.4

Circular discs, fixed radius (BF2)

D(n,BF2)
n1/4

[Bec88b]
n1/4

[Mat95], Th. 5.3

Scaled-down copies of a compact convex A ⊂ Rd, with rotation (SA)

D(n,SA) n1/2−1/2d
√

S
[Bec87] (d)

n1/2−1/2d
√

S log n
[Bec87] (d)

Scaled-down copies of a compact convex A ⊂ Rd, no rotation (TA)

D(n, TA),
d = 2

√
ξn(A) · log−1/4 n

[Bec88a] (e)
ξn(A) log4+ε n
[Bec88a] (e)

D(n, TA),
A smooth

c(A)n1/2−1/2d

[Drm93]
C(A)n1/2−1/2d

√
log n

[Drm93]

Convex sets (Kd)

D(n,K2)
n1/3

[Sch75], Ex. 3.1.6
n1/3 log4 n
[Bec88c]

D(n,Kd),
d ≥ 3

n1−2/(d+1)

[Sch75], Ex. 3.1.6
n1−2/(d+1) logc n
[Stu77] (f)

(c) The bound holds in the whole-space model as well. For balls completely
contained in [0, 1]d, the lower bound is n1/2−1/2d−ε [Bec87].

(d) Here S is the surface area of A, and for the lower bound, it is assumed that
A contains a ball of radius n−1/d. Both bounds are in the whole-space model.

(e) Here ξn(A) is the “approximability number” of A: the smallest � ≥ 3 such
that there is a convex �-gon inscribed to A such that the area of the difference is
≤ �2/n. Károlyi [Kár95b] has upper bounds for the analogous problem in Rd which
are too complicated to state here.

(f) Here c = 3
2

for d = 3 and c = 2/(d + 1) for d ≥ 4.
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Geometric discrepancy is a lively field and many things have happened since
the first appearance of this book ten years ago. In the present revised print-
ing, scheduled to appear in 2009 or 2010, I decided to add this appendix
mentioning some of the new results, rather than trying to insert dispersed
remarks into the old text.

I should perhaps begin with a disclaimer. I have been following the de-
velopment in discrepancy theory only cursorily, devoting most of my time to
other subjects. The following remarks should not be regarded as a serious
survey. Among the results I happened to learn about, I’ve selected according
to strictly objective scientific criteria: the results I liked best, those I con-
sidered interesting, unexpected, or particularly difficult, those easy to write
about, those proved by me or my friends, and so on.

Boxes in dimensions 3 and more. The closest to the heart of a classical
discrepancy theorist are probably two recent papers improving lower bounds
on D(n,Rd), the Lebesgue-measure discrepancy for axis-parallel boxes.

We recall that Roth’s lower bound for the L2 average discrepancy gives
D(n,Rd) = Ω((log n)(d−1)/2) for every fixed d ≥ 2. A common belief, sup-
ported by a proof only for d = 2, is that the order of D(n,Rd) is at least by
the factor of

√
log n larger. For many years the only step in this direction for

d ≥ 3 had been Beck’s [Bec89c] magnificent proof improving Roth’s bound
in dimension 3 by the factor of roughly (log log n)1/8.

In 2006 Bilyk and Lacey [BL08] simplified and greatly developed Beck’s
approach, improving the 3-dimensional lower bound to Ω((log n)1+η) for a
small constant η > 0 (which they didn’t compute explicitly). Similar to Beck’s
proof, the the core of their method is a so-called small ball inequality, an in-
equality for multidimensional Haar functions i.e., higher-dimensional analogs
of the functions fj from Halász’s proof (see Section 6.2 and its Exercise 2).

To state the inequality, let r = (r1, . . . , rd) be a d-dimensional vector
of nonnegative integers, let us write |r| = r1 + · · · + rd, and let Rr be the
appropriate Rademacher function, given by Rr(x) =

∏d
i=1(−1)�2

ri+1xi�. A
weighted r-function is a function f : [0, 1]d → R such that on every binary
canonical box B of size 2−r1 ×2−r2 ×· · ·×2−rd , the function f coincides with
αBRr for some real αB (depending on the box B). (The r-function defined
in Exercise 6.1.1 is a special case with αB ∈ {−1, 0,+1} for all B.) In the
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small ball inequality we seek, for given natural numbers d and k, the smallest
C = Cd,k such that for every choice of weighted r-functions fr, for all r with
|r| ≥ k, we have

∑

r:|r|=k

‖fr‖1 ≤ C

∥
∥∥∥
∑

r:|r|≥k

fr

∥
∥∥∥
∞

.

A Roth-like L2 averaging argument shows that C = O(k(d−1)/2) for every
fixed d, the small ball conjecture asserts C = O(k(d−2)/2) for all d ≥ 2 (which
is known only for d = 2), and [BL08] proved C3,k = O(k1−η). The small ball
inequality is of fundamental nature and it has applications in other fields
(probability theory, approximation theory) as well. In particular, the name
“small ball” comes from a probabilistic setting, concerning the behavior of
the d-dimensional Brownian random walk.

The paper [BL08], available on ArXiv, uses lots of beautiful mathemat-
ics, mostly harmonic analysis (e.g., the Littlewood–Paley theory), and it is
written in a way that looks quite accessible even to us non-experts in this
field. Later Bilyk, Lacey, and Vagharshakyan [BLV08] extended the method
to higher dimensions, obtaining D(n,Rd) = Ω((log n)(d−1)/2+η) for every
fixed d and some positive η = η(d), again through the corresponding small
ball inequality.

The discrepancy function for corners in the plane. Bilyk, Lacey, Paris-
sis, and Vagharshakyan [BLPV08] improved our understanding of the dis-
crepancy function for two-dimensional corners. We recall that D(n, C2), the
worst-case, or L∞, discrepancy for corners, is of order log n, while the Lp

average discrepancy Dp(n, C2) is of order
√

log n for every fixed p ∈ [1,∞).
Bilyk et al. proved bounds that, in a sense, smoothly interpolate between

these two results: they obtained a tight bound, of order (log n)1−1/α, for the
Orlicz norms ‖.‖exp(Lα) of the discrepancy function, for every fixed α ∈ [2,∞).
We recall that the Orlicz norm is a generalization of the Lp norm where the
numeric parameter p is replaced with a (convex) real function ψ. The Orlicz
norm of a function f (defined on a space X with measure μ) equals inf{t >
0:
∫

X
ψ(|f(x)|/t) dμ(x) ≤ 1}; the Lp norm is recovered for ψ(x) = |x|p. In

the result cited above we have ψ(x) = e|x|
α

, which means that the norm is
even much more influenced by large fluctuations that the Lp norms and thus
it is a “closer approximation” of the L∞ norm.

Explicit constructions for Lp discrepancy. Chen and Skriganov [CS02]
obtained an explicit construction of a set meeting Roth’s lower bound for
the L2 discrepancy for corners, in every fixed dimension (while all of the sev-
eral constructions known before had some probabilistic component); also see
[CS08] for a substantial simplification of the proof. We won’t describe the
construction here; we just mention that it has some features in common with
the construction of b-ary nets in Section 2.3, dealing with a suitable vector
subspace of GF (b)md (for a prime b) and then mapping it to a point set in
[0, 1]d in the usual way, by reading the components as digits in base b. Skrig-
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anov [Skr06] constructed explicit sets in the unit cube with asymptotically
optimal Lp discrepancy for every fixed p ∈ (1,∞) and every fixed dimen-
sion d.

Extra-large discrepancy for hyperbolic needles. Beck [Beca], [Becb] in-
vestigated, in our language, the discrepancy for translated and rotated copies
of the hyperbolic needle Hγ(n) = {(x, y) ∈ R2: x ∈ [1, n], |xy| ≤ γ}. We note
that the area vol(Hγ(n)) = 2γ ln n. The number of integer points in such ro-
tated and translated hyperbolic needle (essentially) corresponds to the num-
ber of integer solutions (x, y) with x ≥ 1, 1 ≤ y ≤ n of the inhomogeneous
Pell equation |(x+β)2−αy2| ≤ γ, which is a quantity of considerable interest
in number theory.

Beck established an “extra-large discrepancy” phenomenon. If P is the
integer lattice Z2 or, more generally, a set in R2 of density 1 in which every
two points have distance at least σ (a positive constant), then for 99 percent
of rotational angles θ, there is a translated copy H of Hγ(n) rotated by θ
such that |P ∩ H| differs from vol(H) by Ω(log n), i.e., by a fixed fraction of
the area, the constant depending on γ and σ. (We gloss over some subtleties
of Beck’s result; see his Theorem 4 for a stronger formulation.)

Now let γ > 0 be fixed and, for β ∈ [0, 1], let H̃β
γ (n) be Hγ(n) ro-

tated by 45 degrees and translated by β in the positive x-direction. We set
Fn(β) := |Z2∩ H̃β

γ (n)|. Beck [Becb] discovered that, for β ∈ [0, 1] chosen uni-
formly at random, the distribution of Fn(β) suitably normalized tends to the
standard normal distribution (and in particular, the “typical” discrepancy of
H̃β

γ (n) is of order
√

log n). Moreover, Fn(β) also satisfies a law of the iterated
logarithm.

L1 discrepancy for halfspaces and lattice points in polyhedra. Chen
and Travaglini [CT09b] extended Proposition 3.4 to an arbitrary dimension,
showing that the L1 discrepancy for halfspaces in Rd is at most O(logd n),
attained for appropriately re-scaled Zd. The proof is based on results of Bran-
dolini, Colzani, and Travaglini [BCT97] (plus some “boundary effects” have
to be dealt with). In the latter paper it was proved, among others, that if
C is a fixed polyhedron in Rd (not necessarily convex), then the expected
discrepancy of a randomly rotated and translated copy of C w.r.t. the lattice
1
mZd is bounded by O(logd m).

The main theme of [BCT97] is the “average decay” of a Fourier transform,
a more or less classical topic. Letting C be a compact set in Rd, one studies
the behavior of χ̂C , the Fourier transform of the characteristic function of
C. In particular, in the setting of [BCT97], one takes some Lp average of χ̂C

over the sphere of radius R and investigates how fast it tends to 0 as R → ∞.
This is highly relevant for discrepancy lower bounds in the style of Chapter 7,
as well as for questions about lattice point distributions in copies of C; see
Travaglini [Tra04] for a nice survey.
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More on lattice points. The last few results mentioned above are relevant
for geometric discrepancy, but they really belong to the geometry of numbers
or, more precisely, theory of irregularities of distribution for the integer lat-
tice Zd. This is an extensive area on its own, of much more number-theoretic
nature than discrepancy theory in general, and with deep connections to har-
monic analysis and other fields. Here we mention two interesting discrepancy-
related topics.

Let p = p(x1, . . . , pd) be a d-variate polynomial with integer coefficients. A
fundamental problem in number theory is to find integer solutions of p(x) =
λ, where λ ∈ Z. Geometrically, one looks for integer points on the level surface
{x ∈ Rd: p(x) = λ}. Magyar [Mag07] studied the equidistribution of these
point sets for the case of p positive and homogeneous, and in particular, their
discrepancy for caps (i.e., intersections of the level surface with halfspaces).
Among other amazing results he proved, that for p(x) = x2

1 + · · ·+x2
d, where

the level surface is a sphere, these sets have an almost optimal discrepancy,
up to an nε factor (among all possible sets of the same size in the sphere), for
almost all caps. Roughly speaking, the exceptional caps not covered by this
bound have normal directions that are “too well approximable” by rational
directions.

The next topic concerns the L2 discrepancy for balls. For definiteness, let
us consider the toroidal discrepancy; see the notes to Section 7.1. Let P be
a fixed n-point set in the unit torus T d = Rd/Zd, let r ∈ (0, 1

2 ) be a given
radius, and let D2(r) denote the L2 average of the discrepancy of a ball of
radius r centered at x, averaged over x uniformly distributed in T d. Results
of Beck and of Montgomery (see [BC87], [Mon94]) show that the average of
D2(r) over r ∈ (0, 1

2 ) is at least of order n1/2−1/2d.
Now let the set P be the scaled grid 1

mZd, with an integer m; this is
an n-point set in T d, n = md. It is known that this P matches, up to a
constant factor, the just mentioned lower bound (for the average over r).
However, a surprising phenomenon, discovered by Parnovski and Sobolev
[PS01] (Section 3), appears when one considers D2(r) for r ∈ (0, 1

2 ) fixed.
The behavior depends on the remainder of the dimension d modulo 4: for
d �≡ 1(mod 4), D2(r) behaves “regularly”, being always of order n1/2−1/2d,
but for d ≡ 1(mod 4) there are infinitely values of m for which D2(r) is
asymptotically smaller, namely, of order at most n1/2−1/2d(log n)−cd (with
an explicit constant cd > 0). From below Parnovski and Sobolev proved
D2(r) = Ω(n1/2−1/2d−δ) for every fixed δ > 0; Konyagin, Skriganov, and
Sobolev [KSS03] improved this, replacing n−δ by e−O((log log n)4)).

This phenomenon plays a significant role in Chen and Travaglini [CT09a],
who also considered the L2 toroidal discrepancy for balls and whose goal was
comparing a deterministic construction, namely, the scaled grid as above,
with a randomized construction in the spirit of “jittered sampling”, where one
starts with the grid points and randomly perturbs each of them independently
of the others. They found that the grid is better in small dimensions, while
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the randomized construction wins in large dimensions, except for dimensions
d ≡ 1(mod 4), where the grid is better for infinitely many values of m due to
the Parnovski–Sobolev result. Similar investigations in a more general setting
were undertaken by Brandolini et al. [BCGT09].

Discrepancy for high-dimensional corners. An interesting question is,
how D(n, Cd), the (worst-case) discrepancy for corners, behaves for d large,
say comparable to n? In particular, Heinrich et al. [HNWW01] investigate the
quantity n∞(d, ε) = min{n: D(n, Cd)/n ≤ ε}; that is, the smallest number of
points in [0, 1]d that can approximate the measure of all corners with relative
accuracy ε. Perhaps surprisingly, n∞(d, ε) is polynomially bounded in d and
1
ε . (This should be contrasted with the fact that for d = log2 n, say, we
have D(n, Cd) = 2Ω(d), as can be calculated from Roth’s lower bound—see,
e.g., [Mat98b] for the appropriate formulas.) Indeed, a straightforward VC-
dimension argument yields n∞(d, ε) ≤ Cdε−2 log d

ε , with an explicit constant
C (independent of d, of course!), and using a deep result of Talagrand, this
can be improved to Cdε−2—see [HNWW01].

The best known lower bound is due to Hinrichs [Hin04]: n∞(d, ε) ≥ cd/ε,
for some constant c > 0, all ε > 0 smaller than a suitable constant, and all d.
The idea of this lower bound is simple. One constructs a large set Nε ⊂ Cd of
corners such that the symmetric difference of every two has volume exceeding
ε. If P is an n-point set with discrepancy at most εn, then P ∩C �= P ∩C ′ for
every two corners C �= C ′ in Nε. Finally, the number of different intersections
of P with corners is estimated using a VC-dimension argument.

The cited polynomial upper bounds are probabilistic—they hold for a typ-
ical random n-point set. An interesting open problem is obtaining an explicit
construction of polynomial size. What is meant by “explicit”? This word is
often used in an informal sense, but theoretical computer science offers a
formal definition: explicit means computable by a deterministic polynomial-
time algorithm, in our case in time polynomial in d and 1

ε . Methods of the-
oretical computer science, developed mainly for the purpose of derandom-
izing probabilistic algorithms, have also led to the strongest results so far.
Namely, the work of Even et al. [EGL+92] provides explicit sets witnessing
n∞(d, ε) ≤ (d/ε)O(log d), and also n∞(d, ε) ≤ (d/ε)O(log(1/ε)) (which is poly-
nomial in d for ε fixed).1 The second bound has later been improved; to my
knowledge, the best result is n∞(d, ε) ≤ dO(1)ε−O(

√
log(1/ε)) following from

Lu [Lu02]. All of these constructions are actually formulated for the discrete
grid; that is, instead of the Lebesgue measure on [0, 1]d one approximates
the counting measure on the grid {1, 2, . . . , q}d (for converting this to the
Lebesgue-measure case, one needs to set q = Cd/ε). The constructions work
not only for corners, but also for combinatorial rectangles; see the notes on
page 34.

1 In contrast, the bounds known for the usual constructions for fixed d, such as
the Halton–Hammersley sets, have at least exponential dependence on d.
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There are also nontrivial results concerning deterministic computation of
sets witnessing n∞(d, ε) = O(dε−2 log 1

ε ), almost matching the best known
probabilistic bound, but the running time of these algorithms are exponential
in d; see, e.g., Doerr and Gnewuch [DG08].

The trace bound. An interesting lower bound technique for combinatorial
discrepancy, the so-called trace bound, was developed by Chazelle and Lvov
[CL01], which, for example, yields direct proofs for some results where previ-
ously one had to go via the Lebesgue-measure discrepancy. It asserts that, for
a set system S on n points, with at most n sets, and with incidence matrix
A, we have

disc(S) ≥ 1
4
· 324−n·tr((AT A)2)/t2

√
t/n,

where t = tr(AT A) and tr(M) denotes the trace (sum of diagonal elements)
of a matrix M .

Adding a single set. A tantalizing open question in combinatorial discrep-
ancy is, by how much can the hereditary discrepancy of a set system on n
points increase by adding a single set? The truth could perhaps be an addi-
tive constant, but the current best result of Kim, Matoušek, and Vu [KMV05]
gives only a multiplicative factor of O(log n), with a half-page proof.

Linear discrepancy versus hereditary discrepancy. We have seen that
the linear discrepancy of any set system, or more generally, of any matrix, is
no more than twice the hereditary discrepancy. Spencer conjectured that the
factor 2 can be improved to 2(1− 1

n+1 ) for all matrices with n columns (which,
if true, is tight). Doerr [Doe04a] and, later but independently, Bohman and
Holzman [BH05] proved the special case of this conjecture with A totally
unimodular. Both proofs are nice and the second one is also quite short.

Multicolor discrepancy. The notion of combinatorial discrepancy has been
generalized from two colors to k colors. That is, we want to color the ground
set with k colors so that each set has roughly 1

k fraction of each color; see
Doerr and Srivastav [DS03] for a survey. While many of the results are direct
generalizations from the 2-color case, some interesting phenomena have been
found. In particular, Doerr [Doe04b] showed, with a neat proof employing the
k-color linear discrepancy, that the hereditary discrepancy of a set system S
is nearly independent of the number of colors; that is, for every k, � ≥ 2 there
is a constant C = C(k, �) such that the �-color hereditary discrepancy of S
is at most C-times the k-color hereditary discrepancy. On the practical side,
multicolor discrepancy turned out to be important in a problem of storing
data on parallel disks, as was observed independently by Chen and Cheng
[CC04] and by Doerr, Hebbinghaus, and Werth [DHW06].
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296 Hints

sin2(r1ξ1 cos ϑ) ≈ 1 for 0 ≤ ϑ ≤ 1/r1ξ1) but hr2(ξ) is much smaller than
r2/ξ3

1 (here sin2(r2ξ1 cos ϑ) is close to 0 for 0 ≤ ϑ ≤ C/r2ξ1, for C sufficiently
large, and the integral over C/r2ξ1 ≤ ϑ ≤ π/4 is always small).
7.1.6. Evaluate the Fourier series of f(x) = D(P,Bx,a) (with a fixed). Use
the Parseval equality and then integrate over a ∈ [0, 1]d. This leads to the
expression

D2(P, R̃d)2 = 3−d
∑

m∈Zd\{0}

|P̂ (m)|2
∏d

k=1 max(|mk|2, 1)
·
(

3
2π2

)nnz(m)

,

where nnz(m) is the number of nonzero components of m.
7.1.7(a). Use the Fourier expansion B2(x) =

∑
m∈Z\{0}

1
2π2m2 e2πimx.

7.1.8. Use the expansion of B2(x) in the hint to Exercise 7(a) and the hint
to Exercise 6.
7.2.1(a). For t2 ≤ a2, simply use e−4−it2 ≤ 1. Otherwise, the largest term is
the one with 2i ≈ t, giving about t−2, and for i getting larger or smaller the
terms decrease fast enough.
7.2.1(b). For ξi ≤ s−1 use sin(rξi) ≈ rξi. In the case ξ1, ξ2 > s−1, one can
argue (for instance) that for at least 3

4 of the r in (0, s), we have sin2(rξ1) ≥
1
10 , say, and similarly for at least 3

4 of the r we have sin2(rξ2) ≥ 1
10 .

7.3.1. Use a suitable 7-point configuration (arising by gluing 4 equilateral
triangles).
7.3.3. Use a pattern of concentric annuli whose width decreases with radius;
see [GRS90].
7.3.4. Use strips of width

√
3/2.

7.3.5. Consider the regular simplex of a suitable larger dimension.
7.3.6. See [GRS90].
7.3.7. The negation of the theorem means that there exists a set A with
δ(A) > 2ε and a sequence λ1 < λ2 < · · · of numbers tending to infinity such
that no two points of A have distance λj for any j. We may assume λj+1 ≥
2λj . For j0(ε) as in the proposition, let R > λj0 be such that vol(B(0, R) ∩
A)/ vol(B(0, R)) ≥ ε. Apply the proposition with ( 1

RA) ∩ B(0, 1) in the role
of A and with tj = λj/R, obtaining a contradiction.
7.3.9(a). For instance: Set f(r) = σ̂(r, 0). We have f(0) = 1, and f is
differentiable at 0 (even analytic); by the symmetry of σ̂, the derivative at
r = 0 must be 0. Therefore even |f(r) − f(0)| = o(r) as r → 0.

7.3.9(c). We have ÎA(0) = ε, and
∣∣∣ÎA(ξ) − ÎA(0)

∣∣∣ = 1
2π

∣∣∫
A

ei〈x,ξ〉 − 1 dx
∣∣ ≤

1
2π

∫
A
|〈x, ξ〉|dx by (b), and since A ⊆ B(0, 1) the last integral is bounded by

‖ξ‖ vol(A). Part (a) can also be done in much the same way.
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