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Preface to GEB's
Twentieth-anniversary Edition

SO WHAT IS this book, Godel, Escher, Bach: an Eternal Golden Braid — usually
known by its acronym, “GEB” — really all about?

That question has hounded me ever since I was scribbling its first drafts
in pen, way back in 1973. Friends would inquire, of course, what I was so
gripped by, but I was hard pressed to explain it concisely. A few years later,
in 1980, when GEB found itself for a while on the bestseller list of The New
York Times, the obligatory one-sentence summary printed underneath the
title said the following, for several weeks running: “A scientist argues that
reality is a system of interconnected braids.” After I protested vehemently
about this utter hogwash, they finally substituted something a little better,
just barely accurate enough to keep me from howling again.

Many people think the title tells it all: a book about a mathematician,
an artist, and a musician. But the most casual look will show that these three
individuals per se, august though they undeniably are, play but tiny roles in
the book’s content. There’s no way the book is about those three people!

Well, then, how about describing GEB as “a book that shows how math,
art, and music are really all the same thing at their core” Again, this is a
million miles off — and yet I've heard it over and over again, not only from
nonreaders but also from readers, even very ardent readers, of the book.

And in bookstores, I have run across GEB gracing the shelves of many
diverse sections, including not only math, general science, philosophy, and
cognitive science (which are all fine), but also religion, the occult, and God
knows what else. Why is it so hard to figure out what this book is about?
Certainly it’s not just its length. No, it must be in part that GEB delves, and
not just superficially, into so many motley topics — fugues and canons, logic
and truth, geometry, recursion, syntactic structures, the nature of meaning,
Zen Buddhism, paradoxes, brain and mind, reductionism and holism, ant
colonies, concepts and mental representations, translation, computers and
their languages, DNA, proteins, the genetic code, artificial intelligence,
creativity, consciousness and free will — sometimes even art and music, of
all things! — that many people find it impossible to locate the core focus.

The Key Images and Ideas that Lie at the Core of GEB

Needless to say, this widespread confusion has been quite frustrating to me
over the years, since I felt sure I had spelled out my aims over and over in
the text itself. Clearly, however, I didn’t do it sufficiently often, or
sufficiently clearly. But since now I've got the chance to do it once more —
and in a prominent spot in the book, to boot — let me try one last time to
say why I wrote this book, what it is about, and what its principal thesis is.
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In a word, GEB is a very personal attempt to say how it is that animate
beings can come out of inanimate matter. What is a self, and how can a self
come out of stuff that is as selfless as a stone or a puddle? What is an “T”,
and why are such things found (at least so far) only in association with, as
poet Russell Edson once wonderfully phrased it, “teetering bulbs of dread
and dream” — that is, only in association with certain kinds of gooey lumps
encased in hard protective shells mounted atop mobile pedestals that roam
the world on pairs of slightly fuzzy, jointed stilts?

GEB approaches these questions by slowly building up an analogy that
likens inanimate molecules to meaningless symbols, and further likens selves
(or “I"’s or “souls”, if you prefer — whatever it is that distinguishes animate
from inanimate matter) to certain special swirly, twisty, vortex-like, and
meaningful patterns that arise only in particular types of systems of
meaningless symbols. It is these strange, twisty patterns that the book
spends so much time on, because they are little known, little appreciated,
counterintuitive, and quite filled with mystery. And for reasons that should
not be too difficult to fathom, I call such strange, loopy patterns “strange
loops” throughout the book, although in later chapters, I also use the
phrase “tangled hierarchies” to describe basically the same idea.

This is in many ways why M. C. Escher — or more precisely, his art — is
prominent in the “golden braid”, because Escher, in his own special way, was
just as fascinated as I am by strange loops, and in fact he drew them in a
variety of contexts, all wonderfully disorienting and fascinating. When I was
first working on my book, however, Escher was totally out of the picture (or
out of the loop, as we now say); my working title was the rather mundane
phrase “Goédel’s Theorem and the Human Brain”, and I gave no thought to
inserting paradoxical pictures, let alone playful dialogues. It’s just that time
and again, while writing about my notion of strange loops, I would catch
fleeting glimpses of this or that Escher print flashing almost subliminally
before my mind’s eye, and finally one day I realized that these images were
so connected in my own mind with the ideas that I was writing about that for
me to deprive my readers of the connection that I myself felt so strongly
would be nothing less than perverse. And so Escher’s art was welcomed on
board. As for Bach, I’ll come back to his entry into my “metaphorical fugue
on minds and machines” a little later.

Back to strange loops, right now. GEB was inspired by my long-held
conviction that the “strange loop” notion holds the key to unraveling the
mystery that we conscious beings call “being” or “consciousness”. I was first
hit by this idea when, as a teen-ager, I found myself obsessedly pondering
the quintessential strange loop that lies at the core of the proof of Kurt
Godel’s famous incompleteness theorem in mathematical logic — a rather
arcane place, one might well think, to stumble across the secret behind the
nature of selves and “I"’s, and yet I practically heard it screaming up at me
from the pages of Nagel and Newman that this was what it was all about.

This preface is not the time and place to go into details — indeed, that’s
why the tome you’re holding was written, so it would be a bit presumptuous
of me to think I could outdo its author in just these few pages! — but one
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thing has to be said straight off: the Goédelian strange loop that arises in
formal systems in mathematics (i.e., collections of rules for churning out an
endless series of mathematical truths solely by mechanical symbol-shunting
without any regard to meanings or ideas hidden in the shapes being
manipulated) is a loop that allows such a system to “perceive itself”, to talk
about itself, to become “self-aware”, and in a sense it would not be going too
far to say that by virtue of having such a loop, a formal system acquires a self.

Meaningless Symbols Acquire Meaning Despite Themselves

What is so weird in this is that the formal systems where these skeletal
“selves” come to exist are built out of nothing but meaningless symbols. The
self, such as it is, arises solely because of a special type of swirly, tangled
patternamong the meaningless symbols. But now a confession: I am being a
bit coy when I repeatedly type the phrase “meaningless symbols” (as at the
ends of both of the previous sentences), because a crucial part of my book’s
argument rests on the idea that meaning cannot be kept out of formal
systems when sufficiently complex isomorphisms arise. Meaning comes in
despite one’s best efforts to keep symbols meaningless!

Let me rephrase these last couple of sentences without using the slightly
technical term “isomorphism”. When a system of “meaningless” symbols has
patterns in it that accurately track, or mirror, various phenomena in the
world, then that tracking or mirroring imbues the symbols with some degree
of meaning — indeed, such tracking or mirroring is no less and no more
than what meaning is. Depending on how complex and subtle and reliable
the tracking is, different degrees of meaningfulness arise. Iwon’t go further
into this here, for it’s a thesis that is taken up quite often in the text, most of
all in Chapters 2, 4, 6, 9, and 11.

Compared to a typical formal system, human language is unbelievably
fluid and subtle in its patterns of tracking reality, and for that reason the
symbols in formal systems can seem quite arid; indeed, without too much
trouble, one can look at them as totally devoid of meaning. But then again,
one can look at a newspaper written in an unfamiliar writing system, and the
strange shapes seem like nothing more than wondrously intricate but totally
meaningless patterns. Thus even human language, rich though it is, can be
drained of its seeming significance.

As a matter of fact, there are still quite a few philosophers, scientists,
and so forth who believe that patterns of symbols per se (such as books or
movies or libraries or CD-ROM’s or computer programs, no matter how
complex or dynamic) never have meaning on their own, but that meaning
instead, in some most mysterious manner, springs only from the organic
chemistry, or perhaps the quantum mechanics, of processes that take place
in carbon-based biological brains. Although I have no patience with this
parochial, bio-chauvinistic view, I nonetheless have a pretty clear sense of its
intuitive appeal. Trying to don the hat of a believer in the primacy, indeed
the uniqueness, of brains, I can see where such people are coming from.

Twentieth-anniversary Preface P-3



Such people feel that some kind of “semantic magic” takes place only
inside our “teetering bulbs”, somewhere behind pairs of eyeballs, even
though they can never quite put their finger on how or why this is so;
moreover, they believe that this semantic magic is what is responsible for the
existence of human selves, souls, consciousness, “I”’s. And I, as a matter of
fact, quite agree with such thinkers that selves and semantics — in other
words, that me’s and meanings — do spring from one and the same source;
where I take issue with these people is over their contention that such
phenomena are due entirely to some special, though as yet undiscovered,
properties of the microscopic hardware of brains.

As I see it, the only way of overcoming this magical view of what “I” and
consciousness are is to keep on reminding oneself, unpleasant though it
may seem, that the “teetering bulb of dread and dream” that nestles safely
inside one’s own cranium is a purely physical object made up of completely
sterile and inanimate components, all of which obey exactly the same laws as
those that govern all the rest of the universe, such as pieces of text, or CD-
ROM’s, or computers. Only if one keeps on bashing up against this
disturbing fact can one slowly begin to develop a feel for the way out of the
mystery of consciousness: that the key is not the stuff out of which brains are
made, but the patterns that can come to exist inside the stuff of a brain.

This is a liberating shift, because it allows one to move to a different
level of considering what brains are: as media that support complex patterns
that mirror, albeit far from perfectly, the world, of which, needless to say,
those brains are themselves denizens — and it is in the inevitable self-
mirroring that arises, however impartial or imperfect it may be, that the
strange loops of consciousness start to swirl.

Kurt Gédel Smashes through Bertrand Russell’s Maginot Line

I've just claimed that the shift of focus from material components to abstract
patterns allows the quasi-magical leap from inanimate to animate, from
nonsemantic to semantic, from meaningless to meaningful, to take place.
But how does this happen? After all, not 4l jumps from matter to pattern
give rise to consciousness or soul or self, quite obviously: in a word, not all
patterns are conscious. What kind of pattern is it, then, that is the telltale
mark of a self? GEB’s answer is: a strange loop.

The irony is that the first strange loop ever found — and my model for
the concept in general — was found in a system tailor-made to keep loopiness
out. I speak of Bertrand Russell and Alfred North Whitehead’s famous
treatise Principia Mathematica, a gigantic, forbidding work laced with dense,
prickly symbolism filling up volume after volume, whose creation in the
years 1910-1913 was sparked primarily by its first author’s desperate quest
for a way to circumvent paradoxes of self-reference in mathematics.

At the heart of Principia Mathematica lay Russell’s so-called “theory of
types”, which, much like the roughly contemporaneous Maginot Line, was
designed to keep “the enemy” out in a most staunch and watertight manner.
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For the French, the enemy was Germany; for Russell, it was self-reference.
Russell believed that for a mathematical system to be able to talk about itself
in any way whatsoever was the kiss of death, for self-reference would — so he
thought — necessarily open the door to self-contradiction, and thereby send
all of mathematics crashing to the ground. In order to forestall this dire
fate, he invented an elaborate (and infinite) hierarchy of levels, all sealed
off from each other in such a manner as to definitively — so he thought —
block the dreaded virus of self-reference from infecting the fragile system.

It took a couple of decades, but eventually the young Austrian logician
Kurt Gaodel realized that Russell and Whitehead’s mathematical Maginot
Line against self-reference could be most deftly circumvented (just as the
Germans in World War II would soon wind up deftly sidestepping the real
Maginot Line), and that self-reference not only had lurked from Day One in
Principia Mathematica, but in fact plagued poor PM in a totally unremovable
manner. Moreover, as Godel made brutally clear, this thorough riddling of
the system by self-reference was not due to some weakness in PM, but quite
to the contrary, it was due to its strength. Any similar system would have
exactly the same “defect”. The reason it had taken so long for the world to
realize this astonishing fact is that it depended on making a leap somewhat
analogous to that from a brain to a self, that famous leap from inanimate
constituents to animate patterns.

For Godel, it all came into focus in 1930 or so, thanks to a simple but
wonderfully rich discovery that came to be known as “Gddel numbering” —
a mapping whereby the long linear arrangements of strings of symbols in
any formal system are mirrored precisely by mathematical relationships
among certain (usually astronomically large) whole numbers. Using his
mapping between elaborate patterns of meaningless symbols (to use that
dubious term once again) and huge numbers, Godel showed how a
statement about any mathematical formal system (such as the assertion that
Principia Mathematica is contradiction-free) can be translated into a
mathematical statement inside number theory (the study of whole numbers).
In other words, any metamathematical statement can be imported info
mathematics, and in its new guise the statement simply asserts (as do all
statements of number theory) that certain whole numbers have certain
properties or relationships to each other. But on another level, it also has a
vastly different meaning that, on its surface, seems as far removed from a
statement of number theory as would be a sentence in a Dostoevsky novel.

By means of Godel’s mapping, any formal system designed to spew forth
truths about “mere” numbers would also wind up spewing forth truths —
inadvertently but inexorably — about its own properties, and would thereby
become “self-aware”, in a manner of speaking. And of all the clandestine
instances of self-referentiality plaguing PM and brought to light by Godel,
the most concentrated doses lurked in those sentences that talked about
their own Godel numbers, and in particular said some very odd things about
themselves, such as “I am not provable inside PM”. And let me repeat: such
twisting-back, such looping-around, such self-enfolding, far from being an
eliminable defect, was an inevitable by-product of the system’s vast power.
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Not too surprisingly, revolutionary mathematical and philosophical
consequences tumbled out of Godel’s sudden revelation that self-reference
abounded in the bosom of the bastion so carefully designed by Russell to
keep it out at all costs; the most famous such consequence was the so-called
“essential incompleteness” of formalized mathematics. That notion will be
carefully covered in the chapters to come, and yet, fascinating though it is,
incompleteness is not in itself central to GEB’ thesis. For GEB, the most
crucial aspect of Gddel’s work is its demonstration that a statement’s
meaning can have deep consequences, even in a supposedly meaningless
universe. Thus it is the meaning of Gidel’s sentence G (the one that asserts
“G is not provable inside PM”) that guarantees that G is not provable inside
PM (which is precisely what G itself claims). It is as if the sentence’s hidden
Godelian meaning had some kind of power over the vacuous symbol-
shunting, meaning-impervious rules of the system, preventing them from
ever putting together a demonstration of G, no matter what they do.

Upside-down Causality and the Emergence of an “I”

This kind of effect gives one a sense of crazily twisted, or upside-down,
causality. After all, shouldn’t meanings that one chooses to read into strings
of meaningless symbols be totally without consequence? Even stranger is
that the only reason sentence G is not provable inside PM is its self-referential
meaning; indeed, it would seem that G, being a frue statement about whole
numbers, ought to be provable, but — thanks to its extra level of meaning as
a statement about itself, asserting its own nonprovability — it is not.

Something very strange thus emerges from the Godelian loop: the
revelation of the causal power of meaning in a rule-bound but meaning-free
universe. And this is where my analogy to brains and selves comes back in,
suggesting that the twisted loop of selfhood trapped inside an inanimate bulb
called a “brain” also has causal power — or, put another way, that a mere
pattern called “I” can shove around inanimate particles in the brain no less
than inanimate particles in the brain can shove around patterns. In short,
an “I” comes about — in my view, at least — via a kind of vortex whereby
patterns in a brain mirror the brain’s mirroring of the world, and eventually
mirror themselves, whereupon the vortex of “I” becomes a real, causal
entity. For an imperfect but vivid concrete analogue to this curious abstract
phenomenon, think of what happens when a TV camera is pointed at a TV
screen so as to display the screen on itself (and that screen on itself, etc.) —
what in GEBI called a “self-engulfing television”, and in my later writings I
sometimes call a “level-crossing feedback loop”.

When and only when such a loop arises in a brain or in any other
substrate, is a person — a unique new “I” — brought into being. Moreover,
the more self-referentially rich such a loop is, the more conscious is the self
to which it gives rise. Yes, shocking though this might sound, consciousness
is not an on/off phenomenon, but admits of degrees, grades, shades. Or, to
put it more bluntly, there are bigger souls and smaller souls.
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Small-souled Men, Beware!

I can’t help but recall, at this point, a horribly elitist but very droll remark by
one of my favorite writers, the American “critic of the seven arts”, James
Huneker, in his scintillating biography of Frédéric Chopin, on the subject of
Chopin’s étude Op. 25, No. 11 in A minor, which for me, and for Huneker,
is one of the most stirring and most sublime pieces of music ever written:
“Small-souled men, no matter how agile their fingers, should avoid it.”

“Small-souled men”?! Whew! Does that phrase ever run against the
grain of American democracy! And yet, leaving aside its offensive, archaic
sexism (a crime I, too, commit in GEB, to my great regret), I would suggest
that it is only because we all tacitly do believe in something like Huneker’s
shocking distinction that most of us are willing to eat animals of one sort or
another, to smash flies, swat mosquitos, fight bacteria with antibiotics, and
so forth. We generally concur that “men” such as a cow, a turkey, a frog,
and a fish all possess some spark of consciousness, some kind of primitive
“soul”, but by God, it’s a good deal smaller than oursis — and that, no more
and no less, is why we “men” feel that we have the perfect right to extinguish
the dim lights in the heads of these fractionally-souled beasts and to gobble
down their once warm and wiggling, now chilled and stilled protoplasm with
limitless gusto, and not to feel a trace of guilt while doing so.

Enough sermonizing! The real point here is that not all strange loops
give rise to souls as grand and glorious as yours and mine, dear reader.
Thus, for example, I would not want you or anyone else to walk away from
reading all or part of GEB, shake their head and say with sadness, “That
weird Hofstadter guy has convinced himself that Russell and Whitehead’s
Principia Mathematica is a conscious person with a soul!” Horsefeathers!
Balderdash! Poppycock! Godel’s strange loop, though it is my paragon for
the concept, is nonetheless only the most bare-bones strange loop, and it
resides in a system whose complexity is pathetic, relative to that of an
organic brain. Moreover, a formal system is static; it doesn’t change or grow
over time. A formal system does not live in a society of other formal systems,
mirroring them inside itself, and being mirrored in turn inside its “friends”.
Well, I retract that last remark, at least a bit: any formal system as powerful
as PM does in fact contain models not just of itself but of an infinite number
of other formal systems, some like it, some very much unlike it. That is
essentially what Godel realized. But still, there is no counterpart to time, no
counterpart to development, let alone to birth and death.

And so whatever I say about “selves” coming to exist in mathematical
formal systems has to be taken with the proper grain of salt. Strange loops
are an abstract structure that crops up in various media and in varying
degrees of richness. GEBis in essence a long proposal of strange loops as a
metaphor for how selfhood originates, a metaphor by which to begin to
grab a hold of just what it is that makes an “I” seem, at one and the same
time, so terribly real and tangible to its own possessor, and yet also so vague,
so impenetrable, so deeply elusive.
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I personally cannot imagine that consciousness will be fully understood
without reference to Godelian strange loops or levelcrossing feedback
loops. For that reason, I must say, I have been surprised and puzzled that
the past few years’ flurry of books trying to unravel the mysteries of
consciousness almost never mention anything along these lines. Many of
these books’ authors have even read and savored GEB, yet nowhere is its
core thesis echoed. It sometimes feels as if I had shouted a deeply cherished
message out into an empty chasm and nobody heard me.

The Earliest Seeds of GEB

Why, one might wonder, if the author’s aim was merely to propose a theory
of strange loops as the crux of our consciousness and the source of our
irrepressible “I"feeling, did he wind up writing such a vast book with so
many seeming digressions in it? Why on earth did he drag in fugues and
canons? Why recursion? And Zen? And molecular biology? Et cetera...

The truth of the matter is, when I started out, I didn’t have the foggiest
idea that I would wind up talking about these kinds of things. Nor did I
dream that my future book would include dialogues, let alone dialogues
based on musical forms. The complex and ambitious nature of my project
evolved only gradually. In broad strokes, it came about this way.

I earlier alluded to my reading, as a teen-ager, of Ernest Nagel and
James R. Newman’s little book Gédel’s Proof. Well, that book just radiated
excitement and depth to me, and it propelled me like an arrow straight into
the study of symbolic logic. Thus, as an undergraduate math major at
Stanford and a few years later, in my short-lived career as a graduate student
in math at Berkeley, I took several advanced logic courses, but to my bitter
disappointment, all of them were arcane, technical, and utterly devoid of
the magic I’d known in Nagel and Newman. The upshot of my taking these
highbrow courses was that my keen teen interest in Gédel’s wondrous proof
and its “strange loopiness” was nearly killed off. Indeed, I was left with such
a feeling of sterility that in late 1967, almost in desperation, I dropped out
of math grad school in Berkeley and took up a new identity as physics grad
student at the University of Oregon in Eugene, where my once-ardent
fascination with logic and metamathematics went into deep dormancy.

Several years passed, and then one day in May of 1972, while browsing
the math shelves in the University of Oregon bookstore, I stumbled across
philosopher Howard DeLong’s superb book A Profile of Mathematical Logic,
took a chance on buying it, and within weeks, my old love for the great
Godelian mysteries and all they touch on was reawakened. Ideas started
churning around like mad inside my teetering bulb of dread and dream.

Despite this joy, I was very discouraged with the way my physics studies
and my life in general were going, so in July I packed all my belongings into
a dozen or so cardboard boxes and set out on an eastward trek across the
vast American continent in Quicksilver, my faithful 1956 Mercury. Where 1
was headed, I wasn’t sure. All I knew is that I was looking for a new life.
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After crossing the beautiful Cascades and eastern Oregon’s desert, 1
wound up in Moscow, Idaho. Since Quicksilver had a little engine trouble
and needed some repair, I took advantage of the spare time and went to the
University of Idaho’s library to look up some of the articles about Godel’s
proof in DeLong’s annotated bibliography. I photocopied several of them,
and in a day or so headed off toward Montana and Alberta. Each night I
would stop and pitch my little tent, sometimes in a forest, sometimes by a
lake, and then I would eagerly plunge by flashlight into these articles until I
fell asleep in my sleeping bag. I was starting to understand many Godelian
matters ever more clearly, and what I was learning was truly enthralling.

From Letter to Pamphlet to Seminar

After a few days in the Canadian Rockies, I headed south again and
eventually reached Boulder, Colorado. There, one afternoon, a host of
fresh ideas started gushing out in a spontaneous letter to my old friend
Robert Boeninger. After several hours of writing, I saw that although my
letter was longer than I'd expected — thirty handwritten pages or so — I'd
said only about half of what I'd wanted to say. This made me think that
maybe I should write a pamphlet, not a letter, and to this day, Robert has
never received my unfinished missive.

From Boulder I headed further east, bouncing from one university town
to another, and eventually, almost as if it had been beckoning me the whole
time, New York City loomed as my ultimate goal. Indeed, I wound up
spending several months in Manhattan, taking graduate courses at City
College and teaching elementary physics to nurses at Hunter College, but as
1973 rolled around, I faced the fact that despite loving New York in many
ways, I was even more agitated than I had been in Eugene, and I decided it
would be wiser to return to Oregon and to finish graduate school there.

Although my hoped-for “new life” had failed to materialize, in certain
respects I was relieved to be back. For one thing, the U of O in those days
had the enlightened policy that any community member could invent and
teach a for-credit “SEARCH” course, as long as one or more departments
approved it. And so I petitioned the philosophy and math departments to
sponsor a spring-quarter SEARCH course centered on Godel’s theorem, and
my request was granted. Things were looking up.

My intuition told me that my personal fascination with strange loops —
not only with their philosophical importance but also with their esthetic
charm — was not just some unique little neurotic obsession of mine, but
could well be infectious, if only I could get across to my students that these
notions were anything but dull and dry, as in those frigid, sterile logic
courses I'd taken, but rather — as Nagel and Newman had hinted — were
intimately related to a slew of profound and beautiful ideas in mathematics,
physics, computer science, psychology, philosophy, linguistics, and so on.

I gave my course the half-dippy, half-romantic title “The Mystery of the
Undecidable” in the hopes that I might attract students from wildly diverse

Twentieth-anniversary Preface P9



areas, and the trick worked. Twenty-five souls were snagged, and all were
enthusiastic. I vividly remember the lovely blossoms I could see out the
window each day as I lectured that spring, but even more vividly I remember
David Justman, who was in art history, Scott Buresh, who was in political
science, and Avril Greenberg, who was an art major. These three simply
devoured the ideas, and we talked and talked endlessly about them. My
course thus turned out very well, both for the snaggees and for the snagger.

Sometime during the summer of 1973, I made a stab at sketching out a
table of contents for my “pamphlet”, and at that point, the ambitiousness of
my project started dawning on me, but it still felt more like a pamphlet than
a tome to me. It was only in the fall that I started writing in earnest. I had
never written anything more than a few pages long, but I fearlessly plunged
ahead, figuring it would take me just a few days — maybe a week or two. 1
was slightly off, for in fact, the very first draft (done in pen, just like my letter
to Robert, but with more cross-outs) took me about a month — a month
that overlapped in time with the “Yom Kippur war”, which made a very deep
impression on me. I realized this first draft was not the final product, but I
felt I had done the major work and now it was just a question of revision.

Experiments with Literary Form Start to Take Place

As I was writing that draft, I certainly wasn’t thinking about Escher pictures.
Nor was I thinking about Bach’s music. But one day I found myself on fire
with ideas about mind, brain, and human identity, and so, shamelessly
borrowing Lewis Carroll’s odd couple of Achilles and the Tortoise, whose
droll personalities amused me no end, I sat down and in absolute white heat
dashed off a long, complex dialogue, all about a fictitious, unimaginably
large book each of whose pages, on a one-by-one basis, contained exhaustive
information on one specific neuron in Einstein’s brain. As it happened, the
dialogue featured a short section where the two characters imagined each
other in another dialogue, and each of them said, “You might then say
this... to which I might well reply as follows... and then you would go on...”
and so forth. Because of this unusual structural feature, after I'd finally put
the final period on the final speech, I flipped back to the top of page one
and there, on a whim, typed out the single word “FUGUE”.

My Einstein—-book dialogue was not really a fugue, of course — not even
close — and yet it somehow reminded me of one. From earliest childhood,
I had been profoundly moved by the music of Bach, and this off-the-wall
idea of marrying Bach-like contrapuntal forms to lively dialogues with
intellectually rich content grabbed me with a pas\si\qn. Over the next few
weeks, as I tossed the idea around in my head, I realized how much room
for play there was along these lines, and I could imagine how voraciously I as
a teen-ager might have consumed such dialogues. Thus I was led to the idea
of inserting contrapuntal dialogues every so often, partly to break the
tedium of the heavy ideas in my chapters, and partly to allow me to
introduce lighter, more allegorical versions of all the abstruse concepts.
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The long and the short of it is that I eventually decided — but this took
many months — that the optimal structure would be a strict alternation
between chapters and dialogues. Once that was clear, then I had the joyous
task of trying to pinpoint the most crucial ideas that I wanted to get across to
my readers and then somehow embodying them in both the form and the
content of fanciful, often punning dialogues between Achilles and the
Tortoise (plus a few new friends).

GEB Is First Cooled off, Then Reheated

In early 1974, I switched Ph.D. advisors for the fourth and final time, taking
on a totally unfamiliar problem in solid-state physics that smelled very sweet
though it threatened thorniness. My new advisor, Gregory Wannier, wanted
me to plunge in deeply, and I knew in my gut that this time it was sink or
swim for me in the world of physics. If I wanted a Ph.D. — a precious but
horribly elusive goal toward which I had been struggling for almost a decade
by then — it was now or never! And so, with great reluctance, I stowed my
beloved manuscript in a desk drawer and told myself, “Hands off! And no
peeking!” I even instituted food-deprivation punishments if I so much as
opened the drawer and riffled through my book-in-the-making. Thinking
GEB thoughts — or rather, GTATHB thoughts — was strictly verboten.

Speaking of German, Wannier was scheduled to go to Germany for a
six-month period in the fall of 1974, and since I had always loved Europe, I
asked if there was any way I could go along. Very kindly, he arranged for me
to be a wissenschaftlicher Assistent — essentially a teaching assistant — in
physics at the Universitit Regensburg, and so that’s what I did for one
semester spanning the end of 1974 and the start of 1975. It was then that I
got most of the work done for my Ph.D. thesis. Since I had no close friends,
my Regensburg days and nights were long and lonely. In a peculiar sense,
my closest friend during that tough period was Frédéric Chopin, since I
tuned in to Radio Warsaw nearly every night at midnight and listened to
various pianists playing many of his pieces that I knew and loved, and others
that were new to me and that I came to love.

That whole stretch was GEB-verboten time, and thus it continued until the
end of 1975, when finally I closed the book on my thesis. Although that
work was all about an exquisite visual structure (see Chapter 5 of this book)
and seemed to offer a good launchpad for a career, I had suffered too many
blows to my ego in graduate school to believe I would make a good physicist.
On the other hand, the rekindling of old intellectual flames and especially
the writing of GTATHB had breathed a new kind of self-confidence into me.

Jobless but highly motivated, I moved to my home town of Stanford, and
there, thanks to my parents’ unquestioning and generous financial support
(“a two-year Hofstadter Fellowship”, I jokingly called it), I set out to “retool
myself” as an artificial-intelligence researcher. Even more important,
though, was that I was able to resume my passionate love affair with the
ideas that had so grabbed me a couple of years earlier.
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At Stanford, my erstwhile “pamphlet” bloomed. It was rewritten from
start to finish, because I felt that my earlier drafts, though focused on the
proper ideas, were immature and inconsistent in style. And I enjoyed the
luxury of one of the world’s earliest and best word-processing programs, my
new friend Pentti Kanerva’s tremendously flexible and user-friendly TV-Edit.
Thanks to that program, the new version just flowed out, and ever so
smoothly. Ijust can’timagine how GEB could have been written without it.

Only at this stage did the book’s unusual stylistic hallmarks really
emerge — the sometimes-silly playing with words, the concocting of novel
verbal structures that imitate musical forms, the wallowing in analogies of
every sort, the spinning of stories whose very structures exemplify the points
they are talking about, the mixing of oddball personalities in fantastic
scenarios. As I was writing, I certainly knew that my book would be quite
different from other books on related topics, and that I was violating quite a
number of conventions. Nonetheless I blithely continued, because I felt
confident that what I was doing simply had to be done, and that it had an
intrinsic rightness to it. One of the key qualities that made me so believe in
what I was doing is that this was a book in which form was being given equal
billing with content — and that was no accident, since GEBis in large part
about how content is inseparable from form, how semantics is of a piece
with syntax, how inextricable pattern and matter are from each other.

Although I had always known of myself that, in many aspects of life, I
was concerned as much with form as with content, I had never suspected
how deeply I would get caught up, in the writing of my first book, in matters
of visual appearance on all levels. Thus, thanks to the ease of using TV-Edit,
whatever I wrote underwent polishing to make it look better on the screen,
and though such control would at one time have been considered a luxury
for an author, I was very attached to it and loath to give it up. By the time I
had a solid version of the manuscript ready to send out to publishers, visual
design and conceptual structure were intimately bound up with each other.

The Clarion Call

I've oft been asked if I, an unknown author with an unorthodox manuscript
and an off-the-wall title, had to struggle for years against the monolithic
publishing industry’s fear of taking risks. Well, perhaps I was just lucky, but
my experience was far more pleasant than that.

In mid-1977, I sent out a little sample to about fifteen high-quality
publishers, just as a feeler, to which most replied politely that this was “not
the type of thing” they dealt in. Fair enough. But three or four expressed
interest in seeing more, and so, by turns, I let them take a look at the whole
thing. Needless to say, I was disappointed when the first two turned it down
(and in each case the vetting process took a few months, so the loss of time
was frustrating), but on the other hand, I wasn’t overly disheartened. Then
near Christmastime, Martin Kessler, head of Basic Books, a publishing outfit
I had always admired, gave me some hopeful though tentative signals.
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The winter of 1977-78 was so severe that Indiana University, where I was
now a fledgling assistant professor, ran out of coal for heating, and in March
the university was forced to close down for three weeks to wait for warmer
weather. I decided to use this free time to drive to New York and points
south to see old friends. Clear as a bell in my oft-blurry memory is my brief
stop in some dingy little diner in the town of Clarion, Pennsylvania, where
from a chilly phone booth I made a quick call to Martin Kessler in New York
to see if he had a verdict yet. It was a great moment in my life when he said
he would be “delighted” to work with me — and it’s almost eerie to think
that this signal event occurred in that well-named hamlet, of all places...

Revenge of the Holey Rollers

Now that I had found a publisher, there came the question of turning the
manuscript from crude computer printout to a finely typeset book. It was a
piece of true luck that Pentti, to enhance TV-Edit, had just developed one of
the world’s first computer typesetting systems, and he strongly encouraged
me to use it. Kessler, ever the adventurer, was also willing to give it a try —
partly, of course, because it would save Basic Books some money, but also
because he was by nature a shrewd risk-taker.

Do-ityourself typesetting, though for me a great break, was hardly a
piece of cake. Computing then was a lot more primitive than it is today, and
to use Pentti’s system, I had to insert into each chapter or dialogue literally
thousands of cryptic typesetting commands, next chop each computer file
into several small pieces — five or six per file, usually — each of which had
to be run through a series of two computer programs, and then each of the
resulting output files had to be punched out physically as a cryptic pattern
of myriad holes on a long, thin roll of paper tape. I myself had to walk the
200 yards to the building where the hole-puncher was located, load the
paper tape, and sit there monitoring it carefully to make sure it didn’t jam.

Next, I would carry this batch of oily tapes another quarter-mile to the
building where The Stanford Daily was printed, and if it was free, I would use
their phototypesetting machine myself. Doing so was a long, elaborate
operation involving cartridges of photosensitive paper, darkrooms, chemical
baths with rollers through which the paper had to be passed to get all the
developing chemicals off, and clotheslines on which all the five-foot long
galleys with my text on them would be hung out to dry for a day or two. The
process of actually seeing what my thousands of typesetting commands had
wrought was thus enormously unwieldy and slow. Truth to tell, though, I
didn’t mind that; in fact, it was arcane, special, and kind of exciting.

But one day, when nearly all the galleys had been printed — two to
three hundred of them — and I thought I was home free, I made a
horrendous discovery. I'd seen each one emerge with jet-black print from
the developing baths, and yet on some of the more recently-dried ones, the
text looked brownish. What!? AsI checked out others, slightly older, I saw
light-brown print, and on yet older ones, it was orangy, or even pale yellow!
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I couldn’t believe it. How in the world had this happened? The simple
answer left me feeling so angry and helpless: the aging rollers, having worn
unevenly, no longer wiped the galleys clean, so acid was day by day eating
the black print away. For the Daily’s purposes, this didn’t matter — they
chucked their galleys in a matter of hours — but for a book, it spelled
disaster. No way could a book be printed from yellow galleys! And the
photocopies I'd made of them when they were newborn were sharp, but not
sharp enough. What a nightmare! Untold labor had just gone up in smoke.
I was filled with the despair of a football team that’s just made a 99-yard
downfield march only to be stopped dead on the opponent’s one-yard line.

I'd spent almost all summer 1978 producing these galleys, but now
summer was drawing to a close, and I had to go back to Indiana to teach
courses. What on earth to do? How could I salvage GEB? The only solution
I could see was, on my own money, to fly back to Stanford every weekend of
the fall, and redo the whole thing from scratch. Luckily, I was teaching only
on Tuesdays and Thursdays, and so each Thursday afternoon I would zoom
from class, catch a plane, arrive at Stanford, work like a maniac until
Monday afternoon, and then dash off to the airport to return to Indiana. I
will never forget the worst of those weekends, when [ somehow managed to
work for forty hours straight without a wink of sleep. That’s love for you!

In this ordeal there was a saving grace, though, and it was this: I got to
correct all the typesetting errors I'd made in the first batch of galleys. The
original plan had been to use a bunch of correction galleys, which would
have had to be sliced up into little pieces in Basic’s New York offices and
pasted in wherever there were glitches — and in that first batch I'd made
glitches galore, that’s for sure. Such a process would probably have resulted
in hundreds of errors in the layout. But thanks to my 99-yard drive having
been halted at the one-yard line, I now had the chance to undo all these
glitches, and produce a nearly pristine set of galleys. And thus, although the
chemical catastrophe delayed the actual printing of GEB for a couple of
months, it turned out, in retrospect, to have been a blessing in disguise.

Oops...

There were of course many ideas that vied with each other for entry into the
book taking shape during those years, and some made it in while others did
not. One of the ironies is that the Einstein—book dialogue, which in its
“fugality” was the inspiration for all dialogues to come, was chopped.

There was another long and intricate dialogue, too, that was chopped,
or more accurately, that wound up getting transmogrified nearly beyond
recognition, and its curious story is connected with an intense debate that
was raging inside my brain at that time.

I had been made acutely aware, by some leaflets I'd read in the student
union at Oregon in 1970, of sexist language and its insidious unconscious
effects. My mind was awakened to the subtle ways that generic “he” and
“man” (and a host of similar words and phrases) contribute to the shaping
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of one’s sense of what is a “normal” human being and what is an
“exception”, and I welcomed this new perspective. But I was not a writer at
that time — I was a physics grad student — and these issues didn’t seem all
that close to my own life. When I started writing dialogues, though, things
changed. There came a point when it dawned on me that the characters in
my dialogues — Achilles, the Tortoise, the Crab, the Anteater, and a couple
of others with cameo roles — were without exception males. I was shocked
at my own having fallen victim to the unconscious pressures pushing against
the introduction of female characters. And yet, when I toyed with the idea
of going back and performing a “sex-change operation” on one or more of
these characters, that really rubbed me the wrong way. How come?

Well, all I could tell myself was, “Bring in females and you wind up
importing the whole confusing world of sexuality into what is essentially a
purely abstract discussion, and that would distract attention from my book’s
main purposes.” This nonsensical view of mine stemmed from and echoed
many tacit assumptions of western civilization at that time (and still today).
As I forced myself to grapple with my own ugly attitude, a real battle started
up in my mind, with one side of me arguing for going back and making
some characters female, and the other trying to maintain the status quo.

Out of this internal battle suddenly came a long and rather amusing
dialogue in which my various characters, having come to the realization that
they are all males, discuss why this might be so, and decide that, despite
their sense of having free will, they must in fact be merely characters in the
mind of some sexist male author. One way or another, they manage to
summon this Author character into their dialogue — and what does ke do
when accused of sexism? He pleads innocent, claiming that what his brain
does is out of his control — the blame for his sexism must instead fall on a
sexist God. And the next thing you know, God poofs into the dialogue —
and guess what? She turns out to be female (ho ho ho). I don’t remember
the details of how it went on from there, but the point is, I was deeply torn,
and I was grappling in my own way with these complex issues.

To my regret — that is to say, to the regret of the me of the years that
followed — the side that wound up winning this battle was the sexist side,
with just a few concessions to the other side (e.g., the tower of Djinns in the
dialogue “Little Harmonic Labyrinth”, and Aunt Hillary in “Prelude... Ant
Fugue”). GEBremained a book with a deep sexist bias sewn into its fabric.
Interestingly, it is a bias that very few readers, females or males, have
commented on (which in turn supports my belief that these kinds of things
are very subtle and insidious, and escape nearly everyone’s perception).

As for generic “man” and “he”, I certainly disliked those usages at that
time, and I tried to avoid them whenever I could (or rather, whenever it was
easy), but on the other hand I wasn’t particularly concerned about cleansing
my prose of every last one of them, and as a consequence the book’s pages
are also marred, here and there, by that more obvious, more explicit form
of sexism. Today, I cringe whenever I come across sentences in GEB that
talk about the reader as “he”, or that casually speak of “mankind” as if
humanity were some huge abstract guy. One lives and learns, I guess,
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And lastly, as for that soul-searching dialogue in which the Author and
God are summoned up by Achilles and company to face the accusation of
sexism, well, that was somehow transformed, in a series of many, many small
changes, into the dialogue with which GEB concludes: “Six-part Ricercar”.
If you read it with its genesis in mind, you may find an extra level of interest.

Mr. Tortoise, Meet Madame Tortue

A few years later, a wholly unexpected chance came along to make amends,
at least in part, for my sexist sin. That opportunity was afforded me by the
challenge of translating GEB into various foreign languages.

When I was writing the book, the idea that it might someday appear in
other languages never crossed my mind. I don’t know why, since I loved
languages and loved translation, but somehow it just never occurred to me.
However, as soon as the idea was proposed to me by my publisher, I was very
excited about seeing my book in other languages, especially ones that I
spoke to some extent — most of all French, since that was a language that I
spoke fluently and loved very deeply.

There were a million issues to consider in any potential translation,
since the book is rife not only with explicit wordplay but also with what Scott
Kim dubbed “structural puns” — passages where form and content echo or
reinforce each other in some unexpected manner, and very often thanks to
happy coincidences involving specific English words. Because of these
intricate medium-message tangles, I painstakingly went through every last
sentence of GEB, annotating a copy for translators into any language that
might be targeted. This took me about a year of on-again, off-again toil, but
finally it was done, and just in the nick of time, because contracts with
foreign publishers started flowing thick and fast around 1982. I could write
a short book — a pamphlet? — on the crazy, delightful, knotty puzzles and
dilemmas that arose in translating GEB, but here I will mention just one —
how to render the simple-seeming phrase “Mr, Tortoise” in French.

When in the spring of 1983, Jacqueline Henry and Bob French, the
book’s excellent translators into French, began to tackle the dialogues, they
instantly ran headlong into the conflict between the feminine gender of the
French noun tortue and the masculinity of my character, the Tortoise. By
the way, I must ruefully mention that in the marvelous but little-known
Lewis Carroll dialogue from which I borrowed these delightful characters
(reprinted in GEB as “Two-part Invention”), the Tortoise turns out, if you
look carefully, never to have been attributed either gender. But when I first
read it, the question never entered my mind. This was clearly a he-tortoise.
Otherwise, I would have known not only that it was female but also why it was
female. After all, an author only introduces a female character for some
special reason, right? Whereas a male character in a “neutral” context (e.g.,
philosophy) needs no raison d’étre, a female does. And so, given no clue as
to the Tortoise’s sex, I unthinkingly and uncritically envisaged it as a male.
Thus does sexism silently pervade well-meaning but susceptible brains,
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But let’s not forget Jacqueline and Bob! Although they could simply
have bludgeoned their way through the problem by inventing a “Monsieur
Tortue” character, that route felt distinctly unnatural in French, to their
taste, and so, in one of our many exchanges of letters, they rather gingerly
asked me if I would ever consider letting them switch the Tortoise’s sex to
female. To them, of course, it probably seemed pretty far-fetched to
imagine that the author would even give such a proposal the time of day,
but as a matter of fact, the moment I read their idea, I seized upon it with
great enthusiasm. And as a result, the French GEB’s pages are graced
throughout with the fresh, fantastic figure of Madame Tortue, who runs
perverse intellectual circles around her male companion Achilles, erstwhile
Greek warrior and amateur philosopher.

There was something so delightful and gratifying to me about this new
vision of “the Tortoise” that I was ecstatic with her. What particularly
amused me were a few bilingual conversations that I had about the Tortoise,
in which I would start out in English using the pronoun “he”, then switch to
French and to elle as well. Either pronoun felt perfectly natural, and I even
felt I was referring to the selfsame “person” in both languages. In its own
funny way, this seemed faithful to Carroll’s tortoise’s sexual neutrality.

And then, redoubling my pleasure, the translators into Italian, another
language that I adored and spoke quite well, chose to follow suit and to
convert my “Mr. Tortoise” into “signorina Tartaruga”. Of course these
radical switches in no way affect the perceptions of GEB’s purely anglophone
readers, but in some small way, I feel, they help to make up for the
lamentable outcome of my internal battle of a few years earlier.

Zen Buddhism, John Cage, and My Voguish Irrationality

The French translation was greeted, overall, very favorably. One specially
gratifying moment for Bob, Jacqueline, and myself was when a truly glowing
full-page review by Jacques Attali appeared in the most prestigious French
newspaper, Le Monde, not just praising the book for its ideas and style, but
also making a particular point of praising its translation.

A few months later, I received a pair of reviews published in successive
issues of Humanisme, an obscure journal put out by the Society of French
Freemasons. Both had issued from the pen of one author, Alain Houlou,
and I tackled them with interest. The first one was quite lengthy and, like
that in Le Monde, glowed with praise; I was gratified and grateful.

I then went on to the second review, which started out with the poetic
phrase Aprés les roses, les épines... (“After roses, thorns...”), and which then
proceeded for several pages, to my amazement, to rip GEB apart as un piege
trés grave (“a very dangerous trap”) in which the mindless bandwagon of Zen
Buddhism was eagerly jumped on, and in which a rabidly antiscientific,
beatnik-influenced, hippie-like irrationality typical of American physicists
was embraced as the supreme path to enlightenment, with the iconoclastic
Zen-influenced American composer John Cage as the patron saint of it all.
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All I could do was chuckle, and throw my hands up in bewilderment at
these Tati-esque vacarmes de monsieur Houlou. Somehow, this reviewer saw
me praising Cage to the skies (“Gddel, Escher, Cage”?) and managed to
read into my coy allusions to and minor borrowings from Zen an uncritical
acceptance thereof, which in fact is not at all my stance. As I declare at the
start of Chapter 9, I find Zen not only confusing and silly, but on a very deep
level utterly inimical to my core beliefs. However, I also find Zen’s silliness
— especially when it gets really silly — quite amusing, even refreshing, and it
was simply fun for me to sprinkle a bit of Eastern spice into my basically very
Western casserole. However, my having sprinkled little traces of Zen here
and there does not mean thatI am a Zen monk in sheep’s clothing.

As for John Cage, for some odd reason I had felt very sure, up till
reading Houlou’s weird about-face, that in my “Canon by Intervallic
Augmentation” and the chapter that follows it, I had unambiguously heaped
scorn on Cage’s music, albeit in a somewhat respectful manner. But wait,
wait, wait — isn’t “heaping respectful scorn” not a contradiction in terms,
indeed a patent impossibility? And doesn’t such coy flirting with self-
contradiction and paradox demonstrate, exactly as Houlou claims, that I am,
deep down, both antiscientific and pro-Zen, after all? Well, so be it.

Even if I feel my book is as often misunderstood as understood, 1
certainly can’t complain about the size or the enthusiasm of its readership
around the world. The original English-language GEB was and continues to
be very popular, and its translated selves hit the bestseller lists in (at least)
France, Holland, and Japan. The German GEB, in fact, occupied the #1
rank on the nonfiction list for something like five months during 1985, the
300th birthyear of J. S. Bach. Itseems a bit absurd to me. But who knows —
that anniversary, aided by the other Germanic names on the cover, may have
crucially sparked GEB’s popularity there. GEB has also been lovingly
translated into Spanish, Italian, Hungarian, Swedish, and Portuguese, and
— perhaps unexpectedly — with great virtuosity into Chinese. There is also
a fine Russian version all ready, just waiting in the wings until it finds a
publisher. All of this far transcends anything I ever expected, even though 1
can’t deny that as I was writing it, especially in those heady Stanford days, I
had a growing inner feeling that GEB would make some sort of splash.

My Subsequent Intellectual Path: Decade |

Since sending GEB off to the printers two decades ago, I've somehow
managed to keep myself pretty busy. Aside from striving, with a team of
excellent graduate students, to develop computer models of the mental
mechanisms that underlie analogy and creativity, I've also written several
further books, each of which I'll comnent on here, though only very briefly.

The first of these, appearing in late 1981, was The Mind’s I, an anthology
co-edited with a new friend, philosopher Daniel Dennett. Our purpose,
closely related to that of GEB, was to force our readers to confront, in the
most vivid and even jolting manner, the fundamental conundrum of human
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existence: our deep and almost ineradicable sense of possessing a unique
“I"-ness transcending our physical bodies and mysteriously enabling us to
exercise something we call “free will”, without ever quite knowing just what
that is. Dan and I used stories and dialogues from a motley crew of
excellent writers, and one of the pleasures for me was that I finally got to see
my Einstein-book dialogue in print, after all.

During the years 1981-1983, I had the opportunity to write a monthly
column for Scientific American, which I called “Metamagical Themas” (an
anagram of “Mathematical Games”, the title of the wonderful column by
Martin Gardner that had occupied the same slot in the magazine for the
preceding 25 years). Although the topics I dealt with in my column were,
on their surface, all over the map, in some sense they were unified by their
incessant quest for “the essence of mind and pattern”. I covered such things
as pattern and poetry in the music of Chopin; the question of whether the
genetic code is arbitrary or inevitable; strategies in the never-ending battle
against pseudo-science; the boundary between sense and nonsense in
literature; chaos and strange attractors in mathematics; game theory and the
Prisoner’s Dilemma; creative analogies involving simple number patterns;
the insidious effects of sexist language; and many other topics. In addition,
strange loops, self-reference, recursion, and a closely related phenomenon
that I came to call “locking-in” were occasional themes in my columns. In
that sense, as well as in their wandering through many disciplines, my
“Metamagical Themas” essays echoed the flavor of GEB.

Although I stopped writing my column in 1983, I spent the next year
pulling together the essays I'd done and providing each of them with a
substantial “Post Scriptum”; these 25 chapters, along with eight fresh ones,
constituted my 1985 book Metamagical Themas: Questing for the Essence of Mind
and Pattern. One of the new pieces was a rather zany Achilles-Tortoise
dialogue called “Who Shoves Whom Around Inside the Careenium? ” which
I feel captures my personal views on self, soul, and the infamous “I"-word —
namely, “I”! — perhaps better than anything else I've written — maybe even
better than GEB does, though that might be going too far.

For several years during the 1980’s, I was afflicted with a severe case of
“ambigrammitis”, which I caught from my friend Scott Kim, and out of
which came my 1987 book Ambigrammi. An ambigram (or an “inversion”, as
Scott calls them in his own book, Inversions) is a calligraphic design that
manages to squeeze two different readings into the selfsame set of curves. I
found the idea charming and intellectually fascinating, and as I developed
my own skill at this odd but elegant art form, I found that self-observation
gave me many new insights into the nature of creativity, and so Ambigrammi,
aside from showcasing some 200 of my ambigrams, also features a text — in
fact, a dialogue — that is a long, wandering meditation on the creative act,
centered on the making of ambigrams but branching out to include musical
composition, scientific discovery, creative writing, and so on. For reasons
not worth going into, Ambigrammi: Un microcosmo ideale per lo studio della
creativitd was published only in Italian and by a tiny publisher called Hopeful
Monster, and I regret to say that it is no longer available.
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My Subsequent Intellectual Path: Decade Il

As I said above, writing, though crucial, was not my only intellectual focus;
research into cognitive mechanisms was an equally important one. My early
hunches about how to model analogy and creativity are actually set forth
quite clearly in GEB’s Chapter 19, in my discussion of Bongard problems,
and although those were just the germs of an actual architecture, I feel it is
fair to say that despite many years of refinement, most of those ideas can be
found in one form or another in the models developed in my research
group at Indiana University and the University of Michigan (where I spent
the years 1984-1988, in the Psychology Department).

After a decade and a half of development of computer models, the time
seemed ripe for a book that would pull all the main threads together and
describe the programs’ principles and performance in clear and accessible
language. Thus over several years, Fluid Concepts and Creative Analogies took
shape, and finally appeared in print in 1995. In it are presented a series of
closely related computer programs — Seek-Whence, Jumbo, Numbo,
Copycat, Tabletop, and (still in progress) Metacat and Letter Spirit —
together with philosophical discussions that attempt to set them in context.
Several of its chapters are co-authored by members of the Fluid Analogies
Research Group, and indeed FARG gets its proper billing as my collective
co-author. The book shares much with GEB, but perhaps most important of
all is the basic philosophical article of faith that being an “I” — in other
words, possessing a sense of self so deep and ineradicable that it blurs into
causality — is an inevitable concomitant to, and ingredient of, the flexibility
and power that are synonymous with intelligence, and that the latter is but
another term for conceptual flexibility, which in turn means meaningful symbols.

A very different strand of my intellectual life was my deep involvement
in the translation of GEB into various languages, and this led me, perhaps
inevitably, in retrospect, to the territory of verse translation. It all started in
1987 with my attempt to mimic in English a beautiful French miniature by
sixteenth-century French poet Clément Marot, but from there it spun off in
many directions at once. To make a long story short, I wound up writing a
complex and deeply personal book about translation in its most general and
metaphorical sense, and while writing it, I experienced much the same
feeling of exhilaration as I had twenty years earlier, when writing GEB,

This book, Le Ton beau de Marot: In. Praise of the Music of Language, winds
through many diverse terrains, including what it means to “think in” a given
language (or a blur of languages); how constraints can enhance creativity;
how meaning germinates, buds, and flowers in minds and might someday
do so in machines; how words, when put together into compounds, often
melt together and lose some or all of their identity; how a language spoken
on a neutron star might or might not resemble human languages; how
poetry written hundreds of years ago should be rendered today; how
translation is intimately related to analogy and to the fundamental human
process of understanding one another; what kinds of passages, if any, are
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intrinsically untranslatable; what it means to translate nonsense passages
from one language to another; the absurdity of supposing that today’s
mostly money-driven machine-translation gimmickry could handle even the
simplest of poetry; and on and on.

The two middle chapters of Le Ton beau de Marot are devoted to a work
of fiction that I had recently fallen in love with: Alexander Pushkin’s novel
in verse, Eugene Onegin. 1 first came into contact with this work through a
couple of English translations, and then read others, always fascinated by
the translators’ different philosophies and styles. From this first flame of
excitement, I slowly was drawn into trying to read the original text, and then
somehow, despite having a poor command of Russian, I could not prevent
myself from trying to translate a stanza or two. Thus started a slippery slope
that I soon slid down, eventually stunning myself by devoting a whole year to
recreating the entire novel — nearly 400 sparkling sonnets — in English
verse. Of course, during that time, my Russian improved by leaps and
bounds, though it still is far from conversationally fluent. As I write, my
Onegin has not yet come out, but it will be appearing at just about the same
time in 1999 as the book you are holding — the twentieth-anniversary
version of Godel, Escher, Bach. And the year 1999 plays an equally important
role in my EO’ creation, being the 200th birthyear of Alexander Pushkin.

Forward-looking and Backward-looking Books

Le Ton beau de Marot is a bit longer than GEB, and on its first page, I go out
on a limb and call it “probably the best book I will ever write”. Some of my
readers will maintain that GEB is superior, and I can see why they might do
so. Butit’s so long since I wrote GEB that perhaps the magical feeling I had
when writing it has faded, while the magic of LeTbhM is still vivid. Still,
there’s no denying that, at least in the short run, LeTbM has had far less
impact than GEB did, and I confess that that’s disappointed me quite a bit.

Permit me to speculate for a moment as to why this might be the case.
In some sense, GEB was a “forward-looking” book, or at least on its surface it
gave that appearance. Many hailed it as something like “the bible of
artificial intelligence”, which is of course ridiculous, but the fact is that many
young students read it and caught the bug of my own fascination with the
modeling of mind in all of its elusive aspects, including the evanescent goals
of “I” and free will and consciousness. Although I am the furthest thing in
the world from being a futurist, a science-fiction addict, or a technology
guru, I was often pigeonholed in just that way, simply because I had written
a long treatise that dealt quite a bit with computers and their vast potential
(in the most philosophical of senses), and because my book was quite a hit
among young people interested in computers.

Well, by contrast, Le Ton beau de Marot might be seen as a “backward-
looking” book, not so much because it was inspired by a sixteenth-century
poem and deals with many other authors of the past, such as Dante and
Pushkin, but because there simply is nothing in the book’s pages that could

Twentieth-anniversary Preface P-21



be confused with glib technological glitz and surreal futuristic promises.
Not that GEB had those either, but many people seemed to see something
vaguely along those lines in it, whereas there’s nothing of that sort to latch
onto, in LeTbM. In fact, some might see it almost as technology-bashing, in
that I take many artificial-intelligence researchers and machine-translation
developers to task for wildly exaggerated claims. I am not an enemy of these
fields, but I am against vast oversimplifications and underestimations of the
challenges that they represent, for in the end, that amounts to a vast
underestimation of the human spirit, for which I have the deepest respect.

Anyone who has read GEB with any care should have seen this same
“backward-looking” flavor permeating the book, perhaps most explicitly so
in the key section “Ten Questions and Speculations” (pp. 676-680), which is
a very romantic way of looking at the depth of the human spirit. Although
my prediction about chess-playing programs put forth there turned out to
be embarrassingly wrong (as the world saw with Deep Blue versus Kasparov
in 1997), those few pages nonetheless express a set of philosophical beliefs
to which I am still committed in the strongest sense.

To Tamper, or to Leave Pristine?

Given that I was quite wrong in a prediction made twenty years ago, why not
rewrite the “Ten Questions and Speculations” section, updating it and
talking about how I feel in light of Deep Blue? Well, of course, this brings
up a much larger issue: that of revising the 1979 book from top to bottom,
and coming out with a spanking new 1999 edition of GEB. What might
militate for, and what might militate against, undertaking such a project?

I don’t deny that some delightful, if small, improvements were made in
the translated versions. For example, my magistrally Bach-savvy friend
Bernie Greenberg informed me that the “BACH goblet” I had invented out
of whole cloth in my dialogue “Contracrostipunctus” actually exists! The
real goblet is not (as in my dialogue) a piece of glass blown by Bach, but
rather a gift from one of his prize students; nonetheless, its key feature —
that of having the melody “BACH” etched into the glass itself — is just as I
said in the dialogue! This was such an amazing coincidence that I rewrote
the dialogue for the French version to reflect the real goblet’s existence, and
insisted on having a photograph of the BACH goblet in the French GEB.

Another delicious touch in the French GEB was the replacement of the
very formal, character-less photo of Gddel by a far more engaging snapshot
in which he’s in a spiffy white suit and is strolling with some old codger in a
forest. The latter, decked out in a floppy hat and baggy pants held up by
gawky suspenders, looks every inch the quintessential rube, so I rewrote the
caption as Kurt Gidel avec un paysan non identifié (“Kurt Gédel with unknown
peasant”). But as anyone who has lived in the twentieth century can see in a
split second, the paysan non identifié is none other than A. Einstein.

Why not, then, incorporate those amusing changes into a revised
edition in English? On a more substantial level, why not talk a bit about the
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pioneering artificial-intelligence program Hearsay II, whose very subtle
architecture started exerting, only a year or two after GEB came out, a vast
impact on my own computer models, and about which I already knew
something way back in 19767 Why not talk more about machine translation,
and especially its weaknesses? Why not have a whole chapter about the most
promising developments (and/or exaggerated claims) over the past two
decades in artificial intelligence — featuring my own research group as well
as others? Or why not, as some have suggested, come out with a CD-ROM
with Escher pictures and Bach music on it, as well as recordings of all of
GEB’s dialogues as performed by top-notch actors?

Well, I can see the arguments for any of these, but unfortunately, I just
don’t buy them. The CD-ROM suggestion, the one most often made to me,
is the simplest to dismiss. I intended GEB as a book, not as a multimedia
circus, and book it shall remain — end of story. As for the idea of revising
the text, however, that is more complex. Where would one draw the line?
What would be sacrosanct? What would survive, what would be tossed out?
Were I to take that task on, I might well wind up rewriting every single
sentence — and, let’s not forget, reverse-engineering old Mr. T...

Perhaps I'm just a crazy purist; perhaps I'm just a lazy lout; but stubborn
no doubt, and wouldn’t dream of changing my book’s Urtext. That’s out!
Thus in my sternness, I won’t allow myself to add the names of two people
— Donald Kennedy and Howard Edenberg — to my “Words of Thanks”,
despite the fact that for years, I've felt sad at having inadvertently left them
out. I won’t even correct the book’s typos (and, to my chagrin, I did find,
over the decades, that there are a few, aside from those listed explicitly
under “typos” in the index)! Why on earth am I such a stick-in-the-mud?
Why not bring Gddel, Escher, Bach up to date and make it a book worthy of
ushering in the twenty-first century — indeed, the third millenium?

Queerendo Invenietis...

Well, the only answer I can give, other than that life is short, is that GEB was
written in one sitting, so to speak. GEBwas a clean and pure vision that was
dreamed by someone else — someone who, to be sure, was remarkably
similar to yours truly, but someone who nonetheless had a slightly different
perspective and a slightly different agenda. GEB was that person’s labor of
love, and as such — at least so say I — it should not be touched.

Indeed, I somehow feel a strange inner confidence that the true author
of GEB, when one fine day he finally reaches my ripe age, will tender to me
the truest of thanks for not having tampered with the vessel into which he
poured so much of his young and eager soul — the work that he even went
so far as to call, in what some might see as a cryptic or even naively romantic
remark, “a statement of my religion”. At least I know what he meant.

REQVIESCAT IN CONSTANTIA, ERGO,
REPRAESENTATIO CVPIDI AVCTORIS RELIGIONIS.
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Overview

Part I: GEB

Introduction: A Musico-Logical Offering. The book opens with the story of
Bach’s Musical Offering. Bach made an impromptu visit to King Frederick the
Great of Prussia, and was requested to improvise upon a theme presented by the
King. His improvisations formed the basis of that great work. The Musical
Offering and its story form a theme upon which I “improvise” throughout the
book, thus making a sort of “Metamusical Offering”. Self-reference and the
interplay between different levels in Bach are discussed; this leads to a discussion
of parallel ideas in Escher’s drawings and then Godel's Theorem. A brief presen-
tation of the history of logic and paradoxes is given as background for Gédel’s
Theorem. This leads to mechanical reasoning and computers, and the debate
about whether Artificial Intelligence is possible. I close with an explanation of
the origins of the book—particularly the why and wherefore of the Dialogues.

Three-Part Invention. Bach wrote fifteen three-part inventions. In this three-part
Dialogue, the Tortoise and Achilles—the main fictional protagonists in the
Dialogues—are “invented” by Zeno (as in fact they were, to illustrate Zeno’s
paradoxes of motion). Very short, it simply gives the flavor of the Dialogues to
come.

Chapter |: The MU-puzzle. A simple formal system (the MIU-system) is pre-
sented, and the reader is urged to work out a puzzle to gain familiarity with
formal systems in general. A number of fundamental notions are introduced:
string, theorem, axiom, rule of inference, derivation, formal system, decision
procedure, working inside/outside the system.

Two-Part Invention. Bach also wrote fifteen two-part inventions. This two-part
Dialogue was written not by me, but by Lewis Carroll in 1895. Carroll borrowed
Achilles and the Tortoise from Zeno. and I in turn borrowed them from Carroll.
The topic is the relation between reasoning, reasoning about reasoning, reason-
ing about reasoning about reasoning, and so on. It parallels, in a way, Zeno’s
paradoxes about the impossibility of motion, seeming to show, by using infinite
regress, that reasoning is impossible. 1t is a beautiful paradox, and is referred to
several times later in the book.

Chapter II: Meaning and Form in Mathematics. A new formal system (the
pg-system) is presented, even simpler than the MIU-system of Chapter 1. Ap-
parently meaningless at first, its symbols are suddenly revealed to possess mean-
ing by virtue of the form of the theorems they appear in. This revelation is the
first important insight into meaning: its deep connection to isomorphism. Vari-
ous issues related to meaning are then discussed, such as truth, proof, symbol
manipulation, and the elusive concept, “form”.

Sonata for Unaccompanied Achilles. A Dialogue which imitates the Bach Sonatas
for unaccompanied violin. In particular, Achilles is the only speaker, since itis a
transcript of one end of a telephone call, at the far end of which is the Tortoise.
Their conversation concerns the concepts of “figure” and “ground” in various
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contexts—e.g., Escher’s art. The Dialogue itself forms an example of the distinc-
tion, since Achilles’ lines form a “figure”, and the Tortoise’s lines—implicit in
Achilles’ lines—form a “ground”.

Chapter lll: Figure and Ground. The distinction between figure and ground in
art is compared to the distinction between theorems and nontheorems in formal
systems. The question “Does a figure necessarily contain the same information as
its ground?” leads to the distinction between recursively enumerable sets and
recursive sets.

Contracrostipunctus. This Dialogue is central to the book, for it contains a set of
paraphrases of Godel’s self-referential construction and of his Incompleteness
Theorem. One of the the paraphrases of the Theorem says, “For each record
player there is a record which it cannot play.” The Dialogue’s tite is a cross
between the word “acrostic” and the word “contrapunctus”, a Latin word which
Bach used to denote the many fugues and canons making up his Art of the Fugue.
Some explicit references to the Art of the Fugue are made. The Dialogue itself
conceals some acrostic tricks.

Chapter IV: Consistency, Completeness, and Geometry. The preceding
Dialogue is explicated to the extent it is possible at this stage. This leads back to
the question of how and when symbols in a formal system acquire meaning. The
history of Euclidean and non-Euclidean geometry is given, as an illustration of
the elusive notion of “undefined terms”. This leads to ideas about the consistency
of different and possibly “rival” geometries. Through this discussion the notion
of undefined terms is clarified, and the relation of undefined terms to perception
and thought processes is considered.

Little Harmonic Labyrinth. This is based on the Bach organ piece by the same
name. It is a playful introduction to the notion of recursive—i.e., nested—
structures. It contains stories within stories. The frame story, instead of finishing
as expected, is left open, so the reader is left dangling without resolution. One
nested story concerns modulation in music—particularly an organ piece which
ends in the wrong key, leaving the listener dangling without resolution.

Chapter V: Recursive Structures and Processes. The idea of recursion is
presented in many different contexts: musical patterns, linguistic patterns,
geometric structures, mathematical functions, physical theories, computer pro-
grams, and others.

Canon by Intervallic Augmentation. Achilles and the Tortoise try to resolve the
question, “Which contains more information—a record, or the phonograph
which plays it?” This odd question arises when the Tortoise describes a single
record which, when played on a set of different phonographs, produces two
quite different melodies: B-A-C-H and C-A-G-E. It turns out, however, that
these melodies are “the same”, in a peculiar sense.

Chapter VI: The Location of Meaning. A broad discussion of how meaning is
split among coded message, decoder, and receiver. Examples presented include
strands of DNA, undeciphered inscriptions on ancient tablets, and phonograph
records sailing out in space. The relationship of intelligence to “absolute” mean-
ing is postulated.

Chromatic Fantasy, And Feud. A short Dialogue bearing hardly any resemblance,
except in title, to Bach’s Chromatic Fantasy and Fugue. It concerns the proper way
to manipulate sentences so as to preserve truth—and in particular the question
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of whether there exist rules for the usage of the word “and”. This Dialogue has
much in common with the Dialogue by Lewis Carroll.

Chapter VII: The Propositional Calculus. It is suggested how words such as
“and” can be governed by formal rules. Once again, the ideas of isomorphism
and automatic acquisition of meaning by symbols in such a system are brought
up. All the examples in this Chapter, incidentally, are “Zentences”—sentences
taken from Zen kéans. This is purposefully done, somewhat tongue-in-cheek,
since Zen kdans are deliberately illogical stories.

Crab Canon. A Dialogue based on a piece by the same name from the Musical
Offering. Both are so named because crabs (supposedly) walk backwards. The
Crab makes his first appearance in this Dialogue. It is perhaps the densest
Dialogue in the book in terms of formal trickery and level-play. Godel, Escher,
and Bach are deeply intertwined in this very short Dialogue.

Chapter VIlI: Typographical Number Theory. An extension of the Proposition-
al Calculus called “TNT” is presented. In TNT, number-theoretical reasoning
can be done by rigid symbol manipulation. Differences between formal reason-
ing and human thought are considered.

A Mu Offering. This Dialogue foreshadows several new topics in the book.
Ostensibly concerned with Zen Buddhism and kéans, it is actually a thinly veiled
discussion of theoremhood and nontheoremhood, truth and falsity, of strings in
number theory. There are fleeting references to molecular biology—particularly
the Genetic Code. There is no close affinity to the Musical Offering, other than in
the title and the playing of self-referential games.

Chapter IX: Mumon and Gédel. An attempt is made to talk about the strange
ideas of Zen Buddhism. The Zen monk Mumon, who gave well known commen-
taries on many kaans, is a central figure. In a way, Zen ideas bear a metaphorical
resemblance to some contemporary ideas in the philosophy of mathematics.
After this “Zennery”, Godel’s fundamental idea of Gédel-numbering is intro-
duced, and a first pass through Godel's Theorem is made.

Part 11: EGB

Prelude . .. This Dialogue attaches to the next one. They are based on preludes
and fugues from Bach’s Well-Tempered Clavier. Achilles and the Tortoise bring a
present to the Crab, who has a guest: the Anteater. The present turns outto be a
recording of the W.T.C.; it is immediately put on. As they listen to a prelude,
they discuss the structure of preludes and fugues, which leads Achilles to ask
how to hear a fugue: as a whole, or as a sum of parts? This is the debate between
holism and reductionism, which is soon taken up in the Ant Fugue.

Chapter X: Levels of Description, and Computer Systems. Various levels of
seeing pictures, chessboards, and computer systems are discussed. The last of
these is then examined in detail. This involves describing machine languages,
assembly languages, compiler languages, operating systems, and so forth. Then
the discussion turns to composite systems of other types, such as sports teams,
nuclei, atoms, the weather, and so forth. The question arises as to how many
intermediate levels exist—or indeed whether any exist.
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... Ant Fugue. An imitation of a musical fugue: each voice enters with the same
statement. The theme—holism versus reductionism—is introduced in a recur-
sive picture composed of words composed of smaller words, etc. The words
which appear on the four levels of this strange picture are “HOLISM”, “REDUC-
TIONISM”, and “MU”. The discussion veers off to a friend of the Anteater’s—
Aunt Hillary, a conscious ant colony. The various levels of her thought processes
are the topic of discussion. Many fugal tricks are ensconced in the Dialogue. As a
hint to the reader, references are made to parallel tricks occurring in the fugue
on the record to which the foursome is listening. At the end of the Ant Fugue,
themes from the Prelude return, transformed considerably.

Chapter Xl: Brains and Thoughts. “How can thoughts be supported by the
hardware of the brain?” is the topic of the Chapter. An overview of the large-
scale and small-scale structure of the brain is first given. Then the relation
between concepts and neural activity is speculatively discussed in some detail.

English French German Suite. An interlude consisting of Lewis Carroll’s non-
sense poem “Jabberwocky” together with two translations: one into French and
one into German, both done last century.

Chapter XlI: Minds and Thoughts. The preceding poems bring up in a forceful
way the question of whether languages, or indeed minds, can be “mapped” onto
each other. How is communication possible between two separate physical
brains? What do all human brains have in common? A geographical analogy is
used to suggest an answer. The question arises, “Can a brain be understood, in
some objective sense, by an outsider?”

Aria with Diverse Variations. A Dialogue whose form is based on Bach’s Goldberg
Variations, and whose content is related to number-theoretical problems such as
the Goldbach conjecture. This hybrid has as its main purpose to show how
number theory’s subtlety stems from the fact that there are many diverse varia-
tions on the theme of searching through an infinite space. Some of them lead to
infinite searches, some of them lead to finite searches, while some others hover in
between.

Chapter Xlll: BlooP and FlooP and GlooP. These are the names of three
computer languages. BlooP programs can carry out only predictably finite
searches, while FlooP programs can carry out unpredictable or even infinite
searches. The purpose of this Chapter is to give an intuition for the notions of
primitive recursive and general recursive functions in number theory, for they
are essential in Godel’s proof.

Air on G’s String. A Dialogue in which Gédel’s self-referential construction is
mirrored in words. The idea is due to W. V. O. Quine. This Dialogue serves as a
prototype for the next Chapter.

Chapter XIV: On Formally Undecidable Propositions of TNT and Related
Systems. This Chapter’s title is an adaptation of the title of Godel’'s 1931
article, in which his Incompleteness Theorem was first published. The two major
parts of Gddel’s proof are gone through carefully. It is shown how the assump-
tion of consistency of TNT forces one to conclude that TNT (or any similar
system) is incomplete. Relations to Euclidean and non-Euclidean geometry are
discussed. Implications for the philosophy of mathematics are gone into with
some care.
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Birthday Cantatatata . . . In which Achilles cannot convince the wily and skeptical
Tortoise that today is his (Achilles’) birthday. His repeated but unsuccessful tries
to do so foreshadow the repeatability of the Gédel argument.

Chapter XV: Jumping out of the System. The repeatability of Godel’s argu-
ment is shown, with the implication that TNT is not only incomplete, but
“essentially incomplete”. The fairly notorious argument by J. R. Lucas, to the
effect that Godel’s Theorem demonstrates that human thought cannot in any
sense be “mechanical”, is analyzed and found to be wanting.

Edifying Thoughts of a Tobacco Smoker. A Dialogue treating of many topics, with
the thrust being problems connected with self-replication and self-reference.
Television cameras filming television screens, and viruses and other subcellular
entities which assemble themselves, are among the examples used. The title
comes from a poem by J.S. Bach himself, which enters in a peculiar way.

Chapter XVI: Self-Ref and Self-Rep. This Chapter is about the connection be-
tween self-reference in its various guises, and self-reproducing entities (e.g.,
computer programs or DNA molecules). The relations between a self-
reproducing entity and the mechanisms external to it which aid it in reproducing
itself (e.g., a computer or proteins) are discussed—particularly the fuzziness of
the distinction. How information travels between various levels of such systems is
the central topic of this Chapter.

The Magnificrab, Indeed. The title is a pun on Bach’s Magnificat in D. The tale is
about the Crab, who gives the appearance of having a magical power of distin-
guishing between true and false statements of number theory by reading them as
musical pieces, playing them on his flute, and determining whether they are
“beautiful” or not.

Chapter XVII: Church, Turing, Tarski, and Others. The fictional Crab of the
preceding Dialogue is replaced by various real people with amazing mathemati-
cal abilities. The Church-Turing Thesis, which relates mental activity to compu-
tation, is presented in several versions of differing strengths. All are analyzed,
particularly in terms of their implications for simulating human thought
mechanically, or programming into a machine an ability to sense or create
beauty. The connection between brain activity and computation brings up some
other topics: the halting problem of Turing, and Tarski’s Truth Theorem.

SHRDLU, Toy of Man’s Designing. This Dialogue is lifted out of an article by
Terry Winograd on his program SHRDLU; only a few names have been
changed. In it, a program communicates with a person about the so-called
“blocks world” in rather impressive English. The computer program appears to
exhibit some real understanding—in its limited world. The Dialogue’s title is
based on Jesu, Joy of Man’s Desiring, one movement of Bach’s Cantata 147.

Chapter XVIII: Artificial Intelligence: Retrospects. This Chapter opens with a
discussion of the famous “Turing test’—a proposal by the computer pioneer
Alan Turing for a way to detect the presence or absence of “thought” in a
machine. From there, we go on to an abridged history of Artificial Intelligence.
This covers programs that can—to somne degree—play games, prove theorems,
solve problems, compose music, do mathematics, and use “natural language”
(e.g., English).

xit Overview



Contrafactus. About how we unconsciously organize our theughts so that we can
imagine hypothetical variants on the real world all the time. Also about aberrant
variants of this ability—such as possessed by the new character, the Sloth, an avid
lover of French fries, and rabid hater of counterfactuals.

Chapter XIX: Artificial Intelligence: Prospects. The preceding Dialogue trig-
gers a discussion of how knowledge is represented in layers of contexts. This
leads to the modern Al idea of “frames”. A frame-like way of handling a set of
visual pattern puzzles is presented, for the purpose of concreteness. Then the
deep issue of the interaction of concepts in general is discussed, which leads into
some speculations on creativity. The Chapter concludes with a set of personal
“Questions and Speculations” on Al and minds in general.

Sloth Canon. A canon which imitates a Bach canon in which one voice plays the
same melody as another, only upside down and twice as slowly, while a third
voice is free. Here, the Sloth utters the same lines as the Tortoise does, only
negated (in a liberal sense of the term) and twice as slowly, while Achilles is free.

Chapter XX: Strange Loops, Or Tangled Hierarchies. A grand windup of
many of the ideas about hierarchical systems and self-reference. It is concerned
with the snarls which arise when systems turn back on themselves—for example,
science probing science, government investigating governmental wrongdoing,
art violating the rules of art, and finally, humans thinking about their own brains
and minds. Does Godel’s Theorem have anything to say about this last “snarl”?
Are free will and the sensation of consciousness connected to Godel's Theorem?
The Chapter ends by tying Gédel, Escher, and Bach together once again.

Six-Part Ricercar. This Dialogue is an exuberant game played with many of the
ideas which have permeated the book. It is a reenactment of the story of the
Musical Offering, which began the book; it is simultaneously a “translation” into
words of the most complex piece in the Musical Offering: the Six-Part Ricercar.
This duality imbues the Dialogue with more levels of meaning than any other in
the book. Frederick the Great is replaced by the Crab, pianos by computers, and
so on. Many surprises arise. The Dialogue’s content concerns problems of mind,
consciousness, free will, Artificial Intelligence, the Turing test, and so forth,
which have been introduced earlier. It concludes with an implicit reference to
the beginning of the book, thus making the book into one big self-referential
loop, symbolizing at once Bach’s music, Escher’s drawings, and Gédel’s Theorem.
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FIGURE 1. Johann Sebastian Bach, in 1748. From a painting by Elias Gottlieb
Haussmann.



Introduction:
A Musico-Logical Offering

Author:

FrEDERICK THE GREAT, King of Prussia, came to power in 1740.
Although he is remembered in history books mostly for his military astute-
ness, he was also devoted to the life of the mind and-the spirit. His court in
Potsdam was one of the great centers of intellectual activity in Europe in
the eighteenth century. The celebrated mathematician Leonhard Euler
spent twenty-five years there. Many other mathematicians and scientists
came, as well as philosophers—including Voltaire and La Mettrie, who
wrote some of their most influential works while there.

But music was Frederick’s real love. He was an avid flutist and com-
poser. Some of his compositions are occasionally performed even to this
day. Frederick was one of the first patrons of the arts to recognize the
virtues of the newly developed “piano-forte” (“soft-loud”). The piano had
been developed in the first half of the eighteenth century as a modification
of the harpsichord. The problem with the harpsichord was that pieces
could only be played at a rather uniform loudness—there was no way to
strike one note more loudly than its neighbors. The “soft-loud”, as its name
implies, provided a remedy to this problem. From Italy, where Bartolom-
meo Cristofori had made the first one, the soft-loud idea had spread
widely. Gottfried Silbermann, the foremost German organ builder of the
day, was endeavoring to make a “perfect” piano-forte. Undoubtedly King
Frederick was the greatest supporter of his efforts—it is said that the King
owned as many as fifteen Silbermann pianos!

Bach

Frederick was an admirer not only of pianos, but also of an organist and
composer by the name of J. S. Bach. This Bach’s compositions were some-
what notorious. Some called them “turgid and confused”, while others
claimed they were incomparable masterpieces. But no one disputed Bach’s
ability to improvise on the organ. In those days, being an organist not only
meant being able to play, but also to extemporize, and Bach was known far
and wide for his remarkable extemporizations. (For some delightful anec-
dotes about Bach’s extemporization, see The Bach Reader, by H. T. David
and A. Mendel.)

In 1747, Bach was sixty-two, and his fame, as well as one of his sons,
had reached Potsdam; in fact, Carl Philipp Emanuel Bach was the
Capellmeister (choirmaster) at the court of King Frederick. For years the
King had let it be known, through gentle hints to Philipp Emanuel, how
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pleased he would be to have the elder Bach come and pay him a visit; but
this wish had never been realized. Frederick was particularly eager for
Bach to try out his new Silbermann pianos, which he (Frederick) correctly
foresaw as the great new wave in music.

It was Frederick’s custom to have evening concerts of chamber music
in his court. Often he himself would be the soloist in a concerto for flute.
Here we have reproduced a painting of such an evening by the German
painter Adolph von Menzel, who, in the 1800’s, made a series of paintings
illustrating the life of Frederick the Great. At the cembalo is C. P. E. Bach,
and the figure furthest to the right is Joachim Quantz, the King’s flute
master—and the only person allowed to find fault with the King’s flute
playing. One May evening in 1747, an unexpected guest showed up.
Johann Nikolaus Forkel, one of Bach’s earliest biographers, tells the story
as follows:

One evening, just as he was getting his flute ready, and his musicians were
assembled, an officer brought him a list of the strangers who had arrived.
With his flute in his hand he ran over the list, but immediately turned to the
assembled musicians, and said, with a kind of agitation, “Gentlemen, old Bach
is come.” The flute was now laid aside, and old Bach, who had alighted at his
son’s lodgings, was immediately summoned to the Palace. Wilhelm
Friedemann, who accompanied his father, told me this story, and I must say
that I still think with pleasure on the manner in which he related it. At that
time it was the fashion to make rather prolix compliments. The first appear-
ance of J. S. Bach before so great a King, who did not even give him time to
change his traveling dress for a black chanter’s gown, must necessarily be
attended with many apologies. I will not here dwell on these apologies, but
merely observe, that in Wilhelm Friedemann’s mouth they made a formal
Dialogue between the King and the Apologist.

But what is more important than this is that the King gave up his Concert
for this evening, and invited Bach, then already called the Old Bach, to try his
fortepianos, made by Silbermann, which stood in several rooms of the palace.
[Forkel here inserts this footnote: “The pianofortes manufactured by Silber-
mann, of Freyberg, pleased the King so much, that he resolved to buy them
all up. He collected fifteen. I hear that they all now stand unfit for use in
various corners of the Royal Palace."] The musicians went with him from
room to room, and Bach was invited everywhere to try them and to play
unpremeditated compositions. After he had gone on for some time, he asked
the King to give him a subject for a Fugue, in order to execute it immediately
without any preparation. The King admired the learned manner in which his
subject was thus executed extempore; and, probably to see how far such art
could be carried, expressed a wish to hear a Fugue with six Obligato parts.
But as it is not every subject that is fit for such full harmony, Bach chose one
himself, and immediately executed it to the astonishment of all present in the
same magnificent and learned manner as he had done that of the King. His
Majesty desired also to hear his performance on the organ. The next day
therefore Bach was taken to all the organs in Potsdam, as he had before been
to Silbermann’s fortepianos. After his return to Leipzig, he composed the
subject, which he had received from the King, in three and six parts, added
several artificial passages in strict canon to it, and had it engraved, under the

title of “Musikalisches Opfer” [Musical Oﬁ‘ering], and dedicated it to the
inventor.!

4 Introduction: A Musico-Logical Offering



(2681) 172ua uon ygjopy £q ‘ONOSSUES UL 11DUCD AN ' YN




FIGURE 3. The Royal Theme.

When Bach sent a copy of his Musical Offering to the King, he included
a dedicatory letter, which is of interest for its prose style if nothing else—
rather submissive and flattersome. From a modern perspective it seems
comical. Also, it probably gives something of the flavor of Bach’s apology
for his appearance.?

Most GRracious KING!

In deepest humility I dedicate herewith to Your Majesty a musical offering,
the noblest part of which derives from Your Majesty’s own august hand. With
awesome pleasure I still remember the very special Royal grace when, some
time ago, during my visit in Potsdam, Your Majesty’s Self deigned to play to
me a theme for a fugue upon the clavier, and at the same time charged me
most graciously to carry it out in Your Majesty’s most august presence. To
obey Your Majesty’s command was my most humble duty. I noticed very soon,
however, that, for lack of necessary preparation, the execution of the task did
not fare as well as such an excellent theme demanded. I resolved therefore
and promptly pledged myself to work out this right Royal theme more fully,
and then make it known to the world. This resolve has now been carried out
as well as possible, and it has none other than this irreproachable intent, to
glorify, if only in a small point, the fame of a monarch whose greatness and
power, as in all the sciences of war and peace, so especially in music, everyone
must admire and revere. I make bold to add this most humble request: may
Your Majesty deign to dignify the present modest labor with a gracious
acceptance, and continue to grant Your Majesty’s most august Royal grace to

Your Majesty’s
most humble and obedient servant,
THE AUTHOR
Leipzig, July 7
1747

Some twenty-seven years later, when Bach had been dead for twenty-
four years, a Baron named Gottfried van Swieten—to whom, incidentally,
Forkel dedicated his biography of Bach, and Beethoven dedicated his First

Symphony—had a conversation with King Frederick, which he reported as
follows:

He [Frederick] spoke to me, among other things, of music, and of a great
organist named Bach, who has been for a while in Berlin. This artist [ Wilhelm
Friedemann Bach] is endowed with a talent superior, in depth of harmonic
knowledge and power of execution, to any I have heard or can imagine, while
those who knew his father claim that he, in turn, was even greater. The King
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is of this opinion, and to prove it to me he sang aloud a chromatic fugue
subject which he had given this old Bach, who on the spot had made of it a
fugue in four parts, then in five parts, and finally in eight parts.?

Of course there is no way of knowing whether it was King Frederick or
Baron van Swieten who magnified the story into larger-than-life propor-
tions. But it shows how powerful Bach’s legend had become by that time.
To give an idea of how extraordinary a six-part fugue is, in the entire
Well-Tempered Clavier by Bach, containing forty-eight Preludes and Fugues,
only two have as many as five parts, and nowhere is there a six-part fugue!
One could probably liken the task of improvising a six-part fugue to the
playing of sixty simultaneous blindfold games of chess, and winning them
all. To improvise an eight-part fugue is really beyond human capability.

In the copy which Bach sent to King Frederick, on the page preceding
the first sheet of music, was the following inscription:

FIGURE 4.

(“At the King’s Command, the Song and the Remainder Resolved with
Canonic Art.”) Here Bach is punning on the word “canonic”, since it means
not only “with canons” but also “in the best possible way”. The initials of
this inscription are

RICERCAR

—an Italian word, meaning “to seek”. And certainly there is a great deal to
seek in the Musical Offering. It consists of one three-part fugue, one six-part
fugue, ten canons, and a trio sonata. Musical scholars have concluded that
the three-part fugue must be, in essence, identical with the one which Bach
improvised for King Frederick. The six-part fugue is one of Bach’s most
complex creations, and its theme is, of course, the Royal Theme. That
theme, shown in Figure 3, is a very complex one, rhythmically irregular
and highly chromatic (that is, filled with tones which do not belong to the
key it is in). To write a decent fugue of even two voices based on it would
not be easy for the average musician!

Both of the fugues are inscribed “Ricercar”, rather than “Fuga”. This
is another meaning of the word; “ricercar” was, in fact, the original name
for the musical form now known as “fugue”. By Bach’s time, the word
“fugue” (or fuga, in Latin and Italian) had become standard, but the term
“ricercar” had survived, and now designated an erudite kind of fugue,
perhaps too austerely intellectual for the common ear. A similar usage
survives in English today: the word “recherché” means, literally, “sought
out”, but carries the same kind of implication, namely of esoteric or high-
brow cleverness.

The trio sonata forms a delightful relief from the austerity of the
fugues and canons, because it is very melodious and sweet, almost dance-
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able. Nevertheless, it too is based largely on the King’s theme, chromatic
and austere as it is. It is rather miraculous that Bach could use such a theme
to make so pleasing an interlude.

The ten canons in the Musical Offering are among the most sophisti-
cated canons Bach ever wrote. However, curiously enough, Bach himself
never wrote them out in full. This was deliberate. They were posed as
puzzles to King Frederick. It was a familiar musical game of the day to give
a single theme, together with some more or less tricky hints, and to let the
canon based on that theme be “discovered” by someone else. In order to
know how this is possible, you must understand a few facts about canons.

Canons and Fugues

The idea of a canon is that one single theme is played against itself. This is
done by having “copies” of the theme played by the various participating
voices. But there are many ways to do this. The most straightforward of all
canons is the round, such as “Three Blind Mice”, “Row, Row, Row Your
Boat”, or “Frére Jacques”. Here, the theme enters in the first voice and,
after a fixed time-delay, a “copy” of it enters, in precisely the same key.
After the same fixed time-delay in the second voice, the third voice enters
carrying the theme, and so on. Most themes will not harmonize with
themselves in this way. In order for a theme to work as a canon theme, each
of its notes must be able to serve in a dual (or triple, or quadruple) role: it
must firstly be part of a melody, and secondly it must be part of a harmoni-
zation of the same melody. When there are three canonical voices, for
instance, each note of the theme must act in two distinct harmonic ways, as
well as melodically. Thus, each note in a canon has more than one musical
meaning; the listener’s ear and brain automatically figure out the appro-
priate meaning, by referring to context.

There are more complicated sorts of canons, of course. The first
escalation in complexity comes when the “copies” of the theme are
staggered not only in time, but also in pitch, thus, the first voice might sing
the theme starting on C, and the second voice, overlapping with the first
voice, might sing the identical theme starting five notes higher, on G. A
third voice, starting on the D yet five notes higher, might overlap with the
first two, and so on. The next escalation in complexity comes when the
speeds of the different voices are not equal; thus, the second voice might
sing twice as quickly, or twice as slowly, as the first voice. The former is
called diminution, the latter augmentation (since the theme seems to shrink or
to expand).

We are not yet done! The next stage of complexity in canon construc-
tion is to invert the theme, which means to make a melody which jumps
down wherever the original theme jumps up, and by exactly the same
number of semitones. This is a rather weird melodic transformation, but
when one has heard many themes inverted, it begins to seem quite natural.
Bach was especially fond of inversions, and they show up often in his
work—and the Musical Offering is no exception. (For a simple example of
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inversion, try the tune “Good King Wenceslas”. When the original and its
inversion are sung together, starting an octave apart and staggered with a
time-delay of two beats, a pleasing canon results.) Finally, the most esoteric
of “copies” is the retrograde copy—where the theme is played backwards in
time. A canon which uses this trick is affectionately known as a crab canon,
because of the peculiarities of crab locomotion. Bach included a crab canon
in the Musical Offering, needless to say. Notice that every type of “copy”
preserves all the information in the original theme, in the sense that the
theme is fully recoverable from any of the copies. Such an information-
preserving transformation is often called an isomorphism, and we will have
much traffic with isomorphisms in this book.

Sometimes it is desirable to relax the tightness of the canon form. One
way is to allow slight departures from perfect copying, for the sake of more
fluid harmony. Also, some canons have “free” voices—voices which do not
employ the canon’s theme, but which simply harmonize agreeably with the
voices that are in canon with each other.

Each of the canons in the Musical Offering has for its theme a different
variant of the King’s Theme, and all the devices described above for
making canons intricate are exploited to the hilt; in fact, they are occasion-
ally combined. Thus, one three-voice canon is labeled “Canon per
Augmentationem, contrario Motu”; its middle voice is free (in fact, it sings
the Royal Theme), while the other two dance canonically above and below
it, using the devices of augmentation and inversion. Another bears simply
the cryptic label “Quaerendo invenietis” (“By seeking, you will discover”).
All of the canon puzzles have been solved. The canonical solutions were
given by one of Bach’s pupils, Johann Philipp Kirnberger. But one might
still wonder whether there are more solutions to seek!

I should also explain briefly what a fugue is. A fugue is like a canon, in
that it is usually based on one theme which gets played in different voices
and different keys, and occasionally at different speeds or upside down or
backwards. However, the notion of fugue is much less rigid than that of
canon, and consequently it allows for more emotional and artistic expres-
sion. The telltale sign of a fugue is the way it begins: with a single voice
singing its theme. When it is done, then a second voice enters, either five
scale-notes up, or four down. Meanwhile the first voice goes on, singing the
“countersubject”: a secondary theme, chosen to provide rhythmic, har-
monic, and melodic contrasts to the subject. Each of the voices enters in
turn, singing the theme, often to the accompaniment of the countersubject
in some other voice, with the remaining voices déing whatever fanciful
things entered the composer’s mind. When all the voices have “arrived”,
then there are no rules. There are, to be sure, standard kinds of things to
do—but not so standard that one can merely compose a fugue by formula.
The two fugues in the Musical Offering are outstanding examples of fugues
that could never have been “composed by formula”. There is something
much deeper in them than mere fugality.

All in all, the Musical Offering represents one of Bach’s supreme ac-
complishments in counterpoint. It is itself one large intellectual fugue, in
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which many ideas and forms have been woven together, and in which
playful double meanings and subtle allusions are commonplace. And itis a
very beautiful creation of the human intellect which we can appreciate
forever. (The entire work is wonderfully described in the book J. S. Bach’s
Musical Offering, by H. T. David.)

An Endlessly Rising Canon

There is one canon in the Musical Offering which is particularly unusual.
Labeled simply “Canon per Tonos”, it has three voices. The uppermost
voice sings a variant of the Royal Theme, while underneath it, two voices
provide a canonic harmonization based on a second theme. The lower of
this pair sings its theme in C minor (which is the key of the canon as a
whole), and the upper of the pair sings the same theme displaced upwards
in pitch by an interval of a fifth. What makes this canon different from any
other, however, is that when it concludes—or, rather, seems to conclude—it
is no longer in the key of C minor, but now is in D minor. Somehow Bach
has contrived to modulate (change keys) right under the listener’s nose. And
it is so constructed that this “ending” ties smoothly onto the beginning
again; thus one can repeat the process and return in the key of E, only to
join again to the beginning. These successive modulations lead the ear to
increasingly remote provinces of tonality, so that after several of them, one
would expect to be hopelessly far away from the starting key. And yet
magically, after exactly six such modulations, the original key of C minor
has been restored! All the voices are exactly one octave higher than they
were at the beginning, and here the piece may be broken off in a musically
agreeable way. Such, one imagines, was Bach’s intention; but Bach indubi-
tably also relished the implication that this process could go on ad
infinitum, which is perhaps why he wrote in the margin “As the modulation
rises, so may the King’s Glory.” To emphasize its potentially infinite aspect,
I like to call this the “Endlessly Rising Canon”.

In this canon, Bach has given us our first example of the notion of
Strange Loops. The “Strange Loop” phenomenon occurs whenever, by mov-
ing upwards (or downwards) through the levels of some hierarchical sys-
tem, we unexpectedly find ourselves right back where we started. (Here,
the system is that of musical keys.) Sometimes I use the term Tangled
Hierarchy to describe a system in which a Strange Loop occurs. As we go on,
the theme of Strange Loops will recur again and again. Sometimes it will be
hidden, other times it will be out in the open; sometimes it will be right side
up, other times it will be upside down, or backwards. “Quaerendo in-
venietis” is my advice to the reader.

Escher

To my mind, the most beautiful and powerful visual realizations of this
notion of Strange Loops exist in the work of the Dutch graphic artist M. C.
Escher, who lived from 1902 to 1972. Escher was the creator of some of the
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FIGURE 5. Waterfall, by M. C. Escher (lithograph, 1961).

most intellectually stimulating drawings of all time. Many of them have
their origin in paradox, illusion, or double-meaning. Mathematicians were
among the first admirers of Escher’s drawings, and this is understandable
because they often are based on mathematical principles of symmetry or
pattern . . . But there is much more to a typical Escher drawing than just
symmetry or pattern; there is often an underlying idea, realized in artistic
form. And in particular, the Strange Loop is one of the most recurrent
themes in Escher’s work. Look, for example, at the lithograph Waterfall
(Fig. 5), and compare its six-step endlessly falling loop with the six-step
endlessly rising loop of the “Canon per Tonos”. The similarity of vision is
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FIGURE 6. Ascending and Descending, by M. C. Escher (lithograph, 1960).



remarkable. Bach and Escher are playing one single theme in two different
“keys”: music and art.

Escher realized Strange Loops in several different ways, and they can
be arranged according to the tightness of the loop. The lithograph Ascend-
ing and Descending (Fig. 6), in which monks trudge forever in loops, is the
loosest version, since it involves §o many stéps before the starting point is
regained. A tighter loop is contained in Waterfall, which, as we already
observed, involves only six discrete steps. You may be thinking that there is
some ambiguity in the notion of a single “step”—for instance, couldn’t
Ascending and Descending be seen just as easily as having four levels (stair-
cases) as forty-five levels (stairs)? It is indeed true that there is an inherent

FIGURE 7. Hand with Reflecting Globe. Self-portrait by M. C. Escher (lithograph,
1935).
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haziness in level-counting, not only in Escher pictures, but in hierarchical,
many-level systems. We will sharpen our understanding of this haziness
later on. But let us not get too distracted now! As we tighten our loop, we
come to the remarkable Drawing Hands (Fig. 135), in which each of two
hands draws the other: a two-step Strange Loop. And finally, the tightest of
all Strange Loops is realized in Print Gallery (Fig. 142): a picture of a picture
which contains itself. Or is it a picture of a gallery which contains itself? Or
of a town which contains itself? Or a young man who contains himself?
(Incidentally, the illusion underlying Ascending and Descending and Waterfall
‘was not invented by Escher, but by Roger Penrose, a British mathematician,
in 1958. However, the theme of the Strange Loop was already present in
Escher’s work in 1948, the year he drew Drawing Hands. Print Gallery dates
from 1956.)

Implicit in the concept of Strange Loops is the concept of infinity, since
what else is a loop but a way of representing an endless process in a finite
way? And infinity plays a large role in many of Escher’s drawings. Copies of
one single theme often fit into each other, forming visual analogues to the
canons of Bach. Several such patterns can be seen in Escher’s famous print
Metamorphosis (Fig. 8). It is a little like the “Endlessly Rising Canon”: wan-
dering further and further from its starting point, it suddenly is back. In
the tiled planes of Metamorphosis and other pictures, there are already
suggestions of infinity. But wilder visions of infinity appear in other draw-
ings by Escher. In some of his drawings, one single theme can appear on
different levels of reality. For instance, one level in a drawing might clearly
be recognizable as representing fantasy or imagination; another level
would be recognizable as reality. These two levels might be the only
explicitly portrayed levels. But the mere presence of these two levels invites
the viewer to look upon himself as part of yet another level; and by taking
that step, the viewer cannot help getting caught up in Escher’s implied
chain of levels, in which, for any one level, there is always another level
above it of greater “reality”, and likewise, there is always a level below,
“more imaginary” than it is. This can be mind-boggling in itself. However,
what happens if the chain of levels is not linear, but forms a loop? What is
real, then, and what is fantasy? The genius of Escher was that he could not
only concoct, but actually portray, dozens of half-real, half-mythical worlds,
worlds filled with Strange Loops, which he seems to be inviting his viewers
to enter.

Godel

In the examples we have seen of Strange Loops by Bach and Escher, there
is a conflict between the finite and the infinite, and hence a strong sense of
paradox. Intuition senses that there is something mathematical involved
here. And indeed in our own century a mathematical counterpart was
discovered, with the most enormous repercussions. And, just as the Bach
and Escher loops appeal to very simple and ancient intuitions—a musical
scale, a staircase—so this discovery, by K. Godel, of a Strange Loop in

Introduction: A Musico-Logical Offering 15



FIGURE 9. Kurt Gidel. -



mathematical systems has its origins in simple and ancient intuitions. In its
absolutely barest form, Gédel’s discovery involves the translation of an
ancient paradox in philosophy into mathematical terms. That paradox is
the so-called Epimenides paradox, or liar paradox. Epimenides was a Cretan
who made one immortal statement: “All Cretans are liars.” A sharper
version of the statement is simply “I am lying”; or, “This statement is false”.
It is that last version which I will usually mean when I speak of the
Epimenides paradox. It is a statement which rudely violates the usually
assumed dichotomy of statements into true and false, because if you tenta-
tively think it is true, then it immediately backfires on you and makes you
think it is false. But once you've decided it is false, a similar backfiring
returns you to the idea that it must be true. Try it!

The Epimenides paradox is a one-step Strange Loop, like Escher’s
Print Gallery. But how does it have to do with mathematics? That is what
Godel discovered. His idea was to use mathematical reasoning in exploring
mathematical reasoning itself. This notion of making mathematics “intro-
spective” proved to be enormously powerful, and perhaps its richest impli-
cation was the one Godel found: Gédel’s Incompleteness Theorem. What
the Theorem states and how it is proved are two different things. We shall
discuss both in quite some detail in this book. The Theorem can oe likened
to a pearl, and the method of proof to an oyster. The pearl is prized for its
luster and simplicity; the oyster is a complex living beast whose innards give
rise to this mysteriously simple gem.

Godel's Theorem appears as Proposition VI in his 1931 paper “On
Formally Undecidable Propositions in Principia Mathematica and Related
Systems [.” It states:

To every w-consistent recursive class « of formulae there corre-
spond recursive class-signs r, such that neither v Genr nor
Neg (v Genr) belongs to Flg (x) (where v is the free variable of r).

Actually, it was in German, and perhaps you feel that it might as well be in
German anyway. So here is a paraphrase in more normal English:

All consistent axiomatic formulations of number theory
include undecidable propositions.
This is the pearl.

In this pearl it is hard to see a Strange Loop. That is because the
Strange Loop is buried in the oyster—the proof. The proof of Godel’s
Incompleteness Theorem hinges upon the writing of a self-referential
mathematical statement, in the same way as the Epimenides paradox is a
self-referential statement of language. But whereas it is very simple to talk
about language in language, it is not at all easy to see how a statement about
numbers can talk about itself. In fact, it took genius merely to connect the
idea of self-referential statements with number theory. Once Gédel had the
intuition that such a statement could be created, he was over the major
hurdle. The actual creation of the statement was the working out of this
one beautiful spark of intuition.
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We shall examine the Godel construction quite carefully in Chapters to
come, but so that you are not left completely in the dark, I will sketch here,
in a few strokes, the core of the idea, hoping that what you see will trigger
ideas in your mind. First of all, the difficulty should be made absolutely
clear. Mathematical statements—let us concentrate on number-theoretical
ones—are about properties of whole numbers. Whole numbers are not
statements, nor are their properties. A statement of number theory is not
about a statement of number theory; it justis a statement of number theory.
This is the problem; but Gédel realized that there was more here than
meets the eye.

Godel had the insight that a statement of number theory could be about
a statement of number theory (possibly even itself ), if only numbers could
somehow stand for statements. The idea of a code, in other words, is at the
heart of his construction. In the Godel Code, usually called “Godel-num-
bering”, numbers are made to stand for symbols and sequences of symbols.
That way, each statement of number theory, being a sequence of
specialized symbols, acquires a Gédel number, something like a telephone
number or a license plate, by which it can be referred to. And this coding
trick enables statements of number theory to be understood on two differ-
ent levels: as statements of number theory, and also as statements about
statements of number theory.

Once Godel had invented this coding scheme, he had to work out in
detail a way of transporting the Epimenides paradox into a number-
theoretical formalism. His final transplant of Epimenides did not say, “This
statement of number theory is false”, but rather, “This statement of
number theory does not have any proof”. A great deal of confusion can be
caused by this, because people generally understand the notion of “proof”
rather vaguely. In fact, Gédel's work was just part of a long attempt by
mathematicians to explicate for themselves what proofs are. The important
thing to keep in mind is that proofs are demonstrations within fixed systems of
propositions. In the case of Godel’s work, the fixed system of number-
theoretical reasoning to which the word “proof” refers is that of Principia
Mathematica (P.M.), a giant opus by Bertrand Russell and Alfred North
Whitehead, published between 1910 and 1913. Therefore, the Godel sen-
tence G should more properly be written in English as:

This statement of number theory does not have any proof
in the system of Principia Mathematica.

Incidentally, this Gédel sentence G is not Gédel’s Theorem—no more than
the Epimenides sentence is the observation that “The Epimenides sentence
is a paradox.” We can now state what the effect of discovering G is.
Whereas the Epimenides statement creates a paradox since it is neither true
nor false, the Godel sentence G is unprovable (inside P.M.) but true. The
grand conclusion? That the system of Principia Mathematica is
“incomplete”—there are true statements of number theory which its
methods of proof are too weak to demonstrate.
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But if Principia Mathematica was the first vicim of this stroke, it was
certainly not the last! The phrase “and Related Systems” in the title of
Godel’s article is a telling one; for if Godel’s result had merely pointed out a
defect in the work of Russell and Whitehead, then others could have been
inspired to improve upon P.M. and to outwit Godel’s Theorem. But this
was not possible: Godel’s proof pertained to any axiomatic system which
purported to achieve the aims which Whitehead and Russell had set for
themselves. And for each different system, one basic method did the trick.
In short, Godel showed that provability is a weaker notion than truth, no
matter what axiomatic system is involved.

Therefore Goédel’s Theorem had an electrifying effect upon logicians,
mathematicians, and philosophers interested in the foundations of mathe-
matics, for it showed that no fixed system, no matter how complicated,
could represent the complexity of the whole numbers: 0, 1, 2, 3, ...
Modern readers may not be as nonplussed by this as readers of 1931 were,
since in the interim our culture has absorbed Gédel’s Theorem, along with
the conceptual revolutions of relativity and quantum mechanics, and their
philosophically disorienting messages have reached the public, even if
cushioned by several layers of translation (and usually obfuscation). There
is a general mood of expectation, these days, of “limitative” results—but
back in 1931, this came as a bolt from the blue.

Mathematical Logic: A Synopsis

A proper appreciation of Gédel’s Theorem requires a setting of context.
Therefore, I will now attempt to summarize in a short space the history of
mathematical logic prior to 1931—an impossible task. (See DeLong,
Kneebone, or Nagel and Newman, for good presentations of history.) It all
began with the attempts to mechanize the thought processes of reasoning.
Now our ability to reason has often been claimed to be what distinguishes
us from other species; so it seems somewhat paradoxical, on first thought,
to mechanize that which is most human. Yet even the ancient Greeks knew
that reasoning is a patterned process, and is at least partially governed by
statable laws. Aristotle codified syllogisms, and Euclid codified geometry;
but thereafter, many centuries had to pass before progress in the study of
axiomatic reasoning would take place again.

One of the significant discoveries of nineteenth-century mathematics
was that there are different, and equally valid, geometries—where by “a
geometry” is meant a theory of properties of abstract points and lines. It
had long been assumed that geometry was what Euclid had codified, and
that, although there might be small flaws in Euclid’s presentation, they
were unimportant and any real progress in geometry would be achieved by
extending Euclid. This idea was shattered by the roughly simultaneous
discovery of non-Euclidean geometry by several people—a discovery that
shocked the mathematics community, because it deeply challenged the idea
that mathematics studies the real world. How could there be many differ-
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ent kinds of “points” and “lines” in one single reality? Today, the solution
to the dilemma may be apparent, even to some nonmathematicians—but at
the time, the dilemma created havoc in mathematical circles.

Later in the nineteenth century, the English logicians George Boole
and Augustus De Morgan went considerably further than Aristotle in
codifying strictly deductive reasoning patterns. Boole even called his book
“The Laws of Thought”—surely an exaggeration, but it was an important
contribution. Lewis Carroll was fascinated by these mechanized reasoning
methods, and invented many puzzles which could be solved with them.
Gottlob Frege in Jena and Giuseppe Peano in Turin worked on combining
formal reasoning with the study of sets and numbers. David Hilbert in
Gottingen worked on stricter formalizations of geometry than Euclid’s. All
of these efforts were directed towards clarifying what one means by
“proof”.

In the meantime, interesting developments were taking place in classi-
cal mathematics. A theory of different types of infinities, known as the
theory of sets, was developed by Georg Cantor in the 1880’s. The theory was
powerful and beautiful, but intuition-defying. Before long, a variety of
set-theoretical paradoxes had been unearthed. The situation was very
disturbing, because just as mathematics seemed to be recovering from one
set of paradoxes—those related to the theory of limits, in the calculus—
along came a whole new set, which looked worse!

The most famous is Russell’s paradox. Most sets, it would seem, are not
members of themselves—for example, the set of walruses is not a walrus,
the set containing only Joan of Arc is not Joan of Arc (a set is not a
person)—and so on. In this respect, most sets are rather “run-of-the-mill”.
However, some “self-swallowing” sets do contain themselves as members,
such as the set of all sets, or the set of all things except Joan of Arc, and so
on. Clearly, every set is either run-of-the-mill or self-swallowing, and no set
can be both. Now nothing prevents us from inventing R: the set of all
run-of-the-mill sets. At first, R might seem a rather run-of-the-mill
invention—but that opinion must be revised when you ask yourself, “Is R
itself a run-of-the-mill set or a self-swallowing set?” You will find that the
answer is: “R is neither run-of-the-mill nor self-swallowing, for either
choice leads to paradox.” Try it!

But if R is neither run-of-the-mill nor self-swallowing, then what is it?
At the very least, pathological. But no one was satisfied with evasive answers
of that sort. And so people began to dig more deeply into the foundations
of set theory. The crucial questions seemed to be: “What is wrong with our
intuitive concept of ‘set’? Can we make a rigorous theory of sets which
corresponds closely with our intuitions, but which skirts the paradoxes?”
Here, as in number theory and geometry, the problem is in trying to line
up intuition with formalized, or axiomatized, reasoning systems.

A startling variant of Russell's paradox, called “Grelling’s paradox”,
can be made using adjectives instead of sets. Divide the adjectives in English
into two categories: those which are self-descriptive, such as “pentasyl-
labic”, “awkwardnessful”, and “recherché”, and those which are not, such

20 Introduction: A Musico-Logical Offering



as “edible”, “incomplete”, and “bisyllabic”. Now if we admit “non-self-
descriptive” as an adjective, to which class does it belong? If it seems
questionable to include hyphenated words, we can use two terms invented
specially for this paradox: autological (= “self-descriptive”), and keterological
(= “non-self-descriptive”). The question then becomes: “Is ‘heterological’
heterological?” Try it!

There seems to be one common culprit in these paradoxes, namely
self-reference, or “Strange Loopiness”. So if the goal is to ban all
paradoxes, why not try banning self-reference and anything that allows it
to arise? This is not so easy as it might seem, because it can be hard to figure
out just where self-reference is occurring. It may be spread out over a
whole Strange Loop with several steps, as in this “expanded” version of
Epimenides, reminiscent of Drawing Hands:

The following sentence is false.
The preceding sentence is true.

Taken together, these sentences have the same effect as the original

Epimenides paradox; yet separately, they are harmless and even potentially
useful sentences. The “blame” for this Strange Loop can’t be pinned on

either sentence—only on the way they “point” at each other. In the same

way, each local region of Ascending and Descending is quite legitimate; it is

only the way they are globally put together that creates an impossibility.

Since there are indirect as well as direct ways of achieving self-reference,

one must figure out how to ban both types at once—if one sees self-

reference as the root of all evil.

Banishing Strange Loops

Russell and Whitehead did subscribe to this view, and accordingly, Principia
Mathematica was a mammoth exercise in exorcising Strange Loops from
logic, set theory, and number theory. The idea of their system was basically
this. A set of the lowest “type” could contain only “objects” as members—
not sets. A set of the next type up could only contain objects, or sets of the
lowest type. In general, a set of a given type could only contain sets of lower
type, or objects. Every set would belong to a specific type. Clearly, no set
could contain itself because it would have to belong to a type higher than its
own type. Only “run-of-the-mill” sets exist in such a system; furthermore,
old R—the set of all run-of-the-mill sets—no longer is considered a set at
all, because it does not belong to any finite type. To all appearances, then,
this theory of types, which we might also call the “theory of the abolition of
Strange Loops”, successfully rids set theory of its paradoxes, but only at the
cost of introducing an artificial-seeming hierarchy, and of disallowing the
formation of certain kinds of sets—such as the set of all run-of-the-mill sets.
Intuitively, this is not the way we imagine sets.

The theory of types handled Russell’s paradox, but it did nothing
about the Epimenides paradox or Grelling’s paradox. For people whose
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interest went no further than set theory, this was quite adequate—but for
people interested in the elimination of paradoxes generally, some similar
“hierarchization” seemed necessary, to forbid looping back inside lan-
guage. At the bottom of such a hierarchy would be an object language. Here,
reference could be made only to a specific domain—not to aspects of the
object language itself (such as its grammatical rules, or specific sentences in
it). For that purpose there would be a metalanguage. This experience of two
linguistic levels is familiar to all learners of foreign languages. Then there
would be a metametalanguage for discussing the metalanguage, and so on.
It would be required that every sentence should belong to some precise
level of the hierarchy. Therefore, if one could find no level in which a given
utterance fit, then the utterance would be deemed meaningless, and forgot-
ten.

An analysis can be attempted on the two-step Epimenides loop given
above. The first sentence, since it speaks of the second, must be on a higher
level than the second. But by the same token, the second sentence must be
on a higher level than the first. Since this is impossible, the two sentences
are “meaningless”. More precisely, such sentences simply cannot be formu-
lated at all in a system based on a strict hierarchy of languages. This
prevents all versions of the Epimenides paradox as well as Grelling’s
paradox. (To what language level could “heterological” belong?)

Now in set theory, which deals with abstractions that we don’t use all
the time, a stratification like the theory of types seems acceptable, even if a
little strange—but when it comes to language, an all-pervading part of life,
such stratification appears absurd. We don’t think of ourselves as jumping
up and down a hierarchy of languages when we speak about various things.
A rather matter-of-fact sentence such as, “In this book, I criticize the theory
of types” would be doubly forbidden in the system we are discussing.
Firstly, it mentions “this book”, which should only be mentionable in a
“metabook”™—and secondly, it mentions me—a person whom I should not
be allowed to speak of at all! This example points out how silly the theory of
types seems, when you import it into a familiar context. The remedy it
adopts for paradoxes—total banishment of self-reference in any form—is a
real case of overkill, branding many perfectly good constructions as mean-
ingless. The adjective “meaningless”, by the way, would have to apply to all
discussions of the theory of linguistic types (such as that of this very
paragraph) for they clearly could not occur on any of the levels—neither
object language, nor metalanguage, nor metametalanguage, etc. So the
very act of discussing the theory would be the most blatant possible viola-
tion of it!

Now one could defend such theories by saying that they were only
intended to deal with formal languages—not with ordinary, informal lan-
guage. This may be so, but then it shows that such theories are extremely
academic and have little to say about paradoxes except when they crop up
in special tailor-made systems. Besides, the drive to eliminate paradoxes at
any cost, especially when it requires the creation of highly artificial for-
malisms, puts too much stress on bland consistency, and too little on the
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quirky and bizarre, which make life and mathematics interesting. It is of
course important to try to maintain consistency, but when this effort forces
you into a stupendously ugly theory, you know something is wrong.

These types of issues in the foundations of mathematics were respon-
sible for the high interest in codifying human reasoning methods which
was present in the early part of this century. Mathematicians and
philosophers had begun to have serious doubts about whether even the
most concrete of theories, such as the study of whole numbers (number
theory), were built on solid foundations. If paradoxes could pop up so
easily in set theory—a theory whose basic concept, that of a set, is surely
very intuitively appealing—then might they not also exist in other branches
of mathematics? Another related worry was that the paradoxes of logic,
such as the Epimenides paradox, might turn out to be internal to mathe-
matics, and thereby cast in doubt all of mathematics. This was especially
worrisome to those—and there were a good number—who firmly believed
that mathematics is simply a branch of logic (or conversely, that logic is
simply a branch of mathematics). In fact, this very question—"Are mathe-
matics and logic distinct, or separate?”—was the source of much con-
troversy.

This study of mathematics itself became known as metamathematics—or
occasionally, metalogic, since mathematics and logic are so intertwined. The
most urgent priority of metamathematicians was to determine the true
nature of mathematical reasoning. What is a legal method of procedure,
and what is an illegal one? Since mathematical reasoning had always been
done in “natural language” (e.g., French or Latin or some language for
normal communication), there was always a lot of possible ambiguity.
Words had different meanings to different people, conjured up different
images, and so forth. It seemed reasonable and even important to establish
a single uniform notation in which all mathematical work could be done,
and with the aid of which any two mathematicians could resolve disputes
over whether a suggested proof was valid or not. This would require a
complete codification of the universally acceptable modes of human
reasoning, at least as far as they applied to mathematics.

Consistency, Completeness, Hilbert’s Program

This was the goal of Principia Mathematica, which purported to derive all of
mathematics from logic, and, to be sure, without contradictions! It was
widely admired, but no one was sure if (1) all of mathematics really was
contained in the methods delineated by Russell and Whitehead, or (2) the
methods given were even self-consistent. Was it absolutely clear that con-
tradictory results could never be derived, by any mathematicians what-
soever, following the methods of Russell and Whitehead?

This question particularly bothered the distinguished German
mathematician (and metamathematician) David Hilbert, who set before the
world community of mathematicians (and metamathematicians) this chal-

Introduction: A Musico-Logical Offering 23



lenge: to demonstrate rigorously—perhaps following the very methods
outlined by Russell and Whitehead—that the system defined in Principia
Mathematica was both consistent (contradiction-free), and complete (i.e., that
every true statement of number theory could be derived within the
framework drawn up in P.M.). This was a tall order, and one could criticize
it on the grounds that it was somewhat circular: how can you justify your
methods of reasoning on the basis of those same methods of reasoning? It
is like lifting yourself up by your own bootstraps. (We just don’t seem to be
able to get away from these Strange Loops!)

Hilbert was fully aware of this dilemma, of course, and therefore
expressed the hope that a demonstration of consistency or completeness
could be found which depended only on “finitistic” modes of reasoning.
These were a small set of reasoning methods usually accepted by
mathematicians. In this way, Hilbert hoped that mathematicians could
partially lift themselves by their own bootstraps: the sum total of mathemat-
ical methods might be proved sound, by invoking only a smaller set of
methods. This goal may sound rather esoteric, but it occupied the minds of
many of the greatest mathematicians in the world during the first thirty
years of this century.

In the thirty-first year, however, Gédel published his paper, which in
some ways utterly demolished Hilbert’s program. This paper revealed not
only that there were irreparable “holes” in the axiomatic system proposed
by Russell and Whitehead, but more generally, that no axiomatic system
whatsoever could produce all number-theoretical truths, unless it were an
inconsistent system! And finally, the hope of proving the consistency of a
system such as that presented in P.M. was shown to be vain: if such a proof
could be found using only methods inside P.M., then—and this is one of
the most mystifying consequences of Godel’s work—P.M. itself would be
inconsistent!

The final irony of it all is that the proof of Gédel’s Incompleteness
Theorem involved importing the Epimenides paradox right into the heart
of Principia Mathematica, a bastion supposedly invulnerable to the attacks of
Strange Loops! Although Gédel’s Strange Loop did not destroy Principia
Mathematica, it made it far less interesting to mathematicians, for it showed
that Russell and Whitehead’s original aims were illusory.

Babbage, Computers, Artificial Intelligence . ..

When Gédel’s paper came out, the world was on the brink of developing
electronic digital computers. Now the idea of mechanical calculating en-
gines had been around for a while. In the seventeenth century, Pascal and
Leibniz designed machines to perform fixed operations (addition and
multiplication). These machines had no memory, however, and were not,
in modern parlance, programmable.

The first human to conceive of the immense computing potential of
machinery was the Londoner Charles Babbage (1792-1871). A character
who could almost have stepped out of the pages of the Pickwick Papers,
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Babbage was most famous during his lifetime for his vigorous campaign to
rid London of “street nuisances”—organ grinders above all. These pests,
loving to get his goat, would come and serenade him at any time of day or
night, and he would furiously chase them down the street. Today, we
recognize in Babbage a man a hundred years ahead of his time: not only
inventor of the basic principles of modern computers, he was also one of
the first to battle noise pollution.

His first machine, the “Difference Engine”, could generate mathemati-
cal tables of many kinds by the “method of differences”. But before any
model of the “D.E.” had been built, Babbage became obsessed with a much
more revolutionary idea: his “Analytical Engine”. Rather immodestly, he
wrote, “The course through which I arrived at it was the most entangled
and perplexed which probably ever occupied the human mind.”* Unlike
any previously designed machine, the A.E. was to possess both a “store”
(memory) and a “mill” (calculating and decision-making unit). These units
were to be built of thousands of intricate geared cylinders interlocked in
incredibly complex ways. Babbage had a vision of numbers swirling in and
out of the mill under control of a program contained in punched cards—an
idea inspired by the Jacquard loom, a card-controlled loom that wove
amazingly complex patterns. Babbage’s brilliant but ill-fated Countess
friend, Lady Ada Lovelace (daughter of Lord Byron), poetically com-
mented that “the Analytical Engine weaves algebraic patterns just as the
Jacquard-loom weaves flowers and leaves.” Unfortunately, her use of the
present tense was misleading, for no A.E. was ever built, and Babbage died
a bitterly disappointed man.

Lady Lovelace, no less than Babbage, was profoundly aware that with
the invention of the Analytical Engine, mankind was flirting with
mechanized intelligence—particularly if the Engine were capable of “eating
its own tail” (the way Babbage described the Strange Loop created when a
machine reaches in and alters its own stored program). In an 1842
memoir,® she wrote that the A.E. “might act upon other things besides
number”. While Babbage dreamt of creating a chess or tic-tac-toe automa-
ton, she suggested that his Engine, with pitches and harmonies coded into
its spinning cylinders, “might compose elaborate and scientific pieces of
music of any degree of complexity or extent.” In nearly the same breath,
however, she cautions that “The Analytical Engine has no pretensions
whatever to originate anything. It can do whatever we know how to order it to
perform.” Though she well understood the power of artificial computa-
tion, Lady Lovelace was skeptical about the artificial creation of intelli-
gence. However, could her keen insight allow her to dream of the potential
that would be opened up with the taming of electricity?

In our century the time was ripe for computers—computers beyond
the wildest dreams of Pascal, Leibniz, Babbage, or Lady Lovelace. In the
1930’s and 1940’s, the first “giant electronic brains” were designed and
built. They catalyzed the convergence of three previously disparate areas:
the theory of axiomatic reasoning, the study of mechanical computation,
and the psychology of intelligence.

These same years saw the theory of computers develop by leaps and
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bounds. This theory was tightly linked to metamathematics. In fact, Godel’s
Theorem has a counterpart in the theory of computation, discovered by
Alan Turing, which reveals the existence of ineluctable “holes” in even the
most powerful computer imaginable. Ironically, just as these somewhat
eerie limits were being mapped out, real computers were being built whose
powers seemed to grow and grow beyond their makers’ power of prophecy.
Babbage, who once declared he would gladly give up the rest of his life if he
could come back in five hundred years and have a three-day guided
scientific tour of the new age, would probably have been thrilled speechless
a mere century after his death—both by the new machines, and by their
unexpected limitations.

By the early 1950’s, mechanized intelligence seemed a mere stone’s
throw away; and yet, for each barrier crossed, there always cropped up
some new barrier to the actual creation of a genuine thinking machine. Was
there some deep reason for this goal’s mysterious recession?

No one knows where the borderline between non-intelligent behavior
and intelligent behavior lies; in fact, to suggest that a sharp borderline
exists is probably silly. But essential abilities for intelligence are certainly:

to respond to situations very flexibly;

to take advantage of fortuitous circumstances;

to make sense out of ambiguous or contradictory messages;

to recognize the relative importance of different elements of a
situation;

to find similarities between situations despite differences which
may separate them;

to draw distinctions between situations despite similarities which
may link them;

to synthesize new concepts by taking old concepts and putting
them together in new ways;

to come up with ideas which are novel.

Here one runs up against a seeming paradox. Computers by their very
nature are the most inflexible, desireless, rule-following of beasts. Fast
though they may be, they are nonetheless the epitome of unconsciousness.
How, then, can intelligent behavior be programmed? Isn’t this the most
blatant of contradictions in terms? One of the major theses of this book is
that it is not a contradiction at all. One of the major purposes of this book is
to urge each reader to confront the apparent contradiction head on, to
savor it, to turn it over, to take it apart, to wallow in it, so that in the end the
reader might emerge with new insights into the seemingly unbreachable
gulf between the formal and the informal, the animate and the inanimate,
the flexible and the inflexible.

This is what Artificial Intelligence (AT) research is all about. And the
strange flavor of AI work is that people try to put together long sets of rules
in strict formalisms which tell inflexible machines how to be flexible.

What sorts of “rules” could possibly capture all of what we think of as
intelligent behavior, however? Certainly there must be rules on all sorts of
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different levels. There must be many “just plain” rules. There must be
“metarules” to modify the “just plain” rules; then “metametarules” to
modify the metarules, and so on. The flexibility of intelligence comes from
the enormous number of different rules, and levels of rules. The reason
that so many rules on so many different levels must exist is that in life, a
creature is faced with millions of situations of completely different types. In
some situations, there are stereotyped responses which require “just plain”
rules. Some situations are mixtures of stereotyped situations—thus they
require rules for deciding which of the “just plain” rules to apply. Some
situations cannot be classified—thus there must exist rules for inventing
new rules . . . and on and on. Without doubt, Strange Loops involving rules
that change themselves, directly or indirectly, are at the core of intelligence.
Sometimes the complexity of our minds seems so overwhelming that one
feels that there can be no solution to the problem of understanding
intelligence—that it is wrong to think that rules of any sort govern a
creature’s behavior, even if one takes “rule” in the multilevel sense de-
scribed above.

... and Bach

In the year 1754, four years after the death of J. S. Bach, the Leipzig
theologian Johann Michael Schmidt wrote, in a treatise on music and the
soul, the following noteworthy passage:

Not many years ago it was reported from France that a man had made a
statue that could play various pieces on the Fleuttraversiere, placed the flute to
its lips and took it down again, rolled its eyes, etc. But no one has yet invented
an image that thinks, or wills, or composes, or even does anything at all
similar. Let anyone who wishes to be convinced look carefully at the last fugal
work of the above-praised Bach, which has appeared in copper engraving,
but which was left unfinished because his blindness intervened, and let him
observe the art that is contained therein; or what must strike him as even
more wonderful, the Chorale which he dictated in his blindness to the pen of
another: Wenn wir in hichsten Nithen seyn. 1 am sure that he will soon need his
soul if he wishes to observe all the beauties contained therein, let alone wishes
to play it to himself or to form a judgment of the author. Everything that the
champions of Materialism put forward must fall to the ground in view of this
single example.®
Quite likely, the foremost of the “champions of Materialism” here
alluded to was none other than Julien Offroy de la Mettrie—philosopher at
the court of Frederick the Great, author of L’homme machine (“Man, the
Machine”), and Materialist Par Excellence. It is now more than 200 years
later, and the battle is still raging between those who agree with Johann
Michael Schmidt, and those who agree with Julien Offroy de la Mettrie. I
hope in this book to give some perspective on the battle.

“Godel, Escher, Bach”

The book is structured in an unusual way: as a counterpoint between
Dialogues and Chapters. The purpose of this structure is to allow me to
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present new concepts twice: almost every new concept is first presented
metaphorically in a Dialogue, yielding a set of concrete, visual images; then
these serve, during the reading of the following Chapter, as an intuitive
background for a more serious and abstract presentation of the same
concept. In many of the Dialogues I appear to be talking about one idea on
the surface, but in reality I am talking about some other idea, in a thinly
disguised way.

Originally, the only characters in my Dialogues were Achilles and the
Tortoise, who came to me from Zeno of Elea, by way of Lewis Carroll. Zeno
of Elea, inventor of paradoxes, lived in the fifth century B.C. One of his
paradoxes was an allegory, with Achilles and the Tortoise as protagonists.
Zeno’s invention of the happy pair is told in my first Dialogue, Three-Part
Invention. In 1895, Lewis Carroll reincarnated Achilles and the Tortoise for
the purpose of illustrating his own new paradox of infinity. Carroll’s
paradox, which deserves to be far better known than it is, plays a significant
role in this book. Originally titled “What the Tortoise Said to Achilles”, itis
reprinted here as Two-Part Invention.

When I began writing Dialogues, somehow I connected them up with
musical forms. I don’t remember the moment it happened; I just re-
member one day writing “Fugue” above an early Dialogue, and from then
on the idea stuck. Eventually I decided to pattern each Dialogue in one way
or another on a different piece by Bach. This was not so inappropriate. Old
Bach himself used to remind his pupils that the separate parts in their
compositions should behave like “persons who conversed together as if in a
select company”. I have taken that suggestion perhaps rather more literally
than Bach intended it; nevertheless I hope the result is faithful to the
meaning. I have been particularly inspired by aspects of Bach’s composi-
tions which have struck me over and over, and which are so well described
by David and Mendel in The Bach Reader:

His form in general was based on relations between separate sections. These
relations ranged from complete identity of passages on the one hand to the
return of a single principle of elaboration or a mere thematic allusion on the
other. The resulting patterns were often symmetrical, but by no means
necessarily so. Sometimes the relations between the various sections make up
a maze of interwoven threads that only detailed analysis can unravel. Usually,
however, a few dominant features afford proper orientation at first sight or
hearing, and while in the course of study one may discover unending sub-
tleties, one is never at a loss to grasp the unity that holds together every single
creation by Bach.®

I have sought to weave an Eternal Golden Braid out of these three
strands: Godel, Escher, Bach. I began, intending to write an essay at the
core of which would be Gédel's Theorem. I imagined it would be a mere
pamphlet. But my ideas expanded like a sphere, and soon touched Bach
and Escher. It took some time for me to think of making this connection
explicit, instead of just letting it be a private motivating force. But finally I
realized that to me, Godel and Escher and Bach were only shadows cast in
different directions by some central solid essence. I tried to reconstruct the
central object, and came up with this book.
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Three-Part Invention

Achilles (a Greek warrior, the fleetest of foot of all mortals) and a Tortoise

are standing together on a dusty runway in the hot sun. Far down the

runway, on a tall flagpole, there hangs a large rectangular flag. The flag

is solid red, except where a thin ring-shaped hole has been cut out of it,
through which one can see the sky.

Achilles:  What is that strange flag down at the other end of the track? It
reminds me somehow of a print by my favorite artist, M. C. Escher.

Tortoise: That is Zeno’s flag.

Achilles: Could it be that the hole in it resembles the holes in a Mdbius
strip Escher once drew? Something is wrong about that flag, I can tell.

Tortoise: The ring which has been cut from it has the shape of the numeral
for zero, which is Zeno’s favorite number.

Achilles:  But zero hasn’t been invented yet! It will only be invented by a
Hindu mathematician some millennia hence. And thus, Mr. T, my
argument proves that such a flag is impossible.

Tortoise: Your argument is persuasive, Achilles, and I must agree that
such a flag is indeed impossible. But it is beautiful anyway, is it not?

Achilles:  Oh, yes, there is no doubt of its beauty.

Tortoise: 1 wonder if its beauty is related to its impossibility. I don’t know;
I've never had the time to analyze Beauty. It’s a Capitalized Essence;
and I never seem to have the time for Capitalized Essences.

Achilles: Speaking of Capitalized Essences, Mr. T, have you ever won-
dered about the Purpose of Life?

Tortoise: Oh, heavens, no.

Achilles: Haven't you ever wondered why we are here, or who invented
us?

Tortoise:  Oh, that is quite another matter. We are inventions of Zeno (as
you will shortly see); and the reason we are here is to have a footrace.

Achilles: A footrace? How outrageous! Me, the fleetest of foot of all mor-
tals, versus you, the ploddingest of all plodders! There can be no point
to such a race.

Tortoise: You might give me a head start.

Achilles: It would have to be a huge one.

Tortoise: 1 don’t object.

Achilles:  But I will catch you, sooner or later—most likely sooner.

Tortoise:  Not if things go according to Zeno’s paradox, you won’t. Zeno is
hoping to use our footrace to show that motion is impossible, you see.
Itis only in the mind that motion seems possible, according to Zeno. In
truth, Motion Is Inherently Impossible. He proves it quite elegantly.
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FIGURE 10. Mébius Strip 1, by M. C. Escher (wood-engraving printed from four blocks,
1961).

Achilles:  Oh, yes, it comes back to me now: the famous Zen kéan about
Zen Master Zeno. As you say, it is very simple indeed.

Tortoise: Zen kdéan? Zen Master? What do you mean?

Achilles: It goes like this: Two monks were arguing about a flag. One said,
“The flag is moving.” The other said, “The wind is moving.” The sixth
patriarch, Zeno, happened to be passing by. He told them, “Not the
wind, not the flag; mind is moving.”

Tortoise: 1 am afraid you are a little befuddled, Achilles. Zeno is no Zen
master; far from it. He is, in fact, a Greek philosopher from the town
of Elea (which lies halfway between points A and B). Centuries hence,
he will be celebrated for his paradoxes of motion. In one of those
paradoxes, this very footrace between you and me will play a central
role.

Achilles: I'm all confused. I remember vividly how I used to repeat over
and over the names of the six patriarchs of Zen, and I always said,
“The sixth patriarch is Zeno, the sixth patriarch is Zeno . . .” (Suddenly
a soft warm breeze picks up.) Oh, look, Mr. Tortoise—look at the flag
waving! How I love to watch the ripples shimmer through its soft
fabric. And the ring cut out of it is waving, too!
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Tortoise: Don’t be silly. The flag is impossible, hence it can’t be waving.
The wind is waving. o

(At this moment, Zeno happens by.)

Zeno: Hallo! Hulloo! What's up? What's new?

Achilles: The flag is moving.

Tortoise: The wind is moving.

Zeno: O Friends, Friends! Cease your argumentation! Arrest your vit-
riolics! Abandon your discord! For I shall resolve the issue for you
forthwith. Ho! And on such a fine day!

Achilles:  This fellow must be playing the fool.

Tortoise: No, wait, Achilles. Let us hear what he has to say. Oh, Unknown
Sir, do impart to us your thoughts on this matter.

Zeno: Most willingly. Not the wind, not the flag—neither one is moving,
nor is anything moving at all. For I have discovered a great Theorem,
which states: “Motion Is Inherently Impossible.” And from this
Theorem follows an even greater Theorem—Zeno’s Theorem:
“Motion Unexists.”

Achilles: “Zeno’s Theorem”? Are you, sir, by any chance, the philosopher
Zeno of Elea?

Zeno: 1 am indeed, Achilles.

Achilles (scratching his head in puzzlement): Now how did he know my name?

Zeno: Could I possibly persuade you two to hear me out as to why this is
the case? I've come all the way to Elea from point A this afternoon, just
trying to find someone who'll pay some attention to my closely honed
argument. But they’re all hurrying hither and thither, and they don’t
have time. You’ve no idea how disheartening it is to meet with refusal
after refusal. Oh, but I'm sorry to burden you with my troubles. I'd just
like to ask one thing: Would the two of you humor a silly old
philosopher for a few moments—only a few, I promise you—in his
eccentric theories?

Achilles:  Oh, by all means! Please do illuminate us! I know I speak for both
of us, since my companion, Mr. Tortoise, was only moments ago
speaking of you with great veneration—and he mentioned especially
your paradoxes.

Zeno: Thank you. You see, my Master, the fifth patriarch, taught me that
reality is one, immutable, and unchanging; all plurality, change, and
motion are mere illusions of the senses. Some have mocked his views;
but I will show the absurdity of their mockery. My argument is quite
simple. I will illustrate it with two characters of my own Invention:
Achilles (a Greek warrior, the fleetest of foot of all mortals), and a
Tortoise. In my tale, they are persuaded by a. passerby to run a
footrace down a runway towards a distant flag waving in the breeze.
Let us assume that, since the Tortoise is a much slower runner, he gets
a head start of, say, ten rods. Now the race begins. In a few bounds,
Achilles has reached the spot where the Tortoise started.
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Achilles: Habh!

Zeno: And now the Tortoise is but a single rod ahead of Achilles. Within
only a moment, Achilles has attained that spot.

Achilles:  Ho ho!

Zeno: Yet, in that short moment, the Tortoise has managed to advance a
slight amount. In a flash, Achilles covers that distance, too.

Achilles: Hee hee hee!

Zeno: Butin that very short flash, the Tortoise has managed to inch ahead
by ever so little, and so Achilles is still behind. Now you see that in:
order for Achilles to catch the Tortoise, this game of “try-to-catch-me”
will have to be played an INFINITE number of times—and therefore
Achilles can NEVER catch up with the Tortoise!

Tortoise: Heh heh heh heh!

Achilles: Hmm...hmm...hmm...hmm... hmm... That argument sounds
wrong to me. And yet, I can’t quite make out what’s wrong with it.

Zeno: Isn’t it a teaser? It's my favorite paradox.

Tortoise: Excuse me, Zeno, but I believe your tale illustrates the wrong
principle, does it not? You have just told us what will come to be
known, centuries hence, as Zeno’s “Achilles paradox”, which shows
(ahem!) that Achilles will never catch the Tortoise; but the proof that
Motion Is Inherently Impossible (and thence that Motion Unexists) is
your “dichotomy paradox”, isn’t that so?

Zeno: Oh, shame on me. Of course, you're right. That's the one about
how, in getting from A to B, one has to go halfway first—and of that
stretch one also has to go halfway, and so on and so forth. But you see,
both those paradoxes really have the same flavor. Frankly, I've only
‘had one Great Idea—I just exploit it in different ways.

Achilles: 1 swear, these arguments contain a flaw. I don’t quite see where,
but they cannot be correct.

Zeno:  You doubt the validity of my paradox? Why not just try it out? You
see that red flag down there, at the far end of the runway?

Achilles: The impossible one, based on an Escher print?

Zeno: Exactly. What do you say to you and Mr. Tortoise racing for it,
allowing Mr. T a fair head start of, well, I don’t know—

Tortoise: How about ten rods?

Zeno: Very good—ten rods.

Achilles:  Any time.

Zeno: Excellent! How exciting! An empirical test of my rigorously proven
Theorem! Mr. Tortoise, will you position yourself ten rods upwind?

(The Tortoise moves ten rods closer to the flag.)

Are you both ready?
Tortoise and Achilles: Ready!
Zeno: On your mark! Get set! Go!
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CHAPTER |

The MU-puzzle

Formal Systems

ONE OF THE most central notions in this book is that of a formal system. The
type of formal system I use was invented by the American logician Emil
Post in the 1920’s, and is often called a “Post production system”. This
Chapter introduces you to a formal system and moreover, itis my hope that
you will want to explore this formal system at least a little; so to provoke
your curiosity, I have posed a little puzzle.

“Can you produce MU?” is the puzzle. To begin with, you will be
supplied with a string (which means a string of letters).* Not to keep you in
suspense, that string will be Ml. Then you will be told some rules, with
which you can change one string into another. If one of those rules is
applicable at some point, and you want to use it, you may, but—there is
nothing that will dictate which rule you should use, in case there are several
applicable rules. That is left up to you—and of course, that is where playing
the game of any formal system can become something of an art. The major
point, which almost doesn’t need stating, is that you must not do anything
which is outside the rules. We might call this restriction the “Requirement
of Formality”. In the present Chapter, it probably won’t need to be stressed
at all. Strange though it may sound, though, I predict that when you play
around with some of the formal systems of Chapters to come, you will find
yourself violating the Requirement of Formality over and over again,
unless you have worked with formal systems before.

The first thing to say about our formal system—the MIU-system—is that
it utilizes only three letters of the alphabet: M, I, U. That means that the
only strings of the MIU-system are strings which are composed of those
three letters. Below are some strings of the MIU-system:

Mu

UM

mMuumuu
UulnuMmiuutmMuiiuMiuuiMuitiu

* In this book, we shall employ the following conventions when we refer to strings. When
the string is in the same typeface as the text, then it will be enclosed in single or double quotes.
Punctuation which belongs to the sentence and not to the string under discussion will go
outside of the quotes, as logic dictates. For example, the first letter of this sentence is ‘F’, while
the first letter of ‘this sentence’is ‘t’. When the string is in Quadrata Roman, however, quotes
will usually be left off, unless clarity demands them. For example, the first letter of Quadrata

s Q.
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But although all of these are legitimate strings, they are not strings which
are “in your possession”. In fact, the only string in your possession so far is
MI. Only by using the rules, about to be introduced, can you enlarge your
private collection. Here is the first rule:

RuLe I:  If you possess a string whose last letter is |, you can add on a U at
the end.

By the way, if up to this point you had not guessed it, a fact about the
meaning of “string” is that the letters are in a fixed order. For example, M
and IM are two different strings. A string of symbols is not just a “bag” of
symbols, in which the order doesn’t make any difference.

Here is the second rule:

RuLE II:  Suppose you have Mx. Then you may add Mxx to your collec-
tion.

What I mean by this is shown below, in a few examples.

From MIU, you may get MIUIU.
From MUM, you may get MUMUM.
From MU, you may get MULU.

So the letter ‘¢” in the rule simply stands for any string; but once you have
decided which string it stands for, you have to stick with your choice {until
you use the rule again, at which point you may make a new choice). Notice
the third example above. It shows how, once you possess MU, you can add
another string to your collection; but you have to get MU first! I want to
add one last comment about the letter ‘x’: it is not part of the formal system
in the same way as the three letters ‘M’, I, and ‘U’ are. It is useful for us,
though, to have some way to talk in general about strings of the system,
symbolically—and that is the function of the ’: to stand for an arbitrary
string. If you ever add a string containing an ‘x’ to your “collection”, you
have done something wrong, because strings of the MIU-system never
contain “x”’s!
Here is the third rule:

RuLe III:  If Il occurs in one of the strings in your collection, you may
make a new string with U in place of Il

Examples:

From UMIIIMU, you could make UMUMU.
From MIlll, you could make MIU (also MUl).
From IIMIl, you can’t get anywhere using this rule.

(The three I’s have to be consecutive.)
From MIIl, make MU.

Donr’t, under any circumstances, think you can run this rule backwards, as
in the following example:
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From MU, make MIll. & This is wrong.

Rules are one-way.
Here is the final rule:

RuLe IV: If UU occurs inside one of your strings, you can drop it.

From UUL, get U.
From MUUUII, get MUIIL.

There you have it. Now you may begin trying to make MU. Don’t worry if
you don’t get it. Just try it out a bit—the main thing is for you to get the
flavor of this MU-puzzle. Have fun.

Theorems, Axioms, Rules

The answer to the MU-puzzle appears later in the book. For now, what is
important is not finding the answer, but looking for it. You probably have
made some attempts to produce MU. In so doing, you have built up your
own private collection of strings. Such strings, producible by the rules, are
called theorems. The term “theorem” has, of course, a common usage in
mathematics which is quite different from this one. It means some state-
ment in ordinary language which has been proven to be true by a rigorous
argument, such as Zeno’s Theorem about the “unexistence” of motion, or
Euclid’s Theorem about the infinitude of primes. But in formal systems,
theorems need not be thought of as statements—they are merely strings of
symbols. And instead of being proven, theorems are merely produced, as if by
machine, according to certain typographical rules. To emphasize this im-
portant distinction in meanings for the word “theorem”, I will adopt the
following convention in this book: when “theorem” is capitalized, its mean-
ing will be the everyday one—a Theorem is a statement in ordinary lan-
guage which somebody once proved to be true by some sort of logical
argument. When uncapitalized, “theorem” will have its technical meaning:
a string producible in some formal system. In these terms, the MU-puzzle
asks whether MU is a theorem of the MIU-system.

I gave you a theorem for free at the beginning, namely MI. Such a
“free” theorem is called an axiom—the technical meaning again being quite
different from the usual meaning. A formal system may have zero, one,
several, or even infinitely many axioms. Examples of all these types will
appear in the book.

Every formal system has symbol-shunting rules, such as the four rules
of the MIU-system. These rules are called either rules of production or rules of
inference. 1 will use both terms.

The last term which I wish to introduce at this point is derivation.
Shown below is a derivation of the theorem MUIIU:

() ™Ml axiom
(2) Mi from (1) by rule 11
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(3) Ml from (2) by rule 11

(4) MIIU from (3) by rule I

(5) MUIU from (4) by rule III
(6 MuUlUuIUu from (5) by rule 11
(7) MuUllu from (6) by rule IV

A derivation of a theorem is an explicit, line-by-line demonstration of how
to produce that theorem according to the rules of the formal system. The
concept of derivation is modeled on that of proof, but a derivation is an
austere cousin of a proof. It would sound strange to say that you had proven
MUIIU, but it does not sound so strange to say you have derived MUIIU.

Inside and Outside the System

Most people go about the MU-puzzle by deriving a number of theorems,
quite at random, just to see what kind of thing turns up. Pretty soon, they
begin to notice some properties of the theorems they have made; that is
where human intelligence enters the picture. For instance, it was probably
not obvious to you that all theorems would begin with M, until you had
tried a few. Then, the pattern emerged, and not only could you see the
pattern, but you could understand it by looking at the rules, which have the
property that they make each new theorem inherit its first letter from an
earlier theorem; ultimately, then, all theorems’ first letters can be traced
back to the first letter of the sole axiom Ml—and that is a proof that
theorems of the MIU-system must all begin with M.

There is something very significant about what has happened here. It
shows one difference between people and machines. It would certainly be
possible—in fact it would be very easy—to program a computer to generate
theorem after theorem of the M1U-system; and we could include in the
program a command to stop only upon generating U. You now know thata
computer so programmed would never stop. And this does not amaze you.
But what if you asked a friend to try to generate U? It would not surprise
you if he came back after a while, complaining that he can’t get rid of the
initial M, and therefore it is a wild goose chase. Even if a person is not very
bright, he still cannot help making some observations about what he is
doing, and these observations give him good insight into the task—insight
which the computer program, as we have described it, lacks.

Now let me be very explicit about what I meant by saying this shows a
difference between people and machines. I meant that it is possible to
program a machine to do a routine task in such a way that the machine will
never notice even the most obvious facts about what it is doing; but it is
inherent in human consciousness to notice some facts about the things one
is doing. But you knew this all along. If you punch “1” into an adding
machine, and then add 1 to it, and then add 1 again, and again, and again,
and continue doing so for hours and hours, the machine will never learn to
anticipate you, and do it itself, although any person would pick up the
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repetitive behavior very quickly. Or, to take a silly example, a car will never
pick up the idea, no matter how much or how well it is driven, that it is
supposed to avoid other cars and obstacles on the road; and it will never
learn even the most frequently traveled routes of its owner.

The difference, then, is that it is possible for a machine to act unobserv-
ant; it is impossible for a human to act unobservant. Notice I am not saying
that all machines are necessarily incapable of making sophisticated observa-
tions; just that some machines are. Nor am I saying that all people are
always making sophisticated observations; people, in fact, are often very
unobservant. But machines can be made to be totally unobservant; and
people cannot. And in fact, most machines made so far are pretty close to
being totally unobservant. Probably for this reason, the property of being
unobservant seems to be the characteristic feature of machines, to most
people. For example, if somebody says that some task is “mechanical”, it
does not mean that people are incapable of doing the task; it implies,
though, that only a machine could do it over and over without ever
complaining, or feeling bored.

Jumping out of the System

It is an inherent property of intelligence that it can jump out of the task
which it is performing, and survey what it has done; it is always looking for,
and often finding, patterns. Now I said that an intelligence can jump out of
its task, but that does not mean that it always will. However, a little prompt-
ing will often suffice. For example, a human being who is reading a book
may grow sleepy. Instead of continuing to read until the book is finished,
he is just as likely to put the book aside and turn off the light. He has
stepped “out of the system” and yet it seems the most natural thing in the
world to us. Or, suppose person A is watching television when person B
comes in the room, and shows evident displeasure with the situation.
Person A may think he understands the problem, and try to remedy it by
exiting the present system (that television program), and flipping the chan-
nel knob, looking for a better show. Person B may have a more radical
concept of what it is to “exit the system”—namely to turn the television oft!
Of course, there are cases where only a rare individual will have the vision
to perceive a system which governs many peoples’ lives, a system which had
never before even been recognized as a system; then such people often
devote their lives to convincing other people that the system really is there,
and that it ought to be exited from!

How well have computers been taught to jump out of the system? I will
cite one example which surprised some observers. In a computer chess
tournament not long ago in Canada, one program—the weakest of all the
competing ones—had the unusual feature of quitting long before the game
was over. It was not a very good chess player, but it at least had the
redeeming quality of being able to spot a hopeless position, and to resign
then and there, instead of waiting for the other program to go through the
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boring ritual of checkmating. Although it lost every game it played, it did it
in style. A lot of local chess experts were impressed. Thus, if you define
“the system” as “making moves in a chess game”, it is clear that this
program had a sophisticated, preprogrammed ability to exit from the
system. On the other hand, if you think of “the system” as being “whatever
the computer had been programmed to do”; then there is no doubt that the
computer had no ability whatsoever to exit from that system.

Itis very important when studying formal systems to distinguish work-
ing within the system from making statements or observations about the
system. I assume that you began the MU-puzzle, as do most people, by
working within the system; and that you then gradually started getting
anxious, and this anxiety finally built up to the point where without any
need for further consideration, you exited from the system, trying to take
stock of what you had produced, and wondering why it was that you had
not succeeded in producing MU. Perhaps you found a reason why you
could not produce MU; that is thinking about the system. Perhaps you
produced MIU somewhere along the way; that is working within the system.
Now I do not want to make it sound as if the two modes are entirely
incompatible; I am sure that every human being is capable to some extent
of working inside a system and simultaneously thinking about what he is
doing. Actually, in human affairs, it is often next to impossible to break
things neatly up into “inside the system” and “outside the system”; life is
composed of so many interlocking and interwoven and often inconsistent
“systems” that it may seem simplistic to think of things in those terms. But it
is often important to formulate simple ideas very clearly so that one can use
them as models in thinking about more complex ideas. And that is why I
am showing you formal systems; and it is about time we went back to
discussing the MIU-system.

M-Mode, |-Mode, U-Mode

The MU-puzzle was stated in such a way that it encouraged some amount
of exploration within the MIU-system—deriving theorems. But it was also
stated in a way so as not to imply that staying inside the system would
necessarily yield fruit. Therefore it encouraged some oscillation between
the two modes of work. One way to separate these two modes would be to
have two sheets of paper; on one sheet, you work “in your capacity as a
machine”, thus filling it with nothing but M’s, I's, and U’s; on the second
sheet, you work “in your capacity as a thinking being”, and are allowed to
do whatever your intelligence suggests—which might involve using
English, sketching ideas, working backwards, using shorthand (such as the
letter ‘x’), compressing several steps into one, modifying the rules of the
system to see what that gives, or whatever else you might dream up. One
thing you might do is notice that the numbers 3 and 2 play an important
role, since I’s are gotten rid of in three’s, and U’s in two’s—and doubling of
length (except for the M) is allowed by rule II. So the second sheet might

38 The MU-puzzle



also have some figuring on it. We will occasionally refer back to these two
modes of dealing with a formal system, and we will call them the Mechanical
mode (M-mode) and the Intelligent mode (I-mode). To round out our modes,
with one for each letter of the MIU-system, I will also mention a final
mode—the Un-mode (U-mode), which is the Zen way of approaching things.
More about this in a few Chapters.

Decision Procedures

An observation about this puzzle is that it involves rules of two opposing
tendencies—the lengthening rules and the shortening rules. Two rules (I and
IT) allow you to increase the size of strings (but only in very rigid, pre-
scribed ways, of course); and two others allow you to shrink strings some-
what (again in very rigid ways). There seems to be an endless variety to the
order in which these different types of rules might be applied, and this
gives hope that one way or another, MU could be produced. It might
involve lengthening the string to some gigantic size, and then extracting
piece after piece until only two symbols are left; or, worse yet, it might
involve successive stages of lengthening and then shortening and then
lengthening and then shortening, and so on. But there is no guarantee of
it. As a matter of fact, we already observed that U cannot be produced at all,
and it will make no difference if you lengthen and shorten till kingdom
come.

Still, the case of U and the case of MU seem quite different. It is by a
very superficial feature of U that we recognize the impossibility of produc-
ing it: it doesn’t begin with an M (whereas all theorems must). It is very
convenient to have such a simple way to detect nontheorems. However,
who says that that test will detect all nontheorems? There may be lots of
strings which begin with M but are not producible. Maybe MU is one of
them. That would mean that the “first-letter test” is of limited usefulness,
able only to detect a portion of the nontheorems, but missing others. But
there remains the possibility of some more elaborate test which discrimi-
nates perfectly between those strings which can be produced by the rules,
and those which cannot. Here we have to face the question, “What do we
mean by a test?” It may not be obvious why that question makes sense, or is
important, in this context. But I will give an example of a “test” which
somehow seems to violate the spirit of the word.

Imagine a genie who has all the time in the world, and who enjoys
using it to produce theorems of the MIU-system, in a rather methodical
way. Here, for instance, is a possible way the genie might go about it:

Step 1: Apply every applicable rule to the axiom MI. This yields
two new theorems: MIU, MII.

Step 2: Apply every applicable rule to the theorems produced in
step 1. This yields three new theorems: MIIU, MIUIU, MIIII.

The MU-puzzle 39



Step 3: Apply every applicable rule to the theorems produced in
step 2. This yields five new theorems: MIllIU, MIIUIIU,
MIUIUIUIU, Mili, MUl

This method produces every single theorem sooner or later, because the
rules are applied in every conceivable order. (See Fig. 11.) All of the
lengthening-shortening alternations which we mentioned above eventually
get carried out. However, it is not clear how long to wait for a given string

1: MIU/®/ \®\Mll
Mlugflj M"U/®/ YQKMIIII

3. MIUIU@IUIU Mllug MIIIIU/?IIII?)/ tf%\llclfD\MIU
/ / //\ AN I\

’ ’
?

FIGURE 11. A systematically constructed “tree” of all the theorems of the MIU-system. The
Nth level down contains those theorems whose derivations contain exactly N steps. The
encircled numbers tell which rule was emploved. Is MU anywhere in this tree?

to appear on this list, since theorems are listed according to the shortness of
their derivations. This is not a very useful order, if you are interested in a
specific string (such as MU), and you don’t even know if it has any deriva-
tion, much less how long that derivation might be.

Now we state the proposed “theoremhood-test”:

Wait until the string in question is produced; when that happens,
you know it is a theorem—and if it never happens, you know that
it is not a theorem.

This seems ridiculous, because it presupposes that we don’t mind waiting
around literally an infinite length of time for our answer. This gets to the
crux of the matter of what should count as a “test”. Of prime importance is
a guarantee that we will get our answer in a finite length of time. If there is
a test for theoremhood, a test which does always terminate in a finite
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amount of time, then that test is called a decision procedure for the given
formal system.

When you have a decision procedure, then you have a very concrete
characterization of the nature of all theorems in the system. Offhand, it
might seem that the rules and axioms of the formal system provide no less
complete a characterization of the theorems of the system than a decision
procedure would. The tricky word here is “characterization”. Certainly the
rules of inference and the axioms of the MIU-system do characterize,
implicitly, those strings that are theorems. Even more implicitly, they charac-
terize those strings that are not theorems. But implicit characterization is
not enough, for many purposes. If someone claims to have a characteriza-
tion of all theorems, but it takes him infinitely long to deduce that some
particular string is not a theorem, you would probably tend to say that
there is something lacking in that characterization—it is not quite concrete
enough. And that is why discovering that a decision procedure exists is a
very important step. What the discovery means, in effect, is that you can
perform a test for theoremhood of a string, and that, even if the test is
complicated, it is guaranteed to terminate. In principle, the test is just as easy,
just as mechanical, just as finite, just as full of certitude, as checking
whether the first letter of the string is M. A decision procedure is a “litmus
test” for theoremhood!

Incidentally, one requirement on formal systems is that the set of
axioms must be characterized by a decision procedure—there must be a
litmus test for axiomhood. This ensures that there is no problem in getting
off the ground at the beginning, at least. That is the difference between the
set of axioms and the set of theorems: the former always has a decision
procedure, but the latter may not.

I am sure you will agree that when you looked at the MIU-system for
the first time, you had to face this problem exactly. The lone axiom was
known, the rules of inference were simple, so the theorems had been
implicitly characterized—and yet it was still quite unclear what the conse-
quences of that characterization were. In particular, it was still totally
unclear whether MU is, or is not, a theorem.
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FIGURE 12. Sky Castle, by M. C. Escher (woodcut, 1928).




Two-Part Invention

or,
What the Tortoise Said to Achilles
by Lewis Carroll!

Achilles had overtaken the Tortoise, and had seated himself comfortably
on its back.

“So you've got to the end of our race-course?” said the Tortoise. “Even
though it DOES consist of an infinite series of distances? I thought some
wiseacre or other had proved that the thing couldn’t be done?”

“It CAN be done,” said Achilles. “It HAS been done! Solvitur ambulando.
You see the distances were constantly DIMINISHING; and so—"

“But if they had been constantly INCREASING?” the Tortoise inter-
rupted. “How then?”

“Then I shouldn’t be here,” Achilles modestly replied; “and YOU
would have got several times round the world, by this time!”

“You flatter me—FLATTEN, I mean,” said the Tortoise; “for you ARE a
heavy weight, and NO mistake! Well now, would you like to hear of a
race-course, that most people fancy they can get to the end of in two or
three steps, while it REALLY consists of an infinite number of distances, each
one longer than the previous one?”

“Very much indeed!” said the Grecian warrior, as he drew from his
helmet (few Grecian warriors possessed POCKETS in those days) an enor-
mous note-book and pencil. “Proceed! And speak SLOWLY, please! SHORT-
HAND isn’t invented yet!”

“That beautiful First Proposition by Euclid!” the Tortoise murmured
dreamily. “You admire Euclid?”

“Passionately! So far, at least, as one CAN admire a treatise that won’t be
published for some centuries to come!”

“Well, now, let’s take a little bit of the argument in that First
Proposition—just TWO steps, and the conclusion drawn from them. Kindly
enter them in your note-book. And in order to refer to them conveniently,
let’s call them A, B, and Z:—

(A) Things that are equal to the same are equal to each other.

(B) The two sides of this Triangle are things that are equal
to the same.

(Z) The two sides of this Triangle are equal to each other.

Readers of Euclid will grant, I suppose, that Z follows logically from A
and B, so that any one who accepts A and B as true, MUST accept Z as true?”
“Undoubtedly! The youngest child in a High School—as soon as High
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Schools are invented, which will not be till some two thousand years
later—will grant THAT.”

“And if some reader had NOT vet accepted A and B as true, he might
still accept the SEQUENCE as a VALID one, I suppose?”

“No doubt such a reader might exist. He might say, ‘I accept as true the
Hypothetical Proposition that, IF A and B be true, Z must be true; but I
DON'T accept A and B as true.” Such a reader would do wisely in abandon-
ing Euclid, and taking to football.”

“And might there not ALSO be some reader who would say ‘I accept A
and B as true, but I DON'T accept the Hypothetical’?”

“Certainly there might. HE, also, had better take to football.”

“And NEITHER of these readers,” the Tortoise continued, “is AS YET
under any logical necessity to accept Z as true?”

“Quite so,” Achilles assented.

“Well, now, I want you to consider ME as a reader of the SECOND kind,
and to force me, logically, to accept Z as true.”

“A tortoise playing football would be—" Achilles was beginning.

“—an anomaly, of course,” the Tortoise hastily interrupted. “Don’t
wander from the point. Let’s have Z first, and football afterwards!”

“I'm to force you to accept Z, am I?” Achilles said musingly. “And your
present position is that you accept A and B, but you DON'T accept the
Hypothetical—"

“Let’s call it C,” said the Tortoise.

“—but you DON’T accept

(C) If A and B are true, Z must be true.”
“That is my present position,” said the Tortoise.

“Then I must ask you to accept C.”

“I'll do so,” said the Tortoise, “as soon as you've entered it in that
notebook of yours. What else have you got in it?”

“Only a few memoranda,” said Achilles, nervously fluttering the
leaves: “a few memoranda of—of the battles in which I have distinguished
myself!”

“Plenty of blank leaves, I see!” the Tortoise cheerily remarked. “We
shall need them ALL!” (Achilles shuddered.) “Now write as I dictate:—

(A) Things that are equal to the same are equal to each other.
(B) The two sides of this Triangle are things that are equal to
the same.

(C) If A and B are true, Z must be true.
(Z) The two sides of this Triangle are equal to each other.”

“You should call it D, not Z,” said Achilles. “It comes NEXT to the other
three. If you accept A and B and C, you MUST accept Z.”
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“And why must I?”

“Because it follows LOGICALLY from them. If A and B and C are true, Z
MUST be true. You can’t dispute THAT, I imagine?”

“If A and B and C are true, Z MUST be true,” the Tortoise thoughtfully
repeated. “That’'s ANOTHER Hypothetical, isn’t it? And, if I failed to see its
truth, I might accept A and B and C, and STILL not accept Z, mightn’t I?”

“You might,” the candid hero admitted; “though such obtuseness
would certainly be phenomenal. Still, the event is POSSIBLE. So I must ask
you to grant ONE more Hypothetical.”

“Very good, I'm quite willing to grant it, as soon as you've written it
down. We will call it

(D) If A and B and C are true, Z must be true.

Have you entered that in your note-book?”

“I HAVE!” Achilles joyfully exclaimed, as he ran the pencil into its
sheath. “And at last we've got to the end of this ideal race-course! Now that
you accept A and B and C and D, OF COURSE you accept Z.”

“Do I?” said the Tortoise innocently. “Let’s make that quite clear. I
accept A and B and C and D. Suppose I STILL refused to accept Z?”

“Then Logic would take you by the throat, and FORCE you to do it!”
Achilles triumphantly replied. “Logic would tell you, ‘You can’t help your-
self. Now that you've accepted A and B and C and D, you MUST accept Z!’
So you've no choice, you see.”

“Whatever LOGIC is good enough to tell me is worth WRITING DOWN,
said the Tortoise. “So enter it in your book, please. We will call it

’

(E) If A and B and C and D are true, Z must be true.

Until I've granted THAT, of course I needn’t grant Z. So it’s quite a
NECESSARY step, you see?”

“I see,” said Achilles; and there was a touch of sadness in his tone.

Here the narrator, having pressing business at the Bank, was obliged
to leave the happy pair, and did not again pass the spot until some months
afterwards. When he did so, Achilles was still seated on the back of the
much-enduring Tortoise, and was writing in his notebook, which appeared
to be nearly full. The Tortoise was saying, “Have you got that last step
written down? Unless I've lost count, that makes a thousand and one.
There are several millions more to come. And WOULD you mind, as a
personal favour, considering what a lot of instruction this colloquy of ours
will provide for the Logicians of the Nineteenth Century—WOULD you
mind adopting a pun that my cousin the Mock-Turtle will then make, and
allowing yourself to be renamed TAUGHT-US?”

“As you please,” replied the weary warrior, in the hollow tones of
despair, as he buried his face in his hands. “Provided that YOU, for YOUR
part, will adopt a pun the Mock-Turtle never made, and allow yourself to
be re-named A KILL-EASE!” .
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CHAPTER 11

Meaning and Form
in Mathematics

TH1s Two-Part Invention was the inspiration for my two characters. Just as
Lewis Carroll took liberties with Zeno’s Tortoise and Achilles, so have I
taken liberties with Lewis Carroll’s Tortoise and Achilles. In Carroll’s
dialogue, the same events take place over and over again, only each time on
a higher and higher level; it is a wonderful analogue to Bach’s Ever-Rising
Canon. The Carrollian Dialogue, with its wit subtracted out, still leaves a
deep philosophical problem: Do words and thoughts follow formal rules, or do
they not? That problem is the problem of this book.

In this Chapter and the next, we will look at several new formal
systems. This will give us a much wider perspective on the concept of
formal system. By the end of these two Chapters, you should have quite a
good idea of the power of formal systems, and why they are of interest to
mathematicians and logicians.

The pq-System

The formal system of this Chapter is called the pg-system. It is not important
to mathematicians or logicians—in fact, it is just a simple invention of mine.
Its importance lies only in the fact that it provides an excellent example of
many ideas that play a large role in this book. There are three distinct
symbols of the pg-system:

P aq -

—the letters p, q, and the hyphen.

The pg-system has an infinite number of axioms. Since we can’t write
them all down, we have to have some other way of describing what they are.
Actually, we want more than just a description of the axioms; we want a way
to tell whether some given string is an axiom or not. A mere description of
axioms might characterize them fully and yet weakly—which was the prob-
lem with the way theorems in the MIU-system were characterized. We
don’t want to have to struggle for an indeterminate—possibly infinite—
length of time, just to find out if some string is an axiom or not. Therefore,
we will define axioms in such a way that there is an obvious decision
procedure for axiomhood of a string composed of p’s, q’s, and hyphens.
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DEFINITION: xp-qx— is an axiom, whenever x is composed of hyphens
only.

Note that ‘¢’ must stand for the same string of hyphens in both occurrences.
For example, —~p—-q—-—-is an axiom. The literal expression ‘xp—qx-"is
not an axiom, of course (because ’ does not belong to the pg-system); it is
more like a mold in which all axioms are cast—and it is called an axiom
schema.

The pg-system has only one rule of production:

RULE: Suppose x, y, and z all stand for particular strings containing only
hyphens. And suppose that xpyqz is known to be a theorem. Then
xpy—qz— is a theorem.

For example, take x to be ‘~—, ytobe ‘~——", and z to be . The rule tells
us:

If ——p-——-q- turns out to be a theorem, then so will
-~P--——-q—-.

As is typical of rules of production, the statement establishes a causal
connection between the theoremhood of two strings, but without asserting
theoremhood for either one on its own.

A most useful exercise for you is to find a decision procedure for the
theorems of the pg-system. It is not hard; if you play around for a while,
you will probably pick it up. Try it.

The Decision Procedure

I presume you have tried it. First of all, though it may seem too obvious to
mention, I would like to point out that every theorem of the pq-system has
three separate groups of hyphens, and the separating elements are one p,
and one q, in that order. (This can be shown by an argument based on
“heredity”, just the way one could show that all MIU-system theorems had
to begin with M.) This means that we can rule out, from its form alone, a
string such as -~—-p--p--p—--q———————~

Now, stressing the phrase “from its form alone” may seem silly; what
else is there to a string except its form? What else could possibly play a role
in determining its properties? Clearly nothing could. But bear this in mind
as the discussion of formal systems goes on; the notion of “form” will start
to get rather more complicated and abstract, and we will have to think more
about the meaning of the word “form”. In any case, let us give the name
well-formed string to any string which begins with a hyphen-group, then has
one p, then has a second hyphen-group, then a q, and then a final
hyphen-group.

Back to the decision procedure . .. The criterion for theoremhood is
that the first two hyphen-groups should add up, in length, to the third
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hyphen-group. For instance, ——p---q———- is a theorem, since 2 plus 2
equals 4, whereas ——p——q—is not, since 2 plus 2 is not 1. To see why this is
the proper criterion, look first at the axiom schema. Obviously, it only
manufactures axioms which satisfy the addition criterion. Second, look at
the rule of production. If the first string satisfies the addition criterion, so
must the second one—and conversely, if the first string does not satisfy the
addition criterion, then neither does the second string. The rule makes the
addition criterion into a hereditary property of theorems: any theorem
passes the property on to its offspring. This shows why the addition
criterion is correct.

There is, incidentally, a fact about the pg-system which would enable
us to say with confidence that it has a decision procedure, even before
finding the addition criterion. That fact is that the pg-system is not compli-
cated by the opposing currents of lengthening and shortening rules; it has
only lengthening rules. Any formal system which tells you how to make
longer theorems from shorter ones, but never the reverse, has got to have a
decision procedure for its theorems. For suppose you are given a string.
First check whether it’s an axiom or not (I am assuming that there is a
decision procedure for axiomhood-—otherwise, things are hopeless). If it
is an axiom, then it is by definition a theorem, and the test is over. So sup-
pose instead that it’s not an axiom. Then, to be a theorem, it must have
come from a shorter string, via one of the rules. By going over the various
rules one by one, you can pinpoint not only the rules that could conceivably
produce that string, but also exactly which shorter strings could be its
forebears on the “family tree”. In this way, you “reduce” the problem to
determining whether any of several new but shorter strings is a theorem.
Each of them can in turn be subjected to the same test. The worst that can
happen is a proliferation of more and more, but shorter and shorter,
strings to test. As you continue inching your way backwards in this fashion,
you must be getting closer to the source of all theorems—the axiom
schemata. You just can’t get shorter and shorter indefinitely; therefore,
eventually either you will find that one of your short strings is an axiom, or
you’ll come to a point where you’re stuck, in that none of your short strings
is an axiom, and none of them can be further shortened by running some
rule or other backwards. This points out that there really is not much deep
interest in formal systems with lengthening rules only; it is the interplay of
lengthening and shortening rules that gives formal systems a certain fasci-
nation.

Bottom-up vs. Top-down

The method above might be called a top-down decision procedure, to be
contrasted with a bottom-up decision procedure, which I give now. Itis very
reminiscent of the genie’s systematic theorem-generating method for the
MIU-system, but is complicated by the presence of an axiom schema. We
are going to form a “bucket” into whicn we throw theorems as they are
generated. Here is how it is done:
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(la) Throw the simplest possible axiom (-p-q--) into the
bucket.

(1b) Apply the rule of inference to the item in the bucket, and
put the result into the bucket.

(2a) Throw the second-simplest axiom into the bucket.
(2b) Apply the rule to each item in the bucket, and throw all
results into the bucket.

(3a) Throw the third-simplest axiom into the bucket.
(3b) Apply the rule to each item in the bucket, and throw all
results into the bucket.

etc., etc.

A moment’s reflection will show that you can’t fail to produce every
theorem of the pq-system this way. Moreover, the bucket is getting filled
with longer and longer theorems, as time goes on. It is again a consequence
of that lack of shortening rules. So if you have a particular string, such as
-—p——q——— , which you want to test for theoremhood, just follow the
numbered steps, checking all the while for the string in question. If it turns
up—theorem! If at some point everything that goes into the bucket is
longer than the string in question, forget it—it is not a theorem. This
decision procedure is bottom-up because it is working its way up from the
basics, which is to say the axioms. The previous decision procedure is
top-down because it does precisely the reverse: it works its way back down
towards the basics.

Isomorphisms Induce Meaning

Now we come to a central issue of this Chapter—indeed of the book.
Perhaps you have already thought to yourself that the pq-theorems are like
additions. The string ——-p——-q————— is a theorem because 2 plus 3
equals 5. It could even occur to you that the theorem ——-p———q————- isa
statement, written in an odd notation, whose meaning is that 2 plus 3 is 5. Is
this a reasonable way to look at things? Well, I deliberately chose ‘p’ to
remind you of ‘plus’, and ‘q’ to remind you of ‘equals’ ... So, does the
string ——p—-——-q————-— actually mean “2 plus 3 equals 572

What would make us feel that way? My answer would be that we have
perceived an isomorphism between pq-theorems and additions. In the Intro-
duction, the word “isomorphism” was defined as an information-
preserving transformation. We can now go into that notion a little more
deeply, and see it from another perspective. The word “isomorphism”
applies when two complex structures can be mapped onto each other, in
such a way that to each part of one structure there is a corresponding part
in the other structure, where “corresponding” means that the two parts
play similar roles in their respective structures. This usage of the word
“isomorphism” is derivéd from a more precise notion in mathematics.
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It is cause for joy when a mathematician discovers an isomorphism
between two structures which he knows. It is often a “bolt from the blue”,
and a source of wonderment. The perception of an isomorphism between
two known structures is a significant advance in knowledge—and I claim
that it is such perceptions of isomorphism which create meanings in the
minds of people. A final word on the perception of isomorphisms: since
they come in many shapes and sizes, figuratively speaking, it is not always
totally clear when you really have found an isomorphism. Thus, “isomor-
phism” is a word with all the usual vagueness of words—which is a defect
but an advantage as well.

In this case, we have an excellent prototype for the concept of isomor-
phism. There is a “lower level” of our isomorphism—that is, a mapping
between the parts of the two structures:

p <= plus
q <= equals
- &= one
—— &3 two
——— &> three

etc.

This symbol-word correspondence has a name: interpretation.

Secondly, on a higher level, there is the correspondence between true
statements and theorems. But—note carefully—this higher-level corre-
spondence could not be perceived without the prior choice of an interpre-
tation for the symbols. Thus it would be more accurate to describe it as a
correspondence between true statements and inferpreted theorems. In any
case we have displayed a two-tiered correspondence, which is typical of all
isomorphisms.

When you confront a formal system you know nothing of, and if you
hope to discover some hidden meaning in it, your problem is how to assign
interpretations to its symbols in a meaningful way—that is, in such a way
that a higher-level correspondence emerges between true statements and
theorems. You may make several tentative stabs in the dark before finding
a good set of words to associate with the symbols. It is very similar to
attempts to crack a code, or to decipher inscriptions in an unknown lan-
guage like Linear B of Crete: the only way to proceed is by trial and error,

-based on educated guesses. When you hit a good choice, a “meaningful”
choice, all of a sudden things just feel right, and work speeds up enor-
mously. Pretty soon everything falls into place. The excitement of such an
experience is captured in The Decipherment of Linear B by John Chadwick.

But it is uncommon, to say the least, for someone to be in the position
of “decoding” a formal system turned up in the excavations of a ruined
civilization! Mathematicians (and more recently, linguists, philosophers,
and some others) are the only users of formal systems, and they invariably
have an interpretation in mind for the formal systems which they use and
publish. The idea of these people is to set up a formal system whose
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theorems reflect some portion of reality isomorphically. In such a case, the
choice of symbols is a highly motivated one, as is the choice of typographi-
cal rules of production. When I devised the pq-system, I was in this
position. You see why I chose the symbols I chose. It is no accident that
theorems are isomorphic to additions; it happened because I deliberately
sought out a way to reflect additions typographically.

Meaningless and Meaningful Interpretations

You can choose interpretations other than the one I chose. You need not
make every theorem come out true. But there would be very little reason to
make an interpretation in which, say, all theorems came out false, and
certainly even less reason to make an interpretation under which there is
no correlation at all, positive or negative, between theoremhood and truth.
Let us therefore make a distinction between two types of interpretations for
a formal system. First, we can have a meaningless interpretation, one under
which we fail to see any isomorphic connection between theorems of the
system, and reality. Such interpretations abound—any random choice at all
will do. For instance, take this one:

p <= horse
q <= happy
- &= apple

Now —p-q-- acquires a new interpretation: “apple horse apple happy
apple apple”—a poetic sentiment, which might appeal to horses, and might
even lead them to favor this mode of interpreting pg-strings! However, this
interpretation has very little “meaningfulness”; under interpretation,
theorems don’t sound any truer, or any better, than nontheorems. A horse
might enjoy “happy happy happy apple horse” (mapped onto qqq-p)
just as much as any interpreted theorem.

The other kind of interpretation will be called meaningful. Under such
an interpretation, theorems and truths correspond—that is, an isomor-
phism exists between theorems and some portion of reality. That is why it is
good to distinguish between interpretations and meanings. Any old word can
be used as an interpretation for ‘p’, but ‘plus’ is the only meaningful choice
we've come up with. In summary, the meaning of ‘p’ seems to be ‘plus’,
though it can have a million different interpretations.

Active vus. Passive Meanings

Probably the most significant fact of this Chapter, if understood deeply, is
this: the pq-system seems to force us into recognizing that symbols of a formal
system, though initially without meaning, cannot avoid taking on “meaning” of sorts,
at least if an isomorphism is found. The difference between meaning in a
formal system and in a language is a very important one, however. It is this:
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in a language, when we have learned a meaning for a word, we then make
new statements based on the meaning of the word. In a sense the meaning
becomes active, since it brings into being a new rule for creating sentences.
This means that our command of language is not like a finished product:
the rules for making sentences increase when we learn new meanings. On
the other hand, in a formal system, the theorems are predefined, by the
rules of production. We can choose “meanings” based on an isomorphism
(if we can find one) between theorems and true statements. But this does
not give us the license to go out and add new theorems to the established
theorems. That is what the Requirement of Formality in Chapter I was
warning you of.

In the MIU-system, of course, there was no temptation to go beyond
the four rules, because no interpretation was sought or found. But here, in
our new system, one might be seduced by the newly found “meaning” of
each symbol into thinking that the string

is a theorem. At least, one might wish that this string were a theorem. But
wishing doesn’t change the fact that it isn’t. And it would be a serious
mistake to think that it “must” be a theorem, just because 2 plus 2 plus 2
plus 2 equals 8. It would even be misleading to attribute it any meaning at
all, since it is not well-formed, and our meaningful interpretation is entirely
derived from looking at well-formed strings.

In a formal system, the meaning must remain passive; we can read each
string according to the meanings of its constituent symbols, but we do not
have the right to create new theorems purely on the basis of the meanings
we’ve assigned the symbols. Interpreted formal systems straddle the line
between systems without meaning, and systems with meaning. Their
strings can be thought of as “expressing” things, but this must come only as
a consequence of the formal properties of the system.

Double-Entendre!

And now, I want to destroy any illusion about having found the meanings
for the symbols of the pq-system. Consider the following association:

p <= equals
q <= taken from
— &2 one

—-- & two

etc.

Now, -~ —-p-—--q————- has a new interpretation: “2 equals 3 taken from
5”. Of course itis a true statement. All theorems will come out true under
this new interpretation. It is just as meaningful as the old one. Obviously, it
is silly to ask, “But which one is the meaning of the string?” An interpreta-
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tion will be meaningful to the extent that it accurately reflects some iso-
morphism to the real world. When different aspects of the real world are
isomorphic to each other (in this case, additions and subtractions), one
single formal system can be isomorphic to both, and therefore can take on
two passive meanings. This kind of double-valuedness of symbols and
strings is an extremely important phenomenon. Here it seems trivial,
curious, annoying. But it will come back in deeper contexts and bring with
it a great richness of ideas.

Here is a summary of our observations about the pq-system. Under
either of the two meaningful interpretations given, every well-formed
string has a grammatical assertion for its counterpart—some are true, some
false. The idea of well-formed strings in any formal system is that they are
those strings which, when interpreted symbol for symbol, yield grammatical
sentences. (Of course, it depends on the interpretation, but usually, there is
one in mind.) Among the well-formed strings occur the theorems. These
are defined by an axiom schema, and a rule of production. My goal in
inventing the pg-system was to imitate additions: I wanted every theorem
to express a true addition under interpretation; conversely, I wanted every
true addition of precisely two positive integers to be translatable into a
string, which would be a theorem. That goal was achieved. Notice, there-
fore, that all false additions, such as “2 plus 3 equals 6”, are mapped into
strings which are well-formed, but which are not theorems.

Formal Systems and Reality

This is our first example of a case where a formal system is based upon a
portion of reality, and seems to mimic it perfectly, in that its theorems are
isomorphic to truths about that part of reality. However, reality and the
formal system are independent. Nobody need be aware that there is an
isomorphism between the two. Each side stands by itself—one plus one
equals two, whether or not we know that —p—q-- is a theorem; and
—p-q—-is still a theorem whether-or not we connect it with addition.

You might wonder whether making this formal system, or any formal
system, sheds new light on truths in the domain of its interpretation. Have
we learned any new additions by producing pq-theorems? Certainly not;
but we have learned something about the nature of addition as a
process—namely, that it is easily mimicked by a typographical rule govern-
ing meaningless symbols. This still should not be a big surprise since
addition is such a simple concept. Itis a commonplace that addition can be
captured in the spinning gears of a device like a cash register.

But it is clear that we have hardly scratched the surface, as far as
formal systems go; it is natural to wonder about what portion of reality can
be imitated in its behavior by a set of meaningless symbols governed by
formal rules. Can all of reality be turned into a formal system? In a very
broad sense, the answer might appear to be yes. One could suggest, for
instance, that reality is itself nothing but one very complicated formal
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system. Its symbols do not move around on paper, but rather in a three-
dimensional vacuum (space); they are the elementary particles of which
everything is composed. (Tacit assumption: that there is an end to the
descending chain of matter, so that the expression “elementary particles”
makes sense.) The “typographical rules” are the laws of physics, which tell
how, given the positions and velocities of all particles at a given instant, to
modify them, resulting in a new set of positions and velocities belonging to
the “next” instant. So the theorems of this grand formal system are the
possible configurations of particles at different times in the history of the
universe. The sole axiom is (or perhaps, was) the original configuration of
all the particles at the “beginning of time”. This is so grandiose a concep-
tion, however, that it has only the most theoretical interest; and besides,
quantum mechanics (and other parts of physics) casts at least some doubt
on even the theoretical worth of this idea. Basically, we are asking if the
universe operates deterministically, which is an open question.

Mathematics and Symbol Manipulation

Instead of dealing with such a big picture, let’s limit ourselves to mathematics
as our “real world”. Here, a serious question arises: How can we be sure, if
we've tried to model a formal system on some part of mathematics, that
we've done the job accurately—especially if we’re not one hundred per cent
familiar with that portion of mathematics already? Suppose the goal of the
formal system is to bring us new knowledge in that discipline. How will we
know that the interpretation of every theorem is true, unless we’ve proven
that the isomorphism is perfect? And how will we prove that the isomor-
phism is perfect, if we don’t already know all about the truths in the
discipline to begin with?

Suppose that in an excavation somewhere, we actually did discover
some mysterious formal system. We would try out various interpretations
and perhaps eventually hit upon one which seemed to make every theorem
come out true, and every nontheorem come out false. But this is something
which we could only check directly in a finite number of cases. The set of
theorems is most likely infinite. How will we know that all theorems express
truths under this interpretation, unless we know everything there is to
know about both the formal system and the corresponding domain of
interpretation?

Itis in somewhat this odd position that we will find ourselves when we
attempt to match the reality of natural numbers (i.e., the nonnegative
integers: 0, 1, 2, . . .) with the typographical symbols of a formal system. We
will try to understand the relationship between what we call “truth” in
number theory and what we can get at by symbol manipulation.

So let us briefly look at the basis for calling some statements of number
theory true, and others false. How much is 12 times 12? Everyone knows it
is 144. But how many of the people who give that answer have actually at
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any time in their lives drawn a 12 by 12 rectangle, and then counted the
little squares in it? Most people would regard the drawing and counting as
unnecessary. They would instead offer as proof a few marks on paper, such
as are shown below: '

12
x12

24
12

144

And that would be the “proof”. Nearly everyone believes that if you
counted the squares, you would get 144 of them; few people feel that the
outcome is in doubt.

The conflict between the two points of view comes into sharper
focus when you consider the problem of determining the value of
987654321 x 128456789. First of all, it is virtually impossible to construct
the appropriate rectangle; and what is worse, even if it were constructed,
and huge armies of people spent centuries counting the little squares, only
a very gullible person would be willing to believe their final answer. It is just
too likely that somewhere, somehow, somebody bobbled just a little bit. So
is it ever possible to know what the answer is? If you trust the symbolic
process which involves manipulating digits according to certain simple
rules, yes. That process is presented to children as a device which gets the
right answer; lost in the shuffle, for many children, are the rhyme and
reason of that process. The digit-shunting laws for multiplication are based
mostly on a few properties of addition and multiplication which are as-
sumed to hold for all numbers.

The Basic Laws of Arithmetic

The kind of assumption I mean is illustrated below. Suppose that you lay
down a few sticks:

[0

Now you count them. At the same time, somebody else counts them, but
starting from the other end. Is it clear that the two of you will get the same
answer? The result of a counting process is independent of the way in
which it is done. This is really an assumption about what counting is. It
would be senseless to try to prove it, because it is so basic; either you see it
or you don't—but in the latter case, a proof won’t help you a bit.

From this kind of assumption, one can get to the commutativity and
associativity of addition (i.e., first that b + ¢ =¢ + b always, and second
that b + (¢ +d) = (b + ¢) + d always). The same assumption can also lead
you to the commutativity and associativity of multiplication; just think of
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many cubes assembled to form a large rectangular solid. Multiplicative
commutativity and associativity are just the assumptions that when you
rotate the solid in various ways, the number of cubes will not change. Now
these assumptions are not verifiable in all possible cases, because the
number of such cases is infinite. We take them for granted; we believe them
(if we ever think about them) as deeply as we could believe anything. The
amount of money in our pocket will not change as we walk down the street,
jostling it up and down; the number of books we have will not change if we
pack them up in a box, load them into our car, drive one hundred miles,
unload the box, unpack it, and place the books in a new shelf. All of this is
part of what we mean by number.

There are certain types of people who, as soon as some undeniable fact
is written down, find it amusing to show why that “fact” is false after all. I
am such a person, and as soon as I had written down the examples above
involving sticks, money, and books, I invented situations in which they were
wrong. You may have done the same. It goes to show that numbers as
abstractions are really quite different from the everyday numbers which we
use.

People enjoy inventing slogans which violate basic arithmetic but which
illustrate “deeper” truths, such as “1 and 1 make 1” (for lovers), or “1 plus 1
plus 1 equals 1” (the Trinity). You can easily pick holes in those slogans,
showing why, for instance, using the plus-sign is inappropriate in both
cases. But such cases proliferate. Two raindrops running down a window-
pane merge; does one plus one make one? A cloud breaks up into two
clouds—more evidence for the same? It is not at all easy to draw a sharp
line between cases where what is happening could be called “addition”, and
where some other word is wanted. If you think about the question, you will
probably come up with some criterion involving separation of the objects in
space, and making sure each one is clearly distinguishable from all the
others. But then how could one count ideas? Or the number of gases
comprising the atmosphere? Somewhere, if you try to look it up, you can
probably find a statement such as, “There are 17 languages in India, and
462 dialects.” There is something strange about precise statements like
that, when the concepts “language” and “dialect” are themselves fuzzy.

Ideal Numbers

Numbers as realities misbehave. However, there is an ancient and innate
sense in people that numbers ought not to misbehave. There is something
clean and pure in the abstract notion of number, removed from counting
beads, dialects, or clouds; and there ought to be a way of talking about
numbers without always having the silliness of reality come in and intrude.
The hard-edged rules that govern “ideal” numbers constitute arithmetic,
and their more advanced consequences constitute number theory. There is
only one relevant question to be asked, in making the transition from
numbers as practical things to numbers as formal things. Once you have
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FIGURE 13. Liberation, by M. C. Escher (lithograph, 1955).



decided to try to capsulize all of number theory in an ideal system, is it
really possible to do the job completely? Are numbers so clean and crystal-
line and regular that their nature can be completely captured in the rules of
a formal system? The picture Liberation (Fig. 13), one of Escher’s most
beautiful, is a marvelous contrast between the formal and the informal,
with a fascinating transition region. Are numbers really as free as birds? Do
they suffer as much from being crystallized into a rule-obeying system? Is
there a magical transition region between numbers in reality and numbers
on paper?

When I speak of the properties of natural numbers, I don’t just mean
properties such as the sum of a particular pair of integers. That can be
found out by counting, and anybody who has grown up in this century
cannot doubt the mechanizability of such processes as counting, adding,
multiplying, and so on. I mean the kinds of properties which mathemati-
cians are interested in exploring, questions for which no counting-process
is sufficient to provide the answer—not even theoretically sufficient. Let us
take a classic example of such a property of natural numbers. The state-
ment is: “There are infinitely many prime numbers.” First of all, there is no
counting process which will ever be able to confirm, or refute, this asser-
tion. The best we could do would be to count primes for a while and
concede that there are “a lot”. But no amount of counting alone would ever
resolve the question of whether the number of primes is finite or infinite.
There could always be more. The statement—and it is called “Euclid’s
Theorem” (notice the capital “T”)-—is quite unobvious. It may seem
reasonable, or appealing, but it is not obvious. However, mathematicians
since Euclid have always called it true. What is the reason?

Euclid's Proof

The reason is that reasoning tells them it is so. Let us follow the reasoning
involved. We will look at a varant of Euclid’s proof. This proof works by
showing that whatever number you pick, there is a prime larger than it.
Pick a number—N. Multiply all the positive integers starting with 1 and
ending with N; in other words, form the factorial of N, written “N!”. What
you get is divisible by every number up to N. When you add 1 to N!, the
result

can’t be a multiple of 2 (because it leaves 1 over,
when you divide by 2);

can’t be a multiple of 3 (because it leaves 1 over,
when you divide by 3);

can’t be a multiple of 4 (because it leaves 1 over,
when you divide by 4);
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can’t be a multiple of N (because it leaves 1 over,
when you divide by N);

In other words, N! + 1, if it is divisible at all (other than by 1 and itself),
only is divisible by numbers greater than N. So either it is itself prime, or its
prime divisors are greater than N. But in either case we’ve shown there
must exist a prime above N. The process holds no matter what number N
1s. Whatever N is, there is a prime greater than N. And thus ends the
demonstration of the infinitude of the primes.

This last, step, incidentally, is called generalization, and we will meet it
again later in a more formal context. It is where we phrase an argument in
terms of a single number (N), and then point out that N was unspecified
and therefore the argument is a general one.

Euclid’s proof is typical of what constitutes “real mathematics”. It is
simple, compelling, and beautiful. It illustrates that by taking several rather
short steps one can get a long way from one’s starting point. In our case, the
starting points are basic ideas about multiplication and division and so
forth. The short steps are the steps of reasoning. And though every
individual step of the reasoning seems obvious, the end result is not obvi-
ous. We can never check directly whether the statement is true or not; yet
we believe it, because we believe in reasoning. If you accept reasoning,
there seems to be no escape route; once you agree to hear Euclid out, you'll
have to agree with his conclusion. That’s most fortunate—because it means
that mathematicians will always agree on what statements to label “true”,
and what statements to label “false”.

This proof exemplifies an orderly thought process. Each statement is
related to previous ones in an irresistible way. This is why it is called a
“proof’’ rather than just “good evidence”. In mathematics the goal is
always to give an ironclad proof for some unobvious statement. The very
fact of the steps being linked together in an ironclad way suggests that
there may be a patterned structure binding these statements together. This
structure can best be exposed by finding a new vocabulary—a stylized
vocabulary, consisting of symbols—suitable only for expressing statements
about numbers. Then we can look at the proof as it exists in its translated
version. It will be a set of statements which are related, line by line, in some
detectable way. But the statements, since they’re represented by means of a
small and stylized set of symbols, take on the aspect of patterns. In other
words, though when read aloud, they seem to be statements about numbers
and their properties, still when looked at on paper, they seem to be abstract
patterns—and the line-by-line structure of the proof may start to look like a
slow transformation of patterns according to some few typographical rules.

Getting Around Infinity

Although Euclid’s proof is a proof that e/l numbers have a certain property,
it avoids treating each of the infinitely many cases separately. It gets around
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it by using phrases like “whatever N is”, or “no matter what number N is”.
We could also phrase the proof over again, so that it uses the phrase “all N,
By knowing the appropriate context and correct ways of using such
phrases, we never have to deal with infinitely many statements. We deal
with just two or three concepts, such as the word “all”’—which, though
themselves finite, embody an infinitude; and by using them, we sidestep the
apparent problem that there are an infinite number of facts we want to
prove.

We use the word “all” in a few ways which are defined by the thought
processes of reasoning. That is, there are rules which our usage of “all”
obeys. We may be unconscious of them, and tend to claim we operate on
the basis of the meaning of the word: but that, after all, is only a circumlocu-
tion for saying that we are guided by rules which we never make explicit.
We have used words all our lives in certain patterns, and instead of calling
the patterns “rules”, we attribute the courses of our thought processes to
the “meanings” of words. That discovery was a crucial recognition in the
long path towards the formalization of number theory.

If we were to delve into Euclid’s proof more and more carefully, we
would see that it is composed of many, many small—almost infinitesimal—
steps. If all those steps were written out line after line, the proof would
appear incredibly complicated. To our minds it is clearest when several
steps are telescoped together, to form one single sentence. If we tried to
look at the proof in slow motion, we would begin to discern individual
frames. In other words, the dissection can go only so far, and then we hit
the “atomic” nature of reasoning processes. A proof can be broken down
into a series of tiny but discontinuous jumps which seem to flow smoothly
when perceived from a higher vantage point. In Chapter VIII, I will show
one way of breaking the proof into atomic units, and you will see how
incredibly many steps are involved. Perhaps it should not surprise you,
though. The operations in Euclid’s brain when he invented the proof must
have involved millions of neurons (nerve cells), many of which fired several
hundred times in a single second. The mere utterance of a sentence
involves hundreds of thousands of neurons. If Euclid’s thoughts were that
complicated, it makes sense for his proof to contain a huge number of
steps! (There may be little direct connection between the neural actions in
his brain, and a proof in our formal system, but the complexities of the two
are comparable. It is as if nature wants the complexity of the proof of the
infinitude of primes to be conserved, even when the systems involved are
very different from each other.)

In Chapters to come, we will lay out a formal system that (1) includes a
stylized vocabulary in which all statements about natural numbers can be
expressed, and (2) has rules corresponding to all the types of reasoning
which seem necessary. A very important question will be whether the rules
for symbol manipulation which we have then formulated are really of equal
power (as far as number theory is concerned) to our usual mental reason-
ing abilities—or, more generally, whether it is theoretically possible to
attain the level of our thinking abilities, by using some formal system.
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Sonata
for Unaccompanied Achilles

The telephone rings; Achilles picks it up.

Achilles: Hello, this is Achilles.

Achilles:  Oh, hello, Mr. T. How are you?

Achilles: A torticollis? Oh, I’'m sorry to hear it. Do you have any idea what
caused it?

Achilles: How long did you hold it in that position?

Achilles:  Well, no wonder it’s stiff, then. What on earth induced you to
keep your neck twisted that way for so long?

Achilles: Wondrous many of them, eh? What kinds, for example?

Achilles:  What do you mean, “phantasmagorical beasts”?

FIGURE 14. Mosaic 11, by M. C. Escher (lithograph, 1957).

Sonata for Unaccompanied Achilles 61



Achilles: Wasn't it terrifying to see so many of them at the same time?

Achilles: A guitar!? Of all things to be in the midst of all those weird
creatures. Say, don’t you play the guitar?

Achilles: Oh, well, it’s all the same to me.

Achilles:  You're right; I wonder why I never noticed that difference be-
tween fiddles and guitars before. Speaking of fiddling, how would you
like to come over and listen to one of the sonatas for unaccompanied
violin by your favorite composer, J. S. Bach? I just bought a marvelous
recording of them. I still can’t get over the way Bach uses a single violin
to create a piece with such interest.

Achilles: A headache too? That's a shame. Perhaps you should just go to
bed.

Achilles: 1 see. Have you tried counting sheep?

Achilles:  Oh, oh, I see. Yes, I fully know what you mean. Well, if it's THAT
distracting, perhaps you'd better tell it to me, and let me try to work on

it, too.
Achilles: A word with the letters ‘A’, ‘D’, ‘A’, ‘C’ consecutively inside it . . .
Hmm ... What about “abracadabra”?

Achilles: True, “ADAC” occurs backwards, not forwards, in that word.

Achilles: Hours and hours? It sounds like I'm in for a long puzzle, then.
Where did you hear this infernal riddle?

Achilles: ' You mean he looked like he was meditating on esoteric Buddhist
matters, but in reality he was just trying to think up complex word
puzzles?

Achilles:  Ahal—the snail knew what this fellow was up to. But how did you
come to talk to the snail?

Achilles:  Say, I once heard a word puzzle a little bit like this one. Do you
want to hear it? Or would it just drive you further into distraction?

Achilles: 1 agree—can’t do any harm. Here itis: What's a word that begins
with the letters “HE” and also ends with “HE”?

Achilles: Very ingenious—but that’s almost cheating. It's certainly not
what I meant!

Achilles:  Of course you're right—it fulfills the conditions, but it’s a sort of
“degenerate” solution. There’s another solution which I had in mind.

Achilles:  That’s exactly it! How did you come up with it so fast?

Achilles: So here’s a case where having a headache actually might have
helped you, rather than hindering you. Excellent! But I'm still in the
dark on your “ADAC” puzzle.

Achilles:  Congratulations! Now maybe you'll be able to get to sleep! So tell
me, what IS the solution?

Achilles:  Well, normally I don’t like hints, but all right. What's your hint?

Achilles: 1 don’t know what you mean by “figure” and “ground” in this
case.

Achilles:  Certainly I know Mosaic 11! 1 know ALL of Escher’s works. After
all, he’s my favorite artist. In any case, I've got a print of Mosaic II
hanging on my wall, in plain view from here.
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Achilles: Yes, I see all the black animals.

Achilles:  Yes, 1 also see how their “negative space”—what’s left out—
defines the white animals.

Achilles:  So THAT’S what you mean by “figure” and “ground”. But what
does that have to do with the “ADAC” puzzle?

Achilles:  Oh, this is too tricky for me. I think I'M starting to get a headache.

Achilles:  You want to come over now? But I thought—

Achilles:  Very well. Perhaps by then I'll have thought of the right answer
to YOUR puzzle, using your figure-ground hint, relating it to MY puzzle.

Achilles:  T'd love to play them for you.

Achilles:  You've invented a theory about them?

Achilles:  Accompanied by what instrument?

Achilles:  Well, if that’s the case, it seems a little strange that he wouldn’t
have written out the harpsichord part, then, and had it published as
well.

Achilles: 1 see—sort of an optional feature. One could listen to them either
way—with or without accompaniment. But how would one know what
the accompaniment is supposed to sound like?

Achilles:  Ah, yes, I guess that it is best, after all, to leave it to the listener’s
imagination. And perhaps, as you said, Bach never even had any
accompaniment in mind at all. Those sonatas seem to work very well
indeed as they are.

Achilles:  Right. Well, I'll see you shortly.

Achilles: Good-bye, Mr. T.
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CHAPTER 111

Figure and Ground

Primes vs. Composites

THERE Is A strangeness to the idea that concepts can be captured by simple
typographical manipulations. The one concept so far captured is that of
addition, and it may not have appeared very strange. But suppose the goal
were to create a formal system with theorems of the form Px, the letter ‘x’
standing for a hyphen-string, and where the only such theorems would be
ones in which the hyphen-string contained exactly a prime number of
hyphens. Thus, P-—-- would be a theorem, but P—--- would not. How
could this be done typographically? First, it is important to specify clearly
what is meant by typographical operations. The complete repertoire has
been presented in the MIU-system and the pg-system, so we really only
need to make a list of the kinds of things we have permitted:

(1) reading and recognizing any of a finite set of symbols;

(2) writing down any symbol belonging to that set;

(3) copying any of those symbols from one place to another;
(4) erasing any of those symbols;

(5) checking to see whether one symbol is the same as another;
(6) keeping and using a list of previously generated theorems.

The list is a little redundant, but no matter. What is important is that it
clearly involves only trivial abilities, each of them far less than the ability to
distinguish primes from nonprimes. How, then, could we compound some
of these operations to make a formal system in which primes are distin-
guished from composite numbers?

The tq-System

A first step might be to try to solve a simpler, but related, problem. We
could try to make a system similar to the pq-system, except that it repre-
sents multiplication, instead of addition. Let’s call it the tg-system, ‘¢ for
‘times’. More specifically, suppose X, ¥, and Z are, respectively, the num-
bers of hyphens in the hyphen-strings x, y, and z. (Notice I am taking
special pains to distinguish between a string and the number of hyphens it
contains.) Then we wish the string x ty qz to be a theorem if and only if X
times Y equals Z. For instance, ——t—-—-q-————— should be a theorem
because 2 times 3 equals 6, but ——t--—q—--should not be a theorem. The
tg-system can be characterized just about as easily as the pq-system—
namely, by using just one axiom schema and one rule of inference:
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AxioM ScHEMA: xt—qx is an axiom, whenever x is a hyphen-string.

RULE OF INFERENCE: Suppose that x, y, and z are all hyphen-strings. And
suppose that xtyqz is an old theorem. Then, xty—qzx is a new

theorem.
Below is the derivation of the theorem —-t-——-q-———-- :
(1) —--t-q-- (axiom)
Q) --t-—q-——- (by rule of inference,
using line (1) as the old theorem)
3 --t-—-q--—-——-- (by rule of inference,

using line (2) as the old theorem)

Notice how the middle hyphen-string grows by one hyphen each time the
rule of inference is applied; so it is predictable that if you want a theorem
with ten hyphens in the middle, you apply the rule of inference nine times
in a row.

Capturing Compositeness

Multiplication, a slightly trickier concept than addition, has now been
“captured” typographically, like the birds in Escher’s Liberation. What about
primeness? Here’s a plan that might seem smart: using the tg-system,
define a new set of theorems of the form Cx, which characterize composite
numbers, as follows:

RULE: Suppose x, y, and z are hyphen-strings. If x~ty-qz is a theorem,
then Cz is a theorem.

This works by saying that Z (the number of hyphens in z) is composite as
long as it is the product of two numbers greater than 1—namely, X + 1
(the number of hyphens in x-), and ¥ + 1 (the number of hyphensin y-).
1 am defending this new rule by giving you some “Intelligent mode”
justifications for it. That is because you are a human being, and want to
know why there is such a rule. If you were operating exclusively in the
“Mechanical mode”, you would not need any justification, since M-mode
workers just follow the rules mechanically and happily, never questioning
them!

Because you work in the I-mode, you will tend to blur in your mind the
distinction between strings and their interpretations. You see, things can
become quite confusing as soon as you perceive “meaning” in the symbols
which you are manipulating. You have to fight your own self to keep from
thinking that the string ‘—~-"is the number 3. The Requirement of Formal-
ity, which in Chapter I probably seemed puzzling (because it seemed so
obvious), here becomes tricky, and crucial. It is the essential thing which
keeps you from mixing up the I-mode with the M-mode; or said another
way, it keeps you from mixing up arithmetical facts with typographical
theorems.
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lllegally Characterizing Primes

It is very tempting to jump from the C-type theorems directly to P-type
theorems, by proposing a rule of the following kind:

ProPOSED RULE: Suppose x is a hyphen-string. If Cx is not a theorem, then
Px is a theorem.

The fatal flaw here is that checking whether Cx is not a theorem is not an
explicitly typographical operation. To know for sure that MU is not a
theorem of the MIU-system, you have to go outside of the system . . . and so
it is with this Proposed Rule. It is a rule which violates the whole idea of
formal systems, in that it asks you to operate informally—that is, outside
the system. Typographical operation (6) allows you to look into the
stockpile of previously found theorems, but this Proposed Rule is asking
you to look into a hypothetical “Table of Nontheorems”. But in order to
generate such a table, you would have to do some reasoning outside the
system—reasoning which shows why various strings cannot be generated
inside the system. Now it may well be that there is another formal system
which can generate the “Table of Nontheorems”, by purely typographical
means. In fact, our aim is to find just such a system. But the Proposed Rule
is not a typographical rule, and must be dropped.

This is such an important point that we might dwell on it a bit more. In
our C-system (which includes the tg-system and the rule which defines
C-type theorems), we have theorems of the form Cx, with x’ standing, as
usual, for a hyphen-string. There are also nontheorems of the form Cx.
(These are what I mean when I refer to “nontheorems”, although of course
tt—Cqq and other ill-formed messes are also nontheorems.) The differ-
ence is that theorems have a composite number of hyphens, nontheorems
have a prime number of hyphens. Now the theorems all have a common
“form”, that is, originate from a common set of typographical rules. Do all
nontheorems also have a common “form”, in the same sense? Below is a list
of C-type theorems, shown without their derivations. The parenthesized
numbers following them simply count the hyphens in them.
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The “holes” in this list are the nontheorems. To repeat the earlier question:
Do the holes also have some “form” in common? Would it be reasonable to
say that merely by virtue of being the holes in this list, they share a common
form? Yes and no. That they share some typographical quality is undeni-
able, but whether we want to call it “form” is unclear. The reason for
hesitating is that the holes are only negatively defined—they are the things
that are left out of a list which is positively defined.

Figure and Ground

This recalls the famous artistic distinction between figure and ground. When
a figure or “positive space” (e.g., a human form, or a letter, or a still life) is
drawn inside a frame, an unavoidable consequence is that its complemen-
tary shape—also called the “ground”, or “background”, or “negative
space”—has also been drawn. In most drawings, however, this figure-
ground relationship plays little role. The artist is much less interested in the
ground than in the figure. But sometimes, an artist will take interest in the
ground as well.

There are beautiful alphabets which play with this figure-ground dis-
tinction. A message written in such an alphabet is shown below. At first it
looks like a collection of somewhat random blobs, but if you step back a
ways and stare at it for a while, all of a sudden, you will see seven letters
appear in this . ..

¥ 9904, plopi(

FIGURE 15.

For a similar effect, take a look at my drawing Smoke Signal (Fig. 139).
Along these lines, you might consider this puzzle: can you somehow create
a drawing containing words in both the figure and the ground?

Let us now officially distinguish between two kinds of figures: cursively
drawable ones, and recursive ones (by the way, these are my own terms—they
are not in common usage). A cursively drawable figure is one whose ground
is merely an accidental by-product of the drawing act. A recursive figure is
one whose ground can be seen as a figure in its own right. Usually this is
quite deliberate on the part of the artist. The “re” in “recursive” represents
the fact that both foreground and background are cursively drawable—the
figure is “twice-cursive”. Each figure-ground boundary in a recursive figure
is a double-edged sword. M. C. Escher was a master at drawing recursive
figures—see, for instance, his beautiful recursive drawing of birds (Fig. 16).
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FIGURE 16. Tiling of the plane using birds, by M. C. Escher (from a 1942 notebook).

Our distinction is not as rigorous as one in mathematics, for who can
definitively say that a particular ground is not a figure? Once pointed out,
almost any ground has interest of its own. In that sense, every figure is
recursive. But that is not what I intended by the term. There is a natural
and intuitive notion of recognizable forms. Are both the foreground and
background recognizable forms? If so, then the drawing is recursive. If you
look at the grounds of most line drawings, you will find them rather
unrecognizable. This demonstrates that

There exist recognizable forms whose negative space is not any
recognizable form.

In more “technical” terminology, this becomes:
There exist cursively drawable figures which are not recursive.

Scott Kim’s solution to the above puzzle, which I call his “FIGURE-
FIGURE Figure”, is shown in Figure 17. If you read both black and white,
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FIGURE 17. FIGURE-FIGURE Figure, by Scott E. Kim (1975).



you will see “FIGURE” everywhere, but “GROUND” nowhere! It is a paragon
of recursive figures. In this clever drawing, there are two nonequivalent
ways of characterizing the black regions:

(1) as the negative space to the white regions;
(2) as altered copies of the white regions (produced by coloring
and shifting each white region).

(In the special case of the FIGURE-FIGURE Figure, the two characterizations
are equivalent—but in most black-and-white pictures, they would not be.)
Now in Chapter VIII, when we create our Typographical Number Theory
(TNT), it will be our hope that the set of all false statements of number
theory can be characterized in two analogous ways:

(1) as the negative space to the set of all TNT-theorems;
(2) as altered copies of the set of all TNT-theorems (produced by
negating each TNT-theorem).

But this hope will be dashed, because:

(1) inside the set of all nontheorems are found some truths;
(2) outside the set of all negated theorems are found some false-
hoods.

You will see why and how this happens, in Chapter XIV. Meanwhile,
ponder over a pictorial representation of the situation (Fig. 18).

Figure and Ground in Music

One may also look for figures and grounds in music. One analogue is the
distinction between melody and accompaniment—for the melody is always
in the forefront of our attention, and the accompaniment is subsidiary, in
some sense. Therefore it is surprising when we find, in the lower lines of a
piece of music, recognizable melodies. This does not happen too often in
post-baroque music. Usually the harmonies are not thought of as fore-
ground. But in baroque music—in Bach above all—the distinct lines,
whether high or low or in between, all act as “figures”. In this sense, pieces
by Bach can be called “recursive”.

Another figure-ground distinction exists in music: that between on-
beat and off-beat. If you count notes in a measure “one-and, two-and,
three-and, four-and”, most melody-notes will come on numbers, not on
“and”’s. But sometimes, a melody will be deliberately pushed onto the
“and”’s, for the sheer effect of it. This occurs in several études for the
piano by Chopin, for instance. It also occurs in Bach—particularly in his
Sonatas and Partitas for unaccompanied violin, and his Suites for unac-
companied cello. There, Bach manages to get two or more musical lines
going simultaneously. Sometimes he does this by having the solo instru-
ment play “double stops”—two notes at once. Other times, however, he
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Theorems

Unreachable falsehoods

Well-formed formulas

Strings

FIGURE 18. Considerable visual symbolism is featured in this diagram of the relationship
between various classes of TNT strings. The biggest box represents the set of all TNT strings.
The next-biggest box represents the set of all well-formed TNT strings. Within it is found the
set of all sentences of TNT. Now things begin to get interesting. The set of theorems is
pictured as a tree growing out of a trunk (vepresenting the set of axioms). The tree-symbol was
chosen because of the recursive growth pattern which it exhibits: new branches (theorems)
constantly sprouting from old ones. The fingerlike branches probe into the corners of the
constraining region (the set of truths), yet can never fully occupy it. The boundary between
the set of truths and the set of falsities is meant to suggest a randomly meandering coastline
which, no matter how closely you examine it, always has finer levels of structure, and is
conséquently impossible to describe exactly in any finite way. (See B. Mandelbrot’s book
Fractals.) The reflected tree represents the set of negations of theorems: all of them false,
yet unable collectively to span the space of false statements. [Drawing by the author. ]

puts one voice on the on-beats, and the other voice on the off-beats, so the
ear separates them and hears two distinct melodies weaving in and out, and
harmonizing with each other. Needless to say, Bach didn’t stop at this level

of complexity . ..
Recursively Enumerable Sets vs. Recursive Sets

Now let us carry back the notions of figure and ground to the domain of
formal systems. In our example, the role of positive space is played by the
C-type theorems, and the role of negative space is played by strings with a
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prime number of hyphens. So far, the only way we have found to represent
prime numbers typographically is as a negative space. Is there, however,
some way—]I don’t care how complicated—of representing the primes as a
positive space—that is, as a set of theorems of some formal system?

Different people’s intuitions give different answers here. I remember
quite vividly how puzzled and intrigued I was upon realizing the difference
between a positive characterization and a negative characterization. I was
quite convinced that not only the primes, but any set of numbers which
could be represented negatively, could also be represented positively. The
intuition underlying my belief is represented by the question: “How could a
figure and its ground not carry exactly the same information?” They seemed to me
to embody the same information, just coded in two complementary ways.
What seems right to you?

It turns out I was right about the primes, but wrong in general. This
astonished me, and continues to astonish me even today. It is a fact that:

There exist formal systems whose negative space (set of non-
theorems) is not the positive space (set of theorems) of any formal
system.

This result, it turns out, is of depth equal to Gédel’s Theorem—so it is not
surprising that my intuition was upset. I, just like the mathematicians of the
early twentieth century, expected the world of formal systems and natural
numbers to be more predictable than it is. In more technical terminology,
this becomes:

There exist recursively enumerable sets which are not recursive.

The phrase recursively enumerable (often abbreviated “r.e.”) is the mathemat-
ical counterpart to our artistic notion of “cursively drawable”—and recursive
is the counterpart of “recursive”. For a set of strings to be “r.e.” means that
it can be generated according to typographical rules—for example, the set
of C-type theorems, the set of theorems of the MIU-system—indeed, the
set of theorems of any formal system. This could be compared with the
conception of a “figure” as “a set of lines which can be generated according
to artistic rules” (whatever that might mean!). And a “recursive set” is like a
figure whose ground is also a figure——not only is it r.e., but its complement
is also r.e.
It follows from the above result that:

There exist formal systems for which there is no typographical
decision procedure.

How does this follow? Very simply. A typographical decision procedure is a
method which tells theorems from nontheorems. The existence of such a
test allows us to generate all nontheorems systematically, simply by going
down a list of all strings and performing the test on them one at a time,
discarding ill-formed strings and theorems along the way. This amounts to
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a typographical method for generating the set of nontheorems. But accord -
ing to the earlier statement (which we here accept on faith), for some
systems this is not possible. So we must conclude that typographical deci-
sion procedures do not exist for all formal systems.

Suppose we found a set F of natural numbers (‘F’ for ‘Figure’) which
we could generate in some formal way—like the composite numbers. Sup-
pose its complement is the set G (for ‘Ground’)—like the primes. Together,
F and G make up all the natural numbers, and we know a rule for making
all the numbers in set F, but we know no such rule for making all the
numbers in set G. It is important to understand that if the members of F
were always generated in order of increasing size, then we could always
characterize G. The problem is that many r.e. sets are generated by
methods which throw in elements in an arbitrary order, so you never know
if a number which has been skipped over for a long time will get included if
you just wait a little longer.

We answered no to the artistic question, “Are all figures recursive?”
We have now seen that we must likewise answer no to the analogous
question in mathematics: “Are all sets recursive?” With this perspective, let
us now come back to the elusive word “form”. Let us take our figure-set F
and our ground-set G again. We can agree that all the numbers in set F
have some common “form”—but can the same be said about numbers in set
G? Itis a strange question. When we are dealing with an infinite set to start
with—the natural numbers—the holes created by removing some subset
may be very hard to define in any explicit way. And so it may be that they
are not connected by any common attribute or “form”. In the last analysis,
it is a matter of taste whether you want to use the word “form”—but just
thinking about it is provocative. Perhaps it is best not to define “form”, but
to leave it with some intuitive fluidity.

Here is a puzzle to think about in connection with the above matters.
Can you characterize the following set of integers (or its negative space)?

1 3 7 12 18 26 35 45 56 69...

How is this sequence like the FIGURE-FIGURE Figure?

Primes as Figure Rather than Ground

Finally, what about a formal system for generating primes? How is it done?
The trick is to skip right over multiplication, and to go directly to nondivisi-
bility as the thing to represent positively. Here are an axiom schema and a
rule for producing theorems which represent the notion that one number
does not divide (DN D) another number exactly:

AxioMm ScHEMA: xyDNDx where x and y are hyphen-strings.

For example, ————— DN D-—, where x has been replaced by ‘~-" and y by

s
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RuLe: If xDNDy is a theorem, then so is xDNDxy.

If you use the rule twice, you can generate this theorem:

which is interpreted as “5 does not divide 12”. But -———DND—-————- is
not a theorem. What goes wrong if you try to produce it?

Now in order to determine that a given number is prime, we have to
build up some knowledge about its nondivisibility properties. In particular,
we want to know that it is not divisible by 2 or 3 or 4, etc., all the way up to 1
less than the number itself. But we can’t be so vague in formal systems as to
say “et cetera”. We must spell things out. We would like to have a way of
saying, in the language of the system, “the number Z is divisor-free up toX”,
meaning that no number between 2 and X divides Z. This can be done, but
there is a trick to it. Think about it if you want.

Here is the solution:

RuLe: If ——DNDz is a theorem, sois zDF—-.

RuLe: If 2DFx is a theorem and also x-DNDz is a theorem, then
zDFx—is a theorem.

These two rules capture the notion of divisor-freeness. All we need to do is to
say that primes are numbers which are divisor-free up to 1 less than
themselves:

RuLe: If z-DFz is a theorem, then Pz- is a theorem.
Oh—let’s not forget that 2 is prime!

Axiom: P--.

And there you have it. The principle of representing primality formally is
that there is a test for divisibility which can be done without any backtrack-
ing. You march steadily upward, testing first for divisibility by 2, then by 3,
and so on. It is this “monotonicity” or unidirectionality—this absence of
cross-play between lengthening and shortening, increasing and
decreasing—that allows primality to be captured. And it is this potential
complexity of formal systems to involve arbitrary amounts of backwards-
forwards interference that is responsible for such limitative results as
Godel's Theorem, Turing’s Halting Problem, and the fact that not all
recursively enumerable sets are recursive.
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Achalles:
Tortoise:

Achilles:

Tortoise:

Achilles:
Tortoise:

Achilles:

Tortotse:

Achilles:
Tortotse:

Achilles:

Tortotse:

Achilles:

Tortotse:

Contracrostipunctus

Achilles has come to visit his friend and jogging
companion, the Tortoise, at his home.

Heavens, you certainly have an admirable boomerang collection!

Oh, pshaw. No better than that of any other Tortoise. And now,
would you like to step into the parlor?

Fine. (Walks to the corner of the room.) 1 see you also have a large
collection of records. What sort of music do you enjoy?

Sebastian Bach isn’t so bad, in my opinion. But these days, I must
say, I am developing more and more of an interest in a rather
specialized sort of music.

Tell me, what kind of music is that?

A type of music which you are most unlikely to have heard of. I
call it “music to break phonographs by”.

Did you say “to break phonographs by”? That is a curious con-
cept. I can just see you, sledgehammer in hand, whacking one
phonograph after another to pieces, to the strains of Beet-
hoven’s heroic masterpiece Wellington’s Victory.

That’s not quite what this music is about. However, you might
find its true nature just as intriguing. Perhaps I should give you
a brief description of it?

Exactly what I was thinking.

Relatively few people are acquainted with it. It all began when
my friend the Crab—have you met him, by the way?—paid me
a visit,

“twould be a pleasure to make his acquaintance, I'm sure.
Though I've heard so much about him, I've never met him.

Sooner or later I'll get the two of you together. You'd hit it off
splendidly. Perhaps we could meet at random in the park one
day ...

Capital suggestion! I'll be looking forward to it. But you were
going to tell me about your weird “music to smash phono-
graphs by”, weren’t you?

Oh, yes. Well, you see, the Crab came over to visit one day. You
must understand that he’s always had a weakness for fancy
gadgets, and at that time he was quite an aficionado for, of all
things, record players. He had just bought his first record
player, and being somewhat gullible, believed every word the
salesman had told him about it—in particular, that it was capa-
ble of reproducing any and all sounds. In short, he was con-
vinced that it was a Perfect phonograph.
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Naturally, I suppose you disagreed.

True, but he would hear nothing of my arguments. He staunchly
maintained that any sound whatever was reproducible on his
machine. Since I couldn’t convince him of the contrary, I left it
at that. But not long after that, I returned the visit, taking with
me a record of a song which I had myself composed. The song
was called “I Cannot Be Played on Record Player 1”.

Rather unusual. Was it a present for the Crab?

Absolutely. I suggested that we listen to it on his new phono-
graph, and he was very glad to oblige me. So he put it on. But
unfortunately, after only a few notes, the record player began
vibrating rather severely, and then with a loud “pop”, broke
into a large number of fairly small pieces, scattered all about
the room. The record was utterly destroyed also, needless to
say.

Calamitous blow for the poor fellow, I'd say. What was the matter
with his record player?

Really, there was nothing the matter, nothing at all. It simply
couldn’t reproduce the sounds on the record which I had
brought him, because they were sounds that would make it
vibrate and break.

Odd, isn’t it? I mean, I thought it was a Perfect phonograph.
That’s what the salesman had told him, after all.

Surely, Achilles, you don't believe everything that salesmen tell
you! Are you as naive as the Crab was?

The Crab was naiver by far! I know that salesmen are notorious
prevaricators. I wasn’t born yesterday!

In that case, maybe you can imagine that this particular salesman
had somewhat exaggerated the quality of the Crab’s piece of
equipment . .. perhaps it was indeed less than Perfect, and
could not reproduce every possible sound.

Perhaps that is an explanation. But there’s no explanation for the
amazing coincidence that your record had those very sounds
onit ...

Unless they got put there deliberately. You see, before returning
the Crab’s visit, I went to the store where the Crab had bought
his machine, and inquired as to the make. Having ascertained
that, I sent off to the manufacturers for a description of its
design. After receiving that by return mail, I analyzed the
entire construction of the phonograph and discovered a cer-
tain set of sounds which, if they were produced anywhere in
the vicinity, would set the device to shaking and eventually to
falling apart.

Nasty fellow! You needn’t spell out for me the last details: that
you recorded those sounds yourself, and offered the dastardly
item as a gift . . .
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Clever devil! You jumped ahead of the story! But that wasn’t the
end of the adventure, by any means, for the Crab did not
believe that his record player was at fault. He was quite stub-
born. So he went out and bought a new record player, this one
even more expensive, and this time the salesman promised to
give him double his money back in case the Crab found a sound
which it could not reproduce exactly. So the Crab told me
excitedly about his new model, and I promised to come over
and see it.

Tell me if I'm wrong—I bet that before you did so, you once
again wrote the manufacturer, and composed and recorded a
new song called “I Cannot Be Played on Record Player 27,
based on the construction of the new model.

Utterly brilliant deduction, Achilles. You've quite got the spirit.

So what happened this time?

As you might expect, precisely the same thing. The phonograph
fell into innumerable pieces, and the record was shattered.
Consequently, the Crab finally became convinced that there can

be no such thing as a Perfect record player.

Rather surprisingly, that’s not quite what happened. He was sure
that the next model up would fill the bill, and having twice the
money, he—

Oho—I have an idea! He could have easily outwitted you, by
obtaining a LOw-fidelity phonograph—one that was not capa-
ble of reproducing the sounds which would destroy it. In that
way, he would avoid your trick.

Surely, but that would defeat thevoriginal purpose—namely, to
have a phonograph which could reproduce any sound what-
soever, even its own self-breaking sound, which is of course
impossible.

That's true. I see the dilemma now. If any record player—say
Record Player X—is sufficiently high-fidelity, then when it
attempts to play the song “I Cannot Be Played on Record
Player X”, it will create just those vibrations which will cause it
to break . . . So it fails to be Perfect. And yet, the only way to get
around that trickery, namely for Record Player X to be of
lower fidelity, even more directly ensures that it is not Perfect.
It seems that every record player is vulnerable to one or the
other of these frailties, and hence all record players are defec-
tive.

I don’t see why you call them “defective”. It is simply an inherent
fact about record players that they can’t do all that you might
wish them to be able to do. But if there is a defect anywhere, it
is not in THEM, but in your expectations of what they should be
able to do! And the Crab was just full of such unrealistic
expectations.
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Compassion for the Crab overwhelms me. High fidelity or low
fidelity, he loses either way.

And so, our little game went on like this for a few more rounds,
and eventually our friend tried to become very smart. He got
wind of the principle upon which I was basing my own records,
and decided to try to outfox me. He wrote to the phonograph
makers, and described a device of his own invention, which
they built to specification. He called it “Record Player Omega”.
It was considerably more sophisticated than an ordinary record
player.

Let me guess how: Did it have no moving parts? Or was it made
of cotton? Or—

Let me tell you, instead. That will save some time. In the first
place, Record Player Omega incorporated a television camera
whose purpose it was to scan any record before playing it. This
camera was hooked up to a small built-in computer, which
would determine exactly the nature of the sounds, by looking
at the groove-patterns.

Yes, so far so good. But what could Record Player Omega do with
this information?

By elaborate calculations, its little computer figured out what
effects the sounds would have upon its phonograph. If it de-
duced that the sounds were such that they would cause the
machine in its present configuration to break, then it did some-
thing very clever. Old Omega contained a device which could
disassemble large parts of its phonograph subunit, and rebuild
them in new ways, so that it could, in effect, change its own
structure. If the sounds were “dangerous”, a new configuration
was chosen, one to which the sounds would pose no threat, and
this new configuration would then be built by the rebuilding
subunit, under direction of the little computer. Only after this
rebuilding operation would Record Player Omega attempt to
play the record.

Aha! That must have spelled the end of your tricks. I bet you
were a little disappointed.

Curious that you should think so ... I don’t suppose that you
know Godel’s Incompleteness Theorem backwards and for-
wards, do you?

Know WHOSE Theorem backwards and forwards? I've never
heard of anything that sounds like that. I'm sure it’s fascinat-
ing, but I'd rather hear more about “music to break records
by”. It’s an amusing little story. Actually, I guess I can fill in the
end. Obviously, there was no point in going on, and so you
sheepishly admitted defeat, and that was that. Isn’t that exactly
it?

What! It’s almost midnight! I'm afraid it’s my bedtime. I'd love to
talk some more, but really I am growing quite sleepy.
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As am I. Well, I'll be on my way. (As he reaches the door, he suddenly
stops, and turns around.) Oh, how silly of me! I almost forgot, 1
brought you a little present. Here. (Hands the Tortoise a small,
neatly wrapped package.)

Really, you shouldn’t have! Why, thank you very much indeed. I
think I'll open it now. (Eagerly tears open the package, and inside
discovers a glass goblet.) Oh, what an exquisite goblet! Did you
know that I am quite an aficionado for, of all things, glass
goblets?

Didn’t have the foggiest. What an agreeable coincidence!

Say, if you can keep a secret, I'll let you in on something: I'm
trying to find a Perfect goblet: one having no defects of any
sort in its shape. Wouldn't it be something if this goblet—let’s
call it “G”—were the one? Tell me, where did you come across
Goblet G?

Sorry, but that’s MY little secret. But you might like to know who
its maker is.

Pray tell, who is it?

Ever hear of the famous glassblower Johann Sebastian Bach?
Well, he wasn’t exactly famous for glassblowing—but he dab-
bled at the art as a hobby, though hardly a soul knows it—and
this goblet is the last piece he blew.

Literally his last one? My gracious. If it truly was made by Bach,
its value is inestimable. But how are you sure of its maker?
Look at the inscription on the inside—do you see where the

letters ‘B’, ‘A’, ‘C’, ‘H’ have been etched?

Sure enough! What an extraordinary thing. (Gently sets Goblet G
down on a shelf.) By the way, did you know that each of the four
letters in Bach’s name is the name of a musical note?

‘ tisn’t possible, is it? After all, musical notes only go from ‘A’
through ‘G’.

Just so; in most countries, that’s the case. Butin Germany, Bach’s
own homeland, the convention has always been similar, except
that what we call ‘B’, they call ‘H’, and what we call ‘B-flat’, they
call ‘B’. For instance, we talk about Bach’s “Mass in B Minor”,
whereas they talk about his “H-moll Messe”. Is that clear?

... hmm . ..I guess so. It’s a little confusing: H is B, and B is
B-flat. I suppose his name actually constitutes a melody, then.

Strange but true. In fact, he worked that melody subtly into one
of his most elaborate musical pieces—namely, the final Con-
trapunctus in his Art of the Fugue. It was the last fugue Bach ever
wrote. When I heard it for the first time, I had no idea how it
would end. Suddenly, without warning, it broke off. And then
... dead silence. I realized immediately that was where Bach
died. Itis an indescribably sad moment, and the effectit had on
me was—shattering. In any case, B-A-C-H is the last theme of
that fugue. Itis hidden inside the piece. Bach didn’t point it out

Contracrostipunctus 79



&4 1}

T

TN
il
-
4
H
I
I
1
M
o
:ﬁ

] Y e iy ha
. i S % o 7 > S » 20y
T e — , B o Hm— : PacHs— . 1 .
$ =+ t t — t e —
1 : £ : I T
f : =
H P
. - = - e
T — = T - e e =
= — T 5 %5 e W < 3
2 :: —— : i e

1
N
Y
N
N
"
{
A
N
0
N
N
iy

P
vos et
P ol o W om® o o et & g P} T ol
825 ! — f 2%t H = 3 =7
— } =
%—I—H—I—i—— + hﬂ—%——&————
P ) F——
£ r } o —— o s
=t B = ] o s b B X e s e B s — y =
= Y P o ¥ i e e e s i =
= t i ? === == S e e e e e e —
T .| T 'ﬂ‘ # L d
—
e —— T —p = »
— i ;i > T ¥ ] ] ¥
5 + T ¥ e t—— } ¥ ¥
= = I
B ———————— i = T S
T — o ¥
1
0 T P2 anh,
‘o e o e f =
-1 o 1 7 = —
W.. : —% } : 3
1—d —
! I r——
o e . e e ot P T
o i o o o o e o e e = . g — gt
S ] = % ] T — ——— o
* : t =
]
a » P e 2 £ fishee Zoiohe oot
{ ® f H i I e o et A s e e
F =+ i ¥ ==
XX e
.  — >
;" >
} ;

FIGURE 19. The last page of Back’s Art of the Fugue. In the original manuscript, in the
handuwriting of Back’s son Carl Philipp Emanuel, is written: “N.B. In the course of this
JSugue, at the point where the name B.A.C.H. was brought in as countersubject, the composer
died.” (B-A-C-H in box.) I have let this final page of Bach’s last fugue serve as an epitaph.
[Music printed by Donald Byrd's program “SMUT", developed at Indiana University. |
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explicitly, but if you know about it, you can find it without
much trouble. Ah, me—there are so many clever ways of hid-
ing things in music . ..

. . or in poems. Poets used to do very similar things, you know
(though it’s rather out of style these days). For instance, Lewis
Carroll often hid words and names in the first letters (or
characters) of the successive lines in poems he wrote. Poems
which conceal messages that way are called “acrostics”.

Bach, too, occasionally wrote acrostics, which isn’t surprising.
After all, counterpoint and acrostics, with their levels of hidden
meaning, have quite a bit in common. Most acrostics, however,
have only one hidden level—but there is no reason that one
couldn’t make a double-decker—an acrostic on top of an acros-
tic. Or one could make a “contracrostic’—where the initial
letters, taken in reverse order, form a message. Heavens!
There’s no end to the possibilities inherent in the form.
Moreover, it’s not limited to poets; anyone could write
acrostics—even a dialogician.

A dial-a-logician? That's a new one on me.

Correction: 1 said “dialogician”, by which I meant a writer of
dialogues. Hmm ... something just occurred to me. In the
unlikely event that a dialogician should write a contrapuntal
acrostic in homage to J. S. Bach, do you suppose it would be
more proper for him to acrostically embed his OWN name—or
that of Bach? Oh, well, why worry about such frivolous mat-
ters? Anybody who wanted to write such a piece could make up
his own mind. Now getting back to Bach’s melodic name, did
you know that the melody B-A-C-H, if played upside down and
backwards, is exactly the same as the original?

How can anything be played upside down? Backwards, I can
see—you get H-C-A-B—but upside down? You must be pulling
my leg.

' pon my word, you're quite a skeptic, aren’t you? Well, I guess
I'll have to give you a demonstration. Let me just go and fetch
my fiddle— (Walks into the next room, and returns in a jiffy with an
ancient-looking violin.) —and play it for you forwards and back-
wards and every which way. Let’s see, now . . . (Places his copy of
the Art of the Fugue on his music stand and opens it to the last page.)
... here’s the last Contrapunctus, and here’s the last theme . . .

The Tortoise begins to play: B-A-C- — but as he bows
the final H, suddenly, without warning, a shattering
sound rudely interrupts his performance. Both he and
Achilles spin around, just in time to catch a glimpse of
myriad fragments of glass tinkling to the floor from the
shelf where Goblet G had stood, only moments before. And
then . . . dead silence.
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CHAPTER 1V

Consistency, Completeness,
and Geometry

Implicit and Explicit Meaning

IN CHAPTER II, we saw how meaning—at least in the relatively simple
context of formal systems—arises when there is an isomorphism between
rule-governed symbols, and things in the real world. The more complex
the isomorphism, in general, the more “equipment”—both hardware and
software—is required to extract the meaning from the symbols. If an
isomorphism is very simple (or very familiar), we are tempted to say that
the meaning which it allows us to see is explicit. We see the meaning
without seeing the isomorphism. The most blatant example is human
language, where people often attribute meaning to words in themselves,
without being in the slightest aware of the very complex “isomorphism”
that imbues them with meanings. This is an easy enough error to make. It
attributes all the meaning to the object (the word), rather than to the lnk
between that object and the real world. You might compare it to the naive
belief that noise is a necessary side effect of any collision of two objects.
This is a false belief; if two objects collide in a vacuum, there will be no
noise at all. Here again, the error stems from attributing the noise exclu-
sively to the collision, and not recognizing the role of the medium, which
carries it from the objects to the ear.

Above, I used the word “isomorphism” in quotes to indicate that it
must be taken with a grain of salt. The symbolic processes which underlie
the understanding of human language are so much more complex than the
symbolic processes in typical formal systems, that, if we want to continue
thinking of meaning as mediated by isomorphisms, we shall have to adopta
far more flexible conception of what isomorphisms can be than we have up
till now. In my opinion, in fact, the key element in answering the question
“What is consciousness?” will be the unraveling of the nature of the “iso-
morphism” which underlies meaning.

Explicit Meaning of the Contracrostipunctus

All this is by way of preparation for a discussion of the
Contracrostipunctus—a study in levels of meaning. The Dialogue has both
explicit and implicit meanings. Its most explicit meaning is simply the story
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which was related. This “explicit” meaning is, strictly speaking, extremely
tmplicit, in the sense that the brain processes required to understand the
events in the story, given only the black marks on paper, are incredibly
complex. Nevertheless, we shall consider the events in the story to be the
explicit meaning of the Dialogue, and assume that every reader of English
uses more or less the same “isomorphism” in sucking that meaning from
the marks on the paper.

Even so, I'd like to be a little more explicit about the explicit meaning
of the story. First I'll talk about the record players and the records. The
main point is that there are two levels of meaning for the grooves in the
records. Level One is that of music. Now what is “music”—a sequence of
vibrations in the air, or a succession of emotional responses in a brain? It is
both. But before there can be emotional responses, there have to be
vibrations. Now the vibrations get “pulled” out of the grooves by a record
player, a relatively straightforward device; in fact you can do it with a pin,
just pulling it down the grooves. After this stage, the ear converts the
vibrations into firings of auditory neurons in the brain. Then ensue a
number of stages in the brain, which gradually transform the linear se-
quence of vibrations into a complex pattern of interacting emotional
responses—far too complex for us to go into here, much though I would
like to. Let us therefore content ourselves with thinking of the sounds in
the air as the “Level One” meaning of the grooves.

What is the Level Two meaning of the grooves? It is the sequence of
vibrations induced in the record player. This meaning can only arise after
the Level One meaning has been pulled out of the grooves, since the
vibrations in the air cause the vibrations in the phonograph. Therefore, the
Level Two meaning depends upon a chain of two isomorphisms:

(1) isomorphism between arbitrary groove patterns and air vi-

brations;
(2) isomorphism between arbitrary air vibrations and phono-

graph vibrations.

This chain of two isomorphisms is depicted in Figure 20. Notice that
isomorphism 1 is the one which gives rise to the Level One meaning. The
Level Two meaning is more implicit than the Level One meaning, because
it is mediated by the chain of two isomorphisms. It is the Level Two
meaning which “backfires”, causing the record player to break apart. What
is of interest is that the production of the Level One meaning forces the
production of the Level Two meaning simultaneously—there is no way to
have Level One without Level Two. So it was the implicit meaning of the
record which turned back on it, and destroyed it.

Similar comments apply to the goblet. One difference is that the
mapping from letters of the alphabet to musical notes is one more level of
isomorphism, which we could call “transcription”. That is followed by
“translation”—conversion of musical notes into musical sounds. There-
after, the vibrations act back on the goblet just as they did on the escalating
series of phonographs.
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FIGURE 20. Visual rendition of the principle underlying Gédel’s Theorem: two back-to-
back mappings which have an unexpected boomeranging effect. The first is from groove-
patterns to sounds, carried out by a phonograph. The second—familiar, but usually ignored—
is from sounds to vibrations of the phonograph. Note that the second mapping exists indepen-
dently of the first one, for any sound in the vicinity, not just ones produced by the phonograph
itself, will cause such vibrations. The paraphrase of Godel's Theorem says that for any record
player, there are records which it cannot play because they will cause its indirect self-
destruction. [Drawing by the author. ]

Implicit Meanings of the Contracrostipunctus

What about implicit meanings of the Dialogue? (Yes, it has more than one
of these.) The simplest of these has already been pointed out in the
paragraphs above—namely, that the events in the two halves of the
dialogue are roughly isomorphic to each other: the phonograph becomes a
violin, the Tortoise becomes Achilles, the Crab becomes the Tortoise, the
grooves become the etched autograph, etc. Once you notice this simple
isomorphism, you can go a little further. Observe that in the first half of the
story, the Tortoise is the perpetrator of all the mischief, while in the second
half, he is the victim. What do you know, but his own method has turned
around and backfired on him! Reminiscent of the backfiring of the records’
music—or the goblet’s inscription—or perhaps of the Tortoise’s
boomerang collection? Yes, indeed. The story is about backfiring on two
levels, as follows . ..

Level One: Goblets and records which backfire;

Level Two: The Tortoise’s devilish method of exploiting implicit
meaning to cause backfires—which backfires.

Therefore we can even make an isomorphism between the two levels of the
story, in which we equate the way in which the records and goblet
boomerang back to destroy themselves, with the way in which the Tortoise’s
own fiendish method boomerangs back to get him in the end. Seen this

84 Consistency, Completeness, and Geometry




way, the story itself is an example of the backfirings which it discusses. So
we can think of the Contracrostipunctus as referring to itself indirectly, in
that its own structure is isomorphic to the events it portrays. (Exactly as the
goblet and records refer implicitly to themselves via the back-to-back iso-
morphisms of playing and vibration-causing.) One may read the Dialogue
without perceiving this fact, of course—but it is there all the time.

Mapping Between the Contracrostipunctus
and Goédel’s Theorem

Now you may feel a little dizzy—but the best is yet to come. (Actually, some
levels of implicit meaning will not even be discussed here—they will be left
for you to ferret out.) The deepest reason for writing this Dialogue was to
illustrate Godel's Theorem, which, as I said in the Introduction, relies
heavily on two different levels of meaning of statements of number theory.
Each of the two halves of the Contracrostipunctus is an “isomorphic copy” of
Godel’s Theorem. Because this mapping is the central idea of the Dialogue,
and is rather elaborate, I have carefully charted it out below.

phonograph &=  axiomatic system for number theory
low-fidelity phonograph <= “weak” axiomatic system
high-fidelity phonograph <= “strong” axiomatic system
“Perfect” phonograph &= complete system for number theory
“blueprint” of phonograph <= axioms and rules of formal system
record <= string of the formal system
playable record <= theorem of the axiomatic system
unplayable record <= nontheorem of the axiomatic system
sound <= true statement of number theory
reproducible sound <= interpreted theorem of the system

unreproducible sound &= true statement which isn’t a theorem

song title: &= implicit meaning of Godel’s string:
“I Cannot Be Played “I Cannot Be Derived
on Record Player X” in Formal System X"

This is not the full extent of the isomorphism between Godel’s Theo-
rem and the Contracrostipunctus, but it is the core of it. You need not worry
if you don't fully grasp Godel’s Theorem by now—there are still a few
Chapters to go before we reach it! Nevertheless, having read this Dialogue,
you have already tasted some of the flavor of Godel's Theorem without
necessarily being aware of it. I now leave you to look for any other types of
implicit meaning in the Contracrostipunctus. “Quaerendo invenietis!”
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The Art of the Fugue

A few words on the Art of the Fugue . . . Composed in the last year of Bach’s
life, it is a collection of eighteen fugues all based on one theme. Apparently,
writing the Musical Offering was an inspiration to Bach. He decided to
compose another set of fugues on a much simpler theme, to demonstrate
the full range of possibilites inherent in the form. In the Art of the Fugue,
Bach uses a very simple theme in the most complex possible ways. The
whole work is in a single key. Most of the fugues have four voices, and they
gradually increase in complexity and depth of expression. Toward the end,
they soar to such heights of intricacy that one suspects he can no longer
maintain them. Yet he does . . . until the last Contrapunctus.

The circumstances which caused the break-off of the Art of the Fugue
(which is to say, of Bach’s life) are these: his eyesight having troubled him
for years, Bach wished to have an operation. It was done; however, it came
out quite poorly, and as a consequence, he lost his sight for the better part
of the last year of his life. This did not keep him from vigorous work on his
monumental project, however. His aim was to construct a complete exposi-
tion of fugal writing, and usage of multiple themes was one important facet
of it. In what he planned as the next-to-last fugue, he inserted his own
name coded into notes as the third theme. However, upon this very act, his
health became so precarious that he was forced to abandon work on his
cherished project. In his illness, he managed to dictate to his son-in-law a
final chorale prelude, of which Bach’s biographer Forkel wrote, “The
expression of pious resignation and devotion in it has always affected me
whenever I have played it; so that I can hardly say which I would rather
miss—this Chorale, or the end of the last fugue.”

One day, without warning, Bach regained his vision. But a few hours
later, he suffered a stroke; and ten days later, he died, leaving it for others
to speculate on the incompleteness of the Art of the Fugue. Could it have
been caused by Bach’s attainment of self-reference?

Problems Caused by Gédel’s Result

The Tortoise says that no sufficiently powerful record player can be per-
fect, in the sense of being able to reproduce every possible sound from a
record. Godel says that no sufficiently powerful formal system can be
perfect, in the sense of reproducing every single true statement as a
theorem. But as the Tortoise pointed out with respect to phonographs, this
fact only seems like a defect if you have unrealistic expectations of what
formal systems should be able to do. Nevertheless, mathematicians began
this century with just such unrealistic expectations, thinking that axiomatic
reasoning was the cure to all ills. They found out otherwise in 1931. The
fact that truth transcends theoremhood, in any given formal system, is
called “incompleteness” of that system.

A most puzzling fact about Godel’s method of proof is that he uses
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reasoning methods which seemingly cannot be “encapsulated”—they resist
being incorporated into any formal system. Thus, at first sight, it seems that
Godel has unearthed a hitherto unknown, but deeply significant, differ-
ence between human reasoning and mechanical reasoning. This mysteri-
ous discrepancy in the power of living and nonliving systems is mirrored in
the discrepancy between the notion of truth, and that of theoremhood . . .
or at least that is a “romantic” way to view the situation.

The Modified pq-System and Inconsistency

In order to see the situation more realistically, it is necessary to see in more
depth why and how meaning is mediated, in formal systems, by isomor-
phisms. And I believe that this leads to a more romantic way to view the
situation. So we now will proceed to investigate some further aspects of the
relation between meaning and form. Our first step is to make a new formal
system by modifying our old friend, the pg-system, very slightly. We add
one more axiom schema (retaining the original one, as well as the single
rule of inference):

Axiom ScHEMA II: If x is a hyphen-string, then xp—-qx is an axiom.

Clearly, then, ——p-q-- is a theorem in the new system, and so is
——p--q——-. And yet, their interpretations are, respectively, “2 plus 1
equals 27, and “2 plus 2 equals 3”. It can be seen that our new system will
contain a lot of false statements (if you consider strings to be statements).
Thus, our new system is inconsistent with the external world.

As if this weren’t bad enough, we also have internal problems with our
new system, since it contains statements which disagree with one another,
such as —p—-q—-(an old axiom) and —p —q- (a new axiom). So our system
is inconsistent in a second sense: internally.

Would, therefore, the only reasonable thing to do at this point be to
drop the new system entirely? Hardly. I have deliberately presented these
“inconsistencies” in a wool-pulling manner: that is, I have tried to present
fuzzy-headed arguments as strongly as possible, with the purpose of mis-
leading. In fact, you may well have detected the fallacies in what I have
said. The crucial fallacy came when I unquestioningly adopted the very
same interpreting words for the new system as I had for the old one.
Remember that there was only one reason for adopting those words in the
last Chapter, and that reason was that the symbols acted isomorphically to the
concepts which they were matched with, by the interpretation. But when you
modify the rules governing the system, you are bound to damage the
isomorphism. It just cannot be helped. Thus all the problems which were
lamented over in preceding paragraphs were bogus problems; they can be
made to vanish in no time, by suitably reinterpreting some of the symbols of the
system. Notice that I said “some”; not necessarily all symbols will have to be
mapped onto new notions. Some may very well retain their “meanings”,
while others change.
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Regaining Consistency

Suppose, for instance, that we reinterpret just the symbol q, leaving all the
others constant; in particular, interpret q by the phrase “is greater than or
equal to”. Now, our “contradictory” theorems —-p-q-and —p-q--come
out harmlessly as: “1 plus 1 is greater than or equal to 1”7, and “1 plus 1 is
greater than or equal to 2”. We have simultaneously gotten rid of (1) the
inconsistency with the external world, and (2) the internal inconsistency.
And our new interpretation is a meaningful interpretation; of course the
original one is meaningless. That is, it is meaningless for the new system; for the
original pg-system, it is fine. But it now seems as pointless and arbitrary to
apply it to the new pq-system as it was to apply the “horse-apple-happy”
interpretation to the old pq-system.

The History of Euclidean Geometry

Although I have tried to catch you off guard and surprise you a little, this
lesson about how to interpret symbols by words may not seem terribly
difficult once you have the hang of it. In fact, it is not. And yet it is one of
the deepest lessons of all of nineteenth century mathematics! It all begins
with Euclid, who, around 300 B.C., compiled and systematized all of what
was known about plane and solid geometry in his day. The resulting work,
Euclid’s Elements, was so solid that it was virtually a bible of geometry for
over two thousand years-—one of the most enduring works of all time. Why
was this so?

The principal reason was that Euclid was the founder of rigor in
mathematics. The Elements began with very simple concepts, definitions,
and so forth, and gradually built up a vast body of results organized in such
a way that any given result depended only on foregoing results. Thus,
there was a definite plan to the work, an architecture which made it strong
and sturdy.

Nevertheless, the architecture was of a different type from that of, say,
a skyscraper. (See Fig. 21.) In the latter, that it is standing is proof enough
that its structural elements are holding it up. But in a book on geometry,
when each proposition is claimed to follow logically from earlier proposi-
tions, there will be no visible crash if one of the proofs is invalid. The
girders and struts are not physical, but abstract. In fact, in Euclid’s Elements,
the stuff out of which proofs were constructed was human language—that
elusive, tricky medium of communication with so many hidden pitfalls.
What, then, of the architectural strength of the Elements? Is it certain that it
is held up by solid structural elements, or could it have structural weak-
nesses?

Every word which we use has a meaning to us, which guides us in our
use of it. The more common the word, the more associations we have with
it, and the more deeply rooted is its meaning. Therefore, when someone
gives a definition for a common word in the hopes that we will abide by that
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Tower of Babel, by M. C. Escher (woodcut, 1928).

FIGURE 21.



definition, it is a foregone conclusion that we will not do so but will instead
be guided, largely unconsciously, by what our minds find in their associa-
tive stores. I mention this because it is the sort of problem which Euclid
created in his Elements, by attempting to give definitions of ordinary, com-
mon words such as “point”, “straight line”, “circle”, and so forth. How can
you define something of which everyone already has a clear concept? The
only way is if you can make it clear that your word is supposed to be a
technical term, and is not to be confused with the everyday word with the
same spelling. You have to stress that the connection with the everyday
word is only suggestive. Well, Euclid did not do this, because he felt that the
points and lines of his Elements were indeed the points and lines of the real
world. So by not making sure that all associations were dispelled, Euclid was
inviting readers to let their powers of association run free ...

This sounds almost anarchic, and is a little unfair to Euclid. He did set
down axioms, or postulates, which were supposed to be used in the proofs
of propositions. In fact, nothing other than those axioms and postulates
was supposed to be used. But this is where he slipped up, for an inevitable
consequence of his using ordinary words was that some of the images
conjured up by those words crept into the proofs which he created. How-
ever, if you read proofs in the Elements, do not by any means expect to find
glaring “jumps” in the reasoning. On the contrary, they are very subtle, for
Euclid was a penetrating thinker, and would not have made any simple-
minded errors. Nonetheless, gaps are there, creating slight imperfections
in a classic work. But this is not to be complained about. One should merely
gain an appreciation for the difference between absolute rigor and relative
rigor. In the long run, Euclid’s lack of absolute rigor was the cause of some
of the most fertile path-breaking in mathematics, over two thousand years
after he wrote his work.

Euclid gave five postulates to be used as the “ground story” of the
infinite skyscraper of geometry, of which his Elements constituted only the
first several hundred stories. The first four postulates are rather terse and
elegant:

(1) A straight line segment can be drawn joining any two points.

(2) Any straight line segment can be extended indefinitely in a
straight line.

(3) Given any straight line segment, a circle can be drawn having
the segment as radius and one end point as center.

(4) All right angles are congruent.
The fifth, however, did not share their grace:

(5) If two lines are drawn which intersect a third in such a way
that the sum of the inner angles on one side is less than two
right angles, then the two lines inevitably must intersect each
other on that side if extended far enough.
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Though he never explicitly said so, Euclid considered this postulate to be
somehow inferior to the others, since he managed to avoid using it in the
proofs of the first twenty-eight propositions. Thus, the first twenty-eight
propositions belong to what might be called “four-postulate geometry”—
that part of geometry which can be derived on the basis of the first four
postulates of the Elements, without the help of the fifth postulate. (It is also
often called absolute geometry.) Certainly Euclid would have found it far
preferable to prove this ugly duckling, rather than to have to assume it. But
he found no proof, and therefore adopted it.

But the disciples of Euclid were no happier about having to assume
this fifth postulate. Over the centuries, untold numbers of people gave
untold years of their lives in attempting to prove that the fifth postulate was
itself part of four-postulate geometry. By 1763, at least twenty-eight differ-
ent proofs had been published—all erroneous! (They were all criticized in
the dissertation of one G. S. Kliigel.) All of these erroneous proofs involved
a confusion between everyday intuition and strictly formal properties. It is
safe to say that today, hardly any of these “proofs” holds any mathematical
or historical interest—but there are certain exceptions.

The Many Faces of Noneuclid

Girolamo Saccheri (1667-1733) lived around Bach’s time. He had the
ambition to free Euclid of every flaw. Based on some earlier work he had
done in logic, he decided to try a novel approach to the proof of the famous
fifth: suppose you assume its opposite; then work with that as your fifth
postulate . . . Surely after a while you will create a contradiction. Since no
mathematical system can support a contradiction, you will have shown the
unsoundness of your own fifth postulate, and therefore the soundness of
Eudid’s fifth postulate. We need not go into details here. Suffice it to say
that with great skill, Saccheri worked out proposition after proposition of
“Saccherian geometry” and eventually became tired of it. At one point, he
decided he had reached a proposition which was “repugnant to the nature
of the straight line”. That was what he had been hoping for—to his mind, it
was the long-sought contradiction. At that point, he published his work
under the title Euclid Freed of Every Flaw, and then expired.

But in so doing, he robbed himself of much posthumous glory, since
he had unwittingly discovered what came later to be known as “hyperbolic
geometry”. Fifty years after Saccheri, J. H. Lambert repeated the “near
miss”, this time coming even closer, if possible. Finally, forty years after
Lambert, and ninety years after Saccheri, non-Euclidean geometry was recog-
nized for what it was—an authentic new brand of geometry, a bifurcation
in the hitherto single stream of mathematics. In 1823, non-Euclidean
geometry was discovered simultaneously, in one of those inexplicable coin-
cidences, by a Hungarian mathematician, Janos (or Johann) Bolyai, aged
twenty-one, and a Russian mathematician, Nikolay Lobachevskiy, aged
thirty. And, ironically, in that same year, the great French mathematician
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Adrien-Marie Legendre came up with what he was sure was a proof of
Eudlid’s fifth postulate, very much along the lines of Saccheri.

Incidentally, Bolyai's father, Farkas (or Wolfgang) Bolyai, a close
friend of the great Gauss, invested much effort in trying to prove Euclid’s
fifth postulate. In a letter to his son Jdnos, he tried to dissuade him from
thinking about such matters:

You must not attempt this approach to parallels. I know this way to its very
end. I have traversed this bottomless night, which extinguished all light and
joy of my life. I entreat you, leave the science of parallels alone. . . . I thought
I would sacrifice myself for the sake of the truth. I was ready to become a
martyr who would remove the flaw from geometry and return it purified to
mankind. I accomplished monstrous, enormous labors; my creations are far
better than those of others and yet I have not achieved complete satisfaction.
For here it is true that si paullum a summo discessit, vergit ad éimum. 1 turned back
when I saw that no man can reach the bottom of this night. I turned back
unconsoled, pitying myself and all-mankind. . . . I have traveled past all reefs
of this infernal Dead Sea and have always come back with broken mast and
torn sail. The ruin of my disposition and my fall date back to this time. I
thoughtlessly risked my life and happiness—aut Caesar aut nihil.*

But later, when convinced his son really “had something”, he urged
him to publish it, anticipating correctly the simultaneity which is so fre-
quent in scientific discovery:

When the time is ripe for certain things, these things appear in different
places in the manner of violets coming to light in early spring.?

How true this was in the case of non-Euclidean geometry! In Germany,
Gauss himself and a few others had more or less independently hit upon
non-Euclidean ideas. These included a lawyer, F. K. Schweikart, who in
1818 sent a page describing a new “astral” geometry to Gauss; Schweikart’s
nephew, F. A. Taurinus, who did non-Euclidean trigonometry; and F. L.
Wachter, a student of Gauss, who died in 1817, aged twenty-five, having
found several deep results in non-Euclidean geometry.

The clue to non-Euclidean geometry was “thinking straight” about the
propositions which emerge in geometries like Saccheri’s and Lambert's.
The Saccherian propositions are only “repugnant to the nature of the
straight line” if you cannot free yourself of preconceived notions of what
“straight line” must mean. If, however, you can divest yourself of those
preconceived images, and merely let a “straight line” be something which
satisfies the new propositions, then you have achieved a radically new
viewpoint.

Undefined Terms

This should begin to sound familiar. In particular, it harks back to the
pg-system, and its variant, in which the symbols acquired passive meanings
by virtue of their roles in theorems. The symbol q is especially interesting,
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since its “meaning” changed when a new axiom schema was added. In that
very same way, one can let the meanings of “point”, “line”, and so on be
determined by the set of theorems (or propositions) in which they occur. This was the
great realization of the discoverers of non-Euclidean geometry. They
found different sorts of non-Euclidean geometries by denying Euclid’s fifth
postulate in different ways and following out the consequences. Strictly
speaking, they (and Saccheri) did not deny the fifth postulate directly, but
rather, they denied an equivalent postulate, called the parallel postulate,
which runs as follows:

Given any straight line, and a point not on it, there exists one, and
only one, straight line which passes through that point and never
intersects the first line, no matter how far they are extended.

The second straight line is then said to be parallel to the first. If you assert
that no such line exists, then you reach elliptical geometry; if you assert that at
least two such lines exist, you reach hyperbolic geometry. Incidentally, the
reason that such variations are still called “geometries” is that the core
element—absolute, or four-postulate, geometry—is embedded in them. It
is the presence of this minimal core which makes it sensible to think of them
as describing properties of some sort of geometrical space, even if the space
is not as intuitive as ordinary space.

Actually, elliptical geometry is easily visualized. All “points”, “lines”,
and so forth are to be parts of the surface of an ordinary sphere. Let us
write “POINT” when the technical term is meant, and “point” when the
everyday sense is desired. Then, we can say that a POINT consists of a pair
of diametrically opposed points of the sphere’s surface. A LINE is a great
circle on the sphere (a circle which, like the equator, has its center at the
center of the sphere). Under these interpretations, the propositions of
elliptical geometry, though they contain words like “POINT” and “LINE”,
speak of the goings-on on a sphere, not a plane. Notice that two LINES
always intersect in exactly two antipodal points of the sphere’s surface—
that is, in exactly one single POINT! And just as two LINES determine a
POINT, so two POINTS determine a LINE.

By treating words such as “POINT” and “LINE” as if they had only the
meaning instilled in them by the propositions in which they occur, we take a
step towards complete formalization of geometry. This semiformal version
still uses a lot of words in English with their usual meanings (words such as
“the”, “if ”, “and”, “join”, “have”), although the everyday meaning has been
drained out of special words like “POINT” and “LINE”, which are con-
sequently called undefined terms. Undefined terms, like the p and q of the
Pq-system, do get defined in a sense: implicitly—by the totality of all proposi-
tions in which they occur, rather than explicitly, in a definition.

One could maintain that a full definition of the undefined terms
resides in the postulates alone, since the propositions which follow from
them are implicit in the postulates already. This view would say that the
postulates are implicit definitions of all the undefined terms, all of the
undefined terms being defined in terms of the others.
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The Possibility of Multiple Interpretations

A full formalization of geometry would take the drastic step of making every
term undefined—that is, turning every term into a “meaningless” symbol of
a formal system. I put quotes around “meaningless” because, as you know,
the symbols automatically pick up passive meanings in accordance with the
theorems they occur in. It is another question, though, whether people
discover those meanings, for to do so requires finding a set of concepts
which can be linked by an isomorphism to the symbols in the formal system.
If one begins with the aim of formalizing geometry, presumably one has an
intended interpretation for each symbol, so that the passive meanings are
built into the system. That is what I did for p and q when I first created the
pg-system.

But thete may be other passive meanings which are potentially percep-
tible, which no one has yet noticed. For instance, there were the surprise
interpretations of p as “equals” and q as “taken from”, in the original
pq-system. Although this is rather a trivial example, it contains the essence
of the idea that symbols may have many meaningful interpretations—it is
up to the observer to look for them.

We can summarize our observations so far in terms of the word
“consistency”. We began our discussion by manufacturing what appeared
to be an inconsistent formal system-—one which was internally inconsistent,
as well as inconsistent with the external world. But a moment later we took
it all back, when we realized our error: that we had chosen unfortunate
interpretations for the symbols. By changing the interpretations, we re-
gained consistency! It now becomes clear that consistency is not a property of a
Sformal system per se, but depends on the interpretation which is proposed for it. By
the same token, inconsistency is not an intrinsic property of any formal
system.

Varieties of Consistency

We have been speaking of “consistency” and “inconsistency” all along,
without defining them. We have just relied on good old everyday notions.
But now let us say exactly what is meant by consistency of a formal system
(together with an interpretation): that every theorem, when interpreted,
becomes a true statement. And we will say that inconsistency occurs when
there is at least one false statement among the interpreted theorems.

This definition appears to be talking about inconsistency with the
external world-—what about internal inconsistencies? Presumably, a system
would be internally inconsistent if it contained two or more theorems
whose interpretations were incompatible with one another, and internally
consistent if all interpreted theorems were compatible with one another.
Consider, for example, a formal system which has only the following three
theorems: TbZ, ZbE, and EbT. If T is interpreted as “the Tortoise”, Z as
“Zeno”, E as “Egbert”, and x by as “x beats y in chess always”, then we have
the following interpreted theorems:
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The Tortoise always beats Zeno at chess.
Zeno always beats Egbert at chess.
Egbert always beats the Tortoise at chess.

The statements are not incompatible, although they describe a rather
bizarre circle of chess players. Hence, under this interpretation, the formal
system in which those three strings are theorems is internally consistent,
although, in point of fact, none of the three statements is true! Internal
consistency does not require all theorems to come out true, but merely that
they come out compatible with one another.

Now suppose instead that x by is to be interpreted as “x was invented
by y”. Then we would have:

The Tortoise was invented by Zeno.
Zeno was invented by Egbert.
Egbert was invented by the Tortoise.

In this case, it doesn’t matter whether the individual statements are true or
false—and perhaps there is no way to know which ones are true, and which
are not. What is nevertheless certain is that not all three can be true at once.
Thus, the interpretation makes the system internally inconsistent. This
internal inconsistency depends not on the interpretations of the three
capital letters, but only on that of b, and on the fact that the three capitals
are cyclically permuted around the occurrences of b. Thus, one can have
internal inconsistency without having interpreted all of the symbols of the
formal system. (In this case it sufficed to interpret a single symbol.) By the
time sufficiently many symbols have been given interpretations, it may be
clear that there is no way that the rest of them can be interpreted so that all
theorems will come out true. But it is not just a question of truth—it is a
question of possibility. All three theorems would come out false if the
capitals were interpreted as the names of real people—but that is not why
we would call the system internally inconsistent; our grounds for doing so
would be the circularity, combined with the interpretation of the letter b.
(By the way, you’ll find more on this “authorship triangle” in Chapter XX.)

Hypothetical Worlds and Consistency

We have given two ways of looking at consistency: the first says that a
system-plus-interpretation is consistent with the external world if every theo-
rem comes out true when interpreted; the second says that a system-plus-
interpretation is internally consistent if all theorems come out mutually compat-
ible when interpreted. Now there is a close relationship between these two
types of consistency. In order to determine whether several statements are
mutually compatible, you try to imagine a world in which all of them could
be simultaneously true. Therefore, internal consistency depends upon
consistency with the external world—only now, “the external world” is
allowed to be any imaginable world, instead of the one we live in. But this is
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an extremely vague, unsatisfactory conclusion. What constitutes an “im-
aginable” world? After all, it is possible to imagine a world in which three
characters invent each other cyclically. Or is it? Is it possible to imagine a
world in which there are square circles? Is a world imaginable in which
Newton’s laws, and not relativity, hold? Is it possible to imagine a world in
which something can be simultaneously green and not green? Or a world in
which animals exist which are not made of cells? In which Bach improvised
an eight-part fugue on a theme of King Frederick the Great? In which
mosquitoes are more intelligent than people? In which tortoises can play
football—or talk? A tortoise talking football would be an anomaly, of
course.

Some of these worlds seem more imaginable than others, since some
seem to embody logical contradictions—for example, green and not
green—while some of them seem, for want of a better word, “plausible”—
such as Bach improvising an eight-part fugue, or animals which are not
made of cells. Or even, come to think of it, a world in which the laws of
physics are different . .. Roughly, then, it should be possible to establish
different brands of consistency. For instance, the most lenient would be
“logical consistency”, putting no restraints on things at all, except those of
logic. More specifically, a system-plus-interpretation would be logically con-
sistent just as long as no two of its theorems, when interpreted as statements,
directly contradict each other; and mathematically consistent just as long as
interpreted theorems do not violate mathematics; and physically consistent
just as long as all its interpreted theorems are compatible with physical law;
then comes biological consistency, and so on. In a biologically consistent
system, there could be a theorem whose interpretation is the statement
“Shakespeare wrote an opera”, but no theorem whose interpretation is the
statement “Cell-less animals exist”. Generally speaking, these fancier kinds
of inconsistency are not studied, for the reason that they are very hard to
disentangle from one another. What kind of inconsistency, for example,
should one say is involved in the problem of the three characters who
invent each other cyclically? Logical? Physical? Biological? Literary?

Usually, the borderline between uninteresting and interesting is drawn
between physical consistency and mathematical consistency. (Of course, it is
the mathematicians and logicians who do the drawing—hardly an impartial
crew . ..) This means that the kinds of inconsistency which “count”, for
formal systems, are just the logical and mathematical kinds. According to
this convention, then, we haven't yet found an interpretation which makes
the trio of theorems TbZ, ZbE, EbT inconsistent. We can do so by interpret-
ing b as “is bigger than”. What about T and Z and E? They can be interpret-
ed as natural numbers—for example, Z as 0, T as 2, and E as 11. Notice that
two theorems come out true this way, one false. If, instead, we had inter-
preted Z as 3, there would have been two falsehoods and only one truth.
But either way, we’d have had inconsistency. In fact, the values assigned to
T,Z, and E are irrelevant, as long as it is understood that they are restricted
to natural numbers. Once again we see a case where only some of the
interpretation is needed, in order to recognize internal inconsistency.
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Embedding of One Formal System in Another

The preceding example, in which some symbols could have interpretations
while others didn’t, is reminiscent of doing geometry in natural language,
using some words as undefined terms. In such a case, words are divided
into two classes: those whose meaning is fixed and immutable, and those
whose meaning is to be adjusted until the system is consistent (these are the
undefined terms). Doing geometry in this way requires that meanings have
already been established for words in the first class, somewhere outside of
geometry. Those words form a rigid skeleton, giving an underlying struc-
ture to the system; filling in that skeleton comes other material, which can
vary (Euclidean or non-Euclidean geometry).

Formal systems are often built up in just this type of sequential, or
hierarchical, manner. For example, Formal System I may be devised, with
rules and axioms that give certain intended passive meanings to its symbols.
Then Formal System I is incorporated fully into a larger system with more
symbols—Formal System II. Since Formal System I's axioms and rules are
part of Formal System II, the passive meanings of Formal System I's
symbols remain valid; they form an immutable skeleton which then plays a
large role in the determination of the passive meanings of the new symbols
of Formal System II. The second system may in turn play the role of a
skeleton with respect to a third system, and so on. It is also possible—and
geometry is a good example of this—to have a system (e.g., absolute
geometry) which partly pins down the passive meanings of its undefined
terms, and which can be supplemented by extra rules or axioms, which
then further restrict the passive meanings of the undefined terms. This is
the case with Euclidean versus non-Euclidean geometry.

Layers of Stability in Visual Perception

In a similar, hierarchical way, we acquire new knowledge, new vocabulary,
or perceive unfamiliar objects. It is particularly interesting in the case of
understanding drawings by Escher, such as Relativity (Fig. 22), in which
there occur blatantly impossible images. You might think that we would
seek to reinterpret the picture over and over again until we came to an
interpretation of its parts which was free of contradictions—but we don’t
do that at all. We sit there amused and puzzled by staircases which go every
which way, and by people going in inconsistent directions on a single
staircase. Those staircases are “islands of certainty” upon which we base our
interpretation of the overall picture. Having once identified them, we try to
extend our understanding, by seeking to establish the relationship which
they bear to one another. At that stage, we encounter trouble. But if we
attempted to backtrack—that is, to question the “islands of certainty”—we
would also encounter trouble, of another sort. There’s no way of backtrack-
ing and “undeciding” that they are staircases. They are not fishes, or whips,
or hands—they are just staircases. (There is, actually, one other out—to
leave all the lines of the picture totally uninterpreted, like the “meaningless

Consistency, Completeness, and Geometry 97



FIGURE 22. Relativity, by M. C. Escher (lithograph, 1953).

symbols” of a formal system. This ultimate escape route is an example of a
“U-mode” response—a Zen attitude towards symbolism.)

So we are forced, by the hierarchical nature of our perceptive process-
es, to see either a crazy world or just a bunch of pointless lines. A similar
analysis could be made of dozens of Escher pictures, which rely heavily
upon the recognition of certain basic forms, which are then put together in
nonstandard ways; and by the time the observer sees the paradox on a high
level, it is too late—he can’t go back and change his mind about how to
interpret the lower-level objects. The difference between an Escher draw-
ing and non-Euclidean geometry is that in the latter, comprehensible
interpretations can be found for the undefined terms, resulting in a com-
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prehensible total system, whereas for the former, the end result is not
reconcilable with one’s conception of the world, no matter how long one
stares at the pictures. Of course, one can still manufacture hypothetical
worlds, in which Escherian events can happen . . . but in such worlds, the
laws of biology, physics, mathematics, or even logic will be violated on one
level, while simultaneously being obeyed on another, which makes them
extremely weird worlds. (An example of this is in Waterfall (Fig. 5), where
normal gravitation applies to the moving water, but where the nature of
space violates the laws of physics.)

Is Mathematics the Same in Every Conceivable World?

We have stressed the fact, above, that internal consistency of a formal
system (together with an interpretation) requires that there be some imag-
tnable world—that is, a world whose only restriction is that in it, mathe-
matics and logic should be the same as in our world—in which all the
interpreted theorems come out true. External consistency, however—
consistency with the external world—requires that all theorems come out
true in the real world. Now in the special case where one wishes to create a
consistent formal system whose theorems are to be interpreted as state-
ments of mathematics, it would seem that the difference between the two
types of consistency should fade away, since, according to what we said
above, all imaginable worlds have the same mathematics as the real world. Thus, in
every conceivable world, 1 plus 1 would have to be 2; likewise, there would
have to be infinitely many prime numbers; furthermore, in every conceiv-
able world, all right angles would have to be congruent; and of course,
through any point not on a given line there would have to be exactly one
parallel line . ..

But wait a minute! That's the parallel postulate—and to assert its
universality would be a mistake, in light of what’s just been said. If in all
conceivable worlds the parallel postulate is obeyed, then we are asserting
that non-Euclidean geometry is inconceivable, which puts us back in the
same mental state as Saccheri and Lambert—surely an unwise move. But
what, then, if not all of mathematics, must all conceivable worlds share? Could it be
as little as logic itself? Or is even logic suspect? Could there be worlds where
contradictions are normal parts of existence—worlds where contradictions
are not contradictions?

Well, in some sense, by merely inventing the concept, we have shown
that such worlds are indeed conceivable; but in a deeper sense, they are also
quite inconceivable. (This in itself is a little contradiction.) Quite seriously,
however, it seems that if we want to be able to communicate at all, we have
to adopt some common base, and it pretty well has to include logic. (There
are belief systems which reject this point of view—it is too logical. In
particular, Zen embraces contradictions and non-contradictions with equal
eagerness. This may seem inconsistent, but then being inconsistent is part
of Zen, and so . .. what can one say?)
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Is Number Theory the Same in All Conceivable Worlds?

If we assume that logic is part of every conceivable world (and note that we
have not defined logic, but we will in Chapters to come), is that all? Is it
really conceivable that, in some worlds, there are not infinitely many
primes? Would it not seem necessary that numbers should obey the same
laws in all conceivable worlds? Or ... is the concept “natural number”
better thought of as an undefined term, like “POINT” or “LINE”? In that
case, number theory would be a bifurcated theory, like geometry: there
would be standard and nonstandard number theories. But there would
have to be some counterpart to absolute geometry: a “core” theory, an
invariant ingredient of all number theories which identified them as
number theories rather than, say, theories about cocoa or rubber or
bananas. It seems to be the consensus of most modern mathematicians and
philosophers that there is such a core number theory, which ought to be
included, along with logic, in what we consider to be “conceivable worlds”.
This core of number theory, the counterpart to absolute geometry—is
called Peano arithmetic, and we shall formalize it in Chapter VIII. Also, it is
now well established—as a matter of fact as a direct consequence of Gédel’s
Theorem—that number theory is a bifurcated theory, with standard and
nonstandard versions. Unlike the situation in geometry, however, the
number of “brands” of number theory is infinite, which makes the situation
of number theory considerably more complex.

For practical purposes, all number theories are the same. In other
words, if bridge building depended on number theory (which in a sense it
does), the fact that there are different number theories would not matter,
since in the aspects relevant to the real world, all number theories overlap.
The same cannot be said of different geometries; for example, the sum of
the angles in a triangle is 180 degrees only in Euclidean geometry; it is
greater in elliptic geometry, less in hyperbolic. There is a story that Gauss
once attempted to measure the sum of the angles in a large triangle defined
by three mountain peaks, in order to determine, once and for all, which
kind of geometry really rules our universe. It was a hundred years later
that Einstein gave a theory (general relativity) which said that the geometry
of the universe is determined by its content of matter, so that no one
geometry is intrinsic to space itself. Thus to the question, “Which geometry is
true?” nature gives an ambiguous answer not only in mathematics, but also
in physics. As for the corresponding question, “Which number theory is true?”,
we shall have more to say on it after going through Gédel’s Theorem in
detail.

Completeness

If consistency is the minimal condition under which symbols acquire pas-
sive meanings, then its complementary notion, completeness, is the maximal
confirmation of those passive meanings. Where consistency is the property
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that “Everything produced by the system is true”, completeness is the other
way round: “Every true statement is produced by the system”. Now to
refine the notion slightly. We can’t mean every true statement in the
world—we mean only those which belong to the domain which we are
attempting to represent in the system. Therefore, completeness means:
“Every true statement which can be expressed in the notation of the system
is a theorem.”

Consistency: when every theorem, upon interpretation,
comes out true (in some imaginable world).

Completeness: when all statements which are true (in some
imaginable world), and which can be expressed as
well-formed strings of the system, are theorems.

An example of a formal system which is complete on its own modest
level is the original pg-system, with the original interpretation. All true
additions of two positive integers are represented by theorems of the
system. We might say this another way: “All true additions of two positive
integers are provable within the system.” (Warning: When we start using the
term “provable statements” instead of “theorems”, it shows that we are
beginning to blur the distinction between formal systems and their in-
terpretations. This is all right, provided we are very conscious of the
blurring that is taking place, and provided that we remember that multiple
interpretations are sometimes possible.) The pq-system with the original
interpretation is complete; it is also consistent, since no false statement is—to
use our new phrase—provable within the system.

Someone might argue that the system is incomplete, on the grounds
that additions of three positive integers (such as 2 + 3 + 4 =9) are not
represented by theorems of the pg-system, despite being translatable into
the notation of the system (e.g., - -p---p----q-———~————- ). How-
ever, this string is not well-formed, and hence should be considered to be
just as devoid of meaning as is pqp-~-qpq. Triple additions are simply
not expressible in the notation of the system—so the completeness of the
system is preserved.

Despite the completeness of the pg-system under this interpretation, it
certainly falls far short of capturing the full notion of truth in number
theory. For example, there is no way that the pg-system tells us how many
prime numbers there are. Godel’s Incompleteness Theorem says that any
system which is “sufficiently powerful” is, by virtue of its power, incom-
plete, in the sense that there are well-formed strings which express true
statements of number theory, but which are not theorems. (There are
truths belonging to number theory which are not provable within the
system.) Systems like the pq-system, which are complete but not very
powerful, are more like low-fidelity phonographs; they are so poor to begin
with that it is obvious that they cannot do what we would wish them to
do—namely tell us everything about number theory.
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How an Interpretation May Make or Break Completeness

What does it mean to say, as I did above, that “completeness is the maximal
confirmation of passive meanings”? It means that if a system is consistent
but incomplete, there is a mismatch between the symbols and their in-
terpretations. The system does not have the power to justify being inter-
preted that way. Sometimes, if the interpretations are “trimmed” a little,
the system can become complete. To illustrate this idea, let’s look at the
modified pg-system (including Axiom Schema II) and the interpretation
we used for it.

After modifying the pg-system, we modified the interpretation for q
from “equals” to “is greater than or equal to”. We saw that the modified
pPg-system was consistent under this interpretation; yet something about
the new interpretation is not very satisfying. The problem is simple: there
are now many expressible truths which are not theorems. For instance, “2
plus 3 is greater than or equal to 1” is expressed by the nontheorem
--p---q-. The interpretation is just too sloppy! It doesn’t accurately
reflect what the theorems in the system do. Under this sloppy interpreta-
tion, the pg-system is not complete. We could repair the situation either by
(1) adding new rules to the system, making it more powerful, or by (2)
tightening up the interpretation. In this case, the sensible alternative seems to
be to tighten the interpretation. Instead of interpreting q as “is greater
than or equal to”, we should say “equals or exceeds by 1”. Now the modified
pg-system becomes both consistent and complete. And the completeness
confirms the appropriateness of the interpretation.

Incompleteness of Formalized Number Theory

In number theory, we will encounter incompleteness again; but there, to
remedy the situation, we will be pulled in the other direction—towards
adding new rules, to make the system more powerful. The irony is that we
think, each time we add a new rule, that we surely have made the system
complete now! The nature of the dilemma can be illustrated by the follow-
ing allegory . ..

We have a record player, and we also have a record tentatively labeled
“Canon on B-A-C-H”. However, when we play the record on the record
player, the feedback-induced vibrations (as caused by the Tortoise’s rec-
ords) interfere so much that we do not even recognize the tune. We
conclude that something is defective—either our record, or our record
player. In order to test our record, we would have to play it on friends’
record players, and listen to its quality. In order to test our phonograph, we
would have to play friends’ records on it, and see if the music we hear
agrees with the labels. If our record player passes its test, then we will say
the record was defective; contrariwise, if the record passes its test, then we
will say our record player was defective. What, however, can we conclude
when we find out that both pass their respective tests? That is the moment to
remember the chain of two isomorphisms (Fig. 20), and think carefully!
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Little Harmonic Labyrinth

The Tortoise and Achilles are spending a day at Coney Island.,
After buying a couple of cotton candies, they decide to take a ride
on the Ferris wheel.

Tortoise: This is my favorite ride. One seems to move so far, and yet in
reality one gets nowhere.

Achilles: 1 can see why it would appeal to you. Are you all strapped in?

Tortoise:  Yes, I think I've got this buckle done. Well, here we go. Whee!

Achilles:  You certainly are exuberant today.

Tortoise: 1 have good reason to be. My aunt, who is a fortune-teller, told
me that a stroke of Good Fortune would befall me today. So I am
tingling with anticipation.

Achilles: Don’t tell me you believe in fortune-telling!

Tortoise: No ... but they say it works even if you don’t believe in it.

Achilles:  Well, that’s fortunate indeed.

Tortoise: Ah, what a view of the beach, the crowd, the ocean, the city . . .

Achilles:  Yes, it certainly is splendid. Say, look at that helicopter over
there. It seems to be flying our way. In fact it’s almost directly above us
now.

Tortoise: Strange—there’s a cable dangling down from it, which is coming
very close to us. It's coming so close we could practically grab it.

Achilles:  Look! At the end of the line there’s a giant hook, with a note.

(He reaches out and snatches the note. They pass by and are on their way
down.)

Tortoise: Can you make out what the note says?

Achilles: Yes—it reads, “Howdy, friends. Grab a hold of the hook next
time around, for an Unexpected Surprise.”

Tortoise: The note’s a little corny but who knows where it might lead.
Perhaps it’s got something to do with that bit of Good Fortune due me.
By all means, let’s try it!

Achilles:  Let’s!

(On the trip up they unbuckle their buckles, and at the crest of the ride, they
grab for the giant hook. All of a sudden they are whooshed up by the cable,
which quickly reels them skyward into the hovering helicopter. A large
strong hand helps them in.)

Voice: Welcome aboard—Suckers.
Achilles:  'Wh—who are you?
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Voice: Allow me to introduce myself. I am Hexachlorophene J. Goodfor-
tune, Kidnapper-At-Large, and Devourer of Tortoises par Excellence,
at your service.

Tortoise: Gulp!

Achilles (whispering to his friend): Uh-oh—I think that this “Goodfortune” is
not exactly what we’d anticipated. (To Goodfortune) Ah—if I may be so
bold—where are you spiriting us off to?

Goodfortune: Ho ho! To my all-electric kitchen-in-the-sky, where 1 will
prepare THIS tasty morsel—(leering at the Tortoise as he says this)—in a
delicious pie-in-the-sky! And make no mistake—it’s all just for my
gobbling pleasure! Ho ho ho!

Achilles:  All I can say is you've got a pretty fiendish laugh.

Goodfortune (laughing fiendishly): Ho ho ho! For that remark, my friend,
you will pay dearly. Ho ho!

Achilles: Good grief—I wonder what he means by that!

Goodfortune: Very simple—I've got a Sinister Fate in store for both of you!
Just you wait! Ho ho ho! Ho ho ho!

Achilles:  Yikes!

Goodfortune: Well, we have arrived. Disembark, my friends, into my fabu-
lous all-electric kitchen-in-the-sky.

(They walk inside.)

Let me show you around, before I prepare your fates. Here is my
bedroom. Here is my study. Please wait here for me for a moment. I've
got to go sharpen my knives. While you're waiting, help yourselves to
some popcorn. Ho ho ho! Tortoise pie! Tortoise pie! My favorite kind
of pie! (Exit.)

Achilles:  Oh, boy—popcorn! I'm going to munch my head off!

Tortoise:  Achilles! You just stuffed yourself with cotton candy! Besides,
how can you think about food at a time like this?

Achilles: Good gravy—oh, pardon me—I shouldn’t use that turn of
phrase, should I? I mean in these dire circumstances . . .

Tortoise: I'm afraid our goose is cooked.

Achilles: Say—take a gander at all these books old Goodfortune has in his
study. Quite a collection of esoterica: Birdbrains I Have Known; Chess and
Umbrella-Twirling Made Easy; Concerto for Tapdancer and Orchestra . . .
Hmmm.

Tortoise: What's that small volume lying open over there on the desk, next
to the dodecahedron and the open drawing pad?

Achilles:  This one? Whyj, its title is Provocative Adventures of Achilles and the
Tortoise Taking Place in Sundry Spots of the Globe.

Tortoise: A moderately provocative title.

Achilles: Indeed—and the adventure it’s opened to looks provocative. It’s
called “Djinn and Tonic”.

Tortoise:  Hmm . .. I wonder why. Shall we try reading it? I could take the
Tortoise’s part, and you could take that of Achilles.
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Achilles:

I'm game. Here goes nothing . ..

(They begin reading “Djinn and Tonic”.)

Tortoise:

(Achilles has invited the Tortoise over to see his
collection of prints by his favorite artist, M. C. Escher.)

Tortoise: These are wonderful prints, Achilles.

Achilles: 1 knew you would enjoy seeing them. Do you have any
particular favorite?

Tortoise: One of my favorites is Convex and Concave, where two
internally consistent worlds, when juxtaposed, make a com-
pletely inconsistent composite world. Inconsistent worlds are
always fun places to visit, but I wouldn’t want to live there.

Achilles:  'What do you mean, “fun to visit”? Ihconsistent worlds
don’t EXIST, so how can you visit one?

Tortoise: 1 beg your pardon, but weren’t we just agreeing that in
this Escher picture, an inconsistent world is portrayed?
Achilles:  Yes, but that’s just a two-dimensional world—a fictitious

world—a picture. You can’t visit that world.

Tortoise: 1 have my ways ...

Achilles: How could you propel yourself into a flat picture-
universe?

Tortoise: By drinking a little glass of PUSHING-POTION. That does
the trick.

Achilles:  'What on earth is pushing-potion?

Tortoise: It's a liquid that comes in small ceramic phials, and
which, when drunk by someone looking at a picture, “pushes”
him right into the world of that picture. People who aren’t
aware of the powers of pushing-potion often are pretty sur-
prised by the situations they wind up in.

Achilles:  Is there no antidote? Once pushed, is one irretrievably
lost?

Tortoise: In certain cases, that’s not so bad a fate. But there is, in
fact, another potion—well, not a potion, actually, but an
elixir—no, not an elixir, but a—a—

He probably means “tonic”.

Achilles:  Tonic?

Tortoise: That’s the word I was looking for! “POPPING-TONIC” is
what it’s called, and if you remember to carry a bottle of it in
your right hand as you swallow the pushing-potion, it too will
be pushed into the picture; then, whenever you get a hanker-
ing to “pop” back out into real life, you need only take a
swallow of popping-tonic, and presto! You're back in the real
world, exactly where you were before you pushed yourself in.

Achilles: That sounds very interesting. What would happen if
you took some popping-tonic without having previously
pushed yourself into a picture?
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Tortoise: 1 don’t precisely know, Achilles, but I would be rather
wary of horsing around with these strange pushing and pop-
ping liquids. Once I had a friend, a Weasel, who did precisely
what you suggested—and no one has heard from him since.

Achilles: That’s unfortunate. Can you also carry along the bottle
of pushing-potion with you?

Tortoise: Oh, certainly. Just hold it in your left hand, and it too
will get pushed right along with you into the picture you're
looking at.

Achilles: 'What happens if vou then find a picture inside the
picture which you have already entered, and take another
swig of pushing-potion?

Tortoise: Just what you would expect: you wind up inside that
picture-in-a-picture.

Achilles: 1 suppose that you have to pop twice, then, in order to
extricate yourself from the nested pictures, and re-emerge
back in real life.

Tortoise: That's right. You have to pop once for each push, since
a push takes you down inside a picture, and a pop undoes
that.

Achilles:  You know, this all sounds pretty fishy to me . . . Are you
sure you're not just testing the limits of my gullibility?
Tortoise: 1 swear! Look—here are two phials, right here in my
pocket. (Reaches into his lapel pocket, and pulls out two rather large
unlabeled phials, in one of which one can hear a red liquid sloshing
around, and in the other of which one can hear a blue liquid sloshing
around.) If you're willing, we can try them. What do you say?

Achilles:  Well, 1 guess, ahin, maybe, ahm . ..

Tortoise: Good! I knew you’d want to try it out. Shall we push
ourselves into the world of Escher’s Convex and Concave?

Achilles: Well, ah, ...

Tortoise: Then it’s decided. Now we’ve got to remember to take
along this flask of tonic, so that we can pop back out. Do you
want to take that heavy responsibility, Achilles?

Achilles: 1f it’s all the same to you, I'm a little nervous, and I'd
prefer letting you, with your experience, manage the opera-
tion.

Tortoise: Very well, then.

(So saying, the Tortoise pours two small portions of pushing-
potion. Then he picks up the flask of tonic and grasps it firmly in
his right hand, and both he and Achilles lift their glasses to their
lLips.)

Tortoise: Bottoms up!

(They swallow.)
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FIGURE 23. Convex and Concave, by M. C. Escher (lithograph, 1955).

Achilles: That’s an exceedingly strange taste.

Tortoise: One gets used to it.

Achilles: Does taking the tonic feel this strange?

Tortoise: Oh, that’s quite another sensation. Whenever
you taste the tonic, you feel a deep sense of satisfac-
tion, as if you'd been waiting to taste it all your life.

Achilles: Oh, I'm looking forward to that.

Tortoise: Well, Achilles, where are we?

Achilles (taking cognizance of his surroundings): We're in a
little gondola, gliding down a canal! I want to get
out. Mr.Gondolier, please let us out here.

(The gondolier pays no attention to this request.)

Tortoise: He doesn’t speak English. If we want to get out
here, we’d better just clamber out quickly before he
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enters the sinister “Tunnel of Love”, just ahead of
us.

(Achilles, his face a little pale, scrambles out in a split
second and then pulls his slower friend out.)

Achilles: 1 didn’t like the sound of that place, somehow.
I'm glad we got out here. Say, how do you know so
much about this place, anyway? Have you been here
before?

Tortoise: Many times, although I always came in from
other Escher pictures. They’re all connected behind
the frames, you know. Once you're in one, you can
get to any other one.

Achilles: Amazing! Were I not here, seeing these things
with my own eves, I'm not sure I'd believe you. (They
wander out through a little arch.) Oh, look at those two
cute lizards!

Tortoise: Cute? They aren’t cute—it makes me shudder
just to think of them! They are the vicious guardians
of that magic copper lamp hanging from the ceiling
over there. A mere touch of their tongues, and any
mortal turns to a pickle.

Achilles:  Dill, or sweet?

Tortoise: Dill.

Achilles:  Oh, what a sour fate! But if the lamp has magi-
cal powers, I would like to try for it.

Tortoise: 1t's a foolhardy venture, my friend. I wouldn’t
risk it.

Achilles: T'm going to try just once.

(He stealthily approaches the lamp, making sure not to
awaken the sleeping lad nearby. But suddenly, he slips
on a strange shell-like indentation in the floor, and
lunges out into space. Lurching crazily, he reaches for
anything, and manages somehow to grab onto the lamp
with one hand. Swinging wildly, with both lizards
hissing and thrusting their tongues violently out at
him, he is left dangling helplessly out in the middle of
space.)
Achilles: He-e-e-elp!

(His cry attracts the attention of a woman who rushes
downstairs and awakens the sleeping boy. He takes
stock of the situation, and, with a kindly smile on his
face, gestures to Achilles that all will be well. He shouts
something in a strange guttural tongue to a pair of
trumpeters high up in windows, and immediately,
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weird tones begin ringing out and making beats with
each other. The sleepy young lad points at the lizards,
and Achilles sees that the music is having a strong
soporific effect on them. Soon, they are completely
unconscious. Then the helpful lad shouts to two com-
panions climbing up ladders. They both pull their
ladders up and then extend them out into space just
underneath the stranded Achilles, forming a sort of
bridge. Their gestures make it clear that Achilles
should hurry and climb on. But before he does so,
Achilles carefully unlinks the top link of the chain
holding the lamp, and detaches the lamp. Then he
climbs onto the ladder-bridge and the three young lads
pull him in to safety. Achilles throws his arms around
them and hugs them gratefully.)

Achilles:  Oh, Mr. T, how can I repay them?

Tortoise: 1 happen to know that these valiant lads just
love coffee, and down in the town below, there’s a
place where they make an incomparable cup of es-
presso. Invite them for a cup of espresso!

Achilles: That would hit the spot.

(And so, by a rather comical series of gestures, smiles,
and words, Achilles manages to convey his invitation
to the young lads, and the party of five walks out and
douwn a steep staircase descending into the town. They
reach a charming small café, sit doun outside, and
order five espressos. As they sip their drinks, Achilles
remembers he has the lamp with him.)

Achilles: 1 forgot, Mr. Tortoise—I've got this magic
lamp with me! But—what’s magic about it?

Tortoise: Oh, you know, just the usual—a genie.

Achilles;  'What? You mean a genie comes out when you
rub it, and grants you wishes?

Tortoise: Right. What did you expect? Pennies from
heaven?

Achilles:  Well, this is fantastic! I can have any wish I
want, eh? I've always wished this would happen to
me . ..

(And so Achilles gently rubs the large letter ‘L’ which is
etched on the lamp’s copper surface . .. Suddenly a
huge puff of smoke appears, and in the forms of the
smoke the five friends can make out a weird, ghostly
Sfigure towering above them.)
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Genie: Hello, my friends—and thanks ever so much for
rescuing my Lamp from the evil Lizard-Duo.

(And so saying, the Genie picks up the Lamp, and
stuffs it into a pocket concealed among the folds of his
long ghostly robe which swirls out of the Lamp.)

As a sign of gratitude for your heroic deed, I would
like to offer you, on the part of my Lamp, the oppor-
tunity to have any three of your wishes realized.

Achilles: How stupefying! Don’t you think so, Mr. T?

Tortoise: 1 surely do. Go ahead, Achilles, take the first
wish.

Achilles: 'Wow! But what should I wish? Oh, I know! It’s
what I thought of the first time I read the Arabian
Nights (that collection of silly (and nested) tales)—I
wish that I had a HUNDRED wishes, instead of just
three! Pretty clever, eh, Mr. T? I bet YOU never
would have thought of that trick. I always wondered
why those dopey people in the stories never tried it
themselves.

Tortoise: Maybe now you'll find out the answer.

Genie: 1 am sorry, Achilles, but I don’t grant meta-
wishes.

Achilles: 1 wish you'd tell me what a “meta-wish” is!

Genie: But THAT is a meta-meta-wish, Achilles—and I
don’t grant them, either.

Achilles:  'Whaaatr 1 don’t follow you at all.

Tortoise: Why don’t you rephrase your last request,
Achilles?

Achilles:  'What do you mean? Why should I?

Tortoise:  Well, you began by saying “I wish”. Since
youre just asking for information, why don’t you
just ask a question?

Achilles:  All right, though I don’t see why. Tell me, Mr.
Genie—what is a meta-wish?

Genie:  Itis simply a wish about wishes. I am not allowed
to grant meta-wishes. It is only within my purview to
grant plain ordinary wishes, such as wishing for ten
bottles of beer, to have Helen of Troy on a blanket,
or to have an all-expenses-paid weekend for two at
the Copacabana. You know—simple things like that.
But meta-wishes I cannot grant. GOD won’t permit
me to.

Achilles:  GOD? Who is GOD? And why won’t he let you
grant meta-wishes? That seems like such a puny
thing compared to the others you mentioned.
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Genie:  Well, it's a complicated matter, you see. Why
don’t you just go ahead and make your three wishes?
Or at least make one of them. I don’t have all the
time in the world, you know . ..

Achilles: Oh, I feel so rotten. I was REALLY HOPING to
wish for a hundred wishes . ..

Genie: Gee, 1 hate to see anybody so disappointed- as
that. And besides, meta-wishes are my favorite kind
of wish. Let me just see if there isn’t anything I can
do about this. This’ll just take one moment—

(The Genie removes from the wispy folds of his robe an
object which looks just like the copper Lamp he had put
away, except that this one is made of silver; and where
the previous one had ‘L’ etched on it, this one has ‘ML’
in smaller letters, so as to cover the same area.)

Achilles: And what is that?
Genie: This is my Meta-Lamp . ..

(He rubs the Meta-Lamp, and a huge puff of smoke
appears. In the billows of smoke, they can all make out
a ghostly form towering above them.)

Meta-Genie: 1 am the Meta-Genie. You sum-

moned me, O Genie? What is your wish?

Genie: 1 have a special wish to make of you, O Djinn,
and of GOD. I wish for permission for temporary
suspension of all type-restrictions on wishes, for the
duration of one Typeless Wish. Could you please

grant this wish for me?

Meta-Genie: T’ll have to send it through Chan-

nels, of course. One half a moment, please.

(And, twice as quickly as the Genie did, this
Meta-Genie removes from the wispy folds of
her robe an object which looks just like the
silver Meta-Lamp, except that it is made of
gold; and where the previous one had ‘ML’
etched on it, this one has ‘MML’ in smaller
letters, so as to cover the same area.)

Achilles (his voice an octave higher than be-
fore):  And what is that?
Meta-Genie: This is my Meta-Meta-Lamp . . .

(She rubs the Meta-Meta-Lamp, and a huge
puff of smoke appears. In the billows of
smoke, they can all make out a ghostly form
towering above them.)
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Meta-Meta-Genie: 1 am the Meta-
Meta-Genie. You summoned me,
O Meta-Genie? What is your wish?
Meta-Genie: 1 have a special wish to make of
you, O Djinn, and of GOD. I wish for per-
mission for temporary suspension of all
type-restrictions on wishes, for the duration
of one Typeless Wish. Could you please
grant this wish for me?

Meta-Meta-Genie: T'll have to send it
through Channels, of course. One

quarter of a moment, please.

(And, twice as quickly as the
Meta-Genie did, this Meta-
Meta-Genie removes from the
folds of his robe an object which
looks just like the gold Meta-
Lamp, except that it is made

of ...)

{cop}

( ... swirls back into the Meta-
Meta-Meta-Lamp, which the
Meta-Meta-Genie then folds back
into his robe, half as quickly as the
Meta-Meta-Meta-Genie did.)

Your wish is granted, O Meta-
Genie.

Meta-Genie: Thank you, O Djinn, and GOD.
(And the Meta-Meta-Genie, as all the
higher ones before him, swirls back into the
Meta-Meta-Lamp, which the Meta-Genie

then folds back into her robe, half as quickly
as the Meta-Meta-Genie did.)

Your wish is granted, O Genie.
Genie: Thank you, O Djinn, and GOD.

(And the Meta-Genie, as all the higher ones before her,
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swirls back into the Meta-Lamp, which the Genie then
folds back into his robe, half as quickly as the Meta-
Genie did.)

Your wish is granted, Achilles.

(And one precise moment has elapsed since he said
“This will just take one moment.”)

Achilles: Thank you, O Djinn, and GOD.

Genie: 1 am pleased to report, Achilles, that you may
have exactly one (1) Typeless Wish—that is to say, a
wish, or a meta-wish, or a meta-meta-wish, as many
“meta”’s as you wish—even infinitely many (if you
wish).

Achilles:  Oh, thank you so very much, Genie. But my
curiosity is provoked. Before I make my wish, would
you mind telling me who—or what—GOD is?

Genie: Notatall. “GOD” is an acronym which stands for
“GOD Over Djinn”. The word “Djinn” is used to
designate Genies, Meta-Genies, Meta-Meta-Genies,
etc. It is a Typeless word.

Achilles: But—but—how can “GOD” be a word in its
own acronym? That doesn’t make any sense!

Genie: Oh, aren’t you acquainted with recursive ac-
ronyms? I thought everybody knew about them. You
see, “GOD” stands for “GOD Over Djinn"—which
can be expanded as “GOD Over Djinn, Over
Djinn”—and that can, in turn, be expanded to “GOD
Over Djinn, Over Djinn, Over Djinn"—which can, in
its turn, be further expanded . .. You can go as far
as you like.

Achilles:  But I'll never finish!

Genie: Of course not. You can never totally expand
GOD.

Achilles: Hmm . .. That’s puzzling. What did you mean
when you said to the Meta-Genie, “I have a special
wish to make of you, O Djinn, and of GOD”?

Genie: 1 wanted not only to make a request of the
Meta-Genie, but also of all the Djinns over her. The
recursive acronym method accomplishes this quite
naturally. You see, when the Meta-Genie received
my request, she then had to pass it upwards to her
GOD. So she forwarded a similar message to the
Meta-Meta-Genie, who then did likewise to the
Meta-Meta-Meta-Genie . . . Ascending the chain this
way transmits the message to GOD.
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Achilles: 1 see. You mean GOD sits up at the top of the
ladder of djinns?

Genie:  No, no, no! There is nothing “at the top”, for
there is no top. That is why GOD is a recursive
acronym. GOD is not some ultimate djinn; GOD is
the tower of djinns above any given djinn.

Tortoise: It seems to me that each and every djinn would
have a different concept of what GOD is, then, since
to any djinn, GOD is the set of djinns above him or
her, and no two djinns share that set.

Genie: You're absolutely right—and since I am the low-
est djinn of all, my notion of GOD is the most exalted
one. I pity the higher djinns, who fancy themselves
somehow closer to GOD. What blasphemy!

Achilles: By gum, it must have taken genies to invent
GOD.

Tortoise: Do you really believe all this stuff about GOD,
Achilles?

Achilles: Why certainly, I do. Are you atheistic, Mr. T?
Or are you agnostic?

Tortoise: 1 don’t think I'm agnostic. Maybe I'm meta-

agnostic.
Achilles: 'Whaaat? I don’t follow you at all.
Tortoise: Let’s see ... If I were meta-agnostic, I'd be

confused over whether I'm agnostic or not—but I'm
not quite sure if I feel THAT way; hence I must be
meta-meta-agnostic (I guess). Oh, well. Tell me,
Genie, does any djinn ever make a mistake, and
garble up a message moving up or down the chain?

Genie: This does happen; it is the most common cause
for Typeless Wishes not being granted. You see, the
chances are infinitesimal that a garbling will occur at
any PARTICULAR link in the chain—but when you
put an infinite number of them in a row, it becomes
virtually certain that a garbling will occur SOME-
WHERE. In fact, strange as it seems, an infinite
number of garblings usually occur, although they
are very sparsely distributed in the chain.

Achilles: 'Then it seems a miracle that any Typeless Wish
ever gets carried out.

Genie: Not really. Most garblings are inconsequential,
and many garblings tend to cancel each other out.
But occasionally—in fact, rather seldom—the non-
fulfillment of a Typeless Wish can be traced back to a
single unfortunate djinn’s garbling. When this hap-
pens, the guilty djinn is forced to run an infinite

Little Harmonic Labyrinth



Achalles:
Tortoise:
Achilles:
Tortorse:

gauntlet, and get paddled on his or her rump, by
GOD. It's good fun for the paddlers, and quite
harmless for the paddlee. You might be amused by
the sight.

Achilles: 1 would love to see that! But it only happens
when a Typeless Wish goes ungranted?

Genie:  That's right.

Achilles:  Hmm . .. That gives me an idea for my wish.

Tortoise: Oh, really? What is it?

Achilles: 1 wish my wish would not be granted!

(At that moment, an event—or is “event” the word for
1t2—takes place which cannot be described, and hence
no attempt will be made to describe it.)

What on earth does that cryptic comment mean?

It refers to the Typeless Wish Achilles made.

But he hadn’t yet made it

Yes, he had. He said, “I wish my wish would not be

granted”, and the Genie took THAT to be his wish.

(At that moment, some footsteps are heard coming down the hallway in
their direction.)

Achilles:

Oh, my! That sounds ominous.

(The footsteps stop; then they turn around and fade away.)

Tortoise:
Achilles:

Whew!

But does the story go on, or is that the end? Turn the page and

let’s see.

(The Tortoise turns the page of “Djinn and Tonic”, where they find that the
story goes on . . .) '

Achilles: Hey! What happened? Where is my Genie? My
lamp? My cup of espresso? What happened to our
young friends from the Convex and Concave
worlds? What are all those little lizards doing here?

Tortoise: I'm afraid our context got restored incorrectly,
Achilles.

Achilles:  What on earth does that cryptic comment
mean?

Tortoise: I refer to the Typeless Wish you made.

Achilles:  But I hadn’t yet made it.

Tortoise:  Yes, you had. You said, “I wish my wish would
not be granted”, and the Genie took THAT to be your
wish.

Achilles: Oh, my! That sounds ominous.

Tortoise: It spells PARADOX. For that Typeless Wish to be
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granted, it had to be denied—yet not to grant it
would be to grant it.

Achilles: So what happened? Did the earth come to a
standstill? Did the universe cave in?

Tortoise: No. The System crashed.

Achilles:  What does that mean?

Tortoise: It means that you and I, Achilles, were sud-
denly and instantaneously transported to Tumbolia.

Achilles: To where?

Tortoise: Tumbolia: the land of dead hiccups and extin-
guished light bulbs. It’s a sort of waiting room, where
dormant software waits for its host hardware to
come back up. No telling how long the System was
down, and we were in Tumbolia. It could have been
moments, hours, days—even years.

Achilles: 1 don’t know what software is, and I don’t know
what hardware is. But I do know that I didn’t get to
make my wishes! 1 want my Genie back!

Tortoise: I'm sorry, Achilles—you blew it. You crashed
the System, and you should thank your lucky stars
that we're back at all. Things could have come out a
lot worse. But I have no idea where we are.

Achilles: 1 recognize it now—we're inside another of
Escher’s pictures. This time it’s Reptiles.

Tortoise: Aha! The System tried to save as much of our
context as it could before it crashed, and it got as far
as recording that it was an Escher picture with lizards
before it went down. That’'s commendable.

Achilles: And look—isn’t that our phial of popping-
tonic over there on the table, next to the cycle of
lizards?

Tortoise: It certainly is, Achilles. I must say, we are very
lucky indeed. The System was very kind to us, in
giving us back our popping-tonic—it's precious
stuff!

Achilles: T'll say! Now we can pop back out of the Escher
world, into my house.

Tortoise: There are a couple of books on the desk, next
to the tonic. I wonder what they are. (He picks up the
smaller one, which is open to a random page.) This looks
like a moderately provocative book.

Achilles:  Oh, really? What is its title?

Tortoise:  Provocative Adventures of the Tortoise and Achilles
Taking Place in Sundry Parts of the Globe. 1t sounds like
an interesting book to read out of.
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FIGURE 24. Reptiles, by M. C. Escher (lithograph, 1943).

Achilles:  Well, YOU can read it if you want, but as for me,
I'm not going to take any chances with that
popping-tonic—one of the lizards might knock it
off the table, so I'm going to get it right now!

(He dashes over to the table and reaches for the
popping-tonic, but in his haste he somehow bumps the
flask of tonic, and it tumbles off the desk and begins
rolling.)

Oh, no! Mr. T—look! I accidentally knocked the
tonic onto the floor, and it’s rolling towards—
towards—the stairwell! Quick—before it falls!

(The Tortoise, however, is completely wrapped up in
the thin volume which he has in his hands.)
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Tortoise (muttering): Eh? This story looks fascinating.
Achilles:  Mr. T, Mr. T, help! Help catch the tonic-flask!
Tortoise: What's all the fuss about?

Achilles: The tonic-flask—I knocked it down from the

desk, and now it’s rolling and—

(At that instant it reaches the brink of the stairwell,
and plummets over . . . )

Oh no! What can we do? Mr. Tortoise—aren’t you
alarmed? We’re losing our tonic! It’s just fallen down
the stairwell!l There’s only one thing to do! We'll
have to go down one story!

Tortoise: Go down one story? My pleasure. Won't you

join me?

(He begins to read aloud, and Achilles, pulled in two
directions at once, finally stays, taking the role of the
Tortoise.)

Achilles:  1t’s very dark here, Mr. T. I can’t see a
thing. Oof! I bumped into a wall. Watch
out!

Tortoise: Here—I have a couple of walking
sticks. Why don’t you take one of them?
You can hold it out in front of you so that
you don’t bang into things.

Achilles:  Good idea. (He takes the stick.) Do you
get the sense that this path is curving gently
to the left as we walk?

Tortoise:  Very slightly, yes.

Achilles: 1 wonder where we are. And whether
we’ll ever see the light of day again. I wish
I'd never listened to you, when you
suggested I swallow some of that “DRINK
ME” stuff.

Tortoise: I assure you, it’s quite harmless. I've
done it scads of times, and not a once have I
ever regretted it. Relax and enjoy being
small.

Achilles: Being small? What is it you’ve done to
me, Mr. T?

Tortoise:  Now don’t go blaming me. You did it
of your own free will.

Achilles: Have you made me shrink? So that
this labyrinth we’re in is actually some teeny
thing that someone could STEP on?
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FIGURE 25. Cretan Labyrinth (Italian engraving; School of Finiguerra). {From W. H.
Matthews, Mazes and Labyrinths: Théir History and Development (New York: Dover Publica-
tions, 1970). ]
Tortoise: Labyrinth? Labyrinth? Could it be?
Are we in the notorious Little Harmonic
Labyrinth of the dreaded Majotaur?
Achilles:  Yiikes! What is that?
Tortoise: They say—although I personally
never believed it myself—that an Evil
Majotaur has created a tiny labyrinth and
sits in a pit in the middle of it, waiting for
innocent victims to get lost in its fearsome
complexity. Then, when they wander lost
and dazed into the center, he laughs and
laughs at them—so hard, that he laughs
them to death!
Achilles:  Oh, no!
Tortoise: But it’s only a myth. Courage, Achil-
les.

(And the dauntless pair trudge on.)

Achilles: Feel these walls. They're like corru-
gated tin sheets, or something. But the cor-
rugations have different sizes.
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(To emphasize his point, he sticks out his
walking stick against the wall surface as he
walks. As the stick bounces back and forth
against the corrugations, strange noises echo
up and down the long curved corridor they
are in.)

Tortoise (alarmed): What was THAT?

Achilles: Oh, just me, rubbing my walking stick
against the wall.

Tortoise: Whew! I thought for a moment it was
the bellowing of the ferocious Majotaur!

Achilles: 1 thought you said it was all a myth.

Tortoise: Of course it is. Nothing to be afraid
of.

(Achilles puts his walking stick back against
the wall, and continues walking. As he does
so, some musical sounds are heard, coming
Sfrom the point where his stick is scraping the
wall.)

Tortoise: Uh-oh. I have a bad feeling, Achilles.
That Labyrinth may not be a myth, after all.
Achilles: Wait a minute. What makes you
change your mind all of a sudden?
Tortoise: Do you hear that music?

(To hear more clearly, Achilles lowers the
stick, and the strains of melody cease.)

Hey! Put that back! I want to hear the end
of this piece!

(Confused, Achilles obeys, and the music re-
sumes.)

Thank you. Now as I was about to say, I
have just figured out where we are.

Achilles: Really? Where are we?

Tortoise: We are walking down a spiral groove
of a record in its jacket. Your stick scraping
against the strange shapes in the wall acts
like a needle running down the groove, al-
lowing us to hear the music.

Achilles: Oh, no, oh, no ...

Tortoise: What? Aren’t you overjoyed? Have
you ever had the chance to be in such inti-
mate contact with music before?
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Achilles: How am I ever going to win footraces
against full-sized people when I am smaller
than a flea, Mr. Tortoise?

Tortoise: Oh, is that all that's bothering you?
That’s nothing to fret about, Achilles.
Achilles: The way you talk, I get the impression

that you never worry at all.

Tortoise: 1 don’t know. But one thing for cer-
tain is that I don’t worry about being small.
Especially not when faced with the awful
danger of the dreaded Majotaur!

Achilles: Horrors! Are you telling me—

Tortoise: I'm afraid so, Achilles. The music
gave it away.

Achilles: How could it do that?

Tortoise: Very simple. When I heard the
melody B-A-C-H in the top voice, I im-
mediately realized that the grooves that
we’'re walking through could only be the
Lattle Harmonic Labyrinth, one of Bach’s less-
er known organ pieces. It is so named be-
cause of its dizzyingly frequent modula-
tions.

Achilles: Wh-what are they?

Tortoise: Well, you know that most musical
pieces are written in a key, or tonality, such
as C major, which is the key of this one.

Achilles: 1 had heard the term before. Doesn’t
that mean that Cis the note you want to end
on?

Tortoise:  Yes, C acts like a home base, in a way.
Actually, the usual word is “tonic”.

Achilles: Does one then stray away from the
tonic with the aim of eventually returning?

Tortoise: That's right. As the piece develops,
ambiguous chords and melodies are used,
which lead away from the tonic. Little by
little, tension builds up—you feel an in-
creasing desire to return home, to hear the
tonic.

Achilles:  Is that why, at the end of a piece, I
always feel so satished, as if 1 had been
waiting my whole life to hear the tonic?

Tortoise: Exactly. The composer has used his
knowledge of harmonic progressions to
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manipulate your emotions, and to build up
hopes in you to hear that tonic.

Achilles: But you were going to tell me about
modulations.

Tortoise: Oh, yes. One very important thing a
composer can do is to “modulate” partway
through a piece, which means that he sets
up a temporary goal other than resolution
into the tonic.

Achilles: 1 see ... 1 think. Do you mean that
some sequence of chords shifts the har-
monic tension somehow so that I actually
desire to resolve in a new key?

Tortoise: Right. This makes the situation more
complex, for although in the short term you
want to resolve in the new key, all the while
at the back of your mind you retain the
longing to hit that original goal—in this
case, C major. And when the subsidiary
goal is reached, there is—

Achilles (suddenly gesturing enthusiastically): Oh,
listen to the gorgeous upward-swooping
chords which mark the end of this Little
Harmonic Labyrinth!

Tortoise: No, Achilles, this isn’t the end. It's
merely—

Achilles:  Sure it is! Wow! What a powerful,
strong ending! What a sense of relief!
That’s some resolution! Gee!

(And sure enough, at that moment the music
stops, as they emerge into an open area with
no walls.)

You see, it IS over. What did I tell you?

Tortoise: Something is very wrong. This record
is a disgrace to the world of music.

Achilles:  What do you mean?

Tortoise: It was exactly what I was telling you
about. Here Bach had modulated from C
into G, setting up a secondary goal of hear-
ing G. This means that you experience two
tensions at once—waiting for resolution
into G, but also keeping in mind that ulti-
mate desire—to resolve triumphantly into C
Major.

Achilles:  Why should you have to keep any-
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thing in mind when listening to a piece of
music? Is music only an intellectual exer-
cise?

Tortoise: No, of course not. Some music is
highly intellectual, but most music is not.
And most of the time your ear or brain does
the “calculation” for you, and lets your
emotions know what they want to hear. You
don’t have to think about it consciously. But
in this piece, Bach was playing tricks, hop-
ing to lead you astray. And in your case,
Achilles, he succeeded.

Achilles:  Are you telling me that I responded to
a resolution in a subsidiary key?

Tortoise: That’s right.

Achilles: Tt still sounded like an ending to me.

Tortoise:  Bach intentionally made it sound that
way. You just fell into his trap. It was delib-
erately contrived to sound like an ending,
but if you follow the harmonic progression
carefully, you will see that it is in the wrong
key. Apparently not just you but also this
miserable record company fell for the same
trick—and they truncated the piece early!

Achilles:  'What a dirty trick Bach played on me!

Tortoise: That is his whole game—to make you
lose your way in his Labyrinth! The Evil
Majotaur is in cahoots with Bach, you see.
And if you don’t watch out, he will now
laugh you to death—and perhaps me along
with youl

Achilles:  Oh, let us hurry up and get out of
here! Quick! Let’'s run backwards in the
grooves, and escape on the outside of the
record before the Evil Majotaur finds us!

Tortoise: Heavens, no! My sensibility is far too
delicate to handle the bizarre chord pro-
gressions which occur when time is re-
versed.

Achilles:  Oh, Mr, T, how will we ever get out of
here, if we can’t just retrace our steps?

Tortoise: That's a very good question.

(A lttle desperately, Achilles starts running

about aimlessly in the dark. Suddenly there
is a slight gasp, and then a “thud”.)
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Achilles—are you all right?

Achilles:  Just a bit shaken up but otherwise
fine. 1 fell into some big hole.

Tortoise: You've fallen into the pit of the Evil
Majotaur! Here, I'll come help you out.
We've got to move fast!

Achilles: Careful, Mr. T—I don’t want YOU to
fall in here, too . ..

Tortoise: Don'’t fret, Achilles. Everything will be
all—

(Suddenly, there is a slight gasp, and then a

“thud”.)

Achilles: Mr. T—you fell in, too! Are you all
right?

Tortoise: Only my pride is hurt—otherwise I'm
fine.

Achilles: Now we're in a pretty pickle, aren’t
we?

(Suddenly, a giant, booming laugh s heard,
alarmingly close to them.)

Tortoise: Watch out, Achilles! This is no laugh-
ing matter.

Majotaur: Hee hee hee! Ho ho! Haw haw haw!

Achilles: 1'm starting to feel weak, Mr. T . ..

Tortoise: Try to pay no attention to his laugh,
Achilles. That's your only hope.

Achilles: T'll do my best. If only my stomach
weren’t empty!

Tortoise:  Say, am I smelling things, or is there a
bowl of hot buttered popcorn around here?

Achilles: 1 smell it, too. Where is it coming
from?

Tortoise:  Over here, I think. Oh! I just ran into
a big bowl of the stuff. Yes, indeed—it
seems to be a bowl of popcorn!

Achilles: Oh, boy—popcorn! I'm going to
munch my head off!

Tortoise: Let’s just hope it isn’t pushcorn! Pushcorn and popcorn are so
extraordinarily difficult to tell apart.

Achilles:  'What'’s this about Pushkin?

Tortoise: 1didn’t say a thing. You must be hear-
ing things.

Achilles: Go-golly! I hope not. Well, let’s dig in!
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(And the two friends begin munching the
popcorn (or pushcorn?)—and all at
once—POP! I guess it was popcorn, after
all)

Tortoise: 'What an amusing story. Did you enjoy it?

Achilles: Mildly. Only I wonder whether they ever got
out of that Evil Majotaur’s pit or not. Poor
Achilles—he wanted to be full-sized again.

Tortoise: Don’t worry—they’re out, and he is full-sized
again. That's what the “POP” was all about.

Achilles: Oh, I couldn’t tell. Well, now I REALLY want to
find that bottle of tonic. For some reason, my lips are
burning. And nothing would taste better than a
drink of popping-tonic.

Tortoise: That stuff is renowned for its thirst quenching
powers. Why, in some places people very nearly go
crazy over it. At the turn of the century in Vienna,
the Schénberg food factory stopped making tonic,
and started making cereal instead. You can’t imagine
the uproar that caused.

Achilles: 1 have an inkling. But let’s go look for the tonic.
Hey—just a moment. Those lizards on the desk—do
you see anything funny about them?

Tortoise:  Umm . . . not particularly. What do you see of
such great interest?

Achilles: Don’t you see it? They're emerging from that
flat picture without drinking any popping-tonic!
How are they able to do that?

Tortoise: Oh, didn’t I tell you? You can get out of a
picture by moving perpendicularly to its plane, if
you have no popping-tonic. The little lizards have
learned to climb UP when they want to get out of the
two-dimensional sketchbook world.

Achilles: Could we do the same thing to get out of this
Escher picture we’re in?

Tortoise: Of course! We just need to go UP one story. Do
you want to try it?

Achilles:  Anything to get back to my house! I'm tired of
all these provocative adventures.

Tortoise:  Follow me, then, up this way.

(And they go up one story.)

Achilles:  1t's good to be back. But something seems wrong. This
isn’t my house! This is YOUR house, Mr. Tortoise.
Tortoise:  Well, so it is~and am I glad for that! I wasn’t looking
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forward one whit to the long walk back from your house. I am
bushed, and doubt if I could have made it.

Achilles: 1 don’t mind walking home, so I guess it’s lucky we
ended up here, after all.

Tortoise: I'll say! This certainly is a piece of Good Fortune!
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CHAPTER V

Recursive Structures
and Processes

What Is Recursion?

WHAT 1s RECURSION? It is what was illustrated in the Dialogue Little
Harmonic Labyrinth: nesting, and variations on nesting. The concept is very
general. (Stories inside stories, movies inside movies, paintings inside paint-
ings, Russian dolls inside Russian dolls (even parenthetical comments in-
side parenthetical comments!)—these are just a few of the charms of
recursion.) However, you should be aware that the meaning of “recursive”
in this Chapter is only faintly related to its meaning in Chapter III. The
relation should be clear by the end of this Chapter.

Sometimes recursion seems to brush paradox very closely. For exam-
ple, there are recursive definitions. Such a definition may give the casual
viewer the impression that something is being defined in terms of iself.
That would be circular and lead to infinite regress, if not to paradox
proper. Actually, a recursive definition (when properly formulated) never
leads to infinite regress or paradox. This is because a recursive definition
never defines something in terms of itself, but always in terms of simpler
verstons of itself. What I mean by this will become clearer shortly, when I
show some examples of recursive definitions.

One of the most common ways in which recursion appears in daily life
is when you postpone completing a task in favor of a simpler task, often of
the same type. Here is a good example. An executive has a fancy telephone
and receives many calls on it. He is talking to A when B calls. To A he says,
“Would you mind holding for a moment?” Of course he doesn’t really care
if A minds; he just pushes a button, and switches to B. Now C calls. The
same deferment happens to B. This could go on indefinitely, but let us not
get too bogged down in our enthusiasm. So let’s say the call with C termi-
nates. Then our executive “pops” back up to B, and continues. Meanwhile,
A is sitting at the other end of the line, drumming his fingernails against
some table, and listening to some horrible Muzak piped through the phone
lines to placate him ... Now the easiest case is if the call with B simply
terminates, and the executive returns to A finally. But it could happen that
after the conversation with B is resumed, a new caller—D-—calls. B is once
again pushed onto the stack of waiting callers, and D is taken care of. After
D is done, back to B, then back to A. This executive is hopelessly mechani-
cal, to be sure—but we are illustrating recursion in its most precise form.
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Pushing, Popping, and Stacks

In the preceding example, I have introduced some basic terminology of
recursion—at least as seen through the eyes of computer scientists. The
terms are push, pop, and stack (or push-down stack, to be precise) and they are
all related. They were introduced in the late 1950’s as part of IPL,
one of the first languages for Artificial Intelligence. You have already
encountered “push” and “pop” in the Dialogue. But I will spell things out
anyway. To pusk means to suspend operations on the task you're currently
working on, without forgetting where you are—and to take up a new task.
The new task is usually said to be “on a lower level” than the earlier task. To
pop is the reverse—it means to close operations on one level, and to resume
operations exactly where you left off, one level higher.

But how do you remember exactly where you were on each different
level? The answer is, you store the relevant information in a stack. So a stack
is just a table telling you such things as (1) where you were in each
unfinished task (jargon: the “return address”), (2) what the relevant facts to
know were at the points of interruption (jargon: the “variable bindings”).
When you pop back up to resume some task, it is the stack which restores
your context, so you don't feel lost. In the telephone-call example, the stack
tells you who is waiting on each different level, and where you were in the
conversation when it was interrupted.

By the way, the terms “push”, “pop”, and “stack” all come from the
visual image of cafeteria trays in a stack. There is usually some sort of
spring underneath which tends to keep the topmost tray at a constant
height, more or less. So when you push a tray onto the stack, it sinks a
little—and when you remove a tray from the stack, the stack pops up a
little,

One more example from daily life. When you listen to a news report
on the radio, oftentimes it happens that they switch you to some foreign
correspondent. “We now switch you to Sally Swumpley in Peafog, Eng-
land.” Now Sally has got a tape of some local reporter interviewing
someone, so after giving a bit of background, she plays it. “I'm Nigel
Cadwallader, here on scene just outside of Peafog, where the great robbery
took place, and I'm talking with . . .” Now you are three levels down. It may
turn out that the interviewee also plays a tape of some conversation. It is
not too uncommon to go down three levels in real news reports, and
surprisingly enough, we scarcely have any awareness of the suspension. Itis
all kept track of quite easily by our subconscious mind. Probably the reason
itis so easy is that each level is extremely different in flavor from each other
level. If they were all similar, we would get confused in no time flat.

An example of a more complex recursion is, of course, our Dialogue.
There, Achilles and the Tortoise appeared on all the different levels.
Sometimes they were reading a story in which they appeared as characters.
That is when your mind may get a little hazy on what's going on, and you
have to concentrate carefully to get things straight. “Let’s see, the real
Achilles and Tortoise are still up there in Goodfortune’s helicopter, but the
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secondary ones are in some Escher picture—and then they found this book
and are reading in it, so it's the tertiary Achilles and Tortoise who are
wandering around inside the grooves of the Little Harmonic Labyrinth. No,
wait a minute—I left out one level somewhere ...” You have to have a
conscious mental stack like this in order to keep track of the recursion in
the Dialogue. (See Fig. 26.)

Goodfortune’s
sky hideaway

.......................................

Tortoise’s home

Evil Majotaur’s
Little Harmonic Labyrinth

FIGURE 26. Diagram of the structure of the Dialogue Little Harmonic Labyrinth.
Vertical descents are “pushes”; rises are “pops”. Notice the similarity of this diagram to the
indentation pattern of the Dialogue. From the diagram it is clear that the initial tension—
Goodfortune’s threat—never was resolved; Achilles and the Tortoise were just left dangling in
the sky. Some readers might agonize over this unpopped push, while others might not bat an
eyelash. In the story, Bach’s musical labyrinth likewise was cut off too soon—but Achilles didn’t
even notice anything funny. Only the Tortoise was aware of the more global dangling tension.

Stacks in Music

While we're talking about the Little Harmonic Labyrinth, we should discuss
something which is hinted at, if not stated explicitly in the Dialogue: that we
hear music recursively—in particular, that we maintain a mental stack of
keys, and that each new modulation pushes a new key onto the stack. The
implication is further that we want to hear that sequence of keys retraced in
reverse order—popping the pushed keys off the stack, one by one, until the
tonic is reached. This is an exaggeration. There is a grain of truth to it,
however.

Any reasonably musical person automatically maintains a shallow stack
with two keys. In that “short stack”, the true tonic key is held, and also the
most immediate “pseudotonic” (the key the composer is pretending to be
in). In other words, the most global key and the most local key. That way,
the listener knows when the true tonic is regained, and feels a strong sense
of “relief”. The listener can also distinguish (unlike Achilles) between a
local easing of tension—for example a resolution into the pseudotonic—
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and a global resolution. In fact, a pseudoresolution should heighten the
global tension, not relieve it, because it is a piece of irony—just like Achilles’
rescue from his perilous perch on the swinging lamp, when all the while
you know he and the Tortoise are really awaiting their dire fates at the
knife of Monsieur Goodfortune.

Since tension and resolution are the heart and soul of music, there are
many, many examples. But let us just look at a couple in Bach. Bach wrote
many pieces in an “44BB” form—that is, where there are two halves, and
each one is repeated. Let’s take the gigue from the French Suite no. 5,
which is quite typical of the form. Its tonic key is G, and we hear a gay
dancing melody which establishes the key of G strongly. Soon, however, a
modulation in the A-section leads to the closely related key of D (the
dominant). When the 4-section ends, we are in the key of D. In fact, it
sounds as if the piece has ended in the key of D! (Or at least it might sound
that way to Achilles.) But then a strange thing happens—we abruptly jump
back to the beginning, back to G, and rehear the same transition into D. But
then a strange thing happens—we abruptly jump back to the beginning,
back to G, and rehear the same transition into D.

Then comes the B-section. With the inversion of the theme for our
melody, we begin in D as if that had always been the tonic—but we
modulate back to G after all, which means that we pop back into the tonic,
and the B-section ends properly. Then that funny repetition takes place,
jerking us without warning back into D, and letting us return to G once
more. Then that funny repetition takes place, jerking us without warning
back into D, and letting us return to G once more.

The psychological effect of all this key shifting—some jerky, some
smooth—is very difficult to describe. It is part of the magic of music that we
can automatically make sense of these shifts. Or perhaps it is the magic of
Bach that he can write pieces with this kind of structure which have such a
natural grace to them that we are not aware of exactly what is happening.

The original Little Harmonic Labyrinth is a piece by Bach in which he
tries to lose you in a labyrinth of quick key changes. Pretty soon you are so
disoriented that you don’t have any sense of direction left—you don’t know
where the true tonic is, unless you have perfect pitch, or like Theseus, have
a friend like Ariadne who gives you a thread that allows you to retrace your
steps. In this case, the thread would be a written score. This piece—another
example is the Endlessly Rising Canon—goes to show that, as music listen-
ers, we don’t have very reliable deep stacks.

Recursion in Language

Our mental stacking power is perhaps slightly stronger in language. The
grammatical structure of all languages involves setting up quite elaborate
push-down stacks, though, to be sure, the difficulty of understanding a
sentence increases sharply with the number of pushes onto the stack. The
proverbial German phenomenon of the “verb-at-the-end”, about which
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droll tales of absentminded professors who would begin a sentence, ramble
on for an entire lecture, and then finish up by rattling off a string of verbs
by which their audience, for whom the stack had long since lost its coher-
ence, would be totally nonplussed, are told, is an excellent example of
linguistic pushing and popping. The confusion among the audience that
out-of-order popping from the stack onto which the professor’s verbs had
been pushed, is amusing to imagine, could engender. But in normal spo-
ken German, such deep stacks almost never occur—in fact, native speakers
of German often unconsciously violate certain conventions which force the
verb to go to the end, in order to avoid the mental effort of keeping track of
the stack. Every language has constructions which involve stacks, though
usually of a less spectacular nature than German. But there are always ways
of rephrasing sentences so that the depth of stacking is minimal.

Recursive Transition Networks

The syntactical structure of sentences affords a good place to present a way
of describing recursive structures and processes: the Recursive Transition
Network (RTN). An RTN is a diagram showing various paths which can be
followed to accomplish a particular task. Each path consists of a number of
nodes, or little boxes with words in them, joined by arcs, or lines with arrows.
The overall name for the RTN is written separately at the left, and the first
and last nodes have the words begin and end in them. All the other nodes
contain either very short explicit directions to perform, or else names of
other RTN'’s. Each time you hit a node, you are to carry out the directions
inside it, or to jump to the RTN named inside it, and carry it out.

Let’s take a sample RTN, called ORNATE NOUN, which tells how to
construct a certain type of English noun phrase. (See Fig. 27a.) If we
traverse ORNATE NOUN purely horizontally, we begin , then we create an
ARTICLE, an ADJECTIVE, and a NOUN, then we end . For instance, “the silly
shampoo” or “a thankless brunch”. But the arcs show other possibilities,
such as skipping the article, or repeating the adjective. Thus we could
construct “milk”, or “big red blue green sneezes”, etc.

When you hit the node NOUN, you are asking the unknown black box
called NOUN to fetch any noun for you from its storehouse of nouns. This
is known as a procedure call, in computer science terminology. It means you
temporarily give control to a procedure (here, NOUN) which (1) does its
thing (produces a noun) and then (2) hands control back to you. In the
above RTN, there are calls on three such procedures: ARTICLE, ADJECTIVE,
and NOUN. Now the RTN ORNATE NOUN could itself be called from some
other RTN—for instance an RTN called SENTENCE. In this case, ORNATE
NOUN would produce a phrase such as “the silly shampoo” and then
return to the place inside SENTENCE from which it had been called. It is
quite reminiscent of the way in which you resume where you left off in
nested telephone calls or nested news reports.

However, despite calling this a “recursive transition network”, we have
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FIGURE 27. Recursive Transition Networks for ORNATE NOUN and FANCY NOUN.

not exhibited any true recursion so far. Things get recursive—and seem-
ingly circular—when you go to an RTN such as the one in Figure 27b, for
FANCY NOUN. As you can see, every possible pathway in FANCY NOUN
involves a call on ORNATE NOUN, so there is no way to avoid getting a
noun of some sort or other. And it is possible to be no more ornate than
that, coming out merely with “milk” or “big red blue green sneezes”. But
three of the pathways involve recursive calls on FANCY NOUN itself. It
certainly looks as if something is being defined in terms of itself. Is that
what is happening, or not?

The answer is “yes, but benignly”. Suppose that, in the procedure
SENTENCE, there is a node which calls FANCY NOUN, and we hit that node.
This means that we commit to memory (viz., the stack) the location of that
node inside SENTENCE, so we'll know where to return to—then we transfer
our attention to the procedure FANCY NOUN. Now we must choose a
pathway to take, in order to generate a FANCY NOUN. Suppose we choose
the lower of the upper pathways—the one whose calling sequence goes:

ORNATE NOUN; RELATIVE PRONOUN; FANCY NOUN; VERB.
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So we spit out an ORNATE NOUN: “the strange bagels”; a RELATIVE PRO-
NOUN: “that”; and now we are suddenly asked for a FANCY NOUN. But we
are in the middle of FANCY NOUN! Yes, but remember our executive who
was in the middle of one phone call when he got another one. He merely
stored the old phone call’s status on a stack, and began the new one as if
nothing were unusual. So we shall do the same.

We first write down in our stack the node we are at in the outer call on
FANCY NOUN, so that we have a “return address”; then we jump to the
beginning of FANCY NOUN as if nothing were unusual. Now we have to
choose a pathway again. For variety’s sake, let’s choose the lower pathway:
ORNATE NOUN; PREPOSITION; FANCY NOUN. That means we produce
an ORNATE NOUN (say “the purple cow”), then a PREPOSITION (say “with-
out”’), and once again, we hit the recursion. So we hang onto our hats, and
descend one more level. To avoid complexity, let’s assume that this time,
the pathway we take is the direct one—just ORNATE NOUN. For example,
we might get “horns”. We hit the node END in this call on FANCY NOUN,
which amounts to popping out, and so we go to our stack to find the return
address. It tells us that we were in the middle of executing FANCY NOUN
one level up—and so we resume there. This yields “the purple cow without
horns”. On this level, too, we hit END, and so we pop up once more, this time
finding ourselves in need of a VERB—so let’s choose “gobbled”. This ends the
highest-level call on FANCY NOUN, with the result that the phrase

“the strange bagels that the purple cow without horns gobbled”

will get passed upwards to the patient SENTENCE, as we pop for the last
time.

As you see, we didn’t get into any infinite regress. The reason is that at
least one pathway inside the RTN FANCY NOUN does not involve any
recursive calls on FANCY NOUN itself. Of course, we could have perversely
insisted on always choosing the bottom pathway inside FANCY NOUN, and
then we would never have gotten finished, just as the acronym “GOD”
never got fully expanded. But if the pathways are chosen at random, then
an infinite regress of that sort will not happen.

“Bottoming Out” and Heterarchies

This is the crucial fact which distinguishes recursive definitions from circu-
lar ones. There is always some part of the definition which avoids self-
reference, so that the action of constructing an object which satisfies the
definition will eventually “bottom out”.

Now there are more oblique ways of achieving recursivity in RTN’s
than by self-calling. There is the analogue of Escher’s Drawing Hands
(Fig. 135), where each of two procedures calls the other, but not itself. For
example, we could have an RTN named CLAUSE, which calls FANCY NOUN
whenever it needs an object for a transitive verb, and conversely, the upper
path of FANCY NOUN could call RELATIVE PRONOUN and then CLAUSE
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whenever it wants a relative clause. This is an example of indirect recursion.
It is reminiscent also of the two-step version of the Epimenides paradox.

Needless tosay, there can be a trio of procedures which call one another,
cyclically—and so on. There can be a whole family of RTN’s which are all
tangled up, calling each other and themselves like crazy. A program which
has such a structure in which there is no single “highest level”, or
“monitor”, is called a heterarchy (as distinguished from a hierarchy). The
term is due, I believe, to Warren McCulloch, one of the first cyberneticists,
and a reverent student of brains and minds.

Expanding Nodes

One graphic way of thinking about RTN’s is this. Whenever you are
moving along some pathway and you hit a node which calls onan RTN, you
“expand” that node, which means to replace it by a very small copy of the
RTN it calls (see Fig. 28). Then you proceed into the very small RTN!

| VERB b»—' FANCY
NOUN

VERB

RELATIVE
PRONOUN

' ORNATE
begin NOUN end

PREPOSITION o]  FANCY

NOUN

FIGURE 28. The FANCY NOUN RTN with one node recursively expanded.

When you pop out of it, you are automatically in the right place in the big
one. While in the small one, you may wind up constructing even more
miniature RTN’s. But by expanding nodes only when you come across
them, you avoid the need to make an infinite diagram, even when an RTN
calls itself.

Expanding a node is a little like replacing a letter in an acronym by the
word it stands for. The “GOD” acronym is recursive but has the defect—or
advantage—that you must repeatedly expand the ‘G’; thus it never bottoms
out. When an RTN is implemented as a real computer program, however,
it always has at least one pathway which avoids recursivity (direct or indi-
rect) so that infinite regress is not created. Even the most heterarchical
program structure bottoms out—otherwise it couldn’t run! It would just be
constantly expanding node after node, but never performing any action.
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Diagram G and Recursive Sequences

Infinite geometrical structures can be defined in just this way—that is, by
expanding node after node. For example, let us define an infinite diagram
called “Diagram G”. To do so, we shall use an implicit representation. In
two nodes, we shall write merely the letter ‘G’, which, however, will stand
for an entire copy of Diagram G. In Figure 29a, Diagram G is portrayed
implicitly. Now if we wish to see Diagram G more explicitly, we expand
each of the two G’s—that is, we replace them by the same diagram, only reduced
in scale (see Fig. 29b). This “second-order” version of Diagram G gives us
an inkling of what the final, impossible-to-realize Diagram G really looks
like. In Figure 30 is shown a larger portion of Diagram G, where all the
nodes have been numbered from the bottom up, and from left to right.
Two extra nodes—numbers 1 and 2—have been inserted at the bottom.
This infinite tree has some very curious mathematical properties. Run-
ning up its right-hand edge is the famous sequence of Fibonacci numbers:

1, 1, 2, 8, 5, 8 13, 21, 34, 55, 89, 144, 233, ...

discovered around the year 1202 by Leonardo of Pisa, son of Bonaccio,
ergo “Filius Bonacci”, or “Fibonacci” for short. These numbers are best

FIGURE 29. (a) Diagram G, unexpanded. (¢) Diagram H, unexpanded.
(b) Diagram G, expanded once. (d) Diagram H, expanded once.
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FIBO(n):

®
®
GG

FIGURE 30. Diagram G, further expanded and with numbered nodes.

defined recursively by the pair of formulas

FIBO(n) = FIBO(n—1) + FIBO(n—-2) for n>2
FIBO(1) = FIBO(?) = 1

Notice how new Fibonacci numbers are defined in terms of previous
Fibonacci numbers. We could represent this pair of formulas in an RTN
(see Fig. 31).

let x = FIBO(n~1) |=3podi let y = FIBO(n~2) P x+y

[if n>2]

[ifn=lor2]

value is 1

FIGURE 31. An RTN for Fibonacci numbers,

Thus you can calculate FIBO(15) by a sequence of recursive calls on the
procedure defined by the RTN above. This recursive definition bottoms
out when you hit FIBO(1) or FIBO(2) (which are given explicitly) after you
have worked your way backwards through descending values of n. It is
slightly awkward to work your way backwards, when you could just as well
work your way forwards, starting with FIBO(1) and FIBO(2) and always
adding the most recent two values, until you reach FIBO(15). That way you
don’t need to keep track of a stack.

Now Diagram G has some even more surprising properties than this.
Its entire structure can be coded up in a single recursive definition, as
follows:

136 Recursive Structures and Processes



G(n) = n— G(G(n—-1)) for n >0
GO =0

How does this function G(n) code for the tree-structure? Quite simply, if
you construct a tree by placing G(n) below n, for all values of 7, you will
recreate Diagram G. In fact, that is how I discovered Diagram G in the first
place. I was investigating the function G, and in trying to calculate its values
quickly, I conceived of displaying the values I already knew in a tree. To my
surprise, the tree turned out to have this extremely orderly recursive
geometrical description.

What is more wonderful is that if you make the analogous tree for a
function H(n) defined with one more nesting than G—

H(n) = n — HHH(n—-1))) for n >0
H@©) = 0

—then the associated “Diagram H” is defined implicitly as shown in Figure
29c. The right-hand trunk contains one more node; that is the only
difference. The first recursive expansion of Diagram H is shown in Figure
29d. And so it goes, for any degree of nesting. There is a beautiful
regularity to the recursive geometrical structures, which corresponds pre-
cisely to the recursive algebraic definitions.

A problem for curious readers is: suppose you flip Diagram G around
as if in a mirror, and label the nodes of the new tree so they increase from
left to right. Can you find a recursive algebraic definition for this “flip-tree”?
What about for the “flip” of the H-tree? Etc.?

Another pleasing problem involves a pair of recursively intertwined
functions F(n) and M(n)—"married” functions, you might say—defined
this way:

F(n) = n — M(F(n—1)) }
for n>0
M(n) = n — FM(n—1))

F(0) = 1, and M(0) = 0.

The RTN’s for these two functions call each other and themselves as well.
The problem is simply to discover the recursive structures of Diagram F
and Diagram M. They are quite elegant and simple.

A Chaotic Sequence

One last example of recursion in number theory leads to a small mystery.
Consider the following recursive definition of a function:

Q(n) = Qn—Q(n—1)) + Q(n — Q(n—2)) for n > 2
Q) = Q2) = 1.
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It is reminiscent of the Fibonacci definition in that each new value is a sum
of two previous values—but not of the immediately previous two values.
Instead, the two immediately previous values tell how far to count back
to obtain the numbers to be added to make the new value! The first 17
Q-numbers run as follows:

1, 1, 2, 3 3, 4, 5 5, 6, 6, 6, 8 8 8 10, 9, 10,...
’ 4 i
5+6=11 how far to move

) to the left

new term

To obtain the next one, move leftwards (from the three dots) respectively
10 and 9 terms; you will hit a 5 and a 6, shown by the arrows. Their
sum—11—yields the new value: Q(18). This is the strange process by which
the list of known Q-numbers is used to extend itself. The resulting se-
quence is, to put it mildly, erratic. The further out you go, the less sense it
seems to make. This is one of those very peculiar cases where what seems to
be a somewhat natural definition leads to extremely puzzling behavior:
chaos produced in a very orderly manner. One is naturally led to wonder
whether the apparent chaos conceals some subtle regularity. Of course, by
definition, there is regularity, but what is of interest is whether there is
another way of characterizing this sequence—and with luck, a nonrecursive
way.

Two Striking Recursive Graphs

The marvels of recursion in mathematics are innumerable, and it is not my
purpose to present them all. However, there are a couple of particularly
striking examples from my own experience which I feel are worth present-
ing. They are both graphs. One came up in the course of some number-
theoretical investigations. The other came up in the course of my Ph.D.
thesis work, in solid state physics. What is truly fascinating is that the
graphs are closely related.

The first one (Fig. 32) is a graph of a function which I call INT(x). Itis
plotted here for x between 0 and 1. For x between any other pair of
integers n and n + 1, you just find INT(x—n), then add n back. The
structure of the plot is quite jumpy, as you can see. It consists of an infinite
number of curved pieces, which get smaller and smaller towards the
corners—and incidentally, less and less curved. Now if you look closely at
each such piece, you will find that it is actually a copy of the full graph,
merely curved! The implications are wild. One of them is that the graph of
INT consists of nothing but copies of itself, nested down infinitely deeply.
If you pick up any piece of the graph, no matter how small, you are holding
a complete copy of the whole graph—in fact, infinitely many copies of it!

The fact that INT consists of nothing but copies of itself might make
you think it is too ephemeral to exist. Its definition sounds too circular.
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FIGURE 32. Graph of the function INT(x). There is a jump discontinuity at every rational
value of x.

How does it ever get off the ground? That is a very interesting matter. The
main thing to notice is that, to describe INT to someone who hasn’t seen it,
it will not suffice merely to say, “It consists of copies of itself.” The other
half of the story—the nonrecursive half—tells where those copies lie inside
the square, and how they have been deformed, relative to the full-size
graph. Only the combination of these two aspects of INT will specify the
structure of INT. It is exactly as in the definition of Fibonacci numbers,
where you need two lines—one to define the recursion, the other to define
the bottom (i.e., the values at the beginning). To be very concrete, if you
make one of the bottom values 3 instead of 1, you will produce a completely
different sequence, known as the Lucas sequence:

1, 3, 4, 7, 11, 18, 29, 47, 76, 123, ...
the “bottom” same recursive rule
as for the Fibonacci numbers
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What corresponds to the bottom in the definition of INT is a picture
(Fig. 33a) composed of many boxes, showing where the copies go, and how
they are distorted. I call it the “skeleton” of INT. To construct INT from its
skeleton, you do the following. First, for each box of the skeleton, you do
two operations: (1) put a small curved copy of the skeleton inside the box,
using the curved line inside it as a guide; (2) erase the containing box and
its curved line. Once this has been done for each box of the original
skeleton, you are left with many “baby” skeletons in place of one big one.
Next you repeat the process one level down, with all the baby skeletons.
Then again, again, and again . . . What you approach in the limit is an exact
graph of INT, though you never get there. By nesting the skeleton inside
itself over and over again, you gradually construct the graph of INT “from
out of nothing”. Butin fact the “nothing” was not nothing—it was a picture.

To see this even more dramatically, imagine keeping the recursive part
of the definition of INT, but changing the initial picture, the skeleton. A
variant skeleton is shown in Figure 33b, again with boxes which get smaller
and smaller as they trail off to the four corners. If you nest this second
skeleton inside itself over and over again, you will create the key graph
from my Ph.D. thesis, which I call Gplot (Fig. 34). (In fact, some compli-
cated distortion of each copy is needed as well—but nesting is the basic
idea.) Gplot is thus a member of the INT-family. It is a distant relative,
because its skeleton is quite different from—and considerably more com-
plex than—that of INT. However, the recursive part of the definition is
identical, and therein lies the family tie.

I should not keep you too much in the dark about the origin of these
beautiful graphs. INT—standing for “interchange”—comes from a prob-
lem involving “Eta-sequences”, which are related to continued fractions.
The basic idea behind INT is that plus and minus signs are interchanged in
a certain kind of continued fraction. As a consequence, INT(INT(x)) = x.
INT has the property that if x is rational, so is INT(x); if x is quadratic, so
is INT(x). I do not know if this trend holds for higher algebraic degrees.
Another lovely feature of INT is that at all rational values of x, it has a
jump discontinuity, but at all irrational values of x, it is continuous.

Gplot comes from a highly idealized version of the question, “What are
the allowed energies of electrons in a crystal in a magnetic field?” This
problem is interesting because it is a cross between two very simple and
fundamental physical situations: an electron in a perfect crystal, and an
electron in a homogeneous magnetic field. These two simpler problems are
both well understood, and their characteristic solutions seem almost in-
compatible with each other. Therefore, it is of quite some interest to see
how nature manages to reconcile the two. As it happens, the crystal-
without-magnetic-field situation and the magnetic-field-without-crystal
situation do have one feature in common: in each of them, the electron
behaves periodically in time. It turns out that when the two situations are
combined, the ratio of their two time periods is the key parameter. In fact,
that ratio holds all the information about the distribution of allowed elec-
tron energies—but it only gives up its secret upon being expanded into a
continued fraction.
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(a)

FIGURE 33(a) The skeleton from which INT can be constructed by recursive substitutions.
(b) The skeleton from which Gplot can be constructed by recursive substitutions. (b)
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Gplot shows that distribution. The horizontal axis represents energy,
and the vertical axis represents the above-mentioned ratio of time periods,
which we can call “a”. At the bottom, « is zero, and at the top « is unity.
When « is zero, there is no magnetic field. Each of the line segments
making up Gplot is an “energy band”—that is, it represents allowed values
of energy. The empty swaths traversing Gplot on all different size scales are
therefore regions of forbidden energy. One of the most startling properties
of Gplot is that when a is rational (say p/q in lowest terms), there are exactly
¢ such bands (though when ¢ is even, two of them “kiss” in the middle).
And when a is irrational, the bands shrink to points, of which there are
infinitely many, very sparsely distributed in a so-called “Cantor set”—
another recursively defined entity which springs up in topology.

You might well wonder whether such an intricate structure would ever
show up in an experiment. Frankly, 1 would be the most surprised person
in the world if Gplot came out of any experiment. The physicality of Gplot
lies in the fact that it points the way to the proper mathematical treatment
of less idealized problems of this sort. In other words, Gplot is purely a
contribution to theoretical physics, not a hint to experimentalists as to what
to expect to see! An agnostic friend of mine once was so struck by Gplot’s
infinitely many infinities that he called it “a picture of God”, which I don’t
think is blasphemous at all.

Recursion at the Lowest Level of Matter

We have seen recursion in the grammars of languages, we have seen
recursive geometrical trees which grow upwards forever, and we have seen
one way in which recursion enters the theory of solid state physics. Now we
are going to see yet another way in which the whole world is built out of
recursion. This has to do with the structure of elementary particles: elec-
trons, protons, neutrons, and the tiny quanta of electromagnetic radiation
called “photons”. We are going to see that particles are—in a certain sense
which can only be defined rigorously in relativistic quantum mechanics—
nested inside each other in a way which can be described recursively,
perhaps even by some sort of “grammar”.

We begin with the observation that if particles didn’t interact with each
other, things would be incredibly simple. Physicists would like such a world
because then they could calculate the behavior of all particles easily (f
physicists in such a world existed, which is a doubtful proposition). Particles
without interactions are called bare particles, and they are purely hypotheti-
cal creations; they don’t exist.

Now when you “turn on” the interactions, then particles get tangled up
together in the way that functions F and M are tangled together, or
married people are tangled together. These real particles are said to be
renormalized—an ugly but intriguing term. What happens is that no particle
can even be defined without referring to all other particles, whose defini-
tions in turn depend on the first particles, etc. Round and round, in a
never-ending loop.
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FIGURE 34. Gplot: a recursive graph showing energy bands for electrons in an idealized
crystal in a magnetic field. o, representing magnetic field strength, runs vertically from 0 to 1.
Energy runs horizontally. The horizontal line segments are bands of allowed electron energies.



Let us be a little more concrete, now. Let’s limit ourselves to only two
kinds of particles: electrons and photons. We'll also have to throw in the
electron’s antiparticle, the positron. (Photons are their own antiparticles.)
Imagine first a dull world where a bare electron wishes to propagate from
point A to point B, as Zeno did in my Three-Part Invention. A physicist would
draw a picture like this:

Ae - B

There is a mathematical expression which corresponds to this line and its
endpoints, and it is easy to write down. With it, a physicist can understand
the behavior of the bare electron in this trajectory.

Now let us “turn on” the electromagnetic interaction, whereby elec-
trons and photons interact. Although there are no photons in the scene,
there will nevertheless be profound consequences even for this simple
trajectory. In particular, our electron now becomes capable of emitting and
then reabsorbing virtual photons—photons which flicker in and out of exis-
tence before they can be seen. Let us show one such process:

Now as our electron propagates, it :nay emit and reabsorb one photon after
another, or it may even nest them, as shown below:

A.—i:j—//\g\\HB

The mathematical expressions corresponding to these diagrams—called
“Feynman diagrams”—are easy to write down, but they are harder to
calculate than that for the bare electron. But what really complicates mat-
ters is that a photon (real or virtual) can decay for a brief moment into an
electron-positron pair. Then these two annihilate each other, and, as if by
magic, the original photon reappears. This sort of process is shown below:

The electron has a right-pointing arrow, while the positron’s arrow points
leftwards.
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As you might have anticipated, these virtual processes can be nested
inside each other to arbitrary depth. This can give rise to some very
complicated-looking drawings, such as the one in Figure 35. In that Feyn-
man diagram, a single electron enters on the left at A, does some amazing
acrobatics, and then a single electron emerges on the right at B. To an
outsider who can’t see the inner mess, it looks as if one electron has
peacefully sailed from A to B. In the diagram, you can see how electron
lines can get arbitrarily embellished, and so can the photon lines. This
diagram would be ferociously hard to calculate.

FIGURE 35. A Feynman diagram showing the propagation of a renormalized electron from
A to B. In this diagram, time increases to the right. Therefore, in the segments where the
electron’s arrow points leftwards, it is moving “backwards in time”. A more intuitive way to say
this is that an antielectron (positron) is moving forwards in time. Photons are their own
antiparticles; hence their lines have no need of arrows.

There is a sort of “grammar” to these diagrams, that only allows
certain pictures to be realized in nature. For instance, the one below is

impossible:

You might say it is not a “well-formed” Feynman diagram. The grammar is
a result of basic laws of physics, such as conservation of energy, conserva-
tion of electric charge, and so on. And, like the grammars of human
languages, this grammar has a recursive structure, in that it allows deep
nestings of structures inside each other. It would be possible to draw up a
set of recursive transition networks defining the “grammar” of the elec-
tromagnetic interaction.

When bare electrons and bare photons are allowed to interact in these
arbitrarily tangled ways, the result is renormalized electrons and photons.
Thus, to understand how a real, physical electron propagates from A to B,
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the physicist has to be able to take a sort of average of all the infinitely many
different possible drawings which involve virtual particles. This is Zeno
with a vengeance!

Thus the point is that a physical particle—a renormalized particle—
involves (1) a bare particle and (2) a huge tangle of virtual particles,
inextricably wound together in a recursive mess. Every real particle’s exis-
tence therefore involves the existence of infinitely many other particles,
contained in a virtual “cloud” which surrounds it as it propagates. And each
of the virtual particles in the cloud, of course, also drags along its own
virtual cloud, and so on ad infinitum.

Particle physicists have found that this complexity is too much to
handle, and in order to understand the behavior of electrons and photons,
they use approximations which neglect all but fairly simple Feynman dia-
grams. Fortunately, the more complex a diagram, the less important its
contribution. There is no known way of summing up all of the infinitely
many possible diagrams, to get an expression for the behavior of a fully
renormalized, physical electron. But by considering roughly the simplest
hundred diagrams for certain processes, physicists have been able to pre-
dict one value (the so-called g-factor of the muon) to nine decimal places—
correctly!

Renormalization takes place not only among electrons and photons.
Whenever any types of particle interact together, physicists use the ideas of
renormalization to understand the phenomena. Thus protons and neu-
trons, neutrinos, pi-mesons, quarks—all the beasts in the subnuclear zoo—
they all have bare and renormalized versions in physical theories. And
from billions of these bubbles within bubbles are all the beasts and baubles
of the world composed.

Copies and Sameness

Let us now consider Gplot once again. You will remember that in the
Introduction, we spoke of different varieties of canons. Each type of canon
exploited some manner of taking an original theme and copying it by an
isomorphism, or information-preserving transformation. Sometimes the
copies were upside down, sometimes backwards, sometimes shrunken or
expanded ... In Gplot we have all those types of transformation, and
more. The mappings between the full Gplot and the “copies” of itself inside
itself involve size changes, skewings. reflections, and more. And yet there
remains a sort of skeletal identity, which the eye can pick up with a bit of
effort, particularly after it has practiced with INT.

Escher took the idea of an object’s parts being copies of the object itself
and made it into a print: his woodcut Fishes and Scales (Fig. 36). Of course
these fishes and scales are the same only when seen on a sufficiently abstract
plane. Now everyone knows that a fish’s scales aren’t really small copies of
the fish; and a fish’s cells aren’t small copies of the fish; however, a fish’s
DNA, sitting inside each and every one of the fish’s cells, is a very convo-
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FIGURE 36. Fish and Scales, by M. C. Escher (woodcut, 1959).

luted “copy” of the entire fish—and so there is more than a grain of truth to
the Escher picture.

What is there that is the “same” about all butterflies? The mapping
from one butterfly to another does not map cell onto cell; rather, it maps
functional part onto functional part, and this may be partially on a macro-
scopic scale, partially on a microscopic scale. The exact proportions of parts
are not preserved; just the functional relationships between parts. That is
the type of isomorphism which links all butterflies in Escher’s wood engrav-
ing Butterflies (Fig. 37) to each other. The same goes for the more abstract
butterflies of Gplot, which are all linked to each other by mathematical
mappings that carry functional part onto functional part, but totally ignore
exact line proportions, angles, and so on.

Taking this exploration of sameness to a yet higher plane of abstrac-
tion, we might well ask, “What is there that is the ‘same’ about all Escher
drawings?” It would be quite ludicrous to attempt to map them piece by
piece onto each other. The amazing thing is that even a tiny section of an
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FIGURE 37. Butterflies, by M. C. Escher (wood-engraving, 1950).

Escher drawing or a Bach piece gives it away. Just as a fish’'s DNA is
contained inside every tiny bit of the fish, so a creator’s “signature” is
contained inside every tiny section of his creations. We don’t know what to
call it but “style”—a vague and elusive word.

We keep on running up against “sameness-in-differentness”, and the
question

When are two things the same?

It will recur over and over again in this book. We shall come at it from all
sorts of skew angles, and in the end, we shall see how deeply this simple
question is connected with the nature of intelligence.

That this issue arose in the Chapter on recursion is no accident, for
recursion is a domain where “sameness-in-differentness” plays a central
role. Recursion is based on the “same” thing happening on several differ-
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ent levels at once. But the events on different levels aren’t exactly the
same—rather, we find some invariant feature in them, despite many ways
in which they differ. For example, in the Little Harmonic Labyrinth, all the
stories on different levels are quite unrelated—their “sameness” resides in
only two facts: (1) they are stories, and (2) they involve the Tortoise and
Achilles. Other than that, they are radically different from each other.

Programming and Recursion:
Modularity, Loops, Procedures

One of the essential skills in computer programming is to perceive when
two processes are the same in this extended sense, for that leads to
modularization—the breaking-up of a task into natural subtasks. For in-
stance, one might want a sequence of many similar operations to be carried
out one after another. Instead of writing them all out, one can write a loop,
which tells the computer to perform a fixed set of operations and then loop
back and perform them again, over and over, untl some condition is
satisfied. Now the body of the loop—the fixed set of instructions to be
repeated—need not actually be completely fixed. It may vary in some
predictable way.

An example is the most simple-minded test for the primality of a
natural number N, in which you begin by trying to divide N by 2, then by
3,4, 5, etc. until N—1. If N has survived all these tests without being
divisible, it’s prime. Notice that each step in the loop is similar to, but not
the same as, each other step. Notice also that the number of steps varies
with N—hence a loop of fixed length could never work as a general test for
primality. There are two criteria for “aborting” the loop: (1) if some
number divides N exactly, quit with answer “NO”; (2) if N —1 is reached
as a test divisor and N survives, quit with answer “YES”.

The general idea of loops, then, is this: perform some series of related
steps over and over, and abort the process when specific conditions are met.
Now sometimes, the maximum number of steps in a loop will be known in
advance; other times, you just begin, and wait until it is aborted. The
second type of loop—which I call a free loop—is dangerous, because the
criterion for abortion may never occur, leaving the computer in a so-called
“infinite loop”. This distinction between bounded loops and free loops is one of
the most important concepts in all of computer science, and we shall devote
an entire Chapter to it: “BlooP and FlooP and GlooP”.

Now loops may be nested inside each other. For instance, suppose that
we wish to test all the numbers between 1 and 5000 for primality. We can
write a second loop which uses the above-described test over and over,
starting with N = 1 and finishing with N = 5000. So our program will
have a “loop-the-loop” structure. Such program structures are typical—in
fact they are deemed to be good programming style. This kind of nested
loop also occurs in assembly instructions for commonplace items, and in
such activities as knitting or crocheting—in which very small loops are
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repeated several times in larger loops, which in turn are carried out re-
peatedly ... While the result of a low-level loop might be no more than
couple of stitches, the result of a high-level loop might be a substantial
portion of a piece of clothing.

In music, too, nested loops often occur—as, for instance, when a scale
(a small loop) is played several times in a row, perhaps displaced in pitch
each new time. For example, the last movements of both the Prokofiev fifth
piano concerto and the Rachmaninoff second symphony contain extended
passages in which fast, medium, and slow scale-loops are played simultane-
ously by different groups of instruments, to great effect. The Prokofiev-
scales go up; the Rachmaninoff-scales, down. Take your pick.

A more general notion than loop is that of subroutine, or procedure,
which we have already discussed somewhat. The basic idea here is that a
group of operations are lumped together and considered a single unit with
a name—such as the procedure ORNATE NOUN. As we saw in RTN’s,
procedures can call each other by name, and thereby express very concisely
sequences of operations which are to be carried out. This is the essence of
modularity in programming. Modularity exists, of course, in hi-fi systems,
furniture, living cells, human society—wherever there is hierarchical or-
ganization.

More often than not, one wants a procedure which will act variably,
according to context. Such a procedure can either be given a way of
peering out at what is stored in memory and selecting its actions accord-
ingly, or it can be explicitly fed a list of parameters which guide its choice of
what actions to take. Sometimes both of these methods are used. In RTN-
terminology, choosing the sequence of actions to carry out amounts to
choosing which pathway to follow. An RTN which has been souped up with
parameters and conditions that control the choice of pathways inside it is
called an Augmented Transition Network (ATN). A place where you might
prefer ATN’s to RTN’s is in producing sensible—as distinguished from
nonsensical—English sentences out of raw words, according to a grammar
represented in a set of ATN’s. The parameters and conditions would allow
you to insert various semantic constraints, so that random juxtapositions
like “a thankless brunch” would be prohibited. More on this in Chapter
XVIII, however.

Recursion in Chess Programs

A classic example of a recursive procedure with parameters is one for
choosing the “best” move in chess. The best move would seem to be the one
which leaves your opponent in the toughest situation. Therefore, a test for
goodness of a move is simply this: pretend you’ve made the move, and now
evaluate the board from the point of view of your opponent. But how does
your opponent evaluate the position? Well, he looks for kis best move. That
is, he mentally runs through all possible moves and evaluates them from
what he thinks is your point of view, hoping they will look bad to you. But
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notice that we have now defined “best move” recursively, simply using the
maxim that what is best for one side is worst for the other. The recursive
procedure which looks for the best move operates by trying a move, and
then calling on itself in the role of opponent! As such, it tries another move, and
calls on itself in the role of its opponent’s opponent—that is, itself.

This recursion can go several levels deep—but it’s got to bottom out
somewhere! How do you evaluate a board position without looking ahead?
There are a number of useful criteria for this purpose, such as simply the
number of pieces on each side, the number and type of pieces under attack,
the control of the center, and so on. By using this kind of evaluation at the
bottom, the recursive move-generator can pop back upwards and give an
evaluation at the top level of each different move. One of the parameters in
the self-calling, then, must tell how many moves to look ahead. The outer-
most call on the procedure will use some externally set value for this
parameter. Thereafter, each time the procedure recursively calls itself, it
must decrease this look-ahead parameter by 1. That way, when the
parameter reaches zero, the procedure will follow the alternate pathway—
the non-recursive evaluation.

In this kind of game-playing program, each move investigated causes
the generation of a so-called “look-ahead tree”, with the move itself as
trunk, responses as main branches, counter-responses as subsidiary
branches, and so on. In Figure 38 I have shown a simple look-ahead tree,
depicting the start of a tic-tac-toe game. There is an art to figuring out how
to avoid exploring every branch of a look-ahead tree out to its tip. In chess
trees, people—not computers—seem to excel at this art; it is known that
top-level players look ahead relatively little, compared to most chess pro-
grams—yet the people are far better! In the early days of computer chess,
people used to estimate that it would be ten years until a computer (or

FIGURE 38. The branching tree of moves and countermoves at the start of a game of
tic-tac-toe.
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program) was world champion. Burt after ten years had passed, it seemed
that the day a computer would become world champion was still more than
ten years away . .. This is just one more piece of evidence for the rather
recursive

Hofstadter's Law: It always takes longer than you expect, even
when you take into account Hofstadter’s Law.

Recursion and Unpredictability

Now what is the connection between the recursive processes of this Chap-
ter, and the recursive sets of the preceding Chapter? The answer involves
the notion of a recursively enumerable set. For a set to be r.e. means that it can
be generated from a set of starting points (axioms), by the repeated applica-
tion of rules of inference. Thus, the set grows and grows, each new element
being compounded somehow out of previous elements, in a sort of “math-
ematical snowball”. But this is the essence of recursion—something being
defined in terms of simpler versions of itself, instead of explicitly. The
Fibonacci numbers and the Lucas numbers are perfect examples of r.e.
sets—snowballing from two elements by a recursive rule into infinite sets. It
is just a matter of convention to call anr.e. set whose complement is also r.e.
“recursive”.

Recursive enumeration is a process in which new things emerge from
old things by fixed rules. There seem to be many surprises in such process-
es—for example the unpredictability of the Q-sequence. It might seem that
recursively defined sequences of that type possess some sort of inherently
increasing complexity of behavior, so that the further out you go, the less
predictable they get. This kind of thought carried a little further suggests
that suitably complicated recursive systems might be strong enough to
break out of any predetermined patterns. And isn’t this one of the defining
properties of intelligence? Instead of just considering programs composed
of procedures which can recursively call themselves, why not get really
sophisticated, and invent programs which can modify themselves—pro-
grams which can act on programs, extending them, improving them,
generalizing them, fixing them, and so on? This kind of “tangled recur-
sion” probably lies at the heart of intelligence.
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Canon
by Intervallic Augmentation

Achilles and the Tortoise have just finished a delicious Chinese banquet
for two, at the best Chinese restaurant in town.

Achilles:  You wield a mean chopstick, Mr. T,

Tortoise: 1 ought to. Ever since my youth, I have had a fondness for
Oriental cuisine. And you—did you enjoy your meal, Achilles?
Achilles: Immensely. I'd not eaten Chinese food before. This meal was a

splendid introduction. And now, are you in a hurry to go, or shall we
just sit here and talk a little while?
Tortoise: I'd love to talk while we drink our tea. Waiter!

(A waiter comes up.)
Could we have our bill, please, and some more tea?
(The waiter rushes off.)

Achilles: You may know more about Chinese cuisine than I do, Mr. T, but
I'll bet I know more about Japanese poetry than you do. Have you ever
read any haiku?

Tortoise: I'm afraid not. What is a haiku?

Achilles: A haiku is a Japanese seventeen-syllable poem—or minipoem,
rather, which is evocative in the same way, perhaps, as a fragrant rose
petal is, or a lily pond in a light drizzle. It generally consists of groups
of five, then seven, then five syllables.

Tortoise: Such compressed poems with seventeen syllables can’t have
much meaning ... ‘

Achilles: Meaning lies as much in the mind of the reader as in the
haiku.

Tortoise: Hmm ... That's an evocative statement.

(The waiter arrives with their bill, another pot of tea, and two fortune
cookies.)

Thank you, waiter. Care for more tea, Achilles?

Achilles:  Please. Those little cookies look delicious. (Picks one up, bites into it,
and begins to chew.) Hey! What's this funny thing inside? A piece of
paper?

Tortoise: 'That’s your fortune, Achilles. Many Chinese restaurants give out
fortune cookies with their bills, as a way of softening the blow. If you
frequent Chinese restaurants, you come to think of fortune cookies

Canon by Intervallic Augmentation 153



less as cookies than as message bearers. Unfortunately you seem to
have swallowed some of your fortune. What does the rest say?

Achilles: 1t's a little strange, for all the letters are run together, with no
spaces in between. Perhaps it needs decoding in some way? Oh, now I
see. If you put the spaces back in where they belong, it says, “ONE WAR
TWO EAR EWE”. I can’t quite make head or tail of that. Maybe it was a
haiku-like poem, of which I ate the majority of syllables.

Tortoise: In that case, your fortune is now a mere 5/17-haiku. And a
curious image it evokes. If 5/17-haiku is 2 new art form, then I'd say
woe, O, woe are we ... May I look at it?

Achilles (handing the Tortoise the small slip of paper): Certainly.

Tortoise: Why, when I “decode” it, Achilles, it comes out completely dif-
ferent! It's not a 5/17-haiku at all. It is a six-syllable message which says,
“O NEW ART WOE ARE WE”. That sounds like an insightful commentary
on the new art form of 5/17-haiku.

Achilles:  You're right. Isn’t it astonishing that the poem contains its own
commentary!

Tortoise:  All 1 did was to shift the reading frame by one unit—that is, shift
all the spaces one unit to the right.

Achilles: Let’s see what your fortune says, Mr. Tortoise.

Tortoise (deftly splitting open his cookie, reads): “Fortune lies as much in the
hand of the eater as in the cookie.”

Achilles:  Your fortune is also a haiku, Mr. Tortoise—at least it’s got seven-
teen syllables in the 5-7-5 form.

Tortoise: Glory be! I would never have noticed that, Achilles. It's the kind
of thing only you would have noticed. What struck me more is what it
says—which, of course, is open to interpretation.

Achilles: 1 guess it just shows that each of us has his own characteristic way
of interpreting messages which we run across . ..

(Idly, Achilles gazes at the tea leaves on the bottom of his empty teacup.)

Tortoise: More tea, Achilles?

Achilles:  Yes, thank you. By the way, how is your friend the Crab? I have
been thinking about him a lot since you told me of your peculiar
phonograph-battle.

Tortoise: 1 have told him about you, too, and he is quite eager to meet you.
He is getting along just fine. In fact, he recently made a new acquisition
in the record player line: a rare type of jukebox.

Achilles:  Oh, would you tell me about it? I find jukeboxes, with their
flashing colored lights and silly songs, so quaint and reminiscent of
bygone eras.

Tortoise: 'This jukebox is too large to fit in his house, so he had a shed
specially built in back for it.

Achilles: 1 can’t imagine why it would be so large, unless it has an unusu-
ally large selection of records. Is that it?

Tortoise:  As a matter of fact, it has exactly one record.
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Achilles:  What? A jukebox with only one record? That’s a contradiction in
terms. Why is the jukebox so big, then? Is its single record gigantic—
twenty feet in diameter?

Tortoise:  No, it’s just a regular jukebox-style record.

Achilles:  Now, Mr. Tortoise, you must be joshing me. After all, what kind
of a jukebox is it that has only a single song?

Tortoise: Who said anything about a single song, Achilles?

Achilles: Every jukebox I've ever run into obeyed the fundamental
jukebox-axiom: “One record, one song”.

Tortoise: This jukebox is different, Achilles. The one record sits vertically
suspended, and behind it there is a small but elaborate network of
overhead rails, from which hang various record players. When you
push a pair of buttons, such as B-1, that selects one of the record
players. This triggers an automatic mechanism that starts the record
player squeakily rolling along the rusty tracks. It gets shunted up
alongside the record—then it clicks into playing position.

Achilles:  And then the record begins spinning and music comes out—
right?

Tortoise: Not quite. The record stands still—it’s the record player which
rotates.

Achalles: 1 might have known. But how, if you have but one record to play,
can you get more than one song out of this crazy contraption?
Tortoise: 1 myself asked the Crab that question. He merely suggested that
I try it out. So I fished a quarter from my pocket (you get three plays
for a quarter), stuffed it in the slot, and hit buttons B-1, then C-3, then

B-10—all just at random.

Achilles:  So phonograph B-1 came sliding down the rail, I suppose, and
plugged itself into the vertical record, and began spinning?

Tortoise: Exactly. The music that came out was quite agreeable, based on
the famous old tune B-A-C-H, which I believe you remember . ..

-4

N

Achilles: Could I ever forget it?

Tortoise: 'This was record player B-1. Then it finished, and was slowly
rolled back into its hanging position, so that C-3 could be slid into
position.

Achilles: Now don't tell me that C-3 played another song?

Tortoise: It did just that.

Achilles:  Ah, 1 understand. It played the flip side of the first song, or
another band on the same side.

Tortoise: No, the record has grooves only on one side, and has only a
single band.
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Achilles: I don’t understand that at all. You CAN'T pull different songs out
of the same record!

Tortoise: 'That's what I thought until I saw Mr. Crab’s jukebox.

Achilles: How did the second song go?

Tortoise: That’s the interesting thing . . . It was a song based on the melody

C-A-G-E.
)
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Achilles: That's a totally different melody!

Tortoise: True.

Achilles:  And isn’t John Cage a composer of modern music? I seem to
remember reading about him in one of my books on haiku.

Tortoise: Exactly. He has composed many celebrated pieces, such as 4'33",
a three-movement piece consisting of silences of different lengths. It’s
wonderfully expressive—if you like that sort of thing.

Achilles: 1 can see where if I were in a loud and brash café I might gladly
pay to hear Cage’s 433" on a jukebox. It might afford some relief!

Tortoise: Right—who wants to hear the racket of clinking dishes and
jangling silverware? By the way, another place where 4'33” would
come in handy is the Hall of Big Cats, at feeding time.

Achilles: Are you suggesting that Cage belongs in the zoo? Well, I guess

that makes some sense. But about the Crab’s jukebox . . . I am baffled.
How could both “BACH” and “CAGE” be coded inside a single record
at once?

Tortoise: You may notice that there is some relation between the two,
Achilles, if you inspect them carefully. Let me point the way. What do
you get if you list the successive intervals in the melody B-A-C-H?

Achilles: Let me see. First it goes down one semitone, from B to A (where
B is taken the German way); then it rises three semitones to C; and
finally it falls one semitone, to H. That yields the pattern:

-1, +3, -1

Tortoise: Precisely. What about C-A-G-E, now?

Achilles:  Well, in this case, it begins by falling three semitones, then rises
ten semitones (nearly an octave), and finally falls three more
semitones. That means the pattern is:

-3, +10, -3.

It’s very much like the other one, isn’t it?

Tortoise: Indeed it is. They have exactly the same “skeleton”, in a certain
sense. You can make C-A-G-E out of B-A-C-H by multiplying all the
intervals by 3V3, and taking the nearest whole number.

Achilles:  Well, blow me down and pick me up! So does that mean that only
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some sort of skeletal code is present in the grooves, and that the
various record players add their own interpretations to that code?

Tortoise: 1 don’t know, for sure. The cagey Crab wouldn’t fill me in on all
the details. But I did get to hear a third song, when record player B-10
swiveled into place.

Achilles: How did it go?

Tortoise: The melody consisted of enormously wide intervals, and went

B-C-A-H.
o
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The interval pattern in semitones was:

-10, +33, -10.

It can be gotten from the CAGE pattern by yet another multiplication
by 3%, and rounding to whole numbers.

Achilles: 1s there a name for this kind of interval multiplication?

Tortoise: One could call it “intervallic augmentation”. It is similar to the
canonic device of temporal augmentation, where all the time values of
notes in a melody get multiplied by some constant. There, the effect is
just to slow the melody down. Here, the effect is to expand the melodic
range in a curious way.

Achilles: Amazing. So all three melodies you tried were intervallic aug-
mentations of one single underlying groove-pattern in the record?

Tortoise: That's what I concluded.

Achilles: 1 find it curious that when you augment BACH you get CAGE,
and when you augment CAGE over again, you get BACH back, except
jumbled up inside, as if BACH had an upset stomach after passing
through the intermediate stage of CAGE.

Tortoise: That sounds like an insightful commentary on the new art form
of Cage.
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CHAPTER VI

The Location of Meaning

When Is One Thing Not Always the Same?

Last CHAPTER, WE came upon the question, “When are two things the
same?” In this Chapter, we will deal with the flip side of that question:
“When is one thing not always the same?” The issue we are broaching is
whether meaning can be said to be inherent in a message, or whether
meaning is always manufactured by the interaction of a mind or a
mechanism with a message—as in the preceding Dialogue. In the latter
case, meaning could not said to be located in any single place, nor could it
be said that a message has any universal, or objective, meaning, since each
observer could bring its own meaning to each message. But in the former
case, meaning would have both location and universality. In this Chapter, I
want to present the case for the universality of at least some messages,
without, to be sure, claiming it for all messages. The idea of an “objective
meaning” of a message will turn out to be related, in an interesting way, to
the simplicity with which intelligence can be described.

Information-Bearers and Information-Revealers

I'll begin with my favorite example: the relationship between records,
music, and record players. We feel quite comfortable with the idea that a
record contains the same information as a piece of music, because of the
existence of record players, which can “read” records and convert the
groove-patterns into sounds. In other words, there is an isomorphism
between groove-patterns and sounds, and the record player is a mechanism
which physically realizes that isomorphism. It is natural, then, to think of
the record as an information-bearer, and the record-player as an information-
revealer. A second example of these notions is given by the pg-system.
There, the “information-bearers” are the theorems, and the “information-
revealer” is the interpretation, which is so transparent that we don’t need
any electrical machine to help us extract the information from pq-
theorems.

One gets the impression from these two examples that isomorphisms
and decoding mechanisms (i.e., information-revealers) simply reveal in-
formation which is intrinsically inside the structures, waiting to be “pulled
out”. This leads to the idea that for each structure, there are certain pieces
of information which can be pulled out of it, while there are other pieces of
information which cannot be pulled out of it. But what does this phrase
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“pull out” really mean? How hard are you allowed to pull? There are cases
where by investing sufficient effort, you can pull very recondite pieces of
information out of certain structures. In fact, the pulling-out may involve
such complicated operations that it makes you feel you are putting in more
information than you are pulling out.

Genotype and Phenotype

Take the case of the genetic information commonly said to reside in the
double helix of deoxyribonucleic acid (DNA). A molecule of DNA—a
genotype—is converted into a physical organism—a phenotype—by a very
complex process, involving the manufacture of proteins, the replication of
the DNA, the replication of cells, the gradual differentiation of cell types,
and so on. Incidentally, this unrolling of phenotype from genotype—
epigenesis—is the most tangled of tangled recursions, and in Chapter XVI
we shall devote our full attention to it. Epigenesis is guided by a set of
enormously complex cycles of chemical reactions and feedback loops. By
the time the full organism has been constructed, there is not even the
remotest similarity between its physical characteristics and its genotype.

And yet, itis standard practice to attribute the physical structure of the
organism to the structure of its DNA, and to that alone. The first evidence
for this point of view came from experiments conducted by Oswald Avery
in 1946, and overwhelming corroborative evidence has since been amassed.
Avery’s experiments showed that, of all the biological molecules, only DNA
transmits hereditary properties. One can modify other molecules in an
organism, such as proteins, but such modifications will not be transmitted
to later generations, However, when DNA is modified, all successive gener-
ations inherit the modified DNA. Such experiments show that the only way
of changing the instructions for building a new organism is to change the
DNA—and this, in turn, implies that those instructions must be coded
somehow in the structure of the DNA.

Exotic and Prosaic Isomorphisms

Therefore one seems forced into accepting the idea that the DNA’s struc-
ture contains the information of the phenotype’s structure, which is to say,
the two are dsomorphic. However, the isomorphism is an exotic one, by which
I mean that it is highly nontrivial to divide the phenotype and genotype
into “parts” which can be mapped onto each other. Prosaic isomorphisms,
by contrast, would be ones in which the parts of one structure are easily
mappable onto the parts of the other. An example is the isomorphism
between a record and a piece of music, where one knows that to any sound
in the piece there exists an exact “image” in the patterns etched into the
grooves, and one could pinpoint it arbitrarily accurately, if the need arose.
Another prosaic isomorphism is that between Gplot and any of its internal
butterflies.
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The isomorphism between DNA structure and phenotype structure is
anything but prosaic, and the mechanism which carries it out physically is
awesomely complicated. For instance, if you wanted to find some piece of
your DNA which accounts for the shape of your nose or the shape of your
fingerprint, you would have a very hard time. It would be a little like trying
to pin down the note in a piece of music which is the carrier of the emotional
meaning of the piece. Of course there is no such note, because the emo-
tional meaning is carried on a very high level, by large “chunks” of the
piece, not by single notes. Incidentally, such “chunks” are not necessarily
sets of contiguous notes; there may be disconnected sections which, taken
together, carry some emotional meaning.

Similarly, “genetic meaning”—that is, information about phenotype
structure—is spread all through the small parts of a molecule of DNA,
although nobody understands the language yet. (Warning: Understanding
this “language” would not at all be the same as cracking the Genetic Code,
something which took place in the early 1960’s. The Genetic Code tells how
to translate short portions of DNA into various amino acids. Thus, cracking
the Genetic Code is comparable to figuring out the phonetic values of the
letters of a foreign alphabet, without figuring out the grammar of the
language or the meanings of any of its words. The cracking of the Genetic
Code was a vital step on the way to extracting the meaning of DNA strands,
but it was only the first on a long path which is yet to be trodden.)

Jukeboxes and Triggers

The genetic meaning contained in DNA is one of the best possible exam-
ples of implicit meaning. In order to convert genotype into phenotype, a
set of mechanisms far more complex than the genotype must operate on
the genotype. The various parts of the genotype serve as triggers for those
mechanisms. A jukebox—the ordinary type, not the Crab typel—provides a
useful analogy here: a pair of buttons specifies a very complex action to be
taken by the mechanism, so that the pair of buttons could well be described
as “triggering” the song which is played. In the process which converts
genotype into phenotype, cellular jukeboxes—if you will pardon the
notion!—accept “button-pushings” from short excerpts from a long strand
of DNA, and the “songs” which they play are often prime ingredients in the
creation of further “jukeboxes”. It is as if the output of real jukeboxes,
instead of being love ballads, were songs whose lyrics told how to build
more complex jukeboxes . . . Portions of the DNA trigger the manufacture
of proteins; those proteins trigger hundreds of new reactions; they in turn
trigger the replicating-operation which, in several steps, copies the
DNA—and on and on ... This gives a sense of how recursive the whole
process is. The final result of these many-triggered triggerings is the
phenotype—the individual. And one says that the phenotype is the
revelation—the “pulling-out”—of the information that was present in the
DNA to start with, latently. (The term “revelation” in this context is due to
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Jacques Monod, one of the deepest and most original of twentieth-century
molecular biologists.)

Now no one would say that a song coming out of the loudspeaker of a
jukebox constitutes a “revelation” of information inherent in the pair of
buttons which were pressed, for the pair of buttons seem to be mere triggers
whose purpose is to activate information-bearing portions of the jukebox
mechanism. On the other hand, it seems perfectly reasonable to call the
extraction of music from a record a “revelation” of information inherent in
the record, for several reasons:

(1) the music does not seem to be concealed in the mechanism of
the record player;

(2) it is possible to match pieces of the input (the record) with
pieces of the output (the music) to an arbitrary degree of
accuracy;

(3) itis possible to play other records on the same record player
and get other sounds out;

(4) the record and the record player are easily separated from
one another.

It is another question altogether whether the fragments of a smashed
record contain intrinsic meaning. The edges of the separate pieces fit
together and in that way allow the information to be reconstituted—but
something much more complex is going on here. Then there is the ques-
tion of the intrinsic meaning of a scrambled telephone call . .. There is a
vast spectrum of degrees of inherency of meaning. It is interesting to try to
place epigenesis in this spectrum. As development of an organism takes
place, can it be said that the information is being “pulled out” of its DNA?
Is that where all of the information about the organism’s structure resides?

DNA and the Necessity of Chemical Context

In one sense, the answer seems to be yes, thanks to experiments. like
Avery’s. But in another sense, the answer seems to be no, because so much
of the pulling-out process depends on extraordinarily complicated cellular
chemical processes, which are not coded for in the DNA itself. The DNA
relies on the fact that they will happen, but does not seem to contain any
code which brings them about. Thus we have two conflicting views on the
nature of the information in a genotype. One view says that so much of the
information is outside the DNA that it is not reasonable to look upon the
DNA as anything more than a very intricate set of triggers, like a sequence
of buttons to be pushed on a jukebox; another view says that the information
is all there, but in a very implicit form.

Now it might seem that these are just two ways of saying the same
thing, but that is not necessarily so. One view says that the DNA is quite
meaningless out of context; the other says that even if it were taken out of
context, a molecule of DNA from a living being has such a compelling inner
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logic to its structure that its message could be deduced anyway. To put it as
succinctly as possible, one view says that in order for DNA to have meaning,
chemical context is necessary; the other view says that only intelligence is
necessary to reveal the “intrinsic meaning” of a strand of DNA.

An Unlikely UFO

We can get some perspective on this issue by considering a strange
hypothetical event. A record of David Oistrakh and Lev Oborin playing
Bach’s sonata in F Minor for violin and clavier is sent up in a satellite. From
the satellite it is then launched on a course which will carry it outside of the
solar system, perhaps out of the entire galaxy—just a thin plastic platter
with a hole in the middle, swirling its way through intergalactic space. It has
certainly lost its context. How much meaning does it carry?

If an alien civilization were to encounter it, they would almost certainly
be struck by its shape, and would probably be very interested in it. Thus
immediately its shape, acting as a trigger, has given them some informa-
tion: that it is an artifact, perhaps an information-bearing artifact. This
idea—communicated, or triggered, by the record itself—now creates a new
context in which the record will henceforth be perceived. The next steps in
the decoding might take considerably longer—but that is very hard for us
to assess. We can imagine that if such a record had arrived on earth in
Bach’s time, no one would have known what to make of it, and very likely it
would not have gotten deciphered. But that does not diminish our convic-
tion that the information was in principle there; we just know that human
knowledge in those times was not very sophisticated with respect to the
possibilities of storage, transformation, and revelation of information.

Levels of Understanding of a Message

Nowadays, the idea of decoding is extremely widespread; it is a significant
part of the activity of astronomers, linguists, archaeologists, military
specialists, and so on. It is often suggested that we may be floating in a sea
of radio messages from other civilizations, messages which we do not yet
know how to decipher. And much serious thought has been given to the
techniques of deciphering such a message. One of the main problems—
perhaps the deepest problem—is the question, “How will we recognize the
fact that there is a message at all? How to identify a frame?” The sending of
a record seems to be a simple solution—its gross physical structure is very
attention-drawing, and it is at least plausible to us that it would trigger, in
any sufficiently great intelligence, the idea of looking for information
hidden in it. However, for technological reasons, sending of solid objects to
other star systems seems to be out of the question. Still, that does not
prevent our thinking about the idea.

Now suppose that an alien civilization hit upon the idea that the
appropriate mechanism for translation of the record is a machine which
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converts the groove-patterns into sounds. This would still be a far cry from
a true deciphering. What, indeed, would constitute a successful deciphering
of such a record? Evidently, the civilization would have to be able to make
sense out of the sounds. Mere production of sounds is in itself hardly
worthwhile, unless they have the desired triggering effect in the brains (if
that is the word) of the alien creatures. And what is that desired effect? It
would be to activate structures in their brains which create emotional
effects in them which are analogous to the emotional effects which we
experience in hearing the piece. In fact, the production of sounds could
even be bypassed, provided that they used the record in some other way to
get at the appropriate structures in their brains. (If we humans had a way
of triggering the appropriate structures in our brains in sequential order,
as music does, we might be quite content to bypass the sounds—but it seems
extraordinarily unlikely that there is any way to do that, other than via our
ears. Deaf composers—Beethoven, Dvofik, Fauré—or musicians who can
“hear” music by looking at a score, do not give the lie to this assertion, for
such abilities are founded upon preceding decades of direct auditory
experiences.)

Here is where things become very unclear. Will beings of an alien
civilization have emotions? Will their emotions—supposing they have
some—be mappable, in any sense, onto ours? If they do have emotions
somewhat like ours, do the emotions cluster together in somewhat the same
way as ours do? Will they understand such amalgams as tragic beauty or
courageous suffering? If it turns out that beings throughout the universe
do share cognitive structures with us to the extent that even emotions
overlap, then in some sense, the record can never be out of its natural
context; that context is part of the scheme of things, in nature. And if such
is the case, then it is likely that a meandering record, if not destroyed en
route, would eventually get picked up by a being or group of beings, and
get deciphered in a way which we would consider successful.

“Imaginary Spacescape”

In asking about the meaning of a molecule of DNA above, I used the
phrase “compelling inner logic”; and I think this is a key notion. To
illustrate this, let us slightly modify our hypothetical record-into-space
event by substituting John Cage’s “Imaginary Landscape no. 4” for the
Bach. This piece is a classic of aleatoric, or chance, music—music whose
structure is chosen by various random processes, rather than by an attempt
to convey a personal emotion. In this case, twenty-four performers attach
themselves to the twenty-four knobs on twelve radios. For the duration of
the piece they twiddle their knobs in aleatoric ways so that each radio
randomly gets louder and softer, switching stations all the while. The total
sound produced is the piece of music. Cage’s attitude is expressed in his
own words: “to let sounds be themselves, rather than vehicles for man-
made theories or expressions of human sentiments.”
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Now imagine that this is the piece on the record sent out into space. It
would be extraordinarily unlikely—if not downright impossible—for an
alien civilization to understand the nature of the artifact. They would
probably be very puzzled by the contradiction between the frame message
(“I am a message; decode me”), and the chaos of the inner structure. There
are few “chunks” to seize onto in this Cage piece, few patterns which could
guide a decipherer. On the other hand, there seems to be, in a Bach piece,
much to seize onto—patterns, patterns of patterns, and so on. We have no
way of knowing whether such patterns are universally appealing. We do
not know enough about the nature of intelligence, emotions, or music to
say whether the inner logic of a piece by Bach is so universally compelling
that its meaning could span galaxies.

However, whether Bach in particular has enough inner logic is not the
issue here; the issue is whether any message has, per se, enough compelling
inner logic that its context will be restored automatically whenever intelli-
gence of a high enough level comes 1n contact with it. If some message did
have that context-restoring property, then it would seem reasonable to
consider the meaning of the message as an inherent property of the
message.

The Heroic Decipherers

Another illuminating example of these ideas is the decipherment of ancient
texts written in unknown languages and unknown alphabets. The intuition
feels that there is information inherent in such texts, whether or not we
succeed in revealing it. It is as strong a feeling as the belief that there is
meaning inherent in a newspaper written in Chinese, even if we are
completely ignorant of Chinese. Once the script or language of a text has
been broken, then no one questions where the meaning resides: clearly it
resides in the text, not in the method of decipherment——just as music resides
in a record, not inside a record player! One of the ways that we identify
decoding mechanisms is by the fact that they do not add any meaning to the
signs or objects which they take as input; they merely reveal the intrinsic
meaning of those signs or objects. A jukebox is not a decoding mechanism,
for it does not reveal any meaning belonging to its input symbols; on the
contrary, it supplies meaning concealed inside itself.

Now the decipherment of an ancient text may have involved decades
of labor by several rival teams of scholars, drawing on knowledge stored in
libraries all over the world . .. Doesn’t this process add information, too?
Just how intrinsic is the meaning of a text, when such mammoth efforts are
required in order to find the decoding rules? Has one put meaning into the
text, or was that meaning already there? My intuition says that the meaning
was always there, and that despite the arduousness of the pulling-out
process, no meaning was pulled out that wasn’t in the text to start with. This
intuition comes mainly from one fact: I feel that the result was inevitable;
that, had the text not been deciphered by this group at this time, it would
have been deciphered by that group at that time—and it would have come
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FIGURE 39. The Rosetta Stone [courtesy of the British Museum].

out the same way. That is why the meaning is part of the text itself; it acts
upon intelligence in a predictable way. Generally, we can say: meaning is
part of an object to the extent that it acts upon intelligence in a predictable
way.

In Figure 39 is shown the Rosetta stone, one of the most precious of all
historic discoveries. It was the key to the decipherment of Egyptian hiero-
glyphics, for it contains parallel text in three ancient scripts: hieroglyphics,
demotic characters, and Greek. The inscription on this basalt stele was first
deciphered in 1821 by Jean Francois Champollion, the “father of Egyptol-
ogy”; it is a decree of priests assembled at Memphis in favor of Ptolemy V
Epiphanes.
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Three Layers of Any Message

In these examples of decipherment of out-of-context messages, we can
separate out fairly clearly three levels of information: (1) the frame mes-
sage; (2) the outer message; (3) the inner message. The one we are most
familiar with is (3), the inner message; it is the message which is supposed
to be transmitted: the emotional experiences in music, the phenotype in
genetics, the royalty and rites of ancient civilizations in tablets, etc.

To understand the inner message is to have extracted the meaning
intended by the sender.

The frame message is the message “I am a message; decode me if you
can!”; and it is implicitly conveyed by the gross structural aspects of any
information-bearer.

To understand the frame message is to recognize the need
for a decoding-mechanism.

If the frame message is recognized as such, then attention is switched
to level (2), the outer message. This is information, implicitly carried by
symbol-patterns and structures in the message, which tells how to decode
the inner message.

To understand the outer message is to build, or know how to
build, the correct decoding mechanism for the inner message.

This outer level is perforce an implicit message, in the sense that the sender
cannot ensure that it will be understood. It would be a vain effort to send
instructions which tell how to decode the outer message, for they would
have to be part of the inner message, which can only be understood once
the decoding mechanism has been found. For this reason, the outer message is
necessarily a set of triggers, rather than a message which can be revealed by a
known decoder.

The formulation of these three “layers” is only a rather crude begin-
ning at analyzing how meaning is contained in messages. There may be
layers and layers of outer and inner messages, rather than just one of each.
Think, for instance, of how intricately tangled are the inner and outer
messages of the Rosetta stone. To decode a message fully, one would have
to reconstruct the entire semantic structure which underlay its creation—
and thus to understand the sender in every deep way. Hence one could
throw away the inner message, because if one truly understood all the
finesses of the outer message, the inner message would be reconstructible.

The book After Babel, by George Steiner, is a long discussion of the
interaction between inner and outer messages (though he never uses that
terminology). The tone of his book is given by this quote:

We normally use a shorthand beneath which there lies a wealth of subcon-
scious, deliberately concealed or declared associations so extensive and intri-
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cate that they probably equal the sum and uniqueness of our status as an
individual person.!

Thoughts along the same lines are expressed by Leonard B. Meyer, in his
book Music, the Arts, and Ideas:

The way of listening to a composition by Elliott Carter is radically different
from the way of listening appropriate to a work by John Cage. Similarly, a
novel by Beckett must in a significant sense be read differently from one by
Bellow. A painting by Willem de Kooning and one by Andy Warhol require
different perceptional-cognitive attitudes.?

Perhaps works of art are trying to convey their style more than any-
thing else. In that case, if you could ever plumb a style to its very bottom,

you could dispense with the creations in that style. “Style”, “outer message”,
“decoding technique”—all ways of expressing the same basic idea.

Schrédinger’'s Aperiodic Crystals

What makes us see a frame message in certain objects, but none in others?
Why should an alien civilization suspect, if they intercept an errant record,
that a message lurks within? What would make a record any different from
a meteorite? Clearly its geometric shape is the first clue that “something
funny is going on”. The next clue is that, on a more microscopic scale, it
consists of a very long aperiodic sequence of patterns, arranged in a spiral.
If we were to unwrap the spiral, we would have one huge linear sequence
(around 2000 feet long) of minuscule symbols. This is not so different from
a DNA molecule, whose symbols, drawn from a meager “alphabet” of four
different chemical bases, are arrayed in a one-dimensional sequence, and
then coiled up into a helix. Before Avery had established the connection
between genes and DNA, the physicist Erwin Schrodinger predicted, on
purely theoretical grounds, that genetic information would have to be
stored in “aperiodic crystals”, in his influential book What Is Life? In fact,
books themselves are aperiodic crystals contained inside neat geometrical
forms. These examples suggest that, where an aperiodic crystal is found
“packaged” inside a very regular geometric structure, there may lurk an
inner message. (I don’t claim this is a complete characterization of frame
messages; however, it is a fact that many common messages have frame
messages of this description. See Figure 40 for some good examples.)

Languages for the Three Levels

The three levels are very clear in the case of a message found in a bottle
washed up on a beach. The first level, the frame message, is found when
one picks up the bottle and sees that it is sealed, and contains a dry piece of
paper. Even without seeing writing, one recognizes this type of artifact as
an information-bearer, and at this point it would take an extraordinary—
almost inhuman—Iack of curiosity, to drop the bottle and not look further.
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Next, one opens the bottle and examines the marks on the paper. Perhaps
they are in Japanese; this can be discovered without any of the inner
message being understood—it merely comes from a recognition of the
characters. The outer message can be stated as an English sentence: “I am
in Japanese.” Once this has been discovered, then one can proceed to
the inner message, which may be a call for help, a haiku poem, a lover’s
lament . ..

It would be of no use to include in the inner message a translation of
the sentence “This message is in Japanese”, since it would take someone
who knew Japanese to read it. And before reading it, he would have to
recognize the fact that, as it is in Japanese, he can read it. You might try to
wriggle out of this by including translations of the statement “This message
is in Japanese” into many different languages. That would help in a
practical sense, but in a theoretical sense the same difficulty is there. An
English-speaking person still has to recognize the “Englishness” of the
message; otherwise it does no good. Thus one cannot avoid the problem
that one has to find out how to decipher the inner message from the outside;
the inner message itself may provide clues and confirmations, but those are
at best triggers acting upon the bottle finder (or upon the people whom he
enlists to help).

Similar kinds of problem confront the shortwave radio listener. First,
he has to decide whether the sounds he hears actually constitute a message,
or are just static. The sounds in themselves do not give the answer, not even
in the unlikely case that the inner message is in the listener’s own native
language, and is saying, “These sounds actually constitute a message and
are not just static!” If the listener recognizes a frame message in the sounds,
then he tries to identify the language the broadcast is in—and clearly, he is
still on the outside; he accepts triggers from the radio, but they cannot
explicitly tell him the answer.

It is in the nature of outer messages that they are not conveyed in any

FIGURE 40. A collage of scripts. Uppermost on the left is an inscription in the unde-
ciphered boustrophedonic writing system from Easter Island, in which every second line is
upside down. The characters are chiseled on a wooden tablet, 4 inches by 35 inches. Moving
clockwise, we encounter vertically written Mongolian: above, present-day Mongolian, and
below, a document dating from 1314. Then we come to a poem in Bengali by Rabindranath
Tagore in the bottom righthand corner. Next to it is a newspaper headline in Malayalam (West
Kerala, southern India), above which is the elegant curvilinear language Tamil (East
Kerala). The smallest entry is part of a folk tale in Buginese (Celebes Island, Indonesia). In the
center of the collage is a paragraph in the Thai language, and above it a manuscript in Runic
dating from the fourteenth century, containing a sample of the provincial law of Scania (south
Sweden). Finally, wedged in on the left is a section of the laws of Hammurabi, written in
Assyrian cuneiform. As an outsider, I feel a deep sense of mystery as I wonder how meaning is
cloaked in the strange curves and angles of each of these beautiful aperiodic crystals. In form,
there is content. [From Hans Jensen, Sign, Symbol, and Script (New York: G. Putnam’s Sons,
1969), pp. 89 (cuneiform), 356 (Easter Island), 386, 417 (Mongolian), 552 (Runic); from Kenneth
Katzner, The Languages of the World (New York: Funk & Wagnalls, 1975), pp. 190 (Bengali), 237
(Buginese); from I. A. Richards and Christine Gibson, English Through Pictures (New York:
Washington Square Press, 1960), pp. 73 (Tamil), 82 ( Thai).]
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explicit language. To find an explicit language in which to convey outer
messages would not be a breakthrough—it would be a contradiction in
terms! It is always the listener’s burden to understand the outer message.
Success lets him break through into the inside, at which point the ratio of
trlggers to explicit meamngs shifts drastically towards the latter. By com-
parison with the previous stages, understanding the inner message seems
effortless. It is as if it just gets pumped in.

The “Jukebox” Theory of Meaning

These examples may appear to be evidence for the viewpoint that no
message has intrinsic meaning, for in order to understand any inner
message, no matter how simple it is, one must first understand its frame
message and its outer message, both of which are carried only by triggers
(such as being written in the Japanese alphabet, or having spiraling
grooves, etc.). It begins to seem, then, that one cannot get away from a
Jukebox theory of meaning—the doctrine that no message contains inherent
meaning, because, before any message can be understood, it has to be used
as the input to some “jukebox”, which means that information contained in
the “jukebox” must be added to the message before it acquires meaning.
This argument is very similar to the trap which the Tortoise caught
Achilles in, in Lewis Carroll’s Dialogue. There, the trap was the idea that
before you can use any rule, you have to have a rule which tells you how to
use that rule; in other words, there is an infinite hierarchy of levels of rules,
which prevents any rule from ever getting used. Here, the trap is the idea
that before you can understand any message, you have to have a message
which tells you how to understand that message; in other words, there is an
infinite hierarchy of levels of messages, which prevents any message from
ever getting understood. However, we all know that these paradoxes are
invalid, for rules do get used, and messages do get understood. How come?

Against the Jukebox Theory

This happens because our intelligence is not disembodied, but is instan-
tiated in physical objects: our brains. Their structure is due to the long
process of evolution, and their operations are governed by the laws of
physics. Since they are physical entities, our brains run without being told how
to run. So it is at the level where thoughts are produced by physical law that
Carroll’s rule-paradox breaks down; and likewise, it is at the level where a
brain interprets incoming data as a message that the message-paradox
breaks down. It seems that brains come equipped with “hardware” for
recognizing that certain things are messages, and for decoding those mes-
sages. This minimal inborn ability to extract inner meaning is what allows
the highly recursive, snowballing process of language acquisition to take
place. The inborn hardware is like a jukebox: it supplies the additional
information which turns mere triggers into complete messages.
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Meaning Is Intrinsic If Intelligence Is Natural

Now if different people’s “jukeboxes” had different “songs” in them, and
responded to given triggers in completely idiosyncratic ways, then we
would have no inclination to attribute intrinsic meaning to those triggers.
However, human brains are so constructed that one brain responds in
much the same way to a given trigger as does another brain, all other things
being equal. This is why a baby can learn any language; it responds to
triggers in the same way as any other baby. This uniformity of “human
jukeboxes” establishes a uniform “language” in which frame messages and
outer messages can be communicated. If, furthermore, we believe that
human intelligence is just one example of a general phenomenon in
nature—the emergence of intelligent beings in widely varying contexts—
then presumably the “language” in which frame messages and outer mes-
sages are communicated among humans is a “dialect” of a universal lan-
guage by which intelligences can communicate with each other. Thus, there
would be certain kinds of triggers which would have “universal triggering
power”, in that all intelligent beings would tend to respond to them in the
same way as we do.

This would allow us to shift our description of where meaning is
located. We could ascribe the meanings (frame, outer, and inner) of a
message to the message itself, because of the fact that deciphering
mechanisms are themselves universal-—that is, they are fundamental forms
of nature which arise in the same way in diverse contexts. To make it very
concrete, suppose that “A-5" triggered the same song in all jukeboxes—and
suppose moreover that jukeboxes were not man-made artfacts, but widely
occurring natural objects, like galaxies or carbon atoms. Under such cir-
cumstances, we would probably feel justified in calling the universal trig-
gering power of “A-5" its “inherent meaning”; also, “A-5" would merit the
name of “message”, rather than “trigger”, and the song would indeed be a
“revelation” of the inherent, though implicit, meaning of “A-5".

Earth Chauvinism

This ascribing of meaning to a message comes from the invariance of the
processing of the message by intelligences distributed anywhere in the
universe. In that sense, it bears some resemblance to the ascribing of mass
to an object. To the ancients, it must have seemed that an object’s weight
was an intrinsic property of the object. But as gravity became understood, it
was realized that weight varies with the gravitational field the object is
immersed in. Nevertheless, there is a related quantity, the mass, which does
not vary according to the gravitational field; and from this invariance came
the conclusion that an object’s mass was an intrinsic property of the object
itself. If it turns out that mass is also variable, according to context, then we
will backtrack and revise our opinion that it is an intrinsic property of an
object. In the same way, we might imagine that there could exist other
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kinds of “jukeboxes”—intelligences-—which communicate among each
other via messages which we would never recognize as messages, and who
also would never recognize our messages as messages. If that were the case,
then the claim that meaning is an intrinsic property of a set of symbols
would have to be reconsidered. On the other hand, how could we ever
realize that such beings existed?

It is interesting to compare this argument for the inherency of mean-
ing with a parallel argument for the inherency of weight. Suppose one
defined an object’s weight as “the magnitude of the downward force which
the object exerts when on the surface of the planet Earth”. Under this
definition, the downward force which an object exerts when on the surface
of Mars would have to be given another name than “weight”. This defini-
tion makes weight an inherent property, but at the cost of geocentricity—
“Earth chauvinism”. It would be like “Greenwich chauvinism”—refusing to
accept local time anywhere on the globe but in the GMT time zone. Itis an
unnatural way to think of time.

Perhaps we are unknowingly burdened with a similar chauvinism with
respect to intelligence, and consequently with respect to meaning. In our
chauvinism, we would call any being with a brain sufficiently much like our
own “intelligent”, and refuse to recognize other types of objects as intelli-
gent. To take an extreme example, consider a meteorite which, instead of
deciphering the outer-space Bach record, punctures it with colossal indif-
ference, and continues in its merry orbit. It has interacted with the record
in a way which we feel disregards the record’s meaning. Therefore, we
might well feel tempted to call the meteorite “stupid”. But perhaps we
would thereby do the meteorite a disservice. Perhaps it has a “higher
intelligence” which we in our Earth chauvinism cannot perceive, and its
interaction with the record was a manifestation of that higher intelligence.
Perhaps, then, the record has a “higher meaning”—totally different from
that which we attribute to it; perhaps its meaning depends on the #ype of
intelligence perceiving it. Perhaps.

It would be nice if we could define intelligence in some other way than
“that which gets the same meaning out of a sequence of symbols as we do”.
For if we can only define it this one way, then our argument that meaning is
an intrinsic property is circular, hence content-free. We should try to
formulate in some independent way a set of characteristics which deserve
the name “intelligence”. Such characteristics would constitute the uniform
core of intelligence, shared by humans. At this point in history we do not
yet have a well-defined list of those characteristics. However, it appears
likely that within the next few decades there will be much progress made in
elucidating what human intelligence is. In particular, perhaps cognitive
psychologists, workers in Artificial Intelligence, and neuroscientists will be
able to synthesize their understandings, and come up with a definition of
intelligence. It may still be human-chauvinistic; there is no way around
that. But to counterbalance that, there may be some elegant and
beautiful—and perhaps even simple-—abstract ways of characterizing the
essence of intelligence. This would serve to lessen the feeling of having
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formulated an anthropocentric concept. And of course, if contact were
established with an alien civilization from another star system, we would
feel supported in our belief that our own type of intelligence is not just a
fluke, but an example of a basic form which reappears in nature in diverse
contexts, like stars and uranium nuclei. This in turn would support the idea
of meaning being an inherent property.

To conclude this topic, let us consider some new and old examples,
and discuss the degree of inherent meaning which they have, by putting
ourselves, to the extent that we can, in the shoes of an alien civilization
which intercepts a weird object . . .

Two Plaques in Space

Consider a rectangular plaque made of an indestructible metallic alloy, on
which are engraved two dots, one immediately above the another: the
preceding colon shows a picture. Though the overall form of the object
might suggest that it is an artifact, and therefore that it might conceal some
message, two dots are simply not sufficient to convey anything. (Can you,
before reading on, hypothesize what they are supposed to mean?) But
suppose that we made a second plaque, containing more dots, as follows:

P
L I
L I S S ST S S
* s s s s 8 s 8 8 ¢ 2 s ¢ s s s s s s s .

@ 8 & 8 & & & & 8 & 8 8 ¢ 9 s & 5 5 5 8 s s s s s s s et s e & s & »

Now one of the most obvious things to do—so it might seem to a
terrestrial intelligence at least—would be to count the dots in the successive
rows. The sequence obtained is:

1, 1, 2, 3, 5, 8, 13, 21, 34.

Here there is evidence of a rule governing the progression from one line to
the next. In fact, the recursive part of the definition of the Fibonacci
numbers can be inferred, with some confidence, from this list. Suppose we
think of the initial pair of values (1,1) as a “genotype” from which the
“phenotype”—the full Fibonacci sequence—is pulled out by a recursive
rule. By sending the genotype alone—namely the first version of the
plaque—we fail to send the information which allows reconstitution of the
phenotype. Thus, the genotype does not contain the full specification of
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the phenotype. On the other hand, if we consider the second version of the
plaque to be the genotype, then there is much better cause to suppose that
the phenotype could actually be reconstituted. This new version of the
genotype—a “long genotype”—contains so much information that the
mechanism by which phenotype is pulled out of genotype can be inferred by intelli-
gence from the genotype alone.

Once this mechanism is firmly established as the way to pull phenotype
from genotype, then we can go back to using “short genotypes”—like the
first plaque. For instance, the “short genotype” (1,3) would yield the
phenotype

1, 3, 4, 7, 11, 18, 29, 47,...

—the Lucas sequence. And for every set of two initial values—that is, for
every short genotype—there will be a corresponding phenotype. But the
short genotypes, unlike the long ones, are only triggers—buttons to be
pushed on the jukeboxes into which the recursive rule has been built. The
long genotypes are informative enough that they trigger, in an intelligent
being, the recognition of what kind of “jukebox” to build. In that sense, the
long genotypes contain the information of the phenotype, whereas the
short genotypes do not. In other words, the long genotype transmits not
only an inner message, but also an outer message, which enables the inner
message to be read. It seems that the clarity of the outer message resides in
the sheer length of the message. This is not unexpected; it parallels pre-
cisely what happens in deciphering ancient texts. Clearly, one’s likelihood
of success depends crucially on the amount of text available.

Bach vs. Cage Again

But just having a long text may not be enough. Let us take up once more
the difference between sending a record of Bach’s music into space, and a
record of John Cage’s music. Incidentally, the latter, being a Composition
of Aleatorically Generated Elements, might be handily called a “CAGE”,
whereas the former, being a Beautiful Aperiodic Crystal of Harmony,
might aptly be dubbed a “BACH”. Now let’s consider what the meaning of
a Cage piece is to ourselves. A Cage piece has to be taken in a large cultural
setting—as a revolt against certain kinds of traditions. Thus, if we want to
transmit that meaning, we must not only send the notes of the piece, but we
must have earlier communicated an extensive history of Western culture. It
is fair to say, then, that an isolated record of John Cage’s music does not
have an intrinsic meaning. However, for a listener who is sufficiently well
versed in Western and Eastern cultures, particularly in the trends in West-
ern music over the last few decades, it does carry meaning—but such a
listener is like a jukebox, and the piece is like a pair of buttons. The
meaning is mostly contained inside the listener to begin with; the music
serves only to trigger it. And this “jukebox”, unlike pure intelligence, is not
at all universal; it is highly earthbound, depending on idiosyncratic se-
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quences of events all over our globe for long periods of time. Hoping that
John Cage’s music will be understood by another civilization is like hoping
that your favorite tune, on a jukebox on the moon, will have the same code
buttons as in a saloon in Saskatoon.

On the other hand, to appreciate Bach requires far less cultural knowl-
edge. This may seem like high irony, for Bach is so much more complex
and organized, and Cage is so devoid of intellectuality. But there is a
strange reversal here: intelligence loves patterns and balks at randomness.
For most people, the randomness in Cage’s music requires much explana-
tion; and even after explanations, they may feel they are missing the
message—whereas with much of Bach, words are superfluous. In that
sense, Bach’s music is more self-contained than Cage’s music. Still, it is not
clear how much of the human condition is presumed by Bach.

For instance, music has three major dimensions of structure (melody,
harmony, rhythm), each of which can be further divided into small-scale,
intermediate, and overall aspects. Now in each of these dimensions, there is
a certain amount of complexity which our minds can handle before bog-
gling; clearly a composer takes this into account, mostly unconsciously,
when writing a piece. These “levels of tolerable complexity” along different
dimensions are probably very dependent on the peculiar conditions of our
evolution as a species, and another intelligent species might have developed
music with totally different levels of tolerable complexity along these many
dimensions. Thus a Bach piece might conceivably have to be accompanied
by a lot of information about the human species, which simply could not be
inferred from the music’s structure alone. If we equate the Bach music with
a genotype, and the emotions which it is supposed to evoke with the
phenotype, then what we are interested in is whether the genotype contains
all the information necessary for the revelation of the phenotype.

How Universal Is DNA’s Message?

The general question which we are facing, and which is very similar to the
questions inspired by the two plaques, is this: “How much of the context
necessary for its own understanding is a message capable of restoring?” We
can now revert to the original biological meanings of “genotype” and
“phenotype”—DNA and a living organism—and ask similar questions.
Does DNA have universal triggering power? Or does it need a
“biojukebox” to reveal its meaning? Can DNA evoke a phenotype without
being embedded in the proper chemical context? To this question the
answer is no—but a qualified no. Certainly a molecule of DNA in a vacuum
will not create anything at all. However, if a molecule of DNA were sent out
to seek its fortune in the universe, as we imagined the BACH and the
CAGE were, it might be intercepted by an intelligent civilization. They
might first of all recognize its frame message. Given that, they might go on
to try to deduce from its chemical structure what kind of chemical envi-
ronment it seemed to want, and then supply such an environment. Succes-
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sively more refined attempts along these lines might eventually lead to a
full restoration of the chemical context necessary for the revelation of
DNA'’s phenotypical meaning. This may sound a little implausible, but if
one allows many millions of years for the experiment, perhaps the DNA’s
meaning would finally emerge.

On the other hand, if the sequerice of bases which compose a strand of
DNA were sent as abstract symbols (as in Fig.41), not as a long helical
molecule, the odds are virtually nil that this, as an outer message, would
trigger the proper decoding mechanism which would enable the
phenotype to be drawn out of the genotype. This would be a case of
wrapping an inner message in such an abstract outer message that the
context-restoring power of the outer message would be lost, and so in a
very pragmatic sense, the set of symbols would have no intrinsic meaning.
Lest you think this all sounds hopelessly abstract and philosophical, consid-
er that the exact moment when phenotype can be said to be “available”, or
“implied”, by genotype, is a highly charged issue in our day: it is the issue of
abortion.

FIGURE 41. This Giant Aperiodic Crystal is the base sequence for the chromosome of
bacteriophage $X174. It is the first complete genome ever mapped out for any organism,
About 2,000 of these boustrophedonic pages would be needed to show the base sequence of a
single E. Coli cell, and about one million pages to show the base sequence of the DNA of a
single human cell. The book now in your hands contains roughly the same amount of
information as a molecular blueprint for ove measly E. Coli cell.

CCGTCAGGATTGACACCCTCCCAATTGTATGTTTTCATGCCTCCAAATCTTGGAGGCTTITTTATGGTICGTTCTTATTACCCTICTGAATGTCACGCTG >

6 ACGAATACCTTICGGTTCGTAACCCCTAACTCTITCTCATCTTTACGGTGTTCGGAGTTATCGTCCAAATTCTCGGAGCTATGCGAGT TTCAGTTTTATTA!
GATGGATAACCGCATCAAGCTCTTGGAAGAGATTCTGTCTTTTCGTATGCAGGGCGT TGAGTTCGATAATGGTGATATGTATGTTIGACGGCCATAAGGCT 2

(ACMTMTTATAGTTCMCCCCCTCGTGTMC ATCGTAACACGGTTAAGTAGGTAATTGAAGAGTCATIGTCTATGTTITGAGTAGTGCTTGCAGICTICG
CTATAGACCAGCGCCCCGAAGGGGACGAAAAATGGTTTTTAGAGAACGAGAAGACGGTTACGCAGTTITTGCCGCAAGCTGGCTGCTGAACGCCCTCTTAA »

¢ TTTCGGAGATGCGCTATAGAATCACCTCCGGAGGTCGTTAGAACTTGTGAGTAGGAATTATGGAAAGAAAAACCCCATTAATATGAGTAGCGCTTATAGG
GCTATICAGCGT TIGAI‘GMTGCMTGCGACAGGCTCATGCT GATGGTTGGTITATCGTTTTIGACACTCTCACGT TGGCTGACGACCGATTAGAGGCGT b

¢ GICAGCCGCACACTTAGTAATCGGAACGCTGGGAGCCGT! CGTTCTTGGTATGCTGGTTATAGTGCTTTTATCAGTGCGT TTCGTAACCCTAATAGTATIT
CTATCAGTATTTTTGTGTGCCTGAGTATGGTACAGCTAATGGCCGTCTTCATITCCATGCGGTGCACTITATGCGGACACTTCCTACAGGTAGCGTTGAC b
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Chromatic Fantasy, And Feud

Having had a splendid dip in the pond, the Tortoise is just crawling out
and shaking himself dry, when who but Achilles walks by.

Tortoise:. Ho there, Achilles. I was just thinking of you as I splashed
around in the pond.

Achilles:  Isn’t that curious? I was just thinking of you, too, while I mean-
dered through the meadows. They’re so green at this time of year . . .

Tortoise:  You think so? It reminds me of a thought I was hoping to share
with you. Would you like to hear it?

Achilles:  Oh, I would be delighted. That is, I would be delighted as long as
you’re not going to try to snare me in one of your wicked traps of logic,
Mr. T.

Tortoise: Wicked traps? Oh, you do me wrong. Would I do anything
wicked? I'm a peaceful soul, bothering nobody and leading a gentle,
herbivorous life. And my thoughts merely drift among the oddities
and quirks of how things are (as I see them). I, humble observer of
phenomena, plod along and puff my silly words into the air rather
unspectacularly, I am afraid. But to reassure you about my intentions,
I was only planning to speak of my Tortoise-shell today, and as you
know, those things have nothing-—nothing whatsoever—to do with
logic!

Achilles:  Your words DO reassure me, Mr. T. And, in fact, my curiosity is
quite piqued. I would certainly like to listen to what you have to say,
even if it is unspectacular.

Tortoise: Let's see . .. how shall I begin? Hmm . . . What strikes you most
about my shell, Achilles?

Achilles: It looks wonderfully clean!

Tortoise: Thank you. I just went swimming and washed off several layers
of dirt which had accumulated last century. Now you can see how
green my shell is.

Achilles:  Such a good healthy green shell, it’s nice to see it shining in the
sun.

Tortoise: Green? It's not green.

Achilles:  Well, didn’t you just tell me your shell was green?

Tortoise: 1 did.

Achilles: Then, we agree: it is green.

Tortoise: No, it isn’t green.

Achilles:  Oh, I understand your game. You're hinting to me that what you
say isn’t necessarily true; that Tortoises play with language; that your
statements and reality don’t necessarily match; that—
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Tortoise: 1 certainly am not. Tortoises treat words as sacred; Tortoises
revere accuracy.

Achilles:  Well, then, why did you say that your shell is green, and that it is
not green also?

Tortoise: 1 never said such a thing; but I wish I had.

Achilles:  You would have liked to say that?

Tortoise:  Not a bit. I regret saying it, and disagree wholeheartedly with it.

Achilles:  That certainly contradicts what you said before!

Tortoise: Contradicts? Contradicts? I never contradict myself. It's not part
of Tortoise-nature.

Achilles:  Well, I've caught you this time, you slippery fellow, you. Caught
you in a full-fledged contradiction.

Tortoise:  Yes, I guess you did.

Achilles:  There you go again! Now you're contradicting yourself more and
more! You are so steeped in contradiction it’s impossible to argue with
you!

Tortoise: Not really. I argue with myself without any trouble at all. Perhaps
the problem is with you. I would venture a guess that maybe you're the
one who'’s contradictory, but you’re so trapped in your own tangled
web that you can't see how inconsistent you're being.

Achilles:  'What an insulting suggestion! I'm going to show you that you're
the contradictory one, and there are no two ways about it.

Tortoise:  Well, if it’s so, your task ought to be cut out for you. What could
be easier than to point out a contradiction? Go ahead—try it out.

Achilles: Hmm ... Now I hardly know where to begin. Oh ... I know.
You first said that (1) your shell is green, and then you went on to say
that (2) your shell is not green. What more can I say?

Tortoise:  Just kindly point out the contradiction. Quit beating around the
bush.

Achilles:  But—but—but . .. Oh, now I begin to see. (Sometimes I am so
slow-witted!) It must be that you and I differ as to what constitutes a
contradiction. That’s the trouble. Well, let me make myself very clear:
a contradiction occurs when somebody says one thing and denies it at
the same time.

Tortoise: A neat trick. I'd like to see it done. Probably ventriloquists would
excel at contradictions, speaking out of both sides of their mouth, as it
were. But I'm not a ventriloquist.

Achilles:  Well, what I actually meant is just that somebody can say one
thing and deny it all within one single sentence! It doesn’t literally have
to be in the same instant.

Tortoise: Well, you didn’t give ONE sentence. You gave TWO.

Achilles:  Yes—two sentences that contradict each other!

Tortoise: 1 am sad to see the tangled structure of your thoughts becoming
so exposed, Achilles. First you told me that a contradiction is some-
thing which occurs in a single sentence. Then you told me that you

178 Chromatic Fantasy, And Feud



found a contradiction in a pair of sentences I uttered. Frankly, it’s just
as I said. Your own system of thought is so delusional that you manage
to avoid seeing how inconsistent it is. From the outside, however, it’s
plain as day.

Achilles: Sometimes I get so confused by your diversionary tactics that I
can’t quite tell if we’re arguing about something utterly petty, or
something deep and profound!

Tortoise: 1 assure you, Tortoises don’t spend their time on the petty.
Hence it’s the latter.

Achilles: 1 am very reassured. Thank you. Now I have had a moment to
reflect, and I see the necessary logical step to convince you that you
contradicted yourself.

Tortoise:  Good, good. I hope it’s an easy step, an indisputable one.

Achilles: It certainly is. Even you will agree with it. The idea is that since
you believed sentence 1 (“My shell is green”), AND you believed sen-
tence 2 (“My shell is not green”), you would believe one compound
sentence in which both were combined, wouldn’t you?

Tortoise:  Of course. It would only be reasonable . . . providing just that the
manner of combination is universally acceptable. But I'm sure that
we'll agree on that.

Achilles:  Yes, and then I'll have you! The combination I propose is—

Tortoise: But we must be careful in combining sentences. For instance,
youw'd grant that “Politicians lie” is true, wouldn’t you?

Achilles:  'Who could deny it?

Tortoise: Good. Likewise, “Cast-iron sinks” is a valid utterance, isn’t it?

Achilles:  Indubitably.

Tortoise: Then, putting them together, we get “Politicians lie in cast-iron
sinks”. Now that’s not the case, is it?

Achilles: Now wait a minute . .. “Politicians lie in cast-iron sinks?” Well,
no, but—

Tortoise:  So, you see, combining two true sentences in one is not a safe
policy, is it?

Achilles: But you—you combined the two—in such a silly way!

Tortoise:  Silly? What have you got to object toin the way I combined them?
Would you have me do otherwise?

Achilles:  You should have used the word “and”, not “in”.

Tortoise: 1 should have? You mean,if YOU'D had YOUR way, I should have.

Achilles: No—it’s the LOGICAL thing to do. It’s got nothing to do with me
personally.

Tortoise:  This is where you always lose me, when you resort to your Logic
and its high-sounding Principles. None of that for me today, please.

Achilles:  Oh, Mr. Tortoise, don’t put me through all this agony. You know
very well that that's what “and” means! It's harmless to combine two
true sentences with “and”!

Tortoise: “Harmless”, my eye! What gall! This is certainly a pernicious plot
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to entrap a poor, innocent, bumbling Tortoise in a fatal contradiction.
If it were so harmless, why would you be trying so bloody hard to get
me to do it? Eh?

Achilles:  You’ve left me speechless. You make me feel like a villain, where
I really had only the most innocent of motivations.

Tortoise: That’s what everyone believes of himself . . .

Achilles: Shame on me—trying to outwit you, to use words to snare you in
a self-contradiction. I feel so rotten.

Tortoise:  And well you should. I know what you were trying to set up.
Your plan was to make me accept sentence 3, to wit: “My shell is green
and my shell is not green”. And such a blatant falsehood is repellent to
the Tongue of a Tortoise. ’

Achilles:  Oh, I'm so sorry I started all this.

Tortoise:  You needn’t be sorry. My feelings aren’t hurt. After all, I'm used
to the unreasonable ways of the folk about me. I enjoy your company,
Achilles, even if your thinking lacks clarity.

Achilles:  Yes ... Well, I fear I amn set in my ways, and will probably
continue to err and err again, in my quest for Truth.

Tortoise: Today’s exchange may have served a little to right your course.
Good day, Achilles.

Achilles: Good day, Mr. T.
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CHAPTER VII

The Propositional Calculus

Words and Symbols

THE PRECEDING DIALOGUE is reminiscent of the Two-Part Invention by
Lewis Carroll. In both, the Tortoise refuses to use normal, ordinary words
in the normal, ordinary way—or at least he refuses to do so when it is not to
his advantage to do so. A way to think about the Carroll paradox was given
last Chapter. In this Chapter we are going to make symbols do what
Achilles couldn’t make the Tortoise do with his words. That is, we are going
to make a formal system one of whose symbols will do just what Achilles
wished the word ‘and’ would do, when spoken by the Tortoise, and another
of whose symbols will behave the way the words ‘if . . . then . .." ought to
behave. There are only two other words which we will attempt to deal with:
‘or’ and ‘not’. Reasoning which depends only on correct usage of these four
words is termed propositional reasoning.

Alphabet and First Rule of the Propositional Calculus

I will present this new formal system, called the Propositional Calculus, a little
like a puzzle, not explaining everything at once, but letting you figure
things out to some extent. We begin with the list of symbols:

>
R '
A v o) ~
The first rule of this system that I will reveal is the following:

RULE OF JoINING: If x and y are theorems of the system, then so is the
string < xAy>.

This rule takes two theorems and combines them into one. It should
remind you of the Dialogue.

Well-Formed Strings

There will be several other rules of inference, and they will all be presented
shortly—but first, it is important to define a subset of all strings, namely the
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well-formed strings. They will be defined in a recursive way. We begin with

the

Atoms: P, Q, and R are called atoms. New atoms are formed by appending
primes onto the right of old atoms—thus, R’, Q"’, P'"’, etc. This gives
an endless supply of atoms. All atoms are well-formed.

Then we have four recursive

FormaTION RuLEs: If x and y are well-formed, then the following four
strings are also well-formed:

(1) ~=x

(2) <xny>
3) <xvy>
4) <xDy>

For example, all of the following are well-formed:

P atom
~P by (1)
~~P by (1)
Q' atom
~Q' by (1)
<PA~Q’'> by (2)
~<PA~Q'> by (1)
<~~PDQ'> by (4)
<~<PA~Q'>y<~~PDQ'>> by (3)

The last one may look quite formidable, but it is built up straightforwardly
from two components—namely the two lines just above it. Each of them is
in turn built up from previous lines . . . and so on. Every well-formed string
can in this way be traced back to its elementary constituents—that is, atoms.
You simply run the formation rules backwards until you can no more. This
process i1s guaranteed to terminate, since each formation rule (when run
forwards) is a lengthening rule, so that running it backwards always drives
you towards atoms.

This method of decomposing strings thus serves as a check on the
well-formedness of any string. It is a top-down decision procedure for well-
formedness. You can test your understanding of this decision procedure by
checking which of the following strings are well-formed:

(1) <P>

(2) <~P>

(3) <PAQAR>

(4) <PAnQ>

(5) <<PAQ>A<Q~AP>>
(6) <PA~P>

(7) <<Py<QIR>>A<~Py~R'>>
(8) <PAQ>A<QAP>
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(Answer: Those whose numbers are Fibonacci numbers are not well-
formed. The rest are well-formed.)

More Rules of Inference

Now we come to the rest of the rules by which theorems of this system are
constructed. A few rules of inference follow. In all of them, the symbols x’
and ‘y’ are always to be understood as restricted to well-formed strings.

RULE OF SEPARATION: If <xAy> is a theorem, then both x and y are
theorems.

Incidentally, you should have a pretty good guess by now as to what
concept the symbol ‘A’ stands for. (Hint: it is the troublesome word from
the preceding Dialogue.) From the following rule, you should be able to
figure out what concept the tilde (‘~’) represents:

DousLe-TILDE RuLE: The string ‘~~’ can be deleted from any theorem. It
can also be inserted into any theorem, provided that the resulting
string is itself well-formed.

The Fantasy Rule

Now a special feature of this system is that it has no axioms—only rules. If
you think back to the previous formal systems we’ve seen, you may wonder
how there can be any theorems, then. How does everything get started?
The answer is that there is one rule which manufactures theorems from out
of thin air—it doesn’t néed an “old theorem” as input. (The rest of the rules
do require input.) This special rule is called the fantasy rule. The reason I
call it that is quite simple.

To use the fantasy rule, the first thing you do is to write down any
well-formed string x you like, and then “fantasize” by asking, “What if this
string x were an axiom, or a theorem?” And then, you let the system itself
give an answer. That is, you go ahead and make a derivation with x as the
opening line; let us suppose y is the last line. (Of course the derivation must
strictly follow the rules of the system.) Everything from x to y (inclusive) is
the fantasy; x is the premise of the fantasy, and y is its outcome. The next step
is to jump out of the fantasy, having learned from it that

If x were a theorem, y would be a theorem.

Still, you might wonder, where is the real theorem? The real theorem is the
string
<x2Dy>.

Notice the resemblance of this string to the sentence printed above.
To signal the entry into, and emergence from, a fantasy, one uses the
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square brackets ‘[* and ‘], respectively. Thus, whenever you see a left
square bracket, you know you are “pushing” into a fantasy, and the next line
will contain the fantasy’s premise. Whenever you see a right square bracket,
you know you are “popping” back out, and the preceding line was the
outcome. It is helpful (though not necessary) to indent those lines of a
derivation which take place in fantasies.

Here is an illustration of the fantasy rule, in which the string P is taken
as a premise. (It so happens that P is not a theorem, but that is of no import;
we are merely inquiring, “What if it were?”) We make the following fan-
tasy:

[ push into fantasy

P premise

~~P outcome (by double-tilde rule)
] pop out of fantasy

The fantasy shows that:
If P were a theorem, so would ~~P be one.

We now “squeeze” this sentence of English (the metalanguage) into the
formal notation (the object language): <PD~~P>. This, our first theorem
of the Propositional Calculus, should reveal to you the intended interpreta-
tion of the symbol ‘2.

Here is another derivation using the fantasy rule:

push
<PAQ> premise
P separation
Q separation
<QAP> joining
pop
<<PAQ>D<QAP>> fantasy rule

It is important to understand that only the last line is a genuine theorem,
here—everything else is in the fantasy.

Recursion and the Fantasy Rule

As you might guess from the recursion terminology “push” and “pop”, the
fantasy rule can be used recursively—thus, there can be fantasies within
fantasies, thrice-nested fantasies, and so on. This means that there are all
sorts of “levels of reality”, just as in nested stories or movies. When you pop
out of a movie-within-a-movie, you feel for a moment as if you had reached
the real world, though you are still one level away from the top. Similarly,
when you pop out of a fantasy-within-a-fantasy, you are in a “realer” world
than you had been, but you are still one level away from the top.

Now a “No Smoking” sign inside a movie theater does not apply to the
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characters in the movie—there is no carry-over from the real world into the
fantasy world, in movies. But in the Propositional Calculus, there is a
carry-over from the real world into the fantasies; there is even carry-over
from a fantasy to fantasies inside it. This is formalized by the following
rule:

CaRrrY-OVER RULE: Inside a fantasy, any theorem from the “reality” one
level higher can be brought in and used.

It is as if a “No Smoking” sign in a theater applied not only to all the
moviegoers, but also to all the actors in the movie, and, by repetition of the
same idea, to anyone inside multiply nested movies! (Warning: There is no
carry-over in the reverse direction: theorems inside fantasies cannot be
exported to the exterior! If it weren’t for this fact, you could write anything
as the first line of a fantasy, and then lift it out into the real world as a
theorem.)

To show how carry-over works, and to show how the fantasy rule can
be used recursively, we present the following derivation:

[ push

P premise of outer fantasy
[ push again

Q premise of inner fantasy

P carry-over of P into inner fantasy

<PrQ> joining

pop out of inner fantasy, regain outer fantasy

<QO<PAQ>> fantasy rule

pop out of outer fantasy, reach real world!
<PD<QD<PAQ>>> fantasy rule

Note that I've indented the outer fantasy once, and the inner fantasy
twice, to emphasize the nature of these nested “levels of reality”. One way
to look at the fantasy rule is to say that an observation made about the
system is inserted into the system. Namely, the theorem < xD y> which gets
produced can be thought of as a representation inside the system of the
statement about the system “If x is a theorem, then y is too”. To be more
specific, the intended interpretation for <PDQ> is “if P, then Q”, or
equivalently, “P implies Q”.

The Converse of the Fantasy Rule

Now Lewis Carroll’s Dialogue was all about “if-then” statements. In particu-
lar, Achilles had a lot of trouble in persuading the Tortoise to accept the
second clause of an “if-then” statement, even when the “if-then” statement
itself was accepted, as well as its first clause. The next rule allows you to
infer the second “clause” of a ‘D’-string, provided that the ‘2’-string itself is
a theorem, and that its first “clause” is also a theorem.
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RULE OF DETACHMENT: If x and < xD y> are both theorems, then y is a
theorem.

Incidentally, this rule is often called “Modus Ponens”, and the fantasy rule
is often called the “Deduction Theorem”.

The Intended Interpretation of the Symbols

We might as well let the cat out of the bag at this point, and reveal the
“meanings” of the rest of the symbols of our new system. In case it is not yet
apparent, the symbol ‘A’ is meant to be acting isomorphically to the normal,
everyday word ‘and’. The symbol ‘~’ represents the word ‘not—it is a
formal sort of negation. The angle brackets ‘<’ and ‘>’ are groupers—their
function being very similar to that of parentheses in ordinary algebra. The
main difference is that in algebra, you have the freedom to insert parenthe-
ses or to leave them out, according to taste and style, whereas in a formal
system, such anarchic freedom is not tolerated. The symbol ‘/ represents
the word ‘or’ (‘vel’ is a Latin word for ‘or’). The ‘or’ that is meant is the
so-called inclusive ‘or’, which means that the interpretation of <xvy> is
“either x or y—or both”.

The only symbols we have not interpreted are the atoms. An atom has
no single interpretation—it may be interpreted by any sentence of English
(it must continue to be interpreted by the same sentence if it occurs
multiply within a string or derivation). Thus, for example, the well-formed
string <PA~P> could be interpreted by the compound sentence

This mind is Buddha, and this mind is not Buddha.

Now let us look at each of the theorems so far derived, and interpret
them. The first one was <PD~~P>. If we keep the same interpretation for
P, we have the following interpretation:

If this mind is Buddha,
then it 1s not the case that this mind is not Buddha.

Note how I rendered the double negation. It is awkward to repeat a
negation in any natural language, so one gets around it by using two
different ways of expressing negation. The second theorem we derived was
<<PAQ>D<Q/\P>>. If we let Q be interpreted by the sentence “This
flax weighs three pounds”, then our theorem reads as follows:

If this mind is Buddha and this flax weighs three pounds,
then this flax weighs three pounds and this mind is Buddha.

The third theorem was <PD<QD<PAQ>>>. This one goes into the
following nested “if-then” sentence:
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If this mind is Buddha,
then, if this flax weighs three pounds,
then this mind is Buddha and this flax weighs three pounds.

You probably have noticed that each theorem, when interpreted, says
something absolutely trivial and self-evident. (Sometimes they are so self-
evident that they sound vacuous and—paradoxically enough—confusing
or even wrong!) This may not be very impressive, but just remember that
there are plenty of falsities out there which could have been produced—yet
they weren’t. This system—the Propositional Calculus—steps neatly from
truth to truth, carefully avoiding all falsities, just as a person who is
concerned with staying dry will step carefully from one stepping-stone in a
creek to the next, following the layout of stepping-stones no matter how
twisted and tricky it might be. What is impressive is that—in the Proposi-
tional Calculus—the whole thing is done purely typographically. There is
nobody down “in there”, thinking about the meaning of the strings. It is all
done mechanically, thoughtlessly, rigidly, even stupidly.

Rounding Out the List of Rules

We have not yet stated all the rules of the Propositional Calculus. The
complete set of rules is listed below, including the three new ones.
JoiniNng RuLe: If x and y are theorems, then <xAy> is a theorem.

SEPARATION RULE: If < xAy> is a theorem, then both x and y are theo-
rems.

DousLETILDE RULE:  The string ‘~~’ can be deleted from any theorem. It
can also be inserted into any theorem, provided that the resulting
string is itself well-formed.

FanTasy RULE: If y can be derived when x is assumed to be a theorem,
then <xDy> is a theorem.

CARRY-OVER RULE: Inside a fantasy, any theorem from the “reality” one
level higher can be brought in and used.

RULE OF DETACHMENT: If x and <xD y> are both theorems, then y is a
theorem.

CONTRAPOSITIVE RULE: < xDy> and <~ yD~ x> are interchangeable.
DE MoRrRGAN's RULE: <~ xA~y> and ~<xv y> are interchangeable.

SWITCHEROO RULE: < =xvy> and <~ xD y> are interchangeable.
(The Switcheroo rule is named after Q. q. Switcheroo, an Albanian railroad
engineer who worked in logic on the siding.) By “interchangeable” in the

foregoing rules, the following is meant: If an expression of one form
occurs as either a theorem or part of a theorem, the other form may be
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substituted, and the resulting string will also be a theorem. It must be kept
in mind that the symbols *’ and ‘y’ always stand for well-formed strings of
the system.

Justifying the Rules

Before we see these rules used inside derivations, let us look at some very
short justifications for them. You can probably justify them to yourself
better than my examples—which is why I only give a couple.

The contrapositive rule expresses explicitly a way of turning around
conditional statements which we carry out unconsciously. For instance, the
“Zentence”

If you are studying it, then you are far from the Way
means the same thing as
If you are close to the Way, then you are not studying it.

De Morgan’s rule can be illustrated by our familiar sentence “The flag
is not moving and the wind is not moving”. If P symbolizes “the flag is
moving”, and Q symbolizes “the wind is moving”, then the compound
sentence is symbolized by <~PA~Q>, which, according to De Morgan’s
law, is interchangeable with ~<P\/Q>>, whose interpretation would be “Itis
not true that either the flag or the wind is moving”. And no one could deny
that that is a Zensible conclusion to draw.

For the Switcheroo rule, consider the sentence “Either a cloud is
hanging over the mountain, or the moonlight is penetrating the waves of
the lake,” which might be spoken, I suppose, by a wistful Zen master
remembering a familiar lake which he can visualize mentally but cannot
see. Now hang onto your seat, for the Switcheroo rule tells us that this is
interchangeable with the thought: “If a cloud is not hanging over the
mountain, then the moonlight is penetrating the waves of the lake.” This
may not be enlightenment, but it is the best the Propositional Calculus has
to offer.

Playing Around with the System

Now let us apply these rules to a previous theorem, and see what we get,
For instance, take the theorem <PD~~P>:

<PD~~P> old theorem
<~~~PD~P> contrapositive
<~PD~P> double-tilde
<Py~P> switcheroo

This new theorem, when interpreted, says:
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Either this mind is Buddha, or this mind is not Buddha.

Once again, the interpreted theorem, though perhaps less than mind-
boggling, is at least true.

Semi-Interpretations

It is natural, when one reads theorems of the Propositional Calculus out
loud, to interpret everything but the atoms. I call this semi-interpreting. For
instance, the semi-interpretation of <Py~P> would be

P or not P.

Despite the fact that P is not a sentence, the above semisentence still sounds
true, because you can very easily imagine sticking any sentence in for
P—and the form of the semi-interpreted theorem assures you that however
you make your choice, the resulting sentence will be true. And that is the
key idea of the Propositional Calculus: it produces theorems which, when
semi-interpreted, are seen to be “universally true semisentences”, by which
is meant that no matter how you complete the interpretation, the final
result will be a true statement.

Gantd’s Ax

Now we can do a more advanced exercise, based on a Zen kéan called
“Ganto’s Ax”. Here is how it begins:

One day Tokusan told his student Gantd, “I have two monks who have been
here for many years. Go and examine them.” Ganté picked up an ax and
went to the hut where the two monks were meditating. He raised the ax,
saying, “If you say a word I will cut off your heads; and if you do not say a
word, I will also cut off your heads.”?

If you say a word I will cut off this koan; and if you do not say a word, I will
also cut off this kéan—because I want to translate some of it into our
notation. Let us symbolize “you say a word” by P, and “I will cut off your
heads” by Q. Then Ganté’s ax threat is symbolized by the string
<<POQ>A<~PDQ>>. What if this ax threat were an axiom? Here is a
fantasy to answer that question.

(1) [ push

(2) <<PDQ>A<~PDQ>> Ganto’s axiom
3) <PDQ> separation

4) <~QD~P> contrapositive
(5) <~PDQ> separation

(6) <~QD~~P> contrapositive
)] [ push again

) ~Q premise
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9) <~QD~P> carry-over of line 4

(10) ~P detachment

(11) <~QD~~P> carry-over of line 6

(12) ~~P detachment (lines 8 and 11)
(13) <~PA~~P> joining

(14) ~<Py~P> De Morgan

(15) ] pop once

(16) <~QD~<Py~P>> fantasy rule

(17) <<Py~P>DQ> contrapositive

18y | push

(19) ~P premise (also outcome!)
20) ] pop

(21) <~PD~P> fantasy rule

(22) <Py~P> switcheroo

(23) Q detachment (lines 22 and 17)
24) ] pop out

The power of the Propositional Calculus is shown in this example. Why, in
but two dozen steps, we have deduced Q: that the heads will be cut off!
(Ominously, the rule last invoked was “detachment” . ..) It might seem
superfluous to continue the kdan now, since we know what must ensue . . .
However, I shall drop my resolve to cut the koan off; it is a true Zen koan,
after all. The rest of the incident 1s here related:

Both monks continued their meditation as if he had not spoken. Ganto
dropped the ax and said, “You are true Zen students.” He returned to
Tokusan and related the incident. “1 see your side well,” Tokusan agreed,
“but tell me, how is their side?” “T'6zan may admit them,” replied Gantg, “but
they should not be admitted under Tokusan.”?

Do you see my side well? How is the Zen side?

Is There a Decision Procedure for Theorems?

The Propositional Calculus gives us a set of rules for producing statements
which would be true in all conceivable worlds. That is why all of its
theorems sound so simple-minded; it seems that they have absolutely no
content! Looked at this way, the Propositional Calculus might seem to be a
waste of time, since what it tells us is absolutely trivial. On the other hand, it
does it by specifying the form of statements that are universally true, and
this throws a new kind of light onto the core truths of the universe: they are
not only fundamental, but also regular: they can be produced by one set of
typographical rules. To put it another way, they are all “cut from the same
cloth”. You might consider whether the same could be said about Zen
koans: could they all be produced by one set of typographical rules?

It is quite relevant here to bring up the question of a decision proce-
dure. That is, does there exist any mechanical method to tell nontheorems
from theorems? If so, that would tell us that the set of theorems of the

190 The Propositional Calculus



Propositional Calculus is not only r.e., but also recursive. It turns out that
there is an interesting decision procedure—the method of truth tables. It
would take us a bit afield to present it here; you can find it in almost any
standard book on logic. And what about Zen kéans? Could there conceiv-
ably be a mechanical decision procedure which distinguishes genuine Zen
koans from other things?

Do We Know the System Is Consistent?

Up till now, we have only presumed that all theorems, when interpreted as
indicated, are true statements. But do we know that that is the case? Could
we prove it to be? This is just another way of asking whether the intended
interpretations (‘and’ for ‘A", etc.) merit being called the “passive meanings”
of the symbols. One can look at this issue from two very different points of
view, which might be called the “prudent” and “imprudent” points of view.
I will now present those two sides as I see them, personifying their holders
as “Prudence” and “Imprudence”.

Prudence: We will only KNOW that all theorems come out true under the
intended interpretation if we manage to PROVE it. That is the cautious,
thoughtful way to proceed.

Imprudence: On the contrary. It is OBVIOUS that all theorems will come out
true. If you doubt me, look again at the rules of the system. You will
find that each rule makes a symbol act exactly as the word it represents
ought to be used. For instance, the joining rule makes the symbol ‘A’ act
as ‘and’ ought to act; the rule of detachment makes ‘2’ act as it ought
to, if it is to stand for ‘implies’, or ‘if-then’; and so on. Unless you are
like the Tortoise, you will recognize in each rule a codification of a
pattern you use in your own thought. So if you trust your own thought
patterns, then you HAVE to believe that all theorems come out true!
That's the way I see it. I don’t need any further proof. If you think that
some theorem comes out false, then presumably you think that some
rule must be wrong. Show me which one.

Prudence: T'm not sure that there is any faulty rule, so I can’t point one out
to you. Still, I can imagine the following kind of scenario. You, follow-
ing the rules, come up with a theorem—say x. Meanwhile I, also
following the rules, come up with another theorem—it happens to be
~ x. Can’t you force yourself to conceive of that?

Imprudence: All right; let’s suppose it happened. Why would it bother
you? Or let me put it another way. Suppose that in playing with the
MIU-system, I came up with a theorem x, and you came up with xU.
Can you force yourself to conceive of that?

Prudence: Of course—in fact both Ml and MIU are theorems.

Imprudence: Doesn’t that bother you?

Prudence: Of course not. Your example is ridiculous, because Ml and MIU
are not CONTRADICTORY, whereas two strings x and ~ x in the Propo-
sitional Calculus ARE contradictory.
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Imprudence: Well, yes—provided you wish to interpret ‘~' as ‘not’. But
what would lead you to think that ‘~’ should be interpreted as ‘not’?

Prudence: The rules themselves. When you look at them, you realize that
the only conceivable interpretation for ‘~’ is ‘not'—and likewise, the
only conceivable interpretation for ‘A’ is ‘and’, etc.

Imprudence: In other words, you are convinced that the rules capture the
meanings of those words?

Prudence: Precisely.

Imprudence: And yet you are still willing to entertain the thought that both
x and ~ x could be theorems? Why not also entertain the notion that
hedgehogs are frogs, or that 1 equals 2, or that the moon is made of
green cheese? I for one am not prepared even to consider whether
such basic ingredients of my thought processes are wrong—because if
I entertained that notion, then 1 would also have to consider whether
my modes of analyzing the entire question are also wrong, and I would
wind up in a total tangle.

Prudence: Your arguments are forceful . .. Yet I would still like to see a
PROOF that all theorems come out true, or that x and ~ x can never
both be theorems.

Imprudence: You want a proof. 1 guess that means that you want to be
more convinced that the Propositional Calculus is consistent than you
are convinced of your own sanity. Any proof I could think of would
involve mental operations of a greater complexity than anything in the
Propositional Calculus itself. So what would it prove? Your desire for a
proof of consistency of the Propositional Calculus makes me think of
someone who is learning English and insists on being given a dictio-
nary which defines all the simple words in terms of complicated
ones. . .

The Carroll Dialogue Again

This little debate shows the difficulty of trying to use logic and reasoning to
defend themselves. At some point, you reach rock bottom, and there is no
defense except loudly shouting, “I know I'm right!” Once again, we are up
against the issue which Lewis Carroll so sharply set forth in his Dialogue:
you can’t go on defending your patterns of reasoning forever. There comes
a point where faith takes over.

A system of reasoning can be compared to an egg. An egg has a shell
which protects its insides. If you want to ship an egg somewhere, though,
you don’t rely on the shell. You pack the egg in some sort of container,
chosen according to how rough you expect the egg’s voyage to be. To be
extra careful, you may put the egg inside several nested boxes. However,
no matter how many layers of boxes you pack your egg in, you can imagine
some cataclysm which could break the egg. But that doesn’t mean that
you'll never risk transporting your egg. Similarly, one can never give an
ultimate, absolute proof that a proof in some system is correct. Of course,

192 The Propositional Calculus



one can give a proof of a proof, or a proof of a proof of a proof—but the
validity of the outermost system always remains an unproven assumption,
accepted on faith. One can always imagine that some unsuspected subtlety
will invalidate every single level of proof down to the bottom, and that the
“proven” result will be seen not to be correct after all. But that doesn’t
mean that mathematicians and logicians are constantly worrying that the
whole edifice of mathematics might be wrong. On the other hand, when
unorthodox proofs are proposed, or extremely lengthy proofs, or proofs
generated by computers, then people do stop to think a bit about what they
really mean by that quasi-sacred word “proven”.

An excellent exercise for you at this point would be to go back to the
Carroll Dialogue, and code the various stages of the debate into our
notation—beginning with the original bone of contention:

Achilles:  1f you have <<AAB>DZ>, and you also have <AAB>,
then surely you have Z.

Tortoise: Oh! You mean: <<<<AAB>DZ>A<AAB>>DZ>,
don’t you?

(Hint: Whatever Achilles considers a rule of inference, the Tortoise im-
mediately flattens into a mere string of the system. If you use only the
letters A, B, and Z, you will get a recursive pattern of longer and longer
strings.)

Shortcuts and Derived Rules

When carrying out derivations in the Propositional Calculus, one quickly
invents various types of shortcut, which are not strictly part of the system.
For instance, if the string <Qu~Q> were needed at some point, and
<Py~P> had been derived earlier, many people would proceed as if
<Qv~Q> had been derived, since they know that its derivation is an exact
parallel to that of <Py~P>. The derived theorem is treated as a “theorem
schema”—a mold for other theorems. This turns out to be a perfectly valid
procedure, in that it always leads you to new theorems, but it is not a rule of
the Propositional Calculus as we presented it. It is, rather, a derived rule. Itis
part of the knowledge which we have about the system. That this rule always
keeps you within the space of theorems needs proof, of course—but such a
proof is not like a derivation inside the system. Itis a proof in the ordinary,
intuitive sense—a chain of reasoning carried out in the I-mode. The theory
about the Propositional Calculus is a “metatheory”, and results in it can be
called “metatheorems”—Theorems about theorems. (Incidentally, note the
peculiar capitalization in the phrase “Theorems about theorems”. It is a
consequence of our convention: metatheorems are Theorems (proven re-
sults) concerning theorems (derivable strings).)

In the Propositional Calculus, one could discover many other
metatheorems, or derived rules of inference. For instance, there is a second
De Morgan’s Rule:
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<~axv~y> and ~<x/y> are interchangeable.

If this were a rule of the system, it could speed up many derivations
considerably. But if we prove that it is correct, isn’t that good enough? Can’t
we use it just like a rule of inference, from then on?

There is no reason to doubt the correctness of this particular derived
rule. But once you start admitting derived rules as part of your procedure
in the Propositional Calculus, you have lost the formality of the system,
since derived rules are derived informally—outside the system. Now for-
mal systems were proposed as a way to exhibit every step of a proof
explicitly, within one single, rigid framework, so that any mathematician
could check another’s work mechanically. But if you are willing to step
outside of that framework at the drop of a hat, you might as well never
have created it at all. Therefore, there is a drawback to using such
shortcuts.

Formalizing Higher Levels

On the other hand, there is an alternative way out. Why not formalize the
metatheory, too? That way, derived rules (metatheorems) would be theo-
rems of a larger formal system, and it would be legitimate to look for
shortcuts and derive them as theorems—that is, theorems of the formalized
metatheory—which could then be used to speed up the derivations of
theorems of the Propositional Calculus. This is an interesting idea, but as
soon as it is suggested, one jumps ahead to think of metametatheories, and
so on. It is clear that no matter how many levels you formalize, someone
will eventually want to make shortcuts in the top level.

It might even be suggested that a theory of reasoning could be identi-
cal to its own metatheory, if it were worked out carefully. Then, it might
seem, all levels would collapse into one, and thinking about the system
would be just one way of working in the system! Butit is not that easy. Even
if a system can “think about itself ”, it still is not outside itself. You, outside
the system, perceive it differently from the way it perceives itself. So there
still is a metatheory—a view from outside—even for a theory which can
“think about itself ” inside itself. We will find that there are theories which
can “think about themselves”. In fact, we will soon see a system in which this
happens completely accidentally, without our even intending it! And we
will see what kinds of effects this produces. But for our study of the
Propositional Calculus, we will stick with the simplest ideas—no mixing of
levels.

Fallacies can result if you fail to distinguish carefully between working
in the system (the M-mode) and thinking about the system (the I-mode).
For example, it might seem perfectly reasonable to assume that, since
<Py~P> (whose semi-interpretation is “either P or not P”) is a theorem,
either P or ~P must be a theorem. But this is dead wrong: neither one of
the latter pair is a theorem. In general, it is a dangerous practice to assume
that symbols can be slipped back and forth between different levels—here,
the language of the formal system and its metalanguage (English).
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Reflections on the Strengths and Weaknesses of the System

You have now seen one example of a system with a purpose—to represent
part of the architecture of logical thought. The concepts which this system
handles are very few in number, and they are very simple, precise concepts.
But the simplicity and precision of the Propositional Calculus are exactly
the kinds of features which make it appealing to mathematicians. There are
two reasons for this. (1) It can be studied for its own properties, exactly as
geometry studies simple, rigid shapes. Variants can be made on it, employ-
ing different symbols, rules of inference, axioms or axiom schemata, and so
on. (Incidentally, the version of the Propositional Calculus here presented
is related to one invented by G. Gentzen in the early 1930’s. There are
other versions in which only one rule of inference is used—detachment,
usually—and in which there are several axioms, or axiom schemata.) The
study of ways to carry out propositional reasoning in elegant formal sys-
tems is an appealing branch of pure mathematics. (2) The Propositional
Calculus can easily be extended to include other fundamental aspects of
reasoning. Some of this will be shown in the next Chapter, where the
Propositional Calculus is incorporated lock, stock and barrel into a much
larger and deeper system in which sophisticated number-theoretical
reasoning can be done.

Proofs vs. Derivations

The Propositional Calculus is very much like reasoning in some ways, but
one should not equate its rules with the rules of human thought. A proof is
something informal, or in other words a product of normal thought,
written in a human language, for human consumption. All sorts of com-
plex features of thought may be used in proofs, and, though they may “feel
right”, one may wonder if they can be defended logically. That is really
what formalization is for. A derivation is an artificial counterpart of a proof,
and its purpose is to reach the same goal but via a logical structure whose
methods are not only all explicit, but also very simple.

If—and this is usually the case—it happens that a formal derivation is
extremely lengthy compared with the corresponding “natural” proof, that
is just too bad. Itis the price one pays for making each step so simple. What
often happens is that a derivation and a proof are “simple” in complemen-
tary senses of the word. The proof is simple in that each step “sounds
right”, even though one may not know just why; the derivation is simple in
that each of its myriad steps is considered so trivial that it is beyond
reproach, and since the whole derivation consists just of such trivial steps, it
is supposedly error-free. Each type of simplicity, however, brings along a
characteristic type of complexity. In the case of proofs, it is the complexity
of the underlying system on which they rest—namely, human language;
and in the case of derivations, it is their astronomical size, which makes
them almost impossible to grasp.

Thus, the Propositional Calculus should be thought of as part of a
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general method for synthesizing artificial proof-like structures. It does not,
however, have much flexibility or generality. It is intended only for use in
connection with mathematical concepts—which are themselves quite rigid.
As a rather interesting example of this, let us make a derivation in which a
very peculiar string is taken as a premise in a fantasy: <PA~P>. Atleast its
semi-interpretation is peculiar. The Propositional Calculus, however, does
not think about semi-interpretations; it just manipulates strings typograph-
ically—and typographically, there is really nothing peculiar about this
string. Here is a fantasy with this string as its premise:

I [ push
(2) <PA~P> premise
(3) P separation
(4) ~P separation
N push
(6) ~Q premise
(7 P carry-over line 3
(8) ~~P double-tilde
9 ] pop
(10) <~QD~~P> fantasy
(11) <~PDQ> contrapositive
(12) Q detachment (Lines 4,11)
(13) ] pop
(14) <<PA~P>DQ> fantasy

Now this theorem has a very strange semi-interpretation:
P and not P together imply Q

Since Q is interpretable by any statement, we can loosely take the theorem
to say that “From a contradiction, anything follows”! Thus, in systems
based on the Propositional Calculus, contradictions cannot be contained;
they infect the whole system like an instantaneous global cancer.

The Handling of Contradictions

This does not sound much like human thought. If you found a contradic-
tion in your own thoughts, it’s very unlikely that your whole mentality
would break down. Instead, you would probably begin to question the
beliefs or modes of reasoning which you felt had led to the contradictory
thoughts. In other words, to the extent you could, you would step out of
the systems inside you which you felt were responsible for the contradic-
tion, and try to repair them. One of the least likely things for you to do
would be to throw up your arms and cry, “Well, I guess that shows that I
believe everything now!” As a joke, yes—but not seriously.

Indeed, contradiction is a major source of clarification and progress in
all domains of life—and mathematics is no exception. When in times past, a
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contradiction in mathematics was found, mathematicians would im-
mediately seek to pinpoint the system responsible for it, to jump out of it, to
reason about it, and to amend it. Rather than weakening mathematics, the
discovery and repair of a contradiction would strengthen jt. This might
take time and a number of false starts, but in the end it would yield fruit.
For instance, in the Middle Ages, the value of the infinite series

l-1+1-1+1-...

was hotly disputed. It was “proven” to equal 0, 1, %, and perhaps other
values. Out of such controversial findings came a fuller, deeper theory
about infinite series. .

A more relevant example is the contradiction right now confronting
us—namely the discrepancy between the way we really think, and the way
the Propositional Calculus imitates us. This has been a source of discomfort
for many logicians, and much creative effort has gone into trying to patch
up the Propositional Calculus so that it would not act so stupidly and
inflexibly. One attempt, put forth in the book Entailment by A. R. Anderson
and N. Belnap,?® involves “relevant implication”, which tries to make the
symbol for “if-then” reflect genuine causality, or at least connection of
meanings. Consider the following theorems of the Propositional Calculus:

<PD<QDP>>
<PO<Qv~Q>>
<<PA~P>DQ>
<<PDOQ>v<QDP>>

They, and many others like them, all show that there need be no relation-
ship at all between the first and second clauses of an if-then statement for it
to be provable within the Propositional Calculus. In protest, “relevant
implication” puts certain restrictions on the contexts in which the rules of
inference can be applied. Intuitively, it says that “something can only be
derived from something else if they have to do with each other”. For
example, line 10 in the derivation given above would not be allowed in such
a system, and that would block the derivation of the string
<<PA~P>DQ>.

More radical attempts abandon completely the quest for completeness
or consistency, and try to mimic human reasoning with all its inconsisten-
cies. Such research no longer has as its goal to provide a solid underpinning
for mathematics, but purely to study human thought processes.

Despite its quirks, the Propositional Calculus has some features to
recommend itself. If one embeds it into a larger system (as we will do next
Chapter), and if one is sure that the larger system contains no contradic-
tions (and we will be), then the Propositional Calculus does all that one
could hope: it provides valid propositional inferences—all that can be
made. So if ever an incompleteness or an inconsistency is uncovered, one
can be sure that it will be the fault of the larger system, and not of its
subsystem which is the Propositional Calculus.
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Crab Canon

Achilles and the Tortoise happen upon each other
in the park one day while strolling.

Tortosse:  Good day, Mr. A.

Achilles: Why, same to you.

Tortotse:  So nice to run into you.

Achalles:  That echoes my thoughts.

Tortoise: And it’s a perfect day for a walk. I think I'll be walking home
soon.

Achilles:  Oh, really? I guess there’s nothing better for you than walking.

Tortoise: Incidentally, you're looking in very fine fettle these days, I must
say. :

Achilles: Thank you very much.

Tortoise:  Not at all. Here, care for one of my cigars?

Achilles:  Oh, you are such a philistine. In this area, the Dutch contribu-
tions are of markedly inferior taste, don’t you think?

Tortoise: 1 disagree, in this case. But speaking of taste, I finally saw that
Crab Canon by your favorite artist, M. C. Escher, in a gallery the other
day, and I fully appreciate the beauty and ingenuity with which he
made one single theme mesh with itself going both backwards and
forwards. But I am afraid I will always feel Bach is superior to Escher.
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Achilles: 1 don’t know. But one thing for certain is that I don’t worry about
arguments of taste. De gustibus non est disputandum.

Tortoise:  Tell me, what'’s it like to be your age? Is it true that one has no
worries at all?

Achilles:  'To be precise, one has no frets.

Tortoise: Oh, well, it’s all the same to me.

Achilles:  Fiddle. It makes a big difference, you know.

Tortoise: Say, don’t you play the guitar?

Achilles:  That's my good friend. He often plays, the fool. But I myself
wouldn’t touch a guitar with a ten-foot pole!

(Suddenly, the Crab, appearing from out of nowhere, wanders up ex-
citedly, pointing to a rather prominent black eye.)

Crab: Hallo! Hulloo! What’s up? What’s new? You see this bump, this
lump? Given to me by a grump. Ho! And on such a fine day. You see, I
was just idly loafing about the park when up lumbers this giant fellow
from Warsaw—a colossal bear of a man—playing a lute. He was three
meters tall, if 'm a day. I mosey on up to the chap, reach skyward and
manage to tap him on the knee, saying, “Pardon me, sir, but you are
Pole-luting our park with your mazurkas.” But wow! he had no sense
of humor—not a bit, not a wit—and POW!—he lets loose and belts me
one, smack in the eye! Were it in my nature, I would crab up a storm,
but in the time-honored tradition of my species, I backed off. After all,
when we walk forwards, we move backwards. It’s in our genes, you
know, turning round and round. That reminds me—I've always
wondered, “Which came first—the Crab, or the Gene?” That
is to say, “Which came last——the Gene, or the Crab?” I'm always
turning things round and round, you know. It’s in our genes, after
all. When we walk backwards, we move forwards. Ah me, oh my!
I must lope along on my merrv way—so off I go on such a fine day.
Sing “ho!” for the life of a Crab! TATA! ;Olé!

(And he disappears as suddenly as he arrived.)

Tortoise: That's my good friend. He often plays the fool. But I myself
wouldn’t touch a ten-foot Pole with a guitar!

Achilles:  Say, don’t you play the guitar?

Tortoise: Fiddle. It makes a big difference, you know.

Achilles: Oh, well, it’s all the same to me.

Tortoise: To be precise, one has no frets.

Achilles:  Tell me, what’s it like to be your age? Is it true that one has no
worries at all?

Tortoise: 1 don’t know. But one thing for certain is that I don’t worry about
arguments of taste. Disputandum non est de gustibus.
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FIGURE 43. Here is a short section of
one of the Crab’s Genes, turning round and
round, When the two DNA strands are un-
raveled and laid out side by side, they read
this way:

... TTTTTTTTTCGAAAAAAAAA . ..

. AAAAAAAAAGCTTTTTTTTT . ..

Notice that they are the same, only one goes
Jorwards while the other goes backwards.
This is the defining property of the form
called “crab canon” in music. It is reminis-
cent of, though a little different from, a
palindrome, which is a sentence that reads
the same backwards and forwards. In
molecular biology, such segments of DNA
are called “palindromes”—a slight mis-
nomer, since “crab canon” would be more
accurate. Not only is this DNA segment
crab-canonical—but moreover its base se-
quence codes for the Dialogue’s structure.
Look carefully!

Achilles: 1 disagree, in this case. But speaking of taste, I finally heard that
Crab Canon by your favorite composer, J. S. Bach, in a concert the
other day, and I fully appreciate the beauty and ingenuity with which
he made one single theme mesh with itself going both backwards and
forwards. But I'm afraid I will always feel Escher is superior to Bach.

Tortoise: Oh, you are such a philistine. In this area, the Dutch contribu-
tions are of markedly inferior taste, don’t you think?

Achilles:  Not at all. Here, care for one of my cigars?

Tortoise: Thank you very much.

Achilles:  Incidentally, you're looking in very fine fettle these days, I must
say.
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Tortoise:  Oh, really? I guess there’s nothing better for you than walking.

Achilles: And it's a perfect day for a walk. I think I'll be walking home
soon.

Tortoise: That echoes my thoughts.

Achilles:  So nice to run into you.

Tortoise:  'Why, same to you.

Achilles: Good day, Mr. T.
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CHAPTER VIII

Typographical Number Theory

The Crab Canon and Indirect Self-Reference

THREE EXAMPLES OF indirect self-reference are found in the Crab Canon.
Achilles and the Tortoise both describe artistic creations they know—and,
quite accidentally, those creations happen to have the same structure as the
Dialogue they'’re in. (Imagine my surprise, when I, the author, noticed
this!) Also, the Crab describes a biological structure and that, too, has the
same property. Of course, one could read the Dialogue and understand it
and somehow fail to notice that it, too, has the form of a crab canon. This
would be understanding it on one level, but not on another. To see the
self-reference, one has to look at the form, as well as the content, of the
Dialogue.

Godel’s construction depends on describing the form, as well as the
content, of strings of the formal system we shall define in this Chapter—
Typographical Number Theory (TNT). The unexpected twist is that, because
of the subtle mapping which Gédel discovered, the form of strings can be
described in the formal system itself. Let us acquaint ourselves with this
strange system with the capacity for wrapping around.

What We Want to Be Able to Express in TNT

We'll begin by citing some typical sentences belonging té6 number theory;
then we will try to find a set of basic notions in terms of which all our
sentences can be rephrased. Those notions will then be given individual
symbols. Incidentally, it should be stated at the outset that the term
“number theory” will refer only to properties of positive integers and zero
(and sets of such integers). These numbers are called the natural numbers.
Negative numbers play no role in this theory. Thus the word “number”,
when used, will mean exclusively a natural number. And it is important—
vital—for you to keep separate in your mind the formal system (TNT) and
the rather ill-defined but comfortable old branch of mathematics that is
number theory itself; this I shall call “N”.
Some typical sentences of N—number theory—are:

(1) 5 is prime.

(2) 2 is not a square,

(3) 1729 is a sum of two cubes.

(4) No sum of two positive cubes is itself a cube.
(5) There are infinitely many prime numbers.
(6) 6 is even.
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Now it may seem that we will need a symbol for each notion such as “prime”
or “cube” or “positive”—but those notions are really not primitive. Prime-
ness, for instance, has to do with the factors which a number has, which in
turn has to do with multiplication. Cubeness as well is defined in terms of
multiplication. Let us rephrase the sentences, then, in terms of what seem
to be more elementary notions.

(1') There do not exist numbers a and b, both greater than 1,
such that 5 equals a times b.

(2') There does not exist a number b, such that b times b
equals 2.

(3') There exist numbers b and ¢ such that b times b times b, plus
c times ¢ times ¢, equals 1729.

(4') For all numbers b and c, greater than 0, there is no number
a such that a times a times a equals b times b times b plus
C times C times C.

(5") For each number a, there exists a number b, greater than a,
with the property that there do not exist numbers ¢ and d,
both greater than 1, such that b equals ¢ times d.

(6') There exists a number e such that 2 times e equals 6.

This analysis has gotten us a long ways towards the basic elements of the
language of number theory. Itis clear that a few phrases reappear over and
over:

for all numbers b

there exists a number b, such that . ..
greater than

equals

times

plus

0,1,2,...

Most of these will be granted individual symbols. An exception is “greater
than”, which can be further reduced. In fact, the sentence “a is greater than
b” becomes

there exists a number ¢, not equal to 0, such thata equals b plus c.

Numerals

We will not have a distinct symbol for each natural number. Instead, we will
have a very simple, uniform way of giving a compound symbol to each
natural number—very much as we did in the pqg-system. Here is our
notation for natural numbers:
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Zero. 0

one: SO

two: SSO

three: SSSO
etc.

The symbol S has an interpretation-—"“the successor of”. Hence, the in-
terpretation of SSO is literally “the successor of the successor of zero”.
Strings of this form are called numerals.

Variables and Terms

Clearly, we need a way of referring to unspecified, or variable, numbers.
For that, we will use the letters a, b, ¢, d, e. But five will not be enough. We
need an unlimited supply of them, just as we had of atoms in the Proposi-
tional Calculus. We will use a similar method for making more variables:
tacking on any number of primes. (Note: Of course the symbol “’—read
“prime”"—is not to be confused with prime numbers!) For instance:

€

d/
c!l
b/l!
a/’//

are all variables.

In a way it is a luxury to use the first five letters of the alphabet when
we could get away with just a and the prime. Later on, I will actually drop b,
¢, d, and e, which will result in a sort of “austere” version of TNT—austere
in the sense that it is a little harder to decipher complex formulas. But for
now we’ll be luxurious.

Now what about addition and multiplication? Very simple: we will use
the ordinary symbols ‘+” and *-’. However, we will also introduce a paren-
thesizing requirement (we are now slowly slipping into the rules which
define well-formed strings of TNT). To write “b plus ¢’ and “b times c”, for
instance, we use the strings

(b+c)
(b-c)

There is no laxness about such parentheses; to violate the convention is to
produce a non-well-formed formula. (“Formula”? I use the term instead of
“string” because it is conventional to do so. A formula is no more and no less
than a string of TNT.)

Incidentally, addition and multiplication are always to be thought of as
binary operations—that is, they unite precisely two numbers, never three or
more. Hence, if you wish to translate “1 plus 2 plus 3”, you have to decide
which of the following two expressions you want:
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(SO+(SS0+SSS0))
((SO+5S0)+5SS0)

The next notion we’ll symbolize is equals. That is very simple: we use
‘=", The advantage of taking over the standard symbol used in
N—nonformal number theory—is obvious: easy legibility. The disadvan-
tage is very much like the disadvantage of using the words “point” and
“line” in a formal treatment of geometry: unless one is very conscious and
careful, one may blur the distinction between the familiar meaning and the
strictly rule-governed behavior of the formal symbol. In discussing
geometry, I distinguished between the everyday word and the formal term
by capitalizing the formal term: thus, in elliptical geometry, a POINT was the
union of two ordinary points. Here, there is no such distinction; hence,
mental effort is needed not to confuse a symbol with all of the associations it
is laden with. As I said earlier, with reference to the pq-system: the string
——~is not the number 3, but it acts isomorphically to 3, at least in the
context of additions. Similar remarks go for the string SSSO.

Atoms and Propositional Symbols

All the symbols of the Propositional Calculus except the letters used in
making atoms (P, Q, and R) will be used in TNT, and they retain their
interpretations. The role of atoms will be played by strings which, when
interpreted, are statements of equality, such as S0=5S0 or (S0-S0)=S0.
Now, we have the equipment to do a fair amount of translation of simple
sentences into the notation of TNT:

2 plus 3 equals 4: (SSO+SSS0)=SSSSO
2 plus 2 is not equal to 3: ~(5S0+S5S0)=SSSO
If 1 equals 0, then 0 equals 1: <S0=0D0=S0>

The first of these strings is an atom; the rest are compound formulas.
(Warning: The ‘and’ in the phrase “1 and 1 make 2” is just another word
for ‘plus’, and must be represented by ‘+’ (and the requisite parentheses).)

Free Variables and Quantifiers

All the well-formed formulas above have the property that their interpreta-
tions are sentences which are either true or false. There are, however,
well-formed formulas which do not have that property, such as this one:

(b+S0)=SSO

Its interpretation is “b plus 1 equals 2”. Since b is unspecified, there is no
way to assign a truth value to the statement. It is like an out-of-context
statement with a pronoun, such as “she is clumsy”. It is neither true nor
false; it is waiting for you to put it into a context. Because it is neither true
nor false, such a formula is called open, and the variable b is called a free
variable.
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One way of changing an open formula into a closed formula, or sentence,
is by prefixing it with a quantifier—either the phrase “there exists a number
b such that . ..”, or the phrase “for all numbers b”. In the first instance, you
get the sentence

There exists a number b such that b plus 1 equals 2.
Clearly this is true. In the second instance, you get the sentence
For all numbers b, b plus 1 equals 2.

Clearly this is false. We now introduce symbols for both of these quantifiers.
These sentences are translated into TNT-notation as follows:

3b:(b+S0)=SSO (‘T stands for ‘exists’.)
Vb:(b+S0)=SS0 © (‘Y stands for ‘all’.)

It is very important to note that these statements are no longer about
unspecified numbers; the first one is an assertion of existence, and the second
one is a universal assertion. They would mean the same thing, even if written
with ¢ instead of b:

dc(c+S0)=SS0
Vc:(c+S0)=SS0

A variable which is under the dominion of a quantifier is called a
quantified variable. The following two formulas illustrate the difference
between free variables and quantified variables:

(b-b)=SS0O (open)
~3b:(b -b)=5S0 (closed; a sentence of TNT)

The first one expresses a property which might be possessed by some natural
number. Of course, no natural number has that property. And that is
precisely what is expressed by the second one. It is very crucial to under-
stand this difference between a string with a free variable, which expresses a
property, and a string where the variable is quantified, which expresses a truth
or falsity. The English translation of a formula with at least one free
variable—an open formula—is called a predicate. It is a sentence without a
subject (or a sentence whose subject is an out-of-context pronoun). For
instance,
“is a sentence without a subject”

“would be an anomaly”
“runs backwards and forwards simultaneously”
“improvised a six-part fugue on demand”

are nonarithmetical predicates. They express properties which specific en-
tities might or might not possess. One could as well stick on a “dummy
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subject”, such as “so-and-so”. A string with free variables is like a predicate
with “so-and-so” as its subject. For instance,

(S0+S0)=b

is like saying “1 plus 1 equals so-and-so”. This is a predicate in the variable
b. It expresses a property which the number b might have. If one were to
substitute various numerals for b, one would get a succession of formulas,
most of which would express falsehoods. Here is another example of the
difference between open formulas and sentences:

Vb:Vc:(b+c)=(c+b)

The above formula is a sentence representing, of course, the commutativity
of addition. On the other hand,

Vc(b+c)=(c+b)

is an open formula, since b is free. It expresses a property which the
unspecified number b might or might not have—namely of commuting
with all numbers ¢.

Translating Our Sample Sentences

This completes the vocabulary with which we will express all number-
theoretical statements! It takes considerable practice to get the hang of
expressing complicated statements of N in this notation, and conversely of
figuring out the meaning of well-formed formulas. For this reason we
return to the six sample sentences given at the beginning, and work out
their translations into TNT. By the way, don’t think that the translations
given below are unique—far from it. There are many—infinitely many—
ways to express each one.

Let us begin with the last one: “6 is even”. This we rephrased in terms
of more primitive notions as “There exists a number e such that 2 times e
equals 6”. This one is easy:

Je:(SS0-e)=S5SSSS0
Note the necessity of the quantifier; it simply would not do to write
(550-e)=SSSSSSO
alone. This string’s interpretation is of course neither true nor false; it just
expresses a property which the number e might have.

It is curious that, since we know multiplication is commutative, we
might easily have written

Jde:(e -SS0)=SSSSSSO

instead. Or, knowing that equality is a symmetrical relation, we might have
chosen to write the sides of the equation in the opposite order:
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Je:SSSSSS0=(SS0-e)

Now these three translations of “6 is even” are quite different strings, and it
is by no means obvious that theoremhood of any one of them is tied to
theoremhood of any of the others. (Similarly, the fact that -—p-q—-—was
a theorem had very little to do with the fact that its “equivalent” string
-p--q——- was a theorem. The equivalence lies in our minds, since, as
humans, we almost automatically think about interpretations, not struc-
tural properties of formulas.)

We can dispense with sentence 2: “2 is not a square”, almost im-
mediately:

~3b:(b -b)=SSO

However, once again, we find an ambiguity. What if we had chosen to write
it this way?

Vb:~(b-b)=SS0

The first way says, “It is not the case that there exists a number b with the
property that b’s square is 2”7, while the second way says, “For all numbers
b, it is not the case that b’s square is 2.” Once again, to us, they are
conceptually equivalent—but to TNT, they are distinct strings.

Let us proceed to sentence 3: “1729 is a sum of two cubes.” This one
will involve two existential quantifiers, one after the other, as follows:

3b:3c:SSSSSS - . . . . $S5SS0=(((b-b)b)+((c-c)-c))

——m T —a——

1729 of them

There are alternatives galore. Reverse the order of the quantifiers; switch
the sides of the equation; change the variables to d and e; reverse the
addition; write the multiplications differently; etc., etc. However, 1 prefer
the following two translations of the sentence:

Ib:Ic(((SSSSSSSSSSO - SSSSSSSSSSO) - SSSSSSSSSS0) +
((SSSSSSSSSO-SSSSSSSSS0) -SSSSSSSSS0))=(((b -b)-b)+((c ) -¢))

and

3b:3c:(((SSSSSSSSSSSS0 - SSSSSSSSSSSS0) - SSSSSSSSSSSS0) +
((50-50)-50))=(((b-b) -b)+((cc)-c))

Do you see why?

Tricks of the Trade

Now let us tackle the related sentence 4: “No sum of two positive cubes is
itself a cube”. Suppose that we wished merely to state that 7 is not a sum of
two positive cubes. The easiest way to do this is by negating the formula
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which asserts that 7 is a sum of two positive cubes. This will be just like the
preceding sentence involving 1729, except that we have to add in the
proviso of the cubes being positive. We can do this with a trick: prefix the
variables with the symbol S, as follows:

3b:3c:SSSSSSSO=(((Sb - Sb) -Sb) +((Sc- Sc) - Sc))

You see, we are cubing not b and ¢, but their successors, which must be
positive, since the smallest value which either b or c can take on is zero.
Hence the right-hand side represents a sum of two positive cubes. Inciden-
tally, notice that the phrase “there exist numbers b and ¢ such that ...”,
when translated, does not involve the symbol ‘A’ which stands for ‘and’.
That symbol is used for connecting entire well-formed strings, not for
joining two quantifiers.

Now that we have translated “7 is a sum of two positive cubes”, we wish
to negate it. That simply involves prefixing the whole thing by a single tilde.
{Note: you should not negate each quantifier, even though the desired
phrase runs “There do not exist numbers b and ¢ such that . . .”.) Thus we
get:

~3b:3c:SS5SSSSO=(((Sb - Sb) - Sb)-+((Sc-Sc) -Sc))

Now our original goal was to assert this property not of the number 7, but
of all cubes. Therefore, let us replace the numeral SSSSSSSO by the string
((a-a)-a), which is the translation of “a cubed”:

~3b:3c:((a-a)-a)=(((Sb-Sb)-Sb)+((Sc-Sc)-Sc))

At this stage, we are in possession of an open formula, since a is still free.
This formula expresses a property which a number a might or might not
have—and it is our purpose to assert that all numbers do have that prop-
erty. That is simple—just prefix the whole thing with a universal quantifier:

Va:~3b:3c:((a-a)-a)=(((Sb-Sb)-Sb)+((Sc-Sc)-Sc))
An equally good translation would be this:
~Za:db:3c:((a-a)-a)=(((Sb-Sb)-Sb)+((Sc-Sc) -Sc))

In austere TNT, we could use a’ instead of b, and a’’ instead of ¢, and the
formula would become:

~3Ja:3a’:3a’";((a-a)-a)=(((Sa’-Sa’)-Sa’)+((Sa'’-Sa’'")-Sa’"))

What about sentence 1: “5 is prime”? We had reworded it in this way:
“There do not exist numbers a and b, both greater than 1, such that 5
equals a times b”. We can slightly modify it, as follows: “There do not exist
numbers a and b such that 5 equals a plus 2, times b plus 2”. This is another
trick—since a and b are restricted to natural number values, this is an
adequate way to say the same thing. Now “b plus 2” could be translated into
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(b+SS0), but there is a shorter way to write it—namely, SSb. Likewise, “c
plus 2” can be written SSc. Now, our translation is extremely concise:

~3b:3c:SSSSSO=(SSb-SSc)

Without the initial tilde, it would be an assertion that two natural numbers
do exist, which, when augmented by 2, have a product equal to 5. With the
tilde in front, that whole statement is denied, resulting in an assertion that 5
is prime,

If we wanted to assert that d plus e plus 1, rather than 5, is prime, the
most economical way would be to replace the numeral for 5 by the string
(d+Se):

~3b:3c:(d+Se)=(SSb - SSc)

Once again, an open formula, one whose interpretation is neither a true
nor a false sentence, but just an assertion about two unspecified numbers, d
and e. Notice that the number represented by the string (d+Se) is necessar-
ily greater than d, since one has added to d an unspecified but definitely
positive amount. Therefore, if we existentially quantify over the variable e,
we will have a formula which asserts that:

There exists a number which is greater than d and which is prime.
Je:~3b:3c:(d+Se)=(SSb-SSc)
Well, all we have left to do now is to assert that this property actually

obtains, no matter what d is. The way to do that is to universally quantify
over the variable d:

Vd:Je:~3b:3c(d+Se)=(SSb-SSc)

That’s the translation of sentence 5!

Translation Puzzles for You

This completes the exercise of translating all six typical number-theoretical
sentences. However, it does not necessarily make you an expert in the
notation of TNT. There are still some tricky issues to be mastered. The
following six well-formed formulas will test your understanding of TNT-
notation. What do they mean? Which ones are true (under interpretation,
of course), and which ones are false? (Hint: the way to tackle this exercise is
to move leftwards. First, translate the atom; next, figure out what adding a
single quantifier or a tilde does; then move leftwards, adding another
quantifier or tilde; then move leftwards again, and do the same.)

~Vc:3by(SSO-b)=c
Ve:~3by(SSO-b)=c
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Vc:3b:~(SS0-b)=c
~3b:Vc:(SSO-b)=c
3b:~Vc:(SS0-b)=c
3b:Vc:~(SS0-b)=c

(Second hint: Either four of them are true and two false, or four false and
two true.)

How to Distinguish True from False?

At this juncture, it is worthwhile pausing for breath and contemplating
what it would mean to have a formal system that could sift out the true ones
from the false ones. This system would treat all these strings—which to us
look like statements—as designs having form, but no content. And this
system would be like a sieve through which could pass only designs with a
special style—the “style of truth”, If you yourself have gone through the six
formulas above, and have separated the true from the false by thinking
about meaning, you will appreciate the subtlety that any system would have
to have, that could do the same thing—but typographically! The boundary
separating the set of true statements from the set of false statements (as
written in the TNT-notation) is anything but straight; it is a boundary with
many treacherous curves (recall Fig. 18), a boundary of which mathemati-
cians have delineated stretches, here and there, working over hundreds of
years. Just think what a coup it would be to have a typographical method
which was guaranteed to place any formula on the proper side of the
border!

The Rules of Well-Formedness

It is useful to have a table of Rules of Formation for well-formed formulas.
This is provided below. There are some preliminary stages, defining nu-
merals, variables, and terms. Those three classes of strings are ingredients of
well-formed formulas, but are not in themselves well-formed. The smallest
well-formed formulas are the atoms; then there are ways of compounding
atoms. Many of these rules are recursive lengthening rules, in that they
take as input an item of a given class and produce a longer item of the same
class. In this table, I use ¢’ and %’ to stand for well-formed formulas, and
5’, ¢, and ‘' to stand for other kinds of TNT-strings. Needless to say,
none of these five symbols is itself a symbol of TNT.

NUMERALS.
0 is a numeral.

A numeral preceded by S is also a numeral.
Examples: 0 SO SSO SSSO SSSSO SSSSSO
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VARIABLES.
a is a variable. If we’re not being austere, so are b, ¢, d and e.
A variable followed by a prime is also a variable.
Examples: a b’ ¢ d'"" e’

TERMS.
All numerals and variables are terms.
A term preceded by S is also a term.
If s and ¢ are terms, then so are (s+ ¢t) and (s- ¢).
Examples: O b SSa’ (S0-(SSO+c)) S(Sa-(Sb-Sc))

TEeRMS may be divided into two categories:
(1) DEFINITE terms. These contain no variables.
Examples: O (SO+S0) SS((SSO-SS0)+(S0-S0))
(2) INDEFINITE terms. These contain variables.
Examples: b Sa (b+S0) (((SO+S0)+S0)+e)

The above rules tell how to make parts of well-formed formulas; the
remaining rules tell how to make complete well-formed formulas.

ATOMS.
If s and ¢ are terms, then s =t is an atom.
Examples: S0=0 (SS0+SS0)=SSSSO S(b+c)=((c-d)-€)
If an atom contains a variable u, then wu is free in it. Thus theré are
four free variables in the last example.

NEGATIONS.
A well-formed formula preceded by a tilde is well-formed.
Examples: ~S0=0 ~3b:(b+b)=S0 ~<0=013S0=0> ~b=S0
The quantification status of a variable (which says whether the variable is
free or quantified) does not change under negation.

COMPOUNDS.

If x and y are well-formed formulas, and provided that no variable
which is free in one is quantified in the other, then the following
are all well-formed formulas:
<any>, <xvy>, <xDy>.

Examples: <0=0n~0=0> <b=by~3dc:c=b>
<S0=0DVc:~3b:(b+b)=c>

The quantification status of a variable doesn’t change here.

QUANTIFICATIONS,
If u is a variable, and x is a well-formed formula in which u is free,
then the following strings are well-formed formulas:
Ju:x and Vu:x.
Examples: Vb:<b=by~3c:c=b> Vc:~3b:(b+b)=c ~3c:Sc=d

OPEN FORMULAS contain at least one free variable.
Examples: ~c=c b=b <Vb:b=bA~c=c>

CLOSED FORMULAS (SENTENCES) contain no free variables.
Examples: S0=0 ~Vd:d=0 3Fc:<Vb:b=bA~c=c>
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This completes the table of Rules of Formation for the well-formed for-
mulas of TNT.

A Few More Translation Exercises

And now, a few practice exercises for you, to test your understanding of
the notation of TNT. Try to translate the first four of the following
N-sentences into TNT-sentences, and the last one into an open well-
formed formula.

All natural numbers are equal to 4.

There is no natural number which equals its own square.
Different natural numbers have different successors.
If 1 equals 0, then every number is odd.

b is a power of 2.

The last one you may find a little tricky. But it is nothing, compared to this
one:

b is a power of 10.

Strangely, this one takes great cleverness to render in our notation. I would
caution you to try it only if you are willing to spend hours and hours on
it—and if you know quite a bit of number theory!

A Nontypographical System

This concludes the exposition of the notation of TNT; however, we are still
left with the problem of making TNT into the ambitious system which we
have described. Success would justify the interpretations which we have
given to the various symbols. Until we have done that, however, these
particular interpretations are no more justified than the “horse-apple-
happy” interpretations were for the pq-system’s symbols.

Someone might suggest the following way of constructing TNT: (1) Do
not have any rules of inference; they are unnecessary, because (2) We take
as axioms all true statements of number theory (as written in TNT-
notation). What a simple prescription! Unfortunately it is as empty as one’s
instantaneous reaction says it is. Part (2) is, of course, not a typographical
description of strings. The whole purpose of TNT is to figure out if and
how it is possible to-characterize the true strings typographically.

The Five Axioms and First Rules of TNT

Thus we will follow a more difficult route than the suggestion above; we
will have axioms and rules of inference. Firstly, as was promised, all of the
rules of the Propositional Calculus are taken over into TNT. Therefore, one
theorem of TNT will be this one:

<S0=0~50=0>
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which can be derived in the same way as <Py~P> was derived.
Before we give more rules, let us give the five axioms of TNT:

Axiom 1: Va:~Sa=0

AxioM 2: Vai(a+0)=a

AxioM 3: Va:Vb:a+Sb)=S(a+b)
Axiom 4: Va:(a-0)=0

AxioM 5: Va:Vbya-Sb)=((a-b)+a)

(In the austere versions, use a’ instead of b.) All of them are very simple to
understand. Axiom 1 states a special fact about the number 0; Axioms 2
and 3 are concerned with the nature of addition; Axioms 4 and 5 are
concerned with the nature of multiplication, and in particular with its
relation to addition.

The Five Peano Postulates

By the way, the interpretation of Axiom 1—"*Zero is not the successor of
any natural number”—is one of five famous properties of natural numbers
first explicitly recognized by the mathematician and logician Giuseppe
Peano, in 1889. In setting out his postulates, Peano was following the path
of Euclid in this way: he made no attempt to formalize the principles of
reasoning, but tried to give a small set of properties of natural numbers
from which everything else could be derived by reasoning. Peano’s attempt
might thus be considered “semiformal”. Peano’s work had a significant
influence, and thus it would be good to show Peano’s five postulates. Since
the notion of “natural number” is the one which Peano was attempting to
define, we will not use the familiar term “natural number”, which is laden
with connotation. We will replace it with the undefined term djinn, a word
which comes fresh and free of connotations to our mind. Then Peano’s five
postulates place five restrictions on djinns. There are two other undefined
terms: Genie, and meta. 1 will let you figure out for yourself what usual
concept each of them is supposed to represent. The five Peano postulates:

(1) Genie is a djinn.

(2) Every djinn has a meta (which is also a djinn).

(3) Genie is not the meta of any djinn.

(4) Different djinns have different metas.

(5) 1f Genie has X, and each djinn relays X to its meta, then all
djinns get X.

In light of the lamps of the Little Harmonic Labyrinth, we should name the set
of all djinns “GOD”. This harks back to a celebrated statement by the
German mathematician and logician Leopold Kronecker, archenemy of
Georg Cantor: “God made the natural numbers; all the rest is the work of

"

marn.
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You may recognize Peano’s fifth postulate as the principle of mathe-
matical induction—another term for a hereditary argument. Peano hoped
that his five restrictions on the concepts “Genie”, “djinn”, and “meta” were
so strong that if two different people formed images in their minds of the
concepts, the two images would have completely isomorphic structures. For
example, everybody’s image would include an infinite number of distinct
djinns. And presumably everybody would agree that no djinn coincides
with its own meta, or its meta’s meta, etc.

Peano hoped to have pinned down the essence of natural numbers in
his five postulates. Mathematicians generally grant that he succeeded, but
that does not lessen the importance of the question, “How is a true state-
ment about natural numbers to be distinguished from a false one?” And to
answer this question, mathematicians turned to totally formal systems, such
as TNT. However, you will see the influence of Peano in TNT, because all
of his postulates are incorporated in TNT in one way or another.

New Rules of TNT: Specification and Generalization

Now we come to the new rules of TNT. Many of these rules will allow us to
reach in and change the internal structure of the atoms of TNT. In that
sense they deal with more “microscopic” properties of strings than the rules
of the Propositional Calculus, which treat atoms as indivisible units. For
example, it would be nice if we could extract the string ~S0=0 from the
first axiom. To do this we would need a rule which permits us to drop a
universal quantifier, and at the same time to change the internal structure
of the string which remains, if we wish. Here is such a rule:

RULE OF SPECIFICATION: Suppose u is a variable which occurs inside the
string «x. If the string Vu: x is a theorem, then so is x, and so are any
strings made from x by replacing u, wherever it occurs, by one and
the same term.

( Restriction: The term which replaces u« must not contain any variable
that is quantified in x.)

The rule of specification allows the desired string to be extracted from
Axiom 1. It is a one-step derivation:

Va:~Sa=0 axiom 1
~50=0 specification

Notice that the rule of specification will allow some formulas which contain
free variables (i.e., open formulas) to become theorems. For example, the
following strings could also be derived from Axiom 1, by specification:

~Sa=0
~S(c+SS0)=0

There is another rule, the rule of generalization, which allows us to put
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back the universal quantifier on theorems which contain variables that
became free as a result of usage of specification. Acting on the lower string,
for example, generalization would give:

Vc:~S(c+SS0)=0

Generalization undoes the action of specification, and vice versa. Usually,
generalization is applied after several intermediate steps have transformed
the open formula in various ways. Here is the exact statement of the rule:

RuULE OF GENERALIZATION: Suppose x is a theorem in which u, a variable,
occurs free. Then Vu: x is a theorem.

( Restriction: No generalization is allowed in a fantasy on any variable
which appeared free in the fantasy’s premise.)

The need for restrictions on these two rules will shortly be demonstrated
explicitly. Incidentally, this generalization is the same generalization as was
mentioned in Chapter 11, in Euclid’s proof about the infinitude of primes.
Already we can see how the symbol-manipulating rules are starting to
approximate the kind of reasoning which a mathematician uses.

The Existential Quantifier

These past two rules told how to take off universal quantifiers and put
them back on; the next two rules tell how to handle existential quantifiers.

RuULE OF INTERCHANGE: Suppose u is a variable. Then the strings Vu:~ and
~3u: are interchangeable anywhere inside any theorem.

For example, let us apply this rule to Axiom 1:

Va:~Sa=0 axiom 1
~da:Sa=0 interchange

By the way, you might notice that both these strings are perfectly natural
renditions, in TNT, of the sentence ‘“Zero is not the successor of any
natural number”. Therefore it is good that they can be turned into each
other with ease.

The next rule is, if anything, even more intuitive. It corresponds to the
very simple kind of inference we make when we go from “2 is prime” to
“There exists a prime”. The name of this rule is self-explanatory:

RULE OF EXISTENCE: Suppose a term (which may contain variables as long
as they are free) appears once, or multiply, in a theorem. Then any (or
several, or all) of the appearances of the term may be replaced by a
variable which otherwise does not occur in the theorem, and the
corresponding existential quantifier must be placed in front.

Let us apply the rule to—as usual-—Axiom 1:

218 Typographical Number Theory



Va:~Sa=0 axiom 1
Ib:Va:~Sa=b existence

You might now try to shunt symbols, according to rules so far given, to
produce the theorem ~Vb:3a:Sa=b.

Rules of Equality and Successorship

We have given rules for manipulating quantifiers, but so far none for the
symbols ‘="and ‘S’. We rectify that situation now. In what follows, 7, 5, and
t all stand for arbitrary terms.

RuULEs oF EQuUALITY:
SYMMETRY: If r =s is a theorem, then sois s = 7.
TransiTiVITY: If r =5 and s = ¢ are theorems, then so is r = ¢.
RULES OF SUCCESSORSHIP:
App S: If r =t is a theorem, then Sr = St is a theorem.
Drop S: If Sr = St is a theorem, then r =t is a theorem.

Now we are equipped with rules that can give us a fantastic variety of
theorems. For example, the following derivations yield theorems which are
pretty fundamental:

(1) Va:Vb:(a+Sb)=S(a+b) axiom 3

(2) Vb:y(SO+Sb)=S(S0+Db) specification (SO for a)

(3) (S0+S0)=S(S0+0) specification (O for b)

(4) Va(a+0)=a axiom 2

(5) (S0+0)=SO specification (SO for a)

(6) S(SO0+0)=SSO add S

(7) (S0+S0)=SSO transitivity (lines 3,6)
* * * * *

(1) Va:Vb:(a-Sb)=((a-b)+a) axiom 5

(2) Vby(SO-Sb)=((SO-b)+S0) specification (SO for a)

(3) (S50-S0)=((S0-0)+S0) specification (O for b)

(4) Va:Vb:ia+Sb)=S(a+b) axiom 3

(5) Vb:((SO-0)+Sb)=S((SO-0)+b) specification ((SO-0) for a)
(6) ((SO-0)+S0)=S((S0-0)+0) specification (O for b)

(7) Va(a+0)=a axiom 2
(8) ((S0-0)+0)=(S0-0) specification ((SQ.0) for a)
(9) Vai(a-0)=0 axiom 4
(10) (S0-0)=0 specification (SO for a)
(11) ((S0-0)+0)=0 transitivity (lines 8,10)
(12) S((S0-0)+0)=SO0 add S
(13) ((S0-0)+S0)=S0 transitivity (lines 6,12)
(14) (S0-S0)=SO transitivity (lines 3,13)
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lllegal Shortcuts

Now here is an interesting question: “How can we make a derivation for the
string 0=0?" It seems that the obvious route to go would be first to derive
the string Va:a=a, and then to use specification. So, what about the follow-
ing “derivation” of Va:a=a ... What is wrong with it? Can you fix it up?

(1) Va(a+0)=a axiom 2
(2) Vaia=(a+0) symmetry
(3) Vaa=a transitivity (lines 2,1)

I gave this mini-exercise to point out one simple fact: that one should not
jump too fast in manipulating symbols (such as ‘=") which are familiar. One
must follow the rules, and not one’s knowledge of the passive meanings of
the symbols. Of course, this latter type of knowledge is invaluable in
guiding the route of a derivation.

Why Specification and Generalization Are Restricted

Now let us see why there are restrictions necessary on both specification
and generalization. Here are two derivations. In each of them, one of the
restrictions is violated. Look at the disastrous results they produce:

a [ push
(2) a=0 premise
(3) Va:a=0 generalization (Wrong!)
“4) Sa=0 specification
) ] pop
(6) <a=0DSa=0> fantasy rule
(7) Va<a=0DSa=0> generalization
(8) <0=0D0S0=0> specification
(99 0=0 previous theorem
(10) SO0=0 detachment (lines 9,8)

This is the first disaster. The other one is via faulty specification.

(1) Vaia=a previous theorem

(2) Sa=Sa specification

(3) 3b:b=Sa existence »

(4) Va:db:b=Sa generalization

(5) 3b:b=Sb specification (Wrong!)

So now you can see why those restrictions are needed.

Here is a simple puzzle: translate (if you have not already done so)
Peano’s fourth postulate into TNT-notation, and then derive that string as
a theorem.
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Something Is Missing

Now if you experiment around for a while with the rules and axioms of
TNT so far presented, you will find that you can produce the following
pyramidal family of theorems (a set of strings all cast from an identical mold,
differing from one another only in that the numerals 0, SO, SSO, and so on
have been stuffed in):

(0+0)=0
(0+50)=S0
(0+5S0)=SS0
(0+5550)=S5S0
(0+55550)=5S5S0

etc.

As a matter of fact, each of the theorems in this family can be derived from
the one directly above it, in only a couple of lines. Thus it is a sort of
“cascade” of theorems, each one triggering the next. (These theorems are
very reminiscent of the pq-theorems, where the middle and right-hand
groups of hyphens grew simultaneously.)

Now there is one string which we can easily write down, and which
summarizes the passive meaning of them all, taken together. That univer-
sally quantified summarizing string is this:

Va:(0+a)=a

Yet with the rules so far given, this string eludes production. Try to
produce it yourself if you don’t believe me.

You may think that we should immediately remedy the situation with
the following

(ProPoseD) RULE OF ALL: If all the strings in a pyramidal family are theo-
rems, then so is the universally quantified string which summarizes
them.

The problem with this rule is that it cannot be used in the M-mode. Only
people who are thinking about the system can ever know that an infinite set
of strings are all theorems. Thus this is not a rule that can be stuck inside
any formal system.

w-Incomplete Systems and Undecidable Strings

So we find ourselves in a strange situation, in which we can typographically
produce theorems about the addition of any specific numbers, but even such
a simple string as the one above, which expresses a property of addition in
general, is not a theorem. You might think that is not all that strange, since
we were in precisely that situation with the pq-system. However, the pq-
system had no pretensions about what it ought to be able to do; and in fact
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there was no way to express general statements about addition in its sym-
bolism, let alone prove them. The equipment simply was not there, and it
did not even occur to us to think that the system was defective. Here,
however, the expressive capability is far stronger, and we have correspond-
ingly higher expectations of TNT than of the pg-system. If the string above
is not a theorem, then we will have good reason to consider TNT to be
defective. As a matter of fact, there is a name for systems with this kind of
defect—they are called w-incomplete. (The prefix ‘w’—'omega’— comes
from the fact that the totality of natural numbers is sometimes denoted by
‘w’.) Here is the exact definition:

A system is w-incomplete if all the strings in a pyramidal family are
theorems, but the universally quantified summarizing string is not
a theorem.

Incidentally, the negation of the above summarizing string—
~Va:(0+a)=a

—is also a nontheorem of TNT. This means that the original string is
undecidable within the system. 1f one or the other were a theorem, then we
would say that it was decidable. Although it may sound like a mystical term,
there is nothing mystical about undecidability within a given system. It is
only a sign that the system could be extended. For example, within absolute
geometry, Euclid’s fifth postulate is undecidable. It has to be added as an
extra postulate of geometry, to yield Euclidean geometry; or conversely, its
negation can be added, to yield non-Euclidean geometry. If you think back
to geometry, you will remember why this curious thing happens. It is
because the four postulates of absolute geometry simply do not pin down
the meanings of the terms “point” and “line”, and there is room for different
extensions of the notions. The points and lines of Euclidean geometry
provide one kind of extension of the notions of “point” and “line”; the
POINTS and LINES of non-Euclidean geometry, another. However, using
the pre-flavored words “point” and “line” tended, for two millennia, to
make people believe that those words were necessarily univalent, capable of
only one meaning.

Non-Euclidean TNT

We are now faced with a similar situation, involving TNT. We have
adopted a notation which prejudices us in certain ways. For instance, usage
of the symbol ‘+’ tends to make us think that every theorem with a plus sign
in it ought to say something known and familiar and “sensible” about the
known and familiar operation we call “addition”. Therefore it would run
against the grain to propose adding the following “sixth axiom™:

~Va(0+a)=a
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It doesn’t jibe with what we believe about addition. But it is one possible
extension of TNT, as we have so far formulated TNT. The system which
uses this as its sixth axiom is a consistent system, in the sense of not having
two theorems of the form x and ~ x. However, when you juxtapose this
“sixth axiom” with the pyramidal family of theorems shown above, you will
probably be bothered by a seeming inconsistency between the family and
the new axiom. But this kind of inconsistency is not so damaging as the
other kind (where x and ~ x are both theorems). In fact, it is not a true
inconsistency, because there is a way of interpreting the symbols so that
everything comes out all right.

w-Inconsistency Is Not the Same as Inconsistency

This kind of inconsistency, created by the opposition of (1) a pyramidal
family of theorems which collectively assert that all natural numbers have
some property, and (2) a single theorem which seems to assert that not all
numbers have it, is given the name of w-inconsistency. An w-inconsistent
system 1s more like the at-the-outset-distasteful-but-in-the-end-acceptable
non-Euclidean geometry. In order to form a mental model of what is going
on, you have to imagine that there are some “extra”, unsuspected
numbers—Ilet us not call them “natural”, but supernatural numbers—which
have no numerals. Therefore, facts about them cannot be represented in
the pyramidal family. (This is a little bit like Achilles’ conception of
GOD—as a sort of “superdjinn”, a being greater than any of the djinns.
This was scoffed at by the Genie, but it is a reasonable image, and may help
you to imagine supernatural numbers.)

What this tells us is that the axioms and rules of TNT, as so far
presented, do not fully pin down the interpretations for the symbols of
TNT. There is still room for variation in one’s mental model of the notions
they stand for. Each of the various possible extensions would pin down
some of the notions further; but in different ways. Which symbols would
begin to take on “distasteful” passive meanings, if we added the “sixth
axiom” given above? Would all of the symbols become tainted, or would
some of them still mean what we want them to mean? I will let you think
about that. We will encounter a similar question in Chapter X1V, and
discuss the matter then. In any case, we will not follow this extension now,
but instead go on to try to repair the w-incompleteness of TNT.

The Last Rule

The problem with the “Rule of All” was that it required knowing that all the
lines of an infinite pyramidal family are theorems—too much for a finite
being. But suppose that each line of the pyramid can be derived from its
predecessor in a patterned way. Then there would be a finite reason account-
ing for the fact that all the strings in the pyramid are theorems. The trick,
then, is to find the pattern that causes the cascade, and show that that
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pattern is a theorem in itself. That is like proving that each djinn passes a
message to its meta, as in the children’s game of “Telephone”. The other
thing left to show is that Genie starts the cascading message—that is, to
establish that the first line of the pyramid is a theorem. Then you know that
GOD will get the message!

In the particular pyramid we were looking at, there is a pattern,
captured by lines 4-9 of the derivation below.

(1) Va:Vb:{a+Sb)=S(a+b) axiom 3

(2) Vb:(0+Sb)=S(0+b) specification

(3) (0+Sb)=S(0+b) specification

4) % push

(5) (0+b)=b premise

(6) S(0+b)=Sb add S

(7) (0+Sb)=S(0+b) carry over line 3
(8) (0+Sb)=Sb transitivity

9 ] pop

The premise is (0+b)=b; the outcome is (0+Sb)=Sb.

The first line of the pyramid is also a theorem,; it follows directly from
Axiom 2. All we need now is a rule which lets us deduce that the string
which summarizes the entire pyramid is itself a theorem. Such a rule will be
a formalized statement of the fifth Peano postulate.

To express that rule, we need a little notation. Let us abbreviate a
well-formed formula in which the variable a is free by the following nota-
tion:

X{a}

(There may be other free variables, too, but that is irrelevant.) Then the
notation X{Sa/a} will stand for that string but with every occurrence of a
replaced by Sa. Likewise, X{0/a} would stand for the same string, with each
appearance of a replaced by 0.

A specific example would be to let X{a} stand for the string in ques-
tion: (O+a)=a. Then X{Sa/a} would represent the string (0+Sa)=Sa, and
X{0/a} would represent (0+0)=0. (Warning: This notation is not part of
TNT; 1t is for our convenience in talking about TNT.)

With this new notation, we can state the last rule of TNT quite pre-
cisely:

RuLE oF INDUCTION: Suppose u is a variable, and X{u} is a well-formed
formula in which u« occurs free. If both Vu:<X{u}> X{Su/u}> and

X{O/u} are theorems, then Vu: X{u} is also a theorem.

This is about as close as we can come to putting Peano’s fifth postulate into
TNT. Now let us use it to show that Va:(0+a)=a is indeed a theorem in
TNT. Emerging from the fantasy in our derivation above, we can apply the
fantasy rule, to give us

(10) <(0+b)=b>(0+Sb)=Sb> fantasy rule
(11) Vb:<(0+b)=bD(0+Sb)=Sb:> generalization
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This is the first of the two input theorems required by the induction rule.
The other requirement is the first line of the pyramid, which we have.
Therefore, we can apply the rule of induction, to deduce what we wanted:

Vb:(0+b)=b

Specification and generalization will allow us to change the variable from b
to a; thus Va;(0+a)=a is no longer an undecidable string of TNT.

A Long Derivation

Now I wish to present one longer derivation in TNT, so that you can see
what one is like, and also because it proves a significant, if simple, fact of

number theory.

(1) Va:Vb{a+Sb)=S(a+b)
(2) Vby(d+Sb)=S(d+b)
(3) (d+SSc)=S(d+Sc)
(4) Vby(Sd+Sb)=S(Sd+b)

(5) (Sd+Sc)=S(Sd+c)

(6) S(Sd+c)=(Sd+Sc)

™ [

(8) Vd{(d+Sc)=(Sd+c)

(9) (d+Sc)=(Sd+c)

(10)  S(d+Sc)=S(Sd+c)

(11)  (d+SSc)=S(d+Sc)

(12)  (d+SSc)=S(Sd+c)

(13) S(Sd+c)=(Sd+Sc)

(14)  (d+SSc)=(Sd+Sc)

(15)  Vdi(d+SSc)=(Sd+Sc)

(16) ]

(17) <Vd:(d+Sc)=(Sd+c)DVd:(d+SSc)=(Sd+Sc)>
(18) Ve:<Vdi(d+Sc)=(Sd+c)DVd:(d+SSc)=(Sd+Sc)>

* k% ok ok %

(19) (d+S0)=S(d+0)
(20) Va(a+0)=a
(21) (d+0)=d

(22) S(d+0)=Sd
(23) (d+S0)=Sd

(24) (Sd+0)=Sd

(25) Sd=(Sd+0)

Typographical Number Theory

axiom 3
specification
specification
specification
(line 1)
specification
symmetry
push
premise
specification
add S
carry over 3
transitivity
carry over 6
transitivity
generalization
pop
fantasy rule
generalization

specification
(line 2)
axiom 1
specification
add §
transitivity
(lines 19,22)
specification
(line 20)
symmetry
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(26) (d+S0)=(Sd+0)

(27) Vd(d+S0)=(Sd+0)

(28) Ve:Vdi(d+Sc)=(Sd+c)

transitivity
(lines 23,25)
generalization

induction
(lines 18,27)

[S can be slipped back and forth in an addition.]

* k% Kk Kk %k

(29) Vbs{c+Sb)=S(c+b)

(30) (c+Sd)=S(c+d)
(31) Vb{(d+Sb)=S(d+b)

(32) (d+Sc)=S(d+c)
(33) S(d+c)=(d+Sc)
(34) Vd:(d+Sc)=(Sd+c)

(35) {d+Sc)=(Sd+c)

(36) |

(37) Ve(c+d)=(d+c)

(38) (c+d)y=(d+c)

(39) S(c+d)=S(d+c)

(40)  (c+Sd)=S(c+d)

(41)  (c+Sd)=S(d+c)

(42)  S(d+c)=(d+Sc)

(43) (c+Sd)=(d+Sc)

(44)  (d+Sc)=(Sd+c)

(45) (c+Sd)=(Sd+c)

(46)  Vc{c+Sd)=(Sd+c)

(47) ]

(48) <Vci(c+d)=(d+c)DVc(c+Sd)=(Sd+c)>
(49) Vd:<Vc:(c+d)=(d+c)DVci(c+Sd)=(Sd+c)>

specification
(line 1)
specification
specification
(line 1)
specification
symmetry
specification
(line 28)
specification
push
premise
specification
add S
carry over 30
transitivity
carry over 33
transitivity
carry over 35
transitivity
generalization
pop
fantasy rule
generalization

[1f d commutes with every c, then Sd does too.]

* % Kk Kk k¥

(50) (c+0)=c
(51) Va(O+a)=a

(52) (0+c)=c
(53) ¢=(0+c¢)

specification
(line 20)
previous
theorem
specification
symmetry
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(54) (c+0)=(0+c) transitivity
(lines 50,53)
(55) Vc:i{c+0)=(0+c) generalization

[0 commutes with every c.]

* k% 0k Kk 0k

(56) Vd:Vc:(c+d)=(d+c) induction
(lines 49,55)

[ Therefore, every d commutes with every c.]

Tension and Resolution in TNT

TNT has proven the commutativity of addition. Even if you do not follow
this derivation in detail, it is important to realize that, like a piece of music,
it has its own natural “rhythm”. It is not just a random walk that happens to
have landed on the desired last line. I have inserted “breathing marks” to
show some of the “phrasing” of this derivation. Line 28 in particular is a
turning point in the derivation, something like the halfway point in an
AABB type of piece, where you resolve momentarily, even if not in the tonic
key. Such important intermediate stages are often called “lemmas”.

It is easy to imagine a reader starting at line 1 of this derivation,
ignorant of where it is to end up, and getting a sense of where it is going as
he sees each new line. This would set up an inner tension, very much like
the tension in a piece of music caused by chord progressions that let you
know what the tonality is, without resolving. Arrival at line 28 would
confirm the reader’s intuition and give him a momentary feeling of satisfac-
tion while at the same time strengthening his drive to progress towards
what he presumes is the true goal.

Now line 49 is a critically important tension-increaser, because of the
“almost-there” feeling which it induces. It would be extremely unsatisfac-
tory to leave off there! From there on, it is almost predictable how things
must go. But you wouldn’t want a piece of music to quit on you just when it
had made the mode of resolution apparent. You don’t want to imagine the
ending—you want to hear the ending. Likewise here, we have to carry
things through. Line 55 is inevitable, and sets up all the final tensions,
which are resolved by Line 56.

This is typical of the structure not only of formal derivations, but also
of informal proofs. The mathematician’s sense of tension is intimately
related to his sense of beauty, and is what makes mathematics worthwhile
doing. Notice, however, that in TNT itself, there seems to be no reflection
of these tensions. In other words, TNT doesn’t formalize the notions of
tension and resolution, goal and subgoal, “naturalness” and “inevitability”,
any more than a piece of music is a book about harmony and rhythm.
Could one devise a much fancier typographical system which is aware of the
tensions and goals inside derivations?
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Formal Reasoning vs. Informal Reasoning

I would have preferred to show how to derive Euclid’s Theorem (the
infinitude of primes) in TNT, but it would probably have doubled the
length of the book. Now after this theorem, the natural direction to go
would be to prove the associativity of addition, the commutativity and
associativity of multiplication, and the distributivity of multiplication over
addition. These would give a powerful base to work from.

As it is now formulated, TNT has reached “critical mass” (perhaps a
strange metaphor to apply to something called “TNT”). It is of the same
strength as the system of Principia Mathematica; in TN'T one can now prove
every theorem which you would find in a standard treatise on number
theory. Of course, no one would claim that deriving theorems in TNT is
the best way to do number theory. Anybody who felt that way would fall in
the same class of people as those who think that the best way to know what
1000 x 1000 is, is to draw a 1000 by 1000 grid, and count all the squares in
it . . . No; after total formalization, the only way to go is towards relaxation
of the formal system. Otherwise, it is so enormously unwieldy as to be, for
all practical purposes, useless. Thus, it is important to embed TNT within a
wider context, a context which enables new rules of inference to be derived,
so that derivations can be speeded up. This would require formalization of
the language in which rules of inference are expressed—that is, the
metalanguage. And one could go considerably further. However, none of
these speeding-up tricks would make TNT any more powerful; they would
simply make it more usable. The simple fact is that we have put into TNT
every mode of thought that number theorists rely on. Embedding it in ever
larger contexts will not enlarge the space of theorems; it will just make
working in TNT—or in each “new, improved version”—look more like
- doing conventional number theory.

Number Theorists Go out of Business

Suppose that you didn’t have advance knowledge that TNT will turn out to
be incomplete, but rather, expected that it is complete—that is, that every
true statement expressible in the TN T-notation is a theorem. In that case,
you could make a decision procedure for all of number theory. The
method would be easy: if you want to know if N-statement X is true or
false, code it into TNT-sentence x. Now if X is true, completeness says that
x is a theorem; and conversely, if not-X is true, then completeness says that
~ x is a theorem. So either x or ~ x must be a theorem, since either X or
not-X is true. Now begin systematically enumerating all the theorems of
TNT, in the way we did for the MIU-system and pg-system. You must
come to x or ~ x after a while; and whichever one you hit tells you which of
X and not-X is true. (Did you follow this argument? It crucially depends on
your being able to hold separate in your mind the formal system TNT and
its informal counterpart N. Make sure you understand it.) Thus, in princi-
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ple, if TNT were complete, number theorists would be put out of business:
any question in their field could be resolved, with sufficient time, in a
purely mechanical way. As it turns out, this is impossible, which, depending
on your point of view, is a cause either for rejoicing, or for mourning.

Hilbert’'s Program

The final question which we will take up in this Chapter is whether we
should have as much faith in the consistency of TNT as we did in the
consistency of the Propositional Calculus; and, if we don’t, whether it is
possible to increase our faith in TNT, by proving it to be consistent. One
could make the same opening statement on the “obviousness” of TNT’s
consistency as Imprudence did in regard to the Propositional Calculus—
namely, that each rule embodies a reasoning principle which we fully
believe in, and therefore to question the consistency of TNT is to question
our own sanity. To some extent, this argument still carries weight—but not
quite so much weight as before. There are just too many rules of inference,
and some of them just might be slightly “off ”. Furthermore, how do we
know that this mental model we have of some abstract entities called
“natural numbers” is actually a coherent construct? Perhaps our own
thought processes, those informal processes which we have tried to capture
in the formal rules of the system, are themselves inconsistent! It is of course
not the kind of thing we expect, but it gets more and more conceivable that
our thoughts might lead us astray, the more complex the subject matter
gets—and natural numbers are by no means a trivial subject matter. So
Prudence’s cry for a proof of consistency has to be taken more seriously in
this case. It's not that we seriously doubt that TNT could be inconsistent—
but there is a little doubt, a flicker, a glimmer of a doubt in our minds, and a
proof would help to dispel that doubt.

But what means of proof would we like to see used? Once again, we are
faced with the recurrent question of circularity. If we use all the same
equipment in a proof about our system as we have inserted into it, what will
we have accomplished? If we could manage to convince ourselves of the
consistency of TNT, but by using a weaker system of reasoning than TNT,
we will have beaten the circularity objection! Think of the way a heavy rope
is passed between ships (or so I read when I was a kid): first a light arrow is
fired across the gap, pulling behind it a thin rope. Once a connection has
been established between the two ships this way, then the heavy rope can be
pulled across the gap. If we can use a “light” system to show that a “heavy”
system is consistent, then we shall have really accomplished something.

Now on first sight one might think there is a thin rope. Our goal is to
prove that TNT has a certain typographical property (consistency): that no
theorems of the form x and ~ x ever occur. This is similar to trying to show
that MU is not a theorem of the MIU-system. Both are statements about
typographical properties of symbol-manipulation systems. The visions of a
thin rope are based on the presumption that facts about number theory won’t be
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needed in proving that such a typographical property holds. In other words,
if properties of integers are not used—or if only a few extremely simple
ones are used—then we could achieve the goal of proving TNT consistent,
by using means which are weaker than its own internal modes of reasoning.

This is the hope which was held by an important school of mathemati-
cians and logicians in the early part of this century, led by David Hilbert.
The goal was to prove the consistency of formalizations of number theory
similar to TNT by employing a very restricted set of principles of reasoning
called “finitistic” methods of reasoning. These would be the thin rope.
Included among finitistic methods are all of propositional reasoning, as
embodied in the Propositional Calculus, and additionally some kinds of
numerical reasoning. But Godel’s work showed that any effort to pull the
heavy rope of TNT’s consistency across the gap by using the thin rope of
finitistic methods is doomed to failure. Gédel showed that in order to pull
the heavy rope across the gap, you can't use a lighter rope; there justisn’ta
strong enough one. Less metaphorically, we can say: Any system that is strong
enough to prove TNT's consistency is at least as strong as TNT itself. And so
circularity is inevitable,
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A Mu Offering’

The Tortoise and Achilles have just been to hear a lecture on the origins of
the Genetic Code, and are now drinking some tea at Achilles’ home.

Achilles: 1 have something terrible to confess, Mr. T.

Tortoise: What is it, Achilles?

Achilles:  Despite the fascinating subject matter of that lecture, I drifted off
to sleep a time or two. But in my drowsy state, I still was semi-aware of
the words coming into my ears. One strange image that floated up
from my lower levels was that ‘A’ and ‘T’, instead of standing for
“adenine” and “thymine”, stood for my name and yours—and that
double-strands of DNA had tiny copies of me and you along their
backbones, always paired up, just as adenine and thymine always are.
Isn’t that a strange symbolic image?

Tortoise: Phooey! Who believes in that silly kind of stuff? Anyway, what
about ‘C’ and ‘G’?

Achilles:  Well, 1 suppose ‘C’ could stand for Mr. Crab, instead of for
cytosine. I'm not sure about ‘G’, but I'm sure one could think of
something. Anyway, it was amusing to imagine my DNA being filled
with minuscule copies of you—as well as tiny copies of myself, for that
matter. Just think of the infinite regress THAT leads to!

Tortoise: 1 can see you were not paying too much attention to the lecture.

Achilles: No, you’re wrong. I was doing my best, only I had a hard time
keeping fancy separated from fact. After all, it is such a strange
netherworld that those molecular biologists are exploring.

Tortoise: How do you mean?

Achilles: Molecular biology is filled with peculiar convoluted loops which I
can’t quite understand, such as the way that folded proteins, which are
coded for in DNA, can loop back and manipulate the DNA which they
came from, possibly even destroying it. Such strange loops always
confuse the daylights out of me. They'’re eerie, in a way.

Tortoise: 1 find them quite appealing.

Achilles:  You would, of course—they’re just down your alley. But as for
me, sometimes I like to retreat from all this analytic thought and just
meditate a little, as an antidote. It clears my mind of all those confusing
loops and incredible complexities which we were hearing about to-
night.

Tortoise: Fancy that. T wouldn’t have guessed that you were a meditator.

Achilles: Did I never tell you that I am studying Zen Buddhism?

Tortoise: Heavens, how did you come upon that?

Achilles: 1 have always had a yen for the yin and yang, you know—the
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whole Oriental mysticism trip, with the I Ching, gurus, and whatnot. So
one day I'm thinking to myself, “Why not Zen too?” And that’s how it
all began.

Tortoise: Oh, splendid. Then perhaps I can finally become enlightened.

Achilles: Whoa, now. Enlightenment is not the first step on the road to
Zen; if anything, it’s the last one! Enlightenment is not for novices like
you, Mr. T!

Tortoise: 1 see we have had a misunderstanding. By “enlightenment”, I
hardly meant something so weighty as is meant in Zen. All I meant is
that I can perhaps become enlightened as to what Zen is all about.

Achilles:  For Pete’s sake, why didn’t you say so? Well, I'd be only too happy
to tell you what I know of Zen. Perhaps you might even be tempted to
become a student of it, like me.

Tortoise:  Well, nothing’s impossible.

Achilles: You could study with me under my master, Okanisama—the
seventh patriarch.

Tortoise: Now what in the world does that mean?

Achilles:  You have to know the history of Zen to understand that.

Tortoise:  Would you tell me a little of the history of Zen, then?

Achilles:  An excellent idea. Zen is a kind of Buddhism which was founded
by a monk named Bodhidharma, who left India and went to China
around the sixth century. Bodhidharma was the first patriarch. The
sixth one was End. (I've finally got it straight now!)

Tortoise: 'The sixth patriarch was Zeno, eh? I find it strange that he, of all
people, would get mixed up in this business.

Achilles: 1 daresay you underestimate the value of Zen. Listen just a little
more, and maybe you’ll come to appreciate it. As I was saying, about
five hundred years later, Zen was brought to Japan, and it took hold
very well there. Since that time it has been one of the principal reli-
gions in Japan.

Tortoise:  'Who is this Okanisama, the “seventh patriarch”?

Achilles:  He is my master, and his teachings descend directly from those of
the sixth patriarch. He has taught me that reality is one, immutable,
and unchanging; all plurality, change, and motion are mere illusions
of the senses.

Tortowse:  Sure enough, that's Zeno, a mile away. But how ever did he come
to be tangled up in Zen? Poor fellow!

Achilles:  'Whaaat? I wouldn’t put it that way. If ANYONE is tangled up, it’s

. But that’s another matter. Anyway, I don’t know the answer to
your question. Instead, let me tell you something of the teachings of
my master. I have learned that in Zen, one seeks enlightenment, or
SATORI—the state of “No-mind”. In this state, one does not think about
the world—one just 1S. I have also learned that a student of Zen is not
supposed to “attach” to any object or thought or person—which is to
say, he must not believe in, or depend on, any absolute—not even this
philosophy of nonattachment.
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Tortoise: Hmm . .. Now THERE'S something I could like about Zen.

Achilles: 1 had a hunch you’d get attached to it.

Tortoise: But tell me: if Zen rejects intellectual activity, does it make sense
to intellectualize about Zen, to study it rigorously?

Achilles: That matter has troubled me quite a bit. But I think I have finally
worked out an answer. It seems to me that you may begin approaching
Zen through any path you know—even if it is completely antithetical to
Zen. As you approach it, you gradually learn to stray from that path.
The more you stray from the path, the closer you get to Zen.

Tortoise:  Oh, it all begins to sound so clear now.

Achilles: My favorite path to Zen is through the short, fascinating, and
weird Zen parables called “koans”.

Tortoise:  What is a koan?

Achilles: A koan is a story about Zen masters and their students. Some-
times it is like a riddle; other times like a fable; and other times like
nothing you've ever heard before.

Tortoise:  Sounds rather intriguing. Would you say that to read and enjoy
koans is to practice Zen?

Achilles: 1 doubt it. However, in my opinion, a delight in kdéans comes a
million times closer to real Zen than reading volume after volume
about Zen, written in heavy philosophical jargon.

Tortoise: 1 would like to hear a kdan or two.

Achilles:  And T would like to tell you one—or a few. Perhaps I should
begin with the most famous one of all. Many centuries ago, there was a
Zen master named Joshii, who lived to be 119 years old.

Tortoise: A mere youngster!

Achilles: By your standards, yes. Now one day while Josha and another
monk were standing together in the monastery, a dog wandered by.
The monk asked Joshi, “Does a dog have Buddha-nature, or not?”

Tortoise: Whatever that is. So tell me—what did Jéshu reply?

Achilles: ‘MU',

Tortoise: ‘MU’? What is this ‘MU’> What about the dog? What about
Buddha-nature? What'’s the answer?

Achilles:  Oh, but ‘MU’ is Joshi's answer. By saying ‘MU’, Joshi let the
other monk know that only by not asking such questions can one know
the answer to them.

Tortoise:  Joshii “unasked” the question.

Achilles:  Exactly!

Tortoise: ‘MU’ sounds like a handy thing to have around. I'd like to unask
a question or two, sometimes. I guess I'm beginning to get the hang of
Zen. Do you know any other kéans, Achilles? I would like to hear some
more.

Achilles: My pleasure. I can tell you a pair of kdans which go together.
Only ...

Tortoise: 'What’s the matter?
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Achilles:  Well, there is one problem. Although both are widely told koans,
my master has cautioned me that only one of them is genuine. And
what is more, he does not know which one is genuine, and which one is
a fraud.

Tortowse: Crazy! Why don’t you tell them both to me and we can speculate
to our hearts’ content!

Achilles:  All right. One of the alleged koans goes like this:

A monk asked Baso: “What is Buddha?”
Baso said: “This mind is Buddha.”

Tortoise:  Hmm ... “This mind is Buddha”? Sometimes I don’t quite
understand what these Zen people are getting at.

Achilles:  You might prefer the other alleged koan then.

Tortoise: How does it run?

Achilles:  Like this:

A monk asked Baso: “What is Buddha?”
Baso said: “This mind is not Buddha.”

Tortoise: My, my! If my shell isn’t green and not green! I like that!

Achilles: Now, Mr. T—you’re not supposed to just “like” koans.

Tortoise: Very well, then—I don’t like it.

Achilles:  That'’s better. Now as I was saying, my master believes only one of
the two is genuine.

Tortoise: 1 can’t imagine what led him to such a belief. But anyway, I
suppose it’s all academic, since there’s no way to know if a koan is
genuine or phony.

Achilles:  Oh, but there you are mistaken. My master has shown us how to
do it.

Tortoise: Is that so? A decision procedure for genuineness of koans? I
should very much like to hear about THAT.

Achilles:  Itis a fairly complex ritual, involving two stages. In the first stage,
you must TRANSLATE the kdan in question into a piece of string, folded
all around in three dimensions.

Tortotse: That's a curious thing to do. And what is the second stage?

Achilles:  Oh, that’s easy—all you need to do is determine whether the
string has Buddha-nature, or not! If it does, then the kdan is
genuine—if not, the koan is a fraud.

Tortoise:  Hmm . . . It sounds as if all you've done is transfer the need for a
decision procedure to another domain. NOW it’s a decision procedure
for Buddha-nature that you need. What next? After all, if you can’t
even tell whether a DOG has Buddha-nature or not, how can you expect
to do so for every possible folded string?

Achilles:  Well, my master explained to me that shifting between domains
can help. It’s like switching your point of view. Things sometimes look
complicated from one angle, but simple from another. He gave the
example of an orchard, in which from one direction no order is
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FIGURE 45. La Mezquita, by M. C. Escher (black and white chalk, 1936).

apparent, but from special angles, beautiful regularity emerges.
You've reordered the same information by changing your way of
looking at it.

Tortoise: 1 see. So perhaps the genuineness of a kéan is concealed some-
how very deeply inside it, but if you translate it into a string it manages
in some way to float to the surface?

Achilles: That's what my master has discovered.

Tortoise: 'Then I would very much like to learn about the technique. But
first, tell me: how can you turn a kdan (a sequence of words) into a
folded string (a three-dimensional object)? They are rather different
kinds of entities.

Achilles:  That is one of the most mysterious things I have learned in Zen.
There are two steps: “transcription” and “translation”. TRANSCRIBING
a koan involves writing it in a phonetic alphabet, which contains only
four geometric symbols. This phonetic rendition of the kéan is called
the MESSENGER.

Tortoise: 'What do the geometric symbols look like?

Achilles: 'They are made of hexagons and pentagons. Here is what they
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look like (picks up a nearby napkin, and draws for the Tortoise these four
Sfigures):

O 0O 0o &

Tortoise: They are mysterious-looking.

Achilles:  Only to the uninitiated. Now once you have made the messenger,
you rub your hands in some ribo, and—

Tortoise: Some ribo? Is that a kind of ritual anointment?

Achilles: Not exactly. It is a special sticky preparation which makes the
string hold its shape, when folded up.

Tortoise: 'What is it made of?

Achilles: 1 don’t know, ‘exactly. But it feels sort of gluey, and it works
exceedingly well. Anyway, once you have some ribo on your hands,
you can TRANSLATE the sequence of symbols in the messenger into
certain kinds of folds in the string. It's as simple as that.

Tortoise: Hold on! Not so fast! How do you do that?

Achilles:  You begin with the string entirely straight. Then you go to one
end and start making folds of various types, according to the geom?tric
symbols in the messenger.

Tortowse:  So each of those geometric symbols stands for a different way to
curl the string up?

Achilles: Notinisolation. You take them three at a time, instead of one at a
time. You begin at one end of the string, and one end of the mes-
senger. What to do with the first inch of the string is determined by the
first three geometric symbols. The next three symbols tell you how to
fold the second inch of string. And so you inch your way along the
string and simultaneously along the messenger, folding each little
segment of string until you have exhausted the messenger. If you have
properly applied some ribo, the string will keep its folded shape, and
what you thereby produce is the translation of the kdan into a string.

Tortoise: The procedure has a certain elegance to it. You must get some
wild-looking strings that way.

Achilles: That's for sure. The longer koans translate into quite bizarre
shapes.

Tortoise: 1 can imagine. But in order to carry out the translation of the
messenger into the string, you need to know what kind of fold each
triplet of geometric symbols in the messenger stands for. How do you
know this? Do you have a dictionary?

Achilles: ' Yes—there is a venerated book which lists the “Geometric Code”.
If you don’t have a copy of this book, of course, you can'’t translate a
koan into a string.

236 A Mu Offering



Tortoise: Evidently not. What is the origin of the Geometric Code?

Achilles: It came from an ancient master known as “Great Tutor” who my
master says is the only one ever to attain the Enlightenment 'Yond
Enlightenment.

Tortoise: Good gravy! Asif one level of the stuff weren’t enough. But then
there are gluttons of every sort—why not gluttons for enlightenment?

Achilles: Do you suppose that “Enlightenment 'Yond Enlightenment”
stands for “EYE”?

Tortoise:  In my opinion, it’s rather doubtful that it stands for you, Achilles.
More likely, it stands for “Meta-Enlightenment”—“ME”, that is.
Achilles:  For you? Why would it stand for you? You haven’t even reached

the FIRST stage of enlightenment, let alone the—

Tortoise:  You never know, Achilles. Perhaps those who have learned the
lowdown on enlightenment return to their state before enlightenment.
I've always held that “twice enlightened is unenlightened.” But let’s get
back to the Grand Tortue—uh, I mean the Great Tutor.

Achalles:  Little is known of him, except that he also invented the Art of Zen
Strings.

Tortoise: What is that?

Achilles:  Itis an art on which the decision procedure for Buddha-nature is
based. I shall tell you about it.

Tortoise: 1 would be fascinated. There is so much for novices like me to
absorb!

Achilles:  There is even reputed to be a koan which tells how the Art of Zen
Strings began. But unfortunately, all this has long since been lost in the
sands of time, and is no doubt gone forever. Which may be just as well,
for otherwise there would be imitators who would take on the master’s
name, and copy him in other ways.

Tortoise:  But wouldn’t it be a good thing if all students of Zen copied that
most enlightened master of all, the Great Tutor?

Achilles:  Let me tell you a kéan about an imitator.

Zen master Gutei raised his finger whenever he was asked a question
about Zen. A young novice began to imitate him in this way. When Gutei
was told about the novice’s imitation, he sent for him and asked him if it
were true. The novice admitted it was so. Gutei asked him if he under-
stood. In reply the novice held up his index finger. Gutei promptly cut it
off. The novice ran from the room, howling in pain. As he reached the
threshold, Gutei called, “Boy!” When the novice turned, Gutei raised his
index finger. At that instant the novice was enlightened.

Tortoise:  Well, what do you know! Just when I thought Zen was all about
Josha and his shenanigans, now I find out that Gutei is in on the
merriment too. He seems to have quite a sense of humor.

Achalles:  That kdan is very serious. I don’t know how you got the idea that
it is humorous.

Tortoise: Perhaps Zen is instructive because it is humorous. I would guess
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that if you took all such stories entirely seriously, you would miss the
point as often as you would get it.

Achilles: Maybe there’s something to your Tortoise-Zen.

Tortoise: Can you answer just one question for me? I would like to know
this: Why did Bodhidharma come from India into China?

Achilles:  Oho! Shall I tell you what Joshii said when he was asked that very
question?

Tortoise: Please do.

Achilles: He replied, “That oak tree in the garden.”

Tortoise:  Of course; that’s just what I would have said. Except that I would
have said it in answer to a different question—namely, “Where can 1
find some shade from the midday sun?”

Achilles:  Without knowing it, you have inadvertently hit upon one of the
basic questions of all Zen. That question, innocent though it sounds,
actually means, “What is the basic principle of Zen?”

Tortoise: How extraordinary. I hadn’t the slightest idea that the central
aim of Zen was to find some shade.

Achilles:  Oh, no—you’ve misunderstood me entirely. I wasn’t referring to
THAT question. I meant your question about why Bodhidharma came
from India into China.

Tortoise: 1see. Well, I had no idea that I was getting into such deep waters.
But let’s come back to this curious mapping. I gather that any kéan can
be turned into a folded string by following the method you outlined.
Now what about the reverse process? Can any folded string be read in
such a way as to yield a kéan?

Achilles: Well, in a way. However . ..

Tortoise: What's wrong?

Achilles:  You’re just not supposed to do it that way 'round. It would violate
the Central Dogma of Zen strings, you see, which is contained in this
picture (picks up a napkin and draws):

kéan > messenger =  folded string
transcription translation

You're not supposed to go against the arrows—especially not the
second one.

Tortoise:  Tell me, does this Dogma have Buddha-nature, or not? Come to
think of it, I think I'll unask the question. Is that all right?

Achilles: 1 am glad you unasked the question. But—TI'll let you in on a
secret. Promise you won't tell anyone?

Tortoise: Tortoise’s honor.

Achilles:  Well, once in a while, I actually do go against the arrows. I get
sort of an illicit thrill out of it, I guess.

Tortoise:  Why, Achilles! I had no idea you would do something so irrever-
ent!

Achilles:  I've never confessed it to anyone before—not even Okanisama.
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Tortoise:  So tell me, what happens when you go against the arrows in the
Central Dogma? Does that mean you begin with a string and make a
koan?

Achilles: Sometimes—but some weirder things can happen.

Tortoise: Weirder than producing koans?

Achilles:  Yes ... When you untranslate and untranscribe, you get SOME-
THING, but not always a kéan. Some strings, when read out loud this
way, only give nonsense.

Tortoise:  Isn’t that just another name for kéans?

Achilles:  You clearly don’t have the true spirit of Zen yet.

Tortoise: Do you always get stories, at least?

Achilles: Not always—sometimes you get nonsense syllables, other times
you get ungrammatical sentences. But once in a while you get what
seems to be a koan.

Tortoise: 1t only SEEMS to be one?

Achilles:  Well, it might be fraudulent, you see.

Tortoise: Oh, of course.

Achilles: 1 call those strings which yield apparent kéans “well-formed”
strings.

Tortoise: 'Why don’t you tell me about the decision procedure which allows
you to distinguish phony koans from the genuine article?

Achilles:  That’s what I was heading towards. Given the kéan, or non-kéan,
as the case may be, the first thing is to translate it into the three-
dimensional string. All that's left is to find out if the string has
Buddha-nature or not.

Tortoise:  But how do you do THAT?

Achilles:  Well, my master has said that the Great Tutor was able, by just
glancing at a string, to tell if it had Buddha-nature or not.

Tortoise:  But what if you have not reached the stage of the Enlightenment
'Yond Enlightenment? Is there no other way to tell if a string has
Buddha-nature?

Achilles:  Yes, there is. And this is where the Art of Zen Strings comes in. It
is a technique for making innumerably many strings, all of which have
Buddha-nature.

Tortoise: You don’t say! And is there a corresponding way of making
strings which DON'T have Buddha-nature?

Achilles:  'Why would you want to do that?

Tortoise:  Oh, I just thought it might be useful.

Achilles:  You have the strangest taste. Imagine! Being more interested in
things that DON'T have Buddha-nature than things that DO!

Tortoise:  Just chalk it up to my unenlightened state. But go on. Tell me
how to make a string which DOES have Buddha-nature.

Achilles:  Well, you must begin by draping a loop of string over your hands
in one of five legal starting positions, such as this one . .. (Picks up a
string and drapes it in a simple loop between a finger on each hand.)
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Tortoise: 'What are the other four legal starting positions?

Achilles: Each one is a position considered to be a SELF-EVIDENT manner
of picking up a string. Even novices often pick up strings in those
positions. And these five strings all have Buddha-nature.

Tortoise:  Of course.

Achilles: Then there are some String Manipulation Rules, by which you
can make more complex string figures. In particular, you are allowed
to modify your string by doing certain basic motions of the hands. For
instance, you can reach across like this—and pull like this—and twist
like this. With each operation you are changing the overall configura-
tion of the string draped over your hands.

Tortoise: Why, it looks just like making cat’s-cradles and such string
figures!

Achilles:  That’s right. Now as you watch, you'll see that some of these rules
make the string more complex; some simplify it. But whichever way
you go, as long as you follow the String Manipulation Rules, every
string you produce will have Buddha-nature.

Tortoise: That is truly marvelous. Now what about the kéan concealed
inside this string you've just made? Would it be genuine?

Achilles: Why, according to what I've learned, it must. Since I made it
according to the Rules, and began in one of the five self-evident
positions, the string must have Buddha-nature, and consequently it
must correspond to a genuine kéan.

Tortoise: Do you know what the kéan is?

Achilles: Are you asking me to violate the Central Dogma? Oh, you
naughty fellow!

(And with furrowed brow and code book in hand, Achilles points along the
string inch by inch, recording each fold by a triplet of geometric symbols of
the strange phonetic alphabet for koans, until he has nearly a napkinful.)

Done!
Tortoise: Terrific. Now let’s hear it.
Achilles:  All right.

A traveling monk asked an old woman the road to Taizan, a popular
temple supposed to give wisdom to the one who worships there. The old
woman said: “Go straight ahead.” After the monk had proceeded a few
steps, she said to herself, “He also is a common church-goer.” Someone
told this incident to Joshii, who said: “Wait until I investigate.” The next
day he went and asked the same question, and the old woman gave the
same answer. Joshi remarked: “I have investigated that old woman.”

Tortoise: Why, with his flair for investigations, it’s a shame that Josha
never was hired by the FBI. Now tell me—what you did, I could also
do, if T followed the Rules from the Art of Zen Strings, right?

Achilles:  Right.

Tortoise: Now would I have to perform the operations in just the same
ORDER as you did?
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Achilles:  No, any old order will do.

Tortowse:  Of course, then I would get a different string, and consequently
a different kéan. Now would I have to perform the same NUMBER of
steps as you did?

Achilles: By no means. Any number of steps is fine.

Tortoise:  Well, then there are an infinite number of strings with Buddha-
nature—and consequently an infinite number of genuine kdans! How
do you know there is any string which CAN'T be made by your Rules?

Achilles:  Oh, yes—back to things which lack Buddha-nature. It just so
happens that once you know how to make strings WITH Buddha-
nature, you can also make strings WITHOUT Buddha-nature. That is
something which my master drilled into me right at the beginning.

Tortosse: Wonderful! How does it work?

Achilles: Easy. Here, for example—I'll make a string which lacks
Buddha-nature . ..

(He picks up the string out of which the preceding kéan was “pulled”, and
ties a little teeny knot at one end of it, pulling it tight with his thumb and

Sforefinger.)

This is it—no Buddha-nature here.

Tortoise:  Very illuminating. All it takes is adding a knot? How do you
know that the new string lacks Buddha-nature?

Achilles:  Because of this fundamental property of Buddha-nature: when
two well-formed strings are identical but for a knot at one end, then
only ONE of them can have Buddha-nature. It’s a rule of thumb which
my master taught me.

Tortoise:  I'm just wondering about something. Are there some strings with
Buddha-nature which you CAN'T reach by following the Rules of Zen
Strings, no matter in what order?

Achilles: 1 hate to admit it, but I am a little confused on this point myself.
At first my master gave the strongest impression that Buddha-nature
in a string was DEFINED by starting in one of the five legal starting
positions, and then developing the string according to the allowed
Rules. But then later, he said something about somebody-or-other’s
“Theorem”. I never got it straight. Maybe I even misheard what he
said. But whatever he said, it put some doubt in my mind as to whether
this method hits ALL strings with Buddha-nature. To the best of my
knowledge, at least, it does. But Buddha-nature is a pretty elusive
thing, you know.

Tortoise: 1 gathered as much, from Josha's ‘MU’. I wonder . ..

Achilles:  What is it?

Tortoise: 1 was just wondering about those two kéans—I mean the kéan
and its un-kdan—the ones which say “This mind is Buddha” and “This
mind is not Buddha”—what do they look like, when turned into strings
via the Geometric Code?

Achilles:  T'd be glad to show you.
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(He writes down the phonetic transcriptions, and then pulls from his pocket
a couple of pieces of string, which he carefully folds inch by inch, following
the triplets of symbols written in the strange alphabet. Then he places the
finished strings side by side.)

You see, here is the difference.

Tortoise: They are very similar, indeed. Why, I do believe there is only one
difference between them: it’s that one of them has a little knot on its
end!

Achilles: By Joshu, you're right.

Tortoise: Aha! Now I understand why your master is suspicious.

Achilles:  You do?

Tortoise:  According to your rule of thumb, AT MOST ONE of such a pair can
have Buddha-nature, so you know right away that one of the koans
must be phony.

Achilles:  But that doesn’t tell which one is phony. I've worked, and so has
my master, at trying to produce these two strings by following the
String Manipulation Rules, but to no avail. Neither one ever turns up.
It's quite frustrating. Sometimes you begin to wonder . ..

Tortoise: You mean, to wonder if either one has Buddha-nature? Perhaps
neither of them has Buddha-nature—and neither kéan is genuine!

Achilles: 1 never carried my thoughts as far as that—but you’re right—it’s
possible, I guess. But I think you should not ask so many questions
about Buddha-nature. The Zen master Mumon always warned his
pupils of the danger of too many questions.

Tortoise:  All right—no more questions. Instead, I have a sort of hankering
to make a string myself. It would be amusing to see if what I come up
with is well-formed or not.

Achilles: That could be interesting. Here’s a piece of string. (He passes one
to the Tortoise.)

Tortoise: Now you realize that I don’t have the slightest idea what to do.
We'll just have to take potluck with my awkward production, which will
follow no rules and will probably wind up being completely unde-
cipherable. (Grasps the loop between his feet and, with a few simple manipula-
tions, creates a complex string which he proffers wordlessly to Achilles. At that
moment, Achilles’ face lights up.)

Achilles:  Jeepers creepers! I'll have to try out your method myself. I have
never seen a string like this!

Tortoise: 1 hope it is well-formed.
Achilles: 1 see it’s got a knot at one end.

Tortoise: Oh—just a moment! May | have it back? I want to do one thing to
it.

Achilles:  Why, certainly. Here you are.

(Hands it back to the Tortoise, who ties another knot at the same end. Then
the Tortoise gives a sharp tug, and suddenly both knots disappear!)
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Achilles:  'What happened?

Tortoise: 1 wanted to get rid of that knot.

Achilles:  But instead of untying it, you tied another one, and then BOTH
disappeared! Where did they go?

Tortoise: Tumbolia, of course. That's the Law of Double Nodulation.

(Suddenly, the two knots reappear from out of nowhere—that is to say,
Tumbolia.)

Achilles:  Amazing. They must lie in a fairly accessible layer of Tumbolia if
. they can pop into it and out of it so easily. Or is all of Tumbolia equally
inaccessible?

Tortoise: 1 couldn’t say. However, it does occur to me that burning the
string would make it quite improbable for the knots to come back. In
such a case, you could think of them as being trapped in a deeper layer
of Tumbolia. Perhaps there are layers and layers of Tumbolia. But
that’s neither here nor there. What I would like to know is how my
string sounds, if you turn it back into phonetic symbols. (As he hands it
back, once again, the knots pop into oblivion.)

Achilles: 1 always feel so guilty about violating the Central Dogma . ..
(Takes out his pen and code book, and carefully jots down the many symbol-
triplets which correspond to the curvy involutions of the Tortoise’s string; and
when he is finished, he clears his voice.) Ahem. Are you ready to hear what
you have wrought?

Tortoise: I'm willing if you're willing.

Achilles:  All right. It goes like this:

A certain monk had a habit of pestering the Grand Tortue (the only one
who had ever reached the Enlightenment ’Yond Enlightenment), by
asking whether various objects had Buddha-nature or not. To such ques-
tions Tortue invariably sat silent. The monk had already asked about a
bean, a lake, and a moonlit night. One day, he brought to Tortue a piece
of string, and asked the same question. In reply, the Grand Tortue
grasped the loop between his feet and—

Tortoise: Between his feet? How odd!

Achilles:  'Why should YOU find that odd?

Tortoise:  Well, ah ... you've got a point there. But please go on!

Achilles:  All right.

The Grand Tortue grasped the loop between his feet and, with a few
simple manipulations, created a complex string which he proffered
wordlessly to the monk. At that moment, the monk was enlightened.

Tortoise: 1'd rather be twice-enlightened, personally.

Achilles: Then it tells how to make the Grand Tortue’s string, if you begin
with a string draped over your feet. I'll skip those boring details. It
concludes this way:

From then on, the monk did not bother Tortue. Instead, he made string
after string by Tortue’s method; and he passed the method on to his own
disciples, who passed it on to theirs.
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Tortoise: Quite a yarn. It's hard to believe it was really hidden inside my
string.

Achilles:  Yetit was. Astonishingly, you seem to have created a well-formed
string right off the bat.

Tortoise: But what did the Grand Tortue’s string look like? That’s the
main point of this kéan, I'd suppose.

Achilles: 1 doubt it. One shouldn’t “attach” to small details like that inside
koans. It’s the spirit of the whole kéan that counts, not little parts of it.
Say, do you know what I just realized? I think, crazy though it sounds,
that you may have hit upon that long-lost kéan which describes the
very origin of the Art of Zen Strings!

Tortoise: Oh, that would almost be too good to have Buddha-nature.

Achilles:  But that means that the great master—the only one who ever
reached the mystical state of the Enlightenment ’Yond
Enlightenment—was named “Tortue”, not “Tutor”. What a droll
name!

Tortoise: I don’t agree. I think it’s a handsome name. I still want to know
how Tortue’s string looked. Can you possibly recreate it from the
description given in the kéan?

Achilles: 1 could try ... Of course, I'll have to use my feet, too, since it’s
described in terms of foot motions. That’s pretty unusual. But I think I
can manage it. Let me give it a go. (He picks up the koan and a piece of
string, and for a few minutes twists and bends the string in arcane ways until he
has the finished product.) Well, here it is. Odd, how familiar it looks.

Tortoise:  Yes, isn’t that so? I wonder where I saw it before?

Achilles: 1 know! Why, this is YOUR string, Mr. T! Or is it?

Tortoise: Certainly not.

Achilles:  Of course not—it’s the string which you first handed to me,
before you took it back to tie an extra knot in it.

Tortoise: Oh, yes—indeed it is. Fancy that. I wonder what that implies.

Achilles:  1t's strange, to say the least.

Tortoise: Do you suppose my kdan is genuine?

Achilles: 'Wait just a moment . . .

Tortoise: Or that my string has Buddha-nature?

Achilles: Something about your string is beginning to trouble me, Mr.
Tortoise.

Tortoise (looking most pleased with himself and paying no attention to
Achilles):  And what about Tortue’s string? Does it have Buddha-
nature? There are a host of questions to ask!

Achilles: 1 would be scared to ask such questions, Mr. T. There is some-
thing mighty funny going on here, and I'm not sure I like it.

Tortoise: I'm sorry to hear it. I can’t imagine what’s troubling you.

Achilles:  Well, the best way I know to explain it is to quote the words of
another old Zen master, Kyégen. Kyogen said:
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Zen is like a man hanging in a tree by his teeth over a precipice. His hands
grasp no branch, his feet rest on no limb, and under the tree another
person asks him: “Why did Bodhidharma come to China from India?” If
the man in the tree does not answer, he fails; and if he does answer, he
falls and loses his life. Now what shall he do?

Tortoise: That’s clear; he should give up Zen, and take up molecular
biology.
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CHAPTER IX

Mumon and Godel

What Is Zen?

I'M NoT sURE I know what Zen is. In a way, I think I understand it very
well; but in a way, I also think I can never understand it at all. Ever since my
freshman English teacher in college read Jésha’s MU out loud to our class,
I have struggled with Zen aspects of life, and probably I will never cease
doing so. To me, Zen is intellectual quicksand—anarchy, darkness,
meaninglessness, chaos. It is tantalizing and infuriating. And yet it is
humorous, refreshing, enticing. Zen has its own special kind of meaning,
brightness, and clarity. I hope that in this Chapter, I can get some of this
cluster of reactions across to you. And then, strange though it may seem,
that will lead us directly to Godelian matters.

One of the basic tenets of Zen Buddhism is that there is no way to
characterize what Zen is. No matter what verbal space you try to enclose
Zen in, it resists, and spills over. It might seem, then, that all efforts to
explain Zen are complete wastes of time. But that is not the attitude of Zen
masters and students. For instance, Zen kéans are a central part of Zen
study, verbal though they are. Kéans are supposed to be “triggers” which,
though they do not contain enough information in themselves to impart
enlightenment, may possibly be sufficient to unlock the mechanisms inside
one’s mind that lead to enlightenment. But in general, the Zen attitude is
that words and truth are incompatible, or at least that no words can capture
truth,

Zen Master Mumon

Possibly in order to point this out in an extreme way, the monk Mumon
(“No-gate”), in the thirteenth century, compiled forty-eight koans, follow-
ing each with a commentary and a small “poem”. This work is called “The
Gateless Gate” or the Mumonkan (“No-gate barrier”). It is interesting to note
that the lives of Mumon and Fibonacci coincided almost exactly: Mumon
living from 1183 to 1260 in China, Fibonacci from 1180 to 1250 in Italy. To
those who would look to the Mumonkan in hopes of making sense of, or
“understanding”, the koans, the Mumonkan may come as a rude shock, for
the comments and poems are entirely as opaque as the kéans which they
are supposed to clarify. Take this, for example:!
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FIGURE 46. Three Worlds, by M. C. Escher (lithograph, 1955).



Koan:

Hogen of Seiryo monastery was abont to lecture before dinner when he
noticed that the bamboo screen, lowered for meditation, had not been rolled
up. He pointed to it. Two monks arose wordlessly from the audience and
rolled it up. Hogen, observing the physical moment, said, “The state of the
first monk is good, not that of the second.”

Mumon’s Commentary:

I want to ask you: which of those two monks gained and which lost? If any of
you has one eye, he will see the failure on the teacher’s part. However, I am
not discussing gain and loss.

Mumon’s Poem:

When the screen is rolled up the great sky opens,
Yet the sky is not attuned to Zen.

It is best to forget the great sky

And to retire from every wind.

Or then again, there is this one:*

Koan:

Goso said: “When a buffalo goes out of his enclosure to the edge of the abyss,
his horns and his head and his hoofs all pass through, but why can’t the tail
also pass?”

Mumon’s Commentary:

If anyone can open one eye at this point and say a word of Zen, he is qualified
to repay the four gratifications, and, not only that, he can save all sentient

beings under him. But if he cannot say such a word of Zen, he should turn
back to his tail.

Mumon’s Poem:

If the buffalo runs, he will fall into the trench;
If he returns, he will be butchered.

That little tail

Is a very strange thing.

I think you will have to admit that Mumon does not exactly clear everything
up. One might say that the metalanguage (in which Mumon writes) is not
very different from the object language (the language of the kéan). Accord-
ing to some, Mumon’s comments are intentionally idiotic, perhaps meant to
show how useless it is to spend one’s time in chattering about Zen. How-
ever, Mumon’s comments can be taken on more than one level. For in-
stance, consider this:3

Koan:

A monk asked Nansen: “Is there a teaching no master ever taught before?”
Nansen said: “Yes, there is.”
“What is it?” asked the monk.

Nansen replied: “It is not mind, it is not Buddha, it is not things.”
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FIGURE 47. Dewdrop, by M. C. Escher (mezzotint, 1948).

Mumon’s Commentary:
Old Nansen gave away his treasure-words. He must have been greatly upset.

Mumon’s Poem:

Nansen was too kind and lost his treasure.
Truly, words have no power.

Even though the mountain becomes the sea,
Words cannot open another’s mind.

In this poem Mumon seems to be saying something very central to Zen, and
not making idiotic statements. Curiously, however, the poem is self-
referential, and thus it is a comment not only on Nansen’s words, but also
on its own ineffectiveness. This type of paradox is quite characteristic of
Zen. Itis an attempt to “break the mind of logic”. You see this paradoxical
quality in the koan, as well. Concerning Mumon’s commentary, do you
think that Nansen was really so sure of his answer? Or did the “correctness”
of his answer matter at all? Or does correctness play any role in Zen? What
is the difference between correctness and truth, or is there any? What if
Nansen had said, “No, there is not any such teaching”? Would it have made
any difference? Would his remark have been immortalized in a koan?
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FIGURE 48. Another World, by M. C. Escher (wood-engraving, 1947).
Here is another kéan which aims to break the mind of logic:*

The student Doko came to a Zen master, and said: “I am seeking the truth. In
what state of mind should I train myself, so as to find it?”

Said the master, “There is no mind, so you cannot putitin any state. There
is no truth, so you cannot train yourself for it.”

“If there is no mind to train, and no truth to find, why do you have these
monks gather before you every day to study Zen and train themselves for this
study?”

“But I haven’t an inch of room here,” said the master, “so how could the

monks gather? I have no tongue, so how could I call them together or teach
them?”
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“Oh, how can you lie like this?” asked Doko.

“But if I have no tongue to talk to-others, how can I lie to you?” asked the
master.

Then Doko said sadly, “I cannot follow you. 1 cannot understand you.”

“I cannot understand myself,” said the master.

If any kdan serves to bewilder, this one does. And most likely, causing
bewilderment is its precise purpose, for when one is in a bewildered state,
one’s mind does begin to operate nonlogically, to some extent. Only by
stepping outside of logic, so the theory goes, can one make the leap to
enlightenment. But what is so bad about logic? Why does it prevent the leap
to enlightenment?

Zen’s Struggle Against Dualism

To answer that, one needs to understand something about what en-
lightenment is. Perhaps the most concise summary of enlightenment would
be: transcending dualism. Now what is dualism? Dualism is the conceptual
division of the world into categories. Is it possible to transcend this very
natural tendency? By prefixing the word “division” by the word “concep-
tual”, I may have made it seem that this is an intellectual or conscious
effort, and perhaps thereby given the impression that dualism could be
overcome simply by suppressing thought (as if to suppress thinking actually
were simple!). But the breaking of the world into categories takes place far
below the upper strata of thought; in fact, dualism is just as much a
perceptual division of the world into categories as it is a conceptual division.
In other words, human perception is by nature a dualistic phenomenon—
which makes the quest for enlightenment an uphill struggle, to say the
least. ,

At the core of dualism, according to Zen, are words—just plain words.
The use of words is inherently dualistic, since each word represents, quite
obviously, a conceptual category. Therefore, a major part of Zen is the fight
against reliance on words. To combat the use of words, one of the best
devices is the kdan, where words are so deeply abused that one’s mind is
practically left reeling, if one takes the koans seriously. Therefore it is
perhaps wrong to say that the enemy of enlightenment is logic; rather, it is
dualistic, verbal thinking. In fact, it is even more basic than that: it is
perception. As soon as you perceive an object, you draw a line between it
and the rest of the world; you divide the world, artificially, into parts, and
you thereby miss the Way.

Here is a kéan which demonstrates the struggle against words:®

Koan:

Shuzan held out his short staff and said: “If you call this a short staff, you
oppose its reality. If you do not call it a short staff, you ignore the fact. Now
what do you wish to call this?”
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FIGURE 49. Day and Nigh, by M. C. Escher (woodcut, 1938).

Mumon’s Commentary:

If you call this a short staff, you oppose its reality. If you do not call it a short
staff, you ignore the fact. It cannot be expressed with words and it cannot be
expressed without words. Now say quickly what it is.

Mumon’s Poem:

Holding out the short staff,

He gave an order of life or death.

Positive and negative interwoven,

Even Buddhas and patriarchs cannot escape this attack.

(“Patriarchs” refers to six venerated founders of Zen Buddhism, of whom
Bodhidharma is the first, and Eno is the sixth.)

Why is calling it a short staff opposing its reality? Probably because
such a categorization gives the appearance of capturing reality, whereas the
surface has not even been scratched by such a statement. It could be
compared to saying “5 is a prime number”. There is so much more—an
infinity of facts—that has been omitted. On the other hand, not to callit a
staff is, indeed, to ignore that particular fact, minuscule as it may be. Thus
words lead to some truth—some falsehood, perhaps, as well—but certainly
not to all truth. Relying on words to lead you to the truth is like relying on
an incomplete formal system to lead you to the truth. A formal system will
give you some truths, but as we shall soon see, a formal system—no matter
how powerful—cannot lead to all truths. The dilemma of mathematicians
is: what else is there to rely on, but formal systems? And the dilemma of
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Zen people is: what else is there to rely on, but words? Mumon states the

dilemma very clearly: “It cannot be expressed with words and it cannot be
expressed without words.”

Here is Nansen, once again:®

Joshu asked the teacher Nansen, “What is the true Way?”
Nansen answered, “Everyday way is the true Way.”
Joshi asked, “Can I study it?”

Nansen answered, “The more you study, the further from the Way.”
Joshu asked, “If 1 don’t study it, how can 1 know it?”
Nansen answered, “The Way does not belong to things seen: nor to things
unseen. It does not belong to things known: nor to things unknown. Do not

seek it, study it, or name it. To find yourself on it, open yourself wide as the
sky.” [See Fig. 50.]

FIGURE 50. Rind, by M. C. Escher (wood-engraving, 1955).




This curious statement seems to abound with paradox. It is a little
reminiscent of this surefire cure for hiccups: “Run around the house three
times without thinking of the word ‘wolf’.” Zen is a philosophy which seems
to have embraced the notion that the road to ultimate truth, like the only
surefire cure for hiccups, may bristle with paradoxes.

Ism, The Un-Mode, and Unmon

If words are bad, and thinking is bad, what is good? Of course, to ask this is
already horribly dualistic, but we are making no pretense of being faithful
to Zen in discussing Zen—so we can try to answer the question seriously. I
have a name for what Zen strives for: ism. Ism is an antiphilosophy, a way of
being without thinking. The masters of ism are rocks, trees, clams; but it is
the fate of higher animal species to have to strive for ism, without ever
being able to attain it fully. Still, one is occasionally granted glimpses of ism.
Perhaps the following koan offers such a glimpse:?

Hyakujo wished to send a monk to open a new monastery. He told his pupils
that whoever answered a question most ably would be appointed. Placing a
water vase on the ground, he asked: “Who can say what this is without calling
its name?”

The chief monk said: “No one can call it a wooden shoe.”

Isan, the cooking monk, tipped over the vase with his foot and went out,.

Hyakujo smiled and said: “The chief monk loses.” And Isan became the
master of the new monastery.

To suppress perception, to suppress logical, verbal, dualistic
thinking—this is the essence of Zen, the essence of ism. This is the Un-
mode—not Intelligent, not Mechanical, just “Un”. Josha was in the Un-
mode, and that is why his ‘MU’ unasks the question. The Un-mode came
naturally to Zen Master Unmon:?

One day Unmon said to his disciples, “This staff of mine has transformed
itself into a dragon and has swallowed up the universe! Oh, where are the
rivers and mountains and the great earth?”

Zen is holism, carried to its logical extreme. If holism claims that things
can only be understood as wholes, not as sums of their parts, Zen goes one
further, in maintaining that the world cannot be broken into parts at all. To
divide the world into parts is to be deluded, and to miss enlightenment.

A master was asked the question, “What is the Way?” by a curious monk.

“It is right before your eyes,” said the master.

“Why do I not see it for myself?”

“Because you are thinking of yourself.”

“What about you: do you see it?”

“So long as you see double, saying ‘I don’t’, and ‘you do’, and so on, your
eyes are clouded,” said the master.

“When there is neither ‘I’ nor ‘You’, can one see it?”

“When there is neither ‘I’ nor ‘You’, who is the one that wants to see it>"®
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Apparently the master wants to get across the idea that an enlightened
state is one where the borderlines between the self and the rest of the
universe are dissolved. This would truly be the end of dualism, for as he
says, there is no system left which has any desire for perception. But what is
that state, if not death? How can a live human being dissolve the border-
lines between himself and the outside world?

Zen and Tumbolia

The Zen monk Bassui wrote a letter to one of his disciples who was about to
die, and in it he said: “Your end which is endless is as a snowflake dissolving
in the pure air.” The snowflake, which was once very much a discernible
subsystem of the universe, now dissolves into the larger system which once
held it. Though it is no longer present as a distinct subsystem, its essence is
somehow still present, and will remain so. It floats in Tumbolia, along with
hiccups that are not being hiccuped and characters in stories that are not
being read ... That is how I understand Bassui’s message.

Zen recognizes its own limitations, just as mathematicians have learned
to recognize the limitations of the axiomatic method as a method for
attaining truth. This does not mean that Zen has an answer to what lies
beyond Zen any more than mathematicians have a clear understanding of
the forms of valid reasoning which lie outside of formalization. One of the
clearest Zen statements about the borderlines of Zen is given in the follow-
ing strange koan, very much in the spirit of Nansen:'®

Tozan said to his monks, “You monks should know there is an even higher
understanding in Buddhism.” A monk stepped forward and asked, “What is
the higher Buddhism?” Tézan answered, “It is not Buddha.”

There is always further to go; enlightenment is not the end-all of Zen.
And there is no recipe which tells how to transcend Zen; the only thing one
can rely on for sure is that Buddha is not the way. Zen is a system and
cannot be its own metasystem; there is always something outside of Zen,
which cannot be fully understood or described within Zen.

Escher and Zen

In questioning perception and posing absurd answerless riddles, Zen has
company, in the person of M. C. Escher. Consider Day and Night (Fig. 49), a
masterpiece of “positive and negative interwoven” (in the words of Mu-
mon). One might ask, “Are those really birds, or are they really fields? Is
it really night, or day?” Yet we all know there is no point to such questions.
The picture, like a Zen kéan, is trying to break the mind of logic. Escher
also delights in setting up contradictory pictures, such as Another World
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FIGURE 51. Puddle, by M. C. Escher (woodcut, 1952).

(Fig. 48)—pictures that play with reality and unreality the same way as Zen
plays with reality and unreality. Should one take Escher seriously? Should
one take Zen seriously?

There is a delicate, haiku-like study of reflections in Dewdrop (Fig. 47);
and then there are two tranquil images of the moon reflected in still waters:
Puddle (Fig. 51), and Rippled Surface (Fig.52). The reflected moon is a
theme which recurs in various koans. Here is an example:!!

Chiyono studied Zen for many years under Bukko of Engaku. Still, she could
not attain the fruits of meditation. At last one moonlit night she was carrying
water in an old wooden pail girded with bamboo. The bamboo broke, and the
bottom fell out of the pail. At that moment, she was set free. Chiyono said,
“No more water in the pail, no more moon in the water.”

Three Worlds: an Escher picture (Fig. 46), and the subject of a Zen
koan:!?

A monk asked Gantd, “When the three worlds threaten me, what shall I do?”

Ganté answered, “Sit down.” “I do not understand,” said the monk. Ganto
said, “Pick up the mountain and bring it to me. Then I will tell you.”
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Hemiolia and Escher

In Verbum (Fig. 149), oppositions are made into unities on several levels.
Going around we see gradual transitions from black birds to white birds to
black fish to white fish to black frogs to white frogs to black birds . . . After
six steps, back where we started! Is this a reconciliation of the dichotomy of
black and white? Or of the trichotomy of birds, fish, and frogs? Or is it a
sixfold unity made from the opposition of the evenness of 2 and the
oddness of 3? In music, six notes of equal time value create a rhythmic
ambiguity—are they 2 groups of 3, or 3 groups of 2? This ambiguity has a
name: hemiolia. Chopin was a master of hemiolia: see his Waltz op. 42, or
his Etude op. 25, no. 2. In Bach, there is the Tempo di Menuetto from the
keyboard Partita no. 5, or the incredible Finale of the first Sonata for
unaccompanied violin, in G Minor.

As one glides inward toward the center of Verbum, the distinctions
gradually blur, so that in the end there remains not three, not two, but one
single essence: “vErRBUM”, which glows with brilliancy—perhaps a symbol of
enlightenment. Ironically, “verbum” not only i a word, but means
“word”—not exactly the most compatible notion with Zen. On the other
hand, “verbum” is the only word in the picture. And Zen master Tdzan
once said, “The complete Tripitaka can be expressed in one character.”
(“Tripitaka”, meaning “three baskets”, refers to the complete texts of the
original Buddhist writings.) What kind of decoding-mechanism, I wonder,
would it take to suck the three baskets out of one character? Perhaps one
with two hemispheres.

FIGURE 52. Rippled Surface, by M. C. Escher (lino-cut, 1950).
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FIGURE 53. Three Spheres 11, by M. C. Escher (lithograph, 1946).

Indra’s Net

Finally, consider Three Spheres II (Fig. 53), in which every part of the world
seems to contain, and be contained in, every other part: the writing table
reflects the spheres on top of it, the spheres reflect each other, as well as the
writing table, the drawing of them, and the artist drawing it. The endless
connections which all things have to each other is only hinted at here, yet
the hint is enough. The Buddhist allegory of “Indra’s Net” tells of an
endless net of threads throughout the universe, the horizontal threads
running through space, the vertical ones through time. At every crossing of
threads is an individual, and every individual is a crystal bead. The great
light of “Absolute Being” illuminates and penetrates every crystal bead;
moreover, every crystal bead reflects not only the light from every other
crystal in the net—but also every reflection of every reflection throughout
the universe.

To my mind, this brings forth an image of renormalized particles: in
every electron, there are virtual photons, positrons, neutrinos, muons . . . ;
in every photon, there are virtual electrons, protons, neutrons, pions . . . ;
in every pion, there are ...

But then another image rises: that of people, each one reflected in the
minds of many others, who in turn are mirrored in yet others, and so on.

Both of these images could be represented in a concise, elegant way by
using Augmented Transition Networks. In the case of particles, there
would be one network for each category of particle; in the case of people,
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one for each person. Each one would contain calls to many others, thus
creating a virtual cloud of ATN’s around each ATN. Calling one would
create calls on others, and this process might cascade arbitrarily far, until it
bottomed out.

Mumon on MU

Let us conclude this brief excursion into Zen by returning to Mumon. Here
is his comment on Jésha’s MU:!3

To realize Zen one has to pass through the barrier of the patriarchs. En-
lightenment always comes after the road of thinking is blocked. If you do not
pass the barrier of the patriarchs or if your thinking road is not blocked,
whatever you think, whatever you do, is like a tangling ghost. You may ask:
“What is a barrier of a patriarch?” This one word, ‘MU, is it.

This is the barrier of Zen. If you pass through it, you will see Joshi face to
face. Then you can work hand in hand with the whole line of patriarchs. Is
this not a pleasant thing to do?

If you want to pass this barrier, you must work through every bone in your
body, through every pore of your skin, filled with this question: “What is
‘MU’?” and carry it day and night. Do not believe it is the common negative
symbol meaning nothing. It is not nothingness, the opposite of existence. If
you really want to pass this barrier, you should feel like drinking a hot iron
ball that you can neither swallow nor spit out.

Then your previous lesser knowledge disappears. As a fruit ripening in
season, your subjectivity and objectivity naturally become one. It is like a
dumb man who has had a dream. He knows about it but he cannot tell it.

When he enters this condition his ego-shell is crushed and he can shake the
heaven and move the earth. He is like a great warrior with a sharp sword. If a
Buddha stands in his way, he will cut him down; if a patriarch offers him any
obstacle, he will kill him; and he will be free in his way of birth and death. He
can enter any world as if it were his own playground. I will tell you how to do
this with this kéan:

Just concentrate your whole energy into this MU, and do not allow any
discontinuation. When you enter this MU and there is no discontinuation,
your attainment will be as a candle burning and illuminating the whole
universe.

From Mumon to the MU-puzzle

From the ethereal heights of Joshii’s MU, we now descend to the prosaic
lowlinesses of Hofstadter’'s MU . .. I know that you have already concen-
trated your whole energy into this MU (when you read Chapter I). So now I
wish to answer the question which was posed there:

Has MU theorem-nature, or not?

The answer to this question is not an evasive MU rather, it is a resounding
NO. In order to show this, we will take advantage of dualistic, logical
thinking.
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We made two crucial observations in Chapter I:

(1) that the MU-puzzle has depth largely because it involves the
interplay of lengthening and shortening rules;

(2) that hope nevertheless exists for cracking the problem by
employing a tool which is in some sense of adequate depth to
handle matters of that complexity: the theory of numbers.

We did not analyze the MU-puzzle in those terms very carefully in Chapter
I; we shall do so now. And we will see how the second observation (when
generalized beyond the insignificant MIU-system) is one of the most fruit-
ful realizations of all mathematics, and how it changed mathematicians’
view of their own discipline.

For your ease of reference, here is a recapitulation of the MIU-system:

SvymeoLs: M, 1, U
Axiom: Ml

RuULEs:
I. If xl is a theorem, sois xIU.
II. If Mx is a theorem, so is Mxx.
III. In any theorem, lll can be replaced by U.
IV. UU can be dropped from any theorem.,

Mumon Shows Us How to Solve the MU-puzzle

According to the observations above, then, the MU-puzzle is merely a
puzzle about natural numbers in typographical disguise. If we could only
find a way to transfer it to the domain of number theory, we might be able
to solve it. Let us ponder the words of Mumon, who said, “If any of you has
one eye, he will see the failure on the teacher’s part.” But why should it
matter to have one eye?

If you try counting the number of I's contained in theorems, you will
soon notice that it seems never to be 0. In other words, it seems that no
matter how much lengthening and shortening is involved, we can never
work in such a way that all I's are eliminated. Let us call the number of I'sin
any string the I-count of that string. Note that the I-count of the axiom Ml is
1. We can do more than show that the [-count can’t be 0—we can show that
the I-count can never be any multiple of 3.

To begin with, notice that rules I and IV leave the I-count totally
undisturbed. Therefore we need only think about rules I and III. As far as
rule IIT is concerned, it diminishes the I-count by exactly 3. After an
application of this rule, the I-count of the output might conceivably be a
multiple of 3—but only if the I-count of the input was also. Rule III, in
short, never creates a multiple of 3 from scratch. It can only create one
when it began with one. The same holds for rule II, which doubles the
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I-count. The reason is that if 3 divides 2n, then—because 3 does not divide
2—it must divide n (a simple fact from the theory of numbers). Neither
rule II nor rule III can create a multiple of 3 from scratch.

But this is the key to the MU-puzzle! Here is what we know:

(1) The I-count begins at 1 (not a multiple of 3);
(2) Two of the rules do not affect the I-count at all;

(3) The two remaining rules which do affect the I-count do so in
such a way as never to create a multiple of 3 unless given one
initially.

The conclusion—and a typically hereditary one it is, too—is that the
I-count can never become any multiple of 3. In particular, 0 is a forbidden
value of the I-count. Hence, MU is not a theorem of the MIU-system.

Notice that, even as a puzzle about I-counts, this problem was still
plagued by the crossfire of lengthening and shortening rules. Zero became
the goal; I-counts could increase (rule II), could decrease (rule III). Until
we analyzed the situation, we might have thought that, with enough switch-
ing back and forth between the rules, we might eventually hit 0. Now,
thanks to a simple number-theoretical argument, we know that that is
impossible.

Godel-Numbering the MIU-System

Not all problems of the the type which the MU-puzzle symbolizes are so
easy to solve as this one. But we have seen that at least one such puzzle
could be embedded within, and solved within, number theory. We are now
going to see that there is a way to embed all problems about any formal
system, in number theory. This can happen thanks to the discovery, by
Godel, of a special kind of isomorphism. To illustrate it, I will use the
MIU-system.

We begin by considering the notation of the MIU-system. We shall
map each symbol onto a new symbol:

M &> 3
I &> 1
u <> o0

The correspondence was chosen arbitrarily; the only rhyme or reason to it
is that each symbol looks a little like the one it is mapped onto. Each
number is called the Gidel number of the corresponding letter. Now I am
sure you can guess what the Godel number of a multiletter string will be:

MU <= 30
MIlU <= 3110
etc.
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It is easy. Clearly this mapping between notations 1s an information-
preserving transformation; it is like playing the same melody on two differ-
ent instruments.

Let us now take a look at a typical derivation in the MIU-system,
written simultaneously in both notations:

(D MI —— axiom —— 31

(2) MI —— rule2 —— 311

3) MIlIl —— rule2 —— 31111
4) MUl —— ruled —— 301

(5) MUl —— rulel —— 3010
(6) Mmuluuigld —— rule2 —— 3010010
(7) mulid —— rule4 —— 30110

The left-hand column is obtained by applying our four familiar typograph-
ical rules. The right-hand column, too, could be thought of as having been
generated by a similar set of typographical rules. Yet the right-hand col-
umn has a dual nature. Let me explain what this means.

Seeing Things Both Typographically and Arithmetically

We could say of the fifth string (‘3010’) that it was made from the fourth, by
appending a ‘0’ on the right; on the other hand we could equally well view
the transition as caused by an arithmetical operation—multiplication by 10,
to be exact. When natural numbers are written in the decimal system,
multiplication by 10 and putting a ‘0’ on the right are indistinguishable
operations. We can take advantage of this to write an arithmetical rule which
corresponds to typographical rule I:

ARITHMETICAL RULE Ia: A number whose decimal expansion ends on the
right in ‘1’ can be multiplied by 10.

We can eliminate the reference to the symbols in the decimal expansion by
arithmetically describing the rightmost digit:

ARITHMETICAL RULE Ib: A number whose remainder when divided by 10
is 1, can be multiplied by 10.

Now we could have stuck with a purely typographical rule, such as the
following one:

TypoGrapHiCAL RULE I:  From any theorem whose rightmost symbol is ‘1’ a
new theorem can be made, by appending ‘0’ to the right of that ‘1.

They would have the same effect. This is why the right-hand column has a
“dual nature”: it can be viewed either as a series of typographical opera-
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tions changing one pattern of symbols into another, or as a series of
arithmetical operations changing one magnitude into another. But there
are powerful reasons for being more interested in the arithmetieal version.
Stepping out of one purely typographical system into another isomorphic
typographical system is not a very exciting thing to do; whereas stepping
clear out of the typographical domain into an isomorphic part of number
theory has some kind of unexplored potential. It is as if somebody had
known musical scores all his life, but purely visually—and then, all of a
sudden, someone introduced him to the mapping between sounds and
musical scores. What a rich, new world! Then again, it is as if somebody had
been familiar with string figures all his life, but purely as string figures,
devoid of meaning—and then, all of a sudden, someone introduced him to
the mapping between stories and strings. What a revelation! The discovery
of Godel-numbering has been likened to the discovery, by Descartes, of the
isomorphism between curves in a plane and equations in two variables:
incredibly simple, once you see it—and opening onto a vast new world.
Before we jump to conclusions, though, perhaps you would like to see
a more complete rendering of this higher level of the isomorphism. Itis a
very good exercise. The idea is to give an arithmetical rule whose action is
indistinguishable from that of each typographical rule of the MIU-system.
A solution is given below. In the rules, m and % are arbitrary
natural numbers, and n is any natural number which is less than 10™.

Rute 1: If we have made 10m + 1, then we can make 10 X (10m + 1).
Example: Going from line 4 to line 5. Here, m = 30.
RuLe 2: If we have made 3 X 10" + n, then we can make
10" x (3 X 10" + n) + n.
Example: Going from line 1 to line 2, where both m and n
equal 1.

RuLe 3: If we have made %k X 10”"** + 111 X 10" + n, then we can
make k X 10™*! + n,

Example: Going from line 3 to line 4. Here, m and = are 1,

and £ is 3.
RuLe 4: If we have made % x 10"*2 + n, then we can make
EX 10" + n.
Example: Going from line 6 to line 7. Here, m = 2, n = 10,
and k = 301.

Let us not forget our axiom! Without it we can go nowhere. Therefore, let
us postulate that:

We can make 31.

Now the right-hand column can be seen as a full-fledged arithmetical
process, in a new arithmetical system which we might call the 310-system:
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) 31 given

(2) 311 rule 2 (m=1, n=1)

(3) 31111 rule 2 (m=2, n=11)

(4) 301 rule 3 (m=1, n=1, k=3)
(5) 3010 rule 1 (m=30)

(6) 3010010 rule 2 (m=3, n=10)

(7) 30110 rule 4 (m=2, n=10, k=301)

Notice once again that the lengthening and shortening rules are ever
with us in this “310-system”; they have merely been transposed into the
domain of numbers, so that the Godel numbers go up and down. If you
look carefully at what is going on, you will discover that the rules are based
on nothing more profound than the idea that shifting digits to left and
right in decimal representations of integers is related to multiplications and
divisions by powers of 10. This simple observation finds its generalization
in the following

CENTRAL ProrosiTioN:  If there is a typographical rule which tells
how certain digits are to be shifted, changed, dropped, or inserted
in any number represented decimally, then this rule can be rep-
resented equally well by an arithmetical counterpart which in-
volves arithmetical operations with powers of 10 as well as addi-
tions, subtractions, and so forth.

More briefly:

Typographical rules for manipulating numerals are actually
arithmetical rules for operating on numbers.

This simple observation is at the heart of Gédel’'s method, and it will have
an absolutely shattering effect. 1t tells us that once we have a Godel-
numbering for any formal system, we can straightaway form a set of
arithmetical rules which complete the Godel isomorphism. The upshot is
that we can transfer the study of any formal system—in fact the study of all
formal systems—into number theory.

MIU-Producible Numbers

Just as any set of typographical rules generates a set of theorems, a corre-
sponding set of natural numbers will be generated by repeated applications
of arithmetical rules. These producible numbers play the same role inside
number theory as theorems do inside any formal system. Of course, differ-
ent numbers will be producible, depending on which rules are adopted.
“Producible numbers” are only producible relative to a system of arithmetical
rules. For example, such numbers as 31, 3010010, 3111, and so forth
could be called MIU-producible numbers—an ungainly name, which might
be shortened to MIU-numbers, symbolizing the fact that those numbers are
the ones that result when you transcribe the MIU-system into number
theory, via Godel-numbering. If we were to Gédel-number the pqg-system
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and then “arithmetize” its rules, we could call the producible numbers
“pg-numbers”—and so on. _

Note that the producible numbers (in any given system) are defined by
a recursive method: given numbers which are known to be producible, we
have rules telling how to make more producible numbers. Thus, the class
of numbers known to be producible is constantly extending itself, in much
the same way that the list of Fibonacci numbers, or Q-numbers, does. The
set of producible numbers of any system is a recursively enumerable set. What
about its complement—the set of nonproducible numbers? Is that set
always recursively enumerable? Do numbers which are nonproducible
share some common arithmetical feature?

This is the sort of issue which arises when you transpose the study of
formal systems into number theory. For each system which is arithmetized,
one can ask, “Can we characterize producible numbers in a simple way?”
“Can we characterize nonproducible numbers in a recursively enumerable
way?” These are difficult questions of number theory. Depending on the
system which has been arithmetized, such questions might prove too hard
for us to resolve. But if there is any hope for solving such problems, it
would have to reside in the usual kind of step-by-step reasoning as it applies
to natural numbers. And that, of course, was put in its quintessential form
in the previous Chapter. TNT seemed, to all appearances, to have captured
all valid mathematical thinking processes in one single, compact system.

Answering Questions about Producible Numbers
by Consulting TNT

Could it be, therefore, that the means with which to answer any question
about any formal system lies within just a single formal system—TNT? It
seems plausible. Take, for instance, this question:

Is MU a theorem of the MIU-system?

Finding the answer is equivalent to determining whether 30 is a MIU-
number or not. Because it is a statement of number theory, we should
expect that, with some hard work, we could figure out how to translate the
sentence “30 is a MIU-number” into TNT-notation, in somewhat the same
way as we figured out how to translate other number-theoretical sentences
into TNT-notation. I should immediately caution the reader that such a
translation, though it does exist, is immensely complex. If you recall, I
pointed out in Chapter VIII that even such a simple arithmetical predicate
as “b is a power of 10” is very tricky to code into TNT-notation—and the
predicate “b is a MIU-number” is a lot more complicated than that! Still, it
can be found; and the numeral SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSO can
be substituted for every b. This will result in a MONSstrous string of TNT, a
string of TNT which speaks about the MU-puzzle. Let us therefore call that
string “MUMON”. Through MUMON and strings like it, TNT is now
capable of speaking “in code” about the MIU-system.
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The Dual Nature of MUMON

In order to gain some benefit from this peculiar transformation of the
original question, we would have to seek the answer to a new question:

Is MUMON a theorem of TNT?

All we have done is replace one relatively short string (MU) by another (the
monstrous MUMON), and a simple formal system (the MIU-system) by a
complicated one (TNT). It isn’t likely that the answer will be any more
forthcoming even though the question has been reshaped. In fact, TNT
has a full complement of both lengthening and shortening rules, and the
reformulation of the question is likely to be far harder than the original.
One might even say that looking at MU via MUMON is an intentionally
idiotic way of doing things. However, MUMON can be looked at on more
than one level.

In fact, this is an intriguing point: MUMON has two different passive
meanings. Firstly, it has the one which was given before:

30 is a MIU-number.

But secondly, we know that this statement is tied (via isomorphism) to the
statement

MU is a theorem of the MIU-system.

So we can legitimately quote this latter as the second passive meaning of
MUMON. It may seem very strange because, after all, MUMON contains
nothing but plus signs, parentheses, and so forth—symbols of TNT. How
can it possibly express any statement with other than arithmetical content?

The fact is, it can. Just as a single musical line may serve as both
harmony and melody in a single piece; just as “BACH” may be interpreted
as both a name and a melodys; just as a single sentence may be an accurate
structural description of a picture by Escher, of a section of DNA, of a piece
by Bach, and of the dialogue in which the sentence is embedded, so
MUMON can be taken in (at least) two entirely different ways. This state of
affairs comes about because of two facts:

Fact 1. Statements such as “MU is a theorem” can be coded into
number theory via Gédel’s isomorphism.

Fact 2. Statements of number theory can be translated into
TNT,

It could be said that MUMON is, by Fact 1, a coded message, where the
symbols of the code are, by Fact 2, just symbols of TNT.
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Codes and Implicit Meaning

Now it could be objected here that a coded message, unlike an uncoded
message, does not express anything on its own—it requires knowledge of
the code. But in reality there is no such thing as an uncoded message.
There are only messages written in more familiar codes, and messages
written in less familiar codes. If the meaning of a message is to be revealed,
it must be pulled out of the code by some sort of mechanism, or isomor-
phism. It may be difficult to discover the method by which the decoding
should be done; but once that method has been discovered, the message
becomes transparent as water. When a code is familiar enough, it ceases
appearing like a code; one forgets that there is a decoding mechanism. The
message is identified with its meaning.

Here we have a case where the identification of message and meaning
is so strong that it is hard for us to conceive of an alternate meaning
residing in the same symbols. Namely, we are so prejudiced by the symbols
of TNT towards seeing number-theoretical meaning (and only number-
theoretical meaning) in strings of TNT, that to conceive of certain strings
of TNT as statements about the MIU-system is quite difficult. But Godel’s
1somorphism compels us to recognize this second level of meaning in
certain strings of TNT.

Decoded in the more familiar way, MUMON bears the message:

30 1s a MIU-number.

This is a statement of number theory, gotten by interpreting each sign in
the conventional way.

But in discovering Goédel-numbering and the whole isomorphism built
upon it, we have in a sense broken a code in which messages about the
MIU-system are written in strings of TNT. Gédel’s isomorphism is a new
information-revealer, just as the decipherments of ancient scripts were
information-revealers. Decoded by this new and less familiar mechanism,
MUMON bears the message

MU is a theorem of the MIU-system.

The moral of the story is one we have heard before: that meaning is an
automatic by-product of our recognition of any isomorphism; therefore
there are at least two passive meanings of MUMON—maybe more!

The Boomerang: Godel-Numbering TNT

Of course things do not stop here. We have only begun realizing the
potential of Godel’s isomorphism. The natural trick would be to turn
TNT’s capability of mirroring other formal systems back on itself, as the
Tortoise turned the Crab’s phonographs against themselves, and as his
Goblet G turned against itself, in destroying itself. In order to do this, we
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will have to Gédel-number TNT itself, just as we did the MIU-system, and
then “arithmetize” its rules of inference. The Godel-numbering is easy to
do. For instance, we could make the following correspondence:

Symbol Codon Mnemonic Justification

o ..... 666 Number of the Beast for the Mysterious Zero
S ..... 123 successorship: 1,2,3, ...
= ... 111 visual resemblance, turned sideways
+ . 112 1+1=2

o 236 2x3=6

( ..... 362 ends in 2

Y ... 323 ends in 3
< ... 212 ends in 2 \ these three pairs

> ... 213 ends in 3 { form a pattern

[ ... 312  endsin 2

| . 313 endsin3

a ..... 262 opposite to V (626)

AP 163 163 is prime

Ao 161 ‘A’ is a “graph” of the sequence 1-6-1
VAR 616 ‘v’ is a “graph” of the sequence 6-1-6
D ... 633 6 “implies” 3 and 3, in some sense . ..
~ 223 2+2i1snot3

3 ... 333 ‘T looks like ‘3’

v ... 626 opposite to a; also a “graph” of 6-2-6

..... 636 two dots, two sixes
punc. ..... 611 special number, as on Bell system (411, 911)

Each symbol of TNT is matched up with a triplet composed of the
digits 1, 2, 3, and 6, in a manner chosen for mnemonic value. I shall call
each such triplet of digits a Gédel codon, or codon for short. Notice that I
have given no codon forb, c, d, or e; we are using austere TNT. There is a
hidden motivation for this, which you will find out about in Chapter XVIL.
I will explain the bottom entry, “punctuation”, in Chapter XIV.

Now we can rewrite any string or rule of TNT in the new garb. Here,
for instance, is Axiom 1 in the two notations, the old below the new:

626,262,636,223,123,262,111,666
vV a : ~ § a = 0
Conveniently, the standard convention of putting in a comma every third
digit happens to coincide with our codons, setting them off for “easy”
legibility.
Here is the Rule of Detachment, in the new notation:

RuLe: If x and 212x633y213 are both theorems, then y is a theorem.

Finally, here is an entire derivation taken from last Chapter, given in
austere TNT and also transcribed into the new notation:
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626,262,636,626,262,163,636,362,262,112,123,262,163,323,111,123,362,262,112,262,163,323 axiom 3

vV a : V a ' : (a + S a " )y =S ( a + a ')

626,262,163,636,362,123,666,112,123,262,163,323,111,123,362,123,666,112,262,163,323 specification
Y a ' : ( S0 + S a ' )y =8 {( SO0 + a ')

362,123,666,112,123,666,323,111,123,362,123,666,112,666,323 specification
( SO0 +S 0) =S (S 0+ 0 )

626,262,636,362,262,112,666,323,111,262 axiom 2
YV a : (a + 0 ) = a

362,123,666,112,666,323,111,123 666 specification
( S0 + 0 ) =5 o0

123,362,123,666,112,666,323,111,123,123,666 insert ‘123’
S (S 0+ 0) =S S 0

362,123,666,112,123,666,323,111,123,123,666 transitivity
( SO0 +S 0) =S S 0

Notice that I changed the name of the “Add S” rule to “Insert ‘123’ ”, since
that is the typographical operation which it now legitimizes.

This new notation has a pretty strange feel to it. You lose all sense of
meaning; but if you had been brought up on it, you could read strings in
this notation as easily as you do TNT. You would be able to look and, at a
glance, distinguish well-formed formulas from ill-formed ones. Naturally,
since it is so visual, you would think of this as a typographical operation—
but at the same time, picking out well-formed formulas in this notation is
picking out a special class of integers, which have an arithmetical definition,
too.

Now what about “arithmetizing” all the rules of inference? As matters
stand, they are all still typographical rules. But wait! According to the
Central Proposition, a typographical rule is really equivalent to an
arithmetical rule. Inserting and moving digits in decimally represented
numbers is an arithmetical operation, which can be carried out typographi-
cally. Just as appending a ‘0’ on the end is exactly the same as multiplying by
10, so each rule is a condensed way of describing a messy arithmetical
operation. Therefore, in a sense, we do not even need to look for equiva-
lent arithmetical rules, because all of the rules are already arithmetical!

TNT-Numbers: A Recursively Enumerable Set of Numbers

Looked at this way, the preceding derivation of the theorem
“362,123,666,112,123,666,323,111,123,123,666” is a sequence of highly
convoluted number-theoretical transformations, each of which acts on one
or more input numbers, and yields an output number, which is, as before,
called a producible number, or, to be more specific, a TNT-number. Some of
the arithmetical rules take an old TNT-number and increase it in a particu-
lar way, to yield a new TNT-number; some take an old TNT-number and
decrease it; other rules take two TNT-numbers, operate on each of them in
some odd way, and then combine the results into a new TNT-number—
and so on and so forth. And instead of starting with just one known
TNT-number, we have five initial TNT-numbers—one for each (austere)
axiom, of course. Arithmetized TNT is actually extremely similar to the

Mumon and Goédel 269



arithmetized MIU-system, only there are more rules and axioms, and to
write out arithmetical equivalents explicitly would be a big bother—and
quite unenlightening, incidentally. If you followed how it was done for the
MIU-system, there ought to be no doubt on your part that it is quite
analogous here.

There is a new number-theoretical predicate brought into being by
this “Godelization” of TNT: the predicate

a is a TNT-number.

For example, we know from the preceding derivation that
362,123,666,112,123,666,323,111,123,123,666 i a TNT-number, while
on the other hand, presumably 123,666,111,666 is not a TNT-number.

Now it occurs to us that this new number-theoretica! predicate is
expressible by some string of TNT with one free variable, say a. We could put
a tilde in front, and that string would express the complementary notion

a is not a TNT-number.

Now if we replaced all the occurrences of a in this second string by the
TNT-numeral for 123,666,111,666—a numeral which would contain
exactly 123,666,111,666 S’s, much too long to write out—we would have a
TNT-string which, just like MUMON, is capable of being interpreted on
two levels. In the first place, that string would say

123,666,111,666 is not a TNT-number.

But because of the isomorphism which links TNT-numbers to theorems of
TNT, there would be a second-level meaning of this string, which is:

S0=0 is not a theorem of TNT.

TNT Tries to Swallow lItself

This unexpected double-entendre demonstrates that TNT contains strings
which talk about other strings of TNT. In other words, the metalanguage
in which we, on the outside, can speak about TNT, is at least partially
imitated inside TNT itself. And this is not an accidental feature of TNT; it
happens because the architecture of any formal system can be mirrored
inside N (number theory). It is just as inevitable a feature of TNT as are the
vibrations induced in a record player when it plays a record. It seems as if
vibrations should come from the outside world—for instance, from jump-
ing children or bouncing balls; but a side effect of producing sounds—and
an unavoidable one—is that they wrap around and shake the very
mechanism which produces them. It is no accident; it is a side effect which
cannot be helped. It is in the nature of record players. And it is in the
nature of any formalization of number theory that its metalanguage is
embedded within it.
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We can dignify this observation by calling it the Central Dogma of
Mathematical Logic, and depicting it in a two-step diagram:

TNT = N = meta-TNT

In words: a string of TNT has an interpretation in N; and a statement of N
may have a second meaning as a statement about TNT.

G: A String Which Talks about Itself in Code

This much is intriguing yet it is only half the story. The rest of the story
involves an intensification of the self-reference. We are now at the stage
where the Tortoise was when he realized that a record could be made
which would make the phonograph playing it break—but now the question
is: “Given a record player, how do you actually figure out what to put on
the record?” That is a tricky matter.

We want to find a string of TNT—which we’ll call ‘G'—which is about
itself, in the sense that one of its passive meanings is a sentence about G. In
particular the passive meaning will turn out to be

“G is not a theorem of TNT.”

I should quickly add that G also has a passive meaning which is a statement of
number theory; just like MUMON it is susceptible to being construed in (at
least) two different ways. The important thing is that each passive meaning
is valid and useful and doesn’t cast doubt on the other passive meaning in
any way. (The fact that a phonograph playing a record can induce vibra-
tions in itself and in the record does not diminish in any way the fact that
those vibrations are musical sounds!)

G’s Existence Is What Causes TNT's Incompleteness

The ingenious method of creating G, and some important concepts relat-
ing to TNT, will be developed in Chapters XIII and XIV; for now it is just
interesting to glance ahead, a bit superficially, at the consequences of
finding a self-referential piece of TNT. Who knows? It might blow up! Ina
sense it does. We focus down on the obvious question:

Is G a theorem of TNT, or not?

Let us be sure to form our own opinion on this matter, rather than rely on
G’s opinion about itself. After all, G may not understand itself any better
than a Zen master understands himself. Like MUMON, G may express a
falsity. Like MU, G may be a nontheorem. We don’t need to believe every
possible string of TNT-—only its theorems. Now let us use our power of
reasoning to clarify the issue as best we can at this point.

We will make our usual assumption: that TNT incorporates valid
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methods of reasoning, and therefore that TNT never has falsities for
theorems. In other words, anything which is a theorem of TNT expresses a
truth. So if G were a theorem, it would express a truth, namely: “G is not a
theorem”. The full force of its self-reference hits us. By being a theorem, G
would have to be a falsity. Relying on our assumption that TNT never has
falsities for theorems, we’'d be forced to conclude that G is not a theorem.
This is all right; it leaves us, however, with a lesser problem. Knowing that
G is not a theorem, we’d have to concede that G expresses a truth. Here is a
situation in which TNT doesn’t live up to our expectations—we have found
a string which expresses a true statement yet the string is not a theorem.
And in our amazement, we shouldn’t lose track of the fact that G has an
arithmetical interpretation, too—which allows us to summarize our
findings this way:

A string of TNT has been found; it expresses, unambiguously, a
statement about certain arithmetical properties of natural num-
bers; moreover, by reasoning outside the system we can determine
not only that the statement is a true one, but also that the string
fails to be a theorem of TNT. And thus, if we ask TNT whether
the statement is true, TNT says neither yes nor no.

Is the Tortoise’s string in the Mu Offering the analogue of G? Not quite.
The analogue of the Tortoise’s string is ~G. Why is this so? Well, let us
think a moment about what ~G says. It must say the opposite of what G
says. G says, “G is not a theorem of TNT”, so ~G must say “G is a theorem”.
We could rephrase both G and ~G this way:

G: “I am not a theorem (of TNT).”
~G: “My negation is a theorem (of TNT).”

It is ~G which is parallel to the Tortoise’s string, for that string spoke not
about itself, but about the string which the Tortoise first proffered to
Achilles—which had an extra knot on it (or one too few, however you want
to look at it).

Mumon Has the Last Word

Mumon penetrated into the Mystery of the Undecidable as clearly as
anyone, in his concise poem on Jésha’s MU:

Has a dog Buddha-nature?

This is the most serious question of all.
If you say yes or no,

You lose your own Buddha-nature.
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PART Il




Prelude . . .

Achilles and the Tortoise have come to the residence of their friend the
Crab, to make the acquaintance of one of his friends, the Anteater. The
introductions having been made, the four of them settle down to tea.

Tortoise:  We have brought along a little something for you, Mr. Crab.

Crab: That’s most kind of you. But you shouldn’t have.

Tortoise:  Just a token of our esteem. Achilles, would you like to give it to
Mr. C?

Achilles:  Surely. Best wishes, Mr. Crab. I hope you enjoy it.

(Achilles hands the Crab an elegantly wrapped present, square and very
thin. The Crab begins unwrapping it.)

Anteater: I wonder what it could be.

Crab: We'll soon find out. (Completes the unwrapping, and pulls out the gift.)
Two records! How exciting! But there’s no label. Uh-oh—is this
another of your “specials”, Mr. T?

Tortoise:  If you mean a phonograph-breaker, not this time. Butit is in fact
a custom-recorded item, the only one of its kind in the entire world. In
fact, it’s never even been heard before—except, of course, when Bach
played it.

Crab:  When Bach played it? What do you mean, exactly?

Achilles: Oh, you are going to be fabulously excited, Mr. Crab, when
Mr. T tells you what these records in fact are.

Tortoise:  Oh, you go ahead and tell him, Achilles.

Achilles:  May I? Oh, boy! I'd better consult my notes, then. (Pulls out a
small filing card, and clears his voice.) Ahem. Would you be interested in
hearing about the remarkable new result in mathematics, to which
your records owe their existence?

Crab: My records derive from some piece of mathematics? How curious!
Well, now that you’ve provoked my interest, I must hear about it.

Achilles:  Very well, then. (Pauses for a moment to sip his tea, then resumes.)
Have you heard of Fermat’s infamous “Last Theorem”?

Anteater: I'm notsure. . .Itsounds strangely familiar, and yet I can’t quite
place it.

Achilles:  1t's a very simple idea. Pierre de Fermat, a lawyer by vocation but
mathematician by avocation, had been reading in his copy of the classic
text Arithmetica by Diophantus, and came across a page containing the
equation

a2+ b?=¢?
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He immediately realized that this equation has infinitely many solu-
tions a, b, ¢, and then wrote in the margin the following notorious
comment:

The equation

a"+ b =¢"

has solutions in positive integers a, b, ¢, and n only when n = 2 (and
then there are infinitely many triplets a, b, ¢ which satisfy the equa-
tion); but there are no solutions for n > 2. I have discovered a truly
marvelous proof of this statement, which, unfortunately, this margin
is too small to contain.

Ever since that day, some three hundred years ago, mathematicians
have been vainly trying to do one of two things: either to prove
Fermat's claim, and thereby vindicate Fermat's treputation, which, al-
though very high, has been somewhat tarnished by skeptics who think
he never really found the proof he claimed to have found—or else to
refute the claim, by finding a counterexample: a set of four integers
a, b, ¢, and n, with n > 2, which satisfy the equation. Until very
recently, every attempt in either direction had met with failure. To be
sure, the Theorem has been proven for many specific values of n—in
particular, all n up to 125,000.

Anteater:  Shouldn’tit be called a “Conjecture” rather than a “Theorem”, if
it's never been given a proper proof?

Achilles:  Strictly speaking, you're right, but tradition has kept it this way.

Crab: Has someone at last managed to resolve this celebrated question?

Achilles: Indeed! In fact, Mr. Tortoise has done so, and as usual, by a
wizardly stroke. He has not only found a PROOF of Fermat’s Last
Theorem (thus justifying its name as well as vindicating Fermat), but
also a COUNTEREXAMPLE, thus showing that the skeptics had good
intuition!

Crab: Oh my gracious! That is a revolutionary discovery.

Anteater: But please don’t leave us in suspense. What magical integers are
they, that satisfy Fermat’s equation? I'm especially curious about the
value of n.

Achilles:  Oh, horrors! I'm most embarrassed! Can you believe this? I left
the values at home on a truly colossal piece of paper. Unfortunately it
was too huge to bring along. I wish I had them here to show to you. If
it’s of any help to you, I do remember one thing—the value of n is the
only positive integer which does not occur anywhere in the continued
fraction for =.

Crab: Oh, what a shame that you don’t have them here. But there’s no
reason to doubt what you have told us.

FIGURE 54. Magbius Strip H, by M. C. Escher (woodcut, 1963).
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FIGURE 55. Pierre de Fermat.

Anteater:  Anyway, who needs to see n written out decimally? Achilles has
just told us how to find it. Well, Mr. T, please accept my hearty
felicitations, on the occasion of your epoch-making discovery!

Tortoise:  Thank you. But what I feel is more important than the result
itself is the practical use to which my result immediately led.

Crab: 1 am dying to hear about it, since I always thought number theory
was the Queen of Mathematics—the purest branch of mathematics-—
the one branch of mathematics which has NO applications!

Tortoise:  You're not the only one with that belief, but in fact it is quite
impossible to make a blanket statement about when or how some
branch—or even some individual Theorem—of pure mathematics will
have important repercussions outside of mathematics. It is quite
unpredictable—and this case is a perfect example of that phenome-
non.

Achilles:  Mr. Tortoise’s double-barreled result has created a breakthrough
in the field of acoustico-retrieval!

Anteater:  What is acoustico-retrieval?

Achilles:  The name tells it all: it is the retrieval of acoustic information
from extremely complex sources. A typical task of acoustico-retrieval is
to reconstruct the sound which a rock made on plummeting into a lake
from the ripples which spread out over the lake’s surface.

Crab: Why, that sounds next to impossible!

Achilles:  Not so. It is actually quite similar to what one’s brain does, when it
reconstructs the sound made in the vocal cords of another person from
the vibrations transmitted by the eardrum to the fibers in the cochlea.

Crab: 1 see. But I still don’t see where number theory enters the picture,
or what this all has to do with my new records. .
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Achilles:  Well, in the mathematics of acoustico-retrieval, there arise many
questions which have to do with the number of solutions of certain
Diophantine equations. Now Mr. T has been for years trying to find a
way of reconstructing the sounds of Bach playing his harpsichord,
which took place over two hundred years ago, from calculations involv-
ing the motions of all the molecules in the atmosphere at the present
time.

Anteater: Surely that is impossible! They are irretrievably gone, gone
forever!

Achilles:  Thus think the naive ... But Mr. T has devoted many years to
this problem, and came to the realization that the whole thing hinged
on the number of solutions to the equation

a"+ b"=c"

in positive integers, with n > 2.

Tortoise: 1 could explain, of course, just how this equation arises, but I'm
sure it would bore you.

Achilles: It turned out that acoustico-retrieval theory predicts that the
Bach sounds can be retrieved from the motion of all the molecules in
the atmosphere, provided that EITHER there exists at least one solution
to the equation—

Crab: Amazing!

Anteater: Fantastic!

Tortoise:  'Who would have thought!

Achilles: 1 was about to say, “provided that there exists EITHER such a
solution OR a proof that there are NO solutions!” And therefore, Mr. T,
in careful fashion, set about working at both ends of the problem,
simultaneously. As it turns out, the discovery of the counterexample
was the key ingredient to finding the proof, so the one led directly to
the other. ‘

Crab: How could that be?

Tortoise:  Well, you see, I had shown that the structural layout of any proof
of Fermat’s Last Theorem—if one existed—could be described by an
elegant formula, which, it so happened, depended on the values of a
solution to a certain equation, When I found this second equation, to
my surprise it turned out to be the Fermat equation. An amusing
accidental relationship between form and content. So when I found
the counterexample, all I needed to do was to use those numbers as a
blueprint for constructing my proof that there were no solutions to the
equation. Remarkably simple, when you think about it. I can’t imagine
why no one had ever found the result before.

Achilles:  As a result of this unanticipatedly rich mathematical success,
Mr. T was able to carry out the acoustico-retrieval which he had so
long dreamed of. And Mr. Crab’s present here represents a palpable
realization of all this abstract work.
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Crab: Don't tell me it’s a recording of Bach playing his own works for
harpsichord!

Achilles:  TI'm sorry, but I have to, for that is indeed just what it is! Thisis a
set of two records of Johann Sebastian Bach playing all of his Well-
Tempered Clavier. Each record contains one of the two volumes of the
Well-Tempered Clavier; that is to say, each record contains 24 preludes
and fugues—one in each major and minor key.

Crab: Well, we must absolutely put one of these priceless records on,
immediately! And how can I ever thank the two of you?

Tortoise:  You have already thanked us plentifully, with this delicious tea
which you have prepared.

(The Crab shdes one of the records out of its jacket, and puts it on. The
sound of an incredibly masterful harpsichordist fills the room, in the highest
imaginable fidelity. One even hears—or is it one’s imagination? —the soft
sounds of Bach singing to himself as he plays . . .)

Crab: Would any of you like to follow along in the score? I happen to have
a unique edition of the Well-Tempered Clavier, specially illuminated by a
teacher of mine who happens also to be an unusually fine calligrapher.

Tortoise: 1 would very much enjov that.

(The Crab goes to his elegant glass-enclosed wooden bookcase, opens the
doors, and draws out two large volumes.)

Crab: Here you are, Mr. Tortoise. I've never really gotten to know all the
beautiful illustrations in this edition. Perhaps your gift will provide the
needed impetus for me to do so.

Tortoise: 1 do hope so.

Anteater: Have you ever noticed how in these pieces the prelude always
sets the mood perfectly for the following fugue?

Crab: Yes. Although it may be hard to put it into words, there is always
some subtle relation between the two. Even if the prelude and fugue
do not have a common melodic subject, there is nevertheless always
some intangible abstract quality which underlies both of them, binding
them together very strongly.

Tortoise:  And there is something very dramatic about the few moments of
silent suspense hanging between prelude and fugue—that moment
where the the theme of the fugue is about to ring out, in single tones,
and then to join with itself in ever-increasingly complex levels of weird,
exquisite harmony.

Achilles: 1 know just what you mean. There are so many preludes and
fugues which I haven’t yet gotten to know, and for me that fleeting
interlude of silence is very exciting; it’s a time when I try to second-
guess old Bach. For example, I always wonder what the fugue’s tempo
will be: allegro, or adagio? Will it be in 6/8, or 4/47 Will it have three
voices, or five—or four? And then, the first voice starts ... Such an
exquisite moment.
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Crab: Ah, yes, well do I remember those long-gone days of my youth, the
days when I thrilled to each new prelude and fugue, filled with the
excitement of their novelty and beauty and the many unexpected
surprises which they conceal.

Achilles:  And now? Is that thrill all gone?

Crab: It's been supplanted by familiarity, as thrills always will be. But in
that familiarity there is also a kind of depth, which has its own compen-
sations. For instance, I find that there are always new surprises which I
hadn’t noticed before.

Achilles:  Occurrences of the theme which you had overlooked?

Crab: Perhaps—especially when it is inverted and hidden among several
other voices, or where it seems to come rushing up from the depths,
out of nowhere. But there are also amazing modulations which it is
marvelous to listen to over and over again, and wonder how old Bach
dreamt them up.

Achilles: 1am very glad to hear that there is something to look forward to,
after I have been through the first flush of infatuation with the Well-
Tempered Clavier—although it also makes me sad that this stage could
not last forever and ever.

Crab: Oh, you needn’t fear that your infatuation will totally die. One of
the nice things about that sort of youthful thrill is that it can always be
resuscitated, just when you thought it was finally dead. It just takes the
right kind of triggering from the outside.

Achilles:  Oh, really? Such as what?

Crab: Such as hearing it through the ears, so to speak, of someone to
whom it is a totally new experience—someone such as you, Achilles.
Somehow the excitement transmits itself, and I can feel thrilled again.

Achilles: That is intriguing. The thrill has remained dormant somewhere
inside you, but by yourself, you aren’t able to fish it up out of your
subconscious.

Crab: Exactly. The potential of reliving the thrill is “coded”, in some
unknown way, in the structure of my brain, but I don’t have the power
to summon it up at will; I have to wait for chance circumstance to
trigger it.

Achilles: T have a question about fugues which I feel a little embarrassed
about asking, but a8 I am just a novice at fugue-listening, I was wonder-
ing if perhaps one of you seasoned fugue-listeners might help me in
learning ... ?

Tortoise: I'd certainly like to offer my own meager knowledge, if it might
prove of some assistance.

Achilles:  Oh, thank you. Let me come at the question from an angle. Are
you familiar with the print called Cube with Magic Ribbons, by M. C.
Escher?

Tortoise:  In which there are circular bands having bubble-like distortions
which, as soon as you've decided that they are bumps, seem'to turninto
dents—and vice versa?
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FIGURE 56. Cube with Magic Ribbons, by M. C. Escher (lithograph, 1957).

Achilles:  Exactly.

Crab: 1 remember that picture. Those little bubbles always seem to flip
back and forth between being concave and convex, depending on the
direction that you approach them from. There’s no way to see them
simultaneously as concave AND convex—somehow one’s brain doesn’t
allow that. There are two mutually exclusive “modes” in which one can
perceive the bubbles.

Achilles:  Just so. Well, I seem to have discovered two somewhat analogous
modes in which I can listen to a fugue. The modes are these: either to
follow one individual voice at a time, or to listen to the total effect of all
of them together, without trying to disentangle one from another. I
have tried out both of these modes, and, much to my frustration, each
one of them shuts out the other. It's simply not in my power to follow
the paths of individual voices and at the same time to hear the whole
effect. I find that I flip back and forth between one mode and the
other, more or less spontaneously and involuntarily.
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Anteater:  Just as when you look at the magic bands, eh?

Achilles:  Yes. I was just wondering ... does my description of these two
modes of fugue-listening brand me unmistakably as a naive, inexperi-
enced listener, who couldn’t even begin to grasp the deeper modes of
perception which exist beyond his ken?

Tortoise:  No, not at all, Achilles. I can only speak for myself, but I too find
myself shifting back and forth from one mode to the other without
exerting any conscious control over which mode should be dominant. I
don’t know if our other companions here have also.experienced any-
thing similar.

Crab: Most definitely. It's quite a tantalizing phenomenon, since you feel
that the essence of the fugue is flitting about you, and you can’t quite
grasp all of it, because you can’t quite make yourself function both
ways at once.

Anteater: Fugues have that interesting property, that each of their voices is
a piece of music in itself; and thus a fugue might be thought of as a
collection of several distinct pieces of music, all based on one single
theme, and all played simultaneously. And itis up to the listener (or his
subconscious) to decide whether it should be perceived as a unit,or as a
collection of independent parts, all of which harmonize.

Achilles:  You say that the parts are “independent”, yet that can’t be liter-
ally true. There has to be some coordination between them, otherwise
when they were put together one would just have an unsystematic
clashing of tones—and that is as far from the truth as could be.

Anteater: A better way to state it might be this: if you listened to each voice
on its own, you would find that it seemed to make sense all by itself. It
could stand alone, and that is the sense in which I meant that it is
independent. But you are quite right in pointing out that each of these
individually meaningful lines fuses with the others in a highly nonran-
dom way, to make a graceful totality. The art of writing a beautiful
fugue lies precisely in this ability, to manufacture several different
lines, each one of which gives the illusion of having been written for its
own beauty, and yet which when taken together form a whole, which
does not feel forced in any way. Now, this dichotomy between hearing
a fugue as a whole, and hearing its component voices, is a particular
example of a very general dichotomy, which applies to many kinds of
structures built up from lower levels.

Achilles:  Oh, really? You mean that my two “modes” may have some more
general type of applicability, in situations other than fugue-listening?

Anteater:  Absolutely.

Achilles: 1 wonder how that could be. I guess it has to do with alternating
between perceiving something as a whole, and perceiving it as a collec-
tion of parts. But the only place I have ever run into that dichotomy is
in listening to fugues.

Tortoise:  Oh, my, look at this! I just turned the page while following the
music, and came across this magnificent illustration facing the first
page of the fugue.

Prelude . . . 283



Crab: 1 have never seen that illustration before. Why don’t you pass it
‘round?

(The Tortoise passes the book around. Each of the foursome looks at it in a
characteristic way—this one from afar, that one from close up, everyone
tipping his head this way and that in puzzlement. Finally it has made the
rounds, and returns to the Tortoise, who peers at it rather intently.)

Achilles:  Well, I guess the prelude is just about over. I wonder if, as I listen
to this fugue, I will gain any more insight into the question, “What is
the right way to listen to a fugue: as a whole, or as the sum of its parts?”

TTortoise:  Listen carefully, and you will!

(The prelude ends. There is a moment of silence; and . . .)

[ ATTACCA]
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CHAPTER X

Levels of Description,
and Computer Systems

Levels of Description

GODEL’s sSTRING G, and a Bach fugue: they both have the property that
they can be understood on different levels. We are all familiar with this
kind of thing; and yet in some cases it confuses us, while in others we
handle it without any difficulty at all. For example, we all know that we
human beings are composed of an enormous number of cells (around
twenty-five trillion), and therefore that everything we do could in principle
be described in terms of cells. Or it could even be described on the level of
molecules. Most of us accept this in a rather matter-of-fact way; we go to
the doctor, who looks at us on lower levels than we think of ourselves. We
read about DNA and “genetic engineering” and sip our coffee. We seem to
have reconciled these two inconceivably different pictures of ourselves
simply by disconnecting them from each other. We have almost no way to
relate a microscopic description of ourselves to that which we feel ourselves
to be, and hence it is possible to store separate representations of ourselves
in quite separate “compartments” of our minds. Seldom do we have to flip
back and forth between these two concepts of ourselves, wondering “How
can these two totally different things be the same me?”

Or take a sequence of images on a television screen which shows
Shirley MacLaine laughing. When we watch that sequence, we know that
we are actually looking not at a woman, but at sets of flickering dots on a flat
surface. We know it, but it is the furthest thing from our mind. We have
these two wildly opposing representations of what is on the screen, but that
does not confuse us. We can just shut one out, and pay attention to the
other—which is what all of us do. Which one is “more real”? It depends on
whether you're a human, a dog, a computer, or a television set.

Chunking and Chess Skill

One of the major problems of Artificial Intelligence research is to figure
out how to bridge the gap between these two descriptions; how to construct
a system which can accept one level of description, and produce the other.
One way in which this gap enters Artificial Intelligence is well illustrated by
the progress in knowledge about how to program a computer to play good
chess. It used to be thought—in the 1950’s and on into the 1960’s—that the
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trick to making a machine play well was to make the machine look further
ahead into the branching network of possible sequences of play than any
chess master can. However, as this goal gradually became attained, the level
of computer chess did not have any sudden spurt, and surpass human
experts. In fact, a human expert can quite soundly and confidently trounce
the best chess programs of this day.

The reason for this had actually been in print for many years. In the
1940’s, the Dutch psychologist Adriaan de Groot made studies of how chess
novices and chess masters perceive a chess situation. Put in their starkest
terms, his results imply that chess masters perceive the distribution of
pieces in chunks. There is a higher-level description of the board than the
straightforward “white pawn on K5, black rook on Q6” type of description,
and the master somehow produces such a mental image of the board. This
was proven by the high speed with which a master could reproduce an
actual position taken from a game, compared with the novice’s plodding
reconstruction of the position, after both of them had had five-second
glances at the board. Highly revealing was the fact that masters’ mistakes
involved placing whole groups of pieces in the wrong place, which left the
game strategically almost the same. but to a novice’s eyes, not at all the
same. The clincher was to do the same experiment but with pieces ran-
domly assigned to the squares on the board, instead of copied from actual
games. The masters were found to be simply no better than the novices in
reconstructing such random boards.

The conclusion is that in normal chess play, certain types of situation
recur—certain patterns—and it is to those high-level patterns that the
master is sensitive. He thinks on a different level from the novice; his set of
concepts is different. Nearly everyone is surprised to find out that in actual
play, a master rarely looks ahead any further than a novice does—and
moreover, a master usually examines only a handful of possible moves!
The trick is that his mode of perceiving the board is like a filter: he literally
does not see bad moves when he looks at a chess situation—no more than chess
amateurs see illegal moves when they look at a chess situation. Anyone who
has played even a little chess has organized his perception so that diagonal
rook-moves, forward captures by pawns, and so forth, are never brought to
mind. Similarly, master-level players have built up higher levels of organi-
zation in the way they see the board; consequently, to them, bad moves are
as unlikely to come to mind as illegal moves are, to most people. This might
be called implicit pruning of the giant branching tree of possibilities. By
contrast, explicit pruning would involve thinking of a move, and after super-
ficial examination, deciding not to pursue examining it any further.

The distinction can apply just as well to other intellectual activities—
for instance, doing mathematics. A gifted mathematician doesn’t usually
think up and try out all sorts of false pathways to the desired theorem, as
less gifted people might do; rather, he just “smells” the promising paths,
and takes them immediately.

Computer chess programs which rely on looking ahead have not been
taught to think on a higher level; the strategy has just been to use brute
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force look-ahead, hoping to crush all types of opposition. But it has not
worked. Perhaps someday, a look-ahead program with enough brute force
will indeed overcome the best human players—but that will be a small
intellectual gain, compared to the revelation that intelligence depends
crucially on the ability to create high-level descriptions of complex arrays,
such as chess boards, television screens, printed pages, or paintings.

Similar Levels

Usually, we are not required to hold more than one level of understanding
of a situation in our minds at once. Moreover, the different descriptions of
a single system are usually so conceptually distant from each other that, as
was mentioned earlier, there is no problem in maintaining them both; they
are just maintained in separate mental compartments. What is confusing,
though, is when a single system admits of two or more descriptions on
different levels which nevertheless resemble each other in some way. Then
we find it hard to avoid mixing levels when we think about the system, and
can easily get totally lost.

Undoubtedly this happens when we think about our own
psychology—for instance, when we try to understand people’s motivations
for various actions. There are many levels in the human mental
structure—certainly it is a system which we do not understand very well yet.
But there are hundreds of rival theories which tell why people act the way
they do, each theory based on some underlying assumptions about how far
down in this set of levels various kinds of psychological “forces” are found.
Since at this time we use pretty much the same kind of language for all
mental levels, this makes for much level-mixing and most certainly for
hundreds of wrong theories. For instance, we talk of “drives”—for sex, for
power, for fame, for love, etc., etc.—without knowing where these drives
come from in the human mental structure. Without belaboring the point, I
simply wish to say that our confusion about who we are is certainly related
to the fact that we consist of a large set of levels, and we use overlapping
language to describe ourselves on all of those levels.

Computer Systems

There is another place where many levels of description coexist for a single
system, and where all the levels are conceptually quite close to one another.
I am referring to computer systems. When a computer program is run-
ning, it can be viewed on a number of levels. On each level, the description
is given in the language of computer science, which makes all the descrip-
tions similar in some ways to each other—yet there are extremely important
differences between the views one gets on the different levels. At the lowest
level, the description can be so complicated that it is like the dot-description
of a television picture. For some purposes, however, this is by far the most
important view. At the highest level, the description is greatly chunked, and
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takes on a completely different feel. despite the fact that many of the same
concepts appear on the lowest and highest levels. The chunks on the
high-level description are like the chess expert’s chunks, and like the
chunked description of the image on the screen: they summarize in capsule
form a number of things which on lower levels are seen as separate. (See
Fig. 57.) Now before things become too abstract, let us pass on to the

R
N

FIGURE 57. The idea of “chunking”: a group of items is reperceived as a single “chunk”.
The chunk’s boundary is a little like a cell membrane or a national border: it establishes a
separate identity for the cluster within. According to context, one may wish to ignore the
chunk’s internal structure or to take it into account.

concrete facts about computers, beginning with a very quick skim of what a
computer system is like on the lowest level. The lowest level? Well, not
really, for I am not going to talk about elementary particles—but it is the
lowest level which we wish to think about.

At the conceptual rock-bottom of a computer, we find a memory, a
central processing unit (CPU), and soine input-output (1/0) devices. Let us first
describe the memory. It is divided up into distinct physical pieces, called
words. For the sake of concreteness, let us say there are 65,536 words of
memory (a typical number, being 2 to the 16th power). A word is further
divided into what we shall consider the atoms of computer science—bits.
The number of bits in a typical word might be around thirty-six. Physically,
a bit is just a magnetic “switch” that can be in either of two positions.

toJo[x]o[ x[x[x]o]xJoJo[x[xJoJo]xJo[x]xTx]x]x]xJo[x] xJoJo[x]xTxTo]o]o]o] 0]

——— a word of 36 bits ———
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“ “ 1 ”

You could call the two positions “up” and “down”, or “x” and “0”, or
and “0” . .. The third is the usual convention. It is perfectly fine, but it has
the possibly misleading effect of making people think that a computer,
deep down, is storing numbers. This is not true. A set of thirty-six bits does
not have to be thought of as a number any more than two bits has to be
thought of as the price of an ice cream cone. Just as money can do various
things depending on how you use it, so a word in memory can serve many
functions. Sometimes, to be sure, those thirty-six bits will indeed represent
a number in binary notation. Other times, they may represent thirty-six
dots on a television screen. And other times, they may represent a few
letters of text. How a word in memory is to be thought of depends entirely
on the role that this word plays in the program which uses it. It may, of
course, play more than one role—like a note in a canon.

Instructions and Data

There is one interpretation of a word which I haven’t yet mentioned, and
that is as an instruction. The words of memory contain not only data to be
acted on, but also the program to act on the data. There exists a limited
repertoire of operations which can be carried out by the central processing
unit—the CPU—and part of a word, usually its first several bits—is inter-
pretable as the name of the instruction-type which is to be carried out.
What do the rest of the bits in a word-interpreted-as-instruction stand for?
Most often, they tell which other words in memory are to be acted upon. In
other words, the remaining bits constitute a pointer to some other word (or
words) in memory. Every word in memory has a distinct location, like a
house on a street; and its location is called its address. Memory may have one
“street”, or many “streets”—they are called “pages”. So a given word is
addressed by its page number (if memory is paged) together with its
position within the page. Hence the “pointer” part of an instruction is the
numerical address of some word(s) in memory. There are no restrictions
on the pointer, so an instruction may even “point” at itself, so that when it is
executed, it causes a change in itself to be made.

How does the computer know what instruction to execute at any given
time? This is kept track of in the CPU. The CPU has a special pointer which
points at (i.e., stores the address of ) the next word which is to be interpret-
ed as an instruction. The CPU fetches that word from memory, and copies
it electronically into a special word belonging to the CPU itself. (Words in
the CPU are usually not called “words”, but rather, registers.) Then the CPU
executes that instruction. Now the instruction may call for any of a large
number of types of operations to be carried out. Typical ones include:

ADD the word pointed to in the instruction, to a register.
(In this case, the word pointed to is obviously interpreted as a
number.)
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PRINT the word pointed to in the instruction, as letters.
(In this case, the word is obviously interpreted not as a
number, but as a string of letters.)

JUMP to the word pointed to in the instruction,
(In this case, the CPU is being told to interpret that particular
word as its next instruction.)

Unless the instruction explicitly dictates otherwise, the CPU will pick
up the very next word and interpretit as an instruction. In other words, the
CPU assumes that it should move down the “street” sequentially, like a
mailman, interpreting word after word as an instruction. But this sequen-
tial order can be broken by such instructions as the JUMP instruction, and
others.

Machine Language vs. Assembly language

This is a very brief sketch of machine language. In this language, the types of
operations which exist constitute a finite repertoire which cannot be ex-
tended. Thus all programs, no matter how large and complex, must be
made out of compounds of these types of instructions. Looking at a pro-
gram written in machine language is vaguely comparable to looking at a
DNA molecule atom by atom. If you glance back to Fig. 41, showing the
nucleotide sequence of a DNA molecule—and then if you consider that
each nucleotide contains two dozen atoms or so—and if you imagine trying
to write the DNA, atom by atom, for a small virus (not to mention a human
being!)—then you will get a feeling for what it is like to write a complex
program in machine language, and what it is like to try to grasp what is
going on in a program if you have access only to its machine language
description.

It must be mentioned, however, that computer programming was
originally done on an even lower level, if possible, than that of machine
language—namely, connecting wires to each other, so that the proper
operations were “hard-wired” in. This is so amazingly primitive by modern
standards that it is painful even to imagine. Yet undoubtedly the people
who first did it experienced as much exhilaration as the pioneers of mod-
ern computers ever do . ..

We now wish to move to a higher level of the hierarchy of levels of
description of programs. This is the assembly language level. There is not a
gigantic spread between assembly language and machine language; indeed,
the step is rather gentle. In essence, there is a one-to-one correspondence
between assembly language instructions and machine language instruc-
tions. The idea of assembly language is to “chunk” the individual machine
language instructions, so that instead of writing the sequence of bits
“010111000” when you want an instruction which adds one number to
another, you simply write ADD, and then instead of giving the address in
binary representation, you can refer to the word in memory by a name.
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Therefore, a program in assembly language is very much like a machine
language program made legible to humans. You might compare the
machine language version of a program to a TNT-derivation done in the
obscure Godel-numbered notation, and the assembly language version to
the isomorphic TNT-derivation, done in the original TNT-notation, which
is much easier to understand. Or, going back to the DNA image, we can
liken the difference between machine language and assembly language to
the difference between painfully specifying each nucleotide, atom by atom,
and specifying a nucleotide by simply giving its name (i.e., ‘A’, ‘G, ‘C’, or
‘T"). There is a tremendous saving of labor in this very simple “chunking”
operation, although conceptually not much has been changed.

Programs That Translate Programs

Perhaps the central point about assembly language is not its differences
from machine language, which are not that enormous, but just the key idea
that programs could be written on a different level at all/ Just think about
it: the hardware is built to “understand” machine language programs—se-
quences of bits—but not letters and decimal numbers. What happens when
hardware is fed a program in assembly language? It is as if you tried to get a
cell to accept a piece of paper with the nucleotide sequence written out in
letters of the alphabet, instead of in chemicals. What can a cell do with a
piece of paper? What can a computer do with an assembly language
program?

And here is the vital point: someone can write, in machine language, a
translation program. This program, called an assembler, accepts mnemonic
instruction names, decimal numbers, and other convenient abbreviations
which a programmer can remember easily, and carries out the conversion
into the monotonous but critical bit-sequences. After the assembly lan-
guage program has been assembled (i.e., translated), it is run—or rather, its
machine language equivalent is run. But this is a matter of terminology.
Which level program is running? You can never go wrong if you say that
the machine language program is running, for hardware is always involved
when any program runs—but it is also quite reasonable to think of the
running program in terms of assembly language. For instance, you might
very well say, “Right now, the CPU is executing a JUMP instruction”,
instead of saying, “Right now, the CPU is executing a ‘111010000’ instruc-
tion”. A pianist who plays the notes G-E-B E-G-B is also playing an arpeg-
gio in the chord of E minor. There is no reason to be reluctant about
describing things from a higher-level point of view. So one can think of the
assembly language program running concurrently with the machine lan-
guage program. We have two modes of describing what the CPU is doing.
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Higher-Level Languages, Compilers, and Interpreters

The next level of the hierarchy carries much further the extremely power-
ful idea of using the computer itself to translate programs from a high level
into lower levels. After people had programmed in assembly language for a
number of years, in the early 1950’s, they realized that there were a
number of characteristic structures which kept reappearing in program
after program. There seemed to be, just as in chess, certain fundamental
patterns which cropped up naturally when human beings tried to formu-
late algorithms—exact descriptions of processes they wanted carried out. In
other words, algorithms seemed to have certain higher-level components,
in terms of which they could be much more easily and esthetically specified
than in the very restricted machine language, or assembly language. Typi-
cally, a high-level algorithm component consists not of one or two machine
language instructions, but of a whole collection of them, not necesssarily all
contiguous in memory. Such a component could be represented in a
higher-level language by a single item—a chunk.

Aside from standard chunks--the newly discovered components out
of which all algorithms can be built-—people realized that almost all pro-
grams contain even larger chunks-—superchunks, so to speak. These
superchunks differ from program to program, depending on the kinds of
high-level tasks the program is supposed to carry out. We discussed super-
chunks in Chapter V, calling them by their usual names: “subroutines” and
“procedures”. It was clear that a most powerful addition to any program-
ming language would be the ability to define new higher-level entities in
terms of previously known ones, and then to call them by name. This would
build the chunking operation right into the language. Instead of there
being a determinate repertoire of instructions out of which all programs
had to be explicitly assembled, the programmer could construct his own
modules, each with its own name, each usable anywhere inside the pro-
gram, just as if it had been a built-in feature of the language. Of course,
there is no getting away from the fact that down below, on a machine
language level, everything would still be composed of the same old machine
language instructions, but that would not be explicitly visible to the high-
level programmer; it would be implicit.

The new languages based on these ideas were called compiler languages.
One of the earliest and most elegant was called “Algol”, for “Algorithmic
Language”. Unlike the case with assembly language, there is no
straightforward one-to-one correspondence between statements in Algol
and machine language instructions. To be sure, there is still a type of
mapping from Algol into machine language, but it is far more “scrambled”
than that between assembly language and machine language. Roughly
speaking, an Algol program is to its machine language translation as a word
problem in an elementary algebra text is to the equation it translates into.
(Actually, getting from a word proble1n to an equation is far more complex,
but it gives some inkling of the types of “unscrambling” that have to be
carried out in translating from a higli-level language to a lower-level lan-
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guage.) In the mid-1950’s, successful programs called compilers were written
whose function was to carry out the translation from compiler languages to
machine language.

Also, interpreters were invented. Like compilers, interpreters translate
from high-level languages into machine language, but instead of translat-
ing all the statements first and then executing the machine code, they read
one line and execute it immediately. This has the advantage that a user
need not have written a complete program to use an interpreter. He may
invent his program line by line, and test it out as he goes along. Thus, an
interpreter is to a compiler as a simultaneous interpreter is to a translator
of a written speech. One of the most important and fascinating of all
computer languages is LISP (standing for “List Processing”), which was
invented by John McCarthy around the time Algol was invented. Sub-
sequently, LISP has enjoyed great popularity with workers in Artificial
Intelligence.

There is one interesting difference between the way interpreters work
and compilers work. A compiler takes input (a finished Algol program, for
instance) and produces output (a long sequence of machine language
instructions). At this point, the compiler has done its duty. The output is
then given to the computer to run. By contrast, the interpreter is constantly
running while the programmer types in one LISP statement after another,
and each one gets executed then and there. But this doesn’t mean that each
statement gets first translated, then executed, for then an interpreter
would be nothing but a line-by-line compiler. Instead, in an interpreter, the
operations of reading a new line, “understanding” it, and executing it are
intertwined: they occur simultaneously.

Here is the idea, expanded a little more. Each time a new line of LISP
is typed in, the interpreter tries to process it. This means that the interpret-
er jolts into action, and certain (machine language) instructions inside it get
executed. Precisely which ones get executed depends on the LISP statement
itself, of course. There are many JUMP instructions inside the interpreter,
so that the new line of LISP may cause control to move around in a
complex way—forwards, backwards, then forwards again, etc. Thus, each
LISP statement gets converted into a “pathway” inside the interpreter, and
the act of following that pathway achieves the desired effect.

Sometimes it is helpful to think of the LISP statements as mere pieces
of data which are fed sequentially to a constantly running machine lan-
guage program (the LISP interpreter). When you think of things this way,
you get a different image of the relation between a program written in a
higher-level language and the machine which is executing it.

Bootstrapping

Of course a compiler, being itself a program, has to be written in some
language. The first compilers were written in assembly language, rather
than machine language, thus taking full advantage of the already ac-
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complished first step up from machine language. A summary of these
rather tricky concepts is presented in Figure 58.

Compiler
language
Y
Compiler Assembly
language

FIGURE 58. Assemblers and compilers
are both translators into machine language.
This is indicated by the solid lines.
Moreover, since they are themselves pro-
grams, they are originally written in a lan-
guage also. The wavy lines indicate that a
compiler can be written in assembly lan-
guage, and an assembler in machine lan-

guage.

Assembler

Machine
language

Now as sophistication increased, people realized that a partially written
compiler could be used to compile extensions of itself. In other words, once
a certain minimal core of a compiler had been written, then that minimal
compiler could translate bigger compilers into machine language—which
in turn could translate yet bigger compilers, until the final, full-blown
compiler had been compiled. This process is affectionately known as
“bootstrapping”—for obvious reasons (at least if your native language is
English it is obvious). It is not so different from the attainment by a child of
a critical level of fluency in his native language, from which point on his
vocabulary and fluency can grow by leaps and bounds, since he can use
language to acquire new language.

Levels on Which to Describe Running Programs

Compiler languages typically do not reflect the structure of the machines
which will run programs written in them. This is one of their chief advan-
tages over the highly specialized assembly and machine languages. Of
course, when a compiler language program is translated into machine
language, the resulting program is machine-dependent. Therefore one can
describe a program which is being executed in a machine-independent way
or a machine-dependent way. It is like referring to a paragraph in a book
by its subject matter (publisher-independent), or its page number and
position on the page (publisher-dependent).

As long as a program is running correctly, it hardly matters how you
describe it or think of its functioning. It is when something goes wrong that
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it is important to be able to think on different levels. If, for instance, the
machine is instructed to divide by zero at some stage, it will come to a halt
and let the user know of this problem, by telling where in the program the
questionable event occurred. However, the specification is often given on a
lower level than that in which the programmer wrote the program. Here
are three parallel descriptions of a program grinding to a halt:

Machine Language Level:
“Execution of the program stopped in location
1110010101110111~

Assembly Language Level:
“Execution of the program stopped when the DIV (divide)
instruction was hit”

Compiler Language Level:
“Execution of the program stopped during evaluation of the
algebraic expression ‘(A + B)/Z’”

One of the greatest problems for systems programmers (the people who
write compilers, interpreters, assemblers, and other programs to be used by
many people) is to figure out how to write error-detecting routines in such
a way that the messages which they feed to the user whose program has a
“bug” provide high-level, rather than low-level, descriptions of the prob-
lem. It is an interesting reversal that when something goes wrong in a
genetic “program” (e.g., a mutation), the “bug” is manifest only to people
on a high level—namely on the phenotype level, not the genotype level.
Actually, modern biology uses mutations as one of its principal windows
onto genetic processes, because of their multilevel traceability.

Microprogramming and Operating Systems

In modern computer systems, there are several other levels of the hierar-
chy. For instance, some systems—often the so-called “microcomputers”—
come with machine language instructions which are even more rudimen-
tary than the instruction to add a number in memory to a number in a
register. It is up to the user to decide what kinds of ordinary machine-level
instructions he would like to be able to program in; he “microprograms”
these instructions in terms of the “micro-instructions” which are available.
Then the “higher-level machine language” instructions which he has de-
signed may be burned into the circuitry and become hard-wired, although
they need not be. Thus microprogramming allows the user to step a little
below the conventional machine language level. One of the consequences is
that a computer of one manufacturer can be hard-wired (via micropro-
gramming) so as to have the same machine language instruction set as a
computer of the same, or even another, manufacturer. The micropro-
grammed computer is said to be “emulating” the other computer.

Then there is the level of the operating system, which fits between the
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machine language program and whatever higher level the user is pro-
gramming in. The operating system is itself a program which has the
functions of shielding the bare machine from access by users (thus protect-
ing the system), and also of insulating the programmer from the many
extremely intricate and messy problems of reading the program, calling a
translator, running the translated program, directing the output to the
proper channels at the proper time, and passing control to the next user. If
there are several users “talking” to the same CPU at once, then the operat-
ing system is the program that shifts attention from one to the other in
some orderly fashion. The complexities of operating systems are formida-
ble indeed, and I shall only hint at them by the following analogy.

Consider the first telephone system. Alexander Graham Bell could
phone his assistant in the next room: electronic transmission of a voice!
Now that is like a bare computer minus operating system: electronic com-
putation! Consider now a modern telephone system. You have a choice of
other telephones to connect to. Not only that, but many different calls can
be handled simultaneously. You can add a prefix and dial into different
areas. You can call direct, through the operator, collect, by credit card,
person-to-person, on a conference call. You can have a call rerouted or
traced. You can get a busy signal. You can get a siren-like signal that says
that the number you dialed isn’t “well-formed”, or that you have taken too
in long in dialing. You can install a local switchboard so that a group of
phones are all locally connected—etc., etc. The list is amazing, when you
think of how much flexibility there is, particularly in comparison to the
erstwhile miracle of a “bare” telephone. Now sophisticated operating sys-
tems carry out similar traffic-handling and level-switching operations with
respect to users and their programs. It is virtually certain that there are
somewhat parallel things which take place in the brain: handling of many
stimuli at the same time; decisions of what should have priority over what
and for how long; instantaneous “interrupts” caused by emergencies or
other unexpected occurrences; and so on.

Cushioning the User and Protecting the System

The many levels in a complex computer system have the combined effect of
“cushioning” the user, preventing him from having to think about the
many lower-level goings-on which are most likely totally irrelevant to him
anyway. A passenger in an airplane does not usually want to be aware of the
levels of fuel in the tanks, or the wind speeds, or how many chicken dinners
are to be served, or the status of the rest of the air traffic around the
destination—this is all left to employees on different levels of the airlines
hierarchy, and the passenger simply gets from one place to another. Here
again, it is when something goes wrong—such as his baggage not arriving—
that the passenger is made aware of the confusing system of levels under-
neath him.
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Are Computers Super-Flexible or Super-Rigid?

One of the major goals of the drive to higher levels has always been to make
as natural as possible the task of communicating to the computer what you
want it to do. Certainly, the high-level constructs in compiler languages are
closer to the concepts which humans naturally think in, than are lower-level
constructs such as those in machine language. But in this drive towards ease
of communication, one aspect of “naturalness” has been quite neglected.
That is the fact that interhuman communication is far less rigidly con-
strained than human-machine communication. For instance, we often pro-
duce meaningless sentence fragments as we search for the best way to
express something, we cough in the middle of sentences, we interrupt each
other, we use ambiguous descriptions and “improper” syntax, we coin
phrases and distort meanings—but our message still gets through, mostly.
With programming languages, it has generally been the rule that there is a
very strict syntax which has to be obeyed one hundred per cent of the time;
there are no ambiguous words or constructions. Interestingly, the printed
equivalent of coughing (i.e., a nonessential or irrelevant comment) is al-
lowed, but only provided it is signaled in advance by a key word (e.g.,
COMMENT), and then terminated by another key word (e.g., a semicolon).
This small gesture towards flexibility has its own little pitfall, ironically: if a
semicolon (or whatever key word is used for terminating a comment) is
used inside a comment, the translating program will interpret that semico-
lon as signaling the end of the comment, and havoc will ensue.

If a procedure named INSIGHT has been defined and then called
seventeen times in the program, and the eighteenth time it is misspelled as
INSIHGT, woe to the programmer. The compiler will balk and print a
rigidly unsympathetic error message, saying that it has never heard of
INSIHGT. Often, when such an error is detected by a compiler, the compiler
tries to continue, but because of its lack of insihgt, it has not understood
what the programmer meant. In fact, it may very well suppose that some-
thing entirely different was meant, and proceed under that erroneous
assumption. Then a long series of error messages will pepper the rest of the
program, because the compiler—not the programmer—got confused.
Imagine the chaos that would result if a simultaneous English-Russian
interpreter, upon hearing one phrase of French in the English, began
trying to interpret all the remaining English as French. Compilers often get
lost in such pathetic ways. Cest la vie.

Perhaps this sounds condemnatory of computers, but it is not meant to
be. In some sense, things had to be that way. When you stop to think what
most people use computers for, you realize that it is to carry out very
definite and precise tasks, which are too complex for people to do. If the
computer is to be reliable, then it is necessary that it should understand,
without the slightest chance of ambiguity, what it is supposed to do. It is
also necessary that it should do neither more nor less than it is explicitly
instructed to do. If there is, in the cushion underneath the programmer, a
program whose purpose is to “guess” what the programmer wants or
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means, then it is quite conceivable that the programmer could try to
communicate his task and be totally misunderstood. So it is important that
the high-level program, while comfortable for the human, still should be
unambiguous and precise.

Second-Guessing the Programmer

Now it is possible to devise a programming language—and a program
which translates it into the lower levels—which allows some sorts of impre-
cision. One way of putting it would be to say that a translator for such a
programming language tries to make sense of things which are done
“outside of the rules of the language”. But if a language allows certain
“transgressions”, then transgressions of that type are no longer true trans-
gressions, because they have been included inside the rules! If a program-
mer is aware that he may make certain types of misspelling, then he may
use this feature of the language deliberately, krowing that he is actually
operating within the rigid rules of the language, despite appearances. In
other words, if the user is aware of all the flexibilities programmed into the
translator for his convenience, then he knows the bounds which he cannot
overstep, and therefore, to him, the translator still appears rigid and
inflexible, although it may allow him much more freedom than early
versions of the language, which did not incorporate “automatic compensa-
tion for human error”.

With “rubbery” languages of that type, there would seem to be two
alternatives: (1) the user is aware of the built-in flexibilities of the language
and its translator; (2) the user is unaware of them. In the first case, the
language is still usable for communicating programs precisely, because the
programmer can predict how the computer will interpret the programs he
writes in the language. In the second case, the “cushion” has hidden
features which may do things that are unpredictable (from the vantage
point of a user who doesn’t know the inner workings of the translator).
This may result in gross misinterpretations of programs, so such a lan-
guage is unsuitable for purposes where computers are used mainly for
their speed and reliability.

Now there is actually a third alternative: (3) the user is aware of the
built-in flexibilities of the language and its translator, but there are so many
of them and they interact with each other in such a complex way that he
cannot tell how his programs will be interpreted. This may well apply to the
person who wrote the translating program; he certainly knows its insides as
well as anyone could—but he still may not be able to anticipate how it will
react to a given type of unusual construction.

One of the major areas of research in Artificial Intelligence today is
called automatic programming, which is concerned with the development of
yet higher-level languages—languages whose translators are sophisticated,
in that they can do at least some of the following impressive things:
generalize from examples, correct some misprints or grammatical errors,
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try to make sense of ambiguous descriptions, try to second-guess the user
by having a primitive user model, ask questions when things are unclear,
use English itself, etc. The hope is that one can walk the tightrope between
reliability and flexibility.

Al Advances Are Language Advances

It is striking how tight the connection is between progress in computer
science (particularly Artificial Intelligence) and the development of new
languages. A clear trend has emerged in the last decade: the trend to
consolidate new types of discoveries in new languages. One key for the
understanding and creation of intelligence lies in the constant development
and refinement of the languages in terms of which processes for symbol
manipulation are describable. Today, there are probably three or four
dozen experimental languages which have been developed exclusively for
Artificial Intelligence research. It is important to realize that any program
which can be written in one of these languages is in principle program-
mable in lower-level languages, but it would require a supreme effort for a
human; and the resulting program would be so long that it would exceed
the grasp of humans. It is not that each higher level extends the potential of
the computer; the full potential of the computer already exists in its
machine language instruction set. It is that the new concepts in a high-level
language suggest directions and perspectives by their very nature.

The “space” of all possible programs is so huge that no one can have a
sense of what is possible. Each higher-level language is naturally suited for
exploring certain regions of “program space”; thus the programmer, by
using that language, is channeled into those areas of program space. He is
not forced by the language into writing programs of any particular type, but
the language makes it easy for him to do certain kinds of things. Proximity
to a concept, and a gentle shove, are often all that is needed for a major
discovery—and that is the reason for the drive towards languages of ever
higher levels.

Programming in different languages is like composing pieces in dif-
ferent keys, particularly if you work at the keyboard. If you have learned or
written pieces in many keys, each key will have its own special emotional
aura. Also, certain kinds of figurations “lie in the hand” in one key but are
awkward in another. So you are channeled by your choice of key. In some
ways, even enharmonic keys, such as C-sharp and D-flat, are quite distinct
in feeling. This shows how a notational system can play a significant role in
shaping the final product.

A “stratified” picture of Al is shown in Figure 59, with machine
components such as transistors on the bottom, and “intelligent programs”
on the top. The picture is taken from the book Artificial Intelligence by
Patrick Henry Winston, and it represents a vision of Al shared by nearly all
Al workers. Although I agree with the idea that AI must be stratified in
some such way, I do not think that, with so few layers, intelligent programs
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INTELLIGENT PROGRAMS

EMBEDDED PATTERN MATCHER

FIGURE 59. To create intelligent pro-
LisP grams, one needs to build up a series of
levels of hardware and software, so that one
is spared the agony of seeing everything only

COMPILER OR INTERPRETER

MACHINE INSTRUCTIONS on the lowest level. Descriptions of a single
process on different levels will sound very
REGISTERS AND DATA PATHS different from each other, only the top one

being sufficiently chunked that it is com-
prehensible to us. [Adapted from P.H.
TRANSISTORS Winston, Artificial Intelligence (Reading,
Mass.: Addison-Wesley, 1 977).]

FLIP FLOPS AND GATES

can be reached. Between the machine language level and the level where
true intelligence will be reached, I am convinced there will lie perhaps
another dozen (or even several dozen!) layers, each new layer building on
and extending the flexibilities of the layer below. What they will be like we
can hardly dream of now . ..

The Paranoid and the Operating System

The similarity of all levels in a computer system can lead to some strange
level-mixing experiences. I once watched a couple of friends—both com-
puter novices—playing with the program “PARRY” on a terminal. PARRY
is a rather infamous program which simulates a paranoid in an extremely
rudimentary way, by spitting out canned phrases in English chosen from a
wide repertoire; its plausibility is due to its ability to tell which of its stock
phrases might sound reasonable in response to English sentences typed to
it by a human.

At one point, the response time got very sluggish—PARRY was taking
very long to reply—and I explained to my friends that this was probably
because of the heavy load on the time-sharing system. I told them they
could find out how many users were logged on, by typing a special “con-
trol” character which would go directly to the operating system, and would
be unseen by PARRY. One of my friends pushed the control character. In a
flash, some internal data about the operating system’s status overwrote
some of PARRY’s words on the screen. PARRY knew nothing of this: itis a
program with “knowledge” only of horse racing and bookies—not operat-
ing systems and terminals and special control characters. But to my friends,
both PARRY and the operating system were just “the computer”—a mys-
terious, remote, amorphous entity that responded to them when they
typed. And so it made perfect sense when one of them blithely typed, in
English, “Why are you overtyping what’s on the screen?” The idea that
PARRY could know nothing about the operating system it was running
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under was not clear to my friends. The idea that “you” know all about
“yourself " is so familiar from interaction with people that it was natural to
extend it to the computer—after all, it was intelligent enough that it could
“talk” to them in English! Their question was not unlike asking a person,
“Why are you making so few red blood cells today?” People do not know
about that level—the “operating system level”—of their bodies.

The main cause of this level-confusion was that communication with all
levels of the computer system was taking place on a single screen, on a
single terminal. Although my friends’ naiveté might seem rather extreme,
even experienced computer people often make similar errors when several
levels of a complex system are all present at once on the same screen. They
forget “who” they are talking to, and type something which makes no sense
at that level, although it would have made perfect sense on another level. It
might seem desirable, therefore, to have the system itself sort out the
levels—to interpret commands according to what “makes sense”. Unfortu-
nately, such interpretation would require the system to have a lot of
common sense, as well as perfect knowledge of the programmer’s overall
intent—both of which would require more artificial intelligence than exists
at the present time.

The Border between Software and Hardware

One can also be confused by the flexibility of some levels and the rigidity of
others. For instance, on some computers there are marvelous text-editing
systems which allow pieces of text to be “poured” from one format into
another, practically as liquids can be poured from one vessel into another.
A thin page can turn into a wide page, or vice versa. With such power, you
might expect that it would be equally trivial to change from one font to
another—say from roman to italics. Yet there may be only a single font
available on the screen, so that such changes are impossible. Or it may be
feasible on the screen but not printable by the printer—or the other way
around. After dealing with computers for a long time, one gets spoiled, and
thinks that everything should be programmable: no printer should be so
rigid as to have only one character set, or even a finite repertoire of
them—typefaces should be user-specifiable! But once that degree of flexi-
bility has been attained, then one may be annoyed that the printer cannot
print in different colors of ink, or that it cannot accept paper of all shapes
and sizes, or that it does not fix itself when it breaks . ..

The trouble is that somewhere, all this flexibility has to “bottom out”,
to use the phrase from Chapter V. There must be a hardware level which
underlies it all, and which is inflexible. It may lie deeply hidden, and there
may be so much flexibility on levels above it that few users feel the
hardware limitations—but it is inevitably there.

What is this proverbial distinction between software and hardware? It is
the distinction between programs and machines—between long compli-
cated sequences of instructions, and the physical machines which carry
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them out. I like to think of software as “anything which you could send over
the telephone lines”, and hardware as “anything else”. A piano is hardware,
but printed music is software. A telephone set is hardware, but a telephone
number is software. The distinction is a useful one, but not always so
clear-cut.

We humans also have “software” and “hardware” aspects, and the
difference is second nature to us. We are used to the rigidity of our
physiology: the fact that we cannot, at will, cure ourselves of diseases, or
grow hair of any color—to mention just a couple of simple examples. We
can, however, “reprogram” our minds so that we operate in new conceptual
frameworks. The amazing flexibility of our minds seems nearly irreconcil-
able with the notion that our brains must be made out of fixed-rule
hardware, which cannot be reprogrammed. We cannot make our neurons
fire faster or slower, we cannot rewire our brains, we cannot redesign the
interior of a neuron, we cannot make any choices about the hardware—and
yet, we can control how we think.

But there are clearly aspects of thought which are beyond our control.
We cannot make ourselves smarter by an act of will; we cannot learn a new
language as fast as we want; we cannot make ourselves think faster than we
do; we cannot make ourselves think about several things at once; and so on.
This is a kind of primordial self-knowledge which is so obvious that it is
hard to see it at all; it is like being conscious that the air is there. We never
really bother to think about what might cause these “defects” of our minds:
namely, the organization of our brains. To suggest ways of reconciling the
software of mind with the hardware of brain is a main goal of this book.

Intermediate Levels and the Weather

We have seen that in computer systems, there are a number of rather
sharply defined strata, in terms of any one of which the operation of a
running program can be described. Thus there is not merely a single low
level and a single high level—there are all degrees of lowness and highness.
Is the existence of intermediate levels a general feature of systems which
have low and high levels? Consider, for example, the system whose
“hardware” is the earth’s atmosphere (not very hard, but no matter), and
whose “software” is the weather. Keeping track of the motions of all of the
molecules simultaneously would be a very low-level way of “understanding”
the weather, rather like looking at a huge, complicated program on the
machine language level. Obviously it is way beyond human comprehension.
But we still have our own peculiarly human ways of looking at, and
describing, weather phenomena. Our chunked view of the weather is based
on very high-level phenomena, such as: rain, fog, snow, hurricanes, cold
fronts, seasons, pressures, trade winds, the jet stream, cumulo-nimbus
clouds, thunderstorms, inversion layers, and so on. All of these phenomena
involve astronomical numbers of molecules, somehow behaving in concert
so that large-scale trends emerge. This is a little like looking at the weather
in a compiler language.
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Is there something analogous to looking at the weather in an
intermediate-level language, such as assembly language? For instance, are
there very small local “mini-storms”, something like the small whirlwinds
which one occasionally sees, whipping up some dust in a swirling column a
few feet wide, at most? Is a local gust of wind an intermediate-level chunk
which plays a role in creating higher-level weather phenomena? Or is there
just no practical way of combining knowledge of such kinds of phenomena
to create a more comprehensive explanation of the weather?

Two other questions come to my mind. The first is: “Could it be that
the weather phenomena which we perceive on our scale—a tornado, a
drought—are just intermediate-level phenomena: parts of vaster, slower
phenomena?” If so, then true high-level weather phenomena would be
global, and their time scale would be geological. The Ice Age would be a
high-level weather event. The second question is: “Are there intermediate-
level weather phenomena which have so far escaped human perception,
but which, if perceived, could give greater insight into why the weather is as
it is?”

From Tornados to Quarks

This last suggestion may sound fanciful, but it is not all that far-fetched. We
need only look to the hardest of the hard sciences—physics—to find pecu-
liar examples of systems which are explained in terms of interacting “parts”
which are themselves invisible. In physics, as in any other discipline, a system
is a group of interacting parts. In most systems that we know, the parts
retain their identities during the interaction, so that we still see the parts
inside the system. For example, when a team of football players assembles,
the individual players retain their separateness—they do not melt into
some composite entity, in which their individuality is lost. Still—and this is
important—some processes are going on in their brains which are evoked
by the team-context, and which would not go on otherwise, so that in a
minor way, the players change identity when they become part of the larger
system, the team. This kind of system is called a nearly decomposable system
(the term comes from H. A. Simon’s article “The Architecture of Complex-
ity”; see the Bibliography). Such a system consists of weakly interacting
modules, each of which maintains its own private identity throughout the
interaction but by becoming slightly different from how it is when outside
of the system, contributes to the cohesive behavior of the whole system.
The systems studied in physics are usually of this type. For instance, an
atom is seen as made of a nucleus whose positive charge captures a number
of electrons in “orbits”, or bound states. The bound electrons are very
much like free electrons, despite their being internal to a composite object.
Some systems studied in physics offer a contrast to the relatively
straightforward atom. Such systems involve extremely strong interactions,
as a result of which the parts are swallowed up into the larger system, and
lose some or all of their individuality. An example of this is the nucleus of
an atom, which is usually described as being “a collection of protons and
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neutrons”. But the forces which pull the component particles together are
so strong that the component particles do not survive in anything like their
“free” form (the form they have when outside a nucleus). And in fact a
nucleus acts in many ways as a single particle, rather than as a collection of
interacting particles. When a nucleus is split, protons and neutrons are
often released, but also other particles, such as pi-mesons and gamma rays,
are commonly produced. Are all those different particles physically present
inside a nucleus before it is split, or are they just “sparks™ which fly off
when the nucleus is split? It is perhaps not meaningful to try to give an
answer to such a question. On the level of particle physics, the difference
between storing the potential to make “sparks” and storing actual subpart-
cles is not so clear.

A nucleus is thus one system whose “parts”, even though they are not
visible while on the inside, can be pulled out and made visible. However,
there are more pathological cases, such as the proton and neutron seen as
systems themselves. Each of them has been hypothesized to be constituted
from a trio of “quarks”—hypothetical particles which can be combined in
twos or threes to make many known fundamental particles. However, the
interaction between quarks is so strong that not only can they not be seen
inside the proton and neutron, but they cannot even be pulled out at all!
Thus, although quarks help to give a theoretical understanding of certain
properties of protons and neutrons, their own existence may perhaps
never be independently established. Here we have the antithesis of a
“nearly decomposable system”—it is a system which, if anything, is “nearly
indecomposable”. Yet what is curious is that a quark-based theory of
protons and neutrons (and other particles) has considerable explanatory
power, in that many experimental results concerning the particles which
quarks supposedly compose can be accounted for quite well, quantitatively,
by using the “quark model”.

Superconductivity: A “Paradox” of Renormalization

In Chapter V we discussed how renormalized particles emerge from their
bare cores, by recursively compounded interactions with virtual particles. A
renormalized particle can be seen either as this complex mathematical
construct, or as the single lump which it is, physically. One of the strangest
and most dramatic consequences of this way of describing particles is the
explanation it provides for the famous phenomenon of superconductivity:
resistance-free flow of electrons in certain solids, at extremely low tempera-
tures.

It turns out that electrons in solids are renormalized by their interac-
tions with strange quanta of vibration called phonons (themselves renor-
malized as well!). These renormalized electrons are called polarons. Calcula-
tion shows that at very low temperatures, two oppositely spinning polarons
will begin to attract each other, and can actually become bound together in
a certain way. Under the proper conditions, all the current-carrying polar-
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ons will get paired up, forming Cooper pairs. Ironically, this pairing comes
about precisely because electrons—the bare cores of the paired polarons—
repel each other electrically. In contrast to the electrons, each Cooper pair
feels neither attracted to nor repelled by any other Cooper pair, and
consequently it can can slip freely through a metal as if the metal were a
vacuum. If you convert the mathematical description of such a metal from
one whose primitive units are polarons into one whose primitive units are
Cooper pairs, you get a considerably simplified set of equations. This
mathematical simplicity is the physicist’s way of knowing that “chunking”
into Cooper pairs is the natural way to look at superconductivity.

Here we have several levels of particle: the Cooper pair itself; the two
oppositely spinning polarons which compose it; the electrons and phonons
which make up the polarons; and then, within the electrons, the virtual
photons and positrons, etc. etc. We can look at each level and perceive
phenomena there, which are explained by an understanding of the levels
below.

“Sealing-off”

Similarly, and fortunately, one does not have to know all about quarks to
understand many things about the particles which they may compose.
Thus, a nuclear physicist can proceed with theories of nuclei that are based
on protons and neutrons, and ignore quark theories and their rivals. The
nuclear physicist has a chunked picture of protons and neutrons—a descrip-
tion derived from lower-level theories but which does not require under-
standing the lower-level theories. Likewise, an atomic physicist has a
chunked picture of an atomic nucleus derived from nuclear theory. Then a
chemist has a chunked picture of the electrons and their orbits, and builds
theories of small molecules, theories which can be taken over in a chunked
way by the molecular biologist, who has an intuition for how small
molecules hang together, but whose technical expertise is in the field of
extremely large molecules and how they interact. Then the cell biologist
has a chunked picture of the units which the molecular biologist pores over,
and tries to use them to account for the ways that cells interact. The point is
clear. Each level is, in some sense, “sealed off‘‘ from the levels below it.
This is another of Simon’s vivid terms, recalling the way in which a sub-
marine is built in compartments, so that if one part is damaged, and water
begins pouring in, the trouble can be prevented from spreading, by closing
the doors, thereby sealing off the damaged compartment from neighbor-
ing compartments,

Although there is always some “leakage” between the hierarchical
levels of science, so that a chemist cannot afford to ignore lower-level
physics totally, or a biologist to ignore chemistry totally, there is almost no
leakage from one level to a distant level. That is why people can have
intuitive understandings of other people without necessarily understand-
ing the quark model, the structure of nuclei, the nature of electron orbits,
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the chemical bond, the structure of proteins, the organelles in a cell, the
methods of intercellular communication, the physiology of the various
organs of the human body, or the complex interactions among organs. All
that a person needs is a chunked model of how the highest level acts; and as
we all know, such models are very realistic and successful.

The Trade-off between Chunking and Determinism

There is, however, perhaps one significant negative feature of a chunked
model: it usually does not have exact predictive power. That is, we save
ourselves from the impossible task of seeing people as collections of quarks
(or whatever is at the lowest level) by using chunked models; but of course
such models only give us probabilistic estimates of how other people feel,
will react to what we say or do, and so on. In short, in using chunked
high-level models, we sacrifice determinism for simplicity. Despite not
being sure how people will react to a joke, we tell it with the expectation
that they will do something such as laugh, or not laugh—rather than, say,
climb the nearest flagpole. (Zen masters might well do the latter!) A
chunked model defines a “space” within which behavior is expected to fall,
and specifies probabilities of its falling in different parts of that space.

“Computers Can Only Do What You Tell Them to Do”

Now these ideas can be applied as well to computer programs as to compo-
site physical systems. There is an old saw which says, “Computers can only
do what you tell them to do.” This is right in one sense, but it misses the
point: you don’t know in advance the consequences of what you tell a
computer to do; therefore its behavior can be as baffling and surprising
and unpredictable to you as that of a person. You generally know in
advance the space in which the output will fall, but you don’t know details of
where it will fall. For instance, you might write a program to calculate the
first million digits of 7. Your program will spew forth digits of # much
faster than you can—but there is no paradox in the fact that the computer
is outracing its programmer. You know in advance the space in which the
output will lie—namely the space of digits between 0 and 9—which is to say,
you have a chunked model of the program’s behavior; but if you'd known
the rest, you wouldn’t have written the program.

There is another sense in which this old saw is rusty. This involves the
fact that as you program in ever higher-level languages, you know less and
less precisely what you’ve told the computer to do! Layers and layers of
translation may separate the “front end” of a complex program from the
actual machine language instructions. At the level you think and program,
your statements may resemble declaratives and suggestions more than they
resemble imperatives or commands. And all the internal rumbling pro-
voked by the input of a high-level statement is invisible to you, generally,
just as when you eat a sandwich, you are spared conscious awareness of the
digestive processes that it triggers.
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In any case, this notion that “computers can only do what they are told
to do,” first propounded by Lady Lovelace in her famous memoir, is so
prevalent and so connected with the notion that “computers cannot think”
that we shall return to itin later Chapters when our level of sophistication is
greater.

Two Types of System

There is an important division between two types of system built up from
many parts. There are those systems in which the behavior of some parts
tends to cancel out the behavior of other parts, with the result that it does
not matter too much what happens on the low level, because most anything
will yield similar high-level behavior. An example of this kind of system is a
container of gas, where all the molecules bump and bang against each other
in very complex microscopic ways; but the total outcome, from a macro-
scopic point of view, is a very calm, stable system with a certain tempera-
ture, pressure, and volume. Then there are systems where the effect of a
single low-level event may get magnified into an enormous high-level conse-
quence. Such a system is a pinball machine, where the exact angle with
which a ball strikes each post is crucial in determining the rest of its
descending pathway.

A computer is an elaborate combination of these two types of system. It
contains subunits such as wires, which behave in a highly predictable
fashion: they conduct electricity according to Ohm’s law, a very precise,
chunked law which resembles the laws governing gases in containers, since
it depends on statistical effects in which billions of random effects cancel
each other out, yielding a predictable overall behavior. A computer also
contains macroscopic subunits, such as a printer, whose behavior is com-
pletely determined by delicate patterns of currents. What the printer prints
is not by any means created by a myriad canceling microscopic effects. In
fact, in the case of most computer programs, the value of every single bit in
the program plays a critical role in the output that gets printed. If any bit
were changed, the output would also change drastically.

Systems which are made up of “reliable” subsystems only—that is,
subsystems whose behavior can be reliably predicted from chunked
descriptions—play inestimably important roles in our daily lives, because
they are pillars of stability. We can rely on walls not to fall down, on
sidewalks to go where they went yesterday, on the sun to shine, on clocks to
tell the time correctly, and so on. Chunked models of such systems are
virtually entirely deterministic. Of course, the other kind of system which
plays a very large role in our lives is a system that has variable behavior
which depends on some internal microscopic parameters—often a very
large number of them, moreover—which we cannot directly observe. Our
chunked model of such a system is necessarily in terms of the “space” of
operation, and involves probabilistic estimates of landing in different re-
gions of that space.

A container of gas, which, as I already pointed out, is a reliable system
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because of many canceling effects, obeys precise, deterministic laws of
physics. Such laws are chunked laws, in that they deal with the gas as a whole,
and ignore its constituents. Furthermore, the microscopic and macroscopic
descriptions of a gas use entirely different terms. The former requires the
specification of the position and velocity of every single component
molecule; the latter requires only the specification of three new quantities:
temperature, pressure, and volume, the first two of which do not even have
microscopic counterparts. The simple mathematical relationship which
relates these three parameters— pV = ¢T, where ¢ is a constant—is a law
which depends on, yet is independent of, the lower-level phenomena. Less
paradoxically, this law can be derived from the laws governing the molecu-
lar level; in that sense it depends on the lower level. On the other hand, itis
a law which allows you to ignore the lower level completely, if you wish; in
that sense it is independent of the lower level.

Itis important to realize that the high-level law cannot be stated in the
vocabulary of the low-level description. “Pressure” and “temperature” are
new terms which experience with the low level alone cannot convey. We
humans perceive temperature and pressure directly; that is how we are
built, so that it is not amazing that we should have found this law. But
creatures which knew gases only as theoretical mathematical constructs
would have to have an ability to synthesize new concepts, if they were to
discover this law.

Epiphenomena

In drawing this Chapter to a close, I would like to relate a story about a
complex system. I was talking one day with two systems programmers for
the computer I was using. They mentioned that the operating system
seemed to be able to handle up to about thirty-five users with great com-
fort, but at about thirty-five users or so, the response time all of a sudden
shot up, getting so slow that you might as well log off and go home and wait
until later. Jokingly I said, “Well, that's simple to fix—just find the place in
the operating system where the number ‘35" is stored, and change it to
‘60’!” Everyone laughed. The point is, of course, that there is no such place.
Where, then, does the critical number—35 users—come from? The answer
is: It is a visible consequence of the overall system organization—an “epiphenome-
non”.
Similarly, you might ask about a sprinter, “Where is the ‘9.3’ stored,
that makes him be able to run 100 yards in 9.3 seconds?” Obviously, it is not
stored anywhere. His time is a result of how he is built, what his reaction
time is, a million factors all interacting when he runs. The time is quite
reproducible, but it is not stored in his body anywhere. It is spread around
among all the cells of his body and only manifests itself in the act of the
sprint itself.

Epiphenomena abound. In the game of “Go”, there is the feature that
“two eyes live”. It is not built into the rules, but it is a consequence of the
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rules. In the human brain, there is gullibility. How gullible are you? Is your
gullibility located in some “gullibility center” in your brain? Could a
neurosurgeon reach in and perform some delicate operation to lower your
gullibility, otherwise leaving you alone? If you believe this, you are pretty
gullible, and should perhaps consider such an operation.

Mind vs. Brain

In coming Chapters, where we discuss the brain, we shall examine whether
the brain’s top level—the mind—can be understood without understanding
the lower levels on which it both depends and does not depend. Are there
laws of thinking which are “sealed off ” from the lower laws that govern the
microscopic activity in the cells of the brain? Can mind be “skimmed” off of
brain and transplanted into other systems? Or is it impossible to unravel
thinking processes into neat and modular subsystems? Is the brain more
like an atom, a renormalized electron, a nucleus, a neutron, or a quark? Is
consciousness an epiphenomenon? To understand the mind, must one go
all the way down to the level of nerve cells?
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... Ant Fugue

... then, one by one, the four voices of the fugue chime in.)

Achilles: 1 know the rest of you won’t believe this, but the answer to the
question is staring us all in the face, hidden in the picture. It is simply
one word—but what an important one: “MU”!

CCrab: 1 know the rest of you won’t believe this, but the answer to the
question is staring us all in the face, hidden in the picture. It is simply
one word—but what an important one: “HOLISM”!

Achilles:  Now hold on a minute. You must be seeing things. It'’s plain as
day that the message of this picture is “MU”, not “HoLISM”!

Crab: I beg your pardon, but my eyesight is extremely good. Please look
again, and then tell me if the the picture doesn’t say what I said it says!

Anteater; 1 know the rest of you won’t believe this, but the answer to the
question is staring us all in the face, hidden in the picture. It is simply
one word—but what an important one: “REDUCTIONISM”!

Crab: Now hold on a minute. You must be seeing things. It’s plain as day
that the message of this picture is “HoLISM”, not “REDUCTION]ISM”!
Achilles: Another deluded one! Not “HOLISM”, not “REDUCTIONISM”, but

“MU” is the message of this picture, and that much is certain.

Anteater: 1 beg your pardon, but my eyesight is extremely clear. Please
look again, and then see if the picture doesn’t say what I said it says.

Achilles:  Don’t you see that the picture is composed of two pieces, and that
each of them is a single letter?

Crab:; You are right about the two pieces, but you are wrong in your
identification of what they are. The piece on the left is entirely com-
posed of three copies of one word: “HoLisM”; and the piece on the right
is composed of many copies, in smaller letters, of the same word. Why
the letters are of different sizes in the two parts, I don’t know, but I
know what I see, and what I see is “HoLisM”, plain as day. How you see
anything else is beyond me.

Anteater:  You are right about the two pieces, but you are wrong in your
identification of what they are. The piece on the left is entirely com-
posed of many copies of one word: “REDUCTIONISM”; and the piece on
the right is composed of one single copy, in larger letters, of the same
word. Why the letters are of different sizes in the two parts, I don’t
know, but I know what I see, and what I see is “REDUCTIONISM”, plain as
day. How you see anything else is beyond me.

Achilles: 1 know what is going on here. Each of you has seen letters which
compose, or are composed of, other letters. In the left-hand piece,

FIGURE 60. [Drawing by the author. ]
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there are indeed three “HoLIsM"’s, but each one of them is composed
out of smaller copies of the word “REDUCTIONISM”. And in complemen-
tary fashion, in the right-hand piece, there is indeed one “REDUC-
TIONISM”, but it is composed out of smaller copies of the word “HoLisM”.
Now this is all fine and good, butin your silly squabble, the two of you
have actually missed the forest for the trees. You see, what good is it to
argue about whether “HoLisM” or “REDUCTIONISM” is right, when the
proper way to understand the matter is to transcend the question, by
answering “Mu”?

Crab: I now see the picture as you have described it, Achilles, but I have
no idea of what you mean by the strange expression “transcending the
question”.

Anteater: 1 now see the picture as you have described it, Achilles, but I
have no idea of what you mean by the strange expression “MU”.
Achilles: 1 will be glad to indulge both of you, if you will first oblige me, by
telling me the meaning of these strange expressions, “HoLISM” and

“REDUCTIONISM”.

Crab: HOLISM is the most natural thing in the world to grasp. It’s simply the
belief that “the whole is greater than the sum of its parts”. No one in
his right mind could reject holism.

Anteater: REDUCTIONISM is the most natural thing in the world to grasp. It’s
simply the belief that “a whole can be understood completely if you
understand its parts, and the nature of their ‘sum’”. No one in her
left brain could reject reductionism.

Crab: Ireject reductionism. I challenge you to tell me, for instance, how to
understand a brain reductionistically. Any reductionistic explanation
of a brain will inevitably fall far short of explaining where the con-
sciousness experienced by a brain arises from.

Anteater: 1 reject holism. I challenge you to tell me, for instance, how a
holistic description of an ant colony sheds any more light on it than is
shed by a description of the ants inside it, and their roles, and their
interrelationships. Any holistic explanation of an ant colony will inevi-
tably fall far short of explaining where the consciousness experienced
by an ant colony arises from.

Achilles:  Oh, no! The last thing which I wanted to do was to provoke
another argument. Anyway, now that I understand the controversy, I
believe that my explanation of “mu” will help greatly. You see, “MU” is
an ancient Zen answer which, when given to a question, UNASKS the
question. Here, the question seems to be, “Should the world be under-
stood via holism, or via reductionism?” And the answer of “MU” here
rejects the premises of the question, which are that one or the other
must be chosen. By unasking the question, it reveals a wider truth: that
there is a larger context into which both holistic and reductionistic
explanations fit.

Anteater:  Absurd! Your “MuU” is as silly as a cow’s moo. I'll have none of this
Zen wishy-washiness.
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Crab: Ridiculous! Your “Mu” is as silly as a kitten’s mew. I’ll have none of
this Zen washy-wishiness.

Achilles:  Oh, dear! We're getting nowhere fast. Why have you stayed so
strangely silent, Mr. Tortoise? It makes me very uneasy. Surely you
must somehow be capable of helping straighten out this mess?

Tortoise: 1 know the rest of you won’t believe this, but the answer to the
question is staring us all in the face, hidden in the picture. It is simply
one word—but what an important one: “mu”!

(Just as he says this, the fourth voice in the fugue being played enters,
exactly one octave below the first entry.)

Achilles:  Oh, Mr. T, for once you have let me down. I was sure that you,
who always see the most deeply into things, would be able to resolve
this dilemma—but apparently, you have seen no further than I myself
saw. Oh, well, I guess I should feel pleased to have seen as far as Mr.
Tortoise, for once.

Tortoise: 1 beg your pardon, but my eyesight is extremely fine. Please look
again, and then tell me if the picture doesn’t say what I said it says.

Achilles:  But of course it does! You have merely repeated my own original
observation.

Tortoise: Perhaps “MU” exists in this picture on a deeper level than you
imagine, Achilles—an octave lower (figuratively speaking). But for
now I doubt that we can settle the dispute in the abstract. I would like
to see both the holistic and reductionistic points of view laid out more
explicitly; then there may be more of a basis for a decision. I would
very much like to hear a reductionistic description of an ant colony, for
instance.

Crab: Perhaps Dr. Anteater will tell you something of his experiences in
that regard. After all, he is by profession something of an expert on
that subject.

Tortoise: 1 am sure that we have much to learn from you, Dr. Anteater.
Could you tell us more about ant colonies, from a reductionistic point
of view?

Anteater: Gladly. As Mr. Crab mentioned to you, my profession has led me
quite a long way into the understanding of ant colonies.

Achilles: 1 can imagine! The profession of anteater would seem to be
synonymous with being an expert on ant colonies!

Anteater: 1 beg your pardon. “Anteater” is not my profession; it is my
species. By profession, I am a colony surgeon. I specialize in correcting
nervous disorders of the colony by the technique of surgical removal.

Achilles:  Oh, 1 see. But what do you mean by “nervous disorders” of an ant
colony?

Anteater: Most of my clients suffer from some sort of speech impairment.
You know, colonies which have to grope for words in everyday situa-
tions. It can be quite tragic. I attempt to remedy the situation by,
uhh—removing—the defective part of the colony. These operations
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are sometimes quite involved, and of course years of study are re-
quired before one can perform them.

Achilles: But—isn't it true that, before one can suffer from speech im-
pairment, one must have the faculty of speech?

Anteater: Right.

Achilles:  Since ant colonies don’t have that faculty, I am a little confused.

Crab: It’s too bad, Achilles, that you weren’t here last week, when Dr.
Anteater and Aunt Hillary were my house guests. I should have
thought of having you over then.

Achilles: Is Aunt Hillary your aunt, Mr. Crab?

Crab: Oh, no, she’s not really anybody’s aunt.

Anteater: But the poor dear insists that everybody should call her that,
even strangers. It's just one of her many endearing quirks.

Crab: Yes, Aunt Hillary is quite eccentric, but such a merry old soul. It’s a
shame I didn’t have you over to meet her last week.

Anteater: She’s certainly one of the best-educated ant colonies I have ever
had the good fortune to know. The two of us have spent many a long
evening in conversation on the widest range of topics.

Achilles: 1 thought anteaters were devourers of ants, not patrons of ant-
‘intellectualism!

Anteater:  Well, of course the two are not mutually inconsistent. I am on
the best of terms with ant colonies. It's just ANTS that I eat, not
colonies—and that is good for both parties: me, and the colony.

Achilles: How is it possible that—

Tortoise: How 1is it possible that—

Achilles: —having its ants eaten can do an ant colony any good?
Crab: How is it possible that—

Tortoise: —having a forest fire can do a forest any good?
Anteater: How is it possible that—

Crab: —having its branches pruned can do a tree any good?
Anteater: —having a haircut can do Achilles any good?

Tortoise:  Probably the rest of you were too engrossed in the discussion to
notice the lovely stretto which just occurred in this Bach fugue.

Achilles:  What is a stretto?

Tortoise: Oh, I'm sorry; I thought you knew the term. It is where one
theme repeatedly enters in one voice after another, with very little
delay between entries.

Achilles:  1f 1listen to enough fugues, soon I'll know all of these things and
will be able to pick them out myself, without their having to be pointed
out.

Tortoise: Pardon me, my friends. I am sorry to have interrupted. Dr.
Anteater was trying to explain how eating ants is perfectly consistent
with being a friend of an ant colony.

Achilles:  Well, I can vaguely see how it might be possible for a limited and
regulated amount of ant consumption to improve the overall health of
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a colony—but what is far more perplexing is all this talk about having
conversations with ant colonies. That's impossible. An ant colony is
simply a bunch of individual ants running around at random looking
for food and making a nest.

Anteater:  You could put it that way if you want to insist on seeing the trees
but missing the forest, Achilles. In fact, ant colonies, seen as wholes,
are quite well-defined units, with their own qualities, at times including
the mastery of language.

Achilles: 1 find it hard to imagine myself shouting something out loud in
the middle of the forest, and hearing an ant colony answer back.

Anteater:  Silly fellow! That’s not the way it happens. Ant colonies don’t
converse out loud, but in writing. You know how ants form trails
leading them hither and thither?

Achilles: Oh, yes—usually straight through the kitchen sink and into my
peach jam.

Anteater: Actually, some trails contain information in coded form. If you
know the system, you can read what they’re saying just like a book.

Achilles: Remarkable, And can you communicate back to them?

Anteater: 'Without any trouble at all. That's how Aunt Hillary and I have
conversations for hours. I take a stick and draw trails in the moist
ground, and watch the ants follow my trails. Presently, a new trail starts
getting formed somewhere. I greatly enjoy watching trails develop. As
they are forming, I anticipate how they will continue (and more often I
am wrong than right). When the trail is completed, I know what Aunt
Hillary is thinking, and I in turn make my reply.

Achilles: There must be some amazingly smart ants in that colony, I'll say
that.

Anteater: 1 think you are still having some difficulty realizing the differ-
ence in levels here. Just as you would never confuse an individual tree
with a forest, so here you must not take an ant for the colony. You see,
all the ants in Aunt Hillary are as dumb as can be. They couldn’t
converse to save their little thoraxes!

Achilles:  Well then, where does the ability to converse come from? It must
reside somewhere inside the colony! I don’t understand how the ants
can all be unintelligent, if Aunt Hillary can entertain you for hours
with witty banter.

Tortoise: It seems to me that the situation is not unlike the composition of
a human brain out of neurons. Certainly no one would insist that
individual brain cells have to be intelligent beings on their own, in
order to explain the fact that a person can have an intelligent conversa-

tion.
Achilles:  Oh, no, clearly not. With brain cells, I see your point completely.
Only . .. ants are a horse of another color. I mean, ants just roam

about at will, completely randomly, chancing now ahd then upon a
morsel of food . . . They are free to do what they want to do, and with
that freedom, I don’t see at all how their behavior, seen as a whole, can
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amount to anything coherent—especially something so coherent as the
brain behavior necessary for conversing.

Crab: Itseems to me that the ants are free only within certain constraints.
For example, they are free to wander, to brush against each other, to
pick up small items, to work on trails, and so on. But they never step
out of that small world, that ant-system, which they are in. It would
never occur to them, for they don’t have the mentality to imagine
anything of the kind. Thus the ants are very reliable components, in
the sense that you can depend on them to perform certain kinds of
tasks in certain ways,

Achilles:  But even so, within those limits they are still free, and they just act
at random, running about incoherently without any regard for the
thought mechanisms of a higher-level being which Dr. Anteater asserts
they are merely components of.

Anteater:  Ah, but you fail to recognize one thing, Achilles—the regularity
of statistics.

Achilles: How is that?

Anteater: For example, even though ants as individuals wander about in
what seems a random way, there are nevertheless overall trends, in-
volving large numbers of ants, which can emerge from that chaos.

Achilles: Oh, 1 know what you mean. In fact, ant trails are a perfect
example of such a phenomenon. There, you have really quite unpre-
dictable motion on the part of any single ant—and yet, the trail itself
seems to remain well-defined and stable. Certainly that must mean that
the individual ants are not just running about totally at random.

Anteater: Exactly, Achilles. There is some degree of communication
among the ants, just enough to keep them from wandering off com-
pletely at random. By this minimal communication they can remind
each other that they are not alone but are cooperating with teammates.
It takes a large number of ants, all reinforcing each other this way, to
sustain any activity—such as trail-building—for any length of time.
Now my very hazy understanding of the operation of brains leads me
to believe that something similar pertains to the firing of neurons. Isn’t
it true, Mr. Crab, that it takes a group of neurons firing in order to
make another neuron fire?

Crab: Definitely. Take the neurons in Achilles’ brain, for example. Each
neuron receives signals from neurons attached to its input lines, and if
the sum total of inputs at any moment exceeds a critical threshold,
then that neuron will fire and send its own output pulse rushing off to
other neurons, which may in turn fire—and on down the line it goes.
The neural flash swoops relentlessly in its Achillean path, in shapes
stranger then the dash of a gnat-hungry swallow; every twist, every
turn foreordained by the neural structure in Achilles’ brain, until
sensory input messages interfere.

Achilles:  Normally, I think that I'M in control of what I think—but the way
you put it turns it all inside out, so that it sounds as though “I” am just
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what comes out of all this neural structure, and natural law. It makes
what I consider my SELF sound at best like a by-product of an organism
governed by natural law, and at worst, an artificial notion produced by
my distorted perspective. In other words, you make me feel like I don’t
know who—or what—I am, if anything.

Tortoise:  You’'ll come to understand much better as we go along. But Dr.
Anteater—what do you make of this similarity?

Anteater: 1 knew there was something parallel going on in the two very
different systems. Now I understand it much better. It seems that
group phenomena which have coherence—trail-building, for
example—will take place only when a certain threshold number of ants
get involved. If an effort is initiated, perhaps at random, by a few ants
in some locale, one of two things can happen: either it will fizzle out
after a brief sputtering start—

Achilles:  'When there aren’t enough ants to keep the thing rolling?

Anteater: Exactly. The other thing that can happen is that a critical mass of
ants is present, and the thing will snowball, bringing more and more
ants into the picture. In the latter case, a whole “team” is brought into
being which works on a single project. That project might be trail-
making, or food-gathering, or it might involve nest-keeping. Despite
the extreme simplicity of this scheme on a small scale, it can give rise to
very complex consequences on a larger scale.

Achilles: 1 can grasp the general idea of order emerging from chaos, as
you sketch it, but that still is a long way from the ability to converse.
After all, order also emerges from chaos when molecules of a gas
bounce against each other randomly—yet all that results there is an
amorphous mass with but three parameters to characterize it: volume,
pressure, and temperature. Now that’s a far cry from the ability to
understand the world, or to talk about it!

Anteater: 'That highlights a very interesting difference between the expla-
nation of the behavior of an ant colony and the explanation of the
behavior of gas inside a container. One can explain the behavior of the
gas simply by calculating the statistical properties of the motions of its
molecules. There is no need to discuss any higher elements of struc-
ture than molecules, except the full gas itself. On the other hand, in an
ant colony, you can’t even begin to understand the activities of the
colony unless you go through several layers of structure,

Achilles: 1 see what you mean. In a gas, one jump takes you from the
lowest level—molecules—to the highest level—the full gas. There are
no intermediate levels of organization. Now how do intermediate
levels of organized activity arise in an ant colony?

Anteater: It has to do with the existence of several different varieties of
ants inside any colony.

Achilles:  Oh, yes. I think I have heard about that. They are called “castes”,
aren’t they?

Anteater: That’s correct. Aside from the queen, there are males, who do
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practically nothing towards the upkeep of the nest, and then—

Achilles:  And of course there are soldiers—Glorious Fighters Against
Communism!

Crab: Hmm . .. I hardly think that could be right, Achilles. An ant colony
is quite communistic internally, so why would its soldiers fight against
communism? Or am I right, Dr. Anteater?

Anteater:  Yes, about colonies you are right, Mr. Crab; they are indeed
based on somewhat communistic principles. But about soldiers Achil-
les is somewhat naive. In fact, the so-called “soldiers” are hardly adept
at fighting at all. They are slow, ungainly ants with giant heads, who
can snap with their strong jaws, but are hardly to be glorified. Asin a
true communistic state, it is rather the workers who are to be glorified.
It is they who do most of the chores, such as food-gathering, hunting,
and nursing of the young. Itis even they who do most of the fighting.

Achilles:  Bah. That is an absurd state of affairs. Soldiers who won't fight!

Anteater: Well, as 1 just said, they really aren’t soldiers at all. It's the
workers who are soldiers; the soldiers are just lazy fatheads.

Achilles:  Oh, how disgraceful! Why, if I were an ant, I'd put some disci-
pline in their ranks! I'd knock some sense into those fatheads!

Tortoise: If you were an ant? How could you be an ant? There is no way to
map your brain onto an ant brain, so it seems to me to be a pretty
fruitless question to worry over. More reasonable would be the propo-
sition of mapping your brain onto an ant colony . . . But let us not get
sidetracked. Let Dr. Anteater continue with his most illuminating
description of castes and their role in the higher levels of organization.

Anteater: Very well. There are all sorts of tasks which must be ac-
complished in a colony, and individual ants develop specializations.
Usually an ant’s specialization changes as the ant ages. And of course it
is also dependent on the ant’s caste. At any one moment, in any small
area of a colony, there are ants of all types present. Of course, one
caste may be be very sparse in some places and very dense in others.

Crab: Is the density of a given caste, or specialization, just a random
thing? Or is there a reason why ants of one type might be more heavily
concentrated in certain areas, and less heavily in others?

Anteater: I'm glad you brought that up, since it is of crucial importance in
understanding how a colony thinks. In fact, there evolves, over a long
period of time, a very delicate distribution of castes inside a colony.
And it is this distribution which allows the colony to have the complex-
ity which underlies the ability to converse with me.

Achilles: It would seem to me that the constant motion of ants to and fro
would completely prevent the possibility of a very delicate distribution.
Any delicate distribution would be quickly destroyed by all the random
motions of ants, just as any delicate pattern among molecules in a gas
would not survive for an instant, due to the random bombardment
from all sides.

Anteater: In an ant colony, the situation is quite the contrary. In fact, it is
Just exactly the constant to-ing and fro-ing of ants inside the colony
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which adapts the caste distribution to varying situations, and thereby
preserves the delicate caste distribution. You see, the caste distribution
cannot remain as one single rigid pattern; rather, it must constantly be
changing so as to reflect, in some manner, the real-world situation with
which the colony is dealing, and it is precisely the motion inside the
colony which updates the caste distribution, so as to keep it in line with
the present circumstances facing the colony.

Tortoise: Could you give an example?

Anteater:  Gladly. When I, an anteater, arrive to pay a visit to Aunt Hillary,
all the foolish ants, upon sniffing my odor, go into a panic—which
means, of course, that they begin running around completely diffe-
rently from the way they were before I arrived.

Achilles:  But that’s understandable, since you’re a dreaded enemy of the
colony.

Anteater: Oh, no. I must reiterate that, far from being an enemy of the
colony, I am Aunt Hillary’s favorite companion. And Aunt Hillary is
my favorite aunt. I grant you, I'm quite feared by all the individual
ants in the colony—but that’s another matter entirely. In any case, you
see that the ants’ action in response to my arrival completely changes
the internal distribution of ants.

Achilles: That’s clear.

Anteater:  And that sort of thing is the updating which I spoke of. The new
distribution reflects my presence. One can describe the change from
old state to new as having added a “piece of knowledge” to the colony.

Achilles: How can you refer to the distribution of different types of ants
inside a colony as a “piece of knowledge”?

Anteater:  Now there’s a vital point. It requires some elaboration. You see,
what it comes down to is how you choose to describe the caste distribu-
tion. If you continue to think in terms of the lower levels—individual
ants—then you miss the forest for the trees. That’s just too microscopic
a level, and when you think microscopically, you're bound to miss some
large-scale features. You’ve got to find the proper high-level
framework in which to describe the caste distribution—only then will it
make sense how the caste distribution can encode many pieces of
knowledge.

Achilles:  Well, how DO you find the proper-sized units in which to describe
the present state of the colony, then?

Anteater:  All right. Let’s begin at the bottom. When ants need to get
something done, they form little “teams”, which stick together to
perform a chore. As I mentioned earlier, small groups of ants are
constantly forming and unforming. Those which actually exist for a
while are the teams, and the reason they don’t fall apart is that there
really is something for them to do.

Achilles:  Earlier you said that a group will stick together if its size exceeds a
certain threshold. Now you’re saying that a group will stick together if
there is something for it to do.

Anteater: They are equivalent statements. For instance, in food-gathering,
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if there is an inconsequential amount of food somewhere which gets
discovered by some wandering ant who then attempts to communicate
its enthusiasm to other ants, the number of ants who respond will be
proportional to the size of the food sample—and an inconsequential
amount will not attract enough ants to surpass the threshold. Which is
exactly what I meant by saying there is nothing to do—too little food
ought to be ignored.

Achilles: 1 see. I assume that these “teams” are one of the levels of struc-
ture falling somewhere in between the single-ant level and the colony
level.

Anteater: Precisely. There exists a special kind of team, which I call a
“signal”’—and all the higher levels of structure are based on signals. In
fact, all the higher entities are collections of signals acting in concert.
There are teams on higher levels whose members are not ants, but
teams on lower levels. Eventually you reach the lowest-level teams—
which is to say, signals—and below them, ants.

Achilles:  Why do signals deserve their suggestive name?

Anteater: It comes from their function. The effect of signals is to transport
ants of various specializations to appropriate parts of the colony. So the
typical story of a signal is thus: it comes into existence by exceeding the
threshold needed for survival, then it migrates for some distance
through the colony, and at some point it more or less disintegrates into
its individual members, leaving them on their own,

Achilles: It sounds like a wave, carrying sand dollars and seaweed from
afar, and leaving them strewn, high and dry, on the shore.

Anteater: In a way that’s analogous, since the team does indeed deposit
something which it has carried from a distance, but whereas the water
in the wave rolls back to the sea, there is no analogous carrier substance
in the case of a signal, since the ants themselves compose it.

Tortoise:  And I suppose that a signal loses its coherency just at some spot
in the colony where ants of that type were needed in the first place.

Anteater: Naturally.

Achilles: Naturally? It’s not so obvious to ME that a signal should always go
just where it is needed. And even if it goes in the right direction, how
does it figure out where to decompose? How does it know it has
arrived?

Anteater: Those are extremely important matters, since they involve ex-
plaining the existence of purposeful behavior—or what seems to be
purposeful behavior—on the part of signals. From the description, one
would be inclined to characterize the signals’ behavior as being
oriented towards filling a need, and to call it “purposeful”. But you can
look at it otherwise.

Achilles:  Oh, wait. Either the behavior IS purposeful, or it is NOT. I don’t
see how you can have it both ways,

Anteater: Let me explain my way of seeing things, and then see if you
agree. Once a signal is formed, there is no awareness on its part that it
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should head off in any particular direction. But here, the delicate caste
distribution plays a crucial role. It is what determines the motion of
signals through the colony, and also how long a signal will remain
stable, and where it will “dissolve”.

Achilles:  So everything depends on the caste distribution, eh?

Anteater: Right. Let’s say a signal is moving along. As it goes, the ants
which compose it interact, either by direct contact or by exchange of
scents, with ants of the local neighborhoods which it passes through.
The contacts and scents provide information about local matters of
urgency, such as nest-building, or nursing, or whatever. The signal will
remain glued together as long as the local needs are different from
what it can supply; but if it CAN contribute, it disintegrates, spilling a
fresh team of usable ants onto the scene. Do you see now how the caste
distribution acts as an overall guide of the teams inside the colony?

Achilles: 1 do see that.

Anteater: And do you see how this way of looking at things requires
attributing no sense of purpose to the signal?

Achilles: 1 think so. Actually, I'm beginning to see things from two differ-
ent vantage points. From an ant’s-eye point of view, a signal has NO
purpose. The typical ant in a signal is just meandering around the
colony, in search of nothing in particular, until it finds that it feels like
stopping. Its teammates usually agree, and at that moment the team
unloads itself by crumbling apart, leaving just its members but none of
its coherency. No planning is required, no looking ahead; nor is any
search required, to determine the proper direction. But from the
COLONY’S point of view, the team has just responded to a message
which was written in the language of the caste distribution. Now from
this perspective, it looks very much like purposeful activity.

Crab: What would happen if the caste distribution were entirely random?
Would signals still band and disband?

Anteater: Certainly. But the colony would not last long, due to the
meaninglessness of the caste distribution.

Crab: Precisely the point I wanted to make. Colonies survive because their
caste distribution has meaning, and that meaning is a holistic aspect,
invisible on lower levels. You lose explanatory power unless you take
that higher level into account.

Anteater: 1 see your side; but I believe you see things too narrowly.

Crab: How so?

Anteater: Ant colonies have been subjected to the rigors of evolution for
billions of years. A few mechanisms were selected for, and most were
selected against. The end result was a set of mechanisms which make
ant colonies work as we have been describing. If you could watch the
whole process in a movie—running a billion or so times faster than life,
of course—the emergence of various mechanisms would be seen as
natural responses to external pressures, just as bubbles in boiling water
are natural responses to an external heat source. I don’t suppose you
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see “meaning” and “purpose” in the bubbles in boiling water—or do
you?

Crab: No, but—

Anteater: Now that's MY point. No matter how big a bubble is, it owes its
existence to processes on the molecular level, and you can forget about
any “higher-level laws”. The same goes for ant colonies and their
teams. By looking at things from the vast perspective of evolution, you
can drain the whole colony of meaning and purpose. They become
superfluous notions.

Achilles: Why, then, Dr. Anteater, did you tell me that you talked with
Aunt Hillary? It now seems that you would deny that she can talk or
think at all.

Anteater: 1 am not being inconsistent, Achilles. You see, I have as much
difficulty as anyone else in seeing things on such a grandiose time scale,
so I find it much easier to change points of view. When I do so,
forgetting about evolution and seeing things in the here and now, the
vocabulary of teleology comes back: the MEANING of the caste distribu-
tion and the PURPOSEFULNESS of signals. This not only happens when I
think of ant colonies, but also when I think about my own brain and
other brains. However, with some effort I can always remember the
other point of view if necessary, and drain all these systems of mean-
ing, too.

Crab: Evolution certainly works some miracles. You never know the next
trick it will pull out of its sleeve. For instance, it wouldn’t surprise me
one bit if it were theoretically possible for two or more “signals” to pass
through each other, each one unaware that the other one is also a
signal; each one treating the other as if it were just part of the
background population.

Anteater: It is better than theoretically possible; in fact it happens
routinely!

Achilles: Hmm . .. What a strange image that conjures up in my mind. I
can just imagine ants moving in four different directions, some black,
some white, criss-crossing, together forming an orderly pattern, almost
like—like—

Tortoise: A fugue, perhaps?

Achilles: Yes—that's it! An ant fugue!

Crab: An interesting image, Achilles. By the way, all that talk of boiling
water made me think of tea. Who would like some more?

Achilles: 1 could do with another cup, Mr. C.

Crab: Very good.

Achilles: Do you suppose one could separate out the different visual
“voices” of such an “ant fugue”? I know how hard it is for me—

Tortoise: Not for me, thank you.

Achilles: —to track a single voice—
Anteater: 1'd like some, too, Mr. Crab—
Achilles: —in a musical fugue—
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FIGURE 61. “Ant Fugue”, by M. C. Escher (woodcut, 1953).

Anteater: —if it isn’t too much trouble.

Achilles: —when all of them—

Crab: Not at all. Four cups of tea—

Tortoise: Three!

Achilles: —are going at once.

Crab: ~—coming right up!

Anteater: That’s an interesting thought, Achilles. But it’s unlikely that
anyone could draw such a picture in a convincing way.

Achilles:  That’s too bad.

Tortoise:  Perhaps you could answer this, Dr. Anteater. Does a signal, from
its creation until its dissolution, always consist of the same set of ants?

Anteater: As a matter of fact, the individuals in a signal sometimes break
off and get replaced by others of the same caste, if there are a few in
the area. Most often, signals arrive at their disintegration points with
nary an ant in common with their starting lineup.
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Crab: I can see that the signals are constantly affecting the caste distribu-
tion throughout the colony, and are doing so in response to the
internal needs of the colony—which in turn reflect the external situa-
tion which the colony is faced with. Therefore the caste distribution, as
you said, Dr. Anteater, gets continually updated in a way which ulti-
mately reflects the outer world.

Achilles: But what about those intermediate levels of structure? You were
saying that the caste distribution should best be pictured not in terms
of ants or signals, but in terms of teams whose members were other
teams, whose members were other teams, and so on until you come
down to the ant level. And you said that that was the key to under-
standing how it was possible to describe the caste distribution as encod-
ing pieces of information about the world.

Anteater: Yes, we are coming to all that. I prefer to give teams of a
sufficiently high level the name of “symbols”. Mind you, this sense of
the word has some significant differences from the usual sense. My
“symbols” are ACTIVE SUBSYSTEMS of a complex system, and they are
composed of lower-level active subsystems ... They are therefore
quite different from PASSIVE symbols, external to the system, such as
letters of the alphabet or musical notes, which sit there immobile,
waiting for an active system to process them.

Achilles:  Oh, this is rather complicated, isn’t it? I just had no idea that ant
colonies had such an abstract structure.

Anteater:  Yes, it’s quite remarkable. But all these layers of structure are
necessary for the storage of the kinds of knowledge which enable an
organism to be “intelligent” in any reasonable sense of the word. Any
system which has a mastery of language has essentially the same under-
lying sets of levels.

Achilles: Now just a cotton-picking minute. Are you insinuating that my
brain consists of, at bottom, just a bunch of ants running around?

Anteater:  Oh, hardly. You took me a little too literally. The lowest level
may be utterly different. Indeed, the brains of anteaters, for instance,
are not composed of ants. But when you go up a level or two in a brain,
you reach a level whose elements have exact counterparts in other
systems of equal intellectual strength—such as ant colonies.

Tortosse: That is why it would be reasonable to think of mapping your
brain, Achilles, onto an ant colony, but not onto the brain of a mere
ant.

Achilles: 1 appreciate the compliment. But how would such a mapping be
carried out? For instance, what in my brain corresponds to the low-
level teams which you call signals?

Anteater:  Oh, I but dabble in brains, and therefore couldn’t set up the map
in its glorious detail. But—and correct me if ’'m wrong, Mr. Crab—I
would surmise that the brain counterpart to an ant colony’s signal is
the firing of a neuron; or perhaps it is a larger-scale event, such as a
pattern of neural firings.
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Crab: 1 would tend to agree. But don’t you think that, for the purposes of
our discussion, delineating the exact counterpart is not in itself crucial,
desirable though it might be? It seems to me that the main idea is that
such a correspondence does exist, even if we don’t know exactly how to
define it right now. I would only question one point, Dr. Anteater,
which you raised, and that concerns the level at which one can have
faith that the correspondence begins. You seemed to think that a
SIGNAL might have a direct counterpart in a brain; whereas I feel that
it is only at the level of your ACTIVE SYMBOLS and above that it is likely
that a correspondence must exist.

Anteater:  Your interpretation may very well be more accurate than mine,
Mr. Crab. Thank you for bringing out that subtle point.

Achilles: What does a symbol do that a signal couldn’t do?

Anteater: It is something like the difference between words and letters.
Words, which are meaning-carrying entities, are composed of letters,
which in themselves carry no meaning. This gives a good idea of the
difference between symbols and signals. In factitis a useful analogy, as
long as you keep in mind the fact that words and letters are PASSIVE,
symbols and signals are ACTIVE.

Achilles:  T'll do so, but I'm not sure I understand why it is so vital to stress
the difference between active and passive entities.

Anteater: The reason is that the meaning which you attribute to any
passive symbol, such as a word on a page, actually derives from the
meaning which is carried by corresponding active symbols in your
brain. So that the meaning of passive symbols can only be properly
understood when it is related to the meaning of active symbols.

Achilles:  All right. But what is it that endows a SYMBOL—an active one, to
be sure—with meaning, when you say that a SIGNAL, which is a per-
fectly good entity in its own right, has none?

Anteater: It all has to do with the way that symbols can cause other symbols
to be triggered. When one symbol becomes active, it does not do so in
isolation. It is floating about, indeed, in a medium, which is charac-
terized by its caste distribution.

Crab: Of course, in a brain there is no such thing as a caste distribution,
but the coun