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Introduction 

Pro minimis adhiberi possunt quasi minima. 

Leibniz 

The fundamental problem of the calculus of variations consists of the 
research of a function u{x) minimizing the integral functional 

T{u,Q)= I F(x,u(x),Du(x))dx (0.1) 
Jn 

among all the functions u satisfying suitable conditions, the most usual of 
which consists of taking prescribed values U(x) on the boundary of Cl: 

u = U on dU. (0.2) 

This problem, that bears the name of DlRICHLET, is beyond doubt the 
most studied, and probably the most important; in conforming to that 
tradition, we too shall limit our discussion to it. 

In (0.1) $1 is an open set in R™, whose generic point we shall denote by 
x = (x\,X2, • • • ,xn), and the boundary datum U(x), and by consequence 
the unknown function u(x), are functions with values in R-^, with compo­
nents respectively Ua and ua, a = 1,2,. . . , N. 

The first examples of problems in the calculus of variations, of course in 
the simplest case n = N = 1, date from the beginning of the infinitesimal 
calculus, and are all founded on the EULER equation of the functional T. 
To derive it, we assume that F(x,u,z) is of class C1 , and that u{x) is a 
minimum of the corresponding functional T. Let ip be a function equal to 

1 
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zero on dCl, so that u + tip takes the same values as u on the boundary for 
every real number t, and set 

g{t)=F{u + ty,n). 

The function g(t) has a minimum for t = 0, and hence we must have 
g'(0) = 0. We then compute g' by writing (0.1) for u+t<p and differentiating 
under the integral sign. We get1 

/ ^( i ,«W,fl«W) A / + - ( I , « ( I ) , 1 ) B ( I ) ) ipaJdx = 0. 

If F is of class C2 , integrating by parts and remembering that ip — 0 
on <9fi: 

j n ( ^ £ ( a ; ' "to. -ZM*)) - J^(* ' "(*)' £"(*))) V" ̂  = 0 • (0-3) 

The preceding equation must be satisfied for every <p equal to zero on 
dCl, so that we must have 

8 / r)F \ BF 
— [—(x,u(x),Du(x)))- — (x,u(x),Du(x))=0 (0.4) 

for every a = 1,2,. . . , N. 
A necessary condition for u(x) to minimize the integral (0.1) is therefore 

that u be a solution of the partial differential Eq. (0.4),2 which carries the 
name EULER, or sometimes EULER-LAGRANGE equation. 

If, as is often the case, the functional T is convex, that is if it satisfies 
the relation 

T{tu + (1 - t)v) < tF(u) + (1 - t)F(y) 

for every couple of functions u, v and for every t £ [0,1], then g(t) is convex 
itself, and since g'(0) = 0, we conclude that g has a minimum in 0 for every 
function tp, and therefore that u minimizes T. 

In conclusion, in the case of convex functionals, the Eq. (0.4) is a 
necessary and sufficient condition for u(x) to minimize the functional !F. 

1We shall always sum over repeated indices; the latin indices running from 1 to n, 
and the greeks ones from 1 to N. 

2 Actually, when JV > 1, it is a system of partial differential equations, that will reduce 
to ordinary differential equations when n = 1. Needless-to-say, we shall be interested 
only to the case n > 1; even if in principle the result of this book would hold for ordinary 
differential equations, the problems for those are of a different kind. We shall use the 
term "equation" to denote both the equations (JV = 1) and the systems of differential 
equations. The context will make clear what we are talking about. 
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The EuLER equation is particularly useful when one wants to find 
an explicit solution (possibly in the form of a series) of the minimum 
problem; in particular when we arrive at an ordinary differential equation 
that sometimes can be integrated explicitely, or else reduce to quadratures. 
The first book completely dedicated to the calculus of variations, due to 
L. EULER [1], contains a large number of problems solved in this way. 

On the other hand, when we pass to higher dimensional integrals, that 
lead to partial differential equations, the method above shows evident limi­
tations, due to the difficulty of resolving explicitly such equations. Already 
in the simplest case of the DIRICHLET integral 

[ \Du\2dx, (0.5) 
Jn 

which leads to the LAPLACE equation 
n Q 2 

the way to an explicit solution is restricted to very few cases, and can be 
carried out successfully only when Q, is a domain with spherical (n = 2 or 
3) or cylindrical symmetry (n = 3). 

It was exactly the need for harmonic functions (that is of solutions of 
the equation Au = 0) taking prescribed values at the boundary of arbitrary 
domains, that induced RlEMANN [1] to reverse the usula point of view, and 
to reduce this problem to that of minimizing the integral (0.5) among all 
the functions taking on dCl the given values. For that purpose, he intro­
duced the DIRICHLET principle, which consists essentially of considering 
the functional (0.5) as a map from the manifold V of the functions taking 
on dQ, the given values into R, and of the assumption that it is possible 
to apply to that mapping a generalization of the WEIERSTRASS theorem, 
assuring the existence of the minimum (and of the maximum) of any con­
tinuous function. Once the existence of the minimum has been assumed, it 
will automatically be a harmonic function. 

In this way RlEMANN gave birth to the so-called direct methods in the 
calculus of variations, which consist of proving the existence of the minimum 
of an integral functional T (and more generally in discovering its properties, 
in the first place its regularity) without recourse to the EULER equation, 
but deducing it directly from the properties of the functional T, considered 
as a map from V into R. 

After some unsuccessful attempts by ARZELA [1], the proof of the 
DIRICHLET principle for the functional (0.5) was given by HlLBERT [1, 2]. 
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On the other hand, a complete treatment of the minimum problem 
for the general functional (0.1) could not be carried our without two con­
ditions. Firstly place, one had to recognize that the semicontinuity, and 
not the continuity, was the main assumption for a successful application 
of the WEIERSTRASS theorem to the functional T; and secondly, it was 
necessary to introduce new function spaces (beyond those already studied 
for continuous functions and the like) and to prove for them compactness 
results analogous to those of ASCOLI and ARZELA. 

The first step was carried out by TONELLI, who introduced the lower 
semicontinuity, and obtained a series of existence results, mostly in the case 
of one independent variable, for functionals of the type 

$(u)=: / F(t,u(t),u'(t))dt (0.6) 
J a 

in the framework of absolutely continuous functions, and of the functions 
with bounded variation. 

The introduction of the semicontinuity is the key to dealing with the 
general functionals (0.1). Actually, in order to apply the WEIERSTRASS 
theorem, it is necessary that the functional T be lower semicontinuous, 
and that the set V in which one looks for the minimum be compact. 
These two properties are in some sense in competition; in order to have 
the semicontinuity it is preferable to endow V with a relatively strong 
topology: the fewer convergent sequences exist, the easier the functional 
is semicontinuous. On the contrary, for the compactness it is better to 
have the opposite: the weaker the topology, the easier for a sequence to 
converge.3 

The absence of suitable function spaces prevented TONELLI from going 
beyond the functionals (0.6). The extension to the case of many inde­
pendent variables will take place thanks to the progress of the functional 
analysis, and to the introduction by SOBOLEV [1] (and independently 
by CALKIN [1] and MORREY [1]) of the spaces carrying his name. The 
setting of the minimum problem in these spaces makes it possible to 
prove general existence theorems, covering a large class of functionals.4 In 
particular we have semicontinuity theorems in the weak topology oiW1'p 

(the space of the functions whose derivatives are p-summable) under the 

3 The same can be said reasoning in terms of coverings. On the other hand the two 
notions of compactness coincide for metrizable spaces. 

4We recall however that some important problems, such as that of minimal surfaces, 
fall outside this general setting, and require the introduction of more general spaces. 
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assumption of convexity of F(x, u, z) with respect to z in the scalar case, 
and of quasi-convexity in the vector case. The last condition, introduced 
by MORREY [2], is essentially equivalent to the assumption that the linear 
functions u — a + (A, x) minimize the "frozen" functional 

J=°{v, Q)= I F{x0,u0, Dv{x)) dx. (0.7) 
JQ 

On the other hand, the solution of the existence problem in the SOBOLEV 
spaces opens up another series of questions. Actually, the functions of these 
spaces have derivatives only in a weak sense, and in general are not even 
continuous. Once a minimum has been found, the problem arises of proving 
that it is continuous, or differentiable, and so on; briefly the problem of the 
regularity of the solutions. This problem remained unsolved for long time; 
its solution, limited to the scalar case (N — 1), begun with the fundamental 
paper by D E GlORGI [l].5 

In it, D E GlORGI proved the Holder continuity of the solutions to dif­
ferential equations in divergence form: 

Di(aij{x)Djv) = 0 (0.8) 

where the coefficients assumed only to be measurable and bounded 
(therefore possibly discontinuous), and to satisfy the ellipticity condition 

atj(aO&fc>i/KI2. " > 0 - (°-9) 

Of course, Eq. (0.8) has to be interpreted as holding in a weak sense; 
more_precisely we shall assume that the integral equation 

/ aijDivDjipdx = 0 (0.10) 

is satisfied for every function ip of class CQ°(Q,). 

The application to minima of functionals is immediate. Actually, any 
function u(x) minimizing the functional 

F(u, n) = / F{Du) dx, 

satisfies the EULER equation in weak form: 

[ FZi(Du(x))DiC{x)dx = 0 

5A similar result was obtained independently about at the same time by NASH [1]. 
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for every test function £.6 Taking ( = Dsip and integrating by parts, we 
find then 

/ FZiZj{Du{x))Dj{Dsu)Diipdx = 0 (0.11) 
Jo, 

and hence the derivatives Dsu are weak solutions of an equation of type 
(0.10), with 

aij{x) = FZiZj(Du(x)). 

Assuming now that the second derivatives of F are bounded, and that 
F is strictly convex, that is that Eq. (0.11) is elliptic, we can apply D E 
GlORGl's theorem, and thus conclude that derivatives Du are Holder-
continuous functions. 

D E GlORGl's theorem was widely studied and extended in variuos 
directions, so as to apply it to the EULER equation (0.3) of the general func­
tional (0.1). We shall quote here only the volume by LADYZENSKAYA and 
URAL'CEVA [1], where one can find the relevant results, obtained mostly 
by the two authors. A new and particularly elegant proof was given by 
MoSER [1, 2], who extended to general elliptic equations the classical 
HARNACK inequality. 

The regularity theorem does not extend to the vector case (N > 1). This 
was shown by D E GlORGI [5] himself, who constructed a linear elliptic sys­
tem with bounded measurable coefficients having discontinuous solutions. 
Shortly after this example was extended by GlUSTI and MIRANDA [1] to 
nonlinear systems with regular coefficients, and to minima of functionals.7 

In the meantime, adapting some ideas introduced by D E GlORGI [3] and 
developed by ALMGREN [1] in the study of minimal surfaces, MORREY [4] 
was able to prove the partial regularity of the weak solutions of nonlinear 
elliptic systems, or more precisely their regularity in an open set CIQ C Cl, 
and to show that the measure of the singular set fi — CIQ was zero.8 M O R -
REY's result has been extended by GlUSTI and MIRANDA [2], and later by 
GlUSTI [2], GlAQUlNTA and GIUSTI [1], and others. 

6We have denoted by FZi the derivative of F with respect to Zj. 
7Other examples were found independently by MAZ'YA [1]; more general examples 

were later found by NECAS [2]. 
8Unlike D E GIORGI'S theorem, the proof does not make use of a similar theorem for a 

linear system with discontinuous coefficients, but it is based in an essential way on the 
nonlinearity and on the regularity of the coefficients. It should be noted that the result 
does not hold for a linear system with discontinuous coefficients, as a has been shown by 
SOUCEK [1], who constructed a linear system whose solution is discontinuous in a dense 
set. 
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All these regularity theorems apply to the minima of functionals by the 
intermediate of the EULER equation, and therefore make only a marginal 
use of the most characteristic properties of the minima, those properties 
that distinguish true minima from simple extremals, let alone from solutions 
of general elliptic equations and systems. 

Now, whereas there is a total coincidence between minima and extremals 
when the functional T is convex, this identity is no longer true in the 
general case, where one can have extremals that are not even local minima 
of the functional in question. As a consequence, one can expect that the 
assumptions necessary to prove the regularity of extremals are substantially 
heavier than those conducting to the regularity of the minima; first of all 
the differentiability of F with respect to u, and even more so the growth 
of the derivative Fu, indispensable already in the deduction of the EuLER 
equation. 

A first step towards the use of direct methods in the regularity problem 
(that is the proof of the regularity directly from the minimum property, 
without passing through the EULER equation), was taken by GlAQUINTA 
and GlUSTl [2], who have shown, in the case of scalar functionals, that 
the minima of the functional (0.1), independently of any assumption of 
differentiability of F, satisfy the assumptions of D E GlORGl's regularity 
theorem, and therefore are Holder-continuous functions. The same result 
holds in general for quasi-minima, that is for functions u for which 

T(u, K) < QT(u + <p, K) (0.12) 

for every <p with compact support K C Q. 
The notion of quasi-minimum includes of course that of minimum, to 

which it reduces when Q = 1. Actually, it is substantially more general, 
since it includes solutions of linear and nonlinear elliptic equations and 
systems (and in the vector case, quasi-regular mappings). We have thus, 
under the general notion of quasi-minimum, a unified treatment of the 
regularity of the minima of functionals in the calculus of variations, and of 
the solutions of elliptic equations and systems in divergence form. 

Of course in the vector case it is not a question of getting global regu­
larity (i.e., Holder continuity); one can only prove that generally speaking 
a quasi-minimum has derivatives summables with an exponent larger than 
that of the SOBOLEV space to which it belongs o priori. This result, that 
was proved originally by BOJARSKI [1] and by MEYERS [1] in the case of 
solutions of linear elliptic equations, has become an important tool in the 
study of the partial regularity in the vector case. 
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The further regularity results need more stringent assumptions, and the 
notion of quasi-minimum, that has accomplished its duty in the proof of the 
higher summability of the derivatives in the general case, and of the Holder 
continuity in the scalar case, must be abandoned in favor of more particular 
assumptions. In the case of the regularity of the first derivatives, it can be 
replaced by the notion of w-minimum, introduced by the ANZELLOTTI [1], 
and analogous to ALMGREN [1] approach to minimal surfaces. Given a 
continuous increasing function w(i?), denned for R > 0, and such that 
u>(Q) = 0, we call the w-minimum of T a function u(x) such that for every 
cube QR = Q(XQ,R), of side 2R and center XQ, and for every function (f 
with support contained in QR we have 

F(u, QR) < (1 + u{R))F(u + ip, QR). (0.13) 

For scalar w-minima with u>(R) = cRa, one proves the Holder continuity 
of the first derivatives under suitable assumptions of continuity for the 
function F and of differentiability with respect to z, without assuming the 
existence of the derivatives with respect to u, a result that can be extended 
to the solutions of quasi-linear elliptic equations in divergence form. 

In the vector case, as we have already said, the best we can expect 
is partial regularity, that is regularity outside a singular set E, generally 
non-empty, with in addition an estimate of the dimension of E. After a 
certain number of results relative to functions F(x, u, z) convex in z, a first 
regularity theorem for the minima of strictly quasi-convex functionals was 
proved by EVANS [1], adapting methods introduced in the study of minimal 
surfaces. According to that result, and to its extensions by various authors, 
the w-minima of quasi-convex functionals are of class C1,a in an open set 
flo C fi, and the singular set E = fi — fio has zero measure. 

Better estimates for the singular set E can be found in the case of 
quadratic functionals 

fi(u,fi)= [ Aii0(x,u)Diu
aDju'3dx (0.14) 

for which one proves that the dimension of E is less than n — 2 (GlAQUlNTA 
and GIUSTI [2]). This result can be further ameliorated for separated coef­
ficients: 

A%ip(x^u) = 9l0{x)Gal3{u), 

a situation that arises for instance in the theory of harmonic mappings 
between Riemannian manifolds. In this last case, the dimension of the 
singular set does not exceeds n - 3 (ScHOEN and UHLENBECK [1, 2], 
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GlAQUlNTA and GIUSTI [6]), and decreases to n — 7 if the target manifold is 
the n-dimensional sphere (SCHOEN and UHLENBECK [3], GlAQUlNTA and 
SOUCEK [1]). 

The further regularity concerns only the minima, and merges with the 
theory of elliptic differential equations. Here the results are nowadays 
classical, and the minima u are as regular as the function F permits. In 
particular, if F is of class C°°(Cl), every minimum u of the relative func­
tional will be of class C°°(fio)> where fi0 = fi hi the scalar case, whereas 
in the vector case we have meas (0 — Oo) = 0. 

The structure of this volume follows essentially the above lines. In the 
first introductory chapter we study scalar functionals, dependent only on 
the gradient: 

JF(U, Q)= [ F(Du{x)) dx, (0.15) 
Jn 

and we prove the existence of minima for the DlRlCHLET problem in the 
space of Lipschitz-continuous functions. The results are obtained by means 
of elementary techniques, that make constant use of the maximum principle. 
In particular, this chapter does not require the knowledge of SOBOLEV 

spaces, and the notions of functional analysis do not go beyond the theorem 
of AscOLI-ARZELA. We obtain nevertheless some significant theorems, in 
particular for the area functional, a functional that, as we have remarked, 
is not included within those discussed later. 

In the second chapter we gather most of the results relative to spaces 
of summable functions. In particular, we introduce the spaces LP and 
.Lp-weak, as well as MORREY and CAMPANATO spaces, and we prove the 
Holder continuity of the functions belonging to the last ones. In this 
chapter one can find the CALDERON-ZYGMUND covering theorem, the 
lemmas of JoHN-NlRENBERG concerning BMO functions, and the interpo­
lation theorems of MARCINKIEWICZ and STAMPACCHIA. The last section 
is devoted to the HAUSDORFF measure. 

In the third chapter we introduce the SOBOLEV spaces, that we shall 
use throughout the book. We note that on some occasions, as for instance 
in the characterization of traces, we have preferred simplicity to generality, 
for which we refer to books explicitly devoted to that subject. Even in this 
case we have never left without proof a result essential in the sequel. 

The next two chapters deal with semicontinuity theorems, both under 
assumptions of convexity (Chapter 4) and of quasi-convexity. In the last 
situation, the most precise result is due to AcERBl and Fusco [1]. We 
have followed the proof given by MARCELLINI [1], that besides requiring 
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slightly less restrictive assumptions, represents an excellent example of the 
interrelations between the theory of semicontinuity and that of regularity 
of the quasi-minima, which we develop in the subsequent chapter. 

Once the semicontinuity has been proved, the existence of minima de­
pends on the coerciveness of the functional under discussion. The question 
is treated briefly at the end of the chapter. 

The remaining Chapters 6-10 concern the regularity. In the sixth we 
introduce the notion of quasi-minimum, we examine its relationships with 
solutions of elliptic equations and systems, and we prove the Lp summa-
bility of the derivatives of cubical quasi-minima. Here as in the following 
chapters the main role is played by an inequality, that permits one to 
estimate the derivatives by the function, to which is associated the name of 
CACCIOPPOLI, who was the first, as far as I know, to prove it for solutions 
of linear elliptic equations [3]. 

The seventh chapter is all devoted to the Holder regularity of the scalar 
quasi-minima. We introduce some function classes, which we have named 
after D E GlORGI who introduced them in his paper [1] already quoted, 
and we prove that the functions in these classes are Holder-continuous. 
Moreover, following Di BENEDETTO and TRUDINGER [1] (see also Di 
BENEDETTO [1]), we prove the HARNACK inequality for these functions. 
The regularity of the scalar quasi-minima is a consequence of the fact 
that they belong to suitable D E GlORGI classes. We prove in addition 
the boundary regularity of solutions of the DlRlCHLET problem. 

In the following chapter we continue the study of the regularity in the 
scalar case, proving the Holder continuity of the derivatives of the w-minima 
of functionals, as well as of the solutions of nonlinear elliptic equations in 
divergence form, under assumptions in many ways more general than usual. 

The core of the proof consists of integral estimates for solutions of elliptic 
equations of the type 

DiA
i{Du) = Q, 

with coefficients A1 dependent only on the gradient, which we have obtained 
following the techniques introduced by LEWIS [1]. From these estimates we 
obtain the regularity in the general case, considering the dependence on x 
and u as a perturbation. An important ingredient of the proofs are the 
spaces of MORREY and CAMPANATO [1] and [2], the last ones expressing 
the Holder continuity of the functions in terms of integral estimates. 

The ninth chapter deals with the partial regularity of the w-minima of 
quasi-convex functionals. We consider first quadratic functionals (0.14), 
proving the regularity up to a closed set K of dimension less than n — 2. 
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We pass then to more general functionals (0.1), and we show that every 
w-minimum is of class C 1 , a , except possibly on a singular set E, closed in 
fi and of zero measure. 

Finally, the tenth and last chapter is concerned with the regularity of 
the higher derivatives of the solutions of elliptic equations, and as a conse­
quence of minima of functionals. The treatment does not distinguish any 
more between the scalar and the vector case, and it is made both in the 
SOBOLEV spaces (HlLBERT regularity) and in CAMPANATO spaces (HOLDER 
regularity). Except for some reference to results previously proved, and in 
any case it is not difficult to obtain directly, this chapter is independent of 
the others, and can be considered as a brief introduction to the regularity 
of the solutions of linear elliptic systems with regular coefficients. 

The volume, as far as it is possible, is self-sufficient, and does not use 
unproved results, except for what concerns the LEBESGUE integral, the first 
properties of LP spaces, and some elementary notions of functional analysis. 
The notations are the standard ones, and do not need special explainations. 
It is only appropriate to remark that, following again a well-established 
rule, we have denoted by c a generic constant, in general dependent on the 
data of the problem, and that may change within the same formula, as for 
instance 

ab < c{a2 + b2)<c (a4 + b6 + ^\ . 

Only when we want to stress the dependence of such constants on one 
or more parameters A, fj,, etc., we shall write c(A), c(A, fi) and the like. 

This book has three different origins. The first are some notes of a course 
given at the Nankai Institute of Mathematical in Tianjin in 1985 that for 
some reason were never completed. The second is a small volume Equations 
ellittiche del secondo ordine [5], published as one of the "Quaderni dell'U. 
M. I." and that has been out of print for a long time (it was reprinted 
in 2001). Finally, the research on direct methods in the regularity of the 
minima of variational integrals, initiated by GlAQUlNTA and GlUSTI [2-
4] and involving several authors, that have permitted us to give a unified 
treatment of the regularity of the minima of functionals and of the solutions 
to partial differential elliptic equations systems. 

This work could never be finished without the help of several friends, in 
particular M. GlAQUlNTA, P. MARCELLINI and G. MODICA, with whom I 
have frequently discussed these subjects. 

Finally, I feel obliged to apologize for the title rather abused these days. 
Unfortunately, I could not find any other which would adequately describe 
the content. 
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Chapter 1 

Semi-Classical Theory 

In this chapter we shall illustrate a simple but meaningful use of direct 
methods in the calculus of variations. 

The method is limited to functionals of the type: 

F{u,Q.) = I F(Du)dx, (1.1) 
Jn 

with the function F(z) depending only on the gradient of a scalar function, 
namely of a function u : fi —s- R. On the other hand, it is independent of 
the growth of the function F, and therefore it covers situations that cannot 
be treated with the more refined methods of the subsequent chapters. An 
example of some importance is that of the area functional, that we shall 
examine in detail. 

The setting in which we shall treat our minimum problem is the 
space Lip(fi) = C0,1(f2) of Lipschitz-continuous functions, namely of the 
functions u(x) continuous in fj and such that 

r i W(x) — u(y)\ 
[u]o,i = sup i - y f^- < +oo . (1.2) 

It is not difficult to see that Lip (fi) is a BANACH space, with the 
norm 

||u||0,i = s u p | u | + [u]o,i • 
n 

13 
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Lipschitz-continuous functions are almost everywhere differentiable (see 
for instance SAKS [1], p. 311), and their derivatives are bounded functions, 
which coincide with the distributive derivatives. 

We shall consider functional of type (1.1), with F convex in 2 6 R™, 
and we shall prove that under suitable hypotheses it is possible to solve 
the DlRICHLET problem, that is to show that the functional (1.1) takes 
its minimum in the class of Lipschitz-continuous functions with prescribed 
values on the boundary of fi. 

1.1 The Maximum Principle 

We shall denote by Lipfc(J7) the set of Lipschitz-continuous functions in Q, 
whose Lipschitz constant is less than or equal to k: 

Lipfc(fi) = {uG Lip (O) : [u]0,i < k} . (1.3) 

Moreover, if U is a Lipschitz-continuous function defined on dCl, we 
shall set: 

Lip (fi, 17) = {u £ Lip (Q) : u = U on d£l} (1.4) 

and 

Lipfc(fi, U) = {ue Lipfc(fi) : u = U on dtl} . (1.5) 

Proposition 1.1 Let F(z) be a convex function, and let 0, be a bounded 
open subset of R™. Let U be a Lipschitz-continuous function in Q, and let 
k > [U]o,i- Then, the functional F(u,Q) takes its minimum in Lipfc(0, U). 

Proof. Let {UJ} be a minimizing sequence, that is a sequence of functions 
in Lipfc(fi, U) such that 

lim FIUA, n) = inf{.F(u, ft); u e Lipfc(n, U)} =: /x. 
j—i-OO 

We have [WJ]O,I < k, and moreover 

sup \UJ\ < sup |J7| + [uj]o,i diam (Q) < sup |?7| + k diam (fi), 
a n ' n 

so that the sequence {UJ} is bounded in Lip (17). By ASCOLI-ARZELA'S 

theorem it is possible to extract a subsequence, which we shall denote again 
by {UJ}, uniformly convergent to a function u € Lipfc(f2, U). Since F is a 
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convex function, there exists a Borel function A : R n ->• R™, bounded on 
compact sets, and such that1 

F(w) > F(z) + (\(z),w - z) 

for every z, w S R n . We have therefore: 

/ F(DUJ) dx> I F(Du) dx + {\{Du),Duj - Du) dx. 
Jn Jn Jn 

We can evaluate the last integral observing that the function X(Du(x)) 
is bounded and measurable, and whence2 that for every e > 0 there exists 
a function g : ft —> R™ of class C1 (ft) such that 

/ |A(£>u) - g\dx < e. 
Jn 

We have 

/ (X(Du), DUJ — Du) dx > (g{x), DUJ - Du) dx 
Ja Jn 

- I \\{Du) - g\\Duj - Du\ dx. 
Jn 

Since both DUJ and Du belong to Lipfc(fi), the last integral can be 
estimated by 2/ce, whereas for the preceding one, taking into account the 
fact that u = Uj = U on dfl, we have 

/ (g(x), DUJ — Du) dx = - (UJ — u) div <? dx, 
Jn Jn 

so that it tends to zero as j —>• oo. We have in conclusion: 

fj, = lim .F(uj, ft) > T(u,ft) - 2ke. 
j-voo 

Since e is arbitrary, we have !F(u,Cl) = fi, so that u minimizes the 
functional T in Lipfc(ft, U). O 

We shall call uk a minimizing function in Lipfc(ft, U). Generally speak­
ing, when k increases, the minimum value of T in Lipfc decreases, whereas 
the Lipschitz constant [wfc]o,i of its minimizer increases. We have 

1We shall denote by ( ,) the scalar product in R " . If F e C 1 , we have \ = Fz. 
2 See next chapter, in particular Corollary 2.1. As usual, we denote by Ck the space 

of functions having continuous derivatives up to the order k. 
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Proposition 1.2 Let uk a minimizing function in Lipfe(0, U). If [wfc]o,i < 
k, the function uk minimizes J- in Lip (£1, U). 

Proof. Let v e Lip (SI, C/), and for t € [0,1] define 

vt = uk + t(v - uk). 

We have Vt = U on dfi,, and moreover [vt]o,i < k for t small enough. 
Since uk minimizes in Lipfc we obtain, taking into account the convexity 
olT: 

F(uk, it) < F(vt, 0) < (1 - t)F{uk, n) + tF(v, Q), 

and hence t!F{uk, 0) < t!F(v, $1), so that uk minimizes T in Lip (fi, U). 
U 

The above proposition will be useful in the proof of the existence of 
a minimum in Lip (0, U). For that, we shall look for an estimate of the 
Lipschitz constant of uk. 

In order to simplify the notation, we shall omit from now on the index 
k; moreover we shall write "u minimizes T in Lipfe(fi)", understanding 
"among all the functions of Lipfe that coincide with u on dCl". It is evident 
that if a function u minimizes T in Lipfc(n), and if u s Lip^(A), with h < k 
and A C fl, then u minimizes J- in Lip/l(A). 

Our principal tool will be the maximum principle. To establish it in 
its suitable generality, we shall introduce the notions of sub-minimum and 
super-minimum. 

Definition 1.1 A function w € Lipfc(fi) is a super-minimum (resp. a 
sub-minimum) for the functional T if for every i? € Lipfc(fi, w), with $ > w 
(resp. -d < w), we have 

In particular, a minimum in Lipfc(fl) is both a sub-minimum and a 
super-minimum. It is not difficult to show that the converse is also true: if 
a function is at the same time a sub-minimum and a super-minimum, then 
it is a minimum. However, this result is not relevant for our purposes, and 
its proof is left to the reader. 

Lemma 1.1 (Maximum principle I) Let F(z) be a strictly convex 
function, and let v{x) and w(x) be respectively a super-minimum and a sub-
minimum in Lipfc(fi) for the functional T. Suppose, moreover, that w < v 
on d£l. Then, w < v in fi. 
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Proof. Suppose, on the contrary, that the open set 

A = {x € fi : v(x) < w(x)} 

is non-empty, and define i?(x) = max{v(x),w(x)}. The function -d belongs 
to Lipfc(n,v), and $ > v in fi. Since v is a super-minimum, we shall have 
F(v, ft) < T^, fi), or otherwise, what is the same: 

T{v,A) <T{w,A). 

In a similar way, comparing w with y = mm{v, w} we obtain 

.F(u,.4) > F{w,A), 

and in conclusion 

F{v,A) = F{w,A). 

Since w = v on dA and to > v in A, we have Dw ^ Dw on a set of 
positive measure, and therefore for the strict convexity of J-: 

T (^~-^ < \Hv,A) + \?(w,A) = F(v,A). 

On the other hand, the function u = '!L^- verifies u = v on dA and 
u > v in A, and hence 

contradicting the preceding inequality. • 

As a simple consequence of the maximum principle we have the following 

Lemma 1.2 Let F(z) be o strictly convex function, and let v{x) and 
w{x) be respectively a super-minimum and a sub-minimum in Lipfc(fi) for 
the functional J-. Then: 

sup(u> — v) — sup(u; — v). (1.6) 
n an 

Proof. It will be sufficient to remark that for every a G R, the function 
v + a is a, super-minimum in Lipfc(fi), and that for every x € dQ, we have 

w(x) < v{x) + sup(u> — v). 
an 

By the preceding lemma the same inequality holds in the whole Cl. From 
it, the relation (1.6) follows immediately, since the opposite inequality is 
trivial. • 
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In particular, if u and v minimize T in Lipfc(fi), the relation (1.6) holds 
both for u — v and for per v — u, and therefore in his case we have 

sup \u — v\ = sup \u — v\. (1.7) 
n do. 

From that, it follows immediately the uniqueness of the minimum for 
the functional T in Lipfc(fi, 17), and also in Lip (fl, U). 

It is clear that none of the preceding results holds if we suppose that the 
functional T is convex but not strictly convex. For instance, if we define 

F(z) = max{0, \z\-M}, 

every function u € LipAf(fi) minimizes the corresponding functional T. 
Nevertheless, in many cases it is possible to prove the existence of minima 
for convex functionals by considering first the strictly convex function 
F(z) + e\z\2 and then taking the limit as e -4 0. 

1.2 The Bounded Slope Condition 

Lemma 1.3 (Reduction to the boundary) Let F(z) be a strictly convex 
function, and let u(x) be a minimum for J7 in Lipj.(f2). Then: 

[«]„,!=-up J H ^ J M . (i.8) 

yedtl 

Proof. Let x\ ^ X2 be two points in CI, and let r = X2 — x\. The function 

uT(x) = u(x + T) 

minimizes T in LipA.(fir), with 

flT = {x£Rn :x + T€fl}. 

The open set finQ,T is non-empty, since it contains x\\ and the functions 
u and uT both minimize T in Lipfc(Q n CtT)- From (1.7) we conclude that 
there exists a point xo £ d(Q n Q,T) such that 

|u(a;i) - u(x2)\ - \u(xi) - u r(a;i)| 

< \u(x0) - uT(x0)\ 

= \u(x0) -u(x0 +T)\ . (1.9) 

file:///z/-M}
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On the other hand, at least one of the points xo, XQ + r belongs to 
SO, and therefore, indicating by M the right-hand side of (1.8), we get 
from (1.9): 

\u(xi) - u(x2)\ < M\xi - x2\, 

and the lemma is proved. • 

In view of an application of Proposition 1.2, we are led to look for a 
bound for the difference \u(x) — u(y)\ when one of these points, for in­
stance y, belongs to dfl. For that, we shall make recourse again to the 
maximum principle, comparing the function u with suitable sub-minima 
and super-minima of the functional T'. 

An important class of comparison functions is that of afnne functions: 

w(x) = a+ (z0,x) 

with a e R and ZQ € R™. It is easy to see that w £ LipiZoi(fi) and that 
it minimizes T in Lip(H), whence in Lipu0i(fi). Actually, let n(x) be a 
function in Lip(fi), with 77 = 0 on dQ. By the convexity of F(z) there 
exists a vector A € R" such that 

Fizo + Z)>F{zo) + (\,t) 

for every £ 6 R™. Taking £ = Drj(x) and integrating on fi we get 

F{w + rj)= [ F(z0 + DT]) dx > F(z0)\n\ + [ (A, Drf) dx, : 

where \Cl\ = meas(O). The last integral is zero, since 77 = 0 on dCl; it 
follows that 

T(w + n,fi) > F{z0)\Cl\ = ?(w,fi) 
* 

and therefore w minimizes J- in Lip (Jl). 

Definition 1.2 We say that the function U : dCl —> R satisfies a bounded 
slope condition (briefly, a B.S.C.) with constant Q > 0 if for every XQ £ dfl 
there exist us two affine functions w+ = w~£o and w~ = w~o such that 

w~(x) < U(x) <w+(x) in dtt; (1.10) 

w-(x0) =U(x0)=w+(x0); (1.11) 

[w-]o,i<Q; [ « ; + ] o , i < g . (1.12) 
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Note that, unless the function U is itself an afnne function, the 
B.S.C. cannot be satisfied if Q is not a convex set. In fact, if U is not 
an aflfine function, we have w+ ^ w~, and therefore the set 

V = {xeRn:w-{x) <w+(x)} 

is a closed half-space, and XQ € dV. On the other hand, we must have 
Q C V, because otherwise (1.10) could not be satisfied, so that in conclusion 
every point of the boundary of Q has a supporting hyperplane, and Q is 
convex. Of course, in general, the convexity alone is not sufficient for the 
B.S.C, as one can easily see if dQ has a flat portion E, and if U is not 
constant on S. Actually, even the strict convexity of Q is not sufficient for 
the B.S.C, as the reader will verify by taking Q = {(x, y) G R 2 : xA < y < 
1} and U(x,y) = x2. 

On the other hand, we have 

Theorem 1.1 (Miranda [1]) Let Q be an open bounded subset of R™, 
and suppose that there exists a positive constant c = c(Q), and for every 
xo £ dQ, a hyperplane IIXo through xo, such that for every x £ dQ, it holds 
that 

\x — XQ\2 < c dist (x,HXo) • (1-13) 

Then, every function U of class C 2 (R n ) satisfies the B.S.C. on 90 . 

Proof. We remark that the assumptions imply that CI is convex. 
For every XQ £ dCl we must find two affine functions w±(x) satisfying 

conditions (1.10), (1.11) and (1.12). Since fi is bounded, we can assume 
that U has compact support.3 Always without loss of generality we can 
assume that xo = 0 and that n x o is the hyperplane xn = 0. 

Let / i b e a real number, and set 

w{x) = (7(0) + (M/(0), x) + i*xn . 

We have w(0) = U(0). Suppose now that for some x G dQ we have 
w(x) = U(x). Then: 

H = ~{U(x) - £7(0) - {DU(0),x)} = -±-(D2U(t)x,x) 

3We remember that the support of a measurable function / , defined in R n , is the 
set R " — A, where A is the largest open set in which f(x) = 0 almost everywhere. The 
support of / is denoted by s u p p ( / ) . 
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for some £ G R™. Therefore, if w{x) = U(x), we will have 

\lA < & sup \D2U\ < c sup \D2U\. 

As a consequence, taking |/i| = c sup \D2U\ +1, we have either w > U or 
to < J7 in dfi — {x0}, depending on the sign of \i. For these affine functions 
w* we have 

[ u ^ k i < l-D^(0)| + H < 1 + sup \DU\ + c sup |£»2t/|, 

and the theorem follows. • 

From a geometric point of view, condition (1.13) says that the boundary 
of CI cannot lie too close to its tangent hyperplane. If dCl is of class C2 , it 
is equivalent to the assumption that all the principal curvatures of 80. are 
strictly positive (and hence, by continuity, that they are bounded below by 
a positive constant). The proof is left to the reader. 

Theo rem 1.2 Let F{z) be a convex function in R", and let U : dCl —> R 
be a function satisfying the B.S.C. with constant Q. Then, the functional 

F(u,n)= [ F(Du)dx (1.14) 

has a minimum in Lip(fi,(7). Moreover, at least one of the minimizing 
functions satisfies the estimate 

[uh,i<Q. (1.15) 

Proof. Let us assume first that F is strictly convex. The class Lip^f i , U) 
is non-empty, since it contains at least the function 

ip+(x)= inf w+0(x). 

Let k > Q, and let u be the function minimizing F in Lipfe(fi, U), a 
function necessarily unique by the strict convexity of the functional. By 
the maximum principle we have 

Wxo(X)<U(X)<Wto(X) 

for every x € Cl, and hence, since wf0(xo) = u(xo), 

Wx0(
X) ~ ^ x o ^ o ) < U{x) - U(X0) < W+Q(x) - W+0(X0) . 



22 Direct Methods in the Calculus of Variations 

From Lemma 1.3 and from (1.12) we get then 

[u]o,i < Q, 

and the conclusion follows from Proposition 1.2. 
Let now F(z) be simply convex, and set Fe{z) = F(z) + e\z\2. If ue 

is the function minimizing the functional Te in Lip (fi, U), we shall have 
[u<r]o,i < Q, and by the maximum principle supn |ue| = sup a n \U\. We can 
therefore find a sequence {wfc} = {ueic}, with e*, —• 0, converging uniformly 
to a function u G Lipg(0, U). Arguing as in the proof of Proposition 1.1 
we conclude that u minimizes T in Lip (ft, U). • 

1.3 Barriers 

In the preceding section we have proved the existence of minima for convex 
functionals depending only on the gradient, but otherwise arbitrary, under 
special assumptions of convexity on the domain Cl. If we want to weaken 
these conditions, so as to treat more general domains Q, on the one hand, 
we must restrict the class of functionals under examination, and on the 
other we shall use new comparison functions, more general than the affine 
functions of the B.S.C. 

In this section we shall treat some simple but meaningful situations, 
following the methods introduced by BERNSTEIN [1] and SERRIN [3]. 

For a; £ ft, we denote by d(x) the distance between x and dtt. Moreover, 
for t > 0, we set 

Et = {x£Q,:d(x) <t}, (1.16) 

rt = {xen:d{x)=t}. (1.17) 

Definition 1.3 Let Q, be a bounded open set in R", and let U be a 
Lipschitz-continuous function in d$l. An upper barrier (relative to the 
functional T) is a function v+, Lipschitz-continuous in some St, t > 0, 
and such that 

« + = f / o n 3 f i ; (1.18) 

v+ is a super-minimum in Et ; (1-19) 

and 

v+> sup U on Tt • (1-20) 
an 



Semi-Classical Theory 23 

In the same way we can define a lower barrier v , simply substituting 
(1.19) and (1.20), respectively, with 

v~~ is a sub-minimum in Ef, (1-21) 

v- < inf U on Tt. (1.22) 
dQ 

It is easily seen that if v+ is an upper barrier relative to the function 
—U, —v+ is a lower barrier relative to U, so that the existence of upper 
barriers for a class of functions U, closed with respect to the change of sign, 
implies that of lower barriers, and vice versa. We can therefore treat only 
the case of upper barriers. 

The following result is in some respect a generalization of Theorem 1.2. 

Theorem 1.3 Let F(z) be a strictly convex function, let U be a Lipschitz-
continuous function on dCl, and suppose that there exists an upper barrier 
v+ and a lower barrier v~. Then, the functional T has a minimum in 
Lip(ft,C7). 

Proof. For x S ft set 

min < v+(x), sup U > if x € S t , 
w+(x) = < L en J 

sup9f i U if x G Q, — Tit, 

max<«~(a;), inf{/> if x S S t , 
w-(x) = ) \ v " an J 

^ inf an U if x e ft - S t . 

The functions w+ and w~ are Lipschitz-continuous in Cl; let Q be the 
largest of their Lipschitz constants. 

If k > Q, the class Lipfc(fi, U) is non-empty, and the functional T has 
a minimum in it. Let u be the minimizing function. We have obviously: 

inf U < u(x) < sup U; 

moreover, since v~ < u < v+ in <9Et, we get from Lemma 1.1: 

w~(x) < u(x) < w+(x) in ft. 

On the other hand, we have 

w~(x) = u(x) = w+(x) on 9ft 
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and therefore, arguing as in Theorem 1.2, we can infer that 

[«]o,i < Q • 

The conclusion follows from Proposition 1.3. 

Remark 1.1 We remark that the functions w+ and w~ defined above 
are, respectively, a super-minimum and a sub-minimum for the functional 
T in Q. It follows that a necessary and sufficient condition for a strictly 
convex functional J- to have a minimum in Lip (Cl, U) is that there exists 
a super-minimum and a sub-minimum taking at the boundary of Q the 
value U. 

Moreover, the preceding theorem is really a generalization of Theo­
rem 1.2, at least as far as strictly convex functionals are concerned, since 
one can show that the functions 

tp+(x) = ini w+0(x) and ip~(x) = sup w~(x) 
x0£dil x 0 € d n 

are respectively a super-minimum and sub-minimum. 
The extension of the above result to general convex functionals depends 

on the existence of barriers for the approximating functionals 

^ e(u) = [ (F(Du) + e\Du\2)dx. 

If these functionals admit barriers (at least for e small enough) and 
if the Lipschitz constants of these barriers remain bounded as e —> 0, 
one can argue as in Theorem 1.2 and prove the existence of a solution in 
this case. • 

It remains to discuss the construction of barriers. We shall investigate 
the case of upper barriers; the lower barriers can be treated similarly. 

The classical argument leading to EuLER's equation gives a differential 
inequality for super-minima. 

Let F be of class C2 , and let v(x) be a super-minimum of class C 2 in 
some open set S. If r) is a non-negative function with compact support in 
S, the function 

g(t) = F{v + tV, E), t>0, 
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has a minimum for t — 0, and therefore we must have g'(0) > 0. Differen­
tiating under the integral sign we easily get the inequality4: 

g'(0)= f FZj(Dv)Djr]dx>0 

for every r] G C O ° ( S ) , 77 > 0, and hence, integrating by parts and taking 
into account the arbitrariness of r\ > 0: 

DjFZj{Dv)<0. 

Developing the derivatives, we get in conclusion: 

C(v)=:FZiZj(Dv)~^-<0 i n S . (1.23) 

Reciprocally, if a function v(x) of class C2(£) verifies the inequality 
(1.23), we will have g'(0) > 0 and therefore, by the convexity of g, g(0) < 
g(l), so that v{x) is a super-minimum. We note that a function satisfying 
the inequality (1.23) is a supersolution of the corresponding differential 
equation, so that in a certain sense the relation between super-minimum 
and supersolution is similar to that between minimum and solution of the 
EULER equation. 

Our problem is then reduced to the search for a solution to the differ­
ential inequality (1.23) in a neighborhood E t of the boundary of 0 , taking 
on d£l the prescribed value U(x), and greater than sup a n U on Tt-

For the sake of simplicity, we shall write Al:> (z) instead of FZi Zj(z). Since 
F is a convex function, the matrix A%i is positive semi-definite; moreover 
if we assume, as we shall always do, that F is strictly convex, we will have 
for every £ G R": 

A ( 2 ) | £ | 2 < A % ) ^ < A ( z ) | £ | 2 , (1.24) 

where A(z) and X(z) > 0 are, respectively, the largest and the smallest 
eigenvalues of the matrix A(z). 

We shall also introduce the BERNSTEIN function: 

£(z)=Aij(z)zizj. (1.25) 

4We denote by FZi the derivative of F with respect to Zi, and with Fz the gradient 
of the function F. Remember that we always sum over repeated indices. 
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We have, trivially: 

X(z)\z\2 < £(z) < A(z)\z\2 . (1.26) 

For what concerns the open set Q, we shall suppose that it is bounded 
and that its boundary dil is of class C2 . For every point y £ dfl there will 
then exist a ball B e d tangent to dSl in y, that is such that BCidD, — {y}. 
Let r(y) be the supremum of the radii of the balls B with that property; 
since dCl is compact, the continuous function r{y) is bounded below by 
a positive constant r . It is easily seen that r _ 1 is an upper bound for the 
principal curvatures of dCl, oriented in such a way that a convex set has 
positive curvatures. 

For t < T, every point x G St has a unique point y = y(x) of least 
distance on dil, that is such that d(x) = \x — y(x)\. The points x and y are 
connected by the relation: 

x = y + v(y)d(x), 

where v(y) is the interior normal to dQ, at y. 

Lemma 1.4 Let Q, be a bounded open set in R", with boundary of class 
Ck, k > 2. Then, the distance function d(x) is of class Ck in ET, and for 
every i 6 S T we have 

Ad(x) = - V , Ki{f\M , , (1.27) 

where «i(y) are the principal curvatures of dQ, at y and A is the LAPLACE 

operator: 

n 

A=:^AA. 

Proof. Let xo £ £ r and let yo be the point corresponding to XQ on <9fi. 
We can assume that yo = 0 and that the tangent plane to <9fi in 0 is the 
horizontal plane xn = 0. In a neighborhood W of 0 the boundary dCl is the 
graph of a function i?(j/), y = (2/1,2/2, • • • ,2/n-i), with Z>i?(0) = 0; we can 
assume that Q, lies locally below the graph of 1?. 

Modulo a possible rotation around the vertical axis, we can also assume 
that the matrix {D2$(0)} is diagonal, so that its elements are the opposites 
of the principal curvatures of dCl in 0: 

D2#(0) = diag [-m, -K2,..., - « n - i ] • (1-28) 
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Let V be the intersection of W with the plane xn = 0; in V x R we 
define 

•y(y,d) = y + u(y)d; y = (y,d(y)). 

We have 7 £ C fc_1; recalling that 

Vi{y) =-VnD^y) (i = 1,2, . . . , n - l ) ; 

we obtain from (1.28): 

D7(0, d) = diag [1 - Kid, 1 - K2d,..., 1 - Kn_id, 1]. (1.29) 

If d < T, the Jacobian determinant Dj is positive, and therefore it 
is possible to express y and d as functions of x, both of class C f e_1 in a 
neighborhood of x^ =: (0,d). Moreover, Dd(x) is the normal to Td(x)

 a t 
x, and has the same direction as the normal to dCl at the corresponding 
point y(x): 

Dd(x)= VBn(y(x)) = vrd{x). (1.30) 

From the preceding relation it follows at once that d{x) is of class Ck, 
because the right-hand side is of class Ck~1. Moreover, the mean curvature 
of rd(X o ) at x0 is given by 

1 ™_1 1 n 1 
H(x0) =: 7y^Ki(x0) =: -VOififio) = -Ad(x0). 

n — 1 ^—' n — 1 z—' n—1 
We can evaluate the last quantity by means of (1.30): 

n n n —1 

Ad(x0) = ]T) A(^ i o y)(x0) = Y1Y1 DhUi(0)Diyh(x0). 
*=1 i = l fc=l 

On the other hand, Dnyh = 0, and taking into account (1.28): 

Dvv = diag [«i, K2, . . . , K „ - I , 0]. 

Finally, ^ ' is the inverse matrix of Dj, so that from (1.29) we have 

-Dy(xo) = diag -;,- j . - - - . i . 
[1 — Kid 1 — K2d 1 — Kn-\d 

This concludes the proof. • 
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From (1.27) we immediately get 

n - l 
-Ad(x) > ] T Ki{y{x)) = (n - l)H(y), (1.31) 

j = i 

where H(y) is the mean curvature of Oil at y. We note that the inequality 
(1.31) reduces to an equality for x £ dCl. 

For what concerns the assumptions on the boundary datum U, we shall 
suppose that this function is the restriction to dCl of a function of class 
C 2(R") , that we shall again denote by U. Since fi is bounded, it is not 
restrictive to suppose that U has compact support. 

We shall look for upper barriers of the form: 

v(x) = U(x) + 4>(d(x)), (1.32) 

where ip(t) is a regular function, satisfying the relations: 

^ ( 0 ) = 0 ; V ' ( i ) > 0 ; ip"(t)<0. (1.33) 

We compute easily: 

£{v) = AijUij + Tp'Aijdij + -^(E + AijUiUj - 2AijviUj), (1.34) 

where as usual we have set Vi = J^, etc. 
We have 

AijUtj < cA 

0 < a =: A^UiUj < cK 

and from the SCHWARTZ inequality: 

2\Aij
ViUj\ < 2VSa < \s + 2a . 

In conclusion (remember that ip" < 0) we have 

C(v) <cA + TP'A^dij + j ^ t^£ - c\\ . (1.35) 

From this inequality we shall discuss two different situations, in a sense 
opposite to each other. In the first case, we shall assume that the domain 
Q is convex, and we shall make the fewest possible assumptions on the 
functional J-; in the second we shall consider general domains and we shall 
impose conditions on S and A (and hence on the function F(z)) that permit 
the construction of barriers for every boundary datum U. 
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Case 1. Convex domains . In this case the matrix {dy} is negative 
semidefinite, and therefore we have A^dij < 0. It follows that 

^ ) < c A + ( ^ ( ^ - c A ) " ( 0 6 ) 

Assume now that 

lim ^ = 0. (1.37) 
|«|-KX> t\Z) 

Since |.Du| > tp' — sup |-DC/| we can conclude that if ip' is greater than 
some constant L, there will result cA < | £ and therefore, since ip" < 0: 

£<^Hw+1}- (L38) 

Let now to and a be two positive numbers, that we shall fix later, and let 

iP{d) = log(l + ad). 

For x G St0 we have 

i>'(d{x)) = %r^ > a . (1.39) 
^ K ^ JJ 1+ ad(x) - 1+ato K ' 

If the last quantity is greater than L we can use (1.38); observing that 
with our choice of ip we have if)" = —{ip1)2, we can conclude that the 
function v = U(x) + ip(d(x)) is a supersolution in £t0 . It will be an upper 
barrier if it satisfies the relation: 

tP(t0) = log(l + o-io) > sup U - inf U = Lx • 

It is now easy to see that these two inequalities can be satisfied taking 
to^/cr = 1 and choosing a sufficiently large. In conclusion, we have proved 
the following theorem: 

Theo rem 1.4 Let ft be convex, and let (1.37) hold. Then, the functional 
J- has a minimum in Lip (fi, U). 

Case 2. Genera l domains . If we eliminate the assumption of the con­
vexity of f2, it is necessary to take into account the second term in (1.35): 

iP'Aijdij < c ( l + |Dv|)A, 

and therefore instead of (1.36) we arrive at the weaker inequality: 

£(t,)<c(l + |i*|)A + ^ Q £ - c A 
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This inequality will be sufficient if we assume that 

hm sup ' \ < +00. (1.40) 
|z|-xx> t-{z) 

In this case, if ip' is large enough, we have 

cA<^£, (l + \Dv\)A<±c£, 

and therefore 

Choosing tp(d) = c _ 1 log(l + ad) and arguing as above, we obtain the 
required barrier, and hence the following: 

Theo rem 1.5 If the relation (1.40) is satisfied, the functional T has a 
minimum in the class Lip ($l,U), for every bounded open set fi with regular 
boundary, and for every function U of class C2. 

We note that (1.40) is satisfied if the differential operator C(v) is 
uniformly elliptic; in other words if A(z) > f A(z), for some v > 0. This 
happens for instance when F(z) = \z\p, or when F{z) = (1 + |z |2)p /2 , with 
p > 1, in particular in the case of the DlRICHLET integral: 

(v) = [ \Dv V(v)= / \Dv\2dx. 

1.4 T h e Area Functional 

When F(z) = ^ / l + \z\2, the corresponding functional: 

A(u,n)= [ ^l + \Du\2dx (1.41) 
Jn 

gives the area of the graph S of the function u. In this case, we have 

A^(z) = (1 + |z |2)-3 /2{,%(l + |z|2) - ZiZj} (1.42) 

and therefore 

A = ( l + | z | 2 ) - 1 / 2 ; A = (l + | * | 2 ) - 3 / 2 ; £ = \z\2X. (1.43) 

It is easily seen that (1.37), let alone the stronger assumption (1.40), is 
not satisfied, and hence it is not possible to apply to this case the results of 
the preceding section. Nevertheless, due to the special form of the matrix 
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{A i j}, it is possible to construct barriers, and hence to prove the existence of 
non-parametric minimal surfaces, that is of minima of the functional (1.41) 
assuming prescribed values on the boundary, for a large class of domains 
Q, containing all the convex sets. 

Once again, we shall look for barriers of the form: 

v(x) = U(x)+ij>(d(x)) (1.44) 

with the function I/J satisfying conditions (1.33). For such functions v we 
have 

C(v) = Aij(Uij + i/t'dij) + il/'^ckdj . (1.45) 

Assume now that there exists a constant c such that 

Aijdij<c{\Dv\ + l)\. (1.46) 

In this case, observing that A^didj > X\dx\
2 = A, we get 

C(v) <cA + \{al>\\Dv\ + 1) + V"} , 

and since \Dv\ < c + ip': 

C(v) < X U" + c<//(l + V') + cj | . 

Assuming now that ip' > 1, and remembering that 

^ = (l + | £ h , | 2 ) < c + V ' 2 <cV/ 2 , 

we obtain in conclusion: 

C(v) < \{xP" + CI/J'2} . (1.47) 

Arguing as in the preceding section, it is now simple to verify that the 
function: 

ip(d) = c - 1 log(l + ad) 

is an upper barrier in S t o , provided we choose t0 = - ^ and a large enough. 
It remains to discuss the geometric meaning of condition (1.46). Taking 

into account the fact that dijdj = |gf-Mx|2 = 0, we have 

Aij{Dv)dij = A{(1 + \Dv\2)Ad - ViVjdij} 

= \{(l + \Dv\2)Ad-UiUjdij}. 
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Since the function d(x) is of class C2 in a neighborhood of dfl, the last 
term can be estimated by a constant, and hence we can conclude that (1.46) 
holds if 

Ad < 0 (1.48) 

in a neighborhood of d£l, or otherwise, in virtue of (1.31), if the mean 
curvature of dQ is non-negative. Thus we have: 

Theorem 1.6 Let Q, be a bounded open set in R n , whose boundary is a 
C2 manifold with non-negative mean curvature. Then, for every function U 
of class C2 the area functional (1.41) has a unique minimum in Lip (fi, U). 

In particular, the DlRlCHLET problem has a solution for every C2 

boundary datum if Q, is convex. However, except in the two-dimensional 
case (n = 2), the condition of non-negative mean curvature is obviously 
more general than that of convexity. 

Remark 1.2 Since the function v(x) given by (1.44) satisfies the estimate 
\Dv\ < c + \DU\, observing that in the proof of the preceding theorem 
we only need the first and second derivatives of U, we can conclude that 
the inequality (1.46) is satisfied only if we assume that Ad < eo, with eo > 0 
depending only on the C2 norm of the function U. • 

1.5 Non-Existence of Minimal Surfaces 

We shall now examine in more detail the condition of non-negative mean 
curvature, and we shall prove that in a certain sense it is necessary for 
the general solvability of the DlRlCHLET problem for the area functional. 
More precisely, we shall show that if the mean curvature H(xo) of dQ is 
negative at some point XQ of the boundary, then there exists a regular 
function U for which the area functional has no minimum in Lip (Q, U). 

For that, we need a second version of the maximum principle. Assume 
that Cl is connected5 and that its boundary dfl is the union of two disjoints 
sets: 

on = d°n u dxn 
with d1^! open in d£l (that is d1^} = dfl n A for some open set A) and d°Q, 
non-empty. 

5 This assumption is not restrictive, since otherwise it is possible to consider separately 
its connected components. 
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Lemma 1.5 (Maximum principle II) Let Cl as above, and let u be a 
function minimizing the area functional in Lip (fi). 

Let v € C 1 (fi) n C(0) be a super-minimum such that 

u<vind°Cl, (1.49) 

dv 
liminf inf — > [u]o,i, (1-50) 
t->o+ Anrt dv L J ' 

w/iere | ^ is t/ie derivative in the direction of the exterior normal to IV 
Then, u < v in fi. 

Proof. Assume first that u < v on d°Q,. By continuity, there exists a 
to > 0 such that for every t < to: 

dv 
— >[u]o,i in r t n A, (1.51) 

v>umTt-A. (1.52) 

Suppose now that u(xo) — v(xo) > 0 for some xo G Q, and let t < to be 
such that xo € £lt =: £1 — T*t. By Lemma 1.1 the restriction to fit of the 
function w = u — v will take its (positive) maximum at some point of r t , 
or better of Tt t~) A, since v > u in Yt — A. Let x\ be such a point; if we 
indicate by v the exterior normal to Tt at x\, we get from (1.51): 

,. . r w(xi — hu) — w(xi) , , dv 
liminf - i - i -i ^ > - u o,i + ^ - > 0. 

This inequality contradicts the assumption that w takes its maximum 
in xi, and the lemma is proved if u < v on d°fi. The general case 
follows easily by writing v + e (e > 0) instead of v, and letting e tend to 
zero. • 

We remark that the above lemma holds for every strictly convex 
functional. Inequality (1.50) is trivially satisfied if 

—— = +oo on dlQ, 
dv 

as will happen in the following. 
We can now prove the non-existence of non-parametric minimal surfaces. 

Theorem 1.7 Let Q, be a connected bounded open set in R n with C2 

boundary dfi,, and let H(xo) < 0 at some point xo S dQ. 
Then, there exists a regular function U such that the area functional 

A{u, 0) does not have a minimum in Lip (fi, U). 



34 Direct Methods in the Calculus of Variations 

Proof. Consider a function u minimizing the functional .A in Lip (CI, U), 
and let us begin by estimating u in. CI — BR(XO), R > 0. 

For x outside BR let 5(x) = dist (X,BR) = \x — xo\ — R, and 

v{x) = K + 4>(6(x)), K>0. 

Recalling that |IM|2 = 1 and therefore SijSj = 0, we get from (1.45): 

£(v) = \{W + W)3}A6 + iP"} (1.53) 

so that, choosing ip(S) = —By/5: 

£<„) < W ) . * + *•} < X ^ l { j ^ j j j j * + l} (1.54) 

since 

A<-
 n _ 1 ^ n - 1 

AS = -, r > 
\x — xo\ diam(fi) 

Taking B2 = 2 ^ f ^ , we get C(v) < 0, so that v is a supersolution. 
We have obviously | ^ = +oo on 8BR, and hence, choosing 

K= sup t/ + 5 i / d i a m ( n ) , 
an-B7 

we obtain from the preceding lemma the estimate 

sup u < sup U + .Bi/diam(fi) 

from which in particular: 

sup u< sup U + 5^/diam (CI). (1.55) 
dBRnn dn-~BK 

We shall now estimate the supremum of u in Cl D BR. 
Since the mean curvature of dCl at xo is negative, and dCl is of class 

C2 , taking into account (1.31) we can assume that there exists two positive 
numbers eo and R such that 

Ad > e0 in n n BR(x0) 

in which as usual we have set d(x) = dist (a;, dCl). 
Taking again v = i>(d) = a — (3y/d we get as above 

C(v) < \{(4,'fAd + i,"} <~^{l~ to?) < 0 
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provided e0/3
2 > 1. Moreover, setting 

a = sup u + /3-\/diam (fl) 
dBRr\Q. 

it is possible to use Lemma 1.5 once again to obtain, taking into account 
(1.55), the estimate 

sup u < sup C/ + (/3 + 5) v
/ diam(f i ) 

nnBR dii-BR 

and hence in particular: 

sup U< sup U+(/3 + B)^diam{U). (1.56) 
dnnBR dfl-BR 

The above inequality gives a necessary condition for the solvability of 
the DlRlCHLET problem for the area functional. 

If this condition does not hold for the boundary datum U, as it is the 
case if we take 

u = 0 on an - BR 

and 

U(x0) > (P + B)y/diamJfi), 

the area functional cannot have minimum in Lip (il,U). • 

The example that follows show what we can expect in that situation. 

Example 1.1 Let n = 2 and let A^ be the annulus 

Af = {x G R : Q < \x\ < R} . 

Consider the function: 

u = f 0 on dBR , 

~ [M on 8Be , 

where M is a positive constant. By the strict convexity of the area 
functional and the symmetry of the domain A^ and of the datum U, the 
only minimum in Lip(A^,U), if it exists at all, must be a function u(r) 
depending only on r = \x\. 

The EULER equation in this case becomes 

u" + -u ' [ l + (u1)2} = 0 
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and its solution, taking into account the condition u(R) = 0, is 

. , , R + VR2- c2 

u(r) = clog — . 
r + v ^ — c 

The constant c, 0 < c < g must be determined from the condition 
u{g) = M. We have 

u(g) = clog < plog * s_ = M0(i2, £>) 
£ + v e - c e 

and hence the DlRlCHLET problem can be solved only if M < MQ. 
In the limit case M = MQ we have c = g and the normal derivative 

y/r2 - g2 

becomes infinite on the internal circumference. If M > M0 there are no 
solutions in A^ assuming the given values at the boundary. In this case the 
minimal surface is given by the graph of the solution u(r) corresponding 
to the limit value Mo, plus the portion of the vertical cylinder having for 
base the internal circumference of radius g, that lies between the levels Mo 
and M. 

1.6 Notes and Comments 

The methods of this chapter take their origin from the ideas of S. BERN­

STEIN [l]-[5], as generalized by SERRIN [3]. In his paper, SERRIN obtained 
a priori estimates for solutions of general elliptic equations: 

A%:*(x, u, Du)DijU = B(x, u, Du), 

from which, using the fixed point theorem of SCHAUDER, he could prove 
the existence of solutions of the DlRlCHLET problem. Our point of view 
is slightly different, and it is inspired by the papers of HARTMAN and 
STAMPACCHIA [1], and even more so by that of M. MIRANDA [1] on 
non-parametric minimal surfaces. These papers in turn echo the methods 
introduced by HlLBERT [1], [2] in his proof of the existence of harmonic 
functions in two-dimensional domains (DlRlCHLET principle), later adapted 
by HAAR [1], RADO [1], [2] and others to the minimal surface equation in 
dimension two. In particular, HlLBERT [1] introduced the so-called three 
points condition, which in dimension two is equivalent to the B.S.C. 
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The conclusion of Theorem 1.6 remains valid only if we assume that the 
boundary datum U is of class Cl>a, with a > 0, but not in general if U is 
only Lipschitz-continuous (GlUSTl [4]). 

On the other hand it can be proved, always under the hypothesis of 
non-negative mean curvature of the boundary d£l, that for every continuous 
boundary datum U the DlRICHLET problem has asolution u of class C2(fl)C\ 

c°(n). 
The main ingredient in the proof of the last result is the a priori 

inequality for the gradient: 

m , , , , ( OSC(U,BR(X0))\ , . 

\Du(x0)\<ciexpic2 ^ - ^ > (1.57) 

in which OSC(U,BR(XQ)) indicates the oscillation of u in the ball of radius 
R centered at x0 (BOMBIERI, D E GlORGI and MIRANDA [1]). 

Consider now a sequence Uk of regular functions, uniformly convergent 
to U on dfl. Denoting by Uk the solution of the problem with datum 
Uk, whose existence follows from Theorem 1.6, we have by the maximum 
principle: 

sup |ufe - uh\ < sup \Uk - Uh\, 
n an 

and therefore the sequence Uk converges uniformly in CI to a function u, with 
u = U on dCl. By inequality (1.57) the sequence Uk has first derivatives 
locally equibounded in fl, and hence u it is Lipschitz-continuous. 

To conclude the proof, we observe that the minima of the functionals of 
this chapter, under assumptions of regularity for the function F(z) and of 
uniform convexity: 

JW*)&fc > "(*)l£l2 

are regular functions (see later; Chapters 8 and 10). In particular, this 
is true for the function u, which is therefore a classical solution of the 
DlRICHLET problem for the area functional.6 

The proof of the non-solvability of the DlRICHLET problem for the 
minimal surface equation in open sets whose boundary has negative mean 
curvature at some point is due to FINN [1] and to JENKINS and SERRIN [2]. 

6For further information on minimal surfaces, one can see the books by GIUSTI [6] 
and by MASSARI and MIRANDA [1]. 
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This case can be treated by considering the "relaxed" functional: 

^ ( u , n ) = / y/l + \Du\* + [ \u-U\dHn-i 

in the class BV(Q,) of functions whose derivatives are Radon measures in Q. 
It can be proved that the functional T has minimum in BV(Cl) for arbitrary 
open set fi and boundary datum U S ^(dCl), and that the minimizing 
function u(x) is regular in the interior of 0 (once again a major role is 
played by the a priori inequality (1.57) for the gradient). Moreover, if 80, 
has non-negative mean curvature in a neighborhood of a point Xo G dd and 
if U is continuous at xo, then U(XQ) = U(XQ) (MIRANDA [2]). Therefore if 
dCl has non-negative mean curvature at every point, and if U is a continuous 
function, the minimum of T is the solution of the DlRlCHLET problem for 
the minimal surface equation. 



Chapter 2 

Measurable Functions 

2.1 LP Spaces 

The purpose of this section is to list some definitions and properties of 
Lp spaces that will be useful later. For the proofs, the reader is referred 
to one of the many books on Lebesgue integrals, such as ROYDEN [1] or 
SAKS [1]. 

Of course, when we speak of measurable sets and functions, we shall 
always refer to Lebesgue measure; as usual, we shall not distinguish between 
functions that differ only on a set of zero measure, so that for instance the 
statement "the function f(x) is continuous in A" means strictly speaking 
"the function / coincides almost everywhere with a function / continuous 
in A." If E is a measurable set, we shall indicate its measure with meas (E), 
or briefly with \E\. 

We begin by recalling the definitions of some well-known function 
spaces. 

We shall denote by Cfe(ft) (k = 0,1,. . .) the space of the functions 
having continuous derivatives up to and including the order k (if k = 0, 
it will be the space of continuous functions); and with C°°(Q) the space 
of infinitely differentiable functions in O, that is the intersection of all the 
spaces Ck(Cl). With Ck(Q) we will indicate the space of functions in C*(fi), 
whose derivatives up to the order k can be extended to continuous functions 
up to the boundary dQ, and with CQ(Q,) (k = 0,1, . . .) the subspace of 
Cfc(fi) of the functions with compact support contained in fi. 

39 
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The spaces Ck(Q) are Banach spaces, with the norm1: 

| | u | | c *= ^ s u p I D ^ ) ! . 
\0\<kXeQ 

If 0 < a < 1, and D is a domain in R n , (namely, the closure of a bounded 
open set), we shall denote by C°'a(D) the space of Holder-continuous func­
tions in D; that is continuous functions for which2 

r n Mx) — U(y)\ 
u 0 , a = : sup i-Y ^ < + o o . (2.1) 

x,veD \x-y\a 

*¥=y 
More generally, we shall denote by Ck'a(D) the space of functions whose 

derivatives up to order k are Holder-continuous3 in D. The spaces Ck'a(D) 
are Banach spaces, with the norm 

\\u\\k,a = | | u | | c * + X I \D^U\o,a • 
|/3|=fc 

Finally, if fi is an open set in R n , we shall indicate with Cfc,<*(ft) the 
space of the functions belonging to Ck'a(D) for every domain D C f2. 

We recall the following results relative to the Lebesgue integral: 

Theorem 2.1 (LUSIN) Let f(x) be a measurable function in R n , with 
/ = 0 outside an open set A of finite measure. For every e > 0 there exists 
a function ge S CQ[A) such that 

meas{a; £ Rn : f(x) ^ ge(x)} < e 

and 

sup|fl£| < sup | / | . 

Theorem 2.2 (EGOROV) Let E be a measurable set with \E\ < +oo, 
and let {fj} be a sequence of measurable functions in E, converging almost 
everywhere to a function f. Then, for every e > 0 there exists a measurable 
set N with \N\ < e and such that fj —¥ f uniformly in E — N. 

xFor a full explanation of the notation for the derivatives, see next chapter. 
2Holder-continuous functions with a = 1 coincide with the Lipschitz-continuous func­

tions introduced in the preceding chapter. 
3 More precisely, functions k times differentiable in the interior of D, whose derivatives 

extend to Holder-continuous functions in D. 
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Theorem 2.3 (Absolute continuity of the integral) If f(x) is a summable 
function in R n , then for every e > 0 there exists a S > 0 such that if E is 
measurable and \E\ < 5, then 

f \f\dx<€. 
JE 

We recall the following well-known definitions: 
Definition 2.1 Let Cl be an open set in R", and let 1 < p < +oo. We 
denote by Lp(fl,HN) the space of measurable functions f : fi —> RN such 
that 

||/IU= j^|/|pdz}P<+oo. (2.2) 

Moreover, by L°°(Q,,'RN) we indicate the space of bounded measurable func­
tions in Cl. 

When no possible confusion might arise, we shall write simply Lp(Cl) or 
even Lp, without explicit mention of the codomain HN. 

The spaces Lp(Cl), (1 < p < +oo) and L°°(fl) are Banach spaces, 
respectively, with the norm (2.2), and 

where 

ll/Hoo,n = sup | / (x ) | , (2.3) 
sen 

sup \f{x)\ = inf{A € R : | / | < A a.e. in f2} . 
x€fi 

Theorem 2.4 From every sequence fk in Lloc(Q,),4 converging to a func­
tion f in Lloc(Q.) (i.e. such that fk —> / in Ll(K) for every compact set 
K C 0) we can extract a subsequence converging to f almost everywhere 
in CI. 

If / is inLp(ft), the set 

Ft = {x G n : | / (x) | > t} 

is measurable, and since 

[ \f\pdx> [ \f\pdx>tp\Ft\, 
Jn JFt 

4We recall that if V(Q) is a space of functions in fi, V\oc(Q) is the space of functions 
belonging to V(A) for every open set A CC fi (that is such that A is a compact set 
contained in Q). 



42 Direct Methods in the Calculus of Variations 

we have 

l*i |<*-p l l / l l j; ,n- (2-4) 

Finally, we recall the well-known formula: 

r r+oo 

/ \f\pdx=p / tP-^Ftldt. (2.5) 
Jn Jo 

An immediate consequence of (2.4) and of Theorems 2.1 and 2.3 is the 
following: 

Theorem 2.5 Let Q, be an open set in R n , and letp < +oo. Then CQ(Q,) 

is dense in LP(Q). 

Proof. Let / G Lp(Cl), and let r > 0. There will exist a ball BR c R™ 
such that / n _ B \f\pdx < r . The function 

f m a x ( - r , m i n ( / , T ) ) mCinBR, 
g(x) = { 

[ 0 otherwise, 

is measurable and has compact support; by Lusin's theorem, for every e > 0 
there exists a function ge G CQ (ft n BR) coinciding with g outside a set E 
with measure less than e, and such that \g€\ < T. We have then: 

/ \f-9e\pdx<c [ \f-g\pdx + cf \g-ge\pdx 
Jn JnnBR JnriBR 

+ [ \f\pdx<c[ \f\pdx + cTe + T. 
JVI-BR J FT 

Taking T large enough, and using (2.4) and Theorem 2.3, the last 
integral can be made smaller than r . Choosing e so that cTe < r we get 

f\f-9e\P 

Jn 
dx < 3r 

and the theorem is proved. • 

Concerning the functional structure of Xp-spaces, we have the following 
results: 

Theorem 2.6 For 1 < p < +oo, Lp is a reflexive Banach space, whose 
dual is isomorphic to the space L9, with i + A = 1. The space Ll has L°° 
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as its dual, but is not reflexive. Finally, 1? is a Hilbert space, with scalar 
product given by 

(f,9)= I f{x)g(x)dx. (2.6) 

We have in addition: 

Proposition 2.1 (HOLDER'S inequality) Let p > 1, / e Lp and g € Lq, 
with - + - = 1. Then fg e L1, and 

J 
Ja. 

\f(x)g(x)\dx<\\f\\pfl\\g\\q,n. (2.7) 

It is easily seen that inequality (2.7), that for p = q = 2 bears also the 
name of Schwartz inequality, remains valid for p = 1 and q = +oo. 

In the particular case when fl has finite measure, if 1 < s < r < +oo, 
we may take / = |u|s, 3 = 1 and p = r/s in (2.7), obtaining 

i i 
H s , n < | f i | 7 ~ 7 N k n (2.8) 

so that, if |fl| is finite and r > s, we have Lr(Q) C LS(Q.) algebraically and 
topologically (that is, the topology of Lr is stronger than that of Ls). 

Inequality (2.8) can be stated in a more suggestive way by saying that 
for u € Lr the function 

^'{i»'d^--{mLWix 

increases in the interval [l ,r]. It is not difficult to show that ^(p) is a 
continuous function, and that for u £ L°° we have 

lim 7(p) = H ^ n . 

We conclude this section with the following: 

Theo rem 2.7 (LEBESGUE) Let f(x) be a function in L1(il). For almost 
every x £ fi we have 

lim / \f(y)-f(x)\dy = Q (2.9) 
R - > 0 + JQ(x,R) 

and hence 

lim / f(y)dy = f(x). (2.10) 
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2.2 Test Functions and Mollifiers 

The functions of class CQ° are also called test functions. A typical test 
function is 

rj(x) = < 
exp * W^T ' if N < *' 
0 if Id > 1 

(exp(£) = e'), whose support is the closure of the unit ball B. 

Definition 2.2 A function <p e Co°(R") such that 

(i) <p(x) > 0, _ 
(ii) suppyj c B, 

(iii) f <p(x)dx = 1 

is called a mollifier. 

For instance, the function r/(x) denned above becomes a mollifier when 
multiplied by a suitable constant so that its integral becomes equal to 1. 
For our purposes it will be sufficient to consider only spherically symmetric 
mollifiers such as 77(d), depending only on \x\. 

Given a function / (d) 6 L / ^ R " ) ) , we call ^.-regularized (or simply 
regularized) of / the function 

fc{x) = / f(y)fe(x - y)dy = f(x- z)ipe(z)dz 

= Jf(x-ey)<p(y)dy, (2.11) 

where 

^(z)=e->(f). (2.12) 

By differentiating under the integral sign, it follows immediately from 
(2.11) that for every e > 0, f£ is an infinitely differentiable function in R". 
Moreover, if the support of / is contained in K, we will have 

supp fecKe = {x£Rn : dist(a;, K) < e] . 

Definition 2.2 can be reformulated in terms of the convolution product, 
recalling that the convolution of two functions u and v in R", at least one 
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of which has compact support, is defined by 

u * v(x) = / u(x — y)v(y)dy . 

We have then 

fe = f * <Pe = <Pe * / • 

Lemma 2.1 If u £ Lp then ue £ Lp, and 

I M P < N I P . (2-13) 

Proof. We have 

\ue(x)\p < I / \u(y)\{<p£(x - y)}i{<pe(x - y ) } 1 - ^ dy I . 

Using Holder's inequality and remarking that 

/ <Pe(x - y)dy = / ipe(x - y)dx = 1, 

we easily get 

\u*(x)\p < j Wv)\p<pt(x-V)dy 

from which (2.13) follows by integrating with respect to x. • 

Theorem 2.8 Let u(x) be a function in R n . When e tends to zero, 

(i) If u is continuous, ue converges to u uniformly on every compact set 
K C R n ; 

(ii) ifuG Lp(Rn), 1 < p < +oo, u€ converges to u in Lp(Rn). 

Proof. We have 

ui{x)-u(x) = lHx-Z)-u(x)]Mz)dZ, 

where the integral is made on the ball \z\ < e. 
Let us prove (i) first. Let if be a compact set in R n , and let r > 0. 

Since u{x) is uniformly continuous on compact sets, there will exist a > 0 
such that for \z\ < a we have \u(x — z) — u(x)\ < r for every x £ K. Taking 
e < a we conclude that 

sup \ue(x) — u(x)\ < T / ip£(z)dz = T . 
K J 
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In order to show (ii) we recall that C$ is dense in Lp; and hence for 
every r > 0 there exists a function w € CQ with ||w — u\\p < r . On the 
other hand: 

IK - u\\p < \\u€ - we\\p + \\w€ - w\\p + \\w - u\\p 

and hence by Lemma 2.1 

\\ue - u\\p <2T + \\we - w\\p 

for every e > 0. 
Passing to the limit as e -4 0, and taking into account (i) (remember 

that w has compact support), we have 

limsup ||we — w||p < 2T 
<r-»0 

from which (ii) follows at once. • 

In particular, we have proved that Co°(Rn) is dense in L p (R n ) . By a 
similar argument we can show the following: 

Corollary 2.1 For any open set Cl C R" and for any p, 1 < p < +oo, 
C£°(ft) is dense in LP (SI). 

Proof. For every u £ Lp(Sl) and every r > 0 there will exist by 
Theorem 2.5 a function w € C§(Sl) such that ||u; — u||p,n < r . On the 
other hand, if e is small enough, the support of we will be contained in SI, 
and 11it; — we\\p < r; whence in conclusion ||uie — u||p < 2r. • 

2.3 Morrey's and Campanato's Spaces 

These spaces of integrable functions, introduced and studied by Morrey and 
Campanato, have proved particularly useful in the study of elliptic partial 
differential equations. 

By Q(x,R) we indicate the cube of R", with sides parallel to the 
coordinate axes, having a center at x and side 2R: 

Q(x, R) = {y£Rn: max \yt - ar*| < R} . 
l<i<n 

When no confusion may arise, we shall write simply QR, without 
indication of the center. 

Definition 2.3 (MORREY spaces) Let SI be a bounded open set in R n , 
and let 1 < p < +oo and A > 0. By Lp'x(Sl,TlN) we denote the space of 
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functions u e Lp(fi,Pc ) such that 

\\u\\p
pX=: sup Q~X [ \u\pdx< +00, (2.14) 

e>o 

where 0(XQ, g) = fi H Q(:ro, £?)• 

It is clear that condition (2.14) only depends on the behavior for small 
radii, since for g > e we have 

Q-X f \u\p dx < e~x [ \u\p dx. 

As in the case of Lp spaces, we shall often write Lp'x(0) or simply 
Lp'x, and we shall omit the indication of the codomain RN whenever no 
misunderstanding is possible. It is easily seen that ||U||P,A is a norm, and 
that the space Lp'x is complete. It is also evident that if u is a function 
defined in fi = fii U O2 and if the restrictions of u to Oi and to O2 belong, 
respectively, to Lp'A(fti) and Lp-A(n2), then u is in LP'X(Q). 

Finally, ||u||p,o = ||ullp> so that Lp'° = Lp. More generally, using 
Holder's inequality, one proves easily that if s > p and 2 ^ > ^ ^ the 
following holds: 

\\u\\P,x < diam(Q)~ « ||u||S)M, 

and therefore the immersion 

L*v ^ LP,\ p.15) 

is continuous. 

Proposition 2.2 The space Lp'n is isomorphic to L°°, and 

\\u\\p,n = 2?| |u | |0 0 . 

Proof. If u S L°° we have 

g-n f \u\p dx < 2n sup \u\p 

Jng n 

and hence 

\\u\\p,n < 2?| |u | |0 0 . 

Conversely, let u S Lp'n. For almost every x0 G 0 we have 

^(^o)! = hm 4 \u\dx . 

file:///u/dx
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On the other hand 

/ \u\dx<(4 \u\pdx) < 2 - ? | | u | | p , n , 
JQ(XO,Q) \JQ(xo,e) ) 

and therefore 

\u{xQ)\ < 2 ~ ? ||u||p,n, 

proving the opposite inclusion. • 

In particular, the spaces Lp'n (p > 1) are all isomorphic. 

Definition 2.4 (CAMPANATO [1]) We denote by Cp'x(Q,TiN) the space 
of functions u £ LP((],RJV) such that 

Mp,A = : SUP 6~X I \u-uXOte\
pdx < +oo, (2.16) 

x0€f i Jfl(xn.p) x0€il JQ(xo,g) 
g>0 

where 

UX0,Q ='• J U(tx 

Jfl(xo,g) 

is the average of u in SI{XQ,Q). 

Remark 2.1 Instead of the cubes Q(x, g) we could define Campanato's 
spaces by means of balls B(x,g), or generally speaking by means of any 
family of neighborhoods I(x, g). All these spaces are isomorphic, provided 
there exist two constants a and (3 such that for every g < diam(f2) one has5 

I(x,ag)cQ(x,g)cI(x,(3g). (2.17) 

Actually, assuming that these relations are satisfied, we have for every 
t€RN: 

v 

-f (u(y)-£)dy < / \u-i\pdy 
JQ(x,g) Jtt(x,g) 

K,e-£r 

and therefore 

'dy [ \u-ux,e\
pdy<2p [ l u - f l * 

+ 2p\ux,e-Z\p<2p+l [ \u-(,\pdy. 
Jn(x,g) 

5Needless-to-say, it will be sufficient that these inclusions be valid for g small enough. 
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Taking £ = ucir\i0e and recalling (2.17), we at once get 

/ \u-uxJ
pdy<2p+1 \u - u n n / ( X ] / 3 e ) |

p dy. 
Jn(x,e) Jnni(x,pe) 

It follows that the quantity (2.16) can be estimated by the analogous 
quantity, obtained by substituting to the cubes the neighborhoods Ig. 
Interchanging the roles of these two families, we get the opposite estimate, 
and in conclusion the isomorphism of the relative spaces. 

The same conclusion holds of course for Morrey's spaces. In parti­
cular it is possible to work with cubes with the edges in given directions, 
for instance parallel to the axes, as we shall do systematically in what 
follows. • 

Remark 2.2 The quantity [W]P,A is a seminorm in £P'X, equivalent to 

sup g~x inf / \u-£\pdx. (2.18) 
x0en £€RN 7f!(Xo,e) e>o 

In fact, it follows from the above that 

I |u - uX0,e |
p dx < 2P+1 f \u- i\p dx 

JCI(XQ,Q) JQ.(XO,Q) 
(2.19) 

for every ^ R " . • 

It follows easily that 

IIMIIp,A = N l p + Mp,A 

is a norm, with which £ p ' A ( n , R N ) is a Banach space. Moreover, the 
immersion (2.15) remains valid for the spaces Cp>x. 

Taking £ = 0 in (2.19), we conclude that the immersion of Lp'X in CP'X is 
continuous. Actually, if 0 < A < n the two spaces are equivalent, provided 
d£l is regular enough. 

Definition 2.5 We say that fi has no external cusps if there exists a 
constant A > 0 such that for every XQ S H and for every g, 0 < g < diamfi, 
we have 

\Sl(x0,g)\>A\Qe\. 
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It is clear that an open set with Lipschitz-continuous boundary has 
neither external nor internal cusps. If ft has no external cusps, the norm 

sup |Q(rco, £>)| n / \u\p dx 
co€n JCl(x0,g) Xo 

. e>o 

is equivalent to (2.14). It is also possible to replace g~x with \Q(xo,g)\~^ 
in (2.16) and (2.18), obtaining equivalent seminorms. 

Lemma 2.2 Assume that fl has no external cusps, and letu be a function 
in £p'A(f2), and let r = A=n por every XQ € ft and for every Q, R, with 
0 < Q < R < diamfi, we have 

\uxo,R ~ uxo,g 

| < c[u]p,x\Q(x0, Q)\T ifr<0, (2.20) 

\uXOtR-uxoJ<c[u}PtX\n(x0,R)\T ifr>0. (2.21) 

Proof. Let g < r < s < R. We have6 

\us — ur\ < 4 \u — us\dx < I -j- \u — us\
p dx J 

and hence 

\us - ur\ < |n5|p"|nrr
F[w]P,A • 

Since fi has no external cusps, there holds 

A ( £ ) " |fi r | < |J1.| < A'1 ( £ ) " \nr\ (2.22) 

and therefore 

|«, - ur\ < c[u]p%x ^ - j P | O r r . (2.23) 

Choose now r-j — R2~z and Cli — O r i . Writing (2.23) with r — Ti and 
s = ri-i and summing over i one obtains 

k 

\UR - urJ < c[u]P!x ̂ 2 \fli\T • 

From (2.22) it follows that 

^ - ^ - ^ I f i o l > |0<| > i42n(fc-*)|fifc|, 

'We have omitted the non-essential indication of the point XQ. 
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and hence, if r < 0, 

\UR - « r J < c[u]p,A|Ofe|T , 

whereas if r > 0, 

\UR-Urk\ < c[u]Pt\\£lR\T . 

Finally, choosing k in such a way that r^ < Q < ffc-i, we obtain from 
(2.23) the estimate 

\Ug-Urk\ < c[u]Ptx\Q,k\T , 

if T < 0, and 

\ue-Urk\ < c[u}Pt\\Qg\T , 

if r > 0. Comparing with the preceding estimates, and taking into account 
(2.22), we get the required result. • 

It is now a simple matter to prove: 

Proposition 2.3 If fi is a bounded open set without external cusps, and 
ifO < A < n, Lp>x(n) is isomorphic to £P>A(fi). 

Proof. It will be sufficient to prove that ||U||P,A < cIHulllp,A-
For Q < diam(f2) we have 

| n e | ~ " / \u\pdx) < ( | n e | - » / \u-ue\
pdx) + ne\ 

Since r < 0, taking R = diam(fi) we get from the preceding lemma: 

ifierriwei < iftrTiwfli+CMP,A < c(\\u\\p+[u]Ptx) 
and the proposition follows immediately. • 

The isomorphism between LV'X and CP'X does not hold if A > n. This 
is evident when A > n, since in this case the only function in Lp'x is the 
null function, whereas £P 'A contains all the Holder-continuous functions in 

X—n 
P ' 

For such functions we have in fact: 
Q, with exponent a 

\u(X) - Ug\ < [u]o ,a (20) Q 

for every a; € fle, and therefore 

[u]p,X < c[u]0,a • 
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Regarding the case A = n, we remark that the function — logo; belongs 
to / ^ ( ( 0 , 1 ) ) but not to L1'1 = L°°((0,1)). 

The interest of Campanato's spaces lies mainly in the following result. 

Theorem 2.9 Let CI be a bounded open set without internal cusps, and let 
n< A <n + p. The space CPtX(Cl) is isomorphic to C°'a(Cl), with a = ^= 2 . 

Proof. We have already seen that C° ' a C £P 'A. To show the opposite 
inclusion, let us start from inequality (2.21), from which it follows that 
the limit 

lim UX,R =: v(x) 

exists uniformly in x £ fi. The function x —> UX,R being continuous, 
even v(x) will be continuous, and the same is true for u(x), which by the 
LEBESGUE theorem coincides almost everywhere with v. 

Passing to the limit in (2.21) for g —>• 0, and writing 2R instead of R, 
we get 

K,2fl - u(x)\ < c[u]Ptx\Sl(x, 2R)\T . (2.24) 

Let now x, y £ U, and let R = \x — y\. We have 

\u(x) - u(y)\ < \u(x) - UX>2R\ + \uXi2R - Wj/,2fl| + Wy,2R ~ «(j/)| • 

On the other hand 

\ux,2R ~ Uy,2R\ < \u(z) - UX^R\ + \u(z) - Uy,2fl| 

and integrating on z e Cl(x, 2R) n fi(y, 2R) D £l(x, R) U Q(y, R): 

\Ux,2R - Uy,2R\ < ^ ( a^ . i ? ) ! " 1 / \u(z) - UXt2R\dz 
Jn(x,2R) 

+ \n(y,R)\~1 \u{z) - uVt2R.\dz. 
Jn(y,2R) 

A straightforward application of Holder's inequality, taking into account 
(2.22), gives 

\u{x) - u{y)\ < c[u]Pix\x - y\a . 

Finally, setting 2R = diamO in (2.24), we find 

\u(x)\ < \UXJ2R\ + \u(x) - UX,2R\ < c|||u|||P|A 
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and therefore in conclusion 

IMIc°.<* <c | | |u | | |p ,A, 

which proves the result. • 

We conclude this section with a proof of the isomorphism of Campanato 
(and therefore Morrey) spaces with respect to diffeomorphisms of the open 
set Cl. 

We recall that if g : A -t B is a homeomorphism between two open sets 
A and B, and if M(A) and M(B) are the spaces of measurable functions 
respectively in A and B, the induced map g» of M(B) in M(A) is defined 
by g*u = uog. 

Proposition 2.4 Let Cl and A be two bounded open sets in R™, both 
without exterior cusps, and let g be the restriction to A of a bilipschitzian 
homeomorphism of A\ D A onto Cl\ D Cl. Then, g* is an isomorphism 
between £P'X(CI) and £P>A(A). 

Proof. If u : Cl —> R, we have [ / = : M O J : A - ^ R . We must prove that 
u € CP>X(CI) if and only if U € £P'A(A). 

Since g is Lipschitz-continuous together with its inverse, there will exist 
a constant L > 0 such that for every x, Xo £ Ai 

L_1\g{x) - g{xQ)\ <\x- x0\ < L\g(x) - g(x0)\. 

Setting ?/o = g(xo), and taking 

R < RQ =: min{dist(0, dCli), dist(A, dAi)} , 

we have 

g(A(x0,R)) C Cl(yo,LR); g-^a^R)) C A(x0,LR). 

If R < Ro we have therefore for every £ e R w : 

/ \u-Z\*dy= [ \U - i\p\J\dx < c f \U-Z\vdx 
Jn(y0,R) •/fl-1("(»o,fl)) JA(xo,LR) 

from which the inequality 

HHI|P ,A<C| | |C/ | | |P ,A 

follows at once. Interchanging g and g~l we get the opposite inequality, 
and the theorem is proved. • 

That is Lipschitz-continuous together with its inverse. 

file:///U-Z/vdx
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2.4 The Lemmas of John and Nirenberg 

We gather in this section two results concerning estimates for the measures 
of level sets of a function u, subject to suitable conditions. The first of these 
is evidently connected with Campanato's space £ 1 , n , and will be useful in 
the proof of the isomorphism of the spaces Cp'n. 

The proof makes use of the following theorem, that is also interesting 
in itself, and will be useful in other occasions. 

Theorem 2.10 (CALDERON-ZYGMUND [1]) Let Q0 be a cube in R n , and 
let g(x) be a positive function in L1(Qo). Let L be a real number such that 

T 9dx=: —— l gdx <L. 
JQo I V 0 | JQ0 

There exists a sequence (possibly a finite number) of pairwise disjoint 
cubes Qi C Qo, with faces parallel to those of Qo, such that 

(i) L<-$Qigdx<2nL. 

(ii) g < L a.e. in Qo — UQj. 

Proof. We call final a cube Q for which -^gdx > L. Let us cut Qo 
(which by assumption is not final) into 2™ equal cubes, each with side one 
half of that of Qo. If any of these cubes is not final, we cut it again in 2n 

equal cubes, and we continue as before. Let Qi, i = 1,2,... be the family 
of final cubes. 

We have obviously -jL g dx > L. On the other hand Qi must arise by 
division from a cube W (of double side) which is not final. We have thus 
-j^gdx < L, and hence -L. g dx < 2n-$ivgdx < 2nL. This proves (i). 

In order to prove (ii), we remark that every point x £ Qo — UQi is the 
intersection of a decreasing sequence of cubes Ws, none of which is final. It 
follows that for every s there holds 

gdx < L 

so that, passing to the limit for s —• oo, we get g(x) < L for almost every 
x e Qo - UQi. • 

Let now u : Qo -> R-^ D e a summable function in Qo- Denoting by Q 
a generic cube, with sides parallel to those of Qo, we set 

u* =: [w]*,Q0 = sup -f \u- uQ\dx. (2.25) 
Q JQ 
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Finally, we denote by BMO(Q0) = BMO(Q0,R
N)8 the space of func­

tions u G Ll(Q0,~RN) for which the quantity u* is finite. 

1,71 Proposition 2.5 The space BMO is isomorphic to C 

Proof. We have obviously [u]» < [u]i,n- On the other hand, if Z is an 
arbitrary cube of R n , with center in Qo, there exists a cube Q c Q o , with 
sides parallel to those of Q0, such that P =: Z D Q0 C Q and \Q\ < c\P\, 
with c depending only on n. It follows that 

f \u — uP\dx < 2-f \u — UQ\CLX < %—-f \u — UQ\(1X < c-f \u — UQ\CLX 

JP JP \y\jQ JQ 

and therefore [u]i,n < c[u]t. D 

For w G BMO(Q) and <r > 0, we set 
T<T,Q(W) =: {a; e <? : |v(a;) - VQ| > a} . 

Theorem 2.11 ( JOHN-NIRENBERG I [1]) There exists two positive con­
stants A and a such that for every u £ BMO(Qo,HN) and a > 0 we 
have 

|T„,Qo(u)l < ^ e x p ( j ^ \ \Q0\. (2.26) 

Proof. Writing u/[u]„ instead of u, and cr/[u]» instead of <r, we can 
assume [u]* = 1. We can also assume that UQ0 = 0. 

For any cube Q, and for a > 0, we set 

<p(a) = sup i g | , [U\*,Q = 1, uQ = 0 j- . 

The function <p does not depend on the cube Q, since both the ratio 
|To-|/|Q|, and the quantity [W]*,Q are invariant under omotheties. Moreover 

|T„,Q(u)| 
f(a) = sup — . 

M.,Q<1 1̂ 1 

If [U]«,Q < 1, we have 

\Q\ 
'Wo ^ 

8From the initials of Bounded Mean Oscillation. Sometimes the space BMO is 
called £°. 

file:///y/jQ
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and therefore ip{a) < \. We shall prove that for s > 1 and a > 2"s we 
have 

if (a) < -<p(a - 2ns). 

For that, let w be a function in BMO(Q0), with [W]*,Q0 = 1 and zero 
mean value, and let us apply the Calderon-Zygmund theorem to the func­
tion liol. We have 

•i \w\dx < [io]» 
JQo 

and hence there exists cubes Qk C Qo such that 

s < 4 \w\dx < 2ns 
JQk 

\w\ < s mQo — l)Qk . 

In particular, from the first inequality it follows that 

y ) i Q i b i < - / \w\dx. 
V sJQ° 

Denoting by Wk the average of w in Qk, we have \wk\ < 2ns, and 
therefore if x € Qk and \w(x)\ > a we deduce \w(x) — Wk\ > \w(x)\ — \wk\ > 
a - 2ns. Since \w\ < s < a in QQ - UQk, we get 

|T£V,Q0 I ^ 2 ^ lT^-2"*,Qfc I • 
k 

On the other hand [w]*,Qfc < M*,<3o = 1> a n d hence 

| T C T _ 2 " , , Q J < y»(o- - 2ns)\Qk\. 

It follows that 

IQol 
\?*,QoM\ < ^(<7-2n

S) T\Qk\ < -<f(<r-2ns) ( \w\dx < ^<p{a-2ns) 

and therefore 

<p{?) < ~<p{? ~ 2"s) (2-27) 
s 

for every s > 1 and cr > 2"s. 

file:///w/dx
file:///w/dx
file:///w/dx
file:///w/dx
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Choose now s = e and set a = 2 ne *. If 0 < a < 2ne we have 

|Tff | < |Qo| < e'-o'lQol 

that is (2.26) with A = e. 
Assume now that 2"efc < a < 2ne(k +1) , A; > 1. Prom (2.27) we get by 

induction 

<p(a) < e~k(p(a - k2ne). 

On the other hand 0 < a — 2nek < 2ne, and therefore 

ip{a - 2nek) < Ae-a{°-2nek) = Aek-aa 

which in combination with the preceding estimate again gives (2.26). • 

Prom the above theorem, we have the following: 

Corollary 2.2 If u e BMO(Q0,R
N), then u e ^ ( Q o . R ^ ) for every 

p > 1, and for every cube Q parallel to QQ it holds that 

IQ 

Proof. We have actually 

4 \u- UQ\Pdx < c[u]l 
JQ 

\da I \u-UQ\pdx=p av ^ T ^ Q I 
JQ JO 

<pAJ\^e,P(-^-)\Q\do-

^pA^JlQlj^t^e-'dt^clQllu}:. a 

In particular, if u e BMO{Q0,R
N), then u e ^ - " ( Q o . R ^ ) , and 

[u]p,n < C[u]» . 

On the other hand, we have trivially [u]» < [u]i,n < [u]p,n, and hence 
BMO is isomorphic to Cp,n for every p > 1. As a consequence we have the 
following: 

Corollary 2.3 The spaces Cp'n(Q0,'R
N) are all isomorphic among 

themselves. 
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The same is true for Cp'n(Cl), as long as the boundary of ft is regular 
enough (for instance, Lipschitz-continuous). 

The next lemma is also due to John and Nirenberg, and has been widely 
used in the theory of elliptic equations. 

Lemma 2.3 ( JOHN-NIRENBERG II) [1] Let u:Q0-> KN be a summable 
function in Qo, and assume that there exist two constants K > 0 andp > 1 
such that for every partition of Qo in countably many cubes Qj, pairwise 
without common interior points, we have 

E l ^ l f / \u-uQj\dx\ <K*. (2.28) 

In this case, denoting by [u}p the smallest constant for which (2.28) 
holds, we have 

\T,,Qo\<A(^J (2.29) 

with a constant A depending only on n and p. 

Proof. For 1 < p < +oo, let q be the conjugate exponent of p: q~l + 
p _ 1 = 1, and 

We have Afc = Afc_i+g_fc, and hence qk\k = gfcAfc_i+l. Define moreover 

1 
Tfc ~ 2n+kin+l)qk\k ' 

We remark that we can always assume UQ0 = 0, and we begin by proving 
that if v has zero average in some cube Q, and if for some integer k we have 

- / \v\dx < ork , (2.30) 
JQ 

then 

with Ao = 1 and 

k 

Ak = Y[(qj2n+j(n+1))9~j • 

file:///v/dx
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We set for simplicity Va = TCTIQ(V) = {x £ Q : \v(x)\ > a}. Since 

|Vff| <- f \v\dx 
<* JQ 

(2.31) holds for A; = 0. We assume now that (2.30) implies (2.31) for k-1, 
and we prove that the same is true for k. 

Assume then that (2.30) is satisfied. By Theorem 2.10, we can conclude 
that there exists a sequence of subcubes Qm of Q, pairwise without common 
internal points, and such that 

<7Tfc < -f \v\dx < 2"<TTfc , (2 .32) 
JQn, 

\v(x)\ < ark < a in QQ - UmQm • (2.33) 

Define wm = v — VQm in Qm. The function wm has obviously zero 
average on Qm. Moreover, by the definition of [v]p, we have 

oo 

EK^H}' (2-34) 
m—X 

Now 

and hence 

Afc-i 
gfcAfc Afc 

1 - 2"rfc > 1 - - T - = -5= i (2.35) 

o - n - ( f c - l ) ( n + l ) \ 

^ Tfe ~ Tj^Tl T— < T f c _ i ( l - 2 Tfc). 

Consequently, taking (2.32) into account: 

-f \wm\dx <2-f \v\dx < 2n+XGTk < er(l - 2nTk)Tk-i, 
JQm JQm 

so that we can write (2.31) for wm, with k — 1 instead of k and cr(l — 2nTk) 
instead of a. Setting 

Wa.fc.m = {X e Qm • \wm(x)\ > <T(1 - 2 " r f c ) } 

it follows from (2.35) that 

IW^k.m] < Ak-1 ~ ~ 7 p / \wm\dx 

file:///v/dx
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On the other hand, from (2.32) it follows that |t>Qm| < 2nTk(T, and 
therefore, if a; € Qm and \v(x)\ > a, we get |u>m(a:)| > \v(x)\ - \VQJ\ > 
cr(l - 2nrfc). It follows that VaDQm C Wa^m and hence, taking (2.33) 
into account, we obtain 

\V„\ < E \WaXm\ < A^X^a-^-* J2\.wm}pk-2aC , (2.36) 
m m 

where 

a-m = \wm\dx. 

In order to evaluate the last sum, we use Holder inequality. We have 

j l - fc o 1 _ f c 

EK^fc-2<T < ( £ « ) ( E O 
m \ m / \ m / 

and moreover 

Y,am^Y.\Qrn\^Eam\Qm\^ < ( £ IQ^'^^ j " ( E \Qm\ j ' 
m m \ m / \ m / 

<(E«y (EIQJV • 
The last term can be estimated by means of (2.32). We have 

V | Q m | < — V" / \v\dx < — f \v\dx. 

Introducing all these inequalities into (2.36), and taking into account 
(2.34), we get 

To obtain the desired inequality (2.31) we need only adjust the constant 
Ak. We have T'1 = qk\k2

n+k^n+l\ and therefore: 

^"'V" <\x
k
k\qk2n+k^+lYk 

from which we get at once (2.31) for k. 
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Coming back to the function u, and observing that the constants Ak 

and Afc are bounded, we can conclude that if 

4 \u\dx < 
JQo 

VTk 

iQo 

then 
-k 

, 9 

IQo ' 

TCT|<c(i^V(4^^ WA . (2.37) 

The last relation can also be written in the form: 

Qo\f, 

IP JQo 

Let now-jL \u\dx < 2~ncr, and let k be such that 

ark+i < 4 |u|da; < ark . 
JQo 

In this case (2.37) holds, and estimating a by T^-jL \u\dx, we get 

_ f c 
/ I \ DO 

Qo|- _/ , , , 

Mp Voo 

The last factor is less than unity, and Tk+% is less than a fixed 
constant, so that in conclusion we get (2.29), provided a > 2n^L \u\dx. 

In the opposite case, we have 

<7<2™/ \u\dx < 2n[u]p\Q0\-r 
JQo IQo 

and therefore 

'2"H,XP 

| T . | < |Qo| < 

so that (2.29) holds in this case too. • 

2.5 Interpolation 

We have already remarked that if u is a function in LP(Q), and if for a > 0 
we set 

Ua = {x G 0, : \u(x)\ > a} 
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it holds that 

Hv,v)=:\Ua\< ( M s ' " 

Of course the opposite is not true; the function u(x) = \x\~n/p satisfies 
\Ua\ < ca~p in the unit ball B, but does not belong to LP(B). 

Definition 2.6 We say that a measurable function u : CI —*• R " belongs 
to the space Lp(Cl)-weak (that we shall denote by ££,($7)), if there exists a 
constant K such that for every a > 0: 

\Ua\ < ( * ) " . (2.38) 

It follows from (2.4) that Lp C LPW. Moreover, if Cl has finite measure, 
we have L%,(£1) C Ls(fl) for every s <p. Actually, we have from (2.5): 

\u\sdx = s at-1\Ua\dtr < |fi| + s as~l\Ua\da 
Jn Jo Ji 

<TS-l-pd0-

p — s 

The weak Lp spaces can be characterized in terms of integrals over 
arbitrary sets. 

Definition 2.7 For 0 < •& < 1 let us denote by M ^ f i ) the space of 
measurable functions u : ft —> R ^ such that 

||u||# =: sup|E|_ 1 ? / \u\dx < +oo, 
JE 

the supremum being taken with respect to all the measurable sets E C ft, 
with \E\ > 0. 

Sometimes the spaces M® are called Lorentz spaces. It is easily seen 
that ||u||,9 is a norm, and that M* is complete. We have M° = L1 and 
M 1 = L°°; moreover M^ C L1,T"?, since in the latter we integrate only over 
cubes and their intersections with fi. We have: 

Proposition 2.6 Let 1 < p < +oo, and let •d = ^ = 1 — i TTien, 

LP = Af*. 

file:///u/dx
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Proof. For u G ££, we have 

/ |u|da:= / \U„ n E\da < \E\<> + \ \Ua\da 
JE JO ./|£|'>-1 

<r- pd<r<c|E|*. 
E I - J - l l\E\* 

Conversely, if u G M* we have 

\UJ<{^)P. D 

and hence 

We introduce now some notation. In order to avoid non-essential compli­
cations, we shall suppose that fi has finite measure, so that LS(U) C Lp(fi) 
for p < s < +00. If T is a mapping of LP(Q,, RN) into LP(A, R M ) , we shall 
say that T is quasilinear if there exists a constant Q such that for almost 
every x G ft: 

|r(« + v)(x)| < g(|r«(a;)| + i r ^ i ) . 

The first result is an interpolation theorem between s and +00. 

Theorem 2.12 (MARCINKIEWICZ I) Let 1 < s < +00, and let T be a 

quasilinear mapping from Ls(Tl, RN) into the space of measurable functions 
in A, with values in R". Assume that T maps Ls(Cl,HN) into //^(AjR") 
and L°°(Q,,RN) into L°°(A,R , /), with the estimates: 

\(Tf,a)< (Mp±Y , (2.39) 

HTfflloo < ^oollfflloc (2.40) 

for every f G Ls, g G L°° and a > 0. Then, T maps Lp(fl,TlN) into 
LP(A,R") for every p > s, and we have 

\\Tu\\p < cA! A^ \\u\\p (2.41) 

for every u G Lp. 
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Proof. Let u G Lp and let 7 > 0. Setting 

{ u(x) if \u(x)\ > 7cr, 

0 if |u(a;)| < 7 C T , 

(0 if |w(a;)| > -ya , 
g{x) = < 

[ u{x) if \u{x)\ < 7<r , 

we have / e L\ g € L°° and u = / + fir, so that |Tu(a:)| < Q( |T/ (z) | + 
|T5>(a;)|). In order that |Tu(a;)| > a, at least one of the two quantities 
\Tf(x)\ and |Tg(a;)| must be greater than cr/2Q, and hence 

KTu,*)<x(Tf,±)+x(Tg,±). (2.42) 

Prom (2.39) we have 

a ) < (2QAa\\f\\s\
s ^ (2QA 

On the other hand 

W,% <.[**?*) <^)juM-dl. (2.43) 

\\Tg\\oo < AooWgW^ < A^a 

so that, by choosing 

1 
7 = 2QA0 

we get 

A ( T ^ ) = 0 . (2.44) 

Setting a5 = (2QAS)\ it follows from (2.42) and (2.43) 

/ \Tu\pdx 
JA 

<p f ap-lX[Tf,-?-\da<pas f ap-s~l da [ \u\s dx 
Jo V 2 < 2 / Jo Ju-,a 

= pas ^ op~s~l U f TS~1X{U, r)dr + (ja)sX(u, 7(7) J da 
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= pasls f T—1X(u,T)dT fy ap-*-lda + Y f ap-lX{u,^a)dcr\ 

= a , 7 ' - P _ E _ f \u\Pdx, 
P~s Ju 

from which we get the desired inequality (2.41), taking into account the 
definitions of as and of 7. • 

We consider now the interpolation between two finite exponents s and r. 

Theorem 2.13 (MARCINKIEWICZ II) Let 1 < s < r < +00, and let T be 

a quasilinear mapping of La(Q,HN) into the space of measurable functions 
in A, with values in R". Assume that T maps Ls(Cl,IiN) into L£,(A,R") 
and Lr(Cl,'R,N) into L^(A, Hu), with the estimates: 

A(r/,(T)J^V (2.45) 

X(Tg,a)<(^yk)r (2.46) 

for every f € Ls, g € Lr and a > 0. 
Then, for every p between s and r, T maps Lp(fi, R ^ ) into LP(A, RN), 

and we have 

| |ru | |p<cA*4reIMIp (2.47) 

for every u £ IP, where e € (0,1) is such that 

1 _ e 1 - e 
p s r 

Proof. Proceeding as above we get (2.42) and (2.43), whereas instead of 
(2.44) we get 

It follows that 

f \Tu\p dx < p(2QAs)
s [ ap-s'xdaj \u\s dx 

JK JO JUy„ 

+ p(2QAr)
r [ op-r-xdo\ \u\rdx. 

J0 Jft-U-ya 

file:///u/Pdx
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The first integral can be estimated as above by 

(2QAS)
SJS-P^— f \u\pdx. 

P~s Jn 

For the second, we have 

f <jp-r~l [ \u\r dx do-
Jo Jn-Uy,, 

= / a?-7-1 I r / T1-1 \{u, r)dr - (io-)rX(u, 7<r) J da 

/•OO POO POO 

= r Tr-l\(u,T)dT I aP-r-Ua-Y ap~lA(u,^da-
Jo J1- Jo 

= -^—Y~p I ^"^(u.ffjdo- = —!—Y~p f \u\pdx. 
r-p Jo r-p Jn 

We have therefore, 

/ \Tu\pdx< (-^—1
s~P^QAs)s + -^—lr-p{2QAr)

r\ f \u\pdx, 
Jh \P-s r-p J Jn 

and the conclusion follows if we choose 
1 a _ r 

1~2Q s r • 

We can now prove a last interpolation theorem, that we shall use later. 

Theorem 2.14 (STAMPACCHIA [3]) Let Q0 be a cube in R n , and let T 
be a linear mapping of Ls(Qo,IiN) into Ls(Qo,Hv), mapping L°°(QQ,RN) 

into BMO — Cs'n{Qo,W), with the estimates: 

M l , < 4,11/L (2.48) 

[Tg], < AcoWgWoo (2.49) 

for every f G Ls and g s L°°. 
Then, T maps LP(Q0,H

N) into Lp{Qo,W) for every p > s, and we 
have 

\\Tu-(Tu)Qo\\p<Ap\\u\\p, (2.50) 

where 

Ap = cAJA^t. (2.51) 
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Proof. (CAMPANATO [5]) Let {Qk} be a partition of Q0 in cubes pairwise 
without common internal points. Let T be the mapping that to every 
u € Ls associates the function Tu that in each cube Qk takes the constant 
value: 

-f \Tu-{Tu)k\dx. 
JQk 

The mapping T is quasilinear (with Q = 1) and, taking into account 
the definition of BMO, it maps Lo o(Q0 ,R i V) into Lo o(Q0 ,R I /) . Moreover 

/ \Tu\sdx = Yj\Qk\(-l \Tu-{Tu)k\dx] 
JQO k ^Q* ' 

<2sJ2\Qk\-f \Tu\°dx 
k JQk 

= 2S [ \Tu\s dx < (2AS)
S f \u\sdx 

JQa JQo 

so that T maps Ls into Ls, with the appropriate estimate. 
By Marcinkiewicz theorem I, T maps Lq into Lq for every q > s, with 

the estimate 

| |Tu||, < cA3A^f\\u\\q =: i4, | |u| | , . 

From the definition of T we get 

\Tu-{Tu)k\dx) <Al\\u\\l 
Qk 

for every partition Qk- Applying Lemma 2.3, we can conclude that for 
every a > 0, 

\{x e Qo : \Tu(x) - (Tu)Qo\ > a}\ < c f^stkY . (2.52) 

Consequently, the mapping 0 : u —• TU—(TU)Q0 maps Ls into L s , with 

| |0u||s <2 J4 s | |u | | s 

and Lq into L^, with the estimate (2.52). By the second theorem of 
Marcinkiewicz we conclude that 0 maps Lp into Lp, s < p < q, and 

| |0u||p < i4p||u||p. 
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A simple computation shows that the constant Ap is given by (2.51). 
Finally, if we want to estimate the norm ||Tw]|p, it will be sufficient to 

estimate the quantity \(TU)Q0\. We have 

\(Tu)Qo\ < -f \Tu\dx< f-f \Tu\sdx)° 
JQo \JQO J 

<Ks(-f \u\sdx\ <Ks(-l \u\pdx\" 

and hence 

| |T« | |P< | | e U | | p + |Qo| ' | |(Tu)Q0 | < {cKiK1^ +KS)\\U\\P. a 

Remark 2.3 The above theorem remains valid in open sets fi more 
general than the cubes, and in particular if Cl is the image of a cube Qo 
under a map g, restriction to Qo of a bilipschitzian homeomorphism of an 
open set C o Q0 in A D U.g 

In fact, let T be a linear continuous mapping from Ls(ft,RN) into 
L3{n,R") as well as from L°°(n) into BMO(fl), and define 

T. = g*Tg-1. 

The mapping T* is linear, maps L"(Qo) into L"(Qo) and by 
Proposition 2.4, L°°(Qo) into BMO(Qo), with the appropriate estimates. 
From the preceding theorem, T» maps Lp(Qo) into Lp(Qo) for every p> s. 
By consequence, T = g^T+g* maps LP(Q,~RN) into L p (n ,R" ) , with the 
estimate 

\\Tu\\p < c\\u\\p. 

2.6 The Hausdorff Measure 

The Lebesgue measure is essentially n-dimensional, and cannot distinguish 
between different sets of zero measure, nor determine the dimension of such 
sets. For that purpose, several measures have been introduced; the one we 
shall describe has proved rather useful in the theory of partial differential 
equations. 

This happens for instance if CI is a ball. 
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Definition 2.8 Let E be a subset o /R n , and let k > 0 and S > 0 be two 
real numbers. Having set 

{ oo oo 

^(diamS,)* 1 ; E C (J £,•; diamSj < <5 
where Uk = r ( ^ ) f c / r ( | + l) , we define the k-dimensional Hausdorff measure 
ofE: 

Hk(E) = lira H$(E) = sup H]t(E). (2.53) 

The constant w^ in the above definition10 is chosen in such a way 
that when E is a regular fc-dimensional surface, its Hausdorff measure 
Hk(E) coincides with the fc-dimensional measure elementarily defined. In 
particular, if E is a measurable set in R n , we have Hn(E) — \E\. 

It follows immediately from the definition that H°(E) counts the 
number of points of E, and that for k > n we have Hk(Rn) = 0, and 
hence Hk{E) = 0 for every E C R n . Moreover, if Hk(E) > 0 for some k, 
then for every h < k we have Hh(E) = +oo; whereas from Hk(E) < +oo 
it follows that Hr(E) = 0 for every r > k. Consequently, there exists a 
unique real number d with the property that HS(E) = 0 for every s > d, 
and Hr(E) = +oo for every s < d. This number d is called the Hausdorff 
dimension of the set E, and is denoted by dwa.H{E), or simply by dim(.E). 

The next lemma will be quite useful later. 

Lemma 2.4 Let Q be an arbitrary family of cubes, such that11 M —: 
swpq€gr(Q) < +oo. There exists a countable (or finite) subfamily T =: 
{Hi} of pairwise disjoint cubes, such that 

oo 

\JtUz\Jg 

where H indicates the cube concentric with H and with quintuple side. 

Proof. For every integer h, we set 

gh = {P£G: ThM < r(P) < 2l'hM} . 

Let Q\ be a maximal subfamily of pairwise disjoint cubes of Q\, that is 
such that 

1 0Note that when fc is integer, w^ is the measure of the unit ball of dimension fc. 
n I f P is a cube, we indicate by r(P) its radius, that is half its side. 

file:///JtUz/Jg
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(i) for every P, Q £ Qi, Pl~l Q = 0. 
(ii) for every Q £ Q\ there exists P e f t with P n Q ^ 0 . 

The family £1 is at most countable, since, being r{P) > M/2 for every 
P £ Qi, at most a finite number of cubes of Q\ can intersect any compact set. 

Assume now that Qi, Q2, • • • ,Qh-i have been defined, and among the 
cubes of Qh which do not intersect any of the cubes of Th-i ='• U^=iGi let 
us choose a maximal family Qh of pairwise disjoint cubes. We have 

(i) for every P, Q £ Vh, P n Q = 0. 
(ii) for every Q £ Qh there exists P £ Th, with P n Q ^ 0. 

As above, £7̂  is at most countable. 
The family T = U^l^i is what we are looking for. In fact it is at most 

countable, being the union of countably many families of countable or finite 
sets. Moreover, if Q is a cube of Q, whence of Qh for some h, and if Q £ T, 
there will exist a cube P £ Th with P n Q ^ 0. Since 2r(P) > r(Q), we 
have therefore Q C P, and the lemma is proved. • 

Remark 2.4 If we write 1 + e instead of 2 in the definition of Qh, we see 
immediately that the lemma continues to hold with cubes H with r(H) = 
(3 + 2e)r(n) instead of 5r(II). • 

A first consequence of the above lemma is given in the following 
proposition: 

Proposition 2.7 Let A be an open set in R™, and let \i be a positive 
Radon measure in A, with fJ.(A) < +00. For 0 < a < n let 

Ea = I x £ A : lim sup g-afi(Q{x, g)) > 0 } . (2.54) 
I <?->o+ I 

Then 

Proof. Setting 

dim(£ a ) < Q . (2.55) 

Es = < x £ A : limsupg afi(Q(x, £ > ) ) > - > , 
{ e-»o+ s J 

it will be sufficient to prove that Ha+i(Es) = 0 for every integer s and 
every e > 0. 
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For every 5 > 0 and every x G Es there exists a cube Q(x, g) C A, with 
g < 6, and such that 

KQ(*,Q))>ys-

By the preceding lemma, it is possible to find a sequence (possibly a 
finite number) of pairwise disjoint cubes IIj = Q(x{, gi) such that 

oo 

| J tli D Es . 

We have therefore12 

oo oo 

Hf+e{Es) < c]Tg?+< < cSe £ n ( J U ) < cS^(Es
s n i ) < c6e/1(A), 

i=l i=l 

and the conclusion follows immediately letting S go to zero. • 

Remark 2.5 In particular, for Ha+e almost every x e i w e have 

lim Q~an(Q{x, Q)) = 0. (2.56) 
e->o+ 

Moreover, if 

lim u(E\ n A) = 0, 

we can conclude that (2.56) holds for Ha almost every x £ A. • 

Remark 2.6 The assumption /x(A) < +oo can be replaced by fi(A Pi 
Qr) < +oo for every r > 0. Actually, repeating the argument for Es f~l Q r , 
we obtain Ha+e(Es n Qr) = 0 for every e > 0, and for every integer s and 
r, and hence Ha+e(Ea) = 0 . • 

2.7 Notes and Comments 

The spaces of Morrey and Campanato have been introduced by the latter 
in [1] and [2], and have proved an important tool in the proof of the Holder 
continuity of the solutions of partial differential equations. 

These spaces can be generalized in several directions. In the first place, 
one can introduce a metric 6 different from the Euclidean distance, and 

If A C R n , we indicate by As the envelope of radius 5 of A: 

A5 ={xeRn : dist(x, A) < 6} . 
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topologically (but not metrically) equivalent to the latter. As an example, 
we mention the parabolic metric; denoting by (x, t), x 6 R n , f e R a point 
of R n + 1 , we set 

<*((z, t), (y, s)) = \x-y\ + y/\t-s\ 

or equivalently 

fi((x,t),(y,s)) = m a x < max fa - yi\, y/\F-
^ l < i < n 

The balls Q(0,R) in the last metric are parallelepipeds in R n + 1 , having 
as base a cube of R n of side 2R and 2y/R as height. 

More generally, given a metric 6, one can define the spaces £p 'A(fi, S) 
by means of the same (2.16) defining the spaces £ p , \ the only difference 
being that Clg denotes now the intersection of 0, with the ball of radius Q 
in the metric 5. 

These spaces have been studied by D A PRATO [1] and BAROZZI [1], 
and have proved useful in the study of the regularity of the solutions of 
parabolic (CAMPANATO [3], [4]) and quasi-elliptic equations (GlUSTl [1]). 

A second generalization of Campanato spaces is given by the spaces 
££' (fi). Denoting by Vk the class of polynomials of degree < fc, we set 

[ < p , A = SUP ^ l n | / \U~P\Pdx 

x0en PeV>< JUo 
g>0 

and we define ££' (ft) as the space of functions in LP(Q.) such that [«]fclP,A < 
+oo. ££' (£1) is a Banach space with the norm 

\\u\\k,P,\ = \\u\\p + [u]k,P,\ • 

By means of methods similar to those of section 3, one can prove 
(CAMPANATO [1]) that 

(i) if A < n + kp, £% is isomorphic to £j!'_i; 

(ii) if n + kp < A < n + (k + l)p, ££' is isomorphic to Ck,a, with a = 

(iii) ii\>n + (k + l)p,Cp
k'

x = Vk. 

We remark that, in spite of the similarity in their definitions, the spaces 
Lp'x and M® are essentially different. For instance, whereas Mtf coincides 
with LP (p = (1 — i9) -1), and hence the functions of M " are summable 
with any exponent less than p, a function of Ll,x need not belong to any 
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V with p > 1, even if A is very close to n. An example can be found in 
PlCCININI [l].13 

We could also define the spaces Mp,1?, of functions in V such that 

supl^r 1* / |w | p da;<+oo. 

A simple application of Holder's inequality shows that Mp''& C M", 
with a = 1 — ^E^. Actually these two spaces are isomorphic, since we have 

u G M"-* «• \u\p e M * « |u|p e Lih 

« n £ Li"" <^ u G MCT . 

The lemmas of John and Nirenberg have a "strong" (or rather "weak") 
version, which consists in eliminating the mean value both in the definition 
(2.25) and in the assumption (2.28). In the first case we get nothing 
interesting, since 

sup -j- \u\dx < +oo 
JE 

if and only if u is bounded. 
The second case corresponds to a theorem by RlESZ [1]: if for every 

partition of QQ in subcubes Qj it holds that 

T,\Qj\U \u\dA <KP 

then u € Lp(Qo), and vice versa. 

13For A = n — 1, an example is given by the function f(x) = Zj 1(log | i i | ) - 2 in the 
cube Q1/2 of R n . 

file:///u/dx
file:///u/dA
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Chapter 3 

Sobolev Spaces 

3.1 Partitions of Unity 

Lemma 3.1 Let Cl be an open set of R n , and let <fr = {Clj}, j = 1,2,... 
be a countable covering of CI with bounded open sets Clj CC Cl. There exists 
an open set Cl\, Cl\ CC Cli, such that the family {Cli, CI2, ^3) • • •} *s again 
a covering of Cl. 

Proof. For any open set A we define 

At = {x e A : dist(a;, <9A) > t} . (3.1) 

If A is bounded, we have At CC .A for every t > 0. 
Consider now the family 

* t = { f iu , f i 2 , n3 , . . . } . 

We shall prove that there exists a t > 0 such that $t is a covering of Cl. 
Otherwise, for every integer k there would exist a point Xk belonging to fi 
but not to the union of the open sets of <E>i/fc. All the points Xk lie in fii, 
and since this set is relatively compact, a subsequence Xkt will converge to 
a point xo € dCl\. 

On the other hand $ is a covering of CI, and hence Xo must belong to 
some Clj, with j / 1. This is impossible, since none of the points x^ lies 
in Clj. • 

75 
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An open covering <fr of il is pointwise finite if every a: G ft belongs to 
a finite number of members of <&; it is locally finite if every compact set 
K c ft meets at most a finite number of open sets in $. 

Proposition 3.1 Let $ = {ft^} be a pointwise finite covering of fi, with 
Slj CC ft. For every j there exists an open set (lj CC ftj such that 

oo 

ft = (J ft,-. 
3 = 1 

Proof. Using repeatedly the preceding lemma we obtain a sequence of 
coverings 

$ 2 = { f i 1 , f i 2 ! f i 3 , . . . } , 

$fc = { n i , . . . > n f c , n f c + 1 , . . . } . 

The family $ = {ft,} is the required covering. For otherwise there 
would exist a point xo 6 0 which does not belong to any of the sets flj. 
Since $ is pointwise finite, there exists an integer N such that Xo £ ftj for 
j > N. But in this case x0 could not belong to any open set of $ w , and 
this could not be a covering of CI. • 

We remark that if A and B are two open sets, and A CC B, there exists 
a function 7 G CQ°(B), with 0 < 7 < 1 and 7 = 1 in A. Actually, let 28 be 
the distance between A and dB, and let e < S. The function 

7 = ¥>£ * X , 

where x *s the characteristic function of A5 = {x € R " : dist(x,A) < 5}, 
has the required properties. 

Theorem 3.1 Let <fr = {ftj} be a locally finite covering o/ft, with fi, CC 
fl. For each j there exists a function {aj} such that 

(i) aj £ C0°°(%), 
(ii) 0 < aj < 1, 

(iii) S i l i Q j = 1 in ft-

The family {a?} is called a partition of unity relative to the covering $. 
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Proof. Let {Q,j} be the covering given by the preceding proposition, and 
for every j let 7,- be a function in C£°(fl,) with jj = 1 in fij. Since <fr is 
locally finite, for every compact set K C fi only a finite number of 7j are 
not identically zero in K. There follows that the series 

oo 

3 = 1 

converges uniformly with all its derivatives in every compact set K C fi, so 
that its sum 7 is infinitely differentiate in fi. 

On the other hand, the family $ is itself a covering of fi, and hence 
7 > 1 in fi. The functions 

/ N 7iQc) 
7(1) 

give the required partition of unity. • 

Remark 3.1 If we accept the possibility that some of the functions a; 
are identically zero, the conclusion of the theorem remains valid also for a 
generic covering. In fact on one side from every covering of Q, it is possible 
to extract a countable subcovering; and on the other, given a countable 
covering $ = {Cti}, it is always possible to find a locally finite covering 
l> = {f2i}, with Cli c Cli. 

In order to prove the last statement, let 0 = KQ C K\ C K2 C • • • C fi 
be a sequence of compact sets with the property that every compact set 
K C 0, is contained in some Km, and for every h let rih be the integer such 
that 

Kh c fli U fi2 U • • • U Q,nh , 

Kh £fiiun2U"-unnh_i. 

For rih < j < rih+i (n0 = 0) define 

Clj = flj - Kh . 

The family <f> = {fij} is what we are looking for, since we have 

m m 

Uf2,= U%. (3.2) 
i=i 3=1 



78 Direct Methods in the Calculus of Variations 

The above relation is trivial for m < m . Assume now it holds for 
m <nh, and let nh <m< rih+i- We have then 

m nh m 

j=l j = l j=nh + l 

nh I m 

= \J Qj U (J % - Kh 

. 7 = 1 

since ^ c U ^ O j . • 

In what follows, we shall use also partitions of unity relative to coverings 
{fij} such that 

oo 

V n cc (J n,-

This case cannot be treated as the preceding one, though the conclusion 
is the same. 

Theorem 3.2 Let $ = {flj} be a covering o/fi, with Q, CC U$. T/iere 
exists a partition of unity relative to $ . 

Proof. Since in particular fj C U$, from $ we can extract a finite 
covering {S7i, O2 , . . . , H;v} of 0 . Reasoning as above, we can show that 
there exists a covering {fii, Q2, • • •, &N} of fi, with (lj CC Jlj. Let 7* be a 
function in Co°(fij), with 74 = 1 in Vti, and define 

cti = 7 1 , 

" 2 = 7 2 ( 1 - 7 i ) . 

<*AT = 7AT(1 - 7i) ( ! - 72) • • • (1 - 7Jv) • 

By induction, 

k 

1 - 5 3 a* = (1 - 7i)(l - 72).-. (1 - Ik) 
»=i 

for every fc = 1,2,.. . , N. 
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For x G Clj we have jj = 1, and therefore 1 — Xa=i Qi = 0- Since the 
open sets Cti are a covering of f2, we conclude that 

N 

Y2ai(x) 
i = l 

for every a; € fi. d 

3.2 Weak Derivatives 

Let us begin by introducing some notation. A multi-index a is a n-vector 
(«i, a 2 , . . . , a n ) whose components are non-negative integers. If a and f3 are 
two multi-indices, we say that a < /? if on < fa for every i = 1,2,. . . , n. If 
at least one of these inequalities is strict, we shall say that a < (3. Moreover, 
we define 

\a\ = ai + a2 H \rOtn, 

a\ = Qi!a2!.. -an\, 

a + (3 = («i + /3i, a2 + / 3 2 , . . . , an + /3n) 

and if a < f3: 

(P\ (Pl\ (fo\ (Pn\ f3l 

\aj \a1J\a2J \ctnj a\(/3-a)\ 

For x e R " we set 

j / — ^ 1 o*2 • • • *i<n 

and if / (x) is an infinitely differentiable function: 

Daf(x) = 
dx?dx2'...dx%" 

With these definitions, the formulae involving partial derivatives of func­
tions of n variables become very compact; for instance, Taylor's formula can 
be written in the form 

f{x)= ^ Daf^Q\x-XQ)<* + Rk(x-XQ), 
\a\<k 

file:///a1J/a2J
file:///ctnj
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where Rk is the rest of order k, whereas the formula for the derivative of a 
product becomes 

7<a V 7 / 7S C 

We introduce now some extensions of the classical concept of derivative. 

Definition 3.1 Letu G L^oc(Q,), p > 1, and let a be a multi-index. We say 
that u has a weak derivative (or a derivative in the sense of distributions) 
of order a in Lfoc(fi) if there exists a function va G Lfoc(Q) such that for 
every function <p G CQ°(Q) 

I uDa<pdx = ( - 1 ) | Q | / vaipdx. (3.3) 

The function va is usually denoted by the standard symbol Dau. This 
notation is appropriate, since we have the following: 

Proposition 3.2 Weak derivatives are unique. 

Proof. If va and wa are both weak derivatives of order a of the same 
function u, we have for every <p £ Co°(fi): 

/ (va — wa)<pdx = 0. 
Ju 

Let now A CC fi. Since Co°(.A) is dense in ^(A), it is possible to find 
a sequence <pj € CQ°(A), with \<pj\ < 2, converging almost everywhere to 
the function H(va — wa), where H is the Haeviside function: 

H(t) 

1 if t > 0, 

0 if t = 0, 

- 1 if t < 0 . 

Writing ipj instead of <p in the preceding equation, and passing to the 
limit as j —> oo, we obtain: 

L va — wa\dx = 0 
A 

and therefore, since A is arbitrary, va = wa in CI. D 

From the preceding result it follows at once that for u G CH(fi) 
the weak derivative Dau coincides with the standard one. However, one 
has to be careful in general, since a function (as for instance H(t)) can 
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be differentiable almost everywhere, and yet may not possess a weak 
derivative.1 

A second way to define derivatives of functions in Lfoc is the 
following. 

Definition 3.2 Let u € L^oc(fi), and let a be a multi-index. We say that 
u has strong derivative of order a in Lfoc(il) if there exists a sequence of 
functions Uj £• C^(il) such that for every open set A CC il: 

(i) Uj -> u in LP(A), 
(ii) DaUj is a Cauchy sequence in LP(A). 

The functions DaUj will converge in Lfoc(il) to a function va, which we 
call the strong derivative of u of order a. 

If ¥?€C£°(fi) we have 

(-1) | Q | / va<pdx = ( - 1 ) | Q | lira [ <pDa
Ujdx 

Jn J-+°° Ju 

= lim / UjDaipdx = / uDa<pdx 
i-"" Jn Jn 

so that the strong derivative va of u coincides with its weak derivative. As 
a consequence, strong derivatives are unique. 

Propos i t ion 3.3 A function u has strong derivative of order a in L\oc{Q) 
if and only if for every open set A CC fi there exists a sequence Uj 
satisfying (i) and (ii). 

Proof. The necessity of the condition is trivial. In order to prove that 
it is sufficient, consider a sequence {Qk} of open sets such that ilk CC 
O/i+i CC fi and 

J'=l 

For every ilk there exists a sequence {u^ '}j such that 

(i) uf] ->• u in LP (ilk), 

(ii) Dauf] -> vik) in LP(ilk). 

xMore precisely, the derivative of H(t) in the sense of distributions is the Dirac mea­
sure <5, and hence it does not coincide with its pointwise derivative, which is zero. In other 
words, the fact that a function / is almost everywhere differentiable, with derivative / ' 
in Lfoc, does not imply that / ' be the weak derivative of / . 
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It is clear that i4 = Dau in fife. Moreover, from the uniqueness of 
strong derivatives there follows that fifc. If for x € ilk we 
define va(x) = i4 (x), the function va belongs to Lf0C(Sl), and is the weak 
derivative of u: va = Dau. 

On the other hand, for every integer k it is possible to find an index jk 
such that 

\\uf^u\\pMk + \\D"ufyva\\Pvk<\. 

Let now 7^ e Cfi°(ilk+i), with 7*, = 1 on fij,. The sequence Wk = 
lku)k x satisfies (i) and (ii) of Definition 3.2, and hence u has strong 
derivative Dau in Lfoc. • 

We have already remarked that strong derivatives are weak derivatives. 
The converse is also true. 

Theo rem 3.3 Weak derivatives are strong derivatives. 

Proof. By the preceding proposition, it will be sufficient to show that for 
every A CC fl there exists a sequence Uk satisfying conditions (i) and (ii). 
Let 2d = min{l,dist(j4, dQ,)}, and let x(x) D e the characteristic function 
of the set Ad = {x e fi : dist(a;, A) < d}. For e < d we set 

We = (X«) * fe • 

Let us show first that if Dau is the weak derivative of order a of u, then 
for every x £ A: 

Dawe = Daue = (Dau)e. 

Let x £ A and \z\ < e < d. We have x — z £ Ad and therefore 
x(x — z) = 1, whence 

w£(x) = I <p6(z)x(x — z)u(x — z)dz = ue(x). 
J\z\<e 

For such points x we have then 

Dawc(x) = Daue{x) = fm<pi{x - y)u(y)dy 

= (-l) | a | J' D^t{x-y)u{y)dy. 
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By the definition of weak derivative, and recalling that for every x the 
function y —> (p€(x — y) belongs to CQ°(£1), the last integral is equal to 

/ 
<pe(x - y)Dau(y)dy = (Dau)e(x). 

The proof of the theorem is now simple. Since u and Dau both belong 
to LP(A), it follows from Theorem 2.8 that ue -> u and Daue ->• Dau in 
LP(A), and therefore Dau is the strong derivative of u. D 

3.3 The Sobolev Spaces Wk>P 

Definition 3.3 We shall denote by Wk'p{Q) the space of functions having 
weak derivatives up to the order k in Lp(n). 

Wk'p(£l) is a Banach space with the norm 

hh,P=\ £ / \Dau\pdx\ . (3.4) 
[\°\<kJa J 

With Ck'p(U) we indicate the space of the functions u G Ck(£l) whose 
norm (3.4) is finite: Ck'p = Ck n Wk'p. We have the following 

Theorem 3.4 (MEYERS AND SERRIN [1]) For every u e Wk<p(Q,) there 
exists a sequence of functions Ui £ Ck'p(fi) converging to u in the norm 
(3.4). 

Proof. It is sufficient to show that for every u G Wk'p{Q) and for every 
r > 0 there exists a function w G Ck'p(Cl) with ||u — w\\k,p < r. 

We remark in the first place that this is true if u has compact support 
in fi; for in this case the functions ue = u * cpe belong to CQ°(Q,) (hence 
to Ck'p(Cl)) for every e small enough, and converge to u in the norm (3.4). 
Consider now a general function u G Wk'p{0), and set 

% ) = IxeCl: 6ist(x,dil) > - I ; 

O(o) = 01 

Ai = fi(i+i) - fi(»-i), i > 3 ; 

A2 = fi(3) • 
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The open sets Ai, i > 2, form a locally finite covering of Cl. By 
Theorem 3.1 there exists a partition of unity {oti} relative to that covering. 
It is easily seen that for every i we have 

Gnu G Wk'p(Q); supp(aju) c Ai CC ft 

so that, according to the above, for every integer i > 2 it will be possible 
to find an €j > 0 such that: 

supp<^£i * (aiu) C % + 2 ) - % - 2 ) , (3.5) 

\\<p€i *{aiu) -aiu\\k,P < r 2 _ i . (3.6) 

We define now 
oo 

w = 'Y^ipii*{aiu). (3.7) 
i=2 

By the definition of the sets ftj, in every compact set K C CI at most a 
finite number of terms of the series will be different from zero; and hence 
the function w is infinitely differentiable in f2. Moreover, we have: 

;h«-w ki ^{<Pei * (aiu) - aiu) 
i=2 k,p 

i=1 

and the theorem is proved. D 

Remark 3.2 We remark that the function w constructed above is of class 
C°°(fl). Moreover w and u have the same trace on dCl (see later, Sees. 3.7 
and 3.8). • 

The preceding theorem can be rephrased by saying that Wk'p(Q.) is 
the closure of Ck>p($l) in the norm of Wk'p, or else that for any open 
set Q, Ck'p(Q.) is dense in Wk'p(Q,). The matter is different if one wants 
to approximate functions in Wk,p(Q) with functions of class Ck(Cl) (that 
is continuous together with their derivatives up to the boundary of Q). 
Generally speaking, this is not possible unless the boundary of Q, is regular 
enough (see later, Theorem 3.6). 

A consequence of Theorem 3.4 is the following. 

Proposition 3.4 Let f(t) be a function of class CX(R) with bounded 
derivative, and let u £ W1'P(Q,). Then, f o u belongs to W1,p(ft), and 
D(f o u) = / ' o u Du. 
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Proof. The theorem is trivial for functions u of class Cl'p{Sl). Let now 
uk be a sequence in Cl,p, converging to u in the norm of W1,P{Q). Passing 
possibly to a subsequence, we may assume that uk —> u almost everywhere. 
We have 

l/K) - /(u)| < L\uk - u\ 

and therefore f(uk) -» f(u) in LP. On the other hand 

Df{uk) - f'(u)Du = f(uk)Duk - f'(u)Du 

= f'(uk)[Duk - Du] + [f'(uk) - f\u)\Du. 

The first term on the right-hand side can be estimated by L\Duk -
Du\, and therefore it tends to zero in Lp. The second term tends to zero 
almost everywhere (by the continuity of / ' ) and is bounded by 2L\Du\; by 
Lebesgue's theorem of dominated convergence, it tends to zero in Lp. • 

The above proposition remains valid when the function f(t) is only 
Lipschitz-continuous (see later, Sec. 3.9). However, for our purposes 
we shall need only the particular case f(t) = \t\, which often is taken 
for granted. 

Propos i t ion 3.5 If u 6 Wl>p{Q), then \u\ G W^ifl), and 

D\u\ = H(u)Du 

where H(t) is the Heaviside function: 

1 if t > 0, 

H(t) = { 0 if t = 0, 

-1 if t < 0. 

Proof. The function rje = ^Je2 + (u + e)2 tends to \u\ in LP as e 
moreover by the preceding proposition 

Dth-^Du. 

Let now e —> 0. For almost every x we have 

hm —— = a{u) 
£-+0+ T]e ' 

and 

lim = i?(u) 
£ - > 0 - T]e 
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where 

' 1 if t > 0 , 

a{t) if t = 0 , and tf(t) = < 
V2 
- 1 if f < 0, 

1—
1 

1 

"71 
. - i 

if t > 0 , 

se t = 0 

if t < 0. 

Both the functions a(u)Du and i?(u)Z)u are strong derivatives of |u|; 
since strong derivatives are unique, they must coincide almost everywhere, 
so that in particular Du(x) = 0 for almost every x £ E = {x £ CI : u(x) = 
0}. But then we also have D\u\ = H(u)Du. • 

If we define 

\u\ + u 
u+{x) and \u\ — u 

we have 

Du+ 

DvT = 

Du if u > 0, 

0 if u < 0, 

0 if u > 0, 

-Dw if u < 0. 

(3.8) 

(3.9) 

Theorem 3.5 Lei ft and A 6e two open sets in R n and let g : A —• 0 6e 
a diffeomorphism. Then, the induced mapping g*, defined by g*u =: u o g, 
is an isomorphism between W1'P(Q,) and WltP(A). 

Proof. Let U(x) = g*u(x) = u(g(x)), and let us assume first that u £ 
C^'ifl). We have U £ C^^A) , and2 

and hence, setting 

M = 

DU = 

d_g_ 

dx 

dx 
Du o g 

=: sup sup 
x€A|£| = l 

S>« 
we get 

\DU\p<Mp\Duog\P. 

!We denote by A* the transposed matrix of A. 
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But then 

/ \DU\pdx <MP f \Duog\Pdx 
JA JA 

< MPN [ \Du o gf 
JA 

A,d9 det — 
ox 

dx = MPN • I \Du\p 
dy, 

where 

N~l =: inf det­
ox 

> 0 . 

Interchanging the role of u and U, we conclude that 

d [ \Du\pdy < f \DU\pdx < c2 f \Du\p dy, 
JQ J A Jn 

(3.10) 

where c\ and c2 are positive constants independent of u. 
A similar argument holds for the integral of |u|p, and leads to the 

estimates: 

ci / \u\pdy < [ \U\pdx < c2 f \u\p dy. (3.11) 
Jn JA Jn 

From the estimates (3.10) and (3.11) we conclude that g* can be 
extended to a linear mapping from V71,p(fi) to W1,P(A), continuous with 
its inverse, and the theorem is proved. • 

We remark that the conclusion of the theorem holds whenever g is a 
bi-Lipschitz mapping (namely, Lipschitz-continuous with its inverse) from 
A onto Cl, provided | det ^ | | > a > 0, as we shall always assume. It is not 
difficult to prove that if g £ Ck(A), g„ is an isomorphism between Wk'p(Cl) 
and Wk>p{A). 

Proposition 3.6 Let u £ Lp(Cl) and let {Clj}i<j<N be a finite covering 
ofCl. Assume that for every j the function u belongs to Wk'p(finflj). Then, 
u <E Wk'p(n). 

Proof. For \f3\ < k and j = 1 ,2, . . . , N, let v? be the weak derivative of 
order (3 of u in Clj n CI: 

[v$ipdx = (-l)M fuD^ipdx VipeC^ifljUfl). 

If the support of (p is contained in f2j n ilj, we have 

fv?<pdx = (-i)W fuD(3<pdx= fvfydx 

file:///Duog/Pdx
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and hence 

v? = vf in nt n Oj n n. 

We have, therefore, a function v@ € LP(Q) such that 

Let now tp s CQ°(Q,), and let {QJ} be a partition of unity relative to the 
covering fij. We have 

N 

luD^ipdx = ^ fuDp(ai<p)dx 
i = l 

(" l)l"l / " ^ t A * i p d a : = ( - l ) l / J | fv^<pdx 

and hence n'3 = £)^u. • 

We can now discuss the problem of approximating functions u in 
Wk'p(Q) with functions regular in fi. For simplicity, we shall only treat 
the case k = 1. 

Setting 

B + = { i £ R " : |a;| < l , i n > 0 } = B n R ^ , 

let u be a function in Wl'p(B+), whose support does not intersect the round 
part d+B = 9 B n R ^ of the boundary of B+. 

For s > 0 let us define 

TSU(X) — u(x\,X2,.. .,xn + s). 

Moreover, let u€ be a regularization of u (extended as 0 outside B+). 
For e small enough, the functions r2£u£(a:) belong to C°°(B+). We have 

/ |72e"e ~ 7"2£U|P dx = \ue — u\P dx , 
JB+ JRJ 6 

where we have set 

R £ = {x € R " : xn > 2e} . 

Moreover, since D{TSU) = TSDU, we have 

/ \D{T2e(ue - u))\pdx = / |D(u £ -u) |*da : 
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and hence 

lim \\T2e(ue - u)\\ip = 0. 
£ - • 0 + 

On the other hand from Theorems 2.1 (Lusin) and 2.3 (the absolute 
continuity of the integral) it follows that 

lim ||T2EU - u\\i:P = 0 
e—>0+ 

and therefore 

lim ||T26U£ - u | j i p = 0 
£ - • 0 + 

so that the function u is the limit of functions of class C°°(B+). 
More generally, we have 

Theorem 3.6 Let Cl be a bounded open set with boundary of class C1. 
The space C 1 ^ ) is dense in W1,p(fi). 

Proof. For every point XQ G 9 0 there exists a neighborhood A and a 
diffeomorphism g : B —• A mapping B+ in A n Cl and the flat part P of 
dB+ (P = dB+ n {x : xn = 0}) on A n 9fi. A finite number of such sets 
Ai,A2, • • •, AM cover dD,; adding possibly an additional open set AQ CC Q 
we get a finite covering of 0 . Let {a,} be a partition of unity relative to 
that covering, and let gi be the diffeomorphism relative to the set Ai. 

For u € W1'P(Q,), the functions 

Ui = (gi)*{aiu) = (ttjit) o gt 

belong to W1,P(B+), and have support non-intersecting d+B. As we have 
seen, for every 1? > 0 we can find a function Zi £ C°°(B+), whose support 
does not intersect d+B, and such that 

WZi-UiW^o. 

Setting 

Zi = (gr1)*Zi = ziogr1 

we have Zi € Cx(fi n Ai) and 

| | z i - a i u | | i i P < c&. 
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Let now z0 be a function in CQ(AO), with ||z0 — c*ou||i,p < $, and let 

N 

i=0 

We have z € C1^), and 

N 

\\z - u\\i,p < XI HZi ~ aiuh,p < (1 + Nc)ti. 
i=0 

The theorem is thus proved. If instead we only want to approximate u 
with functions in Lip(fJ), it will be sufficient to assume that dfi, is Lipschitz-
continuous. • 

3.4 Imbedding Theorems 

Lemma 3.2 Let / i , /2, • • •, /AT be functions in LN(Q), Q C R™. Then, 

r N N / r \ * 

Proof. For N = 2, (3.12) reduces to a Schwartz inequality. We shall 
assume that it holds for N, and we shall prove it for N + 1. 

By Holder's inequality (2.7) we have 

r N+1 / r \TiTi / r N \ 7 ^ T 

jn n i/d̂ < (yj/iv+ir
+i^j Unified*) . 

and the conclusion follows at once applying (3.12) to the functions gi = 

\h\^. • 
Lemma 3.3 (GAGLIARDO [2]) Let fi, f2, • • •, fn be non-negative func­
tions in R n , and assume that for every i the function fi does not depend 
on the variable Xi. Then, 

[f[fi**<Il([ / r1 <**)n_1> ( 3 - 1 3 ) 
J j = l t = l ^ ' 

where 

dxi = dx±... dxi-i dxi+i... dxn . 

file:///TiTi


n-1 

Sobolev Spaces 91 

Proof. For n = 2, (3.13) is trivial. Let us assume it holds for n > 2 and 
let us prove it for n + 1. 

We have from Holder's inequality: 

/

n + l - . n 

J J fi dx dxn+i = / fn+i dx Yl.fi dxn+x 
i=i J •* »=i 

< (/fn+i**y 11(fii*dx^) dx 

where dx = dxi dx-i... dxn. 
From the preceding lemma we get 

J J ] ft dx dxn+1 < ( | /» + 1 dxy Ijfl^J n dxn 

Setting now 

9i= ljf?dxn+i\ 

and applying (3.13) to the functions gi, we get at once 

dx 

[f[9idx< (flfgr'dxi 
J i=i \ i = i " ' 

n - 1 

and hence the conclusion. • 

We can now prove a first imbedding result. 

Theo rem 3.7 (SOBOLEV I) Let u e C£°(Rn) and for p < n letp* = ^E_. 
Then, 

\\u\\p. <c(n,p)\\Du\\p, (3.14) 

where c(n, p) is a constant depending only on n and p. 

Proof. We shall consider first the case p=l. We have 

Diu(xi,..., Xi_i,t, Xi+i,..., xn)dt 
-oo 

and hence 
f+OO 

/

+oo 
\Diu(x)\dxi 

-oo 

http://Yl.fi
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so that 

" f f+°° 1 " ^ n 

| « ( a : ) l A <n i / lAuCiJI î \ =l[fi 
i=i '-•y-00 J »=i 

We can apply the preceding lemma to the functions /; , getting easily 

J \u\^dx< f[l [\Diu\dx\" 1 < | J \Du\dxY~1 

and therefore (3.14) for p—1. 
In the general case we apply (3.14) to the function v = |w| r+1, r > 0. 

Remarking that \Dv\ = (r + l)|u|r |.Du|, we get 

lf\u\i^1dx\n < (r + 1) f\u\r\Du\dx 

< (r + 1) j J \Du\pdx\P | I \u\7^dx 

If we choose now r = niEzH w e get ^ ± ^ = - ^ = -22- = »*, and 
n—p ' & n —1 p—1 n—p r i 

therefore (3.14) with c(n,p) = ^ f ^ . • 
Theorem 3.8 (SOBOLEV II) Le£ u e C£°(Rn), and Zei p > n. Setting 
a = 1 — - we /iowe: 

p 

[u]a<c(n,p) | |Du| |P ) (3.15) 

sup|u| < c(n,p)(diam(suppu))a | |Du||p , (3.16) 

where c(n, p) is a constant depending only on n and p. 

Proof. Let x and y be two points in R71, and let 5 = \x — y\. Let 

S = B(x,S)nB(y,S) 

and let z £ S. We have 

\u(x) - u(y)\ < \u(x) - u(z)\ + \u(y) - u(z)\ 

and integrating over S: 

\S\\u(x) - u(y)\ < f \u(x) - u(z)\dz + f \u(y) - u(z)\dz . 
Js Js 

file:///Diu/dx/
file:///Du/dxY~1
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The two integrals can be estimated in the same way. Let us consider 
for instance the first of them. Since 

u(z)-u(x) = / — u(x + t(z - x))dt = / (z-x,Du(x + t(z-x)))dt, 
Jo dt Jo 

we have for every z £ S: 

\u(x)-u(z)\<6 f \Du(x + t(z-x))\dt 
Jo 

and integrating: 

/ \u{x) — u(z)\dz < I \u(x) — u(z)\dz 
Js JB{X,S) 

<S dt \Du(x + t(z - x))\dz. 
Jo JB(X,S) 

After a change of variables w — x + t(z — x) we get 

/ \u{x) - u{z)\dz < I t~ndt I \Du(w)\dw. 
Js Jo JB(x,tS) 

Using Holder's inequality the right-hand side can be estimated by 

un~hn+1-f f t'pdt I f \Du\pdw) 

Jo \JB(x,tS) J 
and therefore in conclusion by 

J 3 2 \\DU\\P 
P 

where we have indicated with u>n the measure of the unit ball in R n . The 
same quantity gives a bound for the second integral. On the other hand 

151 = c{n)6n 

and hence, remembering that 6 — \x — y\: 

\u(x) - u(y)\ < c(n,p)||Du||p|a; - y\a 

from which (3.15) follows. 
If we choose y e supp(u) such that u{y) = 0, the preceding inequality 

leads immediately to (3.16). • 
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The theorems of Sobolev extend immediately to the closure of C£°(0). 

Definition 3.4 By W0'
p(Cl) we indicate the closure of C^(fl) in the 

norm of Wk'p(Q,). In other words, a function u belongs to WQ'P(CI) if and 
only if there exists a sequence of functions Uk € CQ° (fi) such that 

lim ||ufe -u||fe lP = 0. 

fc—>oo 

It is evident that W0'
P(Q,) is a Banach space, with the norm (3.4). 

Theorem 3.9 Let Q, be an open set in R n , and let u G W0
1,p(fi). Then: 

(i) If p < n, u belongs to Lp , p* — -^-, and 

||u||p. <c | |D« | | p . (3.17) 

(ii) Ifp>n,u belongs to C°'a(fl), a = 1 - ^ and 

[u}a < c\\Du\\p. (3.18) 

Moreover, if Q, is bounded, we have 

sup |u| < c(diam(n))Q||JDu||p . (3.19) 

Proof. Let us prove for instance (i). Let Uj be a sequence in Co°(fi), 
converging to u in WQ'P(Q,). In particular, {DUJ} will be a Cauchy sequence 
in LP(Q), and since 

||UJ - Ufc||p* < C\\DUJ - Duk\\p 

Uj will be a Cauchy sequence in Lp (O). Since Uj —>• u in LP(Q), we will 
have also Uj -> u in Lp*(fi). Writing (3.14) for Uj and passing to the limit 
for j —> oo we get the conclusion. 

The proof of (ii) is similar, and we leave it to the reader. • 

A consequence of the above theorem is that, differently from what 
happens for the spaces Lp, CQ°(Q.) is not dense in W1,p(fl). For instance, 
the characteristic function of fi, that obviously belongs to Wl'p(fl), cannot 
be approximated in W1,p with functions with compact support, since it 
does not satisfy inequality (3.17). 

In some sense, the functions in WQ'P(Q,) "take the value zero" at the 
boundary of fi. As a consequence, two functions u and v of W1 , p(n) "have 
the same boundary value" if their difference belongs to W0'

p(Cl).3 

3These questions will be treated in greater detail later. 
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A corollary of the preceding theorem, that can be also proved directly, 
is the following: 

Corollary 3.1 Let CI be an open set in R n with finite measure, and let 

u e W0
1,p(O). Then, 

HIP<c(n,p)|fi|*||D«||p. 

Proof. We distinguish the two cases 1 < p < ^ and p > ^ j . In the 
first case we have 

\\u\\p < \n\i-**\\u\\p. < c |f i | i | |Du| |p . 

If instead p > ^ y , setting p* = ^^, it results (p«)* = p, and again: 

| |u | | p <c| |Du| | p . < c | n | i | | D u | | p . D 

In particular, for u £ WQ'P(CI) the norm (3.4) of W1'p(Cl) is equivalent to 

|u | i ,p= j f \Du\rdxV . 

More generally, if |fi| < +oo, the quantity 

u\k,P = l J2 JjDa^Pdx 

Ja\=k 

is a norm in W0 'p(fi), equivalent to the standard norm ||w||fc,p. 
We shall consider now the space W1,p(fi). In general, without suitable 

assumptions on the boundary of Cl, the imbedding W1,p(fi) ^-¥ IP (CI) does 
not hold. For instance, taking n = 2 and 

Cl = \ x £ R 2 : 0 < x < 1, \y\ < exp ( 5 

the function f(x,y) = x3exp(4 r) belongs to W1 '1(fi), but does not belong 
to any Lp(Cl), with p > 1. 

The imbedding W1,p(Cl) <-• Lp (Cl) holds if dCl is Lipschitz-continuous. 
In order to prove this statement, we shall begin by establishing some results 
which are of interest by themselves. 

Lemma 3.4 Let v(x) be a function in W1 'P(JB
+), and let 

{ v(x) if x £ B+ , 

v(xi,x2,. ..,xn-i,-xn) if x £ B = B - B+ . 

Then, the function V(x) belongs to W 1 , p (5) . 

file:///Du/rdxV
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Proof. By Theorem 3.6 and the remark immediately following it, 
there will exist a sequence {vk} of Lipschitz-continuous functions in B+, 
converging to v in W1'P(B+). The corresponding functions Vk = a(vk) are 
Lipschitz-continuous in B, converge to V in LP(B), and {DVk} is a Cauchy 
sequence in LP(B). Denoting by g the limit of DVk, we have 

/
VDipdx = lim / VkD<pdx — lim - / ipDVkdx = — / gtpdx 

fc-KJO./ k-KsO J J 

for every <p £ C$°(B), and hence V e Wl>p{B) and DV = g. D 

It is clear that DV = Dv in B+, whereas in B~ we have 

DtV = a(Div) if i < n, D„V = -a(Dnv) 

and hence 

||cr(ll)||vvi,P(B) = 2 P | H | W I . J ' ( B + ) • 

Theorem 3.10 Let 0, be a bounded open set in R n with Lipschitz-
continuous boundary. There exists an open set E DD fl and for every 
u € W1,P(U) a function U £ W0 'P(S) such that U(x) = u(x) in Q and 

\\U\\I,P,S < c||w||i,P,n 

with the constant c depending only on p, n and Q,. 

Proof. As in the proof of Theorem 3.6, there exists a finite open covering 
AQ,AI,..., AN, with A0 CC fi and At n dfl ^ 0 for 1 < i < N, and for 
every i > 1 a homeomorphism gi : B —> Ai, Lipschitz-continuous with its 
inverse, mapping B+ in Ai n CI. 

Let {ai} be a partition of unity relative to that covering. If u € Wl'p(Cl), 
the functions Vi = (gi)*(aiu) belong to W1'P(B+), and are zero in a 
neighborhood of d+B =: dB D R™. By the preceding lemma, the func­
tions Vi(x) = a(vi)(x) belong to WQ'P(B), and 

||Vi||i,p,B =25| |ui | | l i P i B+ <c| |aiu | | i i P )n-

Setting 

Ui = {g-l)*Vi = ViOg-\ 

we have Ui = atiU in 0, and 

||^i||i,p,Ai < c||aiu||i iP,n. 
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The function 
N 

U = aou + 2_^ Ui 

is the required one. In the first place, U belongs to W0 'P(E), with E = 
UtL0Ai; moreover for x G Cl we have 

N 

U(x) = 2_]ai(x)u(x) = u(x) • 
i=0 

Finally, 

N 

F I | I , P , E < cJ2 ||ai«||ij,,n < cM(l + N)\\u\\liPtn , 

where 

M= naaxdlailloo + HDoilloo). D 
0<i<N 

The immersion theorem is now an immediate corollary. 

Theorem 3.11 Let CI be a bounded open set in R n with Lipschitz-
continuous boundary, and let u G Wl'p(Q,). Then: 

(i) If p <n, u belongs to Lp , p* = ^ ^ , and we have 

| |u | |p ' ,n<c| |u| | i j , ,n. (3.20) 

(ii) If p> n, u belongs to C0>a(Cl), a = 1 - j , and 

| |« | |a<c| |u | | i j , ,n. (3.21) 

Proof. Let U be the function given by the preceding theorem. Remarking 
that 

||u||p*,n = \\U\\P-,n < ll^l|p-,s, 

Hkn = ||^lkn<||^lkE, 
the conclusion follows immediately from Theorem 3.9 applied to the 
function U. • 

Let now u € Wk'p(il). Applying the preceding theorem to the deriva­
tives of order k — 1, then to those of order k — 2 and so on, we get the 
following result: 
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Theorem 3.12 Let Q, be a bounded open set in R n , with Lipschitz-
continuous boundary dCl, and let u & Wk'p(Cl). Then: 

(i) Ifn> kp, u £ L»- ' r (f2), and we have 

N I _ 5 E _ < c H k P . (3.22) 

(ii) Ifn < kp and k — - is not an integer, then, denoting by h its integer 
part and by a = k — h— ^ its fractionary part, we have u £ Ch , a(fi) , 
with 

||u||c".« < c||u||feiP. (3.23) 

(iii) Finally, if n < kp, and k—- is an integer, then u € C ~7~1'a(Cl) for 
every a < 1, and (3.23) holds with c depending on a. 

3.5 Compactness 

In the preceding section we have proved, among other things, that the 
immersion W1 , p «-> Lp" is continuous. If fl is bounded and q < p*,we have 
Lp" •—> Lg, and hence the immersion Wl,p <->• Lq is also continuous. We 
will show now that the last immersion is compact. 

Definition 3.5 Let X and Y be two complete metric spaces, and let T 
be a map from X into Y. We say that T is compact if: 

(i) T is continuous, 
(ii) T maps bounded sets in X into relatively compact sets in Y. 

We note that if X and Y are two Banach spaces and if T is a linear 
map, condition (ii) implies (i). 

Lemma 3.5 Let ft be a bounded open set in R", and let Z be a bounded 
subset of Lg(Cl), such that the mollified functions ue tend to u in Lq(Q), 
uniformly for u € Z. Then, Z is relatively compact in L9(0). 

Proof. It will be sufficient to prove that Z is totally bounded, that is 
that for every 6 > 0 there exists a <5-net, i.e. a finite covering of Z made of 
sets with diameter less than 6. 

Let S > 0. By assumption, there exists eo > 0 such that for every u € Z 
we have 

K o ~U\\q < 4-
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Setting 

%0 = {Ueo -UE Z}, 

it will be sufficient to prove the existence of a | -net for Zo, or else that ZQ 
is relatively compact in Lq(Cl). This goal will be achieved if we prove that 
Zo is relatively compact in the topology of uniform convergence, since the 
last topology is stronger than that of Lq. 

By Ascoli-Arzela's theorem, it will be sufficient to prove that Zo is 
bounded in C1(fi). We have: 

Ueo(x) = / <fie0{x - y)u(y)dy, 
Ja 

Dueo(x) = / Dtpeo(x - y)u(y)dy 
Jo. 

and therefore 

|u60| <M\Q,\l--«\\u\\q, 

\Dut0\<N\£l\1--*\\u\\q, 

where M = sup \<peo \ and N — sup \D<peo \. 
Since Z is bounded in Lg, ZQ is then bounded in C^fj), and the lemma 

is proved. • 

We can now prove the following: 

Theorem 3.13 (RELLICH) Let Q, be a bounded open set in R n , with 
Lipschitz-continuous boundary dfl, and let 1 < p < n and 1 < q < p* = 
-22-. The immersion 

n—p 

W^ifl) -> L9(0) 

is compact. 

Proof. Let Z be a bounded subset of W1'p(Sl). It is clear that Z is 
bounded in Lq(Cl); we have actually 

\\u\\q < | n | « P" \\u\\p- < C\\u\\it p . 

In order to apply the preceding lemma, it will suffice to verify that 
ue —¥ u in Lq, uniformly for u £ Z. We shall begin with the case q = 1. 
We have 
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/ \u€ - u\dx = \ <fe(x - y)[u(y) - u(x)]dy 
Jn Jn \J 

< / <p(w)dw / \u(x — ew) — u{x)\dx. 

m 

Let now r > 0 and let £ CC il be an open set such that |fi — E| < T^^ . 
We have then 

/ |tt(a;)|rfa; < |fi — S|1—5*"||«||p» < T C | | U | | I I P 

and similarly 

so that 

/ \u(x — ew)\dx < TC\\U\\IIP, 
JSl-Y, 

[ Hx - ew) - u(x)\dx < 2rcMhp + / \u(x - ew) - u{x)\dx 
Jn Jv 

If e < dist(S, dCl), we have x — ew € il for every w S B\ whence: 

I f1 
\u(x — ew) — u(x)\ = / (Du(x — tew),ew)dt 

\Jo 

< e I \Du(x — tew)\dt 
Jo 

for almost every i g S . We have therefore 

/ \u(x — ew) — u(x)\dx < e / dt \Du(x — tew)\dx < e I \Du\dx 
JY, JO Jn Jn 

and in conclusion: 

/ \ue-u\dx<(2TC + e\Q.\1~i)\\u\\iiP. (3.24) 
Jn 

Prom the above inequality it follows at once that ue —> u, uniformly for 
u € Z, and hence the conclusion of the theorem for q = 1. 

In the general case q < p* we note that 

/ \ue — uy dx = I \ue — u\ p*-1 

Jn Jn 
ue — ul"*-1 dx 

file:///Du/dx
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and by the Holder inequality: 

g - l p * - q 

/ \u{ - u\q dx < < / \ue - u\p* dx> < / \u€ - u\dx > 

From the inequality ||u£||p» < ||w||P* and from Theorem 3.11 it 
follows that 

| | u 6 - u | | p . < c||u||iiP 

and hence, by (3.24): 

p* — q 

\\u£ ~ U\\q < c| |u| |i )P(T + e)P^ 

so that we can apply again the preceding lemma. • 

It is obvious that if p > n, the immersion W1,P(Q,) ^-¥ Lq(Q,) is compact 
for every q. More generally, if kp < n, q < w"% , and Q has boundary 
of class C1 , the immersion of Wfc,p(fi) in Lq(Cl) is compact, since by 
Theorem 3.12 the first derivatives belong to Lr, with r = n T , and 

« < » • * = ==%?• 

Remark 3.3 It follows from Rellich's theorem that if Uk converges weakly 
to u in Wl'p (or in other words if Uk —*• u and Duk —i Du in Lp), then 
Uk —> u strongly in Lq, for every q < p*. In fact, the sequence Uk is 
bounded in W1 ,p , and hence relatively compact in Lq, so that from any 
of its subsequences it is possible to extract a subsequence convergent in Lq 

to a function v. On the other hand Uk —>• u in Lp, and hence v = u, so that 
the whole sequence Uk converges to u strongly in Lq. • 

3.6 Inequalities 

Theorem 3.14 (POINCARE'S Inequality) Let Q, c R™ be a bounded 
connected open set, with Lipschitz-continuous boundary d£l. There exists 
a constant c(n,p, Q) such that for every u € W1,p(fi) 

/ \u - un\
p dx < c J \Du\p dx, (3.25) 

Jn Jo, 
where 

UQ, =: -f udx =: —- udx (3.26) 
Jn l"l Jn 

is the average of u in Cl. 
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Proof. Since (3.25) does not change if we add a constant to u, we can 
assume that UQ = 0. 

If the theorem were false, it would be possible to find a sequence of 
functions Uk S W1>p{ti), with Ukn = 0, and such that 

Jo. 

L 
\uk\

pdx = l, (3.27) 

\Duk\
pdx< \ . (3.28) 

By Rellich's theorem a subsequence will converge to a function u £ 
LP(Q), with ||u||p = 1 by (3.27). On the other hand the sequence ||Z?Ufc||p 

tends to zero, and therefore u £ W1,p(fi) and Du = 0. Since Cl is connected, 
u will be constant in fi,4 and having zero average (remember that all the 
functions uk have zero average), it will be identically zero. This contradicts 
the fact that ||u||p = 1. • 

A joint application of the preceding inequality and of Theorem 3.11 
gives immediately the following 

Theorem 3.15 (SOBOLEV-POINCARE'S inequality) With the assump­
tions of the preceding theorem, if p <n, we have 

| | « -«n | | P * <c(n,p,Cl)\\Du\\p. (3.29) 

A proof similar to that of Theorem 3.14 gives an inequality of the type 
(3.17) for functions in W1'p{Sl) (not necessarily zero on dCl), provided they 
are zero on a set of positive measure. 

Theorem 3.16 Let Q be a bounded connected open set in R n , with 
Lipschitz-continuous boundary. For every u £ W^1,p(fl), p < n, taking the 
value zero in a set A of positive measure, we have 

\A\ 
| p . , n < c f r j ||I>u||p,n, (3-30) 

where c is twice the constant in Sobolev-Poincare's inequality (3.29). 

4 The proof of that assertion can be made by remarking that all the mollified functions 
ue have zero gradient in Qe, and therefore are constant in Qe. The same is true for 
their limit u, and since e > 0 is arbitrary, u is constant in CI. Recalling the proof of 
Proposition 3.5, we can conclude that if u G W^'p and u is constant in K, then Du = 0 
in K; and conversely if Du = 0 in K, then u is constant in every connected component 
of K. 
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Proof. We have 

|un||i4|5,r < | | u - u n | | p . , 

and hence 

\\u\\p. < \\u - un||p* + l u n P I ^ < 2 f jjr J \\u- u n | | p . . 

The conclusion follows immediately from (3.29). D 

It is possible to prove that (3.30) holds whenever u is zero on a set of 
positive p- capacity. We shall not enter in these problems, that are outside 
the scope of this work; instead we shall discuss the dependence on fi of the 
constants entering in the various inequalities, when 17 is a cube of R n . For 
functions in WQ'P, we get immediately from the Sobolev inequality (3.17) 

H I , < \QR\*~^\H\P- < cRS-&\\Du\\p (3.31) 

for every q < p*, and in particular 

( \u\pdx < c(n,p)Rp I \Du\pdx; u £ W^'P{QR). (3.32) 
JQR JQR 

In general, we have the following: 

Theorem 3.17 For every function u G W1,P(QR) it holds that 

\\u - Wfi||P*,QH < c(n,p)\\Du\\p,QR (3.33) 

and hence 

J \u- uR\p dx < c(n,p)Rp [ \Du\p dx, (3.34) 
JQR JQR 

where UR = UQR. 
Moreover, if the function u is zero on a set A C QR of positive measure, 

we have 

IMIP-,Q« < c(n,p) (¥^j ** \\DU\\P,QR , (3.35) 

/ \u\pdx < c{n,p) (~-\ Rp I \Du\pdx. (3.36) 
JQR \ \A\ J JQR 

Proof. If u e W 1 ' P ( Q A ) , the function w(x) = u(Rx) belongs to Wl*{Q). 
Writing inequality (3.29) for w, we have 

\\w-wi\\P',Q <c(n,p,Q)\\Dw\\PtQ. 
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On the other hand it is easily seen that wi = UR and Dw(x) = 
RDu(Rx), so that we have (3.33) with c(n,p) = c(n,p,Q). Inequality 
(3.34) can be proved likewise. In a similar way, using Theorem 3.16, one 
proves (3.35) and (3.36). • 

Remark 3.4 It is evident that we can replace the left-hand side of (3.33) 
and (3.34) respectively with the quantities: 

inf | |u-£ | |p . ,QB 

and 

'dx. mi f \u-t\'t 
« JQH 

The resulting inequalities are equivalent to (3.33) and (3.34), in virtue 
of (2.19). 

Moreover the average on QR can be replaced with that on any cube 
QaRi with a < 1, since 

/ \u - uaR\s dx < c < / \u-uR\sdx + \QR\\uR~uaR\s [• 
JQR VJQR ) 

<cl \u - UR\" dx + a~n \u-UR\sdx\ 
UQR JQCR J 

<c(l + a~n) [ \u-uR\sdx. (3.37) 
JQR 

Finally, we remark that the preceding theorem remains valid if we 
replace the cubes QR with balls of radius R, or more generally with any 
family of sets deriving by homothety from one of them. Of course, the 
constant will depend on the family in question, but not on R. D 

Poincare's inequality has as a consequence an interesting relation in the 
spaces Cp'x. 

Proposition 3.7 Let ft be a bounded open set with Lipschitz-continuous 
boundary, and let u be a function in Wl'p(fl,RN) with Du € L p ' \ Then, 
u € £P'X+P({1,RN). 

Proof. It will suffice to prove that, at least for R small enough, we have 
the estimate 

J \u - uR\p dx < cRp f \Du\p dx (3.38) 

for some i? > 1. 
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That inequality holds with i9 = 1 if QR C fi (see (3.34)); it remains 
only to examine the case when QR meets dQ,. 

Let us assume first that Cl is the half-space R " . In this case, setting as 
above 

{ u(x) if xn > 0 , 

u(xi,...,xn-.i,-xn) i f x n < 0 , 
we have for every cube QR = Q(xo, R) with center in the upper half-space: 

f \u-UR\pdx< [ \U-UR\pdx 
JnR JQR 

< cRp J \DU\pdx < 2cRp f \Du\pdx 
JQR JCIR 

and (3.38) is proved in this case. 
In general, for every point xo of dQ there exists a neighborhood W of XQ 

and a bi-Lipschitz map g from the unit ball B onto W, mapping the half-ball 
B+ onto W n fl. A finite number W\,..., WN of such neighborhoods will 
cover dQ,, and there will exist a number R\ > 0 such that for R < Ri every 
cube QR meeting dCl is contained in one of these. Let L be the greatest 
Lipschitz constant of the functions g relative to these neighborhoods and 
of their inverse, and let R0 = L~2R\. If R < RQ and QR C Wk, setting 
U = u o gk, we have 

f \u-i\pdy<cf \U-i\pdx 

and therefore, with a suitable choice of £, we have 

f \u - £\p dy < cRp f \DU\P dx < cRP [ \Du\p dy 

from which the conclusion follows easily. • 

In particular, if A > n — p, the function u is Holder-continuous, 
a result known as the DlRICHLET growth theorem (see MORREY [3], 
Theorem 3.5.2). 

Finally, always in the spirit of Poincare's inequality, we can prove the 
following theorem concerning functions u € W2'p. 
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Theorem 3.18 Let Q, be a bounded open set with Lipschitz-continuous 
boundary. For every e > 0 there exists a constant c(e) such that for every 
u £ W2>P(Q) 

[ \Du\pdx<e [ \D2u\pdx + c(e) f \u\pdx. (3.39) 
Ju Jo. Ju 

Proof. If for some eo such a constant would not exist, we could find a 
sequence Uk £ W2'p such that 

/ \Duk\
pdx> e0 / \D2uk\

pdx + k f \uk\
pdx. 

Jn Ja Ja. 

Writing UfcH-DufcH"1 instead of Uk, we can suppose that the left-hand 
side of the preceding relation be equal to unity. The sequence uk is bounded 
in W2'p, and hence, passing possibly to a subsequence, we can assume that 
Uk —> u in W1 ,p . We have 

/ \Du\pdx = l. 
Ja 

On the other hand, fc Jn \uk\pdx < 1, and hence uk -> 0 in Lp. We have 
therefore u = 0, contradicting the preceding relation. • 

3.7 Traces 

We have already remarked that in some sense it is possible to speak of 
the boundary values of a function u £ W1,p(fl), or at least to say when 
two such functions have the same boundary values. We could therefore 
define the boundary value of a function u £ W1,p(fi) in an abstract way, 
as the equivalence class of all the functions v such that u — v £ W0'

p(Jl). 
To this formal definition we prefer the following discussion that, though 
incomplete, has nevertheless the merit of introducing the trace of a function 
u € Wx'p(p) as a function <p defined on the boundary dfl. 

We begin by discussing the case of a cylinder CR^T = DR X (0, T), where 
DR is a ball of radius R in R n _ 1 . A generic point of CR,T will be denoted 
by x = (x, t), with x £ DR and t £ (0, T). If u(x) is a function of class C 1 

in CR^T and if 0 < s < t < T, we have 

i(x, t) - u(x, s) = / D„u(x,T)d7 
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and hence 

/ \u(x,t) — u(x,s)\p dx = / / Dnu(x,T)d,T dx 
JDR JDR \JS 

< ( i - s ) P - 1 f \Du\pdx. 
JCnt 

By approximation, the preceding relation holds for every function u £ 
W1'P(CR>T), and for almost every s and t. Prom it we deduce that when 
h —> 0 the function u(x,h) tends in the strong topology of LP(DR) to a 
function <p(x). Such a function is called the trace of u on DR. Letting s go 
to zero in the preceding relation, we get 

/ \u(x,t)-<p(x)\pdx<tp-1 J \Du\pdx (3.40) 
J DR JCRtt 

for almost every t £ (0, T). 
A consequence of the above inequality is the following: 

Propos i t ion 3.8 Let p > 1 and let Uk be a sequence converging weakly 
in W1'V{CR,T) to a function u. Then, the traces (pk of the functions Uk 
converge in LP(DR) to the trace <p of u. 

Proof. For 0 < t < T let u*(S) = u(x, t). We have 

llvfc - vllp < llv*: - UI\\P + IK - W*IIP + llu* - fh 

and hence by (3.40): 

\\Vk - <p\\l < c(p){\\Vk - u*fc||? + 114 - u'HJ + ll«* - Vll?) 

< c(p){tp-\\\Duk\\
p
PtCRt + \\Du\\p

PjCRt) + | | 4 - u%} . 

Integrating with respect to t between 0 and •& < T we get 

*\\<Pk - <P\\P
P < c(PW(\\Duk\\

p
PtCRT + \\DU\\P

PICRT) + \\uk - u\\p
PtCRT]. 

If we let k go to infinity, and we take into account the strong convergence 
of itfc in LP(CR:T) and the equiboundedness of the Lp norms of Duk, we get 

limsup \\(fk - <p\\p < c(p)-&p~l 

and the conclusion follows from the arbitrariness of $. • 
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We can now characterize the space W0 '
p by means of the traces. 

Theorem 3.19 Let u G Wl'p{CR,T), and assume that swpp{u)C\dCR,T — 
supp(u)nZ?R. We have u G W0'

P(CR:T) if and only if the trace ofu on DR 

is zero. 

Proof. A function u G W0
1,p(C«,r) 

can be approximated by functions 
Uk G CQ, that have obviously zero trace on DR. By the preceding proposi­
tion, also u has zero trace. 

Assume conversely that the trace of u is zero, and for 0 < r < T let 
r)(t) = T]T(t) be a function of class C1((0, T)) such that 0 < TJ < 1, rj(t) = 0 
for t < \, 77(f) = 1 for t > T and \r/(t)\ < f. We have from (3.40): 

||u - w\\Pp,cR T ^ / lulP dx ^ C1~P I \Du\v dx 

and moreover 

\\D(u-vu)\\p
PiCRr <C( f \Du\*dx + ±; [ \u\>dx) 

<c J \Du\pdx. 
JCR,T 

It follows that for r —> 0 we have r\ru —> u in W1 ,p . On the other hand 
j]u has support contained in CRtT, and hence it can be approximated by 
functions in CS°(CRtT), so that u belongs to W0

1,p(C f l, r). • 
Let us consider now a generic bounded open set fi, with boundary 

of class C1 . Arguing as in Theorem 3.6 we find a finite covering {Ai}, 
a partition of unity {a*} relative to that covering, and for every i a 
diffeomorphism <7, of the unit ball B onto Ai, mapping B+ onto Ai n f2. 
The functions 

Ui = (gi)*(atiu) = (aiu)ogi 

belong to W1'P(B+), and are zero in the curved part of dB+; they can 
obviously be denned in the whole cylinder C\t\ setting them equal to zero 
outside B+. Let $ ; be the trace of Ui; the function 

N 

<f = ^2$iog71 

i= l 

is the trace of u on dQ,. The same construction works when the boundary 
of fi is only Lipschitz-continuous. 
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Both Theorem 3.19 and Proposition 3.8 extend to functions of W1,p(fi) 
without relevant changes. We remark that from Proposition 3.8 it follows 
that the map T : W1'p(Cl) —> Lp(dCl), mapping every function in W ^ f i ) 
into its trace on dCl, is compact. 

The estimate (3.40) becomes in this case5 

/ \u(x - tv{x)) - <p(x)\p dHn-x(x) < ctP-1 [ \Du\pdx, (3.41) 
Jdo. Jn-nt 

where v{x) is the exterior normal to dCl in x, and we have set as usual 

Clt = {x € Cl : dist(z, dCl) > t} . 

The trace of a function u will be denoted by the same symbol u. We 
have the Green's formula: 

/ uDiipdx = — / <pDiudx+ / i/iipudHn-
Jn Jn Jan 

I • 

for every y> € C1(fl), that can be proved passing to the limit in the same 
formula for u € C1(fi). 

Remark 3.5 If the function u € W1,p is continuous in Cl, it is evident 
that when t tends to 0, u(x — tv(x)) tends to the value of u on dd, and 
hence the trace of u coincides with the restriction of u to dfl. 

Actually the linear map T, that to any function u £ W1,p(il) associates 
its trace on dQ,, is completely characterized by the property that it coincides 
with the restriction to dQ, for functions u s C1(J1). To see that, let u £ 
Wl,p, and let Uk € C 1 ^ ) be a sequence convergent to u in W1 , p (see 
Theorem 3.6). The sequence of traces {Tiik} is then a Cauchy sequence 
in Lp(dCl), and therefore it converges to a function tp = Tu. The limit 
function does not depend on the sequence Uk\ for, if Vk —> u in W1^, we 
have Uk — Vk —> 0, and hence Tiik — Tvk —>• 0 in Lp(dSl). If we write (3.41) 
for u/t, and we pass to the limit, we conclude that it holds for (p, so that ip 
is the trace of u. • 

With an argument rather similar to that of Theorem 3.14, we prove the 
following result: 

Theorem 3.20 Let CI be a bounded open set, with a boundary dCl 
connected and Lipschitz-continuous. There exists a constant c(p, n, CI) such 
that for every u € Wr,p{Cl) 

5We denote by H n - i the (n— l)-dimensional Hausdorff measure on dCl (see Sec. 2.6), 
which coincides with the usual surface measure when dCl is Lipschitz-continuous. 
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I \u{x) - udn\
p dHn_x <c I \Du\pdx. (3.42) 

JdQ. JO, 

Moreover, if fl is the cube QR of side 2R, we have 

[ \u(x)-u9QR\pdHn-1<c(p,n)Rp-1 f \Du\pdx. (3.43) 
JdQn JQR 

The same inequality, possibly with a different constant c, holds for balls 
BR = {x e Rn : |z| < R}. 

We conclude this section by recalling that not every function in Lp(dCl) 
is the trace of some function in W1,p(fi). As a matter of fact, there exists the 
following characterization of traces of functions in Wl'p, which we mention 
for the sake of completeness. Its proof can be found for instance in the 
book of KUFNER, JOHN and FUCIK [1]. 

Theorem 3.21 Let Q, be a bounded open set with Lipschitz-continuous 
boundary. A necessary and sufficient condition for a function <p in Lp(dfi.) 
be the trace of a function in W1,p(Ct) is that 

w^)-^_dH^{x)dH^_iiy) < +oo (344) 
/ / 
J Jdi 

hnxdn \x-y 

3.8 The Values of W1*? Functions 

We have often remarked that the functions in Wl'p are strictly speaking 
equivalence classes, and therefore their values are defined up to a set of zero 
measure. On the other hand, the fact that for such functions it is possible 
to define a trace, something that cannot be done for instance for functions 
in Lp, suggests the possibility of denning W1 , p functions on some set of 
zero measure, and even of dimension n — 1. We can actually do better, as 
we see in the following theorem. 

Theorem 3.22 Let Q. c Rn and let u e W1*^). There exists a set 
E C Cl, with dim.jj(E) <n — p, such that for every XQ &Cl — E the limit 

lim 4 udx 

exists and is finite. 

Proof. As usual we set 

D i B=: -/ udx=: — / udx. 
JQ(x0,g) IVel JQ(x0,g) 
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If Q is the cube with center at the origin and radius 1, we have 

ux0,g = 4 u(xo + gy)dy, 
JQ 

so that the function ip{g) = uXOiB is differentiable in (0, +00), and 

f'ie) = 4 yiDiu(x0 + gy)dy. 
JQ 

Estimating the right-hand side by means of the Holder inequality, and 
coming back to the cube of radius g, we get 

b ' ( e ) | < c { / \Du\*>dx) . 

Let now \i be the measure defined by 

H(B)= [ \Du\pdx, 
JB 

and consider the corresponding sets Ea defined in (2.54): 

Ea = \ x G A : limsup g-a^(Q(x, g)) > 0 I . 
[ g^o+ J 

If XQ $ gn-p+e w e m u s t n a v e 

lim^-"-£ / \Du\pdx = 0, (3.45) 
g - > 0 JQ(XO,Q) 

and therefore 

W{Q)\ < cg~l+i . 

From that inequality follows at once that the required limit exists 
and is finite. Setting then E = fle>o £ n " p + £ , we have Hn-P+e(E) < 
Hn-P+e(En~P+e) = 0, and therefore dimH (£) <n-p. D 

We note that by Remark 2.5, (3.45) continues to hold for e = 0. The 
same cannot be asserted for the conclusion of the theorem, since the con­
dition e > 0 is essential for the existence of the limit, as one can see from 
the function 

u(x) = log log — 
\x\ 

in the disc of R 2 of radius R< 1. 
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Since by Lebesgue theorem we have almost everywhere 

u(x) = lim uXtg, 
Q—i-0 

the preceding theorem permits to specify the values of functions in W1 ,p . 
In fact for such functions the limit on the right-hand side exists for every 
x € (7, except at most a set of dimension not larger than n — p, and defines 
a function belonging to the equivalence class of u. 

In a similar way we can characterize the traces of functions in W1,p(fl). 
Since our results are local, it will be sufficient to treat the case when fl 
is the half-space R+; the general case will follow by flattening locally the 
boundary. 

Let P be the boundary of R™: 

P = {x e R n : xn = 0} . 

For x0 e P, we set Q+(x0, g) = Q(x0, g) (~l R£. 

Theorem 3.23 Let u £ W1'p(R!f.). There exists a set F C P, with di­
mension not larger than n — p, such that for every XQ € P — F the limit 

lim 4 udx 
e->°jQ+(x0,e) 

exists and is finite. 
Moreover, for almost every XQ S P this limit coincides with the trace 

tp(x0) ofu. 

Proof. The first part can be proved as in the preceding theorem, taking 
A = R n and 

KG) = I 
JGl 

\Du\pdx. 

In order to show that the limit of the averages coincides with the trace, 
we remark that, calling K(yo, g) the (n — l)-dimensional cube with center 
yo and side 2g contained in P, we have 

/ \u(x) - <p(y0)\
p dx = / dy / \u(y,t) - ip(y0)\

p dt 
JQ+(V0,Q) JK(yo,g) JO 

<cf dy f\u(y,t) - <p(y)\P dt 
JK(yo,g) JO 

+ cg My) - f(yo)\pdy. 
JK(yo,Q) 
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Using (3.40) we get the estimate 

4 \u(x) - <p(y0)\
pdx 

JQ+(vo,g) 

< c(t-n f \DU\P dx + CQl-n f \<p(y) - ip(y0)\
p dy. 

JQ+{yo,g) JK(yo,g) 

The first of the two integrals on the right-hand side tends to zero, except 
possibly for yo in a set of zero (n — p)-dimensional measure (see the remark 
at the end of the preceding theorem); whereas the second tends to zero 
almost everywhere in P by the Lebesgue theorem. This proves the second 
part of the theorem. • 

From the above theorem we obtain two interesting corollaries. The first 
is what we had stated in Remark 3.2, that is that the functions w and u 
have the same trace on dfl. Let R > 0, and let k < ^ < k + 1. If XQ € dd 
and x £ Q(XQ,R), taking into account (3.5), (3.6) and the definition of the 
functions «j, we get 

( / \w-u\pdx) < V \\ipei * (aiU) - aiu\\p < r2 2 _ f c < c 2 _ * 
\JQ(X0,R) J i=k_2 

from which we obtain immediately 

lim -/ (w — u)dx = 0 
e^°JQ(X0,e) 

and hence the equality of the traces of u and w. 
We have in addition the following: 

Corollary 3.2 Let Ct be an open set with Lipschitz-continuous boundary, 
and let u € W2'P(Q.) have zero trace on dQ,. Let d(x) = dist(a;, dil), and 
assume that 

| u ( i ) | < 7 ( d ( i ) ) 

in a neighborhood of dQ, where 7 is a C1 function, with 7(0) = 0. Then, 
for almost every x £ dQ, we have 

\Du(x)\ < C 7 ' ( 0 ) . 

file:///Du/p
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Proof. Setting CIR = QC\ QR, using the Green formula with ip = 1 and 
taking into account that u = 0 on dfl, we get for R sufficiently small 

/ Dudx — / uv 
J$IR J^R > / S R 

with ER = 0, n dQR. 
On the other hand, if d < R we have j(d) < (j'{0) + e(R))R, and 

therefore 

/ Dudx <jyj„_i(Efl)(7 '(0) + e(fl)). 

The conclusion follows immediately from the inequality iJ„_i(Sfl) < 
aR n _ 1 , dividing by i?" and letting R tend to zero. • 

3.9 Notes and Comments 

A general theory of Sobolev spaces can be found in most books devoted 
to elliptic equations, such as the classical treatises by MORREY [3], 
LADYZENSKAYA and URAL'CEVA [1] or GILBARG and TRUDINGER [lj. 

There are, of course, volumes expressly dedicated to the study of such 
spaces; among which we mention ADAMS [1] and KiJFNER, JOHN and 
FuciK [1]. 

Sobolev spaces were introduced and studied by SOBOLEV [1], and 
independently by CALKIN [1] and MORREY [1]. Since then, they have 
been so widely used, that in many cases it is difficult to retrace the exact 
paternity of a result. For instance, whereas Theorem 3.4 is certainly due 
to MEYERS and SERRIN [1], Theorem 3.6 is more difficult to attribute with 
some certainty. 

It is possible to define fractional Sobolev spaces, either by interpolation 
between V and W1 , p (see LIONS [1] or LlONS and MAGENES [1]), or else by 
introducing norms similar to (3.44). We shall thus say that u € W ' ^ f i ) , 
0 < i ? < 1, if ueLp and 

JJn 
\u(x) - u(y)\P 

fixn | a : - y | n + ^ 
dx dy < +oo . (3.46) 

More generally, a function u belongs to Wk+^'p(tt) if u € Wk'p and its 
derivatives of order k belong to W°'P(Q,). 

For such spaces results similar to those proved for the usual Sobolev 
spaces hold; in particular the statements of the immersion theorems of 
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Sobolev (Theorem 3.12) and Rellich (Theorem 3.13) remain valid even if k 
is not an integer. 

In terms of fractional Sobolev spaces, Theorem 3.21 says that a function 
(p defined on dfi, is the trace of a function in W1,p(fi) if and only if it belongs 
to W1_p'p(<9f2). Moreover, if u € Wrl'p(fi) and cp is its trace, we have 

Cillvllwi-J.p(8n) ^ mf{\\u + v\\wi,»(n); ve <'p(ft)} 

As a consequence of these estimates and of the Sobolev theorem for 
fractional spaces, we can deduce the continuity of the immersion of W1,p(Cl) 
in L"(dn), with q = i ^ . 

For more general trace theorems (derivatives of arbitrary order on 
manifolds of codimension greater than one) have proved useful the Besov 
spaces B®'P(Q), of functions u € Lp(Cl) such that 

u{x)+u(y)-2u(^)\p 

[ dx [ 
Jn Jn n. F - y\n+p* 

where ttx = {y e 0, : ^ € 0}. 
Another definition of fractional derivatives makes use of the Fourier 

transform. If u € L2(R"), one can define the function 

u(£) =: — 1 — [ u(x)ei{x<V dx. 

Since 

£>°u(0 = i | o , |rfi(0, 

the function u will belong to W fc ,2(Rn) if and only if 

Ki2*ifi(Oi2de<+oo. I /R" 

The form of the last relation permits an immediate extension to the case 
of fractional exponent, since the order k appears in it only as a parameter, 
not necessarily integral. 

More generally, a function u G L p (R n ) belongs to L s ' p (R n ) if the 
function (1 + |£|2)~S//2u(£) is the Fourier transform of a function u e If. 
The spaces Ls'p do not coincide with the Ws'p definite above; we have 
however 

Ls+e'p(Kn) -> Ws'p(Rn) >-+ L*-e'p(Rn) 

for every e > 0. 
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More information about fractional Sobolev spaces, as well as about 
Besov spaces, that are variations of them, can be found in ADAMS [1] and 
KUFNER, JOHN and FUCIK [1]. 

The inequalities of Sobolev (3.17) and Sobolev-Poincare (3.29) are 
strictly connected with the so-called isoperimetric inequalities by means 
of the coarea formula (FLEMING and RlSHEL [1]; see also GlUSTI [6]) for 
functions in W1'1(J7): 

/ \Du\dx = f Hn-x{dUt n L)dt, (3.47) 
J L J—oo 

that holds for any Borel set L C fi, where as usually we have set 

Ut = {x G ft : u(x) > t}. 

The "classical" isoperimetric inequality ( D E GlORGI [2]) asserts that 
the n-ball has the least parameter among bodies of the same measure. It 
follows that for every set E, and whence in particular for the sets Ut, it 
holds that 

| £ | 1 _ " < c(n)Hn-i(dE) 

in which the constant c(n) is determined by the fact that we must have the 
equality when E is an n-dimensional ball. 

Let now u G C0 , 1(n) , with u > 0.6 We have 

\Ut\< 

with a — -2 ir , and therefore 
n —1 ' 

/•OO /-OO 

\\u\\a
a = G\ t^\Ut\dt<a\\u\\S / lUtf-^dt. 

Jo Jo 

By applying the isoperimetric inequality above, we get 

/•OO 

| | « | U < c / Hn-i(dUt)dt. 
Jo 

Assume now that u has zero trace. In this case Ut is contained in f2, 
and therefore the last quantity is nothing but 

6 This is not a restriction, since we may always divide u into its positive and 
negative part. 

file:///Du/dx
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/ \Du\dx 
Ja 

so that the Sobolev inequality is proved when p — 1. The general case 
follows as in Theorem 3.7. 

In order to prove the Sobolev-Poincare inequality we need a slightly 
more sophisticated isoperimetric inequality (BOMBIERI and GlUSTI [1]): If 
fi is a connected set with regular boundary, there exists a constant c(n, Q,) 
such that for every E C Cl, 

mmilElin-Eiy-n < cHn-i{dEn Q). 

The required inequality follows now choosing a real number A such that 
\A\\ = 7f|f2|, and repeating with small variants the preceding argument for 
the functions max{u — A, 0} and max{A — u, 0}. 

When p = 1 the above inequalities hold also for functions whose 
derivatives are measures. For more details see FEDERER [2] or GlUSTI [6]. 

The coarea formula can be used also to establish a result extending what 
we have proved in Proposition 3.5. 

Proposition 3.9 Let A C R be a Borel set of zero measure, and let 
u € W1'1(Cl). Then, Du = 0 for almost every x s u~1(A). 

Proof. Since for almost every t e R w e have 

dUt = {x € Q, : u(x) = t} , 

the conclusion follows at once from the coarea formula with L = u~1(A), 
by remarking that the integral on the right-hand side is made on the set A 
of zero measure. • 

We can prove now the following: 

Theorem 3.24 Let f(t) be a Lipschitz-continuous function in R, and let 
u € Wlo'c (fi). Then, the composed function f o u belongs to W^(il), and 
D(f o u) = f o u Du. 

Proof. Indicating by es the unit vector in the direction of the 
for any measurable function v we set 

v(x + he3) - v(x) 
Ahv = Ah<sv = - i -rf- y—!-

file:///Du/dx
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and we define 

( f(u(x) + hAhu) - f(u(x)) 

Bh{u) 

if Ahu ? 0, 
hAhu 

f(u(x)) if Ahu — 0 and u(x) £ A, 

0 if AhU = 0 and u(x) e A, 

where A is the set of points where / is not differentiable. 
Now let (p be a function with compact support in fi, and let \h\ < 

dist(suppy>, dil). By the preceding proposition 

/ Bh{x)Dsuipdx = I Bh(x)Dsuipdx 
Jn Jn-u-i(A) 

and therefore 

lim / Bh(x)Dsu(pdx — / / ' ouDsuipdx. 
h-+° Jn Jn 

On the other hand, since / is Lipschitz-continuous in R, we have 
\Bh\ < K, and since AhU —> Dsu in Lloc(Q.) (see later, Sec. 8.1), we 
have also 

lim / Bh{x)AhUipdx = I f ouDsu<pdx. 
h^° Jn Jn 

The conclusion follows by remarking that 

R MA „ / M * ) + hAhu) - f(u(x)) 

Bh(x)Ahu = = Ah{f o u) 

and that 

/ A/i(/ ou)ipdx = — / / ouA-hfdx —> — / / o uD3<pdx. ^ 

The conclusion of the theorem holds even if / is only locally Lipschitz-
continuous in R, provided / o u and / ' o uDu are locally summable in fi. 
For the proof we assume first that / is bounded, and we pass to the limit 
for t —»• +oo in the relation 

I f out Dip dx — — If out Dut<p dx 

in which ut = max{min(u,t), —*}. When / is not bounded, it will suffice 
to pass to the limit in the equation 

ft°u Dtp dx — — I ft o u Du (p dx, 



Chapter 4 

Convexity and Semicontinuity 

4.1 Preliminaries 

Once the fundamental results about SOBOLEV spaces have been established, 
we can pose the problem of lower semicontinuity in the space W1^ for 
general functionals 

F{u)=F(u,Q,)=: I F(x,u,Du)dx. (4.1) 
Jn 

Definition 4.1 Let X be a topological space. A function J- : X —> R is 
lower semicontinuous (l.s.c.) if for every t S R the set 

Tt = {x G X : F{x) > t} 

is open (or else if the set Qt = {x € X : !F(x) < t} is closed). 

In the above definition we have indicated by R the set R U {+oo}; in 
other words the function T may take the value +00.1 

It is easily seen that T is lower semicontinuous if and only if its 
epigraphic 

S(J-) = {(x,t) e X x R : t > JF(x)} 

This extension is purely technical, and permits one to avoid non-essential discussions. 
However, we shall always assume that at least for a point x S X it holds that ^(x) < +00. 
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is closed. Actually, the complement of S ( ^ ) is the set 

A= (J .Ft x (-oo.t), 
ten. 

which is open if F is lower semicontinuous. Conversely, if S(^r) is closed, 
so is Qt x {t} = E(jT) n (X x {t}), and therefore Qt. 

For our purposes, a second definition of lower semicontinuity will be 
more suitable, in terms of convergence of sequences. 

Definition 4.2 Let X be a topological space. We say that the function 
J- : X —> R is (sequentially) lower semicontinuous if for every sequence Vk 
convergent to some v £ X, we have 

T(v) < liminf F(vk). 
k—>oo 

We note that a lower semicontinuous function T is sequentially lower 
semicontinuous. The converse is true if X satisfies the first countability 
axiom, that is if every point has a countable fundamental system of neigh­
borhoods; in particular if X is metrizable. The proof is left to the reader. 

The following result is not difficult to prove. 

Lemma 4.1 If J-a, a & I, is a family of lower semicontinuous functions, 
then 

T(x) = sup^r
Q(a;) 

ael 

is lower semicontinuous. 

Proof. It will be sufficient to remark that 

Tt = {xeX: 7(x) > t} = ( J J? = \J{x € X : ?a(x) > t} . 
ael a€l 

In the case of sequential semicontinuity, if Xk —• x, we have 

J-(x) = sup J-a(x) < sup liminf J-a{xk) 

< lim inf sup Ta (xk) = lim inf T{xk). ri 
k—yoo a k—yoo 

In this book we shall use only sequential lower semicontinuity, that 
we shall abbreviate LSC, always keeping in mind that the two definitions 
coincide in metric spaces. 
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Let now V be a subset of X, in which we want to minimize the functional 
!F. We call minimizing a sequence {xk} with values in V, such that 

lim F{xk) = inf T. 

The following result generalizes WEIERSTRASS' theorem. 

Theorem 4.1 Let V C X, and let T be a LSC function. Assume there 
exists a minimizing sequence Xk, converging to a point XQ £ V. Then, !F(xo) 
is the minimum of J- in V. 

Proof. Indeed, we have 

inf T < !F(xo) < lim inf !F(xk) = inf T 

and hence — oo < T{XQ) = inf^ J". D 

In the applications to the calculus of variations, neither the space X 
nor its topology are given a priori; they must be chosen according to two 
contrasting requests: the lower semicontinuity of the functional and the 
existence of a convergent minimizing sequence. As we have said, these 
are two concurrent properties. The choice of the topology should be situ­
ated at the equilibrium point between these two forces pushing in opposite 
directions; in particular it will be useful to prove the semicontinuity in 
the weakest possible topology. Most of this and the next chapter will be 
concerned with the study of the semicontinuity of functionals in the most 
general situation. 

4.2 Convex Functionals 

We shall begin with a semicontinuity theorem in the strong topology of 
W1 '1(n) , even if the strong convergence in this space is by far too restrictive 
to be useful in the applications. However, this result will be a starting point 
for the subsequent developments. 

Definition 4.3 A CARATHEODORY function is a function F(x, y) : £1 x 
R* -> R such that 

(i) F(-,y) is measurable for every y S R s , 
(ii) F(x, •) is continuous for almost every x S SI. 

Lemma 4.2 Let F(x,y) be a CARATHEODORY function, and let y(x) be 
a measurable function. Then, the function g(x) =: F(x,y(x)) is measurable 
in Q,. 
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Proof. Assume first that y{x) is a step function, that is 

N 

y(x) = YlXiXi^' 
i = l 

where \ are real numbers, and \i a r e the characteristic functions of pair-
wise disjoint measurable sets Ei, with U^Ei = Q. For ( e R w e have 

N 

{x € ft : g{x) > t} = [j{x € Ei : F(x, A4) > t} . 
t= i 

By (i) above, all the sets on the right-hand side are measurable, and 
hence g is measurable. 

In the general case, we remark that a measurable function y{x) is the 
pointwise limit of a sequence y^ of step functions. By (ii) we have 

F{x,y(x)) — lim F(x,yk(x)) a.e. in 0 
k—»oo 

and hence the function F(x,y(x)) is measurable, being the pointwise limit 
of measurable functions. • 

We can now prove without difficulty the following: 

Theorem 4.2 Let F(x,y) be a CARATHEODORY function, and let yk{x) 
be a sequence of functions, strongly convergent in L1(f2) to a function y(x). 
Then, 

I F(x,y(x))dx < liminf / F(x,yk(x))dx. 
Jo. fc->°° Jo. 

Proof. From yk we extract a sequence y£ such that 

lim / F(x,yl(x)) dx = liminf / F(x,yk(x))dx . 
k-^oojQ fc->oo Jn 

Passing possibly to a subsequence, we can assume that y^ (x) converges 
almost everywhere to y(x), in which case F(x,y^(x)) will also converge 
almost everywhere to F(x, y(x)). The conclusion then follows from FATOU's 
lemma. • 

If we want to apply the above theorem to the functional (4.1), we must 
take y = (u,Du), so that we need the strong convergence in W1'1(Cl); a 
topology which, as we have remarked, is far too strong. On the other hand, 
if the functional T is convex, we can prove the following: 
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Theorem 4.3 Let F(x, y) be a CARATHEODORY function, and assume 
that for almost every x £ fl the function F(x, •) is convex. Then, the 
functional 

•F(y,fi) = f F(x,y{x))dx 
Jn 

is lower semicontinuous in the weak topology of Ll{Q). 

Proof. Since T is LSC in the strong topology of L1, and the latter is 
a BANACH space, the epigraphic ^(J7) of T is strongly closed. On the 
other hand, the convexity of F implies that of T, and therefore of ^(F). 
It follows (see DUNFORD-SCHWARTZ [1] (I), Theorem V. 13) that £(.F) is 
weakly closed, and hence T is LSC in the weak topology of L1(J7). D 

From this theorem we can already see the role played by the convexity 
in the passage from strong to weak topology. However, in the case at hand 
the convexity of the function F(x, •) means that of F(x, u, z) in the couple 
(u, z), and this assumption is still too strong, to the point that the preceding 
result is meaningful only when the function F in (4.1) is independent of u. 

On the other hand, from the compactness theorems proved in the 
preceding chapter it follows that the weak convergence of the derivatives 
implies the strong convergence of the functions. This fact suggests that, 
whereas the convexity of the function F(x, u, z) with respect to the vari­
able z is somewhat essential for the semicontinuity in the weak topology of 
W1 ,p , with respect to u is superfluous since the weak convergence of the 
derivatives implies the strong convergence of the functions. Consequently, 
we can weaken the hypotheses, and we can assume only the continuity of 
F with respect to the variable u. This is exactly what we shall do in what 
follows. 

4.3 Semicontinuity 

We shall begin with some notation. As is usual, we shall use an arrow —¥ to 
denote strong convergence, and a half-arrow -A for the weak convergence 
(the topology in question, when not explicitly stated, will be clear from the 
context). If V(fl) is a space of functions defined in fl, we say that Uk —> u 
(resp. Ufc —̂  u) in Vioc(fl) if ttj. —• u (resp. Uk —*• u) in V(S) for every open 
set £ CC fl. 

We shall assume that the function F(x, u, z) is defined in CI x M x 
R", where M is a closed set in R ^ , possibly coinciding with HN, and 
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we shall consider the space of functions (u, z), with z £ Ll{£l,~R?) and 
u £ Ll(p,,M), that is u £ L1(ft,RJV) and u(x) £ M for almost all x £ ft. 
It is easily seen that L1(f2, M) is closed with respect to strong convergence 
i n L ^ f t ) ; if uk £ L\n,M), u £ L 1 ^ , ^ ) , andifufe -> u i n L j ^ f i . R " ) , 
then, passing possibly to a subsequence, we can suppose that uk -» u almost 
everywhere, so that u £ L1(f2,M). 

Our first results concerns the case of a function F(x, u, z) regular 
enough. 

Theorem 4.4 Let F(x, u, z) be a non-negative function, continuous to­
gether with its derivatives with respect to z inQ. x M x Rv, and convex in 
z. Let uk,u £ L 1 (n ,M) , zk,z £ L1(ft,R1/), and assume that uk —> u in 
Lloc(Q,) and that zk —^ z in Lloc(Cl). Then, 

F(u,z) < liminf !F(uk,Zk). (4.2) 
k—»oo 

Proof. Assume first that ft is bounded, and let D CC ft. By the 
theorems of EGOROV and LusiN, for every e > 0 we can find a compact set 
K c D, with \D - K\ < e and such that 

(i) uk —> u uniformly in K, 
(ii) u and z are continuous in K, 

(iii) JK F(x, u, z) dx > fD F(x, u, z) dx — e. 

Indicating as usual with Fz the vector in R" whose components are | | r 
and with ( ) the scalar product in R", we have: 

/ F(x,uk,zk)dx= / {F(x,Uk,z) + [F(x,uk,zk)-F(x,uk,z)}}dx 
JK JK 

> / F(x,uk,z)dx+ / (Fz(x,uk,z),zk-z)dx 
JK JK 

= / F(x,uk,z)dx+ / {Fz(x,u,z),zk - z)dx 
JK JK 

+ / (Fz(x,uk,z) - Fz(x,u,z),zk -z)dx. 
JK 

Passing to the limit as A; —> oo, the first integral on the right-hand side 
tends to 

/ F(x, u, z) dx 
JK 
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thanks to the continuity of F and to condition (i). The second integral tends 
to zero, since Fz(x, u(x), z(x)) is continuous, and zk -*• z. Finally, the third 
integral can be estimated by 

\\zk - z\\i sup \Fz(x,uk{x),z(x)) - Fz(x,u{x),z(x))\ 
K 

and therefore it also tends to zero by (i) and the continuity of Fz. In 
conclusion: 

liminf / F(x,uk,zk)dx > I F(x,u,z)dx> / F(x,u,z)dx - e. 
k~yo° JK JK JD 

Since F > 0 and e is arbitrary we have 

liminf / F(x,uk,zk)dx > / F(x,u,z) dx 
fc->°° Jn JD 

and taking the supremum over D c f i w e get the conclusion if ft is bounded. 
The general case is obtained remarking that 

liminf / F(x, Uk,Zk) dx > liminf / F{x,Uk,Zk)dx 
k^°° Jn fc-+°° JnnBr 

> / F(x, u, z) dx 
JnnBr 

and passing to the limit a s r - 4 +00. • 

We want now to drop the assumption of continuity of F and Fz. Writing 

/ F(x,uk,zk)dx= / F(x,u, zk)dx+ / [F(x,uk,zk) - F(x,u, zk)\ dx, 
Jn Jn Jn 

the first integral on the right is semicontinuous by Theorem 4.3; it will only 
be necessary to show that the second integral tends to zero, or at least that 
its liminf is non-negative. 

We begin with a lemma, which we shall prove only for the part that will 
be used later. 

Lemma 4.3 Let £ be an open set in R n , with |S | < +00, and let zk 

be a sequence converging weakly in £P(S) (p > 1) to a function z(x). For 
L > 0 set 

zL=[z if\z\<L, 

I 0 otherwise. 
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For every integer L there exists a subsequence zks and a function vL such 
that zfc —*• vL in L2(E). Moreover, when L tends to infinity, the sequence 
vL tends to z in L1. 

Proof. We shall prove the lemma only for p > 1. Since \zfc\ < L and 
|S | < +00, the sequence zfc is bounded in £ 2 (£) , and therefore we can 
extract from it a subsequence weakly convergent to a function vL £ L2(E) 
(note that we do not assert that vL = zL). 

Let <p G Loc(E), and let 

Sfc,L = {x £ S : \zk(x)\ > L}. 

We have 

/ (zfc - zfc)(pdx = I zk<pdx < sup \<p\ / \zk\ 

Prom the assumption p > 1 we get 

dx. 

L Zk\dx<\ZktL\l-p\\zk\\Pis (4.3) 

and hence, recalling that 

, v 1 ^ llzfc||P|S 

l^fe.il < —-jj,— <cL F, 

we can conclude that for any fixed e > 0, the integral on the left of (4.3) 
can be made < e by taking L large enough, independently of k. Passing to 
the limit as k —> 00, we get 

L (z — vL)ipdx < e sup \tp\ 

for L > L(e). Choosing ip = H(z - vL) (H is the HEAVISIDE function) we 
find 

L z — v \dx < e 

for every L > L(e), and the lemma is proved for p > 1. • 

The case p = 1 is more complex,2 since we cannot use the inequality 
(4.3). In its place, one might use the following lemma, that we state without 
proof (see DuNFORD and SCHWARTZ [1] (I), Corollary IV. 11): 

Lemma 4.4 Let S be a bounded open set o/R™, and let fk-^fin i 1 ( S ) . 

2We remark, however, that in the applications one has usually p > 1. 
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Then: 

(i) The sequence \\fk\\i is bounded, 
(ii) The functions A -* JA \fk\dx are absolutely continuous, uniformly in 

k. 

The next step is essentially technical. 

Lemma 4.5 Let K be a compact set in R n , and let F(x,u,z) be a 
continuous non-negative function in K x M x R", convex in z for every 
{x, u) e K x M. Assume that UH —> u uniformly in K, and that Zh —*• z in 
Lp{K), withp> 1. Then, 

/ F{x,u,z) dx < liminf / F{x,Uh,Zh)dx . 
JK k-yoo JK 

Proof. Passing possibly to a subsequence, we can suppose that the se­
quence of the integrals on the right-hand side is convergent. Let R > 
suph ||uh|loo,/c, MR = M n B R , and define 

T = sup F(x, u, 0); A = sup ||Z/I||P,K: . 
KXMR h 

Setting Kh,L = {x £ K : \zh(x)\ > L}, we have \Kh,L\ < ( ^ ) P . Prom 
Theorem 4.3 and the preceding lemma we deduce 

/ F(x,u,z) dx < liminf / F(x,u,v )dx 
JK

 L ^°° JK 

and 

/ F(x,u,vL)dx < liminf / F(x,u,zfc)dx. 
JK k-voo JK 

On the other hand, since F > 0, we have 

/ F{x,u,zjt)dx= [ F{x,uh,zt)dx+ [ \F{x,u,z^) - F{x,uh,z};)}dx 
JK JK JK 

< / F(x,uh,Zh)dx+ / F(x,uh,0)dx 

+ f [F{x, u, z%) - F(x, uh, zf;)] dx. 
JK 

When h —> oo, the third integral tends to zero, since F is uniformly 
continuous in the compact set K x MR X JB£ and UH —> u uniformly. The 

file:///fk/dx
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second integral can be estimated by T ( £ ) p independently of h. We have 
therefore 

/ F(x,u,vL)dx < liminf / F{x,Uh,Zh)dx + T 
JK k-voo JK 

AV 

and the result follows at once. • 

To conclude the proof of the first of our semicontinuity theorems, we 
need the following lemma that generalizes the theorem of LusiN. 

Lemma 4.6 (SCORZA DRAGONI [1]) Let E be a measurable set, with 
|E| < +oo, let S C R s , and let h(x,y) be a function defined in E x S, 
measurable in x for every y £ S, and uniformly continuous in y for almost 
all x £ E. 

For every 5 > 0 there exists a compact set K C E, with |E — K\ < 5, 
and such that the restriction of h(x, y) to K x S is continuous. 

Proof. For i £ N we set 

u)i(x) = s u p \ \h(x,yi) -h(x,y2)\\ 2/1,2/2 € S, [2/1 - 2/2I < - > • 

By assumption, u>i -4- 0 almost everywhere in E, and hence by the 
EGOROV theorem there exists a compact set K\ 6 E, with |E — K\\ < | , 
such that Ui —¥ 0 uniformly in K\. In other words, h(x, •), a; £ If 1 is a 
family of equicontinuous functions. 

Let S = {2/1,2/2, • • •, j/n, • • •} be a countable dense set in 5, and let dj be 
a sequence of positive numbers, with ]T *̂Li Sj < | . By the LusiN theorem, 
for every j there exists a compact set Kj C E such that |E — Kj\ < 6j and 
h(-,yj) is continuous in Kj. 

Setting K2 = f]j Kj, all the functions h(-, yj) are continuous in K2, and 
|E-*f 2 |<§ . 

Now let K — K\ fl K2, and let (xn,yn) be a sequence in K x S, such 
that xn —>• x G K and yn —¥ y £ S. We have 

\h(xn,yn)-h(x,y)\ < \h(xn,yn) - h(xn,y)\ + \h(xn,y) - h(x,y)\. 

The first term on the right tends to zero, since the functions h(x, •) are 
equicontinuous for x G K. As for the second term, we have 

\h(xn, y) - h(x, y)\ < \h(x, y) - h(x, y)\ + \h(xn, y) - h(x, y)\ 

+ \h(xn,y) -h(xn,y)\, 
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where y € S is chosen in such a way that for every x e K it holds that 

\h(x,y) -h(x,y)\ < -

(once again, this is possible by the equicontinuity of the functions h{x, •)). 
In this way the first and the third terms are both less than | , whereas 

the second tends to zero when n —» oo. We have therefore 

limsup|/i(a;n,y„) - h(x,y)\ <e 
n—»oo 

from which the lemma follows. • 

We can now prove the following: 

Theorem 4.5 (Semicontinuity) Let fl be an open set in R n , let M be a 
closed set in HN, and let F(x,u, z) be a function defined in Cl x M x R" 
and such that 

(i) F is a CARATHEODORY function, that is measurable in x for every 
(u, z) € M x R" and continuous in (u, z) for almost every x G Cl. 

(ii) F(x, u, z) is convex in z for almost every x € fi and for every u € S. 
(iii) F > 0 . 

Let Uh,u € Ll(Sl,M), Zh,z £ L1(fi,R"), and assume that Uh —• u and 
zh^ z in Lloc(Q,). Then, 

/ F(x,u,z)dx < liminf / F(x,Uh,Zh)dx. (4.4) 
Jo. h^>°° Jo, 

Proof. Setting 

J-{u, z,A)= / F{x,u,z)dx, 
JA 

we can suppose that there exists the limit 

lim F(uh,zh,Q) =: A 
h—»oo 

and that Uh —>• u almost everywhere in Cl. 
Let ii CC (1. By the absolute continuity of the integral, for every 

e > 0 there exists a 6(e) > 0 such that if S C Cl and |S | < S we have3 

J-(u,z,£) < e. 
From the preceding lemma and from the theorems of EGOROV and 

LusiN we conclude that there exists a compact set K C Cl and a 

3If T{u, z, Cl) = +oo, F(u, z, Cl - E) > \. 
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number R > 0, such that \Q — K\ < 6 and 

(a) Uh,u £ C°(K,M); sup^ |u| < R, sup^ \uh\ < R. 
(/3) Uh —> u uniformly in K. 
(7) F(x, u, z) is continuous in K x M x R". 

From Lemma 4.5 we get 

F{u,z,K) < \\m\rdT{uh,Zh,K) < A 
h—>oo 

and therefore4 

T{u,z,&) < A + e. 

Since e > 0 is arbitrary, this implies J-(u, z,£l) < A for every ftCCft, 
and hence the conclusion. • 

We remark that assumption (i) of the theorem can be replaced by 

(i') F(x, u, z) is measurable in x for every (u, z) £ M x R", and continuous 
in u for every z € R" and almost every x G fi. 

Actually it is not difficult to prove that if g(u, z) is continuous in u and 
convex in z, then it is continuous in z uniformly with respect to u, and 
hence is continuous globally in (u, z). 

Remark 4.1 Rereading the proofs of Theorems 4.4 and 4.5, and of 
Lemma 4.5, it is not difficult, keeping in mind Lemma 4.4, to realize that it 
is possible to substitute the condition F(x, u, z) > 0 with the more general 
assumption 

F(x,u,z)>-c(\z\ + \u\+g{x)) 

with g £ L1. Moreover, if instead of the topology of L\ x L\, we use that 
of Lg x L?,, with k > 1 and p > 1 (as we shall always do in what follows), 
it will be sufficient to assume 

F(x,u,z)>-c(\z\m + \u\k+g) 

with g £ L1 and m < p. D 

Example 4.1 Note that the above result does not hold for m = p, even 
in dimension one IOFFE [1]). To see that, consider the functional 

4If T{u, z, Q) = +00, A > T(u, z,K)> \ and hence A = +00. 

file:////m/rd
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Jo 
- + -z) dt 
q t 

(£ + „ = ! ) > a n d the sequences 

Uk = 

Zk = 

if 0 < t < k~l, 

if fc"1 <t < 1, 

if 0 < t < k~x, 

if k~l < t < 1. 

We have F(t,u,z) > —~~- Moreover, Uk -> 0 uniformly, and z j - ' O 

in Lp. On the other hand, ^"(0,0) = 0, whereas T{uk, Zk) = — jj. 

The semicontinuity theorem can be applied to functionals of type (4.1), 
where as usual ft is an open set in R™, and u a mapping of Q, into a closed 
set M C R ^ . In this case z = Du : Q, -> RnJV and recalling RELLICH's 
theorem we have the following: 

Corollary 4.1 Let F be as in the preceding theorem. The functional 

T(u, ft) = / F(x, u, Du) dx 
Jn 

is LSC in the weak topology of Wj ' (ft, M). 

4.4 An Existence Theorem 

Before proceeding further, we shall show how the results of this chapter, in 
particular Theorem 4.5 and its corollary, can be used to prove the existence 
of minima for the functional 

J-{u) = / F(x,u,Du)dx . 
Jn 

By Theorem 4.1, it will be sufficient to show that there exists a mini­
mizing sequence, convergent in the weak topology of Wlo'c . 

Generally speaking, the space W^ is not the best for that purpose, 
since it is not reflexive. On the other hand, since a weakly convergent 
sequence in W j ^ (p > 1) is also weakly convergent in W,0'c, it will be 
sufficient to find a minimizing sequence which converges weakly in WX(£ for 
some p > 1. The latter being a reflexive space, it will be enough to find a 
minimizing sequence, bounded in W^. 
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The situation is very simple when all minimizing sequences are bounded. 
This happens for instance if the functional T is coercive, that is if 

lim F{u) = +00, 
IMII,P->°° 

a condition that will be certainly satisfied if we assume that 

F(x,u,z)>v(\u\* + \z\r) (4.5) 

with v > 0 and p > 1. 
Until now, no mention as been made of boundary conditions, nor of 

other possible conditions imposed on the function u(x) (except for the con­
dition u(x) € M for almost every x € fi, that we have already taken into 
account). In general, however, the problem consists of finding the minimum 
of the functional T among all the functions u satisfying suitable conditions, 
or in other words, that belong to a subset V of the space W1,p. Such a 
subset V must be closed in the weak topology of Wl'p, since we want that 
the limit of a sequence of functions of V is itself in V. 

We have the following: 

Theorem 4.6 Let il be an open set in R™, let M be a closed set in RN, 
and let J-{u) be a lower semicontinuous functional in the weak topology of 
W^(Cl,M), p > 1. Let V be a weakly closed subset of Wl'p(Q,,M), and 
assume that J- is coercive in V: 

lim F{u) = +00 . (4.6) 
l l«l l l ,p-+°o 

uev 

Then, T takes its minimum in V. 
Of course, the coerciveness is guaranteed if the function F verifies (4.5); 

but it is possible, depending on the choice of V, that (4.6) holds under more 
general assumptions than (4.5). 

The most usual condition consists in requesting that the function u(x) 
assume given boundary values; in this case we must minimize the functional 
T among all the functions v taking prescribed values on dft, (the DlRICHLET 
problem). 

Formally, the DlRICHLET problem is posed by giving a function U € 
W1'p(Cl), and imposing the condition 

u-Ue Wo'p(fi) • 

In this case, the inequality 

F(x, u, z) > \z\p - b(x)\u\5 - a(x), (4.7) 
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with 6 < p, a e Lx(n) and b £ LP^ , is sufficient to guarantee the coercive-
ness when Cl has finite measure. In fact we have 

M<S<c(|E/|* + |u-t/|'5) 

and hence 

b(x)\u\6 < cb(x)\U\s + e\u - U\p + c(e)b& . 

On the other hand u-U G WQ'P(Q), and since Q has finite measure: 

[ \u- U\p dx < c(fl) f \D(u - U)\p dx. (4.8) 

But then 

T{u) > ( \Du\p dx- f (b\u\s + a) dx 

> f \Du\pdx - ec(fi) / \D{u -U)\pdx-c 
Jn Jn 

>- f \Du\p dx-c 
2 Jn 

provided we choose e small enough. 
We have in conclusion 

IMII.P = / i\Du\p + \u\p) dx < c{F{u) + 1} 
Jn 

so that J- is coercive. 
We note that we cannot substitute 6(a;)|u|'5 in (4.7) with ^4|u|p, even if 

A is a constant, unless A is small enough. For that, it will be sufficient to 
remark that the functional 

/ {\Du\p - A\u\p) dx 
Jn 

is not bounded below, unless Ac(Q.) < 1, where c(fi) is the best constant 
in the inequality (4.8). The constant c(Cl) depends on the geometry, rather 
than on the measure, of fl; if p = 2 it coincides with the inverse of the first 
eigenvalue of the LAPLACE operator, that is, of the smallest constant Ao 
for which the equation 

Au + X0u = 0 

has a nonzero solution in WQ' (Q). 
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It is clear that if V is bounded, no supplementary condition on the 
function F is necessary. This happens for instance if we have conditions of 
the type 

\Du(x)\ < M a.e. in CI 

as it is sometimes the case in elasticity theory. 

4.5 Notes and Comment s 

The role played by the convexity in the semicontinuity theorems was recog­
nized since the beginnings of the direct methods in the calculus of variations, 
in particular in the works of TONELLI [2]. The main difficulty against a 
generalized use of direct methods was due essentially to the lack of suit­
able function spaces in which these minimum problems could be treated; a 
difficulty that was particularly sensitive in the case of multiple integrals. 

In the case of a single independent variable, TONELLI recognized in the 
absolutely continuous functions, and even more so in those with bounded 
variation, two functional spaces that could be used profitably in the study of 
minimum problems, and showed that the use of lower semicontinuity instead 
of that of continuity could give to the classical WEIERSTRASS theorem the 
generality necessary for its application even to rather weak topologies. 

The extension of ToNELLl's methods to higher dimensions was at­
tempted first in the direction of a generalization of these spaces to many 
dimensions. Real progress was achieved only with the introduction of 
SOBOLEV spaces, and later and in greater generality with the theory of 
distributions, in particular with the spaces BV of functions whose deriva­
tives are measures, in which has been possible to approach with success the 
theory of minimal surfaces of codimension 1. 

More recently, the currents have provided a natural ambient for treating 
geometrical problems, in the first place the problem of surfaces of least 
area (FEDERER [2], ALMGREN [1]), and have been used profitably in several 
problems, among which those arising from nonlinear elasticity (GlAQUlNTA, 
MODICA and SOUCEK [2]). 

The results of this chapter apply naturally to functionals of the form 

F(u, Cl)= F(x, u, Du) dx. 
Jn 

Taking into account RELLICH's theorem, if the function F(x,u, z) is 
continuous in u and convex in z, the functional T is lower semicontinuous 
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in the weak topology of W^. This result remains valid even if F is not 
continuous in u (AMBROSIO [1]). 

In some cases this result can be ameliorated, and it holds for a topology 
weaker that that of W1'1. In this context we quote the results of SERRIN [2], 
who proved that if F is continuous, non-negative and convex in z, and if 
one of the following conditions holds: 

(i) Fx, Fz and Fxz are continuous, 
(ii) F is strictly convex in z, 

(iii) 

lim F(x, u, z) = +oo 
|z|-H-oo 

then for any Uk, u e W1'1^), with Uk -> u in Ll{Q), one has 

F{u,Q) < l imin f^ (u f c , n ) . 
fc—»oo 

Condition (i) has been weakened in various ways by several authors. 
GORI and MARCELLINI [1] have shown that it can be replaced by 

\F(xi,u, z) - F(x2,u, z)\ < L\x\ - X2\ 

for every (x\,u,z) and {x^,u,z) in a compact set K C 0. x R x R", with 
the constant L depending on K. 

More recently, GORI and MARCELLINI [1] have proved that SERRIN's 
result holds if only one assumes, besides continuity, positivity, and convexity 
in z, that for every x and u the function z —> F(x, u, z) is not constant on 
any straight line in R n . It is easily seen that the above condition is implied 
by either (ii) or (iii). 

The same result, with F only continuous and convex in z, and without 
conditions at infinity, holds if F does not depend on x, even in the pres­
ence of discontinuities with respect to u ( D E GlORGI, BUTTAZZO and DAL 
MASO [1]). 

In all these theorems it is essential that u is a function with values in R. 
If instead u takes values in R ^ , with N > 1, they do not hold any more, 
as ElSEN [1] proved with an example. 

Sometimes it happens that a functional T : V —> R is not semicontinu-
ous (or that V is not complete) in a given topology, otherwise particularly 
useful. In this case one can consider the relaxed functional J-, defined in 
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the completion V of V by the formula 

T(u) = inf < liminf J-(uk); Uk —> u \ . 
I fc—>oo J 

It is easily seen that T{u) > F{u), the equality holding if and only if !F 
is lower semicontinuous in u. In this case, the relaxed functional T is an 
extension of T to the space V, and one has 

inf T — min T. 

In general T{u) < T(u), and T is the greatest lower semicontinuous 
functional which is less than or equal to T. 

A typical case is that of the area functional. Let V be the space of the 
functions of class C1(J7), taking given boundary values u{x) = U(x) on dd. 
The area A(u) of the graph of a function u £ V is 

/ V l + \Du\2 dx 
Jo. 

= sup J /" [g0 + uDig1] dx; gh £ C^ty^gl <l\ . (4.9) 
IQ h=0 

It is easily seen that the right-hand side is lower semicontinuous in the 
strong topology of L1: if Uk, u € V and Uk -> u strongly in L1, then 

A(u) < liminf A(v,k) • 
fc—yoo 

The completion of V in the topology of L^fi) coincides with i 1(f i ) ; 
the relaxed functional is therefore denned in L1, and has meaning also for 
functions that do not assume the given value U on the boundary. For these 
functions we have 

A(u) = f ^l + \Du\2dx + f \u- U\dHn^ , 
JQ, JdU 

where the first term on the right-hand side must be interpreted according 
to (4.9).5 

5Of course, for many functions v £ L1 we will have A(v) = +00. If we want to 
avoid that unpleasant feature, we should restrict ourselves to the functions for which 
the right-hand side of (4.9) is finite. These functions belong to the space BV(£l) of the 
functions whose derivatives are measures in fi; the right-hand side of (4.9) is then the 
total variation of the vector measure ( £ n , Dv), where Cn is the LEBESGUE measure in R n . 
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In general the relaxed functional cannot be written as an integral; the 
cases in which that happens are of some interest, and have been studied by 
BUTTAZZO [1]. 

A generalization of the method of relaxation leads to the theory of 
T-convergence. Here, one considers a sequence of functional J-k, and a 
"limit" functional T, and asks under which conditions the minima of the 
functionals Tk approximate the minima of T. 

This problem conducts to the definition of T-convergence. Limiting 
ourselves to the simpler case of sequential convergence, we shall say that 
the sequence Tk T-converges to J7 in a given topology, if 
(i) for every sequence Uk —>• u one has T{u) < liminffc_+00 !Fk(uk), 
and 
(ii) there exists a sequence Uk —> u such that !F(u) = limfc_>.oo J~k(uk)-

It is easily seen that if Uk minimizes Tk, and if Uk -> u, then u minimizes 
T. Actually, if Vk -* v and Tk(vk) -> F(y), since Tk(uk) < Tk(vk), we 
have 

T{u) < liminf ^fc(ufc) < liminf Tk(vk) = F(v) • 
k—*oo k—too 

Moreover, if Wk —> u and Tk(iVk) —> T(u), we have 

T{u) = lim Tk{wk) > liminf ^(ufe) > T{u) 
k—*oo k—>oo 

and since the same relation holds for any subsequence of Uk, we conclude 
that 

f̂c(wfc) -*T(u). 

The T-convergence is a very weak notion of convergence, and therefore 
it is possible to approximate particular functionals with others of a very 
different type. For instance (see MODICA and MORTOLA [1]), the sequence 
of functionals 

Tk{u) = \ J^{^ + k{l-u2)\ dx. 

T-converges to the functional 

\Du\ dx, if u € BV(£l) and |u| = 1 a.e., 

+oo otherwise. 
1 
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The literature on the T-convergence, and on the related problem of 
homogenization, is rather large, and we shall refer the reader to the works 
of DAL MASO [1] and DAL MASO and MODICA [1]. 

Finally, we mention that the study of general functionals 

J-(u, z, Cl) = I F(x,u(x),z(x))dx, 
i n 

and in particular the semicontinuity Theorem 4.5, is useful in the theory 
of controls. In this case z(x) is the control, u(x) is the state of the system, 
and the functional T represents the total cost that must be minimized. 
Referring to the specialized literature (see for instance LlONS [2]) for a 
complete discussion, the following example can give an idea of the method 
used. 

Suppose that we have a system governed by the differential equation 

{ Au = z in 0,, 

u = 0 on <?Q, 

so that we can control the state u of the system by means of the control 
function z. Suppose that our goal is a state U{x), and that the cost of the 
control z is given by the integral Jn \z\2 dx, whereas the price paid for not 
reaching the state U is J"n g(u — U) dx, with g > 0. The total cost will be 
then 

F(u,z)= f(g(u-U) + \z\2)dx. 
Ja 

If we assume that g is continuous, the functional T is lower semicon-
tinuous for the weak convergence in z and strong convergence in u in L2{Sl). 

Suppose now that Zk be a minimizing sequence of controls, and let Uk be 
the corresponding sequence of states. From the theory of elliptic equations 
(see Chapter 10) we deduce that Uk £ W2'2(Q,), and that 

||w*;||2,2 < c||zfc||2. 

Since Zk is a bounded sequence in L2, Uk is bounded in W2'2, and 
therefore, passing possibly to a subsequence, we can suppose that Uk —> u 
and Zk —̂  z in L2. By Theorem 4.5, z(x) is the optimal control. 



Chapter 5 

Quasi-Convex Functionals 

5.1 Necessary Conditions 

In the preceding chapter we have seen the central role played by the con­
vexity in the proof of the semicontinuity, and hence in the theorems of 
existence of minima of functionals of the calculus of variations. 

We shall begin this chapter by showing that this assumption is necessary 
for the lower semicontinuity of functionals of the type 

F(u,z)= I F(x,u(x),z(x))dx. (5.1) 
Jn 

Theorem 5.1 Let Q, be an open set of Rra, and let F(x,u,z) be a 
CARATHEODORY function infix HN x R", with F(-, u, z) locally summable 
in Q, for every (u, z). Assume that for every u € "RN the functional 

J~u(z) = / F(x,u,z(x))dx 
Jn 

is lower semicontinuous in the weak* topology of L™c of z. 
Then, for almost every x € fi and every u S HN the function F(x, u, •) 

is convex. 

We note that the convergence in the weak* topology of L^c implies 
convergence in the weak topology of L\oc. Therefore, the above result, 
together with Theorem 4.5 of the preceding chapter, gives a necessary and 
sufficient condition for the lower semicontinuity. 

139 
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Proof. Let u £ R™, x0 £ Q and let Q C fi be a cube with center in x0. 
For every A G [0,1] there exists a sequence Xh of characteristic functions of 
measurable sets Eh C Q such that Xh —*• AXQ-1 Let a and 6 be two points 
of R" and let u £ RN. We set 

*h = «Xfc + fc(l - Xh); z = aA + 6(1 - A) 

in Q, and Zh = z = 0 in fi — Q. We have 

•Mzfc) - F»(z) = / [F(x, u, aXa + 6(1 - Xh)) - F{x, u, z)\ dx (5.2) 
JQ 

and since x/i are characteristic functions: 

/ F(x,u,axh + b(l-Xh))dx 
JQ 

= \ XhF(x,u,a)dx+ / (l-Xh)F{x,u,b)dx. 
JQ JQ 

Introducing this relation in (5.2) and passing to the limit for h —¥ oo we 
obtain, taking into account the assumption of semicontinuity: 

0 < liminf Fu(zh) - ^(z) 
h—*oo 

— A / F(x, u, a) dx + (1 - A) / F(x,u,b)dx~ / F(x,u,z)dx. 
JQ JQ JQ 

Dividing by \Q\ and letting the side of Q go to zero, we get for almost 
every XQ £ fi: 

XF(x0, u, a) + (1 - X)F{x0, u, 6) > F(xQ, u, Ao + (1 - A)6) (5.3) 

that is the convexity of F(x, u, •). 
The proof is not yet complete, since the set of zero measure for which 

(5.3) does not hold may depend on A, u, a and 6. But we can find countable 
dense sets J C [0,1], E C HN, A C R" and a set Z C fi of zero measure 
such that (5.3) holds for every A £ J, u £ E, a, b £ A and for every 
x £ £1 — Z. Moreover, we can suppose that F(x, -, •) is continuous for every 
x£ti- Z. 

Every AG [0,1], u £ RN and a, b £ R1' is the limit of sequences A^ G J, 
Uh £ E and a.h,bh G A. Writing (5.3) for these, and passing to the limit for 
ft-4oowe obtain the required result. • 

We denote with XQ t n e characteristic function of Q. 
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In the theorem just proved the functions u{x) (= u) and z{x) were 
completely independent, so that it does not apply to the situation we are 
most interesteding, namely that of functionals of the type 

F{u, SI) = [ F{x, u, Du) dx, (5.4) 

that is when z = Du. And, in fact, the functions Zh and z involved in the 
proof of the theorem were not the gradients of the corresponding Uh and u, 
as it should be if we want to find necessary conditions for the semicontinuity 
of the functional (5.4). 

Of course, this restricts considerably the choice of the possible sequences 
Zh, -^ z, so that the convexity in z, which we have shown to be necessary 
in the general case, might not be so essential in the new situation. 

In this case, if we continue to assume that the functions Zh = Duh 
converge in the weak* topology of L°°, so that H-Dû lloo < M, it will 
not be restrictive to assume that the sequence Uh converges uniformly, 
since any other weaker convergence would reduce to that by the theorem 
of ASCOLI-ARZELA. 

In conclusion, we may assume that the functional T is LSC with respect 
to convergence in the weak* topology of Wl,oa{Si) = Lip {SI), or else, which 
is essentially equivalent, with respect to uniform convergence of bounded 
sequences of Lip {Si) (L-convergence): 

Definition 5.1 A sequence Uh € Lip(fJ) is said to be L-convergent to a 
function u if Uh —> u uniformly in SI and if there exists a constant M such 
that for every integer h 

M o , i = sup \Duh{x)\ < M. (5.5) 
n 

It is clear that in this case the limit function u belongs to Lip {SI), and 
that its gradient is bounded by the same constant M. 

Condition (5.5) tells us that the functions Uh are equi-Lipschitz-
continuous in SI. If SI is bounded, it implies the weak convergence in 
Wi-a{Sl) for every s > 1. 

This being established, we shall consider first the special case in which 
the function F depends only on z. 

Theorem 5.2 Let SI be a bounded open set o/R™, let F{z) be a conti­
nuous function in HnN, and assume that the functional 

?{u) = f F{Du{x)) dx 
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is lower semicontinuous with respect to L-convergence. Then, for every 
function <p £ Cg (f2) and for every ZQ G RnN we have 

F(z0)\n\ < f F(z0 + D<p(x)) dx. (5.6) 
Ja 

Proof. Let Q be a cube containing CI, and that modulo a homothety we 
can suppose to be the unit cube [0,1]". We can extend the function <p first 
setting it to be equal to zero in Q — CI, and then extending it periodically 
i n R n : 

<p[xu. ..,xn) = <p({x!},..., {xn}), 

where with {a} we denote the fractionary part of a. 
For any integer h we set 

<Ph(x) = -^<f(hx), 

uh{x) — (z0,x)+iph(x) 

sar that UH 
assumption: 

It is clear that Uh —>• (ZQ,X), and hence by the semicontinuity 

\Q\F(z0) < liminf / F(z0 + D<ph) dx. 
ft_vo° JQ 

Remarking that D<ph(x) = D(p(hx), we get, after a change of variables, 
y = hx: 

\Q\F(z0) < liminf h~n f F{z0 + Dip(y)) dy, 
/ i->°° JhQ 

where hQ = [0, h]n. 
On the other hand <p has period one, and hence also F(ZQ + D<p) has 

the same period; it follows that 

IhQ 

and hence 

/ F(z0 + DV{y)) dy = hn [ F(z0 + D^p{y)) dy 
JhQ JQ 

\Q\F(z0)< J F{z0+Dy(y))dy 
JQ 

We can now deal with the general case. 

Q 
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Theorem 5.3 Let Q be a bounded open set of R n , let F(x,u,z) be a 
continuous function in 0 x HN x ~RnN, and assume that the functional 

F(u,Q)= / F(x,u(x) ,Du(x))dx 
Jn 

is lower semicontinuous with respect to L-convergence. Then, for every 
function ip £ CQ(Q.) and for every XQ £ Cl, u$ € R w and ZQ S RnN we 
have 

F(x0,u0,z0)\tt\ < / F(x0,u0,z0 +D<p(x))dx. (5.7) 
JQ. 

Proof. As above, we can suppose that Cl be contained in the unit cube 
Q, and that (p is extended periodically in R™. Let XQ € f2, and let W be a 
cube contained in fl, with center Xo and side t. We define 

u(x) = u0 + {zo,x-x0), 

t fh(x-x0) Vh(x) = -ip 

where 

hr V t 

uh(x) =u{x)+(ph(x) 

_ 1 Vh^ if x e W' 
^ ^ | 0 i f i G f i - W . 

Since <fh(x) = 0 in a neighborhood of dW, the function iph belongs to 
Cl{W). 

To get an estimate for J-{uh, W), we decompose W into hn equal cubes 
W* of centers Xi. We have 

^ r (w^,W)= / F(x,u + (ph,z0 +Diph)dx 
Jw 

= Y2 F (xi,u(xi),z0 + D(p(-^———\)dx 

+ V / [•Ffou + yjfc.zo+IVh) 

- F ^ i , u(xi), z0 + D(fh)] dx 

Ah + Bh. 
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For what concerns the term Bh we remark that the derivatives of iph 
are equibounded, and therefore the arguments of the function F remain 
confined in a compact set © C fi x R ^ x HnN. The function F is then 
uniformly continuous in ©, and hence Bh —>• 0 when h —¥ oo. 

On the other hand h(xi — xo)/t is a vector with integral components, 
and therefore by the periodicity of ip we have 

Ah = ^JwFL,u(xi),zo+D<p(h{x~Xi)\\dx, 

which, after a change of variables y = h(x — Xi)/t, becomes 

Ah=^2[-r) F(xi,u(xi),z0 + Dip(y))dy. 

We write for simplicity 

g{x)= / F(x,u(x),z0+D<p(y))dy. 

JQ 

The function g is continuous, and we have 

hn 

i = l 

and hence 

lim Ah= dx F(x,u(x),z0 + D<p(y))dy. 
h->°° Jw JQ 

On the other hand the sequence Uh L-converges to u, so that the lower 
semicontinuity of T gives 

lim Ah= lim T{uh, W) > F{u, W) = [ F(x,u{x),z0)dx 

and the conclusion is obtained dividing by \W\ and letting the side t of W 
go to zero. • 

As we shall see, condition (5.7) will play a major role not only in the 
semicontinuity theory, but also in the regularity of minima. We are then 
induced to formulate the following definition. 

Definition 5.2 The functional 

F(u,n)= / F(x,u, Du)dx 
Jo, 
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is called quasi-convex if for every (x0,uo,z0) £ £1 x R ^ x RnN and for 
every tp e CQ(Q,,'RN) we have 

F(x0, u0, z0) < 4 F(x0, uo, ZQ + Dip(x)) dx. (5.8) 
Jn 

Geometrically, quasi-convexityindexquasi-convexity means that the 
linear functions 

u(x) = a + (z0,x) 

minimize the "frozen" functional 

J F ° ( U , 0 ) = / F(x0,u0,Du(x))dx. 
Jn 

Remark 5.1 We remark that if (5.8) holds for an open set Q, it holds 
also for every open set A C R n . Actually, we can choose t and x in such a 
way that 

Ai = { a ; e R n : t i + z G A } c O . 

If supp(?7) C A, the function (p(x) = t~1r](y) =: i_1r7(ix -I- x) belongs to 
Co(f2), and hence 

4 F(x0, UQ, z0 + Dr)(y)) dy = 4 F(x0, u0, z0 + D<p(x)) dx 
JA A I 

= TA~T^ / F(x0,u0,z0 + D<p(x))dx 
\Ai\ (.Jn 

- F(xo,u0,z0)\Q, - A i | > 

> F(x0,u0,z0). 

As a consequence we can speak of quasi-convex functions: a function F 
being quasi-convex if (5.8) holds in some open set fi C R n . O 

It is easily seen that quasi-convexity is strictly weaker than convexity. 
In fact, if F(x, u, z) is a continuous function, convex in z, there holds 

F(x0, u0, ZQ + Dip) > F(x0, UO, Z0) + (A0, Dtp) 

for some A0 G RnN. Integrating over Q, 

/ F(x0,u0,z0 + D<p)dx > F(x0,u0,zo)\£l\ 
Jn 
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since 

/ (\o,Dip)dx = 0. 
Jn 

It follows that any convex function F is quasi-convex. 
The converse is not true, since the function F(z) = det(z) (N = n) is 

quasi-convex but it is not convex. 
To see that, let g(x) be a function of class C 2 ( R n , R n ) , and let u be 

the differential form 

det(Dg)dxi A dx2 A • • • A dxn . 

We have 

LO = dglAdg2A---Adgn = d(gi Adg2A---A dgn) (5.9) 

since dd = 0, and therefore 

/ det(Dg) dx\ A dx2 A • • • A dxn = gi A dg2 A • • • A dgn . 
Jn JdCi 

In particular, the integral on the left-hand side is zero whenever one 
among the functions gi,...,gn is zero on dCl. Moreover, if two functions g 
and h coincide in a neighborhood of dd, we have 

/ det(Dg) dx = det(Dh) dx. 
Jn Jn 

The same result (without assuming N — n) holds if we substitute if the 
determinant any minor of the matrix Dg. 

In particular, if tp is a function of class CQ(CI), the functions u(x) = 
(ZQ, x) and u + <p have the some value in a neighborhood of dQ,, and hence 

/ det(Du + Dip) dx = / det(z0 + D<p)dx = \Q.\det(z0). 
Jn Jn 

By approximation with C2 functions we can easily see that the above 
relation holds for an arbitrary function tp € W0'™(fi), so that the function 
det(z) is quasi-convex.2 

More generally, let z be a n x m matrix, and let M{z) be the vector 
whose components are the minors of the matrix z. If g(M) is a convex 

2Actually, the value of the functional T{u) = Jdet(Du)dx depends only on the 
boundary values of u, and therefore it is the same for functions having the same values 
on dQ. Consequently, the EULER equation for T is identically satisfied. Functionals of 
this kind are called null Lagrangian. 
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function of M, the function 

F(z)=g(M(z)) 

is called poly convex. We have 

Proposition 5.1 A polyconvex function is quasi-convex. 

Proof. If g(w) is a convex function and w{x) a summable function in 0 , 
we have the JENSEN inequality 

4 g{w(x)) dx > g ( 4 w(x) dx) , (5.10) 

Setting u = (zo,x), we have 

4 g{M(z0 + Dtp)) dx>g(f M(z0 + Dtp) dx ) 
Jn \Jn J 

= g(JM{z0)dx\=g{M{z0)) 

from which the result follows at once. • 

A last and weakest form of convexity is the so-called rank-one 
convexity.3 

Definition 5.3 A function F(x, u, z) defined infix RN x RnN is rank-
one convex if for every (XQ,UQ,ZO) G fi X R ^ X HnN the function 

g(£, 77) = F(x0, uo,z0 + £®ri) 

is separately convex in £ € R" and 77 € RJV. 

Proposition 5.2 A continuous quasi-convex function is rank-one 
convex. 

Proof. We can suppose that F depends only on z. Assume first that 
F is of class C2. Since F is quasi-convex, the affine functions minimize 
the functional T, and therefore if u{x) = ZQ X is an affine function and if 

3 In his book [3], modifying a terminology that he himself had previously introduced 
in [2], MORREY calls quasi-convexity the rank-one convexity, and strong quasi-convexity 
what, according to current usage, we have called quasi-convexity. 
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if e C^{Cl,RN), the function 

G(t) = F{u + t<p) 

has a minimum for t = 0. We have therefore G'(0) = 0 and G"(0) > 0, and 
hence 

d2F 
(z0)Dkip

aDj<p'3 dx>0 (5.11) / 
Jn 
In dz^dz? 

for every ¥>€ Ctf ( n . R ^ ) . 
Setting <p — X + ifj,, writing (5.11) for A and /x and summing, we get 

f d2F 
R e / 1;(zo)Dktp

aDj<f'3dx>0. (5.12) 
Jn dzgdz? 

We choose now <p = r]elT^'x^'~f{x), where £ S R n , 77 € Y\,N, and 7 is a 
function in Co°(fi,R). Prom (5.12) we obtain 

d2F f 
Jn 

? ( z 0 )77 Q ^ [ r^ f c ^7 2 + DkjDtf] dx>0. 
n 5zfc &# 

Dividing by T 2 and letting r go to infinity we get 

82F J 
Jn 

n az£0zf 
^ o K f c ^ V 7 2 < f e > 0 

for every 7 € Co°(fi), and in conclusion 

d2F 

dz%dz? 
(zo)^jVarf>0. (5.13) 

The last inequality, that carries the name of the LEGENDRE-HADAMARD 
condition, implies the separate convexity in £ and r/. 

Suppose now that only F is continuous, and let 

Fe(z) = / F(z - w)<pe(w) dw 

be the mollified function of F. If -d is a function in CQ(Q), we have 

/ Fe{z0 + Dti) dx= f <pe(w) / F(z0 + D$-w) dx 
Jn J Jn 

> [ipe(w)F(z0-w)\n\dw = \n\Fe(z0) 

and hence Fe is quasi-convex. 
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It follows from the above that Fe is rank-one convex, and passing to the 
limit as e -» 0 the same is true for F. • 

We have then a series of conditions of increasing generality, since con­
vexity implies policonvexity (we can consider the single components of the 
gradient as rank-one minors), the latter in turn implies quasi-convexity, 
which finally implies rank-one convexity. 

Generally speaking, the opposite implications do not hold,4 except in 
special situations. 

A first case, in which all the definitions above are equivalent, is when u 
is a scalar function, that is when the codomain has dimension N = 1. In 
fact in this case the LEGENDRE-HADAMARD condition reduces to 

d2F 

dZidZi™*1*3 

and is equivalent to the convexity of the function F.5 

A second case of some importance, in which rank-one convexity implies 
quasi-convexity, is when the function F(x,u,z) is quadratic in z: 

F{x,u,z) = A%{x,u)Z?ZP. 

When F has the above form, setting for simplicity A = A(XQ,UO), we 
have 

/ F(x0, u0, z0 + D(p) dx = / [{Az0, z0) + (ADtp,Dip)) dx 
Jo, Jo. 

since the remaining integrals are zero because <p has compact support. To 
prove the quasi-convexity it will therefore suffice to show that 

/ 
Jn 

{ADip, Dtp) dx>Q 
n 

for every <p e C§°(Cl). 
More generally, assume that instead of (5.13) we have 

A%l&r,arf > u\e\v? (5.14) 

with v > 0. 

4For a more detailed discussion we refer to the final section of this chapter. 
5 If F is not regular, we can proceed as above, approximating with regular functions. 

We note that the same conclusion also holds when the domain has dimension n = 1. 
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In this case we can prove the following: 

Lemma 5.1 Let A be a constant matrix, satisfying (5.14). For every 
C £ W0' we have 

J A%DjCpDiC dx>v f \D{\2 dx. 

Proof. Denoting by /(£) the FOURIER transform of a function / : 

we have Dhf(£) = *&/(£), and 

J DjtfDiC dx = j Dj^LWdx = J £&&& de • 

On the other hand, if in (5.14) we allow the vector r) to take complex 
values: rf = ga + iira, we get 

W ^ = *ipt&[Qa(f + ̂  + KG"*" - A a ) ] 

and hence 

As a consequence, recalling PARSEVAL's identity: 

J A^D^DiC dx = Rej A%U^ d£ 

>vJ\t\2K\2dt = vj\D<;\2dx 

and the proof is concluded. D 

5.2 First Semicontinuity Results 

The results of the preceding section force us to ask whether the quasi-
convexity is also sufficient for the lower semicontinuity in a topology weak 
enough to guarantee the existence of minima. Results in this direction 
are rather recent, and have been proved under increasingly less restrictive 
conditions. 

In this section we shall consider the relatively simpler case in which the 
integrand F depends only on z; the general case will be treated later. 
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To begin, we need the following lemma: 

Lemma 5.2 Let F{z) be a rank-one convex function, such that 

\F(z)\<c(X + \z\)P, A > 0 . (5.15) 

with p > 1. Then, 

\F(z) - F(w)\ < c(X + \z\ + H ) p - 1 | z - M . (5.16) 

Moreover, if F has first derivatives, we have 

1^1 < c(A + I^D^-1- (5.17) 

Proof. A matrix ir having only one element different from zero is ob­
viously of rank 1, and hence if F(Q is rank-one convex, the function 
g(t) = F(£ + tn) is convex, and hence 

G(t) = °®-°W 

is increasing. 
Consider now the matrix z, of dimension n x N, as being a vector in 

RnN with components z^; let w G RnJV, and for k = 0,1, 2 , . . . , nN define 

„(*) (Wi,.. .,Wk,Zk+l,. . . ,Z n Jv) • 

We have z(°) = z and z(nJV) = w; moreover, taking ( = z^k\ n — z(/s+1) — 

ZW and t = A+^j+H > 1 we obtain 

iT(z(fc+i)) _ p(zW) = G(i) < G{t) 

F(zW + t(z(fc+1) - *(*))) - F(zW), 
= ; rn—i—; \z — H • 

A + |z| + |io| ' ' 
Using (5.15) and remarking that \z^\ < \z\ + \w\ and \z^ + t(z^k+1^ — 

z(fc))| < c(X + \z\ + \w\), we get 

F(z(*+i)) - F{zW) < c(A + \z\ + Iwlf-^z - w\, 

from which, summing over k and then exchanging z with w, we deduce 
immediately (5.16). 

Now let v be a vector in RnN, with \v\ = 1. Prom (5.16) we get 

F(z + tv) - F(z) 
< c ( A + | z + to| + |z |)P-1 , 

t 

and (5.17) follows immediately letting t go to zero. • 
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We can prove now the first semicontinuity theorem. 

Theo rem 5.4 (MARCELLINI [1]) Let F(z) be a quasi-convex function, 
such that 

0<F(z)<c(l + \z\p) 

with p > 1. Then, the functional 

T(u, Q) = J F(Du) dx 

is lower semicontinuous in the weak topology ofW^(Tl,'RN). 

Proof. Let % - 1 u i n W1,p(fi), and assume first that u is an affine 
function, so that Du = z0 = constant. If we had Uh — u on dd (that 
is Uh = u + iph with <fh € W0'p(f2)), then from the assumption of quasi-
convexity we would get 

/ F{Duh)dx > F{z0)\Cl\ = / F{Du)dx 
Jo. Jn 

and the semicontinuity would follow immediately. The problem therefore 
consists of modifying suitably the functions Uh near dQ,, in such a way 
that they take the value u on dQ without changing excessively the value 
of the functional. For that, let Flo CC 0 and let L be an integer. We set 
R = |dist (fio, dCl), and for i = 1,2,. . . , L we define 

Qi = I x e fi : dist (x, Cl0) < jR \ . 

Now choose functions ipi £ Co(fij) such that 

0 < Vi < 1; i>i = 1 in fti-i; l-DV'il < fl 

and set 

Vih = U + tpi(uh - U) . 

The functions Vih — u belong to WQ'P(Q,). From what we have said above 
it follows that 

/ F{Dvih) dx > F{z0)\n\ = f F{Du) dx, 
Jo. Jn 
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and hence 

/ F(Du) dx < [ F{Du) dx+ f F(Dvih) dx+ f F(Duh) dx 
Jn Jn-nt Jcii-Qi^! Jcii-i 

< f F(Du)dx+ J F(Dvih)dx+ f F(Duh)dx. 
Ju-Qo JQi-ni-i Jn 

(5.18) 

On the other hand 

Dvih = (1 - ipi)Du + ipiDuh + (uh - u)Dtpi, 
and therefore 

\Dvih\v < c (\DU\P + \Duh\P + {L^)P\uh - up 

We can use this inequality to estimate the penultimate integral in (5.18). 
Moreover, if we sum over i, and divide by L, we easily get 

f F(Du) dx< I F{Duh) dx 

+ j j (l + \Du\" + \Duhf + {L + p
1 ) P \uh - uA dx. 

(5.19) 

Since u/, - 1 « in W1,p, by RELLICH'S theorem we deduce that Uh -+ u 
in Lp, and the derivatives Duh are bounded in Lp. If we let h go to infinity 
in (5.19), the last term tends to zero, and therefore: 

/ F(Du) dx < lim inf / F{Duh) dx + ^r. 
Jn0

 ft-+°° Jo, L 

Passing to the limit as L —> oo and letting Qo tend to J7, we get 

/ F(Du) dx < lim inf / F(Duh) dx (5.20) 
Jn h^°° Jn 

for every affine function u(x). 
Now let u be a generic function in W1,p. Consider a countable family 

of pairwise disjoint open cubes Qi C 0 , such that |fi — UQi\ = 0. In any of 
these cubes, we set 

Zi = 4 Du 
Jo.i 

dx 
Qi 

file:///Dvih/v
file:///Du/p
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and let Z(x) be the function that in every cube Qi takes the constant 
value Zj. 

When the maximum diameter of the cubes Qi tends to zero, the function 
Z tends to Du in Lp(fl); it follows that for every e > 0 there exists a family 
Qi such that 

[ \Du-Z\pdx = J2 [ \Du - Zi\p dx < ep . 
Jn i = 1 JQi 

Let now Uh be a sequence converging weakly to u in W1,p(fi). For 
x S Qi, let V/f (x) = Uh(x) — u(x) + (zi,x). When h tends to infinity, 
the sequence v^ tends to (zi,x) in the weak topology of W1,p(Qi), and 
therefore, according to what we have just proved, we have 

liminf / F(Dvj^)dx> f F(Zi)dx 
/ l - > °° JQi JQt 

and the same inequality holds if we sum over i. 
On the other hand, using the preceding lemma and the HOLDER 

inequality, and summing over i, we obtain 

/ FiDu^dx-Y" f F(Dv^)dx 
Jn i JQi 

Y, I ( l + [Dunr1 + \Dvf\p~l) \Du - Zi\dx 
i JQi 

p-1 i 

{E/Q|(i+i^i'+K"n^}'{E/s, 

< c 

< c 

< ce. 

In a similar way we prove that 

\Du — Zi\p dx 

[ F{Du) dx - Y\ f F(zi) dx 
Jn i JQi 

< ce 

and in conclusion: 

/ F(Du) dx < liminf / F(Duh) dx + ce, 
Jn h^°° Jn 

from which we get the semicontinuity under weak convergence in W1,p(Cl). 
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Finally, if Uh -*• u in W^(Q,), we have from any E CC fi: 

.F(u,E) < liminf ^(ufc.E) < liminf ^(ufc.fi) 

and the theorem follows letting E tend to Q,. • 

Remark 5.2 The conclusion of the theorem remains valid if we only 
assume that - c ( l + \z\r) < F(z) < c(l + \z\p) with r < p. In this case we 
must add to the right-hand side of (5.18) the quantity 

- / F{Du)dx- I F(Duh)dx 
Jni-no Jn-Qi-i 

< c [ (1 + \Du\ + \Duh\Ydx. 

The last integral can be estimated by 

i n - f i o l ^ 1 ( f {1 + \Du\ + \Duh\)
p dxj ^ c l f i - O o l ^ , 

that tends to zero when fio —> &• 
Everything else remains unchanged. D 

The preceding result continues to hold when the function F depends 
also on x and u. In this case the proof is considerably more complex, and 
we shall need some preliminary results, many of which are interesting in 
themselves, independently of their application to the semicontinuity. 

5.3 The Quasi-Convex Envelope 

Definition 5.4 Let G(z) > 0 be a function denned in ~RnN, and let fi be 
an open set in R". We set 

7n (z) = 'mi\-f G(z + D<p(x)) dx; <p £ C£° (fl) j . (5.21) 

It is easily seen that 7n is invariant under homothety. Actually, if Oi is 
an open set, homothetic to 0,: Qi = x0 + Afi, and if tpi e CQ°(Q,I), setting 
<p{x) = \~1(p\(xo + Aa:), we have <p € C^{Q), and 

/ G(z + DV{y)) dy=-f G(z + Dtp^x)) dx, 
Jn JQ.1 

from which immediately follows 7n = 7^ . 
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We shall actually prove that the function 7 does not depends on fi. For 
that, we need the following: 

Lemma 5.3 Let A and ft be two open sets in R n , with \dQ\ = 0. For 
every e > 0 there exists a finite number of open sets fij, i = 1,2,... ,N, 
homothetic to fi and pairwise disjoint, all contained in A and such that 

\A-Ufli\ < e. 

Proof. Let Q be the unit cube, and let fio be an open set homothetic to fi 
and contained in Q. Let 2$ = |fio|. The open set A is the countable union of 
cubes, so that there exists a finite family of pairwise disjoint cubes contained 
in A, whose union has measure not less than ^\A\. In any of these cubes 
Qi we can put an open set fij homothetic to fi, with |fij| = 2$|Q;|. The 
union Z\ of these open sets has measure not less than i?|A|, and therefore 
the open set A — Z\ has measure not greater than (1 — I?)|J4|. 

We can repeat the above argument with A — Z\ instead of A. We will 
find a finite family of open sets homothetic to il, whose union Z2 is such 
that \A — Z\ — Z2I < (1 — i?)2|yl|. Continuing in this way, we obtain k finite 
families of open sets homothetic to Q and pairwise disjoint, with 

\A-Tt-Z; ^ | < ( l - ^ ) f c | y l | . 

The conclusion follows at once taking k in such a way that (1 — 
•d)k < e, and recalling that dfl, and therefore dZi, has zero measure for 
every i. • 

Proposition 5.3 If A and fi are two bounded open sets in R n , we have 

1A = 7fi-

Proof. Suppose first that |5f2| = 0, and let us begin by showing that if 
{fij} is a finite family of pairwise disjoint open sets, all homothetic to fi, 
and if E = Ufij, we have 7 E — 7n-

Let <p G Cg°(Cl) be such that 

7n(z)>-fG(z + Dtp)dx-e. (5.22) 

li<Pi are the corresponding functions in Co°(fii), and if we set ip = ^ Vii 
we have rp G Cg°(E), and 

I G(z + DTP) dx = j i - J2 f G(z + Dtp,) dx < J - J2 |fiil(7n(«) + c), 

from which 73 < JQ follows at once. 

file:///A-Tt-Z
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On the other hand, since the sets Cli are disjoint, if ijj G CQ°(Z), its 
restriction tpi to fi* belongs to Co°(fli). Consequently, if ip is such that 

7 s ( * ) > -I G(z + Drp) dx - e, 

we have 

= 7n(z) - £ 

so that 7s > 7n. 
Let now i be a second open set in R n , and choose the fij as in 

Lemma 5.3. If <p satisfies (5.22), let (fi be the corresponding functions 
in Hi, and let ip = ^ i <pi. We have ip £ CQ°(A), and hence 

1A{Z) <4' G(z + Dip) dx<-f G(z + Dtp) dx + G{z)\A - E | . 
J A JY. 

It follows immediately that 7A(Z) < 1n(z) + £ + G(z)e, so that, if \dCl\ — 
0, we have 

7A < 7n • 

Assume now that \dCl\ > 0. Let <p G CQ°(CI) be a function satisfying 
(5.22), and let A C Cl be an open set with boundary of zero measure, 
containing the support of <p and such that \Cl — A| < e < ^|fi|. We have 

7A(*) < JG{z + D<p) dx < j ^ | ( 7 n ( z ) + e) < (7 n(z) + e) ( l + ^ 

On the other hand, since \dA\ = 0, we have JA(Z) < 7 A ( Z ) , and therefore 

2e 
7A(«)<(7n(2) + e ) ( l + . n . 

so that 7,4 < 7n in this case too. 
Exchanging the roles of A and Cl we get the opposite inequality, and the 

conclusion of the proposition. • 

In particular, we can write simply 7(2) instead of 7,4(2:). 

Remark 5.3 If G is a continuous function, satisfying 

0 < G(z) < c(l + \z\p), p > 1, (5.23) 
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the functional 

g{u) = I G(z + Du) dx 

is continuous in the strong topology of W1,p(17).6 

As a consequence, we have 

7 (z) = inf | j G(z + D<p{x)) dx; <p e W*'p(fl) \ . 

In fact in our hypotheses the infimum in WQ'P coincides with the 
infimum taken on any dense set, such as for instance C£° or else the set of 
piecewise affine functions7 with compact support in Cl. O 

We shall now prove that under suitable assumptions for G, the function 
7 is quasi-convex. We shall assume that 

v\z\p < G(z) < c(l + \z\p) (5.24) 

with v > 0, and moreover that G is continuous in z; more precisely, that 
there exists a continuous function uj(t), with w(0) = 0 and such that 

\G(z) - G(w)\ < (1 + \z\p + \w\p)w(\z - w\). (5.25) 

Lemma 5.4 With the assumptions (5.24) and (5.25), the function j(z) 
is continuous in RnN. 

Proof. By (5.24) we can assume that the functions <p in (5.21) satisfy 
\\D<p\\p < K. We then have 

/ G ( z + Dip)dx- -f G(w + Dtp)dx 
\Jn Jo. 

< cw(\z - w\)(l + \z\p + \w\p + Kp) 

and the conclusion follows at once. • 

Remark 5.4 The preceding lemma continues to hold if G (and hence 7) 
depends continuously on a parameter u, and satisfies (5.24) with v and c 

6 It will be sufficient to consider a sequence u^ converging to u strongly in W 1 , p and 
such that Ufc —> u and Du^ —¥ Du almost everywhere, and to apply FATOU'S lemma to 
the sequences 9{uk) a n d c / n ( l + |Dufc|p) dx — G(uk)-

7We recall that a function w is piecewise affine in O. if it is continuous and if there 
exists a finite number of open sets A\,..., An, with UA, = CI and such that the restriction 
of w to any one of them is an affine function. 



Quasi-Convex Functionate 159 

independent of u, and with (5.25) replaced by 

|G(u, z) - G(v, w)\ < (1 + \Z\P + \w\p)u(\u -v\ + \z- w\). (5.26) 

Of course, in this case 7(11, z) will be continuous in the pair (u, z). • 

Theorem 5.5 (DACOROGNA [1]) Always assuming (5.24) and (5.25), 
the function 7(2) is the quasi-convex envelope of G, that is the greatest 
quasi-convex function less than or equal to G. 

Proof. Let us begin by showing that 7 is quasi-convex. Let Q be a cube 
in R n , and let ip be a piecewise affine function with compact support in 
Q. Let Ai,..., Ak be the open sets such that Dtp = Wi = constant in Ai. 
We have 

k 

l(z + £>V) dx = V \Ai\i{z + Wi). 

For e > 0, let tpi € CQ°(AJ) be a function such that 

7(2 + Wi)> f G(z + u>i + Dipi) dx-2e, 
JAi 

and define 77 = ip + ^ (fi. 
We then have 

k 

J2\Aih(z + Wi)> / G(z + Dr,)dx-e\Q\>(1(z)-e)\Q\, 
i = i JQ 

and therefore 

7(0 + Dip) dx > \Q\j(z). 

L 

( • 

JQ 

Since the piecewise affine functions are dense in W0'
p, the preceding 

inequality holds for every ip G W0'
P(Q). 

Let now fi be a bounded open set of R", and let Q be a cube containing 
ft. We have for every ip € W0

1>p(n): 

/ 7 ( z + Dili) dx= J 7 ( z + Zty) ^ - 7(z)|Q - fi| > |fi |7(z). 
Jn JQ 

It is evident that 7(2) < G(z). Now let F(z) < G(z) be a quasi-convex 
function. For <̂  € C£°(fi) we have 

^(z) < 4 F(z + D<p) dx<-f G(z + D<p) dx 
Jn Jn 

from which follows immediately that F(z) < 7(2). • 
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5.4 The Ekeland Variational Principle 

In this section we shall prove a result, known as the EKELAND variational 
principle [1-3], that we shall use quite often later. 

Theorem 5.6 Let (V, d) be a complete metric space, and let F : V —> R 
be a lower semicontinuous function {in the metric topology), bounded from 
below and taking a finite value at some point. 

Assume that for some u € V and some e > 0 we have 

F(u) < in f .F + e. 

Then, there exists a point v £ V such that 

(i) d ( u , « ) < l ; 
(ii) F{v) < F(u); 

(iii) F{v) < F(w) + ed(v, w) V w e V . 

Proof. Let us define by induction a sequence uk £ V in the following 
way. Set first u\ = u. Suppose now that we have defined ui ,U2, . . . ,Uk-
The set 

Sk = {w € V : !F(VJ) < J^(ufc) - ed(uk, w)} 

is non-empty, since it contains Uk- There exists therefore a point Uk+i £ Sk 
such that 

^(ufc+i) < \ h(uk) + mi A . (5.27) 

We will show that uk is a CAUCHY sequence. Since uk+i € Sk, we have 

ed(uk+i, uk) < F(uk) - ^"(ufc+i) (5.28) 

and hence 

m 

ed(uk+m, uk) < e ^ d(uk+i, uk+i-i) < T(uk) - F(uk+m). (5.29) 
i=l 

On the other hand (5.28) implies that the sequence ^(uk) decreases, 
and therefore, T being bounded below in V, it will converge to some real 
number a. By inequality (5.29), uk is then a CAUCHY sequence. 

Let v = limfc-yoo uk. Prom the semicontinuity of T it follows that 

T{y) < liminf !F(uk+m) = a, 
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and therefore letting m —> oo in (5.29), 

ed(uk,v)< F(uk)-T{v). (5.30) 

In particular, taking k = 1, we have 

0 < ed(u,v) < F(u) - F{v) < T{u) - inf T < e 

so that (i) and (ii) are satisfied. 
Suppose now that (iii) does not hold. In this case there would exist 

w €V such that 

F{w) < T(v) - ed{w,v). (5.31) 

Taking into account (5.30), we have in this case 

F(w) < T(uk) - ed(uk,w) 

for every k. From the definition of Sk, it would follow that w € Sk for every 
k, and hence 

inf T <F(w). 
sk ~ 

On the other hand, we get from (5.27), 

2.7r(uA;+i) - F(uk) < F(w) < F(v) - ed(v,w) 

and passing to the limit as k —> oo: 

T{v) < F(w) < F{v) - ed(v, w). 

But this cannot hold, and hence (iii) is proved. • 

Remark 5.5 If we introduce in V the new distance d\ = e~^d, the 
topology of V remains the same. In particular (V, di) is a complete metric 
space, and T is lower semicontinuous. From the preceding theorem it follows 
that if T(u) < infv T + e, there exists v € V (of course different from that 
of the preceding theorem) such that 

(i') d(u,v)<ei; 
(ii') T(v) < T(u); 

(iii') F{v) < T{w) + eid(v, w) \/w£V. 
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In particular, if Uk is a minimizing sequence, that is if ej. = T{uk) — inf J-
tends to zero, the corresponding sequence Vk is itself a minimizing sequence. 
Moreover, we have 

T{vk) < F(w) + cjd(«fc, to) (5.32) 

for every w GV. • 

5.5 Semicontinuity 

We can now prove the main result of this chapter. For that, we shall 
consider a CARATHEODORY function F(x, u, z), denned in 0, x HN x RnJV, 
and satisfying the conditions: 

-a{\z\r + |u|*) - h(x) < F{x, u, z) < g(x, u)(l + \z\p) (5.33) 

with p > 1, 1 < r < p, 1 < t < p* = ^ (t > 1 if p > n). As for the 
functions h and g, we shall assume that h € LJ(fi) and that g > 0 is a 
CARATHEODORY function in fi x R ^ . 

Under these assumptions we shall prove the following semicontinuity 
result: 

Theorem 5.7 (ACERBI and Fusco [AFl]) Let F(x,u,z) be a quasi-
convex function, satisfying the conditions (5.33). Then, the functional 

!F(u) = / F(x,u(x),Du(x))dx 

is lower semicontinuous in the weak topology ofWl^(il,TlN). 

The proof of the theorem will be made in a series of steps. In the 
first place, we shall prove the theorem when the lower bound in (5.33) is 
replaced by 

F{x,u,z)>v\z\p, u>0. (5.34) 

For i g N w e call di(t) a continuous function taking the values one for 
t < i — 1 and zero for t > i, and we set 

r]i(x,u) = < 

i?i(|u|) if g{x,u) < i, 

i W ) iig(x,u)>i. 

Moreover, we set 

Fi(x, u, z) = rh(x, u)F(x, u, z) + (1 - rn(x, u))v\z\v , 
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The functions Fi form an increasing sequence of quasi-convex 
CARATHEODORY functions, and satisfy 

Fi(x,u,z)>u\z\p\ Fi(x,u,z) = u\z\p; i f | u | > t ; 

Fi(x,u,z)<(i + v)(l + \z\p); 

Fi(x, u, z) = F(x,u, z) ii i> g(x,u) + \u\ + 1; 

lim Fi(x, u, z) = sup Fi(x, u, z) = F(x, u, z). 
i-foo i 

Denoting with Fi{u) the corresponding functional, we have !F(u) = 
sup, J-i(u), and therefore, since the supremum of a family of lower semicon-
tinuous functionals is l.s.c, it will suffice to prove the theorem for each of 
the functionals J-i(u). In other words, we can assume that 

v\z\p < F(x, u, z) < A(l + \z\p) (5.35) 

and moreover that F(x,u, z) = v\z\p for |u| > /x. 
We want now to perform a similar operation with respect to z. We set 

Gi(x, u, z) = $i{\z\)F(x, u, z) + (1 - A{\z\))v\z\p • 

The functions Gj satisfy (5.35), and coincide with v\z\p for \z\ > i (and 
of course for \u\ > fi). On the other hand, in the above operation we lose 
the quasi-convexity, so that it will be necessary to replace the functions 
Gi with other quasi-convex functions. Recalling the results of Sec. 5.3, the 
natural candidates are the quasi-convex envelopes 

gi(x,u,z) = mil4 Gi(x,u,z +D<p(y))dy, (p£C%°(n) I . 

Actually the functions Gi satisfy all the assumptions stated in Sec. 5.3; 
in particular they are continuous in (u, z) for almost every x € f2, and verify 
(5.26). In fact, for almost every x £ ft, Gi are uniformly continuous in the 
compact set |u| < fi+ 1, \z\ < i + 1, whereas if either |u| > \i or \z\ > i 
they coincide with v\z\p. We can therefore apply the Lemma 5.16, from 
which it follows that the functions g^ are continuous in (u, z) for almost 
every x G fi. Moreover, we have obviously gi < Gi, and from the inequality 
v\z\p < Gi(x, u, z) (the function v\z\p are convex, and hence quasi-convex), 
it follows that gi{x,u,z) > v\z\p'. In particular, we have gi(x,u,z) = v\z\p 

whenever either \u\ > fi or \z\ > i. Finally, like Gi, the sequence gi is 
increasing. 
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Lemma 5.5 Let p > 1. For i -» oo the sequence gi(x,u,z) converges to 
F(x,u,z). 

Proof. For every fixed i, let Wi G Co°(fi) be a function such that 

gi(x, u,z)> 4 Gi(x, u,z + Dwi(y)) dy - - . 
Jn I 

Let us consider now the metric space WQ'1^), with the distance 

d(v,w) = / \Dv — Dw\dx. 
Jn 

Applying EKELAND'S theorem (Theorem 5.6) to the functional 

Q(w) = + Gi(x,u, z + Dw{x)) dx 
Jn 

we obtain a sequence Vi, with 

4 Gi(x, u,z + Dvi(y)) dy < gt(x, u,z) + -
Jn i 

and such that every v^ minimizes in W0 ' (fi) the functional 

Ti((p) = 4 Gi(x, u,z + D<p{y)) dy + - \D<p(y) - Dvi(y)\ dy. 
Jn l Jn 

Denoting by S the support of vi — ip, we get 

/ \Dip(y) - Dvi{y)\ dy < f (\z + DvJ + \z + Dip\) dy 
Jn Jx 

< J (c + e\z + Dvi\p + \z + Dv\p) dy 

and therefore, taking e small enough: 

[(1 + IDviWydy < Q [(! + \Dip(y)\rdy. 

In conclusion, the function Vi is a Q-minimum of the functional 

/ 
Jn 

{l + \Dv\)pdx 

(see Definition 6.1), and hence the conclusion of Theorem 6.7 holds. Since 
the sequence Vi is obviously equibounded in W1,p(fl), by the above theorem 
it will be bounded in W^p+T(Cl), for some r > 0, independent of i. 
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Now let fio CC fi, and let 

fti = {y € fio : \z + Dvi{y)\ > t - 1} . 

Since 

(i-l)p\Ui\< f \z + Dvi\pdx < c, 

we have |fij| —> 0, and therefore the sequence 

f \Dvi\*dy < \Qi\ifc ( [ \Dvi\P+Tdy 
p + T 

will converge to zero. 
We have therefore 

1 If 
9i + ~ > 177T / Gi(x, u,z + Dvi{y)) dy 

- iTTT / F(x> u'z + Dvi(y)) dy 
l" l Jflo-Qi 

l"l ^n0 

When i -> oo, a subsequence of u» will converge weakly in W1,p(fi) to 
a function v, whereas the last integral on the right-hand side will tend to 
zero. We have therefore, taking into account Theorem 5.4: 

lim gi(x,u,z) > 4 F(x,u,z + Dv(y)) dy 

-£-( (i\z + Dv\r>)dy 
l"l Ja-Qo 

> F(x, u, z) - A / (1 + \z + Dv\P) dy 
l"l Jn-Qo 

and letting CIQ tend to Q: 

lim gi(x, u, z) > F(x, u, z). 
i—>oo 

The opposite inequality is trivial, since g%<Gi<F. D 

file:///Qi/ifc
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Recalling again that the supremum of a family of semicontinuous 
functionals is a semicontinuous functional itself, we can conclude from the 
lemma just proved that it is sufficient to prove the semicontinuity of the 
functionals 

Gi(u) = / gi(x,u,Du)dx; 

in other words we can suppose that the function F satisfies 

v\z\p <F(x,u,z) <A(l + \z\p) 

and moreover 

F(x,u,z) = v\z\p for \u\ > fi and \z\ > fx. 

Since F(x, u, z) is a CARATHEODORY function, we can apply the lemma 
of SCORZA DRAGONI (Lemma 4.6) and conclude that for every e > 0 there 
exists a compact set K <Z$l, with \Cl — K\ < e, such that F is continuous 
in K x RN x RnN. 

Lemma 5.6 There exists a bounded continuous function u>(t), with 
ui(0) = 0 and such that 

\F(x,u,z) -F(y,v,z)\ < u(\x - y\ + \u-v\) 

for every x,y £ K, u, v G HN and for every z e RnN. 

Proof. It follows immediately from the continuity of F and from the fact 
that F = v\z\p if either \u\ > [i or \z\ > \x. D 

We can now conclude the proof of Theorem 5.7. 
Consider a sequence Uj weakly convergent in W1 , p to a function u. 
As before, let 1Z be a countable family of pairwise disjoint cubes Qi, 

such that |n — UiQi\ = 0. Let Sj be the center of the cube Qi, and let 

Ui= 4 
JQ 

udx. 
Qi 

Moreover, let X and U be the functions taking, respectively, the values 
Si and Ui in the cube Qi. 

Starting from a given partition 71, let us consider the sequence IZh, 
where 1Zh is obtained from IZh-i by dividing every cube in 2n equal cubes, 
and let Xh and Uh be the corresponding functions. 
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The sequences Xh and Uh converge almost everywhere to x and u, 
respectively; by the dominated convergence theorem (remember that w is 
bounded) it is possible to choose a partition 1Zh in such a way that 

/ u(\x - Xh\ + \u- Uh\)dx <e. 

We have therefore 

/ F(x, Uj.Duj) dx= f {F(x, ujt DUJ) - F(Xh, Uh, DUJ)} dx 
Jn Jn-K 

+ / {F(x,Uj,Duj) - F(x, u,Duj)}dx 
JK 

+ [ {F(x,u,DUj) - F(Xh,Uh,Duj)}dx 
JK 

+ f FiXh.U^Du^dx. 
Jn 

It follows that 

/ F(x,Uj,Duj)dx > -c\Q, - K\ - I W(\UJ — u\) dx — e 
Jn JK 

+ f F(Xh,Uh,DUj)dx. 
Jn 

Let now j —> oo; if we remark that the last integral is the sum of integrals 
over the cubes of the partition, in each of which the integrand depends only 
on z, we can apply Theorem 5.4, obtaining 

liminf / F(x,Uj,Duj)dx > -ce+ / F(Xh,Uh,Du)dx, 
i^°° Jn Jn 

form which we arrive to the conclusion by letting first h —> oo and then 
e-s-0. 

Our Theorem 5.7 is thus proved when F satisfies the estimate 
F(x,u, z) > v\z\p. To conclude the proof, it only remains to eliminate 
that assumption. 

For e > 0 define 

Fe(x, u, z) = F(x, u, z) + o|u|* + h(x) + 2e\z\p + M. 

Since p > r, we can choose the constant M in such a way that 
Fe(x,u, z) > e\z\p; for what we have proved above, the function Fe will 
be lower semicontinuous. 
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Let now ut —*• u in W j ^ f i ) , and let fio CC fi be an open set with 
regular boundary. Since t < p*, the sequence u; will converge to u in the 
strong topology of L'(fio)- We have therefore: 

liminf / F{x,Ui,Dui)dx 
i^'°° Jo, 

> liminf / Fe(x,Ui,Dui)dx - lim / {a|ui|* + h(x) + M}dx - 2ce 

> / Fc(x,u,Du)dx- {a\u\* + h(x) + M} dx - 2ce 

> / F(x, u, Du) dx — 2ce 
JQo 

and the conclusion follows letting first e -> 0, and then letting fio tend 
t o i l 

Remark 5.6 The preceding theorem does not hold if either r = p, or 
t = p*. In the first case, MURAT and TARTAR [1] have shown that the 
functional 

/ det (Du)dx 
Ju 

(n = N = 2) is not continuous in the weak topology of W1'2 (note that the 
functions det(z) and — det(z) are both quasi-convex). In the second, it will 
be sufficient to consider the functional 

[ (\Du\p-\u\p')dx 
JQ 

and a sequence Uk converging strongly to u in Wl>p, but not in LP . • 

5.6 Coerciveness and Existence 

The above results can be applied to prove the existence of minima of 
functionals. As we said in the preceding chapter, once the semicontinuity 
has been proved, the existence of minima under suitable conditions will 
depend essentially on the coerciveness of the functional under discussion. 
In the preceding chapter we have seen that for the DlRlCHLET problem the 
coerciveness follows from estimates of the type 

\z\p - (3{x)\u\5 - g(x) < F{x, u, z) < L\z\p + b{x)\u^ + g(x). (5.36) 
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Now these assumptions are quite natural for functions convex in z, much 
less when F(x, u, z) is only quasi-convex, or even polyconvex. Actually, if 
we consider only the DlRlCHLET problem, or more precisely if we look for 
coerciveness in the space 

V = U + W£'p(n) = {v£ W1'"^) :v-Ue Wo1'"} , 

(5.36) can be replaced by 

\F(x,u,z)\ <L |* |* + 6(a:)|u| '+a(a:), (5.37) 

F{x, u, z) > F(z) - b(x)\u\5 - a(x), (5.38) 

where, as above, S < p, b £ L ^ , a £ L1, and where F(z) is a function 
strictly quasi-convex in 0, that is, such that 

v f \D<p\p dx< f \F{D<p) - F(0)] dx (5.39) 
Jn Jn 

for every tp G W0'
p(Cl).8 Adding possibly a constant to the function a, we 

can suppose F(0) = 0. 
With these assumptions, for every u £ V, setting ip = u — U, we have 

f \Du\pdx<c f \Dip\pdx + c [ \DU\Pdx 
Jo. Ju Jn 

<c f F{Dif)dx + c f \DU\Pdx 
Jn Jn 

< c / F(x, u, D<p) dx 
Jn 

f (\DU\P + b(x)\u\s + a(x)) dx. 
Jn 

+ c 

On the other hand, we get from Lemma 5.2 

/ F(x,u,Dip) dx < / F(x,u,Du)dx+ [ [F{x,u,Dip) - F(x,u,Du)]dx 
Jn Jn Jn 

< / F(x,u,Du)dx 
Jn 

+ c f (\Du\ + \DU\ + 4(x, u ) ) p _ 1 \DU\ dx, 
Jn 

where #(x, u) =: [b\u\s + a{x)}llJ>. 

s This last assumption will be discussed in more detail in the next chapter. 
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Using the standard inequality Ap lB < eAp + c(e)Bp, we obtain 

/ \Du\p dx<c [ F{x, u, Du) dx + c [ {\DU\P + a) dx 
Jn Jn Jn 

+ c f b\u\sdx + e f \Du\pdx. 
Jn Jn 

The last integral can be subtracted from the left-hand side; the penul­
timate can be estimated by 

c / b{\ip\5 + \U\S) dx < e [ \ip\p dx + c f {b^ + b\U\5) dx 
Jn Jn Jn 

<ce f \D(p\p dx + c f (b^ + b\U\5) dx 
Jn Jn 

<ce f \Du\p dx + c f (b A +\U\P + \DU\P) dx. 
Jn Jn 

In conclusion: 

/ \Du\p dx<c [ F(x, u, Du) dx + c f (\DU\P + \U\P + b^ + a) dx 
Jn Jn Jn 

from which the coerciveness of J7 follows at once. 
In any case, independently of the adequacy of the assumptions, it is 

not difficult to prove existence theorems starting from the semicontinuity 
Theorem 5.7, and from coerciveness assumptions of the type (5.36) or 
(5.37), (5.38). The proof proceeds in the same way as for the "scalar" 
functionals discussed in the preceding chapter, to which we refer for 
details. 

5.7 Notes and Comments 

We have already said that the assumptions of convexity, policonvexity, 
quasi-convexity and rank-one convexity are successively more general, being 
all equivalent if either N = 1 or n = 1. The existence of non-convex poly-
convex functions is easily proved; it will suffice to consider, in the case 
N = n, the determinant det(z), or else any minor of the matrix z. 

Examples of rank-one convex functions which are not polyconvex have 
been given by TERPSTRA [1] in the case N = n > 3. The case N = n = 2 
was discussed by DACOROGNA and MARCELLINI [1], and later by ALIBERT 
and DACOROGNA [1], who proved the following result: 
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The function |z|2(|.z|2 - 27det(z)), 7 € R, is: 

(i) convex, if and only if I7I < f%/2, 
(ii) poly convex if and only if j-y | < 1, 

(iii) quasi-convex if and only if |-y| < 1 + e, for a suitable e > 0, 
(iv) rank-one convex if and only if |7| < - ^ . 

It is not known whether 1 + e in (iii) is strictly less than -j=. Later, 
SVERAK [1] gave, for n = N > 3, an example of a rank-one convex function 
which is not quasi-convex, thus concluding the proof that the four concepts 
introduced are all different. The case n = N = 2 is still open. 

The semicontinuity Theorem 5.7 is due essentially to ACERBI and 
Fusco [1], who obtained it under slightly more stringent assumptions. 
Our proof follows that by MARCELLINI [1]. As the reader will recog­
nize, the main point of the proof consists in the estimate of integrals of 
the type 

/ \Dui\pdx, 
JAi 

where Ai is the set in which |-DUJ| > i. The proof simplifies essentially if we 
only require the lower semicontinuity in the weak topology of Wx,p+€, with 
e > 0, or else if p = 1, since in both these cases the integrals in question 
are equi-absolutely continuous (see FUSCO [1]). 

When the integrand function F = F(x, z) is independent of u and con­
tinuous i n f i x RnN, the semicontinuity theorem continues to hold, even 
for weak convergence in Wl,q with q > ^TJ; ,9 provided the function F 
satisfies the technical condition F(x,tz) < e(l + F{x, z)) for t € [0,1] 
(MARCELLINI [2]). 

When F = F(z) is polyconvex, and n = N, we have the semicontinuity 
under weak convergence in W1,q, with q > n — 1 (MARCELLINI [2]). This 
result does not hold for q < n - 1 (MALY [2]). 

Polyconvex integrands are of some importance in finite elasticity. If 
u : Q —> R" indicates the position of the point x after the deformation, 
det(.Du) gives at every point the ratio between the volume elements after 
and before the deformation. It is reasonable to expect that the defor­
mation energy tends to infinity when det(Du) tends either to zero or to 
infinity. For instance, a reasonable functional describing the elastic energy 
could be 

More precisely, if uj., u £ W1^ and uj. —»• u in W 1 ' 9 , then J-(u) < liminf T{uk). 
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T{u) = / {\Du\2 + g(det(Du))} dx, 
Jo. 

where g(t) is a convex function, tending to infinity for t —> 0 and for t —> 
+00. 

The study of functional of this type encounters several difficulties, even 
in the relatively simple case in which g(t) remains bounded for t -> 0. 
Actually, with the exception of a few special cases, the function 

F(z) = \z\2+g(det(z)) 

does not have the same behavior from above and from below (think only 
about functions like \z\2 + |det(z)|2). In these cases, (5.36) does not hold, 
and will be substituted by a weaker condition such as 

\z\p < F(z) < c(\z\k + 1) 

with p < k. This has led to a number of studies of functional bounded 
from above and from below by different powers of \z\ (see for instance 
MARCELLINI [4, 6]); some positive results have been obtained when the 
two exponents are rather close to each other, an assumption that is not 
easily satisfied in the applications. If, on the contrary, the exponents are 
quite different, it is possible to find counterexamples to the regularity of 
the minima, even in the scalar case (GlAQUlNTA [2], MARCELLINI [3]). 

Polyconvex functional have already been described already in the book 
by MORREY [3], and have been studied in detail by BALL [1], even in 
connection with problems in finite elasticity. More recently, in a series of 
papers GlAQUlNTA, G. MODICA and J. SOUCEK [1, 2] have extended these 
functionals to the parametric case, obtaining important results of existence 
of minima. 

Finally, we note that it is possible to define quasi-convexity even for 
functionals depending on the derivatives of higher order (MEYERS [3], 
Fusco [1], Mu and Ll [1]). It is possible to extend some of the results 
of this chapter to these functionals. 



Chapter 6 

Quasi-Minima 

6.1 Preliminaries 

In the preceding chapters we have discussed the existence of minima of 
regular functionals of the calculus of variations, and we have proved that 
under suitable assumptions of convexity (or quasi-convexity in the case 
of vector-valued functions) of the function F(x, u, z) with respect to the 
variable z, the functional 

F(u,Q,)=: F{x,u,Du)dx (6.1) 
Jo. 

attains its minimum value among the functions of W1,P(Q, HN) which take 
given values at the boundary of fi (DlRICHLET problem). 

The problem remains of determining if and under what conditions the 
minimizing function u(x) has additional regularity properties, beyond those 
deriving from its belonging to the class Wx'p. To this problem of regularity 
we shall devote the remainder of the present volume. 

In order to make the results independent of the boundary value problem 
(or better in order to separate the interior regularity, which does not depend 
on the boundary data, from the boundary regularity), we remark in the first 
place that it is possible to consider minimizing functions that are summable 
only locally. More precisely, let us assume that the function F(x,u,z) 
satisfies the inequality 

\F(x,u,z)\< L\z\p + b{x)\u\i + a(x) (6.2) 

173 
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with1 1 < p < 7 < p*, and let u G W^(Cl). We say that u is a local 
minimum of the functional T{u) if for every <p € W1,p(f2), with K =: 
supp ip CC ft we have 

F{u,K) < F(u + <p,K). (6.3) 

Remark 6.1 An equivalent form of (6.2), sometimes more useful in 
computations, is 

\F(x,u,z)\<L[\z\+ti(x,u)]p, (6.4) 

where 

d(x,u)p = b(x)\u\'v+ a(x). (6.5) 

• 
Remark 6.2 In the following we shall always assume that p < n. The 
case p > n is simpler in many respects, since by the SOBOLEV immersion 
theorem the function u belongs to every Lq (if p = n) or it is Holder-
continuous (when p > n). We leave to the reader the task of making the 
changes in the statements and in the proofs, necessary to extend the results 
to these cases. • 

As we see from (6.3), the integrals are always computed on domains 
strictly contained in f2, and generally speaking a local minimum is not 
requested to satisfy !F(u,fl) < +oo. For instance, a harmonic function in 
the unit ball B is a local minimum for the DlRlCHLET integral 

V(u) = [ \Di 
JB 

dx, 

but it might not belong to WX'2(B). This is easily seen by considering the 
function of two variables (given in polar coordinates) 

u(x,y) 
(z + l ) 2 + 2 / 2 ' 

which is harmonic in the unit disc B,2 but whose DlRlCHLET integral 

dxdy 

J. lB[(X + l)2+y2]2 

is infinite. 

1 The assumption 7 > p is not restrictive, since for 7 < p we have |u | 7 < \u\p + 1. 
2We remark that u is the imaginary part of the holomorphic function j ^ . 



Quasi-Minima 175 

On the other hand, if a local minimum u belongs to W1,P(Q), then u 
minimizes T among all the functions v in W1,p(£l) taking on the boundary 
the same value as u, that is such that v — u G W0'

p(Cl). 
Since regularity problems are essentially local, we can always assume 

that u belongs to Wl'p(Q) without loss of generality. 

6.2 Quasi-Minima and Differential Quations 

A useful generalization of the notion of local minimum is the following. 

Definition 6.1 A function u G W^(Q,'RN) is a quasi-minimum of the 
functional T, with constant Q > 1 (briefly: a Q-minimum), if for every 
v G W^(il, R w ) , with K =: supp (u — v) CC U, we have 

T{u,K)<QF(v,K). (6.6) 

/ / moreover u G W1^, the preceding relation is verified for every v such 
thatv-u£W^p{n,RN). 

It is clear from what we have said that a local minimum is a quasi-
minimum; actually the local minima are nothing but 1-minima. 

Remark 6.3 More generally, one can suppose that instead of (6.6) we 
have (HONG [1]): 

T{u, K) < QF{v, K) + Q f (\Dv\ + i?(z, v))p dx, 
JK 

or, what is the same by (6.4): 

F{u, K)<Q f (\Dv\ + tf(x, v))p dx. (6.7) 
JK 

We could also take the constant Q dependent on the compact set K, 
without detriment for most of the results we shall prove, since as we have 
remarked they are essentially of local character. Of course, in this case the 
various constants entering in the statements would depend on the compact 
set in question. • 

The introduction of quasi-minima is justified by the following results. 
Let us begin by recalling the notion of weak solution of a partial 

differential equation. 
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We shall consider equations in divergence form: 

-—Ai(x, u(x), Du{x)) - Ba(x, u(x), Du{x)) = 0. (6.8) 

Definition 6.2 A function u € W^(il,KN) is a weak solution (or a 
solution in the sense of distributions) of the Eq. (6.8) if for every <p € 
W0

1'p(f2,RJV) we have 

f {Ai{x, u{x),Du{x))Diipa + Ba(x, u(x), Du(x))<pa} dx = 0. (6.9) 
Jo, 

Formally, Eq. (6.9) is obtained from (6.8) multiplying by ip and 
integrating the first term by parts. On the other hand, in (6.9) we do 
not assume that the function u has second derivatives, so that it makes 
sense even for functions u £ W^(Q). It is clear that the two forms of 
the equation become equivalent if it is possible to integrate by parts in 
(6.9), that is when the function u has second derivatives (and of course the 
coefficients A\ are different iable). 

To show the relation between weak solutions and quasi-minima, let us 
begin by examining the simple case of linear equations: 

/ • 
<?ifi{?i)DjvPDi<padx = Q V ^ ^ 2 ( ( 1 , R " ) , (6.10) 

in which the coefficients a,ij(x) are bounded functions: 

\\A(x)\\ =: sup \A(x)£\ < M (A(x) = {a%{x)}) (6.11) 

and satisfy the conditions of strong ellipticity: 

C(*)ff# > H£|2 . ^>« . (6-12) 

Now let v £ Wlo'c (Cl, RN) be a function coinciding with u outside a 
compact set K CC f2. Writing <p = v — u in (6.10), we get: 

/ a^gDjU^DiU01 dx= f a%D^DiVa dx 
JK JK 

and using (6.11) and (6.12): 

v [ \Du\2dx < M I \Du\\Dv\dx 
JK JK 

<M(( \DU\2 dx) 2 ( f \Dv\2 dx) 2 
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from which it follows at once that u is a (Q-minimum of the DlRICHLET 
integral, with Q = M2u~2. 

More generally, we can consider weak solutions of (6.9), with the coef­
ficients Al

a(x,u, z) satisfying the uniform ellipticity condition: 

Ai(x,u,z)z°' > \Z\P - h(x)\up - ai(x) (6.13) 

with l < p < 7 < p * = -~L-, and the estimates 

\A(x,u,z)\< Llzl?-1 + b2(x)\u\'T + a2(x) (6.14) 

with a = 7 2—-. 
Concerning the term B(x, u, z), we can distinguish two cases. The first, 

simpler in many accounts, is that of controlled growth conditions: 

\B(x,u,z)\< H\z\T + h(x)\u\s + a3(x) (6.15) 

with r = p-^ and S = 7 P T1-

We shall assume that the functions bi and a, are positive, with a j , ag'1, 

af _ 1 G L1, and bi, 6 | _ 1 > H _1 € L? —<. We have the following: 

Theorem 6.1 Let u e W^(U, RN) be a weak solution of the Eq. (6.8), 
with coefficients A and B satisfying conditions (6.13), (6.14) and (6.15). 
Then, u is a quasi-minimum of the functional 

J(u,Q)= ( {\Du\p + b{x)\u\"< + a{x))dx (6.16) 
Jn 

with 

and 

b(x) = b1+b%-1 +&! ' - 1 6 i ? 

a(x) = ai(x) + a2(x)^ + 03(0;)^^ + 6 F ^ g L1. 

Proof. Let v € W^, with K = supp (u — v) CC ft. Setting tp = u — v 
in (6.9) we get 

/ Ai
a{x,u,Du)Diu

adx = f Ai{x,u,Du)DiVadx 
JK JK 

+ [ Ba(x,u,Du)(va-ua)dx 
JK 
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and using relations (6.13)-(6.15): 

/ \Du\p dx < / bi\u\'1dx+ I a\dx 
JK JK JK 

+ L [ \Du\p~1\Dv\dx+ [ b2\u\'T\Dv\dx 
JK JK 

+ I a2\Dv\dx + H J \Du\T\u — v\dx 
JK JK 

+ / b3\u\s\u~v\dx+ / a3\u-v\dx. (6.17) 
JK JK 

We have 

/ \Du\p'l\Dv 
JK 

f b2\u\"\Dv 
JK 

I a2\Dv 
JK 

I \Du\T\u-v 
JK 

/ balu^lu — v 
JK 

/ a3\u — vt 
JK 

dx<e [ \Du\pdx + c(e) [ \Dv\pdx; 
JK JK 

dx <cl I \Dv\pdx+ J bf*\updx1 ; 

dx<cl I \Dv\pdx+ J af* dx\; 

dx<e [ \Du\p dx + c(e) [ \u- vp dx; 
JK JK 

dx < e \u — v\p dx + c(e) / 63 _ 1 |u|7 dx; 
JK JK 

dx < e I \u — v\p dx + c(e) / af _ 1 dx. 
JK JK 

On the other hand: 

6|w|7 < c(7)(b|t;|7 + b\u — u|7) < e\u — v\p + 0(7, e)b"--i + c(7)b|i>|7 , 

and by the SOBOLEV theorem: 

4 - 1 
f \u- vf dx<c( f (\Du\p + \Dv\p)dx\ ' f (\Du\p + \Dv\p)dx. 

We remark now that it is possible to assume that 

/ {\Du\p + b\u\i)dx> [ \Dv\pdx 
JK JK 
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since otherwise one would have trivially J(u, K) < J{v, K). It follows that 

I \u - vf dx<ci I {2\Du\p + b\u\i)dx\ ' f {\Du\p + \Dv\p)dx 

<c( | | I>« | | p > |H | p . ) | | 6 | | ^_ ) f {\Du\p + \Dv\p)dx. 
*'-*> JK 

Introducing all these inequalities in (6.17), after having added to both 
members the quantity 

/ (b\u\~< +a(x))dx, 
JK 

and taking e small enough, we easily get the conclusion of the theorem. 
Note that the constant Q depends on u, as it is permitted, but not 
on v. • 

Let us come now to the second case, in which the term B(x, u, z) satisfies 
natural growth assumptions:3 

\B{x,u,z)\ < H\z\p + a3(x) (6.18) 

withO < a 3 e i ' f d ) . 
In this case we have a theorem analogous to the above only for bounded 

solutions of the Eq. (6.9). That explains why we have omitted the term 
b3\u\s in (6.18); we can also assume b\ = 62 = 0 in (6.13) and (6.14), and 
allow the dependence of the constants L, H and of the functions a, on 
M = sup u. 

We shall consider separately the case of one equation (N = 1) and of a 
system of equations (N > 1). We will begin from the first one. 

Theorem 6.2 Let u{x) be a bounded solution of (6.9) (iV = 1), with 
conditions (6.13), (6.14) {with b\=b% = 0) and (6.18). Then, u is a quasi-
minimum of the functional 

•H{u,Q)= [ {\Du\p + a{x))dx, (6.19) 
Jo. 

3 The reason for this terminology lies in the fact that when (6.8) is the EULER equation 
of a functional, we have A = Fz and B = Fu. If the function F(z) grows as \z\p, it is 
natural to expect that A grows as | z | p _ 1 , whereas the growth of B remains the same 
as that of F, that is \z\p. Whence the distinction between natural and non-natural 
conditions (or conditions of controlled growth). 
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where 

a(x) = ai(x) + a2(x)p-1 + a3(x). 

Proof. Let v € W1,p(fi) be such that K =: supp (u — v) CC fi, and 
assume that |u(a;)| < M =: sup^ \u\. Setting in (6.9) 

{A+ = max(.A,0)), and denoting by S the support of <p, we obtain 

/ A ' A u [ l + A(u - v)]ex^~^ dx 
Js 

= I A* A « [ l + A(u - v)}e^u~^ dx + [ B{u - v)ex^u-^ dx, 
Js Js 

where the coefficients A1 and B are obviously calculated at (x, u(x), Du(x)). 
Using (6.13), (6.14) and (6.18), and remembering that u — v > 0 on S, we 
deduce 

/ \Du\p[l + A(u - v)\ex{-u-^ dx 
Js 

< j ax[\ + \{u - v)]ex{-u-^ dx 

+ [ {L\Du\p~l + a2)[l + A(u - v)]ex(u~^ \Dv\ dx 
Js 

+ f (H\Du\p + a3)(« - v)e*u-v) dx. 

Since |u| and \v\ are both bounded by M, we have 

/ \Du\p[l + X(u - v)]eA<u-"> dx 
Js 

< c I axd + c I {L\Du\p~l + a2)\Dv\ dx 
Js Js 

+ c f a3dx+ [ H\Du\p{u - v)ex(u~v) dx. 
Js Js 

Choosing now A = H, the last integral on the right-hand side can 
be subtracted from the left-hand side. Moreover, by the usual estimate 



Quasi-Minima 181 

AB < eAv-1 + c(e)Bp, we get, summing to both members the integral 
Jsadx: 

f (\Du\p + a)dx<c f (\Dv\p +a)dx. (6.20) 
Js Js 

Similarly, choosing 

we obtain the inequality 

/ (\Du\p + a)dx<c I (\Dv\p +a)dx, 
JT JT 

where T = suppy. The conclusion follows summing the above inequality 
with (6.20). 

Finally, if v does not verity the relation \v\ < M, we set v = 
min{M, max{i>, — M}}, and we conclude immediately 

U(u,K) <H(v,K) <H{v,K) 

since \Dv\ < \Dv\. O 

Example 6.1 (FREHSE [3]) We remark that in the preceding theorem 
the assumption that u is bounded is essential. Actually, as we shall see 
later, in the scalar case (N = 1) every quasi-minimum of the functional H 
(or more generally of any regular functional T) is Holder-continuous, and 
hence in particular it is bounded. On the other hand, the function 

u{x) = 12 log log \x\~x 

is a solution of the EULER equation (in short, an extremal) of the functional 

^"(«)= ! ( l + - * , ,N ,0\\Du\2dx 
JD\ 1 + e«(log |a: |)-« J ' ' 

in the disc D C R 2 of radius e _ 1 . 

R e m a r k 6.4 If N = 1, we can consider a subsolution of (6.9), that is a 
function u(x) satisfying the inequality 

/ {A\x, u(x), Du(x))Di<p + B(x, u(x), Du(x))<p} dx < 0 (6.21) 
Jo. 
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for every ip > 0. If u is a bounded subsolution, we can repeat the preceding 
proof,4 and conclude that u is a sub-quasi-minimum of the functional H, 
or in other words that 

H(u,K)<QH(v,K) 

for every v < u, with K =: supp (u — v) CC fl. 
Similarly, a bounded supersolution of (6.9) is a super-quasi-minimum 

of ft. D 

When, from a single equation, we pass to systems of equations, the 
boundedness of the solution is no longer sufficient. Actually, already for 
N = n = 2 there exists systems satisfying the conditions of the preceding 
theorem, and possessing bounded discontinuous solutions, as one can see 
in the following example. 

Example 6.2 (FREHSE [2]) The function 

u(x) = 

sin (log log -r— 
\ \x\ 

\ 
cos I log log 

1 

is a weak solution in R 2 of the system 

Aua=Ba(u,Du), (a = 1,2) 

with 

B(u,z) = 
V + u2 

verifying natural growth conditions with p = 2. We shall see later in 
this chapter that every quasi-minimum belongs to Wl(£

 e for some e > 0. 
Therefore, if the function u above were a quasi-minimum, it would belong 
to W1Q'C

2+C, and by SOBOLEV theorem it would be Holder-continuous. 

Theorem 6.3 Let u G W^(il) be a weak solution of the system (6.9), 
with coefficients satisfying natural conditions (6.13), (6.14) and (6.18). Let 
M = sup | it |, and assume that 

2MH(M) < 1. 

Then, u is a quasi-minimum of the functional (6.19). 

(6.22) 

4Of course, in this case a lower bound for the term B is sufficient. Moreover, in the 
case of controlled growth we can omit the assumption that u is bounded. 
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Proof. Let as usual v G W^(Sl, HN), with K = supp (u - v) CC il. If 
|u| < M, we can take tp = u - v in (6.9) and make the usual estimates, 
since the term on the right-hand side containing \Du\p can be subtracted 
from the left-hand side by virtue of the assumption 2MH(M) < 1. 

Now let v be an arbitrary function, and let 

v = < 

v if |u| < M, 

M V T i l ** 

-r^ if \v\> M . 

We have v < M and \Dv\ < 2\Dv\, and hence 

H(u,K) < QU{v,K) < 2pQH(v,K) 

from which the conclusion follows at once. D 

Remark 6.5 It is clear that the preceding theorem remains valid if in­
stead of M = sup \u\ we take M = sup \u — a\ for an arbitrary a £ RN. In 
particular, we can take M = |osc (u), where osc (u) is the oscillation of u. 

If u is a continuous function, (6.22) is satisfied automatically, provided 
K = supp (u — v) is small enough. Consequently, every continuous solution 
of (6.9), with natural growth conditions (6.13), (6.14) and (6.18), is a quasi-
minimum of the functional % in the small. In formulas, it will result in: 

H(u,K)<QH(v,K) 

whenever diam (K) is less than a constant eo depending only on the modulus 
of continuity of u, with Q independent of eo. 

This will be largely sufficient to prove all the results of local character, 
the regularity in the first place. Needless to say, the continuity of u is 
automatically guaranteed by the SoBOLEV theorem if p > n. 

The preceding example shows that Theorem 6.19 cannot hold without 
the assumption MH(M) < 1, even if p = n. It is not known whether it is 
possible to replace (6.22) with the weaker assumption MH(M) < 1. • 

Example 6.3 ( D E GlORGI [5]) Contrary to what happens in the scalar 
case,5 when N > 1 the quasi-minima (and even the minima) of functionals 
are not necessarily bounded functions. For instance, if n = N > 2, the 
function 

V(2n-2)2 + l 

5See the next chapter, in particular Theorem 7.4. 
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minimizes the functional 

T{u,B) = f A%f,(x)Diu
aDju

f>dx, 

with 

A%lf}(x) ~ S<*PSij (n - 2)dai + i {n-2)8Pj+n^i 
x\2 

among all functions taking the value x on the boundary of the unit ball B. 
The proof begins with the remark that the functional T is convex, and 

hence u is the (unique) minimum of T if and only if it is solution of the 
EULER equation 

I A^p{x)DiUaDjipP dx = 0 (6.23) 

for every <p G W0
1,2(5, RN). 

In our case it is easy to verify that 

Dj[A%{x)Diu»]=0 

in B — {0}. By consequence, (6.23) is satisfied for every with support in 
B-{0}. 

Assume now that tp has support in B, and let 77 be a function of class 
C°°(B), with 0 < r] < 1, 77 = 0 in BR, rj = 1 in B - B2R and \Dr)\ < 2/R. 
The function r]<pa has support in B — BR, and therefore we have 

0 = J A%(x)Diu
aDj(r,i/)dx 

= / r1A
i£/3{x)Diu

aDj<p/3dx+ f iPPA%{x)Diu
aDi7)da. 

The last integral can be estimated by 

\2dx I R ^ , (j>"f 

and hence it tends to zero with R. Passing to the limit in the preceding 
relation, we get (6.23) for every <p € CQ°(B,IIN), and therefore for every 
p e W ^ B . R * ) . 

A second example of quasi-minimum arises from quasi-regular map­
pings. We recall that a map u : Q. -> R n is quasi-regular if there exists a 
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constant A > 0 such that 

\Du\n <Adet(Du). 

If, moreover, u is a homeomorphism, the map is called quasi-conformal. 

Theorem 6.4 A quasi-regular map u £ W1,n(fl, R n ) is a quasi-minimum 
of the functional 

J 
Jn 

\Du\ndx. 
n 

Proof. Let ip be a map from ft to R n , with support K CC ft. We have 

/ det(Du)da;= / det{Du + D<p) dx < c f \D(u + <p)\n dx 
JK JK JK 

and the conclusion follows immediately from the definition of quasi-
regularity. • 

Example 6.4 Another example of a quasi-minimum comes from minima 
with obstacles. Let tp(x) be a function in W1,p(fi), and assume that u £ 
^ioc'(^) satisfies the inequality u{x) > ip(x) in f2, and moreover 

F{u, K) < F{w, K) 

for every us € W^^Q,), with K = supp (u — w) CC fi and w >ip. In other 
words, u minimizes the functional T among all the functions whose graph 
lies above the obstacle i\). 

Now let v be a generic function in W^^Cl), (which in general does not 
lie above the obstacle), with K = supp (u — v) CC Cl. Setting E = {x G $1 : 
v(x) > tp(x)} and w = ma,x{v,tp}, we have6 

JT(U, K) < T(w, K) = F(v, K n S) + Tty, K-Z) 

<F(v,K)+F(rP,K), 

and hence, adding to both members the term F{4>, K): 

g(u,K)<2g(v,K), 

where we have set 

G(u,A)= J [F(x,u,Du)+j(x)]dx 
J A 

sFor the sake of simplicity, we assume that F(x, u, z) > 0. See, anyway, Remark 6.6. 
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and 

-f{x) = F{x,^{x),D^{x)). 

It is immediately verifiable that F(x, u, z) + 7(0;) satisfies the same es­
timates (6.2) as F, with a + 7 instead of a. In conclusion, a minimum 
(and also a quasi-minimum) of the functional T, with obstacle ip, is a free 
quasi-minimum of the functional Q. 

In the vector similar conclusion can be obtained for the minima 
of T confined in a convex region 0 . More precisely, let © be a convex 
domain of HN with regular boundary, and let u £ W^(Cl) be a function 
with values in 0 , such that for every w with values in 0 , coinciding with u 
outside a compact set K, it holds that 

F{u,K)<T(w,K). 

We can suppose that 0 contains the unit ball B. For |f| ^ 0, let 
R{£) > 1 be such that £|£| -1 .R(0 € d@. The function #(£) is regular in 
R " — {0}, and in particular its derivatives are bounded on dB. 

Let now v be a generic function of W^^Cl), coinciding with u outside 
K. Setting 

( v if v £ 0 , 

\v\ \\v\J 

we have w € 0 and hence, since w < v and \Dw\ < c\Dv\: 
F{u, K) < T(w, K)<Q f (\Dv\ + ti{x, v))p dx. 

JK 

As we shall see (see later, Remark 6.9), the above relation is sufficient 
to prove the results of this chapter. 

Remark 6.6 The functional 

J(u,n)= f {\Du\p + 6|u|7 + a(x))dx 

is typical in the theory of quasi-minima, since it is possible to reduce to it 
all the integrals of the type 

F(u,Q,)= / F(x,u,Du)dx, 
Jn 

file:////v/J
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when the function F(x, u, z) satisfies the inequalities 

\z\p - &M7 - a(x) < Ffa u>z) ^ L\Z\P + 6IUP + a(x) (6-24) 
* 

with L > 1, 0 < a <E L1(fi)> 7 < P* a n d b e L¥^• 
More precisely, if u is a Q-minimum for T, then it is a Q-minimum (with 

a different constant Q) for the functional J. Vice versa, a Q-minimum for 
J is also a Q-minimum for T + J(6|u|7 + a) dx. 

The proof follows the same lines as that of Theorem 6.1. Taking any 
function v such that u — v has support K CC CI, we have 

/ (|Du|p - 6|u|7 - a) dx < f F{x, u, Du) dx 
JK JK 

<Q F(x, v, Dv) dx 
JK 

<Q [ (L\Dv\p + b\v\~< + a)dx 
JK 

and hence 

J(u, K)<M [ (\Dv\p + &M7 + b\up + a) dx 
JK 

and the conclusion follows as in Theorem 6.1. 
We remark however that the lower estimate in (6.24) is natural in the 

scalar case (N = 1), much less if N > 1. As we shall see, it will be possible 
to substitute it with a less restrictive assumption. • 

6.3 Cubical Quasi-Minima 

A definition more general than that of quasi-minima is the following, which 
involves only integrals on cubes of R". 

Definition 6.3 Let Q > 0. A function u G W^(Cl,RN) is called a 
cubical Q-minimum for the functional T if for every cube QR C fi and for 
every <p € WQ'P(QR,TIN) we have 

F{V,QR)<QH* + <P,QR)-

In a similar way, considering balls of R n instead of cubes, we could 
define spherical quasi-minima; in general one can define a quasi-minimum 
with respect to a one-parameter family of relatively compact homothetic 
domains. 
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It is clear that a Q-minimum is also a cubical, or spherical Q-minimum. 
In dimension n > 2, the two notions do not coincide, as can be seen from 
the following example. 

Example 6.5 (GlAQUlNTA and GIUSTI [4]) Let n > 2 and let u{x) be 
a homogeneous function of degree /3, 0 > /? > 1 — ^, regular in R n — 0, 
without stationary points, and non-constant on the boundary of any cube 
of R n . 7 

We shall show that it is a cubical Q-minimum of the DlRlCHLET integral 

/ \Du\2dx. 
Jn 

It will suffice to prove that in any cube QR = Q(xo, R) we have 

R I \Du\2dx <c J \u- udQR\2dHn-i (6.25) 
JQR JdQR 

since by (3.42), if v = u su 6QR we have 

/ \u-udQR\2dHn-i = / \v - v9QR\2dHn-i 
JdQR JdQR 

>2dx. <cR I \Dv\ 
JQR 

We can reduce to the cube Q = Q(0,1) setting xo = Ryo and x = R(yo 
+ y). Taking into account the homogeneity of u and Du, (6.25) becomes 

/ \Du{y0+y)\2dy<J-f \u(y0 + y)\2dHn^(y) 
JQ ua<9 

-a u(y0+y)dHn-1(y)) ) . (6.26) 
dQ / J 

Let F(yo) be the quantity on the left-hand side of (6.26), and let G(yo) 
be that within parentheses on the right. Both F and G are continuous 
positive functions, since u is not constant on the boundary of any cube of 
R n . The ratio F/G is therefore bounded on compact sets and we must only 
investigate its behavior when yo —> oo. We have for every y £ Q: 

u(y0 + y)= u(y0) + (Du(y0),y) + -{D2u{y0)y,y) + O(\y0f-
3), 

Du(y0 + y)= Du(y0) + O(\y0f-
2). 

An example of such a function is u(x) = \x\P. 
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From the last equation we get 

F{y0) = \Q\\Du{y0)\
2 + O{\y0\

2^), 

and from the first: 

\u(yo + y)\2 = \u(y0)\
2 + (Du(y0),y)2 + 2u(y0){Du(y0),y) 

+ u(y0)(D
2u(yo)y,y) + 0(\y0\

2^3), 

and 

4 u(y0 + y)dHn-i(y) = u(y0) + - 4 (D2u(y0)y, y)dHn-i 
JdQ *JdQ 

+ O(\yof-3). 

It follows: 

G(y0) = / (£)u(2/o),y)2rfi/„-1(y)0(|2/o|2^-3) 
JdQ 

>c\Du(y0)\
2 + O(\y0\^~3). 

We remark now that since Du is homogeneous of degree f3 — 1 and is 
never zero, we have \Du(yo)\ > c|?/o|^_1, so that in conclusion the ratio 
F/G is bounded, and the function u(x) is a cubical Q-minimum for the 
DlRlCHLET integral. 

On the other hand u is not a Q-minimum, since the function v = 
min{u, 1} is different from u in the unit ball B, and JB \Dv\2 dx = 0, 
whereas fB \Du\2 dx -£ 0. 

As we have already remarked, the lower inequality (6.24) is rather 
restrictive, in particular when we are concerned with functions u with values 
in R ^ . For example, if n = N = 2, it is not satisfied by the function 

F(z) = | z | 2 + 2 d e t ( z ) . (6.27) 

In fact, condition (6.24) is appropriate in the case of functions F(x, u, z) 
convex in z, much less so when F is only quasi-convex, as in the above 
example. In this case, it will be preferable to introduce a condition less 
simple but more general. 

The following definition is a reinforcement of quasi-convexity. 

Definition 6.4 We say that the functional 

F{u, £1) = F(x, u, Du) dx 
JQ 
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is strictly quasi-convex in (XQ,UO,ZO) G fi x HN x HnN if there exists a 
constant v > 0 such that for every <p G WQ'p(fi,Rw) we have 

/ [F(x0, u0,z0 + Dip) - F(x0, «o, z0)} dx>v I \Dip\p dx. (6.28) 

Correspondingly, the function F(x, u, z) is said to be strictly quasi-convex 
in (a;0,Uo,2:o). 

Finally, we say that F is strictly quasi-convex if it is so everywhere, 
with the constant v independent of the point (XO,UO,ZQ). 

Let us now consider a function F(x, u, z) satisfying the estimate 

\F(x,u,z)\< c(\z\ + #(x, u))p (6.29) 

with 

${x,u)p = b(x)\up + a(x). 

Instead of (6.24) we shall assume that there exists a function F(z), 
depending only on z and strictly quasi-convex in 0, such that for every 
(a;, u, z) € CI x RN x KnN we have 

F(x, u, z) > F{z) - i?(z, u)p . (6.30) 

Adding possibly a constant to the function •&, we can assume that 
F(0) = 0. 

We remark that since \z\p is strictly quasi-convex in 0, (6.30) is really 
more general than (6.24); actually it is satisfied by the function (6.27). 

Concerning the exponents p and 7, and the functions b(x) and a(x), we 
shall make the usual assumptions: 

(i) Kp<n, p<-y<P* = -f^—, (6.31) 

n — p 

(ii) b{x) € Lt^ , a(x) G L1. (6.32) 

The following theorem holds: 

Theorem 6.5 (CACClOPPOLl's inequality) Assume that the function u G 
W1'p(Cl,'RN) is a cubical quasi-minimum for the functional 

T(u, fi) = / F{x, u{x), Du{x)) dx (6.33) 
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with F(x,u,z) satisfying (6.29) and (6.30) above. There exists Ro > 0, 
depending only on u, such that for R < Ro and QR CC fi we have: 

f (\Du\p + \u\p')dx < c\^- [ \u-uR\pdx 
JQR/2 I HP JQR 

+ \QR\(-[ \u\dx) + f gdx) (6.34) 
\JQR J JQR J 

and moreover 

(\Du\p + \uf)dx j ( 
JQR/2 

<clU (\Du\p + \u\p")mdxY +J 9(x)dx\, (6.35) 

where m = —?— < 1 and a = a + 6P*-T . 

p+n v 

Remark 6.7 The reader can easily convince himself that the same result 
holds for spherical quasi-minima, and in general for quasi-minima relative 
to a general family of neighborhoods, provided each of them contains a cube 
Qi and is contained in a cube Qi with the ratio of sides bounded. 

Moreover, it continues to hold if instead of quasi-minima we deal with 
functions satisfying (6.7) with K = QR. • 

To the proof of Theorem 6.5 we shall premise the following: 

Lemma 6.1 Let Z(i) be a bonded non-negative function in the interval 
[Q, R]. Assume that for g<t<s<Rwe have 

Z(t) < [A(s - t)~a + B(s - t)-0 + C}+ tfZ(s) (6.36) 

with A, B, C > 0, a > (3 > 0 and 0 < i? < 1. Then, 

Z(g) < c(a, d)[A(R - g)-a + B{R - Q)-P + C). (6.37) 

Proof. Consider the sequence U such that t0 = Q and 

ti+1-ti = {l-X)Xi{R-Q) 

with 0 < A < 1. 

file:///u/dx
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From (6.36) by induction we get 

Z(e) < «kz(th) + „ * , . + C {1-\)<*{R-Q)<* (l-X)f}(R-Qy 

fc-i 

i=0 

Now choose A in such a way that A_ai? < 1. The series on the right-
hand side converges, and therefore passing to the limit for k —• oo, we get 
the conclusion with c(a,i?) = (1 - A)~a(l - tfA"")-1. 

We can now prove the theorem. Let QR be a cube strictly contained 
in £2, and let R/2 < t < s < R. Let r/(x) be a function in CQ°(QS), with 
0 < V < 1, V = 1 m Qt a n d \Dr)\ < -^. Denoting by us the average of u 
in Qs: 

JQs 
udx, 

JQ. 

we set tf = T)(u — us). We have 

v \ \D<p\pdx< IF{Dip)dx< [ F{x,u,D<p)dx + [ d(x,u)pdx 
JQs J JQs JQS 

= j F(x,u,Du)dx+ / [F(x,u,D<p) — F(x,u,Du)]dx 
JQs JQs 

+ I d{x,u)pdx. (6.38) 
JQ, 

Now let v = u — (p = us + (1 — rj){u — u3). From the quasi-minimum 
property of u and from (6.29) we have 

f F(x,u,Du)dx<c f (\Dv\+ti(x,v))pdx. (6.39) 
JQs JQ, 

We remark now that Dip — Du in Qt, and therefore the second integral 
on the right-hand side of (6.38) can be estimated by 

/ (\F(x,u,D<p)\ + \F{x,u,Du)\)dx 
JQ.-Qt 

< [ {\Du\p + \Dv\p + tf(x,u)p)dx. 
JQs-Qt 
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Introducing these relations in (6.38), we get 

f \Du\pdx<cf \Du\pdx + c J \Dv\pdx 
JQt JQ,-Qt JQ, 

+ f {-d(x,u)p + §{x,v)p)dx 
JQ, 

<c f \Du\pdx + c I \Dv\pdx 
JQa-Qt JQs 

+ c [ [a{x) + b(x)(\v[* + |w|7)] dx . (6.40) 
JQ, 

We now add to both sides f0 \u\p' dx, and we use the inequalities 

\Dv\p = |(1 - rfiDu + (u - us)Dri\p 

< c[(l - v)P\Du\p + (s- t)~p\u - us\
p] 

and 

6|u|7<c(|u|p* +b&Y 

as well as |i>| < \u — us\ + \us\ and |u| < \u — u3\ + \us\. We obtain thus 

/ {\Du\p + \u\p')dx<c\ I \Du\pdx+ 1 / \u-us\
pdx 

JQt lJQs-Qt {s-trJQs 

+ \u-u3\
p'dx+\Qs\\us\

p" + / gdx\ 
JQ, JQ, ) 

(6.41) 

withg = a + bp"/(p'-i\ 
On the other hand: 

/ \u-usf dx<c[ f \Du\pdx) = x ( s ) / \Du\p dx, 
JQ, \JQ, ) JQ, 

where 

a \ P / (n -p ) 

? \Du\pdxj 

is infinitesimal with s. It follows that, taking R (and therefore s) small 
enough, this term can be made smaller than e JQ \Du\p dx, which in turn, 
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choosing suitably e > 0, can be subtracted from the left-hand side, leaving 
on the right the quantity 

f \Du\pdx. 
JQs-Qt 

We arrive thus at the inequality 

/ {\Du\p + \u\p")dx<c{ [ \Du\pdx+ . 1
 N / \u-us\

pdx 
jQt I JQa-Qt ( s - * ) p JQ. 

\Qs\\usf + I gdx 
JQ, 

Moreover, since we have 

/ \u — us\
pdx<cl \u — UR\P dx, 

JQs JQR 

|u.| < 2n-f | 
JQR 

\u\ dx, 
JQR 

(remember that s > R/2), we get 

/ (\Du\p + \u\p')dx<J [ (\Du\p + \u\p')dx 
JQt I JQs-Qt 

+i^Llu-uRlPdx 

+ \QR\ (4 \u\dx) + / gdx\. 
\JQR / JQR ) 

We now use the "hole filling" method by WlDMAN [1]. We add to both 
sides the quantity 

c / (\Du\p + \u\p')dx 
JQt 

and divide by c + 1; we obtain 

/ (|Du|p + |u|"*)da;<i? / (\Du\p + \uf)dx + l f \u-uR\pdx 
JQt JQ, Vs - * r JQR 

+ \QR\ (4 \u\dx) + / gdx 
\JQR J JQR 

with i? =: ^ < 1. 

file:///u/dx
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Applying Lemma 6.1, with 

Z(t)= f (\Du\p + \u\p')dx 
JQt 

and 

A= [ \u-uR\pdx, 5 = 0, C=\QR\(-f \u\dx) + gdx, 
JQR \JQR J JQR 

we obtain immediately the inequality (6.34). 
In order to get (6.35) we must estimate the right-hand side of (6.34). 

Setting p , = •£*-, we have (p*)* = p, and hence, by the SoBOLEV-
POINCARE inequality (3.32): 

/ \u-uR\pdx<c( f \Du\p'dx) =c( j \Du\pmdx) 
JQR \JQR J \JQR J 

with m = -£-. 
P+n On the other side we have p*m > 1, and therefore 

/ \u\dx< (-f \u\p*mdxY'm . 
JQR \JQR J 

Introducing these two inequalities8 into (6.34) we get easily the required 
estimate (6.35). • 

Remark 6.8 In what follows we shall need the above theorem also in 
a slightly different form. We begin from (6.40), and we estimate \Dv\p as 
above, and 

M7<c(|«Pr + |u-u,pr). 

We have now 

/ b(x)(\u — us |
7)] dx < I / \u — us\

p* dx ) 
JQ, \JQ, ) 

x ( f (b(x)\u - us\i-
p)f dx 

<c£(s) f \Du\pdx 

Jo* 

8 If p* < 1, the preceding inequalities continue to hold with m = —. 

file:///u/dx
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with 

£(*)= ( / (b(x)\u-u.[r-P)Ste 

<c( I \u\p~ dx) ( J b~^ dx\ 
*P? / r . . \ 1 - i 

<c||u||j;rii|uB
ne. 

If we choose i? (and therefore s) small enough we have c£,(R) < \ and 
hence we can subtract the corresponding term from the left-hand side of 
(6.40), getting 

/ \Du\pdx<c([ \Du\pdx+ . 1 . / \u-us\
pdx] 

jQt \JQ.-Qt (S-WJQ. J 

+ c [ {a{x)+b{x)\u\'1)dx. (6.42) 
JQ. 

We can now argue as in Theorem 6.5, and we can conclude that 

/ \Du\pdx<c\^- f \u-uR\pdx+ f (a + blu^dx} . 
JQR/2 I H P JQR JQR J 

(6.43) 

• 
Remark 6.9 We note that the above theorem remains valid if we only 
assume that u verifies 

F(u, QR)<Q f (\Dv\ + #(x, v))p dx + e f \Du\p dx 
JQR JQR 

for every v with u — v G WQ'P(QR), provided e is small enough. • 

Remark 6.10 If the function F(x,u,z) verifies (6.29) and (6.30) with 
7 < p and b € Z>-'» (in particular this happens if b = 0), inequality (6.34) 
takes the simpler form 

/ \Du\p dx < c< — I \u — UR\P dx + / adx 
JQR/2 l R P JQR JQR 

+ \QR\U \u\dx\ 1 (6.44) 
IQR 

and holds for every R < RQ, with RQ independent of u 

file:///JQ.-Qt
file:///u/dx/
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Actually in this case we can avoid summing to both sides the quantity 
\u\p", and the term b\u — u s | 7 can be estimated by c(bp—r + \u — us\

p). 
The integral of the last quantity can be estimated by means of PoiNCARE's 
inequality (3.33), and can be subtracted from the left-hand side if R is small 
enough, independently of u. 

If moreover 6 = 0, (6.44) holds without the last term on the right. In 
particular, this happens when u is a bounded function, since in this case 
•d(x,u) can be considered as a function of x only. This always happens 
if p > n, since by SOBOLEV theorem (Theorem 3.11) the function u is 
Holder-continuous. • 

6.4 Lp Estimates for the Gradient 

Setting f(x) = \Du\p + \u\p* and writing 2R instead of R, inequality (6.35) 
becomes: 

-f f{x) dx<c\(-f fmdx)m + / g{x) dx I . (6.45) 
JQR { \JQ2R ) JQlR J 

The purpose of this section is to show how (6.45) implies higher 
summability of the function / , and hence of the derivatives of u, under 
the assumption that the function g belongs to some Lr, with r > 1. 

For that, let us begin by considering the case of functions / and g denned 
in the cube Q =: QXo,i- Let d(x) — dist(a;,c>Q), and for k = 0 ,1 ,2 , . . . 
define 

Ck = LeQ: j2~fc-1 < d(x) < j 2 - f c | . 

Each shell Ck can be divided into a finite family Gk of equal cubes, each 
of side 6k = | 2 - f c _ 1 . If to the union of these cubes we add the cube Q1/4 
concentric to Q, we obtain the whole Q. 

Assume now that (6.45) is satisfied for every cube Q2R CC Q. If P is 
a cube, we denote by P the cube concentric to P and with double side, so 
that (6.45) becomes 

/,'<">**'{(/, (6.46) 

for every P such that P CC Q. 

file:///JQ2R
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If in addition P c Ck, we have ^ 2 - / s < d(x) < f§2_fc for every x £ P, 
and therefore in particular P CC Q, and 

i F(x)dx < B J (j"_Fmdx\ "* + 4 Gdx \ , (6.47) 

where we have set 

F(x) = d(x)nf(x); G(x) = d(x)ng{x). 

It is easy to check that (6.47) holds also for P C Q1/4. 

Lemma 6.2 For every t with 

t > t0 =: -f f(x) dx , 
JQ 

setting 

$t = {xeQ: F(x) >t}; Tt = {x e Q : G{x) > t} 

we have 

[ Fdx<c\tx-m j Fmdx+ f Gdx\. (6.48) 

Proof. Let s = Xt, where A is a constant that we shall fix during the 
proof. If P € Qk we have 

S > X-f f(x) dx>X^r-f f(x) dx 
JQ \W\JP 

> X4Tn 4 F(x) dx> -I F{x) dx, 

whenever A > 4™. The above relation remains valid if P = Q1/4. 
To each of the cubes P we can apply CALDERON-ZYGMUND theorem 

(Theorem 2.10). In this way we obtain a countable family {Qj} of disjoint 
subcubes of Q, such that 

JQi 

s< 4 F(x) dx < 2ns 

and F(x) < s in Q - UQj. 
Prom (6.47) we infer that either 

-I F(x) dx<2E,( J Fm dx j (6.49) 

file:///W/JP
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or 

-f F(x)dx<2B-f Gdx. 

In the first case, we have 

s<2B{4 Fmdx\ 

and therefore: 

JQi 

sm\Q0\ <(2B)m f Fmdx. 

Moreover, from the inequality 

/ Fmdx< [ Fmdx + tm\Qj\ 
JQi JQjnQt 

we deduce, provided (2B)mA-m < \: 

\Qj\<2(2B)ms-m f Fmdx. 

If instead (6.50) holds, we have 

s\Q. Gdx 

and consequently 

\Qj\ < 45s - 1 / 
JQjriTt 

In conclusion, we have in any case: 

Gdx. 

\Qj 

Let us now evaluate the integral of F over $ s : 
» oo . oo 

/ Fdx<Y] Fdx<2nsS^\Qj\ 
J*. j=i hi fri 

(6.50) 

(6.51) 

(6.52) 

< £ [ f i - m f Fmdx+ f Gdx). (6.53) 
s \ JQins-t JQinQt J 

<2ns \JQ> 
b = i 

(6.54) 
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We want to estimate the last quantity by means of (6.53). For that, we 
apply Lemma 2.4 to the family {Qj}, and we obtain a countable subfamily 
of pairwise disjoint cubes {IIj} such that, denoting by P the cube concentric 
with P and of quintuple side, 

UQj C Ulli. 

We have therefore 

oo 

lUQ.-I^^IIIil, 

from which, recalling that the cubes IL are disjoint, and using (6.53) and 
(6.54), we get: 

/ FdxKclt1-™ f Fmdx+ [ G{x)dx). 

On the other hand, we also have 

f Fdx<sl~m f Fmdx<ct1-m f Fmdx 

from which (6.48) follows. • 

We need now the following: 

Lemma 6.3 Leth>m>0 and let F £ Lh(Q). Setting 

<p(t)= f Fmdx, 
J$(t) 

we have 

[ Fhdx = - ( th-m 
d<p(t). 

Proof. We can assume that F is bounded, and that (p(t) is continuous 
at the point r , since the general result follows by approximation. We have 

/ Fhdx = Th-m f Fmdx + {h-m) [ Fm dx 
y*T J$T y*T 

r rF(x) 

x / th-m-xdt. 
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On the other hand, if \t is the characteristic function of $ t , we have 

r rF(x) r r°° 
/ Fmdx th-m-ldt= I Fmdx th-m-lxt{x)dt 

= I th-m-xdt f Fmdx 

/

oo 

th-m-1(p(t)dt 

and the conclusion follows by integration by parts. • 

With the preceding notation, (6.48) can be written in the form 

/

oo 

T1-"1 d<p{r) < A[tl-m<p{t) + «(*)], (6-55) 

where 

u(t) = / Gdx. 
JTt 

Proposition 6.1 (GEHRING [1]) Assume that tp(t) is a decreasing func­
tion in [a, +oo), infinitesimal for t —> +oo, and verifying (6.55) with m < 1 
for every t > a. There exists a real number r > 1 such that 

/ •OO / • O O 

- / ur-md<p(u) < -2ar~l I ul-mdip{u) 
J a J a 

J u r _ 1 du;(u) . (6.56) 
J a 

2 A 

Proof. Let us begin by assuming that <p{s) = 0 and u)(s) = 0 for s > k—1. 
For q > 0 we set 

Jq(s) = ~ / uqd(p(u); Iq = Iq(a); 

nk 

Oq = — / Uq dw(u) . 
Ja 

We have 
rk 

/ r _ m = - / ur-xul-m dy(u) = - f ur-ldh_m{u) 
J a J a 

nk 

( r - 1 ) / ur-2h_m{u)du. 
Ja 

= ar 1h-m + i 
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The last integral can be estimated by means of (6.55): 

/ rk pk 

Ir-m < aT^h-m + A(r - 1) [ / ur~m- V(u) du + / ur-2uj(u) du 1 . •A(r - 1) ( f ur~m- V(u) du + / ur~2u;(u)< 
\ J a J a 

On the other hand, integrating by parts, we get 

T nr~m T 
xr—m u / \ ^ -*r 

fK T nr~m 

/ ur-m- V(«) d« = ^ ^ - ¥»(a) < 
Ja r — m r — m 

and similarly 

f ur-2u(u)du<^^; 
J a r - 1 

it follows that 

r — 1 
*r — m ~ *̂  -*1 —m ~r -™ ^r—m i /ii4i—1 . 

r — m 

If we assume now that A{r — 1) < !1y I i, we conclude that 
Ir-m 5: 2ar~ l\-m + 2AQr-i 

and (6.56) is proved when (p(t) = u)(t) = 0 from some point on. 
In the general case, we remark in the first place that 

- / a1-mdfp{a) > -kl~m f d<p(s) = kl-m[y(k) - V(T)] 
Jk Jk 

so that, letting T —> +oo: 

/•OO 

- / s1-™ d<p(s) >-k1-"1^). (6.57) 

Now setting 

[>( i ) i f t < f c , 

[ 0 i f i > f t 

(and the analogue for uJk), and taking into account (6.55), we get for t < k: 

/

oo pk 

sl-m d<pk{s) = - s1-"1 d<p(s) + kl-m<p{k) 

/
OO 

sl~m dip(s) < A{tl-mipk{t) + ujk(t)). 
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The preceding relation obviously remains valid for t > k. For what has 
been just proved, we therefore have: 

/•OO fOO /-OO 

- / sT~md<pk(s) < -2ar~l - I sl~m dipk(s) -2A a*-"1 dwk{s) 

< - 2 a 7 - 1 - / sl-m dif(s) -2A s1""1 du(s) 
Ja J a 

and the conclusion follows letting k —> +00. • 
A simple application of the preceding proposition to Lemma 6.2 leads 

directly to the inequality 

/ Frdx<2ar~1 [ Fdx + 2A f Gr dx, 
J$a J^a Jra 

with a = -jL/ dx. 
On the other hand 

/ F'dx^a1-1 f Fdx, 
JQ-Qa JQ-<t>a 

and therefore in conclusion 

f Frdx< 2 a r - 1 / Fdx + 2A [ Gr dx. 
JQ JQ JQ 

Coming back to the functions f(x) and g(x), we find: 

/ frdx<c(ar~l [ fdx+ [ grdx) 
JQ1/2 V JQ JQ J 

(6.58) 

or else 

/ frdx<c\(-f fdx] +-fgrdx\. (6.59) 
jQi/2 I \JQ J JQ J 

If instead of the cube Q of side 1 we deal with a cube QR of side 2R, 
we obtain by means of a simple homothety: 

Theorem 6.6 (GIAQUINTA and G. MODICA [1]) Let f e ^(QR), and 

assume that for every cube Q C Q CC QR we have 

I f(x)dx < B J (ifmdx\ "* + I gdx \ (6.60) 

with 0 < m < 1. Assume that the function g belongs to LS(QR) for some 
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Then there exists an r > 1 such that f £ Lr(Qn/2), and moreover: 

-I frdx<c\(-l fdx) + -f grdx\, (6.61) 
JQR/2 I \JQR ) JQR J 

Corollary 6.1 The conclusion of the preceding theorem holds if we re­
place assumption (6.60) with 

-ff(x)dx<e-f fdx + Bif-f fmdx)+-f gdx\ (6.62) 
JQ JXQ I \JXQ ) J\Q J 

with A > 1, provided e is less than a number EQ depending only on n and A. 

Proof. Let t < s < R. The cube Qt can be covered by cubes Qi of side 
r = £ ^ , in such a way that at most N(n, A) cubes XQi intersect. The total 
number of the cubes Qi does not exceed c(s — t)~n(\t)n. 

Prom (6.62) for Qi it follows 

f fdx<e[ fdx + c(\)(s-t)n-™ (f fmdx)+c[ gdx. 
JQi JXQi \JXQi J JXQi 

Summing over i we get: 

/ fdx<eN f fdx + c(\)tn(s-t)-% ( [ fmdx) +cN [ gdx 
JQt JQ, \JQ> J JQ. 

and if R < t < s < 2R, 

f fdx<eN f fdx+c(\)Rn(s-t)-™ ( [ fm dx)™+cN f gdx. 
JQt JQ* \JQ2R ) JQIR 

If eN < 1 we can apply the Lemma 6.1, getting 

/ fdx<c(n,X) \ (I fmdx) +-f gdx\ 

JQR [ \JQ2R J JQ2R J 

so that we are reduced to Theorem 6.6. • 

Applying the preceding theorem to quasi-minima we obtain: 

Theorem 6.7 Let u : Q, —> R.N be a cubical quasi-minimum for the 
functional 

F(u,n)= / F(x,u(x),Du(x))dx, 
Jn 

file:///JXQi
file:///JQ2R
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and assume that the hypotheses of Theorem 6.5 are satisfied, in particular 

F(z) - 0(z, u)p < F{x, u, z) < c(\z\ + tf(x, u))p 

with F(z) strictly quasi-convex in 0, •d(x,u)p = 6(a;)|'u|7 + a(x), and with 
the functions b £ L°', a > f and a £ La, s > 1. 

Then the function \Du\p + \u\p" belongs to Lfoc(fi) for some r > 1, and 
moreover for every cube QR C Q2R CC fi we have: 

-[ (\Du\p+\u\p')rdx 
JQR 

<c{(-f (\Du\p + \uf)dx) +-f grdx], (6.63) 
I \JQ2R / JQ2R J 

where g = a + 6P*-T . 

Remark 6.11 If we use the estimate (6.43) instead of (6.35), and we 
take into account that the function g(x) = a(x) + b(x)\u\'1 belongs to U 
for some r > 1, we get the inequality 

/ \Du\rpdx <c(i \Du\pdx) 
JQR \JQ2R / 

+ c-f {a{x)+b{x)\u\'1)rdx. (6.64) 

Remark 6.12 The estimate (6.63) can be further ameliorated. We have 
actually 

/ {\Du\p + \uf)rdx 
JQR 

<<l)\{-[ (\Du\p + \u\p')qdx)q + / grdx\ (6.65) 
{ \JQ2R J JQ2R J 

for every q > 0 and every cube QR C Q2R CC 0 . 
Setting ij){x) = \Du\p + \u\p , let y € Qag, and write (6.63) for the cube 

of radius R = ^-^Q and center in y. We have 

/ i>r dx < c[(l - a)g]n{1-r) if V 
jQiv^Q) \JQ(y,(i-«)a) 

dx 

+ c I gdx. 
JQ(v,(l-a)e) 

file:///Jq2r
file:///JQ2R
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The cube Qag can be covered by cubes of that sort, in such a way that 
only a finite number N (independent of a) of cubes of double side intersect. 
We then have: 

/ i>rdx < c[(l - a)g]n^-^ I f tpdx) +c f gdx. 
jQoe \JQe J JQe 

On the other side 
1-q r - 1 
1 9 / p \ ' 1 

I ipdx<([ i})rdx\ ( / %l)qdx\ 
JQe \JQS J \JQS J 

so that, setting s = g, t = ag and 

U.= f Vdx 
JQ, 

we have 

Ut < c(s - t^-^uf^1 ( f Tpqdx) r" +c [ gdx 

n 
1 n(r-q) f [ \ ' f 

<-Us + c(s - i)*-*- I ij)qdx\ +c gdx 

< \ua + c(s - t)*^ ( [ ^dxY+cf gdx. 
1 \JQlR J JQ2R 

We can now apply Lemma 6.1 between R and 2R, thus obtaining the 
required estimate. • 
6.5 Boundary Estimates 

A similar result holds for cubical quasi-minima taking prescribed val­
ues at the boundary. More precisely, assume that U(x) is a function in 
W1' t(Rn ,RAr), with t > p, and let u G W ^ f t . R ^ ) be a function such 
that u-U G WQ,P(Q,RN), and that for every cube QR C R n we have 

F{u, fifi) < c / (\Dv\ + ti{x, v)f dx 
JnR 

for every function v such that v — u G 
Assume moreover that the function F(x, u, z) satisfies the conditions of 

the preceding theorem, and that Q, has no internal cusps, that is that there 

file:///JQlR
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exists a positive constant ao such tha t for every cube QR with center on 

dfi we have 

\QR-n\>a0\QR\. (6.66) 

In particular the above condition is satisfied if dCl is Lipschitz-

continuous. 

Now let as usual g<t < s < R, and let r)(x) G C^(QS), with 0 < r\ < 1, 

r) = 1 on Qt and \Drj\ < 2/(s -1). Setting u = U in R n - Cl, <p = r](u - U) 

and v = u — <p, we have as in the proof of Theorem 6.5: 

/ \Dy\vdx< ( F{D<p)dx< I F(x,u,D(p)dx+ f -9{x,u)p dx 
JQs JQs JQS JQ. 

= F(x,u,Du)dx+ [F(x,u,D(p) - F(x,u,Du)]dx 
JQs JQs 

+ / §{x,u)pdx 
JQ, 

<c f (\Dv\+ti{x,v))pdx + c J {\Du\ + \D<p\ 
JQs JQs 

+ tf(x,u))p-1\Dv\dx+ f ${x,uydx, 
JQs 

where we have taken into account the conclusion of Lemma 5.2. 

We now use the estimate AP~1B < eAp + c(e)Bp. We have 

I D y f - 1 | D i ; | < e\D<p\p + c(e)\Dv\p, 

\Du\p-l\Dv\ < e\D(u - U)\p + c(e)\Dv\p + c\DU\p. 

Taking e small enough, the terms with \D<p\p and \D{u — U)\p can be 

subtracted from the left-hand side, as in Theorem 6.5. We obtain in this 

way the inequality 

/ \D(u - U)\pdx < c f \D(u-U)\pdx + c f (\Dv\p + \DU\P 

JQt JQs-Qt JQs 

+ \u-Uf + \U\p'+g)dx, (6.67) 

* 
with g = a + bv*—i. 

On the other hand we have v = U + (1 — rj){u — U), and therefore 

\u-U\ 
\Dv\ < \DU\ + (1 - r])\D(u - U)\ + 2[-

s - t 
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and introducing it in the preceding inequality, we get 

/ \D{u - U)\p dx < c [ \D(u-U)\pdx+ , ° N / \u-U\pdx 

+ c [ (\DU\P + \u- U\p" + \U\P' +g)dx. 
JQ, 

Once again the term \u - U\p" can be estimated as in Theorem 6.5, 
applying Theorem 3.16 to the function u — U, which is zero in Qs —17, a set 
of measure greater than ao|<9»|- It follows that if R, and hence s, is small 
enough, we have 

/ \D{u - U)\p dx < c J \D(u-U)\pdx+ , ° . / \u-U\pdx 
JQt JQs-Qt ( s - * ) p JQS 

+ c f {\DU\p + \Uf +g)dx. 
JQ, 

Applying at this point the "hole filling" method, we eliminate the first 
term on the right-hand side, and therefore in conclusion we obtain the 
CACCIOPPOLI inequality 

/ \D(u-U)\pdx< ° f \u-U\pdx+c[ gidx, (6.68) 
JQe \K ~ 6r JQR JQR 

in which we have set g\ = a + br*^ + \DU\P + \U\P'. 
Finally, we estimate the first term on the right by means of (3.29), and 

we write 2R in the place of R, arriving to the inequality9 

/ \D(u - U)\p dx < c (I \D(u-U)\pmdx]m 

JQR \JQIR J 

+ c-l gidx (6.69) 
JQ2R 

with m = - ? - if P* > 1, and m = Mf »* < 1. hif 

We can now repeat the above argument, and conclude that D(u — U) 
(and hence Du) belongs to Wrl'pr(fifl//2) f° r some r > 1, with the rela­
tive estimate. Covering dfl with a finite number of cubes, and then what 
remains of fi with others cubes strictly contained in 17, we obtain eventually 
the following: 

One can also add to both members the term |u | p , obtaining the analog of (6.35). 

file:///DU/p
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Theorem 6.8 Let fl be an open set with Lipschitz-continuous boundary, 
and let u £ Wl'p(il, RN) be a cubical quasi-minimum, for the functional T, 
verifying the assumptions of Theorem 6.5, among all functions taking on 
dn the value U{x) € W ^ f i . R ^ ) , t > p. Then, Du belongs to LT^l) for 
some r > 1. 

Remark 6.13 The theorems just proved, and those that we shall prove 
in the following chapters, continue to hold if p > n, with suitable changes 
in the assumptions and in the proofs. 

In particular, if p = n, Theorems 6.7 and 6.8 imply that the function 
u(x) is Holder-continuous in Q (respectively in fj). • 

6.6 Notes and Comments 

After a brief mention in [2], the notion of quasi-minimum was introduced 
for the first time by GlAQUINTA and GlUSTI in [4], where the relation 
between quasi-minima and elliptic equations in divergence form was also 
studied. The result of this and of the next chapter show that, at least 
for what concerns the first stages of the regularity program, quasi-minima 
represent the natural level of generality, unifying the treatment of different 
problems, in the first place those relative to the minima of functionals and 
to the solutions of elliptic partial differential equations, but also to quasi-
conformal mappings and to minima with obstacles, each of which would 
demand otherwise a separate discussion. 

The introduction of cubical (or spherical) quasi-minima can be seen at 
first sight as a gratuitous generality, since we do not know of any significant 
problems leading to cubical quasi-minima that are not at the same time 
quasi-minima without specification. On the other hand, it might serve to 
clarify the scope of different methods introduced for the study of regularity 
problems. 

A substantial part of these methods is based on integral estimates over 
cubes, or more generally on inequalities concerning integrals over cubes. It 
is natural that such estimates hold for cubical quasi-minima, so that the 
relative results (in particular, for what concerns us, those of this chapter 
and of Chapter 9) will hold for cubical quasi-minima. On the other hand, 
the method of D E GlORGI, upon which are founded the Holder-continuity 
results of Chapter 7, requires estimates on the level set of the solution, a 
priori on completely general sets, and therefore it cannot be extended to 
cubical quasi-minima. 

The existence of cubical quasi-minima that are not quasi-minima, shows 
that the two methods are substantially different, and that we cannot hope 



210 Direct Methods in the Calculus of Variations 

to get results of Holder regularity using only estimates on given families of 
sets, such as spheres, cubes, etc. 

The use of cubes instead of spheres (or equivalently of the metric 
S(x,y) = max, \xi — yi\ in the place of the ordinary distance), is moti­
vated by the simplicity of the proofs, in particular when we use covering 
theorems, such as that by CALDERON-ZYGMUND (see Chapter 2), or that, 
similar in many respects, by KRYLOV and SAFONOV, that we shall prove in 
the next chapter. 

The V regularity of the derivatives of solutions to elliptic partial 
differential equations in divergence form was studied by BoJARSKl [1] and 
MEYERS [1]. 

The latter proved that weak solutions of strongly elliptic linear equations 

a.ij(x)DjuDi<p dx = 0 

with bounded measurable coefficients, belong to LP(Q) for some p > 2. 
The method we have used here is based on a generalization, due to 

GIAQUINTA and G. MODICA [1], of a theorem stated by GEHRING [1] in 
the course of his research on quasi-conformal mappings. 

It is founded on a sort of reverse HOLDER inequality with increasing 
supports. The spaces of functions verifying these inequalities on the same 
cube; that is those satisfying the estimate 

( 4 \u\s dx j < c ( -I \u\r dx 

with r < s, have been widely studied, in particular for what concerns the 
dependence of the higher exponent of summability on the constant c of 
the preceding estimate. Among other things, BoJARSKl [2] has proved that 
that exponent goes to infinity when c -> 1 (see also WiK [2] and D'APUZZO 
and SBORDONE [1]). However, these results demand estimates on the same 
cube, and do not apply here. 

Our Theorem 6.7 that generalizes MEYERS result is essentially the 
only general result valid for quasi-minima of functionals dependent on 
a vector-valued function (N > 1). It was proved in a particular case 
(minima of functionals with F = F(x, z) and convex in z) by ATTOUCH and 
SBORDONE [1], and in its general form in GIAQUINTA and GIUSTI [4]. It was 
extended later by LEONETTI [1] to quasi-minima of functionals depending 
on higher-order derivatives. Example 6.1 shows that a similar result can­
not hold for extremals of functionals, even if F(x, u, z) is convex in z and 
N = 1. 

/ 
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Finally, if all the minima of the functional T are regular functions, and if 
Q is close enough to 1, the Q-minima of T are Holder-continuous functions. 
For instance, if u is a cubical Q-minimum of the DlRlCHLET functional, and 
i f Q ^ n-2+2*> (0<a< A), then u £ C*°>Q(fi) (ZIEMER [2]). 
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Chapter 7 

Holder Continuity 

The aim of this chapter is to prove that in the scalar case (N = 1) the quasi-
minima and the w-minima (see later, Section 7.7) of regular functionals 
of the calculus of variations are Holder-continuous functions. The main 
result is a version of the fundamental theorem of D E GlORGI [1] and NASH 
[1] concerning the regularity of solutions of linear elliptic equations with 
discontinuous coefficients, a result that was later generalized among others 
by LADYZENSKAYA and URAL'CEVA [2] to bounded solutions to non-linear 
elliptic equations. We shall prove, following GlAQUINTA and GlUSTI [2], 
that the same technique applies to quasi-minima of functionals. Since, as 
we have shown in the preceding chapter, weak solutions of elliptic equations 
in divergence form are quasi-minima of suitable functionals, this chapter 
contains in a unified form the regularity theory for elliptic partial differential 
equations and for minima of regular functionals of the calculus of variations. 

7.1 Caccioppoli's Inequality 

Let us consider the functional 

^"(u,0) = / F(x, u, Du)dx (7.1) 

Jn 
in which, as usual, F(x, u, z) is a Caratheodory function satisfying the 
inequalities 

\z\p - b(x)\up - a(x) < F(x, u, z) < L\z\p + &(a;)|w|T + a{x) (7.2) 

213 
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where1 l < p < 7 < p * = ^~±, and a(x) and b(x) are two non-negative 
functions, belonging respectively to Ls(fl) and LCT(f2), with s > - and 

u > f . We shall assume that 7 = f — e and £ = 1 — -£• — e for some 
e > 0 . 

Our first result concerns sub-quasi-minima of the functional J7. We 
recall that u € W^^Q,) is a sub-quasi-minimum if for every non-positive 
function <p € W l lP(fi), with support X C ft, we have ^ ( u . t f ) < QF(u + 

Similarly, u is a super-quasi-minimum if the preceding relation holds 
for every ip > 0. A quasi-minimum is at the same time a super- and a 
sub-quasi-minimum. 

liu(x) belongs to Wj£(fl), k is a real number, and QR is a cube strictly 
contained in CI, we set 

A(k, R) = {x£QR: u(x) > k} , (7.3) 

B{k, R) = {xeQR: u{x) < k} . (7.4) 

We have |i4(fc,i2)| = \QR\ — \B(k,R)\ for almost every k, so that when 
necessary we can assume without loss of generality that all the values k 
under consideration will satisfy this relation. 

The next theorem is a variation of Caccioppoli's inequality. 

Theorem 7.1 Letu € VF1,p(fi) be a sub-quasi-minimum of the functional 
(7.1), and let conditions (7.2) hold. Then there exists Ro > 0 (depending 
on \\u\\p. and \\b\\a) such that for every x0 € fi, every g, R, with 0 < g < 
R < min(i?0;dist(a;o,5ft)) and every k > 0 we have: 

f \Du\Ux < - ^ - - f (u-kfdx 

+ c(\\a\\. + kpR~n€)\A{k, R)]1--+e. (7.5) 

Proof. Let 77 be a function in CQ°(QR), with 0 < r / < l , 7 7 = l o n < 3 e and 
\Drj\ < -j£^- Setting w = (u — k)+ = max(u — k,0), the functions = u — r)w 
is not greater than u, and differs from u at most in A(k, R). It follows that 

xl{ p > n we can take 7 arbitrarily. On the other hand in this case, taking into 
account the results of the preceding chapter and of the Sobolev immersion theorem, 
every quasi-minimum of the functional T is automatically a Holder-continuous function, 
so that it will be sufficient to discuss only the case p < n. 
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F{u,A{k,R)) < QF{v,A(k,R)), and hence 

/ \Du\pdx<Q\f \Dv\pdx+ [ [b{\u\i + \v\i) + a]dx) . 
JA(k,R) \JA(k,R) JA(k,R) ) 

(7.6) 
Let us evaluate the right-hand side. For x £ A(k,R) we have u = 

u(l—r])+r)(w+k), v = u(l—r))+T]k, and hence Dv = {l — rj)Du—{u — k)Dr), 
and 

M7 + M7 < c(7){(?H7 + M7(i - vV + rpki} 

\Dv\p <c(p)\{l-r))p\Du\p + 
(R ^-*r}-

Adding to both members of (7.6) the term JA,k fis 6|u|7d:r, and using 
the above inequalities, we get 

/ (\Du\p + b\uy)dx 
JA(k,R) 

<c{ / (1 - v)p{\Du\p + b\u\^)dx 
IA{k,R) 

+m • i - r - / wpdx + [ (b(jiwy + bk"i + a)dx I . (7.7) 
_ 6)P JA(k,R) JA{k,R) J 

On the other hand 

Vdx / b(j]wy 
JA(k,R) 

< ( / (r)w)p*dx\ ([ [b(r)wy-p] 
\JA(k,R) J \JQR 

< c€(R) [ \D(riw)\pdx 
JA(k,R) 

< c${R) ( I \Du\pdx + T ^ - r - / wpdx) , 
\JA(k,R) (-« - e)P JA(k,R) J 

where we have set 

£(R) = (J [b(riw)-<-p}n/pdx 
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We have 

and therefore 

£(i?)<N£ri&|WQfi|
£. 

If we choose R small enough (depending only on ||u||p« and ||&||<T), the 
quantity under examination can be partially subtracted from the left-hand 
side of (7.7), leaving on the right-hand side the term 

/ wpdx. 
JA(k,l (R - Q)P jA(k,R) 

We obtain therefore, recalling that 77 = 1 in Qe: 

I (\Du\p + b\up)dx<c\ [ (\Du\p + b\up)dx 
JA(k,Q) [ JA(k,R)-A(k,e) 

+ * ,vf wpdx+ f (bV+a)dx\ 
(K - Q)? JA(k,R) JA{k,R) J 

At this point we can argue as in the preceding chapter, summing to both 
sides the quantity on the left multiplied by c, and making use of Lemma 6.1; 
we arrive in this way to the inequality 

/ (\Du\p + b\u\t)dx < C f wpdx + c [ {bk*> + a)dx. 
JA(k,Q) iK - 6)P JA(k,R) JA{k,R) 

We remark now that 

kp'\A{k,R)\ < f \ufdx, 
JQR 

and hence 

jfeT / bdx<W\\b\\a\A{k,R)\l-± 
JA(k,R) 

= \\bU&'\A{k,R)\):Fk?\A(k,R)\1-$+< 

< \\b\\a\\u\\;r''\QR\eWR-nc\A{k,R)?-^ 

^ f c P i ? - " 6 ! ^ , ^ ) ! 1 - - ^ 

since, having chosen R < Ro we can assume that ||6||(r||u||p'r
p|<3.R|£ < 1. 
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We have moreover 

/ adx < WaMAfcRtf-i = ||a||,|j4(ife>fl)|1-»+£ 

JA(k,R) 

and the results follows at once. • 

Remark 7.1 If u{x) is a super-quasi-minimum for the functional T, 
—u(x) will be a sub-quasi-minimum for the functional 

F(v,Sl) = / F(x,v,Dv)dx 

with F{x, u, z) = F(x, —u, —z). Since F satisfies conditions (7.2), we con­
clude that Caccioppoli's inequality (7.5) holds for the function —u, with k 
replaced by —fc; we have therefore for every k < 0: 

/ \Du\*>dx < — ^ - [ {k-ufdx 
JB(k,g) (n ~ Qr JB{k,R) 

+ c(\\a\\. + \k\PR~ne)\B(k, R)\1-n+', (7.8) 

a relation valid for 0 < g < R < min(i?o, dist(a;o, 80,)). D 

Remark 7.2 Caccioppoli's inequalities (7.5) and (7.8) hold if u belongs 
to Wfo£. Of course, in this case one must assume that QR C £ CC fi, 
and the radius Ro will depend on S. On the other hand, as we have often 
repeated, when dealing with local results the assumptions u € Wx,p and 
u € Wl(£ are equivalent, since it is always possible to restrict ourselves to 
an arbitrary fixed open set S CC fi. • 

Remark 7.3 The same inequalities remain valid if u is a sub-quasi-
minimum (or a super-quasi-minimum) with Dirichlet conditions on dQ; 
more precisely if for every function v < u, with v — u e W0

1,p(fi), and 
K = supp(^ — u), we have 

F{u,K)<QT{v,K). 

If the trace of u on dCl is a bounded function, we can repeat the proof 
of the preceding theorem, provided we take k > sup9nnQR u\ in fact in this 
case the function rj(u — k)+ belongs to WQ'P(QT). 

In a similar way, (7.8) will be valid for every k < infannQB «• D 
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7.2 De Giorgi Classes 

The results of the preceding section suggest the definition of new classes 
of functions. 

Definition 7.1 Let u £ W^p(Cl). We say that u belongs to the De Giorgi 
class DG+ = DG+(fi, H, x, e, -Ro, ̂ o) if for every couple of concentric cubes 
QQ C QR CC CI, with R < Ro, and for every k > KQ > 0 we have 

[ \Dufdx<—^--[ {u-kfdx 
JA(k,g) (,-K ~ Q)P JA(k,R) 

+ H(X
P + kpR-ne)\A(k, i?) | 1 -S+ £ . (7.9) 

We can define similarly DG~ to be the class of functions u such that 
—u e DG+. More explicitly, they are the functions in Wj0'^(fl) such that 
for every g < R < Ro and k < — KQ one has 

/ \Du\t>dx < - J i - - [ {k-ufdx 
JB(k,e) yH ~ Q) JB(k,R) 

+ H(X
P + \k\m-nc)\B{k, J R ) ! 1 - - + £ . (7.10) 

It is clear that if a function u satisfies (7.9) or (7.10) with some e, it will 
verify them with any positive e' < e. Consequently, we shall always assume 
e < £ . 

— n 

Finally, we shall indicate by DGP the class of the functions belonging 
b o t h t o D G + and DG~: 

DGp=:DG+nDG-. 

A rather surprising characteristic of De Giorgi classes is that (7.9) and 
(7.10) contain practically all the information deriving from the minimum 
properties of the function u, at least for what concerns its Holder continuity. 

Before beginning the study of the properties of the functions in DGp , 
we shall make some remarks that will simplify considerably the following 
proofs. 

Remark 7.4 If we set v = u + xR13 (P = y ) and h = k + XRP in (7.9), 
and v = u — xR^ and h = k — x-R'3 in (7.10), we get respectively: 

/ \Dv\Ux<—^-( {v-hYdx 
JA(h,g) \ K - Q)V JA(h,R) 

+ H(x
p + kpR-ne)\A(h,R)\l-%+c, 
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/ \Dv\pdx<—^—j {h-vYdx 
JB(h,g) (-« - QlV JB(h,R) 

+ H{xp + kpR-ne)\B(h,R)\1-"+e 

and hence 

/ \Dv\pdx < j ^ - r - f {v-hfdx 

+ HhPR-ne\A{h,R)\1-»+€, (7.11) 

/ \Dv\pdx <—^-- f {h-vfdx 
JB(h,g) \ K - Qr JB(h,R) 

+ H\h\pR-ne\B(h,R)\1-%+e. (7.12) 

Of course, the first relation will be valid for h > ho = Ko + X-R'3) a n d 
the second for h < — ho = — /to — xBP • D 

Remark 7.5 By means of a homothety we can reduce to the case R = l. 
More precisely, let s < r < R, and let us write (7.11) and (7.12) (with y in 
the place of x) for radii s and r. Making the change of variables y = Rx 
and setting s = crR, t = TR and w(x) = v(y), the function w satisfies 
the relations 

f \Dw\pdx < H [ (w- h)pdx 
JA(h,<r) [T - <7)P JA{h,r) 

+ HhpT-ne\A(h,T)\1-^+e, 

f \Dw\pdx < H f (h- w)pdx 
JB(h,<r) {T ~ G)P JB(h,r) 

+ H\h\pT-ne\B(h,T)\1-%+t. 

In particular, if r > ^: 

/ \Dw\pdx < Hl [ (w- hfdx 
JA(h,<T) {T ~ °)P JA{h,T) 

+ H1h
p\A(h,T)\1-%+i, (7.13) 

f \Dw\pdx < Hl f (h- w)pdx 
JB(h,<r) \T - V)P JB(h,T) 

+ H1\h\p\B(h,T)\1-%+€. (7.14) 
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In conclusion, we can assume that (7.13) is satisfied for every h>ho = 
K,Q + xR0, and (7.14) for h < -h0 = -K0 - xR13- We can come back to 
the general case with a suitable homothety, writing u + xR^ or u — xR^ 
instead of u. • 

The following lemma will be quite useful later. 

Lemma 7.1 Let a > 0 and let {x^} be a sequence of real positive numbers, 
such that 

Xi+i < CBix]+a 

with C > 0 and B > 1. 

If xo < C~"B~^, we have 

Xi < B-ixo (7.15) 

and hence in particular 

lim Xi = 0. 
i—>oo 

Proof. We proceed by induction. The inequality (7.15) is obviously true 
for i = 0. Assume now that it holds for i. We have 

xi+l < Cfl'<1-i£i>a;J+a = (CBix^)B-'^rXo 

and (7.15) follows immediately for i + 1. • 

We are now able to prove the following: 

Theorem 7.2 Let u(x) be a function of DG+. Then, u is locally bounded 
from above in Q, and for every XQ € il and R < min(i?o,dist(a;o,5n)) 
we have: 

swpu{x)<cl(-l u\dxY +KQ + XRP > • (7.16) 

Proof. We can suppose R — 1, and that (7.13) is satisfied for every 
h > ho- For \ < a < r < 1, let r](x) be a function of class CQ°(Q<T+T) with 
r) — 1 on Qa and \Dr)\ < -^^. Setting ( = rj(w — k)+, k > ho, we have 

/ (w- kfdx 
JA(k,(r) 

j(?dx<(je*dxy \A{k,r)\x~ 
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<c|i4(k,T)|« f\DC\pdx 

<c( [ \Dw\pdx + . 1 . / (w-fc^dar) |A(fe,-r)|- . 

Introducing inequality (7.13) in the preceding one, we obtain for k > h0, 

f (w - kfdx < c<5 f c ' r | l" / («/-*)"& 
Xl(fc,a) " (T-<r)P JA(k,r) 

+ ckp\A{k,T)\1+e. (7.17) 

We remark now that if h < k we have 

/ (w - /i)pdz > (fc - h)p\A{k, T)\ (7.18) 
• / A ( / I , T ) 

and moreover 

f {w-k)pdx< [ (w-h)pdx< [ (w-h)pdx. 
JA(k,T) JA{k,T) JA(h,T) 

Introducing these relations in (7.17) we obtain: 

( \ 1+£ 

/ (w- hfdx ) 
JA(h,r) J 

X (k - h)P< \(T-(T)P
 + (k-h)p) ( ? ' 1 9 ) 

where we have used the assumption e < £ and the fact that \A(k, T)\ < \Qi\. 
Let now d > ho be a number that we shall fix later, and consider 

the sequences 

ki = 2d(l - 2 _ i _ 1 ) , 

^ = 1(1 + 2"*). 

Writing (7.19) for a = ai+1, r = c?i, k = ki+i and h = ki, and setting 

$ i = <TP / (to - jfci)pda;, 
JA(ki,ai) 

we obtain the relation 

$ i + i <C2 i p ( 1 + £ )$ l
1 + £ . 
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We can now apply the preceding lemma with B = 2p(-1+£K If $ 0 is less 
than a suitable constant, a condition which is satisfied if 

d>c( I w\dx\ " , (7.20) 

we have 

lim $» = 0 
i—>oo 

and hence |^4(2d, ^ ) | = 0 , that we can write in the form 

sup w < 2d. 
Ql/2 

The conditions imposed on d can be satisfied setting 

d = ho + c I / w+dx 

and therefore: 

sup w < cl I w+dx I + 2ho . 
Q1/2 \JQi J Q 

The conclusion follows coming back to the function u(x) = w(^) — X-R'3-

• 
If instead of the cube QR we want an estimate over the cube QtR, t < 1, 

we can use the following 

Corollary 7.1 With the assumptions of the preceding theorem, we have 

supu(x) < c i ( * j up
+dx\ " + KO + XRP \ • (7.21) 

Proof. Let x\ be a point in QtR such that 

supu(a;) = sup u{x). 
QtR Q ( x ! , i ^ f i ) 

By the preceding theorem we have 

sup u(x) <c\\4 u\dx \ +K0 + x[(l - t)Rf 
QtR I \ - /Q( l - . )B / 

from which (7.21) follows at once. • 
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The following result is also a consequence of Theorem 7.2. 

Theorem 7.3 With the assumptions of Theorem 7.2, for every q > 0 
there exists a constant c(q) such that 

Snpu<c(q)U{R^)nJ u*+dxy +KO + XRP\ (7-22) 

for every g < R< min(.Ro,dist(a;o,df2)) 

Proof. Let UT = supgT u. From (7.21) we have for g < a < r < R: 

and hence 

U„ < c | ( ^ - L ^ j^ u%dx^ ' Ul~* + Ko + X^j 

< ^ r + c ( 9 ) ( ^ ^ y uidXy+c(K0+XR'3). 
An application of Lemma 6.1 leads immediately to the conclusion. • 

Similar results hold for functions u £ DG~. It will be sufficient to 
remark that in this case one has — u € DG+, and to write for instance 
(7.22) for — u. If moreover the function u belongs to DGP = DG+ n DG~, 
we have 

sup H < c ( g ) H * J | u | «d iV + KO + xfl" I (7.23) 

for every g < R < min(i?o,dist(xo,df2)). 
Finally, if E is an open set strictly contained in fi, covering S with cubes 

of side R, with 2R = imn(R0, ±dist(E,Sft)) and writing (7.23) for radii R 
and 2R, we immediately get: 

Theorem 7.4 Let u(x) be a function in the De Giorgi class DGP, and 
let E CC fi. For every q > 0 there exists a constant c = c(q, E) such that 

s u p \ u \ < c U \u\qdx ) + K0 + x } • (7.24) 
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We can now state a first regularity result for quasi-minima of regular 
functionals of the calculus of variations, which follows at once from the 
above, if we remark that by Caccioppoli's inequality a sub-quasi-minimum 
belongs to DG+ with K0 = 0. 

Theo rem 7.5 Let u(x) € W1,P(Q.) be a sub-quasi-minimum of a func­
tional J- satisfying conditions (7.2). Then, u is locally bounded above in fi. 
Moreover, for every q > 0 there exists a constant c(q), depending also on 
| |u||i iP and ||&||ff, such that for every g < R < min(i?o,dist(xo,9f2)) we have 

supu < c(q) I ( ^ ^ J <<**) ' + I M i y ^ j • (7-25) 

Similarly, every super-quasi-minimum of T is locally bounded below, 
with an estimate analogous to (7.25). Finally, every quasi-minimum is 
locally bounded in fi, and we have 

sup\u\ < c(q) I (jR^y; JQR M***) " + | | a | | ; / " i ^ | . (7.26) 

R e m a r k 7.6 If a function u(x) in the class DG+ [DG~] belongs to 
W1,P(Q) and if its trace on dQ is a function bounded from above [be­
low], then u is bounded from above [below] in CI. Actually, if QR is a cube 
intersecting dQ, and if we set QR = QRC\Q and £ # = QRHSQ, the function 

w = r)(u — k)+ 

belongs to W0'
P(QR) whenever k> K,O> supSf i u. We have then 

^^{(mhrL**)'^"***} • (727) 

A similar inequality holds for u € DG~: 

'tu *c{q) {- (mhr Lu<Ldx)q+*»u ~xR\ (7-28) 
In particular, if u € DGP setting osc(u, A) = sup^ u — ml A U, we have 
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osc(u, Qe) < c(q) I ( * I \u\qdx\* + osc(u, Ef l) + XRP \ , 

(7.29) 
an estimate that will be useful later. • 

7.3 Quasi-Minima 

The results of the preceding section can be used to prove the Holder-
continuity of the quasi-minima of regular functionals of the calculus of 
variations, and hence of the solutions of partial differential equations of 
elliptic type. 

We remark first that, once the local boundedness of the Q-minima of 
the functional 

J-(u, £1) = / F(x,u,Du)da 
Jn 

has been proved, one can assume that the function F(x, u, z) satisfies in­
stead of (7.2), the inequalities 

\z\p-a(x,M) <F{x,u,z)<L(M)\z\p + a(x,M), (7.30) 

where M > sup |u| and L(M) and a(x, M) are increasing functions of M. 
In what follows it will be sufficient to take M = 2 sup |u|. 

In particular, following the proof of Theorem 7.1 one can see easily that 
the Q-minima of T satisfy for every g < R < RQ and for every k € R, 
the estimates 

/ \Du\*dx < H f (u - kfdx 
JA(k,e) l-K - Q)v JA{k,R) 

+ HX
p\A{k,R)\1-Z+' (7.31) 

/ \Du\i>dx < H I (k- ufdx 
JB(k,e) l-K - QF JB(k,R) 

+ HX
p\B(k,R)\1-^, (7.32) 

that is inequalities (7.9) and (7.10) without the term kp, but with H and 
X dependent on M. As we have already remarked, it is possible to assume 
that e < P-. 

— n 

It follows that the preceding estimates hold with the same constants for 
u — i?, at least as long as \d\ + sup |u| < M. 
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Remark 7.7 If the function F(x, u, z) satisfies inequalities (7.2), we can 
take L independent of M and a(x,M) = a(x) + b^M7 in (7.30), and 
hence we have (7.31) and (7.32) with H independent of M and 

X
p = \\a(x, M)\\. = \\a{x) + b(x)AF\\a . (7.33) 

• 
We have the following proposition, analogous to Theorem 7.2: 

Proposition 7.1 Let u(x) be a bounded function, verifying (7.31) for 
every k £ R. Then if \ko\ + sup |u| < M we have 

+ k0 + cXRp, (7.34) 

where a is the positive solution of the equation a2 + a = e. 

Proof. We can suppose fco = 0. Repeating with the necessary changes 
the proof of Theorem 7.2, and using (7.31) instead of (7.13), we get in the 
place of (7.17) the estimate 

/ (u - kfdx < c\f(k>r)\n [ (U _ kydx 
JA(k,g) {r ~ Q)P JA(k,r) 

+ cX
p\A(k,r)\1+e (7.35) 

for every g < r < R. Moreover, for each h < k and every g <r: 

\A(k,g)\ <(k- h)-pU(h,r), (7.36) 

where 

U(k,t)= f {u-k)pdx. 
JA(k,t) 

Recalling that ne = p(3, we immediately get from (7.35) and (7.36): 

U(k,g) < c(r - g)-pU(h,r)\A(h,r)\$ + cX
p(k - h)-pU(k,r)\A(k,r)\e 

<c 
- P / 8 \ P 
\ + I 

r — g 1 \k — h 
r-neU{h,r)\A{h,r) 

Raising both members of (7.36) to the power a, and multiplying each 
member with the corresponding member of the last inequality, we get 
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U(k,g)\A(k,e)\ 

<c 
. P / 8 \ P' 

r V I XrP N -U{h,r)1+a\A(h,r)\< 
^r- QJ \k-hj J (k-h)P<* 

Let us now choose a in such a way that a ( l + a) = e, and let us define 

¥>(M) = tf(MMM)la • 

For Q < r < R and h < k we have: 
D-i 

r <p(k, Q) <c 
- P / B \ P 

+ ' (k - h) pen 
tp{h,r) l+a (7.37) 

^r — g I \k — h 

Let now d > x-R'3 be a constant that we shall fix later, and define 

ki = d(l - 2"*), 

ri = f ( l + 2-*). 

From (7.37) with g = r i + 1 , r = n, k = ki+\ and /i = fcj we get 

Vi+i < c d - p Q 2 p i ( 1 + a ) f i - n V ! + a , 

where 

Pi = <p(ki,ai). 

We can now apply Lemma 7.1. Choosing 

d> cR "p <p£ 

with the constant c large enough, we can conclude that the sequence <pi 
tends to zero, and hence 

* ( * ! ) - < > • 

The conditions imposed on d will be satisfied taking 

d = XRP+cR-^4, 
and hence, recalling the choice of a, we arrive at 

suVu{x) <d = c ( V " / u"dx) ' (l^lEi) " +XR3. 
QR V JA(O,R) I \ Rn J IA(0,R) 

The conclusion follows at once writing u — ko instead of u. D 

file:///k-hj
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We must now evaluate the measure of the set A(k,R), when k is close 
to the maximum of u. For that we need the following lemma, which, with 
suitable changes, will also be useful later. 

Lemma 7.2 Let u be a bounded function, satisfying (7.31) [with p > 1) 
for every k G R, and let 2k0 = M(2R) + m(2R) =: supg2H u + infQ2i, u. 
Assume that \A{k$,R)\ < 7 | Q R | for some 7 < 1. If for an integer v, it 
holds that 

osc(u, 2R) > 2v+lxR13 , (7.38) 

then, setting kv — M(2R) — 2~"~1osc(u,2R), we have 

\A(kv,R)\<cu-$E%\QR\. (7.39) 

Proof. For feo < h < k let us define 

( k — h if u> k, 

u — h if h < u < k, 

0 if u < h. 

We have v = 0 in QR — A(ko, R), and since the measure of this set is 
greater than (1 — J)\QR\, we can apply the Sobolev inequality, obtaining 

O v'^dx) ^ c \Dv\dx = c \Du\dx 
QR J J A J A 

in which A = A(h, R) - A(k, R). We therefore have 

l— — 

(k-/i) | j4(fc,fl) |1-* < ( /" v^dx) 

< c|A|1_p [ /" \Du\pdx) . (7.40) 
\JA(h,R) J 

On the other hand, from (7.31) we deduce 

/ \Du\pdx <4~ f (u ~ hYdx + cXp\A(k, 2i?)|1-S+e 

JA{h,R) MP JA(h,2R) 

< cRn-p(M(2R) - h)p + cX
pRn-p+n£ • 

For h < kv, we have M(2R) -h> M(2R) -kv> xR0, and hence 

(k - fc)|i4(jfc, JJ)!1"* < c\A\1-pR^{M(2R) - h). 

file:///Dv/dx
file:///Du/dx
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Writing the above inequality for the levels k — ki = M(2R) — 
2~%~1osc(u,2R) and h = fa-i, and raising to the power -^j, we get 

\A(kv,R)\^^ < \A(ki,R)\%?=% < cR^\Ai\ 

with Ai = A(ki,R) - A(ki-i,R). 
We now sum over i from 1 to v, obtaining 

i/|j4(fc„,fl)|$?=# < cR^\A{k0,R)\ < cR*^ , 

and (7.39) follows at once. • 

Finally, we shall need the following algebraic lemma. 

Lemma 7.3 Let <p(t) be a positive function, and assume that there exists 
a constant q and a number r, 0 < T < 1 such that for every R < RQ 

V{TR) < T5ip(R) + BR? (7.41) 

with 0 < (3 < S, and 

<p(t) < q<p(rkR) 

for every t in the interval (Tk+1R,TkR).2 

Then, for every g < R < RQ we have 

^)<c{(^^) + V), (7-42) 

where C is a constant depending only on q, r, 5 and j3. 

Proof. Starting from (7.41) we prove by induction that 

V{Tk+1R) < T( t + 1 'V(i?) + fliZV £ V < * - « 
i=0 

and hence, since the series on the right-hand side is convergent, 

<p(Tk+lR) < T<fc+1>V(#) + CBRPTW . 

Choosing now k in such a way that Tk+1R < g < rkR we arrive imme­
diately at the desired result. • 

Remark 7.8 If instead /? > S, we can estimate BRP by means of 
BR5-£R^~5+e and we get (7.42) with 6 - e instead of (3. Of course, in 
this case the constant C will depend on e as well. • 

2 In particular, this inequality holds with q = 1 if ip is non-decreasing. 



230 Direct Methods in the Calculus of Variations 

Theorem 7.6 Let u(x) be a bounded function, satisfying (7.31) and 
(7.32) with p > 1 for every k £ R. Then, u is {locally) Holder-continuous 
in fi. 

Proof. Let, as above, 2k0 = M(2R) + m(2R). We can assume without 
loss of generality that |.A(fco,-R)| < IIQiil, since otherwise we would have 
\B(k0,R)\ = \QR\ - \A(k0,R)\ < \\QR\, and it will be sufficient to write 
—u instead of u. 

Setting fc„ = M(2R) — 2~"~1osc(u, 2R), we have kv > k0. We can write 
(7.34) with kv instead of fco: 

< csup(« - K) ( t i S p S I ) "*" + cxRf. (7.43) 

Let us now choose the integer v in such a way that 

_ 2 

If osc(u, 2R) > 2v+lxRp we deduce from (7.39) 

M (Jpj -kv< \{M{2R) - A„) + cxR13 

so that, subtracting from both members the quantity m(^), 

osc (u, - J < (1 - ^ 2 J osc(u, 2R) + cXRp . 

In conclusion, either the function osc(u, R) satisfies the above relation, 
or else 

o s c ( u , 2 J R ) < 2 ' / + 1 x ^ . 

In any case, we have 

(« , ! ) < ( ! - ^+2 ) o s c ( u ' 2 R ) + c r ^ • (7-44) osc 

We can now apply the preceding lemma with r = 1/4 and 5 = logT(l — 
~"~2). Decreasing if necessary the value of /?, we can assume that f3 < 6. 
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We therefore have 

OSC(U,Q)<CU^YOSC(U,R) + XQP\ (7-45) 

for every Q < R < min(i?o, dist^o, <9fi)). • 

Remark 7.9 Note that the exponent S does not depend on the center 
of the cube QR, and therefore u S C°'P{VL). Of course, the norm of u in 
E c c f i can diverge when E —• fi. • 

The following result will be useful later. 

Theorem 7.7 Let u(x) € W£c
p(ft) satisfy (7.31) and (7.32) with p > 1 

/or every /e £ R, and let Q^R C fi. TTien, for every g < R we have 

[ \u-ue\
pdx<c(%Y+PP f \u-uR\pdx + cX

pgn+p0, (7.46) 

[ \Du\pdx<c(%Y~P+P0 [ \Du\pdx + cX
pQn~p+p0. (7.47) 

jQe
 KRJ

 JQR 

Proof. We shall prove (7.46) first. Let -§ < sup|u|. We have remarked 
that the functions u — i? and i? — u satisfy (7.31) and (7.32), and hence by 
Theorem 7.2 we have 

s u p [ u - 0 ] <c\ f-l (u - 0)£ dx J + Xr0 > , (7.48) 

sup[i? - u] < c if J (0 - u)p
+ dx j + x ^ > . (7.49) 

Summing both sides, if infg,. u < -d < supq r u, whence in particular if 
•d = ur =: -JQ udx, we get 

osc(u,r) <cl(-l \u- ur\
pdx j + 2\rp > 

< c j f i | w - u 2 r | p d a ; y + 2 * T / 3 1 , (7.50) 

where in the last passage we have taken into account Remark 3.4, and in 
particular (3.36). 
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On the other hand 

-j- \u — ut\
pdx < osc(u,t)p 

JQt 

and hence, taking (7.45) into account, we get for g < r = ^: 

4 \u- ue\
pdx < osc(u, Q)V < c i (-Y osc(u, r)p + x V ^ 

- C { ( I ) P / 3 / W-uR\pdx + xpQpl3 

that is (7.46) for g < f. 
We shall prove (7.47) by remarking that writing (7.31) and (7.32) be­

tween | and g, with k = ue, and summing both sides, we get 

gP [ \Du\pdx <c\ [ \u- ue\
pdx + X

pgn+Pl3 \ • 

On the other hand we have 

/ \u - uR\pdx < cRp [ \Du\pdx, 
JQR JQR 

and introducing these relations into (7.46) we get (7.47), this time for 

Finally, we remark that both the estimates hold for every g < R, possi­
bly with a different constant. For instance if g > ^ we have 

[ \u- ue\
pdx < c f \u- uR\pdx < c±n+pf} (%Y+P [ |u - uR\pdx. 

JQS JQR V - R / JQR 

A similar argument proves (7.47) for every g < R. • 

7.4 Boundary Regularity 

When the function u(x) is a quasi-minimum with Dirichlet conditions on 
dd, and its trace on dft, is a Holder-continuous function, it is possible to 
extend Theorem 7.6, proving the Holder-continuity of u up to the boundary. 

Theorem 7.8 Let fi be an open set in Rra with Lipschitz-continuous 
boundary, and let u 6 Wl'p{£l) be a quasi-minimum for the functional J-'. 
Assume that the trace of u on dQ, be a Holder-continuous function. Then, 
u is Holder-continuous in Q,. 
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Proof. For t < 1 we define: 

M(t) = supn t u , Ms(t) = s u P a n n Q t u ; 

m(t) = infnt u , rns(t) = infannQt w; 

osc(u, <) = M(<) - m(t), oscs(u, t) = Ms(t) - ms{t). 

Let QR be a cube such that Q2R meets dtt. It is not restrictive to 
assume that 

M(2R) - MS(2R) > ms{2R) - m(2R), 

since otherwise we can reduce to that case by changing u into — u. 
Let us assume that 

osc(u, 2.R) > 2oscs(u, 2R). (7.51) 

We have then 

osc(u, 2R) = M{2R) - MS(2R) + oscs(u, 2R) + ms(2R) - m(2R) 

< 2[M(2R) - MS{2R)} + \osc(u, 2R) 

and therefore 

M(2R) - ^osc(u, 2R) > MS(2R). 

It follows that for v > 1 it holds that kv =: M(2R) - 2~u-1osc(u, 2R) > 
Ms(2R), and hence, taking Remark 7.3 into account, we have Caccioppoli's 
inequality (7.5) for every k>kv. Consequently, 

+ K + c\RP • (7.52) 

On the other hand, if h > Ms(2R), the function v(x) defined in 
Lemma 7.2 is zero on dQ n Q2R, so that it can be extended to a func­
tion on QR setting it to be zero in QR - Cl. Since the boundary of fi is 
Lipschitz-continuous, we have v = 0 in a set whose measure is greater than 
7|<3R|, SO that the conclusion of Lemma 7.2 holds in this case too. Arguing 
as in Theorem 7.6, we arrive to the relation 
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osc (u, f ) < ( l - ^ T a ) o s c ( u > 2 R ) + c2"xRl3 > 

which holds whenever osc(u,2R) > 2oscs(u,2R). 
In any case we have 

osc (u, - J < (l - ^ J osc(u, 2R) + c2v
XR? + 2oscs(u, 27?), 

and since by assumption3 oscs(u,2i?) < BR13: 

(« , f ) < ( l - ^ ) os<u, 2R) + c{2»X + B)R0 . (7.53) osc 

Comparing with (7.44), we conclude that the last inequality holds also 
when QIR does not intersects Oil. The conclusion then follows arguing as 
in Theorem 7.6. In particular, assuming that /3 < S =: — log4(l + 2_1/~2), 
we have for every g < R: 

osc(u, g) < c ( ! ) osc(u,R) + c(x + B)g13. (7.54) 

• 

From the last inequality we can deduce the analogous of (7.46) and 
(7.47) for the Dirichlet problem with zero boundary data. In this case we 
have 5 = 0, and hence: 

r , Q\PP / R\p 

•f \u\pdx < cosc(u, g)p < c ( — ] osc I u, — J + c\p g9^ • 

The right-hand side can be estimated using (7.29) with g = y . We 
obtain thus the analogous of (7.46): 

/ \u\pdx < c f - | ) " + P / 3 / \u\pdx + cX
pgn+pP • (7.55) 

From this inequality, arguing as in Theorem 7.7, we easily get 

f \Du\pdx<c(%Y~P+P'3 [ \Du\pdx + cX
pgn-p+pP. (7.56) 

3 It is not restrictive to assume that the trace of u is Holder-continuous with expo­
nent f3. 
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7.5 The Harnack Inequali ty 

When the function u € DG~ is positive, we can estimate its infimum with 
greater accuracy. As usual, we can assume that u satisfies estimates (7.14), 
that is (7.10) with x = 0 and4 R = 1. 

L e m m a 7.4 Let u £ DG~ with «o = 0, and assume that u is positive in 
the cube Q = Q\. There exists a positive constant 70 such that if \B{8,1)| < 
7o|Q| for some § > 0, then 

inf u > — . 
Q1/2 2 

Proof. We can argue as in Lemma 7.2. For /1 < k < 1? we set 

v(x) 

' 0 if u > k, 

k — u if h < u < k, 

A; — /i if u < h. 

Let i < p < 1; we have v = 0 in Qe — B(k, g), and since \B(k, g)\ < 
\B(#, 1)| < 7 o | Q | and |Q e | > 2~n\Q\, we get |Q f f-5(fc> e) | > ( 2 - " - 7 o ) | Q e | . 
It follows that if 70 < 2 ~ n _ 1 we can apply the Sobolev inequality, obtaining 

< c / |£>u|d:E, 
JA 

where A = B(k, g) — B(h, g). We therefore have 

1-

(k-h^BiKg)^-^ < I f v^dx 

^clAf-ilf \Du\pdx) . (7.57) 
lB(k,g) 

On the other hand from (7.14) we get 

4Note that since u is bounded we might use (7.32), namely (7.10) without the term 
kp, instead of (7.14). In this case, however, we could not assume \ — 0, since, with the 
exception of the homogeneous case, that we shall discuss later, it is not possible at the 
same time to eliminate the term kp and to assume x = 0-
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f \Du\"dx < — ^ - [ {k-ufdx 
JB(k,g) \.K - Q)P JB(k,R) 

+ ckr\B(k,R)\i-Z+* < ^_^ - f eP |B(A ! , i J ) | 1 - t+« 

(7.58) 

since u > 0 and e < £. Prom (7.57) we deduce: 

(k - h)\B(h, ^ j 1 - * < ^-\B(k, Rtf-i+i . (7.59) 
ii — g 

Consider now the sequence of radii r-j = | ( l + 2 ~ l ) and the corresponding 
levels ki = f (1 + 2"*). Setting B{ = \B{kUTi% we get from (7.59): 

2~i-1B]~{i < c2i+lB]~" + » 

and in conclusion 

Bi+1<C4^Bl+a, 

where we have set a = „(%+!)• Applying the Lemma 7.1 we get 

limj-xxj Bi = 0, that is u > ^ in Q1/2, provided 

Bo = \B(d, 1)| < C - s 4 ~ ( ^ ) ^ =: 7 i |Q | . 

The conclusion of the lemma then follows by setting 70 = min 
( 2 - " - \ 7 i ) - • 

The next lemma is an improvement of the preceding one. 

Lemma 7.5 Let u € DG~ with KQ = 0, and assume that u be positive in 
the cube Qi. For every 7, 0 < 7 < 1, there exists a constant A(7) > 0 such 
that if |£(#, 1)| < 7|Qi| for some 1? > 0, then 

inf u > A(7)i?. 
Q l / 2 

Proof. Setting g = 1 and R = 2 in the inequality (7.58) above, we get 

\Du\pdx < ckp, 
JB[ IB(k,l) 

which introduced in (7.57) gives: 

(k-h)&\B(h,l)\%?=$ <ck^(\B(k,l)\-\B(h,l)\). (7.60) 
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Consider now the sequence of levels ki = i?2 *, with i < v. Setting 
bi = \B(ki, 1)| we have, since 6j_i > bi > b„, 

p ( n - l ) 

Simplifying and summing over i between 0 and v, we get 

(̂  + 1)CP_1) <c\Q\=c\Q\^ • i ) 

where as usual Q = Q\, and hence 

t i ( p - l ) 

( C \ P ( n - l ) 

Taking ^ large enough we have then 

K = \B(#2-»,l)\<l0\Q\ 

so that by the preceding lemma u > i?2_1/_1 in Qi/2- D 

The above lemma can be further generalized. Actually, if \B{8,1)| < 
7|Q|, and if T > 1/2, we have 

|A(tf,2T)| > 1 (̂0,1)1 > (1 -7)IQI > ^ I ^ T I 

and hence 

IW2T)|<(l- lz£) |Q2 r | . 

We can therefore apply the preceding lemma, and conclude the 
following: 

Lemma 7.6 For every 7 £ (0,1) and for every T > 1/2 there exists a 
positive constant /x(7, T) such that if u > 0 in Q2T and if |B(i9,1)| < 7|Q| 
for some •& > 0, then 

infu>/i(7,T)tf. 
QT 

We have /x(7, T) = A(l - ^ X ) , In the following we shall use the above 
lemma with T = 1. 

Remark 7.10 The three lemmas just proved obviously hold for every 
cube QR with R < RQ. In particular, if u is positive in Q2TR and if 
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\B(4,R)\<>y\QR\, then 

inf u(x) > /x(7, T)ti. • 
QTR 

Finally, we shall need the following covering theorem, whose analogy 
with the theorem of Calderon and Zygmund (Theorem 2.10) is evident. 

Propos i t ion 7.2 (KRYLOV and SAFONOV [1]) Let E C QR C R n be a 
measurable set, and let 0 < S < 1. Moreover let 

Es= ( J {Q(x,3g)nQR:\Q(x,3g)nE\>S\Qe\}. 

X € Q R 

T/ien, either \E\ > S\QR\, in which case E$ = QR, or else 

m>]\E\. 
Proof. For every x G QR we have Q(x, 3R) D QR and hence, if |.E| > 
S\QR\ it follows \Q(x,3R)r\E\ = \E\ > S\QR\, and hence Es = QR. 

Let us assume now that \E\ < S\QR\. 

Let us divide QR into 2™ equal cubes. If for any one of these subcubes 
Q we have 

\QnE\>6\Q\, (7.61) 

we say that QR is final,5 and we do not divide Q any further. We repeat 
the preceding procedure for all nonfinal cubes Q, and we call Fs the union 
of all the final cubes. 

If Q is final, and if Q(x, g) is the subcube of Q for which (7.61) holds, 
we have \Q(x,3g) n E\ > S\Qe\, and hence Q(x,3g) n Q A C Eg. Since 
Q C <3(a:, 3p) (~l QR, we have also Q c .Ej, and hence Fs C -E -̂

On the other hand, almost every x G E belongs to Fs. Actually, if 
x £ Fs there exists a sequence of cubes Qi 3 x with sides Qi —> 0 and such 
that \Qi n E\ < S\Qi\. This means that E has upper density less than 1 at 
the point x G E, and this can happen only on a set of zero measure. 

We have therefore, denoting by M the family of all final cubes, 

\E\ = \EnFs\= £ \QnE\<6 £ \Q\ = 6\Fs\<6\E5\ 
Q€M Q€M 

and the proposition is proved. • 

6Of course, due to the assumption |J5| < <5|Q.R|, the cube QR cannot be final; it is 
only the starting point of the successive divisions. 
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We can now prove the main theorem of this section. 

Theo rem 7.9 (Dl BENEDETTO and TRUDINGER [1]) Let u(x) be a posi­
tive function, belonging to the De Giorgi class DG~(ft), with K,Q = 0. There 
exists RQ > 0, an exponent q > 0 and a constant c such that if XQ S fi and 
R < min(/?o, e^dist(a;o,Sn)), we have 

inf u(x)>c{(-f uqdx) -XRa) (7-62) 
Q(*o,f) I \jQ(x0,R) J 

Proof. As usual, we can assume x = 0 a n <i /2 = 1. For a fixed <5 (for 
instance S = | ) , we apply the preceding proposition to the set 

A\~x = Aft/i*-1,1) = {x € Q : u(z) > t/i*"1} , 

where 7 = 1— 3~n6 and /i = /z(7,2) is the constant of Lemma 7.6. 
Assume now that for some z g Q w e have Q(z,3g) C\Q C (Al

t~
1)s, and 

hence 

\A(t^-\l)nQ(z,30)\ > 6\Qe\ = ^\Q3e\. 

By Lemma 7.6 with T = 2, taking into account the remark immediately 

following it, we deduce u > /x/xl_1t = fj,H in Q(z, 3g), and hence 

By the preceding proposition, we must have either A\ = Q or \A\\ > 
5~1\Al

t~
1\. In any case, we can conclude that if for some integer s we have 

\A°\ = \A(t,l)\>6°\Q\ (7.63) 

then 

i^-1! > 6-vr2i > > ^1_SIA?I > (5|QI 

and therefore A| = Q, so that in conclusion 

u(x) > fist in Q. 

We now choose s in such a way that (7.63) is satisfied; for instance let 
s be the smallest integer such that 



240 Direct Methods in the Calculus of Variations 

With this choice of s we get 

or equivalently, setting £ = infQ u(x) and a = j ^ 2 — : 

|A(t,l)l < c | Q | C a t - a . (7.64) 

On the other hand 
/•OO /» /«oo /»oo 

/ uqdx = q tq-l\A{t, l)\dt = q tq-x\A{t, l)\dt + \Q\£q 

Jo Jo Jt IQ JO j£ 

Introducing the estimate (7.64) we get 

/ uqdx < cqC [ tf-a-ldt + £q . 
Jo J? IQ •>£ 

If we choose q < a the integral converges, and hence 

- / uqdx < c£q 

Jo 

so that 

inf u(x) > inf u(x) > c I 4 uqdx 
Qi/2 Q \JQ 

The conclusion follows coming back to a generic R and writing u + xRa 

instead of u. • 

Joining the above result with Theorem 7.3 we get the following 
HARNACK inequality: 

Theorem 7.10 Let u{x) be a positive function belonging to De Giorgi 
class DGp(£l) with «o = 0, and let g be a number less than -£-, and such 
that the cube of side 6g is contained in CI. 

Then 

sup u < c(inf u + XQa) • (7.65) 
Qe Q° 

R e m a r k 7.11 The last inequality can be proved directly, starting from 
the regularity results of the preceding sections (in particular from (7.45)) 
and from Lemma 7.6. The proof that follows is an adjustment of that given 
by Di Benedetto [1] in the parabolic case. • 
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Proof. We shall begin by showing that 

or equivalently 

u(xo) < c inf u(x), (7.66) 
Q(x0,R) 

v(x) =: - ^ T > c > 0 u(x0) 

in Q(x0,-R). 
As usual, we can assume x — 0 a n d i? = 1. 
It is easily seen that the function v satisfies the inequalities (7.13) and 

(7.14) for every h > 0, with the some constants as u. In particular Theo­
rem 7.6 will hold for v, with the estimate 

OSCQ{XIB)V < coscQ(x>R)v (—J < C||U||00)Q(X].R) (—J (7.67) 

for every a; £ Q, and every g < R < ^ d i s t ^ d f i ) . 
Now let .KV = (1 — T)~S, where S > 0 will be chosen later, and let TQ 

be the largest value of r for which |H|OO,Q(:CO,T) > ^ T - Since the left-hand 
side of the preceding relation is bounded, and the right-hand side diverges 
as r —• 1, we have 0 < TQ < 1. 

Let x € Q(x0,T0) be such that v(x) = IM|OO,Q(XO,T0) > 0-~ To)~S• We 
have 

'oo,Q(x - a } < ll"llco.o(x„,^) < ^ i - m = 2*(1 - r 0 ) - d . 

On the other hand, using (7.45) with x = 0, R = ^-^ and g = eR 
(e < 1), we get 

o s c Q ( 2 ) i ^ £ ) t , < c\\v\\^Q{s^/ < c25(l - TO)-S60 

and hence 

v(x) > v(x) - oacQ(Stv^e)v > (1 - r 0)-*( l - c 2 V ) 

for every x € <3(z, ^ e ) . Choosing e = c_12~<5_1, we obtain 

v(x) > i ( l - TO)- 5 in Q ( z , 4 ^ e ) • (7.68) 

We can now apply the Lemma 7.6 (or better the remark following it) 
with R = ± ^ e , T = 2 and i? = ±(1 - T 0 ) _ * . We have 7 = 0, and therefore 
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^ ) > | ( l - r 0 ) - 5 in Q(x,(l-T0)e), 

w i t h / / = /x(0,2). 
Iterating the above argument, we get for every integer v. 

v(x) > ^ ( 1 - T0)-
5 in Q{x,2v-\l-T0)e). (7.69) 

Let v be such that 2 < 2"_1(1 - r0)e < 4. We have 

and hence 

1 / 8 \ l o g 2 ^ 
V{x)-2\l) (l-ro)-S-los^ in Q(x,2) D Q(x0,l). 

We now choose S = — log2 /x; we have e = ^ and therefore 

1 / 1 6 c \ l o g 2 / i 

v(ar) > - ( —- ) in Q(x0,1), 

which gives the estimate (7.66). 
Let now Qe = Q(xi, g) be a cube contained in fi, with £ small enough, 

and let XQ G Qe be such that u(xo) = sup^ u(a;). Taking R — 3g, we have 
from (7.66): 

supu(a;) < c inf u(x) < c'mfu(x), 
Q* ~ Q(x0,fi) - Qe 

and hence (7.65) with \ = 0- The general case follows as usual by writing 
u + xR13 instead of u. • 

7.6 The Homogeneous Case 

Of particular interest is the case when the function u belongs to a homo­
geneous De Giorgi class DGOp, that is when it satisfies the relations 

/ \Du\Pdx < — ^ - [ (u-kfdx, (7.70) 

[ \Du\"dx< H [ {k-ufdx. (7.71) 
JB(k,g) \H ~ Qr JB(k,R) 

file:///Du/Pdx
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In particular, this happens when u is a quasi-minimum of the functional 

T{u,£l) = / F(x,u(x),Du(x))dx 
Jo. 

with 

\z\p<F(x,u,z) <L\z\p. 

The most significative example of this situation is that of quadratic 
functionals 

F(x, u, z) = a,ij(x, u)ziZj , 

with the coefficients a -̂ bounded and satisfying the ellipticity condition 

aij(x,u)^j > v\£\2 , v>0. 

For positive functions u € DGOp we have the estimate (7.65) with 
X = 0, and therefore: 

Theorem 7.11 (HARNACK'S inequality) Let U be a bounded connected 
open set in R n , and let E CC CI. Let u(x) be a positive function in 
DGOp(Cl), (p > 1). There exists a constant C(E,f2) such that 

s u p u < C i n f w (7.72) 
E s 

Proof. Let Qi, Q2, • •., QN be a finite family of cubes, such that any two 
consecutive cubes Qi and Qi+\ have non-empty intersection and that 

sup u = sup u; inf u = inf u . 
E Q i E QJV 

We can assume that each of these cubes has side g < Ro, and that the 
cubes of side 6g are contained in fi. 

For each cube Qi we can write the inequality (7.65) with x = 0; 

sup u < c inf rx. 

On the other hand, since any two consecutive cubes intersect, we have 

inf u < sup u, 
Q' Qi+i 

and the conclusion follows at once. • 
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If moreover fl is a cube of side R, and £ is a concentric cube of side 
TR, the constant C depends only on r but is independent of R, as is easily 
seen by homothety. 

Two consequences of Harnack's inequality are particularly worthy 
of note. 

Theorem 7.12 (Strong maximum principle) Let fl be a connected set, 
and let u(x) be a function in the class DGO~ (CI). If u has an interior 
minimum point, then u is constant in fi. 

Proof. We note that (7.70) and (7.71) do not change if we write u + X 
instead of u. As a consequence, adding possibly a constant to u, we can 
assume that min^ u = 0. Let E be the set of the points of fi in which u 
assumes its minimum value 0. By assumption, E is non-empty. 

For e > 0, the function u + e is positive, and we can apply Theorem 7.9. 
If Q is a cube with center in a point of E and side small enough, we have 

e = inf (u + e)>c(J-(u + e)pdx\ " >c(j updx\ " 

and therefore, since e > 0 is arbitrary, we must have u = 0 in Q. 
It follows that E is an open set; since by the continuity of u it is also 

closed, we conclude that E = CI. • 

In a similar way one can prove that if u € DGO+(Q) has an interior 
maximum point, then it is constant. Finally, if u s DGOp(Cl), it must 
assume both its maximum and its minimum only on the boundary of Cl, 
unless it is constant. 

Theorem 7.13 (LIOUVILLE) Let u G DGOp(R
n), and assume that u is 

bounded below. Then, u is constant. 

Proof. Let A = inf u > — oo. Writing u — X instead of u, we can sup­
pose A = 0, and therefore by the preceding theorem u > 0 in R n . From 
Harnack's inequality we have for every R > 0: 

supu < cinf u 
QR <5« 

If we let R go to infinity, the right-hand side tends to zero, and hence 
u = 0. • 
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7.7 w-Minima 

As we have seen in the preceding chapter (Example 6.5), the regularity 
Holder continuity, do not hold for cubical quasi-minima. Generally speak­
ing, estimates on cubes only are not sufficient to prove regularity. 

The question can be posed whether estimates on cubes are sufficient 
in some special cases, of course more general than 1-minima (i.e. quasi-
minima with Q = 1), for which the difference between estimates on cubes 
and on general sets disappears. The answer is positive for a particular sort 
of cubical quasi-minima, the w-minima according to the following: 

Definition 7.2 Let u> : R+ —> R+ be a continuous, bounded, increasing 
and concave function, with u>(0) = 0. We say that a function u E W^(Q,) 
is an w-minimum for the functional T if for every cube QR CC fi, and 
every w G W1,P(QR) with w = u on 8QR, we have 

F(u, QR) < [1 + w(R)]?(w, QR) . (7.73) 

It is clear that an w-minimum is also a cubical quasi-minimum, and that 
the difference between the two lies only in the behavior for very small sides. 
It is not known whether an w-minimum is also a quasi-minimum. Never­
theless, it can be proved that w-minima are Holder continuous functions. 
The present section will be dedicated to the proof of this result. 

As above, we shall assume that the integrand F(x, u, z) is a Caratheo-
dory function satisfying the inequalities 

\z\p - b{x)\u\'1 - a(x) < F{x, u, z) < L\z\p + 6(a:)M7 + a(x) (7.74) 

with p < n, l < p < 7 < p * = J^r , a(x) and b(x) being two non-negative 
functions, belonging respectively to Ls(il) and L"{Q.), with s > - and 

We have seen in the preceding chapter (Remark 6.11) that the above 
assumptions imply the existence of a r > 1 such that every spherical quasi-
minimum u belongs to W^(Q,), with the estimate 

/ \Du\rpdx <c(-f \Du\pdx) 
JQR \JQ2R J 

+ c-f (a(x)+b(x)\up)rdx. (7.75) 
JQ2R 

It is evident that we can suppose r as close to 1 as we wish, so that we 
can assume without loss of generality that rj <p*. 
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As above, we shall assume that - = £ — e and - = 1 — -L — e for 
7 s n a p 

some e > 0. It is easily seen that we can take e as small as we like, 
without prejudice to the results of the above sections, the constants being 
independent of e, as far as it remains bounded away from zero. 

Since, as we have remarked, it is not known whether w-minima are quasi-
minima, we cannot apply the regularity result of the preceding sections 
directly to w-minima. The proof will be achieved by comparing w-minima 
of the functional J7 on cubes of side R with quasi-minima of the functional 

Q(v,QR) = [ (\Dv\p + a(x) + A + b{x)\v\i)dx (7.76) 
JQR 

with a suitable constant A depending on R. 
We shall begin with an estimate concerning quasi-minima of the above 

functional. For simplicity, we set a(x) = a(x) + A. 

Theorem 7.14 Let v be a Q-minimum of the functional Q in a cube of 
side R. Then, there exists a positive constant Ro, depending only on a, b 
and on the norm of v in Wl'p such that for every g < R < RQ we have 

f (\Dv\p + g-"\v\'f)dx<c(^)n~P+n£ \ f (\Dv\p + R-"\vp)dx 
JQB

 KRJ { JQR 

+ \\a\\sR
n-P+ne + (\\a\\aR

n-P+n<)tRn< 1, 

(7.77) 

where fi = -, and c is a constant depending on a, b and on the norm of v 
in W1* 

Proof. It will be simpler to prove the estimate (7.77) with 2R instead of 
R. Suppose first that g < R. We use the inequality (7.47) 

f \Dv\pdx < c (%yP+PP { / \Dv\pdx + x
pRn~p+pP\ , 

where, according to the Remark 7.7, 

Xp = \\<* + bW\\.<\\a\\. + \\b\\.W. 

The quantity M = 2supgH \v\ can be estimated by means of (7.26) with 

q = T-

s u p | v | 7 < c ( / Iv^dx+WaWiR^} , 
QR UQIR J 
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where /? = —. Moreover, we have 

\\b\\.<c\\b\\„ir4-i\ 

and therefore 

Xp < \H. + c||6||ff (nrG-i-V f \v\fdx + ||a|| fiT1 'W+^A 
V JQ2R / 

In conclusion 

/ \Dv\pdx<c(%Y P+P{ [ \Dv\pdx + R^ f \vpdx 
jQe ^RJ [JQ2R JQ2R 

+ \\a\\sR
n-p+nt + \\a\\!RF+^+f* \ . (7.78) 

On the other hand 

Q-" f \v\-<dx < CQ^-^M"1 = CQn(^+e)M^ 

< c ( | ) " ^ + £ ) {*"" / \vVdx + | | a | | ! ^ + " ^ } 

< c (|)n_P+"£ {RT» J \v\>dx + ||a||;fl5*+~+*j , 

where in the last passage we have used the inequality ^? > ^? = n — p. 
Adding the last inequality to (7.78) we get (7.77) for g < R. On the 

other hand if R < Q < 2R, (7.77) holds trivially, possibly with a different 
constant c, and hence the theorem is proved. • 

Let now u be an w-minimum of the functional J-'. We shall get an 
estimate similar to (7.77) by comparing u with a suitable Q-minimum v 
of the functional Q. For the construction of such v we shall use Ekeland's 
variational principle of Section 5.4. We define a metric space X as the set 
of all functions w G W1'P(QR) such that u — w€ WQ'P(QR), and 

/ {\Dw\p + b\wp)dx < [ (\Du\p + b\u\~<)dx. 
JQR JQR 

We equip X with the metric 

d(w, v)=CR f \Dw - Dv\dx, (7.79) 
JQR 

file:///vpdx
file:///vVdx
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where CR is a constant that we shall choose later. A simple application of 
Fatou's lemma shows that X is complete. 

For 6 > 0, let v$ be a function in X such that 

F(VS,QR)<MF + 6. 

We have 

T{u,QR) < (l + u(R))F(vs,QR) < MF + 5 + U[F(U,QR) + 6} 

from which, letting 6 ->• 0, we get 

F(u) KiniF + uFiu) <iniF + cwRn-f (\Du\p + 6|u|7 + a)dx 
X X JQR 

in which we have written J-{u) instead of J-(u, QR). 
By Ekeland's principle, there exists a function v G X, in particular 

such that 

/ (\Dv\p + b\v\i)dx < [ (\Du\p + b\up)dx, 
JQR JQR 

satisfying 

/ \Dv - Du\dx < C^ 1 (7.80) 
JQR 

and such that 

T(v) < F(w) + cwRnCR I {\Du\v + b\u\i + a)dx [ \Dv - Du\dx. 
JQR JQR 

If we now choose 

C-^^Rnu:(I (\Du\p + b\u\-l + a)dx\P 

the last inequality becomes 

F(v) < F(w) + A1'* f \Dv-Du\dx (7.81) 
JQR 

with 

A = A(R) = c-f {\Du\p + 6|U|T + a)dx. (7.82) 
JQR 

file://{/Du/v
file:///Dv-Du/dx
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We remark that we have 

/ \Dv\pdx< [ {\Du\p + b\u\i)dx<Cl (7.83) 
JQR JQR 

I \v\p"dx<c \v-u\p'dx + c \u\p'dx 
JQR JQR JQR 

<c( f (\Du\ + \Dv\)pdx) ' +c f \u\p'dx < c2 (7.84) 
\JQR J JQR 

with ci and c<i independent of R. 
We shall prove now that v is a Q-minimum of the functional Q. 
Let w € Wl'p{QR), with (p = v - w € WQ'P, and let K = supp tp. If 

w £ X, we have from (7.81) 

/ {\Dv\p -b\v\~< - a)dx < F{v,K) <F(w,K) + A1~i f \D<p\dx 
JK JK 

and hence 

/ \Dv\pdx 
JK 

< [ (\Dw\p + &H 7 + a)dx + I {b\v\~l + a)dx + A1~p [ \Dcp\dx. 
JK JK JK 

We estimate 

A 1 - p \Dip\ < e\D<p\p + ceA < ce(\Dv\p + \Dw\p) + ceA 

so that, taking e small enough 

/ (\Dv\p + 6|v|7 + a + A)dx <c f (\Dw\p + 6|wj7 + a + 6|u|7 + A)dx. 
JK JK 

On the other hand, if w ^ X, we have 

[ (\Dv\p + b\vp)dx < [ (\Du\p + b\u\i)dx < J (\Dw\p + b\w\^)dx 
JK JK JK 

so that the above inequality holds for every w € W1'P{QR) with w — v £ 
wt'p(QR). 

Arguing as in Theorem 6.1 (see Remark 6.6), we conclude that 

/ (\Dv\p + 6|v|7 + a + A)dx < Q [ (\Dw\p + b\w\^ + a + A)dx 
JK JK 

file:///Dcp/dx
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and hence v is a Q-minimum of the functional Q. The constant Q will 
depend on v only through its norm ||-Dv||p + |M|P-, and hence in the last 
instance it depends only on u and it is independent of R. 

Let us estimate now the quantity 

l \Du-Dv\pdx. 
JQR 

T 

Let r > 1 be the exponent in (6.64), and let 1? = r ^ ~ ^ . We have 

-f \Du - Dv\' 

< \ I \Du- Dv\rpdx ) l-f\Du- Dv\, 

<\pdx 

<\dx 

"If / \ " T 

We estimate the two factors separately. For the first, we use (6.64) both 
for u and v, and we get 

-/ \Du - Dv\rpd. 
JQR 

<c[-f \Du\rpdx I + c [ / \Dv\rpdx 

<c(-f \Du\pdx]P +c(-f (6|u|7 + a)rdx 

\JQR J \JQR 

Of \Dv\pdxY +c(-f (blv^ + a + h)rdx 
QR J \JQR 

+ c 

and therefore 

/ \Du - Dv\Tpdx 
JQR 

<c(-f \Du\pdxY +c(-f (b\u\i)rdx 
\JQR J \JQR J 

+ c(-f (b\v\~<)rdx\ ^ + c (j ardx\ "P + CAP 
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On the other hand 

-f \Du - Dv\dx < cR~nCR = CUJ(R)AP 
JQR 

2 

and 

Ap <c(-f \Du\pdxY + c ( - / (b\u\i)rdx) ' +c(-f ardxY" , 

so that in conclusion 

-/ \Du - Dv\pdx < cw{R)K\ -f \Du\pdx + (-f b\u\~<)rdx ] " 
JQR \JQR \JQR J 

2 v 

+ c(J (b\v\i)rdx\ " + Rn-p+ne\\a\\s I (7.85) 

with some exponent K > 0. 
Finally, we estimate the integrals containing the function b. We have 

(j (b\u\^)rdxY <c(j (b\u-uR\i)rdxY +cU {b\uR\~<)rdxY . 

Now 

\UR 

and 

\~<(-l brdxY<(-[ b°dxY -f \u\~tdx 
\JQR J \JQR J JQR 

n* / / * \ r p * 

( f (b\u-uRp)rdxY < ( f (\u-uR\p'dxY (f bp^dx) 

= ([ {\u-uRfdxY (j (\u - uRfdx\P' 

br'-ridx I 

; / \Du\pdx. 
JQR 

< c 
IQR 

In a similar way 

(j (b\v\i)rdxY <c(-[ (b\u-v\i)rdxY +c(J (b\up)rdxY . 

file:///u/~tdx
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The last term on the right-hand side has already been treated; the first 
can be estimated as above by 

c / {\Du\p + R-»\u\i)dx. 
JQR 

In conclusion, 

/ \Du - Dv\pdx 
JQR 

2 

<OJ(R)KU (\Du\p + R->i\uP)dx+\\a\\sR
n-p+ne\ . (7.86) 

With the help of the above estimate, we can transfer inequality (7.77) 
to the w-minimum u. We have for g < ^: 

[ (\Du\p + Q-^u^dx 
JQe 

< c f (\Dv\p + g'^v^dx 
JQe 

+ c [ (\Du - Dv\p + g-^\u - v[<)dx 
JQe 

~ ° ( l ) n _ P + n £ { / ^^ + R~^v^dx + °('R)} 
+ c I {\Du - Dv\p + g-^u - v\i)dx 

JQe 

< c ( | ) n " + " e { / (\Du\p + R-»\uP)dx + @(R)\ 

+ c J (\Du - Dv\p + g~»\u - v\~t)dx, 
JQR 

T 

where 

Q(R) = | | a | | s i T - p + n e + (\\a\\sR
n-p+ne)rRnc. 

Let us estimate the single terms on the right-hand side, beginning with 
O. We have 

| | a | | , < | | a | | , + i i?A 
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and therefore 

| | a | | , i i n - p + n £ < \\a\\sR
n-p+ne + RnA. 

Recalling now that 

KRn = cf (\Du\p + b\u\^ + a)dx<c, 
JQR 

we get easily 

Q(R) < c(\\a\\sR
n-p+ne + ARn) 

<c([ (IDuf + R-^uWdx+WaWsR"-^™) . (7.87) 

The term JQ \Du — Dv\pdx has been already considered in (7.86). The 

remaining term can be treated as follows: 

/ \u - vp)dx < cRn (-f \u-v\p*dx) 
JQR \JQR ) 

T 

< cRn{1-fr ( f \Du- Dv\pdx 

< cR»+ne [ (\Du\p + % | 7 + a)dx 
JQR 

since 

/ (\Du\p + b\u\'y + a)dx<c. 
JQR 

Putting together all these inequalities, we get the following: 

Theorem 7.15 Let u be an uf-minimum of the functional T. There exists 
a RQ > 0 such that for every cube QR CC fi, with R < RQ, 

J (\Du\p + g-^u^dx < c | ( ! ) " ~ P + " e + u(RV + (-X Rn€\ 

x f (\Du\p + R-^u^dx + c\\a\\sR
n-p+n£. 

JQR 

(7.88) 
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The inequality (7.88) is the main tool in the proof of the Holder conti­
nuity of u. Writing for the sake of simplicity 

<p(g) = f (\Du\> + Q-"\u\i)dx, 
>Q 

and AS = ne, it becomes 

^e) - c{(liY~P+45 + Uj{Rr+ ( f yR45)'p(R) + 4a\\sR
n-p+45. 

Let T be such that 2cr25 = 1, and let RQ be such that 

u{R)K + T-i*Ri5 < i r
n - p + 2 5 

for every R < Ro. Choosing g = TR, the preceding inequality becomes 

<p(rR) < r " - p + 2 V ( # ) + c\\a\\sR
n'p+5 . 

Since for every t € (rk+1R, rkR) we have <p(t) < T~^ip{TkR), we can 
apply Lemma 7.3, from which we obtain 

*P{Q) ~ C { ( I ) " ^ V(R) + Hall^n_P+5} • (7-89) 
Let now S CC fi be an open set with smooth boundary, and let Ro < 

dist(£, d£l). If Qe is any cube centered on £ and of side g < Ro, we have 
from (7.89) 

[ \u - ue\
pdx < cgP I \Du\pdx<cgn+5(\\u\\l!P+\\a\\3), 

jQe JQe 

and hence, by Theorem 2.9, u is Holder-continuous in E. We have therefore 
proved the following: 

Theorem 7.16 Let 

F{u,A)= I F(x,u(x),Du(x))dx 
JA 

with the function F(x,u, z) satisfying conditions (7.74). Every u>-minimum 
of T belongs to C°'*(ft) for some S > 0. 
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7.8 Boundary Regularity 

With arguments similar to those of the preceding section we can prove 
the Holder continuity up to the boundary for w-minima with prescribed 
boundary values. 

We assign the boundary data as the trace of a function U G Wl>m{Q), 
with m > n. In particular, assuming that 80. is Lipschitz-continuous, we get 
from Sobolev imbedding Theorem 3.11 that U € C°'a(ti), with a = 1 - £ . 
In this case, we can immediately reduce to zero boundary values setting 
w = u — U and 

F(x, w, z) = F{x, w + U(x), z + DU(x)). 

It is easily seen that if u is a w-minimum of the functional !F, w is a 
w-minimum of the corresponding functional 

Jr(w,Cl)= / F(x,w,Dw)dx. 
Jn 

Moreover, the function F satisfies 

c | .z |p-6(:E)H7-a(a:) < F{x,w,z) < L\z\p+ b(x)\w\'<+a{x) (7.90) 

with a suitable positive constant c and with 

a(x) = a{x) + \DU(X)\P + b(x)\U(x)\^ G V 

for some s > —. 
p 

We can therefore forget about the boundary values, and consider only 
the homogeneous case u = 0 on dfl. 

We need estimates similar to those of the preceding section, in which the 
cubes Qr are replaced by the sets fir = Q r nf i , the cubes Qr being centered 
on dCl. Since dQ, is Lipschitz-continuous, we have \Qr — fl\ > ao\Qr\ for 
some a0 > 0, and therefore Theorem 6.8 holds, and we have the estimate 

-/ \Du\rpdx<c(-f | D u | p ^ +c-f (a{x) + b{x)\uP)rdx (7.91) 

for every cubical Q-minimum. 
If now v is as in the preceding section, we have u = 0 o n dCl D QR, and 

we can replace estimates (7.22) and (7.47) with (7.29) and (7.56), that is 

sup M < c(q) J f ^ J \u\"dx\ " + \\a\URf3 1 , (7.92) 

file:////a/URf3
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<C 

/ \Du\pdx<c[£) / \Du\pdx + cX
pQn-p+pf3. (7.93) 

We can then proceed as above; actually here the estimates are made 
simpler from the fact that both the Q-minimum v and the w-minimum u 
are zero on dfl l~l QR, SO that the terms Jn 6|u|7cJa; and similar can be 
estimated directly in terms of the integral of the gradient. We obtain in 
conclusion an estimate analogous to (7.88), namely 

/ (\Du\p + g'^u^dx 

{{iiY~p+nt+uj{R)K+(f yRne}in (\Du\p+R~ti\uv)dx 

+ c\\a\\sR
n-p+ne. (7.94) 

valid for any concentric cubes centered on dfl, and for every g < R < RQ. 
Let now XQ be any point of fl, and let as above 

<p(g) = f (\Du\p + g-^u^dx. 
JQe(xo) 

We distinguish four cases. 

Case 1. Q(xo,Ro) C f2. In this case all the cubes involved are contained 
in fl, and the results of the preceding section hold. In particular we have 

<p(x0,g)<ci (j-\ " <p(x0,Ro) + \\a\\sQ
n-p+s\ . (7.95) 

Case 2. XQ € dfl. In this case we can argue as in the preceding section, 
starting from (7.94), and we conclude that the preceding estimate holds in 
this case too. 

Case 3 . Q(x0, g) intersects dfl. If x\ £ dfl n Q(XQ, Q), we have fl(x0, g) C 
fl{x\,2g), and hence 

V(x0,g)<c<p(x1,2g)<cl(^) " tp(xltRo) + \\a\\sg
n-p+s I . 

Case 4. If none of the above situations is verified, let r be the largest side 
of the cube centered at XQ and contained in fl. We have 

f / g\n~p~*~^ 
<p(x0,g)<cU-j f(x0,r) + \\a\\sg' 

n—p-t-5 
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As above, there is a point x\ S dQ, such that Q(xo,r) C Q(xi, 2r), and we 
can continue as in Case 3, getting 

<p{xo,Q) < c I (-£\ P <p{xuRo) + | | a | | ^ " - p + 5 | • 

In any case, we can therefore conclude that 

/ \Du\pdx < cgn-P+s(\\u\\hp + | |a | | . ) , 

from which the Holder continuity of u in Q follows immediately. 

7.9 Notes and Comments 

The core of this chapter is Theorem 7.6, where we have proved that the 
functions in De Giorgi's classes DGP are Holder-continuous. This result 
was proved by De Giorgi in his famous paper [1], which opened the way to 
the regularity of solutions of elliptic equations with bounded measurable 
coefficients, and for minima of regular functional in the calculus of varia­
tions. De Giorgi's theorem was later generalized by various authors, so as 
to cover the most general solutions of non-linear equations in divergence 
form. We note in particular the papers by STAMPACCHIA [1, 2, 4] and the 
book by LADYZENSKAYA and URAL'CEVA [1]. 

Almost at the same time, a different proof of the regularity of solutions 
to parabolic and elliptic equations was given by NASH [1]. 

Slightly later, MOSER [2] proved Harnack's inequality, thus extending 
to solutions of linear equations in divergence form a classical result for 
harmonic functions. Starting from Harnack's inequality, Moser gave a new 
proof of the Holder-continuity of solutions of elliptic equations. 

Moser's proof goes as follows. Let u be a solution of the elliptic 
equation 

/ a,ij(x)DjuDi<pdx = 0 
Jn 

for every (p £ W0
1,2(f2), and assume that every positive solution w in Q2R 

satisfies Harnack's inequality 

sup w < c inf w. 
QR <5« 
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Setting M(R) = supgfl u and m(R) = infQR u, we can apply Harnack's 
inequality to the functions M(2R) — u and u — m(2R), obtaining 

M{2R) - M{R) < c[M{2R) - m(R)], 

M(R) - m(2R) < c[m(R) - m(2R)]. 

Summing these inequalities, and setting osc(u,i?) = M(R) — m(R), we 
get 

osc(u, 2R) + osc(u, R) < c[osc(u, 2R) — osc(w, R)} 

and whence 

c — 1 
osc(u, R) < -osc(ii, 2R) =: 70sc(u, 2R), 

with 7 < 1. By induction, writing R instead of 2R: 

osc(w, 2~kR) < 7fcosc(u, R). 

Let now g < R. We can choose k so that 2~fc~1i?< g < 2~hR, getting 

osc(u, g) < c ( — J osc(u, R) 

with (3 = — ]3^2 > >̂ whence the Holder-continuity of the function u. 
The extension of the method of De Giorgi to minima (and quasi-

minima) of functionals, independently of their Euler equation, was made 
by GlAQUINTA and GIUSTI [2], after FREHSE [3] had studied a particular 
case, under rather restrictive hypotheses. 

For what concerns boundary regularity, ZlEMER [1] proved the conti­
nuity of quasi-minima at every boundary point satisfying a W I E N E R 

condition, thus extending, although not in the maximum of generality, 
well-known results for elliptic equations in divergence form. 

Harnack's inequality was proved by Dl BENEDETTO and TRUDINGER 
[1] for functions in De Giorgi classes, and hence for quasi-minima of integral 
functionals 

T(u, fi) = / F(x, u, Du)dx 
Jo. 

We have also given a second proof of that result, obtained by means 
of an idea, introduced by Dl BENEDETTO [1] in his extension of Harnack's 
inequality to De Giorgi classes of parabolic type. The same idea leads to the 
proof of a Harnack's inequality for De Giorgi classes relative to Hormander 
vector fields (MARCHI [3]). 
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The notion of w-minimum was introduced by ANZELLOTTI [1]. The 
Holder continuity of w-minima was proved by DOLCINI, ESPOSITO and 
Fusco [1] in the special case of integrand F satisfying 

\z\p < F(x,u, z) < L{1 + \z\p) 

and later by ESPOSITO and MlNGIONE [1] in the general case. 
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Chapter 8 

First Derivatives 

The results of the preceding chapter are the most general one can obtain 
for arbitrary scalar quasi-minima of regular functionals 

T{u, n) = / F(x, u, Du) dx. (8.1) 
Jn 

Actually, we cannot expect that the regularity of a quasi-minimum (or 
even of a minimum) of a functional of the calculus of variations, in the sole 
assumptions of the preceding chapters, goes beyond the Holder-continuity 
theorem we have proved in the preceding chapter. The following example 
is characteristic of the general situation. 

Example 8.1 The function u(x) = xi \x\~a, 0 < a < 1, is a weak solution 
of the elliptic differential equation 

/ . 
a13(x)DjuDi(p dx = 0 Vtp e C£°(B)., 

B 

where B is the unit ball in R n , n > 2, and 

a(n — a) XiXj 
al3(x) = S13 + 

( l - a ) ( n - l - a ) \x\2 ' 

The proof of the above assertion can be obtained by first checking that 
the function u is a solution of the equation 

Di{aij{x)Dju] = 0 

in B — {0}, and then arguing as in Example 6.3. 

261 
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It follows that u(x) minimizes the functional 

\Du\2 + a< L 
with a =: (1_aj(l

n.f1_a) > 0, whose integrand F(x,z) satisfies the 
assumptions 

\z\2 <F(x,z) < (1 + CT)|Z|2. 

In particular, u is a Q-minimum of the DlRlCHLET functional, with 
Q = 1 + a. We note that a can be as close to zero as we wish. 

Consequently, if we want to obtain regularity results for the first deriva­
tives, we must abandon the notion of quasi-minimum, whose duty was 
performed in the preceding chapters, and we must consider the minima, or 
more generally the w-minima of the functional (8.1). Moreover, we must 
assume that the function F(x, u, z) is regular enough; in particular that it 
has first and second derivatives with respect to z. 

In this chapter we shall consider the scalar case, and we shall prove 
the Holder-continuity of the first derivatives of the ai-minima (hence in 
particular of the minima) of the integral (8.1), and of the solutions of elliptic 
equations in divergence form. 

The core of the chapter is the study of the minima of functionals 
depending only on the gradient 

T{u, SI) = / F(Du(x)) dx, (8.2) 
Jn 

or more generally of the weak solutions of elliptic equations of the form 

DiA\Du) = 0. (8.3) 

Once suitable estimates for these functions have been obtained, we shall 
consider the general case of w-minima of the functional (8.1), in which the 
dependence on x and u will be considered as a perturbation, and we shall 
prove the Holder-continuity of the first derivatives. The same results hold 
for weak solutions of elliptic equations of the type 

DiA%{x, u, Du) = B(x, u, Du). 
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8.1 The Difference Quotients 

Before beginning the study of the functional (8.1), we shall prove some 
results that will be useful later. 

Definition 8.1 Let f(x) be a function defined in an open set CI C R n , 
and let h be a real number. We call the difference quotient of f with respect 
to xa the function 

As>hf(x) = T , 

where es denotes the direction of the 

When no confusion can arise, we shall omit the index s, and we shall 
write simply A/, instead of ASth-

The function As,hf is defined in the set 

ASthCl = : { i e f i : i + hes £ Cl} , 

and hence in the set 

Cl\h\ = {x G Cl : dist (x, dn) > \h\} . 

The following properties of the difference quotients are immediate: 

(i) If / e W^iSl), then A f c/ G W1*^), and 

Di(Ahf) = A f c (A/ ) • (8.4) 

(ii) If at least one of the functions / or g has support contained in fi|/,|, 
then 

/ fAhg dx = - [ ff A_ f c / dx. (8.5) 

(iii) We have 

Ah{fg){x) = f(x + hes)Ahg{x) + g(x)Ahf(x). (8.6) 

Remark 8.1 It follows immediately from (ii) that the derivatives Dsg of 
a Lipschitz-continuous function g, which exists almost everywhere as limits 
of the difference quotient ASth,g coincide with its weak derivatives. In fact, 
if / is a test function, we can pass to the limit in (ii), getting 

/ fDsgdx = - j gDsfdx. 

In other words, we have Lip (CI) = W1,oc(Cl). O 
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Lemma 8.1 There exists a constant c(n) such that ifv £ W1'P(Q), S CC 

Cl and \h\ < h0 = j o ^ d i s t (s> 9 n)> 

IIAa.fcuHp.E < c| |Z?4u| |p >n . (8.7) 

Proof. We can assume s = n. Let us show first inequality (8.7) when £ 
is the cube QR. We have for almost every x £ E: 

x„+h 1 rXn+n 

Ahv(x) = - / Dnv(x,t)dt, 

where x = ( x i , . . . ,a;„_i). Now let f(t) = Dnv(x,t). From the HOLDER 

inequality we get: 

and hence 

ljz f(t)dt <\J^ \f(z + t)\»dt 

/

R -i rz+h p I pR ph. 

- f(t)dt dz<- dz \f(z + t)\pdt 

= j-f dt f \f(z + t)\"dz 
«/0 J —R 

/

R+h0 

\f(z)\"dz. 
-R-h0 

Denoting by KR the projection of QR on R n _ 1 , we have: 

p p pR i pXn+h 
I |Afcv|pdx = / dx I dxn — / Dnv(x,t)dt 

JQR JKR J-R " Jxn 

p pR+ho 
< dx \Dnv(x, xn)\

p dxn 
JKR J-R-ho 

< ( \Dnv\pdx, 
JWR-t-hn 'QR+h0 

and (8.7) is proved in the case of a cube. 
Now let S CC fl. The set E is contained in the union of a finite number 

of cubes Qi of side 2R = 2/io, without interior points in common. For each 



First Derivatives 265 

of them we can write the preceding inequality: 

I \Ahv\pdx< f \Dnv\pdx. 
JQR JQ-2R 

Since at most 5n cubes of double side overlap, we have immediately the 
result with c(n) = 5™. • 

The preceding proposition has a converse. 

Lemma 8.2 Let v € LP(Q), 1 < p < oo, and assume that there exists a 
constant K such that for every h small enough we have 

\\As,hv\\v,nw < K. 

Then, D3v € Lp{ti), and 

\\Dav\\p,a<K. 

Moreover, when /i —» 0, As>hV -» Dsv in Lfoc(Q). 

Proof. Let hi be a sequence converging to zero, and let 

_ J Ahiv in n|hj( 
9i~\ o inn-nM. 

The sequence gi is bounded in Lp(Cl) and therefore, since that space 
is reflexive, we can extract a subsequence weakly convergent to a function 
g e Lp(n), with | |5 | |p,n < K. 

Let us show that g = Dsv. If <p £ CQ°(Q), we have 

/
gipdx = lim / pAhiVdx — — lim / vAhtfdx 

i—>oo J i—voo J 

I = — I vDs<pdx 

since Ah<p —>• Dstp uniformly. 

In order to prove the last statement, let w € C1,p(fl). We have 

AhV - Dsv = Ah(v - w) + Ahw - Dsw + Ds(w - v) 

and hence from the preceding lemma: 

\\Ahv - D„u||p,E < \\Ahw - DSW\\PIE + c\\Ds(w - v)||P)n • 

The conclusion follows by remarking that Cl'p(Q) is dense in W1,p(fi), 
and that if w £ C1,p(fi), Ahiv —> Dsw uniformly on compact sets. • 
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Finally, we shall use the following lemma: 

Lemma 8.3 Let £ and n be two vectors in R™, and let 

Z(t) = (l + \(l-t)t + tn\2)i. 

For every s > — 1 and r > 0 there exists two constants ci(s,r) and C2(s,r) 
such that 

Cl(i +1£|2 + |TT|2)§ < / (I - tyz(ty dt < C2(i + ICI2 + ki2) i . 
Jo 

Proof. Since we have trivially Z(t)2 < c(l + |^|2 + |7r|2), we need only an 
estimate from below. 

If |7r| > |£|, we have for | < t < 1, 

| ( i - i K + t7r| >*M - ( l - t ) K I > | M - i|^| > ^H 

and therefore 

Z(t)2>c(l + \Z\2 + \n\2). 

The same inequality holds for 0 < t < | if |£| > \TT\. The required 
estimates follow at once. • 

8.2 Second Derivatives 

In this section we shall consider weak solutions of elliptic equations in 
divergence form 

/ Ai{Du)Di<fdx = 0 V^eC0°°(ft) (8.8) 

with coefficients depending only on the gradient, and we will show that 
they have second derivatives in CI. 

For that purpose, it will be necessary to assume that the functions A%(z) 
are of class C1 , and that they satisfy the inequalities: 

|A*| + V{z)\Aij\ < LVizf-1, (8.9) 

A\z)zi>vV{z)p-c, (8.10) 

Aij(z)tej > vV{zy-2\t,\2 (8.11) 
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with v > 0, where we have set1 

V{z) = v / T + W , (8.12) 

Aij{z)=^r- (8-13) 
We remark that multiplying the coefficients by u_1, we can assume that 

v = 1. 
The main result of this section is given by the following: 

Theorem 8.1 Let p > 1 and let u G W1,P(H) be a weak solution of the 
equation 

I Ai(Du)Di<pdx = 0 Vy>€W0 (n)> 

whose coefficients Al{z) satisfy relations (8.9)-(8.11). Then, u has second 
derivatives D2u such that for every S CC Ct 

f Vp~2\D2u\2 dx < c(E) f Vpdx. (8.14) 
JT. Jil 

Proof. Let 6R < dist (£, dil), and let x0 G S. Setting Q t = <5(a;0,0> l e t 

C G C$°(Q2R), 0 < C < 1, C = 1 m QR and |Z>C|2 + |£>2CI < c i T 2 . Finally, 
let \h\ < R. Writing <p = ASi-h(C2^s,hu) in (8.8), and integrating by parts 
by means of (8.5), we get: 

/ 
AhA'iC2 DiAhu + 2Ahu CAC) dx = 0, (8.15) 

where as usual we have written Ah instead of A5i/j. 
We now have 

AhA
i = \ [ ^-A\Du + thAhDu)dt 

h J0 at 

= I Aij{Du + thDAhu)DjAhudt=:ai:lDjAhU, (8.16) 
Jo 

with 

r1 

\dt. a « = f Aij{Du + thAhDu)( 
Jo 

1Of course, the inequalities (8.10) and (8.11), both expressing the ellipticity of the 
equation, are not independent, and actually (8.10) is a consequence of (8.11). 
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It is possible to estimate the coefficients a y by means of the assumptions 
(8.9)-(8.11) and of Lemma 8.3. We get: 

\aij\ <cxW
p~2, 

where 

W2 = 1 + \Du(x)\2 + \Du(x + hes)\
2 . 

With these relations we can estimate the first term of (8.15): 

f AhA
iC2DiAhudx > c fwp-2C2\DAhu\2dx. (8.17) 

In order to estimate the second term, we distinguish the two cases p > 2 
and 1 < p < 2. In the first case we can use again (8.16), obtaining: 

2 f AhA
i AhuC, Di(dx\ = 2 jaijDj{Ahu)C.DiC,Ahudx 

< c f W^IAfcuHDAfcul C \D(\ dx 

<e I Wp-2\DAhu\2 C2dx 

+ C6-1 fwP-2\Ahu\2\DC\2dx, 

and in conclusion: 

[ Wp~2\DAhu\2 dx < cR-2 [ Wp-2\Ahu\2 dx. (8.18) 
JQR JQiR 

On the other hand 

Wp~2\Ahu\2 < c{Wp + \Ahu\p) (8.19) 

and, since \h\ < R, 

f Wpdx<cf Vpdx. 
JQIR JQSR 

Recalling Lemma 8.1, we get 

/ Wp-2\DAhu\2dx < cR'2 f Vpdx. (8.20) 
JQR JQSR 
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If instead 1 < p < 2, (8.19) does not hold, and we must take a different 
path, which consists of expressing the quantity AhA% in a different way. 
We have: 

AhA
i = \ f ^(Duix + the, 

n J0 at 
))dt 

= J DsA\Du{x + thes))dt =: A. a*, 
Jo 

where the functions a1 verify the inequality 

| a * | < y = : / {l + lDuix + the,)]2)^ dt. 
Jo 

We have then 

2 [ &hA
iAhutDi(dx = -2 faW^Ahu^DiOdx 

= - 2 [a'D.iAhuiCDitdx 

-2 fa* Aku(C DisC + AC D.0 dx 

and hence 

2 / AhA
l Ahu C AC dx\ < cR-1 f Y£\DAhu\ dx 

+ cR'2 I Y\Ahu\dx. (8.21) 

Let us evaluate the first term on the right-hand side. We have 

R-lYC,\DAhu\ = BrlYW*?W*ir £ \DAhu\ 

< eWp~2<:2\DAhu\2 + ce-1R-2Y2W2-p 

and therefore 

I Wp~2\DAhu\2dx<cR-2 f (Y2W2-p + Y\Ahu\)dx. (8.22) 
JQR JQIR 

We remark now that 

Y2W2~P < c(Wp + Y^), 

Y\Ahu\<c{\Ahu\p + Y^) 
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and moreover 

/ Y^dx=[ \ f {l + \Du(x + thes)\
2)^ dtV' dx 

JQ2R JQ2R U O J 

< I if (l + \Du(x + the3)\
2)$ dx\ dt 

JO [JQ2R J 

< J Vpdx, 
JQSR 

so that in conclusion (8.20) holds also for 1 < p < 2. 

We remark that if 1 < p < 2, setting 2a = p(2 — p), we have: 

\DAhu\p = WaW-a\DAhu\p < c{W + Wp~2\DAhu\2), (8.23) 

whereas if p > 2 it holds that 

\DAhu\2< Wp-2\DAhu\2. 

The sequence DA/,u is therefore bounded in LM(<5H) (M = m m (2 ,p ) ) ; by 
Lemma 8.2 it converges in L?OC(QR) to DD3u, and hence u £ W££(QR). 
Moreover, from that sequence we can extract a subsequence converging 
almost everywhere; since also W tends to (l + 2|Du|2)5 almost everywhere, 
passing to the limit in (8.20) we obtain the estimate 

I Vp-2\D2u\2dx < cR'2 [ Vpdx (8.24) 
JQR JQSR 

from which, covering S with cubes of sufficiently small side, we get 
immediately (8.14). • 

Remark 8.2 The preceding theorem holds also for elliptic systems: 

A?a{Du)Di<pa dx = 0 
/ • 

with coefficients satisfying (8.9) and the strong ellipticity condition, 
analogous to (8.11), 

A%(p)tf^>vVp-2\Z\2. 

Apart from the multiplicity of the indices, the proof is exactly the 
same. • 

Remark 8.3 If 1 < p < 2 it follows from (8.23) that u € W ^ ( f i ) , with 
the estimate 
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/ \D2u\p dx < c(S) [ Vpdx. (8.25) 
7 E JU n 

Remark 8.4 Since \DV\ < \D2u\, (8.14) implies that the function Z =: 
V? belongs to W£?(fi), and 

[ \DZ\2dx<c f Z2dx. (8.26) 
7 E ./n n 

The fact that u has second derivatives permits one to write two 
interesting equations, both obtained from (8.8). The first is deduced by 
means of a simple integration by parts; setting as before 

OZj 

we have 

I AijDiju(pdx = 0 

for every ip £ Co°(fi), and hence the function u(x) verifies the equation 

Aij(Du)DijU = 0 a.e. in ft. (8.27) 

In contrast, the second one is an integral relation; writing Ds(p instead 
of <p in (8.8) and integrating by parts, we get 

/ 
Aij{Du)DjsuDi(pdx = 0 (8.28) 

for every <p £ CQ°(Q.) and therefore for every ip with compact support for 
which the integral makes sense. 

8.3 Gradient Estimates 

We shall use Eq. (8.28) in order to prove the boundedness and the Holder 
continuity of the first derivatives of u. 

Proposition 8.1 Let u be a solution of Eq. (8.28), and assume that condi­
tions (8.9)-(8.11) are satisfied. Then, for every k > | the function Z = Vk 

belongs to W,*'c
2(ft) and for every S c c A c c f ! we have 

[ \DZ\2 dx < c(k, S, A) f Z2dx. (8.29) 
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Proof. For T > 0 we set 

V? = l + m i n { | I > u | 2
i r } l 

and we take <p = C,2V^aDsu in (8.28), C, being a function with compact 
support. We obtain 

f AijDjau[V$aDuu + 2aV£a-1DiVTD3u}<;2 dx 

= - 2 J AijDisuV£aDsutDitdx. 

We can estimate the different terms in the usual way, remarking only 
that 

\Du\\DVT\ <VT\DVT\, 

DiVTDsuDjsu = VrDiVrDjVr. 

In this way we arrive to the inequality 

J Vp~ 2V$a(\D2u\2 + 2a\DVT\2)C2 dx 

< c f VpV$a\D<;\2dx. (8.30) 

From that estimate we can begin an iterative procedure. Assume that 
V e Lf+C

2a(n) for some a > 0, and let Ei CC S 2 CC fi. Taking < € 
C Q ° ( S 2 ) with £ = 1 in Ei and passing to the limit for T —> oo we deduce 
from (8.30): 

J |DV5+° | 2 da :<c(Ei ,Ea ,a ) f Vp+2adx. 

By the SOBOLEV immersion theorem, V%+a e L2*(Ej) and 

| | ^ ^ + a | | 2 . , S l < c ( E 1 ) E 2 , a ) | | ^ H a | | 2 , E 2 . 

Since (§ + a )2* > p + 2a + ^ ^ , at every step (starting from a = 0) 
we gain a fixed exponent, so that after a finite number of steps we arrive 
at the required exponent k, with the estimate (8.29). • 

In particular, the function WQ = Vp belongs to Wlo'c , and we have 

DJWQ = pVp~2DiuDijU. 
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Setting aij(x) = V2~P Aij (Du{x)), we deduce from (8.28) 

/ a^DjWoDiipdx + p AljDjSuDisuipdx = 0 , 

that we write for simplicity 

J aijDjW0Dnp dx+ g<pdx = 0 (8.31) 

with 

g = pAlj DjSuDisu. 

In particular, since the function g is non-negative, 

aijDjW0Di(pdx < 0 
/ ' 

/ ' 

for every <p > 0. Remarking that the coefficients a%i are bounded and satisfy 
the ellipticity condition 

aijtej > Kl2 , (8-32) 

we conclude that WQ is a sub-quasi-minimum of the DlRICHLET integral 

\Du\2dx 

(see Remark 6.4), and therefore from Theorem 7.5 we get 

supV<-^—[ Vqdx (8.33) 
Q. -{R-Q)nJQR

 y ' 

for every g < R and for every q > 0. 
Moreover, if E CC fi, and if we take the cube QR/2 in such a way that 

supg V = sup s V, we obtain easily the following: 

Theorem 8.2 Under the assumptions of the preceding proposition, the 
gradient of u is locally bounded in fi, and for every S CC fl and every 
q > 0 we have 

SUP^ < (i- . f f i l™ / Vqdx) " • (8-34) 
Once the boundedness of the gradient has been proved, it is immediate 

to show that u € C1 ' " for some a > 0. Actually, the function w = Dsu is 
a solution of Eq. (8.28), with 

\A*\<M and A«&& > |£|2 . 
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It follows that Dsu is a quasi-minimum of the functional J\Du\2dx, 
and hence it is Holder continuous. 

We have therefore the following: 

Theorem 8.3 Let u <E Wl>p(Q.) be a solution of the Eq. (8.28), with 
conditions (8.9)-(8.11), and let p > 1. 

Then, the derivatives of u are Holder-continuous in O, and for every 

compact set K C f2, the norm ||u||c1.'»(K') can be estimated by means of 

IMIw^cn)-

In particular, the preceding theorem applies to the minima of the 
functionals discussed in Chapter 1. In fact they verify Eq. (8.8) with 
A1 = FZi and, being Lipschitz-continuous functions, conditions (8.9)-(8.11) 
are satisfied with p = 2. 

8.4 Boundary Estimates 

We want now to obtain an analogue of (8.33) for solutions of the Eq. (8.3) 
in a half-ball 

B+ = {x£Rn : \x\ < l,xn > 0 } 

with zero boundary value on the flat part 

P = {xG dB+ : xn = 0} 

of the boundary of B+. 
We can assume that u is continuous in B+, and that almost everywhere 

it satisfies Eq. (8.27). 
We shall begin by repeating, with due caution, the argument that lead to 

the proof of (8.33). In the first place, we remark that if s ^ n, the function 
ASthU has null trace on P, and hence we may take again <p — A_^(<^2A/lu), 
with £ G CQ°(B) but generally speaking different from zero on P. We arrive 
thus as above at the estimate 

/ Vp-2\DD'u\2dx<cR-2 [ Vpdx, (8.35) 

in which we have denoted D'u any derivative DiU, with i = 1, 2 , . . . , n — 1. 
In this way we can estimate every second derivative, except Dnnu. For 

it we use Eq. (8.27), that we rewrite in the form 

AnnDnnu=-Z'AijDijU, 
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where the apex indicates that in the sum we have excluded the term with 
i and j both equal to n. 

For T > 0 we set w = min{max{Dnu, -T},T}, and let £ be a function 
in CQ°(B). The function Dnw is zero if \Dnu\ > T, and is equal to Dnnu 
otherwise. Multiplying the preceding equation by Dnw, and making the 
usual estimates, we get 

,'..|2 Vp-z\Dnw\z < cVP-^DD'u 

for almost every x £ B+. 
The last inequality can be integrated on every Q^ C B+, giving 

/ Vp-2\Dnw\2dx<c f Vp-2\DD'u\2dx. 
JQt JQ+

R 

If we pass to the limit for T —>• oo and use (8.35), we get in conclusion 

f vp-2\D2u\2 dx < cR~2 ( Vpdx. (8.36) 
JQt JQtn 

The second step consists of proving the boundedness in P of the gradient 
of u. We shall start from Eq. (8.27): 

Aij(Du)DijU = 0, 

or else, setting as above atJ' = A%:*V2~P: 

aij'(I>u)AjU = 0. (8.37) 

We have already proved that the function u is continuous (or better, 
Holder-continuous) in B+ U P, and that it belongs to C1'a(B+). We shall 
prove in Chapter 10 that u £ C2'a(B+). 

For 0 < xn < 5 we set 

w = eu - 1 + /ie~Ax" . 

We have 

DijW = eu(DijU + DiuDju) + X2fiSin6jne~Xx" 

and hence, recalling (8.32): 

aijDijW > ii\2e-Xx" . 

We choose now the constants fi and A in such a way that 

aijDijW > 1 if 0 < xn < S 
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and 

w(x) < fi it xn = 6. 

To that purpose, it is sufficient for instance to take A in such a way that 
e~xs = ^, and then, setting M = sup |u|, to choose \x > 2(eM — 1) in such 
a way that /iA2 > 2. 

This being done, the function w cannot have a maximum in a point x 
with 0 < xn < S, since at the maximum point one should have al^DijW < 0. 
Since w < \i if xn = S, the maximum will be taken on <?fi, where w = \x. 
Consequently, 

« < l{xn) =: log[l + n(l - e~Xx")}. 

Since — u is solution of an equation of the same sort, we can conclude 
that 

\u{x)\ < -y(xn) 

in the strip 0 < xn < 6. 
From that we conclude immediately that Du is bounded on dQ, thanks 

to Corollary 3.2 and to the fact that, by virtue of Theorem 8.1 and of (8.36) 
the first derivatives of u belong to W1'2(B+) if m > 2, and to Wl*(B+) if 
p<2. 

At this point we can prove the analogue of Proposition 8.1. Let M = 
maxp \Du\2, and for T > M let 

W2 = WM,T — 1 + min{max{|Z?u|2, M}, T} , 

/i2 = 1 + M. 

We have W = max{V^, (J,}, and hence 

VT < W < VT + M, (8.38) 

whereas W = fi on P, so that W2a — fj?a = 0 on P for every a > 0. 
Taking then ip = (2(W2a-(j?a)Dsu in (8.28), where C is a test function 

not necessarily equal to zero on P, we get 

f AijDjsu[(W2a - ix2a)Disu + 2aW2a-1DiWDsu}(2 dx 

= - 2 [ AijDjsuDsu{W2a - n^CDiCdx. 
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If we remark that 

we get 

| D u | | I W | <W\DW\, 

DiWDsuDjsu = WDiWDjW, 

I Vp~2(W2a - /i2a)|D2u|2C2 dx 

< c f Vp(W2a - /i2a)|DC|2 dx. 

From the above estimate, recalling the inequalities (8.36) and (8.38), 
and choosing £ in the usual way, we obtain 

f vp-2VZa\D2u\2 dx < c{n)B72 f VpV$adx, (8.39) 

which, thanks to (8.36), holds also for a = 0. 
We can now proceed as in the proof of Proposition 8.1, obtaining the 

estimate 

/ \DZ\2dx<c(k,n) [ Z2dx (8.40) 
JB+ JB+ 

with Z = Vk. 
Arguing as in Theorem 8.2, and taking into account the boundedness of 

Z on P, we conclude that the gradient of u is locally bounded in B+ U P, 
and that for every g < R and every q > 0 we have 

s u P y 9 < 7 ^ - ^ - / Vqdx. (8.41) 

At this point we could prove that the function u has Holder continuous 
derivatives up to P. On the other hand, the case under examination (func-
tionals dependent only on the gradient, flat boundary) is too particular to 
be interesting in itself. We shall therefore postpone the regularity results 
at the boundary till the next sections, when we shall deal with the general 
case. 
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8.5 u;-Minima 

Under suitable assumptions, most of the theorems proved till now can be 
extended to weak solutions of general elliptic equations 

/ {Ai(x, u, Du)Di<p + B(x, u, Du)(p) dx = 0 

and therefore to the minima of general functionals 

F(u, 0) = / F(x, u, Du) dx. (8.42) 

Jo, 
We shall not follow the path that is discussed in detail in the treatise 

by LADYZENSKAYA and URAL'CEVA [1]. On the contrary, we will rather 
attack the problem of the regularity of the first derivatives by direct meth­
ods, treating the w-minima of general functionals. In this way, we shall 
also recover most of the classical results, under substantially more general 
assumptions. 

Postponing to the next chapter the discussion of the vector case, we 
shall prove now the regularity of the first derivatives of scalar u;-minima. 

For what concerns the integrand F(x,u, z), we shall assume that it is 
of class C2 in z and that it verifies the inequalities 

Vp <F(x,u,z)<LVp, (8.43) 

\Fzz(x,u,z)\<LVP-2, (8.44) 

F^tej >W-2\H\\ (8.45) 

where we have set 

V2 = V2(z) = l + \z\2. 

Moreover we shall assume that the function V~pF(x, u, z) is continuous 
in (x, u) £ Cl x R, uniformly for z € R n ; in other words, that there exists a 
continuous, bounded, increasing and concave2 function i?(t), with i?(0) = 0, 

2 This last condition is not restrictive. Actually, if (8.46) is satisfied by a function 
a continuous, bounded and increasing, it will suffice to take as i? the smallest concave 
function not smaller than a. Such a function i? is obviously increasing, is bounded 
by the same constant M giving the bound for a, and is continuous. We have finally 
i?(0) = 0, since if tf(0) = 2/ > 0, taking a d > 0 such that a(t) <lin[0,d], the function 
min{i9,1 + (M — l)x/d} would be itself concave, and would lie between a and $, against 
the definition of i9. 



First Derivatives 279 

such that 

\F(x, u, z) - F(y, v,z)\< 0(\x - y\ + \u - v\)Vp. (8.46) 

Our goal is to prove the Holder continuity of the first derivatives 
of the w-minima, and therefore in particular of the minima of general 
functionals (8.1). 

Let us begin with some preliminary remarks. Setting as above 

Q,R = n(x0, R) = ft n Q(x0, R), 

we consider the frozen functional 

^ro(«,ftfi)= / F(x0,u(x0),Dv)dx. 

Lemma 8.4 Let u be a bounded function and let v minimize the func­
tional !FQ with DlRlCHLET datum v = u on dflR.3 We have 

osc (v, QR) < osc (u, dClR) + cR. (8.47) 

Proof. The function v is a quasi-minimum of the integral 

(1 + \Dv\2)$ dx. J 
If k > ko =: sup9fjR u, comparing v with w = min{i;, k} we get easily 

/ \Dv\pdx < c\A(k)\, 
JA(k) 

where 

A(k) = {x e ftfl : v(x) > k} . 

It follows for h > k 

{h-k)p\A(h)\< f (v-k)pdx<([ (v~k)p'dx) |i4(fc)|-
JA{k) \JA(k) J 

< c [ \Dv\pdx\A(k)\% < c\A(k)\1+n . 
JA(k) 

3 The existence of a minimizing function is guaranteed by Theorem 4.6. 
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Setting now ki = k0 + d-d2 \ and writing briefly a* = |j4(fcj)|, we have 

ai+1 < cdrp2ipa\+" . 

By Lemma 7.1, if a0 < cdn (a condition that will be satisfied taking 
d = cR) we have lim^oo a, = 0, and hence 

v{x) < k0 + cR. 

The conclusion then follows by remarking that — v is a quasi-minimum, 
with boundary datum — u, of the integral 

/ F(x0,u(x0),-Dv)dx, 

which satisfies the same inequalities as TQ. • 

Now let u(x) be an w-minimum for the functional (8.1), with boundary 
datum4 U. We have shown in the previous chapter that u is Holder con­
tinuous in Q; let 5 > 0 be such that oscnRu < cRs. We have then, taking 
into account the lemma just proved: 

F0{u, nR) = F{u, nR) + f [F(x0, u(x0), Du) - F(x, u, Du)] dx 

< (1 + u(R))F(v, VR) + ti(cRS) [ (1 + \Du\2) f dx 

< T0{v,QR) + <T(R) I [(1 + \Du\2)* + (1 + \Dv\2)%] dx, 

where we have set cr(R) = cu>(R) + d(cR5). 
On the other hand v minimizes !Fo, and u is a w-minimum of T\ whence 

if w = u = v on dClR, we have TQ{V,Q,R) < !FQ(W,QR) and !F(u,£IR) < 
CJ-(W,CIR). Consequently, recalling condition (8.43): 

T0{u, nR) < [1 + ca(R)]F0(w, QR) (8.48) 

for every w G W1,P(CIR) with w = u on 8CIR. 

This property will simplify the following proofs. 
We shall begin by proving the regularity of the first derivatives of the 

w-minima in the MORREY spaces Lp'x. For that purpose, the two following 
lemmas will help. 

4Of course, as long as we are interested in local results, the boundary value of u is 
irrelevant. 
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Lemma 8.5 Let g(£) = V(£)s = (1 + |£|2)s, with s > 0. Then, for every 
£, n € R" ond /or ever?/ e > 0 we have 

g(n) < (1 + e)ff(0 + ; ( l + |£|2 + M2)2*21£ - TT|2 . (8.49) 

Proof. We can assume that 0 < |£| < |vrj, and hence g(£) < g(n). Setting 
£t = tn + (1 — £)£, we have 

5W - ff(0 = jf' |<?(6) dt = aj\*- £, ttWtt)-2 dt. 

From it, taking into account Lemma 8.3, we get 

Jo 

< < * ! * - £ | ( 1 + K|2 + |7T|2)1T1 

<2- s - 1 e( l + |£|2 + |7r|2)4 

It follows immediately that 

( i - 1 ) s(») < <K£) + ^ H * - ei2(i + Kl2 + k l 2 ) ^ 1 

whence (8.49). D 

Lemma 8.6 Let x0 € fi, R < dist (x0, dil) and 

F°(z) = F(x0,u(x0),z). 

Let w € W1,p(Qij), and fei i>(a;) be the function minimizing the frozen 
functional 

FO{V,QR)=: f F°(Dv)dx 
JQ(X0,R) 

among all the functions coinciding with w on 8QR. Then, 

( (\ + \DW\2 + \DV\2)*T- \D(w- v)|2 dx 
JQR QR 

< c[T0{w, QR) - FQ{v, QR)]. (8.50) 
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Proof. We have 

F°(ir) - F°(0 ~ <*?(0 ,* - 0 

Jo 

and therefore 

F°(7r) - F ° ( 0 - (F°(£), TT - 0 > AK - vrl2 

where, due to the Lemma 8.3, 

A =: / \ l - t)(l + \t + t(7r - Ol 2) 1^ 2 * > c(l + |e|2 + M2)**2 . 
Jo 

The conclusion follows immediately, taking £ = .Du, ir — Dw, integrat­
ing on QR, and remarking that, since v minimizes TQ and w — v = 0 on 
9QR, we have 

/ {F°{Dv),Dw-Dv)dx = 0. 
JQR U 

Theorem 8.4 Let u G W1 , p 6e an uj-minimum of the functional 

J-(u, fi) — / F(x,u,Du)dx, 

and let conditions (8.43)-(8.46) be satisfied. Then, the derivatives Du belong 
to Lfoc(Tl) for every X <n, and for every S CC CI we have the estimate 

| |0U|IP,A;E < c(A,E)||V(Du)||Pln. (8.51) 

Proof. Let a;0 G S and let R < Ro =: dist (E,<9f2). As above, let u(a;) 
be the function minimizing the frozen functional !Fo(v, QR) among all the 
functions coinciding with u(x) on 8QR. 

The function v is a solution of the elliptic equation 

J Fl (Dv)Di<p dx = 0 V <p G C0°° (QR) . 

From what we have shown in the preceding section (see in particular 
(8.33) with q = p), the gradient of v is locally bounded, and we have 

supV(Dv)p < c-f V(Dv)pdx, (8.52) 
QR JQR 
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from which we get at once 

/ V(Dv)*dx<c(%Y f V(Dv)pdx (8.53) 
jQe

 KKJ
 JQR 

for every g < -j. 
By Lemma 8.5 we have 

/ V{Duf dx < 2 J V(Dv)p dx 

+ c f {l + \Du\2 + \Dv\2)^\D{u-v)\2dx 
JQo IQ 

and hence 

/ V(Du)pdx<c(%Y f V(Dv)pdx 
jQe

 KK/
 JQR 

+ c f (l + \Du\2 + \Dv\2)^\D(u-v)\2dx. 
JQR JQR 

On the other hand 

/ V{Dv)p dx < T0(v, QR) < To(u, QR) 
JQR 

<c[ V(Du)pdx, 

JQR 

from which, using (8.50) and (8.48) with w = v, we arrive to the estimate 

J Vpdx<cM^Y+ a(R)\ J Vpdx, (8.54) 

where for the sake of brevity we have written V instead of V(Du). 
Let now r£ = ^ , and let i?o be such that for every R < RQ we have 

cr(R) < Tn. Taking g = TR in (8.54), we obtain 

[ Vpdx<2crn [ Vpdx<Tn~e [ Vpdx. 
JQTR JQR JQR 

Setting therefore <f{g) = fQ Vp dx, we can apply Lemma 7.3, getting 

/ Vpdx<c(-^) [ Vpdx 
JQe \RoJ JQRO 

from which the conclusion follows at once. • 
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The same result holds up to the boundary for solutions of the DlRlCHLET 
problem. 

We remark in the first place that it is possible to assume {7 = 0. In fact 
the function v(x) = u(x) — U(x) is a w-minimum of the functional 

9{v)= J F(x,v + U(x),Dv + DU(x))dx 

and the function f(x, u, z) = F(x, u + U{x), z + DU{x)) verifies the same 
conditions (8.43)-(8.45) of F. This is quite simple to show if only we remark 
that, setting 

X2 = 1 + \z + DU\2 

and x = SUP |-OC7"|, we have obviously X < c(x)V, and moreover X > 1 if 
\z\ < 2x, whereas X > ^V if \z\ > 2x, so that in conclusion 

X> V 

2y/\ + 4 X
2 ' 

Assume now that dQ, is a regular manifold in R n . More precisely, let 
us assume that for every XQ € dQ, there exists a diffeomorphism 7 between 
the unit ball B and a neighborhood W of XQ, mapping the upper half-ball 
B+ = B n R £ onto W n Q. and the flat part P of dB+ on dQ, D W. Setting 
as usual v(x) = : u o ^ ( x ) and denoting by H the inverse of the matrix 

Ti =
 d1j 

j dxi' 

and with J the Jacobian determinant, J = detT, we have Dv = TDu o 7, 
and the function v minimizes the functional 

/ ' 
G(x, v, Dv) dx 

in B+, where 

G(x,v,z) = \J(x)\F(7(x),v,Hz). 

It is not difficult to prove that if the map 7(1) is of class C1 , the new 
integrand G verifies conditions (8.43)-(8.45). For instance, we have 

Ehk =: -f^- = \J\H?H*F2iZMx),z,Hz). 
OZhOZk 
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Since 7 is a diffeomorphism, we have | J\ > c > 0 and a\£\ < \H£\ < b\£\, 
with a > 0, and therefore 

> inf \J\V(Hz)p-2\H£\2 > vV{z)p-2\£\2. 

We can now repeat the proof of Theorem 8.4, writing simply Q^ instead 
of QR, and using (8.41) at the place of (8.33). 

In particular, the function u(x) is Holder continuous with every 
exponent a < 1. 

8.6 Holder Continuity of the Derivatives (p = 2) 

Our program continues now with the proof of the Holder continuity of the 
first derivatives of the w-minima. We shall treat first the case p = 2, for 
which the proofs are simpler by far. 

Theorem 8.5 Let u be an u-minimum of the functional J-, and let the 
conditions (8.43)-(8.46) with p = 2 be satisfied. Assume moreover that 
a(t) =: u(t) + ^(ct5) < AtT for some T > 0. Then, the derivatives of u 
are Holder-continuous with some exponent a in fi, and for every open set 
S CC f2 we have: 

IMIci.«(S) < c| |u| |Wi,2 (n ) . (8.55) 

Proof. As above, let v(x) be the function minimizing the frozen func­
tional !Fo with « = « o n dQR. The derivatives Dsv verify the EULER 
equation 

f ffj {Dv)Dj(Dsv)Diip dx = 0, (8.56) 

and hence they are quasi-minima of the DlRlCHLET functional 

/ \Dz\2dx. 
JQR 

From Theorem 7.7 we have 

/ \Dv-(Dv)e\
2dx<c(%Y+2 [ \Dv-(Dv)R\2dx (8.57) 

JQS
 V K /

 JQR 
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and therefore 

/ \Du-(Du)e\
2dx<c(%Y+2 [ \Du-(Du)R\2dx 

jQe
 KKJ

 JQR 

+ c [ \D(u-v)\2dx. 
JQR 

The last integral can be estimated by means of Lemma 8.6; recalling 
the inequality (8.48) we get 

/ \Du-(Du)e\
2dx<c(%)n+2 f \Du-{Du)R\2dx 

JQe
 XHJ

 JQR 

+ cART [ V2dx. (8.58) 
JQR 

L 
We can use now Theorem 8.4 with 4e = r. We have 

V2dx<cRn-2i\\u\\12 
JQR 

and in conclusion 

/ \Du-(Du)e\
2dx<c(%Y+ f \Du-(Du)R\2dx + BRn+2€ 

JQe
 KRJ

 JQR 

with B = c||-u|| i,2-
Applying once again Lemma 7.3, we obtain the desired conclusion. • 

The same result holds for w-minima with zero DlRlCHLET boundary 
value (or more generally with regular boundary datum on dD,); in this case 
one obtains the Holder continuity of the derivatives up to the boundary of 
fi. The proof proceeds as usual, considering first the derivatives Dsu with 
s 7̂  n, and then using the equation to estimate the derivative with respect 
to xn. 

Let us consider the details. In the first place, we can assume that 0, is 
the half-ball B+, and that u is zero on the flat part P of dB+. If Q(x0,R) 
is a cube with xn € Bt and R < h, let v be the minimum of the frozen 

2 Z 

functional on CIR(XQ). 

The function v i s a solution of the equation 

F%(Dv)DijV = 0, (8.59) 

and its derivatives Dsv are quasi-minima of the DlRlCHLET integral in 

^fi(zo)-
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If s ^ n the functions Dsv have zero trace on the flat part P of the 
boundary, and hence the estimate (7.55) holds with p = 2 and \ = °- We 
thus have 

f \DD'v\2 dx < c flV'2+2S f \DD'v\2 dx 
jQt ^K/ JQt 

for some S > 0, where D' indicates any of the derivatives, except that with 
respect to xn. 

For what concerns the derivative Dnnu, we use Eq. (8.59), from which 
we obtain 

£>„„« = - = ^ - E ' i ^ . A j « , 

where the apex indicates that in the sum we have excluded the term with 
i = j =n. Remarking that F°n > 1, we get 

r \D^dx<c(%y~2+25 r \D\\2dx 
JQt KRJ JQt 

and hence 

f \Dv-(Dv)e\
2dx<c(^)n+2 f \Dv - (Dv)R\2 dx. 

From that estimate, proceeding as above, we get 

/ \Du-(Du)e\
2dx<c(%Y+25 f \Du-(Du)R\2dx + BRn+2e. 

JQt yRJ JQ% 

An additional application of Lemma 7.3 gives in conclusion the 
following: 

Theorem 8.6 Let u be an tj-minimum of the functional F, and let 
conditions (8.43)-(8.46) be satisfied with p = 2. Assume that a(t) = AtT, 
(T > 0), and that u has a boundary value U of class C1'5 for some 6 > 0. 
Then, u belongs to C1,Q!(fi) for some a > 0, and we have 

\W\\ci.°>(n) < c||u||w".*(n) • (8.60) 

Remark 8.5 The argument leading to the proof of Theorem 8.5 cannot 
be extended immediately to the case p ^ 2. In fact in this situation the 
coefficients A^ = F?- of (8.56) are not bounded functions, and therefore it 
is not possible to deduce an estimate such as (8.57) with the above method. 
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More precisely, the derivatives of the function v, the solution of (8.56), 
are indeed bounded in QR, but by (8.52) we have 

sup(l + \Dv\2)% <c-f (1 + \Dv\2)% dx. 
Q§ JQR 

Consequently, the function Dv is always a quasi-minimum of the 
DIRICHLET integral, but the constant Q, and hence the constant c and 
the exponent 6 in (8.57), depend on the quantity -jL V(Dv)p dx, which is 
of the same order than -ji V{Du)p dx, and hence depend on R. O 

8.7 Other Gradient Estimates 

We shall deal now with the more complex case in which the exponent p 
is different from 2. By Remark 8.5, we cannot use directly the inequality 
(8.57), and therefore we must look for new estimates, independent of R, 
for the minima of the frozen functional Fo in QR, or more generally for the 
weak solutions of the elliptic equation 

DiA
i(Dv)=0. (8.61) 

As we have shown, the function v verifies the equation 

j Aij (Dv)DjsvDiip dx = 0 (8.62) 

for every <p with compact support. 
Let us begin with some simple consequences of (8.62). We have already 

remarked in Sec. 8.3 that, setting w0 = Vp (V2 = 1 + \Dv\2) and a^(x) = 
V2'PAij(Dv(x)), we have 

/ aijDjW0Di<pdx+ gpdx = 0, (8.63) 

where 

g = pAtj DjSvDisv, 

The function g is obviously non-negative, and satisfies the inequalities 

ClV
p-2\D2v\2 <g< c2V

p-2\D2v\2 . (8.64) 

For 1 < k < n, we define 

wk = wk{Dv) =: V(Dv)p-lDkv. 
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If we indicate by w the vector of components wk (0 < k < n), we have 

ClV
2?-2\D2v\2 < \Dw\2 < c2V

2?-2\D2v\2 (8.65) 

and therefore 

Cl\Dw\2 < gw0 < c2\Dw\2 . (8.66) 

Moreover, taking (8.62) into account, we have for every k — 1 , . . . ,n: 

/ alJDjWkDi(pdx + / gk<pdx = 0 

with 

^DkvDsv^ 
gk = Aij(Dv)DsjvDt (vSks + (p - 1)-

V 

and hence 

\gk\ < cV-2\D2v\2 < eg. (8.67) 

Let now v be a unit vector, and let vv = (u,Dv). The function v„ is 
solution of the equation 

/ AijDjVvDi<pdx = 0 

and hence, taking <p = C,2vv and estimating in the usual way, we get 

[ Vp-2\DVl/\
2(2 dx < c J Vp-2\vv\

2\DC,\2dx. 

With the usual choice of C,, the last expression becomes 

/ Vp-2\Dvu\
2dx < ^ [ Vv~2\vu\

2dx. (8.68) 
JBt

 t JB2t 

Lemma 8.7 For every tp € W1,2(Br) with zero average on Br, we have 

2-f i>2dx<c(-f \Dip\2dx\ I \Dip\2~~dx. (8.69) 
JBr \JBr J JBT 

r-2 
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Proof. It is an immediate consequence of the SoBOLEV-PoiNCARE 
inequality. We have in fact 

2 2 

fiP2dx<c(f |L>V|2* dxY' =c(f | Z t y | ° W | 2 ' ~ a dx) '* 

a 2 —c* 

< c ( f \DtP\2dxY' ( f IDiPl^^r1 dx^j 2* 

from which (8.69) follows taking a = 2 - 2* = ^ . • 

Let us define now the vector 

f p —2 

K = / V 2 Dv dx. 
J B-2t 

The space orthogonal to «; has dimension n — 1, and hence there exists 
n — 1 orthonormal vectors Vi such that (K, Vi) = 0. Since a rotation does 
not change the structure of Eq. (8.62), we can assume that Ki = 0 for 
i = 1 , . . . ,n — 1. 

The functions ipi = V 2 DiV have therefore null average on Bit, and 
we can apply the preceding lemma. Remarking that 

|£>Vi|2 < cVp-2\D2v\2 < eg 

and taking (8.68) into account, we can conclude that 

E ' - / Vp-2\Di:jv\2dx<c(i gdx\ -I gl~^dx, 
JBt \JB2t ) JB2t 

where as usual the apex indicates that in the sum we have excluded the 
term i = j = n. We can deal with this term by remarking that the function 
v is a solution of the equation 

aij(x)DijV = 0, 

and that the ellipticity condition implies that ann > 1. We have therefore 

| A m H 2 < c S ' | £ M 2 . 

Introducing the last estimate in the previous one, and recalling (8.64), 
we obtain 

-I gdx<c(4 gdx) -I gx~"dx. (8.70) 
JBt \JB2t J JB2t 

file:///JB2t
file:///JB2t
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Prom that inequality we easily infer the following: 

Lemma 8.8 The function g belongs to L1+"(Qa) for some a > 0, and 
we have 

4 g1+<Tdx<c(4 gdx) . (8.71) 
JQ, \JQi, / 

Proof. It follows from (8.70) that there exists a constant A = \{n) such 
that for any cube Q(y, A) contained in Q2S 

2, 

4 gdx < elf gdx\ 4 ff1_" dx 
jQ{y,t) \JQ(yM) j JQ(y,\t) 

< e-f gdx + c(e)l4 ff1-" dx 1 
jQ(y,xt) \JQ(yM) J 

The conclusion of the lemma follows then from Corollary 6.1. • 

The next result is a lemma of technical character, that will be useful 
later. 

Lemma 8.9 Let 1? G W0' (Q2s) be the solution of the equation5 

j aijDj^Diif dx=^ j <pdx. (8.72) 

There exists two positive constants c\ and C2, independent of s, such 
that •& < C2 in Qzs and 1? > c\ in Qs. 

Proof. The function 0(:r) = -&(sx) belongs to WQ'2(Q2) and it is a 
solution of the equation 

jaiiDjQDi<pdx= jipdx (8.73) 

for every <p € W0
1'2(<52), with a^{x) = atj(sx). In particular, 0 is a 

quasi-minimum of the functional J(\Du\2 + \u\2)dx, and a positive super-
quasi-minimum of the DIRICHLET integral. 

5Or equivalently the minimum, necessarily unique by the strict convexity, of the 
functional 

1Z(ti) =: j (a^DitiDjti - 2 ^ ) dx . 
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We have consequently © < C2 in Q2, and by Theorem 7.9 

i n f 9 > c ( - f Qrdx) 
«» ~ \JQ2 J 

for some r > 0. 
The last integral cannot be zero, since otherwise © would be iden­

tically zero, and could not be a solution of (8.73). We have therefore 
6 > c\ in Qi, and coming back to the function d we get the desired 
conclusion. • 

The next result is again instrumental, but it is of some interest in itself. 

Lemma 8.10 Let f £ Wl'2(Q2S) be a non-negative function, such that 

JaijDifDjV>dx<0 (8.74) 

for every <p G W0' (Q2s), y > 0- Then, for some r > 0 we have: 

-f \Df\ dx < -M{2sf-r[M{2s) - M{s)}r , (8.75) 
JQ, S 

where 

M(s) = sup / . 
Q, 

Proof. Taking p = (f (( >0 with compact support) in (8.74), we have 

f aijDif2DjC, dx + 2 f cf'DifDjfC dx<0 (8.76) 

and hence also f2 satisfies the differential inequality (8.74). 
Consequently, f2 is a sub-quasi-minimum of the DlRlCHLET functional 

/ \Dw\2 dx, and hence inequality (7.21) holds with K;0 = X = 0: 

M(s)2 = s u p / 2 < c / f2dx. (8.77) 
Qs JQ2s 

In a similar way, the function y = M(2s)2 - f2 satisfies the inequality 

f aijDiyDjCdx = 2 f a^DJDjfCdx > 0 
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for every test function ( > 0, and hence we have HARNACK's inequality 
(7.61) with x = 0: 

(-f y2r dx) ^ < c inf y < c(M(2s)2 - M(s)2) 
\JQ2, ) «• 

< cM(2s) [M(2s) - M(s)]. (8.78) 

Let now t? be the function introduced in the preceding lemma. We can 
choose if = $y in (8.72), obtaining 

faijDj^2Diydx = ^ ftiydx-2 I a^D^D^ydx <~ j dydx. 

Taking now C, — i?2 in (8.76), we obtain 

c / \Df\2ti2 dx- f cJ'DiyDjd2 dx<0 

and therefore 

„2 -f \Df\2dx<c-f ydx<cM{2s)2-ir-f y2r dx 
JQS JQ2S JQ2, 

< cM(2s)2-2r[M(2s) - M(s)}2r 

from which (8.75) follows at once, recalling that 

-f\Df\dx< (j\Df\2dxX . 

Let us consider now, for h = 0 , 1 , . . . , n, the function yh minimizing the 
functional 

• 

Q{y)= [ aij(x)DiyDjydx 
JQit 

among all the functions taking the value Wh on dQ^t, o r m other words the 
weak solution of the DlRlCHLET problem: 

faijDjyhDi<pdx = 0 Vtp eW£'2(Q2t) 

yh = wh on dQ2t 

Lemma 8.11 We have yo >WQ. supyo = supwo, o,ni moreover 

J \Dyh\
2dx<c[ \Dwh\

2dx. 
JQit JQ2t 
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Proof. The pointwise inequalities are simple consequences of the maxi­
mum principle. Indeed, setting <p = max(wo — yo, 0), we have ip > 0, (f = 0 
on dQ2t, and hence 

/ aijDj(w0 - y0)Di(pdx < 0. 

Prom that it follows immediately 

/ \D<p\2 dx< I aijDj<pDi<p dx<0 

and therefore <p = 0, that is u/o < 2/o-
Moreover, since yo is a quasi-minimum of the DlRlCHLET integral, it 

will take its maximum on the boundary, where it coincides with tuo-
Finally, the integral inequality can be proved taking ip = yh — Wh in the 

equation and estimating. • 

Lemma 8.12 Setting M(s) = supQs wo, we have 

M(t)-f gdx<c-f \Dw\2dx. (8.79) 
JQt JQ*t 

Proof. Since yo > 0, we have by HARNACK'S inequality: 

inf yo > c sup yo> c sup WQ = cM(t). 
Qt Qt Qt 

Let us now define 

E = ix e Qt : w0{x) < ^cM(t)\ , 

and let fo = yo~ w0. We have / 0 > 0, f0 = 0 on dQ-^t, and /o > f M(t) in 
E. Consequently, 

M(t) / gdx < c gfodx = - c / atjDjWoDifodx 
JE JQ2t JQit 

<c( I \Dw0\
2dxY ([ \Df0\

2dxY 
\JQ2t J \JQit J 

< c \Dwo\2dx. 
JQit 

On the other hand w0 > |M(t ) in Qt - E, and since gw0 < c\Dw\2, we 
have M(t)g < c\Dw\2. That inequality, together with the preceding one, 
gives the lemma at once. 

file:///JQ2t
file:///JQit
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At this point we come back to the functions y^ defined above, and we 
set fh = yh — Wh- The functions yh minimize the quadratic integral Q, and 
hence we have (7.46) with m = 2 and \ = 0: 

/ \Dyh\
2dx<c(^Y~2+2S f \Dyh\

2dx 
JQe

 V f / JQt 

- C ( f ) " ~ 2 + 2 V \Dw»\2dx-
It follows that 

/ | D ^ | 2 ^ < c f f ) n _ 2 + 2 / \Dwh\
2dx+ f \Dfh\

2dx. (8.80) 
JQe

 v t / JQt JQt 

It remains to estimate the last integral. We have in the first place 

/ \Dfh\
2dx<c[ aVDjfhDifhdx 

JQ2t JQ2t 

= - c / aljDjWhDifh dx 
JQit 

= c / ghh dx. 
JQ2t 

From that inequality, using (8.67) and (8.71), we get 

/ \Dfh\
2dx<c(-f g1+°dxY+° ( i \fh\

qdx 
JQit \JQ2t J \JQit 

<c-f gdx(-f \fh\
qdx\ , 

JQu \JQ2t J 

where we have set q = 1 + - . 
The last integral can be estimated as follows: 

/ \fh\«dx<cM(2t)i-2-f \fh\
2dx<ct2M(2t)<>-2-f \Dfh\

2dx 
JQzt JQ2t JQ2t 

<ct2M{2ty-2i \Dwh\
2dx<ct2M(2t)q-2-f gw0dx 

JQ2t JQn, 

<ct2M{2t)q-li gdx. 
JQit 

file:///JQ2t
file:///JQit
file:///JQ2t


296 Direct Methods in the Calculus of Variations 

On the other hand, if ( is a function with support in Qit and such that 
C = 1 in Q2t and \D£\ < ct~l, we have 

4 gdx<c-h g(dx = —c 
JQ2t JQit JQ 

4 a^DjWoDi 
JQu 

C,dx 

< U \Dw0\ 
tJQit 

dx 

< ^M(8t ) 1 _ r [M(8 t ) - M{U)]r , 

where we have applied Lemma 8.10 to the function WQ. 
Prom the above relation it follows that 

and introducing Lemma 8.12, 

(8.81) 

(8.82) 

We have in conclusion: 

SQ\^dx<c (ir2 + 2v M(g) 

M(16t)J \JQ 
\Dw\2 dx 

for g < t. 
On the other hand, for t < g < 16i we have 

/ \Dw\2dx<c(^Y~2+2S f \Dw\2dx 
JQe

 KtJ JQiet 

so that the preceding relation holds for every g < 16t. Writing t instead of 
16t, we obtain 

/ PHa«fe<c{(f) 
n-2+2S 

+ 
\ M{g) 

JQt 

\Dw\2 dx (8.83) 

for every g < t. 
Prom that inequality we deduce the required estimate for the gradient 

of v. 

Theorem 8.7 Let v be a weak solution of (8.61). There exists a constant 
/x > 0 such that for every XQ € fl and for every g < R < cdist (XQ, dft) we 
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have 

i \w-we\
2dx<c(^\i,XM{Rf 

J Qe 

Proof. We define 

a(t) = t2~n f \Dw[2 dx. 
JQt 

For 0 < T < 1, we have obviously 

a(rt) < T2~na(t). 

Moreover, taking Q = rt in (8.83), we have 

M(rt) 
a(rt) <c<TZd + 

M(t) 
J2-n a(t). 

Choosing r < \ in such a way that 2CTS < 1, if 

M(t) 
<T n-2+2S 

then 

cr(ri) < TSo(t). 

If instead (8.86) is false, we have 

M(rt) < ( l - T , ( " ~ ' + M ) ) M(t) =: jM(t) 

(8.84) 

(8.85) 

(8.86) 

(8.87) 

(8.88) 

with 7 < 1. 
We choose now A in such a way that S + A(2 — n — 26) = | . Let 

k be an integer, and let us consider the preceding relations for t = 
R,TR,...,Tk~lR. 

If (8.86) is false at most for j < Xk indices between 0 and k — 1, we can 
use either (8.85) or (8.87) according to circumstances, obtaining 

a{rkR) < Tj(2-nW°-W<r(R) 

< Tk<s+xla-n-s»a{R) = T%a(R). (8.89) 

If instead (8.86) is false for more than j > Xk indices between 0 and 
k — 1, we have 

M(TkR) < ^M(R) < 7
AfcM(JR) 
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We remark now that by (8.66) and (8.81) we have 

a(t) < ct2 f gw0 dx < ct2M(t) -f gdx< cM(4i)2 

JQt JQt 

and hence, recalling that T < \: 

a(TkR) < cM(Tk~1R) < c-f2X^-^M(R)2 < cj2XkM(R)2. 

In the same way, we get from (8.89) 

a(TkR)<cT^M(R)2, 

and hence, setting 4fi = min{ | , 2Aj^ :} , we have in any case 

a{rkR) < cT4k»M{R)2, 

whence 

<e)<c(^M{R? 

from which (8.84) follows at once thanks to PoiNCARE's inequality. • 

In particular, taking into account the inequality 

-f \w — we\ dx < I 4 \w — we\
2 dx I 

JQe \JQe ) 

we deduce without difficulty from (8.84) the estimate 

i \w-we\dx<c(^\fiM(R), (8.90) 

which will be the starting point for the proof of the regularity of the 
w-minima. 

8.8 Holder Continuity of the Derivatives (p ^ 2) 

Let us consider a w-minimum u of the functional 

F(u)= J F(x,u,Du)dx (8.91) 
Jn 

with the function F(x,u, z) satisfying conditions (8.43)-(8.45) with p > 1. 
Assume moreover that (8.46) is satisfied with -d(t) = At5 for some S > 0. 
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Let E CC Cl, and let x0 G E and Q f i = Q(x0,R) CC ft. Setting 

Uo = uX0)fl, let i; be the minimum of the frozen functional 

F0{v)=\ F(x0,u0,Dv)dx 
JQR 

among all the functions coinciding with u on 8QR. Recalling (8.90) and 
(8.33), we obtain easily the estimate 

-f \w(Dv) - {w(Dv)}e\ dx<c (%) ** -I w0(Dv) dx 
JQe

 yRj> JQR 

and setting A = {w(Du)}e: 

[ \w(Du) -X\dx<c C | r + 2 M f yv dx 

jQe
 KRJ

 JQR 

+ c \w(Du)-w(Dv)\dx, (8.92) 
JQR 

where as usual we have set V2 = 1 + |Du|2. 

We can estimate the last term thanks to Lemma 8.6. Setting 

W2 = 1 + \Dv\2 + \Du\2 , 

we have 

\w(Du) - w(Dv)\ < cWp~l\Du - Dv\ 

so that, taking (8.48) into account, 

/ \w(Du)-w(Dv)\dx<c( f Wp~2\Du - Dv\2 dxV( f Wp dx 

<c(j Vpdxy {Fv(u,QR)-To{v,QR)^ 

< CR2T [ Vp dx (8.93) 
JQR 

for some r > 0. 
If we insert the last inequality into (8.92), we get 

f \w(Du)-X\dx<cU^y+2\R2A f Vpdx. 
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We can estimate the last integral by means of Theorem 8.4; we have 

/ ydx<cir-e\\v\\>Pta 

JQR 

so that in conclusion 

J \w(Du) -X\dx< c\\V\\lttl | ( D ^ R n ~ e + Rn+2T~e]j . 

Let now a > 0, and let g < g0 < 1. Choosing R in the preceding 
formula in such a way that g = R1+a, we get 

/ \w(Du) - X\ dx < C\\V\\1 n(i?«("+2M)+n-e + Rn+2r-ej 

JQe 

If we choose a — -^— and e = afi, we get easily 

/ \w(Du) -X\dx< c | | ^ | | ^ n i J n ( 1 + a ) + 0 " 

< 4V\\P
p,aQn+1 (8-94) 

with 7 = X > 0. 
From the above relation it follows that the functions u/j = Vp~1DiU are 

Holder-continuous with exponent 7. The same can be said of the derivatives 
Dili, since for every £, £0 € R n we have 

WQ-w{Zo)\>\t-Zo\, 

and therefore, choosing £0 in such a way that w(£o) = X, 

/ \Dm-to\dx Kcm^tf 
JQo 

We have thus proved the following: 

Theorem 8.8 Let u{x) be an cj-minimum of the functional (8.91), with 
the integrand F(x, u, z) satisfying (8.43)-(8.45), and (8.46) with i?(t) = Ats. 
Then, the first derivatives of u are locally Holder-continuous in f2, and for 
every E CC fi we have 

|HZ>U) | | co,7 ( s ) < c(E) | |V(D«) |£n • (8.95) 

file:///Dm-to/dx
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8.9 Elliptic Equations 

The results of the preceding section can be extended to bounded solutions 
of the equation 

f{A\x, u, Du)Di<p + B{x, u, Du)ip) dx = 0 (8.96) 

with the conditions 

\z\\A\ + \z\2\Az\ + \B\<cVP, (8.97) 

Ai{x,u,z)zi > \z\p-c, (8.98) 

Ai^it, > V"~2\e (8.99) 

and with the coefficients A(x, u, z) continuous in (x,u); or more precisely 
such that 

\A(x, u, z) - A{y, v,z)\< V^-^fla; -y\ + \u-v\). (8.100) 

We begin by the remark that under these hypotheses every solution u 
is a quasi-minimum of the functional J ( l + |Du|2) 2 dx (Theorem 6.2), and 
therefore it is Holder-continuous in Cl. 

Let now x0 € fi, w0 = uXQtR and let v be a weak solution in QR of the 
equation6 

DiA'ixo,^, Dv) = 0 (8.101) 

taking the value u(x) on 8QR. 
The function v is a quasi-minimum of the same integral, and hence we 

have 

ci / (l + \Du\2)%dx< [ (l + \Dv\2)2dx 
JQR JQR 

<c2 I (1 + |£>w|2)2 dx. 
JQR 

Moreover, there hold for v all those properties dependent only on its 
quality of quasi-minimum, such as 

osc (v, QR) < osc (u, dQR) + cR 

6 The existence and the uniqueness of the solution are well known from the theory of 
elliptic equations; see for instance MORREY [3]. 
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(Lemma 8.4), and all the results proved in Sees. 8.3 and 8.7; in particular 
the estimates 

sup(l + \Dv\2)% <c-f (1 + \Dv\2)% dx, (8.102) 
QR JQr 

2 

[ (l + \Dv\2)%dx<c(%Y [ {l + \Dv\2)%dx, (8.103) 
JQe

 V j K /
 JQR 

-I \w(Dv)-{w(Dv)}e\
2dx<c(%Y+25-f (l + \Dv\2)%dx, 

JQe y K /
 JQR 

(8.104) 

that we have proved in Theorems 8.4 and 8.7. 
It is now question to pass from (8.103) and (8.104) to their analogous 

for the function u. For that, we must estimate the difference 

/ \w(Du)-w(Dv)\dx<c I Wp-l\Du-Dv\dx. 
JQR JQR 

Recalling that u and v are solutions respectively of (8.96) and (8.101), 
we have 

/ [Al(x, u, Du) - Al(x0, u0, Du)]D(u - v) dx 
JQR 

+ / [Ai(xQ,uo,Du)-Ai(xo,uo,Dv)]Di(u-v)dx 
JQR 

+ / B(x,u,Du)(u-v)dx = 0. 
JQR 

On the other hand 

A\x0, u0, Du) - Az(xo, u0, DV) 

= I Ai.(xo,u0,Dv + t(Du-Dv))dtDj(u-v) 
Jo 3 

so that, recalling (8.99) and Lemma 8.3: 

/ [Al(x0, u0, Du) - Al(x0,u0, Dv)]Di(u - v) dx 
JQR 

> [ Wp~2\Du - Dv\2 dx. 
JQR 
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Moreover, keeping into account the estimate |u — uo| < cRs, we have: 

\A\x, u, Du) - A\x0, u0, Du)\\Du - Dv\ 

< d{cR5)Vp~l\Du - Dv\ 

< ^Vp-2\Du - Dv\2 + ti(cRs)2Vp 

and 

\B(x,u,Du)(u-v)\ < {osc(u,QR)+osc(v,QR)}Vp 

< cRsVp. 

From these inequalities we obtain, arguing as in (8.93), 

/ Wp-l\Du-Dv\dx<cu)(R) f Vpdx, 
JQR JQR 

so that, using (8.103) and (8.104): 

f Vpdx<c{(jX+u{R)\ J Vpdx, (8.105) 

/ \w{Du)-X\dx<cS.(-^Y+2S+u(R)\ f Vpdx, (8.106) 

with u(R) = cRs + •dicR5). 
From this point on we continue as in the proof of Theorems 8.4 and 8.8, 

and we arrive at the following: 

Theo rem 8.9 Let u £ W1'2 be a weak solution of the equation 

DiAz(x, u, Du) = B(x, u, Du) 

with conditions (8.97)-(8.100). Then: 

(i) if the function i?(t) goes to zero with t, the derivatives Du belong to 
Lp^c (fi) for every X < n and for every open set S CC Ct we have 

||I>u||P,A,E<c(AlE)||V(Uu)||1,,n. 

(ii) if i9(t) = At for some 6 > 0, the derivatives are Holder-continuous in 
CI, with the estimate 

| |« ; (D«) | | c o„ ( s ) < c (E) | |y(Dt i ) | | P i n. 
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8.10 Notes and Comment s 

The methods of this chapter are taken mostly from the regularity theory 
for solutions of quasi-linear elliptic equations in divergence form 

/ \Ai(x,u, Du)Dnp + B(x,u, Du)<p] dx = 0 (8.107) 

and from their applications to the minima of the integrals of the calculus 
of variations, through their EULER equation. 

The extension of these methods to minima of functionals, even those 
without the EULER equation, is due to GlAQUlNTA and GIUSTI [3, 4] in the 

case p = 2, and later, after a paper by GlAQUlNTA and G. MODICA [3], 
relative to the case p > 2 under stronger assumptions, to LEWIS [1] 
and MANFREDI [2] (see also Di BENEDETTO [1] and TOLKSDORF [1]) for 
p ^ 2. We have followed here the method introduced by LEWIS [1] for the 
generalized DIRICHLET functional 

Vp(u) = I \Du\pdx. 

We remark that some of the above regularity results hold even for de­
generate functionals (in which the quantity Vp is replaced by |£)u|p), of 
which T>p is the typical representative. In this case, we cannot expect that 
the derivatives of u are Holder-continuous with every exponent, even less 
so that u is of class C2 (see for instance GlAQUlNTA and MoDICA [3]). 

The interest of that extension, as well as of that to w-minima, intro­
duced by ANZELLOTTI [1] in a slightly different context, is two-fold. In 
the first place, it shows how the C1,a regularity is governed by the notion 
of w-minimum, much in the same way in which that of quasi-minimum 
superintends the Holder regularity. 

Secondly, the results so obtained do not require the differentiability 
of the function F(x,u, z) with respect to u, being sufficient a sort of 
uniform Holder continuity. Moreover, even in the case of regular func­
tions F, Theorems 8.5 and 8.8 represent a generalization of those already 
known, since no behavior of the derivatives of F with respect to u is 
required. 

It must be noted that, whereas in the case p = 2we obtain the regularity 
up to the boundary, a similar result is not known for p ^ 2, although it 
seems plausible. 

The method of difference quotients was used first in the proof of 
the regularity of solutions to linear elliptic equations and systems (see 



First Derivatives 305 

Chapter 10). Its extension to non-linear equations was the object of some 
discussion, relative to the case p < 2. We have followed here a technique 
introduced by ACERBI and Fusco [4], that seems free from the difficulties 
that have troubled some of the former methods. 
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Chapter 9 

Partial Regularity 

9.1 Preliminaries 

In this chapter we discuss the problem of the regularity of the minima of 
the functional 

JF(u,ft) = / F{x,u(x),Du(x))da 
Jo. 

(9.1) 

in the vector case, that is when u(x) is a function with values in RN, and 
N>1. 

It is easily seen that, opposite to what happens if N — 1, in this case 
we cannot expect that the minima are regular everywhere in f2, even if the 
function F is quadratic in the gradient: 

F(x, u, Du) = A%0(x, u)DiUaDjUP 

and A^g are analytic functions of x and u. We actually have: 

Example 9.1 (GIUSTI and MIRANDA [1]) For N = n sufficiently large, 
the function u(x) = a;|aj|_1 minimizes the functional 

A(u,B)= [ AiiJu)DiU
aDju

l3dx, 
JB 

with 

UiUn 

n-2 l + |u|2 

307 

6jl3 + 
jUp 

n - 2 l + |u|: 
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The matrix A1^ is bounded, and satisfies the ellipticity condition 

4k(«)ff# > Kl2 

so that the integrand is a convex function of z. Increasing possibly the 
dimension n, the above function is the unique minimum — and even 
the unique extremum — of the functional A, among the functions of 
W1>2(B,Rn) taking the value x on dB. 

On the other hand it will be possible to prove the partial regularity of 
the minima, that is the regularity in an open set ilo c fi, with the singular 
set Q, — Clo of zero measure, or better of dimension smaller than n. 

Unlike the preceding chapter, we shall consider only the case of growth 

P>2, 

\F(x,u,z)\<c(X+\z\2)i , \>0,x (9.2) 

since no result is known when p < 2. 
For what concerns estimates from below, we shall make two assump­

tions. In the first place we shall assume that the function F is strictly 
quasi-convex; or more precisely that there exists a constant v > 0 such that 
for every (a;o,uo,zo) e f l x R ^ x RnN and every <p G W0

1 , 2(n,RN) 

[F(x0, W0, ZO + D(p(x)) - F{xQ, U0, z0)}dx 

> " /(Vo-2\D<p\2 + \D<p\p)dx (9.3) 
Jn 

withVo2 = l + |z0 |2. 
Moreover we shall assume that there exists a function F = F(z), strictly 

quasi-convex in 0, such that 

F(z)<F(x,u,z) (9.4) 

for every x, u and z. 
As we have shown in Lemma 5.2, from the quasi-convexity of F and 

from inequality (9.2) we get the estimate 

\F(x,u,z)-F(x,u,w)\ < c ( A + | z | + M ) p _ 1 k - « ' l » (9-5) 

1Of course, the most important cases are A = 0 and A = 1. 

I 
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and if F is differential)le with respect to z: 

\Fz(x,u,z)\<c(X + \z\r-x. (9.6) 

Moreover, under the above assumptions we have proved in Theorem 6.8 
the higher summability of the gradient: 

Proposition 9.1 Let u be a cubical Q-minimum of the functional 

Jr{u)= F(x,u(x),Du(x))dx, 

with F satisfying the assumptions (9.2) and (9.4). Then, u belongs to W1'pr 

for some r > 1, and 

-f (X+\Du\)prdx<c(-f (X + \Du\)pdx) (9.7) 
JQR/2 \JQR J 

R e m a r k 9.1 More generally, the estimate (9.7) holds if u satisfies the 
inequality 

/ F(x, u, Du)dx <Q I (A + \Dv\2)dx 
JQ. JQs 

for every v with supp(u — v)cQs. D 

9.2 Quadratic Functionals 

We shall begin our research by the study of a special yet meaningful class 
of functionals, that we call quadratic: 

Q(u, ft) = / A%p(x, u)DiUaDjU0 dx (9.8) 

As we have already remarked, these functionals are strictly quasi-convex 
if and only if they satisfy the Legendre-Hadamard condition: 

^ ( ^ « ) 6 ^ V > ^ I 2 M 2 , ^>o. (9.9) 

Moreover we shall assume that are verified the conditions leading to 
Caccioppoli's inequality; in particular that there exists a strictly quasi-
convex function -F(z) such that 

A%(x,u)z?zf>F(z). (9.10) 
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Finally, we will assume that the coefficients A^g are bounded and 
uniformly continuous;2 or in other words that there exists an increasing, 
continuous and concave function ^(t), with 0 < 7 < 1 and 7(0) = 0, such 
that 

\A%{x,u) - A%{y,v)\ < n(\x - y\2 + |u - v\2) (9.11) 

for every x, y € Q, e for every u, v £ HN. 
Now let cj(t) be a continuous increasing function, with w(0) = 0, and 

let u{x) be a w-minimum of the functional Q; that is such that in any 
QR C C H w e have 

Q{U,QR)<(1 + U{R))Q{V,QR) 

for every v € W1'2(QR) with v = u o n OQR. 

For x0 € fl we set uo = Ux0,fl>
 a n d we call v(x) the function minimizing 

the "frozen" functional 

Q°(v,BR)= [ AiUx0,u0)Div
aDjv^ dx 

JBR 

in the ball BR, among all the functions taking the value u on 8BR.3 

The function v is a solution in BR of the equation 

A%(x0, uo)DiDjv
0 = 0 (9.12) 

and therefore, taking r = -7= (so that Qr C BR), we have, as we shall prove 
in the next chapter, (Theorem 10.7): 

/ \Dv\2dx<c(-Y [ \Dv\2dx, (9.13) 

J \Dv-(Dv)e\
2dx<c(-Y+ ( \Dv-i\2dx (9.14) 

JQe JQr 

for every g < r and for every £ £ HnN. 

2 Strictly speaking, the uniform continuity is not necessary, and it is sufficient to 
assume that the coefficients are simply continuous. The reader can easily make the 
changes necessary to conclude the proof in the general case, following the ideas of 
Proposition 9.4. 

3 The existence of the minimum is guaranteed by the coercivity and the weak 
semicontinuity of Q° in the class u + W0' (BR). The coercivity is a consequence of 
Lemma 5.1; the semicontinuity of Theorem 4.3. 
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Prom (9.13), setting w = u - v, we get 

f \Du\2dx<c(-Y f \Du\2dx + c [ \Dw\2dx 
jQe

 KrJ JQr JQr 

<c(<L\n f \Du\2dx + c f \Dw\2dx (9.15) 
KR/

 JQR JBR 

and it remains to estimate only the last term. 
We have 

/ \Dw\2dx<c AiL(xo,uQ)Djw
0Diw

adx 
JBR JBR 

= c[Q°(u,BR)-Q°(v,BR)} 

= c[Q(u,BR)-Q(v,BR)} 

+ c f [A%{xo, «o) - A%{x, u)]DjUPDiUa dx 
J BR 

- c / [A'pixo, «o) - A%(x, v)]DjvPDiVa dx. (9.16) 
J BR 

The first term on the right-hand side can be estimated using the fact 
that u is an w-minimum for Q. Extending v = u outside BR we have 

Q(u, BR) = Q(u, QR) - Q(u, QR - BR) 

< [1 + w(R)\ Q(v, QR) - Q(u, QR - BR) 

= [1 + w(R)] Q(v, BR) + w(R) Q(u, QR), 

and hence 

since 

Q(u, BR) - Q(v, BR) < cu(R) f \Du\2 dx (9.17) 
JQR 

Q(v,BR)<c[ \Du\2dx. 
JBR 

The remaining part of (9.16) is bounded by 

c / [j(R2 + \u- u0\
2)\Du\2 + j(R2 + \v~ u0\

2)\Dv\2}dx. (9.18) 
JBR 
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In order to evaluate these quantities, we shall use the inequality4 

f \Dv - A|2r dx<c f \Du- X\2r dx (9.19) 
JBR JBR 

valid for every constant vector A. 
Let us estimate for instance the second integral in (9.18). Recalling that 

7 < 1, we have 
r - l i 

- / -y\Dv\2 dx < c (-f j(R2 + \v - u0\
2)dx] " (-f |£H;|2p da;V 

JBR \JBR J \JBR J 

<cy(R2+-f \v - u0\
2dx)^ (-f \Du\2rdx\ 

JBR \JBR ) 

<cf{R2+4 \v - uQ\2 dx)^ (-f \Du\2rdx)r 

JQR \JQR ) 

<cy(R2 + -f \v - u0\
2 dx)^-I \Du\2dx, 

JQR JQiR 

where we have used Proposition 9.1 with A = 0. 
On the other hand 

4- \v — UQ\2 dx < c-j- (|u — Uo|2 + |w|2)<ia; 
JQR JQR 

<cR2-f (\Du\2 + \Dw\2)dx<cR2-f \Du\2dx 
JQR JQR 

and therefore 
r - l 

/ 1\Dv\2dx<c1(R
2+cR2-n J \Du\2dx] " / Du\2dx. 

JQR V JQR / JQ2R 

The other term in (9.18) can be estimated in the same way, so that, 
setting 

E(s) = E(x0, s) = s2~n I \Du\2 dx 
JQ(xo,s) 

we arrive to the relation: 

/ \Du\2dx<c{(%)n+ £{2R)\ [ \Du\2dx, (9.20) 
JQS

 l v - K / ' JQIR 

4 The proof will be given in the following chapter (Theorem 10.15). 
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where 

C(R) =u{R)+ i{R2 + cE(R))r-^ . 

The above inequality will be the starting point in the proof of the partial 
regularity of the function u. 

We remark in the first place that it holds for every g < 2R, since it is 
trivially true (possibly with a different constant c) when -4= < g < 2R. It 
follows that we can write R instead of 2R. Setting g = TR, we have 

E{TR) < cr2[l + T-nC(R)]E(R). 

Let a < 1 and let r be such that cr2~2a < | . Let eo a positive number, 
such that r _ n 7 ( ( l + c)eo)£^_ < 1 and let Ro, 0 < Ro < -y/eo be such that 
T~nw(R) < 1 for every R < Ro- Assume finally that for some R < Ro we 
have E(R) < e0. Then T—"<(.R) < 2, and hence 

E(TR) < r2aE(R). 

Repeating the procedure, we obtain for every integer k 

E(rkR) < T2kaE(R). 

Let now g < R, and let k be such that Tk+1R < g < rkR. We have 

E(g) < cE(rkR) < cT2kaE(R) < c ( | ) 2 a ^( .R). (9.21) 

Prom the above estimate we deduce easily the following: 

Proposition 9.2 Let u>(t) be a continuous increasing function, with 
oi(0) = 0, and let u be an uj-minimum of the quadratic functional Q. There 
exists eo > 0 and RQ > 0 such that if for some xo and for R < Ro we have 
E(xo,R) < eo, then the derivatives Du belong to L2'x in a neighborhood I 
of Xo, for every X < n. 

Proof. Since E(y,R) is a continuous function of y, if E(x0,R) < eo, 
there will be E(y, R) < eo for every y in a neighborhood I of x0 . We can 
therefore write the inequality (9.21) for every y € I: 

E(y,g)<c^yaE(y,R), 
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and hence, setting as usual Ig = I r\Q(y,g), 

[ \Du\2dx< [ \Du\2dx<c(%Y~2+2a [ \Du\2dx 
Jig JQe \RJ

 JQR 

< cgn-2+2a [ \Du\2 dx , (9.22) 
Jo. 

so that the function Du belongs to L2'n~2+2a(I). Since a < 1 is arbitrary, 
we get the conclusion of the proposition. • 

In particular, by Proposition 3.7, we have u G C2'n+2a(I), and hence u 
is Holder-continuous with exponent a in / . As a consequence, u is of class 
C°'a in an open set Qo c fl. 

A point y belongs to the singular set E = ft — fio if and only if 

l iminffl2-" / \Du\2 dx > 0 , (9.23) 
* - ° JQiv,R) 

since if u is Holder-continuous with exponent a in a neighborhood of a 
point y, we have by Caccioppoli's inequality: 

/ \Du\2 dx<-^ [ \u- uR\2 dx < cRn-2+2a 

JQ(V,%) K JQ(v,R) 

and the liminf in (9.23) is zero. 
We want to evaluate the dimension of the singular set S. For that, we 

remark that u e Wl'2r(Q) with r > 1 (Theorem 6.8), and 

E(x0,R) = R2-f \Du\2 dx < cR2 (-f \Du\2rdx 
JQR \JQR 

i 

< c (R2r-n / (1 + \Du\2r)dx 

We can therefore apply Proposition 2.8, with 

MQe) = / (1 + \Du\2r)dx 
JQe 

and we get Hn~2r(E) = 0 for some r > 1. We have thus proved our first 
partial regularity theorem: 

Theorem 9.1 Let a>(t) be a continuous increasing function, with 
w(0) = 0, and let u(x) be a u>-minimum of the functional 

Q(u,n)= f A%{x,u)Diu
aDju

13dx 
Jn 
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with the coefficients Al^Jx,u) satisfying the Legendre-Hadamard condition 
(9.9) and the inequality (9.10). 

Then, u is Holder-continuous with any exponent a < 1 in an open set 
Jlo C fi, and dirriff (ft — $7o) < n — 2. 

We have moreover: 

Theorem 9.2 Ifu(R) < cR2a for some a > 0, and if the coefficients A1^ 
are Holder-continuous functions of their arguments, then every u>-minimum 
u of the functional Q has Holder-continuous first derivatives in flo-

Proof. Let K C fto be a compact set, and let QR be a cube with center 
in K, contained in fto- Prom (9.14) we get: 

/ \Du-(Du)e\
2dx<c(-Y+2 [ \Du - C|2 dx + c f \Dw\2 dx, 

(9.24) 

where as usual w = u — v. 
The last term can be estimated as above: 

/ \Dw\2 dx < c((R) f \Du\2dx 
JQt JQR 

with 

COR) = w(R) + l{R2 + cE{R))r-^ . 

If we remark that from the Holder continuity of the coefficients we get 
l{s) < css for some S > 0, and that by Proposition 9.2 we have E(R) < cR^ 
for every /x < 2, we conclude easily that 

/ \Du-(Du)e\
2dx<c(%Y+2 / \Du-(Du)R\2dx + cRn+2a 

jQe
 KRJ

 JQR 

(9.25) 

for some a > 0, and for every couple of concentric cubes Qg C QR C HQ-
Applying Lemma 7.3 to the function (p(g) = / „ \Du — {Du)e\

2 dx, we 
arrive at once to the inequality 

L \Du - (Du)e\
2 dx < con+2a . 

Qe 

which implies that the first derivatives of u are Holder-continuous in K, 
and hence in fio- • 



316 Direct Methods in the Calculus of Variations 

The fact that the dimension of the singular set is smaller than that of 
dQ suggests the possibility of proving partial regularity up to the boundary 
for the w-minima with Dirichlet boundary data, provided the boundary of 
£1 and the datum U(x) are regular. 

We can always reduce locally to the case of flat boundary, by means 
of a diffeomorphism which does not change the quadratic structure of the 
functional in question;5 moreover, writing y — u — U,vfe can restrict to the 
case of zero boundary data. If (once the boundary has been flattened) u is 
a w-minimum of the quadratic functional Q, the new function y will be a 
w-minimum of the functional 

P{V,Q$)= ( {B%{x,y)DjyeDiy" 

+ B%{x, y)(2Djy
0 + DjU^)DiUa}dx, (9.26) 

where we have set 

B(x,y)=A(x,y + U(x)). 

Let now XQ be a point lying on the flat portion of dQ, and let R be 
such that Q(xo, R) C\Cl = Q+(xo, R). We shall replace the cubes Q# with 
sets An with regular boundary, and such that Q^/ 2 C A# C Q#. In order 
to avoid artificial dependence on R, we start from a regular set A, with 
Q\l2 C A C Q+, and we shall take AR homothetic to A: 

Afl = AR(X0) =: {x&Rn: R-\x - x0) G A} . 

Let v be the function minimizing the functional 

V0(v, AR) = f {BQDV, DV + 2DU)dx 

among all the functions assuming the value y on 8AR, where as usual 
Bo = B(xo,yo)- The function v is a solution of the Euler equation: 

/ (B0(Dv + DU),D<p)dx = 0 V ^ < ' 2 ( A j i ) . 
JAR 

5For that , it is sufficient to assume that 8CI is of class C 1 . 
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Prom Theorem 10.7 of the next chapter we get for every g < R/2 the 
estimate 

from which we obtain at once 

/ e jD„i^<c{(D7 e j | D^ 

+ / \DU\2dx+ [ \D(y - v)\2 dx\ . (9.27) 
JQ+ JAR J 

The corrective term represented by the last integral can be estimated as 
above, using the continuity of the coefficients, the fact that the function y is 
a w-minimum, the L2r estimates for the gradient found in Proposition 9.1, 
and the inequality 

/ \Dv\2rdx<cf \Dy\2rdx 
JAR JAR 

that we shall prove in the next chapter (Theorem 10.17; see Remark 10.4). 
Without entering in the details, that the reader can easily check, if we 
assume that DU belongs to the space £2,71-2+2^ a n j hence that 

L \DU\2 dx < MoiT- 2 + 2 < 7 . 

we arrive as above to the estimate 

E(TR) < CT2{1 + T~nC(R)}E(R) + T2-nM0R
2(T , (9.28) 

where we have set 

C(fl) = u(R) + j(R2 + cE{R))r-^ 

and 

E(s) = E(x0, s) =: s2~n [ \Dy\2 dx. 
jQt 

We can now proceed as above, choosing first a > a, secondly T such 
that CT2~2<* = | , then e0 in such a way that T~nj((l + c)e0)n^~ < 1, and 
finally RQ < y ^ such that r2ae0 + M1R2? < e0, and T-ncj(R0) < 1. 
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Assume now that for some R < RQ we have E(R) < eo. Then, 

E(TR) < r2aE(R) + MXR2° , 

and therefore in particular E(TR) < eo. By induction, if E(rkR) < e0 

we have 

E{rk+lR) < T2aE(rkR) + M^Rf" < e0 , 

and therefore 

fc-i 

E{rkR) < T2kaE(R) + M1(T
k-1R)2,TJ2T'2J(a~'7) • (9-29) 

3=0 

In particular 

E{rkR) < T2kaE(R) + M2(T
kR)2<T 

and hence 

E(x0,g) < Mi ( I ) ' " E(x0,R) + M2g
2,T. 

Let now x\ E fi be such that Q(x\,R) intersects only the flat part of 
dU, and assume that R < R\ and 

E(xi,R) < e i , 

where i?i < Ro and e\ < eo are such that 

2" - 2 (M 1 e 1 +M 2 #? C T )<eo-

We distinguish two cases: 

(i) d = dist(Xl,dn) > f. 
We have 

^ ( s i . f ) <2n-2E(xuR)<e0 

and therefore by (9.21): 

E(x1,Q)<c(^)2aE^x1,^<c(^y'7E(x1,R) 

since a < a. 
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(ii) d < | . 
If xo e dft is the projection of x\ on <9fi, we have Q+(xo,R) C 
Q+(xi,R), and hence £ (z 0 , -R) < E{xx,R) < eQ, so that, if 2d < r < R: 

E(x0,r) < Mi ^Y°E(x0,R)+M2r
2°. 

Remarking that Q(xi,d) C Q+(x0,2d), we get from this estimate 

E{xl,d) < 2n-2E(x0,2d) < 2n~2(M1ei + M2R\a) < e0 , 

and hence, if g < d: 

E(x1,e)<c(ff°E(Xl,d)<c^yaE(x1,R) + cg2'r . (9.30) 

Changing possibly the constant c, the last inequality holds in any case, 
and for every g < R. 

Taking into account the continuity of E(x, R) with respect to x, we can 
then conclude that if E(xi,R) is small enough, there exists a neighborhood 
V of xi such that the function Dy belongs to the space L2'n~2+2<r(V), and 
therefore y is Holder-continuous with exponent a. With the same argument 
as above we can now prove the Holder continuity of the derivatives. We 
thus have the following: 

Theorem 9.3 Letu>(t) be a continuous increasing function, withu>(0) = 
0, let u be a u>-minimum of the quadratic functional Q in Q,, and assume 
that the boundary datum U has derivatives in L2'n~2+(T(Cl). Then u is a 
Holder-continuous function in Cl — S, where E is a closed set of dimension 
less than n — 2. 

If moreover we have u(R) < cR2a for some a > 0, if the coefficients A^* 
are Holder-continuous functions of their arguments, and if U has Holder-
continuous derivatives in Ct, then every D-minimum u of the functional Q 
has Holder-continuous derivatives in fi — S. 

9.3 The Second Caccioppoli Inequality 

When we pass from quadratic functionals to the general situation, the 
inequality (9.7) alone does not suffice to get the regularity, and we need 
a second Caccioppoli inequality, in which u is replaced by u — P, P being 
an arbitrary polynomial of the first degree. 
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To prove it, we shall make the following assumptions: 

(i) F(x, u, z) is a continuous strictly quasi-convex function, of class C 2 in 
z, with growth p > 2: 

\F(x,u,z)\<ClV
p (V2 = l + \z\2). (9.31) 

We note that from the above inequality it follows that 

\Fz(x,u,z)\ <c2V
p~l. (9.32) 

(ii) The function V~pF(x, u, z) is Holder-continuous (with exponent 25) 
in (x, u) £ fl x RN, uniformly with respect to z. That means that 
there exists an increasing function g(s) > 2c\ such that 

\F{x, u, z) - F(y,v, z)\ < ti(\v\, \x - y\2 + \u- v\2)Vp (9.33) 

with ti{s,t) = min{2cx,g(s)ts}. 
We remark that the function fl is concave in its second argument, 

(iii) There exists a function F(z), strictly quasi-convex in 0, such that 

F(z) < F(x, u, z). (9.34) 

Lemma 9.1 Let F(z) be a function of class C2 , with |.F(;z)| < cVp and 
\F2(z)\ < CVP-1. Then, setting 

F(z) = F(z0 +z)- F(z0) - (Fz{z0), z), (9.35) 

we have 

| ^ ) | < c ( z o ) ^ p - 2 | ^ | 2 , (9.36) 

| ^ ( z ) | < C ( 2 o ) ^ p - 2 | 2 | , (9.37) 

\F(z)-F(w)\ ^ + 2 + W P - 2 ) ( | Z | + | w | } _ ( 9 3 8 ) 

\z — w\ 

Proof. The inequality (9.38) follows at once from (9.37). We shall prove 
(9.36); (9.37) well be proved in a similar way. 

Let k(z0) = sup H < 1 + | 2 0 | \Fzz(w)\. If \z\ < 1 we have 

F(z) = ±\(Fzz(z0+tz)z,z)\ < \k{z0)\z\2 < c(z0)V
p-2\z\2 . 

If instead \z\ > 1: 

F{z) < c(l + \z\2 + | 2 o | 2 ) 5 + c{z0)\z\ 

< c(z0) + \z\p < c(z0)\z\p < c{z0)V
p-2\z\2. • 
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Remark 9.2 If the function F depends on a parameter uo, the preceding 
estimates hold with the constant c depending on UQ and ZQ. • 

Remark 9.3 lip = 2 and the function F has bounded second derivatives, 
the constant c in (9.36)-(9.38) can be taken independent of ZQ. • 

We van now prove a result central in our regularity program. 

Theorem 9.4 (CACCIOPPOLI'S inequality II) Let u e Wl'p be an w-
minimum of the functional 

F{u, Q) = I F{x, u, Du)da 
Ja 

and let the function F verify (9.31)-(9.34) with p>2. 
Then, for every XQ G fi, for every g < R < ^j^dist(xo,dCl), for every 

UQ £ RN andfor every polynomial P(x) = a+(zo,x — XQ) of the first degree, 
we have 

[ (Vg-2\Du-zo\2 + \Du-z0\
p)dx 

rVp~2 r 

W^Ij" + 75 7- / \u - P\p dx + <w(R)Rn 

+ c f ti(\u0\,R
2 + \u-u0\

2 + \u-P\2){Vp + Vg)dx. (9.39) 
JQR 

Proof. Let t < s < R, let 77 be the usual test function, 0 < 77 < 1, 
supp(r?) C Qs, T) = 1 in Qt, \Dr)\ < -^, and let ip = r){u - P), ip = 
(1 - r])(u — P), so that (p + ip = u- P and Dip + Dip = Du — z0. 

Set now 

F(z) =: F(xo,uo,z0 + z) -F(xo,u0,z0) - (FZ(X0,UQ,ZQ),Z) . 

Remarking that f(Fz(z0),D<p)dx = 0, we get from the strict quasi-
convexity of F: 

f (Vp-2\D<p\2 + \D<p\p)dx 
JQs 

< I F(D(p)da 
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= / F{Du - z0 - Dtp)dx 
JQ, 

= I F(Du-z0)dx 
JQ, 

+ I [F(Du - z0 - Dtp) - F(Du - zQ)]dx 
JQ, 

< [ F(Du-z0)dx 
JQs 

+ c [ (1 + |D^ | + | D u - z0\)
p-2(\Du-z0\ + \Di/;\)\Dil>\dx. 

JQs 

(9.40) 

We estimate now the first term on the right-hand side. If we set for 
simplicity F°(z) = F(XO,UQ,Z), we have: 

/ F(Du-zo)dx 
JQ* 

= f F°(Du)dx- f F°(z0)dx 
JQS JQ, 

- / (F°(z0),Du-z0)dx 
JQ, 

= / F(x,u,Du)dx 
JQ, 

+ / [F(x0,u0,Du) — F(x, u,Du)]dx 
JQ, 

- f F°(z0)dx- [ {F°(z0),Du-z0)dx. (9.41) 
JQ, JQ, 

On the other hand 

/ F(x,u, Du)dx< [ l+w(s)] / F(x, u — (p, Du — Dip)dx (9.42) 
JQ, JQ, 

and moreover 

/ F(x, u — <p, Du — D<p)dx 
JQ, 

= [ F{x,il) + P,Dip + z0)dx 
JQ, 
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= f F°(D4> + z0)dx 
JQ, 

+ [ [F(x,^ + P,Dilj + zo)-F(xo,u0,Dilj + zo)}dx 
JQ, 

= / F(DrP)dx+ f F°(z0)dx+ f (F°{z0),Di>)dx 
JQ, JQ, JQ, 

+ J [F(x,iP + P,Dij> + zo)-F{xo,u0,Dil> + zo)]dx. (9.43) 
JQ, 

Combining (9.40), (9.41) and (9.43), we get: 

/ (V*-2\D<p\2 + \D<p\*)dx 
JQ, 

<c I F(Dip)dx 
JQ, 

+ c [ (l + \Du-z0\ + \Di>\)p-2{\DiP\ + \Du-z0\)\DiP\dx 
JQs-Qt 

+ / [F(x0,u0,Du) — F(x,u, Du))dx 
JQ, 

+ u(s)( f F°(z0)dx+ [ (F°(zQ),DiP)dx) 
\JQ, JQ, J 

+ f [F(x,iP + P,Dilj + z0)-F(x0,uo,Dil> + zo)]dx. (9.44) 
JQ, 

From that inequality, taking (9.33) into account, and recalling that tp = 
0 in Qt, we obtain 

/ {V*-*\D<p\2 + \D<p\*)dx 
JQ, 

: [ Vf-2(\Drl>\2 + \Du - z0\
2)dx 

JQ.-Qt 

+ c I (\Dip\p + \Du - z0\
p)dx + aj(s)sn 

JQ,-Qt 

+ [ $(\u0\,\x-x0\
2 + \u-uQ\2 + \u-P\2){Vp + Vp)dx (9.45) 

JQ, 

<c 
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Finally, introducing the expression of ip, we get 

/ (Vg-2\Du-z0\
2 + \Du-z0\r)dx 

JQt 

< c i / (Vo~2\Du ~ zo\2 + \Du - z0\
p)dx 

JQ,-Qt 

+ J 7 ^ j \u-P\pdx + cu,{R)IT 

+ c f 4(\uo\,\x-xo\2 + \u-uo\2 + \u-P\2)(y + Vg)dx. 
JQR 

(9.46) 

The conclusion follows as usual, summing to both sides the first integral 
multiplied by c\ and applying Lemma 6.1. • 

Remark 9.4 We note that •& = 0 if the function F depends only on z. 

a 
Starting from (9.39) we can prove the higher summability of Du — ZQ. 

For that, we need the following: 

Lemma 9.2 For z G Rn let w(z) = zV{z)2a. For every a > — | , there 
exist two constants c\ and C2 such that for every z, ZQ £ R" 

ci(l + \z\2 + |zo|2)"> - z0| < \w{z) - w{z0)\ 

< c 2 ( l + |z|2 + |z0 |2)'T |2:-2:o|. (9.47) 

Proof. The second inequality follows at once from the formula 

"-1 d f d 
(z) - w(z0)\ = / — w(z0 + t(z - z0))dt 

\Jo dt 

'A 
Jo 

< c(l + |2ff|)|z - z0\ I (1 + \z0 + t(z - z0)\
2Y dt 

and from Lemma 8.3. 
In order to prove the first one, let s £ R and r}{s) = s(l + s2)". We 

have 

r,'(s) = (1 + s2)"-1^ + (1 + 2<7)s2) > min(l, 1 + 2a)(l + s2)" . 
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We remark that we can assume \z\ > |zo|, and we distinguish the two 
cases \z\ — \ZQ\ > e\z — ZQ\ and \z\ — \ZQ\ < e\z — z0\, with 0 < e < \. In the 
first case, we have 

\w{z) - w(z0)\ > \w(z)\ - \w(z0)\ = r){\z\) - rj(\z0\) 

= (\z\ - \zo\) f (1 + \z0 + t(z - zo)|2)ff dt 
Jo 

> e | z - z o | ( l + M2 + M 2 r , 

thanks to Lemma 8.3. 
If instead \z\ — \zo\ < e\z — ZQ\, and hence \z\ < 3|zo|, we set £ = z^&, 

so that |£| = \zo\ and \z — £| = \z\ — \z0\ < e\z — z0| and \ZQ — £| > 
\z — ZQ\ — \z — £| > (1 — e)\z — z0\. Then 

\w(z) - w(z0)\ > \w(£) - w{z0)\ - \w(z) - w(£)\ 

> V(z0)
2^ ~ zo\ - c(l + \z\2 + \z0\

2r\z - £| 

> (1 + \z\2 + \z0\
2r\z - z0 |(10-2ff(l - e) - ce). 

With a suitable choice of e > 0, we get the required inequality. • 

We remark that in (9.47) we can replace 1 + \z\2 + \zo\2 with the 
equivalent quantity 1 + |z — zo|2 + |^o|2-

Theorem 9.5 Let the hypotheses of Theorem 9.4 hold, and let UJ(R) = 
cR2(7. There exist s > 1 and \i > 0 such that 

(-f \w(Du) - w(z0)\
2s dx) < c-f \w(Du) - w(z0)\

2 dx 
\JQR ) JQ2R 

+ cR'i(-f (Vv + Vg)dx) 
\JQ2R / 

1+S 

(9.48) 

where w(z) = zV 2 (2;). 

Proof. Let QRo CC fi, and let QR C QR,,. Setting 

G = CJ(RO) + tf(K|, R2
0 + \u- u0\

2 + \u- P\2)(V? + V?) 

file:///JQ2R
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we get from (9.39): 

f (Vp~2\Du - z0\
2 + \Du - z0\

p)dx 
JQR 

2 

< c f (R-2V*-2\u - P\2 + R-p\u - P\p + G)dx. (9.49) 
JQR 

The polynomial P in (9.49) is completely arbitrary. If x is the center 
of QR, and if we choose P(x) = US,R + (z0,x — X), the function u- P has 
zero average in QR, and hence from the Sobolev-Poincare inequality: 

2 

/ \u-P\2dx<c( \Du - z0\
2'dx) * , 

JQR \JQR J 

where s* = - ^ . Remarking that 2p* < 2*p we conclude that 

/ \u-P\pdx<c( J \Du-z0\
p'dx\ 

JQR \JQR ) 

cRp-2lf \Du - ZQ^ dx\ 

_E_ 

< 

and therefore, taking into account Lemma 9.2: 

f \w(Du) - w(z0)\
2 dx < c ( f \w(Du) - w(z0)\

2'dx 
JQR \JQR J 

T 

+ c-f Gdx. (9.50) 
JQR 

With our choice of P the function G in (9.50) depends on R. In order 
to apply Theorem 6.6 we must estimate the last integral with the integral 
of an analogous quantity independent of R. We have 

-/ G dx = u>(Ro) +-f ti{Vp + Vg)dx. 
JQR JQR 

We can estimate the right-hand side by remarking that since •d is an 
increasing function,6 we have $(a + b) < •d(2a) +19(2&) and therefore 

ti(R2 + \u- u0\
2 + |u - P\2) < ${2R2 + 2|u - wo|2) + 0(2|u - P\2). 

6For the sake of simplicity, we shall write i?(s) instead of $(r, s). 



Partial Regularity 327 

By Proposition 9.1, we have Vp € Lr{QRQ) for some r > 1, and hence 

/ ${2\u-P\2)(Vp + Vp)dx 
JQR IQR 

1 -

< (-[ #{2\u - P\2)^ dx\ " (I {Vp + VP)r dxY 

<c(j 0(2|u-p|2)d^ r (j (vp + v*ydx\r, 
where we have taken into account the boundedness of i9. Moreover, since t? 
is a concave function, we have 

-f ti(2\u-P\2)dx<d(2-f | u - P | 2 d a ; V 
JQR V JQR ) 

which with our choice of P gives 

/ 0(2|u - P\2)dx < •d (cR2-f \Du-z0\
2dx] 

JQR \ JQR ) 

<•& [cRlj \Du-z0\
2dx j . 

Using now Proposition 9.1, we obtain: 

/ ti{2\u-P\2){Vp + V*)dx 
JQR 

<ti[cR2-f \Du-z0\
2dx) -f (Vp + V*)dx 

\ JQRO J JQ2R 

and in conclusion: 

/ Gdx<4 (a(x) + B){Vp + Vf)dx 
JQR JQ2R 

where 

a(x) = cRl" + -i){2Rl + 2\u(x) - u0\
2) 

and 

B = $[cRl-l \Du-z0\
2dx) 

are both independent of R. 
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With the above estimate, (9.50) becomes 

f \w(Du) - w(z0)\
2 dx < c ( f \w(Du) -w{z0)\

2* dx ) 
JQR \JQH J 

+ c-f (a(x) + B)(VP + V0
p)dx. (9.51) 

JQ2R 

Covering the cube QR/2 with 4" cubes Q(xt, -f), we can write R instead 
of 2R in the last integral. 

Applying now Theorem 6.6, we conclude that for some r > 1 we have 

/ \w(Du) - w(z0)\
2r dx 

<c-f \w(Du) - w(z0)\
2dx + c I -I {a + B)r(Vp + Vp)rdx) . 

JQRO \JQRO J 

(9.52) 

Let us write now R instead of RQ, and let us estimate the last integral. 
We have 

(-f Br(Vp + Vp)r dxV < B -f (Vp + Vp)dx. 
\JQR / JQiR 

The other term can be estimated as above, choosing uo = UR. We 
obtain 

(-f ar{Vp + VP)Tdx) T < A-f {Vp + Vp)dx 
\JQR ) JQIR 

with 

A = cR2a + tf (cR2 + cR2-I \Du-z0\
2 dx 

Recalling that •#(£) < cts, we get in conclusion: 

A + B<cR»(-f (Vp + V^dx" 
\JQ2R 

where we have set 

» = 28(l-1-

and we have assumed 2a < fi, as we are allowed to do. 

file:///JQro
file:///JQ2R
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Prom the above inequality we get at once (9.48) with QR on the left-
hand side. Covering the cube QR with a finite number of cubes Q R , we 

4 

arrive finally at the required inequality. • 

Remark 9.5 The inequality (9.48) is a key tool in the proof of the 
regularity of the w-minima of quasi-convex functionals. If F depends only 
on z, we have •& = 0, and the whole proof above can be extremely simplified. 
We remark that in this case the constants do not depend on z0 when p = 2 
and the second derivatives Fzz are bounded. • 

9.4 The Case F = F(z) (p = 2) 

In order to clarify the main idea of the proof, before discussing the general 
case we shall treat the simpler problem of the regularity of the minima 
(i.e. CJ = 0) of functionals dependent only on the gradient, and with growth 
p — 2, under suitable assumptions of uniformity. We shall deal with a 
function F(z) of class C 2 in RniV, and possessing bounded and uniformly 
continuous second order derivatives; in other words, we shall assume the 
existence of an increasing, concave and continuous function 7(£), with 0 < 
7 < 1 and 7(0) = 0, such that 

\Fzz(z) - Fzz{w)\ < cry(\z - w\2). (9.53) 

In this situation, the inequality (9.48) becomes 

[4 \Du - z0\
2s dx]' < c-f \Du-z0\

2dx (9.54) 
\JQR J JQ2R 

with a constant c independent of ZQ. 
Let QR = Q(x0, R) be a cube contained in f2, and let 

{Du)R = {Du)XOtR =-f Dudx, (9.55) 
JQ(xo,R) 

E(x0, R)= -f \Du - (Du)R\2 dx. (9.56) 
JQR 

We have the following: 

Theorem 9.6 With the above assumptions on the function F, let u be a 
minimum of the functional 

?{u) = [ F{Du)dx. 



330 Direct Methods in the Calculus of Variations 

Then, for every g < R: 

E(x0,g)<c^y+(^j 7 ( c £ ( z o , i l ) ) ^ } £(*<>,#). (9.57) 

Proof. Setting ZQ = (DU)R, let 

g{z) = F(z0) + (Fz(z0),z- z0) + -(Fzz{z0)(z - z0),z- z0), (9.58) 

and let v(x) be the function minimizing the functional7 

g{u,BR)= [ g(Dv)dx 
JBR 

among all the functions assuming the value u on 8BR. 
The function v is a solution of the Dirichlet problem 

f Fz?z? (z0)DiDjv = 0 in BR 

[ v = u on 8BR 

and therefore satisfies (9.13) and (9.19). Moreover, for every g < t = R/y/n 
and for every n £ HnN we have 

i \Dv-{Dv)e\
2dx<c(£) I \Dv-rfdx. (9.59) 

JQe
 K t l JQt 

Prom (9.59) with n = (DU)XOIR, setting w = u — v, we deduce 

E(x0,g)<c^yE(x0,t) + c(-\ I \Dw\2dx (9.60) 

so that we only need an estimate of the last term. 
By the strict quasi-convexity of F(z) we get 

- / \Dw\2 dx < c-f [F(z0 + Dw) - F(z0)}dx 
JBR JBR 

= c-l [F(z0 + Dw) - g(z0 + Dw)]dx 
JBR 

+ \ 4 (F22(z0)Dw,Dw)dx. (9.61) 
2 J BR 

7 The existence of a minimizing function is guaranteed by the coerciveness and the 
weak semicontinuity of Q in the class u + W0' (BR). 

file:///Dv-rfdx
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Let us begin with the first term on the right-hand side. Prom the 
uniform continuity of the second derivatives of F, we obtain 

-f [F(z0 + Dw) - g(z0 + Dw)]dx < c-f j(\Dw\2)\Dw\2 dx. 
JBR JBR 

On the other hand the derivatives Dw belong to L2r, for some r > 1, 
and hence, using the estimate (9.19), we get 

- / \Dw\2r dx < c-f (\Du - z0\
2r + \Dv - z0\

2r)dx 
JBR JBR 

< c4 \Du — zo\2rdx < c I -j- \Du — zo\2dx) 
JBR \JQ2R ) 

< cE(x0,2R)r, 

where in the last passage we have made use of the inequality (3.36) 
(Remark 3.3). 

We have therefore, taking into account the concavity and boundedness 
of the function j(t) and making use of Jensen's inequality (5.10): 

i — i 

• / j{\Dw\2)\Dw\2dx < c (-f j(\Dw\2)dx] ' E{x0,2R) 
JBR \JBR J 

• — i 

<l(-f \Dw\2dx)r E(x0,2R). 
(-[ \Dw\2 

\JQR 

The integral of \Dw\2 can be estimated by cE(xo, R) < CE(XQ, 2R), and 
hence in conclusion: 

-f [F{zQ + Dw) - g(z0 + Dw)]dx < cj(cE(x0,2R))L^1 E(x0,2R). 
JBR 

(9.62) 

Let us now consider the second term of (9.61). We have 

\ j {Fzz(z0)Dw,Dw)dx= -f [g(Du) - g(Dv)]dx 
ZJQR JQR 

= -I [g(Du) - F{Du)]dx 
JQR 

+ 4 [F(Du) - F(Dv)]dx 

JQR 

+ -/ [F{Dv) - g{Dv)\dx. 
JQR 

file:///Jq2R
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The second integral is negative, since u is a minimum of T; the other 
two can be estimated as above. Writing R instead of 2R we get the 
conclusion (9.57) if g < R/2. On the other hand if g > R/2 we have 
E(x0,g) < 2nE(x0,R) < 2n+2(g/R)2E(x0,R), and hence (9.57) is valid for 
every g < R. D 

From the preceding theorem we deduce a first partial regularity result. 

Theorem 9.7 Let u G W1 , 2(fl ,Rn) be a minimum of the functional 

F{u, ft) = f F{Du)dx, 
Jn 

in which the function F(z) is strongly quasi-convex, and has second deriva­
tives uniformly continuous and bounded. 

There exists an open set fto C ft, with |ft — fto| = 0 , such that u(x) is 
of class ^ ' " ( f to ) for every a < 1. 

Proof. The starting point is inequality (9.57), in which we set Q = TR 
and we write for simplicity E(R) instead of E(xo, R): 

E(TR) < cr 2{l + T-n-2i{cE{R))l-±}E(R). (9.63) 

Let a < 1, and let r be such that cT2~2a < | . Let eo > 0 be such that 
CT~n-27(eeo) < \, and assume that 

E(x0,R)<eQ. (9.64) 

From (9.63) we get 

E(TR) < r2aE(R) 

and by iteration 

E(rkR) < T2kaE{R). 

From the last inequality we deduce at once 

E(g)<c^yaE(R) (9.65) 

for every g < R. Assume now that for some x0 € ft and R < $*%—' 
(9.64) holds. Since E(y, R) is continuous in y, we shall have E(y, R) < e0 

for every y in a neighborhood / of XQ. For every y e I we then have: 

/ \Du-(Du)ye\
2dx<c(%Y+2a [ \Du-{Du)y>R\2dx. 
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The last inequality implies that u is of class C 1 , a in 7, so that in con­
clusion the function u has Holder-continuous derivatives in an open set CIQ 
which contains all the points y such that8 

liminf E(y,r) = 0. 

Since the last relation holds for almost every y € fi, we have |fi—fio| = 0, 
and the theorem follows. • 

9.5 Partial Regularity 

Having seen the method at work in the simple case F = F(z), let us come 
to the partial regularity of the w-minima of the functional 

T(x, £l)= F(x, u, Du)dx 
Ju 

under general assumption for the function F. 
To be precise, we shall assume that F(x, u, z) is a strictly quasi-convex 

function, satisfying the hypotheses (9.31)-(9.34)) of Sec. 9.3. Moreover, we 
shall assume that the second derivatives Fzz of the function F are con­
tinuous, or better that there exists a function 7(s, t) denned for s, t < 0, 
increasing in both its arguments, bounded, continuous and concave in t for 
every s, with 7(s, 0) = 0, such that 

\F„(x, u, z) - Fzz(x,u, w)\ < 7 ( | « | + \z\ + \w\, \z - w\). (9.66) 

We shall consider w-minima u of the functional T\ namely functions 
u e T^1,p(f2) such that for every cube QR C fi and for every v € W1'P(QR), 

with v = u on 6QR, it holds that 

^ ( « , QR) < [1 + w(J2)]^(v, QR) , 

and we shall assume that u(t) < ct2a. 
Let now UQ = UXOR, ZQ = (DU)XOIR, and let us denote with F° the 

"frozen" function 

F°(z) = F(x0,u0,z), 

8Actually, fio coincides with the set of such points, since if Du is continuous in a 
neighborhood of y, E(y, r) is infinitesimal with r. 
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and with g{z) the quadratic approximation of F°: 

g(z) = F°(z0) + (F?(zo), z - z0) + \(F°z(z0)(z - z0),z - z0). (9.67) 

Let Q(u, fi) be the functional correspondent to the function g, and let 
v be the minimum of Q(y, BR) among all the functions assuming the value 
u on 8BR. The function v satisfies (9.19) and (9.59) with every exponent 
p > 2 (see later, Remark 10.4, and in particular (10.59)). As a consequence 
for every g < r = R/\/n we have 

-f \w(Dv)-w((Dv)e)\
2dx 

< cVp-2((Dv)e) / \Dv - (Dv)g\
2 dx 

+ c-f \Dv-{Dv)e\
pdx 

JQe 

<c(-)2Vp-2{{Dv)g)-f \Dv - {Dv)r\
2 dx 

+ c(-Y-l \Dv - (Dv)r\
p dx. (9.68) 

JQr 

On the other hand, we have from (9.13) 

\(Dv)e\
2<-f \Dv\2dx<c-f \Dv\2dx 

JQe JQr 

< c\(Dv)r\
2 + c-f \Dv - (Dv)r\

2 dx 
JBr 

and therefore 

-/ \w{Dv) - w((Dv)g)\
2 dx 

JQe 

<c(i\
iVp-2{{Dv)r)-l \Dv - (Dv)r\

2 dx 

+ c^yfl \Dv-{Dv)r\
2dx\\c{^jPj \Dv - (Dv)r\

p dx. 

From the above formula we conclude easily that 

- / \w{Dv)-w{(Dv)e)\
2dx<c(^)2-f \w(Dv) - w((Dv)r)\

2 dx 
jQe

 V r / JQr 
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and therefore 

/ \w(Du) - w((Du)e\
2 dx<c (-) -f \w(Du) - w((Du)r\

2 dx 
JQ„

 V r ' JQr 

- \ i \w(Du) - w(Dv)\2 dx. 
Q JBR 

IQ 

+ 
J JBR 

(9.69) 

We need an estimate of the last integral. For that, we begin with the 
remark that, setting C, = u — v, we have 

\w(Du) - w(Dv)\2 < c(Vp-2\DC\2 + \DC\P) 

< C((vr2 + \DU - z0r2)i£>ci2 + I-DCD 

< e\Du - z0\
p + c(e)(V0

p-2m\2 + \D^). 

The quasi-convexity of F now gives 

I (V0
p-2|DC|2 + \DC\*)dx < I [F°(z0 + DO-F°(z0)}dx 

JBR JBR 

= / [F°(z0 + DO - g(z0 + D()]dx 
JBR 

+ l-f (FlMDCDQdx, (9.70) 
ZJBR 

and moreover 

U (F?t{zo)DC,DC)dx 
J BR 

= / \g(Du) - g(Dv)}dx 
JBR 

= -f [g(Du) - F°{Du)}dx + I [F°(Du) - F{x, u, Du)\dx 
JBR JBR 

+ 4 [F(x,u,Du)-F(x,v,Dv)]dx+-f [F(x,v!Dv)-F°(Dv)}dx 
JBR JBR 

+ 4 [F°(Dv)-g(Dv)}dx 
JBR 

= (I) + (/ /) + (III) + (IV) + (V). 
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Recalling that u is an w-minimum of T, we get 

(III) < R-ntj(R)F(v, BR) < cR2a / VP dx. 
JQR 

For what concerns the remaining terms, (I), (V), as well as remaining 
term on the right-hand side of (9.70), are of the type already treated in 
the preceding section, whereas (II) and (IV) are similar to those we have 
encountered in Sec. 9.3. 

For these, we can argue in the same way, getting 

(II) + (IV) <cR»(-[ (Vg + VP)dx) ' . (9.71) 
\JQ2R J 

We come now to the terms (I) and (V), and to the residual term on 
the right-hand side of (9.70). In comparison with the estimates of the 
preceding section, here the situation is complicated by the fact that we 
do not assume that the second derivatives are bounded, let alone uniformly 
continuous. We shall consider (V) in detail, the estimates for the remaining 
terms being obtained in the same way. 

Let (3 be a constant that we shall fix later, and let 

K = K(R,/3) =: {x&BR: \DV(X) - z0\ > (3} . 

We have, for \z — ZQ\ < /3, 

\F°(z) - g(z)\ < 7 ( |u 0 | + 2\zo\ + A \z - z0\
2)\z - z0\

2 

and hence 

Rn(V) = f [F°(Dv) - g(Dv)]dx + [ [F°(Dv) - g(Dv)]dx 
JBR-K JK 

< / 7 ( | u 0 | + 2 | z 0 | + / ? , \Dv - z0\
2)\Dv - z0\

2 dx 
JBR 

+ c f (V(Dv)p + Vf)dx 
JK 

< I 7 ( K I + 2 | z 0 | + / 3 , \Dv - z0\
2)\Dv - z0\

2 dx 
JBR 

+ c [ (V£ + \Dv-z0\
p)dx. 

JK 

file:///JQ2R
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We estimate now the first term on the right-hand side. Neglecting for 
the sake of simplicity the first argument of the function 7, we get: 

-f j(\Dv - z0\
2)\Dv - z0\

2 dx 
JBR 

1—1 i 

<c(-f l{\Dv - z0\
2)dx\ " (-1 \Dv-z0\

2rdxY 

r - l i 

< c 7 ( - / \Du-z0\
2dx) " ( i \Du-z0\

2rdxY 

1—1 x 

cy[4 \w(Du) - w(z0)\
2 dx) r (-[ \w{Du) - w(z0)\

2r dx) 
\JQR J \JQiR J 

,—i 

0- \w(Du) — w(zo)\2 dx 
QR J 

x J / \w(Du) - w(z0)\
2 dx + /?" f-f (Vp + Vp)dx 

\JQ2R \JQIR / 

On the other hand we have 

/ \Dv-z0\
pdx 

JK 

<([ \Dv - z0\
pr dxY \K\^ 

<c(j \Du - z0\
pr dxY \K\^ 

<c(j \w(Du) - w(z0)\
2r dxY \K\^ 

- c G S i ) r { / Q 2 R K^)-^OI 2 ^ 

+ Rn+„ff (yp + VP)dx) 
\JQ2R ) 

We estimate the measure of K. We have 

/ \Dv - z0\
2 dx > (32\K\ 

JK 

file:///JQiR
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and hence 

\K\ 
<cp~2-f \Dv - z0\

2 dx < cf3~2-f VP-2\Du-z0\ 
JQR JQT, 

dx 
\QR\ JQR JQR 

<c(3-24 \w(Du) - w(z0)\
2dx. 

JQ2R 

From these inequalities we get at once 

R~n f (V0
P + \Du - z0\

p)dx < c[f3~2 + (r2E2R)1'^](E2R + R»P2R), 
JK 

where 

Et = E(x0,t) =-f \w(Du) - w((Du)t\)
2 dx, (9.72) 

JQt 

Pt = P(x0,t) = (j (V? + V0
p)dx\ ' . (9.73) 

In conclusion: 

(V) < CMC&R)^ + Erf + p-2)(E2R + R»P2R). 

The remaining terms can be estimated exactly in the same way, so that 
introducing all these inequalities in (9.69), and remarking that 

P t < c ( l + E t )
1 + p , 

we get in conclusion the following: 

Proposition 9.3 Let u be a w-minimum of the functional 

F(u, ft) = / F(x, u, Du)dx 
Jo, 

with the function F satisfying the assumptions stated at the beginning. Let 
Q(XQ,R) be a cube contained in fi, and let g < R. Then, 

Ee < A | ( | ) 2 + ($y [e + c ( e ) / 3 -2 + c(e)X(E2R))} E(R) 

+ (?-YH2R», (9.74) 

where A is an increasing function of \uo\ + \zo\ = |uXo,fi| + \(Du)XOtR\, H2 

is increasing in \uo\ + \zo\ + E(XQ,R), whereas 

X(E)=1
1-r(cE) + E1-i 
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depends also on fi and is infinitesimal with E, uniformly if \UQ\ + \ZQ\ + fl 
remains bounded. 

We remark that in (9.74) above we can write R instead of 2R. 
We choose now a > /x and M > 0, and g = TR, where r = T(M) < 1 is 

such that 

A{M)T2~a < - . (9.75) 

Let us take e = e(M) in such a way that 

AT~ne < jra (9.76) 

and (3 = (3(M) such that 

A(M)c(e)T-nf3-2 < \ra • (9.77) 

Finally, let KQ = Ko(M) < 1 be such that 

A(M)T-nc(e)X(M + 1 + (3(M), K0) < ^ra . (9.78) 

From the preceding proposition it follows that if for some r we have 
E(x0,r) < K0 and |uXOj7.| + |(.Du)x0lr| < M, then 

E(x0, TT) < TaE(x0, r) + H3r» . (9.79) 

with # 3 = H2T-n. 

Lemma 9.3 For every s and every r, 0 < r < 1 we have 

\\Ux0,s\ - \UXOITS\\ < CST~iE(x0,s)2 , 

\\(Du)X0t3\ - \(Du)X0tT3\\ < T-%E(x0,s)i . 

Proof. For every function v we have 

^rco,rs|] S -/ \v-vXOiS\dx < ( 4 \v - vXOtS\
2 dx 

JQrs \JQT, 

(4 \v-vX0i3\
2dx) . < T~* 

The second inequality follows at once taking v = Du; the first is proved 
choosing v = u — {(Du)XOtS, x—x0) (note that v and u have the same average 
both over Qs and over QTS) and estimating the last integral by means of 
Poincare inequality (3.33). • 
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Define now 

Ek=E(x0,T
kR), 

Tk = Ko,rkfll + \(Du)XOiTkR\, 

and assume that 

T o < y - l , £ 0 < y (9.80) 

in which Ki < Ko will be chosen later. 
We want to prove that 

fc-i 

Ek < rkaE0 + H3(M)(Tk-1R)"^2Tj(a-^ . (9.81) 
j=0 

Inequality (9.81) holds for k = 1 by (9.79). Assuming that it holds for 
k < h, we shall prove it for h + 1. 

We remark in the first place that from (9.81) it follows 

^ * ( f + ^ ) < ^ * 
whenever 

R - ^ - 2 ^ + 1 

Moreover, if we take 

i 

we get from the preceding lemma 

Th+1<T0 + cr-iJ2El 

CT-^^hr<Y- (9-82) 
1 — T2 2 

/ l 

fc=0 

M T. K 
< —- - l + C T " 2 1 - T * 

< M - 1 . 

With the above choice of «i and of i?j we can write (9.79) with r = 
rhR < rhRi, getting 
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Eh+l < raEh + (rhRrH3(M) 

h-l 

< T^h+1^E0 + H3{M) \ {rhRY + Ta{Th~lRY ^2 r^01-^ 
k=0 

h-l 
= r^h+1^E0 + H3{M){ThRY 1 + £ V * + D ( ° - / ' ) 

fe=0 

from which we deduce at once the required inequality (9.81) for h + 1. 
From (9.81) it follows immediately 

E ^ ( £ o + M). 

Finally, if 0 < g < R, choosing h in such a way that rh+1R < g < rhR, 
we get 

We have thus proved the following: 

Proposition 9.4 Let u be a w-minimum for the functional T, with 
u)(R) = cRv. For every M > 0 there exist «i > 0 and R\ > 0 such that if 
for some XQ € Cl and some R < Ri 

M 
\uxoM + \(Du)XOtR\ < — - 1 and E(x0, R) < m , (9.83) 

then for every g < R: 

*(*..*> <c (!)"(*(*„,*)+ ^ f M M ) . (9.84, 

At this point it is not difficult to prove the required result of partial 
regularity: 

Theorem 9.8 Let u(x) be a uj-minimum of the functional 

T{u,Q) = [ F(x,u,Du)dx 

with the function F satisfying the assumptions stated at the beginning of 
the section, and with u(R) = cR11. 

file:///uxoM


342 Direct Methods in the Calculus of Variations 

There exists an open set fio C fi, with |fl—£2o| = 0, in which the function 
u has Holder-continuous derivatives. 

Proof. If inequalities (9.83) hold for some XQ and R, they will continue 
to hold for every a; in a neighborhood I of XQ. It follows that inequality 
(9.84) will be satisfied for every x 6 / and a < R, and hence u has Holder-
continuous derivatives in I. 

On the other hand, for almost every x € CI we have 

lim (\UXIR\ + |(Du)x,fl|) < +oo 

lim E(x, R)=0 
.R-vO 

and therefore the singular set Q — fio has zero measure. • 

9.6 Notes and Comments 

The first partial regularity results for variational problems in several 
dimensions were obtained by D E GIORGI [3] and REIFENBERG [1] in the 
framework of the theory of minimal surfaces of codimension 1, and were 
extended by FEDERER [2] and ALMGREN [1] to minimal currents and 
varifolds in any codimension. 

The adaptation of these methods to the regularity theory for nonlinear 
elliptic systems was first achieved by MORREY [4], followed by GlUSTI and 
M. MIRANDA9 [2] and GlUSTI [2]. The term "partial regularity" is a re-
interpretation of the title of Morrey's paper, Partial regularity results 

Actually, when Morrey's paper appeared, hope was not yet given up to 
extend to linear elliptic systems De Giorgi's results for second order elliptic 
equations, described in Chapter 7. The appearance of Example 6.2 of 
De Giorgi, followed by Example 9.1 of GlUSTI and MIRANDA [1], showed 
the impossibility of such an extension, and more generally of proving the 
regularity of the solutions of nonlinear elliptic systems, since the function 
u(x) = a;|x|_1 of Example 9.1 is a weak solution of the elliptic system in 
divergence form 

/ AZgMDjufDiip0 dx = 0. 

9Contrary to what EVANS says in [1], these papers, or at least the last two, were 
inspired by D E GlORGI [3]. 
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About at the same time, similar examples were found by MAZ'YA [1]; 
later NECAS [2] and NECAS, JOHN and STARA [1] gave a large number of 
these examples, that STARA, JOHN and MALY [1] extended to the parabolic 
case. 

The use of a theorem by GEHRING [1], or more precisely of its exten­
sion due to GlAQUlNTA and MODICA [1] (Theorem 6.6), made possible an 
extension of the partial regularity results first to systems with quadratic 
right-hand side (GlAQUlNTA and GlUSTl [1]), then to minima of quadratic 
functionals (GlAQUlNTA and GlUSTl [6]) and in general to minima of quasi-
convex functionals (EVANS [1], GlAQUlNTA and MODICA [2]). 

For what concerns quadratic functionals (9.8), we remark that the 
estimate of the dimension of the singular set £ in Theorems 9.1 and 9.3 
can be ameliorated in the case of separated coefficients: 

£ip{x,u) = GaP(x,u)g^(x). (9.85) 

For xo € Cl, consider the functional 

Q°(u ,Q)= / Gap(x0,u)g%i(xo)DiuDjudx. 
JQ 

Since the coefficients of this functional depend only on it, one can assume 
that the independent variable x is in Rfc, 1 < k < n (and hence the indices 
i and j vary from 1 to k), and consider the relative problem of minimum 
in Rfe. It can be shown (GlAQUlNTA and GlUSTl [6]) that if the minimum 
problem for Q° in Rfc possesses only regular solutions, then the minima 
of the functional Q have a singular set whose dimension does not exceed 
n — k — 1. Moreover, if k = n — 1, the minima of Q can have at most isolated 
singularities. In particular, since in dimension 2 all the minima are regular, 
if n = 3 there are only isolated singularities, while generally speaking the 
dimension of the singularities does not exceed n — 3. 

Functionals of the above type occur in the theory of harmonic mappings 
between Riemannian manifolds. Actually these mappings are stationary 
points of the energy: 

£{u) = j \du\2 , 

which in local coordinates takes the form 

£{u) = / glj(x)Gap(u)DiuDju\ detg(x)\dx, 
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where g%:> and Gap are the metric tensors respectively on the domain and 
on the target manifold. 

Of course, the dimension of the singularities will depend on the structure 
of the target manifold only, since, being a local problem with respect to the 
domain manifold, the latter can be considered a n-dimensional ball Bn. 
For instance, whereas in general the minimizing harmonic mappings have 
singularities of dimension at most n — 3, those from Bn into the sphere Sn 

are regular up to dimension 6 (GlAQUlNTA and SOUCEK [1], SCHOEN and 
UHLENBECK [3]), and therefore, by virtue of what we have said above, their 
singular set has at most dimension n — 7. 

Actually, we can introduce local coordinates on the target manifold 
only after having proved at least the continuity of the mapping, a property 
which is essentially the problem in question. As a consequence, the above-
mentioned theorem can be applied to harmonic mappings only if the target 
manifold can be covered with a single chart, as for instance in the case of 
R" with an arbitrary metric, or else of the sphere Sn, if the mapping u 
omits at least a point. 

The result remains nevertheless true in general, as was shown by 
SCHOEN and UHLENBECK [1]. 

SCHOEN and UHLENBECK [2] have also proved that in the case of the 
Dirichlet problem with regular data, the singularities of harmonic maps 
cannot reach the boundary. A similar result, in the case of separated 
coefficients (9.85), was proved independently by J O S T and M E I E R [1]. 

In the general case of quasi-convex functionals, the theorem of partial 
regularity is due to EVANS [1] for p = 2, and to GlAQUlNTA and MODICA [2], 
for growth p > 2.10 The artifice allowing one to avoid the uniform conti­
nuity of the second derivatives was introduced by ACERBI and Fusco [2], 
whereas HONG M-C [1] has replaced condition (9.4) with the more stringent 
inequality 

F(x,u,z) > \z\p-X. 

In any case, even condition (9.4) is not simple to verify, and the exten­
sion of the partial regularity results to quadratic functionals satisfying for 
instance the condition of Legendre—Hadamard remains an open problem. 

Except for very special situations (some systems with diagonal principal 
part, functionals "close" to the Dirichlet functional), we do not know any 
results of global regularity for minima of vector-valued functionals, even 
under assumptions of convexity in z. A case of some interest is that of 

'It is not known whether the result holds also for p < 2. 
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functional depending only on the modulus of the gradient: 

^"(u) = / G(\Du\2)dx (9.86) 

with the function G(t) satisfying suitable conditions of growth and of 
convexity, as for instance G(t) = (1 + t)s, with s > 5. 

For the minima of these functionals one can prove global regularity 
results, in particular the Holder continuity of the first derivatives, even in 
the degenerated case, for instance when G(t) = ts, with s > 5. 

The first results in the above direction are due to K. UHLENBECK [2], 
and were obtained with a method that inspired the proof of Theorem 8.7. 
When the function G depends on x and u, we have results of partial regu­
larity, with an estimate of the dimension of the singular set (see GlAQUINTA 
and MODICA [3] for s > 1, AcERBl and FUSCO [4] for | < s < 1). 
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Chapter 10 

Higher Derivatives 

In order to complete our program of gradual proof of the regularity of the 
minima of regular functionals of the calculus of variations 

( u , n ) = f F( 
Jn 

F(u, SI) = / F(x, u, Du) dx, 
Jn 

it remains to discuss the regularity of the derivatives of higher order, begin­
ning from the second. For that, we shall abandon in the first place all the 
various generalizations of the concept of minimum we have introduced so far 
(quasi-minima, w-minima), and devote our attention to the true minima. 
Secondly, we shall assume from the beginning that the function F(x, u, p) is 
regular, and satisfies suitable assumptions of convexity (when u is a scalar 
function) or of quasi-convexity (for vector-valued functions). 

The results of the previous chapters tell us that every minimum u(x) of 
the functional T is of class Cl'a in an open set fio C SI (which in the scalar 
case coincides with SI), has second derivatives in L2, and is a solution of 
the EULER equation 

d dF dF 
g^.-g^(x'u(x)'Du(x)) = Q^(X>U(X)>DU(X)), (10-1) 

which can also be written in the form 

A%p(x, u, Du)DijUP = Ba(x, u, Du), (10.2) 

where 

347 
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d2F 
Ax^(x,u,z) = -^-^(x,u,z), 

-» ~~j 

dF d2F p d2F 
du<* dzfduP l dzfdxi ' 

If the function F has Holder-continuous second derivatives, the new 
coefficients a^{x) =: Al^{x, u{x), Du{x)) and the right-hand side ga{x) = 
Ba(x,u(x),Du(x)) are Holder-continuous functions themselves. Moreover, 
we shall assume that there holds the LEGENDRE-HADAMARD ellipticity 
condition 

«&(*)WV>|£ | 2M 2 . (10.3) 

In conclusion our problem is reduced to that of the regularity of the 
solutions u G W2'2 of the elliptic equation 

aap(X)DiJU0 = 9<x{x) . 

Once the desired regularity results are proved for these equations, it will 
not be difficult to deduce analogous results for the minima of the functional 
T. In all these results, an essential role will be played by estimates for the 
solutions of elliptic linear equations and systems, in particular those with 
constant coefficients. 

10.1 Hi lber t Regular i ty 

We shall begin by proving the regularity in the spaces Wk =: Wk'2 for 
weak solutions of linear elliptic systems 

/ a%{x)DjUPDiipa dx = f ira(x)Di<pa + ga(x)<pa} dx. (10.4) 

We shall prove internal regularity for weak solutions, and the boundary 
regularity for the solutions of the DlRICHLET problem, under suitable as­
sumptions for the coefficients d\, for the functions / and g, and possibly 
for the boundary datum boundary U. We remark that writing w = u — U 
instead of u, we can always assume that u is zero on dQ,. In this case 
the functions /£ will be replaced by f%

a - a^DjU^, and therefore the 
assumptions on / will contain those on the boundary datum U. 

For what concerns the coefficients a ^ , we shall always assume that they 
verify the LEGENDRE-HADAMARD condition (10.3). 
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We begin by proving a coerciveness result. Setting 

{ADV,D^)=^Dj^Dir 

we have the following: 

Theorem 10.1 (GARDING inequality) Let Q, be a bounded set, and let 
the coefficients a^g be uniformly continuous in Q and satisfy the condition 
(10.3). Let <p be any function in WQ(£1). Then, 

(i) / / the coefficients are constant, we have 

I (AD(p, Dip) dx>n \D<p\2 dx. (10.5) 
Jo Jo 

with /i > 0. 
(ii) There exists a constant Ro, depending only on the modulus of conti­

nuity of the coefficients, such that the preceding inequality holds if the 
diameter of the support of ip is less than RQ. 

(iii) There exists two constants v > 0 and H such that 

f {ADip, Dip) dx>v [ \Dip\2 dx-H f \ip\2 dx. (10.6) 
Jci Jo. Jo 

Proof. Part (i) was already proved in Lemma 5.1. To prove (ii), we 
remark that if xo G suppy, setting Ao = A(xo), we have 

(ADip, Dip) = {A0D<p, Dip) + ((A - A0)Dip, D<p), 

and hence, denoting by w(t) the modulus of continuity of the coefficients, 
and by R the diameter of the support of ip, we get 

J (AD(p, Dip) dx>{n- LJ{R)) J \Dip\2 dx. 

If now R is so small that cj(R) < | , we have inequality (10.5) with ^ 
instead of fi. 

Let us turn now to (iii). Consider a covering of Cl with balls of diameter 
smaller than Ro, and let Q^ (h = 1,... ,N) be the partition of the unit 
given by Theorem 3.2. Setting rjh = a^, we have 

N 

h=i 
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Moreover, 

rfli(AD<p,D<p) = {AD(r,h<p),D{r)h<p)) - (AD{w),ipDr,h) 

- (AipDrjh, D{T)h<p)) + (AipDr]h,ipDr]h). 

Let us now integrate over CI. The first term on the right-hand side can 
be estimated from below by means of (ii); the last is positive due to (10.3), 
and the others can be estimated by 

(^1 I^IDTJHI2 dxy y \D(Vhip)\2 dxy. 

Summing on h, and using the inequality ab < ea2 + e~xb2, we get: 

j{AD<p, D<p) dx > ( | - e) £ J \D{W)\2 dx 
h 

-c(e)J2JM2\DVh\2dx. 
h 

On the other hand we have 

\\D{rih<f)\\l>\\\r1hD<p\\2-\\>fDr1h\\
2, 

and inserting this inequality in the preceding one, in which we choose e = 
fi/4, we arrive easily to (10.6). D 

We can now prove a first theorem of internal regularity. 

Proposition 10.1 Assume that the coefficients ct^g(x) are Lipschitz-
continuous in il, and that f £ W1(Q.) and g £ L2(Ct). Let u £ 14^1(fi) be a 
weak solution of system (10.4). There exists a number Ro > 0, depending 
only on the modulus of continuity of the coefficients, such that if R < RQ 
and QiR CC fi, then u belongs to W2(QR) and for every 0 < t < 1 we have 

f \D2u\2dx<c[ (]£± + \Df\2
 + \g\2)dx. (10.7) 

JQR JQ(i+t)R \(tK) J 

Proof. Let C & C?{Q(1+t)R), with 0 < C < 1, C = 1 in QR and |I>C| < 
—. Choosing ip = A_/,(C2A/,u) in (10.4), we have 

J a%D^D^a dx = J A^ (a^D j ^ )C(A(CA/ l u
Q ) + Ahu

a AC) dx. 

We remark now that 

Ah{a%DjU^) = a%{x + hes)Dj(Ahu^ + DjU^AhA% , 

tR 
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and as usual 

(DjiAhU13) = Djit&HU1*) - AhU^DjC. 

Inserting the above relations in the preceding one, isolating at the left-
hand side the principal term and estimating the others, and choosing R 
small enough, we get 

/ a%{x)DjUpDafP dx>^f \D((Ahu)\2 dx 

-c f({2\Du\2 + \D{\2\Ahu\2)dx (10.8) 

We now estimate the terms on the right-hand side of (10.4): 

J fiDiip" dx = J AhfaDi{(,2Ahu
a) dx 

< e J \D({Ahu)\2 dx + c(e) j C2 |Ah / |2 dx 

+ j \D(\2\Ahu\2 dx. 

On the other hand we get from Lemma 8.1: 

[gaA_h(<;2Ahu)dx < e f\D{(;2Ahu)\2dx + c(e) f \g\2dx 

J J JQ2R 

< e f \D(<;Ahu)\2 dx+ f \D(\2\Ahu\2 dx 

+ c(e) / \g\2dx. 
JQlR 

and the conclusion follows at once. • 

At this point it is not difficult to prove, with the assumptions of the 
preceding proposition, that the solution u belongs to W^c(fl). It is sufficient 
to cover S CC f2 with a finite number of cubes QR of side sufficiently small, 
to write the estimate (10.7) for each of them, and to sum. In this way we 
get the following: 

Theorem 10.2 Let the coefficients a%Jx) be Lipschitz-continuous in Q, 
and let f £ W1(Q,) and g £ L2(fi). If u G W1(Cl) is a weak solution of 
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(10.4), then u belongs to W2
oc(Q), and for every S CC Q. we have 

I \D2u\2 dx < c(E) / {\Du\2 + \Df\2 + \g\2) dx. (10.9) 

Integrating by parts in (10.4), we conclude moreover that u satisfies the 
equation 

a^DiDy = Dif%
a -ga- D^D^f , (a = 1 , . . . , N) (10.10) 

almost everywhere in $7. 
The preceding result can be extended up to the boundary, for solutions 

of the DlRICHLET problem with zero boundary data. In this case, we begin 
by flattening the boundary of fi by means of a diffeomorphism 7, which is 
described in detail in Sec. 8.5. Setting v = u o 7, the function v will be a 
weak solution of the equation 

f Ai^(x)Djv
pDiil>

a dx = f[Fi(x)D^a + Ga(x)i>a] dx 

in the half-ball B+, with 

A%{x) = \J{x)\Hi
hHia%{1{x)), 

F^x) = \J(x)\Hif^(x)), 

Ga(x) = \J(x)\gaMx)). 

It is easily seen that, under suitable assumptions for the function 7, the 
new coefficients and the new right-hand side have the same properties of the 
original coefficients and right-hand side. In particular, if 7 is of class C2 , 
the coefficients A1^ are Lipschitz-continuous, and the functions F^ belong 
to W1, whereas the functions Ga are obviously in L2. We can therefore 
consider Eq. (10.4) only in a half-ball B+, with the solution u taking zero 
values on the flat part P of dB+. 

We can then proceed combining the methods of Sec. 8.4 with the proof 
of Proposition 10.1. If s ^ n, the function A^]Sw has zero trace on P, and 
hence we can take <p = A_h(£2Ahu) in (10.4), with a test function ( with 
support in the cube QIR centered in the origin, but possibly different from 
zero in P. Arguing as in Proposition 10.1, we get easily the estimate 

kw***°L (w+ | D / | ! + l 9 | !)d i <10-n) 
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for every R small enough (depending only on the modulus of continuity of 
the coefficients), in which D'u indicates any derivative Dsu, with s ^ n. 

Finally, the estimate for the derivatives Dnnu^ can be derived from 
Eq. (10.10), that can be written in the form 

aln
pDnDnUP = Difa -ga- D^D^f - Sfa%DtDjUP 

with the usual meaning of the apex in the sum on the right-hand side. 
The matrix Kap =: a ^ can be inverted thanks to (10.3), and its inverse 

matrix is bounded. Taking (10.11) into account, we eventually get the 
estimate 

L w « i . J ^ t W t H , ) f c (10-12) 
(l+t)H 

Finally, covering dCl with a finite number of neighborhoods, and repeat­
ing for each of them the preceding argument, we arrive at the following: 

Theorem 10.3 Let u be a weak solution of the equation (10.4) in U, 
taking the value U on dfi,. Assume that the coefficients al£„(x) are Lipschitz-
continuous in Q,, and that U e W2(Q,), f e W^fi) and g e L2(Ct). Then, 
u € W2(n), and we have 

[ \D2u\2 dx<c [ (\Du\2 + \D2U\2 + \Df\2 + \g\2) dx. (10.13) 
Ja Jo. 

Note that, by virtue of Theorem 3.18, in the above estimate can replace 
the term \Du\2 with |u|2 

We can now prove a general theorem of internal regularity. 

Theorem 10.4 Assume that the coefficients a^Jx) belong to Wk>°°(£l), 
that f £ Wk(Cl) and g € W * " 1 ^ ) . Let u G Wx{ti) be a weak solution of 
(10.4). Then, u belongs to W ^ ^ f i ) , and for every £ CC fi we have 

IMIk+i,£ < c{k, E)(| |Du||n + ||/|U,n + IMU-i,n) • (10.14) 

Proof. The theorem has already been proved for fc = 1. Let us assume 
that it holds for A; > 1, and let us prove it for k + 1. For that purpose, 
assume that a^(x) e Wk+l'°°, / € Wk+1 and g e Wk. 

By assumption, the solution u belongs to Wk+1, and any of its deriva­
tives Dsu is a weak solution of the equation 

Di(a^DjDsu'}) = DiD.fi - Ds9a - Di{Dsa%D^) 

=:DiFi, 

http://DiD.fi


354 Direct Methods in the Calculus of Variations 

where 

n = D.fi, + Siga - Dsa%DjUe . (10.15) 

Let now A be an open set such that E CC A CC fl. By virtue of our 
assumptions, the functions F£ belong to Wfe(A); whence Dsu S W fc+1(E), 
and u € Wk+2(E). Finally, the inequality (10.14) for fc + 2 follows from the 
same estimates for h < k + 2, taking into account that 

l |F|| fc<||/|U+1 + |MU + c||«||fc+1. • 

If we want to extend the above result up to the boundary, we must 
consider again a solution u to (10.4) in the half-ball B+, with u = 0 on P. 
We have in this case: 

Theorem 10.5 Letu £ W1(B+) be solution of the equation (10.4) in B+, 
with u = 0 on P. Assume that the coefficients a^Jx) belong to Wk'°°(B+), 
and that f G Wk{B+) and g e Wk~1(B+). Then, u € Wk+1(B+) for each 
r < 1, and for every cube Q~^ CC B+ of side sufficiently small, and every 
g < R we have the estimate 

I|U|U+I,Q, < c(k, ft •RXHulli.o* + ||/|U,Qfl + \\g\\k-i,QR) • (10-16) 

Proof. For k = 1, inequality (10.16) is nothing but (10.12). Assuming 
that it holds for k > 1, let us prove it for k +1. As above, the function Dsu 
is a solution of the equation 

f a%Dj(Dau
fi)Diipa dx= f FiDap" dx 

with F given in (10.15). If s ^ n, Dsu is zero on P, and hence 

\\D»u\\k+i,Qe < c(k,g,R)(\\Dsu\\ltQs^ + \\F\\kiQR+e) 

< c(k, Q,R)(\\u\\k+ltQn^, + ||/||fe+i,QH + IISIU.QB) 

< c(k +1,g,R)(\\u\\hQR + \\f\\k+i,QR + \\g\\k,QR) • 

In this way we have estimated all the derivatives D"u, \a\ = k + 2, 
except Dk+2u. The estimate for that derivative can be obtained as above 
from Eq. (10.10). • 

Coming back to our original DlRICHLET problem for the Eq. (10.4) with 
data U on the boundary, we have the following: 

Theorem 10.6 Let u G W1(fi) be a solution of the equation (10.4) with 
u = U on dCl. Assume that the coefficients are of class Wk,°°(Cl), that the 
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boundary of Q is of class Ck+1, and that U e Wk+1{Q), f e Wk(Sl) and 

g <= W*-1^). Then, u € Wk+l(Q.) and we have the estimate 

IMU+i < c(||«||i + H/IU + hh-i + FlU+i) (io.i7) 

with a constant c depending on Q, and on the coefficients. 

10.2 Constant Coefficients 

We continue our study by establishing some estimates for the solutions in 
the upper half-space R™ of the Eq. (10.4) with constant coefficients d£g. 

The estimates in question have the same form for the cubes QR C R™ 
and for their intersections Q# = QR D R" , provided in the last case that 
u = 0 on the part of the boundary of QR lying on the hyperplane P = 
dR™ = {x £ R n : xn = 0}. In the following, we shall treat only the 
latter situation; the proof in the other case is simpler, and we leave it to 
the reader, who can carry it through simply eliminating the unnecessary 
complications. 

Let us begin from a solution v of the homogeneous equation: 

a%Dijv
f, = 0, (10.18) 

with v = 0 on P. 
Since the coefficients a^g are constant, the equation above can be writ­

ten in the form 

DiC%pDjVP = 0, 

which after multiplication by an arbitrary test function ip £ CQ°(Q+,'RN) 

and integration by parts becomes 

I ailpDiifiDiipa dx = 0. (10.19) 

We have already proved in the preceding section that v e W^)C(Q+)1 

for every integer k, and hence by the SOBOLEV theorem (Theorem 3.12), it 
belongs to C°°. Moreover, we have the CACCIOPPOLI estimate (6.68), with 
U = g1=0: 

/ \Dv\2dx < , ° xo / \v\2dx. (10.20) 
jQt (s - *) JQt 

Since the coefficients are constant, it is not necessary to assume that the radii are 
small. 
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Since every derivative of v is itself a solution of the same Eq. (10.19), 
we easily have 

Taking now s = 1, t = | and k > 2 + T|, we can apply the SOBOLEV 

Theorem 3.12 and we can conclude that v £ C2(Q*/2) and 

swp{\Dv\2 + \D2v\2) <c J \v\2dx<c I \Dnv\2dx. (10.22) 

In particular we have for t < | : 

/ \Dv\2 dx<{2t)n sup \Dv\2 <ctn I \Dnv\2 dx (10.23) 
JQt Q+ JQ+ 

and moreover 

/ \Dv - (Dv)t\
2 dx < ct2 f \D2v\2 dx 

JQt JQt 

<ctn+2 f \Dnv\2dx. (10.24) 
JQ+ 

If in the last inequality we replace v with v — xn£, £ G R ^ (which is a 
solution of (10.18) and is zero for xn = 0), we get 

/ \Dv - (Dv)t\
2 dx < ctn+2 f \Dnv-i\2dx. (10.25) 

JQt JQ+ 

Writing Dav, s ^ n, instead of v, we find an estimate for the deriva­
tives DD'v. The remaining derivative Dnnv can be estimated using the 
Eq. (10.18), so that we arrive to the estimate 

/ \D2v\2dx<ctn f \D2v\2dx. (10.26) 
JQt JQ+ 

In a similar way, we can replace v with Dsv" — xnA°n in (10.24), and 
obtain 

/ \DDsv - (DDsv)t\
2 dx < ctn+2 f \Dsnv - Xan\

2 dx. 
JQt JQ+ 



Higher Derivatives 357 

Once again, the derivative Dnnv can be extracted from the equation, 
and hence 

/ \D2v - (D2v)t\
2 dx < ctn+2 f \D2v-X\2dx. (10.27) 

JQ+ JQ+ 

The estimates (10.26) and (10.27) continue to hold, possibly with a 
different constant, for every t < 1. The same estimates hold for a generic 
cube QR, and can be proved simply by reducing to the unit cube Q by 
means of a homotethy. We have therefore proved the following: 

Theorem 10.7 Let v be a solution of the homogeneous Eq. (10.18) in 
Q'jt, with v = 0 on P. Then, for every g < R we have: 

f \Dv\2dx<c(^-)n f \Dv\2dx, (10.28) 

[ \Dv-(Dv)e\
2dx<c(^Y+2 f \Dv-£\2dx, (10.29) 

f \D2v\2 dx < c (-^Y f \D2v\2dx, (10.30) 

and 

f \D2v-(D2v)e\
2dx<c(4:)n+2 I \D2v-X\2dx (10.31) 

JQt XHJ JQ+
R 

for every £ = {£?} e RnN and every A = {A^} £ R"2 jv . 

The same estimates hold if QR C Cl. 

Remark 10.1 The preceding estimates remain valid if we substitute ev­
erywhere the exponent 2 with p > 1. Actually, if we follow the proof of the 
preceding theorem, we will note that it is sufficient to prove (10.22) with 2 
replaced by p. Now this is trivial if p > 2; for, calling U2 the left-hand side 
of (10.22), we have 

Up<cff \Dnv\2dxY <c f \Dnv\pdx. 

If instead 1 < p < 2, we must remark that from (10.21) with 2k > n + 4 
we can deduce that 

supflZM2 + \D2v\2) < ^ - ^ f \Dnv\2dx 
Q+ {s ~ l> JQt 
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and hence, calling U2 the quantity on the left-hand side, 

cU2~p f 

f/,2<T-^^y+\DnV\*dx 

[ \Dnv\pdx]P . 
JQt J 

< k2 + 2 s \{s-t)2k 

At this point, a simple application of Lemma 6.1 gives the required 
estimate. • 

Let us consider now the non-homogeneous Eq. (10.4), that we write in 
the form: 

DicgpDjwP = A / a + 9a (10.32) 

with constant coefficients a%p verifying the condition of L E G E N D R E -

HADAMARD (10.3). 
We can write w as sum of two functions: w = v + z, where v is a solution 

of the DlRICHLET problem 

(a%Dijvf> = 0 i n Q + , 

^ ^ v = w on dQ~^, 

and z = w — v is a solution of the DlRICHLET problem relative to the 
non-homogeneous equation with zero boundary value on <?Q#. 

For what concerns z we have the following: 

Propos i t ion 10.2 Let z be a weak solution of the DlRICHLET problem 

f Dia%DjZP = Difi - ga in Q+ , 

\z = 0 on dQ^. 

For every -K = {na} we have 

f \Dz\2dx<c[ (\f-ir\2 + R2\g\2)dx. (10.33) 
JQt JQt 

Proof. We have 

/ \Dz\2dx< [ a%DiZaDjZPdx 
JQt JQt 

= [ {fi
a-va)Diz

adx+ [ gaz
adx 

JQt JQt 
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s4L\f-**)'(Lwr*)' 
•Ql 

f \g\2dx) ( f \z\2dx 
Jot / \JQt J 

and (10.33) follows immediately by estimating the last integral by means 
of the inequality of PoiNCARE. • 

It is now easy to get bounds for the second derivatives. We have the 
following: 

Proposition 10.3 Let z be a solution of the DlRlCHLET problem 

j a^DijZ13 = ga in Q~^ , 

\z = 0 on dQ~k. 

Then, 

I \D2z\2dx<c[ \g\2dx. (10.34) 

Proof. From (10.12) we get 

/ \D2z\2dx<c[ (\g\2 + R-2\Dz\2)dx. (10.35) 

The last term can be estimated by means of (10.33) with / = n = 0. 
We have 

/ \Dz\2dx<cR2 f \g\2dx, 
JQt JQt 

from which (10.34) follows at once. • 

We can now prove the following theorem: 

Theorem 10.8 Let w(x) be a weak solution in Q^ of the elliptic equation 

Dia%DiwP = Difi - ga 

with constant coefficients, and assume that w = 0 on P. Then, for every 
Q < R we have 

[ +\Dw\2dx<cUj-Y [ +\Dw\2dx+ [ + (\f\2 + R2\g\2)dx\, 
JQQ \ JQR JQR ) 

(10.36) 
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f \Dw-(Dw)e\
2dx<J (%Y+2 [ \Dw-£\2dx 

JQt I KRJ JQt 

+ / (\f-7r\2+R2\g\2)dx\. (10.37) 
JQt J 

Proof. Setting as above w = v + z, we have 

/ \Dw - (Dv)e\
2 dx<c f (\Dv - (Dv)e\

2 + \Dz\2) dx, 
JQt JQt 

and therefore, using (10.29): 

/ \Dw - (Dw)e\
2 dx < J \Dw - {Dv)e\

2 dx 
JQt JQt 

The first inequality (10.37) follows at once from (10.33). The proof of 
(10.36) is similar, and we leave it to the reader. • 

We can prove now the basic estimates for the second derivatives. 

Theorem 10.9 Let w(x) be a solution in Q~^ of the elliptic equation 

a^pDijW13 = ga 

with constant coefficients, and let w = 0 on P. Then, for every g < R we 
have 

f \D2w\2dx<c\(%)n f \D2w\2dx+ f \g\2dx\, (10.38) 
JQt [XRJ JQt JQt J 

/ \D2w-(D2w)e\
2dx<c{(%Y+2 J \D2w-X\2dx 

JQt I yRJ JQt 

+ [ \g-gR\2dx). (10.39) 
JQt i 

Proof. We shall prove (10.38) first. Writing as above w = v + z vre have 

/ \D2w\2dx<c[ (\D2v\2 + \D2z\2)dx, 
JQt JQt 
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and hence, using (10.30) and assuming that g < R/2: 

The conclusion follows at once from Proposition 10.3, possibly changing 
the constant c if g > R/2. 

Let us consider now the second inequality. Denoting by Ann the N x N 
matrix with components a1^, and setting 

1 2 A-i y = w- -xnAnngR, 

we get 

atpDijVP =9a- (9a)R • 

As above, we can split y = v + z, getting 

f \D2w - (D2w)e\
2 dx= ( \D2y - (D2y)e\

2 dx 

jQi JQi 

< 2 / \D2v-(D2v)e\
2dx + 2 f \D2z\2dx. 

JQi JQi 

We can estimate v by means of inequality (10.31): 

/ \D2w-(D2w)e\
2dx 

JQi 

On the other hand, from Proposition 10.3 we deduce 

/ \D2z\2dx<c[ \g-gR\2dx 
JQ+/2 JQR 

and the conclusion follows. • 
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10.3 Continuous Coefficients 

Once the proper estimates for the solutions of equations with constant 
coefficients have been obtained, we can deal with the regularity of solutions 
to equations with continuous coefficients. We shall consider both weak 
solutions of equations in divergence form: 

/ a%p(x)Dju
f>Di<pa dx= f [fl

aDi<pa + ga<pa] dx (10.40) 
Jn Jo. 

and pointwise solutions of non-divergence equations: 

ailp{x)Diiu
p = ga(x) a.e. in 0,. (10.41) 

In both cases we shall assume that the coefficients a1^ are continuous 
and satisfy the ellipticity condition (10.3). Moreover, since we are looking 
for local results, we can assume that the coefficients are uniformly contin­
uous. We shall indicate by u> their modulus of continuity: 

w(t)= sup sup \a^(x) - a^p(y)\. 
i,j = l,...,n \x — y\<t 

a,0=l,...,N[ 

As above, we shall consider the case in which fi is the upper half-space 
R™. Having proved the desired results for this situation, it will not be 
difficult to extend them, with a suitable change of variables, to the general 
case, provided the boundary of fi is regular enough. 

Lemma 10.1 Letu(x) e W1'2 be a weak solution in Q~^(xo) of the elliptic 
Eq. (10.40), and assume that u = 0 on P. 

Then, for every g < R we have 

f \Du\2 dx < cf Uj~Y + u(R)2] f +\Du\2dx 
JQg \ JQR 

+ f [|/|2 + £ 2 | 5 | V 4 , (10-42) 
JQ+ ) 

[ \Du-(Du)e\
2dx<ci (%Y+2 f \Du-£,\2dx 

+ LJ{R)2 f \Du\2dx 

+ [ [\f-7r\2 + R2\g\2}dx\. (10.43) 
JQt J 
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Proof. We have 

f a%(xo)DjU^D^a dx = j [a%(x0) - a%{x))DjvPD^a dx 

+ [[faDi<pa+ga(x)<pa]dx 
Jn 

and the conclusion follows immediately from (10.36) and (10.37). • 

In a similar way, writing Eq. (10.41) in the form 

al^{x0)Diju
13 = [a^pixo) - a^{x)]DijUP + ga 

we can obtain from (10.38) and (10.39) the following: 

Lemma 10.2 Let u be a solution of Eq. (10.41) in Q^, and assume that 
u — 0 on P. Then, for every g < R we have 

j + \D2u\2 dx < cl [ ( I ) " + o,(i?)2] f + \D2u\2dx 

+ / \g\2dx\ (10.44) 

f \D2u-(D2u)e\
2dx<c\ f | ) " + 2 / \D2u-X\2dx 

+ / \g-gR\2dx 

+ u{R)2 [ \D2u\2dx\. (10.45) 

The same inequalities hold at the interior, for cubes Qe and QR. 

Remark 10.2 Estimates similar to (10.42) and (10.43) hold for solutions 
of the complete equation 

f a%(x)DjU^Diip
a dx = / [/* + bipWu^Dap" dx 

Jn Jo. 

+ f\ga + <ip(x)Dj^ 
Jn 

+ daPup]ipa dx, (10.46) 

provided the functions b, c and d are bounded. 
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In fact, if we write (10.42) with the functions 

Ga = ga + cf{x)Dju
!3 + d^u? , 

and we assume, as we are allowed to do, that R < 1, we easily get 

f\Du\2dx<d.[^y + x(R)2} f +\Du\2dx 

+ f {\f\2 + H2 + R2\gf}dx\ (10.47) 

with x{R)2 = u{R? + R2-
If instead we start from (10.43), we get, similarly, 

/ \Du-(Du)e\
2dx<J (%Y+2 I \Du-£,\2dx 

JQt I yR/ JQ$ 

+ X(R)2 f \Du\2dx 
JQ+H 

+ I [ | / -7r | 2 + |tt|3 + iE3 |ff|2]dil. (10.48) 
JQt > 

In the same way, the solutions of the complete equation 

aap(x)Diiul3 + ^ ( i ) A ^ + caP{x)ufi = ga(x) q.o, in fi (10.49) 

satisfies estimates different from (10,44) and (10.45) only for the addition 
of the term 

/ (\Du\2 + \u\2)dx 
JQt 

on the right-hand side. • 

Proceeding now as in Theorem 8.4, we get without particular difficulties 
the following regularity results for the first derivatives. 

Theorem 10.10 Let u € Wl'2{Sl) be a weak solution of the equation 

[ a%{x)DjU0Diipa dx= [ [faDi<pa + ga<pa] dx (10.50) 

with the coefficients aij continuous and satisfying the ellipticity condition 
(10.3). 
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/ / the functions f belong to L2'x(fl), with X < n, and g G L2,A~2(fi), 
then the derivatives ofu belong to L^C(Q), and for every open set E CC fi 
it holds that 

\\Duhxti<c{\\Duh,a + \\fh,x,tt + \\9h,x-2,n}- (10-51) 

If in addition dfl is regular, and u is a solution of the DlRlCHLET prob­
lem with zero boundary data, the derivatives Du belong to L2' (fi), and the 
preceding estimate holds with E replaced by f2. 

Similarly, for the solutions of (10.41), we have the following: 

Theorem 10.11 Let u € W2(il) be a solution of the equation 

a%p(x)DijV,P — ga a.e. in ft 

with the coefficients aij continuous and satisfying the ellipticity condition 
(10.3). 

/ / the function g belongs to L2,A(fi), with A < n, then the second deriva­
tives ofu belong to L^C(Q,), and for every open set E CC fi we have 

\\D2U\\2,X,J: < c {||I>2u||a,n + IMIa,A,n} • (10-52) 

If in addition dCl is regular, and u is a solution of the DlRlCHLET prob­
lem with zero boundary data, then the second derivatives D2u belong to 
L2'x(Sl), and the preceding estimate holds for fi. 

Proof. The proofs of the two Theorems 10.10 and 10.11 are practically-
identical, so that we can limit ourselves to one of them, for instance the 
second. 

Let us begin from the interior regularity. Let E CC U and let R < 

Ro = -4^dist(E, <9fi). Prom (10.44), in which in our situation we have 
Q% = QR CC fi, setting <p(t) = fQ \D2u\2 dx, we deduce 

<p(rR) < c(rn + w(R)2)<p(R) + cRx\\g\\2,x -

If we choose r in such a way that 2CTS~T~ = 1, and R0 so small that 
v(Ro)2 <Tn, we obtain 

<p(rR) < T^ipiR) + CJR
A||<7||2,A , 

and the conclusion follows immediately from Lemma 7.3. 
The same argument leads to the regularity at the boundary. • 
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Finally, with a proof completely similar to that of Theorems 8.5 and 
8.6, we get the following results: 

Theorem 10.12 Letu € W1,2(fi) be a weak solution of Eq, (10.50), with 
coefficients a%^g of class C0,CT and satisfying the ellipticity condition (10.3). 

/ / the functions fa belong to £2,A(fi), with A < n + 2a < n + 2, and 
g € L2'X~2, then the derivatives of u belong to £ ^ ( 0 ) , and for every open 
set S CC Q, we have 

||-D«||2,A,E < c {\\Du\\2,n + ||/||2,A,n + HfflkA-2,n} • (10.53) 

/ / in addition dQ, is regular, and u is a solution of the DlRICHLET prob­
lem with zero boundary data, then the derivatives Du belong to £2,A(fi), 
and the preceding estimate holds with S replaced by fi. 

Theorem 10.13 Let u £ W2(Q) be a solution of the equation 

a%£Jx)DijuP = ga a.e. in Q, 

with coefficients a1^ of class C0,<7 and satisfying the ellipticity condition 
(10.3). 

If the function g belongs to £2,A(Q), with \<n + 2a<n + 2, then the 
second derivatives of u belong to ;C1(jc(fi), and for every open set E CC fi 
we have 

\\D2u\\2,x,n < c {\\D2u\\2,u + \\gh,x,a} • (10-54) 

If in addition dil is regular, and u is a solution of the DlRICHLET prob­
lem with zero boundary data, then the second derivatives D2u belong to 
£2,*(fi), and the preceding estimate holds with £ replaced by O. 

In particular, a weak solution of the elliptic equation 

/ a%(x)DjuPDwadx = [ paDapa dx 
Jo. Jn 

with Holder-continuous coefficients and the right-hand side, has Holder-
continuous first derivatives, whereas a solution of the equation 

aij(x)DijU = g(x) 

always with Holder-continuous coefficients and the right-hand side, has 
Holder-continuous second derivatives. 

Remark 10.3 Similar results hold for the solutions of the complete 
Eqs. (10.46) and (10.49). For simplicity, we shall only sketch the proof of 
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the analogue of Theorem 10.10, restricted to the part relative to estimates 
on the whole f2. 

For that, we shall assume that Du belongs to L2''0, 0 < -d < A, with the 
estimate2 

\\Du\\2,0 < c{\\u\\2 + \\Du\\2 + | | / | | 2 ,A + ||ff||2,A-2}• (10.55) 

By Proposition 3.7, we have u G £2,1?+2, with the estimate 

||w||2,tf+2 < c ( | | u | | 2 + H-Dwlb,!?) 

< c{\\u\\2 + \\Du\\2 + | | / | |2,A + IMl2,A-a} • 

Starting from (10.47), and arguing as in Theorem 10.10, we conclude 
that Du G L2'^, with fi = min(i9 + 2, A), and that estimate (10.55) holds 
with n instead of •d. With a finite number of steps, starting from # = 0, we 
conclude that Du £ L2'X, with the estimate 

\\Du\\2tX < c{||«||2 + ||I>«||2 + ||/||2,A + \\9h,x-2} • (10.56) 

• 
At this point we could continue, as in the case of the Hilbert regularity, 

proving regularity theorems for the derivatives of higher order. We limit 
ourselves to a short statement of the results, leaving with the reader the 
task of completing the proofs. 

Theorem 10.14 Let u be a solution of Eq. (10.50). Assume that the 
coefficients are of class Ck(Q) [resp. Cfc,c*(fi)], and that the derivatives of 
order k of the functions f%

a and of order (k — 1) of ga belong to L2,A(fi) 
[resp. £2'A(f2)]. Then, the derivatives of order (k + 1) ofu belong to L2,A(S) 
[resp. £2 'A(£)] for every S CC $1 

/ / in addition dfi, is regular, and u is a solution of the DlRlCHLET prob­
lem with zero boundary data, the above estimates hold with S = CI. 

A similar result is valid for solutions of the equation 

a^pDijul3 = ga. 

If the coefficients are in Ck~l [resp. Cfc_1>Q] and the derivatives of order 
(fc — 1) of g belong to L2,A [resp. £2 'A], the derivatives of order (A; + 1) of u 
are in L^c [resp. C^c], with global result if u = 0 on dfi,. 

2We have omitted the reference to the open set Q. 
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10.4 Lp Es t imates 

The results of the preceding section, and the interpolation theorem of 
STAMPACCHIA (Theorem 2.14), can be used to obtain Lp estimates for 
the derivatives of the solutions of elliptic equations. The following theorem 
describes the simplest case, yet of some interest. 

Theorem 10.15 Let il be an open set o/R™, with regular boundary and 
homeomorphic to a cube. Let u € Wo(fi) be a weak solution of the problem 
of DlRICHLET {with zero boundary data) for the equation 

DiJipDjVp = Difa (10.57) 

with constant coefficients a ^ , satisfying the ellipticity condition (10.3). 
If f & Lp(il), p > 2, the derivatives Du belong to Lp(il), with the 

estimate 

\\Du\\p<c(n)\\f\\P- (10-58) 

Proof. Let us consider the operator T mapping every / G L2(fi) into the 
gradient Du of the solution of problem (10.57). T is obviously linear, and 
by Lemma 5.1 we have 

I |T / | |2<C| | / | | 2 . 

On the other hand, by Theorem 10.12, T maps £2-n into C2'n, with the 
estimate 

||r/||2lB<c(||T/||a + ||/||a,B)<c||/||2,n. 

We can therefore apply the theorem of STAMPACCHIA, and we conclude 
that T maps LP into Lp, with the estimate (10.58). • 

Remark 10.4 The constant c in (10.58) obviously depends on fi. If 
however fi is a ball of radius R, it can be taken independently of R. 

Let u be a solution of problem (10.57) in BR, and let w{x) = u(Rx), 
r)(x) = ip{Rx) and F(x) = f(Rx). We have Dw(x) = RDu(Rx) and 
Dr)(x) = RD<p(Rx), and hence the function w € W^{B) is a solution of the 
equation 

f a^DjW^Di<pa dx = R f FiDw" dx. 

By the previous theorem, if / G LP{BR) we have F € LP(B) and 

\\Dw\\PtB < c(B)R\\F\\PiB, 
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which is equivalent to 

\\Du\\p,BR<c(B)\\f\\p,BR. a 

If instead v is a solution of the homogeneous equation 

/ 
Jn 

a^DivPDw" dx = 0 
n 

and takes the value U at the boundary, we can apply the preceding result 
to the function u = v - U, which is solution of the problem (10.57) with 
pa = aUpDjUP. We have therefore 

\\Du\\p < c(n)\\DU\\p 

and hence 

\\Dv\\p<c(il)\\DU\\p. 

Remarking that the function v — P = v — a — {TT, X) is a solution of the 
homogeneous equation and takes the value U — P at the boundary, we have 
also 

\\Dv - TT||P < c(Cl)\\DU - 7T||P . (10.59) 

In particular, the preceding estimate holds in a ball of radius R, with 
c independent of R. The last estimate is exactly the one we have used 
frequently in the previous chapters. 

Under the same assumptions on il, a similar result holds for the second 
derivatives of the solutions of the DlRICHLET problem with zero boundary 
data for the equation 

a^DijU13 = ga a.e. in Q, (10.60) 

with constant coefficients o ^ satisfying the LEGENDRE-HADAMARD 

condition. 
Since the coefficients are constant, we can write (10.60) in the weak 

form 

/ a^DjU^D^01 dx = - [ gaip
a dx. (10.61) 

Jn Jn 

We can therefore apply Theorem 10.3, and we can conclude that 

/ \D2u\2 dx<c J {\Du\2 + \g\2) dx. 
Jn Jn 
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On the other hand, taking <p = u in (10.61), and using (10.5) and 
PoiNCARE's inequality, we easily get 

\Du\2 dx < c \g\2 dx (10.62) 
Ju Jn 

and hence 

/ \D2u\2dx <c \g\2dx. 
Jn Ja 

To the same function u we can apply Theorem 10.13, and in particular 
we can write (10.54) with A = ft. We have therefore 

\\D2u\\2,n < c(\\D2u\\2 + \\g\\2<n) < c\\g\\2,n . 

In conclusion, the linear operator T, which maps any g G L2 into the 
second derivatives of the solution of problem (10.60), maps L2 into L2, and 
£2'n into C2'n. By the theorem of STAMPACCHIA, T maps V into Lp, with 
the estimate 

| |Z?2u| |p<c(ft) | |5 | |p . (10.63) 

We remark once more that if fi is the ball of radius R, the constant c 
in the preceding estimate does not depend on R. 

We shall continue now by showing on one hand that, always under 
assumptions of regularity of <9f2, it is possible to avoid the assumption that 
fi is homeomorphic to a cube; and on the other by extending the previous 
results to equations with continuous coefficients. Moreover, we will show 
that these results are local in character; in other words, if A C ft, and 
/ € Lp(A), then Du € LP(A) for every open set A CC A. 

For that, let us consider a ball BR = B(xo,R) and let 77 G CQ°(BR), 

with 0 < j] < 1, and 77 = 1 in BR/2. Let u be a solution of the equation 

/ aH Dju
(3Di<padx= [ faDi<padx (10.64) 

JBR JBR 

for every tp with support in BR. Writing rjip instead of <p, we get easily 

j cfyDjivu^Div" dx = Jirjfi + a ^ D ^ D ^ dx 

+ j\faD*n - ai>(lDju0DiTi]<pa dx. (10.65) 
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Let now w be the solution of the DlRlCHLET problem 

f Aw<* = ga =: PaDiT] - a'^D^Dm in BR, 

[ w = 0 on 9 B R . 

The function ID satisfies the inequality (10.63) with c independent of R; 
and hence if g 6 L m for some m > 2, the second derivatives of w belong 
to Lm, and therefore Dw e Lm*. Introducing in (10.65) the preceding 
equation written in weak form, namely: 

f DiW
aDi<pa dx = - f[fl

aDiV ~ aV/3Dju'3Dir}}<pa dx, 

we eventually get 

f a%Dj (vup)Diip
a dx= J FiDi<pa dx, (10.66) 

where 

K = V& + aZ^DjT) - Diwa . (10.67) 

We remark that if / € Lp and u e W1-"*, then F € Ls, with s = 
min(p, m*). 

Until now, no assumptions have been made on the coefficients. Let us 
assume now that they are continuous in CI, and satisfy the condition of 
LEGENDRE-HADAMARD. The Eq. (10.66) can be written in the form 

Ja%(x0)Dj(r]ue)Ditp
a dx 

= J{Fi + [a%(x0) - a%(x)]Dj(Vu^)}Di<pa dx. (10.68) 

Assume finally that F € Ls, and for v S W0'"(BR) let w be the solution 
of the problem of DlRlCHLET for the equation 

fa^(x0)Djw'}Dilp
adx 

= j{K + [a%(x0) - a ^ x P / W dx , (10.69) 

taking the value zero on 8BR 
By Theorem 10.15 we have 

\\Dw\\s < c(\\F\\s + u(R)\\Dv\\.) (10.70) 



372 Direct Methods in the Calculus of Variations 

with c independent of R, where v(R) is the oscillation of the coefficients in 
BR. Moreover, if w\ and w2 are the solutions correspondent to v\ and v2, 
we have 

\\D(w1 - w2)\\s < cwWWDiv! - v2)\\3. 

Choosing now R such that cu)(R) < \ (note that the value of R depends 
only on the modulus of continuity of the coefficients), the map S : v —• w 
is contractive, and hence it has a unique fixed point, which cannot but 
coincide with r/u. By (10.70) we have 

\\D(r,u)\\s<2c\\F\\s. 

In conclusion, we have proved that if the function F given by (10.67) 
belongs to LS{BR), then 

\\Du\\a,BR/2 < C\\F\\.,BR • (10.71) 

Let us assume now that, for some r < R/2, u s W1'm(BT) with m < p, 
and that 

IM|l,m,B,. < c(||/||p,Bar + ||«||l,2,Bar)-

By what we have seen, F will belong to Ls(Br), s = min(p,m*), and 
therefore u G W1,s(Br/2), with the estimate 

ll«Hl,-,Br/a < c | |F | | , , B r < c(\\f\\p,Br + | |«||l,m,Br) 

<c(\\f\\p,B2f + \\u\\l,2,B2r). 

Starting then from m = 2, with a finite number of steps (dependent 
only on the dimension n) we reach the exponent p. We have therefore the 
following: 

Theorem 10.16 Let u be a solution of the equation 

[ c%Jx)Dju
fiDi<pa dx= f fiDicp" dx (10.72) 

Ju Jn 

with continuous coefficients. If for A CC fl the function f belongs to LP{A), 
p>2, then u belongs to W1'P(A) for every A CC A, with the estimate 

| |«||I,P,A < c(A,A)(\\f\\PlA + | |u | | l i 2 i A ) . (10.73) 

We remark that by CACCIOPPOLI'S inequality, the norm W1 on the 
right-hand side can be replaced by the L2 norm. 
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A similar result holds at the boundary for the solutions of the DlRlCH-
LET problem with boundary datum U S W1 ,p . As usual, we can assume 
U = 0, and by means of a diffeomorphism we can reduce to the case of flat 
boundary. In order that the coefficients of the transformed equation remain 
continuous, it is necessary that dCt is of class C1 . Assume therefore that u 
is a weak solution of the equation (10.72) in the half-ball B+(0), taking the 
value zero on the flat part P of dB+. Let us consider as above a function 
77 with support in the ball BR = B(0,R); the function rju is zero on dB^ 
and satisfies the Eq. (10.65) in £ # . 

At this point we cannot continue as above, since the regularity theorems 
in Lp require that the boundary of fl is regular, whereas dB^ is only 
Lipschitz-continuous. Luckily, the function 77 appearing in (10.65) has 
support which stays away from the singular part of the boundary, and 
therefore we can replace B~^ with a regular open set AR C B^ containing 
the support of 77. 

In order not to introduce unwanted dependence on R, we consider a 
function ip £ CQ°(B), with 0 < rp < 1 and rp = 1 in B1/2, and a set 
A C B+ with regular boundary containing suppipC\B+. For R < 1, we set 
r](x) = ijj(Rx) and 

AR = RA = : {Rx :xeA}. 

We can now continue our proof, writing AR instead of BR. Arguing as 
at the end of Theorem 10.15, we can conclude that the constants appearing 
in the estimates depend on A, but not on R. 

In this way we can repeat without essential changes the proof of inte­
rior regularity, getting an V estimate up to the boundary. This result is 
essentially of local character: if A C fi is an open set, and if / e LP(A), 
then u £ LP{A) for any open set A whose closure is contained in A U dil. 
If A = Cl one gets 

Theorem 10.17 Let u be a solution of the DlRlCHLET problem (10.57) 
with zero boundary data, in an open set il with C 1 boundary. Assume that 
the coefficients are continuous in Cl and that the right-hand side f belongs 
to Lp(Cl). Then, u £ W1'P{Q), and we have the estimate 

| |« | | i ,p,n<c(| | / | |p ,n + | |u| | l i a ,n). (10.74) 

The term ||u|| 1,2,0 on the right-hand side of the preceding estimate can 
be replaced with ||w||2,n by the GARDING inequality (10.6), as is easily seen 
taking <p = u in (10.64) and making the usual estimates. 
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10.5 Minima of Functionals 

We shall now apply the results of the preceding section in order to prove 
the regularity of the minima of functionals 

J-{u, fi) = / F(x,u,Du)dx, 

where F(x, u, z) is a regular function, satisfying the assumption of the 
previous chapter. 

We have already remarked that every minimum u(x) of T has second 
derivatives in L2 and Holder-continuous first derivatives in an open set 
fio C f2,3 and satisfies for almost every x € fio the equation 

Ai^(x,u(x),Du(x))Diju'3 = Ba(x,u(x),Du(x)), (10.75) 

where 

d2F 
AVp(x,u,z) = ——p(x,u,z), 

, dF d2F p d2F 
Ba{x, u, z) - Qua d z „ d u 0 zt g z „ d x i . 

Moreover the derivatives Dsu are weak solutions of the equation 

J \A%{X, u, D^DjDsii13 + B^ix, u, Du) £>*¥>" dx = 0 (10.76) 

for every ip £ Cg°(n0, RN), with 

Ba<s{x, u, z) - Qz?dupzs + d z „ d ^ Qua ois. 

We have the following: 

Theorem 10.18 Let u e W2(Cl0) n C1,<T(fio) be a minimum of the func­
tional F, and let the function F(x,u,z) be of class Ck+2'S, 6 < 1 in its 
arguments. Then, u belongs to Ck+2's(Qo). 

Proof. We consider first the case k = 0. The functions 

a%i(x) = A%{x,u{x),Du{x)) 

3 In the scalar case we have fio = Q in the vector case the closed set Q — QQ has zero 
measure in general, whereas for quadratic functionals it has zero (n — 2)-dimensional 
measure. 



Higher Derivatives 375 

and 

ga(x) = Ba(x,u(x),Du(x)) 

are Holder-continuous with some exponent a > 0. By Theorem 10.13, the 
second derivatives of u belong to C°'°. In particular, the first derivatives 
are Lipschitz-continuous, and hence a^ and ga belong to C0 ' . But then 
D2u G C°'s and the theorem is proved if k = 0. 

Let us now discuss the case k = 1. The functions a%p(x) and bl
as(x) = 

Bl
as(x,u(x),Du(x)) are of class C1,(T, and therefore we can use the dif­

ference quotients method starting from (10.76), and we conclude that the 
second derivatives of u belong to W,*'c

2. It follows that we can differentiate 
(10.75), getting 

a^^DijDsU13 = D,ga{x) + Dsa'ZpDijuP 

=: Ga(x) (10.77) 

with G G C0,flr. By Theorem 10.13 the third derivatives of u belong to C°<a, 
and hence, arguing as above, to C°'S. 

Finally, let us assume that the theorem holds for k > 1, and that F G 
£>fc+3,<5 B V ̂ g m d u c t ive hypothesis we can assume that u G Cfc+2,<5, and 
hence the function G(x) in (10.77) is of class Ck,a for some a > 0. But then 
the derivatives of u belong to Ck+2'a, and consequently G G Ck,s. Applying 
once again the inductive assumption, we conclude that Du G Ck+2's, and 
consequently u G Ck+3'5. D 

In the same way, but with a little more effort, one can prove the Holder-
continuity up to the boundary of the derivatives, in the case fio = &• 

10.6 Notes and Comments 

The results of this chapter, in particular those relative to linear equations 
and systems, can be defined as "classical," and it is difficult nowadays to 
establish their origin with some precision. Theorems 10.12 and 10.13 are 
known as ScHAUDER estimates [1], and were obtained originally by means 
of potential theory. Here, in contrast we have followed the method of CAM-
PANATO [3, 4], which is based on integral estimates, and can be extended 
without difficulty to linear elliptic systems. In particular, Theorems 10.10 
and 10.11, as well as the proofs of Theorems 10.12 and 10.13 are due to 
CAMPANATO. 
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The Lp estimates, originally obtained by means of potential theory,4 

are proved here by a method of STAMPACCHIA [3], later simplified by 
CAMPANATO [5], For the extension to continuous coefficients, we have 
followed an idea of TRUDINGER. 

4 The most general results can be found in AGMON, DOUGLIS and NlRENBERG [1]. 
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Calculus of Variations 

This book provides a comprehensive discussion on 

the existence and regularity of minima of regular integrals 

in the calculus of variations and of solutions to elliptic partial 

differential equations and systems of the second order. While 

direct methods for the existence of solutions are well known 

and have been widely used in the last century, the regularity 

of the minima was always obtained by means of the Euler 

equation as a part of the general theory of partial differential 

equations. In this book, using the notion of the quasi-

minimum introduced by Giaquinta and the author, the direct 

methods are extended to the regularity of the minima of 

functionals in the calculus of variations, and of solutions to 

partial differential equations. This unified treatment offers 

a substantial economy in the assumptions, and permits a 

deeper understanding of the nature of the regularity and 

singularities of the solutions. The book is essentially self-

contained, and requires only a general knowledge of the 

elements of Lebesgue integration theory. 
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