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Introduction

Pro minimis adhiberi possunt quasi minima.

Leibniz

The fundamental problem of the calculus of variations consists of the
research of a function u{z) minimizing the integral functional

Flu, Q) = /Q F(z, u(z), Du(z))dz (0.1)

among all the functions u satisfying suitable conditions, the most usual of
which consists of taking prescribed values U(z) on the boundary of Q:

u=U ondQ. (0.2)

This problem, that bears the name of DIRICHLET, is beyond doubt the
most studied, and probably the most important; in conforming to that
tradition, we too shall limit our discussion to it.

In (0.1) © is an open set in R™, whose generic point we shall denote by
z = (1,%2,...,2Zn), and the boundary datum U(z), and by consequence
the unknown function u(z), are functions with values in R", with compo-
nents respectively U* and u*, a =1,2,...,N.

The first examples of problems in the calculus of variations, of course in
the simplest case n = N = 1, date from the beginning of the infinitesimal
calculus, and are all founded on the EULER equation of the functional F.
To derive it, we assume that F(z,u,z) is of class C!, and that u(z) is a
minimum of the corresponding functional F. Let ¢ be a function equal to

1



2 Direct Methods in the Calculus of Variations

zero on 0f2, so that u + fp takes the same values as u on the boundary for
every real number ¢, and set

9(t) = F(u+tp, Q).

The function g(t) has a minimum for ¢ = 0, and hence we must have
9'(0) = 0. We then compute g’ by writing (0.1) for u+ty and differentiating
under the integral sign. We get!

/Q (8F (z,u(z), Du(z)) D;p™ + %(m,u(w),Du(m)) cp"‘) de =0,

{a 3
02§

If F is of class C?, integrating by parts and remembering that ¢ = 0
on 9

/Q (31 g—g{;(m,u(m),Du(m)) - %(x,u(x),Du(x))) e*dz=0. (0.3)

The preceding equation must be satisfied for every ¢ equal to zero on
01, so that we must have

3?1:i (aa—i(m,u(m),Du(:t))) - %(m,u(x),Du(m)) =0 (0.4)
for every a =1,2,...,N.

A necessary condition for u(z) to minimize the integral (0.1) is therefore
that u be a solution of the partial differential Eq. (0.4),2 which carries the
name EULER, or sometimes EULER-LLAGRANGE equation.

If, as is often the case, the functional F is convex, that is if it satisfies
the relation

Flu+ (1 —thw) <tF(u)+ (1 -t)F(v)

for every couple of functions u, v and for every ¢ € [0, 1], then g() is convex
itself, and since ¢’(0) = 0, we conclude that ¢ has a minimum in 0 for every
function ¢, and therefore that « minimizes F.

In conclusion, in the case of convex functionals, the Eq. (0.4) is a
necessary and sufficient condition for u(z) to minimize the functional F.

1We shall always sum over repeated indices; the latin indices running from 1 to n,
and the greeks ones from 1 to N.

2 Actually, when N > 1, it is a system of partial differential equations, that will reduce
to ordinary differential equations when n = 1. Needless-to-say, we shall be interested
only to the case n > 1; even if in principle the result of this book would hold for ordinary
differential equations, the problems for those are of a different kind. We shall use the
term “equation” to denote both the equations (N = 1) and the systems of differential
equations. The context will make clear what we are talking about.
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The EULER equation is particularly useful when one wants to find
an explicit solution (possibly in the form of a series) of the minimum
problem; in particular when we arrive at an ordinary differential equation
that sometimes can be integrated explicitely, or else reduce to quadratures.
The first book completely dedicated to the calculus of variations, due to
L. EULER [1], contains a large number of problems solved in this way.

On the other hand, when we pass to higher dimensional integrals, that
lead to partial differential equations, the method above shows evident limi-
tations, due to the difficulty of resolving explicitly such equations. Already
in the simplest case of the DIRICHLET integral

/Q |Dul? dz, (0.5)

which leads to the LAPLACE equation

LY
Au =: gﬁ =0,
i=1
the way to an explicit solution is restricted to very few cases, and can be
carried out successfully only when Q is a domain with spherical (n = 2 or
3) or cylindrical symmetry (n = 3).

It was exactly the need for harmonic functions (that is of solutions of
the equation Au = 0) taking prescribed values at the boundary of arbitrary
domains, that induced RIEMANN |[1] to reverse the usula point of view, and
to reduce this problem to that of minimizing the integral (0.5) among all
the functions taking on 9Q the given values. For that purpose, he intro-
duced the DIRICHLET principle, which consists essentially of considering
the functional (0.5) as a map from the manifold V' of the functions taking
on O0f) the given values into R, and of the assumption that it is possible
to apply to that mapping a generalization of the WEIERSTRASS theorem,
assuring the existence of the minimum (and of the maximum) of any con-
tinuous function. Once the existence of the minimum has been assumed, it
will automatically be a harmonic function.

In this way RIEMANN gave birth to the so-called direct methods in the
calculus of variations, which consist of proving the existence of the minimum
of an integral functional F (and more generally in discovering its properties,
in the first place its regularity) without recourse to the EULER equation,
but deducing it directly from the properties of the functional F, considered
as a map from V into R.

After some unsuccessful attempts by ARZELA [1], the proof of the
DIRICHLET principle for the functional (0.5) was given by HILBERT [1, 2].
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On the other hand, a complete treatment of the minimum problem
for the general functional (0.1) could not be carried our without two con-
ditions. Firstly place, one had to recognize that the semicontinuity, and
not the continuity, was the main assumption for a successful application
of the WEIERSTRASS theorem to the functional F; and secondly, it was
necessary to introduce new function spaces (beyond those already studied
for continuous functions and the like) and to prove for them compactness
results analogous to those of AsCOLI and ARZELA.

The first step was carried out by TONELLI, who introduced the lower
semicontinuity, and obtained a series of existence results, mostly in the case
of one independent variable, for functionals of the type

b
B(u) = / F(t,u(t), /' (t)) dt (0.6)

in the framework of absolutely continuous functions, and of the functions
with bounded variation.

The introduction of the semicontinuity is the key to dealing with the
general functionals (0.1). Actually, in order to apply the WEIERSTRASS
theorem, it is necessary that the functional F be lower semicontinuous,
and that the set V in which one looks for the minimum be compact.
These two properties are in some sense in competition; in order to have
the semicontinuity it is preferable to endow V with a relatively strong
topology: the fewer convergent sequences exist, the easier the functional
is semicontinuous. On the contrary, for the compactness it is better to
have the opposite: the weaker the topology, the easier for a sequence to
converge.3

The absence of suitable function spaces prevented TONELLI from going
beyond the functionals (0.6). The extension to the case of many inde-
pendent variables will take place thanks to the progress of the functional
analysis, and to the introduction by SOBOLEV [1] (and independently
by CALKIN [1] and MORREY [1]) of the spaces carrying his name. The
setting of the minimum problem in these spaces makes it possible to
prove general existence theorems, covering a large class of functionals.* In
particular we have semicontinuity theorems in the weak topology of W1P
(the space of the functions whose derivatives are p-summable) under the

3The same can be said reasoning in terms of coverings. On the other hand the two
notions of compactness coincide for metrizable spaces.

4We recall however that some important problems, such as that of minimal surfaces,
fall outside this general setting, and require the introduction of more general spaces.
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assumption of convexity of F(z,u, z) with respect to z in the scalar case,
and of quasi-convexity in the vector case. The last condition, introduced
by MORREY |[2], is essentially equivalent to the assumption that the linear
functions v = a + (A, z) minimize the “frozen” functional

F(v,0) = /Q F(zo, uo, Dv(z)) dz . (0.7)

On the other hand, the solution of the existence problem in the SOBOLEV
spaces opens up another series of questions. Actually, the functions of these
spaces have derivatives only in a weak sense, and in general are not even
continuous. Once a minimum has been found, the problem arises of proving
that it is continuous, or differentiable, and so on; briefly the problem of the
regularity of the solutions. This problem remained unsolved for long time;
its solution, limited to the scalar case (N = 1), begun with the fundamental
paper by DE GIorat [1].°

In it, DE GIORGI proved the Holder continuity of the solutions to dif-
ferential equations in divergence form:

Di(aij (.’L‘)DJU) =0 (08)

where the coefficients a;; are assumed only to be measurable and bounded
(therefore possibly discontinuous), and to satisfy the ellipticity condition

aij (@)6:&; > VI, v >0. (0.9)

Of course, Eq. (0.8) has to be interpreted as holding in a weak sense;
more precisely we shall assume that the integral equation

/ ai;D;vDjeodz =0 (0.10)
Q

is satisfied for every function ¢ of class C§°(€2).
The application to minima of functionals is immediate. Actually, any
function u(z) minimizing the functional

Flu, Q) = / F(Du)dz,
Q
satisfies the EULER equation in weak form:

/Qin (Du(z))D;¢(z)dz =0

SA similar result was obtained independently about at the same time by NasH [1].
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for every test function (. Taking ¢ = D,¢ and integrating by parts, we
find then

/Q F,.,(Du(x))D;(Dyu)Dipdz = 0 (0.11)

and hence the derivatives Dsu are weak solutions of an equation of type
(0.10), with

05j(2) = Fepz, (Du(z))

Assuming now that the second derivatives of I are bounded, and that
F' is strictly convex, that is that Eq. (0.11) is elliptic, we can apply DE
GIORGI’s theorem, and thus conclude that derivatives Du are Hélder-
continuous functions.

DE GIORGI's theorem was widely studied and extended in variuos
directions, so as to apply it to the EULER equation (0.3) of the general func-
tional (0.1). We shall quote here only the volume by LADYZENSKAYA and
URAL'CEVA [1], where one can find the relevant results, obtained mostly
by the two authors. A new and particularly elegant proof was given by
MoOSER [1, 2], who extended to general elliptic equations the classical
HARNACK inequality.

The regularity theorem does not extend to the vector case (N > 1). This
was shown by DE GIORGI [5] himself, who constructed a linear elliptic sys-
tem with bounded measurable coefficients having discontinuous solutions.
Shortly after this example was extended by GIusTI and MIRANDA (1] to
nonlinear systems with regular coefficients, and to minima of functionals.”
In the meantime, adapting some ideas introduced by DE GIORGI [3] and
developed by ALMGREN (1] in the study of minimal surfaces, MORREY [4]
was able to prove the partial regularity of the weak solutions of nonlinear
elliptic systems, or more precisely their regularity in an open set Qo C £,
and to show that the measure of the singular set Q — Qg was zero.® MoR-
REY’s result has been extended by GIUSTI and MIRANDA [2], and later by
GI1USTI [2], GIAQUINTA and GIUSTI [1], and others.

6We have denoted by F,, the derivative of F with respect to z;.

7Other examples were found independently by MAZz’YA [1]; more general examples
were later found by NECAS [2].

8Unlike DE GIORGI’s theorem, the proof does not make use of a similar theorem for a
linear system with discontinuous coefficients, but it is based in an essential way on the
nonlinearity and on the regularity of the coefficients. It should be noted that the result
does not hold for a linear system with discontinuous coefficients, as a has been shown by
SoUCEK (1], who constructed a linear system whose solution is discontinuous in a dense
set.
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All these regularity theorems apply to the minima of functionals by the
intermediate of the EULER equation, and therefore make only a marginal
use of the most characteristic properties of the minima, those properties
that distinguish true minima from simple extremals, let alone from solutions
of general elliptic equations and systems.

Now, whereas there is a total coincidence between minima and extremals
when the functional F is convex, this identity is no longer true in the
general case, where one can have extremals that are not even local minima
of the functional in question. As a consequence, one can expect that the
assumptions necessary to prove the regularity of extremals are substantially
heavier than those conducting to the regularity of the minima, first of all
the differentiability of F' with respect to u, and even more so the growth
of the derivative F,, indispensable already in the deduction of the KULER
equation.

A first step towards the use of direct methods in the regularity problem
(that is the proof of the regularity directly from the minimum property,
without passing through the EULER equation), was taken by GIAQUINTA
and GIUSTI [2], who have shown, in the case of scalar functionals, that
the minima of the functional (0.1), independently of any assumption of
differentiability of F, satisfy the assumptions of DE GIORGI's regularity
theorem, and therefore are Holder-continuous functions. The same result
holds in general for quasi-minima, that is for functions u for which

Fu,K) < QF(u+ ¢, K) (0.12)

for every ¢ with compact support K C Q.

The notion of quasi-minimum includes of course that of minimum, to
which it reduces when ) = 1. Actually, it is substantially more general,
since it includes solutions of linear and nonlinear elliptic equations and
systems (and in the vector case, quasi-regular mappings). We have thus,
under the general notion of quasi-minimum, a unified treatment of the
regularity of the minima of functionals in the calculus of variations, and of
the solutions of elliptic equations and systems in divergence form.

Of course in the vector case it is not a question of getting global regu-
larity (i.e., Holder continuity); one can only prove that generally speaking
a quasi-minimum has derivatives summables with an exponent larger than
that of the SOBOLEV space to which it belongs a priori. This result, that
was proved originally by BoJARSKI [1] and by MEYERS [1] in the case of
solutions of linear elliptic equations, has become an important tool in the
study of the partial regularity in the vector case.
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The further regularity results need more stringent assumptions, and the
notion of quasi-minimum, that has accomplished its duty in the proof of the
higher summability of the derivatives in the general case, and of the Holder
continuity in the scalar case, must be abandoned in favor of more particular
assumptions. In the case of the regularity of the first derivatives, it can be
replaced by the notion of w-minimum, introduced by the ANZELLOTTI [1],
and analogous to ALMGREN [1] approach to minimal surfaces. Given a
continuous increasing function w(R), defined for R > 0, and such that
w(0) = 0, we call the w-minimum of F a function u(z) such that for every
cube Qg = Q(xo, R), of side 2R and center zg, and for every function ¢
with support contained in Qr we have

F(u,Qr) < (1 +w(R)F(u+ ¢, Qr). (0.13)

For scalar w-minima with w(R) = ¢R?, one proves the Hélder continuity
of the first derivatives under suitable assumptions of continuity for the
function F' and of differentiability with respect to z, without assuming the
existence of the derivatives with respect to u, a result that can be extended
to the solutions of quasi-linear elliptic equations in divergence form.

In the vector case, as we have already said, the best we can expect
is partial regularity, that is regularity outside a singular set ¥, generally
non-empty, with in addition an estimate of the dimension of ¥. After a
certain number of results relative to functions F(z, u, z) convex in z, a first
regularity theorem for the minima of strictly quasi-convex functionals was
proved by EVANS [1], adapting methods introduced in the study of minimal
surfaces. According to that result, and to its extensions by various authors,
the w-minima of quasi-convex functionals are of class C1'* in an open set
Qo C Q, and the singular set ¥ = Q2 — )y has zero measure.

Better estimates for the singular set ¥ can be found in the case of
quadratic functionals

Qu,N) = /A (z,u)Du®D;uP dx (0.14)

for which one proves that the dimension of ¥ is less than n—2 (GIAQUINTA
and G1UsTI [2]). This result can be further ameliorated for separated coef-
ficients:

Afljﬂ(x, u) = g9 (2)Gop(u),

a situation that arises for instance in the theory of harmonic mappings
between Riemannian manifolds. In this last case, the dimension of the
singular set does not exceeds n — 3 (SCHOEN and UHLENBECK [1, 2],
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GIAQUINTA and G1USTI [6]), and decreases to n—7 if the target manifold is
the n-dimensional sphere (SCHOEN and UHLENBECK [3], GIAQUINTA and
SOUCEK [1}).

The further regularity concerns only the minima, and merges with the
theory of elliptic differential equations. Here the results are nowadays
classical, and the minima u are as regular as the function F' permits. In
particular, if F is of class C°(1), every minimum u of the relative func-
tional will be of class C*°(€y), where Q = § in the scalar case, whereas
in the vector case we have meas (2 — Q) = 0.

The structure of this volume follows essentially the above lines. In the
first introductory chapter we study scalar functionals, dependent only on
the gradient:

Flu,Q) = /Q F(Du(z)) de, (0.15)

and we prove the existence of minima for the DIRICHLET problem in the
space of Lipschitz-continuous functions. The results are obtained by means
of elementary techniques, that make constant use of the maximum principle.
In particular, this chapter does not require the knowledge of SOBOLEV
spaces, and the notions of functional analysis do not go beyond the theorem
of ASCOLI-ARZELA. We obtain nevertheless some significant theorems, in
particular for the area functional, a functional that, as we have remarked,
is not included within those discussed later.

In the second chapter we gather most of the results relative to spaces
of summable functions. In particular, we introduce the spaces L? and
LP-weak, as well as MORREY and CAMPANATO spaces, and we prove the
Hélder continuity of the functions belonging to the last ones. In this
chapter one can find the CALDERON-ZYGMUND covering theorem, the
lemmas of JOHN-NIRENBERG concerning BM O functions, and the interpo-
lation theorems of MARCINKIEWICZ and STAMPACCHIA. The last section
is devoted to the HAUSDORFF measure.

In the third chapter we introduce the SOBOLEV spaces, that we shall
use throughout the book. We note that on some occasions, as for instance
in the characterization of traces, we have preferred simplicity to generality,
for which we refer to books explicitly devoted to that subject. Even in this
case we have never left without proof a result essential in the sequel.

The next two chapters deal with semicontinuity theorems, both under
assumptions of convexity (Chapter 4) and of quasi-convexity. In the last
situation, the most precise result is due to ACERBI and Fusco [1]. We
have followed the proof given by MARCELLINI {1}, that besides requiring



10 Direct Methods in the Calculus of Variations

slightly less restrictive assumptions, represents an excellent example of the
interrelations between the theory of semicontinuity and that of regularity
of the quasi-minima, which we develop in the subsequent chapter.

Once the semicontinuity has been proved, the existence of minima de-
pends on the coerciveness of the functional under discussion. The question
is treated briefly at the end of the chapter.

The remaining Chapters 6—10 concern the regularity. In the sixth we
introduce the notion of quasi-minimum, we examine its relationships with
solutions of elliptic equations and systems, and we prove the LP summa-
bility of the derivatives of cubical quasi-minima. Here as in the following
chapters the main role is played by an inequality, that permits one to
estimate the derivatives by the function, to which is associated the name of
CacciorpoLl, who was the first, as far as I know, to prove it for solutions
of linear elliptic equations {3].

The seventh chapter is all devoted to the Holder regularity of the scalar
quasi-minima. We introduce some function classes, which we have named
after DE GIORGI who introduced them in his paper {1] already quoted,
and we prove that the functions in these classes are Holder-continuous.
Moreover, following D1 BENEDETTO and TRUDINGER [1] (see also DI
BENEDETTO [1]), we prove the HARNACK inequality for these functions.
The regularity of the scalar quasi-minima is a consequence of the fact
that they belong to suitable DE GIORGI classes. We prove in addition
the boundary regularity of solutions of the DIRICHLET problem.

In the following chapter we continue the study of the regularity in the
scalar case, proving the Holder continuity of the derivatives of the w-minima
of functionals, as well as of the solutions of nonlinear elliptic equations in
divergence form, under assumptions in many ways more general than usual.

The core of the proof consists of integral estimates for solutions of elliptic
equations of the type

D;AYDu) =0,

with coefficients A® dependent only on the gradient, which we have obtained
following the techniques introduced by LEWIS [1]. From these estimates we
obtain the regularity in the general case, considering the dependence on z
and u as a perturbation. An important ingredient of the proofs are the
spaces of MORREY and CAMPANATO [1] and [2], the last ones expressing
the Hélder continuity of the functions in terms of integral estimates.

The ninth chapter deals with the partial regularity of the w-minima of
quasi-convex functionals. We consider first quadratic functionals (0.14),
proving the regularity up to a closed set K of dimension less than n — 2.
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We pass then to more general functionals (0.1), and we show that every
w-minimum is of class C1¢, except possibly on a singular set X, closed in
Q and of zero measure.

Finally, the tenth and last chapter is concerned with the regularity of
the higher derivatives of the solutions of elliptic equations, and as a conse-
quence of minima of functionals. The treatment does not distinguish any
more between the scalar and the vector case, and it is made both in the
SOBOLEV spaces (HILBERT regularity) and in CAMPANATO spaces (HOLDER
regularity). Except for some reference to results previously proved, and in
any case it is not difficult to obtain directly, this chapter is independent of
the others, and can be considered as a brief introduction to the regularity
of the solutions of linear elliptic systems with regular coefficients.

The volume, as far as it is possible, is self-sufficient, and does not use
unproved results, except for what concerns the LEBESGUE integral, the first
properties of LP spaces, and some elementary notions of functional analysis.
The notations are the standard ones, and do not need special explainations.
It is only appropriate to remark that, following again a well-established
rule, we have denoted by ¢ a generic constant, in general dependent on the
data of the problem, and that may change within the same formula, as for
instance

abgc(a2+b2) < c<a4+be+i) .

Only when we want to stress the dependence of such constants on one
or more parameters A, p, etc., we shall write c()), ¢(A, 1) and the like.

This book has three different origins. The first are some notes of a course
given at the Nankai Institute of Mathematical in Tianjin in 1985 that for
some reason were never completed. The second is a small volume Fquations
ellittiche del secondo ordine [5], published as one of the “Quaderni dell’U.
M. I.” and that has been out of print for a long time (it was reprinted
in 2001). Finally, the research on direct methods in the regularity of the
minima of variational integrals, initiated by GIAQUINTA and GIUSTI [2-
4] and involving several authors, that have permitted us to give a unified
treatment of the regularity of the minima of functionals and of the solutions
to partial differential elliptic equations systems.

This work could never be finished without the help of several friends, in
particular M. GIAQUINTA, P. MARCELLINI and G. MoODICA, with whom I
have frequently discussed these subjects.

Finally, I feel obliged to apologize for the title rather abused these days.
Unfortunately, I could not find any other which would adequately describe
the content.
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Chapter 1

Semi-Classical Theory

In this chapter we shall illustrate a simple but meaningful use of direct
methods in the calculus of variations.
The method is limited to functionals of the type:

]:(u,Q)=/QF(Du)dz, (1.1)

with the function F(z) depending only on the gradient of a scalar function,
namely of a function u : - R. On the other hand, it is independent of
the growth of the function F, and therefore it covers situations that cannot
be treated with the more refined methods of the subsequent chapters. An
example of some importance is that of the area functional, that we shall
examine in detail.

The setting in which we shall treat our minimum problem is the
space Lip () = C%}(Q) of Lipschitz-continuous functions, namely of the
functions u(z) continuous in Q and such that

[ulo,s = f’,‘ygﬁ, [u(%%(y—)l < 400, (1.2)
z#Y

It is not difficult to see that Lip(Q) is a BANACH space, with the
norm

lullo,1 = sup lul + [u]o,1 -

13
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Lipschitz-continuous functions are almost everywhere differentiable (see
- for instance SAKS [1], p. 311), and their derivatives are bounded functions,
which coincide with the distributive derivatives.

We shall consider functionals of type (1.1), with F' convex in z € R™,
and we shall prove that under suitable hypotheses it is possible to solve
the DIRICHLET problem, that is to show that the functional (1.1) takes
its minimum in the class of Lipschitz-continuous functions with prescribed
values on the boundary of Q.

1.1 The Maximum Principle

We shall denote by Lip,(£2) the set of Lipschitz-continuous functions in €2,
whose Lipschitz constant is less than or equal to k:

Lip,(Q) = {u € Lip (?) : [ulo, < k}. (1.3)

Moreover, if U is a Lipschitz-continuous function defined on 952, we
shall set:

Lip(Q,U) ={u € Lip(Q) : u=U on 90} (1.4)
and
Lip,(Q,U) = {u € Lip,(Q) : u =U on 60} . (1.5)

Proposition 1.1  Let F(2) be a convez function, and let 0 be a bounded
open subset of R™. Let U be a Lipschitz-continuous function in Q, and let
k > [Ulo,1- Then, the functional F(u,Q) takes its minimum in Lip,(Q,U).

Proof. Let {u;} be a minimizing sequence, that is a sequence of functions

in Lip, (2, U) such that
,li)m F(uj, Q) = inf{F(u,Q); u € Lip,(Q,U)} =: 1.
j—o0
We have [u;]o,1 < k, and moreover

sup |u;| < sup |U| + [u;]o,1 diam (Q) < sup |U| + k diam (2),
Q ) Q

so that the sequence {u;} is bounded in Lip (). By ASCOLI-ARZELA’s
theorem it is possible to extract a subsequence, which we shall denote again
by {u;}, uniformly convergent to a function u € Lip,(Q,U). Since F is a
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convex function, there exists a Borel function A : R™ — R", bounded on
compact sets, and such that!

F(w) > F(z) + A(2),w - 2)

for every z,w € R™. We have therefore:
/ F(Duj)dz > / F(Du)dz + / (\(Du), Du; — Du) dz .
Q Q Q

We can evaluate the last integral observing that the function A(Du(z))
is bounded and measurable, and whence? that for every € > 0 there exists
a function g :  — R™ of class C*(2) such that

/ [A(Du) — gldz < e.
Q
We have

/()\(Du),Duj — Du)dz > / (9(z), Duj — Du)dz
Q o)
- / |A(Du) — g||Duj — Du|dz.
Q

Since both Du; and Du belong to Lip,(Q), the last integral can be
estimated by 2ke, whereas for the preceding one, taking into account the
fact that w = u; = U on 99, we have

/(g(z),Duj — Du)dz = —/(uj —u) divg dz,
Q Q
so that it tends to zero as j — co. We have in conclusion:

=j11)1£1°.7-'(uj,ﬂ) > F(u, ) — 2ke.

Since € is arbitrary, we have F(u,) = p, so that u minimizes the
functional F in Lip,(Q,U). O

We shall call u* a minimizing function in Lip,(Q, U). Generally speak-
ing, when % increases, the minimum value of F in Lip; decreases, whereas
the Lipschitz constant [u¥]o,1 of its minimizer increases. We have

1We shall denote by (,) the scalar product in R™. If F € C?, we have A\ = F,.
2See next chapter, in particular Corollary 2.1. As usual, we denote by C* the space
of functions having continuous derivatives up to the order k.
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Proposition 1.2 Let u* a minimizing function in Lip,(Q, U). If [u*]o1 <
k, the function u* minimizes F in Lip (Q,U).

Proof. Let v € Lip(Q,U), and for ¢t € [0,1] define
ve = uk +t(v —ub).

We have vy = U on 9, and moreover [v:]o,1 < k for ¢ small enough.
Since u* minimizes in Lip, we obtain, taking into account the convexity

of F:
Fu* Q) < Flu, Q) < (1 — ) F(uk, Q) +tF(v,Q),

and hence tF(u*, ) < tF(v,Q), so that u*¥ minimizes F in Lip (2, U).
O

The above proposition will be useful in the proof of the existence of
a minimum in Lip (2,U). For that, we shall look for an estimate of the
Lipschitz constant of u*.

In order to simplify the notation, we shall omit from now on the index
k; moreover we shall write “u minimizes F in Lipy(f2)”, understanding
“among all the functions of Lip,, that coincide with u on 8Q”. It is evident
that if a function u minimizes F in Lip, (), and if « € Lip, (A), with h < k
and A C Q, then u minimizes F in Lip,(A).

Our principal tool will be the maximum principle. To establish it in
its suitable generality, we shall introduce the notions of sub-minimum and
super-minimuim.

Definition 1.1 A function w € Lip,(R?) is a super-minimum (resp. a
sub-minimum) for the functional F if for every ¥ € Lip,(Q, w), with ¢ > w
(resp. ¥ < w), we have

F(w, ) < F(9,9).

In particular, a minimum in Lipg(Q?) is both a sub-minimum and a
super-minimum. It is not difficult to show that the converse is also true: if
a function is at the same time a sub-minimum and a super-minimum, then
it is a minimum. However, this result is not relevant for our purposes, and
its proof is left to the reader.

Lemma 1.1 (Maximum principle I) Let F(z) be a strictly convex
function, and let v(z) and w(x) be respectively a super-minimum and a sub-
minimum in Lip,(Q) for the functional F. Suppose, moreover, that w < v
on 0Q. Then, w < v in Q.
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Proof. Suppose, on the contrary, that the open set
A={z e Q:v(z) <w(z)}

is non-empty, and define ¥(z) = max{v(z), w(z)}. The function ¥ belongs
to Lip,(Q,v), and ¥ > v in Q. Since v is a super-minimum, we shall have
F(v, ) < F(9,0), or otherwise, what is the same:

F(v,A) < F(w, A).
In a similar way, comparing w with y = min{v, w} we obtain
F(v, A) > F(w, A),
and in conclusion
F(v, A) = F(w, A).

Since w = v on 84 and w > v in A, we have Dw # Dv on a set of
positive measure, and therefore for the strict convexity of F:

F (%‘-‘iA) < SF(,4) + 3 Fw, 4) = (v, 4).

On the other hand, the function u = % verifies © = v on A and
u > v in A, and hence

f(”;“’,A) > F(v, 4),

contradicting the preceding inequality. O
As a simple consequence of the maximum principle we have the following

Lemma 1.2 Let F(2) be a strictly convex function, and let v(z) and

w(x) be respectively a super-minimum and a sub-minimum in Lipg(Q) for
the functional F. Then:

sup(w — v) = sup(w — v). (1.6)
Q 890

Proof. It will be sufficient to remark that for every a € R, the function
v+ a is a super-minimum in Lip,(€2), and that for every x € 8Q we have

w(x) < v(z) + sup(w —v).
a0

By the preceding lemma the same inequality holds in the whole Q. From
it, the relation (1.6) follows immediately, since the opposite inequality is
trivial. O
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In particular, if v and v minimize F in Lip, (), the relation (1.6) holds
both for u — v and for per v — u, and therefore in his case we have

sup |u — v| = sup |u — v|. (1.7)
Q a0

From that, it follows immediately the uniqueness of the minimum for
the functional F in Lip,(£2,U), and also in Lip (@, 7).

It is clear that none of the preceding results holds if we suppose that the
functional F is convex but not strictly convex. For instance, if we define

F(z) = max{0, |z| - M},

every function u € Lip, () minimizes the corresponding functional F.
Nevertheless, in many cases it is possible to prove the existence of minima
for convex functionals by considering first the strictly convex function
F(z) + €|z|? and then taking the limit as € — 0.

1.2 The Bounded Slope Condition

Lemma 1.3 (Reduction to the boundary) Let F(z) be a strictly convex
function, and let u(z) be a minimum for F in Lipy(Q2). Then:

= e [E) — u)l
[U]o,l‘— up — (1.8)
yeN

Proof. Let z1 # x2 be two points in {2, and let 7 = z2 — ;. The function
ur(z) =ulx+7)
minimizes F in Lip, (Q2;), with
Q={zecR":z+7€Q}.

The open set QN§, is non-empty, since it contains x1; and the functions
u and u, both minimize F in Lip; (22 N Q;). From (1.7) we conclude that
there exists a point zo € 9(€2 N ;) such that

lu(z1) — u(z2)| = [u(z1) — ur(z1)|
< Ju(zo) — ur(zo)|

= |u(zo) — u(xo + 7). (1.9)
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On the other hand, at least one of the points zg, zo + 7 belongs to
09, and therefore, indicating by M the right-hand side of (1.8), we get
from (1.9):

lu(z1) — w(z2)| < Mz — 22f,
and the lemma is proved. O

In view of an application of Proposition 1.2, we are led to look for a
bound for the difference |u(z) — u(y)| when one of these points, for in-
stance y, belongs to 9. For that, we shall make recourse again to the
maximum principle, comparing the function « with suitable sub-minima
and super-minima of the functional F.

An important class of comparison functions is that of affine functions:

w(z) = a+ (29, )

with a € R and 29 € R™. It is easy to see that w € Lip,, () and that
it minimizes F in Lip (), whence in Lip,(22). Actually, let n(z) be a
function in Lip (), with n = 0 on Q. By the convexity of F(z) there
exists a vector A € R™ such that

F(zo + &) = F(20) + (A, €)
for every € € R™. Taking £ = Dn(z) and integrating on  we get

Flutn) = [ FGo+ Di)do > o)l + [ Dibds, -

where |©2| = meas(2). The last integral is zero, since n = 0 on 9%Q; it
follows that

Flw+n,Q) 2 F(20)|9] = F(w, )
and therefore w minimizes F in Lip (Q).

Definition 1.2  We say that the function U : 9Q — R satisfies a bounded
slope condition (briefly, a B.8.C.) with constant Q > 0 if for every xo € 952

there exist us two affine functions w = wj, and w™ = wg, such that
w™(z) < U(z) < wh(z) in 09, (1.10)
w(zg) = U(zg) = wH () ; (1.11)

[w7lor <Q; [won <Q. (1.12)
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Note that, unless the function U is itself an affine function, the
B.S.C. cannot be satisfied if §2 is not a convex set. In fact, if U is not
an affine function, we have w* # w™, and therefore the set

V={zeR":w (z) <w'(z)}

is a closed half-space, and zo € 8V. On the other hand, we must have
Q2 C V, because otherwise (1.10) could not be satisfied, so that in conclusion
every point of the boundary of Q has a supporting hyperplane, and 2 is
convex. Of course, in general, the convexity alone is not sufficient for the
B.S.C., as one can easily see if 92 has a flat portion X, and if U is not
constant on ¥. Actually, even the strict convexity of € is not sufficient for
the B.S.C., as the reader will verify by taking @ = {(z,y) e R?: z¢ < y <
1} and U(z,y) = z2.
On the other hand, we have

Theorem 1.1 (Miranda [1]) Let Q be an open bounded subset of R™,
and suppose that there exists a positive constant ¢ = ¢(§)), and for every
xo € 00 a hyperplane 11, through xo, such that for every x € 99 it holds
that

|z — zo|? < ¢ dist (z,1,). (1.13)
Then, every function U of class C?2(R™) satisfies the B.S.C. on 9.

Proof. We remark that the assumptions imply that Q is convex.

For every o € 8Q we must find two affine functions w*(z) satisfying
conditions (1.10), (1.11) and (1.12). Since Q is bounded, we can assume
that U has compact support.® Always without loss of generality we can
assume that zg = 0 and that II,, is the hyperplane z,, = 0.

Let p be a real number, and set

w(z) = U(0) + (DU(0), z) + pay, .

We have w(0) = U(0). Suppose now that for some Z € 9Q we have
w(Z) = U(Z). Then:

§= ;_;;[U(:E) - U(0) - (DU(0),3)] = 5—(D*U(&)z, 2)

3We remember that the support of a measurable function f, defined in R™, is the
set R™ — A, where A is the largest open set in which f(z) = 0 almost everywhere. The
support of f is denoted by supp (f).
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for some £ € R"™. Therefore, if w(Z) = U(Z), we will have

z|2

|lul < -‘_— sup |D?U| < ¢ sup |D?U|.
|Zn
As a consequence, taking |u| = csup |[D2U|+1, we have either w > U or

w < U in 8Q — {zo}, depending on the sign of u. For these affine functions
w* we have

[w¥o, < |DU(0)| + |ul < 1 +sup |DU| +c sup |D*U|,
and the theorem follows. O

From a geometric point of view, condition (1.13) says that the boundary
of § cannot lie too close to its tangent hyperplane. If 89 is of class C?, it
is equivalent to the assumption that all the principal curvatures of 052 are
strictly positive (and hence, by continuity, that they are bounded below by
a positive constant). The proof is left to the reader.

Theorem 1.2 Let F(z) be a convez function in R", and let U : 82 — R
be a function satisfying the B.S.C. with constant Q. Then, the functional

Flu,Q) = /Q F(Du) dz (1.14)

has a minimum in Lip (Q,U). Moreover, at least one of the minimizing
functions satisfies the estimate

[ulo,s < Q. (1.15)

Proof. Let us assume first that F' is strictly convex. The class Lip (2, U)
is non-empty, since it contains at least the function

i) — i +
V) = ot (@),

Let £ > @, and let u be the function minimizing F in Lip,(Q,U), a
function necessarily unique by the strict convexity of the functional. By
the maximum principle we have

wE,(2) < u(z) < i (@)
for every z € €, and hence, since wZ () = u(zo),

W (7) — i, (zo) < u(x) — u(zo) < w,(z) — wi, (z0) .



22 Direct Methods in the Calculus of Variations

From Lemma 1.3 and from (1.12) we get then

[ulo1 £ Q,

and the conclusion follows from Proposition 1.2.

Let now F(z) be simply convex, and set Fe(z) = F(2) + €|2|%. If u.
is the function minimizing the functional F, in Lip (2,U), we shall have
[ze)o,1 < @, and by the maximum principle supg, |ue| = supgq, |[U|. We can
therefore find a sequence {ux} = {u.,}, with € — 0, converging uniformly
to a function u € Lipg(Q,U). Arguing as in the proof of Proposition 1.1
we conclude that u minimizes F in Lip (Q, U). O

1.3 Barriers

In the preceding section we have proved the existence of minima for convex
functionals depending only on the gradient, but otherwise arbitrary, under
special assumptions of convexity on the domain Q. If we want to weaken
these conditions, so as to treat more general domains 2, on the one hand,
we must restrict the class of functionals under examination, and on the
other we shall use new comparison functions, more general than the affine
functions of the B.S.C.

In this section we shall treat some simple but meaningful situations,
following the methods introduced by BERNSTEIN [1] and SERRIN [3].

For z € Q, we denote by d(z) the distance between z and 0Q. Moreover,
for t > 0, we set

L ={z e Q:d(z) <t}, (1.16)
Ii={zeQ:d(z)=t}. (1.17)

Definition 1.3 Let 2 be a bounded open set in R™, and let U be a
Lipschitz-continuous function in 0. An upper barrier (relative to the
functional F) is a function v*, Lipschitz-continuous in some Xy, t > 0,
and such that

vt =U on 99; (1.18)
vt is a super-minimum in L;; (1.19)

and
vt >supU on Ty, (1.20)

an
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In the same way we can define a lower barrier v—, simply substituting
(1.19) and (1.20), respectively, with

v” is a sub-minimum in 5, (1.21)

v" <infU on T. (1.22)
o

It is easily seen that if v+ is an upper barrier relative to the function
—U, —vT is a lower barrier relative to U, so that the existence of upper
barriers for a class of functions U, closed with respect to the change of sign,
implies that of lower barriers, and vice versa. We can therefore treat only
the case of upper barriers.

The following result is in some respect a generalization of Theorem 1.2.

Theorem 1.3 Let F(z) be a strictly convez function, let U be a Lipschitz-
continuous function on 8X), and suppose that there exists an upper barrier
vY and a lower barrier v=. Then, the functional F has a minimum in

Lip (,U).
Proof. For z € Q set

min {v+(:c), sup U} if z € X,
wt(z) = a0

Supgn U if x € Q—~3%y,

max {'u‘(x), infU} ifz e,
w(z) = aa

infgn U fzeQ-3%;. 0O

The functions wt and w™ are Lipschitz-continuous in Q; let Q be the
largest of their Lipschitz constants.

If K > Q, the class Lip, (2, U) is non-empty, and the functional F has
a minimum in it. Let u be the minimizing function. We have obviously:

i < < ;
glgU_u(z) _s;g)U,

moreover, since v~ < u < vt in 8%, we get from Lemma 1.1:
w™(z) < u(z) <w'(z) in Q.
On the other hand, we have

w™(z) = u(z) = wt(z) on N
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and therefore, arguing as in Theorem 1.2, we can infer that

[ulon £ Q.
The conclusion follows from Proposition 1.3.

Remark 1.1 We remark that the functions wt and w~ defined above
are, respectively, a super-minimum and a sub-minimum for the functional
F in Q. It follows that a necessary and sufficient condition for a strictly
convex functional F to have a minimum in Lip (Q2,U) is that there exists
a super-minimum and a sub-minimum taking at the boundary of Q the
value U.

Moreover, the preceding theorem is really a generalization of Theo-
rem 1.2, at least as far as strictly convex functionals are concerned, since
one can show that the functions

¥*(z)

i

» + P — —_
inf wl (z)and ¥ (x)= sup wg («
inf_wl,(@) sup uz, (@)
are respectively a super-minimum and sub-minimum.

The extension of the above result to general convex functionals depends
on the existence of barriers for the approximating functionals

Fe(u) = /Q(F(Du) + €|Du|?) dz .

If these functionals admit barriers (at least for e small enough) and
if the Lipschitz constants of these barriers remain bounded as ¢ — 0,
one can argue as in Theorem 1.2 and prove the existence of a solution in
this case. O

It remains to discuss the construction of barriers. We shall investigate
the case of upper barriers; the lower barriers can be treated similarly.

The classical argument leading to EULER’s equation gives a differential
inequality for super-minima.

Let F be of class C?, and let v(z) be a super-minimum of class C? in
some open set . If n is a non-negative function with compact support in
¥, the function

9(t) = Flv+tn, ), t20,
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has a minimum for ¢ = 0, and therefore we must have ¢g’(0) > 0. Differen-
tiating under the integral sign we easily get the inequality*:

g'(0) = / F,;(Dv)Djndz >0
b)

for every n € C§°(X), n > 0, and hence, integrating by parts and taking
into account the arbitrariness of n > 0:

D;F.,(Dv) <0.

Developing the derivatives, we get in conclusion:

2
9% <0 ¥ (1.23)

L{v) =: F,,;(Dv) G2i07; =

Reciprocally, if a function v(z) of class C?(X) verifies the inequality
(1.23), we will have ¢g’(0) > 0 and therefore, by the convexity of g, g(0) <
g(1), so that v(z) is a super-minimum. We note that a function satisfying
the inequality (1.23) is a supersolution of the corresponding differential
equation, so that in a certain sense the relation between super-minimum
and supersolution is similar to that between minimum and solution of the
EULER equation.

Our problem is then reduced to the search for a solution to the differ-
ential inequality (1.23) in a neighborhood I; of the boundary of 2, taking
on 0%} the prescribed value U(z), and greater than supgg U on I'y.

For the sake of simplicity, we shall write A¥(2) instead of F}, ., (z). Since
F is a convex function, the matrix A¥ is positive semi-definite; moreover
if we assume, as we shall always do, that F is strictly convex, we will have
for every £ € R™:

M2)IEI* < AY(2)68; < A(2)IE%, (1.24)

where A(z) and A(z) > 0 are, respectively, the largest and the smallest
eigenvalues of the matrix A(z).
We shall also introduce the BERNSTEIN function:

E(z) = A (2)z;2; . (1.25)

4We denote by F; the derivative of F' with respect to z;, and with F, the gradient
of the function F. Remember that we always sum over repeated indices.
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We have, trivially:
M2)|22 < £(2) < A(2)|2|2. (1.26)

For what concerns the open set 2, we shall suppose that it is bounded
and that its boundary 9Q is of class C2. For every point y € 9Q there will
then exist a ball B C 2 tangent to 89 in y, that is such that BNoQ = {y}.
Let r(y) be the supremum of the radii of the balls B with that property;
since 01 is compact, the continuous function r(y) is bounded below by
a positive constant 7. It is easily seen that 7~ is an upper bound for the
principal curvatures of 82, oriented in such a way that a convex set has
positive curvatures.

For t < 7, every point * € X; has a unique point y = y(z) of least
distance on 8Q, that is such that d(z) = |z — y(z)|. The points = and y are
connected by the relation:

r=y+v(y)d(z),
where v(y) is the interior normal to 99 at y.

Lemma 1.4 Let ) be a bounded open set in R™, with boundary of class
C*, k > 2. Then, the distance function d(z) is of class C* in %, and for
every ¢ € ¥, we have

n—1

Ki(y)
Ad(z)=-Y —29 1.27
@ == T i@ 427
where k;(y) are the principal curvatures of 6} at y and A is the LAPLACE
operator:

A= ilDZDZ .

Proof. Let xo € ¥, and let yy be the point corresponding to z¢ on 94.
We can assume that yg = 0 and that the tangent plane to 652 in 0 is the
horizontal plane z,, = 0. In a neighborhood W of 0 the boundary 952 is the
graph of a function (%), ¥ = (y1,¥2,---,¥Yn-1), With DF(0) = 0; we can
assume that § lies locally below the graph of .

Modulo a possible rotation around the vertical axis, we can also assume
that the matrix { D?9(0)} is diagonal, so that its elements are the opposites
of the principal curvatures of 89 in 0:

D?9(0) = diag [~ k1, —K2, .-, —Kn—1] - (1.28)
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Let V be the intersection of W with the plane z,, = 0; in V x R we
define
Y@, d) =y +v(y)d; y=(59)-
We have v € C*~1; recalling that
1
= DG
vi(y) = —vn DG (=1,2,...,n—1);
we obtain from (1.28):
D~(0,d) = diag [l — k1d,1 — Kod,...,1 — kn_1d, 1]. (1.29)

If d < 7, the Jacobian determinant D~y is positive, and therefore it
is possible to express y and d as functions of x, both of class C*~! in a
neighborhood of z4 =: (0,d). Moreover, Dd(z) is the normal to [y(,) at
z, and has the same direction as the normal to 9 at the corresponding
point y(z):

Dd(z) = voa(y(x)) = vry(z)- (1.30)

From the preceding relation it follows at once that d(z) is of class C¥,
because the right-hand side is of class C*~1. Moreover, the mean curvature
of Lg(zy) at o is given by

1
n—1

1 n—1 n 1
H(wo) = ;;—_—I Z I’éi(:Eo) = — ZDiVi(xO) = —n—_-IAd(.’L‘o) .
h=1 i=1

We can evaluate the last quantity by means of (1.30):

Ad(zo) = > Di(vioy)(zo) = » z—: Dpv;i(0)Dsyn (o) .
=1 i=1 h=1

On the other hand, D,y, = 0, and taking into account (1.28):
D,v = diag [k1,K2,...,kn—1,0].
Finally, -8%79’:—‘12 is the inverse matrix of D, so that from (1.29) we have

1 1 1

D = di .
y(wO) dlag 1-— I‘le, 1-— K,zd, ’ 1-— K,n_ld

This concludes the proof. W
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From (1.27) we immediately get

n—1
—Ad(z) 2 Z ki(y(e)) = (n - H(y), (1.31)

where H(y) is the mean curvature of 9Q at y. We note that the inequality
(1.31) reduces to an equality for z € 99.

For what concerns the assumptions on the boundary datum U, we shall
suppose that this function is the restriction to 8Q of a function of class
C?(R"™), that we shall again denote by U. Since Q is bounded, it is not
restrictive to suppose that U has compact support.

We shall look for upper barriers of the form:

v(a) = U(a) + ¥(d(x)), (1.52)
where ¢(t) is a regular function, satisfying the relations:
P(0)=0; ¢'(t)>0; ¢"(t)<0. (1.33)

We compute easily:

"

L) = A9U;; + ¢ AV dy; + = (€ + AYUU; — 24%0,U;),  (1.34)

W')?
where as usual we have set v, = g—;, etc.
We have
Aij Uz'j S cA

0<a=: AijUin <ecA
and from the SCHWARTZ inequality:
g 1
2|AYvU;| <2vE€a < §8+ 2.

In conclusion (remember that 4" < 0) we have

1
E(’U) <eA+ ’l,[)’AUdij + W (%8 - CA) . (1.35)

From this inequality we shall discuss two different situations, in a sense
opposite to each other. In the first case, we shall assume that the domain
Q is convex, and we shall make the fewest possible assumptions on the
functional F; in the second we shall consider general domains and we shall
impose conditions on £ and A (and hence on the function F(z)) that permit
the construction of barriers for every boundary datum U.
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Case 1. Convex domains. In this case the matrix {d;;} is negative
semidefinite, and therefore we have A% di; < 0. It follows that

1 1
Assume now that
- A2)
im —= =0. 1.37
|z| =00 S(Z) ( )

Since |Dv| > ¢’ — sup |DU| we can conclude that if ¢’ is greater than
some constant L, there will result cA < $£ and therefore, since ¢ < 0:

1 ,(IJ/I

L(v) < ZE{WJrl}' (1.38)

Let now ¢y and o be two positive numbers, that we shall fix later, and let
P(d) = log(1 + od).

For z € ¥y, we have

Y (d(z)) = 1+Zd(z) > 1+00t0. (1.39)

If the last quantity is greater than L we can use (1.38); observing that
with our choice of ¢ we have ¥" = —(¢')?, we can conclude that the
function v = U(z) + ¢(d(x)) is a supersolution in ¥;,. It will be an upper
barrier if it satisfies the relation:

P(to) = log(1 + otg) > supU —infU = L; .

It is now easy to see that these two inequalities can be satisfied taking
toy/@ = 1 and choosing ¢ sufficiently large. In conclusion, we have proved
the following theorem:

Theorem 1.4 Let Q2 be convez, and let (1.37) hold. Then, the functional

F has a minimum in Lip (Q,U).

Case 2. General domains. If we eliminate the assumption of the con-

vexity of (1, it is necessary to take into account the second term in (1.35):
’l,b,Aijdq;j < C(l + |DU|)A,

and therefore instead of (1.36) we arrive at the weaker inequality:

,lpll 1
L(v) <c(1+|Dv)A+ Wy (ES - CA) .
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This inequality will be sufficient if we assume that

, |2|A(2)
lim sup

< +00. (1.40)

In this case, if ¢’ is large enough, we have
cA < is, (1+|Du)A < icf,
and therefore
1 1
L) <€ ——= .
0= 3¢ { gy <}

Choosing 1(d) = ¢~ !log(1l + od) and arguing as above, we obtain the
required barrier, and hence the following;:

Theorem 1.5 If the relation (1.40) is satisfied, the functional F has a
minimum in the class Lip (Q,U), for every bounded open set Q with reqular
boundary, and for every function U of class C2.

We note that (1.40) is satisfied if the differential operator L(v) is
uniformly elliptic; in other words if A(z) > vA(2), for some v > 0. This
happens for instance when F(z) = |z|P, or when F(z) = (1 + |2|2)?/2, with
p > 1, in particular in the case of the DIRICHLET integral:

D(v) = /Q \Du|? dz.

1.4 The Area Functional

When F(z) = /1 + |2|?, the corresponding functional:

A, Q) = / JITDup da (1.41)
Q
gives the area of the graph S of the function u. In this case, we have
A (z) = 1+ |2) 732645 (1 + |2?) — 225} (1.42)
and therefore
A=(1+2D)7Y2 A=Q1+2))7%2; €=z2\. (1.43)

It is easily seen that (1.37), let alone the stronger assumption (1.40), is
not satisfied, and hence it is not possible to apply to this case the results of
the preceding section. Nevertheless, due to the special form of the matrix
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{ A}, it is possible to construct barriers, and hence to prove the existence of
non-parametric minimal surfaces, that is of minima of the functional (1.41)
assuming prescribed values on the boundary, for a large class of domains
1, containing all the convex sets.

Once again, we shall look for barriers of the form:

v(z) = U(c) +(d(x)) (L44)

with the function 1 satisfying conditions (1.33). For such functions v we
have

L(v) = AT (Uy; +9'dij) + " A dd; . (1.45)
Assume now that there exists a constant ¢ such that
AYd; < c(|Du| 4 1)A. (1.46)
In this case, observing that A¥d;d; > A|d,|? = A, we get
L(v) <A+ Mcy'(|Dv] +1) + 9"},

and since |Dv| < ¢+ 1"

L) < A {1//' Fe'(L+9) + c%} .

Assuming now that ¢’ > 1, and remembering that

A vy <ty <,

we obtain in conclusion:
L(v) < M" + ey} (1.47)

Arguing as in the preceding section, it is now simple to verify that the
function:

Y(d) = ¢ tlog(1 + od)

is an upper barrier in 3, provided we choose £y = La and o large enough,
It remains to discuss the geometric meaning of condition (1.46). Taking

into account the fact that di;d; = §52-|ds|? = 0, we have

A¥(Dv)di; = M{(1 + | Dv|*)Ad — v;v;d;;}
= )\{(1 + |.D’UI2)Ad — Uindij} .
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Since the function d(z) is of class C2 in a neighborhood of 9, the last
term can be estimated by a constant, and hence we can conclude that (1.46)
holds if

Ad <0 (1.48)

in a neighborhood of 952, or otherwise, in virtue of (1.31), if the mean
curvature of 9 is non-negative. Thus we have:

Theorem 1.6 Let Q be a bounded open set in R"™, whose boundary is a
C? manifold with non-negative mean curvature. Then, for every function U
of class C? the area functional (1.41) has a unique minimum in Lip (Q,U).

In particular, the DIRICHLET problem has a solution for every C?
boundary datum if €2 is convex. However, except in the two-dimensional
case (n = 2), the condition of non-negative mean curvature is obviously
more general than that of convexity.

Remark 1.2  Since the function v(z) given by (1.44) satisfies the estimate
|Dv| < ¢+ |DU]|, observing that in the proof of the preceding theorem
we only need the first and second derivatives of U, we can conclude that
the inequality (1.46) is satisfied only if we assume that Ad < €, with ¢p > 0
depending only on the C? norm of the function U. [

1.5 Non-Existence of Minimal Surfaces

We shall now examine in more detail the condition of non-negative mean
curvature, and we shall prove that in a certain sense it is necessary for
the general solvability of the DIRICHLET problem for the area functional.
More precisely, we shall show that if the mean curvature H(zg) of 92 is
negative at some point zg of the boundary, then there exists a regular
function U for which the area functional has no minimum in Lip (,T).

For that, we need a second version of the maximum principle. Assume
that  is connected® and that its boundary 89 is the union of two disjoints
sets:

a0 = a°Qu o

with 81 open in 0N (that is 810 = QN A for some open set A) and 8°Q
non-empty.

5This assumption is not restrictive, since otherwise it is possible to consider separately
its connected components.
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Lemma 1.5 (Maximum principle II} Let @ as above, and let u be a
function minimizing the area functional in Lip (Q).
Let v e CH(Q)NC(Q) be a super-minimum such that

u <wvin 8°Q, (1.49)

o
liminf inf — > [ulo,1, (1.50)

t—0+ ANT; Ov

where % is the derivative in the direction of the exterior normal to I'y.

Then, u < v in Q.

Proof. Assume first that u < v on 8°Q. By continuity, there exists a
to > 0 such that for every t < tq:

E .
a—z > [ulosinT:NA, (1.51)
v>uinly—A. (1.52)

Suppose now that u(zo) — v(zo) > 0 for some zy € £, and let t < £ be
such that zo € , =: © — ¥,. By Lemma 1.1 the restriction to §; of the
function w = u — v will take its (positive) maximum at some point of I't,
or better of I'; N A, since v > u in I'; — A. Let z, be such a point; if we
indicate by v the exterior normal to I'; at z;, we get from (1.51):

lim inf w(z — hv) — w(z1)
h—0t h

ov
ov

This inequality contradicts the assumption that w takes its maximum
in z;, and the lemma is proved if ©u < v on 8°Q. The general case

follows easily by writing v + € (¢ > 0) instead of v, and letting € tend to
Zero. W

> —[ulop + 5= >0.

We remark that the above lemma holds for every strictly convex
functional. Inequality (1.50) is trivially satisfied if

@i
ov

as will happen in the following.
We can now prove the non-existence of non-parametric minimal surfaces.

= 400 on 9N

Theorem 1.7 Let Q! be a connected bounded open set in R™ with C?
boundary 99, and let H(zo) < 0 at some point o € OS2,

Then, there exists a regular function U such that the area functional
A(u, ) does not have a minimum in Lip (Q,U).
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Proof. Consider a function v minimizing the functional A in Lip (2, U),
and let us begin by estimating v in @ — Br(zo), R > 0.
For z outside Bg let 6(z) = dist (x, Br) = |z — zo| — R, and

(@) = K +$(6(), K>0.
Recalling that |D4|2 = 1 and therefore 4,;4; = 0, we get from (1.45):
L(v) = M + (@)°]Ad + 9"} (1.53)
so that, choosing ¥(8) = —B+4¢:

Bs§—3/2 1—-n
< N3 "« 2 ]
L) <ME)AS+9"} <A—; {Zdiam(Q)B +1} (1.54)
since
n—1 n—1

Ad = .
|z — x| — diam ()
Taking B? = 2%, we get L£(v) < 0, so that v is a supersolution.
We have obviously g—z = +o00 on OBR, and hence, choosing

K= sup U+ By/diam(Q),

0-B,

we obtain from the preceding lemma the estimate

sup u < sup U+ By/diam (1),

Q-Br 0—-Br

from which in particular:

sup u< sup U+ By/diam(Q). (1.55)
8BRNQ 0—Br
We shall now estimate the supremum of v in 2 N Bpg.
Since the mean curvature of 9Q at zy is negative, and 8Q is of class
C?, taking into account (1.31) we can assume that there exists two positive
numbers ¢p and R such that

Ad Z €0 in Q nBR(.’Eo)

in which as usual we have set d(z) = dist (z, 0%Q).
Taking again v = ¥(d) = a — $v/d we get as above

AB

L) SMW)PAd+v"} < o

(1-eB%) <0
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provided €32 > 1. Moreover, setting

a= sup u-+ B+/diam ()

8BRrN

it is possible to use Lemma 1.5 once again to obtain, taking into account
(1.55), the estimate

sup u< sup U+ (8 + B)y/diam (2

QNBgr 90—Br

and hence in particular:

sup U< sup U+ (B+ B)y/diam (). (1.56)
80NBr 80—Bg
The above inequality gives a necessary condition for the solvability of
the DIRICHLET problem for the area functional.
If this condition does not hold for the boundary datum U, as it is the
case if we take

U=0 ondl- Bg

and
U(zo) > (B + B)y/diam (2),
the area functional cannot have minimum in Lip (Q,U). ]

The example that follows show what we can expect in that situation.

Example 1.1 Let n =2 and let AZ be the annulus
={zeR:o<|z|<R}.

Consider the function:

U— 0 on OBgr,
| M ondB,,

where M is a positive constant. By the strict convexity of the area
functional and the symmetry of the domain A? and of the datum U, the
only minimum in Lip (Ag, U), if it exists at all, must be a function u(r)
depending only on r = |z|.

The EULER equation in this case becomes

u” + u’[1+(u)] 0
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and its solution, taking into account the condition u(R) = 0, is
R+ VR? - ¢?
rVrE—c2

The constant ¢, 0 < ¢ < p must be determined from the condition
u(g) = M. We have

u(r) = clog

2 02 2 _ 52
RE i REVEE g

u(g)=clog < polog
o++e*—c?

and hence the DIRICHLET problem can be solved only if M < M,.
In the limit case M = My we have ¢ = g and the normal derivative

Y

becomes infinite on the internal circumference. If M > M, there are no
solutions in Ag assuming the given values at the boundary. In this case the
minimal surface is given by the graph of the solution u(r) corresponding
to the limit value My, plus the portion of the vertical cylinder having for
base the internal circumference of radius g, that lies between the levels Mgy

and M.

Up = —

1.6 Notes and Comments

The methods of this chapter take their origin from the ideas of S. BERN-
STEIN [1]-[5], as generalized by SERRIN [3]. In his paper, SERRIN obtained
a priori estimates for solutions of general elliptic equations:

AY(z,u, Du)D;ju = B(z,u, Du),

from which, using the fixed point theorem of SCHAUDER, he could prove
the existence of solutions of the DIRICHLET problem. Our point of view
is slightly different, and it is inspired by the papers of HARTMAN and
STAMPACCHIA [1], and even more so by that of M. MIRANDA [1] on
non-parametric minimal surfaces. These papers in turn echo the methods
introduced by HILBERT [1], [2] in his proof of the existence of harmonic
functions in two-dimensional domains (DIRICHLET principle), later adapted -
by HAAR [1], RADO (1], [2] and others to the minimal surface equation in
dimension two. In particular, HILBERT [1] introduced the so-called three
points condition, which in dimension two is equivalent to the B.S.C.
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The conclusion of Theorem 1.6 remains valid only if we assume that the
boundary datum U is of class C1%, with o > 0, but not in general if U is
only Lipschitz-continuous (GIUSTI [4]).

On the other hand it can be proved, always under the hypothesis of
non-negative mean curvature of the boundary 8, that for every continuous
boundary datum U the DIRICHLET problem has a solution u of class C%(2)N
co ().

The main ingredient in the proof of the last result is the a priori
inequality for the gradient:

|Du(zo)| < c1exp {QM} (1.57)

in which osc (u, Br(zo)) indicates the oscillation of u in the ball of radius
R centered at zo (BoMBIERI, DE GIORGI and MIRANDA [1]).

Consider now a sequence Uy of regular functions, uniformly convergent
to U on 8. Denoting by uj the solution of the problem with datum
Uy, whose existence follows from Theorem 1.6, we have by the maximum
principle:

sup |ug — up| < sup [Ug — Uy,
Q o

and therefore the sequence uy converges uniformly in 2 to a function u, with
u = U on 9. By inequality (1.57) the sequence uy has first derivatives
locally equibounded in €2, and hence u it is Lipschitz-continuous.

To conclude the proof, we observe that the minima of the functionals of
this chapter, under assumptions of regularity for the function F(2) and of
uniform convexity:

Fo..(2)&& > v(z) €

are regular functions (see later; Chapters 8 and 10). In particular, this
is true for the function u, which is therefore a classical solution of the
DIRICHLET problem for the area functional.®

The proof of the non-solvability of the DIRICHLET problem for the
minimal surface equation in open sets whose boundary has negative mean
curvature at some point is due to FINN [1] and to JENKINS and SERRIN [2].

SFor further information on minimal surfaces, one can see the books by GIusTi [6]
and by MaAssARI and MIRANDA [1].
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This case can be treated by considering the “relaxed” functional:
F(u, Q) =/ 1+|Du|2+/ |lu — UldHp—1
(9] [219]

in the class BV () of functions whose derivatives are Radon measures in Q.
It can be proved that the functional F has minimum in BV () for arbitrary
open set £ and boundary datum U € L(9Q2), and that the minimizing
function u(z) is regular in the interior of ) (once again a major role is
played by the a priori inequality (1.57) for the gradient). Moreover, if 9
has non-negative mean curvature in a neighborhood of a point zg € 9Q and
if U is continuous at zg, then u(zo) = U(zo) (MIRANDA [2]). Therefore if
9f) has non-negative mean curvature at every point, and if U is a continuous
function, the minimum of F is the solution of the DIRICHLET problem for
the minimal surface equation.



Chapter 2

Measurable Functions

2.1 LP Spaces

The purpose of this section is to list some definitions and properties of
L? spaces that will be useful later. For the proofs, the reader is referred
to one of the many books on Lebesgue integrals, such as ROYDEN [1] or
SAKks [1].

Of course, when we speak of measurable sets and functions, we shall
always refer to Lebesgue measure; as usual, we shall not distinguish between
functions that differ only on a set of zero measure, so that for instance the
statement “the function f(z) is continuous in A” means strictly speaking
“the function f coincides almost everywhere with a function f continuous
in A If E is a measurable set, we shall indicate its measure with meas (E),
or briefly with |E|.

We begin by recalling the definitions of some well-known function
spaces.

We shall denote by C*¥(Q) (k = 0,1,...) the space of the functions
having continuous derivatives up to and including the order k (if & = 0,
it will be the space of continuous functions); and with C*°(Q) the space
of infinitely differentiable functions in €2, that is the intersection of all the
spaces C*(Q). With C*(Q) we will indicate the space of functions in C*(f),
whose derivatives up to the order k can be extended to continuous functions
up to the boundary 89, and with C§¥(Q) (k = 0,1,...) the subspace of
C*(Q) of the functions with compact support contained in Q.

39
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The spaces C*(Q) are Banach spaces, with the norm!:

lullce = > sup|DPu(z).

|BI<k =€

If0 < a £ 1, and D is a domain in R™, (namely, the closure of a bounded
open set), we shall denote by C%%(D) the space of Hélder-continuous func-
tions in D; that is continuous functions for which?

[u]o,o =: sup [u(z) = uly)| < +400. (2.1)

More generally, we shall denote by C*%(D) the space of functions whose
derivatives up to order k are Holder-continuous® in D. The spaces C*%(D)
are Banach spaces, with the norm

lull,a = llullox + Y [DPuloa-
|B1=k

Finally, if © is an open set in R", we shall indicate with C**(Q) the
space of the functions belonging to C*%(D) for every domain D C Q.
We recall the following results relative to the Lebesgue integral:

Theorem 2.1 (LUSIN) Let f(x) be a measurable function in R™, with
f =0 outside an open set A of finite measure. For every € > 0 there ezxists
a function ge € CY(A) such that

meas{z € R": f(z) # ge(z)} < ¢
and
sup |g| < sup |f].
R" R

Theorem 2.2 (EcOROV) Let E be a measurable set with |E| < +oo,
and let {f;} be a sequence of measurable functions in E, converging almost
everywhere to a function f. Then, for every € > 0 there exists a measurable
set N with |N| < € and such that f; — f uniformly in E — N.

1For a full explanation of the notation for the derivatives, see next chapter.

2Holder-continuous functions with o = 1 coincide with the Lipschitz-continuous func-
tions introduced in the preceding chapter.

3More precisely, functions k times differentiable in the interior of D, whose derivatives
extend to Holder-continuous functions in D.
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Theorem 2.3 (Absolute continuity of the integral) If f(x) is a summable
function in R™, then for every € > 0 there exists a 6 > 0 such that if E is
measurable and |E| < §, then

/Elfld:c<e.

We recall the following well-known definitions:

Definition 2.1 Let Q be an open set in R™, and let 1 < p < +oc0. We
denote by LP(Q,RMN) the space of measurable functions f : Q@ — RN such
that

1l = { i Ifl"dav}; < 400 (2.2)

Moreover, by L™= (92, R") we indicate the space of bounded measurable func-
tions in (.

When no possible confusion might arise, we shall write simply L?(Q) or
even LP, without explicit mention of the codomain RY,

The spaces LP(Q2), (1 < p < 4o0) and L*(2) are Banach spaces,
respectively, with the norm (2.2), and

[[flloo,2 = sup | f ()], (2.3)
TEN
where
sup |[f(z)] =inf{A e R:|f| < Aae. inQ}.
zeN
Theorem 2.4 From every sequence f in L. (Q),* converging to a func-
tion f in Li () (i.e. such that fr, — f in LY(K) for every compact set

K C Q) we can eztract a subsequence converging to f almost everywhere

in 2.
If f is in LP(R2), the set
Fo={zeQ:|f(z) >t}

is measurable, and since

/ \fIP dz > / \fPde > 7R,
Q Fy

4We recall that if V() is a space of functions in Q, Vj,.(2) is the space of functions
belonging to V(A) for every open set A CC  (that is such that A is a compact set
contained in 2).
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we have

|Fl <t flipa- (2.4)

Finally, we recall the well-known formula:

+o00
/lfl”dx:p/ 1| F}|dt . (2.5)
Q 0

An immediate consequence of (2.4) and of Theorems 2.1 and 2.3 is the
following:

Theorem 2.5 Let Q be an open set in R™, and let p < +o00. Then C(Q2)
is dense in LP(Q).

Proof. Let f € LP(Q2), and let 7 > 0. There will exist a ball Bp C R™
such that [, p |f[Pdz < 7. The function

max(—T,min(f,T)) in QN Bpg,
g(z) = ,
0 otherwise,

is measurable and has compact support; by Lusin’s theorem, for every € > 0
there exists a function g. € CJ(Q2 N Bg) coinciding with g outside a set ¥
with measure less than ¢, and such that |ge| < T. We have then:

Jir-apdsse| \r-grdare[ lg-gpis
(9] QNBRr QNBgr
+/ |f|”dm§c/ |fIPde+ cTe+T.
Q—Bnr Fp

Taking T large enough, and using (2.4) and Theorem 2.3, the last
integral can be made smaller than 7. Choosing € so that ¢T'e < 7 we get

/[f—-gelpdx<3’r
Q

and the theorem is proved. ]

Concerning the functional structure of LP-spaces, we have the following
results:

Theorem 2.6 Forl < p < +oo, LP is a reflexive Banach space, whose
dual is isomorphic to the space L9, with % + % = 1. The space L' has L*
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as its dual, but is not reflexive. Finally, L? is a Hilbert space, with scalar
product given by

(f,9) = /ﬂ f(@)g(z)dz. (2.6)

We have in addition:

Proposition 2.1 (HOLDER’s inequality) Let p > 1, f € L? and g € L9,
with %— + % =1. Then fg € L', and

/n F@a(@dz < | flpallalen- @27)

It is easily seen that inequality (2.7), that for p = ¢ = 2 bears also the
name of Schwartz inequality, remains valid for p =1 and ¢ = +o0.

In the particular case when Q has finite measure, if 1 < s <7 < +o0,
we may take f = |ul®, g =1 and p = r/s in (2.7), obtaining

1_1
lulls,0 < 197wl (2.8)

so that, if |Q] is finite and r > s, we have L"(Q) C L*(Q2) algebraically and
topologically (that is, the topology of L is stronger than that of L*).

Inequality (2.8) can be stated in a more suggestive way by saying that
for u € L™ the function

7(p) = {]{2|u|pdac}% = {ﬁ/ﬂ]u[?dm}"

increases in the interval [1,r]. It is not difficult to show that v(p) is a
cantinuous function, and that for u € L* we have

lim ~(p) = ||ulloo,02-

p—r+oo
We conclude this section with the following:

Theorem 2.7 (LEBESGUE) Let f(z) be a function in L*(). For almost
every = € §) we have

Rlim+ If(y) — f(z)|dy =0 (2.9)
=0% JQ(z,R)

and hence

Jm f Sy =), (2.10)
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2.2 Test Functions and Mollifiers

The functions of class C§° are also called test functions. A typical test
function is

1 .
na@)={"" (ﬂ_—‘l) if o] <1,
0 if Jof > 1

(exp(t) = e?), whose support is the closure of the unit ball B.

Definition 2.2 A function ¢ € C§°(R™) such that

(i) o(z) 20,
(ii) suppe C B,
(iii) [o(z)dz =1

1s called a mollifier.

For instance, the function 7(z) defined above becomes a mollifier when
multiplied by a suitable constant so that its integral becomes equal to 1.
For our purposes it will be sufficient to consider only spherically symmetric
mollifiers such as n{z), depending only on |z|.

Given a function f(z) € Ll _(R™)), we call e-regularized (or simply
regularized) of f the function

£0) = [ 1@eda - ) = [ fa=2ed)d

- / f(z - ev)p(v)dy, (2.11)
where

Pe(z) =€ (E) . (2.12)

€

By differentiating under the integral sign, it follows immediately from
(2.11) that for every € > 0, f. is an infinitely differentiable function in R".
Moreover, if the support of f is contained in K, we will have

supp fe C K¢ = {z € R" : dist(z, K) < €}.

Definition 2.2 can be reformulated in terms of the convolution product,
recalling that the convolution of two functions u and v in R", at least one
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of which has compact support, is defined by

wrv(o) = [ ule = y)o(u)dy-
We have then
fe=Fxpe=wpcxf.
Lemma 2.1 Ifu ¢ L? then u € LP, and
lluellp < [Jullp- (2.13)

Proof. We have

P
1 -1
@l < { [l lode - P oo -9y o}
Using Holder’s inequality and remarking that

[oda-vin= [ode-na=1,

we easily get

ul@) < [ u)Poce ~v)dy

from which (2.13) follows by integrating with respect to z. O
Theorem 2.8 Let u(x) be a function in R™. When € tends to zero,

(i) If u is continuous, u. converges to u uniformly on every compact set
K cR™
(ii) ifu e LP(R"), 1 < p < 400, ue converges to u in LP(R™).

Proof. We have

ue(z) —u(z) = /[u(z — 2) — u(z)]pe(z)dz,

where the integral is made on the ball |2| < e.

Let us prove (i) first. Let K be a compact set in R"™, and let 7 > 0.
Since u(z) is uniformly continuous on compact sets, there will exist ¢ > 0
such that for |z| < o we have |u(z — z) — u(z)| < T for every z € K. Taking
€ < o we conclude that

Sl}l{p lue(z) — u(z)| < T/goe(z)dz =T.
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In order to show (ii) we recall that CJ is dense in LP; and hence for
every 7 > 0 there exists a function w € C§ with ||w — ull, < 7. On the
other hand:

llue — ullp < llue — wellp + llwe — wllp + llw = ull,
and hence by Lemma 2.1
llue — ullp <27 + [lwe — w[p

for every € > 0.
Passing to the limit as € — 0, and taking into account (i) (remember
that w has compact support), we have

limsup [lue — ullp < 27
e—0

from which (ii) follows at once. O

In particular, we have proved that C§°(R") is dense in LP(R"). By a
similar argument we can show the following:

Corollary 2.1 For any open set & C R™ and for any p, 1 < p < 400,
C§°(Q) is dense in LP(2).

Proof. For every u € LP(Q) and every 7 > 0 there will exist by
Theorem 2.5 a function w € C{(€2) such that ||w — ull, 0 < 7. On the
other hand, if € is small enough, the support of w, will be contained in 2,
and |jw — we||p < T; whence in conclusion ||we — u||, < 27. O

2.3 Morrey’s and Campanato’s Spaces

These spaces of integrable functions, introduced and studied by Morrey and
Campanato, have proved particularly useful in the study of elliptic partial
differential equations.

By Q(z,R) we indicate the cube of R™, with sides parallel to the
coordinate axes, having a center at = and side 2R:

Q(z,R) = {y € R™: max |y; — z;| <R}.
1<i<n

When no confusion may arise, we shall write simply Qgr, without

indication of the center.

Definition 2.3 (MORREY spaces) Let Q be a bounded open set in R",
and let 1 < p < 400 and A > 0. By LP*(Q,RYN) we denote the space of
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functions u € LP(Q, RN) such that

Jul?, = sup o~ / [uf? de < 400, (2.14)
e oo

where Q(zg, o) = QN Q(zo, 0).

It is clear that condition (2.14) only depends on the behavior for small
radii, since for ¢ > € we have

g—’\/ |ulP dz < e"\/ |u|P dx .
Qzo,0) Q

As in the case of LP spaces, we shall often write LP*(2) or simply
LP*, and we shall omit the indication of the codomain RY whenever no
misunderstanding is possible. It is easily seen that |ul|p » is a norm, and
that the space LP* is complete. It is also evident that if u is a function
defined in 2 = 2; U Q5 and if the restrictions of u to Q; and to 22 belong,
respectively, to LP*(Q;) and LP*(Q;), then u is in LP*(Q).

Finally, ||ullp0 = |lullp, so that LP»® = LP. More generally, using
Holder’s inequality, one proves easily that if s > p and P—EA > “=£ the
following holds:

. noA_n-
llullp,x < diam(Q)™> ™= ||ulls 4,
and therefore the immersion
L*# s [P (2.15)
is continuous.
Proposition 2.2  The space LP™ is isomorphic to L™, and

lullpn = 27 [lulloo

Proof. If u e L* we have
g_"/ |u|P dz < 2™ sup |ulP
. [?)
and hence

llullpm < 27 ulloo -

Conversely, let u € LP'™. For almost every zg € 2 we have

|u(o)| = lim |uldz .
220 JQ(z0,0)
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On the other hand

1
£ wde<(f  Pde) <27l
Q(=o,0) Q(zo,0)

and therefore
lu(zo)| < 277 |[ullpm,
proving the opposite inclusion. O
In particular, the spaces LP™ (p > 1) are all isomorphic.

Definition 2.4 (CAMPANATO [1]) We denote by LP*(, RY) the space
of functions u € LP(Q,R") such that

[u]g 5 =! sup Q_A/ [ — Ugg,|P dz < +00, (2.16)
' 208 Q(=0,0)
e

where

Ugg,g = ][ udzx
(z0,0)

is the average of u in Q(xo, o).

Remark 2.1 Instead of the cubes Q(z, ¢) we could define Campanato’s
spaces by means of balls B(z, g), or generally speaking by means of any
family of neighborhoods I(z, ¢). All these spaces are isomorphic, provided
there exist two constants a and 3 such that for every o < diam(f2) one has®

I(z, a0) C Q(z,0) C I(x,Bo) . (2.17)
Actually, assuming that these relations are satisfied, we have for every
¢ ¢ RN:
P

< f fu — €[P dy
Q(z,0)

[uz,o — €IP =

][ (u(y) — E)dy
Q(z,0)

and therefore

/ [u ~ uz,olP dy < 2"/ |u ~¢|P dy
Q(z,0) Q(z,0)

2Pl — EP < 2P / €7 dy.
Qz,0)

5Needless-to-say, it will be sufficient that these inclusions be valid for ¢ small enough.
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Taking £ = ugni,, and recalling (2.17), we at once get

/ |u — ug P dy < 2”“/ |u — ugn1(z,80)| Y -
Q(z,0) Qni(z,Be)

It follows that the quantity (2.16) can be estimated by the analogous
quantity, obtained by substituting to the cubes the neighborhoods I,.
Interchanging the roles of these two families, we get the opposite estimate,
and in conclusion the isomorphism of the relative spaces.

The same conclusion holds of course for Morrey’s spaces. In parti-
cular it is possible to work with cubes with the edges in given directions,
for instance parallel to the axes, as we shall do systematically in what
follows. O

Remark 2.2 The quantity [u], ) is a seminorm in £P, equivalent to

X .
sup ¢~ " inf |lu—&Pdx. 2.18
xo>€(§)) £ERY JO(z0,0) ! ( )
e

In fact, it follows from the above that

/ = gy ofP d < 2PH / lu — £[P dz (2.19)
Q(zo,0) Q(zo,0)

for every £ € RN, O

It follows easily that

ulllp.x = llullp + [ulp,x

is a norm, with which £P*(Q,R") is a Banach space. Moreover, the
immersion (2.15) remains valid for the spaces £P*,

Taking £ = 0 in (2.19), we conclude that the immersion of LP** in £LP* is
continuous. Actually, if 0 < A < n the two spaces are equivalent, provided
0N is regular enough.

Definition 2.5 We say that Q has no external cusps if there exists a
constant A > 0 such that for every zo € Q and for every p, 0 < p < diam 2,
we have

€20, 0)| 2 AlQ,].-
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It is clear that an open set with Lipschitz-continuous boundary has
neither external nor internal cusps. If {2 has no external cusps, the norm
1
r

sup [Qzo, 0)| =4 / JufP dz
9] zo,g)

z0EN
>0

is equivalent to (2.14). It is also possible to replace o~* with |Q(zxo, g)|_%
in (2.16) and (2.18), obtaining equivalent seminorms.

Lemma 2.2 Assume that Q has no external cusps, and let u be a function
in LP(Q), and let T = Aﬂ‘—:. For every zo € Q and for every p, R, with
0 < p < R < diam 2, we have

lumo,R - umo,al S C[u]p’)\lﬂ(:po’ Q)[T 7’f T<0 ? (220)
|Uzo,R = Uzl < clulpa[Rzo, R)[” if 7>0. (2.21)

Proof. Let o <r < s < R. We have®
1
e — 1y < 7[ lu — wo|dz < (f lu— u3|”da:> ’
Q. Q,

s — tp] < [25] % |2 | 77 [l -
p7

and hence

Since ) has no external cusps, there holds
s\™ s\™
2 < < A-1(2
A(T) 0] <[ <A (r) 1] (2.22)
and therefore
A
s\% -
s — url < clulp (2)7 1,17 (2.23)

Choose now r; = R27% and Q; = (,,. Writing (2.23) with r = r; and
s = r;_1 and summing over i one obtains

k
lur — ur| < clulp Z €47

i=1
From (2.22) it follows that
ATI27M00] 2 [0 2 A2,

6We have omitted the non-essential indication of the point zg.
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and hence, if 7 < 0,

lur — ur, | < clulpalQ%],
whereas if 7 > 0,

[ur — ur, | < clulpAIQR|".

Finally, choosing k in such a way that 7 < ¢ < rg—1, we obtain from
(2.23) the estimate

[ug — tr| < clulpa|%|™,
if r <0, and
lug — Ury | < c[ulp,al2]7,

if 7 > 0. Comparing with the preceding estimates, and taking into account
(2.22), we get the required result. O

It is now a simple matter to prove:

Proposition 2.3 If Q is a bounded open set without external cusps, and
if 0 < A < n, LPAQ) is isomorphic to LPA(Q).

Proof. It will be sufficient to prove that |ju||px < c|||ul}|p,-
For p < diam(f2) we have

1
P P
(|Qe|—%/ |u|Pd:1:> < (‘le_%/ |u—ug|pdx> + Q)7 gl -
QQ QQ

Since 7 < 0, taking R = diam(Q2) we get from the preceding lemma:
Q0|7 gl < 19|77 [ur| + clulp,x < c(llullp + [u]p,2)
and the proposition follows immediately. a

The isomorphism between LP* and £P* does not hold if A > n. This
is evident when A > n, since in this case the only function in LP* is the
null function, whereas £P* contains all the Hélder-continuous functions in
A-n

Q, with exponent o =
For such functions we have in fact:

lu(z) — gl < [ufo,a(20)*
for every z € §1,, and therefore

[ulpx < c[v]o,a-



52 Direct Methods in the Calculus of Variations

Regarding the case A = n, we remark that the function — log z belongs
to £11((0,1)) but not to L1 = L*°((0,1)).
The interest of Campanato’s spaces lies mainly in the following result.

Theorem 2.9 Let §2 be a bounded open set without internal cusps, and let
n < X < n+p. The space LP*(Q) is isomorphic to CO%(Q), with o = A;—".

Proof. We have already seen that C%* c LP*. To show the opposite
inclusion, let us start from inequality (2.21), from which it follows that
the limit

11%1210 Ug, R =: V()

exists uniformly in £ € Q. The function £ — u, g being continuous,
even v(z) will be continuous, and the same is true for u(z), which by the
LEBESGUE theorem coincides almost everywhere with v.

Passing to the limit in (2.21) for ¢ — 0, and writing 2R instead of R,
we get

|4z 2r — u(z)| < culp |z, 2R)|" . (2.24)
Let now z, y € Q, and let R = |z — y|. We have
lu(z) — w(y)| < |u(2) — Uz,2r] + [ue2r — uy2r| + uy,2r — u(y)|.
On the other hand
|uz,2r — Uy 2R| < |u(2) = Uz,2r| + |u(2) — uy,2R]

and integrating on z € Q(z,2R) N Q(y,2R) D Q(z, R) U Q(y, R):

uz2n — w22 < 192, B [ 1u(e) ~ ezl

©,2

10, R)|! /ﬂ o 1H2) 2l
Y,

A straightforward application of Hélder’s inequality, taking into account
(2.22), gives

lu(z) — w(y)| < clulpale —y|*.
Finally, setting 2R = diam Q in (2.24), we find

[u(z)] < fuz2r| + [u(@) — Uz 2r| < cl|[ulllp,
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and therefore in conclusion

lullgo.e < clffulllp,x,
which proves the result. O

We conclude this section with a proof of the isomorphism of Campanato
(and therefore Morrey) spaces with respect to diffeomorphisms of the open
set {1

We recall that if g : A — B is a homeomorphism between two open sets
A and B, and if M(A) and M(B) are the spaces of measurable functions
respectively in A and B, the induced map g, of M(B) in M(A) is defined
by g.u =uog.

Proposition 2.4 Let Q and A be two bounded open sets in R™, both
without exterior cusps, and let g be the restriction to A of a bilipschitzian”

homeomorphism of Ay D A onto Q1 D Q. Then, g, is an isomorphism
between LP()) and LPA(A).

Proof. Ifu:Q — R, wehave U =:uog:A— R. We must prove that
u € LP*(Q) if and only if U € LP*(A).

Since g is Lipschitz-continuous together with its inverse, there will exist
a constant L > 0 such that for every =, 2o € A3

Llg(a) - 9(@0)| < & — wo| < Lig(x) ~ g(ao)]
Setting yg = g(xo), and taking
R < Ry =: min{dist(€2, 0€), dist(A, 8A;)},
we have
9(A(zo, R)) C Qyo, LR); 97 (yo, R)) C A(zo,LR).

If R < Ry we have therefore for every £ € RV:

[ u-gpay= | U-gpliese [ U-gpds
Q(yo,R) 971 (Q(vo,R)) A(wo,LR)

from which the inequality

lulllox < €lllU]1]p

follows at once. Interchanging g and g~! we get the opposite inequality,

and the theorem is proved. (|

"That is Lipschitz-continuous together with its inverse.
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2.4 The Lemmas of John and Nirenberg

We gather in this section two results concerning estimates for the measures
of level sets of a function u, subject to suitable conditions. The first of these
is evidently connected with Campanato’s space £1'*, and will be useful in
the proof of the isomorphism of the spaces £P'™,

The proof makes use of the following theorem, that is also interesting
in itself, and will be useful in other occasions.

Theorem 2.10 (CALDERON-ZYGMUND |[1]) Let Qo be a cube in R™, and
let g(z) be a positive function in L*(Qo). Let L be a real number such that

1
gdr =1 — gdr <L.
fot= i f,

There exists a sequence (possibly a finite number) of pairwise disjoint
cubes Q; C Qo, with faces parallel to those of Qo, such that

(i) L<4,,g9dz<2"L.
(i) g< L ae in Qo —UQ;.

Proof. We call final a cube @ for which ijg dr > L. Let us cut Qo
(which by assumption is not final) into 2™ equal cubes, each with side one
half of that of Qg. If any of these cubes is not final, we cut it again in 2™
equal cubes, and we continue as before. Let Q;, i = 1,2,... be the family
of final cubes.

We have obviously 4, gdz > L. On the other hand Q; must arise by
division from a cube W (of double side) which is not final. We have thus
+49dz < L, and hence jgigda: < 2™f gdx < 2"L. This proves (i).

In order to prove (ii), we remark that every point x € Qg — UQ); is the
intersection of a decreasing sequence of cubes W, none of which is final. It
follows that for every s there holds

7[ gdx <L
Ws

so that, passing to the limit for s — oo, we get g(x) < L for almost every
T € Qo — UQ;. O

Let now u : Qo — RY be a summable function in Q. Denoting by Q
a generic cube, with sides parallel to those of Qg, we set

Up = [U]4,0o = sup]l |lu — uglde. (2.25)
Q Jo
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Finally, we denote by BMO(Qq) = BMO(Qo,RY)? the space of func-
tions u € L}(Qp, RY) for which the quantity u. is finite.

Proposition 2.5 The space BMO is isomorphic to L1

Proof. We have obviously [u]« < [u]1,n. On the other hand, if Z is an
arbitrary cube of R™, with center in Qg, there exists a cube @ C Qy, with
sides parallel to those of Qq, such that P =: ZN Qo C @ and |Q] < ¢|P],
with ¢ depending only on n. It follows that

][lu—up|dm§2][ |u — ug|dz §2lgl-][|u—uQ|da: Sc][ [u — ug|dez
P P |P| Q Q

and therefore [u]1,» < c[ul«. O
For v € BMO(Q) and ¢ > 0, we set
YTooW) = {z€Q:|v(zx) —vg|>0c}.

Theorem 2.11 (JOHN-NIRENBERG [ [1]) There exists two positive con-
stants A and a such that for every u € BMO(Qo,RY) and o > 0 we
have

—ao
Lo < desp (57 ) 10l (2.26)
Proof. Writing u/[u]. instead of u, and o/[u]. instead of o, we can
assume [u], = 1. We can also assume that ug, = 0.

For any cube @, and for ¢ > 0, we set

Toofu
p(0) = sup {% [ulv@ =1, ug = 0} :
The function ¢ does not depend on the cube Q, since both the ratio
|T+|/|Q|, and the quantity [u]. g are invariant under omotheties. Moreover
|To,0(u)]

plo) = sup —2C
( ) [u].,@<1 IQ'

If [v]«,@ < 1, we have

Moa@) <7 [ 1v-valde < &

8From the initials of Bounded Mean Oscillation. Sometimes the space BMO is
called £°.
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and therefore (o) < 1. We shall prove that for s > 1 and o > 2"s we
have

plo) < %(p(a ~2"s).

For that, let w be a function in BMO(Qy), with [w].,0, = 1 and zero
mean value, and let us apply the Calderon—Zygmund theorem to the func-
tion jw|. We have

][ lwide < [wl« =1<s.

Qo

and hence there exists cubes Q; C Q¢ such that
s < |lwlde < 2™s

|w| < sin Qo —UQk.

In particular, from the first inequality it follows that

1
= w|dzx .
;mss/@)r |

Denoting by wy the average of w in Q, we have |wg| < 2"s, and
therefore if z € Q and |w(z)| > o we deduce |w(z) —wi| > |w(z)| — |wi| >
o —2"s. Since |w] < s < g in Q¢ — UQk, we get

|T0,Qol < Z |TU—2"S,Q;¢| .
k

On the other hand [w].,q, < [w]x,@, =1, and hence
IYo—2ns,qil < 00— 275)|Qx| -

It follows that
|Qol

1To,00(w)] < p(o—2"5) > |Qk| < %sO(G—?"S) / lwlde < ==¢(a—-2"s)
k Qo

and therefore
$(0) < =p(o — 2"s) (2.27)
s

for every s > 1 and o > 2"s.
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Choose now s = e and set & = 27 "e~!. If 0 < o < 2" we have

1Yol < Qo] < €' 7%7|Qu

that is (2.26) with A =e.
Assume now that 2"ek < o < 2"e(k +1), k > 1. From (2.27) we get by
induction

¢(0) < e7Fp(o —k2"e) .
On the other hand 0 < ¢ — 2™ek < 2™e, and therefore
o0 — 2"ek) < Ae™o(e=2"ek) — pek—ac
which in combination with the preceding estimate again gives (2.26). 0O

From the above theorem, we have the following:

Corollary 2.2 If u € BMO(Qo,RY), then u € LP(Qo,RY) for every
p > 1, and for every cube Q parallel to Qg it holds that

_7[ lu — ug|Pdr < clu]f.
Q

Proof. We have actually

o0
/Q u—uqPdz =p [~ a1 gldo

o [ oo (-2 s

=pA(%%>ﬂQLAw”_%4dtSdQHMQ O

In particular, if u € BMO(Qo, RY), then u € £LP*(Qo, RY), and
[ulpn < cfu)s.

On the other hand, we have trivially [u], < [u]1,n < [u]p,n, and hence

BMO is isomorphic to LP'™ for every p > 1. As a consequence we have the
following:

Corollary 2.8 The spaces LP"(Qo,RY) are all isomorphic among
themselves.
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The same is true for £P™(Q2), as long as the boundary of 2 is regular
enough (for instance, Lipschitz-continuous).

The next lemma is also due to John and Nirenberg, and has been widely
used in the theory of elliptic equations.

Lemma 2.3 (JOHN-NIRENBERG II) [1] Let u : Qo — RY be a summable
function in Qq, and assume that there exist two constants K >0 andp > 1
such that for every partition of Qo in countably many cubes Q;, pairwise
without common interior points, we have

> 1Qjl (Jé u— qu|d$> < KP. (2.28)
j=1 i

In this case, denoting by [u], the smallest constant for which (2.28)
holds, we have

1To,00l < A (%ﬂ)p (2.29)

with a constant A depending only on n and p.

Proof. For 1l < p < +00, let ¢ be the conjugate exponent of p: ¢! +
-1 __
p~!' =1, and

—; _l—g _ —k—1
Ak=2q7—ﬁ—p(l—q )

We have Ay = A\x—1+¢~*, and hence ¢* )y, = g*Ai_1+1. Define moreover

1

Tk = ontR(m+D) gk,

We remark that we can always assume ug, = 0, and we begin by proving
that if v has zero average in some cube @, and if for some integer k we have

f lvldz < o7y, (2.30)
Q

To()] < A (%)A (rl]—p /Q |v|dx)q_k (231)

with 4p =1 and

then

k .
Ay = H(q12n+j(n+1))¢1“.1 .

j=1
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We set for simplicity V, = T,0(v) = {z € Q : |v(z)| > ¢}. Since

Vel < 5 [ ide

(2.31) holds for k = 0. We assume now that (2.30) implies (2.31) for k —1,
and we prove that the same is true for k.

Assume then that (2.30) is satisfied. By Theorem 2.10, we can conclude
that there exists a sequence of subcubes Q,,, of @), pairwise without common
internal points, and such that

ot < ][ lvldz < 2707y, (2.32)
Qm

lv(z)| <o <o in Qo — Up@m - (2.33)

Define wy, = v — vg,, in @n. The function wy, has obviously zero
average on Qp,. Moreover, by the definition of [v],, we have

S [wml? < PE. (2.34)
m=1
Now
n 1 A1
1-2 Tk>1—qk/\k— " (2.35)
and hence

9—n—(k~1)(n+1) M1
B Y VIR W

2n+17’k < Tk_l(l - Z"Tk) .

Consequently, taking (2.32) into account:
][ (W |dz < 2][ fvldz < 27t om, < o(1 — 2771k )TR1,
Qm Qm

so that we can write (2.31) for wp,, with k — 1 instead of k and o(1 — 2™7%)
instead of &. Setting

Wokm = {2 € Qm : lwm(z)| > (1 — 2"7%)}

it follows from (2.35) that

Wokm! < Ag-1 (@)Ak—l ([w—i]—;/m Iwm|da:)q

1-k


file:///v/dx
file:///v/dx
file:///v/dx

60 Direct Methods in the Calculus of Variations

On the other hand, from (2.32) it follows that |vg, | < 2o, and
therefore, if z € Qm and |v(z)| > o, we get |wn(z)| = |v(z)| — |vg,.| >
o(1 — 2"rg). It follows that Vo N Qn C Wy k,m and hence, taking (2.33)
into account, we obtain

Vol € 3 Wokim| < A g0 Y w2208, (2.36)
m m

where

amz/ Jwp|de .
Qm

In order to evaluate the last sum, we use Holder inequality. We have

11—k 1-k

1-q q
Z[’wm];‘k—2a;1;_k < (Z[wm]g> (Z am>

m

and moreover

D am = ) 1Qml 7 anlQulF < (Z rczmil—%fn) (Zw)

1 1

() ()

The last term can be estimated by means of (2.32). We have

1 1
< — < — .
Em [Qm| < oy mE /Qm jvjdz < p /Q |v]dz

Introducing all these inequalities into (2.36), and taking into account
(2.34), we get

To obtain the desired inequality (2.31) we need only adjust the constant
Ag. We have 7,1 = ¢* 27 +*("+1) | and therefore:

" e

=

N < g

from which we get at once (2.31) for k.
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Coming back to the function u, and observing that the constants Ay
and ), are bounded, we can conclude that if

][ |uldz < o7y,
Qo

Tl < (%)A ([-ul]— /Q o luldw>q—k

The last relation can also be written in the form:

then

—k

(e (2H19l [
1t <o (122) ( A |d> . (2.37)

Let now %O|u|dw < 27”0, and let k be such that

0Tg+1 < luldz < o1, .
Qo

In this case (2.37) holds, and estimating o by 7 jlijo|u|dx, we get

e () (%J[ oluuz)pq_k

—k—1
The last factor is less than unity, and 7 /] is less than a fixed
constant, so that in conclusion we get (2.29), provided o > 2"35% |u|de.
In the opposite case, we have

o <2 f Julds < 2l Qol 3
Qo

and therefore

ITo| < 1Qol < (zn[“]”>p

g

so that (2.29) holds in this case too. |

2.5 Interpolation

We have already remarked that if w is a function in LP(2), and if for ¢ > 0
we set

Us ={z €Q: |u(z)| > o}
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it holds that

Au,0) = U, < (“—“—”—) .

[

Of course the opposite is not true; the function u(x) = |z|~™/? satisfies
|Us| < co™? in the unit ball B, but does not belong to LP(B).

Definition 2.6 We say that a measurable function u : Q — RN belongs
to the space LP(Q)-weak (that we shall denote by LF (), if there ezists a
constant K such that for every o > 0:

Us| < (E)p : (2.38)

a

It follows from (2.4) that L? C LZ,. Moreover, if £ has finite measure,
we have L (2) C L*(Q) for every s < p. Actually, we have from (2.5):

o0 [o0)
/ |u|® dz = s/ o* YU, |do < 19| + s/ o* YU, |do
Q 0 1

< |9+ sK”/ o 17P dg
1

P
o+ 22
p—s

The weak LP spaces can be characterized in terms of integrals over
arbitrary sets.

Definition 2.7 For 0 < 9 < 1 let us denote by M®(Q) the space of
measurable functions u : @ — RY such that

ulls =: sup|E| ™" /E luldz < 400,

the supremum being taken with respect to all the measurable sets £ C 2,
with |E| > 0.

Sometimes the spaces MY are called Lorentz spaces. It is easily seen
that |lu||s is a norm, and that M? is complete. We have M°® = L! and
M1 = L*°; moreover MY C LV™? since in the latter we integrate only over
cubes and their intersections with 2. We have:

Proposition 2.6 Letl < p < +o0o, and let ¥ = % = 1-— >. Then,

LB = M?®.
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Proof. For u € LP, we have

/|u|dac=/ |U00E|da§|E|'9+/ \U,|do
E 0 |E|9=1
<|E®+ KP/ o Pdo < c|E|°.
|-

Conversely, if u € M? we have
oVl < [ fulde < fullofts]?
Us

and hence

ag

P
< (1) .

We introduce now some notation. In order to avoid non-essential compli-
cations, we shall suppose that Q has finite measure, so that L*(2) C LP(Q)
for p < s < +oo. If T is a mapping of LP(§2, RY) into LP(A, RM), we shall
say that T is quasilinear if there exists a constant @ such that for almost
every r € {1

1T (u +v)(z)| < Q(Tu(=)| + |Tv(z)]).
The first result is an interpolation theorem between s and +ooc.

Theorem 2.12 (MARCINKIEWICZ I) Let 1 < s < 400, and let T be a

quasilinear mapping from L*(, RN) into the space of measurable functions
in A, with values in RY. Assume that T maps L*(Q,RN) into L (A, RY)
and L>®(Q,RN) into L°(A,RY), with the estimates:

ATf,0) < (M—) , (2.39)

179lloo < Awsligllico (2.40)

for every f € L*, g € L* and 0 > 0. Then, T maps LP(Q, R") into
LP(A,R¥) for every p > s, and we have

s p=s
ITullp < AT Al lullp (2.41)

for every u € LP.
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Proof. Let u € LP and let 4 > 0. Setting

uw(z) if ju(z)| > o,
f=) = {0 if |u(z)| £ vo,

)
)
0 if |u(ax o,
g(m):{ I(;I>7

u(z) if ju(z)| £ vo,

we have f € L*, g € L* and u = f + g, so that |Tu(z)| < Q(|Tf(z)| +
|Tg(z)]). In order that |Tu(z)] > o, at least one of the two quantities
|T f(z)| and |Tg(x)| must be greater than ¢/2Q, and hence

ATy, o) < A (Tf, 2Q) +A (Tg, 2Q> (2.42)

From (2.39) we have

TS, o )< (M) < (%)S/UW lul* dz . (2.43)

2 g

On the other hand

HTguoo < Aoo”gHoo < Ao

so that, by choosing

1
7= 2045
we get
<Tg, 2Q) =0. (2.44)

Setting as = (2QA;)%, it follows from (2.42) and (2.43)

/ \TulP de
A

Sp/ oP~1A (Tf, )dcr Spas/ gPs-1 da/ Ju|® dz:
0 2Q 0 Uye

:pas/ oP ! (s/ 757 A (u, T)dT + (”yo)s)\(u,'ya)) do
0 yo
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= pas (s/ 7'3'1)\(1L,T)d‘r/nY A do—}—'yS/ Up“l)\(u,fyo)da>
0 0 0

-p P
P Q| |
from which we get the desired inequality (2.41), taking into account the
definitions of as and of 7. O

We consider now the interpolation between two finite exponents s and r.

Theorem 2.13 (MARCINKIEWICZ II) Let 1 < s <7 < +oc, and let T be
a quasilinear mapping of L*(S, RN) into the space of measurable functions
in A, with values in R¥. Assume that T maps L*(Q,RY) into L2, (A, RY)
and L™(Q,RY) into L%, (A, RY), with the estimates:

ATf,0) < (%) , (2.45)

MTg,0) < (%) (2.46)

for every f e L®, g€ L" and o > 0.
Then, for every p between s and r, T maps LP(Q,RY) into LP(A,RYN),
and we have '

ITullp < cASAZ[lullp (2.47)

for every u € LP, where € € (0,1) is such that

1 € 1—c¢
_J‘,_
p s T

Proof. Proceeding as above we get (2.42) and (2.43), whereas instead of
(2.44) we get

(o) = (5] - () L, e

It follows that

/|Tu|pd:1: Sp(ZQAs)s/ oPs1 da/ |u)® dz
A 0

Yo

+p(2QA,)" / o1 do / | dz.
Q-Uye

0
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The first integral can be estimated as above by

QAL [ jup as.
P—38Jq

For the second, we have

/ U"‘T‘l/ [u|” dz do
0 Q-Uyo

= /Ooo oP 1 ('r /W 7" I\(u, 7)dr — (70)TA(u,70)) do

0
=r/ Tr_l/\(’u,T)dT/ o’p'r_lda—'yr/ P\ \(u,yo)do
0 3

0
et 1
=_P 'yr_”/ U”_l)\(u,o)dcf: 'y’"_”/lulpdm.
r—p 0 r—p Q

We have therefore,

1 1
TulPdx < [ —~*7P(2QA4,)° + ——~"7P(2 Arr)/ ulP dz,
[irupas < (orreaay + oy reqay) [

and the conclusion follows if we choose
_ 1

We can now prove a last interpolation theorem, that we shall use later.

AT AT 0

Theorem 2.14 (STAMPACCHIA [3]) Let Qo be a cube in R"™, and let T
be a linear mapping of L*(Qo, RY) into L*(Qo, R¥), mapping L=(Qo, RY)
into BMO = L5™(Qo,R"), with the estimates:

ITflls < Asll£lls (2.48)
[Tgls < Acollglloo (2.49)

for every f € L* and g € L*°.
Then, T maps LP(Qo,RY) into LP(Qo,R¥) for every p > s, and we
have

1T — (Tu)@ollp < Apllullp, (2.50)
where

Ap = cAT AL . (2.51)
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Proof. (CAMPANATO [5]) Let {Qx} be a partition of Qg in cubes pairwise
without common internal points. Let 7 be the mapping that to every
u € L% associates the function 7u that in each cube Q) takes the constant
value:

][ Tu — (Tu)sldz.

Qe

The mapping 7 is quasilinear (with @ = 1) and, taking into account
the definition of BMO, it maps L>(Qo, RY) into L>(Qo, R”). Moreover

/QO |7"u|‘g d.’l: = ;ile (,kalTU_ (Tu)k|d:v)
<2° Tul|®d
< ;lel]{)kl uf* da

=2s/ |Tu|® dz < (2As)s/ |u}® dz
0

Qo

so that 7 maps L® into L*, with the appropriate estimate.
By Marcinkiewicz theorem I, 7 maps L? into L? for every ¢ > s, with
the estimate

s g94=s
[1Tullg < cAd AxS lullg =: Agllullq-

From the definition of 7~ we get

Sl (]lQ 17 (Tumdx)q < AZ|ulg

for every partition Q. Applying Lemma 2.3, we can conclude that for
every o > 0,

. T _ < Aq”qu !
Hr € Qo : |Tu(x) — (Tu)g,| >0} < ¢ — ] - (2.52)
Consequently, the mapping © : v — Tu— (T'u)g, maps L° into L*, with
€ufls < 24, (julls

and L? into LY, with the estimate (2.52). By the second theorem of
Marcinkiewicz we conclude that © maps L? into LP, s < p < q, and

“9“Hp < APHUHP'
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A simple computation shows that the constant A, is given by (2.51).
Finally, if we want to estimate the norm ||T'ul|p, it will be sufficient to
estimate the quantity [(Tu)g,|- We have

1

(Tl < f [Tuds < (]{2 OITUIde) i

1
<K, ( Ju|® da:) < K, ( |u|P dz)
Qo Qo

and hence

1 s 1_s
ITullp < ®ullp + |Qol * [[(Tw)qo| < (cKS Koo * + Ko)llull, - O

Remark 2.3 The above theorem remains valid in open sets 2 more
general than the cubes, and in particular if  is the image of a cube Qq
under a map g, restriction to Qg of a bilipschitzian homeomorphism of an
open set C' O Qg in A D Q.°

In fact, let T be a linear continuous mapping from L*(f2,R") into
L*(Q2,R”) as well as from L°°(Q2) into BMO(R2), and define

T. =9.Tg;t.

The mapping T, is linear, maps L°(Qo) into L°(Qo) and by
Proposition 2.4, L>(Qo) into BMO(Qo), with the appropriate estimates.
From the preceding theorem, T, maps LP(Qo) into LP(Qy) for every p > s.
By consequence, T = g; 'T.g, maps LP(Q, R") into LP(Q, R*), with the
estimate 0

1Tullp < eljullp -

2.6 The Hausdorff Measure

The Lebesgue measure is essentially n-dimensional, and cannot distinguish
between different sets of zero measure, nor determine the dimension of such
sets. For that purpose, several measures have been introduced; the one we
shall describe has proved rather useful in the theory of partial differential
equations.

9This happens for instance if 2 is a ball.



Measurable Functions 69

Definition 2.8 Let E be a subset of R™, and let k > 0 and § > 0 be two
real numbers. Having set

HF(E) = w2 % inf Z(diamSj)k; EC U Sj; diamS; <6 )

j=1 =1

where wy, = ['(3)*/T(£ +1), we define the k-dimensional Hausdorff measure
of E:

H*(E) = lim H}(E) = sup H{(E). (2.53)
50 §>0

The constant w; in the above definition!? is chosen in such a way
that when F is a regular k-dimensional surface, its Hausdorff measure
H*(E) coincides with the k-dimensional measure elementarily defined. In
particular, if E is a measurable set in R™, we have H"*(E) = |E|.

It follows immediately from the definition that HC(E) counts the
number of points of E, and that for k¥ > n we have H*(R™) = 0, and
hence H*(E) = 0 for every E C R™. Moreover, if H*(E) > 0 for some k,
then for every h < k we have H"(E) = +00; whereas from H*(E) < +oo
it follows that H"(E) = 0 for every r > k. Consequently, there exists a
unique real number d with the property that H*(E) = 0 for every s > d,
and H"(E) = +oo for every s < d. This number d is called the Hausdorff
dimension of the set E, and is denoted by dimg(FE), or simply by dim(F).

The next lemma will be quite useful later.

Lemma 2.4 Let G be an arbitrary family of cubes, such that'! M =:
supgeg (@) < +oo. There exists a countable (or finite) subfamily T' =:
{IL;} of pairwise disjoint cubes, such that

Uti>Us
=1

where I indicates the cube concentric with II and with quintuple side.
Proof. For every integer h, we set
Grn={Pe@G:27"M < r(P) < 2P M}.

Let G; be a maximal subfamily of pairwise disjoint cubes of G, that is
such that

10Note that when k is integer, wy, is the measure of the unit ball of dimension k.
LLIf P is a cube, we indicate by r(P) its radius, that is half its side.
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(i) for every P, Q€ G, PNQ = 0.
(ii) for every Q € G, there exists P € §; with PN Q # 0.

The family G; is at most countable, since, being r(P) > M/2 for every
P € Gy, at most a finite number of cubes of §; can intersect any compact set.

Assume now that G1, Ga,...,Gn_1 have been defined, and among the
cubes of Gy, which do not intersect any of the cubes of I'y,_, =: u?;llg‘,- let
us choose a maximal family Gy, of pairwise disjoint cubes. We have

(i) for every P, Q €Ty, PNQ = 0.
(ii) for every @ € G, there exists P € 'y, with PN Q # 0.

As above, éh is at most countable.

The family I' = U2 lgz is what we are looking for. In fact it is at most
countable, being the union of countably many families of countable or finite
sets. Moreover, if ) is a cube of G, whence of G, for some h, and if Q ¢ T,
there will exist a cube P € T'y, with PN Q # 0. Since 2r(P) > r(Q), we
have therefore Q C P, and the lemma is proved. O

Remark 2.4 If we write 1+ ¢ instead of 2 in the definition of G, we see
immediately that the lemma continues to hold with cubes II with r(II) =
(3 + 2¢)r(II) instead of 5r(IT). O

A first consequence of the above lemma is given in the following
proposition:

Proposition 2.7 Let A be an open set in R™, and let i be a positive
Radon measure in A, with u(A) < 4+oc. For0 < a < n let

Ee = {a: € A : limsup o~ *u(Q(z, 0)) > 0} . (2.54)
g—0t
Then
dim(E%) < a. (2.55)

Proof. Setting

o—0t

E, = {w € A:limsup ¢”*u(Q(z, 0)) > 1} :

it will be sufficient to prove that H**¢(E,) = 0 for every integer s and
every € > 0.
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For every § > 0 and every z € E, there exists a cube Q(z, p) C A, with
o < ¢, and such that

wQ(z, ) > g%-

By the preceding lemma, it is possible to find a sequence (possibly a
finite number) of pairwise disjoint cubes II; = Q(z;, ;) such that

w A~
Jm > E,.
=1

We have therefore!?

Hgt(By) < e o™ <oy p(IL) < e6*p(BS N A) < cdp(A),
i=1 i=1

and the conclusion follows immediately letting § go to zero. O

Remark 2.5 In particular, for Ht€ almost every £ € A we have

lim 0™ *4(Q(z, ¢)) = 0. (2.56)

o0—0+

Moreover, if
. 2]
NA) =0
Jim p(E;NA)=0,

we can conclude that (2.56) holds for H* almost every = € A. O

Remark 2.6 The assumption p(A) < +oco can be replaced by pu(A N
Q) < +oo for every r > 0. Actually, repeating the argument for E, N Q,.,
we obtain H*T¢(E, N Q,) = 0 for every € > 0, and for every integer s and
7, and hence H* ¢(E*) = 0. O

2.7 Notes and Comments

The spaces of Morrey and Campanato have been introduced by the latter
in [1] and [2], and have proved an important tool in the proof of the Holder
continuity of the solutions of partial differential equations.

These spaces can be generalized in several directions. In the first place,
one can introduce a metric § different from the Euclidean distance, and

121f A ¢ R"”, we indicate by A¢ the envelope of radius & of A:
A% = {z e R™ : dist(z, A) < 6}.
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topologically (but not metrically) equivalent to the latter. As an example,
we mention the parabolic metric; denoting by (z,t), z € R™, t € R a point
of R**1, we set

6((z, 1), (y,8)) = |z — y| + V|t — 5|

or equivalently

o((@,0), (. 9) = max { max s~ wl, VE=31).

The balls Q(0, R) in the last metric are parallelepipeds in R™*!, having
as base a cube of R™ of side 2R and 2v/R as height.

More generally, given a metric §, one can define the spaces £LP*(1Q, §)
by means of the same (2.16) defining the spaces £P*, the only difference
being that Q, denotes now the intersection of  with the ball of radius o
in the metric 4.

These spaces have been studied by DA PrATO [1] and BAROZzZI [1],
and have proved useful in the study of the regularity of the solutions of
parabolic (CAMPANATO (3], [4]) and quasi-elliptic equations (GIUSTI [1]).

A second generalization of Campanato spaces is given by the spaces
Ei’)‘(Q). Denoting by Py the class of polynomials of degree < k, we set

ul? = sup o~ inf / u— P|Pdzx
[ ]k,p,A woegl e PeP, ﬂgl |
o>

and we define EQ’A(Q) as the space of functions in LP(Q2) such that [u]g p » <
-+-00. Ei’A(Q) is a Banach space with the norm

llwllepn = lwllp + [ulik,pn -

By means of methods similar to those of section 3, one can prove
(CAMPANATO [1}) that

(i) if A <n+kp, L'”’ is isomorphic to Ek B

(i) if n+kp < A < n+ (k+ 1)p, L2 is isomorphic to CF*, with o =

A= :
Azn

(iii) if A>n+ (k+ 1)p, L2 = Py

We remark that, in spite of the similarity in their definitions, the spaces
LP* and M? are essentially different. For instance, whereas M? coincides
with L2, (p = (1 — ¥9)™!), and hence the functions of M? are summable
with any exponent less than p, a function of L!* need not belong to any
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L? with p > 1, even if X is very close to n. An example can be found in
PICCININT [1].13
We could also define the spaces MP:?, of functions in LP such that

sup |E|~* / lulP dz < +oo.
E

A simple application of Hélder’s inequality shows that MP? C M@,

witho=1- %. Actually these two spaces are isomorphic, since we have

1
ue MP? & [ulP e M° & |ulP € Ly°

=
Suely’ oue M°.

The lemmas of John and Nirenberg have a “strong” (or rather “weak”)
version, which consists in eliminating the mean value both in the definition
(2.25) and in the assumption (2.28). In the first case we get nothing
interesting, since

sup][ luldz < 400
E

if and only if u is bounded.
The second case corresponds to a theorem by RIEsz [1}: if for every
partition of Qg in subcubes Q; it holds that

o0 Y4
IQ-I< ||d>SK”
,.; ; ]gu z

then u € LP(Qo), and vice versa.

13For A = n — 1, an example is given by the function f(x) = :tl_l(log |z1])~2 in the
cube Q;/; of R™.
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Chapter 3

Sobolev Spaces

3.1 Partitions of Unity

Lemma 3.1 Let Q be an open set of R™, and let & = {Q;},7=1,2,...
be a countable covering of Q with bounded open sets 2; CC §2. There exists
an open set $1, Q1 CC 4, such that the family {Q1,Q2,Qa,...} is again
a covering of §Q.

Proof. For any open set A we define
A ={z € A: dist(z,04) > t}. (3.1)

If A is bounded, we have A; CC A for every t > 0.
Consider now the family

&, = {1, 0, U3, .}

We shall prove that there exists a ¢ > 0 such that ®; is a covering of Q.
Otherwise, for every integer k there would exist a point x; belonging to
but not to the union of the open sets of ®;/;. All the points z lie in Qy,
and since this set is relatively compact, a subsequence zj, will converge to
a point zo € 99;.

On the other hand ® is a covering of 2, and hence z¢ must belong to
some §};, with j # 1. This is impossible, since none of the points zj, lies
in Qj. O

75
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An open covering & of (1 is pointwise finite if every z € Q belongs to
a finite number of members of ®; it is locally finite if every compact set
K C Q meets at most a finite number of open sets in ®.

Proposition 3.1 Let ® = {Q;} be a pointwise finite covering of Q, with
; <C Q. For every j there exists an open set 0; CC Q; such that

Q:DQJ-.
J=1

Proof. Using repeatedly the preceding lemma we obtain a sequence of
coverings

! = {0,9:,93,...},
@2 = {Ql,ﬁz,ﬂa, . .},

@k = {ﬁl,...,ﬁk,ﬂk+1,...}.

The family & = {QJ} is the required covering. For otherwise there
would exist a point ¢ €  which does not belong to any of the sets Qj.
Since ® is pointwise finite, there exists an integer N such that zo ¢ Q; for
j > N. But in this case 2o could not belong to any open set of ®V, and
this could not be a covering of 2. W]

We remark that if A and B are two open sets, and A CC B, there exists
a function v € C§°(B), with 0 <y <1 and vy =1 in A. Actually, let 26 be
the distance between A and 8B, and let € < 6. The function

Y= Pe ¥ X,

where x is the characteristic function of A° = {z € R™ : dist(z, 4) < 4},
has the required properties.

Theorem 3.1  Let ® = {Q;} be a locally finite covering of Q, with Q; CC
. For each j there ezists a function {a;} such that

(1) a; € C5°(),
(i) 0<a; <1,
(iti) 72, 05 =1 in Q.

The family {a;} is called a partition of unity relative to the covering .
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Proof. Let {QJ} be the covering given by the preceding proposition, and
for every j let «y; be a function in Cg°(f2;) with v; =1 in ;. Since ® is
locally finite, for every compact set K C € only a finite number of v; are
not identically zero in K. There follows that the series

[o0)
>
=1

converges uniformly with all its derivatives in every compact set K C (, so
that its sum -~y is infinitely differentiable in Q.

On the other hand, the family & is itself a covering of €, and hence
v > 1 in Q. The functions

() = (@)
() ¥(z)

give the required partition of unity. a

Remark 3.1 If we accept the possibility that some of the functions o;
are identically zero, the conclusion of the theorem remains valid also for a
generic covering. In fact on one side from every covering of €2 it is possible
to extract a countable subcovering; and on the other, given a countable
covering & = {Q;}, it is always possible to find a locally finite covering
& = {Q;}, with €; C Q..

In order to prove the last statement, let § = Ko C K1 C Ko C--- C
be a sequence of compact sets with the property that every compact set
K c Q is contained in some K,,, and for every h let n;, be the integer such
that

KhCQIUQQU"'Uth,

KnZ QUQaU--- Uy, 1.
For np, < j £ npt1 (ng = 0) define
Q; =0 — K.

The family & = {€);} is what we are looking for, since we have

Oﬁjz OQJ (3.2)

=1 =1



78 Direct Methods in the Calculus of Variations

The above relation is trivial for m < n;. Assume now it holds for
m < ny, and let np, < m < npy1. We have then

m nh m
Ub=Uxuu U @ -Kn
=1 j=1 j=na+1
nhp m
=UJaul U 9-Kn
j=1 j=np+1
m
= U Q;
i=1
since K, C 32, 9. o

In what follows, we shall use also partitions of unity relative to coverings

{€;} such that
acc 9.
j=1

This case cannot be treated as the preceding one, though the conclusion
is the same.

Theorem 3.2 Let & = {Q;} be a covering of Q, with & CC U®P. There
exists a partition of unity relative to P.

Proof. Since in particular @ C U®, from ® we can extract a finite
covering {Q1,%s,...,0x} of (. Reasoning as above, we can show that
there exists a covering {Q,Q, ..., Qn} of Q, with flj CC ;. Let y; be a
function in C§°(£);), with 4; = 1 in ), and define

a1 =71,

az =72(1 =),
ay =w(l-71)1-7)...(1-n).

By induction,

k
1-> ai=1-m)1-)..-(1—w)
i=1

forevery k=1,2,...,N.
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For z € Qj we have v; = 1, and therefore 1 — Efil a; = 0. Since the
open sets ; are a covering of {2}, we conclude that

N
Zai(w) =1

for every z € Q. O

3.2 Weak Derivatives

Let us begin by introducing some notation. A multi-indez a is a n-vector
(0, g, ..., a,) whose components are non-negative integers. If « and 3 are
two multi-indices, we say that o < B if a; < §; forevery i = 1,2,...,n. If
at least one of these inequalities is strict, we shall say that o < 3. Moreover,
we define

la] =1 +ag+ -+ an,

ol = ajlag!. .. ay!,

a+ﬂ:(a1 +ﬂ1’a2+1827"')an+13’n)

and if a < 3:

()= () (2) -t

For z € R™ we set

ay 02

Q@ o
% =2{x5% .o

n

and if f(z) is an infinitely differentiable function:

o alel f(z)
D%1(@) = oo, o -

With these definitions, the formulae involving partial derivatives of func-
tions of n variables become very compact; for instance, Taylor’s formula can
be written in the form

fey= 3 P o gy 4 Ri(ean),

lal<k
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where Ry, is the rest of order &k, whereas the formula for the derivative of a
product becomes

D)= (:) DfD*g.

y<a
We introduce now some extensions of the classical concept of derivative.

Definition 3.1 Letu € L, (), p > 1, and let o be a multi-indez. We say
that v has a weak derivative (or a derivative in the sense of distributions)
of order a in L}, (Q) if there exists a function v, € LY () such that for

loc loc

every function ¢ € C§°(Q2)

/ uD®pdg = (~1)l! / Vo dz. (3.3)
Q Q

The function v, is usually denoted by the standard symbol D®u. This
notation is appropriate, since we have the following:

Proposition 3.2 Weak derivatives are unique.

Proof. If v, and w, are both weak derivatives of order o of the same
function u, we have for every ¢ € C§°(Q):

/(va —wa)pdr =0.
Q

Let now A CC . Since C§°(A) is dense in L!(A), it is possible to find
a sequence @; € C§°(A), with |p;| < 2, converging almost everywhere to
the function H(v, — wq), where H is the Haeviside function:

1 if t>0,
Hit)=<0 if t=0,
-1 if t<0.

Writing ¢; instead of ¢ in the preceding equation, and passing to the
limit as j — oo, we obtain:

/ |Vo — Wo|dz =0
A

and therefore, since A is arbitrary, v, = w, in Q. O

From the preceding result it follows at once that for u € Clol(Q)
the weak derivative D*u coincides with the standard one. However, one
has to be careful in general, since a function (as for instance H(t)) can
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be differentiable almost everywhere, and yet may not possess a weak
derivative.!

A second way to define derivatives of functions in Lf  is the
following.

Definition 3.2 Let u € LY (), and let a be a multi-indez. We say that
u has strong derivative of order o in LY, (Q) if there exists a sequence of

functions u; € C1*(Q) such that for every open set A CC Q:

(i) u; = u in LP(A),
(ii) D*u; is a Cauchy sequence in LP(A).

P

The functions D®u; will converge in Li_

call the strong derivative of u of order c.
If ¢ € C§°(Q) we have

() to a function ve, which we

J—ro0

(0 [ vapde = (-1)" tim [ D% ds

= lim wD“gada;:/uD“cpdac

so that the strong derivative v, of u coincides with its weak derivative. As

a consequence, strong derivatives are unique.

Proposition 3.3 A function u has strong derivative of order o in LT, ()

if and only if for every open set A CC § there exists a sequence u;
satisfying (i) and (ii).

Proof. 'The necessity of the condition is trivial. In order to prove that
it is sufficient, consider a sequence {§1x} of open sets such that @, CC
Qp+1 CC Q and

San
Jj=1

For every (U there exists a sequence {uyc)}j such that

(1) ug.k) — u in LP(Qy),
(i) D*ul® - ol in LP(Qy).

1 More precisely, the derivative of H (t) in the sense of distributions is the Dirac mea-
sure §, and hence it does not coincide with its pointwise derivative, which is zero. In other
words, the fact that a function f is almost everywhere differentiable, with derivative f’
in L? | does not imply that f’ be the weak derivative of f.

loc?
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It is clear that U&k) = D%y in Q. Moreover, from the uniqueness of
strong derivatives there follows that v,(xk) = vl(,k+h) in Q. If for z € Q we
define vq(z) = o) (), the function v, belongs to L}, (), and is the weak
derivative of u: v, = D%*u.

On the other hand, for every integer & it is possible to find an index ji

such that

1

k k
”u.gk) - u”Pka + ,,Dau§k) - Ua”p,nk < E .

Let now v, € C§°(Quy1), with v = 1 on Q. The sequence wy =

7ku§.fi'll) satisfies (i) and (ii) of Definition 3.2, and hence u has strong

derivative D*u in LY . ]

We have already remarked that strong derivatives are weak derivatives.
The converse is also true.

Theorem 3.3 Weak derivatives are strong derivatives.

Proof. By the preceding proposition, it will be sufficient to show that for
every A CC  there exists a sequence uy, satisfying conditions (i) and (ii).
Let 2d = min{1,dist(A4,00Q)}, and let x(z) be the characteristic function
of the set A% = {z € O : dist(z, A) < d}. For € < d we set

we = (XU) * Qe .

Let us show first that if D*u is the weak derivative of order o of u, then
for every z € A:

D*w, = D%u, = (D%u), .

Let z € A and |z] < € < d. We have z — 2 € A% and therefore
x{z — z) = 1, whence

we(z) = / Ce(2)x(z — 2)u(x — 2)dz = ulx).
|z|<e€
For such points = we have then
Deud(z) = Dufz) = [ Dipulo — yulwdy

= 0P [ Dyedle - wutn)dy.
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By the definition of weak derivative, and recalling that for every z the
function y — we(x — y) belongs to C§° (), the last integral is equal to

/<p€(:1: —y)D%u(y)dy = (D%u)(x).

The proof of the theorem is now simple. Since u and D®u both belong
to LP(A), it follows from Theorem 2.8 that v, — v and D*u, — D%u in
LP(A), and therefore D%u is the strong derivative of u. O

3.3 The Sobolev Spaces Wk

Definition 3.3  We shall denote by W*P(Q) the space of functions having
weak derivatives up to the order k in LP((Q).
WHP(Q) is a Banach space with the norm

iy =4 3 / IDuPds . (3.4)
lal <k 2

With C*P(Q) we indicate the space of the functions u € C*(Q) whose
norm (3.4) is finite: C*P = C*¥ N W¥P, We have the following

Theorem 3.4 (MEYERS AND SERRIN [1]) For every u € W*P(Q) there

ezists a sequence of functions u; € C*P(Q) converging to u in the norm
(3.4).

Proof. 1t is sufficient to show that for every u € W*P(Q) and for every
7 > 0 there exists a function w € C*P(Q) with [lu — wl|/xp < 7.

We remark in the first place that this is true if u has compact support
in §; for in this case the functions u. = u * ¢, belong to C§°(Q) (hence
to C¥P(Q)) for every € small enough, and converge to u in the norm (3.4).
Consider now a general function u € W*?(), and set

Q) = {:L' € Q: dist(z, 0Q) > %} ;

Qo) =0;
Ai = Q) — Qi-1y, 1235
A2 = Q(g) .
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The open sets A;, i > 2, form a locally finite covering of Q. By
Theorem 3.1 there exists a partition of unity {a;} relative to that covering.
It is easily seen that for every ¢ we have

aju € WEP(Q);  supp(aiu) C 4; CC Q

so that, according to the above, for every integer ¢ > 2 it will be possible
to find an €; > 0 such that:

supp @e; * (iu) C Qigz) — Qi-2) 5 (8.5)
l[0e; * (@iu) — aiulflk,p < 727°. (3.6)
We define now
w= Z‘Pez- * (au) . (3.7)
i=2

By the definition of the sets §;, in every compact set K C {2 at most a
finite number of terms of the series will be different from zero; and hence
the function w is infinitely differentiable in 2. Moreover, we have:

> {@e, * (ouu) — aiu}

=2

lw = ullx,p =

k.p

o
<Y llpes * (u) — qsullrpy < T

1=2
and the theorem is proved. O

Remark 3.2 We remark that the function w constructed above is of class
C°°()). Moreover w and u have the same trace on 92 (see later, Secs. 3.7
and 3.8). O

The preceding theorem can be rephrased by saying that W*P(Q) is
the closure of C*?(Q) in the norm of W*? or else that for any open
set 2, C*P(Q) is dense in W*P(Q). The matter is different if one wants
to approximate functions in W*?(Q) with functions of class C*() (that
is continuous together with their derivatives up to the boundary of Q).
Generally speaking, this is not possible unless the boundary of (2 is regular
enough (see later, Theorem 3.6).

A consequence of Theorem 3.4 is the following.

Proposition 3.4 Let f(t) be a function of class C'(R) with bounded
derivative, and let v € WYP(Q). Then, f o u belongs to WHP(Q), and
D(fou)= f ou Du.
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Proof. The theorem is trivial for functions u of class C1'?(£2). Let now
ux be a sequence in C1'P, converging to u in the norm of W?(Q). Passing
possibly to a subsequence, we may assume that u; — u almost everywhere.
We have

|f(uk) — f(u)| < Llug — u
and therefore f(u) — f(u) in LP. On the other hand
Df(uk) ~ f'(u)Du = f'(ux)Duk — f'(v)Du
= f'(uk)[Dug — Du] + [f'(ux) — f'(u)] Du.

The first term on the right-hand side can be estimated by L|Duj —
Du|, and therefore it tends to zero in LP. The second term tends to zero
almost everywhere (by the continuity of f’) and is bounded by 2L|Dul; by
Lebesgue’s theorem of dominated convergence, it tends to zero in LP. O

The above proposition remains valid when the function f(t) is only
Lipschitz-continuous (see later, Sec. 3.9). However, for our purposes
we shall need only the particular case f(t) = |t|, which often is taken
for granted.

Proposition 3.5 Ifu € WYP(Q), then |u| € W'P(Q), and
Dlu| = H(u)Du

where H(t) is the Heaviside function:

1 ift>o0,
Ht)={0 if t=0,
-1 if t<0.

Proof. The function 7. = /€2 + (u + €)? tends to |u| in L? as € — 0;

moreover by the preceding proposition

Dy, = vy €Du.
Ne
Let now € — 0. For almost every = we have
lim 7€ = o(u)
-0+
and
lim € _ 9)

e—=0— 7
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where

1 if t>0, 1 if t>0,

1
ot)=X —= if t=0, and ()= _1 se t=0,

V2 V2
-1 if t<0, -1 if t<0.

Both the functions o(u)Du and ¥(u)Du are strong derivatives of |ul;
since strong derivatives are unique, they must coincide almost everywhere,
so that in particular Du(x) = 0 for almost every z € E = {z € Q : u{z) =

0}. But then we also have D|u| = H(u)Du. O
If we define
ut(z) = ]u!z—;—u and v~ = 'ulz_ u’
we have
Du if u>0,
Dut = (3.8)
0 if ©u<o,
0 if u>0,
Du~ = (3.9)
—Du if u<D0.

Theorem 3.5 Let Q and A be two open sets in R™ and let g : A — Q be
a diffeomorphism. Then, the induced mapping g., defined by g.u =: uo g,
is an isomorphism between W1P(Q) and W1P(A).

Proof. Let U(z) = g.u(z) = u(g(x)), and let us assume first that u €
CHP(Q). We have U € C1P(A), and?

pu= (% t D
== o
oz ueg

and hence, setting

we get

|DUP < MP|Duog|?.

2We denote by A? the transposed matrix of 4.
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But then

/|DU[pd:E < Mp/ |Du o g|P dz
A A

SM”N/ |Du o g|? det@ d:l:=M"N/ |Du? dy,
A Oz Q
where
N1 = inf det@ >0.
A oz

Interchanging the role of u and U, we conclude that

o / \DulP dy < / \DUJP dz < ¢, / \DulP dy, (3.10)
Q A Q

where ¢; and c; are positive constants independent of u.
A similar argument holds for the integral of |u}?, and leads to the
estimates:

cl/ [u]”dyﬁ/ ]U|pdx§cz/ |ulP dy . (3.11)
(9] A Q

From the estimates (3.10) and (3.11) we conclude that g. can be
extended to a linear mapping from W1P() to W1P(A), continuous with
its inverse, and the theorem is proved. O

We remark that the conclusion of the theorem holds whenever g is a
bi-Lipschitz mapping (namely, Lipschitz-continuous with its inverse) from
A onto 0, provided |det 22| > a > 0, as we shall always assume. It is not
difficult to prove that if g € C¥(A), g, is an isomorphism between W*?(Q)
and WHkP(A).

Proposition 3.6 Let u € LP(Q) and let {Q;}1<j<n be a finite covering
of Q. Assume that for every j the function u belongs to W*P(QNQ;). Then,
u € Whkr(Q).

Proof. For |B| <kandj=1,2,...,N, let v? be the weak derivative of
order B of uin 2, N

/vfgodzz (—1)|ﬁl/uDﬁgodw Ve CP,;nQ).

If the support of ¢ is contained in ©; N Q;, we have

/vfgadz:(—1)m'/uDﬂ<pdac=/vfgadx
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and hence

vf:vf in 2,NQ;NQ.

We have, therefore, a function v# € LP(Q) such that
Plz) =P (@z) YzednQ.

Let now ¢ € C§°(f2), and let {a;} be a partition of unity relative to the
covering ;. We have

N
/uDﬂgoda: = Z/uDﬁ(aigo)dm
i=1

N
= (—1)"3‘/Zvﬁaigadx= (—1)‘ﬁ\/vﬂgoda;
i=1

and hence v® = D8u. O

We can now discuss the problem of approximating functions « in
W*P(Q) with functions regular in . For simplicity, we shall only treat
the case k = 1.

Setting

Bt ={zeR":|z|<1l,z, >0} =BNR},

let u be a function in W1P(B), whose support does not intersect the round
part 8t B = BN R of the boundary of Bt.
For s > 0 let us define

Tsu(z) = u(z1, Tay...,&n +8).

Moreover, let u, be a regularization of u (extended as 0 outside B™).
For € small enough, the functions 7o uc(z) belong to C°(B+). We have

/ |Toctte — ToeulP dz = / |ue — ufP dz,
B+ R3.
where we have set

5 ={z € R": z, > 2¢}.

Moreover, since D(1,u) = 7,Du, we have

/3+ | D(7oe(ue — u))|P dz = /Rn ID(ue — )| dz

2€
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and hence
lim froe(ue = w)l1,p = 0-

On the other hand from Theorems 2.1 (Lusin) and 2.3 (the absolute
continuity of the integral) it follows that

lim [frpct — ull1p =0
and therefore
el_i_f& | T2ctie — ull1,p =0
so that the function u is the limit of functions of class C*°(B¥).
More generally, we have

Theorem 3.6 Let 2 be a bounded open set with boundary of class C*.
The space C*(Q) is dense in WHP(Q).

Proof. For every point zo € 9 there exists a neighborhood A and a
diffeomorphism g : B — A mapping BT in AN Q and the flat part P of
OBt (P =8Bt N{z: z, = 0}) on ANON. A finite number of such sets
A1, Ag, ..., AN cover 99; adding possibly an additional open set Ag CC Q
we get a finite covering of ). Let {a;} be a partition of unity relative to
that covering, and let g; be the diffeomorphism relative to the set A;.

For u € W1P(Q), the functions

Ui = (9:)+(asu) = (oyu) 0 gs

belong to W1P(B1), and have support non-intersecting 8t B. As we have
seen, for every ¥ > 0 we can find a function Z; € C*°(B+), whose support
does not intersect 87 B, and such that

12 = Uill1,p < ¥
Setting
2= (97 WZi=Ziog]"
we have z; € C1(Q2 N 4;) and

|zi — ciullyp < 8.
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Let now zp be a function in C}(Ay), with ||20 — apul|1,p < ¥, and let

N
z = E Zj .

i=0
We have z € C1({2), and
N
Iz —ullip <D llzi — sullp < (1+ Ne)d.
=0

The theorem is thus proved. If instead we only want to approximate u
with functions in Lip(?), it will be sufficient to assume that 9 is Lipschitz-
continuous. O

3.4 Imbedding Theorems

Lemma 3.2 Let f1, f2,..., fn be functions in LV (), @ C R™. Then,

/Qﬁ|fi|d$ < 111_:11 (/ﬂ FR da:) y ) (3.12)

Proof. For N = 2, (3.12) reduces to a Schwartz inequality. We shall
assume that it holds for N, and we shall prove it for N + 1.
By Hélder’s inequality (2.7) we have

N
N+1

X N+41 e = (2 o
/Q il;[lllesz(/Q el dz) (/ﬂ [T dz) ,

and the conclusion follows at once applying (3.12) to the functions g; =

|l 5 0
Lemma 8.3 (GAGLIARDO [2]) Let fi, fo,..., fn be non-negative func-

tions in R™, and assume that for every i the function f; does not depend
on the variable x;. Then,

1

/ﬁfidx < ﬁl (/ fi"‘ldii) , (3.13)
i=1 i=

where

d.’f?i = d:L‘l e dil?i__l d$i+1 e d.’L‘n .
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Proof. For n =2, (3.13) is trivial. Let us assume it holds for n > 2 and
let us prove it for n + 1.
We have from Hoélder’s inequality:

n+1

J L fededona = [ frards [ T] frdonen
i=1 i=1

< (/f::ﬂdx)%{/ (/hﬁlfidxm)% dx}T,

where dz = dz1dzy ... dz,.
From the preceding lemma we get

/ﬁfvﬁdwdmn+l < (/f77+1dx>% {/ :1 (/fi"dgﬂnﬂ)m dw} ’

2

1
n—1
gi = (/ fz’ndzn+1>

and applying (3.13) to the functions g;, we get at once

1
/Hgidwg (H/g?—l dﬁ,‘z) 1
=1 i=1

and hence the conclusion. O

Setting now

We can now prove a first imbedding result.

Theorem 3.7 (SoBOLEV ) Let u € C§°(R") and forp < n letp* = &
Then,

”u”P" S c(nap)”Du”pa (314)
where c(n,p) is a constant depending only on n and p.

Proof. We shall consider first the case p = 1. We have
u(z) = / Diu(ml,...,:I?,;_l,t,:l‘:¢+1,...,:vn)dt
and hence

+oo
lu(z)]| < / |Diu(z)|da

—00
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so that

1

fu(z)| 72T ]i[{ /_ ” lDiu(w)|dmi}n_l —. ﬁ fi.

i=1
We can apply the preceding lemma to the functions f;, getting easily

/Iuln—"-—x dz siljl{/u)iuum}"“‘ < {/IDuldx}n—_l

and therefore (3.14) for p = 1.
In the general case we apply (3.14) to the function v = |u|[™t1, r > 0.
Remarking that |Dv| = (r + 1)|u|"|Du|, we get

{/[u| e dx} - (r+1)/|u|r|Du|dm
< (r+1){/|Du|”da)}% {/|u|ff% dx}%l

If we choose now r = ﬁg-’l-—ll, we get w =B =& =p*, and

therefore (3.14) with ¢(n,p) = M. O

n—p

Theorem 3.8 (SOBOLEV II) Let u € C§°(R™), and let p > n. Setting

a=l—%wehave:

[ula < e(n, p)]| Dully, (3.15)
sup |u| < ¢(n, p)(diam(supp u))*|| D, , (3.16)
where ¢(n,p) is a constant depending only on n and p.
Proof. Let z and y be two points in R™, and let § = |z — y|. Let
S = B(z,48) N B(y, )
and let z € S. We have
lu(z) — w(y)| < u(z) —u(z)] + July) — u(2)]

and integrating over S:

15 [u(z) — ()] < /S fu(z) ~ u(2)ldz + /S fu(y) — u(z)|dz.
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The two integrals can be estimated in the same way. Let us consider
for instance the first of them. Since

u(z) —u(z) = /01 %u(w +t(z —z))dt = /Ol(z — z, Du(z + t(z — z)))dt,
we have for every z € S:
fu(z) — u(z)] < 6/01 |Du(z + t(z — z))|dt
and integrating:

[ 1ute) - ut2ez < [ RO

1
< 5/ dt/ \Du(z + t(z — 2))|dz
0 B(z,8)

After a change of variables w = z + t(z — z) we get

/S [u(z) — u(2)|dz < A 1t‘" dt /B s | Du(w)| duw .

Using Holder’s inequality the right-hand side can be estimated by

-1 a 1 & v
wn ”6”“‘5/ t7 7 dt / | Dul? dw
0 B(z,t6)

and therefore in conclusion by

1-1 n
wn PETIR
r = —IDul,

p

where we have indicated with w,, the measure of the unit ball in R®. The
same quantity gives a bound for the second integral. On the other hand

|S] = e(n)s™
and hence, remembering that é = |z — y:
lu(z) — u(y)| < e(n, p)|| Dullplz — y|*

from which (3.15) follows.
If we choose y € supp(u) such that u(y) = 0, the preceding inequality
leads immediately to (3.16). a
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The theorems of Sobolev extend immediately to the closure of C§°(Q).

Definition 3.4 By W(f’p (Q) we indicate the closure of C§°(Q) in the
norm of W*P(Q). In other words, a function u belongs to Wé“’p (Q) if and
only if there exists a sequence of functions ur € C§°(Q2) such that
Jim [lug —ullkp = 0.
It is evident that W;P(f) is a Banach space, with the norm (3.4).
Theorem 3.9 Let Q be an open set in R™, and let u € W'P(Q). Then:

() If p < n, u belongs to LP", p* = 22~ and

n—p’
llulpr < cl|Dullp- (3.17)
(ii) If p > n, u belongs to C>*(Q), a =1 — 2 and
[ula < c| Dullp. (3.18)
Moreover, if Q1 is bounded, we have

sup‘|u| < e(diam(Q))*|| Dullp . (3.19)

Proof. Let us prove for instance (i). Let u; be a sequence in C§°(£2),
converging to u in Wol’p (Q). In particular, { Du;} will be a Cauchy sequence
in LP(Q2), and since

lluj — ukllpr < el Duj — Dugllp

u; will be a Cauchy sequence in LP" (). Since u; — u in LP(2), we will
have also u; — u in LP" (). Writing (3.14) for u; and passing to the limit
for j — oo we get the conclusion.

The proof of (ii) is similar, and we leave it to the reader. O

A consequence of the above theorem is that, differently from what
happens for the spaces LP, C§°(Q2) is not dense in W1P(Q). For instance,
the characteristic function of €, that obviously belongs to WP(2), cannot
be approximated in WP with functions with compact support, since it
does not satisfy inequality (3.17).

In some sense, the functions in WyP(2) “take the value zero” at the
boundary of . As a consequence, two functions u and v of W1P(Q2) “have
the same boundary value” if their difference belongs to Wy?(2).3

3These questions will be treated in greater detail later.
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A corollary of the preceding theorem, that can be also proved directly,
is the following:

Corollary 3.1 Let Q be an open set in R™ with finite measure, and let
u € WyP(R). Then,

1
ullp < ¢(n, p)IQ]= || Dullp -

Proof. We distinguish the two cases 1 < p < -%; and p > ;2. In the
first case we have

1_1 1
lull, < 191772 [Jullpe < ||| Dullp.

If instead p > T4, setting p. = ;ﬁ_”;, it results (p.)* = p, and again:

lullp < cllDullp, < |7 || Dullp - O

In particular, for u € Wy P(Q) the norm (3.4) of W1P(Q) is equivalent to

1
lulyp = {/ |Du[”dw}p .
Q

More generally, if |Q] < 400, the quantity

|ulk,p = Z/|D°‘u|pdaz
o=k V2

is a norm in W,'*(Q2), equivalent to the standard norm ||ul|,p.

We shall consider now the space WP(Q). In general, without suitable
assumptions on the boundary of §, the imbedding W12(Q) — LP"(Q) does
not hold. For instance, taking n = 2 and

Qz{x€R2:0<z<1, |y|<exp(—%)},

the function f(z,y) = 23 exp(Z) belongs to W11(1), but does not belong
to any LP(Q}, with p > 1.

The imbedding WP(2) < LP"(Q) holds if 89 is Lipschitz-continuous.
In order to prove this statement, we shall begin by establishing some results
which are of interest by themselves.
Lemma 3.4 Let v(z) be a function in WHP(B™), and let
v(z) ifz € BT,
v(z1, T2, ., Tn-1,—Ln) fzx€B™ =B — B+.

V(z) = o(v)() = {

Then, the function V(zx) belongs to W1P(B).
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Proof. By Theorem 3.6 and the remark immediately following it,
there will exist a sequence {vx} of Lipschitz-continuous functions in B¥,
converging to v in WP(B*). The corresponding functions Vi = o(vy) are
Lipschitz-continuous in B, converge to V in LP(B), and {DV;} is a Cauchy
sequence in LP(B). Denoting by g the limit of DV%, we have

/VDgada: = kli}ngo/Vchpda: = kli)n;o —/chVk der = — /g(pdx
for every ¢ € C§°(B), and hence V ¢ W¥P(B) and DV = g. O
It is clear that DV = Dv in Bt, whereas in B~ we have
D,V =0(Dsv) ifi<n, D,V =-0(Dyv)
and hence
lo@)llwses) = 22 ol ) -

Theorem 3.10 Let Q be a bounded open set in R™ with Lipschitz-
continuous boundary. There erists an open set ¥ DD 2 and for every

u € WHP(Q) a function U € WyP(E) such that U(z) = u(z) in Q and
1Ull1pe < cllullip0
with the constant ¢ depending only on p, n and Q.

Proof. As in the proof of Theorem 3.6, there exists a finite open covering
Ao, A1, ..., AN, with Ag cC Qand A4, NN # @ for 1 <i < N, and for
every i > 1 a homeomorphism g; : B — A;, Lipschitz-continuous with its
inverse, mapping Bt in 4; N Q.

Let {a;} be a partition of unity relative to that covering. If u € Wh?(Q),
the functions v; = (gi)«(csu) belong to WHP(B™*), and are zero in a
neighborhood of tB =: 8B N R%}. By the preceding lemma, the func-
tions V() = o(v;)(z) belong to Wy'?(B), and

IVillLo8 =27 [0l 5,5+ < cllasuflip-
Setting
Ui =(g;")sVi=Viog !,
we have U; = o;u in @ and

Uillp,a: < cllesullipo-
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The function

N
U =aoapu+ ZU,
i=1

is the required one. In the first place, U belongs to W, P(Z), with & =
UN ,A;; moreover for z €  we have

N
Uz) =) ai(z)u(e) = u(z).
=0

Finally,
N
[Ull1ps < floaufipa < M1+ N)lullLpa,
1=0
where
M= Orgniaggv(llailloo + | Defloo) - O

The immersion theorem is now an immediate corollary.

Theorem 3.11 Let  be a bounded open set in R™ with Lipschitz-
continuous boundary, and let u € WYP(Q). Then:

(i) If p < n, u belongs to LP", p* = n—n_{’;, and we have
fullps,0 < cllullipa- (3.20)
(ii) If p > n, u belongs to C%*(Q), a =1~ %, and
lulla < cllull1pa- (3.21)

Proof. Let U be the function given by the preceding theorem. Remarking
that

H“Hp‘,ﬂ = “U”P',Q < ”Unp',zv
ulla,e = IUlla,e < IUlla,s,

the conclusion follows immediately from Theorem 3.9 applied to the
function U. a

Let now u € W*P(Q2). Applying the preceding theorem to the deriva-
tives of order k — 1, then to those of order £ — 2 and so on, we get the
following result:
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Theorem 3.12 Let Q be a bounded open set in R™, with Lipschitz-
continuous boundary 89, and let u € W*P(Q). Then:

() Ifn>kp,ue L+5% (), and we have
llull 22 < cllullk,p- (3.22)
(ii) If n < kp and k — % is not an integer, then, denoting by h its integer
part and by o = k — h —
with

n

3 its fractionary part, we have u € CM*(QQ),

[ullone < cllullkp- (3.23)

(iii) Finally, if n < kp, and k — % is an integer, then u € c*=71(Q) for
every o < 1, and (3.23) holds with ¢ depending on .

3.5 Compactness

In the preceding section we have proved, among other things, that the
immersion W1P < LP" is continuous. If Q is bounded and ¢q < p*, we have
LP" — L9, and hence the immersion W'? < L9 is also continuous. We
will show now that the last immersion is compact.

Definition 3.5 Let X and Y be two complete metric spaces, and let T
be a map from X into Y. We say that T' is compact if:

(i) T is continuous,
(ii) T maps bounded sets in X into relatively compact sets in Y.

We note that if X and Y are two Banach spaces and if T is a linear
map, condition (ii) implies (i).

Lemma 3.5 Let Q be a bounded open set in R", and let Z be a bounded
subset of LI(Q), such that the mollified functions u, tend to u in LI(Q),
uniformly for u € Z. Then, Z is relatively compact in L1(Q).

Proof. It will be sufficient to prove that Z is totally bounded, that is
that for every § > 0 there exists a d-net, i.e. a finite covering of Z made of
sets with diameter less than d.

Let § > 0. By assumption, there exists € > 0 such that for every u € Z
we have

Jusco — g < 5 -



Sobolev Spaces 99

Setting
Zo = {ue, : u € Z},

it will be sufficient to prove the existence of a %—net for Zy, or else that Zg
is relatively compact in L7(£2). This goal will be achieved if we prove that
7y is relatively compact in the topology of uniform convergence, since the
last topology is stronger than that of LY.

By Ascoli-Arzeld’s theorem, it will be sufficient to prove that Zy is
bounded in C*(Q?). We have:

o () = /Q peol — y)uly)dy,

Duc(@) = | Dpale = ulw)dy
and therefore
lueo) < MIQI* 4 Jull,,
|Due,| < NIQ*~ 4 Jull,,

where M = sup |¢e,| and N = sup | Dy, |.
Since Z is bounded in L9, Z, is then bounded in C!({2), and the lemma
is proved. O

We can now prove the following:

Theorem 3.13 (RELLICH) Let Q be a bounded open set in R™, with
Lipschitz-continuous boundary 9, and let 1 < p<nandl < q < p* =

;—"%). The immersion

WhP(Q) — LI(Q)
18 compact.

Proof. Let Z be a bounded subset of W1P(Q). It is clear that Z is
bounded in LI(£); we have actually

1_ 1
lullg < 12577 [[uflp < cllullyp.

In order to apply the preceding lemma, it will suffice to verify that
ue — u in L9, uniformly for u € Z. We shall begin with the case ¢ = 1.
We have
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e sddz = [ | [ oute—)lut) - ww)an] s
< /go(w)dw/n|u(a:—-ew) — u(z)|dz .

Let now 7 > 0 and let © CC 2 be an open set such that |2Q—X| < 7751,

We have then
| lu@)ids < (0 B fule < relul,
Q-2
and similarly
/ [u(z — ew)|dr < 7c||ull1,p,
Q-5
so that
/ |u(z — ew) — u(x)|dz < 27e|lul1p + / |u(z — ew) — u(x)|dz .
Q =
If € < dist(Z, 09), we have z — ew € Q for every w € B; whence:

1
fu(z — ew) — u(z)| = | (Du(z — tew), ew)dtl

1
< e/ | Du(z — tew)|dt
0

for almost every x € ¥. We have therefore

1
/ lu(z — ew) — u(z)|dz < e/ dt/ |Du(z — tew)|dz < e/ |Du|dz
b 0 b Q
and in conclusion:
/ lue — uldz < (2re + €)' ) ull1p- (3.24)
Q
From the above inequality it follows at once that u, — u, uniformly for

u € Z, and hence the conclusion of the theorem for ¢ = 1.
In the general case g < p* we note that

/qu—u|qdz—/|u5——u| = lue—-u| 71 dz
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and by the Hoélder inequality:

/ Jue — u|fde < {/ |ue — ul? d:v} {/ |ue — u|da:} .
o Q Q

From the inequality |uellp» < |lullp» and from Theorem 3.11 it
follows that

llue — ullpr < cllufle

and hence, by (3.24):

l[ue — ully < cllullpp(r + €) &=t

so that we can apply again the preceding lemma. O

It is obvious that if p > n, the immersion W1P(Q) — L9(£) is compact
for every q. More generally, if kp < n, ¢ < n—’_‘%, and Q has boundary
of class C!, the immersion of W*P(2) in L9(Q) is compact, since by

Theorem 3.12 the first derivatives belong to L7, with r = —22— and

T
n n—kp+p’
* P
g<rt= n—kp"

Remark 3.3 It follows from Rellich’s theorem that if uj converges weakly
to u in WUP (or in other words if ur — u and Dug — Du in LP), then
ur — u strongly in L9, for every ¢ < p*. In fact, the sequence uy is
bounded in WP, and hence relatively compact in L9, so that from any
of its subsequences it is possible to extract a subsequence convergent in L?
to a function v. On the other hand uy — u in L, and hence v = u, so that
the whole sequence uy converges to u strongly in L9. a

3.6 Inequalities

Theorem 3.14 (POINCARE’s Inequality) Let @ C R™ be a bounded
connected open set, with Lipschitz-continuous boundary 80. There ezists
a constant c(n,p, ) such that for every u € WHP(()

/ |lu — ugPdz < c/ |Dul? dz , (3.25)
Q Q

where

1
ug = 4+ udz =:-/uda: 3.26
o= fude=iig | (3.26)

is the average of u in Q.
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Proof. Since (3.25) does not change if we add a constant to u, we can
assume that ug = 0.

If the theorem were false, it would be possible to find a sequence of
functions ug € WbHP(Q), with uzq = 0, and such that

/ |lug|P dz =1, (3.27)
Q

1
/Q Dusfda <+ (3.28)

By Rellich’s theorem a subsequence will converge to a function u ¢
LP(2), with |jul|, = 1 by (3.27). On the other hand the sequence || Duk||,
tends to zero, and therefore u € W ?(Q2) and Du = 0. Since Q is connected,
u will be constant in 0, and having zero average (remember that all the
functions uy have zero average), it will be identically zero. This contradicts
the fact that |lul, = 1. O

A joint application of the preceding inequality and of Theorem 3.11
gives immediately the following

Theorem 3.15 (SOBOLEV-POINCARE'’s inequality) With the assump-
tions of the preceding theorem, if p < n, we have

Ju = uallpr < ¢(n, p, Q)| Dullp. (3.29)

A proof similar to that of Theorem 3.14 gives an inequality of the type
(3.17) for functions in WP(Q) (not necessarily zero on 9Q), provided they
are zero on a set of positive measure.

Theorem 3.16 Let Q be a bounded connected open set in R™, with
Lipschitz-continuous boundary. For every u € WHP(Q), p < n, taking the
value zero in a set A of positive measure, we have

1
Q>
[ullpr0 < e <:A_:> 1 Dullp.0 (3.30)

where c is twice the constant in Sobolev—Poincaré’s inequality (3.29).

4The proof of that assertion can be made by remarking that all the mollified functions
ue have zero gradient in ., and therefore are constant in €2e. The same is true for
their limit u, and since € > 0 is arbitrary, u is constant in Q. Recalling the proof of
Proposition 3.5, we can conclude that if u € WP and u is constant in K, then Du =0
in K; and conversely if Du = 0 in K, then u is constant in every connected component
of K.
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Proof. We have
lug||4]7" < flu - uqllp- ,

and hence

-
1 Q P
lully < llu = vally + [uallQlF <2 (ﬁ) = waalpe -

The conclusion follows immediately from (3.29). a

It is possible to prove that (3.30) holds whenever u is zero on a set of
positive p-capacity. We shall not enter in these problems, that are outside
the scope of this work; instead we shall discuss the dependence on 2 of the
constants entering in the various inequalities, when €2 is a cube of R™. For
functions in W, we get immediately from the Sobolev inequality (3.17)

1_ 1 n_n
Jullg < |1Qrle™7" ||ullpr < cRa™# || Dufp (3.31)
for every ¢ < p*, and in particular
/ |ulP dz < c(n,p)R”/ |DulP dz; u € WyP(QR). (3.32)
Qr Qr

In general, we have the following:

Theorem 3.17  For every function u € WHP(QR) it holds that

v — urllpr,0x < c(n,p)|| Dyl
and hence

/ lu — ugl? dz < c(n, p)RP / \DufP dz, (3.34)
Qr

R
where up = UQy.

Moreover, if the function u is zero on a set A C Qg of positive measure,
we have

Q il
. 0n < c(n,p) ('ﬁ—‘ |Dulpn (3.35)

1

/QR [u|P dz < c(n, p) ([_IQA%‘) " pp /QR |DulP dz. (3.36)

Proof. Ifue WHP(QRg), the function w(z) = u(Rz) belongs to WHP(Q).
Writing inequality (3.29) for w, we have

lw = willpr,q < ¢(n, p, Q)| Dwllpq -
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On the other hand it is easily seen that wy = wup and Dw(z) =
RDu(Rzx), so that we have (3.33) with c¢(n,p) = c(n,p,Q). Inequality
(3.34) can be proved likewise. In a similar way, using Theorem 3.16, one
proves (3.35) and (3.36). g

Remark 3.4 It is evident that we can replace the left-hand side of (3.33)
and (3.34) respectively with the quantities:

ugf ”u - f”P‘,QR

and

irflf/QR lu—¢€Pde.

The resulting inequalities are equivalent to (3.33) and (3.34), in virtue
of (2.19).

Moreover the average on Qg can be replaced with that on any cube
QaR, With a < 1, since

/lu—uaR]sd:cgc{/ |u—uR|3dz+[QR||uR~uaR|S}
R Qr

< c{/ |u—uR[’dx+a'"/ |u~uR[3da:}
Qr Qar

<1+ a-")/ lu— ug|® dz. (3.37)
Qr

Finally, we remark that the preceding theorem remains valid if we

replace the cubes Qg with balls of radius R, or more generally with any

family of sets deriving by homothety from one of them. Of course, the

constant will depend on the family in question, but not on R. O

Poincaré’s inequality has as a consequence an interesting relation in the
spaces LP?,

Proposition 3.7 Let Q be a bounded open set with Lipschitz-continuous
boundary, and let u be a function in WHP(Q, RN) with Du € LP*. Then,
u € LPAP(Q RN,

Proof. It will suffice to prove that, at least for R small enough, we have
the estimate

/ lu— ugl? dz < cRP / \DulP do (3.38)
Qn

Qor

for some 9 > 1.
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That inequality holds with ¥ = 1 if Qr C Q (see (3.34)); it remains
only to examine the case when Qr meets 9.

Let us assume first that Q is the half-space R%. In this case, setting as
above

u(zx ifx, >0,
U(e) = o(u)(x) ={ @

w(Z1,. .y Tn-1,—Ln) ifz, <0,

we have for every cube Qr = Q{zo, R) with center in the upper half-space:

/]u—UR|pd:1:§/ |U — Ug|P dz
Qr

Qr

< cR"/ |DUPdz < ZCRP/ | Dul|P dx
Qr Q

R

and (3.38) is proved in this case.

In general, for every point xy of 92 there exists a neighborhood W of z,
and a bi-Lipschitz map g from the unit ball B onto W, mapping the half-ball
Bt onto W N Q. A finite number Wy, ..., Wy of such neighborhoods will
cover 912, and there will exist a number R; > 0 such that for R < R; every
cube Qgr meeting 01 is contained in one of these. Let L be the greatest
Lipschitz constant of the functions g relative to these neighborhoods and
of their inverse, and let Ry = L™2R;. If R < Ry and Qr C W, setting
U = u o g, we have

/ 1u—s|de5c/ U — ¢P da
Qr QLrNRY}

and therefore, with a suitable choice of £, we have

/ |u—£|pdy§cR”/ \DUP dz < cR”/ \DulP dy
Qr LRﬁR: 0

L2R

from which the conclusion follows easily. 0

In particular, if A > n — p, the function v is Hélder-continuous,
a result known as the DIRICHLET growth theorem (see MORREY [3],
Theorem 3.5.2).

Finally, always in the spirit of Poincaré’s inequality, we can prove the
following theorem concerning functions u € W2,
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Theorem 3.18 Let 2 be a bounded open set with Lipschitz-continuous
boundary. For every € > 0 there ezists a constant c(€) such that for every

u € W2P(Q)

/ |Dul? dz < e/ |D?ulP dz + c(e)/ lulP dz . (3.39)
Q Q Q

Proof. If for some ¢ such a constant would not exist, we could find a
sequence uy € W2P such that

/ |Duk|”dm>eo/ |D2uk|”dm+k/ |uk|P dx .
Q Q o)

Writing uk||Dug |, instead of ug, we can suppose that the left-hand
side of the preceding relation be equal to unity. The sequence uy, is bounded
in W2P, and hence, passing possibly to a subsequence, we can assume that
up — u in WBP, We have

/ [DufPde =1.
Q

On the other hand, k [, |ug|P dz < 1, and hence ux — 0 in LP. We have
therefore u = 0, contradicting the preceding relation. |

3.7 Traces

We have already remarked that in some sense it is possible to speak of
the boundary values of a function u € WHP(f), or at least to say when
two such functions have the same boundary values. We could therefore
define the boundary value of a function u € W1P(f) in an abstract way,
as the equivalence class of all the functions v such that u — v € W, P(Q).
To this formal definition we prefer the following discussion that, though
incomplete, has nevertheless the merit of introducing the trace of a function
u € WHP(Q) as a function ¢ defined on the boundary 0.

We begin by discussing the case of a cylinder Cr,7 = Drx (0,T), where
Dp is a ball of radius R in R*~1. A generic point of Cr,r will be denoted
by z = (,t), with # € Dg and t € (0,T). If u(z) is a function of class C*
in Cpr and if 0 < s <t < T, we have

u(Z,t) — u(Z,s) = / Dyu(z, 7)dr
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and hence

/DR |u(Z,t) — u(Z, s)P dz = /DR

< (t—s)P? / |DulP dz .
Cr,t

P
dz

t
/ Dpu(z, 7)dr

By approximation, the preceding relation holds for every function u €
WLP(Cg 1), and for almost every s and ¢. From it we deduce that when
h — 0 the function u(Z,h) tends in the strong topology of LP(Dg) to a
function ¢(Z). Such a function is called the trace of v on Dg. Letting s go
to zero in the preceding relation, we get

/ |u(Z,t) — p(Z)|P dz < tP~1 / |Du|P dz (3.40)
Dp Ch,t

for almost every t € (0,T).
A consequence of the above inequality is the following:

Proposition 3.8 Let p > 1 and let ur be a sequence converging weakly
in WYP(Cpr) to a function u. Then, the traces ¢ of the functions ug
converge in LP(Dg) to the trace ¢ of u.

Proof. For 0 <t <T let ut(Z) = u(Z,t). We have
ler — ellp < llor — ukllp + lluk — w'llp + llu* — @l
and hence by (3.40):
ok ~ elif < e(P)(lloe — uills + lug, — w1 + [lu* = @llf)
< {1 Dwll} o, + 1D} ) + i — 1B}
Integrating with respect to t between 0 and ¥ < T' we get

) + lluk — ullz op ] -

Bliex — ¢llf < ()" Dukliz e + 1 Dully P.Cr,r

\Cr,T

If we let k go to infinity, and we take into account the strong convergence
of ug in LP(Cg,T) and the equiboundedness of the L? norms of Duy, we get

lim sup [|x — pl|7 < c(p)d?~!
k—o00

and the conclusion follows from the arbitrariness of 9. O
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We can now characterize the space Wol’p by means of the traces.

Theorem 3.19  Let u € WYP(Cr 1), and assume that supp(u)NOCr T =
supp(u)NDg. We have u € Wol’p(CR,T) if and only if the trace of u on Dg
is zero.

Proof. A function u € Wo1 P(Cr,r) can be approximated by functions
ux, € C§, that have obviously zero trace on Dg. By the preceding proposi-
tion, also u has zero trace.

Assume conversely that the trace of u is zero, and for 0 < 7 < T let
n(t) = n-(t) be a function of class C*((0,T)) such that 0 <7 <1, n(t) =0
fort < Z,n(t)=1fort > and |n'(t)] < 2. We have from (3.40):

e =l . < / lufP do < or? / \Duf? dz
" Cr,r CRr,»

and moreover

1
ID@—m)|Eg, <e / Dufpde+ = [ |uPda
' Cr,« T CR,»

< c/ |Dul? dz .
CR,T

It follows that for 7 — 0 we have n,u — u in W1P. On the other hand
nu has support contained in Cr 7, and hence it can be approximated by
functions in C§°(CRr,1), so that u belongs to Wy *(Cr,r). a

Let us consider now a generic bounded open set 2, with boundary
of class C'. Arguing as in Theorem 3.6 we find a finite covering {4;},
a partition of unity {a;} relative to that covering, and for every i a
diffeomorphism g; of the unit ball B onto A;, mapping B* onto A4; N .
The functions

Ui = (9:)«(@iu) = (su) 0 g;

belong to WP(B*), and are zero in the curved part of 8B7; they can
obviously be defined in the whole cylinder C1,; setting them equal to zero
outside Bt. Let ®; be the trace of U;; the function

N
gpzzq)iog;l
i=1

is the trace of u on 9. The same construction works when the boundary
of  is only Lipschitz-continuous.
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Both Theorem 3.19 and Proposition 3.8 extend to functions of W1P(Q2)
without relevant changes. We remark that from Proposition 3.8 it follows
that the map I' : W1?(Q) — LP(8Q), mapping every function in W1P(Q)
into its trace on 912, is compact.

The estimate (3.40) becomes in this case

/ lu(z — t1(z)) — (@) dHo—1(z) < ctP~! / \DuPdz, (3.41)
a0

-

5

where v(z) is the exterior normal to 99 in z, and we have set as usual
Q= {z e N: dist(z,00) > t}.

The trace of a function u will be denoted by the same symbol u. We
have the Green’s formula:

/uD,wpd:z;:—/ <pDiuda:+/ vipudH, ;.
Q on

for every ¢ € C1(f), that can be proved passing to the limit in the same
formula for u € C*(Q).

Remark 3.5 If the function « € WP is continuous in Q, it is evident
that when ¢ tends to 0, u(z — tv(x)) tends to the value of u on 9%, and
hence the trace of u coincides with the restriction of u to 992.

Actually the linear map T, that to any function u € W1P(12) associates
its trace on 912, is completely characterized by the property that it coincides
with the restriction to 99 for functions u € C1(Q). To see that, let u €
WP and let ur, € C}() be a sequence convergent to u in WP (see
Theorem 3.6). The sequence of traces {Tux} is then a Cauchy sequence
in LP(8%), and therefore it converges to a function ¢ = Tu. The limit
function does not depend on the sequence uy; for, if v — u in WHP, we
have up — vy — 0, and hence Tuy — Tvy — 0 in LP(8N). If we write (3.41)
for uk, and we pass to the limit, we conclude that it holds for ¢, so that ¢
is the trace of u. ad

With an argument rather similar to that of Theorem 3.14, we prove the
following result:

Theorem 3.20 Let Q be a bounded open set, with a boundary OQ

connected and Lipschitz-continuous. There exists a constant c(p,n, Q) such
that for every u € W1P(Q)

5We denote by Hy,_1 the (n— 1)-dimensional Hausdorff measure on 89 (see Sec. 2.6),
which coincides with the usual surface measure when 8Q is Lipschitz-continuous.
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/ [u(z) ~ uaq|P dHp-1 < c/ | Duf? dz . (3.42)
an Q
Moreover, if §) is the cube Qr of side 2R, we have

/ [u(x) — usgg|P dHp-1 < ¢(p, n)R”_l/ | Dul? dz . (3.43)
9Qr

R

The same inequality, possibly with a different constant ¢, holds for balls
Br={z € R":|z| < R}.

We conclude this section by recalling that not every function in L?(3)
is the trace of some function in W?(Q). As a matter of fact, there exists the
following characterization of traces of functions in W1?, which we mention
for the sake of completeness. Its proof can be found for instance in the
book of KUFNER, JOHN and FuCIK [1].

Theorem 3.21 Let Q be a bounded open set with Lipschitz-continuous
boundary. A necessary and sufficient condition for a function ¢ in LP(9Q)
be the trace of a function in WYP(Q) is that

/ / le(z) — (y_)l dHp—1 (2)dHo_1 (y) < +o00. (3.44)
saxaq [T —y[ntP2

3.8 The Values of WHP Functions

We have often remarked that the functions in WP are strictly speaking
equivalence classes, and therefore their values are defined up to a set of zero
measure. On the other hand, the fact that for such functions it is possible
to define a trace, something that cannot be done for instance for functions
in LP, suggests the possibility of defining WP functions on some set of
zero measure, and even of dimension n — 1. We can actually do better, as
we see in the following theorem.

Theorem 3.22 Let Q C R"™ and let u € WHP(Q). There ezists a set
E C Q, with dimyg(E) < n — p, such that for every zg € Q — E the limit

lim udx
o0 Q(zo0,0)

ezists and is finite.

Proof. As usual we set

1
Uzg,p ::][ udz =: —/ udz.
Q(zo,0) ’QQ' Q(xo,0)
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If Q is the cube with center at the origin and radius 1, we have
Uzg,e = ][ u(zo + 0y)dy,
Q
so that the function ¢(g) = ug,,, is differentiable in (0, +00), and
#(0) = { wDiuao + ew)iy.
Q

Estimating the right-hand side by means of the Holder inequality, and
coming back to the cube of radius p, we get

1
|¢'(e)t§c{]f |Du|”dw} .
Q(zo0,0)

Let now p be the measure defined by

u(B) = [ \pupdz,

and consider the corresponding sets E* defined in (2.54):

E® = {m € A :limsup o~ *u(Q(z, o)) > 0} .
o—0t
If 2o ¢ E"P*¢ we must have

o0—0

lim oP~"~ / \DufPde =0, (3.45)
Q(z0,0)

and therefore

1+

l¢'(0)| < co™

From that inequality follows at once that the required limit exists
and is finite. Setting then E = (), E"P*¢, we have H" P*¢(F) <
Hn—p+e(En—P+€) = 0, and therefore dimp(E) < n — p. a

We note that by Remark 2.5, (3.45) continues to hold for € = 0. The
same cannot be asserted for the conclusion of the theorem, since the con-
dition € > 0 is essential for the existence of the limit, as one can see from
the function

1
u(z) = loglog 2

in the disc of R2 of radius R < 1.
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Since by Lebesgue theorem we have almost everywhere

u(z) = Ll)i_r’r%) Uz,g s

the preceding theorem permits to specify the values of functions in WP,
In fact for such functions the limit on the right-hand side exists for every
z € §2, except at most a set of dimension not larger than n — p, and defines
a function belonging to the equivalence class of u.

In a similar way we can characterize the traces of functions in W?(Q).
Since our results are local, it will be sufficient to treat the case when
is the half-space R ; the general case will follow by flattening locally the
boundary.

Let P be the boundary of R%}:

P={zeR":z, =0}.
For zo € P, we set Q% (xo, 0) = Q(x0,0) NR%.

Theorem 3.23 Let u € WHP(R7). There ezists a set F C P, with di-
mension not larger than n — p, such that for every o € P — F the limit

lim udx
€20/ Q+(z0,0)

erists and is finite.
Moreover, for almost every xo € P this limit coincides with the trace

p(zo) of u.

Proof. The first part can be proved as in the preceding theorem, taking
A=R" and

uw(@G) = / |DulP dz .
GNR?%

In order to show that the limit of the averages coincides with the trace,
we remark that, calling K (yo, ¢) the (n — 1)-dimensional cube with center
yo and side 2p contained in P, we have

[
/ lu(z) — p(yo) P dz = / dy / fu(y, £) — o(uo)|P dt
Q*(yo,0) K(yo,e) 0

e
<o / dy / lu(y, £) — ()P dt
K(yo.0) 0

+co / o () — o(wo)l? dy .
K(yo,0)
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Using (3.40) we get the estimate

][ () — p(yo) P dx
Q1 (vo,0)

< g \DulP dz + co'™" / () — o) P dy
Q+*(yo,0) K(yo,0)

The first of the two integrals on the right-hand side tends to zero, except
possibly for yq in a set of zero (n — p)-dimensional measure (see the remark
at the end of the preceding theorem); whereas the second tends to zero
almost everywhere in P by the Lebesgue theorem. This proves the second
part of the theorem. O

From the above theorem we obtain two interesting corollaries. The first
is what we had stated in Remark 3.2, that is that the functions w and u
have the same trace on Q. Let R > 0, and let & < % <k+1 Ifzged
and z € Q(zp, R), taking into account (3.5), (3.6) and the definition of the
functions a;, we get

1
b4 oo
/ lw—ulPdz] < Z e, * (1) — aqull, < 7227F < 2™k
Q(=o0,R) i=k—2

from which we obtain immediately

lim (w—u)dz=0
=9 JQ(zo,0)

and hence the equality of the traces of v and w.
We have in addition the following:

Corollary 3.2 Let ) be an open set with Lipschitz-continuous boundary,
and let w € W2P(Q) have zero trace on 8Q. Let d(z) = dist(z, ), and
assume that

lu(z)] < v(d(z))

in a neighborhood of 8, where vy is a C! function, with v(0) = 0. Then,
for almost every x € 8 we have

| Du(z)| < ¢v'(0) .
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Proof. Setting Qg = QN Qpr, using the Green formula with ¢ = 1 and
taking into account that u = 0 on 812, we get for R sufficiently small
Qr

= / uz/dHn_l
Zr
with Xp = QN oQg.

On the other hand, if d < R we have v(d) < (v'(0) + ¢(R))R, and
therefore

Dudzx

< / y(d)dHp_y ,
XRr

Dudx
Qn

< RHn—1(ZR)(Y'(0) + €(R)) .

The conclusion follows immediately from the inequality H,_1(XRr) <
cR"1, dividing by R™ and letting R tend to zero. O

3.9 Notes and Comments

A general theory of Sobolev spaces can be found in most books devoted
to elliptic equations, such as the classical treatises by MORREY [3],
LADYZENSKAYA and URAL’CEVA [1] or GILBARG and TRUDINGER (1].
There are, of course, volumes expressly dedicated to the study of such
spaces; among which we mention ADAMS [1] and KUFNER, JOHN and
Fudik [1].

Sobolev spaces were introduced and studied by SOBOLEV [1], and
independently by CALKIN [1] and MORREY [1]. Since then, they have
been so widely used, that in many cases it is difficult to retrace the exact
paternity of a result. For instance, whereas Theorem 3.4 is certainly due
to MEYERS and SERRIN [1], Theorem 3.6 is more difficult to attribute with
some certainty.

It is possible to define fractional Sobolev spaces, either by interpolation
between LP and WP (see LIONS [1] or LIONS and MAGENES [1]), or else by
introducing norms similar to (3.44). We shall thus say that u € W??(Q),
0<v¥<l1,ifueL?and

lu(z) — u(y)l?
dzdy < +o00. (3.46
//ﬂxﬂ |z — y|ntP? )

More generally, a function u belongs to W*+%P(Q) if u € Wk’p and its
derivatives of order k belong to W??(Q2).

For such spaces results similar to those proved for the usual Sobolev
spaces hold; in particular the statements of the immersion theorems of
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Sobolev (Theorem 3.12) and Rellich (Theorem 3.13) remain valid even if &
is not an integer.

In terms of fractional Sobolev spaces, Theorem 3.21 says that a function
¢ defined on 8 is the trace of a function in W1P(Q) if and only if it belongs
to Wl_%’p(aﬂ). Moreover, if u € W1P(Q) and ¢ is its trace, we have

1@l - 3.r gy < IEIu+ (s 1 € Wo ()

< eallellyr s gy

As a consequence of these estimates and of the Sobolev theorem for

fractional spaces, we can deduce the continuity of the immersion of W ()
in L9(9Q), with ¢ = &=22,

For more general trace theorems (derivatives of arbitrary order on
manifolds of codimension greater than one) have proved useful the Besov

spaces BYP(Q), of functions u € LP(£2) such that

/ / |u(z) + u(y) — 2u(*54)IP

[z — o7

dy < +00,

where 0, = {y € Q: & € Q}.
Another definition of fractional derivatives makes use of the Fourier
transform. If u € LZ(R"), one can define the function

1 i{x,
w(€) = (27rz) /u(w)e( Odz.

Since
Dau(¢) = ile*a(g),
the function u will belong to W*?2(R") if and only if

/ I€[24]a(€) 2 de < +oo.
R'n.

The form of the last relation permits an immediate extension to the case
of fractional exponent, since the order k appears in it only as a parameter,
not necessarily integral.

More generally, a function u € LP(R™) belongs to L*P(R™) if the
function (1 + |£[?)~*/24(¢) is the Fourier transform of a function # € LP.
The spaces L*P do not coincide with the W*? definite above; we have
however

L*HP(R™) = W*P(R™) < L*~P(R")

for every € > 0.
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More information about fractional Sobolev spaces, as well as about
Besov spaces, that are variations of them, can be found in Apawms [1] and
KUFNER, JonN and FuCix [1].

The inequalities of Sobolev (3.17) and Sobolev—Poincaré (3.29) are
strictly connected with the so-called isoperimetric inequalities by means
of the coarea formula (FLEMING and RISHEL [1}; see also G1usT!1 [6]) for
functions in W11():

/ |\ Dulde = / Hn_1(8U, N L)dt, (3.47)
L —00

that holds for any Borel set L C 2, where as usually we have set
Uy={zeQ:u(z) >t}.

The “classical” isoperimetric inequality (DE GIORGI (2]} asserts that
the n-ball has the least parameter among bodies of the same measure. It

follows that for every set F, and whence in particular for the sets Uj, it
holds that

|E|'~% < c(n)Hn-1(9E)

in which the constant ¢(n) is determined by the fact that we must have the

equality when F is an n-dimensional ball.
Let now u € C*}(Q), with u > 0.° We have

U] < (%)U

with o = -2—, and therefore

n—1’
oo . . PON .
g =o [~ T a < ofuld [ ae.
0 0
By applying the isoperimetric inequality above, we get
lull, < c/ Ho 1(3U,)dt.
0

Assume now that u has zero trace. In this case U; is contained in {Q,
and therefore the last quantity is nothing but

6This is not a restriction, since we may always divide u into its positive and
negative part.
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/Q | Du|dz

so that the Sobolev inequality is proved when p = 1. The general case
follows as in Theorem 3.7.

In order to prove the Sobolev—Poincaré inequality we need a slightly
more sophisticated isoperimetric inequality (BOMBIERI and GI1USTI [1}): If
§2 is a connected set with regular boundary, there exists a constant ¢(n, )
such that for every E C (,

min{|E|, | — E|}*~* < cH,_1(BEN Q).

The required inequality follows now choosing a real number A such that
[As] = %|Q|, and repeating with small variants the preceding argument for
the functions max{u — A,0} and max{\ — u,0}.

When p = 1 the above inequalities hold also for functions whose
derivatives are measures. For more details see FEDERER [2] or GIUSTI [6].

The coarea formula can be used also to establish a result extending what
we have proved in Proposition 3.5.

Proposition 3.9 Let A C R be a Borel set of zero measure, and let
u € WHH(Q). Then, Du =0 for almost every = € u~1(A).

Proof. Since for almost every t € R we have
U, ={zeQ:u(x)=t},

the conclusion follows at once from the coarea formula with L = u~1(A),
by remarking that the integral on the right-hand side is made on the set A
of zero measure. O

We can prove now the following:

Theorem 3.24  Let f(t) be a Lipschitz-continuous function in R, and let
u € Wl’l(Q). Then, the composed function f o u belongs to I/Vlt’cl(ﬂ), and

loc

D(fou)= f' ou Du.

Proof. Indicating by e, the unit vector in the direction of the z,-axis,
for any measurable function v we set

v(z + hey) — v(z)

Apv = Ap v = 7
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and we define

flul{z) + hAju) — fu(z))

hAnu if Apu#0,
Br(u) =1 #/(u(z)) if Apu=0and u(z) ¢ 4,
0 if AhLu=0and u(z) € A,

where A is the set of points where f is not differentiable.
Now let ¢ be a function with compact support in , and let |h| <
dist(supp ¢, 8Q). By the preceding proposition

/Bh(z)Dsugadwz/ By(z)Dsupdz
Q Q—u—1(A)
and therefore
lim/Bh(a:)Dsugodx:/f’ouDsugod:c.
h—0 Jo Q

On the other hand, since f is Lipschitz-continuous in R, we have
|Br| < K, and since Apu — Dyu in L () (see later, Sec. 8.1), we
have also

lim/Bh(w)Ahugodx=/f'ouDsugodm.
h—0 Jo Q

The conclusion follows by remarking that

f(u(z) + hAnu) — f(u(z))

Bh(z)Apu = -

=Ap(fou)
and that

Ah(fou)godacz—/fouA_hgod:c—>~/fouD.,<pda;. O

The conclusion of the theorem holds even if f is only locally Lipschitz-
continuous in R, provided f ou and f’ o uw Du are locally summable in .
For the proof we assume first that f is bounded, and we pass to the limit
for t — +o0 in the relation

/fouthod:cz—/f'outDutgoda:

in which u; = max{min(u,t),—~t}. When f is not bounded, it will suffice
to pass to the limit in the equation

/ftOUDsod:v:——/ft'ouDugadx.



Chapter 4

Convexity and Semicontinuity

4.1 Preliminaries

Once the fundamental results about SOBOLEV spaces have been established,
we can pose the problem of lower semicontinuity in the space W1? for
general functionals

Fu) = F(u, ) =: /QF(x, u,Du)dz. (4.1)

Definition 4.1 Let X be a topological space. A function F : X — R is
lower semicontinuous (l.s.c.) if for every t € R the set

Fe={zxeX: F(z) >t}
is open (or else if the set Gy = {z € X : F(z) <t} is closed).
In the above definition we have indicated by R the set R U {+oc}; in
other words the function F may take the value +00.!
It is easily seen that F is lower semicontinuous if and only if its

epigraphic

L(F)={(zt)e X xR:t>F(x)}

1 This extension is purely technical, and permits one to avoid non-essential discussions.
However, we shall always assume that at least for a point z € X it holds that F(z) < 4c0.

119
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is closed. Actually, the complement of L(F) is the set

A= ] Fix(-o0,1),
teR

which is open if F is lower semicontinuous. Conversely, if £(F) is closed,
so is Gt x {t} = E(F) N (X x {t}), and therefore G;.

For our purposes, a second definition of lower semicontinuity will be
more suitable, in terms of convergence of sequences.

Definition 4.2 Let X be a topological space. We say that the function
F : X = R is (sequentially) lower semicontinuous if for every sequence vy
convergent to some v € X, we have

F(v) < liminf F(vg).
k—oo

We note that a lower semicontinuous function F is sequentially lower
semicontinuous. The converse is true if X satisfies the first countability
axiom, that is if every point has a countable fundamental system of neigh-
borhoods; in particular if X is metrizable. The proof is left to the reader.

The following result is not difficult to prove.

Lemma 4.1 If F,, a € I, is a family of lower semicontinuous functions,
then :

F(z) = sup Fu(x)

a€el

is lower semicontinuous.

Proof. It will be sufficient to remark that

Fe={zeX:Fa)>t}= ) Fr=Jl{zeX: Falz) > t}.
acl a€el

In the case of sequential semicontinuity, if zx — z, we have
F(z) = sup Fo(zr) < supliminf F,(z)
a a k—oo
< llknigfsgpfa(mk) = lllcxgg.}f F(zx) - 0

In this book we shall use only sequential lower semicontinuity, that
we shall abbreviate LSC, always keeping in mind that the two definitions
¢oincide in metric spaces.
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Let now V be a subset of X, in which we want to minimize the functional
F. We call minimizing a sequence {zx} with values in V, such that

. —inf F.
L
The following result generalizes WEIERSTRASS’ theorem.

Theorem 4.1 Let V C X, and let F be a LSC function. Assume there
exists a minimizing sequence Ty, converging to a point To € V. Then, F(xo)
is the minimum of F in V.

Proof. Indeed, we have
ir‘}f}' < F(zo) < liklﬁg.}f Flzx) = ix‘}f.’f-'
and hence —oo < F(xp) = infy F. ]

In the applications to the calculus of variations, neither the space X
nor its topology are given a priori; they must be chosen according to two
contrasting requests: the lower semicontinuity of the functional and the
existence of a convergent minimizing sequence. As we have said, these
are two concurrent properties. The choice of the topology should be situ-
ated at the equilibrium point between these two forces pushing in opposite
directions; in particular it will be useful to prove the semicontinuity in
the weakest possible topology. Most of this and the next chapter will be
concerned with the study of the semicontinuity of functionals in the most
general situation.

4.2 Convex Functionals

We shall begin with a semicontinuity theorem in the strong topology of
W11(Q), even if the strong convergence in this space is by far too restrictive
to be useful in the applications. However, this result will be a starting point
for the subsequent developments.

Definition 4.3 A CARATHEODORY function is a function F(z,y) :  x
R* — R such that

(i) F(-,y) is measurable for every y € R®,
(ii) F(z,-) is continuous for almost every z € Q.

Lemma 4.2 Let F(z,y) be a CARATHEODORY function, and let y(z) be

a measurable function. Then, the function g(x) =: F(z,y(z)) is measurable
in 2.
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Proof. Assume first that y(z) is a step function, that is

N

where A; are real numbers, and x; are the characteristic functions of pair-
wise disjoint measurable sets E;, with UN | E; = Q. For t € R we have

N
{zeQ:glz)>t}= U{eri s F(x, A) >t}
i=1
By (i) above, all the sets on the right-hand side are measurable, and
hence g is measurable.
In the general case, we remark that a measurable function y(z) is the
pointwise limit of a sequence y; of step functions. By (ii) we have

F(x,y(x)) = kli)n;o F(z,yx(z)) ae. in Q

and hence the function F(z,y(x)) is measurable, being the pointwise limit
of measurable functions. O

We can now prove without difficulty the following:

Theorem 4.2 Let F(z,y) be a CARATHEODORY function, and let yi(x)
be a sequence of functions, strongly convergent in L'(Q) to a function y(z).

Then,

/ﬂF(z,y(z))dmSlikrgg}f/nF(a:,yk(:c))dz.

Proof. From yi we extract a sequence yj such that

lim / F(z,yi(z)) dz = lim inf/ F(z,yr(z)) de.
k—oo Jo k—oco Jo

Passing possibly to a subsequence, we can assume that y}(x) converges
almost everywhere to y(z), in which case F(z,yj(z)) will also converge
almost everywhere to F(z, y(z)). The conclusion then follows from FATOU’s
lemma. O

If we want to apply the above theorem to the functional (4.1), we must
take ¥ = (u, Du), so that we need the strong convergence in Wh1(f2); a
topology which, as we have remarked, is far too strong. On the other hand,
if the functional F is convez, we can prove the following:
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Theorem 4.3 Let F(z,y) be a CARATHEODORY function, and assume
that for almost every x € §) the function F(z,-) is convex. Then, the
functional

Fy,Q) = /Q F(z,y(z)) dz

is lower semicontinuous in the weak topology of L*(R).

Proof. Since F is LSC in the strong topology of L}, and the latter is
a BANACH space, the epigraphic L(F) of F is strongly closed. On the
other hand, the convexity of F implies that of F, and therefore of L(F).
It follows (see DUNFORD-SCHWARTZ [1] (I), Theorem V. 13) that ¥(F) is
weakly closed, and hence F is LSC in the weak topology of L!(Q). O

From this theorem we can already see the role played by the convexity
in the passage from strong to weak topology. However, in the case at hand
the convexity of the function F(z,-) means that of F(x,u, z) in the couple
(u, 2), and this assumption is still too strong, to the point that the preceding
result is meaningful only when the function F in (4.1) is independent of u.

On the other hand, from the compactness theorems proved in the
preceding chapter it follows that the weak convergence of the derivatives
implies the strong convergence of the functions. This fact suggests that,
whereas the convexity of the function F(z,u,z) with respect to the vari-
able z is somewhat essential for the semicontinuity in the weak topology of
WP, with respect to u is superfluous since the weak convergence of the
derivatives implies the strong convergence of the functions. Consequently,
we can weaken the hypotheses, and we can assume only the continuity of
F with respect to the variable u. This is exactly what we shall do in what
follows.

4.3 Semicontinuity

We shall begin with some notation. As is usual, we shall use an arrow — to
denote strong convergence, and a half-arrow — for the weak convergence
(the topology in question, when not explicitly stated, will be clear from the
context). If V(Q) is a space of functions defined in 2, we say that ux — u
(resp. ug — u) in Vioe(R) if ug — u (resp. ux — u) in V(Z) for every open
set ¥ CC 2.

We shall assume that the function F(z,u,z) is defined in Q x M x
RY, where M is a closed set in R, possibly coinciding with R", and
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we shall consider the space of functions (u,z), with z € LY(Q,R¥) and
u € L1(Q, M), that is u € L}(2,RY) and u(z) € M for almost all z € Q.
It is easily seen that L1(f2, M) is closed with respect to strong convergence
in L (Q); if ux € LY, M), u € LY(Q,RY), and if up — win L} (Q,RN),
then, passing possibly to a subsequence, we can suppose that u; — v« almost
everywhere, so that u € L1(Q, M).

Our first results concerns the case of a function F(z,u,z) regular

enough.

Theorem 4.4 Let F(z,u,z) be a non-negative function, continuous to-
gether with its derivatives with respect to z in Q@ x M x RY, and convez in
z. Let ug,u € LY(Q, M), 2,z € L}(Q,RY), and assume that up — u in
LE () and that 2z — z in L} (). Then,

F(u,z) < likminf F(uk, 2k) - (4.2)

Proof. Assume first that Q is bounded, and let D CcC Q. By the
theorems of EGOROV and LUSIN, for every € > 0 we can find a compact set
K c D, with |D — K| < € and such that

(i) ux — u uniformly in K,
(ii) v and z are continuous in K,

(iii) [x F(z,u,2)dz > [, F(z,u,z)dz — e

Indicating as usual with F), the vector in R¥ whose components are g—g

and with () the scalar product in R”, we have:
/ F(z,ug, z;) do = / {F(z,ug, 2) + [F(z, uk, zx) — F(@, ug, 2)]} dz
K K
> / F(z,ug, z) da:+/ (Fy(z,uk, 2), 2 — 2) da
K K
:/ F(a:,uk,z)dz—i-/ (Fy(z,u,2), 2 — 2z) dz
K K

+ / (Fo(z,uk, 2) — Fp(z,u,2), 2k — 2) dx.
K

Passing to the limit as k — oo, the first integral on the right-hand side
tends to

/ F(z,u,2)dz
K
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thanks to the continuity of F' and to condition (i). The second integral tends
to zero, since F,(z,u(z), z(z)) is continuous, and z; — z. Finally, the third
integral can be estimated by

2t = 2ll1 sup | (2, ue(2), 2(2)) = F(z, u(z), 2(2))]

and therefore it also tends to zero by (i) and the continuity of F,. In
conclusion:

liminf/ F(w,uk,zk)dwz/ F(x,u,z)d:cz/ F(z,u,z)dx — €.
K K D

k—oo

Since F' > 0 and ¢ is arbitrary we have

liminf/F(:c,uk,zk)de/ F(z,u,z)dz
k—oo Jo D

and taking the supremum over D C 2 we get the conclusion if € is bounded.
The general case is obtained remarking that

lim inf/ F(z,ug, zx)dz > likm inf F(z,ug, zx) dz
Q

k—o0 - JonB,

> / F(z,u,z)dz
onB,

and passing to the limit as r — +00. O

We want now to drop the assumption of continuity of F' and F,. Writing

/F(x,uk,zk)dw:/F(x,u,zk)d:c+/[F(m,uk,zk)——F(z,u,zk)]da:,
o) 0 0

the first integral on the right is semicontinuous by Theorem 4.3; it will only
be necessary to show that the second integral tends to zero, or at least that
its liminf is non-negative.

We begin with a lemma, which we shall prove only for the part that will
be used later.

Lemma 4.3 Let ¥ be an open set in R", with {¥| < +oo, and let 2z
be a sequence converging weakly in LP(X) (p > 1) to a function z(x). For
L >0 set

0 otherwise.

<L
zL:{z if sl < L,
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For every integer L there ezists a subsequence zx, and a function v¥ such
that zf; — vl in L%(Z). Moreover, when L tends to infinity, the sequence
vE tends to z in L.

Proof. We shall prove the lemma only for p > 1. Since |z£] < L and
|Z| < +oo, the sequence zf is bounded in L?(X), and therefore we can
extract from it a subsequence weakly convergent to a function v € L?(X)
(note that we do not assert that vZ = 2.

Let ¢ € L*°(X), and let

Ek,L = {:E € [zk(:v)| > L} .

We have
/(z;C - 2F)pdz = / zppdx < sup || |2k | dz .
b2} XL Zk,L
From the assumption p > 1 we get
_1
L tadde < B0al el (43)
kL
and hence, recalling that
P
2k
[Zk,L] < 1# <ecl7P,

we can conclude that for any fixed € > 0, the integral on the left of (4.3)
can be made < € by taking L large enough, independently of k. Passing to
the limit as k — oo, we get

/2 (2 — vE)pda < esup g

for L > L(e). Choosing ¢ = H(z — vL) (H is the HEAVISIDE function) we

find
/]z—vL|dm§e
by

for every L > L(e), and the lemma is proved for p > 1. O

The case p = 1 is more complex,? since we cannot use the inequality
(4.3). In its place, one might use the following lemma, that we state without
proof (see DUNFORD and SCHWARTZ [1] (I), Corollary IV.11):

Lemma 4.4 Let ¥ be a bounded open set of R™, and let fi, — f in L1(X).

2We remark, however, that in the applications one has usually p > 1.
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Then:

(i) The sequence || fill1 is bounded,
(ii) The functions A — [, |fx|dz are absolutely continuous, uniformly in
k.

The next step is essentially technical.

Lemma 4.5 Let K be a compact set in R™, and let F(z,u,2) be a
continuous non-negative function in K x M x RY, conver in z for every
(z,u) € K x M. Assume that up — u uniformly in K, and that z, — z in
LP(K), with p > 1. Then,

/ F(z,u z)d:c<hm1nf/ F(z,up, zp) dz.
K

Proof. Passing possibly to a subsequence, we can suppose that the se-
quence of the integrals on the right-hand side is convergent. Let R >
supy, ||unljeo, iy Mr = M N Bg, and define

T= sup F(z,u,0); A=sup|znlpk-.
KxMnp h

Setting Knz = {z € K : |za(z)| > L}, we have |Kp | < (£)?. From
Theorem 4.3 and the preceding lemma we deduce

/ F(z,u,z) d:z;<11m1nf/ F(z,u, vl

K

and
/F(z,u,vL)deliminf/ F(z,u,zF) dzx.
K h—oo K

On the other hand, since F > 0, we have
/ F(z,u,zf) dz = / F(z,up, 2f) d +/ [F(z,u,2L) - F(x,un, zF)] dz
K K K

< / F(z,up, zp) dz + F(z,up,0)dz
K

KL
/ [F(z,u,2E) — F(z,un, 2F)| dx .
K

When A — oo, the third integral tends to zero, since F is uniformly
continuous in the compact set K x Mg x B_z and up — u uniformly. The
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second integral can be estimated by T(%)i" independently of h. We have
therefore

P
/ F(z,u,v")dz < 1iminf/ F(z,up,zn)dz +T (é)
K h—oo K L
and the result follows at once. O

To conclude the proof of the first of our semicontinuity theorems, we
need the following lemma that generalizes the theorem of LUSIN.

Lemma 4.6 (ScOrRzA DRAGONI [1]) Let £ be a measurable set, with
|E} < 400, let S C R, and let h(z,y) be a function defined in ¥ x S,
measurable in x for every y € S, and uniformly continuous in y for almost
allz € X.

For every § > 0 there ezists a compact set K C X, with |£ — K| < 6,
and such that the restriction of h(z,y) to K x S is continuous.

Proof. Forie N we set

wi(z) = sup {lh(m,yl) —h(z,92)|; y1,92 € S, ly1 — w2l < %} .

By assumption, w; — 0 almost everywhere in ¥, and hence by the
EGOROV theorem there exists a compact set K; € I, with | — K| < %,
such that w; — 0 uniformly in K;. In other words, Az, ), z € K; is a
family of equicontinuous functions.

Let S = {§1,J2,.-+,%n,-...} be a countable dense set in S, and let d; be
a sequence of positive numbers, with 3222, §; < ¢. By the LUSIN theorem,
for every j there exists a compact set K; C ¥ such that | — Kj| < 6; and
h(-,§;) is continuous in K;.

Setting K> =, K;, all the functions h(-, §;) are continuous in K3, and
1T — K| < &.

Now let K = K1 N Ky, and let (z,,yn) be a sequence in K x S, such
that z, >z € K and y, > y € S. We have

lh(wn,yn) - h((l,', y)l < Ih(xnayn) - h(zn7y)l + ’h(xnay) - h(z,y)[ .

The first term on the right tends to zero, since the functions h(zx, ) are
equicontinuous for z € K. As for the second term, we have

|h(2n,y) — h(z, )| < |h(2,) — bz, y)| + |h(zn, §) — h(z, )|

+ |h(@n, §) = h(zn, Y)I,
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where § € S is chosen in such a way that for every z € K it holds that
- €
Wz, 9) - Wyl < 5

(once again, this is possible by the equicontinuity of the functions h(z, )).
In this way the first and the third terms are both less than §, whereas
the second tends to zero when n — oo. We have therefore

limsup lh(xn; yn) - h(xa y)| <e€

n-—>00

from which the lemma follows. O
We can now prove the following;:

Theorem 4.5 (Semicontinuity) Let Q be an open set in R, let M be a
closed set in RN, and let F(z,u,z) be a function defined in  x M x R¥
and such that

(i) F is a CARATHEODORY function, that is measurable in x for every
(u,z) € M x R” and continuous in (u, z) for almost every x € Q.
(ii)) F(z,u,z) is convez in z for almost every x € Q and for every u € S.
(iii) F > 0.

Let up,u € LY(Q, M), 21,z € L' (2, RY), and assume that up, — u and
zp — z in LL (). Then,
/ F(z,u,z)dz < liminf/ F(x,upn, 2n) dz. (4.4)
Q h—o0 0
Proof. Setting

Flu,z, A) = / F(z,u,z)dz,
A

we can suppose that there exists the limit
lim F(up, z, Q) =: A
h—o0

and that u; — u almost everywhere in (.

Let  cc Q. By the absolute continuity of the integral, for every
€ > 0 there exists a §(¢) > 0 such that if & € Q and |Z| < § we have®
F(u,z,Z) < e

From the preceding lemma and from the theorems of EGOROV and
LUSIN we conclude that there exists a compact set K Cc  and a

3If F(u, 2,Q) = 400, F(u, 2,3 -5) > 1.
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number R > 0, such that |Q — K| < § and

(@) un,u € CO(K, M); supg |u| < R, supg |ux| < R.
(8) up — u uniformly in K.
(v) F(z,u,z) is continuous in K x M x R”.

From Lemma 4.5 we get

Flu,2z,K) < lihminf]:(uh,zh,K) <A
—oo

and therefore?
Flu,z,Q) < X +e.

Since € > 0 is arbitrary, this implies F(u, z, ) < X for every  cC €,
and hence the conclusion. O

We remark that assumption (i) of the theorem can be replaced by

(i") F(z,u,z2) is measurable in z for every (u,z) € M x R¥, and continuous
in u for every z € R and almost every z € ().

Actually it is not difficult to prove that if g(u, 2) is continuous in u and
convex in z, then it is continuous in z uniformly with respect to u, and
hence is continuous globally in (u, z}.

Remark 4.1 Rereading the proofs of Theorems 4.4 and 4.5, and of
Lemma 4.5, it is not difficult, keeping in mind Lemma 4.4, to realize that it
is possible to substitute the condition F(z,u,z) > 0 with the more general
assumption

F(z,u,2) > —c(|2] + |u| + g(2))

with g € L!. Moreover, if instead of the topology of L! x Ll we use that
of L* x L, with k > 1 and p > 1 (as we shall always do in what follows),
it will be sufficient to assume

F(z,u,2) > —¢(|2|™ + [ul* + g)
with g € L' and m < p. O

Example 4.1 Note that the above result does not hold for m = p, even
in dimension one IOFFE [1]). To see that, consider the functional

4f Fu, 2,Q) = o0, A > Flu,z,K) > % and hence A = +o0.
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Flu,z) = /01 (‘%lq$+ %z) dt

(% + % = 1), and the sequences
thi f0<t<kl,
U =
ifk1<t<l,
—kr ifO0O<t<kl,
2k =
0 ifk!1<t<l.
We have F(t,u,2) > —Epﬁ. Moreover, ur, — 0 uniformly, and zx — 0
in LP. On the other hand, F(0,0) = 0, whereas F(ug, 2x) = —%.

The semicontinuity theorem can be applied to functionals of type (4.1),
where as usual {2 is an open set in R™, and u a mapping of {2 into a closed
set M ¢ RY. In this case z = Du : § — R™" and recalling RELLICH’s
theorem we have the following:

Corollary 4.1 Let F be as in the preceding theorem. The functional
Flu,Q) = / F(z,u, Du)dx
Q

is LSC in the weak topology of W'licl (Q,M).

4.4 An Existence Theorem

Before proceeding further, we shall show how the results of this chapter, in
particular Theorem 4.5 and its corollary, can be used to prove the existence
of minima for the functional

Flu) = /QF(w,u,Du)dm.

By Theorem 4.1, it will be sufficient to show that there exists a mini-
mizing sequence, convergent in the weak topology of VVli)’c1

Generally speaking, the space W'lf)’cl is not the best for that purpose,
since it is not reflexive. On the other hand, since a weakly convergent
sequence in W'lif (p > 1) is also weakly convergent in VVI:J’CI, it will be
sufficient to find a minimizing sequence which converges weakly in W'lif for
some p > 1. The latter being a reflexive space, it will be enough to find a

.. o . . 1
minimizing sequence, bounded in W} P
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The situation is very simple when all minimizing sequences are bounded.
This happens for instance if the functional F is coercive, that is if

lim F(u) =400,

lFullz,p—oo

a condition that will be certainly satisfied if we assume that
F(z,u,z) 2 v(jul? + |2|P) (4.5)

with v > 0 and p > 1.

Until now, no mention as been made of boundary conditions, nor of
other possible conditions imposed on the function u(z) (except for the con-
dition u(z) € M for almost every = € 2, that we have already taken into
account). In general, however, the problem consists of finding the minimum
of the functional F among all the functions u satisfying suitable conditions,
or in other words, that belong to a subset V of the space W1, Such a
subset V' must be closed in the weak topology of WP, since we want that
the limit of a sequence of functions of V is itself in V.

We have the following:

Theorem 4.6 Let Q be an open set in R™, let M be a closed set in RY,
and let F(u) be a lower semicontinuous functional in the weak topology of
W'If)’cp(Q,M), p > 1. Let V be a weakly closed subset of W1P(Q, M), and
assume that F 1is coercive in V':

lim F(u) =+o0. (4.6)

lully,p—oo

u€ev

Then, F takes its minimum in V.

Of course, the coerciveness is guaranteed if the function F verifies (4.5);
but it is possible, depending on the choice of V, that (4.6) holds under more
general assumptions than (4.5).

The most usual condition consists in requesting that the function u(x)
assume given boundary values; in this case we must minimize the functional
F among all the functions v taking prescribed values on 9 (the DIRICHLET
problem).

Formally, the DIRICHLET problem is posed by giving a function U €
WLP(£), and imposing the condition

u—U e WyP(Q).
In this case, the inequality

F(z,u,z) > |z|P — b(z)|u|® — a(z), 4.7
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with § < p,a € L1() and b € L35 is sufficient to guarantee the coercive-
ness when §) has finite measure. In fact we have

ul® < c(UI° + lu—U°)
and hence
b(x)|ul® < cb(@)|U)° +elu — UP + c(e)b7s .

On the other hand u — U € Wy"?(Q), and since  has finite measure:

/ lu— UPdz < c(9) / \D(u—U)Pda. (4.8)
Q Q
But then

Flu) > /Q |\ Duf? do — /n Bluf’ +a) do
2/Q|Du|”dac—-ec(ﬂ)/n|D(u—U)|”dz—c

Zl/lDuP’dm——c
2 Ja

provided we choose € small enough.
We have in conclusion

lul?, = /Q (IDulP + [ufP) do < c{F(u) + 1}

so that F is coercive.

We note that we cannot substitute b(z)|u|® in (4.7) with A|u|?, even if
A is a constant, unless A is small enough. For that, it will be sufficient to
remark that the functional

/ (|Du|P - AlulP) dz
o

is not bounded below, unless Ac(Q) < 1, where ¢(f2) is the best constant
in the inequality (4.8). The constant ¢(2) depends on the geometry, rather
than on the measure, of 2; if p = 2 it coincides with the inverse of the first
eigenvalue of the LAPLACE operator, that is, of the smallest constant Ag
for which the equation

Au+/\0u:0

has a nonzero solution in Wg>(Q).
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It is clear that if V' is bounded, no supplementary condition on the
function F' is necessary. This happens for instance if we have conditions of
the type

[Du(z)] < M a.e.in Q

as it is sometimes the case in elasticity theory.

4.5 Notes and Comments

The role played by the convexity in the semicontinuity theorems was recog-
nized since the beginnings of the direct methods in the calculus of variations,
in particular in the works of TONELLI {2]. The main difficulty against a
generalized use of direct methods was due essentially to the lack of suit-
able function spaces in which these minimum problems could be treated; a
difficulty that was particularly sensitive in the case of multiple integrals.

In the case of a single independent variable, TONELLI recognized in the
absolutely continuous functions, and even more so in those with bounded
variation, two functional spaces that could be used profitably in the study of
minimum problems, and showed that the use of lower semicontinuity instead
of that of continuity could give to the classical WEIERSTRASS theorem the
generality necessary for its application even to rather weak topologies.

The extension of TONELLI’s methods to higher dimensions was at-
tempted first in the direction of a generalization of these spaces to many
dimensions. Real progress was achieved only with the introduction of
SOBOLEV spaces, and later and in greater generality with the theory of
distributions, in particular with the spaces BV of functions whose deriva-
tives are measures, in which has been possible to approach with success the
theory of minimal surfaces of codimension 1.

More recently, the currents have provided a natural ambient for treating
geometrical problems, in the first place the problem of surfaces of least
area (FEDERER [2], ALMGREN [1]), and have been used profitably in several
problems, among which those arising from nonlinear elasticity (GIAQUINTA,
MobicaA and SOUCEK [2]).

The results of this chapter apply naturally to functionals of the form

Flu, Q) = /QF(a:,u,Du)d:c.

Taking into account RELLICH’s theorem, if the function F(z,u,z) is
continuous in u and convex in z, the functional F is lower semicontinuous



Convezity and Semicontinuity 135

in the weak topology of I/VIt’C1 This result remains valid even if F is not
continuous in u (AMBROSIO [1]).

In some cases this result can be ameliorated, and it holds for a topology
weaker that that of W1, In this context we quote the results of SERRIN [2],
who proved that if F is continuous, non-negative and convex in z, and if

one of the following conditions holds:

(i) Fy, F, and F;, are continuous,

(ii) F is strictly convex in z,
(iii

lim F(z,u,2)=+0c0
|z|—>+o0

then for any ug,u € WH1(Q), with u, — u in L*(Q2), one has

F(u, Q) < liminf F(ug, Q).
k—o00

Condition (i) has been weakened in various ways by several authors.
GoORI and MARCELLINI [1] have shown that it can be replaced by

|F(z1,u,2) — F(z2,u, 2)] < Lz — z2]

for every (z1,u,2) and (zs,u, z) in a compact set K C 2 x R x R", with
the constant I depending on K.

More recently, GORI and MARCELLINI [1] have proved that SERRIN’s
result holds if only one assumes, besides continuity, positivity, and convexity
in z, that for every z and u the function z — F(z,u, ) is not constant on
any straight line in R™. It is easily seen that the above condition is implied
by either (ii) or (iii).

The same result, with F' only continuous and convex in z, and without
conditions at infinity, holds if F' does not depend on z, even in the pres-
ence of discontinuities with respect to u (DE GIORGI, BUTTAZZO and DAL
Maso [1]).

In all these theorems it is essential that u is a function with values in R.
If instead u takes values in RY, with N > 1, they do not hold any more,
as EISEN [1] proved with an example.

Sometimes it happens that a functional F : V — R is not semicontinu-
ous (or that V is not complete) in a given topology, otherwise particularly
useful. In this case one can consider the relazed functional F, defined in
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the completion V of V by the formula
F(u) = inf {liminf}'(uk); up — u} .
k—oo

It is easily seen that F(u) > F(u), the equality holding if and only if F
is lower semicontinuous in u. In this case, the relaxed functional F is an
extension of F to the space V, and one has

inf F = min F.

In general F(u) < F(u), and F is the greatest lower semicontinuous
functional which is less than or equal to F.

A typical case is that of the area functional. Let V be the space of the
functions of class C*(Q), taking given boundary values u(x) = U(z) on Q.
The area A(u) of the graph of a function u € V' is

/n V14 |Duj?dz

= sup { / g0 + uDig) dz; gn € C3(), Y g7 < 1} . (49)
Q

h=0

It is easily seen that the right-hand side is lower semicontinuous in the
strong topology of L!: if ug,u € V and up — u strongly in L, then

A(u) < liminf A(ug) .
k—oc0

The completion of V in the topology of L}(Q) coincides with L!(Q);
the relaxed functional is therefore defined in L!, and has meaning also for
functions that do not assume the given value U on the boundary. For these
functions we have

A(u):/ \/1+|Du|2da:+/ lu—U|dHp-1,
Q a0

where the first term on the right-hand side must be interpreted according
to (4.9).5

50f course, for many functions v € L' we will have A(v) = +oco. If we want to
avoid that unpleasant feature, we should restrict ourselves to the functions for which
the right-hand side of (4.9) is finite. These functions belong to the space BV () of the
functions whose derivatives are measures in §; the right-hand side of (4.9) is then the
total variation of the vector measure (£™, Dv), where L™ is the LEBESGUE measure in R™.
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In general the relaxed functional cannot be written as an integral; the
cases in which that happens are of some interest, and have been studied by
BuTTAzZZO [1).

A generalization of the method of relaxation leads to the theory of
I-convergence. Here, one considers a sequence of functionals Fi, and a
“limit” functional F, and asks under which conditions the minima of the
functionals F; approximate the minima of F.

This problem conducts to the definition of I'-convergence. Limiting
ourselves to the simpler case of sequential convergence, we shall say that
the sequence Fj I'-converges to F in a given topology, if
(i) for every sequence uy — u one has F(u) < liminfg_, oo Fr(ux),
and
(ii) there exists a sequence uy — u such that F(u) = limg_,c0 F(ur)-

It is easily seen that if u; minimizes F, and if ux — u, then u minimizes
F. Actually, if vy — v and Fi(ve) — F(v), since Fp(ur) < Frlv), we
have

F(u) < liminf Fi(ux) < liminf Fe(ve) = F(v).
—o0 — 00
Moreover, if wg — u and Fi(wg) — F(u), we have
F(u) = klir{.lo Felwg) > likn_z)ir.}ffk(uk) > Flu)

and since the same relation holds for any subsequence of ug, we conclude
that

Fi(ug) — F(u).
The I'-convergence is a very weak notion of convergence, and therefore

it is possible to approximate particular functionals with others of a very
different type. For instance (see MoDICA and MORTOLA [1]), the sequence

of functionals
3 Du)?
Fie(u) = —-/ | Dl +k(1—u?) ) dz.
4 Jq k

I'-converges to the functional

/ |Duljdz, ifue BV(Q)and|ul=1ae.,
Q

+o0 otherwise.
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The literature on the I'-convergence, and on the related problem of
homogenization, is rather large, and we shall refer the reader to the works
of DAL MAso [1] and DAL MAso and Mobica [1].

Finally, we mention that the study of general functionals

Flu,2,Q) = /ﬂ F(z, u(z), 2(z)) dz,

and in particular the semicontinuity Theorem 4.5, is useful in the theory
of controls. In this case z(z) is the control, u(z) is the state of the system,
and the functional F represents the total cost that must be minimized.
Referring to the specialized literature (see for instance LIONS [2]) for a
complete discussion, the following example can give an idea of the method
used.

Suppose that we have a system governed by the differential equation

Au=2z in§,
u=20 on 0%,

so that we can control the state u of the system by means of the control
function z. Suppose that our goal is a state U(z), and that the cost of the
control z is given by the integral [, |z|? dz, whereas the price paid for not
reaching the state U is fn g(u — U)dz, with g > 0. The total cost will be
then

Flu,2) = /Q (a(u—U) + |2?) de.

If we assume that g is continuous, the functional F is lower semicon-
tinuous for the weak convergence in z and strong convergence in u in L2(f2).

Suppose now that 2z be a minimizing sequence of controls, and let uy be
the corresponding sequence of states. From the theory of elliptic equations
(see Chapter 10) we deduce that ux € W22(), and that

luellzz2 < ellze2-

Since z is a bounded sequence in L2, uy is bounded in W22, and
therefore, passing possibly to a subsequence, we can suppose that up — u
and zx — z in L2. By Theorem 4.5, 2(z) is the optimal control.



Chapter 5

Quasi-Convex Functionals

5.1 Necessary Conditions

In the preceding chapter we have seen the central role played by the con-
vexity in the proof of the semicontinuity, and hence in the theorems of
existence of minima of functionals of the calculus of variations.

We shall begin this chapter by showing that this assumption is necessary
for the lower semicontinuity of functionals of the type

T(u,z)=/QF(:I:,u(m),z(m))dx. (56.1)

Theorem 5.1 Let Q be an open set of R"™, and let F(z,u,z) be a
CARATHEODORY function in @ x RN x R”, with F(-,u, z) locally summable
in Q for every (u,z). Assume that for every u € RN the functional

Fu(2) = /QF(x,u,z(m)) dzx

is lower semicontinuous in the weak* topology of L2, of z.

Then, for almost every = € Q and every u € RN the function F(z,u,-)
is convetz.

We note that the convergence in the weak* topology of Lf°, implies
convergence in the weak topology of L _. Therefore, the above result,
together with Theorem 4.5 of the preceding chapter, gives a necessary and
sufficient condition for the lower semicontinuity.

139
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Proof. Letu€ R™ zy € Q and let Q C 2 be a cube with center in zo.
For every X € [0, 1] there exists a sequence x5, of characteristic functions of
measurable sets Ej, C Q such that y, — Axq.! Let a and b be two points
of R and let u € RY. We set

zn=axn+b(1—xn); z=ar+b{1-N)
in Q, and zp = z=0in 2 — Q. We have

Fulzn) — Fu(2) = / [F(z,u,axn +b(1 — xn)) — F(z,u,2)|dz  (5.2)
Q
and since xp, are characteristic functions:

/ F(z,u,axn +b(1 — xn)) dz
Q

- / XnF(z,u,0) dz + / (1= xn)F(z, u,b) dz.
Q Q

Introducing this relation in (5.2) and passing to the limit for A — oo we
obtain, taking into account the assumption of semicontinuity:

0 < liminf Fu(21) — Fu(2)

:)\/QF(x,u,a)da:+(1—)\)/QF(:E,u,b)d:L‘~/QF(:L‘,u,z)d:z:.

Dividing by |Q| and letting the side of Q go to zero, we get for almost
every o € )

AF(zg,u,a) + (1 — A)F(zo,u,b) > F(xo,u, Aa + (1 — A)b) (5.3)

that is the convexity of F(z,u,-).

The proof is not yet complete, since the set of zero measure for which
(5.3) does not hold may depend on A, u,a and b. But we can find countable
dense sets J C [0,1], EC RY, A C R” and a set Z C § of zero measure
such that (5.3) holds for every A € J, u € E, a,b € A and for every
z € Q ~ Z. Moreover, we can suppose that F(z,-,-) is continuous for every
zefl-2Z.

Every A € [0,1], v € R" and a,b € RY is the limit of sequences A, € J,
up, € E and ap, by, € A. Writing (5.3) for these, and passing to the limit for
h — oo we obtain the required result. a

1We denote with x¢ the characteristic function of Q.
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In the theorem just proved the functions u(z) (= u) and z(x) were
completely independent, so that it does not apply to the situation we are
most interesteding, namely that of functionals of the type

F(u,ﬂ):/ﬂF(x,u,Du)dw, (5.4)

that is when z = Du. And, in fact, the functions z; and z involved in the
proof of the theorem were not the gradients of the corresponding up, and u,
as it should be if we want to find necessary conditions for the semicontinuity
of the functional (5.4).

Of course, this restricts considerably the choice of the possible sequences
zn — z, so that the convexity in 2, which we have shown to be necessary
in the general case, might not be so essential in the new situation.

In this case, if we continue to assume that the functions 2z, = Duy
converge in the weak* topology of L, so that ||[Dupllec < M, it will
not be restrictive to assume that the sequence uj converges uniformly,
since any other weaker convergence would reduce to that by the theorem
of ASCOLI-ARZELA.

In conclusion, we may assume that the functional F is LSC with respect
to convergence in the weak* topology of W1 *°(Q) = Lip (2), or else, which
is essentially equivalent, with respect to uniform convergence of bounded
sequences of Lip () (L-convergence):

Definition 5.1 A sequence up € Lip () is said to be L-convergent to a
function v if up — u uniformly in Q and if there exists a constant M such
that for every integer h

[unlo1 = s1(11p |Dup(z)| < M. (5.5)

It is clear that in this case the limit function u belongs to Lip (©2), and
that its gradient is bounded by the same constant M.

Condition (5.5) tells us that the functions uj are equi-Lipschitz-
continuous in Q. If Q is bounded, it implies the weak convergence in
Wbs(Q) for every s > 1.

This being established, we shall consider first the special case in which
the function F' depends only on z.

Theorem 5.2 Let Q be a bounded open set of R™, let F(z) be a conti-
nuous function in R™Y, and assume that the functional

Flu) = /QF(Du(a;)) dz



142 Direct Methods in the Calculus of Variations

is lower semicontinuous with respect to L-convergence. Then, for every
function ¢ € CH(Q) and for every zo € R™ we have

F(z)|Q] < /ﬂF(zo + Dyp(x)) dz. (5.6)

Proof. Let @ be a cube containing €2, and that modulo a homothety we
can suppose to be the unit cube [0,1]". We can extend the function ¢ first
setting it to be equal to zero in @ — 2, and then extending it periodically
in R™:

(,0(1'1,- . "‘Tn) = 90({'771}’ e '7{377'-})7

where with {a} we denote the fractionary part of a.
For any integer h we set

on(@) = 7o(ha),
un(z) = (20, ) + pn(2).

It is clear that up L (z0,2), and hence by the semicontinuity
assumption:

|QIF(20) < liminf/ F(zp + Dop) dz.
h—o0 Q

Remarking that Dy (z) = Dp(hz), we get, after a change of variables,
y = hx:

QIF (o) < liminf ™ [ F(za + Dy(w)) dy,
—00 rQ

where hQ = [0, h]™.
On the other hand ¢ has period one, and hence also F{(zp + Dy) has
the same period; it follows that

F(z0 + Dp(y)) dy = h" / F(20 + D(y)) dy
hQ Q

and hence

IQIF (20) < /Q F(z + Doo(y)) dy

We can now deal with the general case.
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Theorem 5.3 Let Q be a bounded open set of R™, let F(z,u,z) be a
continuous function in @ x RN x R™ | and assume that the functional

F(u,Q):/QF(a:,u(ac),Du(a:))dx

is lower semicontinuous with respect to L-convergence. Then, for every
function ¢ € CLQ) and for every zo € Q, uo € RN and z € R™N we
have

F(z, uo, 20)|€Y S/F(mo,uo,zo+D<p(z))dx. (5.7)
Q

Proof. As above, we can suppose that €2 be contained in the unit cube
Q, and that ¢ is extended periodically in R™. Let z¢ € 2, and let W be a
cube contained in §2, with center xo and side t. We define

u(x) = uo + {20, — o),
on(z) = %90 (———-—~h<x - $°)) :

up(z) = u(z) + ¢alz),
where

~() (Ph(x) lf.’EEW,
r) =
o 0 freQ-W.

Since pp(z) = 0 in a neighborhood of 8W, the function ¢, belongs to
CH(W).

To get an estimate for F(up, W), we decompose W into h™ equal cubes
W; of centers z;. We have

F(un, W) Z/ F(z,u + ¢n, 20 + Dpr) dzx
w
a h(x — xq)
= Z/ F (mi,u(:c,-),z0+D<p (—0)) dx
i=17W: t

hn
+ Z/W [F(:c,u + ©n, 20 + Dgoh)
i=1 i

— F(z;, u(x;), z0 + Deop )| dz
= A, + By,
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For what concerns the term Bj we remark that the derivatives of p
are equibounded, and therefore the arguments of the function F' remain
confined in a compact set © €  x RN x R™Y. The function F is then
uniformly continuous in ©, and hence By, — 0 when h — oo.

On the other hand h(x; — x9)/t is a vector with integral components,
and therefore by the periodicity of ¢ we have

Ah—Z/ (xl,u(m, 20+ Dy (’—’ﬁ”—t‘-”—))) dz,

which, after a change of variables y = h(z — z;)/t, becomes

R"

m=3(4) | Fsute. 20+ Dow) dy

i=1

We write for simplicity
o(e) = | Flu), 2 + Do) dy

The function g is continuous, and we have

h"

An = g(z:)|Wil

=1

and hence

h—o0

lim Ap = /W do /Q F(z,u(), 20 + Do(y)) dy

On the other hand the sequence up, L-converges to u, so that the lower
semicontinuity of F gives

lim A, = 11m f(uh, W) > Fu,W) = / F(z,u(z), 2) dz
h—oo w

and the conclusion is obtained dividing by |W| and letting the side t of W
go to zero. O

As we shall see, condition (5.7) will play a major role not only in the
semicontinuity theory, but also in the regularity of minima. We are then
induced to formulate the following definition.

Definition 5.2 The functional

f(u,Q):/QF(a:,u,Du)da:
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is called quasi-convex if for every (zo,u0,20) €  x RN x RN and for
every ¢ € C3(Q,RY) we have

F(zo,uo, 20) < ][F(mo, uo, 20 + Dy(z)) dz . (5.8)
Q

Geometrically, quasi-convexityindexquasi-convexity means that the
linear functions

u(z) = a + (20, x)
minimize the “frozen” functional

FOlu, Q) = /n F(zo, uo, Du(x)) dz .

Remark 5.1 We remark that if (5.8) holds for an open set 2, it holds
also for every open set A C R™. Actually, we can choose ¢ and Z in such a
way that

M={zecR":tz+Zc A} CQ.

If supp () C A, the function p(z) = t~In(y) =: t~!n(tz + Z) belongs to
C§(£), and hence

][ F(zo, 0,20 + Dn(y)) dy = {F(zo, 0, 20 + Dep(z)) da
A Ay

1
= —{/ F(zo,u0, 20 + Dy(x)) dz
1Al L Ja

- F(:l)o,’u.o, Zo)|Q — All}

2 F(EO,UQ,ZO) .

As a consequence we can speak of quasi-convex functions: a function F
being quasi-convez if (5.8) holds in some open set 2 C R™. 0

It is easily seen that quasi-convexity is strictly weaker than convexity.
In fact, if F(z,u, 2) is a continuous function, convex in z, there holds

F(zo,u0, 20 + D) > F(20, o, 20) + (o, Dep)

for some Ay € R™". Integrating over ,

/ F(.’I}o, Uug, 20 + D(p) dr > F(:IIQ, Uug, ZQ)IQI
Q
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since

/(/\O,Dgo)dm =0.
Q

It follows that any convex function F' is quasi-convex.
The converse is not true, since the function F(z) = det(z) (N = n) is
quasi-convex but it is not convex.

To see that, let g(z) be a function of class C?*(R",R"), and let w be
the differential form

det(Dg)dz; Adza A -+ Adz, .
We have
w=dgi ANdgz A---Ndg, = d(g1 Adga A--- Ndgyp) (5.9)

since dd = 0, and therefore

/det(Dg)dwl/\dxg/\---/\da:nz/ g1 Ndga A---ANdg, .
Q o0

In particular, the integral on the left-hand side is zero whenever one
among the functions ¢i,...,gn is zero on 8. Moreover, if two functions g
and h coincide in a neighborhood of 992, we have

/ﬂdet(Dg) dw:/ndet(Dh) dx.

The same result (without assuming N = n) holds if we substitute if the
determinant any minor of the matrix Dg.

In particular, if ¢ is a function of class CZ(f), the functions u(z) =
(20, z) and u + ¢ have the some value in a neighborhood of 62, and hence

/ det(Du + Dy) dx = / det(zp + Do) dz = || det(20) .
Q Q

By approximation with C? functions we can easily see that the above
relation holds for an arbitrary function ¢ € Wol "™(82), so that the function
det(z) is quasi-convex.?

More generally, let z be a n x m matrix, and let M (z) be the vector
whose components are the minors of the matrix z. If g(M) is a convex

2Actually, the value of the functional F(u) = [det(Du)dz depends only on the
boundary values of u, and therefore it is the same for functions having the same values
on 8. Consequently, the EULER equation for F is identically satisfied. Functionals of
this kind are called null Lagrangian.
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function of M, the function
F(2) = g(M(2))
is called polyconver. We have

Proposition 5.1 A polyconvez function is quasi-convez.

Proof. If g(w) is a convex function and w(z) a summable function in {2,
we have the JENSEN inequality

Fatweds 2 g (futas) (5.10)

Setting v = (zg, ), we have

]{IQ(M(Z’O + Dy))dz > g (]{]M(ZO + Dy) dw)

=g <fQM(zo)dz> = g(M(z0))

from which the result follows at once. O

A last and weakest form of convexity is the so-called rank-one
convezity.?

Definition 5.3 A function F(z,u,z) defined in @ x RY x R™ is rank-
one convex if for every (o, uo,z0) € Q x RN x R™V the function

g(f?”) = F(Z'(),U(),Zo + E ® 77)
is separately convez in € € R™ and n € RY.

Proposition 5.2 A continuous quasi-convez function is rank-one
conver.

Proof. We can suppose that F' depends only on z. Assume first that
F is of class C2. Since F is quasi-convex, the affine functions minimize
the functional F, and therefore if u{z) = 29 = is an affine function and if

3In his book [3], modifying a terminology that he himself had previously introduced
in [2], MORREY calls quasi-convexity the rank-one convexity, and strong quasi-convexity
what, according to current usage, we have called quasi-convexity.
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v € C3(,RN), the function
G(t) = F(u +ty)
has a minimum for ¢ = 0. We have therefore G'(0) = 0 and G"(0) > 0, and

hence
8?F

———(20)Dr®D; P dz > 0 5.11
nazgazf(") ko Dj” dz > (5.11)

for every ¢ € C3(, RYN).
Setting ¢ = A + iy, writing (5.11) for A and p and summing, we get

o’F P
Re [ ———(20)Dip®D;@" dz > 0. (5.12)
0250z

We choose now ¢ = neiT(E’z)'y(m), where ¢ € R*, n € R¥, and v is a
function in C§°(22, R). From (5.12) we obtain

?F
_/ 9228° (ZO)WQWﬁ [T2§k€j’)’2 + DyyDjvldx > 0.
k~%j

Dividing by 72 and letting 7 go to infinity we get

|2 o OGP s 2 0

for every v € C§°(£2), and in conclusion
6%F
———(20)&x&m*n’ 2 0. (5.13)
020z
The last inequality, that carries the name of the LEGENDRE-HADAMARD

condition, implies the separate convexity in £ and 7.
Suppose now that only F is continuous, and let

F(z) = /F(z — w)pe(w) dw

be the mollified function of F. If 9 is a function in C§(f2), we have

/QFe(zOJrDﬂ)dx=/<pe(w)/nF(zo+Dq9—w)dx

> [ pdw)F(ao — w)I9l dw = QIF(z0)

and hence F; is quasi-convex.



Quasi-Conver Functionals 149

It follows from the above that F, is rank-one convex, and passing to the
limit as € — 0 the same is true for F. 0

We have then a series of conditions of increasing generality, since con-
vexity implies policonvexity (we can consider the single components of the
gradient as rank-one minors), the latter in turn implies quasi-convexity,
which finally implies rank-one convexity.

Generally speaking, the opposite implications do not hold,* except in
special situations.

A first case, in which all the definitions above are equivalent, is when u
is a scalar function, that is when the codomain has dimension N = 1. In
fact in this case the LEGENDRE-HADAMARD condition reduces to

O’F
3zi6zj

(20)6:&; > 0

and is equivalent to the convexity of the function F.%
A second case of some importance, in which rank-one convexity implies
quasi-convexity, is when the function F(z,u, z) is quadratic in z:
F(z,u,z) = Aijﬁ(x, u)zf‘zf

When F has the above form, setting for simplicity A = A(zo, up), we
have

/ F(zo,ug, 20 + Dy) dz = / [(Azp, z0) + (ADyp, D)) dx
Q Q

since the remaining integrals are zero because ¢ has compact support. To
prove the quasi-convexity it will therefore suffice to show that

/ (ADyp, D) dx > 0
Q

for every ¢ € C§°(f).
More generally, assume that instead of (5.13) we have

AD €60 > vIEIn|? (5.14)

with v > 0.

4For a more detailed discussion we refer to the final section of this chapter.
SIf F is not regular, we can proceed as above, approximating with regular functions.
We note that the same conclusion also holds when the domain has dimension n = 1.
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In this case we can prove the following:

Lemma 5.1 Let A be a constant matriz, satisfying (5.14). For every
(e W01’2 we have

/Ag{ﬂpjcﬁpiga dz > 1// |D¢|? de .
Proof. Denoting by f (&) the FOURIER transform of a function f:

fe) = /f(ac)el(x'£> dz,

(271'2
we have D/\hf(ﬁ) =i&nf(¢), and
| PitfDimda = [ D¢P DT o~ [ e de.
On the other hand, if in (5.14) we allow the vector n to take complex
values: % = p® + in®, we get
AT &m0 = AZE€i(0%0" + 7P +i(0®nP — Pre)]
and hence

Re AZ,£:6m°n8 > vigIn|? .

As a consequence, recalling PARSEVAL’s identity:
/ AY.D;(PDi¢* dz = Re / AU £,6,C3CP de

>v [lePePde=v [ ID¢P da

and the proof is concluded. a

5.2 First Semicontinuity Results

The results of the preceding section force us to ask whether the quasi-
convexity is also sufficient for the lower semicontinuity in a topology weak
enough to guarantee the existence of minima. Results in this direction
are rather recent, and have been proved under increasingly less restrlctlve
conditions.

In this section we shall consider the relatively simpler case in which the
integrand F depends only on z; the general case will be treated later.
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To begin, we need the following lemma:
Lemma 5.2 Let F(2) be a rank-one convez function, such that
|F(2)] <e(A+12))P, A>0. (5.15)
with p > 1. Then,
IF(2) = F@w)] < c(A+ [2] + [wl)~|z = w]. (5.16)
Moreover, if F has first derivatives, we have
|Fal < c(A+ 2Pt (5.17)

Proof. A matrix = having only one element different from zero is ob-
viously of rank 1, and hence if F(¢) is rank-one convex, the function
g(t) = F(¢ + tm) is convex, and hence

ey - 80 =90)
t
is increasing.
Consider now the matrix z, of dimension n x N, as being a vector in
R™Y with components z; let w € R™Y, and for k =0,1,2,...,nN define

k
Z( ) :(wlv"')wkyzk+15"-1an)-

We have 2(9 = z and z(®™) = w; moreover, taking ¢ = z(®, & = z{k+1) _
2) and t = )‘—",'Li_%%'—”—l > 1 we obtain

F4D) - F(z) = G(1) < G(2)

F(z®) 4 (z(-+1D) — 2(R)y) — F(2(%)
= |z —w|.
A+ |z + |w]

Using (5.15) and remarking that [2(®)| < |2| 4 |w]| and |2(®) + #(2(k+D —
28| < e(A+ |z| + |wl), we get

F(z*D) — P(z®) < oA + 2] + [w])P~ Yz — w],
from which, summing over £ and then exchanging z with w, we deduce

immediately (5.16).
Now let v be a vector in R™V, with |v| = 1. From (5.16) we get

F(z +tv) — F(z)
t

<ce(A+ |z +to| + [2))P7T,

and (5.17) follows immediately letting ¢ go to zero. O
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We can prove now the first semicontinuity theorem.

Theorem 5.4 (MARCELLINI [1]) Let F(z) be a quasi-conver function,
such that

0< F(2) <c(l+27)

with p > 1. Then, the functional

f(u,Q)z/nF(Du)da:

is lower semicontinuous in the weak topology of VVlf)’c”(Q, RM).

Proof. Let up, — u in WHP(Q), and assume first that u is an affine
function, so that Du = zy = constant. If we had up = u on 9Q (that
is up = u 4 pp with @ € W,P(2)), then from the assumption of quasi-
convexity we would get

/ F(Duy)dz > F(z)|0 = / F(Du)do
Q Q

and the semicontinuity would follow immediately. The problem therefore
consists of modifying suitably the functions upn near 82, in such a way
that they take the value v on 80 without changing excessively the value
of the functional. For that, let Qo CC Q and let L be an integer. We set
R= %dist (©0,09), and for i =1,2,..., L we define

Q; = {w € Q: dist (z,Q) < -}:R} .

Now choose functions 1; € C3(€2;) such that

2(L +1)

0<v:;<1; ¢=1 inQ_y1; |Dyy|< 7

and set
vih = u+ Y;i(up — u).

The functions v;s — u belong to W'"?(R). From what we have said above
it follows that

/F(Dvih) dz > F(z)|Q] = / F(Du)dz,
Q Q
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and hence

/Q F(Dwdz< [ F(Du)dz+ /

Q-0

F(Duvip)dz + / F(Dup)dx
Qi1

Q-Q;

< / F(Du)dz + / F(Duv;p) dz + /F(Duh) dr.
Q—-Qo Q-1 Q
(5.18)
On the other hand
Duv;p, = (1 — ;) Du + i Dup + (up — u)Di;,

and therefore

L+1)y
|DvinlP < ¢ (]Du]” + | Dunl? + £—%;;;l‘luh - ul”) .

We can use this inequality to estimate the penultimate integral in (5.18).
Moreover, if we sum over i, and divide by L, we easily get

F(Du)dz < / F(Duy) dz
Q0 Q
(L+1)P

< » »
+L/Q(1+IDUI + [Dunf? + =5

|up — u|p) dx.
(5.19)

Since up — u in WLP, by RELLICH’s theorem we deduce that up — u
in L?, and the derivatives Duy, are bounded in LP. If we let A go to infinity
in (5.19), the last term tends to zero, and therefore:

c

F(Du)dz < llhﬁg}f/nF(Duh)dm +1

Qo

Passing to the limit as L — oo and letting g tend to 2, we get
/ F(Du)dz < lim inf/ F(Duy)dx (5.20)
[9) h—oo Q

for every affine function u(z).

Now let u be a generic function in W1, Consider a countable family
of pairwise disjoint open cubes Q; C ©, such that |2 —UQ;| = 0. In any of
these cubes, we set

Zi = Du dz
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and let Z(x) be the function that in every cube Q, takes the constant
value z;.

When the maximum diameter of the cubes Q; tends to zero, the function
Z tends to Du in LP(Q); it follows that for every e > 0 there exists a family
Q; such that

/|Du—Z|”dz=Z/ Du— zfPdz < €.
0 i=17 @i

Let now uj, be a sequence converging weakly to u in WH?(Q). For
z € Qy, let vff) (z) = un(z) — u(z) + (zi,z). When h tends to infinity,
the sequence v,(j) tends to (z;,z) in the weak topology of W1P(Q;), and
therefore, according to what we have just proved, we have

liminf [ F(Dof?)dz > / F(z)dz
Qi

and the same inequality holds if we sum over 1.
On the other hand, using the preceding lemma and the HOLDER
inequality, and summing over i, we obtain

/Q F(Duy) dz — Z /Q i F(Dv")dz

< CZ/ (1+ | Duy [P~ +|Dv,(f)|”‘1) \Du — 2| dz

p=1 N

P P
< C{Z/ 1+ |Duh|P+|Dv,(:)|P)da:} {Z/ |Du~zi|”dz}
i Qs  JYQi

< ce.

In a similar way we prove that

/Q F(Du)de - Z /Q F(z)da

< Ce

and in conclusion:
/ F(Du)dz < 1iminf/ F(Dup)dz + ce,

from which we get the semicontinuity under weak convergence in W1?(Q).
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Finally, if up, — u in I/Vli’f(ﬂ), we have from any ¥ CC
F(u,X) < lihn_l)gf Flup, X) < hhn_l)ggf F(un, )
and the theorem follows letting X tend to 2. O

Remark 5.2 The conclusion of the theorem remains valid if we only
assume that —c(1 + |2|7) < F(z) < ¢(1 + |2|P) with r < p. In this case we
must add to the right-hand side of (5.18) the quantity

- /ﬂ.—Qo F(Du)dz — / F(Duy) dx

Q-0
< c/ (1+ |Du| + |Dua)" dz .
Q-0

The last integral can be estimated by

10— Q|7 (/ (1 + |Du| + |Duh|)”dw> "<l - )5,
Q

that tends to zero when Qg — €.
Everything else remains unchanged. |

The preceding result continues to hold when the function F' depends
also on z and u. In this case the proof is considerably more complex, and
we shall need some preliminary results, many of which are interesting in
themselves, independently of their application to the semicontinuity.

5.3 The Quasi-Convex Envelope

Definition 5.4 Let G(z) > 0 be a function defined in RV, and let  be
an open set in R™. We set

va(z) = inf { ]{) Gz + Do) dz; ¢ € cg°(9)} . (5.21)

It is easily seen that ~q is invariant under homothety. Actually, if Q; is
an open set, homothetic to Q : Oy = zp + AMQ, and if 1 € C§(Q1), setting
(x) = A p1(xo + Az), we have p € C§°(Q), and

F6G+Dew)dy = f 6+Dpi(a) e,
Q (951

from which immediately follows v = vq,.
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We shall actually prove that the function v does not depends on €. For
that, we need the following:

Lemma 5.3 Let A and  be two open sets in R™, with |0Q] = 0. For
every € > 0 there exists a finite number of open sets ;, i = 1,2,..., N,
homothetic to Q and pairwise disjoint, all contained in A and such that

[A—UQ| <e.

Proof. Let Q be the unit cube, and let Qg be an open set homothetic to
and contained in Q. Let 29 = |Qg|. The open set A is the countable union of
cubes, so that there exists a finite family of pairwise disjoint cubes contained
in A, whose union has measure not less than %—|A| In any of these cubes
Q: we can put an open set {2; homothetic to Q, with |Q;} = 29|Q;|. The
union Z; of these open sets has measure not less than ¥|A|, and therefore
the open set A — Z; has measure not greater than (1 — 9)|A|.

We can repeat the above argument with A — Z; instead of A. We will
find a finite family of open sets homothetic to §, whose union Z, is such
that |[A — Z1 — Z3| < (1~9)?]A|. Continuing in this way, we obtain k finite
families of open sets homothetic to §2 and pairwise disjoint, with

A=Z1—Z5 — - — Zp| < (1 —9)|4].

The conclusion follows at once taking k£ in such a way that (1 —
9)* < €, and recalling that 89, and therefore 8Z;, has zero measure for
every 1. O

Proposition 5.3 If A and Q are two bounded open sets in R™, we have
YA =70

Proof. Suppose first that |0} = 0, and let us begin by showing that if
{%;} is a finite family of pairwise disjoint open sets, all homothetic to Q,
and if ¥ = UQ;, we have v = vq.

Let ¢ € C§°(£2) be such that

10(0) > § Gle+Dp)da —e. (5:22)

If o; are the corresponding functions in C§°(f;), and if we set ¢ = >~ ¢,
we have ¢ € C§°(X), and

][G(z+D1/) e = 150 Z/ Glz+ Dy do < g thl(m(z +e),

from which vy < 4q follows at once.
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On the other hand, since the sets §2; are disjoint, if ¢ € C§°(X), its
restriction ; to §2; belongs to C§°(Q;). Consequently, if 4 is such that

vs(2) > ]{EG(z-FDd))da;—e,

we have
1 1
75(2) 2 ﬁz/ﬂ Gla+ D)o — ¢ 2 155 3 2a(2)I0U] ~

= va(2) —

so that v > vq.

Let now A be a second open set in R™, and choose the ; as in
Lemma 5.3. If ¢ satisfies (5.22), let ¢; be the corresponding functions
in ;, and let ¥ = Y, ;. We have ¢ € C§°(A), and hence

ya(z) < ﬁa(ww) do < ]{:G(z+Dw) do+C(2)|A-5).

It follows immediately that y4(2) < ya(z) + ¢+ G(2)¢, so that, if |00 =
0, we have

¥4 < va -

Assume now that |8Q| > 0. Let ¢ € C§°(Q) be a function satisfying
(5.22), and let A C Q be an open set with boundary of zero measure,
containing the support of ¢ and such that |2 — A| < € < $|Q2|. We have

1(2) < f 6+ D)o < ’IA{(m<z)+e) < (a(2) +9) (1+ ,M)

On the other hand, since |0A| = 0, we have y4(2) < ya(2), and therefore

v4(2) < (ya(2) +€) ( Iilj)

so that v4 < 7q in this case too.
Exchanging the roles of A and © we get the opposite inequality, and the
conclusion of the proposition. O

In particular, we can write simply +y(2) instead of y4(z).

Remark 5.3 If G is a continuous function, satisfying

0<G(z) <c(l+|2|P), p=>1, (5.23)
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the functional
Glu) = / G(z + Du)dx
Q

is continuous in the strong topology of W17(Q).
As a consequence, we have

v(z) = inf { ]{2 G(z + Dy(z))dz; ¢ € Wol’p(ﬂ)} .

In fact in our hypotheses the infimum in WO1 P coincides with the
infimum taken on any dense set, such as for instance C§° or else the set of
piecewise affine functions’ with compact support in €. O

We shall now prove that under suitable assumptions for G, the function
v is quasi-convex. We shall assume that

v|z|P < G(2) € e(l+ |2[P) (5.24)

with v > 0, and moreover that G is continuous in z; more precisely, that
there exists a continuous function w(t), with w(0) = 0 and such that

1G(2) = G(w)| < (L + |2 + [w[P)w(|z = w]). (5.25)

Lemma 5.4 With the assumptions (5.24) and (5.25), the function v(z)
is continuous in R™N.

Proof. By (5.24) we can assume that the functions ¢ in (5.21) satisfy
|Dellp < K. We then have

}][G(z+D<p)dx - ][G(w—i-Dgo)dx
Q Q

< ew(lz — w|)(1 + [z + |wf” + K?)
and the conclusion follows at once. O

Remark 5.4 The preceding lemma continues to hold if G (and hence «)
depends continuously on a parameter u, and satisfies (5.24) with v and ¢

61t will be sufficient to consider a sequence uy converging to u strongly in WP and
such that u;y — u and Du, — Du almost everywhere, and to apply FATOU’s lemma to
the sequences G(ug) and ¢ fo(1 4 [Dug|?) dz — G(u)-

TWe recall that a function w is piecewise affine in Q if it is continuous and if there
exists a finite number of open sets Ay, ..., An, with UA; = 0 and such that the restriction
of w to any one of them is an affine function.
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independent of u, and with (5.25) replaced by
[G(u, 2) = G(v,w)| < (L + [2/° + [w)w(fu —v[+ [z —w]).  (5.26)
Of course, in this case y(u, z) will be continuous in the pair (u,z). O

Theorem 5.5 (DACOROGNA [1]) Always assuming (5.24) and (5.25),
the function «(z) is the quasi-convex envelope of G, that is the greatest
quasi-convez function less than or equal to G.

Proof. Let us begin by showing that « is quasi-convex. Let @ be a cube
in R™, and let 1 be a piecewise affine function with compact support in
Q. Let A,,..., A; be the open sets such that Dy = w; = constant in A,.
We have

k
/Q Yz + D) dz = 3 | Aily(z + wy).

i=1

For € > 0, let ¢; € C§°(A;) be a function such that
et w) > Glatwi+ Dpdo -2,
A;

and define n =9 + > ;.
We then have
k

3 lAilr (e +wi) > /Q G(z + D) dz — €Q| > (1(2) - IQ,

=1

and therefore
/Q A(z+ DY) dz > [Q(2).

Since the piecewise affine functions are dense in Wo1 P, the preceding
inequality holds for every ¥ € W P(Q).

Let now §2 be a bounded open set of R™, and let @ be a cube containing
Q. We have for every ¢ € WlP(Q):

/ Yz + D) do = / Yz + DY) dz - 1(2)]Q - Q| > ().
0 Q

It is evident that v(z) < G(z). Now let F(2) < G(z) be a quasi-convex
function. For ¢ € C§°(Q) we have

F(2) < ]{) F(z+ Dy)dz < ]{2 Q(z + D) dz

from which follows immediately that F(z) < v(z). |
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5.4 The Ekeland Variational Principle

In this section we shall prove a result, known as the EXELAND variational
principle [1-3], that we shall use quite often later.

Theorem 5.6 Let (V,d) be a complete metric space, and let F: V - R
be a lower semicontinuous function (in the metric topology), bounded from
below and taking a finite value at some point.

Assume that for some u € V and some € > 0 we have

Flu) < ir‘}f.7-'+e.
Then, there exists a point v € V such that

(i) d(u,v) <1,
(i) F(v) < F(u);
(iif) F(v) < F(w)+ ed(v,w) YweV.

Proof. Let us define by induction a sequence ur € V in the following
way. Set first u; = u. Suppose now that we have defined u1,us,...,uk.
The set

S ={weV:F(w) < F(ug) — ed(uk,w)}

is non-empty, since it contains ug. There exists therefore a point ug1 € Sk
such that

1
k
We will show that uy is a CAUCHY sequence. Since ugy; € Sk, we have
ed(uk+1, uk) < f(uk) - .7-'(uk+1) (5.28)

and hence

m
ed(Uprm, uk) < €Y AUt Ukgio1) < Flur) — Flurgm).  (5.29)
i=1
On the other hand (5.28) implies that the sequence F(ui) decreases,
and therefore, F being bounded below in V, it will converge to some real
number a. By inequality (5.29), uy is then a CAUCHY sequence.
Let v = limg_,00 ux. From the semicontinuity of F it follows that

F(v) < liminf F(ugsm) = o,

m—
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and therefore letting m — oo in (5.29),
ed(ug,v) < F(ug) — F(v). (5.30)
In particular, taking k = 1, we have

0 < ed(u,v) < F(u) — F(v) < F(u) —ir‘}f}'g €

so that (i) and (ii) are satisfied.
Suppose now that (iii) does not hold. In this case there would exist
w € V such that

F(w) < F(v) — ed(w,v). (5.31)
Taking into account (5.30), we have in this case
F(w) < F(uk) — ed(ug, w)

for every k. From the definition of Sk, it would follow that w € Sy, for every
k, and hence

igkf F < F(w).
On the other hand, we get from (5.27),
2F (up41) — Fluk) < F(w) < F(v) — ed(v,w)
and passing to the limit as k — oc:
F) L Flw) < F(v) — ed(v,w) .
But this cannot hold, and hence (iii) is proved. a

Remark 5.5 If we introduce in V the new distance d; = e‘%d, the
topology of V remains the same. In particular (V,d;) is a complete metric
space, and F is lower semicontinuous. From the preceding theorem it follows
that if F(u) < infy F + ¢, there exists v € V (of course different from that
of the preceding theorem) such that

(V') d(u,v) < €3;
(ii") F(v) £ F(u); )
(iii") F(v) < F(w) + e2d(v,w) YweV.
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In particular, if u is a minimizing sequence, that is if ¢, = F(uy)—inf F
tends to zero, the corresponding sequence vy, is itself a minimizing sequence.
Moreover, we have

Flok) < Fw) + e d(ve, w) (5.32)

for every w € V. O

5.5 Semicontinuity

We can now prove the main result of this chapter. For that, we shall
consider a CARATHEODORY function F(z,u, z), defined in Q x RY x R*V,
and satisfying the conditions:

—a(|z|” + |u|) — h(z) < F(z,u,z) < g(z,u)(1 + |z|P) (5.33)

Withp>1,1§r<p,1§t<p*=;l%(tZliprn). As for the
functions h and g, we shall assume that h € L'(2) and that g > 0 is a
CARATHEODORY function in  x RY,

Under these assumptions we shall prove the following semicontinuity
result:

Theorem 5.7 (AcerBI and Fusco [AF1]|) Let F(z,u,z) be a quasi-
convez function, satisfying the conditions (5.33). Then, the functional

Flu) = /QF(x,u(x),Du(a:)) dz

is lower semicontinuous in the weak topology of WP(Q, RN).

The proof of the theorem will be made in a series of steps. In the
first place, we shall prove the theorem when the lower bound in (5.33) is
replaced by

F(z,u,z) > v|z|P, v>0. (5.34)

For i € N we call ¥,(t) a continuous function taking the values one for
t <1 —1 and zero for t > i, and we set
F(lu) i glz,u) <4,
(z,u) = ¢ 49,
(@ v) ilful) if g(z,u) > 1.
9(z, u)

Moreover, we set

F’i(mv u, z) = ni(m’ ’LL)F(:E, U, Z) + (1 - Th'(l',u))l/|2|p .
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The functions F; form an increasing sequence of quasi-convex
CARATHEODORY functions, and satisfy

Fi(z,u,2) > v|2|P; Fi(z,u,2z)=vlz|P; if |u] >1i;
Fi(z,u,z) < (i+v)(1 +|2/7);
Fi(z,u,2) = F(z,u,2) if i > g(z,u) + |u| +1;

.lim Fi(z,u, z) = sup Fy(z,u, 2) = F(z,u, 2).

Denoting with JF;(u) the corresponding functional, we have F(u) =
sup; JF;(u), and therefore, since the supremum of a family of lower semicon-
tinuous functionals is Ls.c., it will suffice to prove the theorem for each of
the functionals F;(u). In other words, we can assume that

v|z|P < F(z,u,z) < A(1 + |2|P) (5.35)

and moreover that F(z,u, z) = v|2|P for |u| > pu.
We want now to perform a similar operation with respect to 2. We set

Gi(z,u,2) = 0;(|z|)F(z,u, 2) + (1 — 9;(}2]))v|2|? .

The functions G; satisfy (5.35), and coincide with v|z|P for |z| > i (and
of course for |u| > p). On the other hand, in the above operation we lose
the quasi-convexity, so that it will be necessary to replace the functions
G; with other quasi-convex functions. Recalling the results of Sec. 5.3, the
natural candidates are the quasi-convex envelopes

0i(2,u, 2) = inf {]{)Gi(z,u,z + Do(y)) dy, v € cg°(ﬂ)} .

Actually the functions G; satisfy all the assumptions stated in Sec. 5.3;
in particular they are continuous in (u, z) for almost every z € (2, and verify
(5.26). In fact, for almost every z € Q, G; are uniformly continuous in the
compact set |u| € p+ 1, |z| < i+ 1, whereas if either |u| > u or |z| > i
they coincide with v|z|P. We can therefore apply the Lemma 5.16, from
which it follows that the functions g; are continuous in (u, z) for almost
every z € {). Moreover, we have obviously ¢g; < G;, and from the inequality
v|z|P < G;(z, u, 2) (the function v|z|P are convex, and hence quasi-convex),
it follows that g;(z, u, z) > v|z|P. In particular, we have g;(z, u, 2) = v|z|P
whenever either |u| > u or |z] > 4. Finally, like G;, the sequence g; is
increasing.
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Lemma 5.5 Letp > 1. For i — oo the sequence g;(x,u, z) converges to
F(z,u,z).

Proof. For every fixed 1, let w; € C§°(02) be a function such that
gi(z,u,2) > ]{ZGi(x,u,z + Dw;(y)) dy — % .
Let us consider now the metric space Wo1 ’I(Q), with the distance
d(v, w) = /Q \Dv — Dw|dz.
Applying EKELAND’s theorem (Theorem 5.6) to the functional
O(w) = ]lQG’i(w,u,z + Dw(z)) dz
we obtain a sequence v;, with
]{)Gi(x,u, z + Du(y)) dy < gi(z,u, z) + %
and such that every v; minimizes in W,''(Q) the functional
Iip) = § Gularusz+ Do) du+ ;[ 1De(s) - Duw)ldy.
Denoting by ¥ the support of v; — ¢, we get

[ 1D6(w) - Duldy < [ (z+ Dusl + |2+ Dol y
Q z

< / (¢ + €|z + Dv;|? + |2 + DplP) dy
b
and therefore, taking € small enough:
La+pumiras<Q [ a+ Doty iy,
b
In conclusion, the function v; is a Q-minimum of the functional
/(1 + |Dv|)? dz
Q
(see Definition 6.1), and hence the conclusion of Theorem 6.7 holds. Since

the sequence v; is obviously equibounded in W?(2), by the above theorem
it will be bounded in W,uP* (), for some 7 > 0, independent of i.
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Now let 2o CC , and let
Q={yeQ:|z+Dv(y)| >i-1}.

Since

(i — 1P| s/ 2+ DuilPdz < e,

Qo

we have |Q;| — 0, and therefore the sequence

/le¢|pdy§|Qi|m+f (/ |Dv,~|P+Tdy>
Q; Qo

will converge to zero.
We have therefore

1 1

gi+-> = [ Gi(z,u,z+ Dv;(y))dy
? |Q| Qo

> = [ F@,u,z+Duy)) dy
12| Jao-a;

> 2 [ Fa,uz+ Duy)) dy
12 Ja,

—i/ (1+ |2+ Dv;|P)dy.
‘Ql Q

When i — oo, a subsequence of v; will converge weakly in W1P(Q) to
a function v, whereas the last integral on the right-hand side will tend to
zero. We have therefore, taking into account Theorem 5.4:

lim g;(z,u,2) > ][F(:t:,u, z+ Du(y)) dy
i—00 Q

A

- — 1|z + Dv|P) dy
] 9—90( | )
A
ZF(x,u,z)—l—Q—l—/ (1+ |2+ Do) dy
Q-

and letting Qg tend to Q:

lim g;(z,u, 2) > F(z,u,z2).
1—00

The opposite inequality is trivial, since g; < G; < F.
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Recalling again that the supremum of a family of semicontinuous
functionals is a semicontinuous functional itself, we can conclude from the
lemma just proved that it is sufficient to prove the semicontinuity of the
functionals

Gi(u) = /Qgi(:r;, u,Du) dzx;
in other words we can suppose that the function F satisfies
v|z|P < F(z,u,2) < A(1 + |2}P)
and moreover
F(z,u,2) =v|z|P for |u| > p and |2| > u.

Since F(z, u, z) is a CARATHEODORY function, we can apply the lemma
of ScorzA DRAGONI (Lemma 4.6) and conclude that for every € > 0 there
exists a compact set K C Q, with |2 — K| < ¢, such that F' is continuous
in K x RY x R™V,

Lemma 5.6 There ezists a bounded continuous function w(t), with
w(0) =0 and such that

|F(.’L‘,U, Z) —F(y,v,z)| S W(ll' - yl + IU— ’U|)
for every z,y € K, u,v € RN and for every z € R™V.

Proof. It follows immediately from the continuity of F' and from the fact
that F = v|z|? if either |u| > p or |2] > p. g

We can now conclude the proof of Theorem 5.7.

Consider a sequence u; weakly convergent in WP to a function u.

As before, let R be a countable family of pairwise disjoint cubes @),
such that | — U;Q;| = 0. Let Z; be the center of the cube @Q;, and let

ﬁi:][ udz.

Moreover, let X and U be the functions taking, respectively, the values
Z; and %; in the cube Q);.

Starting from a given partition R, let us consider the sequence Rp,
where R}, is obtained from Rj_; by dividing every cube in 2" equal cubes,
and let X5, and U, be the corresponding functions.
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The sequences X, and U, converge almost everywhere to z and wu,
respectively; by the dominated convergence theorem (remember that w is
bounded) it is possible to choose a partition Ry in such a way that

/ |z = Xn| + |u— Oal) dz < e.
o)
We have therefore

/F(a:,uj,Duj)d:vz/ {F(z,uj, Du;) — F(Xn,Un, Du;)} dz
Q Q-K
+ / {F(z,uj, Duj) — F(z,u, Du;)} dz
K
+/{F(x,u,Duj)—F(Xh,Uh,DUj)}dfﬂ
K

+ / F(X'h,l_]h,Duj) dz.
[¢)
It follows that

/F(a:,uj,Duj)dacZ—CIQ—K|—/ w(luj; —u|)dz —¢€
Q K

+ / F(Xh,ﬁh,Du]') dz .
Q

Let now j — oo; if we remark that the last integral is the sum of integrals
over the cubes of the partition, in each of which the integrand depends only
on 2, we can apply Theorem 5.4, obtaining

liminf/ F(x,u;, Duj)dz > —c€+/ F(Xp,Up, Du)dz,
Q Q

Jj—oo
form which we arrive to the conclusion by letting first A — oo and then
e — 0.

Our Theorem 5.7 is thus proved when F satisfies the estimate

F(z,u,2) > v|z[P. To conclude the proof, it only remains to eliminate
that assumption.
For € > 0 define

Fz,u,2) = F(z,u, z) + alul® + h(z) + 2¢|z|P + M .

Since p > r, we can choose the constant A in such a way that
Fe(z,u,z) > €|z|P; for what we have proved above, the function F, will
be lower semicontinuous.
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Let now u; — u in W'll’p (€2), and let Qp CC Q be an open set with

ocC
regular boundary. Since ¢t < p*, the sequence u; will converge to u in the
strong topology of L*(£)y). We have therefore:

i—00

lim inf/ F(z,u;, Du;) dz
Q

> lim inf/ F.(z,ui, Du;)dz — lim / {a]ui|* + h(z) + M} dz — 2ce
QO 11— 00 Qo

100

i\

/ F(z,u,Du)dz — / {alu|® + h(z) + M} dz — 2ce
Qo QO

> F(z,u, Du)dz — 2ce
Qo

and the conclusion follows letting first ¢ — 0, and then letting Qo tend
to Q.

Remark 5.6 The preceding theorem does not hold if either » = p, or
t = p*. In the first case, MURAT and TARTAR [1] have shown that the
functional

/Q det(Du) dz

(n = N =2) is not continuous in the weak topology of W2 (note that the
functions det(z) and — det(z) are both quasi-convex). In the second, it will
be sufficient to consider the functional

/ (IDufP — Juf?") dz
Q

and a sequence u, converging strongly to u in W1?_ but not in Lr. a

5.6 Coerciveness and Existence

The above results can be applied to prove the existence of minima of
functionals. As we said in the preceding chapter, once the semicontinuity
has been proved, the existence of minima under suitable conditions will
depend essentially on the coerciveness of the functional under discussion.
In the preceding chapter we have seen that for the DIRICHLET problem the
coerciveness follows from estimates of the type

2P - B(2)ul’ - g(z) < F(z,u,2) < Llz[P + b(@)|ul” +g(z).  (5.36)
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Now these assumptions are quite natural for functions convex in z, much
less when F(z,u, z) is only quasi-convex, or even polyconvex. Actually, if
we consider only the DIRICHLET problem, or more precisely if we look for
coerciveness in the space

V=U+WPQ)={ve W-P(Q):v-U € Wy},
(5.36) can be replaced by
|F(z,u,2)| < L|2[P + b(z)|u|® + a(x), (5.37)
F(z,u,z) > F(z) — b(@)[u|’ — a(z), (5.38)

where, as above, § < p, b € LFE_J, a € L', and where F'(z) is a function
strictly quasi-convex in 0, that is, such that

v / Dl dz < / [E(Dy) — F(0)] de (5.39)
Q Q
for every ¢ € Wol’p (£2).2 Adding possibly a constant to the function a, we

can suppose F(0) = 0.
With these assumptions, for every u € V, setting ¢ = u — U, we have

/ IDuPde < c / \DelP dz + ¢ / \DUPP dz
Q Q Q

<ec / F(Dy)dz +c / |DU|P da
Q Q

< c/ F(z,u,Dy)dzx
Q

te / (IDUP + b(@)|ul’ + a(z)) dz .
Q
On the other hand, we get from Lemma 5.2:
/ F(z,u,Dyp)dz < / F(z,u, Du)dz + / [F(z,u, Dp) — F(z,u, Du)| dz
Q Q Q
< / F(z,u, Du)dz
Q
e / (IDu| + DU + 9(z, u))P~*| DU dz,
Q

where ¥(z,u) =: [blu|® + a(z))!/P.

8This last assumption will be discussed in more detail in the next chapter.
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Using the standard inequality AP~!B < €AP + c¢(¢) BP, we obtain

/ |Dul|P dz < c/ F(z,u, Du) dw+c/(|DU|”+a) dx
Q Q Q

+c/b|u|5d$+e/ |Du|? de .
Q Q

The last integral can be subtracted from the left-hand side; the penul-
timate can be estimated by

c/ b’ + |U|*) dz < e/ |¢|de+c/(b;% + b)) de
Q Q Q
< ce/ IDcpl”dz+c/(b55 +bU|%) dz
Q Q

< ce/ |Dul? dz +c/(bs’i—s +|UJP + |DUP) dz.
Q Q
In conclusion:
/ |DulP dz < c/ F(z,u, Du)dz + c/ (IDUP + U + b7 + a) da
Q Q Q

from which the coerciveness of F follows at once.

In any case, independently of the adequacy of the assumptions, it is
not difficult to prove existence theorems starting from the semicontinuity
Theorem 5.7, and from coerciveness assumptions of the type (5.36) or
(5.37), (5.38). The proof proceeds in the same way as for the “scalar”
functionals discussed in the preceding chapter, to which we refer for
details.

5.7 Notes and Comments

We have already said that the assumptions of convexity, policonvexity,
quasi-convexity and rank-one convexity are successively more general, being
all equivalent if either N =1 or n = 1. The existence of non-convex poly-
convex functions is easily proved; it will suffice to consider, in the case
N = n, the determinant det(z), or else any minor of the matrix z.

Examples of rank-one convex functions which are not polyconvex have
been given by TERPSTRA [1] in the case N =n > 3. The case N =n =2
was discussed by DACOROGNA and MARCELLINI [1], and later by ALIBERT
and DACOROGNA [1], who proved the following result:
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The function |2]2(|z|2 — 2vdet(2)), v € R, is:

(i) convex, if and omnly if |y| < —g-\/i,

(ii) polyconvex if and only if |y| < 1,
(iii) quasi-convex if and only if |y| < 1 +¢, for a suitable € > 0,
(iv) rank-one convex if and only if |y| < %

It is not known whether 1 + € in (iii) is strictly less than % Later,

SVERAK (1] gave, for n = N > 3, an example of a rank-one convex function
which is not quasi-convex, thus concluding the proof that the four concepts
introduced are all different. The case n = N = 2 is still open.

The semicontinuity Theorem 5.7 is due essentially to ACERBI and
Fusco [1], who obtained it under slightly more stringent assumptions.
Our proof follows that by MARCELLINI [1]. As the reader will recog-
nize, the main point of the proof consists in the estimate of integrals of
the type

/ \Duil? dz,
Aq

where A; is the set in which |Du;| > i. The proof simplifies essentially if we
only require the lower semicontinuity in the weak topology of W1-P*+€ with
€ > 0, or else if p = 1, since in both these cases the integrals in question
are equi-absolutely continuous (see Fusco [1]).

When the integrand function F = F(x, z) is independent of u and con-
tinuous in  x R™, the semicontinuity theorem continues to hold, even
for weak convergence in W' with ¢ > 2,° provided the function F
satisfies the technical condition F(z,tz) < ¢(1 + F(z,2)) for ¢ € [0,1]
(MARCELLINI {2]).

When F = F(z) is polyconvex, and n = N, we have the semicontinuity
under weak convergence in W4, with ¢ > n — 1 (MARCELLINI [2]). This
result does not hold for ¢ < n — 1 (MALY [2]).

Polyconvex integrands are of some importance in finite elasticity. If
u : 2 > R indicates the position of the point z after the deformation,
det(Du) gives at every point the ratio between the volume elements after
and before the deformation. It is reasonable to expect that the defor-
mation energy tends to infinity when det(Du) tends either to zero or to
infinity. For instance, a reasonable functional describing the elastic energy
could be

9More precisely, if ux,u € WHP and ug — u in W9, then F(u) < liminf F(ug).
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Flu) = /Q {|Duf? + g(det(Duw))} dz,

where g(t) is a convex function, tending to infinity for ¢ — 0 and for ¢t —
+o00.

The study of functionals of this type encounters several difficulties, even
in the relatively simple case in which g(t) remains bounded for ¢ — 0.
Actually, with the exception of a few special cases, the function

F(2) = |2[? + g(det(2))

does not have the same behavior from above and from below (think only
about functions like |z|2 + | det(2)|2). In these cases, (5.36) does not hold,
and will be substituted by a weaker condition such as

|2|P < F(2) < c(|2* + 1)

with p < k. This has led to a number of studies of functionals bounded
from above and from below by different powers of |z| (see for instance
MARCELLINI [4, 6]); some positive results have been obtained when the
two exponents are rather close to each other, an assumption that is not
easily satisfied in the applications. If, on the contrary, the exponents are
quite different, it is possible to find counterexamples to the regularity of
the minima, even in the scalar case (GIAQUINTA [2], MARCELLINI [3}).

Polyconvex functionals have already been described already in the book
by MORREY [3], and have been studied in detail by BALL [1}], even in
connection with problems in finite elasticity. More recently, in a series of
papers GIAQUINTA, G. MoDICA and J. SOUCEK [1, 2] have extended these
functionals to the parametric case, obtaining important results of existence
of minima.

Finally, we note that it is possible to define quasi-convexity even for
functionals depending on the derivatives of higher order (MEYERS (3],
Fusco [1], Mu and L1 [1]). It is possible to extend some of the results
of this chapter to these functionals.



Chapter 6

Quasi-Minima

6.1 Preliminaries

In the preceding chapters we have discussed the existence of minima of
regular functionals of the calculus of variations, and we have proved that
under suitable assumptions of convexity (or quasi-convexity in the case
of vector-valued functions) of the function F(z,u,z) with respect to the
variable z, the functional

F(u, ) =:/QF(m,u,Du)d:c | (6.1)

attains its minimum value among the functions of W1?(Q, RN) which take
given values at the boundary of Q (DIRICHLET problem).

The problem remains of determining if and under what conditions the
minimizing function u(z) has additional regularity properties, beyond those
deriving from its belonging to the class WP, To this problem of regularity
we shall devote the remainder of the present volume.

In order to make the results independent of the boundary value problem
(or better in order to separate the interior regularity, which does not depend
on the boundary data, from the boundary regularity), we remark in the first
place that it is possible to consider minimizing functions that are summable
only locally. More precisely, let us assume that the function F(z,u,z)
satisfies the inequality

|F(@,u,2)] < Ll + b(@)[u]” +a() (6.2)

173
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with! 1 < p < v < p*, and let u € W'lt’f(ﬂ) We say that u is a local

minimum of the functional F(u) if for every ¢ € WLP(Q), with K =:
supp ¢ CC 2 we have

F(u,K) < Flu+¢,K). (6.3)

Remark 6.1 An equivalent form of (6.2), sometimes more useful in
computations, is

|F(z,u,2)| < L[lz| + ¥z, u)]?, (6.4)

where
¥, w)?P = b(x)|ul” + alz). (6.5)
O

Remark 6.2 In the following we shall always assume that p < n. The
case p > n is simpler in many respects, since by the SOBOLEV immersion
theorem the function u belongs to every L? (if p = n) or it is Holder-
continuous (when p > n). We leave to the reader the task of making the
changes in the statements and in the proofs, necessary to extend the results
to these cases. O

As we see from (6.3), the integrals are always computed on domains
strictly contained in 2, and generally speaking a local minimum is not
requested to satisfy F(u,{) < +oo. For instance, a harmonic function in
the unit ball B is a local minimum for the DIRICHLET integral

D(u):/ |Du|? dz,
B

but it might not belong to W:2(B). This is easily seen by considering the
function of two variables (given in polar coordinates)

_ y
R e e

which is harmonic in the unit disc B,2 but whose DIRICHLET integral

dz dy
/B (= +1)2 + %2

is infinite.

1The assumption v > p is not restrictive, since for v < p we have {u|? < |u|? + 1.

2We remark that u is the imaginary part of the holomorphic function ﬁ
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On the other hand, if a local minimum u belongs to W1?({2), then u
minimizes F among all the functions v in W1P() taking on the boundary
the same value as u, that is such that v — u € Wy P(Q).

Since regularity problems are essentially local, we can always assume
that u belongs to W1P(Q) without loss of generality.

6.2 Quasi-Minima and Differential Quations

A useful generalization of the notion of local minimum is the following.

Definition 6.1 A function u € W,P(Q,R") is a quasi-minimum of the
functional F, with constant Q@ > 1 (briefly; a Q-minimum), if for every
v E VVlf)’f(Q,RN), with K =: supp (u — v) CC §, we have

F(u,K) < QF(v,K). (6.6)

If moreover u € WHP, the preceding relation is verified for every v such
that v — u € Wy P(Q, RN).

It is clear from what we have said that a local minimum is a quasi-
minimum; actually the local minima are nothing but 1-minima.

Remark 6.3 More generally, one can suppose that instead of (6.6) we
have (HoNG [1]):

Flu, K) < QF (0, K) +Q /K (IDv] + 9(z, v))P dz,
or, what is the same by (6.4):
Flu,K)<Q /K (1Dv] + 9(z, )P dz. 6.7)

We could also take the constant @ dependent on the compact set K,
without detriment for most of the results we shall prove, since as we have
remarked they are essentially of local character. Of course, in this case the
various constants entering in the statements would depend on the compact
set in question. g

The introduction of quasi-minima is justified by the following results.
Let us begin by recalling the notion of weak solution of a partial
differential equation.
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We shall consider equations in divergence form:

%Ai(m,u(w), Du(z)) — Ba(z,u(z), Du(z)) = 0. (6.8)

Definition 6.2 A function u € W,P(Q,RN) is a weak solution (or a

solution in the sense of distributions) of the Eq. (6.8) if for every ¢ €
WoP(Q, RY) we have

/Q{Afl(z, u(z), Du(z))D;p* + Ba(z, u(z), Du(z))p®}dz =0. (6.9)

Formally, Eq. (6.9) is obtained from (6.8) multiplying by ¢ and
integrating the first term by parts. On the other hand, in (6.9) we do
not assume that the function u has second derivatives, so that it makes
sense even for functions u € W'lt,’f(ﬂ) It is clear that the two forms of
the equation become equivalent if it is possible to integrate by parts in
(6.9), that is when the function u has second derivatives (and of course the
coefficients A?, are differentiable).

To show the relation between weak solutions and quasi-minima, let us

begin by examining the simple case of linear equations:
/aZﬁ(a:)DjuﬁDitpa dz=0 Ve W;%Q,RN), (6.10)
in which the coeflicients a,;(x) are bounded functions:
A = Sup [A(@)E] <M (A(z) = {ads(x)}) (6.11)
and satisfy the conditions of strong ellipticity:
aly(z)e2€) > vle?, v>0. (6.12)

Now let v € W'lf)’f(Q,RN } be a function coinciding with u outside a

compact set K CC 2. Writing ¢ = v — u in (6.10), we get:
/ aZﬂDjuﬁDiu“ dx =/ aZﬁDjuﬁDwa dx
K K
and using (6.11) and (6.12):

1// |Du|? dx SM/ | Du||Dv| dx
K K

SM(/K |Du|2dm)% (/K |Dv|2d:c)

1
2
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from which it follows at once that u is a Q-minimum of the DIRICHLET
integral, with Q = M?v2,

More generally, we can consider weak solutions of (6.9), with the coef-
ficients A% (z,u, z) satisfying the uniform ellipticity condition:

Al (z,u,2)zZ > |2|P — by (z)|u]” — a1() (6.13)

withl<p<y<p*= n—%, and the estimates

|A(z,u, 2)| < L|z[P7t + ba(z)|u|” + az(x) (6.14)

with o = 7’3;—1-.
Concerning the term B(z,u, z), we can distinguish two cases. The first,
simpler in many accounts, is that of controlled growth conditions:

|B(z,u, 2)| < H|z|” + ba(z)|u|® + aa(z) (6.15)

with 7 :pj;—1 and § = 7%.

_P_
We shall assume that the functions b and a; are positive, with a1, 27",

;ET € LY, and by, b2~ T , b2 T € L##=5. We have the following:
Theorem 6.1 Let u € WLP(Q,RY) be a weak solution of the Eq. (6.8),
with coefficients A and B satisfying conditions (6.13), (6.14) and (6.15).
Then, u is a quasi-minimum of the functional

T(u, Q) = /Q (IDul? + b()[u|" + a(z)) dz (6.16)
with
b(z) = by + T 4 BFT € L
and

a(z) = a1 (x) + ag(z) 71 +a3(w)v =T b e LY.

Proof. Letwve W'lf)’f, with K = supp (v — v) CC Q. Setting o = u—v
in (6.9) we get

/ A (2, u, Du) Dy do = / A% (2w, Du)Div® da
K K

+/ Ba(z,u, Du)(v* — u*) dz
K
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and using relations (6.13)—(6.15):
/|Du|”dm§/ b1|u|7dm+/ a1 dz
K K K
+L / \DulP=1|Do| dz + / bolul”| D dz
K K
+/ a2|Dvldac+H/ | Du|"|u ~ v| dz
K K

+/ b3|u|‘s|u——v|dm+/ asz|u — v|dz. (6.17)
K K
We have

/K |DufP~!| Dv|dz < e/K | Duf? dx + c(e)/K |Dv|P dz ;

/ ba|u|?|Dvldx < c{/ |Dv|”d:v+/ bzﬁ_l|u|7dx};
K K K
£ _
/ aq|Dv|dz < c{/ |Dv|pda:+/ a?™? dz};
K K K
/ |Du|"|u — v|dx < e/ |Du|pdw+c(e)/ |lu—v|"dz;
K K K

/ b3|u|5|u—v|dx§e/ lu — v[P” dm+c(e)/ bf'_l|u|'7dx;
K K K

/ aslu —vldz £ e/ [ — ofP" dx+c(e)/ afﬁ de.
K K K
On the other hand:

blul™ < e(y)(blo]” + blu — v]") < elu—v]"" + (v, b7 + ()bl

and by the SOBOLEV theorem:

B3
/ lu— v dz < e {/ (IDul? + |Dv?) dw} ’ / (IDul? + |Dv[P) dz.
K K K
We remark now that it is possible to assume that

/(IDU‘p+blu|7)dw>/ |Dv|? dz
K K
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since otherwise one would have trivially J (u, K) < J (v, K). It follows that
21
/ lu—v|P dz < ¢ {/ (2| Dul? + bju|") dm} / (|Duf? + |Dv|P) dz
K K K

< c(|Dulp [l 18] =) [ (Dul? +|DuP) da

Introducing all these inequalities in (6.17), after having added to both
members the quantity

JRCEE O
K

and taking e small enough, we easily get the conclusion of the theorem.
Note that the constant @ depends on u, as it is permitted, but not
on v. O

Let us come now to the second case, in which the term B(z, u, z) satisfies
natural growth assumptions:3

|B(z,u, z)| < H|z|P + a3(z) (6.18)

with 0 < a3 € L1(Q).

In this case we have a theorem analogous to the above only for bounded
solutions of the Eq. (6.9). That explains why we have omitted the term
bs|u|® in (6.18); we can also assume b; = by = 0 in (6.13) and (6.14), and
allow the dependence of the constants L, H and of the functions a; on
M = supu.

We shall consider separately the case of one equation (N =1) and of a
system of equations (IV > 1). We will begin from the first one.

Theorem 6.2 Let u(z) be a bounded solution of (6.9) (N = 1), with
conditions (6.13), (6.14) (with by = by = 0) and (6.18). Then, u is a quasi-
minimum of the functional

H(u, Q) = /Q (1Duf” + a(z)) dz, (6.19)

3The reason for this terminology lies in the fact that when (6.8) is the EULER equation
of a functional, we have A = F,; and B = F,. If the function F(z) grows as |z|?, it is
natural to expect that A grows as |z|P~1, whereas the growth of B remains the same
as that of F, that is |2|?. Whence the distinction between natural and non-natural
conditions (or conditions of controlled growth).
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where
a(z) = a1(z) + ag(z) 7T + az(z).

Proof. Let v € W1P(Q) be such that K =: supp(u — v) CC £, and
assume that |v(z)] < M =: supq |u|. Setting in (6.9)

p= (u _ ,v)+ez\(u—v)

(At = max(4,0)), and denoting by S the support of ¢, we obtain
/ A'Dsufl + AMu — )] dz
S
= / A'D[1 + Au — v)]e*@ ) dz + / B(u —v)e**) dg |
S S

where the coefficients A* and B are obviously calculated at (z, u(z), Du(z)).
Using (6.13), (6.14) and (6.18), and remembering that u — v > 0 on S, we
deduce

/S IDulP[L + Mu - 0)]*®) dz
< /Sm[l + Mu — v)]eM¥?) dg
+ /S (L|DulP~! + a2)[1 + A(u — v)]e**¥) | Dv| dz
+ /S(H|Du|” +as)(u — v)e)‘(’;'”) dzx.
Since |u| and |v| are both bounded by M, we have
/S IDuP[L + Mu — )]eX®) da
< c/Sald—}-c/S(L|Du|"’_1 + a2)|Dv| dz
+ c/s azdc + /s H|DulP(u — v)e* ) dg .

Choosing now A = H, the last integral on the right-hand side can
be subtracted from the left-hand side. Moreover, by the usual estimate
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AB < €A T + c(e)BP, we get, summing to both members the integral
Jsadz:

/(|Du|” +a)ds < c/ (IDvf? + a) dz. (6.20)
S S
Similarly, choosing

Q= (’U — u)+e)\(v—u)

we obtain the inequality

/(|Du|” +a)de < c/(]Dv|” +a)dz,
T T

where T = suppy. The conclusion follows summing the above inequality
with (6.20).

Finally, if v does not verity the relation |[v] < M, we set v =
min{M, max{v, ~M}}, and we conclude immediately

H(u, K) < H(3,K) < H(v,K)
since | D] < |Dv. O

Example 6.1 (FREHSE [3]) We remark that in the preceding theorem
the assumption that u is bounded is essential. Actually, as we shall see
later, in the scalar case (IV = 1) every quasi-minimum of the functional X
(or more generally of any regular functional F) is Holder-continuous, and
hence in particular it is bounded. On the other hand, the function

u(z) = 12 log log |z|™*

is a solution of the EULER equation (in short, an eztremal) of the functional

1
F(u) = /D {1 + T+ e (log a2 } |Du|? dz

in the disc D C R? of radius e !.

Remark 6.4 If N =1, we can consider a subsolution of (6.9), that is a
function u(z) satisfying the inequality

/Q{Ai(m, u(z), Du(z))D;p + B(z, u(z), Du(z))p}dz <0 (6.21)
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for every ¢ > 0. If u is a bounded subsolution, we can repeat the preceding
proof,* and conclude that u is a sub-quasi-minimum of the functional #,
or in other words that

H(u, K) < QH(v, K)

for every v < u, with K =: supp (u — v) CC Q.
Similarly, a bounded supersolution of (6.9) is a super-quasi-minimum

of H. O

When, from a single equation, we pass to systems of equations, the
boundedness of the solution is no longer sufficient. Actually, already for
N = n = 2 there exists systems satisfying the conditions of the preceding
theorem, and possessing bounded discontinuous solutions, as one can see
in the following example.

Example 6.2 (FREHSE [2]) The function

1

sin loglog—)
( ||

S (l g log ! )
cos | loglog —
||

is a weak solution in R? of the system

u(z) =

Au® = B%(u, Du), (a=1,2)

ul + u?
B(U,Z)=—< 2 1>1Z|2,

u® —u

with

verifying natural growth conditions with p = 2. We shall see later in
this chapter that every quasi-minimum belongs to W'I})’Cp*'e for some € > 0.
Therefore, if the function u above were a quasi-minimum, it would belong

to VVl})’cHE, and by SOBOLEV theorem it would be Hélder-continuous.
Theorem 6.3 Let u € W,iP(Q) be a weak solution of the system (6.9),

loc

with coefficients satisfying natural conditions (6.13), (6.14) and (6.18). Let
M = sup|u|, and assume that

SMH(M)<1. (6.22)

Then, u is a quasi-minimum of the functional (6.19).

40f course, in this case a lower bound for the term B is sufficient. Moreover, in the
case of controlled growth we can omit the assumption that u is bounded.
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Proof. Let as usual v € W'I})f(Q,RN), with K = supp (u —v) cC Q. If
|v] < M, we can take ¢ = u — v in (6.9) and make the usual estimates,
since the term on the right-hand side containing |DulP can be subtracted
from the left-hand side by virtue of the assumption 2MH(M) < 1.

Now let v be an arbitrary function, and let

v if v <M,
7=

My if [v] > M.

ol

We have 7 < M and |Dv| < 2|Dv|, and hence
H(u,K) < QH(7, K) < 2°QH (v, K)
from which the conclusion follows at once. O

Remark 6.5 It is clear that the preceding theorem remains valid if in-
stead of M = sup |u| we take M = sup |u — a| for an arbitrary a € RV. In
particular, we can take M = fosc (u), where osc (u) is the oscillation of w.

If u is a continuous function, (6.22) is satisfied automatically, provided
K = supp (u —v) is small enough. Consequently, every continuous solution
of (6.9), with natural growth conditions (6.13), (6.14) and (6.18), is a quasi-

minimum of the functional H in the small. In formulas, it will result in:
H(u, K) < QH(v, K)

whenever diam (K) is less than a constant €y depending only on the modulus
of continuity of u, with @ independent of €p.

This will be largely sufficient to prove all the results of local character,
the regularity in the first place. Needless to say, the continuity of u is
automatically guaranteed by the SOBOLEV theorem if p > n.

The preceding example shows that Theorem 6.19 cannot hold without
the assumption MH(M) < 1, even if p = n. It is not known whether it is
possible to replace (6.22) with the weaker assumption M H(M) < 1. O

Example 6.3 (DE GioRratl [5]) Contrary to what happens in the scalar
case,” when N > 1 the quasi-minima (and even the minima) of functionals
are not necessarily bounded functions. For instance, if n = N > 2, the
function

*z) = zo)x| ™" fczﬁ S
u(z)— Ot|1 3 2{1 \/m}

5See the next chapter, in particular Theorem 7.4.
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minimizes the functional
F(u,B) = / AY (2)D;u*DjuP dz,
with
AY(@) = 6apbij + [(n )i +nT°I”;}] [(n 2)ds; +n“”l"|;]

among all functions taking the value z on the boundary of the unit ball B.

The proof begins with the remark that the functional F is convex, and
hence u is the (unique) minimum of F if and only if it is solution of the
EULER equation

/BAZ[;(:E)D,-u"ngoﬂ dz =0 (6.23)
for every ¢ € Wy (B, RN).
In our case it is easy to verify that
D;{AY,(5)Dau?] = 0

in B — {0}. By consequence, (6.23) is satisfied for every with support in
B — {0}.

Assume now that ¢ has support in B, and let 7 be a function of class
C®(B), with0<n<1,7=0in Bg,n=1in B — Bag and |Dn| < 2/R.
The function 7p* has support in B — Bg, and therefore we have

0= [ A%, @Dw"D;(ne)do
B

= /BnAfljﬁ(z)Diuangoﬁ dz+/ ﬂA’ﬁ(:L')D u*Djndzx.

The last integral can be estimated by

/. % n—2
¢ (/ | Dul? dm) RT,
B
and hence it tends to zero with R. Passing to the limit in the preceding

relation, we get (6.23) for every ¢ € C§°(B,R¥), and therefore for every
o € WL2(B,RN).

A second example of quasi-minimum arises from gquasi-regular map-
pings. We recall that a map u : @ — R™ is quasi-regular if there exists a
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constant A > 0 such that
|Du|™ < Adet(Du).
If, moreover, u is a homeomorphism, the map is called guasi-conformal.

Theorem 6.4 A quasi-regular map u € WH™(Q, R") is a quasi-minimum
of the functional

/ |Du|™ dz .
Q

Proof. Let ¢ be a map from Q to R™, with support K CC 2. We have

/ det(Du) d:l:=/ det(Du + Dy)dr < c/ |ID(u + ¢)|" d=

K K K

and the conclusion follows immediately from the definition of quasi-
regularity. |

Example 6.4 Another example of a quasi-minimum comes from minima
with obstacles. Let 1¥(z) be a function in W?(Q), and assume that u €
W'lf)cp(ﬂ) satisfies the inequality u(z) > ¥(z) in Q, and moreover

F(u,K) £ F(w, K)

for every w € W2P(Q), with K = supp (u — w) cC  and w > . In other

loc
words, u minimizes the functional F among all the functions whose graph

lies above the obstacle 1.

Now let v be a generic function in W'l})f(Q), (which in general does not

lie above the obstacle), with K = supp (v —v) CC Q. Setting L = {z € Q:
v(z) > ¥(z)} and w = max{v, 9}, we have®

Fu,K) < Fw,K) = Fo,KNI) + F, K - %)
<F,K)+ F(4,K),
and hence, adding to both members the term F(, K):
G(u, K) < 26(v,K),

where we have set

G(u, A) = /A [F(z,u, Du) + v(c)] da

6For the sake of simplicity, we assume that F(z,u, z) > 0. See, anyway, Remark 6.6.
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and

V(z) = F(z,9(z), Dy()).

It is immediately verifiable that F(z,u, z) + y(z) satisfies the same es-
timates (6.2) as F, with a + - instead of a. In conclusion, a minimum
(and also a quasi-minimum) of the functional F, with obstacle 1, is a free
quasi-minimum of the functional G.

In the vector case, a similar conclusion can be obtained for the minima
of F confined in a convez region ©. More precisely, let ©® be a convex
domain of RY with regular boundary, and let u € W,2P(2) be a function
with values in ©, such that for every w with values in ©, coinciding with u

outside a compact set K, it holds that
Flu,K) < F(w,K).

We can suppose that © contains the unit ball B. For |§] # 0, let
R(¢) > 1 be such that £¢|~'R(£) € 80. The function R(£) is regular in
R™ — {0}, and in particular its derivatives are bounded on 9B.

Let now v be a generic function of W,5?(Q), coinciding with u outside
K. Setting

v ifveo®,

I-Z—lR(ﬁ) ifvg o,

we have w € © and hence, since w < v and |Dw| < ¢|Dv|:

w =

F(u,K) < Flw, K) < Q/K(lel + 9z, v))P dx..

As we shall see (see later, Remark 6.9), the above relation is sufficient
to prove the results of this chapter.

Remark 6.6 The functional
T(,9) = / (IDuf? + bluf” + a(z)) dz
Q

is typical in the theory of quasi-minima, since it is possible to reduce to it
all the integrals of the type

f(u,ﬂ):/F(z,u,Du)dm,
Q
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when the function F(zx,u, z) satisfies the inequalities
|z|P - blu|” — a(z) < F(z,u,2) < L|2|P + blu|” + a(z) (6.24)

with L >1,0<a € L}(f), v < p* and b € L7,

More precisely, if u is a Q-minimum for F, then it is a Q-minimum (with
a different constant Q) for the functional 7. Vice versa, a Q-minimum for
J is also a @-minimum for F + [(bju|” + a) dz.

The proof follows the same lines as that of Theorem 6.1. Taking any
function v such that u — v has support K CC {2, we have

/ (IDuff - blu|” — a)dz < / F(z,u, Du) dz
K K

F(z,v, Dv)d

<@ [ Plev.Duds

< Q/ (L|Duf? +blo[” + a) de
K
and hence
T, K) < M/ (IDwfP + blo|” + bluf” + a) do
K

and the conclusion follows as in Theorem 6.1.

We remark however that the lower estimate in (6.24) is natural in the
scalar case (N = 1), much less if N > 1. As we shall see, it will be possible
to substitute it with a less restrictive assumption. O

6.3 Cubical Quasi-Minima

A definition more general than that of quasi-minima is the following, which
involves only integrals on cubes of R™.

Definition 6.3 Let Q > 0. A function u € W'l‘l)f(Q,RN) is caolled a

cubical @-minimum for the functional F if for every cube Qr C § and for
every ¢ € Wy'P(Qr, RY) we have

F(u,Qr) < QF(u+ ¢, QR).

In a similar way, considering balls of R™ instead of cubes, we could
define spherical quasi-minima; in general one can define a quasi-minimum
with respect to a one-parameter family of relatively compact homothetic
domains.
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It is clear that a Q-minimum is also a cubical, or spherical Q-minimum.
In dimension n > 2, the two notions do not coincide, as can be seen from
the following example.

Example 6.5 (GIAQUINTA and GIUSTI [4]) Let n > 2 and let u(z) be

a homogeneous function of degree 3, 0 > 3 > 1 — 2, regular in R™ — 0,

without stationary points, and non-constant on the boundary of any cube
of R™.7
We shall show that u is a cubical @-minimum of the DIRICHLET integral

/ \Dul? da.
Q

It will suffice to prove that in any cube Qg = Q(zo, R) we have

R |Du|?dz < c/ [u — upQp|*dHp-1 (6.25)
Qr 9Qr

since by (3.42), if v = u su Qg we have

| tu-uagaPdtiny = [ v vaguPdHn-s
oQr Qr

<cR |Dv|2d:c.
Qr

We can reduce to the cube @ = Q(0, 1) setting o = Ryp and = = R(yo
+ y). Taking into account the homogeneity of v and Du, (6.25) becomes

| 1Dutvo+ )2 dy < { ][ (o + ¥)PdHo-1 ()
Q oQ

- ( ]{3 Qu(yo +y)dH, 1 (y)) 2 } (6.26)

Let F(yo) be the quantity on the left-hand side of (6.26), and let G(yo)
be that within parentheses on the right. Both F and G are continuous
positive functions, since u is not constant on the boundary of any cube of
R™. The ratio F/G is therefore bounded on compact sets and we must only
investigate its behavior when yo — 0o. We have for every y € Q:

ulyo +9) = u(w) + (Du(yo), ) + 5{D*u(wo)y, ) + Ollyol?~)

Du(yo + y) = Du(yo) + O(lyo|"72) .

7 An example of such a function is u(z) = |z|P.
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From the last equation we get

F(yo) = |QIIDu(yo)* + Olyo|* %),
and from the first:

lu(yo + »)I? = [u(wo)|* + (Du(yo), v)* + 2u(yo)(Du(yo), ¥)

+u(y0){D%u(y0)y, y) + O(lyo[* %),

and

£ o+ 9)dHans) = uloe) + 5 (D*ulvo)yrv)dHnms
aQ aQ

+0(|yol”~?).

It follows:

Glyo) = ]{)  (P(30), )4 H 1 0)O (ol )

> ¢/ Du(yo)|* + O(lyo|*~?).

We remark now that since Du is homogeneous of degree 8 — 1 and is
never zero, we have |Du(yo)| > c|yo[°~!, so that in conclusion the ratio
F/G is bounded, and the function u(z) is a cubical Q-minimum for the
DIRICHLET integral.

On the other hand u is not a @Q-minimum, since the function v =
min{u, 1} is different from w in the unit ball B, and [ |Dv|*dz = 0,
whereas [ |Du|?dx # 0.

As we have already remarked, the lower inequality (6.24) is rather
restrictive, in particular when we are concerned with functions u with values
in RY. For example, if n = N = 2, it is not satisfied by the function

F(2) = |2|* + 2 det(2) . (6.27)

In fact, condition (6.24) is appropriate in the case of functions F(z, u, 2)
convex in 2z, much less so when F is only quasi-convex, as in the above
example. In this case, it will be preferable to introduce a condition less
simple but more general.

The following definition is a reinforcement of quasi-convexity.

Definition 6.4 We say that the functional

.7:'(u,Q)=/nF(a:,u,Du)dx
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is strictly quasi-convex in (2o, uo,20) € @ x RY x R™V if there exists a
constant v > 0 such that for every ¢ € Wol P(Q,RY) we have

/ [F(x0,u0, 20 + D) — F(zo, uo, z0)| dx > 1// |DelP dz . (6.28)
Q Q

Correspondingly, the function F (z,u, 2) is said to be strictly quasi-convex
in (zo, ug, 20).

Finally, we say that F is strictly quasi-convex if it is so everywhere,
with the constant v independent of the point (o, uo, 20).

Let us now consider a function F(z,u, z) satisfying the estimate
|F(z,u,2)| < c(|z| + ¥z, u))P (6.29)
with
Nz, u)? = b(z)|ul” + a(z) .

Instead of (6.24) we shall assume that there exists a function F(2),
depending only on 2 and strictly quasi-convex in 0, such that for every
(z,u,2) € Q2 x RY x R™V we have

F(z,u,z) > F(z) — 9(z,u)P. (6.30)

Adding possibly a constant to the function 9, we can assume that
F(0)=o0.

We remark that since |z|P is strictly quasi-convex in 0, (6.30) is really
more general than (6.24); actually it is satisfied by the function (6.27).

Concerning the exponents p and «, and the functions b(z) and a(z), we
shall make the usual assumptions:

i) 1<p<n, ps~y<p*=—np_”p, (6.31)

(i) b()eL#, a(z)eLl. (6.32)
The following theorem holds:

Theorem 6.5 (CACCIOPPOLI’s inequality) Assume that the function u €
Wir(Q,RYN) is a cubical quasi-minimum for the functional

Flu, Q) = /Q F(z, u(z), Du(z)) do (6.33)



Quasi-Minima 191

with F(z,u,z) satisfying (6.29) and (6.30) above. There exists Ry > 0,
depending only on u, such that for R < Ry and Qpr CC ) we have:

* 1
/ (1Dul? + {ul? )dz < C{ﬁ/ |lu — ug|P dz
QR/2 QR

Qx| (]i)n|uldx)p* +/Qﬁgda:} (6.34)

and moreover

f (IDupP + [uf"") da
R/2

<e { (ék(muw Py dm) ", ]ng(x) da:} . (6.35)

- - ==
wherem*p—:_';<1 and g =a+ b7 7.

Remark 6.7 The reader can easily convince himself that the same result
holds for spherical quasi-minima, and in general for quasi-minima relative
to a general family of neighborhoods, provided each of them contains a cube
(21 and is contained in a cube Q9 with the ratio of sides bounded.
Moreover, it continues to hold if instead of quasi-minima we deal with
functions satisfying (6.7) with K = Qg. O

To the proof of Theorem 6.5 we shall premise the following:

Lemma 6.1 Let Z(t) be a bonded non-negative function in the interval
[0, R]. Assume that for ¢ <t < s < R we have

Z(t) < [A(s —t) ™ + B(s — t) P + C] + ¥Z(s) (6.36)
with A, B,C>0,a>8>0and0<9 <1. Then,
Z(0) < (o, W) AR~ 0)™ + B(R-0)? + ). (6.37)
Proof. Consider the sequence t; such that ty = p and
tivr —ti = (L= AN (R - o)

with 0 < A < 1.
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From (6.36) by induction we get

A n B
A-X*(R-0> (1-XP(R-0)

Z(0) <9 Z(ts) + [ 5+C

k-1
X Zm‘,\-i“.
i=0

Now choose A in such a way that A=*8# < 1. The series on the right-
hand side converges, and therefore passing to the limit for & — oo, we get
the conclusion with ¢(o, ¥) = (1 — A)7*(1 — 9A~*)"1.

We can now prove the theorem. Let Qgr be a cube strictly contained
in ©, and let R/2 <t < s < R. Let n(z) be a function in C§*(Q;), with
0<n<1,n=1in Q. and |Dy| < -%. Denoting by u, the average of u

in Q:
Usg =][ udz,
8

we set ¢ = n(u — u,;). We have
v / IDelP dz < / F(Dy)dz < / F(z,u, D) dz + / ¥z, w)P do
Qs Qs Qs

= F(z,u, Du)dz —I—/ [F(z,u, Dp) — F(z,u, Du)| dz
Q-!

Qs
+/ Wz, u)? dz. (6.38)
Qs

Now let v = v — ¢ = us + (1 — 7)(u — u;). From the quasi-minimum
property of u and from (6.29) we have

F(z,u,Du)dz < c/ (|Dv| + ¥z, v))P dz. (6.39)
Qs Qs

We remark now that Dy = Du in @y, and therefore the second integral
on the right-hand side of (6.38) can be estimated by

/ _Q (IF(z,u, Dp)| + |F(z,u, Du)|) dz

</ (IDul? + | Dl + 9(z, w)P) dz .
s_Qt
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Introducing these relations in (6.38), we get

/ |DulP dz < c/ |Dul? dz + c/ | Dv|? dx
t s“Qt Qs

+ / Oz, u)? + ¥z, v)P) dx
< c/ |Dul? dx + c/ | Dv|P dx
s_Qt Qs

+e [ fale) + @l + )de. (6.40)
Qs

We now add to both sides an |u|P” dz, and we use the inequalities
|DvfP = |(1 = n)Du + (u — u,) Dnf?
< ¢[(1 = mPIDulP + (5 — ) Plu — u, ]
and
blul” < ¢ (Jul”” +85 ),

as well as |v| < |u — u,| + |ug| and |u| < |u — ug| + Ju,s|. We obtain thus

/ (|DuP + |u|P") dz < c{/ |Du|P dz + —1——/ |t — u,|P dz
Q Q.-Qu (s =1)7 Ja,

[l o Qi+ gdm}
Qs Q-’
(6.41)

with g=a-+ bP‘/(P'—‘Y)_
On the other hand:

*

/Qs |u — ue|P" dz < ¢ </Q |Du|rdx>Pp— = X(S)/Q., |DulP dz,
X(s) = ( / 1Dup dx)p/("_p)

is infinitesimal with s. It follows that, taking R (and therefore s) small
enough, this term can be made smaller than ¢ st |DulP dz, which in turn,

where
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choosing suitably € > 0, can be subtracted from the left-hand side, leaving
on the right the quantity

/ ol |DulP dz .

We arrive thus at the inequality

/ (1Dl + |ufP") dz < c{/ \DulP dz + ;/ lu — P dz
Q Qo-Q: (s—t) Jo,

- 1Qulluel” + / gdz}.

8

Moreover, since we have

/ |u—us|”da:§c/ |lu — ugl? dz,
Qs QR
|us|§2"][ lu| da,
Qr

(remember that s > R/2), we get

/Q (IDuP + ") da < { /Q (DU + ) e
t s —t
+ 1 / |lu — uglP dz
-— — UpR
(S_t)p Qr

+1Qr| <]{?R|u| d:c)p‘ +/Rgdm}.

We now use the “hole filling” method by WIDMAN [1]. We add to both
sides the quantity

c [ (DuP + fup") do
Qt
and divide by ¢ + 1; we obtain

. x 1
/ (|DulP + JulP") dz < 19/ (|DulP + [u|P") dz + G t)P/ |u — up|P dx
t Qs - QR

+|Qr| (]{h]u|dz)p‘ +/Rgdm

with 9 =: c-i—Ll < 1.
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Applying Lemma 6.1, with
26) = [ (DuP + ) ds
Q:

and

o
A= [ w-unPds, B=o0, o=ul({ nide) + [ gas,
Qr Qr R

we obtain immediately the inequality (6.34).
In order to get (6.35) we must estimate the right-hand side of (6.34).
Setting p, = £, we have (p.)* = p, and hence, by the SOBOLEV—

) n+p?
POINCARE inequality (3.32):

2
/ lu—uplPdz < c (/ | DufP- dw) e (/ | DufP™ da:)
Qr Qr Qr

3 —_— n
with m = i

On the other side we have p*m > 1, and therefore

1
][ |u| dz < <][ |u[P"™ dm)p .
Qr Qr

Introducing these two inequalities® into (6.34) we get easily the required
estimate (6.35). o

3

Remark 6.8 In what follows we shall need the above theorem also in
a slightly different form. We begin from (6.40), and we estimate |Dv|P as
above, and

ol <e(fu]” + Ju —us).

We have now

/Q’ b(z)(|u — us|")] dz < (/Q e — g P dw) &

< ( [, G- 2 .

< c§(s)/Q | Dul|? dz

81f p. < 1, the preceding inequalities continue to hold with m = %.
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with
2

n

) = ( [ 0@~ wp)3 as)

CNF e R
<c (/ |u|P dx) (/ be¥ dm)
QB Qa

< cflull5- bl s™

If we choose R (and therefore s) small enough we have c£(R) < 1 and
hence we can subtract the corresponding term from the left-hand side of
(6.40), getting

/, IDufPdz < c (/Qer |DulP dz + ﬁ /Q., u— usf"dx)

te /Q (@(e) + b(a)lul) de. (6.42)

We can now argue as in Theorem 6.5, and we can conclude that

/ {Du|pdx§c{—R1;/ |u-—uR|”da:+/ (a+b]u|7)dx}.
QRry/2 Qr Qr
(6.43)

d

Remark 6.9 We note that the above theorem remains valid if we only
assume that u verifies

F(u,Qr) < Q/Q (| Dv| +19(m,v))"dm+e/ |Du|P dz

Qr
for every v with u — v € Wy'P(QRr), provided ¢ is small enough. a

Remark 6.10 If the function F(z,u,z) verifies (6.29) and (6.30) with
v <pandbe L7= (in particular this happens if b = 0), inequality (6.34)
takes the simpler form

/QR/2 ]Dulpsz_c{%/QR |u—uR|pdx+/Rada:
P
+|Qrl (]{2 Jul da:) } (6.44)

and holds for every R < Ry, with Ry independent of u.
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Actually in this case we can avoid summing to both sides the quantity
|u[P”, and the term bju — u,|7 can be estimated by c(bFI;*f + |u — uql?).
The integral of the last quantity can be estimated by means of POINCARE’s
inequality (3.33), and can be subtracted from the left-hand side if R is small
enough, independently of u.

If moreover b = 0, (6.44) holds without the last term on the right. In
particular, this happens when u is a bounded function, since in this case
¥z, u) can be considered as a function of z only. This always happens
if p > n, since by SOBOLEV theorem (Theorem 3.11) the function u is
Holder-continuous. O

6.4 LP Estimates for the Gradient

Setting f(z) = |DulP + |u[P" and writing 2R instead of R, inequality (6.35)
becomes:

QRf(:E) dr < c{( memdm) " + ][2Rg(z) dm} . (6.45)

The purpose of this section is to show how (6.45) implies higher
summability of the function f, and hence of the derivatives of u, under
the assumption that the function g belongs to some L™, with r > 1.

For that, let us begin by considering the case of functions f and g defined
in the cube Q =: Q1. Let d(x) = dist (z,8Q), and for k = 0,1,2,...

define
2—k}.

Each shell Cy can be divided into a finite family Gy of equal cubes, each
of side &5 = %2”’“‘1. If to the union of these cubes we add the cube Q; 4
concentric to @, we obtain the whole Q.

Assume now that (6.45) is satisfied for every cube Q2r CC Q. If P is
a cube, we denote by P the cube concentric to P and with double side, so
that (6.45) becomes

][I;f(w)deC{<fpfmdx>#+]€agdw} (6.46)

for every P such that P cc Q.

] w

Cy = {x €Q: %2*"1 <d(z) <
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If in addition P C Cy, we have 13—62“'c <d(z) < %2"“ for every x € P,
and therefore in particular P CC @, and

ﬁF(z)deB{(ﬁF’”dm)#+]{3de}, (6.47)

where we have set
F(z) =d(z)"f(z); G(z)=d(z)"g(z).
It is easy to check that (6.47) holds also for P C Q4.
Lemma 6.2 For every t with

t>ty=: dz,
> 1o ][Qf(m) X
setting
O ={zcQ:F(x)>t}; TIi={recQ:G()>t}

we have

Fdr<c {tl“m F™dg +/ Gdaz} . (6.48)
o, 8, T

Proof. Let s = At, where A is a constant that we shall fix during the
proof. If P € G we have

s> )\]gf(a:) do > A%]{)f(x) do

> /\4'"][PF(:E)da: > ]{JF(x)dm,

whenever A > 4”. The above relation remains valid if P = Q4.

To each of the cubes P we can apply CALDERON-ZYGMUND theorem
(Theorem 2.10). In this way we obtain a countable family {Q;} of disjoint
subcubes of @, such that

s<][ F(z)dz €£2"s
Qj

and F(z) < sin Q — UQ;.
From (6.47) we infer that either

]{2 P@)dz<2B <]2 P dm) (6.49)

J

i
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or

F(z)dz < 2B][~ Gdz. (6.50)
Q; Qj

In the first case, we have

1
s<2B Fmdm}
Q;

™0, < (2B)m/_ Fda.
Q;

and therefore:

Moreover, from the inequality

 Frdz< / F™dz + Q)]
Qj Qjﬁq)t
we deduce, provided (2B)™A"™ < 1

Q5] < 2(2B)ms_"‘/ F™dz. (6.51)

QNP

If instead (6.50) holds, we have
s|Q5] < 2B/ Gdz
Q;
and consequently

|Q;] < 4Bs™! / Gdz. (6.52)

Q;Nly

In conclusion, we have in any case:

IQJI < ¢ tl‘m/_ Fmdcr:+/_ Gdzx | . (6.53)
s Q;nd, Q;nd:

Let us now evaluate the integral of F' over ®,:

/deSZ/ Fdz <2"sy_|Qj|
s j=17@; j=1

8

<2%s . (6.54)

2

il

Qs
1
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We want to estimate the last quantity by means of (6.53). For that, we
apply Lemma 2.4 to the family {Q;}, and we obtain a countable subfamily
of pairwise disjoint cubes {II;} such that, denoting by P the cube concentric
with P and of quintuple side,

UQJ' C UI-L‘ .
We have therefore
U@l < 5™y |m,
i=1

from which, recalling that the cubes II; are disjoint, and using (6.53) and
(6.54), we get:

Fdzr<c {tl_m Fde+ | G(x) d:c} .

[ d; T

On the other hand, we also have
/ Fdz < st™™ Fhdz <et!™™ F™dz
Q’t—@, d’t

from which (6.48) follows. a
We need now the following:

Lemma 6.3 Let h > m >0 and let F € L*(Q). Setting

(t) = Fmdz,
a(t)

we have

Fhdz = — / th=™ dp(t) .
[ T

Proof. We can assume that F' is bounded, and that ¢(t) is continuous
at the point 7, since the general result follows by approximation. We have

/thx=7'h_m/ F’"dw+(h—m)/ F™dx
b, &, &,

F(z)
X / th-m14t.
T
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On the other hand, if x; is the characteristic function of ®;, we have

F(z) oo
F™dx / th-m"1dt = [ F™dzx / th=m=ly,(x) dt
29 T -3 T
o0
= / th-m"1dt [ F™dz
T [

x>
= / th=m=1p(t) dt

and the conclusion follows by integration by parts. O

With the preceding notation, (6.48) can be written in the form

- /t T dp(r) < A0 + ()], (6.55)

where

w(t)= [ Gdz.
e

Proposition 6.1 (GEHRING [1]) Assume that ¢(t) is a decreasing func-
tion in [a, -+-00), infinitesimal for t — +o0, and verifying (6.55) withm <1
for every t > a. There exists a real number r > 1 such that

o0 (e o]
—/ v dp(u) < —2ar_1/ ur=™ dip(u)

—24 / 1 dw(u). (6.56)

Proof. Let us begin by assuming that ¢(s) = 0 and w(s) = 0 for s > k—1.
For g > 0 we set

k
I(s) = — / wdp(u); Iy = I(a);

Qq=—/aku‘1dw(u).

We have

k k
Iiem = _/ u" "y d(p(u) = _/ ur—ldll—m(u)

k
=a" g+ (r 1)/ U2 () du.
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The last integral can be estimated by means of (6.55):

k k

u" " o(u) du + /

a

L <a™ 'L+ A(r—1) </ " 2w(u) du) .

On the other hand, integrating by parts, we get

T—m Ir_m

k
I._ a
r—m-—1 r—m
du = - <
/au iplu) du r—m r—m<p(a)_r—m
and similarly

k
/ u " 2w(u) du < -1 :

r—1

it follows that
r—1 r—1
Ir—m S a Il—m + A—Ir—m + AQT—]. .
r—m
If we assume now that A(r —1) < %5™, we conclude that
Ir-—m S 2alr—_l-[l—m + 2AQT—1

and (6.56) is proved when ¢(t) = w(t) = 0 from some point on.
In the general case, we remark in the first place that

T T
- [ stmdpts) 2~k [ dpls) = K mp(k) = (D)
so that, letting T' — +o0:
—/ ™ dp(s) > —k (k). (6.57)
k

Now setting

o(t) ift<k,
t) =
ot { 0 ift>k

(and the analogue for wy), and taking into account (6.55), we get for t < k:

00 k
—/]t s dypr(s) = —/t s ™ dyp(s) + k"™ p(k)

< [T ae(s) < AT () + ).
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The preceding relation obviously remains valid for t > k. For what has
been just proved, we therefore have:

—/ s M dpr(s) < =227t —/ s1=™ dpy(s) —ZA/ s Y dwg(s)

oo o0
< —2a""1 - / s dy(s) — 2A/ s" L dw(s)
a a
and the conclusion follows letting k — +o0. O

A simple application of the preceding proposition to Lemma 6.2 leads
directly to the inequality

/Frdw§2ar_1/ Fdz+24 | G'dz,
¢d a Fa

with a = 752 fdz.
On the other hand

/ F’dwﬁar‘l/ Fdx,
Q-%. Q-%.

and therefore in conclusion
/ Frdz < 2ar_1/ Fdr+ 2A/ G"dx. (6.58)
Q Q Q

Coming back to the functions f(x) and g(z), we find:

Td r—1 d "d
Ql/zf wSc(a /Qf m+/Qg :1:)

"d d Tdzx o . .
Ql/2f zSc{(fo a:) +]{29 m} (6.59)

If instead of the cube @ of side 1 we deal with a cube Qg of side 2R,
we obtain by means of a simple homothety:

or else

Theorem 6.6 (GIAQUINTA and G. Mopica [1]) Let f € L*(Qr), and
assume that for every cube Q C QQ CC Qr we have

fo(x) dr < B { (]gf’” dx) " + ]{?gdm} (6.60)

with 0 < m < 1. Assume that the function g belongs to L*(Qgr) for some
s> 1.
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Then there exists an r > 1 such that f € L"(QR/2), and moreover:

[ s C{(][Rfdx)T +ngr dz}, 61

Corollary 6.1 The conclusion of the preceding theorem holds if we re-

place assumption (6.60) with

][Qf(a:)dxSe]{Qfda;-k-B{(f)‘Qfmdx)%+£\qu:}:} (6.62)

with A > 1, provided € is less than a number ¢y depending only on n and A
Proof. Lett < s < R. The cube Q; can be covered by cubes Q; of side
r = 232 in such a way that at most N(n, \) cubes AQ; intersect. The total
number of the cubes Q; does not exceed c(s — t) ™" (At)".

From (6.62) for Q; it follows

1
fdmge/ fdx 4+ e\ (s —t)" = (/ fmdx) +c/ gdx.
Q: AQ; AQ: AQi
Summing over i we get:
e
/ fdzgeN/ fdz+c(A)t (s —t)~= (/ f’"dz) +cN | gdx
t Qa Qs Qa

and if R<t < s<2R,
i
/ fdo <N [ fdateQ)R"(s—t)F (/ f’"dw) +eN [ gde.
t Q2r

If eN < 1 we can apply the Lemma 6.1, getting

fd:z:Sc(n,/\){( fmdm);+][ gdm}
Qr Q2r Q2r

so that we are reduced to Theorem 6.6.

Applying the preceding theorem to quasi-minima we obtain

Theorem 6.7 Let u : @ — RN be a cubical quasi-minimum for the

functional

Fu,Q) = LF(x,u(m),Du(m)) dz,
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and assume that the hypotheses of Theorem 6.5 are satisfied, in particular
F(2) = 9(z,u)? < F(z,u,2) < c(|z| + 9z, u))?

with F(2) strictly quasi-convez in 0, 9(x,u)? = b(z)|u|” + a(z), and with
the functionsbe L%, o > ;,,3:—7 anda € L?, s> 1.

Then the function |DulP + |u|P" belongs to L}, () for some r > 1, and
moreover for every cube Qr C Q2r CC ) we have:

][ (1DufP + [uf?")" de
Qr

<ec { (][Q 2R(]Du|” + JulP) dz)r + ]{2 - g da:} , (6.63)

where g = a + bet .

Remark 6.11 If we use the estimate (6.43) instead of (6.35), and we
take into account that the function g(z) = a(z) + b(z)|u|” belongs to L™
for some r > 1, we get the inequality

|Du|Pdz < ¢ <][ |Du|P dsc>
Qr Q2R

+ c][ (a(e) + b(@)[ul")" de. (6.64)
Qar O

Remark 6.12 The estimate (6.63) can be further ameliorated. We have
actually

J[ (IDul? + [ul?")" de
Qr

< c(g) {(fq (D + IUI"')"dw)g + ]2 7 dz} (6.65)

for every ¢ > 0 and every cube Qg C Q25 CC 2.
Setting ¥(z) = |DulP + |u|P", let y € Qqp, and write (6.63) for the cube
of radius R = 1_—539 and center in y. We have

/ Y dz < (1 — a)g]"t ") / Ydo
Q(y,15%0) Qy,(1-a)e)

+c/ gdz.
Qy,(1-a)e)
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The cube Q4, can be covered by cubes of that sort, in such a way that
only a finite number N (independent of &) of cubes of double side intersect.
We then have:

- Y de < C[(l _ a)g]n(l—T) (/Qe’d)dx> +c/ gdz.

e

On the other side

1—¢q r—1

./dex§</Q wrda:>r_q (/ wqdm>r—q

so that, setting s = g, t = ap and

Us:/ W dx
Qs

we have

r!l—q! T::;
Ut S C(S _ t)’n(l—"‘)Us T—q (/ 'l,[)q d$) + C/ gdx
Qs

s

< %Us+c(s—t)nrq_q‘Z (/ ¢qdm)q +c/ gdz
Qs

s

1 n(r—q) a
< ZUs+e(s—t) T (/ dﬂdx) +c/ gdzx.
2 Q2r Q2r

We can now apply Lemma 6.1 between R and 2R, thus obtaining the
required estimate. O

6.5 Boundary Estimates

A similar result holds for cubical quasi-minima taking prescribed val-
ues at the boundary. More precisely, assume that U(z) is a function in
WLHR",RN), with t > p, and let u € WHP(Q,R") be a function such
that u — U € Wol’p(ﬂ, RY), and that for every cube Qr C R™ we have

F(u,Qr) < c/ (|Dv| + ¥z, v))? dz
Qr
for every function v such that v —u € Wol’p(QR) (Qr=0NQr).

Assume moreover that the function F(z,u, z) satisfies the conditions of
the preceding theorem, and that §2 has no internal cusps, that is that there


file:///JQlR

Quasi-Minima 207

exists a positive constant o such that for every cube Qg with center on
€1 we have

|Qr ~ Q| > a0|Qxr. (6.66)

In particular the above condition is satisfied if 92 is Lipschitz-
continuous.

Now let asusual ¢ < t < s < R, and let n(z) € C§°(Q,), with0 <n <1,
n=1on Q: and |Dn| <2/(s—1t). Settingu=U in R" - Q, p =n(u—-"U)
and v = u — ¢, we have as in the proof of Theorem 6.5:

/ \DelP dz < /Q F(Dy)dz < /Q F(z,u, D) dz + /Q (@, u)P da

=/ F(z,u, Du) d:z:+/ [F(z,u,Dp) — F(z,u, Du)| dx
Qs

+/ Iz, u)P dz
< c/Qs(|Dv]+19(:v,v))”dm+c/Qs(|Du|+|D<p|

+19(x,u))”‘1|Dv|da:+/ He,u)P dz,
Qs

where we have taken into account the conclusion of Lemma 5.2.
We now use the estimate AP~!B < €AP + c(e)BP. We have

|DplP~|Dv| < €| Dl + c(e)| Dof?
|DulP~|Dv| < €|D(u — U)|P + c(€)|Dv|P + ¢|DUJP.
Taking € small enough, the terms with |Dy|? and |D(u — U)|P can be

subtracted from the left-hand side, as in Theorem 6.5. We obtain in this
way the inequality

ID(u - U)P dz < c/

D=)Pdo+c [ (Dol +IDUP
Qs_Qt Qa

Q
+lu—UP" +|UP" +g)dz, (6.67)
with g=a + ng:_'v.
On the other hand we have v =U + (1 — 1)(u — U), and therefore

1D < DU} + (1 = m)|D(u - U)] +212= ]
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and introducing it in the preceding inequality, we get
/ ID(u—U)IpdeC/ |D(u—U)[”dm+—c—/ |lu—UPdz
. Q.-Q. (s —t)? Jg,
+c/ (IDUP + |u—UP" +|UPP" +g)dz.
Qs

Once again the term |u — U|P" can be estimated as in Theorem 6.5,

applying Theorem 3.16 to the function u — U, which is zero in Q,; —, a set

of measure greater than a|Q;|. It follows that if R, and hence s, is small
enough, we have

/ [D(u—U)|”dz§c/ \D(u— V)P dz + — / lu— U do
Q@ Q.-Q. (s—t)? Jg,

+c/ (IDUP +|UI"" +g)da.
Qs

Applying at this point the “hole filling” method, we eliminate the first
term on the right-hand side, and therefore in conclusion we obtain the
CacciorpoLl inequality

c
D(u-U pdms—/ u—U"d:c—f—c/ dz, 6.68
/Qel O e L [ o (6.68)

in which we have set g; = a + b7 + |DU|P + |UJP".
Finally, we estimate the first term on the right by means of (3.29), and
we write 2R in the place of R, arriving to the inequality®

]QRID(u _U)Pde<e (]{22R|D(u —o)p da:) "

+ c][ g1 dx (6.69)
Q2r

withm:n%_pifp*Zl,andm=%ifp,.<1.

We can now repeat the above argument, and conclude that D(u — U)
(and hence Du) belongs to WhP"(Qg/,) for some r > 1, with the rela-
tive estimate. Covering 8§} with a finite number of cubes, and then what
remains of  with others cubes strictly contained in 2, we obtain eventually

the following;:

90ne can also add to both members the term |u[P”, obtaining the analog of (6.35).
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Theorem 6.8 Let §) be an open set with Lipschitz-continuous boundary,
and let u € WHP(Q, RYN) be a cubical quasi-minimum for the functional F,
verifying the assumptions of Theorem 6.5, among all functions taking on
0Q the value U(z) € WHH(Q,RN), t > p. Then, Du belongs to LP"(2) for
somer > 1.

Remark 6.13 The theorems just proved, and those that we shall prove
in the following chapters, continue to hold if p > n, with suitable changes
in the assumptions and in the proofs.

In particular, if p = n, Theorems 6.7 and 6.8 imply that the function
u(z) is Holder-continuous in  (respectively in ). a

6.6 Notes and Comments

After a brief mention in [2], the notion of quasi-minimum was introduced
for the first time by GIAQUINTA and GIUSTI in [4], where the relation
between quasi-minima and elliptic equations in divergence form was also
studied. The result of this and of the next chapter show that, at least
for what concerns the first stages of the regularity program, quasi-minima
represent the natural level of generality, unifying the treatment of different
problems, in the first place those relative to the minima of functionals and
to the solutions of elliptic partial differential equations, but also to quasi-
conformal mappings and to minima with obstacles, each of which would
demand otherwise a separate discussion.

The introduction of cubical (or spherical) quasi-minima can be seen at
first sight as a gratuitous generality, since we do not know of any significant
problems leading to cubical quasi-minima that are not at the same time
quasi-minima without specification. On the other hand, it might serve to
clarify the scope of different methods introduced for the study of regularity
problems.

A substantial part of these methods is based on integral estimates over
cubes, or more generally on inequalities concerning integrals over cubes. It
is natural that such estimates hold for cubical quasi-minima, so that the
relative results (in particular, for what concerns us, those of this chapter
and of Chapter 9) will hold for cubical quasi-minima. On the other hand,
the method of DE GIORGI, upon which are founded the Hdlder-continuity
results of Chapter 7, requires estimates on the level set of the solution, a
priori on completely general sets, and therefore it cannot be extended to
cubical quasi-minima.

The existence of cubical quasi-minima that are not quasi-minima, shows
that the two methods are substantially different, and that we cannot hope
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to get results of Holder regularity using only estimates on given families of
sets, such as spheres, cubes, etc.

The use of cubes instead of spheres (or equivalently of the metric
0(x,y) = max;|z; — y;| in the place of the ordinary distance), is moti-
vated by the simplicity of the proofs, in particular when we use covering
theorems, such as that by CALDERON-ZYGMUND (see Chapter 2), or that,
similar in many respects, by KRYLOV and SAFONOV, that we shall prove in
the next chapter.

The LP regularity of the derivatives of solutions to elliptic partial
differential equations in divergence form was studied by BoJARSKI [1] and
MEYERSs [1].

The latter proved that weak solutions of strongly elliptic linear equations

/ a,-j(m)DjuDigo der =0
Q

with bounded measurable coefficients, belong to L?(Q2) for some p > 2.
The method we have used here is based on a generalization, due to
GI1AQUINTA and G. MobIcA (1], of a theorem stated by GEHRING [1] in
the course of his research on quasi-conformal mappings.
It is founded on a sort of reverse HOLDER inequality with increasing
supports. The spaces of functions verifying these inequalities on the same
cube; that is those satisfying the estimate

<]Q|u|s dx)% < c(]€?|u|’d:1:)%

with 7 < s, have been widely studied, in particular for what concerns the
dependence of the higher exponent of summability on the constant ¢ of
the preceding estimate. Among other things, BOJARSKI [2] has proved that
that exponent goes to infinity when ¢ — 1 (see also Wik [2] and D’APuzzo
and SBORDONE [1]). However, these results demand estimates on the same
cube, and do not apply here.

Our Theorem 6.7 that generalizes MEYERS result is essentially the
only general result valid for quasi-minima of functionals dependent on
a vector-valued function (N > 1). It was proved in a particular case
(minima of functionals with F' = F(z, z) and convex in 2) by ATTOUCH and
SBORDONE (1], and in its general form in GIAQUINTA and GIUSTI [4]. It was
extended later by LEONETTI [1] to quasi-minima of functionals depending
on higher-order derivatives. Example 6.1 shows that a similar result can-
not"hold for extremals of functionals, even if F(x,u, z) is convex in z and
N=1"-
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Finally, if all the minima of the functional F are regular functions, and if
Q is close enough to 1, the @-minima of F are Holder-continuous functions.
For instance if u is a cubical @-minimum of the DIRICHLET functional, and
if Q < %753, (0 < a < 3), then u € C%*(Q) (ZIEMER [2]).
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Chapter 7

Holder Continuity

The aim of this chapter is to prove that in the scalar case (INV = 1) the quasi-
minima and the w-minima (see later, Section 7.7) of regular functionals
of the calculus of variations are Holder-continuous functions. The main
result is a version of the fundamental theorem of DE GIORGI {1] and NASH
[1] concerning the regularity of solutions of linear elliptic equations with
discontinuous coeflicients, a result that was later generalized among others
by LADYZENSKAYA and URAL'CEVA [2] to bounded solutions to non-linear
elliptic equations. We shall prove, following GIAQUINTA and GIUSTI [2],
that the same technique applies to quasi-minima of functionals. Since, as
we have shown in the preceding chapter, weak solutions of elliptic equations
in divergence form are quasi-minima of suitable functionals, this chapter
contains in a unified form the regularity theory for elliptic partial differential
equations and for minima of regular functionals of the calculus of variations.

7.1 Caccioppoli’s Inequality
Let us consider the functional
F(u,) =/ F(z,u, Du)dzx (7.1)
Q

in which, as usual, F(z,u,z) is a Caratheodory function satisfying the
inequalities

|2[P — b()|u|” — a(z) < F(z,u,2) < Llz” + b(@)[u|” +a(z)  (7.2)

213
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where! 1 < p <y <p* = =, and a(z) and b(z) are two non-negative
functions, belonging respectively to L°(?) and L7(Q), with s > % and
o> F%' We shall assume that % =2 _¢candl=1- }—} — ¢ for some
€>0.

Our first result concerns sub-quasi-minima of the functional F. We
recall that u € W,LP(Q) is a sub-quasi-minimum if for every non-positive
function ¢ € WHP(), with support K C Q, we have F(u,K) < QF(u +
v, K).

Similarly, u is a super-quasi-minimum if the preceding relation holds
for every ¢ > 0. A quasi-minimum is at the same time a super- and a
sub-quasi-minimum.

If u(x) belongs to W'li’f(Q), k is a real number, and Qr is a cube strictly
contained in €2, we set

A(k,R) ={x € Qr: u(z) > k}, (7.3)
B(k,R) = {z € Qr : u(z) < k}. (7.4)

We have |A(k, R)| = |Qr| — | B(k, R)| for almost every k, so that when
necessary we can assume without loss of generality that all the values k
under consideration will satisfy this relation.

The next theorem is a variation of Caccioppoli’s inequality.

Theorem 7.1 Letu € WP(Q) be a sub-quasi-minimum of the functional
(7.1), and let conditions (7.2) hold. Then there exists Ry > 0 (depending
on ||ullp« and ||blls) such that for every xo € Q, every o, R, with 0 < ¢ <
R < min(Ry, dist(zo, 0)) and every k > 0 we have:

c

Du”dxs——/ u — k)Pdzx
/A(k,g) Dl (R— o) A(k,R)( )

+c(llalls + KPR™™)|A(k, R)'R*e. (7.5)

Proof. Let 7 be a function in C§°(Qr), with0 <9 <1,7=10nQ, and
|Dn} < g%, Setting w = (u—k)* = max(u—k,0), the function v = u—nuw
is not greater than u, and differs from u at most in A(k, R). It follows that

1If p > n we can take v arbitrarily. On the other hand in this case, taking into
account the results of the preceding chapter and of the Sobolev immersion theorem,
every quasi-minimum of the functional F is automatically a Holder-continuous function,
so that it will be sufficient to discuss only the case p < n.
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F(u, A(k, R)) < QF(v, A(k, R)), and hence

/ \DufPdz < Q / |\DufPdz + / B(ul” + [v]") + a]dz
A(k,R) A(k,R) A(k,R)
(7.6)

Let us evaluate the right-hand side. For z € A(k,R) we have u =
u(l—n)+n(w+k), v = u(1—n)+nk, and hence Dv = (1—n)Du—(u—k)Dn,
and

[l + o] < c(n){(mo)? + [ul(1 = )7 + 77K}
1 ¥
=g P } '

Adding to both members of (7.6) the term [ A(k,R) blu|Ydz, and using
the above inequalities, we get

Duf? < c(p) {(1 .

/ (|Dul? + blu|")dz
A(k,R)

< { / (1 — m)P(IDufP + blu")da
A(k,R)

1
—_— Pdx + / b Y+ bk +a)dx . (7.7
(R—o) -/A(k,R) i A(k,R)( (m) a) w} (@.7)

On the other hand

/ b(nw)Ydx
A(k,R)

< (fr ) (o)’

<et(r) [ o [Pz

1
< cf(R / Du|Pdz + / wPdz |,
®) ( A(k,R) [Dul (R—0)? Jaw,Rr) )

where we have set

-+

P

n

er) = ([ oy ryriods )
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We have

and therefore

§(R) < Jlullz="lbllo|QrI*

If we choose R small enough (depending only on ||u|p« and ||bl|5), the
quantity under examination can be partially subtracted from the left-hand
side of (7.7), leaving on the right-hand side the term

[

— wPdz.
(R—o) ./A(k,R)

We obtain therefore, recalling that 7 =1 in Q,:

/ (|Duf? + blu|"dz < ¢ / (| Dul? + blu|")dz
A 9) A(k,R)—A(k,g)

7 .
+ = w”dz-{—/ bk” + a)dx
(R—0)? Jaw,r A(k,R)( ) }

At this point we can argue as in the preceding chapter, summing to both
sides the quantity on the left multiplied by ¢, and making use of Lemma 6.1;
we arrive in this way to the inequality

/ (|Dul? + bju|")dz < — / wPdz + c/ (bk” + a)dzx .
A(k,0) (R—0)? Jawk,mr A(k,R)

We remark now that

KAk, R)| < / P dz,

R

and hence
kv/ bdz < k7|[bll|A(k, R)|'~>
A(k,R)
= [[b]lo (k7" | Ak, R)]) 7 kP| A(k, R)| 1~ 5+
< bllollullZPIQRIkPR™"| Ak, R)|* =
< kPR™"™|A(k, R)[*= %+

since, having chosen R < Ry we can assume that [|b]|,[|ull;- PIQr| < 1.
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We have moreover

/ adz < lall| Ak, R)PF = all,| Ak, R)[1-3+¢
(k,R)

)

and the results follows at once. O

Remark 7.1 If u(z) is a super-quasi-minimum for the functional F,
—u(z) will be a sub-quasi-minimum for the functional

ﬁ(v,ﬂ):/ﬂﬁ‘(w,v,Dv)dm

with F(z,u,z2) = F(x,—u,—z). Since F satisfies conditions (7.2), we con-
clude that Caccioppoli’s inequality (7.5) holds for the function —u, with k
replaced by —k; we have therefore for every k < 0:

DuPdr < ———— / k — u)Pdx
/B(k,g) Dl (R~ 0)” Bk, R)( )

+c(llalls + [kPR™™)|B(k, R)['~=¢,  (7.8)
a relation valid for 0 < ¢ < R < min(Ry, dist(zq, O)). O

Remark 7.2 Caccioppoli’s inequalities (7.5) and (7.8) hold if u belongs
to Wlic” Of course, in this case one must assume that Qr C ¥ CC Q,
and the radius Ry will depend on ¥. On the other hand, as we have often
repeated, when dealing with local results the assumptions u € WP and
u € WLP are equivalent, since it is always possible to restrict ourselves to

an arbitrary fixed open set ¥ CC Q. a

Remark 7.3 The same inequalities remain valid if u is a sub-quasi-
minimum (or a super-quasi-minimum) with Dirichlet conditions on 8Q;
more precisely if for every function v < u, with v — u € W}"P(2), and
K = supp(v — u), we have

F(u,K) < QF(v,K).

If the trace of u on 89 is a bounded function, we can repeat the proof
of the preceding theorem, provided we take k > supgong, u; in fact in this
case the function n(u — k)* belongs to W'P(Q,).

In a similar way, (7.8) will be valid for every k < infsqngp ©. O



218 Direct Methods in the Calculus of Variations
7.2 De Giorgi Classes

The results of the preceding section suggest the definition of new classes
of functions.

Definition 7.1 Letu € VVlif(Q) We say that u belongs to the De Giorgi
class DG = DG (Q, H, x, €, Ro, ko) if for every couple of concentric cubes
Qo C Qr CC Q, with R < Ry, and for every k > ko > 0 we have

/ |\DufPds < — 22 / (u— k)Pdz
A(k,0) (R— 0 Ja.n)

+ H(xP + KPR™™)|A(k, )|\~ % te. (7.9)

We can define similarly DG to be the class of functions u such that

—u € DGy. More explicitly, they are the functions in W'lo’cp(Q) such that
for every o < R < Ry and k < —kp one has

/ |DulPdz < H / (k — u)Pdz
B(k,o) (R- 0 Joh,m)

+H(P + [kPR™™)[B(k, R)|'™5%. (7.10)

It is clear that if a function u satisfies (7.9) or (7.10) with some ¢, it will
verify them with any positive ¢ < e. Consequently, we shall always assume
e<E,

- n

Finally, we shall indicate by DG, the class of the functions belonging

both to DG} and DG,

DG, =: DG} N DG; .

A rather surprising characteristic of De Giorgi classes is that (7.9) and
(7.10) contain practically all the information deriving from the minimum
properties of the function u, at least for what concerns its Holder continuity.

Before beginning the study of the properties of the functions in DG’;,E,
we shall make some remarks that will simplify considerably the following
proofs.

Remark 7.4 Ifwesetv=u+xRP (8= Z)and h=k+ xRP in (7.9),
and v = u — xR® and h = k — xRP in (7.10), we get respectively:

/ |Dv|Pdz < —+— H / (v — h)Pdz
A(h,0) (R= 07 Jan,r

+ H(x? + kPR™™)|A(h, R)|' %<,



Hélder Continuity 219

/ |Dv|Pdz < — H / (h — v)Pdz
B(h,e) (R- 07 Jppnp

+H(X? + KPR™™)|B(h, R)|*~ ¢

and hence

H
DulPdx < ——/ v — h)Pdx
/A(h,g) D (R—0) A(h,R)(

+ HRPR™™|A(h, R)|}~ "¢, (7.11)
H
Dv|lPdr < ——— / h —v)Pdx
/B(h,g) Dol (R- 07 Jpeh, R)( )
+ H|R[PR™™|B(h, R)|*~ ", (7.12)

Of course, the first relation will be valid for A > hg = Ko + xR?, and
the second for h < —hg = —Kg — xRﬁ. ]

Remark 7.5 By means of a homothety we can reduce to the case R = 1.
More precisely, let s < r < R, and let us write (7.11) and (7.12) (with y in
the place of z) for radii s and . Making the change of variables y = Rz
and setting s = oR, t = TR and w(z) = v(y), the function w satisfies
the relations

/ |Dw|Pdz < H / (w — h)Pdz
A(h,o) (1~ Jagn,m

+ HhPr~m¢| A(h, 7)1~ 7 e,

/ |Dw|Pdz < H / (h — w)Pdzx
B(h,o) (1= 0)P JB(h,7)

+ H|BPT=¢|B(h, 7)' A Fe.

In particular, if 7 > 3:

/ |\ DulPdz < — / (w — h)Pdz
A(h,o) (T =) Jam,n

+H1h'p|A(h’T)|1_%+ea (713)

/ | Dw|Pdz < H / (h — w)Pdz
B(h,o) (r—o)p B(h,T)

+ Hy|h[P|B(h, )75 (7.14)
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In conclusion, we can assume that (7.13) is satisfied for every h > hg =
ko + xRP, and (7.14) for h < —hy = —kg — xRP. We can come back to
the general case with a suitable homothety, writing u + xR? or u — xR?
instead of u. a

The following lemma will be quite useful later.

Lemma 7.1 Leta > 0 and let {x;} be a sequence of real positive numbers,
such that

Tit1 S CBi$2+a

with C >0 and B >11.
If 1o < C~% B~ a7, we have

ZT; S B_§$0 (715)
and hence in particular

.lim T; = 0.

11— 00

Proof. We proceed by induction. The inequality (7.15) is obviously true
for i = 0. Assume now that it holds for i. We have

iy1 < OB 85l = (CB%g3)B~ % 1,
and (7.15) follows immediately for i + 1. O
We are now able to prove the following:

Theorem 7.2  Let u(z) be a function of DG;}. Then, u is locally bounded
from above in Q, and for every zg € Q and R < min(Ry, dist(xzg, IN))
we have:

supu(z) < c{<][ uf’,_da:); +no+xR'@} . (7.16)
Q.Pfi Qr

Proof. We can suppose R = 1, and that (7.13) is satisfied for every
h > hg. For % <o <71 <1, let n(z) be a function of class C(‘,’°(diz~_r) with
n=1on Q, and |Dn| < £ Setting { = n(w — k)*, k > ho, we have

/ (w — k)Pdz
A(k,0)

< / ¢Pdz < ( / cp‘dx)f‘ Ak, )~
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< Ak, )| " / |D¢JPdz

< / |\DwlPda + — / (w — k)Pdz | | Ak, 7).
Ak, Z5T) (T —0)P Jak, =)

Introducing inequality (7.13) in the preceding one, we obtain for k > ho,

/ (0 — ks < SAGD / (w — kyPde
Alk,o) T (T=0) Jakn

+ ckP|A(k, T)| e (7.17)

We remark now that if h < k we have
/ (w— h)Pdz > (k — h)P|A(k,T)]| (7.18)
A(h,T)
and moreover

/ (w — k)Pda < / (w — h)Pda < / (w — hYPda.
A(k,T) Ak,T) A(h,T)

Introducing these relations in (7.17) we obtain:

14e¢
/ (w—k)Pdz < ¢ </ (w—h)”da:)
A(k,a) A(h,T)

1 1 kP
X hy ((r —o - h)p) (7.19)

where we have used the assumption € < 2 and the fact that |A(k, 7)| < |Q1].
Let now d > hg be a number that we shall fix later, and consider
the sequences

ki =2d(1-27"1),
1 .
= =(1+27%).
7= 21427
Writing (7.19) for 0 = 0441, 7 = 0, k = kiy1 and h = k;, and setting
P, = d_p/ (w - ki)pda: ,
A(ki,o4)

we obtain the relation

B,y < Czip(1+€)q)11+e .
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We can now apply the preceding lemma with B = 2P(1+9)_ If &, is less
than a suitable constant, a condition which is satisfied if

1
d>c ( / widm>p : (7.20)
@

i—o0

we have

and hence |A(2d, 3)| = 0, that we can write in the form

sup w < 2d.
Qi/2

The conditions imposed on d can be satisfied setting

1
d=h0+c(/ widz) ,
1

1

4
supwgc(/ wﬁdw) + 2hg .
Qi/2 (o}

The conclusion follows coming back to the function u(z) = w(%)— xR
a

and therefore:

If instead of the cube @ 2 We want an estimate over the cube Q:gr,t < 1,
we can use the following

Corollary 7.1  With the assumptions of the preceding theorem, we have

supu(z) < ¢ <———1—nf uﬂdw) " kot xRP . (7.21)
Qtr (1 - t) QR

Proof. Let z; be a point in @Q:g such that

supu(z) = sup u(x).
Qr Q(z1,152 R)

By the preceding theorem we have

1

?
supu(z) < ¢ ][ uﬂdm) + ko + x[(1 — t)R)P
Qtr Qu-t)r

from which (7.21) follows at once. O
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The following result is also a consequence of Theorem 7.2.

Theorem 7.3 With the assumptions of Theorem 7.2, for every ¢ > 0
there exists a constant c(q) such that

1 [ ‘ 5 _
SSSUSC(Q){<(R~Q)" /QR +dx) + Ko + xR } (7.22)

for every p < R < min(Ry, dist(xg, O))

Proof. Let U, =supg, u. From (7.21) we have for p <o <7 < R:

1
P
Uf'ﬁc{(z;“lav/ e *“"*"Tﬁ}
- Qr
1 Fo1-1
c{(m/ u‘idm) Ufl_”+fc0+x'rﬁ}

— uqdm)q-i—cn + xRP).
(T_a)n</623 + (0 )

and hence

Us

IN

< U, +c(q) (

An application of Lemma 6.1 leads immediately to the conclusion. [

Similar results hold for functions v € DG, . It will be sufficient to
remark that in this case one has —u € DG; , and to write for instance
(7.22) for —u. If moreover the function u belongs to DG, = DG;’ N DG,

we have

1 At
sgp lu] < e(q) {(W /QR Ju da:) + Ko + xRﬁ} (7.23)

e

for every ¢ < R < min(Ry, dist(zg, 99)).

Finally, if ¥ is an open set strictly contained in €2, covering ¥ with cubes
of side R, with 2R = min(Ry, %dist(Z, o)) and writing (7.23) for radii R
and 2R, we immediately get:

Theorem 7.4 Let u(z) be a function in the De Giorgi class DG, and
let ¥ CC Q. For every g > 0 there exists a constant ¢ = ¢(q,X) such that

1
sup|ul <ec { (/ |u|qd:1;) + Ko + X} . (7.24)
b Q
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We can now state a first regularity result for quasi-minima of regular
functionals of the calculus of variations, which follows at once from the
above, if we remark that by Caccioppoli’s inequality a sub-quasi-minimum
belongs to DG} with ko = 0.

Theorem 7.5 Let u(z) € WHP(Q) be a sub-quasi-minimum of a func-
tional F satisfying conditions (7.2). Then, u is locally bounded above in Q.
Moreover, for every q > 0 there exists a constant c(q), depending also on
llull1,p and ||blls, such that for every ¢ < R < min(Ry, dist(zo, 852)) we have

e

1 ul dz : allt/P
sgpufc(q){((R_g)n /Q +d) + lall? Rﬁ}- (7.25)

Similarly, every super-quasi-minimum of F is locally bounded below,
with an estimate analogous to (7.25). Finally, every quasi-minimum is
locally bounded in §}, and we have

suplu| <c¢ L u|?dx : all/PRP
uplu < “—”{((R_g)n/%' 1dz )"+ fall*R } (7.26)

Remark 7.6 If a function u(z) in the class DGt [DG~] belongs to

WbP(Q) and if its trace on 99 is a function bounded from above [be-

low], then u is bounded from above [below] in Q. Actually, if Qg is a cube

intersecting 89, and if we set Qp = QrNN and L g = QrNI, the function
w=n(u—k)*

belongs to Wy'?(Qr) whenever k > ko > sups, o 4. We have then

1
1 q

< —_ 2d A% 7.27

sg?u_c(q){((R_g)n /Qau+ m) +Sgl}£)u+xR } (7.27)

A similar inequality holds for v € DG~

1
1 q

infu> - — a4 infu—yRPY . 7.28

lg;fu_.C(q){ ((R_g)n/%u_ x) +infu—x } (7.28)

In particular, if v € DG, setting osc(u, A) = sup4 u — inf 4 u, we have
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osc(u, Q,) < ¢(q) {(@:1—5)—”/9 |u|‘1da:) ? +osc(u, ZR) + xRﬁ} ,
(7.29)

an estimate that will be useful later. O

7.3 Quasi-Minima

The results of the preceding section can be used to prove the Holder-
continuity of the quasi-minima of regular functionals of the calculus of
variations, and hence of the solutions of partial differential equations of
elliptic type.

We remark first that, once the local boundedness of the Q-minima of
the functional

f(u,Q):/QF(z,u,Du)d:c

has been proved, one can assume that the function F(z,u,z) satisfies in-
stead of (7.2), the inequalities

|2|P — a(z, M) < F(z,u,2) < L(M)|z|P + a(z, M), (7.30)

where M > sup |u| and L(M) and a(z, M) are increasing functions of M.
In what follows it will be sufficient to take M = 2sup |u|.

In particular, following the proof of Theorem 7.1 one can see easily that
the Q-minima of F satisfy for every ¢ < R < Ry and for every k € R,
the estimates

/ |DulPdz < L/ (u— k)Pdx
A(k,0) (R—0)® Jaw,r)

+ HxP|A(k, R)|\- = +e (7.31)
/ |DulPdz < _H / (k — u)Pdz
B(k,0) (R - 0)? /o)
+ Hx?|B(k, R)|'" "¢, (7.32)

that is inequalities (7.9) and (7.10) without the term kP, but with H and
x dependent on M. As we have already remarked, it is possible to assume
that e < 2.

It follows that the preceding estimates hold with the same constants for
u — 9, at least as long as |9] + sup |u] < M.
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Remark 7.7 If the function F(z,u, z) satisfies inequalities (7.2), we can
take L independent of M and a(x, M) = a(z) + b(z)M” in (7.30), and
hence we have (7.31) and (7.32) with H independent of M and

xP = lla(z, M)||s = l|la(z) + b(x) M|, . (7.33)
O
We have the following proposition, analogous to Theorem 7.2:

Proposition 7.1 Let u(z) be a bounded function, verifying (7.31) for
every k € R. Then if |ko| + sup |u| < M we have

puse(m [ (- kopas) (Mo RN)
Qg R™ J A(ko,R) Rn

+ ko + cxRP, (7.34)
where o is the positive solution of the equation o + o = .

Proof. We can suppose kg = 0. Repeating with the necessary changes
the proof of Theorem 7.2, and using (7.31) instead of (7.13), we get in the
place of (7.17) the estimate

u pVPdg < JAGDE v — KV da
/A(k,g)( krde < (r— o) /A(k,r)( k)

+ exP|A(k, )| (7.35)
for every p < r < R. Moreover, for each h < k and every g < r:
Ak, )l < (k= b)PU(h,T), (7.36)

where
U(k,t) :/ (u — k)Pdz.
A(k,t)

Recalling that ne = p8, we immediately get from (7.35) and (7.36):
U(k,0) < c(r — o) PU(h,7)|A(h, 7")|‘:’T +exP(k — h)"PU(k,7)| Ak, 7)|¢

<e [(T i 9)” N (kxi"hﬂ r™U (h,r)|A(R, 7)<

Raising both members of (7.36) to the power o, and multiplying each
member with the corresponding member of the last inequality, we get
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U(k, 0)|A(k, 0)|

<[l + () ot avr

Let us now choose « in such a way that a(1 + &) = ¢, and let us define

p(k,t) = Uk, t)|A(k, )|~ .

For o < 7 < R and h < k we have:

oo <o)+ (255) | mpetrres. @an

Let now d > xRP be a constant that we shall fix later, and define

ki =d(1-27%),
R ‘
;= =(1+27%.
"= 1+27Y
From (7.37) with ¢ =441, r =7;, kK = kiy1 and h = k; we get
Qip1 < cd—pa2pi(1+a)R—ne(pz1+a ,
where
wi = p(ki,0:) .
We can now apply Lemma 7.1. Choosing
ne 1
d 2 cR™2rpf

with the constant ¢ large enough, we can conclude that the sequence ;

tends to zero, and hence
R
d,— ] =0.
o(¢3)

The conditions imposed on d will be satisfied taking
ne l
d=xRP + cR7=r pf |

and hence, recalling the choice of a, we arrive at

supu(z) <d=c (R‘"/ u”dw) (M) ’ +xRP.
Qg A(O,R) R"

The conclusion follows at once writing u — kg instead of w. O


file:///k-hj

228 Direct Methods in the Calculus of Variations

We must now evaluate the measure of the set A(k, R), when k is close
to the maximum of u. For that we need the following lemma, which, with
suitable changes, will also be useful later.

Lemma 7.2 Let u be a bounded function, satisfying (7.31) (with p > 1)
for every k € R, and let 2k = M(2R) + m(2R) =: supg,, u + infg,, u.
Assume that |A(ko, R)| < v|Qr| for some v < 1. If for an integer v, it
holds that

osc(u, 2R) > 2"ty RP, (7.38)
then, setting k, = M(2R) — 27" 1osc(u,2R), we have
|A(k,, B)| < cv™ 5573 |Qrl. (7.39)
Proof. For kg < h <k let us define

k—h if u>k,
vz)=<u-h if h<u<k,
0 if uw<h.

We have v = 0 in Qg — A(kg, R), and since the measure of this set is
greater than (1 — v)|Qr|, we can apply the Sobolev inequality, obtaining

-3
(/ vﬁdm) < c/ {Dv|dz=c/ | Duldz
Qr A A

in which A = A(h, R) — A(k, R). We therefore have

(k= h)|A(k, R)[*% < </ vn%ldgﬁ)l—%

Qr

< A3 / \DuPdz| .  (7.40)
A(h,R)

On the other hand, from (7.31) we deduce

/ \DufPde < = (u = h)Pdz + cx?| A(k, 2R)| 5+
A(h,R) P JA(h2R)

< ¢R" P(M(2R) — h)? + cx? R Pt
For h < k,,, we have M(2R) — h > M(2R) — k, > xR?, and hence

(k — B)|A(k, R)|'"% < c|A|'""#R™5" (M(2R) — h).
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Writing the above inequality for the levels & = k, = M(2R) —
2~ losc(u,2R) and h = k;_1, and raising to the power 1—)&, we get
Ak, R)F < |A(ki, RS < cREFF|A|
with A; = A(ki, R) - A(ki_l,R).
We now sum over ¢ from 1 to v, obtaining

V| A(k,, R)| 568 < cR3F|A(ko, R)| < R
and (7.39) follows at once. ]

Finally, we shall need the following algebraic lemma.

Lemma 7.3 Let ¢(t) be a positive function, and assume that there exists
a constant q and a number 7, 0 < 7 < 1 such that for every R < Ry

©(TR) < 7°p(R) + BR? (7.41)
with 0 < B < 6, and
¢(t) < gp(r*R)
for every t in the interval (t*+1R,7*R).2

Then, for every p < R < Ry we have

ol0) < c{(-g)%m n Beﬂ} , (7.42)

where C is a constant depending only on q, T, § and (.

Proof. Starting from (7.41) we prove by induction that

k
o(T*+1R) < 718 (R) + BRPTHA Z 746=0)
=0

and hence, since the series on the right-hand side is convergent,

o(T*T1R) < 7+ 5(R) + cBRPFA

Choosing now k in such a way that 7*t1R < ¢ < 7R we arrive imme-
diately at the desired result. a

Remark 7.8 If instead 8 > 4, we can estimate BR? by means of
BRP—<RB~%%¢ and we get (7.42) with & — ¢ instead of 8. Of course, in
this case the constant C will depend on ¢ as well. 0

2In particular, this inequality holds with g = 1 if ¢ is non-decreasing.
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Theorem 7.6 Let u(x) be a bounded function, satisfying (7.31) and
(7.32) with p > 1 for every k € R. Then, u is (locally) Hélder-continuous
in Q.

Proof. Let, as above, 2kg = M(2R) + m(2R). We can assume without
loss of generality that |A(ko, R)| < 3|Qr|, since otherwise we would have
|B(ko, R)| = |Qr| — |A(ko, R)| < 1|Qr|, and it will be sufficient to write
—u instead of u.

Setting k, = M(2R) — 27"~ losc(u, 2R), we have k, > kg. We can write
(7.34) with k, instead of kg:

sup(u — k) < in / (u — ky)Pdz (M) ! + cxRP
Qn R™ Ja(k,,R) R

at1
ky,,R ®
< csup(u — k) (|;4(_,,,_)|> +exRP. (7.43)
Qr R»
Let us now choose the integer v in such a way that
ase <L

If osc(u, 2R) > 2+'xRP we deduce from (7.39)
M (-};) Ck < %(M(ZR) — k) +cxR®

so that, subtracting from both members the quantity m(%),

osc (u, %) < (1 5 1+2> osc(u,2R) + cxRP.

In conclusion, either the function osc(u, R) satisfies the above relation,
or else

osc(u,2R) < 2"F1xRP.
In any case, we have

osc (u, ?) < (1 5 1_‘_2) osc(u, 2R) + c2“xR” . (7.44)

We can now apply the preceding lemma with 7 = 1/4 and § = log_.(1 —
277=2). Decreasing if necessary the value of 8, we can assume that 8 < 4.
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We therefore have

B
osc(u, g) <c { (I%) osc{u, R) + xgﬁ} (7.45)
for every ¢ < R < min(Ry, dist(zo, 0)). O

Remark 7.9 Note that the exponent § does not depend on the center
of the cube Qr, and therefore u € C%#(Q). Of course, the norm of u in
Y cC Q can diverge when ¥ — €. O

The following result will be useful later.

Theorem 7.7 Let u(z) € W,oP(Q) satisfy (7.31) and (7.32) with p > 1

loc

for every k € R, and let Qap C Q. Then, for every ¢ < R we have

n+pB
u—u,Pdr <c @ u — ugr|Pdx + exPo™ PP, 7.46
e R
Qg QR

n—p+pp
/ Dupds < ¢ () pie / \DulPdz + cxPe™ PP . (7.47)
Qp R Qr
Proof. We shall prove (7.46) first. Let ¥ < sup|u|. We have remarked

that the functions v — ¢ and ¢ — u satisfy (7.31) and (7.32), and hence by
Theorem 7.2 we have

sgrp[u -9 <e { <][er (u— 19)ﬁ’_dx> g + xrﬂ} ) (7.48)

sg})['ﬂ —u]<c¢ { <][er (9 - u)idm) g + Xrﬁ} . (7.49)

Summing both sides, if infg, u < ¥ < supg_u, whence in particular if
¥ =u, = —brud:v, we get

1
osc(u,r) < ¢ <][ lu ~ ur|pd.7:) + 2xrP
Q2r
1
<ec { (][ |lu — uzrlpdx) + 2X’I‘ﬂ} , (7.50)
Qar

where in the last passage we have taken into account Remark 3.4, and in
particular (3.36).
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On the other hand
][ |u — u|Pdz < osc(u, t)?

and hence, taking (7.45) into account, we get for g < r = %

8
][ |u — up|Pdz < osc(u, p)? <c { (g)p osc(u, )P + ngpﬁ}
Qe

0 Pﬁ][ 5
<c{l= |u — ug[Pdz + xPo" },
{&)" L

that is (7.46) for ¢ < £.
We shall prove (7.47) by remarking that writing (7.31) and (7.32) be-
tween £ and p, with k = u,, and summing both sides, we get

F |DulPdz < ¢ / |u — up|Pdz 4 xPo™PP ) .
Qq/2 Qe
On the other hand we have
/ |lu — uglPdz < cR”/ |DufPdz
Qr Qr

and introducing these relations into (7.46) we get (7.47), this time for
o< %.

Finally, we remark that both the estimates hold for every g < R, possi-
bly with a different constant. For instance if ¢ > % we have

n+pf
/ lu — up|Pdz < c/ |u — uplPdz < c4™PP (%) / |lu — up|Pdx.
Qe Qr Qr

A similar argument proves (7.47) for every g < R. d

7.4 Boundary Regularity

When the function u(z) is a quasi-minimum with Dirichlet conditions on
00, and its trace on 95 is a Holder-continuous function, it is possible to
extend Theorem 7.6, proving the Hélder-continuity of « up to the boundary.

Theorem 7.8 Let Q be an open set in R™ with Lipschitz-continuous
boundary, and let u € WLP(Q) be a quasi-minimum for the functional F.
Assume that the trace of u on 9 be a Hélder-continuous function. Then,
u is Holder-continuous in Q.
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Proof. Fort <1 we define:

M(t) = supg, u, Ms(t) = supsang, U}
m(t) = infg, u, mg(t) = infanng, ©;
osc(u,t) = M(t) —m(t), oscs(u,t)=Ms(t) —ms(t).

Let Qr be a cube such that Qop meets 8. It is not restrictive to
assume that

M(2R) — Ms(2R) > ms(2R) — m(2R),

since otherwise we can reduce to that case by changing u into —u.
Let us assume that

osc(u, 2R) > 2o0scs(u,2R). (7.51)
We have then
osc(u,2R) = M(2R) — Ms(2R) + oscs(u, 2R) + ms(2R) — m(2R)
< 2[M(2R) — Ms(2R)] + %osc(u, 2R)
and therefore
M(2R) - %osc(u, 9R) > Ms(2R).

It follows that for v > 1 it holds that k, =: M (2R)—2"""1osc(u,2R) >
Mgs(2R), and hence, taking Remark 7.3 into account, we have Caccioppoli’s
inequality (7.5) for every k > k,. Consequently,

1 o
supu < ¢ ——1;/ (u — ku)pd(l: (IA(kyT,LR)I> P
Qg R Jak,,ry R

+k, +cxRP. (7.52)

On the other hand, if h > Mg(2R), the function v(zx) defined in
Lemma 7.2 is zero on 99 N Q2g, so that it can be extended to a func-
tion on Qg setting it to be zero in Qr — . Since the boundary of § is
Lipschitz-continuous, we have v = 0 in a set whose measure is greater than
~|@Qr|, so that the conclusion of Lemma, 7.2 holds in this case too. Arguing
as in Theorem 7.6, we arrive to the relation
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R 1
osc (u,;) < (1 5 +2) osc(u, 2R) + 2" xRP

which holds whenever osc(u, 2R) > 2oscs(u, 2R).
In any case we have

R 1
osc (u, -2—> < (1 5 +2) osc(u, 2R) + ¢2”xRP + 20scs(u, 2R),

and since by assumption® oscs(u,2R) < BRF:

R 1
o0sc (u, -é-) < (1 2V+2) osc(u, 2R) + ¢(2“x + B)R". (7.53)
Comparing with (7.44), we conclude that the last inequality holds also
when Q3pr does not intersects 0. The conclusion then follows arguing as

in Theorem 7.6. In particular, assuming that 8 < § =: —log,(1 + 27¥~2),
we have for every p < R:

osc(u, ) < ¢ (%)ﬁ osc(u, R) + c¢(x + B)d® . (7.54)
g

From the last inequality we can deduce the analogous of (7.46) and
(7.47) for the Dirichlet problem with zero boundary data. In this case we
have B = 0, and hence:

o\P8 R\?
P Pl = P P8
%Qelu| dz < cosc(u, o)’ <c (R) osc (u, 5 ) + exPoP’ .

The right-hand side can be estimated using (7.29) with ¢ = %. We
obtain thus the analogous of (7.46):

n+pB
/ lufPdz < ¢ (ﬁ) / luPdz + cxPo™+P5 . (7.55)
Qp R Qr

From this inequality, arguing as in Theorem 7.7, we easily get

n—p+pB
/ |DulPdz < ¢ (ﬁ) PP / |Du|Pdz 4 cxPo™PtPP. (7.56)
Q, R Qn

31t is not restrictive to assume that the trace of u is Holder-continuous with expo-
nent G.



Holder Continuity 235

7.5 The Harnack Inequality

When the function u € DG is positive, we can estimate its infimum with
greater accuracy. As usual, we can assume that u satisfies estimates (7.14),
that is (7.10) with x =0 and* R=1.

Lemma 7.4 Let u € DG, with ko = 0, and assume that u is positive in
the cube Q = Q1. There exists a positive constant o such that if |B(8,1)| <
Y|Q| for some ¥ > 0, then

. 9

inf u> —.

Q12 2

Proof. We can argue as in Lemma 7.2. For h < k < 9 we set

if u>k,
viz)=q¢k—u if h<u<k,
k—h if u<h.

Let 1 < p < 1; we have v = 0 in @, — B(k, ¢), and since |B(k, )| <

|B(#,1)] < 7lQ| and [Q,| > 27"|Q}, we get |Q,—B(k, 0)| = (27" ~70)|Qel-
It follows that if vo < 27™! we can apply the Sobolev inequality, obtaining

1-3
(/ vF%Tdac) < c/ |Dvldz ,
e A

where A = B(k, ¢) — B(h, 9). We therefore have

(k—h)IB(h,e)ll‘%s(/ _dm> ’

e

-1

< Al / |DulPdz | .  (7.57)
B(k,e)

On the other hand from (7.14) we get

4Note that since u is bounded we might use (7.32), namely (7.10) without the term
kP, instead of (7.14). In this case, however, we could not assume x = 0, since, with the
exception of the homogeneous case, that we shall discuss later, it is not possible at the
same time to eliminate the term k? and to assume x = 0.
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DulPdzr < —— / k —u)Pdz
jgw@” ’ (R- o) mp BMR% )

+ckP|B(k, R)|\~ 5+ < —<—_kP|B(k, R)|\- 5+
(B, B) 1B R)
(7.58)
since u > 0 and € < £. From (7.57) we deduce:
(k= h)|B(h, 0) (7.59)

Consider now the sequence of radii r; = %(1+2‘i) and the corresponding
levels k; = 12’-(1 +27%). Setting B; = |B(ki,r:)|, we get from (7.59):

1-14
i

2-i-1BI 7 < c2itip Tt
and in conclusion
Biy1 < C47-1BMte

where we have set o = H:LL-HS' Applying the Lemma 7.1 we get
lim; 00 B; = 0, that is u > % in Qy/2, provided

Bo =|B(9,1)] < CT#47 0% = m|Ql.

The conclusion of the lemma then follows by setting v = min
(2—11,—1’71). a

The next lemma is an improvement of the preceding one.

Lemma 7.5 Let u € DG, with ko =0, and assume that u be positive in
the cube Qa. For every vy, 0 < v < 1, there exists a constant A(y) > 0 such
that if |B(9,1)| < v|Q1] for some ¥ > 0, then

mf u > A(Y)9.

Qi/2

Proof. Setting o=1and R=2 in the inequality (7.58) above, we get
/ |DulPdz < ckP,
B(k,1)

which introduced in (7.57) gives:

(k - k)77 |B(h, 1)| %D < ck#51(IB(k,1)| — [B(h,1)]).  (7.60)
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Consider now the sequence of levels k; = 927%, with i < v. Setting
b; = |B(k;,1)| we have, since b;_; > b; > b,,

. p(n-1) .
(B2 D) FTpr D < (9271 FoT (b — biy1) .
Simplifying and summing over ¢ between 0 and v, we get
p(n—1 n—1
(v + DBED < clg] = QI

where as usual Q = @), and hence

, o e
v S .
<(55)" .l

Taking v large enough we have then

b, = |B(¥27%,1)| < %|@Q|
so that by the preceding lemma u > 92-*~! in Q, /2 O

The above lemma can be further generalized. Actually, if |B(%,1)| <
~|Q|, and if T > 1/2, we have

1—
A4(2,2T)| 2 |A@,1)] 2 (1= 7)IQ| 2 Gzl Qar!
and hence
1—v
<l1-—1L i
182,271 < (1 - Gk ) @ar
We can therefore apply the preceding lemma, and conclude the
following:

Lemma 7.6 For every v € (0,1) and for every T > 1/2 there ezists a
positive constant u(vy,T) such that if u > 0 in Qor and if |B(¥,1)| < ~|Q)|
for some ¥ > 0, then

infu>p(y, 7).
Qr
We have p(y,T) = M1 - é—};&) In the following we shall use the above
lemma with T' = 1.

Remark 7.10 The three lemmas just proved obviously hold for every
cube Qg with R < Rp. In particular, if u is positive in Qarg and if
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|B(?, R)| < ~|Qr]|, then

inf u(z) > p(r, T)9. g
QTR

Finally, we shall need the following covering theorem, whose analogy
with the theorem of Calderon and Zygmund (Theorem 2.10) is evident.

Proposition 7.2 (KRyLOV and SAFONoOV [1]) Let E C Qr C R™ be a
measurable set, and let 0 < § < 1. Moreover let

Es= | {Q(z,30) NQr : 1Q(z,30) N E| 2 6|Q,|} -

TEQR
>0

Then, either |E| > 0|Qr|, in which case Es = Qr, or else
1
Es| > =Z|E|.
1B5| > 1B

Proof. For every x € Qr we have Q(z,3R) D Qg and hence, if |E| >
6|Qr| it follows |Q(x,3R) N E| = |E| > §|Qr|, and hence E5 = Q.

Let us assume now that |E| < §|Qr].

Let us divide Qg into 2™ equal cubes. If for any one of these subcubes
Q we have

QN E|=4lQ, (7.61)

we say that Qg is final,’> and we do not divide Q any further. We repeat
the preceding procedure for all nonfinal cubes @, and we call Fjs the union
of all the final cubes.

If Q is final, and if Q(z, ¢) is the subcube of Q for which (7.61) holds,
we have |Q(z,30) N E| > 6|Q,|, and hence Q(z,30) N Qr C Es. Since
Q C Q(z,30) N Qgr, we have also Q C E;, and hence F5 C E;.

On the other hand, almost every £ € E belongs to Fs. Actually, if
z ¢ Fjs there exists a sequence of cubes Q; 3 = with sides g; — 0 and such
that |@Q; N E| < §|Q;|. This means that E has upper density less than 1 at
the point « € F, and this can happen only on a set of zero measure.

We have therefore, denoting by M the family of all final cubes,

|E|=|EnFs|= > [QNE| <3 > |Q|=4|F;s| < 6|Es|
QeM QeM

and the proposition is proved. a

50f course, due to the assumption |E| < 6|Qr|, the cube Qg cannot be final; it is
only the starting point of the successive divisions.
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We can now prove the main theorem of this section.

Theorem 7.9 (D1 BENEDETTO and TRUDINGER [1]) Let u(x) be a posi-
tive function, belonging to the De Giorgi class DG (Q), with ko = 0. There
ezists Ry > 0, an exponent ¢ > 0 and a constant ¢ such that if o € 2 and
R < min(Ry, -G\l/—T—Ldist(a:o, 9)), we have

1

inf wu(z)>c ][ uldz | - xR* (7.62)
Q(z0, %) Q(zo,R)

Proof. As usual, we can assume x = 0 and R = 1. For a fixed ¢ (for
instance § = %), we apply the preceding proposition to the set

AFY = At 1) = {o € @ u(@) >t}

where v =1 — 37"§ and u = u(y,2) is the constant of Lemma 7.6.
Assume now that for some z € Q we have Q(z,30) N Q C (Ai™1)5, and
hence

A1) 1 Q(z,30)| > 8120l = x|l

By Lemma 7.6 with T' = 2, taking into account the remark immediately
following it, we deduce u > pu‘~1t = u't in Q(z, 30), and hence

(A s C 4.

By the preceding proposition, we must have either A = Q or |Ai] >
6!|A;7'|. In any case, we can conclude that if for some integer s we have

1471 = |A(t,1)] > &°|Q| (7.63)
then
[AF7H > 67HATT? > - > 8170 47 > 41Q)
and therefore Af = @, so that in conclusion
u(z) > p’t in Q.

We now choose s in such a way that (7.63) is satisfied; for instance let
s be the smallest integer such that
1 A1
g A1)

s >
~ logd IQ
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With this choice of s we get

)

155
infu(z) > u't = ct (—lAi(gll)l)

or equivalently, setting { = infg u(z) and a = 11;#‘;—2:

|A(t, 1)] < c|@lg"t™". (7.64)
On the other hand

/uqdm=q/ t"_1|A(t,1)|dt=q/ t7HA(t, 1)|dt + |Qlé7 .
Q 0 £
Introducing the estimate (7.64) we get
][uqu < cqg“/ t97e gy 4 g9,
Q £

If we choose ¢ < a the integral converges, and hence

][uqd:z: < £l
Q

so that

inf u(z) > infu(z) > ¢ (][ uqdw) !
Q2 Q Q

The conclusion follows coming back to a generic R and writing « + xR“
instead of w. O

Joining the above result with Theorem 7.3 we get the following
HARNACK inequality:

Theorem 7.10 Let u(z) be a positive function belonging to De Giorgi
class DGp(Y) with kg = 0, and let o be a number less than %Q, and such
that the cube of side 69 is contained in Q.

Then

supu < e(inf u + x0%) . (7.65)
e Qe

Remark 7.11 The last inequality can be proved directly, starting from

the regularity results of the preceding sections (in particular from (7.45))

and from Lemma 7.6. The proof that follows is an adjustment of that given

by Di Benedetto [1] in the parabolic case. O
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Proof. We shall begin by showing that

<c¢ inf , 7.66
o) S ¢ inf u(z) (7.66)
or equivalently
u(z)
T) =: >2c>0
v(z) u(z0) >

in Q(zg, R).

As usual, we can assume x =0 and R =1.

It is easily seen that the function v satisfies the inequalities (7.13) and
(7.14) for every h > 0, with the some constants as u. In particular Theo-
rem 7.6 will hold for v, with the estimate

2\# 2\"
08CQ(z,0)V < COSCQ(z,R)V (E) < [|vlloo,0(z,R) (}—2) (7.67)

for every z € 2 and every 9 < R < %dist(w,BQ).

Now let K, = (1 — 7)~%, where § > 0 will be chosen later, and let 7o
be the largest value of 7 for which ||v||co,@(z0,r) = K'r- Since the left-hand
side of the preceding relation is bounded, and the right-hand side diverges
asT— 1, wehave 0 <719 < 1.

Let Z € Q(zo, 7o) be such that v(Z) = ||v]|00,Q(z0,70) = (1 — 70)~°. We
have

) -4
90l oo 000,252y < o oo, zmy < K it = 2°(1 —70)~%

On the other hand, using (7.45) with x = 0, R = 1_—27‘1 and ¢ = eR
(e < 1), we get

05Cq (3,151 oV S c||v||°°’Q(j,1_-21Q)eﬁ < e2%(1 — 1) %P
and hence
v(z) 2 v(Z) - oscy, lomg gV 2 (1 —710)70(1 — c2%¢P)

for every z € Q(Z, 15™¢). Choosing € = c~127%~1, we obtain

v(z) > %(1 )% in Q (5 ! = e) . (7.68)

We can now apply the Lemma 7.6 (or better the remark following it)
with R = I‘—ZTQG, T=2andd = %(1 —79)~%. We have v = 0, and therefore
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v@) 2 £1-m)" in Q,(1-r)e),

with p = £(0,2).
Iterating the above argument, we get for every integer v:

o(z) > “7"(1 —10)~% in Q3211 - mo)e). (7.69)

Let v be such that 2 < 2¥~}(1 — 79)e < 4. We have

8 log,
v
S L
= (6(1"70))

and hence
1/8 log, p 51
w(z)> 3 (‘) (L= 70) 0%k i Q(z,2) > Q(zo,1).
We now choose § = —log, y1; we have € = £ and therefore
log, p
1/16 2
v(@) > 3 (-f) in Q(zo,1),

which gives the estimate (7.66).

Let now @, = Q(x1, 0) be a cube contained in (2, with ¢ small enough,
and let 7o € Q, be such that u(zo) = supg, u(z). Taking R = 3p, we have
from (7.66):

supu(z) <c inf wu(z) < cinfu(z),
wu(z) Se i, u(e) < cipfu(e)

and hence (7.65) with x = 0. The general case follows as usual by writing
u + xRP instead of u. O

7.6 The Homogeneous Case

Of particular interest is the case when the function u belongs to a homo-
geneous De Giorgi class DGOy, that is when it satisfies the relations

/ \DufPde < —T1— / (u— k)Pde, (7.70)
A(k,0) (R~ 0)? Jaw,r

/ \DufPde < —T1—— / (k — u)Pdz. (7.71)
B(k,e) (R—0)? Jpk,n)
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In particular, this happens when « is a quas;i-minimum of the functional
Flu,Q) = /Q F(z,u(z), Du(z))dz
with
|2|P < F(z,u,2) < L|z|P.

The most significative example of this situation is that of quadratic
functionals

F(z,u,2) = ai;(z,u)zz;,
with the coefficients a;; bounded and satisfying the ellipticity condition
aij(z,w)é&; > Vg, v>0.

For positive functions v € DGO, we have the estimate (7.65) with
x = 0, and therefore:

Theorem 7.11 (HARNACK’s inequality) Let Q be a bounded connected
open set in R™, and let & CC Q. Let u(z) be a positive function in
DGO,(Q), (p > 1). There ezists a constant C(X,Q) such that

supu < Cinfu (7.72)
b)) =

Proof. Let Qi, Qa,...,QnN be a finite family of cubes, such that any two
consecutive cubes Q; and Q;11 have non-empty intersection and that

supu =supu; infu=infu.
ST Qn

We can assume that each of these cubes has side ¢ < Ry, and that the
cubes of side 6¢ are contained in Q.
For each cube Q; we can write the inequality (7.65) with x = 0:

supu < cinfu.
Q: Qs

On the other hand, since any two consecutive cubes intersect, we have

infu < sup u,
i Qit+1

and the conclusion follows at once. O
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If moreover 2 is a cube of side R, and ¥ is a concentric cube of side
TR, the constant C' depends only on 7 but is independent of R, as is easily
seen by homothety.

Two consequences of Harnack’s inequality are particularly worthy
of note.

Theorem 7.12 (Strong maximum principle) Let  be a connected set,
and let u(z) be a function in the class DGO, (). If u has an interior
minimum point, then u is constant in §).

Proof. We note that (7.70) and (7.71) do not change if we write u + A
instead of u. As a consequence, adding possibly a constant to u, we can
assume that mingu = 0. Let E be the set of the points of © in which «
assumes its minimum value 0. By assumption, F is non-empty.

For € > 0, the function u + € is positive, and we can apply Theorem 7.9.
If Q is a cube with center in a point of F and side small enough, we have

€= igf(u+ e >c (][Q(u + 6)pd:v) ’ >ec (f;updx)%

and therefore, since € > 0 is arbitrary, we must have v = 0 in Q.
It follows that E is an open set; since by the continuity of u it is also
closed, we conclude that E = Q. O

In a similar way one can prove that if u € DGO} (Q2) has an interior
maximum point, then it is constant. Finally, if © € DGOp(f2), it must
assume both its maximum and its minimum only on the boundary of ,
unless it is constant.

Theorem 7.13 (LIOUVILLE) Let u € DGO,(R™), and assume that u is
bounded below. Then, u is constant.

Proof. Let A = infu > —oo. Writing u — A instead of u, we can sup-
pose A = 0, and therefore by the preceding theorem u > 0 in R™. From
Harnack’s inequality we have for every R > 0:

supu < cinfu
Qr Qr

If we let R go to infinity, the right-hand side tends to zero, and hence
u=0. O
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7.7 w-Minima

As we have seen in the preceding chapter (Example 6.5), the regularity
Hoélder continuity, do not hold for cubical quasi-minima. Generally speak-
ing, estimates on cubes only are not sufficient to prove regularity.

The question can be posed whether estimates on cubes are sufficient
in some special cases, of course more general than 1-minima (i.e. quasi-
minima with @ = 1), for which the difference between estimates on cubes
and on general sets disappears. The answer is positive for a particular sort
of cubical quasi-minima, the w-minima according to the following:

Definition 7.2 Letw: Ry — Ry be a continuous, bounded, increasing
and concave function, with w(0) = 0. We say that a function u € W']i’f(ﬂ)
is an w-minimum for the functional F if for every cube Qr CC 2, and
every w € WHP(QRr) with w = u on 8Qg, we have

F(u,QRr) < [1 + w(R)]|F(w,Qr) . (7.73)

It is clear that an w-minimum is also a cubical quasi-minimum, and that
the difference between the two lies only in the behavior for very small sides.
It is not known whether an w-minimum is also a quasi-minimum. Never-
theless, it can be proved that w-minima are Hélder continuous functions.
The present section will be dedicated to the proof of this result.

As above, we shall assume that the integrand F(z, u, 2) is a Caratheo-
dory function satisfying the inequalities

|2{P — b(z)|u|” — a(z) < F(z,u,z) < L|zP + b(z)|u|” + a(z) (7.74)

with p <n, 1 <p <7 <p* = P2 qa(z) and b(z) being two non-negative

n—p’
functions, belonging respectively to L*(Q?) and L°(f2), with s > % and
o> ;%

We have seen in the preceding chapter (Remark 6.11) that the above
assumptions imply the existence of a r > 1 such that every spherical quasi-

minimum u belongs to W,»?"(R2), with the estimate

”
][ |Du|™dz < ¢ <][ [Dul”dw)
R Q2r

+ef, (a(z) + b(z)|ul") dz . (7.75)

It is evident that we can suppose r as close to 1 as we wish, so that we
can assume without loss of generality that ry < p*.
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As above, we shall assume that 1 = 2 —ecand 2 =1—- X —¢ for
some € > 0. It is easily seen that we can take € as small as we like,
without prejudice to the results of the above sections, the constants being
independent of ¢, as far as it remains bounded away from zero.

Since, as we have remarked, it is not known whether w-minima are quasi-
minima, we cannot apply the regularity result of the preceding sections
directly to w-minima. The proof will be achieved by comparing w-minima
of the functional F on cubes of side R with quasi-minima of the functional

G(v,Qr) = /Q (|IDv]? + a(z) + A + b(z)|v|")dz (7.76)

with a suitable constant A depending on R.
We shall begin with an estimate concerning quasi-minima of the above
functional. For simplicity, we set a(z) = a(x) + A.

Theorem 7.14 Let v be a Q-minimum of the functional G in a cube of
side R. Then, there exists a positive constant Ry, depending only on a, b
and on the norm of v in WLP such that for every p < R < Ry we have

n—p+ne
/ (IDvP + oo )de < ¢ (2)" { / (|DvfP + R™H|v|")dz
Qe R Qr

+flafl R PF 4+ (IIaIIsR""’*"G)%RnE} ,

(1.77)

where = 2, and c is a constant depending on a, b and on the norm of v

in Wl.p

Proof. It will be simpler to prove the estimate (7.77) with 2R instead of
R. Suppose first that ¢ < R. We use the inequality (7.47)

n—p+ps
/ Dopdz <c(E) { / |Dv|”d:c+x”R""’+Pﬁ} ,
Qe R Qr

where, according to the Remark 7.7,
XP = lla+bM7||s < flafls + [[blls M7
The quantity M = 2supg, |v| can be estimated by means of (7.26) with
q=":

X
suplof? < ¢ { ]g [o[Ydz + ||a||:Rﬂ7} ,
2R

Qr
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where 8 = %. Moreover, we have
Iblls < cllbfl R,
and therefore

2
xXP < lladls +cllbllo (R”(%‘%-”/ o] dz + ||a||s"Rn(%—%+%"‘)) _
Q2r

In conclusion

/ |Dv|Pdz < ¢ (%)n—p+pﬁ {/Q

1 n
+ [l R*PF + |l 2 Rﬁ%ewv} ' (7.78)

| DvjPdz + R_“/ |v|"dx
Q2r

e 2R

On the other hand

Q—u/ lv|7dz < co™ MY = oM FHI MY
Qe
n( 3 +e) 2 _n
<ec (_@_) prTe {R—p./ |v|Ydz + ||| 2 R;}+ne+ﬁ’7}
R Q2r

n—p+ne n
<e() " {mr [ ey,
Q2r

where in the last passage we have used the inequality —;—;Z > %,E =n-—p.
Adding the last inequality to (7.78) we get (7.77) for ¢ < R. On the

other hand if R < ¢ < 2R, (7.77) holds trivially, possibly with a different

constant ¢, and hence the theorem is proved. a

Let now u be an w-minimum of the functional F. We shall get an
estimate similar to (7.77) by comparing v with a suitable Q-minimum v
of the functional G. For the construction of such v we shall use Ekeland’s
variational principle of Section 5.4. We define a metric space X as the set
of all functions w € WHP(Qg) such that u — w € Wy'P(Qr), and

/ (IDwl? + bluw|")dz < / (IDuf? + blu|")dz.
Qr Qr
We equip X with the metric

d(w,v) = CR/ |[Dw — Dv\dz, (7.79)

Qr
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where Cg is a constant that we shall choose later. A simple application of
Fatou’s lemma shows that X is complete.
For 6 > 0, let vs be a function in X such that

F(vs,Qr) < il)}f]:—l- d.
We have
F(w,Qr) < (1 +w(R))F(vs, Qr) < inf F + 6 + w[F(u, Qr) + 9]
from which, letting § — 0, we get

F(u) < ixiff—f-w]-'(u) < i?{f]:+ cwR"][ (|IDul? + blu|” + a)dz
Qr

in which we have written F(u) instead of F(u, Qr).
By Ekeland’s principle, there exists a function v € X, in particular
such that

[ (Do +blupryds < [ (Dul? + iz,
Qr Qr
satisfying
/ |Dv — Duldz < CRp! (7.80)
R

and such that

Fv) < F(w) + cwR"C’R][ (|Dul? + blu|” + a)dm/ |Dv — Duldz .
Qr Qr

If we now choose

=

Cpl = R"™w (][ (|Dul? + blul” + a)da:)
Qr
the last inequality becomes
Fv) < Flw) + A7} / \Dv — Duldz (7.81)
Qr
with

A=AR) = CJZQ (IDufP + blu]" + a)dz. (7.82)
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We remark that we have

/ |Dv|Pdz < / (|Dul? + blul")dx < 1 (7.83)
Qr Qr

/ [v|P dz < c/ |v —u|”‘d:c+c/ lulP” dz
Qr Qr Qr

*

P
<ec (/ (|Du| + |Dv|)”dm> + c/ [ulP'dz <cp  (7.84)
Qr Qr

with ¢; and ¢y independent of R.

We shall prove now that v is a @Q-minimum of the functional G.

Let w € WYP(QR), with o = v —w € Wol’p, and let K = supp p. If
w € X, we have from (7.81)

/ (IDv}P — bjo|” — a)dz < F(v,K) < F(w,K) + A'"5 / |Dy|dzx
K K

and hence

/ \DvlPda
K
< / (IDwl? + blw|” +a)de + / (Blo|” + a)dz + A / \Deldz .
K K K
We estimate
AV Dyl < €| D|P + ceA < ce(|Dv|P + |[Dw[P) + ceA
so that, taking € small enough
/ (IDwfP + blo]” +a + A)de < c/ (IDwl? + bjwl” + a + blo]” + A)da.
K K
On the other hand, if w ¢ X, we have
/ (IDv[P + blo[")dz < / (IDufP + bju[")dz < / (IDwP + bjw[")dz
K K K
so that the above inequality holds for every w € W1P(Qg) with w — v €

Wo'?(Qr)-
Arguing as in Theorem 6.1 (see Remark 6.6), we conclude that

/ (IDf? 4+ blo]" + a+ A)dz < Q / (IDw? + bwl” +a+ A)dz
K K
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and hence v is a @Q-minimum of the functional G. The constant Q@ will
depend on v only through its norm || Dv||, + ||v|p+, and hence in the last
instance it depends only on u and it is independent of R.

Let us estimate now the quantity

][ |Du — Dv|Pdz.
QRr

Let » > 1 be the exponent in (6.64), and let ¥ = réf,%iz. We have

£

1
P
|Du — Dv]pda;)

R
2

< (]{? (]{2% \Du— Dv|dac) -~ .

We estimate the two factors separately. For the first, we use (6.64) both
for u and v, and we get

4

TP
|Du — Dv[”’dw)

R
z

1

|Du — Dvl”’dz)

R
2

<c ][ | Du|™Pdz +ec ][ | Dv|™Pdzx
Qg . Q%

1 1
<e <][ |Du]”dw) " te (][ (Blu] + a)’dm) ’
Qr Qr
i L
r TP
te <][ |Dv|de) te (][ Bl +a+ A)’dm)
Qr Qr

1

L
[£3 TP

and therefore

][ |Du — Dv|™Pdz
Q

R
z

<e (][ R|Du|pdx)% +e (]2 R(b|u]7)rda:) ”

L
+c (][ (b|v|'y)'da:> v +ec (][ a’dm) +cA? .
Qr Qr
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On the other hand
][ \Du — Dulde < cR~"Cr = aw(R)A}
QR

2

and

1 1 1
AP <c (f |Du|”dm> T e (][ (b|u|7)rdx) " te <]1 arda:> .
R Qr R

so that in conclusion

][ \Du — DofPdz < cw(R)"{ ][ \DufPdz + (][ b|u|"’)rdm) "
R Qr Qr

i (]2 R(b|v|7)rdw>% +R"“”+"‘||a||3} (7.85)

with some exponent « > 0.
Finally, we estimate the integrals containing the function b. We have

1 1 1
( (b|u|"’)"dw) <c ( (blu — uR|'7)sz) +e ( (b|uR|")"dz>
QR Qr Qr

Now

1 1

lug|” (f b’dm)rﬁ(f b"dx)a][ lu["dz
R R R
and

% - P% rp* %_}—?’r
(/ (bIU—uRI’Y)Tde) < ( (lu —ugl? d:l:) (/ bP‘-rvd:c)
Qr QR

(/ (lu — ugl? dm) (/ (lu — ugl? da:)
1_ .y
r p

X < b —qu;)

Qr

< c/ | Du|Pdz .
Qr

In a similar way

<7£’R(blvlv)rdx) = (]{gﬂ(blu - vl“')rdw) Fre <]€en(b|u|’7)rdﬂi) g
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The last term on the right-hand side has already been treated; the first
can be estimated as above by

c / (DupP + R~|u[")dz .
Qr

In conclusion,

][ |Du — Dv|Pdz
%%

< cw(R)" {]{2 (|DufP + R™#Ju|")dz + ||a||8R""’+"€} . (1.86)

With the help of the above estimate, we can transfer inequality (7.77)
to the w-minimum u. We have for g < %:

[ (DuP + g Hude
Qe
<c / (IDof? + o~ Hfo|")dz
Qe
+ c/ (|IDu — Duf? + o7 #|u — v|")dz
Q.

<o(8)! | Dol + Ry + o)}

+c/ (|Du — Dv|? + g7 #|u — v|")dx

e

n—p+ne
<c(£) ’ { / (IDul? + R~*[u|")dz + @(R)}
R Qr
+ c/ (|[Du — Dul? + o7 #|u — v|")dz,
%%

where
O(R) = [laf|R* 7" + (|laf| JR*P+me) 7 R™.

Let us estimate the single terms on the right-hand side, beginning with
©. We have

ledls < llalls + R¥A
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and therefore
llallR*#*" < |la||, R*PF™¢ 4+ R™A.

Recalling now that
AR" = c/ (|DulP + bju|” + a)dz < ¢,
Qr
we get easily
O(R) < c([lallsR* P+ + AR")
<ec (/ (|IDul? + R™#|u|")dz + ||a||sR""’+"‘) . (7.87)
Qr

The term ng | Du— Dv|Pdz has been already considered in (7.86). The

remaining term can be treated as follows:

.\
/ |lu —v|")dz < cR" (][ lu —v|P dz)
Q R
2

< cRMA-F) (/ |Du — Dv|”dm) ’
R

R
z

< cR"'”“/ (|Dul? + blu|” + a)dz
Qr
since
/ (IDuf? + bluf” + a)ds < c.
Qr

Putting together all these inequalities, we get the following:

Theorem 7.15 Let u be an w-minimum of the functional F. There exists
a Ry > 0 such that for every cube Qr CC §Q, with R < Ry,

[ (ut+ e < e (£) i+ (2) o)

x / (IDulP + R~*u[")dz + cl|al| R*P+"<
Qr

(7.88)
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The inequality (7.88) is the main tool in the proof of the Holder conti-
nuity of u. Writing for the sake of simplicity

(o) = /Q (IDufP + o™{ul")dz,

e

and 44 = ne, it becomes

n—p+49 R K
olo) < c{(ﬁ) +w(R)* + (—) R“} ©(R) + c||all, R*~P+4 .
R 0
Let 7 be such that 2¢72% =1, and let Ry be such that

w(R)* + 7 *RY < lTn_p+25
-2
for every R < Ry. Choosing ¢ = TR, the preceding inequality becomes
o(rR) < 7" PP p(R) + clal B P+

Since for every t € (t**1R,7*R) we have ¢(t) < 77*¢(7*R), we can
apply Lemma 7.3, from which we obtain

@ <e{(8)"" e® +lalr . as)

Let now ¥ CC 2 be an open set with smooth boundary, and let Ry <
dist(X, 0Q). If Q, is any cube centered on ¥ and of side ¢ < Rp, we have
from (7.89)

s

and hence, by Theorem 2.9, u is Hélder-continuous in ). We have therefore
proved the following;:

|u — uplPdz < c"p/ |\DulPdz < @™ (||ull1p + llall.),
Qe

e

Theorem 7.16 Let
Flu, A) = / F(z, u(z), Du(z))dz
A

with the function F(z,u, z) satisfying conditions (7.74). Every w-minimum
of F belongs to C%%(Q) for some § > 0.
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7.8 Boundary Regularity

With arguments similar to those of the preceding section we can prove
the Hélder continuity up to the boundary for w-minima with prescribed
boundary values.

We assign the boundary data as the trace of a function U € WH™(Q2),
with m > n. In particular, assuming that 92 is Lipschitz-continuous, we get
from Sobolev imbedding Theorem 3.11 that U € C%*(Q), witha =1—- Z.
In this case, we can immediately reduce to zero boundary values setting
w=u-U and

F(z,w,2) = F(z,w+U(z),z + DU(z)).

It is easily seen that if u is a w-minimum of the functional F, w is a
w-minimum of the corresponding functional

Flw,Q) = /Qﬁ‘(w, w, Dw)dz .

Moreover, the function F' satisfies
dlzfP —b(@)|wl" ~ a() < F(z,w,2) < LizP +b(z)|w|" +(z) (7.90)
with a suitable positive constant ¢ and with
a(z) = a(z) + |DU ()P + b(z)|U(z)|* € L*

for some s > Z.

We can therefore forget about the boundary values, and consider only
the homogeneous case u = 0 on ).

We need estimates similar to those of the preceding section, in which the
cubes @, are replaced by the sets Q, = @, N, the cubes Q, being centered
on 99. Since 91 is Lipschitz-continuous, we have |Q, — Q| > ao|Q,| for
some ag > 0, and therefore Theorem 6.8 holds, and we have the estimate

][ |Du|™dx < c (][ |Du|pdm) + c][ (a(z) + b(z)|u|")de (7.91)
QR Qr Qg

3

for every cubical @-minimum.

If now v is as in the preceding section, we have v =0 on Q2 N Qg, and
we can replace estimates (7.22) and (7.47) with (7.29) and (7.56), that is

3(1115) lv] < e(q) {((R—;g)" /QR |u|qu> : + HaHsRﬁ} , (7.92)
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n—p+pfB
/Q [DulPdz < ¢ (%) /Q |DulPdz + cxPo™PTPP (7.93)
R

e

We can then proceed as above; actually here the estimates are made
simpler from the fact that both the Q-minimum v and the w-minimum u
are zero on 8Q N Qp, so that the terms fQR blu|"dz and similar can be
estimated directly in terms of the integral of the gradient. We obtain in
conclusion an estimate analogous to (7.88), namely

/ (IDufP + o~[u[")ds
QQ

<e { (}—‘;)"_pm +w(R)" + (%)uR“} /QR(|Dul1’ + RM{u[")dz

+clal| R™TPE. (7.94)

valid for any concentric cubes centered on 912, and for every g < R < Ry.
Let now zo be any point of 2, and let as above

w0 = [ (DuP + g Hulde.
Qe o
We distinguish four cases.

Case 1. Q(zo, Ro)} C Q. In this case all the cubes involved are contained
in , and the results of the preceding section hold. In particular we have

n—p+6
¢(z0,0) < c { (—%) (2o, Ro) + ||a||s9"_p+5} : (7.95)

Case 2. ¢ € 912. In this case we can argue as in the preceding section,
starting from (7.94), and we conclude that the preceding estimate holds in
this case too.

Case 3. Q(xo, ¢) intersects 9. If z; € 9Q N Q(xo, 0), we have Q(zo, 0) C
Q(z1, 20), and hence

n—p+38
Plan, o) < cp(o1,20) < ¢ {(Ri) plar, Ro) + nansg"-w} .

Case 4. If none of the above situations is verified, let r be the largest side
of the cube centered at zp and contained in 2. We have

n—p+4
go(a:o, g) < c{(g) go(xo,r) + ”a||sgn—p+5} .
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As above, there is a point x; € 8 such that Q(zo,r) C Q(z1,2r), and we
can continue as in Case 3, getting

n—p+8
@ n—
¢(z0,0) < ¢ { (E) ¢(z1, Ro) + |lallse ”*‘5} :
In any case, we can therefore conclude that

/ |DufPdz < co™ P+ (fufl1,p + llalls)

e

from which the Holder continuity of u in Q follows immediately.

7.9 Notes and Comments

The core of this chapter is Theorem 7.6, where we have proved that the
functions in De Giorgi’s classes DGP are Holder-continuous. This result
was proved by De Giorgi in his famous paper [1], which opened the way to
the regularity of solutions of elliptic equations with bounded measurable
coefficients, and for minima of regular functionals in the calculus of varia-
tions. De Giorgi’s theorem was later generalized by various authors, so as
to cover the most general solutions of non-linear equations in divergence
form. We note in particular the papers by STAMPACCHIA [1, 2, 4] and the
book by LADYZENSKAYA and URAL’CEVA [1].

Almost at the same time, a different proof of the regularity of solutions
to parabolic and elliptic equations was given by NasH [1].

Slightly later, MOSER (2] proved Harnack’s inequality, thus extending
to solutions of linear equations in divergence form a classical result for
harmonic functions. Starting from Harnack’s inequality, Moser gave a new
proof of the Hélder-continuity of solutions of elliptic equations.

Moser’s proof goes as follows. Let u be a solution of the elliptic
equation

/ a;j(z)DjuDipdr = 0
Q

for every ¢ € Wol’z(Q), and assume that every positive solution w in Qsgr
satisfies Harnack’s inequality

supw < cinfw.
Qr Qr
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Setting M(R) = supg, v and m(R) = infg, u, we can apply Harnack’s
inequality to the functions M(2R) — u and u — m(2R), obtaining
M(2R) - M(R) < [M(2R) - m(R)],
M(R) — m(2R) < ¢Jm{R) — m(2R)].

Summing these inequalities, and setting osc(u, R) = M(R) — m(R), we
get

osc(u, 2R) + osc(u, R) < cosc(u, 2R) — osc(u, R)]
and whence

c—1
< =:
osc(u, R) < = 1osc(u,2R) ~osc(u, 2R) ,

with 4 < 1. By induction, writing R instead of 2R:
osc(u, 2 FR) < v*osc(u, R).

Let now ¢ < R. We can choose k so that 27*~1R < p < 27%R, getting
B
osc(u, p) <c (%) osc(u, R)

with 8 = —11%3—;‘ > 0, whence the Holder-continuity of the function w.

The extension of the method of De Giorgi to minima (and quasi-
minima) of functionals, independently of their Euler equation, was made
by GIAQUINTA and GIUSTI [2], after FREHSE [3] had studied a particular
case, under rather restrictive hypotheses.

For what concerns boundary regularity, ZIEMER [1] proved the conti-
nuity of quasi-minima at every boundary point satisfying a WIENER
condition, thus extending, although not in the maximum of generality,
well-known results for elliptic equations in divergence form.

Harnack’s inequality was proved by D1 BENEDETTO and TRUDINGER
[1] for functions in De Giorgi classes, and hence for quasi-minima of integral

functionals
f(u,ﬂ):/F(x,u,Du)dm
Q

We have also given a second proof of that result, obtained by means
of an idea, introduced by D1 BENEDETTO [1] in his extension of Harnack’s
inequality to De Giorgi classes of parabolic type. The same idea leads to the
proof of a Harnack’s inequality for De Giorgi classes relative to Hérmander
vector fields (MARCHI [3]).
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The notion of w-minimum was introduced by ANZELLOTTI [1]. The
Holder continuity of w-minima was proved by DoOLCINI, EsPosITO and
Fusco [1] in the special case of integrand F satisfying

|2z|P < F(z,u,2) < L(1 + |2JP)

and later by ESPOSITO and MINGIONE [1] in the general case.
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Chapter 8

First Derivatives

The results of the preceding chapter are the most general one can obtain
for arbitrary scalar quasi-minima of regular functionals

H%M:LF@%D@M. (8.1)

Actually, we cannot expect that the regularity of a quasi-minimum (or
even of a minimum) of a functional of the calculus of variations, in the sole
assumptions of the preceding chapters, goes beyond the Holder-continuity
theorem we have proved in the preceding chapter. The following example
is characteristic of the general situation.

Example 8.1 The function u(x) = z;|z|~%, 0 < a < 1, is a weak solution
of the elliptic differential equation

/ a¥(2)DjuDipdz =0 Yy € C°(B),
B

where B is the unit ball in R®, n > 2, and

a(n — o) T
1-a)n-1-0) |z*

a¥(z) = 6% +
The proof of the above assertion can be obtained by first checking that
the function v is a solution of the equation
D;[a¥ (z)Dju] = 0
in B — {0}, and then arguing as in Example 6.3.

261
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It follows that u(z) minimizes the functional

/B <|Du|2+a<|—;”—,,pu>2> dz

an—o

with ¢ =: o) n—i-a)

assumptions

> 0, whose integrand F(z,z) satisfies the

|22 < Fz,2) < (1 + )2’

In particular, v is a Q-minimum of the DIRICHLET functional, with
Q =1+ 0. We note that o can be as close to zero as we wish.

Consequently, if we want to obtain regularity results for the first deriva-
tives, we must abandon the notion of quasi-minimum, whose duty was
performed in the preceding chapters, and we must consider the minima, or
more generally the w-minima of the functional (8.1). Moreover, we must
assume that the function F(z,u, z) is regular enough; in particular that it
has first and second derivatives with respect to z.

In this chapter we shall consider the scalar case, and we shall prove
the Holder-continuity of the first derivatives of the w-minima (hence in
particular of the minima) of the integral (8.1), and of the solutions of elliptic
equations in divergence form.

The core of the chapter is the study of the minima of functionals
depending only on the gradient

Flu, Q) = / F(Du(z)) de, (8.2)
o
or more generally of the weak solutions of elliptic equations of the form
D;A*(Du) =0. (8.3)
Once suitable estimates for these functions have been obtained, we shall
consider the general case of w-minima of the functional (8.1), in which the
dependence on z and u will be considered as a perturbation, and we shall

prove the Holder-continuity of the first derivatives. The same results hold
for weak solutions of elliptic equations of the type

D;A*(z,u, Du) = B(z,u, Du).



First Derivatives 263
8.1 The Difference Quotients

Before beginning the study of the functional (8.1), we shall prove some
results that will be useful later.

Definition 8.1 Let f(z) be a function defined in an open set @ C R",
and let h be a real number. We call the difference quotient of f with respect
to x, the function

Bopfie) = LR 1),

where e denotes the direction of the zs axis.

When no confusion can arise, we shall omit the index s, and we shall
write simply Ap, instead of A, p.
The function A, 4 f is defined in the set

A p=:{z € Q:z+ he, € Q},
and hence in the set
Qp) = {z € Q: dist (z,0Q) > |h|}.
The following properties of the difference quotients are immediate:

(i) If f € WLP(Q), then Apf € WhP(Q), and

Di(Arnf) = An(D;if). (8.4)
(ii) If at least one of the functions f or g has support contained in £,
then
/ fAnrgdz = —/ gA_nfdz. (8.5)
0 Q
(iii) We have
An(fg)(z) = f(z + hes)Ang(z) + g(z)Anf(z) - (8.6)

Remark 8.1 It follows immediately from (ii) that the derivatives D,g of
a Lipschitz-continuous function g, which exists almost everywhere as limits
of the difference quotient A, g coincide with its weak derivatives. In fact,
if f is a test function, we can pass to the limit in (ii), getting

[Ptz =~ [oDisas.

In other words, we have Lip () = W(Q). a
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Lemma 8.1  There ezists a constant c(n) such that if v € WHP(Q), T CC
Q and th| < hy = 10\/_dlst (%,90),

“As,hU”p,E < CHDsU”p,Q- (8.7)

Proof. We can assume s = n. Let us show first inequality (8.7) when &
is the cube Qr. We have for almost every z € X:

1 Zn+h
Awl(z) = 7 / Do, 1) dt,

where Z = (r1,...,Zp-1). Now let f(t) = D,v(Z,t). From the HOLDER

inequality we get:
1 z+h. 4 1 h
[ roal <3 [Ciseropa
h z h Q

and hence

L.

2+h p
L

dz < = / dz/ If(z+t)|Pdt

h R
—i | @[ iferora

R+ho
< / 1f(2)|Pdz.

—R—ho

Denoting by K the projection of Qr on R*~!, we have:

R 1 zn"f‘h P
|ApviP dz = dz dz, |+ Dy, v(z,t)dt
Qr Kr -R h Tn

R+ho
/ dz/ | Dpv(Z, zn )P dzn,
Kr R—ho

< / \D,of? dz,
QR+hg

and (8.7) is proved in the case of a cube.
Now let £ cC Q. The set £ is contained in the union of a finite number
of cubes Q; of side 2R = 2hg, without interior points in common. For each
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of them we can write the preceding inequality:

/ |Ahv|”dx§/ Dol d.
Qr Q2r

Since at most 5™ cubes of double side overlap, we have immediately the
result with ¢(n) = 5. a

The preceding proposition has a converse.

Lemma 8.2 Letv € LP(Q2), 1 < p < 00, and assume that there exists a
constant K such that for every h small enough we have

1Aspvlpan < K.
Then, Dyv € LP(£)), and
| Dsvllp,0 < K.
Moreover, when h — 0, A, pv — Dyv in LT, (Q).

Proof. Let h; be a sequence converging to zero, and let

Ahiv in Q|hii
9= 0 inQ—Q|hi|.

The sequence g; is bounded in LP(Q) and therefore, since that space
is reflexive, we can extract a subsequence weakly convergent to a function

g € LP(Q), with |{glp,.0 < K.
Let us show that g = Dyv. If p € C§°(f2), we have

/gcpdx' = lim /(pAhivdz =— lim | vAp,pdz
11— 00 1—00

= —/vDsgoda:

since App — Dy uniformly.
In order to prove the last statement, let w € C1P(Q2). We have

Apv — Dyv = Ap(v — w) + Apw — Dyw + Dy(w — v)
and hence from the preceding lemma:
|40 — Dyl < |Axw = Dywllpz + el Da(w = v)llpa -

The conclusion follows by remarking that C1?() is dense in W1?(Q),
and that if w € C?(Q), Apw — Dsw uniformly on compact sets. a
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Finally, we shall use the following lemma:
Lemma 8.3 Let £ and 7 be two vectors in R™, and let
Z(t) = (1+](1 ~ )¢ + tm*)2.

For every s > —1 and r > 0 there exists two constants ¢1(s,r) aend ca(s,T)
such that

1
cr(1+ |€? + |m|?) 3 S/O (L=)7Z(t)"dt < (1 + [¢]* + ") % .

Proof. Since we have trivially Z(¢)? < ¢(1+ |¢|2 + |7|2), we need only an
estimate from below.
If || > |€|, we have for 2 <t <1,

2 1
(1= )¢ + ] > tl] — (1~ 9)lé] > 37|~ 2] > sl
and therefore
Z(t)* = c(1+ (¢ + [7]?).

The same inequality holds for 0 < ¢t < 1 if |¢| > |r|. The required
estimates follow at once. O

8.2 Second Derivatives

In this section we shall consider weak solutions of elliptic equations in
divergence form

/ AY(Du)D;pdz =0 Y€ CP () (8.8)

with coefficients depending only on the gradient, and we will show that
they have second derivatives in (.

For that purpose, it will be necessary to assume that the functions A*(z)
are of class C1, and that they satisfy the inequalities:

|Af} + V(2)|A¥| < LV (2)P71, (8.9)
AN(2)z; > .VV(z)p —c, (8.10)
AT (2)&:€; > vV (2)P2 ¢ (8.11)
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with v > 0, where we have set!

V(z) = 1+ 2%, (8.12)
DAi(z)
8Zj )

AY(z) = (8.13)

1

We remark that multiplying the coefficients by v~!, we can assume that

v=1.
The main result of this section is given by the following:

Theorem 8.1 Let p > 1 and let u € WHP(Q) be a weak solution of the
equation

/ AN(DuDipde =0 Vo € WIP(Q),

whose coefficients A'(z) satisfy relations (8.9)—(8.11). Then, u has second
derivatives D?u such that for every ¥ CC

/ VP2 D2y dz < o(X)) / VPdz, (8.14)
z Q

Proof. Let 6R < dist (¥,090), and let zo € . Setting Q; = Q(zo,1), let
¢ € C&(Q2r), 0 < ¢ <1,{=1in Qg and |D¢|? +|D%| < ¢cR~2. Finally,
let |h| < R. Writing ¢ = A, _»(¢?A, pu) in (8.8), and integrating by parts
by means of (8.5), we get:

, / ARAY(C®DiApu+ 28pu¢Di¢)dx =0, (8.15)

where as usual we have written A, instead of A, 4.
We now have

R Y
A i = Al
RA 5 /0 th (Du + thApDu) dt

1
= / A% (Du + thDAru)DjApudt =: aiijAhu, (8.16)
o
with

1
ot = / AY (Du +thApDu)dt .
0

1Of course, the inequalities (8.10) and (8.11), both expressing the ellipticity of the
equation, are not independent, and actually (8.10) is a consequence of (8.11).
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It is possible to estimate the coefficients &/ by means of the assumptions
(8.9)—(8.11) and of Lemma 8.3. We get:

|| < e WP2,
a gl > cWP2IE?,
where
W2 =1+ |Du(z)|? + |Du(z + he,)|%.

With these relations we can estimate the first term of (8.15):
/ ARA*?D;Apudz > ¢ / WP~2¢2| DALl dz . (8.17)

In order to estimate the second term, we distinguish the two cases p > 2
and 1 < p < 2. In the first case we can use again (8.16), obtaining:

21/AhAiAhu(D¢de =2

/aiij (Apu) ¢ D¢ Apudz
<e / WP=2|Apul|DAnu| ¢ |D¢| dz
<e / WP=2|DApu|? (% dx

+ e / WP2|Apul? | D¢ de,

and in conclusion:

/ WP2DAultdz < cR™? [ WP 2|Apul da. (8.18)
Qr Qar
On the other hand

WP2|Apul? < (WP + |ApulP) (8.19)

and, since |h| < R,

WPdzx <ec VPdx.
Q2r Q3r
Recalling Lemma 8.1, we get

WP~ DApul|?dz < cR™2 VPdz. (8.20)
Qr Qsr
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If instead 1 < p < 2, (8.19) does not hold, and we must take a different
path, which consists of expressing the quantity ApA* in a different way.

We have:

[ 1 ! d i
Andf = 3 /0 = A'(Du(g + the,)) dt

= /01 D, A(Du(z + the,)) dt =: Do,
where the functions o verify the inequality
lof| <Y =: /01(1 + | Du(z + the,)|?) "7 dt.
We have then
2 / ARA* Apu¢ DiCdz = -2 / o' Dy(Anu¢ D) dx

= —2/aiD3(Ahu) ¢Di(dz

_9 / ot Apu(¢ Dis¢ + Di¢ Dy¢) dx
and hence

2 ‘ / ARA  Apu¢ D¢ dx

<cR! / Y¢|DApuldz

+cR™? Y|Apu|dz. (8.21)
Q2r

Let us evaluate the first term on the right-hand side. We have
R™Y(|DAwu| = RTIYW W2 ¢ |DAnyl
< eWP 23| DApu|? + ce IRT2Y2W 2P
and therefore

/ WP=2|DApul?dz < cR™? (Y2W2 P L Y|Apu|)dz. (8.22)
R Q2r

We remark now that
YZW2P < (WP 4 Y701,
Y|Apu| < e(|Apul? + Yia{_l)
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and moreover

P _
=1

1 r
Y51 dg = / {/ (14 [Du(z + 1§hes)|"’)‘u;_1 dt} dz
Q2R Q2r 0

g/ol{ QZR(1+|Du(x+thes)|2)g'dx} dt

S/ VPdz,
3R

so that in conclusion (8.20) holds also for 1 < p < 2.
We remark that if 1 < p < 2, setting 2a = p(2 — p), we have:

|DAulP = WOW =% DApul? < (WP + WP=2|DAul?), (8.23)
whereas if p > 2 it holds that
[DARu|?> < WP2|DALul?.

The sequence DApu is therefore bounded in L#(Qg) (¢ = min(2, p)); by
Lemma 8.2 it converges in L{, (Qr) to DD,u, and hence u € VVli’c”(QR).
Moreover, from that sequence we can extract a subsequence converging
almost everywhere; since also W tends to (1 +2|Du|2)% almost everywhere,

passing to the limit in (8.20) we obtain the estimate

VP2 D?%y)? dx < cR™2 VPdz (8.24)
Qr Qsn

from which, covering ¥ with cubes of sufficiently small side, we get
immediately (8.14). a

Remark 8.2 The preceding theorem holds also for elliptic systems:
/Af,(Du)Digo" dr=0

with coefficients satisfying (8.9) and the strong ellipticity condition,
analogous to (8.11),

AL, (0)e2e] = VP2
Apart from the multiplicity of the indices, the proof is exactly the
same. 0

Remark 8.3 If 1 < p < 2 it follows from (8.23) that u € W2P(Q), with

loc
the estimate
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/ D2 do < o(F) / VPdz, (8.25)
P Q 0

Remark 8.4 Since |DV| < |D?ul, (8.14) implies that the function Z =:
V% belongs to WL2(92), and

/ |DZ|?dz < c/ Z*dz. (8.26)
b Q 0

The fact that u has second derivatives permits one to write two
interesting equations, both obtained from (8.8). The first is deduced by
means of a simple integration by parts; setting as before

oA

ij .
A 8zj

we have
/AijDijU(pdx =0
for every ¢ € C§°(f2), and hence the function u(z) verifies the equation
AY(Du)Diju=0 ae.inQ. (8.27)

In contrast, the second one is an integral relation; writing D, instead
of  in (8.8) and integrating by parts, we get

/ A% (Du)DjsuD;pdz = 0 (8.28)
for every ¢ € C§(f) and therefore for every ¢ with compact support for

which the integral makes sense.

8.3 Gradient Estimates
We shall use Eq. (8.28) in order to prove the boundedness and the Hélder
continuity of the first derivatives of u.

Proposition 8.1 Letu be a solution of Eq. (8.28), and assume that condi-
tions (8.9)-(8.11) are satisfied. Then, for every k > E the function Z = vk
belongs to VVI(IDC2 () and for every ¥ CC A CC Q we have

/ |DZ|2dz < c(k, 5, A) / Z2dz. (8.29)
b A
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Proof. For T > 0 we set
VZ =1+ min{|Du|?, T},

and we take ¢ = (2V2*D,u in (8.28), ¢ being a function with compact
support. We obtain

/ A DjqulVE* Digu + 2oV DV Dyul(? da

= —2/AijDi3UV'1%aDsu<DiCd‘T'

We can estimate the different terms in the usual way, remarking only
that

|Du||DVr| < Vr|DVr,
D,;VTDS’U,DJ‘SU = VTD,,;VTDJ'VT .

In this way we arrive to the inequality

/ VP=2V2%(|D%u|? 4 20| DV |?)¢? dx

<ec / VPVE D¢ dx. (8.30)

From that estimate we can begin an iterative procedure. Assume that
Ve Lf:';za(ﬂ) for some o > 0, and let ¥; cC Xy cc Q. Taking ¢ €

C§°(Xy) with ¢ =1 in ¥, and passing to the limit for T — co we deduce
from (8.30):

/ |IDVE*e P de < (21, 82,a) | VPT2eds.
21 E2

By the SOBOLEV immersion theorem, V 5+ ¢ L2"(E;) and
IVEF 2 5, < e(S1, T, )V E|la,z, .

Since (§ + a)2* > p+2a + 2B at every step (starting from a = 0)
we gain a fixed exponent, so that after a finite number of steps we arrive
at the required exponent k, with the estimate (8.29). O

1,2

o > and we have

In particular, the function wo = V? belongs to W,

Djwg = pr"zDiuDiju .
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Setting a¥(x) = V2P A% (Du(z)), we deduce from (8.28)
/aiijwoDicp dzx + p/AiijauDisugo dz =0,
that we write for simplicity
/aiijwoDiw dz + /g<p dx=0 (8.31)
with
g =pAYDjuD;su.
In particular, since the function g is non-negative,
/aiijwoDigo dz <0

for every ¢ > 0. Remarking that the coefficients a*/ are bounded and satisfy
the ellipticity condition

a”&¢; > (€7, (8.32)

we conclude that wp is a sub-quasi-minimum of the DIRICHLET integral

/]Dulzdx

(see Remark 6.4), and therefore from Theorem 7.5 we get

<(q)
supV? < ——=—— Vidz (8.33)
Q. (R-0)" Jga
for every p < R and for every q > 0.
Moreover, if ¥ CC {2, and if we take the cube Qr/s in such a way that
SupPq, , V = supy V, we obtain easily the following:

Theorem 8.2 Under the assumptions of the preceding proposition, the
gradient of u is locally bounded in Q, and for every ¥ CC Q and every
q > 0 we have

supV < (Eist—(cz(f_)mﬁ/nqu’”)q . (8.34)

Once the boundedness of the gradient has been proved, it is immediate
to show that u € C1® for some o > 0. Actually, the function w = D,u is
a solution of Eq. (8.28), with

A9 < M and AV, > |€)2.
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It follows that Dyu is a quasi-minimum of the functional [|Du|?dz,
and hence it is Hélder continuous.
We have therefore the following:

Theorem 8.3 Let u € WHP(Q) be a solution of the Eq. (8.28), with
conditions (8.9)—(8.11), and let p > 1.

Then, the derivatives of u are Hélder-continuous in Q, and for every
compact set K C €, the norm ||ul|ci.«(k) can be estimated by means of

lullwe(0)-

In particular, the preceding theorem applies to the minima of the
functionals discussed in Chapter 1. In fact they verify Eq. (8.8) with
At = F,, and, being Lipschitz-continuous functions, conditions (8.9)—(8.11)
are satisfied with p = 2.

8.4 Boundary Estimates

We want now to obtain an analogue of (8.33) for solutions of the Eq. (8.3)
in a half-ball

Bt={zeR":|z| < 1,2, >0}
with zero boundary value on the flat part
P={zcdB*:z,=0}

of the boundary of Bt.

We can assume that u is continuous in B*, and that almost everywhere
it satisfies Eq. (8.27). ‘

We shall begin by repeating, with due caution, the argument that lead to
the proof of (8.33). In the first place, we remark that if s # n, the function
A, pu has null trace on P, and hence we may take again ¢ = A_p(¢2Axu),
with ¢ € C§°(B) but generally speaking different from zero on P. We arrive
thus as above at the estimate

VP~2|DD'u|?dx < cR™? VPdz, (8.35)
Q% Qin
in which we have denoted D'u any derivative D;u, withi =1,2,... ,n—1.

In this way we can estimate every second derivative, except Dy,,u. For
it we use Eq. (8.27), that we rewrite in the form

AnnDnn’u, = —ElAijDiju s
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where the apex indicates that in the sum we have excluded the term with
i and j both equal to n.

For T > 0 we set w = min{max{Dnu,—T},T}, and let ¢ be a function
in C§°(B). The function D,w is zero if [Dyu| > T, and is equal to Dypnu
otherwise. Multiplying the preceding equation by D,w, and making the
usual estimates, we get

VP2 Dyw|? < VP 2|DD'uf?
for almost every z € B™.
The last inequality can be integrated on every Q'E C B7, giving
VP2 w2 de < o / VP-2|DD'uf? dx .
Q% Q%
If we pass to the limit for T — oo and use (8.35), we get in conclusion
VP~ D%u|?dz < cR™2 VPdzx. (8.36)
Q% Qir

The second step consists of proving the boundedness in P of the gradient
of u. We shall start from Eq. (8.27):

Aij (Du)Diju =0 s
or else, setting as above o = AYV2-P;
a(Du)D;ju =0. (8.37)

We have already proved that the function u is continuous (or better,
Hélder-continuous) in BT U P, and that it belongs to C*(B*). We shall
prove in Chapter 10 that u € C%*(B%).

For 0 < z,, < § we set

w=e"—1+ pe o,
We have
Dijw = e*(Diju + DiuDju) + Azuéinéjne_)‘z"
and hence, recalling (8.32):
aijDijw > ,u/\2e_’\°”" .
We choose now the constants ¢ and A in such a way that

aijDiijI f0<z,<d
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and
w(z)<p ifz,=94.

To that purpose, it is sufficient for instance to take A in such a way that
e M = %, and then, setting M = sup |u, to choose > 2(eM — 1) in such
a way that pu2 > 2.

This being done, the function w cannot have a maximum in a point z
with 0 < z, < 4, since at the maximum point one should have ¢/ D;;w < 0.
Since w < p if z, = §, the maximum will be taken on 92, where w = pu.
Consequently,

u < y(zp,) =: log[l + p(1 — e=**")].

Since —u is solution of an equation of the same sort, we can conclude
that

fu(z)| < y(zn)

in the strip 0 < z, < 4.

From that we conclude immediately that Du is bounded on 9%, thanks
to Corollary 3.2 and to the fact that, by virtue of Theorem 8.1 and of (8.36)
the first derivatives of u belong to W12(B¥) if m > 2, and to WHP(B1) if
p<2

At this point we can prove the analogue of Proposition 8.1. Let M =
maxp |Dul?, and for T > M let

w? = WI%,I,T =: 1+ min{max{|Du|?, M}, T},
2=1+M.
We have W = max{Vr, u}, and hence
Vr <W <L Vr+up, (8.38)

whereas W = p on P, so that W?2* — ;42 = 0 on P for every a > 0.
Taking then ¢ = (2(W?2* — 42%)D,u in (8.28), where ( is a test function
not necessarily equal to zero on P, we get

/ A Djsu[(W?* — p?*)Digu + 2aW?*~ 1 D;W D,u)¢? de

— 2 / A9 D, uD,u(W? — 12*)¢ D¢ da
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If we remark that

|Du||DW| < W|DW]|,
D\WDuDju = WD,WD;W,

we get
/Vp—2(W2a _ N2a)|D2U|2C2 dzx
< c/VP(W%‘ — 2| DR dz .

From the above estimate, recalling the inequalities (8.36) and (8.38),
and choosing ¢ in the usual way, we obtain

VP=2y2¥ D%u|? dx < ¢(u)R™? / VPVE* dz, (8.39)
Q% Q3n

which, thanks to (8.36), holds also for a = 0.
We can now proceed as in the proof of Proposition 8.1, obtaining the
estimate

/ IDZ? dz < c(k, 1) / Z%dz (8.40)
BT B+

2

with Z = V%,

Arguing as in Theorem 8.2, and taking into account the boundedness of
Z on P, we conclude that the gradient of u is locally bounded in Bt U P,
and that for every ¢ < R and every ¢ > 0 we have

supVe < AP _ [ yagy, (8.41)
Q¢ (R—0)" Jop

At this point we could prove that the function u has Hélder continuous
derivatives up to P. On the other hand, the case under examination (func-
tionals dependent only on the gradient, flat boundary) is too particular to
be interesting in itself. We shall therefore postpone the regularity results
at the boundary till the next sections, when we shall deal with the general
case,
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8.5 w-Minima

Under suitable assumptions, most of the theorems proved till now can be
extended to weak solutions of general elliptic equations

/(Ai(m, u, Du)D;p + B(z,u, Du)p)dz =0
and therefore to the minima of general functionals
Flw,Q) = / F(z,u, Du)da. (8.42)
9)

We shall not follow the path that is discussed in detail in the treatise
by LADYZENSKAYA and URAL’CEVA [1]. On the contrary, we will rather
attack the problem of the regularity of the first derivatives by direct meth-
ods, treating the w-minima of general functionals. In this way, we shall
also recover most of the classical results, under substantially more general
assumptions.

Postponing to the next chapter the discussion of the vector case, we
shall prove now the regularity of the first derivatives of scalar w-minima.

For what concerns the integrand F(x,u, z), we shall assume that it is
of class C? in z and that it verifies the inequalities

VP < F(z,u,z) < LVP, (8.43)
|F,.(z,u,2)| < LVP~2, (8.44)
Fz,-z,-'figj 2 VP—2|£|2 ) (845)

where we have set
Vi=V22)=1+|z|%.

Moreover we shall assume that the function V~PF(z, u, z) is continuous
in (z,u) € Q x R, uniformly for z € R™; in other words, that there exists a
continuous, bounded, increasing and concave? function 9(t), with 4(0) =0,

2This last condition is not restrictive. Actually, if (8.46) is satisfled by a function
o continuous, bounded and increasing, it will suffice to take as ¥ the smallest concave
function not smaller than ¢. Such a function 9 is obviously increasing, is bounded
by the same constant M giving the bound for o, and is continuous. We have finally
9(0) = 0, since if 9(0) = 2I > 0, taking a d > 0 such that o(t) < I in [0,d], the function
min{d,l + (M — l)x/d} would be itself concave, and would lie between o and ¥, against
the definition of 9. ‘
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such that
|F(x,u,2) — F(y,v, 2)| <9z —y|+ |u—v|)VP. (8.46)

Our goal is to prove the Holder continuity of the first derivatives
of the w-minima, and therefore in particular of the minima of general
functionals (8.1).

Let us begin with some preliminary remarks. Setting as above

Qp = Q(IBQ,R) =Qn Q(anR) )
we consider the frozen functional

fo(U,QR)=/Q F(zo,u(zg), Dv) dz.

Lemma 8.4 Let u be a bounded function and let v minimize the func-
tional Fo with DIRICHLET datum v = u on 9Qp.° We have

osc (v, Qr) < osc (u,00gr) + cR. (8.47)

Proof. The function v is a quasi-minimum of the integral
/ (1+|Dv?)} de.
Qr

If k£ > ko =: supgq, u, comparing v with w = min{v, k} we get easily

/ |Dv|P dz < c|A(k)],
A(k)
where

A(k) = {zx € Qp:v(z) > k}.

It follows for A > k

(h— K)P|A(R)| < /

A(k)

>
(v—Fk)Pdz < </A(k) (v— k)p* dz) ]A(k)|%

= / Do dz| A(R)|% < clA(R)[*E .
A(k)

3The existence of a minimizing function is guaranteed by Theorem 4.6.
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Setting now k; = ko+d —d27*, and writing briefly a; = |A(k;)|, we have

1+2
. .

[+ 788 | S cd‘pZi”a

By Lemma 7.1, if ap < cd™ (a condition that will be satisfied taking
d = ¢R) we have lim; ,, a; = 0, and hence

v(z) < ko +cR.

The conclusion then follows by remarking that —v is a quasi-minimum,
with boundary datum —u, of the integral

F(zo,u(zo), —Dv) dz,
Qr

which satisfies the same inequalities as Fg. O

Now let u(xz) be an w-minimum for the functional (8.1), with boundary
datum* U. We have shown in the previous chapter that u is H5lder con-
tinuous in ; let & > 0 be such that osc,u < cR®. We have then, taking
into account the lemma just proved:

Folu, Or) = F(u, Q) + /Q [F(z0, u(z0), Du) — F(s,u, Du)] dz
< (1 + w(R)F(v, Ur) + O(cR°) /Q (1+ |Du?)} do

< Fo(v,Qr) + o(R) /ﬂ [(1+|Du?)} + (1 + |Dv|2)3] da,

where we have set o(R) = cw(R) + 9(cR?).

On the other hand v minimizes Fg, and u is a w-minimum of F; whence
if w=u = v on 80pg, we have Fo(v,Qr) < Fo(w,Qr) and F(u,r) <
¢F(w, ). Consequently, recalling condition (8.43):

Fo(u,Qr) < [1+ co(R)|Fo(w,r) (8.48)

for every w € WLP(QRr) with w = u on 8Qpg.

This property will simplify the following proofs.

We shall begin by proving the regularity of the first derivatives of the
w-minima in the MORREY spaces LP*. For that purpose, the two following
lemmas will help.

40f course, as long as we are interested in local results, the boundary value of u is
irrelevant.
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Lemma 8.5 Let g(¢) = V(€)° = (1 + |€]?)%, with s > 0. Then, for every
£, m € RY and for every € > 0 we have

=2

g(m) < (L+)g() + Z(L+ |2+ ) T le —n?.  (8.49)

Proof. We can assume that 0 < |¢| < |7/, and hence g(€) < g(). Setting
& =tm+ (1 — t)€, we have

1

d ! —2
or) - 9(6) = [ gote)dt=s [ (x-t.eovierrar.
From it, taking into account Lemma 8.3, we get
1
gm) - o€) < slr ¢l [ Vie)
0

s—1
< eslm — €L+ ¢ + 7?7

<278 Ye(1 4 €2 + |22

c2°~1s2 .
+ T r = P+ (e + )T
It follows immediately that
€ 27152 .
(1-5) 9m < 9(®) + =—m — £ + &P + =) 7
whence (8.49). d

Lemma 8.6 Let zo € Q, R < dist (zg,00) and
F°(2) = F(xo, u(xo), 2) .

Let w € WHP(QR), and let v(z) be the function minimizing the frozen
functional

Folv,Qr) = /Q o PO

among all the functions coinciding with w on 8Qgr. Then,
/ (14 |Dw]? + | Dvf2) %% | D(w — v)[? do
Qr

< c[Fo(w, Qr) — Fo(v, Qr)] - (8.50)
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Proof. We have
Fo(n) - F(E) — (F(€), 7 - )
= [[a- e+ itn - ) - utn -5,
and therefore
FO(r) = F9(€) — (F3(€), 7~ &) > Alg — nl?

where, due to the Lemma 8.3,
‘rl
A= [0+ I+ tr— )T db > o0 + € + [n2)*F
0

The conclusion follows immediately, taking £ = Dv, # = Dw, integrat-
ing on Qp, and remarking that, since v minimizes o and w —v = 0 on
OQr, we have

/ (F®(Dv), Dw — Dv)dz = 0.
Qr
Theorem 8.4 Let u € WLP be an w-minimum of the functional
Flu, Q) =/F(:1:,u,Du)d:v,
Q

and let conditions (8.43)—(8.46) be satisfied. Then, the derivatives Du belong
to LY A(Q) for every A < n, and for every £ CC Q we have the estimate

loc

[ Dullp, 3z < e(X E)V (Du)lp,0- (8.51)

Proof. Let o € ¥ and let R < Ry =: dist (X, 80). As above, let v(z)
be the function minimizing the frozen functional Fy(v,Qr) among all the
functions coinciding with u(z) on 0Qr.

The function v is a solution of the elliptic equation

/ F2 (Dv)Dipdz =0 Vo € C&(Qr)-

From what we have shown in the preceding section (see in particular
(8.33) with g = p), the gradient of v is locally bounded, and we have

supV(Dv)? < c4 V(Dv)Pdzx, (8.52)
Qr Qr

2
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from which we get at once

V(Dv)Pdz < c (ﬁ)" V(Dv)P do (8.53)
Qe R QR

R
for every o < 3.
By Lemma 8.5 we have

V(Du)P dz < 2 / V(Dv)P dx
Q. Q.

+c/ (1+ |Duf? + |Dvl?) 2 | D(u - v)|? dz
Qe
and hence

V(Du)P de < ¢ (}%)" V(Dv)? de
Qr

Q.
+c/ (1+ | Dul? + | Dv|?) 7 |D(u — v)? de.
Qr
On the other hand

V(D’U)p dz S fO(v’QR) S fO(u; QR)
Qr

<c V(Du)? dz,
Qr

from which, using (8.50) and (8.48) with w = v, we arrive to the estimate

/Qg VPda:Sc{(%)n-i-g(R)}/QRVpdm, (8.54)

where for the sake of brevity we have written V instead of V(Du).
Let now 7¢ = %, and let Ry be such that for every R < Ry we have
o(R) < ™. Taking ¢ = 7R in (8.54), we obtain

/ VPdx < 2cr™ VPde <77 ¢€ VPdzx.
QTR QR QR

Setting therefore ¢(p) = er VP dz, we can apply Lemma 7.3, getting

n—2e
/ VPdzr<c <i> / VPdx
e Ry Qrg

from which the conclusion follows at once. |
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The same result holds up to the boundary for solutions of the DiIRICHLET
problem.

We remark in the first place that it is possible to assume U = 0. In fact
the function v(x) = u{z) — U(z) is a w-minimum of the functional

G(v) = /F(m, v+ U(z), Dv+ DU(z)) dx

and the function f(z,u,z) = F(z,u + U(z),z + DU(z)) verifies the same
conditions (8.43)—(8.45) of F. This is quite simple to show if only we remark
that, setting

X?=1+|z+DUJ?

and x = sup |DUJ, we have obviously X < ¢(x)V, and moreover X > 1 if
|z| < 2x, whereas X > 1V if |z| > 2x, so that in conclusion

14
X> —.
T 2414 4x2

Assume now that 952 is a regular manifold in R™. More precisely, let
us assume that for every z¢ € 952 there exists a diffeomorphism « between
the unit ball B and a neighborhood W of z¢, mapping the upper half-ball
Bt = BNR" onto W N and the flat part P of dB* on 8QNW. Setting
as usual v(z) =: u o y(x) and denoting by H the inverse of the matrix

[‘i.za_'yi

7 6zi ’

and with J the Jacobian determinant, J = detI’, we have Dv = T'Du o 4,
and the function v minimizes the functional

/G(a:,v,Dv) dz
in B*, where
G(z,v,2) = |J(z)|F(+(z),v, Hz).

It is not difficult to prove that if the map y(z) is of class C!, the new
integrand G verifies conditions (8.43)—(8.45). For instance, we have

%G

hk __.
BT = 0z1,02

= |J|H}H}F,,.,(v(z), 2, Hz) .
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Since 7 is a diffeomorphism, we have |J| > ¢ > 0 and a|{| < |H¢| < bl¢],
with a > 0, and therefore

EM€nte = |J| ez, (1(2), 2, H2) H 6L Hj
> inf [J|V(Hz)P?|HE® > vV ()P %€
We can now repeat the proof of Theorem 8.4, writing simply QF, instead
of Qg, and using (8.41) at the place of (8.33).

In particular, the function u(z) is Holder continuous with every
exponent a < 1.

8.6 Holder Continuity of the Derivatives (p = 2)

Our program continues now with the proof of the Holder continuity of the
first derivatives of the w-minima. We shall treat first the case p = 2, for
which the proofs are simpler by far.

Theorem 8.5 Let u be an w-minimum of the functional F, and let the
conditions (8.43)-(8.46) with p = 2 be satisfied. Assume moreover that
o(t) =t w(t) +I(ct’) < At™ for some T > 0. Then, the derivatives of u
are Hélder-continuous with some exponent o in S, and for every open set
¥ cC Q we have:

||u||cl,a()3) < c||u||W1,z(Q) . (8.55)

Proof. As above, let v(z) be the function minimizing the frozen func-
tional Fo with v = u on 8Qgr. The derivatives D,v verify the EULER
equation

/FO (Dv)Dj(Dsv)Dipdz =0, (8.56)
and hence they are quasi-minima of the DIRICHLET functional

/ |Dz|?dzx .

From Theorem 7.7 we have

/ \Dv — (D), |*dz < ¢ (%)"“’s /QR \Dv— (Dv)gl*dz  (8.57)

e
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and therefore

n+26
/ |Du — (Du),|?dz < c (ﬁ) / |Du — (Du)g|? dz
Qo R Qr

+c/ |D(u — v)|* dz.
Qr

The last integral can be estimated by means of Lemma 8.6; recalling
the inequality (8.48) we get

/ |Du — (Du),|?dz < ¢ (%)

e

n+24
/ |Du — (Du)g|* dz
Qr

+cAR™ | V?dzx. (8.58)
Qr

We can use now Theorem 8.4 with 4¢ = 7. We have

/ V2dz < CRn_zellu”l’g
R
and in conclusion

/ |Du — (Du),|?dz < ¢ (—) / |Du — (Du)g|? dz + BR™2
Qo R Qr
with B = ¢||ul[1,2.

Applying once again Lemma 7.3, we obtain the desired conclusion. O

The same result holds for w-minima with zero DIRICHLET boundary
value (or more generally with regular boundary datum on 89); in this case
one obtains the Hélder continuity of the derivatives up to the boundary of
. The proof proceeds as usual, considering first the derivatives D;u with
s # n, and then using the equation to estimate the derivative with respect
to z,,.

Let us consider the details. In the first place, we can assume that € is
the half-ball B+, and that u is zero on the flat part P of 8B*. If Q(z¢, R)
is a cube with zo € BY and R < %, let v be the minimum of the frozen
functional on Qg(zo). ’

The function v is a solution of the equation

F(Dv)Dijv =0, (8.59)

and its derivatives D v are quasi-minima of the DIRICHLET integral in
Q R(:L‘o).
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If s # n the functions Dyv have zero trace on the flat part P of the
boundary, and hence the estimate (7.55) holds with p = 2 and x = 0. We
thus have

n—2+26
/ DD do < (%) / \DD'v[ dz
Qf R ot

for some & > 0, where D' indicates any of the derivatives, except that with
respect to z,,.

For what concerns the derivative D,,,,u, we use Eq. (8.59), from which
we obtain

1

Dppv =
0
an

Z'F,%Dijv,

where the apex indicates that in the sum we have excluded the term with
i = j = n. Remarking that F°, > 1, we get

nn —

n—2426
/ [D?v|?dz < ¢ (g) / |D?v|? dz
Q¢ R CF:

and hence
/Q Do (Do)l s (& /Q , Do = (Do) da.
From that estimate, proceeding as above, we get
/Q  IDu= D)o s (&)™ /Q D= (Du)af?do + BRM.
An additional application of Lemma 7.3 gives in conclusion the

following:

Theorem 8.6 Let u be an w-minimum of the functional F, and let
conditions (8.43)—(8.46) be satisfied with p = 2. Assume that o(t) = At",
(t > 0), and that u has a boundary value U of class CY® for some § > 0.
Then, u belongs to C12(Q) for some a > 0, and we have

lullcra@y < ellullwizgy - (8.60)

Remark 8.5 The argument leading to the proof of Theorem 8.5 cannot
be extended immediately to the case p # 2. In fact in this situation the
coefficients A;; = F}} of (8.56) are not bounded functions, and therefore it
is not possible to deduce an estimate such as (8.57) with the above method.
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More precisely, the derivatives of the function v, the solution of (8.56),
are indeed bounded in @ &, but by (8.52) we have

sup(l + lD'le)% < cf 1+ |Dv\2)§ dz.
Q.g Qr

Consequently, the function Dv is always a quasi-minimum of the
DIRICHLET integral, but the constant Q, and hence the constant ¢ and
the exponent § in (8.57), depend on the quantity fQRV(Dv)P dx, which is
of the same order than iRV(Du)P dz, and hence depend on R. ]

8.7 Other Gradient Estimates

We shall deal now with the more complex case in which the exponent p
is different from 2. By Remark 8.5, we cannot use directly the inequality
(8.57), and therefore we must look for new estimates, independent of R,
for the minima of the frozen functional Fy in Qg, or more generally for the
weak solutions of the elliptic equation

D;AY(Dv) =0. (8.61)
As we have shown, the function v verifies the equation

/Aij (Dv)DjsvDipdz =0 (8.62)

for every ¢ with compact support.

Let us begin with some simple consequences of (8.62). We have already
remarked in Sec. 8.3 that, setting wp = V? (V2 =1 + |Dv|?) and a¥(z) =
V2-P A (Dy(z)), we have

/aiijwoDigo dz + /g(p dz =0, (8.63)
where
g =pA“DjuD;sv,
The function g is obviously non-negative, and satisfies the inequalities
e1VP 2 D% < g < VP 2| D%y, (8.64)
For 1 < k < n, we define

wy, = wg(Dv) =: V(Dv)P 1 Dyv.
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If we indicate by w the vector of components wi (0 < k < n), we have

V2| D%)? < |Dw|? < eV 2| D?y)? (8.65)
and therefore
a1]Dw|? < gwp < co|Dwl?. (8.66)
Moreover, taking (8.62) into account, we have for every k = 1,...,n:

/aiijkaicp dr + /gkga dr =20
with

. DyvD,
gk = A(Dv)Dy;vD; (Vaks +(p- 1)—’“3—“)

14
and hence
lge| < VP2|D%)? < cg. (8.67)

Let now v be a unit vector, and let v, = {v, Dv). The function v, is
solution of the equation

/Aiijv,,Dicp dz =0
and hence, taking ¢ = (%v, and estimating in the usual way, we get
/ VP2 Dy, [2¢% da < / VP2j, |2 D¢]? da .
With the usual choice of ¢, the last expression becomes

VP2 Dy, P de < / VP2, |2 dz . (8.68)
B, t Ba:

Lemma 8.7 For every i € WV2(B,) with zero average on B, we have

-2 2 2 - 2-3
T ]{Br¢ der <c (]{B,|D¢| da:) ]ir|Dw[ dz. (8.69)
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Proof. It is an immediate consequence of the SOBOLEV—POINCARE
inequality. We have in fact

/1p2 dz <e¢ (/ | Dap|2+ dm) * =c (/ | Dep|*| D>~ da:) =
<(/ !D¢|2dw>% (10w dm)*

from which (8.69) follows taking a = 2 — 2. = ;%5. O

Let us define now the vector

p_2
K= V™= Dvdzx.
Ba:

The space orthogonal to « has dimension n — 1, and hence there exists
n — 1 orthonormal vectors v; such that (k,1;) = 0. Since a rotation does
not change the structure of Eq. (8.62), we can assume that x; = 0 for
i=1,...,n—1.

The functions ¢¥; = V2 D;v have therefore null average on By, and
we can apply the preceding lemma. Remarking that

| Dy |2 < ch”_ZiDzvl2 <ecg

and taking (8.68) into account, we can conclude that

2
2’][ VP Dyv’dz < c (][ gda:) ][ g dz,
B, By B

where as usual the apex indicates that in the sum we have excluded the
term i = j = n. We can deal with this term by remarking that the function
v is a solution of the equation

a"(z)D;;v =0,
and that the ellipticity condition implies that a™™ > 1. We have therefore
| Dnnv|? < ¢X'|Dijo)?.

Introducing the last estimate in the previous one, and recalling (8.64),

f gdr <c (][ gda:)
By Bo:

we obtain

3o

][ g% da. (8.70)
By
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From that inequality we easily infer the following:

Lemma 8.8 The function g belongs to L'*°(Q,) for some o > 0, and

we have
140
][ gt’dz<c (][ gdw) . (8.71)
8 2s

Proof. It follows from (8.70) that there exists a constant A = A(n) such
that for any cube Q(y, A) contained in Q2,

2
f gdr<c ][ gdz f gl_%dm
Q(y:t) Q(y,X1) Qw,At)
w3
< e][ gdz + c(e) ][ gi~n dx) .
QwA) Qy,2t)

The conclusion of the lemma follows then from Corollary 6.1. 0

The next result is a lemma of technical character, that will be useful
later.

Lemma 8.9 Letd € Wol’z(st) be the solution of the equation®

/aiijﬂDitpdx = s—lz/cpdx. (8.72)

There exists two positive constants c; and ca, independent of s, such
that ¥ < ¢g in Qg and 9 > ¢1 in Q.

Proof. The function ©(z) = ¥(sz) belongs to Wy*(Q2) and it is a
solution of the equation

/ a¥D;0D;pdx = / pdz (8.73)

for every ¢ € Wy2(Q2), with o (z) = a¥(sz). In particular, © is a
quasi-minimum of the functional [(|Du|? + |u|2)dz, and a positive super-
quasi-minimum of the DIRICHLET integral.

50r equivalently the minimum, necessarily unique by the strict convexity, of the
functional

R(0) =:/<aijDi19Dj19—2%> dz.
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We have consequently © < ¢ in )9, and by Theorem 7.9

infO > c (]l @de) "
(o3 2
for some r > 0.

The last integral cannot be zero, since otherwise ® would be iden-
tically zero, and could not be a solution of (8.73). We have therefore

© > ¢ in @1, and coming back to the function ¥ we get the desired
conclusion. O

The next result is again instrumental, but it is of some interest in itself.

Lemma 8.10 Let f € WH2(Qy,) be a non-negative function, such that
/ a“D;fDjpdz <0 (8.74)
for every ¢ € Wol’z(st), @ > 0. Then, for some r > 0 we have:
][ |Df|dz < EM(23)1”T[M(25) ~ M), (8.75)
Qs
where
M(s)=supf.
Qs
Proof. Taking ¢ = (f (¢ > 0 with compact support) in (8.74), we have
/ a“D;f?D;¢ dz + 2 / a?D;fD;f{dz <0 (8.76)

and hence also f? satisfies the differential inequality (8.74).
Consequently, f2 is a sub-quasi-minimum of the DIRICHLET functional
f |Dw|? dz, and hence inequality (7.21) holds with ko = x = 0:

M(s)2 =sup f> <ct f*dz. (8.77)
Qa Q2s

In a similar way, the function y = M(2s)? — f2 satisfies the inequality

/a"jDindez = 2/aijD“ijf< dz 20
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for every test function ¢ > 0, and hence we have HARNACK’s inequality
(7.61) with x = 0:

(][Qz,sz dav) i <ec 13,fy < c(M(25)2 — M(s)?)
< eM(2s)[M(2s) — M(s)]. (8.78)

Let now 9 be the function introduced in the preceding lemma. We can
choose ¢ = Jy in (8.72), obtaining

/ 4 D;9* Dy dz = 832 / Sydz — 2 / 4 D;9Diby do < ;25 / Sydz.
Taking now ¢ = 92 in (8.76), we obtain
c / \Df29% do — / ¥ Dy D;9 dz < 0
and therefore

24 |Df|?dz < c][ ydz < cM(2s)2"4r][ y*" dx
Qs Q2 2s

< eM(28)27 2" [M(2s) — M(s)]*"

from which (8.75) follows at once, recalling that

]1|Df¢dx,s <][|Df|2dz)%. 0

Let us consider now, for h = 0,1,...,n, the function y, minimizing the
functional

Q(y) = /Q a9 (2)DiyDyy da

among all the functions taking the value wy on 0Qg;; or in other words the
weak solution of the DIRICHLET problem:

{/aiijthi(P dz =0 Ve Wy?(Qa)
Yp = wp, on Qg

Lemma 8.11 We have yp > wyg. sup yg = sup wg, and moreover

/ |Dyh|2da:§c/ | Dw 2 dz.
2t Q2
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Proof. The pointwise inequalities are simple consequences of the maxi-
mum principle. Indeed, setting ¢ = max(wo — yo,0), we have ¢ >0, ¢ =0
on 9Q3;, and hence

/aiij(wo —yo)Dipdz <0.
From that it follows immediately
/ |Do|? dax < /aiijgoDiw de <0

and therefore ¢ = 0, that is wg < yo.
Moreover, since yg is a quasi-minimum of the DIRICHLET integral, it
will take its maximum on the boundary, where it coincides with wy.
Finally, the integral inequality can be proved taking ¢ = yn — wy, in the
equation and estimating. |

Lemma 8.12  Setting M(s) = supg, wo, we have

M) ][ gda < c][ \Duwl? da. (8.79)
Qt Qat
Proof. Since yo > 0, we have by HARNACK’s inequality:

infyo > csup yo > ¢ sup wo = cM(t).
Q Q: Qr
Let us now define
1
E= {z €Q:two(z) < EcM(t)} ,

and let fo == yo — wo. We have fo > 0, fo = 0 on 0@, and fo > %M(t) in
E. Consequently,

M(t)/ gdz Sc/ gfodx = ~—c/ aiijwoD,;fodw
E Q2 Q2

< c</ |Dw0|2dac)§ (/ |Df012dm>§
Qat Qat

< c/ ]Dw0|2d:u.
2t

On the other hand wo > §M(?) in @; — E, and since gwo < c|Dw|?, we
have M(t)g < c|Dw|?. That inequality, together with the preceding one,
gives the lemma at once. 0
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At this point we come back to the functions y, defined above, and we
set frn = yp — wp. The functions y, minimize the quadratic integral @, and
hence we have (7.46) with m =2 and x = 0:

n—2+42§
| 1puPaz<e(?) |Dyn[? dz
Qe ¢ Q:

< c(—tq)n—%-% o fD'thQd.'E.

It follows that

/ \Dun? dz < c (Zg)n-zwa

|Dwy, |2 dz + / |Dfn|2dz. (8.80)
Qe Qt Q

It remains to estimate the last integral. We have in the first place
/ |Dfal? da < C/ a” D; fuD;fn dx
2t 2t
= —c / a Djwp, D; fr, dx
2t

= C/ grnfrdz.
2t

From that inequality, using (8.67) and (8.71), we get

fmlthl:’d:v <e (][ gl+”dx)l+" (][ lfhlqdw)%
< c]g4tgdx (f%lfhl"dx)% ,

where we have set g = 1 4 %
The last integral can be estimated as follows:

]2 2¢l frl?dz < eM(2t)72 ][ |fnl2dz < ct?M(2t)72 ][ |Df1|? dz

Qo2 Qat

2t

gctzM(2t)‘1‘2][ |thlzdac§ct2M(2t)q"2][ quo dz
2t

< ctzM(2t)‘1‘1][ gdz.
Q2
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On the other hand, if ¢ is a function with support in Q4 and such that
¢=1in Qy and [D¢| < ct™!, we have

f gdz < c][ gCdx = —cf aiijwoDiC dx
Qg 4t 4t

¢ ][ |\ Duo| dz
t Qat

< t%M(St)l’T[M(st) ~ M), (8.81)

IA

where we have applied Lemma 8.10 to the function wp.
From the above relation it follows that

<]{22t|fh|qda:)% < cM(8t) {1 _ Aﬂjgg }% ,

and introducing Lemma 8.12,

M 3
/2, IDfulde < c{l— Mg:;} / Duwffde.  (8.82)

We have in conclusion:

[ oupae el (&) i gigg] | [ loure

e

for p < t.
On the other hand, for ¢t < g < 16t we have

) n—2+24
/ |[Dw|?dx < ¢ (2) / [Dw|? dz
Qe t 16t

so that the preceding relation holds for every o < 16f. Writing ¢ instead of
16t, we obtain

/g |Dw|? dz < c{(%’)"_m‘s + [1 - —AA%] 5}/@ |Dw|?dz  (8.83)

for every p < t.
From that inequality we deduce the required estimate for the gradient
of v:

Theorem 8.7 Let v be a weak solution of (8.61). There exists a constant
1 > 0 such that for every xzo € Q and for every ¢ < R < cdist (xo, ) we
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have
o\
]2 - wgftds <o ()" My (8.84)
Proof. We define
olt) = 2" / \Duwl? de.
Q:

For 0 < 7 < 1, we have obviously
o(rt) < T2 " (t). (8.85)

Moreover, taking ¢ = 7t in (8.83), we have
M(rt) @,
< 26 _ 2—n t .
o(tt) < C{T + [1 M@ J T }o( )

Choosing 7 < ;11- in such a way that 2¢7% < 1, if

then
o(rt) < T0a(t). (8.87)

If instead (8.86) is false, we have
M(rt) < (1 - TJ—‘J—H) M(t) =: yM(t) (8.88)

with v < 1.

We choose now X in such a way that § + A2 —n — 28) = §. Let
k be an integer, and let us consider the preceding relations for t =
R,TR,..., 7R,

If (8.86) is false at most for j < Ak indices between 0 and k — 1, we can
use either (8.85) or (8.87) according to circumstances, obtaining

o(r*R) < PIO-HE=io(R)
< THEHAE==8) 5(R) — r%‘ia(R). (8.89)

If instead (8.86) is false for more than j > Ak indices between 0 and
k — 1, we have

M(t*R) < ¥ M(R) < v**M(R).
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We remark now that by (8.66) and (8.81) we have

o(t) < ct2][ gwp dz < ct2M(t)]l gdz < cM(4t)?
Q:

and hence, recalling that 7 < %:
o(T*R) < eM(7*'R) < ey -V M(R)? < ey M(R)?.
In the same way, we get from (8.89)

o(T*R) < v T M(R)?,

and hence, setting 4u = min{%, 2/\}2—‘;%}, we have in any case
U(TkR) < cr‘”‘"M(R)z,

whence
o(0) < e (£)" M(RY

from which (8.84) follows at once thanks to POINCARE’s inequality. a

In particular, taking into account the inequality

%
][ |w — weldx < ][ |w — w,|? dx
Q. Qe

we deduce without difficulty from (8.84) the estimate
0\
— < —= .
]{?Jw wglda:_c(R) M(R), (8.90)

which will be the starting point for the proof of the regularity of the
w-minima.

8.8 Hédélder Continuity of the Derivatives (p # 2)
Let us consider a w-minimum u of the functional
Flu) = / F(z,u, Du) dx (8.91)
Q

with the function F(z,u, z) satisfying conditions (8.43)—(8.45) with p > 1.
Assume moreover that (8.46) is satisfied with 9¥(t) = At® for some 6 > 0.
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Let £ cc Q, and let 29 € £ and Qr = Q(xo,R) CC §2. Setting

U = Ugo,R, let v be the minimum of the frozen functional
Fo(v) =/ F(zq, uo, Dv) dz
Qr

among all the functions coinciding with u on 8Qg. Recalling (8.90) and
(8.33), we obtain easily the estimate

]{) 0D = (D)ol do < (%)”f wo(Dv) do

Qr

and setting A = {w(Du)},:

/ lw(Du) — Aldz < ¢ (ﬁ)"““/ VP dz
Qe - R Qr

+o / w(Du) — w(Dv)| dz, (8.92)
Qr
where as usual we have set V2 =1 + |Du|?.
We can estimate the last term thanks to Lemma 8.6. Setting
W2 =1+|Dv|? +|Dul?,
we have
|w(Du) — w(Dv)| < WP~ |Du — Dv|
so that, taking (8.48) into account,

1

/R |w(Du) — w(Dv)|dz < c </QR WP=2| Dy — D’U‘2dx) %( ! Wpdm) 1

1

<e (/ \%44 da;) : [Fo(u, Qr) — Fo(v, QR)]%
Qr
< cR%T VPdx (8'93)

for some 7 > 0.
If we insert the last inequality into (8.92), we get

n+2,
/ lw(Du)—)\lszc{(g) ¥ Y R VPdzx.
QE R QR
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We can estimate the last integral by means of Theorem 8.4; we have
/ VPdz < cR"“||V|]£’Q
Qr

so that in conclusion

n+2u
_ < Y4 ﬁ n—€ n+27—e¢
/Qg [w(Du) - N dz < e[V {(R) R™+R } .

Let now o > 0, and let ¢ < go < 1. Choosing R in the preceding
formula in such a way that o = R1**, we get

/ [w(Du) — N dz < c| V|2 q(Ra+2rn=c 4 pni2r=c)

e

If we choose a = _”#—Il-» and € = apu, we get easily

[ 1u@u) - Nds < vz gReteren
e
< |VIE o™t (8.94)
with v = 35 > 0.
From the above relation it follows that the functions w; = VP~1D,u are

Holder-continuous with exponent . The same can be said of the derivatives
Dju, since for every &, £ € R™ we have

[w(€) — w(éo)l = € — &l

and therefore, choosing &y in such a way that w(&) = A,

/ Dy — &] dz < c| V2 g™

P
e
We have thus proved the following:
Theorem 8.8 Let u(z) be an w-minimum of the functional (8.91), with
the integrand F(x,u, z) satisfying (8.43)—(8.45), and (8.46) with 9(t) = At°.

Then, the first derivatives of u are locally Hélder-continuous in Q, and for
every ¥ CC ! we have

lw(Du)llgo(zy < c(E)NV(Du)F q - (8.95)
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8.9 Elliptic Equations

The results of the preceding section can be extended to bounded solutions
of the equation

/{Ai(x, u, Du)D;p + B(z,u, Du)p}dz =0 (8.96)
with the conditions
|2]|A] + |2[*|Az| + |B] < VP, (8.97)
A¥(z,u,2)z > |2|P — ¢, (8.98)
AL &g > VP2iEP? (8.99)

and with the coefficients A(z, u, z) continuous in (z,u); or more precisely
such that

|A(z,u, 2) — A(y,v,2)| S VPI9(|z — y| + |u—v]). (8.100)

We begin by the remark that under these hypotheses every solution u
is a quasi-minimum of the functional [(14|Du|?)% dx (Theorem 6.2), and
therefore it is Hélder-continuous in Q.

Let now zp € Q, up = uy,,r and let v be a weak solution in Qg of the
equation®

D; A*(z9,u0, Dv) =0 (8.101)

taking the value u(z) on 8Qg.
The function v is a quasi-minimum of the same integral, and hence we
have

cl/ (1+|Du|2)%dx5/ (1 +|Dv|?) da
Qr Qr

< @+IDuP)ds.
Qr

Moreover, there hold for v all those properties dependent only on its
quality of quasi-minimum, such as

osc (v, Qr) < osc(u,dQRr) + cR

5The existence and the uniqueness of the solution are well known from the theory of
elliptic equations; see for instance MORREY [3].
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(Lemma 8.4), and all the results proved in Secs. 8.3 and 8.7; in particular
the estimates

sup(1 + |Dv|?)% < c][ (1+|Dv|?)% dz, (8.102)
Q_R Qr

2

/Qe(1+ 1Dof?)% dz < c(%)n/QR(l+|Dv|2)§dx, (8.103)
]{? 10(DV) ~ {w(Do)fda < ¢ (&)™ ]{? 1+ Do) da
(8.104)

that we have proved in Theorems 8.4 and 8.7.
It is now question to pass from (8.103) and (8.104) to their analogous
for the function u. For that, we must estimate the difference

/ w(Du) — w(Dv)|dz < ¢ | WP~!|Du— Du|dz.
R Qr

Recalling that u and v are solutions respectively of (8.96) and (8.101),
we have

/ [ (2, u, Du) — A*(z0, uo, D) D(u — v) do

R

+ / [Ai(.’EQ, ug, Du) - Ai(il,‘o, Ug, D’U)]Di(u - ’U) dz
Qr

+ B(z,u, Du)(u —v)dr =0.
Qr

On the other hand
Ai(xo, ug, Du) — Ai(xo, up, Dv)

1
= / Aij (%o, o, Dv + t(Du — Dv)) dt D;(u — v)
0
so that, recalling (8.99) and Lemma 8.3:

/ [A¥(z, w0, Du) — A* (o, uo, Dv)] Di(u — v) dz

R

> WP=2|Du — Dv|?dz.
QR
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Moreover, keeping into account the estimate |u — uo| < cR?, we have:
|A¥(z, u, Du) — A*(z0, uo, Du)||Du — Dv
< 9(cR°)V?~!|Du — Dy
< %V”‘2|Du — Du|? + 8(cR)?V?
and
|B(z, u, Du)(u — v)| < {osc (u,Qr) + osc (v, Qr)}V?
< cRVP.

From these inequalities we obtain, arguing as in (8.93),

/ W”“”Du—Dv[szcw(R)/ VPdz,

R Qr
so that, using (8.103) and (8.104):
Q n
VPde <ci(5) +w(R) VPdzx, (8.105)
5 {(g) +em} ],

/ w(Du) — A dz < c{(%)n+26 +w(R)}/QR VPdz,  (8.106)

Qe

with w(R) = cR? + 9(cR?).
From this point on we continue as in the proof of Theorems 8.4 and 8.8,
and we arrive at the following:

Theorem 8.9 Let u € W2 be a weak solution of the equation
D; A%(z,u, Du) = B(z,u, Du)
with conditions (8.97)—(8.100). Then:

(i) if the function ¥(t) goes to zero with t, the derivatives Du belong to
LPX(Q) for every A < n and for every open set ¥ CC Q we have

loc
[ Dullp,x,z < e(A D)V (Du)lpa-

(ii) if 9(t) = AtS for some & > 0, the derivatives are Holder-continuous in
Q, with the estimate

[w(Du)llcoxmy < e(E)V(Du)llpa-
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8.10 Notes and Comments

The methods of this chapter are taken mostly from the regularity theory
for solutions of quasi-linear elliptic equations in divergence form

/ [4i(z, u, Du) D + B(z, u, Du)g] dz = 0 (8.107)
Q

and from their applications to the minima of the integrals of the calculus
of variations, through their EULER equation.

The extension of these methods to minima of functionals, even those
without the EULER equation, is due to GIAQUINTA and GIUSTI [3, 4] in the
case p = 2, and later, after a paper by GIAQUINTA and G. MobIca [3],
relative to the case p > 2 under stronger assumptions, to LEWIs [1]
and MANFREDI [2] (see also D1 BENEDETTO [1] and TOLKSDORF [1]) for
p # 2. We have followed here the method introduced by LEWISs [1] for the
generalized DIRICHLET functional

'Dp(u)=/Q|Du|"dm.

We remark that some of the above regularity results hold even for de-
generate functionals (in which the quantity V? is replaced by |Du|?), of
which D, is the typical representative. In this case, we cannot expect that
the derivatives of u are Holder-continuous with every exponent, even less
so that u is of class C? (see for instance GIAQUINTA and MobIca [3]).

The interest of that extension, as well as of that to w-minima, intro-
duced by ANZELLOTTI (1] in a slightly different context, is two-fold. In
the first place, it shows how the C1'* regularity is governed by the notion
of w-minimum, much in the same way in which that of quasi-minimum
superintends the Holder regularity.

Secondly, the results so obtained do not require the differentiability
of the function F(z,u,z) with respect to u, being sufficient a sort of
uniform Holder continuity. Moreover, even in the case of regular func-
tions F', Theorems 8.5 and 8.8 represent a generalization of those already
known, since no behavior of the derivatives of F' with respect to u is
required.

It must be noted that, whereas in the case p = 2 we obtain the regularity
up to the boundary, a similar result is not known for p # 2, although it
seems plausible.

The method of difference quotients was used first in the proof of
the regularity of solutions to linear elliptic equations and systems (see
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Chapter 10). Its extension to non-linear equations was the object of some
discussion, relative to the case p < 2. We have followed here a technique
introduced by ACERBI and Fusco [4], that seems free from the difficulties
that have troubled some of the former methods.
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Chapter 9

Partial Regularity

9.1 Preliminaries

In this chapter we discuss the problem of the regularity of the minima of
the functional

}'(u,Q)=/QF(a:,u(x),Du(x))dz (9.1)

in the vector case, that is when u(z) is a function with values in RV, and
N>1.

It is easily seen that, opposite to what happens if N = 1, in this case
we cannot expect that the minima are regular everywhere in Q, even if the
function F is quadratic in the gradient:

F(z,u,Du) = Affﬁ (z,u)D;u*DjuP
and Affﬁ are analytic functions of x and u. We actually have:

Example 9.1 (GiusTi and MIRANDA [1]) For N = n sufficiently large,
the function u(z) = z|z|~! minimizes the functional

A(u, B) = LAZﬁ(u)Diu“Djuﬁ dz,

with

i 4 Ui 4 U;U
AY (1) = bapbij + |bia + —— - ——2| |85+ —— - —22_|
aﬁ(u) <} ]+|:’Lo¢+n_2 1+|’U,|2] []ﬁ‘}"n_—z 1+|u|2

307
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The matrix Afljﬂ is bounded, and satisfies the ellipticity condition

AS (u)ee? > ¢

so that the integrand is a convex function of z. Increasing possibly the
dimension n, the above function is the unique minimum — and even
the unique extremum — of the functional 4, among the functions of
W12(B,R") taking the value x on 9B.

On the other hand it will be possible to prove the partial regularity of
the minima, that is the regularity in an open set y C 2, with the singular
set ) — Qy of zero measure, or better of dimension smaller than n.

Unlike the preceding chapter, we shall consider only the case of growth
P22,

|F(x,u,2)| < c(A+122)%, A>0,! (9.2)

since no result is known when p < 2.

For what concerns estimates from below, we shall make two assump-
tions. In the first place we shall assume that the function F is strictly
quasi-conver; or more precisely that there exists a constant v > 0 such that
for every (zo,u0,20) € 2 x RY x R™" and every ¢ € W01’2(Q,RN)

A[F(xo, Ug, 20 + D(p(m)) - F(.’L‘o, Ug, Zo)]dx
>v [ (VDel? +|DeP)da (9.9)
Q

with V@ = 1 + |20/2. o
Moreover we shall assume that there exists a function F' = F'(2), strictly
quasi-convex in 0, such that

F(z2) < F(z,u,2) (9.4)

for every z, u and z.
As we have shown in Lemma 5.2, from the quasi-convexity of F' and
from inequality (9.2) we get the estimate

|F(z,u,2) — F(z,u,w)| < e+ |z|+ lw)P~Hz — w|, (9.5)

10f course, the most important cases are A =0 and A = 1.
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and if F is differentiable with respect to z:
|Fy(z,u, 2)| < c(A+|2])P7 . (9.6)

Moreover, under the above assumptions we have proved in Theorem 6.8
the higher summability of the gradient:

Proposition 9.1 Let u be a cubical Q-minimum of the functional
F(u) = /F(z, u(z), Du(z))dz,

with F satisfying the assumptions (9.2) and (9.4). Then, u belongs to Wl:#r
for somer > 1, and

]{2 (A |Du|)Prdz <c (JIQ (A + |Dul)? d:c)r (9.7
R/2 R

Remark 9.1 More generally, the estimate (9.7) holds if u satisfies the
inequality

F(z,u,Du)dz < Q/ (A + | Dv|?)dz
Qa QJ

for every v with supp(u — v) C Q;. O

9.2 Quadratic Functionals

We shall begin our research by the study of a special yet meaningful class
of functionals, that we call quadratic:

Qmmz/Ag@mmwmwM (9.8)
(]

As we have already remarked, these functionals are strictly quasi-convex
if and only if they satisfy the Legendre-Hadamard condition:

Ay (z, 0)&Em P > g, v>o. (9.9)

Moreover we shall assume that are verified the conditions leading to
Caccioppoli’s inequality; in particular that there exists a strictly quasi-
convex function F'(z) such that

AZ (2, u)2f2h > F(2). (9.10)
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Finally, we will assume that the coefficients Afljﬂ are bounded and
uniformly continuous;? or in other words that there exists an increasing,
continuous and concave function ¥(t), with 0 < 4 < 1 and 4(0) = 0, such
that

402 0) = A0l S vl — o +lu—of®)  (911)

for every z, y € Q e for every u, v € RV,

Now let w(t) be a continuous increasing function, with w(0) = 0, and
let u(z) be a w-minimum of the functional Q; that is such that in any
Qr CC Q we have

Q(u, @r) < (1 +w(R))2(v, Qr)

for every v € WH2(Qg) with v = u on 8Qg.
For o € Q we set up = ug,,r, and we call v(z) the function minimizing
the “frozen” functional

Q°(v, Bgr) =/ Aijﬂ(xo,uo)Div“Djvﬁ dx
Br

in the ball Bg, among all the functions taking the value u on 8Bg.3
The function v is a solution in B of the equation

Ai‘jﬁ(.’to,uO)DiDjvﬁ =0 (9.12)

and therefore, taking r = % (so that @, C Bp), we have, as we shall prove
in the next chapter, (Theorem 10.7):

/ \Dv|? dz gc(f)"/ \Dvl? dz, (9.13)

e r

J

for every p < r and for every £ € R™V.

n+2
Dv — (Dv),|?dz < ¢ e\t Dv — ¢)2dz 9.14
e
r Q-

e

2Strictly speaking, the uniform continuity is not necessary, and it is sufficient to
assume that the coefficients are simply continuous. The reader can easily make the
changes necessary to conclude the proof in the general case, following the ideas of
Proposition 9.4. ’

3The existence of the minimum is guaranteed by the coercivity and the weak
semicontinuity of Q° in the class u + W(} ’2(BR). The coercivity is a consequence of
Lemma 5.1; the semicontinuity of Theorem 4.3.
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From (9.13), setting w = u — v, we get

/ |Dul|? dz Sc(—g-)n/ |Du|2dz+c/ |Dw|? dz
Q T JQ. Qr

< c(%)n/ |Du|2dx—{—c/ |Dw|? dx (9.15)
R Br

and it remains to estimate only the last term.
We have

/ [Dw|?dz < c/ Aijﬁ(xo,uo)DjwﬂDiw“ dx
Br Br

= ¢[Q%(u, Br) — Q°(v, Br)]
= ¢[|Q(u, Br) — Q(v, Br)|

te /BR [Agﬁ(xo, UO) - AZB(“"a u)]DjuﬁDiuo‘ dz
- C/BR [Aijﬁ(xo’ up) — Af,jp(x, ’U)]DjUﬁDwa dz. (9.16)

The first term on the right-hand side can be estimated using the fact
that u is an w-minimum for Q. Extending v = u outside Br we have

Q(u, Br) = Q(u,Qr) — Q(uv,Qr — Br)
< [1+w(R)]Q(v,Qr) — Qu, Qr — Br)
= [1 +w(R)|Q(v, Br) + w(R)Q(v, Qr)
and hence
Q(u,Br) — Q(v,Br) < cw(R)/ |Du|? dz (9.17)
Qr
since
Q(v, Br) < ¢ / \Dul? da
Br
The remaining part of (9.16) is bounded by

c [V(R? + |u — uo|?)| Dul? + y(R? + |v — uo|?)| Dv|?]dz . (9.18)
Br
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In order to evaluate these quantities, we shall use the inequality*
/ |[Dv — \|*"dz < c/ |Du — \|* dz (9.19)
BR BR

valid for every constant vector A.
Let us estimate for instance the second integral in (9.18). Recalling that
v <1, we have

1 1

][ y|Dv|?dz < ¢ (][ Y(R% + v — u0|2)dm> ’ (][ | Du|? da:) '
Bgr Br Br

< cy(R? +][ |v — uo|? dz) = (][ | Du|? dz) ’
BR BR

1
< cy(R%+ ][ v — up)? dm)% (][ | Dul|? d:c)
Qr Qr

r—1

< cy(R? +f lv — up)? dz) = ][ |Dul? dz,
Qr Q2r

where we have used Proposition 9.1 with A = 0.
On the other hand

][ v — uo|?d < c][ (ju = uol? + |w|?)dw
Qr Qr

< cR2][ (|Du|? + |Dw|?)dz < cRZ][ |Du|? dz
R Q

R

and therefore

][ ¥|Dv|? dz < ¢y <R2 + cR2°"/ |Du|2dw) ' Du|?dzx.
Qr Qr Q2r

The other term in (9.18) can be estimated in the same way, so that,
setting

E(s) = E(xo,s) = 32_"/ |Du)? dz
Q(z‘)vs)

we arrive to the relation:

[ outasse{ ()" +com) [, pupae, 020

2R

4The proof will be given in the following chapter (Theorem 10.15).
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where

r—1
2

¢(R) = w(R) +7(R? + cE(R))

The above inequality will be the starting point in the proof of the partial
regularity of the function wu.

We remark in the first place that it holds for every ¢ < 2R, since it is

trivially true (possibly with a different constant ¢) when % <p<2R. It
follows that we can write R instead of 2R. Setting ¢ = 7R, we have

E(TR) < em?[1+ 77 "¢(R)|E(R).

Let o < 1 and let 7 be such that ¢7272* < 1. Let € a positive number,
such that 7="y((1 + c)eo) = < 1 and let Ry, 0 < Rp < /€ be such that
T "w(R) < 1 for every R < Ry. Assume finally that for some R < Ry we

have E(R) < €¢p. Then 77"{(R) < 2, and hence
E(TR) < 7**E(R).
Repeating the procedure, we obtain for every integer k
E(r*R) < 1**E(R).

Let now ¢ < R, and let k be such that 7*t1R < p < 7*R. We have
k 2% 0\2%
E(e) < cE(r*R) < et B(R) < ¢ (£) " B(R). (9.21)

From the above estimate we deduce easily the following:

Proposition 9.2 Let w(t) be a continuous increasing function, with
w(0) =0, and let u be an w-minimum of the quadratic functional Q. There
exists €9 > 0 and Ry > 0 such that if for some x¢ and for R < Ry we have
E(z0, R) < €0, then the derivatives Du belong to L>* in a neighborhood I
of xg, for every A < n.

Proof. Since E(y, R) is a continuous function of y, if E(zg,R) < €,
there will be E(y, R) < € for every y in a neighborhood I of z5. We can
therefore write the inequality (9.21) for every y € I:

E(y,0)<c (%)m E(y,R),
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and hence, setting as usual I, = I N Q(y, o),

n—242a
|Du?dz < [ |DuPdr<c(l |Dul? dz
! R
e QE R

< cg"_2+2a/ |Du|?dz, (9.22)
Q

so that the function Du belongs to L?"~2+2%(]). Since a < 1 is arbitrary,
we get the conclusion of the proposition. |

In particular, by Proposition 3.7, we have u € £>"+2%(]), and hence u
is Holder-continuous with exponent « in I. As a consequence, u is of class
C%* in an open set (p C (.

A point y belongs to the singular set ¥ = Q — Qg if and only if

liminf R>™™ / |Dul?dz >0, (9.23)
R=0 Qw.R)

since if u is Holder-continuous with exponent a in a neighborhood of a
point y, we have by Caccioppoli’s inequality:

C

/ |Duf? dx < o2 / |u — ug|?dx < cRM2H2e
Q. %) Q(w,R)

and the liminf in (9.23) is zero.
We want to evaluate the dimension of the singular set ¥. For that, we
remark that u € WH27(Q) with r > 1 (Theorem 6.8), and

E(zo,R) = R2][ |Du|? dx < cR? (][ | Du|* dm) '
Qr Qr

<ec (Rzr“"/ 1+ |Du|2'")d:c) "
Qr

We can therefore apply Proposition 2.8, with
uQa) = [ (14 IDufr)de

and we get H" 27(X) = 0 for some r > 1. We have thus proved our first
partial regularity theorem:
Theorem 9.1 Let w(t) be a continuous increasing function, with

w(0) =0, and let u(x) be a w-minimum of the functional

Q(u, Q) = / A¥y(z,u)Du*Djuf da
Q
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with the coefficients Azﬂ (z,u) satisfying the Legendre-Hadamard condition
(9.9) and the inequality (9.10).

Then, u is Hélder-continuous with any exponent o < 1 in an open set
Qo C Q, and dimy(Q — Qo) <n —2.

We have moreover:

Theorem 9.2 Ifw(R) < cR?® for some o > 0, and if the coefficients Affﬂ
are Holder-continuous functions of their arguments, then every w-minimum
u of the functional Q has Holder-continuous first derivatives in §lp.

Proof. Let K C €y be a compact set, and let Qg be a cube with center
in K, contained in £. From (9.14) we get:

n+2
/ |Du— (Du)?do < e (2) /[Du—§|2dm+c/ \Dwl?dz,
Q9 r Q- Qr
(9.24)

where as usual w = u — v.
The last term can be estimated as above:

/ ]Dw|2dm§c((R)/ | Du|? dz
t Qr
with

¢(R) = w(R) +y(R? + cE(R))= .

If we remark that from the Hélder continuity of the coefficients we get
¥(s) < cs® for some § > 0, and that by Proposition 9.2 we have E(R) < cR*
for every pu < 2, we conclude easily that

n+2
/ [Du~ (Du),2do < e (£) / |Du — (Du)g|? d + cR™2®
R Qr

e

(9.25)

for some a > 0, and for every couple of concentric cubes Q, C Qr C Q.
Applying Lemma 7.3 to the function ¢(g) = er |Du — (Du),|? dz, we
arrive at once to the inequality

/ |Du — (Du),|* dz < cg™t2*,

which implies that the first derivatives of u are Hélder-continuous in K,
and hence in Q. |
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The fact that the dimension of the singular set is smaller than that of
00 suggests the possibility of proving partial regularity up to the boundary
for the w-minima with Dirichlet boundary data, provided the boundary of
Q and the datum U(z) are regular.

We can always reduce locally to the case of flat boundary, by means
of a diffeomorphism which does not change the quadratic structure of the
functional in question;® moreover, writing 3 = u — U, we can restrict to the
case of zero boundary data. If (once the boundary has been flattened) u is
a w-minimum of the quadratic functional Q, the new function y will be a
w-minimum of the functional

Pw.Qk) = | (B n)Du D
R
+ Bls(z,9)(2D;y” + D;UP)DiU}dz,  (9.26)

where we have set
B(z,y) = A(z,y + U(z)) .

Let now zo be a point lying on the flat portion of 812, and let R be
such that Q(zo, R) N = Q*(zo, R). We shall replace the cubes @} with
sets Ag with regular boundary, and such that Q}; /2 C Ar C QF. In order
to avoid artificial dependence on R, we start from a regular set A, with
Q'l"/z C A C Qt, and we shall take Ap homothetic to A:

Agp = Ag(zo) = {z € R™: R™}(z — 1) € A}.
Let v be the function minimizing the functional

Po(v,AR) = / (BoDv, Dv +2DU)dzx
Agr

among all the functions assuming the value y on dAg, where as usual
By = B(zg,yo).- The function v is a solution of the Euler equation:

/ (Bo(Dv+ DU), Dyp)dz =0 Yo € Wi (AR).
Ar

5For that, it is sufficient to assume that 8Q is of class C!.
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From Theorem 10.7 of the next chapter we get for every ¢ < R/2 the
estimate

2 AN 2
/Qz|Dv| szc{(R) /Q+2|D'v| dw-l-/Q+

R/ R/2

IDU2 dx}

from which we obtain at once

2 o\" 2
/Q:iDm dec{(R) /szyl dz

2 - 2 xT . .
+/Q;|DU| d:z:+/A;|D(y 2 d } (9.27)

The corrective term represented by the last integral can be estimated as
above, using the continuity of the coefficients, the fact that the function y is
a w-minimum, the L?" estimates for the gradient found in Proposition 9.1,
and the inequality

/ \Dvl?r dz < c/ \DyP?" dz
AR AR

that we shall prove in the next chapter (Theorem 10.17; see Remark 10.4).
Without entering in the details, that the reader can easily check, if we
assume that DU belongs to the space L?"~2%29 and hence that

/ |DU|2 dr < MORn—2+2a ,
Q%
we arrive as above to the estimate

E(TR) < cr*{1 + 7 ™¢(R)}E(R) + 7> "MyR*, (9.28)
where we have set

r—1

((R) = w(R) +v(R* + cE(R)) 7

and
E(s) = E(xo, s) =: 32"”/ |Dy|? dz .
Q7

We can now proceed as above, choosing first @ > ¢, secondly 7 such
that ¢7272¢ = 1, then ¢ in such a way that 7~"y((1 + c)eo) = < 1, and
finally Ry < (/€0 such that 72%¢y + M1 R2° < €, and 7 "w(Rp) < 1.
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Assume now that for some R < Ry we have E(R) < €p. Then,
E(TR) < T**E(R) + M;R*"

and therefore in particular E(TR) < €. By induction, if E(7*R) < €
we have

E(r**R) < 7 E(r*R) + My(7*R)* < &9,

and therefore
k—1
E(t*R) < T**E(R) + My(r*~1R)?* 3 " r¥(=0) (9.29)
7=0
In particular
E(T*R) < 7***E(R) + Ma(T*R)*
and hence

20
E(l‘o,g) < Ml (%) E(‘TO,R) + MQQza .

Let now z; € Q be such that Q(z1, R) intersects only the flat part of
01}, and assume that R < R; and

E(zy,R) < e,
where R; < Ry and €; < ¢g are such that
2" 2(Mye; + MaR¥°) < €.
We distinguish two cases:

(i) d = dist(z1,09) > £.
We have

FE (:L‘l, g) < 2n—2E(.’L‘1,R) < €p
and therefore by (9.21):
Q 2a R g 20
E(z1,0)<c (E) FE <:v1, —2—) <e (R) E(z;,,R)

since o0 < a.
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(i) d < £
If 7o € 89 is the projection of z; on 99, we have Q1 (zo,R) C
Q*(z1, R), and hence E(zo, R) < E(z1, R) < €0, so that, if2d <r < R:

r

E(zo,7) < My (5

20
) E(zo, R) + Myr® .

Remarking that Q(z;,d) C Q* (xo, 2d), we get from this estimate
E(z1,d) < 2" 2E(x0,2d) < 2" *(Mie; + MyR?°) < ¢,

and hence, if p < d:

0 20 ) 20 2%
E(zy,0) <c (3) E(z;,d) <c (}—2) E(z1,R) +co*. (9.30)

Changing possibly the constant ¢, the last inequality holds in any case,
and for every o < R.

Taking into account the continuity of E(z, R) with respect to z, we can
then conclude that if E(z;, R) is small enough, there exists a neighborhood
V of x; such that the function Dy belongs to the space L2"~2+27(V), and
therefore y is Hélder-continuous with exponent o. With the same argument
as above we can now prove the Hlder continuity of the derivatives. We
thus have the following:

Theorem 9.3 Let w(t) be a continuous increasing function, with w(0) =
0, let u be a w-minimum of the quadratic functional Q in Q, and assume
that the boundary datum U has derivatives in L2"~2+7(Q). Then u is a
Hoélder-continuous function in Q — ¥, where ¥ is a closed set of dimension
less than n — 2.

If moreover we have w(R) < c¢R?? for some o > 0, if the coefficients Afljﬁ
are Hélder-continuous functions of their arguments, and if U has Holder-
continuous derivatives in Q, then every w-minimum u of the functional Q
has Hélder-continuous derivatives in Q — X.

9.3 The Second Caccioppoli Inequality

When we pass from quadratic functionals to the general situation, the
inequality (9.7) alone does not suffice to get the regularity, and we need
a second Caccioppoli inequality, in which v is replaced by u — P, P being
an arbitrary polynomial of the first degree.
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To prove it, we shall make the following assumptions:
(i) F(z,u,z) is a continuous strictly quasi-convex function, of class C? in
z, with growth p > 2:
|F(z,u,2)| < VP (VZ=1+|2]%). (9.31)
We note that from the above inequality it follows that
|Fy(z,u, 2)| < VP2, (9.32)

(i) The function V~PF(x,u, z) is Holder-continuous (with exponent 24)
in (z,u) € Q x RY, uniformly with respect to z. That means that
there exists an increasing function g(s) > 2¢; such that

|F(2,u,2) — F(y,v,2)] < 9ol |z — y* + [u - o[*)V?  (9.33)

with 9(s,t) = min{2¢y, o(s)t°}.
We remark that the function 9 is concave in its second argument.
(iii) There exists a function F(z), strictly quasi-convex in 0, such that

F(2) < F(z,u,2). (9.34)

Lemma 9.1 Let F(2) be a function of class C2, with |F(z)| < cVP and
|F.(2)] < cVP~1. Then, setting

F(2) = F(20 + 2) — F(20) — (F2(20), 2), (9.35)

we have
|F(2)| < c(20)VP~2)2|2, (9.36)
|Fo(2)] < e(20)VP72 2], (9.37)
w < e(20)(1 + 2772 + [wlP~2)(l2] + fwl) - (9.38)

Proof. The inequality (9.38) follows at once from (9.37). We shall prove
(9.36); (9.37) well be proved in a similar way.
Let k(20) = sup|y|<i14z| [ Fz2(w)|. If [2] <1 we have

_ 1
F(z) = (P20 +12)2,2)] < sh(z0)lel < c(za)VP 22
If instead |2| > 1:
F(2) < 1+ |2 + |20/*) F + c(20) 2|

< e(20) + |27 < e(z0)|2]P < elz) VP2 2[2. O
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Remark 9.2 If the function F' depends on a parameter ug, the preceding
estimates hold with the constant ¢ depending on uo and zp. O

Remark 9.3 If p = 2 and the function F' has bounded second derivatives,
the constant ¢ in (9.36)—(9.38) can be taken independent of zo. d

‘We van now prove a result central in our regularity program.

Theorem 9.4 (CACCIOPPOLI's inequality II) Let u € WP be an w-
minimum of the functional

Flu, Q) = / F(z,u, Du)dz,
(1]

and let the function F verify (9.31)—(9.34) with p > 2.

Then, for every xo € Q, for every p < R < ﬁdist(a:o,ﬁﬂ), for every
up € RN and for every polynomial P(z) = a+ (20, z— o) of the first degree,
we have

/ (Vop_2|Du — zo|2 + [Du — z|P)dx
Qe

p—2
< (%/9_————2—/ |u — P|* dz
,Q) QR
e < = /Q lu— PJP dz + cw(R) R

te / Ifuol, B + [u — uol? + [u — PR)(VP + VP)dz.  (9.39)
Qr

Proof. Lett < s < R, let  be the usual test function, 0 < 7

supp(n) C Qs, n = 1in @y, |Dy| < 2, and let v = p(u — P

(1 —n)(u — P), so that ¢ + 9 = u — P and Dy + Dy = Du — z.
Set now

< IA
Il

F(z) =: F(zo,u0, 20 + 2) — F(x0, uo, 20) — (Fs(x0,u0, 20), 2) -

Remarking that [(F;(z), Dp)dz = 0, we get from the strict quasi-
convexity of F:

/Q (V&~%|Dgl? + | Dy|P)da

< /Q, F(Dyp)dz
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F(Du — z — Dy))dzx

s

F(Du — z)dz

i

+ | [F(Du— 2z — DY) — F(Du ~ z))dz
Qs

< F(Du — z)dzx
Qs

+ C/ (1 + |Dy| + |Du — 20])P~2(|Du — 20| + |Dy|)| Dypldz .
Qs
(9.40)
We estimate now the first term on the right-hand side. If we set for

simplicity F°(z) = F(xo, uo, z), we have:

F(Du — z)dz
Qs

= Fo(Du)dx—/ FO(z)dx
Qs Qs

- / (on(zo),Du—zo)dx

s

=/ F(z,u, Du)dx
Qs
+ / [F(2o0, w0, Du) — F(z,u, Du)lde
Qs

- / F(20)dz — / (FO(z0), Du — z0)de. (9.41)
Qs

£l

On the other hand

F(z,u, Du)de < [1 + w(s)] / F(z,u—¢,Du—Dy)dz  (9.42)
Qs Qs

and moreover

/ F(z,u — ¢,Du — Dy)dz
Qa

:/ F(z,v¥ + P,Dy + 2zp)dz
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= / FO(Dy + 2)dz
Qs
+ / [F(z,v+ P,Dy + 20) — F(zg, ug, Dy + Zo)]d:l:
QS
— [ F(Dy)dz + / FO(z0)da + / (FO(z0), Dy)dz
Qs Qs

+ / (F(z,% + P, D + 20) — o, uo, DY + zo)ldz.  (0.43)
Qs

s

Combining (9.40), (9.41) and (9.43), we get:
[ (71Dl + DelP)do
< F(Dy)d
C/Qs (DY)dz
te [ @ IDu= | + DY) (DY + |Du -z Dylds
Qs—Q:
+ / [F(xo, uo, Du) — F(z,u, Du)|dz
Qs
e < /Q P(ao)da + /Q 5 (on(zo),Dz/;)dm)
+ / [F(:E,I/)-I-P,D’l,[)-l-Zo) —F(CIZQ,UQ,D’lp-l-Zo)]d(L‘. (9.44)
Qs

From that inequality, taking (9.33) into account, and recalling that ¢ =
0 in Q;, we obtain

| W2 1DeP + Dyl
Qs
< c/ V()I"_2(|D¢|2 + |Du — 2|?)dz
+o / (DY + |Du — 2|P)da + cw(s)s™
Qs_ t

+ [ (ol fo =m0l + lu = wol +Ju = PRYV? + VE)do (945)
Qs
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Finally, introducing the expression of v/, we get

/ (V&% Du - 2] + |Du — z0|P)da
Q1

<e / (VE~%Du — 22 + |Du — 7|P)de
s Wi

[ —
+W/Q Vop 2|u—-P|2dm

t o /Q., u— PP dz + cw(R)R"

e / B(Juol 1z — zof? + [u ~ uol? + [u — PRY(V? + VP)de.
Qr
(9.46)

The conclusion follows as usual, summing to both sides the first integral
multiplied by ¢; and applying Lemma 6.1. a

Remark 9.4 We note that ¢ = 0 if the function F' depends only on z.
O

Starting from (9.39) we can prove the higher summability of Du — zp.
For that, we need the following:

Lemma 9.2 For z € R" let w(z) = 2V(2)*. For every o > —3, there
erist two constants ¢y and co such that for every z, zp € R™

er(L+|2f* +|20%)7 |2 = 20| < |w(2) — w(zo)|
< co(1+ |22 + 20)%)° |2 — 2] - (9.47)

Proof. The second inequality follows at once from the formula

w(z) —w(zo)| =

‘d
/o aw(zo +t(z — zo))dt‘

1
< (1 +[20])|z — ] / (L+ |20+ £(z — 20)[2)° dt
0

and from Lemma 8.3.
In order to prove the first one, let s € R and n(s) = s(1 + s?)°. We
have

7'(s) = (1 + 52711+ (1 4 20)s?) > min(1,1 + 20)(1 + 5%)° .
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We remark that we can assume |z| > |2o|, and we distinguish the two
cases |z| — |zo| > €|z — 20| and |z — [20] < €]z — 20|, with 0 < € < . In the
first case, we have

fo(z) — w(zo)| > fw(z)] — [w(zo)] = n(l2]) —n(lzo])
1
= (2] - |20) / (L4 |20 + t(z — z0)?)° dt
>z — zol(1 + 22 + |20l?)°

thanks to Lemma 8.3.
If instead |z| — |zo] < €|z — 29|, and hence |2| < 3|zg|, we set £ = zj7|1

Q
so that |¢] = |z0| and |z — £ = |2] — |20] < €|z — 20| and |z — &| >
|z — 20| — |2 — €] = (1 — €)|z — 2z0|- Then

E2
|

[w(2) — w(20)| > Jw(§) — w(20)| — [w(2) — w(£)]
> V(20)%|€ — 20| — e(1 + |2* + |20]*)7|2 — €]
> (1422 + |20])%|2 — 20|(10727(1 — €) — ce).
With a suitable choice of € > 0, we get the required inequality. O

We remark that in (9.47) we can replace 1 + |z|? + |20|*> with the
equivalent quantity 1 + |z — 29|2 + |20/%.

Theorem 9.5 Let the hypotheses of Theorem 9.4 hold, and let w(R) =
cR?°. There exist s > 1 and pu > 0 such that

|w(Du) ~ w(z0)|* dzx : <e¢ [w(Du) — w(z0)|? dz
Qr Q2r

14
+cR* ( (VP + Vg’)d:::) ,

Q2r
(9.48)
where w(z) = zV'G_z(z).

Proof. Let Qr, CC , and let Qr C Qg,. Setting

G = w(Ro) +’l9(luO|,Rg + lu— u0|2 + |u— P|2)(VP + VOP)
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we get from (9.39):

/ (VP2 Du — 20|? + |Du — 20|P)dz
Qr
2
<c| (RWP3u-PP?+RPlu—P]P+Gdz. (9.49)
Qr

The polynomial P in (9.49) is completely arbitrary. If Z is the center
of Qr, and if we choose P(x) = uz r + (20, z — Z), the function u — P has
zero average in g, and hence from the Sobolev—Poincaré inequality:

2
3,
/ |u——Pl2da:§c(/ |Du—z0]2*dx) ,
Qr Qr

where s, = ;—"n Remarking that 2p. < 2,p we conclude that

P
/ |u—P|pdx§c</ |Du—z0|”*dx)m
R Qr

2
< cRP?2 (/ |Du — zo|L§“ dw) -
Qr

and therefore, taking into account Lemma 9.2:

f, oo —stoPas e (f, oo - wtf-ae)

Qg
+c4 Gdzx. (9.50)

Qr

With our choice of P the function G in (9.50) depends on R. In order
to apply Theorem 6.6 we must estimate the last integral with the integral
of an analogous quantity independent of R. We have

Gdz =w(Rp) + 4 d(VP+V])dzx.
Qr Qr
We can estimate the right-hand side by remarking that since 9 is an
increasing function,® we have 9¥(a + b) < 9(2a) + ¥(2b) and therefore

HR? + |u — uo|? + |u — P|) < 9(2RE + 2Ju — uo|?) + 9(2[u — P|?).

6For the sake of simplicity, we shall write 9¥(s) instead of ¥(r, s).
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By Proposition 9.1, we have VP € L"(Qg,) for some r > 1, and hence

][ F(2|u — P|2)(Vp + Vop)dil:
QR

< < QR19(2|u - P37 dm) o (][ R(Vp + V&) da:) :

T

< c( QR19(2|u-P|2)dz)1—% (]{h(vuvg’)r dw) ,

where we have taken into account the boundedness of 4. Moreover, since ¢
is a concave function, we have

]{hﬁ@]u — PP)ds <9 (2]{%@ _ Pi2daz) ,

which with our choice of P gives

][ 9(2|u — P|?)dz < 9 (ch][ |Du — 2o|2d$>
R Qr

<97 cRg][ |Du — zo|?dz | .
Qr,

Using now Proposition 9.1, we obtain:

][ 92l — PR)(VP + VP)dz
Qr

S

1-—
<9 (CR?,][ |Du — 29| d:c) (VP +V§)dz
Qry Q2r

and in conclusion:

Gde < ][ (a(z) + B)(V? + V¥)de
Qr Q2r

where
o) = cRY + (2R3 + 2|u(z) — uol?)

and

1-1

B=9 <CR3][ |Du — 20| da ,
Qry

are both independent of R.
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With the above estimate, (9.50) becomes

]{23 [w(Du) — w(20)|*dz < ¢ (]lq-zﬂlw(Du) — w(zo)| da:) =

+c (a(z) + B)(VP + VI)dz. (9.51)
Q2R

Covering the cube Q g/, with 4™ cubes Q(z:, %), we can write R instead
of 2R in the last integral.
Applying now Theorem 6.6, we conclude that for some r > 1 we have

(][ |w(Du) — w(z0)|* dx)
Q%

(9.52)

T

T

Let us write now R instead of Ry, and let us estimate the last integral.
We have

1
( BT (VP + VP dw) <Bd (VP4+VP)dz.
Qr Q2r

The other term can be estimated as above, choosing ug = ugr. We
obtain

1
(][ a" (VP + VP dm) <A (VP 4+ VP)dx
Qr Q2r
with
1-3
A=cR* +9 (cR2 + ch][ | Du — 2o dm) .
Qr
Recalling that 9(t) < ct®, we get in conclusion:

1+4&
A+ B <cRt <][ (V”+V})p)dw) ,
Q2r

1

and we have assumed 20 < pu, as we are allowed to do.

where we have set
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From the above inequality we get at once (9.48) with @ g on the left-
hand side. Covering the cube Qg with a finite number of cubes Q% , we
arrive finally at the required inequality. [

Remark 9.5 The inequality (9.48) is a key tool in the proof of the
regularity of the w-minima of quasi-convex functionals. If F' depends only
on z, we have ¥ = 0, and the whole proof above can be extremely simplified.
We remark that in this case the constants do not depend on 2y when p = 2
and the second derivatives F),, are bounded. O

9.4 The Case F = F(z) (p = 2)

In order to clarify the main idea of the proof, before discussing the general
case we shall treat the simpler problem of the regularity of the minima
(i.e. w = 0) of functionals dependent only on the gradient, and with growth
p = 2, under suitable assumptions of uniformity. We shall deal with a
function F(z) of class C? in R™, and possessing bounded and uniformly
continuous second order derivatives; in other words, we shall assume the
existence of an increasing, concave and continuous function v(t), with 0 <
v <1 and v(0) = 0, such that

|Foz(2) = Foz(w)] < ev(jz ~ wf?). (9.53)

In this situation, the inequality (9.48) becomes

1
<][ |Du — 2|2 dz) < cf |Du — 2|2 dz (9.54)
Qr Q2r

with a constant ¢ independent of zg.
Let Qr = Q(zo, R) be a cube contained in 2, and let

(Dw)g = (Du)ay r = ][ Dudz, (9.55)
Q(:Eo,R)
E(zo, R) =][ |Du — (Du)g|*dz. (9.56)
Qr

We have the following:

Theorem 9.6  With the above assumptions on the function F, let u be a
minimum of the functional

Flu) = /n F(Du)ds.
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Then, for every o < R:
2 R\" —
Eeo.0) <e{(8) + (T) ~(eBeo, R} Eleo ).
Proof. Setting zp = (Du)g, let
1
9(2) = F(z0) + (Fa(20), 2 — z0) + 5 (F22(20)(2 — 20), 2 — 20) ,
and let v(x) be the function minimizing the functional”
6(u,Bx) = [ g(Dv)ds
Br

among all the functions assuming the value u on 3Bg.
The function v is a solution of the Dirichlet problem

{Fz,',zp (Z())DiDj’U =0 in BR

v=1u on 8Bg

(9.57)

(9.58)

and therefore satisfies (9.13) and (9.19). Moreover, for every ¢ < t = R/\/n

and for every 7 € R™Y we have
][ |Dv — (Dv), ]2d$<c ][ |Dv — 7|?dz.

From (9.59) with 7 = (Du)4,,r, setting w = u — v, we deduce

2 t\"
E(zp,0) <c (%) E(xzo,t)+¢ (E) ]{3 |Dw|2 dzx
R

so that we only need an estimate of the last term.
By the strict quasi-convexity of F(2) we get

][ |Dw da < c][ [F(20 + Dw) — F(zo)|de
Br Bp

g [F(z0 + Dw) - g(20 + Dw)]dz

+l][ (F,2(20) Dw, Dw)dz .
2 /Bn

(9.59)

(9.60)

(9.61)

7The existence of a minimizing function is guaranteed by the coerciveness and the

weak semicontinuity of G in the class u + W(} 2(Bg).
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Let us begin with the first term on the right-hand side. From the
uniform continuity of the second derivatives of F', we obtain

][ [F(z0 + Dw) — g(20 + Dw)]dz < c][ v(|Dw|?)| Dw|? dz .
Br Br

On the other hand the derivatives Dw belong to L?", for some r > 1,
and hence, using the estimate (9.19), we get

][ |Dw|? dx < c][ (|Du — 2zo|*" + |Dv — 2|*")dz
Br Br

,
<cd |Du—zl*dz<ec (][ |Du — zo|2d.'1:)
Br Q2r

S CE(%(), 2R)T ,

where in the last passage we have made use of the inequality (3.36)
(Remark 3.3).

We have therefore, taking into account the concavity and boundedness
of the function v(t) and making use of Jensen’s inequality (5.10):

]{3 Rv(!DwF)lDdez <c (ﬁ H"/(lDwiz)dx) - E(z0,2R)

r—1

<% <][ | Dw)? dz) : E(z0,2R).
Qr

The integral of |[Dw|? can be estimated by c¢E(zo, R) < cE(zo,2R), and
hence in conclusion:

]{3 [F(20 + Dw) — g(20 + Dw)]dz < cy(cE(zo, 2R))T+IE(:L'0, 2R).
(9.62)

Let us now consider the second term of (9.61). We have

%JQR(Fzz(ZO)D’w, Dw)dz = ]gﬂ[g(Du) — g(Dv)]dz

- fQ lo(Du) - F(Du)jdz
F(Du) — v)|dz
+]1QR[ (Du) — F(Du)ld

+ ][QR[F(DU) — g(Dv))dz.
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The second integral is negative, since u is a minimum of F; the other
two can be estimated as above. Writing R instead of 2R we get the
conclusion (9.57) if ¢ < R/2. On the other hand if ¢ > R/2 we have
E(z0,0) < 2"E(z0, R) < 2"*%(0/R)2E(x, R), and hence (9.57) is valid for
every o < R. O

From the preceding theorem we deduce a first partial regularity result.

Theorem 9.7 Let u € WL2(Q,R") be a minimum of the functional
Flu, Q) = / F(Du)ds,
Q

in which the function F(z) is strongly quasi-convez, and has second deriva-
tives uniformly continuous and bounded.

There exists an open set Qo C Q, with |Q — Q| = 0, such that u(z) is
of class C1*(Qp) for every a < 1.

Proof. The starting point is inequality (9.57), in which we set 9 = 7R
and we write for simplicity E(R) instead of E(xo, R):

E(rR) < cr?{1 4+ 77" 2y(cE(R))'"*}E(R) . (9.63)

Let a < 1, and let 7 be such that c72—2% < %— Let ¢g > 0 be such that
et~ 2y(cep) < 3, and assume that

E(xo,R) < €. (9.64)
From (9.63) we get
E(TR) < 7*E(R)
and by iteration
E(*R) < 7**E(R).
From the last inequality we deduce at once

E(o) <c (%)2“ E(R) (9.65)

for every o < R. Assume now that for some zg €  and R < di—“é%—f—nl
(9.64) holds. Since E(y, R) is continuous in y, we shall have E(y, R) < €
for every y in a neighborhood I of zy. For every y € I we then have:

+2a
/ |Du — (Du)yof*de < e (%) / \Du — (Du)y r|? de.
Io(v) R In(v)
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The last inequality implies that u is of class C1* in I, so that in con-
clusion the function « has Holder-continuous derivatives in an open set
which contains all the points y such that8

lnrll)lglf E(y,r)=0.

Since the last relation holds for almost every y € €2, we have |2—{y| =0,
and the theorem follows. d

9.5 Partial Regularity

Having seen the method at work in the simple case F' = F(z), let us come
to the partial regularity of the w-minima of the functional

F(z,Q) =/QF(z,u,Du)d:t

under general assumption for the function F.

To be precise, we shall assume that F(z,u, z) is a strictly quasi-convex
function, satisfying the hypotheses (9.31)—(9.34)) of Sec. 9.3. Moreover, we
shall assume that the second derivatives F,, of the function F' are con-
tinuous, or better that there exists a function ~y(s,t) defined for s, ¢ < 0,
increasing in both its arguments, bounded, continuous and concave in ¢ for
every s, with (s, 0) = 0, such that

|Fzz(2, 4, 2) = Fez(@, u, w)| < y(Juf + [2] + |w], [z — w]) . (9.66)

We shall consider w-minima u of the functional F; namely functions
u € WHP(9) such that for every cube Qg C Q and for every v € W1?(Qr),
with v = u on 8QR, it holds that

F(u,Qr) < [1+ w(R)|F(v,Qr),

and we shall assume that w(t) < ct?7.
Let now up = ugq R, 20 = (Du)z,r, and let us denote with F the
“frozen” function

Fo(z) = F(zo, uo, 2),

8 Actually, Qo coincides with the set of such points, since if Du is continuous in a
neighborhood of y, E(y, ) is infinitesimal with r.
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and with g(z) the quadratic approximation of F:

9(2) = F%(20) + (F(20), 2 — 20) + -;—(Ffz(zo)(z —29),2 — 2p) . (9.67)

Let G(u,?) be the functional correspondent to the function g, and let
v be the minimum of G(v, Br) among all the functions assuming the value
u on OBpg. The function v satisfies (9.19) and (9.59) with every exponent
p > 2 (see later, Remark 10.4, and in particular (10.59)). As a consequence
for every o < r = R/\/n we have

£ 1w(Dv) - w(Dv),) dz
Qe
< cVP2((Du),) ]g |Dv ~ (Dv),[*de

+ c][ {Dv — (Dv),|P dx

e

<c(&) v (@vaf 1Dy - (Dv) Pde

ve(Z )”fQ \Dv — (D), [P dz. (9.68)

r
On the other hand, we have from (9.13)

(Dv),? < ][ |Do|? d < c][ | Dof? dz
Qe Q.

< |(Dv)u|? + c][ \Dv — (Dv),|? dz
B,
and therefore

£ (Do) — (D)) da
Q0

<c(8) ver(Du)) ]{? 1D~ (Do), de

e (5)2(7{2 1Dv- (Dv>r|2dx) e (5)”]2 1Dv— (Du), s

From the above formula we conclude easily that

2\? — w((Dv), T
1, @0 — w0 i << (F) £, (Do)~ w(@vn)Pd

r
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and therefore

2 2% w(Du) — w((Du), |2 dz
[ (D)~ wi(Du) i < () f (D0 - w((Du) 4

; (-’})]{3 jw(Du) - w(Do) da.
" (9.69)

We need an estimate of the last integral. For that, we begin with the
remark that, setting { = u — v, we have

lw(Du) — w(Dv)? < (VP~2|D¢J? + |DEP)
< e((VE™2 + |Du — 2[P~2)|D¢[? + |D¢PP)
< €|Du— zo[P + c(e) (V| D¢ + | DEPP) .

The quasi-convexity of F' now gives
][ (VE2|D¢[? + |D¢P)dz < ][ [F®(z0 + D¢) — F*(20)|da
Br Br

= ]{3 [Fo(zo + D¢) — g(z0 + D¢))dz

o % ]{3 ) (F? (20)D¢, D¢)dz (9.70)

and moreover

1
3/, (Fo(2)D¢, DOz

=f l9(Du) — g(Dv)lda

Br

= w) — FO(Du)lde (D) — F(z. w, Du)ldz
[ lotu) - P(Duya +J€3JF (Du) - F(z,u, Du)ld

+ ]{3 [Pz, D)~ F(a,v, Du)ldz-+ ]l; [Pz, v, Dv)~F(Dv)Jdz

+ an [F°(Dv) — g(Dv))dz

=)+ I+ I+ {IV)+ (V).
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Recalling that « is an w-minimum of F, we get
(III) < R™™w(R)F(v,Br) < cR* 4 VPdz.

For what concerns the remaining terms, (I), (V), as well as remaining
term on the right-hand side of (9.70), are of the type already treated in
the preceding section, whereas (II) and (IV) are similar to those we have
encountered in Sec. 9.3.

For these, we can argue in the same way, getting

(IT) + (IV) < cR* ( ]{2 V& + V”)dz) i . (9.71)

2R
We come now to the terms (I) and (V), and to the residual term on
the right-hand side of (9.70). In comparison with the estimates of the
preceding section, here the situation is complicated by the fact that we
do not assume that the second derivatives are bounded, let alone uniformly
continuous. We shall consider (V) in detail, the estimates for the remaining
terms being obtained in the same way.
Let 8 be a constant that we shall fix later, and let
K =K(R,8) =: {zx € Br: |Dv(z) — 20| > S} .
We have, for |z — 2o} < 8,
|F°(2) = 9(2)| < ¥(Juol + 2lz0] + B, |2 — 20[*)|2 — 20
and hence
R*V) = / [F°(Dv) — g(Dv)]|dz +/ [F°(Dv) — g(Dv)]dz
Br— K
< / Y(|uol + 2|20| + B, |Dv — 20|*)| Dv — 20|* da
Bgr

+ c/K(V(Dv)” + V&)dz

< / ¥(Juo| + 2|20| + B, |Dv — z0|2)|Dv - zo|2 dz
Br

+c/ (V¥ + |Dv — z|P)dz .
K
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We estimate now the first term on the right-hand side. Neglecting for
the sake of simplicity the first argument of the function v, we get:

][ (| Dv — 20|?)|Dv — 20| dz
Br

r—1
<ec <][ ¥(|Dv — zolz)dz> (][ |Dv — z|*" dw)
Br Br
=1 1
<ey (][ |Du — z? dm) <f |Du—-zo|2rda:>
Br Br

r=1

= (]{hm(z)u) - wo)f d””) , (]{2  w(Dw) -~ w)” d:z:)%

r—1

<oy (]f? Ju(Dw) - w(eo)f*ds)

X {]{M|w(pu) —w(20)|?dz + R* ( o (VP + Vo”)dx) 1+%} :

1
™

On the other hand we have

/ |Dv — 2z9|P dz
K
1
< (/ |Dv — zolp"dx> |K|T_:1
Br
1
<ec (/ |Du — 2" dw) K|
Br

sc (/QR |w(Du) — w(zo)[*" da:)% |K|=

<c (l‘é‘;‘l)_ { /Q  u(Dw) — (ol da

+ Rn+ﬂ (

14
(ve+ vy )dm) } .
We estimate the measure of K. We have

/ |Dv — 2|2 dz > B%|K|
K

Q2R
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and hence

K
AL < g2 Do —202ds < cﬂ—2][ VZ2|Du — 22 de
| R| Qr Qr

< B2 lw(Du) — w(zo)l2d:v.
Q2r

From these inequalities we get at once
R [ (V8 +1Du— 2l )do < g + (57 Ear)' )] (Ban + R* Pan),
K
where

E, = E(zo,t) = , |w(Du) — w((Du);])? dz (9.72)

P, = P(zo,t) = (]{2 W+ Vo”)d:c> T (9.73)

In conclusion:
.

r—1
(V) < c(v(cE2r) T + Eyg + 87 2)(Ear + R*Par).

The remaining terms can be estimated exactly in the same way, so that
introducing all these inequalities in (9.69), and remarking that

P, <c(l+ E)'*7,
we get in conclusion the following:

Proposition 9.3 Let u be a w-minimum of the functional
Fu,) = / F(z,u, Du)dx
o

with the function F satisfying the assumptions stated at the beginning. Let
Q(zo, R) be a cube contained in Q, and let o < R. Then,

By < a{(8)" +(B) e+ o + ctoxian ) ER)

+ (%) HyRH, (9.74)

where A is an increasing function of |ug| + |20 = |Ugze,r| + |(DU)xe,r|, H2
is increasing in |ug| + |zo0| + E(xo, R), whereas

x(B) =777 (cE) + '~
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depends also on B and is infinitesimal with E, uniformly if luo| + |20] + B
remains bounded.

We remark that in (9.74) above we can write R instead of 2R.

We choose now a > p and M > 0, and ¢ = 7R, where 7 = 7(M) < 11is
such that

AM)Te < %. (9.75)
Let us take € = ¢(M) in such a way that
Arme < %T"‘ (9.76)
and 8 = B(M) such that
A(M)e(e)yr™ 72 < %Ta. (9.77)
Finally, let ko = ko(M) < 1 be such that
AMYT™™c(€)x(M + 1+ B(M), ko) < %r“ . (9.78)

From the preceding proposition it follows that if for some r we have
E(zo,7) < ko and |ugg,r| + [(D®)zo,r| < M, then

E(zo,1r) < 7%E(z0,7) + Har" . (9.79)
with Hy = Hym™ ™.
Lemma 9.3 For every s and every 1, 0 < T < 1 we have
[ tzo,5] = |ttao,rsll < €577 E(zo, 5)?

[(Dwao,s| = |(Dt)ag,rs|l < 77 F E(zo, )% .

Proof. For every function v we have

1
z
Hvzo,s] = [Vag,rsll < f [V — Vgo,sldz < (][ v — 'Umo,SI2 d:v>
QTH Q‘rs .

1
2
<73 ( o —vm,sﬁdz) .
Qs

The second inequality follows at once taking v = Du; the first is proved
choosing v = u— ((Du)zq,s; £—xo) (note that v and u have the same average
both over @}, and over Q;;) and estimating the last integral by means of
Poincaré inequality (3.33). d
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Define now
E), = E(zo,7*R),
T, = ‘umo,‘r"R‘ + |(Du)zo,TkR' y

and assume that

TOS%—L Eog%l— (9.80)

in which &, < kg will be chosen later.
We want to prove that

k-1
Ex < T*Eo + Ha(M)(T*"'R)# Y rile=m) (9.81)
5=0
Inequality (9.81) holds for £ = 1 by (9.79). Assuming that it holds for
k < h, we shall prove it for h + 1.
We remark in the first place that from (9.81) it follows

m
Ej, < 7% (% - R ) < myrhH

TH — 7%
whenever
ki(TH — @
R s By = 12(H3+1 )
Moreover, if we take
1
er i fi% < % (9.82)

we get from the preceding lemma

h
n 1
Thi1 <To+cr™2 ZE,:
k=0

AN

—14ecr™

M
2

IA
=

-1.

With the above choice of x; and of R; we can write (9.79) with r =
7hR < 7P R;, getting
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Ent1 < Ep + (t"R)*H3(M)

h—1
< 7D By + Ha(M) {(ThR)“ +r(rP IRy Tk(a—m}
’ k=0

h—1
=D E) 4+ H, (M)('th)“ (1 + Z T(k+1)(a—u)>
k=0

from which we deduce at once the required inequality (9.81) for h + 1.
From (9.81) it follows immediately
m
B <ot (o FB0REY
TH — T
Finally, if 0 < p < R, choosing h in such a way that 7"*'R < o < 7"R,
we get

' "
E(z9,0) < cEp < crh® (Eo + M)

TH — 12

TH — 7%

<c (}—‘;)” (E(xo,R) + w) .

We have thus proved the following:

Proposition 9.4 Let u be a w-minimum for the functional F, with
w(R) = cR*. For every M > 0 there exist k1 > 0 and Ry > 0 such that if
for some g € ) and some R < R

M
|tao,r| + [(DU)zo,R| < - 1 and E(zo, R) < k1, (9.83)

then for every p < R:

E(zo,0) < c (%)“ <E(mo,R) +

At this point it is not difficult to prove the required result of partial
regularity:

H3(M)R‘1‘> .

S (9.84)
Theorem 9.8 Let u(x) be a w-minimum of the functional
Flu, Q) = / F(z,u, Du)dz
Q

with the function F satisfying the assumptions stated at the beginning of
the section, and with w(R) = cRM.
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There exists an open set o C Q, with |QQ—Qo| = 0, in which the function
u has Hélder-continuous derivatives.

Proof. If inequalities (9.83) hold for some zy and R, they will continue
to hold for every z in a neighborhood I of zg. It follows that inequality
(9.84) will be satisfied for every z € I and p < R, and hence u has Hélder-
continuous derivatives in I.

On the other hand, for almost every z € 2 we have

Jim (fu 2] + [(Dw)a,r]) < +o0
lim E(z,R) =0
R—0

and therefore the singular set {2 — Q0 has zero measure. a

9.6 Notes and Comments

The first partial regularity results for variational problems in several
dimensions were obtained by DE GIORGI [3] and REIFENBERG [1] in the
framework of the theory of minimal surfaces of codimension 1, and were
extended by FEDERER [2] and ALMGREN [1] to minimal currents and
varifolds in any codimension.

The adaptation of these methods to the regularity theory for nonlinear
elliptic systems was first achieved by MORREY [4], followed by GIUSTI and
M. MIRANDA® [2] and GIUSTI [2]. The term “partial regularity” is a re-
interpretation of the title of Morrey’s paper, Partial regularity results . ...
Actually, when Morrey’s paper appeared, hope was not yet given up to
extend to linear elliptic systems De Giorgi’s results for second order elliptic
equations, described in Chapter 7. The appearance of Example 6.2 of
De Giorgi, followed by Example 9.1 of GIUSTI and MIRANDA [1], showed
the impossibility of such an extension, and more generally of proving the
regularity of the solutions of nonlinear elliptic systems, since the function
u(z) = z|z|~! of Example 9.1 is a weak solution of the elliptic system in
divergence form

/QAZ[,(U)DjuﬁDm“ dr=0.

9Contrary to what EVANS says in [1], these papers, or at least the last two, were
inspired by DE GIORGI [3].
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About at the same time, similar examples were found by MAZ’'yA [1];
later NECAS [2] and NECAS, JOHN and STARA [1] gave a large number of
these examples, that STARA, JOHN and MALY [1] extended to the parabolic
case.

The use of a theorem by GEHRING [1], or more precisely of its exten-
sion due to GIAQUINTA and MobIcA [1] (Theorem 6.6), made possible an
extension of the partial regularity results first to systems with quadratic
right-hand side (GIAQUINTA and GIUSTI [1]), then to minima of quadratic
functionals (GIAQUINTA and G1UST!I [6]) and in general to minima of quasi-
convex functionals (EVANS [1], GIAQUINTA and MODICA (2]).

For what concerns quadratic functionals (9.8), we remark that the
estimate of the dimension of the singular set ¥ in Theorems 9.1 and 9.3
can be ameliorated in the case of separated coefficients:

AZ5(2,4) = Gap(z, u)g"(2). (9.85)

For z5 € Q, consider the functional
Qo(u, Q)= / Gaslxo, u)gij(mo)D,-uDju dz .
Q

Since the coeflicients of this functional depend only on u, one can assume
that the independent variable z is in R¥, 1 < k < n (and hence the indices
i and j vary from 1 to k), and consider the relative problem of minimum
in R*. It can be shown (GIAQUINTA and GIUSTI [6]) that if the minimum
problem for Q° in R* possesses only regular solutions, then the minima
of the functional @ have a singular set whose dimension does not exceed
n—k—1. Moreover, if k = n—1, the minima of Q can have at most isolated
singularities. In particular, since in dimension 2 all the minima are regular,
if n = 3 there are only isolated singularities, while generally speaking the
dimension of the singularities does not exceed n — 3.

Functionals of the above type occur in the theory of harmonic mappings
between Riemannian manifolds. Actually these mappings are stationary
points of the energy:

£w) = [ lauP,

which in local coordinates takes the form

E(u) = /gij(z)Gaﬁ(u)DiuDjm det g(z)|dz ,
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where g% and G,p are the metric tensors respectively on the domain and
on the target manifold.

Of course, the dimension of the singularities will depend on the structure
of the target manifold only, since, being a local problem with respect to the
domain manifold, the latter can be considered a n-dimensional ball B™.
For instance, whereas in general the minimizing harmonic mappings have
singularities of dimension at most n — 3, those from B™ into the sphere S™
are regular up to dimension 6 (GIAQUINTA and SOUCEK [1], SCHOEN and
UHLENBECK {3]), and therefore, by virtue of what we have said above, their
singular set has at most dimension n — 7.

Actually, we can introduce local coordinates on the target manifold
only after having proved at least the continuity of the mapping, a property
which is essentially the problem in question. As a consequence, the above-
mentioned theorem can be applied to harmonic mappings only if the target
manifold can be covered with a single chart, as for instance in the case of
R™ with an arbitrary metric, or else of the sphere S, if the mapping u
omits at least a point.

The result remains nevertheless true in general, as was shown by
SCHOEN and UHLENBECK [1].

ScHOEN and UHLENBECK [2] have also proved that in the case of the
Dirichlet problem with regular data, the singularities of harmonic maps
cannot reach the boundary. A similar result, in the case of separated
coeflicients (9.85), was proved independently by JosT and MEIER [1].

In the general case of quasi-convex functionals, the theorem of partial
regularity is due to EvaNs (1] for p = 2, and to GIAQUINTA and Mobica (2],
for growth p > 2.1° The artifice allowing one to avoid the uniform conti-
nuity of the second derivatives was introduced by ACERBI and Fusco [2],
whereas HONG M-C [1] has replaced condition (9.4) with the more stringent
inequality

F(z,u,2) > |2|P = A.

In any case, even condition (9.4) is not simple to verify, and the exten-
sion of the partial regularity results to quadratic functionals satisfying for
instance the condition of Legendre~-Hadamard remains an open problem.

Except for very special situations (some systems with diagonal principal
part, functionals “close” to the Dirichlet functional), we do not know any
results of global regularity for minima of vector-valued functionals, even
under assumptions of convexity in z. A case of some interest is that of

101t is not known whether the result holds also for p < 2.
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functionals depending only on the modulus of the gradient:
Flu) = / G(|Duf?)de (9.86)
o)

with the function G(t) satisfying suitable conditions of growth and of
convexity, as for instance G(t) = (1 +t)*, with s > 1.

For the minima of these functionals one can prove global regularity
results, in particular the Hoélder continuity of the first derivatives, even in
the degenerated case, for instance when G(t) = t°, with s > %

The first results in the above direction are due to K. UHLENBECK [2],
and were obtained with a method that inspired the proof of Theorem 8.7.
When the function G depends on z and u, we have results of partial regu-
larity, with an estimate of the dimension of the singular set (see GIAQUINTA
and MobIca [3] for s > 1, ACERBI and Fusco [4] for 3 < s <1).
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Chapter 10

Higher Derivatives

In order to complete our program of gradual proof of the regularity of the
minima of regular functionals of the calculus of variations

F(u,Q) = / F(z,u, Du) dz,
Q

it remains to discuss the regularity of the derivatives of higher order, begin-
ning from the second. For that, we shall abandon in the first place all the
various generalizations of the concept of minimum we have introduced so far
{(quasi-minima, w-minima), and devote our attention to the true minima.
Secondly, we shall assume from the beginning that the function F(x, u,p) is
regular, and satisfies suitable assumptions of convexity (when u is a scalar
function) or of quasi-convexity (for vector-valued functions).

The results of the previous chapters tell us that every minimum u(z) of
the functional F is of class C1* in an open set (g C © (which in the scalar
case coincides with ), has second derivatives in L2, and is a solution of
the EULER equation

8 oF

or; 5;1_(93’ u(z), Du(z)) = -(,?U—F;(:L', u(z), Du(z)), (10.1)

which can also be written in the form
AZﬁ(x,u, Du)D;juf = B,(z,u, Du), (10.2)

where

347
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i3 8*F
A7 (z,u,z) = z,u,2),
aal ) azgazf( )
2 2
Bueuz - JE_ _PF 5 &F

u*  Dz00uP 0200w

If the fum;tion F hg's Holder-continuous second derivatives, the new
coefficients a;j5(z) =: AJs(z, u(x), Du(x)) and the right-hand side ga(z) =
B.(z,u(z), Du(z)) are Holder-continuous functions themselves. Moreover,
we shall assume that there holds the LEGENDRE-HADAMARD ellipticity
condition

ady(z)eemn® > €2 nf? . (10.3)

In conclusion our problem is reduced to that of the regularity of the
solutions u € W22 of the elliptic equation

ay(z)Dijuf = ga(x).

Once the desired regularity results are proved for these equations, it will
not be difficult to deduce analogous results for the minima of the functional
F. In all these results, an essential role will be played by estimates for the
solutions of elliptic linear equations and systems, in particular those with
constant coefficients.

10.1 Hilbert Regularity

We shall begin by proving the regularity in the spaces W* =: W2 for
weak solutions of linear elliptic systems

| 4@ DD do = [ @D + gala)eda. (104
Q Q

We shall prove internal regularity for weak solutions, and the boundary
regularity for the solutions of the DIRICHLET problem, under suitable as-
sumptions for the coefficients agﬂ, for the functions f and g, and possibly
for the boundary datum boundary U. We remark that writing w =u — U
instead of u, we can always assume that u is zero on 9. In this case
the functions fi will be replaced by fi — aZﬁDjUﬂ, and therefore the
assumptions on f will contain those on the boundary datum U.

For what concerns the coefficients affﬂ, we shall always assume that they
verify the LEGENDRE-HADAMARD condition (10.3).
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We begin by proving a coerciveness result. Setting
(ADg, DY) = als Do Diy®
we have the following:

Theorem 10.1 (GARDING inequality) Let Q be a bounded set, and let
the coefficients aﬁfﬁ be uniformly continuous in Q and satisfy the condition
(10.3). Let ¢ be any function in W(Q). Then,

(1) If the coefficients are constant, we have

/(ADcp,Dcp) dzx > ,u/ | Dy|? dzz . (10.5)
Q Q

with p > 0.

(ii) There ezists a constant Ry, depending only on the modulus of conti-
nuity of the coefficients, such that the preceding inequality holds if the
diameter of the support of ¢ is less than Ry.

(iif) There exists two constants v > 0 and H such that

/(AD<p,D<p) dz > 1// |D<p|2dm—H/ o2 da. (10.6)
Q Q Q

Proof. Part (i) was already proved in Lemma 5.1. To prove (ii), we
remark that if zo € supp ¢, setting Ag = A(zo), we have

{ADyp, D) = (Ao D, D) + ((A — Ao) Dy, Dyp)

and hence, denoting by w(t) the modulus of continuity of the coefficients,
and by R the diameter of the support of ¢, we get

/ (4D, D) dz 2 (1~ w(R) [ Dl do.

If now R is so small that w(R) < §, we have inequality (10.5) with &
instead of u.

Let us turn now to (iii). Consider a covering of  with balls of diameter
smaller than Ry, and let ap (h = 1,...,N) be the partition of the unit
1

given by Theorem 3.2. Setting 7, = o7, we have

N
Znﬁ:l in .
h=1
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Moreover,
nh{ADp, Do) = (AD(nap), D(nnp)) — (AD(nnp), D)
~ (ApDnp, D(nrp)) + (ApDnn, oDnp) .

Let us now integrate over . The first term on the right-hand side can
be estimated from below by means of (ii); the last is positive due to (10.3),
and the others can be estimated by

( / 1¢|21Dnhr2dm)% ( / lp(nhwlzdzf .

Summing on h, and using the inequality ab < ea? + e~ 1%, we get:

Jiape,Dpjas> (£~ Y [ IDtme da
h

—c(e lo|2| Dnp |2 dzz .
()Zhj/so -

On the other hand we have

1
IDme)3 = SlimmDell3 - lleDnall3,
and inserting this inequality in the preceding one, in which we choose ¢ =
u/4, we arrive easily to (10.6). a
We can now prove a first theorem of internal regularity.

Proposition 10.1 Assume that the coefficients agﬁ(w) are Lipschitz-
continuous in Q, and that f € W() and g € L%(). Let u € W(Q) be a
weak solution of system (10.4). There ezists a number Ry > 0, depending
only on the modulus of continuity of the coefficients, such that if R < Ry
and Qzr CC Q, then u belongs to W2(QR) and for every 0 < t < 1 we have

2,12 |Du|2 2 2 de
/C;R ID UI de < C/Q(1+t)ﬂ ((tR)2 * IDfI * Igl ) 4 (10.7)

Proof. Let (¢ CSO(Q(H_,:)R), with0< (¢ <1,{=1in Qg and |D({| <
2. Choosing ¢ = A_x(¢(?Asu) in (10.4), we have

/ 09, D;uP Dig® dz = / Ao, D;uP)((Di(¢Anu®) + Anu®Dic) d.
We remark now that

An(a¥;D;uP) = 0¥y (z + heo)D;(AnuP) + DjuP AR A,
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and as usual
CDj(Ahuﬂ) = Dj((Ahuﬂ) - AhuﬁDjC.

Inserting the above relations in the preceding one, isolating at the left-
hand side the principal term and estimating the others, and choosing R
small enough, we get

[ass@DueDi s> & [ DicAW)P e
—c [(@IDuf + IDePlauP) iz (108
We now estimate the terms on the right-hand side of (10.4):
/ fiDip* dz = / AnfiDi(¢CApu®) da
< [IDGaw)de () [ PlansPda

+ / D¢ Anuf? da
On the other hand we get from Lemma 8.1:

/ GaB_h(C?Anu)da < ¢ / ID(C2Anu)[? dz + c(€) / 191 de

Q2r

< e/|D(<Ahu)|2d:c+/|Dg|21Ahu|2dx

+e(e) [ lgl*dz.
Q2r

and the conclusion follows at once. O

At this point it is not difficult to prove, with the assumptions of the
preceding proposition, that the solution u belongs to W2 _(£2). It is sufficient
to cover ¥ CC 2 with a finite number of cubes Qg of side sufficiently small,
to write the estimate (10.7) for each of them, and to sum. In this way we
get the following:

Theorem 10.2 Let the coefficients aijﬁ(w) be Lipschitz-continuous in €,
and let f € WY(Q) and g € L?(R). If u € W(Q) is a weak solution of
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(10.4), then u belongs to W2_(R2), and for every & CC Q we have
[ 1D ds < e(®) [ (Du?+ID7P +lgP)ds.  (109)
b Q

Integrating by parts in (10.4), we conclude moreover that u satisfies the

equation
a2sDiDjuf = Difi — go — DjuPDialf , (a=1,...,N)  (10.10)
almost everywhere in €.

The preceding result can be extended up to the boundary, for solutions
of the DIRICHLET problem with zero boundary data. In this case, we begin
by flattening the boundary of ! by means of a diffeomorphism <, which is
described in detail in Sec. 8.5. Setting v = u oy, the function v will be a
weak solution of the equation

/ AYy(z)D;vP Dip™ dx = / [Fi(z) D™ + Ga(z)y*] d
in the half-ball B+, with
Aly(z) = |J(2)|Hi H]alf(1(2)),
Fi(z) = |J(2)|Hy fa(v(2)),
Ga(z) = |J(2)l9a(v(2)).

It is easily seen that, under suitable assumptions for the function +, the
new coeflicients and the new right-hand side have the same properties of the
original coefficients and right-hand side. In particular, if «y is of class C?,
the coeflicients AZ are Lipschitz-continuous, and the functions F¢ belong
to W1, whereas the functions G, are obviously in L2. We can therefore
consider Eq. (10.4) only in a half-ball B*, with the solution u taking zero
values on the flat part P of 9BT,

We can then proceed combining the methods of Sec. 8.4 with the proof
of Proposition 10.1. If s # n, the function Ay ,u has zero trace on P, and
hence we can take ¢ = A_;(¢?Apu) in (10.4), with a test function ¢ with
support in the cube QJ2r centered in the origin, but possibly different from
zero in P. Arguing as in Proposition 10.1, we get easily the estimate

2
DD'u%d ('Dul Df? 2)d 10.11
Jygpowpdese [ (Ggp+iDsf+lof ) ds o)
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for every R small enough (depending only on the modulus of continuity of
the coefficients), in which D' indicates any derivative Dyu, with s # n.

Finally, the estimate for the derivatives D,,u? can be derived from
Eq. (10.10), that can be written in the form

a3 Dp Dyt = Difl ~ go — DjuPDialf — ¥'ai2;D;D;u?

with the usual meaning of the apex in the sum on the right-hand side.

The matrix Kqop =: ajj can be inverted thanks to (10.3), and its inverse
matrix is bounded. Taking (10.11) into account, we eventually get the
estimate

D
/ |D?u|?dx < c/ (I ;lz +|DfI? + |g|2> dz. (10.12)
C}: AN

Finally, covering 8 with a finite number of neighborhoods, and repeat-
ing for each of them the preceding argument, we arrive at the following:

Theorem 10.3 Let u be a weak solution of the equation (10.4) in {,
taking the value U on 9Q. Assume that the coefficients a ] Y 3(x) are Lipschitz-
continuous in (1, and that U € W2(Q?), f € W1(Q) and g € L?(Q). Then,
u € W2(Q), and we have

/ Dl dz < c/(|Du|2+ DU+ DS +|g?)de.  (10.13)
Q Q

Note that, by virtue of Theorem 3.18, in the above estimate can replace
the term |Du|? with |u|?
We can now prove a general theorem of internal regularity.

Theorem 10.4 Assume that the coefficients a'? i 5(x) belong to Wkeo(Q),
that f € Wk(Q) and g € W*1(Q). Let u € Wl(ﬂ) be a weak solution of
(10.4). Then, u belongs to Wt (Q), and for every & CC Q we have

loc
lullk+1,2 < c(k, E)(|Dulla + | flk,e + Iglle-1,0) - (10.14)

Proof. The theorem has already been proved for &k = 1. Let us assume
that it holds for k¥ > 1, and let us prove it for k + 1. For that purpose,
assume that afjﬁ(:c) € Wktloo £ c Wktl and g € Wk,

By assumption, the solution u belongs to W+, and any of its deriva-
tives D,u is a weak solution of the equation

Di(aZ3D;D;uP) = D;Dsfi — Dsgo — Di(Dsa¥,D;uP)
= DiFg‘ )
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where
Fi =D, fi+6ig0 — Deas D . (10.15)

Let now A be an open set such that ¥ cc A cc Q. By virtue of our
assumptions, the functions F}} belong to W*(A); whence Dyu € W*+1(T),
and u € W*+2(Z). Finally, the inequality (10.14) for k + 2 follows from the
same estimates for h < k + 2, taking into account that

IE s < N flle+r + lglle + cllulless O

If we want to extend the above result up to the boundary, we must
consider again a solution u to (10.4) in the half-ball B*, with u =0 on P.
We have in this case:

Theorem 10.5 Letu € WY(B™) be solution of the equation (10.4) in B™,
with w = 0 on P. Assume that the coefficients ai{ﬂ (z) belong to Wk (B¥),
and that f € W*(Bt) and g € W*~1(B*). Then, u € W*+t1(B}) for each
r < 1, and for every cube Q; cC Bt of side sufficiently small, and every
¢ < R we have the estimate

lullk+r,, < ek, 0, R)(lullier + I fllk.@n + lgllk-1,0-) . (10.16)

Proof. For k = 1, inequality (10.16) is nothing but (10.12). Assuming
that it holds for k > 1, let us prove it for £+ 1. As above, the function D,u
is a solution of the equation
/aZﬂDj(Dsuﬁ)Digo“ dz = /F;Dicp" dx
with F given in (10.15). If s # n, Dyu is zero on P, and hence
1Dsullsa, < ek, & RIDeul @ nge + IFlleng,)
< c(k, 0, R)(lullk+1,@ nyp + 1 fllk+1,02 + l9llk,R)
e

<c(k+1,0 R)(Ilulien + Ifllk+1,.en + lgllkQr) -

In this way we have estimated all the derivatives D%, |o| = k + 2,
except DF+2y. The estimate for that derivative can be obtained as above
from Eq. (10.10). O

Coming back to our original DIRICHLET problem for the Eq. (10.4) with
data U on the boundary, we have the following:

Theorem 10.6 Let u € W1(Q) be a solution of the equation (10.4) with
u=U on 8. Assume that the coefficients are of class W5 (Q), that the
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boundary of Q is of class CFtY, and that U € W*T1(Q), f € W¥(Q) and
g € WE=1(Q). Then, u € W*1(Q) and we have the estimate

lullesr < elllulls + 1F 11 + llglle-1 + [Ullke+1) (10.17)

with a constant ¢ depending on Q and on the coefficients.

10.2 Constant Coefficients

We continue our study by establishing some estimates for the solutions in
the upper half-space R7 of the Eq. (10.4) with constant coefficients azfﬁ.

The estimates in question have the same form for the cubes Qr C R%
and for their intersections Q} = Qg NRZ, provided in the last case that
u = 0 on the part of the boundary of Qg lying on the hyperplane P =
OR} = {z € R" : z, = 0}. In the following, we shall treat only the
latter situation; the proof in the other case is simpler, and we leave it to
the reader, who can carry it through simply eliminating the unnecessary
complications.

Let us begin from a solution v of the homogeneous equation:

aZgDivP =0, (10.18)

with v =0 on P.
Since the coeflicients a;’ﬂ are constant, the equation above can be writ-
ten in the form

D.,;ai‘?ﬁDj’Uﬁ = 0,
which after multiplication by an arbitrary test function ¢ € C§°(Q*+,RY)
and integration by parts becomes

/ a2;DvPDip*dz = 0. (10.19)

We have already proved in the preceding section that v € Wik _(Q*)!
for every integer k, and hence by the SOBOLEV theorem (Theorem 3.12), it
belongs to C*°. Moreover, we have the CACCIOPPOLI estimate (6.68), with
U=g, =0

Du)?ds < —° / 2dz. :
/le vl x_(s_t)2 ijv[ dz (10.20)

1Since the coefficients are constant, it is not necessary to assume that the radii are
small.
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Since every derivative of v is itself a solution of the same Eq. (10.19),
we easily have

Z/ JD"vlzdx<( c(k;))zk/ jv]?dz . (10.21)

lol=Fk

Taking now s = 1, ¢ = 1 and k > 2 4+ %, we can apply the SOBOLEV
Theorem 3.12 and we can conclude that v € C*(Q7,) and

sup(|Dv|? + |D?2) < ¢ / 2 de < c / IDovl2de.  (10.22)
Q; Q+ Q+

In particular we have for ¢t < %:

/+ |Dv|? dz < (2t)" sup |Dv|? < ct"/ |Dpv|? da (10.23)
Q: QY1 Q+

and moreover

|Dv — (Dv)s|? dz < ct? |D?v|? dz
QF Qf
< ct"+2/ |D,v|? dz . (10.24)
Q+

If in the last inequality we replace v with v — z,¢, £ € R" (which is a
solution of (10.18) and is zero for z, = 0), we get

/Q ,1Dv— (Dv);)? dzx < ct™t? /Q . |Dpv — €2 dz. (10.25)
t

Writing D,v, s # n, instead of v, we find an estimate for the deriva-
tives DD'v. The remaining derivative D,,v can be estimated using the
Eq. (10.18), so that we arrive to the estimate

/+ |D?v|?dz < ct"/ |D?v|? dz . (10.26)
o) Q+

In a similar way, we can replace v with D,v° — 2,22, in (10.24), and
obtain

/ |DDgv — (Dst)t|2 dz < ct"+2/ | Dgnv — /\m|2 dx .
QF Q+

t
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Once again, the derivative D,,v can be extracted from the equation,
and hence

/ |D?%v — (D?v)y|?dx < ct”+2/ |D%*v — A dz. (10.27)
Qf Q+

The estimates (10.26) and (10.27) continue to hold, possibly with a
different constant, for every ¢+ < 1. The same estimates hold for a generic
cube Qg, and can be proved simply by reducing to the unit cube Q by
means of a homotethy. We have therefore proved the following:

Theorem 10.7 Let v be a solution of the homogeneous Eq. (10.18) in
Q}, with v =0 on P. Then, for every o < R we have:

/+ |Dv|?dz < ¢ (%)n/Jr |Dv|?dz, (10.28)
Qe QR
n+2
/+ |Dv — (Dv),|2dz < c (%) / |Dv — ¢ dz, (10.29)
Qe Q+
/+ |D?v|?dz < ¢ (%)n/+ |D?v|? dx, (10.30)
Qg QR

and

2. 2y (2 o\t 2. 312
/C;;]Dv (D*) P do < (L) /Q;wu Ardz  (10.31)

for every € = {¢7} € R™N and every A = {A;} € R™*V,
The same estimates hold if Qr C Q.

Remark 10.1 The preceding estimates remain valid if we substitute ev-
erywhere the exponent 2 with p > 1. Actually, if we follow the proof of the
preceding theorem, we will note that it is sufficient to prove (10.22) with 2
replaced by p. Now this is trivial if p > 2; for, calling U? the left-hand side
of (10.22), we have

z
U”gc(/ |Dnv|2dw) Sc/ DovlP dz .
o+ Q+

If instead 1 < p < 2, we must remark that from (10.21) with 2k > n+4
we can deduce that

Doul? + |D%u|?) < ¢ / 2
SC;‘ZP(' v|* + [D*v| )_——(s_t)z,c o | Dnv)* dz
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and hence, calling U? the quantity on the left-hand side,

o_
2 CUs P

< 3 p
Uf < oD% /Q:r |Dpv|P dx

2
1 c B
< —Uf -+ (—/ |Dnv”da:) }
2 (S - t)Zk Q;}' [
At this point, a simple application of Lemma 6.1 gives the required

estimate. O

Let us consider now the non-homogeneous Eq. (10.4), that we write in
the form:

Dja;Djw® = D;fi + ga (10.32)

with constant coefficients afjﬁ verifying the condition of LEGENDRE-
HADAMARD (10.3).

We can write w as sum of two functions: w = v+ 2z, where v is a solution
of the DIRICHLET problem

aZﬁDijvﬁ =0 in QE ,
N\v=w on GQE,

and z = w — v is a solution of the DIRICHLET problem relative to the
non-homogeneous equation with zero boundary value on BQR
For what concerns z we have the following:

Proposition 10.2 Let z be a weak solution of the DIRICHLET problem
{DiaZbDjzﬁ =D;ft —g. inQFf,
z=0 on GQE.
For every m = {n’} we have
/ D22 de < c/ (f = 72 + R2|g?) dz. (10.33)
2 Q%
Proof. We have
/ |Dz|? dzx S/ aijBDiz"Djz'Bda:
ot et

R

= /+(fg—7rf;)Dizadac+/ gaz®dz
Qr

Q%
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1

Sc(/Q;|f—7r|2dac)2 (/Q; |Dz|2dz)%
+c</% |g|2dx)% (/Q;izIdeY

and (10.33) follows immediately by estimating the last integral by means
of the inequality of POINCARE. O

It is now easy to get bounds for the second derivatives. We have the
following:

Proposition 10.3 Let z be a solution of the DIRICHLET problem
{ agg-Dijzﬂ =ga in QE ’
z=0 on 8Qt.
Then,

/s
Proof. From (10.12) we get

/ ID%2|2dg < c/ (g2 + B-2|D2|?) dz . (10.35)

Qf Q%

R/2

The last term can be estimated by means of (10.33) with f = 7 = 0.

We have
/ |Dz|?dx < ch/ |g|* dz,
Q% Q%

from which (10.34) follows at once. c

|D?z|? dx < c/Q+ 9|2 dz. (10.34)
R

+
R/2

We can now prove the following theorem:

Theorem 10.8 Let w(x) be a weak solution in Q}',—E of the elliptic equation
Diaij,@Diwﬁ = -Difci — Ga

with constant coefficients, and assume that w = 0 on P. Then, for every
¢ < R we have

/Q_; |Dw|? dz < c{(%)" /Q; |Dw|2dx+/Q;(|f]2+R2|g]2) dz},
(10.36)
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/Q;r |Dw ~ (Dw),|*dz < c{ (%)M2 /Q; \Dw — €2 do

+ / (f ==>+ Rzlglz)d:c}. (10.37)
Q%
Proof. Setting as above w = v + z, we have
/ \Dw — (Dv), P da < c / (1Dv = (Dv), % + |D2]2) dz,
Qs Qf
and therefore, using (10.29):

/ |Dw — (Dw),|? dx S/ |Dw — (Dv),|? dz
¢ Qf

< (:{(}—‘;_)"J'Z’/Q+ |Dv—£|2d:c+/Q+ lDz|2dm}
gc{(%)"”/Q+ ]Dw—§|2d1'+/Q+ |Dz|2dx}.

The first inequality (10.37) follows at once from (10.33). The proof of
(10.36) is similar, and we leave it to the reader. O

We can prove now the basic estimates for the second derivatives.
Theorem 10.9 Let w(zx) be a solution in Q}, of the elliptic equation
a:;jﬁD.,;jwﬁ = Ga

with constant coefficients, and let w = 0 on P. Then, for every o < R we
have

2,12 o\" 2, 12 2
/Q+|D w] dzgc{(R) /Q;u:) w] dm+/%|g| dm}, (10.38)

e

n+2
/Q+ |D2w — (D*w),|? de < c{ (%) /Q+ |D?w — A2 dz
e R

+/ |g——gR|2dm}. (10.39)
Q%
Proof. We shall prove (10.38) first. Writing as above w = v + z we have

/+ |D2w|2 dz < c/ (|D2v|2 + |D2z|2) dz,
Q:

QF
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and hence, using (10.30) and assuming that o < R/2:

2\" 2, 12
[D?>w|?dx < c{ (= / |D*w|* dx +/
/er (R) Q) Qf

R/2

|D?2|? dm} .

The conclusion follows at once from Proposition 10.3, possibly changing
the constant ¢ if o > R/2.
Let us consider now the second inequality. Denoting by A,, the N x N

matrix with components az3, and setting

1 _
y=w-— Emngning

we get
aZﬁDijyﬂ = Qo — (ga)R -

As above, we can split y = v + 2z, getting

| iDPw— ) = [ D% (D), de

e e

52/ ]Dzv—(Dzv)gPd:c+2/ ID?2 da.
Qr Qr

e

We can estimate v by means of inequality (10.31):

/ . |D?w —~ (D*w),|* dx

Qe
o\t2 2. 412 212
Sc{(R) /Q+ |D?v ~ Al d:lf:—{—/Q+ |D?z]* dx

R/2 R/2
n+2
<cl(L |D?w — A\ dz + |D%2?dz § .
R
Q2 Qk/a

On the other hand, from Proposition 10.3 we deduce

s

and the conclusion follows. O

|D?*2{?dz < c/ lg — gr|? dz

+
R/2 Qr
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10.3 Continuous Coefficients

Once the proper estimates for the solutions of equations with constant
coefficients have been obtained, we can deal with the regularity of solutions
to equations with continuous coefficients. We shall consider both weak
solutions of equations in divergence form:

/Q ads(z)D;uP D™ dx = / [fiDip® + gap®| dx (10.40)
Q
and pointwise solutions of non-divergence equations:
agﬁ(m)Dijuﬂ =go(z) ae inQ. (10.41)

In both cases we shall assume that the coeflicients affﬁ are continuous
and satisfy the ellipticity condition (10.3). Moreover, since we are looking
for local results, we can assume that the coeflicients are uniformly contin-
uous. We shall indicate by w their modulus of continuity:

w(t)= sup sup |af3ﬁ(x) - afﬁ(y)i .
ij=1,...,n |z—y|<t
a,8=1,....N

As above, we shall consider the case in which 2 is the upper half-space
R%. Having proved the desired results for this situation, it will not be
difficult to extend them, with a suitable change of variables, to the general
case, provided the boundary of € is regular enough.

Lemma 10.1 Letu(z) € W2 be a weak solution in Q% (zo) of the elliptic
Eq. (10.40), and assume that u =0 on P.
Then, for every o < R we have

/Q: |Dul?dz < c{ [(%)" +w(R)2] /Q; \Dul? dz

+ [+ R as (10.42)
Qh
/ |Du — (Du),|?dz < c (ﬁ)"”/ |Du — ¢ d
Qt @ =TU\R o
+w(R)2/ |Dul|? dz
Q%

2 2 2
- =+ Rl jazf. (1049
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Proof. We have

| a¥s(en) Dy D d = [ (a8 (z0) @)Dy Deg” de

+ [11°Di™ + o(o)e) do
and the conclusion follows immediately from (10.36) and (10.37). O
In a similar way, writing Eq. (10.41) in the form
aixjﬂ(mO)Dijuﬂ = [aitjﬁ(xO) - agﬁ(m)]Dij“ﬂ *t 9o
we can obtain from (10.38) and (10.39) the following:

Lemma 10.2 Let u be a solution of Eq. (10.41) in Q‘E, and assume that
u =0 on P. Then, for every o < R we have

/Q; |D?u|? dz < c{ [(}%)n +w(R)2] /Q; \D?uf? do

+ /+ g2 dm} (10.44)

R

n+2
A+ |D2u - (D2“)gl2 dr < c{ (%) _/;«r | D%y — ,\'2 dx
e R
+/ lg — gr|* dx
Q%

+w(R)? /Q+ |D?u)? dx}. (10.45)

The same inequalities hold at the interior, for cubes @, and Q.

Remark 10.2 Estimates similar to (10.42) and (10.43) hold for solutions
of the complete equation

Jy D Dig s = [ 11+ bl Di
+ /[ga +Ci‘ﬁ($)D]’uﬂ
Q

+ dopulp® dr (10.46)

provided the functions b, ¢ and d are bounded.
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In fact, if we write (10.42) with the functions
Fy = fo+bp”,
Ga = go + c?‘ﬂ(w)Djuﬁ + daguﬂ ,

and we assume, as we are allowed to do, that R < 1, we easily get

/Q_; |Du|?dz < c{ [(%)n +X(R)2] /jS \Duf? de

2
+/Q;[|fl +|u12+R21g12]qx} (10.47)

with x(R)? = w(R)? + R2.
If instead we start from (10.43), we get, similarly,

/Q,}” |Du — (Du),|* dz < c{ (%)n+2 /Q; |Du — €)% dx

+X(R)? /Q |DuP dz

—71’2 - U T 7. A
+ [ 05—l B ). (1048)

R

In the same way, the solutions of the complete equation
affﬁ(a:)DijuB + bfxﬁ(m)Diuﬁ + cap(2)uP = gal(z) qo.inQ  (10.49)

satisfies estimates different from (10.44) and (10.45) only for the addition
of the term

/ (IDul? + Jul?) de
o

on the right-hand side. .|

Proceeding now as in Theorem 8.4, we get without particular difficulties
the following regularity results for the first derivatives.

Theorem 10.10 Let u € WH2(Q) be a weak solution of the equation

/ a5 (z)DjuP Dip™ dz = / (feDip® + gap®] dz (10.50)
0 Q

with the coefficients a;; continuous and satisfying the ellipticity condition
(10.3).
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If the functions f belong to L**(), with A < n, and g € L2*~%(Q),
then the derivatives of u belong to Lﬁ;i‘(ﬂ), and for every open set ¥ CC Q
it holds that

| Dullz,z,s < c{l[Dull2,0 + | fllz a0 + llgll22-2,0} - (10.51)

If in addition 85) is regular, and u is a solution of the DIRICHLET prob-
lem with zero boundary data, the derivatives Du belong to L>*(£), and the
preceding estimate holds with ¥ replaced by 2.

Similarly, for the solutions of (10.41), we have the following:

Theorem 10.11  Let u € W2(Q) be a solution of the equation
ay(z)Dijuf = go ace. in 0

with the coefficients a;; continuous and satisfying the ellipticity condition
(10.3).

If the function g belongs to L**(), with A < n, then the second deriva-
tives of u belong to Lﬁ;é(ﬂ), and for every open set ¥ CC {1 we have

1D%ull2,n,5 < e {| D?ullz,q + llgll2 a0} - (10.52)

If in addition 8% is regular, and u is a solution of the DIRICHLET prob-
lem with zero boundary data, then the second derivatives D*u belong to
L2*(82), and the preceding estimate holds for Q.

Proof. The proofs of the two Theorems 10.10 and 10.11 are practically
identical, so that we can limit ourselves to one of them, for instance the
second.

Let us begin from the interior regularity. Let ¥ CC € and let R <
Ry = ﬁdist (3,09Q). From (10.44), in which in our situation we have

Q% = Qr CC Q, setting p(t) = th | D?u|? dx, we deduce
¢(TR) < o(r" + w(R)*)@(R) + cR||gll2,

If we choose 7 in such a way that 215 = 1, and Ry so small that
w(Rg)? < 7", we obtain

o(TR) < 7°F o(R) + cR|glla.x,

and the conclusion follows immediately from Lemma 7.3.
The same argument leads to the regularity at the boundary. 0
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Finally, with a proof completely similar to that of Theorems 8.5 and
8.6, we get the following results:

Theorem 10.12  Let u € WH?(2) be a weak solution of Eq, (10.50), with
coefficients a;’ﬁ of class C%° and satisfying the ellipticity condition (10.3).

If the functions fo belong to L2(Q), with A < n+ 20 < n + 2, and
g € L2222, then the derivatives of u belong to Ei;é(ﬂ), and for every open
set ¥ CC ) we have

[Dullzaz < e{lDullo, + I fllzx0 + llgll2a-2.0} - (10.53)

If in addition 8 is regular, and u is a solution of the DIRICHLET prob-
lem with zero boundary data, then the derivatives Du belong to L£>*(f),
and the preceding estimate holds with 3 replaced by (.

Theorem 10.13 Let u € W2%(Q) be a solution of the equation
aijﬂ(z)Dijuﬂ =ga a.e inf)

with coefficients agjﬂ of class C%° and satisfying the ellipticity condition
(10.3).

If the function g belongs to L2*(2), with A < n+ 20 < n + 2, then the
second derivatives of u belong to 512(;2‘ (), and for every open set & CC Q2
we have

| D?ullo,n 5 < e {ID%ull2,0 + llgll2na} - (10.54)

If in addition 89 is regular, and u is a solution of the DIRICHLET prob-
lem with zero boundary data, then the second derivatives D*u belong to
L2X(Q), and the preceding estimate holds with ¥ replaced by 2.

In particular, a weak solution of the elliptic equation
/ affﬂ(m)DjuﬁDigo" dz = / fiD;p* dz
Q Q

with Holder-continuous coefficients and the right-hand side, has Holder-
continuous first derivatives, whereas a solution of the equation

ai;(z)Diju = g(z)

always with Holder-continuous coefficients and the right-hand side, has
Holder-continuous second derivatives.

Remark 10.3 Similar results hold for the solutions of the complete
Egs. (10.46) and (10.49). For simplicity, we shall only sketch the proof of
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the analogue of Theorem 10.10, restricted to the part relative to estimates
on the whole 2.

For that, we shall assume that Du belongs to L*%, 0 < ¥ < A, with the
estimate?

[Dull2,0 < e{llullz + [ Dullz + | fllzx + llg

a2} (10.55)

By Proposition 3.7, we have u € £%Y+2, with the estimate

[ullz,9+2 < e(llullz + || Dull2,9)
< e{llullz + [ Dullz + (| fllz,x + lgll2,x-2} -

Starting from (10.47), and arguing as in Theorem 10.10, we conclude
that Du € L%*, with g = min(9 4 2, ), and that estimate (10.55) holds
with u instead of ¥. With a finite number of steps, starting from ¢ = 0, we
conclude that Du € L??, with the estimate

I Dull2,x < e{llullz + || Dullz + || fll2,» + llgll2,2-2} - (10.56)
0

At this point we could continue, as in the case of the Hilbert regularity,
proving regularity theorems for the derivatives of higher order. We limit
ourselves to a short statement of the results, leaving with the reader the
task of completing the proofs.

Theorem 10.14 Let u be a solution of Eq. (10.50). Assume that the
coefficients are of class C*(Q) [resp. C**(Q)], and that the derivatives of
order k of the functions fi and of order (k — 1) of ga belong to L**(Q)
[resp. L2X(Q)]. Then, the derivatives of order (k+1) of u belong to L2*(X)
[resp. L2} (Z)] for every T CC .

If in addition 9) is regular, and u is a solution of the DIRICHLET prob-
lem with zero boundary data, the above estimates hold with 3 = Q.

A similar result is valid for solutions of the equation
aZBDijuﬁ =fGa -

If the coefficients are in C*~! [resp. C*¥~1:%] and the derivatives of order
(k — 1) of g belong to L?* [resp. £2*], the derivatives of order (k 4+ 1) of u
are in L2 [resp. EZ’)‘], with global result if u = 0 on 9.

loc loc

2We have omitted the reference to the open set €.
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10.4 LP Estimates

The results of the preceding section, and the interpolation theorem of
STAMPACCHIA (Theorem 2.14), can be used to obtain LP estimates for
the derivatives of the solutions of elliptic equations. The following theorem
describes the simplest case, yet of some interest.

Theorem 10.15 Let Q be an open set of R™, with regular boundary and
homeomorphic to a cube. Let u € WE(Q2) be a weak solution of the problem
of DIRICHLET {with zero boundary data) for the equation

Dia?;Djuf = D;f} (10.57)

with constant coefficients aZB, satisfying the ellipticity condition (10.3).
If f € LP(Q), p > 2, the derivatives Du belong to LP()), with the
estimate

[ Dullp < ()| fllp- (10.58)

Proof. Let us consider the operator T' mapping every f € L%(Q) into the
gradient Du of the solution of problem (10.57). T is obviously linear, and
by Lemma 5.1 we have

ITfll2 < cllff2-

On the other hand, by Theorem 10.12, T maps £ into £*", with the
estimate

ITfll2n < cITfll2 + [ fll2n) < cll fllzn-

We can therefore apply the theorem of STAMPACCHIA, and we conclude
that T maps LP into LP, with the estimate (10.58). O

Remark 10.4 The constant ¢ in (10.58) obviously depends on . If
however §? is a ball of radius R, it can be taken independently of R.

Let u be a solution of problem (10.57) in Bp, and let w(z) = u(Rx),
7(z) = ¢(Rz) and F(z) = f(Rz). We have Dw(z) = RDu(Rz) and
Dn(z) = RD¢(Rzx), and hence the function w € W{(B) is a solution of the
equation

/ affﬁDjwﬁDiwa dr = R/ FiDjp*dz.

B B

By the previous theorem, if f € LP(Bg) we have F € LP(B) and
| Dwlip,8 < c(B)R||Fllp,5,
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which is equivalent to
|1 Dullp,Br < e(B)|fllp,Bx - 0

If instead v is a solution of the homogeneous equation
/ aZﬂDjvﬁDitp" dz =0
Q

and takes the value U at the boundary, we can apply the preceding result
to the function u = v — U, which is solution of the problem (10.57) with
fi= aZﬂDjU‘6 . We have therefore

| Dullp < (DU ||,
and hence
[Dvllp < ()| DU, .

Remarking that the function v — P = v — a — (m, z) is a solution of the

homogeneous equation and takes the value U — P at the boundary, we have
also

|Dv = 7, < (@)|DU — 7. (10.59)

In particular, the preceding estimate holds in a ball of radius R, with
¢ independent of R. The last estimate is exactly the one we have used
frequently in the previous chapters.

Under the same assumptions on {2, a similar result holds for the second
derivatives of the solutions of the DIRICHLET problem with zero boundary
data for the equation

aijﬁDijUﬂ = gq a.e. in 2 (10.60)

with constant coefficients aifﬁ satisfying the LEGENDRE-HADAMARD
condition.

Since the coefficients are constant, we can write (10.60) in the weak
form

/QaifﬁDjuﬂDicp" dr = — /angoa dr. (10.61)
We can therefore apply Theorem 10.3, and we can conclude that

/ |D2u|2dx < c/ (|Du|2 + |g|2) dz.
Q Q
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On the other hand, taking ¢ = u in (10.61), and using (10.5) and
POINCARE’s inequality, we easily get

/Q|Du|2 dz < c/Q lg|? da (10.62)

and hence

/|D2u|2da¢§c/ g2 dz.
Q Q

To the same function v we can apply Theorem 10.13, and in particular
we can write (10.54) with A = 2. We have therefore

1 D?ull2,n < (| D?ullz + lIgll2,n) < cllglizn -

In conclusion, the linear operator 7', which maps any g € L? into the
second derivatives of the solution of problem (10.60), maps L? into L2, and
L™ into £2". By the theorem of STAMPACCHIA, T maps L? into L?, with
the estimate

1D?ullp < c(Q)llgll, - (10.63)

We remark once more that if  is the ball of radius R, the constant c
in the preceding estimate does not depend on R.

We shall continue now by showing on one hand that, always under
assumptions of regularity of 81, it is possible to avoid the assumption that
Q is homeomorphic to a cube; and on the other by extending the previous
results to equations with continuous coefficients. Moreover, we will show
that these results are local in character; in other words, if A C 2, and
f € LP(A), then Du € LP(A) for every open set A CC A.

For that, let us consider a ball B = B(zp, R) and let n € C§°(Br),
with 0 <7 <1, and n =1 in Brys. Let u be a solution of the equation

/ agsDjufDip* de = |  fiDip* da (10.64)
Br Br

for every ¢ with support in Br. Writing 7y instead of ¢, we get easily

/ a3, D;(nuP ) Dsgp® dz = / [nfa + adgu’ Dyn| Dig® da

+ / [fiDin — alsD;uP Dino® da . (10.65)
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Let now w be the solution of the DIRICHLET problem

Aw® = g* =: fi m—a’ DjuPD;n in Bg,
w=0 on 6Bg.

The function w satisfies the inequality (10.63) with c independent of R;
and hence if g € L™ for some m > 2, the second derivatives of w belong
to L™, and therefore Dw € L™ . Introducing in (10.65) the preceding
equation written in weak form, namely:

/Diw"‘Dicp"‘ dz = — /[fa N — a 9 5 D; ;uP Din)p® dz,
we eventually get
/aZﬁDj(nuﬂ)Digoo‘ dz = /F;Dicpa dz, (10.66)
where
=nft +aaﬂuﬁDJ77 D;w*® (10.67)
We remark that if f € LP and u € WbH™, then F € L°, with s =
min(p, m*).
Until now, no assumptions have been made on the coefficients. Let us

assume now that they are continuous in 2, and satisfy the condition of
LEGENDRE-HADAMARD. The Eq. (10.66) can be written in the form

/aZﬂ(mo)Dj(nuﬂ)Digoa dx
/ (B + [ (20) — a5 (2)] D3 (mu)} D™ ds.  (10.68)

Assume finally that F € L*, and for v € W}"*(Bg) let w be the solution
of the problem of DIRICHLET for the equation

/ aijﬁ (z0)D;wP D;p® dx

/ {Fi + [a¥,(z0) — a9, ()| D} Dig? d (10.69)

taking the value zero on 8Bp
By Theorem 10.15 we have

[Dwlls < (|| Flls + w(R)[| Dvls) (10.70)
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with ¢ independent of R, where w(R) is the oscillation of the coefficients in
Bp. Moreover, if w; and ws are the solutions correspondent to v; and va,
we have

[D(w1 = ws)ls < cw(R)||D(v1 — v2)|ls -

Choosing now R such that cw(R) <  (note that the value of R depends
only on the modulus of continuity of the coefficients), the map S : v — w
is contractive, and hence it has a unique fixed point, which cannot but
coincide with nu. By (10.70) we have

| D(nu)lls < 2¢||F)s .

In conclusion, we have proved that if the function F given by (10.67)
belongs to L*(Bg), then

| Dulls,Br, < |l Flls,Bg - (10.71)

Let us assume now that, for some r < R/2, u € W1™(B,) with m < p,
and that

lells,m, B, < el fllp,B2r + l1ll1,2,5.) -

By what we have seen, F will belong to L*(B;), s = min(p, m*), and
therefore u € Wh*(B, 5), with the estimate

lell1,5,8,/2 < cllFlls,B, < e(llfllp,B, + [[ulii,m,B.)

< (| FllpBar + Nuullr,2,B2,) -

Starting then from m = 2, with a finite number of steps (dependent
only on the dimension n) we reach the exponent p. We have therefore the
following:

Theorem 10.168 Let u be a solution of the equation
/Q a2y (z)Djuf Dip® da = /ﬂ fiD;p* dzx (10.72)

with continuous coefficients. If for A CC € the function f belongs to LP(A),
p > 2, then u belongs to WHP(A) for every A CC A, with the estimate

lullspn < (A, A) (|| fllp,a + llullrz,a)- (10.73)

We remark that by CACCIOPPOLI's inequality, the norm W?! on the
right-hand side can be replaced by the L? norm.
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A similar result holds at the boundary for the solutions of the DIRICH-
LET problem with boundary datum U € WP, As usual, we can assume
U = 0, and by means of a diffeomorphism we can reduce to the case of flat
boundary. In order that the coefficients of the transformed equation remain
continuous, it is necessary that 8 is of class C'. Assume therefore that u
is a weak solution of the equation (10.72) in the half-ball B*(0), taking the
value zero on the flat part P of 8Bt. Let us consider as above a function
n with support in the ball Bg = B(0, R); the function nu is zero on 8B}
and satisfies the Eq. (10.65) in B}.

At this point we cannot continue as above, since the regularity theorems
in LP require that the boundary of Q is regular, whereas BBE is only
Lipschitz-continuous. Luckily, the function n appearing in (10.65) has
support which stays away from the singular part of the boundary, and
therefore we can replace B}, with a regular open set Ag C B}; containing
the support of 7.

In order not to introduce unwanted dependence on R, we consider a
function ¢ € C§°(B), with 0 < ¢ < 1 and ¥ = 1 in Bys, and a set
A C BT with regular boundary containing suppy N B*. For R < 1, we set
n(z) = Y(Rz) and

Ap=RA =:{Rz:z € A}.

We can now continue our proof, writing Ag instead of Bg. Arguing as
at the end of Theorem 10.15, we can conclude that the constants appearing
in the estimates depend on A, but not on R.

In this way we can repeat without essential changes the proof of inte-
rior regularity, getting an LP estimate up to the boundary. This result is
essentially of local character: if A C Q is an open set, and if f € LP(A),
then u € LP(A) for any open set A whose closure is contained in A U 9.
If A =9 one gets

Theorem 10.17 Let u be a solution of the DIRICHLET problem (10.57)
with zero boundary data, in an open set Q with C! boundary. Assume that

the coefficients are continuous in Q) and that the right-hand side f belongs
to LP(Q). Then, u € WHP(Q), and we have the estimate

l#llip.0 < el fllpa + llullsz20)- (10.74)

The term ||u||1,2,0 on the right-hand side of the preceding estimate can
be replaced with ||u||2,q by the GARDING inequality (10.6), as is easily seen
taking ¢ = u in (10.64) and making the usual estimates.
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10.5 Minima of Functionals

We shall now apply the results of the preceding section in order to prove
the regularity of the minima of functionals

f(u,Q)=/F(x,u,Du)d:c,
Q

where F(z,u,z2) is a regular function, satisfying the assumption of the
previous chapter.

We have already remarked that every minimum u(z) of F has second
derivatives in L? and Holder-continuous first derivatives in an open set
Qo C Q,3 and satisfies for almost every x € € the equation

A (z,u(z), Du(z))Dyju’® = Ba(z,u(z), Du(z)), (10.75)
where
s 8%F
A” y Wy = —3\%u,z),
ol ) = 5 @)

Ba(@,w.2) = 5.2 ~ 500087 ~ B200m;

Moreover the derivatives Dsu are weak solutions of the equation
/Q [4(z,u, Du)D; Do + B, (a4, Du)| Digdz =0 (10.76)

for every ¢ € C§°(Q, RV), with

PF . _OF _OF
8z20uP

: = - _"sis .
Boys(@u,2) + 0220z, Ou
We have the following:

Theorem 10.18 Let u € W2(Q) N CH?(Qp) be a minimum of the func-
tional F, and let the function F(z,u,z) be of class Ck+28 § < 1 in its
arqguments. Then, u belongs to C*¥+23(Qy).

Proof. We consider first the case k£ = 0. The functions

agg(@) = Ady(z, u(z), Du(z))

3In the scalar case we have 2o = ; in the vector case the closed set 2 — 29 has zero
measure in general, whereas for quadratic functionals it has zero (n — 2)-dimensional
measure.
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and
ga(z) = Ba(z,u(z), Du(z))

are Holder-continuous with some exponent ¢ > 0. By Theorem 10.13, the
second derivatives of u belong to C%°. In particular, the first derivatives
are Lipschitz-continuous, and hence aZﬁ and g, belong to C%%. But then
D?u € C%% and the theorem is proved if k = 0.

Let us now discuss the case k = 1. The functions agﬁ(x) and b, ,(z) =
B, ,(z,u(x), Du(z)) are of class C™?, and therefore we can use the dif-
ference quotients method starting from (10.76), and we conclude that the
second derivatives of u belong to W'licz It follows that we can differentiate
(10.75), getting

aijﬁ(w)DijDsuﬁ = Dsga(z) +DsaitjﬂDijuﬁ
. Cu) (10.77)

with @ € C%°. By Theorem 10.13 the third derivatives of u belong to C%7,
and hence, arguing as above, to C%9.

Finally, let us assume that the theorem holds for & > 1, and that F €
Ck+3:8 By the inductive hypothesis we can assume that u € C*+2% and
hence the function G(z) in (10.77) is of class C*“ for some o > 0. But then
the derivatives of u belong to C**t2:9 and consequently G € C*4. Applying
once again the inductive assumption, we conclude that Du € C*+29 and
consequently u € C*+3:9, O

In the same way, but with a little more effort, one can prove the Holder-
continuity up to the boundary of the derivatives, in the case Qg = 1.

10.6 Notes and Comments

The results of this chapter, in particular those relative to linear equations
and systems, can be defined as “classical,” and it is difficult nowadays to
establish their origin with some precision. Theorems 10.12 and 10.13 are
known as SCHAUDER estimates [1], and were obtained originally by means
of potential theory. Here, in contrast we have followed the method of CAM-
PANATO (3, 4], which is based on integral estimates, and can be extended
without difficulty to linear elliptic systems. In particular, Theorems 10.10
and 10.11, as well as the proofs of Theorems 10.12 and 10.13 are due to
CAMPANATO.
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The LP estimates, originally obtained by means of potential theory,*
are proved here by a method of STAMPACCHIA [3], later simplified by
CAMPANATO [5]. For the extension to continuous coefficients, we have
followed an idea of TRUDINGER.

4The most general results can be found in AGMoN, DoucLis and NIRENBERG {1].
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