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Preface

The book Twisted Photons: Applications of the Orbital Angular Momentum of Light
that we are honored to edit contains 12 salient contributions that focus on new
applications that use one of the properties that characterizes electromagnetic waves
in general, and light beams, in particular: the topology of their spatial shape.
This is an important degree of freedom that adds up to the toolkit constituted by
the other properties that characterize a light beam, namely, polarization, energy,
and spectrum, thus putting forward a powerful enabling tool with widespread
applications in several areas of science and technology where its use allows the
exploration of unchartered territories, both in the realm of the very small and
delicate (e.g., single atoms, in vivo cells, and micromachines) and in the realm of
the very big (e.g., astronomy).

The topic has been extensively studied during the last two decades and many of
the corresponding techniques are well understood, and conceptually and experi-
mentally mastered. The goal of this book is to present the topic to a broad audience,
and to illustrate its potential by examining examples of its use in different areas of
application.

What is the Orbital Angular Momentum of Light?

Light carries energy and both, linear and angular momenta. The total angular
momentum can contain a spin contribution associated with polarization, and an
orbital contribution associated with the spatial profile of the light intensity and
phase. By and large, a beam of light with a single intensity peak and smooth
wave front, that is, a Gaussian-like shape that propagates in free space, shows
no azimuthal phase variations, and the propagation of the energy flow follows a
straight path along the direction of propagation of the beam.

Light with orbital angular momentum exhibits drastic differences, as illustrated
in the images that appear in the cover of this book (see also L. Allen and M.
J. Padgett, The orbital angular momentum of light: an introduction). The picture
shows the simplest kind of light beams that carry orbital angular momentum. The
intensity of the light beam, as depicted in the two figures on the left, presents
a central dark area (the beam axis) with no intensity. Such light beams exhibit a
corkscrew-like spiraling of the phase around the beam axis with no energy (top and

Twisted Photons: Applications of Light with Orbital Angular Momentum.
Edited by Juan P. Torres and Lluis Torner
Copyright  2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40907-5



XII Preface

right), that is, an optical vortex. This spiraling, which represents a fundamentally
new extra degree of freedom that researchers are exploring for a variety of novel
natural phenomena, can be made visible with the help of an auxiliary plane wave,
that is made to interfere with the optical vortex at a small angle, resulting in an
interference pattern whose transverse shape depends on the concrete spiraling of
the phase (bottom and right).

A beam carrying a single optical vortex represents one of the simplest cases of
light beams carrying orbital angular momentum. However, one may engineer the
properties of optical vortex beams to form a variety of complex transverse patterns
(see M. Padgett, Helically Phased Beams, and analogies with Polarization), a property
that might be a powerful asset in certain applications.

On the other hand, in a general situation, the polarization and spatial degrees of
freedom are coupled by Maxwell equations. However, in beams with sizes much
larger than the wavelength, which thus propagate in the paraxial regime, both
properties may be controlled separately. Notwithstanding, different applications
make use of the combination of the spatial shape of the beam and its polarization
(see A. Bekshaev and M. Vasnetsov, Vortex flow of light: ‘‘spin’’ and ‘‘orbital’’ flows in
a circularly polarized paraxial beam).

What can be done with the Orbital Angular Momentum of Light?

We present a list of applications that, although in no way aims at being extensive,
presents nonetheless an overview at what can be done with twisted light. For
instance, the orbital angular momentum of light can be transferred to trapped
suitable material particles causing them to rotate (see M. Mazilu and K. Dholakia,
Trapping and rotation of particles in light fields with embedded optical vortices), a property
with important applications in micromanipulation (see P. Galaja, L. Kelemen, L.
Oroszi, P. Ormos, Rotational optical micromanipulation with specific shapes built by
photopolymerization) and in the design and operation of micromachines (see also
V. L. Y. Loke, T. Asavei, S. Parkin, N. R. Heckenberg, H. Rubinsztein Dunlop, and T.
A. Nieminen, Driving optical micromachines with orbital angular momentum).

PrefacePreface Light containing optical vortices might also be used in imaging
and probing different sorts of physical and biological properties of matter (see C.
Maurer, S. Bernet, and M. Ritsch-Marte Spiral Phase Contrast Microscopy), controlling
technologically important materials (see E. Santamato and B. Piccirillo Optical torques
in liquid crystals) and in astrophysics (B. Thidé, N. M. Elias II, F. Tamburini, S. M.
Mohammadi and J. T. Mendonca, Applications of Electromagnetic OAM in Astrophysics
and Space Physics Studies).

The concept also holds for single photons in the quantum world; thus, it can
be used to encode quantum information that is carried by the corresponding
photon states, to explore quantum features in higher-dimensional Hilbert spaces,
as the observation of the violation of Bell inequalities in three–dimensional Hilbert
spaces (see G. Molina-Terriza and A. Zeilinger, Experimental control of the Orbital
Angular Momentum of single and entangled photons), to generate new quantum states
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(see E. M. Wright, Optical Vortex Cat States and their utility for creating Macroscopic
Superpositions of Persistent Flows) or implement new tools to achieve full control
of all degrees of freedom of atoms (see K. Helmerson and W. D. Phillips, Rotating
Atoms with Light).

All these are illustrative examples of the wealth of possibilities afforded by the
orbital momentum of light. Much more undoubtedly lay ahead. It is our intention
that this book, contributed by some of the pioneers and world leading scientists in
the different subareas and techniques, motivates further research into new ways by
which ‘‘twisted light’’ is used to manipulate and to probe Nature.

We warmly thank Wiley for their timely vision to publish a book on this topic
and all the authors for their generous time and efforts that were contributed to
make it a reality. It is now the time for the readers to enjoy it and to multiply the
uses of the orbital angular momentum of light for new applications.

ICFO, Barcelona, Spain Juan P. Torres
Lluis Torner
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Lóránd Kelemen
Institute of Biophysics
Biological Research Centre of
the Hungarian Academy of
Sciences
Temesvari krt. 62
6701 Szeged
Hungary

Vincent L. Y. Loke
The University of Queensland
Quantum Science Laboratory
School of Mathematics and
Physics
St. Lucia
Brisbane
Queensland 4072
Australia

Christian Maurer
Innsbruck Medical University
Division of Biomedical Physics
Müllerstr. 44
A-6020 Innsbruck
Austria

Michael Mazilu
SUPA
University of St Andrews
School of Physics and Astronomy
North Haugh
Fife
Scotland KY16 9SS
UK



List of Contributors XVII
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XIX

Color Plates

Figure 1.1 The helical wave fronts characterized by an az-
imuthal phase term (l = 1) and the associated Poynting
vector, the azimuthal component of which gives rise to an
orbital angular momentum. (This figure also appears on
page 4.)
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XX Color Plates

Figure 2.1 Map of the spin flow density of
Eq. (2.16) for a left-polarized Gaussian beam
(σ = 1, polarization handedness is shown
in the upper right corner); lengths of ar-
rows correspond to relative flow density, the

intensity distribution and polarization ellipses
(circles) are shown in the background, the
beam is viewed against the propagation axis.
(This figure also appears on page 18.)
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Figure 2.2 Radial profiles of (I) intensity
(Eq. (2.17)) in units of Iσ0, (SC) spin flow
density (Eq. (2.18)), (SO) orbital flow density
(Eq. (2.19)), and (S) total transverse flow
density (Eq. (2.24)) (all in units of Iσ0/kb),
for the circularly polarized LG beams with

zero radial index and the following sets
of parameters: (a) σ = 1, l = 0 (Gaussian
beam of Figure 2.1), (b) σ = 1, l = 1, (c)
σ = 1, l = 2, (d) σ = −1, l = 1. (This figure
also appears on page 19.)

(a) (b) (c)

Figure 2.3 Maps of the (a) orbital SO,
(b) spin SC , and (c) total S transverse en-
ergy flows in the cross-section of a right-
polarized LG beam (Eq. (2.17)) with l =
1, σ = −1 (case of Figure 2.2d). At every

point, polarization is the same as shown in
the upper right corners; circular contours in
panels (b) and (c) are contours where the
corresponding flow component vanishes.
(This figure also appears on page 20.)



XXII Color Plates

Ring-like traps

(a) (b)

Figure 2.4 Possible schemes of orbital mo-
tion of the absorbing suspended particles
confined in the ring-like traps within the cir-
cularly polarized field of (a) Gaussian beam
of Figure 2.1 and (b) LG beam with l = 1,
σ = −1 of Figure 2.3. Top row: diametric
sections of the intensity profiles with bound-
aries of the ring-like traps, bottom row:
views of the beam cross sections with the
trap traces (polarization handedness is in-
dicated in the upper right corners). Circles

with arrows indicate the expected orbital
motion of the trapped particles and dashed
lines in panel (b) specify locations where or-
bital motion is not excited (see the circular
contour in Figure 2.3c). Particles situated at
this contour perform only the spinning mo-
tion (shown by the arrow loops); in all other
positions the spinning motion is not shown
but is also expected in addition to the orbital
one. (This figure also appears on page 22.)
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Figure 3.1 (a) The Poincaré sphere representation of po-
larization state. (b) An equivalent representation for beams
formed from the superposition of Laguerre–Gaussian modes
� = 2, p = 0 and � = −2, p = 0. (This figure also appears on
page 27.)
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Figure 3.3 Observing correlations in the or-
bital angular momentum of down-converted
beams. The use of spatial light modula-
tors to define various holograms allows the
measurement of an arbitrary spatial mode,

including orbital angular momentum states
analogous to those of polarization on the
Poincaré sphere. (This figure also appears on
page 31.)
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Figure 3.4 A spinning medium is predicted to slightly ro-
tate both the polarization state and the image of the trans-
mitted light. (This figure also appears on page 32.)
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(a)

Refraction

Incident momentum Force on particle

(b)

(c)

Figure 4.1 Optical forces arising from the conservation of
momentum. (a) Bundle of rays being reflected and refracted
by a transparent sphere. (b) Total momentum before (red)
and after the optical interaction. (c) Refraction and reflec-
tion of a light beam by a dielectric sphere. (This figure also
appears on page 42.)
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Figure 4.2 Rays reflecting and refracting from a transparent
dielectric sphere. The various terms are defined in the text.
(This figure also appears on page 43.)
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Figure 4.4 (a) The first frame shows the
second-order Bessel beam used to trap 3 µm
spheres in its rings. The rest of the frames
show the trapped spheres rotating in the
anticlockwise direction. To see the rotation
one sphere in the second ring is highlighted

by an arrow. (b) Average period of rotation
in the inner ring as a function of the total
power of the beam (Reprinted with permis-
sion from [28]  (2002) by IOP Publishing.)
(This figure also appears on page 53.)
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Figure 4.6 Three 1 µm spheres are op-
tically trapped in the first bright annular
ring of the focal spot of supercontinuum
LG beam (l = 3, p = 0). The rotation rate
is represented as a function of the incident

power. The inset shows the trapped spheres
and the tracking reconstruction (Reprinted
with permission from [49].) (This figure also
appears on page 57.)
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Figure 5.1 Schematic representation of the nematic phase.
(This figure also appears on page 68.)
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(a)

(b)

Figure 5.2 Pictorial representation of the
separation of the orbital and spin parts of
the total angular momentum of radiation
on the grounds of the effects they produce
inside matter. (a) Spin transfer induces a

rotation of the director n (local optical axis).
(b) Orbital transfer induces a rotational mo-
tion of the centers of mass of an elemental
fluid volume. (This figure also appears on
page 78.)
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Figure 5.3 An NLC film optically distorted through an ellip-
tically shaped laser beam behaves as a birefringent astig-
matic microlens. Refraction of the incident beam by this
lens results in a couple of forces fa and fb acting on the
lens itself. (This figure also appears on page 81.)
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Figure 5.4 Schematic of the optical layout for photon OAM
transfer in liquid crystals. � is the angular aperture of the
far-field ring pattern and φ0 is the inclination of its average
polarization. The local direction of the optical field is tan-
gent to the hyperbolic-like curves drown in the figure. (This
figure also appears on page 82.)
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Figure 5.6 Map of the dynamical regimes
in the parameter plane P, β. Three regions
may be recognized: U, undistorted states; D,
steady distorted states; O, oscillating states.
The borderline between U- and D-regions
represents the thresholds for the OFT and

the borderline between D- and O-regions
represents the thresholds for the oscillations
start up as calculated from our model. Full
circles on the first curve and open circle on
the second are the experimental points. (This
figure also appears on page 85.)
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Figure 5.8 The optical phase difference α in unit of 2π as
a function of the incident power P. (◦) steady states; (�)
rotations; (�) intermittent states. The shadowed regions rep-
resent the oscillation amplitude of α and the experimental
points mark the oscillation center. (This figure also appears
on page 87.)
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Figure 6.3 Microrotor: design and realization. (a) The de-
sign with a scale of 100 nm wide voxels and (b) a scanning
electron microscope (SEM) image of the microfabricated
structure attached to the cover slip. (This figure also ap-
pears on page 98.)
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Figure 7.4 Dependence of the rate of revolution upon laser
power. The two plots correspond to the two indicated po-
sitions the rotor can assume in the laser trap. (This figure
also appears on page 123.)
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Figure 7.14 Explanation of the measure-
ment of torque and torsional elasticity. M
denotes the orientation where the molecu-
lar torsional strain vanishes, P indicates the
plane of polarization of the trapping light,
EQ is the equilibrium state where the two

orienting torques (molecular and optical)
cancel. The orientation of the trapped ob-
ject fluctuates around EQ due to Brownian
motion, A represents the actual orientation
at a certain time. (This figure also appears
on page 137.)

f f f f

Figure 8.1 Generic setup for Fourier fil-
tering in optical imaging: An object illumi-
nated with a plane wave diffracts the light
to outer regions in the Fourier plane, that
is, the focal plane of the objective lens.
One can access and specifically manipulate

the various spatial frequencies there with a
spatial light modulator or a phase plate. As
an example, spiral phase filtering, which in-
cludes isotropic edge enhancement is shown
in the upper part of the figure. (This figure
also appears on page 145.)
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Figure 8.2 Spiral phase filter: The phase shift produced by
an SLM or a phase plate corresponds to the helical phase
profile typical for a Laguerre–Gauss beam. Note that oppo-
site points are out of phase by π . (This figure also appears
on page 146.)
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Figure 8.3 Graphical representation of the
convolution of an object with a spiral phase
filter: When the integration is carried out,
the helical phase profile of the PSF of the
spiral phase filter in unstructured regions
leads to perfect cancellation of the signal

by destructive interference, except at edges
where either the phase or the amplitude of
neighboring points differ. Note: convolution
kernel not to scale. (This figure also appears
on page 147.)
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Figure 9.6 A phonon (ion-acoustic wave) in a plasma
can carry OAM (but not spin angular momentum (SAM)).
Source: From [40]. (This figure also appears on page 167.)
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Figure 9.7 Plot of |Jem|, that is, the intensity distribution of
POAM, generated by a circular antenna array in the xy plane.
Source: From [41]. (This figure also appears on page 168.)
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Figure 11.1 Different sets of modes that can be used for
describing the electromagnetic field, and their respective set
of parameters. (a) Plane wave, (b) multipolar mode, and (c)
cylindrical mode. (This figure also appears on page 200.)
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Figure 11.2 Orbital angular momentum
modes: first column, experimentally achiev-
able modes as explained; second column,
Laguerre–Gaussian basis. The first three
rows represent the amplitude distribution of
the three lowest modes and last row shows
the amplitude distribution of a superpo-
sition of two modes. Note that the three
pure modes have an amplitude distribution

that is rotationally invariant with respect to
the propagation direction (perpendicular to
the page). This is a trademark of the OAM
eigenmodes. Also note the singularity in the
center of the two higher-order pure modes.
This singularity moves off-center in the su-
perposition. (This figure also appears on
page 204.)
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Figure 11.4 Conservation of OAM in the
two-photon generation process : (a) Sketch
of the experimental setup. (b) Results of the
experiment, showing the relative number
of coincident photons for different combi-
nations of signal and idler modes. Every
figure shows different pumping conditions.

It can be noted how the OAM of the pump
is transferred to the signal and idler and
one only observes correlations in the out-
comes when there is a conservation of the
OAM between the three interacting modes.
(Source: Reproduced from Mair et al. [12].)
(This figure also appears on page 208.)
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Figure 11.5 Experimental demonstration
of the quantum coin tossing. (a) Sketch of
the experimental setup: the different labels
from A11 to A22 indicate the different pro-
jective measurements that Alice carries out.
Each projective measurement consists of a
hologram which transforms the state into
a superposition of two modes, and a sin-
gle mode fiber. The combination of the two
pairs of projective measurements is effec-
tively preparing the photon sent to Bob in
two different mixed states. At the final step
of the protocol, Bob can measure the result-
ing state with a set of projective measure-
ments, then implementing the measurement

on two different bases. (b) Result of an hon-
est protocol: each small square represents
one photon successfully received and mea-
sured by Bob. The outcome of the protocol
can be both parties agreeing on a ‘‘heads’’
result (white square), a ‘‘tails’’ one (black)
or a ‘‘failure’’ (red) that is, not agreeing on
the result. ‘‘Failures’’ can happen because
of dishonest parties or due to experimen-
tal errors. (c) Result of a protocol where
Alice was cheating: in this case, it can be
seen how the number of ‘‘failures’’ critically
increases, showing the presence of a dishon-
est party. (This figure also appears on page
210.)
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Figure 12.1 (a) Two-photon rotational Bragg
scheme used to couple atoms between mo-
mentum states 0 and 2h̄k, transferring OAM
in the process. (b) Schematic representa-
tion of the experiment. Counter propagating
LG1

0 and Gaussian laser beams, with the
same linear polarization and a variable fre-
quency difference of δω/2π , are applied to
a BEC. (c) The atoms that have undergone
the Raman transitions (right cloud) have

been separated from those that did not (left
cloud). A spatially localized ‘‘pump’’ beam
enables independent imaging of each cloud
by absorption of a probe beam propagat-
ing along the direction of linear momentum
transfer. (d) Absorption image of a cloud
that has undergone the Raman transition,
taken along the axis of the LG1

0 beam. The
vortex core is seen as a hole in the cloud.
(This figure also appears on page 217.)
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Figure 12.3 (a) Schematic representation of
the laser pulse sequence used to generate
and interfere the vortex state with the initial
BEC. (b) Interference of a vortex state with
h̄ of angular momentum with a stationary
state. The 2π phase winding associated with
the rotating state results in a displacement
of the hole, due to destructive interference.
(c) Calculated interference pattern between
a rotating and stationary state based on har-
monic oscillator states. (d) Angle of the hole
in the interference pattern between rotating

and nonrotating atomic states as a function
of the rotation angle of the optical interfer-
ence pattern between the LG1

0 and copropa-
gating Gaussian beams. The straight line (to
guide the eye) has slope −1. Inset: Image of
the atomic interference between a rotating
and nonrotating cloud. The hole is displaced
from the center and its angular position θ

depends on the relative phase between the
interfering states. (This figure also appears
on page 221.)
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Figure 12.4 (a) Schematic representation
of the laser pulse sequence used to gener-
ate and interfere the vortex state with an
antivortex state. (b) Interference of a vortex
state with h̄ of angular momentum with a
vortex state with −h̄ of angular momentum.
The interference of the rotating state with

the counterrotating state results in a circu-
lar standing-wave. (c) Calculated interference
pattern based on harmonic oscillator states
between a rotating state (angular momentum
h̄) with a counterrotating state (angular mo-
mentum −h̄). (This figure also appears on
page 222.)
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Figure 12.5 (a) Schematic representation
of the laser pulse sequence used to gener-
ate and interfere the vortex state with the
initial BEC. The second set of laser beams
are not counterpropagating (in contrast to
the first set), which results in the interfer-
ing clouds having a relative average velocity.
(b) Interference of a vortex state with h̄ of

angular momentum with a nonrotating state.
The fringes are a result of the relative veloc-
ity between the interfering clouds, while the
singularity associated with the rotating state
results in the fork-like structure. (c) Calcu-
lated interference pattern based on harmonic
oscillator states. (This figure also appears on
page 223.)
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Figure 12.8 (a) Schematic representation of
the laser pulse sequence used to amplify a
vortex state generated in the initial BEC. (b)
The upper image corresponds the generation
of the ‘‘seed’’ vortex state from the initial
BEC using only the LG and Gaussian beam
pulse shown in the upper image of (a). The

lower image shows the resulting amplifica-
tion of the ‘‘seed’’ vortex from the two-pulse
sequence of (a). The image on the far right
is of the amplified vortex state taken along
the direction of propagation. (This figure
also appears on page 229.)

(a) (b) (c)

Figure 12.9 (a) Image of the condensate
atoms in the hybrid magnetic TOP and blue-
detuned laser trap. The absence of atoms
in the central region is due to the laser.
(b) TOF image of the condensate atoms
released from the hybrid trap after being
confined for 2 s. The interaction between
the atoms causes the cloud to spread out
and fill in the central region. (c) TOF im-
age of the condensate atoms, which were in

a vortex state about the blue-detuned laser
beam. In this case the atoms in the vortex
state were held in the hybrid trap for 2 s
before being released. The presence of the
core in the cloud of atoms after TOF indi-
cates that the atoms were still in the vortex
state when they were released from the hy-
brid trap. (This figure also appears on page
231.)
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1
The Orbital Angular Momentum of Light: An Introduction
Les Allen and Miles Padgett

1.1
Introduction

Most physicists know that polarized light is associated with the spin angular
momentum of the photon. It is almost certainly true that the idea of orbital angular
momentum is a good deal less understood. Perhaps the simplest and most obvious
display of both the spin and orbital angular momentum of light beams comes from
an examination of the ratio of their angular momentum to their energy.

For an idealized, circularly-polarized plane wave, the spin angular momentum is
given by Jz = Nh̄ and the energy by W = Nh̄ω, where N is the number of photons.
The angular momentum to energy ratio is thus,

Jz

W
= h̄

h̄ω
= 1

ω
(1.1)

In fact the ratio in Eq. (1.1) is derivable from classical electromagnetism without
any need to invoke the concept of a photon or any other quantum phenomenon [1].

A slightly more general result for elliptically polarized light, characterized
by −1 � σ � +1, (with σ = ±1 for left- and right-handed circularly polarized light
respectively and σ = 0 for linearly polarized light) is given by

Jz

W
= σ

ω
(1.2)

We can show for a light beam which has an l-dependent azimuthal phase angle
such that the field amplitude is given by u

(
x, y, z, φ

) = u0
(
x, y, z

)
e−ikze+ilφ , that

Eq. (1.2) becomes [2]

J′
z

W
= l ± σ

ω
(1.3)

Here h̄σ describes the spin angular momentum per photon, while lh̄ describes the
orbital angular momentum per photon. In the absence of the phase term exp

(
ilφ

)
,

Eq. (1.3) would be the usual plane wave ratio of spin angular momentum divided
by energy, namely, h̄σ/h̄ω or h̄σ per photon.

It transpires that this simple result is true both in the limit of the paraxial approx-
imation and for fields described by a rigorous and unapproximated application of

Twisted Photons: Applications of Light with Orbital Angular Momentum.
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2 1 The Orbital Angular Momentum of Light: An Introduction

Maxwell’s equations [3]. In the paraxial approximation, other than assuming that
u

(
x, y, z

)
is normalizable and leads to a finite energy in the beam, no assumption

has been made about the form of the distribution. In other words even for σ = 0,
when the light is linearly polarized, there remains an angular momentum related
to the spatial properties of the beam and dependent on l.

The fact that the simple paraxial result, Eq. (1.3), is fully justified by rigorous
theory [4] enables a number of essentially simple conclusions to be drawn. The
paraxial fields appropriate for linearly polarized light are

B = µ0H = ik

[
uŷ + i

k

∂u

∂y
ẑ
]

eikz (1.4)

and

E = ik

[
ux̂ + i

k

∂u

∂x
ẑ
]

e+ikz (1.5)

These allow evaluation of the time-averaged Poynting vector, ε0 E × B, namely,

ε0 〈E × B〉 = ε0

2

[〈
E∗ × B

〉 + 〈
E × B∗〉]

= iω
ε0

2

(
u∇u∗ − u∗∇u

) + ωkε0 |u|2 ẑ (1.6)

For a field such as u (r, φ, z) = u0 (r, z) e+ilφ the φ-component of linear momentum
density is

ε0 〈E × B〉φ = ε0ωl |u|2 /r (1.7)

while its cross product with r gives an angular momentum density of magnitude
jz = ε0ω� |u|2. The energy density of such a beam is

w = cε0 〈E × B〉z = cε0ωk |u|2 = ε0ω
2 |u|2 (1.8)

Thus,

jz
w

= l

ω

When the angular momentum density is integrated over the x–y plane, the ratio of
angular momentum to energy per unit length of the beam is simply,

Jz

W
=

∫∫
rdrdϕ (r × 〈E × B〉)z

c
∫∫

rdrdφ 〈E × B〉z

= l

ω
(1.9)

The same straightforward calculation for fields that include polarization, again
produces Eq. (1.3), but it is now for physically realizable fields and not just plane
wave fields of infinite extent.

The earliest work on the orbital angular momentum of light beams took an LG
(Laguerre–Gaussian) mode as the most easily available source of light possessing
an azimuthal phase. This amplitude distribution, up,l, has the requisite exp

(
ilφ

)
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term and is now well known. It readily follows for such a distribution that the linear
momentum density is [2]

p = ε0

(
ωkrz

z2
R + z2

r̂ + ωl

r
φ̂+ ωkẑ

) ∣∣up,l

∣∣2
(1.10)

and the cross product with r gives the angular momentum density,

j = r × p = ε0

(−ωlz

r
r̂ − ωkr

(
z2

R

z2
R + z2

)
φ̂+ ωlẑ

) ∣∣up,l

∣∣2
(1.11)

The expression for linear momentum p, (Eq. (1.10)), shows that at a constant
radius, r, the Poynting vector maps out a spiral path of well-defined pitch,

zp = 2πkr2

l
(1.12)

However, such a picture is misleading as it ignores the radial component of the
Poynting vector and, hence, the spreading of the beam upon propagation [5]. For
constant r(z)

/
w(z), the angle of rotation, θ , of the Poynting vector from the beam

waist at z = 0 is

θ = l

2

(
w (z)

r (z)

)2

arctan
(

z

zR

)
(1.13)

For a p = 0 mode, for which the intensity distribution is a single ring, the radius of
the maximum amplitude in the mode is given by

r (z)Max Int. =
√

w(z) l

2
(1.14)

and so for p = 0, � �= 0, it follows that θ = arctan
(

z
zR

)
which, surprisingly, is

independent of �. Rather than describing a multiturn spiral as one might have
presumed, the Poynting vector rotates only by π/2 either side of the beam waist as
the light propagates to the far field. Perhaps even more surprisingly, the locus of
the vector is simply a straight line at an angle to the axis of the beam [6, 7]. Note
that the arctan term is simply proportional to the Gouy phase of the Gaussian beam
and that, in free space, the Poynting vector is at all points parallel to the wavevector.

Simple though these results are, in hindsight, they were not known until the early
1990s. Their application to a number of conceptually straightforward experiments
enables simple comparisons to be made, at least in the paraxial regime, between
the behavior of spin and orbital angular momenta and enables the observation of
a number of phenomena to be elucidated. This phenomenology provides much of
the basis for the exploration and exploitation of the current understanding of the
subject outlined in later chapters of this book. Although everything may be justified
formally using a quantum approach, there is, outside of entanglement, little need
to leave this classical formulation. In the nonparaxial case, the separation of spin
and orbital angular momentum is more complicated [4, 8–10].

The use of the flow of angular momentum flux across a surface, rather than
angular momentum density, allows the separation of the spin and orbital angular
momentum parts in a gauge invariant way. This holds beyond the paraxial approach
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but confirms the simple values obtained for the ratio of angular momentum to
energy [11].

1.2
The Phenomenology of Orbital Angular Momentum

Simple comparisons of the behavior of spin and orbital angular momenta in
different situations prove to be a fruitful way to demonstrate their properties. First,
however, we need to distinguish the general structures of light emitted by a laser
and also its properties when converted to, for instance, an LG beam. Laser beams
usually have spherical wave fronts while the azimuthal phase leads to beams with l
intertwined helical wave fronts (Figure 1.1). The LG beam is not the only example
of a helical wave front; Bessel beams [12], Mathieu beams [13], and Ince–Gaussian
beams [14] can also carry orbital angular momentum. In all cases, the interference
of these helical wave fronts with a plane wave gives rise to characteristic spiral
interference fringes [15–17].

The production of a pure, high-order LG mode from a laser beam was first
achieved using a mode convertor based on cylindrical lenses [18]. Although the
details are interesting, they need not concern us here, as an approach based
on simple holograms achieves a similar beam much more easily. Prior to the
generation of LG beams with lenses, similar beams containing the same azimuthal
phase term had also been produced using diffractive optical elements [19]. These
components are simple diffraction gratings, that contain an edge dislocation,

Figure 1.1 The helical wave fronts characterized by an
azimuthal phase term (l = 1) and the associated Poynting
vector, the azimuthal component of which gives rise to an
orbital angular momentum. (Please find a color version of
this figure on the color plates.)
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coincident with the axis of the illuminating beam. Such ‘‘forked-gratings’’ give
rise to a first order diffracted spot with an annular intensity cross section, which
is a natural consequence of the exp

(
ilφ

)
phase structure. Indeed, similar beams

have been widely studied as examples of optical phase singularities [20], also called
optical vortices [21, 22]. However, in none of the earlier works had their angular
momentum properties been recognized. These diffractive optical components can
be readily designed, and are frequently referred to as computer generated holograms.
Although easy to implement and producing perfect helical wave fronts, the resulting
intensity distribution only approximates to that of a pure LG mode. Most recently,
these ‘‘forked diffraction gratings’’ have been employed within the image train of
a microscope to impose a point-spread function corresponding to a helical mode,
giving an edge enhancement of the image [23, 24].

Rather than using the diffractive optical component, it is possible to form a
refractive optical equivalent. A spiral phaseplate has an optical thickness, t, given
by t = λlφ/2π , where φ is the azimuthal angle [25]. Upon transmission, a plane
wave input beam is transformed into a helically phased beam again characterized
by an azimuthal phase structure of exp

(
ilφ

)
. Such spiral phase plates are not easy to

manufacture but offer very high conversion efficiency. Interestingly, the azimuthal
refraction of the ramped surface gives a skew angle of l/kr to each transmitted ray.
For the linear momentum of the photon of h̄k, this gives an azimuthal component
lh̄/r and hence an angular momentum of lh̄ per photon [26]. Thus we see that for a
ray optical model, the orbital angular momentum of the photon is describable by
skew rays [27].

Despite the various approaches that have been developed to generate helically
phased beams, they are not a feature unique to advanced optical experiment.
Interference between two plane waves yields sinusoidal fringes. Interference
between three [28] or more [29] plane waves leads to points within the field cross
section of perfect destructive interference around which the phase advances or
retards by 2π . Nowhere is this more apparent than when examining the optical
speckle resulting from laser light being scattered from a rough surface, where each
black speck is a perfect phase singularity. Of course, the specks are dark and hence
carry neither energy nor momentum. However, the light in the immediate vicinity
of each is characterized by a helical phase front and does carry both energy and
orbital angular momentum. Over the extent of the speckle pattern, there are an
equal number of clockwise and anticlockwise singularities; and hence the overall
orbital angular momentum tends to zero. These phase singularities map out lines
of complete darkness in space, with both fractal [30] and topological [31] properties.

In order to generate pure LG modes, the cylindrical lens mode converter remains a
convenient approach. The fidelity of the mode transformation means that when light
with orbital angular momentum is passed through a cylindrical lens mode convertor
it behaves in a mathematically analogous way to polarized (spin) light through a
quarter waveplate. Indeed, the representation of states on the Poincaré sphere can
be applied for any two states of orbital angular momentum [32]. Similarly, the well-
known Jones matrices which describe the propagation of polarized light through an
optical system have equivalents for the propagation of orbital angular momentum



6 1 The Orbital Angular Momentum of Light: An Introduction

through a system with astigmatic optical elements [33, 34]. There are also joint
matrices for light that is both polarized and possesses orbital angular momentum.
An alternative to the use of these joint matrices is to apply the spin (Jones) matrix
and then the orbital angular momentum matrix separately. This is equivalent to
the separation of the spin and orbital components in the hydrogen wavefunction.

That this orbital angular momentum is a true momentum was first demonstrated
in optical tweezers [35]. Optical tweezers use the gradient force associated with a
tightly focused beam of the light to trap a microscopic dielectric particle [36]. A
few milliwatts is all that is required to trap a 5 µm diameter sphere suspended in
a liquid medium. Using an LG mode as the trapping beam results in a transfer of
angular momentum to the particle causing it to spin about the beam axis.

The similarities in behavior of the two types of angular momenta in a light
beam are also shown in optical tweezers when a small, mildly absorptive particle
is trapped on-axis. When the light is purely circularly polarized, the particle may
be made to rotate clockwise or anticlockwise depending on the handedness of
the polarization where σ = ±1. When the same trapped particle sees light with
l = ±1, it can also be made to rotate in either direction. Application of light where
σ and l have the same sign leads to a faster rotation proportional to

(
σ + l

)
, while

if σ and l have opposite signs the particle slows to a halt which arises clearly
from

(
σ − l

)
. This demonstrates the mechanical equivalence of spin and orbital

angular momentum [37]. In other words, the spin angular momentum can be
added to or subtracted from the orbital component, consistent with the statement
that the optical angular momentum of a light beam is

(
l + σ

)
h̄. This statement is

in agreement with the theory of angular momentum flux. It is observed that the
center of mass in the on-axis case does not move and both the spin and orbital
angular momentum contribute to making the sphere rotate about its own axis.
Off-axis, such a particle behaves rather differently. It responds to orbital angular
momentum by orbiting the axis of the beam with an angular velocity proportional
to the local intensity of the beam. It also spins, because of σ , about its own axis.
Again the velocity depends on the local intensity but otherwise spin and orbital
manifest themselves in that case in different ways – highlighting the intrinsic
and extrinsic nature of optical angular momentum [38]. These various studies in
optical tweezers have spawned significant work, worldwide, where the induced
rotation of the particles acts as a microfluidic pump [39, 40] or other optically driven
micromachine [41–44].

It should be observed that spin, σ , is said to be intrinsic because it is independent
of the choice of axis about which it is calculated. However, orbital, l, depends upon
the choice of axis. Nevertheless, when there is a direction, z, for which the transverse
linear momentum of the beam is zero, both l and σ are invariant under a shift
of axis and the orbital component might be said to be quasi-intrinsic. For off-axis
apertures in cylindrically symmetric beams the transverse linear momentum is
nonzero and l is extrinsic.

Closely related to the use of LG beam in optical tweezers is their interaction
with cold atoms [45]. In many cases, rather than the helical wave fronts, it is
the on-axis intensity zero that enables the confinement of blue-detuned atoms
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[46]. Residual scattering can additionally lead to guiding along the length of the
singularity. Cooling the atoms further to create a Bose–Einstein condensate (BEC)
results in yet more interesting interactions between matter and the orbital angular
momentum of light. This includes an optically induced rotation of the BEC [47, 48].

The interaction of light carrying orbital angular momentum with an in resonance
atom has also been investigated [49]. It is found that the frequency shift of a resonant
transition in an atom moving with an angular velocity � through a polarized beam
with orbital angular momentum is �l while the torque on the center of mass of
the atom is h̄l� and independent of σ [50]. There appear to be no torques on the
atom’s center of mass that depend on

(
l + σ

)
.

This frequency shift is an example of an angular Doppler effect readily observed
when a light beam is rotated at angular frequency � about its own axis. This is not
to be confused with the transverse Doppler shift observed when an emitter moves
toward or away from the source. For the spinning beam, the frequency of the light
is shifted for spin by δω′ = �σ , for orbital angular momentum by δω′′ = �l [51]
and for total angular momentum by δω′′′ = �

(
σ + l

)
[52]. For combined beams

with the same polarization but different total orbital angular momenta, a spectrum
of shifted components δω1 = �

(
σ + l1

)
, δω2 = (

σ + l2
)
, and so on, is produced.

This is one of the effects found to depend upon the sum of the spin and orbital
components. The phenomenon can be understood by the realization that time
evolution of a helical phase front is indistinguishable from rotation about the beam
axis. A full rotation of the beam changes the phase of the light by l + σ cycles. Such
phase and associated frequency shifts also extend to polychromatic light, where all
spectral components are frequency shifted by the same amount [53].

Attempts have been made to see if analogs to electron spin-orbit interactions
common in atoms exists in light. The only evidence so far is that in the dissipative
force on a moving atom there is a term proportional to σ l. It is, however, small and
only comparable in size to terms which are usually ignored, of order

(
1/k2

)
[54].

Second harmonic generation or up-conversion in a nonlinear crystal can produce
second harmonic generation for helically phased modes, where

ωShg = ωIn + ωIn = 2ωIn and lShg = lIn + lIn = 2lIn (1.15)

This is in contrast to the spin angular momentum which can only be unity, at most.
Here, there is another difference between orbital and spin angular momentum.
There is no potential upper bound to lShg and we see that up-conversion may be used
to change the order of the mode [55]. There is no equivalent change of polarization
mode. This conversion of lShg arises through strict phase matching and because
the wavevectors and Poynting vector of the fundamental and second-harmonic
helical beams are collinear. This implies that when the wave-number doubles then
l must also double [56]. Such a process is consistent with the conservation of orbital
angular momentum within the light fields. This work is a precursor of work on
down-conversion where one input photon creates two photons of lower energy.
This has important implications for the higher order entanglement possible with
orbital angular momentum [57]. In down-conversion, correlation of orbital angular
momentum can be achieved with a pair of holograms that determine lIdler and



8 1 The Orbital Angular Momentum of Light: An Introduction

lSignal for a given lPump [58, 59]. Although spin is limited to ±1, there is a wide range
of lIdler and lSignal for a given lPump. The high-dimensionality of the Hilbert space
and information content [60] combined with techniques for sorting single photons
[61–63] creates opportunities in, for example, quantum information processing
[64]. It is the study of the down converted beams and a violation of a Bell inequality
[65] that illustrates that orbital angular momentum is a meaningful concept at the
quantum level and hence a true photon property.

For spin angular momentum and circularly polarized light, the light source need
not be either temporally or spatially coherent. For orbital angular momentum the
situation is more complicated. Orbital angular momentum is a meaningful concept
across the full electromagnetic spectrum [66] and has been considered ranging
from radio frequency [67] to X ray regimes [68]. As orbital angular momentum is
associated with the phase cross section of the beam, there is no restriction on its
temporal coherence; each spectral component can have a perfect exp

(−ilφ
)

phase
structure. Beams with such multispectral components can be generated using the
normal forked diffraction grating, but with its spectral dispersion compensated
by a prism [69] or second grating [70]. These beams have the exact anticipated
orbital angular momentum to cause microscopic objects to rotate about the axis
of the beam [71]. Perfect helical wave fronts imply a complete spatial coherence.
Degrading the spatial coherence destroys the fidelity of the on-axis phase singularity
and the on-axis intensity zero. If the beam has some degree of spatial coherence
then when transmitted through a spiral phase plate or diffracted from a forked
diffraction grating, the resulting beam can be decomposed into an incoherent sum
of different modes having a finite average value of orbital angular momentum.
These beams have been termed Rankine vortices [72]. Spiral phaseplates built into
telescopes have been shown to be useful astronomical filters, which could suppress
the light from a point-star so that an off-axis source of light from a planet might be
detected [73, 74].

Another aspect of clear distinction between spin and orbital angular momentum
is the existence of a Fourier relationship for orbital angular momentum and
angular position [75], and a related uncertainty relationship. The uncertainty
relationship was originally discussed for measurements of linear position and linear
momentum. In the case of orbital angular momentum, a similar expression can be
written for small uncertainties in angular position, �φ�l = h̄/2 [76]. No equivalent
expression exists for spin. The uncertainty associated with the measurement of
orbital angular momentum may prove to be a limitation to the evident virtues of
orbital angular momentum as a means of exploiting entanglement, and so on.

One marked difference in the literature, since light beams possessing orbital
angular momentum have been realized and understood, arises because, in order
to exploit their dependence on space, the formal way in which light interacts
with atoms has had to be developed. It is no longer sufficient to investigate the
interaction of atoms with plane waves. The traditional semiclassical approach is
still in the main appropriate, but it must now be applied to specifically structured
Gaussian beams.
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Various reviews have been written, which summarize the development of the
field of the last 15 years [3, 77–80] and many aspects of the current state of this
work is discussed in later chapters of this book.
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10
Optical Vortex Cat States and their Utility for Creating
Macroscopic Superpositions of Persistent Flows
Ewan M. Wright

10.1
Introduction

The aim of this chapter is to introduce the idea of optical vortex cat states and
demonstrate their utility for creating macroscopic superpositions of persistent
flows for a Bose–Einstein condensate (BEC) in a toroidal or ring trap. Weakly
interacting atomic BECs are considered, and a persistent flow is defined as one
in which all N atoms are in the same rotational or flow state characterized by a
winding number q, and net orbital angular momentum (OAM) Nqh̄ around the axis
of the ring BEC. Thus, even for a modest condensate of say 103 atoms, persistent
flows with different winding numbers are macroscopically distinguishable. The
relevance of macroscopic superposition states lies in the fact that they are important
for testing the range of validity of the quantum theory, as stressed by Leggett [1], and
macroscopic superpositions of persistent flows may allow quantum-limited angular
momentum measurements, leading to the potential for ultra-precise gyroscopes.
Furthermore, macroscopic superpositions of persistent flows would be cold atom
analogs of those observed in superconducting quantum interference devices [2–4].

If the stated aim was instead to create a BEC in which each atom was in a
superposition of flow states with differing winding numbers, then a number
of schemes already exist for producing such states, including stirring using
rotating light-shift potentials based on a combination of laser fields [5, 6], ‘‘phase
engineering’’ involving a Gaussian laser beam whose center is rotated, which
couples the external motion to the internal state via Rabi oscillations [7, 8], and
most significantly for this work, vortex coupling in which two-photon stimulated
Raman transitions are driven using Laguerre–Gaussian (LG) fields to transfer
OAM from the LG beam photons to the trapped atoms [9–11]. The LG fields are
examples of optical vortices, which carry OAM associated with the spiral transverse
phase profile of their electric field envelopes [12]. Experiments from NIST have
already demonstrated quantized rotation of trapped atoms using LG fields [13], and
persistent flow of a BEC in a toroidal trap [14]. Simula et al. [15] have shown using
three-dimensional numerical simulations based on the Gross–Pitaevskii equation
that the experiment on quantized rotation of trapped atoms may be cast in terms
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of coherent Bragg scattering of the atoms from a chiral light-shift potential. In
vortex coupling, the fields driving the two-photon stimulated Raman transitions
are typically LG fields of different winding numbers, and together they produce a
rotating light-shift potential, which can be made to stir the BEC in one or other
direction and excite a persistent flow. The direction of the stirring, and hence of the
excited persistent flow, is determined by the sign of the frequency detuning factor
between the fields and the LG field winding numbers. Furthermore, Dowling and
coworkers [10, 11] have shown how arbitrary superpositions of flow states can be
generated and detected.

A number of theoretical works have appeared involving the creation of macro-
scopic superpositions of BECs [16–23]. Of particular interest, here, is the recent
work on macroscopic superposition states in ring superlattices in which an array
of BECs trapped in optical potentials are coupled via tunneling and formed into a
ring, thereby creating a discrete analog of a ring BEC [18–23]. These authors have
proposed a detailed scheme for creating macroscopic superpositions of different
persistent flows on the ring lattice, and also discussed at length the barriers to
creating such states [21]. Very recently, Dagnino et al. [24] have studied vortex
nucleation in rotating BECs as a case study of symmetry breaking in quantum
systems. They argue that the strongly correlated many-body state at nucleation is
generally a superposition of the presence and absence of vortices, akin to a cat
state. The proposal to be advanced here has some similarities with this work, but
the correlated many-body state does not rely on nucleation for its production.

The central idea of the proposal advanced here is to create macroscopic su-
perpositions of persistent flows on ring BECs, as opposed to a ring superlattice,
using two-photon stimulated Raman transitions driven by one field that is a
classical optical vortex, and a second quantized field that is a cat state of optical
vortices. More specifically, we consider a cat state involving a superposition of
two coherent state optical vortices of opposite winding number � = ±1, with each
quasi-classical coherent state having a large mean photon number. The physics of
how a macroscopic superposition of persistent flows may be created is as follows:
if each of the two quasi-classical coherent state field components of the cat state
was used individually in conjunction with the classical vortex to realize a vortex
coupler as described above, one could create two macroscopically distinguishable
persistent flows from an initially nonrotating BEC, since the two coherent states
produce distinct light-shift potentials and the resultant stirring and flow. However,
by using the optical vortex cat state, the initially nonrotating BEC will be exposed
to ‘‘quantum stirring’’ in that the cat state will expose the BEC to a quantum
superposition of both distinct light-shift stirring potentials, but with the caveat
that if the direction of the persistent flow was measured, one or the other of the
two macroscopically distinguishable persistent flows would be realized, but not a
combination. Thus, the approach taken here is based on the realization that if one
can create an optical vortex cat state then one can use quantum stirring to create a
macroscopic superposition of persistent flows. The fact that the cat state nature of
the driving quantized optical field can be transferred to the atoms via vortex cou-
pling is not physically surprising in the view of previous studies of quantum atom
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optics involving BECs in quantized light fields [16, 25]. More specifically, Kanamoto
et al. [26] have previously considered vortex coupling using quantized fields but
concentrated on the distinction between the number states and the coherent states.

These ideas are substantiated in the remainder of this chapter. In Section 10.2,
a proposal for generating optical vortex cat states based on electromagnetically
induced transparency (EIT)-enhanced Kerr nonlinearities due to atoms loaded into
hollow core photonic-crystal fibers (PCFs) [27, 28] are described. The stupendous
progress in the areas of EIT-enhanced nonlinearities [29–32] and few photon
nonlinear optics in hollow core fibers loaded with atoms [33–36] holds the promise
that the proposal presented here may come to fruition in the future. Also, some
limitations to the proposal and some other possibilities for generating optical vortex
cat states are discussed. In Section 10.3, the idea of quantum stirring is developed
and it is shown that, given one can create an optical vortex cat state, one can
generate macroscopic superpositions of persistent flows. A summary and some
closing thoughts are given in Section 10.4.

10.2
Optical Vortex Cat States

10.2.1
Linear Fiber Propagation

In this section, a scheme based on nonlinear fiber optics for generating a quantum
mechanical superposition of macroscopically distinguishable optical vortices of
winding numbers � = ±1 is described. To proceed, some basic properties of the
modes of optical fibers that shall be used in the development below are first
reviewed. It is well known that optical fibers can support a variety of transverse
modes, and for weak guiding conditions in which the refractive index difference
between the core and cladding medium is small, these modes are termed linearly
polarized (LP) modes since their electric fields are LP in the plane perpendicular
to the fiber axis [37, 38]. For concreteness the z axis is chosen as the fiber axis,
and the linear polarization state of the propagating field is designated using the
real unit vector eLP. These modes, furthermore, form a complete set of expansion
functions for the fields propagating in the fiber. For a cylindrically symmetric fiber
the lowest-order mode is designated LP01, and in cylindrical coordinates (r, θ , z),
this mode U01(r, z) = u0(r) exp(iβ0z) typically has a Gaussian-like transverse profile
u0(r), with β0 being the propagation constant of the mode. The next highest mode
is labeled LP11 and is doubly degenerate

U11(r, θ , z) =
{

U1(r, θ , z) = u1(r) cos(θ ) exp(iβ1z)

U2(r, θ , z) = u1(r) sin(θ ) exp(iβ1z)
(10.1)

Here β1 = n1ω/c is the propagation constant of the LP11 mode for a field of center
frequency ω, with n1 being the corresponding mode refractive index and v = c/n1

the phase velocity, u1(r) is the transverse mode profile, which we take as real
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without loss of generality, and the factors sin(θ ) and cos(θ ) give each of the modes
a distinct azimuthal lobe structure, one with a dipole-like pattern aligned along the
x axis the other along the y axis. Figure 10.1a illustrates each of these azimuthal
lobes within the core of the fiber, and due to their azimuthal structure, these
modes have small spatial overlap. We note that we can also form optical vortex
modes of opposite winding numbers � = ±1 from linear combinations of the LP11

modes

U�=±1(r, θ , z) = (
U1(r, θ , z) ± iU2(r, θ , z)

)
= u1(r) exp(iβ1z) exp(±iθ ) (10.2)

The transverse mode profile u1(r) has a null at the origin by virtue of the phase
singularity present there, and has a single radial peak at r = r1. The intensity
profile of the peak is therefore donut shaped. Our goal here is to devise a
scheme to generate a cat state of macroscopically distinguishable states having
the optical vortex mode profiles U�=±1(r, θ , z) using nonlinear propagation in the
fiber.

10.2.2
Quantum Fiber Propagation

For the propagation of an optical field of center frequency ω in a weakly guiding fiber
that supports LP modes, we may decompose the quantized electric field operator
into positive and negative frequency components as Ê(r, t) = [Ê(+)(r, t) + Ê(−)(r, t)],
where the operator for the positive frequency component of the vector electric

(a) (b)

1

1

2 2

x

y

Figure 10.1 This figure shows the fiber
core in the transverse xy plane looking back
along the z axis. (a) illustrates the different
azimuthal mode patterns for the modes la-
beled j = 1, 2, the lobes associated with the
respective modes being marked. (b) shows
an example of a nonuniform distribution of

the nonlinearity, with the nonlinearity con-
centrated in the shaded regions. With this
geometry mode, j = 1 will experience little
nonlinearity in comparison to mode j = 2
due to the difference in their spatial overlaps
with the nonlinear regions.
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field is [39]

Ê(+)(r, t) =
∑

j

i

√
h̄ω

2εV
eLPUj(r, θ , z)âje

−iωt = (Ê(−)(r, t))† (10.3)

with V = Aeff l the quantization volume, Aeff being the effective area of the fiber
and l = vτ the pulse length for a pulse of duration τ , ε = ε0n2

1, and âj and â†
j are

the annihilation and creation operators for the corresponding LP modes. Here we
use a two-mode model and restrict the sum over modes to those modes labeled
j = 1, 2 in Eq. (10.1), giving for the electric field operator

Ê(+)(r, t) = i

√
h̄ω

2εV
eLPu1(r)

[
cos(θ )â1 + sin(θ )â2

]
ei(β1z−ωt) (10.4)

This two-mode approximation is possible under the assumption that only those two
modes will be externally excited, with all other LP modes remaining in their quan-
tum mechanical ground state. Furthermore, we consider here, quasi-continuous
wave fields, as opposed to ultrashort picosecond or femtosecond duration pulses,
and ignore the linear dispersive properties of the fiber for simplicity in notation.

The initial quantum field state at the input to the optical fiber is taken as a
product of coherent states [39]

|�IN〉 = |α1〉1|α2〉2 (10.5)

where the subscripts j = 1, 2 refer to the two LP modes, and the coherent state is
given in terms of number states as

|αj〉 = e−|αj|2
∞∑

n=0

αn
j√
n!

|n〉j (10.6)

More specifically we consider the specific case α1 = α, α2 = iα, |�IN〉 = |α〉1|iα〉2,
and without loss of generality, we take α to be real. Then using the property
âj|αj〉 = αj|αj〉 for coherent states, we find for the expectation value for the electric
field operator at the fiber input z = 0

〈�IN|Ê(+)(r, t)|�IN〉 = i

√
h̄ω

2εV
αeLPu1(r)eiθ e−iωt

= i

√
h̄ω

2εV
αeLPU�=+1(r, θ , z = 0)e−iωt (10.7)

For a quantized field with a large number of photons, |α|2 � 1 as assumed here,
this initial condition corresponds to a quasi-classical field having an optical vortex
profile U�=+1(r, θ , z = 0) of winding number � = 1.1) Such classical optical vortices
are routinely generated [12] using a range of techniques including spiral phase
plates, holographic methods, and mode converters; so there is no issue with
generating this initial condition for the quantum field at the input to the fiber.

1) We could alternatively have chosen
� = −1 for this purpose by setting α1 = α,
α2 = −iα, the key is that the input field is

a classical optical vortex of a well-defined
winding number.
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10.2.3
Optical Vortex Cat State via Self-Phase Modulation

Next we consider nonlinear propagation in the optical fiber, and to proceed, we
first examine the case of a single-mode field. In particular, the idea is to take
advantage of the fact that optical fibers display a nonlinear optical Kerr effect,
whereby the refractive index experienced by a propagating field has a shift propor-
tional to the field intensity 	n = n2I, n2 > 0 being the nonlinear Kerr coefficient
[38, 40]. As a result an intense classical optical field propagating in the fiber
will experience a phase shift that depends on the field intensity as well as the
fiber length, an effect known as self-phase modulation (SPM). In the quantum
field description, this means that the SPM experienced by a field described by a
number state |n〉 will depend on the photon number n. In related work, Yurke
and Stoler [41] considered propagation of a single-mode coherent state through
an amplitude dispersive medium and Milburn and Holmes [42, 43] considered
the quantum dynamics of an anharmonic oscillator, both of these models be-
ing intimately related to nonlinear propagation in an optical fiber with SPM.
Using the results of these papers, we find that upon propagating a distance
L under the action of SPM in the fiber, a single-mode field with initial state
|�IN〉 will be transformed according to |�OUT〉 = exp(−iγ (â†â)2)|�IN〉, where the
nonlinear parameter γ = h̄ω2n2L/2vV [44] (see also Section 2 of [45]). In partic-
ular, for an initial single-mode coherent state |�IN〉 = |α〉, we obtain the exact
result

|�OUT〉 = e−|α|2
∞∑

n=0

αn

√
n!

e−iγ n2 |n〉 (10.8)

The remarkable result exposed by Yurke and Stoler [41] is that for γ = π/2 the
output state is a quantum superposition of the coherent states | ± α〉

|�OUT〉 = 1√
2

[e−iπ/4|α〉 + eiπ/4| − α〉] (10.9)

which represents a cat state since the two coherent state components are macro-

scopically distinguishable for |α|2 > > 1.
We now apply these ideas to our two-mode fiber problem. In particular, what

we like to arrange is that the mode j = 1 experiences a negligible Kerr effect but
mode j = 2 experiences SPM over the fiber length with γ = π/2. This is possible
in principle since the two degenerate LP modes have different spatial structures
(Figure 10.1a), so that if the distribution of nonlinearity within the fiber core can
be tailored so that the nonlinear regions overlap one mode but not the other, then
the two modes will experience very different Kerr effects. For example, if only
the shaded regions in the fiber core in Figure 10.1b are nonlinear, then only the
mode j = 2 will experience significant nonlinearity.2) Such a tailoring of the spatial

2) In general, the nonuniform fiber profile can
also cause the two transverse modes j = 1, 2
to have different propagation constants, but

we shall neglect that complication here for
simplicity in presentation.
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distribution of the nonlinearity is possible in principle using hollow core PCFs
loaded with atoms, discussed in Section 10.2.4. In general we introduce a function
F(x, y), which is unity in regions that are nonlinear and zero otherwise, in terms
of which the nonlinear parameter for each LP mode involves the spatial overlap of
each mode with the nonlinearity

γj =
(

h̄ω2n2L

2vV

)
∫

dxdy|uj(x, y)|4F(x, y)∫
dxdy|uj(x, y)|2

, j = 1, 2 (10.10)

Thus, by judicious choice of F(x, y), we can engineer the situation in which γ1

is very small compared to γ2 (see Figure 10.1). Then using the incident state at
the fiber input |�IN〉 = |α〉1|iα〉2 representing a quasi-classical field with an optical
vortex profile of winding number � = 1, the quantum state at the output of the
fiber z = L is given by

|�OUT〉 = e−i(γ1(â
†
1 â1)2)+γ2(â

†
2 â2)2))|�IN〉 (10.11)

and choosing γ1 = 0, γ2 = π/2, we obtain

|�OUT〉 = 1√
2

[e−iπ/4|α〉1|iα〉2 + eiπ/4|α〉1| − iα〉2] =
∑
�=±1

e−i�π/4

√
2

|α〉1|i�α〉2

(10.12)

The electric field expectation values with respect to each of the two quasi-classical
coherent state components |α〉1|i�α〉2 comprising the output quantum field state
|�OUT〉 are

2〈iα|1〈α|Ê(+)(r, t)|α〉1|iα〉2 = i

√
h̄ω

2εV
αeLPU�=+1(r, θ , z = L)e−iωt

2〈−iα|1〈α|Ê(+)(r, t)|α〉1| − iα〉2 = i

√
h̄ω

2εV
αeLPU�=−1(r, θ , z = L)e−iωt

(10.13)

The first term in the output quantum field state therefore, corresponds to a
quasi-classical coherent state for a field with a vortex profile U�=+1(r, θ , z = L)
with winding number � = 1, and the second term corresponds to a quasi-classical
coherent state for a field with a vortex profile U�=−1(r, θ , z = L) with winding
number � = −1. The output quantum field state |�OUT〉, therefore, corresponds to
a cat state of macroscopically distinguishable field states corresponding to optical
vortices with opposite winding numbers � = ±1. We have therefore demonstrated
that it is possible in principle to generate an optical vortex cat state using nonlinear
fiber optics. We remark that due to the fact that coherent states with differing
amplitudes are not strictly orthogonal, the two optical vortex components of the
above cat state are not strictly orthogonal. However, for |α|2 > > 1 the overlap
between the two coherent state components will be very small and the two
components may be treated as orthogonal for all practical purposes.
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10.2.4
Photonic-Crystal Fibers

There are currently significant barriers to creating optical vortex cat states in optical
fibers as described above. Key amongst these, in order of severity, are tailoring
the spatial distribution of the nonlinearity in the fiber core, producing a large
enough Kerr effect to realize the condition γ2 = π/2, and the detrimental effects of
dissipation on the cat state [43, 46], and each of these are addressed in order below.
Briefly, proposed here is generating optical vortex cat states based on EIT-enhanced
Kerr nonlinearities due to atoms loaded into hollow core PCFs [27, 28].

The first barrier to realizing the proposed scheme is tailoring the spatial profile of
the Kerr nonlinearity, but PCFs [27, 28] offer a viable experimental solution to this.
These are not conventional step-index fibers, but are rather formed using arrays of
tiny air gaps formed through the fiber, which define the linear guiding structure
(Figure 1 of [28]). These fibers have LP modes of the type required here (Figure 12 of
[28]). A key aspect of PCFs is that the air gaps can be filled with nonlinear media, for
example, liquids or vapors, and this has been used with great success, for example,
in supercontinuum generation in PCF [47]. Then by selectively loading air gaps in
chosen spatial regions throughout the PCF, we can realize the spatial distribution
of the nonlinear medium alluded to earlier, so that mode j = 1 experiences a
negligible Kerr effect and mode j = 2 a sizeable Kerr effect. For example, one can
envisage a PCF with small air gaps used to define the linear guiding properties of
the fiber along with two adjacent hollow cores positioned as in Figure 10.1b that
will be loaded with nonlinear media. PCFs, therefore, offer a viable solution to the
problem of tailoring the distribution of nonlinearity in the fiber core.

The second barrier to generating cat states is that the nonlinear Kerr coefficient
n2 in conventional silica fibers is orders of magnitude too small, long fiber fibers
are needed leading to losses, and dissipation kills the cat [46]. A means of greatly
boosting the Kerr effect is required, and this can be done using EIT-enhanced
nonlinearities utilizing atomic vapors, for example, rubidium loaded into the
hollow cores of the PCF. This sounds quite esoteric, but there has recently
been stupendous progress in the areas of EIT-enhanced nonlinearities [29–32] and
experiments on few photon nonlinear optics in hollow core fibers loaded with atoms
[33–36]. Recalling the expression for the nonlinear coefficient for mode j = 2

γ2 =
(

h̄ω2n2L

2vV

)
∫

dxdy|u2(x, y)|4F(x, y)∫
dxdy|u2(x, y)|2

(10.14)

we see that in addition to the enhancement of n2, the nonlinear coefficient can be
boosted by reducing the light velocity v, suggesting the use of slow light techniques
[30, 32], and also designing the PCF to have a small mode volume V = Aeff vτ ,
meaning small mode area Aeff and short pulse duration τ .

The final barrier, to be discussed here, to generating an optical vortex cat state
using the proposed scheme is that any dissipation due to the fiber or nonlinear
medium has a very detrimental effect on the ability to create or sustain a cat state
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[43, 46], and this is a severe problem. On the other hand, EIT-enhanced Kerr
effects raise the possibility of creating the cat states using shorter PCF lengths,
thereby potentially reducing the detrimental effects of dissipation. Furthermore,
there are proposals for realizing SPM in atomic vapors with no associated linear
medium absorption utilizing two-level EIT and dark states [48], though the linear
absorption of the fiber glass would remain. However, since the atomic vapor would
supply an optical nonlinearity orders of magnitude larger than the fiber glass the
fiber lengths needed would be greatly reduced with respect to conventional fibers.
Whether or not dissipation remains a limiting factor to the generation of optical
vortex cat states using nonlinear fiber optics will depend crucially on advances in
PCF materials and fabrication to reduce fiber losses. In addition, as the state of
the art evolves over the coming years in the area of few photon nonlinear optics in
fibers, and with concomitant large enhancements in the attainable Kerr effects, it
is hopeful that the conditions can be met for generating an optical vortex cat state
γ2 = π/2 with sufficiently small dissipation.

In spite of there being significant barriers to currently realizing optical vortex
cat states using nonlinear PCFs, it is a worthy goal due to its possible applications
including the generation of macroscopic persistent flows, which are discussed
later. To highlight their utility, another potential application in the area of quantum
cryptography is described. In the proposed scheme, to generate an optical vortex
cat state the input quantum state to the PCF is a quasi-classical coherent state with
winding number � = +1 or alternatively � = −1. One can view the two options for
the initial winding number � = ±1 as encoding one bit of information that can be
measured reliably [49], and each bit can be sent as a single coherent state pulse of
duration τ , the winding number being varied between pulses to produce an input
data stream. After propagation through the PCF, each initial coherent state pulse
representing a single bit is transformed into the optical vortex cat state composed
of two quasi-classical coherent states with opposite winding number, and this
cat state is used to transmit each bit of information through a communication
channel, for example, a linear fiber or free space [50]. Since the quantum field
propagating in the communication channel is a cat state of both winding numbers,
an eavesdropper trying to measure the winding number by intercepting the pulse in
the communication channel will find ±1 with equal probability, so that they will be
unable to infer the initial winding number for any given pulse by this strategy: The
initial bit of information is effectively hidden from the eavesdropper by virtue of the
‘‘quantum shroud’’ provided by the cat state. It may be argued that the eavesdropper
just needs to measure the full quantum state of the field more carefully for a given
pulse, but this seems an impossible task given that they only have a single pulse
to work with, and no-cloning theorems would seem to rule out the possibility of
proliferating copies of the quantum field state to overcome this. The question is
then how can the initial winding number of a given pulse be retrieved reliably at
the receiver following the communication channel? The key is to use a PCF loaded
with atoms just before the receiver, which is identical to the input PCF but with
the important difference that the sign for γ2 is reversed compared to the input.
Since the sign of the SPM in the second PCF is of opposite sign to that in the
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input PCF, the second PCF unwinds the intricate phases underlying the cat state
and retrieves the initial quasi-classical state, with well-defined winding number,
from the cat state [41]. So far we tacitly assumed n2 > 0 and γ2 > 0, but the sign
of these can in principle be reversed by changing the operating conditions of the
EIT enhancement, and the sign of γ2 = ±1 for the input PCF and γ2 = ∓1 for the
second PCF could be varied between pulses to provide a cipher for encoding and
decoding the data stream. Thus, after the second PCF the field state will again be
a quasi-classical coherent state with the same winding number as the input, so
the bit encoded in the winding number of any single pulse can again be reliably
measured at the receiver [49]. The eavesdropper may use the strategy of inserting
their own PCF along the communication channel to intercept the data stream, but
unless they know the cipher based on the values of γ2 used at the input, they will
not be able to reconstruct the initial data stream.

10.2.5
Other Schemes

Before moving onto the generation of macroscopic persistent flows, some other
potential schemes for generating optical vortex cat states are discussed. First,
it is important to acknowledge that there is currently a great deal of research
directed toward creating tailor-made quantum superpositions of optical vortices
with OAM for use in quantum information processing and communication, but
these typically involve small numbers of photons to minimize the detrimental
effects of decoherence on these entangled states [51–56]. In contrast, cat states with
large average photon numbers are required for the purpose of creating macroscopic
superpositions of persistent flows for BECs with a large number of atoms. In a
recent paper, Glancy and Macedo de Vasconcelos [45] have reviewed a number
of methods to produce cat states of coherent states, including the Kerr effect,
degenerate optical parametric oscillators, backaction evasion measurement, and
photon subtraction. Each of these methods could in principle be used to create
optical vortex cat states if the two coherent state components of the cat state can
be produced with suitable entangled spatial beam properties [57, 58]. A virtue of
the method proposed here is that it automatically produces a cat state of optical
vortices.

Finally, recent work by De Martini and coworkers [59] offers the possibil-
ity for creating a novel optical vortex cat state. In particular, they describe the
creation of a microscopic–macroscopic field state, where a macrostate with
>104 photons is entangled with a microstate containing one photon using a
quantum-injected quantum parametric amplifier. Furthermore, they have shown
that these microscopic–macroscopic states have high resilience against the detri-
mental effects of decoherence [60, 61]. If the microstate and macrostate could also
have entangled spatial properties, such as opposite winding numbers, such a state
would offer a very intriguing possibility for creating macroscopic superpositions of
persistent flows.
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10.3
Macroscopic Superposition of Persistent Flows

In this section, we describe how the optical vortex cat state can be utilized to generate
a macroscopic superposition of persistent flows. First, we develop the light-shift
potential arising from a vortex coupler driven by optical vortices, followed by
discussions of the ring BEC geometry and our model for a BEC on a ring. Finally,
we show that our model leads to the generation of macroscopic persistent flows.

10.3.1
Optical Light-Shift Potential

The proposal here is to use vortex coupling in which two-photon stimulated Raman
transitions are driven by optical vortices to transfer OAM from the photons to the
trapped atoms [9–11, 15], but with the caveat that one driving field is a classical
vortex of winding number −p, |p| > 1, whereas the other field is an optical vortex
cat state involving winding numbers � = ±1. Vortex couplers can be configured
such that they either involve a change in the internal atomic states [9–11] or not
[13, 15]. We consider the case that the internal atomic states are not changed by
the stimulated Raman transitions in which case the system of cold atoms may be
treated as a scalar BEC subjected to a light-shift potential [15]. In particular, we
consider the case that the applied optical vortices are concentric and copropagating
along the z axis, and that the output from the PCF is imaged so that the transverse
radial peak of the intensity mode profile of the cat state overlaps the ring BEC.
Likewise, we assume that the mode profile of the classical optical vortex is arranged
so that the ring BEC coincides with a radial peak. For example, the classical optical
vortex may take the form of an LG beam of winding number −p and radial index
zero, which has a single radial peak [12]. The combination of optical vortices then
interacts with the atoms in the BEC that are trapped circumferentially on a ring
lying in the xy plane with a fixed value of z. The operator for the positive frequency
component of the vector electric field now has a c-number contribution due to the
classical field in addition to the quantum field in Eq. (10.4)

Ê(+)(r, t) = i

√
h̄ω

2εV
eLPu1(r)

[
cos(θ )â1 + sin(θ )â2

]
ei(β1z−ωt)

+ iepup(r)e−ipθ Epei(βpz−ωpt) (10.15)

with ep the polarization state of the applied classical field of amplitude Ep and mode
profile up(r), both taken as real without loss of generality; ωp is the field frequency;
and βp the wavevector directed along the z axis. For off-resonance conditions
between the light fields and the atom, the light-shift potential operator is generally
given by [62]

V̂(r, t) = −1
2

Ê(−)(r, t) · αR · Ê(+)(r, t) (10.16)

where αR is the real part of the atomic polarizability tensor operator. By judicious
choice of the atomic transitions and field polarization states, we assume that the
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only matrix element that survives out of this tensor product is (eLP · αR · ep) = αR.3)

In this limit, we obtain the light-shift potential operator as

V̂(r, t) = −1

2
αREp

√
h̄ω

2εV
u1(r)up(r)eipθ

[
cos(θ )â1 + sin(θ )â2

]
e−i	ωt + h.c.

(10.17)

where 	ω = ω − ωp is the detuning factor, h.c. means Hermitian conjugate, and
the position of the ring is chosen such that exp(i(β1 − βp)z) = 1 without loss of
generality.

10.3.2
Ring Trap and Quantum Stirring

Our basic model for the ring BEC is that the atoms are trapped in a toroidal trap
with very tight confinement along the z axis and a ring profile in the xy plane. In
particular, we assume that the atoms are trapped, by other external laser and/or
magnetic fields, on a ring of radius R, and that the trapping is sufficiently tight,
such that the atomic gas is rendered quasi-one-dimensional around the ring [14,
63–65]. Then, using X to denote the coordinate along the ring, we may write
X = Lθ/2π , with L = 2πR being the ring circumference. In this ring geometry the
light-shift potential operator evaluated along the ring circumference becomes

V̂(X , t) = −1

2
αREp

√
h̄ω

2εV
u1(R)up(R)ei2πpX/L

× [
cos(2πX/L)â1 + sin(2πX/L)â2

]
e−i	ωt + h.c. (10.18)

Then for the two coherent state components |α〉1|i�α〉2 of the optical vortex cat state
in Eq. (10.12), we obtain with � = ±1

2〈i�α|1〈α|V̂(X , t)|α〉1|i�α〉2 = −αRαEp

√
h̄ω

2εV
u1(R)up(R)

× cos
(

2π (p + �)X

L
− 	ωt

)

= VLS cos
(

2π (p + �)X

L
− 	ωt

)
= V�(X , t)

(10.19)

This yields two macroscopically distinguishable quasi-classical light-shift potentials
V�(X , t) of depth

VLS = −αRαEp

√
h̄ω

2εV
u1(R)up(R) (10.20)

3) Selecting only one term from the atomic
polarizability tensor is not absolutely

necessary but greatly reduces the notational
complexity of the ensuing development.
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which rotate with different angular velocities �� = 	ω/|p + �| for � = ±1, and
therefore produce different stirring. Thus, by using the optical vortex cat state a
BEC trapped on the ring will experience ‘‘quantum stirring’’ in that the cat state
will expose the BEC to a quantum superposition of both distinct light-shift stirring
potentials, but with the caveat that if the direction of the persistent flow is measured
one or other of the two macroscopically distinguishable persistent flows will be
realized, not a combination.

10.3.3
Matter Waves on a Ring

We assume that the cold atoms are prepared on a ring in a N-body quantum
state |N(t = 0)〉, and that at t = 0 the light-shift potential above is initiated.
The quantum state of the combined atom-light system at t = 0 is taken to be
�(t = 0)〉 = |N(t = 0)〉|�OUT〉. Assuming further that the light field is largely
unaffected by the presence of the atoms, then the state of the system for t > 0 can
be written as

|�(t)〉 = 1√
2

[
e−iπ/4|N�=+1(t)〉|α〉1|iα〉2 + eiπ/4|N�=−1(t)〉|α〉1| − iα〉2

]
(10.21)

where |N�=±1(t)〉 are the N-body atom states corresponding to the two components
of the optical vortex cat state, and |N�=±1(t = 0)〉 = |N(t = 0)〉, that is, they have the
same initial condition.

Here, we consider the simplest example of noninteracting atoms on a ring, in
which case the Hamiltonian operator in a second quantized form for the system of
atoms may be written as [66, 67]

Ĥ(t) =
∫ L

0
dX

[
h̄2

2m

(
∂ψ̂†

∂X

)(
∂ψ̂

∂X

)
+ V̂(X , t)ψ̂†ψ̂

]
(10.22)

where ψ(X , t) and ψ†(X , t) are the atomic annihilation and creation field operators
with boson commutation relations, and m is the atomic mass. Evaluating the
Hamiltonian operator with respect to the state vector (Eq. (10.21)) yields

H(t) = 〈�(t)|Ĥ(t)|�(t)〉 =
∑
�=±1

∫ L

0
dX〈N�(t)|

[
h̄2

2m

(
∂ψ̂†

∂X

)(
∂ψ̂

∂X

)

+ V�(X , t)ψ̂†ψ̂

]
|N�(t)〉 (10.23)

where we used the fact that the quasi-classical coherent states comprising the
optical vortex cat state are orthogonal for all intents and purposes here. Since the
total Hamiltonian H(t) is the sum of the Hamiltonians, one for each �, this means
that we can solve for the N-atom dynamics for each optical vortex component
separately. To proceed, we express the atomic state vectors as [66]

|N�(t)〉 = 1√
N!

∫ L

0
dX1 . . .

∫ L

0
dXNψ�(X1, . . . , XN , t)ψ̂†(X1, t) . . . ψ̂†(XN , t)|0〉

(10.24)
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and the equation of motion ih̄ ∂ψ�
∂t = δH

δψ∗
�

yields the pair of Schrödinger equations

ih̄
∂ψ�

∂t
=

N∑
j=1

[
− h̄2

2m

∂2

∂X2
j

+ V�(Xj, t)

]
ψ�(X1, . . . , XN , t), � = ±1 (10.25)

along with the initial conditions

ψ�=±1(X1, . . . , XN , t = 0) = ψ0(X1, . . . , XN) (10.26)

The key observation at this point is that the N-atom dynamics is governed by a
different light-shift potential V�(X , t) for each winding number component present
in the optical vortex cat state.

10.3.4
Macroscopic Superposition of Persistent Flows

For our model of noninteracting bosons on a ring, we write the N-atom wavefunc-
tions ψ� in the Hartree form appropriate to a BEC in which all atoms occupy the
same state [66, 67]

ψ�(X1, . . . , XN , t) =
N∏

j=1

φ�(Xj, t) (10.27)

leading to the equation of motion for the single-particle orbitals φ�(X , t)

ih̄
∂φ�

∂t
=

[
− h̄2

2m

∂2

∂X2
+ VLS cos

(
2π (p + �)X

L
− 	ωt

)]
φ�(X , t), � = ±1

(10.28)

We consider the specific case that the initial BEC is in the nonrotating ground
state φ�(X , t = 0) = φ0 = 1/

√
L for t < 0, and use the following ansatz for the

single-particle orbital for t > 0

φ�(X , t) = φ0
[
a�

0(t) + a�
+(t)ei(2π (p+�)X/L−	ωt) + a�

−(t)e−i(2π (p+�)X/L−	ωt)]
(10.29)

This ansatz is based on the assumption that only persistent flows with winding
numbers ±(p + �) will be appreciably excited by the light-shift potentials, coupling
to other winding numbers being phase-mismatched for |p| � 1, and we note that
LG beams can now be prepared with very large values of winding number [68].
For the coherent state component of the cat state with winding number �, the
amplitude a�

0(t) appearing in Eq. (10.29) is that for the BEC to stay in its nonrotating
state with winding number q = 0, a�

+(t) the amplitude for the BEC to be transferred
to the flow state with winding number q = (p + �), and a�

−(t) the amplitude for
the BEC to be transferred to the flow state with winding number q = −(p + �).
Substituting the ansatz (Eq. (10.29)) in the Schrödinger equation (Eq. (10.28)), we
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obtain the coupled-amplitude equations

ih̄
da�

0

dt
= VLS

2
(a�

+ + a�
−)

ih̄
da�

+
dt

=
[

h̄2

2m

4π2(p + �)2

L2
− h̄	ω

]

︸ ︷︷ ︸
a�

+ + VLS

2
a�

0

ih̄
da�

−
dt

=
[

h̄2

2m

4π2(p + �)2

L2
+ h̄	ω

]
a�

− + VLS

2
a�

0 (10.30)

These equations govern the quantum dynamics of the vortex coupler with the
applied optical vortex cat state, and determine how the initial nonrotating BEC can
be transformed into a quantum superposition of persistent flows.

To proceed we choose the detuning factor 	ω = 	ωr such that the underbraced
term in the coupled-amplitude equations (Eq. (10.30)) vanishes for the � = 1 optical
vortex component of the cat state

h̄	ωr = h̄2

2m

4π2(p + 1)2

L2
(10.31)

and for � = 1 the coupled-amplitude equations (10.30) become

ih̄
da1

0

dt
= VLS

2
(a1

+ + a1
−)

ih̄
da1

+
dt

= VLS

2
a1

0

ih̄
da1

−
dt

= 2h̄	ωra
1
− + VLS

2
a1

0 (10.32)

Then under the assumption that h̄|	ωr| � |VLS|, the amplitude a1
−(t) ≈ 0 will

remain small as it is highly phase-mismatched, and resonant coupling occurs only
between a1

0(t) and a1
+(t) giving the reduced equations

ih̄
da1

0

dt
= VLS

2
a1

+, ih̄
da1

+
dt

= VLS

2
a1

0 (10.33)

These equations are easily solved giving

|a1
0(t)|2 = cos2

(
VLSt

2h̄

)
, |a1

+(t)|2 = sin2

(
VLSt

2h̄

)
(10.34)

Thus, if the optical vortex cat state persists for the pulse duration t = τ such that
|VLSτ/2h̄| = π/2, then the component of the optical vortex cat state with � = 1 will
result in a persistent flow with winding number q = (p + 1).4)

4) We remark that if we had chosen the detun-

ing factor h̄	ωr = − h̄2
2m

4π2(p+1)2

L2 to create
resonant coupling between the amplitudes

a1
0(t) and a1−(t) in Eqs. (10.30) we would cre-

ate a persistent flow with winding number
q = −(p + 1) instead.
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To complete the analysis, we next have to examine what happens to the BEC
under the action of the component of the optical vortex cat state with winding
number � = −1 with the same resonant condition as Eq. (10.31). In this case, the
coupled-amplitude equations (10.30) become

ih̄
da−1

0

dt
= VLS

2
(a−1

+ + a−1
− )

ih̄
da−1

+
dt

=
(

h̄2

2m

16π2p

L2

)
a−1

+ + VLS

2
a−1

0

ih̄
da−1

−
dt

=
(

h̄2

2m

8π2(p2 + 1)

L2

)
a−1

− + VLS

2
a−1

0 (10.35)

For this case, there is no resonant coupling between a−1
0 (t) and a−1

± (t), and for large
|p|, we can ensure that the phase-mismatches are large enough that any coupling is
strongly inhibited and the atomic gas remains dominantly in its ground state with
|a−1

0 |2 ≈ 1, |a−1
± |2 ≈ 0.

10.3.5
Discussion

Bringing the above results together, we have a scheme such that for the � = 1 com-
ponent of the optical vortex cat state the BEC can be completely transferred from its
initial nonrotating ground state to a persistent flow of winding number q = (p + 1),
whereas for the � = −1 component the BEC remains in its ground state with wind-
ing number q = 0. The quantum state of the ring BEC following the optical vortex
fields will therefore be a macroscopic superposition of persistent flows with wind-
ing numbers q = 0, (p + 1), and a measurement of the flow of the trapped gas will
find the BEC in one or other of the persistent flows with equal probability. We have
thus theoretically demonstrated a scheme to generate macroscopic superpositions
of persistent flows in a ring BEC. We remark that we could have easily have retained
atom–atom interactions in this analysis, and in the same Hartree approximation
the coupled-amplitude equations (10.30) would acquire nonlinear terms. Even in
the presence of such nonlinear terms resonant coupling between persistent flow
states can still occur [9], so the scheme proposed here would still be viable.

The above results have some similarity to the recent work of Dagnino et al. [24],
where nucleation in a rotating BEC was shown to lead to a quantum superposition
of the absence and presence of vortices. In their case, the many-body system
becomes strongly correlated in the vicinity of the critical rotation frequency when
nucleation occurs, whereas in the present proposal the strong correlations arise
from the use of the optical vortex cat state in the vortex coupling. In both cases, the
net result is a quantum state of the BEC, which is a quantum superposition of the
absence and presence of BEC vortices.

Finally, it is also pointed out that the interesting microscopic–macroscopic
quantum field states discovered by De Martini et al. [59] could also be used
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to generate macroscopic superpositions of persistent flows on ring BECs, in
particular, if the microstate containing one photon and the macrostate with many
photons had opposite winding numbers. Then in combination with the applied
classical optical vortex, the microstate would produce negligible vortex coupling,
leaving the BEC in its nonrotating ground state, whereas the macrostate could be
designed to transfer the BEC to a prescribed persistent flow. Thus, if their spatial
profiles can be suitably entangled, the microscopic–macroscopic quantum field
states could produce macroscopic superpositions of persistent flows of the same
nature as those discussed here using optical vortex cat states.

10.4
Summary and Conclusions

In summary, a scheme to generate optical vortex cats states based on nonlinear fiber
optics using PCFs has been proposed. Although the proposal is clearly beyond the
current state of the art, one can hope that future advances in PCF fabrication and
EIT-enhanced Kerr nonlinearities will allow optical vortex cat states to be realized in
the future. It is also demonstrated that if an optical vortex cat state can be realized,
it can be used to generate macroscopic superpositions of a persistent flow in a ring
BEC using vortex coupling based on two-photon stimulated Raman transitions.
Such macroscopic superpositions of persistent flows are of interest as they are cold
atom analogs of those observed in superconducting quantum interference devices
[2–4]. Furthermore, the macroscopic superpositions of persistent flows described
here are realizations of atomic NOON states, which have potential applications in
precision measurements [69].

In this chapter, the focus has been on the underlying concepts and much work
remains to be done to substantiate these ideas, for example, more detailed aspects
of the PCF design, quantum nonlinear propagation in the PCF structure, and
the fundamental limitations to the generation of optical vortex cat states arising
from dissipation. The resilience to decoherence of the microscopic–macroscopic
quantum field states discovered by De Martini et al. [59–61] means that they may
actually be better candidates for generating cat states in the short term. Likewise,
for the ring BEC, more detailed consideration of the trapping geometry and sources
of decoherence, for example, trap fluctuations, which could kill the macroscopic
superpositions, will have to be considered in detail.

This work is supported in part by the Joint Services Optical Program (JSOP).
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11
Experimental Control of the Orbital Angular Momentum of
Single and Entangled Photons
Gabriel Molina-Terriza and Anton Zeilinger

In this book, the reader will find an opportunity for studying the different facets of
the orbital angular momentum (OAM) of light, from defining the basic properties
of the OAM of electromagnetic fields to the most novel applications in fields
as diverse as biomedicine to telecommunication technologies. This chapter gives
the interested reader an opportunity to understand the enormous possibilities of
applying the concept of OAM at the quantum level; that is, when nonclassical
features of the electromagnetic field become relevant. Most notable examples are
the cases of single or entangled photons. This area of research, which lies at the
intersection of the fields of singular optics [1] and quantum optics [2], started as a
purely intellectual subject with questions regarding the very meaning of the angular
momentum of photons or their conservation in matter-mediated interactions and
has evolved to have a weight on its own with very important applications in the
field of quantum information [3].

In this chapter, we do not give a complete introduction to the subject of OAM
or the quantum optical aspects of it, as there are a few very complete reviews
on the subject [1, 4, 5], and it will be redundant with other chapters of this
book. Rather, we will try another different approach. Our objective is to make the
reader capable of understanding the quantum optics and quantum information
experiments regarding the OAM of photons, when he/she completes reading this
chapter. We then start with a small introduction on the subject, review some of
the techniques used to control the OAM of a single photon, and then explain how
to create and control OAM correlations between different photons. We end the
chapter with a few interesting applications in the field of quantum information and
with a discussion on the future possibilities.

11.1
Introduction to the Photon OAM

From the point of view of quantum optics, it is possible to choose a series
of physical quantities such as energy, momentum, and angular momentum to

Twisted Photons: Applications of Light with Orbital Angular Momentum.
Edited by Juan P. Torres and Lluis Torner
Copyright  2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40907-5



200 11 Experimental Control of the Orbital Angular Momentum of Single and Entangled Photons

y

z

S

x k

E
E

Jz kz

SzLz

J 2

(a) (b) (c)

Figure 11.1 Different sets of modes that can be used for
describing the electromagnetic field, and their respective set
of parameters. (a) Plane wave, (b) multipolar mode, and (c)
cylindrical mode. (Please find a color version of this figure
on the color plates.)

describe the quantum excitations of the electromagnetic field in vacuum [6]. It
is well known that not all the possible physical quantities can be used at the
same time in this description, as some of them cannot be measured coincidentally
without producing a mutual disturbance in the measurement. This would be the
same kind of uncertainty principle as the quantum measurements of the position
and momentum of an electron, which cannot be perfectly defined simultaneously.
One of such possible set of measurements that has been extendedly used both
in theoretical and experimental quantum optics is the set consisting of energy E,
linear momentum direction k̂, and the transversal polarization s (also called spin
angular momentum (SAM)1)).

This set of quantities gives rise to a family of modes of the electromagnetic field.
In this case, the modes are the well-known ‘‘plane waves,’’ which are parameter-
ized with the corresponding quantities mentioned above; that is, energy (temporal
frequency of the mode or modulus of the wave-vector), linear momentum direc-
tion (propagation direction or wave-vector direction), and transversal polarization
(helicity or polarization). In Figure 11.1a, we summarize the characteristics of a
plane wave. In order to measure and control the plane wave set of modes, we have
a series of well-studied experimental techniques such as spectral filters, lenses,
polarizers, and waveplates.

Nevertheless, the plane waves mentioned above are not the only possible set of
modes or physical properties that can be used to manage the quantum information
that a photon carries. Two other possible sets are represented in Figure 11.1b,c.
The first of those families of modes is parameterized by the energy (E), total
angular momentum of the field (J2), the z component of the angular momentum
(Jz), and the parity of the field (P), which define the electromagnetic multipolar
modes. It is clear from the way we have presented this set of modes that they
are spherically symmetric electromagnetic modes. This set of electromagnetic
modes is very important for processes such as light interactions with small

1) It is very important not to confound this
SAM with the total angular momentum.
Also it should be noted that there is a
subtle difference between this polarization

angular momentum and the intrinsic spin
of the photon, which is a characteristic of
the photon particle, as well as its mass and
charge.
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material particles, but they have not been extensively used in the field of quantum
information with photons, because they are difficult to generate, control, and
measure. Following the same logic, we could also define a set of electromagnetic,
cylindrically symmetric modes, which are defined by using the energy, the z
component of the linear momentum (kz), the z component of the OAM (Lz), and
the z component of the SAM (Sz). One of the most interesting properties of this
set of modes is that they naturally lead to the set of paraxial modes with OAM.
When the z component of the linear momentum is very close to the modulus of
the linear momentum kz � ‖k‖ = E/hc, the transversal components of the linear
momentum are much smaller than the longitudinal one and the expressions for
the electromagnetic modes become simplified with the paraxial approximation.
Moreover, experiments in optics and quantum optics are typically performed
fulfilling the paraxial approximation.2)

With this hierarchy of physical properties and set of modes, we have been able to
reach the well-known paraxial modes with OAM, starting from the plane waves and
passing through the multipolar modes. As in any basis decomposition, of course,
we can relate the modes of one basis with the modes of the other. This scheme has
explicitly been derived for the important case of the relation between cylindrically
and spherically symmetric modes [7].

One important property of the cylindrically symmetric paraxial modes is that
the OAM and SAM are independently determined, which in experimental terms
means that we are able to control the spatial properties and the polarization of the
field independently. Owing to the versatility of the techniques to spatially control
the optical beams, the OAM of light has also found very important applications in
the field of quantum information. An advantage with respect to other techniques to
control the state of photons is that it allows to automatically codify the information
in a large alphabet, which permits the access to high-dimensional Hilbert spaces.
The possibilities that this fact opens are explored in the last sections of this chapter.
Meanwhile, in the next section we show which kind of techniques can be used to
control the spatial properties of photons and, thus, their OAM.

11.2
Control of the OAM State of a Single Photon

The experimental tools to control the OAM of photons can be roughly divided
into those which allow us to measure that we just have a single excitation of the
electromagnetic mode, that is, a single photon, and those which allow us to control
the modes themselves. The first ones are self-explanatorily called single photon
detectors, and among the most popular ones we encounter the avalanche photo
diodes (APDs), when used in the Geiger mode. There are a few others which can
also be used such as the photo multiplier tubes (PMTs), but the APDs are more

2) Notable examples where the paraxial
condition is not valid are experiments in
nanophotonics and, in general, interactions

of optical fields with particles that are much
smaller than the wavelength.
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common in the kind of experiments we describe below owing to their low noise and
high efficiencies in the red- and near-infrared range of wavelengths. An important
drawback of the APDs is that they cannot usually distinguish between one single
photon and multiple photon signals. This means that the APDs are used mainly
when the intensity of the signal is very low, that is, the number of photons per
second is less and typically below a few megahertz. Recently, new detectors have
been developed which allow the exact determination of photon numbers. The most
notable example are superconducting transition-edge detectors (STEDs) [8].

Before properly describing the experimental tools to specifically address the OAM
paraxial modes, we have to give further details about the structure of such modes.
Then, mathematically the paraxial monochromatic OAM modes can be written
as [9]

Em(r, φ; z) = fm(r; z) exp (imφ) u (11.1)

where Em represents the vector amplitude associated with the mode, u is a
transverse polarization vector (û⊥ẑ), and (r, φ, z) are the cylindrical coordinates.
We are distinguishing between the transversal and the longitudinal coordinates
because, within the paraxial approximation, when the field structure is defined
at a given transversal plane (say z = 0), it defines the whole three-dimensional
structure of the field. Then, from now on when the z coordinate is not expressly
written, we mean that z = 0. The index m defines the quantity of OAM the mode
contains and distinguishes different modes. It is easy to check that these modes are
orthogonal, but there are many different radial modes fm(r; 0) which can be used.
One could then further refine the set of modes by using a radial and orthogonal
basis. One possibility is to use the well-known Laguerre–Gaussian (LG) basis,
which besides the azimuthal index m is labeled with a radial index p, that is, LGm,p.
In experimental quantum optics, one very important mode is the LG0,0 or Gaussian
mode, which is expressed as

E0(r, φ) = 2

πw2
exp

(
− r2

w2

)
u (11.2)

The Gaussian mode is a very good approximation of the lowest mode that can
propagate in usual optical fibers. In particular, it is a good approximation to the
only propagating mode of commercial single mode fibers (SMFs). Then, the output
of an SMF is always a Gaussian mode and its intensity is proportional to the
projection of the Gaussian mode onto the initial spatial state of the input field. In
particular, if a single photon is present in the field and propagated through an SMF,
the operation that the fiber does can be expressed as |0〉〈0|, where |0〉 represents
the spatial quantum state of a single photon being in the Gaussian mode. We thus
have a way to uniquely identify the Gaussian mode, that is, one of the set of LG
modes.

The next step in our program of experimentally controlling the OAM state of
a single photon is preparing transformations of the spatial state of photons. In
that way we are able to prepare or measure any LG mode by transforming it
into or from a Gauss mode. There are many experimental techniques available
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to that purpose, from active real-time spatial light modulators (SLMs) to passive
refractive or diffractive devices such as prisms. The most basic and simple to
explain device is the spiral phase plate [10, 11]. The spiral phase plate introduces
an azimuthal-dependent retardation to the field. The main effect is multiplying
the field by a term of the kind exp(iMφ), where the value of M depends on the
construction of the spiral phase plate. There are many ways of experimentally
building a spiral phase plate and we leave the interested reader to find the most
suitable one for their purposes in the specialized literature. The effect of a spiral
phase plate onto a single photon spatial state |�i〉 can be expressed with an unitary
operation, that is, |�o〉 = UM|�i〉. By means of applying phase plates to our initial
Gaussian beam, we can construct our set of experimentally addressable single
photon OAM states:

|n〉 = Un|0〉 (11.3)

In Figure 11.2 we plot the amplitude of the far field of the first three modes.
In the figure, we show a comparison between some of the modes and their
corresponding LG mode, that is, an LG mode with the same m, p = 0, and an
appropriate beam width. It can be seen that both sets are very similar.

In the same way that we can experimentally prepare the so-called computational
basis |0〉, |1〉, | − 1〉, |2〉, . . ., we can also rotate a given state into a proper super-
position of OAM states. Experimentally we should only find the proper spatial
transformation, by means of diffractive elements or otherwise, to implement the
proper Hilbert space rotation. In Figure 11.2, it is shown how the superposition
of the states look like. From these images, it can be appreciated that some of the
transformations can be easily approximated by displacing the spiral phase plates
[12, 13]. Other more complicated transformations require the use of specific shape
changing elements. In general, any superposition state can be created with an
appropriate control of the spatial shape of the mode [14, 15].

We have shown that one can control the relative amplitudes of a single photon
state of the kind |�〉 = ∑

an|n〉. In terms of quantum information, this is the
complete control you can have over a pure state. One can produce single photon
mixture states, that is, density matrices, by, for example, probabilistically preparing
different spatial operations. Nevertheless, a much more interesting issue in terms
of quantum control of photons is the preparation of OAM states of two or more
photons. By properly preparing pure two-photon states, one can completely control
the state of a single photon, including mixed states. Then, in the next section, we
review some of the experimental techniques to produce multiphoton OAM states.

11.3
Control of the OAM State of Multiple Photons

It is easily proven that, for completely controlling a two-photon state, new exper-
imental tools are needed when compared to the case of a single photon. One way
of showing this is by fixing the dimension of the Hilbert space to N, that is, the
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Figure 11.2 Orbital angular momentum
modes: first column, experimentally achiev-
able modes as explained; second column,
Laguerre−Gaussian basis. The first three
rows represent the amplitude distribution of
the three lowest modes and last row shows
the amplitude distribution of a superpo-
sition of two modes. Note that the three
pure modes have an amplitude distribution

that is rotationally invariant with respect to
the propagation direction (perpendicular to
the page). This is a trademark of the OAM
eigenmodes. Also note the singularity in the
center of the two higher-order pure modes.
This singularity moves off-center in the su-
perposition. (Please find a color version of
this figure on the color plates.)

basis states are |0〉, |1〉, . . . , |N − 1〉. In this case, we will need 2(N − 1) parameters
to control an arbitrary one photon pure state: (N − 1) relative amplitudes and
(N − 1) relative phases. If we have two photons and prepare them independently,
we will be able to control 4(N − 1) parameters. But, in this last case, the dimension
of the Hilbert space is much larger, as our N-dimensional two-photon state will
have the following elements in the basis: |0〉A|0〉B, |0〉A|1〉B, . . . , |N − 1〉A|N − 1〉B,
which are N2 elements. Then, in order to prepare an arbitrary two-photon state, we
would need 2(N2 − 1) parameters. By comparing the two numbers, it is clear that
we need new resources to arbitrarily control a two-photon state than independent
control of each separate photon. If we turn to mixed states, we realize that the
difference in parameter counting would be even larger. Actually, it can be proven
that in order to produce arbitrary two-photon states, it is needed a nontrivial
two-photon operator, that is, an element that acts on two photons at the same time.
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Interestingly enough, this is also enough to produce arbitrary states of more than
two photons.

Generally speaking, any multiparticle state that cannot be written as simply as the
direct product of the independent particle states is called an entangled state. For pure
states this statement takes the following mathematical form: if |�〉AB �= |ψ〉A|φ〉B,
then we say that the particles A and B are in the entangled state |�〉AB. Then, the
question for experimentalists is how to prepare and control multiphoton entangled
states.

For the case of OAM-entangled two-photon states, a breakthrough in this subject
was made by Mair and coworkers [12]. Measuring the OAM correlations between
two photons generated from a spontaneous parametric down-conversion source
(SPDC), they showed that photons could be entangled in their OAM degree of
freedom. Since then, other schemes such as cold atomic ensembles are being
explored [16], but up to now SPDC-based sources are still the most widely used and
reliable sources of OAM-entangled photon generation.

The SPDC process is a second-order nonlinear effect where a high-frequency
pump beam (typically in the violet – ultraviolet range of wavelengths) is converted
into two low-frequency beams, which we call signal and idler (typically in the
red- or near-infrared) by mediation of a crystal. In conventional systems pumped
with continuous wave light, this effect is very small, which means that usually
only a small fraction of the pump beam is converted into signal and idler. As an
example, a typical experiment with a nonlinear crystal pumped with a continuous
wave beam with a 400 nm wavelength, and using a few milliwatt of power,
could produce around 105 – 106 pairs of signal and idler photons around 800 nm.
Quantum mechanically one could describe the process as the transformation
of a pump photon into two signal and idler photons. For this process to be
possible the so-called phase matching conditions have to be fulfilled, which can
be basically described as energy and momentum conservation of the interacting
photons. The present crystal growth technology has eased the task of finding
suitable nonlinearities and geometries for the fulfillment of the phase matching
conditions. In particular, by means of the periodically poling technique, one can
generate photons in a crystal of potassium tytanil phosphate (KTP) in a collinear
geometry (all the beams propagate in the same direction), in the absence of
walk-off (the beams are not affected by birefringence as they propagate along one
of the principal axes of the crystal) and the generated photons may have different
polarizations (the so-called Type II condition), which allows for efficient separation
of the signal and idler. As we would see shortly, these conditions offer the best
chance of generating and controlling OAM states. Under these conditions, the
state of the generated photons |�〉s,i can be well approximated by the following
expression: [17, 18]

|�〉s,i = NSPDC

∫
dqs, dqi exp

(−A|qs − qi|2 − B|qs + qi|2
) |qs〉s|qi〉i (11.4)

where the states |qs〉 (|qi〉) represent a signal (and similarly for the idler) photon
in a plane wave mode with longitudinal wave-vector kz � 2πns/λs and transversal
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momentum qs = (qx
s , qy

s ), A and B are two possibly complex constants that will allow
us to tune the momentum correlations among the photons. The normalization

factor is NSPDC = |AB|1/2

π
.

We can control this two-photon state with parameters A and B, which, in the
simplest case, depend on the experimental conditions in the following way:

A = w2
p

4
B = αL

4k0
p

(11.5)

where L is the length of the nonlinear crystal, α is a fitting constant to approximate
the phase matching sinc function by a Gaussian function (typically α = 0.455), wp

is the pump beam width considered at the center of the crystal, and k0
p = ωpnp/c,

with ωp and np being the corresponding angular frequency and refractive index of
the pump beam, respectively. These expressions are valid when the pump beam is
focused at the center of the crystal and the state of the two photons is also measured
there, that is, the center of the crystal is taken as the origin of coordinates z = 0.

As mentioned in the introduction, one could, in principle, make a change of the
spatial basis, and express the plane waves in the OAM basis, but in this case a more
elegant approach can be taken via the Schmidt decomposition [19]. The Schmidt
decomposition of the two-photon state (Eq. 11.4) will give us the set of orthogonal
spatial modes where the correlations are perfect; that is, only one of the modes in
the Schmidt basis of the signal is correlated with one of the idler ones. The Schmidt
bases for signal and idler do not have to be the same, but in this ideal case they are
not only the same but they are also LG modes:

|�〉s,i =
∑

m∈{−∞,...,∞}
p∈{0,...,∞}

(−1)|m|(1 − z)z|m|/2+p|LGm,p〉s|LG−m,p〉i (11.6)

z = (A − B)4

(A2 − B2)2
(11.7)

Then, a few conclusions can be extracted from these equations. First, one can
observe that there is perfect anticorrelation between the OAM modes. This is what
we usually mean when we say that the collinear, nonbirefringent SPDC process
conserves OAM. Also, it can be seen that the shape of the state can be easily
changed with two parameters: the length of the crystal or width of the pump beam.
Actually, the latter is the one which is easier to continuously change experimentally.
The entanglement of OAM states represented as superposition of different product
states can be quantified in different ways. For the case of pure states, the von
Neumann entropy gives a good measure of entanglement, which in this case can
be analytically calculated (Figure 11.3).

In Mair et al. [12], the correlation between OAM modes were measured and then
the law of the conservation of OAM was derived (by using different pump beams).
In Figure 11.4 we have sketched the measurement setup and some of their results
that the authors used in their experiment. Also, found in this work is the first
indication that the OAM state produced in the crystal is actually an entangled state,
by measuring that there was also correlation between superposition of modes. The
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Figure 11.3 von Neumann entropy calcu-
lated for the state (11.4) with respect to
the pump beam width (wp). In this case
L = 30 mm and λp = 405 nm. It is shown
that the entanglement can be tuned from
zero, that is, no entanglement, to a value

close to seven, which will represent around
27 entangled modes. Note also that in
the real case, when no approximations are
made, the entanglement can never reach
zero ([19]), although it is very close to that
value.

experimental confirmation that the photons were entangled in their OAM was first
performed via a Bell test [20] and then via a tomographic measurement [21]. These
experiments were performed under an almost collinear situation, and the spatial
walk-off was minimized by using a rather large pump width.

Finally, we would like to mention that the entangled state can be further controlled
when other crystal geometries are used, which allow for noncollinear emission or
for spatial walk-off. In these cases, the OAM modes do not have perfect correlations
and new states can be generated. Nevertheless, under certain conditions (small
noncollinear angle, large pump widths, etc.), the OAM conservation rule can be
approximately fulfilled.

In the future, all these techniques will probably allow the generation of multiple
entangled photons in OAM. One of the experimental possibilities could be the use
of pulsed lasers and multipass schemes in the nonlinear crystal, simply mimicking
the successful multiphoton generation schemes in polarization entanglement.

11.4
Applications in Quantum Information

The control of the OAM state of photons can be directly used in quantum informa-
tion schemes; if nothing else, at least for proofs of principle of multidimensional
schemes. It has already been proved that for some quantum communication
schemes the use of higher dimensional states is beneficial. For example, the use



208 11 Experimental Control of the Orbital Angular Momentum of Single and Entangled Photons

0
1

2 −1−2
0 1 2 0

1
2 −1−2

0 1 2

m1 m2

Beam-
preparation

Crystal

Hologram

Monomode-
fiber

Coincidence
detection

(a)

(b)

0
1

2

0.0

0.2

0.4

0.6

0.8

1.0

−1−2
0 1 2

&

mp = −1 mp = 1mp = 0

Figure 11.4 Conservation of OAM in the
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of more dimensions in the codification of symbols allows for a higher information
density coding and, surprisingly, a higher margin of security [22, 23]. In particular,
in quantum cryptography, the use of N symbols and M codifying bases provides
better security than that obtainable with qubits and two bases. Recently, a quantum
cryptographic scheme for key distribution has been demonstrated, based on qutrits
coded in OAM [24]. Another important quantum communication task is the dis-
tribution of entanglement. Again, theoretical investigations predict that physical
systems with increasing dimensions can maintain nonclassical correlations in the
presence of more hostile noise [25, 26].

We explain below in some detail, a quantum communication scheme that will al-
low a better understanding of the potential of higher dimensional quantum systems
for practical applications. The communication task is called quantum coin tossing
and it is the quantum version of a well-known classical cryptographic protocol, first
stated by Blum [27]. In this protocol, two parties (say, the prototypical Alice and Bob)
want to share a certain codified information (the result of a coin toss). The problem
is that this ‘‘coin toss’’ should not be deciphered prior to a determined unveiling
time, thus allowing the secrecy of the toss until the parties have bet on the result.
After the bet, the result should be easily retrievable by any kind of manipulation.
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This type of protocol is at the heart of other more complicated applications, where
two partners are to realize transactions, but do not fully trust each other.

The classical solution for ‘‘coin tossing’’ is based on the computational security
of one-way functions. The mathematical proof for such a solution does not exist
and presently only relies on the technology limitations. The quantum version,
on the other hand has been proved to be able to detect if one of the partners is
cheating with a certain probability. A simplified quantum solution can be described
in the following way: (i) Alice makes the coin toss and codifies the result in a
quantum system, which is then sent to Bob. (ii) Bob bets on the result stored in
the quantum system. (iii) The result is unveiled and the two parties can check
whether the protocol was successful. This kind of protocol is based on the fact that
it is impossible to retrieve an arbitrary state of a quantum system without a priori
information. Then, when choosing the states to codify the ‘‘toss,’’ two competing
properties have to be taken into account. On one hand, the two states cannot
be completely distinguishable, that is, Bob should not be able to retrieve all the
information with a single measurement. On the other hand, the states should be
properly differentiated once the result is announced, otherwise, Alice could always
cheat and Bob would not have proper tools to discover her. These two seemingly
opposite conditions find their trade-off in this kind of protocol when using mixed
states in three dimensions [28, 29]. The use of pure states or two-dimensional states
will result in a diminished security in the protocol, meaning that either Bob or
Alice can cheat with a lower probability of being detected.

The need for three-dimensional mixed states in the optimal protocol makes the
implementation with OAM-entangled photons very convenient. As we mentioned
earlier, one possibility to codify a mixed state in one photon is to prepare an
entangled two-photon source. Then, we would probabilistically perform different
projective measurements on one of the photons, disregarding the result. This
will effectively prepare the companion photon in a mixed state. This was the
actual strategy used in the first implementation of the ‘‘quantum coin tossing’’
protocol in [30]. The authors used an SPDC source of OAM-entangled photons and
prepared the measurements onto the three-dimensional OAM states with a series of
beam-splitters and projective measurements, as explained in Section 11.2. In Figure
11.5 we show a sketch of the measurement setup and some of the results obtained.

11.5
Discussion

The above example of the ‘‘quantum coin tossing’’ experiment is very illuminating
in the sense that it shows that the new physics of the Hilbert spaces of dimensions
larger than two can be used in certain applications. The key element of the improved
security in the ‘‘quantum coin tossing’’ protocol is the different properties of
three-dimensional states as compared with two-dimensional ones. There are other
properties of higher-dimensional spaces, which are rather intriguing, like the
possibility of finding bound entanglement [31], optimization of certain quantum
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Figure 11.5 Experimental demonstration
of the quantum coin tossing. (a) Sketch of
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from A11 to A22 indicate the different pro-
jective measurements that Alice carries out.
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hologram which transforms the state into
a superposition of two modes, and a sin-
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tively preparing the photon sent to Bob in
two different mixed states. At the final step
of the protocol, Bob can measure the result-
ing state with a set of projective measure-
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on two different bases. (b) Result of an hon-
est protocol: each small square represents
one photon successfully received and mea-
sured by Bob. The outcome of the protocol
can be both parties agreeing on a ‘‘heads’’
result (white square), a ‘‘tails’’ one (black)
or a ‘‘failure’’ (red) that is, not agreeing on
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of dishonest parties or due to experimen-
tal errors. (c) Result of a protocol where
Alice was cheating: in this case, it can be
seen how the number of ‘‘failures’’ critically
increases, showing the presence of a dishon-
est party. (Please find a color version of this
figure on the color plates.)

computation operations [32], or the relationship of the von Neumann entropy,
and the degree of overlap between quantum states [33]. All these examples show
that higher-dimensional spaces inherently have new properties that need to be
explored and which could, in principle, be used for certain applications, following
the example of the cryptographic protocol described earlier.
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Encoding OAM information in photons has an important drawback in communi-
cation. This is that till date, a suitable way of reliably transmitting this information
over large distances has not been found. The use of free space channels will
only be possible over short distances or in the absence of atmospheric turbulence
which tends to destroy the spatial information of light fields. In order to avoid this
problem, important improvements in adaptative optics technology are required.
Also, commercial optical fibers are not suitable for the transmission of spatial
information. For short distances, one could, in principle, use specially designed
fibers which allow for the transmission of a finite number of spatial modes.

On the other hand, owing to its ease of preparation and control, OAM states
are very useful for testing the properties of higher-dimensional spaces. Also, other
interesting possibilities of OAM states lie in the interface between quantum optics
and nanophotonics, owing to their relation to the electromagnetic multipolar
modes [7]. Controlling the OAM of photons could also lead to improved quantum
metrology schemes.

11.6
Conclusion

In this chapter, we have tried to give a more detailed introduction to the experimental
techniques of controlling the OAM of photons. We have reviewed the relation of
the paraxial OAM modes with other sets of solutions of the electromagnetic field,
showing the link between OAM and the total angular momentum of the light
field. Then, we have described some of the techniques to control the OAM state
of single and entangled photons. Finally, we have ended with the description of
some applications and the possibilities of using the OAM of photons to study new
physical phenomena.
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12
Rotating Atoms with Light
Kristian Helmerson and William D. Phillips

12.1
Introduction

An overarching theme of twentieth-century physics has been the control of matter
at the atomic level. The arrival of quantum mechanics enabled a fundamental
understanding of atomic structure and with it came the control of the internal
states of an atom through the interaction with electromagnetic radiation. This
understanding led to the development of the laser, which in turn afforded control
over the translational states of atoms. The development of techniques, over the last
decades of the twentieth century, to cool and trap atoms with lasers is testimony
to the level of control that researchers now have over atoms. The reduction of the
thermal motion of atoms has been exploited to build more accurate atomic clocks
and realize new states of matter, such as Bose–Einstein condensates (BECs). While
the ‘‘tools’’ to manipulate the linear momentum of atoms are now well established,
such direct control over the center-of-mass rotational states of atoms (as opposed
to their internal angular momentum states) has only recently been realized [1, 2].

In this chapter, we explain the techniques developed for manipulating and
observing the rotational states of atoms using lasers beams that carry orbital
angular momentum (OAM). We also describe applications of these techniques
for generating and studying persistent currents in a superfluid atomic gas con-
fined in a ring-shaped container. We do not cover the theoretical details of the
interaction of atoms with light carrying OAM, except to provide equations, as nec-
essary, to describe the underlying physics. Details about such interactions can be
found in [3–5].

12.2
Orbital Angular Momentum of Light

Light, in addition to carrying linear momentum, also carries two kinds of angular
momentum: Internal or spin angular momentum associated with its polarization
and external or orbital angular momentum (OAM) associated with its spatial mode
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[6, 7]. A convenient basis set for paraxial laser beams that carry OAM is the set of
Laguerre–Gaussian (LG) modes (LGl

p) [8, 9]. They are characterized by two indices
l and p, where l is the winding number (the number of times the phase changes
by 2π on a closed loop around the central singularity), and p is the number of
radial nodes for radius ρ > 0. Each photon in the LGl

pmode carries lh̄ of OAM
along its direction of propagation [6]. In contrast, spin angular momentum can
only carry h̄ of angular momentum per photon. The lowest order of LG mode that
carries nonzero OAM is the LG1

0 mode, where the electric field amplitude in polar
coordinates (ρ, ϕ) at the beam waist varies as

LG1
0(ρ, ϕ) = 2√

π

1

w2
0

ρ exp
(

− ρ2

w2
0

)
exp(iϕ) (12.1)

where ϕ is the azimuthal angle and the peak-to-peak diameter is
√

2w0, where ϕ

is the azimuthal angle. This mode carries h̄ of angular momentum per photon
and has a donut-like intensity profile since the amplitude goes to zero at ρ = 0.
In general, the amplitude of an LG mode that carries nonzero OAM goes to
zero at ρ = 0 because the phase is undefined on axis (ρ = 0). Light beams with
OAM, however, have only recently been created [10, 11] and their effects on matter
investigated.

12.3
The Mechanical Effects of Light

The interaction of light with matter inevitably involves the exchange of momentum.
In the case of linear momentum, the mechanical effects of light range from comet
tails to laser cooling of atoms. The coupling of optical spin angular momentum to
atoms has been known for over a century [12] and has been verified in numerous
experiments to control the internal states of atoms. The mechanical effect of the
spin angular momentum of light on matter was first demonstrated 70 years ago
in an experiment, where the spin angular momentum of circularly polarized light
rotated a birefringent plate [13]. More recently, the circular polarization of light has
been used to rotate birefringent, micron-sized particles held in optical tweezers [14,
15]. On the other hand, spin angular momentum of light cannot be used to change
the rotational state of an atom, since it does not involve momentum exchange with
the center-of-mass of the atom.

In contrast, the OAM of light does involve an azimuthal component of the
wavevector or Poynting vector, which can couple to the center-of-mass of an object.
Such coupling has been demonstrated by the rotation of micron-sized particles held
in optical tweezers [16–18]. The coupling of OAM to atoms was first demonstrated
in an experiment by Tabosa and Petrov [19]. In this and subsequent experiments
by the same group [20], a diffraction grating corresponding to the interference of
an LG mode with a Gaussian mode was written onto a thermal cloud of atoms.
This atomic diffraction grating caused an incoming Gaussian beam to diffract
into beams carrying OAM. Another experiment [21] used the OAM of light to
create a rotating collective excitation of an atomic cloud. A subsequent Gaussian
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read-out pulse is converted to one with OAM by the reverse process. Although
these experiments demonstrate the transfer of the spatial phase of the OAM beams
to an ensemble of atoms, no direct measurement of the mechanical rotation of
the atoms was observed. The thermal motion of the atoms, even for a laser cooled
sample [19, 20], is so large compared to the coherent rotational motion of the atoms
that it is impossible to observe the rotation directly. In order to definitively observe
the mechanical rotation of atoms due to the quantized transfer of OAM from light,
the atoms need to be prepared in a nearly pure motional state. Such a cold sample
of atoms is available in an atomic Bose–Einstein condensate (BEC).

12.4
Rotating Bose–Einstein Condensates

The creation of BECs in dilute atomic vapors is one of the major triumphs of the
quest to control atoms. In addition, the creation of BECs has renewed interest in
the applications of coherent light to manipulate and control the states of atoms.
Experiments to control the external states of atoms that used thermal atomic
samples are analogous to early experiments in optics that used lamps. The creation
of a BEC of a dilute atomic gas has provided a matter wave source analogous to the
optical laser. The macroscopic occupation of the ground state of a trap by a BEC
is similar to the occupation of a single mode of an optical cavity by photons. The
atoms forming the condensate all occupy the same state in terms of their internal
and external degrees of freedom. Hence the center-of-mass motion of the atoms
in a BEC can be described by a single, macroscopic wavefunction,� = √

neiφ ,
characterized by an amplitude and phase, φ. The square of the amplitude gives the
atomic density n, and the velocity of the BEC is given by

�v = h̄

M
�∇φ (12.2)

where M is the atomic mass of the atoms in the BEC.
BECs are nearly the ideal, monochromatic atomic source for manipulation by

light, since the interaction of the atoms with an optical field typically involves
the transfer of the photon momentum to the atoms. Because of the repulsive
atom–atom interaction, which can be described by a mean field, the BEC swells
to a size significantly larger than the ground state wavefunction of the harmonic
trap confining the atoms [22]. The spatial extent of the resulting wavefunction
can be several orders of magnitude larger than the optical wavelength. Hence
the momentum width, given by the Heisenberg uncertainty principle, can be
much less than the photon’s momentum. Not all experiments will realize this
reduced and intrinsic momentum width. The interaction energy may be converted
to kinetic energy when the atoms are released from the trap. Nonetheless, the
resulting additional momentum spread, due to the atom–atom interaction, can
still be significantly less than the momentum of a single photon. Furthermore,
the momentum spread due to the repulsive interactions can be, in a certain sense,
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coherent, like the divergence imparted to a coherent laser beam by a diverging lens.
Such a divergence can be ‘‘recollimated’’ by an appropriate coherent manipulation.

The macroscopic wavefunction of the BEC implies that the atomic gas is
irrotational, since the curl of the velocity (Eq. (12.2)) is zero. Such irrotational flow
is characteristic of superfluids, where rigid body rotation is mimicked by an array
of quantized vortices [22]. Early investigations in the superfluid character of atomic
BECs prompted many proposals for generating and observing quantized vortices in
BECs. The first generation of a vortex in a BEC involved a rapidly rotating Gaussian
laser beam coupling the external motion to internal state Rabi oscillations [23, 24].
Later schemes included mechanically stirring the BEC with a focused laser beam
[25] and ‘‘phase imprinting’’ by adiabatic passage [26]. Numerous papers proposed
generating vortices in a BEC using stimulated Raman processes with LG optical
fields that carry OAM [27–31]. This technique produces a single vortex with a
chosen number of units of OAM (chosen charge). The process is fully coherent
and can produce superposition of different vortex states with determined phase.
Yet, despite the potential advantages and apparent simplicity of this approach,
generating vortex states in a BEC by the transfer of optical OAM to atoms was not
realized until 2006 [1].

12.4.1
Experiment to Transfer Orbital Angular Momentum to a BEC (∆ = 0)

Our scheme for transferring OAM of photons is based on our technique of Bragg
diffraction [32] for changing the momentum state of the BEC. It is similar in spirit
to other proposed Raman schemes [27–31], but differs (at least in the original
version of our technique [1]) in that we do not change the internal atomic states.
Instead, we change the linear momentum states of the atoms, along with the OAM
states. Our two-photon rotational Bragg scheme is shown in Figure 12.1a.

Figure 12.1b is a schematic representation of the experimental procedure used
to transfer OAM from an LG beam to the atoms in a BEC. An atom of mass M,
in the presence of counterpropagating LG1

0 and Gaussian beams (Figure 12.1b,
left and right beams, respectively) absorbs a LG1

0 photon and stimulatedly emits a
Gaussian photon, acquiring 2h̄k of linear momentum (k = 2π/λ with λ the photon
wavelength). As with resonant Bragg diffraction with two Gaussian beams, the
frequency difference between the two beams is δω = 4Er/h, with Er = (h̄k)2/2M
[32] the ‘‘recoil energy’’ or the kinetic energy change of an atom initially at rest
after the absorption of photon momentum h̄k. In addition to linear momentum
the atoms pick up the OAM difference between the two photons. The additional
energy due to the formation of a vortex is small and, for the pulse durations used
in this experiment, does not affect the resonance condition. In our experiment, the
rotational energy is in the order of 1 Hz, which is much smaller than the Fourier
width of the Bragg pulse. Therefore, choosing the frequency difference between
the two beams to satisfy the Bragg resonance condition of δω (2π × 100 kHz for
sodium) [32] is sufficient to resonantly transfer both linear momentum and OAM
to the atoms. The smallness of the vortex energy does necessitate changing either
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Figure 12.1 (a) Two-photon rotational Bragg
scheme used to couple atoms between mo-
mentum states 0 and 2h̄k, transferring OAM
in the process. (b) Schematic representation
of the experiment. Counterpropagating LG1

0
and Gaussian laser beams, with the same
linear polarization and a variable frequency
difference of δω/2π , are applied to a BEC.
(c) The atoms that have undergone the Ra-
man transitions (right cloud) have been sep-
arated from those that did not (left cloud).

A spatially localized ‘‘pump’’ beam enables
independent imaging of each cloud by ab-
sorption of a probe beam propagating along
the direction of linear momentum transfer.
(d) Absorption image of a cloud that has un-
dergone the Raman transition, taken along
the axis of the LG1

0 beam. The vortex core
is seen as a hole in the cloud. (Please find
a color version of this figure on the color
plates.)

the internal energy state of the atoms or, as we do, the linear momentum state in
order to achieve good discrimination between initial and final states of the Raman
process. If longer pulse lengths were used, it might be possible to directly induce a
rotation of the condensate without changing the internal state or transferring linear
momentum; however, such a process may be strongly suppressed since, in the
Thomas–Fermi regime [22], the rotational energy is much less than the mean-field
interaction energy. Such suppression was observed in an experiment to transfer
small amounts of linear momentum to a condensate [33].

The linear momentum transferred by Bragg diffraction can be viewed as the
result of the diffraction of atoms from a moving sinusoidal optical dipole potential
generated by the interference of the counterpropagating Gaussian beams. The
optical dipole potential generated by interference of the counterpropagating LG1

0

and Gaussian beams is not sinusoidal, but due to the radial intensity profile and the
helical phase of the LG1

0 beam, the dipole potential generated is ‘‘corkscrew’’ like.
Diffraction off this corkscrew potential produces a rotating state. This potential is
the atom optics analog of a phase hologram, and one could generate any desired
two-dimensional atomic state using a suitable hologram.

Our BEC consists of 1−2 × 106 sodium atoms in the
∣∣3S1/2, F = 1, mF = −1

〉
state, confined in a magnetic time orbiting potential (TOP) trap such that the
average characteristic size of the BEC (the Thomas–Fermi radius [22]) is ≈30 µm.
The BEC exhibits some oscillation of the center-of-mass about the minimum of the
trap due to the relaxation of the trap potential to its final value, but the momentum
associated with this oscillation is less than 0.03h̄k. A Gaussian laser beam, detuned
from the D2 line (λ = 589.0 nm) by 	 = −1.5 GHz (≈150 linewidths, enough to
prevent any significant spontaneous photon scattering) is split into two beams and
passes through separate acousto-optic modulators (AOMs) in order to control their
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frequency difference, δω. One of the beams diffracts from a blazed transmission
hologram [10, 11, 34] generating a LG1

0 mode that propagates along x. The Gaussian
beam propagates along –x. We apply these beams to the trapped atoms as a square
pulse and then turn off the trap. After 6 ms time-of-flight (TOF), we image the
released atoms by absorption of a probe beam resonant with the

∣∣3S1/2, F = 2
〉

to
∣∣3P3/2, F = 3

〉
transition. During imaging the atoms must be optically pumped

from the
∣∣3S1/2, F = 1

〉
state into the

∣∣3S1/2, F = 2
〉

state by a pump beam resonant
with the

∣∣3S1/2, F = 1
〉

to
∣∣3P3/2, F = 2

〉
transition. Atoms with momentum 2h̄k

from the Raman process will separate spatially during the TOF from atoms still at
rest (see Figure 12.1c). We use a focused pump beam spatially localized along x
to selectively image clouds of atoms in different momentum states with the probe
beam propagating along x, the axis of rotation of the LG1

0 beam. Figure 12.1d is an
image of a cloud that has undergone the rotational Bragg process, where the vortex
core is observed as a hole in the middle of the cloud.

12.4.2
Efficiency of the OAM Transfer Process

By measuring the relative number of atoms in the stationary cloud and moving
vortex cloud, we find that the optimal transfer into the rotating state happens for
δω/2π = 97.5(5)kHz.1) The difference from the expected value 4Er/h = 100 kHz
is attributed to initial motion of the BEC in the trap.

Figure 12.2a shows the transfer efficiency as a function of pulse duration for
two different Bragg detunings, δω/2π . A maximal transfer of 53% was achieved
for δω/2π = 97.5 kHz. The transfer is limited by the spatial mismatch between
the LG1

0 beam, where the intensity goes to zero in the center of the beam, and the
(inverted parabolic shape) initial BEC, where the density is peaked in the center.
A full three-dimensional, time-dependent simulation [35] based on the estimated
spatial profile of the LG1

0 beam and the BEC, shown in Figure 12.2b, predicts a
maximum transfer efficiency of 60% (Figure 12.2a, red line) and 67% (Figure 12.2a,
blue line) for δω/2π of 97.5 and 100 kHz, respectively. The simulations confirm
that because of the spatial mismatch, transfer of the entire BEC is impossible.

Other problems can arise because of the spatial mismatch between the LG
modes and the initial density profile of the BEC. The spatial intensity profile of
the LG mode, especially near the center, will result in a spatial variation of the
Rabi frequency for coupling atoms in the initial BEC state to the final (rotating)
state. The spatial variation of the Rabi frequency will result in a spatial dependence
of the transfer efficiency, as shown in Figure 12.2c. This is observed in the
experiment where maximum transfer of the atoms to the rotating state occurs at
spatial locations where the Rabi frequency times the pulse duration corresponds
to (2n + 1)π , with n = 0, 1, 2, . . . It may be possible to eliminate the concentric

1) All uncertainties reported are one standard
deviation combined statistical and system-
atic uncertainties.
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rings observed in Figure 12.2d by using adiabatic rapid passage techniques [36, 37];
however, the spatial mismatch problem is best eliminated by having a ring-shaped
BEC as the initial state.

12.5
Measuring the Rotational Motion of the Atoms

Figure 12.1d shows an image of a donut-shaped BEC corresponding to a vortex
state, due to the transfer of OAM from a LG1

0 beam to the atoms. It might be
argued, quite justifiably, that the donut-shape occurs not because the atoms are in a
vortex or rotational state, but because the coupling laser has a donut-shaped mode.
That is, there are no atoms in the middle of the cloud, because the laser intensity
is zero there and cannot transfer any atoms. Additional evidence is required to
confirm that the atoms are in a rotational or vortex state. Three methods have been
developed to measure the velocity field of a vortex state in a BEC. Two of these
methods use interferometry, while the third method measures the Doppler shift of
the moving atoms.

12.5.1
Interference of the Rotating State with a Nonrotating State

Since the velocity of the BEC is given by the gradient of the phase of the
corresponding macroscopic wavefunction (Eq. (12.2)), interferometric techniques
that measure the spatial variation of the phase of the BEC wavefunction can be used
to determine the velocity field. Interferometry requires a reference phase that the
measured phase is compared to. For most of the interferometry measurements, a
spatially and temporally constant reference phase is desirable. The initial phase of
the wavefunction of the BEC is typically spatially constant and temporally evolves
on a timescale that is inversely proportional to the mean-field or interaction energy
of the BEC [22]. Hence, the spatial phase variation of the vortex state can be
determined directly by a comparison with the phase of the initial BEC state. This
technique was used to map the phase profile of the first vortex produced in an
atomic BEC [23]. In that experiment, a vortex state of atoms in one hyperfine
state was created by a spatio-temporally varying, coherent coupling to a BEC of
rubidium atoms in another hyperfine state. The atoms in the BEC that did not
undergo transfer to the vortex state were subsequently interfered with the atoms in
the vortex state using a spatially uniform, coherent coupling pulse.

In order to measure the spatial phase profile of our vortex state, we perform
a similar interferometric measurement [23], but couple atoms in different linear
momentum state rather than in different hyperfine states. A first pulse, consisting
of a LG1

0 beam at ω + δω and a counterpropagating Gaussian beam at ω (LG1
0/G

pulse) transfers some of the atoms to a state with linear momentum 2h̄k and
OAM + h̄. Before the atoms with 2h̄k of linear momentum have moved any
significant distance, a second pulse, where the LG1

0 beam is replaced by a Gaussian
beam at ω + δω, is applied to the atoms. This pair of Gaussian beams (G/G
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pulse) couples the similar two linear momenta states (p = 0 and 2h̄k), but without
changing the OAM. Figure 12.2b is an image of the 2h̄k cloud from the two-pulse
sequence. The off-centered hole results from the interference between a state
rotating with OAM h̄ and a nonrotating state. The off-centered hole is expected for
a h̄ vortex state, which has a 2π phase winding, since at some location the phase
of the vortex state is opposite to the phase of the reference BEC state and the two
clouds of atoms will destructively interfere at that location. Thus the direction in
which the hole is displaced is determined by the local phase difference between the
two interfering states. (Such an interference pattern was also demonstrated in [23]
and used to map the phase of a vortex state.)

Because stimulated Raman processes are coherent, we expect the relative quan-
tum phase between the rotating and nonrotating states to be set by the relative
phases of the laser beams used. We verified this with the same two-pulse experi-
ment, but additionally interfered the LG1

0 beam at ω + δω with the copropagating
Gaussian beam, also at ω + δω, on a CCD camera to measure the relative optical
phase between the two beams, thereby determining the relative phase between the
corkscrew and the sinusoidal diffractive structures generating the two interfering
clouds. (Both pulses use the same counterpropagating Gaussian beam, so this
common phase difference drops out.) In Figure 12.3d the measured phase of the
atomic interference is plotted as a function of the measured optical phase, for
18 consecutive realizations of the experiment. They are correlated, as expected,
even though the optical phase is measured 10 ms after the diffracting pulses. (The
variation in the optical phase, mostly determined by mirror vibrations, appears to
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Figure 12.3 (a) Schematic representation of
the laser pulse sequence used to generate
and interfere the vortex state with the initial
BEC. (b) Interference of a vortex state with
h̄ of angular momentum with a stationary
state. The 2π phase winding associated with
the rotating state results in a displacement
of the hole, due to destructive interference.
(c) Calculated interference pattern between
a rotating and stationary state based on har-
monic oscillator states. (d) Angle of the hole
in the interference pattern between rotating

and nonrotating atomic states as a function
of the rotation angle of the optical interfer-
ence pattern between the LG1

0 and copropa-
gating Gaussian beams. The straight line (to
guide the eye) has slope −1. Inset: Image of
the atomic interference between a rotating
and nonrotating cloud. The hole is displaced
from the center and its angular position θ

depends on the relative phase between the
interfering states. (Please find a color version
of this figure on the color plates.)
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be sufficiently small on this short timescale.) This demonstrates that, in principle,
by controlling the relative phases of the Raman beams, atoms can be put into any
desired coherent superposition of different rotational states.

12.5.2
Interference of the Rotating State with a Counterrotating State

A coherent superposition of a rotating and counterrotating state was generated
and the resulting interference of the two states was observed (Figure 12.3b, c).
To perform this, (Figure 12.4a) a first pulse consisting of the LG1

0 beam at ω + δω

and the counterpropagating Gaussian beam at ω (LG1
0/G pulse) transferred about

20% of the atoms to a state with linear momentum 2h̄k and OAM + h̄. The same
two beams were then used in a second pulse, but with the LG1

0 beam at ω − δω, to
transfer about 40% of the remaining atoms to a state with linear momentum −2h̄k
and OAM−h̄. A third pulse, consisting of two counterpropagating Gaussian beams
(G/G pulse) at the same frequency ω was then applied. The G/G pulse is resonant
for a second order (four photon) Raman process between states with linear mo-
menta −2h̄k and +2h̄k [32]. Again, there is essentially no delay between the pulses
so that atoms with different linear momenta remain well overlapped spatially
during the pulse sequence. Figure 12.4b is an image of one of the interfering
clouds after the three pulses, and corresponds to the superposition of two clouds
with OAM ± h̄ (Figure 12.4c). Since each of the diffracted atoms has absorbed or
stimulatedly emitted one LG1

0 photon, the interference pattern confirms that each
LG1

0 photon transfers h̄ OAM to the atoms. Although interference has previously
been used to observe vortex states [23, 38, 39], this is the first interference
between independently generated, overlapping counterrotating vortex states.
(A superposition of a left- and right-circulating vortex was created simultaneously
to produce a soliton in a BEC [24, 40].)

BEC

BEC

BEC

Gaussian w Gaussian w

LG1
0 w + dw

LG1
0 w − dw Gaussian w

Gaussian w

Absorb

AbsorbEmit

Emit

(a) (b) (c)

Figure 12.4 (a) Schematic representation
of the laser pulse sequence used to gener-
ate and interfere the vortex state with an
antivortex state. (b) Interference of a vortex
state with h̄ of angular momentum with a
vortex state with −h̄ of angular momentum.
The interference of the rotating state with

the counterrotating state results in a circu-
lar standing-wave. (c) Calculated interference
pattern based on harmonic oscillator states
between a rotating state (angular momentum
h̄) with a counterrotating state (angular mo-
mentum −h̄). (Please find a color version of
this figure on the color plates.)
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12.5.3
Observation of Fork-Like Interference Structure

A related interferometry measurement involves interfering atomic clouds with
a small linear momentum difference. For two otherwise identical clouds, the
resulting interference pattern produces straight interference fringes or stripes,
analogous to the interference of two laser beams with a slight angle between them.
If one of the clouds contains a vortex state, then the resulting interference fringe
pattern contains a fork-like dislocation. The resulting interference pattern looks
similar to the diffraction gratings typically used to diffract Gaussian beams into
LG modes [10, 11]. Such an interference pattern was observed in [25] to confirm
the generation of a vortex state in a BEC by rotating the trapping potential. We
also performed a similar interference experiment by using the pulse sequence
described above for the interferometry experiment that generates the displaced
hole (Figure 12.3a), except that the laser beams for the Gaussian/Gaussian pulse
were not quite counterpropagating, as depicted in Figure 12.5a. The resulting
interference pattern (Figure 12.5b, c) shows the characteristic fork-like structure
owing to the presence of a vortex with h̄ of angular momentum in one of the clouds.

12.5.4
Measurement of the Doppler Shift of the Rotating Atoms

A third method, which measures the Doppler shift of the moving atoms, was
used to also confirm that the atoms are rotating after the transfer of OAM. This
technique, often called Bragg spectroscopy, is also based on Bragg diffraction but
uses longer pulses to achieve sufficient sensitivity to the Doppler shift to resolve
small velocity changes [32, 41]. Two counterpropagating laser beams at frequencies
ν1 = ω1/2π + 100 kHz and ν2 = ω2/2π , respectively, are used to Bragg diffract
some of the atoms to the 2h̄k linear momentum state. For sufficiently long
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Gaussian w

Gaussian w

(a) (b) (c)

Figure 12.5 (a) Schematic representation of
the laser pulse sequence used to generate
and interfere the vortex state with the initial
BEC. The second set of laser beams are not
counterpropagating (in contrast to the first
set), which results in the interfering clouds
having a relative average velocity. (b) Inter-
ference of a vortex state with h̄ of angular

momentum with a nonrotating state. The
fringes are a result of the relative velocity
between the interfering clouds, while the sin-
gularity associated with the rotating state
results in the fork-like structure. (c) Calcu-
lated interference pattern based on harmonic
oscillator states. (Please find a color version
of this figure on the color plates.)
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pulses (≈1ms) and taking 100 kHz to be the exact frequency offset for resonant
Bragg diffraction at v = 0, the Doppler resonance condition 2kv = ω1 − ω2 =
2π (ν1 − ν2) will preferentially select out atoms at velocity v along the direction of
the ν1 + 100 kHz laser beam to undergo the Bragg diffraction. For a rotating cloud
(see Figure 12.6), the relative detuning between the lasers, ν1 − ν2, will select atoms
at the location where they have the appropriate velocity component along the laser
beams to be in resonance. For ν1 >ν2, atoms in the upper half of the rotating cloud
will be more resonant for the two-photon process than those in the lower half
and vice-versa (see Figure 12.6a). We measured the number of atoms in the upper
half of the cloud Nupper minus the number in the lower half Nlower normalized to
the total number of Bragg diffracted atoms (Nupper + Nlower) as a function of laser
detuning ν1 − ν2 to obtain a Doppler profile of the rotating cloud. Such a profile is
shown in Figure 12.6b for a cloud of atoms in a ring-shaped trap, rotating with h̄
of angular momentum. The frequency difference between the two maxima of the
profile (indicated by the arrows) can then be converted to the azimuthal velocity
component of the rotating cloud using the Doppler shift equation given above.
This technique has also been used to map out the velocity field of a vortex lattice in
a rotating BEC [42].

12.6
Generating Other Rotational States of Atoms

The techniques described above are not limited to generating superpositions of
rotational states with ±h̄ of angular momentum. In this section, we describe
experiments generating vortex states of higher angular momentum and vortex
states in spinor BECs. We also describe a matter wave amplification experiment on
a vortex state.

12.6.1
Vortices of Higher Charge

The requirement that the phase of the wavefunction of the superfluid Bose gas be
continuous gives rise to the circulation in the gas being quantized in units of h̄ [22].
One manifestation of the higher circulation is the presence of vortices of higher
charge. These are vortices with an associated phase winding of ±2πn, with n > 1.
Vortices of 4π and 8π (charge 2 and 4, respectively) have been realized [26, 43] by
‘‘imprinting’’ a topological phase on a BEC. It is also possible to generate higher
charge vortices through the transfer of OAM of photons to atoms.

We generated vortices of higher charge by transferring the angular momentum
to each atom from several LG1

0 photons (see Figure 12.7a). An initial LG1
0/G pulse

with δω/2π ≈ 100 kHz transfers some of the atoms into the singly charged vortex
state with linear momentum 2h̄k. A second LG1

0/G pulse, with δω/2π ≈ 300 kHz,
transfers 80% of the atoms in the 2h̄k linear momentum state into the 4h̄k state and
gives each of the atoms an additional h̄ of OAM. The resulting state is a charged 2
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vortex, moving with linear momentum 4h̄k. Figure 12.7b is an image of this state.
The higher angular momentum of the charge 2 vortex state results in a larger core
diameter compared to the singly charged state (see Figure 12.1d).

In order to verify that the state we generated is a charged 2 vortex, we first apply
the procedure described in the previous paragraph, and then before the states
with different linear momentum have a chance to separate, we apply a third, G/G
pulse, with δω/2π ≈ 200 kHz, which couples the 0 and 4h̄k linear momentum
states via a second order (four-photon) Raman process [32]. Figure 12.7c is an
image of the 4h̄k cloud generated by the three pulses, taken after 6 ms TOF. It
corresponds to the interference between a nonrotating cloud and a cloud with
angular momentum 2h̄. Because a charge 2 vortex has a phase winding of 4π , we
expect two locations corresponding to destructive interference between the rotating
state and the nonrotating state (see Figure 12.7d). Indeed, we observe two offset
holes in the density distribution (Figure 12.7c).

Although we used a step-wise (multiphoton) process to transfer additional h̄ of
OAM per photon to the atoms, higher rotational states can also be generated by
transferring higher amounts of OAM per photon. This can be accomplished using
LG modes with higher l. This has the advantage of transferring larger amounts of
OAM for a given linear momentum transfer.

12.6.2
Rotational States of Multilevel Atomic Condensates

BECs of weakly interacting gases have been realized with various atomic species and
many of these species have multiple, ground-state sublevels. When the sublevels
are magnetic spin states, such a multicomponent system is best described as a
spinor BEC [44]. The multicomponent character of a spinor BEC can give rise to
rich topological structures such as coreless vortices and spin textures. A coreless
vortex has been generated in a spinor BEC using the topological phase ‘‘imprinting’’
technique [45] whereas spin textures have been observed in the rapid quench of a
spinor system across the BEC phase transition [46].

The transfer of OAM from photons to atoms can also be used to generate
vortices or rotational states of atoms in a spinor BEC. In an experiment with
a 87Rb BEC at the University of Rochester [47], a combination of LG1

0, LG−1
0 ,

and Gaussian beams of appropriate circular polarizations were used to couple
the ground state magnetic sublevels |F = 1, mF = −1〉 and |F = 1, mF = +1〉 via
Raman transitions. The resulting state due to the OAM transfer from the LG beams
was a coherent superposition of a vortex and antivortex in the |F = 1, mF = +1〉
magnetic sublevel. The Rochester group also applied this technique to the ground
state F = 2 manifold of 87Rb BEC to create skyrmions and half-skyrmions in a
spin-2 system [47].

An interesting aspect of the Rochester experiments is that the laser beams
were typically copropagating, which results in no net linear momentum transfer
from the Raman coupling. (This is in contrast to the experiments described
in Section 12.4, where counterpropagating beams were used that resulted in
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2h̄k of linear momentum transfer.) The selectivity of the transition between the
degenerate magnetic sublevels within a particular hyperfine manifold (F = 1 in
[48] and F = 2 in [47]) was achieved using appropriately polarized laser beams.
OAM transfer to atoms with copropagating laser beams can also be achieved
by going between internal states with sufficiently different energies. This was
first demonstrated in an 87Rb BEC at Rochester [2] using a Raman coupling
between ground state F = 2 magnetic sublevels in the presence of a 1.7 mT
bias field. The Zeeman shift due to the bias field separated adjacent sublevels by
12 MHz. The second-order (quadratic) Zeeman shift provided additional frequency
discrimination to enable coupling only between two sublevels. More recently, we
have demonstrated OAM transfer using copropagating laser beams in a sodium
BEC. In this case, the Raman coupling can be either between the ground state
F = 1 and 2 hyperfine levels, which are separated by ≈1.77 GHz, or magnetic
substates within the F = 1 hyperfine manifold with the degeneracy lifted by the
Zeeman shift in an applied magnetic field.

12.6.3
Matter wave Amplification of a Vortex State

The OAM transfer to atoms (rotational Bragg) described earlier in this chapter
can be considered as the result of a four-wave mixing process involving two optical
waves and two matter waves. The two optical waves (one with OAM) and a matter
wave (the initial BEC) interact with each other to produce the fourth wave, which
is the BEC with angular momentum. This four-wave mixing process can also
be understood microscopically. An atom in the BEC absorbs a photon from one
optical wave. Simultaneously, the second optical wave stimulates the emission
of a photon from that atom, which then by conservation of linear and angular
momentum recoils into a different translational and rotational state, corresponding
to the second matter wave. An alternative four-wave mixing process for producing
rotational states of atoms is for a matter wave to stimulate the emission of atoms
into the desired final state. Four-wave mixing to produce linear momentum states
has been demonstrated using only matter waves [49] and also two optical and
two matter waves [50]. In the latter case, an atom in one matter wave absorbs
a photon from an optical wave and then emits the photon. Simultaneously, as
the atom is emitting the photon, the second (seed) matter wave stimulates the
recoil of the atom to have the same momentum as the second matter wave. By
conservation of momentum, the emitted photon has to have momentum equal in
magnitude but opposite in direction as the recoiling atom. The net result of such
processes is the amplification of a matter wave in a particular linear momentum
state [50]. The same process can be applied to amplify a matter wave in a
rotational state.

Figure 12.8a is a schematic representation of the laser beam arrangement and
sequence for amplifying a rotational matter wave. A first pulse (Figure 12.8a, upper
image), which consists of counterpropagating LG and Gaussian beams transfers
OAM from the LG beam to a fraction of atoms in the BEC using the two-photon
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BEC
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(a) (b)

Figure 12.8 (a) Schematic representation
of the laser pulse sequence used to amplify
a vortex state generated in the initial BEC.
(b) The upper image corresponds the gen-
eration of the ‘‘seed’’ vortex state from the
initial BEC using only the LG and Gaussian
beam pulse shown in the upper image of

(a). The lower image shows the resulting
amplification of the ‘‘seed’’ vortex from the
two-pulse sequence of (a). The image on
the far right is of the amplified vortex state
taken along the direction of propagation.
(Please find a color version of this figure on
the color plates.)

Raman process described in Section 12.4.1. The upper image of Figure 12.8b
shows images of the resulting clouds of atoms taken after several milliseconds of
TOF following the application of the two-photon Raman pulse of light. The center
cloud image is of the initial BEC with zero linear momentum. The cloud image
on the right is of the atoms that have picked up the OAM of the LG beam (in
this case, h̄) along with the 2h̄k of linear momentum from the two-photon Raman
process.

In order to amplify the rotational state of atoms produced by the ‘‘seed’’ pulse, a
second ‘‘pump’’ pulse is used (Figure 12.8a, lower image). This pulse, consisting
of only a single Gaussian beam propagating in the same direction as the LG beam
in the first pulse, is applied immediately after the first pulse, before the ‘‘seed’’
atoms have moved away from the location of the initial BEC. Atoms in the initial
BEC simultaneously absorb photons from this beam and are stimulated to emit
photons and recoil into the mode defined by the ‘‘seed’’ matter wave. The result
of this two-pulse sequence can be seen in the lower images of Figure 12.8b. The
cloud of atoms on the right, corresponding to the location of the ‘‘seed’’ matter
wave has more atoms due to the amplification process. The cloud in the center (at
the location of the initial BEC) shows a corresponding reduction in the number of
atoms. The far right image in Figure 12.8b is of the amplified state, moving with 2h̄k
of linear momentum, taken along the direction of propagation. The characteristic
hole of the vortex state is apparent.

In addition to amplifying the vortex state matter wave, the four-wave mixing
process should produce an LG beam of light at frequency ω − δω propagating in
the opposite direction with opposite OAM to the vortex state. Although we did
not make an effort to detect this light, it has been detected in the experiments of
Tabosa and collaborators [19, 20] with thermal atoms (which can also be interpreted
as four-wave mixing experiments) as a signature of OAM transfer. Interestingly,
there appears to be a faint cloud of atoms to the left of the initial BEC in the
image of Figure 12.8b corresponding to the two-pulse sequence for matter wave
amplification. This cloud may be the result of off-resonant Bragg diffraction of
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atoms from the combination of the LG beam (in this case with −h̄ of OAM) at
ω − δω produced from matter wave amplification and the Gaussian ‘‘pump’’ beam
at ω.

12.7
Supercurrents

Quantized vortices are often considered a hallmark of superfluidity. Although
vortices have been generated and observed in atomic quantum degenerate gases,
the related phenomena of persistent or supercurrents have not been clearly
observed in atomic BECs. Persistent currents in superconductors correspond to
the flow of electrical current indefinitely. Similarly, persistent mass flow in either
rotating bucket experiments or in a torus-shaped container has been observed
with superfluid liquid helium. The generation of persistent currents in atomic
BEC represents a striking manifestation of macroscopic quantum phenomena,
opening the possibility for applications currently limited to superconductors, such
as SQUIDS; and liquid helium [51], such as interferometers based on Josephson
(weak-link) junctions.

12.7.1
Generation of a Supercurrent in a BEC

A vortex in a nonrotating, simply connected BEC is unstable [52]. In order to sustain
a supercurrent in a BEC, we confine the condensate in a trap where the central
region is excluded by a blue-detuned laser beam. A vortex (superfluid flow) would
then be ‘‘pinned’’ by the blue detuned laser piercing its core, since the energy cost
can be made quite high for the vortex to cross the region of high atomic density
surrounding the core. A trap for Bose–Einstein condensation based on a magnetic
quadrupole field with the zero field point ‘‘plugged’’ by a blue-detuned laser was
first demonstrated at MIT [53], and more recently at Georgia Tech [54]. In our
set-up [55], we focus the beam from a doubled YAG laser at 532 nm in the center
of our TOP trap. The laser beam has a waist of approximately 5 µm and propagates
along the weak (x) axis. Because the TOP trap is triaxial, the resulting ‘‘Mexican
hat’’ potential produced is not rotationally symmetric. Hence any normal rotational
flow generated around this potential would couple to other modes, since angular
momentum is not conserved in our trap. A superfluid, however, is expected to flow
indefinitely.

Figure 12.9a is an image of the BEC confined in the hybrid magnetic TOP and
laser trap. The density of the BEC in the center goes to zero because this region is
excluded from the blue-detuned laser beam. When the BEC is released from the
hybrid trap, the zero density region in the middle fills in due to the mean-field
expansion of the BEC [22]. This can be seen in Figure 12.9b, which is a TOF image
of the released BEC after being held in the hybrid trap for 2 s. We can apply our
Raman technique to the BEC in the hybrid trap to generate a state that is flowing
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(a) (b) (c)

Figure 12.9 (a) Image of the condensate
atoms in the hybrid magnetic TOP and
blue-detuned laser trap. The absence of
atoms in the central region is due to the
laser. (b) TOF image of the condensate
atoms released from the hybrid trap after be-
ing confined for 2 s. The interaction between
the atoms causes the cloud to spread out
and fill in the central region. (c) TOF im-
age of the condensate atoms, which were in

a vortex state about the blue-detuned laser
beam. In this case the atoms in the vortex
state were held in the hybrid trap for 2 s
before being released. The presence of the
core in the cloud of atoms after TOF indi-
cates that the atoms were still in the vortex
state when they were released from the hy-
brid trap. (Please find a color version of this
figure on the color plates.)

around the blue-detuned plug. Figure 12.9c is a TOF image of the released BEC
after being held in the hybrid trap for 2 s. In this case, the atoms were placed in
a rotational state by transferring OAM via the stimulated Raman process with LG
beams. In order to eliminate the linear momentum transferred in addition to the
OAM, we use an initial Bragg diffraction pulse to put atoms in a nonzero linear
momentum state from which they are subsequently transferred to a rotational state
with zero linear momentum. (Alternatively we could use copropagating beams
and drive transitions between different internal states in the atoms as proposed in
[27–31].)

It is evident in Figure 12.9c that even after 2 s in the asymmetric trap, the atoms
are still in a vortex state. That is, because of the superfluid nature of the condensate,
the flow of atoms around the blue-detuned plug has persisted. We have observed
persistent rotational flow of atoms around the blue-detuned laser plug for up to
13 s, a time comparable to the lifetime of the BEC at our vacuum pressures.

12.8
Conclusion

We have developed a new tool to generate arbitrary superpositions of atomic
rotational states. This tool, together with the tools for controlling linear momentum
and internal states, enables total control of an atom. We have shown that our
technique can be used to generate a supercurrent in a quantum degenerate gas of
atoms. Future applications of our technique range from generating supercurrents
of atomic vapors in large diameter ring-shaped traps [56, 57] to superposition of
macroscopic (Schrödinger cat) states [58]. Our experiments directly demonstrate
that the OAM of a photon is transferred coherently to an atom in quantized units of
h̄. The exchange of OAM between light and atoms may also be useful in quantum
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information applications [31], for example, in quantum repeaters where the flying
qubits are photons with OAM [34].
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2
Vortex Flow of Light: ‘‘Spin’’ and ‘‘Orbital’’ Flows in a Circularly
Polarized Paraxial Beam
Aleksandr Bekshaev and Mikhail Vasnetsov

2.1
Introduction

Rotational properties of light attract a steady and growing interest in current
literature in optics (see reviews in [1–6]). In general, these properties are associated
with the circulatory flows of energy in the plane orthogonal to the beam propagation
axis. One of the most impressive examples of such energy flows is represented by
the well-known ‘‘optical vortices’’ that became a key concept of a new chapter of
modern physical optics called singular optics [1]. Scalar or linearly polarized fields
are transpierced with ‘‘threads of darkness,’’ that is, curves of zero amplitude. The
wave front structure around these lines generates phase vortices with associated
energy vortices, which propagate with the beam and may emerge, annihilate, and
interact in accordance with trajectories of the zero-amplitude lines [1]. In such
situations, the local energy circulation associated with separate vortices are of
importance. In this chapter, we restrict ourselves to beams with relatively simple
configuration with (possibly) only one zero line coinciding with the propagation
axis.

The rotational characteristics of such beams are generally expressed by the
mechanical angular momentum (AM) of the optical field. The AM can be trans-
mitted to other objects, for example, microparticles [6–10]. Two sorts of AM are
commonly accepted based on the nature and origination of the considered rota-
tional properties [2, 11]. The spin AM is inherent in light beams with circular or
elliptic polarization and depends on the field vector rotations that take place in every
point of the beam cross-section; the orbital AM is attributed to the ‘‘macroscopic’’
energy circulation caused by the beam’s spatial configuration (e.g., the screw wave
front dislocations as a phase frame of optical vortices [1–5, 12]). The orbital and
spin AMs can be treated as classical as well as quantum light property [2]. Although
there exist some theoretical subtleties concerning the validity of separating the total
AM of the electromagnetic field into the spin and orbital parts in the general case
[2, 13], the notions of spin and orbital AM are suitable and physically consistent in
many practical situations.

Twisted Photons: Applications of Light with Orbital Angular Momentum.
Edited by Juan P. Torres and Lluis Torner
Copyright  2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40907-5
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2.2
Spin and Orbital Flows: General Concepts

In the last few years, considerable attention has been paid to mutual exchange
of the spin and orbital AM in the AM-carrying light beams; in particular, the
spin-to-orbital AM conversion induced by the beam transformations causing its
strong transverse inhomogeneity [14–21]. Such transformations – for example,
sharp focusing [14–18] or transmitting through small apertures [19–21] – are
always accompanied by essential deviations from the paraxial character of the beam
propagation. Under nonparaxial conditions, the unambiguous separation of the
beam AM into the spin and orbital parts is impossible [2, 13]; however, one still
can separate the contribution associated with the beam polarization state and the
contribution owing to the beam spatial inhomogeneity [11, 16, 22]. Namely, the
energy flow density (the Poynting vector time-averaged over the oscillation period)
of a monochromatic optical beam can be presented in the form

S = SC + SO (2.1)

where SC and SO are the so-called spin and orbital flow densities (spin and orbital
currents) that have recently been studied in detail [22–24]. By using the Gaussian
system of units and denoting the light velocity as c and the wave number as k, the
summands of Eq. (2.1) are represented by the expressions

SC = c

16πk
Im

[∇ × (
E∗ × E

)]
, SO = c

8πk
Im [E∗ · (∇) E] (2.2)

Here, E is the complex electric field (the true electric field strength equals
Re [E exp (−iωt)], where the oscillation frequency ω = ck), [E∗ · (∇) E] is the in-
variant Berry notation [22] of the vector differential operation that in Cartesian
coordinates reads as

[E∗ · (∇) E]j = E∗
x

∂Ex

∂ j
+ E∗

y

∂Ey

∂ j
+ E∗

z

∂Ez

∂ j

with j standing for x, y, and z. In agreement with Eqs. (2.1) and (2.2), the
electromagnetic AM of the beam with respect to a certain reference point with
radius-vector R0 can also be represented as a sum of two terms corresponding to
summands of Eq. (2.1),

L = 1

c2
Im

∫
[(R − R0) × S] d3R = LC + LO (2.3)

which can be reduced to the forms

LC = 1

8πω
Im

∫ (
E∗ × E

)
d3R,

LO = 1

8πω
Im

∫
(R − R0) × [E∗ · (∇) E] d3R (2.4)

Here, R is the radius-vector of the current point in 3D space, the integration is
performed over the whole space, and it is supposed that E → 0 rapidly enough at
|R| → ∞.
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As is seen from Eq. (2.4), the term LC, in contrast to LO, essentially involves
the vector nature of the light wave and does not depend on the position of the
reference point, whose properties it shares with the spin AM of a paraxial beam [1].
Moreover, in case of a paraxial beam propagating, say, along axis z, the expression
of LC following from Eq. (2.4) coincides with the usual spin AM definition [1, 4,
25]. Hence, it can be referred to as the nonparaxial spin AM. The similar but reverse
arguments allow the term LO to be considered as the orbital AM of a nonparaxial
beam. When a paraxial beam is tightly focused, its total AM (Eq. (2.3)) is conserved
but the initial well-defined paraxial spin and orbital AM are generally redistributed
between the nonparaxial spin and orbital AMs (Eq. (2.4)) of the focused beam. This
effect is commonly treated as the spin-to-orbital AM conversion.

In experiments, the spin and orbital AM, both in the paraxial and nonparaxial
versions, can be distinguished from each other according to the motion of particles
suspended within the field of the tested light beam. Under the spin AM action, a
particle can only rotate near its own axis, regardless of its position within the beam
cross-section, while in the optical field with orbital AM, particles shifted from the
beam axis can exhibit orbital motion around it [7–9]. Observation of such orbital
motion is the main experimental evidence that the spin-to-orbital AM conversion
takes place in strongly focused beams [15, 16].

However, this deduction loses sight of the fact that the spin AM, per se, can also
induce the orbital motion of a particle, even in the paraxial case. This conclusion
readily follows from the recent analyses of energy flows in light beams [22, 23].
In this work, we intend to accentuate this fact and demonstrate its possible
manifestations in the usual experimental approaches designed to perform optically
induced rotations (optical spanners) [7–10].

2.3
Transverse Energy Flows in Circularly Polarized Paraxial Beams

Let us consider a paraxial light beam propagating along axis z. The electric vector
distribution of this beam can be represented as [23, 24]

E = E⊥ + ezEz = exp
(
ikz

) (
u + i

k
ezdiv u

)
(2.5)

where the slowly varying vector complex amplitude u = u(x, y, z) is related to
complex amplitudes of orthogonal polarization components of the field (Eq. (2.5))
and ez is the unit vector of longitudinal direction. On the basis of circular
polarization

eσ = 1√
2

(
ex + iσey

)

(ex , ey are unit vectors of the transverse coordinates, σ = ±1 is the photon spin
number, or helicity),

u = e+1u+1 + e−1u−1 (2.6)
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uσ ≡ uσ

(
x, y, z

)
is the scalar complex amplitude of the corresponding circularly

polarized component. Note that in the component with σ = 1, the electric vector
rotates counterclockwise when seen against the beam propagation (left polarization
in the terminology of optics [26]). ‘‘Partial’’ intensity and phase distributions of
each polarization component equal

Iσ

(
x, y, z

) = c

8π

∣∣uσ

(
x, y, z

)∣∣2
(2.7)

and

ϕσ = 1

2i
ln

uσ

u∗
σ

(2.8)

The spin flow density (Eq. (2.2)) of the paraxial field (Eq. (2.5)) reduces to

SC = 1

2k
[ez × ∇ (I−1 − I+1)] = 1

2k
rot [ez (I+1 − I−1)] = 1

2k
rot (ezs3) (2.9)

[23] where s3 is the fourth Stokes parameter characterizing the degree of circular
polarization [27]. Equation (2.9) means that, although in transversely uniform
beams the circular polarization produces no macroscopic energy current [4, 28, 29],
the specific energy flow occurs in beams with inhomogeneous s3. In particular, this
flow is of circulatory character near extrema of the function s3

(
x, y

)
[23, 24].

The situation becomes especially suitable for analysis in the widespread case of
a beam with uniform circular polarization and a circular intensity profile. Then
s3 = σ Iσ and in the polar frame

r =
√

x2 + y2, φ = arctan
(
y/x

)
the corresponding spin flow (Eq. (2.9)) is expressed by the formula

SC = − σ

2k

(
−er

1

r

∂

∂φ
+ eφ

∂

∂r

)
Iσ (2.10)

where the unit vectors of polar coordinates are introduced in agreement with
equations

ex = er cos φ − eφ sin φ, ey = er sin φ + eφ cos φ

For comparison, the orbital flow density (transverse part of the second expression
(2.2)) of the same beam, in accordance with Eqs. (2.5)–(2.8), is given by the
equation [23]

SO = 1
k

Iσ∇ϕσ = 1
k

Iσ

(
eφ

1
r

∂

∂φ
+ er

∂

∂r

)
ϕσ (2.11)

For paraxial beams, it is natural to consider the AM with respect to the propagation
axis z and to characterize it by the linear density (AM per unit length of the beam)
[1, 4, 12] which is expressed by the proper modification of Eq. (2.3) [4, 23]

L′ = 1

c2
Im

∫
[r × S] d2r = 1

c2
Im

∫
Sφr2drd φ

where r is the transverse radius-vector, Sφ is the Poynting vector azimuthal
component and the integration is performed over the whole cross-section of the
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beam. With allowance for Eqs. (2.10) and (2.11), the spin and orbital AM linear
densities for a paraxial beam can be written in the well-known forms [23]

L′
C = − σ

2ωc

∫ ∞

0
r2dr

∫ 2π

0

∂Iσ

∂r
dφ = σ

ωc

∫ ∞

0
rdr

∫ 2π

0
Iσ dφ (2.12)

L′
O = 1

ωc

∫ ∞

0
rdr

∫ 2π

0
Iσ

∂ϕσ

∂φ
dφ (2.13)

(in the second Eq. (2.12), the fact that Iσ (r, φ) → 0 when r → ∞ has been
employed).

One can notice a great degree of similarity between Eqs. (2.10) and (2.11): both SC

and SO originate from the beam transverse inhomogeneity and their components
are directly related to the azimuthal and radial derivatives of the beam profile
parameters. However, while the orbital flow is mainly ‘‘produced’’ by the phase
gradient (and the variable intensity can only modify it due to factor Iσ ), the spin
flow is completely dependent on the amplitude inhomogeneity of a circularly
polarized beam. There also exists a difference in the interrelations between the
streamline patterns of SC (SO) and the spatial derivatives of the corresponding
‘‘master’’ parameter Iσ (ϕσ ): while SO is always directed along the phase gradient,
SC is orthogonal to the intensity gradient. Nevertheless, in what concerns the action
on suspended microparticles, both flows are expected to be almost equivalent,
provided the quantitative characteristics of the flow patterns are commensurate.
Now consider the detailed characterization of the spin and orbital flows in some
simple examples.

For a Gaussian beam in the waist cross-section (beam waist radius b) the intensity
(Eq. (2.7)) and phase (Eq. (2.8)) distributions appear in the forms

ϕσ = 0, Iσ = Iσ0 exp
(

− r2

b2

)
(2.14)

The wave front of this beam is flat and the orbital flow (Eq. (2.11)) vanishes; the
spin flow is determined by the last term of Eq. (2.10)

SC = −σeφ

1

2k

∂Iσ

∂r
(2.15)

which due to Eq. (2.14) gives

SC = σeφ

r

kb2
Iσ0 exp

(
− r2

b2

)
(2.16)

(in Figure 2.1 the spin flow pattern in the left-polarized beam, σ = 1, is presented).
A slightly more complicated situation occurs in Laguerre–Gaussian (LG) beams

which, along with the spin helicity (circular polarization), possess the ‘‘orbital
helicity’’ – the screw wave front dislocations giving rise to optical vortices of the
lth order (|l| > 1 is the integer azimuthal index) [2, 4, 12]. Restricting ourselves,
for simplicity, to beams with zero radial index, let us again consider the waist
cross-section where

ϕ = lφ, Iσ = 1∣∣l∣∣! Iσ0

( r

b

)2|l|
exp

(
− r2

b2

)
(2.17)
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Figure 2.1 Map of the spin flow density
of Eq. (2.16) for a left-polarized Gaussian
beam (σ = 1, polarization handedness is
shown in the upper right corner); lengths of
arrows correspond to relative flow density,
the intensity distribution and polarization
ellipses (circles) are shown in the back-
ground, the beam is viewed against the
propagation axis. (Please find a color ver-
sion of this figure on the color plates.)

The normalization constant (|l|!)−1 warrants that the beam’s total power for every l
is the same. With allowance for Eq. (2.17) the last term of Eq. (2.10) gives

SC = −eφσ Iσ0
1∣∣l∣∣!

1

kb

( r

b

)2|l|−1
(∣∣l∣∣ − r2

b2

)
exp

(
− r2

b2

)
(2.18)

and, following Eq. (2.11), the orbital flow is found to be

SO = eφIσ0
1∣∣l∣∣!

1
kb

( r

b

)2|l|−1
l exp

(
− r2

b2

)
(2.19)

These equations stipulate a simple relation between the spin and orbital flows of
the circularly polarized beams that are being considered:

SC = −σ

l

(∣∣l∣∣ − r2

b2

)
SO (l 	= 0) (2.20)

The derived dependencies are illustrated by Figure 2.2a–d. In contrast to the spin
and orbital AM densities of Eqs. (2.12) and (2.13), which usually coincide [2, 4] with
the transverse intensity distribution of circularly polarized LG beams (curves I), the
corresponding transverse energy flows (curves SC and SO) behave differently. At
any l, the circulatory energy flows vanish on the axis (r = 0); of course, far from the
axis (r → ∞), they vanish also. In the intermediate region, absolute values of the
spin and orbital flows possess extrema. The orbital flow magnitude |SO| (Eq. (2.19))
has the maximum at

r

b
=

√
2

∣∣l∣∣ − 1

2

(∣∣l∣∣ > 0
)

(2.21)

and extremum points of the spin flow density (Eq. (2.18)) satisfy the condition

( r

b

)2
= ∣∣l∣∣ + 1

4
±

√
16

∣∣l∣∣ + 1

4
(2.22)

which corresponds to maxima of |∂Iσ /∂r| on the inner and outer sides of
the bright ring of the ‘‘donut’’ mode pattern (Eq. (2.17)); at l = 0, the inner
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Figure 2.2 Radial profiles of (I) intensity
(Eq. (2.17)) in units of Iσ0, (SC) spin flow
density (Eq. (2.18)), (SO) orbital flow density
(Eq. (2.19)), and (S) total transverse flow
density (Eq. (2.24)) (all in units of Iσ0/kb),
for the circularly polarized LG beams with

zero radial index and the following sets
of parameters: (a) σ = 1, l = 0 (Gaussian
beam of Figure 2.1), (b) σ = 1, l = 1,
(c) σ = 1, l = 2, (d) σ = −1, l = 1. (Please
find a color version of this figure on the
color plates.)

extremum disappears and the only maximum of the absolute spin flow density
occurs at

r = b
/√

2 (2.23)

The expected zero spin flow takes place at the ‘‘brightest’’ line of the ring where Iσ

is maximal.
Equations (2.18) and (2.19) and Figure 2.2 show that in many cases the mag-

nitudes of spin and orbital flow densities are of the same order. Consequently,
they are expected to have similar experimental manifestations. In particular, since
the orbital flow, due to associated mechanical momentum, can force the orbital
rotation of particles [7, 8], the same effect can be caused by the spin flow. This must
be taken into account in experiments on the spin-to-orbital AM conversion [15, 16].
In real situations, it is the total transverse energy flow

S = SC + SO =
(

1 − σ

∣∣l∣∣
l

+ σ

l

r2

b2

)
SO (2.24)
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(Figure 2.2, curves marked S), with associated mechanical momentum P = S
/

c2,
that is likely to be the motivating factor for orbital rotation of the probing particles.
The spin and orbital contributions may support as well as suppress each other
(Figure 2.2). In the region r/b < l, which is the most important physically because
it contains prevailing part of the beam power, the orbital flow dominates; otherwise
(at the beam periphery) the spin contribution is more intensive.

An interesting situation occurs in the near-axis region r/b 
 1 where, due to
Eq. (2.20), absolute magnitudes of the spin and orbital flows are almost identical.
Then, if signs of l and σ coincide (i.e., handedness of the macroscopic optical
vortex of the LG beam and handedness of the circular polarization are the same),
the total transverse energy circulation is zero at small r 
 b (Figure 2.2b). That the
spin flow can be directed oppositely to the polarization handedness, seems, at first
sight, counterintuitive but can be simply explained by the ‘‘cell model’’ of the spin
flow formation [4, 29]. Formally, this follows immediately from the fact that the
spin flow handedness is determined not only by σ , but also by the sign of ∂Iσ /∂r
(Eq. (2.15)).

On the contrary, if the polarization handedness is opposite to the orbital circula-
tion, the spin and orbital flows add constructively and enable the maximum local
values of the total rotational energy flow available for circularly polarized LG beams
with given l, as is seen from Figure 2.2d, curve S.

The flow maps presented in Figure 2.3 are in full agreement with the data
of Figure 2.2d. For considered beams, the orbital flow density possesses the
same handedness in the whole cross-section (compare Figure 2.3a and curve
SO); however, the spin and the total flows may reverse. Regions of opposite
circulations in Figure 2.3b,c are separated by contours, where the relevant energy
flow constituent vanishes, corresponding to sign alterations in curves SC and S.

Note that in calculation of the full spin AM over the whole cross-section (e.g.,
by first formula (Eq. (2.12))), the ‘‘opposite’’ spin flow of the near-axis region is
compensated for by the periphery contribution where the spin flow reverses. As a

(a) (b) (c)

Figure 2.3 Maps of the (a) orbital SO,
(b) spin SC , and (c) total S transverse
energy flows in the cross-section of a
right-polarized LG beam (Eq. (2.17)) with
l = 1, σ = −1 (case of Figure 2.2d). At every
point, polarization is the same as shown

in the upper right corners; circular con-
tours in panels (b) and (c) are contours
where the corresponding flow component
vanishes. (Please find a color version of this
figure on the color plates.)
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result, the handedness of the total spin AM of the considered uniformly polarized
beam always coincides with σ , which is seen from the second Eq. (2.12) where this
compensation is ensured automatically.

2.4
Orbital Rotation without Orbital Angular Momentum

Now let us dwell upon the peculiarities of the spin flow as a factor inducing
the orbital motion of suspended particles and experimental conditions enabling
unambiguous manifestation of the spin flow. Its action would be especially
expressive in case of the Gaussian beam (Eq. (2.14)) where the orbital flow is absent.
In the most general features, the idea of the experiment does not differ much from
that devised for the orbital AM demonstration [9, 10, 15]. The tested beam falls
normally onto the cell with suspended particles which are situated off-axially with
respect to the beam axis. They experience the motive force proportional to the
local energy flow density expressed, for example, by Eqs. (2.15), (2.16), (2.18),
and (2.19). In fact, this force is directed tangentially and, if it is the only force
acting on the particles, they move centrifugally. In order to get the closed orbital
motion, some additional steps should be taken to keep the particles in a fixed
circular trajectory. In experiments with beams carrying the orbital AM, this can be
realized by special configuration of the beam itself. If it possesses a (multi-)ring-like
transverse profile (e.g., LG beam with at least one nonzero index, Bessel beam), the
particles experience the gradient force due to the optical field inhomogeneity, and
tend to be confined within rings of high or low intensity depending on their optical
properties. In studies of the spin flow, this technique is inappropriate because in
regions of the intensity extrema the spin flow vanishes (Eq. (2.15)). This forces
us to look for other solutions (Figure 2.4). For example, the cell with suspended
particles may contain a ring-like channel or cuvette of the proper mean radius
corresponding to the maximum spin flow (Figure 2.4a,b), for example, what is
dictated by Eqs. (2.22) or (2.23). In the channel, the particles are kept mechanically,
for example, due to the special shape of the cell bottom. Such a mechanical trapping
may be inconvenient because the particles’ orbital motion is hampered by friction at
the channel boundaries. Otherwise, the channel can be formed by a sort of ring-like
optical trap, for example, by an auxiliary light beam with ring-like intensity profile.
The intensity of the auxiliary field must be sufficient to form the perceptible peak
or gap in the resulting intensity distribution (on account of the driving beam whose
spin flow is analyzed); besides, the auxiliary beam should be free from additional
rotatory action (i.e., possess no orbital AM).

Interesting possibilities open up due to variable handedness of the transverse
energy circulation, as Figure 2.3c displays. This pattern means that direction of the
tangential force applied to a particle depends on its radial position so the speed and
direction of the orbital rotation can be switched by changing the driving beam radius
or the ring-like trap radius. Another expected peculiarity of the motion caused by
the spin flow is that the particles absorbing a part of the incident circularly polarized
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Ring-like traps

(a) (b)

Figure 2.4 Possible schemes of orbital mo-
tion of the absorbing suspended particles
confined in the ring-like traps within the cir-
cularly polarized field of (a) Gaussian beam
of Figure 2.1 and (b) LG beam with l = 1,
σ = −1 of Figure 2.3. Top row: diamet-
ric sections of the intensity profiles with
boundaries of the ring-like traps, bottom
row: views of the beam cross sections with
the trap traces (polarization handedness is
indicated in the upper right corners). Circles

with arrows indicate the expected orbital
motion of the trapped particles and dashed
lines in panel (b) specify locations where or-
bital motion is not excited (see the circular
contour in Figure 2.3c). Particles situated at
this contour perform only the spinning mo-
tion (shown by the arrow loops); in all other
positions the spinning motion is not shown
but is also expected in addition to the or-
bital one. (Please find a color version of this
figure on the color plates.)

light will thus be set in rotation about their own axes, in addition to the orbital
motion around the driving beam axis (Figure 2.4b). Handedness of this spinning
motion is the same over the whole cross-section of the homogeneously polarized
beam, although its rate will generally vary in accordance with the inhomogeneous
intensity.

2.5
Conclusion

The relatively simple examples of light beams with internal rotation considered
in this work illustrate the main properties and potentiality of the spin and
orbital flows in problems of optical manipulation. Even if not employed, the
spin constituent of the transverse energy circulation must be taken into account
in experiments involving the optically induced orbital rotation of microparticles.
Interesting applications of circularly polarized beams may arise from the possibility
of combining the orbital and spinning motion of the same particle. A more rich
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variety of particle motion and new possibilities of their control can be expected in
case of more complicated driving beams; for example, those with inhomogeneous
polarization. The presented analysis constitutes the starting point and outlines the
way in which these complicated cases can be studied further.

References

1. Soskin, M.S. and Vasnetsov, M.V. (2001)
Singular optics. Prog. Opt., 42, 219–276.

2. Allen, L., Padgett, M.J., and Babiker, M.
(1999) Orbital angular momentum of
light. Prog. Opt., 39, 291–372.

3. Franke-Arnold, S., Allen, L., and
Padgett, M. (2008) Advances in opti-
cal angular momentum. Laser Photon.
Rev., 2 (4), 299–313.

4. Bekshaev, A., Soskin, M., and
Vasnetsov, M. (2008) Paraxial Light
Beams with Angular Momentum, Nova
Science Publishers, New York.

5. Dennis, M.R., O’Holleran, K., and
Padgett, M.J. (2009) Singular optics:
optical vortices and polarization singu-
larities. Prog. Opt., 53, 293–364.

6. Nieminen, T.A., Higuet, J.,
Knoner, G., Loke, V.L.Y., Parkin, S.,
Singer, W., Heckenberg, N.R., and
Rubinsztein-Dunlop, H. (2006) Optically
driven micromachines: progress and
prospects. Proc. SPIE, 6038, 237–245.

7. He, H., Friese, M.E.J., Heckenberg,
N.R., and Rubinsztein-Dunlop, H.
(1995) Direct observation of transfer
of angular momentum to absorptive
particles from a laser beam with a
phase singularity. Phys. Rev. Lett., 75,
826–829.

8. Simpson, N.B., Dholakia, K., Allen, L.,
and Padgett, M.J. (1997) Mechanical
equivalence of spin and orbital angular
momentum of light: an optical spanner.
Opt. Lett., 22, 52–54.

9. O’Neil, A.T., MacVicar, I., Allen, L., and
Padgett, M.J. (2002) Intrinsic and extrin-
sic nature of the orbital angular momen-
tum of a light beam. Phys. Rev. Lett., 88,
053601.

10. Garces-Chavez, V., McGloin, D.,
Summers, M.D., Fernandez-Nieves, A.,
Spalding, G.C., Cristobal, G., and
Dholakia, K. (2004) The reconstruc-
tion of optical angular momentum

after distortion in amplitude, phase and
polarization. J. Opt. A: Pure Appl. Opt.,
6, S235–S238.

11. Jackson, J.D. (1999) Classical Electrody-
namics, 3rd edn, John Wiley & Sons,
Inc., New York.

12. Allen, L., Beijersbergen, M.V., Spreeuw,
R.J.C., and Woerdman, J.P. (1992)
Orbital angular momentum of light and
the transformation of Laguerre-Gaussian
modes. Phys. Rev. A, 45, 8185–8189.

13. Barnett, S.M. (2002) Optical angular
momentum flux. J. Opt. B: Quantum
Semiclass. Opt., 4, S1–S10.

14. Bomzon, Z., Gu, M., and Shamir, J.
(2006) Angular momentum and geomet-
rical phases in tight-focused circularly
polarized plane waves. Appl. Phys. Lett.,
89, 241104.

15. Zhao, Y., Edgar, J.S., Jeffries, G.D.M.,
McGloin, D., and Chiu, D.T. (2007)
Spin-to-orbital angular momentum con-
version in a strongly focused optical
beam. Phys. Rev. Lett., 99, 073901.

16. Nieminen, T.A., Stilgoe, A.B.,
Heckenberg, N.R., and
Rubinsztein-Dunlop, H. (2008) Angular
momentum of a strongly focused Gaus-
sian beam. J. Opt. A: Pure Appl. Opt.,
10, 115005.

17. Monteiro, P.B., Maia Neto, P.A., and
Nussenzveig, H.M. (2009) Angular mo-
mentum of focused beams: beyond the
paraxial approximation. Phys. Rev. A, 79,
033830.

18. Chen, B. and Pu, J. (2009) Tight focus-
ing of elliptically polarized vortex beams.
Appl. Opt., 48, 1288–1294.

19. Vuong, L.T., Adam, A.J.L., Brok, J.M.,
Planken, P.C.M., and Urbach, H.P.
(2010) Electromagnetic spin-orbit inter-
actions via scattering of sub-wavelength
apertures. Phys. Rev. Lett., 104, 083903.

20. Schouten, H.F., Visser, T.D., and
Lenstra, D. (2004) Optical vortices



24 2 Vortex Flow of Light: ‘‘Spin’’ and ‘‘Orbital’’ Flows in a Circularly Polarized Paraxial Beam

near sub-wavelength structures.
J. Opt. B, 6, S404–S409.

21. Schouten, H.F., Visser, T.D., Gbur, G.,
Lenstra, D., and Blok, H. (2004) Con-
nection between phase singularities and
the radiation pattern of a slit in a metal
plate. Phys. Rev. Lett., 93, 173901.

22. Berry, M. (2009) Optical currents. J. Opt.
A: Pure Appl. Opt., 11, 094001 (12 pp).

23. Bekshaev, A.Ya. and Soskin, M.S. (2007)
Transverse energy flows in vectorial
fields of paraxial beams with singulari-
ties. Opt. Commun., 271, 332–348.

24. Bekshaev, A. and Soskin, M. (2007)
Transverse energy flows in vectorial
fields of paraxial light beams. Proc.
SPIE, 6729, 67290G.

25. Berry, M.V. (1998) Paraxial beams of
spinning light. Proc. SPIE, 3487, 6–11.

26. Born, M. and Wolf, E. (1970) Principles
of Optics, 4th edn, Pergamon Press,
Oxford.

27. Shurkliff, W.A. (1962) Polarized Light,
Harvard University Press, Cambridge,
MA.

28. Allen, L. and Padgett, M.J. (2000) The
Poynting vector in Laguerre-Gaussian
beams and the interpretation of their
angular momentum density. Opt. Com-
mun., 184, 67–71.

29. Bekshaev, A.Ya. (2006) Spin angular
momentum of inhomogeneous and
transversely limited light beams. Proc.
SPIE, 6254, 56–63.



25

3
Helically Phased Beams, and Analogies with Polarization
Miles Padgett

3.1
Introduction

Helically phased beams are characterized in terms of an azimuthal phase
dependence of exp (i�θ), which implies that the beam axis is a phase singu-
larity around which the optical phase changes by 2π�. Optical realizations of such
beams have been considered at least since 1979, when Vaughan and Willets noted
the interference patterns in the output from a Krypton ion laser and by analogy
with superfluids [1], Coullet coined the phrase ‘‘optical vortex’’ [2]. Helically phased
beams were created with high purity, directly from a laser designed by Tamm and
Weiss [3] and using diffraction gratings designed by Soskin et al. [4]. However, it
was not until 1992 when Allen et al., working within Woerdman’s group, recog-
nized that helical phasefronts, and their associated azimuthal component of the
Poynting vector gave an angular momentum corresponding to �h̄ per photon [5].
This orbital angular momentum (OAM) is independent of the polarization state of
the beam and hence unrelated to the spin of individual photons. We see that the
phrase ‘‘optical vortex’’ in fact applies to the vortex of the transverse energy and
momentum flow around the singularity.

Although terms such as phase singularity, optical vortex, and OAM are often
used interchangeably, they are, of course, distinct phenomena. Within a cross
section of the field, the point of phase singularity has no intensity and hence,
carries no energy or momentum. This point is, however, surrounded by a re-
gion of higher intensity, and the helical phasefronts give rise to an azimuthal
component of the energy and momentum flow – an optical vortex [6]. This mo-
mentum flow can be expressed in terms of an OAM directed parallel to the beam
axis.

The 1992 study used cylindrical lenses to convert the Hermite–Gaussian (HG)
output of a laser into a Laguerre–Gaussian (LG) mode, which is the most obvious
example of a mode having helical phasefronts. In addition to the azimuthal index,
that is �, the radial profile is characterized by a radial index p, giving the number
of radial nodes. The operating principles of these cylindrical lens mode converters
were also detailed by the same group [7]. In essence, the astigmatic focus between
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the lenses introduces a Gouy phase that depends upon the indices, n and m, of the
incident HG mode. For an HG mode, rotated by 45◦ with respect to the lens axis,
the phasing between modes is such that the result is a perfect LG mode, where
� = n − m and p = min (m, n). Of particular interest to us here, is the recognition
that the action of the lenses was mathematically analogous to the change in phase
introduced by a waveplate for the transformation of the polarization state. The
mode converter can be designed to either transform the HG mode into an LG
mode (refer to the transformation of a linear polarization at 45◦ into circularly
polarized light by a quarter-waveplate) or reverse the handedness of an LG mode
(in analogy with a half-waveplate).

3.2
Representation of Helically Phased Beams

Polarization states are describable within a two-dimensional state space and hence,
all possible polarization states can be represented on the surface of a Bloch-sphere,
in this case, termed the Poincaré sphere. For describing polarization, the poles
of the sphere correspond to circularly polarized states and the equator to linear
states at various angles. Any polarization state can be expressed as an appropri-
ately weighted and phased superposition of right- and left-handed states, where
right- and left-handed circularly polarized light corresponds to a spin angular
momentum (SAM) of the photon of ±h̄. In contrast to the two orthogonal states
of SAM, � can take any integer value for OAM and hence the state space is
unbounded. However, for an OAM subspace described by the superposition of
any two modes, a similar sphere can still be constructed [8]. Most obviously,
this applies to the modes LG(l=+1,p=0) and LG(l=−1,p=0). Placing these modes at
the north and south poles of the sphere gives perfect HG(n=1,m=0) modes around
the equator, with an orientation depending upon longitude; that is, the relative
phase at which the two LG beams are added together. The representation can
be extended for the superposition of any pair of LG modes ±l, in which case
the beams at the equator comprise 2l petals, see Figure 3.1. Similar represen-
tations can also by applied to other beam types characterized by helical phase
fronts [9, 10]. On this Poincaré-type sphere, we see that the LG modes are
analogous to circular polarization and the HG modes analogous to linear polar-
ization. The cylindrical lens modes converters described in the previous section
give identical state transformation between these modes, as waveplates do for
polarization.

Of course this Poincaré sphere representation is limited to the description
of superpositions of two orthogonal states. For polarization states, an equivalent
representation to the Poincaré sphere are the Jones matrices, where any polarization
state is described by a two-element column-vector and any transformation of state
by a two-by-two matrix. Such a matrix approach can be extended to represent any
number of orthogonal states. Both LG(l,p)- and HG(m,n) modes are characterized in
terms of their mode order, N = � + 2p = m + n, where modes of the same order
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Figure 3.1 (a) The Poincaré sphere representation of po-
larization state. (b) An equivalent representation for beams
formed from the superposition of Laguerre–Gaussian modes
� = 2, p = 0 and � = −2, p = 0. (Please find a color version
of this figure on the color plates.)

experience the same Gouy phase and expand upon propagation at the same rate.
For a mode order N, there are N + 1 orthogonal modes that can be represented by
an N + 1 element column-vector and transformation between modes of the same
order by an N + 1 element matrix [11]. In all cases, the transformation matrices
can describe the action of mode converters as well as rotations or mirror inversion
of any mode. This analogy between modal and polarization states is pertinent to a
number of research areas.

3.3
Exploiting the Analogous Representations of Spin and Orbital Angular Momentum

3.3.1
Rotational Doppler Shifts and Geometrical Phase

In 1979, Arnold and Garetz demonstrated that a half-waveplate, spinning with
respect to a second waveplate, introduces a frequency shift to circularly polarized
light, which can be completely characterized in terms of Jones matrices [12]. In
terms of the instantaneous electric field, it is rotated by twice the angle between
it and the optic axis of the half-waveplate. For incident circular polarization,
this results in a reversal of the handedness of the transmitted light. A second
half-waveplate returns the handedness of polarization to the original sense. A
single rotation of either waveplate causes the field to undergo two additional
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rotations in the opposite direction, explaining why the observed frequency shift is
twice the rotation rate of the spinning waveplate. For a beam with circular intensity,
this rotation of the polarization is identical to a rotation of the beam itself, hence
the frequency shift �ω, can be expressed in terms of the beam rotation frequency
�, as �ω = σ� where σ = ±1 for right- and left-handed circularly polarized light
respectively.

When the polarizations transformation is traced on the surface of the Poincaré
sphere, the shift can also be interpreted in terms of an evolving geometric or
‘‘Berry’’ phase [13]. The direct analogy between polarization and modal states
was appreciated in the original work on the cylindrical lens mode converter [7]
and it was soon recognized that mode converters too, could be considered to
introduce a geometric phase change between the transmitted mode components
[14], and a corresponding frequency shift for a spinning mode converter [15].
Indeed, the geometric phases are prevalent throughout such mode transformations
[16]. Originally, the equivalent mode converter to a half-waveplate was a pair of
cylindrical lenses separated by twice their focal length; this acts to invert the incident
image about the major axis of the lenses. A more common form of the image
inverter is, however, a Dove prism that, in our case, transforms an LG mode from
+l to −l.

Creating a noncircular beam spinning about its own axis is harder than one might
imagine. Rather than rotating the polarization state with a spinning waveplate,
one now needs to rotate a complex image, without introducing any associated
translation or tilt. At optical frequencies this has proved extremely challenging,
since any mode converter based on cylindrical lenses or Dove prisms suffers from
slight misalignment. However, it is also possible to produce helically phased beams
at much longer wavelengths, where the relative mechanical precision of the various
components and their alignment is much better.

In the microwave region of the electromagnetic spectrum, helical phasefronts are
readily produced using a spiral phase plate inserted into the free-space propagating
beam [17]. It is similarly possible to fabricate lenses, prisms, waveplates, and so
on, also operating at these quasi-optical frequencies. The longer wavelength means
that standard machining tolerances are sufficient to ensure that any misalignment
is well below the wavelength of the beam and it is possible to make a rotating mode
converter that spins the transmitted beam without any significant translation or tilt.
The other advantage of these comparatively low frequencies is that rather than being
deduced from interferometric techniques, the frequency can be counted directly.

Using a pair of Dove prisms to spin a helically phased beam gives a measured
frequency shift of �ω = l� [18].

Of course, an interesting question is what happens when the beam carries both
OAM and SAM. Is the result two separate frequency shifts or do the two components
of angular momentum combine to give a shift proportional to the total angular
momentum? Plotting the instantaneous field cross section of a circularly polarized,
helically phased beam shows a

(
l + σ

)
-fold rotational symmetry, meaning that a

single rotation of the beam about its propagation axis advances or retards the phase
by

(
l + σ

)
cycles. Spinning the beam gives a frequency shift of �ω = (

l + σ
)
�,
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(a) (b)

Figure 3.2 Cross sections showing the orientation of the
electric field of circularly polarized helically phased beams.
(a) l = 3, σ = 1, revealing a l + σ = 4-fold rotational sym-
metry and (b) l = −3, σ = 1, revealing a l + σ = 2-fold rota-
tional symmetry.

where the total angular momentum of that photon is J = h̄
(
l + σ

)
(Figure 3.2).

Note that in this case, the SAM and the OAM act indistinguishably and the induced
frequency shift could be used as a direct measure of the beam’s total angular
momentum [19].

An interesting comparison between the translational and rotational Doppler
shifts is made by expressing both in terms of the linear and angular momentum
per photon as p0 = h̄k0 and J = h̄

(
l + σ

)
respectively. The translational shift can

now be written as �ω = v
(
p0/h̄

)
and the rotational shift as �ω = �

(
J/h̄

)
. For

both SAM and OAM, the energy exchange implied by the frequency shift can be
identified with the reversal of handedness and the associated azimuthal component
of the optical momentum. Rotation of the optical component against this reaction
force transfers energy to or from the transmitted beam [20].

Finally, this rotational Doppler shift should not be confused with the normal
Doppler shift seen when a body rotates about an axis, orientated to give a component
of velocity toward or away from the observer. The rotational Doppler shift arising
from the light’s angular momentum is maximal in a direction parallel to the
angular rotation vector, along which the translational shift is zero.

3.3.2
Mode Sorting using Geometric Phase

The first experiments to investigate the quantum implications of OAM were those
by Mair et al. [21]. They used the classic forked hologram to selectively couple a
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target mode into a single-mode fiber and by interchanging the hologram, they were
able to test for specific modes, one at a time. However, this is inherently lossy,
yielding efficiency that is no greater than the reciprocal of the number of states to
be tested [22]. Certainly, if the full potential of the large Hilbert space offered by
OAM is to be realized, then it is desirable to be able to measure the projection of a
single photon onto many dimensions in OAM Hilbert space simultaneously [23].

Subsequent to the work on rotational frequency shifts, Courtial recognized that
the geometric phase associated with the rotation of a helically phased beam could be
used as the basis of a mode sorter, allowing the angular momentum of individual
photons to be identified [24]. Rather than spinning the Dove prism to produce an
evolving phase and hence a frequency shift, it suffices to place Dove prisms in
the arms of a Mach–Zehnder interferometer. The relative rotation angle between
them introduces a fixed geometric phase that depends upon the index l of the
incident mode. For an angular displacement of the Dove prisms of α, the phase
shift between the arms is given by �φ = 2αl. For α = π/2, this gives a relative
phase shift of 0 for even– l and π for odd– l, resulting in even– l and odd– l beams
being coupled to different output ports. Thus, a single interferometer can be used to
separate odd and even modes with 100% efficiency. The approach can be extended
by cascading interferometers with different values of α such that, for example, the
even modes can be further separated (using α = π/4) into those modes l = 2 + 4n
and l = 4n(n = 0, ±1, ±2, . . .). A separation into N different modes requires N − 1
interferometers [25].

The same interferometric approach could be adapted to separate polarization
states, where the Dove prism would be replaced by half-waveplates – the interfer-
ometric equivalent to a polarizing beam splitter. However, as with the rotational
frequency shift, the concept can be further extended by combining Dove prisms
and half-waveplates so that the induced phase shift is given by the total angular
momentum, that is �φ = 2α

(
l + σ

)
.

Unfortunately, although the interferometric approach does show that it is, in
principle, possible to sort orbital angular momentum states with 100% efficiency,
the technical challenges of keeping multiple interferometers aligned are great. An
alternative approach that eliminates the need for precise alignment remains an
exciting opportunity for ongoing research.

Distinct from this sorting of OAM states is the switch between OAM states
by changing the spin state of the beam. These mode switchers are based on
birefringent material, whose orientation varies within the azimuthal position in
the beam such that the spatially varying geometric phase imparts a helical phase
structure to the transmitted light [26–28]. Such optical elements can be used for
both the efficient generation and measurement of angular momentum states.

3.3.3
Entanglement of Spatial Modes

Another application of the analogous representation of SAM and OAM is in
the area of the quantum entanglement of OAM states. As already mentioned,
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the first examination of the truly quantum aspects of OAM was performed by
Zeilinger et al. [21, 29]. They used forked holograms to record the correlations in
the measured OAM states of the down-converted photons (Figure 3.3). However,
correlations between parallel and orthogonal states can have a classical explanation.
The key to observing the uniquely quantum properties is that such correlations
persist in a complementary measurement basis, or more generally that partial
correlations can be observed between various superpositions of the states. In the
original work, these superpositions were measured by deliberate displacement of
the measurement axis.

The key demonstration of quantum entanglement was, of course, by Aspect et al.,
who observed the measured correlations in the polarization states of two separated
photons [30]. That quantum mechanics was both nonlocal and indescribable by
a hidden variable theory is revealed through a violation of a Bell inequality. For
a Hilbert space of two dimensions, the Bell inequality relates to the variation
in the correlation as the angle between the two measurement states is varied.
For polarization, this angle simply maps to the relative angle between the two
measurement polarizers. As one polarizer is rotated with respect to the other,
the measured correlations should vary sinusoidally. In terms of the Poincaré
sphere, this corresponds to holding one measurement state fixed on the equator
and scanning the other around the equator. In terms of OAM states, the equator
corresponds to an equally weighted superposition of right- and left-handed helically
phased beams, giving a ‘‘petal’’-type intensity distribution with 2l-fold rotational
symmetry. Changing the phase of the superposition gives a rotation of the petals.
A phase change of 2π corresponds to one rotation of the state around the equator
and the rotation of the beam by the angle between neighboring petals [31]. This
equivalent representation of polarization and helically phased beams means that
the original demonstration of a violation for polarization states can be repeated
exactly for helically phased beams both for discrete [32] and continuous [33]
variables. The directness of the analogy between SAM and OAM means that the
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robust arguments applied to polarization can be applied to helically phased beams
and spatial modes.

3.3.4
Photon Drag and the Mechanical Faraday Effect

That the speed of light is independent of the frame of reference is, of course, a
cornerstone of relativity. However, this is not the case when the refractive index of
the moving medium is no longer unity. A moving medium changes the velocity, an
effect known as photon drag or ether drag. When the medium has a velocity parallel
to the propagation direction, the ‘‘Fresnel’’ drag results in a retardation or advance
of the optical phase, which can be observed interferometrically. When the medium
has a velocity that is transverse to the propagation direction, the transmitted light
is laterally displaced. For a medium of thickness L, refractive index n, and moving
a velocity v, the lateral displacement is given by �x = (

n − l/n
)
vL/c. The analysis

and observation of this photon drag effect was extensively investigated by Jones
et al. [34–36].

A closely related effect is for rotational motion where the plane of polarization is
rotated by a spinning object through an angle �θ = (

n − l/n
)
�L/c. This rotational

effect was also investigated by Jones et al. [37, 38] and has been subsequently
referred to as a mechanical Faraday effect [39]. The rotation of a plane of linear
polarization is equivalent to a phase change between the right- and left-handed
circular polarization states, which prompts the question ‘‘what influence does a
rotating medium have on the relative phase of helically phased beams, and how
might this be observed?’’ The annular intensity cross section of OAM modes means
that the rotation drag can be analyzed as a linear drag acting at a radius vector
on the skew rays describing the mode, which gives identical expressions for the
phase change associated with both SAM and OAM (Figure 3.4). However, whereas

Ω

∆q

Ω

∆q

Figure 3.4 A spinning medium is predicted to slightly ro-
tate both the polarization state and the image of the trans-
mitted light. (Please find a color version of this figure on
the color plates.)
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the phase change between the SAM states gives a rotation of the polarization
state, the phase change between OAM states gives a rotation of the resulting
beam. Since OAM states form a complete basis set, capable of describing any
cross section, this rotation of the beam is manifested as the rotation of an image
[40]. So it would appear that a spinning window should slightly rotate the image
of any scene, through an angle �θ = (n − 1/n) �L/c [41]. This effect has been
confirmed by observing the delay of a spinning image at it is passed through a
stationary window [42], but the true observation of the rotational transformation
of an image that is observed through a spinning window remains an experimental
challenge.

3.4
Conclusions

Beyond being a convenient representation, the use of a Poincaré sphere or
Jones matrix description of helically phased beams, and hence their analogy to
polarization, gives insight into the behaviors of orbital as compared to spin angular
momentum. Mode transformations and geometrical phase both have analogous
behaviors for spin, orbital, and total angular momenta, leading to frequency shifts,
mode sorting, and quantum phenomena. Subtler than these transformations are
analogies between birefringence and optical activity, and the corresponding effects
of helically phased beams. As was recognized in the initial work on mode converters,
birefringence, which imparts a phase change between orthogonal states, is akin
to astigmatic focusing of helically phased beams. The equivalent to optical activity
is actually image rotation, a fact revealed by experiments on photon drag as light
passes through rotating or translating media.

Despite these numerous areas where SAM and OAM exhibit equivalent behavior,
there is certainly not a general equivalence. Nowhere is this distinction more appar-
ent than in the interaction of angular momentum carrying light and microscopic
objects – optical spanners. In the special case of the object being bigger than
the optical beam, partial absorption leads to an equivalent torque from both spin
and orbital components. More generally, for asymmetric scatter, or birefringently
induced polarization changes, or when the object is smaller than the optical beam,
SAM and OAM have distinct effects on particle motion. For a circularly polarized,
helically phased annular beam, a small birefringent particle falling into the ring
will experience a torque from the circular polarization, causing it to spin round
its own axis and a scattering recoil force from the helical phasefronts causing it
to orbit around the beam axis. On an atomic scale, the circular polarization can
excite a σ = ±1 Zeeman transition, whereas the helical phase fronts can induce
a complicated recoil shift of the atomic center of mass. More complicated might
be the interaction between a helically phased beam and an extended atom-like
object such a Rydberg atom or loosely bound exciton. Under these circumstances,
whether the spin and orbital components behave in an equivalent fashion remains
a point of conjecture.
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4
Trapping and Rotation of Particles in Light Fields with
Embedded Optical Vortices
Michael Mazilu and Kishan Dholakia

4.1
Introduction

Modern photonics has been at the heart of a large range of advances in the
natural sciences. One of the areas of success of photonics has been optical mi-
cromanipulation, which has sustained its importance and impact during that
time. The advent of the laser heralded a myriad of breakthroughs that have had
repercussion across all of the sciences. The light–matter interaction is at the
core of micromanipulation and has emerged as one of the key advances seen
and indeed has enabled truly groundbreaking studies: this includes the topics
of laser cooling, Bose–Einstein condensation, and – central to this chapter –
the topic of manipulating and trapping particles from the nanometric size scale
right up to the size of a single cell. We restrict ourselves here to a discus-
sion of the forces and torques upon mesoscopic particles and cells. Pertinent
to the topic of this book, we shall emphasize and explain the role of optical
vortex fields, namely Laguerre–Gaussian (LG) light modes as well as other light
fields, in optical micromanipulation. One of the key drivers of the area has been
the ability to exploit the orbital angular momentum (OAM), inherent to cer-
tain forms of these modes, as well as the shaped wave front and dark vortex
core.

The output of a laser cavity is electromagnetic fields that form solutions of
the wave equations and naturally satisfy appropriate boundary conditions. These
solutions may form a complete and orthogonal set of functions [1] and are
termed the higher modes of propagation in textbooks. Essentially, any transverse
light field distribution can be decomposed in terms of these orthogonal set of
modes. In the literature, these higher-order transverse modes are often referred
to as nonzero-order- or sculpted light fields. Such nonzero-order light fields are of
importance in optical micromanipulation as they enable forms of motion and
tailored trajectories of trapped objects that would be difficult if not impossible to
achieve with combinations of standard Gaussian fields. Light fields may impart
linear momentum to trapped objects, which is the core to understanding the basic
remit of the field of micromanipulation. It is instructive to consider how objects are
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confined and held in traditional Gaussian beams before progressing to the impact
and role of optical vortex fields.

The key point about implementing optical vortices in trapping, in particular the
LG modes, is that angular as well as linear momentum may be transferred to
trapped objects. While the origin of the linear momentum of light is established,
the angular momentum content is due to the helical or inclined wave fronts of the
field. The consequence is an unusual trajectory to the Poynting vector for the light
field: this denotes the energy flow that has an azimuthal component and this leads
to the notion of OAM [2].

The OAM takes on discrete values lh̄, where l is the azimuthal index (integer) of
the beam; in such light beams, the OAM offers itself as a useful tool in the exertion
of torques on particles on a toroidal trap by simply increasing the azimuthal index
in contrast to the optical torque arising from spin angular momentum which varies
with optical power [3] and is limited to h̄ per photon. A number of light modes may
be generated with embedded optical vortices. The most prominent for the purposes
of this chapter is the LG mode or beam although we mention others such as Bessel
and Mathieu light beams. We commence our discussion of the LG light mode with
an emphasis on their relevant parameters for optical micromanipulation. We then
progress to a theoretical discussion of optical forces and then finally describe some
of the main experimental uses of optical vortex fields for rotation and trapping of
particles.

4.2
Laguerre–Gaussian Light Beams

If we explore the topic of transverse laser modes, the circularly symmetric
Laguerre–Gaussian (LG) laser modes form a complete orthonormal basis set
for paraxial light beams. Any light field may thus be expanded and represented as
a sum of these modes with appropriate weight. An LG mode is typically described
as LGl

p, where l and p are the two integer indices that describe the mode. The
azimuthal index l is the number of complete 2π phase cycles around the mode
circumference. A given mode will have p + 1 radial modes and we typically deal
with p = 0 modes of the form of an annulus. The azimuthal index l is often referred
to as the topological charge of the optical vortex.

The azimuthal phase term exp(−ilφ) of LG modes gives rise to a well-defined
OAM of lh̄ per photon [2]. As this integer may exceed unity, the angular momentum
is greater than that associated with the spin state of the field. The azimuthal phase
term implies an inclined phasefront and an azimuthal component to the energy
flow (Poynting vector): this, thus, gives us a physical interpretation of the origin
of OAM [2, 4]. In the paraxial approximation, this form of angular momentum in
the LG beam can be decoupled from spin angular momentum arising from its
polarization state [5]. The scalar field of an LG mode u(LGp

p) of indices l and p may
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be written as

u(LGp
l ) ∝ exp

(
−ikr2z

2(z2 + z2
r )

)
exp

(−r2

ω2

)
exp

(
−i(2p + l + 1) arctan

(
z

zr

))

exp(−ilφ)(−1)p

(
r
√

2

ω

)l

Ll
p

(
2r2

ω2

)
(4.1)

where z denotes the distance from the beam waist, zr is the Rayleigh
range, k is the wave number, ω is the radius at which the Gaussian term
exp(−r2/ω2) falls to 1/e of its on-axis value, r is the radial distance, φ is the
azimuthal angle, and Ll

p is the generalized Laguerre polynomial. The term
(2p + l + 1) arctan (z/zr) is the Guoy phase of the LG mode, which will vary with the
mode indices.

In terms of optical trapping experiments, efficient generation of the LG laser
modes and other beams such as Bessel or Mathieu beams with embedded opti-
cal vortices is crucial. Intracavity generation of LG modes from within the laser
resonator cavity is possible if the cavity has a certain asymmetry [6]; however,
this is problematic in most instances and certainly in the field of optical micro-
manipulation, modes with optical vortices, such as the LG or Bessel modes, are
usually generated externally to the trapping laser. One of the first techniques of
LG mode generation made use of the output of a higher order Hermite–Gaussian
(HG) transverse mode (for example, by inserting an intracavity cross-wire) from a
laser cavity. The resultant HG mode may then be converted to an LG laser mode
using a mode converter [7]. A mode converter comprises two cylindrical lenses of
focal length f , canonically disposed with respect to one another. When placed at a
distance of

√
2f between the two cylindrical lenses, this system of lenses introduces

a Guoy phase shift of π/2 on an incident HG mode laser beam of indices m and
n and transforms it to an LG mode of indices l = (m − n) and p = min(m, n).
Notably, we may obtain a high-purity LG mode by this method, but this requires
a careful selection of the HG laser mode desired and avoidance of any undesired
astigmatism in the optical system. Such a mode of generation was used for one
of the early experiments in optical rotation with LG beams where Simpson and
colleagues rotated trapped absorptive Teflon particles in three-dimensional optical
tweezers [8].

Ideally, we would wish to take a fundamental TEM00 Gaussian beam and sculpt
the output mode and embed vortices directly within the beam profile. Diffractive
optical elements have enabled this to become a mainstream technology in recent
years. They may be dynamic or static in nature. For the case of LG beams, the
two most powerful methods are the use of a spiral phase element or the use of a
computer-generated hologram.

A spiral phase element is typically a high refractive index substrate that is
shaped into the spiral phase ramp [9, 10]. The incident Gaussian beam is not
deviated in direction but is directly converted to an LG beam. With the ad-
vances seen in recent microfabrication techniques, the spiral phase element
has been miniaturized [11, 12] and even generated in microfluidic geometries.
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A recent study fabricated the hologram in polydimethylsiloxane (PDMS) using
soft-lithography methods [13]. The exact output of the spiral plate is not a pure
LG mode but is rather a superposition of LG modes [9]. Such plates are now com-
mercially available and can result in a high conversion efficiency typically in excess
of 80%.

The computer-generated holographic generation method requires little in the
way of ‘‘fabrication process’’ as one can mathematically encode the spiral phase
with a given input field at an angle onto a computer-generated pattern. Importantly,
this may be achieved with an on-axis or off-axis hologram; the off-axis method is
useful to avoid any ‘‘zeroth-order’’ overlap and is also key in the case of broadband
vortex generation. The transmission function of the off-axis hologram T required
to generate a single-ringed (p = 0) LG beam of azimuthal order ±l may be
represented as

T = 1

2
(1 − cos(kxx ± lφ)) (4.2)

where kx defines the periodicity of the grating along the x axis, l is the azimuthal
order, and φ is tan−1(y/x). Propagation of a Gaussian beam, G(r, φ, z), through the
hologram T will yield a mathematical equation that will have three functions that
contribute to the zeroth- and the two conjugate orders. We find that the topological
orders from the two diffraction orders are equal but opposite in charges (positive
and negative).

G(r, φ, z) T = G(r, φ, z)
(

1

2
(1 − cos(kxx ± lφ))

)

= G(r, φ, z)
(

1

2
− ei(kxx±lφ) + e−i(kxx±lφ)

4

)
(4.3)

=
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1

2
G(r, φ, z) − 1

4
G(r, φ, z)ei(kxx±lφ) − 1

4
G(r, φ, z)e−i(kxx±lφ)

)

This holographic technique has gained more popularity because of the ease
and versatility of LG beam generation, and, in particular, has been used with
dynamic elements such as the spatial light modulator. This element is an array of
liquid crystal droplets that can be electrically or optically addressed and be used
to generate holograms in real time, obviating the need to swap between static
diffractive optical elements in a setup. The OAM of these light fields can be seen
by careful consideration of the helical wave fronts of an LG beam, and is related
to the azimuthal phase l seen in Eq. (4.1). The inclined helical wave front leads
to a Poynting vector that moves in a corkscrew-like manner [2]. This angular
momentum is therefore linked with the azimuthal component of the Poynting
vector as already stated.
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4.3
Origin of Optical Torques and Forces

4.3.1
Intuitive Picture of Optical Forces

The propagation of light corresponds to the flow of electromagnetic energy through
space. This flow of energy is interrupted when light is incident on a surface
of a transparent body. Indeed, some of the light gets reflected while some gets
refracted and all together the flow of energy is modified. In mechanical terms, the
variation of the optical energy flow can be seen as a force acting on the flow. This
force originates from the surface of the transparent body where light changes the
propagation direction. Because of the action–reaction principle, the force of the
surface acting on the light is equal and opposite in sign to the force of the light
field acting on the surface. This force is the optical force.

In intuitive terms, the flow of electromagnetic energy is equivalent to the
momentum of the light field. When a light beam scatters from a body, its
momentum is changed. As the total momentum of the system is conserved, the
difference between the initial and final momentum is transferred to the scattering
body (Figure 4.1), which is then subject to an optical force.

It is relatively easy to calculate the optical forces acting on the objects, which are
small in comparison to the wavelength of light. In general, the forces acting on
these objects can be decomposed into two parts that only depend on the light field
intensity distribution and its energy flow. The gradient part of the field makes the
dielectric particle seek regions of the optical beam that have the highest intensity.
Its origin is the induced electric dipole in the small particles. The second part
of optical force is the scattering force. This scattering force simply pushes small
particles in the direction of the energy flow and it is due to the overall linear
momentum transfer in an isotropic scattering case. In optical tweezers, these two
force components are arranged to counteract each other so as to form a stable
trapping position. This is the case for the trapping of microparticles in a tightly
focused laser beam. Indeed, a microparticle is pushed along the beam, in the
direction of propagation of the beam. In certain conditions the gradient force can
cancel this scattering force to create stable trapping positions.

The optical forces mentioned above correspond to the linear momentum of
the light field and its translation to forces. Another conserving quantity that is
transferred from the optical field to the scattering bodies is the angular momentum.
In classical mechanics, the angular momentum is associated with the rotational
state of a rigid body. An isolated physical system conserves its angular momentum,
meaning that its rotation continues ‘‘in the same way’’ for as long as no external
torque acts upon it. The torque τ defines the amount of rotation, with respect to a
point, induced on a body by a force F

τ = r × F (4.4)



42 4 Trapping and Rotation of Particles in Light Fields with Embedded Optical Vortices

(a)

Refraction

Incident momentum Force on particle

(b)

(c)

Figure 4.1 Optical forces arising from the conservation of
momentum. (a) Bundle of rays being reflected and refracted
by a transparent sphere. (b) Total momentum before and
after the optical interaction. (c) Refraction and reflection of
a light beam by a dielectric sphere. (Please find a color ver-
sion of this figure on the color plates.)

where r is the position vector linking the center of the rotation and the point of
application of the force.

In a similar way, the electromagnetic angular momentum of a light beam
can be defined as its ability to induce torque on an optically scattering object.
There are two distinct mechanisms through which optical torque is transported
by the electromagnetic wave. The first one is spin angular momentum that
is transmitted by the polarization of the light and interacts with birefringent
materials, for example. Indeed, a quarter-wave optical plate that converts linearly
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polarized light into circularly polarized light experiences a mechanical torque
in the process. The second transfer mechanism is OAM, which corresponds to
the locally skewed motion of the energy flow of the light beam with respect to the
average energy flow of the light beam. The OAM of light can be observed in the
case of optical micromanipulation of microparticles in LG beams, for example.

4.3.2
Angular Momentum within Geometric Optics

The most intuitive way to calculate the angular momentum of light is by considering
the momentum transfer occurring during the refraction and reflection of rays by
a dielectric particle whose size is large compared to the wavelength. Within this
approach, the change of direction of a ray corresponds to a momentum transfer to
the reflecting or refracting surface. The direction and amplitude of the momentum
transfer is given by the vectorial momentum conservation relation between each
of the rays involved (Figure 4.1). The incident, refracted, and reflected rays carry
a momentum proportional to their intensities and having a direction given by
their propagation. The difference between the incident total momentum and the
scattered one determines the force acting on the surface.

The total force acting on a large spherical particle can be calculated using simple
geometrical optical ray tracing, which involves integration of propagation of all the
rays using the below shown formula [14, 15]:

F = 1

c

∫
S

dS I(r) cos(θi)

(
ûi − Rûr − T2

N∑
k=1

Rk−1ûtk

)
(4.5)

where θi is the angle of the incident ray (Figure 4.2) with respect to the normal at
the point of incidence and the unit vectors ûi, ûr , and ûtk correspond, respectively,
to the propagation direction of the incident, reflected, and transmitted beams
where the latter takes into account k internal reflections. The coefficients T and

qiui

ur

utk

Figure 4.2 Rays reflecting and refracting from a transpar-
ent dielectric sphere. The various terms are defined in the
text. (Please find a color version of this figure on the color
plates.)
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R denote Fresnel’s transmission and reflection coefficients averaged over the two
different polarization directions. Within this ray optics picture, the total optical
force depends on the way an incident beam decomposes into its constituent rays
and amplitudes. This optical forces also give rise to a torque that can be calculated
using Eqs (4.4) and (4.5). In the case of a higher order Bessel beam, this torque
transfers OAM from the beam to the particle.

4.3.3
Paraxial Beams

The optical ray optics formula shown above delivers a good force and torque
approximation in the case of large optical particles and noninterfering beams.
Both polarization effects and angular spin transfer to particles are more difficult to
describe within this formula. To deal with these limitations one needs to take into
account the wave nature and propagation properties of the light field. Fortunately,
in most experiments, it is sufficient to consider the propagation of the beams
within the paraxial approximation. This approximation considers optical beams
that propagate along an optical axis and whose amplitude varies slowly compared to
the wavelength of the carrier wave. Here, we consider a carrier wave propagating in
the z direction defined by exp(ikzz − iωt) where kz = ω/c is the wave-vector with ω

and c representing the optical frequency and speed of light in vacuum. The paraxial
scalar field u(x, y, z) is then a solution of the paraxial equation

∂2u

∂x2
+ ∂2u

∂y2
+ 2ikz

∂u

∂z
= 0 (4.6)

The electromagnetic vector fields associated with these scalar paraxial fields depend
additionally on the polarization state of the vector field and are defined by

E = −∇V − ∂tA

= − c2

iω
∇(∇ · A) + iωA

B = ∇ × A (4.7)

where we use the vector potential A = (ax, ay, 0)u(x, y, z) exp(ikzz − iωt) and the
Lorenz gauge condition c2∇ · A + ∂tV = 0 to define the electric field E and the
magnetic flux B. These two fields are complex valued and their real part corresponds
to the real fields. The electric scalar potential denoted by V is also assumed to
oscillate at the same frequency as the carrier wave. The complex amplitudes ax

and ay correspond to the field amplitude along the x and y directions. The relative
magnitude and phase of these two amplitudes give rise to different polarization
states of light. For example, ax = iay corresponds to circularly polarized light
while ax = ay corresponds to linearly polarized light. The general case of two
different amplitudes having a phase delay between them gives rise to elliptical
polarization.

In the case of small particles, we can decompose the optical force into a gradient
and a scattering force. The gradient force simply pushes the small particles toward
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the regions of high intensity while the scattering force is related to the energy
flow and polarization of the beam. This scattering force is proportional to the
time-averaged Poynting vector given by [2, 16]

< E × H > = (|ax|2 + |ay|2)

2µ0
(iω(u∗∇u − u∇u∗) − 2ωk|u|2ẑ)

+ iω
(axa∗

y − a∗
xay)

2µ0
∇|u2| × ẑ (4.8)

where H = B/µ0 defines the magnetic field. The brackets < ·> denote the time
average over an optical cycle T = 2π/ω and ẑ is the unit vector in the z direction.
The first part of this equation is polarization independent while the second part
depends on the polarization state of the light. This term is zero for linearly polarized
light and nonzero for circularly polarized light.

Using the scattering force, we can now calculate the optical scattering torque on
a small particle in the case of an LG beam as defined by Eq. (4.1). If we consider
the torque in the direction of propagation z we have

τ · ẑ ∝ (r× < E × H >) · ẑ

∝ ωl

µ0
|u(LGp

l )|2 − ωri(axa∗
y − a∗

xay)

2µ0
∂r |u(LGp

l )|2 (4.9)

where r = √
x2 + y2 is the radial distance from the optical axis. We can now identify

the two terms in this torque component as the OAM, which is proportional to
the vortex charge, l, of the LG beam. The second term, which is polarization or
spin dependent, is zero for linearly polarized light and changes sign depending
on the handedness of the circular or elliptical polarization of the incident beam.
This term is best described through the definition of the spin in z direction,
σz = i(axa∗

y − a∗
xay). The total torque acting on a scatterer depends on the relative

sign between the vortex charge l and spin density of the light field σz. Same sign
enhances the torque while opposite sign decreases the torque on the scatterer
(Figure 4.3).

4.3.4
Maxwell’s Stress Tensor

From a fundamental perspective, the origin of the optical forces is the momentum
transfer from the optical fields to a scattering object. The ray optics approach
introduced in Section 4.3.2 takes this transfer into account by considering the
momentum transported by each ray and its change in the refraction and reflection
process. This approach breaks down when considering small objects with respect to
the wavelength. In addition, the ray optics framework cannot account for coherence,
interference, and polarization effects. The methods that we discussed in Section 3.3
are based on the paraxial approximation. Within this approximation, it is possible
to describe coherent laser beams propagating along an optical axis and displaying
only slow intensity variations over the wavelength. Beams that are tightly focused
or the interaction with objects smaller than the wavelength cannot be treated within
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this approximation without further corrections. It is specifically these cases that are
interesting in trapping, tweezing, and rotating of small particles by focused vortex
beams. To treat these cases, we need to work with the full vectorial solution of
Maxwell’s equations.

In this section, we introduce the complete definition of the electromagnetic
momentum flux. This momentum flux is described by a 3 × 3 tensor or matrix,
which when applied to the unit normal to a surface gives the vector associated
with the momentum flux per unit of area across this surface. This matrix is called
Maxwell’s stress tensor and is physically part of the energy–momentum conservation
relation. To define Maxwell’s stress tensor and the forces and torques associated
with it, we start from the time-dependent version of Maxwell’s equations and show
that its divergence gives indeed the variation of the energy flow density just as the
divergence of this flow density gives the variation of the energy density. These two
relations are the conservation relations in the absence of any scattering. Finally, we
consider the case of corresponding monochromatic waves giving rise to the optical
forces and torques for most experimental cases discussed later.

The propagation of light in vacuum is defined by Maxwell’s equations.

∇ · ε0Et = 0 (4.10)

∇ · µ0Ht = 0

∇ × Et = −µ0
∂Ht

∂t

∇ × Ht = ε0
∂Et

∂t

where Et and Ht are the electric and magnetic fields. The subscript t indicates
the time dependence of the fields. The vacuum permittivity and permeability, ε0

and µ0, define the speed of propagation of the electromagnetic waves through the
relation c = 1/

√
ε0µ0.

For electromagnetic waves in the absence of charges and currents, that is, in
vacuum, the flux of momentum density defined by Maxwell’s stress tensor σ̃ is as
follows [17]:

σ̃ = c2

2

(
2ε0Et ⊗ Et + 2µ0Ht ⊗ Ht − (ε0Et · Et + µ0Ht · Ht )̃I

)

where ⊗ corresponds to the tensor product defined by (A ⊗ B)ij = AiBj and
where Ĩij = δij is the identity tensor. Here, the indices indicate the three different
coordinate components.

To verify the conservation relation associated with Maxwell’s stress tensor, we
determine its divergence. This can be simplified into two steps. The first is

∇ · σ̃ = c2

2
∇ · (

2ε0Et ⊗ Et + 2µ0Ht ⊗ Ht − (ε0Et · Et + µ0Ht · Ht )̃I
)

= c2

2
(2ε0((∇ · Et)Et + (Et · ∇)Et) + 2µ0((∇ · Ht)Ht + (Ht · ∇)Ht)

−2ε0((Et · ∇)Et + Et × (∇ × Et))−2µ0((Ht · ∇)Ht + Ht × (∇ × Ht))
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where we use the vector calculus identities ∇ · (A ⊗ B) = (∇ · A)B + (A · ∇)B and
∇((A · B)̃I) = (A · ∇)B + (B · ∇)A + A × (∇ × B) + B × (∇ × A). In a second step,
we use Maxwell’s equations in vacuum to further simplify

∇ · σ̃ = −c2(ε0Et × (∇ × Et) + µ0Ht × (∇ × Ht))

= c2ε0µ0(Et × ∂tHt − Ht × ∂tEt)

= ∂t(Et × Ht) (4.11)

making it possible to introduce the Poynting vector S = Et × Ht where × corre-
sponds to the vector product. Physically, the Poynting vector determines the flow of
energy and its divergence corresponds to the variation of the energy density. Using
the same procedure outlined above, we can determine the conservation relation of
the energy

∇ · S + ∂tE = 0 (4.12)

where E = 1/2(ε0Et · Et + µ0Ht · Ht).
In the following, without any loss of generality, we consider monochromatic

fields of the form Et = E exp(−iωt) and Ht = H exp(−iωt), where ω is the opti-
cal frequency and E and H are complex, frequency-dependent vector fields. The
introduction of these complex vector fields greatly facilitates the discussion of circu-
larly polarized fields and their associated intrinsic angular momentum. Maxwell’s
equations for these monochromatic fields read then as

∇ · ε0E = 0

∇ · µ0H = 0

∇ × E = iωµ0H

∇ × H = −iε0ωE (4.13)

The general, time-dependent fields can be retrieved through a superposition of
the monochromatic solutions corresponding to an inverse Fourier transform of
the monochromatic field amplitudes. For monochromatic fields, Maxwell’s stress
tensor, the Poynting vector, and the energy density can be written as

σ̃ = c2

2

(
ε0(E ⊗ E∗ + E∗ ⊗ E) + µ0(H∗ ⊗ H + H ⊗ H∗) − 2ẼI

)

S = 1

2
(E × H∗ + E∗ × H)

E = 1
2

(ε0E · E∗ + µ0H · H∗)

where the asterisk corresponds to the complex conjugate. The conservation relations
of these quantities simplifies to

∇ · σ̃ = 0

∇ · S = 0 (4.14)

stating simply that for monochromatic waves, solutions of Maxwell’s equations
(Eq. (4.13)) have a time-independent energy density and energy flux density.
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4.3.5
Linear Momentum Transfer

The conservation relations (Eq. (4.14)) defined in the previous section hold true
for any linear superposition of solutions of Maxwell’s equation (Eq. (4.13)). In the
presence of any sources or scattering objects, such as charges or electric dipoles,
the conservation relations are no longer fulfilled. From the electromagnetic wave
point of view, the interference between the incident field and the scattered field is
at the origin of this loss of conservation. On the scatterer’s side, this interference
manifests itself through the transfer of linear momentum in the form of a force
acting on the scattering object.

In the following, without any loss of generality, we consider monochromatic fields
as defined by Eq. (4.13) and electric polarization of the form Pt = P exp(−iωt). In
this case, Maxwell’s equation reads as

∇ · ε0E = ∇ · P (4.15)

∇ · µ0H = 0

∇ × E = iωµ0H

∇ × H = −iε0ωE − iωP

where we can define the local electric charge density ρ = ∇ · P and the associated
current j = −iωP. This gives rise to the forces acting on the scattering object as a
function of the induced charges and currents:

∇ · σ + ∂tS = 1

2
(ρE∗ + ρ∗E + µ0j∗ × H + µ0j × H∗)

where we recognize the Coulomb and Lorentz force.
It is also possible to express the total momentum transfer to the scattering object

by integrating the momentum flux density on a surface surrounding the object.
This total optical force is given by [18, 19]

< F > = 1

2

∫
S
σ(p) · ndS (4.16)

= R

(∫
S
(ε0E · n)E∗ + µ0(H · n)H∗ − 1

2
(ε0E · E∗ + µ0H · H∗)ndS

)

(4.17)

where S and dS are the surface and element of the surface surrounding the particle.
The unit vector n corresponds to the normal pointing outward from this surface.
The brackets < · > denote the time average over an optical cycle T = 2π/ω and R()
to the real part of a complex number.
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4.3.6
Angular Momentum Transfer

Similar to the definition of a torque by Eq. (4.4), we can introduce a flux density of
the angular momentum by considering the following tensor:

σ
(a)
ij = εiklσjkxl (4.18)

where εikl is the Levi-Civita totally antisymmetric pseudotensor of third rank defined
by εijk = sgn(i − j)sgn(j − k)sgn(k − i) with the function sgn representing the sign
function. The vector (x1, x2, x3) = r = (x, y, z) describes the position vector with
respect to the point around which the angular momentum is determined. This
pseudotensor corresponds to the vector product at tensor level and is equivalent
to the definition given by Jackson [17]. As a consequence of this definition, the
divergence of the angular momentum tensor is intrinsically linked to the divergence
of the linear momentum tensor. Indeed, we have

∇ · σ(a) = r × ∇ · σ (4.19)

where we used the symmetry property of the linear momentum tensor σjk = σkj.
This relation shows that when the linear momentum is divergence free the angular
momentum tensor is also divergence free. This means that if there is no linear
momentum transfer to a small particle, then there is no angular momentum
transfer.

As with the linear angular momentum, we can define a time-averaged angular
momentum transfer to a scattering object. This gives rise to a total torque with
respect to the origin of the coordinates system, given by

< Γ > = 1

2

∫
S
σ(a) · ndS

= R

(∫
S
(ε0E · n)(r × E∗) + µ0(H · n)(r × H∗)

−1
2

(ε0E · E∗ + µ0H · H∗)(r × n)dS

)
(4.20)

which can be decomposed into an orbital and a spin angular momentum in the
following way:

< Γ > = r× < F >+ < Γ s > (4.21)

The OAM, the first term in Eq. (4.21), corresponds to the torque due to the total
linear momentum. The extrinsic spin angular momentum, the second term, gives
rise to the rotation of the scattering object around its axis.

4.3.7
Polarization Spin Momentum

Contrary to the extrinsic spin angular momentum, which arises from the inhomo-
geneity of the optical linear momentum, the intrinsic spin momentum arises as a
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result of a local torque originating in the polarization state of the light [5, 20]. Its
density and flux are associated with the difference between the intensity of the left
and right polarized light fields. These are defined as

S(s) = ic(ε0E × E∗ + µ0H∗ × H)

E(s) = i

c
(H · E∗ − E · H∗) (4.22)

where E(s) is the spin energy of the electromagnetic wave while S(s) its optical flux.
In vacuum, these two quantities are related through a conservation relation [21]. In
the presence of an optical scatterer that changes the polarization state of the light
field this is no longer true. We can deduce the total spin transfer by considering
the spin flux across a surface surrounding the particle in the same way as for the
momentum transfer in Eq. (4.16).

4.4
Optical Vortex Fields for the Rotation of Trapped Particles

4.4.1
Studies of Rotation of Trapped Objects using Optical Vortex Fields

Rotation of trapped particles has been a topic of immense interest over the last 15
years. This interest has been generated from a number of quarters and has resulted
in numerous experiments being performed using rotating light patterns, spin
angular momentum and OAM transfer to the trapped particles, and asymmetrical
scattering. In this chapter, all these experiments are not reviewed, we rather
concentrate on the results of experiments where light fields with optical vortices
have played a dominant role. The reason for initiating the rotation particles may
differ in several respects: first, quantifying and understanding the manner of
rotation is central to a deeper understanding of the angular momentum of light
per se and its very nature. The trapped particles may map out the spin angular
momentum and OAM of a light field. Rotating a particle also leads to potentially
interesting applications in the domain of microfluidics. Here, there is interest in
pumping very small volumes of fluid as well as looking at local measurements
of viscosity: this is a key requirement in biological applications. By applying a
torque from an incident light field, spinning an object and recording the maximal
rotational velocity, and equating the torque with the maximal torque from the
rotational Stokes drag, we may determine local viscosity. Typically, to date, such
studies have been achieved using the spin angular momentum of a light field.

Optical forces, as we have seen, will readily localize a particle of higher re-
fractive index than its surroundings close to the beam focus position. A number
of mechanisms may transfer angular momentum from a light field to a trapped
particle. The first experiments to explore particle rotation through OAM transfer
from an optical vortex field explored transfer of OAM from LG beams to absorp-
tive particles. Upon absorption, a transfer of OAM occurred and resulted in a
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mechanical torque exerted by the LG beam by transfer of its OAM to an absorptive
microparticle [3, 8, 22, 23]. The first experiment by He and colleagues [22] trapped
absorptive copper oxide particles in two dimensions and set them into rotation
using holographically created LG modes: in fact, this experiment constituted one
of the first implementations of holographic optical trapping. Trapped particles in
two dimensions were set into rotation and the researchers showed that the rotation
rate was not a consequence of any asymmetric scattering. The particle was seen to
rotate in the opposite sense by reversing the helicity of the 2π azimuthal phase of
the trapping beam. In a related work, Simpson and coworkers [8] used a cylindrical
lens mode converter to generate a trapping beam of LG modes of single order
in the near-infrared. Similar to He et al.’s work, absorptive objects were set to
rotate in this study, but in this case three-dimensional trapping was seen. The
studies experimentally decoupled the spin angular momentum of light from the
OAM of light. The spin angular momentum either added to or subtracted from
the OAM and by manual adjustment of a waveplate, a ‘‘stop–start’’ rotation of
the particle was seen. In analogous but separate studies, Friese et al. [3] achieved
results using holographically generated LG modes of azimuthal index l = 3. In
these experiments, in the 1990s, that exploited these LG modes, the particles used
were optically absorptive, which was perhaps the simplest way to ensure OAM
transfer. Absorption is typically avoided for biological applications, but such works
clearly showed the physical properties of light fields with spin angular momentum
and OAM.

The very nature of the angular momentum of light can be understood more deeply
by examining the motion of particles trapped off axis in optical tweezers created with
a vortex light field. Importantly, one may associate certain features of the motion as
resulting from distinct contributions of the spin angular momentum and OAM of
the light beam. In turn, this allows a distinction to be made between the intrinsic
and extrinsic aspects of the angular momentum of light. This study showed that one
could actually transfer OAM onto transparent dielectric particles simply by scatter-
ing off the inclined wave fronts [24]. The spin angular momentum of a light beam is
always noted as intrinsic. Essentially, the z component of the OAM can be described
as intrinsic only if the z direction is defined such that the transverse momentum
integrated over the whole beam is zero. In contrast, the OAM can be extrinsic or in-
trinsic. Particles were placed off axis within the circumference of the LG beams and
were seen to show differing forms of motion based on whether they were respond-
ing to the spin or orbital component of the light field. In turn, this gives insight into
the intrinsic and extrinsic nature of spin angular momentum and OAM. Observing
both the intrinsic and extrinsic nature of angular momentum simultaneously on
a single particle was achieved in 2003 [25]. In this study a birefringent particle was
placed in a circularly polarized high azimuthal order Bessel light field. Bessel beams
have been of interest for several decades since their identification in the 1980s [26].
These are solutions to the Helmholtz equation that are propagation invariant and
thus ‘‘nondiffracting’’ over a given region. While experimentally they do offer such
intriguing properties, their transverse profile is a set of concentric rings with a
maximum or minimum at beam center so we do compromise by distributing the
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power equally between the rings. Zeroth-order Bessel modes have been used for
creating optical guides and conveyor belts and optical binding. For our discussion,
we restrict ourselves to high-order Bessel modes that possess an on-axis vortex.
Bessel modes may be created holographically or by the use of diffractive elements
known as axicons [27]. In the Garces-Chavez et al. study, the authors showed that
the rotation rate due to spin was inversely proportional to ring radius within which
the particle resides, whereas the orbital rotation rate was inversely proportional
to the cube of the ring radius. This study showed that a trapped particle could, in
principle, be used to map out the angular momentum content of the light field.
The high-order Bessel light beam also plays an important role in demonstrating the
rotation of low-index particles due to OAM. In this case, particles were held in the
dark rings of the beam profile and gained through scattering performed in a circular
motion. Azimuthal intensity variations were seen not to be as important as the
case for high-index particles in this study [15]. A separate study by Volke-Sepulveda
et al. considered particle rotation for particles trapped in a high-order Bessel beam
[28]. Volke-Sepulveda and colleagues explored transfer of OAM by scattering to
dielectric particles in such a field (Figure 4.4). Rotation was observed as expected,
varying linearly with power and in accordance with the sense of helicity of the
embedded vortex. An important facet of this study was the fact that it was one of
the very first studies to bring a theoretical model (using ray optics) together with
such experiments to present quantified rotation rates for the trapped objects.

Exploring the total angular momentum transfer to trapped objects was the subject
of studies by Parkin et al. [29]. They described how to determine the total angular
momentum, both spin and orbital, transferred to a particle trapped in optical
tweezers. An LG beam with an azimuthal index of 2 with varying degrees of circular
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Figure 4.4 (a) The first frame shows the
second-order Bessel beam used to trap 3 µm
spheres in its rings. The rest of the frames
show the trapped spheres rotating in the
anticlockwise direction. To see the rotation
one sphere in the second ring is highlighted

by an arrow. (b) Average period of rotation
in the inner ring as a function of the total
power of the beam (Reprinted with permis-
sion from [28].  (2002) by IOP Publishing.)
(Please find a color version of this figure on
the color plates.)
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polarization was used to trap and rotate an elongated particle with a well-defined
geometry. The method successfully estimates the total optical torque applied to the
particle if one assumes negligible absorption. More quantitative work by Zhao et al.
modeled the forces in an optical vortex trap explicitly accounting for the diffraction
of the strongly localized beam and the spherical aberration introduced by the
dielectric interface. A multidipole approximation for force calculations agreed well
with experimental measurements, for particle displacement of smaller than the
radius of the particle [30]. The same team studied the optical spin-to-orbital angular
momentum conversion that may occur in a homogeneous and isotropic medium.
The studies of this conversion in a tightly focused beam trapping metallic particles
showed that the orbital rotation speeds of trapped particles are altered because of
this conversion [31]. Curtis and Grier explored [32] the focusing of optical vortex
fields that create optical traps. Their studies showed a surprising dependency of
the vortex structure and angular momentum flux on the azimuthal index of the
trapping light. In fact, they found that the annular radius of the beam scaled
linearly with the topological charge (Figure 4.5), which was not expected, and they
explored the period of rotation versus the azimuthal index of the LG beam.

If we generalize the ‘‘nondiffracting’’ beam concept, we find that the Mathieu
beam represents a more general family of ‘‘nondiffracting’’ modes that may also
possess OAM. In fact, in general, they present an elliptical form with a nonuniform
intensity variation around the ring. Helical Mathieu beams are fundamental
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Figure 4.5 Radius of the first vortex ring as a function of
the vortex charge. Experimental data points are represented
by circles and the dashed lines show theoretical mode.
Inset: Azimuthally averaged intensity of the beam (Reprinted
with permission from [32].  (2003) by American Physical
Society.)
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‘‘nondiffracting’’ beams, which are solutions of Helmholtz equation in elliptical
cylindrical coordinates. The beams are mathematically described by a linear
superposition of products of radial and angular Mathieu functions. In contrast
to Bessel beams, however, the OAM density of Mathieu beams is not independent
of the azimuthal coordinate but it varies with the elliptic angular coordinate of the
beam. In 2006, Lopez-Mariscal and colleagues showed how to use such modes to ro-
tate particles [33]. In this case, the mechanism for transfer was again scattering and
one could see particle motion around the ring. Interestingly, a competition occurred
between the intensity variation and the inclined wave front that drove the particle
around the beam circumference, meaning that a nonuniform velocity was recorded
for particle motion. The authors saw the transfer of OAM to trapped particles in
the azimuthally asymmetric transverse intensity distribution of a helical Mathieu
beam. The average rotation rate, instantaneous angular displacement, and terminal
velocity of the trapped particles were recorded. They saw that the angular depen-
dence of these parameters agreed well with the variation of the optical gradient
force, the transfer of OAM from the Mathieu, beam and the Stokes drag force.

Turning back to LG modes, Jesacher and colleagues explored trapped particles
held at an air–water surface [34]. These were seen to orbit in a reverse direction
with respect to the OAM of the light field. The observation was explained by two
factors: asymmetric particle shape and confinement of the particle at the 2D air–
water interface. The experiment showed the effect of the particle shape on the
momentum transfer, which is overlooked to some extent in most studies.

Tao and colleagues [35] showed the use of optical vortex beams with fractional
topological charges, namely fractional optical vortex beams, to rotate trapped
particles. Analogous to the vortex beams with integer topological charges, the
fractional optical vortex beams are also capable of rotating particles induced by the
transfer of OAM. However, a fractional beam of this type typically shows an intensity
discontinuity (low intensity gap) around the beam circumference. In contrast to
integer LG beam rotation as described, this may significantly hinder the smooth
orbital rotation of the particle. The OAM and radial gap of the fractional vortex
beams were exploited in the work to guide and transport microscopic particles.

The scattered light from trapped particles within a vortex field is interesting.
Studies by Lee et al. explored the far-field diffraction of arrays of trapped particles
placed in an optical vortex trapping field [36]. Optically trapped microparticles
within such a monochromatic LG beam led to the formation of unique intensity
patterns in the far field. This was attributed to multiple interference of the forward
scattered light from each particle. Trapped colloids create far-field interference
patterns with distinct spiral features that are directly correlated to the helicity of the
LG beam. Using two trapped particles, the authors showed the first microscopic
version of Young’s slit-type experiment to detect the azimuthal phase variation
around a singly charged LG trapping beam.

Trapping of metallic nanoparticles may be considered in the intermediate
regime between atom trapping and tweezing of micron-sized dielectric beads.
Compared to micron-sized dielectric beads, optical tweezing of very small particles
poses a significant challenge, as the force necessary to trap, namely the gradient
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force, decreases with polarizability (directly proportional to particle volume) for
fixed material. Intriguingly, metal nanoparticles exhibit substantially increased
polarizability when compared to their equivalently sized dielectric counterparts.
In turn, this means we can tweeze metallic nanoparticles more readily than
nanometric-sized dielectric particles, though, of course, we must not forget the
complex refractive index of such particles. This implies absorption by the particles,
which can lead to significant heating. In 2008, a study by Dienerowitz et al. [37]
showed the confinement and transfer of OAM from the LG beam to 100 nm gold
nanoparticles. These particles were in fact restricted to the dark vortex core of the
LG beam at 514 nm just below the plasmon resonance of the particles. They were
seen to rotate around the beam propagation axis and the sense of nanoparticle
rotation remains consistent with the handedness of the LG beam used. In this
manner, the transfer of OAM of the beam to the particle was observed. These
are the smallest particles to date set into rotation by OAM transfer. The particle
rotation rate showed a linear increase with respect to laser power, with a maximum
rate of 3.6 Hz at 110 mW. We found a linear dependence of the rotation rate on
power of about 33 Hz W−1. These results imply that the scattering force is the
dominant interaction mechanism between the laser beam and gold nanoparticle,
as OAM is typically transferred by scattering. If we now turn to larger metallic
particles, scattering may dominate, meaning they are again expelled from the dark
region. In general, Rayleigh particles (tens of nanometers in diameter) have been
trapped in three dimensions as scattering is comparable to the dielectric case.
Studies by O’Neil and Padgett [38] showed that amalgamations of micron-sized
metal particles are restricted to an annular region below the beam focus but outside
the high-intensity annular region of the LG trapping mode. OAM was seen to
induce a bulk motion of the particle around the LG beam propagation axis. The
speed and sense of this rotation was confirmed to be due to the OAM with no
contribution from the spin angular momentum state of the trapping beam.

Until very recently, studies of OAM transfer to particles have been restricted to
monochromatic trapping beams. Two recent studies extended this to look at rotation
of particles in broadband white light vortex fields. In a broader context, white light
trapping has begun to be of importance for simultaneous studies of trapping and
spectroscopy with applications in aqueous and aerosol samples. The interest of
using white light vortices was to extend these works to see the potential relevance
of coherence and to show that broadband optical vortices still retained the OAM.
In fact, as one might expect, the spatial coherence is the crucial aspect to retain the
azimuthal phase variation around the beam profile. The temporal coherence here
does not play a major role but does confirm that, indeed, all wavelengths may be
encoded with equivalent azimuthal phase variations and subsequently transfer this
to trapped objects. Studies by Wright et al. [39] showed this with a light source with
a 125 nm bandwidth. A plot of the rotation rate for three particles orbiting around
the beam axis versus l/r3 showed a linear dependence where r is the measured
radius of the annular ring and l is the azimuthal mode index.

The other simultaneous study by Morris et al. [40] showed quantitative veri-
fication of the rotation rate using a light source with a bandwidth in excess of
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Figure 4.6 Three 1 µm spheres are optically
trapped in the first bright annular ring of
the focal spot of supercontinuum LG beam
(l = 3, p = 0). The rotation rate is repre-
sented as a function of the incident power.

The inset shows the trapped spheres and
the tracking reconstruction (Reprinted with
permission from [49].) (Please find a color
version of this figure on the color plates.)

200 nm (Figure 4.6). The numerical modeling explored the electromagnetic linear
and angular momentum transfer between the supercontinuum light field and the
trapped microparticles in the beam path. This momentum transfer was evaluated
using the conservation relation involving Maxwell’s stress tensor and its asso-
ciated angular momentum tensor. A variety of studies and detailed comparison
with theory were presented, including the rotation rate directly related to the
azimuthal index and power respectively. Broadband light sources for tweezers is
a relatively new area and potentially offers trapping combined with spectroscopy
and has been used in a variety of studies. In the context of optical vortices, these
studies pave the way for more elaborate experiments where the spatial coher-
ence of light and its influence on the OAM content of a vortex field may be
explored.

4.5
Optical Vortex Fields for Advanced Optical Manipulation

While the OAM content of LG beams with vortices have been a key to rotation of
particles, it is important to note that their very profile itself is of importance for a
number of studies in optical trapping. Thus, it is not solely their phase structure
that has been of interest but their annular intensity profile as well.

Optical trapping and its physical explanation show that we are reliant on the
particle having a higher refractive index than its surroundings. However, this is
not always the case. Low-index particles may be found in numerous chemical
and biological applications and as one might suspect are in fact repelled from
the regions of high light intensity and thus need to be ‘‘caged’’ by light. In 1970
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Arthur Ashkin first observed that low refractive index particles are repelled from
the high-intensity region of light, while high refractive index particles are drawn
into the trap [41]. Building upon this study, he used a high-order mode laser field
(TEM∗

01) to optically levitate low-index glass sphere against gravity [42, 43].
Such tweezers provide the ability to manipulate low refractive index microparti-

cles: all higher-order LG beams (p = 0, l > 1) possess a smooth annular intensity
profile that should allow a low-index particle to be restricted to the dark vortex core.
Indeed, this was confirmed by the experiments of Gahagan and Swartzlander [44]
who held 20 µm sized hollow spheres and in subsequent studies [45] held both low-
and high-index particles in a tweezers geometry. Interestingly, in other studies at
approximately the same time, it was realized that the LG beam should offer further
improvement in standard optical tweezers, that is, trapping high-index particles.
The presence of the vortex should potentially lead to an improvement in the axial
confinement: If we consider a Gaussian beam, we see that light coming straight
through the center of back aperture of the objective leads to axial scattering forces
that act against the gradient forces to destabilize the trap. If the radius of the
trapped microparticle is comparable to or greater than the size of the beam waist
of the LG beam, high refractive index particles can also be tweezed with an LG
beam but will experience a much lower on-axis light scattering force compared to
the use of a Gaussian beam because of the LG beam profile. We measured force
constants and resonant frequencies for 1–4 µm diameter polystyrene spheres in a
single-beam gradient trap using the measurements of backscattered light [46]. This
reduces the on-axis scattering force exerted along the axial direction as shown by
Simpson et al. [47].

Light fields possessing optical vortices allow for the manipulation of droplets
where the refractive indices of most liquids are smaller than their surrounding
medium. For selective mixing of droplets and motion of droplets, we need careful
positioning of the droplets. Illuminating a spiral phase plate creates an on-axis
vortex with a uniform annular intensity profile encircling the vortex. Lee et al. [48]
used this but then intentionally misaligned the plate in a direction orthogonal to
the beam propagation direction. This allows for an efficient formation of a stable
asymmetrical optical light pattern which may be considered as an off-axis vortex
beam. By rotating the spiral plate around the beam axis, a rotating off-axis optical
vortex beam was also formed. The beam was used for optical rotation and steering
of both high- and low-index particles. In 2007, Lorenz et al. [49] adapted these
principles and used two such ‘‘displaced’’ LG (optical vortex) beams to controllably
fuse two aqueous droplets. This displacement action gradually diminishes the
overall annular ring intensity pattern into ‘‘crescent-shaped’’ intensity pattern.
In Figure 4.7, we see a vortex-trap-induced fusion of two aqueous droplets in
acetophenone.

Further studies by the same group showed the shrinkage and re-expansion of
individual femtoliter-volume aqueous droplets that were suspended in an organic
medium and held in an optical vortex trap. A change in the volume of aqueous
droplets translates into a change in concentration of the dissolved species within the
droplets so this may open up further research into chemical processes susceptible
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(a)

(c)

(e)

(b)

(d)

(f)

Figure 4.7 Repulsion of two aqueous droplets in a dual
vortex trap. (a–d) The two droplets are brought together
without overlapping the vortex beams. (e and f) Further
overlapping of the vortex beams gives rise to a repulsive
force and one of the droplets escapes. The scale bar rep-
resents 10 µm [49].

to concentration, such as macromolecular crowding and protein nucleation and
crystallization [50].

It is not just droplets that may be manipulated with optical vortex fields.
Ultrasound contrast agent is a low-index material and of use for controlled cavitation
for possible targeted drug delivery. It may be trapped in the dark core of the vortex
and used in combination with exposure to ultrasound for microbubble cavitation
and subsequent drug delivery. Such methods for ultrasound agent selection and
‘‘sonoporation’’ were demonstrated by Prentice et al. and Garbin et al. [51–53].

When we move toward flow in micron-sized channels, fluid flow can be laminar
as viscosity dominates over inertia. Methods to induce rapid direction changes
within flow channels to control flow or mixing processes of different species
of particles or different fluids are of interest in these low Reynolds number
environments. Microrheology is thus a key area that may benefit from controlled
spinning of optically trapped objects, thereby becoming an important consideration
for such studies [54–56]. As mentioned earlier, rotating optically trapped particles
also holds immense promise for microrheology where the rotational stokes drag
reaches equilibrium with spin angular momentum (circularly polarized fields)
rotating a birefringent object permitting a local measurement of viscosity [57]
with only picoliter volume of liquid [58]. We do not restrict ourselves to spherical
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particles as photopolymerized structures [59], which may be set into rotation by
asymmetric scattering. Micropumps may be created by simultaneously trapping
and rotating the microspheres held by multiple optical tweezers created by
acousto-optic modulators [60]. The optical angular momentum of light, be it spin
or orbital, can induce controlled torques to trapped particles to generate a rotational
motion. Notably, optical torques can be imparted onto particles with the OAM
of the LG beams through the mechanisms of scattering or absorption. In terms
of applications, optical vortex fields in the form of LG beams too can be extended
to the generation of optically driven pumps: Ladavac and Grier [61] exploited
holographically created rows of alternating single-ringed LG beams of very high
azimuthal index (l = ±21) to trap and rotate large numbers of microspheres to
generate fluid flow. By pushing particles toward the water–air interfaces (away
from a hard surface), Jesacher et al. [34] observed high rotation rates of particles
trapped in holographic optical vortex traps and also demonstrated interactive
particle flow steering with arrays of optical vortex pumps. Interestingly, recent work
has explored ways to integrate the optical elements required to generate optical
OAM and optical vortices into a microdevice. This should permit the rotation
of either naturally occurring microparticles or specially fabricated rotors. In the
study of Knoner et al. [62] two photon photopolymerization was used to fabricate
microscopic diffractive optical elements, customized to a wavelength of choice,
which may be integrated with micromachines in microfluidic devices. This enables
one to have miniaturized diffractive elements to spin particles in sample chambers.

Applying and controlling a small amount of torque on biological particles, that
is, cells or chromosomes, often requires that the beams be tailored to the shape of
the biological particles. Orientation of particles with optical traps is also a desirable
quantity in this respect, and thus in some instances even light fields that have
engineered shapes but rotate themselves can be of interest. With higher-order laser
modes, Sato et al. [63] have demonstrated that the HG modes are capable of rotating
elongated biological particles. Optical vortices offer a possibility to apply optical
torques onto different types of microparticles. Paterson et al. [64] used interfering
LG beams with either plane waves or with other LG beams as an alternative beam
shaping technique to create rotating light patterns. Chromosomes were controllably
oriented and spun by controlled adjustment of the relative optical path length in
the LG beam interferometer. Interfering two LG beams of equal but opposite sign
azimuthal index can be used to generate an annular array of spots that again may
be rotated with careful adjustment of the relative path length between the two
arms of the interferometer. Such interferometric patterns can create and rotate
three-dimensional cubic structures [65]. Applying the angular Doppler technique
to create a frequency shift between the interfering beams, the trapped particle can
be spun at a high frequency [66].

The inclined wave front and the annular intensity pattern of an LG beam forms
may create an ‘‘ideal’’ toroidal optical trap with a given driving force. In the broader
context, a constant driving force along any toroidal optical trap can demonstrate
interesting behavior [67–69]. Faucheux et al. [68], in their study, used a spinning
single-beam trap and saw three different regimes for the particle motion. For small
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tweezers velocity that was less then 100 µm s−1, the particle was trapped due to the
optical forces that moved with the beam. For velocities between 100 µm s−1 and
3 mm s−1, the particle was lost from the trap but recaptured as the single-beam
tweezers came around again. In the case of large tweezers velocities (larger then
3 mm s−1), the particle diffused around the ‘‘time-averaged’’ annular beam profile
but was confined in the radial direction. These observations were interpreted using
a model based on the corresponding Fokker–Planck equation. In a more recent
experiment, Lutz et al. [70] explored up to three particles in a toroidal trap. As a
consequence of hydrodynamic interactions, the particles first go through a transient
regime and then enter a characteristic limit cycle. Further studies explored how
the collective motion of these interacting microparticles changed when a sawtooth
potential is applied to the constant driving force. Sawtooth potentials are an
important component for the studies of thermal ratchets, which have relevance
to the operation of biological motors. Hydrodynamics studies showed that the
two-particle clusters exhibit a surprising caterpillar-like motion, which allowed
them to surmount the optical potential barriers.

Roichman et al. made use of a high-order LG beam (l = 50 and 80) and observed
the motion of circulating particles in the vortex fields. The particles experienced the
same fixed optical intensity pattern, and addition of a small amount of disorder to
the system resulted in periodic driving with ‘‘strong kicks.’’ The authors showed that
this led to a model microscopic system for studying disorder-induced transitions
to chaos [71]. Lee and Grier [72] explored a trapped colloidal sphere placed in
a corrugated annular field consisting of two opposite (but equal in magnitude
charge) optical vortex fields whose interference creates an azimuthally modulated
annular trap. The particle dynamics shows it alternating between free motion
around the ‘‘corrugated’’ optical vortex (a washboard type potential) and being held
in a given local potential energy minima. Fluctuations of velocity were shown to
be characterized by a linear Einstein-like diffusion law, but best described by an
effective diffusion coefficient for the particle that is enhanced in excess of two
orders of magnitude with that expected due to the intermittent trapping, a rather
surprising result.

4.6
Conclusions

Light fields with embedded optical vortices have become very important for a host of
studies in optical manipulation. In this chapter, we have given an overview of some
of the major experiments and theoretical underpinning that has brought this topic
to the fore for various researchers over the last two decades in the field of optical
micromanipulation of biological and colloidal material. Light fields with embedded
vortices have shed light on the OAM of light and enabled the ability to manipulate
low-index particles and look at interesting particle dynamics. Undoubtedly, light
fields with vortices will play a significant role in micromanipulation for a long time
to come.
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5
Optical Torques in Liquid Crystals
Enrico Santamato and Bruno Piccirillo

The interaction between light and liquid crystals (LCs) has been intensely studied
for several decades and is still the subject of several applied and fundamen-
tal researches. No doubt the great popularity of liquid crystals is largely owed
to their very specific electro-optical properties, which have gained growing im-
portance in information technology. Let us consider for instance, liquid crystal
displays (LCDs), at present, the leading technology in the information display
industry. The electro-optical properties of LCs have also been used to produce
photonic devices such as laser beam steering, variable optical attenuators, vari-
able retardation waveplates, tunable-focus lenses, and spatial light modulators
(SLMs).

LCs are fluids made up of organic molecules with a specific, anisometric shape,
with an arrangement exhibiting a degree of long-range order. The most typical are
rod-like molecules or rod-like molecular aggregates (Figure 5.1), which give rise
to conventional nematic and smectic phases. Nematic liquid crystals (NLCs) are
characterized only by long-range orientational order. The axes of the molecules
locally share a common average direction – specified by a unit vector n called
molecular director – and the centers of mass of the molecules are randomly spread
over space. Smectic liquid crystals (SLCs), on the other hand, are characterized by
both the orientational order and a degree of positional order.

The orientational order occurring in LC results in the anisotropy of mechanical,
electrical, magnetic, and optical properties [1, 2]. In a sense, LCs, or mesophases,
combine the properties of a solid crystal and those of an anisotropic liquid,
resulting in very specific optical phenomena, having no counterparts in solids or in
isotropic liquids. In what follows we consider only nematic mesophases. NLCs are
birefringent and locally uniaxial, the director being coincident with the direction of
the optical axis. Most of the specific LC optical effects must be traced back to the
reorientation of the director in the macroscopic volume of the material under the
influence of an external field or the flow of the liquid. The possibility of reorienting
LCs by applying static magnetic or electric fields was known since a long time [3].
The director n reorients in a static electric (magnetic) field under the action of a
dielectric (diamagnetic) torque, which is proportional to the dielectric (diamagnetic)
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Figure 5.1 Schematic representation of the
nematic phase. (Please find a color version
of this figure on the color plates.)

anisotropy �ε = ε‖ − ε⊥ (�χ = χ‖ − χ⊥). The corresponding contribution gE to
the density of the nematic free energy is [1]

gE = −D · E
8π

= − ε⊥E2

8π
− �ε (E · n)2

8π
(5.1)

that is, the director n tends to be aligned along the field, n ‖ E, if �ε > 0 and
perpendicular to n, n ⊥ E, if �ε < 0. Analogous expressions and comments
hold for magnetic field – induced reorientation as well. Therefore, the molecular
reorientation, in a sufficiently slow variation of the external electric (or magnetic)
fields, originates as a result of anisotropic electrical properties of the medium,
whereas the dynamics of the process depend on both the viscoelastic properties of
the mesophase and the initial orientation of the director with respect to the external
field. The optical properties of the medium and, in particular, its local optical
anisotropy change as a consequence of the molecular reorientation – occurring
either locally or throughout the whole sample – and underlie all the known
electro-optical effects. In general, the action of an external electric or magnetic
field may be described in terms of a torque acting on the molecular director of
the medium. The instantaneous orientation of the molecular director is ultimately
determined by the balance of both the external torques and internal viscoelastic
torques (overdamped motion). The general expressions for the external magnetic
and electrical torques, respectively, are

τm = 1
4

B × H = �χ (n · H) (n × H)

τe = 1

4
D × E = �ε (n · E) (n × E) (5.2)

In order to realize the operation of the reorientation mechanism, let us consider
a nematic film, whose director has been prepared beforehand with an alignment
parallel to the film surface (uniform or planar alignment), via a suitable substrate
coating. Let us suppose now to apply an electric (or magnetic field) along a direction
perpendicular to the film surface and consequently it is perpendicular also to the
molecular director in the initial configuration. The electrical (or magnetic) torque
in Eq. (5.2) tends to enhance any fluctuation of n off the initial axis, provided that
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the dielectric (or diamagnetic) anisotropy is positive. However, only if the applied
field is higher than a critical threshold value Ec (or Hc), the surface anchoring forces
are overcome by the external field and a director distribution becomes stable with a
distortion toward the external field. The extent to which reorientation occurs turns
to be a function of the applied field strength. The destabilization of the undistorted
state via a static magnetic or electric field, having a strength higher than a critical
threshold value, is referred to as Fréedericksz transition [3].

NLCs may be reoriented also by the optical field of a laser beam, and an
optical counterpart of the Fréedericksz transition also exists. The reorientation with
optical fields was discovered only in 1980 by Zel’dovich and Tabiryan [4] and by
Zolot’ko et al. [5] and later quantitatively discussed by Durbin et al. in 1981 [6]. The
laser-induced reorientation may be described in terms of an optical torque, in a
similar way as its static counterpart. It represents the main contribution to the
third-order nonlinearity of LCs, and the effect appears in the form of a refractive
index change δn proportional to the laser intensity I. Actually, even with moderate
laser intensities, the effect can be so large that δn is no longer linear in I, but
appears as a complex nonlinear function of I. It has been largely clarified that
molecular correlation is the reason behind the strong reorientation effect [7]. The
electronic response certainly also contributes to the third-order nonlinearity of LCs
[8–10], but it is not expected to be larger than those of other organic molecules
with delocalized electrons.

The existence of a characteristic threshold laser intensity, below which no
molecular reorientation can be induced, was demonstrated both theoretically [4]
and experimentally [5] in the case of linearly polarized light incident onto an LC
initially aligned perpendicular to the film surfaces (homeotropic alignment). The
underlying physical mechanism of such an effect, known as the optical Fréedericksz
transition (OFT), is essentially the same as in the corresponding dc Fréedericksz
transition. The geometry dictates, in fact, that the polarization of the light beam
remains linear in traversing the cell, even with molecular reorientation. There are
a number of other dc Fréedericksz transitions with different geometries to which
an optical analog can be found. In most cases, however, the underlying physical
mechanisms of the dc- and optical-field-induced transitions are deeply different,
since the beam polarization, as well as the azimuthal structure of the beam
transverse wave front, indeed change in the propagation through the medium. This
amounts to say that, in some geometries, the optically induced reorientation takes
place through an exchange of both spin angular momentum (SAM) and orbital
angular momentum (OAM) between the medium and the photons in the optical
fields.

In this chapter, we focus our attention exactly on the problem of OAM and
SAM transfer from photons to LCs in nonlinear processes. This ability will be
recognized to be the distinctive feature of nonlinear optics of LCs. In the following
sections, we discuss in some details the optical reorientation in LCs and put
special emphasis on the geometries in which the optical reorientation is associated
to an SAM and/or OAM transfer from the radiation to the medium. Later, we
describe, in general, the processes of angular momentum exchange in terms of
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the balance among OAM flux, SAM flux, and the momentum flux internal to
the fluid. It will be recognized that OAM and SAM, as a matter of facts, act on
distinct degrees of freedom in the liquid crystalline fluid. This result reflects onto
the possibility of separating OAM and SAM contributions to the total angular
momentum of photons also beyond the paraxial approximation. Some of the
most relevant dynamical effects observed in the presence of OAM transfer are
reviewed. In many cases, the OAM transfer is combined to an SAM transfer from
radiation to matter. In such a sense, a suitably reoriented nematic film behaves
as an SAM-to-OAM converter. The spin-to-orbital conversion (STOC) observed
and described in the literature could be exploited, in future, to realize all-optical
tunable converters to be used together with or alternatively to the recently invented
q-plates [11–13], to implement OAM technology for quantum optics and optical
communications.

5.1
The Optical Reorientation and the Photon Angular Momentum Flux

The laser field can affect the LC molecular orientation in two ways, that is,
modifying the orientational distribution (as represented by the orientational order
parameter) and changing the direction of average orientation (specified by the
director). The former is the only mechanism operating if LCs are in the isotropic
liquid phase. The latter dominates in the LC mesophases and is the subject
of the present discussion. In the mesophases, molecules are highly correlated
and the applied field can no longer affect the correlation significantly. It is,
however, easy for the field to alter the average direction n of orientation of
the correlated molecules. This is similar to the case of ferromagnets where
the magnetization direction is altered by an applied magnetic field. Director
reorientation is the mechanism leading to the so-called giant optical nonlinearity
observed in transparent LC mesophases [7]. Changes in the refractive index as large
as 0.001–0.1 can be obtained with a laser intensity of several hundreds of watts
per square centimeter. Unfortunately, the strong molecular correlation responsible
for the giant nonlinearity also leads to a very slow response time, on the order of
milliseconds to seconds.

In this section we aim at explaining the actual mechanism through which an
optical field may change the original molecular alignment (as represented by
the director orientation) imposed on the medium by the boundary conditions
through molecular anchoring at the surfaces. In NLC mesophases, each volume
element dV , located at a position r at a time t, is characterized not only by a
mass ρ(r, t), as in conventional isotropic fluid, but also by the orientation of
the molecular director n(r, t), representing, as above stated, the common average
direction of the molecules contained inside dV (Figure 5.1). LCs, therefore, exhibit
clearly distinguishable orbital and intrinsic degrees of freedom. Strictly speaking,
molecular reorientation refers to the rotation of the director n(r, t) in the fixed
volume element dV , which is associated with the intrinsic (spin) part of the angular
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momentum of the material. However, the rotation of the director is dynamically
coupled to the rotational motion of the center of mass r of dV , which is in turn
associated with the orbital part of the angular momentum of the medium. As
a consequence, the possible effects of an external field on the orbital motion
of the molecules reflect on the molecular reorientation. In most cases, because
of the high translational viscosity of the fluid, the fluid velocity v is vanishingly
small and the momentum of the external force acting on the centers of mass
of the elemental volume dV may be even regarded as an effective source of
torque on n.

In what follows, the sources of the optical torques acting in the liquid crystalline
material are retraced back in a rigorous way to the angular momentum fluxes
carried by a monochromatic radiation in the surrounding medium, which is
supposed to be homogenous and isotropic. It will come out quite naturally that
the average orientation n(r, t) of the molecules contained in dV is directly affected
by the spin part of the angular momentum of the optical field, while the center
of mass of the volume element dV is directly affected by the orbital part. The
problem of the dynamics of NLCs evidently intersects with the problem of the
separation of the angular momentum of light in its intrinsic (or spin) and orbital
parts, especially beyond the paraxial optics approximation [14–21]. In fact, the
separation of the rotational motions inside the liquid crystalline material and the
separation of the torques they arise from have repercussions on the corresponding
fluxes in the radiation incident from the outside. This makes LCs a very good
arena to unambiguously define the OAM and SAM fluxes even beyond the paraxial
approximation.

5.1.1
Dynamical Equations of Liquid Crystals

We start from the usual equations of motion for the liquid crystalline fluid and for
the director n:

ρv̇ = f = div σ̂ − gradp (5.3)

ρr × v̇ = r × f = div L̂ − w (5.4)

In × n̈ = τ = div Ŝ + w (5.5)

where ρ is the fluid density (assumed to be constant); v, the velocity of the fluid
(flow of the centers of mass of dV); f , the force per unit volume acting on the
fluid; p, the hydrostatic pressure; I, the momentum of inertia per unit volume
associated to the rotation of n; τ , the torque density acting on n; σ̂ , the stress
tensor; and w, the vector dual to its antisymmetric part, that is, wα = εαβγ σβγ .
Elastic (e), electromagnetic (em), and viscous (v) forces contribute, in general, to
the torque density τ = τ e + τ em + τ v and to the stress tensor σ̂ = σ̂ e + σ̂ em + σ̂ v .
The dot in Eq. (5.3) stands for the material derivative. The tensor L̂ is defined
as Lρα = εαβγ xβσργ so that Eq. (5.4) follows from Eq. (5.3). The tensor Ŝ, on its
hand, comes from a variational principle based on a suitable free energy functional
from which the torque density τ and the stress tensor σ̂ can be also deduced. The
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divergence of a tensor T̂ here is defined as (div T̂)α = ∂ρTρα . The terms on the
left-hand side in Eqs. (5.3)–(5.5) may be unambiguously interpreted as the densities
per unit time of linear momentum, OAM, and intrinsic angular momentum of
matter, respectively. The terms on the right-hand side of Eqs. (5.3)–(5.5) can be
consistently interpreted as the densities of force, orbital torque, and intrinsic torque
acting in the bulk of the medium. Such densities are represented by expressions
that contain the divergences of tensors involving the external fields and then make
evident their relationship with the fluxes of force and momentum from the outside.
It is therefore quite natural referring to the tensors L̂and Ŝ in Eqs. (5.4) and (5.5) as to
the orbital and the intrinsic (spin) angular momentum flux densities, respectively.
On this definition of fluxes we return later. In the meantime, let us calculate the
stress tensor σ̂ , the torque density τ , and the intrinsic angular momentum flux
density Ŝ. The elastic and electromagnetic contributions can be deduced applying
variational calculus to the free energy functional F = ∫

V F dV = ∫
V (Fe + Fem) dV ,

where as densities of the elastic and electromagnetic free energy we may take,
respectively,

Fe = 1
2

[
k1(div n)2 + k2(n·rot n)2 + k3(n × rot n)2] (5.6)

where ki (i = 1, 2, 3) are the elastic constants for splay, twist, and bend deformations,
and

Fem = 1
16π

(B∗· H − D∗· E) (5.7)

where monochromatic optical fields are assumed and the magnetic and electric
inductions B and D are related to the corresponding fields by B = µ̂H, D = ε̂E,
with magnetic and dielectric tensors related to n by the uniaxial form: µ̂ =
µ0 + µann, ε̂ = ε0 + εann. The constants µ0, ε0, µa, εa characterize the magnetic
and electric response of the material. In particular, µa and εa characterize the
material anisotropy and they vanish in isotropic media. For monochromatic optical
fields, B and H can be related to the spatial derivatives of the electric field E, using
Maxwell’s equation and constitutive relation

B = −(i/k0)rot E H = η̂B (5.8)

with k0 = ω/c, c being the speed of light in vacuum and ω the optical frequency
(cgs units are used), and η̂ = µ̂−1 = η0 + ηann. Substituting Eq. (5.8) in Eq. (5.7),
the total free energy density F = Fe + Fem reduces to a function of the fields n(r),
E(r), E∗(r), and of their spatial derivatives. The field equations associated to the total
free energy F are

h = div π̂ − ∂F/∂n = λ(r)n (5.9)

Λ = div p̂ − ∂F/∂E∗ = 0 (5.10)

where πργ = ∂F/∂(∂ρnγ ) and pργ = ∂F/∂(∂ρE∗
γ ) are the tensors of the generalized

momenta associated to the fields n and E∗, respectively, and λ(r) is a Lagrange
multiplier accounting for the constraint n2 = 1. At steady state (v = 0, ṅ = 0), Eq.
(5.9) is equivalent to Eq. (5.5), the sum of the elastic and of the electromagnetic
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torque densities being given by τ e + τ em = n × h. Equation (5.10), on the other
hand, is equivalent to Maxwell’s equation rot (η̂ rot E) = k2

0D. The elastic and
electromagnetic contributions σ̂ e and σ̂ em to the stress tensors σ̂ in Eq. (5.3) are
given by the opposite of the energy-momentum tensors associated to Fe and Fem,
respectively; that is,

σ̂ e
βα = −πβγ ∂αnγ + δβαFe (5.11)

σ̂ em
βα = −pβγ ∂αE∗

γ + δβαFem (5.12)

It can be easily proved that the electromagnetic force f em = div σ̂ em acting on the
unit volume has the right form [22] f em

α = −(1/16π )(E∗
βEγ ∂αεβγ + H∗

βHγ ∂αµβγ ).
In the LC community h is known as the molecular field. The explicit expression of
the elastic contributions to h can be found in standard textbooks on the physics of
LCs [[1], Eq. (3.22)]. The electromagnetic contribution τ em to the torque density τ
results in the sum of the optical torque τ o = 1/(8π )R(D∗ × E) and of the magnetic
torque τmag = 1/(8π )R(B∗ × H). At optical frequencies, LCs are nonmagnetic, B
and H are parallel, and τmag vanishes, leaving only the optical torque τ o. The
invariance of F with respect to a rotation of the coordinate frame may be exploited
to split both the elastic and the electromagnetic torque density into the sum of
the divergence of a tensor and the antisymmetric part of the corresponding stress
tensor

τ h = div Ŝh + wh, h = e, em (5.13)

The identity in Eq. (5.13) holds true for an arbitrary field n and a field E obeying
Maxwell’s equations (Eq. (5.10)). The tensors Ŝe and Ŝem can be regarded as the
elastic and the electromagnetic ‘‘spin flux densities,’’ respectively.

The contribution σv of viscous forces to the overall stress tensor can be deduced
on the grounds of phenomenological considerations and can be found in textbooks
on the physics of LCs [1], Eqs. (5.31) and (5.32). Adding the electromagnetic
field does not change σ̂ v , since no entropy source is associated to the optical
field when light absorption is neglected. In particular, we still have the useful
relationship τ v = wv between the viscous torque density and the antisymmetric
part of σ̂ v . Comparing this relationship with Eq. (5.13), we conclude that no ‘‘spin
flux density’’ is associated to viscous torques. From Eq. (5.13) and from the relation
τ v = wv , we can see that the last equality on the right-hand side of Eq. (5.5) is a
consequence of the rotational invariance of the total free energy of the system.

5.1.2
Angular Momentum Fluxes

Adding Eqs. (5.4) and (5.5) together yields

ρr × v̇ + In × n̈ = d

dt
(ρr × v + In × ṅ) = div (L̂ + Ŝ) = div Ĵ (5.14)

stating that the conservation of the total (orbital + intrinsic) angular momentum of
the system. The fluxes L̂ and Ŝ do not conserve separately, however, because of the
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presence of the vector w in Eqs. (5.4) and (5.5). The vector w is to be interpreted
as an internal torque in the volume element dV that couples the L- and S-flux
densities. If the total stress tensor was symmetric, then w would vanish and L̂
and Ŝ would exhibit separate conservation laws. The stress tensor σρα and the
related L- and S-flux densities, however, are determined up to the following gauge
transformations:

σρα → σ ′
ρα = σρα + ∂γ fγρα

Lρα → L′
βα = εαβγ xβσ ′

ργ

Sρα → S′
ρα = Sρα + εαβγ fρβγ (5.15)

where fγρα = −fργα . Equations (5.3)–(5.5) are invariant under the transformations
(5.15). The gauge function fγρα may be uniquely chosen so to have the components
of the spin flux tensor S′

ρα arbitrarily fixed. In particular, the gauge may be fixed so
that S′

ρα = 0. In this gauge we have τ = n × h = w, which means that the torque
acting on n is fully determined by the antisymmetric part of the stress tensor.
Moreover, in the spinless gauge, the orbital and the total angular momentum flux
densities are the same, that is, L̂ = Ĵ. This spinless gauge is commonly exploited in
the physics of fluids to symmetrize the stress tensor: assuming, in fact, the intrinsic
angular momentum to be locally balanced, that is, τ = 0, the antisymmetric part
of the stress tensor w turns to be zero, yielding to a totally symmetric stress tensor
σ̂ . The condition of balance of the torques acting on n entails that the inertial
term on the left-hand side of Eq. (5.5) is zero or negligible, as usually assumed in
LCs. The last peculiarity was exploited by the Harvard group long ago to describe
the hydrodynamics of LCs through a symmetric stress tensor in the small elastic
distortion approximation [23]. In block I of Table 5.1, we have reported the stress
tensor, its antisymmetric part, and the spin flux density tensor in the spinless
gauge. In this gauge Ŝ = 0, by definition, and τ = w. If we further assume τ = 0,
we may retain, in calculating the force density f , only the symmetric part of the
total stress tensor σ̂ reported in block I of Table 5.1. In particular, in the spinless
gauge, the electromagnetic part of the force density f reduces to the divergence
of the symmetric part of Maxwell’s stress tensor σ̂ M as it holds true in ordinary
crystals [24]. Though useful to simplify some calculations on slightly distorted LCs,
the spinless gauge presents some drawbacks: the dynamical constraint τ = 0 (the
local balance of the angular momentum), in fact, is not generally satisfied and,
what is worse, the intrinsic and the orbital parts of the angular momentum flux
in the material mix so as to become unrecognizable. On the contrary, Ericksen’s
traditional approach, which is based on the free energy densities in Eqs. (5.6)
and (5.7), keeps OAM and SAM separated, and, therefore, seems physically more
appropriate, though leading to a nonsymmetric stress tensor [25]. Ericksen’s stress
tensor, its antisymmetric part, and Ericksen’s spin tensor are reported in block II
of Table 5.1. It is worth noting that the definitions of OAM and SAM flux along the
z axis for a monochromatic field in vacuum proposed in [21] can be brought back
just to the L33 and S33 elements reported in block II of Table 5.1. Here, we derived
the same flux densities from a more general Lagrangian approach, exploiting the
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rotational symmetry of the system. The main drawback of the electromagnetic flux
densities L̂em and Ŝem derived from the Lagrangian in Eq. (5.7) is that they are
not divergence free even in vacuum (only Ĵem = L̂em + Ŝem is divergence free in
vacuum). Having divergenceless fluxes L̂em and Ŝem is desirable to have separate
conservation laws for the OAM and SAM.

In birefringent media such as LCs, the stress tensor σ̂ is not symmetric, in
general, even in the spinless gauge, and the internal torque w in Eqs. (5.4) and (5.5)
is also present in this case. The presence of the internal torque w is due to the lack
of invariance of the total free energy F of the system under separate rotation of the
center of mass r and of the components of the fields n and E. However, the elastic
free energy becomes rotationally invariant when all elastic constants ki (i = 1, 2, 3)
become equal, so we may expect that the stress tensor will be symmetric in this
limit. Setting ki = K in Eq. (5.6), Fe reduces to

F0 = K

2
[(div n)2 + (rot n)2] (5.16)

The stress tensor σ̂ 0 derived from F0 is still nonsymmetric. However, F0 differs
from the free energy density F1 = (K/2)∂αnβ∂αnβ only by divergence terms, so
that F0 and F1 are equivalent in the bulk [[1], Eq. (3.17)], but the stress tensor
σ̂ 1 derived from F1 is now symmetric. We may write the original elastic free
energy density Fe as Fe = F0 + F̃e, where F̃e is obtained from Fe through the
formal substitution ki → (ki − K)/ki (i = 1, 2, 3). By this choice, when all elastic
constants tend to the common value K (this may be the case in LCs near the
nematic to isotropic transition), Fe → F0. Using this decomposition and exploiting
the equivalence between F0 and F1, we may construct a new stress tensor that,
though nonsymmetric in general, becomes symmetric in the one elastic constant
approximation (δki → 0). This elastic stress tensor and the corresponding spin flux
are reported in block III of Table 5.1. A similar argument can be applied to write,
within divergence terms, the electromagnetic free energy density Fem as F1

em + F̃em,
where F1

em generates a symmetric stress tensor in isotropic and homogenous
media and F̃em represents the contribution from the optical anisotropy. Because
the electromagnetic stress tensor associated to F1

em is symmetric and F̃em vanishes
in isotropic media, we obtain a stress tensor that reduces to a symmetric one in
homogeneous isotropic media. This choice for Fem leads to the quantities listed in
the last row of block III. We notice that, when this gauge is used, the antisymmetric
part w of the stress tensor is proportional to div E, which is zero in homogeneous
and isotropic media. The symmetry of the stress tensor in such media entails that
the corresponding flux densities L̂ and Ŝ are both divergence free (f and τ are
also zero). It is remarkable that there is no gauge function like fγρα in Eq. (5.15)
settling the crossing between gauges I and II to the last one. This is not surprising,
considering that the gauge transformations in Eq. (5.15) are not the most general:
we may still add to σρα a divergence-free symmetric tensor. Assuming now the LC
sample to be immersed in a homogenous and isotropic medium, Eqs. (5.4) and
(5.5), upon integration over a region V with its border ∂V completely immersed in
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the surrounding medium respectively, assume the form∫
V

ρ(r × v̇)·udr =
∮

∂V
u·L̂em·u ds −

∫
V

wem·u dr

−
∫

V
we·u dr +

∫
V

(r × f v)·u dr (5.17.1)
∫

V
I(n × n̈)·udr =

∮
∂V

u·Ŝem·u ds +
∫

V
wem·u dr

+
∫

V
we·u dr +

∫
V
τ v·u dr (5.17.2)

When the quantities defined in block III are used, the internal torque we in
Eqs. (5.17.1–5.17.2) vanishes in the one elastic constant approximation and the
internal torque wem vanishes in homogeneous and isotropic media. In deriving
Eqs. (5.17.1–5.17.2), we assumed v = 0 and appropriate anchoring conditions of
n at the sample walls so to have no surface contribution from the elastic intrinsic
and orbital angular momentum fluxes Ŝe and L̂e. An example of such anchoring
conditions is a nematic film with homeotropic alignment at the walls as used in
the experiments [26–28].

The flux densities L̂em and Ŝem in Eqs. (5.17.1–5.17.2) are evaluated in the
surrounding isotropic homogeneous medium, where both are divergence free.
The closed surface ∂V is therefore essentially arbitrary and the surface integrals
in Eqs. (5.17.1–5.17.2) can be well identified with the fluxes of L and S coming
from the external optical field. The two fluxes are physically discriminated in
Eqs. (5.17.1–5.17.2) on the grounds of the different mechanical effects they produce
in the medium, so that L̂em and Ŝem can be identified as the flux densities of the OAM
and intrinsic angular momentum carried by the optical field through the surface
∂V , respectively. We emphasize that the gauge leading to Eqs. (5.17.1–5.17.2)
[block III of Table 5.1] has been selected from the infinite possible ones, because
it is the only one leading to angular momentum flux densities L̂em and Ŝem,
both conservative in isotropic and homogeneous media. Moreover, they reduce to
well-known expressions in the paraxial optics approximation. In the light of such
an interpretation, Eqs. (5.17.1–5.17.2) show how the angular momentum of light
naturally splits into two distinct parts in the transfer from the external optical field
to the two distinct rotational degrees of freedom of LC. A pictorial representation
of this concept is shown in Figure 5.2. It is worth noting that the separation of
the total angular momentum flux of the electromagnetic field into an orbital and a
spin part was performed on the grounds of the physical effects they produce inside
matter rather than on mathematical grounds. It is well known, in fact, that in
vacuum only the total electromagnetic angular momentum flux is meaningful and
its decomposition into a spin and an orbital part is not gauge invariant [14, 17, 18].

In the physics of LCs, the inertial terms on the left-hand side of Eqs. (5.3)–(5.5)
and (5.17.1–5.17.2) are usually neglected and the equations are solved with respect
to the viscous torques and forces that are proportional to ∂n/∂t, to the gradients
of n, and to the fluid velocity v. In most cases, the fluid motion can also be ne-
glected. Then, setting v ≈ 0 in Eqs. (5.17.1–5.17.2) yields two integral relationships
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Figure 5.2 Pictorial representation of the
separation of the orbital and spin parts of
the total angular momentum of radiation
on the grounds of the effects they produce
inside matter. (a) Spin transfer induces a

rotation of the director n (local optical axis).
(b) Orbital transfer induces a rotational
motion of the centers of mass of an elemen-
tal fluid volume. (Please find a color version
of this figure on the color plates.)

involving only n and its time and space derivatives. A closer inspection shows that
Eq. (5.17.1) couples L̂em to the space derivatives of n, while Eq. (5.17.2) couples Ŝem

to n itself. All these features reproduce what was claimed in previous works where
the plane wave approximation was adopted [29] or where approximate models were
proposed to describe the effects of the OAM of light in LCs [26–28].

5.2
Dynamical Effects Induced in Liquid Crystals by Photon SAM and OAM Transfer

In order to be specific and to get a practical insight into the mechanism of the
optically induced molecular reorientation in the presence of OAM transfer from
light to matter, we focus our attention on a number of actual experiments. In all
the experiments reported here, the sample is a thin layer of NLC between two
parallel walls, coated with an appropriate surfactant so as to have n everywhere
perpendicular to the layer (homeotropic alignment). In the absence of external
fields, the equilibrium molecular alignment is uniform with n independent of r.
When the alignment is perturbed, elastic torques must be generated against the
perturbation in order to restore the initial equilibrium. For small deformations,
the elastic torques are proportional to the first spatial derivatives of n. The
elastic torques are reported in block I of Table 5.1. If LC molecules are rotating,
without any macroscopic displacement of the molecules (v = 0), a viscous torque
against rotation is expected. The complete analysis of molecular rotation in an LC
involves five independent viscosity coefficients [25, 30–32]. For simplicity, a single
phenomenological viscous constant γ1 is often used. In this approximation, the
viscous torque is given by

τ v = −γ1n × ∂n
∂t

(5.18)
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The presence of an optical field yields an optical torque on the molecular director
n, on the one hand, and a rotation of the centers of mass of the fluid elements
dV , on the other hand. In order to deduce the nonlinear optical response of
the NLC as a whole, Eqs. (5.3)–(5.5) must be integrated over the film volume.
Assuming v = 0 and homeotropic anchoring at the sample walls, no elastic
contribution results from the elastic intrinsic and orbital angular momentum
flux densities Ŝe and L̂e, and Eqs. (5.17.1–5.17.2) result. Neglecting the inertial
terms on the left-hand side of Eqs. (5.3)–(5.5) and (5.17.1–5.17.2), these transform
into balance equations for the torques acting on the director n and for the
torques acting on the center of mass of the elemental volume. The equations
(5.17.1–5.17.2) are solved with respect to the viscous torques and forces that
are proportional to ∂n/∂t, to the gradients of n, and to the fluid velocity v.
In most cases, the fluid motion can also be neglected. Then, setting v ≈ 0 in
Eqs. (5.17.1–5.17.2) yields two integral relationships involving only n and its time
and space derivatives. A closer inspection shows that Eq. (5.17.1) couples L̂em to
the space derivatives of n, while Eq. (5.17.2) couples Ŝem to n itself. In these
conditions, where the motion of the fluid may be neglected, the OAM flux density
L̂em that the optical field releases in the medium behaves as an effective source
of longitudinal torque affecting the orientation of the molecular director in the
transverse plane.

In most part of the actual experiments with LCs, laser beams are used to excite
the material, and small deformations of the molecular alignment are induced. For
small deformations of the molecular director, in the paraxial optics approximations,
the explicit expression for the overall SAM transferred from the electromagnetic
field to the liquid crystalline medium, involved in Eq. (5.17.2), is [33]

�Sz = − 1
ω

∫
dxdy I(x, y)�s3(x, y) (5.19)

where I(x, y) is the intensity profile of the beam, ω is the optical frequency, and
�s3 is the change suffered by the reduced Stokes’ parameter s3 = 2Im(ExE∗

y )/
(|Ex|2 + |Ey|2) in traversing the medium (s3 = ∓1 for left-/right-handed polariza-
tion, respectively, and s3 = 0 for linear polarization). The integral is carried out
across the x, y-plane orthogonal to the beam.

In the same approximations, the explicit expression for the overall OAM
transferred from the electromagnetic field to the medium, involved in Eq. (5.17.1),
is [33]

�Lz = 1
ω

∫
dxdy Ie(x, y)(r × ∇)z��e(x, y) (5.20)

where Ie(x, y) is the beam intensity transverse profile and ��e(x, y) = �e(x, y, L) −
�e(x, y, 0) is the phase change of the extraordinary wave given by ��e(x, y) =
2π/λ

∫ L
0 [ne(θ ) − no] dz ≈ L̃(n2

x + n2
y ), where L̃ is the characteristic length of the

sample. Consider that the ordinary wave suffers a phase change which is uniform
in the transverse plane, so that it does not contribute to �Lz. If the medium has a
regular refractive index distribution and if its surface has no dislocations, ��e(x, y)
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is a regular function of space coordinates. Then, if I(x, y) is also a regular function
of space, we may integrate Eq. (5.20) by parts, obtaining

�Lz = − 1

ω

∫
dxdy ��e(x, y)(r × ∇)zIe(x, y) (5.21)

From expressions (5.20) and (5.21) we see that no angular momentum is deposited
in the medium if either ��e(x, y) or Ie(x, y) is cylindrically symmetric around the
propagation direction. In particular, Laguerre–Gauss beams (which are eigenstates
of Lz) have an intensity profile that is cylindrically symmetric so that they cannot
transfer their own OAM to transparent media such as LCs1).

The nonlinear process through which photon angular momentum is transferred
to NLCs is known as self-induced stimulated light scattering (SISLS) [34, 35].
In the SISLS process, it is the change in the photon angular momentum that
is transferred to matter. This is a distinctive difference between SISLS and the
transfer of angular momentum by photon absorption. When the photon angular
momentum is to be transferred to matter in an absorption process, the incident
photons must be already prepared in a state with nonzero angular momentum.
On the contrary, in the SISLS process, the angular momentum transfer can take
place even when the incident light carries no angular momentum at all. The
SISLS was first introduced, in connection to SAM transfer, to explain the collective
rotation of LC molecules in the field of a normally incident circularly polarized laser
beam [36]. During rotation, the viscous torque acting on the molecular director is
balanced by a constant torque originating from the SAM that is constantly released
into the medium by the portion of the incident photons transmitted with their
spin reversed. SISLS was also recognized to be the physical grounds for complex
dynamical regimes [37, 38] and for operating light-driven molecular motors [39].
Exploiting the same principle, manipulation of small transparent and birefringent
particles trapped by optical tweezers was also achieved [40]. The first experiment
realizing the orbital counterpart of the SISLS is much more recent [26] and put
into practice an idea coming from a theoretical work by Allen et al. [15] according to
which the measurement of the mechanical torque arising from the OAM has to be
performed from Beth’s experiment mould. The orbital SISLS was also exploited to
control the transverse orientation of small transparent isotropic particles in optical
tweezers [41, 42].

In typical experiments on laser-induced reorientation, the laser beam is focused
into the LC sample to a spot of few hundreds microns or less. Above the threshold
for the OFT, the optical reorientation is thus confined to a very small region in
the focal zone, producing a spatially inhomogeneous distribution of the refractive
index. The reoriented LC sample can be assimilated, therefore, to a thin microlens
whose index profile may eventually change in time. If the intensity profile of the
incident laser beam is elongated, the refractive index profile will be elongated as
well, leading to an effective cylindrical laser-induced microlens. In general, the axis

1) This statement is no longer true when de-
fects and/or dislocations are present in the
LC texture.
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Figure 5.3 An NLC film optically distorted through
an elliptically shaped laser beam behaves as a birefrin-
gent astigmatic microlens. Refraction of the incident
beam by this lens results in a couple of forces fa and
fb acting on the lens itself. (Please find a color ver-
sion of this figure on the color plates.)

of the cylindrical microlens will not be aligned with the axis of the beam profile.
In these conditions, the refraction of the elliptically shaped laser beam through the
microlens may produce a torque on it, as shown in Figure 5.3. It is clear from the
figure that the couple of forces acting on the lens is due to photon recoil during
refraction, and, hence, this couple originates from the OAM of the light beam. It
is expected, therefore, that the LCs are also sensitive to the orbital part of the light
angular momentum. It is evident that the possibility of extracting the OAM from
the light beam depends crucially on the presence of transverse gradients in the
refractive index of the medium.

5.2.1
Experiments on OAM Transfer in Liquid Crystals

Several experiments have been performed so far that have been aimed at obtaining
some insight into the mechanism of the OAM transfer in LCs and focusing on
the reorientational effects induced by the longitudinal torque associated to it. In
particular, the investigation of the effect on the molecular motion arising from
the interplay of the alignment torque produced by the orbital momentum and the
rotatory torque produced by the spin momentum has been aimed at. In all the
experiments reported here, a thin layer of NLC with homeotropic alignment was
irradiated by an elliptically rather than circularly shaped laser beam (Figure 5.4).
The laser beam was made unpolarized [26], linearly polarized [33], or circularly
polarized [28, 43–45]. In the second case, the angle between the optical field and
the major axis of elliptical transverse cross section of the beam could be changed
form 0 to π/2. Observations were performed varying the power incident on the
sample and/or the beam ellipticity.

The sample was always chosen to be a nominally 50 µm thick E7 nematic
film sandwiched between glass covers coated with N,N-Dimethyl-N-octadecyl-
3-aminopropyltrimethoxysilyl chloride (DMOAP) for homeotropic alignment. The
sample was pumped by a frequency-doubled cw Nd:YVO4 laser source, working
at λ = 532 nm. Two cylindrical lenses, with their axes orthogonal to each other,
were used to obtain an elliptical beam waist at the sample position. The focal
lengths of the lenses were fx = 500 mm and fy = 30 mm in the x and y directions,
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Figure 5.4 Schematic of the optical layout
for photon OAM transfer in liquid crystals.
� is the angular aperture of the far-field ring
pattern and φ0 is the inclination of its aver-
age polarization. The local direction of the

optical field is tangent to the hyperbolic-like
curves drown in the figure. (Please find a
color version of this figure on the color
plates.)

respectively. When the two cylindrical lenses were assembled so that their second
focal plane were coincident (Figure 5.4), the beam radii in the common focal
plane were found to be wx ≈ 100 µm and wy ≈ 10 µm, corresponding to a profile
ellipticity µ ≡ wx/wy = 10. The beam polarization was controlled by means of a
suitable collection of half- and quarter-waveplates, besides electronically driven
Pockels cells. The detection apparatus was designed to provide simultaneous and
real-time measurements of the angular aperture � and of the average polarization
direction angle � of the far-field self-diffraction pattern [6], which are formed
beyond the LC sample when reorientation takes place [38]. For small LC distortion,
one approximately has � 
 φ0(t) and �(t) ∝ α(t) ∝ θ2(t), where θ (t) is the zenithal
polar angle of the molecular director n(r, t) averaged over the sample, φ0 is the
azimuthal angle calculated at the exit face (Figure 5.4) and α is the phase difference
between the extraordinary and ordinary wave over the sample [38].

The major difficulty in modeling this kind of experiment is that the dynamics of
the NLC director is strongly affected by the finite size and shape of the incoming
light beam so that the plane wave approach, where all the fields depend on only
one coordinate, is inapplicable. All the three space coordinates and time must
be retained. Only very recently we presented a self-consistent three-dimensional
analytical – numerical model that is capable of describing all the reported experi-
mental observations. The model accounts for the dependence on the incident beam
intensity, polarization, and finite size and shape [45]. This model rests upon its
capability to describe quantitatively the dynamics of, and beyond, the OFT under
realistic experimental conditions almost three decades after its experimental dis-
covery. The importance of the model is not restricted to the world of the dynamics
of LCs, since it is the only ‘‘theoretical device’’ nowadays available to discern the
role played by the finite-size effects in the dynamics with respect to shape effects.
Only the latter are strictly connected to the OAM transfer according to all what has
been said in the previous sections.
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5.2.1.1 Orbital Photon Angular Momentum Transfer with Unpolarized Light
The first geometry referred to a fully unpolarized elliptically shaped laser beam.
Such a laser beam carried neither SAM nor OAM, and only a transfer of OAM
could take place, since, also in the medium, the beam remained unpolarized.
To unpolarize the laser light, a Pockels cell was used. The cell was driven by a
saw-tooth signal at λ-amplitude and a frequency of 1 kHz. This produced a 1 kHz
periodic modulation of the light polarization through a sequence of states whose
cycle-average returns zero. The NLC reorientational dynamics is much slower
than the modulation period (≈1s), so that it will only actually respond to the
time-averaged Jones matrix of the polarization.

In the case of the unpolarized light, when the laser power P exceeded the
threshold Pu

th = (312 ± 3) mW for the OFT, the steady-state reorientation plane
was found almost independent of P and parallel to the major axis of the beam
intensity profile, in agreement with theoretical predictions [26]. This is shown in
Figure 5.5a. The data were obtained by rotating the cylindrical lens gauge (and
hence the intensity profile) to α = 30◦ with respect to the horizontal plane. Similar
results were obtained at different angles α, thus proving the possibility of achieving
angular control by transfer of the orbital photon angular momentum only.

Figure 5.5b,c refers to the measurements of the steady-state average value of
the molecular director angle φ for different values of the beam power P, ellipticity
µ, and orientation α of the major axis of the beam profile. Data were taken
at α = 0, α = 30◦, α = 60◦, and α = 90◦. In all cases we found that, for large
enough ellipticity (µ ≥ 2) and large enough power (P ≥ 1.3Pu

th, where Pu
th is the

OFT threshold power), the molecular director tends to move toward the plane
containing the ellipse major axis.

For fixed power values, as the beam shape becomes more and more circular
(µ → 1)2), the steady-state value of φ tends toward a well-defined but unpredictable
value, changing from point to point in the sample. The behavior of the molecular
director was observed to be likewise even with the beam power decreasing toward
the OFT threshold for fixed values of µ. It is worth noting that, in an NLC
film reoriented by unpolarized light, a similar attitude in the steady-state value
of φ was observed in the previous experiments made with a circularly shaped
laser beam [46, 47]. The unpredictable azimuthal reorientation may be ascribed to
small uncontrolled and unavoidable factors breaking the perfect overall cylindrical
symmetry of the system NLC + optical field, such as nonperfect parallelism of
the sample walls, residual polarization in the incident light, small deviations from
perfect normal incidence, and small pretilt at the sample surface.

5.2.1.2 Investigation of the Combined Effect of the Spin and Orbital Photon Angular
Momentum Transfer with Linearly Polarized Light
In the second geometry investigated, a linearly polarized and elliptically shaped
laser beam was normally incident on a homeotropically aligned nematic cell. In this

2) This was achieved changing the distances
of both the lens Lx and Ly with respect to
the sample.
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Figure 5.6 Map of the dynamical regimes
in the parameter plane P, β. Three regions
may be recognized: U, undistorted states; D,
steady distorted states; O, oscillating states.
The borderline between U- and D-regions
represents the thresholds for the OFT and
the borderline between D- and O-regions

represents the thresholds for the oscillations
start up as calculated from our model. Full
circles on the first curve and open circle
on the second are the experimental points.
(Please find a color version of this figure on
the color plates.)

case, the input beam carried zero-average OAM and SAM. Nevertheless, not only
an OAM but also an SAM transfer could take place, thanks to the birefringence of
LCs. In fact, when the molecular director is reoriented along a direction nonparallel
to the major axis of the beam profile, the polarization inside the medium does not
remain linear. The interest in this experimental geometry is due to the fact that
deviations from the well-known behavior of the OFT can be ascribed to transverse
effects connected to the elliptical shape and then to the OAM of light. Multistability
and oscillatory behavior, both periodic and irregular, were observed corresponding
to different values of the beam intensity and different polarization directions with
respect to the major axis of the elliptical intensity profile [26, 33]. In Figure 5.6,
the observed dynamical regimes have been reported in the plane of the control
parameters P and β. The threshold power Pth for the optical reorientation is
reported as a function of the angle β (continuous line). A second critical curve
(dashed line) separating steady distorted states from nonlinear oscillations of n is
also shown. The dots represent the experimental data and the lines represent the
theoretical data. In Figure 5.7a, an example of multistability is reported when the
angle β between the polarization direction and the ellipse major axis of the beam
profile is β = 50◦. In Figure 5.7b, an instance of oscillatory regime for α and φ is
shown, where the experimental data are superimposed on the theoretical curves.

5.2.1.3 Investigation of the Combined Effect of the Spin and Orbital Photon Angular
Momentum Transfer with Circularly Polarized Light
The geometry of the experiment with circularly polarized light resembles in some
ways the one faced with unpolarized light [26], since no favorite direction exists with
the exception of the major axis of the laser beam transverse profile at the sample
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position. However, different from the case of unpolarized light and from the case
of linearly polarized light, now the pumping laser beam does carry an SAM of its
own (±h̄ per photon weather left- or right-circularly polarized), though it continues
carrying zero-average orbital momentum. For a circularly shaped laser beam, our
experimental conditions reproduce those for the well-known SISLS [34–36, 39]
due to the photon SAM. Using an astigmatic laser beam, the azimuthal symmetry
of the interaction scheme breaks and the photon OAM comes on the stage of
the optically induced molecular reorientation. It is again SISLS, the mechanism
through which the photon OAM may be transferred to LCs even from an incident
light beam carrying a zero-average orbital momentum. Far from being the unique
or the main character, OAM leaves a very specific and unambiguous mark on the
molecular reorientation process, such as the appearance of steady distorted states
above the OFT threshold for circularly polarized light, due to the SAM−OAM
balance [43–45], which underlies a nonlinear process of self-induced spin-to-orbital
conversion (SISTOC). In fact, it is well known that no state of equilibrium is possible
when a circularly polarized, cylindrically symmetric laser beam is used. In that
case, at the OFT threshold, the LC director jumps suddenly from the undistorted
equilibrium state to a rotating regime [35, 36, 48]. In the case of an elliptically
shaped laser beam, the symmetry breaking assists the formation, above threshold,
of steady distorted states, which are forbidden by circular symmetry. In these states,
SAM and OAM balance each other. As a consequence, the OFT turns to be second
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Figure 5.8 The optical phase difference α in unit of 2π as
a function of the incident power P. (◦) steady states; (�)
rotations; (�) intermittent states. The shadowed regions rep-
resent the oscillation amplitude of α and the experimental
points mark the oscillation center. (Please find a color ver-
sion of this figure on the color plates.)
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rather than first order, as shown in Figure 5.8. The SISLS starts only after a second
threshold via an inverse Hopf bifurcation owing to the presence of hysteresis. The
stimulated scattering turns to be associated to a nutational rather than precessional
regime and, above a critical value for the incident power, intermittent oscillations
arise in the molecular nutation. To be more specific, an on−off intermittency in the
chaotic rotation of the molecular director was observed [28]. The azimuthal angle
φ(t) of the molecular director increased linearly in time on large time scales but,
occasionally, it exhibited large fluctuations about its average value ω0t, so that its
angular velocity φ̇(t) underwent an on−off intermittent motion. The intermittent
signal ω(t) = φ̇(t) − ω0 obeyed the scaling laws of on−off intermittency, including
the symmetry between laminar and burst phases (Figure 5.9). The chaotic rotations
were observed only when the SAM and the angular momentum of light were
transferred simultaneously to the sample. Very recent theoretical investigations
clearly indicated that the complex dynamical regimes observed with circularly
polarized light cannot be accounted for by the simple interplay between SAM and
OAM. In spite of the limitations in changing with ease the size of the beam elliptical
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Figure 5.9 (a) radius ρ(t) of the trajectory; (b) rotation
angle φ(t); (c) instantaneous angular velocity ω(t); (d) trajec-
tory in the x, y-plane of the chaotic rotation of the molecular
director n. All time traces were taken at incident laser power
P = 445 mW and in (a)−(c) the time scale is the same.
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Figure 5.10 Theoretical prediction of complex rotation
dynamics. (a) Director trajectory in the (nx , ny) plane.
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tational motion.

profile in the experiment, complex dynamical regimes were actually observed only
when the minor axis was significantly smaller than the film thickness. This induces
to believe that finite beam size effects may be of decisive importance in this case [45],
where a successful description of the complex sequence of the director rotations
observed in [28] was obtained, adopting a full three-dimensional model able to
describe quantitatively the dynamics of, and beyond, the OFT under the envisaged
experimental conditions. The theoretical predictions for the trajectory of the chaotic
rotation are shown in Figure 5.10.

As a matter of fact, several questions still remain open regarding the actual
role played by finite-size effects – that is, effects due to the elastic response of the
nematic when the beam width is significantly smaller than the film thickness –
and the role played by shape effects – that is, effects due to the breaking of the usual
cylindrical symmetry of the beam transverse profile and therefore due to OAM
transfer. The model adopted in [45] will be used to make predictions of the dynamic
behavior of the molecular director from the OFT threshold to highly nonlinear
regimes under the action of both a circularly and a linearly polarized beam with
elliptical cross section in order to discern the role played by OAM–SAM interplay
from the finite beam size effects.

5.3
Conclusions

In this chapter we have discussed the problem of the photon angular momentum
transfer to LCs, regarded as birefringent media endowed with internal orientational
degrees of freedom. From the very beginning it has been clear that this problem
intersected with the problem of the separation of the angular momentum of light
in its intrinsic (or spin) and orbital parts. We have shown how it is possible to
construct two electromagnetic fluxes L̂em and Ŝem both conservative in vacuum (or
in homogeneous isotropic media) which couple with the orbital and the intrinsic
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part of the angular momentum of matter, respectively. Therefore, we have been able
to identify L̂em and Ŝem on physical rather than mathematical grounds as the orbital
and intrinsic angular momentum fluxes carried by the optical field. The fluxes L̂em

and Ŝem reduce to well-known expressions in the paraxial optics approximation,
but may also be used beyond the paraxial approximation. When the inertial terms,
in the dynamic equations of LCs, are neglected and appropriate approximations
are made, simplified models can be worked out in order to predict the dynamics
of the molecular director in the presence of both orbital and spin photon angular
momentum transfer. In most situations, OAM behaves as an additional source of
longitudinal torque acting on the molecular director in the same way as an SAM.
A pictorial description of this torque can be obtained considering that an NLC
film, nonlinearly distorted by means of an elliptically shaped laser beam, effectively
behaves as an astigmatic birefringent microlens. The OAM transfer takes place
during the alignment of the optically induced liquid crystalline microlens along
the major axis of the laser elliptical cross section. The effects of the simultaneous
transfer of photon SAM and OAM have been shown in several experimental
geometries involving an elliptically shaped pumping beam carrying zero-average
angular momentum. A variety of effects have been observed corresponding to
different choices of the control parameters, such as the polarization state and the
intensity of the incident beam, and the beam waist size along the directions of
the major and minor axes of the intensity profile ellipse [26–28, 33, 43, 44, 49].
Using unpolarized light, steady distorted states were observed along the azimuthal
directions closer to the ellipse major axis [26, 49, 50]. Using linearly polarized
light, multistability and oscillatory behavior, both periodic and irregular were
observed corresponding to different values of the beam intensity and different
polarization directions with respect to the intensity ellipse major axis [26, 33].
A clear experimental evidence of on−off intermittency in the director rotation
was also found using circularly polarized light [28]. Therefore, the breaking of
the azimuthal symmetry due to the beam shape ellipticity has introduced a new
actor in the process of the optically induced molecular reorientation, namely the
photon OAM, which is transferred to LCs by SISLS. Though, on an average,
an elliptically shaped light beam carries no OAM, this can be transferred to the
molecular collective, optically reoriented by the beam itself within a noncylindrically
symmetric profile, as shown through the comparatively simple models worked out
in [26, 33, 44, 45].
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6
Driving Optical Micromachines with Orbital Angular
Momentum
Vincent L.Y. Loke, Theodor Asavei, Simon Parkin, Norman R. Heckenberg,
Halina Rubinsztein-Dunlop, and Timo A. Nieminen

6.1
Introduction

The symmetry of an object such as an optically driven microrotor and the driving
light beam is a key element in the generation of optical torque. The optical torque
occurs when electromagnetic angular momentum is transferred from the driving
beam to the microrotor by scattering. We discuss the effect of such symmetries
on the generation of optical torque, and some consequent general principles for
the design of optically driven micromachines. We describe the experimental test
of a design based on these principles, including the quantitative evaluation of
its performance through measurement of the orbital angular momentum (OAM)
transfer. We describe the computational modeling of such rotors, and investigate
the dependence of the performance on the geometry of the microrotor.

6.2
Symmetry, Scattering, and Optically Driven Micromachines

Holographic techniques are widely used to produce laser beams carrying OAM
about their axes [1]. The off-axis ‘‘fork’’ hologram is deservedly popular, since
the angular separation of the diffracted orders allows a beam of a particular
OAM to be selected. The on-axis hologram (Figure 6.1) – often spiral as shown
in Figure 6.2 – is, however, simpler, and provides a clear illustration of the
connection between discrete rotational symmetry and angular momentum.

The symmetry of an object plays a central role in its interaction with light. If
we are interested in the exchange of angular momentum – that is, the generation
of optical torque – then it is the rotational symmetry that is of most interest.
Consideration of the effects of rotational symmetry allows some quite general
aspects of optical torque to be understood [2, 3]. Essentially, if an object has pth
order discrete rotational symmetry, incident light with m0h̄ angular momentum
per photon about the symmetry axis of the particle will be scattered into modes with
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(a) (b)

Figure 6.1 On-axis hologram for conversion of Gaussian
beam to LG04. (a) An amplitude hologram – the normal-
ized interference pattern between a plane wave and an LG04

beam. (b) A structure that will act as a binary approximation
of the corresponding phase hologram, suitable for use as an
optically driven microrotor.

(a) (b)

Figure 6.2 Spiral on-axis hologram for conversion of Gaus-
sian beam to LG04. (a) An amplitude hologram – the nor-
malized interference pattern between a spherical wave and
an LG04 beam. (b) A structure that will act as a binary ap-
proximation of the corresponding phase hologram, suitable
for use as an optically driven microrotor.

mih̄ angular momentum per photon, where mi = m0 − ip, where i is an integer.
This is the key element in the function of holograms such as those shown in
Figures 6.1 and 6.2. This is the rotational analog of the scattering of a plane wave by
a periodic structure into a discrete plane wave spectrum, which produces a similar
relationship for the transverse linear momentum of the modes as we have here for
angular momentum.

For paraxial optical vortex beams, we have a well-defined OAM per photon (zero
for a Gaussian beam, �h̄ per photon for a Laguerre–Gauss mode of order � [4]).
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There is a simple separation between spin and orbital angular momentum, and it
is possible to account for the spin in terms of left- and right-circularly polarized
component, where the total angular momentum per photon is � ± 1 for each of the
two components. This is sufficient for dealing with the optical angular momentum
of paraxial beams and macroscopic holograms.

However, with the interaction of nonparaxial beams with microscopic objects,
it is necessary to consider the total angular momentum, rather than separate spin
and orbital components. Since the driving beam incident on an optically driven
microrotor is typically produced by tightly focusing a paraxial beam (such as a
Laguerre–Gauss beam carrying �h̄ OAM per photon), and focusing the optical
system will not alter the angular momentum per photon [5, 6], the nonparaxial
beam has the same total angular momentum content as the initial paraxial beam. A
convenient way to represent such a nonparaxial beam is as a superposition of vector
spherical wavefunctions (VSWFs) [7], which have an azimuthal phase variation of
exp(imφ), where m is the azimuthal mode index, with the z component of the
angular momentum being equal to mh̄ per photon. Thus, the nonparaxial VSWF
representation of the beam will consist of modes with m = � ± 1.

Thus, for an object with pth order rotational symmetry, incident modes will
scatter into modes with m = � ± 1, � ± 1 ± p, � ± 1 ± 2p, � ± 1 ± 3p, and so on.
For particles with p = 2, such as elongated or flattened particles, the left- and
right-circular incident modes will scatter into the same set of modes, resulting in
interference, and therefore affecting the polarization of the scattered light – this
gives rise to the shape birefringence of such particles. On the other hand, if
p > 2, the scattered modes corresponding to the incident circular polarizations are
distinct, and this interference will not occur, and the incident polarization will be
affected only weakly. Therefore, the torque will be a consequence of the transfer of
OAM.

We can assume that the coupling of incident modes with small |m| will usually
be stronger than for high |m| modes. Thus, an object illuminated by light carrying
the OAM will usually experience a torque (except in special cases, including when
opposing spin reduces the total angular momentum to zero). If the object is mirror
symmetric (i.e., achiral), then the scattering is independent of the handedness of the
angular momentum, that is, the coupling of, for example, m1 to m2 is the same as
from −m1 to −m2. Therefore, an achiral rotor with p > 2 will experience no torque
in a plane-polarized Gaussian beam. Such a rotor will be ideal for illumination
by Laguerre–Gauss beams, and will be equally rotatable in both directions. A
chiral rotor, on the other hand, can rotate in a Gaussian beam, but will generally
rotate at different speeds when illuminated by Laguerre–Gauss beams of opposite
handedness.

A majority of optically driven microrotors produced and tested so far are operated
immersed in water, typically in an optical tweezers apparatus. Owing to the relatively
small difference between the refractive index of such rotors and the surrounding
water, they reflect only weakly, and the majority of the light is transmitted. The
coupling to the different scattered modes will depend strongly on phase and
intensity variations in the transmitted light. Therefore, we can productively view
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optically driven rotors as microscopic holograms – the thickness of the structure
should ensure a large phase difference between light that passes through the
structure and light that does not.

On the basis of this idea, we can straight away suggest the possible designs for
optically driven microrotors, as shown in Figures 6.1 and 6.2. The key difference
is the solid central region, which will be required for the structural integrity of a
microrotor. For a chiral structure, as in Figure 6.2, the symmetry of scattering to
positive and negative orders of scattering (i.e., to m < m0 and m > m0) will differ,
and a torque will result from the generation of OAM by scattering by the structure.
Therefore, a structure of this type can be rotated by a Gaussian beam.

However, if we wish to have a structure that can be rotated with equal torque in
either direction, we need to avoid a chiral shape, and have particles that have mirror
symmetry about a plane containing the axis of rotational symmetry (Figure 6.1), in
which case the coupling from m0 = 0 to ±m will be identical, since these modes
are mirror images of each other. This type of structure is ideal for driving with a
beam carrying the OAM. If, in this case, the incident beam has m0 = +2, there will
be significant scattering to VSWF modes with m = −2, and a torque will result.
The direction of the applied torque can be reversed by changing the handedness of
the driving beam.

6.3
Experimental Demonstration

The above principles can be demonstrated by using synthetic micro-objects,
fabricated using two-photon photopolymerization [8, 9]. The production, trapping,
and rotation of such objects have been demonstrated by a number of groups
around the world [10, 16]. This method provides an ideal opportunity for the
development of initial designs and their evaluation, prior to further engineering
and optimization. It is possible to calculate the optical forces and torques acting on
such structures, but it requires a major computational effort. Therefore, it is useful
to apply such computational techniques to the optimization and improvement of
an existing design, rather than through the creation of the initial design ex nihilo.
Such an initial test of a design, and the general design principles outlined above,
was our major goal here, to be followed by computational optimization of the
design discussed in Section 6.4.

6.3.1
A Preliminary Design

Since the achiral rotor with p > 2 offers an interesting and complex range of
behavior, we use such a structure to demonstrate the action of OAM, and also
demonstrate zero torque when trapping using a plane-polarized Gaussian beam.
From the above principles, we can do this with a four-armed, mirror-symmetric
rotor. A practical issue is that the symmetry axis of the rotor should coincide
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with the beam axis. This can be ensured by using a central stalk which will align
along the beam axis. For a typical photopolymerized object in water, we have
refractive indices of approximately nobj = 1.50–1.55 for the object and nmed = 1.33
for the surrounding water. To obtain a phase difference of close to a half-wave,
we want a thickness of λmed/(2(nobj − nmed)), where λmed is the wavelength in the
medium. This is a thickness of approximately double the free-space wavelength of
the trapping beam.

6.3.2
Fabrication

The two-photon photopolymerization technique was pioneered by Strickler and
Webb in 1991 [17], following the application of two-photon excitation in laser
scanning fluorescence microscopy [18]. The first 3D microfabricated structures with
two-photon photopolymerization were reported in 1997 [19]. Since then, various
micromachines have been produced (micropumps, microgears, microneedles)
with resolution on the order of 100 nm [10, 20, 21]. The method has been recently
reviewed [8, 9]. Our own photopolymerization setup and its performance have been
described in [22].

We produce the microrotors using NOA63 resin from Norland Products. The
3D object is represented by 2D layers (bitmaps) corresponding to the areas that
need to be polymerized. The stage is raster-scanned, with the beam being turned
on and off as required. The stage is moved in the z direction after each x–y scan.
The bitmap size is 100 × 100 pixels, which corresponds to 10 µm × 10 µm travel in
the x and y directions hence each individual pixel is 100 × 100 nm2 in size giving a
lateral resolution of 100 nm. The steps in the z direction are 200 nm.

After the polymerization, the unexposed resin is washed off with acetone, leaving
the 3D structure attached to the cover slip. An SEM image of a typical rotor is
shown in Figure 6.3.

6.3.3
Optical Trapping and Rotation

Optical trapping was performed in an in-house-built inverted microscope. The
trapping laser is a 5 W, 1070 nm Nd:YAG fiber laser (IPG Photonics, Oxford, MA,
USA), focused on the sample by a 100× Olympus oil immersion objective lens
with high numerical aperture 1.3. The output power is controlled by a half-wave
plate and a polarizing beam splitter. The sample is imaged onto a CCD camera by
the same objective lens.

The angular momentum of the incident trapping beam was controlled by using
a quarter wave plate for spin angular momentum and a computer-generated
hologram [23] creating Laguerre–Gauss modes (designated as LGp�, where p is the
radial mode index and � is the azimuthal mode index) for OAM. In our experiments
we used a hologram that generates LG02 modes in the first order when the incident
beam is the TEM00 Gaussian beam of the laser. These modes have an OAM of 2h̄
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Figure 6.3 Microrotor: design and realization. (a) The de-
sign with a scale of 100 nm wide voxels and (b) a scanning
electron microscope (SEM) image of the microfabricated
structure attached to the cover slip. (Please find a color ver-
sion of this figure on the color plates.)

per photon. The hologram we used here was produced photographically [24], but
a spatial light modulator (SLM) or other means of generating beams with OAM
could be used instead.

Demineralized water was added to immerse the rotor, which was still attached
to the coverslip. This was then placed on the sample stage of the trap. The trapping
system uses a water-immersion condenser, which allows the top of the sample to
remain open (recall that the trap is based on an inverted microscope); this allows
mechanical access to the sample. The microstructure was detached using the tip of
a needle mounted on a translation stage.

The rotor was easily trapped and rotated around the axis of the beam carrying
angular momentum. The rotor was trapped stably with its long axis (i.e., the central
stalk) aligned along the beam axis. The rotation rate was on the order of 1 Hz for a
trapping beam power of 20 mW at the sample. The structure did not rotate when
trapped in a Gaussian beam.

6.3.4
Optical Measurement of Torque

The torque exerted on the microstructure is the sum of the two contributions from
spin and orbital angular momentum transfer.
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The spin torque measurement is based on the fact that any coherent beam can
be represented as a sum of two circularly polarized components with opposite
handedness with a coefficient of circular polarization σs given by σs = (PL −
PR)/P, where PL and PR are the powers of the left and right-circularly polarized
components, respectively, and P is the total power of the beam [25]. Therefore, the
spin torque τs can be written as τs = �σsP/ω, with �σs being the change in the
coefficient of circular polarization due to the spin angular momentum transfer, P
is the incident beam power, and ω is the optical angular frequency of the beam.
Hence, by measuring �σs and knowing P and ω, the torque can be found. The
change in the coefficient of circular polarization is measured by two photodetectors
(PD1 and PD2), which are placed after a polarizing beam splitter cube. The outgoing
beam is collimated by the condenser and then split into two orthogonal linearly
polarized components by the quarter wave plate (λ/4) and the cube. The two
linearly polarized components correspond to the left- and right-circularly polarized
components of the outgoing beam. The two detectors measure the power of each
beam, and hence the coefficient �σs that is directly related to the spin torque per
photon can be found. From the above-mentioned equation τs = �σsP/ω, writing
P = Nh̄ω with N being the number of photons per time, one can find out that the
spin torque per photon has the value of �σsh̄.

Similar to the spin component of the torque, one can write the orbital torque τo

as being τo = �σoP/ω, with �σo being a coefficient related to the orbital torque
per photon in the same way as �σs is related to the spin torque per photon. Thus
the orbital torque per photon has the value of �σoh̄.

In order to measure the orbital torque τo, we used a method previously described
in [26]. It is based on the steady rotation of the microstructure, which means that
the total optical torque is equal to the drag torque due to rotation in the liquid.
In our case, the surrounding medium behaves as a Newtonian fluid and hence
the drag torque is proportional to the angular speed of rotation �. The rotor was
trapped well clear of any surfaces so that no corrections for frictional forces or wall
effects were necessary.

The total torque is

τ = τs + τo = D� (6.1)

where D is the rotational drag coefficient for the microstructure in the fluid. Using
this, we can calculate τo and D by measuring τs and � for three different degrees of
polarization of the incident light (left handed, right handed, and linearly polarized
light). Just as the torque efficiency provides a power-independent description of the
optical torque, it can be useful to introduce a spin torque efficiency Qs, such that
τs = QsP/ω, and an orbital torque efficiency Qo such that τo = QoP/ω.

The intensity variation at an off-axis point in the transmitted beam was also
measured. Owing to the symmetry of the structure, the rotation rate was one
quarter of the signal frequency. With a laser power of P = 40 mW at the focus, the
rotation frequency varied from 2.25 Hz (right circular) to 3 Hz (left circular), with
an uncertainty of 5%.
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Figure 6.4 The rotation frequency of the trapped rotor as
a function of the spin torque per photon for three different
polarizations (left circular, right circular, and linear). From
the fit to the data, the orbital torque per photon is found.

The relationship between rotation rate and the spin component of the torque
is shown in Figure 6.4. Since the spatial structure of the beam is the same for
all three polarizations (left circular, right circular, and linear), we can assume that
the orbital torque is the same for all three, and the only difference in torque is
due to the different spin torques, which are measured optically. The difference in
rotation rates due to the different spin torques allows us to find the rotational drag
coefficient, and hence the total torque from the rotation rates. We find that the
orbital torque efficiency is 0.20 ± 0.03, and the orbital torque is 4.8 ± 0.7 pN µm,
which is 10 times higher than the spin component. For a plane-polarized incident
beam, this is also the total torque.

The total torque can also be simply found from the rotation rate if the viscous drag
torque coefficient is known. The drag coefficient can be found by computational
modeling of the fluid flow around the rotor; we performed this calculation (in the
Stokes/creeping-flow limit) using a finite-element package [27]. At the rotation rate
measured with the plane-polarized beam, 2.75 Hz, this gave a torque of 5.4 pN µm,
which was in close agreement with the optically measured torque. These are
compared in Figure 6.5.

6.3.5
Discussion

Qualitatively, the rotor performs as expected – the structure rotates when trapped
in a beam carrying the OAM, and does not rotate in a Gaussian beam. The torque
efficiency of 0.2 is much higher than that typical for shape-birefringent objects
(e.g., 0.02–0.05). If the geometry of the structure is known, and the properties
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Figure 6.5 The total optical torque as a function of the ro-
tation frequency (thick line). The torque determined from
the measured rotation rate and the calculated viscous drag
torque coefficient is also shown (thin line), with the error
bound due to the experimental error in the frequency mea-
surement (gray region).

of the fluid are known, the viscous drag torque coefficient can be calculated,
and the torque can be simply found from the rotation rate. If these are not
known, Parkin’s method for the all-optical measurement of torque [26] provides
an accurate measurement of the torque, including the dominant contribution due
to OAM.

We have demonstrated that consideration of the effects of symmetry on the
scattering of light provides a sound theoretical basis for the design of optically driven
microrotors. In particular, it provides a simple set of qualitative guidelines for the
development of initial designs that can then be experimentally or computationally
evaluated. Rotors exploiting the OAM of light can make use of angular momentum
fluxes of over h̄ per photon in the driving beam, and can have higher efficiencies as
a result; in the example case in this paper, the orbital component of the torque was
10 times higher than the spin torque.

The total optical torque exerted on the micrometer-sized objects rotating in an
optical trap can be measured accurately by optical means, that is, by polarimetric
measurement of the spin component of the optical torque. Even when the orbital
component of the torque is much greater than the spin torque, as it was in the test
case of the method here, the results are accurate.

We have also demonstrated an efficient method for calculating the viscous drag
torque acting on such a microrotor, by computationally solving the 3D Laplace
equation. This can be used for finding the optical torque acting on a microrotor
from the rotation rate, as we did here, or for the prediction of performance,
including near a surface.
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The two-photon photopolymerization technique has proved to be a powerful tool
for fabricating microstructures with potentially any arbitrary shape, which can be
useful in studies dealing with transfer of linear and/or angular optical momentum.
While it might not be the method of choice for the large-scale manufacture of
devices, it is perfect for the fabrication of prototypes and test devices.

6.4
Computational Optimization of Design

In the preceding section, we showed that considering microrotors as microholo-
grams altering the angular momentum content of the driving beam can be used
for the conception of designs. One design – a symmetric cross-shaped rotor – was
fabricated and tested, and performed qualitatively as expected. The tested rotor was
designed to be three-dimensionally trapped, and included a long central stalk for
maintaining proper alignment within the trap.

However, suggested applications of optically driven rotors often involve the
rotor being mounted on an axle within a microfluidic device, as opposed to a
‘‘free-swimming’’ rotor like the test design. In this case, since the rotor is not free
to move along the beam axis, it can lie in the focal plane of the driving beam. This
simplifies the design procedure, since there are fewer variables to consider – no
stalk is needed, and there is no need to be concerned with where the equilibrium
trapping position is along the beam axis.

A free rotor, on the other hand, will be trapped past the focal plane due to the
action of the scattering force, as is seen for all particles in single-beam traps. One
result of this is that the rotor is typically expected to be trapped along the beam axis
where the beam begins to strongly diverge. This will result in a reduction in the
torque efficiency [27]. This is shown in Figure 6.6.

Therefore, we can expect improved performance from a rotor integrated within a
device, mounted on an axle. However, this presents significantly greater difficulty
in fabrication, and is thus an ideal candidate for a more extensive computational
exploration.

6.4.1
Computational Modeling of Microrotors

The calculation of optical forces and torques is essentially an electromagnetic
scattering problem – the incident field carries energy, momentum, and angular
momentum toward the particle in the trap, and the superposition of the scattered
and incident fields carries these away. The difference between the inward and
outward fluxes gives the absorbed power, and optical force and torque. In principle, a
wide variety of methods can be used for the scattering calculation, and methods such
as ray optics and the Rayleigh approximation remain popular due to their simplicity.
However, the particles typically trapped and manipulated using optical tweezers
are too small for short wavelength approximations such as geometric optics and too
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Figure 6.6 Force and torque as a function of axial posi-
tion of cross-rotor trapped in plane-polarized LG02 beam.
The equilibrium position is past the focal plane (a), and the
torque efficiency has dropped substantially below the maxi-
mum value at this position (b).

large for long wavelength approximations such as Rayleigh scattering. For particles
in this intermediate size range, a resort to computational electromagnetics is usual.
General methods such as the finite-difference time-domain (FDTD) method and
the finite-element method (FEM) can be used, but tend to be excessively slow,
especially in view of the repeated calculations needed to model an optical trap.

One method that provides efficient repeated calculations is the T-matrix method;
this also has the considerable advantage of allowing the force and torque to be
calculated without needing to calculate the actual fields or numerically integrate
the Maxwell stress tensor. Fundamentally, the T-matrix method makes use of a
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discrete basis set of functions ψ
(inc)
n , where n is a mode index labeling the functions,

each of which is a divergence-free solution of the Helmholtz equation, to represent
the incident field

Uinc =
∞∑
n

anψ
(inc)
n (6.2)

and ψ
(scat)
k to represent the scattered wave, so that the scattered field can be

written as

Uscat =
∞∑
k

pkψ
(scat)
k (6.3)

The expansion coefficients an and pk together specify the total field external to the
particle.

When the electromagnetic response of the scatterer is linear, the relationship
between the incident and scattered fields must be linear, and can be written as the
matrix equation

pk =
∞∑
n

Tknan (6.4)

or

P = TA (6.5)

The Tkn, which are the elements of the transition matrix, or system transfer matrix,
often simply called the T-matrix, are a complete description of the scattering
properties of the particle at the wavelength of interest. The T-matrix is independent
of the incident illumination, which is why the method is efficient for repeated
calculation – it is only necessary to find the expansion coefficients of the incident
light, and repeat the matrix–vector product (Eq. (6.5)), using the same T-matrix, to
complete the scattering calculation.

When the scatterer is finite and compact, the most useful set of basis functions is
VSWFs [5, 7, 28, 29]. In particular, the convergence of the VSWFs is well behaved
and known [30], and this allows the sums given above to be truncated at some finite
nmax without significant loss of accuracy.

The T-matrix method does not prescribe any particular method for the calculation
of the T-matrix [29, 31], although the extended boundary condition method (EBCM)
is usual [5, 28]. For a spherical particle, the T-matrix is given analytically by the
Lorenz–Mie solution [32, 33]; this extension of the Lorenz–Mie solution to arbitrary
illumination is usually called generalized Lorenz–Mie theory (GLMT) [34]. For a
complex particle, especially one for which the EBCM fails, a more general method
can be used. One such method is the discrete dipole approximation (DDA) [35–38],
where the scatterer is represented as a collection of coupled dipole scatterers
(hence the alternative name, the coupled dipole method [39]). DDA is a very
attractive method for modeling scattering by microrotors, since it can be used for
geometrically complex objects, and allows optimizations based on the symmetry
of the scatterer, reducing the computational requirements by orders of magnitude.
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In particular, we exploit the discrete rotational symmetry and mirror symmetry of
typical microrotors [38].

The basic procedure for calculating the optical force and torque is as follows:

1) calculate the T-matrix,
2) calculate the incident field expansion coefficients an,
3) find the scattered field expansion coefficients pk using P = TA, and
4) calculate the inflow and outflow of energy, momentum, and angular momen-

tum from the total field.

For microrotors, step 1 is the bulk of the computational task [38]. Steps 2–4 can
be carried out using our T-matrix-based optical tweezers computational toolbox,
the optical tweezers toolbox [40].

6.4.2
Performance of a Four-Armed Rotor

A simple type of rotor was chosen in order to computationally explore the optimiza-
tion of design. Again, fourfold symmetry was used. The arms were sectorial rather
than straight, joined by a simple cylindrical hub. Since we considered illumination
by optical vortex beams, the central region lies in the dark central region of the
beam, and similar performance would result if the rotor is secured in a device by an
axle passing through the hub or is fabricated with a stalk for use as a free-floating
rotor. Therefore, the variable parameters are thickness of the arms, angle occupied
by the arms, outer radius of the rotor, and radius of the inner hub (Figure 6.7).

The symmetry optimizations discussed above were used in this project. The
fourfold discrete rotational symmetry of the microrotor was exploited to reduce
the memory footprint and to speed up the DDA calculations. The discrete rotation
symmetry and mirror symmetry were used in the near-field point matching, and
the mode redundancy associated with the discrete rotation symmetry was used
when solving the scattering coefficients, which both reduce calculation time by
orders of magnitude.

We considered LG02 and LG04 incident beams, coaxial with the microrotor,
so incident azimuthal modes were limited to m = 1, 3, 5. Therefore, it was not
necessary to calculate the entire T-matrix.

We assumed that the rotors had the same refractive index as those we produced
by two-photon photopolymerization, n = 1.54, and were surrounded by water. The

ra
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h

Figure 6.7 Dipole model of the four-armed
microrotor.



106 6 Driving Optical Micromachines with Orbital Angular Momentum

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

x /l

z
/l

Figure 6.8 Intensity contour of the LG02 incident beam and quatrefoil rotor profile.

driving beams were assumed to be tightly focused by an objective with numerical
aperture of 1.3, giving a beam convergence angle of 78◦ in water. The beams we
used were assumed to have the back aperture of the objective illuminated by a
plane-polarized LG02 or LG04 beam. Figures 6.8 and 6.9 show cross sections of the
focal regions of the incident LG02 and LG04 beams, respectively, superimposed on
the rotor.

Figures 6.8 and 6.9 also show an important feature of tightly focussed opti-
cal vortex beams that even those produced by focusing zero-radial-order beams
(LG0�, with radial mode index p = 0) do not consist of a single bright ring
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Figure 6.9 Intensity contour of the LG04 incident beam and quatrefoil rotor profile.
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in the focal region, but of a series of concentric rings. The focal region of
such a beam approximates a truncated Bessel beam. While an infinitely wide
Bessel beam (which also requires infinite power) is nondiverging, a truncated
Bessel beam diverges as it propagates through the spreading of the outer
ring, followed by the next ring, and so on, until it spreads to the inner-
most ring. This can also be seen in tightly focused vortices, such as that we
have here [41].

In the hologram picture of microrotors, the thickness of the arms is an essential
parameter, since it determines the phase retardation imparted on light passing
through the structure. However, the simple ray model used for the preliminary
design can be criticized on many grounds – the features of the structure are too
small for ray optics to be reliable, and the rotor is located in the focal region of the
beam that is not described properly in the ray optics approximation. However, one
would need to be careful with a ray picture of this type even if the objections above
do not apply. For example, if we consider a paraxial beam passing through a phase
retarder printed on a holographic plate, there is a very clear difference between
a beam with no retardation, and one with a full-wave retardation, as shown in
Figure 6.10.

With these considerations in mind, the dependence of the torque efficiency on
the thickness of the structure is especially interesting. This is shown, for both LG02

and LG04 beams, in Figures 6.11 (for outer radius ra = 1λ) and 12 (for outer radius
ra = 2λ).

While, for the reasons advanced above, the torque efficiency is not expected
to fall to zero as suggested by the ray picture, the plateau seen in Figures 6.11
and 6.12 is remarkable. This effect will result from two major causes. First, as
seen in Figures 6.8 and 6.9, the focal region of the beam is approximately three
wavelengths in length, and a rotor thicker than the length of the focal region will
be illuminated partly from the side, not just from the end. In this case, additional
thickness will make little difference to the torque efficiency.

(a) (b)

Figure 6.10 Phase structure of a beam that
has passed through a holographic plate with
a phase-retarding stripe made visible through
interference with a plane wave. (a) A stripe
with a very small retardation has very little
effect on the beam, as expected, while in

(b), a full-wave retardation is very noticeable.
In a simple ray picture, the effect of both
would be the same, but the continuity of the
electric field of the beam as it propagates
through the holographic plate prevents this.
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Figure 6.11 The torque efficiency of the microrotor versus
thickness with outer radius ra = 1λ and hub radius rb = 0.
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Figure 6.12 The torque efficiency of the microrotor versus
thickness with outer radius ra = 2λ and hub radius rb = 0.

A second cause is that the arms of the rotor, being of higher index than the
surrounding medium, will act as waveguides. Light will tend to concentrate within
the arms, forming a guided mode. When these guided modes are established, the
phase of the wave in the surrounding medium immediately outside the arm will
be determined by the phase within the arm, and thicker arms will not result in
greater relative phase shifts. Since the space between the arms is comparable to
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Figure 6.13 The torque efficiency of the microrotor versus
blade radius ra for thickness of h = 3.4λ.

the wavelength, essentially all of the beam will be close enough to the arm to be
affected by this.

We can also see that the radius of the rotor is very important; the maximum
torque efficiency for a rotor of radius ra = 2λ is much greater than that for a
radius of ra = 1λ. This occurs despite the smaller rotor still being large enough to
intercept the innermost (and brightest) bright ring. However, Bessel beams have
equal power in each bright ring, and we can expect the power in the second and
further successive bright rings to be a large fraction of the total power. Therefore,
it is important for the rotor to intercept more of the beam than just the innermost
ring. The dependence of the torque efficiency on the radius of the rotor is shown
in Figure 6.13. For the LG02 beam, a radius of ra = 2.6λ is sufficient for the
maximum torque to be achieved, and little improvement results from radii over
ra = 2.2λ. Since the bright ring of an LG04 beam has a larger radius than that of
an LG02 beam, we expect that a larger rotor radius would be required to reach
the same torque efficiency when using an LG04 beam. However, the difference
in widths of the LG02 and LG04 beams, as shown in Figures 6.8 and 6.9, is
insufficient to explain the lower torque efficiencies. This is discussed below, after
exploration of the dependence of torque efficiency on the angle occupied by the
rotor blades.

For subsequent calculations, we used a thickness of h = 2.2 and rotor radius of
ra = 2.2; these are sufficient to give performance close to the optimum, while the
increased size required to achieve the actual optimum performance would greatly
increase the required computational time and resources.

The remaining parameters to be explored are the hub radius rb and the rotor
blade angle. The effect of the hub radius is shown in Figure 6.14. It can be seen
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Figure 6.14 The torque efficiency of the microrotor versus
hub radius rb, for thickness h = 2.2λ and rotor radius
ra = 2.2λ.

that the torque efficiency drops rapidly after rb = 0.4, as the hub begins to intercept
a significant portion of the beam power. In the extreme case, rb = ra, the rotor
becomes a cylinder without arms, and no torque can be generated.

The effect of the blade angle is shown in Figure 6.15. It appears that the blades
should occupy an angle between 35◦ and 40◦ to achieve optimal torque (for the
LG02 beam). Viewing the rotor as a hologram, it would be best if half of the power
passes through the arms or the rotor, with the other half of the power passing
between them. With a ray model, this is achieved by having the arms occupy half of
the area, that is, a blade angle of 45◦. However, since the beam will be concentrated
within the arms due to the waveguiding effect discussed above, half of the power
will correspond to less than half of the area.

For the LG04 beam, the dependence on angle is interesting and complex. Noting
that the blade of the rotor is comparable to the wavelength in width, we can expect
the ‘‘waveguide’’ mode, which is best supported, to be relatively uniform within the
blade, which would be the lowest-order TEM mode in an optical fiber. As such, we
can expect poor coupling of the incident light to this mode when the blade angle
is 45◦, since the incident beam is a half-wave out of phase on opposite sides of
the blade. The phase of the incident light across the blade is an odd function, and
will not couple strongly to a low-order mode where the phase is uniform. Stronger
coupling should occur where the phase variation across the blade is a 1/4 or 3/4
wave – an even function such as this will have a significant zero-frequency Fourier
component, as opposed to the vanishing zero-frequency component for an odd
function.



6.4 Computational Optimization of Design 111

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
0

0.5

1

1.5

2

2.5

f

T
or

qu
e 

ef
fic

ie
nc

y

LG02

LG04

Figure 6.15 The torque efficiency of the microrotor ver-
sus blade angle, for thickness h = 2.2λ and rotor radius
ra = 2.2λ.

6.4.3
Discussion

First, the above discussed computational results show that the hologram picture of
microrotors is useful, and gives qualitatively correct predictions; these predictions
agree with and are supported by the qualitative expectations.

Second, we have shown that, given a preliminary design, computational modeling
of a microrotor allows optimization of the design. The parameters investigated here
were thickness, outer radius, hub radius of the rotor, and angle occupied by the
blades. Other parameters that might be of interest are the (relative) refractive
index of the structure, the number of arms, the details of the driving illumination,
and so on. The calculations above were carried out on desktop PCs (from 2008
to 2009), with the larger structures needing 64-bit computers due to memory
requirements. Therefore, such computational optimization is possible with readily
available hardware. The computational resources required to carry out the scattering
calculation to determine the optical force and torque increase rapidly with increasing
size, and would, at the time of writing, require high-performance computing
resources using the methods described. An increase in computational power of
typical desktop computers, which can be expected over time, will also increase
the usefulness of these methods. Most of the software used for the above results
are already available in our optical tweezers toolbox [40], and the DDA–T-matrix
software [38] will be included in the future. The symmetry optimizations were
of great practical value, since they allowed the calculations to be carried out in a
reasonable time on readily available hardware.
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Third, some general conclusions can be drawn from these results. It is clear
that the exact values of parameters such as the rotor thickness and radius are not
important, as long as they are above particular values. Thus, a particular microrotor
can be expected to perform well under a variety of conditions; for example, being
driven by beams of various wavelengths or focused to varying degrees.

The relative performance when driven by an LG02 beam versus an LG04 beam
also merits further discussion. From a qualitative consideration of the hologram
picture of microrotors, we might expect similar performance from both. However,
the LG02 beam produced much higher torques. Since the action of the rotor arms
as ‘‘waveguides’’ appears to be important, we can expect the coupling of an incident
LG02 to a transmitted LG0,−2 beam to be strong. If the waveguide effect is dominant,
the output will closely resemble the superposition of LG02 and LG0,−2 beams, as
shown in Figure 6.16. In this case, the left- and right-helical output modes would
be of equal power, and a torque efficiency of 2 would be achieved, due to half of the
power being in modes with an angular momentum change of 4h̄ per photon. This
is close to the calculated torque efficiency.

The maximum torque efficiencies here are notably greater than the observed
orbital torque efficiency of 0.2 in Section 6.3. In Figure 6.6, it can be seen that
the torque efficiency is greatest when the rotor lies in the focal plane, rather than
lying past the focal plane in the axial trapping equilibrium position. Thus, a rotor
mounted on an axle can produce greater torque compared with a free rotor trapped
in a single beam. Alternatively, a free rotor could be trapped in the focal plane using
counterpropagating beams to eliminate the net axial scattering force. However, the
maximum torque efficiency for the original design is still much lower than the
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Figure 6.16 Light transmitted through ro-
tor arms illuminated by LG02 beam, due to
‘‘waveguiding’’ effect. The field in each rotor
arm resembles that of a lowest-order mode
in a waveguide, and will be approximately

uniform in intensity and phase. (a) Owing
to the phase variation of the incident light,
the light in each successive rotor arm is a
half-wave out of phase. (b) The superposi-
tion of LG0,2 and LG0,−2 beams.
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torque efficiency for the optimized design here, with only approximately one third
of the torque efficiency. The potential benefit of optimization is clear.

6.5
Conclusion

Consideration of the effects of symmetry on the scattering of light provides a sound
theoretical basis for the design of optically driven microrotors. The symmetry
principles are the same as seen in the interaction between light and holograms;
the analogy between the holographic generation of optical vortex beams carrying
the OAM and the application of OAM to the generation of optical torque on
microrotors is strong, and provides a convenient and familiar picture for the
conception of designs. This provides a simple set of qualitative guidelines for
the development of initial designs that can then be experimentally tested or
computationally optimized.

Two-photon photopolymerization is an excellent method for the experi-
mental evaluation of designs. Coupled with the optical measurement of the
torque – Parkin’s method [27, 42] provides an accurate measurement of both
the total optical torque and the orbital component – or computational modeling
of the fluid flow about the rotor [27], the performance of the rotor can be both
qualitatively and quantitatively evaluated. The two-photon photopolymerization
technique has proved to be a powerful tool for fabricating microstructures with
potentially any shape. While it might not be the method of choice for the large-scale
manufacture of devices, it is perfect for the fabrication of prototypes and test
devices and the study of the transfer of linear and/or angular optical momentum
to them.

Systematic computational modeling can be used to optimize a preliminary de-
sign. We demonstrated computational modeling of this nature using a hybrid
DDA–T-matrix method [38] coupled with our optical tweezers toolbox [3] for
modeling optical forces and torques in arbitrary beams. Symmetry optimizations
exploiting discrete rotational symmetry and mirror symmetry of the rotor allow
the calculations to be carried out on a desktop PC. We showed that it is possible
to construct rotors that will give close-to-optimum performance under a variety of
conditions. This type of modeling, ideally including the modeling of nonelectro-
magnetic effects such as heating and convective flow, can be used to carry out the
engineering and design of such in a systematic and guided manner.
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7
Rotational Optical Micromanipulation with Specific Shapes Built
by Photopolymerization
Péter Galaja, Lóránd Kelemen, László Oroszi, and Pál Ormos

7.1
Introduction

Photons carry spin; consequently, a light beam can have angular momentum
and while interacting with matter, this angular momentum can be transferred to
objects. This theoretical concept became a practical tool with the development of
optical micromanipulation.

With the emergence of lasers, where high light intensities could be generated in
small areas, it was demonstrated – primarily through the original works of Arthur
Ashkin [1, 2] – that light can effectively manipulate microscopic particles. Optical
tweezers were introduced, where particles could be trapped in the focus of a high
numerical aperture laser beam. The method developed to become an innovative
and useful noncontact manipulation tool, with countless applications, notably in
biology. In the basic configuration, optical tweezers can grab a spherical particle
that has an index of refraction larger than that of the surrounding medium. The
particle is held in the focus that forms an elastic trap. The position of the particle is
monitored and controlled. This system already has great potential. The noncontact
manipulation method itself allows previously unfeasible experiments: trapping of
cells and intracellular objects, manipulation of macromolecules through attached
plastic beads, stretching single molecules (DNA [3, 4], titin [5] etc.), mechanical
characterization of molecular motors [6, 7], and so on, just to name a few.

It is clear that if the optically trapped object is a sphere made of an isotropic
material, the only relevant coordinate is its position. There is no additional means of
manipulation in this respect. On the other hand, when we manipulate nonspherical
objects in general, additional degrees of freedom such as rotation/orientation are
also important.

To extend the traditional, purely translational trapping, the obvious next degree
of freedom to be manipulated is the rotation of the trapped object around the
propagation direction of the light as an axis. Here, the torque exerted by the
trapping light plays the dominant role. The particle can be orientated, rotated, and
this gives major new potential for manipulation. In recent years, a number of
techniques have been developed that are based on different optical phenomena.

Twisted Photons: Applications of Light with Orbital Angular Momentum.
Edited by Juan P. Torres and Lluis Torner
Copyright  2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Two basic principles exist to achieve rotational manipulation. In the first and
distinctly elegant scheme, the incoming light beam itself carries the angular
momentum, and its interaction with the trapped object generates the torque for ro-
tational manipulation. The classic example is the interaction of circularly polarized
light with a birefringent material, first demonstrated by the Rubinsztein-Dunlop
group [8]. Subsequently, different schemes were introduced along this concept.

In another basic procedure, the incoming manipulating beam carries no angular
momentum, but it interacts with an object having helical shape. In this case,
the light gains angular momentum following the scattering. This interaction also
exerts torque on the manipulated object. This rotation mechanism is roughly
analogous to a propeller driven by blowing wind. The shape of the object is crucial
in this approach. By using various shapes, the interaction of light and particle can
be controlled to a large extent, and different and surprising possibilities can be
achieved. Key to the practical realization of this system is the production of shapes
with the appropriate specificity. We explored the possibilities of this approach.

7.2
Microfabrication by Photopolymerization

7.2.1
Fabrication by Scanning a Single Focused Laser Beam

Building of micrometer-sized structures to perform different tasks in microfluidics
is an emerging field and different methods have been developed. A straightforward
approach uses silicon-based microlithographic methods [9–11]. In this procedure,
3D objects are built in several steps of layer-by-layer repetitive production processes
such as photolithography, etching, doping, and so on. Laser ablation methods are
also suitable for fabrication [12].

Photopolymerization is an alternative approach to producing micrometer-sized
3D structures. In this procedure, laser light excitation hardens an appropriate
photopolymer. A laser beam is focused on the material and with a carefully
chosen parameter set crosslinking of monomers occurs in the close vicinity of the
focal spot. By scanning the focal point in the photopolymer along a predefined
path, entire objects can be built in one (or just a few) step(s). The procedure is
schematically shown in Figure 7.1. One can scan either the sample relative to
the laser focal spot or vice versa. The spatial resolution of the method can be
improved by the use of femtosecond lasers, where the intensity in the pulses is
sufficiently high to induce two-photon absorption (TPA). Owing to the quadratic
intensity dependence of the two-photon process, the size of the polymerized
region can be reduced, thereby increasing resolution [13–15]. Recent papers
reported successful two-photon polymerization of organic–inorganic materials
with submicron resolution [16]. The method is capable of generating different
microscopic mechanical devices such as springs [15, 17], gears [14, 18, 19], and
micromanipulator arms [20]. The actuation of photopolymerized objects mainly
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Figure 7.1 Illustration of the laser-induced photopolymeriza-
tion technique. Laser light is focused onto a light-sensitive
polymer. Using two-photon excitation, the polymer hard-
ens only in the laser focus, and the object is drawn by the
moving focus.

involves optical tweezers that either simply hold or relocate objects [20] or, in case of
special-shaped objects, even rotate them [10, 14, 21]. In the experiments discussed
here, we used particles built by this procedure.

We worked with several photoresists – depending on the desired properties
of the final structures, different materials may be advantageous. The two basic
types were versions of Norland optical adhesives (Norland, Cranbury, NJ, USA)
and SU8 photoresist (Michrochem, Newton, MA, USA). The Norland material is a
composite of acrylate monomer with mercapto-ester. Structure building takes place
in a single step. In addition, the polymer is of optical quality. The disadvantage of
this material is its mechanical properties: during the polymerization process the
material shrinks, resulting in a certain degree of distortion in the final structure. In
contrast, SU8 is an epoxy-based negative photoresist. It has excellent mechanical
qualities: it does not shrink during the process and the final material is significantly
harder than the Norland [22]. The disadvantage is that it is more complicated to
process (e.g., a careful pre- and postexposure bake is needed), and the optical
quality of the hardened material is not good: it scatters a significant amount of
light. Depending on the particular application, we used both materials.

Both materials are light-sensitive for wavelengths of less than about 400 nm,
so the light from a mode-locked Ti:sapphire laser (FemtoRose 100 TUN, R&D
Ultrafast Lasers Ltd, Budapest, Hungary) is appropriate for two-photon excitation
with the following parameters: 150 fs pulses with 80 MHz repetition rate and
up to 6.3 nJ pulse energy (500 mW average power) in mode-locked operation
at 790 nm wavelength. In general, an average power of 1–8 mW is sufficient
for the polymerization. A 100x magnification, 1.25 NA oil immersion objective
(Zeiss Achroplan, Carl Zeiss, Germany) was used to focus the beam into the
photopolymer.

Scanning the focus is achieved by moving the microscope stage along a predeter-
mined trajectory: we use piezoelectric devices, primarily an X–Y piezo-translator
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Figure 7.2 Snapshot of the structure building process. A
cogwheel is being produced – after crosslinking, the re-
fractive index of the polymer changes, making the process
visible. A completed wheel is on the left.

(Physik Instrumente, Germany) of 100 × 100 µm travel range and nanometer
precision displacement perpendicular to the optical axis, while the positioning
along the Z-direction is realized by mounting the microscope objective also on a
piezo-translator (PIFOC, Physik Instrumente, Germany) with 80-µm travel range
along the optical axis.

Figure 7.2 shows an image of the fabrication process in the case of Norland
photoresists – a cogwheel is being produced. The polymerized structure is visible
because the refractive index of the material increases following excitation. This is
not the case for the SU8 photoresist: the illuminated region is not visible, and
the result can be seen and evaluated only after the structure is developed. After
completion of the photopolymerization, the nonhardened material is removed and
the object is ready to be used.

7.2.2
Parallel Photopolymerization using Diffractive Optics

Following the structure building process, the free-floating micrometer-sized parti-
cles are quite difficult to collect. Consequently, a large number of identical particles
have to be built to cope with the limited recovery yield. The rate-limiting step here
is the scanning because the laser beam has to go through each particle one by one,
and it becomes necessary to speed up the process.

The rate of the production can be increased by parallelizing the procedure. The
most trivial way to achieve this is to multiplex the laser beam by appropriate
diffractive optical elements. In the literature, one can find examples for using
passive transparent-type devices such as microlens arrays [23] and kinoforms [21].
We investigated the latter option becausethis way, the process can be multiplexed
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and identical objects can be built – the level of multiplexing is limited by only the
available laser power [21].

Higher level of complexity and control can be achieved by the use of active
beam-shaping devices such as spatial light modulators (SLMs). We also studied
the possibilities of this approach using computer-controlled reflective SLM (LC-R
2500, Holoeye Photonics AG, Berlin-Adlershof, Germany). In such systems, simple
multiplexing can also be achieved in a controlled manner, but in addition, com-
plex illumination patterns can be generated enabling highly accelerated or even
single-shot photopolymerization [21].

Structure building by photopolymerization has developed into a most useful
and highly capable rapid prototyping technique. In general, the complexity of the
structure to be built is not a limiting factor, and when particles with well-defined,
specific three-dimensional shapes have to be fabricated in moderate copy numbers
(i.e., <10 000), it is the most advisable procedure [24, 25].

7.3
Light-Driven Rotors, Micromachines

7.3.1
Propeller

The basic topic of this section is light-induced rotation, where the origin of the
torque is the scattering of light on a helical object: a propeller. It often happens
when experimenting with optical tweezers that microscopic particles trapped in
the focus of a laser beam tend to rotate. The phenomenon may first appear
surprising, but after all, an irregular shape may have some degree of helicity with
a fairly high probability, and this is sufficient to induce rotation. The phenomenon
is interesting from a purely intellectual standpoint, but at the same time it has
far-reaching implications as it forms the basis for prospective nanotechnology
applications.

For the systematic study of this phenomenon, we built well-defined propeller
shapes that can be rotated in optical tweezers. While the working principles of a
propeller are trivial, the details here are not really obvious for several reasons. There
have been attempts to estimate the light forces by ray optics by simply assuming
reflection and refraction on the surfaces [26]. However, since the wavelength of the
trapping/rotating light is comparable to the particle size, the use of ray optics is
an oversimplification; an exact calculation of the force and torque on the particle
with complex shape is not trivial. In addition, even the position of the particles
within the trap is most difficult to determine. Obviously, the rotating torque due
to the scattering of the light crucially depends on the position of the body in
the focus. Instead of using unreliable approximate calculations, we have tested
numerous shapes that we expected to assume a regular position in the trap and
rotate efficiently. We have tried many classes of forms, the variations of sprinkler
shapes with a central axis were best both with respect to stability of position in the



122 7 Rotational Optical Micromanipulation with Specific Shapes Built by Photopolymerization

3 µm
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(c)

(b)
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Figure 7.3 Geometry and picture of an efficient microscopic
light-driven rotor. The rotor can take up two stable positions
in the laser trap. (a,c) Drawing of the design. (b,d) Image of
the actual rotor in the microscope in equivalent positions.

trap and efficiency of rotation [27]. The shape shown in Figure 7.3 has proved to be
very effective [14]: It was both very stable in the focus and showed efficient rotation:
at 20-mW power, frequencies of several hertz were achieved.

We have observed that the rotor can assume two stable positions in the trap:
with the axis pointing toward the microscope objective or away from it. In both
positions the propeller rotates, with somewhat different efficiencies (Figure 7.4).
This observation indicates the complexity of the situation. At first glance the two
opposite orientations should be equivalent. However, if we consider that due to
the scattering force the equilibrium position is not exactly in the focus, it becomes
clear that the two cases are not equivalent. This also points to the difficulty of an
exact description of the system. However, we can make reasonable estimations
to characterize the dynamics. In stationary rotation, the torque exerted by the
scattered light is in equilibrium with the viscous drag. A rough but reasonable
estimate can be made for the driving torque by assuming that on an average,
light is deflected by 10◦ as a result of scattering and the average distance from
the axis is 3 µm. From the momentum change for light of 995-nm wavelength
and power of 10 mW, the torque is about M ≈ 2 × 10−17 Nm. The viscous drag
of the propeller can be estimated as follows: the estimation of the drag torque
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Figure 7.4 Dependence of the rate of revolution upon laser
power. The two plots correspond to the two indicated posi-
tions the rotor can assume in the laser trap. (Please find a
color version of this figure on the color plates.)

is easy for regular three-dimensional shapes, for example, for a sphere of radius
r, D = 8πηr3 at viscosity η. Our case is more complicated: The structures are built
up from cylinders, and here the drag force is not simply linearly proportional to
the velocity. The viscous drag force on a cylinder of length l moving in a direction
perpendicular to its axis with velocity v is

F = 4πvl
1
2 − C − ln Rvρ

4η

(7.1)

where η = 3.2 × 10−4 kg (m s)−1, ρ is the density of the liquid medium (ρ =
790 kg m−3 for acetone), R is the diameter of the cylinder, and C is the Euler
constant (C = 0.577). The drag torque on a complex structure can be calculated
numerically. For the shape of our propeller (Figure 7.3) at the observed ω = 7 s−1

at 10 mW power, the viscous drag torque is 3.6 × 10−17Nm, which is in good
agreement with the former estimate, especially if we remember that only a rough
agreement can be expected because of the ambiguous position of the propeller
in the trap. In the size range of the light-driven rotor, the linear correlation
between speed and drag torque is a good approximation across a wide range of
velocities, hence an effective viscous drag torque coefficient can be calculated.
For the rotor in Figure 7.3 with a diameter of 10 µm and 10 s−1 rotation, we
get a torque of 5.7 × 10−17Nm. The equivalent sphere has a radius of 4.5 µm.
This is a remarkable result in itself: the equivalent radius has just the size of the
propeller: it seems that in the low Reynolds-number environment, the actual shape
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of the particle is less important for the determination of the viscous drag; it is the
overall size that matters.

7.3.2
Propeller with Reversed Direction of Rotation

The propeller discussed before is analogous to a windmill rotated by the blowing
wind. In this case, the direction of rotation is given by the shape of the propeller for
a given wind direction, and there is no way to reverse it. Still, for optical tweezers,
there are some strategies we can use. If we look closer, we realize that the analogy is
limited; there is a fundamental difference between wind and our optical tweezers.
Wind is a moving mass of air with parallel streamlines (more or less, even if the
flow is turbulent), so a closer analogy would be a collimated light beam. In contrast,
our propeller is held and driven by a focused beam of high numerical aperture. One
basic difference between the two scenarios is that in the focused case, light carries
momentum in the direction perpendicular to the axis of propagation. In fact, for a
high numerical aperture beam, a large part of the total momentum falls into this
category. In addition, for a particular light ray, the component perpendicular to
the propagation may even have an opposite sign in front of and behind the focus:
in front of the focus this perpendicular component points toward the axis, while
behind the focus it points away from the axis. This beam geometry makes it possible
to realize light-induced bidirectional rotation with appropriate rotor design.

We built rotors that utilized this ‘‘radial’’ component of light [28]. The shape of
the rotor has to be such that the in-axis component of the light does not transfer
momentum, while in the perpendicular direction, the transfer should be maximal.
A logarithmic spiral in the plane perpendicular to the axis is such a shape. The
characteristics of this spiral is that at any point of the curve, the tangent makes an
angle identical to the radius drawn to this point and this angle characterizes the
curve. It is easy to see that if light propagating in or out in the radial direction is
reflected away from a structure with this shape, torque transfer will be maximum
if the above angle is 45◦. Figure 7.5 illustrates the concept of how the planar rotor
uses the radial component of the light in the optical tweezers, and how it can rotate
in two directions if positioned on either side of the focus. We included several
features in the design to fulfill the requirements of the practical realization of
this rotor. To ensure a stable axial position of the rotation center of the rotor in
the laser tweezers, an axis was added to the rotor with asymmetry in the in-axis
direction (Figure 7.6). This rotor can assume two stable positions in the trap: we
select the one where the shortest part of the axis is pointing toward the microscope
objective. Here, the equilibrium position of the rotor is between the focus and the
objective. The axial position of the rotor is changed by moving the objective in
the axial direction (focusing the microscope): moving the objective lens away from
the sample pulls the rotor toward the microscope coverslip. When it reaches the
glass surface and the objective is pulled further, the trapped body is pushed toward
the focus and then beyond. Thus, the axial position of the rotor can be easily
changed, relative to the focus.
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(a) (b)

(c) (d)

Figure 7.5 The concept of the rotor that can reverse the ro-
tational direction depending on its relative position in the
focus. (a) Position of the rotor in the focused laser beam,
(b) characteristic reflections to drive rotation in one direc-
tion, and (c,d) respective equivalent figures for rotation in
the opposite direction.

The rotor rotates in the equilibrium positions. The rate of rotation is linearly
proportional to the laser power, for 20 mW the frequency is 2 s−1, and the direction
is counterclockwise as expected for the shape in Figure 7.6 and as depicted in
Figure 7.5a,b (i.e., direction of momentum pointing toward the axis). On the other
side of the focus, the rotation changes direction as shown in Figure 7.5c,d (the
whole effect can be best observed in a real-time movie, provided on the web page
www.brc.hu/ormosgroup). We modeled the behavior of the rotor with a ray-tracing
simulation. The driving light is represented by a large number of individual rays
and the momentum transfer for each of them is calculated for the event when the
ray first hits the surface of the rotor. The observed effect is a sum of the impacts
of all these rays. This approach gives a good description of the system; that is, the
dynamics of the rotation is well explained and understood.
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(b)

(d)

(a)

(c)

Figure 7.6 The rotor used in the experiments. (a)
Schematic diagram, (b) photomicrograph of the rotor in an
on-axis view, and (c,d) the same from an arbitrary viewpoint.

The described system demonstrates that the very high numerical aperture
used in laser tweezers can produce interesting effects and by appropriate optical
arrangement, the light-driven rotors can utilize these characteristics to make the
optomechanical system significantly more flexible. This is most important for
future applications. The above experiments also illustrate that by appropriately
selecting the shape of rotors and system geometry, a great degree of control can
be achieved over the motion of the trapped particle. Modifications can be made
to make the application more practical in view of the particular task. These may
include addition of a site where an object to be rotated can be fixed. Likewise, one
can easily add an extension to convert the microrotor into a tool with a specific task
(drill, mill, mixer, etc.) – the possibilities are numerous.

7.3.3
Complex Micromachines

The two-photon polymerization method and the light-driven rotors discussed
here also offer the possibility of constructing more complicated micromechanical
systems. We explored and tested the concept by building complex micromechanical
systems that are built and driven by light. As a test and illustration of the general
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idea, we built systems where light-driven rotors (as seen before) drive cogwheels.
Both the rotors and the cogwheels are produced simultaneously. The cogwheels
rotate on axes. They are fabricated together with the axis on which they rotate. The
fabrication process is straightforward and based on photopolymerization: first the
axis is drawn such that it is fixed to the glass coverslip of the sample compartment
(it grows out of the glass surface). Subsequently, the cogwheel is built onto the
axis, so that it cannot get detached. The light-driven rotor is freely floating, that is,
it is held by the laser tweezers. As the concept was to show the basic elements of
complex micromechanical devices, we assembled systems where several cogwheels
are engaged to each other and are rotated by the light-driven rotor. Several layouts
were built and tested and these examples are shown in Figure 7.7.

The rotor and cogwheel are very easy to engage (by appropriately positioning
the rotor with the laser tweezers) and the rotor turns the cogwheels: the machine

(a)

(c)

(b)

Figure 7.7 Complex micromachines built by the two-photon
technique: cogwheels are rotated by a light-driven rotor as
shown in Figure 7.3. The rotor is held and rotated by the
laser tweezers and the rotating propeller drives the system.
Several arrangements are shown: one, two, and two-engaged
cogwheels are rotated by the light-driven rotor.
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‘‘works.’’ Of course, the rotor can also be fixed to an axis – in this case, the light
provides only the driving force and rotation in both directions can be achieved.
More complicated machines consisting of both static and mobile parts can be
constructed (forming micropumps, switches, etc.) in a straightforward manner.
The example shows that in the same compartment, driving rotors and mechanisms
of significant complexity can be put together.

The above rotors and machines demonstrate the power of two-photon pho-
topolymerization, and if combined with light-induced rotation, this offers a highly
promising method to construct light-driven machines on a micrometer scale.

7.4
Integrated Optical Motor

In the case of the devices introduced so far, the light-driven rotors were all such
that light not only provided the driving force, but also held them in position: the
optical tweezers were a fundamental part of the system. While this arrangement is
practical when the added manipulation potentials of the optical tweezers are used –
for example, we can move around the rotating propeller freely – in a number of
cases, it may be a drawback that a complicated bulky device, such as a microscope,
is needed for the system to work. In an alternative concept, all components
(moving and actuating) are integrated on a single chip and no additional actuating
device is needed. Simple driving without the need for complicated microscopes and
additional beam-shaping equipment would also offer advantages and would expand
the application area of such ‘‘self-contained,’’ optically controlled microfluidic
systems significantly. If a possibly simple stand-alone microscopic device, for
example, a microfluidic lab-on-a-chip system is to be constructed, this latter
approach may be of advantage. In the process of exploring the possibilities of
light-actuated complex micromechanical systems, we have developed the prototype
of a fully integrated optical motor, where all components are built on a glass
substrate surface [18]. Instead of the focused beam of an optical trap, the light that
drives the motor is guided in a surface-supported optical waveguide that is also an
integral part of the system.

Two-photon excited photopolymerization was used here too, to create all compo-
nents. Two types of photopolymers were used: the mechanical machine was built
of SU8 (index of refraction: 1.63), because it has excellent mechanical qualities
after polymerization. But on the other hand, it absorbs considerably in the visible
region (and we used green (532 nm) light to drive the system) and therefore,
was not appropriate for the several millimeter-long optical waveguide. To build
the waveguide, Norland 81 optical adhesive was used (refractive index: 1.56 after
curing) with excellent transmission in the visible range.

The design of the motor is shown in Figure 7.8. The whole system is con-
structed on the surface of a glass: a microscope coverslip of 170 µm thickness. A
cogwheel-shaped rotor is held by a fixed, polymerized axis structure. The light to
drive the rotor is carried by the optical waveguide and hits the rotor in a tangential
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A

B

R
W

10 µm

Figure 7.8 Design of the integrated optical motor. B, cover
glass baseplate; W, optical waveguide; A, axis assembly; R,
rotor. The diameter of the rotor is 10 µm.

direction. The rotor was driven by the 532-nm light of a diode-pumped solid-state
laser (Verdi, Coherent, USA).

The construction process consisted of two steps. First, the waveguide was built
using the following procedure. The coverslip was spin-coated with the Norland
adhesive to give a film thickness of 10 µm. This is somewhat thicker than the final
height of the waveguide. Then, the waveguide was drawn into the photopolymer
layer. The non crosslinked resist was dissolved. This 10 µm wide waveguide carried
the driving light with minimal loss over a distance of several millimeters. In the
next step, the SU-8 photoresist was spin-coated over the substrate with the light
guide already in place. The rotor assembly was built from the SU-8 photoresist by
the three-dimensional drawing method introduced earlier. Special attention was
paid to the precise positioning of the cogwheel structure relative to the tip of the
light guide.

Figures 7.9 and 7.10 show the final structure with both the rotor assembly and
the optical waveguide. Figure 7.9 is a bright-field transmission image taken with
an optical microscope, whereas Figure 7.10 is a scanning electron micrograph that
shows the structure in much more detail.

The motor, immersed in water, is driven by light carried to the rotor by the
waveguide shown in the figures. A single-mode optical fiber was used to deliver
the light to the system. The fiber was coupled to the device by placing the fiber at
the end of the waveguide using a micromanipulator. The fiber position was
optimized visually for maximum intensity at the output of the waveguide. A
satisfactory coupling could be achieved: typically about 25 ± 8 mW (50 ± 15%) of
the light from the fiber was coupled to the waveguide.
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Figure 7.9 The completed integrated motor imaged in the light microscope.

10 µm

Figure 7.10 Scanning electron microscope image of the integrated optical motor.

The motor rotated even at fairly low light intensities: it started to rotate at about
5–10 mW power at the rotor. Above this threshold, the rotation rate increased
roughly linearly with the power; at the maximum of 25 mW the rate was 2 Hz.
We determined the efficiency of the motor by estimating the torque originating
from the light hitting the rotor blades, and also by estimating the viscous drag
of water. First, the forces due to reflection were estimated. The shape of the
output beam from the waveguide was determined in independent experiments on
identical waveguides where the output beam was visualized using fluorescent dyes.
The output light has a numerical aperture of ∼0.07. The reflection forces were
estimated by using the difference between the indices of refraction of water and
the solidified resin of 1.33 and 1.63, respectively. Assuming a planar rotor blade
surface and taking into account the reflections on five blades of different angles
with respect to the direction of the driving light, the torque is estimated to be
6.2 ± 2.1 × 10−18 Nm at the maximum intensity. The viscous drag was calculated
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by approximating the rotor with a disc with identical height and diameter. Using
the observed rotation rate of 2 s−1 at the maximum driving intensity, we estimate
it to be 1.9 × 10−17 ± 3.8 × 10−18 Nm.

If we compare these torque values with those measured on other propeller
systems driven in optical tweezers or flat particles oriented by tweezers formed by
linearly polarized light (discussed later), we see that in terms of the torque achieved
they are comparable.

7.5
Angular Trapping of Flat Objects in Optical Tweezers Formed by
Linearly Polarized Light

In addition to rotation of objects of specific shapes, orientation is also an interesting
manipulation possibility. Orientation of a trapped object in optical tweezers is
possible based on the interaction of the focused laser beam with the anisotropic
optical character of the object. Several methods have been reported previously. For
example, if the shape of the object is elongated (e.g., it is a rotational ellipsoid), it
will be grabbed with the long axis aligned along the optical axis [29–31]. Orientation
around the optical axis of the trapping beam has been described for birefringent
particles: if held in the focus formed by linearly polarized light, they can be
orientated [8, 31]. If such birefringent particles are trapped by laser tweezers
formed by circularly polarized light, they will rotate and the direction of rotation is
determined by the direction of the circular polarization [8, 31]. Several additional
rotation mechanisms were also reported [14, 27, 28, 32–34].

It was observed earlier that flat objects can be oriented in the optical tweezers
if the trap is formed by an anisotropic beam. This can be realized by various
beam-shaping methods, for example, simply placing a rectangular, elongated
aperture in the light path [35].

Experience shows that there is a fairly simple additional way to align particles
around the optical axis. A particle with a flat shape will be oriented in a trap formed
by linearly polarized light, even if its material is not birefringent. This is easy
to understand in general: consider the ray optics regime, just remembering that
the reflection and transmission at the interface of two materials depend on the
polarization of the incident light. There were earlier observations that pointed to
this angular trapping effect. The anisotropic character of the trap formed by linearly
polarized light was investigated before [36]. It was calculated that the trapping force
depends slightly upon the direction: the lateral restoring force on a spherical bead
with a diameter almost equal to the wavelength is about 10% larger in the direction
of polarization. It was also reported that small rod-shaped particles held in optical
tweezers pushed against the glass coverslip surface (so that they are perpendic-
ular to the direction of the laser beam) can be orientated by linearly polarized
light [37].

We studied the orientating torque of linearly polarized light acting on flat
particles. In this process, we created microscopic objects that were designed and
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built to be convenient to manipulate by optical tweezers utilizing the orienting
effect of a linearly polarized beam [38].

We modified our optical tweezers system to enable such studies. We controlled
the polarization state of the beam by positioning optical retarder plates in the light
path before the infinity-corrected objective of the microscope. A quarter-waveplate
in a rotation stage was used to change the polarization state from linear to
circular. In addition, a half-waveplate was also added to rotate the direction of the
linear polarization. The half-waveplate was rotated by an electric motor and the
instantaneous position of the plate was known at all times.

We found that linearly polarized light indeed orients flat objects. What is required
for this effect is simply for the trapped particle to be flat as observed in the direction
of light propagation. For the quantitative analysis of the phenomenon, we produced
test particles with a well-defined shape. We have chosen a cross consisting of two
perpendicular axes of different lengths as shown in Figure 7.11. This particle is
grabbed in the optical tweezers, preferably with the longest part pointing along the
optical axis. The short axis is orientated by the polarized light: in equilibrium, it is
parallel to the direction of polarization.

(b)

(d)

(a)

(c)

Figure 7.11 Cross-shaped test object to study angular trap-
ping in optical tweezers formed by linearly polarized light.
(a,c) Schematic diagram of the object from two different
views. (b,d) Photomicrographs of the fabricated objects
viewed from respective directions. The scale bar is 3 µm
long.
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We measured and characterized the torque exerted on the test object. By rotating
the half-waveplate with a rate ω, the plane of polarization rotates with 2ω. Owing
to the viscous drag caused by the rotation, the particle follows the polarization
with a phase delay, and this delay is increasing with increasing rotation rate.
The drag torque on the rotating cross was calculated as described earlier, using
formulae given for cylinders moving in viscous liquids. The orientating torque of
the polarized light was calculated based on the assumption that the origin of the
torque is the polarization dependence of the refraction and reflection of light on the
surface of the particle, as described by the Fresnel formulae. These equations give
the reflected and transmitted electromagnetic power for polarization directions
parallel and perpendicular to the plane of incidence. We applied ray optics using
these formulae to numerically calculate the torque acting on the test object; that
is, we did not take into account the fact that the particle size is in the order of the
wavelength of light.

The result of the experiments and the calculations is shown in Figure 7.12. The
experimental and calculated values agree well with each other when using realistic
parameters (the following parameters were used: 20 mW laser power, index of
refraction of 1.36 for the medium and 1.56 for the particle with a length of 2.6 µm,
elliptical cross section with axes of 1 µm in the direction of the light propagation,
and 0.7 µm perpendicular to it). The calculation shows that the torque increases to
a phase delay of about 45◦. Beyond this threshold the system becomes unstable:
further increase in the phase delay causes a decrease in the torque, so the particle
cannot follow the rotation of polarization and therefore, it slips. This phenomenon
is also observed in the experiments.
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Figure 7.12 Torque exerted by the polarized light upon the
trapped body as a function of the angle between the polar-
ization plane and the long axis of the trapped flat object. �:
measured data, – model calculation.
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The results show that this orientation mechanism yields a torque in the order
of 10−19 Nm for realistic system parameters. This torque is suitable for tor-
sional manipulation of biological objects such as ATPase motors [39] or DNA
molecules [40].

The angular trapping effect provides the means to align objects in the optical
tweezers. By changing the plane of polarization with the half-waveplate, the
anisotropic object can be precisely oriented and/or rotated in the focus. This
effect can be used to align nonspherical objects – and since real biological objects
are generally not perfectly spherical, it offers an additional manipulation tool for
biology. We have explored this potential for typical microscopic biological objects,
for example, chromosomes and chloroplasts [41].

The presented cross-shaped microscopic objects make the application of the
phenomenon, as a manipulation tool, practical. They are held in stable axial
position in the focus, consequently moving the particle to arbitrary locations and
rotation around the axis can be controlled separately. Since the torque exerted by
the laser beam on the trapped object is known, this system can also be used to
exert and measure torque on biological objects. And since the torque observed for
realistic laser powers and particle shapes and sizes falls exactly within the range
predicted for and observed in biological systems, we are dealing with a method that
holds great promise for biology.

7.6
Torsional Manipulation of DNA

The effect described before, the angular trapping of flat particles in polarized light,
can be used as an optical torque wrench. As an illustration of the method, we show
how we used it to measure the torsional stiffness of double-stranded DNA.

In general, the rotational manipulation of biopolymers (like DNA and proteins)
is a most interesting topic; for numerous biological problems, torsional manipu-
lation is an indispensable tool in crucial experiments. A number of groups have
developed various experimental techniques for this purpose. Different methods
were developed to twist, for example DNA molecules, with indirect and direct ways
to measure the torque. Magnetic beads [42, 43], multiple beads attached to different
segments of the molecule and held in optical tweezers [44], birefringent objects
manipulated in circularly and linearly polarized light [45], just to name the most
characteristic approaches. Our method is an easy-to-implement alternative for the
direct measurement of torque based on flat test particles.

In our system, the DNA molecule (λ-DNA of 15.6 µm contour length) is attached
to a flat disc-shaped polystyrene particle, approximately 2 µm in diameter, at one
end and to a fixed plastic surface at the other end. The flat particles that were to act
as orientating tools were produced from plastic beads. Polystyrene microspheres
of 1-µm diameter have been squeezed mechanically to form discs.

The linearly polarized trapping light has an angular trapping effect on the
anisotropic test particle [29, 38, 46, 47]. By rotating the plane of polarization, the
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orientation of the disc can be changed, thus the attached molecule can be twisted
and torsionally stressed. As turns are added, the orientation of the disc drops
behind the plane of polarization, because the torsional strain of the molecule acts
against the orientating power of the light. By measuring the relevant angles (using
video analysis), the molecular torsional stiffness can be directly compared to the
angular trapping power of the light. After calibrating the angular trap, the torsional
modulus can be determined.

We used the pH-induced nonspecific binding of DNA to polystyrene to fix the
DNA to the coverslip surface as well as to the flat discs. An MES puffer of 50 mM,
pH 5.0 was used in the experiments. Two microliters of the λ-DNA buffer and 5 µl
of the ‘‘disc suspension’’ was added to 100 µl MES. This mixture was dispensed
between two coverslips separated by a 150-µm thick spacer and incubated for
several hours. The lower coverslip had a thin plastic layer on it, created prior
to incubation by spin-coating with polystyrene–toluene (50 mg ml−1) solution at
2500 rpm for 30 s [48]. During incubation, the DNA molecules attached to the
plastic layer and/or to the discs with a certain probability [48]. Ultimately, the
sample contained a significant number (approximately 10%) of discs that were
connected to the surface via a single DNA molecule. The probability that a disc
is connected to the surface by two or more DNA molecules is negligible at these
concentrations.

7.6.1
Direct Measurement of Torque

The anisotropic object is trapped in the laser focus in a translational and angular
sense simultaneously. The object has an equilibrium position in the translational
trap, around which Brownian fluctuations can be observed. Similarly, the object
has an equilibrium orientation in the trap (defined by the polarization plane of the
trapping light and the anisotropic properties of the object) around which rotational
Brownian motion can be observed.

In our case, the translational trap is strong compared to the angular trap, so
the translational Brownian fluctuations can be neglected. The characterization of
the angular trapping is fairly straightforward. If the trap is linear, the torque τ

exerted by the light beam is proportional to the angle α between the equilibrium
(no external torque) and the actual orientation of the object. The proportionality
factor is the angular trapping constant k.

τ = −kα (7.2)

In this case, the potential energy E of the trapped object is harmonic:

E = 1

2
kα2 (7.3)

The object fluctuates around its equilibrium orientation due to Brownian motion.
According to the Boltzmann energy distribution, the probability density function
of α is Gaussian:
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Polarization

Optical axis

DNA

Plastic surface

Figure 7.13 Arrangement of the DNA twisting experiment.
The trapped disc is orientated by the linearly polarized light.
By rotating the polarization plane the disc can be rotated;
thus, the attached DNA molecule can be twisted. The ori-
entation of the disc is determined from images with a stan-
dard view along the optical axis.

ρ(α) ∝ e
− E

kBT = e
− kα2

2kBT
(7.4)

where T is the temperature and kB is Boltzmann’s constant. By monitoring α over
a sufficiently long period of time, the density function of α can be derived and
fitted by a Gaussian, and thus k can be determined. Hence, the angular trap can be
calibrated.

If a molecular strand links the disc to a fixed surface (i.e., a coverslip) with
nonrotating bonds (Figure 7.13), an additional torque is generated by the torsional
strain of the molecule. In this case, the orientation of the trapped object will
fluctuate around a new equilibrium orientation (EQ) determined by both the
direction corresponding to the zero torsional strain of the molecule (M) and the
polarization plane of the trapping light (P) (Figure 7.14). In the equilibrium state
(EQ) the torques generated by the molecule and the light are equal: τM = τL. Each
torque can be expressed as the product of its respective angular trapping constant
and the angle between its equilibrium state (M or P) and the EQ state:

kMαM = kLαL (7.5)

where kM is the trapping constant (torsional spring constant) of the molecule and
kL is the trapping constant of the polarized light. This means that by knowing the
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Figure 7.14 Explanation of the measure-
ment of torque and torsional elasticity. M
denotes the orientation where the molecu-
lar torsional strain vanishes, P indicates the
plane of polarization of the trapping light,
EQ is the equilibrium state where the two

orienting torques (molecular and optical)
cancel. The orientation of the trapped ob-
ject fluctuates around EQ due to Brownian
motion, A represents the actual orientation
at a certain time. (Please find a color version
of this figure on the color plates.)

relevant angles, the trapping constant of the molecule can be compared to that of
the light directly.

The orientation of the trapped object fluctuates around EQ due to rotational
Brownian motion. If both torques are linear to the angle, the effective angular
trapping constant keff is the sum of kM and kL:

keff = kM + kL (7.6)

The potential energy remains harmonic and keff can be obtained by analyzing the
rotational Brownian motion of the trapped object (using Eq. (7.4)).

By combining Eqs. (7.5) and (7.6) kM could be obtained if we were able to measure
αM and αL angles. However αM is unknown and it is technically easier to measure
the change of angles rather than absolute values in our system. If we rotate the
plane of polarization (P) by �P, the equilibrium state of the trapped object (EQ)
shifts by �EQ. Using Eqs. (7.5) and (7.6) again, the following expression can be
derived for kM:

kM = keff

(
1 − �EQ

�P

)
(7.7)

Finally, the torsional modulus G of the molecule is (assuming no supercoiling
takes place):

G = kMl (7.8)

where l is the (contour) length of the molecule.
In the case of dsDNA, the torsional spring constant of the molecule is three

orders of magnitude smaller than the angular trapping constant of light in our
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system. In order to measure this small effect, we twisted the DNA molecule several
times in positive and negative directions symmetrically while staying in the linear
torsional regime of the polymer [44]. The measurement proceeded as follows: The
plane of polarization and thus the disc itself was rotated by several turns in one
direction with a relatively high speed (180◦ s−1) at maximum laser power. After
this, the power of the trapping laser was reduced to a level where the Brownian
fluctuations of the disc became visible (and detectable by image analysis). Here, we
started to rotate the plane of polarization at a much lower speed (3.6◦ s−1) and added
two more turns (one turn for the λ/2 plate). From the data (orientation of the disc)
recorded during these two turns (200 s), we calculated the equilibrium orientation
and analyzed the Brownian fluctuations in order to determine the effective angular
trapping constant keff. Next, the laser power was set again to maximum and the
polarization was rotated back to its initial state, and the same procedure was
repeated in the opposite direction. Knowing the shift of the equilibrium angle
measured at the two twist extrema �EQ, the change of the polarization �P and
keff, the torsional modulus of the molecule could be calculated using Eqs. (7.7)
and (7.8).

We note that kM can be determined in principle without any additional rotation
at the twist extremities by simply analyzing the angular fluctuations of the disc at
fixed polarization planes. However, rotating the polarization during the averaging
period is an efficient way to reduce slight systematic anisotropic errors present
in the experimental apparatus (the detection of the very small additional torque
originating from the DNA requires extreme accuracy).

We measured the torsional stiffness at different relative extensions of the
molecule. At medium extension, the torsion applied to the polymer is distributed
in bending and torsional deformations. Using the statistical mechanics model of
twist-storing polymers [49, 50], the local torsional modulus of dsDNA (the case
when no bending is allowed) could be calculated. The local torsional modulus was
determined to be 420 ± 44 pN nm2 (corresponding to a value of 102 ± 10 nm for
the twist persistence length of the polymer).

7.7
Conclusion

In the introduced examples, we have shown how objects of special shape
can enhance the scope of optical micromanipulation. We have developed
three-dimensional fabrications by laser-induced photopolymerization to a level
where structures of arbitrary complexity can be built with submicron spatial
resolution. These structures offer exciting applications to achieve new types of
manipulations, and control more degrees of freedom. They also allow building of
complex structures and micromechanical machines, where light can be used as
a driving/controlling agent. We believe that this approach opens up new avenues
for scientific studies, as well as technological development.
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8
Spiral Phase Contrast Microscopy
Christian Maurer, Stefan Bernet, and Monika Ritsch-Marte

8.1
Phase Contrast Methods in Light Microscopy

In optical imaging, owing to the lack of endogenous pigments that can absorb in
the visible region, biological samples typically have no strong intrinsic contrast;
that is, the majority of samples represents thin phase objects with only small
refractive index variations. Thus, a variety of staining techniques have been
developed for microscopy. Fluorescence microscopy [1], for instance, has become
an indispensable tool in biomedical research. Here, one often utilizes fluorescence
markers that are designed to bind to specific structures in a living cell, thus making
cell components or binding sites of selected molecules visible. A disadvantage is
the fact that the preparation of the sample with fluorescence markers can also
introduce undesired effects; for example, some markers are phototoxic and most
of them have problems with photostability, that is, they bleach.

The basic idea behind phase contrast (PC) methods is to convert phase variations
into intensity modulations by means of optical manipulations [2], allowing one
to image native, unstained samples with good contrast. The first purely optical
method of PC (apart from Schlieren imaging) was introduced by Zernike [3] in the
early twentieth century, which brought him the Nobel Prize in Physics in 1953. In
short, the elegant idea behind ‘‘Zernike PC’’ [4] with the famous Zernike phase
ring is to shift the phase of the transmitted light by a quarter-wavelength with
respect to the diffracted light.

For thin phase objects, one can expand the phase function �(x, y) of the
transmission function T(x, y) of the sample to the lowest order in a Taylor series

T(x, y) = ei�(x,y) ≈ 1 + i�(x, y) (8.1)

This shows that (for thin phase objects where the approximation above is valid) light
that is scattered from inhomogeneities in the optical thickness of the sample is a
quarter-period out of phase with the unscattered light. To achieve good visibility for
small refractive index variations on a homogeneous background, one can induce
a relative phase shift of ± π/2, which for positive or negative phase contrast
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respectively, compensates the quarter period phase difference between higher and
zeroth Fourier components.

Differential interference contrast (DIC) is another widespread optical method
designed to enhance the contrast of phase samples [5, 6]. In the original scheme
suggested by Normanski [5], two Wollaston prisms are implemented in the optical
path of the microscope, which split the image wave into two orthogonal linear
polarizations traveling at a slightly different angle (the ‘‘shearing angle’’) to the
image plane. Since the shearing distances are very small, the method does not
require coherent light.

DIC images are easily recognized by their typical ‘‘relief-like’’ appearance,
giving the impression of a three-dimensional object that is illuminated from a
particular direction (which is determined by the shearing vector induced by the
Wollaston prism). Similar images can also be created by using, for example,
oblique illumination [7] or amplitude gradient illumination [8] or by knife-edge or
slit aperture techniques as in Schlieren contrast microscopy [9].

8.2
Fourier Filtering in Optical Imaging

In a wider sense, PC can be seen as spatial filtering in k-space, where one
can ‘‘tailor’’ the transmission of various spatial frequencies. Using an illumination
source with sufficient spatial coherence, the spatial frequencies are separated in any
plane in the far-field, with the low frequency components (pertinent to the general
outline of the structures in the sample) being in the center and the high frequency
components (pertinent to the fine details in the sample) in the periphery. This
provides one with a means to selectively manipulate specific spatial frequencies, by
phase-shifting, attenuating, or blocking them. Normally this Fourier filtering, as it
is called, is not really carried out in the far-field, but a suitably placed optical lens
performs a Fourier transform [10] ‘‘pulling k-space into its focal plane.’’

The generic arrangement for Fourier filtering is indicated in Figure 8.1. The
Fourier components are arranged around the focused spot of the illumination light
representing the spatial carrier wave, also called zero-order Fourier component or
DC-component, of the image, and thus can individually be modulated with a filter
mask. Blocking of the zero-order Fourier component, for instance, results in dark
field microscopy, where scattering structures such as edges appear bright on a
dark background. Shifting the phase of the zero-order Fourier component by π/2
with respect to the remaining wave emulates (central) PC. It is also possible to
emulate Zernike PC by phase-shifting an annular area representing the Zernike
phase ring [11], which has to be matched to an illumination ring. We have recently
suggested the use of spatial light modulators (SLMs) for emulating various classic
and novel Fourier filters in microscopy [12–15]. The term SLM is often used to
encompass several types of systems, for example, adaptive deformable mirror and
digital micromirror devices, where actuators or membranes are moved by electric or
magnetic fields, or liquid crystal displays (LCDs). The latter are miniaturized LCDs
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f f f f

Figure 8.1 Generic setup for Fourier filter-
ing in optical imaging: An object illuminated
with a plane wave diffracts the light to outer
regions in the Fourier plane, that is, the
focal plane of the objective lens. One can
access and specifically manipulate the vari-
ous spatial frequencies there with a spatial

light modulator or a phase plate. As an
example, spiral phase filtering, which in-
cludes isotropic edge enhancement is shown
in the upper part of the figure. (Please find
a color version of this figure on the color
plates.)

which can dynamically influence the amplitude and/or phase of light going through
or being reflected from the panel. The active area is typically on the order of 2 cm2

with a resolution of up to 2 million pixels. Both amplitude and phase modulations
arise from the birefringence of the liquid crystal: Amplitude modulations originate
from polarization modulations in combination with a subsequent polarizer. For
state-of-the-art LCD–SLMs, phase modulations in the range of 2π are typically
achievable. Wavefronts with much higher phase retardation cannot be generated;
only their correspondingly ‘‘wrapped’’ versions can be generated, as in diffractive
optical elements.

Often the Fourier filtering is not carried out ‘‘on-axis,’’ as depicted in Figure 8.1,
but one modifies the setup to an ‘‘off-axis’’ configuration, where – in order to get a
clear image–only the first-order diffracted beam from a blazed grating is used for
imaging. When using an SLM, the blazed grating can directly be implemented by
simply superposing onto the hologram used for Fourier filtering each structure,
where the phase rises linearly from 0 to 2π within one grating period and which
diffracts the incoming wave to the CCD camera [16]. For a digitally displayed blazed
grating approximated by eight modulation steps, the theoretical diffraction effi-
ciency is above 95%. A minor disadvantage of the ‘‘off-axis configuration’’ of Fourier
filtering is that one has to restrict the field of view to some extent, a consequence
of the need for separating the zeroth from the first diffraction order of the grating.

In the off-axis configuration, it is possible to modulate both the phase (for
phase contrast microscopy) and the amplitude (for dark field microscopy) of the
SLM transmission function. The phase can be coded in the spatial position of the
displayed grating structures, since this converts into a phase offset of the first-order
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diffracted wave. And, the amplitude can be spatially modulated by locally varying
the contrast of the grating fringes. Dark field imaging is an extreme example, where
the contrast in the center is set to zero.

8.3
Spiral Phase Fourier Filtering

Optical vortices have a helical phase profile and thus carry orbital angular momen-
tum [17–19]. They have been investigated in various contexts [20–22]. In optical
micromanipulation, phase holograms with a helical phase profile are used to create
Laguerre–Gauss beams, which carry orbital angular momentum and can trap
dielectric particles depending on the relative refractive index, either in the center
or in the intensity ring [23–25].

In image processing, the spiral phase signature of an optical vortex has been used
as a filter mask for edge enhancement [26]. This is in the spirit of a two-dimensional
generalization of the Hilbert transform [27], which has also been used for numerical
processing of images [28]. First attempts to implement a spiral phase filter in an
optical setup had already been made earlier [29, 30]. In 2005, we realized that it is
possible to use the Fourier filtering techniques to implement spiral phase filtering
in optical microscopy, either by means of an SLM or a built-in phase plate [31, 32],
which can directly emulate various contrast enhancing techniques without the need
of numerical processing of the images [12, 33]. Finally, we would like to mention
that the concept of spiral phase Fourier filtering, is also entering other areas of
imaging, such as soft X-ray diffraction imaging [34, 35] or optoacoustics [36].

The transmission function of a spiral phase filter is given by T
(
x, y

) = exp (iϕ)

with ϕ being the azimuthal angle (Figure 8.2). If such a filter is introduced into
the Fourier plane of an image-carrying wave, the resulting field amplitude in the
camera plane is given by the convolution of the image’s Fourier transform with the
complex transmission function of the sample:

E
(
x, y

) = O
(
x, y

) ∗ F {
eiϕ

} = O
(
x, y

) ∗ i
eiϕ

2πr2
(8.2)

Here, O(x, y) is the complex object transmission function, F denotes the Fourier
transform, and ∗ the convolution operation. r = √

x2 + y2 and ϕ = arctan(y/x)

Figure 8.2 Spiral phase filter: The phase shift produced by
an SLM or a phase plate corresponds to the helical phase
profile typical for a Laguerre–Gauss beam. Note that op-
posite points are out of phase by π . (Please find a color
version of this figure on the color plates.)
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Figure 8.3 Graphical representation of the
convolution of an object with a spiral phase
filter: When the integration is carried out,
the helical phase profile of the PSF of the
spiral phase filter in unstructured regions
leads to perfect cancellation of the signal
by destructive interference, except at edges

where either the phase or the amplitude of
neighboring points differ. Note: convolution
kernel not to scale. (For an unambiguous as-
signment of the phase values please consult
the color version of this figure on the color
plates.)

are the polar coordinates in a plane orthogonal to the optical axis. The point
spread function (PSF) of the spiral phase filter is a doughnut-shaped intensity ring
with phase between 0 and 2π around the ring. In the convolution process, the
complex object amplitude is weighted with the PSF at each point of the sample
and then integrated over the whole area. In ‘‘flat’’ regions, neighboring points
have doughnut rings that are identical in phase and amplitude, which leads to
destructive interference because of the π phase step across the doughnut. Thus,
unstructured regions (e.g., around points of type A in Figure 8.3) of the sample
appear dark. At the edges of the object (e.g., around points of type B), the PSF of
neighboring points differs either in amplitude or in phase retardation, which is
indicated in Figure 8.3 by a different color and a different rotational offset of the
circles, respectively, both of which result in brightening.

For large apertures and homogeneous plane wave illumination, the image field
of thin and nonabsorbing phase objects is the product of the input field and the
phase gradient �Gph(x, y) = ∇T�(x, y) of the sample [37]

Eout(x, y) ∝ Ein(x, y) gph(x, y)eiδph(x,y) (8.3)

Here, gph(x, y) and δph(x, y) denote amplitude and phase of �Gph, respectively. In the
assumed ideal case, the phase along the contour of a phase step sample, as depicted
in Figure 8.3, is given by the geometrical orientation of the edge of the sample.

Spiral phase contrast (SPC) uses the helicity � = ±1 for Fourier filtering to induce
large enhancement of the brightness of edges. Filtering with � = ±2 highlights
areas with curved edges (Figure 8.4c). For such ‘‘simplistic’’ samples, this can
easily be made plausible by considering that the convolution involves an integral
of the form

I�(�(x, y)) =
∫ 2π

0
dϕ ei�(x,y) ei�ϕ (8.4)

The above integral vanishes for constant � as around point A. Around point B,
it takes on a nonzero value for � = 1 because the phase of � changes within the
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Phase  = 2 = 1(a) (b) (c)

Figure 8.4 Filtering with higher helicity. (a) A phase sample
with a phase retardation of 0.1π is filtered with � = 1 (b)
and � = 2 (c). For � = 1 edges are isotropically enhanced. In
the case of � = 2, the highest intensity can be observed in
curved edges.

sector of ϕ where �ϕ ‘‘counts’’ from 0 to 2π . For � = 2 this is not true; thus,
filtering with a helicity of 2 does not highlight the region around point B. However,
edges as around point C, where � again changes within a sector where 2ϕ changes
from 0 to 2π , can give a nonzero signal. Filtering with even higher order helicities
corresponds to selecting higher order moments. In digital spiral imaging [38] it is
suggested to utilize all of these spectral moments for getting more information out
of the images.

8.3.1
Isotropic Edge Enhancement

To realize a spiral phase filter it is, in principle, sufficient to display a circular spiral
phase ramp with phase shift ∼ exp (iϕ) on a phase-modulating SLM and center it
with respect to the zero Fourier components of the image wave, which is at the
position of the focus of the illumination beam.

Practically speaking, in order to separate the correctly processed image wave from
undesired reflections from the SLM cover glass, it is again advantageous to use the
SLM in an off-axis configuration, which is achieved by numerically superposing the
spiral phase mask with a blazed grating. This changes the direction of the processed
image wave and separates it from the pure reflections. Such an off-axis spiral phase
plate has a typical fork-like structure (see inset in Figure 8.5), which originates from
the primary singularity of the on-axis vortex plate [16, 39]. Note that this central
singularity is also maintained in the forked spiral phase structure. Light that is
incident at this position is scattered at the singularity out of the imaging direction
or even transferred into an evanescent wave [21]. Since for a perfectly centered
spiral phase filter the zero Fourier component of the imaging wave coincides with
the phase singularity, it is effectively removed from the imaging wave, giving a dark
image background. This effect is also employed when using the singularity within
vortex plates as efficient beam blockers in astronomic imaging, as, for example, in
optical vortex coronagraphs [40].



8.3 Spiral Phase Fourier Filtering 149

(a) (b)

Figure 8.5 Isotropic edge enhancement from spiral phase
contrast: (a) A Richardson phase test pattern imaged with
white light illumination from a xenon lamp. (b) Set of chro-
mosomes imaged with laser light at 532 nm and a rotat-
ing diffuser. The scale bar corresponds to 10 µm for both
images.

Two examples of isotropic edge contrast enhancement by Fourier filtering with
an SLM-based off-axis spiral phase filter (indicated in the inset) but with different
types of illumination are shown in Figure 8.5. The image of a Richardson test slide
consisting of a phase pattern was taken with white light illumination from a xenon
lamp with the condenser aperture almost closed (condenser lens 20× magnification
with effective NAcond = 0.01) in order to get sufficient spatial coherence from a
point-like source. The objective lens had 63× magnification with NAobj = 0.95. The
set of chromosomes, on the other hand, was imaged with laser light (λ = 532 nm)
with a diffuser plate rotating at kilo hertz rate in order to get rid of the speckle.

8.3.2
Pseudorelief Images

In the previous examples, the edge amplification of the spiral phase filter was
demonstrated to be isotropic, which is to be expected, since the spiral phase
plate – although it is not rotationally invariant – does not single out any specific
direction or azimuthal phase angle. However, this symmetry can be broken
intentionally, if one replaces the singularity in the center of the filter by a small
circular disk of homogeneous phase retardation, which has to be similar in size to
the central focused spot of the zero Fourier component. In the off-axis version, the
central part is chosen to be a blazed grating (without the ‘‘pitchfork’’ singularity).

In this arrangement, the focused spot of the zero-order Fourier component of the
image wave is not scattered out of the imaging beam any more, but develops into a
plane wave in the image plane, which can now interfere with the remaining image
wave in the camera plane. Changing the phase value of the central disk rotates
the interference pattern. Alternatively, one may give the phases in the periphery a
phase shift, which can easily be done by simply rotating the phase filter by some
angle around its center.

Changing the relative phase between the periphery and the center of the spiral
filter, either by changing the central disk or by rotating the phase plate, influences



150 8 Spiral Phase Contrast Microscopy

Figure 8.6 Spiral phase contrast filtering with relief effect.
If the singularity in the center is replaced by a simple blazed
grating, the plane-wave zero-order light can interfere with the
filtered object field resulting in a shadow-like image (same
samples and same illumination and imaging parameters as
in Figure 8.5). Scale bar = 10 µm for both images.

the characteristic shadow effects [13]. The apparent direction of illumination gives
the pictures a pseudoplasticity similar to the images recorded with DIC microscopy
[12, 41]. Examples for this effect are shown in Figure 8.6, with all illumination and
imaging parameters being the same as in Figure 8.5.

8.3.3
Spiral Fringe Metrology with SPC

In the previous section, we have shown how spiral phase filtering can be adapted
to give the observed objects a three-dimensional appearance. The pseudorelief
resembles images produced by DIC microscopy, but their physical origin is,
nevertheless, different. This becomes clear when optically ‘‘thick’’ samples (i.e.,
samples showing an optical thickness in the order of one wavelength or more) such
as the oil droplet in Figure 8.7 are imaged. What appears as shadow effect for thin
objects evolves into a single, continuously spiraled interference fringe for thick
objects. Figure 8.7 was taken with coherent light from a laser diode at 660 nm.

For optically thin phase objects SPC provides contrast enhancement; for optically
thick objects, it may be employed to locally quantify the optical thickness of the
sample, a goal that has already been addressed in microscopy in many ways, and is
generally known under the name of quantitative phase microscopy (see for instance
[42, 43] and references therein).

Figure 8.7 Spiral fringe: Oilsmear on a
glass substrate. Scale bar = 10 µm for all
images.
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In the case of pure phase objects, the tangent along the spiral fringe is orthogonal
to the local phase gradient. Following the spiral fringe once around corresponds to
a optical thickness difference of λ/�n with �n being the difference in refractive
index between sample and solvent; thus, one can reconstruct the optical thickness
from a single image [37]. For a known refractive index, the topography of the
specimen can be measured, or vice versa, the refractive index can be determined
with excellent accuracy [44].

8.4
Implementation and Performance

SPC can be emulated on an SLM screen, but it is also possible to upgrade a
microscope for spiral phase imaging with a spiral phase plate [45]. In our case,
this was a helical phase pattern imprinted on a photopolymer film coated on a
9 × 9 mm2 quartz glass plate. The optical thickness of the phase plate was chosen
to correspond to a 2π step for a light wavelength of 650 nm. However, experimental
practice showed that even with white light illumination quite good images could
be taken, especially after introducing an appropriate line filter with a bandwidth of
12.5 nm into the optical path. The spiral phase plate has to be placed in an accessible
Fourier plane of the optical path of the microscope and no other modifications are
necessary. For illumination in transmission mode, it is possible to use the standard
bright-field condenser, but the illumination aperture has to be almost closed in
order to generate the necessary spatial coherence for the filtering. Spatial coherence
in this case implies that (in the empty microscope) the illumination light focuses at
a sufficiently small spot in the Fourier plane containing the spiral phase plate. The
size of this spot as compared to the spatial extension of the Fourier image of the
sample in the same plane determines the minimal size of the sample structures
that appear with an intensified edge contrast in the image.

With regard to the resolution attainable in SPC, the following issues are impor-
tant. It is fairly straightforward to find a generalization of the Rayleigh (or Sparrow)
criterion for a spiral phase kernel [15, 45], with the NA of the microscope objective
and of the illumination source being the essential parameters. The low effective
NA (about 0.1) of the illumination required for spiral filtering thus means that the
gain in contrast enhancement has to be traded off by a slight degradation in optical
resolution. However, it is possible to play some tricks with a second (part of the)
SLM panel in the illumination path, which significantly reduces this problem, as
we have recently shown using an SLM [11].

When using SLMs for SPC, for example, parallel-aligned (PAL) LCD-panels,
which allow good phase-only modulation, one has the option to change the
parameters of the Fourier filter at a 60 Hz rate. Ferro-electric SLMs allow for faster
switching rates, in the kilo Hertz regime. One can toggle between completely
different microscopic methods such as bright field, dark field, DIC, and SPC.
There exist different systems, with the pixels being optically or electronically
addressed.
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For the diffraction efficiency the fill factor of the panel is an important figure
of merit, which, for reflective electronically addressed SLMs, may reach 90%. The
practically achievable diffraction efficiency is decreased by a variety of factors. First,
because of the pixelation of the SLM panel, the diffraction efficiency also depends
on the largest spatial frequency of the displayed phase pattern, which is limited by
the size of the pixels. And second, there is a nonnegligible (<40) loss of light by
absorption (which affects the general brightness of the image, but not the image
modulation contrast). In total, the relative efficiency, that is, the ratio of the shaped
beam to the total light leaving the device, was typically very good, on the order
of 80%.

Using the SLM in an ‘‘off-axis configuration,’’ where a blazed grating is added
to the Fourier filter, which spatially separates the first-order diffracted light that
is then selectively used for imaging, the effect of the pixelation is less severe,
since the first diffraction order by itself, when used as the imaging wave, does
not contain the information on grating structure (such as the pixelation) that
might disturb the picture, which would only show up in the entire diffrac-
tion pattern of the grating with all diffraction orders. The off-axis configuration
slightly reduces the light efficiency, but we have shown that this is not a real
problem and can be effectively countered by a somewhat brighter illumination
source.

8.5
Conclusions

SPC microscopy has become a reliable and powerful tool, especially when im-
plemented by means of a spatial light modulator for the add-on benefit of huge
flexibility. Phase objects acquire good PC in transmission or reflection. The method
requires a certain degree of spatial coherence, but unwanted effects such as speck-
les can largely be avoided by using a rotating diffuser plate. Depending on slight
changes in the hologram on the SLM or the spiral phase plate relating to the central
area of the filter, strong isotropic edge enhancement or relief-like shadow effects are
possible. For larger microscopy samples spiral fringes appear, which immediately
reveal whether the sample has a local depression or elevation, depending on the
sense of rotation of the spirals. Quantitative reconstruction of optical thickness
profiles is possible. It may be anticipated that the simplicity of the approach lends
itself toward application in other areas of imaging.
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9
Applications of Electromagnetic OAM in Astrophysics and
Space Physics Studies
Bo Thidé, Nicholas M. Elias II, Fabrizio Tamburini, Siavoush M. Mohammadi, and
José T. Mendonça

9.1
Introduction

To this day, most of the information we have about the Universe is obtained from
the electromagnetic radiation from space that reaches our telescopes and other
sensor systems on earth, and on board spacecraft orbiting the earth. The frequency
spectrum of the signals thus received ranges from the highest (gamma, UV)
through visible, infrared, and microwaves to radio at the lowest frequency, allowed
by the propagation properties of the (plasma) medium in the signal path from
the source to the observer. When an observer collects electromagnetic radiation
from celestial sources with an earthbound instrument, the terrestrial atmosphere
absorbs large portions of the upper range of the spectrum, while the ionospheric
plasma sets a limit of ∼5–10 MHz (60–30 m vacuum wavelength), below which
signals cannot penetrate down to the observer’s instrument.

For the first time in history, humans now have the capability to leave the confines
of planet Earth to deploy instruments in space, outside the atmosphere and the iono-
sphere. Observatories in space provide ample access to segments of the electromag-
netic spectrum that until recently were totally unexplored. An interesting concept
that has been discussed for quite some time is an observatory on the Moon [1]. Such
a facility would open new frequency windows, facilitating observations of the Uni-
verse at both the submillimeter and the submegahertz ends of the electromagnetic
spectrum. An observatory on the far side of the Moon will be shielded from much of
the low-frequency interference from the Earth and its plasma envelope [2]. Like all
space-borne, and many earthbound facilities, building a telescope on the lunar sur-
face is an extremely costly endeavor and it is therefore of utmost importance that ev-
ery ounce of information be squeezed out of the electromagnetic radiation collected.

Till date, virtually all radiation from nature has been analyzed only with respect
to its intensity, spectral content, direction of arrival, and polarization. While po-
larization is a manifestation of the physical fact that electromagnetic radiation
does not only carry linear momentum but also angular momentum, polarization
measurements alone do not provide an exhaustive characterization of the total
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angular momentum state of the electromagnetic radiation. Already, in the early
1900s, it was shown theoretically that collimated beams can carry angular momen-
tum [3]. In the 1930s and 1940s, elegant Einstein-de Haas-type experiments for
photons carried out by Beth [4] in optics and by Carrara [5] in radio showed that
angular momentum can be transferred from electromagnetic beams to mechanical
bodies. In the years that followed, very high angular momentum states of nuclei
were discovered via their photon decays. Still, it was not until the 1990s that
laser beams and microwave radio beams carrying both spin angular momentum
(polarization) and orbital angular momentum (OAM) could be readily generated,
controlled, and detected [6, 7]. Subsequently, it was demonstrated experimentally
that individual photons can be endowed with OAM [8–10] and be entangled in
these states [11, 12], showing that electromagnetic radiation can be character-
ized, analyzed, and utilized more fully than what was commonly known at the
time.

Recently, the possibility of using the OAM degrees of freedom of light and radio
in astrophysics and space physics has come to the fore [13–21]. It is therefore
reasonable to assume that electromagnetic OAM is radiated by some astrophysical
sources or is imparted upon radiation through interaction with plasma and fields
in space, at least under certain conditions. The characterization of the OAM of
light or radio beams intercepted by telescopes on Earth or in space can provide
new and crucial information about the physical processes involved. Following
this assumption, many authors have proposed studies with new instruments to
detect and manipulate the electromagnetic OAM, henceforth referred to as POAM
(photon orbital angular momentum), and also performed modifications to the
telescope. This represents a single phase of a more complex evolution that is
occurring now in astronomy.

As described by Harwit [13], POAM permits new types of measurements and
paves the way for the utilization of topological and more generic degrees of freedom
in astronomy and space sciences. This chapter describes and discusses some of
these new opportunities.

9.2
Ubiquitous Astronomical POAM

POAM is a fundamental characteristic of individual photon wavefunctions (PWFs)
as well as ensembles of PWFs. The latter are proportional to macroscopic electric
fields. Even sources that possess no intrinsic POAM can exhibit ‘‘pointing POAM’’
if they are not located at the field-of-view center or ‘‘instrumental POAM’’ in the
presence of high-order aberrations.

Existing astronomical instrumentation takes advantage of POAM for routine and
specialized observations. We recommend reading Sections 2, 3, 4, 10, and 11 in
[19] to understand the basic concepts and mathematics. Here, we summarize the
behaviors of specific types of instruments described in Sections 5, 6, 7, 8, and 9
in [19].
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As expected, propagation through free space induces no additional torque to
electric fields. The same statement is true for propagation through an unaberrated
telescope. Although images produced by an unaberrated telescope are undistorted
due to torque, spatial resolution is lost because of the finite size of the entrance
aperture.

Aberrated telescopes, on the other hand, induce torque and distort images.
The perturbed component of the electric fields can be expressed in terms of an
azimuthal Fourier series,

�E(r, ψ; t) =
∞∑

m=−∞
�Em(r; t)eimψ

�

�Em(r; t) = 1

2π

∫ 2π

0
dψe−imψ�E(r, ψ; t) (9.1)

The complex phasors are called vortices, which are quantized spiral wave fronts
and POAM basis functions. Aberrations are expressed in a similar manner, except
that sin mψ and cos mψ functions are used instead of phasors. Since phasors are
expressed in terms of sinusoids, aberrations are equivalent to the application of
torque.

Consider a focal-plane coronagraph, which consists of a telescope followed
by a reimaging system. The focal plane of the telescope contains a mask that
blocks starlight to increase the contrast of faint companion stars or planets to
the point where they can be detected in a reasonable amount of time. The
telescope could have an exit pupil for adaptive optics, and the reimaging system
could employ a high spatial frequency filter in its pupil for additional starlight
suppression.

Assuming that the star is perfectly centered in the field of view, its electric fields
are dominated by the m = 0 POAM state, that is, plane waves. Since the star is not
a true point source, there are small contributions from the low-order POAM states,
for example, m = ±1, ±2 due to pointing POAM (also called structure POAM in
this case). The POAM spectrum of faint companions, however, is dominated by
high-order POAM components. All telescopes are highly insensitive to high-order
POAM states near the field-of-view center; so, if the low-order POAM states of the
star are modulated to higher POAM states, the starlight is highly attenuated in the
final image. The high-order POAM states of the faint companions are significantly
less attenuated.

Now consider a long-baseline interferometer. Two small entrance apertures pass
light to a beam combiner and finally to a detector. By changing the relative positions
of the entrance apertures, such instruments can synthesize the entrance aperture
of a much larger telescope, producing high-resolution images from measured
visibilities.

For this analysis, we assume that (i) the line between the two apertures is
perpendicular to the line of sight; and (ii) the midpoint between the two small
entrance apertures is employed as the reference point for describing POAM in
their plane. The apertures capture pieces of a vortex of radius B/2, where B
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is their separation. Further, the phase difference of the vortex patches is zero
for even POAM states and 180◦ for odd POAM states. Since only the even
POAM states reach the detector, an interferometer thus acts as a crude POAM
filter.

The fringes measured by the interferometer can be projected back onto the sky,
indicating which source regions contribute to the measured visibilities. If the delay
line tracks the fringe envelope peak of a small circular source at the field-of-view
center, the phase differences mentioned above do not change and the peak of the
sky fringe pattern is colocated with the source. On the other hand, if the delay
line deviates 180◦ from the fringe envelope peak, the phase difference of the vortex
patches is 180◦ for the even POAM states and 0◦ for the odd POAM states. Only
the odd POAM states reach the detector, which means that the minimum (zero) of
the sky fringe pattern is colocated with the source.

If we allow the two small entrance apertures to rotate, light from faint companions
of the small central source is modulated as they move through the sky fringe pattern.
The exact form of the modulation determines the location and brightness of the
companions. Like coronagraphs, a ‘‘nulling interferometer’’ can be used to find
faint companions.

For the last example, consider the same coronagraph as above, except that a
rotating wedge replaces the focal-plane mask. The wedge is an opaque disk with a
sector removed. The rotation modulates the POAM states, which can be measured
with a single detector. What do we learn by modulating POAM states?

Assume that we are observing a binary star system and that their separation
is smaller than the ‘‘λ/D’’ resolution of the entrance aperture. The telescope
tracks them at the center of light, which means that each star has its own
pointing/structure POAM. A standard telescope would see just a single star,
since the angular information of the stars has been obscured by the individ-
ual Airy patterns. The coronagraph with rotating wedge modulates the POAM
states, and the modulation pattern depends on the wedge angle as well as
the angular separation and relative brightness of the stars. In principle, it
should be possible to determine the separation and relative brightness, lim-
ited only by systematic and random errors and not by the telescope diameter
(sub-Rayleigh imaging). Therefore, the oft-quoted best possible resolution ‘‘λ/D’’
is a myth.

9.3
Applications of POAM in Astronomy

We reiterate that POAM is a new degree of freedom, a ubiquitous key property
encoded inside light and radio beams from celestial sources. Many astronomical
applications can benefit from the POAM states of radiation. Among the properties
already discussed, this section focuses on two more concrete subjects, that have
already found a practical astronomical application and have been experimentally
proved in the laboratory and/or at the telescope. One is sub-Rayleigh resolution,
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and the other is the practical handling of optical vortices (OVs) at the telescope
obtained with stellar light, in view of stellar coronagraphy.

New detectors and photon counting techniques are revolutionizing observation.
Astronomy at the quantum limit aims at characterizing the light in a deeper way
than that usually obtained by analyzing the spectrum, intensity, and temporal vari-
ation of celestial body multiphoton properties, as described by Glauber correlation
functions, in rapid phenomena in astrophysics, and also measures the POAM of
light. For a review, see [22].

Most celestial sources are essentially variable faint photon sources located at
infinity: their photon detection rate is of the order kilohertz to megahertz when
analyzed with extremely large telescopes (ELTs). This makes the characterization of
Glauber correlations and POAM detection of certain astrophysical fast phenomena,
such as black hole accretion, quite difficult. POAM of light has been shown to
be detectable at the single photon level as well [8–10], without being an intrinsic
property of the photon itself. From a classical point of view, Heitler [23] gave a
formulation of the POAM associated with a source by using multipolar expansions,
but this approach implied the existence of a longitudinal component of the EM field
in the EM wave, a phenomenon deeply rooted in the photon rest mass problem.
POAM then seemed to be associated with only a spherical or Laguerre–Gaussian
(LG) expansion of EM waves and to vanish at infinity. Only recently [24] have
these assertions been corrected and extended through a classical approach of the
EM source showing that an astronomical source can present a nonzero value of
POAM [25].

In addition to the eventuality of detecting the POAM of light from astrophysical
sources and the full characterization of the quantum properties of the photon
stream, POAM can improve several fundamental techniques typical of classical
astronomy. We now focus on two aspects that have been verified both theoretically
and experimentally. The first is the dramatic improvement of the resolving power
of a diffraction-limited telescope that permits breaking up of the Rayleigh criterion
up to 1 order of magnitude when separating two nearby sources; the second is
the actual production and control of the POAM of light from starlight for other
applications such as stellar coronagraphy with ground-based telescopes, in view of
an application to ELTs.

9.3.1
Sub-Rayleigh Resolution

The classical Rayleigh criterion that limits the resolving power of an astronomical
diffraction-limited telescope can be overcome by separating two independent
equally luminous monochromatic and white light sources at the diffraction limit.
This was experimentally tested and numerically verified, using OVs instead of the
usual Airy diffraction patterns [14].

The classical Rayleigh separability criterion states that the diffraction images
of two point-like sources (Airy disks) are resolved when the maximum intensity
of one source overlaps the first intensity minimum of the second equally bright
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source. The historical definition [26] refers to a symmetrical double-peaked profile
with a central dip that is 5% lower than the intensity maxima, corresponding
to a signal-to-noise ratio of S/N = 60. For a telescope having a diameter D,
at a wavelength λ, the separation is obtained at θR = 1.22λ/D [27]. Techniques
to overcome this limit have been discussed and developed in certain special
cases [28, 29].

In this experiment, the diffraction pattern of one of the two sources crosses a
phase-modifying device (PMD), an l = 1 fork hologram, on its center, generating
the LG transform of its Airy disk. The second source, crossing the fork hologram
in positions different from the optical center, acquires different POAM values and
generates unsymmetric and distorted LG patterns. By adopting a signal-to-noise
ratio of S/N = 60, one can formulate a separability criterion that uses the geomet-
rical properties of the OVs. Instead of overlapping the maximum intensity of one
source with the first minimum of the second one, this criterion is based on the
asymmetric intensity distribution of the superposed LG patterns generated by the
superposition of the symmetric OV of the on-axis source with the distorted vortex
of the other off-axis source.

Figure 9.1 shows the intensity ratios of the main peaks produced by separated
sources. The separation of the off-axis monochromatic source was tested in a
range 0 ≤ δ ≤ 700 µm, with a step of 35 µm. The experimental data show a good
agreement with the theoretical curve obtained from numerical simulations of the
LG transform of an Airy disk. Here, the intensity ratios reach a minimum value of
0.48 when the separation is ∼0.42δR. The upper inset of the figure shows the plot of
the positions of the main peak of the simulated LG modes in units of the separation
δR versus the estimated POAM values. If one analyzes the relative intensities of
the asymmetric peaks produced by the off-axis object, one may achieve an efficient
sub-Rayleigh separability limit, that obviously depends on the S/N ratio of the data.
The figure also reports two points obtained in white light that suggest a different
slope at small separations with respect to the monochromatic behavior.

The historical definition of the Rayleigh criterion can be mimicked by assuming
that two identical sources are just resolved when the intensities of the asymmetric
peaks differ by at least 5%. In the monochromatic case, and with coherent laser
light, a separability that is 50 times better than the Rayleigh limit can be reached.
The results obtained in white light, instead, suggest the reaching of a separability
about 10 times better then the Rayleigh limit. This lower resolution is mainly due
to the nonperfect spatial filtering and lower degree of coherence of the sources. In
the lower inset of Figure 9.1 we show a successful application of the separability
criterion in white light, where we simulated an OV of a double star with an angular
separation ∼10 times below the Rayleigh limit, as seen with a diffraction-limited
telescope having the same focal ratio as our 122 cm Galileo telescope in Asiago.
However, nothing in nature comes for free. What is gained in spatial resolution
is unavoidably lost in intensity, being the maximum of an Airy diffraction pattern
higher than that of its LG transform. Analogously, Fraunhofer diffraction patterns
show that off-axis displacements of the input beam produce, also in this case,
asymmetric diffraction patterns and the intensity profile along the direction of
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Figure 9.1 Ratio between the intensities
of the peaks of the superposed LG modes
versus the off-axis shift of the spot in units
of the Rayleigh radius. Solid line: theoret-
ical expectations for monochromatic light;
the superposed dots and error bars are the
experimental data. Dashed line: linear inter-
polation of the experimental data obtained
in white light. A 5% difference (see text) be-
tween the intensities of the peaks implies, in
both cases, a separability of at least 1 order

of magnitude better than the Rayleigh limit.
Upper inset: Positions of the maxima of the
LG modes relative to the OV (in units of the
Rayleigh radius) versus POAM. Triangles: an-
gular separation values between two equally
charged OVs. Lower inset: Simulation of two
equally luminous stars in white light hav-
ing an angular separation that is 10 times
below the Rayleigh radius, as seen with a
diffraction-limited telescope.

maximum asymmetry shows two different peaks [30]. The intensity distribution
is in this case better described by Kummer beams, a class of beams with an OV
nested inside, obtained by using the modified Bessel function of the first kind.
For any integer value l of the topological charge, the intensity ratio R between the
two maxima decreases exponentially with the off-axis displacement of the incident
beam. In this case, it was shown that higher values of the topological charge can
provide better resolutions in the relative positioning of two sources and this method
could offer interesting applications in high-precision positioning systems.
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This application would open new perspectives for the increase of the resolving
power of diffraction-limited telescopes. One immediate application is the separation
of close binary stellar systems with space telescopes and relative astrometry, by
placing a PMD at the focal plane of a telescope.

9.3.2
Optical Vortices with Starlight

In the application of these techniques to ground-based telescopes, one must face
the practical problems of how to actually obtain and handle OVs from the light
of celestial objects. The main difficulties are the detrimental effects caused by the
atmospheric turbulence, that is, the seeing. The turbulence both tilts the position
of a star away from its actual position on the focal plane of the telescope and
deforms the wave front, with the result of degrading the coherence of the light.
One immediately understands that high-precision astrometry and other techniques
such as stellar coronagraphy with OVs, which require extremely precise telescope
pointing and tracking to put a star exactly in correspondence with the optical
singularity, will be unavoidably affected. The tip-tilt will randomly move the star in
a region around the optical singularity and the wave front distortion will introduce
spurious additional POAM states that will affect a high-precision analysis of OVs
for astrometry. In the visible band, the technique of adaptive optics still does not
offer a valid stable solution similar to that operating in the infrared, and for the
moment, only space telescopes could benefit from OV techniques.

Experimental studies of the detrimental effects of the atmospheric turbulence
in the generation, detection, and manipulation of OAM of light from stars were
undertaken [18]. With an l = 1 blazed fork hologram at the focal plane of the Asiago
122 cm telescope, OVs from the stellar system Rasalgethi (α Herculis) and from
the single star Arcturus (α Bootis) were obtained. An analysis was made of the
structure of the OVs obtained from nonmonochromatic starlight under very poor
seeing conditions using a fast CCD camera to obtain speckle patterns and carry out
the lucky imaging technique, one of the speckle imaging techniques used in modern
astronomy, as an alternative to adaptive optics. The choice of a fork hologram as a
phase-modulating device was made because it has the advantage of generating OVs
with the same � at all wavelengths for on-axis polychromatic sources (Figure 9.2).
Monochromatic on-axis beams produce OVs with OAM indices � = ml, where m
is the diffraction order of the grating, while adding (or subtracting) a quantity of
the OAM value of the impinging light. For off-axis sources, � decreases as the
star moves away from the center of the hologram. H is a grating with a number
l of dislocations on its center and our l = 1 fork hologram, H, is blazed at the
first diffraction order with 20 lines/mm and has an active area of 2.6 × 2.6 mm2.
During the experiment, H was placed at the F/16 Cassegrain focus of the T122
Asiago telescope.

The spatial coherence of the incident beam is generally assumed to hold only for
stellar sources when observed from space. But when ground-based telescopes are
used, fairly dramatic effects are introduced by atmospheric turbulence, and spatial



9.3 Applications of POAM in Astronomy 163

T

T

H

H

S

L1

L1 L2

L3

CCD

CCD

m = 1

m = 0

m = 0

m = 1

Figure 9.2 Optical setups, without (a) and with (b) spatial
filter. T, telescope; L1, L2, L3, lenses; H, l = 1 fork hologram;
S, spatial filter (slit). Stellar speckle patterns are sketched on
the left of the optical setups, while the output images at the
zeroth and first diffraction order are on the right.

coherence is unavoidably lost. However, for exposures shorter than the turbulence
timescale (∼10–100 ms in the optical/near-infrared), we can obtain a group of
bright speckles that represent the interference image produced by the coherent
wave fronts generated by the random distribution of the atmospheric irregularities.
Adaptive optics in the visible band do not offer the required corrections to the wave
front so as to obtain a diffraction-limited image. A single nearly diffraction-limited
stellar image can occasionally be produced when most of the stellar light falls
in a single bright speckle. Fried [31] coined the term lucky exposures to describe
high-quality short exposures occurring in such a fortuitous way. This is the basis
of lucky imaging [32]. To obtain symmetric OVs from stellar sources, we impose the
additional restriction of selecting only those exposures where the star to be made
faint is centered with the hologram dislocation.

Simultaneous observations were made of both the speckle patterns and the OVs
generated by the multiple system Rasalgethi (α Her) and then by the single star
Arcturus (α Boo). In the latter case, we applied a chromatic filter to limit the
dispersion of the diffraction grating and recover the donut pattern of the OV. The
α Her is a visual binary composed of two unresolved binary systems presently
separated by 4′′.7: α Her A, formed by an M5 Ib-II semiregular variable (mV = 2.7–
4.0) and a fainter companion separated by 0′′.19 [33]; and α Her B, containing
a G0 II-III giant (mV = 5.4) and a fainter secondary separated by 0′′.0035 [34].
α Boo, instead, is a single star having visual magnitude mV = 0.04 and spectral
type K1.5 III.

The sequence of frames in Figure 9.3 clearly shows the detrimental effects caused
by the atmospheric turbulence, which randomly distorts the wave front. On the left
side of each frame, the OV generated by the first diffraction order of H is shown,
while the corresponding speckle pattern is shown on the right. The OVs produced
by nonmonochromatic light beams crossing the fork hologram show intensity
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Figure 9.3 Snapshot of the speckles of
Rasalgethi and their OVs. The distortion of
the OV due to the atmospheric seeing of the
double system is clearly visible. Sometimes
in the satellite vortex, B apparently dissipates

the central dark strip (see text). This effect
can be ascribed to the composite structure
of the double system’s speckles that may
fuse together because of the bad seeing con-
ditions.

patterns that appear as rings stretched along the dispersion direction with a central
dark strip. The spectral dispersion also causes a partial filling of the central dark
zone. Thus, if we want to use nonmonochromatic OVs produced by fork holograms
for OV coronagraphy, we must limit the spectral range and/or restore the donut
shape. In our case, we used a variable spatial filter, S, made by a slit placed on the
Fourier plane of the collimating lens L2 to limit the dispersion of the light at the
first diffraction order. This adjustable slit works as a tunable bandpass filter with
flat spectral response and has been used only for single on-axis stars.

The single star α Boo was set at the center of the hologram and the spatial filter
S was introduced to produce a nearly monochromatic circularly symmetric OV.
We adopted a slit width of 0.1 mm, corresponding to a 300 Å bandpass filter width
in the visible spectrum, that ensured enough S/N ratio for the 70 ms exposures.
Figure 9.4 shows the OV obtained by summing the selected (2%) lucky frames.
The central region of the OV is not totally dark because of the loss of the starlight
coherence due to the extremely poor seeing conditions and the presence of residual
chromatism. We however notice that the contrast between the dark center and
the bright ring improves down to 52% with respect to the previous unfiltered
symmetric OVs. The lack of light detection in the other orders of diffraction, except
the first, indicate that the intrinsic OAM already present in the starlight was not
detectable with our instrument.
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Figure 9.4 (a) The optical vortex (OV) obtained by sum-
ming the selected 2% good frames (see text). (b) Normal-
ized intensity profile of the OV across the direction perpen-
dicular to the dispersion. The abscissa is the width of the
vortex normalized to the position of the maxima of the ideal
OV.

A test was performed with the same hologram to identify the difficulties that
an experimenter will experience when performing OV coronagraphy [29]. To this
end, the double system STF1258 UMa, whose components are separated by 9′′.9
and have visual magnitudes mV ,A = 7.72, mV ,B = 7.87 was selected. STF1258 was
imaged through a 100 Å bandpass red filter centered at 6532 Å with and without a
Lyot stop. The exposure times were 0.01 s.

Figure 9.5 shows the results of � = 1 OV coronagraphy test. Figure 9.5a shows
the intensity profiles of the two stars without and with the Lyot mask, obtained by
averaging over a 40-pixels strip. Figure 9.5b shows the corresponding snapshots.
The on-axis component B of the binary system appears to have been made faint by a
factor ∼1.7, close to the factor 2 derived from numerical simulations. The partial ob-
scuration of the on-axis star is due to the fact that we were using an � = 1 mask. Total
obscuration can be mainly achieved with even �-valued spiral phase plates (SPPs).

What is immediately evident is that OV-based techniques crucially depend on
the positioning of the source with respect to the optical singularity of the PMD,
which requires high precision in pointing and tracking of the telescope and in the
adaptive optics system.

9.4
Applications of POAM in Space Physics

In space physics, usually defined as the astrophysics of the ∼1 AU region of space
around Earth, which is accessible to our space probes, radio and radar methods
are of central importance. Their usage ranges from the passive reception of radio
emissions from the Sun and the planets to active sounding out of the ionosphere,
the Sun, and planetary objects (radar astronomy). On the borderline between
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Figure 9.5 � = 1 optical vortex coronagraphy test of
STF1258 UMa: (a) the averaged intensity profiles of the dou-
ble star before (up) and after (down) the insertion of the
Lyot stop. (b) The corresponding snapshots (see text).

radio-based space physics and astrophysics, we find astroparticle physics, which
studies radio pulses generated when ultra-high energy particles enter the denser
part of the atmosphere [35] or the Moon [36]. Hence, there is a certain overlap
between radio-based space physics and radio astronomy. They cross-fertilize each
other and they experience similar problems and limitations.

One area of common interest is to investigate the effect on cosmic radio signals
from near and far as they propagate to the receiving telescope or other radio
sensor instruments. For example, irregularities of the phase screen type distort
both the amplitude and phase. Turbulence and irregularities can occur in the
ionospheric plasma. They can occur naturally not only as a result of a natural
external perturbation, but also when the ionosphere is perturbed in a controlled,
repeatable manner, allowing systematic stimulus – response type experiments to
be made, using the near-Earth space as a giant radio laboratory [37].

The possibility of studying space plasma vorticity remotely by measuring the
OAM of radio beams interacting with the vortical plasma was pointed out in
[17]. Extrapolating inferences from the studies of optical effects associated with
POAM [38] to the plasma physics domain, one can conclude that there should be a
coupling between plasma vorticity and radio beam OAM. The study of these effects
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is believed to pave the way for improved self-calibration and radio interference
mitigation techniques in radio astronomy, and for finding new methods of
generating electromagnetic beams that carry OAM. It is known that when branch
points are present in the phase of an EM field the usefulness of least mean-square
error wave front reconstructing systems is limited [39].

The nonlinear interaction of EM beams carrying OAM and a medium can excite
a number of parametric processes [42–48]. For instance, the exchange of angular
momentum between electromagnetic and electrostatic waves in a plasma, due
to the stimulated Raman and Brillouin backscattering processes, was predicted
[40]. In the process, OAM-carrying phonons and plasmons would be generated
(Figure 9.6). Such OAM states could be probed with a radar or radar-like beam of
photons carrying various combinations of SAM and OAM to produce fundamental
plasma wave interaction studies of a new kind [17].

The interaction between EM waves carrying angular momentum and charges
can lead to the generation of azimuthal currents [49], which in turn can give rise to
magnetic fields in plasmas [50, 51]. This is the well-known inverse Faraday effect
(IFE) predicted by Pitaevskii [52] and Pershan [53] and first observed in a plasma
by Deschamps [54].

The plasmas in the Earth’s surroundings have frequencies ranging from a few
kilohertz to tens of megahertz. The frequencies of the radio beams that interact
with these plasmas are therefore of the order of 1 GHz or lower. In 2007, it was
demonstrated that radio beams of the phase-mode class, emitted from certain
circular arrays and fed in a certain manner, carry POAM [16]. The relatively low
radio frequencies allow the radio sensors to be fully digital. Facilities of this kind
therefore enable systematic, fundamental POAM experiments to be performed

n(x,y)

x

y

Figure 9.6 A phonon (ion-acoustic wave) in a plasma
can carry OAM (but not spin angular momentum (SAM)).
Source: From [40]. (Please find a color version of this figure
on the color plates.)
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Table 9.1 Scaling of the normalized POAM, obtained in
computer simulations, as a function of OAM state number
l for a right-hand circular polarized beam (s = −1) formed
by a ring array of 10 crossed dipoles. Array radius D =
λ, antennas 0.1λ over perfect ground, polar angle θ = 0.
Source: From [16].

l s j = l + s Normalized POAM

0 −1 −1 −1.019
1 −1 0 −0.022
2 −1 1 0.971
3 −1 2 1.81

digitally, under full software control. This is a major step forward from analog
techniques. The development of nanotechnology antennas and faster digitizers is
likely to push the upper frequency limit for which digital OAM experiments can be
performed, eventually reaching the optical regime.

Table 9.1 shows the results of numerical experiments involving the generation
of OAM radio beams with the help of conventional phase-mode circular arrays
[16]. The predicted normalized POAM is compared with the values measured in
the experiment. In Figure 9.7, the angular momentum radiation pattern from
such an antenna [41] is plotted. Note: This plot is different from an ordinary
antenna pattern plot which describes the angular distribution of linear momentum
(Poynting vector)!

Finally, we point out that an electron–neutrino beam, propagating in a back-
ground plasma with vorticity, can be decomposed into orbital momentum (OAM)
states, similar to the OAM photon states [55]. This result may be relevant to the
understanding of neutrino sources in astrophysics.

z

x

y

Figure 9.7 Plot of |Jem|, that is, the
intensity distribution of POAM, gen-
erated by a circular antenna array in
the xy plane. Source: From [41]. (Please
find a color version of this figure on
the color plates.)
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9.A
Appendix: Theoretical Foundations

9.A.1
Classical Field Picture

A consistent, straightforward analysis, based on Maxwell’s equations

∇ · E = ρ

ε0
(9.A.1a)

∇ × E = −∂B
∂t

(9.A.1b)

∇ · B = 0 (9.A.1c)

∇ × B = µ0j + ε0µ0
∂E
∂t

(9.A.1d)

will yield a large number of conservation laws [25, 56]. The two most well-known
ones are the conservation of energy (Poynting’s theorem)

dUmech

dt
+ dUem

dt
+

∮
S′

d2x′n̂′ · S = 0 (9.A.2)

and the conservation of linear momentum (integrated Poynting flux)

dpmech

dt
+ dpem

dt
+

∮
S′

d2x′n̂′ · T = 0 (9.A.3)

Here Umech is the mechanical energy,

Uem is the electromagnetic field energy,

S = ε0c2E × B is the Poynting vector,

pmech is the mechanical linear momentum,

pem = 1
c2

∫
V′

d3x′S is the EM field linear momentum and (9.A.4)

T = ε0

2
1
(
E · E + c2B · B

) − ε0
(
EE + c2BB

)
is the linear momentum flux tensor (9.A.5)

Likewise, one can derive the conservation law for angular momentum

dJmech

dt
+ dJem

dt
+

∮
S′

d2x′n̂′ · M = 0 (9.A.6)

where

Jmech is the mechanical angular momentum,
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Jem = 1

c2

∫
V′

(x′ − x0) × S is the EM field angular momentum around

x0 and (9.A.7)

M = (x − x0) × T is the angular momentum flux tensor around x0. (9.A.8)

The conservation law (9.A.6) is the angular analog of the linear momentum
conservation law (9.A.3), and describes how an electromagnetic source radiates
angular momentum. It is easy to see that the angular momentum has the same
1/r2 falloff as the linear momentum and therefore, is also transmitted over very
large distances.

Expressed in the vector potential A, the field angular momentum can often be
written as

Jem = ε0

∫
V′

d3x′(E × A) + ε0

∫
V′

d3x′Ei[(x′ − x0) × ∇]Ai (9.A.9)

For a single Fourier component, the origin chosen at x0, and in the real-valued
representation, one finds that this can be rewritten as

Jem = −i
ε0

2ω

∫
V′

d3x′(E∗ × E) + ε0

2h̄ω

∫
V′

d3x′EiL̂Ei (9.A.10)

where

L̂ = −ih̄x′ × ∇ (9.A.11)

is the quantum OAM operator. Not surprisingly, in beam geometry, the first term
on the right-hand side of Eq. (9.A.10) can be identified as the SAM and the second
term as the OAM.

A more satisfactory procedure to explore the electromagnetic field in a search
for conservation laws and related useful properties, is to find all symmetries of a
Lagrangian for the EM fields and use mathematical tools such as group theory and
Noether’s theorem [57] to derive all conserved quantities. A Lie group analysis of
the first-order continuous symmetries will show that the classical electromagnetic
field has 23 constants of motion. Three of them are the components of the
electromagnetic angular momentum.

9.A.2
Photon Picture

At the single photon level, the detectability of OAM emitted by a faint astronomical
source can be faced with a fully relativistic quantum mechanical approach, by
adopting the PWF formalism [58–64], which is completely equivalent to QED
[65], without requiring particular boundary conditions for the field quantization
describing OAM states [66]. In addition, the PWF ↔ QED correspondence for free
photons sheds light on the intrinsicality of the photon OAM [11, 24, 67, 68]. The
problem of writing down a wavefunction for the photon, that is, describing the EM
field with a first-quantization formalism, has its origin at the birth of quantum
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mechanics, leaving unsettled the issue of the localization of the photon that makes
the issue of definition of a PWF controversial among many authors. But this is
not crucial for the present discussion, and the reader can find more information in
[8, 16, 59]. The application of the PWF formalism to OAM detection and manipula-
tion and to Glauber correlations [60, 63, 64, 69] in astronomy provides a useful and
complete description of those scenarios where the photons are either propagating
in free space or in linear media, in situations when photons maintain a constant
number during their evolution; that is, when there are no creation or annihilation
processes occurring in the field and the OAM value is maintained.

Historically, the first attempts at constructing a PWF can be found in the
unpublished works by Majorana [70]. The quantum states of the electromagnetic
field were described within a first-quantization formalism, taking the form of
a Dirac-like equation obtained from the Riemann–Silberstein (RS) formulation
of Maxwell’s equations. This approach is justified by the fact that the Maxwell
equations present an intrinsic mathematical structure similar to that of a quantum
wave function in relativistic theory [71–73]. Conversely, the same procedure that is
followed to write the Dirac equation can be used to derive the Maxwell equations.
Even if the Dirac equation was formulated to describe the relativistic electron, a
particle with nonzero rest mass, h̄/2 spin, and elementary charge e, Majorana was
the first to extend the Dirac equation to particles with arbitrary spin and mass, in a
more general infinite-spin component formalism [74]. A subclass is the well-known
group of Weyl–Majorana equations that describe massless neutral spinors.

Adopting the Majorana formulation and the RS vector can, without loss of
generality, be defined as

F = E
c

± iB (9.A.12)

and the Maxwell equations in the vacuum become

∇ · F = 0, i∇ × F = ±1

c

∂F
∂t

(9.A.13)

By applying the quantization rule, p ↔ p̂ ≡ −ih̄∇, F will be structured in the form
of a wavefunction for the photon

∓ ih̄
c

∂

∂t
F + ip̂ × F = 0 (9.A.14)

and the other group of Maxwell equations, ∇ · F = 0, describe the transversality of
the fields with respect to the propagation direction, p̂ · F = 0. By introducing the
complex-valued 3 × 3 matrices

ŝx =

0 0 0

0 0 −i
0 i 0


 , ŝy =


 0 0 i

0 0 0
−i 0 0


 , ŝz =


0 −i 0

i 0 0
0 0 0


 (9.A.15)

one obtains the Dirac-like equation

ih̄
∂

∂t
F = ĤF (9.A.16)
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where Ĥ = ±cŝ · p̂ and ŝ = (ŝx , ŝy, ŝz) [58, 60, 70]. This Hamiltonian has eigenvalues
±c p, 0. The eigenvalue 0 is forbidden by the transversality condition [75].

A covariant formulation for F is obtained via the existing isomorphism be-
tween the algebras of the group SL(2C) of unimodular 2 × 2 matrices in the
complex field and the proper orthochronous Lorentz group SO(1, 3), the group
of 4 × 4 (pseudo)orthogonal real matrices that leave the Minkowski metric
ηµν = diag(1, −1, −1, −1) invariant. Since the two algebras are isomorphic, the
two groups then satisfy a local isomorphism. More precisely, when extended to a
global isomorphism, the correspondence is reduced to a 2 → 1 homomorphism.
In fact, consider the matrix

x =
(

x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
(9.A.17)

built with the space–time coordinates of an event, {x}i, (i = 0, 1, 2, 3). Transform
x by an SL(2C) transformation x ′ = A−1xA, where A ∈ SL(2C), so that det x ′ =
det x. Then the homomorphism is 2 → 1 because A corresponds to a Lorentz
transformation � on the four coordinates but both ±A correspond to the same �.
The group SL(2C) has two nonequivalent, fundamental representations

(
1
2 , 0

)
and(

0, 1
2

)
that can be also considered as two spinorial representations of SO(1, 3), for

example, the chiral and antichiral Weyl spinors.
Tensorial higher-dimensional products of the fundamental representations of the

Lorentz group are divided into two classes: the tensorial representations, from the
product of even times the fundamental representations ( 1

2 , 0) and/or (0, 1
2 ), and

the spinorial representations, from the product of odd ones and the RS vector.
The wavefunction of the photon can be cast in a six-dimensional representation(

1
2

1
2 , 0

) ⊕ (
0, 1

2
1
2

)
by using the definition of the Faraday electromagnetic tensor Fµν .

We recall that the double antisymmetric tensor components are F0i = −Ei/c and
Fij = −εijkBk, where εijk is the totally antisymmetric Ricci (Levi–Civita) tensor. Its

self-dual and antiself-dual parts
(

F+
µν , F−

[µν]

)
written in covariant spinorial notation

become

F(αβ) = (σ [µσ ν]F+
[µν])αβ (9.A.18)

F(α̇β̇) = (σ [µσ ν]F−
[µν])α̇β̇ (9.A.19)

where F(αβ) ∈ (
1
2 , 1

2 , 0
)

and F(α̇β̇) ∈ (
0, 1

2
1
2

)
, but

F(αβ) ∝ (
(σ [0σ i])F+

0i

)
αβ

≡ (
σ iF+

i

)
αβ

(9.A.20)

F(α̇β̇) ∝ (
(σ [0σ i])F−

0i

)
α̇β̇

≡ (
σ iF−

i

)
α̇β̇

(9.A.21)

The 2 × 2 matrices (σµ)γ β̇ and (σµ)α̇
γ are defined by the Pauli matrices σ 0 = σ 0 =

1, σ i = −σ i and σ i. From these definitions we obtain the RS tensor expressed
in positive and negative helicity wavefunctions of the photon F(αβ) and F(α̇β̇) in
covariant notation

F±
i = Ei

c
± iBi (9.A.22)
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For the PWF the Dirac-like equation can be derived as

(σµ∂µ)α̇
βF(βα) = (σµ∂µσ νσ λ)α̇αF+

νλ = 0 (9.A.23)

and its complex conjugate. By saturating Eq. (9.A.23) with (σ τ )αα̇ one gets, for
τ = 0, the transversality condition and, for τ = i, the second Maxwell set of Eq.
(9.A.13) that is the Dirac equation (9.A.16). The same results are obtained by
saturating the complex conjugate with (σ τ )α̇α .

The RS vector is used to describe the EM field vorticity [76–79]. RS vortices are
defined by the condition

F(r, t) · F(r, t) = 0 (9.A.24)

since the loci of points satisfying this condition are lines in space where the phase
of the field is singular, surrounded by zones where the phase gradient vector is
circulating. LG beams represent a particular class of RS vortices in which the field
has spatial symmetry and the RS vortex lines remain stationary. Exact solutions
of electromagnetic waves carrying angular momentum have been described in the
momentum representation and then cast in terms of PWF in the RS formalism
[79]. This representation is simply equivalent to the description obtained in QED
by quantizing the field [65], for example, in paraxial approximation [66]. At the
single photon level, the meaning of an OAM-carrying PWF is that it represents the
probability amplitude of finding a photon in a certain eigenstate of momentum,
helicity, and OAM.

The angular momentum J of a particle is given by the sum of the OAM l and
the intrinsic (spin) angular momentum s, and the wavefunction of a particle with
spin S is a 2S-rank symmetric spinor with 2S + 1 components. The EM field is a
vectorial field, therefore, the photon is assigned a spin 1 that can be represented by
a rank 2 spinor. OAM is related to the spatial dependence of the wavefunction. For
this reason, a clear unequivocal separation of l and S requires the independence
of the intrinsic (spin) and spatial-extrinsic (OAM) properties of the wavefunction.
In the case of the PWF this is not possible because of the transversality condition
of the field, which imposes a dependence on the momentum, forbidding the
separation between S and L.

Another important point is that one cannot apply the concept of spin in terms
of angular momentum of a particle in its rest frame. The photon is moving at the
speed of light. The only proper property of the photon is then the sum j = l + s,
being the two quantities that are somehow entangled. SAM and OAM of the
photon become meaningless if defined separately. They are auxiliary concepts
that describe the PWF generating the spin-to-OAM conversion when traversing
inhomogeneous media. Spin and polarization are related to the helicity states
of photons and a change of polarization might induce spin-to-OAM conversion.
We notice that, by definition, the intrinsic properties of a quantum particle are
those characteristics that do not depend on the choice of reference frame and
coordinates. Those quantities are simply rest mass, electric charge, and spin. S
and L cannot evolve separately in the case of the photon. Otherwise, we would
find a paradox in the mathematical structure of the PWF. In fact, if the OAM
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were an intrinsic property of the photon, it should then be a fortiori related to the
intrinsic component represented by the spin S alone as the spin calculated with
QED at the single photon level would imply an S − L separability. In that case, the
Dirac-like equation for the RS field would admit an infinite spectrum of intrinsic
angular momentum states [74] for the PWF, also at the single photon level without
coordinate dependence.

The RS formalism is complex because F is complex by construction. The analytic
continuation of the RS formalism gives, through the conservation equations, a
handle on symmetries ‘‘hidden’’ inside the Maxwell equations, by any combination
of the translation of the RS components in space and time and this also includes
the OAM of light. Any conservation law has the form of a time translation plus a
spatial translation

1
c
∂ta(i) + ∇ · a(i + 1) = 0 (9.A.25)

where i is the tensor rank, a(i) the mixed space–time component of a general
function of the RS and a(i + 1) the purely spatial component. For i = 0 we have
the conservation law of a scalar a(0) and the correspondent current vector term
a(1). Higher tensorial ranks involve the conservation of vectors and tensors, that
express the coherence functions of the field, such as for the Kujawski tensor [80]
for single- and multiphoton correlations. By applying the prescriptions of quantum
mechanics, the operator ∂t corresponds to energy and the generator of spatial
translation (∇) to momentum. OAM, instead, is related to the referring of the field
with respect to an event in space–time with a 4-vector (r0, r)

1
c
∂t(r × a(i)) + ∇ × a(i + 1) = 0 (9.A.26)

and with the equation of motion for r, we can recover the well-known SAM-to-OAM
conversion process.

Of course, measurable physical quantities are supposed to be expressed in
terms of sequences of digits which, in theoretical models for these observables,
are represented by real numbers. For this reason, in the analytical continuation of
Maxwell equations one takes the real part of the solution, apparently losing one part
of the information. Maxwell equations can be cast in terms of a Dirac-like equation,
and this first-quantization formulation is fully equivalent to the subclass of solutions
of quantum electrodynamics [65]. Here, by applying the quantum correspondence
principle, fields become operators that are complex-valued functions in Hilbert
spaces. The symmetries found with the analytical continuation of the RS formalism
then describe the property of the EM field in terms of operators and, as dictated by
quantum mechanics, observables are real numbers obtained via the product of the
field and its complex conjugate (within certain boundary conditions). One important
point we want to discuss is the mathematical correspondence between the complex
formalism of the analytical continuation that the Dirac equation of the EM field
can be written in the real Majorana formalism by imposing a nonsingular unitary

transformation M → UMU−1 that swaps the matrices α2 =
(

0 σ2

σ2 0

)
, related to the

momentum with those related to the mass term β = (
I 0
0 −I

)
so that both disappear
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by imposing m = 0. Finally, by changing the sign of the other two α matrices, one
obtains the real-valued Dirac–Majorana equation for the EM field for both helicity
states of the photon

(∂t + α · ∇ + βm) F = 0 → (
∂t + α̂ · ∇)

F = 0 (9.A.27)

where α̂1 = −α1, α̂2 = β and α̂3 = −α3 [81]. This would indicate that in any case,
because of the zero rest mass of the photon, the group of solutions and symmetries
obtained with the full complex approach is isomorphic to those obtained with a
real formulation of the RS vector times a unitary transformation. We argue that the
symmetries derived from the complex RS formalism actually represent properties
of the field that are directly expressed in terms of quantum mechanical operators
by the PWF formalism.
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– azimuthal reorientation due to unpolarized

light 83
– experiments of OAM transfers 81–89
– mesophases 70
– reorientation mechanism of 69
N,N-Dimethyl-N-octadecyl-3-aminopropyl-

trimethoxysilyl chloride (DMOAP)
81

NOA63 resin micromotors 97
nondiffracting beam concept 54–55
nonparaxial spin AM 15
nonzero-order light fields 37
Norland 81 optical adhesive 119, 128
nulling interferometer 158

o
observatories 155
off-axis ‘‘fork’’ hologram 93
off-axis hologram 40
off-centered hole 221
on-axis hologram 40, 93
optical field inhomogeneity 21
optical force 41–43, 51
– arising from conservation of momentum

42
– calculation of 41
– in geometric optics 44
– gradient part of 41

– scattering force of 41
optical Fréedericksz transition (OFT) 69
optical linear momentum 50
optical micromanipulation 37. See also

light-driven rotor devices; microfabrication
methods

– rotation of a trapped object 117
– theoretical concept in development of 117
– using noncontact manipulation tool 117
optical torque 41–43, 60
– on a small particle of LG beam 45–46
– transfer mechanisms involved in 42–43
– transported by electromagnetic wave

42–43
optical tweezers 41, 52, 58, 60, 95, 117, 128
– angular trapping effect on trapped particles

131–134
optical tweezers toolbox 105, 112
optical vortex cat states
– based on EIT-enhanced Kerr nonlinearities

of PCFs 186–188
– linear fiber propagation 181–182
– for macroscopic superposition of persistent

flows 189–194
– quantum fiber propagation 182–183
– tailor-made quantum superpositions

scheme 188
– via self-phase modulation 184–185
optical vortex fields
– for advanced optical manipulation 57–61
– for studying OAM transfers 51–52
– for studying rotation of trapped particles

51–57
optical vortices 5, 13, 17, 25
optically driven micromachines
– for altering angular momentum,

experimental study 96–102
– angular momentum of incident trapping

beam 97
– applications of 102
– computational modeling of 102–105
– connection between discrete rotational

symmetry and angular momentum
93–96

– criterion for structural integrity of rotor 96
– 3D microfabricated structures with

two-photon photopolymerization 97
– fabrication of 97
– four-armed rotor 105–110
– in a Gaussian beam 98
– Laguerre–Gauss modes in 97–98
– operation mode of 95–97
– optical force and torque, calculation of 105
– possible designs for 94, 96
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– preliminary design of 96–97
– scattering, calculation of 104
– spin torque measurement 99
– torque efficiencies 98, 101, 112
– using NOA63 resin 97
– using two-photon photopolymerization

96–97
– viscous drag torque coefficient 100–101
– vs ‘‘free-swimming’’ rotor devices 102
orbital angular momentum
– across full electromagnetic spectrum

8
– annular intensity cross section of 32
– azimuthal component of 6
– in case of optical micromanipulation 43
– with circularly polarized light 85–89
– degree of spatial coherence 8
– distinction between spin and 8
– Fourier relationship with angular position

8
– Hilbert space 30
– interference at helical wave fronts, effect of

4–5
– intrinsic and extrinsic nature 52
– with linearly polarized light 83–85
– in optical tweezers 6
– per photon 1
– phase cross section of beam 8
– propagation of 5–6
– quantum entanglement of 30–32
– quantum implications of 29–30
– at quantum level 8
– and resonant transition in an atom 7
– rotation without 21–22
– switching of states 30
– with unpolarized light 83
orthogonal set of functions 37

p
parallel-aligned (PAL) LCD-panels 151
paraxial approximation 2
paraxial approximation beams, propagation

of 44–45
– electric scalar potential 44
– optical scattering torque 45
– polarization of 44–45
– scalar fields 44
paraxial light beam, propagation of transverse

energy
– associated mechanical momentum 20
– on the basis of circular polarization

15–16
– electric vector distribution 15
– flow maps 20

– in Gaussian beam 17–18
– in Laguerre–Gaussian (LG) beams 17
– linear density 16–17
– in the near-axis region 20–21
– orbital flow density 16
– ‘‘partial’’ intensity and phase distributions

16
– polarization handedness 20
– spin flow density 16
– total transverse energy flow 19
paraxial scalar field 44
Parkin’s method of measuring torque 101
Pauli matrices 172
phase contrast (PC) methods
– phase function 143
– principle 143
– ‘‘Zernike PC’’ 143
phase-modifying device (PMD) 160
photolithography 118
photon drag 32
photonic-crystal fibers (PCFs) 181
– and Kerr effect 186–188
photonics 37
photon orbital angular momentum (POAM)

199–201
– in astrophysics and space physics

156–158, 165–168
– complex phasors of 157
– handling of OVs from the light of celestial

objects 162–165
– high-order and low-order states 157
– intensity ratios 160–161
– LG patterns 160
– multiple 203–207
– practical astronomical application of

158–159
– Rayleigh criterion 159–162
– single 201–203
– spatial coherence 162–163
– theoretical foundations 169–175
photopolymerization 118
– structure building by 121
piezo-translator (PIFOC) 120
plasmas, in Earth’s surroundings 167
Pockels cells 82–83
Poincar’e sphere representation 26
polarized states 26
polydimethylsiloxane (PDMS) 40
polystyrene microspheres 134–135
Poynting’s theorem 169
Poynting vector 3, 40
– for monochromatic fields 48
pseudotensor 50



242 Index

q
quantum optics 199. See also photon orbital

angular momentum (POAM)
– application of quantum information

schemes 207–209
quarter-wave optical plate 42

r
Rabi oscillations 216, 218
radiation from nature, study of 155
Rankine vortices, 8
Rasalgethi 162–163
ray optics 43–44
Rayleigh approximation 102
Rayleigh range 39
refractive optical equivalent 5
Richardson test slide, image of 149
Riemann–Silberstein (RS) formulation 171
Rochester experiments 227–228
rotational Doppler shift, associated with

rotation of a helically phased beam
27–29

rotational states of atoms, using lasers beams
– counterrotating state measurement 222
– creation of BECs 215–216
– interferometry measurement 223
– manifestation in vortices of higher charge

224–227
– measurement of rotational velocities using

velocity-dependent Bragg diffraction
225

– measures the Doppler shift 223–224
– measuring of 220–224
– mechanical effects of light range 214–215
– of multilevel atomic condensates 227–228
– multiwave mixing process of vortex states

228–230
– nonrotating state measurement 220–222
– OAM 213–214
– transfer efficiency 218–220
– transferring OAM of photons to BEC

216–218
– two consecutive Raman processes 226
– Zeeman shift due to bias field 228
rotational symmetry and interaction with light

93–94
RS formalism 174–175

s
scatterer
– in microrotors 104
– torque acting on a 45
– transfer of linear momentum acting on 49
scattering force 41

Schlieren contrast microscopy 144
Schlieren imaging 143
‘‘seed’’ matter wave 229
self-induced spin-to-orbital conversion

(SISTOC) 87
simple diffraction gratings 4
singular optics 13
SISLS 87–88
smectic liquid crystals (SLCs) 67
soft-lithography methods 40
sonoporation 59
spatial light modulator 40
spatial light modulators (SLMs) 67, 98, 121,

144
spin angular momentum 13
– in case of optical micromanipulation

42–43
– per photon 1
– of ring-like channel or cuvette 21
spinning waveplate, handedness of

polarization of 27–28
spin-to-orbital conversion (STOC) 70
spiral phase element 39
spiral phase Fourier filtering
– in an ‘‘off-axis configuration’’ 152
– enhancement of brightness of edges 147
– enhancements for optically thin phase

objects 150
– graphical representation of convolution of

an object 147
– helical phase pattern 147, 151
– for illumination in transmission mode 151
– implementation and performance

151–152
– isotropic edge enhancement 148–149
– l-valued spiral phase plates (SPPs) 165
– point spread function (PSF) of 147
– pseudorelief images 149–150
– Rayleigh (or Sparrow) criterion for

resolution attainable in 151
– spiral fringe metrology with 150–151
– transmission function of 146–147
– use as a filter mask for edge enhancement

146
suchmode transformations, and polarization

28
supercontinuum light field 57
supercurrents, in BEC 230–231
SU8 photoresist 120
SU-8 photoresist 119–120, 129
symmetry of an object and angular

momentum 93
system transfer matrix 104
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t
T122 Asiago telescope 162
TEM00 Gaussian beam 39
time-averaged Poynting vector 45
T-matrix 103–104
torque 41
– in polarization state of light 51
– in propagation through free space 157
torsional stiffness, of double-stranded DNA

134–138
trapped particles, rotation of
– at an air–water surface 55
– aqueous droplets 58–59
– aspects of spatial coherence 56
– biological applications 51
– of birefringent particle in Bessel light field

52–53
– in a corrugated annular field 61
– in fluid flow in micron-sized channels 59
– forces in an optical vortex trap 54
– in helical Mathieu beam 55
– high refractive index particles 58
– in holographic optical vortex traps 60
– hydrodynamic interactions 61
– low refractive index particles 57–58
– of metallic nanoparticles 55
– of micron-sized dielectric beads 55–56
– in monochromatic trapping beams 56
– in optical tweezers 131–134
– orientation due to rotational Brownian

motion 137
– of Rayleigh particles 56

– scattered light from 55
– by scattering to dielectric particles 53
– supercontinuum light field and 57
– transfer of OAM 55–56
two-photon absorption (TPA) 118
two-photon excited photopolymerization

128
two-photon polymerization method 118

u
unaberrated telescope 157

v
vacuum, propagation of light in 47
viscous drag torque coefficient
– integrated optical motor 130
– light driven micromachines 122–123
– optically driven micromachines 100–101

w
Weyl–Majorana equations 171
white light vortices 56
Wollaston prisms 144

x
X–Y piezo-translator 119

z
Zernike phase ring 143
zero amplitude curves 13
zero-order Fourier component 144
zeroth-order Bessel modes 53
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