Tradeoffs in Polarimeter Design

J. Scott Tyo
ECE Department, University of New Mexico
Albuquerque, NM 87131-1356
tyo@ece.unm.edu
Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>00 MAR 2003</td>
<td>N/A</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tradeoffs in Polarimeter Design</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5a. CONTRACT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5b. GRANT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5c. PROGRAM ELEMENT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5d. PROJECT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5e. TASK NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5f. WORK UNIT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE Department, University of New Mexico Albuquerque, NM 87131-1356</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. SPONSOR/MONITOR’S ACRONYM(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. SPONSOR/MONITOR’S REPORT NUMBER(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION/AVAILABILITY STATEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release, distribution unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>See also ADM201529., The original document contains color images.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. SUBJECT TERMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT</td>
</tr>
<tr>
<td>unclassified</td>
</tr>
<tr>
<td>b. ABSTRACT</td>
</tr>
<tr>
<td>unclassified</td>
</tr>
<tr>
<td>c. THIS PAGE</td>
</tr>
<tr>
<td>unclassified</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. LIMITATION OF ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. NUMBER OF PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
</table>
Presentation Outline

• System Dimensionality
 – Example Applications and Methods

• Data Collection Strategies
 – Serial -vs- Parallel
 – Rotating -vs- Non-Rotating Optics
 – Active -vs- Passive

• System Optimization
Multi-Dimensional Stokes Polarimetry

<table>
<thead>
<tr>
<th>1-D Polarimetry</th>
<th>2-D Polarization Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contrast Enhancement in Photography (e.g. Duntley, 1974; Gilbert, 1964)</td>
<td>Scatter Mitigation, Contrast Enhancement (Tyo, et al., 1996; Silverman and Strange, 1996)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3-D Linear Polarimetry</th>
<th>4-D Stokes Vector Imaging</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target Identification (Halaijan and Hallock, 1972; Walraven, 1977; Duggin 2002; Wolff, et al., 1994; etc.)</td>
<td>Target Identification (Soloman, 1981; Chipman, et al., 1997; etc.)</td>
</tr>
</tbody>
</table>
1-D Polarimetry - Photography

• Linear polarization filters are used extensively in photography to maximize the contrast between the subject and the background.

• Maximum utility when the scattering background provides a high degree of linear polarization, as when a scattering medium is illuminated at right-angles to the direction of observation.

• Beneficial with sky-background, underwater, in fog or dust, etc.
Tradeoffs for 1-D Polarimetry

pros
- No images to register
- Can be optimized in near-real time
- Linear or circular

cons
- 3 dimensions of polarization blindness
- Image features vary as system is tuned
- No quantitative polarization result
Experimental Setup for 2-D PDI

- Tank with diluted milk
- Target Holder
- CCD Camera
- TNLC
- Diffusing Screen
- Projectors
Prepared Targets
Step-by-Step PDI (2-D)

8-bit Images

Line Scans across Center

vert/horiz

PS/PD

amplified
Tradeoffs for 2-D Polarimetry

<table>
<thead>
<tr>
<th>pros</th>
<th>cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 images to register</td>
<td>2 dimension of polarization blindness</td>
</tr>
<tr>
<td>Can be optimized in near-real time</td>
<td>Image Registration</td>
</tr>
<tr>
<td>Linear polarization (can be used with circular too)</td>
<td>Image features vary as system is tuned</td>
</tr>
<tr>
<td>Projects noise into orthogonal dimension, suppresses biases</td>
<td></td>
</tr>
</tbody>
</table>
2-D Polarization Images
Polarization Bias

Horizontal Pixel Position

Pixel Intensity
3-D Linear Polarimetry

- Measures the first three Stokes parameters
- Needs 3 or more measurements
- Can physically or electro-optically rotate
3-D Polarimetric Images

Back-Illuminated dielectric sphere with full 3-D colorimetric representation

Revisiting the earlier scene (Note – color axis reversed)
Tradeoffs for 3-D Polarimetry

Pros

- Linear polarization (can be used with circular as s_0, s_1, s_3)
- Provides angle of polarization, DOLP

Cons

- 1 dimension of polarization blindness
- Image Registration
- Image features vary as system is tuned
- 3-D noise can corrupt data presentation
Benefits of 2-D vs 3-D

Robust Representations in Scattering Media
Full Stokes Vector Polarimeter Design

- Analyzer - Fixed
- α-wave plate, Various angles
- Detector
- Rotating Compensator (up to 4-D)
- Variable Retardance (up to 4-D)
- Variable Retarders (fixed angles, variable retardance pairs)

Data Collection can be either SERIAL or PARALLEL
Polarimetric images of sphere and cylinder

Variable Retardance Polarimetry
Tradeoffs for 4-D Polarimetry

<table>
<thead>
<tr>
<th>pros</th>
<th>cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provides full Stokes Vector Information</td>
<td>Must collect at least 4 images (registration, spatiotemporal resolution)</td>
</tr>
<tr>
<td>No polarization blindness</td>
<td>Requires circular polarization optics (expensive, difficult)</td>
</tr>
</tbody>
</table>
And What About Spectropolarimetry?

- Optical layout of a full Stokes vector, hyperspectral polarimeter for use in the visible
- Coupled a spatial shear modified Sagnac interferometer with a variable retardance polarimeter
- Approximately 80 bands across 450 – 750 nm
Experimental Images

Scan Lines

Image Location

Stack of Cylinders
Spatio-Spectral s_0 “Images”
Stack of Cylinders

Blue

Clear

Red
Spatio-Spectral Stokes “Images”
Clear Cylinder

“Unpolarized” Partial Vertical

S_1 S_2 S_3
Tradeoffs for Spectropolarimetry

pros
- Provides Stokes vector information *at all wavelengths*
- Can calibrate out spectral dependence of optics
- Can be used as a spectrometer

cons
- Huge data storage and alignment issues
- Requires circular polarization optics (expensive, difficult)
- Major spatio-temporal resolution bottleneck
- Extremely low optical throughput
- Little or no evidence for highly spectrally resolved polarization information
Active Polarimetry

pros
- Can use polarization even when signature is depolarizing
- Can use in any wavelength regime (radar, lidar, etc.)
- Provides up to 16 dimensional information
- Can control illumination to maximize utility

cons
- System complexity
- Very low spatiotemporal resolution
- Difficult to do “broadband”
- Provides up to 16 dimensional information
Polarimeter Optimization

• There is an optimum configuration for every 2-D, 3-D, and 4-D polarimeter design, as well as active systems
• Depends on the strategy used and the number of measurement made
• Improper design of system can provide unnecessarily low SNR and oversensitivity to optical calibration issues
How Do We Detect Stokes Vector?

• Problem: Optical detectors are typically photon counters – Generally Pol-insensitive
 – We can only measure s_0!

• Solution: Design an optical system that modifies s_0 based on the input polarization
 – Infer $s_0 – s_3$ from intensity measurements
Polarimetric analysis – Variable Retardance

The Stokes vector of the emergent light is

\[S_o = M_{LP}(\theta)M_{VR}(\phi_2, \delta_2)M_{VR}(\phi_1, \delta_1)S_i \]

With Intensity \(I = M_1^T \cdot S_i \)

Vary parameters to form a linear system:

\[I = A \cdot S_i \]
The input Stokes vector is obtained by inversion:

\[S_i = A^{-1} \cdot I = B \cdot I \]

\(B \) is termed the “Synthesis Matrix” as it is used to reconstruct the Stokes Parameters.
Simulated Images

\[
S = \begin{bmatrix}
\sqrt{3} \\
1 \\
1 \\
1
\end{bmatrix}
\]
Simulated Images - Original Parameters

\[\langle S \rangle = \begin{bmatrix} 1.74 \\ 0.99 \\ 0.98 \\ 1.00 \end{bmatrix} \]

\[\text{var}(S) = \begin{bmatrix} 0.59 \\ 0.43 \\ 1.93 \\ 0.60 \end{bmatrix} \]
Simulated Images - Optimized System

\[
\langle S \rangle = \begin{bmatrix}
1.73 \\
1.00 \\
1.00 \\
1.00 \\
\end{bmatrix}
\]

\[
\text{var}(S) = \begin{bmatrix}
0.10 \\
0.29 \\
0.31 \\
0.30 \\
\end{bmatrix}
\]
General Optimization

Maximum Possible Separation of Measurements in Subspace of Poincaré Sphere
2-D Linear Polarization

Maximum Possible Separation of Measurements in Subspace of Poincaré Sphere
3-D Linear

Maximum Possible Separation of Measurements in Subspace of Poincaré Sphere
3-D Linear, 4 Measurements

Maximum Possible Separation of Measurements in Subspace of Poincaré Sphere
4-D Stokes Vector

Maximum Possible Separation of Measurements in Subspace of Poincaré Sphere
References for Optimization

Design of Optimum Polarimeters

• The optimum set of parameters provides maximum information per measurement, i.e. these measurements are maximally decorrelated.
• For Variable Retardance Polarimetry, a non-unique optimum parameter set will equalize the noise in the three Stokes images.
• Rotating retarder systems - the optimum retardance is 132° - not 90°.
• Rotating retarder systems – the optimum angles are at ±15.1°,±51.7°.
• A new set of optimum settings must be computed for situations with a polarization bias (Tyo, et al., 1996).
• In principle, such a set of optimum parameters exists for any polarimetry strategy.
 – N-channel Linear Polarimetry (Tyo, 1998).
 – Variable Retardance Polarimetry (Tyo and Turner, 1999).