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Introduction to the Series 
 
The Tutorial Texts series was initiated in 1989 as a way to make the material presented in 
SPIE short courses available to those who couldn’t attend and to provide a reference book 
for those who could.  Typically, short course notes are developed with the thought in 
mind that supporting material will be presented verbally to complement the notes, which 
are generally written in summary form, highlight key technical topics, and are not 
intended as stand-alone documents.  Additionally, the figures, tables, and other 
graphically formatted information included with the notes require further explanation 
given in the instructor’s lecture.  As stand-alone documents, short course notes do not 
generally serve the student or reader well. 
 
Many of the Tutorial Texts have thus started as short course notes subsequently expanded 
into books. The goal of the series is to provide readers with books that cover focused 
technical interest areas in a tutorial fashion. What separates the books in this series from 
other technical monographs and textbooks is the way in which the material is presented.  
Keeping in mind the tutorial nature of the series, many of the topics presented in these 
texts are followed by detailed examples that further explain the concepts presented.  Many 
pictures and illustrations are included with each text, and where appropriate tabular 
reference data are also included. 
 
To date, the texts published in this series have encompassed a wide range of topics, from 
geometrical optics to optical detectors to image processing. Each proposal is evaluated to 
determine the relevance of the proposed topic.  This initial reviewing process has been 
very helpful to authors in identifying, early in the writing process, the need for additional 
material or other changes in approach that serve to strengthen the text.  Once a manuscript 
is completed, it is peer reviewed to ensure that chapters communicate accurately the 
essential ingredients of the processes and technologies under discussion. 
 
During the past nine years, my predecessor, Donald C. O'Shea, has done an excellent job 
in building the Tutorial Texts series, which now numbers nearly forty books.  It has 
expanded to include not only texts developed by short course instructors but also those 
written by other topic experts. It is my goal to maintain the style and quality of books in 
the series, and to further expand the topic areas to include emerging as well as mature 
subjects in optics, photonics, and imaging. 
  

Arthur R. Weeks, Jr. 
Invivo Research Inc. and University of Central Florida 
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Preface

This book is largely based on a series of essays published as “The Baseline”
column in the trade periodical Spectroscopy. I am indebted to the editor of
Spectroscopy, Mike MacRae, and its editorial board for granting permission
to reprint and/or adapt the columns for the purpose of this book.

The discussions that led to the inception of “The Baseline” were based
on a growing understanding by Spectroscopy’s editorial staff that readers of
the magazine were suffering from a lack of basic, tutorial-style information
about spectroscopy, its theories, its applications, and its techniques. Most of
the readership did have some sort of technical education, but it was (a)
varied, and (b) in the past. Many readers felt that they would benefit from
short, simple articles that covered “how-and-why” topics in spectroscopy.
And so, “The Baseline” was born.

Having participated in some of the discussions myself, I eagerly
volunteered to pen the columns. Writing such a column appealed to me in
several ways. First, it appealed to the teacher in me. A new classroom, a
new audience, a new way to spread the word spectroscopic! Second, I
recognized the truism that you learn more when you write about it. In the
past 6-plus years, I have learned more from writing these columns and
receiving feedbac k about them than I ever would from studying an
instrument manual. Finally, I must confess to being a huge fan of Isaac
Asimov. I learned a lot by reading (and rereading and rereading…) his essays
on science et al., and I am ecstatic at the opportunity to emulate my science-
writing hero. (At least in some respects.) To date, more than two dozen
columns have appeared in print, most of them written by me. And to be
honest, over time I wondered if there would ever be the opportunity to
print a collection of the columns in book form—another emulation of my
science-writing hero.

With the exception of pointing out a minor error here and there (and I
hope they have all been corrected for this book!), the feedback I have received
from the readers has been universally positive. Several people have been in
touch regularly because of the column, and I’ve been contacted by old friends
and colleagues who, after years of separation, see my name. It’s been a great
thing.

In December 1999, Eugene Arthurs, Executive Director of SPIE, contacted
me with the proposal to reprint the columns, properly revised, in book form.
It would become part of SPIE’s Tutorial Text Series. It didn’t take much
review of some of the already published Tutorial Texts to realize that “The
Baseline” and the Tutorial Text Series are an excellent match. You are holding
the end product.

xi



Thanks to Eugene Arthurs for his interest and support. Thanks also to
Sherry Steward and Mike MacRae, the editors at Spectroscopy, and all the
associate and assistant editors who have helped keep “The Baseline” column
going. Bradley M. Stone (San Jose State University) and another anonymous
reviewer read the manuscript, corrected several minor errors, and found
many mistakes that were ultimately derived from the voice-recognition
software that I used to regenerate some of the earlier columns that were no
longer available in electronic form. Finally, Rick Hermann and Merry Schnell
at SPIE Press were my main contacts there and offered valuable advice.

The Basics of Spectroscopy  is not a detailed, high-level mathematical, rigorous
treatment of spectroscopy. Rather, it is an easy-reading, tutorialized treatment
of some of the basic ideas of the field. (In fact, every chapter could be
expanded into several books’ worth of material that focused on that
particular topic. A quick scan of any university library’s shelves will confirm
that.) The level of vernacular is not meant to sacrifice accuracy; rather, it is
meant to improve comprehension, especially by readers who might not be
graduate-level-trained scientists and engineers. The better that readers can
grasp the basics of the topic, the better chance they have to understand the
details of the topics—and those can be found in textbooks, technical articles,
(sometimes) manuals, and so on. There are plenty of those in libraries and
classrooms, if you really want to find them—some of them are listed as
references at the ends of the chapters. Basics is a possible first step for those
who want to know more about spectroscopy.

Because the book is based on a series of columns, there may be a rather
unsystematic feel to the presentation of the material. While I have done my
best to make for smooth transitions, the reader should keep in mind that
this book is based on 1000-word essays on different topics. I have grouped
similar topics together in a way that hopefully makes sense, and I’ve added
some previously unpublished material to fill in any major gaps. Of course,
not all the gaps are filled, but it is impossible to fill all of them with a book
like this. Again, the reader is encouraged to consider higher-level sources,
once this book whets one’s appetite.

The book starts with an abbreviated history of light and spectroscopy,
then discusses the interaction of light with matter. Spectrometer basics are
introduced next, followed by a discussion of a spectrum itself. This is
followed by quantitative and qualitative aspects of a spectrum, a brief (as it
must be!) discussion of quan tum mec hanics, selection rules, and

xii Preface



experimental factors. The book weaves basic topics of physics and physical
chemistry, analytical chemistry, and optics into one volume.

I hope that, from the reader’s perspective and in light of its intended
scope, this book serves its purpose well.

David W. Ball
April 2001
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NOMENCLATURE
Vectors are denoted by boldface.
Quantum-mechanical operators are denoted with a caret ^ over them:
λ – wavelength

– wavenumber
ν – frequency
h – Planck’s constant

– Planck’s constant divided by 2π
B – Einstein coefficient of stimulated absorption
RH – Rydberg’s constant
σ – Stefan-Boltzmann constant
k – Boltzmann constant
c – speed of light
Ψ – wavefunction
B – magnetic field
E – electric field
a0 – radius of first Bohr radius
i – the square root of –1: 
P – power
T – transmittance or temperature
A – absorbance
I – intensity
I – quantum number for nuclei
S – quantum number for electrons
l – angular momentum quantum number
j – total electronic angular momentum quantum number
mS – z-component of total spin angular momentum for electrons
mI – z-component of total spin angular momentum for nuclei
ε – molar absorptivity
ε0 – permittivity of free space
e – charge of electron
n – refractive index
α – absorption coefficient
γ – magnetogyric ratio
κ – attenuation factor
β – nuclear magneton
δ – optical path difference
µ – magnetic moment
p – momentum
M – transition moment

– Hamiltonian operator

ν̃

h

1 

Ĥ
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Chapter 1
A SHORT HISTORY

1.1 Introduction
Spectroscopy is the study of matter using electromagnetic radiation. While
this definition is nominally correct, it is rather simple. On this basis, one
could argue that everything we know about the universe comes from spec-
troscopy, since much of we have learned comes from what we see in the
world around us. But simply looking at a picture or painting is not usually
considered “spectroscopy,” even though the action might involve studying
a piece of matter in broad daylight.

While we will not attempt to develop a more detailed definition of spec-
troscopy in the remainder of this book, we will be examining various
aspects of spectroscopy that make it a scientific tool. In order to set the
stage better for the various topics that will be presented, we present a quick
history of the development of topics relevant to spectroscopy. There are
three major topics: matter, light, and the fusion of matter and light that was
ultimately (and properly) labeled “spectroscopy.”

1.2 Matter
Throughout most of history, matter was assumed to be continuous—that
is, you could separate it into increasingly smaller pieces, and each piece
could then be cut into smaller and smaller parts, ad infinitum. Common
experience shows that to be the case, doesn’t it? Furthermore, ancient
philosophers (as thinkers were known at the time) divided matter into
several fundamental substances that were subject to various mystical
forces. The four fundamental substances, or elements—fire, air, water, and
earth—had accompanying attributes—wet, dry, cold, and hot—that they
imparted to matter, depending on the relative amounts in each object.
Such a description of matter is attributed to the fifth-century B.C. philoso-
pher Empedocles. Figure 1.1 shows the relationship between the four ele-
ments and their attributes. Plato and his pupil Aristotle (fifth to fourth
century B.C.) supported these ideas and refined them (in part by introduc-
ing a fifth “heavenly” element, the ether). Because of Plato’s and Aristo-
tle’s influence on the thinking of the time (and times since), the “four
elements” idea of matter was the prevailing view for centuries in the
Western world. (Three additional medical principles—sulfur, salt, and
mercury—were added to the repertoire by the sixteenth-century physi-
cian Paracelsus.)

��������������		
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4 CHAPTER 1

A competing description of matter was proposed at about the same time,
however. In the fifth to fourth century B.C., Democritus proposed (based on
ideas from his teacher, Leucippus) that matter was ultimately composed of
tiny, solid particles named atoms. However, this idea never found favor
because of Aristotle’s influential support of other viewpoints. (Throughout
history and even in modern times, influential thinkers use their influence
to sway the direction of scientific thought.) Besides, common experience
shows that matter is not made up of tiny particles—it is continuous! 

It was not until the seventeenth century that the concept of matter
began to change. This change was prompted by two interconnected events.
First, what we now call the scientific method––a more formalized method-
ology for studying the natural universe1 – was being promoted by people
like Sir Francis Bacon and, from a more philosophic perspective, René Des-
cartes. Eventually, a less haphazard and more systematic approach toward
the study of matter began to percolate through the community of natural

1  Since the details of the scientific method are available elsewhere, we will not present them
here, and assume that the reader is familiar with its general ideas.

Figure 1.1 According to the four-elements description of matter, all matter was
composed of four basic elements: earth, air, fire, and water. Different matter had
different proportions of each. Each element also imparted certain attributes to the
matter, like hot or cold or wet or dry. (Adapted from Ihde, The Development of
Modern Chemistry, Dover Press.)

��������������		
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A SHORT HISTORY 5

philosophers. Second, work by Robert Boyle in the mid-seventeenth cen-
tury on the physical properties of gases revived the idea of matter as atoms
as a model to explain gases’ pressure-volume behavior. In fact, Boyle’s
work on gases can be thought of as the dividing line between old-style
alchemy and the beginning of modern chemical investigations.

Based on a century of new work and ideas, in 1789, Antoine Lavoisier
published Traité élémentaire de chemie (“Elements of Chemistry”). In it, the
four-elements idea of the ancients is replaced by another definition of ele-
ment: a substance that cannot be simplified further by chemical means.
Not only did Lavoisier publish a table listing substances he recognized as
elements (and some that we now do not recognize as elements, like lime
and magnesia), but he also showed that water isn’t an element by making
it from hydrogen and oxygen. Ideas in science don’t change overnight, but
in time Lavoisier’s views became prevalent, and the “four elements” con-
cept of matter was eventually replaced.

With the results of almost two centuries of scientific-method-based
inquiry in hand, in 1803, John Dalton began to enunciate his atomic theory
of atoms. All matter is composed of tiny indivisible particles called atoms
(a word borrowed from Democritus). All atoms of the same element are the
same, while atoms of different elements are different, and atoms of differ-
ent elements combine in whole number proportions to make molecules,
each of which has a characteristic combination of atoms of particular ele-
ments.

The development of chemistry seemed swift after the modern concepts
of elements and atomic theory took hold. Avogadro contributed his
hypothesis about the proportionality of gas volumes and number of parti-
cles, an idea that eventually turned into the mole concept. Wohler synthe-
sized urea (an organic compound) from inorganic sources, throwing the
theory of vitalism into crisis and ultimately founding modern organic syn-
thesis. Chemical industries developed around the world, fueled by a better
understanding of the structure and behavior of matter.

The final step, as far as we’re concerned here, was the realization that
atoms themselves were not indestructible. (You may recognize this as a
modification of one of Dalton’s original ideas about atoms.) By 1880, scien-
tists like William Crookes reported on extensive investigations of Geissler
tubes, which were high-quality (for the time) vacuum discharge tubes with
small amounts of gaseous materials in them. Under certain circumstances,
the discharges would emit radiation that would cause other materials like
zinc sulfide to glow, or fluoresce. (See Figure 1.2.) Experiments suggested
that this radiation, called cathode rays, had an electric charge. Conflicting
reports and hypotheses led to detailed analyses of the phenomenon by J. J.
Thomson. In 1897, Thomson presented evidence that cathode rays were

��������������		
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6 CHAPTER 1

composed of tiny electrically charged particles that were smaller than an
atom. The name electron was given to the individual particle.

While this announcement met with much skepticism, other experiments
supported Thomson’s ideas. These other investigations culminated in the
famous Millikan oil-drop experiment, performed between 1908 and 1917
and illustrated in Figure 1.3. This work established the absolute charge in
an individual electron, and when that was combined with the known
charge-to-mass ratio (which was determined using magnetic fields), it ver-
ified that an electron was only 1/1837 the size of a hydrogen atom. Atoms,
then, were not indivisible, but were instead composed of tinier parts.

The discovery of the proton, another subatomic particle that was posi-
tively charged, followed not long after. The existence of the neutral neu-
tron was not verified until 1932. The arrangement of protons and
electrons (and later, neutrons) in atoms was debated until 1911, when
Rutherford postulated the nuclear atom. Based on experiments of send-
ing α particles from radioactive materials toward a thin metal foil
(Figure 1.4), Rutherford suggested that most of the mass of the atoms
(protons and, eventually, neutrons) was concentrated in a central nucleus
while the relatively light electrons occupied the space around the very
spatially tiny nucleus.

The general view of matter as nuclear atoms has changed little since
Rutherford’s ideas. The behavior of such atoms has undergone some dra-
matic shifts in understanding, as our ability to measure such behavior has
changed over time. Spectroscopy has always been at the center of our abil-

Figure 1.2 Electrodes inside a (mostly) evacuated tube form a discharge when a
voltage is applied. Holes in the positive electrodes encourage the formation of a
collimated beam of “cathode rays.” Among other things, the cathode rays induce
a film of zinc sulfide to fluoresce where the rays strike the film. Scientists were able to
establish that cathode rays were actually charged particles by subjecting the
beam to electrical and magnetic fields.

��������������		
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A SHORT HISTORY 7

Figure 1.3 A diagram of Millikan’s oil drop experiment. Oil droplets are generated
by an atomizer and injected into a chamber. Here they are exposed to x rays,
which ionize some droplets. Occasionally an ionized droplet falls between two
charged plates, and the experimenter can vary the charge on the plate to see
what charge is necessary to levitate the droplet. By making measurements on hun-
dreds of droplets, Millikan determined that the magnitude on the charged droplets
were all multiples of ~1.6×10–19 coulombs. This was how the fundamental charge on
the electron was determined.

Figure 1.4 A diagram of Rutherford’s experiment on the structure of the atom. Alpha
particles from a radioactive source are directed toward a very thin metal foil. Most
alpha particles passed right through the foil. Some are deflected a few degrees to
one side. A very few were—surprisingly—deflected back toward the source! These
results were interpreted in terms of a nuclear atom, with the protons (and later neu-
trons) in a tiny central nucleus and the electrons in orbit about the nucleus.

��������������		
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8 CHAPTER 1

ity to measure behavior at the atomic and molecular level. But before we
can discuss that topic, we turn now to the basic tool we use to study matter.

1.3 Light
What is light? Interestingly, throughout history this question did not seem
to generate much speculation. Light was deemed to be either something
that objects emitted so that we could see them, or something that was emit-
ted by our eyes and bounced off objects. The basic behavior of light—it
reflects, it refracts, it comes in colors, you can make various optical compo-
nents like mirrors and lenses and prisms to manipulate it—became well
understood, but that seemed to be the extent of the formal investigation of
light. There were some attempts at increased understanding, notably by
Claudius Ptolemy (first century A.D.), Abu Ali al-Hasan ibn al-Haytham
(tenth century A.D.), and Robert Grosseteste and his student Roger Bacon
(twelfth and thirteenth centuries A.D.), but they were apparently more phe-
nomenological rather than theoretical, and little progress was made.

Until the seventeenth century, at least. In 1621, Snell discovered his law
of refraction (which was not published until 1703), and Pierre de Fermat
discovered the principle of least time and used it to explain Snell’s law of
refraction. But the real battle over the nature of light began in the 1660s
with Robert Hooke.

Hooke was an outstanding scientist who had had the historical misfor-
tune of being overshadowed by contemporaries who became more famous
(like Boyle, Halley, and Newton). For example, Hooke studied harmonic
motion of oscillators, published a widely read book Micrographia in which
he presented drawings of microscopic organisms and structures that he
viewed through a microscope, and was an excellent experimentalist. (He
constructed the vacuum pumps that Boyle used to vary gas pressure in his
studies of gases.) 

Hooke’s work on light is noteworthy because he was apparently the
first credible scientist to propose, in Micrographia, that light is a very fast
wave. He suggested that light, like sound, is a longitudinal wave; this con-
trasts with water waves, which are transverse waves. (See Figure 1.5.) In the
late 1670s, Dutch physicist Christiaan Huygens provided additional argu-
ments that light is a wave.

The competing hypothesis on the nature of light was represented by
Isaac Newton. Newton was the first to demonstrate that white light is
made by the combination of various colored light. (Newton was the one
who proposed the name spectrum for the ghostly band of colors formed
when a slit of white light is passed through a prism.) Newton proposed
that light is composed of corpuscles, tiny particles that travel in a straight

��������������		
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A SHORT HISTORY 9

line, which was why light makes sharp shadows and does not curve
around corners like sound and water waves do. Newton’s corpuscular the-
ory of light gained adherents in part because of his fame—another example
of influence winning converts.

The issue was apparently settled in 1801 when English scientist Thomas
Young performed his double-slit experiment, illustrated in Figure 1.6. When
light is passed through a thin slit in a mask and the image is projected onto a
screen. The screen shows an expected intensity pattern: a bright vertical cen-
ter directly opposite the slit, with the brightness decreasing as you move
away from the position directly opposite the slit [as shown in Figure 1.6(a)].
On this basis, one would think that if we had two slits, we would get two
images with bright centers and decreasing intensity as you move away from
the points directly opposite the slits. Instead, what you actually see is
depicted in Figure 1.6(b). A series of alternately bright and dark regions, with
the brightest region in between the two slits, and the bright regions off to either
side getting less and less intense. Young argued that this demonstrated the
known interference phenomenon of waves, proving that light must, therefore,
be a wave. Since Young’s experiment, the wave nature of light has not been
seriously questioned. Whether light is a transverse wave or a longitudinal
wave was still questionable, but there was no denying that light had wave
properties. (Light is actually treated as if it were a transverse wave.)

Figure 1.5 Longitudinal versus transverse waves. Hooke proposed that light was a
longitudinal wave. In this sort of wave, the medium is alternately compressed and
rarefied in the direction of motion, as suggested by the top diagram. Dark areas
represent compressed media, light areas are rarefied media. Sound waves are lon-
gitudinal waves. The other type of wave is a transverse wave, in which the medium
moves perpendicular to the direction of motion, as suggested by the bottom dia-
gram. Water waves are transverse waves.
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10 CHAPTER 1

Figure 1.6 Young’s double slit experiment. (a) When light passes through a single nar-
row slit, the intensity pattern of the image projected onto a screen shows a central
bright region, with decreasing intensity seen on either side of the central bright region.
(b) When light passes through two closely spaced slits, instead of a double image, there
are interference fringes. Young used this as support of the idea that light is a wave.
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A SHORT HISTORY 11

However, this is not the end of the story. Further investigations into the
behavior of light raised additional questions. In particular, the behavior of
blackbodies was problematic. A blackbody is a perfect emitter or absorber
of radiation. While nothing in the real world is perfect, very good approxi-
mations of blackbodies are easy to make (a small cavity with a tiny hole in
it will suffice). You might think that a perfect emitter of light would emit
the same amount of light at all wavelengths—but it does not. A blackbody
emits light whose intensity depends on the temperature and wavelength in
a complex way; a plot of the intensity of light emitted is shown in
Figure 1.7. Scientists in the late nineteenth century were unable to explain
this behavior. Perhaps the most successful attempt to explain the behavior
of light in classical terms was the Rayleigh-Jeans law, which had the
expression

(1.1)

Figure 1.7 Intensity of light emitted from a blackbody versus wavelength. The tem-
perature of the blackbody is 5000 K. Classical Science was not able to explain why
blackbodies emitted light with this distribution.

dρ 8πkT
λ4

------------- 
  dλ,&
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where dρ is the energy density of the emitted light (which is related to
intensity), k is Boltzmann’s constant, T is the absolute temperature, and dλ
is the wavelength interval. This expression matched experimental mea-
surements in the long-wavelength region, but not in the short-wavelength
region. In fact, the Rayleigh-Jeans law predicted an ever-increasing inten-
sity as one goes to increasingly shorter wavelengths of light, approaching
an infinite amount as the wavelength approaches the scale of x rays or
gamma rays! This behavior was termed the ultraviolet catastrophe and
clearly does not happen (else we would all be killed by the infinite amount
of x rays being given off by matter). Approximations were also proposed
(most successfully, by Wien) for the long-wavelength side of the maximum
in Figure 1.7, but a single model eluded nineteenth-century scientists.

In December 1900, German physicist Max Planck proposed an expres-
sion that fit the entire plot, not just one side. Planck reasoned that since
light was interacting with matter, matter itself must be behaving like little
oscillators. Planck proposed that these oscillators couldn’t have any arbi-
trary energy, but instead has a specific energy E that is related to the fre-
quency ν of the oscillation:

E = hν , (1.2)

where h is a proportionality constant now known as Planck’s constant. By
making this assumption and using some thermodynamic arguments,
Planck derived the following expression for the energy density:

. (1.3)

The variables in Eq. (1.3) have their normal meanings. A plot of this expres-
sion looks almost exactly like the experimental plots of blackbody radia-
tion, suggesting that Planck’s assumptions has some validity.

Some scientists, however, dismissed Planck’s work as mere mathemati-
cal games with no value other than to predict a curve. There were ques-
tions about whether there was any real physical meaning to Planck’s
proposed relationship between energy and frequency. In 1905, however,
Albert Einstein gave Planck’s proposal more direct experimental support.
Einstein applied Planck’s equation E = hν to light itself by suggesting that
light of a particular frequency has a particular energy, in accordance with
Planck’s equation. Einstein then used this to explain the photoelectric
effect, in which metals can emit electrons when certain wavelengths of
light are shined on their surfaces. Thus, Einstein ultimately argued that

dρ 8πhc
λ5

------------ 1
ehc/λkt 1 
---------------------- 

  dλ&
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light acts like a particle of energy, and the word “photon” was eventually
coined by G. N. Lewis to describe a “particle” of light.

Additionally, in 1923, Arthur Compton showed that the scattering of
monochromatic (i.e., “single color”) x rays by graphite resulted in some of
the x rays being shifted to a slightly longer wavelength. Compton used this
evidence to argue that photons have momentum in addition to energy.

What type of material has specific energy and momentum? Why, parti-
cles, of course. Thus, there is ample evidence to support the idea that light
is acting like a particle (and thereby exonerating Newton).

Is light a particle, or is light a wave? While some use the term “wavicle”
or speak of “wave-particle duality,” perhaps it is the question itself that is
improper. In being described as having wavelength, frequency, interfer-
ence behavior, and such, light is displaying wave properties. In having a
certain specific (or quantized) energy and momentum, light is displaying
particle properties. Light behaves as a wave or as a particle, depending on
which property you are considering. Ultimately, it is limited thinking on
our part to suggest that light must be either a particle or a wave, but not
both.

1.4 Quantum Mechanics and Spectroscopy
The quantum theory of light, as proposed by Planck and interpreted by Ein-
stein, completely changed how science deals with the molecular, atomic,
and subatomic universe. This change in perspective is so profound that the
year 1900, when Planck proposed his explanation of blackbody radiation,
is typically considered the dividing line between Classical Science and
Modern Science. 

In the first 25 years of the twentieth century, there were several important
advances. The nuclear structure of atoms was enunciated by Rutherford (see
above), Bohr proposed a model of the hydrogen atom in which angular
momentum was also quantized, and in 1923 Louis de Broglie proposed a
relationship for the wavelength of a particle of matter (after all, if light could
have particle properties, why can’t particles have wave properties?):

, (1.4)

where h is Planck’s constant and p is the linear momentum of the particle.
This set the stage for the development of quantum mechanics. After all,
very small particles have a very small momentum, implying [because
momentum is in the denominator of Eq. (1.4)] that they have a large

λ h
 p 
------&
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“wavelength.” If this is the case, then any understanding of the motion of
very small particles must take wavelength behavior into account. 

In 1925–26, Erwin Schrödinger and Werner Heisenberg developed inde-
pendently a new model for electron behavior in atoms and molecules.
Although they are mathematically equivalent models for all practical pur-
poses, the majority of scientists use Schrödinger’s formalisms. Schrödinger
postulated that a system’s behavior is contained in an expression called a
wavefunction. Wavefunctions must have certain mathematical restrictions
and must satisfy a partial differential equation, called the Schrödinger
equation, that naturally yields the energy of the system. For most physi-
cally relevant systems, the energy of the system ends up being quantized,
i.e., it has a specific value. In particular, the Schrödinger equation could be
used to predict the spectrum of the hydrogen atom, and could also be
applied to understand the spectra of other atoms and molecules—but we
have gotten a bit ahead of ourselves.

Scientists have been studying the spectrum of light since Newton dem-
onstrated its existence. In 1802, William Wollaston—followed in 1814 by
Joseph Fraunhofer—noted some dark lines in the spectrum of the sun, thus
unknowingly founding spectroscopic analysis. Circa 1859–60, German sci-
entists Robert Bunsen and Gustav Kirchhoff invented the spectroscope, a

Figure 1.8 A simple schematic of Bunsen and Kirchhoff’s spectroscope. Light from
some source passes through a slit, a sample, and a prism before being projected
onto a screen. Absorbed light is represented by dark lines superimposed on a rain-
bow-type spectrum. If the sample is heated and is emitting light, then the source is
omitted and the spectrum consists of bright lines of light at wavelengths that are
emitted by the sample. Bunsen and Kirchhoff showed that these wavelengths
absorbed or emitted are characteristic of the elements in the sample.
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device to systematically study a spectrum. A diagram of a simple spectro-
scope is shown in Figure 1.8. Light from a source is passed through a sam-
ple and then through a prism (or, alternately, through a rotatable prism and
then through a sample), and then projected onto a screen. Alternatively, a
sample could be heated to high temperature and the light emitted by the
sample would be passed through a prism and then projected onto a screen.
By observing a variety of samples with the spectroscope, Bunsen and
Kirchhoff were able to show that each element contributed a characteristic
series of absorbed wavelengths of light (for samples absorbing light) or,
when light is given off by a heated sample, a characteristic set of wave-
lengths of light are given off. Thus, Bunsen and Kirchhoff invented spec-
troscopy as a method of determining what elements are present in a
sample.

In short order, Bunsen and Kirchhoff identified two new elements,
rubidium and cesium (both names deriving from the color of a very bright
line in their respective emission spectrum, red for rubidium and blue for
cesium; the element indium is also named after the bright indigo line in its
emission spectrum). Thallium was discovered by its unique spectrum by
Crookes in 1861, and its name derives from the Greek word thallos, mean-
ing “green twig.” Helium was detected spectroscopically on the sun in
1868 by Janssen, and finally discovered on earth by Ramsey in 1895.
Samarium was also discovered spectroscopically, by Boisbaudran in 1879.
Spectroscopy very quickly established its utility.

Spectroscopy was not confined to the visible region, however; it quickly
spread to other regions of the electromagnetic spectrum. However, progress
was delayed until photographic, instrumental, or—ultimately—electronic
methods were developed to detect nonvisible photons. Modern spectros-
copy spans virtually the entire electromagnetic spectrum.

In the development of ideas that ultimately led to the revolution of
Modern Science, there was one issue that was intimately related to spec-
troscopy: exactly why do atoms give off or absorb light that has only certain
specific wavelengths? Or in terms of the quantum theory of light, exactly
why do atoms absorb or emit light of only certain energies?

Particularly curious was the spectrum of hydrogen. Its spectrum in the
visible region consists of four lines, as represented in Figure 1.9. In 1885,
Swiss mathematician J. J. Balmer showed that these lines fit the following
formula:

, (1.5)1
λ
-- R 1

4
-- 1

n2
----  

 &

��������������		
���	 		����������	�������	���	� 		 	



16 CHAPTER 1

where λ was the wavelength of the light emitted, R was a constant, and n
was either 3, 4, 5, or 6. (It was shown later that n could be larger than 6, but
then the line of light is in the not-visible ultraviolet region of the spectrum.)
After looking in other regions of the spectrum, other series of lines were
detected, and in 1890 Johannes Rydberg generalized Balmer’s formula as 

, (1.6)

where n1 and n2 are integers that are characteristic of the series of lines of
light. (The one that Balmer discovered is known as the Balmer series.)
Because the constant R now applies to every series of lines for the hydro-
gen atom’s spectrum, it is relabeled RH and is called the Rydberg constant.

Why is the hydrogen atom’s spectrum so simple and easy to model?
Classical Science could not explain it, nor could it explain the more com-
plex series of lines emitted by other, more complex atoms. It was not until
Bohr’s theory of the hydrogen atom in 1913 that hydrogen’s spectrum
could be explained on theoretical grounds (by proposing that angular
momentum, like energy, can also be quantized). However, Bohr’s explana-
tion was limited—and incorrect in some of its details. It was not until the
development of quantum mechanics in the 1920s that a satisfactory theo-
retical framework for spectroscopy was developed, i.e., quantum mechan-
ics. By then, spectroscopy—using different regions of the electromagnetic
spectrum—was showing that energy levels of atoms and molecules were
even more complex than was initially realized. But, quantum mechanics

Figure 1.9 A representation of the visible emission spectrum of H. The last line is dot-
ted because it is sometimes difficult to see. Additional lines in this series are in the
ultraviolet, and so not visible. There are other series of lines in the infrared and ultravi-
olet and other regions of the electromagnetic spectrum. Classical Science failed to
explain why H had such a simple spectrum, although simple formulae were pro-
posed for the wavelengths of the lines of light.

1
λ
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1
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could still be used to explain the increasingly complex picture of atomic
and molecular behavior.

Spectroscopy, then, was not only integral in the development of quan-
tum mechanics—still our best theory of atomic and molecular behavior to
date—but is inherently a quantum-mechanically based phenomenon. An
adequate description of quantum mechanics is beyond the scope of this
book. Indeed, some might argue that a “tutorial on quantum mechanics” is
impossible! The important point is to realize is that spectroscopy is ulti-
mately explained by quantum mechanics. In fact, whether you realize it or
not, when you measure a spectrum, you are performing applied quantum
mechanics!
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Chapter 2
LIGHT AND ITS INTERACTIONS

2.1 Properties of light waves
Under most conditions, light acts like a wave. According to Maxwell’s
equations, light is composed of oscillating electric and magnetic fields that
pass through a vacuum at a certain constant velocity, c. The electric fields
and magnetic fields are perpendicular to each other, and both are perpen-
dicular to the direction of travel (see Figure 2.1). The electric and magnetic
fields have specific directions as well as magnitudes, and so are properly
thought of as vectors. It is interesting to note that two aspects of light have
particle-like behavior: its energy (a fact deduced by Max Planck) and its
momentum (first observed by Arthur Compton in 1923).

Like anything that acts as a wave, the behavior of light can be described
by mathematical equations. Perhaps the simplest way to describe the mag-
nitude of the electric (E) and magnetic (B) fields is by using a general equa-
tion in terms of the sine function:

, (2.1)

, (2.2)

Figure 2.1 The wave representation of light. The axis of propagation is the positive z
axis. The electric field vector E and the magnetic field vector B are shown (not nec-
essarily to scale) along with the wavelength λ.

E Aesin 2πz
λ

--------- 2πνt  
 &

B Absin 2πz
λ

--------- 2πνt  
 &
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where Ae and Ab are the amplitudes of the electric and magnetic fields,
respectively; λ is the wavelength of the light; and ν is the frequency of the
light. The variable z represents the position along the propagation axis
(where we assume that the light is moving along the arbitrarily designated
z axis), and t is time (that is, the field varies in time). If there is another
(usually) constant term inside the sine function, this term implies that the
magnitudes of the electric and magnetic vectors are not zero when z and t
equal 0; we refer to this as a nonzero phase.

Theoretically, the ratio of the magnitudes Ae/Ab is equal to c, so the elec-
tric field has a much larger amplitude than the magnetic field. Equations
(2.1) and (2.2) relate how the amplitude of the electric and magnetic fields
vary with time t and distance z. Like any wave, the velocity of light, repre-
sented as c, is equal to its frequency times its wavelength:

c = λ · ν. (2.3)

Typically, absorption and emission spectroscopy depend on an ability to
measure the intensity of the light waves, because for light waves, intensity
is related to amplitude. (For classical waves, amplitude is related to energy.
Planck deduced that the energy of light was related to frequency. All forms
of spectroscopy require an ability to differentiate between the differing
energies of light.)

The above equations did not address the vector property of the electric
and magnetic fields; in fact, the equations are more properly written as

(2.4)

, (2.5)

where Ae and Ab are vector amplitudes and indicate the specific direction
of the fields.

The vector amplitudes are very important because certain specialized
forms of spectroscopy depend on the exact direction of the fields; that is,
certain techniques are more dependent on the direction of the field vector
than on its magnitude. This is called polarization spectroscopy. Because
propagation is along the z axis and the fields are perpendicular to the x
axis, the vector amplitudes can only exist in the x and y directions; hence,
the vector amplitudes can be written generally as

E Aesin 2πz
λ

--------- 2πνt  
 &

B Absin 2πz
λ

--------- 2πνt  
 &
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A = Aπ = A(πx i + πy j), (2.6)

where A represents either the electric or magnetic amplitude, A is the sca-
lar value of the amplitude, and π is a unit polarization vector, possibly
complex, that describes the polarization properties of the light. The terms i
and j are unit vectors in the x and y directions, and πx and πy are their rela-
tive magnitudes; the only constraint is that

|πx|
2 + |πy|

2 = 1. (2.7)

The relative magnitudes of the i and j vectors in A determine the polariza-
tion of the light. Let us consider the electric vector of a set of light waves
(which is most common, giving its larger magnitude). If each light wave
has its own characteristic values of πx and πy, it has no preferential vector
direction, and the light is considered unpolarized. If for all waves πx = 1 and
πy = 0, the amplitude vector would exist only in the x dimension:

A = Ai. (2.8)

We would speak of this light as being polarized in the x direction. Because
all waves are lined up in the same direction, we can also refer to this as lin-
ear polarization. Light waves can also be polarized in the y direction, which
would correspond to πx = 0 and πy = 1. Z polarized light is not defined
because the z direction is usually considered the direction of propagation.

Finally, consider what happens if πx equals 1/  and πy equals i1/ ,
where i is the square root of –1. In this case, the polarization vector π
becomes

. (2.9)

(Do not confuse the two i’s in Eq. (2.9)!) The net result of this is to make the
propagation vector a corkscrew or helical shape, which in a right-handed
coordinate system is considered a left-handed helix. Light having this
polarization vector is called left circular polarized light. If the two summed
terms in Eq. (2.9) are subtracted instead of added, the light becomes right
circular polarized light. If π1 and π2 have different but constant values, the
wave is called elliptically polarized. The various polarizations are illustrated

2 2

π 1
2

------i i 1
2

-------j' 
 &
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in Figure 2.2. For Figure 2.2(c) and (d), the specific polarization can be
either clockwise (right circularly/elliptically polarized) or counterclock-
wise (left circularly front/elliptically polarized).

All of these properties of light waves—frequency, wavelength, phase,
amplitude, intensity, energy, and polarization—are of interest to spectros-
copists. When light interacts with matter, one or more of these properties of
the light wave changes. If none of them changed, then spectroscopy would
not be possible. As such, it is important for spectroscopists to realize which
properties of light waves they are altering in order to have a better under-
standing of the spectroscopic technique.

2.2 Interactions of light with matter
Almost all of the knowledge we have about our universe is ultimately
derived from the interaction of light with matter. Despite the complexity
of the information sometimes generated by these interactions, the bottom

Figure 2.2 A representation of the various polarizations of light, seen by looking
down the z axis of propagation. (a) x-polarized light. (b) y-polarized light. (c) circu-
larly polarized light. (d) elliptically polarized light.
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line is that light interacts with matter in three ways: it can be reflected, it
can be transmitted, or it can be absorbed. That is all. (We are ignoring
scattering effects, which occurs for less than 1 in 10,000 photons. Scatter-
ing is actually an absorption-emission process anyway, so the previous
statement is still accurate.) If one wanted to put this into an equation,
then the original intensity of light, Io, can be separated into three and only
three parts:

Io = Ir + It + Ia , (2.10)

where the three parts are the intensities that are reflected, transmitted,
and absorbed, respectively. The three processes usually occur simulta-
neously to some extent, so although we can discuss them independently,
it should be kept in mind that all three processes are taking place at the
same time.

2.2.1 Reflection
Reflection occurs when, to put it simply, a light wave bounces off the sur-
face. Although the overall process can be interpreted as the complete
absorption of a photon and then the re-emission of a photon of exactly the
same wavelength and at a reflected angle equal to the incident angle, it is
easiest to think of reflection simply as the photon bouncing off the surface.
A diagram of a light ray reflecting off the surface is shown in Figure 2.3.

Reflection is not quite this simple, though. Although the angle of inci-
dence equals the angle of reflection and the wavelength of the light is unaf-

Figure 2.3 A simplified diagram of a light beam reflecting off a smooth surface. The
dotted line perpendicular to the surface is called the normal; the incident angle
with respect to the normal, θ, is equal in magnitude to the reflection angle with
respect to the normal, φ.
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fected, the polarization properties of the reflected beam can be modified.
Unpolarized light can be considered a random combination of light polar-
ized perpendicular to the plane of the reflecting surface (s-polarized light)
and light polarized parallel to the plane of the reflecting surface (p-polar-
ized light). The polarization properties of reflected light will be discussed
in Section 2.2.4 below. However, because a surface has different reflectivi-
ties for the two polarizations of light, the reflected beam may have differ-
ent polarization properties from the incident beam. This property is
especially important for surfaces that can also transmit at the particular
wavelength of light.

2.2.2 Transmission
All materials transmit some portion of the electromagnetic spectrum.
Many materials are completely transparent to x rays, for example, whereas
other materials absorb infrared light. The light is not unaffected, however.
Although light travels at characteristic speed through a vacuum (and that
speed is considered a fundamental constant of the universe), light travels
at different speeds in different media. For example, light travels at approx-
imately 2.25×108 m/s in water, much slower than its normal 3.00×108 m/s
in vacuum.

As a consequence, when light enters the new medium at an angle
(instead of head-on), its path bends somewhat; this idea is called refraction
and was known (and apparently even measured) by the ancient Greek phi-
losopher Ptolemy. It was quantified in 1621 by Snell, and is thus called
Snell’s law:

ni sin θ = nr sin φ , (2.11)

where the angles are defined as in Figure 2.4. The index of refraction n is
defined as the quotient of the speed of light in that medium divided by the
speed of light in a vacuum (this way all indices of refraction are > 1):

, (2.12)

where ν is the velocity of the light in that medium. Each phase has its own
characteristic index of refraction; thus, we have ni for the index of refrac-
tion of the incident medium, and nr for the index of refraction of the refrac-
tion medium in Eq. (2.11). The different polarizations of light have different

n c
 ν 
------&
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indices of refraction; the ns are also very dependent on the wavelength of
light. (That is how a prism makes a spectrum or water vapor makes rain-
bows: the varying indices of refraction of the media cause a spatial separa-
tion in visible wavelengths of light.)

If one rearranges Snell’s law, and assuming that the incident light is in
the medium of higher index of refraction, for any two given media there is
an angle of incidence in which the angle of reflection, φ, becomes 90 deg. At
this point, the light is not transmitted into the medium but instead passes
parallel to the surface, and larger angles of incidence are simply reflected
off the surface of the “transmitting” medium. This angle, θc , is called the
critical angle, and is given by the expression

. (2.13)

The critical angle is wavelength- and polarization-independent (although
the indices of refraction may not be). At angles above the critical angle,
light is not transmitted; it is reflected from the surface. It is this phenome-
non that allows us to see into a lake very near the shore, but to see the sky

Figure 2.4 A diagram of the refraction of a light beam as it passes from one medium
to another in obeyance of Snell’s Law. In this example, ni < nr ; if it were the other
way around, φ would be greater than θ, not less than θ.

θc sin 1 nr

ni

----&
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reflected on the lake’s surface farther from the shore. When the angle
becomes greater than the critical angle, light is reflected from the lake’s
surface instead of being transmitted to illuminate what is under the water.
(For water, the critical angle is approximately 48.8 deg.)

Though most people are unaware of its occurrence, light beams are
always refracted whenever they pass into another medium, such as from
air into glass. Although this sometimes introduces a distortion when mak-
ing an observation—for example, looking out a window—usually the
effect is so small that we can ignore it. The effect of refraction is more obvi-
ous when the interface between the media is curved, leading to an optical
effect known as lensing.

2.2.3 Absorption
At certain wavelengths, a normally transmitting medium will absorb light.
In such an instance, the photon is “destroyed” and its energy is converted
into an atomic or molecular process—an electron changes orbit, a molecule
vibrates or rotates differently, or some other effect. Usually, the wave-
length(s) of the light absorbed is/are characteristic of the absorbing spe-
cies, or chromophore. This is where the true power of spectroscopy lies, in
that it imparts the ability to differentiate between different forms of matter
because each has a unique spectrum of absorbed light. For most simple
spectroscopic processes, two different energy levels are involved such that
the difference between the energy levels, ∆E, is related to the frequency of
the absorbed light by Bohr’s Frequency Condition:

∆E = hν , (2.14)

where h is Planck’s constant and ν is the frequency of the absorbed light. In
the case of the absorbing medium, the index of refraction is complex and is
rewritten as a wavelength-dependent complex expression

, (2.15)

where  is the complex index of refraction and κ the attenuation factor
related to an absorption coefficient, α. The absorption coefficients are the core
of spectroscopy: they relate how much light is absorbed each wavelength.
The basic expression relating the intensity of light absorbed to the absorp-
tion coefficient is a very simple one, and is usually referred to as the Beer-
Lambert law:

n̂ n iκ &

n̂
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, (2.16)

where I0 is the original light intensity, I is the intensity of the light after it
passes through the absorbing medium, c the concentration of the absorbing
species (not to be confused with the speed of light!), and l is the length of
the absorbing medium. The Beer-Lambert law, or simply Beer’s law, forms
the basis of much of spectroscopy.

2.2.4 Polarization
As mentioned earlier, randomly polarized light can be described in terms
of polarization perpendicular to a reflecting surface, and polarization par-
allel to a reflecting surface. Figure 2.5 shows how these two directions are
defined. The plane of incidence is that plane marked out by the path of the
incoming and reflected beams and that is perpendicular to the reflecting
surface. It is with respect to this plane that s- and p-polarizations are
defined. s-polarization is the component of the electric field that is perpen-
dicular to this plane, and p-polarization is the component of the electric
field that is parallel to this plane.

lnI0

I
--- αcl&

Figure 2.5 Definitions of s- and p-polarized light, which are defined in terms of the
plane of incidence, not the plane of reflection. The transmitted beam (if present)
also has s- and p-polarizations; they are omitted for clarity.
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In cases wherein the reflecting surface can also transmit the light, reflec-
tion and transmission will both occur. If no absorption of light occurs, it is
possible to quantify the amount of light reflected versus the amount trans-
mitted. Let us assume for this discussion that light is traveling from a rare
medium (for example, air) to a dense medium (for example, glass), or into
a medium that has a higher index of refraction. This situation describes
external reflection. It was found that the amount of light reflected depends
on four things: the two indices of refraction, the angle of incidence (note
that for a non-normal angle of incidence, the transmitted beam will be
refracted and the angle of refraction can be determined from the indices of
refraction and the angle of incidence using Snell’s law), and polarization of
the light. S-polarized light and p-polarized light reflect and transmit differ-
ent proportions of their amplitudes. The reflected amplitudes can be
expressed by the following equations:

(2.17)

. (2.18)

Equations (2.17) and (2.18) are called Fresnel’s equations. I|| and I⊥ refer to s- and
p-polarization, respectively. θ and φ are the angles of incidence and refrac-
tion, respectively. Because the angles are related by Snell’s law the equa-
tions could have been written in terms of the indices of refraction and an
inverse sine function, but that would have gotten messy.

For any two given indices of refraction, the fraction of the reflected
power of s- and p-polarization (which is proportional to the square of the
amplitudes) being reflected can be plotted versus the angle of incidence of
θ. Such a plot is shown in Figure 2.6. The interesting point is that at a cer-
tain angle of incidence, the reflectivity of the p-polarized light is exactly 0;
it is all transmitted through the denser medium. The angle at which this
occurs, which is dependent on the indices of refraction of the two media, is
called the Brewster angle. In this case where n1 equals 1 and n2 equals ~1.33,
the Brewster angle is approximately 53.1 deg and can be shown to be equal
to tan–1(n2/n1). Windows tilted at the appropriate Brewster angle are used
for gas lasers to induce a polarization on the laser beam. (Having a win-
dow at the Brewster angle also helps maximize laser throughput, but this is
separate from the polarization issue.)

I  ||
sin φ θ ( )
sin φ θ'( )
------------------------- &

I ⊥  
tan φ θ ( )
tan φ θ'( )
-------------------------- &
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2.3 Transparent media for different spectral regions
One of the true revelations in spectroscopy is when you first learn that you
should not use a UV-visible cuvette in an infrared spectrometer. Actually,
you can—but it is not a good idea if you want a good spectrum across the
mid-IR range (4000–200 cm–1), the region of interest for much IR work. Do
you know why? The material used to make sample holders for UV-visible
spectrometers absorbs IR radiation between ~3000 and 150 cm–1, making it
virtually impossible to measure an IR spectrum of a sample. You can use
these sample holders to measure spectra at higher or lower wave numbers,
but you should not use them for the mid-IR region.

By the same token, you probably do not want to use KRS-5 for UV-visi-
ble spectroscopy. KRS-5 is a designation for a thallium bromide/thallium
iodide composite that is used in IR spectroscopy (and used very carefully,
because thallium compounds are poisonous). It is also a nice red-orange
color, which is bound to disturb any attempts to measure a visible spec-
trum of a compound. The same is true for zinc selenide, ZnSe: it transmits
IR light, but because it is a nice orange color, its applicability in visible
spectroscopy is limited.

What is the point? Different materials are transparent to different wave-
lengths of light, and when performing the various types of spectroscopy,
you must use the appropriate material if you need a sample holder, win-

Figure 2.6 A plot of the power of s- and p-polarized light reflected vs. the angle of
incidence. In this example, light is going from a rare medium (n = 1.00) into a denser
medium (n = 1.33). At the Brewster angle of ~53.1 deg, the p-polarized light is com-
pletely transmitted, not reflected. These plots represent the squares of the Fresnel
equations, Eqs. (2.17) and (2.18).
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dow, or lens. Furthermore, materials that are useful for one type of spec-
troscopy are not necessarily useful for other types of spectroscopy. This is a
general statement, but not a global one. Windows of transparency exist for
most materials in all spectral regions, but such windows do not generally
make these materials useful for certain spectroscopic methods. For exam-
ple, water absorbs IR radiation fairly well, but there are some windows
where IR light is not absorbed. Thus, water has a limited use as a solvent
when measuring IR spectra.

Sometimes materials are transparent to particular wavelengths of light
for certain reasons, so it is useful to discuss these reasons. Perhaps the
most obvious example is in visible spectroscopy. Sample holders, win-
dows, lenses, and other optical components for visible spectroscopy are
clear. That is, they do not absorb visible light, so the sample of interest
should be the material absorbing visible light. Thus, most glass and plas-
tic can be used in visible spectroscopy. If you want to extend the spectral
range into the near-UV region, you should use a material that does not
absorb UV light, either. Quartz (crystalline SiO2, and sometimes called
silica) is usually the material of choices; and good, high-quality silica can
have a practical cutoff of 160 nm. (To give you an idea of how far into the
UV region that is, the UV region starts at about 350 nm.) Sapphire, which
is crystalline Al2O3, is also used in UV-visible spectroscopic applications.
These notes about materials for UV-visible spectra are applicable to any
spectroscopic technique that involves visible or ultraviolet photons, like
fluorescence and phosphorescence spectra, laser spectroscopy, and so
forth.

Molecular compounds have vibrational absorptions. Molecular com-
pounds are not commonly used in IR spectroscopy as windows, lenses,
etc., because those materials do not absorb IR light. Instead, simple ionic
compounds are used to make components for IR spectroscopy. Sodium
chloride (NaCl) is a very common IR material, as is potassium bromide
(KBr). Both these materials are clear in their crystalline form. As mentioned
above, KRS-5 and ZnSe are colored materials, so novice spectroscopists
may blanch at using these materials to measure a spectrum. But even
though they absorb visible light (which is why they are colored), they do
not absorb IR radiation! They are transparent to IR radiation, so they can be
used to measure the IR spectra of other materials. Cesium iodide (CsI) is
transparent down to ~200 cm–1, and is used for some far-IR work, although
it is soft (and therefore easily scratched), somewhat hydroscopic (so it gets
cloudy when exposed to humidity), and a little on the expensive side.
Believe it or not, polyethylene can be used for far-IR spectra, with the
exception of the region around 700 cm–1, where polyethylene has a very
strong absorption.
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Curiously, diamond is a good IR transparent material. With the excep-
tion of an absorption at ~1280 cm–1, diamond is transparent to IR light
down to ~125 cm–1. Because of diamond’s other superior properties, some
spectroscopists would love to use diamond optics more, but the expense
can be prohibitive. Its use in spectroscopy is partially fueling research in
diamond films by chemical vapor deposition (CVD) methods. (In 1975, the
Soviet spacecraft Venera 9 landed on Venus; some of its optical instrumen-
tation had diamond optics.)

Beryllium windows are common on x-ray sources and detectors. As the
lightest air- or water-insensitive metal, beryllium is transparent to a large
range of x rays and so serves as a good window material.

For magnetic resonance spectroscopies, the idea is similar but the tactic
is different—you want a sample holder that does not have a spectral signa-
ture in the region of interest, but in this case the spectrum is caused by
magnetic resonance phenomena (either from unpaired electrons or certain
nuclei). High-quality quartz tubes allow you to measure the spectrum of
the sample itself, not the sample holder.

Many standard references on spectroscopy contain tables or diagrams
listing regions of transparency for various materials. Interested readers are
urged to consult such references.
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Chapter 3
SPECTROMETERS

3.1 Introduction
In this chapter, we will consider the spectrometer itself. The problem is that
no single description of a spectrometer exists. Spectrometers are designed
to take advantage of the unique way that different types of light interact
with matter. By the same token, most spectrometers have certain common
elements. We will consider those elements.

First we will differentiate between the several general classes of spec-
trometers. Those that deal with absorption and emission phenomena will
be considered first. Fourier transform (FT) spectrometers, including reso-
nance spectrometers, will be considered next. Magnetic resonance spec-
trometers, which use magnetic fields simultaneously with electromagnetic
light, will be discussed, as will the marriage of FT with magnetic resonance
spectrometers.

3.2 Emission and absorption spectrometers
Energetically, emission and absorption are opposite processes: in absorp-
tion, a photon is taken in by an atom or molecule and causes a process; in
emission, a process occurs and produces a photon. (In some forms of spec-
troscopy, such as Raman spectroscopy, the processes occur together.) In
both cases, the important factors to consider are the energy of the photon
and how many photons of each energy are involved. This second quantity
is the intensity.

Because the same two things are important in both cases, spectrometers
for emission and absorption spectroscopy are largely made up of similar
components, but in a different order or orientation. For emission or absorp-
tion spectroscopy, the following components are necessary: a source of
energy or photons, a method of energy differentiation (more about that
soon), a sample that absorbs or emits photons, and a detector. Optics are
also usually used to manipulate the photons. The source can be a light
bulb, a laser, a magnetron, a synchrotron, electricity, a flame, or a hot
ceramic rod. Detectors can be a simple heat absorber, photographic film, or
light-sensitive electronics. Samples can be anything.

The “method of energy differentiation” is the key; normally it is per-
formed by a monochromator. Devices such as colored filters, prisms (made
of quartz, glass, or a salt), or gratings (etched in glass or metal or deposited
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holographically) can separate electromagnetic light by frequency. This abil-
ity to separate light is the central part of spectroscopy. This is what allows
us to determine what energies of light are absorbed or emitted by a partic-
ular sample.

The other components of absorption/emission spectrometers can take
many forms and each is worthy of its own section. We will not deal with
each component in detail here; rather, we will consider how these compo-
nents make up a spectrometer.

A colorimeter, shown in Figure 3.1, has a source of photons, a monochro-
mator with a filter that lets only certain wavelengths of light through, a

Figure 3.1 A simple schematic of a colorimeter. Light passes through focusing optics
and a colored filter before passing through a sample. A detector measures the
intensity of colored light not absorbed by the sample.

Figure 3.2 A simple schematic of a dispersive absorption spectrometer. All disper-
sive spectrometers have a monochromator, either a prism or grating that disperses
white light into its individual constituent wavelengths. Usually, the monochromator
can rotate to allow light of different wavelengths to pass through the sample. Slits
on either side of the monochromator allow only a narrow range of wavelengths of
light to pass through a sample at any given time.
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sample, and a detector. Detectors simply measure how many photons
reach them from the source. Measurements of light intensity with and
without a sample indicate how many photons the sample absorbed. 

A simple spectrophotometer is similar to a colorimeter, but has a vari-
able wavelength monochromator and a prism or a grating instead of a filter.
The instrument is illustrated in Figure 3.2. Although the monochromator
allows only a small range of wavelengths (termed the bandpass of the spec-
trophotometer) to pass through a small slit and through the sample, mecha-
nisms allow the monochromator to turn so that all wavelengths of light are
swept or “scanned” across the slit and through the sample to the detector.
One can manually select a wavelength of interest and measure the relative
intensity of light reaching the detector through the sample; the classic “Spec
20” from the Milton Roy Company is a well-known example.

Figure 3.3 A simple schematic of an emission spectrometer. In this case, light given
off by a sample is passed through a monochromator, then through a slit that allows
only certain wavelengths of light to pass on to a detector. In this way, one can
measure what wavelengths of light are emitted by a sample. Other means of sam-
ple excitation may be used—like electrical excitation or by heating the sample—
instead of a light source.
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The detector can be connected to the monochromator to electrically gen-
erate a plot showing intensity of light reaching the detector versus the posi-
tion of a monochromator, or wavelength. This type of plot, intensity versus
wavelength (or any other unit related to the energy of the photon), is called
a spectrum. Machines that generate a spectrum are given the generic name
spectrometers.

Emission spectrometers are essentially the same as shown in Figure 3.2.
However, for emission spectrometers, the light of interest is not the light
impinging on the sample, but light coming from the sample. In many
instances, photons interact with a compound and then are re-emitted at a
different wavelength (these interactions include fluorescence, phosphores-
cence, and Raman scattering). Because the wavelength of the emitted light
must be determined, a monochromator is typically placed after the sample
to differentiate the emitted light. This arrangement is shown in Figure 3.3.
Note that the monochromator is usually placed out of line with the light
from the sources. Emission usually occurs in all directions, but is best
detected when light from the source is unlikely to interfere. This is espe-
cially true for laser-induced emission spectroscopies; care should be taken

Figure 3.4 To select a particular wavelength of light to excite a sample, a first mono-
chromator is placed before the sample. A second monochromator allows one to
determine the emission spectrum.
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with residual light at the wavelength of the laser because it can be so
intense that it burns out the detector.

Also, different wavelengths of incoming light promote different emis-
sions from the sample. Thus, it is often useful to differentiate not only light
emitted by the sample, but also the incident light from the source. This
requires a dual monochromator system, as illustrated in Figure 3.4.

Most emission and absorption spectrometers are ultimately composed
of the parts defined above, albeit with infinite variation. Such spectrome-
ters are simple but very powerful tools to study matter.

3.3 Fourier transform spectrometers
The fundamental instrumental difference between a dispersive IR spec-
trometer and an FT-IR spectrometer is a group of optical components that
compose an interferometer. The interferometer takes the place of a mono-
chromator. A rudimentary sketch of an interferometer is shown in Figure 3.5.
Simultaneously, light of all wavelengths from a source is split into two
beams by a beamsplitter. Each beam is directed toward a mirror, one sta-

Figure 3.5 The basic components of an interferometric spectrometer. B = beamsplit-
ter, M1 = fixed mirror, M2 = moving mirror. A laser beam (usually from a HeNe laser)
travels parallel to the polychromatic light passing through the interferometer.
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tionary (M1) and one moving back and forth continuously (M2). After hit-
ting the mirrors, the beams are reflected back, recombined at the
beamsplitter, then travel through the sample to a detector. The interferome-
ter has a unique (if not apocryphal) place in science history. It was invented
by A. A. Michelson and used by Michelson and E. W. Morley in their semi-
nal “ether drift” experiments.

Because an FT-IR spectrometer contains no monochromator, all wave-
lengths of light pass through the interferometer at the same time. But
because light is a wave, constructive and destructive interference occurs
when the two half-beams are recombined. In fact, because all wave-
lengths of light are traveling together, destructive interference dominates
unless the mirrors are equidistant from the beamsplitter. The precise
intensity of the recombined light depends on the relative position of the
moving mirror. A plot of this intensity, called an interferogram, is illus-
trated in Figure 3.6. The tall part of the interferogram, called the center-
burst, occurs when the distances of the two mirrors from the beamsplitter
are equal. The overall light intensity drops off quickly due to destructive
interference.

If the detector were set to measure the intensity of the recombined light
beam versus the moving mirror position, the resulting signal would be an

Figure 3.6 A typical interferogram. The point marked ‘0’ is where both mirrors of the
interferometer are the same distance from the beamsplitter, resulting in all construc-
tive interference. Destructive interference at most other positions brings the intensity
of the combined beam to some constant value. The scale on the x axis is usually cm
(i.e. centimeters away from equidistance) or points (i.e. number of data points on
either side of the centerburst).
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interferogram. But what is the relationship between an interferogram and a
spectrum?

Lord Rayleigh was the first (in 1892) to show mathematically that the
interferogram (a plot of intensity vs. distance or time) was related to a spec-
trum (a plot of intensity vs. inverse distance or inverse time) by a mathe-
matical function called the Fourier transform. Generally speaking, if the
intensity plot is described by some function of time, h(t), then the Fourier
transform of h is denoted H(f) and is mathematically defined as

. (3.1)

The new function H(f) has units of frequency (inverse of time). The Fourier
transform can be similarly defined for a function that depends on distance;
upon performing the Fourier transform, the new function H has units of
inverse distance. Given the mathematical relationship between imaginary
exponential functions and sine and cosine functions, the Fourier transform
can also be defined in terms of these functions. Sine and cosine Fourier
transforms are equivalent to Eq. (3.1) above.

The Fourier transform spectrometer measures an intensity plot of light
coming from a spectrometer in terms of the travel of the moving interfer-
ometer mirror M2. The intensity plot can be based on the distance the
moving mirror travels or the time of each back-and-forth cycle of the mir-
ror. Then, generating the Fourier transform of that plot calculates another
plot of intensity, but in terms of inverse time (which spectroscopists call
frequency) or inverse distance (which spectroscopists term wavenumber).Of
course, an interferogram (see Figure 3.6) is not a function whose Fourier
transform can be calculated easily. An interferogram is in fact a very com-
plicated function, so although the ideas behind Fourier transform spec-
troscopy had been known since the late 1800s, it was only with the devel-
opment of computers that FT spectroscopy became practical. A computer
can digitize the interferogram and calculate what we would consider a
spectrum. Only since the 1950s have FT instruments become laboratory
fixtures.

Interferometric/FT techniques have many theoretical and practical
advantages over regular dispersive ones. Books have been written on the
subject, and interested readers are encouraged to see details elsewhere.
One advantage is the use of a computer to store an interferogram, measur-
ing several more interferograms and averaging them numerically to
decrease the noise level of the computed spectrum. To do this, the com-
puter must average the centerburst at exactly the right position along the
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mirror’s path every time, otherwise this advantage is quickly lost and
other artifacts appear in the spectrum. To achieve this regular positioning,
the spectrometer needs a very good measuring device, and so all interfer-
ometers have a small laser associated with them (usually a helium-neon,
HeNe, laser). The monochromatic beam from the laser passes through the
interferometer just like the light from the source, and upon recombining
produces interference fringes separated by exactly the same amount (632.8
nm for the red HeNe light). There is no centerburst on this recombined,
monochromatic beam! These fringes act as a yardstick, allowing the mov-
ing mirror and a computer to stay synchronized.

There is one other complication. A Fourier transform spectrometer is
inherently a single-beam spectrometer. All of the spectrometers in Figs. 3.1–
3.4 can split the light beam at any point and send the beams down two
identical optical paths, differing only in that one path contains a sample
and the other does not. These would be double-beam spectrometers. A spec-
trum is generated by comparing the signal intensity of two detectors at
identical wavelengths. Because of its unique optical path, it is difficult to
split an interferogram signal and obtain a double-beam instrument. (It is
not impossible; in fact, a commercial double-beam FTIR has been adver-
tised recently.) Most FT spectrometers are operated in single-beam mode.
First, a so-called background spectrum is measured and stored digitally. The
background spectrum has everything in the optical path (sample holder,
solvent, etc.) except the sample to be measured. Then, the sample is intro-
duced and a second single-beam spectrum, the sample spectrum, is mea-
sured and stored digitally. The two single-beam spectra are then compared
numerically to generate an absorption or transmission spectrum that we
are typically familiar with.

Ultimately, the result is a computer-generated spectrum, exactly like one
from a dispersive instrument. Other differences between FT and dispersive
spectrometers are beyond the scope of this book. Common FT spectrome-
ters are found for infrared, Raman, and magnetic resonance techniques,
although the interferometer can be used in other spectral ranges (again the
reasoning is beyond the scope of this book). However, when all is said and
done, the Fourier transform spectrometer is a powerful tool for studying
the interactions of light with matter.

3.4 Magnetic Resonance Spectrometers
Although magnetic resonance spectrometers are not technically a different
type of spectrometer, there are some obvious differences in how they oper-
ate. Therefore, a separate section will be devoted to them. Magnetic reso-
nance spectrometers take advantage of the effect of a magnetic field on
certain samples.
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All subatomic particles have a property known as spin angular momen-
tum, or simply spin. The name is something of a misnomer because the par-
ticles are not really spinning on an axis. Quantum mechanics allows as
quantized observables a total spin angular momentum (represented by the
quantum number S for electrons and the quantum number I for nuclei) and
a z component of the total spin angular momentum (represented by the
quantum number mS for electrons and the quantum number mI for nuclei).
For nuclei, values of mI range from –I to I in integer steps, allowing for 2I +
1 possible values. Values of the angular momentum observables are related
to the values of the quantum number, so it is convenient to simply refer to
quantum numbers.

All electrons have a spin S of ½, and have two possible values of mS, +½
and –½. The Pauli principle requires that two electrons in an orbital have
opposite z-component spin (for example, mS for one electron equals +½ and
mS for the other electron equals –½). Therefore, paired electrons have an
overall zero net z-component spin. However, unpaired electrons––either as
free radicals or as unpaired electrons in molecular orbitals (for example, in
oxygen, O2) or as unpaired electrons in degenerate atomic orbitals (for
example, in transition metal compounds)––result in an overall nonzero net
z-component spin. The same is true with nuclear particles: protons and
neutrons individually have spins of ½. Together in a nucleus, the net z-
component spin of the nucleus can be zero if all spins are properly paired,
but may be nonzero (and different isotopes of the same elements will have
different net nuclear z-component spins).

A species with a net z-component spin has a certain energy (E). This
same species in the presence of a magnetic field (H) will have a different
energy E + EH, where EH is the energy resulting from the interaction of the
spin angular momentum and the magnetic field vectors. For nuclei, EH can
be calculated as

, (3.2)

where mI and I are the quantum numbers from above, β is the nuclear mag-
neton, and µ is the magnetic moment of the nucleus. H is the magnetic field
strength, usually in units of gauss (G) or tesla (T). An analogous expression
can be written for electrons in terms of S, mS, the Bohr magneton, and the
magnetic moment of the electron. For a given nucleus (or for electrons), I,
m, and β are characteristic, and the possible values for mI are dictated by I.
Because mI can have 2I + 1 different values, the different states of the spe-
cies having net z-component spin will have different values of EH depend-

EH
mIµβH

I
------------------ &
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ing on the mI quantum number. Some states will go up in energy and some
will go down, depending on the sign on mI and charge on the species (neg-
ative for electrons, positive for nuclei). This behavior is illustrated in
Figure 3.7.

So in a magnetic field, the 2I + 1 different spin states of a nucleus having
nonzero spin have different energies (and similarly for electrons). The dif-
ference in the energies of the states, ∆E, can be bridged with a photon if

Figure 3.7 Energy level diagrams showing the change in energy of levels having dif-
ferent values of m for (a) a nucleus having I = 3/2, and (b) an electron. At H = 0, the
energy of the particle is E. EH is the change in energy due to interaction with the
magnetic field.
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∆E = hν , (3.3)

where ν is the frequency of the photon. Thus, by absorbing a photon, a spe-
cies can go from one spin state to another spin state. Because ∆E (and there-
fore the frequency/wavelength/energy of the photon) depends on the
strength of the magnetic field, there is a direct relationship between ν and
H. This defines magnetic resonance spectroscopy. The two common magnetic
resonance techniques are nuclear magnetic resonance (NMR) and electron
spin (or paramagnetic) resonance (ESR or EPR) spectroscopy.

The idea behind the two spectroscopies is exactly the same. However,
the practical manifestations of the techniques are not, due to the differences
in β and µ in Eq. (3.3). (Table 3.1 lists values of m for various particles. The
Bohr magneton and nuclear magneton have values of 9.274 × 10–16 erg/
tesla and 5.051 × 10–18 erg/tesla, respectively.) In both techniques, samples
are exposed to a magnetic field, typically from an electromagnet. The mag-
netic field strengths range from 1.4 to 14.1 T (or more) for NMR, depending
on the nuclei of interest, and approximately 3400 G (0.34 T) for ESR. The
electromagnetic radiation used is also different. In NMR, low-energy radio
waves are used; whereas in ESR, higher-energy microwave radiation is
appropriate.

Instrumentation for NMR and ESR is in theory the same as any other
spectrometer, except for the addition of a magnet (usually an electromag-
net). In practice, it is quite different. Because of the lack of useful mono-
chromators in the microwave and radio regions of the spectrum, typically

Table 3.1 Spins and magnetic moments for various particles.

Particle* I Magnetic moment µ

e– 1/2 ~1.00115
1H 1/2 2.79268

3He 1/2 –2.1274
6Li 1 0.82192
11B 3/2 2.6880
13C 1/2 0.702199
19F 1/2 2.62727
31P 1/2 1.1305

209Bi 9/2 4.03896
*With the exception of the electron, all entries refer to the nucleus of the atom listed.
(Source: Weast, R.C. CRC Handbook of Chemistry and Physics, 60th ed., Boca Raton,
FL, 1979.)
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the frequency of radiation is kept as constant as possible, and the magnetic
field strength is slowly varied. A detector (usually a balanced bridged elec-
tronic device) measuring the radiation output detects any absorption by a
sample when the resonance condition is met:

. (3.4)

(Again, a similar expression can be written for electrons.) H and ν are the
only experimentally determined parameters. The possible values of ∆mI
depend on the particles (electron or nucleus) under study.

Figure 3.8 shows a diagram of an (absorbance-type) NMR spectrometer.
(A different type of NMR spectrometer will be discussed in the next sec-
tion). The electromagnet has a set of “sweep” coils that alter the magnetic
field strength by a small amount, typically a few hundred milligauss. The
radio frequency (rf) source is a generator connected to coils set at right
angles to the direction of the magnetic field. Linearly polarized rf waves
are produced. The sample is usually placed in a slim tube and is spun to
minimize the effects of inhomogeneities in the field. The detector––another
coil wrapped around the sample––attaches to a bridge circuit. Using the
vector properties of the polarized rf radiation, the detector notes the

hν mI∆( )µβH
I

--------------------------&

Figure 3.8 A diagram of an (absorbance-type) NMR spectrometer, showing a sam-
ple positioned between the poles of a magnet. The sample is spinning in the sample
holder. The detector coils are supposed to be perpendicular to the rf field coils.
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absorption of rf energy. The signal is then amplified and sent to a plotter or
computer.

Figure 3.9 shows a diagram of the ESR spectrometer. Instrumentation is
similar to NMR, except that the microwave radiation is generated by a
klystron and the microwaves are delivered to the sample through a hollow
rectangular tube called a waveguide. No sweep coils on the magnet are nec-
essary because the magnet itself can perform the sweep. The sample holder
is a resonance cavity in which the wavelength of the microwaves is such
that a standing wave is established. The decrease in energy in the cavity
resulting from absorption by the sample is detected by the imbalance of a
bridge circuit. Although NMR spectra are plotted as absorptions, ESR spec-
tra are plotted as derivatives to better see individual transitions.

Needless to say, actually operating an NMR or ESR spectrometer
requires more background than is given here. Interpreting an NMR or ESR
spectrum also requires more background! References at the end of this
chapter give more information on these points.

3.5 Fourier Transform NMR
In Section 3.3, we introduced the idea of the Fourier transform and briefly
described how it is applied to optical spectroscopy. In Section 3.4, we intro-
duced magnetic resonance spectrometers. In that discussion, we described

Figure 3.9 A diagram of an ESR spectrometer. The waveguide is typically behind the
resonance cavity and not between the magnet poles (shown this way for clarity).
The detector, not shown, is part of the klystron/waveguide system.
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resonance spectrometers as if their magnetic fields scanned a range of val-
ues while detectors looked for absorption in microwave or radio-wave
radiation as the energy difference between states varied with magnetic
field. This is called the slow-passage or sweep mode for the spectrometer.
However, magnetic resonance spectrometers can also operate using Fou-
rier transform techniques.

Recall that nuclei having a nonzero net spin I (that is, I ≠ 0) have a
nuclear magnetic moment µ that is characteristic of the particular nucleus.
(For hydrogen nuclei, µ = 2.7927 nuclear magnetons, for example.) Classi-
cally, as opposed to quantum mechanically, the nucleus has a magnetic
moment , which is a vector and is related to the total angular momentum

 of the nucleus by the following equation:

, (3.5)

where γ is the magnetogyric ratio, which is also characteristic of the particu-
lar nucleus. When a nucleus is exposed to a magnetic field, the magnetic
field vector  interacts with the magnetic moment vector  in such a way
as to cause the magnetic moment vector to rotate, or precess, about the
magnetic field vector. This precession is a change in direction of the mag-
netic moment vector, labeled , and is given by the expression

, (3.6)

where the × represents a vector cross product. The frequency at which the
magnetic moment vector precesses is called the Larmor frequency ω and is
given by γ H, where H the magnitude of the applied magnetic field. These
relationships are illustrated in Figure 3.10.1

In a bulk sample, all the nuclei’s magnetic moment vectors contribute to
an overall net magnetization of the sample, :

. (3.7)

1  In fact, the word “resonance” refers to the matching of the Larmor frequency and the
applied radio frequency radiation.

µ
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µ γ I⋅&

H µ

µ
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µ
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In the presence of the magnetic field, the net magnetization precesses
just like the individual magnetic moments. The expression for this is very
similar to Eq. (3.6):

. (3.8)

In the presence of the magnetic field, some states originally having the
same energy––called degenerate states––interact to different extents with
the magnetic field and adopt slightly different energies, and electromag-
netic radiation of the proper wavelength will cause a given nucleus to
change states. This is an absorption and can be detected. How does this
work? Consider a two-dimensional example of what happens to the net
magnetization  when a nucleus absorbs energy and changes its state
with respect to the magnetic field. Figure 3.11(a) shows four nuclei in their
lowest energy state aligned with the magnetic field, and the net magnetiza-
tion . Figure 3.11(b) shows the net magnetization when one of the nuclei
changes state. Note that although the magnitude of the net magnetization

Figure 3.10 When a magnetic field H is applied to a magnetic moment m, the mag-
netic moment vector precesses about the magnetic field vector as shown.

M
·

γ H M× &

M

M
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Figure 3.11 (a) A two-dimensional representation of four nuclei in a magnetic field.
The dotted lines show the projection of the net magnetization vector along the
imposed magnetic field, and perpendicular to it. (b) After one nuclei absorbs
energy and now points in the opposing direction, the net magnetization vector has
different projections (as shown by the changes in the lengths of the dotted lines). In
real processes, the direction of the component of the magnetization vector is per-
pendicular to H (making it perpendicular to the plane of the page), and not parallel
as shown.
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vector in one direction remains the same, the magnitude in the other direc-
tion, which is perpendicular to the field, has changed. (In the figure, the
projection along the applied magnetic field is shown as in the plane of the

Figure 3.12 The changes in the net magnetization vector during the NMR transition
process.
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paper; in fact, because of the right-hand rule, this particular projection
would actually be out of the plane of the page and will cause the magneti-
zation vector to rotate, as shown in Figure 3.10, but farther into the plane
perpendicular to H.) This difference is detectable and provides the signal
for NMR spectroscopy.

Most modern NMR spectrometers do not use a sweep method. Instead,
they also take advantage of the Fourier transform. The process in three
dimensions is illustrated in Figure 3.12. If a very short pulse (<1/ω, where
ω is the Larmor frequency) of a relatively strong magnetic field (approxi-
mately 100 G) were applied to the sample perpendicular to the first applied
field, some of the nuclei will absorb energy and jump to a higher energy
spin state, changing the magnitude of the projection of the net magnetiza-
tion  perpendicular to the applied magnetic field. After the pulse, nuclei
will slowly revert back to the lowest energy state over a period of time,
realigning themselves with the applied magnetic field. A detector (repre-
sented by the eye in Figure 3.12) notes the decrease in the magnitude of the
magnetization vector in the plane perpendicular to the applied (and static)
magnetic field H. If the magnitude of the perpendicular projection is plot-
ted over time starting immediately after the pulse, one would see a slow
decrease in that magnitude. An example of what the magnitude might look

Figure 3.13 A simple free induction decay (FID) curve after a pulsed NMR signal.
Most FIDs are more complex than this—see Figure 3.14.

M
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like is shown in Figure 3.13 and is called a free induction decay (FID) curve.
This figure shows a simple FID curve, where the nuclei are precessing
about H at the Larmor frequency. Nuclei in different chemical environ-
ments will experience slightly different fields HN, and so will precess at
slightly different frequencies. Therefore, the FID will be a more compli-
cated waveform, perhaps like that shown in Figure 3.14.

Figure 3.14 shows an FID curve plotted as intensity vs. time. The Fourier
transform, applied to this waveform, converts the FID curve into an inten-
sity vs. frequency plot; that is, a spectrum.

FT-NMR has the same FT-associated advantages as FTIRs: sampling all
energies at once, measuring multiple spectra, and averaging them to
reduce noise. FT-NMRs are also computer-driven, because the heavy calcu-
lation requirements make computers necessary. Once again, however, the
Fourier transform shows itself to be important in another area of spectros-
copy. 

References
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Figure 3.14 A more representative FID curve observed after an NMR pulse. The NMR
spectrum is the Fourier transform of this curve.
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Chapter 4
THE SPECTRUM

4.1 Introduction
A spectrum is a representation of what electromagnetic radiation is
absorbed or emitted by a sample. The representation could be a plot, a dia-
gram on a computer screen, even a list of wavelengths and intensities.

The word “spectrum” was coined by Isaac Newton, from a Latin word
meaning “appearance.” (The word “spectre,” meaning ghost, shares the
same root.) Newton projected his spectrum (plural spectra) on a wall or
screen, and for a few hundred years the projection of a spectrum onto a
surface was the best that could be done. (And even under such conditions,
progress was made!) With the development of photography and, ulti-
mately, electrical and electronic detection devices, a spectrum could be
recorded permanently. Ultimately, the word “spectrum” came to represent
the permanent record, rather than the dispersed white light (or other
region of the electromagnetic spectrum).

In this chapter, we will treat a spectrum as the physical record of which
wavelengths/frequencies/energies of light are absorbed or emitted by a
sample. With that in mind, we will find that there are several popular ways
of displaying a spectrum, although different types of spectroscopy typi-
cally display spectra in one or two common ways.

4.2 Types of Spectroscopy
Virtually all spectra show a plot of some signal versus a photon character-
istic (energy, wavelength, wavenumber, frequency, etc.). The signal comes
from the absorption or emission of a photon from an atom or molecule, and
is accompanied by a concurrent change in state of the atom or molecule.
Atomic or molecular states are dictated by wavefunctions (as discussed
very briefly in the quantum mechanics section of Chapter 1). Technically, a
single wavefunction defines the entire state of a molecule. However, it is a
good approximation that the behavior of the electrons in a molecule can be
considered independently from the behavior of the nuclei in a molecule,
and they can be described by their own separate wavefunctions:

, (4.1)Ψ Ψel Ψnuc⋅≈
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where Ψ represents the wavefunction for the entire molecule, Ψel is the
wavefunction of the electrons for a given set of nuclear coordinates, and
Ψnuc is the wavefunction for the nuclei. This separation of electronic and
nuclear wavefunctions is called the Born-Oppenheimer approximation. 

What this approximation allows us usually to do is conveniently sepa-
rate the various processes of a molecule, and spectroscopy takes advantage
of that. Different types of spectroscopy typically involve different, separate
molecular processes. (There are forms of spectroscopy that involve two (or
more) processes simultaneously; except in some cases, we will not consider
these in this book.) Further, different types of spectroscopy typically are
limited to a specific range in the electromagnetic spectrum. This leads us to
the very useful conclusion that the description of a certain type of spectros-
copy can be (largely) indicated either by the molecular process involved, or
the region of the electromagnetic spectrum used.

Figure 4.1 shows a stylized electromagnetic spectrum, while Table 4.1
lists the regions of the electromagnetic spectrum, the types of spec-
troscopies that use that region, and the process(es) involved. There are
many other forms or types of spectroscopy than those listed in the Table,
but it would be impossible to be all-inclusive. Table 4.1 includes the com-
mon absorption- or emission-based spectroscopic technique for that spec-

Figure 4.1 The electromagnetic spectrum. Wavelength and frequency boundaries
are approximate.
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tral region. Probably the biggest omission from this list is Raman
spectroscopy, which is a differential type of spectroscopy (i.e., the spec-
trum is measured by differences in photon energy, rather than the energy
of the photons themselves). Table 4.1 also omits various hybrid forms of
spectroscopy, like photoacoustic spectroscopy, and does not include mass
spectrometry because it can be argued that a mass spectrum is not a spec-
trum in the sense considered here.

Despite the different spectral regions and atomic or molecular processes
probed, all (absorption-style) spectra have some common elements. In all
cases, transitions between states are probed with dispersed light1 of
approximately the correct energy; and when the light has the same energy
as the difference between two states, light is absorbed and the atom or mol-
ecule goes from one state to the next. Recall that this is written mathemati-
cally as

∆E = hν , (4.2)

Table 4.1 Types of spectroscopy across the electromagnetic spectrum.

Region Spectroscopy Process Involved

Radio waves Nuclear magnetic Resonance* Changing nuclear spin 
orientation

Microwave Electron spin Resonance Changing electron Spin 
orientation

(pure) Rotational Changing molecular vibrational 
states

Infrared Vibrational** Changing molecular vibrational 
states

Ultraviolet Electronic Changing atomic or molecular 
electronic states

X ray Inner electronic Changing electronic states or 
ejecting electrons

Gamma ray Mössbauer Changing nuclear energy levels
* These types of spectroscopy require a magnetic field to differentiate between
different spin states.
** Rotational transitions commonly superimpose themselves onto vibrational spectra.

1  When we refer to “dispersed light,” we mean that the light has been separated into a con-
tinuous band of constantly varying wavelength or frequency by some sort of monochroma-
tor, like a grating or a prism. Chapter 3 discusses these components of spectrometers.
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where ∆E is the energy difference between the two states involved, h is
Planck’s constant (= 6.626 × 10–34 J⋅s) and ν (the lowercase Greek letter nu) is
the frequency of the light. Equation (4.1) is known as the Bohr frequency con-
dition, after Niels Bohr who proposed it in 1913. It remains the cornerstone
of spectroscopy. For emission spectroscopy, the only light that is emitted
are those whose frequencies satisfy Eq. (4.1).

For most types of spectroscopy, atoms and molecules already have
states available that have different energies, so that absorbing or emitting
light can change the state of the atom or molecule. However, in magnetic
resonance techniques like nuclear magnetic resonance (NMR) or electron
spin resonance (ESR; also called electronic paramagnetic resonance or EPR)
spectroscopy, a splitting of energy levels is imposed by a magnetic field.
Because changing the strength of the magnetic field changes the amount of
splitting of energy levels, there is a relationship between the magnetic field
strength H and the frequency of light absorbed or emitted, as given in
Eq. (3.4). This is why these methods are referred to as resonance spec-
troscopies.

The most common way to demonstrate what frequencies/wave-
lengths/energies of light are absorbed by a sample is to plot a graph that
shows the intensity of light passing through a sample versus the fre-

Figure 4.2 A model spectrum showing two spectroscopic signals moving out of the
baseline.
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quency/wavelength/energy of the dispersed light. If light of a particular
frequency is not absorbed, then the plot hovers around some baseline,
defined as null signal. If light of a particular frequency is absorbed or emit-
ted, then the plot varies obviously away from the baseline, indicating that
light of that frequency satisfies the Bohr frequency condition. Figure 4.2
shows some of these characteristics.

Figure 4.2 shows only one way of displaying a spectrum. There are
many ways—indeed, some of the complexity in spectroscopy lies with this
fact. Different forms of spectroscopy use different units on the x axes of
their spectra and have different ways of indicating a positive signal on the
y axes of their spectra. (This is how the axes in spectra are typically
assigned.)

As such, the next two sections discuss the common ways of defining the
two axes in a spectrum.

4.3 Units of the y axis
We will consider the y axis first. There are several common ways of repre-
senting the abscissa in a spectrum. Let us begin with a basic one. Dis-
persed light having original power P0 at a particular wavelength passes
through a sample. If none of the light is absorbed (and we will ignore any
reflection or refraction effects), then the transmitted light beam will have
power P0. If some light is absorbed, then the remaining light that makes it
through the sample will have some lesser power P. Figure 4.3 illustrates
this.  

Figure 4.3 The definition of transmittance depends on the incoming light power, P0,
and the transmitted light power, P.
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Figure 4.4 A transmittance infrared (vibrational) spectrum of benzene, C6H6. The
spectrum is plotted versus wavelength of light, in micrometers (microns).

Figure 4.5 The same spectrum as Figure 4.4, but plotted as absorbance versus
wavelength of light.
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The transmittance, T, of the sample is defined as the ratio of the incident
power and the resulting power:

. (4.3)

As defined, transmittance is always a numerical value between zero (all
light absorbed) and one (no light absorbed). It is common to convert trans-
mittance into percent transmittance, %T, by multiplying the original defini-
tion by 100%:

. (4.4)

Percent transmittance varies between 100% (all light transmitted) and 0%
(no light transmitted).

When plotting a spectrum as a transmittance spectrum, 100% is typically
at the top of the plot and 0% is at the bottom. Ideally, the baseline of the spec-
trum is at 100% transmittance, because the baseline is defined as “no signal
present.” Various factors influence the exact position of the baseline, and it is
common to see baselines on transmittance spectra that are not at 100%. Dis-
cussion of such factors is outside the scope of this book; details can be found
in other texts on spectroscopy and instrumental methods. Figure 4.4 shows
an infrared spectrum plotted as percent transmittance. It shows the charac-
teristic “dips” at those wavelengths that are being absorbed by the sample.

Absorbance, A, is defined as the negative base-10 logarithm of the (deci-
mal, not percent) transmittance:

. (4.5)

Absorbance values range from 0 (no absorbance) to ∞ (all light absorbed).
An absorbance spectrum is plotted with the baseline at the bottom of the
plot, not the top like in a transmittance spectrum. Rather than placing ∞ at
the top of an absorbance spectrum, absorbance values of 1, 2, or 3 typically
“top out” the spectrum. Figure 4.5 shows the same spectrum as Figure 4.4,
but as an absorbance spectrum.

Absorbance and transmittance are logarithmically related, not linearly
related. Table 4.2 lists equivalent absorbance and transmittance values.

T P
P0

-----&

%T P
P0

----- 100%×&

A Tlog 
P
P0

----- 
 log & &
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This table illustrates one problem with absorbance values that have high
values: variations in high-absorbance values correspond to a very small
difference in the amount of light actually absorbed. Thus, spectroscopists
are wary of any spectrum that has particularly high values of absorbance.
(It usually means that the sample is too concentrated.)

Absorbance can be useful because it can be shown (see the reference by
Ingle and Crouch) that the absorbance value is directly proportional to the
concentration of the absorbing species:

A = abc, (4.6)

where c is the concentration of the absorbing species, b is the sample
length, and a is a proportionality constant called the absorptivity. If c is
molarity units and b is in centimeters, then a is replaced by ε, which is
termed the molar absorptivity. Equation (4.5) should be applied with care,
however. As the previous paragraph mentioned, high values of A should
be treated carefully because very small differences in the outgoing light
intensity lead to large changes in A when the sample absorbs most of the
light. Under such conditions, the direct relationship between A and c in Eq.
(4.5) is not followed. Equation (4.5), or its similar form in terms of ε, is
called Beer’s law and was introduced in Chapter 2.

Most absorption spectra are plotted as absorbance or transmittance in
the y axis. Emission and Raman spectra are plotted in terms of the number
of photons emitted at any particular wavelength, and so they resemble
absorbance spectra. Their y-axis unit can be “number of photons emitted”
or even some “arbitrary intensity unit” and may not be the same from one
spectrum to the next.

Magnetic resonance spectra (NMR and ESR/EPR) are also typically
plotted as absorbance spectra, as the magnetic field is varied and resonance

Table 4.2 Relationship between equivalent absorbance and transmittance values.

Percent of absorbed light Transmittance Absorbance

0 1.00 0
90% 0.1 1
99% 0.01 2

99.9% 0.001 3
99.99% 0.0001 4
99.999% 0.00001 5

Etc.
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conditions are established. While NMR spectra are plotted as straight
absorbance spectra, ESR and EPR spectra are plotted as derivative spectra.
This is because ESR absorptions can be overlapping, and plotting the sig-
nal as a derivative makes it easier to identify individual transitions.

4.4 Units of the x axis
Although all spectroscopy is concerned with determining the energy dif-
ference between two (or more) states in an atomic or molecular system,
most spectroscopic techniques do not use energy units to express those dif-
ferences. In the SI system of units, energy and energy differences are
expressed in units of joules (J), but most spectroscopic techniques do not
employ energy units directly when plotting a spectrum.

Instead, we use various related units. Some of these units are directly
proportional to energy, and some are inversely proportional to energy.
Some are not energy per se, but can be related to the energy of the transi-
tion, as in magnetic resonance spectroscopy. Novice spectroscopists can be
confused about which units are used for which type of spectroscopy.

Most forms of spectroscopy use whichever units yield manageable
numbers. For example, a vibrational absorption of CO2 occurs at 2349 cm–1,
which is equivalent to a frequency of 70,420,000,000,000 (7.024×1013) s–1.
Given the choice, most spectroscopists would rather use the 2349 than the
70 trillion. But the energy of the vibrational transition is the same in both
cases.

The different ways of expressing an energy of transition are related by
two simple equations. The Bohr frequency condition, Eq. (4.1), requires
that the photon that will be absorbed or emitted by an atomic or molecular
system must have the same energy as the difference in energies of the two
states involved in the transition. Thus, Eq. (4.1) is a link between energy
and frequency, a measurable quantity of the photon. Therefore, some
forms of spectroscopy express energy changes in terms of frequency of the
light absorbed or emitted.

The second equation relates to light itself, specifically its wave proper-
ties. A wave’s speed is equal to its wavelength multiplied by its frequency.
But Einstein proposed—in fact, his theory of relativity is based on the pre-
sumption—that the speed of light in vacuo is a universal constant. The
speed of light, c, is 2.998×108 m/s, so the following equation is also applica-
ble to spectroscopy:

c = λν, (4.7)
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where λ is the wavelength and ν is the frequency. The wavelength has
units of meters, which can be converted easily to other units of length; fre-
quency has units of (second)–1, or Hertz. Because the speed of light is con-
stant, Eq. (4.6) allows us to convert a given frequency of light into its
corresponding (and characteristic) wavelengths, with units we can adjust
appropriately.

Wavelength is inversely proportional to energy, however, and some
forms of spectroscopy find it convenient to use a unit that is directly pro-
portional to energy. Of course, the reciprocal of the wavelength would be
directly proportional to energy, so another unit is introduced, the wavenum-
ber:

wavenumber . (4.8)

The symbol  (read as ‘nu-tilde’) is commonly used to represent wave-
number. Do not confuse it with ν, the frequency! (It’s commonly referred to
as a “frequency,” but that is another misnomer.) Wavenumber has the SI
unit of m–1, but usually more manageable numbers are provided using the
non-SI unit cm–1 for wavenumber. Wavenumber can be thought of as the
number of light waves per meter or per centimeter, depending on the unit
used.

Rotational, vibrational, and electronic spectra are usually given in terms
of units that take advantage of Eqs. (4.1), (4.6) and (4.7). Magnetic reso-
nance spectra are expressed differently because in most cases a magnetic
field is varied to detect absorption of radiation. Thus, transitions in mag-
netic resonance spectra can be described by the magnetic field strength in
units of gauss (G) or, less commonly, tesla (T). There are also ways of
expressing the difference in the nuclei’s perceived magnetic field in terms
of an internal standard, which is how the “parts per million” (ppm) is
defined. Interested readers are urged to check the references for additional
detail.

The point is that various units are used on the x axis of spectra, but ulti-
mately all of them are related to energy. One of the first tasks when per-
forming any spectroscopic technique is to understand how the ordinate
unit relates to ∆E, which is what spectra measure.

Almost all forms of spectroscopy have more than one common x-axis
unit. Some of them are related to energy in the same way, some are related
differently. For example, compare Figure 4.5, an absorbance spectrum plot-
ted versus wavelength, with Figure 4.6, the same absorbance spectrum but
plotted versus wavenumber. Note how the spacing of the absorptions dif-

 ν̃≡ 1
 λ 
------&

ν̃
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fers depending on the x-axis unit, as well as the widths of the individual
signals.

4.5 Typical Examples
Rather than inundate the reader with a flood of spectra to illustrate the
possible combinations of x- and y-axis styles, Table 4.3 gives a summary.
Notice that most of the variety occurs in the x-axis style; most y axes are
plotted as absorbance (for absorption spectra) or some “intensity” of emit-
ted light. With practice, a spectroscopist can tell at a glance which x-axis
style represents a direct proportionality to energy and which are inversely
proportional to energy. 

Figure 4.6 The same spectrum as Figs. 4.4 and 4.5, but plotted as absorbance versus
wavenumber.
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Table 4.3 Spectrum axis styles for various spectroscopies.

Region Spectroscopy X-axis options Y-axis options 

Radio waves NMR ppm, Gauss
“chemical shift”

absorbance

Microwave 

ESR Gauss absorbance
(derivative)

(pure) rotational MHz, GHz, cm–1 absorbance,
“intensity”

Infrared vibrational µm, cm–1 absorbance
transmittance

Visible electronic cm–1, nm, Å absorbance,
“intensity”

Ultraviolet electronic nm, Å absorbance,
“intensity”

X ray inner electronic eV, Å absorbance
Gamma rays Mössbauer cm/s absorbance
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Chapter 5
THE SHAPES OF SPECTRAL SIGNALS

5.1 Introduction
One of the powers of spectroscopy is the ability to deduce the quantity of
an absorbing material in a sample. As mentioned in the last chapter, this
concept is called Beer’s law. Here, we will take a closer look at Beer’s law,
particularly from a historical perspective.

Beer’s law relates the absorbance of a signal to the concentration of the
absorbing species. This implies that we are interested in the height of the
line. So aside from the straightforward relationship in Beer’s law, what are
the factors that contribute to the height of a spectral signal? We will explore
some of those factors here.

Also, we should recognize that spectral lines do not appear at certain,
exact frequencies. We sometimes speak of them that way, such as “we have
an absorption at 687.22 nm,” as if the signal were perfectly monochromatic.
The reality is, signals are not perfectly monochromatic, and a signal will,
upon close inspection, exist over some range. That is, all spectral lines have
some width to them. We will also consider factors that impose a width to
spectral signals.

5.2 The Heights of Lines
In the last chapter, we introduced several versions of Beer’s law. The ver-
sion of Beer’s law we will consider here is

A = εbc , (5.1)

where ε is the molar absorptivity of the sample. Remember, of course, that
the particular value of the absorbance depends on the wavelength of light
sent through the sample. The molar absorptivity ε is dependent on the spe-
cies absorbing the light, while b and c are experimentally determined
parameters. In addition, ε is different at different wavelengths. At some
wavelength, ε is large and the sample absorbs light; at other wavelengths, ε
is small (or zero) and the sample does not absorb light. In other words, ε is
a function of wavelength. Therefore, Eq. (5.1) might be better written as

A(λ) = ε(λ)bc , (5.2)
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where the wavelength dependence on the absorbance and the molar
absorptivity is now specified. Generally speaking, a plot of A(λ) vs. λ is the
absorbance spectrum.

The issue of spectral peak intensities focuses on the molar absorptivity
ε(λ), and the factors that make it large or small. ε(λ) can be very large, 104—
105 L/cm⋅mol, for some absorptions, or 0 L/cm⋅mol for molecules that do
not absorb or at wavelengths that are not absorbed by the sample. But,
what determines ε?

Well, let us back up a bit. Spectroscopy is a quantum-mechanical phe-
nomenon and quantum mechanics provides the most basic approach to
understanding the absorption of light. The quantum mechanical tool of
perturbation theory clarifies how a photon affects the state of an atomic or
molecular system.

If the initial state of the system before interaction with a photon is given
by the wavefunction Ψinit and the final state of the system after interaction
with a photon is represented by the wavefunction Ψfinal, then quantum
mechanics ultimately defines the transition moment (M) as

, (5.3)

where  is the appropriate electric dipole operator for the transition.
Group theory is useful in understanding Eq. (5.3), because unless the
wavefunctions and the operator have the correct symmetries, the value of
the integral is exactly 0 and the transition is forbidden. If the symmetries are
correct (correct symmetries depend on the overall symmetry of the mole-
cule, so it is difficult to be more specific here), then the integral is not neces-
sarily 0 and may range from very small to very large; this is an allowed
transition.

In the early part of the 20th century, Einstein derived coefficients that
relate the probability of an absorption or emission process.1 For absorption,
the Einstein coefficient of stimulated absorption B is

, (5.4)

where M is the transition moment, h is Planck’s constant, and dinit is the
degeneracy of the ground state. (Einstein also derived coefficients for spon-

1  Einstein did this in 1917, thus predating quantum mechanics.

M Ψfinal
* M̂Ψinit τd∫&

M̂

B 8π3M2
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taneous emission and stimulated emission; the idea of stimulated emission
is crucial to lasers, so in a sense it was Einstein who developed the theory
behind lasers.)

It is theoretically useful to treat the electronic or molecular system like a
harmonic oscillator, because the wavefunctions for an ideal harmonic oscil-
lator are known, and the expressions for M in Eq. (5.4) can be evaluated. In
such a case, it can be shown that

, (5.5)

where e is the charge on the electron, λ is the wavelength, ε0 is the permitiv-
ity of free space (necessary to convert the electron charge units to SI units),
c the speed of light (do not confuse with concentration!), and me is the mass
of the electron.

Finally and ultimately, the relationship between the Einstein coefficient
as given in Eq. (5.4) and the molar absorptivity ε is

, (5.6)

where ni is the number of absorbing molecules per cubic centimeter of sam-
ple. The S(λ) is a line shape function, like a Gaussian or Lorentzian func-
tion, that dictates the exact shape of the absorption.

We purposely omitted a few steps leading up to Eq. (5.6). We wanted to
find out what absorptivity was made of, and Eq. (5.6) tells us. Many of the
variables in Eq. (5.6) are constants, like the speed of light, Planck’s constant,
π, and so forth. Ultimately, M, as defined by quantum mechanics, will dictate
the strength or weakness—that is, the height—of a line in a spectrum.

5.3 Beer’s (?) Law
Why is there are a question mark in the section title above? It is because the
simple relationship between absorbance, path length, and concentration is
sometimes known by different names. Some people refer to it as the Beer–
Lambert law, and a very few as the Bouguer–Beer–Lambert law. All three
people, apparently independently, developed some of the ideas that are
neatly represented in the expression A = ε · b · c.

According to textbooks on chemical history, Pierre Bouguer first noted
in 1729 that the amount of light passing through sample decreases with the

B e2λ
4ε0hcme

--------------------&

ε λ( ) 8π3niλM2

2.303 3hc2dinit⋅
------------------------------------- S λ( )⋅&
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thickness of the sample. In modern mathematical terms, if we use the vari-
able b to represent the thickness of the sample, Bouguer is saying that

A ∝ b. (5.7)

This was Bouguer’s contribution, although it seems clear from the histori-
cal record that Bouguer did not propose a mathematical model himself.
This seems a very straightforward relationship to us, doesn’t it? But to put
this in perspective, let us remind ourselves that this point in history, the
nature of light was still being debated, the modern atomic theory was
almost 100 years away, and Boyle’s work on what we now call gas laws
was performed only about 70 years earlier.

In the mid-1750s, Lambert rediscovered the relationship between the
intensity of the transmitted light and the thickness of the sample. Lambert,
however, gave a mathematical relationship to describe the diminution of
light intensity. Again in modern mathematical terms, Lambert found that

, (5.8)

where a was a constant Lambert called opacity and dx is the infinitesimal
distance through the sample. Integrating this expression, converting to
base-10 logarithms and grouping constants, and substituting for the defini-
tion of absorbance gives the relationship originally announced by Bou-
guer—i.e., that the absorption of light is related to the distance the light
travels through the sample. Although Lambert did recognize that the
amount of absorbing “particles” was also a factor in the diminution of
light, he apparently failed to model this factor mathematically.

In 1852, August Beer narrowly scooped a French scientist named Ber-
nard in publishing a relationship between concentration and absorption of
light. (Indeed, perhaps Bernard’s name should be included in the title of
the law! It is unfortunate that his contributions have been forgotten.) By
passing light through a filter and making it almost monochromatic, Beer
noted that the amount of light absorbed was related to the amount of sol-
ute contained in various aqueous solutions. In addition, Beer performed
studies using sample tubes of different lengths but with the different dilu-
tions of sample, showing that if the amount of sample were the same, the
amount of light absorbed is also the same.

However, it seems clear that Beer did not derive the expression we call
Beer’s law. That was demonstrated in 1951 by Pfeiffer and Liebhafsky,

dI
I

----- a dx⋅&
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when they reproduced some key paragraphs of Beer’s original paper. In
the first place, it was clear that Beer was referring to amount of solute, not
concentration. Physical scientists prefer intensive variables (that is, quanti-
ties that are independent of amounts, like density), and while concentra-
tion is an intensive variable, amount of solute is extensive. In the second
place, Beer did propose a formula to model his experiments:

λ = µD, (5.9)

where Beer labeled µ the absorption coefficient and D the length of the
sample, apparently in decimeters. The variable λ was Beer’s “relative dim-
inution,” akin to the modern measurable transmittance.

Pfeiffer and Liebhafsky did show, however, that Beer’s expression is
consistent with the modern form of Beer’s law. They also suggest that call-
ing this equation “Beer’s Law” is a misnomer because Beer did not formu-
late it in toto or in this form, and the references listed below demonstrate
that Beer was not the only person to contribute to its development.

Just as we are stuck with the inaccurate name “oxygen” (from the Latin
acid producer, so named by Lavoisier because he thought it was an essential
component of all acids), spectroscopy is saddled with a seemingly inaccu-
rate name for a very simple relationship. However, this very simple rela-
tionship seems to have a very complex history.

5.4 The Widths of Lines
In Eq. (5.6), we referred to a lineshape function S(λ). We also conceded ear-
lier that spectral signals are not infinitely sharp, but have some finite
width. What’s the deal with the shapes, or widths, of spectral lines?

In the classroom (usually in physics or physical chemistry courses)
when the topic turns to quantum mechanics, many teachers emphasize the
idea that energy levels of atoms and molecules are quantized; that is, they
have specific values. This means, of course, that changes in energy values
also have specific values. This idea leads to the central issue of spectros-
copy, the Bohr frequency condition.

The statements mentioned above imply that spectral lines should be
very, very sharp. After all, a specific energy change is equivalent to a cer-
tain, specific wavelength of light, and so only that wavelength should be
represented in a spectrum. Spectra should be composed of almost infinitely
sharp lines. But most spectroscopists know that in reality, this never hap-
pens. Figure 5.1, for example, shows one peak of the gas-phase HCl rovi-
brational spectrum. The range of this peak starts at approximately 2910 cm–1,
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peaks at 2905.81 and 2903.88 cm–1, and ends at approximately 2900 cm–1;
this is definitely not infinitely sharp! And we say that changes in energy
are quantized? Sure—but several mechanisms contribute to the broadening
of the absorption.

The expansion of a spectral transition from an infinitely sharp line (as
might be implied by quantum mechanics) to one with finite width (as
found in reality) is called line broadening. There are several well-recognized
reasons why spectral lines have width. Here, we discuss several of them.

Line shapes are usually approximated by a mathematical function, typi-
cally either a Lorentzian function or a Gaussian function. A spectral line
whose shape can be described as a Lorentzian function has the general for-
mula

, (5.10)

Figure 5.1 An absorption from the rovibrational spectrum of HCl showing a definite
width, indicating a range of wavelengths/energies of light being absorbed. The
doublet nature of the absorption is due to the natural abundances of 35Cl and 37Cl
isotopes.
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where K is some constant, ν0 is the center frequency of the line (and what
would be the exact position of the absorption or emission if the line was
infinitely narrow), and ν is the frequency. A spectral line whose shape can
be described as a Gaussian function has the general formula

, (5.11)

where K and k are constants. Spectroscopists who study line widths usu-
ally use these two functions to “fit” an experimental spectral line. Real
spectral lines are usually convolutions of these two types of functions; such
convolutions are called Voigt profiles. See Ingle and Crouch for additional
information. Examples of Lorentzian- and Gaussian-type lineshapes are
shown in Figure 5.2.

Line broadening can be either homogeneous or inhomogeneous. Homo-
geneous line broadening occurs when all atoms or molecules in a sample
contribute to the line shape, while inhomogeneous line broadening occurs

F ν( ) Ke
k ν ν0 ( )2

 

&

Figure 5.2 Renditions of Gaussian and Lorentzian line shapes. A Voigt profile ranges
between both extremes, and most spectroscopic signals lie between a Gaussian
and a Lorentzian shape.
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when different atoms or molecules contribute to different parts of the over-
all line shape.

Several types of homogeneous line broadening mechanisms exist, but
perhaps the most fundamental is lifetime broadening. It derives from a
perturbation-theory treatment of the interaction of light with quantum
states (in other words, spectroscopy), and is reminiscent of the uncertainty
principle.2 Excited states usually persist for a certain period of time before
returning to a lower (possibly ground) state. A measure of how long a par-
ticular excited state will last is indicated by its lifetime, τ. The uncertainty
in the energy of the excited state, ∆E, is related to the lifetime by

. (5.12)

Spectroscopically, ∆E translates to absorption or emission across a range of
frequencies or wavelengths, instead of a certain, specific energy. This
imparts width to a spectral line. Since the relationship in Eq. (5.12) is ines-
capable, the width of a spectral line will not be less than this, and so the
line width that occurs because of the relationship in Eq. (5.12) is sometimes
referred to as the natural line width. Natural line widths can be extremely
small and are usually only obtained under highly specialized experimental
conditions.

Gas-phase samples are sometimes very prone to broadening. Collision or
pressure broadening is caused by collisions between the gaseous species,
which can slightly alter the energies of the ground or excited states. It can
be minimized (as its name suggests) if the spectrum of a sample is mea-
sured at low pressures. Collision broadening results in a Lorentzian line
shape. An effect similar to collision broadening is called wall broadening and
is caused by the gas-phase sample interacting with its container. Again,
however, proper experimental conditions minimize the effects of wall colli-
sions.

Doppler broadening occurs when a gas-phase species moves toward or
away from the sources and/or detector. In either case, the apparent energy
of the transition changes, widening the spectral line. Because the velocities

2  It does not come from the uncertainty principle directly, although the relationship
between energy and time is reminiscent of the uncertainty relationship between position
and momentum. The formal mathematical statement of the uncertainty principle is given in
terms of the quantum-mechanical operators for the relevant observables. Time does not
have a quantum-mechanical operator (although energy does). The relationship in Eq. (5.12)
is derived from perturbation theory (see Ch. 6).

τ ∆E⋅ h
 2 
------≈
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of gas-phase species follow a Gaussian distribution, Doppler broadening
imposes a Gaussian line shape on the line with the form

, (5.13)

where ∆ν represents the half width at the half maximum of the spectral
band. Because different gas-phase species contribute differently to the line
broadening, Doppler broadening is an example of an inhomogeneous
effect.

Power saturation also affects the overall line shape. It occurs when the
incident light beam is so strong that absorption occurs faster than the
excited states can decay, and the population of atomic or molecular sys-
tems in the ground (or lower-energy) stated is actually depleted. Interested
readers can consult molecular spectroscopy texts for a mathematical dis-
cussion of this effect. Power saturation can be easily countered by simply
attenuating the incident radiation.

Inhomogeneous line broadening can be especially problematic in con-
densed samples, where interactions between species are impossible to
eliminate. For example, inhomogeneous broadening is seen in a molecule
that can hydrogen bond, like H2O. The different orientations of the individ-
ual water molecules that are interacting with other water molecules effect
the exact vibrational energy of the molecules involved. Since individual
molecules interact slightly differently, the cumulative effect is the broaden-
ing of the vibrational spectrum. Even samples such as those trapped in rare
gas matrices or single crystals are subject to some inhomogeneity that
broadens spectral lines.

Finally, instrumental factors also contribute to finite line widths of
peaks. Perhaps the easiest to illustrate is for a dispersive spectrometer that
uses a slit to let light into a monochromator and out toward a sample.
Because the slit has some physical width, a range of light frequencies are
being exposed to a sample. As long as at least some light of the right fre-
quency is passing through the sample, some of its power will be attenuated
and a signal will be present.
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Chapter 6
QUANTUM MECHANICS AND 

SPECTROSCOPY
6.1 Introduction
To date, the physical theory that most accurately describes the behavior of
the atomic world is quantum mechanics. Since spectroscopy uses light to
probe the atomic and molecular world, it should not be much of a surprise
to learn that quantum mechanics is used to describe how spectroscopy
works.

Nobel Prize-winning physicist Richard Feynmann once said, “If you
think you understand quantum mechanics, you don’t understand quan-
tum mechanics.” This chapter won’t bring you to a complete understand-
ing of quantum mechanics, Feynmann’s quote notwithstanding. But it will
try to point out the important aspects, and hopefully it will at least leave
the reader with the understanding that spectroscopy is quantum-mechani-
cally based.

6.2 The Need for Quantum Mechanics
Science’s job is to try to understand the natural universe. To do this, scien-
tists try to generate models to describe and predict the universe’s behavior.
(Not the behavior of the entire universe, but small selected parts of it.) If
the model and the universe do not agree, there are two choices: change the
model, or change the universe. Since all attempts at changing the universe
have failed, our only choice is to change the model.

Since the 1600s, scientific advance has accelerated at least in part
because the proposed models of the universe have been increasingly more
acceptable. Perhaps the first true “scientific” investigation (by the modern
definition) was Robert Boyle’s investigation of gases in the 1660s. While
there were some noteworthy incorrect or improper models developed (phl-
ogiston and vitalism are two that come to mind immediately, but doubtless
there are others), incorrect or improper models were ultimately replaced by
more viable models.

One such group of models was what we now call Newton’s laws of
motion. In just a few statements, verbal or mathematical, Newton’s laws
accurately describe the motion of matter. Further, these models withstood
the test of multiple examinations, and are accepted as proper models of
how matter behaves.
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To some extent, Newton’s laws of motion were so completely accepted
that scientists expected all matter to behave that way. The same could be
said of Maxwell’s laws of electromagnetism, which associated the behavior
of electric and magnetic phenomena. As scientists further probed the
nature of the universe, they expected that the universe would follow these
models.

By the late 1800s and into the early 1900s, the study of nature had pro-
gressed to the point that certain phenomena were being studied but could
not be explained by the models developed to that point. Ultimately, it was
realized that a new model (or models) was necessary.

Briefly, the phenomena were as follows (in no particular order).

The Photoelectric Effect: When light was shone on a metal that was in a
vacuum, under certain circumstances electrons would be ejected
from the metal. The kinetic energy of the ejected electron was not
related to the intensity of the light (as scientists expected it would
be), but instead was related to the frequency of the light. Scientists of
the 19th century were unable to explain this phenomenon.

Line Spectra of Elements: In the 1860s, it was conclusively demon-
strated that elements had their own unique emission spectra, consist-
ing of sharp lines of light of certain wavelengths. The emission
spectrum of hydrogen was particularly simple: in the visible light
region of the spectrum, it was composed of four lines having certain
wavelengths. In fact, Balmer was able to show that the wavelengths
fit the following equation:

, (6.1)

where R was a constant and n equaled 3, 4, 5, and 6 for the particular
lines. After similar groups of lines were found in the emission spec-
trum of hydrogen in other regions of the spectrum (like the infrared
and ultraviolet), Rydberg found that all of these groups of lines could
be predicted by the equation

, (6.2)

1
λ
--- R 1

4
-- 1

n2
-----  

 &

1
λ
-- RH

1
n1

2
---- 1

n2
2

----  
 &

��������������		
���	 		����������	�������	���	� 		 	



QUANTUM MECHANICS AND SPECTROSCOPY 77

where n1 and n2 were integers. (R is now called the Rydberg constant
in his honor.) This was all well and good, but the question remained:
why was this so? Other elements had their own characteristic emis-
sion spectra, but no simple mathematical equation was found to pre-
dict the wavelengths of those lines of light.

Atomic Structure: With the discovery of electrons and protons (and,
ultimately, neutrons), the atomic theory was modified somewhat:
atoms are divisible, and they are composed of subatomic particles.
Rutherford’s experiments in the 1910s supported the idea of a
nuclear structure of atoms, with the heavy protons (and neutrons) in
a central nucleus, and the electrons “orbiting” the nucleus at some
distance. The problem with that came from Maxwell’s electromag-
netic theory. Accelerating charges emitted energy, and if electrons are
in curved orbits around the nucleus, they then should be constantly
emitting energy, eventually losing all their energy and crashing
down into the nucleus. Thus, by Maxwell’s laws, a nuclear atom
should be inherently unstable. But matter was stable (as far as we
could tell, except for radioactive matter, but we won’t consider that
here), so either the nuclear model was wrong or Maxwell’s laws were
wrong—or some other model was needed.

The Nature of Blackbody Radiation: A blackbody is a perfect absorber of
light. Since absorption and emission are opposite processes, it fol-
lows that a blackbody is also a perfect emitter of light. This suggests
that a heated blackbody should emit light of all wavelengths equally.
However, experimental measurements showed that not all wave-
lengths are emitted equally. Figure 1.7 in Chapter 1 shows the rela-
tive intensities of different wavelengths of light emitted by a
blackbody. Although there were some attempts to explain this behav-
ior using the current understanding (most notably, by what we now
call the Rayleigh-Jeans law), no model was able to accurately predict
the behavior of blackbody radiation.

Low-temperature Heat Capacities: By the beginning of the twentieth
century, temperatures approaching absolute zero were finally attain-
able in the laboratory. Scientists determining the properties of matter
at such low temperatures discovered that the heat capacities of mat-
ter decreased as the temperature itself decreased. Einstein developed
a useful model for this, and Debye developed a similar, more appli-
cable model, but the question remained: why did matter behave this
way?
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Collectively, these issues that could not be explained by the theories of the
time meant that new ideas and theories would be necessary.

6.3 Planck’s Theory and Einstein’s Application
The study of blackbody (or cavity) radiation made several advances before
Planck performed his work. For example, in 1859, Gustav Kirchhoff (the same
Kirchhoff who helped develop the spectroscope) showed that the distribution
of intensities of blackbody radiation was (a) independent of the material used
to construct the blackbody, and (b) dependent only on temperature and wave-
length. Thus, there was some distribution function I that was universal for all
blackbody radiation. In 1879, Josef Stefan—apparently based on only a few
experimental measurements—proposed that the total power per unit area
emitted as light varied with the fourth power of temperature. This suggestion
was derived theoretically by Ludwig Boltzmann in 1884, so the expression

P = σT4, (6.3)

is called the Stefan-Boltzmann law. The value of σ, the Stefan-Boltzmann
constant, is 5.670×10–8 W/m2 ⋅ K4. Finally, in 1893, Wilhelm Wien noted that
the maximum wavelength in the plot of blackbody radiation, λmax, times
the absolute temperature gave a constant:

λmax⋅T = constant = 2.898 mm⋅K . (6.4)

Equation (6.4) is called the Wien displacement law. As T increases, λmax shifts
to smaller and smaller values. Finally, in Chapter 1 we mentioned how the
Rayleigh-Jeans law attempted to model blackbody radiation, but only a
partial fit was found for the long-wavelength side of blackbody radiation;
an ultraviolet catastrophe was actually predicted because of the rapid
increase in predicted intensity for small-wavelength light.

Max Planck was a thermodynamicist by training, and he decided to
approach the issue of blackbody radiation from a thermodynamic point of
view. In particular, Planck presumed that if some energy were introduced
into a cavity at a particular temperature (i.e. a blackbody), that energy
would ultimately rearrange into some equilibrium distribution of energy
values. From that perspective, and with a little mathematical “trick,”
Planck produced a formula in 1900 that predicted the intensity of black-
body radiation over its whole range.

The trick is an interesting one, actually. Planck treated light as interact-
ing with tiny electric oscillations in matter, recognizing the electromagnetic

��������������		
���	 		����������	�������	���	� 		 	



QUANTUM MECHANICS AND SPECTROSCOPY 79

nature of light. Classically, the energies of oscillators are related to the
amplitudes of the oscillation. But Planck took the mathematical assump-
tion that the energy of an oscillator was proportional to its frequency, not its
amplitude. For reasons that are debated today, Planck used the letter h to
represent the proportionality constant:

E ∝ ν
E = hν . (6.5)

With that little twist, Planck derived what we now call the Planck radiation
law, which in terms of Kirchhoff’s distribution function I is

. (6.6)

(In fact, it can be shown that the Rayleigh-Jeans law is a Taylor-series
approximation of Planck’s distribution law—an approximation that ulti-
mately did not work very well.) Using this expression, Planck was able to
derive both the Wien displacement law and the Stefan-Boltzmann law.

Although successful in predicting the shape of the blackbody intensity
curve, most scientists—even Planck—did not assign any physical signifi-
cance to the relationship in terms of light itself. But in 1905, Einstein did.
Using Planck’s ideas, Einstein was able to explain the nature of the photo-
electric effect if one assumed that light itself had an amount of energy given by the
equation E = hν. Thus, Einstein extended the relationship between energy and
frequency to light, not just to the electric oscillators in the matter composing
the blackbody. Essentially, light was acting like a “particle” of energy. It took
a while to be accepted—it was, after all, contrary to light’s well-established
wave nature—but in 1921, Einstein was awarded the Nobel Physics Prize,
not for his work in relativity but for his work on the photoelectric effect.

What Planck’s and Einstein’s work established is that energy comes in
discrete quantities, rather than any possible quantity. Consider the follow-
ing analogy of a car in motion. It has kinetic energy equal to ½mv2, where m
is the mass of the car and v is its velocity. The kinetic energy can have any
value from zero (corresponding to a zero velocity) and higher. At the level
of individual light waves, however, light can have only certain specific val-
ues of energy, depending on what its wavelength is. That is, the energy of
light is quantized. Furthermore, remember the problem of atomic emission
spectra, which are composed of lines of light of certain particular frequen-
cies—and therefore, of certain particular energies. It seems obvious that the
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electrons in atoms themselves have quantized energies, if their differences
are restricted to certain values. But, that is discussed in the next section.

Note, however, that Planck’s and Einstein’s work on the quantum theory
of light has explained two phenomena that previous science could not: the
behavior of blackbody radiation and the photoelectric effect. The dichot-
omy of perspectives in science before and after Planck’s ideas are so stark
that 1900 is considered the dividing point in time between Classical Phys-
ics (pre-1900) and Modern Physics (post-1900).

6.4 Bohr’s Model
Still unexplained were atomic spectra, although some progress was made
with the introduction of quantized energy. In 1913, after meeting with
famous physicists like Rutherford—who was promoting the concept of a
nuclear atom—Danish physicist Niels Bohr made a few assumptions and,
on the basis of those assumptions, was able to algebraically derive the
expression for the spectrum of the hydrogen atom as proposed by Ryd-
berg. That is, Bohr was able to model the spectrum of the hydrogen atom.

Bohr’s assumptions were the following:

• Electrons “orbited” the nucleus in a circular orbit, with the cou-
lombic attraction between proton and neutron balanced by the
centrifugal force of the orbiting electron.

• Electrons maintain a constant energy as they orbit. Thus, despite
the fact that electrons are charged particles, Bohr is assuming that
Maxwell’s laws simply do not apply.

• Electrons can change orbits by absorbing or emitting light, but
only if the energy of the light equals the difference in the energies
of the orbits. Mathematically, this is given by ∆E = hν. This is
called the Bohr Frequency Condition.

• The angular momentum, mvr, of the electron in its orbit is quan-
tized, and is limited to integral values of h/2π. Mathematically,
this is given as mvr = νh/2π, where n is the integral value.

With these assumptions, Bohr was able to derive the following equation for
the difference in energies of the hydrogen atom:
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This equation has the same form as the Rydberg equation, with R =
. The variables ni and nf are integral values attached to the

angular momentum (see Bohr’s assumptions, above). Thus, Bohr was able
to predict the spectrum of the hydrogen atom, if the assumptions he made
were correct. Notice that one of the assumptions is that the electrons have a
constant energy in their orbits; thus, the energy of electrons in the hydro-
gen atom were quantized. Bohr was also able to derive an expression for the
energy of the electrons in their orbits, and the expressions consisted of con-
stants like me (the mass of the electron), h, e (the charge on the electron)—
and n. The parameter n is called a quantum number, because it alone deter-
mines the overall energy of the electron. (The other quantities are con-
stants.) The radius of the first orbit is a convenient atomic scaling factor
and is called the first Bohr radius, a0:

= 0.529 Å. (6.8)

A radius of 0.529 Å implies a diameter of about 1 Å, and experimental evi-
dence of the time was suggesting that hydrogen atoms were about that
size.

Though an obvious breakthrough, Bohr’s theory was limited to hydro-
gen and any other single-electron systems (like He+, Li2+, etc.). Other
advances in the next few years suggested that Bohr’s assumptions were
naïve. Two advances in particular were the Uncertainty Principle and the
concept of de Broglie waves. The Uncertainty Principle is the idea that cer-
tain related variables have limits in the level of accuracy with which they
could be determined. One set of related variables is position and linear
momentum. If the limit of accuracy in position is represented as ∆x and the
limit of accuracy in momentum is ∆px, then the Uncertainty Principle
requires that

∆x ⋅ ∆px ≥ h/4π . (6.9)

At normal scales, these accuracy limits are unnoticeable. But on the atomic
scale, they can be relatively substantial. Bohr’s theory is suggesting that we
can determine the quantized momentum and the exact distance of the elec-
tron from the nucleus, in apparent contradiction of the Uncertainty Princi-
ple!

Louis de Broglie pointed out another problem. His basic thesis was, if
light (a wave) can have particle properties (in terms of energy), why

mee
4/8ε0

2h3c

a0
ε0h

2

πmee
2
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couldn’t tiny particles (like electrons) have wave properties? In 1923, de
Broglie deduced the expression

, (6.10)

where p is the momentum of a particle of matter and λ is its de Broglie wave-
length.

For normal matter under normal conditions, the de Broglie wave-
length is undetectable. But for an electron in Bohr’s first orbit (i.e. n = 1),
λ is predicted to be 3.3 Å—three times the diameter of a hydrogen atom!
This suggests that the wave behavior of tiny particles like electrons
should not be ignored in developing a model of atomic behavior, as
Bohr’s theory of hydrogen ignores it. Thus, Bohr’s model—while useful
and a major step forward in terms of its quantized angular momentum—
is limited.

6.5 Quantum Mechanics
In 1925–26, Werner Heisenberg and Erwin Schrödinger published two dif-
ferent but mathematically equivalent theories on the behavior of atomic-
level systems that incorporated the Uncertainty Principle and de Broglie’s
theory. Heisenberg’s theory is based on matrix algebra, while Schrödinger’s
theory is based on a second-order differential equation. Schrödinger’s
mathematics are more approachable for most scientists, and is the more
common formalism. Here, we will focus exclusively on Schrödinger’s ver-
sion of quantum mechanics.

Schrödinger proposed that the state of a system was described by a
wavefunction Ψ, which contains all information about the system. Possi-
ble values of observables (like position, momentum, energy, etc.) could
be obtained as eigenvalues of an eigenvalue equation. An eigenvalue equa-
tion is a mathematical equation that combines an operator, , with a
(wave) function, Ψ, to yield some constant, K, multiplying the original
function:

. (6.11)

You should resist that temptation to say that  equals K, because the oper-
ator  is oftentimes a differential expression (i.e., it contains a derivative)
or a function itself. Schrödinger proposed that every observable had a cor-

λ h
 p 
------&

Ô

ÔΨ K Ψ⋅&
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responding operator; for example, the linear momentum operator  in the
x dimension was given by the expression

, (6.12)

where  = h/2π and i is the square root of –1.
Schrödinger said that the wavefunction for the state of a system could

be anything, but had to satisfy the eigenvalue equation for energy, given by

. (6.13)

Because there is a time derivative of the wavefunction in this equation, Eq.
(6.13) is called the time-dependent Schrödinger equation.  is the operator
that is connected to the total energy of the system. If the time variable on
the wavefunction were separable from the spatial variables (x, y, and z in
three-dimensional space), then Ψ could be written as

. (6.14)

The variable E is the total energy of the system. The function ψ(x, y, z) is the
time-independent wavefunction and will be represented simply as ψ.
Under these conditions, the wavefunction ψ itself must satisfy the follow-
ing three-dimensional time-independent Schrödinger equation:

(6.15)

Equation (6.15) is also an eigenvalue equation, with the eigenvalue being E,
the energy of the system. The operator on the left side of the equation is
called the Hamiltonian operator, and is given the symbol —the same one
found in the time-dependent Schrödinger equation. [Equation (6.15) is also
a second-order differential equation.]  is the operator for the potential
energy of the system. Equation (6.15) is sometimes abbreviated

.

p̂

p̂ ih d
dx
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Ĥ
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ĤΨ EΨ&

��������������		
���	 		����������	�������	���	� 		 	



84 CHAPTER 6

Though perhaps Eq. (6.15) looks complicated, it is simply a second-order
differential equation, and finding wavefunctions Ψ that satisfy this equa-
tion are the purview of a branch of mathematics. Schrödinger (and other
developers of quantum mechanics) was well-schooled in mathematics, and
was able to apply Eq. (6.15) to several ideal physical systems. He provided
solutions to Eq. (6.15) (i.e., he found wavefunctions ψ that satisfied the dif-
ferential equation) for a particle-in-a-box, an ideal harmonic oscillator, and
a particle of mass moving about a center in two and three dimensions (i.e.,
moving in a circle and on the surface of a sphere). In all cases, Schrödinger
found that by imposing physical restrictions on the mathematical solutions
for Ψ, the total energy of the system could not be any value, but rather was
quantized to certain specific values. In all cases, integers called quantum
numbers naturally occur in the wavefunctions.

In addition (and most relevant to us as spectroscopists), Schrödinger
attacked the hydrogen atom. According to Bohr, the hydrogen atom could
be treated as a particle (the electron) moving in a circle about a center (the
nucleus). This corresponded to Schrödinger’s two-dimensional circular
movement—but the quantized energies for motion in a circle did not agree
with the spectrum of the hydrogen atom. Schrödinger defined the hydro-
gen atom differently: not only could the electron appear at any angle
around the nucleus—that is, it existed spherically around the nucleus, not
just circularly—but it could also exist at any possible distance, rather than
being confined to particular orbits.

With these assumptions, Schrödinger used the time-independent
Schrödinger equation to predict the same spectrum of the hydrogen atom that
Bohr’s theory did. Thus, Schrödinger’s version of quantum mechanics was
able to model a physically real system. If a model agrees with reality, then
there has to be some truth to the model, right?

There was some concerns, however, that the concept of a wavefunction
violated the Uncertainty Principle. If quantum mechanics assigns a wave-
function to an electron in hydrogen, isn’t it violating the Uncertainty Principle
just as Bohr’s ‘orbits’ violate it? Doesn’t finding a wavefunction imply that we
know exactly where the electron is? And is the electron a particle or a wave?

The Copenhagen Interpretation was formulated by Bohr and Max Born
in the late 1920s to deal with these difficulties. (It was called that because
much of the work was done at Bohr’s Institute for Atomic Studies, which
was located in Copenhagen, Denmark.) In particular, Born proposed that
rather than giving the exact path of the electron around the nucleus, the
square of the modulus of the wavefunction, |Ψ|2, was proportional to the
probability that the electron existed at any particular point in space. Thus,
quantum mechanics is not stating precisely where the electron is, but only
its probability of being somewhere.
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This interpretation, and other conclusions based in it, was subject to a
lot of criticism and resistance from many scientists, including prominent
ones like Schrödinger, Einstein, and de Broglie. It reduces the atomic world
to one of statistical probabilities instead of events specifically determined
by previous events. Einstein’s objection is summed up in his famous quota-
tion, “God does not play dice.” Unfortunately for Einstein, decades of the-
ory and experiment (including some ground-breaking experiments in the
1980s) supports the Copenhagen Interpretation as the best current interpre-
tation of a quantum-mechanical wavefunction, so it is proper to say that
God does play dice—He just doesn’t play with loaded dice. 

Since the mid-1920s, quantum mechanics has been developed further and
been applied to matter at the atomic, molecular, and bulk scales; and it has
generally been shown to be an amazingly successful model of the behavior
of matter. Quantum theories of nuclear behavior have also been successfully
developed. In fact, one of the first achievements of quantum mechanics was
to explain radioactivity (one of the topics not specifically discussed in Sec-
tion 6.2). Tunneling, the phenomenon by which particles can penetrate an
energy barrier even if they do not have enough energy to “climb over” the
barrier, was not only invoked to explain alpha decay of radioactive nuclei,
but was also harnessed to construct scanning tunneling microscopes in the
1980s. The theory of relativity was incorporated into quantum mechanics by
Paul A. M. Dirac in 1928. In so doing, Dirac was able to predict the existence
of antimatter, which in turn was conclusively identified by Carl Anderson in
1932 with the discovery of the positron. Relativity in quantum mechanics
also predicted the concept of electron spin, upon which a form of resonance
spectroscopy is based. (All subatomic particles have spin.) In 1927, Walter
Heitler and Fritz London devised the first quantum-mechanical treatment of
the hydrogen molecule. Quantum mechanics can be invoked to understand
the low-temperature behavior of the heat capacities of solids. The behavior
of electrical conductors, nonconductors, semiconductors, and even super-
conductors can be explained using quantum mechanics.

Quantum mechanics sounds like the ultimate model of the universe,
doesn’t it? Well, it’s not. Quantum mechanics does have certain limitations.
The most important one for our purposes here relates to the form of the
Schrödinger equation in Eq. (6.15). (This is the nonrelativistic form of the
Schrödinger equation.) Recall that it is a second-order differential equation
in three dimensions. Recall, too, that there is a branch of mathematics that
focuses on finding solutions to such differential equations and eigenvalue
equations. There are certain tactics to apply in finding such solutions, one
of which is to invoke separation of variables. Separation of variables is the
assumption that a function of several variables can be separated into the
product of simpler functions, each of which is a function of a single variable:
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F(x, y, z) = f(x) ⋅ f(y) ⋅ f(z). (6.16)

Effectively, separation of variables simplifies the solution of the eigenvalue
equation by breaking it down into solvable equations of a single variable.
The solution of the entire problem is then the combination of the smaller
solutions. The complete wavefunctions for the electron in the hydrogen
atom can be determined this way, for example. We say that we can solve
the Schrödinger equation analytically for the hydrogen atom; we can deter-
mine specific functions which, when substituted into Eq. (6.15), are exact
mathematical solutions to the differential equation.

One problem with the application of quantum mechanics to matter is
that atoms or molecules with more than one electron have wavefunctions
that are not separable. We cannot write a wavefunction for, say, helium that
has a part of the wavefunction completely determined by one electron and
another part of the wavefunction completely determined by the second
electron. The reason is that the electrons interact with each other, since they
are both negatively charged. Without having a system whose mathematical
description is separable, we would have to solve the differential equation
for all variables simultaneously. To date, that has not been accomplished,
and there is reason to believe that it is analytically impossible. Therefore,
the conclusion is that we cannot find analytic solutions to the Schrödinger
equation for as small an atom as helium.

Does this mean that quantum mechanics is useless? No—several exam-
ples of the applicability of quantum mechanics were listed above. What it
does mean is that we need other tools to apply quantum mechanics to
other systems. There are two main tools that we can use to apply quantum
mechanics and approach systems numerically, rather than analytically. Ulti-
mately, we can apply quantum mechanics numerically to any degree of
accuracy we want (or have the time for), and it works. Therefore, we find
that analytical solutions to the Schrödinger equation are not needed.

The two tools are called variation method and perturbation theory. The
variation method is based on the variation theorem, which states that any
guess, called a trial function, for the true wavefunction will always give a
value for energy that is higher than the true energy. Operationally, adjust-
able parameters are placed in the trial wavefunctions, the Schrödinger
equation is used to determine the energies of these wavefunctions, and val-
ues of the parameters are determined that yield the lowest possible ener-
gies for that trial function.

One advantage of variation theory is that the trial wavefunctions can be
any function, as long as it is physically relevant to the system. Also, any
number of variables can be included in the trial wavefunction. A problem
with variation theory is that the trial wavefunction focuses on energy as an
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observable and not any other observable, and that the greater the number
of variables, the greater the mathematical complexity. But there is one sav-
ing grace: most of the mathematics can be performed by computer. These
days, computers are fast enough and computer programs are available to
perform the mathematics needed for variation theory. Therefore, variation
theory is a large part of the computational quantum mechanics being per-
formed by scientists around the world.

Perturbation theory is the other tool used to apply quantum mechanics
to atoms and molecules, and it has special relevance to spectroscopy. We
will treat it in the next section. Understand, however, that with these two
tools, quantum mechanics provides a model for understanding atomic and
molecular spectra. Quantum mechanics thus provides an understanding of
all outstanding problems that classical mechanics could not, and because
of that should be treated as the superior theory.

6.6 Perturbation Theory
Perturbation theory assumes that a system can be approximated as a
known, solvable system, and that any differences between the system of
interest and the known system is a small, additive perturbation that can be
calculated separately and added on. Perturbation theory assumes that the
Hamiltonian operator for a real system can be written as

(6.17)

where  is the Hamiltonian operator of the system of interest that is
being approximated,  is the Hamiltonian operator of an ideal system,
and  represents the small, additive perturbation. If we assume that
the wavefunction Ψ of the real, nonideal system is similar to the wavefunc-
tion of the ideal system Ψideal, then one can say that, approximately,

. (6.18)

Applying the appropriate mathematics (which will not be presented here),
one can ultimately get a relationship between the energy of the real system,
Esystem, and the energy of the ideal system, Eideal, which should be known.
The relationship is

, (6.19)

Ĥsystem Ĥideal Ĥperturb'≈

Ĥsystem

Ĥideal

Ĥperturb

ĤsystemΨideal EsystemΨideal≈

Esystem Eideal Ψideal
* ĤperturbΨideal∫'&
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where the superscript “*” on the first wavefunction implies that we have
taken the complex conjugate of the wavefunction (i.e. substituted –i for i
wherever the square root of –1 appears in the wavefunction, if at all). The
integral in Eq. (6.19) can either be solved analytically by considering a table
of integrals, or can be solved numerically. Thus, we can use perturbation
theory to define a real system in terms of an ideal system and determine
the energy of the real system. For example, the two electrons in a helium
atom can be defined as two hydrogen-electron systems (the ideal systems
whose wavefunctions and energies are known) plus an electrical repulsion
between the two negatively charged electrons (the ). Applying this
to helium allows us to determine an energy for helium that is ~5% within
the experimental value. Not bad!

Perturbation theory is useful because any number of additive perturba-
tions can be added to the ideal Hamiltonian operator. However, perturba-
tion theory does not share variation theory’s guarantee that the lower the
energy means the better the wavefunction. Still, many scientists are using
perturbation-theory-based models to understand atomic and molecular
systems.

6.7 Application to Spectroscopy
In spectroscopy, a system is exposed to an oscillating electromagnetic field
that has some variation in time. We can apply perturbation theory to the
system, with the understanding that the perturbation is the oscillating elec-
tromagnetic field. This field varies in time, so what we are considering is
called time-dependent perturbation theory.

The Hamiltonian operator for the system is designated . The opera-
tor for the oscillating perturbation (i.e., the electric field of the light) is

, and is given by the expression

(6.20)

In Eq. (6.20), ν is the frequency of the light, and t is time. The second form
of the operator comes from Euler’s relation between cosine (and sine) and
imaginary exponentials. If this operator were used as the perturbation and
perturbation theory was applied, we would ultimately find (and the details
are omitted here) that the probability, P(t), of the system being in an excited
state would be given by the expression

, (6.21)

Ĥperturb

Ĥ0
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Ĥ′ t( ) H′cos2πνt H′ ei2πνt e i2πνt 
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where Ψfinal and Ψinitial are the final- and initial-state wavefunctions, respec-
tively; ν is the frequency of the light involved; and ν∆ is the difference in
energies of the final and initial states, expressed in frequency units.

Equation (6.21) looks complex, but the important parts are the sine term
and the denominator that includes the frequency terms. The remaining
terms (the 4 and the term that includes the integral) are constants. Thus, we
can simplify Eq. (6.21) by writing it as a proportionality:

. (6.22)

Eq. (6.22) is similar to an expression called the sinc function:

(6.23)

[More precisely, Eq. (6.22) is related to the square of Eq. (6.23).] The sinc
function has a very distinctive plot: it approaches 1, its maximum value,
when the variable πx approaches zero, but quickly falls off to zero (in an
undulating fashion, as expected for a sine function) as πx moves away from
zero.

How is this relevant for us? Well, in Eq. (6.22) above, the “variable” is
(2πν∆ – 2πν). As that value approaches 0, the sinc function in Eq. (6.22)
approaches 1 (its maximum value), but as the quantity (2πν∆ – 2πν) moves
away from zero, the value of the sinc function falls off rapidly toward
zero—and so does the probability P(t) of the system being in an excited
state! Another way to say this is, as the quantity (2πν∆ – 2πν) approaches
zero, there is an increased probability that the system will absorb light and
move to an excited state, but as the quantity (2πν∆ – 2πν) deviates from
zero, there is a lesser probability that the system will absorb light and
change to an excited state.

And when does (2πν∆ – 2πν) approach zero? When 2πν∆ = 2πν, or more
simply, when

ν∆ = ν . (6.24)

If we multiply both sides by Planck’s constant h, we get

hν∆ = hν ; (6.25)

P t( )
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and now we can say that the probability of a system absorbing light and
changing its wavefunction is highest when the energy of the light, hν,
equals the energy difference between the two states, hν∆.

Thus, the tools of quantum mechanics can be used to explain spectros-
copy. Interested readers are urged to consult the references for more
detailed mathematics in the topic.
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Chapter 7
SELECTION RULES

7.1 Introduction
By now, it should be understood that a system will only absorb (or emit)
light if the energy of the light equals the energy difference between the two
states involved in a spectroscopic transition. But, there is no guarantee that
the transition will occur if this circumstance is met. That is, the Bohr Fre-
quency Condition is a necessary but not sufficient condition for a transition
to occur.

Additional criteria for whether an absorption or emission occurs are
called selection rules. Selection rules can be grouped into two types, either
quantum-mechanical or descriptive (sometimes called “gross selection
rules”). That is, some selection rules can be explained using quantum
mechanics and wavefunctions and operators and quantum numbers. Other
selection rules can be explained by describing what the atom or molecule is
doing.

If a transition is favored by a selection rule, we say that the transition is
allowed. If a transition does not follow a selection rule, we say that the tran-
sition is forbidden. However, since most selection rules are formulated with
the assumption of ideality and real systems are not ideal, some forbidden
transitions may actually occur. This can understandably confuse the inter-
pretation of a spectrum!

In this chapter, we will look at where these selection rules come from
(with the short answer being, of course, “quantum mechanics”!). First we
will consider the more formal mathematical perspective, then we will
review a simpler approach based on changes in quantum numbers.

7.2 “Dipole moment” selection rules
Spectroscopists use selection rules to keep track of what transitions are
allowed or forbidden. Although most selection rules are derived by assum-
ing quantum-mechanically ideal systems, in reality most selection rules are
not followed to the letter. But selection rules are still helpful in understand-
ing spectra.

Some selection rules are given in terms of allowed changes in quantum
numbers. These rules are fairly specific: ∆v = ±1 for vibrations, or ∆J = ±1
for rotations. We will consider these in the next section. But some selection
rules are a bit more general. Two of them, in particular, are based on the
dipole moment of a molecule:
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• In order to have a pure rotational spectrum, a molecule must have
a permanent dipole moment. (Example: HCl does, but H2 and Cl2
do not.)

• In order for a vibration to absorb light and appear in a spectrum,
there must be a change in the dipole moment of the molecule asso-
ciated with that vibration. (Example: All three vibrations of H2O
appear in water’s vibrational spectrum, but not all vibrations of
CO2 do.)

Where do these general selection rules come from?
First, recall that a dipole moment µ is defined as a charge separation, e,

over some distance r:

µ = er (7.1)

Here, both µ and r are in bold, indicating that they are vectors. As men-
tioned in Chapter 5, quantum-mechanically, a spectroscopic transition is
electric-dipole allowed if the following integral is nonzero:

, (7.2)

where Ψ1 and Ψ2 are the upper and lower wavefunction of the (electronic,
vibrational or rotational) state, dτ is the general three-dimensional-space
infinitesimal required by the integration, and  is the dipole moment opera-
tor, which is given by an expression analogous to Eq. (7.1):

. (7.3)

The operator  is the position operator. The quantity M in Eq. (7.2) is called
the transition moment. M may be exactly zero, in which case the transition
between Ψ1 and Ψ2 is forbidden. If it is not zero, the transition is allowed.

The dipole moment operator  is simply multiplicative. There is no
derivative-taking or any other change in the wavefunctions. However, 
does contain the variable r, and so do Ψ1 and Ψ2. Therefore, the integral in
Eq. (7.2) may be zero or nonzero, depending on the properties of the prod-
uct Ψ1 · r · Ψ2. The evaluation of this integral, and the quantum-mechanical
conditions under which it must be exactly zero or might be nonzero, ulti-
mately leads to specific selection rules in terms of changes in quantum

M Ψ1
* µ̂Ψ2 τd∫&

µ̂

µ̂ er̂&

r̂

µ̂
µ̂
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numbers (i.e., ∆l = ±1, ∆v = ±1, ∆J = 0, ±1, etc.). However, we are looking for
selection rules in terms of the dipole moment, not the quantum numbers.

First, let us address rotational transitions. How do we get the statement
that for a pure rotational spectrum, the molecule must have a nonzero
dipole moment? Consider a molecule rotating in three-dimensional space,
where the rotations are separated into components in the three dimensions
x, y, and z. The dipole moment vector µ can also be separated:

µ = µx + µy + µz . (7.4)

At this point we will introduce the unit vectors i, j, and k. The vector i
points in the positive x direction and has magnitude of 1. The unit vectors j
and k serve the same purpose for the y and z dimensions, respectively.
Thus, we can rewrite Eq. (7.4) in terms of the magnitude of each compo-
nent multiplied by the proper unit vector:

m = µxi + µyj + µzk. (7.5)

The magnitudes µx, µy, and µz are now scalar, not vector, quantities.
Quantum mechanics supplies an understanding of three-dimensional

rotations for ideal systems, and that understanding is applied to rotational
spectroscopy. But to simplify this understanding, rotational motion is con-
sidered in terms of spherical polar coordinates r, θ, and φ. Simple geometry
can relate x, y, and z with r, θ, and φ. Table 7.1 lists these relationships, while
Figure 7.1 illustrates the two coordinate schemes.     

The dipole moment µ can be written in terms of spherical polar coordi-
nates instead of Cartesian coordinates. If µ0 is used to represent the (scalar)
magnitude of the dipole moment, then Eq. (7.5) becomes

Table 7.1 Cartesian-to-spherical polar coordinates (and vice versa).

x r sinθ cosφ⋅ ⋅& r x2 y2 z2
' '&

y r sinθ sinφ⋅ ⋅& θ cos 1 z

x2 y2 z2
' '

------------------------------ 
 &

z r cosθ⋅& φ tan 1 y
x
-- 

 &
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µ = µ0(sinθ · cosφ · i + sinθ · sinφ · j + cosθ · k). (7.6)

The operator  has a similar form. Therefore, the expression for the transi-
tion moment M becomes 

. (7.7)

The magnitude of the dipole moment µ0 is a constant and so can be brought
outside of the integral. We get

. (7.8)

What Eq. (7.8) says is that if a molecule does not have a permanent dipole,
then µ0 is exactly zero and therefore M is exactly zero! Therefore, a mole-

µ̂

Figure 7.1 The relationship between Cartesian and spherical polar coordinates. See
Table 7.1 for the mathematical relationships.

M Ψ1
* µ0× sinθcosφ i⋅ sinθsinφ j⋅ θ k⋅cos' '( )Ψ2dτ∫&

M µ0 Ψ1
* sinθcosφ i⋅ sinθsinφ j⋅ θ k⋅cos' '( )Ψ2dτ×∫⋅&
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cule must have a nonzero dipole in order to have a pure rotational spec-
trum.

What about vibrations? In a vibration, the positions of the atoms are
oscillating about some equilibrium position. Since the dipole of a molecule
depends on the positions of the atoms, the exact value of µ is a function of
the atomic positions; that is,

µ = f (r), (7.9)

where f (r) is some as-yet unknown function of r. Since r is changing in a
vibration, we need an expression for how µ varies with r, too. Any well-
behaved function can be expressed in terms of a Taylor series. In the case of
the dipole moment, we have

(7.10)

In Eq. (7.10), each derivative is evaluated at the position r = re, the equilib-
rium position of the vibration. If we approximate the dipole moment µ
using only the first two terms of Eq. (7.10), the transition moment M for a
vibrational transition is

.

We can expand into two integrals and, recognizing that µ(re) and  are
constants, remove them from the integrals to get

. (7.11)

Because different vibrational wavefunctions are orthogonal, the first inte-
gral in Eq. (7.11) is zero. (This is one useful mathematical property of wave-
functions that we did not cover in Chapter 6.) The expression for M
becomes

. (7.12)
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Now consider this equation, like we did equation Eq. (7.8) for rotations.
The partial derivative  is evaluated at the equilibrium position re.
It has a particular value, some number. However, if the dipole moment µ
does not change, the value of that derivative at the equilibrium distance is
exactly zero, and the transition moment will be exactly zero. Therefore, in
order for a vibrational transition to be allowed, there must be a changing
dipole moment associated with that vibration.

Of course, almost all of these equations are meant for ideal systems, and
in reality transitions that are strictly forbidden will sometimes occur. There
are also selection rules based on magnetic moments and quadrupole
moments, too. But at least for most straightforward applications in spec-
troscopy, these “dipole moment” selection rules are the ones to know.

7.3 Symmetry arguments for M
The discussion in the previous section rationalized why particular molecu-
lar motions (rotations and vibrations) absorb or emit light, but for any form
of spectroscopy, the fundamental relationship that indicates whether a
transition is allowed or forbidden is Eq. (7.2):

,

A transition moment M can be defined for any type of state-to-state transi-
tion of an atom or molecule, so this expression is central to understanding
selection rules.

Consider the expression, however. It is an integral of the product of
three functions. (One of the terms is an operator, but that operator is a mul-
tiplicative one, and does not require derivatives or any other change of Ψ2.)
The product of three functions is simply another function, and an integral
is simply an area under a curve. So the transition moment is simply an area
under the curve of the function that results from the product of three func-
tions. An area is a number; therefore, the transition moment is simply some
number. (The limits on the integral go from +∞ to –∞, but because of the
properties of acceptable wavefunctions, the area under the curve is never
infinite.)

It may seem that all we need to do is evaluate the integral, but that is
easier said than done. Remember, we do not have mathematical solutions
for wavefunctions for anything other than the hydrogen atom, so all wave-
functions for other systems are approximations, if we have them at all.
However, thanks to a very useful property, we do not have to solve the
integral because we can show that the integral for a particular transition is

∂µ/∂r re

M Ψ1
* µ̂Ψ2dτ∫&
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exactly zero (and therefore the transition is forbidden). That useful prop-
erty is symmetry.

Symmetry is the concept that defines the spatial and dimensional simi-
larity of an object. We speak of things having “higher” or “lower” symme-
try by simply recognizing that some objects are more dimensionally similar
than others. Consider a rectangle and a square, for example. A square is
more symmetric than a rectangle because all of its four sides are the same
length and all of its angles are 90 deg. A rectangle normally has different-
length sides perpendicular to each other (although we recognize that a
square is actually a special kind of rectangle). A cubical object is more sym-
metric than a solid object that is not cubical, unless it is perfectly spherical.
Molecules have symmetry, too. The benzene molecule (C6H6) is a hexago-
nal molecule, while methane (CH4) has the a tetrahedral shape.

The formal mathematical study of symmetry is called group theory.
Group theory is a very useful tool in spectroscopy, because wavefunctions
themselves also have symmetry. Thus, we can use the ideas of group theory to
understand wavefunctions and, in the case of transition moments, prod-
ucts of wavefunctions.

Let us use Figure 7.2 to illustrate what we mean. Figure 7.2(a) shows a
semicircular function. The function has the interesting symmetry property
of having the same value at –x as it has at x. [Mathematically, f (x) = f (–x).]
Such functions are called even functions. On the other hand, the wavy func-
tion in Figure 7.2(b) has the symmetry property of having the opposite
value at –x as it has at x. [Mathematically, f (x) = –f (–x).] Such functions are
called odd functions.

If we were to determine the area under the curve shown in Figure 7.2(a),
we would get some nonzero value. However, if we were to determine the
area under the curve shown in Figure 7.2(b), we would get exactly zero.
That is because the area in the positive section on the left side of the func-
tion is numerically canceled by the area in the negative section on the right
side. Generally speaking, the net area under the curve of an odd function
will always be exactly zero (as long as the interval is symmetric).

Group theory helps us determine whether wavefunctions are odd or
even—and we are able to determine this even without knowing the exact
form of the wavefunction. The product of odd and even functions follows
the same rules as products of positive and negative numbers:

odd × odd = even
even × even = even
odd × even = odd.
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So, after determining whether the wavefunctions involved and the opera-
tor are odd or even functions, we use the above rules to determine if the
three-part product  is, overall, odd or even. If it is odd, then the
integral in the transition moment is exactly zero. The transition moment
integral for many such combinations in atomic and molecular systems turn
out to be exactly zero. Only even combinations can have a nonzero value
for the integral—and at that, there’s no guarantee how large or small the
integral might be, but it is no longer constrained to being exactly zero.

Actually, it gets more specific than this (although it gets difficult to
describe without reference to group-theoretical language). Every kind of
physical symmetry has something called a “totally symmetric representa-
tion” within that symmetry. The product of the two wavefunctions and the
operator need not just be even in order to have a nonzero integral value. If
the overall representation of the three-part product is not the all-symmetric
representation, then the value of the integral must be zero. So it gets more
detailed than “odd vs. even.” Interested readers are urged to consult texts

Ψ1
* ÔΨ2

Figure 7.2 Examples of even (a) and odd (b) functions. The integral of the function
in (a) is some nonzero value that represents the area under the curve. However, the
integral of the function in (b) is exactly zero, because the “positive” area on the left
side is cancelled by the “negative” area on the right side. The integral of any odd
function over a symmetric interval is exactly zero. This concept helps us recognize
that some integrals are exactly zero without actually integrating.
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on group theory and its application to spectroscopy to learn these details.
Many selection rules can be determined from group theoretical principles.

7.4 Summary of selection rules
The two previous sections give some physical and mathematical rationale
for some selection rules. Here, we will present and discuss a summary of
the selection rules for various forms of spectroscopy. These selection rules
are ultimately based on the physical or mathematical understanding dis-
cussed above. Rather than derive each selection rule independently, we
will simply state them and leave the search for specific details to the inter-
ested reader.

The reader should be advised that this section considers only the selec-
tion rules that relate to the electric dipole operator in the perturbation-the-
ory approach to spectroscopy. Electric quadrupole and magnetic dipole
operators can also be applied using perturbation theory, and they lead to
different selection rules. However, such spectra are typically much less
intense and are likely to be less commonly seen in a straightforward spec-
troscopy experiment.

7.4.1 Electronic spectroscopy
The wavefunctions of the hydrogen atom can be described by four quan-
tum numbers: the principal quantum number n, the angular momentum
quantum number l, the z-component of the angular momentum quantum
number ml, and the z-component of the spin angular momentum quantum
number ms. (There is also the spin angular momentum quantum number s,
but for all electrons, s = ½.) These four quantum numbers arise from the
mathematical solution of the Schrödinger equation, Eq. (6.15), for the
hydrogen atom system. When a hydrogen atom changes state by emitting
or absorbing a photon, the wavefunction changes and, thus, goes from one
set of quantum numbers to another. That is, there is a change in one or more
quantum numbers. For allowed transitions, the following are the allowed
changes in the various quantum numbers:

∆n = anything
∆l = +1 or –1

∆ml = 0 or +1 or –1
∆ms = 0.

There are similar selection rules for multielectron atoms, but the quantum
numbers are defined a little differently. For small atoms (Z < 20 or so), we
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treat the electrons as if their orbital angular momenta combine, or couple, to
produce an overall orbital angular momentum whose values are given by a
quantum number L. Similarly, the spin angular momenta couple to pro-
duce an overall spin angular momentum whose values are given by a
quantum number S. Finally, we recognize that the overall orbital angular
momentum and the overall spin angular momentum can also couple, and
the resulting total electronic angular momentum is represented by the
quantum number J, which has a z-component represented by MJ. For
atoms, the selection rules are

∆L = 0 or +1 or –1
∆S = 0

∆J = 0 or +1 or –1
∆MJ = 0 or +1 or –1,

except that ∆L = 0 is forbidden if the initial value of L is 0 and ∆J = 0  is not
allowed if the initial value of J is 0.

For larger atoms, we gain a better understanding of electronic behavior
if we assume the orbital angular momentum and the spin angular momen-
tum of each individual electron couple to make a total electronic angular
momentum represented by the quantum number j. However, even for
large atoms, it is common for the individual electronic states to be labeled
according to the L and S quantum numbers, so the above selection rules are
still useful for large atoms as well.

Electronic spectra of diatomic molecules follow similar selection rules,
except the relevant quantum numbers are labeled Λ, Σ, and Ω . These rep-
resent the magnitude of the orbital electronic momentum along the molec-
ular axis, the projection of the spin angular momentum along the
molecular axis, and the vector combination of the first two components,
respectively. For diatomic molecules, the selection rules are

∆Σ = 0
∆Λ = 0 or +1 or –1
∆Ω = 0 or +1 or –1.

Selection rules for electronic transitions in molecules are based on group
theory and depend on the symmetry of the molecule. The group-theoreti-
cal basis of selection rules was introduced briefly in the previous section.
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7.4.2 Pure rotational and vibrational spectroscopy
The rotations of molecules can be treated quantum-mechanically by
assuming that the molecule acts as a rigid rotor and can thus be treated as a
particle moving on a spherical surface. This is one of the ideal systems that
quantum mechanics can treat analytically. In doing so, we derive rotational
states that depend on a rotational quantum number J. There is also the z-
component of the rotation, indexed by the quantum number MJ. (It is
important to not confuse these labels with the labels used to describe the
total electronic angular momentum states, although they do come from a
similar quantum-mechanical treatment.) However, molecules can have up
to three unique axes of rotation, depending on the symmetry of the mole-
cule. Tetrahedrally shaped methane, CH4, has all-equivalent axes of rota-
tion, so its rotational behavior can be described with a single rotational
quantum number. Molecules like methane are referred to as spherical tops.
The rotations of the bent water molecule, H2O, have three different rota-
tional axes with different rotational behavior; molecules of this type are
called asymmetric tops. The pyramidal-shaped ammonia molecule, NH3,
needs only two unique axes to be defined. These molecules are called sym-
metric tops, and there are two distinctions among symmetric tops. Prolate
symmetric tops have their two larger rotational moments of inertia equal,
while oblate symmetric tops have their two smaller rotational moments of
inertia equal. Symmetric tops also have quantized angular momentum
about a molecular axis, and the quantum number K is used to represent the
quantized angular momentum about that axis.

Recall from Section 7.2 that there are dipole-moment-related selection
rules for rotations. Molecules must have a permanent dipole moment to
show a pure rotational spectrum. Because of their symmetry, spherical tops
will never have a dipole moment and therefore will not show a pure rota-
tional spectrum.

Prolate and oblate symmetric tops may have a permanent dipole
moment, so may show a pure rotational spectrum. When they do, we can
describe them in terms of selection rules for changes in J, MJ, and K:

∆J = 0 or +1 or –1
∆MJ = 0 or +1 or –1

∆K = 0.

Again, there is the exception that ∆J = 0 is not allowed if the initial value of
J is 0. If the rotational spectrum is measured using Raman scattering, we
have the rule that ∆J = +2 or –2.
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For asymmetric tops, J and MJ are useful quantum numbers, so the first
two expressions are good guides as selection rules. However, K is no longer
a useful quantum number, and selection rules get more dependent on
group theory. We will not consider such cases here.

The vibrations of polyatomic molecules can look complex, but the vibra-
tions of a molecule with N atoms can always be broken down into 3N – 6
normal modes of vibration. These normal modes, collectively, describe all
possible vibrations of the molecule. Each vibration can be treated indepen-
dently as if it were an ideal harmonic oscillator. Quantum mechanics gives
us analytic solutions for the ideal harmonic oscillator system, and in doing
so introduces a vibrational quantum number v for each vibration.

The quantum-mechanical selection rule for vibrations is straightfor-
ward:

∆v = +1 or –1.

Mathematically, this selection rule derives from the Taylor-series expansion
of µ as a function of r, Eq. (7.10). Recall that we truncated our expansion
after only two terms. The selection rule above is based on the second term
in Eq. (7.11), which leads to a transition-moment integral having the
expression  in it. However, if we take the Taylor-series expansion
to the next term, we would get a transition-moment integral that has the
expression  in it. This term would ultimately yield some addi-
tional allowed transitions that follow the selection rule

∆v = +2 or –2.

These transitions, called overtone transitions, are typically less intense than
those that obey ∆v = +1 or –1. Higher-magnitude changes in ∆v are for-
mally allowed by additional terms in the Taylor-series expansion of µ, but
are correspondingly less intense in most circumstances. These selection
rules hold if you are measuring the vibrational spectrum using Raman
scattering as well.

7.4.3 Magnetic resonance spectroscopy
In magnetic resonance spectroscopy, we are taking advantage of the fact
that subatomic particles (either electrons or nuclei) have a spin I (or S for
the electron). As is true for any spin angular momentum, there are 2I + 1
(or 2S + 1) possible orientations of the z-component of the spin angular
momentum; this z-component is labeled mI (or mS). Normally, the energy of

Ψ1
* r∆ Ψ2

Ψ1
* r∆( )2Ψ2

��������������		
���	 �		����������	�������	���	� 		 	



SELECTION RULES 103

the system is independent of the z-component’s quantum number. We say
that these wavefunctions are degenerate. But in the presence of a magnetic
field, the different orientations of the z-component of the spin—that is, the
differing values of mI or mS—have different energies. Energy in the form of
photons can be absorbed and the system can experience a transition from
one spin orientation to another spin orientation. That is, there is a change
in the mI (mS) quantum number. The selection rules for magnetic resonance
spectroscopy are

∆mI = +1 or –1
∆mS = +1 or –1.

Despite the simple selection rules, NMR and ESR spectra can be very com-
plex, because the exact resonance condition depends on the bonding envi-
ronment of the particle involved. 

7.4.4 Violations, mixing types of motions
As useful as selection rules are, they are not followed absolutely. For exam-
ple, vibrational spectra routinely measures combination bands, which are
absorptions in which ∆E = h(Σνi), where an absorption can be assigned to a
sum or difference of two or more vibrations of a molecule. Forbidden tran-
sitions are commonly observed in the electronic spectra of transition metal
ions, and such transitions are actually responsible for the variety of colors
seen in transition metal compounds. Formally forbidden transitions are
responsible for phosphorescence, a long-lived emission process that is long-
lived because the transition is actually a forbidden one.

There are other reasons that spectra do not always follow the rules. One
is that the Born-Oppenheimer approximation, mentioned in Chapter 6,
really is an approximation, and many times we actually probe a transition
that is a combination of several molecular processes. Or, one molecular
process (like a vibration) might increase the probability that another pro-
cess will absorb light even though the selection rules don’t formally allow
it. Thus, we can have vibronic spectra, in which electronic transitions are
induced by the interaction of vibrational states with electronic states.

Another common circumstance is to have one molecular process super-
imposed on another molecular process. For example, electronic spectra of
molecules commonly show a pattern that is caused by the vibrations of the
molecules. Another common occurrence is the superimposition of individ-
ual rotational transitions on a single vibrational absorption of a molecule.
Figure 7.3 shows an example of such a rovibrational spectrum for gas-phase
CO2. Although CO2 has no dipole moment and thus does not exhibit a pure
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rotational spectrum, this particular vibration distorts the molecule enough
to give it a short-term dipole moment. Under those conditions, we see the
equivalent of a pure rotational spectrum superimposed on the vibrational
transition.
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Figure 7.3 A rovibrational spectrum of the asymmetric stretching motion of gas-
phase CO2. This spectrum corresponds to a ∆n = +1 and ∆J = +1 or –1 simultaneously.
The regions where ∆J is +1 and where ∆J is –1 are labeled.
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Chapter 8
RESOLUTION AND NOISE

8.1 Introduction
There are several issues that communicate how “good” a spectrum is. In
this chapter, we will focus on two of them: resolution and noise. Both are
factors that can affect the quality of a spectrum. Keep in mind that not all of
the issues discussed here are applicable to all types of spectroscopy. A
good spectroscopist should recognize which issues will impact the particu-
lar spectrum being measured.

8.2 Resolution in Dispersive Spectrometers
A spectrum, recall, is usually some graphical representation of electromag-
netic radiation absorbed or emitted versus the energy of that radiation.
One concern of anyone measuring a spectrum should be, how close can
two different spectral transitions be and still be differentiated as different
signals? This question relates to the idea of resolution.

The American Society for Testing and Materials (ASTM) defines spectral
resolution as

the ratio λ/∆λ, where λ is the wavelength of radiant energy being
examined and ∆λ is the spectral bandwidth expressed in wavelength
units; or, alternatively, the ratio ν/∆ν, where ν is the wavenumber of
the radiant energy being examined and ∆ν is the spectral bandwidth
expressed in wavenumber units.

That is, the resolution is some unitless numerical value that depends on the
wavelength or frequency (i.e., wavenumber) of the light and the spectral
bandwidth of the spectrometer’s monochromator. For dispersive spec-
trometers, the spectral bandwidth is the wavelength (or frequency) interval
that is coming out of the exit slit or its equivalent. Spectroscopists recog-
nize that no monochromator will pass a single frequency at a time; rather, a
range of frequencies always comes out together.

This definition of resolution depends on the spectral bandwidth,
which is itself determined by the dispersive ability of the monochromator
and the size of the instrument’s exit slit. Since the exit slit’s width can be
controlled by the experimenter or the spectrometer (i.e. automatically),
the dispersive ability of the monochromator ultimately determines the
resolution.

��������������		
���	 		����������	�������	���	� 		 	



106 CHAPTER 8

The ability of a monochromator’s prism or grating to disperse, or sepa-
rate, individual wavelengths of light is given by the ratio , which
relates how far you have to travel in some x dimension to get a specific
change in the wavelength λ of light. Typically, the distance traveled is at
the exit slit, moving from one side of the slit to the other. This ratio is called
the linear dispersion. More commonly used is the reciprocal of the linear dis-
persion, , which indicates how much the wavelength changes with
distance. For example, if a monochromator has a reciprocal linear disper-
sion of 0.75 nm (of λ) per mm (of x), then a slit that is 2 mm wide will pass
a range of wavelengths, ∆λ, of 1.50 nm. The spectral bandwidth can there-
fore be taken as 1.50 nm. (The term spectral bandpass is also used, but the
ASTM definitions use bandwidth as the standard terminology.)

The bandwidth calculated above suggests that resolution changes with
wavelength. For a bandwidth of 1.50 nm, a peak at 700 nm would have a
resolution of 467, while a peak at 300 nm would have a lower resolution of
200. It is indeed the case. The reciprocal linear dispersion does not change
much with wavelength for grating monochromators (although for prism
monochromators the change in dispersion can be large).

While there is a specific formula for resolution, to many spectroscopists
the working definition of “resolution” is a little different. Any two spectral
wavelengths are resolved if they can be absolutely differentiated from each
other. Resolution is not much of an issue when identifying the positions of
two spectral features that are widely separated from each other, although it

∂x/∂λ

∂λ/∂x

Figure 8.1 The baseline criterion for resolution requires that the spectrum reach the
baseline between the two peaks. In this case, the peaks are resolved; if they were
any closer (i.e. overlapping), they would not meet this criterion for resolution.
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may affect their bandwidth. Resolution is much more an issue with spec-
tral features that are close together.

Figure 8.1 shows the baseline criterion for resolution. Two absorptions are
considered resolved if the light signal reaches the spectrum’s baseline
between the two peaks. It can be shown (see Ingle and Crouch) that the
spectral bandwidth must be less than or equal to one-half of the wave-
length difference between the two peaks in order for them to be resolved.
Since an increasingly smaller bandwidth means an increasingly higher
value for resolution (since ∆λ is in the denominator of the definition for res-
olution), we can say that a higher resolution allows us to distinguish
between smaller differences in wavelengths of peaks in a spectrum.

Very close spectral features can overlap, thanks to their intrinsic or
experimental linewidths. The Rayleigh criterion for resolution requires that
if two peaks are overlapping, each peak maximum must be where the
other peak has already reached baseline. Figure 8.2 shows examples of

Figure 8.2 The Rayleigh criterion for resolution is less stringent than the baseline crite-
rion, and probably used more frequently by spectroscopists. It requires that λmax, the
wavelength maximum for the adjacent peaks, be over the baseline and not over
any part of the adjacent peak. In (a), the two peaks are considered resolved by this
criterion, but not the two peaks in (b). Note that in neither case is the baseline crite-
rion for resolution satisfied.
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peaks that are and are not resolved based on this less-stringent criterion.
Most spectroscopists probably use the Rayleigh criterion as the working
definition of resolution.

As indicated above, only a few instrumental factors have a large effect
on resolution in dispersive instruments. Certainly the exit slit width is one
easily controlled factor, although the size of the slit must be selected with
other issues in mind, like signal-to-noise ratios and Fraunhofer diffraction
effects. Perhaps the most important factor is the dispersive element and the
size of the spectrometer. A prism or grating with a higher angular disper-
sion—which is different from linear dispersion—will separate individual
wavelengths better, ultimately providing better resolution. Alternately, a
spectrometer can be made longer to allow the light to disperse more before
hitting the exit slit (with a decrease in throughput, however). Better dis-
persing elements seem to be the obviously favored approach!

8.3 Resolution in Fourier transform spectrometers
Many of the specifics in the previous section are only applicable to disper-
sive spectrometers. One of the more common spectrometers is the Fourier
transform infrared spectrometer, and resolution issues are a little different
for FT machines. Here, we will explore those differences.

In a dispersive spectrometer, both the wavelength and spectral band-
width are determined by the physical characteristics and settings of the
spectrometer. The mirrors and gratings, the entrance and exit slit widths,
even the detector system can contribute to λ and ∆λ. Hence, they all con-
tribute to the resolution of the resulting spectrum.

Fourier transform (FT) spectrometers are different in that all wave-
lengths of light pass through the optics simultaneously. One advantage of
this is that the detector sees a rather bright light, which is more easily
detected than the dimmer signal made by light that has been dispersed by
a monochromator. This is known as Jacquinot’s advantage. But, if all wave-
lengths are observed simultaneously, does this not imply a large ∆λ and
therefore a very low resolution? (Recall that the mathematical definition of
resolution is .)

Actually, resolution for FT spectrometers is considered a little differ-
ently.

Recall that FT spectrometers measure a spectrum differently from a dis-
persive instrument. The crucial part of the FT optics is an interferometer,
which splits the incoming light beam into two parts. One part travels down
a fixed path and is reflected back to the beamsplitter. The other part travels
down a path that has a moving mirror. This part of the light therefore expe-
riences a changing path length as it is reflected back to the beamsplitter. The

λ/ λ∆
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two beams, recombined, pass through the sample and to a detector. Figure
3.5 (back in Chapter 3) shows a simple schematic of an interferometer.

Because all wavelengths of light pass through the interferometer at the
same time, massive destructive interference occurs when the split light
beams are combined––except when the two light paths equal each other.
(Remember, one mirror is moving back and forth.) Then, massive construc-
tive interference occurs. A plot of the recombined light’s intensity versus
the difference in the two pathlengths is called an interferogram. This differ-
ence, called the optical path difference, is designated by the lowercase Greek
letter delta, δ. A typical interferogram is shown in Figure 3.6, also back in
Chapter 3. The sudden intensity at zero path difference (or ZPD) is called
the centerburst. (Note that δ is not the amount that the mirror moves,
because the light beam must travel back and forth before it recombines. The
mirror displacement, ∆, is therefore half the value of δ.)

Lord Rayleigh is credited for recognizing that an interferogram (a plot
of intensity versus position) is mathematically related to a spectrum (a plot
of intensity versus wavelength) by an operation called the Fourier trans-
form. However, it was not until the mid-1960s that efficient computer algo-
rithms were developed to make FT instruments practical.

So how is resolution determined for FT instruments?
Perhaps the first point to make is that resolution is usually phrased dif-

ferently in FT spectra, despite the ASTM definition quoted at the beginning
of this chapter. According to that definition, resolution is defined as λ/∆λ
or ν/∆ν, which implies that a better resolution is expressed as a higher
number. However, it is prevalent in FT spectroscopy to express resolution
as the energy difference (in cm–1) between two closest signals that can be
differentiated. By that convention, a lower numerical value is associated
with a better (or “higher”) resolution. For example, a 32-cm–1-resolution
spectrum can differentiate two absorptions that are separated by 32 cm–1,
while a 0.5-cm–1-resolution spectrum can differentiate two absorptions that
are separated by only 0.5 cm–1. Thus, the second spectrum has a higher res-
olution because it can better differentiate closer signals.

To explain how resolution is determined in FT instruments, here we will
follow the tactic taken by Smith; interested readers might want to consider
Griffiths and de Haseth’s book for a more rigorous treatment. Consider
two peaks (absorptions, transmissions, or other type of positive signal) that
are close to each other. Will they be resolved—using Rayleigh’s criterion, at
the very least—by the spectrometer? First of all, if we are presuming that
the spectrum consists of only two infinitely sharp lines, then the interfero-
gram should be a combination of two sine waves. The two individual sine
waves might look something like Figure 8.3. Notice how closely spaced the
two sine waves are.
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An FT spectrometer measures a signal that is a combination, or sum, of
all of the sine waves. However, it does not record the signal as a continuous
waveform; rather, it digitizes the signal into individual, discrete points.
(Ultimately, a spectrum is stored as a series of (x,y) points.) In order to
resolve the combined waveform into its components, the moving mirror
must move far enough so that enough interferogram points are digitized to
be able to calculate a unique Fourier transformed spectrum. The smaller
the mirror displacement ∆, the less number of points that are used to define
the interferogram. This means that there is less detail in the digitized inter-
ferogram, so the resulting spectrum has a lower resolution. Resolution is
therefore inversely proportional to ∆, the mirror displacement:

resolution . (8.1)

We can also say that the resolution is also inversely proportional to δ, the
optical path difference:

resolution . (8.2)

Is there a more specific relationship? Consider that our two waves of differ-
ent frequencies combine to give regularly spaced nodes of complete
destructive interference, as well as regularly spaced maxima of construc-
tive interference. This pattern of regular maxima and minima is termed a

Figure 8.3 Two signals that are 1.0 cm–1 apart will contribute sine waves to the inter-
ferogram that are very close to each other. In order to resolve the two separate sig-
nals, the interferogram must be determined to a certain level of resolution itself. 

1
∆
---∝

1
δ
--∝
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beat. (The same thing happens in music, when musicians play two tones
that are slightly out of tune.) The beat has its own frequency, which is
determined by the frequency difference of the two component waves:

. (8.3)

(In this example, the beat frequency would actually have wavenumber
units, and so would represent the number of beat “waves” per meter or
centimeter.) The beat also has a wavelength that is the reciprocal of its
wavenumber value:

. (8.4)

The beat wavelength is equal to the distance that the two component
waves, originally in phase, have to travel to get out of phase and then back
into phase again. Figure 8.4 illustrates this definition graphically.

In order for the Fourier-transformed interferogram to resolve the two
frequencies in the spectrum, the interferogram should contain at least one

νbeat ν∆ ν1 ν2 & &

λbeat
1

νbeat

---------&

Figure 8.4 The sum of two sine waves (the lighter lines) of different frequency gives a
characteristic waveform (the darker line) that has a beat. The wavelength of the
composite beat wave is related to the difference in the frequencies of the compo-
nent waves. The beat wavelength also dictates instrumental parameters necessary
to resolve the two component signals after a Fourier transform.
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complete beat. This means that the moving mirror should move by at least 1
λbeat. This ultimately gives us our resolution criterion: the optical path dif-
ference should be equal to the beat wavelength.

. (8.5)

In terms of the difference in the frequencies of the two original signals, we
have

. (8.6)

This is how we determine the relationship between resolution and instru-
mental factors: in order to resolve signals that differ by ∆ν (in cm–1), the dif-
ference in the split light beams’ pathlengths should be 1/∆ν (in cm). Since
the light in the moving-mirror path covers the distance between mirror
and beamsplitter twice, the mirror’s movement must only be half of δ. It is
easy to see from this relationship that for signals that are 1 cm–1 apart, the
mirror must move 0.5 cm; to resolve signals that are 0.50 cm–1 apart, the
mirror must move 1 cm; and so forth. In practice, mirror movements are
usually less than this, but it still represents a good rule-to-thumb for reso-
lution on FT instruments.

The relationship between resolution and mirror movement explains
why higher resolution becomes increasingly challenging. A higher-resolu-
tion spectrum requires that a mirror move farther but with higher accuracy,
especially when averaging multiple scans to reduce noise. Higher resolu-
tion thus requires better optics, better stability, more care—and usually a
higher price. Most commercial instruments can achieve resolutions of 1.0,
0.5, or even 0.25 cm–1 easily.

8.4 Noise: Sources
In spectroscopy, as with any measuring technique, the concept of noise has
an important impact on what is actually been measured. In almost all spec-
troscopic techniques, some sort of signal—an intensity of a light beam, for
example—is measured by a detector. In almost all measurements of this
type, there are variations in the signal that are not due to the absorption/
emission process. Instead, these variations are caused by various factors
inherent in the process of the measurement itself. That is, they are noise.

We differentiate noise from signal, which is the desired measurement
and in almost all spectroscopic techniques is electrical in nature. Zero sig-
nal might be zero current, but it may also be some arbitrary baseline cur-

δ λbeat&

δ 1
∆ν
-------&
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rent. Deviations from this baseline represent a signal to be measured. Noise
is a fluctuation in a signal that tends to obscure the actual signal. A simple
example is a person trying to say “hello” while a 100-piece orchestra is
playing Mozart at full volume. A spectroscopic example would be a flicker
in the source of a single-beam colorimeter, causing a fluctuation in the
intensity of the light measured by the detector. In either case, an unwanted
signal is imposing itself on a desired measurement. That is noise.

Noise has several sources, which we will discuss here. At some level,
noise in spectroscopy is inherent because of the very nature of light and
atoms. Apart from noise caused by the nature of the universe, what are the
types of noise in a typical spectroscopic measurement?

We first differentiate between random and nonrandom noise. Random
noise is as its name suggests: unpredictable. A flicker in a source lamp may
be one type of random noise. Nonrandom noise has some sort of temporal
pattern to it. For example, someone pacing back and forth next to his sensi-
tive FTIR optical bench might be causing vibrations that can interfere with
the measurement of a vibrational spectrum (as the author did once as a
graduate student).

Interference is a type of noise caused by the surroundings imposing their
characteristics on the spectroscopic system. For example, in the United States,
alternating current has a frequency of 60 cycles per second; it is not uncom-
mon to find nonrandom noise at that frequency and/or its multiples. Europe-
ans use 50 Hz AC current, and so should be wary of noise at that frequency
and its multiples. Similarly, any electronic frequency generator (say, a 2-kHz
generator used in a conductivity experiments in a physical chemistry lab) has
the potential for imposing interference noise on a spectroscopic experiment.

Some interference noise can be nonrandom. If a large electrical device
on the same electrical circuit is turned on during an experiment, an electri-
cal fluctuation can impose some interference noise. The passing of an ele-
vator, as another example, can affect the performance of instruments
nearby. Infrared signals between computers and printers and remote mice
might be interfering with your IR measurement, although that is probably
a highly improbable scenario.

Random noise that we cannot escape is sometimes referred to as white
noise. For this type of noise, the amount (technically, its power) is indepen-
dent of frequency and appears as a certain baseline level at any frequency.

Some random noise is frequency-dependent, however. Because it takes
less energy to make low-frequency noise, there is more of this sort of noise
at low frequencies than at high frequencies. Because of this, this type of
noise is called 1/f noise, with f representing frequency.

Finally, noise could be due to unwanted signal. This type of noise is
especially problematic for two reasons. First, it may be difficult to identify
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the source of the unwanted signal. For spectroscopists who build their own
apparatus, this can be a major obstacle. Second, while the source may be
identifiable, the elimination of the source may be problematic. Again,
astronomers and their battles with streetlights exemplify this problem.

What are the sources of these types of noise? We have already men-
tioned a few. Electrical power (no matter what the source—a wall outlet, a
power supply, a battery) brings with it a potential source of noise.
Unwanted signal is another source.

Other sources of noise are more insidious. They either have their origin
in poor experimental setup or unrecognized experimental hazards. An
apparatus for doing visible spectroscopy that has bright, shiny compart-
ments is virtually begging for random reflections to add to the noise. Simi-
larly, infrared spectra from spectrometers located next to mechanical
vacuum pumps might be contaminated with vibrational noise as well.
Even more invisible are the electrical circuits that we use to get our power.
In many sensitive systems, if certain components are simply plugged into
the same circuit in a room, there may be enough feedback noise to affect a
measurement. Recognition of this sometimes requires that new electrical
circuits be laid before proper experiments can be performed. Seldom does
spectroscopy concern itself with building codes! But the nature and source
of noise sometimes require it.

8.5 Noise: Minimizing
Minimizing noise in spectroscopic measurements is of varying concern to
experimentalists. If one uses a commercial spectrometer, its very design
should take noise-minimization factors into account (with a major excep-
tion). On the other hand, one who works with a homemade spectrometer
will have to work to see that noise is minimized in either the design of the
instrument or the performance of the experiment (or both). Let us discuss
some ways in which spectroscopists minimize noise in a spectrum, with
the understanding that different approaches are necessary for different
types of spectroscopy, and that there will always be some noise in any
spectrum.

Spectroscopists consider the signal-to-noise ratio (S/N) one indication
of the quality of a spectrum. It is defined as the average value of the signal
ratioed to its standard deviation. Most spectroscopic instruments need a
signal-to-noise ratio of at least three (and preferably higher, of course) to
support the identification of a spectral transition.

Isolate your system. As mentioned in the previous section, noise can
be caused by electrical circuits, mechanical vibrations, or the pres-
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ence of unwanted signals from other light sources or unwanted
reflections (called stray light). If you isolate your spectrometer or light
source or detector from these things, you can minimize their negative
impact on a spectrum. For example, you can plug an electronic
device into a dedicated electrical circuit to minimize interference
from other electrical devices, or plug all devices into the same
grounded circuit. Metal surfaces in the beam path of a spectrometer
can be painted black to minimize stray reflections. Black cloth,
opaque shields, and other materials can be used to block light from
unwanted sources. Many companies sell massive tables that mini-
mize transmission of mechanical vibrations; also, vibration-damping
systems can be built to keep mechanical vibrations from affecting a
measurement. (For example, a vibration-damping system was neces-
sary for the developments of the first working scanning tunneling
microscope.)

Increase source intensity. The more intense the light source is, the
less the spectrum should be affected by unwanted light sources. For
example, the use of a diamond anvil cell (DAC) in an infrared spec-
trometer blocks more than 99% of the infrared beam. Because of the
low beam intensity reaching the detector, resulting spectra are very
noisy. The situation can be improved by using special condensing
optics designed to focus the IR beam to a smaller spot so that more
light can pass through the DAC. Many spectroscopic accessory man-
ufacturers sell optical assemblies for the specific purpose of improv-
ing light throughput and, therefore, increasing the S/N.

Spectroscopists performing attenuated total reflection (ATR) spec-
troscopy also have this problem and can get optics designed to
increase the throughput of the light through the ATR element. The
importance of source intensity is also illustrated by the changes in
Raman spectroscopy with the development of the laser. Before the
laser, Raman spectra were recorded using mercury or xenon lamps as
the light source, and were measured over a time span of hours or
days. Over such a time, sources of noise could have a larger effect on
the final spectrum. Using lasers, so many more photons were avail-
able from the source that a Raman spectrum could be measured in
much less time and with correspondingly less noise.

On a similar note, light sources that have a flicker also contribute
noise to spectrum. The obvious solution is to minimize the flicker by
using a more stable power supply or modifying the source itself so
that it outputs a more stable light intensity.
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Decrease the spectral resolution. Though not the best solution, this
is sometimes a necessary trade-off if no other option is available.

Average multiple scans. This is the major exception that was men-
tioned at the beginning of this section. Analog recording of a spec-
trum (that is, strip charts) is decreasing in popularity, because of the
prevalence of personal computers. Because of this, multiple spectral
scans of a sample can be measured, stored in computer memory, and
then averaged. The averaging decreases the amount of random noise,
which tends to cancel itself out if it is truly random. A well-known
rule is that the S/N increases proportionally to the square root of the
number of scans. Thus, a spectrum that results from 16 scans should
have a S/N that is four times higher than a spectrum from a single
scan. The spectroscopist usually has the ability to specify how many
scans are measured and averaged. Spectrum averaging is especially
common in FTIR spectroscopy.

Figures 8.5 and 8.6 show the effect of spectrum averaging. Figure 8.5 shows
a generated spectrum with the signal (at the position marked by an arrow)
that is effectively lost in the noise. However, when 32 of the spectra are
measured and averaged, the level of noise is decreased and the signal is
more apparent. Although Figs. 8.5 and 8.6 are contrived examples, they are
exact parallels of what occurs when measuring spectra.

Figure 8.5 Random noise hides a spectral signal, which is not apparent in this simu-
lated spectrum.
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There is a trade-off with multiple scans, too. It takes more time to collect
more spectra. In addition, because the increase in the signal-to-noise ratio
is proportional to the square root of the number of scans, the improvement
in the spectrum slows as the number of scans increases. To improve the sig-
nal-to-noise ratio of Figure 8.6 by a factor of 2, we will need to measure 32 ×
4 (128) scans and average them. However to improve the S/N by a factor of
10, 32 × 100 (3200) scans will have to be measured. Realistically, there will
always be a balance between effort and noise.
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