tel su opy

UNLIMITED

BR115324

y FC

JAN 0 2 1991

E MEMORANDUM No. 4415

RSRE MEMORANDUM No. 4415

ROYAL SIGNALS & RADAR ESTABLISHMENT

LONG SELF-SUSTAINED DISCHARGE PULSES FOR CO₂ LASERS: FURTHER SKIRMISHES

Author: M R Harris

Approved for public releases Diamouson Universed

> PROCUREMENT EXECUTIVE, MINISTRY OF DEFENCE, RSRE MALVERN, WORCS.

> > (注意) もうごうう

1 6 3 K

	• • •		
0083842	CONDITIONS OF RELEASE	BR-115324	
	*****	DRIC U	
COPYRIGHT (c)			
1988 CONTROLLER			
HMSO LONDON			

Reports quoted are not necessarily available to members of the public or to commercial organisations.

「「「「「「「「」」」

ROYAL SIGNALS AND RADAR ESTABLISHMENT

Memorandum 4415

TITLE: Long Self-sustained Discharge Pulses for CO₂ Lasers: Further Skirmishes

AUTHOR: M R Harris

DATE: August 1990

SUMMARY

Non-externally sustained glow discharges of $10.8\mu s$ and $26.25\mu s$ duration are operated in CO₂ laser gas mixtures over a pressure range 0.3 to 1 atm. The effects of gas mixture, pressure and pulselength are characterised and the influence of CO₂ dissociation products on the discharge are examined along with measurements of the rate of dissociation of CO₂.

Accesica For NTIS CRAEL DHO TAB Ē U announce f 51 Justification -₿y Di tabulion/ Availability Costoc Avan a dijer Dit Special

Copyright © Controller HMSO London 1990

THIS PAGE INTENTIONALLY LEFT BLANK

.

LONG SELF-SUSTAINED DISCHARGE PULSES FOR CO₂ LASERS: FURTHER SKIRMISHES

1 INTRODUCTION

RSRE Tech Memo No 4353 (Ref 1) described initial attempts at operating long self-sustained discharge pulses in typical CO_2 laser gas mixtures at total pressures up to about $\frac{1}{2}$ atmosphere. This work established broad requirements for the operation of such discharges showing promise for stable operation of pulses lasting tens of microseconds at pressures approaching 1 atmosphere. Presented here are the results of a more detailed characterisation involving studies of dependence on pressure, gas mixture and pulselength. The effect on the discharge of the CO_2 dissociation products CO and O_2 are examined, also measured is the rate at which CO_2 is dissociated.

2 DISCHARGE CONFIGURATION

2.1 Mechanical

Figure 1 depicts schematically the discharge chamber and electrical arrangement. The 100 x 30 x 30 mm³ glow discharge is struck between a $\pi/2$ Rogowski profiled cathode and a perforated plane anode having approximately 30% optical transparency over the discharge area. The anode is formed from a 3 mm thick aluminium alloy plate drilled with an array of 4 mm dia holes giving staggered rows on a 6 mm x 4mm separation over an area slightly larger than the discharge. A radiussed cutter is followed into the holes to round out edges and give some improvement in optical transparency.

Positioned 25 mm below the anode is a flashboard which provides a burst of UV illumination to pre-ionise the discharge volume. The flashboard is formed from 0.6 mm thick alumina with a metallised pattern on both sides. On the back of the board a large area ground plane is formed whilst rows of 4 mm square pads are laid down on the front surface arranged so that 9 rows of 5 arcs each illuminate the discharge area.

2.2 Electrical

The flashboard was excited by a 10 nF capacitor in a rapid discharge circuit switched by spark gap 1 (SG1), charging voltages ranged from 30-45 KV. To ensure

that all rows of arcs were struck each row was ballasted with a 50Ω carbon compound resistor. Total peak currents were in the vicinity of 1500 Amps and pulse durations close to 400 ns.

SG1 also controlled two other rapid discharge circuits charged by the same high voltage supply as the flashboard circuit. One of these, the "spiker", rapidly discharges a 2nF capacitor through the main discharge volume. This highly overvolted discharge provides init. I breakdown of the gas, dramatically increasing the electron density establishing conductivity in readiness for the application of the main discharge pulse.

The third circuit switched by SG1 comprises a nominal 1 nF capacitor which applies a trigger pulse to fire spark gap 2 (SG2) thus initiating the main discharge pulse. The main discharge pulse length was determined by a pulse forming network (PFN) the impedance of which was generally chosen to be close to or somewhat higher than match with the discharge. Charging voltages were typically less than 30 KV.

3 DISCHARGE CHARACTERISATION

3.1 Gas Mixture

The effect of variation of the ratio of constituent gases was assessed by setting the CO₂ concentration at 17% and altering the N₂ to Helium ratio. A CO₂ level of 17% was chosen as representative of a moderately rich laser gas mixture, earlier results have demonstrated that reducing the CO₂ concentration leads to improved discharge stability (ref 1). Fig 2 is a graphical representation of the results of this series of experiments. The total pressure was varied over a range from 0.3 to 1 atmosphere but assessment over the full range of mixtures was only possible at 0.65 atm and below. Above 0.65 atm with the more N₂ rich mixtures an insufficient voltage was available from the HT unit charging the "spiker" to satisfactorily breakdown the discharge gap. Indeed, at 1 atmosphere only the the most Helium rich mixture was operable. Fig 3 shows the variation of the discharge electric field strength with N₂ concentration. As the Helium is reduced the field strength increases, and over the range examined is independent of the total gas pressure.

At all pressures there is a marked trend to higher discharge energy loadings being achievable as the N_2 content increases. Although higher specific energy densities are possible at lower pressures Fig 4 shows that the fall off with increasing

pressure is not sufficient to prevent volumetric energy deposition maximising for any particular gas mixture with increased pressure. The criteria used to judge the limit of discharge energy loading was the appearance of an arc. As the discharge voltage and current increase arcs begin to set in late in the pulse, and as V and I are increased further the arc appears earlier. The values reported for field strength and energy deposition are those relating to an operating point just below onset of arcing giving reliable and reproducible operation from shot to shot.

3.2 Pulse Length

The series of experiments described above were carried out using a 10.8 μ s PFN, to investigate the effect of further increasing the pulse-length a 26.25 μ s PFN was utilised. Fig 5 compares the performance at the two pulse durations. The overall trend to improved specific energy deposition at higher N₂ concentrations is repeated at the longer pulse-length but the effect is more marked, whilst the curve for the shorter pulse is flattening out above a N₂/(N₂ + He) ratio of about 0.7 the longer duration pulse is still rising steeply.

3.3 Discharge Gap

An attempt was made to extend the discharge operational range at atmospheric pressure to N_2 rich gas mixtures by reducing the discharge gap from 3 cm to 2 cm and thus overcome the charging voltage limitation on the spiker capacitor. It rapidly became apparent that operation at the reduced gap was markedly inferior. A comparison of performance at the reduced and normal gaps is shown in Figure 6. No attempt was made to ascertain why the performance was degraded, but the implication is that this discharge technique is better suited to large cross-section, hence high energy, devices.

4 CO₂ DISSOCIATION PRODUCTS

4.1 Tolerance to Dissociation Products

Since it is desirable to operate CO_2 lasers sealed off it is useful to know how the dissociation products affect the discharge. The dissociation products O_2 and COwere added to the flowing gas stream separately and together. Where both were added a ratio of 2.5 $CO:O_2$ was used, this non-stoichimetric ratio was chosen as typical of both short pulse TEA lasers and e-beam sustained devices (refs 2 & 3).

Fig 7 shows the effect on maximum energy loading for the addition of O_2 , CO and CO + O_2 . The discharge was operated at a total pressure of 0.65 atm in a gas mixture with $N_2/(N_2 + He) = 0.7$, the pulse length was 10.8 μ s. Where CO + O_2 was added the horizontal axis of the graph refers to the O_2 component. Although arc free discharges are operable to O_2 levels beyond 1% the specific energy deposition is greatly reduced and in practice O_2 levels beyond about 0.25% would be undesirable.

Fig 8 shows the effect of dissociation products on electric field strength. O_2 , CO, and CO + O_2 all increase the value of E/P at which the discharge operates. The effect of CO is not quite as marked as that of O_2 , but the similarity suggests that CO has a strong electron affinity! Fig 9 compares the discharge I-V characteristics with and without the addition of 1% CO. The added CO leads to a large increase in discharge impedance, again, characteristic of an electron attacher. This is not understood, but might be attributable to the extremely high attachment coefficients of the metal carbonyls (ref 4) which are inevitably present in CO which is stored in steel cylinders.

4.2 CO₂ Dissociation Rate

To determine catalyst requirements for sealed operation a knowledge of the rate at which CO_2 is dissociated in the discharge is required. The apparatus used for this measurement is shown schematically in Fig 10. The discharge cell was operated sealed at 0.65 atm for a number of shots, the pressure was brought to atmospheric by the addition of N₂. The gas at atmospheric pressure was circulated around a loop containing a bellows pump and an infrared absorption CO analyser. To quantify the contributions to dissociation by the various discharge elements measurements were carried out operating the flashboard alone and the flashboard plus spiker, as well as the full discharge.

A solid CO_2 cold trap was introduced to the system to trap out condensible species which were strong electron attachers, probably mostly water vapour liberated by the large amount of plastic used in the cell construction. Without the cold trap once the discharge cell was sealed off the discharge impedance would rise dramatically, even with the cold trap some impedance rise and consequent loss of performance was suffered. This impedance increase could not be attributed to the small levels of O_2 and CO produced by the discharge and appeared in the absence of discharging. The species producing this impedance rise have not been determined.

A 10.8 μ s discharge operating at 0.65 atm in 4N₂:1CO₂:1He gas mixture at approximately 15KV and 33 Amps for 52 shots produced 0.012% CO. Since the system volume is about 5 litres this equates to a CO generation rate of 1.15 ℓ Pa/shot for the 90 cc discharge. For comparison, a mini-TEA laser with an 11cc discharge volume generated CO at a rate of 1.67 ℓ Pa/shot (ref 5).

Similar measurements were carried out for the flashboard alone over 200 shots and the flashboard and spiker for 150 shots. The contribution due to the various elements making up the total discharge were:-

Flashboard	< 10%
"Spiker"	> 60%
"Sustained"	
discharge	~ 30%

Under the conditions that the device was operating about 10% of the total energy dissipated was going into the spiker which provided over 60% of the dissociation. This is almost certainly due to the extremely high value of E/P imposed during this step where a high degree of electron multiplication is sought.

5 CONCLUDING REMARKS

Although this memorandum is entitled 'Long Self-Sustained Discharge Pulses....' the mode of operation is more akin to that of the 'pulser sustainer' device. If the interpretation of self-sustained operation is taken as the discharge being operated such that ionisation processes are generating electrons at a rate exactly matching the loss due to electron removal processes, then, apart from the spiker, this scheme does not qualify. The I-V plot in Fig 9 shows a nearly ohmic character whereas in the self-sustained mode discharges show large increases in current for virtually no voltage rise. Therefore the discharges described here are not operating at sufficiently high field strengths for electron generation to match loss. Further evidence of this can be gained from the voltage and current waveforms which tend to show some increase in voltage and fall in current with time during the pulse, i.e. the impedance rises during the pulse as the electron density decays. The onset of instability no doubt reflects a crossing of the threshold into true self-sustained operation. The term self-sustained is correct in so far as the discharges are not externally sustained, and it is this feature which is the virtue of this technique.

ACKNOWLEDGEMENT

I would like to express thanks to Dr D V Willetts for encouraging discussion on this topic.

REFERENCES

- 1 M R Harris RSRE Technical Memorandum No 4353, Jan 1990.
- 2 D S Stark, A Crocker and G J Steward. J. Phys E Sci. Instrum, Vol 16, pp158-161.
- 3 M R Harris and D V Willetts. Proc. 5th Conf on Coherent Laser Radar, Munich, 5-9 June 1989, pp105-108.
- 4 V A Gurashivili et al. Sov. Phys. Tech. Phys. Vol 34 pp 1343-1344, 1989.
- 5 D S Stark, P H Cross and M R Harris. J. Phys E Sci. Instrum. Vol 11, pp 311-315, 1978.

Figure 1. Electrical arrangement for long pulse self-sustained operation.

CO2 = 17%; pulselength = 10.8 μ S.

CO2 = 17% ; pressure = 0.65 atm.

CO2 = 17%; N2/(N2+He)= 0.7; P= 0.65 atm.

′%;N2/(N2+He)=0.7;pres

Figure 10. Arrangement for measurement of CO2 dissociation rate

REPORT DOCUMENTATION PAGE DRIC Reference Number (if known)

Internet Reference Report No. Month Year MEMO 4415 AUGUST 1990 rightation Name and Location RSRE, St Andrews Road Malvern, Words MR14 3PS ontering Agency Name and Location Image: Classification Image: Classification Image: Classification Se LONG SELF-SUSTAINED DISCHARGE PULSES FOR CO_LASERS: FURTHER SKIRMISHES Image: Classification (U, R, C or S) U UNCLASSIFIED The classification (U, R, C or S) U U Image: Classification (U, R, C or S) U reference Contract Number and Period U U Image: Classification (U, R, C or S) U reference Contract Number and Period U Image: Classification (U, R, C or S) U reference Contract Number and Period Contract Number and Period Image: Classification and Ref 16 HARRIS, M R Image: Classification of Classification and Ref Image: Classification and Ref 16 HARRIS, M R Image: Classification of Classification of Classification are operated in CO, laser ga Image: Classification (U, R, C or Q) Non-externally sustained glow discharges of 10.8 µs and 26.25 µs duration are operated in					
MEMO 4415 AUGUS1 1990 Implement Name and Location RSRE, St Andrews Read Malvern, Worcs WR14 3PS Implement Name and Location Implement Name and Location Implement Name and Location Implement Name and Location Implement Name and Location Implement Name and Location Implement Name and Location Implement Name and Location Implement Name and Location Implement Name and Location Implement Name and Location Implement Name and Location Implement Name and Location Implement Name and Location Implement Name and Location Implement Name and Location Implement Name and Period Implement Name and Period Implement Name Other References Implement Name and Period Implement Name Implement Name and Period Implement Name and Period Implement Name Implement Name and Period Implement Name and Period Implement Soft Number Implement Name and Period Implement Name and Period Implement Name Implement Name and Period Implement Name and Period Implement Soft Name Implement Name and Period Implement Name and Period Implement Soft Name and Social Name And Social So Implement Soft He rate of dissocial Name And Socia So Implement Soft	Driginators Reference/Report No.	Month	Year		
	MEMO 4415	AUGUST	1990		
HSHE, SI ADDREWS HOAD Makern, Words WR14 3PS onkoring Agency Name and Location is LONG SELF-SUSTAINED DISCHARGE PULSES FOR CO ₂ LASERS: FURTHER SKIRMISHES apert Security Classification UNCLASSIFIED relign Language Title (in the case of translations) relign Automotive of the rate of translations on the distribution of the document) UNLIMITED	righters Name and Location				
	Malvern Worcs WR14 3PS				
Pagination and Ref LONG SELF-SUSTAINED DISCHARGE PULSES FOR CO ₂ LASERS: FURTHER SKIRMISHES prof Security Classification UNCLASSIFIED Tride Classification (U, R, C or S) U UNCLASSIFIED Tride Classification (U, R, C or S) U Tride Classification and Ref Contract Number and Period Contract Number Tride Classification and Ref HARRIS, M R U Tride Classification and Ref 16 Tride Tride Classification and Ref 16 Tride Classification and Ref 17 Tride Classification and Ref 18 Tride Classification and Ref 19 Tride Classification and Ref 19 Tride Classification and Ref 19 Tride Classification and Ref 10 Tride Classification and Ref 10 Tride Classification and Ref 10 Tride Classification and Ref 16 Tride Classification and Ref 16 Tride Classification and Ref 16 Tride Classification and Ref 17 Tride Classification and Ref 18 T					
ie LONG SELF-SUSTAINED DISCHARGE PULSES FOR CO ₂ LASERS: FURTHER SKIRMISHES port Security Classification UNCLASSIFIED Trite Classification (U. R. C or S) UNCLASSIFIED Trite Classification (U. R. C or S) UNCLASSIFIED Triterance Details percy Reference Contract Number and Period oped Number Other References Contract Number and Period oped Number HARRIS, M R HARR	Ionitoring Agency Name and Location				
LONG SELF-SUSTAINED DISCHARGE PULSES FOR CO ₂ LASERS: FURTHER SKIRMISHES perior Security Classification (U, R, C or S) UNCLASSIFIED relign Language Title (In the case of translations) relign Language Title (In the case of CO ₂ dissociation products on the discharge are examined along wit relign Language Title (In the case of translations of the case of translations) relign Language Title (In the case of translations) relign Language Title (In the case of translations) relign Language Title (In					
LONG SELF-SUSTAINED DISCHARGE PULSES FOR CO ₂ LASERS: FURTHER SKIRMISHES Peror Security Classification UNCLASSIFIED Trie Classification (U, R, C or S) UNCLASSIFIED Trie cl					
aport Security Classification UNCLASSIFIED reign Language Title (in the case of translations) percy Reference ged Number development thors HARRIS, M R HARRIS, M R Magination and Ref HARRIS, M R Magination and Ref 16 retact Non-externally sustained glow discharges of 10.8 µs and 26.25 µs duration are operated in CO ₂ laser ga mixtures over a pressure range 0.3 to 1 atm. The effects of gas mixture, pressure and pulselength ar characterised and the influence of CO ₂ dissociation products on the discharge are examined along wit measurements of the rate of dissociation of CO ₂ . Abstract Classification (U.R.C or UNLIMITED	LONG SELF-SUSTAINED CO2 LASERS: FUF	DISCHARGE PULSES	FOR		
percy Reference percence percen	-				
UNCLASSIFIED verigin Language Title (in the case of translations) orderence Details pency Reference oped Number oped Number Contract Number and Period oped Number Pagination and Ref HARRIS, M R Pagination and Ref 16 Non-externally sustained glow discharges of 10.8 µs and 26.25 µs duration are operated in CO ₂ laser ga mixtures over a pressure range 0.3 to 1 atm. The effects of gas mixture, pressure and pulselength ar characterised and the influence of CO ₂ dissociation products on the discharge are examined along wit measurements of the rate of dissociation of CO ₂ . Atteract Classification (U.R.C or U eriptors titution Statement (Enter any limitations on the distribution of the document) UNLIMITED		1			
Pency Reference Pagination and Ref Other Reference Contract Number and Period Other Reference R					
pency Reference percy Reference percy Reference percy Reference contract Number and Period pede Number thors HARRIS, M R Pagination and Ref 16 stract Non-externally sustained glow discharges of 10.8 µs and 26.25 µs duration are operated in CO ₂ laser ga mixtures over a pressure range 0.3 to 1 atm. The effects of gas mixture, pressure and pulselength ar characterised and the influence of CO ₂ dissociation products on the discharge are examined along wit measurements of the rate of dissociation of CO ₂ . Abstract Classification (U.R.C or U scriptors percent of Statement (Enter any limitations on the distribution of the document) UNLIMITED	reign Language Title (in the case of translations)				
pency Reference pency Reference pency Reference percy Reference percy Reference Contract Number and Period pegnation and Ref HARRIS, M R HARRIS, M R Non-externally sustained glow discharges of 10.8 µs and 26.25 µs duration are operated in CO ₂ laser ga mixtures over a pressure range 0.3 to 1 atm. The effects of gas mixture, pressure and pulselength ar characterised and the influence of CO ₂ dissociation products on the discharge are examined along wit measurements of the rate of dissociation of CO ₂ . Abstract Classification (U,R,C or U scriptors product Statement (Enter any limitations on the distribution of the document) UNLIMITED					
gency Reference Contract Number and Period opect Number Other References attors Pagination and Ref HARRIS, M R MM stract Non-externally sustained glow discharges of 10.8 µs and 26.25 µs duration are operated in CO2 laser ga mixtures over a pressure range 0.3 to 1 atm. The effects of gas mixture, pressure and pulselength ar characterised and the influence of CO2 dissociation products on the discharge are examined along wit measurements of the rate of dissociation of CO2. Abetract Classification (U.R.C or U scriptors Introduction Statement (Enter any limitations on the distribution of the document) UNLIMITED	onference Details				
cycct Number cycle Number c	gency Reference	Contract Number and Pe	Contract Number and Period		
Abetract Classification (U.R.C or U structures over a pressure range 0.3 to 1 atm. The effects of gas mixture, pressure and pulselength ar characterised and the influence of CO ₂ dissociation products on the discharge are examined along wit measurements of the rate of dissociation of CO ₂ . Abetract Classification (U.R.C or U scriptors	ciect Number	Other Belerences			
#ARRIS, M.R Pagination and Ref 16 astract Non-externally sustained glow discharges of 10.8 µs and 26.25 µs duration are operated in CO2 laser ga mixtures over a pressure range 0.3 to 1 atm. The effects of gas mixture, pressure and pulselength ar characterised and the influence of CO2 dissociation products on the discharge are examined along wit measurements of the rate of dissociation of CO2. Abstract Classification (U.R.C or U iscriptors It button Statement (Enter any limitations on the distribution of the document) UNLIMITED					
HARRIS, M R stract Non-externally sustained glow discharges of 10.8 µs and 26.25 µs duration are operated in CO ₂ laser ga mixtures over a pressure range 0.3 to 1 atm. The effects of gas mixture, pressure and pulselength ar characterised and the influence of CO ₂ dissociation products on the discharge are examined along wit measurements of the rate of dissociation of CO ₂ . Abstract Classification (U.R.C or U iscriptors tribution Statement (Enter any limitations on the distribution of the document) UNLIMITED	uthors	de,	Pagination and R	əf	
Abstract Non-externally sustained glow discharges of 10.8 µs and 26.25 µs duration are operated in CO ₂ laser gar mixtures over a pressure range 0.3 to 1 atm. The effects of gas mixture, pressure and pulselength ar characterised and the influence of CO ₂ dissociation products on the discharge are examined along wit measurements of the rate of dissociation of CO ₂ . Abstract Classification (U.R.C or U scriptors stribution Statement (Enter any limitations on the distribution of the document) UNLIMITED	HARRIS, MR	me	16		
Abstract Non-externally sustained glow discharges of 10.8 µs and 26.25 µs duration are operated in CO ₂ laser ga mixtures over a pressure range 0.3 to 1 atm. The effects of gas mixture, pressure and pulselength ar characterised and the influence of CO ₂ dissociation products on the discharge are examined along wit measurements of the rate of dissociation of CO ₂ . Abstract Classification (U.R.C or U scriptors stribution Statement (Enter any limitations on the distribution of the document) UNLIMITED	•				
Non-externally sustained glow discharges of 10.8 µs and 26.25 µs duration are operated in CO ₂ laser ga mixtures over a pressure range 0.3 to 1 atm. The effects of gas mixture, pressure and pulselength ar characterised and the influence of CO ₂ dissociation products on the discharge are examined along wit measurements of the rate of dissociation of CO ₂ . Abstract Classification (U,R,C or U scriptors tribution Statement (Enter any limitations on the distribution of the document) UNLIMITED	سار کار بر کار این سر می است. این این می این این این این این این این این این ای				
Abstract Classification (U,R,C or U Iscriptors Istribution Statement (Enter any limitations on the distribution of the document) UNLIMITED	bstract	· · · · · · · · · · · · · · · · · · ·			
Abstract Classification (U.R,C or U scriptors stribution Statement (Enter any limitations on the distribution of the document) UNLIMITED	Non-externally sustained glow discharges of 10.8 μ mixtures over a pressure range 0.3 to 1 atm. The characterised and the influence of CO ₂ dissociatio measurements of the rate of dissociation of CO ₂ .	s and 26.25 µs duration effects of gas mixture, n products on the disch	are operated in CO ₂ lase pressure and pulselength harge are examined along	r gas are with	
Abstract Classification (U,R,C or U Iscriptors Infibution Statement (Enter any limitations on the distribution of the document) UNLIMITED	Non-externally sustained glow discharges of 10.8 μ mixtures over a pressure range 0.3 to 1 atm. The characterised and the influence of CO ₂ dissociatio measurements of the rate of dissociation of CO ₂ .	s and 26.25 µs duration effects of gas mixture, n products on the disch	are operated in CO ₂ lase pressure and pulselength harge are examined along	r ga: a are with	
Abstract Classification (U,R,C or U Iscriptors Itribution Statement (Enter any limitations on the distribution of the document) UNLIMITED	Non-externally sustained glow discharges of 10.8 μ mixtures over a pressure range 0.3 to 1 atm. The characterised and the influence of CO ₂ dissociatio measurements of the rate of dissociation of CO ₂ .	s and 26.25 μs duration effects of gas mixture, n products on the disch	are operated in CO ₂ lase pressure and pulselength harge are examined along	r ga arc witl	
Abstract Classification (U,R,C of U scriptors stribution Statement (Enter any limitations on the distribution of the document) UNLIMITED	Non-externally sustained glow discharges of 10.8 μ mixtures over a pressure range 0.3 to 1 atm. The characterised and the influence of CO ₂ dissociatio measurements of the rate of dissociation of CO ₂ .	s and 26.25 µs duration effects of gas mixture, n products on the disch	are operated in CO ₂ lase pressure and pulselength harge are examined along	r ga are witi	
Abstract Classification (U,R,C or U scriptors stribution Statement (Enter any limitations on the distribution of the document) UNLIMITED	Non-externally sustained glow discharges of 10.8 μ mixtures over a pressure range 0.3 to 1 atm. The characterised and the influence of CO ₂ dissociatio measurements of the rate of dissociation of CO ₂ .	s and 26.25 µs duration effects of gas mixture, n products on the disch	are operated in CO ₂ lase pressure and pulselength harge are examined along	r ga ara witi	
Abstract Classification (U,R,C or U scriptors stribution Statement (Enter any limitations on the distribution of the document) UNLIMITED	Non-externally sustained glow discharges of 10.8 μ mixtures over a pressure range 0.3 to 1 atm. The characterised and the influence of CO ₂ dissociatio measurements of the rate of dissociation of CO ₂ .	s and 26.25 μs duration effects of gas mixture, n products on the disch	are operated in CO ₂ lase pressure and pulselength harge are examined along	r ga ar wit	
Abstract Classification (U,R,C or U scriptors stribution Statement (Enter any limitations on the distribution of the document) UNLIMITED	Non-externally sustained glow discharges of 10.8 μ mixtures over a pressure range 0.3 to 1 atm. The characterised and the influence of CO ₂ dissociatio measurements of the rate of dissociation of CO ₂ .	s and 26.25 µs duration effects of gas mixture, n products on the disch	are operated in CO ₂ lase pressure and pulselength arge are examined along	r ga a ar witi	
Abstract Classification (U,R,C or U Iscriptors Intribution Statement (Enter any limitations on the distribution of the document) UNLIMITED	Non-externally sustained glow discharges of 10.8 μ mixtures over a pressure range 0.3 to 1 atm. The characterised and the influence of CO ₂ dissociatio measurements of the rate of dissociation of CO ₂ .	s and 26.25 µs duration effects of gas mixture, n products on the disch	are operated in CO ₂ lase pressure and pulselength harge are examined along	r ga: arc witl	
iscriptors Itribution Statement (Enter any limitations on the distribution of the document) UNLIMITED	Non-externally sustained glow discharges of 10.8 μ mixtures over a pressure range 0.3 to 1 atm. The characterised and the influence of CO ₂ dissociatio measurements of the rate of dissociation of CO ₂ .	s and 26.25 µs duration effects of gas mixture, n products on the disch	are operated in CO ₂ lase pressure and pulselength harge are examined along	r ga: are with	
stribution Statement (Enter any limitations on the distribution of the document) UNLIMITED	Non-externally sustained glow discharges of 10.8 μ mixtures over a pressure range 0.3 to 1 atm. The characterised and the influence of CO ₂ dissociatio measurements of the rate of dissociation of CO ₂ .	s and 26.25 µs duration effects of gas mixture, n products on the disch	Abstract Classification (U,R	r ga:) are with	
stribution Statement (Enter any limitations on the distribution of the document) UNLIMITED	Non-externally sustained glow discharges of 10.8 µ mixtures over a pressure range 0.3 to 1 atm. The characterised and the influence of CO ₂ dissociatio measurements of the rate of dissociation of CO ₂ .	s and 26.25 µs duration effects of gas mixture, n products on the disch	Abstract Classification (U,R	r ga: art witt	
UNLIMITED	Non-externally sustained glow discharges of 10.8 μ mixtures over a pressure range 0.3 to 1 atm. The characterised and the influence of CO ₂ dissociatio measurements of the rate of dissociation of CO ₂ .	s and 26.25 µs duration effects of gas mixture, n products on the disch	Abstract Classification (U,R	,C or	
	Non-externally sustained glow discharges of 10.8 µ mixtures over a pressure range 0.3 to 1 atm. The characterised and the influence of CO ₂ dissociatio measurements of the rate of dissociation of CO ₂ .	s and 26.25 µs duration effects of gas mixture, n products on the disch	Abstract Classification (U,R	,C or	

THIS PAGE INTENTIONALLY LEFT BLANK