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Preface

The scattering of acoustic and electromagnetic waves by periodic sur-

faces plays a role in many areas of applied physics and engineering. Opti-

cal diffraction gratings date from the nineteenth century and are still

widely used by spectroscopists. More recently, diffraction gratings have

been used as coupling devices for optical waveguides. Trains of surface

waves on the oceans are natural diffraction gratings which influence the

scattering of electromagnetic waves and underwater sound. Similarly, the

surface of a crystal acts as a diffraction grating for the scattering of

atomic beams. This list of natural and artificial diffraction gratings

could easily be extended.

The purpose of this monograph is to develop from first principles a

theory of the scattering of acoustic and electromagnetic waves by periodic

surfaces. In physical terms, the scattering of both time-harmonic and

transient fields is analyzed. The corresponding mathematical model leads

to the study of boundary value problems for the Helmholtz and d'Alembert

wave equations in plane domains bounded by periodic curves. In the formal-

ism adopted here these problems are intimately related to the spectral

analysis of the Laplace operator, acting in a Hilbert space of functions

defined in the domain adjacent to the grating.

The intended audience for this monograph includes both those applied

physicists and engineers who are concerned with diffraction gratings and

those mathematicians who are interested in spectral analysis and scattering

theory for partial differential operators. An attempt to address simultan-

eously two such disparate groups must raise the question: is there a common

domain of discourse? The honest answer to this question is no! Current

mathematical literature on spectral analysis and scattering theory is based

squarely on functional analysis, particularly the theory of linear trans-

formations in Hilbert spaces. This theory has been readily accessible ever

v



vi

since the publication of M. H. Stone's AMS Colloquium volume in 1932.

Nevertheless, the theory has not become a part of the curricula of applied

physics and engineering and it is seldom seen in applied science literature

on wave propagation and scattering. Instead, that literature is character-

ized by, on the one hand, the use of heuristic non-rigorous arguments and,

on the other, by formal manipulations that typically involve divergent

series and integrals, generalized functions of unspecified types and the

like.

The differences in style and method outlined above pose a dilemma. Can

an exposition of our subject be written that is accessible and useful to

both applied scientists and mathematicians? An attempt is made to do this

below by dividing the work into two parts. Part 1, called Physical Theory,

presents the basic physical concepts and results, formulated in the simplest

and most concise form consistent with their nature. Moreover, Part 1 can be

interpreted in two different ways. First, it can be interpreted in the

heuristic way favored by applied physicists and engineers. When read in

this way it presents a complete statement of the physical content of the

theory. Second, for readers conversant with Hilbert space theory Part 1

can be interpreted as a concise statement of the principal concepts and

results of a rigorous mathematical theory.

When read in the second way Part 1 serves as an introduction to and

overview of the complete theory which is presented in Part 2, Mathematical

Theory. This part develops the relevant concepts and results from func-

tional analysis and the theory of partial differential equations and applies

them to give complete proofs of the results formulated in Part 1. At the

same time many secondary concepts and results are formulated and proved that

lead to a deeper understanding of the nature and limitations of the theory.
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Introduction

The first theoretical studies of scattering by diffraction gratings

are due to Lord Rayleigh. His "Theory of Sound" Volume 2, 2nd Edition,

published in 1896 [18]x`, contains an analysis of the scattering of a mono-

chromatic plane wave normally incident on a grating with a sinusoidal pro-

file. In a subsequent paper [19] he extended the analysis to oblique

incidence. Rayleigh assumed in his work that in the half-space above the

grating the reflected wave is a superposition of the specularly reflected

plane wave, a finite number of secondary plane waves propagating in the

directions of the higher order grating spectra of optics, and an infinite

sequence of evanescent waves whose amplitudes decrease exponentially with

distance from the grating. The validity of Rayleigh's assumption for gen-

eral grating profiles was realized in the early 1930's [10], following

Bloch's work [4] on the analogous problem of de Broglie waves in crystals.

Waves of this type will be called Rayleigh-Bloch waves (R-B waves for

brevity) in this work.

The goal of Rayleigh's work and the literature based on it was to

calculate the relative amplitudes and phases of the diffracted plane wave

components of the R-B waves. Several methods for doing this have been

developed. L. A. Weinstein [27] and J. A. DeSanto [5,6] gave exact solu-

tions to the problem of the scattering of monochromatic plane waves by a

comb grating; i.e., an array of periodically spaced infinitesimally thin

parallel plates of finite depth mounted perpendicularly on a plane. For

gratings with sinusoidal profiles, infinite systems of linear equations for

the complex reflection coefficients were given by J. L. Uretsky [26] and

J. A. DeSanto [7]. More recently, DeSanto [8] has extended his results to

essentially arbitrary profiles. Finally, an excellent review up to 1980 of

Numbers in square brackets denote references from the list at the end of
the monograph.
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2

both theoretical and numerical methods for determining the reflection coef-

ficients is contained in the book Electromagnetic Theory of Gratings, edited

by R. Petit [17].

The literature on diffraction gratings and their applications is very

large. References to work done before 1967 may be found in the monograph

by Stroke in the Handbuch der Physik [25]. A survey of the literature up

to 1980 is contained in [17].

The works referenced above provide a satisfactory understanding of the

scattering of the steady beams used in classical spectroscopy. However,

modern applications of gratings in such areas as optical waveguides and

underwater sound require an understanding of how transient electromagnetic

and acoustic fields, such as pulsed laser beams and sonar signals, are

scattered by diffraction gratings. The existing grating theories are inade-

quate for the analysis of these problems.

The purpose of this monograph is to develop a theory of the scattering

of transient electromagnetic and acoustic fields by diffraction gratings.

The theory is based on an eigenfunction expansion for gratings in which the

eigenfunctions are R-B waves. The analysis parallels the author's work on

the scattering of transient sound waves by bounded obstacles [30,31,33].

The eigenfunction expansions are generalizations of T. Ikebe's theory of

distorted plane wave expansions [12], first developed for quantum mechanical

potential scattering and subsequently extended to a variety of scattering

problems [2,15,21,22,23,32]. The theory is based on the study of a linear

operator A, called here the grating propagator, which is a selfadjoint real-

ization of the negative of the Laplace operator acting in the Hilbert space

of square integrable acoustic fields. A fundamental result of this analysis

is a representation of the spectral family of A by means of R-B waves. The

R-B wave expansions follow as a corollary.

The theory of scattering by gratings developed below is restricted, for

brevity, to the case of two-dimensional wave propagation. Specifically, the

waves are assumed to be solutions of the wave equation in a two-dimensional

grating domain and to satisfy the Dirichlet or Neumann boundary condition on

the grating profile. These problems provide models for the scattering of

sound waves by acoustically soft or rigid gratings and of TE or TM electro-

magnetic waves by perfectly conducting gratings. It will be seen that the

methods employed are also applicable to the scattering of scalar waves by

three-dimensional (and n-dimensional) gratings and to systems such as

Maxwell's equations and the equations of elasticity.

Even with the restriction to the two-dimensional case, the analytical

work needed to derive and fully establish eigenfunction expansions for
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diffraction gratings is necessarily intricate and lengthy. This is clear

from an examination of the simpler case of scattering by bounded obstacles

presented in the author's monograph [30]. Therefore, to make the work more

accessible to potential users, the monograph has been divided into two

parts. As explained in the Preface, Part 1 can be interpreted both as a

complete statement, without proofs, of the physical concepts and results of

the theory and also as a summary and introduction to the complete mathemat-

ical theory developed in Part 2.

A preliminary version of the R-B wave expansion theorem of this mono-

graph was announced by J. C. Guillot and the author in 1978 [34]. That work

was based on an integral equation for the R-B waves. In this monograph an

alternative method based on analytic continuation is used. A key step is

the introduction of the reduced grating propagator Ap which depends on the

wave momentum. The Hilbert space theory of such operators was initiated by

H. D. Alber [3]. Alber's powerful method of analytic continuation of the

resolvent of AP is used in Part 2 to construct the R-B wave eigenfunctions.





Part 1

Physical Theory

This monograph develops a theory of the scattering of two-dimensional

acoustic and electromagnetic fields by diffraction gratings. This Part 1

presents the principal physical concepts and results in their simplest forms

and without proofs. Moreover, to avoid distracting technicalities the

precise conditions for the validity of the results are not always given.

Part 1 also contains no references to the literature. All of these omis-

sions are remedied in Part 2 which contains the final mathematical formula-

tion of the theory, together with complete proofs and indications of related

literature.

§1. The Physical Problems

The propagation of two-dimensional acoustic and electromagnetic fields

is studied below in unbounded planar regions whose boundaries (= the dif-

fraction gratings) lie between two parallel lines and are periodic. In each

case the medium filling the region is assumed to be homogeneous and loss-

less. In the acoustic case the grating is assumed to be either rigid or

acoustically soft. In the electromagnetic case it is assumed to be per-

fectly conducting. In both cases the sources of the field are assumed to

be localized in space and time. The principal goal of the theory is to

calculate the "final" or large-time form of the resulting transient field.

§2. The Mathematical Formulation

Rectangular coordinates X = (x,y) E R2 will be used to describe the

region adjacent to the diffraction grating. The notation

Ra = {X : y > a}

will be used. Then with a suitable choice of coordinate axes the region

5
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F-- Source Region

Incident Pulse

Figure 1. Grating with Source Region and Incident Pulse

above the grating will be characterized by a grating domain G C R2 with the

properties

(2.2) RC G C R2 ,

(2.3) G + (27x,0) = G

where h > 0 is a suitable constant. The choice of the constant 27 in (2.3)

is simply a convenient normalization.

The acoustic or electromagnetic field in G can be described by a real-

valued function u = u(t,X) that is a solution of the initial-boundary value

problem

(2.4) Dtu-Au=0 for all t>0 and XEG

(2.5) D
V
u S N) Vu = 0 (resp., u = 0) for all t > 0 and X E DG

(2.6) u(0,X) = f(X) and Dtu(0,X) = g(X) for all X E G .

Here t is a time coordinate, Dt = a/at, Dx = a/ax, Dy = a/ay, Vu= (Dxu,Dyu),

Au = D2u + Dyu, DG denotes the boundary of G and v = v(X) is a unit normal

vector to DG at X. In the acoustic case u(t,X) is interpreted as a poten-

tial for an acoustic field with velocity v = -Vu and acoustic pressure
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p = Dtu. Then the boundary condition (2.5) corresponds to an acoustically

hard (resp., soft) boundary. Alternatively, if u satisfies the Neumann

condition DVu = 0 on aG then

(2.7) Ex = Dyu, Ey = -Dxu, Hz = Dtu

describes a TM electromagnetic field in a domain G bounded by a perfect

electrical conductor. Similarly, if u satisfies the Dirichlet condition

u = 0 on aG then

(2.8) Hx = -Dyu, Hy = Dxu, Ez = Dtu

describes a TE electromagnetic field in the same kind of domain. The func-

tions f(X) and g(X) in (2.6) characterize the initial state of the field.

They are assumed to be given or calculated from the prescribed wave sources,

and to be localized:

(2.9) supp f U supp g C {X : x2 + (y - yo)2 < 621

where yo > h + 5p.

y = h

Figure 2. Grating Domain with Coordinate System

In both the acoustic and the electromagnetic interpretations the

integral

(2.10) E(u,K,t) = J {IDu(t,X)I2 + IDtu(t,X)I2} dX
K
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is interpreted as the wave energy in the set K at time t (dX = dxdy).

Solutions of the wave equation satisfy the energy conservation law E(u,G,t)

= E(u,G,O) under both boundary conditions (2.5). It will be assumed that

the initial state has finite energy:

(2.11) J ( Vf(X)12 + Ig(X)12} dX < m .

D. Solution of the Initial-Boundary Value Problem

The initial-boundary value problem in its classical formulation (2.4)

-(2.6) will have a solution only if 8G and the functions f and g are suf-

ficiently smooth. However, for arbitrary domains G the problem is known to

have a unique solution with finite energy whenever the initial state f,g

has this property. A formal construction of the solution may be based on

the linear operator A = -A, acting in the Hilbert space JC = L2(G). If the

domain of A is defined to be the set of u E 7C such that Vu E JC, Au E X and

one of the boundary conditions (2.5) holds then A is a selfadjoint non-

negative operator. Moreover,

(3.1) (cos t All') f + (A-'/' sin t Al/2) g

is the solution with finite energy whenever the initial state has finite

energy. It will be convenient to write (3.1) as

1/2
(3.2) u(t,X) = Re {v(t,X)} ,

e- itA
h

where

(3.3) h = f + i A112g

This representation is valid if f and g are real-valued and A1/2 f, f, g and

A 1/2 g are in R. A rigorous interpretation of relations (3.1)-(3.3) can be

based on the calculus of selfadjoint operators in Hilbert spaces.

§4. The Reference Problem and Its Eigenfunctions

In the class of grating domains defined by (2.2), (2.3) there is a

special case for which the scattering problem is explicitly solvable. This

is the case of the degenerate grating G = R2 (h= 0). The problem (2.4)

-(2.6) with G = Ra and the Neumann boundary condition will be called the

reference problem. The corresponding reference propagator is the operator

A, = -A in X, = L2(R2) with Neumann boundary condition. The solution of
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the scattering problem for non-degenerate gratings is developed below as

a perturbation of the reference problem.

AO has a pure continuous spectrum filling the half-line X > 0. This

is easily verified by separation of variables which yields the family of

generalized eigenfunctions

(4.1) ,,(x,y,P,q) = 1 eipx cos q y = 1 el(px-qy) + 1 ei(Px+gy)
it 27r 2Tr

where (x,y) E Ro and also (p,q) E R2. Clearly

(4.2) A. V)o(x,y,P,q) _ -A o(x,y,P,q) = w2(p,q) ipo(x,y,p,q)

where

(4.3) w2(p,q) = P2 + q2 > 0

and

(4.4) Dv io(x,y,p,q) = Dy $o(x,y,P.q) = 0 on 8Ro

The decomposition of (4.1) illustrates the physical interpretation of o.

If (p,q) E R2 then q > 0 and the first term represents a monochromatic plane

wave incident on the plane boundary in the direction (p,-q), while the

second term represents the specularly reflected wave propagating in the

direction (p,q).

The functions P = (p,q) E Rp} form a complete family of

generalized eigenfunctions for A0. This means that for every h E R. one has

(4.5) io(P) = 2.i.m.
J

o(X,P) h(X) dX exist in J(o
R2

0

and

(4.6) h(X) = f.i.m. J 2 i"o(X,P) So(P) dP in JCo .
Ro

The i.i.m. notation in (4.5) means that the integral converges not point-

wise but in JCo; i.e.,

(4.7) Rim
1M- R2

(M M
h(X) dXho(P) - J

J M
o -M

2

dP = 0

Equation (4.6) has the analogous interpretation. Moreover, Parseval's

relation holds:
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(4.8) JR2 Iha(P)I2 dP = 1R2 Ih(X)I2 dX

In fact, if a linear operator Do in Jfo is defined by

(4.9) 'P0h = ha

then 0o is unitary.

The eigenfunction expansion (4.6) is useful because it diagonalizes

A0. In particular, the solution e itA0'

h of the reference

problem has the expansion

(4.10) vo (t,X) = R,. i.m. J

Rz
oo (X,P) e-itw(P) ha (P) dP

o

where w(P) = I P I = 7p +e .

§5. Rayleigh-Bloch Diffracted Plane Waves for Gratings

In analogy with the case of the degenerate grating, the generalized

eigenfunctions of the grating propagator A may be defined as the response

of the grating to a monochromatic plane wave
(2a)-1

exp {i(px - qy)}. It

will be shown that there are two distinct families which will be denoted by

+(X,P) and i_(X,P), respectively. It will be convenient to write them as

perturbations of the eigenfunctions 1j0(X,P) for the degenerate grating:

(5.1) t+(X,P) = tio(X,P) + +c(X,P) , X E G , P E R2

They are characterized by the conditions

(5.2) A +(X,P) -A +(X,P) = w2(P) +(X,P) , X E G

(5.3) Dv + = 0 (resp., ip+ = 0) for X E DG

(5.4) $+c(X,P) is outgoing and tpsc(X,P) is incoming for X -> .

The last condition is based on the Fourier series representation in x of

0p+c(x,y,P) which is valid for y > h. It can be written (with P = (p,q))

1
+ i(pkx±q1Y)

sc (X,P)
2Tr z

cQ(P) e

(p+Q)z<Pz+q

(5.5)

+ 1 c+(P)

eipix
e-Y{(p+X.)2-p2-q2}1/2

2ir (p+Q)2>p2+q2 R
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where

(5.6) pt = p + i , qR = (p2 + q2 - (p + f)2)1/2

and the summations in (5.5) are over the integers k that satisfy the indi-

cated inequalities. Note that the first sum is finite. Moreover, if

PQ = (p2,q,) then

(5.7) W2(PR) = P22 + q22 = p2 + q2 = W2(P)

which asserts that the wave frequency is preserved under scattering. It is

clear from (5.5) that the families $+ and _ are distinct. In fact, one

family can be obtained from the other by means of the identity

(5.8) i_(X,p,q) = +(X,-P,q)

(5.1) and (5.5) imply that + describes the outgoing response to the incom-

ing plane wave
(2Tr)-1

exp {i(px - qy)} while _ describes the incoming

response to the outgoing plane wave
(27r)-1

exp {i(px + qy)}. + and i_ will

be called, respectively, the outgoing and incoming Rayleigh-Bloch diffracted

plane waves for G.

§6. Rayleigh-Bloch Surface Waves for Gratings

The terms in the second sum of (5.5) may be called surface waves for

the grating since they propagate in the x-direction, parallel to the grating,

and are damped exponentially with distance y from the grating. These waves

are driven by the incident wave (27r)-1 exp {i(px + qy)}. It can happen that

there exist certain curves

ai (P) = W2 (P,q)

and corresponding functions
i
(X,p) such that

(6.2) A i. (X,P) _ -A ii (X,p) _ X. (P) iJ (X,P) , X E G ,

(6.3) Dv
i
(X,p) = 0 (resp., i . (X; p) = 0) for X E aG ,

and is a pure surface wave; that is, for y > h one has
tf

ip x -{-A (P) }2
(6.4) .(X,p) _ c. (p) e e

J
J2

In the Dirichlet case it is known that if aG is a single smooth curve
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y = h(x) then no such R-B surface waves exist. No general criteria are

known in the Neumann case.

In the remainder of Part 1 it is assumed for simplicity that G admits

no R-B surface waves. The modifications needed when there are R-B surface

waves are discussed in Part 2.

§7. Rayleigh-Bloch Wave Expansions

The R-B diffracted plane wave expansions for G are exactly analogous

to that for the reference problem of §4. Thus each of the families

{1p+(X,P) : P E Ro} and {tp(X,P) : P E Ro} is a complete family of general-

ized eigenfunctions for A. This means that for every h E JC = L2(G) one has

(7.1) h+(P) = R.i.m. J ip+(X,P) h(X) dX
G

exists in JC0 = L2 (Rz) and

r
(7.2) h(X) = i.i.m.

J

2 +(X,P) h+(P) dP
Ro

in 1C. Moreover, Parseval's relation holds:

(7.3) J 1h+(P)J' dP = 1 lh(X)I2 dX
Ro G

and the linear operators (D+ and (D_ from IC to YO defined by

(7.4) O+h = h+

are unitary. Finally, the representation diagonalizes A, just as in the
1/2

case of the reference problem. In particular the solution
e-itA h

of the scattering problem has the two expansions

(7.5) v(t,X) = i.i.m. 1 i+(X,P) e-itw(P) h+(P) dP
R
2

p

The ip+ and *_ expansions will be called the outgoing and incoming expansions

respectively. It will be shown that both are useful in determining the

structure of the scattered field.

§8. Wave and Scattering Operators for Gratings

The basic program of time-dependent scattering theory is to show that

each evolution v(t) = exp {-itA1/2} h of a given system is asymptotically

equal, for t -' , to an evolution vo(t) = exp {-itAp/2} hsc of a simpler
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"reference system." This means that

i/2 1/2 I

(8.1) 2im J
e-itA h - e-itA0

hsl
t

= 0

where J : JC-+ RO is a suitable bounded linear operator.

In Part 2 the R-B wave expansions are used to demonstrate the behavior

(8.1) for grating domains G that admit no surface waves. The reference

domain is the degenerate grating R2 and

h(X), X E G
(8.2) J h(X) =

0 , X E Ro - G

It is easy to see that the asymptotic state hsc, when it exists, is uniquely

determined by (8.1). In fact, hsc is related to h by (hsc)o = h_; i.e.,

bahsc = ID-h or

(8.3) h hsc

This relationship is well known in applications of scattering theory to

both quantum and classical physics.

Condition (8.1) is equivalent to the existence of the wave operator W+

where

(8.4) W+ = s 2im
eitApi/z J e-itAi/2

- t--±=

and s-2im denotes strong convergence. Moreover, (8.3) and the analogues of

(8.1), (8.3) for t + -- imply that

(8.5) W+ = Dp (D +

It follows from (8.5) and the results of §7 that W+ and W are unitary

operators from JC to Jig .
The scattering operator S of the abstract theory of scattering is

defined by

(8.6) S = W+ W

The unitarily of the wave operators implies that S is a unitary operator in

JCo. The related operator

(8.7)

often called the Heisenberg operator, or S-matrix, is also unitary in Jo.

(8.5), (8.6) and (8.7) imply that
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(8.8) S = (Do

Relations (8.4)-(8.8) are standard definitions and results in the abstract

theory of scattering. An explicit construction of the S-matrix of a dif-

fraction grating, based on the R-B waves, is described next. It is applied

in §10 below to describe the scattering by gratings of signals from remote

sources.

The S-matrix is determined by the scattering coefficients c(P) of the

R-B wave (X,P) defined by (5.5). To describe the structure of S it will

be convenient to define the following sets in the space of the momentum

variables P = (p,q).

(8.9) 7TQ = RI n {(p,q) o q2 = p2 + q2 - (p + Q)2 = 0}

Clearly, for i 4 0, Tr. is the portion in R2 of the parabola with focus

(0,0) and vertex (-f/2,0). Next, define

Om = domain between 'lrm and Trm+1, m = 0,1,2,

(8.10) 0-n = domain between Tr-n and 7r_n-1, n = 0,1,2,

1

0
m,n

= 0
m
n 0-n' m,n = 0,1,2,

Examination of the Fourier expansion (5.5) of + shows that P E 0m,n if and

only if P+(X,P) contains exactly m+ n+ 1 outgoing (for 4+) or incoming (for

IP_) plane waves with the propagation vectors (p1,q,), -n < Z < m.

Figure 3. Partition of Momentum Space by the Sets Om,n
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Next let i E Z (the integers) and consider the mappings X91 of the

momentum space R2 defined by

(8.11) D(Xi) _ {(P,4) P2+Q > p+YI, q > 0}

and

(8.12) X91(P.9) _ (Pi.4i) _ (P+,{P2+42- (p+i)2}1/2)

X0 is the identity map. For i E Z - {0}, Xi is analytic on its domain and

maps it bijectively onto the range

(8.13) R(Xi) = D(X-i) _ {(Pi,4i) p > IPi- ZI, fli > 0}

Moreover,

(8.14) X_i =
X-1

, 91 E Z

In fact, (8.13) and (8.14) follow from the relations

(8.15) Xi vm,n = Um-i,n+i

which hold for all m > i and n > -i.

An explicit construction of the S-matrix S can be based on the scat-

tering coefficients c(p) and the mapping Xi. To describe it, it is con-

venient to write

X-2(P)

Figure 4. Graphical Construction of the maps Xi.
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(8.16)

where 1 denotes the identity operator, and to assume first that g E HO

satisfies

(8.17) supp g C 0 .

m,n

Then the principal result of the section is that

n

(8.18) supp T g C U 0
m+2,n-i

and

2=-m

(8.19) (T g)(P) = cQ(P) g (X1(P)) , P E Um+2,n-R,

This result extends by linearity to general g E HO because functions g with

compact supports contained in Um
n=0

Om,n are dense in R

It is well known in the theories of scattering by potentials and by

bounded obstacles that the S-matrix 9 is a direct integral of a family of

unitary operators S(w) that act on the "energy shell" p2 + q2 = w2. The

analogous property of the S-matrices for diffraction gratings is evident

from (8.19) and the properties of the mappings XQ. Note that if

(w cos 8,w sin 6) E R2 then there is a unique angle 6R = 01(w,0) such that

0 < 0z < 'R and

(8.20) X1(w cos 0,w sin 6) (w cos 01,w sin 0)

With this notation the operator S(w) = 1 + T(w) is given by

n
(8.21) T(w) g(w cos 0,w sine) = I c_(w cos 0,w sin 0) g(w cos 6,w sin 8 R)1

R=-m

provided supp g C Um The general case follows by superposition, as
,n'

before.

§9. Asymptotic Wave Functions for Gratings

The R-B wave expansions (7.5) give the scattered field at time t pro-

duced by prescribed sources in the presence of an arbitrary grating that

admits no surface waves. In this section it is shown that the author's

theory of asymptotic wave functions (Springer Lecture Notes in Mathematics,

V. 442, 1975) can be used to simplify the calculation when t is large. The

simple case of the reference problem is discussed first.
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A state h E JC may be considered as an initial state for the degenerate

grating. The corresponding wave vp(t,X) is given by (4.10) which is just

a Fourier integral. The author's theory is applied in Part 2 to show that

1/2
(9.1) vp(t,X) = e-itA0 h(X) ti vo(t,X) = r-1/2 F0(r- t,0)

where

(9.2) X = (x,y) _ (r cos 0,r sin 0)

The wave profile Fo(T,0) E L2(R x [0,Tr]) is defined by the integral

1
^

(9.3) Fa (T, 0) = k. i.m. (270
J o elTw h0 (w cos 0,w sin 0) (-iw) 1/2 dw

The asymptotic equality in (9.1) is meant in the sense of Jfo; i.e.,

(9.4) ki vo(t,.)II1 = 0
0

The structure of F. may be made clearer by introducing the function

hf E L2(R2) defined by

(9.5)

I h(X) , y > 0

0 , y < 0 ,hf(X) = 1

and its Fourier transform

(9.6) hf(p,q) = k.i.m. 2I J e-i(px+qy) hf(x,y) dxdy
R2

It is clear from (4.1) that

(9.7) ha(p,q) = hf(p,q) + hf(p,-q)

Thus if a free wave profile Hf is defined by

(9.8) Hf(T,0) = k.i.m. (2 e' hf(wcos 0,w sin 0)(-iw)112 dw- 7F)

then (9.3), (9.7) and (9.8) give

ir(T,0) + FOrefk(T,0)(9.9) Fp(T,0) = Fd
0

where

Fdir(T,0)
= Hf(T,O)

(9.10)
refk

F (T,0) = Hf(T,-0)
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It is clear from (9.1), (9.8), (9.9), (9.10) that Fair contains the contri-

bution to v0 of the momentum components of h that propagate away from the

boundary without interaction while
Faref2

contains the contributions of

momenta that are directed toward the boundary and then reflected.

Now consider the field produced by the same initial state h as in

(9.1) in a nondegenerate grating domain G. By the results of §8,

1/2 1/2
(9.11)

e-itA h ti e itAo
W+ h in IC

where

(9.12) IDaW+ h = ID-h = h- .

It follows from (9.1), (9.3), (9.11) and (9.12) that

2

(9.13) v(t,X) = e itA1/ h(X) ti v-(t,X) = r-1/2 F(r- t,0)

in 7C where the wave profile F(T,8) is given by

Moreover, by (5.1) and (7.1)

(9.15)

where

h_ (P) = ho (P) + hsc(P)

(9.16) hsc(P) = i.i.m.
1

sc(X,P) h(X) dX

Comparison of these results with (9.3) and (9:9) gives

(9.17) F(T,0) = Fdir(T,0) + FoefQ(r,0) + Fsc(T,8)
0

(9.18) Fsc(T,0) = i.i.m.
(21

(Q eiTw hsc(w cos O,w sin 8) (_iw) 1/2 dw
) '12

The last profile obviously characterizes the deviation of the scattered

pulse for G from that for the degenerate grating.
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§10. The Scattering of Signals from Remote Sources

The calculation of the profile Fsc can be simplified in the case where

the wave sources, described by the initial state h, are far from the grating.

To make this precise let

(10.1) h(x,y;yo) = ho(x,y-yo)

where ho E If is a fixed function. Under this hypothesis it is shown in

Part 2 that

(10.2)
Fsc(T,O) _

(2

1
174

(
eiTw T(w) Frefk(w,O) dw + 0(1)

where Frefk
J

(w, O) = hf(w cos 0,-w sin O,yo) is the Fourier transform, with

respect to T, of Fref2(T,O) and the error term o(1) tends to zero in

LZ(R x [0,u]) when yo -> -. Thus apart from this error the scattered wave

profile is determined by the T-matrix acting on the reflected part of the

incident wave profile.

A case of special interest arises when

(10.3) supp
Forefk = K C Um,n

for some m and n. This defines an incident asymptotic wave profile
Forefk

that might be called a narrow beam. Write

(10.4)

for -m < k < n and let

KR = X2(K) C Um-k,n+k

(10.5) Pk = {(p,q) = (w cos O,w sin 0) : w > 0, ak < 0 < ak}

be the smallest sector such that

(10.6) K2CF2 , -m<k<n .

It is easy to verify that the sectors are disjoint. Moreover, (8.21) and

(10.2) imply that, apart from the error o(1), the support of Fsc(T,O) lies

in UQ--m Fk. Thus for a narrow beam satisfying (10.3) the scattered pulse

is concentrated, apart from an error o(1), in the m+ n+ 1 sectors Fk asso-

ciated with K.





Part 2

Mathematical Theory

The purpose of this Part 2 is to penetrate more deeply into the theory

described in Part 1 and to develop the results in a precise form with

complete hypotheses and full mathematical proofs. The work is based

squarely on functional analysis. The reader should have good knowledge of

the theory of unbounded selfadjoint operators in Hilbert spaces, as devel-

oped in Dunford and Schwartz [9] or any of the many other good texts. Other

prerequisites include the theory of Sobolev spaces and the L2 theory of

elliptic boundary value problems, as presented in the texts of S. Agmon [1]

or Lions and Magenes [14], simple facts from the theory of Frechet spaces

and distribution theory, and the elements of the abstract theory of Riemann

surfaces (Narasimhan [16]).

No attempt is made in Part 2 to justify explicitly all the statements

made in Part 1. It was in the spirit of Part 1 that minor, or highly

technical, hypotheses were omitted. Nevertheless, every result mentioned

in Part 1 has a more precise counterpart in Part 2. The notation of Part 2

is consistent with that of Part 1 but is frequently more elaborate.

The class of grating domains G admitted in Part 2 is very general. In

fact, for the Dirichlet boundary condition G may be an arbitrary grating

domain; i.e., an open connected subset G C R2 that satisfies properties

(2.2) and (2.3) of Part 1. For the Neumann case a mild regularity condition

is imposed. In neither case need 8G be given by a function y = h(x) nor

even be a unicursal curve.

The principal technical difficulties of Part 2 occur in sections 4, 6

and 8. For this reason most of the proofs of the results of these chapters

are collected in the technical sections 5, 7 and 9 which may be omitted in

a first reading.
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§1. Grating Domains and Grating Propagators

The plane diffraction gratings that are studied in this monograph are

the boundaries of the class of planar domains G defined by the following

properties.

(1.3)

G is contained in a half-plane.

G contains a smaller half-plane.

G is invariant under translation through a

distance a > 0.

Domains with these properties will be called grating domains. The half-

plane of (1.2) is necessarily parallel to that of (1.1) and the translation

of (1.3) is necessarily parallel to the edges of these half-planes. The

smallest a > 0 for which (1.3) holds is called the primitive grating period.

It exists for all gratings except the degenerate grating for which G is a

half-plane.

It will be convenient to introduce Cartesian coordinates

(1.4) X = (x,y) E R2

in the plane of G such that the x-axis is parallel to the edges of the half-

planes of (1.1), (1.2) and to identify G with the corresponding domain (open

connected set) G C R2. With this convention if

(1.5) R2 = {X E R2
1 y > c}c

then, for a suitable orientation of the coordinate axes, conditions (1.1),

(1.2) can be written

(1.6) Rh C G C R2 for some h > 0

and the translation invariance (1.3) takes the form

(1.7) G + (a,0) = G

where a > 0 is the primitive period of G.

The eigenfunction expansion theory for R-B waves that satisfy the

Dirichlet boundary condition is developed below for arbitrary grating

domains. For R-B waves that satisfy the Neumann boundary condition the

following additional conditions are imposed on 3G, the frontier of G.
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(1.8) G has the local compactness property, and

(1.9) there exists an xp E R such that the set

8G n {(xo,y) I y > 0} is finite and each

(xp,y) in the set has a neighborhood in R2

in which 8G is a regular curve of class C3.

Condition (1.8) was introduced in [30] where it was denoted by G E LC. It

is a mild regularity property of 8G. A simple sufficient condition for

G E LC is the "finite tiling condition" of [30, p. 63]. Grating domains

that satisfy (1.8) and (1.9) will be said to have property S, written G E S.

The class includes all the piece-wise smooth gratings that arise in appli-

cations. Examples include the domains G = {X I y > h(x)} where h(x) is

bounded, piece-wise smooth and has period a. A special case is DeSanto's

comb grating for which

(1.10) h(x) =
h > 0 for x=0

0 for-Z<x<0 and0<x< a
The Hilbert space theory of solutions of the wave equation in arbitrary

domains G C Rn, developed by the author in [28,30], provides the foundation

for the analysis of scattering by diffraction gratings given below. The

basic Hilbert space of the theory is the Lebesgue space L2(G) with scalar

product

(1.11) (u,v) = J u(X) v(X) dX .

In addition, the definition of the grating propagators makes use of the

Sobolev spaces

(1.12) La(G) = L2(G) n {u I Da1Da2u E LZ(G) for al + a2 < m}

where D1 = 7/8x, D2 = 7/7y and m is a positive integer, and the space

(1.13) LZ(A,G) = LZ(G) n {u I Au E L2(G)}

where A = D2 + D2 is the Laplacian in R2. In these definitions the differ-
1 2

ential operators are to be interpreted in the distribution-theoretic sense

(cf. [28,301).

The grating propagators for a grating domain G are selfadjoint reali-

zations in L2(G) of -A, acting on sets of functions that satisfy the Neumann

or Dirichlet boundary conditions. These operators will be denoted by AN(G)
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and AD(G), respectively. Their domains are subsets of LZ(A,G) that satisfy

the boundary conditions in a form appropriate to arbitrary domains G. In

particular, functions u E D(AN(G)) are required to satisfy the generalized

Neumann condition

(1.14) J {(Au)v + Vu- Vv} dX = 0
G

for all v E LZ(G). In fact, if one defines

(1.15) Lz (A,G) = LZ (A,G) n {u I (1.14) holds for all v E L1 (G)}

D(AN(G)) = LN(A,G) and AN(G)u = -Au then AN(G) is a selfadjoint non-negative

operator in L2(G). This characterization was proved in [30]. It may also

be derived from T. Kato's theory of sesquilinear forms in Hilbert space

[13, Ch. 6]. It is known that if 8G is a smooth curve then D(AN(G)) C LZ(G)

and Vu has a trace in L2(DG) which satisfies the Neumann boundary

condition [30].

To define the grating propagator AD(G) associated with the Dirichlet

boundary condition let

LD(G) = closure of Co (G) in Lz (G)

LD(A,G) = LD(G) n Lz(A,G)

D(AD(G)) = LD(A,G) and AD(G)u = -Au. Then Kato's theory of sesquilinear

forms may be used to show that AD(G) is also a selfadjoint non-negative

operator in L2(G). Moreover, it is known that if DG is a smooth curve then

every u E L21(G) has a trace u BG E L2(DG) and every u E L2(G) satisfies

uI G = 0 [14].

The grating propagators AN(G) and AD(G) will be shown to have pure

continuous spectra. It follows that the R-B wave eigenfunctions must be

generalized eigenfunctions which are not in L2(G). To define them it will

be convenient to define extensions of AN(G) and AD(G) which act in the space

(1.18) LZOC(G) = D'(G) n fu I u E L2(K n G) for all compact K C R2}

where D'(G) is the set of all distributions on G. The following subsets of

L2°C (G) are also needed

(1.19)
Lm,2oc(C) = LRoc(G) n {u I Da1Da2u E LfOC(G) for a + a < m}L2 2 1 2 2 1 2_
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(1.20)
L2'9,oc(t,G) = L2'R.oc(G) n {u

I Au E
L2oC(G)}

These linear spaces are all Frechet spaces (locally convex topological

vector spaces which are metrizable and complete [9]) under suitable defini-

tions of the topologies. Thus L2 °C (G) is a Frechet space with family of

semi-norms

(1.21)
(

PK(u) = I

(J

Iu(X)I2 dxl
l1/z

` I G

indexed by the compact sets K C R2. Similarly,
L1 foc(G)

is a Frechet

space with family of semi-norms

ll 1/z
(1.22) PK(u) = [j I IDa1Da2u(X)I2 dXJ

KnG al+a2<m JJ

,Roc
and L2 (A,G) is a Frechet space with family of semi-norms

(1.23)
ll1/2

Pk(u) =
r(

lJ(KnG
{Iu(X)I2 + IVu(X)I2 + IAu(X)I2} dXJ .

1111

The following additional notation is used below:

(1.24)
L2om(G) = L2(G) n E'(R2)

(1.25)
LZ'com(G)

= L2 (G) n
L2om(G)

where E'(R2) denotes the set of all distributions on R2 with compact

supports.

The local grating propagator A
N,koc

(G) for G and the Neumann boundary

condition is the extension of AN(G) in L2°C(G) defined by

D(AN,Roc(G)) = LN'Roc(A,G)

(1.26)

LZQOC(D,G) n {u I (1.14) holds for all v E
L2'com(G)}

and

(1.27)
AN,2oc(G)u

= -Au for all u E
D(AN,2oc(G))

Similarly, the local grating propagator
AD,Roc(G)

for G and the Dirichlet

boundary condition is the extension of AD(G) in L2°C(G) defined by

(1.28)
D(AD,foc(G)) = LD Roc(A,G) = LD f0C(G) n L1 Roc(A,G)

z' 2 2
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where

(1.29)
LD,Roc(G)

= Closure of C_(G) in L2Zoc (G)

and

(1.30)
AD,Qoc(G)u

= -du for all u G
D(AD,Roc(G))

The spectral analysis and eigenfunction expansions for AN(G) and AD(G)

are nearly identical. To emphasize this, and to simplify the notation, the

symbol A will be used to denote either AN(G) or AD(G) in stating results

that are valid for both. Similarly, the symbol AQoc will denote
AN,Roc(G)

or
AD,ioc

(G) except where a distinction is necessary.

The spectral theory of AN(G) and AD(G) will be developed by perturba-

tion theory, beginning with the degenerate grating R. The grating

propagators for this case will be denoted by

(1.31) Aa = AN(R0) , AD = AD(Ro)

and

(1.32)
AN,ioc = AN,Qoc(R2)

AO
= AD,Qoc R2

0 0 > o ( o)

and the condensed notation A. for AN or AD and
Aooc

for A0'koc or
AD,koc

will be used.

The spectral analysis of AO can be carried out by separation of varia-

bles and is essentially elementary. Thus Di is essentially selfadjoint in

L2(R) with complete family of generalized eigenfunctions

{(27r)-1/2 exp (ipx) I p C R}. Similarly, D2 and the Neumann boundary condi-

tion define a selfadjoint operator in L2(0,o') with complete family

{(2/7f)1/2 cos q y I q > 01, while DZ and the Dirichlet boundary condition

define a second selfadjoint operator in L2(0,-) with complete family

{(2/ir)1/2 sin q y I q > 01. It follows that the products

(1.33) p(X,p,q) _ - eip'x cos q y , (p,q) E Rp

(1.34) o(X,p,q) _ -1
eip.x

sin q y , (p,q) E R2

N,ioc D,ioc
are in D(A0 ) and D(A0 ), respectively, and define complete families

of generalized eigenfunctions for Ao and A. More precisely, if to is used

to denote either or or $D then the classical Plancherel theory can be used

to derive an eigenfunction expansion and spectral decomposition for
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(1.35) A0 = 1' p d10 (u)
0

which may be formulated as follows. First, for all f E L2(R2) the limit

(1.36)

exists in L2(R2),

(1.37)

in L2(R02), and

(1.38)

(M (M
?o(P,q) = RMim. J f'-'M o(X,P,4) f(X) dX

0

(M M
f(X) = R.i.m. 1 tU0(X,P,q) fo(P,q) dpdq

M_ 0

J-M

IIfIIL2(Ro) = IIfoIIL (R2)
2 O

Moreover, the spectral family of A. is given by

(1.39) R0 (u) f (X) = J o (X,P,q) fo (P,q) dpdq
{(P,q)jP2+g2<p,q>O}

Finally, if a linear operator L2(R2) -; L2(R2) is defined by (Dof = fo

then (Do is unitary.

The principal result of this monograph is a generalization of this

eigenfunction expansion and spectral analysis that is valid for the operator

AD(G) in arbitrary grating domains G and for the operator AN(G) in grating

domains G E S. In these generalizations the R-B waves play the role of the

eigenfunctions to..

§2. Rayleigh-Bloch Waves

It will be assumed in the remainder of the report that the unit of

length has been chosen to make the grating period a = 27r. This normaliza-

tion, which simplifies many of the equations, does not limit the generality

of the theory because the general case can be obtained by a simple change

of units.

The definition of the R-B waves can be motivated by considering the

reflection by a grating of a plane wave

(2.1) tVinc(X,p,q) = (271)-1 exp {i(px - qy)}, (p,q) E Ro .

Note that the effect of translating
Pinc

by the grating period 27r is to

multiply it by a factor of modulus 1:
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(2.2)
inc(x

+ 27T,y,p,q) = exp {2frip}
lpinc(x,y,p,q)

Since G is invariant under this translation the reflected wave, if it is

uniquely determined by
inc

must also have property (2.2). This suggests

the

1 Roc
Definition. A function E L2' (A,G) is said to be an R-B wave for G

if and only if there exist numbers p E R and w > 0 such that

(2.3)

(2.4)

(2.5)

If, in addition,

(2.6)

i(x + 2ir,y) = exp {2iTip} ii(x,y) in G

Aip + w2 = 0 in G, and

(X) is bounded in G.

E D(Aioc)

then ip is said to be an R-B wave for A.

The parameters w and p will be called the frequency and x-momentum of

the R-B wave, respectively. Note that p is only determined modulo 1 by

(2.3). The x-momentum that satisfies

(2.7)

2

, p , 1

will be called the reduced x-momentum of i. Property (2.3) is sometimes

called quasi-periodicity or p-periodicity. It is equivalent to the

property that

(2.8) i(x,y) = exp {ipx} c(x,y) for all (x,y) E G

where

(2.9) q(x + 2Tr,y) _ p(x,y) for all (x,y) E G

Solutions of the Helmholtz equation (2.4) are known to be analytic

functions. In particular, each R-B wave for A satisfies t) E CCO(G). Hence,

the function 0 in (2.8) is in C_(G) and has period 27r in x since Rh C G.

It follows from classical convergence theory for Fourier series that i has

an expansion

(2.10) (x,y) = I i (y) exp {i(p + i)x} , (x,y) E Rh
FEZ
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where Z denotes the set of all integers. The series converges absolutely

and uniformly on compact subsets of R. Moreover, the partial derivatives

of i have expansions of the same form which may be calculated from (2.10)

by term-by-term differentiation and which have the same convergence proper-

ties. It follows that the coefficients 1VQ(y) in (2.10) must satisfy

(2.11) UQ(y) + (w2 - (p + f)2) V'R(y) = 0 for y > h

Hence the terms in the expansion (2.10) have the following forms, depending

on the relative magnitudes of w and Ip + kI.

w > Ip + kI. In this case there exist constants cR and c- such that

(2.12) h(y) exp {i(p+R)x} cRexp {i(pZx+qky)}+c-exp {i(pkx- qZy)}

where

(2.13) p1 = p + 2 , q1 =
(w2

- (p + f)2)1/2 > 0

The two terms in (2.12) describe plane waves propagating in the directions

(p1,±q1). Since pR + q2 = w2 these vectors lie on the circle of radius w

with center at the origin and their x-components differ by integers. Clearly

there are only finitely many such terms.

W < Ip + RI. In this case 1 (y) is a linear combination of real ex-

ponentials in y and the boundedness condition (2.5) implies that

(2.14) iU1(y) exp {i(p+Q)x}= c1exp {-((p+R)2-w2)1/2 y} exp {i(p+I)x}

where ((P+ R)2- w2)1/2 > 0. In the application to diffraction gratings

terms of this type will be interpreted as surface waves.

W = Ip + L. In this limiting case IPR(y) is a linear combination of 1

and y and (2.5) implies that

(2.15) i1(y) exp {i(p + k)x} = c1 exp {i(p + R)x}

Physically, (2.15) describes a plane wave that propagates parallel to the

grating; i.e., a grazing wave. These waves divide the plane waves (2.12)

from the surface waves (2.14). The frequencies {w = Ip + II I1 E Z) are

called the cut-off frequencies for R-B waves with x-momentum p.

An R-B wave ij for G (for A) which satisfies the additional conditions

(2.16) c- = 0 (resp. c+ = 0) for all Q such that w > Ip + II
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will be said to be an outgoing (resp., incoming) R-B wave for G (for A). If

(2.17) cQ = cR = 0 for all Q such that w > Ip + EI

then i will be said to be an R-B surface wave for G (for A). Of course an

R-B surface wave for A is both an outgoing and an incoming R-B wave for A.

It is interesting that these are the only outgoing or incoming R-B waves

for A. This is a consequence of

Theorem 2.1. Every outgoing (resp., incoming) R-B wave for A is an

R-B surface wave for A.

A proof of this result has been given by Alber [3] in the case where

aG is a curve of class C2. The method is to apply Green's theorem to the

R-B wave for A and its conjugate in the region G C) {X I -r < x < n,y < R},

In the case of an outgoing R-B wave for A this yields the equation

(2.18) G (w2 - (p + 1)2)1/2 1412 = 0
w>Ip+R

which implies that cQ = 0 when w > Ip + RI. For general grating domains

the application of Green's theorem must be based on the generalized boundary

conditions, as in [30, p. 57].

It will be seen in §4 that diffraction gratings may indeed support R-B

surface waves and the question arises whether geometric criteria for the

non-existence of such waves can be found. In the case of the Dirichlet

boundary condition such a criterion was found by Alber [3] by adapting a

method of F. Rellich [20] and D. M. Eidus [11]. Specialized to the grating

domains considered here, Alber's theorem implies

Theorem 2.2. Let

(2.19) G = {X I y > h(x) for all x E R}

where h E C2(R) and h(x + 27T) = h(x) for all x E R. Then AD(G) has no R-B

surface waves.

Theorem 2.1 implies that R-B waves for A may be determined, modulo R-B

surface waves, by specifying either the coefficients cR with w > Ip + RI

(the incoming plane waves) or the coefficients cR with w > Ip + RI (the

outgoing plane waves). R-B waves for A that contain a single incoming or

outgoing plane wave will be used in the R-B wave expansions given in §8

below. These are the grating waves originally introduced by Rayleigh.

Physically, they are the wave fields produced when the grating is illumi-

nated by a single plane wave. Here they will be called R-B diffracted plane
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wave eigenfunctions for A or, for brevity, R-B wave eigenfunctions for A.

There are two families determined by the presence of a single incoming or

outgoing plane wave, respectively. The plane waves
1Jinc(X,p,q)

and
inc(X,p,-q)

defined by (2.1) are incoming and outgoing R-B waves, respec-

tively, with x-momentum p and frequency

(2.20) w = w(p,q) = (P2 + g2)1/2
.

The scattering of these waves by a grating will produce outgoing (resp.,

incoming) R-B waves with the same x-momentum and frequency. Hence the R-B

wave eigenfunctions may be defined as follows.

Definition. An outgoing R-B diffracted plane wave for A with momentum

(p,q) E Rp is a function 1+(X,p,q) such that

(2.21) is an R-B wave for A, and

(2.22) (X,P.q)
inc(X,P.q)

+ Jsc(X,p,q)

where +c is an outgoing R-B wave for G. Similarly, an incoming R-B dif-

fracted plane wave for A with momentum (p,q) E R2 is a function (X,p,q)

such that

(2.23) is an R-B wave for A, and

(2.24) $_(X,p,q) _
inc(x,p,_q)

+ sc(X,P,q)

where
Jsc

is an incoming R-B wave for G.

The uniqueness of rP+(X,p,q) modulo R-B surface waves follows from

Theorem 2.1, as was remarked above. Their existence for the class of

gratings defined in §1 is proved in §8 below. Note also that the defining

properties imply that

(2.25) i_(X,p,q) = +(X,-P,q)

Hence the existence of the family t_ follows from that of $+.

In the half-plane RR above the grating the R-B waves 'P+ have Fourier

expansions (2.10). For the function + the expansion has the form

+(x.y,P,q) _
(2w)-1

exp {i(px - qy)}

(2.26) + (27r) 1 cq(p,q) exp {i(Pox + qoy)}
(P+R)2<p2+g2

+ (27r)-1 I cQ(p,q) exp {ip9,x} exp {-((P+Q)2 - p2 - g2)1/2 y}
(P+Q)2>P2+g2
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where

(2.27) (pp,g9) = (p + Q,{P2 + q2 - (p + 2)2}1/2 ) E Ro

defines the momentum of the reflected plane wave of order Z. Similarly,

_(x,y,P,q) _ (211)-1 exp {i(Px + qy)}

(2.28) + (21T) -1
2

cj(p,q) exp {i(PRx - qpy)}
(P+k)2<Pz +q'

(P++ (2n)-1 Q)2>pz+qz
cj(P,q)exp{ip9x}exp{-((p+f)2-P2-q2)1/2y}.

The relation (2.25) implies that the coefficients c91 (p,q) in (2.26), (2.28)

satisfy

(2.29) c-(p,q) = c+Q(-p,q) for all (p,q) E R2 and X E Z

The surface wave terms in (2.26) and (2.28) are exponentially decreas-

ing functions of y except when the wave frequency w(p,q) = (p2 + g2)1/2

= IP + 9. for some k E Z. These are precisely the cut-off frequencies

mentioned above. In momentum space they form the exceptional set

(2.30) E = R2 n U
QEZ

{(P,q) I
/p2 + q2 = IP + P, I}

E is a set of confocal parabolas with foci at (0,0), axes along the p-axis

and directrices p + R = 0, 2 E Z. Two members of the family with direc-

trices p + 2, = 0, p + m = 0 are disjoint if 9. and m have the same sign and

intersect orthogonally if 2 and m have opposite signs. The family E thus

divides R2 into a system of curvilinear rectangles.

In the special case of the degenerate grating R2 comparison of (1.33),

(1.34) with (2.26), (2.28) shows that for the Neumann case
oN

= 00'

co(p,q) = 1 and all other c+,(p,q) = 0. Similarly, for the Dirichlet case

uD+ = co(p,q) _ -1 and all others c+(p,q) = 0. Thus in these cases
91

there is no scattering into higher order grating modes or surface waves, as

was to be expected. Note that the defining properties (2.22), (2.24) can

be rewritten as

(2.31) lU+(X,p,q) = Vlo+(X,P,q) + W+(X,P,q)

where is defined as above and and i' are, respectively, outgoing and

incoming R-B waves for G. This decomposition exhibits the R-B wave eigen-

functions for G as perturbations of those for Ro. The decomposition is
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used below for the construction of P+ and the derivation of the eigenfunc-

tion expansions.

§3. The Reduced Grating Propagator Ap.

The quasi-periodicity property (2.3) of the R-B waves implies that they

are completely determined by their values in the domain

(3.1) P=Gn{XI-Tr<x<TT}.

Moreover, (2.3) and the equation obtained from it by x-differentiation

define boundary conditions that must be satisfied by R-B waves on the por-

tions of aP where x = ±Tr. These observations are used below to show that

the R-B surface waves and diffracted plane waves for G are eigenfunctions

and generalized eigenfunctions, respectively, of a p-dependent selfadjoint

realization of -A in L2(P). This operator, which will be denoted by Ap and

called the reduced grating propagator, provides a basis for the construction

of the R-B waves for G.

The definition of the grating domains in §1 implies that the reduced

grating domains 2 satisfy

(3.2) Bh C P C Bp for some h > 0

where

(3.3) Bc=R2n{X -Tt<x<TT) _ {x -Tr<x<Tr, y> c)

The notation

(3.4) y = {y (TT,Y) E G} = {y (-Tr,y) E G}

will also be used. The definition of the reduced grating propagators ANp(p)

and AD(P) associated with 2 and the two boundary conditions will be based
p

on the function space

(3.5) LZ'P(R) = LZ(P) n {u I u(TT,y) = exp {27rip} u(-Tr,y), y E Y}

Sobolev's imbedding theorem [1] implies that every u E LZ(P) has boundary

values u(±TT,y) in L2oc(y) and LZ'P(P) is a closed subspace of LZ(P).
The operator AM(P) is defined by

D(AM(P)) = LZ'P(P) n LZ(A,P) n {u I
1

{(Au)v + Vu- Vv} dX= 0 for v E L'P(2))

(3.6)
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and Ap(S2)u = -Au. It can be shown that Ap(S2) is the selfadjoint non-

negative operator in LZ(S2) associated via Kato's theory with the

sesquilinear form defined by the Dirichlet integral acting on the domain

LZ'P(S2). By applying elliptic regularity theory [1] and Sobolev's imbedding

theorem it can also be shown that every u E D(AP(S2)) satisfies the

p-periodic boundary conditions

u(7T.Y) = exp {27rip} u(-rT,y) y E Y
(3.7)

Diu('rr,y) = exp {2Trip} Diu(-Tr,y) , y E Y

Moreover, if DG is a smooth curve then it follows from (1.14) as in §1 that

functions u e D(AN(S2)) satisfy the Neumann boundary condition on
p

(3.8) r = aG n 52

where SZ is the closure of C in R2.

To define AD(SZ) several additional function spaces are needed. The
P

subset of e(G) consisting of functions that satisfy

(3.9) O(x + 2Tr,y) = exp {27rip} (x,y) for all (x,y) E G

(3.10) supp q C G n {X I y < p} where p = p(o) , and

(3.11) disc (supp 4,aG) > 0

will be denoted by CP(G):

(3.12) Cp(G) = CM(G) n (3.9), (3.10) and (3.11) hold}

The restrictions of such functions to C defines

Cp (S2) E CP (G) }

LD'P(S2) = Closure in LZ(C) of CP(C)

The operator AP(S2) is defined by

D(Ap(S2))=LD'P(S2) n LZ(A,S2) n {u I I {(4u)v+pu w}dX=0 for v E LD'P(C)}
)S2

(3.15)

and AP(S2)u = -Au. In this case it can be shown that Ap(C) is the selfadjoint
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non-negative operator associated via Kato's theory with the sesquilinear

form defined by the Dirichlet integral acting on the domain LD'P(0). Again,

functions in D(AP(S2)) satisfy the p-periodic boundary conditions (3.7).

Moreover, if aG is a smooth curve then functions u E D(AP(S2)) satisfy the

Dirichlet boundary condition on P.

Each of the operators AP (52) and AD(Q) will be shown in §6 to have a

continuous spectrum plus possible point spectrum. To define corresponding

generalized eigenfunctions it will be convenient to define extensions of

AP(S2) and AP(S2) in
LZoe(0).

The following subsets of LZOC(0) are also

needed:

(3.16) L2,P,koc(0)
=

L2,koc(Q) n {u I
u(TT,Y) = exp {2nip} u(-TT,Y), y E Y}

(3.17) LD,p,Roc(O) = Closure of C_(Q) in L2,koc(2)

Each is a closed subspace of the Frechet space LiZ'
koc

(S2). The sets

(3.18)

will also be used.

L2,P,com(R) = LZ,p(Q) n LZOm(Q)

LD,P,com(Q) = LD,P(S2) Tl L2om(Q)
2 2

NN,koc(0)
is the extension of Ap(S2) in LZ°C(0) defined byThe operator

AP

P

D(AN,koc(S2))
= L2,P,Zoc(0) n L2,koc(A S2) n {u I I {(Au)v+Du Vv} dX = 0

P
S2

(3.19) for v E LZ,P,com(D)}

and Ap'koc(Q)u = -Au. Similarly, AD,Zoc(0) is the extension of AD(O) in

LZ°C (0) defined by
2

D(AP,koc(S2))
= LD>P,koc(0) n LZ,koc(A,D) n {u I J {(Au)v+4u VV-) dX = 0

S2

(3.20) for v E
LD,p,com(Q)}

and
AD,koc(Q)u

= -Au. It is easy to verify that D(Ap'Zoe(S2)) and

D(AP'?OC(S2)) are closed linear subspaces of the Frechet space
L,koc(A,S2)

and hence are themselves Frechet spaces.

The reduced grating propagators for the degenerate grating will be

denoted by

(3.21) AoP = Ap(BO) , AD p = AD(B0) , and
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(3.22)
AN,Zoc = AN,foc(B°) AD,foc = AD,foc(B )

°,P P °,p p °

Moreover, the condensed notation of §1 will be used; i.e., Ap will be used

to denote either AN(S2) or AD(Q) in stating results valid for both. Simi-

larly, Af'OC will be used topdenote
AN,foc AD,foc

p p
(0) or

p
( ) In particular,

for the degenerate grating the notation A is used for AN AD and

A
foe

is used for A
N,foc

and A
D,foc

°'P
P 09P

0,p °,p o,p

Note that all the p-dependent function spaces defined above are

periodic functions of p with period 1. It follows that

(3.23) App = Ap , APoc = Apoc for all m E Z

Hence it will suffice to study Ap and ApoC for the reduced momenta

p E (-1/2,1/2].

The resolvent set and spectrum of Ap will be denoted by p(Ap) and 0(Ap)

respectively. Clearly 0(Ap) C [0,-) since Ap is selfadjoint and non-

negative. In fact, it will be shown that

(3.24) a(Ap) = [p2,cO) for all p E (-1/2,1/2) .

This was proved directly by Alber in the cases considered by him [3]. Here

it follows from the eigenfunction expansions for Ap given in §5. a(Ap) is a

continuous spectrum which may have embedded eigenvalues. It will be shown

in §6 that a°(Ap), the point spectrum of Ap, is discrete; that is, each

interval contains finitely many eigenvalues of Ap and the eigenvalues have

finite multiplicity. It is of interest for the applications to diffraction

gratings to have criteria for ao(Ap) to be empty. While completely general

criteria are not known it will be shown that the hypotheses of Theorem 2.2

imply a°(AD) _ for all p E (-1/2,1/2].

Eigenfunction expansions for Ap are derived in §5 by perturbation

theory starting from A.,
P*

The expansions for A° p, which are elementary,

are recorded here as a starting point for the analysis of Ap. Separation

of variables applied to Ao'p leads to the complete family of generalized

eigenfunctions

(3.25) ON +(X,P + m,q) = O (X,P + m,q) _
ei(P+m)*x

cos qy , m E Z , q > 0

where p E (-1/2,1/2] is fixed. Similarly, for AD'p one finds the complete

family

(3.26) OD,+(X,p+m,q) = +i 00(X,p+m,q) _ - sin qy, mEZ, q>0.
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To describe the eigenfunction expansions for A
o

the condensed notation
,p

o+(X,p+m,q) will be used to denote either o+ or Note that

(3.27) 0+(X,P+m,q) = 14J0+(X,P+m,q) IB
0

that is, the generalized eigenfunctions for A0 p are obtained from those of

A0 by restricting X to Bo and the x-momentum parameter to the lines

p' = p + m with m E Z and p E (-1/2,1/2] fixed. Classical Plancherel theory

implies that if R0 = (0,') then for all f E L2(B0) the limits

(3.28) f0+(P+'m,q) = k.i.m. I 0+(X,P4m,q) f(X) dX
M- ))) B

0, M

exist in L2(R0) for m E Z and p E (-1/2,1/2] fixed, where B0
M

= B. n {X I y < M}. Note that the L2(R0)-convergence refers to the variable

q. Moreover, Parseval's formula holds in the form

(3.29)

Hence, the sequence

(3.30)

f IL2(B0) = LZ jjf0 ±(P+m,LZ(R0)

E L2(R0) m E Z} E X(B L2(R0)
nEZ

and the operator 00+,p : L2(B0) -* 1 L2(R0), defined by
mEZ

(3.31) $0+ pf = I M E Z}

is an isometry. A more careful application of the Plancherel theory shows

that 00+,p is unitary. Finally, calculation of the spectral family

{II0 p(U) I U > p2} for A0,p gives

((U (P+m)2)1/2
(3.32) Rp(u) f(X) J 0+(X,P+m,q) f0+(P+ ,4) dq

(p+m) o

In particular, making p -* - gives the eigenfunction expansion

M
(3.33) f(X) = k.i.m.

1
0+(X,P+m,q) f0+(P+m,q) dq

M- Iml<M o

convergent in L2(B0).

The relationship between the R-B waves for A and the reduced propaga-

tors Ap will now be discussed. Note first that if i is an R-B surface wave

for A with x-momentum p + m (-1/2 < p < 1/2, m E Z) and w (t {1p+ kI I k E Z}

then tU C D(AZoe) and for y > h
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(3.34) tV(x,y) = E ckexp {i(P + i)x}exp {-((p + k) 2 - W2)1/2 y}

Ip+kl>w

It follows that (x,y) = >y(x,y)I, E D(Ap) and App = w24. Thus q is an

p
koc(S2)eigenfunction of A. To formulate the converse, note that every E L

has a unique p-periodic extension 1 E LZ°C(G). It is easy to verify that if

(3.35) S2(m) = Q + (27m,0)

then for each m E Z the extension iU is given by

(3.36) ilt(x,y) = exp {27rimp} (x - 2um,y) for all (x,y) E S2 (m)

This defines $ in LZ°C(G) because G differs from U Z S2(m) by a Lebesgue

null set. The operator OP :

Lkoc(9) ; L2
(G) defined by (3.36) maps

LROC(Q) one-to-one onto the set of all p-periodic functions in L2 (G).

With this notation it is not difficult to show that if is an eigenfunction

of Ap then iU = OPT is an R-B surface wave for A with reduced x-momentum p.

The relationship between R-B diffracted plane waves for A and gener-

alized eigenfunctions of Ap is exemplified by (3.27). More generally, if

>U(X,p+m,q) is an R-B diffracted plane wave for A with -1/2 < p < 1/2, m E Z

then +(X,p+m,q) = i4+(X,p+m,q)I,, satisfies E DAPoc

(A + w2(p+m,q)) +(X,p+m,q) = 0 in Q and

(3.37) ±(X,P+m,q) = o+(X,p+m,q) + q+(X,p+m,q) , y > h

where + (resp., ') has a Fourier expansion that contains only outgoing

(resp., incoming) plane waves and exponentially damped waves. Functions

0+(X,p+m,q) and _(X,p+m,q) with these properties will be called, respec-

tively, outgoing and incoming diffracted plane waves for Ap. They are

unique modulo eigenfunctions of Ap. It is now easy to verify that if

0+(X,p+m,q) (resp., 0_(X,p+m,q)) is an outgoing (resp., incoming) diffracted

plane wave for Ap then tU+(X,p+m,q) = OP +(X,p+m,q) (resp., ij_(X,p+m,q)

= OP _(X,p+m,q)) is an outgoing (resp., incoming) R-B diffracted plane

wave for A with x-momentum p + m. These relationships will be used in §8

to construct the R-B diffracted plane waves for A.

§4. Analytic Continuation of the Resolvent of AD

An analytic continuation of the resolvent

(4.1) R(Ap,z) = (Ap - z)-1
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across the spectrum o(Ap) = [p2,') is constructed in this section by an

elegant and powerful method that was introduced into scattering theory by

H. D. Alber [3]. The continuation provides the basis for the construction

in §6 of the diffracted plane waves +(X,p,q) for Ap and the derivation of

the corresponding eigenfunction expansions.

The results in this chapter form the core of the analytic theory needed

to construct R-B waves and prove their completeness. The proofs of these

results offered here are long and arduous, necessarily so in the author's

opinion. Therefore, to make the exposition more readable only sketches of

proofs are indicated in §4. The complete proofs are given in the following

§5.

let

(4.2)

For each pair of extended real numbers r,r' satisfying 0 < r < r' < +-

B = {X
I

-7r < x < rr, r < y < r'J , B = B

Or,r' = R n Br,r, , Or = Or,- .

Moreover, let Pr : L2(Qo,r) * L2(Q) denote the linear operator defined by

(4.3) Pr u(X) =

u(X) , XE Q

0 ,

o,r

X E Qr

The goal of §4 may be formulated with this notation. It is to construct an

analytic continuation of

(4.4) z + R(Apz) Pr : L2(0o,r)
-' LZOC(Q)

from the resolvent set p(Ap) = C - [p2,°') across o(Ap) _ [p2,-). For this

purpose p(AP) will be embedded in a Riemann surface Mp.

The definition of Mp may be motivated by considering the linear space

of functions

(4.5) Ep,z,r = D(Apoc) n (u I supp (A + z)u c Sour} , r > h

Basic properties of 6p
z,r

are described by

C G. Then every u E fp,z,r satisfiesLemma 4.1. Assume that WPT

(4.6) u E LZ,2oc (Oh)
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(4.7) u(x,Y) _ I um(y)
ei(p+m)x

in S2h

,IF Z

where the series converges in LZ'Qoc(S2h)

(4.8) um(y) E LZ,foc(Rh)
, Rh = (h,°')

Moreover, if S2r denotes the closure of in in R2,

(4.9) u E and

(4.10) um(y) = cm exp {iy(z- (p+m)2)1/2}+ cm exp {-iy(z- (P+m)2)1/2}

for y > r where cm are constants and

(4.11) Ira (z- (P+m)2)1/2 > 0

Properties (4.6) and (4.9) follow from elliptic regularity theory [1],

while (4.7) and (4.8) follow from classical Fourier theory. The convergence
2,ioc

of (4.7) in L2 (0h) follows from the fact that the partial sums of the

Fourier series define orthogonal projections in L2 (S2r r' ) for h< r< r' <
(4.10) follows from (4.9) and the equation Au + zu = 0 in S2r.

Note that if z E p(Ap) and u = R(Ap,z) Prf with f E L2(QD,r) then
u C L2(Q) n EP z r and hence cm = 0 for all m and cm = 0 when
Im (z - (p+ m)2)i/2 = 0. This suggests that Mp be defined as the Riemann

surface associated with the family of holomorphic functions on C - [p2,_)

defined by

(4.12) {z -* (z- (p+m)2)1/2 I Im (z- (p+m)2)1/2 > 0 for all m E Z} .

Mp is uniquely determined up to isomorphism by the following three

properties [3, 16]:

(4.13) Mp is connected and every function of the family (4.12) can

be continued analytically to all of Mp.

(4.14) For every pair of points of Mp that lie over the same point of

C there are at least two functions of the family that take

different values at these points.

(4.15) Mp is maximal with respect to these two properties.

The following notation will be used in connection with Mp. will

denote a generic point of Mp and ¶1 = lrp : Mp -r C will denote the canonical

projection of Mp onto C. The subscript p will be omitted when there is no
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danger of ambiguity. The analytic continuation of (z- (P+ m)2)1/2 from

C - [p2,o) to Mp will be denoted by wp+m(C). Thus, for all C E Mp

(4.16) wP+m (C) = ±(Tr(C) - (P+m)2)132

MP will denote that component of Mp over C - [p2,') on which Im wp(C) > 0

for all m E Z. Finally, Tp = {(p + m)2
I
m E Z} C C will denote the set of

branch points of the family (4.12).

The properties of Mp include the following. Mp has infinitely many

sheets. More precisely, for each disk D(zo,p) C C, 7r-1(D(zo,p)) has

infinitely many components. If zo = (p + m)2 for some m C Z then the set
-1

Tr (D(zo,p)) contains infinitely many branch points. Moreover, for all

C E Mp the set {m
I

In wP+m (C) < 01 is finite [3]. Finally, MP+m = Mp for

all m E Z.

In addition to M the set
p

(4.17) M = U {(P,C) I
C E M-}

-1/2<p<1/2
e

will be needed to describe the dependence of the continuation of

R(Ap7T(C)) Pr on p and C. M will be topologized in such a way that each

function (p,C) -- wp+m (C), m E Z, is continuous on M. To this end let

(po,C0) E M and define

(4.18) zo = TFP (Co) , D(zo,P) = {z
I Iz - zol < P}

0

and

(4.19) U(po,C0,p) = Component of TrP'(D(zo,p)) containing Co (C MP ) .

0

To define a neighborhood basis for M at (po,C0) three cases will be

distinguished.

Case 1. zo 1 [po,W). If po > 0 is the distance from z0 to [po,_)

then for p < po D(zo,p) n [po,°) and U(po,C0,p) contains no branch

points of M
Po

In this case

(4.20) {sgn Im wPo+m (C)
I

m E Z} , C E U(pa,Co,P)

is well defined. Moreover, IP - pol < 6 implies that D(zo,p) n [p2,w) _

for d small enough and hence {sgn In w 5(C) I m E Z} is also well defined
-1 P

on the components of Tr (D(zo,p)). In this case one may define U(p,C0,p)

as the component of 7Tp (D(zo,p)) for which
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(4.21) {sgn In wp+m(Trpl(z)) I m E Z} = {sgn Ion w(o) J m e Z}
0

for z E D(zo,p). A corresponding neighborhood of (po,4o) in M is defined by

(4.22) N(Po,4o,P,d) = U {(P,4) 14 E U(P,CD,P)}
Ip-P01<6

Case 2. zo E [p2,_) - Tp . In this case if po is the distance from
o

zo to the set Tp then for p < po U(po,4o,p) contains no branch points of
D

Mp and (4.20) is well defined provided Trpa (4) E D+(zo,p) = D(zo,p)

n z I Im z > 0}. Moreover, Ip - pol < d implies that D(zo,p) contains no

points of Tp, for d small enough, and hence {sgn Im wp+m(4) I m E Z} is

also well defined if E D+(zo,p). In this case one defines U(p,C0,p)

as the component of Trp (D(zo,p)) for which (4.21) holds for z E D+(zo,p)).

A corresponding neighborhood is again defined by (4.22).

Case 3. zo = (po + mo)2 for some mo C Z. If po > 0 is the distance

from zo to the set T p- {(po + mo)Z} then for p < po the set U(po,Co,p)
P,

contains only one branch point; namely, that for w
+m

(4). Hence

{sgn Im wp +m(4) I m E z - {m,}} is well defined for CoE U(po,4o,p) and
0

Trp (4) E D+(zo,p). Moreover, Ip - pol < d implies that D(zo,p) contains
0

(p + mo)2 and no other points of the set Tp and hence

{sgn Im wp+m(4) m C Z - {mo}} is well defined on the components of

Trp(D+(zo,p)). In this case one may define as the component of

Trp (D(zo,p)) for which

{sgn Im wp+m(Tr-,(z)) m E Z - Imo }}

(4.23)

_ {sgn In wpo+m (Trpo(z))
I
m E Z - {moll

for all z E D+(zo,p). A corresponding neighborhood is again defined by

(4.22).

The topology of M is defined to be the one generated by the neighbor-

hood bases defined above and one has

Theorem 4.2. Each of the functions on M defined by

(4.24) (P,C) -> wp+m(C) , m E Z

is continuous on M. Moreover, the family of functions

{(p,4) - wp+m(4)
I

m c Z} is equicontinuous in M.
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The theorem that {4 + wp+m I m E Z} is equicontinuous on Mp for

fixed p was proved by Alber [3]. Theorem 4.2 plays a key role in proving

the continuity in (p,q) of the Rayleigh-Bloch waves in §8.

The Frechet Space Fp,C,r. To describe the subset of Ep,z,r that

contains the analytic continuation of R(Ap,z) Prf to Mp, consider the set

of functions u E Ep
z,r

whose Fourier representations (4.7), (4.10) in Str

For each m E Z , either cm+ = 0 or cm = 0 , and

c = 0 for all but a finite number of m E Z
is

Note that these conditions express the "radiation conditions"

(4.27) [Dy ± i(z - (p + m)2)i'2 ] um(y) = 0 , y > r ,

where for each m either "+" or "-" is chosen and "-" is chosen for all but

a finite number of m E Z. It is clear that each such u E E is asso-
p,z,r

ciated with a unique point c E Mp such that z and the Fourier

expansion (4.7), (4.10) of u has the form

(4.28) u(x,y) = L cm exp {i(p+m)x + iywp+M (C)} , y > r
mE Z

For each (p,4) E M and each r > h the set of all such solutions will be

denoted by

(4.29) Fp C,r = D(AboC) n {u I supp (A+Trp(C))u C 2o,r and (4.28) holds}

Note that F C D(Apoc) C
L2,Roc(A

Q) and recall that D(APoc) is closed
1,zoc

p,4,r

in L2 (A,Q). This implies

Theorem 4.3. Fp,4.r is closed in D(APoc) in the topology of
LZ,loc(A,Q)

and hence is a Frechet space.

This is immediate because the defining properties of Fp C,r' namely

supp (A + Trp(c))u C 'o r and[Dy - i wp (C)] um = O ,in y > r, are preserved

under convergence in
L2'Roc61Q)

The following condensed notation will be used in discussing Fp,C r and

related operators:

(4.30) (u,v)r r, = (u,v)L
(Q ,) '2 r,r
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(4.31)

(4.32)

(u,v)l;r,r, (u,v)L1

(u,v)1;A;r,r, (u'v)LZ(A,S2 )

r,r

Now let Pp,4,r : Fp.4,r -'- L2(Qp,r) denote the natural projection defined by

(4.33) Pp,4,r u = ul30,r for all u e F .

P,4,r

An important property of F is expressed by the following generalization

of a theorem of Alber [3, p. 264].

Theorem 4.4. For every compact set K C M and for every r' > r there

exists a constant C = C(K,r,r') such that

(4.34) IIu1I1;A,°,r'
C

IIPP,4,r ull1.A;O,r

for all u E U(p,4)EK In particular, Pp
C,r

is a topological

isomorphism of F onto P F topologized by the LZ(A,S2 )-norm.
p,C,r p,C,r p,4,r' o,r

The Operators A L2(SZp,r) - L2(0 r). Following Alber's program,
,

the construction of the analytic continuation of R(Ap,z) Pr to Mp will be

based on the family of linear operators Ap,4,r in L2(S2o,r), defined for all

(p,1) E M by

(4.35)

(4.36)

D(Ap,4,r) - P
Fp,C,r P,4,r

A u = -Au .

The properties of Ap, r that are fundamental for the analytic continuation

of R(Ap,z) are described by the following theorems.

Theorem 4.5. For every (p,4) E M and every r > h the operator A

is m-sectorial in the sense of Kato [13, p. 279].

Theorem 4.6. For all grating domains of the class defined in §1, the

family of operators (Ap,4,r I (p,4) E M? is continuous in the sense of

generalized convergence (Kato [13, p. 206]). Moreover, for each fixed

p E (-1/2,1/2] the family {Ap,4,r 14 E Mp} is holomorphic in the general-

ized sense (Kato [13, p. 366]).
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Theorem 4.7. For every (p,C) E M, every r > h and every z E p(Ap
4

r)

the resolvent R(Ap r,z) _ (Ap
C,r

- z)-1 is a compact operator inI C,,
LZ(Q r) and hence a(A )

P,S,r
is discrete.

Theorem 4.5 generalizes Alber [3, Th. 5.5]. As in [3] it may be proved

by associating Ap
C,r

with a densely defined, closed, sectorial sesquilinear

form in L2(Co,r) and using Kato's first representation theorem [13, p. 322].

The second statement of Theorem 4.6 generalizes Alber [3, Th. 5.5b]. The

hypothesis G G S of §1 is needed to prove Theorem 4.6. Theorem 4.7, which

generalizes Alber [3, Th. 5.5a], is a consequence of the local compactness

property of G in the case of the Neumann boundary conditions. Complete

proofs of Theorems 4.5, 4.6 and 4.7 are given in §5. The following conse-

quences of these theorems are needed for the spectral analyses of Ap and A

in §6 and §8.

Theorem 4.8. For all C E Mp one has rp(C) E p(Ap,4 r) and

(4.37) R(ApIC,r'rp(4)) = Pp,C,r R(Ap,rp(C)) Pr

This result may be verified by direct calculation.

Theorem 4.9. For every p e (-1/2,1/2] the set

(4.38) IP = {C 1 rP(C) E 0(AP,C,r)} C MP

has no accumulation points in Mp and is independent of r > h.

This result, which generalizes [3, Th. 5.5c], is a consequence of

Theorem 4.7. For brevity the resolvent of (4.37) will be denoted by

(4.39)
RP,C,r =

R(Ap,4,r,rp(C)) E B(L2(00 r))

Here B(X) denotes the bounded operators on X.

Corollary 4.10. For each p E (-1/2,1/2] and r > h the mapping

(4.40) C } R
P ,

C,r E B(L2('o,r))

is finitely meromorphic on MP with pole set Ep.

This result is based on a theorem of S. Steinberg [24]; cf. [3, Th.

5.5e]. Theorem 4.4 and 4.8 provide the analytic continuation of R(Apz) Pr

in the following form.

Corollary 4.11. The analytic continuation to Mp of

(4.41) 4 R(Ap,rp(4)) Pr E
LZ,Loc(A,C))

, 4 E Mp
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is given by

(4.42) +
Pp-1,4,r

RP,4,r
E B(L2(S2o,r)

,

L2,R0c(A,c))
, 4 E MP

where B(X,Y) denotes the bounded linear operators from X to Y.

Corollary 4.12. For all grating domains of the class defined in §1,

the point spectrum 0o(Ap) is discrete.

This result follows from Theorem 4.9 and Corollary 4.10.

Corollary 4.13. For all grating domains of the class defined in §1

one has

(4.43) TrPIMP n EP) C 0 (AP) u Tp

where M+ is the closure of M+ in M
P P p

If ao(Ap) then (4.43) means that the poles of RPC,r that lie above

the spectrum 0(AP) = [p2,_) must lie above the branch point set Ti,. The

fact that such poles may or may not occur is illustrated by the two opera-

tors Ao and Ao corresponding to the degenerate grating. For AD, separation

of variables leads to a construction of the Green's function (= kernel of

the resolvent R(A,,a)) which can be written

G0(X,X',P,z)

(4.44)

= i C ei(P+m)(x-x')(z-(P+m)2)-1/2 sin (z-(P+m)2)112 y< e i(z-(P+m)2)1/2 Y>
11GZ

where y< = Min (y,y'), y> = Max (y,y'). The analogous calculation for AN

gives

Go(X,X',p,z)

(4.45)

ZTr

C ei(p4m) (x-x') (z-(P+m) 2) -112 cos (z-(P+m)2) 112 y< ei(z-(P )2) 112 Y,

me Z

In the first case R(AD,z) has no poles for real z = A t iO E [p2,_). In the

second case R(A,,z) has a simple pole at each of the points z = A ± i0 E TP.

The following two theorems are implied by Theorems 4.4 and 4.6.
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Theorem 4.14. Let

E = U {(p,4) I C E E }= U {(P, it E a(A )} .
-1/2<p<1/2 p -1/2<p<1/2 p P,4,r

(4.46)

Then M-E is open in M and

(4.47) (p,4) -' RE B(L2(2
P

o,r))

is continuous on M-E.

Theorem 4.15. The mapping

(4.48)
(p,O -' PP,4,r RP 4,r

E B(L2(S2o,r)
LZ,£oC(A,Q))

is continuous on M-E.

A direct consequence of Theorem 4.15 that is needed below is

Corollary 4.16. Let K be any compact subset of M-E and let r' > r > h.

Then there exists a constant C = C(K,r,r') such that

(4.49) flli;A;o,r, < C Ilfllo r

for all (p,4) E K and all f E L2(Qo,r).

A Limiting Absorption Theorem. In the remainder of this work the

point 4 will be restricted to , the closure of MP in M. To simplify the

notation points C E MP will be identified with their images 7r (4)

z E C - [p2,°°) and the points of @Mp will be denoted by A ± i0, where

A E [p2,W). With this notation the operators

,koc(0
Q))(4.50) P-1 R E B(L (S2 ) Li

P,a±ia,r P,atia,r 2 o,r z

are defined and continuous for all A ± is E MP - Ep. Note that by

Corollary 4.13

(4.51) a(Ap) - oo(Ap) - Tp C irp(3MP - EP)

Now let f E L2(S2o ) and define

(4.52)(4.52) u P-1 R f c F± p,X±io,r pa±io,r p,a±io,r

Then, in particular,

(4.53) E D(Apoc) , and
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(4.54) Au+ + Au+ =fin Q.

Moreover, 7rp(A t i0) = A for all A H (Y(Ap) and

wp+m(A ± i0) _ ±(A - (p + m)2)1/2 if A > (p + m)2
(4.55)

wp (A ± i0) = i((P + m)2 if A < (p + m)2

Hence, the Fourier series (4.28) of u+ have the form

± i(p+m)x e±'Y(X-(P+m)2)'/2

(P+m)2<A
m

(4.56)

+ c± el(P+m)x
e-Y((P+m)2-A)i/2

(p+m)2>A
m

Thus u+ and u_ are the outgoing and incoming solutions, respectively, of

the boundary value problem (4.53), (4.54). Moreover, they are uniquely

determined by these conditions, by Theorem 2.1, provided

(4.57) A E Q(Ap) - Qo (Ap) - T p

The final result of this section is a uniform bound for the functions

(4.58)
Pp,A+i6,r

Rp,A±i6,r f H L2 A,S2

which may be formulated as follows.

Corollary 4.17. Let I = [a,b] satisfy

(4.59) I C o(Ap) - 00(Ap) - T p

and let p, 60, r and r' satisfy -1/2 < p < 1/2, ao > 0 and r' > r > h. Then

there exists a constant C = C(I,p,ao,r,r') such that

(4.60) il'p, R f' < C Il fa±iQ,r p,a±iQ,r i;A;o,r' o,r

for all A E I , 0 < 0 < ao and all f G L2(Q0 r). Moreover, if Ep ( o(Ap)

then the same result holds for intervals I C 0(Ap ) - 6,(Ap ).

§5. Proofs of the Results of §4.

Proof of Lemma 4.1. Assume that u E D(APoc) and define v(x,y)
Q= exp {-ip

2
x} u(x,y). Then v c

Li'oc
(A,Q) and satisfies the p-periodic



boundary conditions (3.7) with p = 0. Thus if S2Y is the cylinder obtained

by identifying the points (-Tr,y) and (T,y), y E Y, it follows that v is a

distribution solution of Ov + Zip Dxv + (z-p2)v = e
ipxf

E LZoc(521). Let h'

satisfy 0 < h' < h, Rh, C G. Such numbers h' exist if % C G. Then

QY, = 52Y n {(x,y) I y > h'} is contained in the interior of S2Y and the

interior elliptic estimates of imply that v E L2'iOC
Qy

[1]
2

( h,). This result

implies (4.6) and (4.8) of Lemma 4.1. Moreover, f = 0 in 0r and the regu-

larity of [11 implies v E
Lm,koc y

y y [] 2 (S2r) for all m E Z which implies

(4.9) and (4.10).
It remains to prove (4.7). Note that if v is defined as above then

1(5.1) um(Y) = 2 r J eimx v(x,y)dx = vm(y)
w

Hence (4.7) is equivalent to the statement that

(5.2) v(x,y) = I vm(Y) eimx in
mHZ

where the series converges to v in L2'koc MY).Y
2 h). To prove this note that

imx{e
I

m E Z} is an orthogonal sequence in L2(S2k,k' for any k, k' such
2

that h < k < k' < oo. Next define

(5.3) Pt v(x,Y) _ vm(Y) eimx
Iml<k

where vm is defined by (5.1). Then direct calculation shows that

(5.4) Pi L2(Qk,k,) L2(S2k,k,) is bounded

and

(5.5) PQ = Pk = PQ in L2(SZk,k,)

i.e., Pi is an orthogonal projection. It follows that

(5.6) Qk=1-Pk

is also an orthogonal projection in L2(SZk,k,). Note that the convergence

of (5.2) in
LZ'koc Y(Qk,k') is equivalent to the condition

(5.7) kim IIQk vII2 = 0 for all v E L2 (S2k,k' )

where is the norm in L( S2k k,). Now (5.7) follows from classical

convergence theory for Fourier series if v E C%2k k,), the set of
,
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restrictions to S2k,k, of functions from Moreover, this set is

dense in LZ (S2k k'). Thus if v E LZ (Stk k, ) and v' E CW (Stk k, ) then

"QR v"'2 = (QR v,v)2 = (QR(v-v'),v)2 + (QR v',v)2

(5.8)

It follows that

< Ilv-v' 112 I1v112 + IIQR V'112 11v112

(5.9) Rim sup IIQR vII2 IIv-v' II2 IIVIi2

for all v' E C'(Qk,k,) which implies (5.7).

Proof of Theorem 4.2. To prove the continuity of the mappings

(p,C) -> wP+M (C) for all (p,C) E M and m E Z let (po Co) G M, m G Z and
e > 0. It will be shown that there exist po(e) > 0 and do(e) > 0 such that

(5.10) IwP'. (C) - wP +m(C(,)I < e for (p,C) E N(Po,C0,P,S)
0

provided 0 < p < po(e), 0 < 6 < do(e).

To prove (5.10) note that in Cases 1 and 2 of the definition of

N(po,C0,p,S) one has, for every m E Z,

(5.11) wP+m (C) = ±(TrP(C)- (P+m)2)i/2 , wPo (Co) = ±(nPO (Co)- (Po+m)2)1/2

where the square roots have non-negative imaginary part and the ± signs are

the same for each m E Z. Moreover,

(5.12) TrP(C), T1
PO

(Co) = zo E D(zo,P) and IP - Po I < 6

for (p,C) E N(po,C0,p,(S). Hence there exist po(e) > 0, do(e) > 0 such that

IwP+m (C) - wPo+m (C0) I = I (Trp(C) - (P+m)2)1/2 - (T<Po (C o) - (Po+m)2) 1/2I < e

(5.13)

for (p,C) E N(po,C0,po(e),S0(e)). To prove (5.10) in Case 3 note that in

this case if (p,C) E N(po,C0,p,6) then one has both zo = (po + mo)2 and

(p + m0)2 in D(zo,p) for 6 < So(p). Moreover wPo+mo(Co) = 0. Hence there

exists a po(e) > 0 such that

(5.14)
IwP-

(C) - wp
+m (CO) l = I (TrP(C) - (P + mo)2)1/2I < e

0 0

for (p,C) E N(po,C0,p,6), 0 < p < po(e), 0 < 6 < 60(p0(a)) because
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Tf E D(zo,p) for all such (p ). The proof that the functions wP+MW

with m # mo are continuous at (po,;_) is the same as in Case 1.

To prove the equicontinuity statement of Theorem 4.2 fix (pogo) E M.

Then for all m E Z (resp., m E Z - m,}) Cases 1 or 2 apply to wP4. and if

(5.15) Fm(z,P) = (z- (P+ M)2)1/2 In Fm(z,P) > 0

then for all (p,0 E one has

(5.16) Iwp+m(r) - Fm("sPO

Note that Fm(z,p) has partial derivatives

Dz Fln(z,P) = 2 (z- (P+m)2)-1/2

(5.17)

DP F111(z,P) _ -(z- (p+m)2)-1/2 (p+m) .

Hence for z E D(zo,p) and IP - p0I < 6 these derivatives are uniformly

bounded for all m E Z (resp., m E Z - (mo}). Now by Taylor's theorem

(5.18) Fm(z,P) = Fm(zo,Po) + (z - zo) Dz Fm(z',P') + (p - PO) Dp Fm(z',P')

where (z',p') is on the segment from (zo,po) to (z,p). Thus one has

(5.19)

IwP+IW -
I

< IDz Fm(z',p')I IIT p(4)-TTPo(4o)I + IDp Fm(z',P')I IP-P0I

< Const. (I7rp(4) - 11Po(4o)I + Ip - p0I)

for all (p,4) E N(po,0o,p,6) and all m E Z (resp., m c Z - {mo}). Since
Trp(0) and TrP (Co) = zo are in D(zo,p) for E N(po,ro,p,6) it is clear

a
that there exist po(c) > 0, 60(c) > 0 such that (5.14) holds for all (p,C)

in N(po,4o,po(c),60(c)) and all m E Z.

Theorem 4.3 was proved in §4. The proof of Theorem 4.4 will be based

on the following

Lemma 5.1. For every compact set K C M and every r' > r there exists

a constant CI = CI(K,r,r') such that for all u E U(p,C)EK Fp,4,r one has

(5.20) Ilullr,r, < C1 (IluII 2 2r + IIDullhr)
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Proof of Lemma 5.1. Note that every u E FP.,., can be written

(5.21) u(X) = u'(X) + u"(X) , X E 0r

where

(5.22) u' (X) = E' cm exp {i x(p+m) + iy wp+m(O}

(5.23) u"(X) = E" cm exp {i x(p + m) + iy wp+m(C)}

the cm are the coefficients of (4.28) and the notation E', E" denotes

summation over the index sets {m I Im wp+m(C) > 0} and {m
I

Im wp+m(O < 01

respectively. Lemma 4.1 implies that u (-= C7(0r) and the Fourier series in

(5.22) and its derivatives converge uniformly on compact subsets of -r to u'

and its derivatives. Moreover, the sum in (5.23) is finite for each

E M. Finally

(5.24) IluIIY,r, 112

because {el(P+m)x} is an orthogonal sequence in L2(Qr,r') and the index sets

defining E' and E" are complementary.

Parseval's relation for Fourier series implies that

r

(5.25)
J Iu'(x,Y)I2 dx = 2n E' IcmI2 exp {-2y Im wp+m(O}
-

for all y > r. Moreover, this is a monotone decreasing function of y, whence

1-7Iu,(x,Y)I2 dx < 27Z' IcmI2 exp {-2r Im wpm( )} = 27rF' Ium(r)i2

(5.26)

Integrating this inequality over r < y < r' gives

(5.27) Ilu'Ilr,r, < 27r(r' - r) E' Ium(r)12
.

The analogue of (5.25) for u" is a monotone increasing function of y > r. In

particular, for r < y < r' one has

Tr

(5.28) J-Tr Iu'(x,Y)I2 dx < 27r E" IcmI2 exp {-2r' Im wp+m(O}

To estimate this sum note that the sets {m I Im
p+Tn

(C) < 0) vary with

(p,4) E M and the properties of M established in §4 imply that the set

(5.29) M = M(K) = {m I Im wP+M W < 0}
(pqEK
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is finite for each compact K C M. it follows from this and Theorem 4.2 that

(5.30) p = p(K) = Max {-Im wp+m(s) : K and m E M(K))

is finite. Hence (5.28) implies

J-T<
Iu"(x,y) I2 dx < 2u exp {2(r' - r)p} E" Icm12 exp (-Zr Im wp

(5.31)
(C)}

2Tr exp {2(r' - r) p} E" Ium(r) I2

for r < y < r'. Integrating (5.31) over r < y < r' gives

(5.32) Ilu"112 r' < 2Tr (r' - r) exp {2(r' - r)p} E" Ium(r) I2

Adding (5.27) and (5.32) and using (5.24) gives

(5.33) Ilull2 < 2Tr(r' - r) exp {2(r' - r)p} I Ium(r) 12
n£Z

Finally, Parseval's relation in L2 (-Tr,Tr) gives

(5.34)

whence

(5.35)

Tr

IIu(-,r)j12 = J- Iu(x,r)I2 dx = 2rr I Ium(r)I2
Tr nE Z

Ilull2 r, < (r' - r) exp {2(r' - r)p} IIu(r) 112

To complete the proof of (5.20) recall that by Lemma 4.1,

u E
L2,Zoc
2

(S2h). It follows by Sobolev's imbedding theorem [1, p. 32] that

there exists a constant C2 = C2(h,r) such that

(5.36) C2(Ilullh,r + TIDY u112 r) < CZ(Ilullh r + IlVull2
-h - , h, r)

Combining (5.35) and (5.36) gives (5.20).

Proof of Theorem 4.4. It must be shown that there exists a constant

C = C(K,r,r') such that for all (p,C) E K and all u G Fp
4,r

IIAull2114u(12 + o,r(5.37) IIull2 , + IIDu11o2,r + IIAu11o2,r < C2 (IIu11o2,r + o,ro , r
)

-

Clearly it will suffice to show that

(5.38) IIu112 + IIDu112 , + IIAuIl2 , < C2(IIu112 + IlVull2 + IIAu112 )r,r r,r r,r - o,r o,r o,r
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since (5.37) then follows with C2 + 1 instead of C2. Moreover, every

u c Fp>C>r satisfies An = -TT(C)u in Or. Hence it will suffice to show that

(5.39) Ilull2 , + IIDu112 , < C2(IIul12 + IIDu112 + 1IAu112 )r,r r,r - o,r o,r o,r

since (5.38) then follows with C2 Max {Iirp(C)I + 1 : E K) instead

of C2.
To prove (5.39) note that the Fourier series argument used in the proof

of Lemma 5.1 implies that (cf. (5.35))

(5.40) IlVullr r' < (r' - r) exp 12(r'- r)p}

Moreover, if r" = 2(h + r) then h < r" < r and Sobolev's imbedding theorem

implies that there exists a constant C3 = C3(h,r) such that

(5.41) C3 llull2;r",r

where
r

is the norm for L2(Qr"
r).

Finally, the interior elliptic
>

estimates of [1], applied to v(x,y) = exp {-ipx} u(x,y) and Lpv

= Av + 2ip Dxv - p2v in 0h,r imply that there exists a constant

C, = C,(h,r,r') such that

(5.42) IIuII2;r,,,r < C4 (Ilullh,r, + IlAullh,r')

Moreover, since An = -7r(4)u in 52r,r'
IlullZ , + IlullZ + IlullZ , + IIAu112 + 17 (C) I2 IIuI12 ,h,r h,r h,r r,r h,r p r,r

(5.43)

< Ilullh r + IlAullh r + CS (K) 1lull2

where C5(K) = Max (p>4) E K}. Combining (5.20), (5.40), (5.41),

(5.42) and (5.43) gives

(5.44) IlullZ + IIDu112 , < C (IlullZ + IIDu112 + llAollZ ) + C IlullZ ,r,r' r,r 6 h,r h,r h r,r
where C6 = Max (C1,(r'- r) exp {2(r'- r)u(K)} C3 C5) and

C, = (r' - r) exp {2(r' - r)p(K)} C3 C5 C5. Finally, combining (5.20) and
(5.44) gives (5.39) with C2 = Max (C6,C1 C7).

It is worth remarking that an indirect (non-constructive) proof of

Theorem 4.4 can be given by a compactness argument; see [30, Lemma 4.6] and

Alber [3, Lemma 5.3].
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The Sesquilinear Form Ap,r,r in L2(Q
o,r

). Kato's first representation

theorem [13, p. 322] associates a unique m-sectorial operator in L2(Go r)
,

with each densely defined, closed, sectorial sesquilinear form in L2(Qo r)'
,

Theorem 4.5 will be proved by constructing such a form A
P,C>r

in L2(S2 o,r)

and showing that AP
,r

is the associated m-sectorial operator. To motivate

the definition of note that if v E then application of

Green's theorem gives

rm
(5.45) IlDvll0 r - I v Dyv

JJJ

y=r
dx .

The formal correctness of this equation is obvious. A rigorous proof based

on the definition of AQoc is given below; see (5.115). Now v = P u
p p,?,r

where u E F and u and v have Fourier expansions (4.7) for h < y < °° and

h < y < r, respectively. Moreover, Lemma 4.1 and the Sobolev theorems [1]

imply that um c C1[h,°°), vm E C1[h,r], um(y) = vm(y) for h < y < r and

(5.46) um(y) = cm exp {iy wP+m(C) } , y ? r .

Application of Parseval's formula to the integral in (5.45) gives the

alternative representation

(5.47)
(v,AP,4>rv)o,r = IJDvII2 - 2Tri wpim(4) Ivm(r)'2

mEZ

The right-hand side of (5.47) will be used to define the form A
P>4,r.

Two cases, corresponding to the Dirichlet and Neumann boundary conditions

respectively, must be distinguished. To this end define

GD = LD,p,2oc(S2) n2

(5.48)

n {u I suPp (A+'rr(4))u C S2o,r l'toc(Qr)}(4.28) holds in L

(5.49)

N 1,P,Roc
G = L (S2 ) nP2 o,r

n {u I supp (A+1r(4))u c D ; (4.28) holds in LZ'ioc(SZr)}O,r

The condensed notation will be used to denote GDP>C,r or GP,C,r in

statements that hold for both. It is easy to verify that is a Frechet

subs ace of
L1,ioc

(D). The notation G willi LP 2 4p,C,r 2( o,r)
be used

for the natural projection defined by
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(5.50) QP,C,ru = U for all u E
o,r

The sesquilinear form A (= AD or AN ) and corresponding
P,c,r P,?,r P

quadratic form are defined by

(5.51) D(AP,C,r) = GP,C,r C L2(2or) ,

(5.52) AP,C,r(v,v') _ (Vv,Vv')o r - 2rri

mF-Z

wp (b) vm(r) vm(r)

for all v,v' E D(A and

(5.53) AP,C,r(v) = v E D(AP,C,r)

and one has

Theorem 5.2. is a densely defined, sectorial, closed

sesquilinear form in L2(0o,r).

The proof of this result requires a number of estimates which will be

developed in a series of lemmas. The first lemma shows that (5.52) does

indeed define a sesquilinear form on L2(Qo,r)'

Lemma 5.3. For all v,v' E D(Ap r) the series in (5.52) converges

absolutely.

Proof of Lemma 5.3. It follows from Schwarz's inequality that it will

suffice to prove that

(5.54) 1 wp IV
m

(-r) 12

nEZ

converges absolutely when v E D(A ) and

(5.55) v(r) = 21
(- e-1(p+m)x

v(x,r) dx

To this end write v = Qp ru where u E Gp r and decompose u into

(5.56) u(X) = u' (X) + u"(X) , X E Qr

as in the proof of Lemma 5.1.

Consider first the component u'. Parseval's relation implies that

(5.57) J Iu'(x,Y)I2 dx = 2w E' ICm12 exp {-2y Im wp+m(O}_
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fr

I IVu'(x,Y)I2 dx = 2ir E' Icml2('p+ml2 + IwpM(C)I2) exp {-2 y Im wp_ (b)}

(5.57 cont.)

for all y > r. Moreover, these are monotone decreasing functions of y that

tend to zero exponentially at -. Hence u' E LZ (S2r) .

Next let n,n' E Z satisfy n < n' and define

n'

(5.58) u' ,(X) _ I cm exp {i x(p+m) + i y
n

n',
where denotes summation over the index set {m I Im 0 and

n < in <n n'}. Applying Green's theorem to un,n, and un n, in S2r,r, gives

( r

(5.59) J {u' , Au' , + IDu' I2} dX = u', Dv u' , ds
n,n n,n n,n n,n n,n

r,r' r,r'

whence, using the Helmholtz equation and p-periodic boundary condition for

u' n
one has

ii

(5.60) Ilou rll2 - 7T(C) II u' tll2 _ j-
(uI

r D u' r

)r'
dx .

n,n r,r' n,n r,r n,n y n,n r

Making r' -} - and writing 11-11r = 11.1'r,- gives

(5.61)

{ it
Iloun,n' II= - ir(e) llun,n'll2r

= -J
-T

un,n, Dy un,n, dx
y=r

_

,

-2Tri I Ium(r)12
n

where vm(r) = um(r) = cm exp {i r w In particular, taking the real

part of (5.61) gives

'(5.62)
2TT

E In Ivm(r)12 = IIVun,n,I12 - Re 7T (C) Ilun,n.11

n

Hence the convergence of the Fourier series for u' in LZ(or) implies that

(5.63) E' Im Ivm(r) I2 < °°

The convergence is absolute because all the terms are non-negative.

Now consider the set

(5.64) {-i
I Im wp+mW> 0} .

Each member of the set satisfies
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(5.65)

Moreover, elements

(5.66)

whence

(5.67)

It follows that

I arg (-i wp+m (C)) l < 7r/2

of the set (5.64) satisfy

P-Hn
(4) - i Ip + ml , Iml

arg (-i wp+m (4)) -Y 0 when Imj - w .

(5.68) 0 = Max {Iarg (-i wp. (4))I : Im wp+m (4) > 0) < 7/2

Hence if Im wp+m (4) > 0 then

(5.69) IRe wp (4)I Ivm(r)I2 < tan 0 Im wp+m (c) IVm (r)12

and (5.63) implies that

(5.70) E' IRe wp+m (C) l Ivm(r) I2 < -

(5.63), (5.70) and the finiteness of the sum defining u" imply the absolute

convergence of the series (5.54).

Lemma 5.4. For each compact K C M and each r > h there exists an

a = a(K,r) such that for all v E U(p,4)EK D(Ap,4,r) one has

(5.71) I27r E" wp (C) Ivm(r) I2I < z 1Iovllo,r + a IIv1I2,r

Proof of Lemma 5.4. Schwarz's inequality and the definition (5.55)

imply that 27r Ivm(r)I2 < Since v E L2(00 r) it follows by

Sobolev's imbedding theorem [1] that there exists a constant C0 = C0(r) such

that for all C > 1 one has

(5.72) 2e Ivm(r) 12 < Co e-1(IIVvIIp r + e2 IIvIIo,r)

Next, note that if M(K) is the index set defined by (5.29) then M(K)

is finite and hence

(5.73) C1 = C1(K) = Max {Iwp (4)I : E K and m E M(K)]

is finite for every compact K C M. Combining (5.72) and (5.73) gives
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I21r E" wp+m(C) Ivm(r)I2 < 25 C E" Ivm(r)12

(5.74)

1 L
Iv (r) 12< 2a C C

TEM m

< Co C1 M E-I (II7"II2 r + E2IIvIIo ,r)

2 IIVVllo,r + a Ilvllo,r

provided that E = c(K,r) > 1 is chosen such that Co C1 M e-1 < 1/2 and

a = a(K,r) satisfies a > Co C1 M E.

Corollary 5.5. The sesquilinear form is sectorial for all

(p,C) E M. In fact, for each compact K C M there exist constants

y = y(K) E R and 8 = 6(K) < 7r/2 such that for all (p,C) E K and all

v E D(Ap,4,r) with IIvilo,r = 1 one has

(5.75) E {z(=- C : Iarg (z - y)I < 6} .

Proof of Corollary 5.5. The proof generalizes one of Alber [3, Lemma

6.3]. Let (p,C) E K, v E D(Ap,C,r), II"II1,r = 1 and write
I

+ I2

where

(5.76) I1 = IOvIIo,r - 27Ti E" Ivm(r)I2

and

(5.77) 12 = -2Tri E' wp+m(c) Ivm(r)I2

Then by Lemma 5.4 one has

(5.78) IIm ,1 < 2 tIVVIlo,r + a

Similarly, the real part of I, satisfies

(5.79) Re I > IIOvllo,r - 2 JIDVIIor - a = 2 IIOvIIo,r - a

Combining (5.78) and (5.79) gives IIm III < Re I, + 2a whence

(5.80) I1 E {z E C Iarg (z + 2a) I < Tr/41 .
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Next, recall that larg 1 21 < 6 < ,r/2 where 0 = 0(p,C) is defined by (5.68).

In fact, it is elementary to show that the limit relations (5.66), (5.67)

hold uniformly for (p,4) E K and hence there exists a 61 = 01(K) < ,r/2 such

that larg I21 < 61 for all (p,4) E K. Combining this estimate with (5.80)

gives (5.75) with y = -2a and 6 = Max (n/4,01).

The proof that the form A
p,4,r

is closed is based on the following

generalization of an estimate of Alber [3, p. 269].

Theorem 5.6. For each (p,4) E M and each r' > r > h there exists a

constant C = C(p,C,r,r') such that for all v = Qp,4,ru with u E
Gp,C,r

one

has (see (4.30), (4.31) for notation)

(5.81) Ilull;;o,r' - c(IAp,C,r(°)I + IIVllo,r)

The proof of Theorem 5.6 will be based on a number of related estimates

which will be developed in a series of subsidiary lemmas. The first is

Lemma 5.7. Under the hypotheses of Theorem 5.6 one has

(5.82) IIVu'Ilr - 1T(4) Ilu'll= = -2,ri E' wp (4) lum(r)12

where u' by (5.22) and um(y) = cm exp {i y wp+m(4)}.

Proof of Lemma 5.7. The finiteness of the norms in (5.82) has already

been noted; see (5.57). Passage to the limit n -* n' - in (5.61) gives

(5.82).

Lemma 5.8. Under the hypotheses of Theorem 5.6 there exists a constant

C1 = C1(p,C,r,r') such that for all u E Gp,4,r one has

(5.83) 11u11=,r, < C1

Proof of Lemma 5.8. (5.83) follows from the proof of Lemma 5.1,

inequality (5.35).

Lemma 5.9. Under the hypotheses of Theorem 5.6 there exists a constant

C2 = Cz(p,4,r,r') such that for all u E Gp,c,r one has

(5.84) llVu'lli,r, < Cz lIu(,r)112
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The proof of Lemma 5.9, starting from (5.57), is exactly like that of

Lemma 5.8 and is therefore omitted.

Lemma 5.10. Under the hypotheses of Theorem 5.6 there exists a

constant C3 = C3(p,C,r,r') such that all u c G
P,C,r

one has

(5.85) JE" wP+M (C) Ium(r)121 < C3 llu(',r)II2 .

Proof of Lemma 5.10. One may take C3 = Max {IwP+M (C)l: Im wP+m(C) < 0}

and use (5.34).

Lemma 5.11. Under the hypotheses of Theorem 5.6 there exists a

constant C4 = C4(p,C,r,r') such that one has

(5.86) Ilu'Ilr < C4 Ilu(',r)1I2

Proof of Lemma 5.11. Integration of (5.57) over r < y < 00 gives

(5.87) IIu'(Ir = 27r E' Icm12 exp {-2r Im wp4m (C)}/2 Im wp4m (C)

which with (5.34) implies (5.86) with C4(p,C,r,r') defined by

C4' = Min {2 Im wp ,(C) : Im wP (C) > 0}. This minimum is positive because

Im w
p-hm

(C) - lP + ml, (ml -+ w (see (5.66)).

Lemma 5.12. Under the hypotheses of Theorem 5.6 to each a > 0 there

corresponds a constant 6a = 6a(h,r) such that for all u E GP,C,r one has

(5.88) lIu(',r)ll2 < a llVullo,r + ea Ilullo,r

Proof of Lemma 5.12. Recall that u E C-(S2r) and hence um(y) E C-[r,-).

Hence by a Sobolev inequality there is a constant y = y(h,r) such that for

all 6 > 1 one has [1]

(5.89)
((r

lum (r)I2 < y E-1 IJ lum(y)12 dy + 62
Jr

lum(Y)l2 dyll

h h 111

Moreover, by Parseval's relation,

(5.90) llu(.,Y)112 = J- lu(x,Y)12 dx = 2Tr I lum(Y)I2 , y > h
Tr ME Z

whence
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(5.91) II 2rr
jr

Ium(Y)l2 dy
nEZ h

r(5.92) IDY um(Y)I2 dyIIDyullh,r = 27r J
meZ h

Combining (5.89)-(5.92) gives the estimate

hu(.,r)h2 <_ y e-'(IIDynllh,r
2

2+ e2 hullh,r)

(5.93)

< y E(IIVU.llo + e2 IUll r)

Choosing y(h,r)e-1 = a, y(h,r)e = y2(h,r)/a = 8a(h,r) in (5.93) gives (5.88).

Proof of Theorem 5.6. The definition (5.52), (5.53) implies that for

all v = E

(5.94) AP.C.r(v) = llavllo,r - 211i Ium(r)I2
mEZ

Combining this with Lemma 5.7 gives the representation

(5.95) Iiovho,r+ IIVu' llr - n(C) llu' IIT- 2ni E" wP+m(C) Ium(r) 12

whence

ilovlla,r + lIVu' l l r , r , < Ilovllo,r + Ilou' llr
(5.96)

= Re
r(4) 11U, 11r + 2tri E"

I

Ilu'11= + z,r IE" lum(r) I2i

It follows that

jj.l12
= Ilou'Il=,r, + Ilou'Ilr,r, + hull=,r'

(5.97)

`-

IAP,C,r(v)I + ln(C)I ilu'112 + 2,r IE' wP+mW Ium(r)121r

+IloulIT,r,+Iluilr,r'+llvllo,r

Combining (5.97) and the estimates of Lemmas 5.8-5.11 gives
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(5.98)

where

IIuII21 ;o,r' < IAP r(v)I + C5 IIu(-,r)IIZ + IIvIIo,r

(5.99) C5 = C5(p,C,r,r') = C1 + C2 + 2Tr C3 + ITr(C)I C,, .

On combining (5.98) and (5.88), and recalling that u = v in 0o,r' one finds

(5.100) IIuII1;o,r'
<

(C") IIDvIIa r + (C6 ea + 1) 11v1120,r

where a > 0 is arbitrary. Defining a by C 5a = 1/2 and C = C(p,C,r,r')

= 2(Csea + 1) gives

(5.101) IIull;;o,r' < 2 Ilvllo2 ,r) +
2

Ilovlla,r

since-! C = Csa + 1 > 1. Finally, (5.101) implies (5.81) because

IIOvhI0,r - 11-111;0r'

Proof of Theorem 5.2. The denseness of in L2(Do,r) follows

from the obvious inclusion C0(Da,r) = Qp,C,r Co(52n,r) C D(Ap,C,r ). The

sectorial property of A
yy
was proved as Corollary 5.5 above. To prove

that is closed let v' = u(n) with u(n) E G
P

Cr,
be

convergent to v E L2(oo,r); i.e., v (n) , v in L2(0or) and

(v
(n)

- v(m) ) -> 0 when n,m 3 It most be shown that v = u

where u E G
P

r and A (v - v(n)) -> 0 when n [13, p. 313]. Now

Theorem 5.6 applied to v(m) = Q (u(a) - u(m)) implies that {u(n)}

is a Cauchy sequence in and hence lim u(n) = u E Gp,C,r exists.

Clearly, v = Qp
C,ru

since Qp
4,r

is bounded. Moreover, the convergence of

{u(n)} to u in G
p,c,r oimplies that IIDv - Vv(n)II,r -' 0 when n - °°. Hence,

the representation (5.94) of implies that to complete the proof of

Theorem 5.2 it will be enough to show that

(5.102) lim I wp}m(C) Ium(r) - umn)(r)I2 = 0
n- ME Z

Now Lemma 5.3 and the relation (5.60), applied to the partial sums of the

Fourier series of u E G
p,C,r

in Cr,r, imply that

21Ti I w (c) Ium(r)IZ = (-Tr IIu IIY,r,- IIVu1I2r,rt
mEZ

(5.103)
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It follows that (5.102) holds if

im(5.104) lim (u(-,r')-u(n)(-,r'),Dyu(',r')-Dyu(n)(-,r'))L2(-Tr ,r) = 0

To prove this define s = 1/2 (r + r'), s' = r + r' so that r < s < r' < s'.

Then a Sobolev imbedding theorem [1] implies that

(5.105)

1u11 1.s r' I1u11 2.s r'

u12;s r'

Moreover, the interior elliptic estimates of [1] imply that there exists a

C = C(r,r') such that (see (5.42))

(5.106) lluil2,s r'
< C(llull= S, + IIAullr s,)

Since An = -Tr(?)u in Or, (5.105) and (5.106) imply

(5.107) (u(',r'),Dyu(-,r'))I < C' IIUIIT s,

where C' = C'(p,C,r,r'). Applying (5.107) to u - u(n) gives (5.104). This

completes the proof of Theorem 5.2. Note that the proof actually implies

Corollary 5.13. Qp,4 r is a topological isomorphism of the Frechet

space G onto D(A QP,4,r G
P,4,r,

topologized by the norm

(5.108) 1v112 r)1/2

Proof of Theorem 4.5. The densely defined, sectorial, closed sesqui-

linear form Ap r is associated with a unique m-sectorial operator

in L2(03 r) by Kato's first representation theorem [13, p. 322]. Theorem

4.5 will be proved by showing that A Tp p r,r =

The Inclusion Ap' r C Tp ,r. To prove this let v E

D(Ap 4,r) and write z = -Av = Ap ,rv. It will be shown

that

(5.109) AP,c,r(v',v) = (v''z)p r , v' E D(Ap,,r)
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Note that this implies that v E D(Tp
C.r

) and TPICIrv = z = A whence

Ap, ,r C
Equation (5.109) will be proved by applying the generalized Dirichlet

or Neumann boundary condition to v; i.e., the integral identities of the

definitions (3.19), (3.20) of D(AZoc). To this end let r' > r and let

r r,(y) E
e(R) be a cut-off function with the properties

' 11,y<(2r+r')/3,
(5.110) ,(y)

and q' ,(y) < 0 (whence 0 < r r,(y) < 1). Then
r'r

(5.111) v v' E
LD,p,com(0)

or L2,p,com(l)
r,r' - r,r'

and

(5.112) Vvr,r, Vv' + ,r, v'Y

where y is a unit vector in the y-direction. The integral identity of

(3.19) or (3.20), applied to v E D(Apoc) and vr,r, gives

0 = (vr,r Av)o,r, + (Vvr,r,,Vv)o,rl

(5.113)

_ Or,r,v',4v)o r, + o,r, + (Or',r,v'Dyv)
o,r,

.

Now the last term satisfies

(5.114)

rr' (7r
,v' D v) , = I J ' v'(x,y) D v(x,y) dxdy

y or r -Tr r,r y,r
l(r' (( (7r

Jr r,r,(Y) Dyv(x,Y)dxJ dy

-J

l

v'(x,y) Dyv(x,Y) dx
-7r

_ -27ri I w W v' (r) vm(r), r' -} r;
nEZ

p

see [30, p. 571 for a similar calculation. Thus passage to the limit

r' -> r in (5.113) gives

(5.115) (v',4v)o'r + (Vv',Vv)o,r - 27ri L wp (b) vm(r) vm(r) = 0
mEZ
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for all v' E The definition (5.52) of implies that

(5.115) is equivalent to (5.109).

The Inclusion T
P,r,r

C A
p,C,r

To prove this let v C D(T
p,c,r

) and

Tp,C,rv = z C L2(Oo,r). This is equivalent to the identity

A (v',v) = (v',z) o,r

(Ov',4v)o,r - 21Ti I wp o(C) vm(r) vm(r) = (v',z)o,r
nr=z

for all v' E D(A r). Taking v' E Co(c2o,r) gives

(5.118) -Av = z in 0
r

by elementary distribution theory. Thus to complete the proof it is enough

to show that v C D(A ). Note that the definitions of F and G

imply

(5.119)
(A,Q)

F GP,,,, n LZOC

Thus it will suffice to show that u = Q 1 v satisfies Au E LZOC(2). This

will be done by calculating the distribution Au. To this end note that for

all i G CO(Q) one has

(5.120) (-A1,u)Lz(Q) = (DP,Du)Lz
(0)

I,L0c
because u E Lz (Q). Thus

(5.121) (DIP,VV)0,r + (DP,Du)r,-

Now equation (5.117) with v' _ iP gives

(5.122) (D1,Vv)0,r = (),z)o,r + 2ri E wp+M (C) 1m(r) vm(r)
mEz

It will be shown that the last term in (5.121) satisfies

(5.123) (Dp,Du)r _ 2iri I wp+m Tm(r) vm(r)
mEz
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Adding equations (5.122) and (5.123) and using (5.121) gives

(5.124) (-A1P,u)L2(Q) (p,f)L2(2)

where

(5.125) f (X) _

z(X) , X E 00
r'

Tr(y) u(X) , X E Qr.-

Thus -Au = f E
LZoe. (Q)

The proof of Theorem 4.5 will be completed by verifying (5.123). To

this end recall that u C and Au = -Tr(C)u as a distribution in 0r,o

Now define 0r,r'(' = 1 - r,r'(y)' where Or, r' is defined as above, and

define

(5.126) er,r, E Op(Q)

Then the distribution definitions of Vu and Au in 0r,- imply

(5.127)

= 7F

On the other hand, proceeding as in the first part of the proof one finds

(5.128)

(V r,r Vu)r _ (0r,r,Vi,Vu)r,- + (B='r,iU,Dyu)r,-

(V1 'Vu)r - + 2Tri I w
+M

um(r)
' nEZ p

when r' -> r. Thus passage to the limit r' -. r in (5.127) gives (5.123)

because v = Qp C,ru satisfies vm(r) = um(r).

Proof of Theorem 4.6. The proof of the continuity of

I E M} will be based on a criterion established by Kato

[13, Theorem IV-2.291. Thus for each (pogo) C M one must construct a

Hilbert space JC, a neighborhood N(po,C0) C M, operators

V(p,C) E B(9C,L2(Qor)) for (p,C) E N(pp,C0), and operators U,V

E B(JC,L2(Q0 r)) with the properties that U(p,r) and U map X one-to-one onto
,

D(Apand respectively,

(5.129) A U = V
pp,?o,r
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and

(5.130) UII -* 0 , IIV(P,C) - VII - 0 when (P,4) - (po,4o)

The space JC will be defined by

(5.131) JC = D(A ) C L'(A,Spo,Co,r
2 o,r

Theorem 4.4 implies that JC is closed in the topology of L2'(A,0o,r) and

hence is a Hilbert space. Next a neighborhood N(po,4o) and linear operators

(5.132) E B(JC,LZ(A,co,r)) , (P,C) E

will be constructed with the properties

(5.133) J(p,4,po,4o) maps JC one-to-one onto D(A )

P,4,r

(5.134) J(po'co'po'4o) = E is the natural embedding of

JC in L1
z o,r

(5.135) (p,4) - J(p,4,po,4o) E B(Jf,L2' r) is continuous

at (Pogo)

The desired operators can then be defined by

(5.136) U(P,4) = Eo U = U(Po,4o)

(5.137) V(P,4) = AP>4,r U(P,O , V = V(Po,4o)

where E. : LZ(A,S1 r) - L2(00 r) is the natural embedding. It is clear that

these operators are in B(JC,LZ(Qo,r)) and U(p,4), U map JC one-to-one onto

D(A ), D(Ap ), respectively. Equations (5.129) hold by definition.P ,4,r o, o,r
Moreover,

IIU(P,4) - UII = IIEo(J(P,4,Po,co) - J(Po,4o1Po>co))II

(5.138)

Ell - 0

when (p,4) - (pogo) by (5.134), (5.135). Similarly, for all u E JC,
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(5.139)

whence

(5.140)

II(V(P,o - V)uIlo,r = AJ(Po,4(,,Po>Co)uIlo
r

J(P,C,Po,4o)u - E ull
D;o,r

< IIJ(P,C,Po,4o) - Ell IIuII1C

IIV(P,4) - VIA < IIJ(p,C,po,C,) - Ell - 0

when (p,C) -> (pogo). The proof of Theorem 4.6 will be completed by

constructing the family J(p,4,po,4o). The cases of the Dirichlet and

Neumann boundary conditions will be treated separately.

Construction of J - The Dirichlet Case. The construction generalizes

one of Alber [3]. To describe it let v E JC = D(Apo,4o,r); i.e., V=

P
u have the forms

(5.141) v(x,y) = L vm(y) exp {i(Po + m)x} , (x,y) E S2h r
n£Z '

(5.142) u(x,Y) = L um(y) exp {i(po + m)x} , (x,y) E Qh W
mEZ ,

Moreover, vm(y) = um(y) for h < y < r and

(5.143) um(y) = cm exp {i y wpo for y > r

Now introduce a function E C (R) such that

(5.144) (y) =
1 for -- < y < rl = (r + 2h)/3

0 for r2 = (2r + h)/3 < y < -

and '(y) < 0 (whence 0 < (y) < 1), and define, for each y E R,

(5.145) dm(p,C,Po,C0,Y)=exp{iy [wP+M(4)-wPo

Choice of N(po,Co). The equicontinuity of the functions wp+m(4),

Theorem 4.2, implies that there exists a neighborhood N(po,4o) C M such that

(5.146) 1 exp {iy [wP+M(O - wpo (C0)]} - 11 < 1/2
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for all (p,4) C N(po,Co), m E Z and y E R. Thus, using IIz1I - Iz2II

< Izl - z2l one has

(5.147)

11 <

I exp { i y [wp+,m(O - w l } - 11 I 1 - F (Y) I < 1/2

and hence

(5.148) 1/2 < dm(p,C,po,4o,Y)I < 3/2

for all (p,C) E N(pp,C0), m E Z and y E R.

Definition. For all v E Jf = D(A ) with expansion (5.141) on
P0,lo,r

2h,r let

J(P,4,Po,4a) v(x,Y)

(5.149)

= exp {i(p-po)x}

G vm(Y) exp {i(P0+m)x} in 0h,r
nEZ

v(x,y) in 0o ,h

Note that 1 and hence J(p,C,po,C0) v(x,y)

= exp {i(p - po)x} v(x,y) for (x,y) E 0h r . Thus the definition produces
1

no discontinuities at y = h. The proof that J has the properties (5.132)

-(5.135) will be developed in several lemmas.

Lemma 5.14. There exists a constant M = M(N(po,C0)) such that

(5.150)
IDy

M

for all E m c- Z, y E R and k = 0,1,2.

This result follows easily from the definition (5.145) and the equi-

continuity of the family {wp+m(C)}.

Lemma 5.15. J satisfies (5.132); i.e., for all v E D(A ) one
Po,4o,r

has J(p,C,po,C0)v E LZ(A,00,r) and there exists a C = C(po,C0) such that

(5.151) C II-II 1,6;o,r

for all v E D(A
PO Co r

) and all (p,C) E N(po>4o)-,,
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Proof of Lemma 5.15. For all v E D(A ) one has

(5.152)

1101 A;o,r = J {IvV2 + IVVI2 + IAvI2} dX
S2
o,r

= IIvII1,A;ooh + IIvIIi,A;her

2Tr L Jr Im(y) dy
mEZ h

where

(5.153) I1(Y) = (1 + IPo+mV2) IvmI2 + IDyvmI2 + IDYvm - (Pn+m)2 Vm12

Similarly, writing

(5.154) J vm(Y) = dm(P.4>Po.Co.Y) vm(Y)

one has

h Im(Y) dyIlexp 27r

mEZ

jr

(5.155)

where

(5.156) Im(y) = (1+ Ip+1 2) IJvm12+ IDYJvm12+ ID2Jvm- (p+m)2 Jvm12

Now a simple calculation gives the estimate

(5.157) IIeXP C1 IIVI11,A.o,h

where C1 = Similarly, Lemma 5.14 implies that there is a

constant C2 = C2(N(po,Co)) such that

(5.158) IM(Y) < C2 IOM(y)

for all E m E Z and h < y < -. It follows that

J(p,4,po,4o)v E L2'(A,S2o,r) and (5.151) holds with C2 = Max (C2,27C2).

Lemma 5.16. For all v E D(A ) one has
P0,Co,r

(5.159) E D(Ap,C,r)
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Proof of Lemma 5.16. Since D(A ) = P F it must be shown

that has a continuation u to 0 which is in Fp
r.

Recall

that for h < y < r one has u(y) = v(y) and hence

(5.160) v(x,y) _ I dm(p,C,p0,40,y) um(y) exp {i(p+m)x}
mEZ

where um(y) is defined by (5.142), (5.143). Moreover, for h < r2 < y < r

one has

(5.161) dm exp {iy [wp+m(4) -

and hence it is natural to define the continuation of v by (5.142), (5.143)

and

(5.162) (x, y) _ cm exp {ix (p+m) + y > r
uEZ

It is clear from the convergence of in L2QOC SZ(5.142)
2

( h) (Lemma 4.1) and

Lemma 5.14 that (5.162) converges in L2'QOC(Slr) and hence u E LZ'koC

Also, the po-periodic boundary condition satisfied by v, together with

(5.149) and (5.162), imply that u satisfies the p-periodic boundary

condition. Moreover, u(x,y) = exp {i(p-p0)x} u(x,y) in 0o h and hence

u satisfies the generalized Dirichlet condition (i.e., u E

because u E LD'PO'ioC(0). The preceding shows that u E D(AP'Roc) Finally

the expansion (5.162) has the form (4.28) corresponding to E M and

hence u E F

Lemma 5.17. maps D(A ) one-to-one onto D(Ap p C, ).o O,r r

Proof of Lemma 5.17. Lemma 5.16 implies that maps

D(Apo,Co,r) into D(Ap,C,r). Moreover, it is clear from (5.149) and (5.141)

that J(p,4,p0,40) is injective. The surjectivity may be verified by

constructing the inverse. To do this let v = Pp ru E D(Ap ,r) and

(5.163) v(x,y) = I vm(y) exp {i(p+m)x} in 0h,rMX Z

and define

d (p,C,p0,C0,y)-lvm(y) exp{i(p+m)x} in 0 r ,

mEZ
m

,

v0(x,y) = exp {i(p0-p)x}

(5.164)
v(x,y) in 00,h
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Note that 2 for all (p,?) E N(po,C0), m E Z and y E R.

Hence the technique used to prove Lemma 5.16 can be used to show that

vo E D(A ) and v.
p0,C,,r

Property (5.134) is obvious from definition (5.149) because

dm(pa,C0,po,C0,y) = 1. Hence the verification of properties (5.132)-(5.135)

of J may be completed by proving

p
)) is continuous atLemma 5.18. (p,?) -} J(p,C,po,ro) E B(3C,L21(A,H r

(P0,Co).

Proof of Lemma 5.18. It must be shown that Ell -> 0

when (p0,40). An equivalent condition is

(5.165) IIJ(P,C,p0,Co)v - Evil1,A;o r -> 0 when (p,C) -- (po,C0) ,

uniformly for all v E JC such that IIvII1,A;o,r < 1 [13, p. 150]. To verify

(5.165) define a bounded operator TP-p in LZ(A,52o r) by
0

(5.166) T
P-PO

= exp {i(p-po)x} v(x,y)
o

Then for all v E aC one has

Evil1,A;o
r
< IIJ(P,C,po,C0)v - TP-povII1A;or

(5.167)

+ IITp-pov - EvII1,A;o,r .

Moreover one has, by (5.149) and (5.166),

J(p,?,Pogo) v(x,y) - TP-Pov(x,y)

(5.168) r

4

I 1} vm(y) exp {i(P+m)x} in Hh,r
mEZ

0 in Qo,h

whence

CC

r

(5.169) IIJ(P,C,P0, o)v - TP-Povii1.A;o r = 2ir G Im(Y)

dy

MEZ h

where
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II(y) = (1 + IP+ml2) Ifm v11 I2 + I(Dy fm)vm + fm Dy
vml2

(5.170)

and

(5.171)

+ Ifm D2 vm + 2 Dy fm Dy vm + (D2 fm)vm - (p4Vn)2 fm vml2

fm = dm(p,C,po,0o,y) - 1 .

Now using the equicontinuity of the family {w P+m(C)} and Lemma 5.14 it is

not difficult to show that for each E > 0 there is a neighborhood N'(po,Co)

of (pogo) in M such that

(5.172) 0 < Im(y) < E2 I'm

for all (p,C) E N'(po,co), m E Z and h < y < r, where Iom(y) is defined by

(5.153). It follows that (see (5.152))

(5.173) IIJ(P,4,po,4o)v - TP-Pov11l,A.o,r < E Ilvlll A;o,r

for all v E 3f such that IIvII1,A
o r <

1.

Similarly, an elementary calculation gives

(5.174) IIT p-pov - EvIl1,A;o,r < E

for all v E Jf such that Ilvlll A.o,r < 1. Combining (5.167), (5.173) and

(5.174) gives (5.165).

Construction of J - The Neumann Case. The mapping J defined by (5.149)

is not applicable to the Neumann case because the operation

v - exp {i(p- po)x}v does not preserve the Neumann boundary condition. It

will be shown that for grating domains G E S a suitable mapping J can be

defined by replacing the multiplier exp {i(p - po)x} by a function of the

form exp {i(p - po) (x,y)}. To this end note that if xo has property (1.9)

of the definition of the class S then so do the points xo + 2trm, m E Z.

Moreover, it can be assumed that xo = -'R since equivalent domains are

obtained by translating G parallel to the x-axis. This assumption is made

in the remainder of this section. Also, to simplify the notation it will

be assumed that
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(5.175) aG fl {(-ir,Y) I y E R} = (-Tr,ya)

is a single point. The general case defined by (1.9) can be treated by the

same method.

Property S implies that near (-7r,yo) the boundary r has a representa-

tion (x,y) = (f1(s),f2(s)), where s is the arc length on r measured from

(-n,yo), and fj E C3. The vectors t = (fi(s),f'(s)) and n = (-f2(s),fi(s))

are unit tangent and normal vectors to r, respectively. The mapping

(s,t) -} (x,y) defined by

x = f1(s) - t f2(s)

(5.176)

y = f2 (s) + t fi (s)

has Jacobian 1 at (s,t) = (0,0). Hence the inverse mapping

s = a(x,Y)
(5.177)

t = T(x,Y)

exists in a neighborhood of (-Tr,yo) and defines there a coordinate system

of class C2. The system is valid in a domain 0 = {(s,t) : Isi < 61,

Itl < d2}. It will be assumed that dl, S2 are chosen so small that

0 C {(x,y) : Ix + TrI < Tr}. If extensions of G(x,y), T(x,y) to 0 + (27rm,0)

are defined by Q(x + 2Trm,y) = a(x,y) and T(x + 21r,y) = T(x,y) then the
extended functions define coordinate systems in 0 + (27rm,0).

Introduce functions Ej (=- C(R) (j = 1,2) such that .(-a) (a),

C3'. (a) < 0 and a > 0 and

(5.178) E (a) =
1 , IaI <

0 IaI > 26 /3J
,

(whence 0 < Ei(a) < 1). The composite functions E1(o(x,y)) and E2(T(x,y))

are then in class C2. Similarly, introduce a function C3(x) such that

11 Ix + arl < d3/3
(5.179)

3(x)
_

0 , 2d3/3 < IX + ITI < d3
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and

(5.180)

where 63 < 7T. Finally define

3(X + 27T) = F,3 (X)

(x,Y) _ (a-7r) (a) 2 (T) + x `>3 (x) [1 - C2 (T) l , -7T < x < 0
(5.181)

t tt-
4(x,Y) = (a+7T) F'2 (a) (T). + x 53(x)[1 - 2(T)] , 0 < x < 7r

The two parts of the definition are consistent because both give zero in a

neighborhood of the y-axis. It will also be assumed that 62 is so small

that E1(a(±7T,y)) = 1 on the support of C2(T(±7r,y)).

The mapping J defined by (5.149) with exp fi(p - po)x} replaced by

exp {i(p - po) (x,y)} has the required properties (5.132)-(5.135). The

proofs are the same as in the Dirichlet case except for the verification

that v' = J(p,4,po,Co)v satisfies the Neumann and p-periodic boundary

conditions. To verify the Neumann condition note that on the portion of r

in the neighborhood defined by supp 0 fl {(x,y) : T(x,y)I < 62/3} one has

(5.182) 4(x,Y) _ (a(x,Y) ± 71) 1((J(x,Y)) .

Moreover, on the regular portion of r a simple calculation based on (5.176)

gives

ax = TY = fl(a) , ay = -Tx = f2'(a)

Dv (-f2(a))cx + (fi(a))cy = 0

It follows from (5.182) and (5.184) that v'(x,y) (= exp

on S2) satisfies

(5.185) Dv v' = exp (DV v + i(p-po)DV ) = 0

on supp n F. On the remainder of F v' = v satisfies the generalized

Neumann condition. The validity of the generalized Neumann condition for

v' follows by a partition of unity argument.
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To verify that v' satisfies the p-periodic boundary condition note

that (5.181) and the assumption that X1(6(±TT,y)) = 1 on the support of

C2(T(±Tr,Y)) imply

(5.186)

(7r,Y) (Q(7r,Y) +'R) 2(T(7r,Y)) + Tr(l - E2(T(7T,Y)))

(o(-7i,Y) + 7r) 2(T(-7r,Y)) + Tr(l - 2(T(-7r,Y)))

_ (-Tr,Y) + 2Tr 2(T(-Tr,y)) + 27r(l - C2(T(-7r,Y)))

_ (-7r,y) + 21T

D. (7r,y) = D. (-Tt,Y)

(5.188)

v'(7r,Y) = exP {i(p-po) (7r,y)} v(7r,y)

= exp {'(P-PD) $(-7r,y) + i(p-po) 21T + 27ripo} v(-7T,y)

= exp {27rip} v'(-7r,y)

and similarly

(5.189) Dx v'(x,y) = exp {i(p-po)p} (Dxv +

whence

(5.190)

D
x
v'(7r,y) = exp {i(p-po) g-Tr,y) + i(p-po)2Tr + 2TTipo} x

x (Dx v(-7r,y) + i(p-p0) Dx (-7r,y) v(-7r,y)}

= exp {2TTip} Dx v' (-7r,y)

The above discussion completes the proof of the continuity of the

family {A (p,r) E M}. The final assertion of Theorem 4.6 states
p

that for fixed p E (-1/2,1/2] the family {Apr,r E Mp} is holomorphic

in the generalized sense of Kato [13, p. 366]. This may be proved by means
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of the family of operators Jp(C,Co) - J(p,C,p,C0). It is only necessary to

verify that C -* Jp(C,C0) is holomorphic on MP. A proof has been given by

Alber [3, p. 271].

Proof of Theorem 4.7. D(A
P,C,r

) = P
P,C,r

F
p,C,r

is a closed subspace

of the Hilbert space L2(4,52 ), by Theorem 4.4. A - z defines a
o,r p,C,r

bounded operator from this space into L2(3 r Thus the operator

T : L2(S2o r) -> D(Ap r) defined by Tf = R(Ap C,r,z)f for all f E L2(Q0,r)

is closed and defined on all of L2(Qo r). Thus T is bounded, by the closed

graph theorem.

Next note that R(Ap C,r,z) = E T where E : D(AP C,r) - L2(S2o,r) is the

natural embedding. Hence, the compactness of the resolvent of A
P

follows from the compactness of E. Now, in the Neumann case FP,C,r

C LIIp,Roc(2) and hence the compactness of E follows from the hypothesis

G E LC. In the Dirichlet case, F C LD,p,ioc(0)
= closure of C'(Q) in

The
P

L2'QOC(0). The last set can be regarded as a subset of L1,I,iOC(B0) for

which the natural embedding into LZOC(B0) has the local compactness property.

Hence, in this case E is compact without local restrictions on P = 3G n Q.

This proves the compactness of the resolvent of AP,C,r The discreteness of

O(Ap r) follows immediately; see Kato [13, p. 187].

Proof of Theorem 4.8. It will be shown that if C E M+ then the
P

operator in L2(o r) defined by

(5.191)
T = PP,C,r R(AP'71 P(C)) Pr

is a bounded inverse of Ap C,r - orp(C) in L2(Qo,r). To prove that T is a
right inverse of Ap C r - frp(C) let f E L2(Or) and define u= R(ApITTp(C))f.
Then u E R(Ap) and

(5.192) (Ap-7rp(C))u=Prf =
f in 2o,r

0 in ilr

In particular, (A + rp(C))u = 0 in Or and thus since u E L2(0) the Fourier

expansion (4.28) must hold with Im w
P+m

(C) > 0 for all m C Z. Thus

u E Fp
C,r

and it follows that Pp C,ru E D(Ap
C

r) and

(5.193) [AP,C,r-7iP(C)]Tf=[AP,C,r-ii (C)]PP,C,ru=(-A--Fp(C))u
p 0

o,r

= f

by (5.192).
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To prove that T is a left inverse of Ap r - Irp(4) let v E D(Ap, 4,r

Then u = Pp,4,rv has Fourier expansion (4.28) with In wp+M (4) > 0 for all

m E Z because 4 E Mp. Thus u E Fp 4 r n LZ (A,C) = D(AP) and one has

Pr[A - Ta (-A - if (4))P-1 v
P, 4,r p p p,4,r

(5.194)

(A it (4))PP p P,4,rv

whence T[Ap,4,r - ap(4)]v = V.

Proof of Theorem 4.9. The family of operators {Ap4,r - ip(4)l 4 E Mp}

is holomorphic (Theorem 4.6) and has compact resolvents (Theorem 4.7). It

follows from a theorem of Kato [13, p. 3711 that either Ep = Mp or Ep has

no accumulation points in M. But

P
n Ep = $ by Theorem 4.8. Hence the

second alternative must hold.

To prove that Ep is independent of r > h let h < r' < r and suppose

that iT (4) E 6(Ap,4,r). Then there exists a non-zero v E D(Ap
4

r) such

that (Ag,4,r - irp(4))v = 0 in L2(Co,r). But then u = PP>4ru E Fp
4,r

C L2' °
(A,Q) and (A + 7rp(4))u = 0 in all of Q. In particular, the Fourier

expansion (4.28) holds in Cr , Thus u E and hence Pp,4,r,u

E D(Apand (Ap,4,r, - ip(4))Pp,4,r'u = 0. Thus 7p(4) E Q(Apas
was to be shown. The same argument is applicable if r' > r.

Proof of Corollary 4.10. Theorem 4.7 implies that every z E C is

either an eigenvalue of Ap,4
r

or lies in p(Ap
4

r). Hence for each

4 E Mp - Ep one has a (4) E p(Ap,4,r) and it follows from [13, p. 367] that

is holomorphic on Mp - Ep. Thus to complete the proof it is

enough to show that each 4o E EP is a pole of RP This will be deduced

from S. Steinberg's theorem [24] and the following

Lemma 5.19. Let 4 E Mp and In Trp(4) > 0 (resp., < 0). Then every

z E a(Ap,4,r) satisfies Im z < 0 (resp. > 0).

Proof of Lemma 5.19. Let v E D(A be an eigenfunction of A
p 4 r

p, 4,r

with eigenvalue z : v # 0 and A
p,4,r

v = zv. Then u = PP,4,rv E FP,4,r and

hence

(5.195) (A + z)u = (A + z)v = 0 in 0. r , and

(5.196) (A + z')u = 0 in Q
r,-
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where z' = Moreover, Lemma 4.1 and Sobolev's embedding theorems

imply that y u( ,y) is in C1 ([h,m) ,L2 (-Tr,Tr)) . In addition, the
assumption E M+ implies that u E D(Ap) C L2(Q),

Application of Green's theorem to u and u in Or,- gives, by (5.196),
,w

(5.197) (-2i Im z') J Iu12 dX = -J- iu _ - u -u} dx
Tr l Y yJJJ Y=r

Similarly, application of Green's theorem in 0O,r gives

(n (_ l

(5.198) (-2i In z) Jul' dX = J- iu u - u -uY dx
rl Y Yllly=r

2o r

Adding (5.197) and (5.198) gives

(5.199) In z'
11

I Jul' dX + In z f Jul' dX = 0
S2 S2
r,- o,r

Thus if Im Trp(?) = Im z' > 0 and Im z > 0 then u(X) -- 0 in 0r But then

0 and Dy 0 and hence u(X) = 0 in Qo,r by the unique

continuation property for (5.195). Hence Im 0 implies In z < 0.

The other case is proved in the same way.

Returning to the proof of Corollary 4.10, it will be shown first that

every o E Ep such that

(5.200) IM 7T(Co) > 0

is a pole of Rp To this end choose C1 E MP such that Im 0,
r

so that

(5.201) {z
I Im z > 0} C

by Lemma 5.19. Next choose a zl E C such that

(5.202) zl E P(Ap. l,r

(5.203) zl E p(A
p,C,r

) for all E N(co,6) ,

where N(Co,6) is the component of 7p1 containing Co. N(Co,&)

has compact closure and hence such numbers z1 exist by Corollary 5.5 above.

In the remainder of the proof the following notation is used:
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R(0,z) = (Ap>0,r
- z)-1

(5.204)

R(0) = R(0,Tr

With the above choices of O1 and z1 the operator

(5.205) B(z) = (1 - (z - z1) R(O1,zl))-1

exists and is holomorphic for Im z > 0 (i.e., in an open set containing

Im z > 0). Indeed,

(5.206) 1 - (z - zi) R(O1,z1) _ (AP,O1>r
- z)

R(01,z1)

and the existence of B(z) follows from (5.201). The analyticity follows

from that of R(O1,z).

To complete the proof of Corollary 4.10 note that (5.200) and (5.201)

imply that it (O0) E p(Ap,01 r). Since the resolvent set is open, the

continuity of ip implies that there exists a d > 0 such that

Tr p(0) E p(Ap,O r) for all C E N(C0,6). Hence B(Tp(0)) exists and is
1'

holomorphic in N(O0,6). Now for all such 0 one has, by (5.202), (5.203),

(5.207)

1 - (lp(0) - z1) R(0,z1) = 1 - (ip(0) - z1) R(O1,z1)

- (1p(0) - z1) {R(0,z1) - R(01,z1)} .

Multiplying by B(tp(C)) gives

(5.208)

where

(5.209)

B(ip(0)) {1 - (1p(C) - zl) R(C,z1)} = 1 - T(0)

t(0) = (tp(0) - z1) B(ip(0)) {R(C,zl) - R(O,,zl)}

defines a compact operator-valued holomorphic family in N(O0,5). By

Steinberg's theorem [24], (1 - T(0))-1 either exists nowhere or is

meromorphic in N(O0,6). The second case must hold because the singularities

of (1 - T(0))-1 are those of R(0) and hence are isolated. In particular,

for d small enough (1 - T(0))-1 is analytic in N(O0,6) except for a pole at

0 = Co. Equation (5.208) then implies
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Ap,O,r - Trp(c) = B(Trp(C))-1 (1 - T(C)) R(C,zl)-1

R(C) = R(4,z1)(1 - T(C))-1 B(Trp(4))

for E N(40,5) - {40}. This exhibits R(C) as a product of operators that

are holomorphic at 40 and one that has a pole there. The residue of R(C)

at CO has finite rank [24] and hence Trp(CO) is an eigenvalue of finite

algebraic multiplicity [13, p. 181].

Proof of Corollary 4.11. This result follows immediately from Theorems

4.4 and 4.8.

Proof of Corollary 4.12. It will be shown that

(5.212) 00(A) C Tr(

P
n E

P
p

p

The discreteness of Q0(Ap) will then follow from Theorem 4.9. To prove

(5.212) let A E 60(Ap) C a(Ap) and let A ± iO denote the points of

M above A so
p

(5.213) Trp(A ± i0) = A .

If u E D(Ap) is a corresponding eigenfunction of Ap then u E Fp,X±io,r'

v± = Pp,ati0,ru E D(Ap +i0,r) and (Ap,x+i0,r - A)v+ = 0. Thus

(Apa±i0,r - -P (X ± i0)) is not invertible and hence A ± i0(=- Ep.

The inclusion (5.212) and Theorem 4.9 imply that a0(Ap) has no finite

limit points. To show that each A E a0(Ap) has a finite dimensional eigen-

space note that the algebraic and geometric eigenspaces of Ap coincide

because Ap is selfadjoint. Moreover Pp,A±i0,r maps the eigenspace of

A E a0(Ap) onto the geometric eigenspace of Ap,A+i0
r

for A, as was shown

above. However, the latter coincides with the geometric eigenspace of the

compact operator R(A ± iO,z) defined by (5.204) and hence is finite

dimensional.

Proof of Corollary 4.13. To prove (4.43) note that if

A E TTp( P n Ep) - Tp then A + i0 or A - i0 is in Mp n Ep and hence

a = Tr
p
(a ± i0) is an eigenvalue of A

A+i0,r
or A

p,A-i0
with eigen-

function v+ or v_. But then u+ = Pp,X+i0,r v+ or u_ = Pp,X-i0,r v- will



83

have a p-periodic extension to G that is a pure outgoing or incoming R-B

wave for A. It follows from Theorem 2.1 that u+ or u_ is an eigenfunction

for Ap with eigenvalue X; i.e., X E GO(Ap).

Proof of Theorem 4.14. Both statements of Theorem 4.14 follow from the

continuity of the family {A (p,4) E M} and a theorem of Kato [17,
p

Theorem IV.2.25]. Indeed, if (pogo) E M - E then ip (Co) E
p(Apo,Ca,r)

(P,4) (p0,0). Moreover, it followsand hence Rp , when o
r ,r

from Kato's theorem that there exists a neighborhood N(po,ro,p,d) C M - E.

Proof of Theorem 4.15. This result is an immediate corollary of

Theorem 4.14 and Theorem 4.4.

Proof of Corollary 4.16. Theorem 4.15 implies that (p,C)
_i

Pp c,r Rp r E B(L2(Qo,r)' LZ(A,Co r,)) is continuous on M - E for each

r' > r. This implies (4.49) with

(5.214) C(K,r,r') = Max 11P-1 R ll(p,C)EKp,c,r r,r'

where denotes the operator norm in the space B(L2or'))'

Proof of Corollary 4.17. This result is a special case of

Corollary 4.16.

§6. The Eigenfunction Expansions for AP

This section presents a construction, based on the limiting absorption

theorem of §4, of the diffracted plane wave eigenfunctions 0+(X,p+m,q) and

a derivation of the corresponding eigenfunction expansions for Ap. For

brevity the derivation is restricted to the cases for which ao(Ap) = . The

modifications that are needed when Q0(Ap) # are indicated at the end of

the section.

Throughout this section p E (-1/2,1/2] is fixed, m E Z and q > 0.

o±(X,p+m,q) denotes the generalized eigenfunction for A
o,p

; that is, one

of the functions (3.25), (3.26). The corresponding outgoing and incoming

diffracted plane waves for Ap are characterized by the properties

E D(Apoc)

(6.2) (A + w2(p ,q)) +(X,p+m,q) = 0 in 0
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(6.3) $+(X,P+m,q) _ 40+(X,p+m,q) + 4(X,p+m,q) , y > h

where + (resp., ') is an outgoing (rasp., incoming) diffracted plane wave

in $2
h.

These properties imply the symmetry relation

(6.4) _(X,p+m,q) _ +(X,-p-m,q)

Hence it will he sufficient to construct the functions +(X,p+m,q).

To construct + let r > h be fixed and introduce a function j E C'[0,°°)

such that j'(y) > 0, 0 < j(y) < 1, j(y) = 0 for 0 < y < (h+ r)/2 and

j(y) = 1 for y > r. Next define the function +(X,p+m,q) for all X E S2 by

(6.5) $+(X,P+m,q) = j(y) o(X,p+m,q) + $+(X,p+m,q) , X E S2 .

Then (6.1), (6.2), (6.3) imply that is characterized by the properties

(6.6) E D(Apoc)

(6.7) (A + W2(p+m,q)) q.(X,p+m,q) = -M(X,p+m,q) in 2

(6.8) +(X,p+m,q) is an outgoing diffracted plane wave

The function M in (6.7) is defined for all X E Ro, p + m E R and q > 0 by

M(X,p+m,q) _ (A + w2(p+'m,q)) j(y) o(X,P+m,q)

(6.9)

= j"(y) o(X,p+m,q) + 2 j'(y) D2 $o(X,p+m,q)

and has the properties

(6.10) M E x R x R0)

(6.11) M(x+2i1,y,p+m,q) = exp {2nip} M(x,y,P+m,q)

(6.12) supp C {X
I
(h + r)/2 < y < r}

It follows that E L2(00r) and hence (6.6), (6.7), (6.8) can

be integrated by means of the'analytic continuation of the resolvent of Ap

defined by (4.50). More generally
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(6.13) ,q,z) = P-1 R E D(AQac)
p,z,r p,z,r p

and z E L
12'2oc

(4,52) is continuous for all q > 0 and

Z G P - p Hence, E D(A) satisfies (A + -M in

0 and the outgoing radiation condition (4.56) for all A E [p2,00) - Tp. In

particular, the solution of (6.6), (6.7), (6.8) is defined by

(6.14) +( ,p+m,q) = ' ( ,p+m,q,('02 (p+m,q) + i0)

for all q C Ro - Em.p where

(6.15) Em,p = {q > 0 I w2(p+m,q) E Tp}

Note that Em,p is a countable subset of Ro = (0,-) with no finite limit

points.

The diffracted plane wave +(X,p+m,q) is defined by (6.5), (6.13) and

(6.14) and one has

Theorem 6.1. Let G be a grating domain of the class defined in §1 and

let ao(Ap) = 4. Then there exist unique diffracted plane wave eigenfunc-

tions +(X,p+m,q) for each p E (-1/2,1/2], m E Z and q E Ro - E
1 Roc m,P*

Moreover, q -> E L2' (A,52) is continuous for q E Ro - Em, p
The uniqueness follows from Theorem 2.1 and 60(Ap) _ . The continuity

is a consequence of Theorem 4.15.

The functions

(6.16) (X,p ,q,z) _ j (y) o (X,p+m,q) + ' (X,p+m,q,z) E D(Apoc)

which are defined for p E (-1/2,1/2], m E Z, q > 0 and z E M+ - E will be
p p

used in deriving the eigenfunction expansions for + and _. They will be

called approximate eigenfunctions of Ap because

(6.17) (A + z) O(X,p+m,q,z) = (z - w2(p+m,q)) j(y) o(X,p+m,q)

and

(6.18) (X,p+m,q,w2(p+m,q) ± i0) _ +(X,p ,q)
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Construction of the Spectral Family of A. The selfadjoint operator

Ap in L2(S2) has a spectral family {ll (U) I u > p2} which is continuous when

Q0(Ap) _ . The spectral measure IIp(I) = IIp(b) - IIp(a) of an interval

I = [a,b] will now be calculated by means of Stone's formula

(6.19) III (I)fII2 = lim Q

J
JIR(A A ± iQ)fII2 dA

p Qia+ I p

and the eigenfunctions ¢+. Only the main steps of the calculation will be

given because a detailed presentation of the analogous calculation for

exterior domains was given in [30].

To begin it will be assumed that I C [p2,") - Tp and f E
LZom(D).

Note that if j(y) is the cut-off function of (6.5) then

(6.20) I(1 - j2(y)) R(Apz) f(X)12 < Xr(Y) IR(Apz) f(X)12

where Xr is the characteristic function of [O,r]. Since lim R(A
p
,X±ic)f

exists in L2((00,r)' uniformly for A E I, it follows that a >o+

(6.21) 1 (1 - j2(y)) (R(Ap,X±ia) f(X)12 dX = 0(1) , a -> 0+

uniformly for A E I. Define a linear operator J : L2(0) - Lz(B0) by

(6.22) J f(X) = i

j (y) f (X) , X E D

0 , X E Bo - 0 .

Then IIJII = 1 and (6.21) implies

(6.23) IIR(Apz)fII2 = IIJ R(Ap,z)f(I2 + 0(1) , In z -+ 0

o,puniformly for Re z E I. Next, Parseval's relation (3.29) for A and

(6.23) imply

(6.24) IIR(A ,z)fll2 = I(J R(A z)f)- (P+m,')II2 + 0(1), In z 0 ,

p uEZ p

uniformly for Re z E I. To relate this to the eigenfunctions 4+ define

(6.25) f(p+m,q,z) =
J

d(X,p+m,q,z) f(X) dX , f E LZom(D) ,

and note
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Lemma 6.2. For all f E Lcom(c) one has

(6.26) f(P+m,q,z) = (w2(P+'m,q) - z) (J R(Apz)f)- (p+m,q)

A heuristic proof of (6.26) is contained in the following formal

calculations, based on (6.17).

(6.27)

f(P+m,q,z)

= (w2 (P+m,q)

J R(Ap,z)(Ap - z) ¢(X,p+m,q,z) f(X) dx

1 (w (P+m,q) - z) j(y) o(X,F+m,q) R(Ap,z) f(X) dx
0

_ (w2(P+m,q) - z)
J

0(X,p+m,q) j(y) R(Apz) f(X) dx
E

0

- z) (J R(Apz)f)- (p+m,q)

The calculation is not rigorous because the presence of the term in

(5.16) implies that 0 D(Ap). A rigorous but longer proof may

be given by the technique of [30, p. 941.

Combining (6.24) and (6.26) gives

(6.28) IIR(Ap,z)f112
mEZ

f(p+m,'z)
W, m,

,!)-z 2

+ 0(1) , Im z -. 0

uniformly for Re z E I. Hence, putting z = A t ia, multiplying by a/7T and

integrating over A E I gives

z a C 1f(p+'m,q,a±ia)I22
JI

IIR(Ap,atia)fII da = JI G
mEZ10 (X-u2(P+m,q))z+a2

dq dA + 0(a)

(6.29)

(I a I f (P+m,q,A±ia) 12 da
mEZ 10 JI (A-w2(p4m,q))2+a2 I

by Fubini's theorem. The determination of IIp(I) will be completed by

calculating the limit for to -> 0 of the last equation. Note that the

continuity of the approximate eigenfunctions (6.16) for q > 0, z E Mp - Ep

(cf. (6.13)) implies that f(p+m,q,atia) is continuous for q > 0,

A E [p2,00) - T , to > 0. Thus if one defines

(6.30) f+(Pn,q) = f(P+m,q,w2(P+m,q) + i0), q E R0 - Em,P

then for all f E
L2om(u)
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(6.31) f (p+m,q) = J +(X,p+m,q) f(X) dx

and

(6.32) f+(p+m,-) E C(R0 - Em,P) .

The calculation of the limiting form of (6.29) will be based on the

following two lemmas.

Lemma 6.3. For every f E LZOm(0) and every closed interval
I C [p2,') - Tp one has

6 If(p+m,q,ati6)Iz z z(6.33)
a-o+

I1 (X-wz(P+m.q))z+a
d = XI(w (P ,q)) If+(P .q)I

for all q E R2 - Em
P

where X1(X) is the characteristic function of I,

normalized so that X1(a) = X1(b) = 1/2.

Lemma 6.3 follows from the continuity of f(p+m,q,X±i6) and well-known

properties of the Poisson kernels; cf. [30, p. 101].

Lemma 6.4. For every f E L2O'n(Q), every p E (1/2,1/2], every closed

interval I C [p2,oo) - Tp and every 60 > 0 there exists a constant

C = C(f,p,I,(50) such that

(6.34) If(p+m,q,X±ia)IZ dq < C
nEZ Io

for all X E I and 6 E [0,60].

This result is the analogue of [30, Lemma 6.8, p. 103]. A full proof,

based on Corollary 4.17, is given in §7 below.

The limit of equation (6.29) for a -> 0 may now be calculated. Lemma

6.3 gives the limits of the inner integrals in (6.29). Term-wise passage

to the limit can be justified by Lemma 6.4 and Lebesgue's dominated

convergence theorem; see [30] for details. The result is, by (6.19),

(6.35) I1np(I)fI2 =
J0

XI(wz(P+m,4))
(f±(P+m,q)z

dq
mEZ

for all f E LZOm(S2) and I C [p2,°) - Tp where f+(p+m,q) is given by (6.31).

The Eigenfunction Expansions for Ap. The eigenfunction expansions for

Ap based on +(X,p+m,q) and _(X,p+m,q) can be derived from (6,.35) and the
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spectral theorem by standard methods; cf. [30, p. 109ff]. Only the results

are given here. Details may be found in [30].

To begin note that since ao(Ap) = Q the restriction I C (p2,,o) - Tp can

be dropped; (6.35) is valid for f E LZOm(D) and all I C [p2,e). Making

I + [p2,co) then gives the Parseval relation

(6.36) E
mEZ

for all f e LZOm(0). Together with (6.32) this implies that for f E

(6.37) f+(P+m,-) E C(R0 - Em,P) n L2(Ro)

A standard density argument then implies

Theorem 6.5. For all f E L2(D) the limits

(6.38) f+(P+m,4) = k.i.m. J 0±(X,P+m,4) f(X) dX

o,M

exist in L2(RO) and (6.35), (6.36) are valid for all f E L2(D).

An eigenfunction representation of the spectral family can now be

obtained from (6.35) by the usual polarization and factorization arguments.

In this way one obtains

Theorem 6.6. For all f E L2(D) one has

((u-(P+m)2)i/2
0(

(6.39) II (u) f(X) = J 4+(X.P+m,4) f+(P' ,4) d4
P (p+m)2<u

and hence

M
(6.40) f(X) = i.i.m. J +(X,P+m,4) f+(P+m,9) d4

M- (ml<M

in L2(SZ).

Finally, define linear operators

(6.41) (D+,P
:

L2(D)
+ L O L2(Ro)

mEZ

by

(6.42) (D+,P f = I m E Z}

Then (D +,p and are spectral mappings for Ap in the sense of
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Theorem 6.7. For every bounded, Lebesgue-measurable function 'Y(X)

defined on p2 < A < - one has

(6.43) ((D+,P `Y(Ap)f)m = `Y(w2(p+m,'))(,D+,pf)m , m E Z

where lY(Ap) is defined by the spectral theorem.

Finally, the orthogonality and completeness of the generalized eigen-

functions + is expressed by

Theorem 6.8. The operators +and are unitary.
,P -,P

It is clear from Parseval's relation (6.36) that (D+ are isometries
,P

which proves the completeness relation

(6.44) ,D* = 1 .±,p ± p

The surjectivity of (D+ which is equivalent to the orthogonality relation, p

(6.45) + 4) *,p = 1,p

is not a consequence of the spectral theorem. A proof of (6.45) by the

method introduced in [30, p. 112ff] is given in §7 below.

Operators Ap that have Point Spectrum. It was shown in §4 that, in

general, ao(AP) is discrete. Let HO be the subspace of L2(Q) spanned by

the eigenvectors of Ap and let dim JCo = N(p) - 1 < -. Let

{Xj(p) ( 1 < j < N(p)} be the eigenvalues, repeated according to their

multiplicity and enumerated so that X.(p) < Xj+1 (p). Let

I 1 < j < N(p)) be a corresponding orthonormal set of

eigenfunctions.

Proceeding as before it is found that the diffracted plane waves

0+(X,p+m,q) can be constructed and Theorem 5.1 holds with

(6.46)
Em,P =

{q > 0 I w2(p ,q) E Tp U ao(Ap)}

which is still a countable set with no finite limit points. Similarly, the

spectral family (II (p)} still satisfies (6.35) for f E
L2om(SZ)

if

I C TP - 6p(Ap). It follows that 11P(}.i) differs from (6.39) only

by the projection

(6.47) L q (X,p) fj(p) , fj(p) =
X (P)<U
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and Parseval's relation and the eigenfunction expansion become

N-1
(6.48) IIfM2 = Ii (P)12

+ IIf+(P+m,-)112 , f E L2(S2)
j =l

.

and

N-1
(6.49) f(X) _ I .(X,P) f.(P) + Jo +(X,P+m.q) f+(P+m,q) dq

j=1 n Z

convergent in L2(Q). The form of the spectral family implies that AP has

no singular continuous spectrum: L2 (S2) = JC0 Q+ JCac, where JCac is the

subspace of absolute continuity for Ap [13, Ch. X]. Finally, Theorem 6.8

must be modified to state that +,p and p are partial isometries with

initial set JCac and final set Z @+ L2(R0):

(6.50) 4) * ', = P * = 1
+,p +.p ac +.p +.p

where Pac is the orthogonal projection of L2(Q) onto JCac'

V. Proofs of the Results of §6

§4.

Theorem 6.1 is a direct consequence of Theorem 2.1 and the results of

Proof of Lemma 6.2. The proof follows the plan of [30, Lemma 6.3].

Definitions (6.16) and (6.25) imply that if f E L2om(Q) then

(7.1)

f(P+m,q,z) = J 0(X,p+m,q) j(y) f(X) dX
supp f

+ '(X,p+m,q,z) f(X) dX
Jsupp f

(J f); (p+m,q) + 1 R(Ap,z) f(X) dX
supp f

R(Ap,z) f(X) dXf)o (p+m,q) +

f ,r
oh,r

= (J f)o (p+-,q) +

+
1

R(Ap,z) f(X) dX
0h,r

since R(Apz) by (6.13) and Theorem 4.8 and

supp M C 0h
r'

The next-to-last equation follows from R(Ap,z) = R(Ap,z)*.

To derive (6.26) from (7.1) it is necessary to integrate by parts in the
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last integral. This cannot be done directly because j(y) o(X,p+m,q)

(9 LZ(C). To complete the calculation introduce a function C E C'(R) such

that C'(y) < 0, (y) = 1 for y < 0, E(y) = 0 for y > 1 and define

1 , y < n
(7.2) n(Y) = &(y - n)

0 , y > n + 1

Then for n > r one has an(y) -- 1 on 0o r and hence

f(P+m,q,z) = (J f)o (p+m,q)

(7.3)

Now

+ J (A4 (P+m,q)) j(Mo(X,P+m.q) C R(Apz) f(X) dX .

(7.4) j (y) o (X,P+m,q) E D(AN'.boc(Q)) (resp. D(AD ioc(Q))

This may be shown by interpreting exp {-ipx} 4o(X,p+m,q) as a function on

the cylinder Sf' (see the proof of Lemma 4.1) and recalling that j(y) = 0

for 0 < y < (h+r)/2. Moreover,

(7.5) R(A z)f E
LZ,P,com(C) (resp. LD,p,com(0))

n p

since R(Apz)f E D(Ap). Conditions (7.4), (7.5) and the integral identities

of (3.19), (3.20) applied to u = and v = En R(Apz)f give

j A En (y) R(Apz) f(X) dX
(7.6)

0 R(Apz) f(X)} dX

_ -J V {j(Y)Cn+1(Y)Oo(X,P+m,q)} 0{En(Y)j(Y)R(Ap,z)f(X)} dX

where j E C0(h,oo) and j(y) 1 for y > (h+r)/2. Now

(7.7) j(y) n+i(y) o(X,P+m'q) E LZ'P(Qo,n+z)

and

(7.8) Cn(y) j(Y) R(AP.z) f(X) E D(Ap(Co n+i))

and a second application of the integral identity of (3.19), together with
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(7.6), give

f
A

j dX

dX

because n+l(y) 1 on supp n and j(y) on supp j. Also, Leibniz's

rule for distribution derivatives implies

(7.10) A{EnR(Ap,z)f} _ Cn A R(Ap,z)f + DYR(Ap,z)f + n R(Ap,z)f

Combining this and the differential equation AR(Ap,z)f = -ApR(Apz)f

= -f - z R(Apz)f gives

(A+w2(p+m,q)) {fin R(AP,z)f} = - of + (w2-z)En R(Ap,z)f

(7.11)

+ 2En DYR(Ap,z)f + En R(Ap,z)f

Combining (7.3), (7.9) and (7.11) gives

(7.12)

f(p+'m,q,z) _ (J f)o (p+m,q) - J O(X,P+m,q) En(Y)j(Y)f(X)dX

(

supp f

+ (w2(p+'m,q)-z) J O(X,p+m,q) Eu(Y)j(Y)R(Apz)f(X)dX

+ 2 J O(X,p+m,q) n(Y)j(Y)DYR(APz)f(X)dX

(

SZ

+ J , (X,p+m,q) ri(y) j(y) R(Apz)f(X)dX
S2

Now an(y) = 1 on supp f and hence the first two terms of the right-hand side

of (7.12) cancel for n > no = no(f). In view of the definition (3.28),

(3.31) of the unitary spectral mapping (Do p associated with A, ,P, equation

(7.12) implies that for all n > no one has

(7.13)

f(p+'m,q,z) = (w2(p+'m,q) - z) J R(Ap,z)f)}m (q)

+ 2 {(Do,p(En J DyR(Apz)f)}m(q)

+
J R(Ap,z)f)}m(q)
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Now J R(Ap,z)f E L2(Bo) and J Dy R(A9,z)f because R(Apz)f E D(Ap) C L2'(S2).

Moreover, 0 < an(y) < 1, En(y) i 1 when n -> for all y > 0 and supp '
n

U supp " C {y I n < y < n + 1}. It follows by Lebesgue's dominated

convergence theorem that n J R(Apz)f - J R(Apz)f, Cn J Dy R(Ap,z)f - 0

and n J R(Apz)f - 0 in L2(B.) when n Hence passage to the limit

n - in (7.13) gives

(7.14) f(p+m,q,z) = (w2(p+m,q) - z) {Do p(J R(Ap,z)f)}m(q)

which is equivalent to (6.26).

Proof of Lemma 6.3. This result follows from the continuity of

f(p+m,q,A±ia) for q > 0, A C [p2,') - Tp and a > 0. The details of the

proof are precisely the same as in [30, Lemma 6.6] and are therefore not

repeated here.

Proof of Lemma 6.4. The starting point for the proof of (6.34) is

equation (7.1) with z = A + ia, A E I C [p2,') - Tp and 0 < a < co. (7.1)

can be written

(7.15) f(p+m,q,z) = (J f)- (p+m,q) + g(p+m,q,z)

where

(7.16) g(p+m,q,z) = f

,r

R(Ap,z) f(X) dX .

Q
h,r

Note that (see (6.9))

(7.17) M(X,p+m,q) = 2 Dy {J'(y) 4o(X,p+m,q)} - j"(y) p(X,p+m,q)

and hence

(7.18) g(p+m,q,z) = gi(p+m,q,z) + g2(p+m,q,z)

where

(7.19) gi(p+m,q,z) _ -J o(X,p+m,q) j"(y) R(Apz) f(X) dX

h,r

and
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(7.20) g2(p+m,q,z) = 2 I

,r

'.j'(Y) ,(-X,p+m,q) R(Apz) f(X) dX
Q
h,r

In the last integral note that R(A z)f is in L2
Roc

P' z' ([h>°O)>L2(-7r>r)) (cf.
Lemma 4.1) while j'(y) o(X,p+m,q) E Ca([h,l),L2(-Tr,7r)) and j(r) = 0. It

follows that

(7.21) 92(p+m,q,z) = -2 J

,r

j'(y) Dy R(Apz) f(X) dX
Q
h,r

Note that (7.19) and (7.21) extend by continuity to z = A t ia, with

X E I and 0 < o < Go, by Theorem 4.15.

Equations (7.15) and (7.18) imply that

If(p+m,q,z)I2 < 4(I(J f)o (p+m,q)I2 + Igi(p+m,q,z)I2

(7.22)

+ Ig2(p+m>q>z)I2) .

Moreover, Parseval's relation (3.29) for A
o,p

implies

(7.23) J0 I(J f) (p+m,q)12 dq = IIJ fIIL2(Bo) < IIfIIL2(
nF-

)
o,k

where supp f _C Q0,
k*

Hence to prove Lemma 6.4 it will suffice to prove

(6.34) with f replaced by gl and g2. For g1, equation (7.19), Parseval's

relation (3.29) and Corollary 4.17 imply

mEZ Jo
Igi(P+m,q,z)I2 dq = IIj" R(Ap,z)fIIL

(B )
(7.24)

2 a

< (Max Ij"(Y) I)2 IIR(Apz)fIIL
(02 o,r

< (Max I j"(Y) I) 2 C2 IIf II2,I (s )
2 o,k

for all z = A ± is with A E I and 0 E [O,ao] where C = C(I,p,ao,k,r)

= C(I,p,ao,f) is the constant of Corollary 4.17. The proof of Lemma 6.4

may be completed by noting that the integral (7.21) for 92 has the same

form as (7.19) but with j" R(Apz)f replaced by 2 j' Dy R(Apz)f. An

estimate for g2 of the same form as (7.24) follows because the L2(0o,r

norm of Dy R(Ap,z)f is majorized by the norm of R(Apz)f.

Proofs of Theorems 6.5, 6.6 and 6.7. These results all follow from

(6.35) by the spectral theorem and standard Hilbert space methods and



96

therefore will not be given here. A detailed development of these arguments

in the case of exterior domains may be found in [30, pp. 109ff].

Proof of Theorem 6.8. Only the orthogonality relation (6.45) need be

proved. The proof presented here is based on a method introduced in [30]

for the case of exterior domains. The proof for the case of grating domains

differs in some important technical details from that of [30] and is

therefore presented in full here.

The isometry D+ p is known to satisfy (6.45) if and only if [30,p. 116]

(7.25) N(O* p) = {0} ;

i.e., the null space of (D*
,p

contains only the zero vector. Equation (6.45)

will be proved by verifying (7.25). The following two lemmas are needed.

Lemma 7.1. For all h = {hm(q)} E E @+ L2(Ro) one has

(M
(7.26) P* h(X) = i.i.m. J +(X,p+m,q) hm(q) dq

'p M-Ko ImI<m p

where the convergence is in L2(0).

Lemma 7.2. Let h E p) and let 1'(A) be a bounded Lebesgue

measurable function on A > p2. Then

(7.27) h' = {I'(w2(p-Hn.q))hm(q)} E N(O*.P)

Proofs of Lemmas 7.1 and 7.2. Lemma 7.1 is a direct consequence of

(6.38) and (6.42); see [30, Lemma 6.17]. To prove Lemma 7.2 let f E L2(Q)

and note that the definitions of 0+ p and (D *
P
and Theorem 6.7 imply

(f +,p h') = (0+,p f,h')

(7.28)

_ f+lp-.q) T(w2(p+m,q)) hm(q) dq
Z o

= L 3`(w2(p+m,q)) f+(p+m,q) h(q) dq
mEZ f°

m

Z
Jo +.p

V(Ap)f)m (q) hm(q) dq

(p+.P T(Ap)f,h) = 0

This proves (7.27) since f E L2(Q) is arbitrary.
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Choice of 9'(A). Let

(7.29) I = [a,b] C [P2,°°) - Tp

and define

(7.30) W(A) = exp {-it A1'2} XI(A) , x > p2

where t E R and XI(A) is the characteristic function of I. It will be

shown that Lemma 7.2 with this class of functions `Y(A) implies (7.25). The

following notation will be used.

(7.31) N = {m : w2(p+m,q) E I for some q > 01 .

Note that N is a finite set. Moreover, q -> w2(p+m,q) is monotone for

q E Ro and hence for each m E N

(7.32) A= w2(p+m,q) E I p q A E Im.P C Ra - 6m,p

where Im p is a compact interval and E is defined by (6.15). With this

choice of Y, Lemmas 7.1 and 7.2 imply that if h E N(c* )

P
then

C

->

+.P
h'(X) =

mE2
10 +(X,p+m,q) h(q) dq

(7.33)

= G j 0+(X.P+m.q) e-itw(P+m.q) hm(q) dq = 0
mEZ I

m,p

in L2(S2). The left hand side of (7.33) defines a solution of the d'Alembert

equation in R. Its behavior for t ->+ m will be determined and shown to

imply (7.25). For this purpose one needs the

Far-Field Form of +(X,p+m,q). This phrase means the form of

+(x,y,p+m,q) for large y; i.e., far from the grating. To derive it note

that (6.14) and Lemma 4.1 imply that

(7.34) +(X,P'+Tn,q) = I ,' (y,p+'m,q) exp {i(p+i)x}
.EZ

in L2' 9,0C
2 (S2h) . Moreover, for y > r

(7.35) +Q(y,p+m,q) = a±(P+m,q) exp {i y wp+2(w2(p+m,q) ± i0)}
91
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It follows that for q E I and X E S2
m,p r

+(X,P+m,q) = g0(X,P+m,q) + a4(P+m,q) exP {i x pi ± i y qR}

(7.36)
REL

+ P+(X,P+m,q)

where

(7.37) L = L(p,I) _ {R : lp+i < w(p+m,q)}

and

(7.38) (P2,gk) = (P+i,(w2(P+m,q) - (P+1)2)112

while

(7.39) P+(X,P+m,q) _ I &+R(Y,P+m,q) exp {i(p+k)x}
WL'

where

(7.40) L' = L'(p,I) = {R : Ip+iI > w(p+m,q)}

It is important to note that for q E I
m,p

the sets L and L' are independent

of q and depend on p and I only. An estimate for the term p+ in (7.36) is

given by

Lemma 7.3. There exists a constant p = p(p,I) > 0 and for each r' > r

a constant C = C(I,p,m,r,r') such that

(7.41) IP+(X,P+m,q)I < C e-UY for X E 0r'
, q E Imp

P

Proof of Lemma 7.3. For brevity write u(X) _ +(X,p+m,q) and note that

u E FP,C,r with = w2(p+m,q) ± iO E P - Ep. In particular by Lemma 4.1

(7.42)

and

u(X) _ u1(Y) exp {i(P+i)x} in
L2,Roc(0h

REZ

(7.43) uR(Y) = uk(Y') exp {-(y-Y')((P+Q)2 - w2(P+m,q))1/2)
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for all y,y' > r and all i E L'. Now by a Sobolev inequality [1, p. 32]

there exists a Cu = C,(h,r) such that

fr r

(7.44) ui(r)I2 Co u'(Y)I2 dY + Iui(Y)12 dY
h h

Moreover,

(7.45) I IuZ(Y)I2
kEz

(7.46) IIDy u('Y)112 2Tr I Iu'(Y)12L.
ZEZ

which, with (7.44) imply

Iu.(r)12 < C2(2rr) '(IIDy u11h,r + 11u1h,r)

(7.47)

< C2(27r)-1 JIu112,h,r

(7.48) I&+Q(r,p+m,q)I2 <
C2(2rr)-1

II&+(',P+m,q)I1i.h,r

Now the right hand side of (7.48) is a continuous function of q E Ro -
Em,P

by Theorem 6.1. Thus there exists a constant C1 = C,(I,p,m,r) such that

(7.49) C, for all q E Im,P

Next, recalling (7.29), define

(7.50) p = 11(p, I) = Min
{(P+Q)2 - b2}1/2

9,C-L'

so that for all q E Im.P and Z E L'(p,I) one has

(7.51) {(p+2,)2 - w2(P+m,q)}1/2 > {(P+i)2 - b2}172 > V > 0

Then for r' > r and X E 0r q E Im,p one has the estimates

IP+(X,P+m,q)1 C

(7.52)
2EL`

< 1&+Q(r,P+m,q)1 exP {-(Y-r)((P+R,)2-(w2(P+m,q))172}
REL
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< C1 exp {-(y-r) {(p+i)2 - b2}1/2}

(7.52 cont.)
REL'

< (Cl
E exp {-(r'-r) {(P+i)2 - b2}1'2} ) exp {-u(y-r')}

REL'

which implies (7.41).

Proof of Theorem 6.8 (continued). Substitution of the far-field form

(7.36) for f+ in the identity (7.33) gives the identity

(7.53) uo(t,X) + ui(t,X) + u2(t,X) = 0 in L2(S2)

for all t E R where

(7.54) uo (t,X) _ I
1

o (X.P+m,q) e
mEN I

m,p

-itw(P+m,q) hm(q) dq

(7.55) ul(t,X)=
aR(P+m,q)ei(XPi±ygi)1 e itw(P+m,q) hm(q)

dql
JI

RELmEN
Im,P

(7.56) u2(t,X) = E f P+(X,P+m,q) e-itw(P+m,q) h(q) dq
WEN I

m,p

Note that u,(t,X) has an extension to X E B. such that (see (3.32), (3.33))

(7.57) exp {-it o/p} hI

where

(7.58) hI = )o
P

{Xm,P hm : m E Z} E L2(Bo)

and Xm,
p

is the characteristic function of Im'p. In particular, one has

(7.59) iuo(t,')Iiyz(Bo) =
jihIIILz(Bo)

mEN 11

Ihm(q)12 dq

m,P

The proof of Theorem 6.8 will be completed by showing that

(7.60) limo IIuo(t,-)IlL2(BO) = 0

It follows from (7.59), (7.60) that hm
(q) = 0 for almost all q E I

m,p
. But

A = w2(p+m,q) maps R0 - Em,P bijectively onto [p2,oo) - Tp (see (6.15)).



101

Thus given any m E Z and any interval Im
P
C RD -

Em,P
there is an interval

I C [p2,_) - Tp such that the above relations hold. Thus hm(q) = 0 in

Ra - Em,
p

for every m E Z, whence h = 0 in E O L2(Ro) which prove (7.25).

Proof of (7.60). Consider first the function ul(t,X) defined by

(7.55). It can be written

(7.61)

where

(7.62)

and

(7.63)

u1(t,X) = ul m(t,X)
MEN

ul,m(t,X) _ I ul m Q(t,Y) exp {i(p+Q)x)
IEL

J

+ ±iygR itw(p+m,q)

i(t,Y) =
I

a(P+m,q) e hm(q) dq
I
m,p

In the last integral

q1 = {w2(P+m,q) - (P+Q)2}1/2

(7.64)

_ {q2 + (P+m)2 - (P+g)2}1/'2 = Q(q,P+m,p+R)

Make the change of variable

(7.65) q' = 4Q = Q(q,P+m,P+l)

in (7.63). Since

(7.66) w2(P+m,q) = w2(P+Q,q')

one has

(7.67) q = Q(q',P+i,p+m)

and

(7.68) u1 m Q(t,Y) =
JI

aQ(P+m,q) a±iYq'-itw(P+Q,q') hm(q) aq dq'

m,Q,P

Now each of these integrals has the form of a modal wave in a simple
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waveguide [31, §5]. Moreover, it was shown in [31] that

(7.69) urn 0

Thus it follows from (7.69),

(7.70) Ilnl
m R(t,Y)I22 iEL , ,

(7.71) I1u1 ,m(t,-)IIL2(80) = 2n
PILL

L2(Ro)

and

(7.72)

that

1N

(7.73) lim Ilul(t,-)I1L2(Bo) = 0

It will be shown next that the function u2(t,X) defined by (7.56)

satisfies

(7.74) lim 0

This is a consequence of the following two lemmas.

Lemma 7.4. The function u(t,X) = u2(t,X) defined by (7.56) has the

properties

(7.75) E L2(0) for all t E R ,

(7.76) lim 0 for all k > r
t-*± o

and there exists a p > 0 and for each r' > h a constant C = C(r') such that

(7.77) Iu(t,X)I < C e-1' for all X E 0r, and t E R.

Lemma 7.5. If u(t,X) is any function having properties (7.75), (7.76),

(7.77) then
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(7.78) lim 0(Q)

t- t.
L

z

Proof of Lemma 7.4. To verify (7.75) note that by (7.53), u(t,')

= ul(t,') in L2(Q). But E L2(Ba) by the
spectral theory of Ao'p (§3 above) and E L2([-Tr,Tr] x R) by the

theory of waveguides as developed in [31]. Thus the restrictions of

these functions to 52 are in L2(92)-
The decomposition u = U2 = -u0 - u1 also implies (7.76) because uo and

u1 both represent waves in simple waveguides which have this local decay

property; see [31].

Property (7.77) is a consequence of the definition of u2, equation

(7.56), and Lemma 7.3. Indeed, combining (7.41) and (7.46) gives (7.77)

with i = .i(p,I) defined by (7.50) and

(7.79) C = C(i,p,m,r,r') I J h(q) dq
MEN I

m,p

Proof of Lemma 7.5. Conditions (7.75) and (7.77) imply that one has

for each r' > h and k > r',

(7.80)

Ilu(t,.)112,k + lu(t,x,y) I2 dxdy
k -Tr

Ilu(t,')Ilo,k + C2
J J

e guy dxdy
k -Tr

= Ilu(t,')lio,k + (IT C2 /11)
a-2}!k

where C = C(r') is independent of k. Making t -> ±w in (7.80) with k fixed

gives, by (7.76),

') II (0) < (Tr C2/u) e zuk(7.81) lim sup Ilu(t, 2.

for all k > r'. This implies (7.78) since the left hand side of (7.81) is

independent of k.

Proof of Theorem 6.8 (concluded). The proof may be concluded by

verifying (7.60). Now the identity (7.53) implies
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(7.82)

uo(t,') Lz(Bo-S2) + "2 (BO) + Ilu2(t,')IIL2(o)

Moreover, Bo - 0 is bounded and hence 0 in L2(Bo - 0) by the local

decay property for Ao p. The remaining terms on the right hand side of

(7.82) tend to zero when t -++ - by (7.73) and (7.74).

§8. The Rayleigh-Bloch Wave Expansions for A.

This section presents a construction, based on the results of §6, of

the R-B diffracted plane wave eigenfunctions i+(X,p,q) and a derivation of

the corresponding R-B wave expansions for A. For brevity the derivation is

restricted to the cases for which A has no surface waves; that is, ao(Ap) _

for all p. The modifications that are needed when there are surface waves

are indicated at the end of the section.

In this section io+(X,p,q) denotes the R-B wave eigenfunction for Ao.

The defining properties of lp+(X,p,q) can then be written

(8.1) E D(ARoc)
, (p,q) E Ro

(8.2) (A + (02(p,q)) lp+(X,p,q) = 0 in G

(8.3) ip+(X,p,q) _ io+(X,p,q) + +(X,p,q) in Rh

where + (resp., V) is an outgoing (reap., incoming) R-B wave for G.

The construction of i+ will be based on the discussion at the end of

§3. Thus if (p,q) E Ro and p = po + m where po E (-1/2,1/2] and m E Z then

the functions i+(X,p,q) are defined by

(8.4) +(X,p,q) =

or, more explicitly,

(8.5) +(x,y,p,q) = exp {2Triipo} 0+(x-2Tri,y,po+m,q) , (x,y) E Q(Q)

Theorem 6.1 then implies

Theorem 8.1. Let G be a grating domain of the class defined in §1 and

let A = A(G) have no surface waves. Then there exist unique R-B diffracted
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plane waves +(X,p,q) for each (p,q) E Ra - E, where E is the exceptional

set (2.30). Moreover, the mapping (p,q) E LZ'koc(A,G) is

continuous for (p,q) E Ro - E.

The principal step in the proof of Theorem 8.1 is to show that

defined piece-wise by (8.5), satisfies (8.1). This may be done by a simple

distribution-theoretic calculation based on the p-periodic boundary

condition for +. Details are given in §9 below. The uniqueness statement

follows from Theorem 2.1 since G0(Ap) = $ for all p is assumed.

The R-B wave expansions for A will now be derived from the eigen-

function expansions for A of §6. The first step is to establish Parseval's
P

relation for A. The special case of functions f E L2om(G) is treated first.

Theorem 8.2. For all f E L2om(G) define

(8.6) f+(p,q) = J +(X,P,q) f(X) dX , (p,q) E R2 - E
G

Then

(8.7) E C(R0 - E) n L2(Ro) , and

(8.8) IIfIIL2(G) = IIf+IIL2(R2)

Proof. The finiteness of f+(p,q) for (p,q) E R2 - E and the property

E C(R2 - E) follow from the last statement of Theorem 8.1. To establish

the rest of the theorem note the following identity for functions f E Lcom(G)

and points (p,q) E R2 - E.

(8.9)

f+(p,q) = J +(X,p,q) f(X) dX = I I (R) +(X.p.q) f(X) dX
G kEZJSl

=

IZ
I +(x+2,rk,y,p,q) f(x+2ir£,y) dxdy

R

kEZ
1. T±(xy,p,q)

e-2Trikp f(x+2nrk,y) dxdy

f (x,y,p,q) kEe-2Trikp

$
±

f(x+27rk,y) dxdy
- Z

J 0±(x,y,p,q) F(x,y,p) dxdy
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where

(8.10) F(x,y,p) = I e-27itp f(x+2mk,y) , (x,y) E 0
fEZ

Notice that all the sums in (8.9) are finite when f E LZOm(G). Moreover,

(8.10) is a Fourier series in p with a fixed finite number of non-zero

terms for all (x,y) E Q.

Equation (8.9) establishes a relation between the eigenfunction

expansions for A and Ap. Thus replacing p in (8.9) by p + m with

p E (-1/2,1/2] and m E Z one has

(8.11) f+(P+m,q) = F+(P,q,P)

in the notation of §6. In particular, (8.11) and Parseval's relation for

Ap, applied to F(-,p), give

(8.12) Jo IF(X,P) I2 dX =
trEZ

J0 If±(P+.,q) I2 dq

Noting the continuity of p -> E L2(Q) and integrating (8.12) over

p E (-1/2,1/2] gives

J1/2
J IF(X,P) I2 dX dp = E

(1/2
Jo

1/z S2 DIE -1/2
(8.13)

I f+ (P4,n, q) I z dqdp

= JR2 If+(P,q) I2 dpdq = IIf+IIL2(RO)
0

In particular, f+ E L2(R02) which completes the proof of (8.7). To verify

(8.8) note that Parseval's formula for Fourier series implies that

1/2

(8.14)
J_

IF(X,P)I2 dp = X If(x+2mrk,y)I2
,

X E 0
1/2 fEZ

where the sum has a fixed finite number of terms for all X E 0. Integrating

(8.14) over X E 0 and applying Fubini's theorem gives

(

J1 IF(X,p)12 dX dp = X I If(x+27T ,y)I2 dX
-1/12/2 0 fEZ JQ

(8.15)

fZ Ja(i) If(X)J2 dX= JG If(X) I2 dX= IIfIIL2(G).

Combining (8.13) and (8.15) gives (8.8).
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The extension of Parseval's relation to all f E LZ(G) follows from

Theorem 8.2 by a standard technique using the denseness of Lcom(G) in L2(G).

Thus, writing

(8.16) GM = G n {X I x2 + y2 < MZ}

one has

Corollary 8.3. The limits

(8.17) f+(p,q) = k.i.m.
J

$+(X,p,q) f(X) dX
M-w° GM

exist in L2(R20) and Parseval's relation (8.8) holds for all f E L2(G).

A representation of the spectral family {H(p)
I

p > 01 of the grating

propagator A will now be derived from Corollary 8.3. The key fact is

described by

Theorem 8.4. The resolvent R(A,z) _ (A - z)-1 of the grating propaga-

tor A satisfies the relation

(8.18)
If+(p,g)IZ

IIR(A,z)fIIL2(G) = JR'
Iw2(p,q)-zj2

dpdq

for all f E L2(G) and all z E C - [0,-).
To prove Theorem 8.4 it is enough to verify (8.18) for all f E L2°m(G).

The idea for doing this is to define

(8.19) u(X) = R(A,z) f(X)

and to apply Parseval's relation to vM = Mu where M E C2 (R2). For a

suitable choice of M one has

(8.20) vM = R(A,z)(f + gM)

where

(8.21) gM = -20u OEM - u AcM

and
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(8.22)

whence

(8.23)

vM±(P,q) _ (f+(P,q) + gM+(P,q))/u2(P,q) - z

km R(A,z)f1I = II(f+ + SMi)/(w2 - z)jI

Passage to the limit M -> - then gives (8.18). For the case of the Dirichlet

boundary condition one may take $M (X) = P(IXI - M) where i E C'(R) satisfies

IP(T) -- 1 for T < 0 and (T) P 0 for T > 1. For the case of the Neumann

boundary condition & must be chosen more carefully, using the condition

G E S, to ensure that vM satisfy the boundary condition. The details of

the construction are given in §9.

The R-B wave expansions for A follow easily from Corollary 8.3 and

Theorem 8.4. They are formulated as

Theorem 8.5. For all f E L2(G) the spectral family (1T(p) I p1 > 0} of

A satisfies

(8.24) 11 (u) f(X) = J +(X,P,q) f+(P,q) dpdq
D

where

(8.25) DP = R2 n {(p,q) I P2 + q2 < u}

In particular, every f E L2(G) has the R-B wave expansion

(8.26) f(X) = 2.i.m. f
DM

f+(P,q) dpdq
M-' DM

The relation (8.24) is a direct consequence of the relation

(8.27) "II(I)f"22(G) = J
z
XI(w2(P,q)) If+(P,q)IZ dpdq

Ro

where I is a subinterval of [0,-) with characteristic function XI. (8.27)

follows easily from (8.18) and Stone's formula. Note that (8.27) implies

the absolute continuity of the grating propagators.

To formulate the orthogonality and completeness relations for the R-B

wave expansions define linear operators

(8.28) (D+ :
L2(G) - L2(R2)



109

by

(8.29) + f = f+ .

Then (D+ and 0_ are spectral mappings for A in the sense of

Theorem 8.6. For every bounded, Lebesgue-measurable function `Y(A)

defined on 0 < A < o0

(8.30) (D+ '1'(A) _ (D+

where 'Y(A) is defined by the spectral theorem.

Moreover, one has

Theorem 8.7. The R-B wave expansions are orthogonal and complete in

the sense that t+ and (D_ are unitary operators:

(8.31) +=land 0+(D *=1

Relations (8.30) and the completeness relation (D* 0+ = 1 follow easily

from the spectral theorem. The orthogonality relation (D* = 1 can be

deduced from the corresponding property of 0+p, Theorem 6.8. Indeed, it is

sufficient to prove that

(8.32) (0+ O*f - f,f) = 0

for all f in a dense subset of L2(R2). This may be verified by direct

calculation using f E Co(R2 - E) and the orthogonality relation for $+p.

The details are given in §9.

Operators A that Admit R-B Surface Waves. It was shown in §2 that for

each p c (-1/2,1/2] A may have R-B surface waves 1i (X,p) and eigenvalues

ap(p) with x-momentum p. The functions 4J(X,p) = p.(X,p)I0 are precisely

the eigenfunctions of Ap. The principal difficulty in constructing an

eigenfunction expansion for A in this case is in constructing families of

R-B surface waves ti (X,p) and eigenvalues ap(p) whose dependence on p is

sufficiently regular. The "axiom of choice" definition (independent choice

for each p) is inadequate to give even measurability in p. This was pointed

out in the author's paper on the analogous, but simpler, case of Bloch waves

in crystals [32].
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If DG is a union of smooth curves (class C3) then the Green's functions

(4.44), (4.45) can be used to construct an integral equation for the eigen-

functions j(X,p). In this case the method of [32] can be used to construct

"almost holomorphic" families

In the general case there is a one-to-one correspondence between

eigenfunctions (X,p) of Ap and eigenfunctions O1(X,p) of APC,r with

eigenvalues E [p2,_) given by Pp,C r The eigen-

values of Ap,4,r are isolated, with finite multiplicity, and may be studied

by the methods of analytic perturbation theory (Kato [13, Ch. 7]). These

problems will not be pursued here.

If a sufficiently regular family of R-B surface waves for A has been

constructed the eigenfunction expansions for A may be derived by the method

introduced above. Thus, defining (X,p) = 0 when j > N(p), equation (8.12)

must be replaced by

(8.33) J IF(X,P)I2 dX = L If (P)I2 + L
52 j=1 3 nfE 2

where

If+(P+m.q)I2 dq

(8.34) j(p) = J j(X,p) f(X) dX .

G

Integration over p e (-1/2,1/2] gives the Parseval relation

(8.35) IIf IIL2
22(G) jl IIfjL2(_1/2

1/2)+IIf+IL2(Rp)

The corresponding representation of the spectral family is

(
C

1(1) f (X)
1/2

= j L .(X,P) dp +
1

+(X,P,q) f+(p,q) dpdq
(8.36)

-
1/2 A.(P)<-p Du

§9. Proofs of the Results of §8.

Proof of Theorem 8.1. It will be shown that if ¢+(X,p+m,q) are the

generalized eigenfunctions for A
P
whose existence is guaranteed by Theorem

6.1 then the functions i+(X,p,q) defined by (8.5) have properties (8.1),

(8.2), (8.3). This will prove the existence statement of Theorem 8.1. Note

that q E E
m p

p (p,q) E E (see (2.30) and (6.15)). Hence the construction

(8.5) is valid for (p,q) E R2 - E.

The sets D(ARoc) are characterized in the cases of the Neumann and

Dirichlet boundary conditions by (see (1.26), (1.28))
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(9.1) D(ANRoc(G)) = LZRoc(A,G) n {u : (1.14) holds for v E
LZ'com(G)}

(9.2)
D(AD,Roc(G)) = L2,Roc(A,G)

f LD,Roc(G)

As a first step it will be verified that (8.5) defines a function

E LZ,Roc(A,G)
for each (p,q) E Ro - E. It is clear that E LZOC(G)

C D'(G) for (p,q) E Ro - E because E LZOC(S2) for Pa

E (-1/2,1/2], m E Z and q E Ra - Emu P. It remains to show that

and as elements of D'(G), are also in LZOC(G). Now by defini-

tion E L2'R0c(A,52) and hence (8.5) implies

(9.3)
toc

REZ

(R)1
.2

Hence, it is only necessary to verify that Vi and A + are

locally square integrable near the lines {(2R+l)7r x y : R E Z} (see (3.4)).

Moreover, 1)+((2R+l)1T ± O,y,p,q) and D1tp+((2R+l)7T ± O,y,p,q) exist in

L2oc(y) (see the discussion preceding (3.7)) and the p-periodic boundary

condition for and (8.5) imply

(9.4)

The proof that E LZ'ROC(A,G) will be completed by proving

Lemma 9.1. The distribution derivatives are given by

(9.5) exp {2Triipa} D.Q+(x-2Tri,y,Pa+m,q) , (x,y) E S2(R)

for j = 1,2. Moreover, satisfies (8.2) as a distribution on G.

Proof of Lemma 9.1. (9.5) will be proved for j = 1. Thus it will be

shown that for all 8 E C,(G) one has

(9.6) 1 i+ D18 dX = -1 D1>U+ 0 dX
G G

where.Dj>+ E LZOC(G) is defined by (9.5). This will be verified for func-

tions 0 with supp 6 C Q(o) U S2(1) U (Tr x y). In this case (9.6) is a

consequence of (9.4) and the equations
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(9.7) JQ(o) TP+ D10 dX = 4
2(0)

0 dX + J +(Tr-O,y,p,q) dy
Y(r

rr

Y(9.8) 10(1) + D10 dX = -b1) 0 dX - l ip+(Tr+O,y,P,q) dy

Equation (9.7) may be verified by calculating

(9.9) bo) w+ dX

where q6(x) _ ((x-Tr)/6), 6(x) C 1 for x < Tr - 6, 6(x) C 0 for x > Tr and

0 < 6(x) < 1, and then making 6 -> 0. The technique is explained in [31,

p. 57ff]. The case of a general 0 E C0(G) may be proved in the same way.

The proof of (9.5) for j = 2 is similar. Moreover, an analogous calcula-

tion, based on (9.4), gives

(9.10) exp {2Trikpo} A4+(x-2Trk,y,Po+m,q) , (x,y) E E2(0

Proof of Theorem 8.1 (continued). To complete the proof that

E D(A
Roc

) in the Neumann case, condition (1.14) must be proved

for v E
Ll,com(G).

Now for such a v one has, by Lemma 9.1,

f A v dX = J l) V dX
G ± R.EZ S2(

(9.11)

where

AU+(x+2Trk,y,p,q) V (x+2Trk,y) dX
RZ 0

A$+(x,Y,P,4) e
2Tritp

v (x+2Trk,y) dX
9EZ 0

=J

(9.12) u(x,y) _ e-2Trikp v(x+2Trk,y) E LZ>P,com(0)

kEZ

Note that the sums in (9.11), (9.12) are finite because v E
LZ,com(G). A

similar calculation gives
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(9.13) 1G w+ Vv dX =
1Q

4, Vu dX

and adding (9.11), (9.13) gives

(9.14) JG {Atp+ V + Ov} dX = u + 0

because + E D(AN,2oc(O))
and u E (see (3.19)).

To complete the proof that E D(Akoc) in the Dirichlet case,

it must be shown that E LD,2oc(G)
= Closure of Co(G) in LZ'Qoc(G).

This follows immediately from (8.5) because is p-periodic and

E LD'P'ioc(S2) = Closure of CP(S) in Lz'Roc(0). To see this note

that on any set K n G where K is compact in R2 the functions 0 E CP(G)

coincide with functions 0' = 0 where 0 E C0(R2) and $(X) -- 1 on K.

It has been shown that defined for all (p,q) E Ro - E by

(8.4), satisfies (8.1) and (8.2). Condition (8.3) is also immediate because

'Po and o satisfy tU0(X,p,q) = OP0 o(X,po+m,q) (see (3.27)) and hence

(9.15) +(X,p,q) = Op' q+(X,P0 ,q)

It follows that + (resp., ty') is an outgoing (resp., incoming) R-B wave

for G.

The uniqueness of was proved in §8. To complete the proof

of Theorem 8.1 the continuity of -> E L1'Qoc (A ,G) for

(p,q) E Ro - E must be shown. Note that since satisfies (8.2) it will

be enough to prove the continuity of the mapping (p,q) --
1,m0C - Z

E Lz (G). Thus it must be shown that for each compact K C R and each

(po,go) E Ro - E one has

(9.16)
0

0

when (p,q) -+ (po,go). For the functions the continuity conditions

(9.16) follow from (1.33), (1.34) by direct calculation. For they

follow from (8.5) and the continuity of (p,q) -> E LZ'Loc(Q): i.e.,

(9.17)

0

0
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when (p,q) - (po,gp). (9.17) is a consequence of Theorem 4.15 and the

definitions (6.13) and (6.14). (9.17) and (8.5) imply (9.16) because K n G

is contained in a finite union of the sets K n 2(Z).

Proof of Theorem 8.2. This was given in §8.

Proof of Corollary 8.3. As remarked in §8, these results follow from

Theorem 8.2 and the fact that Lcom(G) is dense in L2(G). The details may

be found in [30, p. 1091 where the corresponding results are proved for

exterior domains.

Proof of Theorem 8.4. The proof outlined in §8 will be completed here.

The two boundary conditions will be discussed separately.

The Dirichlet Case. Proceeding as in §8, let f E L2om(G) and define

(9.18)

and

u = R(AD(G),z)f

(9.19) vM(X) = cM(X) u(X) , x E G ,

where BM(X) = (IXI - M) E Ca(R2) satisfies BM(X) = 1 on GM and supp M

C GM+1. Then it is easy to verify that vM E D(AD(G)) and

(9.20)

(AD(G)-z) vM(X) = -(A+z) BM(X) u(X)

_ BM(X) f(X) - 20u DAM - U ABM

= f(X) + gM(X) for M > M0(f) ,

where gM is defined by (8.21), because BM(X) = 1 on supp f for M > M0(f).

Equation (9.20) implies (8.20). To verify (8.22) note that by (8.2)

one has

(9.21)

vM±(p.q) = J i+(X,p,q) vM(X) dX
G

= -w 2 (p,q) J A lU+(X,p,q) vM(X) dX
G

Now E L2'koc(A,G) and hence
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(9.22)
J

{(AP+) vM + 0T+ VvM} dX = 0
G

because vM E LD(G) and supp vM is compact. Indeed, vM = "m n in L2 (G)

where n e C(G) and (9.22) holds with vM replaced by n by the

distribution definitions of AI+ and Vii+. Similarly, one has

(9.23) J {T+(A vM) + VV± VvM} dX = 0
G

because vM E D(AN(G)), supp vM is compact and + E LD,Roc(G).
Combining

(9.21), (9.22) and (9.23) gives

(9.24) vM,(p,q) = -w 2(p,q) J i+(X,p,q) AvM(X) dX
G

Finally, combining (9.20) and (9.24) gives

(9.25)

vM (p,q) _ -w

w 2(p,q)(1P+(',p,q),f+gM+zvM)

=
W-2 (p,q)(?+(p,q) + gry(p,q) + zvM+(p,q))

Solving this equation for vM gives (8.22) and hence (8.23).

To find the limiting form of (8.23) for M + W note that IyX)I < 1

and BM(X) -> 1 for all X E G when M + -. Moreover,

(9.26) lim gM = 0 in L2(G)
M--

because in the definition (8.21) Vu and u are in L2(G), V M(I)I and

are bounded uniformly for all M and supp gM C GM+1 - GM. Hence passage to

the limit M -+ - in (8.23) gives (8.18) for f E Lcom(G). The general case

follows by a density argument.

The Neumann Case. The method presented above can be used. However,

the definition of the multiplier M must be modified to ensure that

vM E D(AN(G)). If M E C2(G) then it is easy to show that vM E LZ(A,G).

The hypothesis G E S of §1 will be used to construct a function M E C2(G)

such that vM = Mu also satisfies the Neumann boundary condition. The

construction is similar to the one used above to prove Theorem 4.6 in the

Neumann case.
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To construct M let G(x,y), T(x,y) be the tangent-normal coordinates

defined in the neighborhoods 0 + (2Trm,0) of the points ((2m-1)Tr,yo) as in

§5 following (5.177). Define E2 by (5.178) as before and let rll,rl3 E C2 (R)

satisfy 0 < ni (a) < 1 and

(9.27)

where d. > 0. Define
J

(9.28)

1 for a < -d.

0 fora> d.
7

4M(x,Y) = nl (a) 2 (T) + n3 (x - (2M+1)Tr) [1 - E2(T)]

for all (x,y) E G n {(x,y) : x > 0}. Note that if 0 < 6 < Tr then for dl,

62, d3 small enough one has

(9.29) M(x,Y) _
1 for x < (2M+1)Tr - 6 ,

0 for x > (2M+1)Tr + d .

Extend 4M to the rest of G by

(9.30) gM(x,y) = 1 - q,(-x,y) for (x,y) E G n {(x,y) x < 0}

Finally let M(y) E C2(R) satisfy 0 < M(y) _< 1, (y) - 1 for y < M,

(y) = 0 for y > M + 1 and define

(9.31) M(x,Y) _ M(x,Y) (Y)

Then M has the desired properties. It is clear that M (=- C2 (-d) and

(9.32) supp M c {(x,y) : -(2M+1)7r - d < x < (2M+1)Tr + d,0 < y < M+1} .

Moreover, in the strip Ix - (2M+1)Trl < d, 0 < y < h, one has 2(T) a 1 and

hence M(x,y) = nl(a(x,y)). Similarly, in Ix + (2M+1)Trl < d, 0 < y < h one

has OM(x,y) = 1 - nl(a(x,y)). This property implies that vM = OMu satisfies

the Neumann boundary condition on r; see (5.184). The remainder of the

proof of Theorem 8.4 is the same as in the Dirichlet case.

Proof of Theorem 8.5. It was remarked in §8 that (8.24) and (8.26) are

direct consequences of (8.27) (see [30, p. 110]). Relation (8.27) will be
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derived from Theorem 8.4 and Stone's formula. The latter states that if

I = [a,b] C R then for all f E LZ(G) one has

(9.33) 2(f,[II(b)+11(b-)-11 (a)-n(a-)]f) = lim if IIR(A,),+ic7)fII2 dA
a-O+ I

Now Theorem 8.4 and Fubini's theorem imply that

( If±(P,g) 2

- J IIR(A,X+io)f1I2 dX = - J dpdgda
IT

I
7r

j

Ro
Iw2(p,q)-X-iGI2

(9.34)

Moreover, if

+a If±(P,4)I2 dpdq

R
J1

(X-w

dX

aJ o

(9.35) K(a,p,q) =
a dX

1 (X-w (P,q)) +a

then 0 < K(a,p,q) < 1 for all (p,q) E RO and a > 0 and lim K(a,p,q)

= XI(w2(p,q)) for a -- 0; [34, p. 98]. Hence (9.33) and (9.34) imply

(9.36) Z(f,[R(b) + II(b-) - 1(a) - n(a-)]f) = J
2
X1(u2(P,q)) If±(p,q)I2 dpdq

RQ

by Lebesgue's dominated convergence theorem. On making a -> b in (9.36) and

using the relation 11((b-)-) = ll(b-) one finds that 11(b) = 11(b-) for all

b E R. Then putting R(b-) = 11(b), 11(a-) = 11(a) in (9.36) gives (8.27).

Proof of Theorem 8.6. This result can be proved by the method used

for the case of exterior domains in [30, p. 113]. The multiplier m of

[30, p. 114] may be replaced by the function M used to prove Theorem 8.4.

The remaining details are the same as in [34] and will not be repeated here.

Proof of Theorem 8.7. It will suffice to prove the relation (8.32),

or equivalently

(9.37) III+fII=IIfII,

for all f E c (R0 - E).
As a first step, note that for all f(p,q) E L2(RO) one has

(9.38) (,D*f)(X) = i.i.m. J ip+(X,P,q) f(p,q) dpdq
M-+ ° DM
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The simple proof is the same as for the case of exterior domains [30, p.

117]. If f E Cp(R2 - E) than (9.38) can be written

(9.39)

(X) = JR2 ±(X,p,q) f(p,q) dpdq
°

j +(X,p-Fm,q) f(p+m,q) dpdq
nrZ B°

and only a finite number of terms in the sum are non-zero. In particular,

the definition (8.5) of + implies that

0+(x-2TT.,y,p+m,q) f(p+m) dpdq(9.40) (0f) (X) = E
fBonEZ Bo

for X E S2 (k) .

Next note that

(9.41)

III*flI2

= JC dX
£EZ JQ(k)

f(X)I2 dX

= E ID+f(x+27rk,y)I2 dxdy
kEZ J0

Now (9.40) implies that for (x,y) E 9

]
e2TrZkp +(x,y,p+m.q) f(P+m,q)dqdP(O*f) (x+27ri,y) = mJ

(-1/i2

/z lJ

w

LZ
°

(9.42)

1/z e2Trikp {f(p+.,.)})(X) dp
-1/2 p

by Lemma 7.1. The interchange of summation and integration is elementary

because the sum is finite for f E Co(R2 - Q. Equation (9.42) states that

the left hand side of the equation, as a function of k E Z, is the set of

Fourier coefficients of the function of p defined by 0p Thus

Parseval's relation for Fourier series implies

CC(9.43) 2*f(x+2Trk>y)I2 =

1/2

j-
P

{f(p+.,.)})(X)I2 dp
kEZ 1/z

Integrating (9.43) over X E 0 and using (9.41) gives, again by Fubini's

theorem,
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(9.44)

II,D*fhh2
1/2

=
J_J

{f(p+',')})(X)12 dX dp
1/2 Q

1/2

p
dp

-i/z

Now the orthogonality property for $+* , Theorem 6.8, implies that
,p

I'D*+'p

(9.45)

Combining (9.44) and (9.45) gives

mEZ

f0

If(p+m,q)I2 dq

(9.46) IIIf II2 = IIfIIL2(Bo+(m,o)) IIfIIL2(R0

which is equivalent to (9.37).

§10. The Initial-Boundary Value Problem for the Scattered Fields.

The goal of the remaining sections of this monograph is to analyze the

structure of the transient acoustic and electromagnetic fields in grating

domains G that are generated by sources which are localized in space and

time. If the sources act during an interval T < t < 0 then the wave field

may be described by a real-valued scalar function u(t,X) that is a solution

of the initial-boundary value problem

(10.1) Dtu - Au = 0 for all t > 0 and X E G

(10.2) Dvu = 0 (resp., u = 0) for all t > 0 and X E aG

(10.3) u(0,X) = f(X) and Dtu(O,X) = g(X) for all X E G

The functions f, g which characterize the sources of the field will be

assumed to have compact supports in G.

The initial-boundary value problem in its classical formulation (10.1)

-(10.3) will have a solution only if aG and f and g are sufficiently smooth.

However, for arbitrary domains G, if the initial state has finite energy;

i.e.,
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(10.4) f {lVf(X)12 + Ig(X)I2} dX < - ,

G

then the problem (10.1)-(10.3) has a unique generalized solution with finite

energy (= solution wFE). This result was proved in [28]. In this section

the results of §8 are used to derive an R-B wave representation of the

solution wFE.

Consider the grating propagator of §1:

(10.5) A = AN(G) (resp., AD(G)) .

For arbitrary domains G, A is a selfadjoint realization in JC = L2(G) of the

operator -A with the Neumann (rasp., Dirichlet) boundary condition. More-

over, A > 0 and Kato's theory of sesquilinear forms [13] implies that

D(A1/2) = L2(G) (rasp., LD(G)). It follows that if

(10.6) f E L2 (G) (rasp., LD(G)) and g E L2 (G)

then (10.4) holds and

(10.7) (cos t Al/2)f+ (A 112 sin t Al/2)g

is the unique solution wFE of (10.1)-(10.3) [30]. In particular,

(10.8) u E C'(R,L2(C)) n C(R,D(A1/2))

and the initial conditions hold in L2(G). The boundary conditions are

incorporated in the definition of D(A) and of solution wFE. The d'Alembert

equation (10.1) holds in a suitable weak form [30]. The scattered fields

studied below are the solutions wFE defined by (10.6), (10.7).

It was shown in [30, Ch. 3] that solutions wFE in arbitrary domains

have a representation

1/2
(10.9) u(t,X) = Re {v(t,X)} ,

e-itA h

provided that f and g satisfy (10.6) and g G D(A 1/2). The complex-valued

function h G D(A1/2) is related to the initial state f,g by

(10.10) h= f + i A1/2g
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The representation is used in §13 below to determine the asymptotic behavior

for t - - of the transient wave fields (10.7).

The R-B wave expansions of §8 can be used to construct the solutions

wFE (10.7) and (10.9). To simplify the analysis it is assumed in the

remainder of the work that G admits no R-B surface waves. In the general

case most of the results derived below hold for states orthogonal to the

subspace spanned by the surface waves. The scattering of R-B surface waves

is not analyzed in this work.

Under the assumption of no surface waves the R-B wave expansions of

the wave function (10.9) take the form

(10.11) v(t,X) = Q.i.m.
J

+(X,P) e-itw(P) h+(P) dP
Rp

where the integral, together with its formal t-derivative (_ -i Al/2v(t,X)),

converge in L2(G) (Theorems 8.5 and 8.6).

§11. Construction of the Wave Operators for AP and Ao p.

The purpose of the section is to prove the existence and completeness

of the wave operators

itA1/2 -itA1/2
(11.1) W + p= W+(Ao/2 p s-lim e o,p J e p

t-*±oo

where J : L2 (0) } L2(B0) is defined by

h (X) , X E 0
(11.2) JQ h(X) =

0 , X E Bo - 0 .

This will be done by means of an explicit construction based on the eigen-

function expansions for Ap and Ao p of §6. The principal results are

formulated as

Theorem 11.1. Let G be a grating domain of the class defined in §1.

Let p E (-1/2,1/2] and assume that a0(Ap) _ . Then W+ ,p and W- ,p exist

and are given by

(11.3) W+,P - Q)0,p '+,p

In particular, W+eP : L2(0) i L,(B,) are unitary operators and one has

(11.4) 11 (A) = W p Ho p(A) W+
P
for all A E R
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Theorem 11.1 is primarily of technical interest in the theory of

scattering by diffraction gratings. It will be used in §12 to derive a

construction of the wave operators for A and A0.

Theorem 11.1 will be proved by the method of [30, Ch. 7]. Only the

case of W+,P will be discussed, the other case being entirely similar. To

begin consider the wave function

(11.5)
-itA112

e P h , h E L2 (2) .

The eigenfunction expansion theorem for Ap implies that v(t,X) has the two

representations

M
(11.6) v(t,X) = f.i.m. ,io $+(X,p+m,q) e-itw(P{m,4) h+(P+m,q)

d4
M- ImI<M

convergent in L2(Q). As in [30, Ch. 7], the incoming representation will

be used to calculate the behavior of for t -> +m. The eigenfunction

has the decomposition (see (6.4), (6.5))

(11.7) $_(X,P+m,q) = j(y) o(X,p+m,q) + '(X,P+m,q)

where $' is incoming. Combining (11.6) and (11.7) gives

(11.8) v(t,x) = j(y) vo(t,X) + v(t,x)

where

(M
(11.9) vo(t,X) = i.i.m. Jo $,(X,P+m,q) e

itw(P+m,4)
h(P+m,q) dq

M- ImI<M

converges in L2(B0) while

rM
(11.10) v+(t,X) = i.i.m.

[0
'(X,P+m,q) e-itw(p+m,q) (p+m,q) dq

lm -

converges in L2(Q). Note that the convergence of (11.6) and (11.9) implies

that of (11.10). Moreover, v,(t,X) is a wave function in L2(Bo) for the

reduced propagator A0 'p of the degenerate grating; namely,

-itAi/2
(11.11) vo(t,-) = e

0,P
ho

where ho = E L2(Ba) is given by
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*
hho = 'D 'Do

,p
- p

0 ,p
.

Theorem 11.1 will be shown to be a direct corollary of

Theorem 11.2. Under the hypotheses of Theorem 11.1 one has, for all

h E L2 (P) ,

lim 0 in L2(Q)
ti+m

lim 1Iv(t,') - j(') vp(t,-)IlL2(c) = 0

Proof of Theorem 11.2. Equation (11.14) can be written

-itAP/2 *

P(11.15) lim e - J e p h 0

t-"-
where J* : L2(Ba) ; L2(Q), the adjoint of the operator J defined by (6.22),

is given by J* h(X) = j(y) h(X)I0. Now the family of operators appearing

in (11.15) is uniformly bounded for all t E R. Hence to prove that (11.15)

holds for all h E L2(0) it will suffice to verify it for all h from a dense

subset of L2(Q). It will be convenient to use the dense subset Da = 0* Do
P

where

(11.16) Do C 1 0+ L2(Ro)

MFZ

is the set of all g(q) = (gm(q) : m E Z} such that there is an M = M(g)

with the properties

gm(q) a 0 for Iml > M , and

gm E Ca (R0 - Em P) for Iml < M

where
m

E is the exceptional set of (6.15). Moreover, it will suffice to
,p

verify (11.15) for functions of the form

h(X) = Jo _(X,P+m,q) g(q) dq

where m is fixed and g E Co(RO - Em p) has support in an interval
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I C Ro - Em,
p

, since the case of a general h E Dp then follows by super-

position. Thus the proof of Theorem 11.2 may be completed by showing that

if

(11.20)
v+(t,X)

= J $'(X,p , q) e-itw(P+m.q) g(q) dq
I

where g E Co(R0 - Em p) and supp g C I then (11.13) holds.

The definition of the function O'(X,p+m,q), (6.4), (6.5), (6.13),

(6.14), together with Theorem 4.15, implies that for fixed m E Z one has

(11.21) E C(Q x (R2 - E))

where E is the exceptional set of (2.30). Moreover, the far-field form

of ' is
C i(xpf-yqf)

(11.22) '(X,P+m,q) = G a-(P+m,q) e + p_(X,P+m,q)
IEL

where L is a finite set, independent of q E I (see (7.35)ff for the

notation). Note that

(11.23) a(p+m,q)
e-lYgR

=
2

(Tr e-ix(p+Q)
O'(x,y,P+m,q) dx

7T

It follows from (11.21) and (11.23) that

(11.24) E C(Ro - E)

Moreover, by Lemma 7.3 there exists a constant p = p(p,m) > 0 and for each

r' > r > h a constant C = C(I,p,m,r,r') such that, for p and m fixed,

(11.25) Ip_(X,p+m,q)I < C e-Uy for all X E Or, and q E I.

Substitution of (11.22) in (11.20) gives

v+(t,X) = vi(t,X) + vZ(t,X)

If

-i(yq +tw(P+m,q))

v+(t,X) = C J az(P+m,q) e g(q) dql ei(P+Z)x
fEL

L
I J

Note that, by (11.24), each is continuous on the closed interval



I. Now each of the integrals in (11.27) has the form of a modal wave in a

simple waveguide; cf. (7.63)ff. It 'j'_iows from (7.69) applied to the

finite sum in (11.27) that

(11.28) lim LZ(BD) = 0
t->+-

It remains to show that 0 in L2(Q) when t -> . This will

be done by applying Lemma 7.5 to u = vz = v - vi. To this end note that

for all t E R one has E L2(Q) by (11.10) and E L2(Bo).

Thus v+ (t,-) E L2(P) for all t E R which verifies

(7.75).

The local decay property (7.76) follows from the local compactness

property of the grating domain G, assumed in §1, and the abstract decay

theorem of [29]. The proof is the same as that of [30, Theorem 5.5] and

is therefore not repeated here.

Finally, (7.77) follows directly from the estimate (11.25) and the

representation

(11.29) vZ(t,X) = J P_(X,P+m,q) e-it() g(q) dq
I

which imply

(11.30) Iv2(t,X)I < C e-" J jg(q)I dq for all X E Pr, and t E R
I

This completes the proof of Theorem 11.2.

Proof of Theorem 11.1. The proof follows that of [30, Corollary 7.2].

In fact, the calculation given there, adapted to the present problem, gives

the estimate

( itA112 -itA1/2
J0 e p _ e a>P o p ,pIh

L2(B0)

(11.31)
1 -itA"2 -itA1/2
e P - J* e

°,P Do,

P -,P

-itA1/2
cD-, h)

e

O PP po ,

h
L2(P)

L2 (Bo r)

-itAl/2
e P h L2(P)

The first term on the right in (11.31) tends to zero when t -; +oo by (11.15).

The last two terms tend to zero when t -; +- by the local decay property used

in the proof of Theorem 11.2. It follows that the left hand side of (11.31)
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tends to zero when t -} 4- which proves the existence of W+ and equation
->P

(11.3). Finally, to verify (11.4) note that it can be written

(11.32) 1p(A) =
+,P

(Do,P B0,P(A) (Do,p
+,P

for A E R

by (11.3). The unitarity of $+,p implies that an equivalent relation is

(11.33)
(D+,P IT (A)

P*,P = CPo,P
go,P(A)

forfor A E R

But this last equation is correct because the two sides coincide with the

operation

(11.34) {gm(q)} - {H(A - w2(P+m,q)) gm(q)}

in E (+ L2(Ro); see Theorem 6.7. This completes the proof.

§12. Construction of the Wave Operators for A and Ao.

The purpose of the section is to prove the existence and completeness

of the wave operators

(12.1) W+ = W+(Ao 2 Al/2 JG) = s-lim
eitA01/2

JG
e-itA1/2

where JG : L2(G) -* L2(Ro) is defined by

(12.2) JG h (X) _
h(X) , X E G ,

0 X E Ro - G .

The principal results of the section are formulated as

Theorem 12.1. Let G be a grating domain of the class defined in §1

and let A = A(G) admit no surface waves. Then W+ and W- exist and are

given by

(12.3) W+ _

In particular, W+ : L2(G) -> L2(RO) are unitary operators and one has

(12.4) 11 (A) = W* II0(A) W+ for all A E R



The proof of Theorem 12.1 will be based on Theorem 11.1 and a series

of lemmas that relate the grating propagators A and A0 to the corresponding

families of reduced propagators A,, and
A0

.

P
-1/2 < p < 1/2.

The Mapping U. As a first step, the correspondence introduced in

(8.10) will be extended to a unitary mapping U: L2(G)+ L2((-l/2,1/2],L2(0)).

To see how this may be done note that if f E L2(G) then

(12.5) f (x+2Tri,y) IQ E L2 (Q) for all i E Z, and

(12.6) (Q) = IIfL
zQE Z

(G)
L

Hence the Plancherel theory in the Lebesgue space L2((-1/2,1/2],L2(Q))

implies that the Fourier series

(12.7) F(x,y,p) = I e-2"iip f(x+27i,y)I,

LEZ

converges in this space and Parseval's relation is valid. Combining this

result and (12.6) gives

(12.8)

for all f E L2(G).

IIFIIL2((-1/2,1/2],L2(Q)) = IIfIIL2(G)

Lemma 12.2. The mapping U : L2(G) -; L2((-1/2,1/2],L2(Q)) defined by

Uf = F and (12.7) is unitary.

Proof. The preceding discussion implies that Uf is defined for all

f E L2(G) and U is isometric. The surjectivity of U follows from the

Plancherel theory. Indeed, every F E L2((-1/2,1/2],L2(Q)) has a Fourier

development

(12.9) F(X,P) _ Y e-2' iip
FL(X)

LEZ

convergent in L2((-l/2,l/2],L2(Q)). The Fourier coefficients in (12.9) are

defined by the Bochner integrals

(12.10) FL(X) =
11/2

e2lriip
F(X,p) dp E L2(Q)

1/2

and Parseval's relation holds:
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(12.11) F 11 L2((
1/21/2]L2(Q)) QEZ

FI L2(Q)

Thus to construct f = U -IF one need only require that f(x+2Tr2,y)1Q = F1(X)

E L2(Q), or

(12.12) f(X) F1(x-2Tr1,y) for all k E Z .

Parseval's relation then guarantees that f E L2(G) and (12.12) implies

that Uf = F.

The next lemma makes it possible to construct operators '1(A) from the

corresponding reduced operators f(Ap) with p E (-1/2,1/2].

Lemma 12.3. For all bounded Borel functions Y'(A) defined for A > 0

and for all f E L2(G) one has

(12.13) (U Y'(A)f)(-,p)= Y'(Ap) E L2(Q)

for almost every p E (-1/2,1/2].

Proof. The result will be derived from the R-B wave expansions for A

and Ap and the corresponding Plancherel relations. To this end let f,g

E L2(G) and write Uf = F and Ug = G. Moreover, assume that 0+g = g+

E L2om(R0). Then Lemma 12.2 and the results of §6 and §8 imply

(U Y`(A)f,G) = (T(A)f,g) _ ((D + 1(A)f, (D+g) = J 2 P(u2(P)) T+(P) g+(P) dP
R

(12.14)
0

m+l/2
= L Y'(w2(p,q)) +(P,q) g+(P,q) dqdp

mEZ 1m-1/2 0

1/2

1-
g+(P'F'm,q) dgdP

mEZ -1/2 0

1/2
Y ( Y'(w2(p+m,q)) F+(P'1'm,q,P) G+(p+'m,q,P)dq

- 1/2 MEZ J o

1/2

(1(Ap) dp
-1/2

Note that the hypothesis g+ E
L2om(R2)

implies that the m-summation and

interval of q-integration in (12.14) are finite. Moreover, since such

functions g+ are dense in L2(Ro) the relation (12.14) holds for all

dp



G E L2((-l/2,1/2),L2(Q)). On tak_n_ -(X,p) = G1(X) G2(p) in (12.14) where

G1 E L2(Q) and G2(p) E L2(-1/2,1%2; are arbitrary one gets (12.13).

The mapping U obviously depends on the grating domain G : U = UG. In

the special case G = R2 let U0 = With this notation one has

Lemma 12.4. The operators U, U_ JG and J0 satisfy

(12.15) U0 JG = JQ U

Proof. The definition of U implies that

(12.16) (J0 Uf) (X,p) = X
e-ZTiZp JS (f(x+27i,y) i,)

2,EZ

(12.17) (U° JG f)(X,p) e-21riRp (JG f(x+27ri,y)IB

°)ZEZ

for all f e L2(G). These obviously define the same function, which implies

(12.15).

The next lemma will be used to relate the wave operators for A and A0

to those for A and Ap ° P

Lemma 12.5. For all f E L2(G) one has

(12.18) U°(,Do P (D+ P Uf(-,P) E L2_(BO)

for almost every p E (-1/2,1/21.

Proof. The relation (8.11) can be written

(12.19) ((D+f)(p+m,4) = ((D±
P

((D+, Uf(-,P))m(4)

The relation was proved for all f E L2om(G). However (12.19), as a rela-

tionship in I +) L2(R°), extends immediately from the dense set LZom(G) to

all of L2(G). In particular, specializing (12.19) to G = R2 gives

(12.20) (ID°f°)(p+m,4) = (,D°.P U°

for all f° E L2(R2). Substituting f° = 0 (D+ f in (12.20) gives

(12.21) ((D° P(U° Do (D+f(P+m,4) = ((D+ P Uf(,P))ln(4)
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in E L2(Ro), by (12.19). Thus

(12.22) (Do,P(Uo Da (D±
,P

for almost every p E (-1/2,1/2]. (12.22) is equivalent to (12.18).

Lemmas 12.2-12.5 will now be shown to imply Theorem 12.1. The main

step in the proof is described by

Theorem 12.6. For every h E L2(G) and H = Uh one has

J e-itA1/2 h - e-itAa/2
(D *

G 0

(12.23)

-1/2

2

L2 (R2 )

-itA1/2
J. e P p o

P

Proof. Lemma 12.2 implies that

(12.24)

(1/2

J -itA1/2 h - e -itAo/2 hIP*G e o ±

1/2

-1/2

z
L2 (Ro )

1/2 1/2Uo (JG e itA h - e-itAo
(Do cD+h) (- P)

Moreover, Lemmas 12.4 and 12.3 imply

H(' p)
L2 (Bo)

dp

z
L2(Bo)

dp

1/2 1/2 -itAl/2
(12.25) (Uo JG e-itA h) (' ,P) _ (JQ U e-itA h)(-,P) = JQ e P U h(' p)

Finally, Lemmas 12.3 and 12.5 imply

(12.26)

1/2 -itAl/2
(Uo

e-itA0
ID* h) e o'P U0(0 h)

A1/2

= e
1t

o'P U h(' p)
O 'p

p

Combining (12.24), (12.25) and (12.26) gives (12.23).

Proof of Theorem 12.1. Lemma 12.2 implies that E L2(S2) for

almost every p E (-1/2,1/2]. Hence the integrand on the right hand side

of (12.23) tends to zero when t - T- by Theorem 11.1 (see (11.31)). More-

over, the operators appearing in the integrand are all bounded with bound 1

and hence one has
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-itA1/2 -itA'/`
J e

P
H(',P) e

°,?

P
H( P)

(12.27)
L (B0) < 2 IH(',P) IL2

(O)2

for all t E R and almost every p E (-1/2,1/2]. Thus the existence of W+

and W_, and the relation (12.3), follow from (12.23) and Lebesgue's domi-

nated convergence theorem. The final statement of Theorem 12.1, equation

(12.4), follows from (12.3) and the eigenfunction expansions for A and A0,

exactly as in the proof of Theorem 11.1.

§13. Asymptotic Wave Functions and Energy Distributions

In this section the existence of the wave operators W+ is shown to

imply that transient wave fields in grating domains G are asymptotically

equal in the energy norm, for t ---km, to transient wave fields in the

degenerate grating domain R. The latter are then shown to be the restric-

tions to R2 of free waves in R2. Such free waves possess asymptotic wave

functions in the sense of the author's monograph on scattering by bounded

obstacles [30]. These results are shown below to imply that transient

wave fields u(t,X) with finite energy in grating domains possess asymptotic

wave functions

(13.1) uk(t,X) = r-112 Fk(r-t,6) , k = 0,1,2 ,

(where X = (r cos 6,r sin 6)) such that if (t,x,y) = (Xo,X1,X2) and Dk

= B/BXk for k = 0,1,2 then

(13.2) lim IIDku(t,') - uk(t,')IIL2(G)
=

0 , k = 0,1,2t-
Moreover, the waveforms Fk(T,6) are calculated from the initial state f(X),

g(X) of u(t,X). Finally, (13.2) and the results of [30, Ch. 8] are used to

calculate the asymptotic distributions of energy for transient wave fields

in grating domains.

The starting point for the calculation of the asymptotic wave functions

(13.1) is the complex-valued wave function v(t,X) defined by (10.9),

(10.10). The existence of the wave operator W+ defined by (12.1) implies

that

(13.3)
1/2 1/2e-itA h e itA0 W+ h t 1

in the sense of convergence in L2(G). Moreover, if h E D(A1/2) then the
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analogue of (13.3) holds for the first derivatives. This result may be

formulated as a generalization of the corresponding result for exterior

domains [30, Theorem 7.5], as follows.

Theorem 13.1. Let G satisfy the hypotheses of Theorem 12.1 and let
1/z

h E D(A1/2). Then e
itA

h is a solution wFE in G, h = W h
1/2 itA1/2 Sc +

E D(A" ), e- " hsc is a solution wFE in R2 and

(13.4) lim IIDk Dk 0 for k = 0,1,2
t-*+oo

The proof is precisely the same as the one for exterior domains given

in [30] and is therefore omitted.

The initial state hsc = W+h for the wave field vo(t,X) satisfies

(13.5) (hsc)" = 4)" h+
=

-h = h

by (12.3). Thus v" has the R-B wave representation ((10.11) for A")

(13.6) v"(t,X) = J
R2

e-itw(P) h_(P) dP
RZ

"

To show that v"(t,X) has a continuation to a wave field wFE in R2 the

Neumann and Dirichlet cases will be treated separately.

The Neumann Case. Here one has (see (2.31) for normalization)

(13.7) "(X,P) = D+(X,P) = UD(X,P) = 2 L e1Px(ei0Y + e igY)

and substitution in (13.6) gives, after a simple transformation,

(13.8) v"(t,X) =
I

12 ei(xp+yq-tw(p,q)) h"(p,q)
dpdq

2TT
R

where

(13.9)
h (p,g) , (p,q) E Ro

h"(p,q) _
&_(p,-q)

, (p,-q) E Ro

The Dirichlet Case. Here if " is normalized by (see (2.31))

(13.10) "(X,P) _ D-(X,P) = i D(X,P) = 2" elpx(eigy _ e-igy)

then substitution in (13.6) again gives (13.8), but with
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h_(p,q) , (p,q) E R2

(p,-q) E Ro

Thus in both cases vo(t,X) has a continuation (13.8) to a wave field

in R2. Moreover, the hypothesis h E D(A1/2) of Theorem 13.1 implies that

h_(p,q) and h_(p,q) are in L2(R2) and hence h0(p,q) and p2+g2h0(p, q)
are in L2(R2). It follows that the extended wave field (13.8) is a solution

wFE in R2. Thus the results of [30, Ch. 2] are applicable and allow the

construction of asymptotic wave functions

(13.12) vk(t,X) = r-112 Hk(r-t,e) , k = 0,1,2

such that

(13.13) lim IIDk v(t)L(R2) = 0 , k 0,1,2
t->+-

By restricting the functions to G one obtains

Corollary 13.2. Under the hypotheses of Theorem 13.1 one has

(13.14) lim L2(G) = 0 , k = 0,1,2
t-H-

where the function vk are given by (13.12) with waveforms Hk defined by

Q.. i. iTW 1/2
(13.15) H0(T,0) _ (2n)12

t o

e h_(w cos 0,w sin 0)(-iw) dw

convergent in L2(R x [0,1r]), and

(13.16) H1 (T,0) = -H0(T,0) cos 0 , H2 (r,0) = -H0(T,0) sin 0 .

Equations (13.14) follow from (13.4) and (13.13) by the triangle

inequality. Equations (13.13), (13.15) and (13.16) follow directly from

[3, Ch. 2]; see the proof of [3, Theorem 2.10].

To obtain corresponding results for the real-valued wave field u(t,X)

generated by the initial state f,g one need only take the real part of

v(t,X) and use equation (10.10) which relates h to f and g. This leads to

Theorem 13.3. Let G satisfy the hypotheses of Theorem 12.1. Let

f E D(A1/2) and g E L2(G) and define asymptotic wave functions
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(13.17) uk(t,X) = r 1/2 Fk(r-t,0) k = 0,1,2

by

Fo(T,O)=Re {(27)12 Jo e- iTw[g_(wcos 0,wsin0)-iwf (wcos 0,wsin0)](_iw)112 dw}

(13.18)

convergent in L2(R x [0,Tr]), and

(13.19) F1(T,0) = -Fa(T,0) cos 0 , F2(T,0) = -Fo(T,0) sin 0

Then the solution wFE (10.7) generated by f and g satisfies

(13.20) lim 0 , k = 0,1,2
t

Proof. To begin, assume that g E D(A 1/2) and define h by (10.10).
1/2

Then h E D(A1/2) and Corollary 13.2 is applicable to e-itA h.

Moreover,

(13.21) IPI h_(P) = IPI f_(P) + i g_(P)

which implies that Fk = Re Hk and hence

(13.22) uk(t,X) = Re {vk(t,X)} , k = 0,1,2 .

Thus (13.20) follows from (13.14) by the triangle inequality. To remove

the restriction that g E D(A 1/2) note that D(A 1/2) is dense in L2(G), by

the spectral theorem. Moreover, one has (see [30, Theorem 2.5])

Ilup(t,.)IIL,(G)
- IlHoll = IIHoII

(13.23)

(t m ° /2
II

fo

WI Ih_(a cos 0,w sin 0)12 dO dw)
1/2

_ (jR2 IpI2 Ii_(P) I2 dP)
1/2

= fl PI h _(P) IIL2(R2)
a

< 111P I i_(P)II + IIg_II = IIA1/2 fil + IIgIl
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Similarly,

(13.24) IA1/2 f1l + III , k = 1,2

Finally, the conservation of energy theorem implies that

E(u,G,t)1/2 = E(u,G,O)1/2

(13.25)

= (IIA1/2 fI12 + IgII2)1/2 < JIA1/2

fli + 11911 ,

k = 0,1,2 .

It follows from (13.23), (13.24) and (13.25) that (13.20) can be extended

to all f e D(A1/2) and g E L2(G) by a well-known density argument (see,

e.g., [30, Proof of Theorem 2.6]).

Theorem 13.3 permits the extension to grating domains of the results

on asymptotic energy distributions in exterior domains given in [3]. The

principal results are formulated below. The proofs are identical to those

of [30] and are therefore omitted.

Corollary 13.4 (Scattering into Cones). Let

(13.26) r = {X = (r cos 8,r sin 0) : r > 0 and 0 E ro}

where F0 is a Lebesgue-measurable subset of [0,ir], and let Xo E R2. Then

under the hypotheses of Theorem 13.3 the limit

(13.27) E (u,G n (r + X0)) = lim E(u,G n (r + X0),t)
t-.- o

exists and

(13.28) E(u,G n (r + X0)) III f_(P) + i j_(p)12 dP

Corollary 13.5 (Transiency of Energy in Slabs). Let

(13.29) E = {X : d1 < X Xo < d2}

where d1 and d2 (> d1) are constants and X0 E R2 is a unit vector. Then

under the hypotheses of Theorem 13.3 one has
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(13.30) lim E(u,G n E,t) = 0
t-rfoo

Note that Corollary 13.5 implies the transiency of the energy in

bounded sets since every bounded set K C R2 is contained in a slab (13.29).

§14. Construction and Structure of the S-Matrix

The scattering operator associated with the pair A, AD is the linear

operator S : L2(R2) -> L2(Ro) defined by

(14.1) S = W+ W* .

The corresponding operator in L2(R2) defined by

(14.2)

is the Heisenberg operator, or S-matrix, for the pair A, AD. From the

representation W+ _ (D
o

0 of Theorem 12.1 one has

(14.3)

The unitarity of W+ and (Do imply that S and S are unitary operators in

L2(Ro). The purpose of this section is to calculate S. Specifically, it

will be shown how S can be constructed from the scattering coefficients

(c±(p,q)} of the R-B waves l1+(x,y,p,q) and the relationships among these

coefficients imposed by the unitarity of S will be determined. The role

of the S-matrix in the scattering of transient fields by gratings will be

developed in §15.

If h E L2(G) then (14.3) implies that the functions h+ = cp+ h and

h = h satisfy

(14.4) h_ = S h+ .

Thus S may be calculated by calculating the relationship between h- and h+.

This will be done by usipg the incoming and outgoing R-B wave representa-

tions of
e-itA12

h to calculate in two different ways the

asymptotic wave function in L2(G) associated with say

(14.5) v'(t,X) = r-1/2 H(r-t,6) .
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The function H E L2(R x [0,1r]) is uniquely determined by the condition

(14.6) lira Mv(t,.) - v,(t.')IIL2(C)
= 0

t->' F

see [30, Theorem 2.5]. The equality of the representations of H obtained

from the incoming and outgoing representations of v(t,') provides the

required relationship between h_ and h+.

First Calculation of H. Theorem 12.1 implies that

(14.7) lim va(t,')IIL2(G)
= 0t4+-

1/2

where e
itAo

hsc is the wave function in L2(R2) of Theorem 13.1.

Proceeding as in the proof of Corollary 13.2 one shows that (14.5), (14.6)

hold with

(14.8) H(T,0) = (211 2
Jo

eiTw
h_ (w cos 0,w sin 0)(-iw)1/2 dw

The convergence vo(t,') - 0 in L2(R2) was proved in [30, Theorem

2.6].

A Classification of the R-B Waves. The second calculation of H will

be based on the outgoing representation

(14.9) v(t,X) = i.i.m. J R2 l+(X,P) e
itw(P)

h+(P) dP
p

The R-B wave + has the expansion for y > h, (2.26)

1 i(px-qy) 1 + i(px+giy)
+(x.Y,P.q) = (27r) e + (21r)

(P+i)2<p2+q2
c1(P,q) e

(14.10)

where

+ (21r)-1 Y c+(P.q) elpix e-{(P+i)2-P2-q2}1/2 y

(p+i)2>p2+g2

(Pi.gi) _ (p + i,{p2 + q2 - (p + i)2}1/2) .

The first sum in (14.10) is a superposition of a finite number of outgoing

plane waves, while the second sum is an exponentially decreasing function

of y for (x,y) E Ro - E (Lemma 7.3). In the calculation of the asymptotic

wave function (14.5) from (14.9) and (14.10) a difficulty arises because
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the number of terms in the first sum varies with (p,q) E R2. This number

changes at the points (p,q) E E and is constant on the components of the

set R2 - E. It will therefore be convenient to classify the R-B waves by

means of these components. Note that (p,q) E E if and only if q > 0 and

(14.12) qR=P2+q2 - (p+i)2 = 0 , kE Z- {0}

The set 7T R so defined is the portion lying in R0 of the parabola with focus

at (0,0) and vertex at (-i/2,0). The curves Tr91 and 7fln are disjoint if

A,m > 0 and intersect orthogonally if in < 0. Thus if

Om = R2 n {(p,q) : lp + MI < p2 + q2 < lp + m + iI }0

(14.13)

0-n = R2 n {(p,q) : lp - nI < p2 + q2 < Ip - n - 11)

where m,n = then 0m is the domain between it and 1rm+1,
O-n is the

m

(14.14) 0
m,n

= 0
m

n O
-n

, m,n = 0,1,2,--- ,

are the components of R2 - E

(14.15) R2 - E= U
m,n

m,n=0

Note that (p,q) E Om,n if and only if the expansion (14.10) of 1+(x,y,p,q)

contains exactly m + n + 1 outgoing plane waves with the propagation

directions (pR,q,), -n < i < m. (Note 0_o # 00, 0 n 0-0 = 00, 0.)

Second Calculation of H. In calculating S it will suffice to determine

S h+ for functions h+ of a dense set in L2(R2O) because S is known to be

unitary. For this purpose it will be convenient to use functions h+ E

C0(R0 - E). For such functions, supp h+ is a compact subset of the set

(14.15). Hence, supp h+ meets only finitely many of the sets 0m n and each

component of supp h+ lies in one of these sets. Thus in calculating S h+

it will be enough to consider the case where

(14.16) supp h+ = K C Om,n , m and n fixed .

The case of a general h+ E CO(R20 - E) may then be obtained by superposition.
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With this hypothesis the wave function (14.9) becomes

(14.17) v(t,X) =
J

IP+(X,P)
e-itw(P) h+ (P) dP

K

The asymptotic wave function (14.5) for v(t,X) will be calculated from

(14.17) by substituting the expansion (14.10) and determining the behavior

for t + +- of the terms in the resulting sum. For this purpose a bound is

needed for the remainder in (14.10) that is uniform in (p,q) E K. Thus a

refinement of Lemma 7.3 is needed since the latter is valid for fixed p

only. The following generalization of Lemma 7.3 will be proved.

Lemma 14.1. Define the remainder Q+(X,p,q) for all X E G and (p,q)

E O by
m,n

1 i(px qy) -1 m+(X,p,q) = (27r) e + (27r) I c

(14.18)
k=-n

+ 6+(X,p,q)

p,q) e

i(pkx±qky)

Then for each compact set K C 0 and each r' > r > h there exist constants
m,n

u = u(K) > 0 and C = C(K,r',r) such that

(14.19) IQ+(X,p,q)I < C e-u}' for all X E R2, and (p,q) E K

Proof. Only the case of Q+ will be discussed since the other case

then follows from the relation (2.25). The proof will parallel that of

Lemma 7.3. Note that (8.5) implies that

(14.20) Q+(x,y,p,q) =
e27rikp p+(x

- 27rk,y,p,q) , (x,y) E
Q(k)

where p+ is defined by (7.39) with

(14.21) L' = {kE Z : k<-n-1 or k>m+1}

for all (p,q) E 0m,n' Thus to prove (14.19) it is enough to show that

(14.22) Ip+(X,p,q)I < C e-uy for all X E 0r, and (p,q) E K

Proceeding as in the proof of Lemma 7.3, one has

(14.23) Co(27r)-1 III+('>p,q)Ill;h,r for all k E L'
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where Cu = C0(h,r). Now the right hand side of (14.23) is a continuous

function of (p,q) E R2 - E by Theorem 8.1. Then there exists a C1 = C1(K,r)

such that

(14.24) I4+Q(r,p,q)I < C1 for all (p,q) E K and i E L' .

Next, since K is a compact subset of 0m,n there exist constants u+ = u+(K)

> 0 and }1 = p _(K) > 0 such that

(p+R)2 -p2-q2>p2 for all (p,q)EKand9>m+1
(14.25)

whence

(14.26)

(p+R)2 _p2-q2 >u2 for all (p,q) E K and R<-n-1

{(p + i)2 _ p2 - q2}12 > P(K) = Min (P+(K),-_(K)) > 0

for all (p,q) E K and i E L'. It follows that for all X E S2r' and

(p,q) E K one has

IP+(X,P,q)I
RI

(14.27)

<
XL'

(r,p,q)I exp {-(y-r)((p+Q)2-p2-q2)1/2
R

}

< C1 exp {-(y-r)((P+i)2_p2-q2)1/2}
2EL'

< C1 `;
exp {-(y-r')((p+2)2-P2-q2)1/2} x

WL'

x exp {-(r'-r)((p+R)2-p2-g2)1/2}

< C1 e-(y-r')u(K) I exp {-(r'-r)((P+m)2-p2-q2)1/2}
kEL'

Now

(14.28) E(r'-r,p,q) = G exp {-(r'-r)((P+R)2_p2_g2)1/2)

2EL'



is a continuous function of (p,q) E C and hence for each compact K C 0
m,n m,n

there is a constant M(r'- r,K) such that

(14.29) E(r'-r,p,q) < M(r'-r,K) for all (p,q) E K

Combining (14.27), (14.28) and (14.29) gives (14.22) with

(14.30) C = C1(K,r) er'P(K) M(r'-r,K) .

Second Calculation of H (continued). Substitution of (14.18) into

(14.17) gives the decomposition

m
(14.31) v(t,X) = vln(t,X) + I vout(t,X) + v6(t,X) , t E R , X E G

k=-n

where

(14.32) vin(t,X) = 2
I

el(Px-qy-tw(P,q)) h+(P,q) dpdq
K

f i(p x+q4y tw(p,q))
(14.33) viut(t,X) e R (2w)-1 C (P,q) h+(p,q) dpdq , and

K

(14.34) v0(t,X) = (
e-itw(P,q) a+(X,P,q) h+(p,q) dpdq

K

Recall that by assumption h+ E C0(RO - E) satisfies (14.16) and c+(p,q)

E C(R0 - E) (see (11.23), (11.24)). Thus the integrands in the above

integrals are all continuous. The second calculation of H will now be

carried out by calculating the asymptotic wave function in L2(G) of each

term on the right hand side of (14.31).

The Partial Wave vin(t,X). The change of variables (p',q') = (p,-q)

in (14.32) gives

(14.35) vin(t X) = 2
J

ei(p'x+q'y-tw(p',q'))
h+(P',-q') dp'dq'

K,

where K' = {(p',q') : (p,q) E K) C R2 - R2. Thus vin(t,X) is a free wave

in R2 and hence has an asymptotic wave function r-1/2 Hin(r - t,0) with

waveform defined by [30, Theorem 2.6]

(14.36) Hin(T,,)
(2T)12 Jo eiTw

h+(w cos 8,-w sin 0)(-iw)1/2 dw
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In particular, Hln(r,0) = 0 for 0 < 0 < Tr because K' = supp h+(p,-q)

C R2 - Ro .

The Partial Waves vout(t,X). To interpret these terms let k E Z and

consider the mapping Xk defined by

(14.37) (pk.gk) = X9(p,q) = (p + k,{p2 + q2 - (p + k)2}1/2)

Xk is analytic on the domain

(14.38) 0(X91 ) = {(p,q) > lp + 911, q > 0}

and maps it bijectively onto the range

(14.39) R(X9) {(pk.gk) p + > Ipk - f , qk > 0}

Moreover,

(14.40)
X-1

= X_k , k E Z

and the Jacobian of Xk is

9(pk.gk) q
(14.41)

3(p,q) qk

Note that w(p,q) is invariant under Xk

(14.42) w(pk,gk) = pR + q2k = p2 + q2 = w(p,q)

It can be shown that

(14.43) Xk Om,n = Om-k,n+k for -n < k < m .

Hence the hypothesis K C U
m ,n

that
,n

(14.44) Xk K - Kk C Om-k,n+k for -n < k < m

In particular, one has

(14.45) K. n Kk = for j # k .
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On making the change of variables (p,q) - (p1,g1) = X1(p,q) in (14.33)

one finds the representation

out
i(xpl+yq tw(p1,g1))(

+ qk
vQ (t,X) _ (2T1)

J

e }cQ(p,q)h+(p.q) q } dp2 dq1

(14.46) K1

where (p,q) = X(p,,q,) in the integrand. Thus vout(t,X) is also a free

wave in R2 and has an asymptotic wave function r-1/2 Hk(r-t,0) with waveform

defined by

(14.47) HQ(T,0) _ (2Tr)1 z I
eiTw HQ(w,6) dw

and

(14.48) (-iw)1/2 9 c+(p,q) h+(p,q)
(p, q)=X-Q(wcos (),W s in 0)

A simple calculation shows that

q
(14.49) Hi LZ(Rx[O,.T])

1K
1

(P,q) h+(P,q)1z q dp dq

where qR is defined by (14.37). In particular, H1 E L2(R x [O,wr]) because

the integrand in (14.49) is continuous on K.

The Partial Wave v0(t,X). Equation (14.31) may be written

(14.50) va(t,X) = v(t,X) - viu(t,X) - L V1ut(t,X)m
Y.=-n

for all t E R and X E G. Moreover, it has been shown that

v(t,X) = r-112 H(r-t,0) + 0(1)

(14.51)

vln(t,X) = 0(l)

voout(t,X) = r 1/7 HR(r-t,0) + 0(1)

where each term 0(1) E L2(G) for all t E R and tends to zero in L2(G) when

t -+ 4. These results imply that

(14.52) v0(t,X) = r-'12 H0(r-t,0) + o(l)

where 0(1) - 0 in L2(G) when t - +o and
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m

(14.53) H0(T,6) = H(T,0) - I HQ(T,0) in L2(R x [O,7r])
Q=-n

On the other hand (15.34) and Lemma 14.1 imply that

v0(t,X)I < C0 e-uy for all t E R and X E R22,,

Ca = C
JK

Ih+(p,q)I dpdq

and u = p(K) > 0 and C = C(K,r',r) are the constants of the lemma. The

second calculation of H will now be completed by showing that (14.52) and

(14.54) imply

Theorem 14.2. H0(T,6) E 0 and hence

m
(14.56) H(T,6) _ HR(T,O) in L2(R x [O,7r])

R=-n

Proof. Let E be an arbitrary number in the interval 0 < E < 7T/2 and

consider the sector

(14.57) rE = {(x,y) = (r cos 0,r sin 0) : E < 0 < 7r

By (14.52), the local decay of asymptotic wave functions [30, p. 32] and

the triangle inequality, one has

(14.58)

JGr IvQ(t,X)I2 dX = jr IH0(r-t,0)I2 r-1 dX + 0(1)

E E

(lr-E
= Jo I E IH0(r-t,0)I2 dO dr + 0(1)

FEFt

1
IHO(T,6)I2 d6 dT + 0(1)

F E

where o(1) - 0 when t - -. Thus passage to the limit in (15.58) gives

LE

( J7T-E

(14.59) lim
J

Iv0(t,X)I2 dX = J- IHQ(T,0)I2 d6 dT
cnr E

On the other hand, writing R2a
b = {(x,y) : x C R, a < y < b}, one has
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I Iva(t,X)I2 dX = 2 Iv0(t,X)I2 dX + J RZ lva(t,X)12 dX

nrE
nrEnRo,k

rEnRk

(14.60)

< C2 e-211r sin 6
- a r nRk r dr dB + 0(1)

for every fixed k > r' > r by (14.54) and the local decay property for v

Passage to the limit t - +- in (14.60) gives by (14.59),

(14.61) I

rR-E

IH ('r,6)I de dT < C2
a-2pr sin 8

r dr d6a - a
r n

_m E
E --k

for every k > r'. Note that Ca, p and the left hand side of (14.61) are

independent of k. Now, sin 6 > sin E > 0 for E < 8 < x - 6 and hence

r e-Z}lr sin 0
r dr d0 < (

e-2pr sin E
r dr d8

(14.62)

r2nRk r2nRk

-E
< e-2pr sin C

r d6 dr
k E

_ (7r - 2E)
f

e-2pr sin E
r dr

But the last integral tends to zero when k ->°° with E fixed. Thus (14.61)

implies that Ha(T,O) - 0 in R X [6,7r-E] and (14.56) follows since

E E [0,wr/2] is arbitrary.

Corollary 14.3. For all h E L2(G) such that supp h+ C
m ,n

closure
,n

of 0 one has the two relations
m,n

(14.63) h±(p,q) = G C-(X-1(p,q)) h+(X_Q(p,q))
k=-n R

for almost every (p,q) E Ro where (p_Q,q_Q) = X_Z(p,q).

Proof. The case where supp h+ C Om,n is considered first. In this

case it will suffice to prove (14.63) for functions h E L2(G) such that

h+ E Co(Ro - E) and supp h+ = K C Om,n^since such functions are dense in

the subspace of L2(G) defined by supp h+ C Om,n' For such functions the

relation (14.56) and the Fourier representations (14.8) for H(T,O) and

(14.47), (14.48) for Hi(T,8) imply that
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m
h_(w cos 8,w sin 0) cQ(XR(w cos 0,w sin 0)) x

R=-n
(14.64)

x h+(X_R(w cos 0,w sin 0)) x

w sin 0x

w -(w cos 0-R)2}

for almost every (w,0) E Ro x [0,Tr]. Making the substitutions p = w cos 0,

q = co sin 0 in (14.64) gives (14.63) in the case supp h+ C Om,n'

The second case of (14.63)
can

be derived by calculating the asymptotic
-itA 1/2

wave functions for v(t,') = e h when t - -, using the method given

above. A simpler derivation may be based on the relations ii_(X,p,q)

(X,-p,q) and c(p,q) = c+R(-p,q) of (2.25) and (2.29). Indeed, if

supp h C 0m n and g(X) = h(X) then these relations imply that g+(p,q)

= h +(p,q) and hence relation (14.63) with the upper sign for g implies

(14.63) with the lower sign for h.

The Structure of S. It will be convenient to use the notation

(14.65) gm,n(P) = Xm,n(P) g(P)

where Xm,n is the characteristic function of the set 0m,n. Clearly, the

operator P in L2(R2) defined by
m,n

(14.66)
Pm,n g = gm n '

m,n = 0,1,2, ,

is an orthogonal projection and different operators of the family have

orthogonal ranges. Moreover, the relation (14.15) implies that the family

is complete because E is a null set; i.e.,

(14.67)
Pm,n = 1

m,n-0

It follows that for all g E L2(R2) one has

(14.68) g = 7 S(gm,n)
m,n=O

Thus S is completely determined by
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Theorem 14.4. For all g E LZ(R2) one has

m
(14.69) (gm,n) (S gm,n)m-k,n+k . and

9.=-n

Similarly, one has

m
(14.71) S*(gm,n)

R=C-

G (S* gm,n)m-k,n+k ,
and

n

(14.72) (S* gm,n)m-k,n+k(p.q) = 4 ck(X-k(p,q)) gm,n(X_k(p,q))

In particular, if supp g C 0
m

then
,n

m
(14.73) supp S g U supp S* C U Om-k,n+k

P,=-n

Proof. Equations (14.69), (14.70), (14.71) and (14.72) follow imme-

diately from Corollary 14.3, the relations h- = S h+, h+ = S* h_ and the

observation that when supp h+ C Om,n then the kth term in the sum in

(14.63) has its support in Om-k,n+k' (14.73) follows from (14.69) and

(14.71).

The unitarity of S and (14.70), (14.72) impose restrictions on the

scattering coefficients c2. To calculate them it will be convenient to

calculate S* and S directly from (14.70) and (14.72), respectively. This

gives the following alternative representations of S* and S.

Theorem 14.5. For all g E L2(Ro) one has

(14.74) (S* gm,n)m-k,n+k(p,q) = c q) gm n(X-k(p,q))

and similarly

(14.75) (S gm,n)m-k,n+k(p,q) = c-k(p,q) gm,n(X-k(p,q))

Proof. For all f,g E L2(Ro) one has

m
(f,(S* g)m,n) = (fm,n.S* g) _ (S(fm"), g) = (S(fm,n),gm-R,n+k)

(14.76)
Zin
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m
(14.76 cont.) _ I J c+(X-R) fm,n(X-R) gm-R,n+R

dpdq
_ q_R -n

Um-R,n+R
R

by (14.70). On making the change of variables (p',q') (P_R'q-R)

= X_R(p,q) in the last integral and noting that q/q_R = a(p',q')/a(p,q),

one has

(f.(S*g)mn) = L J0 gm-R,n+R(XR(P'q')) dp'dq'
R=-n

(14.77)
m,n

JRo f(P.q) IRG
n

cR(p,q) gm-R,n+R(XR(P.q)) dpdq

because supp gm-R,n+R(XR) C Qm,n. Since f E L2(Ro) is arbitrary, (14.77)

implies that

CmC

(14.78) (S* g)m n(P.q) = cR(p,q)
gm-R,n+R(XR(p,q))R=-n

To derive (14.74) note that for all R, in, n, m, n > 0

(14.79)
( m,n)m-i,n+R - ',Y -m 6n+Y -n %-,-H

where 6jk is the Kronecker symbol. Noting that 6m-R,m n+R,n

= 6R,m-m 6R,n-n = 6m-m,n-n 6R,m-m' (14.78)
and (14.79) imply

mC
C

(S* m'n)m,n(P.q) = 6m-:E,n-n
R= n c

p.q) 6R,m-m m,n(XR(P.q))
-

(14.80)

6 - - Pc 4) g--,(X (p,q))m-m,n-n m-m ,m-m

This clearly is zero unlessm - m = n - n = R where -n < R < in, which

implies (14.71). Moreover, setting (m,n) _ (m - R,n + R) in (14.80) gives

(14.74). The proof of (14.75) is obtained by the same method, beginning

with (14.72).

The two representations of S and S* of Theorems 14.4 and 14.5 hold for

arbitrary g E L2(R2). It follows that the scattering coefficients must

satisfy the relations

(14.81) q cZ(X_R(P.q)) = q-R c Q(p,q)

for all (p,q) E Om-R,n+R' Moreover, the unitarity of S and Theorems 14.4

and 14.5 imply
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Theorem 14.6. The scattering coefficients c- of the R-B waves

+(X,p,q) satisfy the identities

(14.82)
m

cR (p,q) cQ-k (Xk(P,q))g1 = q 5k o , and
R=-n

(14.83) c-R(X ck-R(X91 (P,q))gQ1 = q-1 6k,o
1=-n

for all (p,q) E Om n and all k such that -n < k < m.

These properties may be verified by simple calculations using the

relations

(14.84) (S(fm,n)'S(gm-k,n+k))
dk,o(fm,n'gm,n)

and

(14.85) (S*(fm,n).S*(gm-k,n+k)) = 6k o(fm,n'gm,n)

and the constructions of S and S* described in Theorems 14.4 and 14.5.

Relation (14.83) also follows from relations (14.81) and (14.82).

It is well known in the theories of scattering by potentials and by

bounded obstacles that the S-matrix S is a direct integral of a family of

unitary operators S(w) that act on the "energy shell" p2 + q2 = a2. The

analogous property of the S-matrices for diffraction gratings is evident

from Theorem 14.4 and the properties of the mappings X1. The operator S(w)

in this case is given by (cf. (14.75))

n
(14.86) S(w) g(wcos 0,wsin 8) _ cg,(wcos 8,w sin 0) g(X1(wcos 8,w sin 0))

Q=-m

when supp g C Om,n. If s(8) = g(w cos 0,w sin 0) is an arbitrary function

with supp s C {0 : (w cos 0,w sin 0) E Om } then (14.86) can be written
n

n
(14.87) (S(w)s)(8) _ 1 c- (w cos 0,w sin 0) s(01)

Q=-m

where 01 = 01(w,0) is defined as the unique angle such that 0 < 01 < 1r and

(14.88) X1(w cos 8,w sin 8) = (w cos 81,w sin 0Q) .

For general s E L2(0,10, S(w)s is obtained from (14.87), (14.88) by super-

position. The unitarity of S(w) in L2(0,71) can be verified by direct

calculation using (14.87), the analogue for S*(w) and Theorem 14.6.
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§15. The Scattering of Signals by Diffraction Gratings

The results of §13 and §14 are applicable to the echoes that are

produced when signals generated by localized sources are scattered by a

diffraction grating. The structure of such echoes is analyzed in this

section. Most of the section deals with the case, often realized in appli-

cations, of sources that are far from the grating. In particular, it is

shown that is this case the influence of the grating on the echoes is

completely described by the S-matrix.

It will be assumed that the sources of the signals are localized near

a point (O,yo) E G and act during a time interval T < t < 0. The resulting

wave field u(t,X) is then characterized by its initial values u(0,X),

Dtu(0,X) in G. To make explicit their dependence on yo the initial values

will be assumed to have the form

u(0,X) = f(X,yo) = fo(x,Y-yo)

(15.1)

Dtu(O,X) = g(X,Yo) = go(x,Y-Yo)

for all X = (x,y) E G where yo > 0,

(15.2) fo E
LZ,com(G)

, go E
L2om(G)

and f(X,yo) = g(X,yo) - 0 for (x,y-yo) I G. Note that for yo > 0 one has

E D(A1'2) , E L2(G) and hence u(t,X) is a solution wFE in G.

The functions will also be used as initial values for free

waves in R2 and for wave fields in the degenerate grating domain R2. In

each case the domain under consideration will be clear from the context or

will be stated explicitly. For brevity, the coordinate yo will be sup-

pressed except in places where the yo-dependence is under discussion.

The Signal Wave Field. In the absence of a diffraction grating the

initial state f, g will generate a signal wave field us(t,X) in R2. The

first derivatives of ua(t,X) have asymptotic wave functions [30, Theorem

2.10]

(15.3) Dk us(t,X) = r-1/2 sk(r-t,0) + 0(1) , k = 0,1,2 ,

where the waveforms sk(T,6) E L2(R X [-7r,Tr]) are given by
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(15.4) so (T,B) = Re {(2r)1/2 J o e1Tw h(w cos O ,w sin 0) (-iw) 1/2 dw } ,

s1(T,8) = -so(T,8) cos 8, s2(T,8) = -so(T,8) sin e and the terms 0(1) -> 0
in L2(R2) when t -+ -. The function

(15.5) h(P) = g(P) - iw(P) 4, f(P)

where (P denotes the Fourier transform in L2(R2). In particular, the Fourier

transform in L2(R x [-1r,1rJ) of the signal waveform so(T,B) is

(15.6) so (w,0) = 2 (-iw) 112 h(w cos 0,w sin 8)

It can be verified that if f and g are real-valued then so(-w,8) = so(w,8j

and hence (15.6) generates a real-valued signal.

When yo is large the signal arriving at the grating surface is

described by the signal waveform so(T,8) through (15.3). The problem of

signal design is to construct a source or "transmitter" whose waveform

so(T,8) approximates a prescribed function. The solution of this problem

is the task of the transmitter design engineer.

The Echo Wave Fields. In the presence of a diffraction grating with

domain G the initial state f,g will generate a total wave field u(t,X)

whose asymptotic behavior for t -'- + is described by Theorem 13.3. In

particular,

(15.7) Dou(t,X) = r-1I2 Fo(r-t,0) + 0(1) in L2(G) , t

where F0(T,B) E L2(R x [0,Tr]) is defined by

(15.8) Fo(T,8) = Re {(2012 JO e1TW h_(w cos B,w sin 8)(-iw)1/2 dwllY

and `

(15.9) h_(p) = g_(P) - iw(P) f_(P)

The echo wave field ue(t,X) is defined by

(15.10) ue(t,x) = u(t,x) - us(t,X) , t > 0 , X E G .
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Thus the echo is described for large t by

(15.11) Doue(t,X) = r-1/2 eo (r-t,O) + 0(1) in L2(G) , t -> +-

where eo = Fo - so E L2(R x [O,Tr]) is given by

(15.12) e,(T,B) = Re {(2Tr)1 2 foeiTw hsc(a cos B,w sin 0)(-is)112 dW

with

(15.13) Ssc(P) = h_(P) - h(P) = gsc(P) - iw(P)
PC(P)

.

The last functions can be written in terms of the R-B diffracted plane

waves (see (2.24))

(15.14) _(X,P) = IP
inc(X,P,-q)

+ sc(X,P)

as

(15.15) VC(P)
= '(XP) P) g(X) dX

JG
-

with the analogous representation for fsc

The Echoes of Signals from Remote Sources. Equations (15.12)-(15.15)

provide a construction of the echo due to an arbitrary distribution of

sources. The principal goal of this section is to determine how this con-

struction may be simplified when the sources are far from the grating; i.e.,

yo -> -. To this end recall the decomposition of Lemma 14.1. Substituting

equation (14.18) in (15.15) gives

CmC

_

(15.16) gsc(P,q) = G cz(p,q) g(p1,-q1) + Pm,n(Pq) , (p,q) E Om,n
k=-n

where g = (D g is the Fourier transform in L2(R2) and

(15.17) p(p,q) = p(p,q;g) = J 0_(X,P,q) g(X) dX , (p,q) E R2 - E
G

Note that if the unitary operator R : L2(R2) -} L2(R2) is defined by

(15.18) R f(x,y) = f(x,-y)
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then

(15.19) (,D R f) (p,q) _ (R ?)(p,q) = f(p,-q)

Hence (15.16) implies that for all (p,q) E 0
m

one has
,n

m
g c(P) = I

c_k(P)

(R g)(Pk) + Pm"(P)
k=-n

(15.20)

nnC

L .-Z(P) (R g)m+kn_k(X_k(p)) + pm,n(P)
k=-m

nnC

(9 (R
g)m+k,n-k)m,n(P) + pm,n(P)k=-m

= (S R g)m,n(P) + Pm,n(P)

by Theorems 14.4 and 14.5. Proceeding in the same way with w(P) fsc(P) and

recalling that w(P) = w(Pi) one finds

(15.21) hsc(P) _ (S R h) (P) + P(P;h) , P E Ro - E

where

(15.22) p(P;h) = p(P;g) - iw(P) p(P;f)

The estimate (14.19) of Lemma 14.1 clearly implies that

when yo uniformly for P in any compact subset of Ra - E. This result

is not strong enough to yield a corresponding estimate of the echo waveform

e0(T,0) defined by (15.12) and it is natural to conjecture that

P(-;h(-,yo)) - 0 in L2(Ro) when y0 Unfortunately, if one assumes only

that A(G) admits no surface waves then this property does not not follow

from the results obtained above because no information was obtained con-

cerning the behavior of V_(X,P) for P near the exceptional set E. However,

in those cases where the analytic continuation of the resolvent of AP has

no singularities on Q(Ap) (i.e., EP n a(Ap) _ 0 for every p E (-1/2,1/2])

the limiting absorption theorem, Corollary 4.17, is valid on all of o(Ap)

(see Theorem 4.15) and Theorem 8.1 can be improved to state that

exists and P ; l,kocE LZ (A,G) is continuous for all P E R. This

improvement of Theorem 8.1 implies
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that

Theorem 15.1. Let A(G) have no surface waves and, in addition, assume

(15.23) Ep n a(Ap) = 0 for all p E (-1/2,1/2] .

Then for every go E L2(G) one has

(15.24) gsc(',Y0) = S R 8(',yo) + 0(1) in L2(Ro) , yo -* w

Similarly, for all fo E LZ(G) one has

(15.25) w(') fsc(',Yo) = S R ?(-,yo) + 0(1) in L2(RO) , yo -

The proof of Theorem 15.1 will be based on the following extension of

Lemma 14.1.

Lemma 15.2. Under the hypotheses of Theorem 15.1, for every compact

set K C Ro and every r' > r > h there is a constant C = C(K,r,r') such that

(15.26) la+(X,P)I < C for all X E R2, and P E K- r

Proof of Lemma 15.2. It clearly suffices to prove the lemma for the

case K =-U

m
n

. On examining the proof of Lemma 14.1 one finds that the

continuity of P for all P E Ro implies that (14.24) holds for

K = Omen. Moreover, (14.25) holds for all P E Om n with u+ = p- = 0. Thus

(15.26) follows from (14.27) with }i(K) = 0.

Proof of Theorem 15.1. Note first that if the translation operator

Tv0 : L2(G) -> L2(G) is defined for each yo > 0 by Tyogo = then

(15.24) is equivalent to the statement that

(15.27) s-lim (0- - 0 - S R (D)Ty = 0
Y0-

a

Moreover, the family of operators in (15.27) is uniformly bounded for all

yo > 0. Hence by a familiar density argument (cf. [30, proof of Theorem

2.6]) it will suffice to establish (15.24) for all go in a dense subset of

L2(G). The set o(C) will be chosen for this purpose. Thus the proof will

be completed by showing that if go C C,(G) and

gsc(P,yo) - S R g(.,yo)(P) =
J

1 a_(X,P) g(X,y0)dX , P E R0

(15.28)
G
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then

(15.29) lira
J

2IP(P,g(',Yo))I2 dP = 0

Yo-'0O Ro

To prove (15.29) it will be convenient to decompose Ra as the disjoint union

(15.30) R2 = D(y) U (D'(y) n E U (D'(y) - E

where

D(y) = R2 n {P : IpI ? y}
(15.31)

D'(Y) = Rp n {p : IPI < y} , and

E6 = Ro n {P : dist (P,E) < 61

With this notation the integral in (15.29) can be written

(15.32) ( dP = I1(Y,Yo) + I2(y,6,Yo) + I3(Y,6,Yo)

where

(15.33) 11(Y,Yo) = I

D(Y)
dP ,

(15.34) f2(Y,6,yo) = J IP(P,g(.,Yo))I2 dP , and

D' (y)fE6

(15.35) I3(Y,6.Yo) = J IP(P,g(.,Yo))I2 dP .

D'(Y)-E6

To estimate I1(y,yo) note that (14.18) implies that (A + IPI2) a_(X,P) = 0

for all X E G, P E Ro. Thus integrating by parts in (15.28) gives

-IPI-2 f
G

g(X,Y0) dX

(15.36) G

_
-IPI-2

J
a_(X,P) 4g(X,Yo) dX

G

= -IPI-2 5 R(Ag(',Yo))^(p)}

_
-IPI-2

{(Ag(,Yo))(P)- (Ag(,Yo))"(P)- SR(Ag(,Yo))^(P)}
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On squaring (15.36), integrating over D(y) and using the inequality

Ill + Z2 + z3I2 < 4((Izi 2 + Iz2I2 + IZ3I2) one finds

11(Y,Yo) < J

D(Y)

IPI-4

I(Ag)^ - (Og)^ - S R(Ag)^I2 dP

(15.37)

< Its R(L\g( ,y0))112)

< 121 4 jAg(-,Y0)I12 = 121-4 11AgoII 2,I2(G)

for all yo > 0. In particular, I1(y,yo) is small for large y, uniformly in

Yo > 0.
Now consider I2(Y,6,yo). Lemma 15.2 and equation (15.28) imply that

for all P E D'(y) one has

IP(P,g(-,Yo)I < C(D'(y),r,r') 1 jg0(x,y-yo)I dxdy
G

(15.38)

= C1(Y,r,r') J Ig0(X)I dX = C2(g0,y,r,r') .

G

Combining this and (15.34) gives

(15.39) Iz(Y,6,Yo) < CZ(go,Y,r,r') ID'(Y) n E6I ,

for all y0 > 0, where IMI denotes the Lebesgue measure of a set M C R2.

Finally, note that Lemma 14.1 implies that 0 when y0

uniformly for P E D'(y) - Ed, when y > 0 and d > 0 are fixed. Thus

(15.40) lim 13(Y,d,yo) = 0 , Y and 6 fixed
yo_,°°

To complete the proof of (15.29) let c > 0 be given and use (15.37) to

choose a y = Yo = y0(c,g0) > 0 such that I1(y,y0) < c/3. Next use (15.39)

with y = Yo(e,g0) fixed to choose d = 60 = d0(c,go) > 0 so small that

I2(y0,d0,y0) < e/3. Both of these estimates hold uniformly for all y0 > 0.

Finally, choose Y0 = Y0(t,g0) so large that I3(y0,60,y0) < c/3 for all

yo > Yo. This is possible by (15.40). With these choices (15.32) implies

that

(15.41)
fR2

dP < c for all y0 > Y0(c,go)
R0 -
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which proves (15.29) and therefore (15.24). Finally, to prove (15.25) one

notes that if E Lz(G) then w(P) f_(P,yo) E L2(Ro) and the preceding

argument can be applied to this function. This completes the proof of

Theorem 15.1.

An Estimate of the Echo Waveform. Under the hypotheses of Theorem 15.1

one has the estimate

hsc(',Y,) = gsc(',yo) - f_ (',Yo)

(15.42)

= S R g(',y0) - S R ?(-,yo) + 0(1)

= S R 0(1)

where 0(1) ; 0 in L2(Ro) when yo Moreover, the mapping hsc E L2(R2)

eo E L2(R x [0,7r]) defined by (15.12) is bounded with bound 1 [30, (2.84)].

It follows that

eo(T,0)=Re J eiTW(3Rh)(wcos 0,w sin0,yo)(-iw)l12 dw} + 0(1)
(15.43)

l J1

where 0(1) i 0 in L2(R x [O,Tr]) when yo Now

h(p,q,yo) = g(p,q,yo) - iw(p,q) f(p,q,yo)

(15.44)

and hence by (15.6)

(15.45)

eigyo[go(p,q) - iw(p,q) fo(p,q)]

eigyo ho(p,q)

(_iw)112 R tl(wcos O,wsin 0,yo) = (_i.W)112 h(wcos 6,-w sin e,yo)

= e-iwyo sin 0 (-iw)1/2 ho (w cos 0,-w sin 0)

= 2 e-iwyo sin 0 so(w>-e)

Combining (15.43) and (15.45) gives
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r(2 1/2 r-
iTW -iwyo sin 8(15.46) eo (T,8) = Re j JAI J o e e s(m) so (m,-0)dw} + 0(1)

Thus under the hypotheses of Theorem 15.1 the echo waveform is determined

by the signal waveform, the S-matrix for the grating and the range param-

eter yo, with an error that tends to zero in energy when yo -' m.

Pulsed BeamPulsed Beam Signals. For many applications it is desirable to have a

transmitter whose waveform so(T,6) is sharply limited in both direction and

frequency. The relation (15.6) shows that this could be achieved by

choosing fo and go such that supp ho = RK where K C 0mn and m and n are

suitably chosen. Of course, this condition cannot be satisfied with sources

that are confined to a compact set, since if supp ho is compact then ho(P)

is analytic. However, it may be possible to choose fo and go such that

ho(p,q) = a(p,q) + b(p,q)

supp a=RKC ROm,n'

(15.49) o(w,6) = Z (-iw)1/2 a(w cos 0,w sin 0)

defines the desired waveform so and

(15.50) IIbIIL2(R2) ` e .

If this transmitter design problem has been solved then the corresponding

echoes will satisfy

(15.51) eo(T,6) = ep(T,0) + 01 + 02

where

(15.52) eo(T,0) = Re (I2-2I112 r eiTw e-iwyosinB S(w) sp(w,-8)dw}
1111 II F. 11

while

(15.53) II0 1MIL2(Rx[0,7F]) < e for all yo > 0 , and



159

(15.54) urn II021IL2(RX[O,Tr]) = 0 .yo
Angular Dispersion of Echoes from Gratings. The notation

(15.55) rQ = {P = (w cos 8,w sin 8) : w > 0 and a. < 8 < SR}

will be used to denote the smallest sector such that KR = XQ(K) C rQ,

-n < i < m. The hypothesis K = K0 C Om n implies that the sectors rY are

disjoint and

(15.56)
m
U F C R2

Q=-n

Moreover, (15.48), (15.49) and (15.52) and Theorem 14.4 imply that one has

m

(15.57) supp r-1/z e
a
(r-t,8) C rR

2=-n

for all t > 0. Thus, apart from the error terms in (15.51), the echo wave-

form is concentrated in the sectors rR. Note that in the case of a

degenerate grating with Neumann (resp., Dirichlet) boundary condition one

has S = 1 (resp., S = -1) and hence r-112 eo(r-t,8) = ±r-112
sa(r-t,e)

has

support in r0. This is a well-known property of the specular reflection of

a beam by a plane. In the case of a non-degenerate grating, where S # ±1,

one has only (15.57) and secondary reflected beams will appear in the

sectors rR, i # 0. Their waveforms can be calculated explicitly using

(15.52) and (14.87). They are distortions of the signal waveform s0(T,8)

whose forms are determined by the scattering coefficients c(w cos 8,w sin 8).

This phenomenon of the angular dispersion of pulsed beams by diffraction

gratings is the counterpart for transient wavefields of the phenomenon of

the diffraction of monochromatic beams into the higher order grating

directions.
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