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Preface

The scattering of acoustic and electromagnetic waves by periodic sur-
faces plays a role in many areas of applied physics and engineering. Opti-
cal diffraction gratings date from the nineteenth century and are still
widely used by spectroscopists. More recently, diffraction gratings have
been used as coupling devices for optical waveguides. Trains of surface
waves on the oceans are natural diffraction gratings which influence the
scattering of electromagnetic waves and underwater sound. Similarly, the
surface of a crystal acts as a diffraction grating for the scattering of
atomic beams. This list of natural and artificial diffraction gratings
could easily be extended.

The purpose of this monograph is to develop from first principles a
theory of the scattering of acoustic and electromagnetic waves by periodic
surfaces. In physical terms, the scattering of both time~harmonic and
transient fields is analyzed. The corresponding mathematical model leads
to the study of boundary value problems for the Helmholtz and d'Alembert
wave equations in plane domains bounded by periodic curves. In the formal-
ism adopted here these problems are intimately related to the spectral
analysis of the Laplace operator, acting in a Hilbert space of functions
defined in the domain adjacent to the grating.

The intended audience for this monograph includes both those applied
physicists and engineers who are concerned with diffraction gratings and
those mathematicians who are interested in spectral analysis and scattering
theory for partial differential operators. An attempt to address simultan-
eously two such disparate groups must raise the question: is there a common
domain of discourse? The honest answer to this question is no! Current
mathematical literature on spectral analysis and scattering theory is based
squarely on functional analysis, particularly the theory of linear trans-

formations in Hilbert spaces. This theory has been readily accessible ever



since the publication of M. H. Stone's AMS Colloquium volume in 1932.
Nevertheless, the theory has not become a part of the curricula of applied
physics and engineering and it is seldom seen in applied science literature
on wave propagation and scattering. Instead, that literature is character-
ized by, on the one hand, the use of heuristic non-rigorous arguments and,
on the other, by formal manipulations that typically involve divergent
series and integrals, generalized functions of unspecified types and the
like.

The differences in style and method outlined above pose a dilemma. Can
an exposition of our subject be written that is accessible and useful to
both applied scientists and mathematicians? An attempt is made to do this
below by dividing the work into two parts. Part 1, called Physical Theory,
presents the basic physical concepts and results, formulated in the simplest
and most concise form consistent with their nature. Moreover, Part 1 can be
interpreted in two different ways. First, it can be interpreted in the
heuristic way favored by applied physicists and engineers. When read in
this way it presents a complete statement of the physical content of the
theory. Second, for readers conversant with Hilbert space theory Part 1
can be interpreted as a concise statement of the principal concepts and
results of a rigorous mathematical theory.

When read in the second way Part 1 serves as an introduction to and
overview of the complete theory which is presented in Part 2, Mathematical
Theory. This part develops the relevant concepts and results from func-
tional analysis and the theory of partial differential equations and applies
them to give complete proofs of the results formulated in Part 1. At the
same time many secondary concepts and results are formulated and proved that

lead to a deeper understanding of the nature and limitations of the theory.
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Introduction

The first theoretical studies of scattering by diffraction gratings
are due to Lord Rayleigh. His "Theory of Sound" Volume 2, 2nd Edition,
published in 1896 [18]*, contains an analysis of the scattering of a mono-
chromatic plane wave normally incident on a grating with a sinusoidal pro-
file. In a subsequent paper [19] he extended the analysis to oblique
incidence. Rayleigh assumed in his work that in the half-space above the
grating the reflected wave is a superposition of the specularly reflected
plane wave, a finite number of secondary plane waves propagating in the
directions of the higher order grating spectra of optics, and an infinite
sequence of evanescent waves whose amplitudes decrease exponentially with
distance from the grating. The validity of Rayleigh's assumption for gen-
eral grating profiles was realized in the early 1930's [10], following
Bloch's work [4] on the analogous problem of de Broglie waves in crystals.
Waves of this type will be called Rayleigh-Bloch waves (R~-B waves for
brevity) in this work.

The goal of Rayleigh's work and the literature based on it was to
calculate the relative amplitudes and phases of the diffracted plane wave
components of the R-B waves. Several methods for doing this have been
developed. L. A. Weinstein [27] and J. A. DeSanto [5,6] gave exact solu-
tions to the problem of the scattering of monochromatic plane waves by a
comb grating; i.e., an array of periodically spaced infinitesimally thin
parallel plates of finite depth mounted perpendicularly on a plane. For
gratings with sinusoidal profiles, infinite systems of linear equations for
the complex reflection coefficients were given by J. L. Uretsky [26] and
J. A. DeSanto [7]. More recently, DeSanto [8] has extended his results to

essentially arbitrary profiles. Finally, an excellent review up to 1980 of

*Numbers in square brackets denote references from the list at the end of
the monograph.



both theoretical and numerical methods for determining the reflection coef-

ficients is contained in the book Electromagnetic Theory of Gratings, edited

by R. Petit [17].
The literature on diffraction gratings and their applications is very
large. References to work done before 1967 may be found in the monograph

by Stroke in the Handbuch der Physik [25]. A survey of the literature up

to 1980 is contained in [17].

The works referenced above provide a satisfactory understanding of the
scattering of the steady beams used in classical spectroscopy. However,
modern applications of gratings in such areas as optical waveguides and
underwater sound require an understanding of how transient electromagnetic
and acoustic fields, such as pulsed laser beams and sonar signals, are
scattered by diffraction gratings. The existing grating theories are inade-
quate for the analysis of these problems.

The purpose of this monograph is to develop a theory of the scattering
of transient electromagnetic and acoustic fields by diffraction gratings.
The theory is based on an eigenfunction expansion for gratings in which the
eigenfunctions are R-B waves. The analysis parallels the author's work on
the scattering of transient sound waves by bounded obstacles [30,31,33].

The eigenfunction expansions are generalizations of T. Ikebe's theory of
distorted plane wave expansions [12], first developed for quantum mechanical
potential scattering and subsequently extended to a variety of scattering
problems [2,15,21,22,23,32]. The theory is based on the study of a linear
operator A, called here the grating propagator, which is a selfadjoint real-
ization of the negative of the Laplace operator acting in the Hilbert space
of square integrable acoustic fields. A fundamental result of this analysis
is a representation of the spectral family of A by means of R-B waves. The
R~-B wave expansions follow as a corollary.

The theory of scattering by gratings developed below is restricted, for
brevity, to the case of two-dimensional wave propagation. Specifically, the
waves are assumed to be solutions of the wave equation in a two-dimensional
grating domain and to satisfy the Dirichlet or Neumann boundary condition on
the grating profile. These problems provide models for the scattering of
sound waves by acoustically soft or rigid gratings and of TE or TM electro-
magnetic waves by perfectly conducting gratings. It will be seen that the
methods employed are also applicable to the scattering of scalar waves by
three-dimensional (and n-dimensional) gratings and to systems such as
Maxwell's equations and the equations of elasticity.

Even with the restriction to the two-dimensional case, the analytical

work needed to derive and fully establish eigenfunction expansions for



diffraction gratings is necessarily intricate and lengthy. This is clear
from an examination of the simpler case of scattering by bounded obstacles
presented in the author's monograph [30}. Therefore, to make the work more
accessible to potential users, the monograph has been divided into two
parts. As explained in the Preface, Part 1 can be interpreted both as a
complete statement, without proofs, of the physical concepts and results of
the theory and also as a summary and introduction to the complete mathemat-
ical theory developed in Part 2.

A preliminary version of the R-B wave expansion theorem of this mono-
graph was announced by J. C. Guillot and the author in 1978 [34]. That work
was based on an integral equation for the R-B waves. In this monograph an
alternative method based on analytic continuation is used. A key step is
the introduction of the reduced grating propagator Ap which depends on the
wave momentum. The Hilbert space theory of such operators was initiated by
H. D. Alber [3]. Alber's powerful method of analytic continuation of the

resolvent of Ap is used in Part 2 to construct the R-B wave eigenfunctions.






Part 1
Physical Theory

This monograph develops a theory of the scattering of two-dimensional
acoustic and electromagnetic fields by diffraction gratings. This Part 1
presents the principal physical concepts and results in their simplest forms
and without proofs. Moreover, to avoid distracting technicalities the
precise conditions for the validity of the results are not always given.
Part 1 also contains no references to the literature. All of these omis-
sions are remedied in Part 2 which contains the final mathematical formula-
tion of the theory, together with complete proofs and indications of related

literature.

§1. The Physical Problems

The propagation of two-dimensional acoustic and electromagnetic fields
is studied below in unbounded planar regions whose boundaries (= the dif-
fraction gratings) lie between two parallel lines and are periodic. In each
case the medium filling the region is assumed to be homogeneous and loss-
less. 1In the acoustic case the grating is assumed to be either rigid or
acoustically soft. 1In the electromagnetic case it is assumed to be per-
fectly conducting. In both cases the sources of the field are assumed to
be localized in space and time. The principal goal of the theory is to

calculate the "final' or large-time form of the resulting transient field.

8§2. The Mathematical Formulation

Rectangular coordinates X = (x,y) € R? will be used to describe the

region adjacent to the diffraction grating. The notation
(2.1) R: ={X:y>a}

will be used. Then with a suitable choice of coordinate axes the region



€ Source Region

Incident Pulse

Figure 1. Grating with Source Region and Incident Pulse

above the grating will be characterized by a grating domain G C R? with the

properties
(2.2) RﬁCGCRﬁ,
(2.3) G + (27,0) = G

where h > 0 is a suitable constant. The choice of the constant 2y in (2.3)
is simply a convenient normalization.
The acoustic or electromagnetic field in G can be described by a real-

valued function u = u(t,X) that is a solution of the initial-boundary value

problem

(2.4) Dlu - bu =0 forall t >0 and XE€ G ,

(2.5) Dvu = 3 * Vu =0 (resp., u=0) for all t >0 and X € 3G ,
(2.6) u(0,X) = £(X) and Dtu(O,X) = g(X) for all X € G .

Here t is a time coordinate, D _ = 3/9t, D 3/9x, Dy = 3/3y, Vu= (Dxu,Dyu),
Au = D;u + D;u, 9G denotes the boundary of G and v = G(X) is a unit normal
vector to 3G at X. In the acoustic case u(t,X) is interpreted as a poten-

>
tial for an acoustic field with velocity v = -Vu and acoustic pressure



p =D.u. Then the boundary condition (2.5) corresponds to an acoustically
hard (resp., soft) boundary. Alternatively, if u satisfies the Neumann
condition Dvu = 0 on 9G then

2.7 E_=D.u, E

% v v = —Dxu, H =D,u

z t

describes a TM electromagnetic field in a domain G bounded by a perfect
electrical conductor. Similarly, if u satisfies the Dirichlet condition

u = 0 on 3G then

(2.8) H = -Dyu, H =Du, E, =Du

describes a TE electromagnetic field in the same kind of domain. The func-
tions f(X) and g(X) in (2.6) characterize the initial state of the field.
They are assumed to be given or calculated from the prescribed wave sources,

and to be localized:
(2.9) supp £ U supp g € {X : x2 + (y - y4)2 < dg}

where y, > h + §;.

D

T .
TANVANVANANVNANANVANVANNS

Figure 2. Grating Domain with Coordinate System

In both the acoustic and the electromagnetic interpretations the

integral

(2.10) E(u,K,t) = J {|Vu(e, 0 |* + |Dou(e,x)|?} ax
K



is interpreted as the wave energy in the set K at time t (dX = dxdy).
Solutions of the wave equation satisfy the energy conservation law E(u,G,t)
= E(u,G,0) under both boundary conditions (2.5). It will be assumed that

the initial state has finite energy:

(2.11) f {VE®) |2 + |g(X)|?} dX < = .
G

§3. Solution of the Initial-Boundary Value Problem

The initial-boundary value problem in its classical formulation (2.4)
-(2.6) will have a solution only if 3G and the functions f and g are suf-
ficiently smooth. However, for arbitrary domains G the problem is known to
have a unique solution with finite energy whenever the initial state f,g
has this property. A formal construction of the solution may be based on
the linear operator A = -A, acting in the Hilbert space ¥ = L,(G). If the
domain of A is defined to be the set of u € X such that Vu € 3, Au € ¥ and
one of the boundary conditions (2.5) holds then A is a selfadjoint non-

negative operator. Moreover,
(3.1) u(t,*) = (cos t AY2) £ + (A™M2 sin £ AY?) g

is the solution with finite energy whenever the initial state has finite

energy. It will be convenient to write (3.1) as

_iealf2
(3.2) u(t,X) = Re {v(t,X)} , v(t,*) = e ¥4 g
where
(3.3) h=f+1iaV2g .

This representation is valid if f and g are real-valued and AY? f, £, g and
A2 g are in ¥. A rigorous interpretation of relations (3.1)-(3.3) can be

based on the calculus of selfadjoint operators in Hilbert spaces.

§4. The Reference Problem and Its Eigenfunctions

In the class of grating domains defined by (2.2), (2.3) there is a
special case for which the scattering problem is explicitly solvable. This
is the case of the degenerate grating G = Rg (L.=0). The problem (2.4)
-(2.6) with G = R and the Neumann boundary condition will be called the

reference problem. The corresponding reference propagator is the operator

Ay = -0 in ¥, = LZ(R§) with Neumann boundary condition. The solution of



the scattering problem for non-degenerate gratings is developed below as
a perturbation of the reference problem.

A, has a pure continuous spectrum filling the half-line X > 0. This
is easily verified by separation of variables which yields the family of
generalized eigenfunctions

-1 ipx _ 1 _i(px-qy) , 1 _i(px+qy)
(4.1) by (x,7,P,9) = e cos gy =j-e +toe

where (x,y) € Rﬁ and also (p,q) € R2. Clearly

(4.2) Ay Uy (x,5,p,9) = -A Po(x,y,p,0) = w?(p,q) Yo(x,y,p,q)
where

(4.3) w?(p,q) =p2+q* >0

and

(4.4) Dy, ¥ (x,5,050) = Dy o (x,y,p,a) = 0 on 3R .

‘The decomposition of (4.1) illustrates the physical interpretation of Yj.
If (p,q) € Rg then q > 0 and the first term represents a monochromatic plane
wave incident on the plane boundary in the direction (p,-q), while the
second\term represents the specularly reflected wave propagating in the
direction (p,q).

The functions {wo(X,P) : P = (p,q) € Rg} form a complete family of

generalized eigenfunctions for A,. This means that for every h € ¥, one has

(4.5) fi,(P) = 2.i.m. I , Vo (X,P) h(X) dX exist in ¥,
RO

and

(4.6) h(X) = 2.i.m. J , VoGP f,(P) dP in ¥, .
R

0

The %£.i.m. notation in (4.5) means that the integral converges not point-

wise but in ¥,; i.e.,

(4.7) 2im J
R2

Moo

R M M 2
ho(P) - J J Yo (X,P) h(X) dX{ dP =0 .
o '-M

Equation (4.6) has the analogous interpretation. Moreover, Parseval's

relation holds:
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(4.8) J Ih, (@) |2 dp = J [h(x)|? ax .
R§ R

In fact, if a linear operator ¢, in ¥ is defined by
(4.9) ®,h = hy

then ¢, is unitary.

The eigenfunction expansion (4.6) is useful %ecause it diagonalizes
1

Ag. In particular, the solution vgy(t,*) = e_ltAo h of the reference
problem has the expansion
(4.10) vo (t,X) = 2.i.m. J ) ¥, (X,P) oitw(P) f,(P) dp

Ro

where w(P) = |P| = /p’+q>.

§5. Rayleigh-Bloch Diffracted Plane Waves for Gratings

In analogy with the case of the degenerate grating, the generalized
eigenfunctions of the grating propagator A may be defined as the response
of the grating to a monochromatic plane wave (21T)_1 exp {i(px-qy)}. It
will be shown that there are two distinct families which will be denoted by
w+(X,P) and Y _(X,P), respectively. It will be convenient to write them as

perturbations of the eigenfunctions y (X,P) for the degenerate grating:
(5.1) U, (X,P) = Y (X,P) + y;°(X,P) , X€ G, PER: .

They are characterized by the conditions

(5.2) A P, (X,P) = -A b, (X,P) = w?(P) Y, (X,P) , XEG,
(5.3) Dv wi = 0 (resp., wt = 0) for X € 3G ,
(5.4) wiC(X,P) is outgoing and wa(X,P) is incoming for X »> « .

The last condition is based on the Fourier series representation in x of

¥5%(x,y,P) which is valid for y > h. It can be written (with P = (p,q))

i(p,xtq,y)
WP = ] Eme FF
= (P+2)2<P2+¢12
(5.5)
N éL. cz(p) elpﬁx e-y{(p+2)2—p2-q2}‘ﬂ
m
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where
(5.6) Pp=P+L,q =0 +a -+ )Y

and the summations in (5.5) are over the integers & that satisfy the indi-
cated inequalities. Note that the first sum is finite. Moreover, if

PQ = (PQ,QQ) then
(5.7) w?(Bp) = py +af = p* + ¢ = W’ (P)

which asserts that the wave frequency is preserved under scattering. It is
clear from (5.5) that the families w+ and Y_ are distinct. In fact, one

family can be obtained from the other by means of the identity
(5.8) v_(X,p,0) =¥, (X,-p,q)

(5.1) and (5.5) imply that ¢+ describes the outgoing response to the incom-
ing plane wave (2m! exp {i(px- qy)} while y_ describes the incoming
response to the outgoing plane wave (2m) ' exp {i(px+qy)}. ¥, and y_ will
be called, respectively, the outgoing and incoming Rayleigh-Bloch diffracted

plane waves for G.

§6. Rayleigh-Bloch Surface Waves for Gratings

The terms in the second sum of (5.5) may be called surface waves for
the grating since they propagate in the x~direction, parallel to the grating,
and are damped exponentially with distance y from the grating. These waves
are driven by the incident wave (2m)~' exp {i(px 3 qy)}. It can happen that

there exist certain curves

6.1) A () = w?(p,q)

and corresponding functions wj(X,p) such that

(6.2) A wj(X,p) = -A wj(X,p) = Aj(p) wj(X,p) s XEG,
(6.3) Dv wj(X,p) = 0 (resp., wj(X;p) = 0) for X € 3G ,
and wj is a pure surface wave; that is, for y > h one has N
' 4
ip,x —y{p3-A,(p)}?
(6.4) be = L epme C e P

2
p3>X, (1)

In the Dirichlet case it is known that if 3G is a single smooth curve
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y = h(x) then no such R-B surface waves exist. No general criteria are
known in the Neumann case.

' In the remainder of Part 1 it is assumed for simplicity that G admits
no R-B surface waves. The modifications needed when there are R-B surface

waves are discussed in Part 2.

§7. Rayleigh-Bloch Wave Expansions

The R-B diffracted plane wave expansions for G are exactly analogous
to that for the reference problem of §4. Thus each of the families
{w+(X,P) : PE Rﬁ} and {y_(X,P) : P € R}} is a complete family of general-

ized eigenfunctions for A. This means that for every h € ¥ = L,(G) one has
(7.1) h,(P) = %.i.m. J 7, (X,P) h(X) dX

+ ¢ 't
exists in ¥, = LZ(Rg) and

(7.2) h(X) = 2.i.m. J , b (X,P) B (P) aP
0

in ¥. Moreover, Parseval's relation holds:
(7.3) J |h,(®)]? ap = J |h(x)|? ax
2 T
R2 G

and the linear operators ®+ and ¢_ from ¥ to ¥, defined by

~

(7.4) ,h=h

+

are unitary. Finally, the representation diagonalizes A, just as in thel/2
case of the reference problem. In particular the solution v(t,*)= e_ltA h
of the scattering problem has the two expansions

-itw(P) 2

(7.5) v(t,X) = L.i.m. f , b e h,(p) ap .
Ry -

The ¢+ and Y_ expansions will be called the outgoing and incoming expansions
respectively. It will be shown that both are useful in determining the

structure of the scattered field.

§8. Wave and Scattering Operators for Gratings

The basic program of time-dependent scattering theory is to show that
each evolution v(t) = exp {-itAY2} h of a given system is asymptotically

equal, for t + =, to an evolution v,(t) = exp {—itAyz} hSC of a simpler
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"reference system." This means that

_ieAl? N
itA h-e itAg hSJ

(8.1) Lim !

o

Je =0

where J : ¥ + 3, is a suitable bounded linear operator.

In Part 2 the R-B wave expansions are used to demonstrate the behavior
(8.1) for grating domains G that admit no surface waves. The reference
domain is the degenerate grating Rg and

h(X), X € G ,
(8.2) Jh(X) =
0 ,X€ER; -G .
It is easy to see that the asymptotic state hsc’ when it exists, is uniquely
determined by (8.1). In fact, hSC is related to h by (hsc); = ﬁ_; i.e.,

®oh = & h or
sc -

*
(8.3) hg, =% &_h .

This relationship is well known in applications of scattering theory to
both quantum and classical physics.
Condition (8.1) is equivalent to the existence of the wave operator W+

where

s A l/2 _ipal/2
(8.4) W, = s-%im oITTAYT 5 mitA
- t>too
and s-%im denotes strong convergence. Moreover, (8.3) and the analogues of
(8.1), (8.3) for t » -~ imply that
*
(8.5) W, =% ¢

F

It follows from (8.5) and the results of §7 that w+ and W_ are unitary
operators from ¥ to (.
The scattering operator S of the abstract theory of scattering is

defined by
(8.6) S =W, W

The unitarity of the wave operators implies that S is a unitary operator in

ﬂb. The related operator

(8.7 S=0%_0o

often called the Heisenberg operator, or S-matrix, is also unitary in .

(8.5), (8.6) and (8.7) imply that
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(8.8) s =29} 5 ¢,
Relations (8.4)-(8.8) are standard definitions and results in the abstract
theory of scattering. An explicit construction of the S-matrix of a dif-
fraction grating, based on the R-B waves, is described next. It is applied
in 8§10 below to describe the scattering by gratings of signals from remote
sources.

The S-matrix is determined by the scattering coefficients CE(P) of the
R-B wave Y_(X,P) defined by (5.5). To describe the structure of § it will
be convenient to define the following sets in the space of the momentum

variables P = (p,q).
(8.9) T, =REN{(p,a) :a)=pP+q® - (p+ =0}

Clearly, for & # 0, Ty is the portion in R} of the parabola with focus
(0,0) and vertex (-£/2,0). Next, define

Om = domain between M and T ., m=0,1,2,°°"
(8.10) O—n = domain between T_ and T > D= 0,1,2,¢0¢
Om,n = Om N O—n’ m,n = 0,1,2,°**

Examination of the Fourier expansion (5.5) of Y, shows that P € Om n if and
- b

only if §,(X,P) contains exactly m+n+1 outgoing (for w+) or incoming (for

Y_) plane waves with the propagation vectors (pi,ql), -n < £ < m.

q
4 e

3 4 2 3 p

Figure 3. Partition of Momentum Space by the Sets Om n
s
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Next let L € Z (the integers) and consider the mappings X, of the

momentum space Rg defined by

(8.11) D(X,) = {(p,q) : /pZ+q" > lp+ 2|, q > 0}
and
(8.12) Xy (p,a) = (py,qy) = (P+2,{p*+a®- (p+ 2)2}1/2)

X, is the identity map. For % € Z - {0}, X, is analytic on its domain and
maps it bijectively onto the range

(8.13)  R(Xp) = D(X_p) = {(py,ap) : Vpj+ay > |py- 2], qp >0} .
Moreover,

(8.14) X,=X;' ,0€2.

In fact, (8.13) and (8.14) follow from the relations

(8.15) X, 0 =0

m,n m-2,n+%
which hold for all m > £ and n > -2.
An explicit construction of the S-matrix S can be based on the scat-

tering coefficients ci(p) and the mapping X,. To describe it, it is con-

venient to write

X ,(®) X 4@

o - - e e - e -
Bl o - — = — =

I'U
'

1

Figure 4. Graphical Construction of the maps X,.
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w>
1
o
+
>

(8.16)

where 1 denotes the identity operator, and to assume first that g € ¥,

satisfies
(8.17) supp g C om,n .

Then the principal result of the section is that

n
(8.18) supp T g C LJ O, 02
2=~m

and
(8.19) @)@ =G g (P , PE0 o o

This result extends by linearity to general g € ¥, because functions g with
compact supports contained in U:’n=o Om,n are dense in Hh.

It is well known in the theories of scattering by potentials and by
bounded obstacles that the S-matrix § is a direct integral of a family of
unitary operators §(w) that act on the "energy shell” p? + q? = w?. The
analogous property of the S-matrices for diffraction gratings is evident
from (8.19) and the properties of the mappings X,. Note that if
(w cos H,w sin B) € Rg then there is a unique angle 9y = el(w,e) such that

0 < 82 < 7 and
(8.20) Xg(w cos O,w sin 6) = (w cos eg,m sin 02)

With this notation the operator §(w) =1+ %(w) is given by

n
(8.21) T(w) g(wcos B,wsinB) = 2 ci(w cos 6,wsin 8) g(wcos el,w sin 92)
=-m

provided supp g C Om a The general case follows by superposition, as
s

before.

§9. Asymptotic Wave Functions for Gratings

The R-B wave expansions (7.5) give the scattered field at time t pro-
duced by prescribed sources in the presence of an arbitrary grating that
admits no surface waves. In this section it is shown that the author's
theory of asymptotic wave functions (Springer Lecture Notes in Mathematics,
V. 442, 1975) can be used to simplify the calculation when t is large. The

simple case of the reference problem is discussed first.
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A state h € ¥ may be considered as an initial state for the degenerate
grating. The corresponding wave v,(t,X) is given by (4.10) which is just

a Fourier integral. The author's theory is applied in Part 2 to show that

_ipal/2 -
(9.1)  vo(t,x) = e A hxy ZU R0 = 2 F (- £,0)
where
9.2) X = (x,y) = (r cos 6,r sin B) .

The wave profile FO(T,G) € L,(R x [0,7]) is defined by the integral

. 1 * itw A 1/2
(9.3) Fo(1,0) = 2.i.m. zaasqpr-jo e ho(wcos 0,wsin 8) (-iw) dw .

The asymptotic equality in (9.1) is meant in the sense of ¥y i.e.,
9.4) 2im ||v0(t,’) - V:(t,‘)“K =0.
trpoo 0

The structure of F, may be made clearer by introducing the function
hf € LZ(RZ) defined by

h(X) , y>0,
(9.5) he(X) =
0 ,y<o0,

and its Fourier transform

A 1 -i(pxH
(9.6) hf(p,q) = L.i.m. §E-J e 1(pxtay) hf(x,y) dxdy .

R2
It is clear from (4.1) that
9.7 ho (@) = Be(pa) + Bp(p,-a) .
Thus if a free wave profile Hf is defined by

(9.8)  H(1,0) = &.i.m. ?EE%Tﬂr J? el™ ﬁf(wcos 8,wsin 0) (-iw) ¥? dw

then (9.3), (9.7) and (9.8) give

(9.9) Fo(1,0) = Foif(r,0) + Frot(1,0)
where

P (0,0) = B(1,0) ,
(9.10)

P (r,0) = ne(1,-0) .
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It is clear from (9.1), (9.8), (9.9), (9.10) that ngr contains the contri-
bution to v? of the momentum components of h that propagate away from the
boundary without interaction while F:efl contains the contributions of
momenta that are directed toward the boundary and then reflected.

Now consider the field produced by the same initial state h as in
(9.1) in a nondegenerate grating domain G. By the results of §8,

—it:A”zh tre e—it:A%/2

(9.11) v(t,*) = e w+ h in ¥

where
(9.12) ®0W+ h =&h ="h_

It follows from (9.1), (9.3), (9.11) and (9.12) that

o 1/2 . -
(9.13) WX = e T hmy B VP60 = £ V2 F(r- t,0)

in # where the wave profile F(T,8) is given by

o N
(9.14) F(t,0) = L.i.m. ziaéﬁ7z- Jo et h_(wcos 8,wsin ) (-iw) V2 du .

Moreover, by (5.1) and (7.1)

(9.15) h_(p) = h, @) +05%@)

where

(9.16) h¢(p) = 2.1i.m. J % (x,P) h(x) dx .
G

Comparison of these results with (9.3) and (9:9) gives

dir refl

(9.17) F(T,0) = Fo  (1,0) + F,° (1,0) + F°°(1,8)

where
itw

(9.18) FS%Tﬁ)=2uLm.Tﬁ%mrJoe 75 (w cos 6,wsin 6) (-iw) ¥ dv .

The last profile obviously characterizes the deviation of the scattered

pulse for G from that for the degenerate grating.
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§10. The Scattering of Signals from Remote Sources

The calculation of the profile F°C can be simplified in the case where
the wave sources, described by the initial state h, are far from the grating.

To make this precise let
(10.1) h(x,y3y,) = hy(x,y-y0)

where h, € 3 is a fixed function. Under this hypothesis it is shown in
Part 2 that

itw 2 ~refl

(10.2) F°%(1,0) = ET)L”’" Jo e Tw) F©° 7 (w,0) dw + 0(1)

where %refl(w,e) =h (w cos 0,-w sin 0,yq) is the Fourier transform, with
respect to T, of Fre Q(T,e) and the error term ¢0(l) tends to zero in

Lo (R x [0,7]) when y, > <. Thus apart from this error the scattered wave
profile is determined by the T-matrix acting on the reflected part of the
incident wave profile.

A case of special interest arises when

(10.3) supp F2°% =k c 0

s

for some m and n. This defines an incident asymptotic wave profile Fgefg

that might be called a narrow beam. Write

(10.4) Ky = X (®) CO_ ¢ 1p

for -m < £ < n and let

(10.5) Iy = {(p,a) = (w cos 8,0 sin 8) : w >0, ap < 0 < By}
be the smallest sector such that

(10.6) K, CcTl'y , -m<&<n.

It is easy to verify that the sectors are disjoint. Moreover, (8.21) and

(10.2) imply that, apart from the error 0(l), the support of FSC(T,é) lies
in UZ=-m FR' Thus for a narrow beam satisfying (10.3) the scattered pulse
is concentrated, apart from an error 0(l), in the m+n+ 1 sectors FQ asso-

ciated with K.






Part 2
Mathematical Theory

The purpose of this Part 2 is to penetrate more deeply into the theory
described in Part 1 and to develop the results in a precise form with
complete hypotheses and full mathematical proofs. The work is based
squarely on functional analysis. The reader should have good knowledge of
the theory of unbounded selfadjoint operators in Hilbert spaces, as devel-
oped in Dunford and Schwartz [9] or any of the many other good texts. Other
prerequisites include the theory of Sobolev spaces and the L, theory of
elliptic boundary value problems, as presented in the texts of S. Agmon [1]
or Lions and Magenes [14], simple facts from the theory of Fréchet spaces
and distribution theory, and the elements of the abstract theory of Riemann
surfaces (Narasimhan [16]).

No attempt is made in Part 2 to justify explicitly all the statements
made in Part 1. It was in the spirit of Part 1 that minor, or highly
technical, hypotheses were omitted. Nevertheless, every result mentioned
in Part 1 has a more precise counterpart in Part 2. The notation of Part 2
is consistent with that of Part 1 but is frequently more elaborate.

The class of grating domains G admitted in Part 2 is very general. In
fact, for the Dirichlet boundary condition G may be an arbitrary grating
domain; i.e., an open connected subset G C R? that satisfies properties
(2.2) and (2.3) of Part 1. For the Neumann case a mild regularity condition
is imposed. In neither case need 3G be given by a function y = h(x) nor
even be a unicursal curve.

The principal technical difficulties of Part 2 occur in sections 4, 6
and 8. For this reason most of the proofs of the results of these chapters
are collected in the technical sections 5, 7 and 9 which may be omitted in

a first reading.
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§1. Grating Domains and Grating Propagators

The plane diffraction gratings that are studied in this monograph are

the boundaries of the class of planar domains G defined by the following

properties.

(1.1) G is contained in a half-plane.

(1.2) G contains a smaller half-plane.

(1.3) G is invariant under translation through a

distance a > 0.

Domains with these properties will be called grating domains. The half-
plane of (1.2) is necessarily parallel to that of (1.1) and the translation
of (1.3) is necessarily parallel to the edges of these half-planes. The
smallest a > 0 for which (1.3) holds is called the primitive grating period.
It exists for all gratings except the degenerate grating for which G is a
half-plane.

It will be convenient to introduce Cartesian coordinates
(1.4) X = (x,y) € R?

in the plane of G such that the x-axis is parallel to the edges of the half-
planes of (1.1), (1.2) and to identify G with the corresponding domain (open

connected set) G C R2. With this convention if
(1.5) Ri ={xeRr*|y>c}

then, for a suitable orientation of the coordinate axes, conditions (1.1),

(1.2) can be written

(1.6) Rﬁ CcGcC R§ for some h > 0
and the translation invariance (1.3) takes the form
(1.7) G+ (a,0) =G

where a > 0 is the primitive period of G.

The eigenfunction expansion theory for R~B waves that satisfy the
Dirichlet boundary condition is developed below for arbitrary grating
domains. For R-B waves that satisfy the Neumann boundary condition the

following additional conditions are imposed on 3G, the frontier of G.
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(1.8) G has the local compactness property, and

(1.9) there exists an x, € R such that the set
3G N {(xo,y) ] y > 0} is finite and each
(x,,y) in the set has a neighborhood in R?

in which 3G is a regular curve of class cd.

Condition (1.8) was introduced in [30] where it was denoted by G € LC. It
is a mild regularity property of 39G. A simple sufficient condition for
G € LC is the "finite tiling condition" of [30, p. 63]. Grating domains
that satisfy (1.8) and (1.9) will be said to have property S, written G € S.
The class includes all the piece-wise smooth gratings that arise in appli-
cations. Examples include the domains G = {X I y > h(x)} where h(x) is
bounded, piece-wise smooth and has period a. A special case is DeSanto's
comb grating for which

h >0 for x =0
(1.10) h(x) =

Ofor -5<x<0and 0<x<7%.

The Hilbert space theory of solutions of the wave equation in arbitrary
domains G C Rn, developed by the author in [28,30], provides the foundation
for the analysis of scattering by diffraction gratings given below. The
basic Hilbert space of the theory is the Lebesgue space L, (G) with scalar

product
(1.11) (u,v) = J u(X) v(X) dX .

G
In addition, the definition of the grating propagators makes use of the
Sobolev spaces
(1.12) L3 =L, 0 {u | 0¥'Dj?u e L,(G) for a; +a, < m} ,
where D, = 3/3x, D, = 3/3y and m is a positive integer, and the space
(1.13) L3(8,6) = L1(G) n {u | Aue L,(6)}

where A==Df + Dg is the Laplacian in R?. 1In these definitions the differ-
ential operators are to be interpreted in the distribution-theoretic sense
(cf. [28,30]).

The grating propagators for a grating domain G are selfadjoint reali-
zations in L, (G) of -A, acting on sets of functions that satisfy the Neumann

or Dirichlet boundary conditions. These operators will be denoted by AN(G)
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and AD(G), respectively. Their domains are subsets of L;(A,G) that satisfy
the boundary conditions in a form appropriate to arbitrary domains G. 1In
particular, functions u € D(AN(G)) are required to satisfy the generalized

Neumann condition
(1.14) I {(Au)v + Vu+* W} dX = 0
G

for all v € L;(G). In fact, if one defines
(1.15)  LY@,6) = 11(,6) n {u | (1.16) holds for all v e LI(®)} ,

D(AN(G)) = L?(A,G) and AN(G)u = -Au then AN(G) is a selfadjoint non-negative
operator in L,(G). This characterization was proved in [30]. It may also
be derived from T. Kato's theory of sesquilinear forms in Hilbert space
[13, Ch. 6]. It is known that if 9G is a smooth curve then D(AN(G)) C L§(G)
and Vu has a trace in L,(9G) which satisfies the Neumann boundary
condition [30].

To define the grating propagator AD(G) associated with the Dirichlet

boundary condition let

(1.16) 12(6) = closure of C;(G) in L(G)
and define

D _ D 1
(1.17) L, (8,G) = Lz(G) N L;(4,6) ,

D(AD(G)) = LE(A,G) and AD(G)u = -Au. Then Kato's theory of sesquilinear
forms may be used to show that AD(G) is also a selfadjoint non-negative
operator in L, (G). Moreover, it is known that if 9G is a smooth curve then
every u € L;(G) has a trace u|3G € L,(9G) and every u € LE(G) satisfies
u|dG = 0 [14].

The grating propagators AN(G) and AD(G) will be shown to have pure
continuous spectra. It follows that the R-B wave eigenfunctions must be
generalized eigenfunctions which are not in L2(G). To define them it will

be convenient to define extensions of AN(G) and AD(G) which act in the space
(1.18) Lfoc(G) =0'@G n{u}ue L,(K N G) for all compact K C R2}

where D'(G) is the set of all distributions on G. The following subsets of

L%oc(G) are also needed

1.19) ™) =12%@) n {u | 0¥0%2u € L2°%(6) for o + @, < m} ,
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(1.20) L;°%%%a,6) = 1°*°%0) 0 (u | Auwe L2%@) .

These linear spaces are all Fréchet spaces (locally convex topological
vector spaces which are metrizable and complete [9]) under suitable defini-
tions of the topologies. Thus L%oc(G) is a Fréchet space with family of

semi-norms

1/2
(1.21) pg(u) = [[ [u(x) |2 de
KNG

m,%0c

indexed by the compact sets K C R?. Similarly, L (G) is a Fréchet
2

space with family of semi-norms

1/2
(1.22) oe(w) = [J 3 I3 p)2u(x) |2 dx]
KNG a,+0,<m

R'OC(A,G) is a Fréchet space with family of semi-norms

and L;’
1/2
(1.23) P (@) = [J {Jux) |2 + [VuX) |2 + [Aux) |2} dx] .
KNG

The following additional notation is used below:

(1.24) L") = L,(6) N E'(R?)
(1.25) L,°%°™(6) = L1(6) n LEP™(G)

where E'(R?) denotes the set of all distributions on R? with compact

supports.

The local grating propagator AN’QOC(G) for G and the Neumann boundary
condition is the extension of AN(G) in L&oc(G) defined by

p(a™*c6)) = tioEo%(a,0)
(1.26)
= 1,°%°%(4,6) n {u | (1.14) holds for all v e L,’%°™(G)}
and
(1.27) AN29C(Gy y = _pu for all ue p(aV¥0%(6))

D,%0c

Similarly, the local grating propagator A (G) for G and the Dirichlet

JZ'OC(G) defined by

boundary condition is the extension of AD(G) in L,

(1.28) pal o)) = 12240¢(p,0) = D240 (g) n L) 2 *C(a,0)
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where

(1.29) 12:%°%(6) = Closure of C3(6) in L,’*°%(c)
and

(1.30) a2 %% (Gyy = —pu for all u e p(a2%%%(c)) .

The spectral analysis and eigenfunction expansions for AN(G) and AD(G)
are nearly identical. To emphasize this, and to simplify the notation, the
symbol A will be used to denote either AN(G) or AD(G) in stating results

that are valid for both. Similarly, the symbol Aloc will denote AN’QOC(G)

or AD’loc

(G) except where a distinction is necessary.
The spectral theory of AN(G) and AD(G) will be developed by perturba-
tion theory, beginning with the degenerate grating Rg. The grating

propagators for this case will be denoted by

N N, 2 D_,D
(1.31) A, = A(RD) , A, = A (RD)
and
(1.32) A?,loc _ AN,ZOC(Rg) , A?,Eoc _ AD’LOC(Rg)

and the condensed notation A, for A? or A? and A%OC for AE’EOC or A?’loc

will be used.

The spectral analysis of A; can be carried out by separation of varia-
bles and is essentially elementary. Thus Df is essentially selfadjoint in
L,(R) with complete family of generalized eigenfunctions
{(m) Y% exp (ipx) | p € R}. Similarly, D? and the Neumann boundary condi-
tion define a selfadjoint operator in L,(0,®) with complete family
{@/mY? cos qy | q@ > 0}, while D% and the Dirichlet boundary condition
define a second selfadjoint operator in L,(0,») with complete family

{(2/m)2 sin qy | g >0} It follows that the products

1l idipe
(1.33) YN (X,p,q) = seP ®cosqy, (p,a) €R]
D _ 1 dp'x . 2
(1.34) Vp(X,p59) = — e sin q y , (p,q) € Ry
N, %oc D,%oc . i
are in D(4, ) and D(4A, ), respectively, and define complete families

of generalized eigenfunctions for A? and AE. More precisely, if {, is used
to denote either w§ or w? then the classical Plancherel theory can be used

‘to derive an eigenfunction expansion and spectral decomposition for
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{=s]
(1.35) Ay = Jo u dll; (W)
which may be formulated as follows. First, for all f € Lz(Rg) the limit
M M
(1.36) ?o(p,q) =Q2.i.m. J J ¥y (X,p,q) £(X) dX
Mo 0 Jy
exists in L, (R2),

MM .
(1-37) f(X) = L.i.m. JO I %(X,P,CI) f0 (P:Q) dpdq
-M

Moo
in L,(R3), and

(1.38) £l = 1E,h

L, (R2) L,(R3) °

Moreover, the spectral family of A; is given by

(1.39) To(w) £(X) = J Vo (X,0,9) £, (p,q) dpdq .

{(p,q) |p?+a?<u, q>0}
Finally, if a linear operator &, : Lz(Rg) -+ Lz(R%) is defined by @,f = %o
then ¢, is unitary.

The principal result of this monograph is a generalization of this
eigenfunction expansion and spectral analysis that is valid for the operator
AP(G) in arbitrary grating domains G and for the operator AN(G) in grating
domains G € S. In these generalizations the R-B waves play the role of the

eigenfunctions y,.

§2. Rayleigh-Bloch Waves

It will be assumed in the remainder of the report that the unit of

length has been chosen to make the grating period a = 2m. This normaliza-
tion, which simplifies many of the equations, does not limit the generality
of the theory because the general case can be obtained by a simple change
of units.

The definition of the R-B waves can be motivated by considering the

reflection by a grating of a plane wave

(2.1) W (X,p,0) = (2m 7 exp lilpx - g9},  (p,a) € RE .

Note that the effect of tramnslating winc by the grating period 2m is to

multiply it by a factor of modulus 1:
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. ] N
(2.2) v x + 2m,y,p,9) = exp {2mip} ¥ (x,y,p,0) .

Since G is invariant under this translation the reflected wave, if it is
uniquely determined by wlnc’ must also have property (2.2). This suggests
the

1,%0c

Definition. A function Yy € L,’ (A,G) is said to be an R-B wave for G

if and only if there exist numbers p € R and w > 0 such that

(2.3) Y(x + 2m,y) = exp {2mip} Y(x,y) in G ,
(2.4) Ay + w?y =0 in G, and
(2.5) PY(X) is bounded in G.

If, in addition,

(2.6) v € pa%os)
then § is said to be an R-B wave for A.

The parameters w and p will be called the frequency and x-momentum of
the R-B wave, respectively. Note that p is only determined modulo 1 by

(2.3). The x-momentum that satisfies

2.7 -3 <P =<

N
N

will be called the reduced x-momentum of . Property (2.3) is sometimes
called quasi-periodicity or p-periodicity. It is equivalent to the
property that

(2.8) Y(x,y) = exp {ipx} ¢(x,y) for all (x,y) € G
where
(2.9) o(x + 2m,y) = ¢(x,y) for all (x,y) € G .

Solutions of the Helmholtz equation (2.4) are known to be analytic
functions. In particular, each R-B wave for A satisfies y € Cw(G). Hence,
the function ¢ in (2.8) is in Cm(G) and has period 2m in x since Rﬁ C G.

It follows from classical convergence theory for Fourier series that Y has

an expansion

(2.10) V(x,y) = ] wp(y) exp {i(p + Vx} , (%) € RZ,
ez
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where Z denotes the set of all integers. The series converges absolutely
and uniformly on compact subsets of R;. Moreover, the partial derivatives
of Y have expansions of the same form which may be calculated from (2.10)
by term-by-term differentiation and which have the same convergence proper-

ties. It follows that the coefficients ¢£(y) in (2.10) must satisfy
(2.11) Py + @ - (P +2)%) Yy(y) =0 fory > h .

Hence the terms in the expansion (2.10) have the following forms, depending

on the relative magnitudes of w and Ip + 2.
w > + &|. 1In this case there exist constants c; and cg such that
. + - .
(2.12) ¥, (y) exp {i(p+)x}= ¢y exp {i(pgx+qgy)} +cg exp {i(pgx - qzy)}
where
(2.13) Py =P +2, ay = W2 - (p + 2)2)1/2 >0 .

The two terms in (2.12) describe plane waves propagating in the directions
(pl’tql)' Since p; + qi = w? these vectors lie on the circle of radius w
with center at the origin and their x-components differ by integers. Clearly

there are only finitely many such terms.

w< |p+ 4. In this case wl(Y) is a linear combination of real ex-
ponentials in y and the boundedness condition (2.5) implies that

(2.14) w}L(Y) exp {i(p+ Vx}= cg exp {-((p+)2-w? 12 ylexp {i(p+ 2)x}

where ((p+2)2- uo2)l/2 > 0. In the application to diffraction gratings

terms of this type will be interpreted as surface waves.

w = IE + ll. In this limiting case wg(y) is a linear combination of 1
and y and (2.5) implies that

(2.15) bg () exp {i(p + Vx} = cg exp {i(p + Vx} .

Physically, (2.15) describes a plane wave that propagates parallel to the
grating; i.e., a grazing wave. These waves divide the plane waves (2.12)
from the surface waves (2.14). The frequencies {w = |p + &| |2 € Z} are

called the cut-off frequencies for R-B waves with x-momentum p.

An R-B wave § for G (for A) which satisfies the additional conditions

(2.16) CE = 0 (resp. cz = 0) for all % such that w > |p + 2|
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will be said to be an outgoing (resp., incoming) R-B wave for G (for A). If

(2.17) g = CI = 0 for all & such that w > |p + 2]

then ¥ will be said to be an R-B surface wave for G (for A). Of course an
R-B surface wave for A is both an outgoing and an incoming R-B wave for A.
It is interesting that these are the only outgoing or incoming R-B waves

for A. This is a consequence of

Theorem 2.1. Every outgoing (resp., incoming) R-B wave for A is an
R-B surface wave for A.

A proof of this result has been given by Alber [3] in the case where
3G is a curve of class C2. The method is to apply Green's theorem to the
R-B wave ¥ for A and its conjugate in the region G N {X I -T< x<m,y<R}.

In the case of an outgoing R-B wave for A this yields the equation

(2.18) I -0 ]2 =0
w>]p+L|
which implies that c; = 0 when w > |p + ll. For general grating domains
the application of Green's theorem must be based on the generalized boundary
conditions, as in [30, p. 57].

It will be seen in §4 that diffraction gratings may indeed support R-B
surface waves and the question arises whether geometric criteria for the
non-existence of such waves can be found. In the case of the Dirichlet
boundary condition such a criterion was found by Alber [3] by adapting a
method of F. Rellich [20] and D. M. Eidus [11]. Specialized to the grating

domains considered here, Alber's theorem implies
Theorem 2.2. Let
(2.19) G ={X |y >h(x) for all x € R}

where h € C2(R) and h(x + 2m) = h(x) for all x € R. Then AD(G) has no R-B
surface waves.

Theorem 2.1 implies that R-B waves for A may be determined, modulo R-B
surface waves, by specifying either the coefficients CE with w > |p + 2|
(the incoming plane waves) or the coefficients c; with w > Ip + ll (the
outgoing plane waves). R-B waves for A that contain a single incoming or
outgoing plane wave will be used in the R-B wave expansions given in §8
below. These are the grating waves originally introduced by Rayleigh.
‘Physically, they are the wave fields produced when the grating is illumi-

nated by a single plane wave. Here they will be called R-B diffracted plane
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wave eigenfunctions for A or, for brevity, R-B wave eigenfunctions for A.
There are two families determined by the presence of a single incoming or
outgoing plane wave, respectively. The plane waves winc(x,p,q) and

winc(x,p,-q) defined by (2.1) are incoming and outgoing R-B waves, respec—

tively, with x-momentum p and frequency
(2.20) w=wlp,q = @ + )

The scattering of these waves by a grating will produce outgoing (resp.,
incoming) R-B waves with the same x-momentum and frequency. Hence the R-B

wave eigenfunctions may be defined as follows.

Definition. An outgoing R-B diffracted plane wave for A with momentum

(p,q) € R} is a function w+(x,p,q) such that

(2.21) ¢+(‘,p,q) is an R-B wave for A, and
i

(2.22) b, (X,p,0) = ¥ C(X,p,0) + USC(X,p,@)

where wic is an outgoing R-B wave for G. Similarly, an incoming R-B dif-

fracted plane wave for A with momentum (p,q) € RZ is a function y_(X,p,q)
0 -

such that
(2.23) Y _(*,p,q) is an R-B wave for A, and
(2.24) b_(X,P,9) = ¥ "°(X,p,-0) + ¥ES(X,p,q)

where WEC is an incoming R-B wave for G.

The uniqueness of wi(x,p,q) modulo R-B surface waves follows from
Theorem 2.1, as was remarked above. Their existence for the class of
gratings defined in §1 is proved in 88 below. Note also that the defining

properties imply that
(2025) ‘P__(X,P,O.) = \P_,_(X,-P,C{) .

Hence the existence of the family ¥_ follows from that of w+.
In the half-plane Rﬁ above the grating the R-B waves W: have Fourier

expansions (2.10). For the function w+ the expansion has the form

Yo (x,y,0,0) = (2m)7" exp {i(px - ay)}

0= pe
¢
(2.26) + (2m)~" ) c;(p,q) exp {i(p;x + q,)}
(p+2) 2<p?+q?
+ 2t Y cz(p,q) exp {ip,x} exp {-((p+2)? - p*- q2)¥2 y}

(p+2) 2>p2+q*
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where
(2.27) (pgsag) = (0 + 2,{p* +a* - (@ + V1) e &

defines the momentum of the reflected plane wave of order 2. Similarly,

V_(%,5,p,q) = 2m) " exp {i(px + qy)}

(2.28) + (2m)~! , 2)22 ) s c;(p,q) exp {i(plx - qky)}
pH) 2<p+q
van™ L e lepden -(+n?-p?-a) v},
p+L) “>2p°+q

The relation (2.25) implies that the coefficients ci(p,q) in (2.26), (2.28)

satisfy
(2.29) ci(p,q) = CTQ(—p,q) for all (p,q) € R; and L € Z .

The surface wave terms in (2.26) and (2.28) are exponentially decreas-
ing functions of y except when the wave frequency w(p,q) = (p? + qz)l/2
= |p + &| for some % € Z. These are precisely the cut-off frequencies

mentioned above. In momentum space they form the exceptional set
(2.30) E=RnN U {(p,d) | V2 +q% = [p + 2|}
EZ

E is a set of confocal parabolas with foci at (0,0), axes along the p-axis
and directrices p + £ =0, £ € Z. Two members of the family with direc-
trices p + £ = 0, p + m = 0 are disjoint if £ and m have the same sign and
intersect orthogonally if % and m have opposite signs. The family E thus
divides R% into a system of curvilinear rectangles.

In the special case of the degenerate grating Rﬁ comparison of (1.33),
(1.34) with (2.26), (2.28) shows that for the Neumann case ¢§+ = ¢§,

ci(p,q) = 1 and all other CE(P,Q) = 0. Similarly, for the Dirichlet case

w§+ = iiw?, ci(p,q) = -1 and all others cz(p,q) = 0. Thus in these cases
there is no scattering into higher order grating modes or surface waves, as
was to be expected. Note that the defining properties (2.22), (2.24) can

be rewritten as
(2.31) ¥, (X,p,9) = ¥, (X,p,9) + ¥ (X,p,q)

where wo+ is defined as above and wl and ' are, respectively, outgoing and
incoming R-B waves for G. This decomposition exhibits the R-B wave eigen-

functions for G as perturbations of those for Rg. The decomposition is
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used below for the construction of y and the derivation of the eigenfunc-

tion expansions.

§3. The Reduced Grating Propagator A,.

The quasi-periodicity property (2.3) of the R-B waves implies that they

are completely determined by their values in the domain
(3.1) Q=6n{x|-T<x<m}.

Moreover, (2.3) and the equation obtained from it by x-differentiation
define boundary conditions that must be satisfied by R-B waves on the por-
tions of 92 where x = m. These observations are used below to show that
the R-B surface waves and diffracted plane waves for G are eigenfunctions
and generalized eigenfunctions, respectively, of a p-dependent selfadjoint
realization of -A in L,(R). This operator, which will be denoted by Ap and
called the reduced grating propagator, provides a basis for the construction
of the R-B waves for G.

The definition of the grating domains in §1 implies that the reduced

grating domains £ satisfy

(3.2) B C 2 C B, for some h > 0
where
(3.3) B, = Ré n{x|-m<x<ml={x|-m<x<m, y>c}.

The notation

(3.4) y={y | (myy) €6l ={y | (-m,y) € ¢}

will also be used. The definition of the reduced grating propagators A ()
and A () associated with  and the two boundary conditions will be based

on the function space
(3.5) L°P@ = L2(@ n {u | u(m,y) = exp {2nip} u(-my), y € ¥}

Sobolev's imbedding theorem [1] implies that every u € LZ(Q) has boundary
values u(#m,y) in L2 (Y) and L, ’p(Q) is a closed subspace of L3} (Q).
The operator AP(Q) is defined by

D(A’;(sz)) =13°P@ n 11,2 N {u] J {(Auw)T + Vu- V¥} dX=0 for v e Ly°P(@)}
Q

(3.6)
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and AE(Q)u = -Au. It can be shown that AE(Q) is the selfadjoint non-
negative operator in L,(Q) associated via Kato's theory with the
sesquilinear form defined by the Dirichlet integral acting on the domain
L;’p(Q). By applying elliptic regularity theory [1] and Sobolev's imbedding
theorem it can also be shown that every u € D(Aﬂ(Q)) satisfies the

p-periodic boundary conditions

u(m,y) = exp {2mip} u(-m,y) , yEY
(3.7)
Dyu(m,y) = exp {2mip} Dyu(-m,y) , y €y .

Moreover, if 3G is a smooth curve then it follows from (1.14) as in §1 that

functions u g D(AE(Q)) satisfy the Neumann boundary condition on
(3.8) r=snn

where §! is the closure of € in RZ.
To define AD(Q) several additional function spaces are needed. The

subset of Cm(G) consisting of functions that satisfy

(3.9) ¢(x + 2m,y) = exp {2mip} ¢(x,y) for all (x,y) € G
(3.10) supp ¢ € G N {X | y < p} where p = p(¢) , and
(3.11) dist (supp ¢,3G) > 0 ,

will be denoted by C:(G):
(3.12) c‘;(c) = c®@) n {¢ | (3.9), (3.10) and (3.11) hold} .

The restrictions of such functions to Q defines

(3.13) @ = {w=9lg [ ¢ec@}.
Finally,
(3.14) 17°P(@) = Closure in L}(R) of CH(®)

The operator Ag(ﬂ) is defined by

D(AY@) =127 P@) 0 L3, N {u] [ {(Aw)T+Vu+ 79} dX =0 for v e L2*P()}
Q

(3.15)

and AE(Q)u = -Au., In this case it can be shown that Ag(ﬂ) is the selfadjoint
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non-negative operator associated via Kato's theory with the sesquilinear
form defined by the Dirichlet integral acting on the domain L P@). Again,
functions in D(A (R)) satisfy the p-periodic boundary conditions (3.7).
Moreover, if G 1s a smooth curve then functions u € D(A (R)) satisfy the
Dirichlet boundary condition on T.

Each of the operators AE(Q) and A?(Q) will be shown in §6 to have a
continuous spectrum plus possible point spectrum. To define corresponding
generalized eigenfunctions it will be convenient to define extensions of
AN@) and AD) in ke Loc

needed.

(). The following subsets of L, () are also

(3.16) L;’p’loc(ﬂ) = L;’koc(ﬂ) n {u | u(m,y) = exp {2mip} u(-m,y), y € ¥},

1
(3.17) 12-p:40¢ 0y - closure of c':(Q) in L, **°%(Q)
- 1,%
Each is a closed subspace of the Frechet space L,’ °¢(@). The sets

L, °P ") = 12°P@) n L@
(3.18)
1P @) = 1P @) 0 1577@)

will also be used.

The operator Ag,%oc(n) is the extension of A ) in L%OC(Q) defined by
D(AN 2ociayy = L;:P’%C(g) nL4°%0,0) N (u| I {(Aw)V+Vu+ 75} dX = 0
Q
(3.19) for v € L, P2 ™)}
and AN jz'Oc(ﬂ)u = -Au. Similarly, Ag,loc(ﬂ) is the extension of Ag(Q) in
QOC(Q) defined by
D(AD sRocoyy = (DaPsRocigy  Lla%0cn 0y A (] I {(Au)¥+Vu+ V¥} dX = 0
Q
(3.20) for v € LDP2SOM(0)}
and AD’koc(Q)u = -Au. It is easy to verify that D(AN QOC(Q)) and
D(Ag’ oc(Q)) are closed linear subspaces of the Frechet space LI’QOC(A,Q)

and hence are themselves Fréchet spaces.
The reduced giating propagators for the degenerate grating will be

denoted by

N _ N D _,D
(3.21) By p = ApB) , AL = A, and
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N,f%0c N Loc D,%oc D,%oc
3.22 A’ = B . AT’ = A B .
(3.22) - (By) Drroc = A to%s,)

Moreover, the condensed notatlon of 81 will be used; i.e., A will be used

to denote either A Q) or A () in stating results valid for both. Simi-
fLoc N,%o0c D,%oc

larly, Ap will be used to denote Ap Q) or AP (). 1In particular,

for the degenerate grating the notation A.o P is used for AN P and A? p and
’ ’ ’

Aloc is used for AN Loc and AD’LOC.

0,P 0,p o,p
Note that all the p-dependent function spaces defined above are

periodic functions of p with period 1. It follows that
Roc 20
(3.23) Am =8y > A=A € for allme€ z .
Hence it will suffice to study A_ and Aloc for the reduced momenta
p € (-1/2,1/2].
The resolvent set and spectrum of Ap will be denoted by p(AP) and O(Ap)
respectively. Clearly O(Ap) C [0,®) since Ap is selfadjoint and non-

negative. In fact, it will be shown that
(3.24) oa) = [p?,®) for all p € (-1/2,1/2]

This was proved directly by Alber in the cases considered by him [3]. Here
it follows from the eigenfunction expansions for AP given in §5. O(Ap) is a
continuous spectrum which may have embedded eigenvalues. It will be shown
in §6 that Oo(Ap), the point spectrum of Ap’ is discrete; that is, each
interval contains finitely many eigenvalues of Ap and the eigenvalues have
finite multiplicity. It is of interest for the applications to diffraction
gratings to have criteria for o°(AP) to be empty. While completely general
criteria are not known it will be shown that the hypotheses of Theorem 2.2
imply Uo(Ag) = ¢ for all p € (-1/2,1/2].

Eigenfunction expansions for Ap are derived in §5 by perturbation
theory starting from Ao o The expansions for A .’ which are elementary,
are recorded here as a startlng point for the analysls of AP. Separation
of variables applied to A leads to the complete family of generalized

0P
eigenfunctions

(3.25) ¢? +Eptmyq) = ¢§(X,p+—m,q) = %—el(P+ﬂO.x cos qy , mE Z , q>0
,t

where p € (~1/2,1/2] is fixed. Similarly, for A? p one finds the complete
t
family

i i(ptm)ex

p sin qy, m€Z, q>0.

(3.26)  ¢7  (X,p+m,q) = 7 ¢ (X,p+m,q) =
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To describe the eigenfunction expansions for A the condensed notation

s
¢0i(X,p+m,q) will be used to denote either ¢§t or ¢Ei' Note that
(3.27) 0o, Koptm,@) = ¥, Kptm, )|,
- - 0

that is, the generalized eigenfunctions for Ao,p are obtained from those of
A, by restricting X to B and the x-momentum parameter to the lines

p' = p +mwithm€ Z and p € (-1/2,1/2] fixed. Classical Plancherel theory
implies that if R, = (0,®) then for all f € L,(B,) the limits

(3.28) Eot(p-ﬁn,q) = %.i.m. f ¢,, (X, ptm,q) £(X) dX
Mo Bo M

exist in Lz(Ro) for m€ Z and p € (-1/2,1/2] fixed, where Bo M
t

= Bo N {x ] y < M}. Note that the LZ(RO)—convergence refers to the variable

q. Moreover, Parseval's formula holds in the form

2 - 7 )2
(3.29) Lol wyy = L Mo sl (g )
Hence, the sequence

(3.30) {f,,pm,") €L, Ry | mez} € | DL, (Ry)
- ez

and the operator ¢ t Ly (By) Z ® L, (Ry), defined by
0, =

(3.31) o, of = (ho (m,e) [ me 2},

is an isometry. A more careful application of the Plancherel theory shows

that ¢0+ is unitary. Finally, calculation of the spectral family
=9 EERIPP - AP B R T

> o2 .
{Ho’p(U) [ w>p?} for Ao,p gives

(3.32) I, ) £00 =}

J(u—(pﬂn)z)”2 : Vi )
¢, X,ptm,q) £  (ptm,q) dq .
(ptm) 2<p Y o ot

In particular, making | + « gives the eigenfunction expansion

(3.33) £ = 2.1i.m. y JM 9,4 (X, pHm,q) Eoi(p-l-m,q) dq ,
Moo Im|<M
convergent in L,(B;).

The relationship between the R-B waves for A and the reduced propaga-
tors Ap will now be discussed. Note first that if ¥ is an R-B surface wave
for A with x-momentum p + m (-1/2 < p < 1/2, me 2) and w ¢ {|p+2&| | 2 € 2}
then § € D(AZOC) and for y > h
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(3.38) ¥,y = ] cpexp {i(p + Dxbexp {-((p + V)2 - Y2 y} .

o+ >w
It follows that ¢(x,y) = w(x,y)lQ € D(AP) and Ap¢ = w?¢. Thus ¢ is an
eigenfunction of Ap. To formulate the converse, note that every ¢ € Lfoc(ﬂ)

has a unique p~-periodic extension Yy € L%oc(G). It is easy to verify that if
(3.35) o™ -9+ (2mm,0)

then for each m € Z the extension Y is given by

(3.36) Y(x,y) = exp {2wimp} ¢(x - 2mm,y) for all (x,y) € Q(m) .

This defines Y in Lgoc(G) because G differs from UmEZ Q(m) by a Lebesgue

null set. The operator OP : L%OC(Q) > L%oc(G) defined by (3.36) maps

Lfoc

With this notation it is not difficult to show that if ¢ is an eigenfunction

(f2) one-to-one onto the set of all p-periodic functions in L%oc(G).

of Ap then § = 0p¢ is an R-B surface wave for A with reduced x-momentum p.

The relationship between R-B diffracted plane waves for A and gener-
alized eigenfunctions of Ap is exemplified by (3.27). More generally, if
V(X,p+m,q) is an R-B diffracted plane wave for A with -1/2 < p < 1/2, m€ Z
then ¢i(X,P+m,q) = wi(X,p+m,q)|Q satisfies ¢1(-,p+m,q) € D(Aﬁoc),
(& + w?(p+m,q)) ¢i(X,p+m,q) =0 in Q and ’

(3.37) ¢, X,ptm,q) = ¢, (X,ptm,q) + ¢ (X,ptm,q) , y 2 h,

where ¢; (resp., ¢') has a Fourier expansion that contains only outgoing
(resp., incoming) plane waves and exponentially damped waves. Functions
¢+(X,p+m,q) and ¢_(X,p+m,q) with these properties will be called, respec-—
tively, outgoing and incoming diffracted plane waves for Ap. They are
unique modulo eigenfunctions of Ap. It is now easy to verify that if
¢+(X,p+m,q) (resp., ¢_(X,p+m,q)) is an outgoing (resp., incoming) diffracted
plane wave for AP then w+(X,p+m,q) = 0P ¢+(X,p+m,q) (resp., Y_(X,p+m,q)

= 0P ¢_(X,p+m,q)) is an outgoing (resp., incoming) R-B diffracted plane
wave for A with x-momentum p + m. These relationships will be used in §8

to construct the R-B diffracted plane waves for A.

§4. Analytic Continuation of the Resolvent of A,

An analytic continuation of the resolvent

_ G
(4.1) R(Ap,z) = (Ap z)
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across the spectrum U(Ap) = [p?,») is constructed in this section by an
elegant and powerful method that was introduced into scattering theory by
H. D. Alber [3]. The continuation provides the basis for the construction
in 86 of the diffracted plane waves ¢i(x,p,q) for Ap and the derivation of
the corresponding eigenfunction expansions.

The results in this chapter form the core of the analytic theory needed
to construct R-B waves and prove their completeness. The proofs of these
results offered here are long and arduous, necessarily so in the author's
opinion. Therefore, to make the exposition more readable only sketches of
proofs are indicated in §4. The complete proofs are given in the following
§5.

For each pair of extended real numbers r,r' satisfying 0 < r < r' < +=»

let

o
]
Lan)
<
3
A
"
A
3
-
L]
A
«
A
[a}
-
-
=
[}
o
-

T r,®
(4.2)

te]
[

e
2
-
0
1]

bl

Moreover, let P.o: LZ(Q0 r) + L,(2) denote the linear operator defined by
b

uX) , X € Qo,r
(4.3) Pr u(X) =

o , X € Qr .

The goal of §4 may be formulated with this notation. It is to construct an

analytic continuation of
L
(4.4) 2> R(A,2) Pyt L@ ) > L, 2% ()

from the resolvent set p(Ap) = ¢ - [p?,») across O(Ap) = [p?,»). For this
purpose p(Ap) will be embedded in a Riemann surface Mp.

The definition of Mp may be motivated by considering the linear space
of functions

(4.5) E = pakec

> .
- . )N {u| supp (A + z)ucC Qo,r} ,r>h

Basic properties of E are described by
P’z’r

Lemma 4.1. Assume that §§'C G. Then every u € Ep satisfies
t]

Z,T
)

2,%0c
(4.6) u€l,
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.7 uGoy) = ] u (y) P g g
n=zZ

where the series converges in L;,ro(nh) R
2,8

(4.8) u () € L> %Ry L Ry = (b .

Moreover, if ﬁ; denotes the closure of Qr in R?,

(4.9) u€ c“('sir) , and

(4.10) u (y) = ¢ exp {iy(z- () )¥?} + ¢ exp {-iy(z- (p+m)?) 2}

+
m
+
for y > r where c are constants and

(4.11) In (z- (p+m)2)¥2 >0,

Properties (4.6) and (4.9) follow from elliptic regularity theory [1],
while (4.7) and (4.8) follow from classical Fourier theory. The convergence
of (4.7) in.Lg’loc(Qh) follows from the fact that the partial sums of the
Fourier series define orthogonal projections in Lg (Qr,r') for h<r< r' <o,
(4.10) follows from (4.9) and the equation Au + zu = 0 in Qr.

Note that if z € p(Ap) and u = R(Ap,z) Prf with £ € LZ(Qo,r) then
u€ L,(Q) N Ep,z,r and hence c; = 0 for all m and c; = 0 when
Im (z - (p-l-m)z)ll2 = 0. This suggests that Mp be defined as the Riemann
surface associated with the family of holomorphic functions on C - [pz,w)

defined by
(4.12) {z » (z- (p+m)2)V? | Tm (z- (P+m)2)1/2 > 0 for all m € Z} .

Mp is uniquely determined up to isomorphism by the following three

properties [3, 16]:

(4.13) Mp is connected and every function of the family (4.12) can

be continued analytically to all of Mp.

(4.14) For every pair of points of Mp that lie over the same point of
C there are at least two functions of the family that take

different values at these points.

(4.15) MP is maximal with respect to these two properties.

The following notation will be used in connection with Mp. gz will

denote a generic point of Mp and T = : Mp + C will denote the canonical

m
P
projection of Mp onto C. The subscript p will be omitted when there is no
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danger of ambiguity. The analytic continuation of (z - (p-l-m)z)”2 from

- 2 » i
C - [p%,») to Mp will be denoted by wp+m(E). Thus, for all g € MP’
(4.16) V(D) = 2@ - (w2

M: will denote that component of M_ over C - [p?,©) on which Im wp+m(;) >0
for all m € Z. Finally, Tp ={(p +m)? | m€ 2} C C will denote the set of
branch points of the family (4.12).

The properties of Mp include the following. Mp has infinitely many
sheets. More precisely, for each disk D(z,,p) C C, ﬂ_I(D(zo,p)) has
infinitely many components. If z, = (p + m)2 for some m € Z then the set
w'l(D(zo,p)) contains infinitely many branch points. Moreover, for all
L€M) the set {m| Im Vo () < 0} is finite [3]. Finally, M
all m € Z.

phm = Mp for

In addition to Mp the set

(4.17) M= U (o) [ cem}

-1/2<p<1/2 P
will be needed to describe the dependence of the continuation of
R(Ap,w(;)) Pr on p and Z. M will be tﬁpologized in such a way that each
function (p,Z) - wp+m(;), m € Z, is continuous on M. To this end let
(Pys%,) € M and define

(4.18) 2o =T, (%) » D(zs0) =1z | |2 - 2| < p}
0
and
(4.19) U(p,,5g,P) = Component of W;I(D(zo,p)) containing g, (C Mp ) .
0 0

To define a neighborhood basis for M at (po,go) three cases will be

distinguished.

Case 1. z, ¢ [pg,“). If py > 0 is the distance from z to [pg,w)
then for p < p, D(zo,p) n [pg,w) = ¢ and U(py,Zo,P) contains no branch

points of MPo' In this case
(4.20) {sgn Imw _ (2) | m€ 2}, C€URy:Tp,p)
Py

is well defined. Moreover, |p - py| < & implies that D(z,,p) N [p2,®) = ¢
for & small enough and hence {sgn Im wp+m(;) | m € 2} is also well defined
on the components of n_l(D(zo,p)). In this case one may define U(p,Zg,,p)

as the component of ﬂ; (D(zo,p)) for which
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-1
(4.21) {sgn Im wp+m(1rp (z)) | me z} = {sgn In wp0+m(co)| me 2}

for z € D(zo,p). A corresponding neighborhood of (p,,z,) in M is defined by

(4.22) NporZess®) = L) {(.0) | £ € Uprzo,m}
IP'P0|<5

Case 2. z, € [p?,») - T . In this case if p, is the distance from
z, to the set Tp then for p < Py U(po,co,p) contains no branch points of
Mp and (4.20) is well defined provided ﬂp (%) € D, (z0,0) = D(zg,pP)
n ?z I Im z > 0}. Moreover, |p - Pol <38 1mp11es that D(z,,P) contains no
points of Tp, for 8 small enough, and hence {sgn Im wp+m(c) | m € 7} is
also well defined if m_(Z) € D (zo,p). In this case one defines U(p,%,,P)
as the component of ﬂ (D(z ,P)) for which (4.21) holds for z € D (zo,p))
A corresponding nelghborhood is again defined by (4.22).

Case 3. z, = (p, + my)? for some my € 2. If p, > 0 is the distance
from z; to the set Tpo - {(p0 + mo)z} then for p < po the set U(p,,Z,,P)
contains only one branch point; namely, that for wp (C) Hence
{sgn Im v, pym (9] | me z - {my}} is well defined for z e U(p,»s5,,0) and
wpo(g) €D (zo,p) Moreover, Ip - p°| < § implies that D(z,,p) contains
(p + mo)2 and no other points of the set Tp and hence
{sgn Im Yot (@) | me z- {my}} is well defined on the components of
w Yo ,(z,>0)). In this case one may define U(p,g¢,p) as the component of

(D(zo,p)) for which

{sgn Im wp+m(ﬂ;1(z)) lme 2 - {m}}
(4.23)
= {sgn Im LA (w;;(z)) | me z - {mp}}

for all z € D+(z°,p). A corresponding neighborhood is again defined by
(4.22).
The topology of M is defined to be the one generated by the neighbor-

hood bases defined above and one has
Theorem 4.2. Each of the functions on M defined by
(4.24) (r,2) > wp_,,m(c) », mME Z

is continuous on M. Moreover, the family of functions

{(p,2) » wp+m(§) | m € 2} is equicontinuous in M.
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The theorem that {g » wp+m(;) | m€ Z} is equicontinuous on Mp for
fixed p was proved by Alber [3]. Theorem 4.2 plays a key role in proving
the continuity in (p,q) of the Rayleigh-Bloch waves in §8.

The Fréchet Space F To describe the subset of Ep that

P,C,r. s2,T
contains the analytic continuation of R(Ap,z) Prf to Mp’ consider the set

of functions u € Ep - whose Fourier representations (4.7), (4.10) in Qr
’ i

satisfy

(4.25) For each m € Z , either c: =0 or c; =0 , and

(4.26) c; = 0 for all but a finite number of m € Z .

Note that these conditions express the "radiation conditions"

4.27) oy +itz-G+mH 1y =0,y2rx,

v_n

where for each m either "+" or is chosen and "-" is chosen for all but

a finite number of m € Z. It is clear that each such u € Ep - is asso-
i i)

ciated with a unique point g € Mp such that ﬁp(;) = z and the Fourier
expansion (4.7), (4.10) of u has the form

(4.28) u(x,y) = néz oy exp {1p+mx +iyw (@}, y2r.
For each (p,Z) € M and each r > h the set of all such solutions will be
denoted by
_ Loc
(4.29) Fp,g,r = D(Ap ) N {u | supp (Ai—wp(c))u C Qo,r and (4.28) holds} .
Loc 1,%0c Locy .
Note that Fp Lt C D(Ap ) CL, (A,2) and recall that D(Ap ) is closed
9 ’
in L;’QOC(A,Q). This implies

1

Theorem 4.3. Fp C,r is closed in D(Aﬁoc) in the topology of Lz’loc(A,Q)
i i

and hence is a Fréchet space.

This is immediate because the defining properties of F , namely

(™ - o- p’C’r
D R = 3
supp (A + np(C))u C Qo . and.[Dy i Y21m§§)! uy 0’1n y > r, are preserved

D -

under convergence in L,’ Oc(A,Q).
The following condensed notation will be used in discussing Fp o,r and
i ’
related operators:

(4.30) ’ (u’v)r,r' = (u’V)LZ(Qr r') >
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(4-31) (u’v)1'r ! = (U’V)LI(Q ) >
5T 2 Bly pr

(4.32) (U,V)I_A.r r' = (U,V)LI(A 9] )
3055, 2\59%y Tyt

Now let Pp,L,r : Fp,;,r > Lz(Qo,r) denote the natural projection defined by

(4.33) u = uIQ for all u € Fp

0,T

P
p’c’r ’C’r

An important property of FP C,r is expressed by the following generalization
’ ’
of a theorem of Alber [3, p. 264].

Theorem 4.4. For every compact set K C M and for every r' > r there

exists a constant C = C(K,r,r"') such that

(4.34) hul, g o sl

P
p,c,r Yisa50,r

for all u € U In particular, P is a topological

(p,L)EK Fp,c,r'

i hi £F P F
lsomorphlsm O P,C,r onto P,C’r P’C’r

P,C,T 1
, topologized by the LZ(A,Q0 r)-norm.
»

« The Operators A : L@ ) > L,(R, ). Following Alber's program,
P,L,T 0,r o,r
the construction of the analytic continuation of R(Ap,z) Pr to MP will be

based on the family of linear operators A in Lz(Qo r)’ defined for all
’

P,C,r
(p,L) € M by
(4.35) D(AP,C,I) = PP,C,I FP,C,r .
(4.36) A g u = bu

The properties of A that are fundamental for the analytic continuation

p,%,r
of R(Ap,z) are described by the following theorems.

Theorem 4.5. For every (p,z) € M and every r > h the operator Ap L,r
’ ’

is m-sectorial in the sense of Kato [13, p. 279].

Theorem 4.6. For all grating domains of the class defined in §1, the

family of operators {Ap | (p,z) € M} is continuous in the sense of

’;’r
generalized convergence (Kato [13, p. 206]). Moreover, for each fixed
p € (-1/2,1/2] the family {Ap’c’r |

ized sense (Kato [13, p. 366]).

ze Mp} is holomorphic in the general-
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Theorem 4.7. For every (p,z) € M, every r > h and every z € p(Ap r r)
s s
the resolvent R(Ap,C,r’z) = (Ap,C,r - z) 'is a compact operator in
L, (R and hence O(A is discrete.
2 o,r) ( p,C,r)

Theorem 4.5 generalizes Alber [3, Th. 5.5]. As in [3] it may be proved

by associating A
4 & %p.z,r

form in Lz(Qo r) and using Kato's first representation theorem [13, p. 322].
5

with a densely defined, closed, sectorial sesquilinear

The second statement of Theorem 4.6 generalizes Alber [3, Th. 5.5b]. The
hypothesis G € S of §1 is needed to prove Theorem 4.6. Theorem 4.7, which
generalizes Alber [3, Th. 5.5al, is a consequence of the local compactness
property of G in the case of the Neumann boundary conditions. Complete
proofs of Theorems 4.5, 4.6 and 4.7 are given in §5. The following conse-
quences of these theorems are needed for the spectral analyses of Ap and A
in §6 and §8.

Theorem 4.8. For all ¢ € M: one has ﬂp(C) [S p(Ap,g,r) and

(4.37) R(A, - poTp(8)) = Py v RGALLT () B

This result may be verified by direct calculation.
Theorem 4.9. For every p € (-1/2,1/2] the set
4.38 = ﬂ Eo cM
(4.38) L=lmn® Ay o ey

has no accumulation points in M and is 1ndependent of r > h
This result, which generallzes [3, Th. 5.5¢c], is a consequence of
Theorem 4.7. For brevity the resolvent of (4.37) will be denoted by

(4.39) R = R(A

PsGsT M (8)) € B(L, (@, )

sG>

Here B(X) denotes the bounded operators on X.
Corollary 4.10. For each p € (-1/2,1/2] and r > h the mapping

(4.40) LR EBO,@ )

is finitely meromorphic on Mp with pole set %_.
This result is based on a theorem of S. Steinberg [24]; cf. [3, Th.
5.5e]. Theorem 4.4 and 4.8 provide the analytic continuation of R(Ap,z) P,

in the following form.

Corollary 4.11. The analytic continuation to Mp of

,20c
(4.41) £ > R(AL,T (D) P € B(L(Q ), L3>°

+
“.2) , e,
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is given by

-1

R 1,%0c
p)c)r p’g’r

(4.42) z>P € B(LZ(QQ r) s Ly (A)Q)) » G € MP s

where B(X,Y) denotes the bounded linear operators from X to Y.

Corollary 4.12. For all grating domains of the class defined in §1,
the point spectrum Oo(Ap) is discrete.
This result follows from Theorem 4.9 and Corollary 4.10.

Corollary 4.13. For all grating domains of the class defined in §1

one has

(4.43) np[M; n zp] Copa) U T,
where M; is the closure of M; in Mp'

If Oo(Ap) = ¢ then (4.43) means that the poles of Rp,C,r that lie above
the spectrum O(Ap) = [pz,w) must lie above the branch point set Tp. The
fact that such poles may or may not occur is illustrated by the two opera-
tors A? and Ay corresponding to the degenerate grating. For A?, separation
of variables leads to a construction of the Green's function (= kernel of

the resolvent R(A?,a)) which can be written

2 (x,x',p,2)

(4.44)
. { (ptm) (x—x" _ ] R 251/2
=21_1T N o 1(pHm) (x-x )(z—(p+m)2) V2 gin (2= (p+m)2) V2 v i(z=(ptm) ") "y,
ez
where y_ = Min (y,y"), ¥y = Max (y,y'). The analogous calculation for A?

gives

AN x,x',p,2)

(4.45)
Lop AOMGE) (o) o (- (prm ) Y2y, 2Dy,
. :

2 ez

In the first case R(A?,z) has no poles for real z = A + 10 € [p?,®). In the
second case R(A?,z) has a simple pole at each of the points z = A + i0 € Tp.
The following two theorems are implied by Theorems 4.4 and 4.6.
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Theorem 4.14. Let

= LJ {0z e DI LJ {(p,0) | o (8) € oA,

-1/2<p<1/2 -1/2<p<1/2
(4.46)
Then M-%L is open in M and

(4.47) (p,2) * R

o € BLa@ )

o,r

is continuous on M-Z.
Theorem 4.15. The mapping

(4.48) (p,2) > € B(L, (R, ) , Ly’

P C T P,C r

is continuous on M-Z.

1,%0c

(4,8))

A direct consequence of Theorem 4.15 that is needed below is

CHT

.

Corollary 4.16. Let K be any compact subset of M-I and let r' > r > h,

Then there exists a constant C = C(K,r,r') such that

(4.49) 7! R £|

p,C r p,L,r 'lzAjo,r' -

for all (p,Z) € K and all f € LZ(Qo r).
’

A Limiting Absorption Theorem. 1In the remainder of this work the

point 7 will be restricted to KfF the closure of M+ in M

<clel, .

To simplify the

notation points 7 € M+ will be 1dentified with their images ﬁ ()

=z€ C- [p?,®) and the points of BM will be denoted by A *
A€ [p ,¥). With this notation the operators

-1 1,240(:
(4.50) Pp,Atic,r Rp,xtio,r € B(L,(Q ,r)’Lz (A,2))
are defined and continuous for all A * ioc € M: p‘ Note that by
Corollary 4.13

+
. - -T C -
(4.51) c(AP) oo(Ap) Tp wP(BMP Zp)
Now let f € LZ(Qo r) and define
’
-1

(4.52) u+(-,p,A) P Atio,r Rp,l+io r fe Fp,kiio,r .

Then, in particular,

(4.53) u,(+,p,0) € D(A%) , and

10 where
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(4.54) Aui + Xui = f in Q.

Moreover, ﬂp(A + 1i0) A for all X € O(Ap) and

(Ati0) =20 - (p+mHY2 if A > p +m? ,

#

Voim
(4.55)
+ 1 i 2 _ V2 2
wp+m(k + 10) i((p + m) A) if A < (p + m)
Hence, the Fourier series (4.28) of u, have the form

. . 2y1/2
u, (x,¥,p,}) = & e1(p+-m)x eily(k—(p+m) )
- (p+m) 2<)

(4.56)

ot eilrimx oY (pm) 2-2) 2

+
(p+m) 2>)

Thus uy and u_ are the outgoing and incoming solutions, respectively, of
the boundary value problem (4.53), (4.54). Moreover, they are uniquely

determined by these conditions, by Theorem 2.1, provided
4, A€ a(A) - 0p(A) -T_ .
4.57) A) - o(a) - T,
The final result of this section is a uniform bound for the functions
(4.58) P! R £e 1m0
: pP,Atio,r "p,Atioc,r 2 ’
which may be formulated as follows.
Corollary 4.17. Let I = [a,b] satisfy

(4.59) IC O(Ap) - 0Oy (Ap) - Tp

and let p, Oy, r and r' satisfy -1/2 < p < 1/2, 0, > 0 and r' > r > h. Then

there exists a comstant C = C(I,p,0p,r,r') such that

-1
(4.60) “Pp,kiic,r Rp,kiic,r fnl;A;O,r' <¢ “fno,r

for all A€ I, 0 < 0 < 0, and all f € LZ(Qo r)' Moreover, if ZP n G(Ap) = ¢
then the same result holds for intervals I C O(Ap) - OO(AP).

8§5. Proofs of the Results of §4.

Proof of Lemma 4.1. Assume that u € D(Aﬁoc

= exp {-ipx} u(x,y). Then v € L;,loc

) and define v(x,y)

(A,2) and satisfies the p-periodic
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boundary conditions (3.7) with p = 0. Thus if QY is the cylinder obtained
by identifying the points (-T,y) and (7,y), vy € Y, it follows that v is a
distribution solution of Av + 2ip va + (z—pz)v = e_ipr € LSOC(QY). Let h'
satisfy 0 < h' < h, R;, C G. Such numbers h' exist if f{ C G. Then
Qz. =o' n {(x,y) | y > h'} is contained in the interior of QY and the
interior elliptic estimates of [1] imply that v € Lz’zoc(Qz.). This result
implies (4.6) and (4.8) of Lemma 4.1. Moreover, f = 0 in Qr and the regu-~
larity theory of [1] implies v € Lm 12'OC(SZz) for all m € Z which implies
(4.9) and (4.10).

It remains to prove (4.7). Note that if v is defined as above then

1 I“ ei(p+m)x

m —
.1 uw @ =3 u(x,y)dx = = J e ™ v(x,y)dx = v (¥) -
=T

2m

Hence (4.7) is equivalent to the statement that

(5.2) v(x,y) =} v (y) ™ o QY
ez b

2,2
> oc(QY) To prove this note that

where the series converges to v in L

{elmx I m € 2z} is an orthogonal sequence in L (Q k,) for any k, k' such

that h < k < k' < @, Next define

(5.3) Bpvix,y) = ] vy ™
m

Imi<f

where Vo is defined by (5.1). Then direct calculation shows that

. Y :
(5.4) P2 B L%(Qk’k,) > Li(QZ’k,) is bounded
and
2 _ 2 .
(5.5) PQ = PR = PR in L (Qk k,) H

i.e., PE is an orthogonal projection. It follows that

(5.6) Qk =1- P£

is also an orthogonal projection in L2 (Qk k') Note that the convergence

of (5.2) in L ”Q’OC(QY k,) is equivalent to the condition

(5.7) gim fQ v, = 0 for a1l ve 12(@) ,.)
L0 ’

where "-”2 is the norm in Lg(nl k,). Now (5.7) follows from classical
El

convergence theory for Fourier series if v e CT(QY the set of

Y
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0
restrictions to QY of functions from C (QK). Moreover, this set is

k,k'

; 2 aY ; 2 Y ® oY
dense in LZ(Qk,k')' Thus if v € LZ(Qk,k‘) and v' € C (Qk,k') then

log vl = @ viv), = (@ (v-v"),v), + (Q, v',v),
(5.8)

< v=v'll, v, + oy v'll, v,
It follows that
(5.9) gim sup o, vl < lv=v'l, Ivl,
00
for all v' € Cw(QE k') which implies (5.7).

Proof of Theorem 4.2. To prove the continuity of the mappings

(p,2) +'wp+m(c) for all (p,z) € M and m € Z let (p,+Z,) € M, m€ z and
€ > 0. It will be shown that there exist pj(€) > O and §,(¢) > O such that

(5.10) prm(c) - Wp0+m(c°)l < e for (p,2) € N(p,,Zy,P,6)

provided 0 < p < p,(e), 0 < & < §,(e).
To prove (5.10) note that in Cases 1 and 2 of the definition of
N(p,,%,5P,8) one has, for every m € Z,

(5.11) w

(@ T EML @) = DY () = s (@) = () ) V2

where the square roots have non-negative imaginary part and the * signs are

the same for each m € Z. Moreover,

(5.12) (8, T (5y) = zy € D(z,,p) and [p = po| <8

Py

for (p,z) € N(p,y,%,,P,8). Hence there exist p,(e) > O, §p(ge) > 0 such that
_ - _ 2y1/2 _ _ 2y1/2

(@ =9 i @] = [, @) = eI Y2 =, (€)= () ) V2 < €

(5.13)

for (p,z) € N(pg,5y,P,(€),8,(€)). To prove (5.10) in Case 3 note that in
this case if (p,Z) € N(po,go,p,d) then one has both z, = (p, + mo)2 and

(p + mo)2 in D(zo,p) for § < §,(p). Moreover wpu+mo(;0) = 0. Hence there

exists a p,(e) > 0 such that
(5.14) Mty O = ¥ 4 @) = [m,@ = ( +m)» | < e

for (p,z) € N(p;,5,5p58), 0 < p < pyle), 0 <8 < 8;(p,(e)) because
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ﬂp(;) € D(zy,p) for all such (p,;). The proof that the functions wp+m(£)
with m # m, are continuous at (Po’;c) is the same as in Case 1.
To prove the equicontinuity statement of Theorem 4.2 fix (Pgs5,) € M.

Then for all m € Z (resp., m € Z - {n,}) Cases 1 or 2 apply to wp+m(C) and if
(5.15) Fo(z,p) = (z- (p+m))Y?, Im F (2,p) > 0

then for all (p,Z) € N(p,,%,,0,8) one has

(5.16) pr_,_m(c:) - wpo-Hn(Co” = |Fm(1rp(c),p) - Fm(npo(ﬁo),po)l .

Note that Fm(z,p) has partial derivatives

D, Fo(z,0) = 5 (z= (p+m?) 72
(5.17)

D F (z,p) -(z- (p+m?) V2 (p+m)

P

Hence for z € D(zy,p) and |p - p,| < & these derivatives are uniformly

bounded for all m € Z (resp., m€ Z ~ {mo}). Now by Taylor's theorem
(5.18) F(z,p) = Fy(zg,p0) + (2 = 2) D, Fy(z',p") + (p - po) D, Fy(z',p")

where (z',p') is on the segment from (z,,p,) to (z,p). Thus one has
0>Po

Mo = vy (200 ]
(5.19)

A

[p, F (z',p")| |ﬂp(c)-ﬂpo(co)l + |p, Fz',p) | [p-p|

IA

Const, (lﬂp(t) - ﬂpo(Co)l + ]P - Pol)

for all (p,%) € N(py,%,,0,8) and all m € Z (resp., m€ Z - {mo}). Since
ﬂp(;) and ﬂpo(co) = z, are in D(zo,p) for (p,g) € N(po,co,p,d) it is clear
that there exist py(e) > 0, §3(e) > 0 such that (5.14) holds for all (p,g)
in N(po,co,po(e),do(e)) and all m € Z.

Theorem 4.3 was proved in §4. The proof of Theorem 4.4 will be based

on the following

Lemma 5.1. For every compact set K C M and every r' > r there exists

a constant C, = C,(K,r,r") such that for all u € U(p,;)eK FP,C,I one has

2 2 2
(5.20) HuHr’r. < Cl(llullh,r + HVuHh,r)



52

Proof of Lemma 5.1. Note that every u € Fp,c,r can be written
(5.201) uX) = u' X) +u"X) , Xe Q.
where
(5.22) u'(X) =I' c exp {1 x(p+m) + iywp_Hn(C)} ,
(5.23) u"(X) =" c, exp {i x(p+m) + iy'wp+m(C)} R

the c, are the coefficients of (4.28) and the notation L', I" denotes
summation over the index sets {m I Im Wp+m(i) > 0} and {m I Im wp+m(C) < o},
respectively. Lemma 4.1 implies that u € C GTr) and the Fourier series in
(5.22) and its derivatives converge uniformly on compact subsets of Qr to u'
and its derivatives. Moreover, the sum in (5.23) is finite for each

(p,t) € M. Finally
2 = 12 2
(5.24) Muur’r. = flu “r,r' + flu Hr’r.

because {el(p+m)x} is an orthogonal sequence in L, (R, _,) and the index sets
t]
defining I' and L' are complementary.

Parseval's relation for Fourier series implies that
w
2 2
(5.25) J_ﬂ lu'(x,y)|? dx = 2w L' ]cml exp {-2y Im wp+m(§)}
for all y > r. Moreover, this is a monotone decreasing function of y, whence

Ju' (x,y)]? dx <2m L' |°m|2 exp {-2r Im wp+m(c)} =2z’ ]um(r)]2 .

(5.26) T

Integrating this inequality over r < y < r' gives

(5.27) 'l o< 2m(e’ - 1) I fu (o)|? .

T

The analogue of (5.25) for u" is a monotone increasing function of y > r. In

particular, for r <y < r' one has
m 2 2
n " - T
(5.28) J_v Ju"(x,y) |2 dx < 2w £ Icm! exp {-2r' Im v, @1 .

To estimate this sum note that the sets {m l Im wp+m(c) < 0} vary with
(p,t) € M and the properties of M established in §4 imply that the set

(5.29) M= M(K) = {m| Imw_,_ (g) <0}
(p,['iieK pim
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is finite for each compact K C Y. It follows from this and Theorem 4.2 that

(5.30) u = u(K = Max {-Im w

p+m(;) : (p,Z) € K and m € M(K)}

is finite. Hence (5.28) implies

[u"(x,y) | dx < 27 exp {2(c" - ©)u} " |cm|2exp {-2r Im wp+m(c)}

(5.31) "

= 21 exp {2(r' - r)u} " Ium(r)l2
for r <y < r'. Integrating (5.31) over r < y < r' gives
(5.32) ™2, < 2m (£'-1) exp {2(r' - r)u} " |u (r)]? .
r,r' - m
Adding (5.27) and (5.32) and using (5.24) gives

(5.33) a2 o < 2n(z' - 1) exp {2Gc" -0l | |u(o]® .
’ VA

Finally, Parseval's relation in L, (-m,m) gives

T

(5.34) luCe,o) % = j luGx,p)[? dx =20 [ |u (©)]*,
- meZ

whence

(5.35) Hu": o S (r'-x) exp {2(c" - )} fuCe,o)I? .

To complete the proof of (5.20) recall that by Lemma 4.1,

2 Zoc(Q

u € Lz’ It follows by Sobolev's imbedding theorem [1, p. 32} that

h)'
there exists a constant C; = C,(h,r) such that

(5.36) lu(e,x) 42 < Co(ihuli? _ + 4D ul?2 ) < c (lul? _ + fivull2 ) .
- h,r y h,r’ - 72 h,r h,r

Combining (5.35) and (5.36) gives (5.20).

Proof of Theorem 4.4. It must be shown that there exists a constant
C = ¢(K,r,r') such that for all (p,Z) € K and all u€ F

PL,T

2 2 2 2 2 2 2
(5.37) “u"o,r' + HVuHo,r, + "Au"o,r' <cC ("u"o,r + “Vu"o,r + HAuHo’r)
Clearly it will suffice to show that

2 2 2 < c2 2 2 2
(5.38) Hunr’r. + “vu“r,r' + HAuHr’r. <cC (IIuIlO,r + IIVuIIO,r + HAuHO’r)
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since (5.37) then follows with Cc?2 + 1 instead of C2. Moreover, every

u € FP .r satisfies Au = -m(Z)u in Qr. Hence it will suffice to show that
’ s

2 2 2 2 2 2
(5.39) "u“r,r' + HVuHr’r. <cC (“u“o,r + “Vu“o,r + “Au"o,r)
since (5.38) then follows with C2 Max {|NP(C)| +1 : (p,z) € K} instead
of c2.

To prove (5.39) note that the Fourier series argument used in the proof
of Lemma 5.1 implies that (cf. (5.35))

(5.40) "Vu“i o S @' - exp {227 - yu} IVu(e,0)l? .

Moreover, if r" =-%(h + r) then h < r'" < r and Sobolev's imbedding theorem

implies that there exists a constant C; = C;(h,r) such that

. 2 2
(5.41) IVu(s,r)l° < C3 ““"2;:",r
where “."2-r” . is the norm for L%(Qr" r). Finally, the interior elliptic
s s s
estimates of [1], applied to v(x,y) = exp {-ipx} u(x,y) and L_v

P
= Av + 2ip D v - p?v in QK £t imply that there exists a constant
s

¢, = C,(h,r,r') such that
2 2 2
(5.42) “““z;r",r <c, ("“"h,r' + "A““h,r') .
Moreover, since Au = -T(Z)u in Qr o
’
2 2 _ 2 2 2 2 2
Huuh’r. + “A““h,r' = "u"h,r + Hu"r’r. + "A“"h,r + Iﬂp(c)l "“"r,r'
(5.43)

< 2 2 2
< “u"h,r + “Au“h,r + C5(K) "u"r,r'

where Cz(K) = Max {lwp(;)|2 : (p,%) € K}. Combining (5.20), (5.40), (5.41),
(5.42) and (5.43) gives

2 2 2 2 2 2
(5.44) "uﬂr’r' + ”Vu"r,r' < Ce(uu“h,r + “Vu"h,r + "Au"h,r) + C, “uﬂr’r.

where Cg = Max (C,,(r'-r) exp {2¢' - n)u®?} ¢, ¢,) and
C, = (r'-1) exp {2(r' - r)u(K)} C, C, C5. Finally, combining (5.20) and
(5.44) gives (5.39) with C? = Max (Cg,Cy Cq).

It is worth remarking that an indirect (non-constructive) proof of
Theorem 4.4 can be given by a compactness argument; see [30, Lemma 4.6] and

Alber [3, Lemma 5.3].
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The Sesquilinear Form A

- in L,(R ). Kato's first representation
P,5,T o,r
theorem [13, p. 322] associates a unique m-sectorial operator in LZ(Q0 1_)
t
with each densely defined, closed, sectorial sesquilinear form in LZ(Q0 r)'
t
,Esr in L2 (Qo ,r)

is the associated m-sectorial operator. To motivate

Theorem 4.5 will be proved by constructing such a form Ap

and showing that A
P,C,T

the definition of A note that if v € D(A
p,C’r p

Green's theorem gives

c 1_) then application of
>

>

™
= 2 -~
(5.45) (V’Ap,c,rv)O,r MVVHD,r J_ﬂ v Dyv

dx .

y=r

The formal correctness of this equation is obvious. A rigorous proof based

c

on the definition of Aﬁo is given below; see (5.115). Now v =

P u

p,L,r

where u € Fp C,r and u and v have Fourier expansions (4.7) for h <y < @ and
s t

h <y < r, respectively. Moreover, Lemma 4.1 and the Sobolev theorems [1]

imply that uy € C'[h,®), v € C'[h,r], u(y) = v (y) for h <y < r and
(5.46) um(y) = c, exp {iywp_hn(c)} ,y2r .

Application of Parseval's formula to the integral in (5.45) gives the

alternative representation

(5.47) (v,A

= 2 - 2
o0, e 00, = IVVIG L -2 néz LA () v 1% .

The right-hand side of (5.47) will be used to define the form AP C,r
’ t
Two cases, corresponding to the Dirichlet and Neumann boundary conditions

respectively, must be distinguished. To this end define

D

D,p,Ro0c
G = > al
PsL,T L @
(5.48)
N {u | supp (A+m(@)uC Q5 (4.28) holds 1n Ly Y%} ,
’
N _ 11sPs%0c A
GP’C9r Lz (QOsr)
(5.49)
N {u | supp (A+7(g))uC Q, ;3 (4.28) holds in L;”‘°°(Qr)} .
’
The condensed notation G will be used to denote G° or GN in
p’C’r p,c,r p’C)r
statements that hold for both. It is easy to verify that GP ,R is a Fréchet
’ t
subspace of L;’ROC(Q). The notation Qp,c,r : GP,Csr - LZ(Qo,r) will be used

for the natural projection defined by
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(5.50) Qp,c,ru =u Qo B} for all u € Gp,c,r .
The sesquilinear form Ap,c,r (= Ag,c,r or AE’C’r) and corresponding

quadratic form are defined by

(5.51) D(A c LZ(Qo,r) s

0.5~ %o, %po,r

1y — ' _ o (Y ot

(5.52) Ap,c,r(v,v) = (W, 0", - 2mi ) Vo (8) V() vp ()
=z
1
for all v,v' € D(AP,C,r)’ and
.53 AP,C,r(V) B Ap,c,r(v’v) » VE D(Ap,c,r) ’
and one has
Theorem 5.2. Ap ,r is a densely defined, sectorial, closed

’ s

sesquilinear form in L2(Qo r)'
’

The proof of this result requires a number of estimates which will be
developed in a series of lemmas. The first lemma shows that (5.52) does

).

indeed define a sesquilinear form on LZ(Q0 r
’

Lemma 5.3. For all v,v' € D(Ap c r) the series in (5.52) converges
3 ’

absolutely.

Proof of Lemma 5.3. It follows from Schwarz's inequality that it will

suffice to prove that

2
(5.54) mgz wp+m(c) ]vm(r)|
converges absolutely when v € D(AP c r) and
(5.55) v_(r) = L " e—i(p+m)x v(x,r) dx
: m 2w ’ :
To this end write v = Qp,;,ru where u € GP,C,r and decompose u into
(5.56) uX) =u' X +u"X) , XE Q. ,

T

as in the proof of Lemma 5.1.

Consider first the component u'. Parseval's relation implies that

m
2 - ' 2 -
(5.57) J_“ [u' (x,y)|? dx = 21 T' [ |® exp {-2y Im wp+m(c)}



m
J_n [7u’ e,y [ dx = 2m 20 [y [*Cptm|® + fw @] exp {-2yImw (D)}
(5.57 cont.)

for all y > r. Moreover, these are monotone decreasing functions of y that
tend to zero exponentially at ®, Hence u' € L;(Qr).

Next let n,n' € Z satisfy n < n' and define

n',
(5.58) up g (0 = 121 ey exp {i x(ptm) + 1y wp-hn(C)}
n',
where Z denotes summation over the index set {m | Im w +m(C) > 0 and

n <m<"n'}. Applying Green's theorem to u& ot and ul
s

in ives
, ' rr'g

n »

s

(5.59) JQ {ol v dul o+ ‘v“x'],n'lz} dx = J w _, Db, u' ,ds
r,r' r,r'

whence, using the Helmholtz equation and p-periodic boundary condition for

u' ,, one has
n,n

(5.60)  Mvar M2 .- 7@ ) 2= J:T U LS LA
Making r' » © and writing “.“r = “."r,w gives
T
loug ol = m) by b= [ Gy g e
(5.61) ot
= -omi ) W@ (0 ]2

where vm(r) = um(r) = c

n SXP {ir wp+m(c)}. In particular, taking the real

part of (5.61) gives

a',
G622 [ Ime @ ym]® - 1vay 2 - Re 7@ u) W3

Hence the convergence of the Fourier series for u' in L;(Qr) implies that
2
(5.63) ' Im Y 4m (8 [vp(o) |2 < = .

The convergence is absolute because all the terms are non-negative.

Now consider the set

(5.64) {-i wp+m(C) [ Im w ) >0} .

i

Each member of the set satisfies
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(5.65) |arg (-1 wp+m(C))| <m/2 .

Moreover, elements of the set (5.64) satisfy

(5.66) LANGRESI RS UNRLESE

whence

(5.67) arg (-i wp+m(c)) -+ 0 when |m| >

It follows that

(5.68) 8 = Max {|arg (-i wp+m(§))| : Im wp+m(§) >0} <m/2 .
Hence if Im wp+m(§) > 0 then

(5.69) |Re wp_'_m(l;)l vy |? < tan 8 Im Vo (8 fvp (]2

and (5.63) implies that
' 2
(5.70) ' |Re wp_m(c)l [V () ]* <= .

(5.63), (5.70) and the finiteness of the sum defining u" imply the absolute

convergence of the series (5.54).

Lemma 5.4. For each compact KC M and each r > h there exists an

A ) one has

= h. cu D
a = a(K,r) such that for all v (p,2)EK T,

1
(5.71) low 2w @) lv,@ P <7 Il +a vl .

Proof of Lemma 5.4. Schwarz's inequality and the definition (5.55)

imply that 2w ]vm(r)|2 < "v(‘,r)"iz(_ﬂ,ﬂ). Since v € L;(Qo’r) it follows by

Sobolev's imbedding theorem (1] that there exists a constant C, = Cy(r) such

that for all € > 1 one has
(5.72) 21 vy |? < co e WG+ e IVlE D .

Next, note that if M(K) is the index set defined by (5.29) then M(K)

is finite and hence
(5.73) €, = C;(K) = Max {|wp+m(c)| : (p,Z) €K and m € M(X)}

is finite for every compact K C M. Combining (5.72) and (5.73) gives



{2m g o) fv, () %]

IA

2 ¢, I |v ()2
(5.74)

A

2me, ] vy @]?
€M

A

Co & e (wlE L+ ervl?

A

1 2 1|2
Llwol? _+a bl

provided that € = e(K,r) > 1 is chosen such that C, C, M €' < 1/2 and

a = a(K,r) satisfies a > C, C; M €.

Corollary 5.5. The sesquilinear form Ap T,r is sectorial for all
£ ’
(p,z) € M. In fact, for each compact K C M there exist constants
Y =v(K) € R and 6 = 6(K) < 7/2 such that for all (p,Z) € K and all

v E D(Ap, ,r) with “V“o,r = 1 one has

4

(5.75) A w)e {zec: |arg (z - v)| < 6} .
P,C,r -
Proof of Corollary 5.5. The proof generalizes one of Alber [3, Lemma
6.31. Let (p,z) €K, vE€E D(Ap’c,r), “V“o,r = 1 and write Ap’g,r(v) =1, +1,
where

(5.76) I, = ﬂvVnﬁ,r - B @) v ?,
and
(5.77) I, = -27mi %' LA () v, |? .

Then by Lemma 5.4 one has

(5.78) |m1,| <5 lovlz  +a.

Similarly, the real part of I, satisfies

(5.79) Re T2 Iwwl2 -5 Iwwl2 -a=glwl2 -a.
Combining (5.78) and (5.79) gives |Im I,| < Re I, + 2a whence

(5.80) I, € {ze C: |arg (z + 2a)| < n/4} .
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Next, recall that |arg 12| < 8 < m/2 where 8 = 8(p,;) is defined by (5.68).
In fact, it is elementary to show that the limit relations (5.66), (5.67)
hold uniformly for (p,f) € K and hence there exists a 6, = 6,(K) < /2 such
that Iarg Izl < 6, for all (p,Z) € K. Combining this estimate with (5.80)
gives (5.75) with Y = -2a and 8 = Max (7/4,6,).

The proof that the form A is closed is based on the following

P»Z,r
generalization of an estimate of Alber [3, p. 269].

Theorem 5.6. For each (p,5) € M and each r' > r > h there exists a

constant C = C(p,%,r,r') such that for all v = Q u with u€ G one
PsC,T PsC,T

has (see (4.30), (4.31) for notation)

(5.81) Jul2 <cdA,

2
oo S RCOTIE N

4

The proof of Theorem 5.6 will be based on a number of related estimates

which will be developed in a series of subsidiary lemmas. The first is

Lemma 5.7. Under the hypotheses of Theorem 5.6 one has
(5.82) 9a'l} - 7@ Bty = -2mi 2" v @ Ju (o]

where u' by (5.22) and u (y) = c; exp {iy’wp+m(C)}.

Proof of Lemma 5.7. The finiteness of the norms in (5.82) has already

been noted; see (5.57). Passage to the limit n + =0, n' + © in (5.61) gives
(5.82).

Lemma 5.8. Under the hypotheses of Theorem 5.6 there exists a constant

€, = C,(p,%,r,r') such that for all u € Gp C.r one has
i i

(5.83) Tl v <6 Huc,of® .

Proof of Lemma 5.8. (5.83) follows from the proof of Lemma 5.1,

inequality (5.35).

Lemma 5.9. Under the hypotheses of Theorem 5.6 there exists a constant

C, = C,(p,g,r,r') such that for all u € Gp r,r °ne has
i ’

(5.84) [valZ o+ < co luce,ol® .
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The proof of Lemma 5.9, starting from (5.57), is exactly like that of

Lemma 5.8 and is therefore omitted.

Lemma 5.10. Under the hypotheses of Theorem 5.6 there exists a

constant C; = C,;(p,Z,r,r') such that all u € G one has
3 s PsC,T

(5.85) 2" @l [?] < fuce o} .

Proof of Lemma 5.10. One may take C; = Max {|wp+m(c)|: Im wp+m(l) < 0}
and use (5.34).

Lemma 5.11. Under the hypotheses of Theorem 5.6 there exists a

constant C, = C“(p,g,r,r') such that one has
(5.86) lu'l% < ey Tuc,o)f® .

Proof of Lemma 5.11. Integration of (5.57) over r < y < ® gives

(5.87) “u'"i = 2w &' lcm|2 exp {-2r Im wp+m(C)}/2 Im w )

p+m
which with (5.34) implies (5.86) with C,(p,Z,r,r') defined by
C:l = Min {2 Im w +m(C) : Imw +m(?;) > 0}. This minimum is positive because

Im wp+m(c) ~|p + ml, |m| + o (see (5.66)).

Lemma 5.12. Under the hypotheses of Theorem 5.6 to each o > 0 there
corresponds a constant 6 = 6 _(h,r) such that for all u € G one has
a a p";’r

(5.88) JuC,0? < a "Vu“i’r +8, ||u||§,r .
Proof of Lemma 5.12. Recall that u € Cw(ﬁg) and hence um(y) € Cw[r,w).

Hence by a Sobolev inequality there is a constant Y = Y(h,r) such that for
all € > 1 one has [1]

r r
(5.89) lu (]2 <y e [J lu, () |2 dy + € I lu, (0 |2 dy] .
h h
Moreover, by Parseval's relation,
i
(5.90) [uCe, 72 = J [uG,y) |2 dx=2m ] |u(|*,y>h,
- meEZ

whence
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r
(5.91) loll2 =2 } J lu I dy ,
b,r wzh O
r
(5.92) Ipul2 =2 J J D, w (7)]? dy .
vy 'h,r wez'n 7"
Combining (5.89)-(5.92) gives the estimate
lo,m1? < v e oyl |+ e ful2 )
(5.93)

<y vl v et b2 )

Choosing Y(h,r)e”! = a, Y(h,r)e = Y2(h,r) /o = 8,(h,1) in (5.93) gives (5.88).

Proof of Theorem 5.6. The definition (5.52), (5.53) implies that for
all v = Q )

U E D(A

Ps%» P>C,T

(5.94)

= 2 _ 2
AP,;’r(v) = ”Vvuo,r 2mi méz wp+m(C) lum(r)| .

Combining this with Lemma 5.7 gives the representation
(5.95) Ap’c’r(v) = |[Vv"§’r+ Va2 = m(2) Ju'f2-2mi 2" wpm(c) lu, (o) |
whence

O L P L L T

(5.96)
=Re fA) () + 1@ fulf 42w 2w (@) e () |2}

A

e+ m@] bar 2 + 2 |2 LAV (TR CO T R

P

It follows that

T L Ll O LW L ¥ LS ML

(5.97)

A

A g, @1+ Im@ ] Htll + 2m 20w @) Juy(o |7

N R e

Combining (5.97) and the estimates of Lemmas 5.8-5.11 gives
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(5.98) N G L I A O R
where
(5.99) Cs = Cg(p,C,T,r') = C, +C, + 21 C, + |1(D)] C, .

On combining (5.98) and (5.88), and recalling that u = v in Qo g one finds
t

(5.100) Jull?,

ot S A L ]+ ) IWlE + e oy + 1) VI

where o > 0 is arbitrary. Defining o by C,a = 1/2 and C = C(p,i,r,r'")
= 2(C58u + 1) gives

(5.101) lall?,y oo <3 clA, o @]+ Ivl2 )+ 3 lovl?

0,r

since %—C =Csax + 1 > 1. Finally, (5.101) implies (5.81) because

vl L < bl e

Proof of Theorem 5.2. The denseness of D(Ap ) in LZ(Q ) follows
oo 0
i i Q = Q c A
from the obvious inclusion Co( Q,r) Qp,C,r c, &, ) D( ,C,r) The

sectorial property of A was proved as Corollary 5.5 above. To prove

p’C’
, n) _ LGOI (n)

that A PsC,T is closed let v QP,C r n ; with u € Gp,C,r’ be
A ~convergent to v € L, (Q ), ie., v > v in L,(® ) and

PoC,x G G 0T

) > 0 when n m > ®, It must be shown that v = Q u
p:;:r (n) P,C,T
where u € G and A E (v-v"’) >0 when n >~ [13, p. 313]. Now
Theorem 5. 6 applled to v ﬁf v(m) = p z, r( (@ _ (m)) implies that {u(n)}
is a Cauchy sequence in G and hence lim u(n) =u€Qi exists.
PG, P,C,r
Clearly, v = Q u since Q is bounded. Moreover, the convergence of

(n) PyCsT e (n)
{u } to u in Gp C,r implies that ”Vv - Vv "o r + 0 when n > ©. Hence,
’ t L]
the representation (5.94) of Ap z r(v) implies that to complete the proof of
t ’

Theorem 5.2 it will be enough to show that

(5.102) ln § w, @ lu -u™mi2 -0

o mEZ pim m m
Now Lemma 5.3 and the relation (5.60), applied to the partial sums of the
Fourier series of u € Gp,C,r in Qr,r' imply that

2 L (@ lug(@ [ = @C,r),DuC ) +1@ lul? Lol

—T,T)

(5.103)
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It follows that (5.102) holds if

; (n) ' ' (m)
(5.104) 1im (u(*,r')-u (*yr'),D u(*,r')-D u (*,r")) =0 .
. > s B vy ) v > LZ (_'n-’-"-)
To prove this define s = 1/2 (r + r'), s' = r + r' so that r < s < r' < s',

Then a Sobolev imbedding theorem [1] implies that

[CIGEDN BHCH DML MCFED] B EEICR D)
(5.105)
<l g pr Tl g o
< bl g o

Moreover, the interior elliptic estimates of [1] imply that there exists a
C = C(r,r") such that (see (5.42))

(5.106) foll?, g pv < cluly o+ Haul? o0

Since Au = -7(Z)u in Qr, (5.105) and (5.106) imply
(5.107) ICICPEDFLNHCH D) RENCUN 1

where C' = C'(p,Z,r,r'). Applying (5.107) to u - u(n) gives (5.104). This
completes the proof of Theorem 5.2. Note that the proof actually implies

r is a topological isomorphism of the Fréchet

) =0

Corollary 5.13. Q
space Gp onto D(AP , topologized by the norm
b 3

(434 P>C»T GP’C’r

(5.108) (|A |+ vl; D 12

PsC>T

Proof of Theorem 4.5. The densely defined, sectorial, closed sesqui-

linear form A is associated with a unique m-sectorial operator T
p’c’r p’g’r

in LZ(Qo r) by Kato's first representation theorem [13, p. 322]. Theorem
i

4.5 will b d by showi that A =T
w e proved by showing tha 0.T,T )L,

. T this let v € D(A
o prove s le ( p’2;’1:)

v. It will be shown

The Inclusion A CcT
_—__-——-p’c’r p’g’r

= P c D(A i = - =
.ot Tpog,r © Py p,y) and vrite z = -Av

that

A
p’c’r

= = ' v
(5.109) Ap’c’r(v',v) = (v"Ap,c,rv)o,r (v ’z)o,r , v'e D(Ap,g,r) .
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Note that this implies that v € D(T and T =z =A v, whence
P WY p.T,r’ p.g,r

A CT .
P>%,T P>%,T
Equation (5.109) will be proved by applying the generalized Dirichlet

or Neumann boundary condition to v; i.e., the integral identities of the

definitions (3.19), (3.20) of D(A§°°). To this end let r' > r and let

¢r r,(y) € C7(R) be a cut-off function with the properties
s

1,y

IA

2r + r')/3 ,
(5.110) ¢r,r'(Y) =

v

0,y>(r+2c")/3,

and ¢;,r,(y) < 0 (whence 0 < ¢r r.(y) < 1). Then

(5'111) vr o = ¢r r'vl IS LB:P,COm(Q) or L;sp’COm(g)
and

= 1 ' LX)
(5.112) er,r’ ¢r,r' Vv' + ¢r,r' v'y

where ¥ is a unit vector in the y-direction. The integral identity of

(3.19) or (3.20), applied to v € D(Aﬁoc) and Ve gt gives

0= (Vr’rt ,AV)O’IJ + (vvr’rv ’Vv)o,r'
(5.113)

@ ’er' ’Av)o,rv + (¢

A} ' A
r r'Vv ’Vv)o,r' + (¢r,r'v ’Dyv)o,r' :

r,
Now the last term satisfies

r i
(¢;’I.V',DYV)0,I. = J I_n ¢',r. v'(x,y) Dyv(x,y) dxdy

r r
(5.114) e -
= J ¢ () [J v'(x,y) DYV(x,y)dXJ dy
r > -

¥

T
-J v'(x,Y) D_v(x,Y) dx
- y

-27i Z " (@) vi(r) v.(r), r' > r;
ez pim m m

see [30, p. 57] for a similar calculation. Thus passage to the limit

r' > r in (5.113) gives

(5.115) (v',Av)O r + (Vv',Vv)0 . 27i (¢9) v&(r) vm(r) =0

méz “pim
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for all v' € D(AP c r). The definition (5.52) of AP
(5.115) is equivalent to (5.109).

Cor implies that

The Inclusion T To prove this let v € D(Tp z r) and
t

C A .
P>CsT PsC,r
v=2z€L,Q ). This is equivalent to the identity

T
PsC»T

0,T
(5.116) AP,C,I(V"V) = e,
or
(5.117) Ov',9v), - 2mi nﬁEZ Vo (B) Vp(E) vp(m) = (v'hz)g o

for all v' € D(A ). Taking v' € C:(Q0 r) gives
’

p’c’r

(5.118) -Av = z in Qo,r

by elementary distribution theory. Thus to complete the proof it is enough

to show that v € D(A ). Note that the definitions of F and G
PsC,r P,C,T PsC,T
imply
(5.119) F =6 n 12,0
I 4 p,C,r 2 ’
Thus it will suffice to show that u = Q;1; " satisfies Au € Lfoc(ﬂ). This
t] t

will be done by calculating the distribution Au. To this end note that for
all ¢ € C?(Q) one has

(5.120) (—Aw,u)Lz(Q) = (Vw,Vu)Lz(Q)

because u € L;’QOC(Q). Thus

(5.121) (—Aw,u)LZ(Q) = (Vv,p,Vv)o,r + (V¢’V“)r,m .

Now equation (5.117) with v' = { gives

(5.122) (w,,vV)c’r = (w,z)o’r + 27i méz wp_'_m(r,) Y (r) v (1) .

It will be shown that the last term in (5.121) satisfies

(5.123) (W, %0, = 1@ W, = 218 [ v (0) Pl vy () .
k] 3’ ﬂEZ
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Adding equations (5.122) and (5.123) and using (5.121) gives

(5.124) (—Aw,u)Lz(Q) = (w,z)o,t + W(C)(w,u)r’m = (w,f)Lz(Q)
where

z(X) , XxXea ,
(5.125) £(X) = 0r

@ ux , xeu .

oo
3

Thus -Au = f € Lf°°

).
The proof of Theorem 4.5 will be completed by verifying (5.123). To
this end recall that u € Gp L,r and Au = -m(Z)u as a distribution in Qr *
’ ’ b
Now define er,r,(y) =1 - ¢r’r.(y), where ¢r,r' is defined as above, and

define
(5.126) Yo o =8 W E ST
Then the distribution definitions of Vu and Au in Qr « imply

4%

<

(=]

3
]

BY, oW =

-Au
r,r r,» r,r ,r'’ )r,m

r
(5.127)

T Wy W) o -

On the other hand, proceeding as in the first part of the proof one finds

(W V) = (8, W0, %)+ (8] 4,Dow)
(5.128)

> (W, V) o+ 2mi méz VoD Y (1) up ()

when r' > r. Thus passage to the limit r' - r in (5.127) gives (5.123)

because v = Q u satisfies vm(r) = um(r).

p’c’r

Proof of Theorem 4.6. The proof of the continuity of

{Ap,c,r | (p,z) € M} will be based on a criterion established by Kato

[13, Theorem IV-2.29]. Thus for each (p,,z,) € M one must construct a
Hilbert space ¥, a neighborhood N(po,co) C M, operators U(p,Z),

v(p,g) € B(K,LZ(QO,I)) for (p,z) € N(p,,%,), and operators U,V

€ B(x’LZ(Qo,r)) with the properties that U(p,z) and U map J€ one-to-one onto
D(Ap,c,r) and D(APo,Co,r)’ respectively,

5. A ) = V(p,L), A U=V,
(5.129) p,z,r V(P (p»2) PorT st
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and
(5.130)  |u(p,x) - uf » 0, [V(p,2) - V| > 0 when (p,2) + (py,z,) -
The space X will be defined by
(5.131) ¥} = D(A )cL (A,Qo’r) .

Theorem 4.4 implies that X is closed in the topology of L;(A,Qo r) and
i

hence is a Hilbert space. Next a neighborhood N(p,,Z,) and linear operators
(5.132) I(@sZ5pg58,) € BOLL (AR D) 5 (,8) € N(pg,Z,)

will be constructed with the properties

(5.133) J(p’C’po’Co) maps X one-to-one onto D(AP,C,I) ,
(5.134) J(po,co,po,go) = E is the natural embedding of
1
*in L340 )
(5.135) (p,2) ~ J(P,C5Py58,) € BGK,L;(A,QO r)) is continuous
i

at (py,Z,) -
The desired operators can then be defined by

(5.136) U(P,E) = EO J(P,C,PO,CO) , U= U(PO,CO) s

(5.137) v(p,g) = A

D, T, V(Porgo) s

L Um0,V
where E; : L;(A,Qo r) - LZ(Qo r) is the natural embedding. It is clear that
i ’
these operators are in B(:K',LZ(Q0 r)) and U(p,z), U map ¥ one-to-one onto
’
D(A ), D(A ), respectively. Equations (5.129) hold by definition.

PyC,T PgslgsT
Moreover,

"U(ng) - U“ = "Eo(J(P,E’Po’Co) - J(Poagoapoago))"
(5.138)
< 13(p,2,py55,) - E[ >0

when (p,Z) + (py,%,) by (5.134), (5.135). Similarly, for all u € X,
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lveo) - wul = 183G.2,p,5)u - 83(pys8y5P0550)uly

(5.139)
< haestspysggdu ~ Bl o
< 13p,z,p554) - Bl fully,
whence
(5.140) ﬁv@,;) - vl < l3.z,p,.20) - El » 0

when (p,Z) * (py.G,). The proof of Theorem 4.6 will be completed by
constructing the family J(p,Z,p,,l,). The cases of the Dirichlet and

Neumann boundary conditions will be treated separately.

Construction of J - The Dirichlet Case. The construction generalizes

one of Alber [3]. To describe it let v € X = D(A

u € Fp Co,r The Fourier expansions of v and u have the forms
0250

(5.141) v,y = ] v () exp {i(py +mx} , (x,y) €Q
ez ,

(5.142) u(x,y) = mgz um(y) exp {i(p0 + m)x} , (x,y) € Qh,w .
Moreover, vm(y) = um(y) for h <y < r and

(5.143) w (y) = ¢ exp {iyw )} fory > r .

oy ra(®o

Now introduce a function § € Cm(R) such that

1 for -2 <y<r, = (r+2n)/3,
(5.144) gy =

0 for r, = 2r +h)/3 <y <

and £'(y) < 0 (whence 0 < £(y) < 1), and define, for each y € R,

(5.145) 4 _(p,Z,Py,5q,¥) =expliy [wpm(t:) —wpom(?;o)]}[l— E(M1+E(Y)

Choice of N(pg,Zo). The equicontinuity of the functions wp+m(;),
Theorem 4.2, implies that there exists a neighborhood N(p,,Z,) € M such that

(5.146) lexp {1y [w (@) - w, (€)1} - 1] < 1/2
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for all (p,z) € N(py,%,), mE Z and y € R. Thus, using ||21| - Izzll

< |z; - z,| one has

Hd, (psTspesTos) | = 1] < 1d,(Pi2sR0sT05y) = 1

(5.147)

< lexp {ay oy @) - vy @)1 - 1] [1-E) ] < 172
and hence
(5.148) 1/2 < [d (p,5,pg»5»y) | < 3/2

for all (p,C) € N(p,,5,), m € Z and y € R.

Definition. For all v€ ¥ = D(Ap r r) with expansion (5.141) on
0350
Qh,r let
J(P:’;:FO’CO) v(x,y)
(5.149) méz 4 (PsT5PosZ0sy) Vu(y) exp {1(pytm)x} in Qp

= exp {i(p-py)x}

v(x,y) in h

Note that d (p,Z,P;,%,,y) = 1 and hence J(p,Z,Pg,%5) V(X,Y)

= exp {i(p- py)x} v(x,y) for (x,y) € Qh ;.- Thus the definition produces
»T)

no discontinuities at y = h. The proof that J has the properties (5.132)

-(5.135) will be developed in several lemmas.

Lemma 5.14. There exists a constant M = M(N(p,,z,)) such that
k
(5.150) Dy dp(PsTsPosZesy) | <

for all (p,zg) € N(po,go), m€ Z, y € R and k = 0,1,2.
This result follows easily from the definition (5.145) and the equi-
continuity of the family {Wp+m(;)}.

Lemma 5.15. J satisfies (5.132); i.e., for all v € D(Ap . r) one
0:Co>

has J(P,L,py,%o)V € Lé(A,Qo,r) and there exists a C = C(po,co) such that

(5.151) [3¢ps2,p0 550V < ¢ vl

1,850, = 1,A30,T

for all v € D(APo,Co,r) and all (p,z) € N(p,,%,)-



71

Proof of Lemma 5.15. For all v € D(Ap r) one has

O’Coa

P I

(5.152) o,r

2 2
"v"l,A;o,h + “v"l,A;h,r

r
2 0
oI} pyon + 27 méz Jh 1) dy
where
(5.153) Tp(n) = @+ lpptn|® v [? + [opv |2 + [p2v) ~ (potm)® v | .

Similarly, writing

(5.154) J v (9) = 4 (psTsPgs%0,Y) Vi (¥)
one has
r
50222V, = oo (1omp) W2 oy 4 2m ] Jh () dy
(5.155)
where

= 2 2 2 2 - 2 2
(5.156) I (y) = (1+ |ptm|®) v | 4—|Dvam| + |1)vam (ptm)® Jv |% .
Now a simple calculation gives the estimate
.15 foxo (120 1wl o < G Il o

where C; = C; (N(py,5y)). Similarly, Lemma 5.14 implies that there is a
constant C, = C,(N(p,,5,)) such that

(5.158) Ly < ¢ 12

for all (p,g) € N(p,,Z,), m€ Z and h < y < ». It follows that
J(P,T,PgsZ,)V € LI(A,R, ;) and (5.151) holds with €% = Max (C2,2nC%).
’

Lemma 5.16. For all v € D(A ) one has
E— PosCosT

(5.159) J(p,s%sPy 55,V € D(Ap,g,r)
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Proof of Lemma 5.16. Since D(A ) =P F it must be shown
PsC,r Ps5,r D,C,T
. Recall

that v = J(p,c,po,co)v has a continuation U to Q which is in Fp C.r
s t]

that for h < y < r one has um(y) = vm(y) and hence
(5.160) V(x,y) = ] d (p,T,Pg5505Y) up(y) exp {i(ptm)x}
mEZ

where um(y) is defined by (5.142), (5.143). Moreover, for h<r, <y <r

one has
(5.161) dp (PsT,Pgs0gsy) = exp {iy [w  (2) - wpom(co)]}

and hence it is natural to define the continuation of Vv by (5.142), (5.143)

and

(5.162) ulx,y) = méz c, exp {ix (ptm) + iy wp+m(C)} , Y21 .

It is clear from the convergence of (5.142) in L, ’QOC(Q

h) (Lemma 4.1) and
Lemma 5.14 that (5.162) converges in Lz ILOC(Q ) and hence u € L > OC(A Q).
Also, the py-periodic boundary condition satisfied by v, together with
(5.149) and (5.162), imply that U satisfies the p-periodic boundary
condition. Moreover, u(x,y) = exp {i(p- po)x} u(x,y) in Q H and hence

U satisfies the generalized Dirichlet condition (i.e., u € L, ,p,koc(g))

because u € LD po,loc(n). The preceding shows that U € D(AD %oc)_ Finally
the expansion (5.162) has the form (4.28) corresponding to (p,c) € M and

hence u € F .
p,%,r

Lemna 5.17. J(p.%.Pg.5,) maps D(A, . ) one-to-one onto D(A, ).

Proof of Lemma 5.17. Lemma 5.16 implies that J(p,%,p,,5,) maps

D(Ap r r) into D(AP . r). Moreover, it is clear from (5.149) and (5.141)
0369 2G>
that J(p,&,po,go) is injective. The surjectivity may be verified by

constructing the inverse. To do this let v = P u € D(A ) and
p!Csr p’C’r

(5.163) v(x,y) = 1§ v, (y) exp {i(p#m)x} in &
meEZ ’

and define

m;z d,(PaT2p,50, ) ' v () exp {i(pm)x} dn 9y
vy (x,¥) = exp {i(p,-p)x}

(5.164) v(x,y) in 2,y
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Note that ]dm(p,g,po,co,y)_ll< 2 for all (p,%) € N(p,,L,), m€ Z and y € R,
Hence the technique used to prove Lemma 5.16 can be used to show that
v, € D(Apo,Co,r) and J(P,Z,Pys5o)Vy = V.

Property (5.134) is obvious from definition (5.149) because
dm(po,go,po,co,y) = 1. Hence the verification of properties (5.132)-(5.135)

of J may be completed by proving

Lemma 5.18. (p,%) + J(p,L,Pys8,) € B(H,L;(A,Qo r)) is continuous at
(PgsZq)-

Proof of Lemma 5.18. It must be shown that "J(p,c,po,qo) - E“ -+ 0

when (p,%) * (py,%g). An equivalent condition is

(5.165) uJ(p,C,po,Co)v - Evl + 0 when (p,Z) > (Pys%g) »

1,A30,r

uniformly for all v € ¥ such that "v“l Ao T < 1 [13, p. 150]. To verify

(5.165) define a bounded operator Tp—p in Lé(A,Q0 r) by
0 ]

(5.166) Tp_p0 v(x,y) = exp {i(p-py)x} v(x,y)

Then for all v € ¥ one has

(MCHS FNILER 1 NN FCR S PRI Tp_Povnl’A;o’r

(5.167)

+ “TP‘POV - Ev“l,A;o,r .

Moreover one has, by (5.149) and (5.166),

J(PsT5PysL,) Vv(X,y) - Tp_pOV(x,y)

(5.168)

méz {d,(p,2,ysy5y) - 1} v (y) exp li(ptm)x} in Q s

0 in Qo,h .
whence

r
= 1

(5.169) l3a2spgste)v = T, vly ppg,p = 27 méz Jh ) dy

where
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1 - 2 2 2
I, = @+ fptml®) £, v |* + [Op £, + £, D v, |
(5.170)
2 2 - 2 2
+ lfm Df vy, + 2D £ Dy vy + @y £V, - () ® £ v
and
(5.171) fo= £0(PsT,pg,80,y) = 4 (p3Z,p,50,,¥) - 1.

Now using the equicontinuity of the family {wp+m(C)} and Lemma 5.14 it is
not difficult to show that for each € > 0 there is a neighborhood N'(p,,%,)

of (po,co) in M such that
1 P
(5.172) 0 < Iy <€ 1y

for all (p,f) € N'(po,Co), m€ Z and h < y < r, where I&(y) is defined by
(5.153). It follows that (see (5.152))

<e

(5.173) lot,z,p,2dv - T __ vl <elvly po,r S

PPy 1,A30,r -

for all v € ¥ such that Hvﬂl Aor S 10
t] ’ ’

Similarly, an elementary calculation gives

(5.174) "TP_POV - EVHI’A;O’I

for all v € { such that “v"
(5.174) gives (5.165).

1,M;0,r S 1+ Combining (5.167), (5.173) and

Construction of J - The Neumann Case. The mapping J defined by (5.149)

is not applicable to the Neumann case because the operation

v > exp {i(p- po)x}v does not preserve the Neumann boundary condition. It
will be shown that for grating domains G € S a suitable mapping J can be
defined by replacing the multiplier exp {i(p~- po)x} by a function of the
form exp {i(p-p,) ¢(x,y)}. To this end note that if x, has property (1.9)
of the definition of the class S then so do the points x, + 2mm, m € Z.
Moreover, it can be assumed that x; = -T since equivalent domains are
obtained by translating G parallel to the x-axis. This assumption is made
in the remainder of this section. Also, to simplify the notation it will

be assumed that
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(5.175) 36 n {(-m,y) | yer} = (-m,y,)

is a single point. The general case defined by (1.9) can be treated by the
same method.

Property S implies that near (-T,y,) the boundary I' has a representa-
tion (x,y) = (£,(s),f,(s)), where sis the arc length on I' measured from
(-T.y,), and £; € C°. The vectors © = (£](s),£](s)) and @ = (-£3(s),£](s))
are unit tangent and normal vectors to I', respectively. The mapping
(s,t) > (x,y) defined by

X = fl(S) -t fE(S) s
(5.176)
y = £,(8) +t £]/(s) ,

has Jacobian 1 at (s,t) = (0,0). Hence the inverse mapping

a(x,y)

[0}
1l

(5.177)

lad
i

T(x,y)

exists in a neighborhood of (-T,y,) and defines there a coordinate system
of class C2. The system is valid in a domain 0 = {(s,t) : |s| < &,
|t] < 8,}. It will be assumed that §,, §, are chosen so small that
0c {(x,y) : |]x +m| < 7m}. If extensions of 0(x,y), T(x,y) to 0 + (2mm,0)
are defined by o(x + 2mm,y) = 0(x,y) and T(x + 2T,y) = T(x,y) then the
extended functions define coordinate systems in 0 + (2mm,0).

Introduce functions Ej € C(R) (j = 1,2) such that Ej(—a) = Ej(a),
Eg(a) <0 and o > 0 and

1, |la] <6./3,
(5.178) Ej(@) = J

e
v

> 28,/3 ,

(whence 0 < Ej(a) < 1). The composite functions &, (0(x,y)) and £ (T(x,y))

are then in class C2. Similarly, introduce a function £4(x) such that

1, |x+m <6,/3,
(5.179) g,(x) =
0, 28,/3 < |x+m <&,
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and

(5.180) Es(x +2m) = £, (%)

where §3 < m. Finally define

¢(x,}’)
(5.181)
¢ (x,y)

(o-m) £,(0) &2 (1) +x E53(x)[1 -~ E,(1)] , -T<x <0,

(o+m) £,(0) E,(1). + x E3(x)[1 - §,(D)] , 0 <x <.

The two parts of the definition are consistent because both give zero in a
neighborhood of the y-axis. It will also be assumed that §, is so small
that &,(o(¢m,y)) = 1 on the support of &,(t(m,y)).

The mapping J defined by (5.149) with exp {i(p- p,)x} replaced by
exp {i(p-pg) ¢(x,y)} has the required properties (5.132)-(5.135). The
proofs are the same as in the Dirichlet case except for the verification
that v' = J(p,%,pPs5,)V satisfies the Neumann and p-periodic boundary
conditions, To verify the Neumann condition note that on the portion of T

in the neighborhood defined by supp ¢ N {(x,y) : |t(x,y)| < 8,/3} one has
(5.182) $(x,y) = (0(x,y) = m & (0(x,y)) .

Moreover, on the regular portion of I' a simple calculation based on (5.176)

gives
(5.183) O = Ty = £1(@ , Oy = "Tx = £3 (o)
whence

= (-f! ' =
(5.184) D o ( f2(c))ox + (fl(o))cy 0.

It follows from (5.182) and (5.184) that v'(x,y) (=exp {i(p~p,)¢(x,y)}v(x,y)
on Qh) satisfies

(5.185) D, v' = exp {1(p-p)¢} (D, v + 1(p-py)D, ¢) = 0
on supp ¢ N I'. On the remainder of T v' = v satisfies the generalized

Neumann condition. The validity of the generalized Neumann condition for

v' follows by a partition of unity argument.



77

To verify that v' satisfies the p-periodic boundary condition note
that (5.181) and the assumption that El(c(in,y)) =1 on the support of
€, (t(¢m,y)) imply

b(m,y) = (o(m,y) +m) &, (t(m,y)) + (1 - &,(t(m,y)))
(5.186)

(o(-m,y) + ) g, (t(-my)) + T - & (1(-m,¥)))

o(-m,y) + 2m E2(T(-T,y)) + 2m(1l - &, (T(~m,¥)))

= ¢(-m,y) + 2m
and similarly
(5.187) D, ¢(m,y) =D ¢(-T,y) .
Thus
v'(m,y) = exp {i(p-p,) ¢(m,y)} v(m,y)
(5.188)

exp {i(p-po) ¢(-T,y) + i(p-p,) 2m + 2mipy} v(-m,y)

exp {2mip} v'(-m,y)
and similarly
(5.189) D, v'(x,y) = exp {i(p-po)¢} (D v + i(p-p,) (D,9)V)

whence

D v'(m,y) = exp {i(p-po) $(-m,y) + i(p-p,)2m + 2mip,} x
(5.190)
x b v(-m,y) + i(p-p,) D, ¢(-T,y) v(-T,y)}

exp {2mip} D, v'(-T,y) .

The above discussion completes the proof of the continuity of the

famil A :
amily { PsG,T
that for fixed p € (-1/2,1/2] the family {Ap

(p,z) € M}. The final assertion of Theorem 4.6 states

i€ Mp} is holomorphic

in the generalized sense of Kato [13, p. 366]. This may be proved by means
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of the family of operators Jp(c,;o) = J(p,Z,p,Z,). It is only necessary to
verify that ¢ — Jp(c,;o) is holomorphic on Mp. A proof has been given by
Alber [3, p. 271].

Proof of Theorem 4.7. D(Ap,;,r) = Pp,;,r Fp,;,r is a closed subspace

of the Hilbert space L;(A,Qa r), by Theorem 4.4. Ap cor " z defines a
i i i

bounded operator from this space into Lz(ﬂo r)' Thus the operator
3 .
T : LZ(Qo,r) -> D(AP,C,r) defined by Tf = R(Ap,c,r’z)f for all f € Lz(Qo,r)

is closed and defined on all of LZ(Q0 r). Thus T is bounded, by the closed

graph theorem.

Next note that R(Ap = ET where E : D(A ) > Lz(Qo r) is the
i

g2 PsT,T

natural embedding. Hence, the compactness of the resolvent of Ap C.r
’ ’

follows from the compactness of E. Now, in the Neumann case F
1,p,Roc
CL2

G € LC. In the Dirichlet case, F C LD,p,loc(Q) = closure of Cw(Q) in

1,%0c PsC,T 2 1,p,R0c
L,’ (). The last set can be regarded as a subset of L,’"’ (By) for

PsC»T
() and hence the compactness of E follows from the hypothesis

which the natural embedding into L%oc(BD) has the local compactness property.
Hence, in this case E is compact without local restrictions on I' = 3G N Q.
. The discreteness of

’E ’r
) follows immediately; see Kato [13, p. 187].

This proves the compactness of the resolvent of Ap

G(A
( P>C,T

Proof of Theorem 4.8. It will be shown that if ¢ € M; then the

operator in LZ(Q0 r) defined by
3

(5.191) T =P, ¢,r ROALT(E) Py

is a bounded inverse of Ap,C,r - ﬂp(c) in LZ(Qo,r)' To prove that T is a

right inverse of A - WP(C) let f € LZ(Q0 r) and define u= R(Ap,ﬂp(;))f.
’

P»G,T
Then u € R(Ap) and

f in Qo,r R

(5.192) (A - T ())u="P.f =
p P r 01in Q.

In particular, (A + ﬂp(;))u = 0 in Qr and thus since u € L,(R) the Fourier
expansion (4.28) must hold with Im wp+m(C) > 0 for all m € Z. Thus
A d
u € Fp,;,r and it follows that Pp,c,ru € D( p,;,r) an
. A - f=[A - P =(-A-T = f
(5299 14, T, @1TE- (8, =T @1F, 6 (b= @)ul
0,T

by (5.192).
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To prove that T is a left inverse of Ap,c,r - ﬂp(;) l?t v € D(Ap,c,r
v has Fourier expansion (4.28) with Im W'+m(E) > 0 for all
. n L;(A,Q) = D(Ap) and one has

).

Then u = P!
P,C,T +
mE Z because L € M. Thus u€ F
P PsCs

-1
Prllg gp = Tp®v = (A =M ENR, v
(5.194)
-1
By = T ENP, ¢ xY

whence T[A

p,g,r ~ Mp(Bv = v

Proof of Theorem 4.9. The family of operators {Ap cor ” ﬂp(;)l [ S Mp}

is holomorphic (Theorem 4.6) and has compact resolvents (Theorem 4.7). It

follows from a theorem of Kato [13, p. 371] that either Zp = MP or Zp has
no accumulation points in Mp' But M; n Zp = ¢ by Theorem 4.8. Hence the
second alternative must hold.

To prove that Zp is independent of r > h let h < r' < r and suppose

that T_(Z) € O(A ). Then there exists a non-zero v € D(A ) such
P P,C,T 1 p,ﬁﬁr
that (A o ﬂp(ﬁ))v =0 in Lz(Qo,r)' But then u = Pp,c,ru € pyL,r

C L;’lo (A,2) and (A + np(c))u = 0 in all of . 1In particular, the Fourier

expansion (4.28) holds in Qr' w+ Thus u € F
e -
DUA, g ,pr) and (A v = TR(EDP, et

was to be shown. The same argument is applicable if r' > r.

p.C,t' and hence Pp,t,r’u

= 0. Thus ﬂp(c) € o(Ap’;’r.) as

Proof of Corollary 4.10. Theorem 4.7 implies that every z € C is

JCor or lies in p(AP,C,r)' Hence for each

z € Mp - Zp one has ﬂp(;) € p(Ap,c,r) and it follows from [13, p. 367] that

either an eigenvalue of Ap

is holomorphic on Mp - Zp. Thus to complete the proof it is
. This will be deduced

R
plc’r

enough to show that each g, € Zp is a pole of RP,C,r

from S. Steinberg's theorem {24] and the following

Lemma 5.19. Llet ¢ € M; and Im ﬂp(;) > 0 (resp., < 0). Then every

z € o(A ) satisfies Im z < 0 (resp. > 0).

PG>
Proof of Lemma 5.19. Let v € D(A ) be an eigenfunction of A
P,C,T -1 P,C,T
with eigenvalue z : v # 0 and Ap,;’rv = zv. Then u = Pp,c,rv € Fp,;,r and
hence
(5.195) (A+ 2)u=(A+ 2z)v=201in Qo r and

(5.196) (A+2z")u=0 in Qr’w
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where z' = wp(;). Moreover, Lemma 4.1 and Sobolev's embedding theorems
imply that y + u(*,y) is in Cl([h,m),Lz(—ﬂ,ﬂ)). In addition, the
assumption ¢ € M; implies that u € D(Ap) CL,(®.

Application of Green's theorem to u and u in Qr,w gives, by (5.196),

v
(5.197) (-21 Im z') J [u]? ax = —J {E-—E -u —5} __ dx .
Q . y yly=r

r,®

Similarly, application of Green's theorem in Qo r gives
’

T —
(5.198) (-2i Im z) JQ |u]? ax = J {E-—;— -u —“}y=r ax .
o,r
Adding (5.197) and (5.198) gives

(5.199) Im z' J |u]?2 aX + Inm 2 J lu]2 ax =0 .
Qr,°° QO,r

Thus if Im WP(C) =Imz' >0 and Im z > 0 then u(X) = 0 in Qr,w' But then
u(*,r) = 0 and Dy u(*,r) = 0 and hence u(X) = 0 in ﬂo,r by the unique
continuation property for (5.195). Hence Im WP(C) > 0 implies Im z < O.
The other case is proved in the same way.

Returning to the proof of Corollary 4.10, it will be shown first that
every ¢, € ZP such that

(5.200) Im T (5p) 2 0
is a pole of R . To this end choose Z, € M+ such that Im 7_(%;) > O,
P,C,r P p
so that
.201 I > C
¢ ) {z | Im z >0} p(AP,Cl,r)
by Lemma 5.19. Next choose a z, € C such that
5.202 A
( ) z, € p( ,Cl,r) s
(5.203) z, € p(AP,C,r) for all g € N(g,,6) ,

where N(g,,8) is the component of W;I(D(ﬂp(ﬁo),G)) containing g,. N(g,,6)
has compact closure and hence such numbers z; exist by Corollary 5.5 above.

In the remainder of the proof the following notation is used:
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-1

R(z,z) = (A z)

Psl,T
(5.204)
R(g) = R(C,HP(C)) .

With the above choices of g, and z; the operator

1
(5.205) B(z) = (1 - (z - 2,) R(Z,,2, )"

exists and is holomorphic for Im z > 0 (i.e., in an open set containing
Im z > 0). Indeed,

(5.206) 1 - (z - 21) R(Ly,2,) = (A

p’gl ,T - Z) R(Cl ’zl)

and the existence of B(z) follows from (5.201). The analyticity follows
from that of R(Ql,z).

To complete the proof of Corollary 4.10 note that (5.200) and (5.201)
imply that np(go) € Q(Ap,gl,r)° Since the resolvent set is open, the
continuity of np implies that there exists a § > 0 such that
np(;) € p(Ap’c ,r) for all ¢ € N(Z,,8). Hence B(ﬂp(g)) exists and is

holomorphic inlN(co,6). Now for all such { one has, by (5.202), (5.203),
1- (WP(C) - z;) R(C,z;) =1~ (ﬂp(C) - z1) R(T;,z))
(5.207)

- (M) - 2z1) {R(Z,2z1) - R(G;,z1)} .

Multiplying by B(ﬂp(g)) gives

(5.208) B(ﬂp(c)) {1 - (ﬂp(c) - 2z) R(E,z)} =1~ T(Q)
where
(5.209) ™g) = (np(c) - z,) B(ﬂp(c)) {R(z,21) - R(g;,2;)}

defines a compact operator-valued holomorphic family in N(z,,8). By
Steinberg's theorem [24], (1 - T(;))_l either exists nowhere or is
meromorphic in N(Z,,8). The second case must hold because the singularities
of (1 - TN’
for § small enough (1 - T(Z))
T = L,. Equation (5.208) then implies

are those of R(Z) and hence are isolated. In particular,

"1 s analytic in N(;o,d) except for a pole at
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(5.210) At.r WP(C) B(ﬂp(C)) 1 - 1(%)) R(Z,z))

and therefore
(5.211) R(Z) = R(Z,2;) (1 - T(2)™} BT (2))

for ¢ € N(g,,8) - {Co}. This exhibits R(Z) as a product of operators that
are holomorphic at Z, and one that has a pole there. The residue of R(Z)
at £, has finite rank [24] and hence np(co) is an eigenvalue of finite
algebraic multiplicity [13, p. 181].

Proof of Corollary 4.11. This result follows immediately from Theorems
4.4 and 4.8.

Proof of Corollary 4.12. It will be shown that

(5.212) So(a) © wp(M; nL) .

The discreteness of OO(AP) will then follow from Theorem 4.9. To prove
(5.212) let A € 0p(A ) C o(A) = [pz,w) and let A * i0 denote the points of
- P P

Mp above )\ so

(5.213) ﬂp(k ti0) = A .

If ue D(Ap) is a corresponding eigenfunction of Ap then u € Fp,ltio,r’
+ = Pp,ktio,ru € D(Ap,kiio,r) and (Ap,ktio,r - A)vt = 0, Thus
(Ap,liio,r - ﬂp(l + i0)) is not invertible and hence X t i0 € Zp'
The inclusion (5.212) and Theorem 4.9 imply that G°(AP) has no finite

v

limit points. To show that each A € Oo(Ap) has a finite dimensional eigen-
space note that the algebraic and geometric eigenspaces of Ap coincide

because Ap is selfadjoint. Moreover P maps the eigenspace of

p,A%iO,r

A E co(Ap) onto the geometric eigenspace of AP for A, as was shown

S,A+i0,r
above. However, the latter coincides with the geometric eigenspace of the
compact operator R(A * i0,z) defined by (5.204) and hence is finite

dimensional.

Proof of Corollary 4.13. To prove (4.43) note that if
oF =+
- - i h
e np(Mp n Zp) Tp then A + i0 or A - i0 is in Mp n Zp and hence

with eigen-
v_ will

= +
A ﬂp(l + i0) is an eigenvalue of fg,x+io,r or Ap’)\_io’El
function v Pp,x+io,r vVyoru = Pp,x-io,r

+ Of V_. But then u, =
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have a p-periodic extension to G that is a pure outgoing or incoming R-B
wave for A. It follows from Theorem 2.1 that u, or u_ is an eigenfunction

for Ap with eigenvalue A; i.e., A € OO(AP).

Proof of Theorem 4.14. Both statements of Theorem 4.14 follow from the
C.r (p,%) € M} and a theorem of Kato [17,

3 ’

Theorem IV.2.25]. Indeed, if (Pg1Cy) € M - I then ﬂp (€,y) € p(a

continuity of the family {Ap

po ,Co ar)

0
and hence R when (p,Z) * (py,5,). Moreover, it follows

+ R
P,C,T po;;o,r
from Kato's theorem that there exists a neighborhood N(p,,Z,0,8) C M - I.

Proof of Theorem 4.15. This result is an immediate cbrollary of

Theorem 4.14 and Theorem &4.4.

Proof of Corollary 4.16. Theorem 4.15 implies that (p,Z)

-1 . .
Pp,;,r RP,C,r € B(LZ(Qo,r)’ L;(A,Qo’r,)) is continuous on M - I for each

r' > r. This implies (4.49) with

>

(5.214) C(K,x,r') = Max Jp7? R i

(p,0)ek  P2GsT Psl,rr,r’

. . 1
where | "r,r' denotes the operator norm in the space B(Lz(Qo,r)’Lz(A’Qo,r'))'

Proof of Corollary 4.17. This result is a special case of
Corollary 4.16.

§6. The Eigenfunction Expansions for Ap

This section presents a construction, based on the limiting absorption
theorem of §4, of the diffracted plane wave eigenfunctions ¢, (X,p+m,q) and
a derivation of the corresponding eigenfunction expansions f;r Ap' For
brevity the derivation is restricted to the cases for which GO(AP) = ¢. The
modifications that are needed when UO(AP) # ¢ are indicated at the end of
the section.

Throughout this section p € (-1/2,1/2] is fixed, m € Z and q > O.
¢0i(X,p+m,q) denotes the generalized eigenfunction for Ao,p; that is, one
of the functions (3.25), (3.26). The corresponding outgoing and incoming

diffracted plane waves for Ap are characterized by the properties

(6.1) 6, (- ptm,q) € D(ALS)

(6.2) (& + w®(ptm,q)) ¢,(X,ptm,q) = 0 in 0,



84

6.3) ¢, (X,ptm,q) = ¢, (X,ptm,q) + ¢;(X,ptm,q) , ¥y 2 h,

where ¢l (resp., ¢') is an outgoing (resp., incoming) diffracted plane wave

in Qh. These properties imply the symmetry relation
(6'4) ¢_(X,P‘Hﬂ,Q) = ¢+(X,'P'm,Q)
Hence it will be sufficient to construct the functions ¢+(X,p+m,q).
To construct ¢+ let r > h be fixed and introduce a function j € CwIO,“O

such that j'(y) >0, 0 < j(y) <1, j(y) =0 for 0 <y < (h+1r)/2 and
j(y) =1 for y > r. Next define the function ¢l(X,p+m,q) for all X € Q by

(6'5) ¢+(X,P+m,q) = j(y) ¢0(X,P‘*‘m,Q) + ¢1(X,P"m,q> s X e 9 .

Then (6.1), (6.2), (6.3) imply that ¢; is characterized by the properties

(6.6) 83(-,pHm,0) € D(ATS)
(6.7 (& + w?(ptm,q)) ¢, (X,p+m,q) = -M(X,ptm,q) in @,
(6.8) ¢;(X,p+m,q) is an outgoing diffracted plane wave .

The function M in (6.7) is defined for all X € R%, p+m€ER and q > 0 by

M(X,p+m,q) = (A + w?(p4m,q)) J(¥) ¢, (X,ptm,q)

(6.9)

j"(}') ¢0(X’P+m»q.‘ + 2 j'(}’) Dz ¢0(X,P+m,Q)

and has the properties

(6.10) Me C7(R2 x R x Rp) ,
(6.11) M(x+2m,y,p+m,q) = exp {2mip} M(x,y,p+m,q) ,
(6.12) supp M(*,ptm,q) C {X | (h+ r)/2 <y <} .

It follows that M(’,p+m,q)|Q € L,(Q, r) and hence (6.6), (6.7), (6.8) can
’
be integrated by means of thg’gnalytic continuation of the resolvent of A

defined by (4.50). More generally

P
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T(e =p! . Loc
(6.13) ¢'(+,ptm,q,2) l’p’z’r Rp’z’r M(+,ptm,q) € D(Ap )

and z + ¢'(*,pim,q,z) € L;’loc(A,Q) is continuous for all q > 0 and

—F
zeM - Z . Hence, ¢'(*,ptm,p,A+i0) € D(Aﬁoc) satisfies (A + A)¢' = -M in
Q and the outgoing radiation condition (4.56) for all A € [p2,®) - Tp. In

particular, the solution of (6.6), (6.7), (6.8) is defined by
(6.14) ¢, (*,ptm,q) = ¢'(*,ptm,q,0* (p+m,q) + 10)

for all q € R, - Em » where

_ 2
(6.15) Em’p ={q >0 | w’(ptm,q) € TP} .

Note that Em P is a countable subset of Ry = (0,®) with no finite limit
’
points.
The diffracted plane wave ¢+(X,p+m,q) is defined by (6.5), (6.13) and

(6.14) and one has

Theorem 6.1. Let G be a grating domain of the class defined in §1 and
let OO(AP) = ¢. Then there exist unique diffracted plane wave eigenfunc-
tions ¢, (X,p+m,q) for each p € (-1/2,1/2], m€ Z and q € Ry - Em o
Moreover, q * ¢i(°,p+m,q) € L;’QOC(A,Q) is continuous for q € Ro,— Em o’

The uniqueness follows from Theorem 2.1 and Go(Ap) = ¢. The conéinuity
is a consequence of Theorem 4.15.

The functions

(6.16)  6(K,pHm,a,2) = §(3) 6, (K,pHm,0) + ' (X,pm,q,2) € DA

which are defined for p € (-1/2,1/2], m € Z, ¢ > 0 and z € M; - Zp will be
used in deriving the eigenfunction expansions for ¢+ and ¢_. They will be

called approximate eigenfunctions of Ap because
(6.17) (A + 2) ¢(X,ptm,q,2) = (z - Wi (p+m,q)) §(y) ¢y (X,p+m,q)
and

(6-18) ¢(X,P+m,q,w2(P‘*1ﬂ’Q) + i0) = ¢_.t(x’P+m’q)
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Construction of the Spectral Family of A . The selfadjoint operator

Ap in L, (R) has a spectral family {Hp(u) | o> p2} which is continuous when
Uo(Ap) = ¢. The spectral measure HP(I) = Hp(b) - Hp(a) of an interval

I = [a,b] will now be calculated by means of Stone's formula

(6.19) T (D£]? = 1im %J IRCA_,A * i0)E}2 ar
P g0+ 1 P

and the eigenfunctions ¢t‘ Only the main steps of the calculation will be
given because a detailed presentation of the analogous calculation for
exterior domains was given in [30].

To begin it will be assumed that I C [p?,®) - Tp and £ € LSOND).
Note that if j(y) is the cut-off function of (6.5) then

(6.20) - 36 RGAL,2) £1® < X () [R(A,,2) £(0)]*

where Xy is the characteristic function of [0,r]. Since lim R(Ap,ltio)f
exists in L, (Q, r), uniformly for A € I, it follows that oot
’

(6.21) J @ - 3%y IR(AP,XtiO) £(X) |2 dax = 0(1) , 0 > 0+ ,
Q
uniformly for A € I, Define a linear operator J : LZ(Q) + L2(B,) by

iy £, X€EQn

(6.22) J Q) =
0 , XE€B,-0Q.
Then |J| = 1 and (6.21) implies
(6.23) IRCa,,2)£1? = |5 (A ,2E]2 + 0 , Tmz >0,

uniformly for Re z € I. Next, Parseval's relation (3.29) for Ao P and
’
(6.23) imply

(6.24) [RGa_,2)E]2 = ] (I RGA_,2)6)] (pHm,*) |2 + 0()), Imz >0 ,
P P 0
mEZ
uniformly for Re z € I. To relate this to the eigenfunctions ¢,  define
com

(6.25) f(pim,q,2) = J $(X,p*m,q,2) £(X) d&X , £ € L7 ,
Q

and note
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Lemma 6.2, For all f € Lgom

() one has
(6.26) f(p4m,q,2) = (W (p+m,q) - 2) (J R(Ap,z)f); (ptm,q) .

A heuristic proof of (6.26) is contained in the following formal
calculations, based on (6.17).

E(p-Hn,q,z)

I R(A_,Z) (A - Z) ¢(X,ptm,q,Z) £(X) dx
(6.27)

[

]Q @ orm = D T0) 6 Grrmd R(Ay,2) £(0) dax

(w? (ptm,q) - z) J 9, (X,p+m,@) 3(y) R(A,,2) £(X) dx
[}

W? (p+m,@) - 2) (I R(A,,2)6)] (pHm,q)

The calculation is not rigorous because the presence of the term j¢° in
(5.16) implies that ¢(-,p+m,q,z) € D(Ap). A rigorous but longer proof may
be given by the technique of [30, p. 94].

Combining (6.24) and (6.26) gives

2 E( +m,*,z
(6.28) Irca,,2)£] mr;z HB"?F-?—))-?

2
+01) , Imz>0,

uniformly for Re z € I. Hence, putting z = A * io, multiplying by o/m and

integrating over A € I gives

< : _c ® 1E(ptm,q,\210) |2
o JI IRea xst) ]2 ax = 2 jI 1 jo Ema29) %, 4 a1+ 0()

(6.29)

- o [ 1E(ptm,q,2ti0) |2
L1 Bf BSmaiss o) a0

by Fubini's theorem. The determination of Hp(I) will be completed by
calculating the limit for o -+ 0 of the last equation. Note that the
continuity of the approximate eigenfunctions (6.16) for q > 0, z € ﬂi - Zp
(cf. (6.13)) implies that f(p+m,q,A*i0) is continuous for q > O,

X € [p?,») - TP’ 0 > 0. Thus if one defines

(6.30) Ei(p'ﬁn’q) = E(Pm,q,wz(P"‘m,Q) 7 1i0), q € Ro = Em’p

com

then for all f € L, (Q)
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(6.31) £ (pim,q) = fﬂ ¢, (X,ptm,q) £(X) dx
and
(6.32) £, (ptm,) € C(Ry - E_ 2 -

The calculation of the limiting form of (6.29) will be based on the

following two lemmas.

Lemma 6.3. For every f € Lgom

IC [p?,0) - Tp one has

() and every closed interval

[ £(ptm, g, 2i0) |2
1 (-w?(p+m,q)) 240

(6.33)  lim 9[

oot "

z db = xg @ (pm,@)) £ (ptm,q) |2

for all q € R% - Em,p where XI(A) is the characteristic function of I,
normalized so that XI(a) = XI(b) =1/2.

Lemma 6.3 follows from the continuity of f(p+m,q,A*i0) and well-known
properties of the Poisson kernels; cf. [30, p. 101}.

Lemma 6.4. For every f € Lgom

(Q), every p € (1/2,1/2], every closed
interval I C [pz,m) - Tp and every 0y, > O there exists a constant

C = C(f,p,I1,0,) such that

Y
(6.34) ) I |£(p#m,q,M%i0) |2 dq < €
ez /0 -

for all A€ I and 0 € [0,0,].

This result is the analogue of [30, Lemma 6.8, p. 103]. A full proof,
based on Corollary 4.17, is given in §7 below.

The limit of equation (6.29) for ¢ -+ 0 may now be calculated. Lemma
6.3 gives the limits of the inner integrals in (6.29). Term-wise passage
to the limit can be justified by Lemma 6.4 and Lebesgue's dominated

convergence theorem; see [30] for details. The result is, by (6.19),

(6.35) I el? = ] fw Xp (@* (4, @) |E, (p4m,0) |2 da
mez /0 -

com

for all £ € L, () and I C [p?,®) - Tp where Et(p+m,q) is given by (6.31).

The Eigenfunction Expansions for Ap' The eigenfunction expansions for

AP based on ¢+(X,p+m,q) and ¢_(X,p+m,q) can be derived from (6.35) and the
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spectral theorem by standard methods; cf. [30, p. 109ff]. Only the results
are given here. Details may be found in [30].

To begin note that since 0y (A ) = ¢ the restriction I C [p?,®) - Tp can
be dropped; (6.35) is valid for f € L{°™(Q) and all I C [p?,»). Making

I~ [pz,w) then gives the Parseval relation

(6.36) bl @ = L lEemolf
nEZ

com

for all f € L;""(R). Together with (6.32) this implies that for f € L{°(Q),

(6.37) £, (ptm,*) € C(Ry - E_ ) N LRy

A standard density argument then implies

Theorem 6.5. For all f € L,(}) the limits

(6.38) f, (ptm,q) = .i.m. J ¢t(X,p+m,q) f(X) dax
+ Moroo
o ,M
exist in Lp(R,) and (6.35), (6.36) are valid for all f € L,(R).
An eigenfunction representation of the spectral family can now be
obtained from (6.35) by the usual polarization and factorization arguments.

In this way one obtains

Theorem 6.6. For all f € L,(Q) one has

(u-(ptm)2) /2

(6.39) np(u) £(X) = J ¢, (X,ptm,q) §+(p+m,q) dq
(p4m) 2<u 70 - -
and hence
M ~
(6.40) £(X) = L.im. ) j ¢, (X,ptm,q) £, (ptm,q) dq .
Mieo  fm<M 00 T -
in L,(R).

Finally, define linear operators

(6.41) o, 5 L@ > [ @L(Ry)
meZ

by

(6.42) o, , f={f,(4m,) [me 2}

Then ¢+ P and ¢_ p are spectral mappings for Ap in the sense of
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Theorem 6.7. For every bounded, Lebesgue-measurable function ¥Y(XA)

defined on p? < A < « one has
= 2 .
(6.43) (Qi,p W(Ap)f)m = ¥(u* (ptm, ))(®i,pf)m » mE Z

where W(Ap) is defined by the spectral theorem.
Finally, the orthogonality and completeness of the generalized eigen-

functions ¢, is expressed by

Theorem 6.8. The operators ¢ and ¢_ are unitary.

+,p

i i
It is clear from Parseval's relation (6.36) that 2, P are isometries
-

which proves the completeness relation
(6.44) ¥ o, =1,

The surjectivity of ¢ p which is equivalent to the orthogonality relation
-

(6.45) o, oF =1

t,p E,p

is not a consequence of the spectral theorem. A proof of (6.45) by the

method introduced in [30, p. 112ff] is given in §7 below.

Operators Ap that have Point Spectrum. It was shown in §4 that, in

general, oo(Ap) is discrete. Let ¥, be the subspace of L,(Q) spanned by
the eigenvectors of Ap and let dim 3, = N(p) - 1 < ». Let
{Aj(p) | L <3 < N(p)} be the eigenvalues, repeated according to their
multiplicity and enumerated so that Aj(p) < Aj+1(p). Let
{¢j(x,p) | 1 <3 < N(p)} be a corresponding orthonormal set of
eigenfunctions.

Proceeding as before it is found that the diffracted plane waves

¢+(X,p+m,q) can be constructed and Theorem 5.1 holds with

- 2
(6.46) Epp = {a>0 | w?(pm,a) €T, U o8}

which is still a countable set with no finite limit points. Similarly, the
spectral family {I[,(u)} still satisfies (6.35) for f € L™ () if
Ic [p2,») - Tp - oo(Ap). It follows that Hp(u) differs from (6.39) only

by the projection

(6.47) A.(§)<u ¢j(X,p) £5() 5 £5(p) = (¢j(',P),f)L2(9)
3(P)s



91

and Parseval's relation and the eigenfunction expansion become

l ~ ~
(6.48) Ie]? = Zl £ @+ [ I 4m,0)]? , £ L@ .
j= =z

and

- 0
(6.49)  £(X) = NZl 03 (X,p) Ej(p> + ] Jo ¢, (X,p*m,q) £, (p+m,q) dq ,

j=1 bu ¥/
convergent in L, (R). The form of the spectral family implies that Ap has
no singular continuous spectrum: L,(Q) =¥, @J(‘ac, where ¥ is the
subspace of absolute continuity for Ap [13, Ch. X]. Finally, Theorem 6.8
must be modified to state that ®+,p and ¢-,p are partial isometries with
initial set ﬂ;c and final set I ® L,(Ry):

o, =P ® *

(6.50) q’i,p t,p ac > “x,p q’i,p

=1

where Pac is the orthogonal projection of L, () onto ﬂ;c'

§7. Proofs of the Results of §6

Theorem 6.1 is a direct consequence of Theorem 2.1 and the results of

§4.

Proof of Lemma 6.2. The proof follows the plan of [30, Lemma 6.3].
com

Definitions (6.16) and (6.25) imply that if f € L;  (Q) then
‘E(pm’qaz) = J ¢0(x!p+maq) j(Y) f(X) dX
(7.1) supp f
+J ¢' (X,ptm,q,2) £(X) dX
supp £
= (J £); (ptm,q) +J R(Ap,‘z‘) M(+,ptm,q) £(X) dX
supp £
= (U £); (ptm,q) +J M(X,pHm, @) R(A),2) £(X) dX
Qh,r
= (J )7 (pim,q) +
+ J (A+w? (ptm, ) {3 () ¢ (X, ptm, ) } R(AP’Z) £(X) dX
Q
h,r

since ¢'(+,ptm,q,z) = R(Ap,z) M(e,p+m,q) by (6.13) and Theorem 4.8 and

supp M C Qh - The next-to-last equation follows from R(Ap,z) = R(AP,ED*
’

To derive (6.26) from (7.1) it is necessary to integrate by parts in the
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last integral. This cannot be done directly because j(y) ¢,(X,p+m,q)
¢ L,(R). To complete the calculation introduce a function £ € Cm(R) such
that £'(y) < 0, £(y) =1 for y < 0, E(y) = 0 for y > 1 and define

1,y<n,

(7.2) £, =E( - n) =
0,y>2n+1.

Then for n > r one has En(y) =1 on Qo r and hence
’

£(pm,q,2) = (3 )7 (pm,Q)

(7.3)

+ JQ (E? (pm, ) 3 )8, (prm, @ £() R(A,,2) £(X) dX .
Now
(7.4) i(y) 6o (X,ptm,q) € D(Aﬂ’”°°(9)> (resp. D(Aﬁ’“°°<n)) .

This may be shown by interpreting exp {-ipx} ¢, (X,p+m,q) as a function on
the cylinder QY (see the proof of Lemma 4.1) and recalling that j(y) =0
for 0 <y < (h+r)/2. Moreover,

(7.5) Eq RG,2E € 1P SN(@) (resp. 1°P2°ON()

since R(Ap,z)f € D(Ap). Conditions (7.4), (7.5) and the integral identities
of (3.19), (3.20) applied to u = j¢, and v = En R(Ap,z)f give

A {36, Kyptm, )} £ (3) R(A,,2) £(X) dX
(7.6)

—jg T T8 Erm T + HEL() KA, £}

-]ﬂ v TOIE,,, 006, Coms 0T » TE (NI REA,2E0 ]} dX

where j € C:(h,w) and E(y) = 1 for y > (h+r)/2. Now

(7.7 I £, ) ¢ XKspimya) € L;’p(ﬂo ,at2)
and
(7.8) £, T R, £ € DY@, 1))

and a second application of the integral identity of (3.19), together with
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(7.6), give

A T3G6, Koptm, @)} £ (v) R(A,,2) £(X) dX

(7.9
- JQ TOE L, 6, Koptm,a) ME (NI PRGA,EX)] dX
= J JO) 0 Kyptm,q) ME (MRA,,2)EX)} dX
19
because €n+1(y) = 1 on supp En and E(y) = 1 on supp j. Also, Leibniz's

rule for distribution derivatives implies
- 1 "
(7.10) A{gnR(Ap,z)f} =g A R(Ap,z)f + 287 DyR(AP,z)f + gn R(Ap,z)f .

Combining this and the differential equation AR(AP,z)f = —APR(AP,z)f
=-f -z R(Ap,z)f gives

(M® (phm, @) {6, R(A,2)E} = -£ £ + (W-2)E R(A,,2)
(7.11)
+ 25& DyR(Ap,z)f + E; R(Ap,z)f .

Combining (7.3), (7.9) and (7.11) gives

E(ptm,q,2) = (J £); (ptm,q) - J by (X,ptm,q) & (NI (N EX)X
(7.12) supp £

+ (W (p4m,q) -2) L} o (X,ptm,q) £ (¥)3(IR(A,,2) £(X)dX
+2 JQ o (X,p4m,q) £1(¥)3(YIDR(A,,2) £ (X)dX
+ JQ 0o (X,pHm,q) £1(y) () R(A,,2)E(X)dX .

Now £n(y) = 1 on supp f and hence the first two terms of the right-hand side
of (7.12) cancel for n > n, = n,(f). 1In view of the definition (3.28),
(3.31) of the unitary spectral mapping @0 P associated with A0 - equation

’ ’

(7.12) implies that for all n > n  one has

0
Eptm,q,2) = @ (p4m,q) - 2) {2 (€. J R(A,,2)D)} ()
(7.13)
+2{e, (€] IDR(A,,2)D} (a)

+{o, €T RGA,DDIQ .
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Now J R(A;,2)f € L, (By) and J D R(A,,2)f because R(A,,2)f € D(A)) C LI(Q).
Moreover, 0 < £ (y) <1, § (y) > 1 when n > = for all y > O and supp E;

U supp E; c {y ] n<y<n+1l}. It follows by Lebesgue's dominated
convergence theorem that En J R(Ap,z)f >J R(Ap,z)f, E; J Dy R(Ap,z)f +0
and 5; J R(Ap,z)f + 0 in Lz(Bo) when n +~ ®, Hence passage to the limit

n + o in (7.13) gives
(7.14) E(pim,q,2) = (W (ptm,Q) - 2) 19, (3 R(AL,2)D],(0)

which is equivalent to (6.26).

Proof of Lemma 6.3. This result follows from the continuity of
¥ (p+m,q,A*i0) for q > 0, A € [p?,®) - Tp and 0 > 0. The details of the

proof are precisely the same as in [30, Lemma 6.6] and are therefore not

repeated here.

Proof of Lemma 6.4. The starting point for the proof of (6.34) is
equation (7.1) with z = XA + i0, A€ I C [pz,w) - Tp and 0 < 0 < 0g,. (7.1)

can be written

(7.15) f(ptm,q,2) = (J £)] (ptm,q) + glptm,q,z)

where

(7.16) g(pim,q,z) = JQ M(X,ptm,q) R(AP'Z) f(X) dx .
h,r

Note that (see (6.9))

(7.17) M(X,ptm,q) = 2 Dy {37 (3) 6o Koptm, @)} - 5"(3) ¢, (X,pHm,q)

and hence

(7.18) g(pim,q,2) = g, (pim,q,2) + g, (ptm,q,2)

where

(7:19) g; (ptm,q,2) = —IQ 3 (K, pHm,a) 5" (r) R(A,z2) £(X) dX
h,r

and



(7.20) g, (pim,q,z) = 2 Lz D, ') 6, X, pm,q)} R(a,,2) £00 dX .
h,r

In the last integral note that R(Ap,z)f is in L:’zoc([h,w),Lz(—ﬂ,w)) (cf.

Lemma 4.1) while j'(y) ¢, (X,p+m,q) € Cy([h,®),L,(-m,m)) and j(r) = 0. It

follows that

(7.21) g, (ptm,q,2) = -2 JQ 8, CGpHm, @) §'(y) Dy R(A,z) £(X) dX .
h,r
Note that (7.19) and (7.21) extend by continuity to z = A * i0, with
A€ Iand 0<0 < 0,5 by Theorem 4.15.
Equations (7.15) and (7.18) imply that

|E(ptm,q,2) |2 < 4(| (3 D)7 (pm,@) |? + |g; (pHm,q,2) |2
(7.22)
+ g (omia,2) 1)

Moreover, Parseval's relation (3.29) for Ao p implies
i
00
.2 £)7 (ptm,q) |2 dq = |7 £]? < 2
a2y 1 [ 1on] ermoltas el o) <l

where supp £ C Q Hence to prove Lemma 6.4 it will suffice to prove

. 0,k7
(6.34) with f replaced by g, and g,. For g;, equation (7.19), Parseval's

relation (3.29) and Corollary 4.17 imply

00

)) J lg, (p+m,q,2) |2 dq
ez 0

st 2
"J R(Ap’z)f”Lz (BO)
(7.24)

IA

(ax |5 D UR(AP,z)fuiz(Qo’r)

IA

Max [3"D* e HElE (o
0,

for all z = A * i0 with A € I and 0 € [0,0,] where C = C(I,p,0,,k,r)

= C(I,p,0,,f) is the constant of Corollary 4.17. The proof of Lemma 6.4
may be completed by noting that the integral (7.21) for g, has the same
form as (7.19) but with j" R(Ap,z)f replaced by 2 j' Dy R(Ap,z)f. An
estimate for g, of the same form as (7.24) follows because the LZ(Qo,r)
norm of Dy R(Ap,z)f is majorized by the L;(A,Qo’r) norm of R(Ap,z)f.

Proofs of Theorems 6.5, 6.6 and 6.7. These results all follow from

(6.35) by the spectral theorem and standard Hilbert space methods and
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therefore will not be given here. A detailed development of these arguments

in the case of exterior domains may be found in [30, pp. 109ff].

Proof of Theorem 6.8. Only the orthogonality relation (6.45) need be

proved. The proof presented here is based on a method introduced in [30]
for the case of exterior domains. The proof for the case of grating domains
differs in some important technical details from that of [30] and is
therefore presented in full here.

The isometry &, . is known to satisfy (6.45) if and only if [30, p. 1161}
-
(7.25) NGy ) = {0}
]

i.e., the null space of ®: P contains only the zero vector. Equation (6.45)
-

will be proved by verifying (7.25). The following two lemmas are needed.

Lemma 7.1. For all h = {hm(q)} € I ® L,(Ry) one has

M
*
(7.26) o,  H(X) = L.i.m. ] J ¢, (X,p+m,q) h (q) dg
=P Mo |mi<m -
where the convergence is in L, ().

Lemma 7.2. Let h € N(@f p) and let ¥()A) be a bounded Lebesgue
bt |

measurable function on A > p?. Then
(7.27) h' = {¥(* (pHm, )b (@)} € NEOY )
Proofs of Lemmas 7.1 and 7.2. Lemma 7.1 is a direct consequence of

(6.38) and (6.42); see [30, Lemma 6.17]. To prove Lemma 7.2 let f € L,(f)
and note that the definitions of ¢, P and @t P and Theorem 6.7 imply
-

(f,0 h') = (&

sP 1,

i+ %

(7.28) -
J f kpm,q) ¥(w?(pt+m,q)) h (1) dg

Jo ¥(w? (ptm,q)) £ 4 (pm,q) b (q) dq

J @, ¥, @ b (@ da
VA ] 9 m

(@, ,p W(A»)f h) = (W(A )£, @ ph) =0 .

This proves (7.27) since f € L,(Q) is arbitrary.
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Choice of ¥(\). Let
(7.29) I=[a,b)C [p?,®) - Tp
and define
(7.30) ¥ = exp {-1t A2} x (), A2 9%,
where t € R and XI(X) is the characteristic function of I. It will be

shown that Lemma 7.2 with this class of functions ¥(A) implies (7.25). The

following notation will be used.
(7.31) N = {m : w?(p+m,q) € I for some q > O} .

Note that N is a finite set. Moreover, q > mz(p+m,q) is monotone for

q € Ry and hence for each m € N

(7.32) A =w?(ptm,q) ETI® q = /A = (p-Hn)ZEImPCRo - E

m!p

where Im P is a compact interval and Em P is defined by (6.15). With this
s t]
choice of ¥, Lemmas 7.1 and 7.2 imply that if h € N(¢: P) then
-9

00

o h'(X) = ] jo ¢, (X,ptm,q) ¥(w®(p+m,q)) h (q) dq
(7.33) mez
) J 6, K,pm,q) e Ty (g) gq = 0
meZ 1

m’p
in L, (). The left hand side of (7.33) defines a solution of the d'Alembert
equation in §. Its behavior for t *»¥« will be determined and shown to

imply (7.25). For this purpose one needs the

Far-Field Form of ¢4(X,p+m,q). This phrase means the form of

¢, (x,y,p+m,q) for large y; i.e., far from the grating. To derive it note
that (6.14) and Lemma 4.1 imply that

(7.34) ¢) (X,pHm,q) = ] 91, (y,ptm,q) exp {i(pH)x}
+ oL,

in Li,loc(nh)_ Moreover, for y > r

(7.35) 19 (V>ptm,q) = ai(pﬂn,q) exp {iywpﬂ(wz(p‘**m,q) + 10)}
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It follows that for q € I and X €
m,p r

¢, (X,p4m, @) = ¢, (X,pHm,q) + | ap(ptm,q) exp {ixpy * iyaqy)
2£L
(7.36)
+ 0, (X,ptm,q)
where
(7.37) L = L(p,I) = {2 : |pH| < w(ptm,q)} ,
and
(7.38) (pgrap) = (PHL, (W (ptm,q) - (p2)*)Y?)
while
(7.39) 0, (X,p+m,q) = ”g: 91, (7,pm,q) exp {1(p+0)x}
L' T
where
(7.40) L' =L'(p, 1) = {& : [p2] > w(pim,q)} .

It is important to note that for q € Im P the sets L and L' are independent
s
of q and depend on p and I only. An estimate for the term p, in (7.36) is

given by

Lemma 7.3. There exists a constant ¥ = u(p,I) > 0 and for each r' > r

a constant C = C(I,p,m,r,r") such that

(7.41) lo, (X,ptm,@) | < ce™™ for x e 9., q€I__ .
* >P

Proof of Lemma 7.3.  For brevity write u(X) = ¢, (X,p+m,q) and note that

u€F with § = w?(ptm,q) * i0 € ﬁx - IZ_.. In particular by Lemma 4.1
P,C,r P P
(7.42) u(X) = Z ui(y) exp {i(p+)x} in L;’Eoc(ﬂh)
WEZ
and

(7.43) up () = uy(y") exp {=(y-y") ((p+)? - w* (pHm,)) /%)
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for all y,y' > r and all 2 € L'. Now by a Sobolev inequality [1, p. 32]
there exists a C, = Cy(h,r) such that

r r
(7.44) lug () ]? < c2 “ [u' () |? dy +J [ug N |2 dY] .
h h
Moreover,
. 2 - 2
(7.45) o IF pmy = 27 ng ey 1?,
. 2 = [ 2
(7.46) Iog wC UL (= 27 zéz ' |?,

which, with (7.44) imply

lug (0 2 < cg@m ™ dlng ulp + Tulf
(7.47)
<ciem™ "u"f;h,r ;
i.e.,
(7.48) lojg(moptm, ) [* < cfem™ o1 ¢hptml}y .

Now the right hand side of (7.48) is a continuous function of q € Ry - Em P
’

by Theorem 6.1. Thus there exists a constant C; = C;(I,p,m,r) such that

(7.49) [¢1y(x,ptm,q)| < €; for all q € oo -

Next, recalling (7.29), define
(7.50) W= u(p,I) = Min {(p+R)?2 - b2}/
2€L"

so that for all q € Im o and % € L'(p,I) one has

(7.51) {(p+2)2 - w?(prm, @) }2 > {(p+)2% - b2}Y2 > >0 .

Then for r' > r and X € Qr" q € Im P one has the estimates
’

A

fo, (X,pm,q) |

I 1o1Gopma]
(7.52) AL

1A

I lei(riptma@) | exp {-(y-1) ((pH2) 2~ (w? (ptm,q)) ¥}
/53 A
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¢, §  exp {-(y-r) {(p¥)? - b2}Y?}
geL

A

(7.52 cont.)

€, I exp {-(r'-r) {02 - b2}¥2} ) exp {-u(y-r"}
2L’

A

which implies (7.41).

Proof of Theorem 6.8 (continued). Substitution of the far-field form

(7.36) for ¢t in the identity (7.33) gives the identity

(7.53) uy (£,X) + u,(£,X) + u,(t,X) = 0 in L, (Q)

for all t € R where

-itw(p+m,q)

(7.54) u, (£,%) = ] J b (X,p¥m,q) e h_(q) dq
mEN ' 1

m’p

1(xpytyay) e_itw(P_,,m,q)

(7.55) u, (£,X) = § J [ ) ai(p+m,q)e h (q) dgq
mEN 1 2L
m,p
(7.56) wu(6,% = ] J 0, (K,pim,q) e TPy () gg .
mEN ‘T -

m,p
Note that u,(t,X) has an extension to X € B, such that (see (3.32), (3.33))

) = - 1/2
(7.57) uy (t£,*) = exp {-it Ao,p} h;
where
o * .
(7.58) hy =9 o {Xm,p h o m€ z} € L,(B,)

and Xm p is the characteristic function of Im »’ In particular, one has
’

7.59 fu, (£,2) |2 = fn2f2 = J h ()% dq .

( ) huo s )“Lz(Bo) L I"LZ(BO) uéN I | 'm | q
m,p

The proof of Theorem 6.8 will be completed by showing that

(7.60) Llim ““o‘t")“Lz(Bo) =0.

t>Foo
It follows from (7.59), (7.60) that hm(q) = 0 for almost all q € Im P But

A = w?(p+m,q) maps R, - Em,p bijectively onto [p2,») - Tp (see (6.15)).
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Thus given any m € Z and any interval Im . C R, - Em P there is an interval
s i

Ic [p?,® - Tp such that the above relations hold. Thus hm(q) = 0 in

Ry - Em P for every m € Z, whence h = 0 in I @ L, (R,) which prove (7.25).

1)

Proof of (7.60). Consider first the function u, (t,X) defined by
(7.55). It can be written

(7.61) u, (£,X) = néN Uy (6%
where
(7.62) U, (6% = %L Uy, (659) exp {1 (p+2) x}
and
. iiyql—itw(p+m,q)
(7.63) ul’m’g(t,y) = JI ap (ptm,q) e h (q) dq .
m,p

In the last integral

q, = {w?(ptm,@) - (+0)21/?

(7.64)

{a®> + (+m? - (p+2}? = Q(q,pim,p+)
Make the change of variable
(7.65) a' = qp = Q(q,ptm,p+L)

in (7.63). Since

(7.66) w? (p4m,q) = w?(p+L,q")

one has

(7.67) q = Q(q",p+l,p+m)

and

(7.68) u, . (e,y) = JI‘ ay(pim,q) &I THOEHLAD gy 2 gqr
m,%,p

Now each of these integrals has the form of a modal wave in a simple
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waveguide [31, §5]. Moreover, it was shown in [31] that

(7.69) lim

>3

"'-11 ,m,Q(t’.)"Lz(Ro) =0.

Thus it follows from (7.69),

. 2 =
(7.70) by oI (Cpy = 27 R);L RGN Ol L

92 - 912
(7.71) lo, L N, @,y = 2 béL (R )“Lz(Ro) ,
and
(7.72) N CRD] M- “;N o, (e )
that
(7.73) lin llu,(t,-)lle(Bo) =0 .

>+

It will be shown next that the function u,(t,X) defined by (7.56)
satisfies

(7.74) lim fu, (e, ) | 0.

t-+Foo L, (@) B

This is a consequence of the following two lemmas.

Lemma 7.4, The function u(t,X) = u,(t,X) defined by (7.56) has the

properties

(7.75) u(t,*) € L,(Q) for all t ER ,

(7.76) tim fu(e,)] =0 forallk>r,
i

t>tco

and there exists a 4 > 0 and for each r' > h a constant C = C(r') such that
(7.77) [u(t,X)| < ¢ e™ for all X € Q_, and t €ER .

Lemma 7.5. If u(t,X) is any function having properties (7.75), (7.76),
(7.77) then
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(7.78) lim [u(e,*)|

t>too

=0 .
L, (@

Proof of Lemma 7.4. To verify (7.75) note that by (7.53), u(t,*)
= uz(t,*) = -ug(t,*) - u (t,*) in Lp(R). But ug(t,*) € L2(By) by the
spectral theory of Ao P (83 above) and u, (t,*) € Lo([-m,m] % R) by the

t]
theory of waveguides as developed in [31]. Thus the restrictions of

these functions to § are in L, (R).

The decomposition u = uz = -uy - u, also implies (7.76) because u, and
u; both represent waves in simple waveguides which have this local decay
property; see [31].

Property (7.77) is a consequence of the definition of u,, equation
(7.56), and Lemma 7.3. Indeed, combining (7.41) and (7.46) gives (7.77)
with p = u(p,I) defined by (7.50) and

(7.79) ¢ = ¢(1,p,m,r,x') ) J |hm(q)l dq .
MEN ‘1
m,p
Proof of Lemma 7.5. Conditions (7.75) and (7.77) imply that one has

for each r' > h and k > r',

late, ) 1E, gy = luceslf  + lutelg

(7.80)

it

o T
laces)l2 o+ [ [ lucesman|® axay
’ k ‘J-m

1A

0 T
buce, )02 | +c? J J e MY axdy
’ k ‘-m

k

luce, )2 + o ey &7

where C = C(r') is independent of k. Making t - #~ in (7.80) with k fixed
gives, by (7.76),
(7.81) Lim sup fuCe, )2 o) < (v €2/ o2k

t>to 2
for all k > r'. This implies (7.78) since the left hand side of (7.81) is
independent of k.

Proof of Theorem 6.8 (concluded). The proof may be concluded by
verifying (7.60). Now the identity (7.53) implies
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o (60l gy € By eal g gy + To (e, g
(7.82)

IA

”“o(t")”Lz(BD-Q) + nul(t,-)”Lz(Bm) + Huz(t,-)NLz(Q) .

Moreover, By - Q is bounded and hence u,(t,*) * 0 in L,(B, - Q) by the local
decay property for A, P’ The remaining terms on the right hand side of
(7.82) tend to zero when t >F ® by (7.73) and (7.74).

§8. The Rayleigh-Bloch Wave Expansions for A.

This section presents a construction, based on the results of §6, of
the R-B diffracted plane wave eigenfunctions wi(X,p,q) and a derivation of
the corresponding R-B wave expansions for A. For brevity the derivation is
restricted to the cases for which A has no surface waves; that is, OO(AP)=¢
for all p. The modifications that are needed when there are surface waves
are indicated at the end of the section.

In this section woi(x,p,q) denotes the R-B wave eigenfunction for A;.

The defining properties of Y, (X,p,q) can then be written

(8.1) b, € DAY, (L) € R,
(8.2) o+ NZ(P,Q)) 'JJi(X,P,Q) =0in G ,
(8.3) b, (X,p,9) = ¥, (X,p,@) + ¥} (X,p,q) in R} ,

where w; (resp., ¥') is an outgoing (resp., incoming) R-B wave for G.

The construction of y,_ will be based on the discussion at the end of
§3. Thus if (p,q) € R§ ana p = py + m where p, € (-1/2,1/2] and m € Z then
the functions wt(X,p,q) are defined by

(8.4) ¥, (X,p,q) = 0P%, (X,po+m,) ,
or, more explicitly,
(8.5) ¥, (x,y,p,0) = exp {2milp,} ¢, (x-27L,y,pptm,q) , (x,y) € 8P

Theorem 6.1 then implies

Theorem 8.1. Let G be a grating domain of the class defined in §1 and

let A = A(G) have no surface waves. Then there exist unique R-B diffracted



105

plane waves wi(x,p,q) for each (p,q) € Rﬁ - E, where £ is the exceptional
set (2.30). Moreover, the mapping (p,q) > wi(',p,q) € L;’loc(A,G) is
continuous for (p,q) € R§ - E.

The principal step in the proof of Theorem 8.1 is to show that wt’
defined piece-wise by (8.5), satisfies (8.1). This may be done by a simple
distribution-theoretic calculation based on the p-periodic boundary
condition for ¢t' Details are given in §9 below. The uniqueness statement
follows from Theorem 2.1 since GO(AP) = ¢ for all p is assumed.

The R-B wave expansions for A will now be derived from the eigen-
function expansions for Ap of §6. The first step is to establish Parseval's

relation for A. The special case of functions f € Lgom(G) is treated first.

Theorem 8.2. For all £ € L°™(G) define
(8.6) £,(p,0) = jG U, (X,p,0) £(X) dX , (p,q) € RZ - E .
Then
(8.7) %t € C(R2 - E) N L,(R}) , and
(8.8) el oy = VElp, a2y -

Proof. The finiteness of %+(p,q) for (p,q) € Rg - £ and the property
%+ S C(R% ~ E) follow from the l;st statement of Theorem 8.1. To establish
tae rest of the theorem note the following identity for functions f€ Lcom(G)
and points (p,q) € Rg - E.

t,(p,0) = j b, (X,p,0) £(X) dx = ] J @ VP £(0 &
- - 2E€Z ‘Q -

(2]

(8.9)

z J ¢+(x+2"T'Q'»y,P,q) f(X"'Z'ITl’y) dxdy
ez ‘' T

-2milp

J ¢, (x,¥,p,9) e f(x+2ml,y) dxdy
zQ ~

)

2!

J ¢, (x,5,p,) ) e 2mitp f(x+2ml,y) | dxdy
Q- ez

J ¢, (x,¥,p,9) F(x,y,p) dxdy
q ¥
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where

(8.10) F(x,y,p) =

T e 2P fant,y) , (x,y) €0 .

Notice that all the sums in (8.9) are finite when f € L§°m(c). Moreover,

(8.10) is a Fourier series in p with a fixed finite number of non-zero
terms for all (x,y) € Q.

Equation (8.9) establishes a relation between the eigenfunction
expansions for A and AP. Thus replacing p in (8.9) by p + m with
p € (-1/2,1/2] and m € Z one has

(8.11) %, (p+m,q) = F, (p+m,q,p)

in the notation of §6. In particular, (8.11) and Parseval's relation for

Ap’ applied to F(*,p), give

(8.12) J |F(X,p)|2 dX = Z Jm ]/f+(p+m,q)|2 dq .
Q ez /0 T

Noting the continuity of p * F(*,p) € L,(Q) and integrating (8.12) over
p € (-1/2,1/2]) gives

1/2 ~ 2
) J ﬁlfi(pﬂn,q)l dqdp

1/2 2
[ ] el ax e
Q ez ‘~1/2

-1/2
(8.13)

e,
Jgg 1B 1® avaa = IE1E, oy -

In particular, %+ € LZ(Rg) which completes the proof of (8.7). To verify

(8.8) note that Parseval's formula for Fourier series implies that
1/2

(8.14) J [F,p) |2 dp = | [£G2m2,p)|>, x€0,
-1/2 KL

where the sum has a fixed finite number of terms for all X € Q. Integrating

(8.14) over X € Q and applying Fubini's theorem gives

1/2
J f |F(X,p)|? ax dp
=12 7'Q

(8.15)

) J | £(x+2m8,y) |2 dX
2EZ ‘Q

— 2 = 2 - 2
-1 f9<z) l£0 |2 dx= jG 20012 ax= helZ gy

Combining (8.13) and (8.15) gives (8.8).
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The extension of Parseval's relation to all f € L,(G) follows from
Theorem 8.2 by a standard technique using the denseness of Lgom(G) in L, (G).

Thus, writing
(8.16) GM=G(‘|{X|x2+y2<M2},

one has

Corollary 8.3. The limits

(8.17) £,(p,q) = L.i.m. I Y, (X,p,q) £(X) dX
+ oo ¢ ¥
M
exist in Lz(Rﬁ) and Parseval's relation (8.8) holds for all f € L,(G).
A representation of the spectral family {l(u) | u > 0} of the grating
propagator A will now be derived from Corollary 8.3. The key fact is
described by

Theorem 8.4. The resolvent R(A,z) = (A - z)-l of the grating propaga-

tor A satisfies the relation

(8.18) Ir(a, 2 £]2 J £ .0l dpd
. R(A,z = ————— dpdq
L, (G) Rﬁ Iwz(p,q)-2|2

for all f € L,(G) and all z € C - [0,%).
To prove Theorem 8.4 it is enough to verify (8.18) for all f € L§°m(c).

The idea for doing this is to define
(8.19) u(X) = R(A,z) £(X)

and to apply Parseval's relation to vy = ¢Mu where ¢M € C%(Rz). For a

suitable choice of ¢M one has

(8.20) vy = R(A,2) (£ + g
where
(8.21) 8y = -2Vu - V¢M -u A¢M

and
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(8.22) Ve @50) = (£,(p,0) + gy, (0,0)) /02 (p,0) - 2
whence
(8.23) loy RCA2YE] = |(E, + By)/(* - 2] .

Passage to the limit M »> « then gives (8.18). For the case of the Dirichlet
- M) where Y € Cw(R) satisfies
Y(1) =1 for T < 0 and Y(1) = 0 for T > 1. For the case of the Neumann

boundary condition one may take ¢ (X) = v(lx

boundary condition ¢M must be chosen more carefully, using the condition

G € S, to ensure that Vi

the construction are given in §9.

satisfy the boundary condition. The details of

The R-B wave expansions for A follow easily from Corollary 8.3 and

Theorem 8.4. They are formulated as

Theorem 8.5. For all f € L,(G) the spectral family {lI(u) | u > 0} of

A satisfies

(8.24) I £(X) = f b, (X,p,q) ?t(p,q) dpdq
Py

where

(8.25) D, =Ry 0 {(p@) | p* +4q® <u} .

In particular, every f € L,(G) has the R-B wave expansion

(8.26) £(X) = 2.i.m. J ¥, (X,p,9) £,(p,q) dpdq .
Moo DM - -

The relation (8.24) is a direct consequence of the relation

(8.27) "H(I)f"fz(c) = JRz X1 @? (p,)) I?t(p,q)l2 dpdq
0

where I is a subinterval of [0,®) with characteristic function Xg- (8.27)
follows easily from (8.18) and Stone's formula. Note that (8.27) implies
the absolute continuity of the grating propagators.

To formulate the orthogonality and completeness relations for the R-B
wave expansions define linear operators

(8.28) ¢, : L,(G) > L,(R})

+
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by
(8.29) )

Then ¢+ and ¢_ are spectral mappings for A in the sense of

Theorem 8.6. For every bounded, Lebesgue-measurable function ¥(X)

defined on 0 € XA <
(8.30) o, ¥(a) = Y(2()) o,

where Y(A) is defined by the spectral theorem.

Moreover, one has

Theorem 8.7. The R-B wave expansions are orthogonal and complete in

the sense that ¢+ and ¢_ are unitary operators:
* = * _
(8.31) ¢, ¢, =1 and e, o, =1.

Relations (8.30) and the completeness relation @t ¢, = 1 follow easily
from the spectral theorem. The orthogonality relation o, @: = 1 can be

deduced from the corresponding property of & Theorem 6.8. Indeed, it is

+p’
sufficient to prove that

(8.32) (e, sz - £,£) =0

for all f in a dense subset of Lz(Rﬁ). This may be verified by direct

calculation using f € C?(Rg - E) and the orthogonality relation for ¢+p'

The details are given in §9.

Operators A that Admit R-B Surface Waves. It was shown in §2 that for

each p € (-1/2,1/2] A may have R-B surface waves wj(x,p) and eigenvalues
Aj(p) with x-momentum p. The functions ¢j(X,p) = wj(x,p)[Q are precisely
the eigenfunctions of A_. The principal difficulty in constructing an
eigenfunction expansion for A in this case is in constructing families of
R-B surface waves wj(X,p) and eigenvalues Xj(p) whose dependence on p is
sufficiently regular. The "axiom of choice" definition (independent choice
for each p) is inadequate to give even measurability in p. This was pointed
out in the author's paper on the analogous, but simpler, case of Bloch waves

in crystals [32].
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If 3C is a union of smooth curves (class C®) then the Green's functions
(4.44), (4.45) can be used to construct an integral equation for the eigen-
functions ¢j(X,p). In this case the method of [32] can be used to construct
"almost holomorphic" families {¢j(X,p)}.

In the general case there is a one-to-one correspondence between
eigenfunctions ¢j(X,p) of Ap and eigenfunctions ej(x,p) of Ap with

N

eigenvalues ﬂp(g) S [pz,m) given by Bj(',p) = PP,C,r ¢j(',p). The eigen-

values of Ap,C,r are isolated, with finite multiplicity, and may be studied
by the methods of analytic perturbation theory (Kato [13, Ch. 7]). These
problems will not be pursued here.

If a sufficiently regular family of R-B surface waves for A has been
constructed the eigenfunction expansions for A may be derived by the method

0 when j > N(p), equation (8.12)

introduced above. Thus, defining wj(x,p)

must be replaced by

@3 [ et e I e 1] Lemol®
Q =1 3 ez 40 T
where
(8.34) %J.(w =j VD) £ X .
G

Integration over p € (-1/2,1/2] gives the Parseval relation

(8.35) I£]2 It

= T 2 2
L, (6) ‘jzl NSRRI Aers

The corresponding representation of the spectral family is

1/2 ~ ~
T £(X) = I ) V. (X,p) fj(p) dp + J ¥, (X,p,0) £,(p,q) dpdq .

_ J
(8.36) vz Ay(p)su D,

§9. Proofs of the Results of §8.

Proof of Theorem 8.1. It will be shown that if ¢, (X,p+m,q) are the

generalized eigenfunctions for A_ whose existence is guaranteed by Theorem
6.1 then the functions Y, (X,p,q) defined by (8.5) have properties (8.1),
(8.2), (8.3). This will_prove the existence statement of Theorem 8.1. Note
that q € Em,p « (p,q) € E (see (2.30) and (6.15)). Hence the construction
(8.5) is valid for (p,q) € Rg - E.

The sets D(Aloc

Dirichlet boundary conditions by (see (1.26), (1.28))

) are characterized in the cases of the Neumann and
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0.1 0™ @) = 1*°%,0) N {u s (1.14) holds for v € 1°7(R)) ,
(9.2) ™ *%e)) = 1,%°¢4,0) n 1)2H%(0)

As a first step it will be verified that (8.5) defines a function Y, (*,p,q)
1,8 —
€L’ °¢(A,G) for each (p,q) € R% - E. It is clear that Y, (*,p,q) € LSOC(G)
€ 0'(6) for (p,a) € R} - E because ¢, (*,py*m,q) € Lr°S(2) for p,
€ (-1/2,1/2], m€ Z and q € R - Em . It remains to show that Vy_ _(*,p,q)
s RS

14
and Awt(',p,q), as elements of P'(G), are also in LfOC(G). Now by defini-

1
tion ¢i(',p+m,q) € Lz’loc(A,Q) and hence (8.5) implies

©.3) ¥, (pa) € LI2oC [A, U Q“)J
- 1134

Hence, it is only necessary to verify that wt(',p,q), Vi, and A, are
locally square integrable near the lines {(2%24+1)mW X vy : L ez} (;ee (3.4)).
Moreover, ¥, ((28+1)7 £ 0,y,p,q) and Dy, ((22+1)T * 0,y,p,q) exist in
L%oc(y) (se; the discussion preceding (3.7)) and the p-periodic boundary

condition for ¢ _ and (8.5) imply

v, (2241740, +,p,q) = ¥, ((24+1)7-0,+,p,q)

(9.4)
Dy, ((2241)m+0, +,p,q) = Dy, ((28+1)7-0,+,p,q)

1
The proof that y,(*,p,q) € L2’2°c

(A,G) will be completed by proving
Lemma 9.1. The distribution derivatives Djw+(-,p,q) are given by

(9.5) DyU,(x,y,p,q) = exp {2milp,} Dyo, (x-21L,y,po4m, @) , (x,y) € o®

for j = 1,2. Moreover, w+(-,p,q) satisfies (8.2) as a distribution on G.

Proof of Lemma 9.1. (9.5) will be proved for j = 1. Thus it will be

shown that for all 6 € C:(G) one has

(9.6) J ¥, D,8 dX = -J Dy, 6 dX
G - G -

where Dy, € L%OC(G) is defined by (9.5). This will be verified for func-
tions 6 with supp 6 C Q(o) V) Q(l) U (T x y). In this case (9.6) is a

consequence of (9.4) and the equations
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9.7 JQ(O) ¢i Dle dX = _JQ(O) D1¢t 6 dX + JY wt(ﬂ-O,y,p,q) dy

(9.8) Ig(l) Y, D,6 dX = -JQ(I) Dlwt 6 dXx - JY wi(ﬂ+0,y,p,q) dy .

Equation (9.7) may be verified by calculating
(9.9) JQ(O) b, D1(¢59) dax ,

where ¢6(x) = ¢((x-m)/8), ¢5(x) =1forx<m-3§, ¢6(x) = 0 for x > T and
0 < ¢6(x) < 1, and then making 8§ + 0. The technique is explained in [31,
p. 57ff]. The case of a general 6 € C?(G) may be proved in the same way.
The proof of (9.5) for j = 2 is similar. Moreover, an analogous calcula-

tion, based on (9.4), gives
. L)
(9.10) Awt(x’Y9P’q) = exp {Zﬂlﬂ'po} A¢i(x‘2ﬂ£’,y,Po"‘ﬂl,Q) , (x,y) €8 s

and it follows from (6.2) that Y _ satisfies (8.2).

Proof of Theorem 8.1 (continued). To complete the proof that

¥, (+.p.) € D(A™C

1
for ve L ’com(G).

) in the Neumann case, condition (1.14) must be proved

Now for such a v one has, by Lemma 9.1,

Ay, Vdx = ) J Ay, V dX
Jc * gez g

(9.11)
= Z J Ay, (x+218,y,P,q) V (x+2mL,y) dX
ez ‘Q T
{0
=1 J Ad, (%,5,p,49) 2™ T (giame,y) dx
2EZ 'Q -
= J Ap, u dx
q %
where
(9.12) u(x,y) = |} e~2mite v(xt2mL,y) € 1°P>ON(Q)
J=¥A

1
Note that the sums in (9.11), (9.12) are finite because v € Lz’com(G). A

similar calculation gives
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(9.13) J W, « Vv dx = J Ab, + Vu dX
G Q
and adding (9.11), (9.13) gives

(9.14) I My, v+, « W} dX = J {ad, W + V9, » Vu} dX =
¢ 7 - a B

N, %oc

because ¢, € D(A () and u € L,°P Q) (see (3.19)).

To complete the proof that Y (*,p,q) € D(Akoc) in the Dirichlet case,
it must be shown that w+ *,P»q) € LE’QOC(G) = Closure of C (G) in Ll jz'OC(G).

This follows immediately from (8.5) because w+( ,P»,q) is p-periodic and
¢+(',p+m,q) €L, ,p,loc(g) = Closure of C () in Ll’koc(Q). To see this note
that on any set K N G where K is compact in R? the functions 6 € Cp(G)
coincide with functions 0' = ¢6 where ¢ € Co(Rz) and ¢(X) = 1 on K.

It has been shown that wi(-,p,q), defined for all (p,q) € R§ - E by
(8.4), satisfies (8.1) and (8.2). Condition (8.3) is also immediate because
Yo and ¢, satisfy ¢ (X,p,q) = OPo ¢y (X,pg4m,q) (see (3.27)) and bence

(9.15) lP.i_(X,P,CI) = oP° ¢;(X,P0+ﬂl,q) .

It follows that ¢; (resp., ') is an outgoing (resp., incoming) R-B wave
for G.

The uniqueness of wt(°,p,q) was proved in §8. To complete the proof
of Theorem 8.1 the continuity of (p,q) > ¢, ,(*,p,q) € L; QOC(A,G) for
(p,q) € R2 ~ E must be shown. Note that since v, satisfies (8.2) it will
be enough to prove the continuity of the mapping (p,q) - w+(-,p,q)
€ Ll QOC(G). Thus it must be shown that for each compact K C R2 and each

(pPy»9,) € R2 - E one has

o Copa@) = ¥, Capesagd ly gogy
(9.16)

“lei(',P’Q) - th("Posqo)“L (KnG) >0
2

when (p,q) - (po,qo). For the functions y,(*,p,q) the continuity conditions

(9.16) follow from (1.33), (1.34) by direct calculation. For y,(*,p,q) they

follow from (8.5) and the continuity of (p,q) - ¢+(-,p,q) € L1 I(’OC(Q): i.e.,
“¢;(',P,Q) - ¢;(°’po ’q")“Lz(Kfﬂ) -0

(9.17)

1901 Cpa) - V03¢ upgsa0 by gy
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when (p,q) =+ (p,,q,)- (9.17) is a consequence of Theorem 4.15 and the
definitions (6.13) and (6.14). (9.17) and (8.5) imply (9.16) because KN G

is contained in a finite union of the sets KN Q(l).

Proof of Theorem 8.2. This was given in §8.

Proof of Corollary 8.3. As remarked in §8, these results follow from

Theorem 8.2 and the fact that Lgom(G) is dense in L,(G). The details may
be found in [30, p. 109] where the corresponding results are proved for

exterior domains.

Proof of Theorem 8.4. The proof outlined in §8 will be completed here.

The two boundary conditions will be discussed separately.

The Dirichlet Case. Proceeding as in §8, let f € Lgom(G) and define

(9.18) u = R(AP(G),2) £
and
(9.19) (X = 0y(X) u(®) , x€6,

where ¢M(X) = ¢(|X| - M € C%(Rz) satisfies ¢M(X) =1 on GM and supp ¢M

C GM+1' Then it is easy to verify that VM € D(AD(G)) and

(4%(0)-2) v (0 = -(8+2) 9(X) u(X)

(9.20)

il

¢M(X) £f(X) - 2Vu - V¢M -u A¢M

f(X) + gM(X) for M > My (f) ,

where 8y is defined by (8.21), because ¢M(X) = 1 on supp £ for M > M, (f).
Equation (9.20) implies (8.20). To verify (8.22) note that by (8.2)

one has

a0 = | T ERD vy ax
(9.21) ¢

-w ™ (p,q) I A P, (X,p,q) vy(X) dX .
G

fLoc

Now ¢, (+,p,q) € L;’ (4,G) and hence
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(9.22) f () vy + W, - Vv dx =0
c + +

D . . .
because vy € LZ(G) and supp vy is compact. Indeed, vy = 1lim ¢n in Lé(G)

where ¢n € C?(G) and (9.22) holds with Vit replaced by ¢n by the

distribution definitions of Ay, and V{,. Similarly, one has
(9.23) JG W, 8 v) +W, « W} ax=0

because vy € D(AD(G)), supp vy is compact and Y, € LE’IOC(G). Combining

(9.21), (9.22) and (9.23) gives
(9.24) GMI(p,q) = w2(p,q) JG ¥, (X,p,q) Avy(X) dX .

Finally, combining (9.20) and (9.24) gives

Ty, (P20) = 07 (2,@) (U, (5P, 0vy)

(9.25)

W (p,a) (W, (*,p,0) » EHgytzvy)

W, 0) (L (250) + By (250) + 29, (9,0))

Solving this equation for GM gives (8.22) and hence (8.23).
To find the limiting fofm of (8.23) for M + = note that |¢(X)| < 1

and ¢M(X) + 1 for all X € G when M » ®., Moreover,

(9.26) 1lim gy = 0 in L, (G)

Moo
because in the definition (8.21) Vu and u are in L,(G), |V¢M(I)| and A¢M(X)
are bounded uniformly for all M and supp gy C GM+1 - GM‘ Hence passage to
the limit M » « in (8.23) gives (8.18) for f € L°™(G). The general case

follows by a density argument.

The Neumann Case. The method presented above can be used. However,
the definition of the multiplier ¢M must be modified to ensure that
vy € D(AN(G)). If ¢M € C%(E) then it is easy to show that vy € L;(A,G).
The hypothesis G € S of §1 will be used to construct a function ¢M € C%(E)
such that Vy = ¢Mu also satisfies the Neumann boundary condition. The
construction is similar to the one used above to prove Theorem 4.6 in the

Neumann case.
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To construct ¢M let 0(x,y), T(x,y) be the tangent-normal coordinates
defined in the neighborhoods 0 + (2mm,0) of the points ((Zm—l)ﬂ,yo) as in
§5 following (5.177). Define &, by (5.178) as before and let n;,n; € c2(R)
satisfy 0 < ny (@) <1 and

1 for a < -8,
(9.27) ny@) = J
0 fora > ¢,
- 1]
where Gj > 0. Define
(9.28) ¢11,I(X’Y) =n;(0) &,(1) +n,(x - 2T [1 - £,(D)]

for all (x,y) € ¢ " {(x,y) : x > 0}. ©Note that if 0 < & < T then for 8,

§,, 83 small enough one has

1 for x < (2M+1)T ~ § ,

(9.29) ¢;[(x’y) =
0 for x > (2M+1)T + 6 .

Extend ¢§ to the rest of G by

U

(9.30)  u(xy) = 1 - ¢(-x,y) for (x,y) € G n {(x,y) : x <0} .

Finally let ¢§(y) € C?(R) satisfy 0 < ¢§(y) <1, ¢§(y) =1 fory <M,
¢§(y) Z0 for y >M + 1 and define

(9.31) Oy (X)) = du(x,5) df(y) .
Then ¢, has the desired properties. It is clear that ¢, € €2(G) and
(9.32) supp by € {(x,y) «+ —(2MH)7 - § < x < (2MH1)7T + 6,0 <y < MH1} .

Moreover, in the strip |[x - (2M#1)m| < 8, 0 <y < h, one has £,(1) = 1 and
hence ¢M(x,y) = n,(o(x,y)). Similarly, in |x + (2M+1)nw| < 8§, 0 <y < h one
has ¢M(x,y) =1 - n,(o(x,y)). This property implies that Vi = by satisfies
the Neumann boundary condition on I'; see (5.184). The remainder of the

proof of Theorem 8.4 is the same as in the Dirichlet case.

Proof of Theorem 8.5. It was remarked in §8 that (8.24) and (8.26) are
direct consequences of (8.27) (see [30, p. 110]). Relation (8.27) will be
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derived from Theorem 8.4 and Stone's formula. The latter states that if
I = [a,b] C R then for all f € L,(G) one has

(9.33) (£, [M(b) +T(b-) - Ti(a) - TI(a-) J£) = 1im < IR(A,A+i0) £]|? ar .
2 o0+ m I

Now Theorem 8.4 and Fubini's theorem imply that

I%, (p,a) |2
e I T I I e
L 1R} |o?(p,q)-A-10]?

(9.34)
= g dx ; 2
IRz [w JI <x—-w2<'p',q))’+o’] £, |* dpda -
0
Moreover, if

(9.35) K(0,p,q) = %‘J ?7:571%56737;57
1 ,

then 0 < K(0,p,q) < 1 for all (p,q) € R: and 0 > 0 and lim K(0,p,q)
= X;@*(p,@)) for 0 » 05 [34, p. 98]. Hence (9.33) and (9.34) imply

(9.36) 2(£,[T(b) +Ii(b-) - Ti(a) - M(a-) ]£) = f , X1 @) [£,.(p,0)[? dpdg
RO

by Lebesgue's dominated convergence theorem. On making a - b in (9.36) and
using the relation I((b-)-) = I(b-) one finds that II(b) = II(b-) for all
b € R. Then putting II(b-) = N(b), NI(a-) = Il(a) in (9.36) gives (8.27).

Proof of Theorem 8.6. This result can be proved by the method used

for the case of exterior domains in [30, p. 113]. The multiplier ¢m of
[30, p. 114] may be replaced by the function ¢M used to prove Theorem 8.4.

The remaining details are the same as in [34] and will not be repeated here.

Proof of Theorem 8.7. It will suffice to prove the relation (8.32),

or equivalently
(9.37) lejel = fel

for all f € C,(R2 - E).
As a first step, note that for all f(p,q) € Lz(Rg) one has

(9.38) @) (X) = L.i.m. J v, (X,p,q) £(p,q) dpdq .
= Moo ID, T
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The simple proof is the same as for the case of exterior domains [30, p.
117]. 1If £€ Cy(R? - E) then (9.38) can be written

@*6) (x) = f ¥, (X,p,q) £(p,q) dpdq
Rz
(9.39) ()
=] J ¥, (X,ptm,q) f(ptm,q) dpdg
€z ‘B,

and only a finite number of terms in the sum are non-zero. In particular,
the definition (8.5) of Yy, implies that

(9.40)  @*BDH® = I j TP 4 (x-278,y,p4m,q) £(ptm) dpdg
= n€Z ‘B, =

for X € Q(l).
Next note that

lo*ef?

* 2 = * 2
JG |eL£(x) | ax Eéz Jﬂ(n) |} £(0)|? ax
(9.41)

) J IQ:f(x+2ﬂ£,y)|2 dxdy .
£z ‘Q

Now (9.40) implies that for (x,y) € @

1/2

00
(036) (x427,y) mGZJ ; Uo oTiiP ¢, (x,y,ptm,q) f£(p+m,q)dq| dp
-1/2 -

(9.42)

jllz ™ (% ({£(pte, ) DX dp
-1/2 =P

by Lemma 7.1. The interchange of summation and integration is elementary
because the sum is finite for f € C:(Rg - E). Equation (9.42) states that
the left hand side of the equation, as a function of £ € Z, is the set of
Fourier coefficients of the function of p defined by Qi,p {f(p++,*)}. Thus
Parseval's relation for Fourier series implies

1/2
(9.43) 22 | % (x42me,y) |2 = J [@} , {£@+, 9D ® | ap .
VA - =9

-1/2

Integrating (9.43) over X € Q and using (9.41) gives, again by Fubini's

theorem,
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1/2
loyel? = J JQ | (o p LEEH, D |? dX dp
-1/2 -

(9.44)

1/2
J le} | e+, )3" db .
-1/2 -

Now the orthogonality property for o* , Theorem 6.8, implies that

,p

lo¥ | trore, 01 = e, )3]°

(9.45)

) r | £(ptm,q) |? dq .
ez 0

Combining (9.44) and (9.45) gives

ko2 _ 2 - 2
(9046) "Cbtf" nﬁiz "f"L2 (Bo+(m,o)) "f"LZ (Rg)
which is equivalent to (9.37).

§10. The Initial-Boundary Value Problem for the Scattered Fields.

The goal of the remaining sections of this monograph is to analyze the
structure of the transient acoustic and electromagnetic fields in grating
domains G that are generated by sources which are localized in space and
time. If the sources act during an interval T < t < 0 then the wave field
may be described by a real-valued scalar function u(t,X) that is a solution

of the initial-boundary value problem

(10.1) DZu—Au=0foraJ.lt>0andX€G,
(10.2) Dvu = 0 (resp., u = 0) for all t > 0 and X € 3G ,
(10.3) u(0,X) = £(X) and Dtu(O,X) = g(X) for all X € G .

The functions f, g which characterize the sources of the field will be
assumed to have compact supports in G.

The initial-boundary value problem in its classical formulation (10.1)
-(10.3) will have a solution only if 3G and f and g are sufficiently smooth.
However, for arbitrary domdins G, if the initial state has finite energy;

i.e.,



120

(10.4) J {VEX |2 + |gX) |2} dx < =,
G

then the problem (10.1)-(10.3) has a unique generalized solution with finite
energy (= solution wFE). This result was proved in [28]. 1In this section
the results of §8 are used to derive an R-B wave representation of the
solution wFE.

Consider the grating propagator of §1:
(10.5) A =A%) (resp., A%() .

For arbitrary domains G, A is a selfadjoint realization in X = L,(G) of the
operator -A with the Neumann (resp., Dirichlet) boundary condition. More-~
over, A > 0 and Kato's theory of sesquilinear forms [13] implies that

D(Alh) = L;(G) (resp., L?(G)). It follows that if

(10.6) £ € 13(6) (resp., L2(G)) and g € L,(6)

then (10.4) holds and

(10.7) u(t,*) = (cos t AY?)f+ (A2 sin ¢ aAV/?)g

is the unique solution wFE of (10.1)-(10.3) [30]. 1In particular,

(10.8) u € C'(R,L,(G)) N C(R,D(aY2))

and the initial conditions hold in L,(G). The boundary conditions are
incorporated in the definition of D(A) and of solution WFE. The d'Alembert
equation (10.1) holds in a suitable weak form [30]. The scattered fields
studied below are the solutions wFE defined by (10.6), (10.7).

It was shown in [30, Ch. 3] that solutions wFE in arbitrary domains

have a representation

L, a1/2
(10.9) u(t,X) = Re {v(£,X)} , v(t,*) = e 1

provided that f and g satisfy (10.6) and g € D(A_Uz). The complex-valued
function h € D(A}n) is related to the initial state f,g by

(10.10) h=f+ia Mg,
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The representation is used in §13 below to determine the asymptotic behavior
for t » © of the transient wave fields (10.7).

The R-B wave expansions of §8 can be used to construct the solutions
wFE (10.7) and (10.9). To simplify the analysis it is assumed in the
remainder of the work that G admits no R-B surfacé waves. In the general
case most of the results derived below hold for states orthogonal to the
subspace spanned by the surface waves. The scattering of R-B surface waves
is not analyzed in this work.

Under the assumption of no surface waves the R-B wave expansions of
the wave function (10.9) take the form

-itw(P) A (P) dP

(10.11) v(t,X) = L.i.m. J v, (X,P) e
R
where the integral, together with its formal t-derivative (=-i Auzv(t,X)),

converge in L,(G) (Theorems 8.5 and 8.6).

§11. Construction of the Wave Operators for Ap and A0 p’
3

The purpose of the section is to prove the existence and completeness

of the wave operators

itall? -ital/2
(11.1) W = W, (AY?2 AM? 3 ) = s-lim el BP g e P
+,p £ %0,p7p T Q

where JQ : L) » LZ(BU) is defined by
h(x) , Xegq,
(11.2) JQ hx) =
0 , X€By-Q.

This will be done by means of an explicit construction based on the eigen-

function expansions for Ap and A° P of §6. The principal results are

s
formulated as

Theorem 11.1. Let G be a grating domain of the class defined in §1.
Let p € (-1/2,1/2] and assume that GO(AP) = ¢. Then W+ P and W_ P exist
s

Hl
and are given by

11.3 W, = o* .
( ) ,p 0,p (Diyp

In particular, W : Ly(Q) » Lz(Bo) are unitary operators and one has

,p

*
1. = .
(11.4) HPO\) wi,p no’p(x) wi’p for all X € R
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Theorem 11.1 is primarily of technical interest in the theory of
scattering by diffraction gratings. It will be used in §12 to derive a
construction of the wave operators for A and Aj.

Theorem 11.1 will be proved by the method of [30, Ch. 7]. Only the
case of W+’p will be discussed, the other case being entirely similar. To
begin consider the wave function

—itAl/?
(11.5) v(t,*) =e P h, he L,

The eigenfunction expansion theorem for Ap implies that v(t,X) has the two
representations

-itw(pim,q) ¢

M
(11.6)  v(t,X) = L.i.m. ) Io ¢, (X,ptm,q) e h, (ptm,q) dq ,

Moo |m| <M
convergent in L, (2). As in [30, Ch. 7], the incoming representation will
be used to calculate the behavior of v(t,*) for t > 4». The eigenfunction
¢_ has the decomposition (see (6.4), (6.5))

ai.7n o (X,p4m,q) = 3(¥) 6o (X,p+m,q) + ¢! (X,ptm,q)

where ¢' is incoming. Combining (11.6) and (11.7) gives

(11.8) V(E,X) = §(3) Vi(t, %) + v(£,%)
where
" it (ptm,q) ¢
(11.9) vie,® = 2.im. Jo o (Xyptm,q) e FOPTA) (i q) dg

Mo |m|<M

converges in L, (B,) while

-itw(pim,q) 7

M
(11.10) v'(t,X) = L.im.  J JO ¢! (X,p+m,q) e h_(ptm,q) dq

M |m[<M
converges in L, (). Note that the convergence of (11.6) and (11.9) implies
that of (11.10). Moreover, v:(t,x) is a wave function in L,(B,) for the

reduced propagator Ao . of the degenerate grating; namely,
b
~1tAl/?
(11.11) vie,)y = e Pl

+ + . .
where h, = v0(0,°) € L,(B,) is given by



123

(11.12) by =6* h_=0* o n.
0,p ~ 0P —»P

Theorem 11.1 will be shown to be a direct corollary of

Theorem 11.2. Under the hypotheses of Theorem 11.1 one has, for all
h € L, (),

(11.13) lim v'(t,*) = 0 in L, ()
t>to
and hence
3 3 (- + . =
(11.14) Lin_ loce,y = 3¢y voee, ol oy =0 .

Proof of Theorem 11.2. Equation (11.14) can be written

—itAyz o -ital?

(11.15) lim |le -3 e UPo* o p]h 0

oo L ()

0,p

where J* : L, (Bg) > Lo (), the adjoint of the operator J defined by (6.22),
is given by J* h(x) = iy h(X)]Q. Now the family of operators appearing
in (11.15) is uniformly bounded for all t € R. Hence to prove that (11.15)
holds for all h € L, (%) it will suffice to verify it for all h from a dense
subset of L,(2). It will be convenient to use the dense subset U; = o* D,

~sP
where

(11.16) D,c ] @®L,RY
)

is the set of all g(q) = {gm(q) : m € 2} such that there is an M = M(g)

with the properties

(11.17) g,(4) =0 for |m| >M , and
o

(11.18) gy € Co(RO - Em»P) for |m| < M

where E P is the exceptional set of (6.15). Moreover, it will suffice to

s
verify (11.15) for functions of the form

oo

(11.19) h(X) = Jo ¢_(X,ptm,q) g(q) dq

where m is fixed and g € CT:(R0 - Em p) has support in an interval
3
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I CR, - Em ’ since the case of a general h € D; then follows by super-—

E
position. Thus the proof of Theorem 11.2 may be completed by showing that
if

-itw(p+m,q)

(11.20) vH(e,x) = J ¢! (X,ptm,q) e g(q) dqg

I
where g € C;O(R0 ~ Em P) and supp g C I then (11.13) holds.
k]
The definition of the function ¢'(X,p+m,q), (6.4), (6.5), (6.13),
(6.14), together with Theorem 4.15, implies that for fixed m € Z one has

(11.21) ¢! € c@ x (RE - E))

where E is the exceptional set of (2.30). Moreover, the far-field form
of ¢' is
- i(xpy-yay)
(11.22) ¢! (X,ptm,q) = ) ap(ptm,q) e + p_(X,pm,q)
2€L

where L is a finite set, independent of q € I (see (7.35)ff for the
notation). Note that

(11.23) ay (ptm,q) e =5 ¢! (x,y,p+m,q) dx .

“ivdy g J" X))
It follows from (11.21) and (11.23) that

(11.24) ag(+4m,*) € C(R} - E)

Moreover, by Lemma 7.3 there exists a constant Yy = U(p,m) > 0 and for each

r' >r > h a constant C = C(I,p,m,r,r"') such that, for p and m fixed,
(11.25) |p_(X,p+m,q)| <C e™ for all X € Qr' and q € I .

Substitution of (11.22) in (11.20) gives

(11.26) VHER) = v, X + vi(e,X)
where
-i(yq,+tw(p+m,q)) ).
ar.zn v = ] ” A ma e ¢ (@) ) QHPHX
261’1

Note that, by (11.24), each aE(p+m,') is continuous on the closed interval
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I. Now each of the integrals in (11.27) has the form of a modal wave in a
simple waveguide; cf. (7.63)ff. It Zollows from (7.69) applied to the
finite sum in (11.27) that

(11.28) tim Jvice, o)
t> o

L) =~ 0~

It remains to show that v:(t,') ~ 0 in L, (R) when t »> +4». This will
+

be done by applying Lemma 7.5 to u = v: =v - VT. To this end note that
for all t € R one has v+(t,') € L, (R) by (11.10) and vT(t,') € L,(Bp) .
Thus vi(t,') = v+(t,') - VT(t,-) € L, () for all t € R which verifies
(7.75).

The local decay property (7.76) follows from the local compactness
property of the grating domain G, assumed in §1, and the abstract decay
theorem of [29]. The proof is the same as that of [30, Theorem 5.5] and
is therefore not repeated here.

Finally, (7.77) follows directly from the estimate (11.25) and the
representation

—itm(p+m,q) g(q) dq

(11.29) vi(e,x) = I o_(X,ptm,q) e
1
which imply

(11.30) Vi@, ] <ce™ | lg(@)| dq for all X € 9, and t € R .
2 < . r

This completes the proof of Theorem 11.2.

Proof of Theorem 11l.1. The proof follows that of [30, Corollary 7.2].

In fact, the calculation given there, adapted to the present problem, gives

the estimate

—itA;/Z —itA;/Zp .
J - P g h
o e 0,0 %=, "L, 8y
(11.31)
-ital/? -ieal/?
p * ’p *
< -J 0] h
SHle Qe 0,0 2|,
-1tA;/2p . -itAllj/Z
+ E(o [} h + e h
N ( 0,p P ) LZ(Bo,r) LZ(Q.O’I_)

The first term on the right in (11.31) tends to zero when t - +« by (11.15).
The last two terms tend to zero when t - += by the local decay property used
in the proof of Theorem 11.2. It follows that the left hand side of (11.31)
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tends to zero when t * 4» which proves the existence of W, o and equation
-

(11.3). Finally, to verify (11.4) note that it can be written

_oak %
(11.32) HP(A) = Qt,p o} I, p(>\) ¢o,p o, P for A € R

0,p s s

by (11.3). The unitarity of ¢, p implies that an equivalent relation is
b )

* -9

t,p

*
(11.33) ¢i,p HP(A) ® P()x) Qo,p for A € R .

o,p HO

)

But this last equation is correct because the two sides coincide with the

operation
(11.34) {g (@1 > (HQ - ®(ptm,@)) g ()}
in 2 C)LZ(RO); see Theorem 6.7. This completes the proof.

§12. Construction of the Wave Operators for A and Ag.

The purpose of the section is to prove the existence and completeness

of the wave operators

s a1/2 _ieal/2
(12.1) W, = W,(A2 A2 5y = s-lim 'R g o THEA
- - ttoo
where J, : L,(G) ~» Lz(Rﬁ) is defined by
hX) , XE€EG,
(12.2) JG h(X) =

0 , XER, -G .

The principal results of the section are formulated as

Theorem 12.1. Let G be a grating domain of the class defined in §1
and let A = A(G) admit no surface waves. Then W, and W_ exist and are
given by

*
(12.3) W, =0, 0

In particular, W, : L,(G) ~+ Lz(Rﬁ) are unitary operators and one has

(12.4) I = Wy T,(\) W, for all A€ R .
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The proof of Theorem 12.1 will e based on Theorem 11.1 and a series
of lemmas that relate the grating propagators A and A, to the corresponding

families of reduced propagators A and A, -1/2 < p < 1/2.
b ’

The Mapping U. As a first step, the correspondence introduced in
(8.10) will be extended to a unitary mapping U: L, (G) > L,((-1/2,1/2]1,L,(2)).
To see how this may be done note that if f € L,(G) then

12.5) £(x+2m8,3) | € L,(Q) for all L € z, and
. f(- L, 2 = 2 o
(12.6) mgz fecaame, lF o) = 115 gy <

Hence the Plancherel theory in the Lebesgue space L, ((-1/2,1/2],L,(R))

implies that the Fourier series

(12.7) F(x,y,p) = ) o 2mite f(X+2W£,y)|Q
jisvA
converges in this space and Parseval's relation is valid. Combining this

result and (12.6) gives

(12.8) PPl (e tsma @) = 1L, (0

for all f € L,(G).

Lemma 12.2. The mapping U : L,(G) » L,((-1/2,1/2]},L,()) defined by
Uf = F and (12.7) is unitary.

Proof. The preceding discussion implies that Uf is defined for all
f € L,(G) and U is isometric. The surjectivity of U follows from the
Plancherel theory. Indeed, every F € L,((-1/2,1/2],L,(®)) has a Fourier

development

—-2mi%
(12.9) FOGp) = J e PR M,
ez
convergent in L, ((-1/2,1/2],L,(R)). The Fourier coefficients in (12.9) are
defined by the Bochner integrals
e2W12p

1/2
(12.10) F (X) = J F(X,p) dp € L2(Q)

-1/2

and Parseval's relation holds:
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2 — 2
(210 L, @y =L, T, @

Thus to construct f = U—lF one need only require that f(x+2‘rr2,y)]Q = FK(X)
€ Lo (Q), or

(12.12) £(X) | = Fy(x-2mL,y) for all £ € Z .

O
Parseval's relation then guarantees that f € L,(G) and (12.12) implies
that Uf = F.

The next lemma makes it possible to construct operators Y(A) from the

corresponding reduced operators W(AP) with p € (-1/2,1/2]7.

Lemma 12.3. For all bounded Borel functions Y(A) defined for A > 0

and for all f € L,(G) one has
(12.13) U YD) (-,p) =‘1’(Ap) UE(*,p) € L2(S)

for almost every p € (-1/2,1/2].

Proof. The result will be derived from the R-B wave expansions for A
and Ap and the corresponding Plancherel relations. To this end let f,g

€ L,(G) and write Uf = F and Ug = G. Moreover, assume that ®+g = §+

€ Lgom(R%). Then Lemma 12.2 and the results of 86 and 88 imply

(men®=(wmny=(%wmﬁ,ay=J2wm%m>gw)a@>@

R

(12.14)
m+1/2

J J ¥(w?(p,a)) £ (p,a) B (p,a) dadp
meZ ‘m-172 40

/2 (@
=] J J ¥(w? (ptm,q)) I, (p+m,q) g, (p+m,q) dqdp
meZ ‘-1/2

1/2 © = ~
J ) J Y(w? (ptm,q)) F,(ptm,q,p) G (ptm,q,p)dq| dp
-1/2 |mez /0

1/2
(Y(A)) F(,p),G(*,P)) dp .
J_m P L, (Q)

Note that the hypothesis §+ S L§°m(R§) implies that the m-summation and
interval of g-integration in (12.14) are finite. Moreover, since such

functions §+ are dense in Lz(Rg) the relation (12.14) holds for all



G € Lp,((-1/2,1/21,12(2)). On taxing G(X,p) = G,(X) Ga(p) in (12.14) where
G, € L,(Q) and G,(p) € L,(-1/2,1/2] zre arbitrary one gets (12.13).

The mapping U obviously depends on the grating domain G : U =T In

¢
the special case G = Rg let U, = U,;. With this notation one has

Lemma 12.4., The operators U, U,, J, and JQ satisfy

G

(12.15) Uo JG =Jy U -

Proof. The definition of U implies that

(12.16) (g U (x,p) = ] & °THP I (EG2me,y) i)
€z
—27ilp
(12.17) Uy I, ) (X,p) = § e "™ (3. f(xt2ml,y) |, ) ,
Ll ez G By

for all f € L,(G). These obviously define the same function, which implies
(12.15).
The next lemma will be used to relate the wave operators for A and A,

to those for Ap and A0

>

Lemma 12.5. For all £ € L,(G) one has

*

(12.18) Up(¥5 0,0 (op) = &) 0, | UEC,p) € Lp(By)

for almost every p € (-1/2,1/2].

Proof. The relation (8.11) can be written

(12.19) (2,£) (ptm,q) = (0 F(e,p)) (@) = (¢i,p UE(+,p)) (@)

i,p

com

The relation was proved for all f € L, (G). However (12.19), as a rela-

tionship in I C>L2(Ro)s extends immediately from the dense set L§°m(c) to
all of L,(G). 1In particular, specializing (12.19) to G = R% gives

(12.20) (2,£,) (ptm,q) = (2, _ U, £,(+,p)) ()

o,p

for all f, € L,(R?). Substituting f, = ®y &, f in (12.20) gives

(12.21) (¢o,p(U° o) ¢, £)(-,p)) (@) = ¢, f(ptm,q) = (¢i’p Ut (+,p)) (@)



130
in I ® Lz(Ro)’ by (12.19). Thus
*

(12.22) 5, pWo 2 2, 5)C5p) =0,  UL(:,p)

for almost every p € (-1/2,1/2]. (12.22) is equivalent to (12.18).
Lemmas 12.2-12.5 will now be shown to imply Theorem 12.1. The main

step in the proof is described by
Theorem 12.6. For every h € L,(G) and H = Uh one has

2

—ital? —ieal/?
“JG e h-e Lz(Rg)

Jl/z
-1/2

Proof. Lemma 12.2 implies that

oy @,h

(12.23)

-itAIlJ/z —itA;/zp . ,
J H(s,p) - ] [ H(, “ .
o Cop)-e 0,p 7,0 BRI, (gg) P

s

_ieal/2
e itA h

Jl/z
-1/2

Moreover, Lemmas 12.4 and 12.3 imply

_aall2
e itAg 2

L, (R3)

*
0¥ o, h

-ieat? -ieall?

UD(JG e Qo Qih)(°,p)ui2(30) dp .

1/2
_aall2 12 -itA
12.25) W Jg e L) = U e W) =dge P unC,p) .

Finally, Lemmas 12.3 and 12.5 imply

< 1/2
L4 1/2 -itA
W, e e% o n)(eup) = e P U (0% 0,0) (- \p)

(12.26)
—itA;/zp .
¢ " %o (Di,p vht.p) .

Combining (12.24), (12.25) and (12.26) gives (12.23).

Proof of Theorem 12.1. Lemma 12.2 implies that H(+,p) € L2(Q) for

almost every p € (~1/2,1/2]. Hence the integrand on the right hand side
of (12.23) tends to zero when t - 3 by Theorem 11.1 (see (11.31l)). More-
over, the operators appearing in the integrand are all bounded with bound 1

and hence one has



~itaY? -ieal
“JQ e P H(-,p)-e P sk

¢t,p H('aP)HLZ(BO) <2 ”H(.’P)"LZ(Q)
(12.27)

for all t € R and almost every p € (-1/2,1/2}. Thus the existence of W+

and W_, and the relation (12.3), follow from (12.23) and Lebesgue's domi-
nated convergence theorem. The final statement of Theorem 12.1, equation
(12.4), follows from (12.3) and the eigenfunction expansions for A and A,

exactly as in the proof of Theorem 11.1.

§13. Asymptotic Wave Functions and Energy Distributions

In this section the existence of the wave operators W, is shown to
imply that transient wave fields in grating domains G are asymptotically
equal in the energy norm, for t = +®, to transient wave fields in the
degenerate grating domain R%. The latter are then shown to be the restric-
tions to Rg of free waves in R%?. Such free waves possess asymptotic wave
functions in the sense of the author's monograph on scattering by bounded
obstacles [30]. These results are shown below to imply that transient
wave fields u(t,X) with finite energy in grating domains possess asymptotic

wave functions
(13.1) up (£,%) = r V2 F (r-t,0) , k =0,1,2,

(where X = (r cos 6,r sin 6)) such that if (t,x,y) = (X;,X;,X,) and Dk
= B/BXk for k = 0,1,2 then

im oace,) - w6, gy =0, k=0,1,2

-0

(13.2) 1

t N
Moreover, the waveforms Fk(T,e) are calculated from the initial state f(X),
g(X) of u(t,X). Finally, (13.2) and the results of [30, Ch. 8} are used to
calculate the asymptotic distributions of energy for transient wave fields
in grating domains.

The starting point for the calculation of the asymptotic wave functions
(13.1) is the complex-valued wave function v(t,X) defined by (10.9),
(10.10). The existence of the wave operator W+ defined by (12.1) implies
that

_spal/2 _ 1/2
e itA h~e itAy

(13.3) W, h, t>+o,

in the sense of convergence in L,(G). Moreover, if h € D(Alﬂ) then the
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analogue of (13.3) holds for the first derivatives. This result may be
formulated as a generalization of the corresponding result for exterior

domains [30, Theorem 7.5], as follows.

Theorem 13.1. Let G satisfylgpe hypotheses of Theorem 12.1 and let
-itA

h € D(AY2).  Then v(t,*) e h is a solution WFE in G, h = W;h
€ D(A;/z), vo(t,*) = o iths h_ is a solution wFE in RZ and
(13.4) lim "Dk v(t,*) - D, vo(t,°)"L2(G) =0 for k = 0,1,2 .

trtoo

The proof is precisely the same as the one for exterior domains given
in [30] and is therefore omitted.

The initial state hSC = W+h for the wave field v,(t,X) satisfies

~ +_ _/\
(13.5) (h )y =8 h' =0 h=h_

by (12.3). Thus v, has the R-B wave representation ((10.11) for A,)

-itw(P) 2

(13.6) vy (t,X) = J ) Y, (X,P) e h_(P) 4P .
Rp

To show that v,(t,X) has a continuation to a wave field wFE in R? the

Neumann and Dirichlet cases will be treated separately.

The Neumann Case. Here one has (see (2.31) for normalization)
(13.7) x,p) = & Py = oNx,p) = 1 ipx . iqy -iqy
. wo( s ) = woi(x’ ) = wO X, ) = EE e (e + e )
and substitution in (13.6) gives, after a simple transformation,

 (xpvam R
(13.8) v, (£,X) = %; [ , o1 (xptyq-tw(p,q)) fi, (prq) dpdq
R

where

. h_(p,) ,  (poa) €RZ,
(13.9) ho(P)q) = ~
h_(p,-a) , (p,—q) € R? .

The Dirichlet Case. Here if Yy, is normalized by (see (2.31))

(13.10) o (GP) = ) (GLP) = 1 gh(x,P) = 5= e PR - e 7iW)

then substitution in (13.6) again gives (13.8), but with



-
[}
w

. h_(p,0) , (p,) €RZ,
(13.11) hy (p,q) = R
-h_(3,-2) , (p,-q) € R} .

Thus in both cases vg(t,X) has a continuation (13.8) to a wave field
in R%2. Moreover, the hypothesis h € D(Alh) of Theorem 13.1 implies that
ﬁ_(p,q) and VpZ+qZ ﬁ_(p,q) are in Lz(Rﬁ) and hence ﬁo(p,q) and /Efiarﬁo(p,q)
are in LZ(RZ). It follows that the extended wave field (13.8) is a solution
wFE in R?. Thus the results of [30, Ch. 2] are applicable and allow the

construction of asymptotic wave functions

(13.12) vy (£,%) = Y2 H (r-t,8) , k = 0,1,2 ,
such that

. e - -
(13.13) timm I, v, (t,2) - v (e, )||L2(R2) =0, k=0,1,2.

By restricting the functions to G one obtains

Corollary 13.2. Under the hypotheses of Theorem 13.1 one has

(13.14) lm  [ppv(e,) - v:(t,')“ k=0,1,2 ,
t

teo 1,6 ~ 0

where the function v: are given by (13.12) with waveforms Hk defined by
(13.15) H,(1,8) = Wz— J:O ™ R ( cos 0,0 sin 8) (-iw) V2 dw ,
convergent in L, (R x [0,m]), and

(13.16) Hy (1,08) = -Hy(1,8) cos 6 , H,(r,0) = -Hy(1,6) sin 6 .

Equations (13.14) follow from (13.4) and (13.13) by the triangle
inequality. Equations (13.13), (13.15) and (13.16) follow directly from
[3, Ch. 2]; see the proof of [3, Theorem 2.10].

To obtain corresponding results for the real-valued wave field u(t,X)
generated by the initial state f,g one need only take the real part of
v(t,X) and use equation (10.10) which relates h to f and g. This leads to

Theorem 13.3. Let G satisfy the hypotheses of Theorem 12.1. Let

fe D(Alh) and g € L,(G) and define asymptotic wave functions
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(13.17) up (£,%) = 12 F (r-t,6) , k=0,1,2,

by

F,(7,8) = Re {zz;%iﬁ— J X3 (wcos 0,wsin 8)-iwE_(wcos 8,wsin 8) ] (~iw) V2 dw}
0

(13.18)
convergent in L,(R x [0,7]), and
(13.19) Fy(1,0) = -Fy (1,8) cos & , Fp(1,0) = -F (1,8) sin 6 .

Then the solution wFE (10.7) generated by f and g satisfies

(13.20) 1im  [DyuCt,*) - u(t,*) ] =0, k=0,1,2 .
oteo | K Uk L, (C)

Proof. To begin, assume that g € D(A_lh) and define h by (10i£0).
Then h € D(Alm) and Corollary 13.2 is applicable to v(t,*) = e_ltA

Moreover,

(13.21) lp| b (®) = |p| £.(P) + i 5_(P)

which implies that Fk = Re Hk and hence

(13.22) u (6,X) = Re {v2(£,0)} , k =0,1,2 .

Thus (13.20) follows from (13.14) by the triangle inequality. To remove

the restriction that g € D(A_lﬂ) note that D(A_l”) is dense in L,(G), by

the spectral theorem. Moreover, one has (see [30, Theorem 2.5])

A

e by gy € WS Iy, gy < Dl =

(13.23)

(M A 1/2
[jo Jo w® [h_(w cos 0,w sin 0)|% 48 dw

2 |h 2 1z - &
(RO R I RN

0

N

Hpl Tl + lg_ll = 122 €] + |g




Similarly,
(13.24) llu:(t,->||L2(G) < lugee, . < a2 g + gl , k=1,2.
Finally, the conservation of energy theorem implies that

Iogace, 9l gy < E@,6,0Y* = E(u,6,00V2

(13.25)

Il

da¥z ]2 + g2 < [aY2 ] + gl
k = 0,1,2 .

It follows from (13.23), (13.24) and (13.25) that (13.20) can be extended
to all f € D(A}/z) and g € L,(G) by a well-known density argument (see,
e.g., [30, Proof of Theorem 2.6]).

Theorem 13.3 permits the extension to grating domains of the results
on asymptotic energy distributions in exterior domains given in [3]. The
principal results are formulated below. The proofs are identical to those

of [30] and are therefore omitted.

Corollary 13.4 (Scattering into Cones). Let

(13.26) I' ={X=(r cos B,rsin @) : r> 0 and 6 € T}

where Ty is a Lebesgue-measurable subset of [0,m], and let X, € R2. Then

under the hypotheses of Theorem 13.3 the limit

(13.27) E%(u,6 N (T + %)) = lim E(u,6 N (T + X,),t)
t>+too

exists and

(13.28) E7(u,6 N (T + X)) = J [[2] £_®) + i g_(P)|% aP .
T

Corollary 13.5 (Transiency of Energy in Slabs). Let

(13.29) T={X:d; <X+ X <d,}

where d, and d, (> d;) are constants and X, € R? is a unit vector. Then

under the hypotheses of Theorem 13.3 one has
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(13.30) iim E(u,GN Z,t) =0 .
oo

Note that Corollary 13.5 implies the transiency of the energy in

bounded sets since every bounded set K C R? is contained in a slab (13.29).

§14. Construction and Structure of the S-Matrix

The scattering operator associated with the pair A, A, is the linear

operator S : LZ(R%) + L, (R3) defined by

(14.1) S =W, W .
The corresponding operator in Lz(Rg) defined by
(14.2) S =0, sof

is the Heisenberg operator, or S-matrix, for the pair A, Ap. From the

representation W, = @: @1 of Theorem 12.1 one has
A %
(14.3) S =0 ®+ .

The unitarity of W, and &, imply that S and S are unitary operators in
Lz(Rg). The purpo;e of this section is to calculate S. Specifically, it
will be shown how S can be constructed from the scattering coefficients
{ci(p,q)} of the R-B waves Y, (x,y,p,q) and the relationships among these
coefficients imposed by the unitarity of S will be determined. The role
of the S-matrix in the scattering of transient fields by gratings will be
developed in §15.

If h € L,(G) then (14.3) implies that the functions ﬁ+ = ®+ h and
h_ = & _h satisfy

(14.4) h o =Sh

Thus S may be calculated by calculating the relationship between ﬁ_ and 3+.
This will be done by usiﬂg the incoming and outgoing R-B wave representa-
-itAt

tions of v(t,*) = e h to calculate in two different ways the

asymptotic wave function in L, (G) associated with v(t,*); say

(14.5) vo(t,X) = r Y2 H(r-t,0)
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The function H € L, (R x [0,m]) is uniquely determined by the condition

(14.6) lim lv(e,s) - vo(e, )l
oo

1@ =0

see [30, Theorem 2.5]. The equality of the representations of H obtained
from the incoming and outgoing representations of v(t,*) provides the

required relationship between ﬁ_ and ﬁ+.

First Calculation of H. Theorem 12.1 implies that

(14.7) lim fv(e,*) - vo(e,9)l
t>o

-itad/?

La(e) = °

where v, (t,*) =e hsc is the wave function in Lz(R%) of Theorem 13.1.

Proceeding as in the proof of Corollary 13.2 one shows that (14.5), (14.6)
hold with

(14.8)  H(1,8) = @7%-172— Jo ™™ f_(w cos 8,u sin 8) (-1w) 2 @ .

The convergence v, (t,*) - vw(t,°) -+ 0 in L2(R2) was proved in [30, Theorem
2.61.

A Classification of the R-B Waves. The second calculation of H will

be based on the outgoing representation

-itw(P) 2

(14.9) v(t,X) = L.i.m. JR2 w+(X,P) e h+(P) dp .

0

The R-B wave w+ has the expansion for y > h, (2.26)

i i(pyxtq,y)
Y, (x,y,0,0) = m7 eIPXa) | omTt Y s cZ(p.q) e LK
(p+2) *<p®+q
(14.10)
ip,x _ 2 /
roent ] I I b
(PH2) 22p*+q?
where
(14.11) (gsap) = (p + £,{p? + @ - (p + ?}/?)

The first sum in (14.10) is a superposition of a finite number of outgoing
plane waves, while the second sum is an exponentially decreasing function
of y for (x,y) € R% - E (Lemma 7.3). In the calculation of the asymptotic
wave function (14.5) from (14.9) and (14.10) a difficulty arises because
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the number of terms in the first sum varies with (p,q) € R2. This number
changes at the points (p,q) € £ and is constant on the components of the
set Rg - E. It will therefore be convenient to classify the R-B waves by

means of these components. Note that (p,q) € E if and only if q > 0 and

(14.12) q;’Ep2+q2-(p+ﬂ.)2=0,l€Z—{0}.

The set m, so defined is the portion lying in Rg of the parabola with focus
at (0,0) and vertex at (-2/2,0). The curves Ty and m, are disjoint if

fm > 0 and intersect orthogonally if &m < 0. Thus if

0 = Rg N{(,q) : |p+m| <p2 +¢®> < |p+m+1]},

m
(14.13)

O—n = Rg N {(p,q) : |p - n| < /pz + q2 < |p -n - ll} s
where m,n = 0,1,2,¢** then Om is the domain between ﬁm and wm+1, O—n is the

domain between “—n and n—n—l and the sets

(14.14) 0 =0 N0 , mn-=0,1,2, ,
m,n m -n

are the components of Rg -E:

(14.15) R - E= U 0

o
m,n=0

m,n

Note that (p,q) € Om a if and only if the expansion (14.10) of ¢+(x,y,p,q)
’

contains exactly m + n + 1 outgoing plane waves with the propagation

directions (pl,qz), -n < & <m. (Note 0_0 # 00, 00 n 0_0 =0

o,o')

Second Calculation of H. 1In calculating § it will suffice to determine

s ﬁ+ for functions ﬂ+ of a dense set in Lz(Rg) because § is known to be
unitary. For this purpose it will be convenient to use functions h+ €
C:(Rg - E). For such functions, supp ﬁ+ is a compact subset of the set
(14.15). Hence, sEpp ﬂ+ meets only finitely many of the sets Om,n anf fach
component of supp h, lies in one of these sets. Thus in calculating S h+

it will be enough to consider the case where
(14.16) supp h+ =KC Om’n , mand n fixed .

The case of a general ﬁ+ € C:(Rﬁ - E) may then be obtained by superposition.
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With this hypothesis the wave function (14.9) becomes
(14.17) v(t,X) = I v, x,p) P L py ap
K

The asymptotic wave function (14.5) for v(t,X) will be calculated from
(14.17) by substituting the expansion (14.10) and determining the behavior
for t > 4 of the terms in the resulting sum. For this purpose a bound is
needed for the remainder in (14.10) that is uniform in (p,q) € K. Thus a
refinement of Lemma 7.3 is needed since the latter is valid for fixed p

only. The following generalization of Lemma 7.3 will be proved.

Lemma 14.1. Define the remainder ¢ (X,p,q) for all X € G and (p,q)

€
Om,n by

; m i(pyxtq,y)
L& = @ PR 4 onT Y cpg e ¢
(14.18) f=-n

+0,(X,p,9) .

Then for each compact set K C Om a and each r' > r > h there exist constants
3
y=u(K) >0 and C = C(X,r',r) such that

(14.19) |Ui(X,p,q)| <cC e™ for all x € Ri, and (p,q) € K .

Proof. Only the case of 0, will be discussed since the other case

+
then follows from the relation (2.25). The proof will parallel that of

Lemma 7.3. Note that (8.5) implies that

14.20) 0, (x,y,p,0) = & TP o®

py(x - 2m,y,p,q) , (x,y) €
where o, is defined by (7.39) with

(14.21) L'={2€zZ:2<-n-1or &>m+ 1}
for all (p,q) € Om,n. Thus to prove (14.19) it is enough to show that
(14.22) |p+(X,p,q)| <C e™ for all x € Qr‘ and (p,q) €EK .

Proceeding as in the proof of Lemma 7.3, one has

(14.23) Itt)_"_z(r,p,q)|2 < C%(Z‘n)'—l “¢;(°,p,q)“f;h,r for all 2 € L'
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where C, = Cy(h,r). Now the right hand side of (14.23) is a continuous
function of (p,q) € Rg - E by Theorem 8.1. Then there exists a ¢, = C;(K,r)
such that

(14.24) |¢;£(r,p,q)| < ¢, for all (p,q) €K and £ € L' .

Next, since K is a compact subset of Om

> 0 and Y_ = u_(K) > O such that

n there exist constants My = u+(K)

(p+l)2-p2-q zuiforall (p»q) EXand £ >m+ 1,
(14.25)

(p+2)2—p2—q22u_2_fora11 (p,g) EXKand £ < -n -1.
whence
(14.26) {e+0)?% -p - ¢®} 2> u® =Min (1K) ,1_(K) >0

for all (p,q) € Kand # € L'. It follows that for all X € Qr' and
(p,q) € K one has

A

lp|(x,P,q)| - 5 N)'Q()’P’Q)I
2EL

A

I 16} @) exp {-(3-1) ((+8) *~p*-q*) ¥}
2L’

1A

C, Y exp {-(y-r)((p+L)2-p2-q?) 1/2}
2L’

C

In

L 1 exp {-(y-r') ((p+L)2-p2-q*) 12} x
2L

x exp {-(r'-r)((p+L)2-p2-q?) 2}

in

c, e_(Y"r')U(K) Z exp {—(r'—r)((p+9,)2-p2-q2)1/2} .
2L’

Now

(14.28) I(r'-1,p,q) = § exp {-(r'-1)((pH)2-p2-q?) 2}
2L’
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is a continuous function of (p,q) € Cm n and hence for each compact K C Om n
t] ’

there is a constant M(r'- r,K) such that

(14.29) I(r'-r,p,q) < M(r'-r,K) for all (p,q) € K .
Combining (14.27), (14.28) and (14.29) gives (14.22) with
(14.30) c=c & e P& yerx) .

Second Calculation of H (continued). Substitution of (14.18) into

(14.17) gives the decomposition

. m
(163D v, = v (E,0 + ] vt + v (6,%) , tER, XEG,
£=-n

where
(14.32) V(%) = o J HPxayt(Pa)) § () dpaq ,

i(pgxtapy-tw(p,q))
e

(14.33) vOUF(e,%) = J em™ ¢fp,a) h,(p,9) dpdg , and

K

—-it ~

(14.34) vo(t,X) = J 1D 5 (x,p,q) B,(p,a) dpdq -
K

Recall that by assumption ﬁ+ € C:(R: - E) satisfies (14.16) and cz(p,q)

e C(R§ - E) (see (11.23), (11.24)). Thus the integrands in the above

integrals are all continuous. The second calculation of H will now be

carried out by calculating the asymptotic wave function in L,(G) of each

term on the right hand side of (14.31).

The Partial Wave vln(t,X). The change of variables (p',q') = (p,-q)

in (14.32) gives
. 1 | S | A ~
(14.35) Vln(t,x) - ;._“J ei(P x+q'y t(A)(p »q )) h+(p',-q') dp'dq'
K'

where K' = {(p',q") : (p,q) € K} € R* - R}, Thus vi™(t,X) is a free wave
in R® and hence has an asymptotic wave function 2 Hin(r- t,6) with
waveform defined by [30, Theorem 2.6]

it

00
(14.36) H™(t,0) = ?EE%Tﬁr-JO e ™ h (w cos 8,-w sin 8) (-iw) M duw .
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In particular, Hi“(r,e) = 0 for 0 < 6 < 7 because K' = supp ﬁ+(p,-q)
CR*-R.

The Partial Waves VEUt(t,X). To interpret these terms let £ € Z and

consider the mapping Xz defined by

(14.37) (Pgsqg) = X (p,a) = (@ + &,{p* + a* - (p + 1)?}/%)
Xz is analytic on the domain

(14.38) D(xy) = {(p,@) : /o +a" > [p+ 2], ¢ >0}

and maps it bijectively onto the range

(14.39) R(Xz) = {(Pﬂ,’qﬂ,) : vPy + dp > |P2’ - 2’|’ g >0} .
Moreover,

-1 _
(14.40) XSZ, = X—SZ, , €1z,

and the Jacobian of X2 is

3(py»9y) q
(14.41) __2'._2'_=—- .
3(p,q) 9

Note that w(p,q) is invariant under Xy ¢

(14.42) w(pg,qy) = py + af = p* + a® = w(p,q) .
It can be shown that

(14.43) XQ om,n = om—k,n+2 for -n < & <m .

Hence the hypothesis K C Om n implies that
’

(14.44) Xl K = KQ C 0m—2,n+2 for -n < & <m.
In particular, one has
(14.45) Kj n K2 =¢ for j # % .
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On making the change of variables (p,q) ~ (pz,qz) = Xl(p,q) in (14.33)
one finds the representation
_ i(xpy+yq,-tw(py,qy))
VZUt(t,X) = (2m) 1 J e 2 2 22732 {
(14.46) 2
where (p,q) = x—l(pl’ql) in the integrand. Thus vzut

+ A g
< cg(Ps)hy (p,a) =1 dpy dqy

(t,X) is also a free
wave in R? and has an asymptotic wave function 1'_1/2 Hz(r-t,e) with waveform
defined by

(14.47) Hy(1,6) = (2—17;'72_ Jo ei™ Hy (©,6) do
and

.

~ ) 9 + ~
(14.48) Hy,0) = (-i)* = ¢[(p,0) By (p,0)

(p,)=X_y (wcos 6,wsin 6)
A simple calculation shows that
(14.49) H, 2 = [ 1m0 hk,ol? %4 a

) 2 L, (Re0,m]) T J 16RO T AP

where q, is defined by (14.37). 1In particular, HZ € L,(R X [0,7]) because

the integrand‘in (14.49) is continuous on K.

The Partial Wave vo(t,X). Equation (14.31) may be written

m
(14.50) vo (6,0 = v(5,% - v E0 - ] vUEE,X)

=-n

for all t € R and X € G. Moreover, it has been shown that

v(t,X) = r Y2 H(r-t,08) + 0(1) ,
(14.51)
v (e, = 0(1) ,
VOO (e,X) = V2 Hy (r-t,0) + 0(D)

where each term ¢(1) € L,(G) for all t € R and tends to zero in L,(G) when
t » 4. These results imply that

(14.52) ve(£,X) = 2 H_(r-t,0) + 0(1)

where 0(1) -+ O in L, (G) when t -+ 4+~ and
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m
(14.53) H (1,8) = H(1,0) - ] Hy(1,0) in Lo (R x [0,m]) .

=-n

On the other hand (15.34) and Lemma l4.1 imply that

(14.54) lvg(t, 0] < c; e™ for all t € R and X € G
where
(14.55) €y =C J 5, ()| dpda

K

and ¢ = u(X) > 0 and C = C(K,r',r) are the constants of the lemma. The
second calculation of H will now be completed by showing that (14.52) and
(14.54) imply
Theorem 14.2. HU(T’e) = 0 and hence
m
(14.56) H(T,8) = ] Hy(1,0) in LR x [0,7]) .

£=-n

Proof. Let € be an arbitrary number in the interval 0 < € < /2 and

consider the sector
(14.57) l"€ = {(x,y) =(r cos O,r sin ) : e < 6 <7 - g} .

By (14.52), the local decay of asymptotic wave functions [30, p. 32] and

the triangle inequality, one has

Vax + o)

J ]vc(t,X)]2 dx j IHG(r—t,6)|2 r
GNr FE

(14.58)

© L T—E
Jo J IHO(r-t,e)fz do dr + o(1)
€

00 T~E
J J ‘HO(T,S)lz de dt + 0(1)
-t ‘e

where 0(1) >~ O when t > ©, Thus passage to the limit in (15.58) gives

o0

T—€
J |HU(T,9)|2 do dr .
€

-0

(14.59) lim J lvg (£, %) |* dx = J
trtoo Gﬂl"e

On the other hand, writing R; - {(x,y) : x€ER, a<y< b}, one has
3
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L v (£,%)]? a&x = L |v (t,X)|2 dx + J [v_(t,x)}? ax
o o o'?
n n 2 2
re rech,k reﬁ
(14.60)
< c? o 2MT sin 6
- "o r dr d8 + 0(1)

2
TRy

for every fixed k > r' > r by (14.54) and the local decay property for Vge

Passage to the limit t - +© in (14.60) gives by (14.59),

T—€ e
(14.61) Jm J [H (r,8)] a8 dt < ¢ J , o2Mr sin B o
-0 Jg I'eﬂRk
for every k > r'. Note that Co’ U and the left hand side of (14.61) are

independent of k. Now, sin 6 > sin € > 0 for € < 6 < T - € and hence

" . _ .
I , © ur sin 6 r dr d6 < J , © 2HT sin € o 40 49
T m T N
(14.62) °© R e
© (T-g .
< J J e ?ME SIN € . 49 4r
k ‘e

00

(™ - 2€) I ePHE SINE Loy
k

But the last integral tends to zero when k * ® with € fixed. Thus (14.61)

implies that HU(T,B) Z 0 in R X [e€,T-€] and (14.56) follows since

€ € [0,7/2] is arbitrary.

Corollary 14.3. For all h € L,(G) such that supp ﬁ+ C Uﬁ n = closure
- t]
of Om o one has the two relations

~ m ~
(14.63) Ra(p@) = ) ¢ (X (,@) B, (X g (pra) =L
f=—n - d-p

for almost every (p,q) € Rg where (p_k,q_g) = X_l(p,q).

Proof. The case where supp ﬁ+ < 5&,n is considered first. 1In this
case it will suffice to prove (14.63) for functions h € L, (G) such that
ﬁ+ € C?(R% ~ €) and supp ﬁ+ =K C om,n since such functions are dense in
the subspace of L, (G) defined by supp ﬁ+ C 6ﬁ,n' For such functions the
relation (14.56) and the Fourier representations (14.8) for H(T,08) and
(14.47), (14.48) for HR(T,B) imply that
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m
ﬁ_(w cos 8,w sin B) = Z cz(x_l(w cos B,w sin B8)) x
£=-n
(14.64)

X ﬁ+(x_2(w cos B,w sin B)) x

M w sin 6
{w?=(w cos 6-2)2}172

for almost every (w,8) € R, x [0,m]. Making the substitutions p = w cos 6,
q =w sin O in (14.64) gives (14.63) in the case supp ﬁ+ C Om o
s
The second case of (14.63) C?z be derived by calculating the asymptotic

ith h when t » -®, using the method given

wave functions for v(t,*) = e
above. A simpler derivation may be based on the relations Y_(X,p,q)

= E;?iTZETET and ci(p,q) = ctﬁ(—p,q) of (2.25) and (2.29). 1Indeed, if
supp ﬁ_ C om,n and g(X) = h(X) then these relations imply that gt(p,q)
= h;(p,q) and hence relation (14.63) with the upper sign for g implies
(14.63) with the lower sign for h.

~
The Structure of S. It will be convenient to use the notation

(14.65) gm’n(P) = xm’n(P) g(P)

where Xm is the characteristic function of the set 0 . Clearly, the
s m,n

. 2 .
operator Pm’n in L, (Ry) defined by

(14.66) P g=g

n.n , myn = 0,1,2,%°° ,

m,n
is an orthogonal projection and different operators of the family have
orthogonal ranges. Moreover, the relation (14.15) implies that the family

is complete because E is a null set; i.e.,

o

(14.67) Z Pm,n =1 .
m,n=0

It follows that for all g € Lz(Rg) one has

~

(14.68) Sg= 1 S )
m,n=0

m,n

Thus § is completely determined by
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Theorem 14.4. For all g € L2(R§) one has

m
(14.69) S(ey o) = EELn S &y n)m-g,neg *» 204
W10 Gy Doy e - E%{ QX (2 g, (X (pua))

Similarly, one has

m
It
(14.71) S(g, ) = Qzln " & Jnp,ne > A4

Ak .9 .-
(14.72) (S gm,n)m—z,n+l(P’q) g ¢y (X_o(p>q)) gm’n(X_l(p,q)) .
In particular, if supp g C O then
m,n
m _
~ A%

(14.73) supp S g U supp S* C J:Jn 0m—2,n+l .

Proof. Equations (14.69), (14.70), (14.71) and (14.72) follow imme~
diately from Corollary 14.3, the relations ﬁ_ =5 ﬁ+, E+ = §* ﬁ_ and the

observation that when supp ﬁ+ C 5; n then the L™ term in the sum in
’
(14.73) follows from (14.69) and

(14.63) has its support in O
(14.71).
The unitarity of § and (14.70), (14.72) impose restrictions on the

m-2,n+L°

+
scattering coefficients Ci' To calculate them it will be convenient to
calculate S* and § directly from (14.70) and (14.72), respectively. This

. . . ok -
gives the following alternative representations of S" and S.

Theorem 14.5. For all g € L,(R?) one has

a% ¥
(14.74) 6" ey dpg, 0+ (P = el (P, gm’n(X_l(p,q))
and similarly
(14.75) (s gm,n)m—l,n+2(P’q) =c_y(p,q) gm,n(X_Q(p,q)) .

Proof. For all f,g e L2(R§) one has

m
. - ok o oa _ .
(£,% gy, ) = (£, 1,57 &) = (SCf, ), @) = EEL (S, )80 g nts)
(14.76) -
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(14.76 cont.) = 7 J CI(X_Q) fm,n(x-l) g

.
m-% ,n+L qay dpdq

by (14.70). On making the change of variables (p',q') = (p—i’q-l)
= X_R'(p,q) in the last integral and noting that q/q_l =93(p',q")/3(p,q),

one has

m

(f,(S*g)m’n) QZ JO c;(p',q')fm’n(p',q') 8n g o+t Ko (P15a")) dp'dq’
=—n ’

(14.77) ™o

m
f , £(0;0) [ I ) g g iy (psa)) | dpdg
Rg 2=-n ’

because supp gm-!l,,n+2,(xz) C 6m,n' Since f € L2(R§) is arbitrary, (14.77)
implies that

m ——
(14.78) G* 8y 0 = T G0 g g (X ()

2=-n

To derive (14.74) note that for all £, m, n, m, n >0

(14.79) (o5, Dn-2,0¢0 ~ Su-2,7 Snr .3 Bm,m

where ij is the Kronecker symbol. Noting that Gm-ﬂ,,'ri (Sn+l,ﬁ

= GJL,m-E (Sl,ﬁ'—n = (Sm-'ﬂi,ﬁ'-n 6JL,m-ﬁ’ (14.78) and (14.79) imply
m
A _ -
(s gﬁ,a)m’n(P,Q) = m-m,n-n Q}_n C,L(P,Q) Gl,m-ﬁ gﬁ’E(XQ(P,Q))
(14.80)
= F
= m-m,0-n Cm_r—n-(Paq) %’E(Xm_ﬁ(P!q)) .

This clearly is zero unless @ - m = n - n = £ where -n < £ < m, which
implies (14.71). Moreover, setting (m,n) = (@ - 2,m + &) in (14.80) gives
(14.74). The proof of (14.75) is obtained by the same method, beginning
with (14.72).

The two representations of § and 8* of Theorems 14.4 and 14.5 hold for
arbitrary g € L, (Rﬁ). It follows that the scattering coefficients must

satisfy the relations

+ -

k3 - Y
(14.81) q cpg(X_,(,9)) = q_p cF(p,q)

for all (p,q) € 0 Moreover, the unitarity of § and Theorems 14.4

and 14.5 imply

m-2,n+°



149

Theorem 14.6. The scattering coefficients ci of the R-B waves

¥, (X,p,q) satisfy the identities

m
(14.82) L (e €5 Ky (p@day = q &, , and
(14.83) rf T X, (p,0) o, (X, (p,a))d;t =g 8
- C_q zp’q ) zp,q qg{ =q k,©

f=-n

for all (p,q) € Om o and all k such that -n < k < m.

These properties may be verified by simple calculations using the

relations

(14.84) S )55 i) = S0 By o8y ) » and
ok ok _

(14.85) s (fm,n)’s (gm—k,n+k)) - 6k,°(fm,n’gm,n)

and the constructions of S and §* described in Theorems 14.4 and 14.5.
Relation (14.83) also follows from relations (14.81) and (14.82).

It is well known in the theories of scattering by potentials and by
bounded obstacles that the S-matrix S is a direct integral of a family of
unitary operators S(w) that act on the "energy shell" p? + q*> = w?. The
analogous property of the S-matrices for diffraction gratings is evident
from Theorem 14.4 and the properties of the mappings Xl' The operator §(w)
in this case is given by (cf. (14.75))

n

(14.86) §(w) g(wcos B,wsin B) = z cE(w cos B,wsin B) g(XQI(w cos 0,wsin 8))
L=-m

when supp g C 5; 0 If s(8) = g(w cos B,w sin O) is an arbitrary function
s —_—

with supp s € {6 : (w cos O,w sin 8) € Om n} then (14.86) can be written
s

~ n
(14.87) (SWs)(8) = [ cj(w cos 8,w sin 8) s(8)

L=-m

where el = ez(w,e) is defined as the unique angle such that 0 < Gl < 7 and
(14.88) Xl(w cos B,w sin 6) = (w cos 62,w sin 62) .
For general s € L,(0,7), §(w)s is obtained from (14.87), (14.88) by super-

position. The unitarity of g(w) in L,(0,m) can be verified by direct

calculation using (14.87), the analogue for §*(w) and Theorem 14.6.
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§15. The Scattering of Signals by Diffraction Gratings

The results of §13 and §14 are applicable to the echoes that are
produced when signals generated by localized sources are scattered by a
diffraction grating. The structure of such echoes is analyzed in this
section. Most of the section deals with the case, often realized in appli~-
cations, of sources that are far from the grating. In particular, it is
shown that is this case the influence of the grating on the echoes is
completely described by the S-matrix.

It will be assumed that the sources of the signals are localized near
a point (0,y,) € G and act during a time interval T < t < 0. The resulting
wave field u(t,X) is then characterized by its initial values u(0,X),
Dtu(O,X) in G. To make explicit their dependence on y, the initial values

will be assumed to have the form

u(0,X) = f(X,Yo) = fo(xsy-YQ) s
(15.1)
D, u(0,X) = g(X,y0) = g,(x,y-y,)

for all X = (x,y) € G where yp, > 0,

1
(15.2) £, € L") , g, € L"

®©) ,

and £(X,y,) = g(X,y,) = 0 for (x,y-y,) ¢ G. Note that for y, > 0 one has
f(*,y,) € D(A}?) , g(*,y,) € L(G) and hence u(t,X) is a solution wFE in G.
The functions f(*,y,), g(*,y,) will also be used as initial values for free
waves in R? and for wave fields in the degenerate grating domain R%. In
each case the domain under consideration will be clear from the context or
will be stated explicitly. For brevity, the coordinate y, will be sup-

pressed except in places where the y,-dependence is under discussion.

The Signal Wave Field. In the absence of a diffraction grating the

initial state f, g will generate a signal wave field us(t,x) in R2. 'The
first derivatives of us(t,X) have asymptotic wave functions [30, Theorem
2.10]

(15.3) Dy ug(t,X) = V2 5, (r=£,0) + 0(1) , k=0,1,2,

where the waveforms sk(T,G) € L,(R x [~m,m]) are given by
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(15.4) s,(1,8) = Re {?E;%EE— Jo iw fiw cos 0,0 sin e)(-iw)‘/zdw} ,

sl(r,e) = -5(1,8) cos 6, s,(1,6) = -5,(1,8) sin 6 and the terms 0(1) »~ 0

in L, (R?) when t + ©, The function
(15.5) h(P) = & g(P) - iw(P) & £(P)

where ¢ denotes the Fourier transform in L,(R?). 1In particular, the Fourier

transform in L,(R x [-7,m]) of the signal waveform s,(7,0) is
(15.6) 3 =L (ciw2 4
. s,(w,0) = E‘(-lw) h(w cos 6,w sin 8) .

It can be verified that if f and g are real-valued then §0(-w,9) = ?:?ZTE?
and hence (15.6) generates a real-valued signal.

When y, is large the signal arriving at the grating surface is
described by the signal waveform s,(7,8) through (15.3). The problem of
signal design is to construct a source or "transmitter" whose waveform
s,(t,0) approximates a prescribed function. The solution of this problem

is the task of the transmitter design engineer.

The Echo Wave Fields. In the presence of a diffraction grating with

domain G the initial state f,g will generate a total wave field u(t,X)
whose asymptotic behavior for t + +» is described by Theorem 13.3. 1In
particular,
(15.7) Dou(t,X) = r Y2 F (r-t,0) + 0(1) in L,(6) , t >+,
where F,(1,8) € L,(R x [0,7]) is defined by

® 4
(15.8) Fo(1,0) = Re {zz;%Tﬁr'Jo eTTw h_(w cos 8,w sin 6)(—iw)‘/2dw}
and
(15.9) h_(p) = 8_(”) - 1w E_(®) .

The echo wave field ue(t,x) is defined by

(15.10) ue(t,X) = u(t,X) - us(t,X) , t>0, X€G.
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Thus the echo is described for large t by
(15.11)  Dyu_(t,X) = r' 2 ey (r-t,0) + 0(1) in L, (G) , t > 4o,
where e, = Fy - s, € Lp(R x [0,7]) is given by

00 .
(15.12) e, (1,0) = Re {?5;%?ﬁ7 JoelTw 85¢(w cos 0,0 sin 9)(-iw)1/2dw}
with
(15.13) 85°(@) = h(p) - h() = %) - iw(@) %) .

The last functions can be written in terms of the R-B diffracted plane

waves (see (2.24))
(15.14) U_(X,2) = ¥ (x,p,-q) + y5°(x,P)
as

(15.15) 3¢ = I TR

¥~ (X,P) g(X) dX
G

with the analogous representation for ffc.

The Echoes of Signals from Remote Sources. Equations (15.12)-(15.15)

provide a construction of the echo due to an arbitrary distribution of
sources. The principal goal of this section is to determine how this con-
struction may be simplified when the sources are far from the grating; i.e.,
¥o > ®. To this end recall the decomposition of Lemma 14.1. Substituting

equation (14.18) in (15.15) gives

m
(15.16)  &3°(p,q) = LD By 0y (000 2o €0,

where @ = ® g is the Fourier transform in LZ(RZ) and
(15.17)  p(p,q) = p(p,q38) = J o_(X,p,1) 8(X) dX , (p,q) € R} - E .
G

Note that if the unitary operator R : Ly (R%) ~> LZ(RZ) is defined by

(15.18) R f(x,y) = £(x,-y)
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then

(15.19) (@R £) (P, = R D, = Fp,-q) .

Hence (15.16) implies that for all (p,q) € Om o one has

m
825 = ) (@ (R +p (P
=-N 4
(15.20)
o = A
Lo q® Ry, o (@) +p, (P

2=-m

n ~
Y OGBR Y

L=-m

m+£,nr2)m,n(P) + pm,n(P)

GRrRE, ® +p (P

by Theorems 14.4 and 14.5. Proceeding in the same way with w(P) %fc(P) and
recalling that w(P) = w(PQ) one finds

(15.21) 2¢(@) = G RB)(®) +p(Psh) , PER: -E,
where
(15.22) p(Psh) = p(Psg) - iw(P) p(P3f) .

The estimate (14.19) of Lemma 14.1 clearly implies that p(P;h(®,y,)) >0
when yy > ®, uniformly for P in any compact subset of R% - E. This result
is not strong enough to yield a corresponding estimate of the echo waveform
e, (1,0) defined by (15.12) and it is natural to conjecture that
p(*3h(*,y0)) > 0 in LZ(R%) when y, > ®. Unfortunately, if one assumes only
that A(G) admits no surface waves then this property does not not follow
from the results obtained above because no information was obtained con-
cerning the behavior of Y_(X,P) for P near the exceptional set E. However,
in those cases where the analytic continuation of the resolvent of Ap has
no singularities on c(Ap) (i.e., EP N G(Ap) = ¢ for every p € (~1/2,1/2])
the limiting absorption theorem, Corollary 4.17, is valid on all of O(Ap)

(see Theorem 4.15) and Theorem 8.1 can be improved to state that Y, (*,P)

1,%0c
2

improvement of Theorem 8.1 implies

exists and P > ¢, (+,P) € L (A,G) is continuous for all P € i?. This
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Theorem 15.1. Let A(G) have no surface waves and, in addition, assume

that

(15.23) L N o) = ¢ for all p € (-1/2,1/2]

Then for every g, € L,(G) one has

(15.24) 85,y = 8RB,y +0(1) in Ly(RY) , y, > .
Similarly, for all f; € L%(G) one has

(15.25)  w(*) £2°C,y0) = w(+) S R F(*,y,) + 0(1) in Lo (RD) , y, > = .

The proof of Theorem 15.1 will be based on the following extension of
Lemma 14.1.

Lemma 15.2. Under the hypotheses of Theorem 15.1, for every compact

set K C Ef and every r' > r > h there is a constant C = C(K,r,r') such that
(15.26) lo,(X,P)| < C for all X € R, and P € K .

Proof of Lemma 15.2. It clearly suffices to prove the lemma for the

case K = 5; n’ On examining the proof of Lemma 14.1 one finds that the

continuity of P - w+( ,P) for all P € R2 implies that (14.24) holds for
K = UQ n Moreover, (14.25) holds for all P € 0 m,n with My = H_= 0. Thus
(15. 26) follows from (14.27) with u(K) = 0.

Proof of Theorem 15.1. Note first that if the translation operator

Ty_0 : Lp(G) > L,(G) is defined for each y; > 0 by Tyog0 = g(-,yo) then
(15.24) is equivalent to the statement that

(15.27) s-1lim (¢_ - ¢ - § R DTy =0 .

Yo
Moreover, the family of operators in (15.27) is uniformly bounded for all
Yo > 0. Hence by a familiar density argument (cf. [30, proof of Theorem
2.6]) it will suffice to establish (15.24) for all gy in a dense subset of
L,(G). The set C?(G) will be chosen for this purpose. Thus the proof will
be completed by showing that if g, € C?(G) and

0(B,8(+,7,)) = 259(R,y,) = § R §(+,y4) (@) = j TP g(X,y,)dX , P € R
(15.28) ¢
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then

(15.29) lim J 2|p(P,g(',yo))|2 dP =0 .
Yo7® Ro

To prove (15.29) it will be convenient to decompose R} as the disjoint union
(15.30) Rj =D(Y) U (D'(Y) NEY U (D' (v) - Eg)
where
p(y) =Ry n {p: |P| >y},
(15.31)
D'(Y) =RE N {P: |P| <y}, and
5= B2 N {P : dist (P,E) < 6} .

With this notation the integral in (15.29) can be written

(15-32) J 2 |p(P:8(‘,yo))|2 dp = Il(Yayo) + IZ(Y)G’yo) + Ig(Y:‘S’YO)
Ro

where
(15.33) 1,(Y,y,) = J lo(®,g(s,y) |2 aP ,
D(y)
(15.34) L (Y,8,70) = f |0(B,g(+,y0)) |? @@ , and
D'(Y)ﬁfa
(15.35) I3(Y,8,¥0) = J lo(P,g(,y))|* dP .
D' (¥)-Eg4

To estimate I,(y,y,) note that (14.18) implies that (A + |P|?) o_(X,P) =0
for all X € G, P € R3. Thus integrating by parts in (15.28) gives

(P,g(*,y,))

-l»|7* ] Ao_(X,P) g(X,y,) dX
(15.36) G

_[P|_2 J 0_(X’P) Ag(X,y,) dX
G

=|B7* {88(,y) 2% () - § R(Ag(e,y,)) ()}

=12|7% {(ag(+,¥0)) " (B) - (Ag(*,¥,)) " (B) - SR(Ag(+,y,)) " (B)}
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On squaring (15.36), integrating over D(Y) and using the inequality

|z, + 2z, +2,]% < 4(]2,|® + ]zzl2 + |z3[2) one finds
I, (Y,y0) < J [2|™ Jwe)” - g)” - § r(Ag) |2 ap
D(Y)
(15.37)
< sy (Jo_(ag(Lyo 12 + lecag(s,y0) 12 + IS RCAg(,y,0) %)

tA

1277 logCyo 2 = 1277 log, 12 o

for all y, > 0. In particular, I;(Y,y,) is small for large Y, uniformly in
Yo 2 0.

Now consider I,(Y,8,y,). Lemma 15.2 and equation (15.28) imply that
for all P € D'(Y) one has

[o(®,8(*,¥5)| < C(D'(Y),r,r") J |, (x,7-y0) | dxdy
G

(15.38)

¢, (y,r,t") J [g, (X)| dX = C,(g,,Y,r,1") .
G

Combining this and (15.34) gives

(15.39) L (¥,8,5,) < Ci(gg,Y,r,x") [D(Y) N Egl

for all y, > 0, where [M| denotes the Lebesgue measure of a set M C R2.
Finally, note that Lemma 14.1 implies that p(P,g(',yo)) =+ 0 when y, > =,
uniformly for P € D'(y) - Eé’ when Y > 0 and § > 0 are fixed. Thus

(15.40) lim I,(Y,8,y,) =0 , Y and 8 fixed .
Yo7

To complete the proof of (15.29) let ¢ > O be given and use (15.37) to
choose a y = vy, = y (e,g,) > O such that I,(y,y,) < €/3. DNext use (15.39)
with v = yo(e,g,) fixed to choose § = §, = §,(c,g,) > 0 so small that
Iz(yo,6o,y0) < ¢/3. Both of these estimates hold uniformly for all Yo 2 0.
Finally, choose Y, = Y,(e,g,) so large that I,(y,,8,,¥,) < /3 for all
Yo > Y,. This is possible by (15.40). With these choices (15.32) implies
that

(15.41) J ) [p(P,g(+,y4))|? dP < € for all y, > Y (e,8,) »
R
0
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which proves (15.29) and therefore (15.24). Finally, to prove (15.25) one
notes that if f£(*,y,) € L}(G) then w(P) %_(P,yo) € L, (Rg) and the preceding
argument can be applied to this function. This completes the proof of
Theorem 15.1.

An Estimate of the Echo Waveform. Under the hypotheses of Theorem 15.1

one has the estimate

B5C(,y0) = 85%C,y0) - w(+) £25°C,y,)
(15.42)

=S R B(",yy) - () S R E(*,y,) +0(1)

S R h(*,y,) + 0(1)

where 0(1) > 0 in L, (Rg) when y, » ®. Moreover, the mapping ﬁfc € L, (R%)
+ ey € Ly(R x [0,m]) defined by (15.12) is bounded with bound 1 [30, (2.84)].
It follows that

eo (T,08) =Re {(T,")lﬂz— r; eiTw(gRﬁ) (wcos 6,wsinB,y,) (-iw) /2 dw} + o(1)
(15.43)
where 0(1) > 0 in L,(R x [0,7]) when y, > ©. Now

ﬁ(P’q’YQ) = g(P’Q9yo) - im(P,Q) %(Psq:yo)
(15.44)

= Y5 (p,0) - 1w(p,a) F,(p,a)]

= equO ﬁo(p,q)

and hence by (15.6)

(-iw) R fiw cos B,wsin 8,y0) (-iw) 1/2 fi(w cos 8,-wsin 8,¥0)

(15.45)

= e-iwyo sin 9(-iu)) 1/2 ﬁo (wcos 8,-wsin B)

= 9 o"iwye sin 6 8y (w,-6)

.

Combining (15.43) and (15.45) gives
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1/2 (® - s
(15.46) e (1,0) = Re {[%] jo 10 ~lwyosin® g §°(m,—9)du)} + o) .

Thus under the hypotheses of Theorem 15.1 the echo waveform is determined
by the signal waveform, the S-matrix for the grating and the range param-

eter y,, with an error that tends to zero in energy when y, > .

Pulsed Beam Signals. For many applications it is desirable to have a

transmitter whose waveform s,(1,0) is sharply limited in both direction and
frequency. The relation (15.6) shows that this could be achieved by
choosing f, and g, such that supp ﬁo = RK where K C Om,n and m and n are
suitably chosen. Of course, this condition cannot be satisfied with sources
that are confined to a compact set, since if supp ﬁo is compact then hg (P)

is analytic. However, it may be possible to choose f, and g, such that

(15.47) hy(p,2) = alp,a) + b(p,q)

where

(15.48) - supp a = RK C Rom,n ,

(15.49) 82(,0) = 3 (-iw)/2 a(w cos 0,u sin 0)

defines the desired waveform s? and
. ‘ <e.
(15.50) ||b|IL2(R2) €

If this transmitter design problem has been solved then the corresponding

echoes will satisfy

(15.51) eo(1,0) = e(1,8) + 0, + 0,

where

(15.52)  e(1,0) = Re {[;Zr—) " JT it miwyosin® 5 §?(m,—e)dw}
while

(15.53) "01”L2(Rx[0,n]) < ¢ for all y; > 0 , and



159

15.5 1i = .
( 4) y:fw “02 "LZ (Rx[0,7]) 0

Angular Dispersion of Echoes from Gratings. The notation

(15.55) F,Q ={P = (wcos O,wsinB) : w > 0 and ag < 9 < BQ,}

will be used to denote the smallest sector such that Kz = XQ(K) C Fl,
-n < £ < m, The hypothesis K = K, C Om a implies that the sectors Fz are
i

disjoint and

m
(15.56) U Ty CR) .
2=-n

Moreover, (15.48), (15.49) and (15.52) and Theorem 14.4 imply that one has

(15.57) supp t % e2(x-t,0) C U_IJ T,

2=-n
for all t > 0. Thus, apart from the error terms in (15.51), the echo wave-
form is concentrated in the sectors Fz. Note that in the case of a
degenerate grating with Neumann (resp., Dirichlet) boundary condition one
has § = 1 (resp., S = -1) and hence r /2 ed(r-t,0) = ir_llzsﬁ(r-t,e) has
support in I'y. This is a well-known property of the specular reflection of
a beam by a plane. In the case of a non-degenerate grating, where S # £1,
one has only (15.57) and secondary reflected beams will appear in the
sectors Fl’ 2 # 0. Their waveforms can be calculated explicitly using
(15.52) and (14.87). They are distortions of the signal waveform s (T,0)
whose forms are determined by the scattering coefficients ci(wcos O,wsin B).
This phenomenon of the angular dispersion of pulsed beams by diffraction
gratings is the counterpart for transient wavefields of the phenomenon of
the diffraction of monochromatic beams into the higher order grating

directions.



References

[1]

[2]

(3]

[4]

[51]

[6}

[7]

[8]

[91]

[10]

[11]

[12}

{13]

Agmon, S. Lectures on Elliptic Boundary Value Problems. Van Nostrand,
1965.

Agmon, S. Spectral properties of Schrddinger operators and scattering
theory. Ann. Scuola Norm. Sup. Pisa, Ser. IV, 2, 151-218 (1975).

Alber, H. D. A quasi-periodic boundary value problem for the Laplacian
and the continuation of its resolvent. Proc. Roy. Soc. Edinburgh,
82A, 251-272 (1979).

Bloch, F. Uber die Quantenmechanik der Electronen in Kristallgittern.
Zeit. f£. Phys., 52, 555-600 (1928).

De Santo, J. A. Scattering from a periodic corrugated structure:
thin comb with soft boundaries. J. Math. Phys., 12, 1913-1923 (1971).

De Santo, J. A. Scattering from a periodic corrugated structure II:
thin comb with hard boundaries. J. Math. Phys., 13, 336-341 (1972).

De Santo, J. A. Scattering from a sinusoid: derivation of linear
equations for the field amplitudes. J. Acoust. Soc. Amer., 57, 1195-
1197 (1975).

De Santo, J. A. Scattering from a perfectly reflecting periodic
surface: an exact theory. Radio Sci., 16, 1315-1326 (1981).

Dunford, N., and Schwartz, J. T. Linear Operators I. Interscience,
1957.

Eckart, C. A general derivation of the formula for the diffraction
by a perfect grating. Phys. Rev., 44, 12-14 (1933).

Eidus, D. M. The principle of limiting absorption. Mat. Sb. 57, 13-
44 (1962) = AMS Transl. (2) 47, 157-191 (1965).

Ikebe, T. Eigenfunction expansions associated with the Schrodinger
operator and their application to scattering theory. Arch. Rational
Mech. Anal. 5, 1-34 (1960).

Kato, T. Perturbation Theory for Linear Operators. Springer-Verlag,
1966.

160



[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

161

Lions, J. L., and Magenes, E. Non-homogeneous Boundary Value Problems
and Applications I. Springer-Verlag, 1972.

Lyford, W. C. Spectral analysis of the Laplacian in domains with
cylinders. Math. Ann., 218, 229-251 (1975).

Narasimhan, R. Several Complex Variables. CUP, 1971.

Petit, R., Ed. Electromagnetic Theory of Gratings, Topics in Current
Physics. Vol. 22. Springer-Verlag, 1980.

Rayleigh, Lord (J. W. Strutt). The Theory of Sound. 2nd Ed. Vol. 2,
89-96, Dover, 1945.

Rayleigh, Lord (J. W. Strutt). On the dynamical theory of gratings.
Proc. Roy. Soc., Ser. A., 79, 399-416 (1907).

Rellich, F. Uber das asymptotische Verhalten der Losungen von Au + ku
= 0 in unendlichen Gebieten. Jber. Deutschen Math. Verein, 53, 57-64
(1943).

Schulenberger, J. R. and Wilcox, C. H. Eigenfunction expansions and
scattering theory for wave propagation problems of classical physics.
Arch. Rational Mech. Anal., 46, 280-320 (1972).

Shenk, N. A. Eigenfunction expansions and scattering theory for the
wave equation in exterior regions. Arch. Rational Mech. Anal., 21,
120-150 (1966).

Shizuta, Y. Eigenfunction expansions associated with the operator -A
in the exterior domain. Proc. Japan Acad., 39, 656-660 (1963).

Steinberg, S. Meromorphic families of compact operators. Arch.
Rational Mech. Anal., 31, 372-379 (1968-69).

Stroke, G. W. Diffraction Gratings. Handbuch der Physik XXIX.
Springer-Verlag, 1967.

Uretsky, J. L. The scattering of plane waves from periodic surfaces.
Ann Phys., 33, 400-427 (1965).

Weinstein, L. A. The Theory of Diffraction and the Factorization
Method. Golem, 1969.

Wilcox, C. H. Initial-boundary value problems for linear hyperbolic
partial differential equations of the second order. Arch. Rational
Mech. Anal., 10, 361-400 (1962).

Wilcox, C. H. Scattering states and wave operators in the abstract
theory of scattering. J. Functional Anal., 12, 257-274 (1973).

Wilcox, C. H. Scattering Theory for the d'Alembert Equation in
Exterior Domains. Lecture Notes in Mathematics. Vol. 442, Springer-
Verlag, 1975.

Wilcox, C. H. Spectral and asymptotic analysis of acoustic wave
propagation. Boundary Value Problems for Linear Evolution Partial
Differential Equations. Reidel, 1977.




[32]

{33]

[34]

162

Wilcox, C. H. Theory of Bloch Waves. J. d'Anal. Math., 33, 146-167
(1978).

Wilcox, C. H. Sonar echo analysis. Math. Meth. in the Appl. Sci.,
1, 70-88 (1979).

Wilcox, C. H. and Guillot, J. C. Scattering theory for acoustic
diffraction gratings ~ preliminary report. Notices AMS, Vol 25, A356
(Jan. 1978).




Index

Acoustic potential, 6
Alber, H. D., 3
Asymptotic wave functions, 16, 131

Bloch, F., 1

Comb grating, 23
Completeness, 90

Degenerate grating, 8
DeSanto, J. A., 1

Eigenfunction expansion, 9, 12,
26, 37, 83, 88, 91

Elliptic regularity theory, 34, 40

Energy integral, 8

Fréchet space, 25, 35, 43

Generalized Neumann condition, 24
Grating domain, 6, 22

Grating period, 22

Grating propagator, 23

Grazing wave, 29

Heisenberg operator, 13, 136

Ikebe, T., 2

Incoming R-B wave, 30, 38

Initial-boundary value problem,
6, 119

£.i.m., 9

Limiting absorption theorem, 47,
83

Local compactness property, 23

Local grating propagator, 25

m-sectorial operator, 44

Narrow beam, 19

163

Orthogonality, 90
Outgoing R-B wave, 30, 38

Parseval formula, 10, 12, 37, 89, 91
Petit, R., 2
Primitive grating period, 22

Quasi-periodicity, 28

Rayleigh, 1

Rayleigh-Bloch waves, 28

Rayleigh-Bloch diffracted plane
wave, 10, 30, 31

Rayleigh-Bloch surface wave, 11, 30

Rayleigh~Bloch wave expansions, 12,
104, 108

Reduced grating propagator, 33

Reference problem, 8

Resolvent, 38

Scattering into cones, 135
Scattering operator, 13
Scattering theory, 12
Sesquilinear form, 24, 34, 55
S-matrix, 13, 136

Sobolev imbedding theorem, 33
Spectral family, 27, 37
Stroke, G. W., 2

TE electromagnetic field, 7
TM electromagnetic field, 7

Uretsky, J. L., 1

Wave operator, 13, 121, 126
Weinstein, L. A., 1






Applied Mathematical Sciences

36.
37.
38.
39.
40.
41.
42.

43.
44.
45.

46.
47.

48.

Bengtsson/Ghil/Kallén: Dynamic Meterology: Data Assimilation Methods.
Saperstone: Semidynamical Systems in Infinite Dimensional Spaces.
Lichtenberg/Lieberman: Regular and Stochastic Motion. (cloth)
Piccinini/Stampacchia/Vidossich: Drdinary Differential Equations in R".
Naylor/Seli: Linear Dperator Theory in Engineering and Science. (cloth)

Sparrow: The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors.
Guckenheimer/Holmes: Nonlinear Dscillations, Dynamical Systems and Bifurcations of
Vector Fields.

Ockendon/Tayler: Inviscid Fluid Fiows.

Pazy: Semigroups of Linear Dperators and Applications to Partial Differential Equations.
Glashoff/Gustafson: Linear Dptimization and Approximation: An Introduction to the
Theoretical Analysis and Numerical Treatment of Semi-Infinite Programs.

Wilcox: Scattering Theory for Diffraction Gratings.

Hale et al.: An Introduction to Infinite Dimensional Dynamical Systems — Geometric
Theory.

Murray: Asymptotic Analysis.



	Cover
	Title Page
	Copyright Page
	Preface
	Acknowledgments
	Contents�
	INTRODUCTION�
	PART 1. PHYSICAL THEORY�
	1. The Physical Problem�
	2. The Mathematical Formulation�
	3. Solution of the Initial-Boundary Value Problem�
	4. The Reference Problem and Its Eigenfunctions�
	5. Rayleigh-Bloch Diffracted Plane Waves for Gratings�
	6. Rayleigh-Bloch Surface Waves for Gratings�
	7. Rayleigh-Bloch Wave Expansions�
	8. Wave and Scattering Operators for Gratings�
	9. Asymptotic Wave Functions for Gratings�
	10. The Scattering of Signals from Remote Sources�
	PART 2. MATHEMATICAL THEORY�
	1. Grating Domains and Grating Propagators�
	2. Rayleigh-Bloch Waves�
	3. The Reduced Grating Propagator A_p�
	4. Analytic Continuation of the Resolvent of Ap�
	5. Proofs of the Results of  Section 4�
	6. The Eigenfunction Expansion for A_p�
	7. Proofs of the Results of  Section 6�
	8. The Rayleigh-Bloch Wave Expansions for A�
	9. Proofs of the Results of  Section 8�
	10. The Initial-Boundary Value Problems for the  Scattered Fields�
	11. Construction of the Wave Operators for A_P and A_{0,p}�
	12. Construction of the Wave Operators for A and A_0�
	13. Asymptotic Wave Functions and Energy Distributions�
	14. Construction and Structure of the S-Matrix�
	15. The Scattering of Signals by Diffraction Gratings�
	REFERENCES�
	INDEX�

