


Quantum Nonlinear Optics



E. Hanamura Y. Kawabe A. Yamanaka

Quantum
Nonlinear Optics

With 123 Figures

ABC



Professor Dr. Eiichi Hanamura
Professor Dr. Yutaka Kawabe
Professor Dr. Akio Yamanaka
Chitose Institute of Science and Technology
758-65 Bibi, Chitose-shi
Hokkaido 066-8655, Japan
e-mail: hanamura@photon.chitose.ac.jp

y-kawabe@photon.chitose.ac.jp
a-yamana@photon.chitose.ac.jp

Translation from the original Japanese edition of
Ryoshi Kogaku (Quantum Optics) by Eiichi Hanamura
c© 1992, 1996 and 2000 Iwanami Shoten, Publishers, Tokyo

Library of Congress Control Number: 2006933867

ISBN-10 3-540-42332-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-42332-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations are
liable to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media.

springer.com

c© Springer-Verlag Berlin Heidelberg 2007

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: by the authors and techbooks using a Springer LATEX macro package
Cover concept: eStudio Calamar Steinen
Cover design: WMX Design GmbH, Heidelberg

Printed on acid-free paper SPIN: 10427115 57/techbooks 5 4 3 2 1 0



Preface

It was more than ten years ago that an original version of this monograph was
published with the title Quantum Optics in Japanese from Iwanami Shoten
in Tokyo. Therefore, making the best use of this chance to translate the book
into an English version, we have tried to include the exciting developments
of the relevant subjects in these ten years, especially novel nonlinear optical
responses of materials. The first example of these nonlinear optical phenom-
ena is laser cooling and subsequent observation of Bose–Einstein and Fermi
condensation of neutral atoms. Second, it is now possible to generate fem-
tosecond laser pulses. Then higher-harmonics in the extreme ultraviolet and
soft X-ray regions and higher-order Raman scattering can be generated by
irradiating these ultrashort laser pulses on atomic and molecular gases and
crystals. These multistep signals are applied to the generation of attosecond
laser pulses. Third, interference effects of the second harmonics are used to
observe the ferroelectric and antiferromagnetic domain structures of crystals
with a strongly correlated electronic system.

These novel nonlinear optical phenomena could not be treated without
the quantized radiation field. We already have classical textbooks treating,
individually, the quantum theory of the radiation field and nonlinear optics.
Taking account of these situations, we have described these exciting nonlinear
optical responses as well as laser oscillation and supperradiance, based upon
the quantum theory of the radiation field. At the same time, we have changed
the title of this monograph to Quantum Nonlinear Optics.

We start Chap. 1 with standard quantization of the radiation field and
then treat several states of the radiation field, such as the coherent state,
the quadrature squeezed state, and the photon-number squeezed state. After
obtaining the Hamiltonian describing the interaction between the radiation
field and electrons in Chap. 2, we discuss the suppression and enhancement of
spontaneous emission, and the laser cooling and subsequent condensation of
neutral atoms which have been achieved by using these interactions effectively.
The statistical characteristics of the radiation field are classified by introduc-
ing the correlation function of the radiation field in Chap. 3. Here a degree of
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coherence is defined and some examples are also discussed. In terms of these
statistics, some properties of lasers are characterized in Chap. 4. Here the
mechanism of laser oscillator is mathematically formulated and some exam-
ples of laser are introduced. Many interesting games are played by using these
lasers as demonstrated in Chap. 5 on “Dynamics of Light.” In the first half of
this chapter we will discuss Q-switching, mode locking and pulse compression,
and soliton formation and chirping of the laser pulse depending upon whether
we have anomalous or normal dispersion. The experimental and theoretical
aspects of superradiance will be discussed in the second half of Chap. 5. Chap-
ters 6 and 7 are devoted to nonlinear optical response. The electron–radiation
interaction can usually be treated by perturbation methods in conventional
nonlinear optical responses shown in Chap. 6. These examples are second-
harmonic generation, sum-frequency generation and parametric amplification
and oscillation. The third-order optical response contains colorful phenomena
such as coherent anti-Stokes Raman scattering, optical bistability, the Kerr
effect and third-harmonic generation. Second-harmonic generation is used to
determine the ferroelectric and antiferromagnetic domain structures in crys-
tals with strongly correlated electrons. These subjects will be discussed in
Chap. 6. The technological development of ultrashort laser pulses has made it
possible to produce novel nonlinear optical responses which should be treated
beyond the perturbation method of the electron–radiation interaction. These
topics will be treated in Chap. 7. Here, for example, high harmonics beyond
the 100th order can be generated from atoms irradiated by femtosecond laser
pulses. When a vibrational mode of molecules or crystals is resonantly excited
by two incident laser beams, higher-order Raman lines are observed. A series
of these spectral lines is mode locked so that sometimes attosecond laser pulses
become available as predicted from Fourier transformation of these spectral
lines. These will be discussed in Chap. 7.

It took five years to complete this monograph as the CREST research
project was running under the sponsorship of the Japan Science and Tech-
nology agency (JST). Some of these results are shown in this monograph. We
thank Professor Takuo Sugano and other members of JST for warm support
of this project, and Miss Saika Kanai, a member of JST project, for helping
us to complete this monograph as well as to run our research smoothly for
these five years. Finally we are very grateful to Dr. Claus E. Ascheron for his
patience and encouragement over these years.

March 2006 Eiichi Hanamura
Yutaka Kawabe
Akio Yamanaka
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1

Quantization of the Radiation Field

Quantum theory was born on December 14th, 1900, when Max Planck pro-
posed the quantum hypothesis. In order to explain the frequency distribution
of electromagnetic radiation from a cavity surrounded by walls of temperature
T , Planck postulated that the exchange of energy between the walls and the
field takes place as the absorption and emission of electromagnetic energy with
a discrete quantity hν or its multiples. The distribution of radiation energy
calculated under this hypothesis reproduced the spectrum observed in a smelt-
ing furnace, which is an example of a cavity surrounded by high-temperature
walls. In 1905, Einstein extended the ideas of Planck, and explained the pho-
toemission effect by assuming that optical radiation is equivalent to the flux
of optical quanta. After the development of quantum theory from electromag-
netic wave phenomena, which had been described by Maxwell’s equations in
classical physics, it was extended by de Broglie’s concept of matter wave in
1923 which proposed that particles also have wave properties like the pho-
ton. In 1926, Schrödinger introduced the wave equation for a particle wave,
and completed the construction of quantum mechanics. The duality of particle
and wave properties in an electromagnetic field and matter was understood as
complementary descriptions of particle and wave features mediated by Heisen-
berg’s uncertainty principle.

In this chapter, the quantization of the radiation field will be formulated
first, and then Heisenberg’s uncertainty relation will be derived, respectively,
in Sects. 1.1 and 1.2 [1–7]. Next, the generation method and physical proper-
ties of coherent states will be discussed in Sect. 1.3. A coherent state is one
of the minimum uncertainty states where the fluctuations of two components,
in quadrature, of the electric field have equivalent magnitude. In addition to
the standard topics in quantum optics, we introduce recent progress regarding
nonclassical light in the last section. In principle, the coherent state is not a
unique solution satisfying the minimum uncertainty conditions. It is possible
to reduce the noise of one component without limit, while sacrificing the un-
certainty of the other quadrature component. Likewise, it is also possible to
reduce the fluctuation of the photon number in a mode with the sacrifice of
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the phase fluctuation, because the photon number and phase are conjugated
observables. These two states are called the quadrature-phase squeezed state
and photon-number squeezed state. The details of these states will be dis-
cussed in Sect. 1.4. The uncertainty principle plays an important role also in
measurement processes as well as generation processes. The product of the
uncertainty of a measured value and its reaction to the conjugated observable
must be larger than a certain constant. Therefore, if we can make a system
in which the reaction of the measurement does not affect the measured value,
it is possible to enhance the accuracy of the measurement to any degree.
This is realized as the quantum nondemolition measurement of light. The
squeezed states and the quantum nondemolition measurement are expected
to be utilized in the detection of gravitational waves and also to enhance the
performance of optical communication systems.

1.1 Maxwell’s Equations and Hamiltonian Formalism

Maxwell’s equations for the electromagnetic fields E and H in free space take
the form

rotE +
∂

∂t
B = 0, (1.1)

rotH − ∂

∂t
D = 0, (1.2)

divB = 0, (1.3)
divD = 0. (1.4)

The electric displacement D and magnetic flux density B are expressed in
terms of the electric permittivity ε0 and magnetic permeability µ0 of free
space as

D = ε0E, B = µ0H. (1.5)

Because B is derived from a vector potential A according to

B = rotA, (1.6)

equation (1.3) is automatically satisfied. Reducing the magnetic flux density
B by substitution of (1.6) into (1.1), we can obtain a relation as follows:

rot
[
E +

∂

∂t
A

]
= 0.

Therefore, we can define a scalar potential φ as

E +
∂

∂t
A = −gradφ, (1.7)
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because the relation rot(gradφ) = 0 is always satisfied. It follows from (1.6)
and (1.7) that E and B are invariant under the following gauge transforma-
tion:

A(rt) → A′(rt) = A(rt) + ∇F (rt),

φ(rt) → φ′(rt) = φ(rt) − ∂

∂t
F (rt),

where F (rt) is an arbitrary function of space r and time t.
In order to eliminate the arbitrariness of the vector and scalar potentials,

we should choose a gauge condition. In this book, the Coulomb gauge is em-
ployed which is defined by

divA = 0, (1.8)

and gradφ = 0 is chosen for simplicity. Under the Coulomb gauge, the electric
field can be given by the vector potential as

E = − ∂

∂t
A. (1.9)

Substituting (1.5), (1.6) and (1.9) into (1.2), the equation for the vector po-
tential A can be derived as

rot(rotA) + ε0µ0
∂2

∂t2
A = 0. (1.10)

By using the formula rot(rot) = grad(div)−∆ and the relation c2 = 1/ε0µ0,
(1.10) is transformed into the wave equation

∆A − 1
c2
∂2

∂t2
A = 0. (1.11)

Equation (1.4) is satisfied automatically because of the relation divA = 0 for
the Coulomb gauge.

Considering a cubic volume with dimension L(0 ≤ x, y, z ≤ L) and impos-
ing a periodic boundary condition for simplicity, a solution of (1.11) is given
as:

A(rt) = A0e
i(k·r−ωt), (1.12)

k ≡ (kx, ky, kz) =
2π
L

(nx, ny, nz), (1.13)

where nx, ny, nz are arbitrary integers. The angular frequency ω is related to
the wavenumber vector k as ω = c|k| = ck. Because the relation A0 · k = 0
can be obtained from the Coulomb gauge condition (1.8), the vector potential
A is found to be a transverse wave. By defining the unit vector parallel to
polarization direction as A = A0e, the electric and magnetic fields E and B
can be expressed as
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E(rt) = iωeA0 exp[i(k · r − ωt)], (1.14)
B(rt) = i[k × e]A0 exp[i(k · r − ωt)], (1.15)

by using (1.6) and (1.9).
In the general case, the vector potential A can be given by a superposition

of single-mode solution (1.12) as

A(rt) =
1√
V

∑
k

2∑
γ=1

ekγ{qkγ(t)eik·r + q∗kγ(t)e−ik·r}, (1.16)

where γ represents the two independent polarization directions. Complex con-
jugate terms are added in order to make the observables E and B real num-
bers. The time dependence is included in the amplitude qkγ(t). From now on,
the letter λ will be used as the parameter of the electromagnetic mode instead
of kγ. The energy density of the electromagnetic field is given by the following
equation:

U(rt) =
1
2
(D · E + B · H). (1.17)

Therefore, the energy of the electromagnetic field in a volume of V = L3 is
denoted as

H =
∫
U(rt)d3r

= ε0
∑

λ

ω2
λ(q∗λqλ + qλq∗λ). (1.18)

Using real variables

Qλ(t) = qλ(t) + q∗λ(t), (1.19)
Q̇λ(t) = −iωλ(qλ − q∗λ), (1.20)

instead of the Fourier expansion coefficients qλ, q∗λ, we can transform (1.18)
into the more familiar canonical form:

H =
ε0
2

∑
λ

(Q̇2
λ + ω2

λQ
2
λ). (1.21)

When we introduce the generalized momentum Pλ = ε0Q̇λ which is conjugate
to the coordinate Qλ, we can replace the momentum Pλ with the differential
operator with respect to the canonical conjugate coordinate Qλ:

Pλ → −i� ∂

∂Qλ
. (1.22)

Then we find that the Hamiltonian has the following form
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H =
∑

λ

(
− �

2

2ε0
∂2

∂Q2
λ

+
ε0
2
ω2

λQ
2
λ

)
. (1.23)

Because this form is the same as the Hamiltonian of an ensemble of harmonic
oscillators, the eigenenergy can be given by

E{nλ} =
∑

λ

�ωλ

(
nλ +

1
2

)
, (1.24)

where nλ = 0, 1, 2, . . ., and {nλ} represents the photon number distribution
over all modes. Now, an annihilation operator âλ and a creation operator â†λ
of the photon in a mode λ ≡ (k, γ) can be introduced by:

âλ =
√
ε0ωλ

2�

(
Qλ +

i

ε0ωλ
Pλ

)
, (1.25)

â†λ =
√
ε0ωλ

2�

(
Qλ − i

ε0ωλ
Pλ

)
. (1.26)

As is well known from the theory of the harmonic oscillator, application of
these operators on an eigenstate |n1, n2, n3, . . . , nλ, . . .〉 of the Hamiltonian
(1.23) transforms it into other states as shown below:

âλ| · · · , nλ, . . .〉 =
√
nλ| · · · , nλ − 1, . . .〉,

â†λ| · · · , nλ, . . .〉 =
√
nλ + 1| · · · , nλ + 1, . . .〉.

The Hamiltonian can be expressed with creation and annihilation operators
â†λ and âλ:

H =
∑

λ

�ωλ

(
â†λâλ +

1
2

)
. (1.27)

1.2 Quantization of the Radiation Field
and Heisenberg’s Uncertainty Principle

As shown in the previous section, the most essential aspect of the field quan-
tization is to render the canonical variables Qλ and Pλ into noncommutative
operators satisfying the following relationship:

[Pλ, Qλ] ≡ PλQλ −QλPλ = −i�. (1.28)

This relation can be confirmed by replacing Pλ by the differential operator in-
dicated by (1.22). The canonical variables of different modes are commutative,
i.e.,

[Pλ, Qµ] = 0 (λ �= µ),
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and the commutator among the same types of operators also vanishes:

[Pλ, Pµ] = [Qλ, Qµ] = 0.

The commutation relation between the creation and annihilation operators is
derived from the substitution of (1.25) and (1.26) into (1.28):

[âλ, â
†
λ] = δλµ. (1.29)

Products of the uncertainties of noncommutative quantities must be larger
than a certain value; that is, they must satisfy Heisenberg’s uncertainty re-
lation. For example, the position and momentum of a particle cannot be de-
termined simultaneously to arbitrary precision. In this case, the product of
the uncertainties of the position ∆q and that of the momentum ∆p cannot be
smaller than �/2. The uncertainty principle reflects the probabilistic feature of
the wavefunction in quantum mechanics. If an ensemble of identical particles
in an identical state is separated into two groups, and their positions are mea-
sured for the first group and the momenta for the other group, the dispersion
of measured quantities ∆q, and ∆p must obey the uncertainty relationship
(∆p ·∆q ≥ �/2). This uncertainty relation can be generalized to the case of
any physical quantities which satisfy the following commutation relation:

[A,B] = AB −BA = iC. (1.30)

In this case, the uncertainties of ∆A, and ∆B will satisfy the following in-
equality:

∆A ·∆B ≥ |〈C〉|
2
. (1.31)

Let us prove inequality (1.31) by using Schwartz’s inequality in the follow-
ing way. The square of the uncertainty and expectation value are defined,
respectively, by the following expressions:

(∆A)2 = 〈ψ, (A− 〈A〉)2ψ〉, (1.32)
〈C〉 = 〈ψ,Cψ〉. (1.33)

Here 〈A〉 means the expectation value of the observable A for the normalized
wavefunction ψ. Then, we can show that

(∆A)2 · (∆B)2 ≡ 〈ψ, (A− 〈A〉)2ψ〉〈ψ, (B − 〈B〉)2ψ〉
≥ |〈(A− 〈A〉)ψ, (B − 〈B〉)ψ〉|2

= |〈ψ, (A− 〈A〉)(B − 〈B〉)ψ〉|2. (1.34)

The product of the operators ∆Ã ≡ A − 〈A〉 and ∆B̃ ≡ B − 〈B〉 can be
rewritten as

∆Ã ·∆B̃ =
1
2
[∆Ã,∆B̃] +

1
2
{∆Ã,∆B̃}, (1.35)
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where {a, b} means the anticommutation relation defined as ab+ ba. By using
the relation [∆Ã,∆B̃] = [A,B] = iC, the following inequality can be obtained:

|〈ψ,∆Ã ·∆B̃ψ〉|2 =
1
4
|〈ψ, [∆Ã,∆B̃]ψ〉 + 〈ψ, {∆Ã,∆B̃}ψ〉|2

≥ 1
4
|〈ψ, [∆Ã,∆B̃]ψ〉|2 =

1
4
|〈C〉|2. (1.36)

The last inequality is derived from the facts that (1) i[∆Ã,∆B̃] and {∆Ã,∆B̃}
are both Hermitian operators, and (2) the first term in the absolute value in
the upper formula is purely imaginary and the second term is real. Finally,
the relation (1.31) can be proven by combining (1.34) and (1.36).

Fourier expansion of the vector potential (1.16) gives the coefficients qλ(t)
and q∗λ(t), and these are rewritten by the creation and annihilation operators
using (1.19), (1.20), (1.25) and (1.26):

qλ(t) =
√

�

2ε0ωλ
âλ, q∗λ(t) =

√
�

2ε0ωλ
â†λ. (1.37)

The electric field E can be transformed into an expansion form by its definition
(1.9) and the substitution of (1.37) into (1.16):

E = i

√
1

2V

∑
λ

eλ

√
�ωλ

ε0
{âλe

ik·r − â†λe−ik·r}. (1.38)

The electric field E and the photon number operator nλ are noncommutative:

[n̂λ,E] �= 0. (1.39)

Therefore, when nλ has a certain value, that is, the radiation field has a
constant energy, the electric field cannot have a certain value but greatly
fluctuates around an averaged value.

The eigenstate of the Hamiltonian (1.23) or (1.27), with the energy given
by (1.24), can be expressed as

Ψ{n} ≡ |n1, n2, . . . , nλ, . . .〉 =
∏
λ

(â†λ)nλ

√
nλ!

|0〉, (1.40)

where |0〉 indicates the vacuum state of the photon.
The electric field E can be expressed with the photon-number operator

n̂λ and the phase operator φ̂λ by using the following relations:

âλ = eiφ̂λ
√
n̂λ, â†λ =

√
n̂λe

−iφ̂λ . (1.41)

From the commutation relation of the creation and annihilation operators
given by (1.29), the relation
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eiφ̂λ n̂λ − n̂λe
iφ̂λ = eiφ̂λ (1.42)

can be obtained if φ̂λ and n̂λ satisfy the commutation relation

φ̂λn̂λ − n̂λφ̂λ = −i. (1.43)

Applying (1.43) to the Heisenberg’s uncertainty relationship (1.31), the prod-
uct of the fluctuation of the photon number and that of the phase can be
given by

(∆nλ) · (∆φλ) ≥ 1
2
. (1.44)

If the photon number of a mode λ is known, it is impossible to know the ac-
curate phase of the mode. On the other hand, the photon number is unknown
when the phase can be determined. When there are two waves and only the
phase difference of them is known, it is possible to determine the total pho-
ton number, but there is no method to determine to which waves a photon
belongs.

1.3 Coherent State of Light

The coherent state is the quantum state of light most proximate to the clas-
sical radiation field. For the coherent state, the product of the fluctuations
of two noncommutative physical quantities takes the minimum value. The
electric field of the coherent state can be approximately expressed by a well-
defined amplitude and phase as with classical waves. The coherent state is
an eigenstate of the non-Hermitian annihilation operator âλ, and it can be
expressed as a superposition of eigenstates |{nλ}〉 of the radiation field. In
this section, the generation and physical characteristics of the state will be
discussed.

Because an eigenstate of the total radiation field can be expressed as the
direct product of eigenstates of each mode, one can start the discussion from
the formulation of the coherent state |α〉 for a single mode λ. Therefore, the
subscript λ for the mode will be eliminated from now on in this chapter. The
coherent state is defined as an eigenstate of the annihilation operator â as

â|α〉 = α|α〉. (1.45)

In order to construct the coherent state, it is convenient to use a normalized
single-mode photon-number state |n〉 given by

|n〉 =
1√
n!

(â†)n|0〉. (1.46)

Here, |0〉 means the vacuum state of the photon mode λ. This definition can
be naturally understood from the multimode formula (1.40). The coherent
state can be given as a linear combination of the number states:
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|α〉 = exp
(
−1

2
|α|2

)∑
n

αn

√
n!
|n〉. (1.47)

The normalized expression of the coherent state (1.47) can be derived from
the definition of the state (1.45). The Hermitian conjugate of the relation
â†|n〉 =

√
n+ 1|n+ 1〉 can be expressed as

〈n|â =
√
n+ 1〈n+ 1|.

By applying |α〉 on the right on both sides, and using the relation 〈n|â|α〉 =
α〈n|α〉 – easily obtained from (1.45) – the following equation can be derived:

√
n+ 1〈n+ 1|α〉 = α〈n|α〉. (1.48)

This equation and the following chain of equations:
√
n〈n|α〉 = α〈n− 1|α〉,

√
n− 1〈n− 1|α〉 = α〈n− 2|α〉,√

n− 2〈n− 2|α〉 = α〈n− 3|α〉, · · · , 〈1|α〉 = α〈0|α〉

finally give the relation:

〈n|α〉 =
αn

√
n!
〈0|α〉. (1.49)

As the photon-number states constitute a complete system as

∞∑
n=0

|n〉〈n| = 1, (1.50)

the coherent state |α〉 can be expanded with these number states |n〉 as

|α〉 =
∞∑

n=0

|n〉〈n|α〉 = 〈0|α〉
∞∑

n=0

αn

√
n!
|n〉. (1.51)

The coefficient 〈0|α〉 can be determined from the normalization condition

〈α|α〉 = |〈0|α〉|2
∞∑

n=0

|α|2n

n!
= |〈0|α〉|2 exp(|α|2) = 1.

Then, the expression for the coherent state (1.47) can be obtained from this
relation and (1.51).

The parameter α in the coherent state is an arbitrary complex number.
The averaged photon number is given by |α|2, and the expectation value of
the photon number n obeys a Poisson distribution as

|〈n|α〉|2 =
(|α|2)n

n!
exp(−|α|2). (1.52)
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The coherent state with α = 0 is identical to the photon-number state with
n = 0 (that is, |0〉).

The coherent state can also be obtained from the vacuum state by a unitary
transformation D(α) as

|α〉 = D(α)|0〉 = exp(αâ† − α∗â)|0〉. (1.53)

This is an important representation in order to study the generation of a
coherent state described in the last half of this section. Before the derivation
of (1.53), let us prove that the unitary operator D(α) is equivalent to the
displacement operator D(β) as follows:

D−1(β)âD(β) = â+ β, (1.54)
D−1(β)â†D(β) = â† + β∗. (1.55)

After operating with D−1(β) on right on both sides of (1.54), apply it to the
state |α〉. Then we get the following relation:

D−1(β)â|α〉 = αD−1(β)|α〉 = (â+ β)D−1(β)|α〉. (1.56)

Hence, if α = β,

âD−1(α)|α〉 = 0. (1.57)

Because this equation means that

D−1(α)|α〉 = |0〉, (1.58)

one can obtain

|α〉 = D(α)|0〉. (1.59)

From the preceding discussion, it is known that the coherent state can be gen-
erated by applying the displacement operator D(α) to the vacuum state of the
photon. Next, let us determine the form of D(α) in the following discussion.
If α = 0, we obtain

D(0) = 1 (1.60)

from (1.59). Operating with D(β) on the left of both (1.54) and (1.55), and
replacing β with the infinitesimal quantity dα give the following:

âD(dα) = D(dα)(â+ dα), (1.61)
â†D(dα) = D(dα)

(
â† + (dα)∗

)
. (1.62)

The solution of these simultaneous equations can be expressed by a linear
combination of â and â† as

D(dα) = 1 +Aâ† +Bâ, (1.63)
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because of the boundary condition D(0) = 1 and the fact that dα and dα∗

are infinitesimal. Next, â, and â† are applied on the left of (1.62) and (1.61),
respectively, and then subtraction of each side leads to

â × (1.62) − â† × (1.61) = (ââ† − â†â)D(dα) = D(dα)
= âD(dα)â† + âD(dα)(dα)∗ − â†D(dα)â− â†D(dα)dα. (1.64)

Comparison of this equation with (1.63) gives A = dα and B = −(dα)∗, and
the final expression is

D(dα) = 1 + â†dα− â(dα)∗. (1.65)

Now, we introduce a real parameter λ as dα = αdλ and assume the relation

D[α(λ+ dλ)] = D(αdλ)D(αλ). (1.66)

Then the differential equation of the operators is given as

d

dλ
D(αλ) = (αâ† − α∗â)D(αλ). (1.67)

Integration of the equation finally gives (1.53) by taking λ = 1.
Two kinds of expressions |α〉 were given in the preceding discussion: one

was given by the displacement operator (1.53), the other given by a linear
combination of photon-number states |n〉 in (1.47). The two expressions can
be proven to be equivalent. In general, if the operators A and B satisfy the
relations [[A,B], A] = [[A,B], B] = 0, then it can be shown that

exp(A+B) = exp(A) exp(B) exp
{
−1

2
[A,B]

}
. (1.68)

In our case, substituting A = αâ†, and B = −α∗â into the formula, D(α) is
given by

D(α) = exp(αâ† − α∗â) = exp
(
−1

2
|α|2

)
exp(αâ†) exp(−α∗â). (1.69)

Application of exp(−α∗â) to the photon vacuum state |0〉 does not change the
state, as can be seen from the following expansion:

exp(−α∗â)|0〉 =
{

1 − α∗â+
(α∗â)2

2!
+ · · ·

}
|0〉 = |0〉. (1.70)

Hence, application of the displacement operator on |0〉 leads to

D(α)|0〉 = exp
(
−1

2
|α|2

)
exp(αâ†)|0〉 = exp

(
−1

2
|α|2

) ∞∑
n=0

1
n!

(αâ†)n|0〉

= exp
(
−1

2
|α|2

) ∞∑
n=0

1√
n!
αn|n〉, (1.71)

which corresponds to the expression (1.47).
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The coherent state |α〉 is proven to be a minimum uncertainty state which
is the most proximate to a classical electromagnetic wave. From (1.25) and
(1.26), the generalized canonical coordinate Q and its conjugate momentum
P are expressed by creation and annihilation operators â† and â as

Q =
√

�

2ε0ω
(â+ â†), P = i

√
ε0�ω

2
(â† − â). (1.72)

The expectation values of the position and momentum in the coherent state
|α〉 are given as

〈α|Q|α〉 =
√

�

2ε0ω
(α+ α∗),

〈α|P |α〉 = i

√
ε0�ω

2
(α∗ − α). (1.73)

Also the expectation values of P 2 and Q2 can be calculated to be

〈α|Q2|α〉 =
�

2ε0ω
{(α+ α∗)2 + 1},

〈α|P 2|α〉 =
ε0�ω

2
{1 − (α∗ − α)2}. (1.74)

Therefore, the variances ∆P and ∆Q for electromagnetic field are given by:

(∆Q)2 ≡ 〈α|Q2|α〉 − (〈α|Q|α〉)2 =
�

2ε0ω
,

(∆P )2 ≡ 〈α|P 2|α〉 − (〈α|Q|α〉)2 =
ε0�ω

2
. (1.75)

This result shows that the minimum uncertainty relation ∆Q ·∆P = �/2 is
satisfied in the coherent state.

The coherent states constitute a complete system in a given mode, but
states with different α value are not orthogonal. These mathematical charac-
teristics are discussed in the following paragraphs.

(1) Closure

If the complex number α is expressed with amplitude |α| ≡ r and phase φ as
α = reiφ, then

∫
d2α|α〉〈α| =

∫ ∞

0

rdr

∫ 2π

0

dφe−r2 ∑
m

∑
n

rm√
m!
eimφ r

n

√
n!
e−inφ|m〉〈n|

= 2π
∑

n

1
n!

∫ ∞

0

rdrr2ne−r2 |n〉〈n| = π. (1.76)
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Here, we take into account the completeness of photon number states |n〉,
which is given as the relation

∑
n |n〉〈n| = 1, and the following orthogonality

relation: ∫ 2π

0

dφei(m−n)φ = 2πδmn. (1.77)

From (1.76), the following closure property is proven:

1
π

∫
d2α|α〉〈α| = 1. (1.78)

(2) Nonorthogonality

The overlap of two coherent states |α〉 and |β〉 can be calculated as

〈β|α〉 =
∑
m

∑
n

(β∗)m

√
m!

αn

√
n!

exp
{
−1

2
(|α|2 + |β|2)

}
〈m|n〉

=
∑

n

(αβ∗)n

n!
exp

{
−1

2
(|α|2 + |β|2)

}

= exp
{
−1

2
(|α|2 + |β|2) + β∗α

}
. (1.79)

Finally, we obtain |〈β|α〉|2 = exp{−|α − β|2}, the result of which shows that
two states are approximately orthogonal only when the distance between two
complex numbers α and β is large enough.

(3) Over-closure

From these two features, it is known that a coherent state |α〉 can be expressed
by a superposition of other coherent states as

|α〉 =
1
π

∫
d2β|β〉〈β|α〉

=
1
π

∫
d2β|β〉 exp

{
−1

2
(|α|2 + |β|2) + β∗α

}
. (1.80)

This is an expression for over-closure.
Lasers, operating under population inversion much greater than that at

the threshold condition, generate light in the coherent state. As shown in
Chap. 5, when a laser oscillates, the phases of the transition dipole moments of
all contributing atoms (molecules) are synchronized. Such electronic motion
behaves as a classical current. It can be shown that the radiation from a
classical current gives coherent light in the following. The coherent state of a
multimode can be given as the product of multiple coherent modes:

|{αλ}〉 =
∏
λ

|αλ〉. (1.81)
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The vector potential A(rt) can be expanded into a linear combination of
creation â†λ and annihilation operators âλ for all modes as

A(rt) =
1√
V

∑
λ

√
�

2ε0ωλ
eλ[âλe

ik·r−iωt + â†λe
−ik·r+iωt]. (1.82)

The interaction Hamiltonian made by a classical current density J(rt) by
atoms (molecules) and an electromagnetic field A(rt) in a laser system is
written as

V(t) = −
∫

J(rt) · A(rt)d3r. (1.83)

The details of interaction Hamiltonian will be derived in Chap. 2. When the
Hamiltonian of an atomic system, an electromagnetic field, and the interaction
between them are denoted by Hatom, Hrad, and V, respectively, (1.83) can be
given in the interaction representation as

V(t) = exp
(
iH0t

�

)
V exp

(
−iH0t

�

)
,

where H0 = Hatom +Hrad. The wavefunction of the total system φ(t) at time
t is related to the wavefunction in the interaction representation |t〉 as

φ(t) = exp
(
iH0t

�

)
|t〉,

and |t〉 obeys the following time development equation:

i�
∂

∂t
|t〉 = V(t)|t〉. (1.84)

The temporal evolution of the wavefunction |t〉 can also be given by the prop-
agator U(t, t0) as

|t〉 = U(t, t0)|t0〉,

and the propagator is subject to the following differential equation

d

dt
U(t, t0) = B(t)U(t, t0), U(t0, t0) = 1, (1.85)

where

B(t) =
i

�

∫
J(rt) · A(rt)d3r. (1.86)

Integration of (1.85) gives a formal solution of U(t, t0) in perturbation expan-
sion form as
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U(t, t0) = exp

{∫ t

t0

B(t′)dt′ +
1
2

∫ t

t0

dt′
∫ t′

t0

dt′′[B(t′), B(t′′)]

}

= exp

[∑
λ

{αλâ
†
λ − α∗

λâλ} + iφ

]
. (1.87)

Here, we assume the limit t0 → −∞, and αλ is expressed as

αλ =
i

�
√
V

∫ t

−∞
dt′

∫
d3r

√
�

2ε0ωλ
e−i(k·r−ωt′)eλ · J(r, t′). (1.88)

The term including [B(t′), B(t′′)] in (1.87) is a c-number as known from (1.82)
and (1.86), and it gives the phase iφ. If the system is in a steady state, where
αλ and φ do not include time t, then we can choose an arbitrary phase as
φ = 0, and the photon system is known to be in the coherent state as shown
in the following equation:

|t〉 =
∏
λ

exp(αλâ
†
λ − α∗

λâλ)|0〉

=
∏
λ

exp
(
−1

2
|αλ|2

)
exp(αλâ

†
λ) exp(−α∗

λâλ)|0〉

= |{αλ}〉. (1.89)

Here, we assume that the photon system is in a vacuum at t → −∞. The
radiation from the classical current is proven to generate a coherent state of
the photon. In Chap. 5, lasers are shown to give a coherent state of the photon
when it is operated by pumping sufficiently higher than its threshold.

1.4 Squeezed State of Light

As described in the preceding section, a laser operated under strong pumping
emits light in a coherent state. In this section, the magnitude of the fluc-
tuation of two quadrature (sine and cosine) components of the electric field
of laser light (coherent light) is shown to be equivalent. Next, the mathe-
matical features of a quadrature-phase squeezed state are given, where the
uncertainty of one quadrature component is forced to be smaller than that
of the conventional minimum uncertainty; however, it is accompanied by an
increase in the fluctuation of the other component. The methods of generation
of the squeezed state are also discussed. Finally, the characteristics and the
generation of photon-number squeezed states are given, where the fluctuation
of the photon number is reduced, with the sacrifice of the phase fluctuation
of a given mode.
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1.4.1 Quadrature-Phase Squeezed State

The fluctuations of two quadrature components in a coherent state are calcu-
lated first. Considering one mode in an electric field E(t), it can be written
in trigonometric form as

E(t) = iE0(âe−i(ωt−k·r) − â†ei(ωt−k·r))
= 2E0[q̂ sin(ωt− k · r) + p̂ cos(ωt− k · r)], (1.90)

where we use E0 = eλ

√
�ω/2ε0V given in (1.38). In this case, q̂ and p̂ are

given as

q̂ =
1
2
(â+ â†), p̂ =

i

2
(â− â†), (1.91)

and these operators obey the following commutation relation

[q̂, p̂] = − i
2
. (1.92)

Then, the fluctuations ∆q and ∆p satisfy the uncertainty relation:

∆q ·∆p ≥ 1
4
. (1.93)

This is obtained from (1.31) and (1.92). On the other hand, the expectation
values of q̂ and p̂ for the coherent state are given as

〈α|q̂|α〉 =
1
2
(α+ α∗), 〈α|p̂|α〉 =

i

2
(α− α∗), (1.94)

and the expectation values of q̂2 and p̂2 are given as:

〈α|q̂2|α〉 =
1
4
〈α|{â2 + ââ† + â†â+ (â†)2}|α〉

=
1
4
(α+ α∗)2 +

1
4
, (1.95)

〈α|p̂2|α〉 =
1
4
− 1

4
(α− α∗)2. (1.96)

Finally, it is shown that the squares of the fluctuations are calculated to be

(∆q)2 ≡ 〈α|(q̂ − 〈q̂〉)2|α〉 =
1
4
, (1.97)

(∆p)2 ≡ 〈α|(p̂− 〈p̂〉)2|α〉 =
1
4
, (1.98)

where 〈p̂〉 = 〈α|p̂|α〉 and 〈q̂〉 = 〈α|q̂|α〉. From these results, it is proven that
the fluctuations of both quadrature components are equal in coherent states
and also that the minimum uncertainty relationship is satisfied as known from
(1.93), (1.97) and (1.98).
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Next, we discuss the squeezing of light for which the distribution of quan-
tum noise is changed, that is, the uncertainties of the amplitudes of each
quadrature component p and q differ from one another. The coherent state is
made by the linear interaction (1.83) between the electromagnetic field and
the electron system. On the other hand, when some kinds of nonlinear inter-
action work effectively, the operators {â, â†} can be treated as a photon pair
with the same amplitude and the opposite phase or a photon pair with phase
conjugate quantum correlation. The microscopic mechanism of the nonlinear
optical interaction will be introduced in the later part of this section.

Based on the analogy to the Bogoliubov transformation in Bose–Einstein
condensation, new operators b and b† are introduced as a linear combination
with complex coefficients µ and ν as

b̂ = µâ+ νâ†, b̂† = µ∗â† + ν∗â, (1.99)

â = µ∗b̂− νb̂†, â† = µb̂† − ν∗b̂. (1.100)

Here, (1.99) is a linear canonical transformation under the condition that
|µ|2 − |ν|2 = 1. The physical background of this transformation will be dis-
cussed later. Therefore, the transformation must be represented by a unitary
transformation UL as

b̂ = ULâU
−1
L = µâ+ νâ†. (1.101)

Then, we can introduce a pseudo-photon number operator b̂†b̂ and a pseudo-
photon number state |m〉〉 by using the unitary transformation UL as

N ≡ b̂†b̂ = ULâ
†âU−1

L ,

N |m〉〉 = m|m〉〉 (m = 0, 1, 2, . . .). (1.102)

The squeezed state |β〉〉 is defined as an eigenstate of the b̂ operator:

b̂|β〉〉 = β|β〉〉, 〈〈β|b̂† = β∗〈〈β|, (1.103)
|β〉〉 = UL|β〉 = D(β)|0〉〉, (1.104)

where D(β) is defined as

D(β) ≡ eβb̂†−β∗b̂. (1.105)

Fluctuations of the electromagnetic field components p̂ and q̂ in the squeezed
state will be calculated next. For one quadrature component q̂,

(∆q)2s ≡ 1
4
{〈〈β|(â+ â†)|β〉〉}2

=
1
4
|µ− ν|2. (1.106)

Here the subscript s on the left-hand side means an average in the squeezed
state. Likewise, for the other component p̂,
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(∆p)2s =
1
4
|µ+ ν|2. (1.107)

In this calculation, the operators â and â† are rewritten as b̂ and b̂† using
(1.100), and also the definition of the squeezed state (1.103) is used. The
expectation value of â is also defined as

〈〈â〉〉 ≡ 〈〈β|â|β〉〉 = µ∗β − νβ∗ ≡ β̂ ≡ βq + iβp. (1.108)

The off-diagonal terms of the fluctuation do not vanish in the squeezed state
as shown in the following calculation:

{∆(qp)}s ≡ 〈〈β|(q̂ − βq)(p̂− βp)|β〉〉

=
1
4
i(µ∗ν − ν∗µ+ 1), (1.109)

{∆(pq)}s ≡ 〈〈β|(p̂− βp)(q̂ − βq)|β〉〉

=
1
4
i(µ∗ν − ν∗µ− 1). (1.110)

These fluctuations can be diagonalized with the rotation given by

â′ ≡ âeiφ = (q̂ + ip̂)(cosφ+ i sinφ)
≡ q̂′ + ip̂′ = q̂ cosφ− p̂ sinφ+ i(q̂ sinφ+ p̂ cosφ), (1.111)

where the constant φ can be determined so that the sum of the off-diagonal
parts of the fluctuation {∆(q′p′) + ∆(p′q′)}s vanishes. Therefore, it can be
expressed as

tan 2φ =
i(µ∗ν − ν∗µ)
µν∗ + νµ∗

. (1.112)

From these results, the variances of the coordinate q̂′ and momentum p̂′ after
the rotation in such a generalized coordinate are calculated to be

(∆q′)2 =
1
4
(|µ| − |ν|)2,

(∆p′)2 =
1
4
(|µ| + |ν|)2. (1.113)

The fluctuation of q̂′ is then smaller than the value in the coherent state,
but the squeezed state is known to be a minimum uncertainty state from the
following relations:

(∆q′)2(∆p′)2 =
1
16

(|µ|2 − |ν|2)2 =
1
16
, (1.114)

(∆q′)2 =
1
4
(|µ| − |ν|)2 =

1
4

1
(|µ| + |ν|)2 <

1
4
. (1.115)

This state is called the quadrature-phase squeezed state. Figures 1.1 and 1.2
give an intuitive understanding of the physical meaning of the squeezed state
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Fig. 1.1. Distribution of quantum noise plotted in phase space (p̂, q̂). p̂ and q̂
mean orthogonal quadrature components of electric field expressed as E(t) =
2E0(q̂ cos ωt + p̂ sin ωt). (a) Coherent state (∆p = ∆q). (b) Quadrature phase
squeezed state; this shows the situation for ∆q′ < ∆p′ where q̂′ = q̂ cos φ − p̂ sin φ,
p̂′ = q̂ sin φ + p̂ cos φ. (c) Photon-number squeezed state. See Sect. 1.4.2

and the coherent state. The uncertainties in the phase space (q̂, p̂) for the
coherent state are indicated in Fig. 1.1(a), and those for the quadrature-phase
squeezed state in Fig. 1.1(b). Figure 1.1(c) shows the photon-number state
which will be discussed in the last half of this section. Figures 1.2(a)–(c) show
the fluctuating behavior of the electric field for these three cases.

The next problem is to find the method to realize the unitary transfor-
mation (1.104) and (1.105) as a physical process. Second- and third-order
nonlinear optical processes, which will be described in Chap. 6, play impor-
tant roles: that is: (a) optical parametric amplification (second order); (b)
second-harmonic generation (second order); and (c) degenerate four-wave mix-
ing (third order).
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Fig. 1.2. (Left) Wave forms of the electric field and (right) the distribution of un-
certainties in two conjugated variables in phase space (q̂, p̂). (a) Coherent state.
(b) Quadrature phase squeezed state. Fluctuation in electric field amplitude is
squeezed. (c) Fluctuation in phase is squeezed

In order to generate a squeezed state, the coherent state is used as a
pump source. Considering the small nonlinear optical coefficients in general,
the coherent pump light should be strong enough that it can be regarded as
a classical electromagnetic wave. In this case, the annihilation and creation
operators of the pump beam can be expressed as a c-number:

âp = ce−iωpt, â†p = c∗eiωpt. (1.116)

The Hamiltonian describing the nonlinear interaction processes including
photons to be squeezed (â, â†) and pump light (âp, â

†
p) are given as

(a) V(t) = �(χ(2)â†pââ+ χ(2)∗â†â†âp), (1.117)

(b) V(t) = �(χ(2)â†âpâp + χ(2)∗â†pâ
†
pâ), (1.118)

(c) V(t) = �χ(3)[(â†p)
2ââ+ â†â†(âp)2]. (1.119)
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They correspond to three nonlinear optical processes (a), (b), and (c) men-
tioned in the preceding paragraph. Here, χ(2) and χ(3) represent the quantities
proportional to the second- and the third-order nonlinear optical susceptibil-
ity, respectively. If the angular frequency of the photon to be squeezed is
denoted as ω, the corresponding pump frequencies should be ωp = 2ω in (a)
and ωp = ω in (c). For the case of the harmonic generation process (b), the
pump frequency is determined by the relation ω = 2ωp and squeezing of the
pumping light ωp as well as the light ω can be expected.

When laser light of the coherent state |β〉 is incident in a nonlinear optical
medium, it starts to interact with the atomic (molecular) system at t = 0
with the Hamiltonian V(t). If the propagator of the photon system is given
by U(t), the interaction process can be described by the equations:

|β〉〉 = UL|β〉 = U(t)|β〉, (1.120)

i�
∂

∂t
U(t) = H(t)U(t), U(0) = 1. (1.121)

In order to discuss the evolution of the photon state, let us begin by calculating
U(t) first. In the nonlinear optical processes (a) and (c), the Hamiltonian H
of the photon system can be written as:

H = �ωâ†â+ V(t) = �{ωâ†â+ f∗2 â
2 + f2(â†)2}. (1.122)

By replacing f2(t) and U(t) with r(t) and U ′(t), respectively, in the following,

f2(t) = r(t)eiφ−2iωt, (1.123)

U(t) = e−iωâ†âtU ′(t), (1.124)

the differential equation (1.121) is transformed into the form:

i�
∂

∂t
U ′(t) = �r(t)

{
e−iφâ2 + eiφ(â†)2

}
U ′(t). (1.125)

Choosing φ = π/2 and defining R(t) =
∫ t

0
r(t′)dt′, the integration of (1.125)

leads to the expression:

U ′(t) = exp[R(t){(â†)2 − â2}]. (1.126)

Finally, the unitary transformation determined by (1.124) and (1.126) gives
the pseudo-photon operators b̂ and b̂† from the definition (1.101):

b̂ = U(t)âU−1(t)
= eiωt cosh(2R)â+ e−iωt sinh(2R)â†, (1.127)

b̂† = U(t)â†U−1(t)
= eiωt sinh(2R)â+ e−iωt cosh(2R)â†. (1.128)
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This is a canonical transformation given by (1.99) and (1.100), as proven from
the following calculation:

[b̂, b̂†] = cosh2(2R) − sinh2(2R) = 1. (1.129)

These results give |µ| = cosh(2R) and |ν| = sinh(2R), and the dispersions of
p̂′ and q̂′ given by (1.113) are calculated as

(∆q′)2 = 1
4 (|µ| − |ν|)2 =

1
4
e−4R, (1.130)

(∆p′)2 = 1
4 (|µ| + |ν|)2 =

1
4
e4R. (1.131)

In this expression, if the function r(t) introduced in (1.123) is time indepen-
dent, the value R is equal to rt = rL/c∗ where t = L/c∗ is a transit time
of the electromagnetic wave in the nonlinear optical medium with length L,
and c∗ is the light speed in the medium. Equations (1.130) and (1.131) show
that these three nonlinear optical processes will produce the squeezed state
of light.

Experimental efforts to observe the squeezed states have been made since
the middle of the 1980s. Here, we show an example done by Kimble’s group [8],
in which they reduced the noise of laser light to less than half by using a
degenerate parametric transformation. A degenerate parametric transforma-
tion is a nonlinear optical process introduced in the preceding paragraph and
(1.117) in which process the pump photons with frequency ωp incident in a
nonlinear optical medium are divided into two sets of photons with ω = ωp/2.
They employed MgO:LiNbO3 as a χ(2) material, and inserted it into a high-Q
Fabry–Pérot cavity as shown in Fig. 1.3.

The amplification gain of the optical parametric process is sensitive to the
phase, and the amplification is enhanced due to the repetition of round-trip
travelling of light in the cavity. They generated squeezed light of 1.06 µm wave-
length by using second harmonics of a Nd3+:YAG laser (0.53 µm wavelength)
as a pump. Because one quadrature component of the light is squeezed as
shown in Fig. 1.1(b), a phase-sensitive detection process is required in order
to confirm the squeezing of the quadrature phase component. Therefore, for
the measurement of squeezed noise, the electric field E(t) must be detected at
the instant when the fluctuation of E(t) is the smallest, that is, when E(t) has
a minimum or maximum value, as indicated in Fig. 1.2(b). Measurement of
the light intensity itself is inappropriate for the detection of quadrature-phase
squeezed light, because we would measure the average of the noise from both
quadrature components normal to each other. Homodyne detection is one of
the methods of detecting the squeezed component. Homodyne detection was
used for the superposition of the squeezed light and coherent light in the
same radiation mode formed by a beamsplitter as shown in Fig. 1.3. In this
case, 1.06 µm single-mode laser was employed as a light source for pumping
of the second harmonics and a local oscillator. The beamsplitter divides both
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Fig. 1.3. Schematic diagram of the experiment of generation and measurement of
squeezed light using a degenerate parametric process

the squeezed signal and the coherent local oscillator into 50:50, and it also
mixes them simultaneously. The two light beams from the beamsplitter are
received by detectors A and B, and the photocurrent from these two detec-
tors is received by a balanced homodyne detector. The fluctuation from the
local oscillator is suppressed by employing this detection process, and we can
observe the squeezed quadrature phase component by choosing an adequate
phase.

If the phase of the local oscillator is varied, for example by changing the
length of the light path, we can pick up the fluctuation of one squeezed com-
ponent q̂′ sin(ωt) at a certain phase. Figure 1.4 shows that the noise level from
the receiver becomes, in turn, larger and smaller than the shot noise level, by
changing the phase of the local oscillator.

This reflects the difference of the uncertainty for two quadrature compo-
nents. The shot noise level is observed by blocking the signal light. This is
determined from the fluctuation in the vacuum, and is independent of the
phase of the local oscillator. At an adequate phase position, we can observe
the variance (∆q̂′)2 of the squeezed state to be smaller than the shot noise,
while at 90◦ phase difference, the observed dispersion, (∆p̂′)2, of p̂′ is larger
than the vacuum fluctuation. Figure 1.5 plots the minimum fluctuation (∆q̂′)2

and the maximum fluctuation (∆p̂′)2 observed in Fig. 1.4 when the pump in-
tensity is varied. The points show that the fluctuation satisfies the minimum
uncertainty relation (∆q̂′)2(∆p̂′)2 = 1/16. This means that one component
of the fluctuation is squeezed with the enhancement of the other fluctuation
component. Squeezed states can also be generated by harmonic generation
and degenerate four-wave mixing.
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quantum noize limit

Fig. 1.4. Observation of quadrature phase squeezed state. The curve shows the
output current from the balanced homodyne detector shown in Fig. 1.3 as a function
of phase θ of the local oscillator. The signal undulates over and below the quantum
noise limit shown by the dashed line, by changing the phase [8]

1.4.2 Antibunching Light and Photon-Number Squeezed State

One of the important results from quantization of the electromagnetic field is
that all photon states must have unavoidable random fluctuations character-
ized for each state. Such a fluctuation appears as the variance of the photon
number observed during a time interval T , and also as the ratio of succes-
sive counting of photons at two instances with temporal distant τ . Therefore,
from photon-counting measurements we can get an insight into the intrinsic
characteristics of photon states and their generation processes.

Before discussing the photon-number squeezed state, the photon statistics
for the coherent state will be summarized briefly. From the fact that the co-
herent state is the most proximate to a classical electromagnetic wave, we can
assume that photons do not have statistical correlation in the light beam and
these arrive with random time intervals. In this case, the photon number ob-
served in a time interval T obeys a Poisson distribution, as known from (1.52).
In a Poisson distribution, the variance σn of the observed photon number is
equal to the averaged photon number 〈n〉. The normalized ratio of simultane-
ous detection g(2)(τ) (degree of second-order temporal coherence) is always 1
for any delay time τ , because photons arrive at the detector without any cor-
relation with other photons in this case. The function g(2)(τ) is defined from
G(2)(τ) which is the observed photon number per second at fixed temporal
distance τ . It is normalized with the square of the photon number 〈n〉 per
second:

g(2)(τ) =
G(2)(τ)
〈n〉2 . (1.132)
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Fig. 1.5. Relation between the variances (∆q̂′)2 and (∆p̂′)2 of two variables p̂′ and
q̂′ for the quadrature phase squeezed state generated by the degenerate parametric
process [8]

If every photon arrives at the same temporal distance, the number of observed
photons during the time interval T becomes constant, then the variance σn

is zero. In this case, if the variance of the photon number σn is smaller than
the average 〈n〉, the state is called sub-Poissonian. If the ratio of simulta-
neous detection g(2)(τ) is smaller than 1 at τ = 0, or when the slope of
g(2)(τ) is positive at t = 0, the light is known as antibunching light. The light
in the photon-number squeezed state has such properties. Later, in Chap. 3,
the light of thermal radiation determined by Planck’s radiation law is shown
to be bunching light where g(2)(τ) > 1 in the vicinity of τ = 0. Because
the photons are subjected to Bose statistics, they have a tendency to form
photon pairs also in the temporal region. In the context of photon statis-
tics, it is known that the coherent state forms the border between bunch-
ing and antibunching photon states. Single-mode light shows antibunching
properties when g(2)(0) < g(2)(τ), and it gives photon-number squeezing or
sub-Poissonian statistics when g(2)(0) < 1 under the conditions which will be
described in Chap. 3.

From the above discussion, it is known that the photon-number squeezed
state can be generated by making anticorrelation among photons which exist
at close temporal positions. If we let a photon be emitted without any control,
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electron beam controlled 

  by space charge

active layer

atom

Fig. 1.6. (a) Schematic diagram of the experiment by Franck and Hertz. It shows
fluorescence from atoms excited by an electron beam in a bipolar tube. (b) Solid-
state version of the Franck–Hertz experiment. Light-emitting diode driven by a
constant current source

the light will obey a Poisson distribution. If we can prevent light emission for
a fixed period after the emission of the last photon, the temporal distribution
of photons will be more regular.

As a first example, the experiment of Franck and Hertz is discussed, in
which photons are emitted from atoms excited by inelastic collision with an
electron beam. In their experiment, shown in Fig. 1.6(a), the current is sta-
bilized under the balance between the Coulomb force to accelerate electrons
due to the applied voltage between two electrodes in a bipolar tube and the
Coulomb repulsion force among electrons travelling in the tube. The current
is known as the space-charge limited current. There is usually shot noise in
the anode current, because electron emission from the cathode is a random
Poissonian process.

When a space-charge limited current is formed in a vacuum tube, however,
the carrier distribution works as the potential for the emitted electrons, and
the potential changes according to the emission rate of the electrons. Conse-
quently, it gives negative feedback on the anode current, then the shot noise
is suppressed. Therefore, this process controls the number of atoms excited
by the elctron beam so as the photon is more regularly emitted from atoms.
With such well controlled excitation of atoms, the fluctuation of the photon
number in fluorescent radiation is squeezed.

It is also possible to reproduce a similar effect in a light-emitting diode
operated by a constant current source under the space charge limit. It gener-
ates a photon-number squeezed state because one photon is emitted by one
injected electron in the ideal case.

Yamamoto et al. [9, 10] also developed a semiconductor laser driven by a
constant current source as shown in Fig. 1.6(b), and demonstrated the gener-
ation of a photon-number squeezed state. Yamamoto’s experiment is actually
the replacement of an atomic light source in the Franck–Hertz experiment with
a solid state device operating under the same space-charge limited condition,
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Fig. 1.7. Noise level of the photon-number squeezed state generated by a laser
diode driven by a constant current source. Photon number squeezing (noise below
the quantum limit) was observed under high pumping rate [9]

and the emission mechanism is replaced by the stimulated emission. Conse-
quently, the magnitude of the noise, that is, the fluctuation of the photon
number, was suppressed to 1/10 of the coherent state noise under the driving
current which is sufficiently higher than that of the threshold, as shown in
Fig. 1.7. This method has advantages such that it reduces the size of the
equipment by using solid state devices; it is possible to generate a strong pho-
ton flux; and it is also possible to squeeze the photon-number fluctuation in
a broad frequency range with high efficiency.

In order to describe the photon-number squeezed state in quantum optics,
the photon number operator n̂ and the phase operators Ŝ and Ĉ are introduced
as the following:

n̂ = â†â, (1.133)

Ŝ =
1
2i

[(n̂+ 1)−1/2â− â†(n̂+ 1)−1/2], (1.134)

Ĉ =
1
2
[(n̂+ 1)−1/2â+ â†(n̂+ 1)−1/2]. (1.135)

It is impossible to define a Hermitian operator representing the phase as in-
troduced by (1.41), but the operator Ŝ works as a phase operator when the
photon number n in a mode is large enough. A photon-number state will be
found to be a minimum-uncertainty state of n̂ and Ŝ in the following. The
commutation relation of these operators is expressed as

[n̂, Ŝ] =
1
2i

{
(n̂+ 1)−1/2[n̂, â] − [n̂, â†](n̂+ 1)−1/2

}
= iĈ. (1.136)

From (1.31), the uncertainty relation

〈(∆n̂)2〉〈(∆Ŝ)2〉 ≥ 1
4
|〈Ĉ〉|2 (1.137)
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is obtained. When the averaged photon number n = 〈n〉 is much larger than
unity, the operators â and â† can be approximated by (1.41) as

â ∼= eiφ̂
√
n̂, â† ∼=

√
n̂e−iφ̂. (1.138)

In this case, Ĉ and Ŝ are expressed as

Ĉ ∼=
1
2

[
1√
n̂+ 1

eiφ̂
√
n̂+

√
n̂e−iφ̂ 1√

n̂+ 1

]
∼= 1, (1.139)

Ŝ ∼=
1
2i

[
1√
n̂+ 1

eiφ̂
√
n̂−

√
n̂e−iφ̂ 1√

n̂+ 1

]
∼= φ̂, (1.140)

if the variation of phase φ is small enough. From (1.140), we find that 〈(∆Ŝ)2〉
is nearly equal to 〈(∆φ)2〉. Then the uncertainty relation (1.137) can be rewrit-
ten as

〈(∆n̂)2〉〈(∆φ̂)2〉 ≥ 1
4
. (1.141)

If we apply this condition to the coherent state, where n ≡ 〈n̂〉 = |α|2 and
〈(∆n̂)2〉 = |α|2, the minimum phase fluctuation is obtained as

〈(∆φ̂)2〉 =
1
4n
. (1.142)

Therefore, it is known that the phase fluctuation can be reduced as the av-
eraged photon number n increases. In the photon-number squeezed state, the
fluctuations of photon number n̂ and phase Ŝ are different and are expressed as

〈〈(∆n̂)2〉〉 =
1
2
〈〈Ĉ〉〉e−2R, (1.143)

〈〈(∆Ŝ)2〉〉 =
1
2
〈〈Ĉ〉〉e2R. (1.144)

When the squeezing parameter R satisfies the condition R > −(1/2)ln(2n),
the state has sub-Poissonian characteristics which are formulated as

〈〈(∆n̂)2〉〉 < n. (1.145)

On the other hand, the fluctuation of the phase Ŝ is larger to compensate for
the small fluctuation in n:

〈〈(∆Ŝ)2〉〉 → 〈〈(∆φ̂)2〉〉 > 1
4n

(1.146)

for the state with high mean photon number n.
The fluctuation of the photon-number squeezed state in phase space (q′, p′)

is drawn in Fig. 1.1(c). The temporal variation of its electric field is given
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Fig. 1.8. Drawing of the temporal behavior of the electric field E(t) in the photon-
number squeezed state. In a real case, sinusoidal curves must be drawn continuously
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Fig. 1.9. Circles show a sub-Poissonian distribution of the photon-number squeezed
state. Crosses show a Poissonian distribution observed in the coherent state for
comparison [10]

schematically in Fig. 1.8. The sub-Poissonian distributions obtained both the-
oretically and experimentally in the photon-number squeezed state are given
in Fig. 1.9.

Next, a practical advantage of the photon-number squeezed state over the
quadrature phase squeezed state will be discussed. When a quadrature phase
state is generated from a coherent state |α〉, the parameters |ν| and |µ| must
be comparatively large, in order to get enough squeezing of the fluctuation
of the q′ component. This restriction can be understood from the following
relationships:

(∆q̂)2 =
1
4
(|µ| − |ν|)2 =

|µ| − |ν|
4(|µ| + |ν|) , (1.147)

〈〈â†â〉〉 ≡ 〈〈n̂〉〉 = |α|2 + |ν|2, (1.148)
|µ| = cosh(2R), |ν| = sinh(2R). (1.149)
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In this case, the total photon number 〈〈n̂〉〉 must be large enough, as known
from (1.148). Therefore, quite large electromagnetic energy proportional to
|ν|2 must be consumed for the generation of the quadrature phase squeezed
state. In the case of the generation of the photon-number squeezed state, on
the other hand, all photons in the squeezed state can be utilized as the signal.

One of the remarkable features of optical measurements with laser light
is that the measurement can be carried out under the quantum limit. This is
because the quantum zero-point energy �ω/2 is much larger than the ther-
mal noise in the region of optical frequencies. Therefore, the performance of
the detection is determined by the quantum noise in the coherent state or
the vacuum field, for example, for gravitational wave detection using a laser
interferometer, optical fiber communication systems, and so on. If the squeez-
ing is employed in such applications, it is possible to overcome the limit of
quantum noise of the coherent state and the vacuum field by reducing the
quantum noise of one observable which carries information with enhancement
of the quantum noise of the conjugated observables.

Recently, squeezed light has been applied to clarify the mechanism of
neural cells in the retinas of mammals. Neural cells generate an electric signal
which gives a temporal pulsation under the stimulation of light. The statisti-
cal properties of the neural signal is composed of two probabilistic processes.
One is the quantum fluctuation of the incident light, and the other the intrin-
sic fluctuation of the neural cells. If experiments on the optic nerve can be
done with squeezed light, it is possible to determine the intrinsic randomness
embedded in human vision.



2

Interaction Between the Electron
and the Radiation Field

In the previous chapter we have quantized the radiation field in free space.
Then we obtained a clear concept about the photon and found that there is
an uncertainty relation between two conjugate physical variables. The uncer-
tainty relation mediates the duality between the wave-like and particle-like
nature of the radiation field. This appears clearly in the uncertainty between
the photon number n and the phase φ of the radiation field. In this chapter we
study spontaneous emission, resulting from quantization of the radiation field,
and related phenomena including laser cooling of atoms. In Sect. 2.1 we first
formulate the interaction Hamiltonian between the radiation field and the elec-
tron system. In Sect. 2.2, using these formulas we describe the absorption and
emission processes of the light due to the electron (atom) systems, and under-
stand the origin of the spontaneous emissions from excited atoms. Concerning
stimulated emission we will discuss it in connection with laser oscillation in
Chap. 4. In Sect. 2.3, we investigate how the natural width of the absorption
or emission spectrum is characteristic of the spontaneous emission process. In
Sect. 2.4 we find that the spontaneous emission is not characteristic of an atom
and can be controlled artificially by controlling the geometrical structure of
the radiation field. Superradiance, i.e., spontaneous emission from a coherent
atomic system, will be discussed separately in Chap. 5. In Sect. 2.5, we study
the laser cooling of neutral atoms, and Bose–Einstein and Fermi condensation
of the atoms will be discussed in Sects. 2.6 and 2.7, respectively.

2.1 Electron–Radiation Coupled System

The electromagnetic field accelerates a charged particle, while the motion of
a charged particle generates an electromagnetic field. Namely, owing to the
interaction with the electromagnetic field, a charged particle absorbs or emits
an electromagnetic field, changing its energy state. In this section we discuss
quantum mechanically the electron–radiation interaction [11].
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The Lorentz force F that acts on an electron moving in the electric field
E and magnetic field B is

F = −e(E + v × B), (2.1)

where v is the velocity vector of an electron. Using the scalar potential φ
and the vector potential A, the electric and magnetic fields E and B are,
respectively, rewritten by

E = −∇φ− ∂

∂t
A, B = rotA. (2.2)

Then, the equation of motion for the electron is

mv̇ = e∇φ+ eȦ − e(ṙ × rotA), (2.3)

where m is the electron mass. In general, the equation of motion is derived
from the Lagrangian L by means of the relations

d

dt

(
∂L
∂ẋ

)
− ∂L
∂x

= 0, . . . , (2.4)

where v = ṙ ≡ (ẋ, ẏ, ż) is the velocity vector. In order to derive (2.3) from
(2.4), the Lagrangian L should be

L =
m

2
(ṙ)2 + eφ− eṙ · A. (2.5)

The momentum vector p, canonically conjugate to r, is given by

p =
(
∂L
∂ẋ
,
∂L
∂ẏ
,
∂L
∂ż

)
= mṙ − eA. (2.6)

Following the standard treatment of classical mechanics, the Hamiltonian H
for an electron in the electromagnetic field (φ,A) is derived as

H = p · v − L =
m

2
(v)2 − eφ =

1
2m

(p + eA)2 − eφ. (2.7)

The classical Hamiltonian is formally converted to quantum-mechanical form
by replacing the momentum vector p with the operator p → − i�∇, and by
rewriting the vector potential A in terms of the creation and annihilation
operators â†λand âλ for the photon mode λ (see (1.16)). The total quantum-
mechanical Hamiltonian H is divided into two parts. One is the unperturbed
Hamiltonian H0 and the other is the Hamiltonian H′ that describes the in-
teraction between an electron and the radiation field:

H = H0 + H′, (2.8)

H0 =
∑

j

1
2m

p2
j + V(r1, r2, . . . , rN ) +

∑
j

�ωλ

(
â†λâλ +

1
2

)
, (2.9)

H′ =
∑

j

e

2m
{pj · A(rj) + A(rj) · pj} +

e2

2m

∑
j

A(rj)2. (2.10)
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By choosing the Coulomb gauge divA(rj) = 0 in the first term of (2.10), we
obtain

pj · A(rj) = −i�{divA(rj) + A(rj) · ∇j} = A(rj) · pj . (2.11)

Substituting (1.16) and (1.37) into (2.10), the first term of the interaction
Hamiltonian, which governs the first-order optical process such as absorption
and emission of light, is formulated as

H′
(1) =

e

m

√
�

2ε0V

∑
j

∑
λ

1√
ωλ

{eik·rj (eλ · pj)âλ + e−ik·rj (eλ · pj)â
†
λ},

(2.12)

where λ ≡ (k, γ) corresponds to the photon mode and γ denotes two indepen-
dent polarizations of light. Note that the second term in (2.10), proportional to
A2, does not contribute to the first-order optical process, but it will be impor-
tant for the second-order or higher-order optical transition such as Rayleigh
and Compton scattering.

2.2 Spontaneous and Stimulated Emissions

In order to describe quantum optics, as presented in Chap. 1, we have de-
scribed both the atomic systems and the electromagnetic field by quantum
mechanics. On the other hand, the semiclassical theory, where only the elec-
tronic systems are quantized, is sometimes useful to discuss quantitatively
absorption of light and stimulated emission of light. It is also possible to de-
scribe the spontaneous emission in the framework of the semiclassical theory.
However, using the idea of the photon that is deduced from quantization of the
electromagnetic field, we deeply understand not only the spontaneous emission
but also the relation between the absorption and stimulated emission. More-
over, we can straightforwardly calculate the Einstein A and B coefficients on
the basis of quantum theory.

Consider the optical transition due to the perturbation H′
(1) from the

initial state Ψi = |a〉 |n1, n2, . . . , nλ, . . .〉 to a final state Ψf = |b〉|n1, n2, . . . ,
nλ, · · · 〉, which are both an eigenstate of the unperturbed Hamiltonian H0.
Here the initial |a〉 and final |b〉 states are eigenstates of the electronic system.
Instead of the total wavefunction Ψ(t), we introduce the following form:

Ψ(t) = exp
(
− iH0

�
t

)
Ψ ′(t). (2.13)

Then we obtain the interaction representation:

i�
∂Ψ ′

∂t
= H̃′(t)Ψ ′, (2.14)
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where

H̃′(t) = exp
(
iH0

�
t

)
H′

(1)

(
− iH0

�
t

)
. (2.15)

Using the eigenfunction Ψn of the Hamiltonian H0, we expand a solution Ψ ′(t)
of (2.14) as follows:

Ψ ′(t) =
∑

n

cn(t)Ψn. (2.16)

Let us choose as the initial state of the total system an eigenstate Ψi of the
Hamiltonian H0. Thus we take a set {ci(0) = 1, cn(0) = 0 for n �= i} as an
initial condition. Substituting (2.16) into (2.14), multiplying the final state
wavefunction Ψ∗

f on the right and integrating it with respect to the whole
coordinates, we obtain a differential equation for the coefficient cn(t) as

i�ċf (t) =
∑

n

〈f | H̃′(t) |n〉 cn(t). (2.17)

As we may use the initial state for the coefficients on the right side of (2.17),
the coefficient cf (t) is integrated as

cf (t) = 〈f |H′
(1) |i〉

1 − ei(Ef−Ei)t/�

Ef − Ei
. (2.18)

Therefore, the transition probability Wfi to the final state |f〉 per unit time
is

Wfi =
|cf (t)|2

t

=
2π
�

∑
λ

( e
m

)2 �

2ε0V ωλ

{
nλ

nλ + 1

}

×|〈b|
∑

j

e±ik·rj (eλ · pi)|a〉|2δ(Ef − Ei). (2.19)

In order to describe the absorption process, the set {nλ, e+ik·rj} in the above
equation is chosen, which comes from the first term of the interaction Hamil-
tonian H′

(1) in (2.12). The other set {nλ + 1, e−ik·rj}, originating from the
second term, gives rise to the emission process. In the absorption process
where the photon system loses one photon energy �ωλ, energy conservation
yields

Ef − Ei = Eb − �ωλ − Ea, (2.20)

where Ea and Eb are eigenenergies of the initial and final electronic states |a〉
and |b〉, respectively. The energy density ρ(ω)dω of the photon system is given
by
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ρ(ωλ)dωλ = �ωλ
nλ

V
dωλ. (2.21)

When we consider the electronic transition between energy levels of an isolated
atom, the spatial distribution of the electron wavefunction is estimated to be
of the order of the Bohr radius (∼0.5Å). Further, if the wavenumber k =
2π/λ of the radiation field is very small (the wavelength λ is of the order of
thousands of angstroms for visible light), the first term of the Taylor expansion
of exp(ik · rj) = 1 + ik · rj + · · · predominates over the matrix element of the
electronic part in (2.19). Then we have

〈b| eλ ·
∑

j

pj |a〉 = imωba 〈b| eλ ·
∑

j

rj |a〉 = − im
e
ωbaeλ · 〈b|P |a〉 ,

(2.22)

where Eb−Ea ≡ �ωba, and P ≡ −eΣjrj is the operator of the electric dipole
moment of the electronic system. In this dipole approximation, the transition
probability for the absorption process is written

W
(a)
fi ≡ Bbaρ(ωba)

=
2π
�2

( e
m

)2 �

2ε0V

∑
λ

nλ

ωλ
m2ω2

ba|〈b|eλ ·
∑

j

rj |a〉|2δ(ωba − ωλ)

(2.23)

=
π

3ε0�2
|P ba|2ρ(ωba). (2.24)

Here we used the relation

〈b| eλ · P |a〉 =
1
3
|P ba|2 ,

because the dipole moment of the electronic system is randomly oriented with
respect to the polarization vector eλ of the electromagnetic field. Accordingly,
we obtain Einstein’s B coefficient as Bba = π|P ba|2/3ε0�

2. For the emission
process, we interchange a and b: The higher energy |b〉 is initial and the lower
energy |a〉 is final. Following similar calculations, the transition probability in
the dipole approximation is

W
(e)
ji ≡ Babρ(ωba) +Aab

=
2π
�2

( e
m

)2 �

2ε0V

∑
λ

nλ + 1
ωλ

m2ω2
ba|〈a|eλ ·

∑
j

rj |b〉|2δ(ωλ − ωba),

(2.25)

=
π

3ε0�2
|P ba|2ρ(ωba) +

ω3
ba

3πε0�c3
|P ab|2. (2.26)

Here the λ summation was converted to an ωλ integral. We therefore obtain
Einstein’s A and B coefficients: Bba = Bab and Aab/Bba = �ω3

ba/π
2c3. Note
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here that Aab = (4ω3
ba/3�c3)|P ab|2 and Bba = Bab = (4π2/3�

2)|P ab|2 are in
cgs units.

We consider the rate constant Aab of the spontaneous emission in more
detail. The spontaneous emission comes from the part 1 of the factor n+ 1 in
the second equation of (2.25). This physically means that the atomic system
can emit light of any mode in any direction even under the condition {nλ = 0},
i.e., in an environment with no photon around the atomic systems. When we
consider such a large volume as V � λ3 for the quantization of the radiation
field, the λ summation can be converted to an integral with respect to ωλ as

∑
λ

−→ 2
V

(2π)3

∫
d3k =

V

π2c3

∫
ω2

λdωλ, (2.27)

taking {nλ = 0} in (2.25). Then, we obtain the rate constant Aab of the
spontaneous emission as

Aab =
2π
�2

�

2ε0V
V

π2c3

∫
dωλ

ω2
λ

ωλ
ω2

ba

1
3
|P ab|2 δ(ωλ − ωba)

=
ω3

ba

3πε0�c3
|P ab|2 . (2.28)

Note that the factor 2 in (2.27) comes from two independent polarizations of
light per wavevector, which is an abbreviation of wavenumber vector.

Although the phenomenon of spontaneous emission is closely related to
quantization of the radiation field as mentioned above, Einstein predicted this
spontaneous emission without the quantization of the radiation field [12, 13].
At the same time, he successfully derived Planck’s formula for thermal radia-
tion as well as the so-called Einstein A and B coefficients. Here we briefly
sketch Einstein’s theory. Consider the radiation field interacting with an
atomic systems in thermal equilibrium. We are interested in a pair of en-
ergy levels a and b of each atom. Figure 2.1 is a schematic energy diagram,
where Na and Nb are numbers of atoms in the a and b states, respectively.

absorption

b

a

B ρ(ω)ba B ρ(ω)ab Aab

Eb

Ea

Nb

Na

hω

stimulated

emission

spontaneous

emission

Fig. 2.1. Einstein obtained his A and B coefficient assuming thermal equilibrium
between the electronic system (a, b) and the radiation field ρ(ω)
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There are three possible processes, as drawn in Fig. 2.1. Thus the rate
equation for Na is given by

dNa

dt
= −dNb

dt
= AabNb −BbaNaρ(ω) +BabNbρ(ω), (2.29)

where ρ(ω) is the energy density of the radiation field. The second term in
(2.29) illustrates the upward transition from a to b, absorbing the light with
frequency ω, which results in a decrease of Na. On the other hand, the third
term describes the increase of Na due to the downward transition from b to
a, by stimulated emission in the presence of the relevant radiation field. This
results in amplification of this field. It is evident that these two processes
alone cannot maintain thermal equilibrium. In order to guarantee the ther-
mal equilibrium of the atomic system, the first term corresponding to the
spontaneous emission should be introduced. Thermal equilibrium means the
stationary condition dNa/dt = 0. Thus we obtain

ρ(ω) =
Aab

(Na/Nb)Bba −Bab
. (2.30)

Here (a) energy conservation should be kept for the exchange process between
the atomic system and the radiation field, so that Eb − Ea = �ω. (b) The
atomic system itself is in thermal equilibrium, so that Nb/Na = exp{−(Eb −
Ea)β}, where β ≡ 1/kBT . (c) In the limit of T → ∞ (β → 0), the two
conditions ρ(ω) → ∞ and Nb/Na → 1 are required, leading to Bba = Bab.
Furthermore, (d) under the condition kBT � �ω, the energy density of the
radiation field obeys the Rayleigh–Jeans formula:

ρ(ω) → ω2

π2c3
kBT. (2.31)

On the other hand, under the condition kBT � �ω, relation (2.30) becomes
ρ(ω) → AabkBT/Bba�ω. Comparing this result with (2.31), we obtain

Aab

Bba
=

�ω3

π2c3
. (2.32)

Substitution of (2.32) into (2.30) gives the well-known Planck formula for the
thermal radiation:

ρ(ω) =
�ω3

π2c3
1

e�ωβ − 1
. (2.33)

Next let us derive Planck’s formula in terms of the quantum theory of
radiation. In thermal equilibrium the energy distribution ρ(ω) for the thermal
radiation is described by

ρ(ω) = N(ω)�ω 〈nω〉 , (2.34)
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where N(ω) is the density of states per unit volume for a photon �ω, and 〈nω〉
is the thermal distribution of this photon at a temperature T . The density
of states per unit volume for the radiation field confined within the volume
V = L3 is obtained as

N(ω)dω =
2
V

V

(2π)3
d3k =

k2

π2
dk =

ω2

π2c3
dω. (2.35)

Here we have used the dispersion relation of the photon ω = ck. The periodic
boundary condition gives the relation

k =
2π
L

(nx, ny, nz) (nx, ny, nz = 0,±1,±2, . . .) (2.36)

for the wavevector k. If L is much larger than the wavelength λ of the light, k
can be regarded as continuous numbers. When this approximation is not sat-
isfied, suppression or enhancement of the spontaneous emission is expected, as
will be discussed in Sect. 2.4. Since the photon obeys Bose–Einstein statistics,
the thermal population 〈nω〉 must be

〈nω〉 =
∑
ne−Enβ∑
e−Enβ

=
1

e�ωβ − 1
. (2.37)

Here En = �ω(n+1/2) is the eigenenergy of the photon mode ω (see Sect. 1.1).
Substituting (2.35) and (2.37) into (2.34) we obtain Planck’s formula:

ρ(ω) =
ω2

π2c3
�ω

1
e�ωβ − 1

.

It is emphasized that the energy distribution ρ(ω) of the radiation field, in
general, is not restricted to the thermal distribution of (2.33). For example,
laser systems have characteristic distributions, quite different from the thermal
distribution, as will be discussed in Chap. 3.

2.3 Natural Width of a Spectral Line

In the previous section, the rate of spontaneous emission was calculated as
radiative decay into a large number of photon modes in a large volume. Signif-
icantly, the finite lifetime τ restricts the resolution of the energy measurement
in the emission spectrum [14]. Since an excited atom decays almost within its
characteristic lifetime, the energy �ωba between the electronic levels is ob-
served only with an uncertainty

�∆ωba =
�

τ
. (2.38)

It follows that the spontaneously emitted light is not monochromatic but has
a spectral width, proportional to 1/τ . In this section we will consider this
problem.



2.3 Natural Width of a Spectral Line 39

Supposing a two-level system with (a, b), the downward transition from
the excited state b to the lower state a emits a photon �ω, with an initial state
|b, nλ = 0〉 ≡ |b0〉 and a final state |a, nλ = 1〉 ≡ |aλ〉 in (2.17). The coefficient
cn(t) obeys the differential equation

i�ċaλ = 〈aλ|H′
(1) |b0〉 ei(ωa−ωb+ωλ)tcb0, (2.39)

where the subscripts aλ and b0 denote |a, nλ = 1〉 and |b, nλ = 0〉, respectively.
On the other hand, by interchanging the initial and final states, we obtain

i�ċb0 = 〈b0|H′
(1) |aλ〉 ei(ωb−ωa−ωλ)tcaλ. (2.40)

Under the initial condition {cb0(0) = 1, caλ(0) = 0}, we may assume cb0(t) to
obey an exponential decay as cb0(t) = exp(−γt). Then we obtain

caλ(t) = 〈aλ|H′
(1) |b0〉

1 − ei(ωλ−ω0+iγ)t

� (ωλ − ω0 + iγ)
, (2.41)

where �ω0 ≡ Eb − Ea, i.e., ω0 = ωb − ωa. Substituting (2.41) into the right
side of (2.40), we obtain

−i�γ =
∑

λ

∣∣∣〈aλ|H′
(1) |b0〉

∣∣∣2 1 − ei(ω0−ωλ−iγ)t

� (ω0 − ωλ − iγ)

→ − iπ
�

∑
λ

∣∣∣〈aλ|H′
(1) |b0〉

∣∣∣2 δ(ω0 − ωλ). (2.42)

Because ω0t � 1 and ω0 � γ, we have put γ = 0 on the right side of the
equation, and neglected the real part for simplicity. The lifetime τ = 1/2γ due
to the spontaneous emission is then obtained in agreement with the result in
the previous section as

2γ =
2π
�2

∑
λ

∣∣∣〈aλ|H′
(1) |b0〉

∣∣∣2 δ(ω0 − ωλ)

=
2π
�2

∫
dΩ

4π

∣∣∣〈aλ0|H′
(1) |b0〉

∣∣∣2N(ω0) = Aab. (2.43)

It is evident that the A coefficient governs the lifetime of the spontaneous
emission.

Using (2.41), the intensity I(ω) of the emitted light is written by

I(ω)dω = �ωN(ω)dω
∫
dΩ

4π
|caλ(∞)|2 =

γ

π

�ωdω

(ω − ω0)2 + γ2
. (2.44)

It follows that, when we measure the energy difference Eb−Ea = �ω0 between
the electronic states, the spectral resolution is limited to ∆E = �γ. It is em-
phasized that the last equation of (2.44) has a Lorentzian form with central
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frequency ω0. The full width 2γ at half maximum is called the natural width
of a spectral line. In addition to the natural width, the linewidths of the ab-
sorption and emission spectra are more broadened by collision and molecular
vibrations in gas systems or by lattice vibrations in solids. Furthermore, the
spectra are also affected by the Doppler shift in a gas system or by inhomoge-
neous broadening in solids. These additional effects could be controlled. For
example, the collision is greatly reduced at low temperatures and low pressure.
It was believed that, in contrast to the additional effects, the natural width
2γ was hard to control. However, suppression of spontaneous emission, which
will be discussed in the next section, demonstrates that the natural width 2γ
is also controllable.

Let us discuss the contribution of the real part in (2.42). The real part
originates from the interaction of the electronic system with zero-point vi-
bration of the electromagnetic field and gives rise to the energy shift. This is
called the Lamb shift. According to Dirac’s theory, the 2S1/2 and 2P1/2 states
of a hydrogen atom are energetically degenerate with respect to each other.
However, Lamb and Rutherford found that the S state energy was higher than
the P state energy by 1050 MHz. This difference comes from the effect of the
higher order electromagnetic interaction on an electron in the 2S1/2 state be-
ing different from that in the 2P1/2 state. Tomonaga succeeded in explaining
quantitatively the experimental results in terms of renormalized theory.

2.4 Suppression and Enhancement
of the Spontaneous Emission

Einstein introduced the spontaneous emission to maintain the thermal equilib-
rium between the radiation field and the atomic system. It had been believed
that spontaneous emission was a fundamental phenomenon and the lifetime of
the excited atom due to spontaneous emission was a property inherent to each
atom. However, the spontaneous emission rate is not a fundamental property
of the isolated atom but a property of the coupled system consisting of the
atom and the radiation field. The most significant feature is irreversibility of
the process. This is due to the fact that an excited atom has an almost unlim-
ited number of radiative channels having the same photon energy, as discussed
in Sect. 2.3. On the other hand, for the excited atom in a resonator, the length
of which is comparable to or smaller than the wavelength of light, its coupling
to the radiation field could be markedly modified, leading to suppression or
enhancement of the spontaneous emission rate. In this section we consider
these phenomena.

2.4.1 Suppression of the Spontaneous Emission from Cs Atoms

Consider a resonator consisting of coupled mirrors with a separation d. The
radiation mode with wavelength λ ≤ 2d is allowed to persist in this cavity
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(resonator), because the resonator mode must have a node on both mirror sur-
faces. For λ > 2d, on the other hand, spontaneous emission should be greatly
suppressed and its lifetime should be infinite. Hulet, Hilfer and Kleppner [15]
demonstrated the suppression of spontaneous emission in the coupled mirrors.
They measured the spontaneous emission intensity arising from downward
electronic transition from the high Rydberg state of Cs atoms with n = 22
and |m| = 21 to that with n = 21 and |m| = 20. From the experimental
point of view, this transition has great advantages: (a) The wavelength of the
emission light is about 0.45 mm. The resonator effect becomes clear for such a
long-wavelength radiation field. (b) The lifetime is 450 µs, and is long enough
to measure the change of the lifetime as a function of the wavelength to the
cavity size.

Their experimental setup is composed of three parts. In the first stage a hot
Cs atom is excited to the high Rydberg state through multiphoton processes,
using a combination of a microwave and dye laser. In the second stage, the
excited Cs atom enters the resonator and travels along two mirror planes. The
resonator is made of a pair of gold-coated metal mirrors and the separation d
of these two mirrors is fixed at

d = 230.1 µm = 1.02
λ0

2
.

Instead of changing d, the wavelength λ of the transition {n = 22, m =
21} → {n = 21, m = 20} is varied by applying a high voltage between the
two electrodes of the metal mirrors. The maximum electric field applicable to
the resonator is E = 2600 V/cm. This can induce the second-order Stark shift
of ∆λ/λ = 0.04, leading to the wavelength modulation of λ/2d = 0.98 ∼ 1.02.
The third stage is to measure the number of Cs atoms in the excited {n = 22,
|m| = 21} state. Figure 2.2 shows the number of excited-state atoms measured
in the third stage as a function of λ/2d. The number of excited atoms strikingly
increases above λ/2d = 1, demonstrating the suppression of the spontaneous
emission. Below λ/2d = 1, on the other hand, the spontaneous emission takes
place even in the resonator, because the excited Cs atom possibly decays into
the resonator modes. By analyzing the data, the lifetime is 20 times longer
than 450 µs measured in free space. It is worth noting that the remarkable
drop of the signal above λ/2d = 1.01 is not related to the enhancement of the
spontaneous emission. The transition from the high Rydberg state {n = 22,
|m| = 21} to the ionic level is induced by the high electric field and, as a
result, the number of excited atoms is greatly reduced.

2.4.2 Suppression and Enhancement of Spontaneous Emission

In this subsection, we show the alteration of visible spontaneous emission of
atoms coupled to the degenerate modes of a confocal resonator [16]. This
is due to a change in the density of coupling radiation modes. The partial
emission rate into the resonator modes is enhanced by a factor of 19 when
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Fig. 2.2. The number of atoms staying in the excited state after passing through
the cavity with separation d [15]

atomic beam

Fig. 2.3. The confocal resonator. The atomic and laser beams cross around its focal
point

the resonator is tuned to the atomic transition frequency and is inhibited by
a factor of 42 when it is detuned. In this experiment, the resonator linewidth
is greater than the linewidth of the atomic transition, and the atomic sample
is of negligible optical thickness as shown in Fig. 2.3. Consider an atom near
the center of a confocal resonator of length L composed of mirrors M1 and
M2 of reflectivities R1 and R2, both with aperture diameter 2b as shown in
Fig. 2.3.

The atom illuminates the cavity with dipole radiation, producing a series
of reflected and transmitted waves. The radiated power is obtained by adding
together the multiple contributions of these transmitted waves. The ratio of
γ, the spontaneous emission rate into the cavity, to γsp, the free-space rate
into the same solid angle, is then given by
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γ

γsp
=

1
1 −R

1
1 + [1/(1 −R)]2 sin2 kL

, (2.45)

where L is the distance between the mirrors, R=
√
R1R2, k = 2π/λ and 1 −

R 1. It follows from (2.45) that the spontaneous emission should be greatly
suppressed as γinh = (1−R)γsp  γsp for kL = 2nπ±π/2, even if λ L, that
is, kL� 2π. Here n is integer. On the other hand, the spontaneous emission
should be enhanced as γenh = γsp/(1 − R) � γsp for kL = nπ. Thus, by
varying the distance L so as to make k∆L of the order of π, suppression and
enhancement of the spontaneous emission is expected to appear periodically.

For the atomic dipole transition with polarization perpendicular to the
cavity axis, γsp = (3/8π)Γsp∆Ω, where Γsp is the total free-space spontaneous
emission rate and ∆Ω = 8πb2/L2 the solid angle subtended by both cavity
mirrors. Therefore the total emission rate Γ is given by

Γ = Γsp

[
1 +

(
γ

γsp
− 1)

)
3
8π
∆Ω

]
, (2.46)

where γsp = (3/8π)Γsp. Γ has a maximum Γenh = Γsp[1 + (1−R)−13∆Ω/8π]
for kL = nπ, whereas it has a minimum Γinh = Γsp[1 − 3∆Ω/8π] for kL =
2nπ ± π/2.

The experimental arrangement is shown in Fig. 2.4. An atomic beam of Yb
is intercepted by a beam from a cw dye laser tuned to the 1S0−3P1 transition
of Yb with Γsp = 1.1× 106s−1 at 556 nm as shown in Fig. 2.4(a). The excited
atoms are positioned at the center of a confocal mirror resonator, and are
confined to a region of size approximately 1.5 mm along the resonator. The
laser is linearly polarized perpendicular to the resonator axis and is tuned to
the 174Yb isotopic component of the line.

Since this isotope has zero nuclear spin and is well resolved from the other
components, only the single transition between 1S0 and 3P1 states of Yb is
excited. A piezodevice (PZT), on which the mirror M2 is mounted, varies the
distance L of the resonator. The results are shown in Fig. 2.5. It is evident that
the spontaneous emission rate varies periodically with cavity tuning frequency.
When the beam stopper is inserted into the resonator, the emission rate is
almost constant. The value is nearly equal to Γsp. By analyzing the data,
they obtained γsp/γinh = 42 and γenh/γsp = 19. The former value agrees well
with the theoretical value γsp/γinh = (1 − R)−1 ≈ 2/(T1 + T2) = 43.3 ± 2.0,
estimated for T1 = 2.8 ± 0.1%, T1 = 1.8 ± 0.1%, L = 5.00 cm and 2b = 4mm,
where T1 and T2 are the transmittance of M1 and M2, respectively. On the
other hand, the latter value is smaller than the theoretical value, probably
owing to Doppler broadening of the emission spectrum and imperfection of
the mirrors. Finally, it is worth noting that the suppression of the spontaneous
emission greatly reduces the threshold of the laser oscillation, arising from the
stimulated emission. This technique will enable one to make a single-atom
laser (or maser) and a zero-threshold laser.
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Fig. 2.4. Experimental apparatus. (a) Atomic-beam excitation geometry, showing
the relative orientation of the atomic and laser beams, confocal resonator mirrors
M1 and M2, the moveable beam stopper, and the optical fiber bundle. (b) On-axis
optical configuration, showing the positions of the imaging lens (L1), adjustable
aperture (A), the image of M1 by L1, the interference filter (F), lens (L2) and
photomultiplier tube (PMT) [16]

2.5 Laser Cooling of an Atomic System

While semiconductor laser arrays or optical fiber lasers are being used to
process metallic systems on one hand, laser systems are possible, on the other
hand, to cool down an atomic gas to several tens of nanodegrees, i.e., to the
order of 10−8 K. Such a low temperature has never been realized by con-
ventional cooling methods. This has been made possible by making the best
use of the electron–radiation interaction. As a result, both Bose–Einstein and
Fermi condensation of neutral atoms have been realized as will be shown in
Sect. 2.6. The system of neutral atoms has two kinds of freedom, i.e., internal
and external degrees. Atom–photon interactions induce two types of effects:
dissipative (or absorptive), on the one hand, and reactive (or dispersive), on
the other hand. These two effects come mainly from the internal degree of
atomic freedoms but the atom–photon interactions are shown to be possible
to take off the kinetic energy of these atoms into the reservoir of the radiation
field, i.e. the external degree of atoms. These processes of laser cooling are
introduced in this section.
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Fig. 2.5. Photon counting rate for light transmitted through the cavity mirror,
as a function of cavity tuning. Curves (a): light emitted through the center of the
mirror. Curves (b): normalized counting rate with the cavity blocked, showing the
free-space rate into the same aperture [16]

2.5.1 Doppler Cooling

The absorption and emission spectra of an atomic gas with finite temperature
are inhomogeneously broadened by the Doppler effect. The spectral width
is proportional to the square-root of T , the gas temperature. We denote the
frequency of the absorption peak by ωA. When we pump the atomic system at
the frequency ωL below ωA but within the inhomogeneously broadened width,
the average frequency of spontaneous emission is ωA so that the kinetic energy
�(ωA−ωL) is taken off into the reservoir of the radiation field as an average per
single cycle of the absorption and spontaneous emission. The atomic gas, e.g.,
of Sr with T = 800K, is almost stopped within 0.3 ms and 4 cm by Doppler
cooling because the acceleration caused by taking off the kinetic energy is as
large as 107 m/s2, i.e., 105 times lager than the acceleration of gravity.

Interesting effects can also be obtained by combining the effects of two
counterpropagating laser waves [17]. This cooling process results from a
Doppler-induced imbalance between two radiation pressure forces with op-
posite directions. The two counterpropagating laser waves have the same in-
tensity and the same frequency and they are slightly detuned to the red side of
the atomic frequency (ωL < ωA). For an atom at rest, the two radiation pres-
sure forces exactly balance each other and the net force is equal to zero. For
a moving atom, the apparent frequencies of the two laser waves are Doppler
shifted. The counterpropagating wave gets closer to resonance and exerts a
stronger radiation pressure force than the copropagating wave which gets far-
ther from resonance. The net force is thus opposite to the atomic velocity v
and can be written for small v as F = −αv where α is a friction coefficient.
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Fig. 2.6. Magnetooptical trap

By using three pairs of counterpropagating laser waves along three orthogonal
directions, as shown in Fig. 2.6, one can damp the atomic velocity in a very
short time, on the order of a few microseconds, achieving what is called an
“optical molasses” [18].

A pair of circular coils around the x-axis can induce a quadrupolar mag-
netic field around the origin when the electric currents are opposite in the
direction, so that this system can trap neutral atoms. Six laser beams are
irradiating the atomic system with detuning in the lower frequency side and
with opposite polarity in each of the x-, y- and z-axes. The cooling limit due
to the present process comes from recoiling kinetic energy so that the avail-
able temperature kT is estimated to be �Γ/2 with the spectral width Γ due
to spontaneous emission. This is 240 µK for the Na atomic system and 125 µK
for Cs. Chu et al., however, have observed that the Na atomic system reached
40 µK, far below the estimated limit temperature 240 µK [18, 19]. This mys-
tery was resolved as another cooling mechanism contributing simultaneously.
This is explained in the following.

2.5.2 Polarization-Gradient Cooling

In the previous subsection on Doppler cooling, we discussed separately the
manipulation of internal and external degrees of freedom. In fact, however,
there exist cooling mechanism resulting from an interplay between the inter-
nal degree spin and external degrees of freedom, and between dispersive and
dissipative effects. In this subsection, one of these mechanisms, “polarization-
gradient cooling”, or the so-called “Sisyphus cooling” mechanism, is shown to
lead to temperatures much lower than Doppler cooling [20].
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Fig. 2.7. Sisyphus cooling. Laser configuration formed by two counterpropagating
plane waves along the z-axis with orthogonal linear polarizations (a). The polariza-
tion of the resulting electric field is spatially modulated with a period λ/2. Every
λ/4, it changes from σ+ to σ− and vice versa. For an atom with two ground-state
Zeeman sublevels Mg = ±1/2, the spatial modulation of the laser polarization re-
sults in correlated spatial modulations of the light shifts of these two sublevels and
of the optical pumping rates between them (b). Because of these correlations, a
moving atom runs up potential hills more frequently than down (double arrows of
b) [20]

Most atoms, in particular alkali atoms, have a Zeeman structure in the
ground state. Since the detuning used in laser cooling experiments is not too
large compared to Γ , both different light shifts and optical pumping transi-
tions exist for the various Zeeman sublevels in the ground state. Furthermore,
the laser polarization varies in space so that the frequency shifts of the Zee-
man sublevels and optical pumping rates are position dependent. It is shown
here how the combination of these various effects can lead to a very efficient
cooling mechanism.

Consider the laser configuration of Fig. 2.7(a), consisting of two couter-
propagating plane waves along the z-axis, with orthogonal linear polarizations
and with the same frequency and the same intensity. Then the polarization of
the total field of the two waves changes from σ+ to σ− and vice versa every
λ/4.

In between, it is elliptical or linear. As shown in Fig. 2.7(b), we consider
the simple case where the atomic ground state has an angular momentum
Jg = 1/2. Then two Zeeman sublevels Mg = ±1/2 undergo different fre-
quency shifts of the Zeeman sublevels, depending on the laser polarization,
so that the Zeeman degeneracy in zero magnetic field is removed. This gives
the energy diagram of Fig. 2.7(b) showing spatial modulations of the Zeeman
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Fig. 2.8. Clebsch–Gordan coefficients for the transition between the ground state
Jg = 1/2 and the excited state Je = 3/2 [20]

splitting between the two sublevels with a period λ/2. This spatial dependence
is evaluated in terms of the energy diagram of the Na atom with the ground
state angular momentum Jg = 1/2 and the excited state Je = 3/2 and with
Clebsch–Gordan coefficients drawn in Fig. 2.8.

This is because the dispersive energy due to the two waves stabilizes each
level Mg = ±1/2 by

∆(Mg) = Ω2 δ

Γ 2 + 4δ2
(2.47)

with δ ≡ ωL − ωA and the relevant Rabi frequency Ω.
If the detuning δ is not too large compared to Γ , there is real absorption of

photons by the atom and subsequent spontaneous emissions. Note here that
on the centreal part in Fig. 2.7 with σ− polarity only the photoabsorption from
Mg = 1/2 to Me = −1/2 is possible and the spontaneous emission from Me =
−1/2 to Mg = −1/2 is dominant. As a result, here the kinetic energy U0 can
be removed from an atomic system for an absorption-spontaneous emission.
In the next step, part of the remaining kinetic energy is being changed into
the potential energy U0 by moving from the σ− region to the σ+ region by
λ/4. Here the absorption from Mg = −1/2 to Me = 1/2 is induced and
subsequently the spontaneous emission into Mg = 1/2 is dominant so that
more kinetic energy U0 is removed to the radiation field. Finally when the
remaining kinetic energy becomes less than U0, these atoms are trapped within
the potential wells.

As a result, this Sisyphus cooling leads to temperature Tsis such that
kBTsis � U0 � �Ω2/4δ when 4|δ| > Γ . At low intensity, the light shift U0

is much smaller than �Γ . This explains why Sisyphus cooling leads to tem-
peratures much lower than those achievable with Doppler cooling. One cannot,
however, decrease the laser intensity indefinitely. The recoil due to the sponta-
neous emitted phonons, which has been neglected in the previous discussion,
increased the kinetic energy of the atom by an amount on the order of ER

with k = 2π/λ and λ the laser wavelength:
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ER =
�

2k2

2M
. (2.48)

The effective temperature which Sisyphus cooling can reach is limited by
TR = ER/kB . The value of TR ranges from a few hundred nanokelvin for
alkalis to a few microkelvin for helium.

2.6 Bose–Einstein Condensation in a Gas
of Neutral Atoms

Bose–Einstein condensation (BEC) and fermionic condensation are ubiquitous
phenomena which play significant roles in condensed matter, atomic, nuclear,
and elementary particle physics, as well as astrophysics. The most striking
feature of BEC is a macroscopic population in the ground state of the system
at finite temperature. The study of these quantum condensations may also
advance our understanding of superconductivity and superfluidity in more
complex systems as well as the cross-over between BEC and the Bardeen–
Cooper–Schrieffer (BCS) state. Laser cooling methods introduced in the pre-
vious section provided an effective approach towards very low temperatures of
a gas of atoms, but have so far been limited to phase-space densities typically
105 times lower than required for BEC. The combination of laser cooling with
evaporative cooling was a prerequisite for obtaining BEC in alkali atoms. The
BEC of rubidium [21], lithium [22], and sodium [23] was reported indepen-
dently by the group of Colorado, Texas, and MIT, respectively, within a few
months in 1995.

Evaporative cooling requires an atom trap which is tightly confining and
stable. The tightest confinement in a magnetic trap is achieved with a spherical
quadrupole potential. The atoms, however, are lost from this trap due to nona-
diabatic spin flips as the atoms pass near the center, where the field rapidly
changes direction. This region constitutes a “hole” in the trap of micrometer
dimensions. The Colorado group developed the time orbiting potential (TOP)
trap which suppressed this trap loss, but at the cost of lower confinement. On
the other hand, the MIT group suppressed the trap loss by adding a repulsion
potential around the zero of the magnetic field, literally “plugging” the hole.
This was accomplished by tightly focusing an intense blue-detuned laser that
generated a repulsive optical dipole force. The total (dressed-atom) potential
is a combination of the magnetic quadrupole trapping potential, the repulsive
potential of the plug, and the effective energy shifts due to the rf, as shown in
Fig. 2.9. At the point where atoms are in resonance with the rf, the trapped
state undergoes a spin flip, crossing with the untrapped states. Over 7 s, the
rf frequency was swept from 30 MHz to the final value below 1 MHz, while
the field gradient was first increased to 550 G/cm and then 180 G/cm. Thus
the Na atoms with higher temperature are evaporated, reducing the atomic
temperature.
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Fig. 2.9. Adiabatic potential due to the magnetic quadrupole field, the optical plug,
and the rf. This cut of the three-dimensional potential is orthogonal to the propa-
gation direction (y) of the blue-detuned laser. The symmetry axis of the quadrupole
field is the z-axis [23]

The temperature and total number of atoms were determined using ab-
sorption imaging of the probe light pumping to the F = 2 state from the F = 1
state of Na atom. Above the critical frequency 0.7 MHz for the final frequency
the distribution was perfectly spherical as expected for a thermal uncondensed
cloud. When, however, the final frequency was lowered below this value, an
elliptical core signal increased in intensity, whereas the broad spherical cloud
became less intense. The elliptical core cloud, reflecting the potential shape,
is assigned to be due to the Bose condensate, while the broad spherical cloud
is due to the normal fraction. This result is drawn in Fig. 2.10 [22].

Here the kinetic energy of the condensed atoms is estimated around 1 nK,
much less than the zero-point energy of the trap, 35 nK, and the internal
energy of 120 nK. The number density in these condensates is estimated to be
4 × 1014 cm−3.

A few months before publication of the MIT paper on BEC of Na atoms,
the Colorado group [21] reported the BEC of Rb atoms. This group also used
the combination of laser cooling and evaporative cooling but additionally the
time orbiting potential (TOP) magnetic trap to plug the “hole.” This is a
superposition of a large spherical quadrupole field and a small uniform trans-
verse field that rotates at 7.5 kHz. This arrangement results in an effective
average potential that is an axially symmetric, three-dimensional (3D) har-
monic potential providing a tight and stable configuration during evaporation.

After laser cooling and TOP trapping, they obtained the Rb atomic sys-
tem with the number density 2 × 1010 cm−3 and 90 µK. Evaporative cooling
was performed by decreasing values of the rf evaporating frequency into a
value νev in Fig. 2.11, resulting in a corresponding decrease in the sample
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Fig. 2.10. Optical density as a function of position along the z-axis for progressively
lower values of the final rf frequency. There are vertical cuts through time-of-flight
images like those in Fig. 2.9. For νrf < 0.7 MHz, they show the bimodal velocity dis-
tributions characteristic of the coexistence of a condensed and uncondensed fraction
of Na atoms. The top four plots have been offset vertically for clarity [23]

temperature and an increase in phase-space density. As shown in Fig. 2.11, a
sharp increase in the peak density was observed at a value of νev = 4.23MHz.
This increase is expected at the BEC transition. Below the transition, i.e., at
the smaller value of νev ≤ 4.23MHz, there is a two-component cloud, with a
dense central condensate surrounded by a diffuse, noncondensed fraction as
shown in Fig. 2.11. At νev = 4.25 MHz just above the BEC transition, the
number density is estimated to be 2.6 × 1012 cm−3 and the temperature is
170 nK. These values were calculated for the sample in the unexpanded trap.
However, after the adiabatic expansion stage, the atoms are still in good ther-
mal equilibrium, but the temperatures and densities are greatly reduced. The
170 nK temperature is reduced to 20 nK, and the number density is reduced
from 2.6 × 1012 cm−3 to 1 × 1011 cm−3.
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Fig. 2.11. Horizontal sections taken through the velocity distribution at progres-
sively lower values of νev show the appearance of the condensate fraction [21]

Fig. 2.12. At absolute zero, gaseous boson atoms all end up in the lowest energy
state. Fermions, in contrast, fill the available states with one atom per state shown
here for a one-dimensional harmonic confining potential. The energy of the highest
filled state at T = 0 is the Fermi energy EF

2.7 Condensates of a Fermionic Gas

Fermions and bosons are very different at the quantum level. Obeying Pauli’s
exclusion principle, identical fermions cannot occupy the same quantum state
at the same time. Bosons, however, can share quantum states. At ultralow
temperatures, bosons will eagerly fall into a single quantum state to form a
Bose–Einstein condensate, whereas fermions tend to fill energy states from
the lowest up, with one particle per quantum state as shown in Fig. 2.12. At
high temperatures, in contrast, bosons and fermions spread out over many
states with, on average, much less than one atom per state.



2.7 Condensates of a Fermionic Gas 53

The quantum behavior emerges gradually as the fermion gas is cooled
below the Fermi temperature TF = EF /kB , where EF is the Fermi energy.
TF , which is typically less than 1 µK for atomic gases, marks the crossover
from the classical to the quantum regime. When the system temperature is
reduced furthermore, the weakly interacting pairs of fermionic atoms begin to
act collectively and finally collapse into a coherent many-body state which is
called a Bardeen–Cooper–Schrieffer state (BCS) . This concept originates in
the conventional superconductor due to the condensation of electron pairs. In
the case of noncharged pairs like pairs of liquid helium-3 atoms, this state is
accompanied with superfluidity.

On the other hand, two fermionic atoms are sometimes tightly bound into
a molecule. These molecules are bosonic so that these can collapse into a com-
mon ground state, known as a Bose–Einstein condensate (BEC), below the
critical temperature of an order of 10−5 K [24–26]. In 1998 Ketterle and his
coworkers first demonstrated the technique that allows the interactions be-
tween ultracold atoms to be controlled, thus making a true fermionic conden-
sate possible. This technique takes advantage of resonant scattering between
atoms, and allows the strength as well as the sign of the interactions between
the atoms to be tuned with an external magnetic field. This phenomenon,
which is known as a Feshbach resonance, arises when the kinetic energy of a
pair of colliding atoms that have one particular spin orientation is close to the
kinetic energy corresponding to a quasibound pair of atoms with a different
spin configuration.

This magnetic-field Feshbach resonance provides the means for controlling
both the strength of cold atom interactions, characterized by the s-wave scat-
tering length a, as well as whether they are, in the mean-field approximation,
effectively repulsive (a > 0) or attractive (a < 0). For magnetic-field detuning
on the a > 0 (BEC) side of the resonance there exists an extremely weakly
bound molecular state whose binding energy depends on the detuning from
the Feshbach resonance. On the side of a < 0, condensation of Cooper pairs is
expected for an atomic gas. Therefore it is possible to observe the BCS–BEC
crossover regime by changing the magnetic field so as to cover both sides
of the Feshbach resonance. Here we distinguish fermionic condensates, i.e.,
condensation of Cooper pairs, from the BEC extreme where there remains no
fermionic degree of freedom because all fermions are bound into bosonic mole-
cules. The fermionic condensation was confirmed for the a < 0, or BCS, side
of the Feshbach resonance by Regal, Creiner and Jin [27]. They trapped and
cooled a dilute gas of the fermionic isotope 40K, which has a total atomic spin
f = 9/2 in its lowest hyperfine ground state and thus ten available Zeeman
spin states |f, mf 〉. A trapped gas of 40K atoms is evaporatively cooled to
quantum degeneracy and then a magnetic-field Feshbach resonance is used to
control the atom–atom interactions. The location of this resonance was pre-
cisely determined from low-density measurements of molecular dissociation
as B0 = 202.10 ± 0.07 G. Here the magnetic-field dependence of the s-wave
scattering length a is drawn in Fig. 2.13.
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Fig. 2.13. The “scattering length” of s-wave collisions of ultracold 40K atoms,
as-wave, as a function of applied magnetic field. The effective interactions between
the colliding atoms are attractive if as-wave < 0, and repulsive if as-wave > 0. The
collision cross-section is proportional to the square of as-wave. A magnetic field of
about 200 gauss would create the large, attractive interaction required for the atoms
to form Cooper pairs [24]

Experiments are initiated by preparing atoms in a nearly equal, incoherent
mixture of the |9/2, −7/2〉 and |9/2, −9/2〉 spin states at a low temperature
T/TF ∼ 0.1. The two kinds of fermions are scattered so efficiently that ther-
mal equilibrium can be reached more rapidly than in the case of a single kind.
In order to investigate the BCS–BEC crossover regime, this ultracold two-
component atom gas is prepared at a magnetic field far above the Feshbach
resonance. The magnetic field is then slowly lowered, at typically 10 ms/G,
to a value Bhold near the Feshbach resonance B0 = 202.1G. This sweep is
slow enough to allow the atoms to collide effectively in the trap. As Fig. 2.13
shows, the BEC of the molecules is realized for ∆B ≡ Bh − B0 < 0 with
the scattering length a > 0 in [24–26]. A Fermi gas of 40K is cooled ini-
tially below T < TF = 0.17 µK, and the magnetic field B is swept down to
∆B = −0.56G. Here the BEC of the molecules is confirmed. The fermionic
40K atoms are condensed in the BCS state ∆B ≡ Bh−B0 > 0, where the scat-
tering length is a < 0. In order to prove the BCS condensation, the fermionic
atoms are pairwise projected adiabatically onto the molecules in the molecular
regime ∆B ≡ Bh − B0 < 0, and the momentum distribution of the resulting
molecular gas is measured. After a total of typically 17 ms of expansion, the
molecules are selectively detected by optical absorption images and analyzed
as a two-component function for a condensate and noncondensed molecules.
The measured condensate fraction N0/N is plotted in Fig. 2.14 as a function
of the magnetic-field detuning from the resonance ∆B = Bhold−B0. The data
in Fig. 2.14 were taken for a Fermi gas initially at T/TF = 0.08 and for two
different holding times at Bhold. Condensation is observed on both the BCS
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Fig. 2.14. Measured condensate fraction as a function of detuning from the Fesh-
bach resonance ∆B = Bhold − B0. Data here were taken for thold = 2 ms (•) and
thold = 30ms (�) with an initial cloud at T/TF = 0.08 and TF = 0.35 µK [24]

Fig. 2.15. Time of flight images showing the fermionic condensate for ∆B = 0.12,
0.25, and 0.55 G (left to right) on the BCS side of the resonance. The original
atom cloud starts at T/TF = 0.07, and the resulting fitted condensate fractions are
N0/N = 0.10, 0.05, and 0.01 (left to right) [24]

(∆B > 0) and BEC (∆B < 0) sides of the resonance. The condensate on the
BCS side of the Feshbach resonance has a relatively long lifetime (> 30ms)
as denoted by triangles in Fig. 2.14. For the BEC side of the resonance, no
condensate is observed for thold = 30ms except very near the resonance. Fig-
ure 2.15 displays some examples of time-of-flight absorption images for the
fermionic condensate on the BCS side.
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Statistical Properties of Light

A laser is a light source with temporal and spatial coherence. In this chap-
ter, we discuss the statistical properties of light including coherence and re-
lated topics. The degree of optical coherence can be defined quantitatively
as the magnitude of correlation of the electromagnetic field at two points
separated spatially and temporally. In Sect. 3.1, we give the definition of the
first- and the second-order correlation functions. In order to understand the
physical meanings of the correlation functions, the first- and second-order cor-
relation functions are calculated for (a) coherent light, (b) thermal radiation
(chaotic light), and (c) the photon-number squeezed state (nonclassical light).
The first-order correlation function is observed as the contrast of interference
fringes formed by the light that has passed through two slits or two pinholes as
demonstrated by Young’s experiment. The second-order correlation function
can be measured from the correlation of light intensity at two separate times
as a function of temporal distance, and the experiment was first conducted
by Hanbury-Brown and Twiss. The second-order correlation function includes
the information of the quantum properties of radiation that is undetectable
from first-order effects such as fringes. Photons in chaotic light such as thermal
radiation tend to bunch, and on the other hand, photons in photon-number
squeezed states tend to be antibunching. Coherent light shows the property in-
termediate between these two. Photons in the antibunched state of light tend
to arrive at the detector at regular interval. Such a property is not available
from classical light.

In Sect. 3.2, we discuss the theory of photon counting. The probability dis-
tribution of the photon number counted in a fixed period will be calculated
for several types of photon states. Both from measurements of the photon-
count distribution and the second-order correlation function, the coherence
time (correlation time) τc can be obtained. The statistical characteristics of
light generated by laser oscillation show how chaotic light evolves into co-
herent light as the population inversion grows, although the details of the
mathematical description of laser oscillation will be given in Chap. 4.
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Fig. 3.1. Schematic of experiment to observe Young’s interference pattern

3.1 The Degree of Coherence and
Correlation Functions of Light

The characteristics of optical beams observed in interferometric experiments
are usually expressed by the concept of coherence. Two beams are called
coherent if interference is observed when two beams overlap at the same tem-
poral and spatial position. Young’s experiment shows the interference between
beams from two slits or pinholes. The visibility of the fringe is determined by
the first-order coherence of light, and it is described by the first-order cor-
relation function of the electric field at two spatial and temporal positions.
On the other hand, the second-order correlation function gives information
on the fluctuation of light itself. The first experiment was demonstrated by
Hanbury-Brown and Twiss. The concept of second-order coherence is intro-
duced, because it reflects the quantum properties of light that cannot be
obtained from first-order coherence. In this section, we discuss how the statis-
tical characteristics of coherent laser light and thermal radiation are described
by the first- and second-order coherence and correlation functions.

Figure 3.1 depicts a schematic diagram of Young’s experiment. The light
from a point source is assumed to be collimated by a lens system and it passes
through the two slits located at r1 and r2 on screen 1, and then an interference
pattern will be formed on screen 2. The electric field at position r and time t
on screen 2 can be expressed as a superposition of the electric fields E(r1t1)
and E(r2t2) observed at r1 and r2 at time t1 = t − s1/c and t2 = t − s2/c,
respectively:

E(rt) = u1E(r1t1) + u2E(r2t2). (3.1)

Here, s1 and s2 are the distance from the slits to the detecting position r, c is
the velocity of light, and the amplitudes u1 and u2 are inversely proportional
to s1 and s2 and are dependent on the size and shape of the slits. The light
intensity at r can be expressed as
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I(rt) =
(ε0c

2

)
|E(rt)|2

=
(ε0c

2

)
{|u1|2|E(r1t1)|2 + |u2|2|E(r2t2)|2

+2Re[u∗1u2E
∗(r1t1)E(r2t2)]}. (3.2)

Because the integration time for detection is usually much longer than the
optical coherence time τc, we detect the intensity averaged over a long period
when a cw light source is used. Due to ergodic theory, the temporal average can
be interpreted as an ensemble average over the statistical distribution. As the
interference in Young’s experiment originates from the last term of (3.2), the
interference effect is expressed by the following first-order correlation function:

〈E∗(r1t1)E(r2t2)〉 = lim
T→∞

1
T

∫ T

0

E∗(r1t1)E(r2t1 + t21)dt1, (3.3)

where t21 ≡ t2−t1. By using this correlation function, the degree of first-order
coherence g(1)(r1t1, r2t2) is defined as follows:

g(1)(r1t1, r2t2) ≡ g(1)12 =
|〈E∗(r1t1)E(r2t2)〉|

{〈|E(r1t1)|2〉〈|E(r2t2)|2〉}1/2
. (3.4)

When the light beam shows g(1)12 = 1 for any different spatial and temporal
positions, the light beam has first-order coherence. When g(1)12 = 0, it is com-
pletely incoherent. If g(1)12 shows a value between 0 and 1, the beam is said
to have first-order partial coherence. The classical electromagnetic wave and
laser light have first-order coherence, because we can show that g(1)12 = 1 in
Sect. 3.1.1. In the case of thermal radiation, we assume a single cavity mode
of thermal radiation selected by a very narrow band-pass filter. In this case,
even though the selected mode is subjected to random fluctuation, the light
observed at two spatial and temporal positions always shows the first-order
coherence (g(1)12 = 1) as shown in Sect. 3.1.2. The optical coherence time τc
is given by the relation τc = 1/γ for light with a Lorentzian spectral shape
and damping constant γ. From this point of view, Young’s experiment can
be a method to measure the interference effect utilizing the first-order coher-
ence when the condition |t1 − t2 − (s1 − s2)/c|  τc is satisfied. Actual lasers
have various coherence characteristics intermediate between those of thermal
radiation and classical electromagnetic waves as shown in Chap. 4. The differ-
ence among them cannot be distinguished by first-order coherence, but can
be clarified by using higher order coherence.

The experiment of Hanbury-Brown and Twiss is a method to measure the
second-order coherence of light, and thus it is possible to detect the quantum
optical properties of light. The importance of their experiment should be
recognized not only because of their results, but also because it opened a new
page in the field of quantum optics [28]. A diagram of the experiment is shown
in Fig. 3.2.
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Fig. 3.2. Measurement of intensity correlation by Hanburg-Brown and Twiss [28]

The emission at 435.8 nm from a mercury arc lamp was selected by a filter.
The beam was divided into two parts with equal intensity by a half-mirror.
The intensities of the two beams were detected by photomultiplier tubes,

by correlator. The long time integration of the signal gives the second-order
coherence, the definition of which will be given later. The temporal positions
of the observation for two beams can be varied by changing the spatial position
of one photomultiplier tube P2. Then, the signal intensity can be given by a
function of two temporal positions as

〈{I(rt1) − I}{I(rt2) − I}〉 = 〈I(rt1)I(rt2)〉 − I2. (3.5)

Here, I = 〈I(rt)〉 and the bracket originally means an ensemble average due to
the ergodicity of physical quantities, but it can be replaced with the temporal
average as shown by (3.3).

The second-order intensity correlation function can be defined generally
as

〈I(r1t1)I(r2t2)〉 =
(ε0c

2

)2

〈E∗(r1t1)E∗(r2t2)E(r2t2)E(r1t1)〉.

Therefore, the formula (3.5) is known to be the special case of this form,
that is, r1 = r2. The degree of coherence of the radiation field at two spatial
and temporal positions (r1t1) and (r2t2) can be defined by the following
expression:

g(2)(r1t1, r2t2; r2t2, r1t1) =
〈E∗(r1t1)E∗(r2t2)E(r2t2)E(r1t1)〉

〈|E(r1t1)|2〉〈|E(r2t2)|2〉
. (3.6)

In the following part, this quantity will be described briefly as g(2)12 , and the
angle bracket 〈· · · 〉 means the ensemble average as before. If g(1)12 = 1 and
g
(2)
12 = 1 are simultaneously satisfied, the light at two spatial and temporal

positions has second-order coherence.

and the product of the amplified fluctuation of the two outputs was observed
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In order to obtain the quantum mechanical counterparts of the first and
second-order correlation functions, the electric fields E∗ and E must be re-
placed by the corresponding operators Ê+ and Ê−. These are the first and
second terms of (1.38) which can be represented as

Ê+ = i

√
1

2V

∑
λ

eλ

√
�ωλ

ε0
eik·râλ,

Ê− = −i
√

1
2V

∑
λ

eλ

√
�ωλ

ε0
e−ik·râ†λ. (3.7)

In quantum theory, the expression 〈· · · 〉 means the expectation value for the
considered quantum state if the quantum system of light is in a pure state,
and it means the statistical average if it is in a mixed state. In the latter
case, the definition is given as 〈· · · 〉 = Tr[ρ(· · · )]. Calculations based on this
average will be performed in the following subsections.

When all of photon annihilation operators Ê+ are located at the right
side of all the photon generating operators Ê−, the ordering is called the nor-
mal order. In order to define the first- and second-order correlation functions
as normally ordered operators in the framework of quantum mechanics, this
ordering indicates the fact that detection of a photon accompanies the anni-
hilation of a photon, and a detector responds only when a photon arrives at
the detector position. Hence, the first- and second-order correlation functions
or the degree of first- and second-order coherence correspond to the absolute
square of the probability amplitude for annihilating one or two photons, re-
spectively. Now, let us calculate the optical coherence for the coherent state,
thermal radiation, and the photon-number state of light.

3.1.1 Coherent State

The first-order correlation function of a single-mode coherent state |α〉 can be
expressed as

〈Ê−(r1t1)Ê+(r2t2)〉 ≡
(

�ω

2ε0V

)
eiω(t1−t2)−ik·(r1−r2)〈α|â†â|α〉

=
�ω

2ε0V
|α|2eiω(t1−t2)−ik·(r1−r2). (3.8)

The degree of first-order coherence is found to be g(1)12 = 1 by substituting
(3.8) into (3.4). Substitution of the result

〈Ê−(r1t1)Ê−(r2t2)Ê+(r2t2)Ê+(r1t1)〉 =
(

�ω

2ε0V

)2

|α|4, (3.9)

and (3.8) into (3.6) gives g(2)12 = 1.
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The quantum mechanical degree of nth order coherence is defined by the
following formula:

g(n)(r1t1, . . . , rntn; rn+1tn+1, . . . , r2nt2n)

=
|〈Ê−(r1t1) · · · Ê−(rntn)Ê+(rn+1tn+1) · · · Ê+(r2nt2n)〉|
{〈Ê−(r1t1)Ê+(r1t1)〉 · · · 〈Ê−(r2nt2n)Ê+(r2nt2n)〉}1/2

. (3.10)

Then, the degrees of first- and second-order coherence defined by (3.4) and
(3.6) are the special cases of the general form (3.10). For the coherent state
|α〉, it can be shown that g(n) = 1 (n ≥ 1), in other words, the coherent state
has coherences of all orders.

Next, let us consider the degree of coherence for the case of a multimode
coherent state expressed by

|{αk}〉 ≡ |α1〉|α2〉 · · · |αk〉 · · · .

From the definition of Ê+ and the relation given by

ak′ |{αk}〉 = αk′ |{αk}〉,

the state |{αk}〉 is proven to be an eigenstate of Ê+ as shown by

Ê+(rt)|{αk}〉 = ε(rt)|{αk}〉, (3.11)

where

ε(rt) = i
∑

k

√
�ωk

2ε0V
eεkαk exp[−i(ωkt− k · r)].

The numerator and denominator in (3.10) are evaluated to be equal so that
the degrees of nth order coherence become unity as

g(n)(r1t1, · · · , rntn; rn+1tn+1, · · · , r2nt2n) = 1 (3.12)

for all n. Therefore, the multimode coherent state |{αk}〉 is also quantum
mechanically coherent in all orders. Experimentally, any complex interference
effects produced by the light in these states or the correlation functions of these
radiation fields are the same as those predicted for classical electromagnetic
waves. Then, the states |{αk}〉 are called coherent states.

3.1.2 Thermal Radiation

The density operator ρ̂ for the thermal radiation field at temperature T with
a single mode �ω can be expanded by photon-number states |n〉 as
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ρ̂ =
∞∑

n=0

Pn|n〉〈n|

= {1 − exp(−β�ω)}
∞∑

n=0

exp(−βn�ω)|n〉〈n|. (3.13)

Here, β ≡ 1/kBT . At a finite temperature, Pn, the probability that n photons
are excited in the mode can be expressed as

Pn =
exp(−βEn)

∞∑
n=0

exp(−βEn)

=
exp(−βn�ω)

∞∑
n=0

exp(−βn�ω)

= exp(−βn�ω){1 − exp(−β�ω)}, (3.14)

where the eigenenergy is given by the relation En = �ω(n + 1/2). By using
the mean number of thermally excited photons

n = 〈n〉 ≡ Tr(ρ̂â†â) =
1

exp(�ωβ) − 1
, (3.15)

the density operator ρ̂ for a single mode can be expressed as follows:

ρ̂ =
∞∑

n=0

nn

(1 + n)1+n
|n〉〈n|. (3.16)

Because all modes consisting of the thermal radiation are independent of each
other, the density operator ρ̂ for total thermal radiation system can be given
in the same way as

ρ̂ =
∑
{nk}

P{nk}|{nk}〉〈{nk}|. (3.17)

Here,

P{nk} =
∏
k

(nk)nk

(1 + nk)1+nk
, (3.18)

and {nk} represents a photon-number state for multimode.
In order to evaluate the degree of first-order coherence g(1)12 for this state,

the fisrt-order correlation function must be calculated first. That is,

〈E∗(r1t1)E(r2t2)〉 = Tr{ρ̂E∗(r1t1)E(r2t2)}

=
∑
{nk}

P{nk}
�ωk

2ε0V
nke

iωk(t1−t2)−ik·(r1−r2)

=
∑

k

�ωk

2ε0V
nke

iωkτ , (3.19)
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where τ ≡ t1 − t2 − k · (r1 − r2)/ωk. By substituting (3.19) into (3.4), the
expression for g(1)12 is given by

g
(1)
12 =

∣∣∣∣∣
∑

k

nkωk exp(iωkτ)

∣∣∣∣∣∑
k

nkωk

. (3.20)

Let us consider a typical example where an emission spectrum has a Lorentzian
shape with a width of 2γ:

nkωk ∝ γ

(ω0 − ωk)2 + γ2
. (3.21)

Such a distribution can be obtained by filtering the photon flux with the
bosonic distribution given by (3.18). In this case, the correlation function

g
(1)
12 = exp(−γ|τ |) (3.22)

can be obtained by substituting (3.21) into (3.20), and transforming summa-
tion into integration, under the approximation that ω0 � γ. If a Gaussian
distribution

nkωk ∝ exp
[
− (ωk − ω0)2

2δ2

]
(3.23)

is given by filtering of thermal radiation, a similar calculation gives the cor-
relation function as

g
(1)
12 = exp

(
−1

2
δ2τ2

)
. (3.24)

The degrees of first-order coherence g(1)12 are depicted as functions of τ ≡
t1 − t2 − k · (r1 − r2)/ωk in Fig. 3.3.

Next, let us show the calculation of the degree of second-order coherence
g
(2)
12 . The electric field is expressed by the Fourier expansion of all modes as

Ê+(rt) =
∑

k

Ê+
k e

ik·r−iωkt. (3.25)

Substituting this expression into the numerator of (3.6), the correlation func-
tion is reduced to the following expression

〈Ê−(r1t1)Ê−(r2t2)Ê+(r2t2)Ê+(r1t1)〉

=
∑

k1k2k3k4

〈Ê−
k1

Ê−
k2

Ê+
k3

Ê+
k4
〉 exp[i(−k1 · r1 + iω1t1

−ik2 · r2 + iω2t2 + ik3 · r2 − iω3t2 + ik4 · r1 − iω4t1)]. (3.26)
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δτ  or γτ

Fig. 3.3. First-order correlation g
(1)
12 (τ) for (a) a stable classical wave, and for

chaotic light with (b) a Gaussian frequency distribution, and (c) a Lorentzian fre-
quency distribution. τ ≡ t1 − t2 − k · (r1 − r2)/ωk

Because the relation

〈X〉 =
∑

k

∑
{nk}

P{nk}|{nk}〉〈{nk}|X (3.27)

is satisfied for any electric field operator X, (3.26) gives finite results only for
two cases, that is, (k1 = k3 and k2 = k4) and (k1 = k4 and k2 = k3). For the
latter case, the phase factor in (3.26) is 1, and for the former case it is given
by exp(iω1τ) · exp(−iω2τ). Then, we can obtain the following relationship for
the first- and second-order coherence:

g
(2)
12 =

∣∣∣∣∣
∑

k

nkωk exp(iωkτ)

∣∣∣∣∣
2

(∑
k

nkωk

)2 + 1 =
(
g
(1)
12

)2

+ 1. (3.28)

From this expression, the second-order coherence g(2)12 of thermal radiation at
τ = 0 is known to be 2. The physical meaning of this fact (g(2)12 > 1) is that
when one photon from thermal radiation is observed at time t1, the probability
to observe another photon at time t2 = t1 + τ is larger than 1 if τ < τc. This
shows the existence of temporal bunching of photons in the thermal radiation
field. This is the most pronounced difference from the coherent state where
g
(1)
12 = 1, g(2)12 = 1, · · · and g(n) = 1.

The difference between second-order coherence in coherent and chaotic
light has also been confirmed experimentally [29]. As an example, we introduce
an experiment done by using light with a Gaussian frequency distribution.
In this experiment, photon numbers m1 and m2 are measured during short
periods δt1, and δt2, respectively where both periods are separated by τ . The
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laser

Fig. 3.4. Second-order correlation g
(2)
12 (τ) = 〈m1m2〉/m2 for laser light (•) and

chaotic light induced by frosted glass rotating with different velocity v. Solid lines
denote the theoretical result, and the points are the observed results [29]

correlation between photon numbers is obtained as a function of temporal
distance τ as done in the experiment of Hanbury-Brown and Twiss. If δt1 = δt2
and τ is much shorter than the coherence time τc, the correlation 〈m1m2〉 gives
the degree of second-order coherence g(2)12 of (3.6) for the same spatial position.
Hence, when the average of counted photons during the short period δt1 = δt2
is m1, g

(2)
12 is given as

g
(2)
12 (τ) =

〈m1m2〉
m2 . (3.29)

Arecchi et al. [29] obtained g
(2)
12 = 1 for a monochromatic laser beam as

shown in Fig. 3.4, and this result corresponded to the coherence properties
predicted from (3.12) in Sect. 3.1.1. The light source with a Gaussian frequency
distribution can be obtained by passing the beam through a rotating frosted
glass. The degree of second-order coherence g(2)12 (τ) measured for this light
is also shown in Fig. 3.4. We can easily find the exact confirmation of the
theoretical prediction that g(2)12 (τ) → 2 for τ  τc, and g

(2)
12 (τ) → 1 for

τ � τc.
The degrees of coherence higher than third order become important in

higher order nonlinear optical processes. For example, in the process of third-
harmonic generation described in Chap. 6, three photons are absorbed simul-
taneously from a light beam and one photon of the third-harmonic wave is
emitted. The rate of the events is proportional to the third-order coherence
g(3) of the incident beam. Therefore, the intensity of third harmonics gives
information about the third-order coherence of the light.
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3.1.3 Photon-Number State and Antibunching Characteristics

Correlation functions of the single-mode photon-number state |n〉 can be cal-
culated from the definition (3.4) and (3.6), and the electric field correlations
are given by

〈E∗(r1t1)E(r2t2)〉 = 〈n|E∗(r1t1)E(r2t2)|n〉

=
�ω

2ε0V
n exp(iωτ), (3.30)

〈n|E∗(r1t1)E∗(r2t2))E(r2t2)E(r1t1)|n〉 =
(

�ω

2ε0V

)2

n(n− 1). (3.31)

Substituting these results into (3.4) and (3.6), g(1)12 and g(2)12 can be expressed
as

g
(1)
12 = 1, g

(2)
12 =

n− 1
n

= 1 − 1
n

(n ≥ 1)

= 0 (n = 0). (3.32)

If we can prepare the light beam with a well-defined photon number, the
experiment of Hanbury-Brown and Twiss will show the correlation of g(2)12 −1 =
−1/n < 0. This negative value means the antibunching of photons, and it is a
unique quantum effect of photons because such an effect is unpredictable from
classical coherence theory. This is a property of the photon-number squeezed
state described in Sect. 1.4.2. In other words, if one photon in a photon number
state is observed at time t1, the probability of arrival of another photon during
the next τc is smaller than average.

For general cases, n and n(n−1) apprearing in the correlation functions of
the electric field (3.30) and (3.31) for single-mode light beams can be replaced
by the corresponding expectation values, n and n2 − n, respectively. Hence,
the degrees of coherence can be given by

g
(1)
12 = 1, g

(2)
12 =

n2 − n
n2 . (3.33)

Finally, we briefly describe the relation between the second-order coherence
and photon-counting characteristics. When the photon-count is given by a
Poisson distribution as for the coherent state, the variance of the photon
number is (∆n)2 ≡ n2 −n2 = n as shown in the next section. In this case, we
obtain g(2)12 −1 = 0 from (3.33). On the other hand, we obtain g(2)12 −1 > 0 in a
super-Poisson distribution in which the photon number spreads broader than
the Poisson distribution, such as (∆n)2 ≡ n2 − n2 > n, and this situation is
found in chaotic bunching light. When g(2)12 − 1 < 0 is observed, the photon
count has a sub-Poisson distribution where the photon number has a narrower
distribution than the Poisson distribution, as (∆n)2 ≡ n2 − n2 < n. This
state corresponds to an antibunching photon-number squeezed state. It is
understood that the coherent state forms a border between bunching and
antibunching states.
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observing m photons

observing (m − 1) photons

Fig. 3.5. Schematic to obtain the photon-number counting function Pm(t, T ), the
probability of observing m photons between t and t + t′ + dt′

3.2 Photon-Count Distribution

The statistical distribution Pm(T ) of photon number m observed during time
T is called the photon-count distribution. In this section, we discuss the rela-
tion between the properties of a light source and the results obtained by the
photon-counting measurement.

It is possible to measure the number of incident photons by means of
photoemission in a phototube. In experiments, the number of incident photons
in a time duration T is measured by controlling a shutter located in front of
the tube. The statistical distribution of the photon number can be obtained
by repeating the experiment many times (typically more than 104 times).
The light beam is assumed to be in a steady state. The rate of photoemission
is proportional to the beam intensity, and it is determined by the average
of the product of two electric field operators Ê−Ê+ defined in (3.7). Now,
we use the envelope of the classical magnitude I(t) as the intensity of the
incident electromagnetic field. If the probability that the light beam causes
photoemission from an atom in a phototube is p(t), the count between t and t+
dt is p(t)dt. The interval dtmust be long enough to apply transition probability
theory for photoemission, but must be short enough in order to eliminate the
probability that more than two photoelectrons are counted during dt. In this
case, p(t) is proportional to the beam intensity I(t):

p(t)dt = ζI(t)dt. (3.34)

Here, ζ means the factor determined by the experimental conditions such as
quantum efficiency of the phototube, and it depends on the matrix element
for photoemission, the atomic density of the cathode metal, and so on.

Let Pm(t, T ) denote the probability that m photons are counted between
time t and t+ T . Then, Pm(T ) can be defined as the average of Pm(t, T ) for
starting time t. Choose time t+ t′ between t and t+ T as shown in Fig. 3.5.

The probability of observing m photons between t and t+ t′ + dt′ can be
expressed as

Pm(t, t′ + dt′) (3.35)

by definition. This probability can be considered as the summation of two
kinds of contribution, that is, (1) the probability for observing m photons
between t and t+ t′ and no photon during the following dt′ as
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Pm(t, t′){1 − p(t′)dt′}, (3.36)

and (2) the probability to observe m−1 photons between t and t+ t′ and one
photon during dt′ as

Pm−1(t, t′)p(t′)dt′. (3.37)

We assume that the probability to observe two photons during dt′ is negligible.
Then (3.35) is equivalent to the summation of (3.36) and (3.37), and the
following equation is given:

dPm(t, t′)
dt′

= ζI(t′){Pm−1(t, t′) − Pm(t, t′)}. (3.38)

The probability for observingm photons Pm(t, t′) is connected to the probabil-
ity functions for other smallerm values by simultaneous differential equations.
We start to discuss the case of m = 0. Because the first equation with m = 0
does not have a term with m−1, it is expressed by the following simple form:

dP0(t, t′)
dt′

= −ζI(t′)P0(t, t′). (3.39)

The probability to observe no photon P (t, t′) must be unity if the time interval
is zero. This restriction gives the initial condition as

P0(t, 0) = 1. (3.40)

Equation (3.39) can be solved formally under the initial condition (3.40) as

P0(t, T ) = exp

[
−ζ

∫ t+T

t

I(t′)dt′
]
. (3.41)

By introducing the average intensity I(t, T ) ≡
∫ t+T

t
I(t′)dt′/T , the solution of

(3.38) can be generally given under the initial condition Pm(t, 0) = 0 (m �= 0)
as

Pm(t, T ) =
{ζI(t, T )T}m

m!
exp{−ζI(t, T )T}. (3.42)

This result can be proven by mathematical induction. The average on the
initial time t can be replaced by an average on ensembles as

Pm(T ) ≡ 〈Pm(t, T )〉 =
〈
{ζIT}m

m!
exp{−ζIT}

〉
. (3.43)

Because we assume that the intensity I of the incident beam does not depend
on time t, I(t, T ) is a constant. By giving the constant number m = ζI(t, T )T
as the averaged photon-count, it is found that the distribution of the photon
count Pm(T ) has a Poisson distribution:
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Pm(T ) =
mm

m!
exp(−m). (3.44)

The fluctuation of the photon count from the averaged value m can be
given by the standard deviation ∆m or (∆m)2. In the case of a Poisson dis-
tribution, (∆m)2 = m. This type of fluctuation is called particle fluctuation
because it is a result of the fact that energy is subtracted from light beam
detection only by a multiple of the single photon energy. A classical elec-
tromagnetic wave and quantum mechanical coherent light are subjected to a
Poisson distribution.

Next, let us consider the opposite extreme from coherent light, that is,
chaotic light. Chaotic light can be obtained from discharge lamps, filaments,
or thermal cavities. Chaotic light has a random electric field amplitude and
phase modulation, and the time scale of the random fluctuation is determined
by Doppler broadening of the spectrum or sometimes by collision broaden-
ing. This characteristic time is called the coherence time τc, and it is of the
order of the reciprocal of the frequency broadening of light. The order of fre-
quency broadening of the thermal radiation is almost the same as that of
optical frequencies, but it is much narrower for the case of discharge lamps.
In spite of such differences, the statistical properties of both light beams have
similar chaotic features. If the observing time T is much longer than the co-
herence time τc, I(t, T ) does not depend on t, and is determined by a Poisson
distribution given by (3.44).

In order to find properties that are different for coherent and chaotic light,
let us consider the case where the counting time T is much shorter than the
coherence time (T  τc). In this limit, the instantaneous intensity I(t) is
assumed to be a constant in the counting duration. Then I(t, T ) is approxi-
mated as I(t). The distribution of the intensity can be obtained by applying
the theory of stochastic processes to the random electric field fluctuation and
phase modulation. The result is represented as

p[I(t)] =
1
I

exp
[
−I(t)
I

]
,

where I means the averaged light intensity. The details of the calculation are
described in the following paragraphs.

From the ergodic hypothesis for a steady state light source, the photon
counting distribution Pm(T ) given by (3.43) can be expressed as the average
over the probability distribution of intensity:

Pm(T ) =
1
I

∫
dI(t) exp

[
−I(t)
I

]
{ζI(t)T}m

m!
exp[−ζI(t)T ] (3.45a)

=
mm

(1 +m)m+1
. (3.45b)

Here,m = ζIT means the average value of counted photons. This expression is
the same as the photon counting distribution of the single-mode light obtained
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by the filtering of thermal radiation as given by (3.16). Therefore, it is satisfied
not only for a single-mode beam but also for any chaotic light under the
condition that T  τc.

In general, the variance of the photon-count distribution can be written
as

(∆m)2 = m2 − (m)2

=
∞∑

m=0

m2Pm(T ) −
{ ∞∑

m=0

mPm(T )

}2

. (3.46a)

The average of m and m2 can be calculated from (3.45) as

m =
∞∑

m=0

mPm(T ) = 〈ζI(t)T 〉 = ζIT

m2 =
∞∑

m=0

m2Pm(T ) = 〈{ζI(t)T}2〉 + 〈ζI(t)T 〉.

Then, the final result is represented as

(∆m)2 = m+ ζ2T 2{〈I(t)2〉 − I2}. (3.46b)

The first term is the particle fluctuation specific for a Poisson distribution,
and the second term is known as the wave fluctuation originating from random
variation of the instantaneous intensity.

Until now, we have considered the photon-count distribution from the
classical intensity I(t) and stochastic processes. In the last half of this sec-
tion, we will show that a calculation based on quantum theory also gives the
same results for coherent and chaotic light. A quantum mechanical expression
for the photon count was derived by Kelley and Kleiner [30]. The quantum
counterpart of the classical expression shown by (3.43) is given by

Pm(T ) = Tr

[
ρN̂

{ζÎ(T )T}m

m!
exp{−ζÎ(T )T}

]
, (3.47)

where

Î(T ) =
2ε0c
T

∫ T

0

Ê−(rt)Ê+(rt)dt. (3.48)

The letter r is the position of the detector, N̂ is the normal-ordering operator
which makes the electric field operators Ê+ and Ê− be arranged in normal
order. This is a mathematical representation of the fact that the detection
process accompanies the annihilation of photons. In the following paragraph,
we will show that the photon-count distribution of several photon states can
be derived by using the quantum-mechanical expression (3.47).
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Let us consider the case for a single-mode light beam, where the photon-
counting distribution (3.47) can be reduced to the following simple form

Pm(T ) = Tr
{
ρN̂

(ξâ†â)m

m!
exp(−ξâ†â)

}
, (3.49)

because of the relation that Ê−(r1t1)Ê+(r1t1) = (�ω/2ε0V )n̂. In (3.49),
ξ = ζc�ωT/V means the quantum yield of the detector, i.e., a measure of
the detector efficiency. The density operator ρ can be expanded with photon
number states |n〉 as

ρ =
∞∑

n=0

Pn|n〉〈n|. (3.50)

By substituting (3.50) into (3.49), expanding exp(−ξâ†â), and arranging the
operators into normal ordering by N̂, the following probability distribution
can be obtained:

Pm(T ) =
∞∑

n=0

Pn
ξm

m!
〈n|

∞∑
l=0

(−1)l ξ
l

l!
(â†)m+lâm+l|n〉

=
∞∑

n=0

Pn
ξm

m!

n−m∑
l=0

(−1)l ξ
l

l!
n!

(n−m− l)!

=
∞∑

n=m

Pn
n!

m!(n−m)!
ξm(1 − ξ)n−m. (3.51)

Each term follows a binomial distribution, and it reflects the quantum me-
chanical features of the photon. Here, the letter ξ means the probability of
photon detection during the counting time T . When there are n photons in
a mode, the probability to count m photons is (ξ)m, and the probability for
not counting n−m photons is (1− ξ)n−m. The factor nCm = n!/m!(n−m)!
represents the fact that we cannot distinguish one photon from another.

Next, consider single-mode coherent light |α〉. According to the relation
|α|2 = n, we can obtain

Pn = 〈n|ρ|n〉 =
|α|2n

n!
exp(−|α|2) =

nn

n!
exp(−n). (3.52)

Substituting this expression into (3.51), we find that a Poisson distribution
with average value ξn can be obtained for the coherent light as shown in the
following:
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Pm(T ) =
∞∑

n=m

nn

n!
e−n n!

m!(n−m)!
ξn(1 − ξ)n−m

=
(ξn)m

m!
exp(−n)

[ ∞∑
n=m

{n(1 − ξ)}n−m

(n−m)!

]

=
(ξn)m

m!
exp(−ξn). (3.53)

A chaotic single-mode beam is available by filtering chaotic light like thermal
radiation. In this case, the diagonal matrix element Pn is obtained from the
basis of photon number states as

Pn =
nn

(1 + n)1+n
, (3.54)

which is also known from (3.16), where n ≡
∞∑

n=0

nPn. If (3.54) is substituted

into the formula (3.51), the result is given by

Pm(T ) =
∞∑

n=m

nn

(1 + n)1+n

n!
m!(n−m)!

ξm(1 − ξ)n−m

=
(ξn)m

(1 + n)m+1

∞∑
n=m

{
n(1 − ξ)
1 + n

}n−m
n!

m!(n−m)!
. (3.55)

By using the relation x = 1 − (1 + ξn)/(1 + n) in the following

1
(1 − x)p+1

=
∞∑

n=0

(n+ p)!
n!p!

xn, (3.56)

the distribution of (3.55) is reduced to a final simple form as

Pm(T ) =
(ξn)m

(1 + ξn)1+m
. (3.57)

In this chaotic case, the distribution has the same form as (3.45b) but using
the average of ξn.

Photon-count distribution depends strongly on the quantitative relation-
ship between the counting time T and the coherence time τc. Figure 3.6 clearly
shows the transition from the expression of (3.45b) for T  τc to the Poisson
distribution (3.44) [31]. The coherence time of chaotic light can be deter-
mined by comparing the experimental results for Pm(T ) with the theoretical
prediction.

With the conventional spectroscopic methods using a monochromator, the
resolution of the frequency is usually 1010 Hz or more. If a Fabry–Pérot inter-
ferometer is employed, we can resolve the line spectra with width from 107
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Fig. 3.6. Photon number distribution function Pm(T ) for chaotic light for the av-
erage photon number m = 4. Pm(T ) = {m/(1 + m)}m for T/τc = 0 changes into
Pm(T ) = Poisson distribution for T/τc → ∞ [31]

to 1012 Hz. The method using intensity fluctuation introduced in this chapter
can be applied to spectroscopy. Because the resolution is limited by the tem-
poral response of fast detectors (typically 10−9 s), it is really a complementary
method adequate for measurements of spectra with linewidth narrower than
108 Hz.



4

Laser Oscillation

The advantages of lasers over conventional light sources are high luminance,
superior monochromaticity, and excellent directionality. In other words, lasers
have good optical coherence, that is, ideal interfering ability, both in tempo-
ral and spatial regions. These features are strongly related to the oscillation
mechanism of lasers. Laser light can be generated by oscillation and ampli-
fication of a selected mode with the stimulated emission of electromagnetic
radiation. In order to obtain the stimulated emission, population inversion
must be formed between two states in a system. Population inversion means
the situation that a higher energy state is more populated than a lower en-
ergy state. Therefore this would be impossible to achieve without external
excitation. In this chapter, we discuss the principle of laser oscillation on the
basis of quantum mechanics. In Sect. 4.1, we start from a model consisting of
two-level systems, and describe the oscillation and amplification processes in
the context of quantum mechanical interaction between the electromagnetic
wave and the atomic system in a cavity. The photon number in an oscillating
mode increases with the degree of population inversion and the behavior can
be understood macroscopically as a second-order phase transition. The high
luminance of laser light is shown as the drastic increase of photon number in
the relevant mode above the threshold value of the external pumping. The-
oretical studies of the statistical properties of the photon below and above
the threshold reveal that the qualitative transition from chaotic to coherent
light occurs at the same time. In Sect. 4.2, we will discuss the phase fluc-
tuation of laser light, the characteristics of which are observed as the high
monochromaticity and good directionality of lasers. In a coherent state where
the photon number n in the oscillating mode is much larger than unity, phase
diffusion caused by fluctuation is shown to be very slow. The small phase
diffusion constant is understood as high monochromaticity in the spectral re-
gion. Sometimes, it is possible to make the phase diffusion time longer than
1 minute, and in this case, the light beam behaves as an ideal classical wave
with a well-defined phase in that time scale. In Sect. 4.3, we explain several
examples of lasers, one of which is the ruby laser which was the first to be



76 4 Laser Oscillation

Fig. 4.1. Schematic diagram of (a) spontaneous emission, (b) optical absorption,
and (c) stimulated emission due to the electronic transition in a two-level system
consisting of levels a and b

demonstrated in the optical region. Next, we introduce the Ti-sapphire and
alexandrite laser as typical tunable lasers. We also describe the mechanism of
several gas lasers and recent progress in the field of short-wavelength genera-
tion.

4.1 Laser Light and its Statistical Properties

The great advantages of lasers are the temporal and spacial coherence as well
as the high brightness. The two kinds of coherence are equivalent to good
monochromaticity and directionality, as known from Fourier transformation.
In this section, we first discuss the mechanism of laser oscillation in the context
of the interaction between the radiation field and the atomic system. Next,
the statistical properties of the laser beam will be calculated. The results show
how the laser light approaches the ideal coherent state described in Chap. 1
with increasing pump intensity. We also give the theoretical results on the
photon-counting statistics or photon correlation in laser light.

The interaction between two-level systems and the electromagnetic field
includes three types of elementary processes as described in Chap. 2. The
schematic diagrams for these processes are shown in Fig. 4.1, that is, spon-
taneous emission (Fig. 4.1a), absorption (Fig. 4.1b) and stimulated emission
(Fig. 4.1c). Stimulated emission, shown in Fig. 4.1(c), is a process in which
the electromagnetic field is amplified by the transition of an electron from
state b to state a. When this process overcomes (a) spontaneous emission and
(b) absorption, the electromagnetic mode starts to oscillate. Based on these
principles, the phenomenon is named LASER which is an acronym for Light
Amplification by Stimulated Emission of Radiation.

In thermal equilibrium, optical absorption is usually stronger than stim-
ulated emission since the atoms are more populated in the lower level a
(Fig. 4.1b). But, once atoms are more populated in the higher level b, stimu-
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Fig. 4.2. Three-level model for laser oscillation. Population inversion between level
a and b is formed by pumping from the lower level c to an excited state b

lated emission overcomes absorption. In other words, in order to obtain laser
oscillation, population inversion must be achieved between energy levels a
and b.

Among the several methods to achieve population inversion, the most pop-
ular way is to continue optical pumping from the lowest level c to an excited
level b in a three-level system depicted in Fig. 4.2. In this case, the population
inversion is formed between levels a and b as shown in Fig. 4.1(c).

Another condition to obtain laser oscillation is that the stimulated emis-
sion from levels b to a overcomes the spontaneous emission between the same
levels. Using the Einstein coefficients A and B described in Chap. 2, this con-
dition can be expressed as Bρ(ω) > A, where ρ(ω) is the energy density of
the radiation field with angular frequency ω. Because the coefficients A and
B are constants specific to atoms contained in a volume larger than the wave-
length, as described in Sect. 2.4, the energy density ρ(ω) of the radiation must
be large in order to satisfy the condition Bρ(ω) > A. Therefore, the laser
medium with three-level system is usually contained in a Fabry–Pérot or ring
cavity as shown in Figs. 4.3(a) and (b). When the medium is contained in
such cavities, the electromagnetic wave generated by the stimulated emission
is reflected by high-reflection mirrors and returned to the medium again. Re-
peated amplification works as positive feedback and the energy will be built
up inside the cavity.

Before lasing starts, the radiation is distributed continuously over the
modes of a broad frequency and wavenumber range. But, several discrete
modes in the frequency and wavevector (direction) domains grow selectively
as a result of the feedback, and most of the radiation energy is concentrated
in a small number of modes. In the following part of this section, we describe
the mechanism of laser oscillation and the statistical properties of laser light
on the basis of quantum mechanics.

Since laser oscillation is a result of nonlinear interaction between the
atomic system and the radiation field, the evolution of both systems must
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Fig. 4.3. Examples of laser cavities. (a) Fabry–Pérot cavity composed of two confo-
cal mirrors, and (b) ring cavity with three mirrors. There are many other variations
according to the physical properties of the laser media and the required laser per-
formance

be investigated simultaneously. We employ the three-level system as a model
of the laser medium. Currently, most commercial lasers consist of media with
four-level systems. However, the theoretical description of the typical three-
level case can be easily expanded to the four-level case, so we discuss mainly
the three-level system in this chapter. Lasers are driven by an external excita-
tion source pumping the atomic system into an excited state b. For a complete
description, the numbers of populations Na and Nb for the lower a and higher
b levels, respectively, and the photon-number distribution Pn for the electro-
magnetic mode must be incorporated. Here and hereafter we confine ourselves
to the case of a single cavity mode for simplicity. These physical variables de-
pend on the pumping rate r, and the decaying factor C for the considered
mode, as well as the light and matter interaction term. In practice, the pump-
ing is mainly made by an external light beam or electric discharge. Using
these parameters, rN atoms are pumped into the state b continuously per
second where N denotes the number of atoms. If the laser beam is obtained
continuously from one mirror with transmissivity T , the decaying factor can
be given by C = (c/2L)T where 2L is the round-trip length of the cavity.
When the laser medium has a finite absorption coefficient α(ω) at the oscil-
lating frequency ω, the absorption loss α(ω)c must be added to the decaying
rate C. The damping constant for the atomic system is on the order of the
spontaneous emission rate from the levels a or b to the ground state c, and in
typical cases the values 2γa � 2γb are about 3 × 107 s−1. On the other hand,
the photon loss constant C in a cavity is estimated to be about 106 s−1 for
the case of gas lasers. Therefore, the damping of atomic systems is one or two
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orders faster than that of the radiation field. Since the temporal evolution of
the atomic part follows the evolution of the photon part, the behavior of both
parts can be separated adiabatically. In such cases, we can do the calculation
in two steps.

For the first step, the motion of the atomic system will be calculated under
the steady photon-number distribution Pn. The behavior of the atomic system
can be described by the induced electric dipole represented by the off-diagonal
components ρab and ρba of the density matrix, and also by the population given
by the diagonal components ρaa and ρbb. According to perturbation theory,
these components are formulated as follows:

ρ̇ba = −(iωba + γba)ρba − i

�
H′

ba(t)(ρbb − ρaa), (4.1a)

ρ̇bb = rPn − i

�
(H′

baρab − ρbaH′
ab) − 2γbρbb, (4.1b)

ρ̇aa =
i

h
(ρabH′

ba −H′
abρba) − 2γaρaa. (4.1c)

Here, H′ means the first-order interaction Hamiltonian between the atomic
system and the radiation field with angular frequency ω given by (2.12) and
we assume that the excited state is generated with the rate rPn. Because
the transverse off-diagonal damping factor γab = 1/T2 (transverse relaxation)
is generally much larger than the values of the diagonal damping factors 2γa

and 2γb (longitudinal relaxation), the off-diagonal component with the angular
frequency ω can be obtained under the adiabatic approximation and putting
ρ̇ba = −iωρba as

ρab =
H′

ba(t)(ρbb − ρaa)
�(ω − ωba + iγba)

. (4.2)

Also the equations of motion of the diagonal parts can be obtained by substi-
tuting this expression into (4.1b) and (4.1c). In this first step, the distributions
of the atomic system Ra

n ≡ ρaa(n) and Rb
n ≡ ρbb(n) were given as functions of

the photon number n. In the next step, we must substitute Ra
n and Rb

n into the
equations of the photon systems in order to investigate the photon dynamics.
The evolution of photons is determined by the light–matter interaction and
the loss of photons inside cavities. Here, Ra

n (Rb
n) is the probability that n

photons exist in the mode and an atom does at the state a (b). Therefore,
NRa

n/Pn means the average number of atoms existing in the state a when
there are n photons. The total probability of an atom existing in the state
a (b) can be written as the summation over all photon number n:

∑
n

Ra(b)
n =

Na(b)

N
.

Then, let us study the temporal evolution of Rb
n and Ra

n+1. Both states have
almost the same energy, and are coupled via exchange of one photon as ex-
pressed by the following rate equations:
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dRb
n

dt
= rPn − 2γbR

b
n + gRa

n+1(n+ 1) − gRb
n(n+ 1), (4.3a)

dRa
n+1

dt
= −2γaR

a
n+1 − gRa

n+1(n+ 1) + gRb
n(n+ 1). (4.3b)

Here, the pumping increases the number of atoms existing in the state b with
the rate rPn. The damping rate can be expressed as γba = γa+γb by neglecting
the purely transversal damping part. In this case, the coupling constant g can
be obtained from (4.2) as

g =
e2ωba|rab|2

3ε0V �(γa + γb)
, (4.4)

under the resonant condition ω = ωab. The average over the polarization
direction was taken into account as done in (2.24). From now on, we consider
the behavior in the typical time scale of gas lasers that is longer than the
longitudinal relaxation time T1 ≡ 1/γa, 1/γb ∼ 10−8s, but shorter than the
decay time of the radiation mode ∼10−6s, under which scale both the atomic
system and photon distribution are in equilibrium. By replacing the left-hand
sides of (4.3a) and (4.3b) with zero, the solution in the quasisteady state is
given as the following:

Rb
n =

rPn{g(n+ 1) + 2γa}
4γaγb + 2(γa + γb)g(n+ 1)

, (4.5)

Ra
n+1 =

rPng(n+ 1)
4γaγb + 2(γa + γb)g(n+ 1)

. (4.6)

The addition of (4.3a) and (4.3b) gives the following relation:

rPn = 2γbR
b
n + 2γaR

a
n+1, (4.7)

and the summation over n gives:

rN = 2γbNb + 2γaNa. (4.8)

This equation means that Na and Nb are determined by the balance between
the pumping rate rN from the third level c to the highest level b and the
decaying rates from the levels b or a to the level c. Now, we introduce a new
parameter β ≡ 2γaγb/(γa + γb)g. We estimate the values for typical lasers of
volume V = 2 × 10−5m3, where the number of atoms contained in the cavity
is N = 2 × 1020. In this case, values of the parameters are g ∼ 0.5s−1 and
β ∼ 3 × 107 for the transition frequency ωba ∼ 3 × 1015 Hz. If β � n, the
second term 2(γa + γb)g(n + 1) in the denominators of (4.5) and (4.6) are
negligible, compared to the first of them, 4γaγb. Therefore, Rb

n and Ra
n+1 can

be approximated as follows:
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Fig. 4.4. Ladder diagram representing the change of photon-number distribution
Pn caused by a transition in the atomic state and cavity loss C. The rates Rb

n and
Ra

n are given by (4.5) and (4.6), respectively

Rb
n � rPn

2γb
(n β), (4.9)

Ra
n+1 � rPng(n+ 1)

4γaγb
� Rb

n

g(n+ 1)
2γa

(n β). (4.10)

On the other hand, for the case of n� β, we obtain

Rb
n � Ra

n+1 � rPn

2(γa + γb)
(n� β). (4.11)

In this case, the distributions of the a and b levels are almost equal, and that
corresponds to the saturation effect.

In the second step, the rate equation for Pn can be derived from the ex-
pressions for Rb

n and Ra
n+1, (4.5) and (4.6), and the ladder diagram describing

the photon-number distribution Pn (shown in Fig. 4.4):

dPn

dt
= −AβPn(n+ 1)

β + n+ 1
+
AβPn−1n

β + n
− CnPn + C(n+ 1)Pn+1. (4.12)

Here, A ≡ Nrg/2γb. The last two terms describe the rate for the (n + 1)
photon state Pn+1 to change into the n-photon state by losing one photon, as
given by C(n+1)Pn+1, and the decreasing rate of Pn with the transition from
the n-photon state to the (n − 1) photon state as given by −CnPn. We can
obtain Pn in the steady state by directly solving (4.12), but the same result
is more easily given by considering the balancing of photon states shown in
Fig. 4.4, the details of which are given in the following paragraph.

When the balancing is satisfied between the n and (n − 1) levels in the
photon-number ladder shown in Fig. 4.4, the following expression can be ob-
tained:

NRb
n−1gn−NRa

ngn− CnPn = 0. (4.13)

Substituting Rb
n and Ra

n+1 given in (4.5) and (4.6), into (4.13), and using the
parameters A ≡ Nrg/2γb and β ≡ 2γaγb/(γa + γb)g, we obtain the following
recurrence formula:
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Pn =
Aβ

C(n+ β)
Pn−1 =

(
Aβ

C

)n
β!

(n+ β)!
P0. (4.14)

The probability P0 of no photon existing in the cavity can be derived from
the normalization condition

∑
n

Pn = P0

∑
n

(
Aβ

C

)n
β!

(n+ β)!
= 1. (4.15)

The summation in (4.15) can be expressed by the confluent hypergeometric
function F (a, b; x) as

F

(
1, 1 + β;

Aβ

C

)
P0 = 1. (4.16)

Here, the general form of the function is defined by the following expression

F (a, b; x) =
∑

n

(a+ n− 1)!(b− 1)!
(b+ n− 1)!(a− 1)!

xn

n!
. (4.17)

Hence, Pn is given in a simpler form as

Pn =
(
Aβ

C

)n
β!

(n+ β)!F (1, 1 + β; Aβ/C)
. (4.18)

The physical parameters characterizing laser oscillation can be calculated
by using the photon number distribution Pn. For example, the mean pho-
ton number n in an electromagnetic mode can be given as a function of the
intensity of pumping in the next equation:

n =
∞∑

n=0

nPn =
∞∑

n=1

(n+ β − β)
(
Aβ

C

)n
β!

(n+ β)!
P0 =

Aβ

C
− β(1 − P0) .(4.19)

As the pumping rate r is included in (4.19) as the form of A/C ≡ rNg/(2γbC),
we can discuss the laser characteristics by two parameters A/C and β. The
mean photon number is plotted as a function of A/C in Fig. 4.5 when β =
3 × 107 [32]. From this figure, we can understand that the photon number
builds up drastically at the threshold, that is, A/C = 1. Laser oscillation
corresponds to the situation that the photon number increases only in one
selected mode. This is one reason why laser oscillation is interpreted as a
second-order phase transition.

In the following couple of subsections, we investigate the photon statistics
above and below the threshold.

4.1.1 Photon Statistics Below the Threshold (A/C < 1)

When A/C < 1, the second argument in the confluent hypergeometric func-
tion (4.17) is larger than the third. In this case, we can define y with x = by
and the function can be expanded in terms of b−1 because b = 1+β � 1 [33]:
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Fig. 4.5. Mean photon number n in a cavity mode as a function of pumping rate
A/C. The parameter β is defined as β = 2γaγb/(γa +γb)g, and the value β = 3×107

is chosen in this case [32]

F (a, b; by) =
1

(1 − y)a

{
1 − a(a+ 1)

2b

(
y

1 − y

)2

+O(|b|−2)

}
. (4.20)

In our case, because equation (4.20) can be written in the following form:

F

(
1, 1 + β;

Aβ

C

)
=

1
1 − (A/C)

[
1 − A/C

β{1 − (A/C)}2
+O(β−2)

]
, (4.21)

the probability P0 can be obtained by substituting this expression into (4.16).
Then, we can derive the average photon number n from (4.19) by neglecting
the terms of O(β−2) as

n =
A/C

1 − (A/C)
(A/C < 1). (4.22)

The expression of the photon-number distribution (4.18) can be approximated
by the expansion of the confluent hypergeometric function and by applying
Stirling’s formula (n+ β)! � βnβ! (β � n) as

Pn =
(
A

C

)n (
1 − A

C

)
=

nn

(1 + n)n+1
(A/C < 1). (4.23)

This formula gives the chaotic photon distribution which was given for the
thermal radiation in agreement with (3.16).

In other words, when lasers are driven below the threshold, a small number
of photons (n ∼ A/C) with chaotic characteristics will exist in the cavity.
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4.1.2 Photon Statistics Above the Threshold (A/C > 1)

In the opposite limit, we can also make an approximation for the confluent
hypergeometric function in order to calculate P0. By using the following ex-
pansion with x ≡ Aβ/C(> b ≡ 1 + β) [33]:

F (a, b; x) =
Γ (b)
Γ (a)

exxa−b{1 +O(|x|−1)}, (4.24)

the final form can be obtained as:

F

(
1, 1 + β;

Aβ

C

)
= β! exp

(
Aβ

C

)(
Aβ

C

)−β {
1 +O

(
C

Aβ

)}
. (4.25)

Because this value is much larger than 1, we know that P0  1 from (4.16).
Then, assuming that P0 � 0 in (4.19), the mean photon number in the lasing
mode can be expressed as

n = β

(
A

C
− 1

)
. (4.26)

By substituting (4.26) into (4.18), the photon-number distribution Pn can be
calculated as:

Pn =
(
Aβ

C

)n+β exp(−Aβ/C)
(n+ β)!

=
(n+ β)n+β exp(−n− β)

(n+ β)!
. (4.27)

In particular, when A/C−1 � 1, that means n� β, Pn can be approximated
as

Pn =
nn exp(−n)

n!
(A/C − 1 � 1). (4.28)

As known from this Poisson distribution, the photon statistics of laser light
are found to be the same as that of the coherent state, in agreement with
(1.52) with n ≡ |α|2.

Next, we investigate the second-order correlation function g(2)12 (τ) at τ = 0.
This can be expressed as the following, in the quantum-mechanical represen-
tation for a single-mode radiation field,

g
(2)
12 (0) =

Tr{ρ(â†)2â2}
{Tr(ρâ†â)}2

. (4.29)

The density matrix in (4.29) is defined as

ρ =
∞∑

n=0

Pn|n〉〈n|. (4.30)
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Therefore, the correlation function g(2)12 (0) can be obtained by employing (4.23)
for Pn below the threshold value (A/C < 1), and (4.27) above the threshold
of laser oscillation (A/C > 1). The results are expressed as

g
(2)
12 (0) =

∑
n

(
A
C

)n (
1 − A

C

)
〈n|(â†)2â2|n〉{∑

n

(
A
C

)n (
1 − A

C

)
〈n|â†â|n〉

}2 (4.31)

=
2(A/C)2/{1 − (A/C)}2

(A/C)2/{1 − (A/C)}2
= 2 (A/C < 1), (4.32)

g
(2)
12 (0) =

1
n2

∞∑
n=0

(n+ β)n+β exp{−(n+ β)}
(n+ β)!

〈n|(â†)â2|n〉

=
1
n2 exp{−(n+ β)}

∞∑
n=2

n(n− 1)(n+ β)n+β

(n+ β)!

= 1 +
β

n2 (A/C > 1). (4.33)

From these results, the photon sequence shows the bunching below the thresh-
old (A/C < 1) because g(2)12 (0) − 1 = 1 > 0. This is the characteristic of
the chaotic light. On the other hand, increasing the average photon num-
ber n ≡ β(A/C − 1), g(2)12 (0) − 1 = β/n2 approaches 0 above the threshold
value. This shows that laser light approaches ideal coherent light above the
threshold.

Now, we compare the theory with experimental results in Fig. 4.6 [34]
which shows the results of the theory and experiment for the degree of coher-
ence g(2)12 (0).

Fig. 4.6. The degree of second-order coherence as a function of mean photon number
n. The theoretical calculation is given by the solid curve, and experimental results
by the closed circles [34]
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In the experiment, the value was obtained as a function of the mean pho-
ton number n in a cavity; on the other hand, theoretical results were given
by (4.18). The horizontal axis is normalized with the photon number at the
threshold value nth, and the vertical axis indicates the degree of second-order
coherence g(2)12 (0) − 1. The theoretical and experimental results for the corre-
lation function g(2)12 correspond very well over a wide pumping range includ-
ing the transition from incoherent to coherent light as well as two limiting
cases described in Sects. 4.1.1 and 4.1.2, that is, A/C  1 (n/nth  1) and
A/C � 1 (n/nth � 1), respectively.

In the beginning of this section, we noted that one of three important char-
acteristics is high luminance. This property is reflected in the fact that a large
number of photons exist in a single mode above the threshold of oscillation.
The behavior can be understood intuitively from Fig. 4.5 and equation (4.26)
showing the photon number n = β(A/C−1) for A/C > 2. We also realize that
the light has coherent characteristics with small photon-number fluctuation
expressed by g(2)12 − 1. In the next section, let us discuss theoretically the high
monochromaticity and directionality, the second and the third properties of
lasers.

4.2 Phase Fluctuations of Lasers

Laser oscillation resembles the second-order phase transition typically ob-
served in ferromagnetic ordering as shown in Fig. 4.5. In ferromagnetic ma-
terials, the ordered phase appears below the Curie temperature Tc, and like-
wise laser oscillation, as an ordered phase, appears when the pumping rate
is higher than its threshold (A/C = 1). In the case of lasers, the order para-
meter is the photon number n in the mode contributing to laser oscillation.
The pumping rate in the laser oscillation plays the role of temperature for
the ferromagnetic phase transition. When the higher energy level b is more
populated than the lower energy level a, it is called population inversion and
this quasi-equilibrium situation can be described with the concept of negative
temperature. The negative temperature is defined assuming that the two se-
lected levels are populated according to a Boltzmann distribution, so that the
temperature is necessarily negative when the population is inverted.

The direction of ordered magnetic moments in isotropic Heisenberg ferro-
magnetic materials cannot be determined by the Hamiltonian of the system,
and they will have any directions with the same probability. But the direc-
tion of the magnetization diffuses into different directions with a time scale
much longer than experimental scales. The electric field of a laser beam has a
property similar to a Heisenberg ferromagnet, because its phase diffuses very
slowly from the initial value into other equivalent phases.

In the discussion of laser oscillation in the former section, we show that
the density matrix ρ of photons in lasers can be expanded in terms of the
photon-number state |n〉〈n| as
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ρ =
∑

n

Pn|n〉〈n|. (4.34)

In this description, the photon system is characterized by Pn = 〈n|ρ|n〉 or
diagonal components of the density matrix with the basis of photon-number
state, but the information from the phase component does not appear in
the expression. On the other hand, the electric field E in (1.38) includes a
linear combination of generation and annihilation operators of the photon â†λ
and âλ. Then, the off-diagonal components of the density matrix 〈n± 1|ρ|n〉
are essential for the complete description of the electric field. In this section,
the discussion will be expanded in order to include the phase motion of the
radiation field. In the discussion, it will be found that the phase diffusion
is suppressed above the laser threshold, and the spectral width of the laser
becomes very narrow. Then finally the single-mode oscillation in a cavity will
be established. This is the origin of the second and third important properties,
i.e., the high monochromatiticity and the superior directionality of lasers.

Because the details of calculation are available in other books [35], we
briefly outline the framework of the theory and results. Here, we assume that
the initial density matrix of the coupled system consisting of photonic (a) and
atomic (B) parts can be given by a direct product of both systems as:

ρaB(0) = ρa(0) × ρB(0). (4.35)

The interaction between a photon and an atom is written as

VaB = �g
∑

i

σiâ
† + h. c. (4.36)

Here, σi means the operator to induce the transition from the excited state
b to the lower energy state a in the ith atom, and the Hermite conjugated
operator σ†i induces the reverse process. The equation of the density matrix
for the photonic system ρ(t) can be derived by taking the trace for the atomic
system as

ρ(t) = TrBρaB(t). (4.37)

Then, the following equation can be obtained by including perturbation terms
up to forth order:

ρ̇ = −1
2
A(ρââ† − â†ρâ) − 1

2
C(ρâ†â− âρâ†)

+
1
8
B[ρ(ââ†)2 + 3ââ†ρââ† − 4â†ρââ†â] + h. c. (4.38)

Here, the coefficients A and C have the same meaning as in the former section,
and B is defined as C/β.

Next, we consider the expansion of the photonic density matrix ρ(t) with
coherent states |α〉 of the single mode:
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ρ(t) =
∫
d2αP (α, t)|α〉〈α|. (4.39)

The representation of the coherent state |α〉 contains information about the
off-diagonal components of the photon-number state, that is, information on
the phase, as shown by the equation 〈α|â|α〉 = α. By substituting (4.39) into
(4.38), the following Fokker–Planck equation can be obtained:

∂

∂t
P (α, t) = −1

2

{
∂

∂α
[(A− C −B|α|2)αP ] + c. c.

}
+A

∂2P

∂α∂α∗ . (4.40)

If the complex parameters of the coherent state α and α∗ are expressed in
polar form as α = r exp(iθ) and α∗ = r exp(−iθ), the Fokker–Planck equation
(4.40) can be transformed into the following equation:

∂

∂t
P (r, θ, t) = − 1

2r
∂

∂r
[r2(A− C −Br2)P (r, θ, t)]

+
(
A

4r2
∂2

∂θ2
+
A

4r
∂

∂r
r
∂

∂r

)
P (r, θ, t). (4.41)

This equation can be simplified by introducing the nondimensional parameters
T , R, and a:

T ≡
√
AB

8
t, R ≡ 4

√
2B
A
r, a ≡

√
2B
A

(
A− C
B

)
,

∂P

∂T
= − 1

R

∂

∂R
{R2(a−R2)P} +

1
R

∂

∂R

(
R
∂P

∂R

)
+

1
R2

∂2

∂θ2
P. (4.42)

The time-independent solution of the equation can be obtained by the sepa-
ration of variables. The part depending on θ can be solved as eimθ where m
is an integer. In the case that m = 0, the steady state solution can be given
as the following:

P (R) =
N

2π
exp

(
−1

4
R4 +

1
2
aR2

)
. (4.43)

Here, the normalized constant N can be expressed as

1
N

=
∫ ∞

0

R exp
(
−1

4
R4 +

1
2
aR2

)
dR. (4.44)

Now, the photon-number distribution function P (R) was derived instead of Pn

in (4.18) where the discrete parameter n was used. Two types of expressions
are connected by the relation R2 =

√
2B/An, and both expressions are equiv-

alent in the limit n � 1. We can calculate the photon-number distribution
Pm(T ) obtained in Sect. 3.2, and the second-order correlation function g(2)12 (0)
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by using this steady state solution. For the case that a� 1, the photon distri-
bution is found to be Gaussian with the peak at n = (A−C)/B = β(A/C−1)
and width ∆n =

√
A/B =

√
Aβ/C, by substituting R2 =

√
2B/An = a.

When we employ (4.43) for the R dependence and assume that P (θ, t) ∼
exp(±iθ) by choosing m = ±1 as the θ dependence, the equation (4.42) is
reduced to the following form:

∂

∂t
P (θ, t) =

A

4n
θ2

∂θ2
P (θ, t) = − A

4n
P (θ, t). (4.45)

Defining the diffusion constant for the phase θ as D = A/2n, the solution can
be given as

P (θ, t) = exp
(
−1

2
Dt

)
. (4.46)

The expectation value of the electric field amplitude E(t) can be calculated
from the density matrix (4.39) and (3.11) as

〈E(t)〉 ≡ Tr{ρ(t)E(t)} =
1
2
ε〈ae−iωtρ(t)〉 + c. c.

= 〈E(0)〉 sinωt exp
(
−1

2
Dt

)
. (4.47)

From the Fourier transformation of (4.47), we can obtain the power spectrum
of laser light as

|E(Ω)|2 =
∣∣∣∣
∫ ∞

0

dt eiΩt〈E(0)〉 sinωt exp
(
−1

2
Dt

)∣∣∣∣
2

� |〈E(0)〉|2 1
(Ω − ω)2 + (D/2)2

. (4.48)

Here, we neglected the antiresonance term. Above the threshold value (A/C >
2), since the diffusion constant becomes very small because D/2 = A/4n <
10−2s−1, the spectral width of the laser is found to be very small. If the spec-
tral width D/2 becomes narrower than the mode separation in a cavity 2πc/L
(L is the length of the cavity), single-mode oscillation can be achieved. These
mathematically derived properties appear as the high monochromaticity and
directionality of the laser beam.

Now, we consider a typical example in which the decay rate C of a cavity
is comparable to A ∼ 106 s−1, and the mean photon number n is 3 × 107.
Then the inverse of the phase diffusion constant D/2 (= A/4n) is the order
of 1 minute. Therefore, the phase diffusion constant is 107 times slower than
the rate of stimulated emission (A) and the decay rate of the cavity (C).
In this case, the phase of the light does not change during a period shorter
than 1 min. This is the reason why the laser light behaves as an ideal classical
electromagnetic field.
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4.3 Several Examples of Lasers

4.3.1 Ruby Laser

Maiman succeeded in producing laser oscillation for the first time in 1960.
Ruby for lasers is a crystalline sapphire (Al2O3) containing Cr3+ ions with a
concentration of 0.01–0.03 weight %. Because the color of ruby for a laser is
paler than jewel ruby, which typically contains 0.5% Cr3+, it is called pink
ruby. Since a Cr3+ ion substitutes a Al3+ ion, it is located at the center of a
corundum structure composed of the six nearest neighbor O2− ions. The Cr3+

ion feels approximately a cubic crystal field. In this field, the degenerate 3d
level of the central ion splits into eg and t2g levels as shown in Fig. 4.7. Among
these 3d orbitals, t2g(ξ, η, ζ) orbitals are described by the wavefuctions dis-
tributing toward the direction of xy, yz, zx, and eg(u, v) orbitals have the
dependence 2z2 − x2 − y2, and

√
3(x2 − y2). Since the eg orbitals expand in

the direction of O2− ions, eg electrons are subjected to a stronger repulsion
force. On the other hand, since 3d electrons in t2g orbitals distribute in the
space between oxygen ions, their energies are lower, as shown in Fig. 4.7. In
the case of Cr3+, three 3d electrons occupy t2g orbitals, and the ground state
forms a quartet 4A2 according to Hund’s rule [36].

There are several types of excited states. States with an electron configu-
ration of (t2g)2eg or t2g(eg)2 are formed by the excitation of one or two t2g
electrons into eg orbitals, respectively. Another type of excitation is formed
by the transition of one electron in a tg state into another tg state changing
the sign of the spin. By diagonalizing the interaction terms among 3d electron
configurations, we can obtain (3d)3 multiplet states as 2E, 2T1, 2T2, and 4A2

(these belong to (t2g)3 configurations), and 4T2, 4T1, 2A1, etc. (which belong
to (t2g)2eg). The energies of all levels can be represented as a function of the
intensity of the crystal field 10Dq, and they are depicted in a Tanabe–Sugano
chart as given in Fig. 4.8 [36]. Usually 10Dq is scaled by B, a matrix ele-
ment of the configuration interaction. In the case of Cr3+:Al2O3, the value
of 10Dq/B is 2.5, so that excited states line up from the lower energy side
in the order 2E, 2T1, 4T2, 2T2, 4T1 [(t2g)2eg], 2A1[(t2g)2eg], and others (see
Fig. 4.8).

Experimental results of the absorption spectra of Cr3+:Al2O3 given by
Misu et al. are shown in Fig. 4.9. We find that the 2E, 2T1, and 2T2 levels form

Free ion Under O  crystalline fieldh

Fig. 4.7. Splitting of d-electron levels in a crystal field with Oh symmetry
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Fig. 4.8. Dependence of electronic energy of multiplet states 2S+1L of a (3d)3 system
(for a example, Cr3+) in Oh symmetry on the crystal field parameter 10Dq [36]

weak and sharp line spectra, and on the contrary, that 4T2 and 4T1[(t2g)2eg]
appear as strong and broadband absorption peaks. The difference in these
two cases can be explained also by the Tanabe–Sugano chart. The crystal
field 10Dq varies with the change of distance between the Cr3+ ion and O2−

ions, and the distances are subjected to the influence of lattice vibrations.
The energy dependence of the 2E, 2T1, and 2T2 levels on the 10Dq values is
very small around 10Dq/B = 2.5 as shown in Fig. 4.8, so that they are not
affected by lattice vibrations. On the other hand, the energy levels of 4T2 and
4T1 depend strongly on 10Dq, so that the vibration makes their linewidth
broader.

The notation of multiplets 2S+1Ln defined for atoms or ions describes the
total orbital angular momentum L and the total spin S of multi-electron
systems. When the system is located in a cubic symmetry field, we use the
irreducible representation of the cubic Oh group A1, A2, E, T1, and T2 in-
stead of L. From Fig. 4.9, it is found that the transitions accompanied by
the change of total spin S, such as 4A2 →2E, 2T1 and 2T2, have sharp lines,
and the transitions without spin change, such as 4A2 →4T1 and 4T2, have
broad line shapes. The narrow spectra of the former cases can be explained
by the weaker effects from lattice vibrations as predicted from Fig. 4.8; and
the origin of the weakness is that these are higher order transitions includ-
ing the spin-flip process. Figure 4.10 depicts schematically the energy levels
and their variation due to lattice vibrations in a configurational coordinate.
Both types of transitions, that is, among the (t2g)3 configuration and those
of (t2g)3 →(t2g)2eg are parity forbidden, so that these absorptions should
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Fig. 4.9. Absorption spectrum of ruby. The data over 35 000 cm−1 were measured
by light with random polarization. Only the results for σ polarization are shown for
narrow spectral bands, and their width and intensity are influenced by the resolution
of the apparatus. The spectrum was observed by A. Misu for 0.26 weight % Cr2O3

at room temperature [36]
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Fig. 4.10. (a) Energy diagram and (b) configuration coordinate curves for the
Cr3+ ion in ruby. Population inversion is formed between the 2E and 4A2 levels by
the excitation of highly absorptive 4T1 and 4T2 levels followed by relaxation to the
2E (R1, R2) levels

not exist without perturbation. Next, we discuss the mechanism of electronic
transitions observed in optical absorption.

Cr3+ ions are affected not only by the cubic Oh field due to the nearest
neighbor O2− ions, but also by the crystal field with three-fold symmetry
from the second nearest Al3+ ions. Because the perturbation from the second
crystal field breaks the inversion symmetry at the position of the Cr3+ ions,
the t2g or eg states will be mixed with states of different parity. As a result, the
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electric dipole transitions from 4A2 to 4T2 or 4T1 become partially allowed,
and the oscillator strength of these transitions is estimated to be

f ∼ fallowed

(
〈Vodd〉
∆E

)2

∼ 10−4. (4.49)

Here, we used 〈Vodd〉 ∼ 103 cm−1 for the magnitude of the crystal field and
∆E ∼ 105 cm−1 for the energy difference between mixing states. The oscillator
strength of the dipole allowed transition fallowed is the order of unity. In order
to cause the spin forbidden transitions such as 4A2 →2E, 2T1, and 2T2, the
perturbation from the spin–orbit interaction Hso is required to flip spins, as
well as the crystal field Vodd. The oscillator strength of this transition can be
estimated to be

f ∼ fallowed

(
〈Vodd〉
∆E

)2 (
〈Hso〉
∆E0

)2

∼ 10−7. (4.50)

Here, we assume that 〈Hso〉 ∼ 100 cm−1, ∆E0 ∼ several thousand cm−1.
The lowest excited state 2E is split into two lines R1 and R2. The oscillator
strength of the lowest excited state R1 is very weak (10−7); then the emission
lifetime is as long as 3 ms at room temperature, and 4.3 ms at 77 K.

It is possible to achieve laser oscillation utilizing the optical property of
Cr3+ ions in Al2O3 described in the preceding paragraph. In order to make
the population inversion between the states 4A2 and R1, electrons are at first
excited from the ground to 4T2 and 4T1 states by a xenon flash lamp because
the higher two levels have stronger optical absorption. As shown in Fig. 4.10,
the absorption bands are located around 18 200 cm−1, and 24 600 cm−1. The
excitation relaxes into the lowest excited state R1 in the time scale of several
µs which is three orders shorter than the lifetime of the R1 level. Then the
accumulation of excitation in the R1 level results in a population inversion
between the ground 4A2 and R1 states. The energy difference between the
two levels is 14 500 cm−1 (λ0 = 6943 Å), and the linewidth of the emission
is 20 cm−1. Laser oscillation is achieved by setting this laser medium into a
Fabry–Pérot cavity and giving positive feedback as described in Sect. 4.1. A
pulse energy of 10 J can be obtained from this system, and the maximum peak
power of 100 MW is available by using Q-switching which will be described in
the next chapter.

Unfortunately, ruby lasers are rarely used in current industries because of
their practical inconvenience (one pulse available per minute). As an alterna-
tive to ruby lasers, Nd3+:YAG lasers are widely used in many fields such as
laser processing, harmonic generation, and other research and development
purposes. In this laser, interconfigurational f -f transitions are used for laser
action. Because the details of the mechanism can be found in other books [37],
we do not discuss it further here.
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4.3.2 Alexandrite and Ti-Sapphire Lasers

Chrysoberyl crystal BeAl2O4 can be artificially synthesized from a mixture of
beryllium oxide (BeO) and aluminum oxide (Al2O3). When Cr3+ ions partially
substitute Al3+, the crystal is called alexandrite. The natural crystal was
discovered in the Ural district of Russia in 1833, and it was named after Czar
Alexander in those days. It is a famous jewel because it shows a green color
in daylight, but the color changes into dark red under an electric light. Since
this crystal also shows a broad light emission spectrum, it is used for the
medium of tunable laser sources. Laser-active trivalent Cr3+ is located at Oh

site, which is the same as the case of ruby, but the emission spectrum is much
broader than that of ruby. This difference can be explained by the difference of
the crystal field parameter Dq/B, which is 2.5 in ruby and 1.9 in alexandrite.
As shown in Fig. 4.8, the lowest excited state of Cr3+ is 4T2[(t2g)2eg] instead
of 2E in ruby. The oscillator strength of the transition to this state is three
orders stronger than that of the transition to 2E, and because the transition
energy is proportional to 10Dq, the corresponding band is broader due to the
variation of 10Dq caused by the lattice vibration of O2− around Cr3+. The
experimental results in Fig. 4.11 show broad emission from 4T2 and sharp
emission from 2E [38]. These characteristics can be understood in the same
context as the case of ruby, as shown in Fig. 4.8. Lasing at 12 500–14 000 cm−1

has been obtained by using the emission from 4T2. When it was excited by
a flash lamp with energy of 150 J, a laser pulse of 1 J was obtained in the
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Fig. 4.11. Emission spectra from Cr3+ ions in alexandrite. The sharp line is the
emission from the 2E level, and the broadband emission in the longer wavelength
region is due to the emission from the 4T2 level [38]
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Fig. 4.12. Optical absorption spectra produced by the transition 2T2 → 2E in
Ti:Al2O3 [39]

range of 700–800 nm. One of the important advantages of this laser is that
high power is easily obtained in spite of the higher oscillation threshold.

Ti3+:Al2O3 is also practically used as a tunable solid state laser medium.
Trivalent titanium ion has one 3d electron in the Oh crystal field formed by
the surrounding octahedral O2− ions. In this case, laser oscillation occurs by
the optical transition t2g → eg (2T2 →2E, in configuration). The transition
energy is proportional to the crystal field 10Dq, and its oscillator strength f is
much larger than that of ruby because of its spin allowed characteristics. But,
the shorter lifetime (3 µs) requires higher pumping. Absorption spectra have
broad peaks because of the strong dependence of the transition energy on the
crystal field 10Dq (Figs. 4.12 and 4.13). The emission spectrum spreads over
a broad range in the near-IR region (700–1000 nm) [39].

The broad emissions of these two laser media Ti3+:Al2O3 and Cr3+:
BeAl2O4 are necessary for the generation of ultrashort laser pulses. The de-
tails of the principle and the method of ultrashort pulse generation will be
described in the next chapter.

4.3.3 Other Important Lasers

The helium–neon (He-Ne) gas laser is one of the most widely used lasers. With
this laser, 632.8 nm emission is obtained by the transition from the (2p)55s
state to the (2p)53p state of the neon atom. The mechanism of this laser is
depicted in Fig. 4.14. First, the He atom is excited by collision with high-
velocity electrons and the energy is transferred from an excited He to a Ne
atom. Population inversion is formed between the 3S[(2p5)5s] state and the
2P[(2p)53p] state of the neon atoms, and laser emission occurs due to the
transition between them.
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Fig. 4.13. Emission spectra of Ti:Al2O3 measured for π and σ polarization. The
dashed curve shows the gain spectrum of the same crystal [39]
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Fig. 4.14. Energy diagrams for He and Ne atoms. The transition (2p55s) → (2p53p)
in the Ne atom gives laser emission at 632.8 nm in the He-Ne laser [40]
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The carbon dioxide laser utilizes the transition between vibrational levels
in the CO2 molecule. In this case, laser emissions at 10.6 µm and 9.6 µm are
obtained by the transition between levels 0001 → 1000 and 0001 → 0200,
respectively. Usually, this far-infrared laser gives excellent performance with
high power and high efficiency.

Solutions of organic dyes including π-electron systems often show strong
fluorescence in the visible wavelength region. Because this emission has a
broad gain range and there are many kinds of synthesized organic dyes avail-
able, the dye laser is the most popular tunable laser source from the near-UV
to near-IR spectral region. This is a quite important property for scientific
applications.

The semiconductor laser is the most important type of solid state laser in
consumer electronics and optical communications. This laser has quite differ-
ent characteristics from conventional solid state lasers, such as ruby, alexan-
drite, and Ti:sapphire lasers. Population inversion can be made by current
injection across the p-n junction formed in semiconductors. Low cost, small
volume, and high quality of light beams are very important properties of com-
mercial uses.

Recently, the development of free electron lasers is in progress; these will
become necessary for semiconductor lithographic processes in the near future.

4.3.4 The Road to X-ray Lasers

The generation of coherent light is relatively easy for longer wavelengths,
so it has already been achieved in the infrared, visible, and near-ultraviolet
regions. The difficulty of laser oscillation in the X-ray region is due to the
higher transition probability of spontaneous emission described in Chap. 2.
That is, the value of the constant A for the spontaneous emission rate increases
with the third power of the frequency, so that the shorter the laser wavelength
is, the shorter the excited state lifetime is. When the lifetime of the upper level
is short, the high pumping power is required to accumulate excited states, and
it requires an input power proportional to the fourth power of the angular
frequency ω. In other words, high pumping power must be injected in order to
overcome the strong spontaneous emission. Another problem is the difficulty
of fabricating highly reflective mirrors. In the visible wavelength region, it
is relatively easy to design and manufacture dielectric mirrors with nearly
100 % reflectivity by stacking two kinds of dielectrics in turn. But because
the refractive indices of most materials are almost 1 in the X-ray region, it
is impossible to obtain mirrors utilizing optical interference. In spite of these
difficulties, great progress has been achieved in generating lasers with short
wavelengths, as shown in Fig. 4.15. Here, we also cite the short-wavelength
generation by using higher harmonic generations, the details of which will be
introduced in Chap. 7.

In this section, we briefly describe the generation of soft X-ray laser hav-
ing a wavelength of around 20 nm. In order to obtain a short-wavelength light
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Fig. 4.15. Graphical history of the generation of short-wavelength lasers in the
last 30 years since the invention of the laser. Open circles indicate the generation by
higher harmonics of ruby, YAG, and KrF lasers. Others are obtained by conventional
population inversion [40]

source, highly charged ions, in this case Se24+, are used, and they are pre-
pared in the form of a high-density plasma at high temperature. Se24+ ions
have the same electronic configuration as Ne atoms, namely (1s)2(2s)2(2p)6.
Collision with electrons excites the 2p electron effectively into the 3p state
instead of 3s. Then population inversion is formed between the 3s and 3p
states, because the transition from 3p to 2p is dipole-forbidden, and the
relaxation from 3s to 2p is quite fast, 0.5 ps. The soft X-ray laser beam
was generated from an Se target deposited on a polyvinyl film with ex-
citation by high-power pulses (∼TW/cm2) of the second harmonics of a
Nd:YAG laser. X-ray beams with 20.96 nm and 20.63 nm were observed by
the transition from 1D2[(1s)2(2s)2(2p)53p] to 1P1[(1s)2(2s)2(2p)53s], and from
3P2[(1s)2(2s)2(2p)53p] to 3P1[(1s)2(2s)2(2p)53s], respectively. In this case, the
peak power is 24 MW, the efficiency is estimated to be 10−5, the divergence
angle is 11 mrad, and the pulse width is 200 ps. Also by using the Ni-like ion
species Eu35+ and Yb+42, an optical gain at 5 nm has been obtained, but
laser oscillation has not yet been confirmed. For another example, a 18.2 nm
X-ray laser was obtained with C5+. In this case, the population inversion is
formed during the recombination process of completely ionized atoms and free
electrons [40].



5

Dynamics of Light

A laser is a coherent light source, which employs induced emission from ex-
cited states of materials most effectively. Interactions between the laser light
and nonlinear optical materials make it possible not only to generate ultra-
short light pulses but also to propagate a soliton wave in optical fibers. On
the other hand, superradiance and superfluorescence take out excited state
energies of materials as a coherent spontaneous emission when the material
system is described as a coherent superposition of dipole moments of atoms
over the system. Superradiance and superfluorescence are emitted as intense,
short light pulses, the intensities of which are gigantic and proportional to
N2, the square of the atom number N , and the pulse width is proportional to
1/N . In this chapter these two contrasting light pulses are studied. In Sect. 5.1
we discuss the generation of short light pulses from broadband lasers such as
Ti-sapphire and dye lasers, using Q-switching (Sect. 5.1.1) and mode-locking
(Sect. 5.1.2) techniques. We also study the mechanism of pulse compression
and of soliton wave propagation in optical fibers (Sect. 5.1.3). These phenom-
ena are closely related to the dispersion of group velocity of the light and op-
tical Kerr effects in the medium. Over the late 1980s and early 1990s [41,42],
laser intensities have increased by more than four orders of magnitude to reach
enormous intensities of 1020 W/cm2. The field strength at these intensities is
on the order of a teravolt per centimeter (1012 V/cm), or a hundred times
the Coulombic field binding the ground state electron in the hydrogen atom.
A laser interacting with matter – solid, gas, plasma – generates higher-order
harmonics of the incident beam as short as the 3 nm wavelength range, ener-
getic ions or electrons with mega-electron-volt (106 eV) energies, giga-Gauss
(10 K tesla) magnetic fields, and violent accelerations of 1021 g (g is Earth’s
gravity).

Figure 5.1 presents the focused intensity of lasers as a function of year [42].
It shows a rapid increase in the early 1960s, followed by a long plateau at
1015 W/cm2. It took about 20 years, until the 1990s, for laser power to increase
again. Note also the similarity in slopes between the early 1960s and the
1990s, and remember that it was during that period of very rapid increase in
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Fig. 5.1. Laser intensity vs. year to describe the development of tabletop systems,
showing various breakthroughs. After an initial increase in the 1960s, the intensity
levelled out for about 20 years, due to limitations caused by nonlinear effects. Over
the past decade the intensity has been increasing with a slope similar to that of
the 1960s, crossing into fundamentally new physical regimes. The laser intensity
limit is the maximum possible stored energy (that of a complete population inver-
sion) divided by the minimum possible pulse duration (the reciprocal of the gain
bandwidth), for a beam of 1 cm2 cross-section [42]

intensities in the 1960s that most of the nonlinear optical phenomena were
discovered. In a similar way, the spectacular increase in intensity of four to
five orders of magnitude that have occurred in the 1990s led to exceptional
discoveries. Since their inception in 1960, lasers have evolved in peak power
by a succession of leaps, each three orders of magnitude. These advances were
produced each time by decreasing the pulse duration accordingly. First the
lasers were free running, with durations in the 10 µs range and peak powers in
the kilowatt range. In 1962, modulation of the laser cavity quality factor (Q-
switching) enabled the same energy to be released on a nanosecond time scale,
a thousand times shorter, to produce pulses in the megawatt range (106 W),
as will be discussed in Sect. 5.1.1. In 1964, locking the longitudinal modes of
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the laser (mode locking) enabled the laser pulse duration to be reduced by
another factor of a thousand, down to the picosecond level, pushing the peak
power a thousand times higher, to the gigawatt (109 W) level. This will also
be discussed in Sect. 5.1.2.

At that point, the intensities associated with the ultrashort pulses were
becoming prohibitively high. At intensities of gigawatts per square centimeter
(109 W/cm2), the material index of refraction n becomes linearly dependent
on the intensity I, varying like n = n0+n2I, where n0 is the index of refraction
at low intensity and n2 the nonlinear index of refraction. The result is that,
for a beam with a Gaussian radial intensity distribution, the beam on an axis
sees a larger index of refraction than its surroundings. The optical elements
inside the cavity thus become positive lenses that unacceptably deform the
beam’s wave front quality. Consequently, the only way to increase the peak
power was to increase the diameter of the beam at the expense of instrument
size, repletion rate and cost.

Although the pulse duration kept decreasing steadily, the intensity-
dependent nonlinear effects kept the peak power about constant at the gi-
gawatt level for a square-centimeter beam until 1985–87, when the technique
of chirped pulse amplification (CPA) was demonstrated [43, 44]. In CPA, the
ultrashort pulse is not amplified directly, but is first stretched and then am-
plified, before finally being recompressed in the vacuum as will discussed in
Sect. 5.1.3. The CPA reconciles two apparently conflicting needs: to have the
highest fluence for efficient energy extraction, and to have minimum intensity
inside the medium to avoid the undesired nonlinear effects.

In Sect. 5.1.4, we will discuss the recent development of CPA to get the
most efficient ultrashort and ultrastrong laser pulses. In terms of this ultra-
strong laser pulse, we can get the higher-order harmonics of the incident beam
up to 3 nm wavelengths. This will be discussed in Chap. 7.

In Sect. 5.2, we summarize the important experimental results of superra-
diance (Sect. 5.2.1) and we extend semiclassical theory to superradiance and
superfluorescence (Sect. 5.2.2). Before discussing these phenomena in detail,
we make clear the difference between superradiance and superfluorescence.
In general, superradiance means the phenomenon that many atoms (or mole-
cules) align their electric dipole moments and cooperatively emit spontaneous
radiation. If the population is completely inverted, there is no electric di-
pole in the system during the initial stage of the process. The electric dipole
begins to grow just after spontaneous emission starts. In particular, the su-
perradiance from a system with a fully inverted population is called super-
fluorescence. In Sect. 5.2.3 we will discuss the macroscopic manifestation of
the quantum fluctuation of spontaneous emission. We also study propagation
effects of superradiance. Finally, we describe phenomena observed in semicon-
ductor microcrystals of CuCl in Sect. 5.2.4, as an example of superradiance
from excitons.
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5.1 Short Light Pulses and Optical Solitons

Coherency distinguishes laser light from a conventional light source. A laser is
a coherent light source in the sense that its phase is spatially and temporally
uniform. Using coherent laser light, we can generate an ultrashort light pulse
with a pulse width as short as 2.8 fs = 2.8×10−15 s for the visible region. Since
its peak power is extremely high, the electromagnetic wave has a gigantic
energy within a very short interval. The generation of the ultrashort light
pulse itself is interesting. The technique of the ultrashort light pulse is also
important for studying relaxation processes of elementary excitations and
dynamics of nonlinear optical phenomena.

5.1.1 Q-Switching

Q-switching is one of the most important techniques to obtain short bursts
of oscillations from lasers. Consider the laser oscillation in a Fabry–Pérot
resonator, consisting of external mirrors M1 and M2. The mirror M1 is highly
reflective, R1 = 1. A laser beam outputs from the resonator through another
mirror M2 with lower reflectivity R2 = 1− T < 1. Using the transmittance T
of the mirror M2, the amplitude relaxation rate κT is defined as

κT ≡ cT
4L

≡ ω

2Q
, (5.1)

where L is the distance between the mirrors and ω is the angular frequency
of the laser light. The second equation defines the quality factor Q of the
resonator. κT is closely related to the relaxation rate C = (c/2L)T for laser
modes with c the light velocity. As discussed in Sect. 4.1, laser oscillation takes
place when the A coefficient, which is proportional to the pumping rate, is
equal to C. The principle of Q-switching is as follows. The Q-factor of the
resonator is first reduced, for example, by increasing T , so that the relaxation
rate C ′(� C) is much larger than A during the pumping. The laser oscillation
is thus suppressed and, simultaneously, the inverted population∆N ≡ Nb−Na

is increased. When the Q-factor is restored abruptly to the high value, the
system is now well above the oscillation threshold, A � C. Laser oscillation
immediately takes place and the short and intense light pulse builds up. The
simplest method of Q-switching is the rotational mirror technique: The rota-
tion of the high-reflective mirror M1, along the direction perpendicular to the
resonator, changes the Q-value periodically. During almost the whole stage of
one rotation cycle, no feedback process takes place. Within the short interval
in which M2 is nearly parallel to M1, the resonator has a high Q-value, leading
to laser oscillation. Using the rotational mirror with 400 rpm, the short light
pulses with 10–100 MW peak power and with the 10–50 ns pulse width are
generated from a flash-lamp-excited Nd:YAG laser and a ruby laser.
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The second method is Q-switching with the use of a saturable absorber.
The absorber, inserted into the laser resonator, prevents laser oscillation dur-
ing the early stage of cw pumping, because the absorber acts as a lossy ma-
terial. When laser oscillation starts, the absorption is abruptly saturated and
the absorber becomes transparent. The sudden increase of Q leads to the
generation of gigantic light pulses.

The method of Q-switching by a Pockels cell is the most popular for prac-
tical lasers. The Pockels cell is composed of an electrooptic (EO) crystal with
transparent electrodes by which high voltage is applicable. Because the ap-
plied high voltage causes the change of refractive indices of the birefringent
EO crystal, phase retardation of the light beam can be controlled externally.
Therefore, combining with other polarization optics, the Q-factor of the cav-
ity can be varied drastically. If we keep the low Q-factor during pumping, the
energy can be accumulated in laser crystals. Then turn-on of the Q-switch
induces laser oscillation, exhausting the whole energy in a short time. The
giant pulses of most YAG lasers are obtained by this method.

Acoustooptic (AO) modulators are also used for Q-swtiching. Because it
is possible to diffract a light beam by a grating generated in an AO crystal
with ultrasound, the crystal plays the role of the rotating mirror described
above. This device is usually used for lasers with high repetition rate, higher
than kHz.

5.1.2 Mode Locking

The technique of mode locking enables us to make a picosecond-pulse train.
Consider a Fabry–Pérot resonator that contains an amplitude modulator,
such as an acoustooptical modulator, in addition to the gain medium. The
wavenumber kn and angular frequency ωn of the resonator mode is given by

kn =
nπ

L
, ωn = ckn =

nπc

L
(n = 1, 2, 3, . . .), (5.2)

respectively. The laser mode ωn is modulated as

En cos ωnt −→ En(1 +M cosωmodt) cosωnt

= En cosωnt+
MEn

2
[cos(ωn − ωmod)t+ cos(ωn + ωmod)t] , (5.3)

where M is the modulation rate. It follows from (5.3) that the amplitude
modulation gives rise to sidebands ωn±ωmod above and below the laser mode
ωn. The sideband and laser mode interact strongly with each other in fre-
quency space through the third-order nonlinearity of the gain medium. When
the modulation frequency ωmod is just equal to the frequency spacing πc/L
between the laser modes, the laser modes are locked. Namely, all laser modes
have equal frequency spacing and fixed phases with time. If mode locking
is absent, the laser modes randomly oscillate and their frequency spacing is
unequal, reflecting the dispersion effect of the gain medium.
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Fig. 5.2. Laser pulse generation from a mode-locked system. (a) Cavity modes are
modulated with a frequency ωmod nearly equal to the frequency difference πc/L of
the neighboring modes. (b) Then we obtain the pulse train with pulse width 2π/∆ω
and periodicity 2π/ωmod in the time axis. Here ∆ω denotes the whole gain spectral
width

In the presence of mode locking, the temporal profile of the total electric
field E(t) is approximately given by

E(t) =
∑

n

En cos(ω0 + nωmod)t �
N∑

n=−N

E0 cos(ω0 + nωmod)t

= E0

sin
[(
N + 1

2

)
ωmodt

]
sin

(
1
2ωmodt

) cosω0t, (5.4)

where ω0 and 2N + 1 are the central frequency and the number of laser
modes, respectively. Here we assume for simplicity that all laser modes have
equal amplitude E0. Figure 5.2 schematically illustrates mode locking.

It is evident that the output power is emitted in the form of a train
of pulses with a period of T = 2π/ωmod and the width of each pulse is
∆T = 2π/[(2N + 1)ωmod] = 2π/∆ω with ∆ω ≡ (2N + 1)ωmod the whole
gain frequency region. The mode-locked dye-laser system can generate a train
of picosecond pulses. Importantly, the inverse of the pulse width is propor-
tional to the frequency width of the gain curve of the laser medium. Therefore,
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a Ti-sapphire crystal has the advantage of generating a short pulse, because
the luminescence spectrum spreads over a wide frequency range, as shown
in Fig. 4.13. Indeed, the mode-locked Ti-sapphire laser can generate a stable
pulse train with a pulse width of 1–2 ps.

5.1.3 Pulse Compression

Compression of subpicosecond laser pulses with the use of optical glass fiber is
a key method to generate femtosecond light pulses. The silica-glass is highly
transparent in the infrared region, λ ∼ 1 µm. It makes it possible to confine
the intense light beam to a very narrow region. As a result, the nonlinear
effects in the light pulse are accumulated during propagation. In particular the
dispersion of the group velocity and the self-phase-modulation effect enable
us to generate either extremely short pulses or optical solitons in the fiber.

We will discuss the pulse compression process in this subsection. As al-
ready pointed out, a short light pulse is composed of a large number of elec-
tromagnetic modes. The frequency spread ∆ω is proportional to the inverse
of the pulse width ∆T , i.e., ∆ω = 2π/∆T . Consider the temporal profile of
the electric field E(z, t) = eE(z, t) exp[i(kz − ωt)], where E(z, t) is the enve-
lope function and e is a unit vector along E. The electric field E obeys the
Maxwell equation:

∂2

∂z2
E(z, t) − 1

ε0c2
∂2

∂t2
D(z, t) =

1
ε0c2

∂2

∂t2
P NL(z, t). (5.5)

Here the electric displacement D is assumed to be linear, so that D =
ε0E + P (1). The electric field E, electric displacement D, and nonlinear po-
larization P NL are assumed to be along the same direction for simplicity. The
Fourier transforms of E and D can be described by

E(z, t) = e

∫
dηE(z, ω + η)eikz−i(ω+η)t (5.6)

and

D(z, t) = e

∫
dηε(ω + η)E(z, ω + η)eikz−i(ω+η)t, (5.7)

respectively, where ε(ω + η) is a dielectric function. Using the third-order
polarizability χ(3), the nonlinear polarization P NL approximately has the
following form:

∂2

∂t2
P NL(z, t) � −ω2χ(3) |E(z, t)|2E(z, t)ei(kz−ωt). (5.8)

Combining (5.6), (5.7), and (5.8) with (5.5), and using the dispersion relation
ε(ω) = (ck/ω)2, we obtain



106 5 Dynamics of Light

2ik
∂

∂z
E (z, t) +

1
c2

∫
dη η

[
2ωε(ω) + ω2 ∂ε(ω)

∂ω

]
E(z, ω + η)e−iηt

+
1
c2

∫
dη η2

[
ωε(ω) + 2ω

∂ε(ω)
∂ω

+
1
2
ω2 ∂

2ε(ω)
∂ω2

]
E(z, ω + η)e−iηt

= −ω2χ(3) |E(z, t)|2E(z, t)ei(kz−ωt). (5.9)

Here we have neglected the second derivative with respect to z under the
slowly varying approximation:

∣∣∣∣ ∂
2

∂z2
E(z, t)

∣∣∣∣  k

∣∣∣∣ ∂∂zE(z, t)
∣∣∣∣ . (5.10)

The second and third terms of the left-hand side of (5.9) can be written,
respectively, as,

1
c2

[
2ωε(ω) + ω2 ∂ε(ω)

∂ω

]
=

1
c2
∂(ω2ε)
∂ω

=
∂(k2)
∂ω

= 2k
1
vg
, (5.11)

1
c2

[
ωε(ω) + 2ω

∂ε(ω)
∂ω

+
1
2
ω2 ∂

2ε(ω)
∂ω2

]
=

1
2c2

∂2(ω2ε)
∂ω2

=
∂

∂ω

[
k

(
∂k

∂ω

)]

=
∂

∂ω

(
k

vg

)
� − k

v2g

(
∂vg

∂ω

)
, (5.12)

where vg ≡ (∂k/∂ω)−1 is the group velocity of the light pulse. Substituting
(5.11) and (5.12) into (5.9) and neglecting the weak dependence of vg and
∂vg/∂ω on η, we obtain the following equation that describes the propagation
of the light pulse:

(
∂

∂z
+

1
vg

∂

∂t

)
E(z, t) =

iα

2
∂2

∂t2
E(z, t) + iκ |E|2E(z, t). (5.13)

Here we have used the following relations,

∂E(z, t)
∂t

= −i
∫
dη ηE(z, ω + η)e−iηt,

∂2E(z, t)
∂t2

= −
∫
dη η2E(z, ω + η)e−iηt. (5.14)

We introduce the parameters α and κ to describe the effects of group velocity
dispersion and self-phase-modulation due to the optical Kerr effect, respec-
tively:

α ≡ 1
v2g

∂vg

∂ω
,

κ ≡ 1
2ε0c2

ω2

k
χ(3). (5.15)
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Let us discuss the following three cases.

(1) α = 0 and κ = 0. In the case that a medium is dispersionless and
its nonlinearity is negligibly small, the right-hand side of (5.13) can be set to
zero. Using the envelope function E(z, t) = E0(z) at t = 0, we obtain

E(z, t) = E0(z − vgt). (5.16)

It is immediately evident that the light pulse maintains its line shape during
propagation.

(2) α �= 0 and κ = 0. The light pulse is always broadened whether the
medium has positive dispersion ∂vg/∂λ > 0 (∂vg/∂ω < 0: ordinary dispersion)
or negative dispersion ∂vg/∂λ < 0 (∂vg/∂ω > 0: extraordinary dispersion).
After passing through silica-glass optical fiber with a length of 650 m, a 10 ps
light pulse with center wavelength 1.5 µm is broadened to 20 ps. As already
discussed, a short light pulse is composed of different Fourier components of
ω. If the medium has ordinary dispersion, that is, larger group velocity at
lower frequencies, the lower frequency components of the light pulse move
faster than the higher frequency components. On the other hand, the higher
frequency components travel faster in an extraordinary dispersion medium.
In any case, the pulse width is increased in this medium.

(3) α �= 0 and κ �= 0. For ∂vg/∂ω > 0, the pulse compression effect
leads to the formation of an optical soliton. For ∂vg/∂ω < 0, on the other
hand, the shape of the light pulse changes to a rectangular one. In both cases,
the self-phase-modulation effect through κ is crucial. We first discuss this
self-phase-modulation effect. Neglecting the spatial variation of the intensity,
|E(z, t)|2 � |E(t)|2 in (5.13) and integrating it from z = 0 to l, we obtain

E(l, t)e−iωt
∼ exp

[
iκl |E(t)|2 − iωt

]
(5.17)

∼ exp
{
−i

[
ω − κl

(
∂|E(t)|2/∂t

)]
t
}
.

We find the frequency change from ω to ω − κl(∂|E(t)|2/∂t). Figure 5.3 il-
lustrates the t-dependence of the intensity and frequency modulation for the
case of κ > 0. In the front side of the light pulse (t < 0), the frequency shows
a redshift, whereas it exhibits a blueshift in the back side (t > 0).

In the extraordinary dispersion medium, the group velocity vg of the red-
shifted light is smaller than that of the blueshifted light. Therefore, the front
side of the pulse consisting of redshifted light travels slowly in the medium,
while the blueshifted backside moves faster. As a result, the light pulse is
compressed from both sides. An optical fiber made of silica-glass has extra-
ordinary dispersion for λ > 1.3 µm, whereas it has ordinary dispersion for
λ < 1.3 µm. When a light pulse with center wavelength 1.55 µm is made to
enter this optical fiber, the light pulse encounters the compressible effect and
propagates as a soliton. The characteristic of the soliton depends on the in-
tensity of the light pulse. Figure 5.4 demonstrates the results of a numerical
calculation for an N = 3 soliton [45]. The line shape of the light pulse is very
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Fig. 5.3. (a) Profile of a laser pulse and (b) its self-phase-modulation. Negative
time corresponds to the front side of the pulse. The material constants of the glass
fiber are used
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Fig. 5.4. Pulse shape of the carrier wavelength 1.55 µm (>1.3 µm) in the anomalous
dispersion region is modified into a soliton as the pulse propagates in the glass fiber.
The normalized distance z0 is 700m and the normalized time is t0 ≡ φ−1

0 (see
text) [45]

sharp at z/z0 = 1/4 and splits into two peaks at z/z0 = 1/2. The sharp peak
emerges again at z/z0 = 3/4 and is restored to the initial line at z/z0 = 1.
This periodic change of soliton propagation will be discussed in Sect. 5.1.4.

If the light pulse is in an ordinary dispersion medium, for example, visible
light is sent into a silica-glass fiber, the light pulse exhibits different evolution
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Fig. 5.5. The pulse shape is modified into a rectangular wave as a function of both
(a) time and (b) frequency as it propagates in a glass fiber in the normal dispersion
region [46]

[46]. Figure 5.5 shows numerical calculations for the temporal profile and
the spectrum of the light pulse as a function of propagation distance in the
optical fiber. In an ordinary dispersion medium the group velocity vg of the
redshifted light is higher that the blueshifted light. Therefore, the front side of
the light pulse, showing the redshift due to the self-phase-modulation effect,
moves faster, while the blueshifted backside propagates slowly. As a result,
the pulse shape is gradually suppressed and changed to a rectangular shape
at z/z0 = 1/2.

We describe the principle of pulse compression with the use of a diffrac-
tion grating that is employed instead of an extraordinary dispersion medium.
Figure 5.6 illustrates the optical setup for the pulse compression. Figure 5.7
displays the autocorrelation traces of the incident and compressed pulses [47].
The light pulse from a mode-locked dye laser with peak power of 2 kW and
pulse width of 5.9 ps is sent into the optical fiber which is 3 m long. Since the
wavelength of the incident laser is smaller than 1.3 µm, it is in the ordinary
dispersion region. Accordingly, the line shape of the light pulse is changed to
the rectangular shape with a pulse width of 10 ps. The output light is spatially
dispersed by the diffraction grating and reflected by the prism. The dispersed
light is again incident on the diffraction grating and, then, is restored. Here
the redshifted light, the front side of the rectangular pulse, travels over a
longer path than that for the blueshifted backside. As a result, the 10 ps pulse
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Fig. 5.6. Light pulse compression using two sets of optical fiber and prism-
diffraction grating pairs [47]

is compressed to a 200 fs pulse. The second optical fiber, 55 cm long, makes
a 1 ps rectangular pulse. The second grating-prism coupling compresses it to
a 90 fs pulse. Recently, an ultrashort light pulse of 6 fs has been successfully
generated. During 6 fs the electromagnetic wave (λ = 900 nm) oscillates over
only two cycles. When the higher-order dispersion is corrected, a pulse width
as short as 2.8 fs was obtained [48].

5.1.4 Optical Solitons

We will discuss the propagation of solitons in the optical fiber in detail. Using
the pulse width ∆T , which is self-consistently determined, we define dimen-
sionless parameters for t, z and E(z, t) as

τ ≡ 1
∆T

(
t− z

vg

)
, ξ ≡

∣∣∣∣∣
∂v−1

g

∂ω

∣∣∣∣∣
z

(∆T )2
, φ ≡ ∆T

∣∣∣∣ κ

∂v−1
g /∂ω

∣∣∣∣
1/2

E(z, t),

(5.18)

respectively. Substituting these parameters into (5.13), we obtain the differ-
ential equation

i
∂φ

∂ξ
+

1
2
∂2φ

∂τ2
+ |φ|2 φ = 0. (5.19)
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(a)

(b) (c)

Fig. 5.7. Pulse shape of (a) incident pulse, (b) compressed pulse in the first stage,
and (c) that in the second stage [47]

The first, second, and third terms describe the wave propagation, dispersion
effect of the group velocity, and the self-phase-modulation effect, respectively.
Here we consider an extraordinary dispersion medium. Note that the light
pulse in an ordinary dispersion medium yields a negative sign for the second
term in (5.19).

The one-soliton solution can be obtained by using separation of variables
as follows:

E(z, t) ∝ φ(ξ, τ) = φ0sech(φ0τ)eiφ
2
0ξ/2. (5.20)

Assume that the solution has the form φ(ξ, τ) = ψ(ξ)φ(τ) with |ψ(ξ)|2 = 1.
Substituting ψ(ξ)φ(τ) into (5.19), we obtain

− i

ψ(ξ)
∂ψ(ξ)
∂ξ

=
1

2φ(τ)
∂2φ(τ)
∂τ2

+ φ(τ)2 =
1
2
φ2

0, (5.21)

where the constant φ0 is independent of ξ and τ . Integrating (5.21) with
respect to ξ, we obtain

ψ(ξ) = exp
(
i
1
2
φ2

0ξ

)
, (5.22)
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which satisfies the condition |φ(ξ, τ)|2 = φ(τ)2 given before. As for τ , we
obtain

1
2
d2φ(τ)
dτ2

+ φ(τ)3 − 1
2
φ2

0φ(τ) = 0. (5.23)

Using the boundary condition dφ/dτ = φ = 0 at τ = ±∞, we integrate this
equation and obtain

dφ

φ
√

1 − (φ/φ0)2
= φ0 dτ. (5.24)

We again integrate (5.24) for the initial condition φ(0) = φ0 at τ = 0 and
obtain

φ(τ) = φ0sech(φ0τ). (5.25)

We confirm that (5.20) is indeed one of the solutions.
It is evident that the soliton wave has a hyperbolic envelope and its

velocity is vg. It follows from (5.25) that (normalized amplitude φ0) ×
(normalized pulse width φ−1

0 ) is always a constant. More precisely, there
is a conservation law,

∫ ∞

−∞
φ(τ)dτ =

∫ ∞

−∞
dτφ0sech(φ0τ) = π. (5.26)

Consequently, the pulse width ∆T = φ−1
0 is self-consistently determined. An-

other important feature is the periodic variation of the wave form. If an input
pulse is φ(τ) = aφ0sech(φ0τ) at ξ = 0, the light pulse is propagated as

a fundamental soliton for 0.5 � a < 1.5,

an N soliton for N − 1
2

� a < N +
1
2
,

where N is the number of solitons.
Figure 5.8 illustrates the profile of the soliton wave calculated for N =

1, 2, 3. The N = 1 soliton exhibits normal propagation. In contrast, the pro-
files of N = 2, 3 solitons vary with z, as already shown for the N = 3 soliton in
Fig. 5.4 [49]. The transition from N = 1 to higher N has been experimentally
observed. Figure 5.9(a) illustrate the spectrum and autocorrelation trace of
the incident pulse. Figures 5.9(b)–(f) show the autocorrelation traces of the
soliton wave at z = z0/2, half of the N = 1 soliton cycle, as a function of the
incident laser power P . When the incident laser is very weak, (b) the pulse
width of the N = 1 soliton is 7.2 ps, which is the same as the incident laser.
At P = 1.2W (c) the profile is of the N = 1 soliton, but the pulse width is
slightly narrower than the incident pulse. At P = 5.0W (d) the autocorrela-
tion has a sharp peak that accompanies small sidebands, indicating the N =
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Fig. 5.8. Computer generated solutions of (5.23). Top: the fundamental soliton;
middle: the N = 2 soliton; bottom: the N = 3 soliton. These solutions agree well
with the observed ones in Fig. 5.9 [49]

2 soliton, shown also in the middle panel of Fig. 5.8. At P = 11.4 W (e) the
trace shows three peaks and the intensity ratio is 1:2:1. This implies that the
temporal profile has two intense peaks, shown in the lower panel of Fig. 5.5,
that is, the N = 3 soliton. At P = 22.5W (f) the autocorrelation exhibits five
peaks, which is expected from the N = 4 soliton showing three sharp peaks.

According to multisoliton theory, there is a relation between the soliton
cycle z0 and the pulse width ∆T :

z0 =
π (∆T )2

2 |α|2
. (5.27)

Here α describes the dispersion of the group velocity vg in the optical fiber,

|α| =
1
v2g

∣∣∣∣∂vg

∂ω

∣∣∣∣ . (5.28)

The power PN of the N soliton is given by

PN = N2P0. (5.29)

The power P0 of the N = 1 soliton is P0 = I0/Aeff , where Aeff is the effective
cross-section of the optical fiber. The intensity I0 of the incident laser is given
by
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Laser

Fig. 5.9. (a) Incident laser spectrum and temporal evolution of the initial shape
with the half-width 7.2 ps. Autocorrelation function of the soliton signals at z0/2 for
(b) weak laser pulse, (c) N = 1 soliton, (d) N = 2 soliton, (e) N = 3 soliton and
(f) N = 4 soliton [49]

I0 =
ε0n0cλ

4z0n2
. (5.30)

Using the linear and nonlinear refractive indices n0 = 1.45 and n2 = 1.2 ×
10−22 m2/V 2 of the optical fiber, |α| = 16λ2/2πc (ps/nm·km) at λ = 1.55 µm.
For the pulse width ∆T = 4ps, the soliton cycle z0 = 1260 m and I0 =
1.0 × 1010 W/m2. Using the geometrical cross-section Ageo, we obtain the
effective cross-section Aeff � 1.5Ageo ∼ 1.0 × 10−6 cm2. Thus, the power is
P0 � 1.0 × 106 W/cm2 × 106 cm2 = 1.0 W. On the other hand, analyzing the
data shown in Fig. 5.9 and using the relation P0 = PN/N

2, the value of P0

is estimated to be 1.2 W. This agrees excellently with the above theoretical
value.

5.1.5 Chirped Pulse Amplification

Chirped pulse amplification (CPA) had a dramatic impact in short-pulse am-
plification. First, one could use superior (by a factor of 1000) energy storage
media such as Nd:glass, Cr:alexandrite, Ti:sapphire and Cr:LiSrAlF6 instead
of dye and excimer. So a CPA laser system, using these good energy storage
media, could produce a peak power 103–104 times higher than dye or excimer
systems of equivalent size. Second, CPA could be easily adapted for use with
the very large scale, and huge sized lasers have already been built for the
purpose of laser fusion.

CPA involves impressive manipulations as Fig. 5.10 shows: stretching by
103–105, amplification by 1011 (from nanojoules to tens of joules) and re-
compression by 103–105. Here two main hurdles had to be overcome: the



5.1 Short Light Pulses and Optical Solitons 115

accommodation of the large stretching/compression ratio, and the amplifica-
tion of large pulse spectra. The first part of the CPA system used the positive
group velocity dispersion (in which the redshifted light goes faster than the
blueshifted light) of a single-mode fiber to temporally spread the frequency
distribution of the ultrashort pulses [43]. After passing through the fiber, the
pulse is stretched with the red component first, followed by the blue. It is
then amplified to the desired level and recompressed by a pair of parallel dif-
fraction gratings. Pulse compression using this fiber and a single diffraction
grating together with a prism was shown in Sect. 5.1.3. A grating pair exhibits
a negative group velocity dispersion in which blue light goes faster than red
light as shown in the bottom part of Fig. 5.10b. This is called the Treacy
compressor. However, the fiber stretcher and diffraction grating compressor
did not have their dispersive characteristics exactly compensated, so that the
recompression was not perfect, leading to temporal wings in the pulse, and
hence limiting the stretching/compression ratio to about 100.

Let us consider a telescope of magnification 1 placed between two antipar-
allel gratings as shown at the top of Fig. 5.10(b). It was found that this device
had the exact same dispersion function as the Treacy compressor, but with
the opposite sign [50]. In other words, it was the Treacy compression’s perfect
conjugate, with the important consequence that any arbitrarily short pulse in
principle could be stretched to any pulse duration and then recompressed to
its original shape. With the discovery of the matched stretcher–compressor, a
very high first hurdle was cleared.

From the uncertainty principle, a pulse with a Gaussian envelope will have
a minimum-duration-bandwidth product ∆ν · τ of 0.4, where ∆ν is the pulse
bandwidth and τ is the pulse duration (full width at half maximum). A 10 fs
pulse will have a bandwidth of 80 nm. All the spectral components must be
amplified equally over many orders of magnitudes to avoid the risk of nar-
rowing the pulse’s bandwidth and lengthening its duration after compression.
For ultrashort pulses, this limitation was removed with the invention of ul-
trabroadband amplification media such as Ti:sapphire. Ti:sapphire has a gain
bandwidth that can theoretically support the amplification of pulses of less
than 5 fs in duration. The second hurdle was also cleared. It also has excel-
lent thermal properties, making amplification possible at a high repetition
rate, 10–1000 Hz, an improvement of two-to-three orders of magnitude over
the systems based on dye or excimer. A higher repetition rate at constant
peak power leads directly to higher experimental utility. With 10–1000 Hz
Ti:sapphire CPA systems, it is possible to apply signal-averaging techniques
to investigate interactions between high-field lasers and matter. This capa-
bility is used fully in experiments involving signal-to-noise ratios, where low
signal averaging is necessary.
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Fig. 5.10. Chirped pulse amplification (CPA). (a) The CPA concept. An oscillator
produces a short pulse, which is then stretched by a factor of 103–105, from the
femtosecond to the nanosecond regime, reducing its intensity accordingly. The in-
tensity is now low enough that the pulse can be amplified and the stored energy can
be safely extracted from the amplifier without fear of beam distortions and damage
in optics. After extraction, the pulse is recompressed, ideally to its initial width.
(b) The matched stretcher and compressor. The stretcher (top) is composed of a
telescope of magnification 1 between two antiparallel diffraction gratings. Note that
in this configuration the redshifted light has a shorter path than the blueshifted
one. Conversely, the compressor (bottom) is composed of a pair of parallel gratings
in which the optical path length for the blue is shorter than that for the red. The
gratings are matched over all orders [42]
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5.2 Superradiance

When many atoms (or molecules) have electric dipole moments along the
same direction and with the same phase, these atoms (or molecules) emit
their energies as a gigantic and ultrashort light pulse. Suppose that N atoms
are in a volume V so that the density is n = N/V and that each atom has an
electric dipole moment µ. Consider that the macroscopic polarization density
P is polarized along the z-direction and propagating along the x-direction.
The polarization density P is given with k ≡ k · x̂ by

P = nµẑe−i(ωt−kx), (5.31)

where x̂ and ẑ are unit vectors along the x- and z-directions, respectively.
Dicke [51] predicted that the intensity I(k′) of the electromagnetic wave

emitted along the k′-direction is given by

I(k′) = I0(k′)
N2

4

∣∣[ei(k−k′)·r]av

∣∣2 +O(N), (5.32)

where [· · · ]av means an average over a volume V . I0(k′) is the radiative inten-
sity from one atom along the k′-direction, k = (k, 0, 0) is the wavevector of
the excitation, and O(N) means a term proportional to N . When the magni-
tude |k − k′| is small enough, [· · · ]av is the order of unity and, therefore, the
intensity I(k′) is proportional to N2. When atoms are filled into a cylindrical
container with a cross-section A, an intense light pulse with a wavelength of
λ is emitted into a cone with solid angle λ2/A along the cylinder axis. The
total emission is of order Nλ2/A, and the peak intensity is proportional to
N2 and it is predicted that the pulse width is proportional to 1/N . As a re-
sult, the peak intensity should reach the order of 1010 stronger than that of
conventional spontaneous emission and the pulse width should become very
short. Dicke named this phenomenon superradiance.

In this section we first present experimental results for superradiance in
Sect. 5.2.1. In Sect. 5.2.2 we compare these results to theoretical predictions
based on the semiclassical theory for the electromagnetic field. We discuss the
effects of quantum fluctuations that are characteristics of spontaneous emis-
sion and discuss propagation effects of ultrashort light pulses in Sect. 5.2.3.
In Sect. 5.2.4 we describe superradiance from excitons in solids when a single
exciton has a mesoscopic dipole moment of transition.

5.2.1 Experiments of Superradiance

Feld and coworkers [52] reported for the first time the observation of super-
radiance in 1973, about 20 years after Dicke [51] predicted the phenomenon.
Figure 5.11 shows a schematic illustration of superradiance, originating from a
dipole transition between rotational levels of the HF molecule. A HF gas of 1–
20 mtorr is held in a cylindrical container 12–28 mm diameter and 30–100 cm
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Fig. 5.11. Energy levels of the HF molecule and its transitions. The superrradiant
output pulse occurs at the coupled transition

long. The HF molecule is excited from the (v, J) = (0, 6) molecular state to
the (v, J) = (1, 5) state by an HF laser, where v and J mean vibrational and
rotational quantum numbers, respectively. Since the transition between (1, J)
and (1, J±1) is dipole allowed, the population inversion is completed between
the (1, 5) and (1, 4) states. Further, the transition from the (1, 5) state to the
(1, 4) state has a maximum dipole moment. Figure 5.12(a) shows the intensity
profile of the excitation laser pulse. The pulse width is 100 ns (= 10−7 s). If
each molecule independently emits luminescence, it should be characterized
by the radiative lifetime of 1 s, as illustrated in Fig. 5.12(b), where I0(t) de-
scribes the intensity profile of the emission. However, the observed emission
exhibits a sharp pulse with a peak height of 1010 × I0(t) and decays much
more rapidly (Fig. 5.12c).

The facts above demonstrate that the emission is not incoherent sponta-
neous radiation. Furthermore, we can rule out the possibility that the emission
results from amplification of the spontaneous emission, as was expected from
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Fig. 5.12. Comparison of observed superradiant output and incoherent spontaneous
emission. Time is plotted on a logarithmic scale. (a) Pump laser pulse. (b) Output
expected from incoherent spontaneous emission, exhibiting exponential decay and
an isotropic radiation pattern. (c) Observed output, exhibiting ringing, a highly
directional radiation pattern, and a peak intensity of 1010 times that of (b). The
inset shows the time evolution of the same pulse with a linear time scale [55]

the temporal profile. Namely, if it came from the amplification, the event
should be finished within 10−8 s, because it takes less than 10−8 s when the
light passes though the 100 cm-long container. However, the emission is ob-
served to be delayed by about 10−6 s and its pulse width is 2× 10−7 s, as can
be seen in Fig. 5.12(c). The possibility of laser generation is also ruled out. As
discussed in Chap. 4, the laser power should be proportional to the number
in the inverted population, and so proportional to the HF pressure. How-
ever, Fig. 5.13 demonstrates that the intensity is proportional to the square
of the pressure. From theoretical considerations discussed later, it is con-
cluded that the emission arises from a coherent spontaneous process due to
the (v = 1, J = 3) → (v = 1, J = 2) transition of the HF molecule, pumped
into the (v = 1, J = 3) level by the P1(4) laser line shown in Fig. 5.11.

In addition to these three features, the following interesting phenom-
ena were also found. Figure 5.14(a) shows the superradiance due to the
(v = 1, J = 3) to (v = 1, J = 2) transition of the HF molecule observed
at 4.5 mtorr. In these experiments, both the P1(4) and R1(2) laser lines were
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Fig. 5.13. Peak intensity of the superradiant pulse at 84 µm (J = 3 → 2), pumped
by the P1(4) laser line, as a function of the square of the HF pressure in the sample
cell [55]

used as the pump pulse. The R1(J−1) laser line is induced between the tran-
sition between (v = 0, J − 1) and (v = 1, J) shown in Fig. 5.11. The time
delay is 0.6 µs and the pulse width is 0.1 µs. When the pressure is lowered to
2.1 mtorr, the peak intensity is decreased and the time delay and pulse width
are increased to 1.5 µs and 0.7 µs, respectively. Moreover, the time delay is
randomly distributed. As will be discussed in Sect. 5.2.2, this is due to the
quantum fluctuation of the initial emission. Figures 5.14(c) and (d) demon-
strate the dependence on pump intensity. With the decrease of the pump
intensity, the intensity decreases and the time delay increases.

Another important observation is superfluorescence from Cs atoms, re-
ported by Gibbs and coworkers [53]. The valence 6s electron of the Cs atom
is excited to the 7p state by a dye laser with a wavelength of 0.455 µm and
the emission due to the 7p to 7s transition is monitored at λ = 2.9 µm as
shown in Fig. 5.15. Here we call this phenomenon superfluorescence, in order
to distinguish it from superradiance. If the electron population is fully in-
verted, the Bloch vector is metastable at the very beginning and, therefore,
the emission can be induced by fluctuation of the electromagnetic field due to
the initial spontaneous emission. Namely, the coherent spontaneous emission,
which accompanies the time delay and is originated from a system of fully
inverted population, is called superfluorescence. In this mean, superradiance
from the HF molecule system is also superfluorescence. On the other hand,
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Fig. 5.14. Oscilloscope traces of superradiant pulses and computer fits. (a) J = 3 →
2 transition at 84 µm pumped by P1(4) laser line. I = 2.2 kW/cm2, p = 4.5 mtorr,
κL = 2.5 (L = 100 cm), giving T ∗

2 = 220 nsec, TR = 4.7 nsec. (b) Same as (a) except
that p = 2.1 mtorr, giving T ∗

2 = 220 nsec, TR = 10nsec. Note increased delay and
broadening of pulse. (c) Same transition as (a), but pumped by R1(2) laser line.
I = 1.7 kW/cm2, P = 1.2 mtorr, κL = 3.5 (L = 100 cm) giving T ∗

2 = 250 nsec,
TR = 5.0 nsec. (d) Same as (c) except I = 0.95 kW/cm2, giving T ∗

2 = 340 nsec,
TR = 6.7 nsec. The same intensity scale is used in fitting curves (a) and (b), and
(c) and (d). Note no reproducibility of the oscilloscope traces in double exposure [52]
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Fig. 5.15. (a) Simplified level scheme of Cs and (b) diagram of the experimental
apparatus [53]

once an electric dipole appears in the superfluorescence process, it accompa-
nies superradiance.

Figure 5.15(b) illustrates the setup of the Gibbs experiment and Fig. 5.16
shows the result. We immediately see that the light pulse has a time delay of
10 ns and its line shape is well fitted by sech2(t). Figure 5.17 shows the light
pulses at different Cs concentrations. The time delay gradually increases with
decreasing Cs concentration.

In order to observe superfluorescence clearly, the following three conditions
are required.

(1) The Cs atoms are in a fully inverted population state, because super-
fluorescence is grown from the fluctuation of the electromagnetic field.
Thus, one has to make the population inversion within a short interval,
compared to the time delay τD of superfluorescence.

(2) τE = L/c, the time constant required for the electromagnetic wave to es-
cape from an atom system, must be much shorter than both the longitu-
dinal relaxation time T1 and the transverse relaxation time T2. Otherwise,
the electromagnetic wave feeds back to the atomic system. As a result,
induced emission occurs and suppresses the superfluorescence originated
from spontaneous emission. It is evident that this condition is opposite to
laser oscillation.

(3) The time constant τE , pulse width τR, and time delay τD must obey the
conditions

τE < τR < τD < T1, T2. (5.33)
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Fig. 5.16. Example of the very symmetrical pulses that have often been observed
in Cs gas [53]

In the Gibbs experiment these conditions are actually satisfied:

τE = 0.067 ns < τR = 5ns < τD = 10ns < T1 = 70ns, T2 = 80ns. (5.34)

5.2.2 Theory of Superradiance

We will theoretically discuss superradiance and superfluorescence from two-
level atoms or molecules. Suppose each atom has the energy level �ωa and �ωb,
where a and b denote the electron ground state and electron excited state,
respectively. Using the electron annihilation operators (ai, bi) and electron
creation operators (a†i , b

†
i ) on the ith atom, the Hamiltonian HA + HAR is

given by

HA = �

∑
i

(ωaa
†
iai + ωbb

†
i bi), (5.35)

HAR = �g
∑

i

(a†i biB
†eiωt + b†iaiBe

−iωt), (5.36)

where B and B† are annihilation and creation operators of the radiation mode
ω. Here we assume the electric dipole interaction between the electron system
and the radiation field, and neglect the antiresonant terms. The coupling
constant g is given by

�g ≡ µ
√

�ω

2ε0V
, (5.37)
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Fig. 5.17. Normalized single-shot pulse shapes for several Cs densities n; Fresnel
number F ≈ 1. Uncertainties in the values of n are estimated to be (+60, −40)% [53]

where µ is the electric dipole moment. We introduce the following spin oper-
ators:

s+i e
iωt ≡ b†iai, s−i e

−iωt ≡ a†i bi, szi ≡ 1
2
(b†i bi − a

†
iai). (5.38)

The equations of motion for these operators are

∂

∂t
s+i = −i∆s+i − 2igB†szi , (5.39)

∂

∂t
s−i = i∆s+i + 2igBszi , (5.40)

∂

∂t
szi = ig(B†si −Bs+i ), (5.41)

where ∆ ≡ ω − ωba. The radiation field always follows the motion of the
atomic system, i.e., it obeys the adiabatic approximation, because the life-
time τE is shorter than other time constants. Simultaneously, (5.39)–(5.41) de-
scribe a phenomenon that occurs during a time interval much shorter than the
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relaxation time T1 and T2. Accordingly, we can neglect the relaxation terms.
We will consider the following two cases.

Case 1 :L (length of the system) < λ (wavelength of the light)
We introduce the polarization operators S+ and S− of the total electron

system and the inverted population operator Sz as

S+ ≡
∑

i

s+i , S− ≡
∑

i

s−i , Sz ≡
∑

i

szi , (5.42)

respectively. Equations (5.39)–(5.41) then become

∂

∂t
S+ = −i∆S+ − 2igB†Sz, (5.43)

∂

∂t
S− = i∆S− + 2igBSz, (5.44)

∂

∂t
Sz = ig(B†S− −BS+). (5.45)

Here we have neglected the effects of relaxation 1/T1 and 1/T2, as was ex-
pected from (5.33). Namely, the values of τR and τD, which are obtained from
(5.39), (5.40), and (5.41), should be much smaller than T1 and T2.

From (5.43)–(5.45), we have the conservation relation

S−S+ + S+S− + 2(Sz)2 = const. (5.46)

Introducing S− ≡ Sx − iSy and S+ ≡ Sx + iSy, we obtain

(Sx)2 + (Sy)2 + (Sz)2 ≡ S2 = S(S + 1). (5.47)

This equation gives eigenvalues of spin S for the total atomic system, because
S2 obeys a commutation relation

[
HA + HAR,S

2
]

= 0, (5.48)

namely, S2 is a constant of the motion. Similarly, since Sz has a commutation
relation

[HA, S
z] = 0, (5.49)

Sz is also a constant of the motion for the Hamiltonian HA. By analogy with
spin systems, the quantum number m of Sz and the quantum number S are
restricted as

|m| � S � 1
2
N, (5.50)

where N is the number of atoms. The quantum number m ≡ (1/2)(Nb −Na)
displays the magnitude of the population inversion. The cooperation number
S describes the magnitude of the Bloch vector.
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Case 2: L (length of the system) > λ (wavelength of the light)
In this case we take ∆ ≡ ω − ωba = 0 for simplicity and assume B† and

B are classical values. Taking the average over ∆V for λ < (∆V )1/3 < L, we
introduce the polarization density S+ and inverted population density Sz as

1
∆V

∑
i∈∆V (x)

s+i exp(−ikxi) = S+(x, t) exp(−ikx), (5.51)

1
∆V

∑
i∈∆V (x)

szi = Sz(x, t). (5.52)

Then the equations of motion are

∂

∂t
S+(x, t) = −2igB†(x, t)Sz(x, t), (5.53)

∂

∂t
Sz(x, t) = ig

[
B†(x, t)S−(x, t) −B(x, t)S+(x, t)

]
. (5.54)

Similarly, we quantize the electric field E(x, t) in a volume ∆V and obtain

E(x, t) = i

√
�ω

2ε0∆V

[
B(x, t)e−i(ωt−kx) −B†(x, t)ei(ωt−kx)

]
. (5.55)

Therefore, �g ≡ µ(�ω/2ε0∆V )1/2. Using the operators S+ and S−, we can
rewrite the electric polarization density P (x, t) as

P (x, t) = iµ
[
S+(x, t)ei(ωt−kx) − S−(x, t)e−i(ωt−kx)

]
. (5.56)

Substituting (5.55) and (5.56) into the Maxwell equation

∇2E − 1
c2
∂2

∂t2
E =

1
ε0c2

∂2

∂t2
P, (5.57)

and using the dispersion relation ck = ω, we obtain
(
∂

∂t
+ c

∂

∂x
+ κ

)
B†(x, t) = ig∆V S+(x, t). (5.58)

Here we have used the rotating wave approximation, and slowly varying en-
velope approximation

∣∣∣∣ω ∂∂tB†
∣∣∣∣ �

∣∣∣∣ ∂
2

∂t2
B†

∣∣∣∣ ,
∣∣∣∣k ∂∂xB†

∣∣∣∣ �
∣∣∣∣ ∂

2

∂x2
B†

∣∣∣∣ . (5.59)

We introduce empirically κ ≡ c/L, the decay rate of the radiation wave that
escapes from the atomic system. For the maximum cooperation number S =
n/2(� 1) we have
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∣∣S+
∣∣2 + |Sz|2 �

(n
2

)2

, (5.60)

where n is the number of atoms per unit volume. Introducing the polar angle
Φ(x, t) of the Bloch vector (Sx, Sy, Sz), we obtain

Sz(x, t) = −n
2

cosΦ(x, t), (5.61)

S−(x, t) = S+(x, t) =
n

2
sinΦ(x, t). (5.62)

Here we take Φ = 0 for the ground state of the electron system. Substituting
these equations into (5.53), we obtain

B† = − i

2g
∂Φ

∂t
= −B. (5.63)

Substituting (5.62) and (5.63) into (5.58) gives

− i

2g

(
∂2

∂t2
+ c

∂2

∂x∂t
+ κ

∂

∂t

)
Φ = ig∆V

n

2
sinΦ. (5.64)

In order to rewrite this differential equation in dimensionless form, we intro-
duce τ and ξ defined as

ng2∆V

κ
=
Nµ2ω

2ε0�κV
≡ 1
τ
, cτ ≡ ξ. (5.65)

Using τ and ξ, we obtain

∂

∂(t/τ)
Φ+ sinΦ = − 1

κτ

[
∂2Φ

∂(t/τ)2
+

∂2Φ

∂(t/τ)∂(x/ξ)

]
. (5.66)

Now we turn back to Case 1. If we have the condition

1
κτ

=
nµ2ω

2ε0�κ2
≡

(
L

Lc

)2

 1, (5.67)

we can neglect the contribution of the right-hand side of (5.66). Then Φ de-
pends only on t:

∂Φ

∂t
= −1

τ
sinΦ. (5.68)

Namely, if the length of the system is smaller than the cooperation length
Lc ≡ c

√
2ε0�/nµ2ω, the superradiance and superfluorescence can be described

by (5.68). If not, the right-hand side of (5.66) leads to the propagation effect.
This effect will be discussed in Sect. 5.2.3. By solving (5.68) for an initial
condition Φ(0) at t = 0, we obtain
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log

∣∣∣∣∣
tan

[
1
2Φ(t)

]
tan

[
1
2Φ(0)

]
∣∣∣∣∣ = − t

τ
. (5.69)

That is

tan
[
1
2
Φ(t)

]
= exp

[
−1
τ

(t− tmax)
]
, (5.70)

where

tan
[
1
2
Φ(0)

]
= exp

(
tmax

τ

)
. (5.71)

Note that (5.70) can be written as

sinΦ(t) = sech
(
t− tmax

τ

)
. (5.72)

Using the above results, we obtain the t-dependence of the radiation intensity
I(t):

I(t) = 2κ�ωB†(t)B(t)
V

∆V
(5.73)

= 2κ�ω
1

4g2

(
∂Φ

∂t

)2
V

∆V
(5.74)

= �ω

(
κ

2g2

)
1
τ2

(
sin2 Φ

) V

∆V
(5.75)

=
ε0�

2κV

µ2τ2
sech2

(
t− tmax

τ

)
. (5.76)

Let us summarize the predictions of the semiclassical theory and compare
it to the experimental results shown in Sect. 5.2.1.

(1) The temporal profile of the light pulse is described by (5.76). From (5.65)
the pulse width is given by

τ =
2ε0�κ

ωnµ2
=

4ε0τ0
3πnλ2L

, (5.77)

where τ0 is the lifetime of the spontaneous emission from an isolated two-
level atom. It follows from (5.77) that the pulse width becomes shorter
in inverse proportion to the atom density n, i.e., the number of atoms
in a volume λ2L. This well accounts for the dependences of the pulse
width on the HF pressure (Figs. 5.14a and b) and on the Cs atom density
(Fig. 5.17).
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(2) Using (5.65) and (5.76), the peak intensity I0 is given by

I0 =
�ωκV

2g2τ2∆V
=
ω2µ2n2

4ε0κ
V. (5.78)

This equation explains the experimental result that I0 is proportional to
the square of the HF pressure (Fig. 5.13).

(3) Equation (5.76) well describes the observed profile of the pulse (Fig. 5.16).

5.2.3 Quantum and Propagation Effects on Superradiance

The remaining problems, which cannot be explained by the semiclassical the-
ory, are associated with the quantum effect and propagation effect on super-
radiance. The former is observed as the fluctuation and n-dependence of the
time delay, as shown in Fig. 5.14(b). From (5.71) the time delay tmaxis given
by

tmax = τ log
∣∣∣∣tan

[
Φ(0)

2

]∣∣∣∣ . (5.79)

tmax = 0 for Φ(0) = π/2 and tmax = ∞ for Φ(0) = π. When the system is
in a fully population-inverted state, the Bloch vector of (Sx, Sy, Sz) is along
the polar axis so that Φ(0) = π. Therefore, the time delay tmax is infinite,
indicating no superradiance. The superradiance from the actual system is
initiated by spontaneous emission of one atom or one molecule. The time
delay and its fluctuation depend on when and which atom or molecule triggers
the process. In other words, these phenomena demonstrate the macroscopic
manifestation of quantum fluctuations. To describe these, we have to take
account of the quantum fluctuation of the photon, namely the fluctuation of
the vacuum. Here we introduce the effective initial angle θ0 of the Bloch vector
to describe the fluctuation effect of the radiation field:

θ0 ≡
√

〈∆Φ(x, t = 0)2〉, (5.80)

where ∆Φ(x, t = 0) = Φ(x, t = 0) − π is the angle between the polar axis
and the direction of the Bloch vector. A complicated quantum-mechanical
calculation yields θ0 �

√
2/N , where N is the total number of atoms or

molecules involved in the process. Here we skip this calculation. Instead, we
will show that the angle θ0 is directly obtained by experiment.

Suppose that, immediately after excitation, light creates a full population
inversion; a weak light pulse with the same frequency illuminates this system.
When the pulse area θ ≡

∫
µE(t)dt/� of the weak light pulse is smaller than

θ0, the effect of the light pulse is negligibly small and, thus, the fluctuation
of the vacuum for the radiation field triggers superfluorescence. On the other
hand, for θ > θ0, superfluorescence is started by the incident light pulse. In
the latter case the average value τD of the time delay of superfluorescence is
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Fig. 5.18. (a) Setup for the measurement of the effective initial tipping angle.
(b) Delay time τD of the superfluorescence output pulse in Cs vs. [In(θ/2π)]2. The
dashed line is used to correct for the delay of the injection pulse with respect to the
pump pulse [54]

greatly shortened. Thus, we can estimate θ0 by measuring the θ-dependence
of τD.

Figure 5.18(a) illustrates the setup for the above experiment. Cs atoms
are filled into two glass containers. An ultraviolet laser excites the Cs atoms
and, thus, full population inversion occurs between the 7p and 7s states. The
superradiance arises from the 7p → 7s transition. The average time delays of
superradiance from cell 1 and cell 2 are 1.5 ns and 13 ns, respectively. This dif-
ference is due to the different density of the Cs atoms between them. Namely,
since the density of the Cs atoms is larger for cell 1, the characteristic time τ
is smaller, leading to a small pulse width τD and a short time delay τR (see
(5.65)). In this experiment the light pulse from cell 1 initiates superradiance
of Cs atoms in cell 2. The absorption filter is set between the cells to change
the pulse area θ of the initiating pulse. Figure 5.18(b) shows a plot of τD vs.
[ln(θ/2π)]2. We find that τD strikingly changes its slope at [ln(θ/2π)]2 = 90.
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For [ln(θ/2π)]2 < 90, τD decreases with increasing θ up to 2π. This sug-
gests that superradiance is affected by the light pulse area from cell 1. For
[ln(θ/2π)]2 > 90, on the other hand, the time delay is constant, τD=13ns,
demonstrating that the superradiance is triggered by spontaneous emission
in cell 2. The effective angle θ0 is estimated to be θ0 = 5 × 10−4. This value
agrees basically with the theoretical value θ0 �

√
2/N = 1 × 10−4.

Another problem is related to the propagation effects of superradiance. As
can be seen in Fig. 5.19, the radiation intensity has an oscillating character at
higher density n. Needless to say, the semiclassical theory cannot account for
this phenomenon. In the previous subsection we assumed 1/κτ  1 to obtain
(5.68). For larger n, however, the contribution of the right-hand side of (5.66),
which describes the propagation effect of the radiation, becomes important.
Similarly, when the length L of the total system is larger than the cooperation
length Lc, we have to take into account the right-hand side of (5.66).

The initial stage of superfluorescence is triggered by spontaneous emis-
sion from one excited atom or molecule. The weak radiation field due to the
spontaneous emission travels in the medium and induces a weak macroscopic
dipole, which enlarges the radiation field further. Repeating this process, the
electric dipole grows spatially and temporally, and emanates as the light from
the endplate. Figure 5.19 shows this propagation effect. For L > Lc the light
pulse is periodically emitted from the system and its intensity decays in time.

5.2.4 Superradiance from Excitons

We have studied the superradiance from two-level atoms or molecules. In
this process the dipole moments of the two-level atoms or molecules align
their phase through virtual interaction with the radiation field. As a result,
the dipole moments of N/2 excitations are oriented and a macroscopic dipole
moment is formed at Φ = π/2. This macroscopic dipole leads to superradiance.
In other words, the electromagnetic interaction between two levels results in
the S = N/2 state. In this subsection we show superradiance from excitons
in solids.

Since atoms and/or molecules are periodically arranged in crystals, one
excitation in an atom/molecule propagates among all atoms/molecules. This
is called an exciton. The lowest exciton state can be described by a linear
combination of the excited state of the constituted atoms/molecules:

Ψk =
1√
N

∑
i=1

eik·ri(b†iai)|g〉, (5.81)

where ai and bi are electron annihilation operators of the conduction and
valence bands, respectively. These bands are based on the Wannier function
centered on the ith atom. N is the number of constituent atoms/molecules
and Ψk is normalized in the crystal. The wavefunction (5.81) means that the
excitation of an atom/molecule propagates from site to site with wavevector
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Fig. 5.19. Stretch of the buildup of polarization in the medium, showing the po-
larization as a function of z at t = 50 TR, 100 TR, 150 TR, and 200 TR. The corre-
sponding output intensity pattern is shown at the right [55]

k. This type of excitations is called a Frenkel exciton. The electric dipole
moment of the transition between the ground state |g〉 of the crystal and the
one Frenkel exciton state Ψk is

〈
Ψk

∣∣∣∣∣
∑
i=1

(−erie
ik·ri)b†iai

∣∣∣∣∣ g
〉

=
√
NµδkK . (5.82)

From (5.82) it follows that the dipole moment is
√
N times larger than the

dipole moment µ of one atom/molecule. When the wavevector k of the exciton
is just the same as the wavevector K of electromagnetic wave, the electric
dipole transition is allowed.
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Fig. 5.20. The radiative lifetime of the exciton (ns) depends on the radius R (nm)
of the microcrystallite of CuCl, which determines the energy shift ∆E(meV) of the
emitted light [58]. The observed lifetime is compared with the theory [56,57]

In semiconductor crystals, an electron in the conduction band and a hole
in the valence band form a different type of exciton, a Wannier exciton. The
electric dipole moment of the Wannier exciton is given by

√
Nu3/πa3

BµcvδkK ,
where u3 is the unit cell volume and µcv is the transition moment between the
valence and conduction bands; aB is the exciton Bohr radius, which measures
the average distance between the electron and hole in the exciton. Since an
electron–hole pair of the Wannier exciton spreads over several lattice sites, the
dipole moment of the Wannier exciton is

√
u3/πa3

B times smaller than that of
the Frenkel exciton. However, it still has the macrascopic enhancement factor√
N .

Since the exciton is scattered by lattice imperfections and lattice vibra-
tions, the exciton has a finite coherence length Lex. As a result, N is restricted
to the number of atoms/molecules in a volume L3

ex. If we greatly reduce the
crystal volume, the crystal size determines the coherent length. In addition,
the exciton is confined in the spherical microcrystallite and, therefore, the
motion of the center of gravity is quantized. In this case the electric dipole
moment is given by

P n =
2
√

2
π

(
R

aB

)3 1
n

µcv, (5.83)

where n is a principal quantum number for the center-of-mass motion and R is
the radius of the spherical microcrystallite. It is evident that the transition to
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the lowest energy level n = 1 has a maximum dipole moment. Thus we expect
that this lowest energy exciton emits fast spontaneous radiation as superradi-
ance [56, 57]. Since this exciton has a mesoscopic dipole moment, the inverse
of the radiative lifetime, 1/T1, is increased mesoscopically by 64π(R/aB)3

compared to 4µ2
cv/3�λ3 of the interband transition:

2γ ≡ 1
T1

= 64π
(
R

aB

)3 4µ2
cv

3�λ3
, (5.84)

where λ is the wavelength of the excitation. Although this superradiance
comes from the one-exciton state, the excited states of all constituent atoms/
molecules cooperatively emit radiation. Namely, the emission originates from
the maximum cooperation-number state.

Itoh et al. [58] observed the superradiance from CuCl microcrystals with
R = 1.7 nm ∼ 10 nm, embedded in NaCl crystals. The crystal size was con-
trolled by adjusting the annealing temperature, the annealing time interval,
and the quenching speed. Figure 5.20 shows the radiative lifetime T1 as a
function of the energy shift ∆E of the emission peak, which is related to the
mean radius R through the relation ∆E = �

2π2/2MR2. Here M is the ef-
fective mass for center-of-mass motion. For 1.7 nm < R < 80 nm the result
agrees excellently with the theoretical prediction (5.84). Nakamura et al. [59]
studied a CuCl microcrystallite embedded in a glass matrix, and obtained a
similar R-dependence of the radiative decay as with the microcrystallites of
CuCl.



6

Nonlinear Optical Responses I

A laser is an intense, monochromatic, and coherent light source. By making
the best use of these characteristics, we have become able to easily observe
the nonlinear optical responses of atoms, molecules, and solids such as higher-
harmonic generation, four-wave mixing, parametric oscillation, multiphoton
absorption, induced-Raman scattering, etc. In general, the interaction be-
tween the radiation field and matter is relatively weak so that the effects of
this interaction can be described in terms of perturbational methods. These
nonlinear optical responses are discussed in this chapter. However, we have
such strong power in ultrashort laser pulses, as discussed in Chap. 5, that
the perturbative treatment is not justified in describing the nonlinear optical
phenomena under these laser fields. These phenomena will be discussed in
Chap. 7. On the other hand, nonlinear optical responses which are discussed
in this chapter can be classified according to how many times this interaction
works in each nonlinear optical response. The lowest-order nonlinear optical
responses are sum-frequency and second-harmonic generation (SHG). These
will be discussed in Sect. 6.1. This sum-frequency and higher harmonic gener-
ation in solids is useful to understand the electronic structure as well as the
microscopic optical processes of solids but also is important from an engineer-
ing point of view. First of all, laser light generation with shorter wavelengths
is the more difficult, as already discussed in Sect. 4.3.4. Because of this, we are
now producing coherent ultraviolet light as higher harmonics in crystals by
using Nd:glass lasers or YAG lasers as a strong fundamental source. Secondly,
we obtain the light source in the visible region by converting the infrared
(≈1µm) laser light of cheap and stable semiconductor lasers into the second
harmonics.

Optical parametric oscillation which is used to generate squeezed light
(see Chap. 2) is also a second-order nonlinear optical response. This will be
understood as just an optical process reversal to sum-frequency generation.
This will be discussed in Sect. 6.1.4.
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We have very colorful nonlinear optical phenomena from third-order op-
tical processes. In Sect. 6.2, four-wave mixing will be discussed. This includes
CARS (coherent anti-Stokes Raman scattering), the generation of phase-
conjugated waves, and optical bistability. All these phenomena are described
by the third-order susceptibility χ(3). We will show in Sect. 6.3 that this χ(3)

will be extremely enhanced when the exciton, i.e., a kind of collective elemen-
tary excitation in crystals, is resonantly pumped. As discussed in Sect. 5.2.4,
this exciton in quantum dots (microcrystallites) or quantum wells can radia-
tively decay very rapidly by a superradiant process. As a result of these two
characteristics, the exciton in these confined systems possibly satisfies both
requirements of large χ(3) and rapid switching.

In Sect. 6.4, we introduce, as an example of a nonlinear dissipative optical
process, two-photon absorption spectroscopy. From this spectroscopy, we will
be able to obtain useful information about the electronic structure of mate-
rials, which is complementary to one-photon spectroscopy. As an example of
the application of SHG, we will discuss how to determine the sign of order
parameters such as ferroelectric polarization or sublattice magnetization of
ferroelectric antiferromagnets by using the inference effects of the SHG sig-
nals. This will be shown in Sect. 6.5

6.1 Generation of Sum-Frequency
and Second Harmonics

Laser light has a well-defined frequency and wavevector so that it is tempo-
rally and spatially coherent, and has a large amplitude of the radiation field.
As a result, nonlinear optical phenomena are easily induced by pumping ma-
terials by this laser light, and are also easily observable. The generation of
the sum-frequency and second harmonics is the lowest order nonlinear optical
phenomenon so that it is also important for applications to engineering.

6.1.1 Principle of Higher-Harmonic Generation

Consider irradiating an insulating crystal by radiation fields E1 = E(ω1) exp
[i(k1·r−ω1t)] and E2 = E(ω2) exp[i(k2·r − ω2t)]. These two fields induce not
only linear polarizations P (1)(ω1) = χ(ω1)E(ω1) and P (1)(ω2) = χ(ω2)E(ω2)
but also second harmonics oscillating at 2ω1 and 2ω2, and the sum-frequency
at ω = ω1 + ω2. The induced electric dipole moment with the sum-frequency
ω is written as

P (2)
ω (r, t) = χ(2) (ω = ω1 + ω2) : E1E2

= χ(2) : E (ω1) E (ω2) exp [i (k1 + k2) · r − i (ω1 + ω2) t] . (6.1)

Here χ and χ(2) are linear and second-order polarizabilities, and these second-
and third-rank tensors are denoted by χij and χ(2)

ijk, respectively. In (6.1),
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P (2) = χ(2) : E1E2 is an abbreviation for a vector whose i-component is
P

(2)
i = χ

(2)
ijkE1jE2k. The microscopic description of the second-order polariz-

ability will be derived in Sect. 6.1.2. With this second-order polarization of
(6.1) as a source term, the radiation field with angular frequency ω is pro-
duced. This process is described by the following Maxwell equation with the
source term (6.1) on the right-hand side:

∇2Eω +
ω2

c2
ε (ω) Eω = − ω2

ε0c2
P (2)

ω . (6.2)

Here ε(ω) ≡ 1 +χ(ω)/ε0 is a linear dielectric function of the insulator. Let us
choose the propagating direction of the second-harmonic signal in z-axis and
denote the polarization direction as a unit vector eω, i.e.,

Eω = eωE (z) exp [i (kz − ωt)] . (6.3)

Then the signal amplitude E(z) may gradually increase in the z-direction.
Therefore we accept the slowly varying envelope approximation, that is, we
may neglect d2E(z)/dz2 in comparison to kdE(z)/dz. As a result, we have

2ik
d

dz
E (z) = − ω2

ε0c2
χ(2) : E (ω1) E (ω2) exp (i∆kz) . (6.4)

Here the dispersion relation ε(ω) = (ck/ω)2 was used and note that only the
component parallel to eω is chosen for the right-hand side of (6.4). When both
E1 and E2 propagate in the z-direction, ∆k = k1+k2−k in (6.4). Integrating
(6.4) from z = 0 to z = l with the boundary condition E(z = 0) = 0, the
signal intensity Iω(l) is given by

Iω (l) =
cε0

√
ε (ω)

2
|E (l)|2

=
ω2

8cε0
√
ε (ω)

∣∣∣χ(2) : E (ω1) E (ω2)
∣∣∣2

{
2 sin (∆kl/2)

∆k

}2

. (6.5)

The thickness dependence of the SHG signal Iω(l) was observed by Maker et
al. [60] as shown in Fig. 6.1(a). The oscillation shown in the figure is called a
Maker fringe. When the incident light hits the crystal surface at an angle θ, as
shown in Fig. 6.1(b), the light-path length l inside the crystal with thickness
d varies as l = d/ cos θ against the incident angle θ. Here a quartz crystal
with thickness d = 0.787 mm was used and this crystal was rotated around
the crystal c-axis which is parallel to the crystal surface so that the phase
mismatch ∆k was independent of the angle θ. Red light from a ruby laser with
wavelength 0.694 µm is sent to the quartz crystal and the blue light intensity
of the SHG signal was observed as a function of θ as shown in Fig. 6.1(a).

From (6.5) and the experiment shown in Fig. 6.1, it has becomes clear
that two conditions must be fulfilled to obtain a strong SHG signal: (1) the
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Fig. 6.1. (a) The second-harmonic intensity against the angle θ of the incident light,
when a quartz crystal with thickness 0.787 mm is irradiated by a ruby laser [60]. (b)
The crystal surfaces of a quartz crystal are chosen to be parallel to its c-axis so that
the path length of the incident light l = d/ cos θ is changed as a function of the
rotation angle θ. The polarization of both the fundamental light of ruby and the
blue second-harmonics is chosen to be parallel to the c-axis

second-order polarizability χ(2) must be large; and (2) the phase-matching
condition ∆k = k1 +k2 −k = 0 must be satisfied. In Sect. 6.1.2, we will give a
microscopic description of the second-order polarizability χ(2)(ω = ω1 +ω2) ≡
χ(2)(ω;ω1, ω2) and discuss the first condition mentioned above. In Sect. 6.1.3,
we will discuss how to satisfy the phase-matching condition.

6.1.2 Second-Order Polarizability χ(2)

In this subsection, we show the procedure to derive χ(2)(ω;ω1, ω2):

(1) The interaction of the material with the radiation fields E1 and E2 is
expressed in terms of the electric dipole P of the material as

H′ = −P · (E1 + E2) . (6.6)

We derive the density matrix of the material �(t) to second-order in H′, and
denote this as �(2)(t).
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(2) The k-component Ek(ω1) of a vector E(ω1) and the l-component
El(ω2) of E(ω2) induce the second-order polarization P

(2)
ω , the jth component

of which is denoted by P (2)
j (ω), as follows:

P
(2)
j (ω) = TrPj�

(2) (ω)

≡ χ
(2)
jkl (ω;ω1, ω2)Ek (ω1)El (ω2) . (6.7)

The electric polarization in the visible region comes mainly from the electronic
excitations of atoms, molecules, or solids. Therefore we derive the equations
of motion for �(t) under the Hamiltonian H0 of the electron system and its
interaction with the radiation fields H′ of (6.6). In addition to this, the elec-
tronic system interacts with other degrees of freedom such as the radiation
field vacuum and phonon fields. These systems can be treated as reservoirs
and these effects can be taken into account as relaxation constants of the
electronic system. Then the density matrix of the relevant electronic system
�(t) can be expanded in terms of the eigenstates of this electronic system as
follows:

� (t) =
∑
nn′

�nn′ |n〉〈n′| . (6.8)

The equation of motion for �(t), i.e.,

∂�

∂t
=

1
i�

[H0 + H′, �] +
(
∂�

∂t

)
relax

(6.9)

is solved as a perturbational expansion in H′. By the last term of (6.9), the
interaction of the electronic system with reservoirs is described in the form of
relaxation. For example, the diagonal �nn and the off-diagonal �nn′ compo-
nents of the electronic density matrix are described in terms of the longitudinal
T1 and transverse T2 relaxation times, respectively, as follows:

(
∂�nn

∂t

)
relax

= −
(

1
T1

)
nn

(
�nn − �(0)nn

)
, (6.10)

(
∂�′nn

∂t

)
relax

= −
(

1
T2

)
nn′
�nn′ . (6.11)

Here �(0)nn means the distribution in thermal equilibrium.
The density matrix can be expanded according to the order of H′, the

electron–radiation field interaction:

�(t) = �(0) + �(1)(t) + �(2)(t) + · · · + �(l)(t) + · · · . (6.12)

Then the equation of motion (6.9) is rewritten for every order of H′ as
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∂�(1)

∂t
=

1
i�

{[
H0, �

(1)
]

+
[
H′, �(0)

]}
+

(
∂�(1)

∂t

)
relax

, (6.13)

∂�(2)

∂t
=

1
i�

{[
H0, �

(2)
]

+
[
H′, �(1)

]}
+

(
∂�(2)

∂t

)
relax

. (6.14)

For a stationary response, the external field E, its interaction with the elec-
tronic system H′, and the mth order density matrix �(m)(t) are Fourier trans-
formed into the following forms:

E =
∑

j

ejE (ωj) exp [i (kj · r − ωjt)] , (6.15)

H′ =
∑

j

H′ (ωj) e−iωjt , (6.16)

�(m) (t) =
∑

j

�(m) (ωj) e−iωjt . (6.17)

Then (6.13) is rewritten in the following form:

−iωj�
(1)
nn′ (ωj) =

1
i�

(
En�

(1)
nn′ − �(1)nn′En′

)

+
1
i�

H′
nn′ (ωj)

(
�
(0)
n′n′ − �(0)nn

)
− Γnn′�

(1)
nn′ . (6.18)

Denoting En − En′ ≡ �ωnn′ , this equation is solved as

� (ωj − ωnn′ + iΓnn′) �(1)nn′ (ωj) = H′
nn′ (ωj)

(
�
(0)
n′n′ − �(0)nn

)
. (6.19)

Note that �(0)gg ≡ �
(0)
g = 1 and other terms vanish when considering the elec-

tronic excitation at room temperature.
First let us derive the linear polarizability of an N -electron system. The

electronic polarization of this system is

P = −
N∑

m=1

erm , (6.20)

and the expectation value of the j-component of the induced polarization
under the external field Ek(ω) polarized in the k-direction is obtained by
using the solution of (6.19) as

P
(1)
j (ω) ≡ χ

(1)
jk (ω)Ek (ω) = TrPj�

(1) (ω) (6.21)

=
∑

n

[
〈g |Pj |n〉�(1)ng (ω) + 〈n |Pj | g〉�(1)gn (ω)

]

=
−Ne2

�

∑
n

[
(rj)gn (rk)ng

ω − ωng + iΓng
−

(rk)gn (rj)ng

ω + ωng + iΓng

]
�(0)g Ek (ω) .
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The second-order density matrix �(2)(ω1 + ω2) is derived from (6.14) as

−i (ω1 + ω2) �
(2)
nn′ (ω1 + ω2) =

1
i�

(
En�

(2)
nn′ − �(2)nn′En′

)
− Γnn′�

(2)
nn′

+
1
i�

∑
n′′

[
H′

nn′′ (ω1) �
(1)
n′′n′ (ω2) − �(1)nn′′ (ω2)Hn′′n′ (ω1)

+H′
nn′′ (ω2) �

(1)
n′′n′ (ω1) − �(1)nn′′ (ω1)Hn′′n′ (ω2)

]
. (6.22)

Consequently, the expectation value of the second-order polarization P (2)
j (ω =

ω1 + ω2) is derived from (6.22) as

P
(2)
j (ω = ω1 + ω2)

≡ χ
(2)
jkl (ω;ω1, ω2)Ek (ω1)El (ω2)

= −Ne
[∑

n�=g

{
(rj)gn �

(2)
ng (ω1 + ω2) + (rj)ng �

(2)
gn (ω1 + ω2)

}

+
∑

n,n′ �=g

(rj)n′n �
(2)
nn′ (ω1 + ω2)

]

= −N e
3

�2

∑
n,n′ �=g

[
(rj)gn (rk)nn′ (rl)n′g

(ω − ωng + iΓng) (ω2 − ωn′g + iΓn′g)

+
(rj)ng (rl)gn′ (rk)n′n

(ω + ωng + iΓng) (ω2 + ωn′g + iΓn′g)

−
(rj)n′n (rk)ng (rl)gn′

(ω − ωnn′ + iΓnn′)

(
1

ω2 + ωn′g + iΓn′g
+

1
ω1 − ωng + iΓng

)]

×Ek (ω1)El (ω2) + (k, 1) � (l, 2) . (6.23)

Here (k, 1) � (l, 2) means the contribution from the process in which the
roles of the first �ω1 and the second �ω2 photons, are interchanged. As a
consequence, P (2)

j (ω = ω1 + ω2) consists of eight terms and Fig. 6.2 describes
these Feynman diagrams.

These diagrams present the time-development of the electronic states up-
ward. The left (ket) and right (bra) states both start from the ground state
|g〉〈g|. The double Feynman diagram of Fig. 6.2(a) describes the process in
which the ω2 photon is absorbed first and the electronic state makes a transi-
tion into an excited state |n′〉 on the left-hand side, and then the ω1 photon
is successively absorbed also on the left-hand side, inducing the transition to
another excited state |n〉, and finally the electronic polarization with angular
frequency ω = ω1 + ω2 is generated. This process corresponds to the first
term of (6.23). When we interchange the temporal order of the ω1 and ω2

photon absorptions in the diagram Fig. 6.2(a), we have the contribution of
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Fig. 6.2. Double Feynman diagrams which contribute to sum-frequency (ω = ω1 +
ω2) generation. The two vertical lines on the left- and right-hand sides describe
the time development of the electronic states in the density operator, respectively,
upward and downward. These eight diagrams mean that the nonlinear material
absorbs ω1 and ω2 photons and subsequently induces the electronic polarization
with angular frequency ω. Only diagrams (a) and (b) consist of resonant terms
while the others contain antiresonant terms

Fig. 6.2(b). The second term of (6.23) is diagramatically drawn in Fig. 6.2(c).
The vertical line on the right-hand side describes the time development of the
right-hand (bra) state upward. In Fig. 6.2(c), the ω2 photon is first absorbed,
inducing the transition from the ground state 〈g | into an excited state 〈n′ |,
then the ω1 photon is absorbed, making the transition from 〈n′ | into another
excited state 〈n |. The state on the right-hand vertical line develops upward
obeying the time-reversed Schrödinger equation so that we may understand
the state on the right-hand vertical line to propagate downward according
to the conventional Schrödinger equation. Therefore, in Fig. 6.2(c), starting
from the excited state 〈n |, the ω1 photon is absorbed first, inducing the tran-
sition into | n′〉 and then the ω2 photon is absorbed, making the transition
into the ground state | g〉. The diagrams in Fig. 6.2, i.e., photon absorption
and emission, were drawn according to the latter description. The diagram of
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Fig. 6.2(d) describes the process in which the temporal order of the ω1 and
ω2 photon processes was interchanged. The diagrams of Figs. 6.2(e) and (f)
correspond to the third and fourth terms of (6.23), respectively, while those of
Figs. 6.2(g) and (h) correspond to the processes in which the ω1 and ω2 photon
are interchanged. The second-order polarizability χ(2)(ω;ω1, ω2) is defined as
the coefficient of Ek(ω1)El(ω2) as in the first line of (6.23). Note that only the
first term of (6.23) and that in which the roles of the ω1 and ω2 photons are
interchanged have the resonant enhancement effect and others have no such
effect.

6.1.3 Conditions to Generate Second Harmonics

The first condition to observe SHG is the absence of inversion symmetry
for the crystal. The expression for χ(2) has the product (Pj)gn(Pk)nn′(Pl)n′g

in the numerator. For example, (Pj)gn denotes the expectation value of the jth
component of the transition dipole moment P between the ground state g and
the excited state n. Under the operation of spatial inversion, the transition
dipole moment P changes its sign so that the product of three transition
moments changes only its sign. When the crystal has an inversion symmetry,
χ(2) itself should be constant under this operation. This means that χ(2)

should vanish for a crystal with inversion symmetry.
Both types of polydiacetylenes (a) and (b) shown in Fig. 6.3 have an inver-

sion symmetry as long as the side-chains R and R′ on the left- and right-hand
sides are the same as each other. Therefore these crystals do not show SHG.
In order to obtain SHG, the microscopic unit of the crystals must have struc-
tures with broken symmetry. The polydiacetylene crystal with different kinds
of side-chains R and R′ begin to generate strong second harmonics. The ben-
zene molecule, which has an inversion symmetry, cannot show SHG, but this
molecule can generate SH when one of the hydrogens is replaced by a donor
substituent such as OH, NH2, or (CH3)2N, or an acceptor substituent such
as NO2 or CN. According to the degree of symmetry breaking, the stronger
donor or acceptor can produce the stronger SHG. But, we must arrange these
asymmetric molecules so as to lose the inversion symmetry of the crystal to
get SHG.

The second condition for obtaining an SHG signal is phase-matching. The
condition of maximizing the third factor {2 sin(∆kl/2)/∆k}2 in (6.5), i.e.,
∆k ≡ k1 + k2 − k = 0, is called a phase-matching condition. That is,

c∆k ≡ c (k1 + k2 − k) = ω1 {n (ω1) − n (ω)} + ω2 {n (ω2) − n (ω)} = 0 .
(6.24)

Here n(ω) ≡
√
ε(ω) is the refractive index at angular frequency ω. Let us

consider, first, an isotropic material or cubic crystal. As ω = ω1 +ω2 > ω1, ω2,
the phase-matching condition (6.24) is not always satisfied both for nor-
mal dispersion as n(ω) > n(ω1), n(ω2) and for anomalous dispersion n(ω) <
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Fig. 6.3. Two chemical structures of polydiacetylene: (a) acetylene type and (b)
butatolyene type. When side-chains R and R′ are different from each other, the
polydiacetylene loses the inversion symmetry so that second-harmonic generation
becomes possible

n(ω1), n(ω2). On the other hand, the phase-matching condition can be satis-
fied by making use of the birefringence of crystals with lower symmetry. For
example, let us consider a uniaxial crystal in which the refractive index for
light polarized perpendicular to the optical axis is denoted by no and that
parallel to the optical axis is ne. When the wavevector of light makes an angle
θ with the optical axis, the normal light, the polarization of which is perpen-
dicular to the optical axis, has refractive index no, while the refractive index
ne(θ) of the extraordinary light perpendicular to the normal light is given by

1
ne (θ)2

=
1
n2

o

cos2 θ +
1
n2

e

sin2 θ . (6.25)

For the case ne > no, the ordinary second harmonic 2ω1 can be induced by two
fundamentals ω1 with extraordinary polarization. That is, the phase-matching
condition (6.24) is satisfied for the incident angle θ such that

no (2ω1) = ne (ω1, θ) . (6.26)
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Fig. 6.4. Dependence of the phase-matching angle θm on the wavelength of an
incident beam for second-harmonic generation from urea crystals. Solid lines describe
the calculation and •, � describe the observations [61]

This phase-matching angle θm, which satisfies (6.26), is obtained in terms of
the expression (6.25) as

sin2 θm =
no (2ω1)

−2 − no (ω1)
−2

ne (ω1)
−2 − no (ω1)

−2 . (6.27)

This phase-matching condition of SHG is called type I. For type II phase-
matching, we will be able to get the ordinary second harmonics 2ω1 from one
ordinary and one extraordinary fundamental. This phase-matching angle θm
is obtained by solving no(ω1) + ne(ω1, θm) = 2no(2ω1). The phase-matching
angles θm for SHG and for the sum-frequency generation from a urea crystal
CO(NH2)2 are drawn, respectively, in Figs. 6.4 and 6.5 [61].

The third condition for obtaining the effective SHG and the sum-frequency
signals is that the crystal should be transparent to the fundamentals and
the sum-frequency (the second harmonics). The amplitude of SHG decays as
exp{−(αω + 1

2α2ω)l} when we take into account the effects of the absorp-
tion coefficients αω and α2ω at the fundamental and the second harmonics,
respectively. As the absorption edge of the urea crystal is at λ = 210 nm, sum-
frequency generation was successfully confirmed until the wavelength was as
short as λ = 228.8 nm, as shown in Fig. 6.5. Here two fundamentals consist
of ordinary light at λ = 1.06 µm from a YAG laser and extraordinary light at
λ = 291.6 nm from second harmonics of a rhodamine 6G dye laser, and the
ordinary sum-frequency at λ = 228.8 nm was obtained under the normal inci-
dence condition θm = 90◦. As high as 50% conversion efficiency was realized
by using the urea crystal with thickness 15 mm.

A nonlinear optical crystal must be robust against strong incident laser
power in order to obtain high-power second harmonics. This is the fourth
condition of a crystal for SHG. The threshold power for a 10 ns incident pulse
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Fig. 6.5. Phase-matching angle θm of sum-frequency generation from a urea crystal
(ne > no), as a function of wavelength of one incident beam (extraordinary light).
The broken line on the left-hand side and the solid line describe the cases in which the
other incident beams are, respectively, 1.06 µm ordinary and extraordinary light. The
dotted line on the right-hand side denotes the other incident beam, which is 532 nm
extraordinary light. Numerical values in the figure mean the wavelength in nm of
the sum-frequency [61]

at wavelength λ = 1.064 µm was observed 1.5 GW/cm2 for the urea crystal,
0.2 GW/cm2 for the KDP crystal and 0.03 GW/cm2 for the LiNbO3 crystal.

Finally a large, uniform, and good crystal is required to be grown cheaply
and a mechanically and chemically stronger crystal is preferable. Recently
inorganic crystals of high quality such as BBO (beta-barium-borate, β-
BaB2O4), and KTP (potassium titanyl phosphate, KTiOPO4) have been
available and are attracting attention as nonlinear optical materials which
are superior to the urea crystal.

Quasi-phase matching is becoming more important from an engineering
point of view. It is a technique for phase-matching nonlinear optical inter-
actions in which the relative phase is corrected at regular intervals using
the structural periodicity built into the nonlinear medium [62]. Engineered
nonlinear materials were introduced with the successful implementation of
quasi-phase matching by periodic inversion of ferroelectric domains in lithium
niobate. Recently lithographic processing techniques enabled the fabrication
of quasi-phase matched nonlinear chips using electric field poling of lithium
niobate on the wafer scale [63]. As a result, it has made it possible to have
nonlinear optical devices having a conversion efficiently close to unity.

6.1.4 Optical Parametric Amplification and Oscillation

A parametric phenomenon is a reverse process to second-harmonic (ω1+ω1 →
2ω1) and sum-frequency generation (ω1 + ω2 → ω3). Under pumping at ω3 =
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ω1+ω2, the radiation field with angular frequency ω1 is amplified. This process
is called parametric amplification. Under parametric oscillation, the signal
(ω1,k1) and the idler (ω2 = ω3 − ω1, k2 = k3 − k1) spontaneously oscillate
under pumping at ω3 and k3 without another supply of incident field. This
parametric oscillation is used for optical squeezing, as discussed already in
Chap. 1.

Let us describe three kinds of radiation fields which are involved in the
parametric phenomena as E(ωj) = Ej(z)ej exp[i(kj ·r−ω1t+φj)] (j = 1, 2, 3).
The envelope functions Ej(z) obey the following coupled equations under the
slowly varying envelope approximation:

∂

∂z
E1 =

iω2
1

k1z
K∗E∗

2E3e
i∆kz+iθ0 ,

∂

∂z
E∗

2 =
−iω2

2

k2z
KE1E

∗
3e

−i∆kz−iθ0 ,

∂

∂z
E3 =

iω2
3

k3z
KE1E2e

−i∆kz−iθ0 . (6.28)

Here the coefficient of parametric amplification K is expressed in terms of the
second-order polarizability χ(2) as

K =
1

2ε0c2
e3 · χ(2) (ω3;ω1, ω2) : e1e2 ,

∆k = k3z − k1z − k2z ,

θ0 = φ3 − φ1 − φ2 . (6.29)

The solution of (6.28) can be obtained in a way similar to (6.4), and describes
how the pump field ω3 at z = 0 is divided into the signal ω1 and idler ω2 fields
as it propagates in the z-direction. Taking into account the conservation laws
of energy and wavevector:

ω3 = ω1 + ω2 , k3 = k1 + k2 (6.30)

the phase-matching condition is written as

ω3 [n3 (ω3) − n2 (ω3 − ω1)] = ω1 [n1(ω1) − n2 (ω3 − ω1)] . (6.31)

The oscillating frequency ω1 will be fixed by solving (6.31) once we know
nj(ωj)(j = 1, 2, 3). For the case ne < no of a uniaxial crystal, we have the
following two possibilities for the frequency region of normal dispersion:

Type I : ω3n
e
3 (ω3, θ) = ω1n

o
1 (ω1) + ω2n

o
2 (ω2) ,

Type II : ω3n
e
3 (ω3, θ) = ω1n

o
1 (ω1) + ω2n

e
2 (ω2, θ) ,

(or = ω1n
e
1 (ω1, θ) + ω2n

o
2 (ω2)) . (6.32)

Here θ is the angle which the relevant wavevector makes against the optical
axis in the uniaxial crystal and the θ-dependence of ne(ω, θ) is given by (6.25)
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Fig. 6.6. Two wavelengths obtained in the parametric oscillation are demonstrated
as a function of the incident angle (∆θ) of the pump beam (λp = 0.347 µm) measured
from the optical axis of an ADP crystal [64]

in terms of the refractive indices ne(ω) and no(ω) of the extraordinary and
ordinary light, respectively. The angular frequency ω1 of the parametric os-
cillation or the maximum gain is determined by adjusting the incident angle
θ from the optical axis or changing the crystal temperature. The oscillating
frequency of the signal ω1 or the idler ω2 is drawn as a function of the inci-
dent angle ∆θ in Fig. 6.6 [64]. The angle ∆θ, i.e., the coordinate in Fig. 6.6,
is a deviation of incident angle from the optimum angle at which the signal
frequency ω1 becomes coincident with the idler frequency ω2. It is shown in
Fig. 6.6 that the wavelength of the signal can be changed from 4400 Å to 1 µm
by changing the incident angle by ∆θ = 0 ∼ 8◦. We can also change the
signal frequency as a function of crystal temperature for the case of LiNbO3

as shown in Fig. 6.7 [65]. This figure also shows how much we can extend the
region of signal frequency by varying the pump wavelength.

6.2 Third-Order Optical Response

A large number of nonlinear optical phenomena belong to the group of third-
order optical processes. Three incident radiation fields with angular frequen-
cies ω1, ω2, and ω3 can produce the sum-frequency and difference-frequency as
the fourth radiation field, which is called four-wave mixing. Third-harmonic
generation with 3ω is also one of four-wave mixing and is possible even in
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Fig. 6.7. The phase-matching condition of parametric oscillation is controlled
by changing the crystal temperature of LiNbO3. The oscillating wavelength or
wavenumber is shown as a function of the crystal temperature with the pump wave-
length λp as a parameter [65]

crystals with an inversion symmetry. This is in contrast to second-harmonic
generation.

When frequency-variable lasers such as dye lasers are used as sources of
incident light, one of the incident light beams and the sum- or difference-
frequencies are chosen, possibly resonant to the elementary excitations. Then
the nonlinear signal is not only resonantly enhanced but can also interfere
with nonresonant terms. As a result, from this nonlinear spectroscopy, we will
be able to study the elementary excitation and determine the magnitude and
sign of the relevant transition dipole moments. As an example, we will intro-
duce, in Sect. 6.2.1, CARS (coherent anti-Stokes Raman scattering) by which,
for example, the frequency of the lattice vibration will be determined sensi-
tively. Here we make the difference-frequency ω1 − ω2 of two incident beams
ω1 and ω2 to be resonant to the lattice vibration. In Sect. 6.2.2, we introduce
phase-conjugated wave generation, a degenerate four-wave mixing in which
three incident frequencies are degenerate and resonant to an exciton. Here
two colliding beams propagate in the nonlinear medium and the third beam
is supplied to this medium. Then the time-reversal wave (the phase-conjugated
wave) of the third beam is produced. The optical Kerr effect and absorption
saturation come also from the process of four-wave mixing. In terms of this
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nonlinearity, optical bistability can be achieved in which the transmitted light
intensity shows hysteresis against the change of incident light intensity. This
will be discussed in Sect. 6.2.3. This optical bistability may be considered to
be applied to optical information processing. Here the most desirable non-
linear materials must satisfy two requirements at the same time, i.e., large
χ(3)(ω;ω,−ω, ω) and rapid response time. We will describe the possibility
of satisfying these requirements by using resonant pumping of the exciton
in Sect. 6.3. In Sect. 6.4, we will discuss two-photon absorption spectroscopy,
by which fruitful information about electronic structures supplementary to
one-photon absorption is available.

6.2.1 Four-Wave Mixing – CARS

When we irradiate a crystal by two incident beams (ω1,k1) and (ω2,k2), the
third-order polarization P (3)(2ω1 − ω2) can be induced. With this nonlinear
polarization as a source, we can observe the signal with an angular frequency
2ω1 − ω2 in the direction 2k1 − k2. When we observe the signal at 2ω1 − ω2

as a function of ω1 − ω2 by changing one of ω1 or ω2, or both of them, the
signal reaches a maximum at the frequencies where ω1 − ω2 is resonant to
the elementary excitation. This is called CARS and is schematically shown
in Fig. 6.8. This CARS is a useful tool to observe rotations and vibrations in
molecular gases and liquids, in addition to elementary excitations in solids.
While the Raman signal is produced by spontaneous emission in conventional
Raman scattering, the CARS signal is created coherently by induced emission
at a difference-frequency 2ω1 − ω2 of two coherent incident beams.

Fig. 6.8. Concept of CARS (Coherent Anti-Stokes Raman Scattering). When the
difference-frequency ω1 −ω2 of two incident beams ω1 and ω2 becomes equal to the
angular frequency of any elementary excitation ω0 in solids, the CARS signal at
2ω1 − ω2 shows strong enhancement



6.2 Third-Order Optical Response 151

We decompose the third-order polarizability of the CARS process χ(3)

(2ω1 − ω2;ω1,−ω2, ω1) into the resonant part χ(3)
R and the nonresonant part

χ
(3)
NR. The third-order electric polarization P (3)(ωs) with ωs = 2ω1 − ω2 and

wavevector 2k1 − k2 under two incident beams E1 exp[i(k1 · r − ω1t)] and
E2 exp[i(k2 · r − ω2t)], is given by

P (3) (ωs) = χ(3) (ωs;ω1,−ω2, ω1) : E1E1E
∗
2 . (6.33)

Inserting this nonlinear polarization into the right-hand side of (6.2), the signal
Es(ωs) exp[i(ks · r − ωst)] is obtained in the same way as in Sect. 6.1.1:

P (3) (ω1, ω2) =
cε0

√
ε (ωs)
2

|Es (ωs)|2

=
ω2

s

8cε0
√
ε (ωs)

∣∣∣χ(3) (ωs)
∣∣∣2 |E1|4 |E2|2

sin2 (∆kl/2)
(∆k/2)2

. (6.34)

Here, ∆kl ≡ (2k1 − k2 − ks)·l, and l is a path vector of the signal light within
the medium. Equation (6.34) means that the CARS signal is proportional to
|χ(3)(ωs)|2 in the direction ks = 2k1−k2. The nonresonant term χ

(3)
NR may in

general be considered to be a constant and the resonant term χ
(3)
R is written as

χ
(3)
R =

a

ω1 − ω2 − ω0 + iΓ
. (6.35)

Here ω0 is the angular frequency of the relevant elementary excitation and Γ
its relaxation constant. The spectrum of the CARS signal is proportional to

∣∣∣χ(3) (2ω1 − ω2;ω1,−ω2, ω1)
∣∣∣2

=

{
χ

(3)
NR +

a (ω1 − ω2 − ω0)
(ω1 − ω2 − ω0)

2 + Γ 2

}2

+
a2Γ 2

{(ω1 − ω2 − ω0)
2 + Γ 2}2

. (6.36)

When a/χ(3)
NR < 0 and |a/χ(3)

NR| � 2Γ , |χ(3)|2 has the peak value (a/Γ )2(�
|χ(3)

NR|2) at ω1 −ω2 = ω0, and shows the dip value (χ(3)
NR)4(Γ/a)2 at ω1 −ω2 =

ω0−a/χ(3)
NR as Fig. 6.9 shows. For the case of a/χ(3)

NR > 0, the relative positions
of the signal peak and dip are reversed.

Levenson [66] irradiated a calcite crystal CaCO3 by two dye laser beams
ω1 and ω2 and observed the CARS signal with frequency ωs = 2ω1 − ω2 as
a function of detuning ω1 − ω2 as shown in Fig. 6.9. Comparing this figure
with (6.36), we obtain ω0 = 1088 cm−1, a = −(8.5 ± 1) × 10−2 cm3/erg·s,
χ

(3)
NR = (1.4 ± 0.2) × 10−14 cm3/erg. When he used the calcite sample pasted

with sapphire of thickness 0.25 mm , the dip frequency shift was observed as
Fig. 6.9 shows. From this measurement χ(3)

NR = (1.14 ± 0.15) × 10−14 cm3/erg
is obtained for the sapphire crystal.
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Fig. 6.9. CARS spectrum due to the 1088 cm−1 vibrational mode of a calcite crystal.
(a) CARS signal from only 0.25 mm calcite crystal, and (b) that from a hybrid
system of 0.25 mm calcite and 0.25 mm sapphire crystals [66]

6.2.2 Phase-Conjugated Waves

A great variety of third-order optical phenomena are available under three
degenerate or nearly degenerate incident fields. First of all, we discuss the
mechanism of phase-conjugated wave generation, i.e., the generation of a time-
reversed wave.

As Fig. 6.10(a) shows, the nonlinear medium is irradiated by two colliding
pump beams (ω1, kf = k0) and (ω1, kb = −k0) and the third pump beam (ω2,
kp) overlaps with the two colliding beams within the nonlinear medium. The
density matrices of the electronic ground and excited states start to oscillate
with wavevector kf − kp and the angular frequency ω1 − ω2 as Fig. 6.10(b)
shows.

This is called the population grating. The third pump beam (ω1, kb =
−k0) is diffracted by the population grating and is scattered into the wavevec-
tor state −kp with angular frequency 2ω1−ω2. This wave is called the phase-
conjugated wave and is described by

χ(3) (2ω1 − ω2;ω1,−ω2, ω1) EfEbE∗
p exp [i {−kp · r − (2ω1 − ω2) t}] .

(6.37)

This is just the phase-conjugated wave [Ep exp(ikp · r)]∗e−iω1t when ω1 =
ω2, i.e., this describes the time-reversal propagation of the probe beam
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Fig. 6.10. (a) Three incident beams are irradiated in the nonlinear optical material
to obtain the phase-conjugated wave. (b) The first example of phase-conjugated
wave generation. The pump beam (ω1, kf = −k0) and the probe beam (ω2, kp) make
the population grating of the excitation, and the other pump beam (ω1, kb = −k0)
is diffracted by the population grating. The diffracted wave is the phase-conjugated
wave (2ω1 − ω2, −kp). (c) Two pump beams (ω1, kf = k0) and (ω1, kb = −k0)
make the population grating, and the probe beam is diffracted into kp±2k0. This is
conventional four-wave mixing. (d) The pump beam (ω1, kb = −k0) and the probe
beam make the population grating and the other pump beam (ω1, kp) is diffracted
into −kp and kp + 2k0. The former is the phase-conjugated wave and the latter is
the conventional four-wave mixing

Ep exp[(ikp · r − ω2t)]. In Fig. 6.10(c), excitations with 2k0 and −2k0 are
created by the two colliding beams and the probe beam is scattered into
kp ± 2k0. This is a conventional four-wave mixing process. Figure 6.10(d)
shows that the incident beam (ω1, k0) is scattered by the population grating
made by (ω1, −k0) and (ω2, kp).

The fact that the phase-conjugated wave is a time-reversal propagation of
the probe light was demonstrated by using semiconductor microcrystallites
embedded in glass [67]. The laser light has good directionality, i.e., a well-
defined wavevector so that the incident light is observed as a sharp spot as
shown in Fig. 6.11(a). When this laser light passes through a frosted glass
plate, the laser light suffers from aberration as shown in Fig. 6.11(b). If this
transmitted light is reflected by a normal mirror and is sent back through the
glass, the aberration grows further. However, in the case of a conjugated mir-
ror instead of a conventional mirror, the aberration induced on the right-going
path is completely eliminated on the backward propagation as demonstrated
in Fig. 6.11(c). These processes are schematically summarized in Fig. 6.12.
Here, these semiconductor microcrystallites embedded in glass under irra-
diation of two-colliding pump beams play the role of the phase-conjugated
mirror, and the aberrated light plays the role of the probe light. This



154 6 Nonlinear Optical Responses I

(a) (b) (c)

Fig. 6.11. (a) The laser spot of the incident beam, (b) the spot of the aberrated
beam after passing through the frosted glass, and (c) the beam spot observed af-
ter the aberrated beam is reflected on the phase-conjugated mirror and this beam
propagates backward through the same frosted glass [67]

Reflected

Incident

Frosted Glass

Mirror

Phase-Conjugated

Mirror

Incident

Reflected

(a)

(b)

Fig. 6.12. Schematic demonstration of the difference between (a) a conventional
mirror and (b) a phase-conjugated mirror. The aberration induced in the rightward
propagation is completely eliminated by the backward propagation after the reflec-
tion on the phase-conjugated mirror (b), while the aberration is doubled in the case
of the conventional mirror (a) [68]

phase-conjugation is a third-order optical process described by the nonlin-
ear polarizability χ(3)(2ω1 − ω2;ω1,−ω2, ω1).

6.2.3 Optical Bistability

We show an observed example of optical bistability in Fig. 6.13 [69]. Here
the nonlinear material is an 11 µm thick CdS semiconductor plate containing
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Fig. 6.13. Optical bistable response under resonant pumping of the bound exciton in
CdS. The thickness of the CdS crystal is 11 µm and the neutral donor concentration
is 1015 cm−3. Note that the high transmitting state U and the low one L are possible
when the incident light intensity Ii is between the sustain power Is and the critical
power Icr [69]

neutral donors of 1015/cm3 with dielectric mirror coated on both sides, which
give a reflectivity of 0.9. The bound exciton at the neutral donor is resonantly
pumped. When the incident light intensity Ii is varied, the transmitted light
intensity It is observed to show hysteresis as Fig. 6.13 shows. Note here that
the transmitted light It shows two stable states: high and low transmitting
states U and L when the incident light intensity Ii is kept between Is and Icr.
Because of these two stable states, this phenomenon is called optical bistabil-
ity. Such a device has been used for optical information processing, making
these U and L states correspond to the digital states 1 and 0, respectively.

This optical bistability originates in optical nonlinearity, such as the optical
Kerr effect and feedback effect. The amplitude Et of the transmitted light
through the Fabry–Pérot resonator shown in Fig. 6.14 is described as a sum
of a light field transmitting after no-, one-, . . . , multiple extra round-trips
within the sample:

Et = eiδ/2tt′Ei(1 + r2eiδ + r4e2iδ + · · · ) . (6.38)

Here t and t′ are the amplitude transmitivities at the front and rear surfaces,
r is the amplitude reflectivity with the relation tt′ = 1 − r2, and δ ≡ 4πn′l/λ
is the phase-change after one round-trip over the sample thickness l. Here n′

is a nonlinear refractive index at the wavelength λ, and n′ = n0 + n2|E|2 for
the case of the optical Kerr effect with E the internal field. The coefficient n2

is related to the third-order polarizability χ(3) by

χ(3)(ω;ω,−ω, ω) = 2ε0n0n2 . (6.39)
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Fig. 6.14. Concept of the Fabry–Pérot resonator. t and r are, respectively, the
amplitude transmitivity and reflectivity of the nonlinear optical material

The first term of (6.38) describes the contribution of direct transmission
A → B → C in Fig. 6.14, and the second term comes from the process A →
B → A′ → B′ → C ′ with one extra round-trip. We are considering normal
incidence for optical bistability but the incident light Ei was drawn for visual
clarity with a finite angle in Fig. 6.14.

From (6.38), the transmitted light intensity It is expressed in terms of
the finnesse F ≡ 4R/(1 − R)2 of the Fabrt-Pérot resonator with R ≡ |r2| as
follows:

It =
1

1 + F sin2(δ/2)
Ii . (6.40)

With the phase change δ ≡ 4πn′l/λ = 2πN , with N an integer, the standing
wave within the resonator constitutes the mode with nodes on both ends
and the transmitivity is 100% as (6.40) shows. On the other hand, for the
case of δ = 2π(N + 1/2), the transmitivity is given by It/Ii = 1/(1 + F ) and
becomes very small for a system with a large value of finnesse F . The nonlinear
refractive index is n′ = n0 +n2|E|2 for the dispersive type so that, even when
δ = 2π(N+1/2) at the weak internal field E → 0, the transmissivity increases
through the change of δ in (6.40) when the incident light intensity Ii increases.
As a consequence, the positive feedback effect works so as to increase the
internal field and finally the transmitted light intensity It increases abruptly
at Ii = Icr as Fig. 6.13 shows. On the other hand, as we decreases the incident
light intensity Ii from the high transmitting state, the strong internal field
which has already been standing within the resonator can persist below Ii =
Icr and the high transmitting state is kept until Ii = Is (< Icr) below which
the transition is induced into the low transmitting state. The imaginary part of
χ(3) sometimes corresponds to absorption saturation and can also contribute
to the optical bistability. The optical bistability observed in Fig. 6.13 originates
in both the real and imaginary parts of χ(3).
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Optical bistability is being applied to parallel or planar information
processing by putting a large number of these optically bistable devices on
a plane. In this case, the weaker incident power is the more preferable both
for the holding and switching incident powers. At the same time, the shorter
switching time is also required to increase the efficiency of information process-
ing. Therefore a nonlinear optical material with a larger χ(3) value and a
shorter switching time is being sought.

6.3 Excitonic Optical Nonlinearity

We introduce a strategy for obtaining the large third-order polarizability χ(3)

which can effectively induce four-wave mixing, generation of phase-conjugated
waves, optical squeezing, and optical bistability. With the larger χ(3) value and
the shorter switching time τ , the nonlinear optical materials are more prefer-
able. In general, however, we have an empirical law that these two values |χ(3)|
and 1/τ must obey a trade-off relation as shown by the solid line in Fig. 6.15.
This means that the figure of merit |χ(3)|/ατ is almost constant. Here α is the
absorption coefficient at the relevant frequency ω. Figure 6.15 demonstrates
that the figure of merit is |χ(3)|/ατ =constant, almost independently of the
material and the excitation frequency ω. Certainly, this may be true as long
as single-electron excitations are used for the origin of χ(3). In this section
we will demonstrate that we are free of this limitation, |χ(3)|/ατ = constant,
when the collective excitations such as excitons are resonantly pumped, that
is, rapid switching and large χ(3) can be satisfied simultaneously [70,71].

A Frenkel exciton, i.e., a collective electronic excitation in a molecular
crystal, has a macroscopic transition dipole moment

P k =
√
NµδkK , (6.41)

as mentioned already in Sect. 5.2.4. Here µ is the transition dipole moment
of a molecule, N the number of molecules in a crystal, and K the wavenum-
ber vector of the incident light. On the other hand, a Wannier exciton in a
semiconductor is made up of the superponsition of products of Bloch states
around the bottom of the conduction band and those around the top of the
valence band, and it has a transition dipole moment

P k =
√
N

(
u3

πa3
B

)1/2

µCVδkK . (6.42)

Here u3 is the volume of the unit cell, and aB the exciton Bohr radius, i.e.,
the average distance between the electron and the hole composing a Wannier
exciton. In general, the exciton Bohr radius aB is much larger than the size u of
the unit cell in semiconductors. Therefore, the transition dipole moment of the
Wannier exciton has a reduction by (u/aB)3/2 but both Wannier and Frenkel
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Fig. 6.15. The figure of merit of nonlinear optical materials is plotted by
|χ(3)|/α vs. the switching rate 1/τ . The empirical law of constant figure of merit
|χ(3)|/ατ =const. is represented by the shaded straight line. Note that the figure
of merit increases beyond the empirical law under nearly resonant pumping of the
excitons

excitons commonly have a macroscopic enhancement
√
N . This is valid only

in the limit that the coherent length of both excitons extends over the crystal
volume V = Nu3. In real crystals, however, the excitonic coherence length is
restricted to finite size due to scattering by phonons and crystal defects. In the
case of semiconductor microcrystallites such as CuCl and CdS, the coherent
size of the exciton is determined by its size at low temperatures.

Let us derive χ(3)(ω;ω,−ω, ω) under nearly resonant pumping of the ex-
citon in a microcrystallite [68]. The interaction H′ of this exciton with the
radiation field is expressed in the electric dipole approximation as

H′ = −P · Eω(t) , (6.43)

where Eω(t) = E exp(−iωt)+ c.c. The third-order polarization is evaluated as〈
P (3)(ω)

〉
= Tr

{
P ρ(3)(t)

}
, (6.44)

where the density matrix ρ(t) is expanded to third order in the interaction
Hamiltonian H′, i.e., third order in the external radiation field Eω. The low-
est exciton level dominantly has the largest oscillator strength in most cases.
When the radiation field ω is nearly resonant to this level ω0, we may well
accept the rotating wave approximation and safely neglect the process con-
taining antiresonant electronic excitations. Although 48 terms contribute in
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Fig. 6.16. Eight double Feynman diagrams contributing to χ(3)(2ω1 −
ω2;ω1,−ω2, ω1) of the excitonic system. Thin, thick, and double lines mean, re-
spectively, the ground, a single exciton, and a double exciton state. See also Fig. 6.2

general to the third-order polarization, only the eight terms drawn in Figs. 6.16
and 6.17 are chosen as dominant terms contributing to the third-order polar-
izability χ(3)(2ω1 − ω2;ω1,−ω2, ω1) under nearly resonant pumping of the
lowest energy exciton ω0. In this section, the ground state, one-photon, and
two-photon excited states are described, respectively, as g, n, and m. In order
to obtain the third-order polarization with angular frequency 2ω1 − ω2, we
must consider two first-order density matrices ρ(1)ng (ω1) and ρ(1)gn (−ω2) at first
as shown in Fig. 6.17. From (6.13), ρ(1)ng (ω1) obeys

∂ρ
(1)
ng

∂t
=

1
i�

{
�ωngρ

(1)
ng + H′

ngρ
(0)
gg

}
− Γngρ

(1)
ng . (6.45)

Here H′
ng contains only the term with exp(−iω1t) under the rotating wave

approximation so that the left-hand side of (6.45) can be replaced by −iω1ρ
(1)
ng .

As a result, the stationary solution is obtained as

ρ(1)ng (ω1) =
H′

ng(ω1)ρ
(0)
gg

�(ω1 − ωng + iΓng)
. (6.46)
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1st Optical Process 2nd Optical Process 3rd Optical Process

Fig. 6.17. Eight roots of the electronic density matrices contributing to χ(3)(2ω1

− ω2; ω1,−ω2, ω1). These eight routes correspond to the eight diagrams of Fig. 6.16

The other first-order contribution is similarly calculated and

ρ(1)gn (−ω2) =
ρ
(0)
gg H′

gn (−ω2)
� (ω2 − ωng − iΓng)

. (6.47)

To second order in the external field, there are three density matrices for the
present problem as shown in Fig. 6.17. The first one ρ(2)mg obeys the following
equation of motion:

∂ρ
(2)
mg

∂t
=

1
i�

[
�ωmgρ

(2)
mg + H′

mn (ω1) ρ(1)ng (ω1)
]
− Γmgρ

(2)
mg , (6.48)

where Γmg denotes the transverse relaxation rate of two-photon excited state
m. Both ρ(1)ng (ω1) and H′

mn(ω1) are accompanied by exp(−iω1t) so that ρ(2)mg

has a factor exp(−2iω1t). By replacing the left-hand side of (6.48) with
−2iω1ρ

(2)
mg(2ω1), we obtain for the stationary response:

ρ(2)mg(2ω1) =
H′

mn(ω1)H′
ng(ω1)ρ

(0)
gg

�2(2ω1 − ωmg + iΓmg)(ω1 − ωng + iΓng)
. (6.49)

The other two second-order density matrices ρ(2)nn and ρ(2)gg obey the following
differential equations:

∂ρ
(2)
nn

∂t
=

1
i�

[
H′

ng (ω1) ρ(1)gn (−ω2) − ρ(1)ng (ω1)H′
gn (−ω2)

]
− Γn→gρ

(2)
nn ,

(6.50)

∂ρ
(2)
gg

∂t
=

1
i�

[
H′

gn (−ω2) ρ(1)ng (ω1) − ρ(1)gn (−ω2)H′
ng (ω1)

]
+ Γn→gρ

(2)
nn ,

(6.51)

where Γn→g describes the longitudinal decay rate from the one-photon ex-
cited state n into the ground state g. Both H′

ng(ω1) and ρ(1)ng (ω1) have the
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time dependence exp(−iω1t), while both H′
gn(−ω2) and ρ′(1)gn (−ω2) contain

the factor exp(iω2t). As a result, both ρ(2)nn and ρ(2)gg have the time dependence
exp[−i(ω1 −ω2)t]. Therefore we may replace the left-hand sides of (6.50) and
(6.51), respectively, with −i(ω1 −ω2)ρ

(2)
nn and −i(ω1 −ω2)ρ

(2)
gg , and obtain for

the stationary response:

ρ(2)nn (ω1 − ω2) = −ρ(2)gg (ω1 − ω2)

=
H′

ng(ω1)ρ
(1)
gn (−ω2) − ρ(1)ng (ω1)H′

gn (−ω2)
i� [Γn→g − i (ω1 − ω2)]

. (6.52)

There are two terms in the third-order density matrices for the external field,
as Fig. 6.17 shows, and these obey

∂ρ
(3)
ng

∂t
= −i (ωng − iΓng) ρ(3)ng +

1
i�

[
H′

nm (−ω2) ρ(2)mg (2ω1)

+H′
ng (ω1) ρ(2)gg (ω1 − ω2) − ρ(2)nn (ω1 − ω2)H′

ng (ω1)
]
, (6.53)

∂ρ
(3)
mn

∂t
= −i (ωmn − iΓmn) ρ(3)mn +

1
i�

[
H′

mn (ω1) ρ(2)nn (ω1 − ω2)

−ρ(2)mg (2ω1)H′
gn (−ω2)

]
. (6.54)

From the time dependence of the right-hand sides exp[−i(2ω1 − ω2)t], the
left-hand sides of (6.53) and (6.54) may be replaced by −i(2ω1 − ω2)ρ

(3)
ng and

−i(2ω1 − ω2)ρ
(3)
mn. As a result, the solutions of (6.53) and (6.54) are obtained

as follows:

ρ(3)ng (2ω1 − ω2) =
H′

nm (−ω2) ρ
(2)
mg (2ω1) − 2ρ(2)nn (ω1 − ω2)H′

ng (ω1)
� (2ω1 − ω2 − ωng + iΓng)

,

(6.55)

ρ(3)mn (2ω1 − ω2) =
H′

nm (ω1) ρ
(2)
nn (ω1 − ω2) − ρ(2)mg (2ω1)H′

gn (−ω2)
� (2ω1 − ω2 − ωmn + iΓmn)

.

(6.56)

Summing these results, the third-order electric polarization under stationary
pumping is evaluated from (6.44) as

〈
P (3) (2ω1 − ω2)

〉
= Pgnρ

(3)
ng (2ω1 − ω2) + Pnmρ

(3)
mn (2ω1 − ω2) + c.c.

(6.57)

Recently, microcrystallites of the semiconductor CuCl were crystallized in the
insulator NaCl. The size of the CuCl microcrystallites can be well controlled
from radius R = 1.3 nm to 10 nm or even larger and the size-dependence of the
excitonic superrradiance rate was observed as already mentioned in Sect. 5.2.4.
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We can also expect a large third-order optical response under nearly res-
onant pumping of the exciton in microcrystallites. Let us apply our formula
mentioned in the above paragraph to a system of CuCl microcrystallites em-
bedded in the insulator. As the exciton Bohr radius in CuCl crystals is 0.67 nm,
when the exciton is in the lowest excited state 1s, its center-of-mass motion
is also well quantized in a microcrystallite with radius R = 1.3 ∼ 10 nm.
The insulator NaCl outside the CuCl microcrystallite has a bandgap 7 eV so
that the potential barrier for the CuCl exciton with 3.2 eV excitation energy
may be approximated to be infinite outside the microcrystallite. Then the
eigenenergies of the CuCl exciton are obtained as

En = Eg −Ry +
�

2

2M

(πn
R

)2

, (n = 1, 2, . . .) . (6.58)

Here Eg is the bandgap energy between the conduction and valence bands in
the CuCl bulk crystal, Ry is the exciton binding energy 200 meV, and n is
the principal quantum number of the exciton center-of-mass motion. The last
term of (6.58) denotes the quantization energy of the center-of-mass motion
with massM and this quantization energy, i.e., the energy separation between
the lowest n = 1 and the second lowest n = 2 states, is estimated to be of
the order of 10 meV. The transition dipole moment to the lowest exciton state
n = 1 in (6.58) is evaluated to be

Pn =
2
√

2
π

(
R

aB

)3 1
n

µcu , (n = 1, 2, . . .) . (6.59)

Note that this value has a mesoscopic enhancement (8R3/π2a2
B)1/2 and that

the oscillator strength concentrates dominantly on the lowest excited state
with quantum number n = 1. Here we will evaluate χ(3)(ω;ω,−ω, ω) under
nearly resonant pumping of the lowest exciton state n = 1 with the largest
oscillator strength. Under this condition, we may take into account only the
following three transition dipole moments:

Png ≡ P1 , Pmn =
√

2P1 , Pnm =
√

2P ∗
1 . (6.60)

Here the factor
√

2 comes from the bosonic character of the excitons and
we have neglected the spin degeneracy of the involving electrons. Denoting
by �ωint the interaction energy between two excitons in a microcrystallite,
the single-photon and two-photon excited states have the following excitation
energies:

ωng = ω1 , ωmg = 2(ω1 + ωint) ,
ωmn = ωmg − ωng = ω1 + 2ωint . (6.61)

This interaction energy �ωint originates in exchange energies between two
electrons and between two holes composing two excitons, which make the
excitons deviate from ideal bosons. Here we neglect the bound state of two



6.3 Excitonic Optical Nonlinearity 163

excitons, i.e., an excitonic molecule which is a topic in Sect. 6.4. This may be
justified when ω ∼ ω1, i.e., nearly resonant pumping of the ω1 exciton as 2ω
is far enough off-resonant from an excitonic molecule in CuCl. However, we
must take into account the relaxation effects of each excitation:

Γn→g = 2γ , Γng = Γ = γ + γ′ ,
Γmg = 2(γ + γ′) , Γmn = Γ + 2γ = 3γ + γ′ . (6.62)

Here the longitudinal relaxation Γn→g = 2γ consists of the superradiant decay
described in Sect. 5.2.4 and the nonradiative decay, and γ′ describes the pure
dephasing rate. Γmg describes the transverse relaxation rate of two excitons
while Γmn is the sum of a single exciton longitudinal decay rate and a single
exciton transverse rate.

The third-order polarization of (6.57) is evaluated explicitly in terms of
(6.60)–(6.62) and the third-order polarizability χ(3)(ω;ω,−ω, ω) defined by

〈
P (3) (ω)

〉
= χ(3)(ω;ω,−ω, ω)E |E|2 e−iωt , (6.63)

is given by

χ(3)(ω;ω,−ω, ω) =
|P1|4

�3

Nc

(ω − ω1 + iΓ ) (ω − ω1 − iΓ )

×
{

1
ω − ω1 + iΓ

− 1
ω − ω1 − 2ωint + i (Γ + 2γ)

}

×
{

1 +
2γ′

γ
+

2iΓ − ωint

ω − ω1 − ωint + iΓ

}
. (6.64)

Here Nc denotes the number density of microcrystallites, and Nc ≡ 3r/(4πR3)
with r the ratio of the volume of the semiconductor microcrystallites to that of
the insulating matrix. Let us consider the size dependence of χ(3) mesoscopic
enhancement under a constant volume ratio r. The result of (6.64) looks a
little complicated so that we discuss χ(3) for several limiting cases [70,71].

(a) ωint > |ω − ω1| > Γ :

χ(3) =
2Nc |P1|4

�3 (ω − ω1)
3

(
1 +

γ′

γ

)
∝

(
R

aB

)3

. (6.65)

It is important to point out that χ(3) increases in proportion to the volume
of microcrystallite under a constant volume ratio r. This is because the
fourth power of the transition dipole moment |P1|4 in the numerator in
(6.65) has an R6 dependence and overcomes the R−3 dependence of Nc

[70]. In the linear response, the R-dependence of |P1|2 just cancels out
that of Nc so that χ(1) has no R-dependence as long as the volume ratio
r is a constant. The interaction energy of two excitons with the same spin
structure �ωint is given in the first Born approximation:
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�ωint =
13π
3
Ry
a3

B

v
=

13
4
Ry

(aB

R

)3

. (6.66)

Note here that this interaction energy �ωint is inversely proportional to
the average volume v ≡ 4πR3/3 of a microcrystallite. For a CuCl micro-
crystallite with R = 3 nm, �ωint ∼ 3 meV while �Γ = 0.02 meV at low
temperatures so that a degree of off-resonance |ω−ω1| can be chosen over
a wide frequency range for case (a).

(b) For the case of more nearly resonant pumping |ω − ω1| < Γ < ωint,

χ(3) = −i2Nc |P1|4

�3Γ 2γ
(6.67)

becomes pure imaginary and contributes to the absorption saturation.
When the superradiant decay is not a dominant channel in the longitudinal
2γ and transverse Γ relaxation processes, both Γ and γ are independent
of R so that −Imχ(3) is also proportional to R3 and is accompanied by the
mesoscopic enhancement. For example, for the case of the volume ratio
0.1% of CuCl microcrystallites with a radius 8 nm, and �Γ = 0.5 meV,
2�γ = 0.03 meV, Imχ(3) = −10−3 esu. On the other hand, when 2γ is
dominantly determined by the superradiant decay, −Imχ(3) becomes in-
dependent of the size of microcrystallites.

(c) Under off-resonant pumping |ω − ω1| > Γ > ωint,

χ(3) =
2iNc |P1|4 (2γ′ + γ)

�3 (ω − ω1)
4 ∝

(
R

aB

)3

. (6.68)

In this case, χ(3) is also pure imaginary and has the same size R depen-
dence as in case (a). However, the absolute magnitude is (2γ′+γ)/|ω−ω1|
(< 1) smaller than case (a).

Excitons are often treated as Bose particles in a bulk crystal. Although
ideal Bose particles cannot show any nonlinearities, three factors make ex-
citons deviate from ideal bosons so as to bring about a finite χ(3) as (6.64)
shows. The first factor is the exciton–exciton interaction �ωint, the second
the longitudinal decay of the exciton 2γ, and the third the transverse relax-
ation Γ = γ + γ′ of the exciton. These three effects may be understood from
the three cases (a), (b), and (c). In these cases, the mesoscopic enhancement
of the exciton transition dipole moment works effectively, |χ(3)| increases in
proportion to R3 and reaches the value |χ(3)| ∼ 10−3 esu for CuCl microcrys-
tallites with a radius R = 8 nm. This order of value was observed for these
microcrystallites crystallized in the insulator NaCl and glasses [72]. In order
to obtain the large χ(3) value, we need not restrict our choice to microcrystal-
lites, but we may expect such an enhancement from excitons in bulk crystals
with a long coherent length at low temperature. For example, under resonant
pumping of the lowest surface exciton level in an anthracene crystal [73] and
the bulk exciton of a ZnSe crystal, the figures of merit of these crystals are
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Fig. 6.18. Schematic diagrams of (a) sum-frequency generation and (b) two-photon
absorption

found to be much larger beyond the conventional figure of merit line as shown
in Fig. 6.15.

6.4 Two-Photon Absorption Spectrum

Two-photon absorption spectroscopy plays important roles in determining the
electronic structure of crystals because it gives us information complementary
to that obtained by one-photon absorption spectroscopy. Higher-harmonic
generation and four-wave mixing are optical processes of dispersive type in
which the electrons come back to the initial ground state after these processes.
This is shown in Fig. 6.18(a). On the other hands, two-photon absorption is of
dissipative type in which the electronic excitation remains after this process
(see Fig. 6.18b).

Let us consider a crystal with inversion symmetry. One-photon absorp-
tion is electric dipole-allowed only between two electronic states with oppo-
site parities. Conversely two-photon absorption is allowed only between two
states with the same parity. From this fact we can understand that one- and
two-photon absorption spectroscopies both with the common ground state
as an initial state give complementary information on the electronic excited
states. Furthermore, the more interesting point is that the two-photon absorp-
tion coefficient is very sensitive to the polarization directions of two incident
beams e1 = (l1,m1, n1) and e2 = (l2,m2, n2). Here in terms of the angles
of polarization relative to the three principal crystalline axes θil, θim and θin
(i = 1, 2), the directions of polarization are given as li = cos θil, mi = cos θim,
and ni = cos θin. We can determine the symmetry of the electronic transition
from the angle dependence of the two-photon absorption coefficient [74]. This
spectrum is usually being observed by using a single laser light beam with a
fixed frequency and conventional light, the frequency of which is changeable
continuously. Here we measure the two-photon absorption coefficient from the
degree of attenuation of the conventional light.
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Let us irradiate the insulating crystal simultaneously by a laser beam with
angular frequency ω1 and polarization e1 and a conventional light beam with
ω2 and e2. We assume that both �ω1 and �ω2 are smaller than the bandgap
so that single-photon absorption is negligible. The transition probability to
the excited state |e〉 from the crystal ground state absorbing two photons �ω1

and �ω2 simultaneously is expressed as

W (2) =
2π
�

( e
m

)4
(

�

2ε0ε1V ω1

)(
�

2ε0ε2V ω2

)

×N1N2

∣∣∣A(2)
eg

∣∣∣2 δ (Eeg − �ω1 − �ω2) , (6.69)

A(2)
eg =

∑
n

[
(P en · e1) (P ng · e2)

� (ωn − ω2)
+

(P en · e2) (P ng · e1)
� (ωn − ω1)

]
. (6.70)

Here Ni (i = 1, 2) denote the photon numbers of the �ωi photon, and εi the
crystal dielectric constant at angular frequency ωi. The matrix elements P en

and P ng are the expectation values of the crystal momentum P =
∑

j P j ,
respectively, between the excited state |e〉 and the intermediate state |n〉 and
between |n〉 and the ground state |g〉. The absorption coefficient α(2) of con-
ventional light ω2 is obtained by dividing (6.69) by the ω2 photon flux density
cN2/

√
ε2V as

α(2) =
2π
�

( e
m

)4
(

�

2ε0ε1V ω1

)(
�

2ε0c
√
ε2ω2

)
N1

∣∣∣A(2)
eg

∣∣∣2 ρ (Eeg) . (6.71)

Here ρ(Eeg) is the density of states at the excitation energy Eeg = Ee − Eg.
From group theoretical considerations of the matrix elements (6.70) for a
two-photon transition, we will obtain the selection rules for 32 crystal point
groups [74]. Instead of the sum over the intermediate states |n〉 in (6.70):

Λ (ωi) =
∑

n

|n 〉〈n|
� (ωn − ωi)

, (6.72)

we introduce the symmetric part Λ+ = Λ(ω1) +Λ(ω2) and the antisymmetric
part Λ− = Λ(ω1) − Λ(ω2), and rewrite A(2)

eg of (6.70) as

A(2)
eg = e1 · 〈e

∣∣(PΛ+P
)
s
+

(
PΛ−P

)
as

∣∣ g〉 · e2 . (6.73)

Here, ( )s and ( )as mean, respectively, the symmetric and antisymmet-
ric parts of the tensor within ( ). The electronic elementary excitation in
the crystal may be considered to conserve the total wavevector between the
valence and conduction bands, because the photon wavevector is almost neg-
ligible compared with that of Bloch electrons in the Brillouin zone. Under this
condition, the selection rule of (6.73), i.e., the two-photon absorption tensor,
can be discussed in terms of the point group instead of the space group of



6.4 Two-Photon Absorption Spectrum 167

the crystal. For example, two-photon absorption due to an exciton can be de-
scribed in terms of the value ϕex(0) of the wavefunction of the relative motion
of the electron–hole pair within the exciton at the origin, as

A(2)
eg = ϕex (0)

∫
u∗c0

{
e1 ·

(
pΛ+p

)
s
· e2 + e1 ·

(
pΛ−p

)
as

· e2
}
uv0dr .

(6.74)

Here, p means the momentum operator of a single electron, and uc0 and uv0

the periodic parts of the conduction and valence band Bloch functions at
the same extremum point in the Brillouin zone. For example, the two-photon
excitation tensor at the Γ -point (k = 0) of the cubic crystal Oh is expressed
by the following irreducible representation:

e1 · (pΛ+p)s · e2

=
1
3
(l1l2 +m1m2 + n1n2)(pxΛ

+px + pyΛ
+py + pzΛ

+pz) A1g

+
1
2
(l1l2 −m1m2)(pxΛ

+px − pyΛ
+py) Eg

+
1
6
(l1l2 +m1m2 − 2n1n2)(pxΛ

+px + pyΛ
+py − 2pzΛ

+pz) Eg

+
1
2
(m1n2 +m2n1)(pyΛ

+pz + pzΛ
+py) T2g

+
1
2
(n1l2 + n2l1)(pzΛ

+px + pxΛ
+pz) T2g

+
1
2
(l1m2 + l2m1)(pxΛ

+py + pyΛ
+px) , T2g

(6.75)
e1 · (pΛ−p)as · e2

+
1
2
(m1n2 −m2n1)(pyΛ

−pz − pzΛ
−py) T1g

+
1
2
(n1l2 − n2l1)(pzΛ

−px − pxΛ
−pz) T1g

+
1
2
(l1m2 − l2m1)(pxΛ

−py − pyΛ
−px) . T1g (6.76)

Considering that the crystal ground state has the Alg representation, it is
understood that the states A1g, Eg, T1g, and T2g can be excited by two-
photon transitions. At the same time, we can obtain from (6.75) and (6.76)
the incident angle dependence of the two-photon absorption coefficients in the
cubic crystals as
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A1g → A1g : (l1l2 +m1m2 + n1n2)
2 = (e1 · e2)

2
, (6.77)

A1g → Eg : l21l
2
2 +m2

1m
2
2 + n2

1n
2
2 − (l1l2m1m2 +m1m2n1n2 + n1n2l1l2) ,

(6.78)

A1g → T1g : 1 − (l1l2 +m1m2 + n1n2)
2 = (e1 × e2)

2
, (6.79)

A1g → T2g : 1 −
(
l21l

2
2 +m2

1m
2
2 + n2

1n
2
2

)
+2 (l1l2m1m2 +m1m2n1n2 + n1n2l1l2) . (6.80)

One-photon absorption in a cubic crystal is allowed only for the transition
A1g → T1u, so that the absorption coefficient is isotropic against the inci-
dent angle. On the other hand, two-photon absorption coefficients to different
symmetry states have a different angle dependence on two incident beams as
shown in (6.77)–(6.80) for a Oh crystal. This means that four different ex-
cited states A1g, Eg, T1g, and T2g can be identified by observing the e1 and
e2 dependences of these two-photon absorption coefficients for a Oh crystal.
As long as we use linearly polarized light as two incident beams, we cannot
uniquely identify the four kinds of these excited states because the angle de-
pendences of two-photon absorption (6.77)–(6.80) are written in terms of only
three independent functions of the two incident angles. However, when we also
use circularly polarized light as the incident beams, we will be able to identify
these four levels.

We will demonstrate the experimental results in which the involving ex-
cited states could be identified from the angle dependences of the two incident
beams. Two excitons are sometimes bound into an excitonic molecule. This
consists of two electrons with different spin components in the conduction
band and two holes also with different spin components in the valence band,
and may be understood in analogy to a hydrogen molecule [75]. This exci-
tonic molecule can be excited by two-photon absorption and its transition
probability is written as

W (2) (ω) =
2π
�

∣∣∣∣∣
〈

mol | H′
∑

n

|n 〉〈n|
� (ωng − ω)

H′ | g
〉∣∣∣∣∣

2

δ (2�ω − Emol) .

(6.81)

The sharp two-photon absorption line is observed more strongly by a factor
106–107 than the continuum background of band-to-band two-photon absorp-
tion. This abnormal enhancement of molecular two-photon absorption comes
from (1) the giant oscillator strength and (2) resonance enhancement [76]. For
the transition from the intermediate state |n〉 in which a single exciton exists
to the final state of an excitonic molecule, we can choose any valence electron
within the large molecular orbital around the first exciton in |n〉. This large
freedom of the selection of the second valence electron (hole) results in the
giant oscillator strength [76]. This is in contrast to the conventional band-to-
band two-photon absorption, in which a single electron interacts with the first
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and second photon. The energy denominator of (6.81) is half the binding en-
ergy of the excitonic molecule, e.g., as small as 15 meV in a CuCl crystal. This
small energy denominator enhances the two-photon absorption coefficient be-
cause this is in contrast to the two-photon band-to-band transition with the
energy denominator of the order of eV. This is the second enhancement effect,
i.e., the resonance enhancement which results also in the giant two-photon
absorption due to the excitonic molecule. This absorption coefficient was es-
timated to become of the same order as the linear absorption coefficient by
an exciton under 1 MW/cm2 incident laser irradiation in a CuCl crystal.

This prediction of the giant two-photon absorption due to the excitonic
molecule was proved experimentally by Gale and Mysyrowicz using a CuCl
crystal [77]. Both the crystals CuCl and CuBr have a zinc-blende structure.
However, the highest energy point on the valence band of CuCl is located at
the Γ -point and has Γ7 symmetry of the point group Td, and the bottom of the
conduction band has Γ6 symmetry. As a result, a single level of the excitonic
molecule with Γ1(A1) was observed of the two-photon absorption spectrum.
On the other hand, the top valence band of the CuBr crystal has a four-fold
degenerate Γ8 state. As a consequence, three levels Γ1(A1), Γ3(E), and Γ5(T2)
of the excitonic molecule are observable by two-photon absorption [78]. Vu
Duy Phach and R. Lévy [79] observed the two-photon absorption spectrum of
these three kinds of excitonic molecule, and the incident angle dependence of
these three peaks by changing the polarization angle e2 of the second incident
beam with the first beam polarization e1 fixed as shown in Figs. 6.19(a)–(c).
These three peaks were observed at �(ω1 + ω2) = 5.906 eV, 5.910 eV, and
5.913 eV and the incident angle (θ) dependence of these peak intensities is
shown in Fig. 6.20a–c. These three levels were assigned to Γ1(A1), Γ5(T2), and
Γ3(E) from the low-energy side, from comparison with the theoretical curves
calculated from theory of Inoue and Toyozawa [74]. This paper contains the
dependence of the two-photon absorption intensity on the polarization angles
of two incident beams for every irreducible representation of the elementary
excitation for 32 point groups of the crystal.

6.5 Two-Photon Resonant Second-Harmonic Generation

Higher-harmonic generation under two- or three-photon resonant excitation
of even or odd excited levels gives us fruitful information on the electronic
structure. In this section, we will introduce some interesting features of con-
structive and destructive interference effects for SHG in the ferroelectric–
antiferromagnetic crystals RMnO3 (R = Y, Ho, Er) and the antiferromagnetic
Cr2O3. These crystals have hexagonal and corundum structures, respectively.
Therefore the 3d electrons on the Mn3+ and Cr3+ ions are relatively well local-
ized so that ligand field theory gives a good starting point. This is in contrast
to the perovskite structure where the itinerant nature of the excitations is
inevitable because of the large overlap between the Cu (3dx2−y2) and O (2pσ)
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Fig. 6.19. Polarization directions e1 and e2 of two incident beams in the ex-
periment of two-photon absorption due to excitonic molecules in CuBr. (a) e1 =
(0, 0, 1), e2 = (−(sin θ)/

√
2, (sin θ)/

√
2, cos θ); (b) e1 = (−1/

√
2, 1/

√
2, 0), e2 =

(−(cos θ)/
√

2, (cos θ)/
√

2, sin θ); (c) e1 = (−(cos 25◦)/
√

2, (cos 25◦)/
√

2, sin 25◦),
e2 = (−{cos(θ + 25◦)}/

√
2, {cos(θ + 25◦)}/

√
2, sin(θ + 25◦))
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Fig. 6.20. Two-photon absorption intensity due to the excitonic molecule Γ1, Γ3,
and Γ5, as a function of the angle between e1 and e2 in Figs. 6.19(a)–(c) [79]
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orbitals. This was treated by the excitonic cluster model [80–82]. However,
even in the hexagonal and corundum structures, the propagation effects, i.e.,
the excitonic effects, should be taken into account on the excitations, even
within the 3d-electron multiplets of a single ion.

In Sect. 6.5.1, we will introduce SHG under nearly resonant two-photon
excitation of the (3d)4 electronic levels 5Γ2 and 5Γ1 in RMnO3 with the mag-
netic crystal class 6mm, containing the magnetic space group P63cm and
P63cm. These levels are split into four levels E±

1 and E±
2 by the excitonic

effect, i.e., Davydov splitting. SHG due to these two channels under nearly
two-photon resonant excitation of the lower two levels(E−

1 ) and (E−
2 ) inter-

fere constructively in YMnO3 and HoMnO3 (T ≤ 42 K), but destructively in
ErMnO3 and HoMnO3 (42 < T < 70 K). We will show, in Sect. 6.5.2, two
kinds of second-order susceptibility: (1) which is invariant, and (2) changes
sign under the time-reversal operation. For YMnO3, the former χ(i) is linearly
proportional to the electric polarization Pz while the latter χ(c) is proportional
to the product of Pz and 〈Sx〉 the sublattice magnetization [83]. Therefore we
can determine the ferroelectric and magnetic domain structure by observing
the external interference of SHG due to χ(i), e.g., with SHG of a quartz crys-
tal. The sign of the sublattice magnetization is determined by the internal
interference of SHG due to χ(c) and χ(i) [84, 85].

The ferroelectric domain wall was found to be always accompanied by
an antiferromagnetic Bloch wall [83, 86]. This can be explained in terms
of the polarization-dependent spin anisotropy energy of the Mn3+ spins. In
Sect. 6.5.3, we will discuss also the interference effects of SHG due to elec-
tric and magnetic dipole moments between the ground state 4A2g and the
excited state 4T2g of Cr3+ ions in Cr2O3. The SHG tensors χe and χm due to
the electric and magnetic dipole moments are found to be of the same order
of magnitude and the phases of χm and χe differ by π/2 under two-photon
resonant excitation of 4T2g. This comes from the propagation and relaxation
effects of the magnetic dipolar excitation.

6.5.1 SHG Spectra in Hexagonal Manganites RMnO3

Optical second-harmonic spectroscopy has proved to be a powerful means
for the determination of complex magnetic structures, for example, the non-
collinear antiferromagnetic structure of the hexagonal manganites RMnO3

(R = Sc, Y, Ho, Er, Tm, Yb, Lu) [84, 85]. These compounds are paraelectric
above TC (between 550 and 1000 K) with its space group P63/mmc, and fer-
roelectric below TC with the group P63cm. They are antiferromagnetic below
TN around 80 K.

Take the case of YMnO3 as a first example. Below TN = 74 K, second-
harmonic generation (SHG) is observed in the region around 2.45 eV, which is
described by the magnetic nonlinear susceptibility χ(c)

yyy. Here the first suffix
describes the polarization direction of the second-harmonic signal while the
second and third suffices describe those of the two incident fundamentals. This
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Fig. 6.21. Four different possibilities for the spin ordering of Mn3+ ions in the xy-
plane. For the magnetic point group 6mm there are two possibilities with different
space group symmetries

corresponds to the magnetic space group P6′3cm
′ (P63cm) and we know the

spin ordering should be as shown on Fig. 6.21 [85]. Here and hereafter both
a prime and an underbar mean the time-reversal operation. The peaks in the
SHG spectra around 2.45 eV in Fig. 6.22(a) seem to indicate the existence of
two excited levels 2.45 and 2.51ėV and constructive interference between the
susceptibilities associated with each level [83].

On the other hand, in ErMnO3, SHG below TN = 79 K around 2.45 eV
is observed only in the configuration corresponding to the nonvanishing sus-
ceptibility χ(c)

xxx. This means that the magnetic space group for this system
is P6′3c

′m (P63cm) and the spins of Mn ions are all rotated by an angle 90◦

compared to YMnO3 as shown by Fig. 6.21. There are two peaks also in this
case but with destructive interference with a dip between them as shown by
Fig. 6.22(b). The spectra of HoMnO3 are interesting in that they show both
types of behavior described above, depending on the temperature. The peaks
at 2.45 eV show constructive interference in χ(c)

yyy below TR = 42 K and become
destructive in χ(c)

xxx above TR. See Figs. 6.22(a′) and (b′).
Observation of χ(i)

zyy related to ferroelectricity gives the position of an ex-
cited level at 2.7 eV in all these systems, as shown in Fig. 6.23(a) [84]. The
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Fig. 6.22. The SHG spectra associated with the nonlinear magnetic susceptibilities
of (a) YMnO3, (b) ErMnO3, (a′) HoMnO3 (T = 6K), and (b′) HoMnO3 (T =
50K). Dots show the experimental results and lines the numerical ones. The material
constants have been fixed as shown in [83]

susceptibility χ(i)
zyy is invariant against the time-reversal operation, while χ(c)

yyy

changes its sign under the time-reversal operation. Note that the SH signal
due to χ(i)

zyy has z-polarization, in contrast to the y-polarization of χ(c)
yyy both

under the y-polarization of two fundamentals.
The purpose of the present subsection is to try to understand these features

of the SHG spectra as well as to clarify the relation between them and the
magnetic structures of hexagonal manganites through the calculation of the
susceptibilities χ(c)

yyy and χ(c)
xxx, which are simply denoted as χyyy and χxxx,

in the present subsection. Here, we describe the crystal magnetic structure
of the present system. The environment of the Mn ions to be treated here is
unusual in that the Mn3+ ions with total spin S = 2 are surrounded by the
five coordinated (trigonal) bipyramid of O2− ions. The electronic states will
be discussed. There are six Mn sites in a unit cell of the antiferromagnetic
phase. We describe how to correlate wavefunctions at different sites, and then
find that the single-ion theory does not work well and develop the exciton
theory for the excited states around 2.45 eV. The susceptibilities obtained in
the exciton model turn out to be satisfactory. The exciton model predicts
two excited levels near the single level expected in the single-ion theory and
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Fig. 6.23. SHG spectra of YMnO3 due to the ferroelectric ordering (a) and due to
the antiferromagnetic ordering (b) [84]
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quite different interference behavior for χyyy and χxxx. Finally we give a
brief discussion of the possible cause of clamping of two order parameters,
ferroelectric and antiferromagnetic. Comparison of the calculated spectra with
the observed one is also made there.

The crystal structure of ferroelectric RMnO3 (R = Y, Ho, Er, Lu) is re-
ported by Yakel et al. [87]. The x- and y-axes chosen in the present subsection
coincide with theirs and those of Fröhlich et al. [84] as well. There are six Mn
ions in a magnetic unit cell. Their sites in the unit cell and our choice of local
axes are drawn in Fig. 6.24. As seen in Fig. 6.24, three Mni ions (i = 1, 2, 3)
are supposed to lie in the z = 0 plane, while the other three with i = 4, 5, 6
are in the z = c/2 plane. Let us further assume that the coordinate of Mn1

is given by (d, 0, 0) with d ∼ 0.3a and that of Mn4 as (−d, 0, c/2) so that
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C2(τ) (with time reversal θ) carries Mn1 into Mn4 with its environment in
the crystal.

The local coordinate (ξi, ηi) = R(θi)(x, y) indicates that the local ξi- and
ηi-axes are obtained by rotating the global x- and y-axes through an angle θi,
so that, for example, we have the following relations:

Px = Pξi
cos θi − Pηi

sin θi, (6.82)
Py = Pξi

sin θi + Pηi
cos θi, (6.83)

between the components of the electric dipole-moment operators at different
sites.

We follow Fröhlich et al. [84] in the choice of symmetry operations of the
two possible magnetic space groups P6′3cm

′ (spins of Mn1 ‖ x) and P6′3c
′m

(spins of Mn1 ‖ y). They are given by

(a) P6′3cm
′ : 6′3 = θC6(τ ),
c = σd(τ ),
m′ = θσv , (6.84)

(b) P6′3c
′m : 6′3 = θC6(τ ) ,

c′ = θσd(τ ) ,
m = σv , (6.85)

where σd and σv are reflection in the yz- and xz-planes, respectively, and
primes instead of underlines have been used here to denote anti-unitary op-
erators. The vector τ is give by (0, 0, c/2) and θ is time reversal as usual.

The spin ordering corresponding to these magnetic space groups are drawn
in Figs. 6.21 and 6.24 and the relevant electronic levels of the Mn3+ ion ob-
tained from the polarization characteristics are shown in Fig. 6.25.

Then we find that (a) ε0χyyy is linearly proportional to the product of two
order parameters, i.e., the sublattice magnetization 〈Sx〉 and the ferroelectric
potential vzx or v̄z for YMnO3 and HoMnO3 (T ≤ 42 K), while (b) ε0χxxx

for ErMnO3 and HoMnO3 (42 < T < 70 K) is linearly proportional to the
product of the sublattice magnetization 〈Sy〉 and the ferroelectric potential vzx

or v̄z. The matrix elements vzx and v̄z of Vzx and Vz are linearly proportional
to the ferroelectric polarization Pz. In the ferroelectric phase, the Mn ion is
surrounded by a distorted and tilted bipyramid of O2− ions, the site symmetry
being Cs = m = {E, σv}, where σv = σy is reflection in the xz-plane. The
effect of this ferroelectric phase is treated [82] as a perturbation on Mn ion
due to fields Vm having symmetry lower than D3h:Vz =

∑
iAzi and Vzx =∑

iBzixi.
The ground state of the whole system is described as

Ψg =
∏
nβ

ψnβ , (6.86)
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where ψnβ represents the ground state of the Mn ion at the β (=1,· · · ,6) site
of the nth unit cell. For example, ψn1 and ψn2 are drawn in the upper left
and the lower right, respectively, in Fig. 6.25. The coordinates of the β site
are drawn in Fig. 6.24. When one of the Mn ions, i.e., that at (mα) is excited
to the state ψmαλ, we have the localized excited state

Ψmαλ = ψmαλ

∏
nβ

′ψnβ . (6.87)

Here λ = 1 and λ = 2 correspond to the excitation to the state zx (or zξ)
and zy (or zη) in Table 6.1, respectively.

First, in order to take into account the exciton effect, i.e., the Davydov
splitting, we make the irreducible representation Ψ1(E2x) of C6v symmetry
which is made up of a linear combination of Ψ1(α) with Ψmα1 ≡ Ψzξ(α) (α =
1, . . . , 6), i.e.,

Ψ1(E2x) =
1
2
{Ψ1(2) − Ψ1(3) + Ψ1(5) − Ψ1(6)} (6.88)

and Ψ2(E2x) as a linear combination of Ψ2(β) with Ψmα2 ≡ Ψzη(β) (β =
1, . . . , 6), i.e.,
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Table 6.1. Wavefunctions of the ground and excited states of the Mn3+ ion in
RMnO3

states wavefunction excitation energy

ground 5Γ1 ψz2 ≡ |ϕzx, ϕzy, ϕx2−y2 , ϕ−2xy| 0

(5A1)

excited

(2 photon) 5Γ1 ψzx ≡ |ϕzy, ϕx2−y2 , ϕ−2xy, ϕz2 | 2.7 eV

(5E1a)
5Γ2 ψzy ≡ −|ϕzx, ϕx2−y2 , ϕ−2xy, ϕz2 | 2.46 eV

(5E1b)

(1 photon) 5Γ1 ψx2−y2 ≡ |ϕzx, ϕzy, ϕ−2xy, ϕz2 |
(5E2a)

}
1.6 eV

5Γ2 ψ−2xy ≡ −|ϕzx, ϕzy, ϕx2−y2 , ϕz2 |
(5E2b)

Ψ2(E2x) =
1

2
√

3
{2Ψ2(1) − Ψ2(2) − Ψ2(3)

+ 2Ψ2(4) − Ψ2(5) − Ψ2(6)}. (6.89)

These two states with the same symmetry are mixed by two kinds of excitation
transfers among the sublattice ions, i.e., within the layer and between the
neighboring layers:

Ψ(νE2) = ν1Ψ1(E2x) + ν2Ψ2(E2x). (6.90)

Hereafter, the lower and higher energy E2 state will be distinguished by ν = −
and ν = +, respectively.

Similarly, two levels of the E1 state are also mixed up as

Ψ(µE1) = µ1Ψ1(E1x) + µ2Ψ2(E1x). (6.91)

We also associate µ = − and µ = + with the lower and higher energy eigen-
values obtained here.

At this stage, we realize a possible interpretation of the structures of the
observed χyyy for (a) YMnO3 and χxxx for (b) ErMnO3. The two lines on
the lower energy side 2.46 eV are likely to correspond to (µ = −, E1) and
(ν = −, E2), while the other two lines with higher energy 2.7 eV may be
associated with (µ = +, E1) and (ν = +, E2).

All these four states are optically accessible, and the susceptibility for SHG
are described for the cases (a) YMnO3 and (b) ErMnO3, respectively:
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(a) ε0Nχyyy =
∑

ν

〈Ψg|Py|Ψ(νE2)〉〈Ψ(νE2)|PyPy|Ψg〉
(E(νE2) − 2�ω)∆E

+
∑

µ

〈Ψg|Py|Ψ(µE1)〉〈Ψ(µE1)|PyPy|Ψg〉
(E(µE1) − 2�ω)∆E

, (6.92)

(b) ε0Nχxxx =
∑

ν

〈Ψg|Px|Ψ(νE2)〉〈Ψ(νE2)|PxPx|Ψg〉
(E(νE2) − 2�ω)∆E

+
∑

µ

〈Ψg|Px|Ψ(µE1)〉〈Ψ(µE1)|PxPx|Ψg〉
(E(µE1) − 2�ω)∆E

. (6.93)

The matrix elements of (Px, Py) and (PxPx, PyPy) become finite only with
the help of the spin–orbit interaction Hso = λL · S and the lower-symmetry
crystalline field Cs, i.e., Vm = Vz +Vzx +Vx. Here V =

∑
i vi, vzi = Azi + · · · ,

vzxi = Bzixi+· · · , vxi = Cxi+D(x2
i −y2

i )+· · · , and these fields are finite only
in the ferroelectric phase. As a result, (a) χyyy is found to be proportional
to the product of two order parameters 〈Sx〉 and vzx or 〈Sx〉 and v̄z, and (b)
χxxx is proportional to the product of 〈Sy〉 and vzx or 〈Sy〉 and v̄z [83]. Here
〈Sx〉 and 〈Sy〉 are the expectation value of the spin operators Sx and Sy in
the electronic ground state at sublattice 1, and vzx ≡ 〈Φx2−y2 |Vzx|E1a〉 =
−〈Φ−2xy|Vzx|E1b〉, while v̄z ≡ 〈A1|Vz|Φz〉. It is noted here that both matrix
elements vzx and vz are linearly proportional to the ferroelectric polarization
Pz. We also introduce the relaxation rates Γ (νE2) and Γ (µE1) in such a way
that the causality relation is satisfied and the best fitting is obtained between
the calculated and observed SHG spectra. The results of SHG spectra are
drawn in Fig. 6.22 and the chosen material constants and relaxation rates are
listed in [83].

The first difference of (a) YMnO3 (Fig. 6.22a) and (b) ErMnO3 (Fig. 6.22b)
is that the signals at E(ν = −, E2) = 2.45 eV and E(µ = −, E1) = 2.51 eV
interfere constructively in (a), but destructively in (b) making the sharp dip of
the SHG signal for 2�ω between 2.45 eV and 2.51 eV. The second difference is
conversely that the SHG signals at E(µ = +, E1) and E(ν = +, E2) interfere
constructively in (b) but that the SHG signal on the higher energy side of case
(a) vanishes due to destructive interference as well as the larger relaxation
rates. These differences originate from the different relative magnitudes of
v̄z/vzx.

We can determine both the amplitude and phase of χyyy or χxxx by mea-
suring the interference effects of the SHG signal with that of a suitable refer-
ence material. In fact, Imχyyy of YMnO3 was observed to change its sign when
crossing the border of two antiferromagnetic domains where the sign of 〈Sx〉
changes, in agreement with the theoretical result. However, the sign of Imχyyy

was found not to change when crossing the ferroelectric (FEL) domain bound-
ary. To reconcile this experimental result with the bilinear form of two order
parameters obtained theoretically, we should introduce the clamping model
in which the direction of the sublattice magnetization is also reversed on the
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border of the FEL domains [83]. This is in accordance with the idea that the
electronic states of the Mn1 and Mn′

1 ions, each located near the boundary
of the two FEL domains in contact, are connected by the operation of σh, in-
cluding the spin as well as the orbital state. As a matter of fact, the reversal of
the spin is energetically more favorable, as we have confirmed for the adopted
model that the (FEL+, S//x) domain in contact with (FEL−, S//−x) can
be lower in energy than (FEL+, S//x) with (FEL−, S//x). This point will
be discussed in the next subsection [88,89].

6.5.2 Ferroelectric and Magnetic Domains

The SH susceptibility χ(c)
yyy ≡ χyyy, discussed for YMnO3 in the last subsec-

tion, changes the sign, and χ(i)
zyy is invariant under the time-reversal operation.

These are derived explicitly [83] in terms of the order parameter of the fer-
roelectric polarization Pz and the sublattice magnetization 〈Sx〉 in the first
sublattice in Fig. 6.24:

ε0χ
(i)
zyy(2ω) ∝ Pz

1
E1 − 2�ω − iΓ1

, (6.94)

ε0χ
(c)
yyy(2ω) ∝ 〈Sx〉Pz

(
1

E2 − 2�ω − iΓ2
+

γ

E1 − 2�ω − iΓ1

)
. (6.95)

Here the first suffix z and y of χ means the polarization of the SHG sig-
nal, and the second and third suffices y are those of the fundamental.
E1 ≡ E(5E1a) − E(5A1) = 2.7 eV, E2 ≡ E(5E1b) − E(5A1) = 2.45 eV, and
γ is a constant much smaller than unity. In deriving (6.94) and (6.95), we
have used as the basis functions the 3d orbitals in the paraelectric and para-
magnetic phase, and taken into account the spin–orbit interaction and the
lower-symmetry crystalline field Vzx and Vz due to the FEL displacement as
the perturbation on the basis functions. The matrix elements of Vzx and Vz

are linearly proportional to the order parameter of the FEL polarization Pz.
The magnetic unit cell consists of six Mn3+ ions as shown in Fig. 6.24 and
we have chosen the sublattice magnetization 〈Sx〉 of the Mn1 ion as the AFM
order parameter because those of other sublattices are transposed onto that
of sublattice 1 by the symmetry operations in (6.84) and (6.85).

It is to be noted here that χ(i) is linearly proportional to Pz and χ(c)

is linearly proportional to the product of 〈Sx〉 and Pz. As a result, we can
determine the FEL domain structure by the interference effects of SHG due
to χ(i) and the external signal. When we observe the interference pattern of
χ(c) with the external one, the brightness of the interference pattern is de-
termined by the sign of the product of 〈Sx〉 and Pz. In fact, these domain
structures were observed by Fiebig et al. [86]. These examples are shown in
Figs. 6.26(a) and (b). The bright (dark) domain region comes from the con-
structive (destructive) interference between the SHG signal and the external
field. It looked strange in the beginning that χ(c) does not change the sign



180 6 Nonlinear Optical Responses I

theory experiment

FEL

(a)

(b)

(c)

χzyy
(i)

yyy
(c)

+ ext. ref.

+ ext. ref.

yyy
(c)

zyy
(i)

+

FEL+AFM

AFM

( )
( )

( )

( )
( )

χ

χ

χ
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at the FEL domain boundary (DB) in Fig. 6.26(b) in contradiction to the
expression (6.95). We proposed that the clamping model of the AFM domain
wall (DW) at the FEL DB can explain this phenomenon [83,89]. In fact, when
the internal interference of χ(i) and χ(c) SHG was observed, the sign of the
sublattice magnetization 〈Sx〉 was found to change at the FEL DB as shown
in Fig. 6.26(c). Here arises the question of why and how the coupling of two
order parameters Pz and 〈Sx〉 is induced at the FEL DB. This also appeared
at first to contradict the fact that the two critical temperatures 914 K and
74 K are so different from each other. This is because it is speculated from
conventional Ginzburg–Landau (GL) theory that the coupling is very weak or
negligible for such a case with large different values of the two critical temper-
atures as for YMnO3 [90]. This mystery is resolved as follows. Starting from
the microscopic Hamiltonian of the Mn3+ (S = 2) spin system:

H = −2
∑
〈ij〉

JijSi · Sj −
∑

i

(
DξξS

2
iξ +DηηS

2
iη

)
, (6.96)

we obtain the Ginzburg–Landau (GL) free energy density [89]. In (6.96), Jij

represents the superexchange integral between the pair (i, j) of nearest neigh-
bor Mn3+ ions, and Dξξ = 3λ2/E2 and Dηη = 3λ2/E1 are obtained as the
contribution of the second-order spin–orbit interaction

∑
(i) λSi ·Li. Here, we

adopt the continuum approximation and the classical spin model:

Sξ(r) = S cosφ(r), Sη(r) = S sinφ(r), (6.97)

where the sublattice magnetization of the Mn1 ion is chosen as the order pa-
rameter of the spin system, and then ξ and η are coincident with the global
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x- and y-axis in Fig. 6.24, respectively. Solving the GL equation, we obtain
solitons for both the electric polarization P (y) ≡ Pz and the sublattice mag-
netization Sx:

P (y) = P0tanh(y/δp), (6.98)
Sx(y) = S cosφ(y) = ±S tanh(y/δB). (6.99)

Here we chose the domain boundary along the x-axis, and the thickness of
the FEL DB δp is of the order of the lattice constant, while that of the Bloch
wall δB is estimated to be 20 times the lattice constant. We have two terms
coupling two DBs, i.e., (1) the antisymmetric exchange interaction

H′′ =
∑
〈i, j〉

dij(Si × Sj)z, (6.100)

with

dij = 2λ
[
Jij(20; 00)
E1E2

vzξ(i) −
Jij(00; 20)
E1E2

vzξ(j)
]
, (6.101)

and (2) the higher-order anisotropy energy

H′′
Pφ = −

∑
i

Dzξ (SξSz + SzSξ)i . (6.102)

Here vzξ(i) ≡ V 0Pz is a matrix element of Vzξ at the i site and Dzξ =√
3λ2vzξ/(E1E2). The first interaction is derived by associating the spin–

orbit interaction with the Heisenberg Hamiltonian in (6.96) and the second is
obtained by modifying the spin-anisotropy energy in (6.96) with the FEL crys-
talline field. These interactions are evaluated as perturbations working on the
kink solitons (6.98) and (6.99). We have found that the polarization-dependent
higher-order anisotropy energy H′ is enough to stabilize the clamped FEL DB
and AFM DW when the AFM domain size is larger than 10 µm [89].

We have shown in the last subsection that the FEL DB is always accom-
panied with the AFM DW. These results will be understood intuitively in this
section by using the symmetry breaking of the crystal in the FEL and AFM
phase transitions.

The hexagonal manganites RMnO3 have space group P63/mmc in the
paraelectric and paramagnetic phase. When this crystal suffers an FEL phase
transition around 1000 K, one of the mirror-reflection symmetries, σh (mirror-
reflection in xy-plane), is lost below TC and the crystal is deformed into the
space group P63cm. The AFM phase transition depends on the species of
R. In the case of YMnO3, another mirror symmetry σv in the xz-plane is
lost below TN = 74K and the magnetic space group is P6′3cm

′. Under this
symmetry, the canting of the Mn1 spin toward the z-axis is allowed so that Pz,
〈Sx〉 and 〈Sz〉 are finite but 〈Sy〉 vanishes. On the other hand, the third mirror
symmetry σd in the yz-plane is lost below TN in the case of ErMnO3. Here
the canting of the sublattice magnetization toward the z-axis is not allowed
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Fig. 6.27. Symmetry breaking and clamping of FEL and AFM order parameters
at FEL DB in RMnO3 [88]

and only Pz and 〈Sy〉 are finite, while 〈Sx〉 = 〈Sz〉 = 0. These processes of
symmetry breaking are summarized in Fig. 6.27 and Table 6.2.

From these considerations, we will be able to point out two important
facts. First, the FEL DB is always accompanied by the AFM DW in YMnO3

while the AFM DW can exist independently of the FEL DB. Second, both
DB and DW are stabilized by the anisotropy energy (6.102).

The FEL DB is made at y = 0 by operating with σh on the right-hand side
(y > 0) of the crystal keeping the other side (y < 0) in the original state (Pz,
Sx, Sz). Then the right-hand state is changed into (−Pz, −Sx, Sz) so that we
have the FEL DB accompanied by the AFM DW around y = 0. On the other
hand, when we operate with σv on the right-hand side (y > 0), keeping the

Table 6.2. Formation of the ferroelectric domain boundary (FEL DB) and the
antiferromagnetic domain wall (AFM DW) in YMnO3 [88]

FEL DB AFM DW

y < 0 y > 0 y < 0 y > 0

operates σh operates σv

Pz, Sx, Sz −Pz, −Sx, Sz Pz, Sx, Sz Pz, −Sx, −Sz

At FEL DB, both (Pz, Sx) Only Sx and Sz changes sign.

change sign simultaneously. Sz is a hidden order-parameter.

The clamping of (Pz, Sx) at The AFM DW can exist

FEL DB is stabilized by H′′
Pφ. independently of FEL DB.
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other side (y < 0) in the original state (Pz, Sx, Sz), the right-hand state is
changed into (Pz, −Sx, −Sz). This describes a single AFM DW at y = 0. These
processes are summarized in Table 6.2. As mentioned above, the observed
clamping can be explained as due to the coupling terms between Pz and
Sx by (6.102). The clamping corresponds to the simultaneous change of the
spin- and polarization-direction across the FEL DB and will be realized under
the operation σh as described here. If we accept the microscopic mechanism
proposed in (6.102), we find that this is equivalent to assuming that σh always
operates both on Pz and 〈Sx〉 in the same way as when FEL DB is crossed
over. We are then tempted to say that, from symmetry considerations, the
FEL DB is always accompanied by the AFM DW while the AFM DW can
exist by itself. Both the FEL DB accompanied by the AFM DW and the single
AFM DW are stabilized by the higher-order anisotropy energy (6.102). Here,
however, nobody has yet observed the sign of the spin-canting Sz which plays
the role of a hidden order parameter.

Note that this is a story for YMnO3 and it is not simply applicable to other
crystals, e.g., to ErMnO3 where the sublattice magnetization 〈Sy〉 of the Mn1

ion is parallel to the y-axis. Furthermore, 〈Sx〉 and 〈Sz〉 vanish here, so that
the higher-order anisotropy energy in question will not be able to clamp two
order parameters in ErMnO3. Only the antisymmetric exchange interaction
(6.100) will favor the clamping of the AFM DW to the FEL DB but that
energy will not be large enough to compensate the formation energy of the
AFM DW.

6.5.3 SHG from the Corundum Structure Cr2O3

Corundum, Al2O3, is a parent crystal of the ruby laser Cr:Al2O3 and Ti-
sapphire laser Ti:Al2O3. Lasing was observed for the first time in the former,
while the latter is the most popular crystal to achieve a short-pulse, high-
power laser. The crystal Cr2O3 also has a corundum structure and shows
absorption and emission spectra similar to Cr:Al2O3. This means that we
will be able to understand the spectra of Cr2O3 also in terms of ligand field
theory. However, coherent nonlinear spectroscopy is a very sensitive tool to
detect the electronic structure. In fact, we will understand in this subsection
that the excitonic effect, i.e., the effect of propagation of optical excitation, is
inevitable in understanding the SHG spectrum also from Cr2O3 [91, 92].

The ground state and excited states, in the visible region, of the Cr2O3

crystal are well described by the multiplet terms of the Cr3+ ion. This crystal
loses its spatial inversion symmetry below the Néel temperature 307.5 K, so
that the crystal has symmetry R3̄′c′. As Fig. 6.28 shows, we choose the three-
fold C3 and two-fold C2 axes on the z- and x-axes, respectively. We choose
the basis functions in the cubic field to describe the wavefunctions of the
(3d)3 electrons on the Cr3+ ion. In this subsection, we will discuss SHG under
nearly two-photon resonant excitation of 4T2g from the ground state 4A2g.
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Fig. 6.28. The crystal and magnetic structure of the Cr2O3 crystal below the
Néel temperature. The black and white circles represent the Cr3+ and O2− ions,
respectively. The C3 axis of the crystal is chosen as the z-axis, and the C2 axis is
chosen as the x-axis. The yz-plane is the mirror plane. The origin of coordinates is
the inversion center. The arrows indicate the directions of the spins

There are two channels of SHG through the magnetic-dipole and the electric-
dipole, assisted by the crystalline field Vtwist,u[T2ux0]. The SHG spectrum
and the interference effect of these two channels are the main subjects of this
subsection [91,92].

Four Cr3+ ions are contained within a unit cell in the AF phase, as shown
in Fig. 6.28. Once the wavefunction on the A1 site is known, the other three
wavefunctions on the B1, B2, and A2 sites are also obtained by the following
three symmetry operations of R3̄′c′ as follows [91]:

Ψi[B1] = C2x(τ)Ψi[A1], (6.103)
Ψi[B2] = ΘIΨi[A1], (6.104)
Ψi[A2] = Θσd(τ)Ψi[A1]. (6.105)

Here C2x(τ) means a π rotation around the x-axis and subsequent translation
in the z-direction by τ = (0, 0, c/2). Θ and I are the temporal and spatial
inversions, respectively, and σd(τ) is the mirror reflection in the yz-plane and
subsequent translation by τ . Therefore once we evaluate the contribution to
the magnetic dipole SHG tensor χm and the electric dipole χe from the A1

ion, we will be able to obtain χm and χe for the whole crystal.



6.5 Two-Photon Resonant Second-Harmonic Generation 185

Second-Order Susceptibilities

The matrix elements of an operator Â at different sites are correlated to each
other through the equations

〈RΨ |Â|RΨ ′〉 = 〈Ψ |R−1ÂR|Ψ ′〉, (6.106)
〈ΘRΨ |Â|ΘRΨ ′〉 = 〈Ψ |Θ−1R−1ÂRΘ|Ψ ′〉∗, (6.107)

where R stands for any of the symmetry operations C2x(τ), I, and σd(τ). Since
both orbital and spin states are involved in the present problem, operator R
as well as Θ act upon both of them. The matrix elements of the x-components
of the magnetic and electric dipole moments, Mx and Px, at the B1, A2, and
B2 sites are related to those at A1 by

Mx[B1] = Mx[A1], Px[B1] = Px[A1], (6.108)
Mx[A2] = −Mx[A1]∗, Px[A2] = −Px[A1]∗, (6.109)
Mx[B2] = −Mx[A1]∗, Px[B2] = −Px[A1]∗. (6.110)

These equations enable us to correlate the values of SH susceptibilities at B1,
B2, and A2 to that of A1. On summing up the contributions from the four
Cr3+ ions in the unit cell by using relations (6.106)–(6.110), we have χm and
χe below TN , keeping only the term with the resonance enhancement, as

χm =
4Nn
ε0c�2

∑
i,m,k

ρi
i Im(MPP )imki

(ωmi − 2ω)(ωki − ω)
, (6.111)

χe =
4N
ε0�2

∑
i,m,k

ρi
i Im(P̄PP )imki

(ωmi − 2ω)(ωki − ω)
. (6.112)

Here N is the number density of the unit cells, n is the refractive index
for the fundamentals, and ρi = ρ(4A2gMs) is the thermal distribution in
the electronic ground state, 4A2g. In the paramagnetic phase, we have the
expressions

χm =
4Nn
ε0c�2

∑
i,m,k

ρi
(MPP )imki

(ωmi − 2ω)(ωki − ω)
, (6.113)

χe = 0. (6.114)

These are obtained by making use of the equations

Mx[B1] = Mx[A2] = Mx[B2] = Mx[A1], (6.115)
Px[B1] = −Px[A2] = −Px[B2] = Px[A1], (6.116)

which follow from the relations in the paramagnetic phase

Ψi[B1] = C2x(τ)Ψi[A1], (6.117)
Ψi[B2] = IΨi[A1], (6.118)
Ψi[A2] = σd(τ)Ψi[A1]. (6.119)
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In (6.111)–(6.113), we used the following abbreviations for the numerators:

(MPP )imki = (Mx)im(Px)mk(Px)ki, (6.120)
(P̄PP )imki = (P x)im(Px)mk(Px)ki. (6.121)

We are interested in nearly two-photon resonant excitation of 4T2g xm, i.e.,

2�ω ∼ �ωmg = E(4T2g) − E(4A2g).

Then the matrix element (Mx)gm of the magnetic dipole moment is presented
in terms of the Bohr magneton µB as

〈4A2gMs|Mx|4T2gMsx∓〉 = ∓
√

2iµB . (6.122)

In evaluating the matrix element describing two-photon excitation (PxPx)mki/
(ωki − ω), we choose the 4p state of the Cr3+ ion as the intermediate state
|k〉 with excitation energy ∆E0 ≡ ∆E(pd) ∼ 10 eV. In order to obtain the
finite contribution to χm and χe, (PxPx)mki should not be pure imaginary.
For this purpose, we should take into account the perturbations due to the
lower symmetry crystalline field Vtwist,g[T1ga0] and the spin–orbit interaction
λL · S working on (PxPx)mki.

The electric dipole transition between 4A2g and 4T2g becomes possible
with the help of Vtwist,u[T2ux0], i.e.,

〈4A2gMs|P̄x|4T2gMsxm〉 = −m
6
〈4A2g||P̄x[T1]||4T2g〉. (6.123)

The matrix element of two-photon excitation (PxPx)mki/(ωki − ω) becomes
finite between 4A2g and 4T2g with the help of Hz

so = λLz ·Sz. As a result, χm

and χe are written in the following simple forms [92]:

χm = χm
1 + χm

2 , (6.124)

χm
1 =

iAm

ω− − 2ω − iΓ−
+

iAm

ω+ − 2ω − iΓ+
, (6.125a)

χm
2 =

iBm

ωo − 2ω − iΓ0
. (6.125b)

Here both Am and Bm are real and Am is proportional to Vtwist,g[T1ga0] while
Bm is proportional to Vtwist,g and λ2. Similarly for χe,

χe = χe
1 + χe

2, (6.126)

χe
1 =

iAe
−

ω− − 2ω − iΓ−
+

iAe
+

ω+ − 2ω − iΓ+
, (6.127a)

χe
2 =

iBe

ω0 − 2ω − iΓ0
. (6.127b)

Here both Ae
± and Be are real, and Ae

± are proportional to Vtwist,u[T2uxo] and
λ while Be ia proportional to Vtwist,u[T2ux0] and λ2, and
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ω+ = E

(
4T2g

3
2
x+

)
− E

(
4A2g

3
2

)
= 2.164 eV,

ω− = E

(
4T2g

3
2
x−

)
− E

(
4A2g

3
2

)
= 2.145 eV,

ω0 = E

(
4T2g

3
2
x0

)
− E

(
4A2g

1
2

)
= 2.08 eV.

The magnitudes of χm and χe are estimated and compared with each other:

|χm
1 | ∼ |χm

0 | 〈Vtwist,g〉
|∆E2|

, (6.128a)

|χe
1| ∼ |χe

0|
λ

|∆E1|
〈Vtwist,u〉
|∆E0|

, (6.128b)

where χm
0 and χe

0 are ideal quantities in which all the matrix elements of M ,
P , and P̄ in (6.111) and (6.112) take their nonvanishing values. The relative
magnitude of |χm/χe| is then estimated to be of the order of unity:∣∣∣∣χ

m

χe

∣∣∣∣ ∼ nµB

cea0

∆E(pd)
〈Vtwist,u〉

〈Vtwist,g〉
λ

|∆E1|
|∆E2|

∼ 2. (6.129)

Here we used the following values of the material constants: ∆E0 = ∆E(pd) =
10 eV, the spin–orbit coupling constant λ = 10 meV, 〈Vtwist,g〉 ∼ 〈Vtwist,u〉 ∼
0.1 eV, |∆E1| = E(4T1g) − E(4T2g) ∼ 1 eV, |∆E2| = E(4T2g) − E(4A2g) ∼
2 eV, and refractive index n ∼ 1. The absolute value of |χe| at 2ω =
[E(4T2gx±)−E(4A2g)]/� is estimated to be 1× 10−12 m/V. This is by one or
two orders of magnitude smaller than the value 5 × 10−11 m/V of LiNbO3 at
λ = 1.064µm. Here we used the values 4N = 3.3×1028 m−3, e = 1.6×10−19 C,
relaxation constant Γm ∼ 0.1 eV and a0 = 0.53 × 10−10 m.

The tensors χm and χe obey the following symmetry relations under the
point group 3̄m of the Cr3+ ion in the crystal:

χm ≡ χmee
xxx = −χmee

xyy = −χmee
yxy = −χmee

yyx , (6.130)

χe ≡ χeee
xxx = −χeee

xyy = −χeee
yxy = −χeee

yyx. (6.131)

As a result, the source term S of the SH:

S = µ0

(
∇× ∂M

∂t
+
∂2P

∂t2

)
(6.132)

is written in the following form:
Sx

Sy

Sz


 =

4ω2

c2


 2χmExEy − χe(E2

x − E2
y)

χm(E2
x − E2

y) + 2χeExEy

0


 , (6.133)


S+

S−
S0


 =

4
√

2ω2

c2


 (−iχm − χe)E2

−
(iχm − χe)E2

+

0


 . (6.134)
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Fig. 6.29. Calculated spectra of SHG through the magnetic dipole (broken line)
and the electric dipole (solid line) as a function of the signal frequency in eV near
the transition from 4A2g to 4T2g at low temperatures [91,93]

When we use the linearly polarized fundamental Ex, the SH signal with x-
polarization is produced by χe and the SH signal with y-polarization by χm,
as (6.133) shows. The observed [93] and calculated χm(2ω) and χe(2ω) spec-
tra are drawn in Fig. 6.29. The weaker peak on the low-energy side originates
in the two-photon resonance excitation of 4T2g(Ms = 1/2)x0 with the exci-
tation energy E(4T2g1/2x0) − E(4A2g3/2) = 2.08 eV while the stronger peak
on the high-energy side comes from the superposition of two excitations of
E(4T2g3/2x−) − E(4A2g3/2) = 2.145 eV and E(4T2g3/2x+) − E(4A2g3/2) =
2.164 eV.

Interference Effects [92]

From (6.134), we can see that the interference effect between the χm and χe

SHG channels will be observable by using circularly polarized light as the
fundamentals. The signal intensity I ∝ |S|2 for the circularly polarized light
is expressed as

|S|2 ∝ (|χm|2 + |χe|2)(|E+|4 + |E−|4)
−2(χ′mχ

′′
e − χ′′mχ′e)(|E+|4 − |E−|4), (6.135)

where χm ≡ χ′m + iχ′′m and χe ≡ χ′e + iχ′′e . The interference of the second har-
monics generated by the magnetic and electric dipole moments is described by
∆ ≡ −2(χ′mχ

′′
e−χ′′mχ′e), which is proportional to the sublattice magnetization,

e.g., in the A1 sublattice. Therefore we can detect the magnetic domains of the
crystal through this interference factor ∆ by using circularly polarized light
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as the pump source. When the magnetic domain to pump is fixed, the total
signals of the second harmonics show different spectra against the positively
and negatively circularly-polarized fundamentals, due to the second term of
(6.135).

The interference effect will be most pronounced when the value of ∆ be-
comes of the same order of magnitude as that of |χm|2 + |χe|2. If we define
the phase angles θm and θe by

χm = |χm| exp(iθm), (6.136)
χe = |χe| exp(iθe), (6.137)

we find

∆ = 2|χm||χe| sin(θm − θe), (6.138)

so that perfect interference will be attained when (1) |χm| = |χe| and (2)
θm − θe = ±π/2. From the observed spectra shown in Fig. 6.30, we find that
these conditions are almost satisfied experimentally. It was pointed out by
(6.129) that the first condition |χm| = |χe| is almost satisfied. The second
condition θm−θe = ±π/2 is also nearly satisfied when the exciton propagation
by the magnetic dipolar interaction

H′ =
∑
i>j

Kijµ
−2
B Mi ·Mj (6.139)

and the subsequent relaxation of the electronic excitation are taken into ac-
count. This effect of (6.139) is evaluated by the local-field corrections on the

Fig. 6.30. Calculated second-harmonic signals under σ− (solid line) and σ+ (broken
line) circularly polarized incoming laser light as a function of the signal frequency in
eV. The difference shows the interference effect. The phase of χm has been changed
by π/2 rather arbitrarily [91]
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SH and the fundamental. The calculated spectra of |χm|2 and |χe|2, and the
interference spectra are drawn in Figs. 6.29 and 6.30, respectively. We used
the relevant constants listed in [91,92]. The agreement between the calculated
and observed spectra is reasonable and the phase difference θm − θe reaches
70◦ around the peaks of |χm|2 and |χe|2.
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Nonlinear Optical Responses II

Some conventional nonlinear optical responses were summarized in Chap. 6.
In the present chapter, we will discuss the recent development of nonlinear
optical responses. First, phase-matched harmonic conversion of infrared and
visible light into extreme ultraviolet (XUV) or soft X-rays is introduced. Here
ultrashort laser pulses shown in Chap. 5 can generate even shorter bursts of
coherent XUV or soft X-rays. We are, however, not allowed to describe these
phenomena by the perturbational methods used in Chap. 6. These higher or-
der harmonic generations will be discussed in Sect. 7.1. Second, these XUV or
X-rays in the frequency region are possibly converted into a train of attosecond
pulses or a few bursts of attosecond pulses. These will be discussed in Sect. 7.2.
Atoms are used as a material system for high-harmonic generation (HHG) of
XUV and soft X-rays and for generation of their attosecond laser pulses. Al-
though the efficiency of HHG is rather small, i.e., of the order of 10−6, the
high-order stimulated Raman scattering (HSRS) is much stronger by several
orders of magnitude than that of HHG. Usually the rotational and vibrational
modes of molecules are used as a material system. Third, the second nonper-
turvative phenomena of nonlinear optics come from resonant optical pumping
of a specified Raman-active phonon mode of molecular rotation and vibration
by two incident beams of femtosecond laser pulses. This will be discussed in
Sect. 7.3. Fourth, it is possible, in the excitation of crystals, to combine HHG
and HSRS. This combined effect can be observed by resonant excitation of
the Raman-active mode of lattice vibration in crystals by two intense near-IR
femtosecond laser pulses generated from an optical parametric system pre-
pared by Ti:sapphire lasers. Here the frequency difference of the signal and
idler beams is chosen nearly equal to the phonon mode. The efficiency of the
HSRS is further enlarged by this method. This will be discussed in Sect. 7.4.
It is again seen that these nonlinear optical responses cannot be described by
the perturbational treatment discussed in Chap. 6.
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7.1 Enhanced Higher-Harmonic Generation

Laser technology – the ability to generate intense and coherent light with
controllable properties – is one of the most significant achievements of 20th
century science. In recent years, nonlinear optical techniques that convert
one frequency of light to another have played an increasingly pivotal role in
laser technology. Optical frequency doubling or parametric amplification, for
instance, converts laser light into coherent radiation tunable over the near-IR,
visible, and near-UV regions of the spectrum, as shown already in Chap. 6.
Recent years have also seen the development of ultrashort pulse technologies,
as seen in Sect. 5.1.5. The uncertainty principle ∆E∆t ≥ �/2 dictates that a
very wide spectral bandwidth is inevitable to obtain a short pulse. Generating
such a short pulse also requires that the generated components in that broad
spectrum have a well-defined phase relationship with each other; that is, the
coherence must span the entire spectrum.

By using the techniques of nonlinear optics and ultrashort pulse genera-
tion to an extreme limit, one can generate coherent light at even shorter wave-
lengths using a process called high-harmonic generation (HHG). This process
can convert femtosecond laser light from the near-IR (1–2 eV) to the extreme
UV (XUV; tens to hundreds of eV) and soft X-ray (up a keV) regions of the
spectrum [94]. The XUV is a difficult region of the spectrum for nonlinear
optics because traditional frequency-conversion techniques generally rely on
crystalline solids as the nonlinear medium, and solids are not transparent in
the XUV. Nevertheless, good scientific and industrial requirements are driving
the development of new light source in that spectral range as a structural and
chemical spectroscopic probe and as a tool for nanoscale lithography. Syn-
chrotron sources were originally developed to address such applications, but
those machines are large and have limited access. High-harmonic generation
produces tunable, laser-like light with high spatial and temporal coherence
from an assembly of components small enough to sit on a tabletop.

In nonlinear optics, electrons in the material act like driven oscillators that
respond to the laser’s electric field. Ordinarily, these electrons remain bound
but are driven strongly enough that the potential that binds an electron to its
atomic core is no longer a purely parabolic, harmonic-oscillator potential. The
motion of the electrons themselves becomes anharmonic, which gives rise to
a time-dependent nonlinear polarization [95] that reradiates electromagnetic
waves not only at the driving laser frequency, but also at higher harmonics of
the driving laser field.

High-harmonic generation takes this concept to its extreme, i.e., the laser’s
intensity is increased to the point where the electric field becomes strong
enough to ionize an atom. Once stripped from the atom, the electron still
moves in response to the oscillating field, and the electron can recollide with
its parent ion during a single optical cycle and recombine with the ionized
atom. Harmonic orders well exceeding 100 have been observed by L’Huillier
and Balcou [96] from two lighter noble He and Ne gases using 1 ps, 1053 nm
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Fig. 7.1. Optical-field ionization and generation of coherent extreme ultraviolet and
soft X-ray radiation from an atom exposed to a strong, linearly polarized pulse. (a)
The effective Coulomb potential binding valance electrons to the atomic core (dashed
curve) is temporarily suppressed around the oscillation peak of the laser electric field.
A valance electron can tunnel through or escape above the potential barrier formed
by the superposition of the atomic Coulomb field and the instantaneous laser field
(solid line). (b) The freed electron moves away from the atomic core, is accelerated
and then pulled back to it by a linearly polarized field. Recollision of the electron
with its parent ion may trigger emission of an energetic (soft X-ray) photon

YAG laser pulses. In heavier noble gases, which have smaller ionization poten-
tials, the number of harmonics which can be generated is less, although they
have higher conversion efficiencies. Up to the 57th(in Ar) and 29th(in Xe) har-
monics were observed from the same system of the YAG laser just mentioned
above [96]. Macklin, Kmetec, and Gordon observed harmonics up to the 109th
order in neon using 125 fs, 806 nm pulses of a Ti:sapphire laser, which gives
the shortest wavelength harmonics reported to 1993 [97]. These observations
are in agreement with theoretical predictions [98] that the photon energy of
the highest harmonic emitted from a gas cannot exceed Ip +3.2Up, where Ip is
the atomic ionization potential and Up ∼ λ2I is the maximum ponderomotive
potential that an electron may experience prior to detachment from the atom,
and λ and I are the laser wavelength and intensity, respectively.

Krause, Schafer, and Kulander [98] used ab initio calculations of the
Schrödinger equation in three dimensions to show that the breadth of the
plateau in the harmonic spectrum obeys this cutoff rule. They also showed
that this rule can be understood with the classical picture drawn in Fig. 7.1,
where the electron detaches from the atom (Fig. 7.1a) and releases energy
when it is recaptured by the atom after a laser cycle (Fig. 7.1b). The classi-
cal picture predicts that the maximum kinetic energy acquired by an electron
from the field upon return to the nucleus is 3.2Up. A quantum-mechanical de-
scriptions of high-harmonic generation give similar results under the adiabatic
approximation [99], where the laser intensity varies slowly with respect to an
optical period. This assumption may be allowed for laser pulses of duration
greater than 100 fs.

Since the first HHG experiments [96,97], two developments have dramati-
cally changed the picture of the HHG. First, rapid advances in ultrashort-pulse
lasers using Ti:sapphire led to instruments that produced high-power pulses
with an unprecedented duration of 20 fs, or less than 10 optical cycles. This
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was made possible by making the best use of the broadest bandwidth of the
laser material. Moreover, it is durable, with an energy capacity orders of mag-
nitude greater than the laser dyes used in the 1980s. Ti:sapphire increased the
average power of ultrafast laser systems from just 10 milliwatts to about 10
watts, while it dramatically reduced the pulse duration and shrank the over-
all size of the system [100]. The second advance came from the realization of
matching the phase velocity of the laser fundamental to that of the harmonics.
This has optimized the conversion efficiency.

First we will show high-harmonic generation from noble gases pumped
by an 805 nm, 25 fs, Ti:sapphire laser [101]. The harmonic energies observed
are unexpectedly high when compared with the results to date for longer
excitation pulses. The efficiency of harmonic production is higher for shorter
pulses. The wavelength of the harmonics can be tuned by adjusting the sign of
the chirp of the excitation pulse, demonstrating a tunable, ultrashort (< 25 fs)
pulse of soft X-ray source.

The group of Kapteyn investigated high-harmonics generated by a 25 fs,
10 Hz, 3 TW Ti:sapphire laser in various noble gases [101]. The bandwidth of
the pulses is 32 nm, centered at a wavelength of 805 nm, and the laser system
can provide up to 70 mJ of energy per pulse. The ultrashort nature of the 25 fs
excitation pulses (10 optical cycles FWHM) implies that at the half maximum
position of the temporal pulse envelope, the laser intensity changes by more
than 25% during a single cycle. This denies the adiabatic assumption, which
suggests that the atomic dipole moment undergoes quasiperiodic motion from
cycle to cycle, with no dependence on the history of the pulse.

For the heavier noble gases, the group of Kapteyn observed harmonics with
photon energies remarkably higher than previously seen. Figure 7.2(a) shows
harmonics generated in argon, where orders up to the 61st are visible. This
corresponds up to a photon energy of 93 eV. Figure 7.2(b) shows harmonics
up to the 41st generated in krypton and harmonics up to the 29th generated
in xenon. In neon, harmonics past the 105th could not be resolved, but light
which may correspond to harmonic orders up to the 131st was observed as
shown in Fig. 7.2(c). As the laser intensity was reduced, the short-wavelength
edge gradually retreated to longer wavelengths, indicating that the shortest
wavelength light is not an artifact.

The spectra seen in Figs. 7.2(a)–(c) were produced with a laser energy of
3.5 mJ per pulse, which for the focusing conditions described above corre-
sponds to a peak intensity of approximately (5 ± 2) × 1014 W/cm2. This is
significantly above (×2) the point where ionization should readily occur. The
possibility therefore exists that the highest harmonics might arise from ions.
It was observed that all of the harmonic peaks decreased in strength together
as the pressure was gradually reduced from 5 to 1 torr. If the higher-order har-
monic peaks were produced by ions while the lower were produced by neutral
atoms, one would expect the harmonics to scale very differently with pressure
because of a changing coherence length arising from free electrons. Thus these
observations suggest that the harmonic peaks all arise from neutral atoms.
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Fig. 7.2. High-harmonic generation (HHG) was observed in various noble gases
pumped by a 25 fs, 10 Hz, 3 TW Ti:sapphire laser. (a) HHG from Ar (argon),
(b) Xe (xenon), Kr (krypton), and (c) Ne (neon) gases [101]

As a conclusion, the ultrashort and ultrastrong laser pulses can produce a
tunable, ultrashort pulse, 25 fs soft X-ray as short as 6 nm, from neon neutral
gas.

Conventional nonlinear optics generally makes use of the birefringent prop-
erties of crystals to eliminate the phase mismatch between the laser and har-
monic beams. However, HHG is implemented most often in a gas, to avoid
absorption of the light by a solid. The gas system is isotropic so that the opti-
cal anisotropy such as the birefringence cannot be used for the phase-matching
for the HHG.

Fortunately, guiding the light inside a gas-filled, hollow-core waveguide
can achieve phase matching. In that scheme, as shown in Fig. 7.3, the laser
beam propagates with a controlled intensity and phases as glancing reflections
from the walls guide the light downstream [102]. Because the laser pulse slows
down in a neutral gas but speeds up in a waveguide or plasma, the phase
delay between the driving laser and the harmonic light can be manipulated.

When the level of ionization is small, phase matching of the laser and
harmonic beams can be accomplished by adjusting the gas pressure so that
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(a)

(b)

Fig. 7.3. (a) The high harmonics are generated in the hollow-core modulated
waveguide with periodicity Λ, of inner diameter of 150 µm and modulation depth
10 µm. The waveguide, whose diameter changes periodically, can correct the mis-
match of the phases of laser light and X-ray light by quasi-phase matching shown
in (b) [94]

the waveguide dispersion balances the dispersion due to neutral atoms. That
balance effectively adjusts the phase velocity of the fundamental laser beam
to match that of the high-harmonic light. Because the harmonic light travels
at a phase velocity, roughly, of the speed of light in vacuum due to its high
frequency, the bandwidth of the pressure-tuned phase matching is very broad
and encompasses many harmonic orders. Then the harmonic signal initially
increases quadratically with interaction length. In the ionizing gas used for
high-harmonic generation, plasma-induced dispersion causes the laser light
to outrun. A waveguide whose diameter changes periodically can correct the
mismatch using a technique called quasi-phase matching (QPM). The high
harmonics are generated in the narrow regions of the waveguide where the
laser intensity is highest. In between the narrow sections, the phases of laser
light and X-ray light can realign, so that X-ray light always contributes in
phase with the existing X-ray beam. A hollow-core modulated waveguide is
characterized by an inner diameter of 150 µm, a modulation depth of 10 µm
and several values of periodicity Λ = 1.0 mm, 0.75 mm, 0.5 mm and 0.25 mm
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as shown in Fig. 7.3(a). The visible reflectance varies with the intensity of the
light so that the bright spots illustrate how the modulation physically confines
the intensity peaks to periodic regions in the guide as in Fig. 7.3(b).

Figure 7.3(b) shows that as Λ is decreased – to correct for the phase slip
more often – the effect is to extend the X-rays to a higher energy. Thus we
can generate higher harmonics more efficiently at higher laser intensities and
ionization levels [94]. Recent experiments [103, 104] have extended QPM to
the K-edge at 284 eV – a wavelength in the “water window” region of the
soft X-ray spectrum, a region useful for ultra-high-resolution microscopy of
biological samples.

7.2 Attosecond Pulse Generation

7.2.1 Attosecond Pulse Bunching

As introduced in the previous section, a frequency “comb” of extreme ultravio-
let (XUV) odd harmonics can be generated by the interaction of subpicosecond
laser pulses with rare gases. If the spectral components within this comb pos-
sess an appropriate phase relationship to one another, their Fourier synthesis
results in an attosecond pulse train. Laser pulses spanning many optical cycles
have been used for the production of such light bunching [105]. Some features
of the generation process have remained inaccessible to direct experimental
measurement. First, questions relating to the time profile of the harmonic
emission are not easily resolved. Measurements of the harmonic pulse dura-
tion show that it is much shorter than that of the driving laser and lasts for
only a few femtoseconds. Second, measurement difficulty involves beating be-
tween various harmonics; this occurs on a subfemtosecond time scale, and no
streak camera or autocorrelator for this wavelength range can reach such a
high resolution.

When one measures the field autocorrelation, which is equivalent to mea-
suring the power spectrum of the harmonics, no information could be obtained
about the relative phases of the harmonic components. It is exactly those
phases that determine whether the harmonic field exhibits strong amplitude
modulation, (i.e., forms an attosecond pulse train), rather than a frequency-
modulated wave of approximately constant amplitude. Paul et al. [106] mea-
sured these phases through two-photon, two-color photoionization of atoms,
i.e., the phase relation between the contributing harmonics by considering
them in pairs. The periodic beat pattern of such a pair can be related to
the phase of the infrared light from the driving laser according to how the
combined fields ionize atoms.

According to Fermi’s golden rule, the total transition probability from the
initial ground state Ψi to the final state at the sideband energy Eq = E0 +q�ω
is proportional to
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Here ω is the IR field frequency, H is the atomic Hamiltonian, and the dipole
operators D+(D−) correspond to the energy-increasing (decreasing) part of
the electromagnetic perturbation:

E(t) · r = D+[exp(−iωt)] +D−[exp(iωt)]. (7.3)

The IR field is present as D− in M (−)
f, q+1, because of the emission of the IR

photon, and it thus contributes a phase of the opposite sign with respect to
M

(+)
f, q−1. Explicitly writing the phases D± = D0exp(±iψ), the interference

terms in S of (7.1) becomes
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∣∣∣ . Delaying the IR field by a time τ with
respect to the harmonic fields sets ψ±IR = ωIRτ . By experimentally recording
the magnitude of the sideband peak as a function of τ , and fitting a cosine to
this, we determine (ψq−1−ψq+1). The phase ∆ψf

atomic, which can be obtained
from established theory, is small. The experimental setup and the quantum
paths are shown in Fig. 7.4 for the photoelectron generation from the second
argon jet by mixed-color two-photon ionization.

A beam of a Ti:sapphire laser (800 nm, 40 fs, 1 kHz) is split by a mask into
an outer, annular part (3 mJ) and a small central part (30 µJ). Both parts are
focused into an Ar jet, where the smaller focus of the annular part generates
harmonics (XUV). The annular part is then blocked by a pinhole, and only
the central part of the IR pulse and its harmonics propagates. The light is
refocused there by a spherical tungsten-coated mirror onto a second Ar jet,
and the electrons resulting from photoionization in this jet are detected at
the end of the time-of-flight (TOF) tube by microchannel plates (MCPs).
Photoelectron spectra are shown for argon ionized by a superposition of odd
harmonics from an IR laser in Fig. 7.5(A); sidebands are caused between the
harmonic peaks by copropagating fundamental (IR) radiation in Fig. 7.5(B)
and (C). Changing the time delay between IR and harmonics from −1.7 fs in
(B) to −2.5 fs in (C), causes a strong amplitude change of the sidebands. The
pairwise phase differences were also determined by measuring the first four
sideband peaks as a function of the time delay between the IR pulse and the
harmonics.

The temporal intensity profile of a sum of five harmonics is reconstructed
from the measured phases and amplitudes as shown in Fig. 7.6. The period
is 1.35 fs, half the cycle time of the driving laser and the full width at half
maximum (FWHM) is ∼250 as.
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Fig. 7.4. The experimental setup (top). A beam of a Ti:sapphire laser (800 nm, 40 fs,
1 kHz) is split by a mask into an outer, annular part (3 mJ) and a small central part
(30 µJ). Both parts are focused into an Ar jet, where the smaller focus of the annular
part generates harmonics of XUV. The annular part is then blocked by a pinhole, and
only the central part of the IR pulse and its harmonics propagates and is refocused by
a spherical tungsten-coated mirror onto a second Ar jet. The electrons resulting from
photoionization in this jet are detected at the end of the time-of-flight (TOF) tube
by microchannel plates (MCP). The inset shows the quantum paths contributing
to the photoelectrons generated in the second argon jet by mixed-color two-photon
ionization; ωlaser is the IR field frequency and ωq equals q ωlaser [106]

7.2.2 Direct Observation of Attosecond Light Bunching

The temporal characteristics of pulses was directly determined for the sub-
femtosecond regime, by measuring the second-order autocorrelation trace of
a train of attosecond pulses [107]. In pico- and femtosecond laser laborato-
ries, the pulse duration has for many years been routinely extracted to a
satisfactory degree of accuracy from a measurement of the second-order au-
tocorrelation trace. The extension of the approach to subfemtosecond XUV
pulses poses several formidable problems, because attosecond pulses are spec-
trally much broader and in the nearly inaccessible UV–XUV spectral range,
and are orders of magnitude weaker, thus requiring ultrasensitive nonlinear
detectors with a flat broadband response.

In the experiment [107], harmonic generation takes place in a xenon gas
jet using 130 fs laser pulses at wavelength λ = 790 nm of up to 10 mJ energy
from a 10 Hz Ti:sapphire laser. For the second-order autocorrelation of this
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Fig. 7.5. (A) Photoelectron spectra of argon ionized by a superposition of odd
harmonics from an IR laser. The fundamental radiation was added in (B) and (C),
causing sidebands to appear between the harmonic peaks. Changing the time delay
between IR and harmonics from −1.7 fs in (B) to −2.5 fs in (C) causes a strong
amplitude change of the sidebands [106]

Fig. 7.6. Temporal intensity profile of a sum of five harmonics, as reconstructed
from measured phases and amplitudes. The FWHM of each peak is ∼250 as [106]
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Fig. 7.7. (a) Schematic representation of the second-order XUV autocorrelator.
Only the 7th to the 15th harmonics of the XUV radiation generated at the Xe jet
are led through by the In filter and enter the volume autocorrelatror. The second-
order XUV autocorrelator consists of a spherical mirror, split into two halves, serving
as a focusing wavefront divider. As a nonlinear detector, a two-photon ionized He gas
is used and the He ion yield, recorded by a time-of-flight (TOF) mass spectrometer,
provides the autocorrelation signal. (b) The ionization occurs through two-XUV-
photon nonresonant absorption from all possible combinations of the transmitted
harmonics. (c) For zero and ∆τ = TL/2 (D = λ/2) delay, the calculated and mea-
sured transverse intensity distribution for the IR laser frequency changes from a
single spot to a double maximum distribution

harmonic superposition, they used a wavefront splitting arrangement consist-
ing of a spherical mirror with 30 cm radius of curvature cut into two halves as
shown in Fig. 7.7(a). The positioning of one of these halves is controlled by a
piezocrystal translation unit with a resolution of ∼6 nm. The two parts of the
bisected XUV pulse train are brought into a common focus in a helium gas jet.
The ionization products are detected by a time-of-flight mass spectrometer as
a function of the delay ∆τ corresponding to a total displacement D between
the two half-mirrors. For the laser intensities used, harmonics up to the 15th
are generated. A 0.2 µm indium filter selects a group of harmonics from the
7th to the 15th, and blocks the residual fundamental. The recorded harmonic
spectrum is shown before (Fig. 7.8a) and after (Fig. 7.8b) the In filter. The
corrected relative intensity is 0.32: 1.0: 0.30: 0.11: 0.01 for the 7th to 15th
harmonics as shown in Fig. 7.8(c). Ideal phase-locking of these harmonics (all
phase differences equal to zero) would produce a train of attosecond pulses
with full-width at half-maximum (FWHM) duration of 315 as. The exclusive
contribution of a two-photon ionization was concluded from measurements of
the ion yield vs. harmonic intensity for He+ and for the rest gas H2O+ and
Xe+ ions observed in the recorded mass spectra as shown in Figs. 7.8(d)–(f).
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Fig. 7.8. Ion yield dependence on the XUV radiation. Higher-order harmonic gen-
eration spectra produced in the Xe jet, (a) measured without the In filter, (b)
transmitted through the In filter, and (c) after correction. The slope of the He ion-
yield as a function of the intensity of the 9th harmonic (d) and the 11th harmonic
(e) is 2.3± 0.2 and 2.0± 0.2, respectively, in the log–log scale. In contrast, the slope
of the ion-yield dependence for the 11th harmonic for H2O and Xe (f) is 0.9 ± 0.1
and 1.1 ± 0.1, respectively. These results prove a two-XUV-photon ionization of He

First, ionization of He through the fundamental laser frequency only was
observed, as Fig. 7.9(a) shows, for the calibration of the delay scale of the
measured autocorrelation traces. The period of the observed oscillation is
equal to the laser period, 2.63 fs. A second-order intensity autocorrelation
trace of the superposition of the five harmonics (from 7th to 15th) is shown
in Fig. 7.9(b) and (c). The average duration of the pulse train is estimated to
be 780 ± 80 as while the pulse period is 1.3 fs.

7.2.3 Attosecond Control of Electronic Processes
by Intense Light Fields

In pulses comprising just a few wave cycles, the amplitude envelope and carrier
frequency are not sufficient to characterize and control laser radiation, because
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Fig. 7.9. (a) The measured higher-order autocorrelation trace of the fundamental
laser field. The period of the observed oscillation is equal to the laser period, i.e.,
2.63 fs. (b) A measured ∼18 fs long second-order intensity volume autocorrelation
trace of the superposition of the five harmonics, 7th to 15th. The error bars shown
correspond to one standard deviation. A clear modulation with half the laser period
is observable in the entire trace. (c) An expanded area of the trace in (b) gives an
estimate of τXUV = 780 ± 80 as for average duration in the synthesis of the five
harmonics

the evolution of the light field is also influenced by a shift of the carrier wave
with respect to the pulse peak. Thus so-called carrier-envelope phase has been
predicted and observed to affect strong-field phenomena. Random shot-to-shot
shifts, however, have prevented the reproducible guiding of atomic process
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Fig. 7.10. Optical-field ionization of an atom (a), the freed electron is accelerated
and then pulled back to the atomic core by a linearly polarized field (b). The highest-
energy X-ray photons are emitted near the zero transitions of the laser electric field
around the pulse peak, depending on the carrier-envelope phase ϕ (c) [108]

using the electric field of light. The combined team of Hänsch and Krausz [108]
succeeded in generating intense, few-cycle laser pulses with a stable carrier
envelope phase that permit the triggering and steering of microscopic motion
with an ultimate precision limited only by quantum-mechanical uncertainty.
Using these reproducible light waveforms, atomic currents in ionized matter
are induced; the motion of the electronic wavepackets can be controlled on
time scales shorter than 250 attoseconds. This has made it possible to control
the attosecond temporal structure of coherent soft X-ray emission produced
by the atomic currents.

An electronic wavepacket is set free around each oscillation peak of a
laser electric field that is strong enough to overcome the effective binding
potential (Fig. 7.10a). The ensuing motion of the wavepackets released by
optical-field ionization (Fig. 7.10b) depends on the subsequent evolution of
the driving laser field. A laser pulse consisting of many wave cycles launches
a number of wavepackets at different instants. Each of these follows a differ-
ences in the initial conditions of their motion, preventing precise control of
strong-field-induced electronic dynamics. Intense few-cycle light pulses with
adjustable carrier-envelope (C-E) phase make the peak of the oscillating elec-
tric field coincide with the pulse peak (cosine wave) as shown by the solid line
in Fig. 7.10(c), and the strength of the field is just sufficient to reach the ion-
ization threshold at the pulse center. Then an isolated electronic wavepacket
can be formed. The peak intensity of linearly polarized few-cycle laser pulses
is enough strong as several electronic wavepackets in the vicinity of the pulse
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(a)

(b)

Fig. 7.11. The solid curves depict the temporal intensity profile of the cut-off
harmonic radiation, whereas the dashed curves plot EL(t)2, for the carrier-envelope
phase ϕ = 0 (a) and ϕ = π/2 (b) [108]

peak are set free. First they are removed from their parent ion, but within a
laser period they are pulled back by the laser electric field (Fig. 7.10b). The
highest-energy portion of the wavepacket recollides with the ion near the sec-
ond zero transition of the laser electric field, and results in the emission of
an energetic (soft-X-ray) photon as shown in Fig. 7.10(c). When the carrier-
envelope phase ψ is chosen to be zero, the pump pulse has a cosine form and
emits a single pulse of soft X-rays. In the case of ψ = π/2, the pump pulse has
a sine form and emits two soft X-ray pulses. These are drawn in Fig. 7.11. The
pulse width of these soft X-ray emissions is of the order of a subfemtosecond.

The distribution of high harmonics depends also on the carrier-envelope
phase ψ as shown in Fig. 7.12.

7.3 Coherent Light Comb
and Intense Few-Cycle Laser Fields

At present the shortest ultrafast light pulses are achieved using extreme ul-
traviolet (XUV) and soft X-ray radiation and enter the subfemtosecond or at-
tosecond regime as described in the previous sections. High-order stimulated
Raman scattering (HSRS) is accompanied by the potential to generate ultra-
broad and, as a consequence, ultrashort light pulses with an energy conversion
efficiency approaching unity [109, 110]. On the other hand, attosecond pulses
generated using high-harmonic generation (HHG) have very low energy, as a
consequence of the intrinsic low conversion efficiency of the process (∼10−6).
HSRS can be considered as an alternative to HHG, as it has the potential to
produce pulses that are still in the sub-fs regime but much more energetic (by
a factor of ∼104) than those obtained through HHG [111]. In HSRS a key role
is played by the temporal duration T of the driving pulses. The relevant char-
acteristic time constant is the dephasing time T2 of the molecular oscillations
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Fig. 7.12. Measured spectral intensity of few-cycle-driven soft X-ray emission
from ionizing atoms. (a)–(d) Data obtained with phase-stabilized pulses for dif-
ferent carrier-envelope phase setting. (e) Spectrum measured without phase stabi-
lization [108]

(rotation or vibrations). The relation between the pump pulse duration T and
the dephasing time T2 defines the different regimes of HSRS:

(a) In the quasistationary regime, the duration of the pump laser pulses is
significantly longer than T2.

(b) In the transient regime, the laser pulse duration is comparable to or
shorter than T2. Both terms “quasistationary” and “transient” refer only
to the pulse duration and not to the molecular vibration.

(c) When the pulse duration is even shorter than the characteristic period
Tν of the molecular motion, the impulsive regime is entered. Femtosecond
pulse sequences can also be used for optical manipulation of molecular
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Fig. 7.13. Experimental setup and energy level diagram for coherent molecular
excitation and collinear Raman generation. Raman detuning ∆ω (positive as shown)
is set by the driving laser frequencies [114]

motion [112,113]. This may be called multiple-pulse Impulsive Stimulated
Raman Scattering (ISRS) excitation.

In this section, we will discuss these three cases separately.

7.3.1 Quasistationary Regime

Two driving lasers are necessary in this regime to prepare a single, highly
coherent molecular state. Here we will introduce collinear generation of mutu-
ally coherent equidistant sidebands, covering 5000 cm−1 of spectral bandwidth
and ranging from 2.94 µm to 195 nm in wavelength, which have been induced
from molecular deuterium D2 driven by two lasers [112]. The deuterium gas
is pumped by two transform-limited laser pulses at wavelengths of 1.0645 µm
and 807.22 nm, such that the (tunable) laser frequency difference is chosen to
be approximately equal to the fundamental vibrational frequency in D2. The
first laser is a Q-switched injection-seeded Nd:YAG laser. Its output is atten-
uated to produce 100 mJ, 12 ns transform-limited pulses at a 10 Hz repetition
rate. The second laser is a Ti:sapphire laser system, injection seeded from an
external-cavity laser diode and pumped by the second harmonic of a separate
Q-switched Nd:YAG laser. This laser produces 75 mJ, 16 ns transform-limited
pulses at the seeding laser wavelength. The two driving laser pulses are syn-
chronized by adjusting the delay between the two Nd:YAG laser Q-switched
trigger pulses. The laser beams are combined on a dichroic beamsplitter and
are loosely focused to a nearly diffraction-limited spot in a D2 cell as shown
in Fig. 7.13. The 1.06 µm laser spot size is 460 µm and the 807 nm laser spot
size is 395 µm.

When the driving infrared lasers are tuned to within 1 GHz of the Ra-
man resonance, a bright beam of white light is observed at the output of the
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Fig. 7.14. Spectrum generated in the setup of Fig. 7.13 at (a) P = 71 torr and
∆ω = −400 MHz, (b) P = 71 torr and ∆ = 100 cm−1, and (c) ∆ω = 700 MHz, and
(d) P = 350 torr and ∆ω = 700 MHz [114]

D2 cell. When this light beam is diverted with a prism, 13 anti-Stokes and
two Stokes sidebands are observed as shown in Fig. 7.14, in addition to the
two driving frequencies. Starting from the left, the first two sidebands are
the driving frequencies, and the next four are anti-Stokes sidebands in red,
green, blue, and violet; beginning at the fifth anti-Stokes, the sidebands are
in the ultraviolet and only fluorescence is visible. Figures 7.14(a)–(c) show
the spectrum generated at a D2 pressure of P = 71 torr and a Raman de-
tuning of ∆ω = −400 ± 25 MHz in part (a), ∆ω = 100 ± 25 cm−1 in part
(b), and ∆ω = 700 ± 25 cm−1 in part (c). The smooth near-Gaussian beam
profiles for nearly all sidebands, as shown in Fig. 7.14(a)–(c), demonstrate
collinear anti-Stokes generation in a regime of high molecular coherence. At
higher pressures the generation is no longer collinear and the anti-Stokes side-
bands emerge in circles of increasing diameter. An example at a pressure of
350 torr and ∆ω = 700 MHz is shown in Fig. 7.14(d). These results have
been analyzed by coupling a set of equidistant Raman sidebands with the
Raman coherence of the first vibrational mode [109, 114, 115]. Katsuragawa
et al. [116] observed a series of coherent anti-Stokes Raman scattering (CARS)
signals due to the rotational mode of the hydrogen molecule (H2) under pump-
ing by a dual-wavelength injected-locked (6 ns pulsed) Ti:sapphire laser with
λ0 = 763.180 nm and λ−1 = 784.393 nm. The frequency difference of these
two modes, 10.631 THz, is slightly detuned by 600 MHz below the first rota-
tional excitation. A train of ultrashort pulses was obtained by synthesizing
these phase-coherent rotational-Raman sidebands in parahydrogen. It should
be pointed out that self-induced phase matching was observed in paramet-
ric anti-Strokes stimulated Raman scattering from solid hydrogen [117]. This
phenomenon is related to electromagnetically induced transparency [118] and
was observed also using ns lasers so that these belong to the “quasistationary
regime.”
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Fig. 7.15. Layout of the two-color stimulated scattering experiment [111]

7.3.2 Transient Regime

In this regime, the laser pulse duration is comparable to or shorter than T2.
The experiment of high-order stimulated Raman scattering (HSRS) by Sali et
al. [111] belongs to a highly transient regime as two-color pumping with pulses
of duration T = 100–400 fs was tuned to a vibrational Raman transition. That
is, the pulse width T = 100–400 fs is much shorter than T2 = 2.6 ns for H2 at
pressure P = 105 Pa, but longer than the vibrational period Tν = 12 fs for H2.
The experimental setup is shown in Fig. 7.15. The output of the Ti:sapphire
chirped-pulse amplified system (CPA) (central wavelength λ1 = 800 nm, pulse
duration T = 70 fs, pulse energy E = 20 mJ, and repetition rate of 10 Hz)
was divided by a beamsplitter. A small fraction of the pulse energy (∼10%)
was used to provide the first pump laser pulse at λ1 = 800 nm. The largest
part (∼90%) of the CPA pulse was frequency-doubled to provide the pump
pulse for an optical parametric amplifier (OPA), which in turn provided the
second pump pulse for the high-order stimulated Raman scattering (HSRS)
experiment.

The OPA was a double-stage collinear optical parametric amplifier seeded
by white light. The white-light seed was produced in a calcium fluoride plate
onto which was focused a small fraction of the infrared radiation which passes
in the KDP. The seed was subsequently amplified in two 2 mm thick type-I
BBO crystals. The output wavelength λ2 was tunable from 450 to 800 nm and
the pulse duration was estimated to be 250 fs.

The Raman-active molecular medium was confined in a 170 µm inner-
diameter fused silica capillary. The capillary acts as a waveguide for the light
and allows for a longer interaction length compared to the confocal parame-
ter. Several measurements of HSRS were carried out in methane (CH4) and
hydrogen (H2) at different pressures ranging from 100 mbar to 3 bar. In every
experiment the wavelength λ2 of the OPA pulse is tuned in such a way as
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Fig. 7.16. The wavelength λ2 of the OPA pulse is tuned in such a way as to
obtain a condition of Raman resonance. (a) In the case of hydrogen the fundamental
vibrational transition is 4155 cm−1, hence the OPA wavelength is set to λ2 = 600 nm.
(b) In the case of methane the fundamental vibrational transition is 2917 cm−1, and
hence the OPA wavelength is set to λ2 = 649 nm [111]

to obtain a condition of Raman resonance as shown in Fig. 7.16. The rele-
vant transition is the lowest-order vibrational transition, between the ground
state (ν = 0) and the first excited vibrational state (ν = 1), whose width is
4155 cm−1 for H2.

Effects of Gas Pressure

Figure 7.17 shows the generated spectra after propagating the two pump
pulses through the capillary filled with H2 gas at pressures from 100 mbar
up to 3 bar (grey curves). A generated anti-Stokes sideband at λ = 480 nm
is already clearly present for a pressure as low as 100 mbar, and its inten-
sity is of the order of a few percent of the transmitted pulses at the pump
frequencies (Fig. 7.17a). The second anti-Stokes sideband at λ = 400 nm is
generated with a pressure of 500 mbar (Fig. 7.17b), and the third and fourth
sidebands (at wavelengths of 343 nm and 300 nm, respectively) are visible in
the spectrum measured with 800 mbar (Fig. 7.17c). The numbers of generated
sidebands increased up to the fifth anti-Stokes (λ = 267 nm) at a pressure
of 0.9 bar. At this pressure strong pump depletion was observed and up to
five anti-Stokes sidebands were observed to have energies exceeding 10% of
the transmitted pump pulse energies. For pressures of 1.7 bar and higher, the
number of generated sidebands does not increase. What happens instead is
that the sidebands get broadened and the generated spectrum progressively
evolves from a comb of a few discrete sidebands to a broad supercontinuum
(Figs. 7.17e and f).

Effects of Pump-Pulse Length

A similar set of measurements compared to those reported for H2 was made
using methane (CH4) as the Raman-active medium as shown in Fig. 7.18. The
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Fig. 7.17. HSRS (high-order stimulated Raman scattering) spectra generated in
hydrogen at different pressures: (a) 100 mbar, (b) 500 mbar, (c) 800 mbar, (d)
900 mbar, (e) 1.7 bar, and (f) 3 bar. In each graph, the grey curve represents the
output spectrum using two input pulses of λ1 and λ2, while the black ones represent
the output spectra obtained using only the infrared λ1 pump [111]

relevant Raman transition was the same lowest-order vibrational transition as
in the case of H2 and the frequency of the fundamental vibrational transition
is 2917 cm−1. Then the condition of Raman resonance is obtained by setting
the OPA output wavelength to λ2 = 649 nm as shown in Fig. 7.16(b).

Figure 7.18 shows the generated spectra after propagating the two pump
pulses through the capillary filled with methane gas at pressures ranging from
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Fig. 7.18. HSRS spectra generated in methane at different pressures: (a) 300 mbar,
(b) 500 mbar, (c) 700 mbar, (d)900 mbar, (e) 1.6 bar, and (f) 3 bar. The grey and
black curves represent the same curves as in Fig. 7.17 [111]

300 mbar to 3 bar (grey curves). Due to the smaller Raman spacing (i.e., longer
vibrational period) of methane compared to hydrogen, although more side-
bands are generated with methane, in fact in both cases the generated fre-
quency bandwidth is approximately the same. It should be noted that the
bandwidth is as broad as the pump frequency value, i.e., ∆ν ∼ ν1.

As with hydrogen, no Raman sidebands are produced with the single-
pulse excitation (Fig. 7.18, black curves). This confirms the importance of the
presence of the λ2 field at the input for efficient generation of high-order side-
bands, as expected. In these single-pump spectra, for pressures of 900 mbar
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Fig. 7.19. HSRS spectra generated using two input pulses in methane at different
pressures: (a) 100 mbar, (b) 300 mbar, (c) 600 mbar, and (d) 900 mbar. Differently
from Fig. 7.18, the λ1 pump pulse was stretched from τ 
 100 fs to τ 
 400 fs by
propagating it through a 20 cm long fused silica block [111]

and higher, a blueshifted shoulder appears on the infrared pump pulse spec-
trum. This effect is attributed to self-phase-modulation (SPM). Its nonlinear
coefficient n2 of methane is larger by more than a factor 4 than that of hy-
drogen so that the effect due to SPM is more visible in Figs. 7.18(e) and (f).

This broadening effect is more and more important for higher pressures. As
can be seen in Figs. 7.18(e) and (f), the broadening spans the spectral region
of the first three or four anti-Stokes lines. When this happens, it is clearly
possible to see weak Raman sidebands superimposed on the quasicontinuous
structure. This could be due to the fact that the radiation generated by means
of SPM starts stimulating the Raman process, giving rise to the generation of
Raman sidebands. The resulting spectrum is therefore a combination of both
SPM and SRS.

After propagation through a 20 cm long silica rod, the pulse duration was
stretched from T � 100 fs to T � 400 fs. All the other parameters (pulse
energies and λ2 pulse duration) were left unchanged compared to the results
mentioned above. The anti-Stokes spectra generated in this configuration are
shown in Fig. 7.19 for different pressures up to 900 mbar. Many anti-Stokes
sidebands are efficiently generated, with an efficiency comparable to the case
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Fig. 7.20. HRSR spectra generated in methane at a pressure of 3 bar: (a) Output
spectra using a short (100 fs) pulse and (b) a longer (400 fs) pulse. In each graph,
the grey curve represents the output spectrum using two input pulses, i.e., the first
two lines form the left, and the other components are Raman sidebands, while the
black curves represent those obtained using only the infrared λ1 pump pulse [111]

of the shorter λ1 pump pulse of T � 100 fs. In the present case, however, the
generated sidebands do not appear to be affected by any spectral broadening,
as was the case before. This is even more evident in Fig. 7.20(b), where the
spectrum generated with a gas pressure of 3 bar is shown. The result obtained
with the same pressure and shorter λ1 pulse (T � 100 fs) is also shown in
Fig. 7.20(a) for comparison. The output spectrum obtained with the λ1 pulse
only is also shown in Fig. 7.20 without the λ2 pulse for both values of T . The
spectral broadening due to the SPM is almost negligible in the case of longer
pulse duration compared to the case of shorter duration.

Efficient subfemtosecond pulse generation looks promising by superposing
the vibrational sidebands of molecular hydrogen and methane.

7.3.3 Impulsive Regime

Generation of multiple phase-locked Stokes and anti-Stokes components is
made possible in an impulsively excited Raman medium [113]. In this regime,
all the nonlinear effects involved in the medium preparation (molecule ex-
citation, nonlinear self-phase-modulation, etc.) are confined only within the
pumping process, and the resulting spectral broadening of a relatively weak
delayed (injection) pulse is linear in the field and therefore completely con-
trollable. This process is schematically drawn in Fig. 7.21. An intense pump
pulse εp(τ) with duration Tp < Tν ≡ 2π/Ων (Ων is the vibrational or ro-
tational frequency) performs impulsive preparation of the molecules, and a
delayed (injection) pulse εi(τ), with intensity well below the threshold in-
tensity for nonlinear self-action in the medium, experiences linear scattering
on the temporal modulations of the susceptibility χRam(τ). Temporally, the
phase of the injection field is modulated with the sinusoidal modulation law,
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Fig. 7.21. A schematic of the linear regime of high-order SRS (stimulated Raman
scattering). An intense pump pulse with duration Tp < Tν = 2π/Ων (Ων is the
vibrational or rotational frequency) performs impulsive preparation of the mole-
cules, and a delayed (injection) pulse, experiences linear scattering on the temporal
modulations of its susceptibility χRam(t). In the spectral domain, this leads to the
generation of a comb of sideband components ωn = ω0 ±nΩν . In the regime of “lin-
ear” broadening, the intensity of a delayed incident pulse is well below the threshold
intensity for nonlinear broadening [112]

∂φi/∂t = αsin (Ωνt), which leads, in the spectral domain, to the generation
of a comb of sideband components ωn = ωi ± nΩν (n = 1, 2, · · · ) with
an intensity proportional to the squared nth order Bessel function [113]. In
the experiments by Nazarkin et al. [113], they used a Ti:sapphire chirped
pulse amplification laser system at 1 kHz repetition rate. The output pulses
at 800 nm (1.5 eV) had an energy up to 500 µJ and a pulse width of 30 fs
and could impulsively excite the symmetric vibrational mode A1g of SF6 with
Ων = 755 cm−1 (vibrational period Tν = 44 fs). A part of the fundamental
was frequency doubled with a 1 mm thick type-I BBO (beta-barium-borate)
nonlinear crystal. The used output energy at 400 nm was measured to be 3 µJ
with a pulse width of 200 fs at full width half maximum (FWHM). This out-
put was used as the delayed injection pulse with λi = 400 nm. The typical
value of the pump pulse intensity in the gas (SF6) filled waveguide (diameter
250 µ m, length 1 m) was about 10 TW/cm2. The highly symmetric, spherical
top SF6 molecule exhibits no Raman rotational spectrum. At the same time,
the totally symmetric vibrational mode A1g of SF6 gives rise to a very strong
(compared to other two Raman modes) Raman line at 775 cm−1. One can ex-
pect therefore that only one Raman-active mode of SF6 (775 cm−1, vibrational
period Tν = 44 fs) will be effectively excited by the impulsive pumping.
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Fig. 7.22. The measured output Raman spectra of the 400 nm injection pulse for
increasing values of SF6 pressure: (a) p = 0, (b) p = 346 mbar, (c) p = 395 mbar,
(d) p = 410 mbar, and (e) p = 470mbar. The energy of the 800 nm 30 fs-pump pulse
is 130 µJ [113]

The intense 800 nm, 30 fs-pump pulse (130 µJ) was focused on the tip of
the waveguide filled with SF6. The second (injection) pulse at 400 nm with a
duration ∼200 fs and an energy much lower (∼30 µJ) than that of the pump,
propagated with a temporal delay of several 100 fs. Figure 7.22 shows the out-
put injection pulse spectra for increasing values of pressure P = 0–470 mbar.
The well-pronounced equidistant character of the lines in Fig. 7.22 proves that
the scattering of the injection field has been induced by the symmetric vibra-
tional mode of 775 cm−1.

In the present regime of SRS, the Stokes and anti-Stokes components are
generated with nearly equal efficiency as shown in Figs. 7.22(a)–(d). Initially,
with an increase of gas pressure, the number of components increases, and
the intensity of the components falls off monotonically with the component
order (see Figs. 7.22a–c). Further increase of gas pressure, however, breaks
this monotonic distribution. The energy of the central component at the in-
jection frequency is seen to be further converted to the sideband frequencies,
even though its intensity is getting smaller than the intensity of the sideband
components. As a result, a nearly 100% conversion efficiency into the Stokes
and anti-Stokes components is achieved. These signals are converted into a
train of short pulses.



7.4 Multistep Coherent Anti-Stokes Raman Scattering in Crystals 217

Impulsive stimulated Raman scattering (ISRS) belongs also to the impul-
sive regime [119]. Here optical control over elementary molecular motion is en-
hanced with timed sequences of femtosecond pulses produced by pulse-shaping
techniques. Appropriately timed pulse sequences are used to repetitively drive
selected vibrations of a crystal lattice, e.g., an α-perylene crystal, to build up
a large oscillation amplitude.

The experiment is arranged in a transient grating geometry. A colliding
pulse mode-locked (CPM) ring dye laser and copper vapor laser-pumped dye
amplifier system provide 75 fs, 620 nm, 5 µJ pulses at an 8.6k̇Hz repetition
rate. A small portion of the amplified output is split off to serve as the probe
beam; the remaining portion is converted into a suitable terahertz-rate pulse
sequence by the pulse-shaping apparatus [119] and split to yield the two ex-
citation beams that overlap temporally and spatially inside the sample. The
vibrational response is monitored by measuring the time-dependent diffraction
intensity of the probe pulse, whose arrival time at the sample is varied with a
stepping motor-controlled delay line. A sequence of femtosecond pulses with
a repetition rate of 2.39 THz (419 fs between pulses) was produced though
pulse-shaping techniques. Cross-correlation measurement of this sequence is
shown Fig. 7.23(A). Figure 7.23(B) shows the ISRS data from the α-perylene
organic molecular crystal driven by a sequence of pulses spaced at 419 fs to
match the vibrational period of the 80 cm−1 mode. The diffracted signal from
the mode grows stronger with each successive pulse. Selective amplification of
the 80 cm−1 mode is demonstrated as a signal oscillating with twice the vi-
brational frequency. When a sequence of pulses spaced at 429 fs is slightly off
resonance for the 80 cm−1 mode, the signal intensity is reduced, as shown in
Fig. 7.23(C), relative to that of the resonant case (Fig. 7.23B). Figure 7.23(D)
shows simulation of data in the case of Fig. 7.23(B). The zero of time is defined
as the center of the input pulse train.

7.4 Multistep Coherent Anti-Stokes Raman Scattering
in Crystals

Two intense femtosecond laser pulses having near-infrared frequencies are sup-
plied as signal and idler from an OPO system pumped by 150 fs Ti:sapphire
laser pulses. When the difference-frequency of the two pulses is set almost
equal to the frequency of one of the Raman active phonon modes or two-
phonon modes, coherent nonlinear optical responses are observed as novel
phenomena characteristic of the crystals. These phenomena cannot also be
described by conventional perturbational treatment.

The two incident pulses (ω1, k1) and (ω2, k2) excite resonantly the Raman
active phonon mode ωph ∼ ω1 − ω2 with the wavevector ∆k = k1 − k2.
Increasing the pump power of these pulses beyond a critical value, resonantly
created phonons in a mode (ωph, ∆k) persists as a coherently propagating
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Fig. 7.23. (A) Cross-correlation measurement of a sequence of femtosecond pulses
with a repetition rate of 2.39 THz (419 fs between pulses) produced through pulse-
shaping techniques. (B) ISRS (impulsive stimulated Raman scattering) data from
the α-perylene organic molecular crystal driven by a sequence of (b-polarized) pulses
spaced at 419 fs to match the vibrational period of the 80 cm−1 mode. (C) ISRS data
driven by a sequence of pulses spaced at 429 fs, slightly off resonance for the 80 cm−1

mode. (D) Simulation of data in (B), assuming a Gaussian temporal profile for the
excitation pulse train [119]

wave or standing wave. The incident laser pulse is scattered repeatedly by
the coherent phonon wave so that the multistep coherent anti-Stokes Raman
scattering (CARS) signals are observable at (ω1 + nωph, k + n∆k). The case
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of n = 1 was already discussed in Sect. 6.2.1. These multistep CARS signals
were observed in SrTiO3, KTaO3, YFeO3, LiNbO3, and KNbO3 crystals.

Ferroelectric crystals LiNbO3 and KNbO3 without inversion symmetry can
show strong second-harmonic signals under the phase-matching condition. The
signal pulse (ω1 = 6561 cm−1) and the idler pulse (ω2 = 5945 cm−1) are so
focused as they overlap temporally and spatially inside the crystal and both
wavevectors k1 and k2 satisfy the phase-matching condition for SHG. The
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frequencies of the parametric oscillator are chosen so as to resonantly excite
the strongest Raman mode A1(TO) with ωph = 610 cm−1 in KNbO3. Then
not only 2ω2, ω1 +ω2 and 2ω1 signals but also 2ω1 +mωph are observed in the
direction k1 +m(k1 − k2) with m = 1, 2, . . . , 10 as shown in Fig. 7.24 [120].
These signals are well coincident with the direction and frequency calculated
for multistep CARS signals as Fig. 7.25 shows. Note that the multistep CARS
signals (m = 1, 2, 3, and 4) are as strong as that of SHG signals satisfying the
phase-matching condition. This fact means that the conventional perturbation
treatment in Sect. 6.2.1 can not be applied to the present case. Therefore we
should understand this argument as follows:

(1) Two incident beams create the phonon grating of the A1(TO) mode with
the wavevector ∆k = k1 − k2.

(2) The incident beam (ω1, k1) is dynamically scattered, e.g., into a (ω1 +
mωph, k1 +m∆k) photon by mth order scattering.

(3) This signal and that of the incident beam can produce the sum-frequency
signal (2ω1 +mωph, 2k1 +m∆k).

(4) On the other hand, the SHG signal (2ω1, 2k1) is also scattered dynami-
callym-times by the phonon grating, producing the same multistep CARS
signals at (2ω1 +mωph, 2k1 +m∆k).

Both processes (3) and (4) give the same signals. Note, however, that the
process (4) gives signals over a wide spectrum only when the phase-matching
condition of the fundamental ω1 and the SGH 2ω1 is satisfied, as in Fig. 7.24,
while the process (3) gives signals only over the spectrum range in which the
phase-matching condition is satisfied for ω1 and ω1 +mωph. This result sug-
gests the possibility of generating subfemtosecond short pulses in the visible
region when these signal beams are manipulated to be coaxial and the spider
method is used to compensate the effect of dispersion.

Dynamical Symmetry Breaking

Quantum paraelectric crystals KTaO3 and SrTiO3 can show novel nonlin-
ear optical phenomena far beyond the perturbational treatment. Although
these crystals are almost ferroelectric, quantum fluctuation of ions prevents
the phase-transition to the ferroelectric state. This means that the phonon
modes have large anharmonicity. Both KTaO3 and SrTiO3 of cubic perovskite
oxide have the highest symmetry, O1

h, as a crystal. Therefore, all (seven) Γ -
point optical phonons are of odd mode, so that they cannot be observed by
one-phonon Raman scattering (RS). Although single phonons are all Raman-
inactive, two-phonon Raman scattering is allowed. The process originates for
the most part from the Brillouin zone (BZ) edge because the density of states
of phonons diverges there. In both crystals, strong RS signals due to simul-
taneous excitation of two phonons at the opposite edges of the BZ have been
strongly observed, reflecting also strong anharmonicity of phonons [121,122].
The RS peaks have been well assigned, and single-phonon frequencies at the
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Fig. 7.26. The angular dependence of the multistep CARS spectra due to the
originally Raman-forbidden TO4(X5) phonon with frequency spacing 527 cm−1 in
KTaO3. The experimental condition is such that ∆ω=770 cm−1 (ω1 = 6760 cm−1

with 2.0 µJ/ pulse and ω2 = 5990 cm−1 with 3.0 µJ/pulse) [121]

BZ edges have been derived from the mode assignments. All the phonon dis-
persion curves of KTaO3 have been observed by using inelastic neutron scat-
tering [123], and the result agrees well with that obtained from the assigned
RS. When a combination of TO4 and TO2 modes at opposite BZ edges is
resonantly pumped by two beams of ω1 = 6770 cm−1 (2.0 µJ/ pulse) and
ω2 = 5900 cm−1 (3.0 µJ/pulse), a series of multistep CARS signals due to a
single TO4 phonon (527 cm−1) at the BZ edge, which is originally Raman-
inactive, is observed in the visible region as Fig. 7.26 shows.

This means symmetry-breaking for the signal of a single phonon Raman
scattering. On the other hand, both conventional CARS and the symmetry-
breaking single-phonon signals are observed to coexist beyond the critical
pumping power. Figure 7.27 shows that the conventional CARS signal at
2ω1 − ω2 increases as P 2

1 , i.e., the square of the ω1 incident power P1 but no
signal of the symmetry-breaking at ω1 + TO4 is observed below the thresh-
old power Pth. Beyond Pth, the first-order CARS signal intensity begins to
saturate and the dynamical symmetry-breaking signal at ω1 + TO4 increases
rapidly. Two beams hit the crystal with an angle of several degrees so that the
CARS signals and a symmetry-breaking single phonon signals depend on the
observing degree measured from the k1 vector, as shown in Fig. 7.28. Note that
the nth conventional CARS signal is observed in the direction k1+n(k1 − k2),
which is denoted by the closed (experimental) and open (calculated) squares,
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Fig. 7.27. Dependences of intensity of conventional first-order CARS signal and dy-
namical symmetry-breaking signal at ω1 + TO4 on ω1-pulse power of P1 in KTaO3.
Note the quasithreshold power for the ω1 + TO4 signal and the P 2

1 -dependence for
the conventional first-order CARS signal. A value of 4.0 µJ for the pulse corresponds
to an excitation photon density of 1.0 × 1011 W/cm2 [122]

Fig. 7.28. Angle vs. frequency relation for observed multistep CARS signals of
KTaO3 shown in Fig. 7.26 under pumping of the TO4 + TO2 mode at the BZ edge.
The open diamonds indicate the signals with the spacing of the TO4 mode frequency
at the BZ edge; the data points in the lower and upper branches correspond to the
signals having frequencies ω1 + mTO4 (m = 1, 2, . . . , 10) shown in Fig. 7.26. The
closed and open squares indicate the observed and calculated conventional CARS
signals, respectively, with the frequencies ω1+n∆ω (∆ω = 749 cm−1, n = 1, 2, . . . , 5)
[122]



7.4 Multistep Coherent Anti-Stokes Raman Scattering in Crystals 223

and that the dynamical symmetry-breaking signal (denoted by the open di-
amond) is observed with the constant neighboring angle ∆k/2 independent
of the order n. Note here that ∆k/2 is a vector component parallel to the
surface of k1 − k2. This phenomenon is explained as follows:

(1) When we pump resonantly, e.g., a combination of TO4 (at the (−X)-
point) and TO2 (at the X-point) or vice versa, coherent standing waves
of TO4 and TO2 modes at the X-point persist for incident powers I1 and
I2 beyond threshold.

(2) Once the X-point phonons are condensed, the unit cell is doubled in the
X-direction because the phases of vibrational modes in the neighboring
unit cells differ by π.

(3) All phonon pairs are given the difference vector ∆k of two incident beams
so that the single mode of a phonon is given ∆k/2. Therefore the phonon
grating has the wavevector of ∆k/2.

(4) When the nth signal ωn with wavevector kn is scattered dynamically by
this phonon grating, the (n+ 1)th signal ωn + ω(TO4) is observed in the
direction kn +∆k/2.

The existence of the threshold for this dynamical symmetry-breaking looks
reasonable because the creation rate of the phonon pair should overcome the
dissipation rate of these phonons. The dynamical symmetry-breaking is un-
derstood as one of nonlinear optical responses which is beyond the pertur-
bational treatment of the electron–photon interaction and is characteristic of
the crystal.
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P. Agostini: Science 292, 1689 (2001)

107. P. Tzallas, D. Charalambidis, N.A. Papadogiannis, K. Witte, G.D. Trakiris:
Nature 426, 269 (2003)
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