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PRINCIPLES OF LASERS AND OPTICS

Principles of Lasers and Optics describes both the fundamental principles of lasers
and the propagation and application of laser radiation in bulk and guided wave com-
ponents. All solid state, gas and semiconductor lasers are analyzed uniformly as
macroscopic devices with susceptibility originated from quantum mechanical inter-
actions to develop an overall understating of the coherent nature of laser radiation.

The objective of the book is to present lasers and applications of laser radi-
ation from a macroscopic, uniform point of view. Analyses of the unique prop-
erties of coherent laser light in optical components are presented together and
derived from fundamental principles, to allow students to appreciate the differences
and similarities. Topics covered include a discussion of whether laser radiation
should be analyzed as natural light or as a guided wave, the macroscopic differ-
ences and similarities between various types of lasers, special techniques, such as
super-modes and the two-dimensional Green’s function for planar waveguides, and
some unusual analyses.

This clearly presented and concise text will be useful for first-year graduates in
electrical engineering and physics. It also acts as a reference book on the mathemati-
cal and analytical techniques used to understand many opto-electronic applications.

William S. C. Chang is an Emeritus Professor of the Department of Electrical
and Computer Engineering, University of California at San Diego. A pioneer of
microwave laser and optical laser research, his recent research interests include
electro-optical properties and guided wave devices in III–V semiconductor hetero-
junction and multiple quantum well structures, opto-electronics in fiber networks,
and RF photonic links.

Professor Chang has published over 150 research papers on optical guided wave
research and five books. His most recent book is RF Photonic Technology in Optical
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Preface

When I look back at my time as a graduate student, I realize that the most valuable
knowledge that I acquired concerned fundamental concepts in physics and mathe-
matics, quantum mechanics and electromagnetic theory, with specific emphasis on
their use in electronic and electro-optical devices. Today, many students acquire
such information as well as analytical techniques from studies and analysis of
the laser and its light in devices, components and systems. When teaching a gradu-
ate course at the University of California San Diego on this topic, I emphasize the
understanding of basic principles of the laser and the properties of its radiation.

In this book I present a unified approach to all lasers, including gas, solid state
and semiconductor lasers, in terms of “classical” devices, with gain and material
susceptibility derived from their quantum mechanical interactions. For example, the
properties of laser oscillators are derived from optical feedback analysis of different
cavities. Moreover, since applications of laser radiation often involve its well defined
phase and amplitude, the analysis of such radiation in components and systems
requires special care in optical procedures as well as microwave techniques. In order
to demonstrate the applications of these fundamental principles, analytical tech-
niques and specific examples are presented. I used the notes for my course because
I was unable to find a textbook that provided such a compact approach, although
many excellent books are already available which provide comprehensive treat-
ments of quantum electronics, lasers and optics. It is not the objective of this book
to present a comprehensive treatment of properties of lasers and optical components.

Our experience indicates that such a course can be covered in two academic
quarters, and perhaps might be suitable for one academic semester in an abbrevi-
ated form. Students will learn both fundamental physics principles and analytical
techniques from the course. They can apply what they have learned immediately
to applications such as optical communication and signal processing. Professionals
may find the book useful as a reference to fundamental principles and analytical
techniques.

xi





1

Scalar wave equations and diffraction
of laser radiation

1.1 Introduction

Radiation from lasers is different from conventional optical light because, like
microwave radiation, it is approximately monochromatic. Although each laser has
its own fine spectral distribution and noise properties, the electric and magnetic
fields from lasers are considered to have precise phase and amplitude variations
in the first-order approximation. Like microwaves, electromagnetic radiation with
a precise phase and amplitude is described most accurately by Maxwell’s wave
equations. For analysis of optical fields in structures such as optical waveguides and
single-mode fibers, Maxwell’s vector wave equations with appropriate boundary
conditions are used. Such analyses are important and necessary for applications in
which we need to know the detailed characteristics of the vector fields known as
the modes of these structures. They will be discussed in Chapters 3 and 4.

For devices with structures that have dimensions very much larger than the wave-
length, e.g. in a multimode fiber or in an optical system consisting of lenses, prisms
or mirrors, the rigorous analysis of Maxwell’s vector wave equations becomes very
complex and tedious: there are too many modes in such a large space. It is difficult to
solve Maxwell’s vector wave equations for such cases, even with large computers.
Even if we find the solution, it would contain fine features (such as the fringe fields
near the lens) which are often of little or no significance to practical applications. In
these cases we look for a simple analysis which can give us just the main features
(i.e. the amplitude and phase) of the dominant component of the electromagnetic
field in directions close to the direction of propagation and at distances reasonably
far away from the aperture.

When one deals with laser radiation fields which have slow transverse variations
and which interact with devices that have overall dimensions much larger than the
optical wavelength λ, the fields can often be approximated as transverse electric
and magnetic (TEM) waves. In TEM waves both the dominant electric field and the

1



2 Wave equations and diffraction of laser radiation

dominant magnetic field polarization lie approximately in the plane perpendicular
to the direction of propagation. The polarization direction does not change substan-
tially within a propagation distance comparable to wavelength. For such waves,
we usually need only to solve the scalar wave equations to obtain the amplitude
and the phase of the dominant electric field along its local polarization direction.
The dominant magnetic field can be calculated directly from the dominant electric
field. Alternatively, we can first solve the scalar equation of the dominant magnetic
field, and the electric field can be calculated from the magnetic field. We have
encountered TEM waves in undergraduate electromagnetic field courses usually
as plane waves that have no transverse amplitude and phase variations. For TEM
waves in general, we need a more sophisticated analysis than plane wave analysis to
account for the transverse variations. Phase information for TEM waves is especially
important for laser radiation because many applications, such as spatial filtering,
holography and wavelength selection by grating, depend critically on the phase
information.

The details with which we normally describe the TEM waves can be divided into
two categories, depending on application. (1) When we analyze how laser radiation
is diffracted, deflected or reflected by gratings, holograms or optical components
with finite apertures, we calculate the phase and amplitude variations of the domi-
nant transverse electric field. Examples include the diffraction of laser radiation in
optical instruments, signal processing using laser light, or modes of solid state or
gas lasers. (2) When we are only interested in the propagation velocity and the path
of the TEM waves, we describe and analyze the optical beams only by reference
to the path of such optical rays. Examples include modal dispersion in multimode
fibers and lidars. The analyses of ray optics are fairly simple; they are discussed in
many optics books and articles [1, 2]. They are also known as geometrical optics.
They will not be presented in this book.

We will first learn what is meant by a scalar wave equation in Section 1.2. In
Section 1.3, we will learn mathematically how the solution of the scalar wave
equation by Green’s function leads to the well known Kirchhoff diffraction integral
solution. The mathematical derivations in these sections are important not only in
order to present rigorously the theoretical optical analyses but also to allow us to
appreciate the approximations and limitations implied in various results. Further
approximations of Kirchhoff’s integral then lead to the classical Fresnel and Fraun-
hofer diffraction integrals. Applications of Kirchhoff’s integral are illustrated in
Section 1.4.

Fraunhofer diffraction from an aperture at the far field demonstrates the clas-
sical analysis of diffraction. Although the intensity of the diffracted field is the
primary concern of many conventional optics applications, we will emphasize both
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the amplitude and the phase of the diffracted field that are important for many
laser applications. For example, Fraunhofer diffraction and Fourier transform rela-
tions at the focal plane of a lens provide the theoretical basis of spatial filtering.
Spatial filtering techniques are employed frequently in optical instruments, in
optical computing and in signal processing.

Understanding the origin of the integral equations for laser resonators is crucial
in allowing us to comprehend the origin and the limitation of the Gaussian mode
description of lasers. In Section l1.5, we will illustrate several applications of trans-
formation techniques of Gaussian beams based on Kirchhoff’s diffraction integral,
which is valid for TEM laser radiation.

Please note that the information given in Sections 1.2, 1.3 and 1.4 is also presented
extensively in classical optics books [3, 4, 5]. Readers are referred to those books
for many other applications.

1.2 The scalar wave equation

The simplest way to understand why we can use a scalar wave equation is to consider
Maxwell’s vector wave equation in a sourceless homogeneous medium. It can be
written in terms of the rectangular coordinates as

∇2 E − 1

c2

∂2 E

∂t2
= 0,

E = Exix + Eyiy + Eziz,

where c is the velocity of light in the homogeneous medium. If E has only one
dominant component Exix , then Ey , Ez , and the unit vector ix can be dropped from
the above equation. The resultant equation is a scalar wave equation for Ex .

In short, for TEM waves, we usually describe the dominant electromagnetic
(EM) field by a scalar function U. In a homogeneous medium, U satisfies the scalar
wave equation

∇2U − 1

c2

∂2

∂t2
U = 0. (1.1)

In an elementary view, U is the instantaneous amplitude of the transverse elec-
tric field in its direction of polarization when the polarization is approximately
constant (i.e. |U| varies slowly within a distance comparable to the wavelength).
From a different point of view, when we use the scalar wave equation, we have
implicitly assumed that the curl equations in Maxwell’s equations do not yield a
sufficient magnitude of electric field components in other directions that will affect
significantly the TEM characteristics of the field. The magnetic field is calculated
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directly from the dominant electric field. In books such as that by Born and Wolf
[3], it is shown that U can also be considered as a scalar potential for the optical
field. In that case, electric and magnetic fields can be derived from the scalar
potential.

Both the scalar wave equation in Eq. (1.1) and the boundary conditions are
derived from Maxwell’s equations. The boundary conditions (i.e. the continuity
of tangential electric and magnetic fields across the boundary) are replaced by
boundary conditions of U (i.e. the continuity of U and normal derivative of U across
the boundary). Notice that the only limitation imposed so far by this approach is
that we can find the solution for the EM fields by just one electric field component
(i.e. the scalar U). We will present further simplifications on how to solve Eq. (1.1)
in Section 1.3.

For wave propagation in a complex environment, Eq. (1.1) can be considered
as the equation for propagation of TEM waves in the local region when TEM
approximation is acceptable. In order to obtain a global analysis of wave propagation
in a complex environment, solutions obtained for adjacent local regions are then
matched in both spatial and time variations at the boundary between adjacent local
regions.

For monochromatic radiation with a harmonic time variation, we usually write

U (x, y, z; t) = U (x, y, z)e jωt . (1.2)

Here, U(x, y, z) is complex, i.e. U has both amplitude and phase. Then U satisfies
the Helmholtz equation,

∇2U + k2U = 0, (1.3)

where k = ω/c = 2π/λ and c = free space velocity of light = 1/
√

ε0µ0. The boun-
dary conditions are the continuity of U and the normal derivative of U across the
dielectric discontinuity boundary.

In this section, we have defined the equation governing U and discussed the
approximations involved when we use it. In the first two chapters of this book,
we will accept the scalar wave equation and learn how to solve for U in various
applications of laser radiation.

We could always solve for U for each individual case as a boundary value prob-
lem. This would be the case when we solve the equation by numerical methods.
However, we would also like to have an analytical expression for U in a homoge-
neous medium when its value is known at some boundary surface. The well known
method used to obtain U in terms of its known value on some boundary is the
Green’s function method, which is derived and discussed in Section 1.3.
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1.3 The solution of the scalar wave equation by Green’s
function – Kirchhoff’s diffraction formula

Green’s function is nothing more than a mathematical technique which facilitates
the calculation of U at a given position in terms of the fields known at some remote
boundary without explicitly solving the differential Eq. (1.4) for each individual
case [3, 6]. In this section, we will learn how to do this mathematically. In the
process we will learn the limitations and the approximations involved in such a
method.

Let there be a Green’s function G such that G is the solution of the equation

∇2G(x, y, z; x0, y0, z0) + k2G = − δ(x − x0, y − y0, z − z0)

= − δ(r − r0). (1.4)

Equation (1.4) is identical to Eq. (1.3) except for the δ function. The boundary
conditions for G are the same as those for U; δ is a unit impulse function which is
zero when x �= x0, y �= y0 and z �= z0. It goes to infinity when (x, y, z) approaches
the discontinuity point (x0, y0, z0), and δ satisfies the normalization condition∫∫∫

V

δ(x − x0, y − y0, z − z0) dx dy dz = 1

=
∫∫∫

V

δ(r − r0) dv, (1.5)

where r = xix + yiy + ziz, r0 = x0ix + y0iy + z0iz and dv = dx dy dz =
r2 sin θ dr dθ dφ. V is any volume including the point (x0, y0, z0). First we will
show how a solution for G of Eq. (1.4) will let us find U at any given observer
position (x0, y0, z0) from the U known at some distant boundary.

From advanced calculus [7],

∇ · (G∇U − U∇G) = G∇2U − U∇2G.

Applying a volume integral to both sides of the above equation and utilizing
Eqs. (1.4) and (1.5), we obtain∫∫∫

V

∇· (G∇U − U∇G) dv

=
∫∫
S

(Gn · ∇U − Un · ∇G) ds

=
∫∫∫

V

[−k2GU + k2U G + Uδ(r − r0)
]

dv = U ( r0). (1.6)
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Figure 1.1. Illustration of volumes and surfaces to which Green’s theory applies.
The volume to which Green’s function applies is V ′, which has a surface S. The
outward unit vector of S is n; r is any point in the x, y, z space. The observation
point within V is r0. For the volume V ′, V1 around r0 is subtracted from V. V1 has
surface S1, and the unit vector n is pointed outward from V ′.

V is any closed volume (within a boundary S) enclosing the observation point r0

and n is the unit vector perpendicular to the boundary in the outward direction, as
illustrated in Fig. 1.1.

Equation (1.6) is an important mathematical result. It shows that, when G is
known, the U at position (x0, y0, z0) can be expressed directly in terms of the
values of U and ∇U on the boundary S, without solving explicitly the Helmholtz
equation, Eq. (1.3). Equation (1.6) is known mathematically as Green’s identity.
The key problem is how to find G.

Fortunately, G is well known in some special cases that are important in many
applications. We will present three cases of G in the following.

1.3.1 The general Green’s function G

The general Green’s function G has been derived in many classical optics textbooks;
see, for example, [3]:

G = 1

4π

exp(− jkr01)

r01
, (1.7)
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where

r01 = |r0 − r | =
√

(x − x0)2 + (y − y0)2 + (z − z0)2.

As shown in Fig. 1.1, r01 is the distance between r0 and r .
This G can be shown to satisfy Eq. (1.4) in two steps.

(1) By direct differentiation, ∇2G + k2G is clearly zero everywhere in any homogeneous
medium except at r ≈ r0. Therefore, Eq. (1.4) is satisfied within the volume V′, which
is V minus V1 (with boundary S1) of a small sphere with radius rε enclosing r0 in the
limit as rε approaches zero. V1 and S1 are also illustrated in Fig. 1.1.

(2) In order to find out the behavior of G near r0, we note that |G |→ ∞ as r01 → 0. If we
perform the volume integration of the left hand side of Eq. (1.4) over the volume V1,
we obtain:

Lim
rε→0

∫∫∫
V1

[∇ · ∇G + k2G] dv =
∫∫
S1

∇G · n ds

= Lim
rε→0

∫ 2π

0

∫ π/2

−π/2

[
−e− jkrε

4π r2
ε

]
r2
ε sin θ dθ dφ = −1.

Thus, using this Green’s function, the volume integration of the left hand side of
Eq. (1.4) yields the same result as the volume integration of the δ function. In short, the
G given in Eq. (1.7) satisfies Eq. (1.4) for any homogeneous medium.

From Eq. (1.6) and G, we obtain the well known Kirchhoff diffraction formula,

U (r0) =
∫∫
S

(G∇U − U∇G) · n ds. (1.8)

Note that we need only to know both U and ∇U on the boundary in order to calculate
its value at r0 inside the boundary.

1.3.2 Green’s function, G1, for U known on a
planar aperture

For many practical applications, U is known on a planar aperture, followed by a
homogeneous medium with no additional radiation source. Let the planar aperture
be the surface z = 0; a known radiation U is incident on the aperture � from z < 0,
and the observation point is located at z > 0. As a mathematical approximation to
this geometry, we define V to be the semi-infinite space at z ≥ 0, bounded by the
surface S. S consists of the plane z = 0 on the left and a large spherical surface with
radius R on the right, as R → ∞. Figure 1.2 illustrates the semi-sphere.
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Figure 1.2. Geometrical configuration of the semi-spherical volume for the
Green’s function G1. The surface to which the Green’s function applies consists
of �, which is part of the xy plane, and a very large hemisphere that has a radius R,
connected with �. The incident radiation is incident on �, which is an open aper-
ture within �. The outward normal of the surfaces � and � is −iz . The coordinates
for the observation point r0 are x0, y0 and z0.

The boundary condition for a sourceless U at z > 0 is given by the radiation
condition at very large R; as R → ∞ [8],

Lim
R→∞

R

(
∂U

∂n
+ jkU

)
= 0. (1.9)

The radiation condition is essentially a mathematical statement that there is no
incoming wave at very large R. Any U which represents an outgoing wave in the
z > 0 space will satisfy Eq. (1.9).

If we do not want to use the ∇U term in Eq. (1.8), we like to have a Green’s
function which is zero on the plane boundary (i.e. z = 0). Since we want to apply
Eq. (1.8) to the semi-sphere boundary S, Eq. (1.4) needs to be satisfied only for
z > 0. In order to find such a Green’s function, we note first that any function F
in the form exp(−jkr)/r , expressed in Eq. (1.7), will satisfy 
∇ F + k2 F = 0� as
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Figure 1.3. Illustration of r , the point of observation r0 and its image r j , in the
method of images. For G, the image plane � is the xy plane, and ri is the image
of the observation point r0 in �. The coordinates of r0 and ri are given.

long as r is not allowed to approach zero. We can add such a second term to the G
given in Eq. (1.7) and still satisfy Eq. (1.4) for z > 0 as long as r never approaches
zero for z > 0. To be more specific, let ri be a mirror image of (x0, y0, z0) across the
z = 0 plane at z < 0. Let the second term be e− jkri1/ri1, where ri1 is the distance
between (x, y, z) and ri . Since our Green’s function will only be used for z0 > 0,
the ri1 for this second term will never approach zero for z ≥ 0. Thus, as long as
we seek the solution of U in the space z > 0, Eq. (1.4) is satisfied for z > 0. However,
the difference of the two terms is zero when (x, y, z) is on the z = 0 plane. This
is known as the “method of images” in electromagnetic theory. Such a Green’s
function is constructed mathematically in the following.

Let the Green’s function for this configuration be designated as G1, where

G1 = 1

4π

[
e− jkr01

r01
− e− jkri1

ri1

]
, (1.10)

where ri is the image of r0 in the z = 0 plane. It is located at z < 0, as shown in
Fig. 1.3. G1 is zero on the xy plane at z = 0. When G1 is used in the Green’s identity,
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Eq. (1.8), we obtain

U (r0) =
∫∫
�

U (x, y, z = 0)
∂G1

∂z
dx dy. (1.11)

Here, � refers to the xy plane at z = 0. Because of the radiation condition expressed
in Eq. (1.9), the value of the surface integral over the very large semi-sphere enclos-
ing the z > 0 volume (with R → ∞) is zero.

For most applications, U �= 0 only in a small sub-area of �, e.g. the radiation
U is incident on an opaque screen that has a limited open aperture �. In that
case, −∂G1/∂z at z0 � λ can be simplified to obtain

−∇G1 · iz = 2 cos α
e− jkr01

4π r01
(− jk),

where α is as illustrated in Fig. 1.2. Therefore, the simplified expression for U is

U (r0) = j

λ

∫∫
�

U
e− jkr01

r01
cos α dx dy. (1.12)

This result has also been derived from the Huygens principle in classical optics.
Let us now define the paraxial approximation for the observer at position (x0, y0,

z0) in a direction close to the direction of propagation and at a distance reasonably
far from the aperture, i.e. α ≈ 180◦ and |r01| ≈ |z| ≈ ρ. Then, for observers in the
paraxial approximation, α is now approximately a constant in the integrand of
Eq. (1.12) over the entire aperture �, while the change of ρ in the denominator
of the integrand also varies very slowly over the entire �. Thus, U can now be
simplified further to yield

U (z ≈ ρ) = − j

λ ρ

∫∫
�

Ue− jkr01 dx dy. (1.13)

Note that k = 2π/λ and ρ/λ is a very large quantity. A small change of r01 in the
exponential can affect significantly the value of the integral, while the ρ factor in
the denominator of the integrand can be considered as a constant in the paraxial
approximation.

Both Eqs. (1.8) and (1.13) are known as Kirchhoff’s diffraction formula [3]. In
the case of paraxial approximation, limited aperture and z � λ, Eq. (1.8) yields
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the same result as Eq. (1.13). However, Eq. (1.13) is more commonly used in
engineering.

1.3.3 Green’s function for ∇U known on a planar aperture, G2

The Green’s function for calculating U(x0, y0, z0) from just the derivative of U on
the plane aperture is also known. In this case,

G2 = 1

4π

⌊
e− jkr01

r01
+ e− jkri1

ri1

⌋
. (1.14)

Clearly, ∂G2/∂z is zero on the z = 0 plane. According to Eq. (1.8), the value of U
calculated from G2 now depends only on ∇U on the boundary, i.e. the z = 0 plane.
However, this Green’s function is seldom used. Therefore, we will not discuss it
further.

It is most important to note that, in principle, if we substitute the true U and
∇U into any one of the integrals using G, G1 or G2, we should get the same
answer. However, we do not know the true U and ∇U because we have not
yet solved Eq. (1.3). For Eqs. (1.12) and (1.13), it is customary to use just the
incident U in optics without considering the electromagnetic effects involving
the aperture �. For example, when we used the incident radiation U as the U
in the aperture, we ignored the induced currents near the edge of the aperture. This
is an approximation. In this case, we will obtain the same result from the three
different Green’s functions only in the paraxial approximation, i.e. for z � λ, for an
observer located at a relatively small angle from the z axis and for a limited aperture
size �. In the paraxial approximation, no information concerning the fringe field
at small z values or at large angles of observation can be obtained. See ref. [9] for
a more detailed discussion.

1.3.4 The expression for Kirchhoff’s integral in engineering analysis

Equation (1.13) is usually presented in a different format for engineers. Let

− j

λ ρ
exp(− jkr01) = h [(x − x0), (y − y0), (z − z0)] .

Then we obtain

U (r0) =
∫∫
�

U (x, y, 0)h [(x − x0), (y − y0), −z0] dx dy. (1.15)

This is the well known transform relation between the U’s at two different planes,
z = 0 and z = z0. The expression h[(x − x0), (y − y0), (z − z0)] now has the
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same format as the electrical impulse response in electrical circuit and system
analysis.

This implies that the h function is the response of the optical system for any
unit impulse excitation at (x, y, z = 0). U(x, y, 0) is just the excitation at the
z = 0 plane. For large �, h essentially determines completely the U(x0, y0, z0)
from U(x, y, 0). For small �, the position and shape of � are also important.
Equation (1.15) is the foundation of many pattern recognition, optical computing
and optical signal processing techniques. Many theoretical techniques, such as
superposition, convolution theory, sampling theory, spatial filtering method and
spatial Fourier transform, can be applied to Eq. (1.15). However, strictly speaking,
mathematical techniques used in electrical engineering circuit and system analyses
usually apply only to integrals with −∞ and +∞ limits of integration, while the
limits of integration in Eq. (1.15) are determined by the aperture size and position.
Nevertheless, much can be learned from those techniques, especially when the
aperture is large. Furthermore, the integral in Eq. (1.15) can also be regarded as a
unit impulse integral of the product of the U(x, y, 0) and a unit step function of x
and y representing �, with limits of integration at ∞. In Sections 1.4 and 1.5, we
will discuss some examples of these techniques. See ref. [10] for many examples
illustrating the importance of this transform relation.

1.3.5 Fresnel and Fraunhofer diffraction

Before applying Eq. (1.13) or Eq. (1.15), we note that the binomial expansion may
be applied to simplify ρ further:

ρ = (z0 − z)

√
1 + (x0 − x)2 + (y0 − y)2

(z0 − z)2

= d

[
1 + 1

2d2

(
x2

0 + y2
0 − 2xx0 − 2yy0 + x2 + y2

) + higher order terms

]
.

(1.16)

Here, d = z0 − z, and, in the paraxial approximation, d � |x0 − x| and |y0 − y|.
If d is sufficiently large that we can drop the higher order terms, we obtain from

Eq. (1.13) the following:

U (r0) = − j

λd
e− jkde− jk

x2
0 +y2

0
2d

∫∫
�

[
U (z = 0) e− j2π

x2+y2

2λd

]
e+ j2π

xx0
λd e+ j2π

yy0
λd dx dy.

(1.17a)
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This is known as the Fresnel diffraction integral, which describes near field diffrac-
tion effects.

If d is so large that the term involving (x2 + y2) can also be neglected, then we
obtain an even simpler diffraction integral,

U (r0) = − j

λd
e− jkde− jk

x2
0 +y2

0
2 d

∫∫
�

U (z = 0) e+ j2π
xx0
λ d e+ j2π

yy0
λ d dx dy. (1.17b)

This is known as the Fraunhofer diffraction integral of the far radiation field. Note
that the U as a function of x0 and y0 is approximately a Fourier transform of U as a
function of x and y.

So far, we have presented primarily the mathematical derivations to obtain the
results given in Eqs. (1.13), (1.15) and (1.17). We have learned two things from these
derivations: (1) the approximations employed in Fresnel and Fraunhofer diffraction
formulae; (2) the significance of the radiation condition and the paraxial approxi-
mation involved. Whenever the field can be analyzed by the scalar wave equation,
and whenever the limitations and approximations used in Eqs. (1.17a) and (1.17b)
are acceptable, Kirchhoff’s formula can be used to solve practical problems, as
demonstrated in Section 1.4.

1.4 Applications of the analysis of TEM waves

Equations (1.15), (1.17a) and (1.17b) are used in many applications of laser radi-
ation. Examples include holography, addressing of laser radiation by diffraction,
micro-optics, wavelength selection by grating diffraction, optical signal process-
ing, computing, etc. To discuss all these applications is beyond the scope of this
book. Extensive discussions on holography, transformation optics, grating, inter-
ference, etc., are already available in other books [10, 11, 12]. However, we will
not understand clearly the significance of the analyses of TEM waves, including
Eqs. (1.13), (1.15), (1.17a) and (1.17b), without demonstrating some practical appli-
cations. Therefore, in this section we will present four applications of the analysis
of TEM waves. The applications will not only illustrate the significance of this
method, but will also lead to results which are basic to diffraction, transformation
optics and laser modes that will be discussed in later chapters.

1.4.1 Far field diffraction pattern of an aperture

Far field diffraction from radiation U incident on a rectangular aperture is the
simplest example to illustrate the power of Eqs. (1.17a) and (1.17b). The result is
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Figure 1.4. Geometrical configuration of a rectangular aperture. The radiation U
is incident on a rectangular aperture � on an opaque screen, which is the xy plane.
The size of � is 2lx × 2ly . For a far field, r0 is far away with large z0 coordinate.
In the paraxial approximation, |z0| � |x0| and |y0|.

also very useful for subsequent discussions. Let the radiation U be a plane wave
with amplitude A normally incident on an opaque screen at z = 0 with a rectangular
open aperture with dimensions 2lx and 2ly in the x and y directions, respectively;
i.e.

U (x, y, z = 0) = A rect

(
x

lx

)
rect

(
y

ly

)
,

where

rect(χ ) = 0 for |χ | > 1,

rect(χ ) = 1 for |χ | ≤ 1.

Figure 1.4 illustrates the geometric configuration. Substituting into Eq. (1.17a), we
obtain

U (x0, y0, d) = − je− jkde− j k
2d (x2

0+y2
0 )

λd

×
∫∫
�

[
Ae− jk x2+y2

2d

]
e j2π( x0

λd )x e j2π( y0
λd )ydx dy.
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In the far field case, d is very large, such that

k
l2
x + l2

y

2d
� 1, (1.18)

and then

exp

(
− jk

x2 + y2

2d

)
≈ 1.

Since

lx∫
−lx

e j2π( x0
λd )x dx = e j2π( x0

λd )lx − e− j2π( x0
λd )lx

j 2π
( x0

λd

) =
j 2 sin

[
2π

( x0

λd

)
lx

]
j 2π

( x0

λd

) ,

we obtain the far field U from Eq. (1.17b) as

U (x0, y0, d) = 4 je− jkde− j k
2d (x2

0+y2
0)

λd
A lxly sinc

(
2lx x0

λd

)
sinc

(
2ly y0

λd

)
, (1.19)

where

sinc(α) = sin πα

πα
.

U is the classical Fraunhofer diffraction pattern of the rectangular aperture for
a plane wave normally incident on the aperture. Two additional comments are
important to note. (1) The Fraunhofer diffraction pattern is ignored in geometric or
ray optics because the transverse amplitude and phase variations are ignored. This
would be the case in which one is interested only in the U as x0/d and y0/d → 0
in Eq. (1.19). (2) The U at the far field has a spherical phase front about the z axis.
This is not important for most classical optic applications. Unlike microwaves, the
electric field cannot be detected directly in optics. Detectors and films measure
the intensity of the radiation. This is the reason why the phase information is not
emphasized in conventional optics. However, the phase information becomes very
important for a number of laser applications that involve wavelength selection,
signal processing, interference and diffraction. The effect of the phase of U is
detected from its interference with another U′ or from diffraction effects. As a
reminder of the importance of phase, we recall that when the laser radiation is used
to illuminate an image pattern, there are many speckles created by interference
effects due to small irregularities. This is the primary reason why laser light is not
used for imaging.
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Figure 1.5. The intensity distribution of the Fraunhofer diffraction pattern of a
rectangular aperture for a normally incident plane wave. Taken from ref. [3].

All detectors convert the optical power into electrical current. In electromagnetic
field theory, we learn that I = (1/2) |E |2 /

√
µ0/ε, where E is the transverse electric

field. In optics, U is usually normalized (i.e. |U| is just proportional to the magnitude
of the transverse electric field) such that UU* is the intensity. Thus, the intensity I
at x0 and y0 is

I (x0, y0) = UU ∗ =
[

4Alxly

λd
sinc

(
2lx x0

λd

)
sinc

(
2ly y0

λd

)]2

. (1.20)

Figure 1.5 illustrates the intensity I as a function of x0 when y0 is zero. Clearly,
I is inversely proportional to d2, as expected in a divergent wave, and it has a
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major radiation loop directed along the z axis. In optics, the minimum diffraction
beam-width of the major loop is defined as the angle θ between the direction
of propagation (i.e. the z axis) and the first zero of I. Thus, for a rectangular
aperture,

θx = λ/2 lx (1.21a)

and

θy = λ/2 ly. (1.21b)

I also has minor radiation loops in directions x0/d = (3/2)λ/lx, (5/2)λ/lx, etc., and
in directions y0/d = (3/2)λ/ly, (5/2)λ/ly, etc.

The preceding discussion clearly demonstrates the characteristics of the diff-
racted far field without complex mathematics. This is why we chose to present
the diffraction from a rectangular aperture as an example. Similar results have
been described for circular apertures with radius r ′ in classical optics books using
cylindrical coordinates and Bessel functions [13, 14]. In that case the beam-width
of the main radiation loop is given by [3]

θc = 0.62λ/r ′. (1.22)

As a result, Eq. (1.22) is commonly used to specify the angular resolution of a
telescope.

The Fraunhofer (or far field) diffraction pattern is a favorable way to describe
the output radiation from many instruments. For example, (1) the output from a
laser is frequently described in trade brochures by its far field radiation pattern; and
(2) for communication among distant stations, the far field pattern is used to specify
the angular resolution obtained through a telescope. The difference in the results
obtained from the circular or the rectangular aperture is minor. However, we should
be very careful about using the far field radiation formula because of the condition
specified in Eq. (1.18). For an aperture 1 mm wide and at 1 µm wavelength, or
laser output with 1 mm lateral mode size, the Fraunhofer diffraction formula is
not strictly valid until the distance of observation is 30 m or more. Such distances
are often not available in laboratories. Most often what we observe is the effect
of Fresnel diffraction, which is more tedious to calculate. We should again keep
in mind that, even in the far field, the laser radiation field has a spherical wave
front.

It is also interesting to note that when a plane wave (microwave) is incident on a
metal screen with a rectangular opening, the solution of the Maxwell equation for
that problem will be the precise solution of the diffraction problem that we have
just solved. However, we will include the radiation field caused by the induced
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Figure 1.6. Illustration of a spherical wave incident on a plane aperture. The
incident wave is a converging spherical wave focused at (x2, y2, z2). It passes
through an opening aperture � of an opaque screen, which is the xy plane.

current on the edges of the opening. When the opening is small or comparable
to the wavelength, the radiation from the induced current is an important part of
the total radiation. When the opening is large, the radiation field contribution from
the induced current is small for the far field near the axis. From the mathematical
point of view, as long as the radiation field can be approximated by a TEM wave,
there is nothing wrong with the results expressed in Eq. (1.8) or Eq. (1.13) for far
fields near the axis. If the induced current must be taken into account, we simply
cannot assume that U in these equations is just the incident U. However, even for
large openings, the contribution from the induced current may still be important at
distances close to the opening.

1.4.2 Fraunhofer diffraction in the focal plane of a lens

A Fraunhofer diffraction pattern is also obtained near the focus of a lens. This is an
important case to study since it is much easier to capture the Fraunhofer diffraction
pattern at the focal plane of a lens than at distances far away. Furthermore, the
Fourier transform relationship between the incident field and the field at the focal
plane will allow us to perform many signal processing functions, such as spatial
filtering [15].

Consider the case where the incident wave on the plane aperture is a convergent
wave, as shown in Fig. 1.6. A convergent wave is normally produced from a plane
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wave by a lens in front of the aperture. Let the focal point of the convergent wave
be (x2, y2, z2), then the U without any aperture can be expressed for z2 ≥ z as

U = A
e+ jkr21

r21
, (1.23)

where r21 = |r2 − r |. The focal length of the lens is z2. Note that the + sign in the
exponential combined with the exp(+ jωt) time variation represents a convergent
wave. When an aperture is placed at z = 0, Eq. (1.13) can be used to calculate U at
any point (x0, y0, z0) for z0 > 0. In this case, the incident U is given by Eq. (1.23)
in the aperture. In other words,

U (x0, y0, z0) = − j A

λz0z2

∫∫
�

e− jk(r01−r21) dx dy.

Using paraxial approximation and the binomial expansion, we obtain:

k(r01 − r21) = k [z0 − z2] + k

2

⌊
x2

0 + y2
0

z0
− x2

2 + y2
2

z2

⌋
− k

⌊
x0x + y0 y

z0
− x2x + y2 y

z2

⌋
+ k

2

[
x2 + y2

z0
− x2 + y2

z2

+
{
−1

4

[(x0 − x)2 + (y0 − y)2]2

z3
0

+ 1

4

[(x2 − x)2 + (y2 − y)2]2

z3
2

}
+ other higher order terms

]
.

Under the conditions ∣∣∣∣∣k

8

[
(x0 − x)2 + (y0 − y)2

]2

z3
0

∣∣∣∣∣
max

� 2π

and ∣∣∣∣∣k

8

[
(x2 − x)2 + (y2 − y)2

]2

z3
2

∣∣∣∣∣
max

� 2π,

the terms in { } and other higher order terms can be neglected. Let us consider the
case x2 = 0, y2 = 0, and the higher order terms and the { } are negligible. Then,

U (x0, y0, z0) = − j Ae− jk(z0−z2)e
− jk

(
x2
0 +y2

0
2z0

)
λ z2z0

×
∫∫
�

e j π
λ

[
1

z0
− 1

z2

]
(x2+y2)e

j2π
[

x0
λz0

]
x
e

j2π
[

y0
λz0

]
y

dx dy. (1.24)
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When z0 = z2, the [ ] factor involving (1/z0) − (1/z2) in the above integral is
zero. Therefore, the radiation in the focal plane of the lens is a Fourier transform
with the limits of integration given by the aperture �.

Four conclusions can be drawn from this result.

(1) Except for the constant A/z2, Eq. (1.24) is the same result as that obtained for Fraunhofer
diffraction in the far field expressed in Eq. (1.17b).

(2) Let there be a thin plane transparent film placed before the aperture at z = 0. The
amplitude and phase transmission of the film is given by t(x, y). Then,

U (x0, y0, z0) = − j Ae− j2π

(
x2
0 +y2

0
2λz0

)
λz2

0

∫∫
�

t(x, y)e j2π

(
x0
λz0

)
x e j2π

(
y0
λz0

)
y dx dy. (1.25)

This is an important result. It states that when the limit of integration is large, the U at
the focal plane z0 = z2 is essentially the Fourier transform of t at z = 0.

(3) The convergent wave is usually created by a lens with focal length z2. Thus, for a plane
wave incident on a lens followed immediately by a transparent object with transmission
t, we obtain approximately the Fourier transform of t at the focal plane of the lens.

(4) For an arbitrary U incident on a lens, we obtain approximately the Fourier transform of
the field U at the focal plane of the lens.

Let us consider two practical applications using this result. (1) In the first exam-
ple, a student wants to measure the far field radiation pattern of a laser. It is not
necessary to take the measurement at a distance far away. All the student needs to
do is to use a camera focused to infinity. In that case, the image plane is exactly the
focal plane of the lens, and the far field pattern on the image plane of the camera
is obtained. (2) In a second example, let us consider two optical lenses with focal
length f. Let the lenses be placed in series and perpendicular to the optical axis.
They are separated from each other by a distance 2f. If the size of the lens is suf-
ficiently large, then the integration limit in Eq. (1.25) can be approximated by ∞.
In other words, we expect to see the spatial Fourier transform of the U incident
on the first lens at the focal plane midway between the two lenses. We also expect
to see −U following the second lens. Now, consider the optical signal processing
setup shown in Fig. 1.7. Let U be a normally incident plane wave. The field at
the focal plane of the first lens is now the Fourier transform of the transmission
of the transparent film, t, placed in front of the first lens. When this radiation is
transmitted through an aperture placed at the focal plane of the first lens, the higher
Fourier frequencies are blocked by the opaque portion of the aperture. Thus, the U
obtained after the second lens is the−tU filtered through a low pass spatial frequency
filter. Such a setup has many applications. For example, when a laser mode passes
through optical instruments, it is frequently perturbed because of imperfections
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Figure 1.7. Spatial low pass filtering of an optical wave. The opaque screen with
an open aperture is at the focal plane of the first lens. The field just before the
aperture is approximately the Fourier transform of t times U. The aperture is, in
effect, at a low pass filter that cuts out the higher spatial frequency components of
tU. A second lens is placed at a focal distance after the aperture. The field emerging
after the second lens is −tU filtered through a low pass filter.

or defects in the optical elements. A setup such as that shown in Fig. 1.7 (with-
out the transparent film) is commercially sold as a spatial filter to clean up the
effects of perturbations or defects which typically have higher spatial frequencies
than the laser mode. More sophisticated spatial filtering examples are presented in
ref. [10].

1.4.3 The lens as a transformation element

A simple but very useful example that illustrates a TEM wave analysis other than
diffraction is to consider the transmission function t of a thin lens. In order to find
the transmission function of a thin lens, we go back to wave propagation to analyze
what happens to an optical wave as it propagates through the lens. No diffraction
is involved as we are analyzing the changes in the optical TEM wave just before
and just after the thin lens. From another point of view, within a short distance
from the incident plane, the diffraction effects are insignificant except near the
edge.

Let us consider a spherical lens whose geometrical configuration is shown in
Fig. 1.8. The right surface of the lens is described by

x ′′2 + y′′2 + z′′2 = r2
1.
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Figure 1.8. The geometrical configuration of a spherical lens. Two spherical sur-
faces centered about z = z1 and z = 0 are shown. The front (left) and back
(right) surfaces of a thin spherical lens are made from the interception section of
these two spherical surfaces. The lens is made from a material that has refractive
index n.

The left surface of the lens is described by

x ′2 + y′2 + (z′ − zl)
2 = r2

2.

Consider an optical ray, i.e. a pencil TEM wave which has a beam size small
compared with the size of the lens, propagating in the +z direction. At the transverse
position (x, y), it passes through the lens. Its phase at the output will depend on x
and y because the ray goes through a higher index region which has thickness z′′− z′

at x = x′ = x′′ and y = y′= y′′. The change in its phase, in comparison with a beam
in free space without the lens, is

�φ = −2π

λ
(n − 1)(z′′ − z′)

= −2π

λ
(n − 1)

r1

{
1 − x2 + y2

r2
1

}1/2

− z1 + r2

{
1 − x2 + y2

r2
2

}1/2
 ,

where the refractive index of the lens material is n and z′′ > z′ for x and y inside the
lens. The binomial expansion can be used again for the terms in { }, and only the
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first-order approximation is used for a thin lens. We then obtain

�φ = π

λ
(n − 1)

(
1

r1
+ 1

r2

)
(x2 + y2). (1.26)

The focal length of a thin spherical lens is usually given by 1/ f = (n − 1) (1/r1 +
1/r2). Thus, for any U passing through a thin lens, we can now multiply the incident
U on the lens by a phase function [15],

tl = e j π
λ f (x2+y2), (1.27)

to obtain the U immediately after the lens. This is a very simple result that can
be applied to any U passing through a lens. We emphasize that this is a thin lens
approximation. Only an ideal lens can be represented by Eq. (1.27). A practical
lens will have other higher order terms in the phase shift which are considered as
distortions from an ideal lens. Note also that this description of a lens by its effect
on the phase of the incoming wave does not address the issue of the amplitude of
the wave as it propagates toward the focus of the lens.

Although we have derived this result only for a thin spherical lens, it is used in
general to represent any ideal compound lens provided that f is the focal length of
the compound lens.

As an illustration of this method, let us consider again the use of a camera
focused to infinity to obtain the Fraunhofer diffraction effect given in Eq. (1.17b).
If the incident U passes through an ideal thin lens just before the aperture � (or
passes through the lens right after the aperture), we should multiply U by the
phase function given by Eq. (1.27). We then apply the diffraction formula to the
transmitted U . On the focal plane of the lens, d = f . In the diffraction integral,
the two exponential spherical factors cancel each other out, and we obtain the
result given in Eq. (1.17b) without satisfying the far field condition expressed in
Eq. (1.18).

Note that if we multiply a plane wave (U = A) by the phase shift given in
Eq. (1.27), we obtain a convergent spherical wave focused at a distance f after the
lens. Combining this result with the result derived in Section 1.4.2, we conclude that
if a lens is placed immediately after or before the transparent film with transmission
function t(x , y), we obtain the Fourier transform of t at the focal plane of the
lens. We assume here that the size of the lens is large (so that the effect of the
finite size of the lens can be ignored). This is the foundation of transformation
optics.

The lens transformation formula is particularly convenient when we analyze
resonant modes of complex cavities containing lenses in Chapter 2.
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Figure 1.9. Illustration of the multiple diffraction in a laser cavity. A solid state
or gas laser cavity consists of two curved mirrors at S and S′. The mirrors are
separated by a distance d, and ρ is the distance between a point P on P and a point
P ′ on S′.

1.4.4 Integral equation for optical resonators

In optical resonators that have transverse dimensions much larger than the opti-
cal wavelength, the resonator modes are TEM modes that are the solutions of
the integral equations derived from Kirchhoff’s diffraction formula. This is the
case for solid state, surface emitting semiconductor and gas lasers, but not for
waveguide semiconductor lasers, which do not have TEM modes. Consider a typ-
ical laser cavity as shown in Fig. 1.9. Let the y-polarized electric field on the S′

mirror be E′
y(x ′, y′) and the electric field on S be Ey(x, y). The diffracted elec-

tric field E′′
y (x , y) on the S mirror can be calculated by the Green’s function G

from the E′
y on S′. Similarly, the diffracted E′′′

y on S′ can be calculated from Ey

on S:

E ′′
y (x, y) =

∫
S′

jk(1 + cos θ ′)
4πρ

e− jkρ E ′
y(x ′, y′) ds′

and

E ′′′
y (x ′, y′) =

∫
S

jk(1 + cos θ )

4πρ
e− jkρ Ey(x, y) ds.

ρ is the distance between P and P ′, ρ =
√

(x − x ′)2 + (y − y′)2 + (z − z′)2. If we
have a symmetric pair of mirrors and if the cavity supports a stable mode, then
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Ey and E′
y must eventually reproduce each other except for a complex constant

γ ; i.e.

γ Ey = E ′′
y and γ E ′

y = E ′′′
y

γ Ey(x, y) =
∫
S′

jk(1 + cos θ ′)
4πρ

e− jkρ E ′
y(x ′, y′) ds′, (1.28a)

γ E ′
y(x ′, y′) =

∫
S

jk(1 + cos θ )

4πρ
e− jkρ Ey(x, y) ds. (1.28b)

Ey and E′
y should have the same x and y function. Note that G1 should not be used

here since the integration is not performed over a planar aperture.
Any stable resonant mode of the cavity must satisfy Eqs. (1.28). Conversely,

any solution of Eqs. (1.28) is a resonant mode of the cavity. The field pattern of
the resonant mode of the laser was found first by Fox and Li [16]. They calculated
the diffraction integral numerically on a computer, starting from an assumed mode
pattern on S. The resultant electric field pattern on the opposite mirror S′ is then
used as the Ey in the diffraction integral to calculate the field on S after a round
trip. This process is iterated back and forth many times. Eventually, stabilized mode
patterns (i.e. mode patterns that differ from each other only by a complex constant
after one diffraction) were found. We will discuss solutions of the integral equation
in detail in Chapter 2.

1.5 Superposition theory and other mathematical techniques
derived from Kirchhoff’s diffraction formula

In practical applications, we frequently need to simplify complex problems to some
basic problems that we can analyze easily. Since Maxwell’s equations are linear
differential equations, the superposition theory is always a very useful tool to break
down a more complex problem. For example, when there are two radiation sources
at the same frequency, such as two beams split from the same laser, the total
diffracted field is the superposition of the U from the individual sources. However,
superposition theory is not generally applicable unless the boundary conditions
remain the same for both cases. Fortunately, for those optical problems that can be
solved via Kirchhoff’s integral in Eq. (1.15), we have more powerful techniques to
use. These techniques are derived from the mathematical properties of Eqs. (1.15)
and (1.17). Five techniques are listed here.

(1) Any integration over the aperture � is equivalent to the summation of integrals over
different apertures, the sum of which is �.
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(2) Kirchhoff’s integral gives zero contribution to U (r0) from any opaque portion of the
screen, where both U and ∇U are considered to be zero. In other words, we can change
the geometrical configuration of the opaque portion of the screen as long as U and ∇U
remain zero there.

(3) When the position of the aperture is moved, the new Kirchhoff integral may be related
to the old integral simply by a change of coordinates.

(4) When there is more than one transmission function, t , at the aperture, then the results
obtained from Eqs. (1.17b) and (1.25) will be in the form of a Fourier transform of the
product of all the t functions over a finite integration limit defined by �.

(5) The convolution theory of the Fourier transform of the product of two functions may
be applied when the limits of integration are large.

We will illustrate in the following examples how to use these techniques.
(1) As the first example, let us consider the diffraction of U by an aperture which

is a rectangular opening on the z = 0 plane, from y = h − ly to h + ly and from
x = −lx to +lx.

The Fraunhofer diffraction integral in Eq. (1.17b) can now be explicitly written
as follows:

U (r0) = − j

λd
e− jkde− jk

x2
0 +y2

0
2d e+ j2π( y0

λd )h

×
+lx∫

−lx

h+ly∫
h−ly

U (x, y, z = 0)e+ j2π( x0
λd )x e+ j2π( y0

λd )ydx dy

= − j

λd
e− jkde− jk

x2
0 +y2

0
2d e+ j2π( y0

λd )h

 +∞∫
−∞

+∞∫
−∞

rect

(
x

lx

)
rect

(
y′

ly

)

× U (x, y′ + h, z = 0)e+ j2π( x0
λd )x e+ j2π( y0

λd )y′
dx dy′

]
. (1.29)

A change of coordinates from y to y′ = y − h has been carried out. Equation (1.29)
allows us to find the U in terms of the diffraction pattern of a rectangular aperture
centered on x = y = 0, which we have already discussed.

(2) As the second example, let the incident U in the above example be an optical
wave with complex functional variation instead of a simple plane wave; then the
integral given in Eq. (1.29) is the Fourier transform, F , of the product of two
functions, RR = rect (x/lx) rect (y′/ly) and U (x , y′ + h, z = 0).

Let the Fourier frequencies be

fx = x0

λd
and fy = y0

λd
.
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Let

FRR( f ′
x , f ′

y) =
+∞∫

−∞

+∞∫
−∞

rect

(
x

lx

)
rect

(
y′

ly

)
e+ j2π f ′

x x e+ j2π f ′
y y′

dx dy′,

FU ( f ′
x , f ′

y) =
+∞∫

−∞

+∞∫
−∞

U (x, y′ + h, z = 0)e+ j2π f ′
x x e+ j2π f ′

y y′
dx dy′.

Then, according to the convolution theory,

U (r0) = − j

λd
e− jkde− j2π fyhe− jk

x2
0 +y2

0
2d

×
+∞∫

−∞

+∞∫
−∞

FRR( f ′
x , f ′

y) FU ( fx − f ′
x , fy − f ′

y) df ′
x df ′

y. (1.30)

FRR and FU are likely to be results that we already have. Thus we can obtain U at
r0 from the known results.

(3) As the third example, let us consider the diffraction pattern of a double slit,
from y = h − ly to y = h + ly and from y = −h − ly to y = −h + ly. The incident
U is a plane wave (U = A) propagating in the +z direction.

Using the superposition theory and the results obtained in Eq. (1.29), we imme-
diately obtain the diffraction pattern as

U (r0) = −2Aj

λd
e− jkde− jk

x2
0 +y2

0
2d cos

[
2π

( y0

λd

)
h
]

×
+∞∫

−∞

+∞∫
−∞

rect

(
x

lx

)
rect

(
y′

ly

)
e+ j2π( x0

λd )x e+ j2π( y0
λd )y′

dx dy′. (1.31)

The cosine function expresses the interference effect of the double slit diffraction.
(4) As the fourth example, let us consider the diffracted field when the screen is

an opaque obstacle such as a finite sized disk. We note that, for any very large open
aperture �′, we will get back the incident U at r = r0. We can express any opaque
aperture � as � − (� − �), where � is the entire z = 0 plane. � − � is the
complementary aperture of �. Therefore, we can rewrite Eq. (1.17b) as follows:

U (r0) = Uinc(r = r0) −
[

− j

λd
e− jkde− jk

x2
0 +y2

0
2d

×
∫∫

�−�

Uinc(z = 0)e+ j2π
xx0
λd e+ j2π

yy0
λd dx dy

]
.
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Figure 1.10. Phase shift in a Fresnel lens. A refractive Fresnel lens has a circular
symmetric sectional continuous variation of its thickness. The phase shift of optical
light transmitted within each circular section varies as a function proportional to
r2, from 2nπ to 2(n + 1)π . The phase shift as a function of r for the first few rings
is illustrated here for the case of n = 0. For a plane wave incident normally on
a Fresnel lens, its phase shift varies continuously like an ideal lens, as shown in
Eq. (1.27).

(5) As the fifth example, let us consider a refractive Fresnel lens. A refractive
Fresnel lens does not have a spherical surface as shown in Fig. 1.8. It has a material
structure that has a sectional continuous profile. For the first segment, the surface
profile is such that, from the center r = 0 to a radius r , the phase shift is described
by Eq. (1.27). However, this surface stops at r = r1 when the phase shift is 2π ,
i.e. when r2

1/λ f = 2. A new segment of the surface starts at r1 with zero phase
shift. This second segment of the surface will provide a phase shift proportional
to (r2/λ f ) − 2. The second surface segment stops at r2 when r2

2/λ f = 4. The
third segment starts at r2 with zero phase shift. These segments continue until
the shortest length of the segments, r j − r j−1, reaches the resolution limit of the
fabrication technology. Figure 1.10 illustrates the phase shifts along the radial
direction r .

When one calculates the diffraction pattern of the Fresnel lens, the Kirchhoff
integral will be performed separately over each segment of continuous phase shift
zone. The sum of all the diffraction integrals gives the U (r0). The insertion of ej2nπ

(n = any integer) into any integrand does not change the value of the integral.
We can easily show that for any normally incident plane wave, the U given by
Kirchhoff’s integrals for the Fresnel lens behaves identically to any thin spherical
lens with the same focal length. The difference between the spherical lens and the
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Figure 1.11. Illustration of an example of spatial filtering in the Fourier transform
plane. A transparent film with transmission function t(x, y) is placed in a square
aperture (d × d) in front of an ideal lens with focal length f at z = 0. A spatial
filter is placed at the focal plane at z = f. A second lens with focal length f is placed
at z = 2f to reconstruct the filtered incident light.

Fresnel lens lies in the higher order terms of the phase shifts which we neglected
in the first-order approximation. This difference is important for oblique incident
radiation.

(6) As the final example (from ref. [15]), a plane wave with amplitude A is
incident normally on a transparent film at z = 0, followed immediately by an ideal
thin lens with focal length f , as shown in Fig. 1.11. The film is placed in a square
aperture (d × d) centered at x = y = 0. The electric field transmission t of the
transparent film is

t(x, y) = 1

2
[1 + cos(2π H x)] rect

(
x

d/2

)
rect

(
y

d/2

)
,

where H � (1/d). An optical filter (shown in Fig. 1.12) is placed at the focal plane
of this lens. The screen is opaque in two regions: (1) |x |< l/2 and |y|< l/2 for the
inside region, and (2) |x | > l and |y| > l for the outside region. A second lens with
focal length f is placed at a distance f behind the screen. To find the diffracted
field after the second lens, we proceed as follows.
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Figure 1.12. The optical filter in Fig. 1.11 The spatial filter in Fig. 1.11 is illustrated
here. It is opaque for |x| and |y| < l/2 and for |x| and |y| > l.

At z = f, the incident field on the screen is

U (x1, y1, f ) = − j Ae− jk f e− jk
(

x2
1 +y2

1
2 f

)
λ f

×
d/2∫

−d/2

d/2∫
−d/2

1

2

[
1 + 1

2
e j2π H x + 1

2
e− j2π H x

]
e

j2π
(

x1
λ f

)
x
e

j2π
(

y1
λ f

)
y
dx dy

= − j Ae− jk f e
− jk

(
x2
1 +y2

1
2 f

)
2λ f

sin

(
πx1d

λ f

)
π

x1

λ f

+
sin

(
π

(
H + x1

λ f

)
d

)
2π

(
H + x1

λ f

)

+
sin

(
π

(
H − x1

λ f

)
d

)
2π

(
H − x1

λ f

)
 sin

(
π y1d

λ f

)
π

y1

λ f

.

Thus there are three radiation peaks in the x1 direction, centered at x1 = 0, x1 =
λ f H and x1 = −λ f H . The width (defined by the first zero of the field) of the peaks
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in the x direction is λ f /d around the centers. All radiation peaks are centered about
y1 = 0 with width λ f /d in the y direction. However, the x transmission range of
the screen at z = f is l/2 < |x1| < l. Thus the peak centered about x1 = 0 is always
blocked by the screen. In order for the two side peaks to pass the screen, l/2 <

f λH < l. In order for the main lobe of the two side peaks to pass through the
screen, we need

λH f + λ f

d
< l < 2λH f − 2λ f

d
.

Since the peaks are centered in the y direction at y1 = 0, the transmission of the
screen is effectively from y1 = −l to y1 = l whenever the peak is transmitted in
the x direction. If we approximate the transmitted radiation field by deleting the
term representing the peak centered about x1 = y1 = 0, we obtain the diffracted
transmitted radiation after the screen:

U ′(x, y, f ) ≈ −Ae− jkze
− jk

(
x2+y2

2(z− f )

)
2λ2 f (z − f )

×

∫ l

−l

sin

(
πy1d

λ f

)
π

y1

λ f

e− jk
y2
1

2 f

 e− jk
y2
1

2(z− f ) e
j2π

(
y

λ(z− f )

)
y1 dy1

×


∫ l

l/2

sin

(
π

(
x1

λ f
− H

)
d

)
2π

(
x1

λ f
− H

) e− jk
x2
1

2 f

e− jk
x2
1

2(z− f ) e
j2π

(
x

λ(z− f )

)
x1 dx1

+

∫−l/2

−l

sin

(
π

(
x1

λ f
+ H

)
d

)
2π

(
x1

λ f
+ H

) e− jk
x2
1

2 f

e− jk
x2
1

2(z− f ) e
j2π

(
x

λ(z− f )

)
x1 dx1

 .

When this diffracted field passes through the second lens at z = 2 f , the exponential
term in front of the integral, exp(− jk[(x2 + y2)/2(z − f )]), is canceled by the
quadratic phase change of an ideal lens, exp( jk[(x2 + y2)/2 f ]), for z ≥ 2 f . The
integration is quite messy in the general case. However, the answer is simple for
the following special case. Let λ f /d be small (i.e. the width of radiation peaks
is narrow), and let the dimension l be such that at least the main lobe of the two
side peaks passes through the screen at z = f . Then sin(πy1/(λ f /d))/ (πy1/λ f )
is significant only for y1 < λ f /d , and its peak value is proportional to d. Within
such a small range of y1, the three exponential factors in the above y1 integral can
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be approximated by constant values at y1 ≈ 0. This means that

exp
(− jky2

1

/
2 f

)
exp

(− jky2
1

/
2(z − f )

)
exp( jk y1/2(z − f )y) ≈ 1.

Similarly, the three exponential factors in the two x1 integrals can be approximated
by x1 = λH f and x1 = −λH f , respectively.

Therefore, immediately after the second lens at z = 2 f , we have the following
field:

U ′′(x2, y2, 2 f ) ≈ −Ae− jk2 f

2λ2 f 2

∫ l

−l

sin

(
π

2π y1d

λ f

)
π

y1

λ f

dy1

×

e− jkλ2 H 2 f e jkλ H x2

∫ l

l/2

sin

[
π

(
x1

λ f
− H

)
d

]
2π

(
x1

λ f
− H

) dx1

+ e− jkλ2 H 2 f e− jkλ H x2

∫−l/2

−l

sin

[
π

(
x1

λ f
+ H

)]
2π

(
x1

λ f
+ H

) dx1

 .

If the second lens is sufficiently large, the diffraction effect due to the finite size
of the second lens can be neglected. The far field diffraction pattern will be given
by two beams, one beam propagating as exp(− jkz) exp( jkλH x) and the second
beam propagating as exp(− jkz) exp(− jkλH x). The incident beam propagating
along the z axis has been filtered out.
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2

Gaussian modes in optical laser cavities and
Gaussian beam optics

It is well known that basic solid state and gas laser cavities consist of two end
reflectors that have a certain transverse (or lateral) shape such as a flat surface or
a part of a large sphere. The reflectors are separated longitudinally by distances
varying from centimeters to meters. The size of the end reflectors is small com-
pared with the separation distance. All cavities for gaseous and solid state lasers
have slow lateral variations within a distance of a few wavelengths (such as the
variation of refractive index and gain of the material and the variation of the shape
of the reflector). Therefore these cavity modes are analyzed using the scalar wave
equation. Laser cavities are also sometimes called Fabry–Perot cavities because of
their similarity to Fabry–Perot interferometers. However, Fabry–Perot interferom-
eters have distances of separation much smaller than the size of the end reflectors.
The diffraction properties of the modes in Fabry–Perot interferometers are quite
different from the properties of modes in laser cavities.

The analysis of the resonant modes is fundamental to the understanding of lasers.
Modes of solid state and gas lasers are solutions of Eqs. (1.28a) and (1.28b), known
as Gaussian modes. They are TEM modes. The analysis of laser modes and Gaussian
beam optics constitutes a nice demonstration of the mathematical techniques pre-
sented in Chapter 1. It is also important to learn the mathematical analysis for the
following two reasons: (1) we will appreciate the limitations and circumstances
in which Gaussian modes can be used; and (2) we will know how to apply these
mathematical techniques to new structures.

The propagation properties of Gaussian modes outside the laser cavity are impor-
tant in many applications such as filtering or matching a laser beam to a specific
input beam shape. Gaussian modes are also solutions of Maxwell’s equations, just
like plane waves, cylindrical waves, etc. When Gaussian waves are propagating
through lenses or other optical components, they retain the form of Gaussian modes.
In other words, when a Gaussian beam is diffracted by an optical component, it can
usually be described as a transformation into another Gaussian beam with different

34
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parameters. Such a transformation can be performed simply by a transformation
matrix of the parameters without the use of complicated diffraction integrals as
we have done in Chapter 1. Therefore, the analyses of many applications of laser
beams can be greatly simplified if the optical beam can be considered as a Gaussian
beam. This chapter is devoted entirely to Gaussian beams and their propagation.
Such a discussion is not available in most classical optics books.

In Chapter 3 we will discuss modes of a different kind, guided wave modes,
which arise from material structures with significant index variation within a dis-
tance of a wavelength in the lateral direction. Vector wave equations will be used for
the analysis of guided waves. The resonant modes of edge emitting semiconductor
lasers are resonant modes of guided waves in cavities with flat end reflectors or
grating reflectors. These guided wave modes are similar to the modes in microwave
structures. They are not TEM modes. For the vertical cavity surface emitting semi-
conductor lasers (VCSEL) discussed in Chapter 7, there is usually no waveguide
structure in the transverse directions. The end reflectors are flat, separated longi-
tudinally by a distance of the order of micrometers. Therefore neither the analysis
of the guided wave modes nor the analysis of the Gaussian modes is applicable.
Because of the short dimensions in which diffraction effects are negligible, the
VCSEL modes are often treated as plane waves.

In this chapter, we will present the discussion on TEM cavity modes and their
propagation in the following order.

(1) First we will analyze the modes of laser cavities by solving the integral
equations, Eqs. (1.28). Each mode is an independent electromagnetic field solu-
tion of the integral equation. All the modes discussed in this chapter are “cold” or
“passive” cavity modes, meaning that the gain in the material is zero. The contri-
bution to the susceptibility of the material from the induced quantum mechanical
transition is not included. The solutions of Eqs. (1.28a) and (1.28b) are commonly
called the Gaussian modes because their lateral amplitude variation has a Gaussian
envelope. We will begin our discussion with confocal cavities, because Eqs. (1.28)
have analytical solutions for such a cavity. We will then extend the analysis to other
cavity configurations. When there is sufficient gain, solid state or gas lasers will
oscillate in one or several of these passive cavity modes modified by the gain and
susceptibility contributed from the induced quantum mechanical transition. These
properties involve laser oscillation, and will be discussed in Chapter 6.

(2) We will show that, when end reflectors are partially transmitting, these modes
will continue to propagate as Gaussian beams outside the laser cavity. This is an
important result. Since the diffraction of a Gaussian beam yields another Gaussian
beam, the propagation of these beams through different optical elements, such as
lenses, etc., can be treated simply as a matrix transformation of the parameters of
the Gaussian beam, without explicitly carrying out the Kirchhoff integral in each
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S′(x′, y′, z′)

Figure 2.1. Illustration of a confocal cavity. A confocal resonator has two spherical
end reflectors, S and S′. The mirrors have a square aperture, 2a × 2a. The spherical
center of the S surface is at the center of S′, with radius b. The spherical center
of the S′ surface is at the center of S, also with radius b. The focus of both the S
mirror and the S′ mirror is at the origin; ρ is the distance from a point on the S′
mirror to a point on the S mirror.

step. Because of the convenience of Gaussian beam transformation, the fields of
other components, such as fibers and waveguides, are frequently approximated by
Gaussian modes.

(3) Mathematically, Gaussian modes form a complete orthogonal set, meaning
that any radiation field can be expressed as a superposition of these modes. This
is important for the analysis of various applications. For example, the excitation
of the different “cold” cavity modes by external radiation is usually analyzed by
expanding the incident radiation field as a superposition of orthogonal Gaussian
cavity modes. The transmission or reflection of any arbitrary external radiation by
Fabry–Perot interferometers with curved end reflectors is analyzed by expanding
the external radiation in terms of the Gaussian modes of the interferometer.

2.1 Modes in confocal cavities

The rigorous theory of laser modes is based on the analytical solution of the integral
equation created by repeated Kirchhoff diffraction in cavities that have confocal
reflectors. Consider the confocal resonator shown in Fig. 2.1. There are two identical
spherical mirrors, each with radius b, symmetrically placed about the z axis at
z = ±d/2 (d = b in confocal cavities). In order to take advantage of the simplicity
of mathematical analysis in rectangular coordinates, both mirrors are assumed to
have a square shape (2a × 2a in the transverse dimension). The size of the mirror
is small compared with the separation distance, i.e. d � a. Although the centers of
the spherical surfaces are located at x = y = 0 and z = ±d/2, the focal point of
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both mirrors is at x = y = 0 and z = 0. Therefore it is called a confocal cavity. We
will analyze rigorously the confocal cavities following ref. [1].

Note that all dimensions of solid state and gaseous laser cavities are much larger
than the wavelength. Since there are many resonant modes in a large cavity, the small
lateral dimension of the reflectors is employed so that the losses of higher order reso-
nant modes will be much higher than the loss of the fundamental mode. In Chapter 6,
we will show that the difference in losses is necessary to prevent the oscillation
of the unwanted higher order modes. Since laser oscillation takes place only in
lowest order modes, our discussion in this chapter will focus on lower order modes.

2.1.1 The simplified integral equation for confocal cavities

Since a � d, θ ≈ 0 and cos θ ≈ 1 in Eqs. (1.28). Thus, Eqs. (1.28) for the electric
field polarized linearly in the y direction can be simplified as follows:

γ Ey(x, y)|on S =
(

j

λd

) a∫
−a

a∫
−a

Ey(x ′, y′)|on S′e− jkρdx ′dy′. (2.1)

Here, ρ is the distance between P and P′ on the S and S′ surfaces, respectively.
Clearly, the Ey on S and S′ must be identical. Thus, Eq. (2.1) is an integral equa-
tion for Ey. It is well known mathematically that, like differential equations with
appropriate boundary conditions, such an integral equation has independent eigen
functions and eigen values [2]. If we can find these independent solutions, we have
found the modes of the confocal cavity.

The S′ and S surfaces are described by

z′ − d

2
= −

√
d2 − x ′2 − y′2 ≈ −d + x ′2 + y′2

2d
,

z + d

2
=

√
d2 − x2 − y2 ≈ d − x2 + y2

2d
.

When e−jkρ is simplified by a binomial approximation and when the higher order
terms are neglected, we obtain

ρ =
√

(z − z′)2 + (x − x ′)2 + (y − y′)2

≈ (z − z′) +
[

1

2

(x − x ′)2 + (y − y′)2

(z − z′)

]
≈

(
d − x ′2 + y′2

2d
− x2 + y2

2d

)
+

[
(x2 + x ′2) + (y2 + y′2) − 2xx ′ − 2yy′

2d

]
≈ d − xx ′ + yy′

d
.
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Here, z and z′ on S and S′ in the preceding expression are used to simplify the
(z − z′) term, and d is used to approximate the (z − z′) term in the denominator.
Note that the quadratic terms in the first-order term of the binomial series expansion
in the square brackets of the above equation are canceled by the quadratic terms
in parentheses created by the spherical surfaces of the confocal resonator. This
coincidence gives us a simplified expression for ρ. Neglecting the higher order
terms in the binomial expansion is justified when a2/bλ � (b/a)2. When higher
order terms are neglected, the Ey at (x, y, z) on S is related to Ey at (x′, y′, z′) on S′

by a simplified equation:

γ Ey(x, y, z)|on S =
(

j

λd
e− jkd

) +a∫
−a

+a∫
−a

Ey(x ′, y′, z′)|on S′e jk
(

xx ′+yy′
d

)
dx ′ dy′.

Let us compare this equation with the diffraction integrals for Fraunhofer diffraction
in the focal plane of a lens. We see that the relation between Ey on S and Ey on
S′ is again a Fourier transform with finite integration limits, ±a. There are known
mathematical solutions for such an integral equation. This is really the secret of the
confocal cavity and the reason we started the analysis with it.

2.1.2 Analytical solutions of the modes in confocal cavities

If we let the Ey on S be described by F(x)G(y), then the integral equation for F and
G is

σlσm Fl(x) Gm(y) =
+a∫

−a

+a∫
−a

je− jkb

λd
Fl(x

′)Gm(y′)e jk
(

xx ′+yy′
b

)
dx ′dy′,

where γ is represented by σ lσ m. When we make the following change of variables:

� = a2k

b
, X =

√
�

a
x, and Y =

√
�

a
y,

we obtain

σlσm Fl(X )Gm(Y ) = je− jkb

2π

+√
�∫

−√
�

Fl(X ′)e j X X ′
d X ′

+√
�∫

−√
�

Gm(Y ′)e jY Y ′
dY ′. (2.2)

This is a product of two well known identical integral equations, one for X and
one for Y. In order for both of them to be satisfied for all X and Y, each integral
equation must be satisfied separately. Slepian and Pollak [3] have shown that the
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lth independent solution to

Fl(X ) = 1√
2πχl

+√
�∫

−√
�

Fl(x
′)e j X X ′

d X ′

is

Fl(X ) = S0l

(
�,

X√
�

)′

and

χl =
√

2�

π
j l R0l

(1) (�, 1) ,

where l = 0, 1, 2, . . . , and S0l and R0l
(1) are, respectively, the angular and radial

wave functions in prolate spheroidal coordinates, as defined by Flammer [4]. Thus,
the eigen values and eigen functions of Eq. (2.1) are

σlσm = j Xl Xme− jkb = 2�

π
R0l

(1)(�, 1)R0m
(1)(�, 1) jm+l+1e− jkb, (2.3a)

and

Ey = Ulm (x, y) = S0l

(
�,

x

a

)
S0m

(
�,

y

a

)
, (2.3b)

with l, m = 0, 1, 2, 3, . . . According to Slepian and Pollak [3], the R and the S
functions are real. This confirms that the mirrors are surfaces of constant phase
of Ey.

2.1.3 Properties of resonant modes in confocal cavities

Many conclusions can immediately be drawn from the solution for the fields on the
reflector surface discussed in Section 2.1.2. Seven properties of the resonant modes
of the confocal cavities are presented in the following.

(1) Transverse field pattern

We normally designate the resonant modes as TEMlm modes which have the trans-
verse variation given by Ulm . Figure 2.2 illustrates the transverse field distribution
of lowest order TEMlm modes in confocal resonators. Note that the lth-order mode
will have l nodes or zeros in the x direction, while the mth-order mode will have
m nodes in the y direction. This is important information. It allows us to identify
experimentally the mode order by examining the nodes in its intensity pattern. We
will also show in the third conclusion that you cannot expect to couple a mode
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TEM00 TEM10 TEM01 TEM11

TEM02 TEM20 TEM12 TEM21

Figure 2.2. Sketch of the transverse field distribution of modes in confocal res-
onators. The arrows are used to indicate the electric field patterns of various lower
order TEMlm modes on the mirror. The direction of the field is shown by the direc-
tion of the arrows and the magnitude of the field is indicated by the size of the
arrows.

with an odd number of nodes to any other field which has a symmetric mode
pattern.

(2) Resonance frequency

At resonance, the phase shift after each round trip of propagation in the z direction
must be an integer multiple of 2π . Thus, resonance in the z direction occurs only at
discrete wavelengths λlmq that correspond to various values of q multiples of 2π :∣∣∣∣π − 4πb

λlmq
+ (m + l) π

∣∣∣∣ = 2qπ,

where m, l and q are all integers. From here on, we designate modes belonging
to different l and m as transverse modes and modes belonging to different q as
longitudinal modes. However, lower order transverse modes have small integers or
zero for m and l, whereas q may be a very large number, up to millions, for long
cavities.

In summary, the resonance frequency flmq for a given order of mode, designated
by l, m and q, is

flmq = c

4b
(2q + l + m + 1) , (2.4)

where c is the velocity of light in free space.
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From Eq. (2.4), we see that the TEMlm modes are degenerate with respect to
l and m. Degeneracy means that independent modes with the same l + m value,
but different l and m values, will have the same resonance frequency. As we will
show in the following section, such degeneracy does not exist in non-confocal
cavities. In principle, degenerate modes may oscillate at the same frequency.
However, we do not want more than one mode to oscillate because it may cause
uncertainty in its total field. Thus we do not like to use cavities with degenerate
modes in practical applications. The mode degeneracy is a disadvantage of confocal
resonators.

TEMlm modes which have adjacent longitudinal mode orders, i.e. q and q + 1,
will have resonance frequencies separated by c/2b, where 2b/c is the round trip
propagation time for a wave front to travel around the cavity. Thus, the frequency
spacing of the longitudinal modes is controlled by the mirror separation between
the reflectors and the velocity of light. For cavities filled with a dielectric that has
refractive index n, the resonance frequency separation of the adjacent longitudinal
modes will be 2bn/c.

(3) Orthogonality of the modes

The Ulm are orthogonal functions, i.e.

a∫
−a

a∫
−a

Fm

(
x
√

�

a

)
Gn

(
y
√

�

a

)
Fm ′

(
x
√

�

a

)
Gn′

(
y
√

�

a

)
dx dy

=
a∫

−a

a∫
−a

UmnUm ′n′ dx dy = 0,

when m �= m′ or n �= n′. Therefore these modes are orthogonal modes. Moreover,
it can be shown mathematically that eigen functions of the integral equation of the
form given in Eq. (2.2) always form a complete set.

Any arbitrary TEM field polarized in the y direction can be expressed as a
superposition of these TEMlm modes, just as we can express them as a superposition
of plane waves or cylindrical waves. The selection of the specific form of modal
expansion will be based on mathematical convenience.

The orthogonality relation is very helpful in expanding any arbitrary U(x, y) in
terms of Ulm. For example, let

U =
∑
l.m

alm Ulm .
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Then, because of the orthogonality relation,

alm =

a∫
−a

a∫
−a

U Ulm dx dy

a∫
−a

a∫
−a

U 2
lm dx dy

.

There are many important applications of the orthogonality properties in modal
expansion analysis. For the application of coupling laser radiation to another optical
component, such as single-mode optical fibers, modal expansion of the fiber mode
in terms of TEMlm modes, or vice versa, is an important technique. For example, the
coupling between the TEMlm mode with odd l or m and any cylindrically symmetric
mode of the fiber will be zero because the integral of the product of any symmetric
and any anti-symmetric function is zero.

(4) Simplified analytical expression for the field

For x and y � a, U can be approximated by the product of an Hermite polynomial
and a Gaussian envelope,

Ulm(x, y) = �[(l/2) + 1]�[(m/2 + 1)]

�(l + 1)�(m + 1)
Hl

(
x
√

�

a

)
Hm

(
y
√

�

a

)
e−π(x2+y2)/λd .

(2.5)

� is the usual gamma function, and Hermite polynomials are tabulated in many
physics and mathematics books [5]:

H0(x) = 1,

H1(x) = 2x,

H2(x) = 4x2 − 2,
...
Hn(x) = (−1)n ex2 ∂n

∂xn
e−x2

.

For l = m = 0, the lowest order Hermite polynomial is just unity. Thus, the TEM00

mode is just a simple Gaussian function. An lth-order Hermite polynomial is an
lth-order algebraic polynomial function. Thus, it will have l zeros. Even-order
modes will be even functions, while odd-order modes will be odd functions. At
large x and y values, polynomials are weakly varying functions, and the exponential
function dominates the amplitude variation. Thus, the envelope of all TEMlm modes
is a Gaussian function which is independent of the mode order, l and m.
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(5) Spot size

The radius ωs at which the exponential envelope term falls to 1/e of its maximum
value at x = 0 and y = 0 is the spot size ωs of the Gaussian modes on the mirror.
At this distance from x = 0 and y = 0, the intensity falls to 1/e2 of its maximum
value. Therefore, for all TEMlm modes, the spot size on the mirror is

ωs =
√

bλ/π. (2.6)

Note that the spot size on the mirror is independent of the mode order, l and m. It
is controlled only by the radius of curvature of the confocal mirror.

(6) Diffraction loss

There is a fractional energy loss per reflection γ D. It is commonly called the diffrac-
tion loss per pass (i.e. the loss for propagation of the wave front from one reflector
to the second reflector and reflected back by the second reflector) of the TEMlm

mode. It means that the diffracted field of the first mirror is only partially captured
by the second mirror. Because of this loss, the magnitude of the eigen value χm is
less than unity. There are two ways to calculate γ D.

(a)

γD = 1 − |χlχm |2 . (2.7)

(b) We can calculate γ D from the ratio of the energy captured by the mirror to the total
energy in the E field at the mirror, i.e.

γD = 1 −

∫∫
�

|E(x, y, z)|2 dx dy

∞∫
−∞

∞∫
−∞

|E(x, y, z)|2 dx dy

. (2.8)

E will be given in Eq. (2.10), and � is the aperture representing the mirror. Figure 2.3
shows the γ D for several lowest order modes of the confocal resonators obtained by
Boyd and Gordon [1], as well as the γ D obtained by Fox and Li in their numerical
calculation for two flat mirrors (see ref. [16], Chapter 1). This is a very important
result. (1) Note that TEMlmq and TEMlmq′ modes have the same diffraction loss (i.e.
the diffraction loss is independent of the longitudinal mode order). The diffraction
loss increases, in general, for higher order transverse modes. Note also that the
diffraction loss varies rapidly as a function of a2/bλ. In lasers, we like to have
just a single TEM oscillating mode most of the time. If the diffraction loss is
sufficiently high for higher order modes, the lasers will not oscillate. Controlling
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Figure 2.3. Diffraction loss per pass for the lowest order mode of a plane parallel
cavity and for low order modes of confocal cavities; a is the mirror radius and b is
the mirror spacing. The pairs of numbers under the arrows refer to the transverse
mode order l and m of the confocal cavity; n is the refractive index of the material
between the reflectors. Taken from ref. [6], by permission of the publisher.

the diffraction loss by the aperture size is a very important technique in laser design.
(2) Note that in conventional Fabry–Perot interferometers a2/bλ is much bigger
than in laser cavities, shown in Fig. 2.3. Therefore, diffraction loss is insignificant
for many modes in Fabry–Perot interferometers. Diffraction loss is also insignificant
in microwave cavities and in edge emitting semiconductor lasers.

(7) Quality factor Q

The sharpness of any resonance is commonly described by the quality factor Q. Let
us consider the cavity resonance mode as two waves traveling simultaneously in
opposite directions inside the cavity. Let the average stored electromagnetic energy
per unit volume in the cavity be ρE. Since there are two oppositely propagating
waves in a cavity, the intensity of one propagating wave is cρE/2, where c is the
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velocity of light. The propagation loss for a round trip is twice the loss of a single
pass. Therefore, the power loss due to diffraction loss for a given stored energy per
unit volume ρE is

2γD

∫
c
ρE

2
ds.

Q is also the ratio of the stored energy to the power loss times ωr, where ωr is
the resonance angular frequency. Thus, the cavity Q of the resonant mode due to
diffraction loss alone is

Qc =
ωr

∫
ρE dv

γDc
∫

ρE ds
= 2πd

γDλ
. (2.9)

Let the stored energy be given by the number of photons in the mode. If we assume
that the power loss is causing the decay of the number of photons in the mode, we
obtain the photon decay time of the mode to be Q/ωr.

2.1.4 Radiation fields inside and outside the cavity

Inside the cavity, the internal field U can be obtained by applying Kirchhoff’s
diffraction formula to the U on the mirror. If the mirror is partially transmitting,
there will also be a radiation field outside the cavity. Since the transmission is usually
low, the outside field will have a much smaller amplitude than the internal field.
Since U must be continuous across a partially transmitting surface, the propagation
of U outside the cavity can also be calculated by Kirchhoff’s diffraction formula
from the U on the mirror. The result is as follows:

Eylm (x, y, z) = A
2

1 + ξ 2

�[(m/2) + 1]�[(l/2) + 1]

�(m + 1)�(l + 1)

× Hl

 x√
bλ

2π

√
2

1 + ξ 2

 Hm

 y√
bλ

2π

√
2

1 + ξ 2

 exp

[
− kr2

b(1 + ξ 2)

]

× exp

(
− j

{
k

[
b

2
(1 + ξ ) + ξ

1 + ξ 2

r2

b

]
− (1 + l + m)

(π

2
− φ

)})
,

(2.10)

where r2 = x2 + y2, ξ = 2z/b, tan φ = (1 − ξ )/(1 + ξ ) and A is the amplitude.
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Equation (2.10) implies that the amplitude spot size at any z is

ω (z) =
√

bλ

2π
(1 + ξ 2). (2.11)

The intensity of the radiation is proportional to Ey E∗
y , and thus the intensity falls

to 1/e2 of its maximum value at the edge of the spot. Clearly the minimum spot
size ω0 is at z = 0:

ω0 =
√

bλ

2π
. (2.12)

The Gaussian beam at z = 0 is known as the beam waist. Note again that, at large
x and y, the amplitude variation will be dominated by the exponential function,
instead of any polynomial function dependent on l and m. Thus, the spot size is
independent of the order of the mode.

2.1.5 Far field pattern of the TEM modes

From Eq. (2.11), we can calculate ωs/z for very large z. This ratio is the radiation
beam-width θ rad of the TEM modes at the far field,

θrad = tan−1

(
λ

πω0

)
≈ λ

πω0
=

√
2λ

πb
. (2.13)

If we compare this far field beam-width, λ/πω0, with the beam-width of a plane
wave incident on a rectangular aperture given in Eqs. (1.21), λ/2lx or λ/2ly, we
immediately see the similarity between them. The main difference is the constant
π/2. However, in the case of Eqs. (1.21) we defined the radiation intensity beam-
width by the first node of the radiation intensity; whereas here we define the radiation
beam-width as that point when the intensity falls to 1/e2 of its maximum.

2.1.6 General expression for the TEMlm modes

We can now rewrite Eq. (2.10) in terms of quantities that have clear physical
meanings, as follows:

(Ey)lm = E0
ω0

ω(z)
Hl

[√
2x

ω (z)

]
Hm

[√
2y

ω (z)

]
exp

[
− r2

ω2(z)

]

× exp

[
− jk

(
r2

2R (z)

)]
exp [− jkz + j (l + m + 1) η] . (2.14)
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Here, E0 is just the amplitude, a constant, and

ω = ω0

[
1 +

(
z

z0

)2
]1/2

, z0 = b

2
,

R (z) = 1

z

[
z2 + z2

0

]
,

η = tan−1(z/z0).

The three exponential factors in Eq. (2.14) have important physical meanings.
(1) The first exponential factor exhibits the Gaussian envelope amplitude variation
at any z. This is the most commonly cited property of TEM cavities. (2) The second
exponential factor exhibits the quadratic phase variation (i.e. the spherical wave
front) with a specific radius of curvature R(z) at each z value. Note that at z = ±d/2,
R is just the curvature of the confocal reflector, as we would expect. At z = 0, i.e.
at the beam waist, the mode has a planar wave front as well as the smallest spot
size. (3) The third exponential factor expresses the longitudinal phase shift in the z
direction. The phase shift is important in determining the resonance frequency.

Note that the electric field distribution of any TEMlm mode is independent of the
size of the reflector. The Gaussian field description already included the diffraction
effect without explicitly invoking Kirchhoff’s formula. Only the diffraction loss is
dependent on the reflector size.

Since U*U is the intensity, the amplitude variation of the field is the domi-
nant concern in conventional optics. We emphasize again that, in laser optics, the
quadratic phase variation is equally important. For example, (1) high coupling effi-
ciency between a specific laser mode and the mode of another optical component
requires good phase matching as well as amplitude matching of the two modes;
(2) phase variations are important in analyzing the diffraction; and (3) as the laser
light encounters a lens, the quadratic phase variation will affect the focusing of the
laser radiation.

2.1.7 Example illustrating the properties of confocal cavity modes

Consider a confocal cavity with end reflectors separated by 30 cm and a = 0.5 mm.
The medium between the mirrors is air, i.e. n = 1. The wavelength is 1 µm. The
reflectors are 99% reflection and 1% transmission in intensity. The confocal res-
onator modes will have a beam waist size on the mirror of

√
bλ/π = 0.3 mm, which

is independent of and much smaller than the mirror size. The mode pattern in the
x and y directions will not be dependent on the mirror size.

The mode pattern will depend only on the mode order, l and m, and bλ. According
to Eq. (2.11), the radiation field of the mode assumes its far field pattern when
4z2/b2 � 1. The beam divergence angle at the far field is given by Eq. (2.13) as
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√
2λ/πb, which is 1.5 × 10−3 radians and is independent of the mode order. Note

that the condition for far field is different from the far field condition for Kirchhoff’s
diffraction given in Eq. (1.18) that depends on λ and which is much harder to
satisfy.

The diffraction loss per pass will depend on the mode order, l and m. For this
cavity, a2/bλ = 0.83. From Fig. 2.3, the diffraction loss for the TEM00 mode is
approximately 10−3 per pass. The diffraction loss per pass for the TEM01 or TEM10

mode jumps to 2 × 10−2, while the loss per pass for the TEM11 mode is 5 × 10−2.
The mirror size, a, is much larger than the spot size. The mode patterns in the x
and y variations are the same. According to Eq. (2.8), the diffraction loss per pass
will be independent of whether the mirrors are square or round in cross-section as
long as the area of the mirror is approximately the same. Since the transmission is
1%, the total loss per pass is 1.1 × 10−2 for the TEM00 mode, 3 × 10−2 for the
TEM01 or TEM10 mode, and 6 × 10−2 for the TEM11 mode. Notice the sensitivity
of the diffraction loss per pass to changes in a2/bλ. In order to obtain a much larger
loss per pass for the TEM01, TEM10 or TEM11 mode, it is necessary to reduce the
mirror size a. Conversely, at a = 0.525 mm, the total losses for these modes are:
1.02 × 10−2, 1.5 × 10−2 and 2 × 10−2, respectively. The increase of total loss per
pass for the higher order modes is much less significant for the larger mirrors. A
favorite practical trick to increase the differential losses of the higher order modes
is to put an aperture in front of the mirror to reduce a. In other cases, the effective
a of the cavity may be limited by other considerations, such as the size of the laser
tube.

2.2 Modes in non-confocal cavities

In this section we will find the modes of non-confocal cavities with arbitrary spher-
ical end reflectors at a given distance of separation by identifying them with the
modes of a virtual equivalent confocal cavity as follows.

(1) We will first show that the reflectors of any given confocal resonator can
be replaced by other reflectors at various locations and with specific radius of
curvature. Such a replacement will not change the resonant mode pattern. We
call this technique the formation of a new cavity for known modes of confocal
resonators.

(2) We will then solve the inverse problem: how to find the virtual equivalent
confocal resonator for a given pair of non-identical spherical mirrors at a given
distance of separation.

(3) Once we have found the virtual equivalent confocal resonator, we will obtain
the properties of the modes of the original resonator, such as the field pattern,
diffraction loss, resonance frequencies, etc., from the modes of the virtual resonator.
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(4) We will illustrate how to find the modes in non-confocal cavities via an
example.

2.2.1 Formation of a new cavity for known modes of confocal resonators

Let us first examine closely the consequence of the confocal resonator modes found
in Section 2.1. Equation (2.14) implies that there is a constant phase surface for
any resonator mode whenever the x, y and z satisfy the condition

z + r2

2R (z)
= constant.

It is clear that if a reflector with curvature R(z) is placed at this z position to replace
one of the confocal mirrors at z = ±d/2, we will have the same Gaussian transverse
mode as in the case of the original confocal cavity. The frequency at which resonance
will occur will be shifted because η is a function of z, and the round trip distance of
propagation will be different from that of the original confocal resonator. However,
the transverse mode variation will be the same. The spot size on this mirror at z is
given by the ω in Eq. (2.14). The diffraction loss per pass will depend on the size
of the reflectors.

In other words, a new optical cavity can be formed with mirrors at z1 and z2,
provided that

R1 = z1 + z2
0

z1
,

R2 = z2 + z2
0

z2
.

(2.15)

The transverse lm modes of the original confocal resonator are also modes of this
new cavity. The resonant modes of the new cavity will have the same transverse
field variation as the modes of the original cavity. The diffraction loss of the modes
will be the same in the original cavity and in the new cavity when the mirror size
varies proportionally to ω(z). Figure 2.4 illustrates the surfaces of constant phase
at two z positions. Note that one of z1 and z2 can have negative values, producing
a negative R. Negative R means we have a curved mirror at z < 0 bending toward
z = 0. As |z2| or |z1| becomes very large, |R1| and |R2| become approximately the
same as |z1| or |z2|, i.e. the surface of constant phase is approximately the same as
a spherical wave originating from z = 0. As |z1| or |z2| becomes very small, |R1| or
|R2| becomes very much larger than |z1| or |z2|. At z = 0, the surface of constant
phase is a plane.
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confocal cavity, reflectors at z = ± z0, 
R = 2z0

beam waist at z = 0, 
flat phase front, R = ∞
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Figure 2.4. Illustration of constant phase fronts of the modes of confocal res-
onators. The confocal cavity is shown as two spherical reflectors at z = ±z0. The
radius of these confocal spherical reflectors is 2z0. The modes of the confocal
cavity have a spherical wave front inside and outside the cavity. Outside, a spher-
ical wave front (dashed line) is shown to have a radius of curvature R2. Inside, a
spherical wave front (dotted line) is shown to have a radius of curvature R1. The
beam waist (solid line) is at z = 0; the modes have a flat wave front at this position.

2.2.2 Finding the virtual equivalent confocal resonator
for a given set of reflectors

If there are two mirrors with curvatures R1 and R2, separated by a distance D, we
can find z1 and z2 to fit R1 and R2 according to Eqs. (2.15) as follows:

z1 = R1

2
± 1

2

√
R2

1 − 4z2
0,

z2 = R2

2
± 1

2

√
R2

2 − 4z2
0.

(2.16)

Here, ± z0 are the positions of the mirrors for the virtual equivalent confocal
resonator that will have the same transverse modes. However, we still need to
determine z0.

In order to find z0, we shall first observe some important conditions for z0.
Assuming z2 > z1, we obtain

D = z2 − z1 = R2

2
− R1

2
± 1

2

√
R2

2 − 4z2
0 ∓ 1

2

√
R2

1 − 4z2
0.
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Rearranging terms and squaring both sides to eliminate the square root, we obtain

z2
0 = D (−R1 − D) (R2 − D) (R2 − R1 − D)

(R2 − R1 − 2D)2 . (2.17)

Clearly, z0 must be a positive quantity in order to obtain real values of the equivalent
confocal resonator position.

Equation (2.17) allows us to calculate z0 with a real value only when the right
hand side is positive. The requirement for the right hand side to be positive also
imposes certain conditions on R1, R2 and D as follows. Let us assume that R1 is
negative at negative z1. Then, we must have

D (|R1| − D) (|R2| − D) (|R1| + |R2| − D) > 0.

There are only two ways to satisfy this condition: (1) 0 < D < |R1| or |R2|, whichever
is smaller; (2) |R1| + |R2| > D > |R1| or |R2|, whichever is larger. Condition (1) can
be expressed as 0 < (1 − D/|R1|)(1 − D/|R2|). Condition (2) can be expressed as
(1 − D/|R1|)(1− D/|R2|) < 1. Hence the criterion for the existence of a resonator
mode, equivalent to a confocal resonator mode with z0 given in Eqs. (2.15), is

0 <

(
1 − D

|R1|
) (

1 − D

|R2|
)

< 1. (2.18)

If we plot this in a rectangular coordinate system with the two axes as D/|R1|
and D/|R2|, then the lower limit of Eq. (2.18), where the product of the two quan-
tities in the brackets is zero, is represented by two straight lines, D/|R1| = 1 and
D/|R2| = 1. On the other hand, the upper limit,where the product of the two
brackets is unity, is represented by a hyperbola. Figure 2.5 shows this plot. The
shaded regions show the combinations of R1, R2 and D that satisfy the inequality in
Eq. (2.18). Resonators with these combinations are called stable resonators. The
regions outside the shaded regions are called the unstable resonator regions. The
confocal resonator configuration has D = |R1| = |R2|. Thus, the confocal resonator
can easily be pushed into the unstable region by a slight misalignment of the cavity.
In reality, the assumptions used in our diffraction loss calculation break down near
the boundaries of stable and unstable regions. More precise calculations show the
diffraction loss increases rapidly from the stable to the unstable configuration. There
is no sudden change in diffraction loss from the stable to the unstable configuration.
Unstable resonator modes not only exist, they are often used in very high power
lasers so that optical energy is not concentrated in a small physical region to avoid
material damage by the high electric field [7].

In summary, when the given R1, R2 and D satisfy the stability criterion in
Eq. (2.18), z0, z1 and z2 are determined from Eqs. (2.16) and (2.17); z0 provides
us with the specifications of the virtual equivalent confocal resonator. Note that
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Figure 2.5. The stable and unstable regions of laser cavities. The straight lines are
the plots of the lower limit of Eq. (2.18), and the hyperbola is the plot of the upper
limit. The shaded region (i.e. the stable region) shows the D/|R1| and D/|R2| values
that satisfy Eq. (2.18). In this region, modes have a low or moderate diffraction
loss per pass. Cavities in the high loss region do not have D/|R1| and D/|R2| values
that satisfy Eq. (2.18). It is called the unstable region.

the ± sign in Eqs. (2.16) gives us two answers for z1 and for z2. The correct choice
is the one that gives the correct D.

2.2.3 Formal procedure to find the resonant modes in non-confocal cavities

A formal procedure can now be set up to find the resonant modes in non-confocal
cavities according to the analysis presented in Section 2.2.2. We will first test the
stability of the given R1, R2 and D according to Eq. (2.18). For stable cavities, we
will find the field pattern, the diffraction loss and the resonant frequency of their
resonant modes by the following seven steps.

(1) Calculate z0, z1 and z2 from Eqs. (2.16) and (2.17); z1 and z2 determine the cen-
ter position (i.e. the z = 0 plane) of the equivalent virtual confocal cavity and z0

determines the separation and the radius of curvature of the equivalent virtual con-
focal cavity.

(2) The minimum spot size of all modes at z = 0 is ω0 = √
λz0/π .

(3) The spot sizes on the two reflectors are

ωs1 = ω0

√
1 + (z1/z0)2,

ωs2 = ω0

√
1 + (z2/z0)2.

(2.19)
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(4) Let the sizes of the two mirrors be a1 and a2. In order to calculate the diffraction loss
of a non-confocal resonator, we first find the equivalent sizes of the virtual confocal
mirrors, aeq,1 and aeq,2, that will be proportional to a1 and a2. The proportionality is the
ratio of the spot sizes on the actual mirrors to the spot sizes on the equivalent confocal
resonator. The confocal resonator with aeq,1 and aeq,2 will have the same diffraction loss
as the actual cavity with a1 and a2. Using Eqs. (2.19) as a guide, we obtain

aeq,1 = (√
2ω0

)
a1/ωs1,

aeq,2 = (√
2ω0

)
a2/ωs2.

(5) For a symmetrical cavity, the diffraction loss per pass is calculated directly from the
confocal resonator with the size aeq. For asymmetrical cavities, the diffraction loss per
pass is the average of the diffraction losses. The averaged diffraction loss per pass for
the cavity is one-half the sum of the diffraction loss for the two different virtual confocal
cavities, one with mirror size aeq,1 and one with mirror size aeq,2.

(6) In general, the resonance wavelength, λlmq, is determined by

(2π D/λlmq ) = qπ + (l + m + 1)
[
tan−1(z2/z0) − tan−1(z1/z0)

]
.

The differences in resonance frequency for different longitudinal order q and transverse
order l and m are

fl,m,q+1 − fl,m,q = c/2D,

fl ′,m ′,q − fl,m,q = c

2π D

(
π

2
− tan−1 z2

z0
− tan−1 z1

z0

)
(l ′ − l + m ′ − m).

Note again that the difference in resonance frequency for two adjacent longitudi-
nal orders is just 1/T, where T is the round trip propagation time inside the cavity,
T = 2D/c. If the cavity is filled with a dielectric that has an index of refraction n,
T = 2nD/c. The transverse modes are still degenerate. All modes which have the same
l + m orders will have the same resonance frequency.

(7) Practical resonators do not use end mirrors with square cross-sections. It is clear from
the previous discussions that the mode patterns (i.e. the Hermite polynomials and the
Gaussian envelope) will be affected only by the curvature and the position of the reflector,
not by the shape of the cross-section, e.g. whether it is square or round. Thus the modes
derived for the square mirrors are equally applicable to the round mirrors. From Eq. (2.8),
it is clear that the diffraction loss per pass depends primarily on the area � of the mirror.
Round or square mirrors with the same size are likely to have the same diffraction loss
per pass. Thus, Fig. 2.3 may also be used to estimate the diffraction loss for the round
mirrors.

2.2.4 Example of resonant modes in a non-confocal cavity

Let us consider a semi-spherical cavity which has one flat reflector with a1 =
2 mm and one spherical reflector with radius of curvature R2 = 0.7 m and a2 =
0.6 mm, separated by a distance D = 30 cm. The wavelength is 1 µm. The medium
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between the reflectors is air. Clearly, the stability criterion in Eq. (2.18) is satisfied
so that we can find the modes and their diffraction losses by means of the virtual
equivalent confocal cavity. Following the process outlined in (3) above, we obtain
the following results.

For the equivalent virtual confocal cavity, z0 = [D(R2 − D)]1/2 = 0.346 410 m,
z1 = 0, z2 = 0.3 m. Notice that there are two solutions for z2 given in Eqs. (2.16).
The correct solution is the one which yields z2 − z1 = D.

The spot sizes areω0 =0.332 063 mm,ωs1 =0.332 063 mm andωs2 =1.322 88×
0.332 063 = 0.439 28 mm.

The appropriate sizes of the equivalent confocal reflectors for the calculation of
diffraction loss are aeq,1 = 2.828 43 mm and aeq,2 = 0.641 427 mm.

For reflector 1, a2/2z0λ is 11.5. For reflector 2, a2/2z0λ is 0.59. Therefore, the
diffraction loss per pass of the TEM00 mode obtained from Fig. 2.3 for the flat
mirror is negligible, while the diffraction loss per pass for the second mirror is
5 × 10−3. The averaged diffraction loss per pass for the cavity is 2.5 × 10−3.
The averaged diffraction loss per pass for the TEM01 mode will be approxi-
mately 5%.

2.3 Gaussian beam solution of the vector wave equation

We have learned that the Gaussian beam is a solution of the integral equation of the
fields in cavities with spherical reflectors. It is based on the scalar wave equation. It is
instructional to learn that Gaussian beams are also natural mathematical solutions
of Maxwell’s equations without the restrictions of the scalar wave equation and
without the existence of a cavity [6].

We have seen many special forms of the solutions of Maxwell’s equations such
as plane waves, cylindrical waves, spherical waves, etc. We will learn in this section
how a Gaussian beam is just another form of these types of solutions. Knowing
that the Gaussian beam is a natural solution of Maxwell’s equations, we feel more
comfortable in approximating various radiation fields from components that are
not lasers, e.g. output from a single-mode fiber, by Gaussian beams. The advantage
of the use of Gaussian beam approximation is that the wave equation is satisfied
without the use of Kirchhoff’s diffraction formula. Fields propagating through rea-
sonably large apertures retain the same functional variation, except for a reduction
in its amplitude.

Consider Maxwell’s equations,

∇ × h = ε(∂e/∂t),

∇ × e = −µ(∂h/∂t),

∇ · (εe) = 0.
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In the most general case, ε can be a function of (x, y, z). Using ∇ × ∇ × e, we
obtain

∇2e − εµ
∂2e

∂t2
= −∇

(
1

ε
e · ∇ε

)
.

If ∇ε⊥e (such as the ε variation in an optical fiber) or if ∇ε is small, we can then
replace the right hand side with zero. If we further assume the time variation to be
exp( jωt), then the equation for the electric field is again

∇2e + k2(r ) e = 0, (2.20)

where

k2(r ) = ω2/µε(r ).

When the medium is homogeneous, k is a constant. The significance of Eq. (2.20)
is that an equation similar to the scalar wave equation can be obtained for e under
more general situations than for TEM waves.

In the case of plane waves in classical textbooks, we have assumed that the
electric and the magnetic fields do not vary in the lateral directions. The plane
waves are solutions of Maxwell’s equations in that format. We will now show that
Gaussian waves are cylindrically symmetric solutions of Eq. (2.20).

Let E be a linearly polarized field and

E(x, y, z) = ψ (x, y, z) e− jkz. (2.21)

We will now show that, in a homogeneous medium, a circular symmetric ψ has a
functional form identical to that of a Gaussian beam. We do this in five mathematical
steps.

Step 1. Substituting Eq. (2.21) into Eq. (2.20) in cylindrical coordinates with
∂ψ/∂θ = 0, we obtain

∇2
t ψ − 2 jk

∂ψ

∂z
= 0,

where

∇2 = ∇2
t + ∂2

∂z2
= ∂2

∂r2
+ 1

r

∂

∂r
+ ∂2

∂z2
.

Step 2. Let

ψ = exp

{
− j

⌊
p (z) + k

2q (z)
r2

⌋}
.
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Substituting this functional form into the equation, we obtain

−
(

k

q

)2

r2 − 2 j

(
k

q

)
− k2r2 ∂

∂z

(
1

q

)
− 2k

∂p

∂z
= 0.

This equation must hold for all values of r. Thus the terms involving different
powers of r must vanish simultaneously, i.e.

1

q2
+ ∂

∂z

(
1

q

)
= 0,

∂

∂z
p = − j

q
.

Step 3. Let 1/q = (dS/dz)/S, then the equation for S is d2S/dz2 = 0. The solution
for S is obviously

S = az + b,

q = S/(d S/dz) = z + b/a = z + q0.
(2.22)

Substituting this solution into the equation for p(z), we obtain

∂p

∂z
= − j

z + q0
,

p (z) = − j ln

(
1 + z

q0

)
.

Step 4. The objective of finding the solutions for p and q is to show that ψ has the
functional form of a TEM00 Gaussian beam. We can accomplish this by replacing
q0 by a new constant q0 = jπω2

0/λ. After such a substitution, we obtain

e− j p(z) = e
− ln

(
1− jλ z

πω2
0

)
= 1√

1 + (
λ2z2/π2ω4

0

)e

[
j tan−1

(
λ z

πω2
0

)]

e
− jkr2

2(z+q0) = exp

 −r2

ω2
0

[
1 + (

λ z
πω2

0

)2]
 exp

 − jkr2

2z
(

1 + (πω2
0

λ z

)2
)
.
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Step 5. Substituting the above results into the expression for ψ , we obtain an
expression for the E in Eq. (2.21) identical to the TEM00 mode in Eq. (2.14),

E = 1√
1 + (

λ2 z2
/
π2ω4

0

) exp


−r2

ω2
0

[
1 +

[
λ z
πω2

0

]2
]


× exp


− jkr2

2z

[
1 +

(
πω2

0
λ z

)2
]
e− jkze

[
j tan−1

(
λ z

πω2
0

)]
.

In summary, the Gaussian beam is a natural solution of Maxwell’s vector wave
equations with ∇ε ⊥ e or ∇ε ≈ 0. We have only derived the Gaussian mode
for a homogeneous medium. Yariv [6] shows that when k2(r ) = k2 − kk2r2 in an
inhomogeneous graded index medium, the solution of Eq. (2.20) for a circular
symmetric mode is still a Gaussian beam.

2.4 Propagation and transformation of Gaussian beams (the ABCD matrix)

2.4.1 Physical meaning of the terms in the Gaussian beam expression

We note that for a given Gaussian beam, as a solution of cavity resonance, we can
describe its functional variation at various values of z by

E = A(x, y)e− jkze− j p(z)e− jk r2

2q(z) , (2.23)

A(x, y) = E0 Hl

[√
2x

ω(z)

]
Hm

[√
2y

ω(z)

]
,

where the coordinate z starts at the beam waist where the spot size is ω0. The
labeling of the parameters by p and q is inspired by the discussion in the preceding
section. Please keep in mind that the E given here is taken from Eq. (2.14), not
from the solution of ψ . However, it has been shown in Section 2.3 that E is also a
natural solution of Maxwell’s equations when l = m = 0.

The first factor, A, describes the x and y variation (i.e. the field pattern) of E. At
two different z positions, z1 and z2, the A function will be the same. A is different
for different l and m order of the mode.

The second factor, exp(−jkz), and the third factor, exp(−jpz), are simple functions
of z. They specify the phase of the beam as the beam propagates from one z position
to another. They are independent of x and y. Parameter p is dependent on the mode
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order, l and m, and

e− j p(z) = ω0

ω (z)
e

j(l+m+1) tan−1
(

λ z
πω2

0

)
. (2.24)

Thus, p + kz determines the phase of E at different z.
The 1/q factor carries the most important physical meaning of the Gaussian

beam. This factor has a real part which specifies the curvature of the phase front
and an imaginary part which specifies the Gaussian variation of the amplitude at
any z. To be more specific,

1

q
= 1

R
− j2

kω2
;

q is independent of the mode order, l and m.
Also, q will be different at different z positions,

1

q
= 1

z + q0
.

From Eq. (2.22), the q values at two z values are related to each other by

q(z2) − q(z1) = z2 − z1. (2.25)

2.4.2 Description of Gaussian beam propagation
by matrix transformation

It is important to note that as a Gaussian beam propagates the E is always given by
Eq. (2.23). The relationship between q at z1, call it q1, and q at z2, call it q2, is a linear
relationship. Instead of writing the Gaussian beam as a function of coordinates x, y
and z, we may write the relation between q1 and q2 in the formal form of a linear
transformation,

q2 = Aq1 + B

Cq1 + D
, (2.26)

where A = 1, B = z2 − z1, C = 0, D = 1, q1 = q(z1) and q2 = q(z2). In other
words, q2 is transformed from q1 by a linear transformation with the above ABCD
coefficients.

A linear transformation relationship also exists between q values for Gaussian
beams transmitting or reflecting from various optical components. When a Gaussian
beam is incident on an ideal thin lens, we learned in Eq. (1.27) that the transmitted
field immediately after the lens, Et, is related to the incident field, Einc, by the
transmission function of the lens, which is a quadratic phase shift; i.e.

Et = Einc e j π
λ f (x2+y2) = Ae− jkze− j p(z)e− j π

λ

(
1
q − 1

f

)
r2

.
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Therefore, the transmitted beam will have the same form as given in Eq. (2.23). Let
q1 be the q parameter before the lens and let q2 be the q parameter after the lens.
q2 is related to q1 of the incident beam by

1

q2
= 1

q1
− 1

f
. (2.27)

When we separate the imaginary and real parts of Eq. (2.27), we obtain

1

R2
= 1

R1
− 1

f
, ω2 = ω1. (2.28)

This implies that the spot size is not changed by transmission through a thin
lens. However, the radius of curvature of the phase front is changed according to
Eq. (2.28). We conclude that q2 and q1 are again related by Eq. (2.26) with A = 1,
B = 0, C = −1/f and D = 1. The p does not change when the beam propagates
through a thin lens.

If the lens is set in a finite aperture, the transmitted Gaussian beam will have the
same functional variation as for an infinite aperture. However, the amplitude will
be reduced. The reduction in amplitude will be identical to the amplitude reduction
calculated from the diffraction loss per pass caused by the same aperture.

The ABCD transformation method is applicable to the propagation of Gaussian
modes through many other optical elements. The ABCD transformation coefficients
of various optical elements are given in many textbooks [6]; see Table 2.1. The
diffraction loss is not shown in Table 2.1; it may be calculated using the procedure
outlined in Section 2.2.3.

If a Gaussian beam propagates through more than one optical element, the q
parameters at various positions can be determined by ABCD transformations in
succession. In other words, for two successive transformations:

q3 = A2q2 + B2

C2q2 + D2
, q2 = A1q1 + B1

C1q1 + D1
,

and thus

q3 = (A1 A2 + B2C1) q1 + (A2 B1 + B2 D1)

(A1C2 + C1 D2) q1 + (B1C2 + D1 D2)
= Aq1 + B

Cq1 + D
.

The ABCD coefficients for q3 in terms of q1 in the above equation are simply the
coefficients obtained by multiplying matrix A1B1C1D1 by matrix A2B2C2D2, as
follows: ∥∥∥∥∥ A B

C D

∥∥∥∥∥ =
∥∥∥∥∥ A2 B2

C2 D2

∥∥∥∥∥ ×
∥∥∥∥∥ A1 B1

C1 D1

∥∥∥∥∥ . (2.29)
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Table 2.1. The ABCD transformation matrix for some common optical
elements and media.

Transformation description Figure Matrix

Homogeneous medium
Length d

in

out

d
z1 z2

[
1 d
0 1

]

Thin lens
Focal length f ( f > 0, converging;

f < 0, diverging)
in out 

 1 0
−1

f
1



Dielectric interface
Refractive indices n1, n2 in out 

n1 n2 

[
1 0

0
n1

n2

]

Spherical dielectric interface
Radius R

            

in 

R 

out 

n1 n2 

 1 0
n2 − n1

n2 · R

n1

n2



Spherical mirror
Radius of curvature R

 

in 

out  

R 

 1 0
−2

R
1



After the Gaussian beam has propagated through many optical elements, this
matrix multiplication process can be repeated many times to obtain the ABCD
coefficients for the total transformation matrix. Thus the ABCD coefficients are
called the ABCD transformation matrices. It can be shown that any ABCD matrix
is a unitary matrix, i.e. AD − BC = 1. It is important to keep in mind that the order
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of multiplication must follow the order in which the Gaussian beam is propagating
through various elements. It cannot be taken for granted that permutation of the
order of matrix multiplication will give the same result.

The p changes only when the z position changes. Therefore, when the TEMlm

mode passes through any element which has zero thickness, such as a thin lens, p
does not change. After the mode propagates through many elements and distances,
the new p is obtained by using the total distance of propagation as z. A(x, y) does
not change.

2.4.3 Example of a Gaussian beam passing through a lens

As the first example, consider a Gaussian beam at λ = 1 µm with ω0 = 0.4 mm at
z = 0. It propagates through a thin lens with f = 2 mm at z = 0.1 m. Let us find the
field pattern at z = 0.1 m after the lens.

There are two ways to find the answer. (1) We can find the answer using Eq. (2.14)
for the Gaussian beam. The given Gaussian beam has z0 = πω2

0/λ = 0.502 665 m.
From Eq. (2.14), we know the field pattern for any TEMlm mode incident on the
lens at z = 0.1 m. It has a Gaussian amplitude variation with ω = 0.407 839 mm, a
radius of curvature for the phase front R = 2.626 62 m, and a phase shift given by
η = 0.196 4 radian. According to Eq. (2.28), the radiation field emerging from the
thin lens will have the same phase and amplitude variation. However, the radius of
curvature for the phase front will now be R f/(R − f ), which is 2.001 52 × 10−3 m.
We would intuitively expect such an answer because the lens should create a focused
spot near its focal plane.

(2) The answer could also be obtained very quickly from the ABCD matrix
transformation as follows:∥∥∥∥∥∥

A B

C D

∥∥∥∥∥∥ =
∥∥∥∥∥∥

1 0
−1

0.002
1

∥∥∥∥∥∥ ×
∥∥∥∥∥∥

1 0.1

0 1

∥∥∥∥∥∥ =
∥∥∥∥∥∥

1 0.1

−500 −49

∥∥∥∥∥∥ .

At z = 0, the q is jkω2
0/2, which is j0.502 655. Therefore at the exit plane of

the lens,

1

q
= Cq1 + D

Aq1 + B
= −500 ( j0.502 655) − 49

j0.502 655 + 0.1

= −131.231 − j0.502 645

0.262 662

= −499.619 − j1.913 66.
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The real part of the 1/q is 1/R, and the imaginary part of the 1/q is −λ/πω2. Note
that the complete expression for the field is given in Eqs. (2.23) and (2.24) with
this q value.

2.4.4 Example of a Gaussian beam passing through a spatial filter

As the second example, let us re-consider example (6) of Section 1.5 when the
incident beam is a Gaussian beam. We will show that the ABCD transformation
matrix method lets us find the main propagation characteristics of the incident beam
without any integration. We will need to perform integration only when we want
to know the diffraction loss.

Figures 1.11 and 1.12 have already illustrated the geometrical configuration
of this spatial filtering setup. Let the incident beam be a TEM00 Gaussian beam
incident on the film at z = 0. The beam waist is at z = 0 with spot size ω0, where
ω0 � d. Notice now the effective beam size is controlled by ω0 and not by d:

E = E0e− jkze− j p(z)e− jk r2

2q0
.

Therefore,

1

q0
= − j2

kω2
0

.

For d � ω0, the aperture size d does not change the functional form of the Gaussian
beam. It may introduce a reduction of the amplitude because of the diffraction loss
caused by the aperture. Immediately after the film with transmission function t, at
z = 0,

E = 1

2
E0e− jkze− j p(z)e− jk r2

2q0

+ 1

4
E0e j2π H x e− jkze− j p(z)e− jk r2

2q0

+ 1

4
E0e− j2π H x e− jkze− j p(z)e− jk r2

2q0
. (2.30)

Thus, the ABCD transformation matrix in Table 2.1 does not directly apply. How-
ever, each of the three terms in Eq. (2.30) is still a Gaussian beam. The first term is
the same as the incident Gaussian beam with one-half the amplitude. For λH � 1,
exp( j2π H x) exp(− jkz) is a propagating beam in the xz plane at an angle −θ with
respect to the z axis where sin θ = λH. Similarly, the third term is a propagating
beam in the xz plane at angle θ with respect to the z axis. For small θ , the three beams
are still approximately Gaussian in their three respective directions of propagation,
i.e. the z axis, the +θ axis and the −θ axis. Therefore, we will treat them as three
separate Gaussian beams along those directions.
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After the lens at z = 0, we have

E = 1

2
E0e− jkze− j p(z)e− jk r2

2q1

+ 1

4
E0e− jkze− j p(z)e− j2π H x e− jk r2

2q1

+ 1

4
E0e− jkze− j p(z)e+ j2π H x e− jk r2

2q1 ,

where

1

q1
= 1

q0
− 1

f
,

q1 = − (
kω2

0

)2
f + j2kω2

0 f 2(
kω2

0

)2 + (2 f )2
.

In front of the screen at z = f, the three beams are

E = 1

2
E0e− jk f e− j p(z= f )e− jk r2

2q2

+ 1

4
E0e− jk f e− j2π H x e− j p(z= f )e− jk r2

2q2

+ 1

4
E0e− jk f e+ j2π H x e− j p(z= f )e− jk r2

2q2 , (2.31)

where

q2 = q1 + f = 2 j f 2

kω2
0 + 2 j f

,

1

q2
= + 1

f
− j

kω2
0

2 f 2
= 1

R2
− j2

kω2
2

.

R2 is the curvature of the Gaussian beam and ω2 is the spot size at z = f. Therefore,

R2 = f and ω2 = λ f

πω0
,

implying that the curvature of the beam is f and that the spot size is proportional to
f/ω0. This result agrees with our intuition since we expect an ideal lens to focus a
plane wave into a spherical wave with focused spot size proportional to the focal
length and inversely proportional to the incident beam size. (For small θ , we have
approximated the distance along the respective directions of propagation by z in
this calculation.)

The centers of the three beams are at z = 0 and z ≈ ± θ f ≈ ±λHF. The beam
centered at z = 0 is always blocked by the screen. In order for the two beams in
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the ±θ direction to pass, we need

λ H f + f λ

πω0
< l < 2λH f − 2 f λ

πω0
. (2.32)

This is the same result obtained in example (6) in Section 1.5.
When the two transmitted beams traveled to z = 2f, in front of the second lens,

the q parameter of the Gaussian beams is q3, where

q3 = q2 + f,

q3 = f kω2
0

kω2
0 − 2 j f

,

1

q3
= 1

f
− 2 j

kω2
0

.

After the lens, the parameter q4 is

1

q4
= 1

q3
− 1

f
= − 2 j

kω2
0

.

Therefore we get back two original Gaussian beams, now propagating in the ±θ

directions with the same spot size. There will be some diffraction loss associated
with the aperture and the screen.

2.4.5 Example of a Gaussian beam passing through a prism

The objective of this example is to describe analytically the output beam refracted
by a prism. A thin prism is illustrated in Fig. 2.6. Let the prism be made of material
with refractive index n at wavelength λ. Let the prism axis be the x axis and let the
base of the prism be parallel to the y axis. The prism has a wedge angle α. The
vertex of the prism is placed at x = h and z = 0. Let a Gaussian beam,

Einc = A (x, y) e− jkze− j p(z)e− jk (x2+y2)
2q(z) ,

be incident on the prism. The symbols in the expression for the incident E have
already been defined and explained in Eq. (2.23).

Similarly to the thin lens discussed in Section 1.4.3, there is a phase change
for any beam propagating through a thin prism. Diffraction can be neglected. For
the geometry shown in Fig. 2.6, the phase change from any incident beam to the
outgoing beam can be derived from phase changes of small optical rays passing
through the prism at different x positions. The transfer function t for any beam
passing through a prism can be written as

t = e− jk(n−1)α(h−x). (2.33)
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Figure 2.6. Illustration of a Gaussian beam propagating through a prism. The
phase shift of the optical wave propagating through a thin prism can be represented
as a phase shift equivalent to tilting the wave from the z direction to the z′ direction
of propagation. The tilt angle is (n −1)α, where n is the index of the prism material
at that wavelength and α is the vertex angle of the prism.

Here we have assumed that the beams are located well below x = h so that the
diffraction from the prism vertex at x = h can be neglected. α is small so that
sin α ≈ α. Therefore, the output beam will be

Eout = A (x, y) e− jk(n−1)αhe− jkze− j p(z)e jk(n−1)αx e− jk (x2+y2)
2q(z) .

If we define a new set of coordinates, x′ and z′, such that they are rotated from x
and z by the angle (n−1)α, as shown in Fig. 2.6, where

x ′ = x cos[(n − 1) α] − z sin[(n − 1) α] ≈ x − z (n − 1) α,

z′ = x sin[(n − 1) α] + z cos[(n − 1) α] ≈ x (n − 1) α + z,
(2.34)

then we can rewrite E approximately as

Eout = Ae− jk(n−1)αke− jkz′
e− j p(z′)e

− jk (x ′2+y2)
2q(z′) . (2.35)

Here, we have neglected terms involving α2, and we have made the approximations
p(z) ≈ p(z′) and q(z) ≈ q(z′); e−jk(n−1)αk is just a constant phase factor. Therefore
Eout describes approximately a Gaussian beam propagating in the new z′ direction
without any change of Gaussian beam parameters. Since n is wavelength dependent,
the direction of the output beam will be wavelength dependent, as expected for
chromatic dispersion.
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Figure 2.7. Illustration of a Gaussian beam focused by a lens. The laser is oscillat-
ing in the TEM mode of the laser cavity. The laser radiation is focused to a specific
spot 10 mm beyond the lens. The Gaussian beam transformation technique is used
to find the optimal focal length of the lens.

2.4.6 Example of focusing a Gaussian beam

Intuitively, we know that in order to focus a beam to a distance d away from a lens
or mirror, we will use a lens or a mirror with a focal length of d. The smaller the
d, the smaller is the focused spot. However, we would always wonder whether the
focusing will be affected by the nature of the Gaussian beam or by the location
of the lens. It is also instructive to see how we could analyze the focusing of a
Gaussian beam by the ABCD transformation method. This example shows us how
to calculate the value of f that will yield the smallest focused spot at a given distance
away and how to determine the size of the focused spot.

Figure 2.7 shows a laser oscillating in the TEM00 mode and a lens focusing the
laser mode. The ω0 of the TEM00 oscillating mode is 1 mm on the flat mirror located
at z = 0. Let the wavelength be 1 µm. A lens of focal length f is used to focus the
laser beam to a distance 10 mm beyond the lens.

For the semi-spherical laser cavity, the beam waist of the resonant mode is on the
flat mirror. The Gaussian beam parameter, q1, of this oscillating mode at z = 0 is

1

q1
= − j

1

π
1/meter.

At z = 0.5 m away, the Gaussian beam parameter q2 is

q2 = q1 + 0.5 = jπ + 0.5,

1

q2
= 0.5

π2 + (0.5)2 − j
π

π2 + (0.5)2 .
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Immediately after the lens, q3 is

1

q3
=

[
0.5

π2 + (0.5)2 − 1

f

]
− j

π

π2 + (0.5)2 .

We still have a Gaussian beam beyond the lens. At the intended focusing position,

1

q4
= 1

q3 + 0.01
.

We would obtain the smallest focused spot if the Gaussian beam waist were located
at that position. Therefore, the correct f for us to use is the f value that will
yield a zero for the real part of 1/q4. In other words, q4 must be imaginary. Or,
the real part of q3 should be −0.01. Numerical solution of that condition yields
f = 0.009 995 16 m. In order to obtain the spot size at the focus, we need to find the
imaginary part of 1/q4. Note that Im [q4] = Im [q3]. Substitution of the f value into
1/q3 yields a spot size of 9.88 µm at the focus. Clearly, a change of the position
of the lens or a change of the Gaussian parameter q1 will change very slightly the
optimum f value. On the other hand, if we reduce the distance between the focused
spot and the lens, we obtain a smaller focused spot size.

2.4.7 Example of Gaussian mode matching

Let there be a Gaussian beam with parameter qa at location A. Let there be an
optical instrument that requires a Gaussian beam with parameter qb at location B,
as illustrated in Fig. 2.8. A lens with focal length f can be placed at a specific
distance d from A to match the Gaussian beam with qa at A to a Gaussian beam
with qb at B. We can find the values of f and d by the ABCD transformation method
as follows.

We know qb is related to qa:

qb = (qa + d) f

f − (qa + d)
+ (L − d) . (2.36)

qa and qb have two differences: the difference in their real parts (i.e. the curvature
of the Gaussian beam wave front), and the difference in their imaginary parts (i.e.
the Gaussian spot size). We have two algebraic equations for f and d that can be
easily obtained from Eq. (2.36) to match the two differences in qa and qb. Spurr
and Dunn [8] have shown that high school geometry can be used to solve these
algebraic problems arising from Gaussian beam optics.
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Figure 2.8. Matching a Gaussian beam at A to a Gaussian beam at B. A lens can
be used to match a Gaussian beam at A to a different Gaussian beam at B. The
Gaussian beam transformation technique could be used to determine the position
and the proper focal length of the lens.

2.5 Modes in complex cavities

When there are many optical elements in a cavity, the q parameter of the Gaussian
beam at different positions in such a cavity can be found by considering the trans-
formation of q after a round trip in the cavity. Let the q parameter at any point in
the cavity be qs. The final q parameter after a round trip is (Aqs + B)/(Cqs + D).
For a stable mode in the cavity, it must also be the original qs. Thus, the equation
for qs is

qs = Aqs + B

Cqs + D
. (2.37)

This is a quadratic algebraic equation for 1/qs. The solution is

1

qs
= D − A

2B
± j

√
1 − [(D + A)/2]2

B

= D − A

2B
± j sin θ

B
, (2.38)

where cos θ = (D + A)/2. We have learned earlier that

1

qs
= 1

R
− j

λ

πω2
.

For a stable resonator, R is the radius of curvature of the spherical phase front and
ω is the spot size. Therefore, the magnitude of cos θ must be less than unity. Or,∣∣∣∣ D + A

2

∣∣∣∣ < 1. (2.39)



2.5 Modes in complex cavities 69

For simple cavities, Eq. (2.39) is identical to Eq. (2.18). |(D + A)/2 | = 1 is
represented also by the boundary between stable and unstable regions shown in
Fig. 2.5.

Once the q at various positions in the cavity is known, we can find the position
at which q is purely imaginary. This is the position of the origin of the z axis,
i.e. z = 0, for the virtual equivalent confocal resonator. At this position, the beam
waist is ω0. The lmth mode of the equivalent virtual confocal resonator is given by
Eqs. (2.23) and (2.24) in terms of this coordinate and the complex q values. The
phase shift for the round trip propagation depends on the mode order, l and m, and
the total distance of propagation from z = 0. The resonance frequency is determined
by the wavelength at which the round trip phase shift is 2π . The diffraction loss per
pass of each optical element encountered in the round trip path can be calculated
by the same procedure as we have used for reflectors in non-confocal resonators at
the end of Section 2.2.

2.5.1 Example of the resonance mode in a ring cavity

A ring cavity is illustrated in Fig. 2.9. There are three flat mirrors at A, B and
C, separated by distance d between A and B and 2d between B and C as well
as A and C. A lens with focal length 1 m is placed midway between mirrors A
and B. The recirculating resonance mode is the mode that starts with Gaussian
parameter q1 at mirror A, is transmitted through the lens, reflected by mirrors B
and C, and propagates back to mirror A. Let d = 1 m and λ = 1 µm. We can find
the recirculating resonant modes and the diffraction loss per pass from the ABCD
transformation matrix method.

The transformation matrix M from q2 at mirror B to q1 through q3, q4 and q5, in
the counterclockwise direction in Fig. 2.9 is:

M =

∥∥∥∥∥∥∥
1

d

2

0 1

∥∥∥∥∥∥∥
∥∥∥∥∥∥∥

1 0

− 1

f
1

∥∥∥∥∥∥∥
∥∥∥∥∥∥∥

1
9d

2

0 1

∥∥∥∥∥∥∥ .

For d = 1 and f = 1,

M =

∥∥∥∥∥∥∥∥
+1

2

11

4

−1 −7

2

∥∥∥∥∥∥∥∥ .
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Figure 2.9. The optical elements and their positions in a ring cavity. In a ring
cavity, the resonant mode is the recirculating mode that reproduces the field pattern
with integer multiples of 2π total phase shift after multiple diffraction. The optical
path of the recirculating mode is shown by the block arrows. The Gaussian beam
parameter values of q before and after each reflector are also shown.

If we require that q1 = q2 in a round trip, we have

q1 =
q1

2
+ 11

4

−q1 − 7

2

.

Therefore,

1

q1
= − 8

11
± j

√
20

11
.

If we examine the mode starting from mirror C in a similar manner, we obtain

1

q3
= − (

3
2

)
q − 5

4

−q3 − 3
2

, or q3 = ± j
2√
5
.

The values of 1/q at each mirror tell us the curvature and the spot size of the
Gaussian beam at that mirror. We can obtain the diffraction loss per pass of each
mirror from the mirror size and the spot size. In particular, q3 is imaginary. Thus
we know that the beam waist of the recirculating resonant mode is at mirror C. The
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size of the beam waist, ω0, at mirror C is determined by the value of q3. From ω0

we obtain the z0 of the equivalent confocal resonator mode.
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3

Guided wave modes and their propagation

In Chapters 1 and 2 we discussed the propagation of laser radiation and the cavity
modes as TEM waves. The amplitude and phase variations of these waves are
very slow in the transverse directions. However, in applications involving single-
mode optical fibers and optical waveguides, the assumption of slow variation in the
transverse directions is no longer valid. Therefore, for electromagnetic analysis of
such structures, we must go back to Maxwell’s vector equations. Fortunately, the
transverse dimensions of the components in these applications are now comparable
to or smaller than the optical wavelength; solving Maxwell’s equations is no longer
a monumental task.

Many of the theoretical methods used in the analysis of optical guided waves are
very similar to those used in microwave analysis. For example, modal analysis is
again a powerful mathematical tool for analyzing many devices and systems. How-
ever, there are also important differences between optical and microwave wave-
guides. In microwaves, we usually analyze closed waveguides inside metallic
boundaries. Metals are considered as perfect conductors at most microwave fre-
quencies. In these closed structures, we have only a discrete set of waveguide modes
that have an electric field terminating at the metallic boundary. We must avoid the
use of metallic boundaries at the optical wavelength because of their strong absorp-
tion of radiation. Thus, we use open dielectric waveguides and fibers in optics, with
boundaries extending theoretically to infinity. These are open waveguides. There
are three important differences between optical and microwave waveguide modes
and their utilization.

(1) In open dielectric waveguides, the discrete optical modes have an evanescent
field outside the core region (the core is sometimes called vaguely the optical
waveguide). There may be a significant amount of energy carried in the evanescent
tail. The evanescent field may be used to achieve mutual interaction with other
adjacent waveguides or structures. The evanescent field interaction is very important

72
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in device applications, such as the dielectric grating filter, the distributed feedback
laser and the directional coupler.

(2) The analysis is mathematically more complex for open than for closed wave-
guides. In fact, there exists no analytical solution of three-dimensional open channel
waveguide modes (except the modes of the round step-index fiber) in the closed
form. One must use either numerical analysis or approximations in order to find
the field distribution of channel waveguide modes.

(3) In addition to the set of guided modes that have discrete eigen values, there
is an infinite set of continuous modes. Only the sum of the discrete and continuous
modes constitutes a complete set of orthogonal functions. Continuous modes are
called radiation modes because they are propagating waves outside the waveguide.
At any dielectric discontinuity, the boundary conditions of the electric and mag-
netic fields are satisfied by the summation of both the guided wave modes and the
continuous modes on both sides of the boundary. Continuous modes are excited
at any discontinuity. Energy in the continuous modes is radiated away from the
discontinuity.

Most classical optics books do not discuss the guided wave modes and their
propagation because single-mode optical fibers and waveguides cannot be excited
efficiently by incoherent light.

In this chapter, we will discuss first the rigorous mathematical analysis of simple
planar waveguides. Through such an analysis, concepts such as evanescent field, TE
versus TM modes, guided versus radiation modes, discrete versus continuous modes
and how to match the boundary conditions can be more easily understood. We will
also discuss some of the planar waveguide devices in fiber optical communications.
The geometry of channel waveguides is normally too complex for us to solve
Maxwell’s equations in closed form. The exception is the solution of the modes
in step-index round fibers. We will discuss briefly the discrete (i.e. the guided)
modes of single-mode optical fibers in Section 3.6. However, we will discuss first
the modes of open channel waveguides with a rectangular cross-section of the core.
Instead of rigorous analysis, an approximate method based on the planar guided
wave modes, called the effective index method, will be presented to analyze the
guided wave modes of three-dimensional channel waveguides. It is accurate only for
well guided modes, i.e. modes with a short evanescent tail. However, understanding
of the effective index analysis will enable us to understand the basic properties of
channel guided wave modes. For example, we will recognize the similarity between
the guided modes of the optical fiber and the channel waveguide. Finally, we will
discuss the excitation of discrete modes by modal analysis. Such an analysis is
extremely important in practical applications such as the coupling of fibers to lasers
and modulators.
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Figure 3.1. Planar optical waveguide. A symmetric planar waveguide consists of a
film with a higher refractive index n1 sandwiched between a substrate and a cladd-
ing with lower refractive indices, n2 and n3. The effective index and the cut-off con-
dition of the modes are determined by the film thickness t and the refractive indices.

3.1 Asymmetric planar waveguides

A typical uniform dielectric thin film planar waveguide is shown in Fig. 3.1, where
the film, the cladding and the substrate are all uniform and infinitely wide in the
y and z directions. The film typically has a thickness of the order of a wavelength
or less, supported by a substrate, and a cladding many wavelengths (or infinitely)
thick. The index of the film (i.e. the waveguide core), n1, is higher than the indices
of the surrounding layers.

From a mathematical point of view, all modes are unique eigen solutions of
Maxwell’s equations satisfying the boundary conditions of the continuity of the
tangential fields at the boundaries. Since the structure is identical in any direction in
the yz plane, we will temporarily choose the +z axis as the direction of propagation
in our mathematical analysis of the planar waveguide in Sections 3.1 to 3.3. No
generality is lost in this choice. For planar waveguide modes, we further assume
∂/∂y ≡ 0. This assumption is similar to the assumption made for plane waves in a
homogeneous medium in many textbooks, except this assumption covers only the
y variation in this book.

If we analyze optical plane waves propagating in multi-layered media such as
that shown in Fig. 3.1, we find that there are three typical situations.

(1) In the first situation, a plane wave is obliquely incident on the structure from
either x � 0 or x � t, propagating in a direction in the xz plane that makes an angle θ j

with respect to the x axis. The angle, θ j , will be different in different layers, where
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j designates the layer with index n j . For example, plane waves in the film with
index n1 will have a functional form, exp(±jn1k sin θ1 z) exp(±jn1k cos θ1 x)
exp( jωt). There will be reflected and diffracted waves at the top and bottom
boundaries of the film. The continuity of the tangential electric field requires that
n1k sin θ1 = n2k sin θ2 = n3k sin θ3 at the boundaries. There is a continuous range of
real values of θ j that will satisfy Maxwell’s equations and the boundary conditions
in all the layers. Plane waves with real values of θ j represent radiation waves for
x < 0 and for x > t because they propagate in the x direction. In the language of
modal analysis, the multiple reflected and refracted waves constitute the radiation
modes with continuous eigen values in the x direction, i.e. kx = n j k cos θ j , and kx

is always real.
(2) In the second situation, there are plane waves trapped in the film by total

internal reflections from the top and the bottom boundaries of the film at x = 0 and
x = t. In this case, the plane waves in the film will still have the functional variation
of exp(±jn1k sin θ1 z) exp(±jn1k cos θ1 x) exp(jωt) with real values of θ1. When
θ1 is sufficiently large, total internal reflection occurs at the boundaries. For total
internal reflection, the factor n1k sin θ1 is larger than n j k of the surrounding media,
and θj (for j �= 1) becomes imaginary because of the boundary conditions. Now the
fields in the regions x < 0 and x > t decay exponentially away from the boundaries.
Since the trapped waves are bounced back and forth between the two boundaries,
they will cancel each other and yield zero total field except at specific values of θ1.
As we shall show later, the non-zero waves trapped in the film at these specific θ1

constitute the guided waves. In other words, trapped waves can only have discrete
eigen values of propagation constant kx (i.e. n1k cos θ1) in the film and discrete
imaginary θ j values outside the film.

(3) Let us assume that the index of the substrate is higher than the index of
the cladding. In the third situation, there are radiation modes (i.e. propagating
plane waves) in two regions of x, usually in the substrate, and in the high-index film
region with index n1. The value of θ1 is sufficiently large that plane waves are totally
internally reflected at the boundary between the film and the cladding. Only the
field in the cladding region now decays exponentially away from the film boundary.

In Sections 3.2 to 3.4, we will solve rigorously Maxwell’s equations and obtain
all the modes for the asymmetric planar waveguide shown in Fig. 3.1. We will
identify the solutions thus obtained with the three types of waves discussed above.

3.1.1 TE and TM modes in planar waveguides

The variation of the refractive index in the transverse direction is independent
of z in Fig. 3.1. From discussions of electromagnetic theory in classical electri-
cal engineering textbooks, we know that modes for structures that have constant
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transverse cross-section in the direction of propagation can often be divided into
TE (transverse electric) type and TM (transverse magnetic) type. TE means no
electric field component in the direction of propagation. TM means no magnetic
field component in the direction of propagation.

For the planar waveguide case, if we substitute ∂/∂y = 0 into the ∇×e and ∇×h
Maxwell equations, we obtain two separate groups of equations:

∂ Ey

∂z
= µ∂ Hx/∂t,

∂ Ey

∂x
= −µ∂ Hz/∂t,

∂ Hz

∂x
− ∂ Hx

∂z
= −ε∂ Ey/∂t ;


(3.1a)

and

∂ Hy

∂z
= −ε∂ Ex/∂t,

∂ Hy

∂x
= ε∂ Ez/∂t,

∂ Ez

∂x
− ∂ Ex

∂z
= µ∂ Hy/∂t.


(3.1b)

Clearly, Ey, Hx and Hz are related only to each other, and Hy, Ex and Ez are related
only to each other. Since the direction of propagation is z, the solutions of the first
group of equations (3.1a) are the TE modes. The solutions of the second group
of equations (3.1b) are the TM modes. Thus we have shown the separation of all
planar waveguide modes into TE and TM types.

Since ε is only a function of x, the z variation of the solution must be the same
in all layers. This is a consequence of the requirement for the continuity of Ey or
Hy for all z. For propagating waves in the +z direction, we will have the exp(−jβz)
variation, whereas the waves in the −z direction will have the exp( jβz) variation.
The TE wave equations for Ey , Ey(x, z) = Ey(x)Ey(z), can now be written as[

∂2

∂x2
+ (ω2µε(x) − β2)

]
Ey(x)Ey(z) = 0, (3.2a)[

∂2

∂z2
+ β2

]
Ey(z) = 0 (3.2b)

and [
∂2

∂x2
+ (ω2µε(x) − β2)

]
Ey(x) = 0. (3.2c)

Similar equations exist for TM modes.
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3.2 TE planar waveguide modes

The TE planar waveguide modes are the eigen solutions of the equation[
∂2

∂x2
+ ∂2

∂z2
+ ω2µε(x)

]
Ey(x, z) = 0,

where

ε(x) = n2
3ε0, x ≥ t,

ε(x) = n2
1ε0, t > x > 0,

ε(x) = n2
2ε0, 0 ≥ x,

Hx = − j

ωµ

∂ Ey

∂z
and Hz = j

ωµ

∂ Ey

∂x
.

Here, ε0 is the free space electric permittivity, all layers have the same magnetic
permeability µ, and the time variation is exp( jωt). Note that when Ey is known,
Hx and Hy can be calculated directly from Ey. The boundary conditions are the
continuity of the tangential electric and magnetic fields at x = 0 and x = t. As we
shall see in the following subsections, the TE modes can be further classified into
three groups. One group, the guided waves, is characterized as plane waves trapped
inside the film, and the other two groups are two different kinds of combination of
radiating plane waves known as substrate modes and air modes.

3.2.1 TE planar guided wave modes

Mathematically, Eqs. (3.2) plus the boundary conditions (the continuity of the
tangential electric and magnetic field at x = 0 and x = t) have unique solutions.
The significance of a unique solution is that we may choose whatever functional
form we like for Ey(x) and Ey(z). As long as they satisfy the differential equation
plus the boundary conditions, it is the correct solution. It follows that, instead of
solving Eqs. (3.2), we will choose a solution and demonstrate that they satisfy the
differential equation and all the boundary conditions.

As in the second situation described in Section 3.1, we look for solutions with
sinusoidal variations for t > x > 0 and with decaying exponential variations for x >

t and x < 0. Since we have chosen the time variation as exp(+jωt), we choose here
the exp(−jβz) variation for Ey(z) to represent a forward propagating wave in the
+z direction. In short, we will assume the following functional form for Ey(x, z):

Em(x, z) = Am sin(hmt + φm) e−pm (x−t)e− jβm z, x ≥ t, (3.3a)

Em(x, z) = Am sin(hm x + φm) e− jβm z, t > x > 0, (3.3b)

Em(x, z) = Am sin φm eqm x e− jβm z, 0 ≥ x, (3.3c)
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where, in order to satisfy Eq. (3.2c),

(βm/k)2 − (pm/k)2 = n2
3,

(βm/k)2 + (hm/k)2 = n2
1,

(βm/k)2 − (qm/k)2 = n2
2.

The subscript m stands for the mth-order solution of Eq. (3.2c), which is clearly
satisfied in all the individual regions. We have also chosen the functional form so
that the continuity of Ey is automatically satisfied at x = 0 and x = t. In order to
satisfy the magnetic boundary conditions at x = 0 and x = t, hm, qm and pm must
be the mth set of the root of the transcendental equations, which are also called the
characteristic equations,

tan[(hm/k)kt + φm] = −hm/pm,

tan φm = hm/qm .
(3.4)

For a given normalized thickness kt, there is only a finite number of roots of the
characteristic equations yielding a discrete set of real values for h, p and q. For this
reason, the guided wave modes are also called the discrete modes. They are labeled
by the subscript m (m = 0, 1, 2, . . .). The lowest order mode with m = 0 has the
largest β value, β0 > β1 > β2 > β3 · · · and h0 < h1 < h2 · · ·. Moreover, one can
show that the number of times in which sin(hm x + φm) is zero is m.

3.2.2 TE planar guided wave modes in a symmetrical waveguide

In order to visualize why there should be only a finite number of modes, let us
consider the example of a symmetrical waveguide. In that case, n2 = n3 = n and
pm = qm. The quadratic equations for hm and βm and the transcendental equation
now become (

hm

k

)2

+
( pm

k

)2
= n2

1 − n2

and

tan

[(
hm

k

)
kt

]
= −2(hm/pm)

1 − (
h2

m

/
p2

m

) .

Since

tan

[
2

(
hm

k

)
kt

2

]
=

2 tan

[(
hm

k

)
kt

2

]
1 − tan2

[(
hm

k

)
kt

2

] ,
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the above equation is equivalent to two equations,

tan

[(
hm

k

)
kt

2

]
= pm/k

hm/k

or

hm

k
tan

[(
hm

k

)
kt

2

]
= pm

k

and

tan

[(
hm

k

)
kt

2

]
= −hm/k

pm/k

or

−hm

k
cot

[(
hm

k

)
kt

2

]
= pm

k
.

In the coordinate system of pm/k and hm/k, the solutions of the above equations
are given by the intersections of the two curves representing the quadratic equation
(hm/k)2 + (pm/k)2 = n2

1 − n2 and one of the two equivalent tangent equations. In
short, there are two sets of equations. The solutions for the first tangent equation
and the quadratic equation are known as the even modes because they lead to
field distributions close to a cosine variation in the film. They are symmetric with
respect to x = t/2. The solutions from the second tangent equation and the quadratic
equation are called the odd modes because the fields in the film have distributions
close to sine variations. They are anti-symmetric with respect to x = t/2.

Let us examine the even modes in detail. If we plot the quadratic equation of
hm/k and pm/k, it is a circle with radius (n2

1 − n2)1/2. The curve describing the first
tangent equation will be obtained from those values of hm/k and pm/k whenever the
left hand side (LHS) equals the right hand side (RHS) of the tangent equation. The
RHS is just pm/k. The LHS has a tangent which is a multi-valued function. It starts
from zero whenever (hm/k)kt/2 is 0, π , or mπ . It approaches + or − infinity when
(hm/k)kt/2 approaches +π/2 or −π/2, or (mπ + π/2) or (mπ − π/2), where m is
an integer. The curves representing these two equations are illustrated in Fig. 3.2.
Clearly, there is always a solution as long as n1 > n, i.e. there is an intersection of
the two curves, no matter how large (or how small) is the circle (i.e. the n1 value).
This is the fundamental mode, labeled m = 0. However, whether there will be a
m ≥ 1 solution depends on whether the radius is larger than 2π/kt. There will be
m = j solutions when the radius is larger than 2jπ/kt. Notice that h0 < h1 < h2 <

· · · and β0 > β1 > β2 > · · · . When the radius of the circle is equal to 2jπ/kt,
the value for p/k is zero. This is the cut-off point for the jth (j > 1) mode.
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Figure 3.2. Graphical solution for hm and pm, for even TE guided wave modes, in
a symmetrical planar waveguide. The intersections of the two equations, marked
by ×, are hm/k and pm/k, solutions of the mth-order mode. The larger the n2

1 − n2,
the larger the circle and the larger the hm/k solution. The cut-off of the mth-order
mode occurs when the radius of the circle is 2mπ/kt . There is no cut-off for the
m = 0 mode.

3.2.3 Cut-off condition for TE planar guided wave modes

There are conditions imposed on the refractive indices without which there is
no guided wave mode solution for the asymmetric waveguides. The first condi-
tion is

n1 > n2 and n3.

Without any lost of generality, let n1 > n2 ≥ n3. In addition, there is a minimum
thickness tm, called the cut-off thickness, which will permit the mth solution to
Eq. (3.2c) to exist. However, other than the symmetric waveguide, for which there
is always an m = 0 even mode, there is a cut-off condition for even the m = 0 mode
in asymmetric waveguides. At the cut-off of the mth mode, qm = 0, βm/k = n2,
pm/k = (n2

2 − n2
3)1/2, φm = ±(m + 1/2)π and hm = k(n2

1 − n2
2)1/2. Thus the cut-off
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Figure 3.3. Propagation wave number of TEm modes in epitaxially grown GaAs
waveguides. Solid line, �n = 0.10; �, �n = 0.08; ◦, �n = 0.06; ×, �n = 0.04;
•, �n = 0.02. The copyright figure is taken from ref. [1] with permission from
Elsevier.

thickness can be calculated from Eqs. (3.4) to be:

ktm =
{(

m + 1

2

)
π − tan−1

[(
n2

1 − n2
2

)/(
n2

2 − n2
3

)]1/2
}(

n2
1 − n2

2

)−1/2
. (3.5)

The thicker the film, the larger the number of guided wave modes the film can
support. For all guided wave modes above cut-off, n1 ≥ |βm/k| > n2.

3.2.4 Properties of TE planar guided wave modes

Figure 3.3 shows the propagation wave number, βm/k, of TE planar guided wave
modes in epitaxially grown GaAs waveguides with air as the cladding, where
n3 = 1 [1]. The �n, i.e. n1 − n2, depends on the alloy composition of the epi-
taxially grown thin film. Notice that we have only real eigen values for β, h, p and
q. Since β is real, these modes propagate in the z direction without attenuation. The
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fields of these modes are evanescent in the air and in the substrate. This is the most
important characteristic of guided waves.

Figure 3.3 demonstrates clearly that, at a given thickness t, the higher order
modes have lower β/k values. Thus, the evanescent decay of the higher order
modes will be slower in the n2 and n3 layers. When there is scattering or absorption
loss on the bottom surface of the n3 layer or above the n1 layer, it will not affect the
mode pattern significantly. It will cause attenuation as the mode propagates in the
z direction. In Chapter 4, a mathematical method to calculate the attenuation will
be discussed. The slower the evanescent decay, the larger the attenuation rate. For
this reason, higher order guided wave modes often have a larger attenuation rate.

If we had allowed imaginary values for pm or qm, there would have been be many
more solutions. However, those solutions will not be the total internally reflected
field in the film. They will radiate away and they represent the radiation modes
discussed in Sections 3.2.5 and 3.2.6.

Physically, the electric field of the mth TE guided wave mode inside the film is
just a plane wave in the n1 layer (with the electric field polarized in the y direction),
totally internally reflected back and forth from the two boundaries at x = 0 and
x = t. Its propagation direction in the xz plane makes an angle θm with respect to
the x axis:

βm = n1k sin θm,

hm = n1k cos θm .
(3.6)

When βm and hm are given by the mth solution of Eqs. (3.4), the total round trip
phase shift of such a plane wave after reflection from both the air and the substrate
boundary is 2mπ . In some technical papers and relevant books, instead of solving
Maxwell’s equations directly, as we did in Eqs. (3.3) and (3.4), the guided wave
modes are found by requiring the round trip phase shift of totally internally reflected
plane wave to be 2mπ . This is the condition that the total field for all the plane
waves reflected back and forth is non-zero.

The TE guided wave modes are orthogonal to each other and to any other TE or
TM modes of the same waveguide. It is customary to normalize the constant A so
that a unit amount of power (1 W) per unit length in the y direction is carried out
by a normalized mode. Thus,

1

2
Re

 +∞∫
−∞

Eyn H∗
xm dx

 = (βm/2ωµ)
∫

En E∗
m dx = δnm, (3.7)

A2
m = 4ωµ

βm

[
1

pm
+ 1

qm
+ t

]−1

.
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3.2.5 TE planar substrate modes

In the range n2 > |β/k| > n3, the electric field has an exponential variation for
x > t and sinusoidal variation in the film and in the substrate. In view of the typical
situation (3) discussed in Section 3.1, these are called substrate modes. In that case,
we have

E (s)(x, z; β) = A(s) sin(ht + φ) exp[−p(x − t)] exp(− jβz), x ≥ t,

E (s)(x, z; β) = A(s) sin(hx + φ) exp(− jβz), t > x > 0,

E (s)(x, z; β) = [
C (s) exp(− jρx) + C (s)∗ exp(+ jρx)

]
exp(− jβz), 0 ≥ x,

(h/k)2 + (β/k)2 = n2
1,

(β/k)2 − (p/k)2 = n2
3,

(ρ/k)2 + (β/k)2 = n2
2,

 (3.8)

tan[(h/t)kt + φ] = −h/p,

C (s) = A(s)[sin φ + j(h cos φ/ρ)]/2.

C (s) and A(s) are normalized so that

(β/2ωµ)

∞∫
−∞

E (s)(x, z; β)E (s)∗(x, z; β ′) dx = δ(ρ − ρ ′), (3.9)

which requires that

C (s)C (s)∗ = ωµ

βπ
.

Unlike guided wave modes, which have n1 > |βm/k| > n2 and n3, β, p, h, ρ and φ

of the substrate modes have a continuous range of values which satisfy the above
equations within the range n2 > |β/k| > n3. Thus these modes are called continuous
modes. The field in the air region has an evanescent variation. However, the field in
the substrate region has the form of two propagating plane waves with propagation
constant ρ, one in the +x direction and the other in the −x direction. Thus they are
also called the substrate radiation modes.

In the plane wave description of the substrate modes, β/n1k, h/n1k, β/n2k and
ρ/n2k are direction cosines of the plane waves with respect to the z axis and the
x axis in the film region, and in the substrate region, respectively. The plane waves
in the film are totally internally reflected only at the boundary x = t.

3.2.6 TE planar air modes

As discussed in the typical situation (1) in Section 3.1, a third class of solutions
of Eq. (3.2c) can be represented in terms of a plane wave with its accompanying
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reflected and refracted beams at each boundary, without total internal reflection at
either boundary. It is well known that for each set of angles of incidence, reflection
and refraction, there are always two independent plane wave solutions. One is a
wave incident on the film from the air side plus its accompanying reflected and
refracted waves, and the other is a wave incident from the substrate side plus its
accompanying reflected and refracted waves. They all have the same z variation.

Mathematically, there are always two independent solutions of Maxwell’s equa-
tions for a given set of propagation constants. By linearly combining the two inde-
pendent solutions, one can always obtain two orthogonal independent modes for
each set of propagation constants. These orthogonal modes are called air modes
because they propagate in both media with indices n2 and n3, and because the
cladding medium with n3 is often the air.

If the structure were symmetrical, these two orthogonal modes would represent
odd and even variations with respect to x = t/2 inside the film. For asymmetrical
structures, such as the one shown in Fig. 3.1, the x variations are more complex.
Nevertheless, there are still two modes for each set of propagation constants, and
these two modes differ from each other by a π/2 phase shift of the sinusoidal
variations in the x direction in the film which has index n1. The mathematical
expressions for Ey of the air modes are as follows:

E ′(x, z; β) = {D′ exp[− jσ (x − t)]

+ D′∗ exp[+ jσ (x − t)]} exp(− jβz), x ≥ t,

E ′(x, z; β) = A′ sin(hx + φ) exp(− jβz), t > x > 0,

E ′(x, z; β) = [C ′ exp(− jρx) + C ′∗ exp(+ jρx)] exp(− jβz), 0 ≥ x,

(3.10a)

for the first set, and for the second set

E ′′(x, z; β) = {D′′ exp[− jσ (x − t)]

+ D′′∗ exp[+ jσ (x − t)]} exp(−iβz), x ≥ t,

E ′′(x, z; β) = A′′ sin
(

hx + φ + π

2

)
exp(− jβz), t > x > 0,

E ′′(x, z; β) = [C ′′ exp(− jρx) + C ′′∗(+ jρx)] exp(− jβz), 0 ≥ x,

(3.10b)

with

(β/k)2 + (σ/k)2 = n2
3,

(β/k)2 + (h/k)2 = n2
1,

(β/k)2 + (ρ/k)2 = n2
2.
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Imposing the boundary conditions at x = 0 and x = t, we obtain

C ′ = A′[sin φ + j(h cos φ/ρ)]/2, (3.11a)

D′ = A′
[

sin(ht + φ) + j
h

σ
cos(ht + φ)

] /
2. (3.11b)

A′′, C′′ and D′′ are obtained when φ is replaced by φ + π/2 in Eqs. (3.11a) and
(3.11b). All modes form an orthogonal normalized set, as defined in Eqs. (3.7) and
(3.9). For both sets of modes, a continuous range of solutions of ρ, σ , β and h exist,
where n3 ≥ |β/k| ≥ 0.

3.3 TM planar waveguide modes

The TM modes are eigen solutions of the wave equation (with ∂/∂y = 0 and exp(jωt)
time variation): [

∂2

∂x2
+ ∂2

∂z2
+ ω2ε(x)µ

]
Hy(x, z) = 0, (3.12a)

Ex = j

ωε(x)

∂ Hy

∂z
,

Ez = − j

ωε(x)

∂ Hy

∂x
,

where ε(x) is the same as that in Section 3.2. Or, in a manner similar to Eq. (3.2c),
we can write [

∂2

∂x2
+ (ω2µε(x) − β2)

]
Hy(x, z) = 0. (3.12b)

3.3.1 TM planar guided wave modes

Like the TE modes, the y component of the magnetic field for the nth TM guided
wave mode is

Hn(x, z) = Bn sin(hnt + φn) exp[−pn(x − t)] exp(− jβnz), x ≥ t,
Hn(x, z) = Bn sin(hnx + φn) exp(− jβnz), t > x > 0,

Hn(x, z) = Bn sin φn exp[qnx] exp(− jβnz), 0 ≥ x,

(3.13)

with

(βn/k)2 − (pn/k)2 = n2
3,

(βn/k)2 + (hn/k)2 = n2
1,

(βn/k)2 − (qn/k)2 = n2
2.
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Continuity of the tangential electric field requires that hn, qn and βn also satisfy the
transcendental equation

tan[(hn/k)kt + φn] = −n2
3 hn

n2
1 pn

,

tan φn =
(

n2

n1

)2 hn

qn
.

(3.14)

Note that, unlike TE guided wave modes, TM guided wave modes have an electric
field perpendicular to the interface boundary of the cladding and the film.

3.3.2 TM planar guided wave modes in a symmetrical waveguide

It is instructive to see what happens to the TM modes in a symmetrical waveguide,
i.e. n2 = n3 = n. The solution obtained in this example will also be used directly
in the effective index method to find the TE modes in channel waveguides. In this
case, pn = qn. The quadratic equation for hn and βn and the transcendental equation
now becomes (

hn

k

)2

+
( pn

k

)2
= n2

1 − n2,

tan

[(
hn

k

)
kt

]
= −2

(
n2hn

/
n2

1 pn
)

1 −
(

n2hn

n2
1 pn

)2 .

As we have seen in the case of TE guided wave modes in symmetrical waveguide
structures, the above tangent equation is equivalent to two equations,

tan

[(
hn

k

)
kt

2

]
= −n2hn/k

n2
1 pn/k

,

and

tan

[(
hn

k

)
kt

2

]
= n2

1 pn/k

n2hn/k
,

or

−n2

n2
1

(
hn

k

)
cot

[(
hn

k

)
kt

2

]
= pn

k
,

and

n2

n2
1

(
hn

k

)
tan

[(
hn

k

)
kt

2

]
= pn

k
.

These equations again point to the existence of two orthogonal sets of modes, modes
symmetric and anti-symmetric with respect to t/2. The n = 0 symmetric TM mode
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has no cut-off thickness t. These equations are very similar to the equations for
the TE modes, except for the ratio (n/n1)2, which is always smaller than unity.
Therefore, for the same order (i.e. m = n), the pn values of the TM modes are slightly
smaller than the pm values of the TE modes for the same thickness t and indices.

3.3.3 Cut-off condition for TM planar guided wave modes

Again, for a given normalized thickness kt , there is only a finite number of discrete
modes, labeled by the subscript n (n = 0, 1, 2, . . .), where h0 < h1 < h2 <· · · and
n1 > β0 > β1 > β2 > · · · > n2. The cut-off thickness for the nth TM mode is given
by q = 0 and by

ktn =
{

nπ + tan−1

[
n2

1

n2
3

√
n2

2 − n2
3

n2
1 − n2

2

]} (
n2

1 − n2
2

)−1/2
. (3.15)

Note that the cut-off thickness tn for TM modes is always larger than the cut-off
thickness tm for TE modes of the same order. Thus it is possible to design the wave-
guide with appropriate n1, n2 and t so that only the lowest order TE mode can
exist.

3.3.4 Properties of TM planar guided wave modes

Figure 3.4 shows the propagation wave number βn/k of TM planar guided wave
modes in epitaxially grown GaAs waveguides where the cladding is the air with
n3 = 1 [1]. As in Fig. 3.3, the �n, i.e. n1 − n2, depends on the composition of the
epitaxially grown thin film. Because of the dependence on (n2/n1)2 and (n3/n1)2,
which are always smaller than unity, the β/k of the TM modes are usually slightly
smaller than those of the corresponding TE modes. The most important difference
between the TM and TE modes is, of course, the polarization of the optical electric
field. On many occasions, metallic electrodes are fabricated on top of the n3 layer to
allow the application of a DC or RF electric field. The difference in the polarization
of the optical electric field may make a difference to the attenuation of the guided
wave mode in the z direction caused by the metal. When there is metallic absorption,
the TM modes have higher attenuation. On other occasions, such as the coupling
of the radiation field into a planar waveguide, the coupling efficiency is dependent
critically on the matching of the polarization of the incident radiation field with the
polarization of the guided wave mode.

Similarly to TE guided wave modes, TM planar guided wave modes inside the
film with index n1 can also be described by a plane wave that has a magnetic field
polarized in the y direction. It is totally internally reflected back and forth from the
two boundaries, in a propagation direction in the xz plane making an angle θn with
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Figure 3.4. Propagation wave number of TMn modes in epitaxially grown GaAs
waveguides. Solid line, �n = 0.10; �, �n = 0.08; ◦, �n = 0.06; ×, �n = 0.04;
•, �n = 0.02. The copyright figure is taken from ref. [1] with permission from
Elsevier.

respect to the x axis. The nth TM guided wave modes can be found by requiring
the round trip phase shift to be 2nπ .

The TM planar guided wave modes are orthogonal to each other and to the TE
modes. When TM modes are normalized,

1

2
Re

 +∞∫
−∞

Hyn E∗
xm dx

 = βn

2ω

+∞∫
−∞

Hn H∗
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3.3.5 TM planar substrate modes

For the substrate TM modes, the y component of the magnetic field is

H (s)(x, z; β) = B(s) sin(ht + φ)e−p(x−t)e− jβz, x ≥ t,

H (s)(x, z; β) = B(s) sin(hx + φ)e− jβz, t > x > 0,

H (s)(x, z; β) = [
D(s)e− jρx + D(s)∗e+ jρx

]
e− jβz, 0 ≥ x,

 (3.18)

D(s) =
(

B(s)

2

) [
sin φ + j

(
n2

2h cos φ

n2
1ρ

)]
,

tan[(h/k)kt + φ] = − n2
3h

n2
1 p

.

D and B are obtained from the orthogonalization and normalization conditions,

β

2ω

+∞∫
−∞

H (s)(β)H (s)∗(β ′)/ε(x) dx = δ(ρ − ρ ′), (3.19)

D(s) D(s)∗ = ωε0n2
2

βπ
.

β, p, h, ρ and φ have a continuous range of solutions within the range, n2 >

|β/k| > n3.

3.3.6 TM planar air modes

There are again two orthogonal TM air modes for each set of propagation constants.
For the first set of modes,

H ′(x, z; β) = {
E ′e− jσ (x−t) + E ′∗e jσ (x−t)

}
e− jβz, x ≥ t,

H ′(x, z; β) = B ′ sin(hx + φ)e− jβz, t > x > 0,

H ′(x, z; β) = [F ′e− jρx + F ′∗e jρx ]e− jβz, 0 ≥ x,

(3.20a)

and, for the second set of modes,

H ′′(x, z; β) = {
E ′′e− jσ (x−t) + E ′′∗e jσ (x−t)

}
e− jβz, x ≥ t,

H ′′(x, z; β) = B ′′ sin
(

hx + φ + π

2

)
e− jβz, t > x > 0,

H ′′(x, z; β) = [F ′′ e− jρx + F ′′∗e jρx ]e− jβz, 0 ≥ x .

(3.20b)

For both sets of orthogonal modes, a continuous range of solutions of ρ, σ , β and h
exist, where n3 ≥ |β/k| ≥ 0. For the first set of modes, the continuity of the electric
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and magnetic fields at x = 0 and x = t requires

E ′ = 1

2
B ′

{
sin(ht + φ) + j

hn2
3 cos(ht + φ)

σ n2
1

}
, (3.21a)

F ′ = 1

2
B ′

{
sin φ + j

hn2
2 cos φ

ρ n2
1

}
. (3.21b)

For the second set of modes, φ is replaced by φ + π/2 in Eqs. (3.21a) and (3.21b).

3.4 Generalized properties of guided wave modes
in planar waveguides and applications

The most important characteristics of guided wave modes are the exponential decay
of their evanescent tails, the distinct polarization associated with each mode and the
excitation of continuous modes at any defect or dielectric discontinuity that causes
diffraction loss of the guided wave mode. The evanescent tail ensures that there is
only minor perturbation of the mode pattern for structure changes several decay
lengths away from the surface of the high-index layer.

Since propagation loss of the guided wave modes is usually caused by scattering
or absorption, the attenuation rate of the guided mode will be very low as long
as there is very little absorption or scattering loss in or near the high-index layer.
The most common causes for absorption loss are either the placement of a metallic
electrode nearby or the use of semiconductor cladding or substrate that has conduc-
tion due to electrical carriers. Besides absorption, the propagation losses are caused
most commonly by volume scattering in the layers or by surface scattering at the
dielectric interfaces. Volume scattering is created in the materials as they are grown
or deposited. Surface scattering is usually created through fabrication processes.

On the other hand, the evanescent tail also enables us to interact purposely with
the guided wave mode by placing perturbations close to the surface of the high-index
layer. For example, in Chapter 4, we will discuss the directional coupler formed by
two adjacent waveguides or a grating filter fabricated on top of a waveguide.

The exponential decay rate of any guided wave mode is determined only by the
index of the layer (either at x > t or at x < 0) and the β/k value of the mode. The
β/k value is called the effective index, neff, of the mode. The effective index times
the velocity of light in free space is the phase velocity of the guided wave mode.
For the same polarization, lower order modes will have larger effective index and
faster exponential decay. For the same �ε of defects or interface roughness, modes
that have a smaller effective index will be scattered more strongly into radiation
modes, i.e. substrate and air modes. Therefore, higher order modes usually have
larger attenuation.
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In order to excite effectively a specific guided wave mode, the incident radiation
must have a polarization close to the polarization of that mode. For incident radiation
with polarization between the TE and TM polarizations, both TE and TM modes
will be excited. Since TM and TE modes have different effective indices, they
have different phase velocities. When both TE0 and TM0 modes are excited by a
given incident radiation, the total polarization of the two modes will rotate as they
propagate, due to the difference in phase velocities.

3.4.1 Planar guided waves propagating in other directions
in the yz plane

In Section 3.1, we presented the analysis of the planar modes when they propagate
in the direction of the z axis. In reality, planar guided wave modes for a waveguide
structure as shown in Fig. 3.1 can propagate in any direction in the yz plane with the
same x functional variation as given in Eqs. (3.3) and (3.13). For a planar guided
wave mode propagating in a direction θ with respect to the z axis, it will have
a z variation of exp(− jneffk(cos θ )z) and a y variation of exp(− jneffk(sin θ )y).
For such a planar guided wave, there is no amplitude variation in the direction
perpendicular to the direction of propagation.

There can be superposition of TEm modes propagating in different θ directions
to form diverging or focusing waves in the yz plane with identical x variation.
Similarly, there can be superposition of TMn modes propagating in different θ

directions to form diverging or focusing waves in the yz plane that have the same
x variation.

3.4.2 Helmholtz equation for the generalized guided
wave modes in planar waveguides

In short, there may be a number of planar guided waves with the same Em(x) or
Hn(x) simultaneously propagating in different θ directions in the yz plane. These
modes all have the same x variation. Superposition of such planar guided waves
can give very complex y and z variations.

We will now consider any generalized TEm guided wave mode to be a product
Em(x)Em,t (y, z):

Em(x, y, z) = Em(x)Em,t (y, z).

Em(x) is the mth solution of Eq. (3.2c) which has the eigen value βm, or nm,effk.

(nm,eff is known as the effective index of the mth TE planar guided wave mode.)
Em,t (y, z) is a function of y and z satisfying the two-dimensional scalar wave
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equation (
∂2

∂y2
+ ∂2

∂z2
+ n2

m,effk
2

)
Em,t (y, z) = 0, (3.22a)[

∂2

∂x2
+ (

ω2µε(x) − n2
m,effk

2
)]

Em(x) = 0, (3.22b)

Em(x) = Am sin(hmt + φm) exp[−pm(x − t)], x ≥ t,

Em(x) = Am sin(hm x + φm), t > x > 0,

Em(x) = Am sin φm exp(qm x), x < 0.

 (3.22c)

The exp(− jnm,effk sin θ y) exp(− jnm,effk cos θ z) solution for Eqs. (3.22c) is just
the plane wave (i.e. plane wave in the yz plane in the θ direction and guided
wave variation in the x direction) solution for Em,y(y, z). There are many other
possible solutions. There is a strong similarity between the equation for Em,t (y, z) in
Eqs. (3.22c) and the Helmholtz equation, Eq. (1.4). All the techniques used to solve
the scalar wave equation, Eq. (1.4), can be applied here to the Em,t (y, z), as long as (1)
the polarization of the electric field is dominantly in the transverse direction, (2) the
x variation is in the form of Em(x) of the TEm mode and (3) the transverse variation
in the yz plane is slow within a distance comparable to λ. The major difference is
that Eq. (1.4) is a scalar wave equation in three dimensions whereas Eq. (3.22a)
is a scalar wave equation in two dimensions. The mathematical details of how to
solve scalar wave equations in two dimensions and in three dimensions are very
different [2].

Similar comments can be made for TMn guided wave modes for the magnetic
field.

3.4.3 Applications of generalized guided waves in
planar waveguides

In order to appreciate the importance of the more complex yz variation and the gen-
eralized guided wave mode in planar waveguides, we will consider four applications
using planar TEm waveguides.

(1) Radiation from a line source in the yz plane

Let there be a single TE mode planar waveguide (i.e. the index and the thickness
combination allows only the TE0 mode to exist). A line source of guided wave
TE0 mode is placed at the origin of the yz plane. A line source is represented
mathematically as a unit impulse function δ in the yz plane. The solution for such an
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E0,t (y, z) in Eq. (3.22a) is a cylindrical wave at distances far away from the origin,

E0,t (y, z) = A√
ρ

e− jn0,effkρ, (3.23)

where

ρ =
√

y2 + z2. (3.24)

Note that E approaches infinity as ρ approaches zero. This solution is similar to
the spherical wave shown in Chapter 1 except for the 1/

√
ρ variation instead of the

1/R. This modification is necessary if we consider the power P radiated by such a
cylindrical wave in the yz plane in the form of a TE guided wave:

P =
neff,0k

2ωµ

∞∫
−∞

|E0(x)|2 dx


π∫

−π

|E0,t (y, z)|2ρ sin θ dθ

= 2π A2. (3.25)

In evaluating P, we already know from Eq. (3.7) that the result of the integration in
x within the curly brackets is unity. Therefore the P becomes proportional to A2. In
other words, the square root dependence in ρ is necessary for power conservation,
i.e. for P to be independent of ρ. Notice also that the E0,t in Eq. (3.23) satisfies
Eq. (3.22a) only for large ρ when higher orders of 1/ρ can be neglected.

(2) Diffraction and collimation of guided waves in the yz plane

Let a single TE mode planar waveguide be terminated abruptly at z = 0, i.e. the
waveguide exists only for z > 0. Its end surface is the z = 0 plane. When the
radiation from a laser with electric field polarized in the y direction is focused
perpendicularly on this end surface, it will excite only the TE0 guided wave mode
and the TE substrate and air modes. No TM mode is excited. We will discuss later, in
Section 3.7, how to calculate this excitation. We observe here that at any significant
distance away from z = 0, i.e. z � λ, the substrate modes and air modes would have
been radiated away. Therefore, in order to find the propagation of the TE0 beam in
the yz plane for this excitation, we can ignore the radiation modes.

Let us approximate the excitation on the z = 0 plane by a TE0 planar guided
wave mode E0(x) which has uniform intensity A for |y| < ly and 0 for |y| ≥ ly.
In other words, we have a one-dimensional slit in the y direction applied to a TE0

planar waveguide. We will now use the Green’s function technique to solve the
scalar wave equation shown in Eq. (3.22a) with this boundary condition.

However, in order to apply the Green’s function technique as we did in Chapter 1,
we now need a Green’s function for a two-dimensional Helmholtz equation. Such
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a Green’s function is given in classical electromagnetic theory books, for example
ref. [3], by

4π Gβ(y, z; y0, z0) = jπ H (2)
0 (βρ) → −2 ln(βρ) as βρ → 0

→
√

2π

jβρ
e− jβρ as βρ → ∞.

 (3.26)

Here the source is at (y, z) and the observation point is at (y0, z0), β = neff,0k,
ρ =

√
(y − y0)2 + (z − z0)2, and H (2)

0 is the Hankel function of the zeroth order
and the second kind. This G corresponds to G1 in Chapter 1. The method of images
can be used again to yield a Green’s function such that G = 0 at z = 0,

Gρ(y, z; y0, z0) = j

4

[
H (2)

0 (βρ) − H (2)
0 (βρi )

]
.

Here, ρi =
√

(yi − y)2 + (zi − z)2, and yi and zi are images of y0 and z0 across the
z = 0 axis. It is instructive to see that the mathematics of scalar wave equations in
two dimensions becomes very complicated as compared to wave equations in three
dimensions. Fortunately, for large βρ, the Hankel function has a simple approx-
imation, as shown in Eq. (3.26). Therefore, for the far field, where higher order
terms in the binomial expansion can be neglected,

E0,t (y, z) =
+ly∫

−ly

A h(y, z = 0; y0, z0) dy, (3.27)

h(y, z; y0, z0) ≈
√

neff,0k

j2π (z0 − z)
e− jneff,0kρ,

− jneff,0kρ ≈ − jneff,0k(z0 − z) − jneff,0k
y2

0

2(z0 − z)
+ jneff,0k

yy0

z0 − z
+ · · · .

The integration over y at the far field is a Fourier transform of the excitation field.
It yields

E0,t = 2l

√
neff,0k

j2π (z0 − z)
e− jneff,0k(z0−z)e− jneff,0k

y2
0

2(z0−z) sinc

(
2neff,0ly y0

λ(z0 − z)

)
. (3.28)

E0,t is the Fraunhofer diffraction pattern in the yz plane. For our example, z = 0.
Note the divergent cylindrical wave front in the far field. The result agrees with the
E0,y in Eq. (3.23). The sinc function shows just the amplitude distribution pattern
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of the diffracted field as the observation angle θ = y0/z0 is varied. The diffracted
field has a main lobe and side lobes.

(3) Cylindrical guided wave lens

Similarly to the three-dimensional case, an ideal guided wave cylindrical lens at
z = 0, placed parallel to the xy plane with the axis of the cylinder along the x axis,
can be represented by a quadratic phase shift, exp[ j(πnm,eff/λ f )y2]. It will convert
a planar guided wave normally incident on the lens into a convergent cylindrical
guided wave focused at z = f. It will also collimate a divergent guided wave into
a collimated guided wave. Similarly to the three-dimensional case, including the
quadratic phase modification into the diffraction integral is sufficient to represent
the diffraction effect of the lens in the yz plane.

In practice, it is difficult to obtain waveguide structures such that the effective
index of the guided wave mode within the lens is much larger than the effective
index of the guided wave outside the lens. This is similar to the problems involved
in making a three-dimensional lens out of a material that has an index not much
larger than the index of air. Such lenses will be very weak. For these reasons, Fresnel
lenses and geodesic lenses are usually used.

(4) Star coupler

As the fourth example, we will consider a device called a planar waveguide star
coupler, as shown in Fig. 3.5 [4]. It is used in wavelength division multiplexed
(WDM) fiber optical systems. It consists of two arrays of N uniformly spaced
identical channel waveguides. Each waveguide has width a. The ends of channel
waveguides in each array are located on a circular arc with radius R. There are two
circular arcs facing each other. The center of the circle of the array on the left is
at O ′, which is also the middle of the circular arc for the array on the right. Vice
versa, the center of the circle on the right is at O, which is also the middle of the
circular arc for the array on the left. The center position of the kth waveguide on
the left arc is given by Rθ0,k , and the center position of the jth waveguide on the
right arc is given by Rθ ′

0, j . The region between the two arrays is a single-mode
planar waveguide. The power entering the single-mode planar waveguide region
(from any one of the 2N waveguides) will be diffracted and propagated in the
yz plane as the generalized guided wave of the planar waveguide. Waveguides on
the opposite circular arc are excited by the radiation carried by this generalized
guided wave.

The objective of the star coupler is to maximize the power transfer between any
one of the channel waveguides in the left array and any one of the waveguides in the
right array. Ideally, there is no power loss, and the input power from any waveguide
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Figure 3.5. The star coupler. Illustration of the planar arrangement of two circular
arrays of channel waveguides (shaded) with fields related by a Fourier transfor-
mation. The channel waveguides are arranged in two confocal circular arcs that
face each other, connected by a planar waveguide. The objective of the coupler
is to provide a uniform transmission of optical power T (θ, θ ′) from any channel
waveguide at location P (at θ0,k) to channel waveguides at any P ′ (at θ ′

0, j ) location.
The electric field pattern within each channel waveguide is shown as ψ in the inset.
The figure is taken from ref. [4] with copyright permission from the IEEE.

is divided uniformly into the N output channels. In that case, the transfer efficiency
will be 1/N . However, this is impossible to achieve in practice. In this example we
will analyze the star coupler using the generalized planar TE0 guided wave mode.
In particular, we will calculate the field at the output array produced by the radiation
from a given channel waveguide in the input array. We will calculate the excitation
of the mode of the channel waveguide in the output array by this field, thereby
determining the power transfer from the input channel to the output channel.

We have not yet discussed the fields of a channel waveguide mode. Let us assume
that the Ey of the guided wave mode for all input and output channels in the yz plane
is ψ(y) or ψ(y′), where y (or y′) is the coordinate along the left (or right) circular arc,
as shown in Fig. 3.5. Transmission between two elements (i.e. channel waveguides),
i.e. the P channel waveguide on the left circular arc centered about θ0,k and the P′

channel waveguide on the right circular arc centered about θ ′
0, j , is determined by

(1) calculating the generalized planar guided wave field at y′ = Rθ ′ diffracted from
P, as we have done in the preceding example, and (2) calculating the coupling of
that field into P′.
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In order to calculate the field radiated from P to Rθ ′, we note that the distance
between y and y′ in the first-order approximation of the binomial expansion is

ρ =
√

[R cos θ ′ − (R − R cos θ )]2 + (R sin θ ′ − R sin θ )2

≈ R − R sin θ ′ sin θ

≈ R − Rθθ ′.

Thus, for large βρ, the field produced by P at P′ is

Ey(Rθ ′) ≈
√

neffk

j2πR
e− jneffk R

θ0,k+ a
2R∫

θ0,k− a
2R

ψ(Rθ ) e+ j2π( neff
λ

θ ′)Rθ R dθ,

where we have assumed that the field for the kth channel waveguide is confined
approximately within the waveguide, as shown in the inset of Fig. 3.5. Note that
the phase factor, −jneffkR, is now a constant on the circular arc on the right. Thus
the circular arcs serve a function similar to the spherical reflectors in a confocal
resonator in three dimensions.

Using a change of variable, u = (2R/a)(θ − θ0,k), we obtain the following:

Ey(Rθ ′) ≈ a

√
neff

jλ R
e− jneffk Re+ j2π

(
neff Rθ0,k θ ′

λ

)
φ(Rθ ′),

where

φ(Rθ ′) = 1

2

+1∫
−1

ψ
(au

2

)
e+ j2π

(
neffaθ ′

2λ

)
u du.

Since ψ(au/2) is identical for all the waveguides, the φ factor is independent of θ0,k .
The Ey is only dependent on the center position Rθ0,k of the input channel through

the factor exp( j2π
neff Rθ0,kθ

′

λ
). Let the total Ey at Rθ ′ be expressed as a summation

of the fields of the channel guides, ψ i(Rθ ′), on the right circular arc array plus
the stray guided wave fields in the gaps between channel guides, ζ (Rθ ′). Let us
assume, as an approximation, that there is negligible overlap among all the ψ i and
the ζ . Then,

Ey(Rθ ′) =
∑

i

biψi (Rθ ′) + ζ (Rθ ′).

Here, ψ i(Rθ ′) is the ψ centered about θ0,i . Multiplying both sides by ψ∗
j (Rθ ′) and

integrating with respect to Rθ ′ from −∞ to +∞, we obtain

θ0, j + a
2R∫

θ0, j − a
2R

Ey(Rθ ′)ψ(Rθ ′)R dθ ′ ≈ b j

θ0, j + a
2R∫

θ0, j − a
2R

|ψ(Rθ ′)|2 R dθ ′.
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Utilizing once more the change of variable u′ = (2R/a)(θ ′ − θ ′
0), we obtain

|b j |2
a

2

+1∫
−1

∣∣∣ψ (a

2
u′ + Rθ0, j

)∣∣∣2
du′

2

=
[

neffa4

λ R
|φ(Rθ0,k)|2|φ(Rθ0, j )|2

]
,

or

|b j |2 = 4neffa2

λ R

|φ(Rθ0,k)|2|φ(Rθ0, j )|2 +1∫
−1

∣∣∣ψ (a

2
u + Rθ0,k

)∣∣∣2
du

2 . (3.29)

Since the power contained in the total Ey is proportional to
∫ |Ey|2 R dθ , which

is approximately equal to
∑

i |bi |2
∫ |ψ |2 R dθ , |bj|2 is the power transfer from the

channel waveguide centered at θ0,k to the channel waveguide centered at θ0, j .
In an actual star coupler, R, N and a are designed to optimize the power transfer.

Dragone [4] optimized the design which gives 0.34(1/N ) to 0.55(1/N ) of the input
power to any one of the output channels.

3.5 Rectangular channel waveguides and effective index analysis

Rectangular waveguides are important in many practical applications because the
rectangular cross-section is an idealized cross-section of the actual waveguides fab-
ricated by most micro-fabrication processes such as etching. Figure 3.6 illustrates
the index profiles of two rectangular channel waveguides. In either case, the center
portion, at W/2 ≥ y, consists of a ridge with a finite width W. Because of the com-
plexity of the geometry of the dielectric boundaries, there is no analytical solution
of the modes of such a structure. There are only approximate solutions such as
those given in ref. [5] and computer programs that can calculate numerically the
guided wave modes. These computer programs use numerical methods such as the
beam propagation method or the finite element method for simulation. However,
the guided wave modes could be obtained easily by an approximate method called
the effective index method, which will be presented here. This method is reasonably
accurate for strongly guided modes (i.e. modes well above cut-off). It is based on
the solutions of the planar guided wave modes discussed in Sections 3.1 to 3.3. The
effective index analysis might also provide us with insight into the properties of
channel guided wave modes.

Let us consider the rectangular channel waveguides in Fig. 3.6 where there are a
rectangular core region, y ≤ |W/2|, and a cladding region, y ≥ |W/2|. If W is large,
then we would have approximately a planar waveguide in the core. The propagation
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Figure 3.6. Index profiles of two examples of channel waveguides. (a) Lateral
cross-section of a waveguide where the high-index core is etched down to the
substrate outside the waveguide. (b) Lateral cross-section of a ridged waveguide
where the high-index core outside the ridge is etched partially down to a thick-
ness tc.

of the m = 0 planar TE guided wave mode in the core along its longitudinal direction
z is given by exp(± jβ0z) where β0/k is its effective index, ne1. In Fig. 3.6(b), there
is also a different planar waveguide mode in the cladding region when we ignore
the ridge. Let the effective index of the m = 0 TE planar guided wave mode of
the structure in the cladding region be ne2. Since the high-index layer is thicker for
y ≤ |W/2|, ne1 > ne2. In Fig. 3.6(a), there is no guided wave mode in the cladding
region; there are only continuous substrate and air modes for y ≥ |W/2|. These
continuous modes will have ne1 > n2 > β/k > n3.

Let us consider first the channel waveguide in Fig. 3.6(b). The core planar guided
wave mode in the y ≤ |W/2| region can propagate in any direction in the yz plane.
Let us consider a core planar guided wave propagating in a direction making a very
small angle δ with respect to the z axis. Let δ be so small that ne1 cos δ > ne2. When
this core planar guided wave is incident on the vertical boundary at y = |W/2|, it
excites the cladding planar waveguide mode at y > |W/2| plus continuous modes.
However, in order to match the boundary condition at y = |W/2| as a function
of z, the cladding planar guided wave mode cannot have a real propagating wave
number in the y direction. It must have an exponentially decaying y variation. In
other words, the core planar guided wave is now totally internally reflected back
and forth between the two boundaries at y = ±W/2. The sum of all the reflected
core planar guided waves yields a non-zero solution when the round trip phase shift
of the total internal reflection at specific values of δ is a multiple of 2π . These
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special sets of totally internally reflected core planar waveguide modes constitute
the channel guided wave modes.

Let us now consider the mathematical details of the approach discussed in the
preceding paragraph. At the y = |W/2| boundaries, the electric field Ey of the core
planar guided wave mode is no longer the field transverse to the boundaries. Ey

is now approximately perpendicular to the boundaries, which are the y = ±W/2
planes. The tangential field of the core guided wave is the magnetic field that has
two components, the Hx and the quasi Hz fields. The dominant component is Hx.
Therefore, at the y = |W/2| boundary, we will match the Hx of the core and cladding
modes.

The transverse field in the cladding that is the closest match to the x variation
of Hx at the y = |W/2| boundary is the Hx of the cladding TE planar guided wave
of the same order. In order to satisfy the boundary condition for all z values, the
z variation of this cladding guided wave mode must be equal to exp(−jne1cos δ).
If we let the y variation of the cladding guided wave be exp(−jγ y), γ must satisfy
the equation

γ 2 = n2
e2 − n2

e1 cos2 δ. (3.30)

This relationship is a consequence of Eq. (3.22a). Thus, γ is imaginary when
ne1 cos δ > ne2. An imaginary γ represents an exponentially decaying cladding
guided wave in the y direction, not a propagating cladding guided wave. In other
words, the core guided wave is totally internally reflected at the y = |W/2| bound-
aries. The channel guided wave mode is obtained by requiring the total round trip
phase shift (with total internal reflection at the y = ±W/2 boundaries) of the core
planar guided wave (at angle δ) to be 2nπ .

In short, the mathematics of analyzing the total internal reflection of the core
planar guided wave in the y direction is equivalent to analyzing the total reflection of
the equivalent plane wave propagating in the yz plane at angle δ with approximately
the Ey and Hx polarization. The equivalent material refractive index is ne1 and ne2

and the magnetic field is the transverse field. In other words, we can use the TM
planar guided wave mode equation for a symmetric waveguide, i.e. Eqs. (3.13),
with y replacing x and letting ne1 be the core index and ne2 be the index of the
substrate and top cladding. The solutions of that equation are the channel guided
wave modes that we are looking for. This is the effective index method.

It is important to use the TM equation because the field tangential to the y =
|W/2| plane is the magnetic field. The most important quantity to be obtained is the
effective index, i.e. the βn/k or ne1cos δ, of the channel waveguide in the z direction.
Knowing this effective index, we know both the δ in the core and the exponential
decay constant, γ , in the cladding. Since δ is very small, the channel guided wave
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mode obtained from the TE core planar guided mode is still approximately a y
polarized TE mode propagating in the z direction. Naturally, the x variation is
approximately the same as the core planar guided wave for y < |W/2| and the same
as the cladding planar guided wave for y > |W/2|.

Note that the boundary conditions at y = ±W/2 are not satisfied exactly by just
the core and the cladding guided waves. In order to satisfy the boundary conditions
accurately, many other modes, especially the substrate and air modes, must be
involved. Therefore, the effective index is only reasonably accurate for well guided
modes. Notice also that we no longer have purely TE or TM modes. We have
basically TE-like modes with a small E component in the z direction. Similarly, we
have TM-like modes with a small H component in the z direction. These modes are
called hybrid modes.

For the waveguide shown in Fig. 3.6(a), the x variation of the tangential field of
the core guided wave propagating at angle δ is matched by the summation of the
continuous cladding modes at y = |W/2|. For ne1 cos δ > n3 and n2, in order to
satisfy the boundary condition as a function of z, all continuous modes will decay
exponentially away from the y = |W/2| boundary. Thus the core guided wave mode
is again totally internally reflected back and forth. The sum of all the reflected core
planar guided waves yields a non-zero solution when the round trip phase shift
of total internal reflection at specific values of δ is a multiple of 2π . These special sets
of totally internally reflected core planar waveguide modes constitute the channel
guided wave modes.

The effective index method can also be used to obtain approximately modes
of channel waveguide structures such as that shown in Fig. 3.6(a). In this case,
we know the ne1 of the core TE planar guided wave mode, but we do not know
ne2. Since a combination of substrates and air modes is used to match the x vari-
ation of the core guided wave at y = ±|W/2|, the value of ne2 is somewhere
between n3 and the substrate index n2. The effective index ne2 to be used for the
cladding region in the TM equation in y will depend on the profile of the core
TE mode. For high-index waveguides with deep sided walls, we will most likely
use n3 for the cladding. For a core guided wave with a long evanescent tail in the
x direction in the substrate, we may use the substrate index. Fortunately, for well
guided channel modes in the core, the solution of neff and the y variation is not
very sensitive to the value of the effective index used for the cladding. Clearly,
the approximation of the effective index method may not be very good for such
a structure. It is also difficult to say anything about the x variation of the field in
the cladding. The best we can do is to estimate the γ in the cladding region and to
assume that for |y| − |W/2| � γ the x variation is similar to the core guided wave
mode.
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Similarly, a channel guided wave mode with approximately TM polarization can
be obtained from a TM planar guided wave mode in the core and in the cladding
region. In that case the equivalent TE guided wave equation will be used to find the
effective index of the channel waveguide mode and the y variation.

3.5.1 Example for the effective index method

Consider first a GaAs planar waveguide with n1 = 3.3, n2 = 3.188 and t = 0.9 µm in
the core region operating at λ = 1.5 µm. This waveguide is coated with a dielectric
film with n3 = 1.68. The dielectric film has been etched away at y ≥ |W/2|, where
W = 3 µm. In the cladding region, t = 0.6 µm. We would like to find the effective
index and the field of the lowest order TE-like channel waveguide mode.

The first step of our calculation is to find the effective index of the TE0 planar
guided wave in the core region at W/2 ≥ |y| and in the cladding region at |y| >

W/2. From Eqs. (3.4), we find the TE planar guided wave modes and ne1 = 3.257
and ne2 = 3.247. Using the example shown in Section 3.3.2, we will solve the
following equations to obtain the y variation of the lowest order channel waveguide
mode (i.e. n = 0):

tan

[
(h′

n/k)
kW

2

]
= n2

e1 p′
n/k

n2
e2h′

n/k
, (3.31a)(

h′
n

k

)2

+
(

p′
n

k

)2

= n2
e1 − n2

e2. (3.31b)

The solution is (h′
0/k) = 0.096 51, which gives neff,0 = 3.2556 and p′

0/k = 0.236.
The field distributions are

Ey = A sin(h0x + φ0) sin(h′
0 y + φ′

0)e− jneff,0kz, 0 < x < t, y ≤ |W/2| ,
Ey = A sin φ0eq0x sin(h′

0 y + φ′
0)e− jneff,0kz, x ≤ 0, y ≤ |W/2| ,

Ey = A sin(h0t + φ0)−pc
0(x−t) sin(h′

0 y + φ′
0)

× e− jneff,0kz, x ≥ t, y ≤ |W/2| ,

Ey = A sin
(
hc

0x + φc
0

)
sin

(
h′

0W

2
+ φ′

0

)
× e−p′

0(y− W
2 )e− jneff,0kz, 0 < x < t, y > W/2,

Ey = A sin
(
hc

0x + φc
0

)
sin

(
−h′

0W

2
+ φ′

0

)
× e+p′

0(y+ W
2 )e− jneff,0kz, 0 < x < t, y < −W/2.

(3.32)
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Here, tan φc
0 = hc

0/pc
0, where hc

0 and φc
0 are parameters from the planar guided

wave TE0 mode in the cladding region (given in Eqs. (3.3) and (3.4) with
β = 3.247k). hm, φ0, q0, h0 and p0 are parameters of the planar guided wave TE0

mode in the core (given in Eqs. (3.3) and (3.4) with βm = 3.257k). We cannot find
the field distributions accurately in the regions (x > t, |y| > W/2) and (x < 0, |y| >
W/2) from the effective index method. We may estimate that the fields will
decay exponentially in the x and y directions with decay constants q0, p0 and
p′

0, respectively.

3.5.2 Properties of channel guided wave modes

Channel waveguides are used mostly in guided wave devices such as the directional
coupler, the Y-branch splitter, the index-guided laser, the guided wave modulator,
the waveguide photodetector, the waveguide demultiplexer and the waveguide filter.
Therefore the properties of the channel-guided wave mode most important to
these applications are neff,m or neff,n, the attenuation rate, the polarization of the
mode and the evanescent tails described by pm , qm and γ . Most active channel
waveguide devices are a few centimeters or less in length. Thus, unlike for optical
fibers, any reasonable attenuation rate, such as 1 dB/cm or less, may be accept-
able in practical applications. Active channel waveguide devices mostly involve
one guided wave mode interacting with another guided wave mode, and these
will be discussed in detail in Chapter 4. On the other hand, passive waveguide
splitters, combiners and demultiplexers could be much longer. The reduction of
scattering loss is an important engineering issue for these devices. The excitation
efficiency of the channel waveguide mode by end excitation from another com-
ponent, such as a laser or an optical fiber, will depend critically on the matching
of the polarization and the field pattern of the waveguide mode with the mode of
the fiber or the laser. The excitation of the channel waveguide will be discussed in
Section 3.7.

3.5.3 Phased array channel waveguide demultiplexer
in WDM systems

Let us consider an application of channel waveguides in a component called a
PHASAR demultiplexer in wavelength division multiplexed (WDM) optical fiber
systems [6]. Consider two star couplers, as discussed in Section 3.4.3, intercon-
nected by an array of identical channel waveguides, each of length Lj, as shown in
Fig. 3.7. On the input side of the first star coupler, there is the transmitting wave-
guide. The field distribution at the input is given by Ey = ψk of the input channel
and zero elsewhere. In terms of the star coupler discussed in Section 3.4.3, the
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Figure 3.7. (a) Layout of the PHASAR demultiplexer. (b) Geometry of the re-
ceiver side. The two star couplers are connected by an array of interconnecting
channel waveguides that have different lengths. Optical radiation from the input
waveguide is transmitted to the interconnecting waveguides by the input star cou-
pler. The input radiation to the output coupler will have phase shifts controlled
by the wavelength as well as by the length increments of the interconnecting
waveguides. The objective is to create an appropriate phase shift so that radiation
at a different wavelength is transmitted to a different receiving waveguide. The
geometry of the output coupler is shown in (b), where the array waveguides are
the interconnecting waveguides. This copyright figure is taken from ref. [6] with
permission from the IEEE.

input consists of a circular array of channel waveguides on the input side within
which only the kth waveguide (i.e. the transmitting waveguide) is excited. All other
waveguides have zero power. The transmitting channel waveguide at the kth posi-
tion will create a field distribution Ey(Rθ ′) on all the output channels in the first star
coupler. If all the interconnecting waveguides have equal length, and if the stray
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field ζ in the gap between channel guides is small, a field distribution identical
to Ey(Rθ ) in the first coupler will be created on the input side of the second star
coupler. By reciprocity, this field distribution on the input side of the second star
coupler will create a field distribution on the output side which is zero except for
the ψk at the position of the kth output waveguide. In other words, the power in
the transmitting waveguide of the first coupler will now be transmitted exclusively
to the kth output channel of the second star coupler. The situation does not change
if the lengths of the interconnecting waveguides between the two star couplers
differ from each other such that the phase shift between adjacent waveguides is
2π , i.e.

2πneff,c

λ
(L j − L j−1) = 2πneff,c

λ
�L = 2π,

where neff,c is the effective index of the channel waveguide.
Let the spacing between adjacent channel waveguides be da (da = R�α). Then,

according to Section 3.4.3, the Ey in the first star coupler, created by the transmitting
waveguide at the kth channel position, has a phase

exp

(
j2π

neff R

λ
(k�α)(m�α)

)
at the center of the mth waveguide in the output array, where kR�α and mR�α

are the center angular position of the kth and mth channel waveguides in the input
and output arrays of the star coupler, respectively, as shown in Fig. 3.5, and k and
m are integers, ranging from −(N−1)/2 to (N−1)/2; neff is the effective index of
the planar waveguide in the star coupler. The difference in Ey caused by excita-
tion from the kth waveguide or the (k + 1)th waveguide is just a phase difference,
m�φ = 2π (R�α)(neff/λ)(m�α), at the center of the mth waveguide. Conversely,
when the radiation in the array of input waveguides in the second star coupler has
a total Ey field that contains this extra phase factor m�φ for the mth waveguide,
m = −(N−1)/2 to (N−1)/2, the total radiation will be coupled to the (k + 1)th
output waveguide instead of the kth output waveguide.

The central idea of the demultiplexer is that, when the kth waveguide is the
output guide at λ1, and when the apppropriate phase shift m�φ is obtained as the
wavelength is shifted from λ1 to λ2, we would have shifted the output from the kth
waveguide to the (k + 1)th waveguide.

Let the difference in length of the adjacent interconnecting waveguides be �L.
The mth interconnecting waveguide then has a length m�L longer than the wave-
guide at the origin. Now consider in detail the second star coupler at two different
wavelengths, λ1 and λ2. Let the output channel be the kth waveguide at λ1. This extra
phase factor m�φ (which is needed to shift the output to the (k + 1)th waveguide)
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will be obtained at λ2 when

m�φ = 2π

c
neff,c(� f )m�L

or

R�α

� f
= da

� f
=

(
neff,c

neff

) (
�L

�α

)
1

f2
.

Here, f1 = c/λ1, f2 = c/λ2 and �f = f1 − f2. The ratio da/�f is called the dis-
persion of the interconnecting waveguides. In practice, there may be optical car-
riers at a number of closely equal spaced wavelengths, λ1, λ2, λ3, . . . (i.e. �f =
constant) in the transmitting channel. When the above dispersion relationship is sat-
isfied, optical carriers at different wavelengths are transmitted to a different output
waveguide. This device is called a PHASAR wavelength demultiplexer in WDM
fiber systems [6]. The properties of the channel waveguides important to this appli-
cation are neff,c, the uniformity of neff,c in different channels and the attenuation of
the waveguides.

3.6 Guided wave modes in single-mode round optical fibers

There are many books that discuss the modes of various optical fibers (see, for
example, ref. [7]). We will not repeat those discussions here. However, guided
wave modes in round step-index optical fibers are important and will be presented
here because they are the only analytical solutions of channel waveguides. These
analytical solutions allow us to show the similarities and the differences between
modes of round optical fibers and the rectangular channel waveguides. Step-index
fibers are not used in practical applications.

The cross-section of a step-index optical fiber with infinitely thick cladding
is shown in Fig. 3.8. The core index n1 is larger than the cladding index n2. In
contrast to channel waveguides with rectangular cross-sections, there are now ana-
lytical solutions of guided wave modes in single-mode step-index fibers because
of the cylindrical symmetry. Although the field distribution and the effective index
(especially the dispersion) of modern graded index fibers used in communication
systems are different from those of the step-index fibers, step-index fiber modes
are used here simply to demonstrate many properties of the modes of round fibers.
We propose to demonstrate the following points. (1) There is a big difference in
mathematical complexity between cylindrical and rectangular geometry. (2) There
are, in general, only hybrid, not TE or TM, modes. (3) Unlike modes of rectangular
channel waveguides, modes of round fibers are degenerate. In order to obtain lin-
early polarized transverse modes in fibers, we depend on the degeneracy in weakly
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Figure 3.8. Cross-section of a step-index cladded core fiber and the cylindrical
coordinates used for the analysis. The variation of the refractive index in the
lateral direction is shown in cylindrical coordinates. The longitudinal direction
Z is perpendicular to the figure, and is indicated by the dot at the center.

guiding fibers and linear combinations of these degenerate modes. (4) Properties of
the modes of step-index fibers are important for understanding the dispersion prop-
erties of fibers and the random polarization rotation of the propagating radiation in
fibers.

3.6.1 Guided wave solutions of Maxwell’s equations

The vector wave equations obtained from Maxwell’s equations in a homogeneous
medium with refractive index n are [7]:

(∇2 + n2k2)E = 0,

(∇2 + n2k2)H = 0.
(3.33)

In addition, we have the curl equations relating E and H. If we assume that guided
wave modes have the exp(− jβz) variation along the z direction, which is also the
fiber axis, then in cylindrical coordinates we can write(∇2

t + k2
t

)
Ez = 0, (3.34a)(∇2

t + k2
t

)
Hz = 0, (3.34b)

∇2 = [∇2
t

] + ∂2

∂z2
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ρ

∂

∂ρ

(
ρ

∂

∂ρ

)
+ 1

ρ2

∂2

∂θ2

]
+ ∂2

∂z2
,

k2
t = n2k2 − β2.
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The remaining transverse components of the fields are related to Ez and Hz as
follows:

Eρ = − j

k2
t

[
β

∂ Ez

∂ρ
+ ωµ

ρ

∂ Hz

∂θ

]
,

Eθ = − j

k2
t

[
β

ρ

∂ Ez

∂θ
− ωµ

∂ Hz

∂ρ

]
,

Hρ = j

k2
t
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ωε0n2

ρ

∂ Ez

∂θ
− β

∂ Hz

∂ρ

]
,

Hθ = − j

k2
t
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ωε0n2 ∂ Ez

∂ρ
+ β

ρ

∂ Hz

∂θ

]
.

(3.35)

The solutions of Eqs. (3.34a) and (3.34b) are:

Ez = AJm(kt1ρ) cos(mθ ), (3.36a)

Hz = B Jm(kt1ρ) sin(mθ ), (3.36b)

respectively, where

kt1 =
√

n2
1k2 − β2

for a ≥ ρ and

Ez = C H (2)
m ( jkt2ρ) cos(mθ ), (3.37a)

Hz = DH (2)
m ( jkt2ρ) sin(mθ ), (3.37b)

jkt2 =
√

β2 − n2
2,

for ρ > a. There is a second set of solutions in which Ez has the sin(mθ ) variation and
Hz has the cos(mθ ) variation. Jm is the Bessel function of the first kind and order m;
H (2)

m is the Hankel function of the second kind of order m; m is an integer. Similarly
to the guided waves in planar and channel waveguides, the Hankel function gives an
exponential decay as ρ → ∞ in the cladding. Eρ , Eθ , Hρ and Hθ are obtained from
Ez and Hz from Eqs. (3.35). Continuity of Ez , Hz, Eθ and Hθ at ρ = a yields the
relationship among the A, B, C and D coefficients and the characteristic equation
which determines the discrete values of β of the mode. The effective index, neff, of
the mode is β/k. Similarly to the channel waveguide modes, each mode has a cut-
off condition. The higher the order of the mode, the larger the value of ka

√
n2

1 − n2
2

for cut-off.
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3.6.2 Properties of the guided wave modes

It is interesting to note that the axially symmetric modes have m = 0. In that case,
we again have TE (with non-zero Hz, Eθ and Hρ , called H0p modes) and TM (with
non-zero Ez , Hθ and Eρ , called E0p modes) modes. However, the lowest order
mode that has the largest decay constant in the cladding, jkt2, is not an axially
symmetric mode. For m �= 0, only a superposition of Ez and Hz solutions can
satisfy all boundary conditions. The modes lose their transverse character, and are
known as hybrid modes. The lowest order mode is the HE11 mode, which has m = 1
and the lowest order radial solution of the characteristic equations. There is no cut-
off for the HE11 mode. In HE modes the longitudinal electric field is larger than the
longitudinal magnetic field. There are also EH modes, in which the longitudinal
magnetic field is dominant. The TM (i.e. E0p) modes are the axially symmetric
members of the HE family of modes. The H0p modes are the axially symmetric
members of the EH family of modes.

For weakly guiding modes, � = (n1 − n2)/n1 is small compared with unity. The
characteristic equation for HEmp modes is

kt1a
Jm(kt1a)

Jm−1(kt1a)
= ( jkt2a)

H (2)
m ( jkt2a)

H (2)
m−1( jkt2a)

, (3.38)

where the subscript p refers to the pth root of the above equation. The characteristic
equation for EHmp modes is

kt1a
Jm+2(kt1a)

Jm+1(kt1a)
= ( jkt2a)

H (2)
m+2( jkt2a)

H (2)
m+1( jkt2a)

. (3.39)

Both the HE and EH modes exhibit nearly transverse field distribution. The longi-
tudinal components have a phase shift of π/2 with respect to the transverse com-
ponents; they remain small compared with the transverse field. The characteristic
equation for HEmp modes is the same as the characteristic equation for EHm−2,p

modes. Therefore, for weakly guiding fibers, any HEl+1,p mode is degenerate with
EHl−1,p modes (i.e. they have the same propagation constants or effective index).

When we linearly combine the degenerate HEl+1,p and EHl−1,p modes, we obtain
the linearly polarized LPlp mode, which has the same effective index as the HEl+1,p

mode. The LPlp mode has only Ex and Hy in the core and cladding; it is nearly
uniformly polarized over the fiber cross-section. The LP01 mode is just the HE11

mode. Each LP mode occurs in four different versions: two orthogonal directions
of polarization, each with cos lθ and sin lθ variations. Figure 3.9 shows the phase
parameter B as a function of fiber parameter V = ka

√
n2

1 − n2
2 for low-order LPlp

modes. For a more detailed discussion of solutions of modes of step-index optical
fibers, see ref. [7].
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Figure 3.9. The phase parameter B of propagating modes in step index round
fibers. The phase parameter B is related to the effective index neff of the propagating
mode, B = (n2
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of the fiber material parameter V, V = ka
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2, for lower order LPlp modes in
weakly guiding fibers. This figure is taken from ref. [7] with copyright permission
from Oxford University Press and the University of Minnesota Press.

3.6.3 Properties of optical fibers

Optical fibers are used primarily as transmission lines, often over many kilometers.
There are very few devices made from fibers, the most prominent being fiber optical
amplifiers and grating filters. Therefore, properties of modes in fibers that are most
interesting for fiber communications are the number of propagating modes, the
attenuation rate of the modes, the dispersion of the neff, the polarization of the
excited mode and the change of state of polarization as the mode propagates. The low
attenuation rates at 1.3 and 1.55 µm wavelengths dictate the operating wavelengths
of optical fiber networks. In single-mode fibers, the indices and the core radius are
controlled to cut off all the higher order modes. Thus, only the HE11 mode exists.
However, the solution of neff from Eq. (3.38) clearly depends on λ. This is called the
modal dispersion. On the other hand, the n1 and n2 also have slightly different values
at different wavelengths. This is known as material dispersion. Dispersion causes the
pulses of optical radiation to spread after propagating a long distance in the fiber, and
it limits the data rate that can be transmitted through the fiber. In some fibers, material
and mode dispersion cancel each other at specific wavelength such as 1.3 µm; they
are called the zero-dispersion fibers. The effects of dispersion after a certain distance
of propagation could also be canceled by propagating in another section of fiber with
opposite dispersion`̀ı; this is called dispersion compensation. The polarization of the
propagating mode is determined by the excitation source. However, the cylindrical
fiber is degenerate in two orthogonal polarization directions. Any minute changes



3.7 Excitation of guided wave modes 111

in uniformity caused by factors such as bending and stress cause the polarization of
the radiation to rotate randomly in the fiber as it propagates. By means of intentional
strain or ellipticity of the cross-section, polarization-maintaining fibers maintain the
polarization of the radiation as it propagates.

3.6.4 Cladding modes

There are also cladding modes in optical fibers, corresponding to the continuous
substrate and air modes in the planar and channel waveguides. They are excited
whenever there are defects, bending of the fiber or dielectric discontinuity. Cladding
modes are solutions of the boundary value equations when their effective indices
are less than n2. These modes do not decay exponentially away from the core. A
typical single-mode fiber has a core about 10 µm in diameter, and the cladding has a
diameter of the order of 100 µm. Thus there are many propagating cladding modes,
with the effective indices very close to each other, resembling a continuous mode
distribution. In the absence of the exponential decay factor, cladding modes have
high attenuation. Their amplitude is very small at distances far from the discontinu-
ity. Even for fibers with finite cladding thickness, cladding modes resemble closely
the radiation modes in planar waveguides.

3.7 Excitation of guided wave modes

Usually, the guided wave mode (or modes) in an abruptly terminated planar wave-
guide, channel waveguide or weakly guiding optical fiber is excited at its end
by illumination from a laser (or an abruptly terminated fiber). The second most
common method of excitation is by phased matched interaction of the incident
radiation with the guided wave, utilizing the evanescent tail of the mode in the
lower index cladding, such as in a directional coupler for channel waveguides or a
prism coupler for planar waveguides. We will discuss here the end excitation.

From the point of view of Gaussian optics, as discussed in Chapter 2, we could
approximate the guided wave mode of a channel waveguide or optical fiber by a
Gaussian beam. The radiation from the laser can also be approximated by another
Gaussian beam. Efficient excitation of the guided wave mode is obtained when we
use a lens to match the two Gaussian beams, as discussed in Section 2.4.7, provided
that the direction of polarization is also matched.

In order to understand more thoroughly the excitation process, the modal expan-
sion technique could be used to calculate the end excitation efficiency of a specific
guided wave mode. Let us consider an example in which the laser is the source,
and let the waveguide be excited by the laser. They are oriented along the z axis.
Let the waveguide at z > 0 be abruptly terminated at z = 0. The laser radiation is
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incident on the waveguide from z < 0. At z = 0, the transverse electric field of the
incident radiation coming from z < 0 may be expressed as

Et(x, y) = Ex (x, y)ix + Ey(x, y)iy, (3.40)

where ix and iy are unit vectors in the x and y directions. For z ≤ 0, Et consists
of just the incident laser mode and the reflected laser radiation. If we neglect the
reflection, Et is just the incident laser radiation. For z ≥ 0, Et consists of the guided
wave modes and radiation (or cladding) modes of the waveguide. Both the x and
y polarized electric fields must be continuous across the z = 0 plane.

For the channel waveguide at z = 0,

Ex =
∑

m

Amψx,m(x, y) +
∫
β

b(β)ψx (β; x, y) dβ (3.41)

and

Ey =
∑

m

Cmψy,m(x, y) +
∫
β

d(β)ψy(β; x, y) dβ. (3.42)

Here, ψx,m is the mth x polarized guided wave mode, ψy,m is the mth y polarized
guided wave mode, ψx is the x polarized radiation mode and ψy is the y polarized
radiation mode. If the modes are orthogonal to each other (or non-overlapping) then
we can multiply both sides of Eq. (3.41) by ψx, j (x, y) and integrate with respect to
x and y from −∞ to +∞. In that case, we obtain

|A j |2 =

∣∣∣∣ ∞∫
−∞

dx
∞∫

−∞
dy

[
Exψ

∗
x, j

]∣∣∣∣2

[ ∞∫
−∞

dx
∞∫

−∞
dy

∣∣ψx, j

∣∣2
]2 . (3.43)

The expression

∞∫
−∞

∞∫
−∞

Exψ
∗
x, j dx dy

is called the overlap integral between the incident field and the jth order mode. The
expression

|A j |2
∞∫

−∞
dx

∞∫
−∞

dy|ψx, j |2
/ ∞∫

−∞
dx

∞∫
−∞

dy|Et |2
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is the power efficiency for coupling the laser radiation into the x polarized jth guided
wave mode. A similar expression is obtained for coupling into the y polarized guided
wave mode, |Cj|2.

When modes in both polarizations are excited, the total polarization of the radi-
ation in waveguides or fibers will be position dependent because of the difference
of the phase velocity of different modes. The coupling is sensitive with respect to
geometrical, strain or bending perturbations. Clearly, radiation (or cladding) modes
are also excited at z = 0. However, they radiate (or attenuate) away over a short
distance. Therefore, most of the time, only the excitation of guided waves is of
practical interest.
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4

Guided wave interactions and photonic devices

In order to understand optical fiber communication components and systems, we
need to know how laser radiation functions in photonic devices. The operation of
many important photonic devices is based on the interactions of several guided
waves. We have already discussed the electromagnetic analysis of the individual
modes in planar and channel waveguides in Chapter 3. From that discussion, it
is clear that solving Maxwell’s equations simultaneously for several modes or
waveguides is too difficult. There are only approximate and numerical solutions. In
this chapter, we will first learn special electromagnetic techniques for analyzing the
interactions of guided waves. Based on these techniques, practical devices such as
the grating filter, the directional coupler, the acousto-optical deflector, the Mach–
Zehnder modulator and the multimode interference coupler will be discussed. The
analysis techniques are very similar to those techniques used in microwaves, except
we do not have metallic boundaries in optical waveguides, only open dielectric
structures.

The special mathematical techniques to be presented here include the pertur-
bation method, the coupled mode analysis and the super-mode analysis (see also
ref. [1]). In guided wave devices, the amplitude of radiation modes is usually neg-
ligible at any reasonable distance from the discontinuity. Thus, in these analyses,
the radiation modes such as the substrate and air modes in waveguides and the
cladding modes in fibers are neglected. They are important only when radiation loss
must be accounted for in the vicinity of any dielectric discontinuity. The radiation
modes are also important in special situations such as in a prism coupler, in which
a radiation beam excites a guided wave over a long interaction distance, or vice
versa [2].

There are three types of interactions which are the basis of the operation of
most guided wave photonic devices. (1) The adiabatic transition of guided wave
modes in waveguide or fiber structures from one cross-section to another cross-
section as the modes propagate. An example of this type of interaction is the
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Y-branch that splits one channel waveguide into two channel waveguides. The
combination of two symmetrical Y-branches back to back with two phase shift-
ing channel waveguides interconnecting them constitutes the well known Mach–
Zehnder interferometer modulator and switch. (2) The phase matched interaction
between two guided wave modes over a specific distance. An example of pho-
tonic devices based on this type of interaction is the directional coupler in channel
waveguides or fibers. (3) Interaction of guided wave modes through periodic pertur-
bation of the optical waveguide. An example of this is the grating filter in channel
waveguides (or optical fibers) or the acousto-optical deflector (or scanner) in planar
waveguides.

In the following sections, we will present first the perturbation analysis and
derive the coupled mode equations. The perturbation analysis will also be used to
find the super-modes of waveguide structures involving more than one waveguide.
The discussion on the application of the analysis to photonic devices will be orga-
nized according to different types of interactions utilized to achieve device oper-
ations. (1) Guided wave interactions in the same single-mode waveguide. Grating
filters and acousto-optic deflectors and analyzers are examples illustrating this
type of interaction. (2) Guided wave interactions in parallel waveguides. A direc-
tional coupler is discussed to illustrate such interactions. Modal analysis involving
super-modes will also be presented to analyze this type of interaction. (3) Guided
wave interactions in waveguide structures that employ adiabatic transitions. Modal
analysis using super-modes will be used mostly for analyzing such structures. The
Mach–Zehnder interferometer (and modulator) is presented to illustrate this type
of interaction. (4) Mode interference in multimode waveguides. An example is the
multimode interference coupler.

4.1 Perturbation analysis

4.1.1 Fields and modes in a generalized waveguide

In any waveguide or fiber which has a transverse index variation independent of
z (i.e. independent of the position along its longitudinal direction), the Maxwell
equations for its electric and magnetic fields, E(x, y, z) and H(x, y, z), propagating
along the z axis, can be explicitly expressed in terms of the longitudinal (Ez, Hz)
and transverse (Et, Ht) fields as follows. Let

E = [Exix + Eyiy] + Eziz = Et + Eziz = E (x, y) e− jβze jωt ,

H = [Hxix + Hyiy] + Hziz = Ht + Hziz = H (x, y) e− jβze jωt ,

∇ =
[

∂

∂x
ix + ∂

∂y
iy

]
+ ∂

∂z
iz = ∇t + ∂

∂z
iz,
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then

∇t × Et = − jωµHziz, (4.1a)

∇t × Ht = jωε(x, y) Eziz, (4.1b)

∇t × Eziz − jβiz × Et = − jωµHt, (4.1c)

∇t × Hziz − jβiz × Ht = jωε(x, y) Et. (4.1d)

Equations (4.1a) and (4.1b) imply that the transverse fields can be obtained directly
from the longitudinal fields, or vice versa. One only needs to give either set of them
to specify the field.

The nth guided wave mode, given by en and hn , is the nth discrete eigen value
solution of E and H in the above vector wave equations plus the condition of
the continuity of tangential electric and magnetic fields across all boundaries. In
Chapter 3, we discussed two types of the solution of Maxwell’s equations, the
modes in the planar and channel waveguides and the modes in step-index round
optical fibers. Outside the step-index round fibers and planar waveguides, there
are no analytical solutions for the eigen value equation of the general waveguide.
There are only approximate and numerical solutions. Nevertheless, in view of the
properties of the modes discussed in Chapter 3, we expect the following properties
of the en and hn modes for any general waveguide with constant cross-section
in z.

(1) The magnitude of the fields outside the higher index core or channel region decays
exponentially away from the high-index region in lateral directions.

(2) The higher the order of the mode, the slower the exponential decay rate.
(3) The effective index neff,n (neff,n = βn/k) is less than the highest index in the core and

larger than the index of the cladding or the substrate. neff is larger for a lower order
mode.

(4) Most importantly, it can be shown from the theory of differential equations that the
guided wave modes are orthogonal to each other and to the radiation substrate or cladding
modes. Mathematically this is expressed for channel guided wave modes as

∫∫
S

(et,m × h∗
t,n) · iz ds =

∞∫
−∞

∞∫
−∞

(et,m × h∗
t,n) · iz dx dy = 0 for n �= m, (4.2)

where the surface integral is carried out over the entire transverse cross-section S that
extends to ±∞. The guided wave modes and all the radiation modes constitute a com-
plete set of modes so that any field can be represented as a superposition of the modes.
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Figure 4.1. Index profile of a perturbation to a waveguide. (a) The permittivity
variation, ε(x, y) of the unperturbed waveguide. (b) The permittivity variation,
ε′(x, y) of the perturbed waveguide. (c) The permittivity perturbation, �ε. The
index profile of the original waveguide structure is shown in (a). An additional
material with dielectric constant ε2 is placed in the vicinity of the waveguide core
as shown in (b). The net perturbation of the additional material to the original
waveguide structure is shown as �ε in (c).

Moreover, the channel guided wave modes are normalized, i.e.

1

2
Re

∫∫
S

(et,n × h∗
t,n) · iz ds

 = 1. (4.3)

For planar guided wave modes, the modes are also orthogonal and normalized in the x
variation, as shown in Eq. (3.7). However, the integration in the y coordinate is absent.
The normalization means that the power carried by the mth normalized planar guided
wave mode is one watt per unit distance (i.e. meter) in the y direction.

4.1.2 Perturbation analysis

Consider the two waveguide structures shown in Figs. 4.1(a) and (b). Let E and
H be the guided wave solutions of Eqs. (4.1) for the waveguide structure with
index profile ε(x, y) shown in Fig. 4.1(a). Let E′ and H′ be the guided wave sol-
utions of Eqs. (4.1) for the waveguide structure with ε′(x, y) shown in Fig. 4.1(b).
The two structures differ in the dielectric perturbation �ε shown by Fig. 4.1(c),
where �ε(x, y) = ε′(x, y) − ε(x, y). Let us assume that E and H are already known.
The guided wave modes of the structure shown in Fig. 4.1(b) are the perturbation
of the guided wave modes of the structure in Fig. 4.1(a) due to the �ε. The per-
turbation analysis allows us to calculate approximately the E′ and H′ from the E
and H, without solving Maxwell’s equations. Perturbation analysis is applicable as
long as �ε is either small or at a position reasonably far from the waveguide.
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Mathematically, from vector calculus and Eqs. (4.1), we know that

∇ · [E∗ × H ′ + E ′ × H∗] = − jω �ε E∗ · E ′.

Let us apply volume integration to both sides of this equation over a cylindrical
volume V:∫∫∫

V

∇ · 
 E∗ × H ′ + E ′ × H∗�dx dy dz = − jω
∫∫∫

V

�εE ′ · E∗dx dy dz.

The cylinder has flat circular ends parallel to the xy plane, and has an infinitely
large radius for the circular ends and a short length dz along the z axis. According to
advanced calculus, the volume integration on the left hand side of this equation can
be replaced by the surface integration of 
E* × H′ + E′ × H*� on the cylinder. The
contribution of the surface integration over the cylindrical surface is zero because
the guided wave fields E and E′ have already decayed to zero at the surface. For a
sufficiently small dz, E*· E′ is approximately a constant from z to z + dz. Therefore,
we obtain∫∫

S

{[E∗ × H ′ + E ′ × H∗]|z+dz − [E∗ × H ′ + E ′ × H∗]|z} · iz ds

= − jω

∫∫
S

�ε E ′ · E∗ ds

 dz,

where S is the flat end surface of the cylinder oriented toward the +z direction. In
other words [1], ∫∫

S

∂

∂z
[E∗

t × H ′
t + E ′

t × H∗
t ] · iz ds

= − jω
∫∫
S

�ε (x, y) E ′ · E∗ ds. (4.4)

Mathematically, E′ and H′ can be represented by the superposition of any set of
modes. They can be either the modes of the structure shown in Fig. 4.1(b) or the
modes of the structure shown in Fig. 4.1(a). The two sets of the modes, (E, H) and
(E′, H′), form a complete orthogonal set. From the perturbation analysis point of
view, we are not interested in the exact modes of (E′, H′). We know they are close
to the modes of (E, H). We only want to know how E′ and H′ are related to the �ε

and the original (E, H).
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In Eq. (4.4), let us express any E′ and H′ at any position z in terms of the modes
of (E, H) as follows:

E ′
t (x, y, z) =

∑
j

a j (z) et, j (x, y) e− jβ j z, (4.5a)

H ′
t (x, y, z) =

∑
j

a j (z) ht, j (x, y) e− jβ j z. (4.5b)

The radiation modes have been neglected in Eqs. (4.5). In general, the coefficients
aj will be different at different z. The variation of the aj coefficient signifies that
the E′ and H′ fields will vary as a function of z. Substituting Eqs. (4.5a) and (4.5b)
into Eq. (4.4), letting Et = et,n and Ht = ht,n , and utilizing the orthogonality and
normalization relation in Eqs. (4.2) and (4.3), we obtain, for forward propagating
waves:

dan

dz
= − j

∑
m

amCm,ne+ j(βn−βm )z, (4.6)

Cm,n = ω

4

∫∫
S

�ε ( em · e∗
n) ds.

This is the basic result of the perturbation analysis [3]. It tells us how to find
the aj coefficients. Once we know the aj coefficients, we know E′ and H′ from
Eqs. (4.5a) and (4.5b). We will apply this result to different situations in the fol-
lowing sections.

4.1.3 Simple application of the perturbation analysis

In order to demonstrate the power of the results shown in Eq. (4.6), let us find the
change in the propagation constant β0 of a forward propagating guided wave mode
caused by the addition of another dielectric material with index ε′ in the vicinity
of the original waveguide. Let the dielectric material be located at ∞ > x ≥ L and
∞ > y > −∞. Let us apply this �ε to Eq. (4.6). If the original waveguide has only
a single mode, e0, then we do not need to carry out the summation in Eq. (4.6). We
obtain

da0

dz
= − ja0

ω

4

∞∫
−∞

∞∫
L

(ε′ − ε1)e0 · e∗
0 dx dy

 = − j�β a0, (4.7)
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or

a0 = Ae− j�β z,

�β = ω

4
(ε′ − ε)

+∞∫
−∞

+∞∫
L

e0 · e∗
0 dx dy,

E ′
t = Ae0 (x, y) e j(β+�β)z.

Clearly the β0 of the guided mode e0 is changed by the amount �β. Notice that the
perturbation analysis does not address how the field distribution of the original mode
is affected by the perturbation. The perturbation analysis allows us to calculate �β

without solving the differential equation.

4.2 Coupling of modes in the same waveguide, the grating
filter and the acousto-optical deflector

Modes in different directions of propagation are independent solutions of the wave
equations. For example, the independent modes can be the forward and backward
propagating modes of the same order in a channel waveguide. They can also be
the forward (or backward) propagating guided wave modes of different orders in
the same channel waveguide. They can be planar guided wave modes in different
directions of propagation in a planar waveguide. They can all be coupled by an
appropriate �ε placed in the evanescent tail region. In the case of a prism coupler,
there could even be the coupling of a guided wave mode to substrate, air or cladding
modes [2]. Equations (4.4) and (4.6) are directly applicable in analyzing such
interactions. However, the details will differ for different applications. We will
discuss in this section the coupling of modes in different directions of propagation
via two examples: (1) the grating filter in an optical waveguide or fiber and (2) the
acousto-optical deflector or switch in a planar waveguide.

4.2.1 Grating filter in a single-mode waveguide

Grating filters are very important devices in wavelength division multiplexed
(WDM) optical fiber communication networks. In such networks, signals are trans-
mitted via optical carriers that have slightly different wavelengths. The purpose of a
filter is to select a specific optical carrier (or a group of optical carriers within a spe-
cific band of wavelength) to direct it (or them) to a specific direction of propagation
(e.g. reflection) [4].

A grating filter utilizes a perturbation of the channel waveguide by a periodic �ε

to achieve the filtering function. In this example we will analyze a reflection filter.
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The objectives of a grating filter are: (1) high and uniform reflection of incident
waves in a single-mode waveguide within the selected wavelength band; (2) sharp
reduction of reflection immediately outside the band; (3) high contrast ratio of the
intensity of reflected optical carriers inside and outside the band.

Let us consider a grating layer which has a cosine variation of dielectric constant
along the z direction, i.e. �ε, and thickness d in the x direction and width w in the
y direction. It is placed on top of a ridged channel waveguide of thickness t. An
example of a ridged channel waveguide was shown in Fig. 3.6(b). Let us assume
that the ridged waveguide has only a single mode.

Mathematically, let

�ε = �ε0 cos(K z) rect

(
2 (x − H )

d

)
rect

(
2y

W

)
.

It has a periodicity T = 2π/K in the z direction, a width W in the y direction, a
thickness d in the x direction and a maximum change of dielectric constant �ε0. The
�ε perturbation layer is centered at x = H, where H ≥ t + (d/2). It is a perturbation
of the cladding refractive index n3 of the channel waveguide. This mathematical
expression is a simplified �ε of a practical grating that normally has a �ε described
by a rectangular function of x and z.

Let the complex amplitude of the forward propagating guided wave mode be af

and let the amplitude of the backward propagating mode at the same wavelength
be ab. Then the application of Eq. (4.4) to the field in the waveguide that has both
the forward and the backward propagating mode yields

E ′
t (x, y, z) = [

af (z) e− jβ0z + ab (z) e+ jβ0z
]

et,0 (x, y), (4.8a)

daf

dz
= − jCffaf − jCbfabe− j2β0z, (4.8b)

dab

dz
= − jCbbab − jCfbafe

j2β0z, (4.8c)

Cff = −Cbb = −Cfb = Cbf

= ω

4

 H+ d
2∫

H− d
2

W
2∫

− W
2

�ε0|e0 · e∗
0| dy dx

 [
1

2
(e jKz + e−jKz)

]
, (4.8d)

where there is a minus sign on Cbb and Cfb because, in the normalization of the
modes shown in Eq. (4.3), the iz is pointed toward the +z direction. The iz for the
backward wave is pointing toward the −z direction.

Clearly, af and ab will only affect each other significantly along the z direction
when the driving terms on the right hand side of Eqs. (4.8b) and (4.8c) have a
slow z variation. Since the perturbation has a cos(Kz) variation, the maximum
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Figure 4.2. Phase matching of forward and backward waves and in acousto-optical
deflection. (a) Matching of the propagation wave vectors of the forward and back-
ward waves by the K of the grating (K = 2π/T, T = periodicity) in the collinear
z direction of a channel waveguide. (b) The matching of the propagation wave
vectors, βi and βd, of the incident and deflected planar optical guided waves in
the θ i and θd directions by the Ka of the grating, created by the surface acoustic
wave. The width of the acoustic wave is W, which is also the interaction distance
of the optical waves. The matching of βi and βd by Ka for (c) ωd = ωi – �, and for
(d) ωd = ωi + �. When Ka is changed to K ′

a, a small mismatch is shown as �K ′
a

in (c).

coupling between af and ab will take place when K = 2β0. This is known as the
phase matching (or the Bragg) condition of the forward and backward propagating
waves. When the Bragg condition is satisfied, the relationship among the β and the
K is illustrated in Fig. 4.2(a), where the β0 of the forward and backward propagating
modes with exp(± jβ0z) variations are represented by vectors with magnitude β0 in
the ±z directions. Since a cosine function is the sum of two exponential functions,
K is represented as a bi-direction vector of magnitude K. If we designate λg as the
free space wavelength at which the maximum coupling takes place, then the phase
matching condition is satisfied when K is given by

K = 4π neff

λg
, (4.9)

where neff is the effective index of the guided wave mode. When K ≈ 2β0, the terms
involving Cff and Cbb can be neglected in Eqs. (4.8b) and (4.8c).
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For a reflection filter, we like to have large ab when any carrier frequency
(i.e. β) is within the desired wavelength band. Since β is inversely proportional
to λ, Eq. (4.9) will not be satisfied simultaneously for all the carriers within the
desired band. In order to analyze the grating properties as a function of wavelength
for a given K, we need also to consider the solutions of Eqs. (4.8b) and (4.8c) under
approximate phase matching conditions. Let

2β0 − K = δK . (4.10)

Under this condition, we obtain from Eqs. (4.8b) and (4.8c)

daf

dz
= − j

Cg

2
abe jδK z (4.11a)

and

dab

dz
= + j

Cg

2
afe

− jδK z, (4.11b)

where

Cg = ω

4

H+ d
2∫

H− d
2

W
2∫

− W
2

�ε0|e0|2 dy dx .

Equations (4.11) are known as the coupled mode equations between the forward
and the backward propagating modes. We know the solutions for such differential
equations are the familiar exponential functions, eγ +z and eγ −z . Specifically, the
solutions of Eqs. (4.11) for the forward and backward propagating waves are

ab (z) = A1eγ +z + A2eγ −z,

af (z) = − j
2

Cg

[
A1γ

+e−γ −z + A2γ
−e−γ +z

]
,

γ + = − j
δK

2
+ Q,

γ − = − j
δK

2
− Q,

Q =
√(

Cg

2

)2

−
(

δK

2

)2

.



(4.12)

The A1 and A2 coefficients will be determined from boundary conditions at z = 0
and z = L.
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For a grating that begins at z = 0 and terminates at z = L, ab must be zero at z =
L. Thus,

A2 = −A1e2QL ,

ab = −A12eQL− j
(

δK
2 z

)
sinh[Q(L − z)],

af = − j A1
4

Cg
eQL+ j

(
δK
2 z

)
×

[
j
δK

2
sinh(Q(L − z)) + Q cosh(Q(L − z))

]
.


(4.13)

At z = 0, the ratio of the reflected power to the incident power is

|ab(z = 0)|2
|af(z = 0)|2 =

(
Cg

2

)2

sinh2 QL

Q2 cosh2 QL + (δK /2)2 sinh2 QL
. (4.14)

At z = L, the ratio of the transmitted power in the forward propagating mode to the
incident power of the forward mode at z = 0 is

|af(z = L)|2
|af(z = 0)|2 = Q2

Q2 cosh2 QL + (δK /2)2 sinh2 QL
. (4.15)

Since |af(z = L)|2 + |ab(z = 0)|2 = |af(z = 0)|2, the conservation of power of the
incident, transmitted and reflected waves is obeyed. For a reflection filter, we want
|ab(z = 0)/af(z = 0)|2 to be large within a desired band of wavelength and small
outside this band.

Note that |ab(z = 0)| is larger for larger L and for smaller δK/Cg. At λ = λg, δK

is zero, and the grating reflection is a maximum. The maximum possible value of
|ab(z = 0)/af(z = 0)|2 is unity. At δK = Cg, there will not be any reflected wave.
Let �λg be the wavelength deviation form λg such that, when λ = λg ± �λg, Q is
zero. Then 2�λg is the pass band of the filter, where

�λg = ±4πCg neff

K 2
. (4.16)

In summary, one uses K to control the center wavelength λg at which the trans-
mission of the forward propagating wave is blocked. One uses Cg to control the
wavelength width �λg within which effective reflection occurs. The smaller the Cg,
the narrower the range of the transmission wavelength. For a given transmission
range, one uses L to control the magnitudes of the reflected and the transmitted
waves. These are useful parameters for designing grating reflection filters [4].

The analysis presented here could be applied directly to analyze distributed Bragg
reflectors (DBRs) and the distributed feedback (DFB) effect in semiconductor edge
emitting lasers.
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4.2.2 Acousto-optical deflector, frequency shifter, scanner and analyzer

An acousto-optical deflector (or scanner) is a device that deflects a planar guided
wave mode in a planar waveguide into a different direction by a surface acoustic
grating. The surface acoustic wave is generated from an electric signal applied to
an acoustic transducer. After the acoustic wave passes the interaction region, it is
absorbed. Thus there is no reflected acoustic wave. The strain from the acoustic
wave creates a surface layer of traveling refractive index wave with periodic index
variation, i.e. a surface layer of traveling grating. When the phase matching condi-
tion along both the lateral and the longitudinal direction is satisfied by the acoustic
grating between the incident and the deflected planar guided wave, efficient diffrac-
tion occurs. Optical energy in the incident wave is transferred from the incident
wave to the deflected wave, which has a slightly different direction of propagation
from the incident wave [5].

Normally the acoustic transducer and the optical input coupler of the incident
guided wave cannot be repositioned after the device has been made. Thus the
directions of the incident optical guided wave and the acoustic wave are fixed.
However, the periodicity of the grating is determined by the wavelength of the
acoustic wave, which is determined by the frequency of the electrical signal applied
to the transducer. The acoustic wavelength and frequency can be varied. For a given
collimated incident guided wave, the direction of the deflected guided wave will
vary according to the acoustic frequency.

Acousto-optic deflection has a number of applications. (1) When the acoustic
frequency is scanned, the acousto-optical deflector is used as an optical scanner.
(2) The optical frequency of the deflected beam is shifted from the frequency of
the incident optical beam. Thus an acousto-optical deflector is used sometimes
as a frequency shifter. (3) When the acoustic signal has a complex RF frequency
spectrum, the optical energy deflected into various directions can be used to measure
the power contained in various RF frequency components; such a device is known
as an acousto-optical RF spectrum analyzer.

In the following, we will apply the coupled mode analysis to the acousto-optical
deflector. (1) We will analyze the direction and the optical power of the deflected
waves as the acoustic frequency and power are varied. The deflected beam will
be shown to have an optical frequency shifted from the optical frequency of the
incident beam by the acoustic frequency. (2) We will show that in order to obtain a
high intensity of the deflected beam in an acousto-optical deflector, the product of
the width of the acoustic beam and the coupling coefficient of the acoustic grating
with the planar guided wave needs to have specific values. (3) We will show that,
in acousto-optical spectrum analyzers, the intensity of a weakly deflected beam in
a specific direction is proportional to the intensity of the acoustic wave at a specific
RF frequency.
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(1) Mathematical representation of acoustic grating and planar guided waves

Consider a single TE0 mode planar waveguide. As we have discussed in Section 3.4,
there could be planar guided modes propagating along different directions in the yz
plane. The total guided wave is the summation of planar guided wave modes prop-
agating in different directions. Let there be an acoustic surface wave propagating in
the y direction in the planar waveguide, as illustrated in Fig. 4.2(b). The net effect
of the acoustic wave is to create a periodic traveling wave of �ε in the y direction.
Mathematically, a simplified acoustic �ε is described as

�ε = �ε0 cos(Ka · ρ − �t) rect

(
2x − t

t

)
rect

(
2z − W

W

)
, (4.17)

where

Ka = Kaiy, ρ = yiy + ziz.

Ka is the vector representation of the propagation wave number for the acoustic
wave; 2π/Ka is the periodicity; � is the angular frequency of the acoustic wave;
�/Ka is the acoustic velocity v. The rectangular functions, rect( ), designate an
acoustic wave confined to the layer from x = 0 to x = t and within a width W, from
z = 0 to z = W.

Each planar TE0 guided wave mode is designated by an angle θ j which is the angle
its direction of propagation makes with respect to the z axis. For small θ j, the electric
field of the TE0 mode is still approximately polarized in the y direction. Therefore
the total field of a summation of TE0 modes can be expressed mathematically as

E ′
yiy ≈

[∑
j

a j e
− jn0k j cos θ j ze− jn0k j sin θ j y

]
E0,y (x) e jω j t i y

≈
[∑

j

a j e
− jβ j ·ρ

]
E0,y (x) e jω j t i y, (4.18)

where

β j = neffk j (cos θ j iz + sin θ j iy), ρ = ziz + yiy. (4.19)

E0,y describes the x variation of the TE0 mode. Note that, in anticipation of the
traveling acoustic wave interaction which will couple incident and diffracted waves
at slightly different frequencies, we have allowed the guided wave modes to be at
slightly different frequencies. This point will be further clarified below.

(2) Acousto-optical interaction, the Bragg deflection and the frequency shift

Let us consider two specific planar TE0 guided wave modes, propagating in the
directions +θ (for βd of the deflected wave) and −θ (for βi of the incident wave)
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with respect to the z axis. The complex amplitudes for these modes are ad and ai.
In this case, the acoustic �ε couples the incident wave, ai, to the diffracted wave,
ad, as shown in Fig. 4.2(b). Equation (4.6), modified by the different frequency
variations, is directly applicable to ai and ad. For the incident and the deflected
modes, we obtain

dai

dz
= − jadCae+ j(βi−βd)·ρe j(ωd−ωi)t

[
e j Ka·ρe− j�t + e− j Ka·ρe j�t

]
,

dad

dz
= − jaiCae− j(βi−βd)·ρe j(ωi−ωd)t

[
e j Ka·ρe− j�t + e− j Ka·ρe j�t

]
,

Ca = ω

4
�ε0

t∫
0

|e0 · e∗
0| dx .


(4.20)

Clearly, the phase matching condition for maximum interaction between ai and
ad is

(βi − βd) · ρ = ∓Ka · ρ or βd = βi ± Ka. (4.21)

This is known as the Bragg condition for acousto-optical deflection. In comparison
with the grating filter, the phase matching condition expressed in Eq. (4.21) is a
vector relation in the yz plane. The phase matching condition in the z direction
is satisfied independently of the Ka value because of the balanced +θ and −θ

orientations of the β’s, and |β i| = |βd| = neffk. Here, in anticipation that ωi ≈ ωd, we
have taken the approximation ki = kd = k. Clearly, the magnitude of Ka determines
the angular relationship between β i and βd, i.e. the θ . In addition, according to
Eqs. (4.20), the interaction is strong only when

ωd = ωi ∓ �. (4.22)

Since � (in RF frequency) � ωi and ωd (in optical frequencies), ki = kd = k. The
case using the upper signs in Eqs. (4.21) and (4.22) is illustrated in Fig. 4.2(c).
The case using the lower signs is illustrated in Fig. 4.2(d). Note that the diffracted
wave is at a slightly different optical frequency to the incident wave. This method
is sometimes used to shift the optical frequency slightly from ωi to ωd.

(3) Deflection efficiency under the Bragg condition

Comparing Eqs. (4.20) with Eqs. (4.11), we notice the difference in the minus sign
in the coupled mode equation. When the phase and frequency matching conditions
are satisfied, the solution to Eqs. (4.20) is now a cos (Caz) or sin (Caz) variation.
The exact form of the solution will again depend on the boundary conditions. Let ai

be the amplitude of the incident wave and let ad be the amplitude of the diffracted
wave. The interaction by the grating begins at z = 0 and ends at z = W. Thus, the
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boundary condition is “ai = A and ad = 0 at z =0.” For this boundary condition and
for the case shown in Fig. 4.2(c), the solution for the amplitude of the two planar
guided waves is

ai(z) = A cos(Caz),
ad(z) = − j A sin(Caz).

(4.23)

The power diffraction efficiency, |ad(z = W)/ai(z = 0)|2, and the power transmission
efficiency, |ai(z = W)/ai(z = 0)|2, are∣∣∣∣ad(W )

ai(0)

∣∣∣∣2

= sin2(CaW ),∣∣∣∣ai(W )

ai(0)

∣∣∣∣2

= cos2(CaW ),

(4.24)

and ∣∣∣∣ad(W )

ai(0)

∣∣∣∣2

+
∣∣∣∣ai(W )

ai(0)

∣∣∣∣2

≡ 1.

For applications such as the acousto-optical switch or optical frequency shifter,
maximum diffraction efficiency is desired. In that case, we need W = π/2Ca. For
devices which require only low efficiency acousto-optical diffraction, the fraction
of the optical power diffracted into the new direction is linearly proportional to
�ε2

0, which is often proportional to the acoustic power at the frequency � in the
small signal approximation. Usually, � (in megahertz or gigahertz) � ω, thus the
small θ assumption used in Eq. (4.18) is justified.

(4) Deflections slightly off the Bragg angle – the optical scanner
and the acousto-optical spectrum analyzer

In an acousto-optical scanner, the acoustic velocity remains the same under mod-
erate variations of acoustic frequency. The propagation wave vector of the incident
guided wave and the direction of the acoustic wave are also fixed. When the acoustic
frequency shifts from � to �′, Ka changes to K′

a. β ′
d will now be oriented in a new

direction to satisfy the phase matching condition in the y direction,

(β ′
d − βi) · iy = K ′

a,

or

sin θ ′
d = −sin|θi| + K ′

a

neffk
.

(4.25)

The optical frequency of the diffracted wave will change to ω′
d = ωi − �′. β i, K′

a and
β ′

d are illustrated in Fig. 4.2(c). The shift of θ ′
d as a function of K′

a is the principal
mechanism for controlling the direction of deflection in optical scanning. Waves
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with β that do not satisfy the phase matching condition in the y direction will have
negligible amplitude. For incident planar guided wave modes that are reasonably
wide in the y direction, the direction of β i is well defined.

Let the electrical signal driving the acoustic transducer have different frequency
components or sweep from one frequency to another. In that case, the phase match-
ing condition, Eq. (4.21), is no longer satisfied exactly in the z direction for all
frequencies. Specifically, for the case shown in Fig. 4.2(c),

β ′
d = βi + K ′

a + �K ′
a

or

�K ′
a = �K ′

aiz = neffk(cos θ ′
d − cos θi)iz.

 (4.26)

When we include the �K′
a, Eqs. (4.20) become

dai

dz
= − ja′

dCae j�K ′
az,

da′
d

dz
= − jaiCae− j�K ′

az.

(4.27)

The solutions of Eqs. (4.27) for |a′
d| = 0 at z = 0 are

ai = Ae j �K ′
a

2 z

[
cos

√
C2

a + (�K ′
a/2)2z

− j
(�K ′

a/2)√
C2

a + (�K ′
a/2)2

sin
√

C2
a + (�K ′

a/2)2z

]
,

a′
d = − − jCa A√

C2
a + (�K ′

a/2)2
e− j �K ′

a
2 z

[
sin

√
C2

a + (�K ′
a/2)2z

]
.


(4.28)

Note that, for small [
√

C2
a + (�K ′

a/2)2]W , the intensity of the diffracted beam,
|a′

d|2, is independent of �K′
a. For an optical scanner, this means that the intensity

of the deflected beams will be uniform with respect to the deflection angle. In
an acousto-optical spectral analyzer [6], when one measures the optical power
deflected into different directions θ ′

d, the detected optical power measures the RF
power at the frequency �′ applied to the transducer with efficiency independent of
�′. This is an important feature for such applications.

When the acousto-optical deflector is used as a beam scanner or a spectral ana-
lyzer, there will be a guided wave lens to focus the deflected wave into a small spot
at the focal plane of the lens. From our analysis of the generalized guided waves
in planar waveguides, we know that the focused beam will have a finite spot size.
Unless the size of the lens is smaller than the width of the guided wave, the spot
width is determined from the width of the guided wave and the focal length of the



130 Guided wave interactions and photonic devices

lens. The total range of Ka that can be scanned and the size of the spot determine
how many resolvable spots can be obtained in such a scanner or analyzer. The
range of the � (or Ka) that can be scanned is determined by the acoustic property
of the material and the acoustic transducer. The time response of such a scanner is
determined by the transit time of the acoustic wave to travel from one edge of the
guided wave beam to the other edge.

4.3 Propagation of modes in parallel waveguides – the
coupled modes and the super-modes

The operation of a number of devices, including the directional coupler, is based
on the mutual interactions of modes in two parallel waveguides via the evanescent
field of the guided wave modes [7]. We can analyze such interactions using the
coupled mode analysis of the modes of the individual waveguide as we have done
in Section 4.2 [3, 8]. In addition, there is an alternative approach based on the modal
analysis of the super-modes of the total two-waveguide structure. Both approaches
will be discussed in the following.

For two infinitely long parallel waveguides with uniform distance of separation,
the super-modes of the total structure can be found by perturbation analysis. When
there are two coupled waveguides with a continuously varying distance of separ-
ation, we will approximate the original continuously varying structure by steps of
local waveguides that have constant separation within each step. In other words,
we will find the super-modes for each local section. Modal analyses of the super-
modes can then be applied to the junctions between two adjacent steps. The device
properties are determined from the cumulative effect of all the successive junctions.

4.3.1 Modes of two uncoupled parallel waveguides

Consider the two waveguides shown in Fig. 4.3(a). Let the distance of separation D
between the two waveguides, A and B, be very large at first. In that case, the modes
of A and B will not be affected by each other. The modes of the total structure,
etn and htn, are just the linear combination of the modes of individual waveguides,
(eAn, hAn) and (eBn, hBn). The fields of the total structure can be expressed as the
summation of all the modes of the waveguides A and B:

E =
∑

n

aAneAne− jβAn z + aBneBne− jβBn z, (4.29a)

H =
∑

n

aAnhAne− jβAn z + aBnhBne− jβBn z. (4.29b)
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Figure 4.3. The perturbation of permittivity for the modes in isolated waveguides
A and B. (a) The permittivity profile of two well separated waveguides, A and
B, with core dielectric constants ε1 and ε2. (b) The permittivity profile of two
neighboring waveguides, A and B, at separation D with core dielectric constants
ε1 and ε2. (c) For A, the perturbation of ε3 by ε2 of waveguide B. (d) For B, the
perturbation of ε3 by ε1 of waveguide A.

Here, the a coefficients are independent of z. Because of the evanescent decay of
the fields, the overlap of the fields (eAn, hAn) with (eBn, hBn) is negligible, i.e.∫∫

S

(et,An × h∗
t,Bm) · iz ds = 0. (4.30)

In other words, the A and B modes can be considered as being orthogonal to each
other.

4.3.2 Analysis of two coupled waveguides based on
modes of individual waveguides

When the two waveguides are closer, but not very close, to each other, the perturbed
fields, E′ and H′, can again be expressed as the summation of (eAn and eBn) and
(hAn and hBn) as follows:

E ′ =
∑

n

aAn (z) eAne− jβAn z + aBn (z) eBne− jβBn z,

H ′ =
∑

n

aAn (z) hAne− jβAn z + aBn (z) hBne− jβBn z,

 (4.31)
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where the a coefficients are now functions of z. However, the effect of the perturba-
tion created by the finite separation distance D will be different for A and B modes
as shown below.

Consider now the two waveguides, A and B, separated by a finite distance D as
shown in Fig. 4.3(b). For modes of waveguide A, the significant perturbation of the
variation of the permittivity from the structure shown in Fig. 4.3(a) is the increase
of permittivity from ε3 to ε2 at the position of waveguide B as shown in Fig. 4.3(c).
For modes of waveguide B, the perturbation of the variation of the permittivity
is shown in Fig. 4.3(d), which is the increase of permittivity from ε3 to ε1 at the
position of waveguide A. Applying the result in Eq. (4.6) to this case, we obtain:

daAn

dz
= − j

[
CAn,AnaAn +

∑
m

CBm,Ane j(βAn−βBm )zaBm

]
,

daBn

dz
= − j

[
CBn,BnaBn +

∑
m

CAm,Bne j(βBn−βAm )zaAm

]
,

(4.32)

where

CAn,An = ω

4

∫∫
SB

(ε1 − ε3)[eAn · e∗
An] ds,

CBm,An = ω

4

∫∫
SB

(ε1 − ε3)[eBm · e∗
An] ds,

CBn,Bn = ω

4

∫∫
SA

(ε2 − ε3)[eBn · e∗
Bn] ds,

CAm,Bn = ω

4

∫∫
SA

(ε2 − ε3)[eAm · e∗
Bn] ds.

Equations (4.32) denote the well-known coupled mode equation [3]. It is used
extensively to analyze many waveguide devices. There are number of ways in
which Eqs. (4.32) may be simplified. (1) Since there is evanescent decay of eAn

before the field reaches SB, CAn,An is always much smaller than CBm,An. Similar
comments can be made for CBn,Bn. Thus, CAn,An and CBn,Bn are often neglected in
Eqs. (4.32) for reasonably large separation distance D, especially when the effect
on aAn and aBn by the CBm,An and CAm,Bn is reasonably large. The example given in
Section 4.1.3 illustrates the case when CAn,An cannot be neglected. (2) When there
is no em mode in the second waveguide, CBm,An or CAm,Bn will be zero. Either CAn,An

or CBn,Bn is then used to calculate the slight change of the propagation wave number
of the modes, as we have done in Section 4.1.3. (3) When there is more than one
mode in waveguides A and B, there should also be more terms, such as CAn,Aj and
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Figure 4.4. Top view of a directional coupler and the modes of two coupled iden-
tical waveguides. (a) Top view of two channel waveguides in a directional coupler.
The interaction region is W. The separation distance of the two waveguides in the
interaction region is D. (b) The field patterns of symmetric and anti-symmetric
super-modes of the two coupled identical waveguides in the interaction region. eA
and eB are field patterns of the modes of the isolated waveguides A and B.

CBn,Bj in a more precise analysis. However, these C coefficients are even smaller
than CAn,An and CBn,Bn because of the orthogonality of the unperturbed modes of
the same waveguide. Therefore, those terms have not been included in Eqs. (4.32).

In the following Section 4.3.3, we will discuss an application of the coupled
mode equations to a device called the directional coupler.

4.3.3 The directional coupler, viewed as coupled
individual waveguide modes

A directional coupler has an interaction region that has two parallel identical channel
waveguides (or fibers). A prescribed fraction of power in waveguide A is transferred
into waveguide B within the interaction region and vice versa. The top view of
a channel waveguide directional coupler is illustrated in Fig. 4.4(a). Within the
interaction region, the waveguides are separated from each other by a distance D,
which is usually of the order of or less than the evanescent decay length. The length
of the interaction section is W. Outside the interaction region, the waveguides
are well separated from each other without any further interaction [7]. Clearly,
Eqs. (4.32) are directly applicable to the modes of the individual waveguides in the
interaction region.
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Let eA and eB be the modes of the two waveguides (or fibers) that are interacting
with each other through their evanescent field in the interaction section. Let the two
waveguides have cores with cross-sections SA and SB and dielectric constants εA

and εB. The cores are surrounded by a cladding which has dielectric constant ε3.
Let the coupling region begin at z = 0 and end at z = W as shown in Fig. 4.4(a).
For mathematical convenience, the coupling is assumed to be uniform within this
distance. Application of Eqs. (4.32) yields

daA

dz
= − jCBAe j�βzaB (z),

daB

dz
= − jCABe− j�βzaA (z),

CAB = ω

4

∫∫
SA

(εB − ε3)[eA · e∗
B] ds,

CBA = ω

4

∫∫
SB

(εA − ε3)[eB · e∗
A] ds,

�β = βA − βB.



(4.33)

CAA and CBB have been neglected in anticipation of the large effects to be produced
by CAB and CBA at small �β. Solution of aA and aB will again depend on initial
conditions. Let the initial conditions be aA = A and aB = 0 at z = 0. Then, similarly
to the solution for Eq. (4.27), we obtain

aA = Ae j �β

2 z

 cos

√
CBACAB +

(
�β

2

)2

z



− j

(
�β

2

)
√

CBACAB +
(

�β

2

)2
sin

√
CBACAB +

(
�β

2

)2

z


 ,

aB = − jCAB A√
CBACAB +

(
�β

2

)2
e− j �β

2 z sin

√
CBACAB +

(
�β

2

)2

z

 ,



(4.34a)

for 0 ≤ z ≤ W .
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Similarly, if the boundary conditions are aB = B and aA = 0 at z = 0, we obtain

aA = − jCBA B√
CBACAB +

(
�β

2

)2
e+ j �β

2 z sin

√
CBACAB +

(
�β

2

)2

z

 ,

aB = Be− j �β

2 z

 cos

√
CBACAB +

(
�β

2

)2

z



+ j

(
�β

2

)
√

CBACAB +
(

�β

2

)2
sin

√
CBACAB +

(
�β

2

)2

z


 ,



(4.34b)

for 0 ≤ z ≤ W.

At z = W , the power transmitted from one waveguide to another and the power
that remains in the original waveguide are calculated from aB and aA. Note that,
unless �β = 0, there cannot be full transfer of power from A to B. Substantial
transfer of power from A to B (or vice versa) at z = W can take place only when
�β is small. βA = βB is the phase matching condition for maximum transfer of
power. As for all coupled mode interactions, the C coefficients, the W and the �β

are used to control the net power transfer from A to B and from B to A. If W is too
large, then aA and aB will exhibit oscillatory amplitudes as z progresses.

Conventionally, the directional coupler has two identical channel waveguides.
In that case, CBA = CAB = C, and the ratio |aB|2/|aA|2 is the power distribution
among the two waveguides. At z = 0, let there be an input power Iin in waveguide
A and no input power in waveguide B. Then the output power Iout in waveguide B
after an interaction distance W is given directly by Eqs. (4.34a):

Iout

Iin
= 1

C2 +
(

�β

2

)2 sin2

√
C2 +

(
�β

2

)2

W

 . (4.35)

If εA and εB are the dielectric constants of electro-optical materials, then βA or
βB can be changed by the instantaneous electric field applied to the waveguide. A
directional coupler modulator is a directional coupler with electro-optical control of
�β. Since it is the power transfer that will be affected by �β, it is an intensity modu-
lator. Furthermore, the power transfer is dependent on the interaction length W.
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The discussion presented in this section is also the approach used commonly in
the literature to discuss the directional coupler [3, 7, 8]. However, it is instructive
to discuss the directional coupler in terms of the propagation of the super-modes in
the total two-waveguide structure in Section 4.3.4. Such an approach has not been
described in most optics books. It is very useful for understanding devices such as
the Mach–Zehnder modulator.

4.3.4 Directional coupling, viewed as propagation of super-modes

The interaction region of a directional coupler could also be considered as a super-
waveguide with a complicated cross-sectional variation of ε. There are super-modes
for the total structure. However, we do not yet know what these super-modes are.
Here, we will use Eqs. (4.32) to show that the modes of the total structure are just
a symmetrical and anti-symmetrical combination of the modes of the uncoupled
waveguides. Once we know the super-modes, the power transfer discussed in the
previous section is just given by the superposition of super-modes as they propagate
in the z direction. Let the two waveguides in Fig. 4.4(b) be identical. This is the
classical example of a pair of coupled identical waveguides.

Mathematically, in terms of Eqs. (4.32), we have �β = 0, εA = εB and CAB =
CBA = C . Let the boundary conditions at z = 0 be aA = A and aB = B. Then, the
solutions of Eqs. (4.32) are

aA(z) = 1

2
(A − B)e+ jCz + 1

2
(A + B)e− jCz,

aB(z) = 1

2
(B − A)e+ jCz + 1

2
(A + B)e− jCz,

 (4.36)

where

C = ω

4

∫∫
SB

(εA − ε3)[eB · eA] d S.

Substituting this result into Eq. (4.31), we obtain

E ′ = 1√
2

(A − B)

[
1√
2

(eA − eB)

]
e− j(β−C)z

+ 1√
2

(A + B)

[
1√
2

(eA + eB)

]
e− j(β+C)z. (4.37)

Therefore, the field is a superposition of two super-modes. The mode which consists
of the symmetric combination, es = (1/

√
2)(eA + eB), is a normalized symmetric

eigen mode with βs = β + C. The mode which consists of the anti-symmetric com-
bination, ea = (1/

√
2)(eA − eB), is an anti-symmetric eigen mode with βa = β − C.

The symmetric mode eS is the lowest order mode of the entire structure with the
highest effective index. The excitation of the super-modes depends on the initial
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condition. When A = B, only the symmetric mode is excited. When A = −B, only
the anti-symmetric mode is excited. When B = 0 (or A = 0), the symmetric and
the anti-symmetric modes are excited with equal amplitude, and this is the case
we analyzed in the previous section for B = 0 at z = 0 and �β = 0. Since the
symmetric and the anti-symmetric modes do not have the same phase velocity, the
relative phase between the two modes will oscillate as a function of the distance of
propagation. Consequently, the intensity of the total field in waveguides A and B
will be a function of z for 0 < z < W . When CW = π/2, aA = 0 at z = W . We
would have transferred all the power from A at z = 0 to B at z = W . For z > W , the
two waveguides are well separated from each other with C = 0. The symmetric and
anti-symmetric modes have the same β as the modes of the individual waveguides.
The power in waveguides A and B is independent of z. In summary, one can use
either the summation of the symmetric and the anti-symmetric modes, es and ea, or
the modes of the individual waveguides, eA and eB, to represent the total field.

4.3.5 Super-modes of two coupled non-identical waveguides

We will follow an approach similar to the analysis of the symmetric and anti-
symmetric super-modes to find the super-modes of two coupled non-identical
waveguides. For initial amplitude either A = 0 or B = 0 at z = 0, the solution
of the amplitudes of the modes of each individual waveguide, aA and aB, has
already been given in Eqs. (4.34a) and (4.34b). When both A and B are non-zero
at z = 0, we obtain, from Eqs. (4.31) and (4.32)

E ′ =




1 +

(
�β

2

)
√

CBACAB +
(

�β

2

)2
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2
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�β
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√
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(

�β

2
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2
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(
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(4.38)
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It is clear that the two super-modes have propagation wave numbers

β1 = βA + βB

2
+

√
CBACAB +

(
�β

2

)2

,

β2 = βA + βB

2
−

√
CBACAB +

(
�β

2

)2

.

 (4.39)

When βA = βB, �β = 0 and CAB = CBA, we again obtain the symmetric and
the anti-symmetric modes. When CAB = CBA = 0, the super-modes become just
the waveguide modes of the isolated waveguide. It is interesting to note that, in
principle, the coupled waveguide should have orthogonal modes with different
propagation wave numbers. For the case of coupled non-identical waveguides, the
perturbation analysis gave us the field variation only in terms of eA and eB. The
relative magnitude of the mix of eA and eB that forms the super-modes will vary
depending upon CBA, CAB and �β, as well as the initial conditions A and B. The
super-modes can be quite asymmetrical. When the mix of eA and eB and the coupling
of two asymmetrical waveguides vary in the direction of propagation, such as in the
case of crossing channel waveguides, the device will have very interesting power
transfer characteristics [9].

4.4 Propagation of super-modes in adiabatic branching waveguides
and the Mach–Zehnder interferometer

In this section, we will analyze components utilizing the super-modes and the modal
analysis. A new concept, the adiabatic transition, will be introduced.

4.4.1 Adiabatic Y-branch transition

Consider the transition for a guided wave mode propagating from waveguide C into
waveguide D, as shown in Fig. 4.5(a). Let waveguide C be a single-mode waveguide
and let waveguide D be a multimode waveguide. As the waveguide cross-section
expands, the second mode emerges at z = z1 (i.e. there exists a second mode
in the electromagnetic solution of an infinitely long waveguide that has the same
transverse dielectric index variation as the cross-sectional index variation at z = z1).
The third mode emerges at z = z2, etc. The transition section can be approximated
by many steps of local waveguides that have constant cross-section within each step,
as shown in Fig. 4.5(b). At each junction of two adjacent steps, modal analysis can
be used to calculate the excitation of the modes in the next step by the modes in the
previous step. For adiabatic transition in the forward direction, the steps are so small
that only the lowest order mode is excited in the next section by the lowest order
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Figure 4.5. Top view of an adiabatic transition and its step approximation.
(a) The transition from a single-mode channel waveguide to a multimode channel
waveguide. (b) The step approximation of the transition. The local section of the
waveguide within each step has a profile of dielectric constant independent of z.
The second mode exists for z > z1. The third mode exists for z > z2. The fourth
mode exists for z > z3.

mode in the previous section. A negligible amount of power is coupled into higher
order modes and radiation modes. Therefore, in a truly adiabatic transition only,
the lowest order mode is excited in the multimode output waveguide by the lowest
order mode in the input section, and there is no power loss. Conversion of power
into higher order modes will occur when the tapering is not sufficiently adiabatic
or when scattering occurs. The same conclusion can be drawn for propagation of
the lowest order mode in the reverse direction, i.e. from D to C.

Let us now consider a reverse transition where the incident field has several
modes. Whenever a higher order mode is excited at D, it will not be transmitted to
C. The power in this higher order mode will be transferred into the radiation modes
at the z position where this mode is cut off. Only the power in the lowest order
mode will be transmitted from D to C.

4.4.2 Super-mode analysis of wave propagation in a symmetric Y-branch

A guided wave component used frequently in fiber and channel waveguide devices
is a symmetric Y-branch that connects one single-mode channel waveguide to
two single-mode channel waveguides. Its top view in the yz plane is illustrated in
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Figure 4.6. Top view of a symmetric Y-branch coupler. (a) Symmetric 3 dB
coupler that splits equally the power in the input channel waveguide at C into
two identical channel waveguides at D. For a symmetric Y-branch, the modes
at D always have symmetrical amplitude and phase. (b) The step approximation
of the Y-branch coupler. (c) Reverse symmetric coupler that combines the fields
from two input waveguides into a single-mode output waveguide. Whether the
power from the two input waveguides will be transmitted into the mode of the
output waveguide or radiated into the substrate depends on the relative phase and
amplitude of the optical fields at the input of the two channel waveguides in a
reverse Y-branch.

Fig. 4.6(a). It is symmetric with respect to the xz plane in the y direction. The
waveguides at z > L0 have constant separation and cross-sectional profile in the
y direction. The index profile in the x direction within the channel waveguide is
uniform for the entire device. The objective of such a device is to split the power in
the original waveguide at C equally into two waveguides at D, where they are well
separated from each other. It is an adiabatic transition when the angle of the branch-
ing, θ , is sufficiently small that the scattering and conversion loss from z = 0 to
z = L0 can be neglected. Ideally, a symmetric Y-branch should function like a 3 dB
coupler from the input to both outputs.

The Y-branch coupler can be analyzed as follows. In Fig. 4.6(a), the input wave-
guide has a single TE0 mode at z < 0. The waveguide width in the y direction
begins to broaden at z > 0. At z > z0, the waveguide (or the split waveguides)
has two modes. At z ≈ L0, each isolated waveguide has a single TE0 mode, eA
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and eB. Thus the two super-modes are the symmetric mode, (1/
√

2)(eA + eB), and

the anti-symmetric mode, (1/
√

2)(eA − eB), discussed in Section 4.3.4. From the
symmetry point of view, no anti-symmetric mode should be excited in an adiabatic
transition. We expect the output mode to be a symmetric mode. In the absence of
an anti-symmetric mode, an equal amount of optical power is carried into the two
individual waveguides.

We can reach the same conclusion by examining the transition region in detail.
For the transition region 0 < z < L0, the Y-branch has a step approximation as
shown in Fig. 4.6(b). Within each step we will have local modes. Let zt be the
vertex of the waveguide split. For z < zt, the local modes are the eigen solutions
of Eq. (4.1) for the index profile of that step. For z > zt, the local modes are the
super-modes given in Eqs. (4.37). The local modes evolve from the input TE0 mode
at z = 0 to the super-modes at z = L0. For a given z position z0, the waveguide begins
to have two modes for z > z0. The first-order mode is a symmetric mode and the
second-order mode is an anti-symmetric mode. At each step junction in Fig. 4.6(b),
the excitation of the modes in the next step can be calculated by modal analysis, as
discussed in Section 3.6. For adiabatic transitions, the mismatch between the fields
of the incident and the transmitted symmetric mode is so small at each step that
the transmission coefficient to the symmetric mode into the next step is unity, and
there is negligible coupling to the radiation and higher order modes. The end result
is that no anti-symmetric mode is excited over the entire Y-branch.

In the reverse situation shown in Fig. 4.6(c), when the incident field is the lowest
order symmetric mode of the double waveguides, it is transmitted without loss to
the output waveguide as the TE0 mode. However, if the incident mode is an anti-
symmetric mode, it will continue to propagate as the anti-symmetric mode from
z = −L0 to its cut-off point. Let the cut-off point be z = −z0. At z just before −z0,
the anti-symmetric mode will be very close to cut-off, with a very long evanescent
tail, and its neff is very close to the effective index of a cladding or substrate mode.
As z approaches −z0, the anti-symmetric mode begins to transfer its energy into
the radiation mode in the cladding or the substrate. Because of the small overlap
integral between the anti-symmetric and the TE0 mode, the TE0 mode will not be
excited by the anti-symmetric mode. Similar comments can be made for any higher
order mode excited at z < −L0. It will be coupled to radiation modes at its cut-off
point. In summary, only the power in the lowest order symmetric mode will be
transferred to the TE0 mode at the output.

4.4.3 Analysis of wave propagation in an asymmetric Y-branch

Note that the analysis based on symmetric and anti-symmetric modes applies
only to symmetrical adiabatic Y-branches. When the branching angle is large in
non-adiabatic transitions, mode conversion will occur at step junctions. When the
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Figure 4.7. Top view of a channel waveguide Mach–Zehnder interferometer. Two
waveguides, A and B, connect the input symmetrical Y-branch 3 dB coupler to
the output reverse symmetrical Y-branch coupler. Waveguides A and B are well
separated from and not coupled to each other. However, the index of waveguides
A and B may be changed by electro-optic effects so that either the symmetric
super-mode or the anti-symmetric super-mode, or a mixture of them, may appear
at the input of the reverse symmetrical Y-branch coupler. Only the power in the
symmetric mode will be transmitted to the symmetric single mode of the output
waveguide.

branches are not symmetrical, the local super-modes could have very asymmetri-
cal electromagnetic field profiles as we have discussed in Section 4.3. Conversion
among super-modes might occur at each step junction. The output, i.e. the cumula-
tive effect, will depend on initial conditions, the branching angle, the index profile
and the asymmetry of the Y-branch. An asymmetrical Y-branch will behave some-
times as a power divider and sometimes as a mode splitter or converter. Numer-
ical analysis based on modal analysis of the super-modes in the step approxi-
mation is required to find the answer. In general, a larger branching angle will
lead to a power divider, while a small branching angle will lead to a mode
splitter [10].

4.4.4 Mach–Zehnder interferometer

The Mach–Zehnder interferometer consists of two symmetric Y-branches back to
back, connected by two parallel channel waveguides that are well separated from
each other so that they are uncoupled; see Fig. 4.7. Similar devices can be made
from optical fibers. The objective of the input Y-branch in the Mach–Zehnder
interferometer is to excite equally the individual mode of the two waveguides
immediately after the input Y-branch.
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Let the input be a TE0 mode with amplitude A at z = 0. At the exit of the input
Y-branch at z = Lb, the amplitude of the symmetric mode is Aexp( jϕ); ϕ is the
phase shift due to the propagation from z = 0 to z = Lb. In terms of the modes of
the individual waveguides, the amplitudes are (1/

√
2)Ae jφeA and (1/

√
2)Ae jφeB.

When the two parallel waveguides are identical and have equal length Lp, the input
to the output Y-branch at z = Lb + Lp is (1/

√
2)Ae jφe− jβA Lp (eA + eB). Such a

symmetric mode will yield an output Ae j2φe− jβA Lp at z = 2Lb + Lp.
When the two parallel waveguides in the propagation section have slightly dif-

ferent effective index or propagation wave number, βA and βB, the input to the
output Y-branch is

1√
2

Ae jφe− jβA Lp
(
eA + eBe− j(βB−βA)Lp

)
. (4.40)

In other words, there is a mixture of symmetric mode, es, and anti-symmetric mode,
ea, at z = Lb + Lp. When �βLp = (βB − βA)Lp = ±π or (2n ± 1)π , where n is
an integer, then the input to the output Y-branch is an anti-symmetric mode. In this
case, the output TE0 mode at z = 2Lb + Lp will have zero amplitude. The power in
the anti-symmetric mode was transferred into the radiation modes.

When the waveguides are made from electro-optical materials, the change in neff

of each waveguide will be proportional to the electric field (i.e. the voltage applied
to the electrode across the waveguide). When we calculate the power transmitted
to the output based on the amplitude of the symmetric mode at z = Lb + Lp, we
obtain

Iout

Iin
= 1

2
[1 + cos(�βLp)] = 1

2

[
1 + cos

(
π

Vπ

V

)]
, (4.41)

where V is the electrical voltage applied to the modulator that produces the �β and
Vπ is the voltage that will yield �βLp = π . Such a device is called a Mach–Zehnder
modulator [11].

From the super-mode analysis point of view, a symmetric super-mode (and
no anti-symmetric mode) is excited at the exit of the input Y-branch at z = Lb.
When there is �β (i.e. βA − βB) created by the applied V, it becomes a mixture
of symmetric and anti-symmetric modes as the optical wave propagates. After
propagating a distance Lp in the parallel section, the mix of the anti-symmetric
mode and symmetric mode at z = Lp + Lb will depend on �βLp. For example,
the mode at z = Lp + Lb is an anti-symmetric mode when �βLp = π . Since the
anti-symmetric mode will not be transmitted to the output waveguide, the power
transmitted to the output waveguide is controlled by �β.

The super-mode analysis is very important in order to understand the Mach–
Zehnder modulator in depth. For example, when the attenuation of one of the
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waveguides is very large, e.g. waveguide B, then the input to the output Y-branch
is

1√
2

Ae jφe− j BA LpeA = A

2
(es + ea)e jφe− jβA Lp .

Since only es will be transmitted, the amplitude of the TE0 mode at the output is
(A/2)e2 jφe− jβA Lp . In other words, only one-quarter of the input power is transmitted
and three-quarters of the input power is attenuated and radiated into the cladding
or the substrate.

4.5 Propagation in multimode waveguides and
multimode interference couplers

The interference of modes in a multimode waveguide has interesting and important
applications. A multimode interference coupler consists of a section of a multimode
channel waveguide, abruptly terminated at both ends. A number of access channel
waveguides (usually single-mode) may be connected to it at the beginning and at
the end. Such devices are generally referred to as N × M multimode interference
(MMI) couplers, where N and M are the numbers of input and output waveguides,
respectively [12].

Figure 4.8(a) illustrates a multimode interference coupler with two input and two
output access waveguides. The multimode section is shown here as a step-index
ridge waveguide with width W and length L. It is single-mode in the depth direction
x and multimode (n ≥ 3) in the lateral direction y. The objective of such a multimode
coupler, similar to the star coupler, is to couple specific amounts of power from the
input access waveguides into the output access waveguides. However, it is much
more compact than the star coupler discussed in Section 3.4.3. Its operation is based
on the interference of the propagating modes. We intend to show here that, based
on the interference pattern of the modes excited by the input access waveguides,
we could obtain specific distributions of the power in the output access waveguides
at specific positions of z.

Let the multimode waveguide be a ridge waveguide, as shown in Fig. 3.6(b). For
the planar waveguide mode (i.e. for very large W) in the core (i.e. in the ridge), it has
just a single TE mode in the x direction with an effective index ne1. The cladding
region, outside the ridge, also has a planar waveguide mode with an effective index
ne2; ne1 > ne2. Figure 4.8(b) illustrates the profile of the effective index of the planar
TE0 modes in the y direction. The channel guided wave modes in the core can be
found by the effective index method discussed in Section 3.4 or by other numerical
methods. Figure 4.8(c) illustrates the effective mode width, We, and the lateral field
variation in the y direction for the first few modes.
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Figure 4.8. Multimode interference coupler. (a) Top view of a 2 × 2 multi-
mode interference coupler. The multimode waveguide is of length L and width W.
(b) Effective index profile of the multimode waveguide. (c) Field patterns, as a
function of y, of the lowest order modes in the multimode waveguide.

Before we discuss the interference pattern of the modes, let us discuss the prop-
erties of the individual modes. For well guided modes, it has been shown in the
literature [12] that the solution of the transcendental equation, Eq. (3.31), can be
approximated by

tan

[
(hn/k)

kWe

2

]
≈ ∞.

Here, We is an effective width of the ridge, and We > W. We is usually taken to be
the effective width of the lowest order mode m = 0 in the x direction and n = 0 in
the y direction. In that case,

hn = (n + 1) π

We

and

β2
0n = n2

e1k2 − h2
n,

β0n ≈ ne1k − (n + 1)2 πλ

4ne1W 2
e

. (4.42)

Equation (4.42) predicts that the propagation constants of the various lateral order
modes will have a quadratic dependence on n. By defining Lπ as the beat length
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(i.e. the propagation length in which the phase difference of two modes is π )
between the n = 0 and n = 1 modes, we obtain

Lπ = π

β00 − β01
,

β00 − β0n = n (n + 2) π

3Lπ

.

 (4.43)

Let us now examine the total field of all the modes. As we have discussed in
Section 3.5, the y variation of any input field at z = 0, E0(y, z = 0), can be expressed
as a summation of the E0n modes. Thus,

E0(y, 0) =
n=N−1∑

n=0

Cn E0n(y), (4.44a)

E0(y, z) =
n=N−1∑

n=0

{
Cn E0n(y) e

[
j n(n+2)π

3Lπ
z
]}

e− jβ00z, (4.44b)

E0n(y) = A sin(hn y). (4.44c)

Any input field at z = 0 will be repeated or mirrored at z = L, whenever

exp

[
j
n (n + 2) π

3Lπ

L

]
= 1 (4.45a)

or

exp

[
j
n (n + 2) π

3Lπ

L

]
= (−1)n . (4.45b)

When the condition in Eq. (4.45a) is satisfied, the field at z = L is a direct replica
of the input field. When the condition in Eq. (4.45b) is satisfied, the even modes
will have the same phase as the input, but the odd modes will have a negative
phase, producing a mirror image of the input field. For the 2 × 2 coupler shown in
Fig. 4.8(a), this means that power in input A will be transferred to output C when
Eq. (4.45a) is satisfied. Power in input A will be transferred to output D when
Eq. (4.45b) is satisfied.

More extensive use of the mode interference pattern can be obtained when we
analyze it in detail in the following manner. Figure 4.8(c) shows that the y variation
of the field of a well guided multimode channel waveguide mode resembles the
lowest order sine terms of a Fourier series in y within the period y = −We/2 to
y = +We/2. However, there are only a finite number of sine Fourier series terms
in our modes. In order to recognize the more complex interference patterns, let us
now extend the expression for the modes outside of the range −We/2 to We/2 in a
periodic manner so that we can take advantage of our knowledge of Fourier series.
Since these modes have a half-cycle sine variation within −We/2 < y < We/2, the
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Figure 4.9. Images of the input field at various distances in a multimode inter-
ference coupler. The input field imposed at z = 0 can be decomposed into a field
which is a summation of all the modes. The total field profile of the summation
of these modes will yield a two-fold image of the input at z = 1.5Lπ and at z =
4.5Lπ , a mirror single image at z = 3Lπ and a direct single image at z = 6Lπ .

extended mode in −3We/2 < y < −We/2 and in We/2 < y < 3We/2 should be
anti-symmetric with respect to the mode in −We/2 < y < We/2. Similar extensions
can be made beyond y > |3We/2|. In other words, we will now consider the total
extended field over all y coordinates, including the periodic extension of the fields
outside the multimode waveguide region. The extended input field from all the
input access waveguides (periodically repeated outside the region y = −We/2 to
We/2) could then be expressed as a summation of these Fourier terms. Equations
(4.44) show that at a distance L later the relative phase among the Fourier terms is
changed. Different multifold images can be formed within the period, ranged from
−We/2 to We/2, by manipulating these phase terms. As an example, let us consider
L = 3pLπ/2, where p is an odd integer. Then,

E0

(
y,

3pLπ

2

)
=

∑
n even

Cn E0n(y) +
∑
n odd

(− j)p Cn E0n(y)

= 1 + (− j)p

2
E0(y, 0) + 1 − (− j)p

2
E0(−y, 0). (4.46)

The second line of Eq. (4.46) represents a pair of images of E0 in quadrature
and with amplitudes 1/

√
2, at distances z = 3Lπ/2, 9Lπ/2, . . . The replicated,

the mirrored and the double images of E0 at various z distances are illustrated in
Fig. 4.9. Clearly, we have a 3 dB power splitter from input B into output waveguides
C and D at z = 3Lπ/2 and z = 9Lπ/2. We have transferred the power from B to
C (called the cross-state) when z = 3Lπ , and from B to D (called the through-
state) when z = 6Lπ . A 2 × 2 InGaAsP MMI cross-coupler has been made with



148 Guided wave interactions and photonic devices

W = 8 µm and L = 500 µm, which gives an excess loss of 0.4 to 0.7 dB and an
extinction ratio of 28 dB, and a 3 dB splitter with L = 250 µm, and imbalances
between C and D well below 0.1 dB [13].

The actual design of an MMI coupler must take into account the number of input
and output access waveguides, the number of modes in the multimode waveguide,
the relative phase and amplitude of the incident modes in the input access wave-
guides and the position and width of access waveguides [13].
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5

Macroscopic properties of materials from stimulated
emission and absorption

All optical oscillators and amplifiers can be analyzed as an electromagnetic struc-
ture, such as a cavity or a transmission line, which contains an amplifying medium.
The operating characteristics of lasers are governed by both the electromagnetic
properties of the structures and the properties of the amplifying medium.

Stimulated emission and absorption of radiation from energy states are the physi-
cal basis of amplification in all laser materials. In order to study lasers, it is necessary
to understand the energy levels of the amplifying medium and the stimulated tran-
sitions involving them. Quantum mechanical analysis of the energy states and the
stimulated emission and absorption is presented in most books on lasers. However,
quantum mechanical analyses cover only the analysis of individual atoms. We need
to relate the effects of the quantum mechanical interactions to the macroscopic
properties of the materials so that properties of the lasers may be analyzed. There-
fore, the macroscopic susceptibility of materials related to stimulated emission and
absorption is the focus of discussion in this chapter.

It is not the purpose of this book to teach quantum mechanics. There are already
many excellent books on this topic [1, 2, 3, 4]. The readers are assumed to have
a fundamental knowledge of quantum mechanics. However, it is necessary first to
review some of the major steps in order to understand precisely the notation used
and the meaning of the results. This is presented in Section 5.1. The traditional
semi-classical quantum mechanical analysis is also the easiest way to demonstrate
stimulated emission and absorption. Therefore, we will present the traditional an-
alysis of stimulated emission and absorption in Section 5.2. Sections 5.1 and 5.2 may
be particularly helpful to engineering students who are not as familiar with quantum
mechanics as physics students. For an in-depth discussion of laser characteristics,
we need to analyze the collective effects of many atoms and the effect on the radi-
ation field. In other words, we need to know the statistically averaged expectation
value of the polarization of the atomic particles induced quantum mechanically by

149
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the electric field. Thus, in our quantum mechanical review in Section 5.2 we will
stress the understanding of the expectation values of specific interactions.

In Section 5.3, we will introduce the quantum statistical concept of the den-
sity matrix so that we can analyze the macroscopic averaged susceptibility of all
the atoms. When the quantum statistical analysis of macroscopic susceptibility
is combined with the traditional analysis of stimulated transitions, we will then
appreciate fully the significance of quantum mechanical interactions. Based on the
macroscopic susceptibility, we will discuss in Section 5.4 the distinctive properties
of the homogeneously and inhomogeneously broadened transitions that are very
important in understanding the behavior of specific lasers. The non-linear macro-
scopic properties of lasers depend on the nature of the broadening. Saturation of
the macroscopic susceptibility will be very important when we discuss properties
of lasers in Chapter 6.

5.1 Brief review of basic quantum mechanics

In the following we will present (1) a brief review of elementary quantum mechan-
ics using the differential operator representation that we are familiar with, (2) a
discussion of the expectation value, (3) a brief summary of energy eigen value and
energy states, and (4) a summary of matrix representation. See refs. [1], [2], [3],
and [4] for more extensive reviews of quantum mechanics.

5.1.1 Brief summary of the elementary principles of quantum mechanics

In quantum mechanics, the state of a particle is described by its wave function ψ and
a dynamic observable is represented by a Hermitian operator A. Some examples of
dynamic observables in the form of Hermitian differential operators are as follows:

linear momentum: p → − j h̄∇,

potential: V → V,

total energy: H → h̄2

2m
∇2 + V .

The wave function ψ is a solution of the Schrödinger equation,

Hψ = j h̄
∂ψ

∂t
. (5.1)

H is the total Hamiltonian operator (i.e. the total energy operator) for the particle
(or particles) and ψ is normalized,

∫∫∫
ψ∗ψdx dy dz = 1. Since ψ is a function of x,

y, z and t, the quantum mechanics presented in this manner is called the differential
operator representation.
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ψ has two meanings. (1) The probability density of finding this particle at r
is ψ(r, t)ψ∗(r, t). When ψ approaches zero at large r, the implication is that the
particle is confined to regions where ψψ∗ is large. (2) ψ can also be expanded
as a summation of the eigen states of any dynamic observable. The square of the
magnitude of the expansion coefficient has the meaning of the probability for the
particle to be in that eigen state.

Let us present the above concept more formally. Let the dynamic observable
A have a set of eigen values an and eigen functions vn . In general, any ψ can be
expanded in terms of the eigen functions vn(r) as follows:

ψ(r , t) =
∑

n

Cn(t)vn(r ), (5.2a)

where

Avn = anvn(r ); (5.2b)

an is the nth eigen value of A and vn is the eigen state of A associated with an .
The measurement of A on a particle which is in the state ψ will yield any one of

the eigen values, an . The probability that the measured value is a specific an for a
given ψ is |Cn|2.

In laser analysis, the most frequently used set of eigen functions are the energy
eigen states of the particles representing the optically active material. Stimulated
transitions can take place between different pairs of energy states. In that case, A is
the energy operator of the particle, an in Eqs. (5.2a) and (5.2b) is just the value of
the nth energy level, and |Cn|2 is the probability that the particle is in the nth energy
state.

5.1.2 Expectation value

Repeated measurements of A on a particle in the state ψ yield its average value.
The average value of any dynamic observable A, called the expectation value, is

〈A〉 =
∫

ψ∗ Aψ dv, (5.3)

e.g.

〈px〉 = − j h̄
∫

ψ∗ ∂ψ

∂t
dv.

We can differentiate 〈A〉 in Eq. (5.3) directly with respect to time. In that case,
∂ψ/∂t and ∂ψ∗/∂t are given by Eq. (5.1). Therefore, the equation of motion
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for 〈A〉 is

d〈A〉
dt

=
〈
∂ A

∂t

〉
+ j

h̄
〈[H, A]〉, (5.4)

where [H, A] = HA – AH is the commutator of H and A.
〈A〉 is not a quantity commonly emphasized in many quantum mechanics books,

which are concerned mostly with the behavior of individual atoms or particles.
However, we are very interested in 〈A〉 in laser materials because we want to know
the averaged properties over many atoms.

In terms of the set of eigen states vn of A, 〈A〉 for a particle (or particles) in state
ψ could also be expressed as

〈A〉 =
∫

ψ∗ Aψ dv =
∑

n

an|Cn|2. (5.5)

5.1.3 Summary of energy eigen values and energy states

Each dynamic observable has its own eigen functions and eigen values. For the
total energy operator H,

HuE j = E j uE j (r ). (5.6)

Here E j is the jth energy eigen value and uE j is the energy eigen function for
the energy value E j . All the uE form an orthonormal complete set. If a particle is
definitely in the state uE j , then

ψ = uE j (r )e− j E
h̄ t (5.7a)

and

〈H〉 =
〈

j h̄
∂

∂t

〉
= E j . (5.7b)

The best known energy operators discussed in quantum mechanics text books
are the Hamiltonian operators for the harmonic oscillator and for the hydrogen
atom. The eigen equations for these two cases are:

− h̄2

2m

d2

dx2
uE + 1

2
kx2uE = EuE

and

− h̄2

2m
∇2uE + V (r ) uE = EuE .

In terms of the energy eigen states, the expectation value of energy for any ψ (see
Eqs. (5.3) and (5.5)) is the average energy of the particle. For stimulated emission
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or absorption, we are looking for any change of the expansion coefficients, |Cn|2,
which has the significance of the change of the probability of the particle in various
energy states.

5.1.4 Summary of the matrix representation

The matrix representation of any operator A can be understood most easily by rep-
resenting ψ in terms of different sets of eigen functions in the differential operator
representation. Let

ψ =
∑

n

Cnvn.

Then ψ can also be represented as a column matrix on the basis of the set of vn

functions, ∥∥∥∥∥∥∥∥∥∥∥∥∥∥

C1

C2

C3
...

Ci
...

∥∥∥∥∥∥∥∥∥∥∥∥∥∥
.

ψ∗ is a row matrix, ∥∥C∗
1 C∗

2 C∗
3 · · · · · ·∥∥.

When A operates on ψ , it creates a new state φ = Aψ . We can represent both the
ψ and the φ on the same set of basis functions.

We could also express both ψ and φ in terms of a new basis set of eigen functions
w j . Then we obtain

φ =
∑

i

biwi , ψ =
∑

j

C jw j , φ = Aψ,

C j =
∫

w∗
j
ψ dv,

bi =
∫

w∗
i φ dv =

∫
w∗

i A

[∑
j

c jw j

]
dv =

∑
j

Ai j C j ,


(5.8)

with

Ai j =
∫

w∗
i Aw j dv.
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Or, on the basis of w j ,∥∥∥∥∥∥∥∥∥
b1

b2

b3
...

∥∥∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥∥∥
A11 A12 A13 · · ·
A21 A22 A23 · · ·
A31 A32 · · ·

...

∥∥∥∥∥∥∥∥∥

∥∥∥∥∥∥∥∥∥
C1

C2

C3
...

∥∥∥∥∥∥∥∥∥ , (5.9)

where ‖A‖ is a Hermitian matrix. ‖A‖ will appear to be different when it is repre-
sented on the basis of a different set of eigen functions. If ‖A‖ is expressed on the
basis of vn , which is the set of eigen functions of A, then

Avn = anvn, (5.10a)∫
v∗

n Av j dv = a jδi j , (5.10b)

‖A‖ =

∥∥∥∥∥∥∥∥∥
A11 0 0 · · ·
0 A22 0
0 0 A33
...

. . .

∥∥∥∥∥∥∥∥∥ . (5.10c)

‖A‖ is now a diagonal matrix.
There are four reasons for learning the matrix representation. (1) It is used in

many references. (2) There is a matrix representation to all the quantum mechanical
equations. However, the basis function does not need to be expressed as a function
of x, y and z. For example, the basis functions for the spin angular momentum
are not functions of x, y and z. It is necessary to use matrix representation to
analyze interactions involving spin. (3) The equation of motion of matrix elements
would allow us to find solutions of matrix elements without knowing explicitly the
basis functions. (4) When we can find the matrix of any dynamic observable A in
diagonal form, we know its eigen values, and the basis functions for the diagonal
representation are the eigen states. This is a powerful practical tool used to calculate
energy levels. For those whose interests are only to read the references, the brief
summary presented in the preceding paragraphs is sufficient. More discussions on
matrix representation are presented in the following paragraphs to enable us to
review matrix diagonalization and the equation of motion.

We will first discuss how ‖A‖ transforms from one basis set of eigen functions
to another basis set of basis functions. More specifically, we note that any basis
function of the first set can, itself, be represented as a summation of the basis
functions in the second set, and vice versa.

Let

v j =
∑

n

S∗
jnwn;
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then

Sjn =
∫

wnv
∗
j dv, wn =

∑
j

S jnv j .

In terms of v j ,

Ai j =
∫

v∗
i Av j dv =

∫ (∑
m

Simw∗
m

)
A

∑
n

S∗
jnwn dv

=
∑

m

∑
n

Sim

[∫
w∗

m Awn dv

]
S∗

jn. (5.11)

Or,

‖A(on the vn basis)‖ = ‖S‖ ‖A(on the wn basis)‖ ‖S̃‖.

‖S̃‖ is the complex conjugate transposed matrix of ‖S‖. ‖S‖ is a unitary matrix;
‖S̃‖ = ‖S−1‖. There are well known mathematical techniques, called matrix diag-
onalization, that can be utilized to solve for ‖S‖ that will yield a diagonal ‖A‖.
In other words, when we find the ‖S‖ which will transform ‖A‖ into the diagonal
form, we will have found the eigen values of the operator A. This is an important
practical technique which allows us to find the energy levels of important materials.
In order for the A matrix to be diagonalized, A must be a Hermitian operator.

Notice that the matrix representing any dynamic observable can be written with-
out explicitly expressing the basis functions used to represent the dynamic observ-
able as mathematical functions. What this means is that if we can write a ‖B‖ on
any basis, we can mathematically solve for ‖S‖ that will make it diagonal, with-
out ever knowing how to write the original basis set explicitly. For this reason, in
the literature, it is common to express the matrix element Bi j as 〈i|B| j〉 without
explicitly writing the integral expression as shown in Eq. (5.8)

If we take the time derivative of the matrix element Bi j of a dynamic observable
B as we defined in Eq. (5.8), we obtain the Heisenberg equation of motion,

d

dt
〈i |B| j〉 = 〈i |

(
∂ B

∂t

)
| j〉 + j

h̄
〈i |[H, B]| j〉. (5.12)

This is an important equation. It will allow us to calculate the time variation of
many important interaction Hamiltonians. In matrix representation, we will regard
Eq. (5.12) as the equation of motion of Bi j without deriving it from Eq. (5.8) and
without requiring it to have basis functions which are eigen functions of differential
operators.
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5.2 Time dependent perturbation analysis of ψ and
the induced transition probability

The time dependence of ψ can be expressed in terms of the time dependence of
|Cn|2. Let ψ be expressed in terms of the energy states of a particle in a material.
Let us consider the transitions between energy states of the particles present in an
optically active laser material. The probability of emission of a quantity of energy
implies a decrease in the probability of finding such particles in a higher energy
state and an increase in the probability of finding them in a lower energy state.
Conversely, when the probability of finding the particle in a higher energy state
is increased while the probability of being in a lower energy state is reduced, this
implies the probability of absorbing a quantity of energy. If the change in ψ is
produced in response to the presence of electromagnetic radiation, it is a stimulated
transition. More extensive reviews of time dependent solutions of the Schrödinger
equation are presented in refs. [1] to [4].

In the following, we will follow a traditional presentation commonly used in
many other books on lasers. We will first describe the mathematical formalism of the
time dependent analysis of the interaction with electromagnetic radiation, followed
by a discussion of the various approximations of the interaction Hamiltonian. The
electric dipole approximation is the first-order approximation, followed by magnetic
dipole and electric quadrupole interactions as second-order approximations. When
the electromagnetic radiation has harmonic time variations (i.e. cos ωt), we will
show that the traditional transition probability per unit time will be large only under
the special circumstance where the energy difference between the two energy levels
is equal to hν of the radiation; ν is the electromagnetic frequency, ω = 2πν. The
transition probability will also be proportional to the radiation intensity.

The semi-classical analysis is the simplest way to describe the induced transitions
and the emission and absorption processes. It explains clearly that the stimulated
transition can yield emission and absorption. The analysis presented in this section
is the same as that presented in many books on lasers. However, those books do not
tell us how the electromagnetic behavior of the laser is determined by the stimulated
transition. We need to know the macroscopic material properties produced by the
stimulated transition. The macroscopic susceptibility approach will be presented in
Section 5.3.

5.2.1 Time dependent perturbation formulation

The method that we will use to calculate ψ as a function of time is called the
time dependent solution of the Schrödinger equation. Following most quantum
mechanical textbooks, we will analyze ψ in terms of a superposition of the energy
states of an atomic particle in the absence of radiation. The interaction of the
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radiation with the particle is expressed by an interaction Hamiltonian in which the
electromagnetic radiation is expressed as a classical field. Since the radiation field is
not quantized, this is called a semi-classical analysis. The interaction Hamiltonian
is treated as a perturbation to the Hamiltonian of the particle in the absence of
radiation.

Let H0 be the total energy Hamiltonian of the particle in a material without any
electromagnetic radiation; we will not solve the energy eigen value problem, but
rather we will assume that its energy eigen values and energy states have already
been found such that

H0 un = En un. (5.13)

The total Hamiltonian H for the Schrödinger equation consists of two parts, H0

and H′, where H′ is the interaction Hamiltonian of the particle with the radiation
field:

H = H0 + H ′. (5.14)

In order to solve Eqs. (5.1), we shall assume

ψ =
∑

an (t) une− j Ent/h̄.

If H′ is zero, then the an are just constants. Substituting this form of ψ into
Eq. (5.1), we obtain∑

n

un

[
an

(
− j En

h̄

)
e− j Ent/h̄ + dan

dt
e− j Ent/h̄

]
= − j

h̄

∑
n

an(H0 + H ′)une− j Ent/h̄.

Multiplying by u∗
k and integrating both sides, we obtain, for each k,

dak

dt
= − j

h̄

∑
n

an H ′
kne jωkn t , (5.15)

with

H ′
kn =

∫
u∗

k H ′un dv = 〈Ek | H ′ |Em〉 ,

ωkn = Ek − En

h̄
.

Up to this point the analysis is exact. However, we have not simplified very much
the task of solving the Schrödinger equation. In order to find the ak coefficients, we
need to solve the infinite set of equations given in Eq. (5.15).

Simplification can be achieved by considering that the effect of H′ operating on
any wave function is small, i.e. H ′

kn is small. We recognize that the change of an
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due to a small H ′ will also be small. Moreover, there will be a first-order change
of an , a second-order change of an , etc. We could evaluate Eq. (5.15) easily if we
could calculate just the first-order perturbation effect of H ′ from the zeroth-order
known solution and the second-order perturbation effect from the first- and zeroth-
order solutions. In order to do this, we need to group quantities of equal orders
of magnitude together and to require that they equal each other in the same order.
To identify terms which belong to the same order of magnitude, we introduce a
parameter λ into H and an as follows:

H = H0 + λ H ′

and

an = a(0)
n + λa(1)

n + λ2a(2)
n + λ3a(3)

n + · · ·
When we substitute the above expressions into Eq. (5.15), we obtain

da(0)
k

dt
+ λ

da(1)
k

dt
+ λ2 da(2)

k

dt
+ · · ·

= − j

h̄

∑
n

(
a(0)

n + λa(1)
n + λ2a(2)

n + · · ·)λH ′
kne jωkn t .

A first-order solution is produced by requiring those terms with λ power to equal
each other, the second-order effect is produced by terms with λ2. Collecting terms
with equal power of λ to equal to each other, we have

da(0)
k

dt
= 0,

da(1)
k

dt
= − j

h̄

∑
n

a(0)
n H ′

kne jωkn t ,

da(2)
k

dt
= − j

h̄

∑
n

a(1)
n H ′

kne jωkn t , · · ·


(5.16)

When all the a(1)
k satisfy Eqs. (5.16), the Schrödinger equation for the H given in

Eq. (5.14) is satisfied for all values of λ. The significance of Eqs. (5.16) is that we
can obtain solutions of the next-order terms based upon the information we already
have. The solutions for all a(0)

k are clearly constants. Thus, the a(0)
k are just the initial

values (i.e. the value of ak before the electromagnetic radiation is applied.).
Let the particle be initially in the state um , which has energy Em , then a(0)

m = 1
and all other a(0)

n = 0 for n �= m. We obtain

da(1)
k

dt
= − j

h̄
H ′

kme jωkm t . (5.17)
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The purpose of the above derivation is now clear. Equation (5.17) allows us to
calculate, in a very simple manner, the change in |a(1)

k |2 with respect to time. We
need to know its magnitude in order to tell whether the particle is losing or gaining
energy. The key quantity is the matrix element, |H ′

km |2.

5.2.2 Electric and magnetic dipole and electric quadrupole approximations

In most books on quantum mechanics, when the electromagnetic radiation is con-
sidered as a classical quantity given by the vector potential A, the Hamiltonian for
the interaction of the particle with the electromagnetic field is given by ref. [5] (see
also Appendix 5 of ref. [1]):

H ′ = jeh̄

m
A(r , t) · ∇, (5.18)

where m is the mass of the particle. A is, in general, a function of the position of
the particle, r. Since r is small, we can write, in descending order of magnitude,

A(r , t) = A|r=0 + r · (∇ A)|r=0 + · · · . (5.19)

Using the first term of the series, we obtain [5]

H ′ = −eE (t) · r , (5.20)

where E is the electric field. This H ′ has the form of the energy of an electric
dipole. Thus the matrix element H ′

km using Eq. (5.20) is called the electric dipole
matrix element. It can be shown that the second-order term in Eq. (5.19) gives
the magnetic dipole and electric quadrupole matrix elements. They are normally
much smaller than the electric dipole matrix element. They are important only when
|H ′

km | in the electric dipole approximation is zero. In that case, we say the electric
dipole transition is forbidden. Transitions in which only the electric quadrupole or
magnetic dipole terms are non-vanishing are frequently observed experimentally
in spectroscopy. However, they are not important in lasers because they correspond
to weak transitions. No laser has been known to oscillate in magnetic dipole or
electric quadrupole transitions.

5.2.3 Perturbation analysis for an electromagnetic field
with harmonic time variation

E typically has a harmonic time variation. If we further assume that E is polarized
in the y direction, then we obtain

H ′(r , t) = H ′(r )e− jωt + H ′(r )∗e jωt , (5.21a)

H ′(r ) = −1

2
eEy y. (5.21b)
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Note that we do not use just the −eEy y exp(− jωt) term for the time variation
because H ′ must be a Hermitian operator, H ′

kn = H ′∗
nk .

As a special case, consider that E is turned on at t = 0 and E = 0 for t < 0. Then,

a(1)
k (t) =

t∫
0

(
− j

h̄

)
H ′

km(t ′)e jωkm t ′
dt ′

= h̄−1

[
H ′

km

e j(ωkm−ω)t − 1

ωkm − ω
+ H ′∗

mk

e j(ωkm+ω)t − 1

ωkm + ω

]
. (5.22)

The probability for the particle to be in the state uk is |a(1)
k |2. It is likely to be very

small unless |ωkm | ≈ ω. When |ωkm | ≈ ω, Eq. (5.22) can be written approximately
as

∣∣a(1)
k

∣∣2 = 4|H ′
km |2

h̄2


sin2

[
1

2
(ωkm − ω) t

]
(ωkm − ω)2 +

sin2

[
1

2
(ωkm + ω) t

]
(ωkm + ω)2

 ,

where the cross product terms have been neglected. The first term is large only when
Ek > Em and Ek − Em ≈ −hω, while the second term is large only when Ek < Em

and Em − Ek ≈ −hω. Thus, the time harmonic perturbation of E can cause both an
upward transition, Ek > Em , and a downward transition, Ek < Em . It is a resonant
transition because the energy difference |Ek − Em | must equal approximately h̄ω,
the photon energy of the radiation field. Furthermore, at sufficiently large t, an
applicable approximation is

sin2

[
1

2
(α) t

]
α2

≈ π t

2
δ(α)

for α ≈ 0. Therefore,∣∣a(1)
k

∣∣2 = 2π

h̄2 |H ′
km |2 [δ(ωkm − ω) + δ(ωkm + ω)] t

= 2π

h̄
|H ′

km |2 [δ(Ek − Em − h̄ω) + δ(Em − Ek − h̄ω)] t. (5.23)

The significance of the result given in Eq. (5.23) is that (1) the change of ψ in the
first-order approximation, i.e. |a(1)

k |, is proportional to the intensity of the radiation
field, (2) the magnitude of |a(1)

k | is small unless the matrix element for the electric
dipole transition is large, and (3) the energy difference, |Ek − Em |, is equal approx-
imately to hν of the radiation. For this reason, such transitions, i.e. the change of
|a(1)

k |2 with respect to time, are called induced transitions. Since hν is commonly
recognized as the energy of the photon of the radiation, and since the total energy
of both the particle and the radiation must be conserved, we attribute the absorption



5.2 Induced transition probability 161

process to the particle gaining energy equal to Ek − Em , while the radiation loses
its energy equal to hν. Conversely, in the emission process, the radiation gains a
photon while the particle loses its energy equal to Em − Ek . Actually, such a rela-
tionship cannot be proven in the semi-classical derivation of |a(1)

k |. The concept of
the photon comes from the quantized analysis of the radiation field. Such an energy
balance emerges naturally from the analysis of induced and spontaneous transitions
involving the quantized radiation field.

5.2.4 Induced transition probability between two energy eigen states

There are two practical situations in which Eq. (5.23) will be applied frequently.

(1) Let there be a group of states near Ek , and let the number of states be gk and the
normalized density of states per unit of ωkm be ρ(ωkm). Then

∣∣a(1)
k

∣∣2 = 2π t

h̄2

+∞∫
−∞

|H ′
km |2[δ(ωkm − ω) + δ(ωkm + ω)]gkρ(ωkm) dωkm

≈ gk
2π |H ′

km |2
h̄2 ρ(ω) t, (5.24)

where ∫
ρ(ωkm) dωkm = 1.

(2) The location of the energy level Em is uncertain, and it can be described only by the
probability function f (Em) d Em of being found between Em and Em + d Em . Therefore
we multiply |a(1)

k |2 in Eq. (5.23) by f (Em) d Em . After integration, we obtain∣∣a(1)
k

∣∣2 = 2π |H ′
km |2

h̄
f (hν) t,

where
+∞∫

−∞
f (hν) d(hν) = 1; (5.25)

f (hν) is a probability distribution function centered about the energy hν0.
We can also replace f (Em) by a corresponding line shape function g(ν) in the

frequency domain,

g(ν) = 2π h̄ f (hν),
∞∫

−∞
g(ν) dνk = 1,

∣∣a(1)
k

∣∣2 = 1

h̄2 |H ′
km |2g(ν)t. (5.26)
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A typical normalized line shape function called the Lorentz line shape function is

g(ν) = (�ν/2π )

(ν − ν0)2 + (�ν/2)2
, (5.27)

where ν0 is the center frequency of the transition. At ν = ν0, g(ν0) = 2/π�ν.

The transition probability per unit time, Wmk , is traditionally defined as

Wmk = d

dt

∣∣a(1)
k

∣∣2
. (5.28)

Therefore, the transition probability Wkm is independent of time for either case
(1) or case (2). Wkm is zero when E = 0. It is dependent on the matrix element of H ′

km

between states uk and um . This is known as the golden rule of induced transitions.
The Wkm for an upward transition is the same as for a downward transition. If we
accept the concept that when downward transition takes place the particle emits a
photon, and a photon is absorbed for the upward transition, then W is the induced
emission and the absorption transition probability per unit time for the particle.
When H ′

km is zero for the electric dipole approximation, we say that the electric
dipole transition between states um and uk is forbidden.

Two conditions were used in obtaining the results expressed in Eqs. (5.24)–
(5.26): (1) 2π/t is small compared with the width of ρ(ωkm) or 1/t � �ν, so that
Eq. (5.24) and Eq. (5.26) are valid; (2) |a(1)

k |�1 at ω = ωkm in Eq. (5.22), so that
the perturbation procedure is applicable. Putting the two conditions together, we
obtain

|H ′
km |
h̄

� 1

t
� �ν. (5.29)

Note again that if the original energy state um has Em > Ek , then we have an
induced emission, whereas for Em < Ek we have an induced absorption.

5.3 Macroscopic susceptibilty and the density matrix

Macroscopically, what we can measure is the susceptibility created by the quantum
mechanical interactions of many particles in response to an applied electromagnetic
field. In this section we will first temporarily set aside all the discussions presented
in Section 5.2. Instead, we will show how to calculate this susceptibility, and then
we reconcile it with the results obtained in Section 5.2 at the end of this section.

In an isotropic and homogeneous medium, the product of the electric suscepti-
bility and the vacuum electric permittivity represents the proportionality constant
between the electric field and the electric polarization. The polarization is equal to
the averaged number of particles per unit volume, N, times the statistically aver-
aged electric dipole moment per particle. Therefore our method for calculating the
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susceptibility consists in calculating the statistically averaged electric dipole
moment (in response to the applied electric field) for a particle in a state ψ .

5.3.1 Polarization and the density matrix

We have described previously the expectation value of a dynamic observable such
as the dipole polarization of a single particle. According to Eq. (5.3), if

ψ =
∑

n

Cn (t) un(r ),

then

〈A〉 =
∑
m,n

C∗
m AmnCn.

If we statistically average the 〈A〉 over different particles, i.e. 〈A〉, we obtain

〈A〉 =
∑
m,n

C∗
mCn Amn =

∑
m,n

ρnm Amn =
∑

n

(‖ρ‖ ‖A‖)nn = tr(‖ρ‖ ‖A‖),

(5.30a)

where

‖ρ‖ = density matrix, ρnm = C∗
mCn. (5.30b)

In our case, we are interested in the statistically averaged dipole moment µ of the
particles induced by the electric field, i.e. 〈A〉 = 〈µ〉. We obtain the ρnm by solving
the time variation of ρnm as follows:

∂ρnm

∂t
=

(
∂C∗

m

∂t

)
Cn + C∗

m

∂Cn

∂t
. (5.31)

Since ψ satisfies Eq. (5.1), we can obtain the time variation of ‖ρ‖ from the time
variation of Cn as follows:

j h̄
∑

n

∂Cn

∂t
un(r ) =

∑
n

Cn(t)Hun(r ).

Multiplying by u∗
m and using the orthonormal properties of un , we obtain

∂Cm

∂t
= 1

j h̄

∑
n

Cn Hmn.

Therefore,

∂ρnm

∂t
= j

h̄

[∑
k

[ρnk Hkm − Hnkρkm]

]
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or

∂

∂t
‖ρ‖ = j

h̄
[‖ρ‖ ‖H‖ − ‖H‖ ‖ρ‖] . (5.32)

Equation (5.32) will be used to solve for ‖ρ‖. The H, including both the Hamiltonian
of the particle and its interaction with the radiation field, was already given in
Eq. (5.14). More extensive discussions on the density matrix are given in refs. [6]
and [7].

Following the simplification used in Eqs. (5.21b), we consider the electric field
E and the dipole to be polarized in the y direction without any loss in generality.
Then µ = ey. For the sake of simplicity, we will also only carry out the analysis for
the dipole, i.e. 〈µ〉, of a particle which has only two energy levels, E2 and E1, where
E2 > E1. Moreover, we note that because ey is an odd function while u∗

kuk is
always an even function, we obtain the following properties for the matrix element
of ey:

(1)

µ11 = µ22 = 0. (5.33)

(2) Because of the Hermitian property of µ, µ12 = µ21 = µ. When there are N particles
per unit volume, we obtain

H ′
21 = −E (t) µ21 = −E (t) µ, (5.34a)

〈µ〉 = µ (ρ12 + ρ21) , (5.34b)

P = ε0χ E = N 〈µ〉, (5.34c)

where E is the electric field in the y direction.

5.3.2 Equation of motion of the density matrix elements

From Eq. (5.32), the equation for ρ21 is

dρ21

dt
= − j

h̄

{∑
k

(H0 + H ′)2kρk1 −
∑

k

ρ2k(H0 + H ′)k1

}

= − j

h̄
[H ′

21ρ11 + E2ρ21 − E1ρ21 − ρ22 H ′
21]

= − j

h̄
[−E(t)µ21 (ρ11 − ρ22) + (E2 − E1) ρ21] . (5.35)

Similarly,

dρ22

dt
= − j

1

h̄
[ρ21 H ′

12 − H ′
21ρ12] = − j

E

h̄
µ(ρ21 − ρ∗

21)

and

d

dt
(ρ11 − ρ22) = 2 j

µ

h̄
E(t)(ρ21 − ρ∗

21). (5.36)
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From Eqs. (5.35) and (5.36), we could obtain a solution for ‖ρ‖ as a function of
an applied electric field E. However, two modifications are needed before we can
use the solution.

The first is that Eq. (5.35) is mathematically very similar to the equations of
resonant circuits. ρ21 has a forced solution and a natural solution. Two observations
can be made about the solutions of such an equation. (a) ρ21 is small unless E(t)
has a harmonic time variation exp( jωt) with ω ≈ ω21. The forced solution always
has the time variation of the radiation field which is exp(−jωt). (b) At E = 0,
the natural solution has the form of a constant times exp(− jω21t), where ω21 =
(E2 − E1)/−h. If E is turned off, then ρ21 will continue to have the exp( jω21t)
variation forever. This result is incorrect because we expect ρ21 eventually to decay
to zero at thermal equilibrium. This result is obtained because Eq. (5.35) represents
ρ without including any interaction of the particles with the surroundings. In reality,
particles interact with their neighbors. The neighboring particles can have a mutual
exchange of their energy state without changing their total energy, i.e. the individual
Ck coefficients are exchanged so that ρ decays eventually to zero without affecting
the total energy of the particles. Through such exchange interactions, the ψ will
return eventually to a random distribution in the absence of the radiation field, i.e.
C∗

mCn = 0, for m �= n. For this reason, a relaxation term is added to Eq. (5.35) to
obtain

dρ21

dt
= − jω21ρ21 + j

µ

h̄
(ρ11 − ρ22) E(t) − ρ21

T2
. (5.37)

Here, T2 is called the transverse relaxation time, and 1/T2 represents the rate at
which the C∗

mCn (m �= n) is relaxed to zero from exchange interactions among
neighbors. T2 is the relaxation time of the off-diagonal elements of the density
matrix. It does not affect the total energy of the particles.

The second modification is that Eq. (5.36) predicts that ρ11 and ρ22 are constants
after E becomes zero. Here we have neglected that the particles will also continue
to exchange energy with their surroundings through mechanisms such as thermal
excitation. Eventually, ρ11 and ρ22 should return to their thermal equilibrium dis-
tribution. Therefore, another decay constant is added to Eq. (5.36):

d

dt
(ρ11 − ρ22) = 2 jµE(t)

h̄
(ρ21 − ρ∗

21) − (ρ11 − ρ22) − (ρ11 − ρ22)0

τ
.

(5.38)

Here, τ is called the longitudinal relaxation time; 1/τ is the rate at which the total
energy of the particles returns to thermal equilibrium; (ρ11 − ρ22)0 is the thermal
equilibrium value of (ρ11 − ρ22); and τ is the relaxation time of the diagonal
elements of the density matrix.
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5.3.3 Solutions for the density matrix elements

We will now solve for the matrix parameters ρ21 and ρ11 − ρ22 according to
Eqs. (5.37) and (5.38). Let

E(t) = E0 cos ω t = E0

2
(e jωt + e− jωt ) (5.39a)

and

ρ21(t) = σ21 (t) e− jω t . (5.39b)

Then Eqs. (5.37) and (5.38) become

dσ21

dt
= j(ω − ω21)σ21 + jµE0

2h̄
(ρ11 − ρ22) − σ21

T2

and

d

dt
(ρ11 − ρ22) = jµE0

h̄
(σ21 − σ ∗

21) − (ρ11 − ρ22) − (ρ11 − ρ∗
22)

τ
.

At the steady state (i.e. when d/dt in the above equations is zero), then ignoring
terms that do not have the exp(−jωt) variation, we obtain

Re(σ21) = (ω21 − ω)�T 2
2 (ρ11 − ρ22)

1 + (ω − ω21)2T 2
2

= (ω21 − ω)T 2�(ρ11 − ρ22)0

1 + (ω − ω21)2T 2
2 + 4�2T2τ

, (5.40a)

Im(σ21) = �T2(ρ11 − ρ22)

1 + (ω − ω21)2T 2
2

(5.40b)= �T2 (ρ11 − ρ22)0

1 + (ω − ω21)2 T 2
2 + 4�2T2τ

,

(ρ11 − ρ22) = (ρ11 − ρ22)0
1 + (ω − ω21)2 T 2

2

1 + (ω − ω21)2 T 2
2 + 4�2T2τ

, (5.40c)

where � = µ E0/2h̄ and σ21 = σ ∗
12.

For the special case of a material with only two energy levels, ρ11 >ρ22 in thermal
equilibrium with E1 < E2, there is only net stimulated absorption. For optically
active laser materials, there are other energy levels and pumping methods that are
available to create a (ρ11–ρ22)0 > 0. Then we may have net stimulated emission.
These methods will be discussed in Chapter 6.
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5.3.4 Susceptibility

Results obtained from Eqs. (5.34) and (5.40) allow the calculation of the polarization
P as follows. Let

E(t) = Re[E0e jωt ] and χ = χ ′ − jχ ′′.

Then

P(t) = Re[ε0χ E0e jωt ] = E0ε0(χ ′ cos ωt + χ ′′ sin ωt)

= Nµ(ρ12 + ρ21) = Nµ[σ ∗
21e jωt + σ21e− jωt ]

= 2Nµ Re(σ21) cos ω t + 2Nµ Im(σ21) sin ωt.

Hence,

χ ′′ = �N0
µ2T2

ε0 h̄

1

1 + 4�2T2τ + (ω − ω21)2 T 2
2

= �N (ν)
µ2T2

ε0 h̄

1

1 + (ω − ω21)2 T 2
2

= �N (ν)
µ2

2ε0 h̄
g(ν) (5.41a)

and

χ ′ = �N0
µ2T 2

2

ε0 h̄

(ω21 − ω) T2

1 + 4�2T2τ + (ω − ω21)2 T 2
2

= �N (ν)
µ2T 2

2

ε0 h̄

(ω21 − ω) T2

1 + (ω − ω21)2 T 2
2

= �N (ν)
µ2

2ε0 h̄

(
1

π �ν

)
(ω21 − ω) g(ν), (5.41b)

where �N = N (ρ11 − ρ22), �N0 = N (ρ11 − ρ22)0,

g (ν) = (�ν/2π )

(ν − ν21)2 + (�ν/2)2 ,

and 2πν = ω, where �ν = the line width at half width half maximum = 1/(π T2),
and

χ ′

χ ′′ = 2

�ν
(ν21 − ν) = 2π T2 (ν21 − ν) . (5.41c)

Here, g(ν) is the Lorentz line shape function given in Eq. (5.27). Figure 5.1 illustrates
the χ ′ and χ ′′ as a function of the radiation frequency ν. Note in particular the
resonance effect at ν ≈ ν21 and the change of sign of χ ′ as ν is scanned past
ν21. See also refs. [1] and [8] for discussions of the susceptibility due to induced
transitions.

Independently of this calculation and according to the general theory of solid
state physics (see Appendix 1 of ref. [1] for a general derivation), all χ ′′ and χ ′ are
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n nn21
n21

∆n
χ″ χ′

Figure 5.1. Unsaturated χ ′′ and χ ′ for a transition between two energy states at
E1 and E2. The χ ′′ has a peak at ν21, while the χ ′ has a zero at ν21. The line width
of the transition is �ν. χ ′′ and χ ′ are related by the Kramers–Kronig relations in
Eqs. (5.42).

always related by the Kramers–Kronig relations as follows:

χ ′ = 1

π
PV

∞∫
−∞

χ ′′(ω′)
ω′ − ω

dω′

χ ′′ = − 1

π
PV

∞∫
−∞

χ ′(ω′)
ω′ − ω

dω′.

(5.42)

where PV stands for the Cauchy principal value of the integral that follows. Clearly,
the χ ′ and χ ′′ given in Eqs. (5.41c) satisfy Eqs. (5.42). The practical significance
of the Kramers–Kronig relations is that, whereas χ ′′ can often be measured experi-
mentally, χ ′ can be calculated from the experimentally measured χ ′′.

5.3.5 Significance of the susceptibility

The impact of χ ′ and χ ′′ on electromagnetic waves propagating in such a material
can be most clearly illustrated via an example. For a plane wave in a medium with
susceptibility χ we have

E(z, t) = Re
[
Ee j(ω t−k ′z)

]
,

k ′ = ω
√

µ0ε′,

ε′ = ε (material) + ε0χ (induced transition) ,

ε = n2ε0,

k ′ ≈ ω
√

µ0ε
[
1 + ε0

2ε
(χ ′ − jχ ′′)

]
≈ k0

(
1 + χ ′

2n2

)
− jk0

(
χ ′′

2n2

)
;
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therefore

E(z, t) = Re

[
Ee jωt e

− jk0

(
1+ χ ′

2n2

)
z
e( γ z

2 )
]

, (5.43)

where

γ = −k0χ
′′

n2
,

I (z) =
1

2√
µ0/ε

|E |2 = I0eγ z,

d I

dz
= γ I.

Therefore a negative χ ′′ will signify a growing plane wave, and a positive χ ′′ will
signify a decaying plane wave. On the other hand, χ ′ affects the phase velocity, or
the effective index, of the plane wave propagating in this medium. In other words,
the amplification properties of the amplitude of electromagnetic modes in lasers
will be given by χ ′′, while the phase of the modes will be affected by χ ′. Since all
laser oscillators require a cavity resonance, the phase velocity affects the resonance
frequency of the laser.

5.3.6 Comparison of the analysis of χ with the quantum
mechanical analysis of induced transitions

The quantum mechanical analysis in Section 5.2 showed that, for a particle ini-
tially in the state with energy Em , the probability of finding the particle in the state
with energy Ek (initially empty) is proportional to time due to the presence of the
radiation. The rate of the induced transition, i.e. Wmk , is large only when the fre-
quency of the radiation field ν is approximately |Ek − Em |. Wmk is proportional
both to the intensity of the radiation and, in the-first-order approximation, to the
magnitude squared of the electric dipole matrix element of the two energy states
Uk and Um . The Wmk is the same no matter whether Ek is higher or lower than
Em . However, we cannot analyze the effect of the atomic particle on the radia-
tion field by semi-classical quantum mechanical analysis. We can only make the
conjecture that, based upon the principle of energy balance, a photon of the radi-
ation energy is absorbed from the radiation field for Ek > Em , and a photon of
energy is emitted to the radiation field for Ek < Em . On the other hand, the an-
alysis of the susceptibilty of the material presented in this section did not tell us
anything about what happened to the atomic particles. It described only the χ expe-
rienced by the radiation field. There are amplification (or attenuation) and change of
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phase velocity for an electromagnetic wave propagating through such media when
|Ek − Em | ≈ hν. No comments can be made about the emission or absorption of
a photon from atomic particles. Only when we combine the two analyses can we
say that the atomic particles have a change in probability of being in the state with
energy Ek while the radiation field experiences amplification (or attenuation) and
a change of effective index.

A comparison of these two results is highly instructive. (1) The average energy
per unit volume per unit time absorbed (or emitted) by atomic particles calculated
according to the quantum mechanical results of transition probabilities. (2) The
power per unit volume lost (or gained) by the radiation field due to the attenuation
(or amplification) caused by χ ′′. For a propagating plane electromagnetic wave
with a harmonic time variation, its time averaged power is related to its zero-to-
peak electric field Ey by

I = 1√
µ0/ε

|Ey|2
2

.

According to Eq. (5.28), for a two-energy-level system, the net energy per unit
volume per unit time gained by an atomic particle is

�N W21h̄ω21 = �N h̄ω
1

4h̄2 E2
yµ

2g (ν)

= �N

√
µ0

ε

µ2ω

2h̄
I g(ν).

According to Eq. (5.43), the power per unit volume lost (or gained) by the radiation
field is

γ I = − k0

n2
�N

µ2

2ε0h̄
g(ν)I

= −�N

√
µ0

ε

µ2ω

2h̄
I g(ν).

Clearly the power absorbed (or emitted) by atomic particles is equal to the power
lost (or gained) by the radiation field.

5.4 Homogeneously and inhomogeneously broadened transitions

In the discussion about susceptibility, we have shown in Eqs. (5.41) that χ ′′ will
have a resonant response at ν ≈ ν21. The unsaturated (i.e. 4�2T2τ � 1) full-width-
half-maximum linewidth for this resonance is

�ν = 1/π T2.
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The stronger the interaction with neighboring atoms, the shorter the T2 and the
wider the linewidth. However, we have assumed that T2 is the same for all particles.
Thus the transition has a homogeneously broadened line. The result is derived for
a single pair of energy levels, E1 and E2. This is equivalent to the case of induced
transition probability described in Eq. (5.25) where there is uncertainty of Em

caused by the finite lifetime of the particles in that state. However, there are also
situations in which different atomic particles see a slightly different surrounding
environment. For example, the thermal energy of the particles may be different, or
different particles might see varying quantities of crystalline electric field. We will
also discuss in Chapter 7 that, in semiconductors, different electrons have different
states. The total effective χ is then the summation of the individual components χ .
In this case, the transition has an inhomogeneously broadened line shape. The case
described by Eq. (5.24) could be considered as the quantum mechanical analog of an
inhomogeneously broadened line where gk and H ′

km can be considered independent
of ωkm . Transitions with inhomogeneously broadened lines typically do not have
the Lorentz line shape shown by g(ν) in Eqs. (5.41). For an inhomogeneously
broadened line, the use of a Lorentz line shape is a gross simplification.

Equations (5.41a) and (5.41b) also showed that the magnitude of � will affect
χ ′ and χ ′′. � is proportional to the magnitude of the electric field E . This is called
the saturation effect. The effect of saturation will be different for homogeneously
and for inhomogeneously broadened lines. Therefore, in the following we will
discuss separately the inhomogeneously and the homogeneously broadened lines.
In particular, we have seen in Section 2.2 that the resonance frequencies of the
longitudinal modes of the laser cavity are separated by c/2D. For sufficiently long
D, the resonance frequency separation is smaller than the line width of the transition.
There may be competition among adjacent modes caused by saturation. Therefore,
we need to discuss how the saturation caused by a strong radiation at ν will affect the
χ seen by another radiation at ν ′. Homogeneous and inhomogeneous broadenings
are also discussed in ref. [1].

5.4.1 Homogeneously broadened lines and their saturation

Consider first the homogeneously broadened line that is described by Eqs. (5.41a)
and (5.41b). The susceptibility of a homogeneously broadened transition is depen-
dent on the magnitude of |E |2 or I . There are three cases to be considered.

(1) When 4�2T2τ is much smaller than unity,

χ ′′ = �N0
µ2

2ε0h̄
g(ν),

χ ′ = �N0
µ2

2ε0h̄

2(ν21 − ν)

�ν
g(ν),

 (5.44)
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with

g(ν) = (�ν/2π )

(ν − ν21)2 + (�ν/2)2
and �ν = 1/π T2.

In this case the intensity of the radiation has no effect on χ . We expect that this is what
will be observed experimentally in a weak radiation field.

(2) In this case, 4�2T2τ is comparable to or larger than unity. According to Eqs. (5.41), if
we write χ in the form of a normalized line shape function, we have

χ ′′ = �N0
µ2

2ε0h̄

1√
1 + 4�2T2τ

(
�νs

2π

)
(ν − ν21)2 +

(
�νs

2

)2 ,

χ ′ = �N0
µ2

2ε0h̄

2π T2√
1 + 4�2T2τ

(ν21 − ν)

(
�νs

2

)
(ν − ν21)2 +

(
�νs

2

)2 ,


(5.45)

with

�ν2
s = 1

π2 T 2
2

+ 4�2τ

π2 T2
or �νs = �ν

√
1 + 4�2T2τ . (5.46a)

Thus the first effect of large E2 is an increase of the linewidth to �νs. The second effect
is a reduction of �N0 to �N in Eqs. (5.41). According to Eq. (5.40c),

�N = �N0
1

1 + 4�2T2τ

1 + 4 (ν − ν21)2 (1/�ν2)

= �N0
1

1 + I (ν)

Is(ν)

. (5.46b)

Therefore, we can write

γ = γ0(ν)

1 + I (ν)

Is(ν)

. (5.47)

Here, Is is given by

Is =
1 + 4 (ν − ν21)2 1

�ν2

2τµ2

π �ν h̄2

√
µ0

ε

. (5.48)
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Equation (5.47) is a description of how the unsaturated γ 0(ν) will be changed by
saturation. It involves a change in both magnitude and frequency variation. In the
extreme, � is so large that γ and �N are reduced to zero. Equations (5.45) show that
for the same |E|2, the saturation effect is largest when ν = ν21. The smaller the �ν, the
sharper the optical frequency (or wavelength) dependence near resonance.

(3) Let a homogeneously broadened line be irradiated by a strong radiation at ν. If we now
probe the particles with a second, weak radiation at ν ′, then the radiation at ν ′ will have
a χ ′′ which will be given by

χ ′′ = µ2

2ε0h̄
�N0

1

1 + 4�2T2τ

1 + 4π2T 2
2 (ν − ν21)2

(�ν/2π )

(ν ′ − ν21)2 + (�ν/2)2 (5.49a)

and

χ ′ = χ ′′
[

2

�ν
(ν21 − ν ′)

]
. (5.49b)

Note that, according to the last factor of Eq. (5.49a), the χ ′′ seen by the radiation at ν ′

has the unsaturated linewidth �ν. The saturation effect of the intense radiation at ν is
only to reduce �N, not to broaden the line shape for the radiation at ν ′. Figure 5.2(a)
illustrates the difference among the χ ′′ as a function of ν for an unsaturated transition
and the saturated χ ′′ for a radiation field at its own frequency ν. Figure 5.2(b) illustrates
the cases of the χ ′′ for a weak radiation field at ν ′, where the saturation is caused by
either a strong radiation at ν1 or a strong radiation at ν2, where the strong radiation has
identical intensity. Since |ν1 − ν21| < |ν21 − ν2|, the saturation effect of the strong
radiation at ν1 is larger.

5.4.2 Inhomogeneously broadened lines and their saturation

A very different saturation effect is created in inhomogeneously broadened tran-
sitions. Typically, particles in a solid medium see a slightly different crystalline
field. The particles in a gaseous medium may have different thermal velocities.
In this case, different particles may have slightly different ν21. The total χ ′′ at
ν is the sum of the contributions of all the component χ ′′ from different sets of
particles with different center atomic transition frequency νξ . Let the normalized
distribution of the component transitions with center frequency νξ be p(νξ ). Sim-
ilarly to the case of homogeneous broadening, we will consider three situations:
(1) no saturation, (2) saturation effect at the frequency of the strong radiation ν,
and (3) the effect on χ at ν ′ while the saturation is created by a strong radiation
at ν.
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Figure 5.2. Saturation effect in a homogeneous broadened line. (a) The saturation
of χ ′′ of a strong radiation as a function of its ν. For a strong radiation, the saturation
effect of χ ′′ is exhibited as a reduction of the peak value and a broadening of the
transition with a larger line width �νs. (b) The saturation of χ ′′ of a weak radiation
as a function of its ν ′ when a strong radiation is at ν1 or at ν2. For a strong radiation
at ν2, the saturation effect of the χ ′′ of a weak radiation is exhibited as a reduction
of the peak value with no change in its line width �ν. For a strong radiation with
the same intensity at ν1, where ν1 is closer to the center of the transition ν21 than
ν2, the reduction of χ ′′ is even larger without any change of �ν.

When the radiation is weak so that the saturation effect can be neglected, we
obtain for each component of χ centered about νξ ,

χ ′′
ξ (ν, νξ ) = �N0µ

2

2ε0h̄

(�ν)

2π(
�ν

2

)2

+ (ν − νξ )2

.

Thus, the total χ ′ and χ ′′ are

χ ′′ = �N0µ
2(�ν)

4πε0h̄

∫∞

−∞

p(νξ )(
�ν

2

)2

+ (ν − νξ )2

dνξ ,

χ ′ = �N0µ
2

2πε0h̄

∫+∞

−∞

p(νξ ) (νξ − ν)(
�ν

2

)2

+ (ν − νξ )2

dνξ ,

(5.50)
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where

∞∫
−∞

p(νξ ) dνξ = 1.

For slowly varying p(νξ ) and small �ν, 1/[(�ν/2)2 + (ν − νξ )2] in Eqs. (5.50)
can be approximated as (2π/�ν) δ(ν − νξ ). Thus,

χ ′′ = �N0µ
2

2 ε0 h̄
p(ν). (5.51)

No simple answer exists for χ ′, since p(νξ ) can have various distribution functions
and χ ′ might have a very complex line shape. However, the total effective χ ′ and
χ ′′ are still related by the Kramers–Kronig relationship given in Eqs. (5.42).

Now let us consider the saturation effect. Let there be a strong radiation at ν.
Then, the component of χ ′′ which has the center frequency νξ will be saturated like
any homogeneously broadened line, as given in Eqs. (5.41) and (5.45),

χ ′′
ξ (ν, νξ ) = �N0µ

2

2ε0h̄

(�ν/2π )

(�νs/2)2 + (ν − νξ )2
.

The component χ ′′
ξ is broadened by the strong radiation like any homogeneously

broadened line with �νs > �ν. Thus the total χ is

χ ′′ = �N0µ
2 (�ν)

4πε0h̄

∫∞

−∞

p(νξ )(
�νs

2

)2

+ (ν − νξ )2

dνξ ,

χ ′ = �N0µ
2

2πε0h̄

∫+∞

−∞

p(νξ ) (νξ − ν)(
�νs

2

)2

+ (ν − νξ )2

dνξ ,


(5.52)

where

∞∫
−∞

p(νξ ) dνξ = 1.

Comparing the χ ′′ results given in Eqs. (5.50) and (5.52), we see that the satu-
rated transition has the same functional relation in the denominator of the integral
as the unsaturated transition except for a larger �νs. For reasonably small �νs,
1/[(�νs/2)2 + (ν − νξ )] ≈ (2π/�νs)δ(ν − νξ ). Thus, for a slowly varying p(νξ ),
the p function can be considered to be approximately a constant, and therefore can
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be taken outside the integral. In that case, we obtain for χ ′′ at frequency ν:

χ ′′(ν) = �N0µ
2 (�ν) p (ν)

4πε0h̄

∞∫
−∞

dνξ(
�νs

2

)2

+ (ν − νξ )2

= �N0µ
2 p (ν)

2ε0h̄

1√
1 + I

I ′
s

, (5.53)

I

I ′
s

= 4�2T2τ or I ′
s = h̄2

2T2 τµ2

√
ε

µ0
.

Note that, unlike the homogeneously broadened line, the line shape p(ν) is not
affected by the saturation in the inhomogeneously broadened line.

For the third case, let an inhomogeneously broadened line be saturated by an
intense radiation at ν. From Eqs. (5.40) and (5.41), we conclude that there is a
reduction of �N at νξ caused by this radiation,

�N (ν, νξ )

�N0
= (�ν/2)2 + (ν − ν)2

(�νs/2)2 + (ν − νξ )2
.

For the second weak radiation at ν ′, the contribution to χ ′′ by the χ ′′(νξ ) component
is

χ ′′
ξ (ν ′) = µ2

2ε0h̄
�N (ν, νξ )

(�ν/2π )

(ν ′ − νξ )2 + (�ν/2)2
.

Therefore, the total χ ′′ is

χ ′′(ν, ν ′) = �N0µ
2

2ε0h̄

∞∫
−∞

p′(νξ )
(�ν/2π )

(�ν/2)2 + (ν ′ − νξ )2
dνξ , (5.54)

where

p′(νξ ) = p(νξ )
(�ν/2)2 + (ν − νξ )2

(�νs/2)2 + (ν − νξ )2
.

If we assume once more that p′(νξ ) is a slowly varying function compared with
1/[(�ν/2)2 + (ν ′ − νξ )2], and as long as |ν − ν ′| > �ν/2, then p′(νξ ) can be
assumed to have a constant value, p′(ν ′), and p′ can be taken out of the integral. In
that case,

χ ′′(ν, ν ′) = �N0µ
2

2ε0h̄
p′(ν ′). (5.55)
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Figure 5.3. Saturation effect in an inhomogeneous broadened line. (a) The satu-
ration of χ ′′ of a strong radiation as a function of its ν. ν0 is the center frequency
of the transition. For a small �νs of the saturation of component transitions and a
total transition that has a slowly varying unsaturated line shape, the magnitude of
χ ′′ is reduced, but the line shape is the same as that of the unsaturated transition.
(b) The saturation of χ ′′ of a weak radiation as a function of its ν ′ when a strong
radiation is at ν. The saturation effect of χ ′′ is small when ν ′ is far away, |ν − ν ′| >
�νs/2. The saturation effect is large when ν ′ is close to ν. This uneven saturation
effect is called the “hole burning” of the inhomogeneously broadened line.

Note how a homogeneously broadened line and an inhomogeneously broadened
line saturate differently. (1) For a strong radiation interacting with a homogeneously
broadened line, its γ is reduced from its unsaturated values according to Eq. (5.47),
where Is is dependent on frequency. Notice the change in the line shape, i.e. the
broadening of the transition, as the saturation takes place. For a strong radiation
interacting with an inhomogeneously broadened line, there is no change in the line
shape prescribed by p(ν). Its γ is reduced by Eq. (5.53), which has a square root
dependence on I. The Is

′ is independent of frequency. (2) For a weak radiation at ν ′,
the strong radiation at ν will reduce the value of γ of the homogeneously broadened
line, but the line width for the radiation at ν ′ is the unsaturated �ν. For a weak
radiation at ν ′ with a strong radiation at ν in an inhomogeneous broadened line,
the reduction of γ (i.e. χ ′′) is not uniform, it is large only for those ν ′ close to ν.
We know that the reduction is the largest at ν = ν ′. At this frequency, the weak
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radiation sees the same χ ′′ as the strong radiation shown in Eq. (5.53). As ν moves
away from ν ′, the reduction of γ from its unsaturated value is smaller. At |ν − ν ′ | >
�νs/2, the p(ν ′) is hardly affected by the strong radiation. This is known as hole
burning. We are unable to obtain an analytical expression for the line shape of
the “hole” at ν ≈ ν ′ and within �ν/2 from ν. We know that only when |ν−ν ′| is
smaller than �νs will the saturation be significant. For this reason, �νs is used as
a measure of the hole width. Figure 5.3 illustrates the χ ′′ for three situations of the
inhomogeneous broadened line: (1) the unsaturated line, (2) the saturated line for a
radiation at its own frequency ν and (3) the response to a weak radiation at ν ′ with
saturation caused by strong radiation at ν.
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6

Solid state and gas laser amplifier and oscillator

6.1 Rate equation and population inversion

In a material which has only two energy levels, χ ′′ is always positive because ρ11 >

ρ22 for E1 < E2 at thermal equilibrium. Prior to the invention of lasers, there was no
known method to achieve ρ22 > ρ11. However, we now know that a negative χ ′′ in
Eq. (5.41a) (i.e. ρ22 > ρ11) can be achieved by pumping processes that are available
in materials that have multiple energy levels, as described in the following.

Let there be many energy levels in the material under consideration, as shown
in Fig. 6.1. Let there be a mechanism in which the populations at E1 and E2, i.e.
N1 = Nρ11 and N2 = Nρ22, are increased by pumping from the ground state at
pump rates R1 and R2. In solid state lasers, the pumping action may be provided
by an intense optical radiation causing stimulated transition between the ground
state and other higher energy states, where the particles in the higher energy states
relax preferentially into the E2 state. In gas lasers, the molecules in the ground state
may be excited into higher energy states within a plasma discharge; particles in
those higher energy states then relax preferentially to the E2 state. Alternatively,
collisions with particles of other gases may be utilized to increase the number of
particles in the E2 state. Various schemes to pump different lasers are reviewed in
ref. [1]. In order to obtain amplification, it is necessary to have R2 � R1. In general,
N2 and N1 can be calculated by the rate equation,

d N2

dt
= R2 − N2

t2
−

(
N2 − g2

g1
N1

)
g1Wi (ν) ,

d N1

dt
= R1 − N1

t1
+ N2

t21
+

(
N2 − g2

g1
N1

)
g2Wi (ν) ,

(6.1)

where t2 is the lifetime of particles in the upper level E2 and t1 is the lifetime of
the particles in the lower level E1; 1/t21 is the rate at which particles in the upper
level E2 make a transition to the lower level E1; the total numbers of states at E2

and E1 are g2 and g1, called the degeneracies of E2 and E1, respectively; Wi is the
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Figure 6.1. Pumping process in a material with many energy levels. This is a
typical pumping scheme for a four-level laser. The four levels consist of the pump
energy levels, the upper laser level E2, the lower laser level E1 and the ground level
Eg. The rate at which the population of E2 is increased is R2. R2 includes processes
in which population from the ground state Eg is pumped to other energy states
above E2, called the pump energy levels, and then the population in those states is
relaxed from pump energy levels to E2. R1 is the rate at which the population of
E1 is increased. Populations of the energy levels below E1 usually have no effect
on pumping.

transition probability, shown in Eq. (5.28) for g1 = g2 = 1; 1/t2 consists of 1/t21 and
transition rates to other energy levels; 1/t21 consists of the transition rate 1/tspont

due to spontaneous radiation and the transition rate (1/t)nonrad due to non-radiative
mechanisms. In other words,

1

t2
= 1

t21
+ transition rates to other levels,

1

t21
= 1

tspont
+

(
1

t21

)
nonrad

.

At the steady state (i.e. d/dt = 0),

�Na = N2 − g2

g1
N1 =

R2t2 − (R1 + δ R2) t1
g2

g1

1 +
[

t2 + (1 − δ) t1
g2

g1

]
g1Wi

,

δ = t2
t21

< 1.
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When we compare the �N given in Eqs. (5.41) with the �Na given in the above
equation, we notice the difference in the negative sign and in g2/g1. We have only
considered a single energy state in each energy level for the χ given in Eqs. (5.41).
In addition, even for the case of g1 = g2 = 1, �Na = −�N, because ρ11 > ρ22 in
�N while ρ11 < ρ22 in �Na. In other words, �N is used for the expression of χ

under absorption, while �Na is used for χ under amplification. The subscript “a”
stands for amplification. In the absence of a strong radiation field at ω ∼ ω21, i.e.
without saturation,

�Na = �N0a

1 + φ t21g1Wi
, (6.2)

where

�Na0 =
(

N2 − g2

g1
N1

)
a0

= R2t2 − (R1 + δ R2) t1
g2

g1
,

φ = δ

[
1 + (1 − δ)

t1g2

t2g1

]
.

In the simple case of R1 = 0 and t2 = t21,

�Na0 = R2

(
t2 − t1

g2

g1

)
.

The zero subscript designates the unsaturated value. For amplification of waves
propagating through this medium, we need �Na0 > 0. Whenever �Na0 is larger
than zero, the population distribution, i.e. N2 − (g2/g1)N1, is said to be inverted.
Rate equations are discussed in more detail in Chapter 7 of ref. [1]. References [1]
and [2] are comprehensive general references on lasers.

6.2 Threshold condition for laser oscillation

Let us now consider a TEM00 mode propagating in a laser cavity. When we combine
the results obtained in Section 2.2 and Eq. (5.43), we obtain the total phase shift
and attenuation (or amplification) for making a round trip around the cavity:

e− jθ = e−2 j[k ′ D− j α
2 D−tan−1(z2/z0)+tan−1(z1/z0)]r1r2e− j(θm1+θm2), (6.3)

where D is the length of the cavity; k′ is given in Section 5.3.5; α/2 is the equivalent
distributed amplitude decay rate per unit distance of propagation caused by both the
diffraction loss per single pass and any other propagation loss mechanism such as
scattering; r1 and r2 are the amplitude reflectivities of the two mirrors, and θm1 and
θm2 are the reflection phase shifts at the two mirrors. However, for an amplifying
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medium, we now have a positive γ in Eq. (5.43), and we have

γ = −k0χ
′′
a

n2
,

and for homogeneous broadened lines,

χ ′′
a = −�Na (ν)

µ2

2ε0 h̄
g (ν) ,

�Na = N2 − g2

g1
N1.

In order to oscillate, there are two threshold conditions: (1) the round trip phase
shift must be integer multiples of 2π ; (2) the total amplitude gain must be unity, or
larger. In other words,

e− jθ = e− j2qπ , (6.4a)

which means, for the real part of e− jθ , at the resonance frequency of the mode,

e(γt−α)Dr1r2 = 1 (6.4b)

or

γt = α − 1

D
ln r1r2, (6.4c)

γt = k0µ
2

2n2ε0h̄
(�Na0)t g(ν), (6.4d)

for homogenous broadened lines. γt is the value of γ when pumping has just
produced enough population inversion, i.e. (�Na0)t, to satisfy the condition of
oscillation. Clearly, for an inhomogeneous broadened line, g(ν) will be replaced
by p(ν) from Eq. (5.51). Please also note that, before oscillation occurs, there is no
saturation effect, i.e. Wi ≈ 0 and �Na0 ≈ �Na.

Resonance occurs when the phase θ is 2qπ . This means that, at the frequency ν

of the laser oscillation in the TEM00q mode, we have

2πνnD

c

[
1 + χ ′

2n2

]
− tan−1 z2

z0
+ tan−1 z1

z0
+ θm1 + θm2

2
= qπ. (6.5)

The equation for the resonance frequency of the TEMlmq mode is similar to
Eq. (6.5). The two arc tangent terms in that case are multiplied by (l + m + 1).

When we calculated the resonance frequency of the cavity mode in Chapter 2,
we did not include χ ′. Let us call that the “cold” cavity resonance frequency ν00q

for the TEM00q mode. For example, for χ ′ = 0, the difference of the resonance
frequencies of adjacent longitudinal modes (i.e. modes with �q = 1) of the same
lmth transverse order is the same. When we include χ ′, the ν of the laser oscillator
will be close to, but not equal to, ν00q. This shift in ν is called frequency pulling
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of the mode. The pulling on the resonance frequency can be expressed simply as
follows:

ν00q = qc

2nD
+ c

2πnD

(
tan−1 z2

z0
− tan−1 z1

z0
− θm1 + θm2

2

)
,

ν

[
1 + χ ′

a

2n2

]
= ν00q .

From Eqs. (5.41) and (5.43), we have, for a homogeneous broadened line,

χ ′
a

2n2
= − (ν21 − ν)

n2�ν

n2γ

k0
.

Therefore, at γ = γt and assuming γt(ν) = γt(ν00q),

ν = ν00q

[
1 − ν21 − ν

�ν

γt (ν)

k0

]−1

= ν00q + (ν21 − ν)
cγt(ν00q)

2πn�ν

= ν00q − (ν21 − ν)
1

�ν

c

[
α − 1

D
ln(r1r2)

]
2πn

. (6.6)

It can be shown that the full width of the cold cavity optical resonance without
quantum mechanical interaction is

�ν1/2 = νq

Q
=

c

[
α − 1

D
ln(r1r2)

]
2πn

. (6.7)

Thus, the oscillation frequency of the laser is

ν = ν00q − (ν − ν21)
�ν1/2
�ν

. (6.8)

The oscillation frequency of the TEMlmq mode is also given by Eq. (6.8) when ν00q

is replaced by ν lmq of the cold cavity. �ν has been given in Eqs. (5.41).

6.3 Power and optimum coupling for CW laser oscillators
with homogeneous broadened lines

For any optical resonant mode at frequency ν, if its γ is larger than γt, the amplitude
of that mode will grow as it propagates within the cavity. Usually, the growth of
the optical mode is initiated by noise (i.e. spontaneous emission). The magnitude
of initial unsaturated γ depends on the intensity of the pump. The energy of all
other modes which do not satisfy the condition γ > γt will remain at the noise
level. As the amplitude (E) of the optical wave in that mode grows, Wi will also
increase. Equation (6.2) shows that �N (i.e. γ ) will begin to saturate as Wi increases.
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Figure 6.2. Saturated and unsaturated gain profile of a homogeneous transition
and the losses of the lmth-order transverse modes. The unsaturated gain of the
transition is shown together with the losses of the TEMlmq modes that have different
longitudinal orders. The TEMlm(q+3) mode is the mode to oscillate first because
the unsaturated gain is the largest at its resonance frequency. Its oscillation creates
a saturated steady state gain curve as illustrated. With the saturation, the losses of
the other modes are now larger than the saturated gain, and they will not oscillate.

However, even with the saturation, as long as the γ is still larger than γt, the E of
that mode and Wi will continue to increase. The saturation of γ will increase until
γ is reduced to γt. At any time, if γ becomes less than γt, the saturation effect will
reduce, and γ will increase again. Eventually, γ (saturated) ≡ γt, and equilibrium
is reached. In other words, at the steady state, γ is pinned at γt. It follows that the
mode that has the lowest α and the resonance frequency ν closest to the center of
transition frequency will oscillate first.

The unsaturated gain profile of a homogeneously broadened line centered at
ω21 = 2πν21 is depicted in Fig. 6.2. Let us assume that the TEMlm modes have the
lowest γt. All longitudinal modes of the same transverse order will have the same
γt. The gains required for the oscillation of TEMlmq at various longitudinal orders
are marked as crosses at their resonance frequencies in Fig. 6.2. The oscillation
will begin first in the mode with resonance frequency ωlm(q+3), which is closest
to the peak transition frequency ω21, i.e. the mode with the largest unsaturated
gain. Once this mode is in oscillation, saturation occurs. The saturation reduces
the gain available to all other modes at resonance frequencies further away from
ω21. The saturated gain when the mode at ωlm(q+3), is oscillating is also shown in
Fig. 6.2. With saturation, the oscillation requirement γ > γt can no longer be met
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for all other modes. In short, for a homogeneous broadened line, the mode with the
resonance frequency closest to ω21 will have the largest unsaturated γ . The mode
with the smallest γt and the largest unsaturated γ will oscillate first. The saturation
effect created by the oscillation of this mode will be such that no other longitudinal
or transverse mode will meet the condition (saturated γ ) > γt. In other words,
there is only one steady state mode that will oscillate in a strictly homogeneously
broadened line.

We can analyze the internal field and the power output of laser oscillation in a
homogeneously broadened line as follows. For the oscillating mode, where γ = γt

is required, we obtain, from Eq. (5.47),

γ D = γ0 D

1 + I

Is

= αD − ln(r1r2) = Li + T,

where

γ0 D = g0 = unsaturated gain per pass,
L i = internal loss factor = αD,

T = mirror transmission = − ln(r1r2),

and I and Is are explained in Eqs. (5.43), (5.47) and (5.48). Thus, the intensity I of
the optical wave traveling inside the cavity is locked in by the saturation effect with

I =
(

g0

L i + T
− 1

)
Is.

This is an important point. It means that, before laser oscillation can be achieved,
we are concerned with obtaining g0/D > γt. Once the oscillation has occurred, the
I/Is is determined by g0, L and T. The net power per unit volume, Pe, emitted by
stimulated emission, is γ I, and the useful total output power, Po is

Po = Pe · volume · T

L i + T

= volume · (L i + T )

D

(
g0

L i + T
− 1

)
Is · T

(L i + T )

= volume · Is

D

(
g0

L i + T
− 1

)
T . (6.9a)

Maximizing Po with respect to T (i.e. setting d Po/dT = 0) yields

Top = −L i +
√

g0L i.

This result is, naturally, applicable only for homogeneously broadened lines because
of the saturation relationship we have used here.
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Figure 6.3. Saturated and unsaturated gain profiles of an inhomogeneous broad-
ened transition and losses of the lmth-order transverse modes. There are three
oscillating modes at ωlm(q+2), ωlm(q+3) and ωlm(q+4). There are also three holes in
the saturated gain curve. The gain of the saturated gain curve is pinned to the value
of the loss of the cavity resonance mode at each hole.

6.4 Steady state oscillation in inhomogeneously broadened lines

The situation is very different in inhomogeneously broadened lines. Note the hole
burning effect of a strong radiation at ν in an inhomogeneously broadened line
depicted in Fig. 5.3(b). This implies that the saturation due to the oscillation of the
mode at ν will not affect the gain of another mode at ν ′ with resonant frequency
sufficiently separated from the oscillating mode. Therefore, for inhomogeneously
broadened lines, there is likely to be a number of oscillating modes.

An example of the saturated profile of γ as a function of ω for an inhomoge-
neously broadened line is shown by the dashed curve in Fig. 6.3. We have again
assumed that there is only one order of transverse mode, TEMlm, which has a
sufficiently low γt to be considered for oscillation. The γt of various longitudi-
nal modes at ωlm(q+j) are shown as crosses in Fig. 6.3. The resonance frequen-
cies of the longitudinal modes are separated sufficiently far apart compared with
�νs that the saturation of one longitudinal mode does not reduce γ sufficiently
to prevent the oscillation of the adjacent longitudinal mode. Consequently, there
are three oscillating modes within the laser transition, and there are three holes
in the profile of saturated γ . The γ curve is pinned to γt at each hole. However,
those longitudinal modes at resonance frequencies smaller than ωlm(q+2) and larger
than ωlm(q+4) will not oscillate because γ < γt at those frequencies. If there are
other modes that also have low γt and have resonance frequencies sufficiently
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close to these oscillating modes within �νs, there will then be competition among
modes.

The optimum coupling of the cavity for maximizing its power output will also
be different than the Top given in Section 6.3 because the saturation of the inhomo-
geneously broadened line is different from that of the homogeneously broadened
line. Consider the simple case where there is only one cavity resonance within the
laser transition. Similarly to the example in Section 6.3, let

γ0 D = g0 = unsaturated gain per pass,
L i = internal loss factor = αD,

T = mirror transmission = − ln(r1r2).

Then the saturation effect of γ is

γ D = γ0 D√
1 + I

I ′
s

= L i + T

or

�N = �N0√
1 + I

I ′
s

,

and hence

I

I ′
s

= γ 2
0 D2 − (L i + T )2

(L i + T )2 ,

where I ′
s was explained in Eq. (5.53) and I was given in Eq. (5.43). The emitted

power per unit volume, Pe, is γ I. Therefore, the total output power from the laser
cavity is

Po = volume · γ I · T

L i + T
=

(
volume · I ′

s

D

) [(
γ0 D

L i + T

)2

− 1

]
T . (6.9b)

In order to maximize Po, we let ∂Po/∂T = 0. We obtain the equation

(γ0 D)2(L i − Top) = (L i + Top)2.

The solution for Top in the above equation will maximize Po.

6.5 Q-switched lasers

The requirement that the steady state gain of the laser medium is locked to the
threshold value limits the laser output. If the quality factor Q of laser resonant
modes can be held first to a low value, then their oscillation threshold (i.e. the
saturation of γ ) will not be reached despite the very large γ which can be obtained
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by strong pumping. When this low Q factor is switched suddenly to the normal
value at t = 0, then the initial γ greatly exceeds the γt of the cavity momentarily
at that t = 0+. Within a short period of time at t > 0, the amplitudes of a number
of resonant modes, i.e. the total stored energy in the laser cavity, will build up
quickly to a very large value. As the stored energy is building up to such a large
amplitude, the initial population inversion is exhausted by the stimulated emission,
i.e. the γ is reduced, and eventually γ drops below the threshold. Therefore, after
the initial buildup, the stored energy of the cavity will begin to decay. During this
transient period, the peak stored energy in the cavity will temporarily reach a very
high value, and part of this stored energy is transmitted as the output. This is known
as Q switching. Various practical methods of and variations from Q switching are
discussed in Chapter 8 of ref. [1], and they are summarized in Section 20.1 of
ref. [3]. It is a technique used to obtain a pulse of high laser power. There usually
are many oscillating modes, because many modes have similar losses, and many
modes have resonance frequencies well within the line width of the transition. It
is impossible to discriminate one mode from another. Only modes with very large
losses and modes with resonance frequencies far away from the center frequency
of the transition will not be induced to oscillate.

From our discussion on the Q of the cavity, we know that

d Ecavity

dt
= − 1

tc
Ecavity,

Q = − ω Ecavity

d Ecavity/dt
= ω tc = ω nD

c[αD − ln(r1r2)]
.

Let the total number of photons in the oscillating modes be φ(t), the average mode
volume be V, the total inverted number of particles be np(t),

np(t) ≡
[

N2 − g2

g1
N1

]
V,

and the average mode decay constant be tc. At t > 0, the intensity of the contraprop-
agating optical waves will grow with distance, dl/dz = γ I. An observer traveling
with the waves will see the growth of I in time as

d I

dt
= d I

dz

dz

dt
= γ

c

n
I.

If the length of the laser amplifying medium is L (<D), then only a fraction of the
photons is undergoing amplification, and the average growth rate is (L/D)(γ c/n).
Balancing the decay rate of the photons with the amplification rate, we obtain the
following [4]:

dφ

dt
=

[
γ cL

nD
− 1

tc

]
φ.



6.5 Q-switched lasers 189

ni

nt

nf

Figure 6.4. Population inversion and photon density during a giant pulse. The total
inverted population np drops from the initial value ni before the pulse to a final
value nf after the pulse. The total number of photons in oscillating modes φ rises
from zero to its peak when np is at the threshold value nt; then φ decays back to
zero. Taken from ref. [4] with permission from the American Institute of Physics.

Note that, for dφ/dt = 0, the threshold γt = (nD/cLtc) is just what balances the
cavity decay with the gain. Using a normalized time, τ = t/tc, we can rewrite the
above equation in a normalized form:

dφ

dτ
=

(
γ

γt
− 1

)
φ.

Since γ is proportional to the population inversion,

dφ

dτ
=

(
np

nt
− 1

)
φ, (6.10)

where nt = (�Na)tV is the total inversion required at threshold and np is the total
inverted number of atoms in the cavity at any instant of time t. The first term in
Eq. (6.10) describes the rate of increase of the total number of photons in the cavity.
Since each generated photon results from a decrease of total population inversion
of �np = 2 in a single transition, we obtain:

dnp

dτ
= −2φ

np

nt
. (6.11)

Figures 6.4 and 6.5 show the numerically calculated np and φ as functions of τ .
Both figures are taken from ref. [4]. Note that φ reaches a maximum when np = nt.
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Figure 6.5. Normalized photon number versus time in a Q-switched giant pulse
for various ni/nt. The pulse width of the total photon numbers φ depends on the
initial population ni. The larger the ni/nt, the sharper the pulse, and the higher the
peak φ. Time is measured in units of photon lifetime τ . This figure is taken from
ref. [4] with permission from the American Institute of Physics.
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Note also the importance of having a large ni/nt ratio in order to achieve a large
output and a sharp pulse. If we divide Eq. (6.10) by Eq. (6.11), we obtain

dφ

dnp
= nt

2np
− 1

2
, (6.12)

and, by integration,

φ − φi = 1

2

[
nt ln

np

ni
− (np − ni)

]
.

Mathematically, ni and φi are integration constants; they are the initial values at
t = 0. We will assume that φi = 0. At t � tc, again φ = 0 and np = nf, where nf is
the final population inversion after the transient. Thus, from Eq. (6.12) we obtain

nf

ni
= exp

(
nf − ni

nt

)
. (6.13)

We note that the fraction of the energy initially stored in the inversion that is
converted into laser oscillation energy is (ni − nf)/ni. Figure 6.6 (taken from ref. [4])
plots the energy utilization factor as a function of ni/nt; it approaches unity as ni/nt

increases. If we neglect cavity losses other than the transmission, the instantaneous
power output will be given by P = φhν/tc. We can find the maximum of P by
setting ∂P/∂np = 0; it occurs at np = nt, as shown in Fig. 6.4. When ni � nt,

Pmax ≈ nihν

2tc
. (6.14)

In cavities that have significant internal losses Li, the output power Po is related to
P by

(Po)max = T

T + L i
Pmax.

In continuous wave (CW) lasers, only the lower order modes will have the larger tc or
the smaller γt. Thus, the output radiation will consist primarily of the superposition
of lower order oscillating modes. Most commonly, we would like to have only
one transverse order mode to oscillate. Sometimes, only one oscillating mode,
i.e. one transverse and one longitudinal order mode, is desirable. It is interesting
to note here that we have not even discussed the characteristics of Q-switched
lasers in terms of individual modes of the laser cavity. When ni � nt, there are
many oscillating modes. It is more meaningful to discuss the total energy of all
the modes than the energy in each mode. However, modes closer to the center
frequency of the atomic transition will have a much larger intensity because of the
larger γ . For these reasons, the Q-switched laser does not have a single-frequency
output. It is used primarily in applications where a lot of pulsed power is required,
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Figure 6.6. Energy utilization factor (ni– nf)/ni and residual inversion after the
giant pulse. The fraction of energy stored in the total inverted population used to
generate the pulse (ni − nf) /ni drops dramatically from unity to a low value as
the ni/nf ratio decays to less than 2. When the ni/nt ratio drops, a larger fraction of
the population inversion, nf/ni, remains after the pulse. This figure is taken from
ref. [4] with permission from the American Institute of Physics.

without any precise control of its phase and frequency characteristics. The analysis
of the Q-switched laser is interesting academically, because it demonstrates how
a gross analysis of φ can be handled very simply by rate equations without any
explicit information about the diffraction loss, the amplitude and the phase of the
modes.

6.6 Mode locked laser oscillators

It is well known in Fourier analysis that when there are a number of Fourier terms
with identical amplitude and phase, as well as equal frequency spacing between
adjacent terms, the summation of all the terms will have a periodic time variation of
sharp pulses. In other words, if we simply add the fields of a number of oscillating
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Figure 6.7. Theoretical plot of the time variation of the total optical field of five
modes with equal amplitude and equal frequency spacing, 2π/T , locked together.
This figure is taken from ref. [3] with copyright permission from John Wiley and
Sons.

modes with identical amplitude and phase, as well as equal spacing in frequency,
we obtain mathematically

E = ±
+(N−1)/2∑
−(N−1)/2

Ae j(ω0+nω+φn)t = e jω0t e jφn A
sin(Nω t/2)

sin(ω t/2)
, (6.15)

where A and φn are the amplitudes and phases of all the modes, ω0 is the center
frequency and ω is the frequency spacing between adjacent modes. E(t) is now
periodic in T = 2π/ω. The power, which is proportional to E*E, is proportional to
sin2(Nωt)/sin2(ωt). Therefore, we can say:

(1) The total power is emitted in the form of a pulse train with T = 2π/ω.
(2) The peak power is N times the average power. N is the total number of modes.
(3) The peak field amplitude is N times the amplitude of a single mode.
(4) The individual pulse width, defined as the time from the peak to the first zero, is

τ = T/N. Thus the pulse can be very narrow with large N.

Figure 6.7 (from Section 20.2 of ref. [3]) illustrates the time variation of the ampli-
tude of five equally spaced modes locked together.

6.6.1 Mode locking in lasers with an inhomogeneously broadened line

When we analyzed the resonant modes in a cold cavity without the χ ′ of the
quantum mechanical transition in Chapter 2, we found that the longitudinal modes
of the same transverse order are spaced equally apart in frequency, with �ω =
2π/T = πc/nD (or T = 2Dn/c), where n is the refractive index without the χ ′

contribution from the quantum mechanical transition and D is the length of the
optical cavity. In inhomogeneous broadened lines, we could have many oscillating
modes. The total number of oscillating modes N is approximately �ν(2nD/c),
which is equal to the line width �ν of the quantum mechanical transition divided
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by the frequency spacing of the longitudinal modes. However, the longitudinal
mode frequency spacing is no longer equal because of the mode pulling effect of
the χ ′ contribution from the quantum mechanical transition. There is also no specific
fixed phase relationship among the oscillating modes. Now we wish to show that
by actively modulating the gain of the medium at a frequency close to �ω, we
can induce the modes to oscillate with equal frequency spacing and fixed phase
through non-linear interactions. Similar analysis shows that phase modulation can
also achieve mode locking in inhomogeneous broadened lines.

It is interesting to analyze the mode locking in an inhomogeneously broadened
line as follows (see Section 20.3 of ref. [3]). In a laser, let E be the total electric
field that satisfies the wave equation. We can express the imaginary part of the χ

as a conductivity term in the wave equation. There are two parts of the conduc-
tive term. The first part is the unmodulated gain or loss of the laser media; the
second part is the modulated gain, used to achieve mode locking. Therefore, we
obtain

∇2 E − µσ ( r , t)
∂ E

∂t
− µε

∂2 E

∂t2
= 0,

σ (r, t) = σ0 + σm cos ωmt f ( r ),

(6.16)

whereσ 0 is the distributed equivalent gain or loss of the laser and σ m is the amplitude
of the gain modulation at frequency ωm and with spatial variation f(r). E can be
expressed as a superposition of normalized “cold” cavity modes (see Eq. (2.3)),

E =
∑

s

As (t) Es(r )e jωs t , (6.17)

where

∇2 Ea( r ) + ω2
aµεEa( r ) = 0,∫

V

Ea( r )∗ · Eb( r ) dv = δab.

Substituting Eq. (6.17) into Eqs. (6.16), we obtain∑
s

Es
d As

dt
e jωs t ≈ −

∑
s

As
σ ( r , t)

2ε
Ese jωs t , (6.18)

where d2As/dt2 terms are neglected because As is a slowly varying function and
ωs/ωs+n is approximated by unity because the oscillating modes are all within
the line width of the atomic transition. Utilizing the orthonormal properties of the
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modes and multiplying both sides by Ea, we obtain

e jωa t d Aa

dt
= −e jωa t σ0

2ε
Aa −

∑
s

Sas
σm cos ωmt

2ε
Ase jωs t ,

Ssa =
∫
V

f ( r )E∗
s Eadv.

 (6.19)

When σm = 0,

Aa = Aa (0) e− σ0
2ε

t .

Thus, ε/σ 0 is the photon decay or rise time in the cavity. When there is steady state
oscillation, gain always equals loss. Thus, σ 0 ≡ 0 and

d Aa

dt
= −

∑
s

Sasσm

4ε
As(e jωmt + e− jωmt )e j(ωs−ωa)t .

Like any resonance response, A will only be affected significantly when the mod-
ulation frequency ωm is close to ±(ωs − ωa). Let us consider the case where the
modulation frequency is close to the frequency difference �ω between adjacent
longitudinal modes. Let

� = ωs+1 − ωs − ωm = �ω − ωm = small frequency deviation.

Then,

− d Aa

dt
= κ Aa+1e j� t + κ Aa−1e− j�t , (6.20)

where

κ = κa,a+1 = κa,a−1 = Sa,a+1σm

4ε
.

When κ = 0, there is no coupling among adjacent modes. It happens when σ m = 0
or when f ( r ) is a constant.

In order to solve Eq. (6.20), we will make a substitution of variables. Let

Ca (t) = − je ja�t e−aπ/2 Aa (t)

or

Aa (t) = jCa (t) e− ja�t e jaπ/2.

Then

j
dCa

d t
+ a�Ca = κCa+1 − κCa−1. (6.21)
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At steady state, dCa/dt = 0. The solution of the remaining difference equation is
well known:

Ca = Ia

( κ

�

)
,

where Ia is the hyperbolic Bessel function of order a. For κ/� � 1,

Ia(κ/�) = 1√
2π (κ/�)

,

Aa (t) = j√
2π (κ/�)

e− ja(� t− π
2 ),

E(r , t) = ∑
s

j√
2π (κ/�)

e j(ω0+s ωm)t e jsπ/2 Es( r ),

ωs = ω0 + s�ω.


(6.22)

There are four significant conclusions that can be drawn from this solution.

(1) All longitudinal modes have the same transverse variation of Es.
(2) The frequencies of adjacent modes are locked to ω0 + s�ω by ωm.
(3) When κ/� � 1, all modes have equal amplitude.
(4) The phase of the modes is fixed at sπ/2.

Therefore, we have just demonstrated that active mode locking can be achieved
by gain modulation, despite the mode pulling effect of χ ′. Physically, this means
that with gain modulation we are not only forcing all the modes to oscillate with
equal frequency spacing, but also that power is transferred from one mode to its
adjacent modes so that they oscillate with equal amplitude and fixed phase. A
similar situation occurs with phase modulation. From Eq. (6.15), it is interesting
to note that the pulse width of mode locked lasers will depend on the number of
oscillating modes N.

6.6.2 Mode locking in lasers with a homogeneously broadened line

We have shown earlier that there can only be one CW oscillating mode in a homo-
geneously broadened line at steady state. Let us now put a shutter inside the laser
cavity such that: (1) the shutter is open for a short period of time; (2) the shutter is
closed for the rest of the time during one repetition period; (3) the shutter is open
again at the end of the repetition period; (4) the repetition period is equal or close
to the round trip propagation time of an optical wave inside the cavity (i.e. 2Dn/c).
Figure 6.8(b) demonstrates the transmission of such a shutter as a function of time.
Only the specific summation of longitudinal modes that are consistent with this
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Figure 6.8. Mode locking by an intra-cavity shutter. (a) Laser cavity containing a
shutter for mode locking. (b) Shutter time variation.

modulation will oscillate. Thus, a locking of longitudinal modes is achieved in a
homogeneously broadened line. From another point of view, the modulation trans-
fers continuously the power from the high gain modes (i.e. the oscillating modes) to
the low gain modes (i.e. the non-oscillating modes at frequencies that are separated
from the oscillating modes close to the side band frequency). The power transfer
makes all the longitudinal modes within the line width of the transition oscillate
in phase. A time dependent analysis of the mode locking in a homogeneously
broadened laser is given in Section 11.3 of ref. [3].

6.6.3 Passive mode locking

The effect of a periodic gate can also be provided by the insertion of a saturable
absorber gate in the optical path. A saturable absorber is usually made of a mat-
erial that is transparent to intense radiation and opaque to weak radiation. The
saturable absorber gate will clearly “encourage” the laser to oscillate as a circulating
pulse with round trip transit time of 2nL/c since this mode of oscillation will
undergo smaller losses than any other combination of modes in which the energy
is spread more uniformly. From another point of view, all oscillations start with
noise. Certain combinations of noise modes are transmitted preferentially by the
saturable absorber. The saturable absorber gate favors the situation where the peak
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noise intensity fluctuation in the resonator travels and is amplified around the cavity.
After a round trip, the amplified noise pulse will experience even less attenuation at
the gate, thereby eventually creating the pattern of a circulating mode locked pulse.
If the saturable absorber has a recovery time of S seconds, then the gate is open
within time 1/S of the strong pulse. Thus, the time duration of the mode locked
pulse tends to be 1/S.

6.7 Laser amplifiers

Theoretically, the analysis of the amplification of optical signals in media with
homogeneous and modest gain is straightforward. According to Eq. (5.43), when
there is sufficient population inversion the intensity Iν of the incident wave (e.g.
plane waves or Gaussian beams) will be amplified in the z direction according to

Iν (z) = I0eγ z. (6.23)

Similarly to Eqs. (6.3) and (6.4), and in the absence of any saturation effect, we
obtain

γ = kµ2

2n2ε0h̄

(
N2 − g2

g1
N1

)
g(ν) − α. (6.24)

Since γ z appears in the exponential, the gain of the amplifier can easily be 10 or
20 dB. Here, we have assumed that the χ ′ associated with the gain γ is sufficiently
small that the effect of χ ′ on the wave propagation is negligible. In many appli-
cations, reflections at the input and output ends of the laser amplifier are reduced
to a very low value. Therefore, in Eq. (6.23), we have assumed the reflections to
be zero, or T = 1. However, for high gain laser amplifiers, even a small amount of
reflection could trigger oscillation or a non-uniform gain profile.

In a medium with spatially homogeneous and modest gain γ , the spatial field
profile of the incident wave is not altered by the gain. In the case of a Gaussian beam,
it will be amplified as a Gaussian beam. However, the gain profile is frequently not
homogeneous. An inhomogeneous gain profile could be caused by the variation
of either the material index or the population inversion (e.g. due to non-uniform
pumping). In those circumstances, whether the gain and its associated χ ′ variation
will affect the lateral profile of the wave propagating through the medium needs to be
considered. In the case of a material that has an index variation that supports a well
guided waveguide mode, γ and χ ′ usually will not affect significantly the profile of
a guided wave mode. Equation (6.23) is again applicable for each individual mode.
However, Eq. (6.24) needs to be modified to take into account the overlap between
the gain and the mode. For example, γ can be calculated by the perturbation analysis
given in Section 4.1.2. The properties of semiconductor laser amplifiers are covered
in Section 7.7.
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Solid state laser amplifiers have been used in many applications in the form of
fibers, channel waveguides and bulk media. γ is usually independent of polariz-
ation in fibers and bulk media. It is dependent on polarization and mode order in
channel waveguides or birefringent media. γ is clearly wavelength dependent. The
transition is frequently inhomogeneously broadened, so that g(ν) is given by the
inhomogeneously broadened line shape. When there is even a slight reflection of
the waves in a high gain amplifier, the effective wavelength variation of the output
could be significantly narrower than the wavelength dependence of γ .

Saturation of γ may occur in laser amplifiers in two different ways. (1) When Is

is large, χ ′′ saturates. The saturation is different for homogeneously and for inho-
mogeneously broadened lines. Details of the saturation effect of [N2 − (g2/g1)N1]
have been discussed in Section 5.4. Note that the wavelength bandwidth of the
amplifier can be affected by the saturation mechanism. (2) When the pump power
used to create the gain (or the population inversion) is very large, the pumping
effect may be saturated. For the case of optical pumping, such as that used in
erbium doped fiber amplifiers, the population of the upper levels that produce the
N2 may be saturated because of the large Wi. If we assume that the transitions used
for optical pumping are homogeneously broadened lines, then Eq. (5.46b) can be
used to describe the saturation effect. For the case of a single pump transition, the
saturation of [N2 − (g2/g1) N1] may then be represented by

�Na0 = �Nno pump sat
1

1 + (Ip/Isp)
.

Ip is the pump intensity and Isp is the saturation parameter of the pump transition.
In reality there may be more than one pump transition. Thus one should calculate
the saturation effect for each pump transition separately and obtain the total �Na0

as the sum of the �N contributions from each one of the pump transitions. For the
sake of brevity, the saturation expression for a single transition is used for multiple
transitions where Ip is the averaged pump intensity per transition and where Isp is
the averaged saturation parameter for all the transitions.

When the two saturation effects are combined, we obtain

�Na = �Nunsat
1

1 +
(

Iν
Isν

) 1

1 +
(

Ip

Isp

)
≈ �Nunsat

1

1 +
(

Iν
Isν

)
+

(
Ip

Isp

) ,

for a moderate degree of saturation.
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Laser amplifiers are used in two different ways: (1) as a power amplifier such as
in the Nd/glass power amplifier, and (2) as a signal amplifier for communication
networks. In case (1), the main considerations of the amplifier design are the mode
control of the amplified radiation, the saturation effect in pulsed applications (e.g.
pulse shaping similar to those occurring in Q switching) and the potential damage
of material by high intensity optical fields (especially from reflection or focusing
effects). In case (2), the gain as a function of wavelength, i.e. the bandwidth, is an
important concern, especially in WDM (wavelength division multiplexed) applica-
tions. In addition, the noise of laser amplifiers is important for all communication
applications; this will be discussed in the Section 6.8. See Chapter 4 of ref. [5] for
more discussions on optical laser amplifiers.

6.8 Spontaneous emission noise in lasers

Spontaneous emission occurs in all media. It is a phenomenon that can be understood
in two different ways as follows. (1) Phenomenologically, the blackbody radiation
is spontaneous emission in thermal equilibrium. Therefore, one can find out the
spontaneous emission rate from the known blackbody radiation intensity. This is
the approach that we will use in this section. (2) In the quantized field theory (see
Section 5.6 of ref. [3] and Section 5.7 of ref. [6]), both the radiation field and the
atomic particles are quantized. The radiation field is expressed as a superposition of
modes and the number of photons in each mode, while the ψ of atomic particles are
expressed as summations of energy eigen states with a probability meaning for the
coefficient of each state. The interaction between the radiation field and the atomic
particles is expressed as the annihilation and creation of photons in each mode,
while changes in the coefficients of the atomic energy states signify the change in
energy of the atomic particles. The downward transition of the atomic particle can
be induced by any radiation mode (i.e. the emission), even when there is no photon
in that mode. This means that, in this case, radiation is emitted into all the modes
in the absence of photons in the radiation field. This is the theoretical basis for
spontaneous emission. In addition, radiation is emitted (i.e. created) or absorbed
(i.e. annihilated) from those modes that have photons. This is the basis for induced
transition.

In the phenomenological analysis, the effect of spontaneous emission might be
included in the rate equation analysis of the lasers. In the case of laser oscillators,
the spontaneous emission produces phase noise that is the origin of the minimum
line width of laser output. It also produces an amplitude fluctuation that is the
origin of the relative intensity noise. In laser amplifiers, it adds an additional noise
component to the signal.
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6.8.1 Spontaneous emission: the Einstein approach

Let us assume that there is a spontaneous emission transition probability, A, with
which an atomic particle in a higher energy state will transfer into a lower energy
state. There is no spontaneous absorption. We could evaluate A by considering the
spontaneous emission at thermal equilibrium. This is known as Einstein’s approach.
A derivation of spontaneous emission probability A in semiconductors similar to the
derivation here is given in ref. [7]. A derivation of spontaneous emission probability
via the quantized field theory is given in ref. [6].

In Section 5.2, we showed that the induced transition probability from state k to
state m for a monochromatic linearly polarized radiation is

Wmk =
√

µ0

ε

µ2 I

2h̄2 g (ν) .

For a broadband radiation with power I(ν),

W ′
mk =

√
µ0

ε

µ2

2h̄2

∫
I (ν)g(ν − νkm) dν =

√
µ0

ε

µ2

2h̄2 I (νkm).

For non-polarized radiation, the I is not polarized in the y direction. If we take
one-third of the I(ν) to be in the direction of the dipole moment, we obtain

W ′′
mk = 1

3
· nµ2

2ch̄2 I (νkm). (6.25)

In thermal equilibrium, the radiation density is given by the blackbody formula,

ρ(ν) = 8πn3hν3

c3

(
1

ehν/kT − 1

)
, (6.26a)

and

I = c

n
ρ(ν) = ρ(ν)√

µ0 ε
. (6.26b)

The number of particles making the transition from state Em to state Ek must
equal the number of particles making the inverse transitions. If Em > Ek, then the
downward transition will have both induced and spontaneous transitions. The bal-
ance of downward and upward transitions can be expressed as

Nk[W ′′
km + A] = Nm W ′′

km,

Nk

Nm
= e− hνkm

K T .

Therefore,

A = 1

tspont
= Nm − Nk

Nk
W ′′

km = 8π2n3ν3

3ε h̄ c3
µ2. (6.27)
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1/A is known as the spontaneous emission lifetime, tspont. It is interesting to note that
the spontaneous emission creates the blackbody radiation. Blackbody radiation at
RF frequencies is the thermal noise. Since A is proportional to µ2, tspont is sometimes
used to measure and represent the matrix element squared, µ2:

µ2 = 3εh̄c3

8π2n3ν3tspont
. (6.28)

6.8.2 Spontaneous emission noise in laser amplifiers

The spontaneous emission in laser amplifiers will degrade the signal to noise ratio
of the amplified signal. This is an important issue in communication.

In order to understand the analysis of amplifier noise, we shall clarify first our
understanding of three important terms.

(1) The spontaneous emitted power per unit volume. This is equal to the population of
the upper laser level times the energy of the photon and the spontaneous emission
probability. The spontaneous emission probability is given in Eq. (6.27).

(2) The amplified spontaneous emission per mode received by the detector. The signal radi-
ation and the spontaneously emitted radiation are both amplified by the laser amplifier.
Let the laser signal radiation be in the form of a specific mode. The amplified field pat-
tern of the signal will be in that mode. However, the spontaneous emission is distributed
into all the modes. Since the amplification of various modes is different, the amplified
spontaneously emitted power has its own intensity distribution and wavelength depen-
dence. The amount of the signal and spontaneous emission noise which will be received
by the detector will depend on the spatial and wavelength filtering characteristics of the
receiver (i.e. how many modes and how wide a bandwidth the receiver will accept). It is
customary to present the discussion on amplifier noise based on spontaneous emission
received just in the mode of the signal and within a 1 Hz wavelength bandwidth. This
is the minimum spontaneous emission that will be seen by the detector without any
significant reduction of the signal.

(3) The effect of the noise created by the signal and the spontaneous emission per mode. The
laser amplifier (seen by the detector with appropriate filters) will have an output power
per mode, measured in terms of n photons per second. It consists of both the signal
and the spontaneous emission (per mode) after amplification. There will be fluctuations
of n; 〈n〉 is the mean number of output photons per second; 〈n2〉 is the variance of the
radiation (i.e. the fluctuation of n2). Noise characteristics are determined by 〈n2〉 − 〈n 〉2.
For applications using amplifiers, the important quantity is the noise figure, which is
the ratio of signal/noise at the input to signal/noise at the output.

Let us next consider a signal which is in the fundamental Gaussian mode prop-
agating from z = 0 to z = l in an amplifier with power gain G. In order to receive
minimum noise without reducing the signal, the receiver should detect only the
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radiation within the beam divergence of the fundamental Gaussian beam. In the
following we will specify first the configuration of the spatial filter to be used
with the amplifier. Then we will calculate the spontaneous emission noise power
detected by the receiver in this amplifier configuration. Finally we will calculate
the effect of the noise (i.e. the noise figure) in the receiver.

From Eq. (2.13), the signal radiation beam-width, θ , of a Gaussian beam is

θbeam = λ/n

πω0
. (6.29a)

It corresponds to a solid angle �beam centered about the z-axis, where

�beam = λ2

πn2ω2
0

. (6.29b)

Let us consider the case where there is negligible beam divergence within the
amplifier; then the spot size Aa of the Gaussian beam at the end of the amplifier is
approximately πω2

0. Let the receiver be configured in such a way that it receives
only the noise contained within the surface area Aa and the beam divergence �beam

of such a Gaussian beam.
Let the amplifier have length l and transmitted surface area limited to Aa at the

output end, where Aa = πω2
0. We shall now calculate the noise power detected by

the receiver in such an amplifier configuration.
For spontaneous emissions expressed as a summation of plane waves, only those

plane waves amplified and propagating in any angle θ within �beam will be sensed by
the detector. From Eq. (6.4d), the gain coefficient γa for linearly polarized radiation,
neglecting any propagation loss or end reflections, is

γ ′
a = k0µ

2

2n2ε0h̄
�Nag(ν) = 3λ2

8πn2 tspont
�Nag(ν).

For randomly polarized radiation, the gain needs to be averaged over all polariza-
tions. Thus,

γa = λ2

8πn2tspont
�Na g(ν), (6.30)

d I

dz
= γa I.

For radiation within a cone d�, propagating at an angle θ with respect to the
z axis, as shown in Fig. 6.9, its power will come from the accumulated amplified
spontaneous emission in small volumes dV. The power that will reach the end
surface within the area Aa, in the direction θ , is the total integrated and amplified
spontaneous emission power within the cylinder in Fig. 6.9. For high gain ampli-
fiers within the frequency range from ν to ν + dν, the total random polarized
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Figure 6.9. Model used to calculate the spontaneous emitted noise through the
output aperture in an amplifier.

spontaneously emitted power, N(θ )hν, within Aa at any angle θ and into a solid
angle d� is:

N (θ )hν = Aa

l∫
0

dz
d N

dV
eγa(l−z)/cos θ ,

where

d N

dV
= hν

N2g(ν)

tspont

d�

4π
dν.

The evaluation of this integral yields

N (θ ) = Aa cos θ
[G − 1]N2 g(ν)

γatspont

d�

4π
dν,

= 2 dν
N2

N2 − g2

g1
N1

[G (θ ) − 1]
Aa cos θ d�

(λ/n)2

= 2dν
N2

N2 − g2

g1
N1

[G(θ ) − 1]
cos θ d�

�beam
. (6.31)

Equation (6.30) has been used to express γatspont, and the gain of the amplifier G in
the θ direction is

G(θ ) = eγal/cos θ .
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If a polarization filter is used to filter out the polarization perpendicular to the
signal polarization, we will reduce N(θ ) by 2. For small θ , cos θ ≡ 1. When we
sum all the N(θ ) within the solid angle �beam given in Eq. (6.29b), we obtain the
noise power per mode, N0hν:

N0hν = hν dν
N2

N2 − N1(g2/g1)
[G − 1] . (6.32)

The expression N2/(N2 − N1(g2/g1)) in the above equation is called the population
inversion factor ηa. A different receiver may sense noise power from m modes, then
the total noise power is mnN0hν. The derivation for Eq. (6.32) follows a similar
derivation to that given in Section 21.1 of ref. [3].

Knowing the noise power received by the detector, we can now calculate the
effect of the noise from 〈n2〉 and 〈n〉2. The variance of the total number of photons
per second at the output of the amplifier, n, has been worked out statistically [8].
For an incident laser power P, an equivalent of mn modes of noise received by the
detector and wavelength bandwidth �ν,

〈n2〉 = G

(
P

hν

)
+ 2mn(G − 1)ηa�ν + 2G

(
P

hν

)
(G − 1)ηa

+ 2mn(G − 1)2η2
a�ν. (6.33)

The first term is the shot noise of the signal radiation; the second is the shot noise
of the beat spontaneous emission; the third is the signal–spontaneous noise; and
the fourth is the spontaneous–spontaneous beat noise.

For strong incident radiation and large G, the first and third term dominate.
Therefore, the noise figure F of the amplifier is given by

F = (P/N )in

(P/N )out
≈ 2ηa. (6.34)

For an ideal amplifier, ηa ≈ 1 and the theoretical limit of F is 3 dB. In this discussion
we have assumed that there are no reflections at the input and output ends of the
amplifier. We have also neglected propagation loss inside the amplifier.

6.8.3 Spontaneous emission in laser oscillators

Spontaneous emission is the source that initiated the oscillation in the specific
mode when the gain exceeds all the losses (including the outputs). Eventually the
amplitude of the oscillating mode is limited by non-linear saturation.

Spontaneous emission causes intensity fluctuation of the laser oscillator, called
the relative intensity noise (RIN).
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When spontaneously emitted radiation with random phase is mixed with the
radiation of the oscillating mode, it diffuses the phase, which results in a degradation
of coherence. This is the basic reason for having only a finite line width, �νosc, for
the laser oscillator. The relation governing the line width with respect to the cavity
resonance line width, the output power of the laser and the population inversion
of the laser was first reported by Schawlow and Townes [9]. This calculated �νosc

is the theoretical limit of the oscillation line width. The actual line width of laser
oscillators is frequently broader because of other fluctuations not considered in the
theoretical analysis.

The answers for both the RIN and the oscillator line width came from the solution
for the optical electric field inside the cavity with gain, saturation and spontaneous
emission,

∇ · ∇ e( r , t) − µσ
∂e

∂t
− µε

∂2e

∂t2
= µ

∂2

∂t2
[P + p], (6.35)

with

e( r , t) =
∑

m

Em(t)em( r ),

P( r , t) =
∑

m

Pm(t)em( r ),

and

p( r , t) =
∑

m

pm(t)em( r ).

Here, P is the instantaneous induced polarization of the laser transition, and p is the
instantaneous polarization from the spontaneous emission. Equation (6.35) can be
simplified by the orthogonality properties of the modes. The resultant equation for
each mode, En, is

Ën + 1

τp
Ėn + ω2

n En = −1

ε
(P̈n + p̈n),

where τ p is the photon lifetime in the passive resonator, ωn is the resonance fre-
quency of the nth mode and

En = [En0 + δ(t)] e j[ωn t+φ(t)]. (6.36)

En0 is the average amplitude of the electric field, δ is the real amplitude deviation and
φ is the instantaneous phase. The intensity fluctuation consists of a calculation of
〈δ(t)δ(t + τ )〉, while the frequency spectrum, i.e. �νosc, depends on the calculation
of 〈φ̇ (t1) φ̇ (t2)〉.
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Figure 6.10. Equivalent circuits of an oscillating laser cavity. (a) Equivalent circuit
of a resonant mode. (b) Equivalent circuit of a resonant mode with gain.
(c) Equivalent circuit of a resonant mode with noise source and gain.

6.8.4 The line width of laser oscillation

Obtaining the solution of Eqs. (6.35) and (6.36) is a lengthy process. There is a more
conventional method of calculating the line width, �νosc, which takes advantage
of our knowledge of the noise and the circuit representation of a resonator. In this
section, we analyze the Q factor of the resonance circuit, represent the thermal and
the spontaneous emission noise by current sources and determine the �νosc from
the Q factor. This line width is known as the Schawlow–Townes relation.

The equivalent circuit and the Q of the resonance mode

The laser oscillator without gain is modeled frequently as a parallel RLC reso-
nance circuit, as shown in Fig. 6.10(a). L and C are the equivalent inductance and
capacitance of the cavity resonance, respectively. In this case, all the passive losses
(including the output) of the resonant cavity are represented by the conductance G0.
The resonance frequency ω0 is 1/

√
LC . From Eq. (2.9), we know that the quality

factor, Q0, representing the passive losses (consisting mostly of the output) of the
resonator is

Q0 = 2π D

λ[1 − r1r2e−αD]
.

On the other hand, Q0 = 1/(G0ω0L) from the analysis of the equivalent circuit.
Therefore, G0 is related to cavity parameters as follows:

ω0C

G0
= 2π D

λ[1 − r1r2e−αD]
= Q0 = ν0

�ν0
, (6.37)

where �ν0 is the line width of the passive resonance.
Similarly, the effect of the gain on the resonance can be represented as a negative

conductance Gm in the equivalent circuit, as shown in Fig. 6.10(b).
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Circuit representation of the thermal noise

In Eq. (6.32), if we use the equilibrium relationship, (g2 N1)/(g1 N2) = exp(hν/K T )
at temperature T, and if we consider G = 0 for passive material with large l, the
noise per pass, N0hν, is now the description of a blackbody radiator,

N0hν = hν dν
1

ehν/K T − 1
. (6.38)

It is well known that the Johnson thermal noise in an RLC circuit can be repre-
sented by a noise source 〈i2

n (ω)〉 in parallel with G0 (see Section 21.2 of ref. [3]),
where, within a bandwidth �ω,〈

i2
N (ω)

〉 = 4hν dν G0

ehν/K T − 1
(6.39)

and 〈
i2
N (ω)

〉
�ω

= 2hν

π (ehν/K T − 1)
G0.

Circuit representation of spontaneous emission noise with gain
and the negative emission temperature

For a medium with gain, if we just consider the effect of the amplification (without
passive loss), we again obtain from Eq. (6.32) the amplified N0hν per pass and the
Q factor,

Nmhν = hν dν
1

1 − (g2 N1/g1 N2)
(G − 1) , (6.40a)

Qm = ω0C

Gm
= 2π D

λ[1 − eγ D]
. (6.40b)

The equivalent Nm,eqhν per pass per mode, evaluated at the beginning of the
pass, is

Nm,eqhν = hν dν
1

1 − (g2 N1/g1 N2)
· G − 1

G

≈ hν dν
1

1 − (g2 N1/g1 N2)
. (6.41)

Since eγ D > 1, Gm and Qm are negative. If we designate (g2 N1/g1 N2) =
exp(hν/K Tm), then Tm is an equivalent negative temperature representing the pop-
ulation inversion

1

1 − (g2 N1/g1 N2)
= 1

1 − e(hν/K Tm )
.
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In terms of Tm, the results for N0 and Nm,eq expressed in Eqs. (6.41), (6.37) and
(6.38) are the same. Thus, the circuit and the noise of the passive RLC circuit can
be extended in terms of Gm and Tm to cover the case with population inversion.

In short, the circuit representation of spontaneous emission with gain is similar
to thermal noise. The noise created by spontaneous emission can be represented as
a noise generator 〈i2

m〉 in parallel with and next to Gm, as in Fig. 6.10(c). For spon-
taneous emission, the 〈i2

m(ω)〉 is represented as a noise source (see Section 21.2 of
ref. [2]), 〈

i2
m (ω)

〉
�ω

= 2hν

π (eh̄ω/K Tm − 1)
Gm . (6.42)

Figure 6.10(c) shows the equivalent circuit representation, including the G0 for loss
and output and Gm for gain, as well as the thermal and the spontaneous emission
noise source.

Line width of laser oscillation

Both 〈i2
N〉 and 〈i2

m〉 are incoherent noise sources; thus their powers add. This means
that for the total cavity, including both amplification and passive loss, we obtain

1

Q
= 1

Q0
− 1

|Qm | = G0 − |Gm |
ω0C

,

�νosc = ν0

Q
= G0

2πC

(
1 − |Gm |

G0

)
,

〈I (ω)2〉
�ω

= 2

π
hν

[ |Gm |
1 − ehν/K Tm

+ G0

ehν/K T − 1

]
.


(6.43)

When the mode is below oscillation, |Gm | < G0. As the mode approaches oscilla-
tion, Q increases, and �νosc decreases. This effect is called line narrowing, and is
observed experimentally. When saturation occurs in an oscillating mode, |Gm| ≈
G0. 1/Q is approximately zero in the first-order approximation. However, the accu-
racy of our knowledge about G0 and Gm is insufficient to calculate such a small 1/Q
from Eqs. (6.43). On the other hand, the output of the laser can be measured, and
it is related to the noise sources in Fig. 6.10(c) via the circuit shown in that figure.
Therefore we can evaluate Q from the output power of the laser Po as follows.

When the mode is oscillating well above threshold, the second term of 〈I (ω)2〉
in Eqs. (6.43), involving G0, is small in comparison with the first term; it can be
neglected. The total emitted power is contained in the power dissipated in G0. If
we assume the power of the losses is much smaller than the power transmitted as
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the output, the total emitted power of the oscillator is

Po = G0

∞∫
0

〈V (ω)2〉
�ω

dω,

〈V (ω)2〉 = 1

4C2

〈I (ω)2〉

(ω − ω0)2 +
(

ω0

2Q

)2

with

ω0 =
√

1

LC
,

Po = h̄G2
0

2πC2
· 1

1 − e(hν/K Tm )
·

∞∫
0

ω dω

(ω0 − ω)2 + (ω0/2Q)2

= h̄G2
0 Q

C2
· 1

1 − e(hν/K Tm )
. (6.44)

Thus,

�νosc = ν0

Q
= h̄ν0G2

0

PoC2
· 1

1 − e(hν/K Tm )

= 2πhν0 (�ν0)2

Po
· 1

1 − e(hν0/K Tm )
. (6.45)

Here, �ν0 is the full line width (at half maximum) of the passive cavity resonance,
without amplification. We have utilized Q0 = ω0C/G0 = ν0/�ν0. The results of
the simplified analysis have ignored the coupling of amplitude fluctuations to phase
fluctuations, i.e. the modulation of the index of refraction of the gain medium by
fluctuations in spontaneous emission. More exact analysis based on Eqs. (6.35) and
(6.36) has shown [10]

�νosc = 2πhν0 (�ν0)2

Po

1

1 − e(hν/K Tm )
(1 + α2), (6.46)

where α is the line width enhancement factor due to the change of the real part of
the index by the imaginary part.

6.8.5 Relative intensity noise of laser oscillators

There are fluctuations of laser intensity caused by random spontaneous emissions.
This fluctuation is known as relative intensity noise, defined as

rin =
(

δ p2
l

P2
L

)/
� f . (6.47)
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Here δp2
l denotes the mean square value of the intensity fluctuation (i.e.

〈δ (t) δ (t + τ )〉 in Eq. (6.36)), PL is the laser power and �f is the band width.
The rin is known to be independent of PL. The relative intensity noise of lasers is
usually specified in terms of the RIN, in dB, where

RIN = 10 log10(rin). (6.48)

Both P2
L and δp2

l will exhibit themselves as current squared in the load resistor
after detection. Since the same detector and circuit will be used for P2

L and δp2
l ,

the ratio of δp2
l /p2

l is the same as i2
rin/ i2

L. Hence the relative intensity noise is
represented as a current generator with a mean squared current

i2
rin = rin · i2

L · � f. (6.49)

The RIN spectrum is not flat as the spectrum for white noise. The RIN is fre-
quency dependent. However, for simplicity, most link analyses assume that RIN is a
constant within the band width of interest. The RIN also differs for diode and solid
state lasers, and for single-mode and multimode lasers. For example, single-mode
solid state lasers may have a RIN of −170 dB for �f = 1 Hz, whereas diode lasers
typically have a RIN of −145 dB for �f = 1 Hz.
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7

Semiconductor lasers

The general principles of amplification and oscillation in semiconductor lasers are
the same as those in solid state and gas lasers, as discussed in Chapter 6. A negative
χ ′′ is obtained in an active region via induced transitions of the electrons. When
the gain per unit distance is larger than the propagation loss, laser amplification
is obtained. In order to achieve laser oscillation, the active material is enclosed in
a cavity. Laser oscillation begins when the gain exceeds the losses, including the
output. However, the details are quite different. In this chapter, the discussion on
semiconductor lasers will use much of the analyses already developed in Chapters 5
and 6; however, the differences will be emphasized.

In semiconductor lasers, free electrons and holes are the particles that undertake
stimulated emission and absorption. How such free carriers are generated, trans-
ported and recombined has been discussed extensively in the literature, [1, 2, 3].
We note here, in particular, that free electrons and holes are in a periodic crys-
talline material. The energy levels of electrons and holes in such a material are
distributed within conduction and valence bands. The distribution of energy states
within each band depends on the specific semiconductor material and its confine-
ment within a given structure. For example, it is different for a bulk material (a three-
dimensional periodic structure) and for a quantum well (a two-dimensional periodic
structure).

For lasers, we require information on how the free carriers undergo stimulated
emission and absorption, and what the χ produced from such transitions is. From
the quantum mechanical point of view, unlike dopants in insulating crystals or
molecules (or atoms) in gaseous media, free electrons and holes in semiconductors
are not individually localized and identifiable particles. Pauli’s exclusion princi-
ple dictates that there can only be one electron (or one hole) per energy state.
The occupation probability of any state by electrons (or holes) is governed by the
Fermi–Dirac distribution. A stimulated emission must involve an electron in an
energy state in the upper band, such as a state in the conduction band, making a
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transition to a vacant state in a lower band, such as an available hole state in the
valence band, in response to incident radiation. In the language of semiconductor
physics, free electrons in the conduction band are recombined with free holes in
the valence band, producing stimulated emission. A similar reverse statement can
be made for absorption. Since there are many energy states, there are many pairs
of transitions that emit (or absorb) photons of the same energy. The exact average
number of transitions that take place depends on the distribution of the energy states,
i.e. the density of states, and the Fermi distribution. In terms of our description of
χ and lasers presented in Chapters 5 and 6, the susceptibility produced by stim-
ulated emission and absorption in semiconductors is similar to the susceptibility
obtained in inhomogeneously broadened transitions. The total averaged suscepti-
bility is obtained from an accumulation of contributions from individual transitions.
The averaged χ ′′ comes from a balance of emission and absorption transitions.

At the steady state (but not at thermal equilibrium), there is a separate Fermi
distribution for electrons in the conduction band and one for holes in the valence
band. Each Fermi distribution varies according to its own quasi-Fermi level. For
certain quasi-Fermi levels in the conduction band and the valence band, we have
net emission, i.e. −|χ ′′|. At some other quasi-Fermi levels we have net absorption,
i.e. +|χ ′′|. The quasi-Fermi levels are themselves controlled by the electron and
hole densities in the material at that location. Thus, amplification or oscillation in
semiconductor lasers is controlled by carrier injection into the active layer. The
easiest way to inject the necessary carriers in order to achieve −|χ ′′| is to apply
a forward bias to a p–n junction diode. Therefore the semiconductor laser is also
known as a diode laser.

The easiest way to understand stimulated emission (and absorption) and the
susceptibility produced by stimulated transitions of electrons and holes is to discuss
them via a simple semiconductor laser made of a bulk homogeneous semiconductor.
This is the main objective of the discussion presented in Section 7.1. In order
not to distract our attention from the basic physics of semiconductor lasers, the
discussion of the amplification of optical waves in semiconductors is deferred to
Section 7.7. Instead, how a laser oscillates and how such a susceptibility saturates
after oscillation are discussed in Section 7.2.

Simple lasers in homogeneous bulk semiconductors are no longer used much in
present day applications. A modern semiconductor laser is much more complicated
than that described in Section 7.1. Different material structures, such as hetero-
junctions and quantum well materials, can be grown epitaxially. Different cavity
configurations, including structures to provide the necessary feedback, such as DFB
(distributed feedback) edge or surface emitting cavities, can be employed to control
the resonant mode and the output. Various device structures can be fabricated to
concentrate and to confine the injected carrier in the desired “active” region. The



214 Semiconductor lasers

manner in which injected electrons and holes will affect the quasi-Fermi levels and
the process by means of which the injected carriers are confined in the active region
are determined by the semiconductor and by the device structure. How the injected
carrier densities will be created efficiently by the laser current is determined by the
electrical design of the device. How the gain in the active layer can be best utilized
to obtain specific laser characteristics will be a matter of the optical design of the
laser, including the control of the material indices and thickness. A discussion on
these topics will be presented in Sections 7.3 to 7.5.

Section 7.6 discusses the modulation of the intensity of the output of laser oscilla-
tors by current modulation. Section 7.7 discusses the semiconductor laser amplifier.
Section 7.8 discusses the noise in semiconductor lasers.

To summarize, there are five major differences between semiconductor lasers and
solid state and gas lasers. (1) The cavity modes (usually the guided wave modes)
of edge emitting semiconductor lasers have transverse dimensions comparable to
the emission wavelength. They are usually not the Gaussian modes discussed in
Chapter 2. (2) The electron and hole densities in the active region of semiconduc-
tor lasers are controlled through a balance of injection and leakage (or decay) of
carriers. Structures such as hetero-junctions and current barriers have been used
to increase the carrier lifetime and to reduce the required injection current. (3)
The three-dimensional bulk material and a two-dimensional quantum well have
different densities of states. Since the Fermi level for a given carrier density is
affected substantially by the density of states, quantum size-confined structures are
used to achieve the required |χ ′′| while using as small a carrier density as possible.
(4) Since current injection has a high speed of response, electrical modulation
of the injection current is used to yield direct modulation of laser intensity.
(5) There will be noise generated by the carriers in addition to the noise gener-
ated by spontaneous emission.

7.1 Macroscopic susceptibility of laser transitions in bulk materials

In the following discussion it is assumed that the reader is acquainted with the
fundamental properties of semiconductors (see refs. [2] and [3]). The energy dia-
gram of the conduction and valence bands and concepts such as electron, holes, the
Fermi level and p–n junctions, are not reviewed here. Our analysis in Section 7.1
is concerned only with the stimulated emission and absorption processes and the
susceptibility in bulk homogeneous semiconductor materials for a small electro-
magnetic field. In order to describe clearly the basic physics and the analysis of the
susceptibility, saturation effects such as those described in Section 5.4 are not dis-
cussed here. It would be instructional to compare this discussion with the discussion
on the unsaturated susceptibility given in Chapter 5.
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When a laser oscillates, there is a strong electromagnetic field, and the suscep-
tibility saturates. The laser oscillation and the saturation of χ will be discussed
in Section 7.2. The saturation of χ in semiconductors is very different from the
saturation of χ in gas and solid state lasers.

The discussion in Section 7.1 will be divided into four parts: (1) the energy states
in bulk semiconductors, (2) the density of states, (3) the Fermi distribution and the
current densities, and (4) the susceptibility and the induced transitions.

7.1.1 Energy states

Within the conduction band and valence band of a three-dimensional periodic crys-
talline bulk semiconductor medium, each energy state has a wave function of the
form [4],

�C(r ) = uCke jk·r , (7.1)

where uCk(r) has the periodicity of the crystalline lattice. The energy of electrons in
the conduction band for a state with a given k (known as the parabolic approximation
of the energy band structure) is

E(|k|) − EC = h̄2|k|2
2 me

. (7.2a)

A similar expression is obtained for energy states in the valence band,

EV − E(|k|) = h̄2|k|2
2mh

. (7.2b)

EC is the bottom of the conduction band and EV is the top of the valence band. The
effective masses of the electrons and holes are me and mh. Note: this k is not to be
confused with the propagation constant, k, of the optical waves in Chapters 1 to 4.
For this reason, the magnitude of k will be presented as |k| in this chapter.

7.1.2 Density of energy states

There are a large number of such states per unit energy range (or per unit |k|
range), called the density of states. The resultant density of states per unit volume
expressions (for bulk materials) in the conduction and valence bands are well known
[4, 5],

ρC(E − EC)dE = 1

2π2

(
2me

h̄2

)3/2

(E − EC)1/2 dE, E > EC, (7.3a)

ρC(|k|)d|k| = |k|2
π2

d|k|
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and

ρV(EV − E)dE = 1

2π2

(
2mh

h̄2

)3/2
(EV − E)1/2 dE, E < EV, (7.3b)

ρV(|k|)d|k| = |k|2
π2

d|k|.

Here, the band gap energy Eg is EC − EV. The effective masses of the electrons and
holes are me and mh, respectively. Note that the density of states as a function of
|k| is the same for holes and electrons. This means that, for direct transitions with
no change in k, the density of induced transitions (as a function of |k|) is the same
as the density of either the upper or the lower energy states in Eqs. (7.3).

When one analyses the density of states in material structures with just two or less
dimensional periodic variation in the crystal, such as in a quantum well structure,
the dependence of the density of state on E will change. This point will be discussed
in Section 7.3.

7.1.3 Fermi distribution and carrier densities

The probability of the occupation of the energy states by electrons at equilibrium
obeys the Fermi statistical distribution [3],

f (E) = 1

e(E−EF)/K T + 1
, (7.4)

where EF is the Fermi level, K is Boltzmann’s constant and T is the absolute tem-
perature on the Kelvin scale. At equilibrium, there is only one Fermi level EF.
However, in a quasi-equilibrium situation (such as in a forward biased p–n junction
at steady state), the probability distributions of electrons in the conduction band and
in the valence band have different EF. When electrons and holes are injected into an
active region, there is a quasi-Fermi level, EFC, used for describing the steady state
electron distribution in the conduction band, and a quasi-Fermi level, EFV, for the
valence band. The fC(E) and fV(E) describe separately the probability of occupying
the state by electrons at E in the conduction band and in the valence band. The hole
(i.e. the absence of electrons) distribution is [1 − fC(E)] in the conduction band and
[1 − fV(E)] in the valence band. Figure 7.1 illustrates the Fermi levels, the band
diagram of a direct semiconductor as a function of the |k| of the electronic (and
hole) state, the Fermi levels, the fC and the fV. The Fermi levels are shown with
EFC > EC and EFV < EV, describing the occupation probability of the energy states
in degenerate semiconductors.

How are the quasi-Fermi levels controlled by electron and hole densities? The
total number of electrons per unit volume in the conduction band, nC, is the
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Figure 7.1. Energy diagram and Fermi distribution of electrons and holes in
semiconductors. (a) Energy of electrons in the conduction band and holes in the
valence band as a function of |k|. (b) Fermi distribution of electrons and holes.
The quasi-Fermi levels for electrons and holes, EFC and EFV, are shown here under
current injection, with EFC – EFV > EC – EV.

integration of the product of ρC(E) and fC(E). At 0 K and for electrons, according to
Eq. (7.4), all the states above EFC in the conduction band are empty and all the states
below EFV in the valence band are occupied. Thus,

nC =
∞∫

EC

ρC(E) fC(E) dE.

At temperatures close to 0 K,

nC ≈
EFC∫

EC

ρC(E) dE = 1

2π2

(
2mC

h̄2

)
· 2E3/2

FC

3
. (7.5)

A similar expression for nV is obtained for the holes. The significance of Eq. (7.5) is
that the total number of injected electrons nC in the conduction band (and the holes
in the valence band, nV) controls the value of quasi-Fermi levels, EFC (and EFV).
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Figure 7.2. Energy band diagram and Fermi levels in a forward biased p–n junc-
tion. (a) Energy band diagram of a forward biased homo-junction. States in the
shaded areas are most likely occupied by electrons. (b) Energy diagram of a for-
ward biased double hetero-junction. States in the shaded areas are most likely
occupied by electrons.

The carrier density, thus the Fermi level, is controlled by current injection. The
Fermi level in turn controls the susceptibility (i.e. the gain of the laser material).

In a p–n junction, EC and EV change with position (see ref. [1] for more details).
The values of EFC and EFV relative to EC and EV will also change as a function of
position in a p–n junction. In quasi-equilibrium, EFC and EFV are independent of the
position in the p and the n regions, outside the junction. Otherwise, current in the
lateral directions, x and y, will flow. Figure 7.2(a) illustrates the band diagram and
the quasi-Fermi levels in a forward biased p–n junction in a homogeneous medium,
as well as the EC and EV, as a function of position. Figure 7.2(b) [6] illustrates
the case for a p–n double hetero-structure diode in which the material in the active
region has a band gap lower than the material for the p and n regions. As we will
discuss in Section 7.5, the larger band gap is used to reduce the leakage of the
carriers from the junction region.

7.1.4 Stimulated emission and absorption and susceptibility
for small electromagnetic signals

Stimulated emission (or absorption) can take place only when the upper energy state
in the conduction band is occupied by an electron (or empty) and when the lower
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electron energy state in the valence band is empty (or non-occupied by electrons, i.e.
occupied by holes). Alternatively, we say that emission takes place when an electron
and a hole recombine, and absorption takes place when the radiation generates an
electron–hole pair. Thus, for a specific pair of energy states, the probability for net
emission to take place, between an energy state E2 in the conduction band and state
E1 in the valence band, is proportional to

fC (E2) [1 − fV (E1)] − fV (E1) [1 − fC (E2)] = fC (E2) − fV (E1) . (7.6)

For direct transitions, the |k| of the electrons and holes (generated or recombined)
does not change, or kelectron ≈ khole with �k ≈ 0. Most semiconductor lasers use
direct semiconductor transitions because direct transition probabilities between
individual states are much larger than the indirect transitions that involve a change
of k. Let the photon energy of the radiation be hν; then E2 − E1 should equal the
photon energy. The upper and lower levels, E2 and E1, for the energy states with
eigen value k are given in Eqs. (7.2a) and (7.2b):

E2 = EC + h̄2|k|2
2me

,

E1 = EV − h̄2|k|2
2mh

,

so

E2 − E1 = hν = Eg + h̄2|k|2
2mr

, (7.7)

where

Eg = EC − EV,
1

mr
= 1

me
+ 1

mh
,

where mr is the reduced effective mass of the electron–hole pair and Eg is the energy
of the band gap. This is a result of the parabolic approximation of the energy band
diagram. There are many pairs of energy states that have the same hν within a range
dν.

Similar to the case of an inhomogeneous broadened line discussed in Section 5.4,
the total susceptibility of the stimulated emission and absorption for a given hν

is obtained by integrating the χξ of all the individual transitions for various νξ

values. The integrand, χξ dνξ , is the product of (1) the χξ of the individual transition,
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(2) the probability for allowing the transition as prescribed by the Fermi distri-
bution in Eq. (7.6), and (3) the number of direct transitions per unit frequency
νξ range given by the density of states. From Eqs. (5.50) (see also ref. [5]), we
obtain

χ ′′
ξ (ν, νξ ) dνξ = µ2

2ε0h̄


(�ν)

2π(
�ν

2

)2

+ (ν − νξ )2

 [ fC − fV]
2|k|mr

h̄π
dνξ , (7.8)

where the following relations have been obtained from Eq. (7.7):

νξ = 1

h

(
h̄2|k|2
2mr

+ Eg

)
,

d|k| = 2π mr

h̄ |k| dνξ

and, from Eqs. (7.3a) and (7.3b),

ρ
1

V
d|k| = |k|2

π2
· 2π mr

h̄|k| dνξ

= 2|k|mr

π h̄
dνξ .

Clearly, for small �ν, the { } in Eq. (7.8) can be approximated by δ(ν − νξ ).
Therefore, after integrating both sides of Eq. (7.8), we obtain

χ ′′ (ν) = µ2|k|mr

π ε0h̄2 [ fC(hν) − fV(hν)]

= µ2

2πε0h̄

(
2mr

h̄

)3/2
[ fC(hν) − fV(hν)]

√
ν − (Eg/h),

χ ′ (ν) = µ2|k|mr

π ε0h̄2

∫ 
(�ν)

2π[
�ν

2

]2

+ (ν − νξ )2

 [ fC − fV]
(νξ − ν)

�ν

2

dνξ



. (7.9)

Here, the relation between χ ′
ξ and χ ′′

ξ is obtained from Eqs. (5.41) and (5.49). Altern-
atively, one can obtain χ ′ from χ ′′ from the Kramers–Kronig relation presented in
Eqs. (5.42).
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7.1.5 Transparency condition and population inversion

In the 0 K approximation, fC and fV are either zero or unity:

fC = u (E2 − EFC)

= u

(
−EFC + EC + h̄2|k|2

2me

)
, (7.10a)

fV = u (E1 − EFV)

= u

(
EV − h̄2|k|2

2mh
− EFV

)

= u

(
E2 − Eg − h̄2|k2|

2mr
− EFV

)
. (7.10b)

Here, u is the unit step function that equals unity for positive arguments and zero
for negative arguments. For a given hν (i.e. E2 − E1) of the radiation, the |k|
value is given by Eq. (7.7). In order to obtain gain, we need a negative χ ′′, or fC = 0
(E2 < EFC) and fV = 1 (E1 > EFV), or E2 − E1 < EFC − EFV. Similarly, for absorption
we need positive χ ′′, or E2 > EFC, and E1 < EFV.

At other temperatures [7], we also have gain when

Eg ≤ E2 − E1 ≤ EFC − EFV. (7.11)

Therefore, EFC − EFV = E2 − E1 is known as the transparency condition of semicon-
ductor lasers. This condition is equivalent to that required for population inversion
in solid state and gaseous lasers. EFC (and EFV) is determined by the density of
electrons nC (and holes nV) in the conduction (and the valence) band. Equation
(7.5) showed this relationship. In other words, there is an nC (and nV) required for
achieving transparency.

Whenever the gain per unit length is larger than the residual propagation loss
per unit length, there will be laser amplification. However, in order not to distract our
attention away from learning the basic physics, our discussion on semiconductor
laser amplification will be deferred to Section 7.7. First we will discuss the laser
oscillation.

7.2 Threshold and power output of laser oscillators

Like all lasers, laser oscillation in a given cavity mode begins when the intensity
gain of the mode (due to the |χ ′′| of the induced transition) exceeds the total loss,
including the internal loss and the output coupling. At threshold, the required gain
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of the intensity of the oscillating mode, �γ t, satisfies the condition:

e�γt L Re−αi L ′ = 1,

or

�γtL = αi L ′ + ln

(
1

R

)
. (7.12)

Here, γ t is the required gain of the active medium at threshold, αi is the propagation
loss coefficient of the oscillating mode, L′ is the propagation length per pass of the
oscillating mode in the cavity, L is the propagation length per pass of the oscillating
mode in the active medium, R is the equivalent intensity reflection coefficient for
reflectors. For lossless reflectors, 1 − R is the effective transmission to the output.
� is the optical filling factor of the active medium. It is the ratio of the optical
energy of the mode in the active medium to the total optical energy of the mode in
the cavity. It varies according to the configuration of the resonant cavity. A more
explicit discussion of � will be given in Section 7.4.

The required γ t is obtained by injecting carriers into the active layer in order
to obtain the required [ fC(hν) − fV(hν)]. The charge neutrality condition requires
that nC = nV. The Fermi levels are determined by the carrier densities nC and
nV. Therefore, there is a required nC,t, corresponding to the γ t at the threshold of
oscillation.

For the current I injected into the laser, a portion of it, η i, will be channeled
into the active region and will emit photons. The current I is the integration of the
current density (i.e. the current per unit area in the xy plane) J over the area of
the device in the xy plane. The remainder, 1 − η i, of the injected carriers is lost
as heat, electrical dissipation, carriers diffused into adjacent regions and carriers
that are non-radiatively combined. Under the steady state condition and just before
oscillation, the rate at which carriers are injected into the active layer equals the
electron–hole decay rate. Thus we obtain

ηi
Jt

q
= δ nC,t

τ
. (7.13)

Here, Jt is the threshold injection current density (number of injected carriers per
unit area), δ is the thickness of the active layer, and τ is the lifetime of the holes
and electrons in the active layer.

In all lasers, as we learned in Chapter 6, γ (i.e. nC) is locked to its threshold
value whenever the injection current exceeds its threshold at steady state. Saturation
occurs because when the injected carrier density is above the threshold it will yield
a larger photon density in the oscillating mode, and a larger photon density reduces
the carriers via increased stimulated transitions in the active layer. The increase in
carrier generation rate is balanced by the increased reduction of carriers. In other
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words, after oscillation begins, saturation will occur so that the saturated gain is
always equal to the total losses, which include internal loss and output. As the laser
current I exceeds its threshold, It, the total additional number of carriers recombined
per unit time due to the stimulated transition will be proportional to η i(I − It)/q.
Thus the power emitted by stimulated emission is

Pe = ηi (I − It)
hν

q
. (7.14)

Part of this power is dissipated inside the laser resonator and the rest is coupled out
through the output end. We obtain the output power of a semiconductor laser as

Po = Pe
(1/L ′) ln(1/R)

(1/L ′) ln(1/R) + αi
. (7.15)

The external differential quantum efficiency, ηex, is the ratio of the increase in
photon output rate (that results from an increase in the injection) to the increase in
the injection rate. It is

ηex =
d

(
Po

hν

)
d

(
I

q

) = q

hν
· d Po

d I
. (7.16)

Figure 7.3 shows the curve of light output as a function of drive current. The kink
represents the beginning of the oscillation threshold. Note that the change of Po

is directly proportional to the change of I above the threshold. This means that
the modulation of the light output will be directly proportional to I without much
non-linear distortion. For this reason, there has been a great deal of interest in direct
modulation of semiconductor lasers.

It is also interesting to keep in mind that when the gain saturates after oscillation,
the carrier density in the active region is clamped to nC,t. In other words, the quasi-
Fermi levels are locked to their threshold values. This is what we mean by saturation.
Such a saturation process is different from the saturation processes of solid state
and gas lasers.

7.2.1 Light emitting diodes

It is interesting to note that, at injection current density smaller than Jt, a laser
functions as a light emitting diode (LED). Let us define a radiative efficiency η r

as the fraction of the injected carriers that recombine through the radiation process
with respect to the total injected carriers that decayed or leaked out through all
mechanisms. Let us also define an optical collection efficiency ηc as the fraction of
the optical power collected as the output of an LED with respect to the total optical
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Figure 7.3. Output optical power versus the injection current for a diode laser.
Below the threshold of oscillation there is spontaneous emission. The device is a
light emitting diode (LED). Above threshold the power output due to stimulated
emission is linearly proportional to injection current until saturation occurs.

power emitted in an LED. Then the output power of an LED is

PLED = ηcηr
hν

q
I . (7.17)

7.3 Susceptibility and carrier densities in quantum
well semiconductor materials

In order to understand how the susceptibility is affected by the material structures
that have various densities of states, the susceptibility of a quantum well structure is
presented here. A quantum well structure has the important property that its density
of states is different from the density of states in a bulk material discussed in the
previous section. For a given electron density, the quasi-Fermi level is higher in
quantum well materials because of its smaller density of states. Thus, the suscep-
tibility for a given carrier density is affected significantly by the density of states.
A much more extensive discussion of quantum well lasers is given in ref. [8].

Quantum well structures are typically grown epitaxially on InP or GaAs sub-
strates. Well layers usually have a smaller bandgap E�, and barrier layers have a
larger bandgap Eg, as illustrated in Fig. 7.4 for a single well among barriers. The
growth direction is designated here as the z axis. The well thickness Lz is typically
in the range of 50 to 150 Å in the z direction. The barrier thickness is typically less
than 100 Å, just larger than the evanescent tail of the wave functions of the energy
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Figure 7.4. Energy band diagram and energy levels of electrons and holes in a
quantum well. The thickness of the well is Lz . The well with an energy band gap
E� is sandwiched between barriers with a larger energy band gap Eg. The energy
levels of the electrons are shown as n1, n2 and n3. The energy levels of the heavy
holes are shown as h1 and h2, while the first energy level of the light holes is shown
as l1.

states for quantum wells. In the lateral x and y directions, the material thickness and
composition are uniform. For lattice matched well and barrier layers, the materials
in the quantum wells have the same periodic crystalline variation in the xy directions
as the host lattice.

The total discontinuity of the bandgap energy �Eg at the well–barrier interface,
Eg − E�, comprises �EC of the conduction band and �EV of the valence band.

7.3.1 Energy states in quantum well structures

The total energy of any state is the sum of the energy in the z direction and the energy
in the xy directions designated by |k|. See ref. [8] for a more detailed discussion
of the energy states of quantum well hetero-structures. The energy eigen states in
the z direction (for both the conduction and valence bands) will be the quantum
mechanical solutions for electron and hole states in their potential wells. The dis-
crete energy levels of the electrons and holes in a well are illustrated in Fig. 7.4. The
energies of electron states in the conduction band are designated as n j . Furthermore,
the quantum size effect separates the light-hole from the heavy-hole energy band
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in the valence band. Therefore, in the valence band, there are light-hole energy
states, l1, l2,. . . and heavy-hole energy states, h1, h2, . . . . Because of the larger
effective mass of the heavy holes, h1 is usually closer to EV than is l1.

In the two-dimensional periodic structure in the lateral direction, the xy variations
of the wave functions of energy states still have the same form given by Eq. (7.1),
with k restricted to the xy directions. Therefore the total energy of the upper state
in the conduction band, i.e. E2, is

E2(|k|) = n j + h̄2|k|2
2 me

, E2 ≥ n j . (7.18)

For the lower energy state in the valence band,

E1(|k|) = h j − h̄2|k|2
2mhh

= l j − h̄2|k|2
2m lh

, (7.19)

if E1 ≤ h j or l j .

7.3.2 Density of states in quantum well structures

In the conduction band in quantum well structures, the number of energy states
for a specific E2 is determined from Eq. (7.18). For n2 > E2 > n1, there is only
one |k| value for each E2. For n3 > E2 > n2, there are two |k| values for each E2,
|k ′| = (1/h̄)

√
2mC(E2 − n2) and |k ′′| = (1/h̄)

√
2mC (E2 − n1). In other words, for

n3 > E2 > n2, there will be two energy states involved in an induced transition. The
energy states will be identified by their |k|, |k′|, |k′′|, etc. Similarly, there will be j
different |k| values for n j < E2 < n j+1. Following the same pattern, the number of
states in the valence band is determined from Eq. (7.19).

In summary, the number of energy states (identified by the eigen values of k in
the xy directions) per unit volume V in the quantum well structure is different than
the number of states (identified by the k in three dimensions) per unit volume in the
bulk material. The density of states per unit volume for a specific |k| is [8]:

ρ(|k|) d|k| = 1

Lz

|k|
π

d|k|. (7.20)

Equation (7.20) applies to all the energy states in the conduction and valence bands.
For each |k| value associated with the n j ,

ρC(E2) dE2 = 1

π Lz

√
2me(E2 − n j )

h̄2 d|k| = 1

2π

(
2me

h̄2

)
1

Lz
dE2. (7.21)

The total ρ(E2) for E2 > n j is the sum of such terms for each |k| and n j that yields
the E2 in Eq. (7.18). Therefore, for an E2 in the conduction band of a quantum well
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Figure 7.5. Density of electronic states in a two-dimensional quantum well com-
pared with the density of states in a three-dimensional bulk material. The quantum
well is assumed to have infinite �EC. The density of states of a bulk material forms
an envelope for the steps of the quantum well case.

structure, allowing different possible n j [8],

ρC(E2) dE2 = 1

2π Lz

(
2me

h̄2

) ∑
j

u(E2 − n j ) dE2. (7.22)

Similar relations hold for E1 in the valence band with respect to hm and lm energy
levels in the z direction,

ρV(E1) dE1 = 1

2π Lz

{(
2mhh

h̄2

) ∑
j

[u(h j − E1)]

+
(

2m lh

h̄2

) ∑
j

[u(l j − E1)]

}
dE1. (7.23)

The effective mass of the heavy hole, mhh, is different (usually larger) than the
effective mass of the light hole, mlh. Quite often, n1 < E2 < n2, E1 > l1 and h1 >

E1 > h2, and therefore only the first terms of the series in Eqs. (7.22) and (7.23)
are used. Figure 7.5 illustrates the density of states as a function of E2 for the
conduction band, in the bulk and in the two-dimensionally constrained quantum
well materials. In this figure, the quantum well is assumed to have infinite �EC.

7.3.3 Susceptibility

The susceptibility of a quantum well material can be calculated in a manner sim-
ilar to the calculation of χ in Eqs. (7.8) and (7.9), using the density of states of
two-dimensional periodic structures. Like the results obtained for the bulk media,
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the transparency condition is achieved when EFC − EFV ≥ E2 − E1 ≥ n1 − h1. Here
E2 − E1 is the photon energy, and the highest energy level in the valence band is
assumed to be h1.

7.3.4 Carrier density and Fermi levels

In semiconductor lasers, charge carriers are injected into the active layer by the
injected current in a forward biased p–i–n diode. The total number of electrons per
unit volume in the conduction band is related to EFC through the relation

nC =
∞∫

EC

ρC(E2) fC(E2) dE2. (7.24)

Similarly, one can calculate EFV due to the injected holes in the valence band. The
number of injected carriers required to achieve the transparency condition or the
threshold condition for laser oscillation is much less in quantum well materials
than in the bulk, because of the big difference in the density of states. This effect is
especially significant when Lz is less than 200 Å.

7.3.5 Other quantum structures

For unstrained quantum wells, heavy-hole transitions dominate because of the larger
effective mass mhh and smaller energy shift. Fields which have the electric field
polarized perpendicular to the z direction, i.e. the TE polarized fields, have a larger
gain. For strained quantum well layers, the presence of biaxial tension (or com-
pression) alters the cubic symmetry of the semiconductor. The separations of both
the heavy-hole and the light-hole band edge from EV decrease under tension (or
increase under compression). The degeneracy of the valence band edge for heavy-
hole and light-hole bands is removed. Compressive strain yields a reduction in
the hole effective mass and a reduction in the required carrier density to reach
transparency and hence the oscillation threshold.

The density of states is further reduced in quantum wire and quantum dot struc-
tures, potentially yielding an even lower threshold of carrier density for oscillation.

7.4 Resonant modes of semiconductor lasers

Resonant cavities of semiconductor lasers are formed on material structures grown
epitaxially on semiconductor substrates. They differ from cavities of solid state
and gas lasers in several ways. (1) Their dimensions are different. Whereas cavities
of solid state and gas lasers have reflectors with lateral dimensions of millimeters
and cavity lengths of centimeters or meters, the cavities of semiconductor lasers
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have typical lateral dimensions of micrometers. The length of a typical long semi-
conductor laser is less than a few hundred micrometers. Instead of Gaussian mode
analysis, guided wave analysis such as that discussed in Chapters 3 and 4 is used
for analyzing edge emitting (i.e. in-plane) lasers. (2) Whereas the fields of oscil-
lating modes are mostly contained within the gain region in solid state and gas
lasers, the size of semiconductor laser resonant modes is often larger than the gain
region. Attenuation of the mode outside the gain region may be high. Thus, opti-
cal confinement of the resonant mode is an important design consideration. (3) In
some semiconductor lasers, resonance in the longitudinal direction can be obtained
by distributed feedback as well as by end reflection. (4) Cavity design must be
consistent with the design of material structure aimed at current confinement and
reduction of carrier leakage.

Semiconductor laser cavity configurations must conform to the materials that can
be grown by epitaxial growth technology, where the growth direction is designated
as the vertical z direction in this chapter. There are two types of semiconductor
lasers: the edge emitting lasers and the surface emitting lasers. (1) Edge emitting
(or in-plane) lasers typically have a material structure that is a single transverse
mode waveguide in the z direction. It consists typically of an optically active layer
with gain and a high-index layer which serves as the core of the waveguide, sur-
rounded by lower index cladding and contact layers. Cavity resonance is created
by reflection of the guided mode between two ends in the longitudinal y direction.
Material processing procedures such as photolithography, etching and regrowth are
used to form a channel waveguide in the transverse direction x, perpendicular to
the longitudinal direction y. Since the output beam is radiated from the end, this
type of laser is called an edge emitting (or in-plane) laser. (2) Vertical cavity lasers
typically have a bottom Bragg reflector, followed by the contact and active lay-
ers, then a top Bragg reflector or mirror. All layers are grown epitaxially in the z
direction, which is also the longitudinal direction of the cavity. The resonance is
obtained for TEM-like waves propagating back and forth in the longitudinal direc-
tion through the various layers and reflected by the top and bottom reflectors. The
output beam is radiated either from the top reflector or from the bottom reflector
(through the substrate). Thus these lasers are called vertical cavity surface emit-
ting lasers (VCSELs). The index variation in the transverse direction is not strong
enough to form a waveguide. Examples of both types of cavity are illustrated in
Fig. 7.6.

7.4.1 Cavities of edge emitting lasers

Although the resonant modes of some lasers in earlier years were guided by the
lateral variation of the gain generated from a non-uniform injected carrier density,
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Figure 7.6. Cross-section of (a) an edge emitting (or in-plane) laser and (b) a
vertical cavity surface emitting laser (VCSEL). (a) An example of an edge emitting
(i.e. in-plane) laser. The gain layer is sandwiched between waveguide cladding
layers (grown as a double hetero-structure) to form the high-index waveguide core
for optical confinement in the z direction. Wave propagation and resonance are
in the y direction. The p–n diode is formed by the p and n doping in various
layers. The current is injected from the top and bottom metal contacts through
the forward biased diode in the z direction. The higher band gap of the waveguide
cladding layers serves the additional function of impeding carrier leakage from the
gain layer. Optical and carrier confinement in the x direction may be achieved by
etching and regrowth of, or diffusion in, the materials outside the channel region.
(b) A vertical cavity surface emitting laser. The top and bottom Bragg reflectors,
as well as the gain layer, are grown epitaxially on the substrate. The p–n diode is
formed by the p and n doping in various layers between the metal ring electrodes.
The current is injected through the forward biased metal ring contacts. The current
blocking layer forces the injected current to be concentrated in the center region,
coincident with the optical wave.

most semiconductor edge emitting lasers today have index variations in the lateral
directions intended for control of the electromagnetic mode.

In the type of edge emitting laser illustrated in Fig. 7.6(a), the ternary and qua-
ternary alloy layers of the hetero-structures are grown epitaxially on GaAs or InP
substrate. The waveguide consists of a waveguide core (from z = − t/2 to z = + t/2)
and an active layer with thickness δ within the waveguide, with t � δ (shown in
Fig. 7.6(a) as located from z = 0 to z = δ). The waveguide and the active layer
have higher refractive indices than those of the surrounding contact layers. The
active layer might just be a very thin quantum well layer. The indices of different
layers are controlled by their composition. The lower the band gap, the higher the
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refractive index. The contact layers are chosen so that there is, in effect, a p–n diode
in the z direction. Carriers are injected into the active layer from the top and bottom
electrical contacts. In the other transverse direction x, not shown in Fig. 7.6(a),
the material outside the channel waveguide core also has a lower index than the
waveguide core materials, obtained by subsequent processing steps after the initial
epitaxial growth.

The passive transverse modes of such waveguide structures have already been
discussed in Chapter 3. They are identified by the effective index for the mode prop-
agating in the longitudinal y direction and by the evanescent tails in the lower index
regions in the z and x directions. Note that the size of the guided wave mode is usually
much larger than the thickness of the active layer. Resonance is created by reflec-
tions of guided waves propagating in the y direction. Typically, the cavity length in
the longitudinal direction is tens or hundreds of micrometers, whereas the transverse
dimension of the guided wave mode is of the order of one micrometer or less.

The gain of the guided wave mode provided by the thin active layer could be
analyzed by the perturbation analysis discussed in Chapter 4. Let the guided wave
mode be e j (x, z). Following Section 4.1.3, the χ ′′ provided by the active layer
can be regarded as a perturbation �ε to the χ of all the layers that defined the
mode. Let �ε be uniform within an active layer which extends from z = 0 to
z = +δ and from x = −w/2 to x = +w/2. From Eqs. (4.6) and (4.7) and for the jth
mode, with a j (y) exp(− jn j,effk0 y) variation in the longitudinal y direction, we have

�ε = ε0(− jχ ′′)

and

da j

dy
= − ja j

ω

4

w/2∫
−w/2

+δ∫
0

(�ε) e j · e∗
j dz dx


= − j� a j

ω

4
(�ε)

+∞∫
−∞

+∞∫
−∞

e j · e∗
j dz dx


= −�

[
β j

2(neff, j )2
(χ ′′)

]
· a j . (7.25)

� =

+w/2∫
−w/2

+δ∫
0

e j · e∗
j dz dx

∞∫
−∞

∞∫
−∞

e j · e∗
j dz dx

,
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which is the optical filling factor. It is interesting to note that the gain for Gaussian
modes in an unbounded medium in solid state and gas lasers is −ω

√
µ0εχ

′′/n2.
According to Eqs. (5.43) and (7.25), the intensity of the jth guided wave will grow
as exp(�γ y), where γ = −(β jχ

′′)/n2
eff, j . Clearly a negative χ ′′ (neglecting any

propagation loss) will yield amplification of a j as it propagates in the y direction.
In practice, � � 1 for many lasers. Therefore, epitaxial layers, such as a double

hetero-structure (DH) with a low band gap material surrounded by higher band
gap layers, are used to increase optical confinement, i.e. the �. This also stabilizes
the mode with respect to small variation of χ ′. Furthermore, DH layers outside
the waveguide mesa in the x direction may be etched away and a layer of higher
band gap material may then be regrown on it. Alternatively, instead of etching, the
band gap of the material surrounding the mesa may be increased by implementing
diffusion processes. The idea is to have a lower index material to surround the
channel waveguide. These configurations are called the buried hetero-structure
(BH) configurations. Figure 7.7 illustrates two examples of BH configurations.
The channel waveguide in Fig. 7.7(b) is obtained by etching a V groove into the
substrate, then following up with epitaxial growth.

The χ ′ created by current injection may, at times, also contribute to the pertur-
bation of the lateral mode pattern in bulk lasers made of a homogeneous material.
However, this contributes very little to any change of mode pattern in quantum
well lasers because the quantum well layer is typically much less than 0.1µm thick.
Indeed, even the existence of the quantum well layers is usually neglected in the
calculation of the field of guided wave modes.

Most commonly, the semiconductor waveguide is cleaved at both ends in the
y direction. The cleavage provides an optically nearly perfect facet perpendicular
to y. A dielectric discontinuity between the semiconductor and the air yields a
30% power reflection coefficient at each end over a broad band of wavelength.
The length of the cavity L (see Fig. 7.6(a)) is the distance between the cleaved
facets. Dielectric coatings may be applied to reduce or to increase the reflection,
and to yield wavelength dispersion of the reflection coefficient. Since the |χ ′′| in
the active region is larger for radiation polarized perpendicular to z than parallel to
z, and since the propagation loss is lower for TE than for TM guided wave modes,
the output is linearly polarized normally in the x direction for cavities oriented in
the y direction. Oscillation of a mode begins when the gain of the mode exceeds the
internal loss and the output coupling. Different longitudinal modes have similar gain
and loss. Thus, cleaved cavity lasers are often multimode oscillators. The hopping
of the oscillating longitudinal mode from one to another as a function of carrier
injection creates undesirable characteristics, such as an increase in noise, poor
oscillation wavelength stability and kinks in power output as the injection current
increases.
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Figure 7.7. Two examples of BH edge emitting lasers. (a) Etched mesa or impu-
rity induced disordered BH structure for current, photon and carrier confinement.
The hetero-structure of the contact, gain and waveguiding layers is first grown
epitaxially on the substrate. The waveguide and gain layers provide optical con-
finement of the guided wave mode in the z direction. Carrier confinement in the z
direction is also provided by hetero-junctions. Regrowth of buried hetero-structure
or diffusion is then used outside the channel waveguide for optical, current and/or
carrier confinement in the x direction. (b) An etched channel substrate BH laser.
A semi-insulating epitaxial layer is first grown on the substrate. A V groove is
then etched so that the bottom extends into the conducting substrate. The double
hetero-structure laser layer is then regrown. Due to the tendency of the regrowth
to planarize, a thicker and separate active stripe is formed in the V groove where
the current is constrained to flow. This figure is taken from Fig. 1.13 of ref. [6] by
permission of John Wiley and Sons.

In order to have only one oscillating longitudinal mode, an interesting modifica-
tion of the cleaved cavity is the use of a grating filter discussed in Section 4.2.1 to
provide the desired reflectance at both ends and to select the resonant wavelength
of the mode to oscillate. A grating at the end of the laser (for y ≥ L or y ≤ 0)
will yield a high power reflection coefficient within a narrow band width given in
Eq. (4.14). The wavelength that will yield the maximum reflectivity is given by
the Bragg condition in Eq. (4.9). The grating can be fabricated in materials which
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contain the evanescent field region of the guided wave mode. Lasers using grating
reflectors are called distributed Bragg reflector (DBR) lasers.

A further modification of the DBR laser consists of introducing a continuous
grating along the length of the cavity from y = 0 to y = L. This is intended to provide
resonance in the y direction and to control the longitudinal mode [9]. This type is
called a distributed feedback (DFB) laser. Theoretically, when there is a uniform
grating of length L in the cladding layer, and when the waveguide is infinitely long
in the y direction outside the grating region (i.e. the waveguide is not terminated
by additional reflectors), Eqs. (4.12) (with appropriate boundary conditions) yields
two independent equivalent longitudinal modes. In order to obtain only single-mode
oscillation, this degeneracy can be removed by cleaving the waveguide at y < 0
and at y > L. The cleavage is used to control the phase of the reflected wave and to
eliminate the oscillation of the second mode. However, the present cleavage process
does not allow the position of the facet – and thus the phase of the reflected light –
to be controlled precisely. Therefore, the long wavelength DFB lasers usually have
a low-reflection coated front facet and a high-reflection coated rear facet to assure
a single oscillating mode operation. The longitudinal mode degeneracy could also
be removed by introducing a quarter-wavelength (λ/4) shift at the center of the
device, without any cleaved facets.

7.4.2 Cavities of surface emitting lasers

Figure 7.6(b) illustrates an example of a vertical cavity laser. The longitudinal
direction of the cavity is the vertical z direction of epitaxial growth. Resonance is
obtained by a TEM-like wave propagating in the z direction through various layers
and reflected by the Bragg reflectors at the bottom and on the top.

The index variation in the x and y directions is not strong enough to support a
guided wave mode. Frequently, gain guiding determines the transverse beam size.
Otherwise a mesa (i.e. a post) may be etched to control the transverse mode size.
Sometimes a current blocking layer, such as that shown in Fig. 7.6(b), is used to
direct the current just to the center region of the active layer to provide the gain
more efficiently.

In order to provide effective coupling of its output to single-mode optical fibers,
the lateral diameter of the optical output beam is typically of the order of 10 µm. The
gain region overlaps substantially the mode in the transverse directions (i.e. � ≈ 1).
In such a cavity configuration, the mode propagating in the z direction is a TEM
mode. The transverse variations of the cavity modes discussed in Chapter 2
are applicable here. However, in the longitudinal direction, the cavity length L
in surface emitting lasers (including the effective penetration of the TEM waves
into the Bragg reflectors) is typically just a few micrometers long. Within such
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a short distance and for a 10 µm mode size, the divergence of the beam and the
diffraction loss per pass are negligible. Therefore, for the sake of simplicity, plane
waves are commonly used to represent the fields inside the laser post for ana-
lyzing the resonance in the z direction. On the other hand, since the propagation
distance in the gain medium is very short, very high reflectance with precisely
controlled wavelength sensitivity is required for the end reflectors. For VCSELs, in
terms of an analysis such as that given in Eq. (7.25), L′ � L (L = δ, the thickness
of the active layer in Fig. 7.6(b)), � ≈ 1, and γ is related to the susceptibility
by γ = −ω

√
µ0εχ

′′/n2.
The growth of periodic high- and low-index layers is carried out epitaxially to

yield Bragg reflectors at the bottom and on the top. From Eq. (4.9), it is clear
that the thickness of the high- and low-index layers (i.e. the periodicity) should
be λg/(2n), where λg is the desired free space wavelength of oscillation and n is
the averaged index of refraction of the periodic layers. The magnitude and the
wavelength range of the reflectivity will be controlled by the difference of the high
and low index and by the number of layers. The lower the index difference, the larger
is the number of layers required to achieve a high reflectivity, and the band width is
narrower. The larger the number of layers, the more is precise control of the growth
process required. For this reason, effective Bragg reflectors using a reasonably small
number of layers can be obtained by means of AlAs and GaAs layers grown on
GaAs substrate, while Bragg reflectors grown on InP substrates require many more
layers. Naturally, λg needs to coincide with the wavelength range of large |χ ′′|.

Additional micro-fabrication processing is sometimes used to define the lateral
extent of the cavity, usually in the form of a circular laser post in the xy plane.
Common techniques for current and gain confinement include proton implantation
of the area outside the laser post, etching away the region outside of the laser post
and regrowth of current blocking claddings around the etched laser post. For a
given injected carrier density, the |χ ′′| is the largest for any radiation polarized in
the xy plane. Since the laser cavity and the gain are symmetrical in the x and the
y direction, the output can be linearly polarized in any direction in the xy plane.
Additional optical elements must be added to remove this polarization degeneracy.

The primary advantages of a VCSEL oscillator are as follows. (1) The vertical
cavity facilitates a circular low divergence beam, which can be coupled easily and
efficiently with an optical fiber and bulk optics. (2) The emission wavelength is
determined by the epitaxial growth rather than by micro-fabrication processes, and
thus can be made with higher accuracy. (3) When the growth process can yield pre-
cisely controlled layer thickness as a function of x and y positions, large, monolithic
arrays of single-wavelength lasers with distinct, equally spaced, wavelengths can
be fabricated for wavelength division multiplexing (WDM) applications in optical
fiber communication. (4) The volume of the active region is extremely small so
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that extremely low threshold current injection for laser oscillation can be obtained.
(See ref. [10] for an extensive discussion on VCSELs.)

7.5 Carrier and current confinement in semiconductor lasers

For a given density of states, the electron and hole densities in the active region
determine the unsaturated χ ′′, or gain, of the active region. Good current confine-
ment and carrier leakage reduction would allow the desirable carrier density to be
achieved with a small injection current. Under high injection levels, charge neu-
trality dictates that the electron density equals the hole density in the active region.
Therefore, current confinement and carrier leakage in laser design could be dis-
cussed just in terms of electron densities. The discussion in this section applies to
both edge emitting and surface emitting lasers.

Let the electron density in the active region be designated by nC; then

dnC

dt
= G − Rrecomb, (7.26)

where G is the generation rate,

G = ηi I

qV
.

Here, I is the terminal injection current from the driver, q is the charge of an electron,
V is the volume of the active region and η i is the internal quantum efficiency, which
is the fraction of the terminal current that generates carriers in the active region.
Rrecomb is the total rate of recombination of the electrons in the active region; it has
four components:

Rrecomb = Rstim + Rspont + Rleak + Rnrad, (7.27)

i.e.

Rrecomb = Rstim + nC

τ
. (7.28)

Rspon, Rstim and Rnrad are the rates at which electrons and holes combine via spon-
taneous emission, stimulated transition and non-radiative recombination, respec-
tively; Rleak is the rate at which electrons are leaked to the areas outside of the active
region; τ is the carrier lifetime in the absence of stimulated emission. Clearly, for
a given I, nC can be increased by increasing η i and τ .

The common method of reducing the leakage (i.e. of increasing τ ) is to use a
hetero-barrier to impede the electrons from leaving the active region. The double
hetero-structure illustrated in Figs. 7.6(a) and 7.7(a) serves the purpose of both
optical confinement and barrier to impede carrier leakage.
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An increase in η i is achieved through the use of current blocking layers made
from dielectric insulators, epitaxially regrown high band gap materials or impurity
diffused materials. The objective is to channel the current efficiently into the active
region. For example, the regrown or the Si diffuse layer of the BH structure shown
in Fig. 7.7(a) serves the current confinement objective in addition to the objective of
confining the optical guided wave mode. The objective of the semi-insulating layer
in the device illustrated in Fig. 7.7(b) is to confine the current to the V groove region.
The current blocking layer of the VCSEL illustrated in Fig. 7.6(b) is necessary to
restrict the current to the area in the xy plane where amplification of the TEM wave
is desired.

7.6 Direct modulation of semiconductor laser output
by current injection

The discussions in the previous sections are valid under the steady state condition.
For a sufficiently low frequency, when the steady state condition is satisfied, the laser
output as a function of time is proportional to the input current, I(t) − It. Therefore,
the output of a given laser oscillator can be modulated directly by the applied current.
This is an attractive method for producing an intensity modulation of the signal at
very low cost. Furthermore, the intensity will be linearly proportional to the current.
However, in order to extend the modulation technique to a high frequency or to a
short pulse, the steady state condition might not be satisfied. We must in that case
examine the time dependent variation of nC. For this reason, we will analyze the
frequency variation of the laser output in response to an input current modulation
at various frequencies.

Similar to Eqs. (6.1), the instantaneous rate at which nC in the active layer and
the number of photons in the oscillating mode Np are increased or decreased in time
is governed by the following rate equations [6]:

dnC

dt
= ηi I

qV
− nC

τ
− A(nC − nC,t)Np,

d Np

dt
= A

V

Vp
(nC − nC,t)Np − Np

τp
.

(7.29)

We assume that the oscillation of the mode has already been achieved. Therefore,
the recombination rate due to spontaneous emission is negligible compared with the
recombination rate of the stimulated emission. Np is the number of photons per unit
volume in the cavity for the oscillating mode; nC,t is the carrier density at threshold;
V is the volume of injected carriers; Vp is the volume of the electromagnetic resonant
mode in the cavity; A is the rate at which electrons and holes recombine, induced
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by the electromagnetic mode in the cavity; 1/τ p is the rate at which photons in
the cavity mode decay, with or without significant stimulated transition (it includes
the effect of passive cavity losses and output coupling); V/Vp is approximately the
optical filling factor �. For the sake of simplicity, we have ignored in Eqs. (7.29)
the spatial variations of these quantities.

In order to reconfirm the validity of Eqs. (7.29), we will first examine their
solution at steady state. In the steady state and well above threshold, the time
derivatives of n and N are approximately zero. We obtain from Eqs. (7.29),

ηi
I0

qV
= ηi

J0

δq
= nC0

τ
+ A(nC0 − nC,t)Np0 = nC0

τ
+ Np0

�τp
. (7.30)

The zero subscript stands for the steady state value of the variables. When d/dt = 0,
the value of A, saturated by the oscillating mode, is A = [τ p�(nC0 − nC,t)]−1.
At threshold, Np0 is approximately zero. The results given in Eq. (7.30) are essen-
tially the same as those obtained in earlier discussions in Section 7.2.

A prediction of the large signal characteristics for applications such as on–
off modulation of laser radiation requires the time dependent solution of the rate
equation. The rate equation given in Eqs. (7.29) is a non-linear equation; it is difficult
to solve. However, if we consider the current driving the laser to be a DC current
that establishes the steady state conditions, nC0, Np0 and I0, and a superposed small
AC current used for AC small signal modulation of the DC output, then Eq. (7.29)
can be linearized. Since a pulse is a superposition of Fourier components at different
frequencies, results obtained in the small signal analysis can then be used as a
reference for estimating the large signal behavior. Let

I = I0 + i1e j�t , (7.31a)

nC = nC0 + n1e j�t , (7.31b)

and

Np = Np0 + p1e j�t . (7.31c)

Substituting Eqs. (7.31) into Eqs. (7.29) and neglecting both the terms with
exp(2j�t) variation and the higher order terms, we obtain

j�n1 = ηi i1

qV
−

(
1

τ
+ ANp0

)
n1 − p1

�τp
,

j�p1 = A�n1 Np0.

(7.32)
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Hence,

p1 (�) =
−ηi i1

qV
A�Np0

�2 − �2
r − j�γs

, (7.33)

�2
r = ANp0

τp
,

γs = 1

τ
+ ANp0.

Equation (7.33) shows that p1 is approximately a constant for small �. p1 reaches
its peak value when � = �p. For � > �p, p1 decreases proportionally to 1/�2:

�p =
√

�2
r − γ 2

s

2
=

√√√√ ANp0

τp
−

(
1
τ

+ ANp0
)2

2
. (7.34)

A similar solution is obtained for n1. Figure 7.8 illustrates the relative frequency
response of the laser output Pac(ω)/Pac(0). It shows clearly that the band width
for effective modulation, i.e. �3dB, is determined by �r. Usually, the first term
under the square root is the dominant term in Eq. (7.34). Therefore, �r is called
the relaxation resonance frequency for semiconductor lasers. �r is larger for larger
ANp0/τ p, where A equals its saturation value, [�τ p(nC0 − nC,t)]−1. In other words,
one can extend to higher modulation frequency by using larger Np0 and smaller τ p.

The modulation of electron and hole densities produced by the current modula-
tion results in a modulation of χ ′ which affects the resonance frequency of the mode.
In other words, the current modulation leads directly to a frequency modulation of
the oscillating mode, known as chirping. Chirping has prevented the use of directly
modulated lasers at data rates above 2 Gbits/s for long distance transmission of
optical signals in fibers.

7.7 Semiconductor laser amplifier

Whenever there is gain, there is amplification of optical radiation in semiconductors.
We have discussed laser amplification in solid state media in Section 6.7. In edge
emitting laser amplifiers, the intensity of the jth guided wave mode, neglecting the
propagation loss, will be amplified as exp(�jγ y). The input incident radiation will
excite guided wave modes plus various radiation modes. Here, different modes may
have different optical filling factors because of the differences in the field pattern.
Thus, different guided wave modes will have different gains. The output from the
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Figure 7.8. Frequency response of an idealized diode laser at various output power
levels. The resonance peak and the damping of the resonance depend on the output
power level. The resonance effect limits the highest frequency at which a diode
laser can be modulated directly by current without serious distortion. Details about
the active region and laser cavity are given in ref. [6], from which this figure is
taken, with copyright permission from John Wiley and Sons.

laser amplifier will consist of the summation of all the amplified modes excited
by the incident radiation. (See refs. [11] and [12] for an extensive discussion of
semiconductor laser amplifiers.)

On comparing semiconductor amplifiers with the solid state amplifiers discussed
in Sections 6.7 and 6.8.2, we note several differences. (1) The noise of semicon-
ductor amplifiers will be larger for three reasons. First, it is more difficult to filter
out in the receiver all the amplified spontaneous emission in unwanted modes.
Secondly, carrier injection introduces another noise mechanism in addition to
spontaneous emission. Thirdly, there is interference between the signal and the
spontaneous emission components [12]. (2) Because of the large γ , large amplifi-
cation can be achieved within a short distance of propagation in an edge emitting
laser. In order to avoid the feedback due to reflections, it is necessary to reduce
the reflection at the input and output ends of an edge emitting laser to a very
low value. Multi-layer anti-reflection dielectric coatings have been used to yield
less than 1% reflection. For these reasons, semiconductor in-plane laser amplifiers
have not been commonly used in practice, as the erbium doped fiber amplifiers
(EDFAs) have. However, semiconductor amplifiers can operate at wavelengths
other than 1.55 µm, such as 1.3 µm, by tuning the semiconductor composition.
(3) The gain of the semiconductor amplifier is polarization dependent since the
susceptibility (i.e. the gain) is different between polarization directions parallel and
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Figure 7.9. Amplifier gain versus signal strength for several current levels applied
to a semiconductor amplifier. The figure is taken from ref. [11], with copyright
permission from Kluwer.

perpendicular to the growth direction z. TE and TM modes also have different
electromagnetic field patterns and propagation losses. The gain of the TE modes
is typically bigger than that of the TM modes. (4) Because of the large line width
of χ ′′ in semiconductors, the wavelength band width of a semiconductor amplifier
is much wider than that of a solid state amplifier such as an EDFA. The ampli-
fier gain versus signal wavelength for a semiconductor amplifier is illustrated in
Fig. 7.9 [11].

Since the propagation length of the TEM wave in the active region in a surface
emitting laser is very short, Fabry–Perot resonance is required to achieve significant
overall gain. It is difficult to control the stability of the overall gain in a resonant
cavity. The amplification will also occur in a very narrow wavelength range, unsuit-
able for applications such as WDM systems. Therefore, VCSELs have not yet been
considered seriously for amplification of optical radiation.

The gain γ of a semiconductor amplifier will saturate at large optical intensity
[11]. It can be analyzed as follows. The gain in the active region has been shown
to be approximately proportional to the carrier density nC in excess of the carrier
density required for transparency nC0, i.e. g ∝ (nC − nC0). On the other hand, Rstim

in Eq. (7.28) is proportional to nC and the optical intensity Iph in the laser. Thus, nC

in Eqs. (7.29) can be rewritten as

dnC

dt
= ηi I

qV
− nC

τ

(
1 − Iph

Is

)
,
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where Is is a proportionality constant. At steady state (i.e. d/dt = 0), the unsaturated
nC,unsat at Iph = 0 can be obtained from the above equation to be η iIτ/qV. Therefore,

nC = nC,unsat

1 + Iph

Is

(7.35)

or

γ = γ0

1 + Iph

Is

,

where γ0 is the unsaturated gain. Comparing the saturation of a semiconductor
amplifier with the saturation of solid state and gas lasers, we see that it saturates
like a homogeneous broadened transition.

7.8 Noise in semiconductor laser oscillators

Similar to solid state and gas lasers, spontaneous emission causes intensity fluctu-
ations which yield relative intensity noise and frequency fluctuations, which yield
a finite line width of laser oscillation. In addition, carrier fluctuations contribute to
both the relative intensity noise (RIN) and the line width of oscillation �νosc. It
is interesting to note that the fluctuation of carrier density not only modulates the
gain, but also modulates the index of the active region, causing the resonant mode
to shift back and forth in frequency. It has been shown that the shift in frequency is
directly proportional to changes in carrier density [6].

In principle, the rate equations for the photon density and the carrier density, such
as Eqs. (7.29), could include noise source terms for photons and carriers expressing
quantum fluctuations [13]. For known auto- and cross-correlations of the Fourier
components of these shot noise sources, the solution of such rate equations yields
the noise power spectrum of the photon density and the RIN. Such an analysis [14]
is too complex to be included here. However, the results from such an analysis can
be summarized as

RIN = 2τ 2
p

{
CnC0/τ

(�Aτ )2

1

N 3
p0

+
(

nC0

τ
+ 1

�Aττp

)
1

N 2
p0

+ 1

τp Np0

}
. (7.36)

Here, Np0 is the photon density above threshold under steady state conditions,
nC0 is the carrier density above threshold under steady state conditions, C is the
spontaneous emission factor [13], � ≈ V/Vp is approximately the optical filling
factor, and other symbols are explained after Eqs. (7.29). The first term originates
from the beat noise between the signal and spontaneous emission; this term is
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proportional to the third power of the drive level (I/It − 1). A reasonably good
semiconductor laser typically has RIN = −140 dB/Hz. Other factors that may
increase intensity noise include instability resulting from reflections, mode and
polarization hopping, change of injection current, etc.

In semiconductor laser oscillators the line width is also broadened from the line
width derived in Section 6.8.4, known as the Schawlow–Townes line width, by
the line width enhancement factor α, which is the ratio of the change of the real
part of the index of the active medium to the imaginary part. Equation (6.46) is
applicable here. However, the spectral line width of semiconductor lasers is much
larger than the line width of gas and solid lasers due to the much larger α caused
by fluctuations of carrier densities [15]. Various ways of controlling the frequency
modulation noise have been reviewed by Kourogi and Ohtsu [16].
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