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Preface to the Second Edition

Where there is light, there is polarized light. It is in fact difficult to find a source of
light that is completely randomly polarized. As soon as light interacts with anything,
whether through reflection, transmission, or scattering, there is opportunity for
polarization to be induced. As pointed out in the first sentence of the Preface to
the First Edition, polarization is a fundamental characteristic of the transverse wave
that is light. More than ever, it is a characteristic that must be addressed in modern
optical systems and applications.

Since 1993 when the first edition of this text appeared, there have been many
new developments in the measurement and application of polarized light. This
revised edition includes revisions and corrections of the original text and substantive
new material. Most of the original figures have been redone. Chapter 8 has been
expanded to include the derivation of the Fresnel equations with plots of the mag-
nitude and phase of the reflection coefficients. Also included in Part I is a chapter
with in-depth discussion of the mathematics and meaning of the Mueller matrix. In
this chapter, there is a discussion of physical realizability and elimination of error
sources with eigenvector techniques, and a discussion of Mueller matrix decomposi-
tion. The Lu–Chipman decomposition has shown that Mueller matrices are separ-
able, so that a general Mueller matrix may be decomposed into a set of product
matrices, each dependent on only one of the quantities of diattenuation, retardance,
or depolarization. A chapter on devices and components has been added to Part III,
Applications. Those interested in use or measurement of polarized light should have
knowledge of available devices and components that serve as polarizers and retar-
ders for various wavelength regions and for various conditions of achromaticity.
Chapters on Stokes polarimetry and Mueller matrix polarimetry have been inserted
in Part III. These polarimetric techniques are essential to an understanding of mea-
surement of polarized light and characterization of optical elements.

Appendixes have been added with summaries of the Jones and Stokes vectors
for various states of polarized light, and with summaries of Jones and Mueller
matrices for various optical elements. An appendix has been included that gives
the relations between the Jones and Mueller matrix elements. Finally, a comprehen-
sive bibliography has been included.
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Ed Collett collected a wonderful set of topics for students of polarized light for
the first edition of this book, and he provided a resource that did not exist before. It
is my hope that the revisions and additions contained in this second edition will
make this text even more useful and thorough. I express my gratitude to the follow-
ing colleagues and friends for their critical comments during the creation of this
work: Russell A. Chipman of the University of Arizona, Robert R. Kallman of the
University of North Texas, J. Scott Tyo of the University of New Mexico, and E.E.
(Gene) Youngblood and Lynn L. Diebler of the Air Force Research Laboratory.
David Goetsch of Okaloosa-Walton Community College provided wise counsel.
Finally, I express gratitude to my wife, Carole, and daughters, Dianne and Laura,
for their presence and support.

Dennis Goldstein
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Preface to the First Edition

Light is characterized by its intensity, wavelength, and polarization. Remarkably, in
spite of the importance of polarized light, no book is devoted just to this subject.
Nearly every book on optics contains several chapters on polarized light. However, if
one tries to obtain a deeper understanding of the subject, one quickly discovers that
it is almost always necessary to go to the original papers in the literature. The
objective of this book therefore is to provide a single source that describes the
fundamental behavior of polarized light and its interaction with matter. The book
is designed to be used by scientists and engineers working in the fields of physics,
optics, opto-electronics, chemistry, biology, and mechanical and electrical engineer-
ing as well as advanced undergraduate and graduate students.

There are two well-known books on polarized light. The first is W. A.
Shurcliff ’s Polarized Light, an excellent introductory and reference book on the
subject. The other book, also excellent, is Ellipsometry and Polarized Light by
R. M. A. Azzam and N. M. Bashara. It is very advanced and is directed to those
working in the field of ellipsometry. While it contains much information on polarized
light, its approach to the subject is very different. Ellipsometry is important, how-
ever, and an introductory discussion is included here in the final chapter.

This book is divided into three parts. One can begin the study of polarized light
with Maxwell’s equations. However, one soon discovers that in optics, unlike the
field of microwave physics, Maxwell’s equations are not readily apparent; this was
why in the nineteenth century Fresnel’s elastic equations were only slowly displaced
by Maxwell’s equations. Much of the subject of polarized light can be studied and
understood almost independently of Maxwell’s equations. This is the approach
taken in Part I. We begin with the wave equation and quickly move on to the
polarization ellipse. At this point the observable concept of the optical field is intro-
duced, and in succeeding chapters we discover that much new information is
revealed on the nature as well as the description of polarized light and its interaction
with polarizing elements. Ultimately, however, it becomes necessary to describe the
source of the radiation field and polarized light. At this point no further progress can
be made without Maxwell’s equations. Therefore, in Part II of this book, Maxwell’s
equations are introduced and then used to describe the emission of polarized radia-
tion by accelerating electrons. In turn, the emitted radiation is then formulated in
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terms of the Stokes vector and Mueller matrices and applied to the description of
unpolarized light, the Zeeman effect, synchrotron radiation, scattering, and the
Faraday effect. In particular, we shall see that the Stokes vector takes on a very
interesting role in describing spectral lines. In Part III, a number of important
applications of polarized light are presented, namely, propagation in anisotropic
media (crystals), opto-isolators, electro-optical modulation, reflection from metals,
and a final introductory chapter on ellipsometry.

The creation of this book could have happened only with the support of my
family. I wish to express my gratitude to my children Ronald Edward and Gregory
Scott, and especially to my wife, Marilyn, for their continuous support, encourage-
ment and interest. Without it, this book would have never been completed.

Edward Collett
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A Historical Note

At the midpoint of the nineteenth century the wave theory of light developed by
Augustin Jean Fresnel (1788–1827) and his successors was a complete triumph. The
wave theory completely explained the major optical phenomena of interference,
diffraction, and polarization. Furthermore, Fresnel had successfully applied the
wave theory to the problem of the propagation and polarization of light in aniso-
tropic media, that is, crystals. A further experiment was carried out in 1851 by
Armand Hypolite Louis Fizeau (1819–1896), who showed that the speed of light
was less in an optically dense medium than in a vacuum, a result predicted by the
wave theory. The corpuscular theory, on the other hand, had predicted that in an
optically dense medium the speed of light would be greater than in a vacuum. Thus,
in practically all respects Fresnel’s wave theory of light appeared to be triumphant.

By the year 1852, however, a crisis of quite significant proportions was slowly
simmering in optics. The crisis, ironically, had been brought on by Fresnel himself
35 years earlier. In the year 1817 Fresnel, with the able assistance of his colleague
Dominique François Arago (1786–1853), undertook a series of experiments to deter-
mine the influence of polarized light on the interference experiments of ThomasYoung
(1773–1829). At the beginning of these experiments Fresnel and Arago held the view
that light vibrations were longitudinal. At the end of their experiments they were
unable to understand their results on the basis of longitudinal vibrations. Arago
communicated the puzzling results to Young, who then suggested that the experiments
could be understood if the light vibrations were transverse, consisted of only two
orthogonal components, and there was no longitudinal component. Indeed, this did
make some, but not all, of the results comprehensible. At the conclusion of their
experiments Fresnel and Arago summarized their results in a series of statements
that have come down to us as the four interference laws of Fresnel and Arago.

All physical laws are described in terms of verbal statements from which
mathematical statements can then be written (e.g., Kepler’s laws of planetary
motion and Newton’s laws of motion). Fresnel understood this very well. Upon
completing his experiments, he turned to the problem of developing the mathema-
tical statements for the four interference laws. Fresnel’s wave theory was an ampli-
tude description of light and was completely successful in describing completely
polarized light, that is, elliptically polarized light and its degenerate states, linearly
and circularly polarized light. However, the Fresnel–Arago experiments were carried
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out not with completely polarized light but with another state of polarized light
called unpolarized light. In order to describe the Fresnel–Arago experiments it
would be necessary for Fresnel to provide the mathematical statements for unpolar-
ized light, but much to his surprise, on the basis of his amplitude formulation of
light, he was unable to write the mathematical statements for unpolarized light! And
he never succeeded. With his untimely death in 1827 the task of describing unpolar-
ized light (or for that matter any state of polarized light within the framework of
classical optics) along with providing the mathematical statements of the Fresnel–
Arago interference laws passed to others. For many years his successors were no
more successful than he had been.

By 1852, 35 years had elapsed since the enunciation of the Fresnel–Arago laws
and there was still no satisfactory description of unpolarized light or the interference
laws. It appeared that unpolarized light, as well as so-called partially polarized light,
could not be described within the framework of the wave theory of light, which
would be a crisis indeed.

The year 1852 is a watershed in optics because in that year Sir George Gabriel
Stokes (1819–1903) published two remarkable papers in optics. The first appeared
with the very bland title ‘‘On the Composition and Resolution of Streams of
Polarized Light from Different Sources,’’ a title that appears to be far removed
from the Fresnel–Arago interference laws; the paper itself does not appear to have
attracted much attention. It is now, however, considered to be one of the great
papers of classical optics. After careful reading of his paper, one discovers that it
provides the mathematical formulation for describing any state of polarized light
and, most importantly, the mathematical statements for unpolarized light: the math-
ematical statements for the Fresnel–Arago interference laws could now be written.
Stokes had been able to show, finally, that unpolarized light and partially polarized
light could be described within the framework of the wave theory of light.

Stokes was successful where all others had failed because he developed a highly
novel approach for describing unpolarized and partially polarized light. He aban-
doned the fruitless attempts of his predecessors to describe unpolarized light in terms
of amplitudes and, instead, resorted to an experimental definition of unpolarized
light. In other words, he was led to a formulation of polarized light in terms of
measured quantities, that is, intensities (observables). This was a completely unique
point of view for the nineteenth century. The idea of observables was not to reappear
again in physics until the advent of quantum mechanics in 1925 by Werner
Heisenberg (1901–1976) and later in optics with the observable formulation of the
optical field in 1954 by Emil Wolf (1922– ).

Stokes showed that his intensity formulation of polarized light could be used to
describe not only unpolarized and partially polarized light but completely polarized
light as well. Thus, his formulation was applicable to any state of polarized light. His
entire paper is devoted to describing in all the detail of mid-nineteenth-century algebra
the properties of various combinations of polarized and unpolarized light. Near the
end of his paper Stokes introduced his discovery that four parameters, now known as
the Stokes polarization parameters, could characterize any state of polarized light.
Unlike the amplitude formulation of the optical field, his parameters were directly
accessible to measurement. Furthermore, he then used these parameters to obtain a
correct mathematical statement for unpolarized light. The stage had now been set to
write the mathematical statements for the Fresnel–Arago interference laws.
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At the end of Stokes’ paper he turns, at long last, to his first application, the
long awaited mathematical statements for the Fresnel–Arago interference laws. In
his paper he states, ‘‘Let us now apply the principles and formulae which have just
been established to a few examples. And first let us take one of the fundamental
experiments by which MM. Arago and Fresnel established the laws of interference of
polarized light, or rather an analogous experiment mentioned by Sir John Herschel.’’
Thus, with these few words Stokes abandoned his attempts to provide the mathe-
matical statements for the Fresnel–Arago laws. At this point Stokes knew that to
apply his formulation to the formulation of the Fresnel–Arago interference laws was
a considerable undertaking. It was sufficient for Stokes to know that his mathema-
tical formulation of polarized light would explain them. Within several more pages,
primarily devoted to correcting several experiments misunderstood by his colleagues,
he concluded his paper.

This sudden termination is remarkable in view of its author’s extraordinary
effort to develop the mathematical machinery to describe polarized light, culminat-
ing in the Stokes polarization parameters. One must ask why he brought his paper to
such a rapid conclusion. In my opinion, and this shall require further historical
research, the answer lies in the paper that immediately follows Stokes’ polarization
paper, published only two months later. Its title was, ‘‘On the Change of the
Refrangibility of Light.’’

In the beginning of this Historical Note it was pointed out that by 1852 there
was a crisis in optics over the inability to find a suitable mathematical description for
unpolarized light and the Fresnel–Arago interference laws. This crisis was finally
overcome with the publication of Stokes’ paper on polarized light in 1852. But this
next paper by Stokes dealt with a new problem of very disconcerting proportions. It
was the first in a series of papers that would lead, 75 years later, to quantum
mechanics. The subject of this second paper is a topic that has become known as
the fluorescence of solutions. It is a monumental paper and was published in two
parts. The first is a 20-page abstract! The second is the paper itself, which consists of
nearly 150 pages. After reading this paper it is easy to understand why Stokes had
concluded his paper on the Fresnel–Arago interference laws. He was deeply
immersed in numerous experiments exploring the peculiar phenomenon of fluores-
cence. After an enormous amount of experimental effort Stokes was able to enun-
ciate his now famous law of fluorescence, namely, that the wavelength of the emitted
fluorescent radiation was greater than the excitation wavelength; he also found that
the fluorescence radiation appeared to be unpolarized. Stokes was never able to find
the reason for this peculiar behavior of fluorescence or the basis of his law. He would
spend the next 50 years searching for the reason for his empirical law until his death
in 1903. Ironically, in 1905, two years after Stokes’ death, a young physicist by the
name of Albert Einstein (1879–1955) published a paper entitled ‘‘On a Heuristic
Point of View Concerning the Generation and Conversion of Light’’ and showed
that Stokes’ law of fluorescence could be easily explained and understood on the
basis of the quantum hypothesis of Max Planck (1858–1947). It is now clear that
Stokes never had the slightest chance of explaining the phenomenon of fluorescence
within the framework of classical optics. Thus, having helped to remove one of the
last barriers to the acceptance of the wave theory of light, Stokes’ investigations on
the nature of light had led him to the discovery of the first law ever associated with
the quantum phenomenon. Unknowingly, Stokes had stumbled onto the quantum
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nature of light. Thirty-five years later, in 1888, a similar chain of events was repeated
when Heinrich Hertz (1857–1894), while verifying the electromagnetic field theory of
James Clerk Maxwell (1831–1879), the ultimate proof of the truth of the classical
wave theory of light, also discovered a new and unexplainable phenomenon, the
photoelectric effect. We now know that this too can be understood only in terms
of the quantum theory. Science is filled with ironies.

Within two months of the publication in March 1852 of his paper on polarized
light, in which the formulation of classical optics appeared to be complete, with the
May 1852 publication of his paper on fluorescence, Stokes went from complete
triumph to complete dismay. He would constantly return to the subject of fluores-
cence for the remainder of his life, always trying but never succeeding in under-
standing the origin of his law of fluorescence.

Stoke’s great paper on polarization was practically forgotten because by the
mid-nineteenth century classical optics was believed to be complete and physicists
had turned their attention to the investigation of the electromagnetic field and the
statistical mechanics of molecules. His paper was buried in the scientific literature for
nearly a century. Its importance was finally recognized with its ‘‘discovery’’ in the
1940s by the Nobel laureate Subrahmanya Chandrasekhar (1910– ), who used
the Stokes parameters to include the effects of polarized light in the equations of
radiative transfer.

In this book we shall see that the Stokes polarization parameters provide a rich
and powerful tool for investigating and understanding polarized light and its inter-
action with matter. The use of these parameters provides a mathematical formula-
tion of polarized light whose power is far greater than was ever imagined by their
originator and serves as a tribute to his genius.

Edward Collett
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1

Introduction

The polarization light is one of its fundamental properties, the others being its
intensity, frequency, and coherence. In this book the nature of polarized light and
its numerous applications are described. Aside from its remarkable properties, the
study of polarized light has led to a deeper understanding of the nature of light itself.
The investigations of polarized light began with the discovery by Erasmus
Bartholinus (1625–1698) in 1669 of the phenomenon of double refraction in calcite
crystals (calspar). This was followed by the work of Christian Huygens (1629–1695),
who interpreted double refraction by assuming that in the calspar crystal there is, in
addition to a primary spherical wave, a secondary ellipsoidal wave. In the course of
his investigations in 1690, Huygens also made a fundamental discovery on polariza-
tion, namely, each of the two rays arising from refraction by calcite can be extin-
guished by passing it through a second calcite crystal if the latter crystal is rotated
about the direction of the ray. Isaac Newton (1642–1727) interpreted these phenom-
ena by assuming that the rays have ‘‘sides.’’ Indeed, this ‘‘transversality’’ appeared to
him to be a serious objection to the acceptance of the wave theory. In Newton’s time,
scientists, from their work on the propagation of sound, were familiar only with
longitudinal waves; it was believed that light ‘‘waves,’’ if they existed, were similar to
sound waves.

During the eighteenth century the corpuscular theory of light supported by
Newton held sway. However, in 1801 Thomas Young (1773–1829) gave new life to
the wave theory when he enunciated his principle of interference and applied it to the
explanation of the colors of thin films. In addition, Young carried out a rather
spectacular and extraordinarily simple experiment to demonstrate the interference
of light, namely, the two-pinhole interference experiment. However, because
Young’s views were largely qualitative, they did not gain immediate acceptance.

In 1808, Etienne-Louis Malus (1775–1812), an officer in the French army was
in the Palais de Luxembourg in Paris, where he made a remarkable discovery. He
observed the reflection of the sun from a windowpane through a calspar crystal and
found that the two images obtained by double refraction were extinguished alter-
nately as he rotated the calcite crystal. Malus reported this result but offered no
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explanation. Several years later, in 1812, Sir David Brewster (1781–1868) also inves-
tigated the behavior of light reflected from glass. He discovered that at a particular
angle of incidence (Brewster’s angle) the reflected light viewed through a calcite
crystal could be extinguished. Further investigations by Brewster revealed that
there was a simple relation between what was to be called the Brewster angle and
the refractive index of the glass. The importance of this work was further enhanced
because it allowed the refractive index of optical glass to be determined by reflection
rather than by refraction (transmission). The significance of Brewster’s discovery was
immediately recognized by his contemporaries, and he received the Gold Medal from
the Royal Society in 1815.

While Brewster was actively working in Great Britain, Augustin Jean Fresnel
(1788–1827) in France was placing the wave theory on a firm theoretical foundation
using the Fresnel–Huygens integral to solve the problem of diffraction. In 1818 he
was awarded the prize for the solution of the diffraction problem by the Paris
Academy of Science after his friend and colleague, Dominique François Arago
(1786–1853), experimentally showed the existence of a small bright spot in the
shadow of a small circular disk, a result predicted by Fresnel’s theory. The wave
theory was further enhanced when it was used to describe the propagation of polar-
ized light through optically active media. As a result of Fresnel’s work and others,
the wave theory of light gained almost universal acceptance.

The wave equation appears in classical optics as a hypothesis. It was accepted
because it led to the understanding and description of the propagation, diffraction,
interference, and polarization of light. Furthermore, the calculations made using the
wave equations led to results in complete agreement with experiments. A true experi-
mental foundation for the wave equation would have to wait until James Clerk
Maxwell’s (1831–1879) electrodynamic theory and its experimental confirmation
by Heinrich Hertz (1857–1894) in the second half of the nineteenth century. To
discuss polarized light, we need to investigate first the wave equation and its
properties. We therefore begin our study of polarized light with the wave equation.
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2

The Wave Equation in Classical Optics

2.1 INTRODUCTION

The concept of the interference of waves, developed in mechanics in the eighteenth
century, was introduced into optics by Thomas Young at the beginning of the
nineteenth century. In the eighteenth century the mathematical physicists Euler,
d’Alembert, and Lagrange had developed the wave equation from Newtonian
mechanics and investigated its consequences, e.g., propagating and standing
waves. It is not always appreciated that Young’s ‘‘leap of genius’’ was to take the
ideas developed in one field, mechanics, and apply them to the completely different
field of optics.

In addition to borrowing the idea of wave interference, Young found that it
was also necessary to use another idea from mechanics. He discovered that the
superposition of waves was insufficient to describe the phenomenon of optical inter-
ference; it, alone, did not lead to the observed interference pattern. To describe the
interference pattern he also borrowed the concept of energy from mechanics. This
concept had been developed in the eighteenth century, and the relation between the
amplitude of a wave and its energy was clearly understood. In short, the mechanical
developments of the eighteenth century were crucial to the work of Young and to the
development of optics in the first half of the nineteenth century. It is difficult to
imagine the rapid progress which took place in optics without these previous devel-
opments. In order to have a better understanding of the wave equation and how it
arose in mechanics and was then applied to optics, we now derive the wave equation
from Newton’s laws of motion.

2.2 THE WAVE EQUATION

Consider a homogeneous string of length l fixed at both ends and under tension T0,
as shown in Fig. 2-1. The lateral displacements are assumed to be small compared
with l. The angle � between any small segment of the string and the straight line
(dashed) joining the points of support are sufficiently small so that sin � is closely
approximated by tan �. Similarly, the tension T0 in the string is assumed to be
unaltered by the small lateral displacements; the motion is restricted to the xy plane.
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The differential equation of motion is obtained by considering a small element
ds of the string and is shown exaggerated as the segment AB in Fig. 2-1. The y
component of the force acting on ds consists of F1 and F2. If �1 and �2 are small, then

F1 ¼ T0 sin �1 ’ T0 tan �1 ¼ T0

@y

@x

� �
A

ð2-1aÞ

F2 ¼ T0 sin �2 ’ T0 tan �2 ¼ T0

@y

@x

� �
B

ð2-1bÞ

where the derivatives are partials because y depends on time t as well as on the
distance x. The subscripts signify that the derivatives are to be evaluated at points
A and B, respectively. Then, by Taylor’s expansion theorem,

@y

@x

� �
A

¼
@y

@x
�

@

@x

@y

@x

� �
dx

2
¼
@y

@x
�
@2y

@x2
dx

2
ð2-2aÞ

@y

@x

� �
B

¼
@y

@x
þ

@

@x

@y

@x

� �
dx

2
¼
@y

@x
þ
@2y

@x2
dx

2
ð2-2bÞ

in which the derivatives without subscripts are evaluated at the midpoint of ds. The
resultant force in the y direction is

F2 � F1 ¼ T0

@2y

@x2

 !
dx ð2-3Þ

If � is the mass per unit length of the string, the inertial reaction (force) of the
element ds is �dsð@2y=@t2Þ. For small displacements, ds can be written as ds’ dx.
The equation of motion is then obtained by equating the inertial reaction to the
applied force (2-3), so we have

@2y

@t2
¼

T0

�

@2y

@x2
ð2-4Þ

Equation (2-4) is the wave equation in one dimension. In optics y(x, t) is equated
with the ‘‘optical disturbance’’ u(x, t). Also, the ratio of the tension to the density in
the string T/� is found to be related to the velocity of propagation v by the equation:

v2 ¼
T0

�
ð2-5Þ

Figure 2-1 Derivation of the wave equation. Motion of a string under tension.
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The form of (2-5) is easily derived by a dimensional analysis of (2-4). Equation (2-4)
can then be written as

@2uðx, tÞ

@x2
¼

1

v2
@2uðx, tÞ

@t2
ð2-6Þ

in which form it appears in optics. Equation (2-6) describes the propagation of an
optical disturbance u(x, t) in a direction x at a time t. For a wave propagating in
three dimensions it is easy to show that the wave equation is

@2uðr, tÞ

@x2
þ
@2uðr, tÞ

@y2
þ
@2uðr, tÞ

@z2
¼

1

v2
@2uðr, tÞ

@t2
ð2-7Þ

where r ¼ ðx2 þ y2 þ z2Þ1=2. Equation (2-7) can be written as

r
2uðr, tÞ ¼

1

v2
@2uðr, tÞ

@t2
ð2-8Þ

where r
2 is the Laplacian operator,

r
2
�
@2

@x2
þ
@2

@y2
þ
@2

@z2
ð2-9Þ

Because of the fundamental importance of the wave equation in both mechanics and
optics, it has been thoroughly investigated. Equation (2-7) shall now be solved in
several ways. Each method of solution yields useful insights.

2.2.1 Plane Wave Solution

Let r(x, y, z) be a position vector of a point P in space, s(sx, sy, sz) a unit vector in a
fixed direction. Any solution of (2-7) of the form:

u ¼ uðs�r, tÞ ð2-10Þ

is said to represent a plane-wave solution, since at each instant of time u is constant
over each of the planes,

s�r ¼ constant ð2-11Þ

Equation (2-11) is the vector equation of a plane; a further discussion of plane waves
and (2-11) will be given later.

Figure 2-2 shows a Cartesian coordinate sytem Ox, Oy, Oz. We now choose a
new set of Cartesian axes, O�, O�, O�, with O� in the direction s�r ¼ �. Then
@=@x ¼ ð@�=@xÞ�@=@�, etc., so

sxxþ syyþ szz ¼ � ð2-12aÞ

and we can write

@

@x
¼ sx

@

@�

@

@y
¼ sy

@

@�

@

@z
¼ sz

@

@�
ð2-12bÞ
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Since s2x þ s2y þ s2z ¼ 1, we easily find that

r
2u ¼

@2u

@�2
ð2-13Þ

so that (2-8) becomes

@2u

@�2
�

1

v2
@2u

@t2
¼ 0 ð2-14Þ

Thus, the transformation (2-12) reduces the three-dimensional wave equation to a
one-dimensional wave equation. Next, we set

� � vt ¼ p � þ vt ¼ q ð2-15Þ

and substitute (2-15) into (2-14) to find

@2u

@p@q
¼ 0 ð2-16Þ

The solution of (2-16) is

u ¼ u1ð pÞ þ u2ðqÞ ð2-17Þ

as a simple differentiation quickly shows. Thus, the general solution of (2-14) is

u ¼ u1ðs�r� vtÞ þ u2ðs�rþ vtÞ ð2-18Þ

where u1 and u2 are arbitrary functions. The argument of u is unchanged when (�, t)
is replaced by (�þ v�, tþ �), where � is an arbitrary time. Thus, u1(�þ v�) represents a
disturbance which is propagated with a velocity v in the negative � direction.
Similarly, u2(�� v�) represents a disturbance which is propagated with a velocity v
in the positive � direction.

2.2.2 Spherical Waves

Next, we consider solutions representing spherical waves, i.e.,

u ¼ ðr, tÞ ð2-19Þ

Figure 2-2 Propagation of plane waves.
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where r ¼ rj j ¼ ðx2 þ y2 þ z2Þ1=2. Using the relations

@

@x
¼
@r

@x

@

@r
¼

x

r

@x

@r
, etc: ð2-20Þ

one finds after a straightforward calculation that

r
2
ðuÞ ¼

1

r

@2ðruÞ

@r2
ð2-21Þ

The wave equation (2-8) then becomes

@2ðruÞ

@r2
�

1

v2
@2ðruÞ

@t2
¼ 0 ð2-22Þ

Following (2-14) the solution of (2-22) is

uðr, tÞ ¼
u1ðr� vtÞ

r
þ
u2ðrþ vtÞ

r
ð2-23Þ

where u1 and u2 are, again, arbitrary functions. The first term in (2-23) represents a
spherical wave diverging from the origin, and the second term is a spherical wave
converging toward the origin; the velocity of propagation being v in both cases.

2.2.3 Fourier Transform Method

The method for solving the wave equation requires a considerable amount of insight
and experience. It would be desirable to have a formal method for solving partial
differential equations of this type. This can be done by the use of Fourier transforms.

Let us again consider the one-dimensional wave equation:

@2uð�, tÞ

@�2
¼

1

v2
@2uð�, tÞ

@t2
ð2-24Þ

The Fourier transform pair for u(�, t) is defined in the time domain, t, to be

uð�, tÞ ¼
1

2�

Z 1

�1

uð�,!Þei!td! ð2-25aÞ

and

uð�,!Þ ¼

Z 1

�1

uð�, tÞe�i!tdt ð2-25bÞ

We can then write

@2uð�, tÞ

@�2
¼

1

2�

Z 1

�1

@2uð�,!Þei!t

@�2
d!

@2uð�, tÞ

@t2
¼

1

2�

Z 1

�1

uð�,!Þð�!2
Þei!td! ð2-26Þ

so (2-24) is transformed to

@2uð�,!Þ

@�2
¼

�!2
uð�,!Þ

v2
ð2-27Þ
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Equation (2-27) is recognized immediately as the equation of a harmonic oscillator
whose solution is

uð�,!Þ ¼ Að!Þeik� þ Bð!Þe�ik�
ð2-28Þ

where k ¼ !=v. We note that the ‘‘constants’’ of integration, A(!) and B(!), must be
written as functions of ! because the partial differentiation in (2-24) is with respect to
�. The reader can easily check that (2-28) is the correct solution by differentiating it
according to (2-27). The solution of (2-24) can then be found by substituting u(�,!)
in (2-28) into the Fourier transform u(�, t) in (2-25a)

uð�, tÞ ¼
1

2�

Z 1

�1

½Að!Þeik�þBð!Þe�ik�
�ei!td! ð2-29Þ

or

¼
1

2�

Z 1

�1

Að!Þei!ðtþ�=vÞd!þ
1

2�

Z 1

�1

Bð!Þei!ðt��=vÞd! ð2-30Þ

From the definition of the Fourier transform, Eq. (2-25), we then see that

uð�, tÞ ¼ u1 tþ
�

v

� �
þ u2 t�

�

v

� �
ð2-31Þ

which is equivalent to the solution (2-18).
Fourier transforms are used throughout physics and provide a powerful

method for solving partial differential equations. Finally, the Fourier transform
pair shows that the simplest sinusoidal solution of the wave equation is

uð�, tÞ ¼ A sinð!tþ k�Þ þ B sinð!t� k�Þ ð2-32Þ

where A and B are constants. The reader can easily check that (2-32) is the solution
of the wave equation (2-24).

2.2.4 Mathematical Representation of the Harmonic Oscillator
Equation

Before we end the discussion of the wave equation, it is also useful to discuss, further,
the harmonic oscillator equation. From mechanics the differential equation of the
harmonic oscillator motion is

m
d2x

dt2
¼ �kx ð2-33aÞ

or

d2x

dt2
¼ �

k

m
x ¼ �!2

0x ð2-33bÞ

where m is the mass of the oscillator, k is the force constant of the spring, and
!0 ¼ 2�f is the angular frequency where f is the frequency in cycles per second.

Copyright © 2003 by Marcel Dekker, Inc. All Rights Reserved.



Equation (2-33b) can be solved by multiplying both sides of the equation by dx/dt ¼
v (v ¼ velocity):

v
dv

dt
¼ �!2

0x
dx

dt
ð2-34aÞ

or

vdv ¼ �!2
0xdx ð2-34bÞ

Integrating both sides of (2-34b) yields

v2

2
¼ �

!2
0

2
x2 þ A2

ð2-35aÞ

where A2 is the constant of integration. Solving for v, we have

v ¼
dx

dt
¼ ðA2

� !2
0x

2
Þ
1=2

ð2-35bÞ

which can be written as

dx

ðA2 � !2
0x

2Þ
1=2

¼ dt ð2-36Þ

The solution of (2-36) is well known from integral calculus and is

x ¼ a sinð!0tþ �Þ ð2-37Þ

where a and � are constants of integration. Equation (2-37) can be rewritten in
another form by using the trigonometric expansion:

sinð!0tþ �Þ ¼ sinð!0tÞ cos �þ cosð!0tÞ sin � ð2-38Þ

so

xðtÞ ¼ A sin!0tþ B cos!0t ð2-39Þ

where

A ¼ a cos � B ¼ a sin � ð2-40Þ

Another form for (2-39) is to express cos!0t and sin!0t in terms of exponents; that is,

cos!0t ¼
ei!0t þ e�i!0t

2
ð2-41aÞ

sin!0t ¼
ei!0t � e�i!0t

2i
ð2-41bÞ

Substituting (2-41a) and (2-41b) into (2-39) and grouping terms leads to

xðtÞ ¼ Cei!0t þDe�i!0t ð2-42aÞ

where

C ¼
A� iB

2
D ¼

Aþ iB

2
ð2-42bÞ
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and C and D are complex constants. Thus, we see that the solution of the harmonic
oscillator can be written in terms of purely real quantities or complex quantities.

The form of (2-35a) is of particular interest. The differential equation (2-33a)
clearly describes the amplitude motion of the harmonic oscillator. Let us retain the
original form of (2-33a) and multiply through by dx/dt ¼ v, so we can write

mv
dv

dt
¼ �kx

dx

dt
ð2-43Þ

We now integrate both sides of (2-43), and we are led to

mv2

2
¼

�kx2

2
þ C ð2-44Þ

where C is a constant of integration. Thus, by merely carrying out a formal integra-
tion we are led to a new form for describing the motion of the harmonic oscillator.
At the beginning of the eighteenth century the meaning of (2-44) was not clear. Only
slowly did physicists come to realize that (2-44) describes the motion of the harmonic
oscillator in a completely new way, namely the description of motion in terms of
energy. The terms mv2/2 and �kx2/2 correspond to the kinetic energy and the
potential energy for the harmonic oscillator, respectively. Thus, early on in the
development of physics a connection was made between the amplitude and energy
for oscillatory motion. The energy of the wave could be obtained by merely squaring
the amplitude. This point is introduced because of its bearing on Young’s inter-
ference experiment, specifically, and on optics, generally. The fact that a relation
exists between the amplitude of the harmonic oscillator and its energy was taken
directly over from mechanics into optics and was critical for Young’s interference
experiment. In optics, however, the energy would become known as the intensity.

2.2.5 A Note on the Equation of a Plane

The equation of a plane was stated in (2-11) to be

s�r ¼ constant ð2-11Þ

We can show that (2-11) does indeed describe a plane by referring to Fig. 2-2.
Inspecting the figure, we see that r is a vector with its origin at the origin of the
coordinates, so,

r ¼ xiþ yjþ zk ð2-45Þ

and i, j, and k are unit vectors. Similarly, from Fig. 2-2 we see that

s ¼ sxiþ syjþ szk ð2-46Þ

Suppose we now have a vector r0 along s and the plane is perpendicular to s. Then
OP is the vector r � r0 and is perpendicular to s. Hence, the equation of the plane is

s�ðr� r0Þ ¼ 0 ð2-47Þ

or

s�r ¼ � ð2-48Þ

where � ¼ s � r0 is a constant. Thus, the name plane-wave solutions arises from the
fact that the wave front is characterized by a plane of infinite extent.
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2.3 YOUNG’S INTERFERENCE EXPERIMENT

In the previous section we saw that the developments in mechanics in the eighteenth
century led to the mathematical formulation of the wave equation and the concept
of energy.

Around the year 1800, Thomas Young performed a simple, but remarkable,
optical experiment known as the two-pinhole interference experiment. He showed
that this experiment could be understood in terms of waves; the experiment gave the
first clear-cut support for the wave theory of light. In order to understand the pattern
that he observed, he adopted the ideas developed in mechanics and applied them
to optics, an extremely novel and radical approach. Until the advent of Young’s
work, very little progress had been made in optics since the researches of Newton
(the corpuscular theory of light) and Huygens (the wave theory of light). The simple
fact was that by the year 1800, aside from Snell’s law of refraction and the few things
learned about polarization, there was no theoretical basis on which to proceed.
Young’s work provided the first critical step in the development and acceptance of
the wave theory of light.

The experiment carried out by Young is shown in Fig. 2-3. A source of light, 	,
is placed behind two pinholes s1 and s2, which are equidistant from 	. The pinholes
then act as secondary monochromatic sources that are in phase, and the beams from
them are superposed on the screen � at an arbitrary point P. Remarkably, when the
screen is then observed, one does not see a uniform distribution of light. Instead, a
distinct pattern consisting of bright bands alternating with dark bands is observed.
In order to explain this behavior, Young assumed that each of the pinholes, s1 and s2,
emitted waves of the form:

u1 ¼ u01 sinð!t� kl1Þ ð2-49aÞ

u2 ¼ u02 sinð!t� kl2Þ ð2-49bÞ

where pinholes s1 and s2 are in the source plane A, and are distances l1 and l2 from a
point P(x, y) in the plane of observation �. The pattern is observed on the plane Oxy
normal to the perpendicular bisector of s1s2 and with the x axis parallel to s1s2. The
separation of the pinholes is d, and a is the distance between the line joining the

Figure 2-3 Young’s interference experiment.
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pinholes and the plane of observation �. For the point P(x, y) on the screen, Fig. 2-3
shows that

l21 ¼ a2 þ y2 þ x�
d

2

� �2

ð2-50aÞ

l22 ¼ a2 þ y2 þ xþ
d

2

� �2

ð2-50bÞ

Thus,

l22 � l21 ¼ 2xd ð2-51Þ

Equation (2-51) can be written as

ðl2 � l1Þðl1 þ l2Þ ¼ 2xd ð2-52Þ

Now if x and y are small compared to a, then l1 þ l2 ’ 2a. Thus,

l2 � l1 ¼ �l ¼
xd

a
ð2-53Þ

At this point we now return to the wave theory. The secondary sources s1 and
s2 are assumed to be equal, so u01 ¼ u02 ¼ u0. In addition, the assumption is made
that the optical disturbances u1 and u2 can be superposed at P(x, y) (the principle of
coherent superposition), so

uðtÞ ¼ u1 þ u2

¼ u0½sinð!t� kl1Þ þ sinð!t� kl2Þ� ð2-54Þ

A serious problem now arises. While (2-54) certainly describes an interference behav-
ior, the parameter of time enters in the term !t. In the experiment the observed
pattern does not vary over time, so the time factor cannot enter the final result. This
suggests that we average the amplitude u(t) over the time of observation T. The time
average of u(t) written as u(t), is then defined to be

uðtÞ
� �

¼ lim
T!1

R T
0 uðtÞ dtR T

0 dt
ð2-55aÞ

¼ lim
T!1

1

T

Z T

0

uðtÞ dt ð2-55bÞ

Substituting (2-54) into (2-55) yields

uðtÞ
� �

¼ lim
T!1

u0
T

Z T

0

½sinð!t� kl1Þþ sinð!t� kl2Þ� dt ð2-56Þ

Using the trigonometric identity:

sinð!t� kl Þ ¼ sinð!tÞ cosðkl Þ � cosð!tÞ sinðkl Þ ð2-57Þ

and averaging over one cycle in (2-56) yields

huðtÞi ¼ 0 ð2-58Þ
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This is not observed. That is, the time average of the amplitude is calculated to be
zero, but observation shows that the pattern exhibits nonzero intensities. At this
point we must abandon the idea that the interference phenomenon can be explained
only in terms of amplitudes u(t). Another idea must now be borrowed from
mechanics. Namely, the optical disturbance must be described in terms of squared
quantities, analogous to energy, u2(t). But this, too, contains a time factor. Again, a
time average is introduced, and a new quantity, I, in optics called the intensity, is
defined:

I ¼ u2ðtÞ
� �

¼ lim
T!1

1

T

Z T

0

u2ðtÞ dt ð2-59Þ

Substituting u2ðtÞ ¼ ðu0 sinð!t� klÞÞ2 into (2-59) and averaging over one cycle yields

I ¼ u2ðtÞ
� �

¼ lim
T!1

1

T

Z T

0

u20 sin
2
ð!t� kl Þ dt

¼
u20
2
¼ I0 ð2-60Þ

Thus, the intensity is constant over time; this behavior is observed.
The time average of u2(t) is now applied to the superposed amplitudes (2-54).

Squaring u2(t) yields

u2ðtÞ ¼ u20½sin
2
ð!t�kl1Þþ sin2ð!t�kl2Þþ 2sinð!t�kl1Þ sinð!t�kl2Þ� ð2-61Þ

The last term is called the interference. Equation (2-61) can be rewritten with the help
of the well-known trigonometric identity:

2 sinð!t� kl1Þ sinð!t� kl2Þ ¼ cosðk½l2 � l1�Þ � cosð2!t� k½l1 þ l2�Þ ð2-62Þ

Thus, (2-61) can be written as

u2ðtÞ ¼ u20½sin
2
ð!t� kl1Þ þ sin2ð!t� kl2Þ

þ cosðk½l2 � l1�Þ � cosð2!t� k½l1 þ l2�Þ� ð2-63Þ

Substituting (2-63) into (2-59), we obtain the intensity on the screen to be

I ¼ u2ðtÞ
� �

¼ 2I0½1þ cos kðl2 � l1Þ� ¼ 4I0 cos
2 kðl2 � l1Þ

2

� �
ð2-64aÞ

or

I ¼ 4I0 cos
2 kxd

2a
ð2-64bÞ

where, from (2-53)

l2 � l1 ¼ �l ¼
xd

a
ð2-53Þ
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Equation (2-64b) is Young’s famous interference formula. We note that from (2-60)
we would expect the intensity from a single source to be u20=2 ¼ I0, so the intensity
from two independent optical sources would be 2I. Equation (2-64a) [or (2-64b)]
shows a remarkable result, namely, when the intensity is observed from a single
source in which the beam is divided, the observed intensity varies between 0
and 4I0; the intensity can be double or even zero from that expected from two
independent optical sources! We see from (2-64b) that there will be maximum
intensities (4I0) at

x ¼
a
n

d
n ¼ 0, � 1, � 2, . . . ð2-65aÞ

and minimum intensities (null) at

x ¼
a


d

2nþ 1

2

� �
n ¼ 0, � 1, � 2, . . . ð2-65bÞ

Thus, in the vicinity of O on the plane � an interference pattern consisting of bright
and dark bands is aligned parallel to the OY axis (at right angles to the line s1s2
joining the two sources).

Young’s experiment is of great importance because it was the first step in
establishing the wave theory of light and was the first theory to provide an explana-
tion of the observed interference pattern. It also provides a method, albeit one of low
precision, of measuring the wavelength of light by measuring d, a, and the fringe
spacing according to (2-65a) or (2-65b). The separation �x between the central
bright line and the first bright line is, from (2-65a),

�x ¼ x1 � x0 ¼
a


d
ð2-66Þ

The expected separation on the observing screen can be found by assuming the
following values:

a ¼ 100 cm d ¼ 0:1 cm


 ¼ 5� 10�5cm �x ¼ 0:05 cm ¼ 0:5mm
ð2-67Þ

The resolution of the human eye at a distance of 25 cm is, approximately, of the same
order of magnitude, so the fringes can be observed with the naked eye.

Young’s interference gave the first real support for the wave theory. However,
aside from the important optical concepts introduced here to explain the interference
pattern, there is another reason for discussing Young’s interference experiment.
Around 1818, Fresnel and Arago repeated his experiments with polarized light to
determine the effects, if any, on the interference phenomenon. The results
were surprising to understand in their entirety. To explain these experiments it
was necessary to understand the nature and properties of polarized light. Before
we turn to the subject of polarized light, however, we discuss another topic
of importance, namely, the reflection and transmission of a wave at an interface
separating two different media.
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2.4 REFLECTION AND TRANSMISSION OF A WAVE AT AN
INTERFACE

The wave theory and the wave equation allow us to treat an important problem,
namely, the reflection and transmission of wave at an interface between two different
media. Specifically, in optics, light is found to be partially reflected and partially
transmitted at the boundary of two media characterized by different refractive
indices. The treatment of this problem was first carried out in mechanics, however,
and shows how the science of mechanics paved the way for the introduction of the
wave equation into optics.

Two media can be characterized by their ability to support two different
velocities v1 and v2. In Fig. 2-4 we show an incident wave coming from the left
which is partially transmitted and reflected at the interface (boundary).

We saw earlier that the solution of the wave equation in complex form is

uðxÞ ¼ Ae�ikx
þ Beþikx

ð2-68Þ

where k¼!/v. The time factor exp(i!t) has been suppressed. The term Ae�ikx

describes propagation to the right, and the term Beþikx describes propagation to
the left. The fields to the left and right of the interface (boundary) can be described
by a superposition of waves propagating to the right and left, that is,

u1ðxÞ ¼ Ae�ik1x þ Beþik1x x < 0 ð2-69aÞ

u2ðxÞ ¼ Ce�ik2x þDeþik2x x > 0 ð2-69bÞ

where k1 ¼ !/v1 and k2 ¼ !/v2.
We must now evaluate A, B, C, and D. To do this, we assume that at the

interface the fields are continuous—that is,

u1ðxÞ j x¼0 ¼ u2ðxÞ j x¼0 ð2-70Þ

Figure 2-4 Reflection and transmission of a wave at the interface between two media.
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and that the slopes of u1(x) and u2(x) are continuous at the interface—that is, the
derivatives of u1(x) and u2(x), so

@u1ðxÞ

@x

����
x¼0

¼
@u2ðxÞ

@x

����
x¼0

ð2-71Þ

We also assume that there is no source of waves in the medium to the right of the
interface, i.e, D ¼ 0. This means that the wave which propagates to the left on the left
side of the interface is due only to reflection of the incident wave.

With D ¼ 0, and applying the boundary conditions in (2-70) and (2-71) to
(2-69a) and (2-69b) we easily find

Aþ B ¼ C ð2-72aÞ

k1A� k1B ¼ k2C ð2-72bÞ

We solve for B and C in terms of the amplitude of the incident wave, A, and find

B ¼
k1 � k2
k1 þ k2

� �
A ð2-73aÞ

C ¼
2k1

k1 þ k2

� �
A ð2-73bÞ

The B term is associated with the reflected wave in (2-69a). If k1 ¼ k2, i.e., the two
media are the same, then (2-73a) and (2-73b) show that B ¼ 0 and C ¼ A; that is,
there is no reflected wave, and we have complete transmission as expected.

We can write (2-69a) as the sum of an incident wave ui(x) and a reflected
wave ur(x):

u1ðxÞ ¼ uiðxÞ þ urðxÞ ð2-74aÞ

and we can write (2-69b) as a transmitted wave:

u2ðxÞ ¼ utðxÞ ð2-74bÞ

The energies corresponding to ui(x), ur(x), and ut(x), are then the squares of these
quantities. We can use complex quantities to bypass the formal time-averaging
procedure and define the energies of these waves to be

"i ¼ uiðxÞu
�
i ðxÞ ð2-75aÞ

"r ¼ urðxÞu
�
r ðxÞ ð2-75bÞ

"t ¼ utðxÞu
�
t ðxÞ ð2-75cÞ

The principle of conservation of energy requires that

"i ¼ "r þ "t ð2-76Þ

The fields ui(x), ur(x), and ut(x) from (2-69a) and (2-69b) are

uiðxÞ ¼ Ae�ik1x ð2-77aÞ

urðxÞ ¼ Beþik1x ð2-77bÞ

utðxÞ ¼ Ce�ik2x ð2-77cÞ

Copyright © 2003 by Marcel Dekker, Inc. All Rights Reserved.



The energies corresponding to (2-77) are then substituted in (2-76), and we find

A2
¼ B2

þ C2
ð2-78aÞ

or

B

A

� �2

þ
C

A

� �2

¼ 1 ð2-78bÞ

The quantities (B/A)2 and (C/A)2 are the normalized reflection and transmission
coefficients, which we write as R and T, respectively. Thus, (2-78b) becomes

Rþ T ¼ 1 ð2-79aÞ

where

R ¼
k1 � k2
k1 þ k2

� �2

ð2-79bÞ

T ¼
2k1

k1 þ k2

� �2

ð2-79cÞ

from (2-73a) and (2-73b). Equation (2-79b) and (2-79c) can be seen to satisfy the
conservation condition (2-79a).

The coefficients B and C show an interesting behavior, which is as follows.
From (2-73a) and (2-73b) we write

B

A
¼

1� k2=k1
1þ k2=k1

ð2-80aÞ

C

A
¼

2

1þ k2=k1
ð2-80bÞ

where

k2
k1

¼
!=v2
!=v1

¼
v1
v2

ð2-80cÞ

Now if v2 ¼ 0, that is, there is no propagation in the second medium, (2-80c)
becomes

lim
v2!0

k2
k1

¼
v1
v2

¼ 1 ð2-81Þ

With this limiting value, (2-81), we see that (2-80a) and (2-80b) become

B

A
¼ �1 ¼ ei� ð2-82aÞ

C

A
¼ 0 ð2-82bÞ

Equation (2-82a) shows that there is a 180� (p rad) phase reversal upon total
reflection. Thus, the reflected wave is completely out of phase with the incident
wave, and we have total cancellation. This behavior is described by the term standing
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waves. We now derive the equation which specifically shows that the resultant wave
does not propagate.

The field to the left of the interface is given by (2-69a) and is

u1ðx, tÞ ¼ ei!tðAe�ik1x þ Beik1xÞ x < 0 ð2-83Þ

where we have reintroduced the (suppressed) time factor exp(i!t). From (2-82a) we
can then write

u1ðx, tÞ ¼ Aei!tðe�ik1x � eik1xÞ ð2-84aÞ

¼ Aeið!t�k1xÞ � Aeið!tþk1xÞ ð2-84bÞ

¼ u�ðx, tÞ � uþðx, tÞ ð2-84cÞ

where

u�ðx, tÞ ¼ Aeið!t�k1xÞ ð2-84dÞ

uþðx, tÞ ¼ Aeið!tþk1xÞ ð2-84eÞ

The phase velocity vp of a wave can be defined in terms of amplitude as

vp ¼ �
ð@u=@tÞ

ð@u=@xÞ
ð2-85Þ

Applying (2-85) to (2-84d) and (2-84e), respectively, we find that

vpð�Þ ¼
!

k1
ð2-86aÞ

vpðþÞ ¼
�!

k1
ð2-86bÞ

so the total velocity of the wave is

v ¼ vpð�Þ þ vpðþÞ ¼ 0 ð2-87Þ

Thus, the resultant velocity of the wave is zero according to (2-87); that is, the wave
does not propagate and it appears to be standing in place. The equation for the
standing wave is given by (2-84a), which can be written as

u1ðx, tÞ ¼ 2Aei!t sinðk1xÞ ð2-88Þ

It is customary to take the real part of (2-88)

uðx, tÞ ¼ 2A cosð!tÞ sinðkxÞ ð2-89Þ

where we have dropped the subscript 1. We see that there is no propagator !t � kx,
so (2-89) does not describe propagation.

Thus, we see that the wave equation and wave theory lead to a correct descrip-
tion of the transmission and reflection of a wave at a boundary. While this behavior
was first studied in mechanics in the eighteenth century, it was applied with equal
success to optics in the following century. It appears that this was first done by
Fresnel, who derived the equations for reflection and transmission at an interface
between two media characterized by refractive indices n1 and n2. Fresnel’s equations
are derived in Chapter 8.
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With this material on the wave equation behind us, we can now turn to the
study of one of the most interesting properties of light, its polarization.
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3

The Polarization Ellipse

3.1 INTRODUCTION

Christian Huygens was the first to suggest that light was not a scalar quantity based
on his work on the propagation of light through crystals; it appeared that light had
‘‘sides’’ in the words of Newton. This vectorial nature of light is called polarization.
If we follow mechanics and equate an optical medium to an isotropic elastic medium,
it should be capable of supporting three independent oscillations (optical
disturbances): ux(r, t), uy(r, t), and uz(r, t). Correspondingly, three independent wave
equations are then required to describe the propagation of the optical disturbance,
namely,

r
2uiðr, tÞ ¼

1

v2
@2uiðr, tÞ

@t2
i ¼ x, y, z ð3-1Þ

where v is the velocity of propagation of the oscillation and r ¼ r(x, y, z). In a
Cartesian system the components uxðr, tÞ and uyðr, tÞ are said to be the transverse
components, and the component uzðr, tÞ is said to be the longitudinal component
when the propagation is in the z direction. Thus, according to (3-1) the optical field
components should be

uxðr, tÞ ¼ u0x cosð!t� k � rþ �xÞ ð3-2aÞ

uyðr, tÞ ¼ u0y cosð!t� k � rþ �yÞ ð3-2bÞ

uzðr, tÞ ¼ u0z cosð!t� k � rþ �zÞ ð3-2cÞ

In 1818 Fresnel and Arago carried out a series of fundamental investigations
on Young’s interference experiment using polarized light. After a considerable
amount of experimentation they were forced to conclude that the longitudinal com-
ponent (3-2c) did not exist. That is, light consisted only of the transverse components
(3-2a) and (3-2b). If we take the direction of propagation to be in the z direction,
then the optical field in free space must be described only by

uxðz, tÞ ¼ u0x cosð!t� kzþ �xÞ ð3-3aÞ

uyðz, tÞ ¼ u0y cosð!t� kzþ �yÞ ð3-3bÞ
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where u0x and u0y are the maximum amplitudes and �x and �y are arbitrary phases.
There is no reason, a priori, for the existence of only transverse components on the
basis of an elastic medium (the ‘‘ether’’ in optics). It was considered to be a defect
in Fresnel’s theory. Nevertheless, in spite of this (3-3a) and (3-3b) were found to
describe satisfactorily the phenomenon of interference using polarized light.

The ‘‘defect’’ in Fresnel’s theory was overcome by the development of a new
theory, which we now call Maxwell’s electrodynamic theory and his equations. One
of the immediate results of solving his equations was that in free space only trans-
verse components arose; there was no longitudinal component. This was one of the
first triumphs of Maxwell’s theory. Nevertheless, Maxwell’s theory took nearly
40 years to be accepted in optics due, in large part, to the fact that up to the end
of the nineteenth century it led to practically nothing that could not be explained or
understood by Fresnel’s theory.

Equations (3-3a) and (3-3b) are spoken of as the polarized or polarization
components of the optical field. In this chapter we consider the consequences of
these equations. The results are very interesting and lead to a surprising number
of revelations about the nature of light.

3.2 THE INSTANTANEOUS OPTICAL FIELD AND THE
POLARIZATION ELLIPSE

In previous sections we pointed out that the experiments of Fresnel and Arago led
to the discovery that light consisted only of two transverse components. The
components were perpendicular to each other and could be chosen for convenience
to be propagating in the z direction. The waves are said to be ‘‘instantaneous’’ in the
sense that the time duration for the wave to go through one complete cycle is only
10�15 sec at optical frequencies. In this chapter we find the equation that arises when
the propagator is eliminated between the transverse components. In order to do this
we show in Fig. 3-1 the transverse optical field propagating in the z direction.

The transverse components are represented by

Exðz, tÞ ¼ E0x cosð� þ �xÞ ð3-4aÞ

Eyðz, tÞ ¼ E0y cosð� þ �yÞ ð3-4bÞ

where � ¼ !t� �z is the propagator. The subscripts x and y refer to the components
in the x and y directions, E0x and E0y are the maximum amplitudes, and �x and �y are
the phases, respectively. As the field propagates, Ex(z, t) and Ey(z, t) give rise to a
resultant vector. This vector describes a locus of points in space, and the
curve generated by those points will now be derived. In order to do this (3-4a)
and (3-4b) are written as

Ex

E0x

¼ cos � cos �x � sin � sin �x ð3-5aÞ

Ey

E0y

¼ cos � cos �y � sin � sin �y ð3-5bÞ
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Hence,

Ex

E0x

sin �y �
Ey

E0y

sin �x ¼ cos � sinð�y � �xÞ ð3-6aÞ

Ex

E0x

cos �y �
Ey

E0y

cos �x ¼ sin � sinð�y � �xÞ ð3-6bÞ

Squaring (3-6a) and (3-6b) and adding gives

E2
x

E2
0x

þ
E2
y

E2
0y

� 2
Ex

E0x

Ey

E0y

cos � ¼ sin2 � ð3-7aÞ

where

� ¼ �y � �x ð3-7bÞ

Equation (3-7a) is recognized as the equation of an ellipse and shows that at
any instant of time the locus of points described by the optical field as it propagates
is an ellipse. This behavior is spoken of as optical polarization, and (3-7a) is called the
polarization ellipse. In Fig. 3-2 the ellipse is shown inscribed within a rectangle whose
sides are parallel to the coordinate axes and whose lengths are 2E0x and 2E0y.

We now determine the points where the ellipse is tangent to the sides of the
rectangle. We write (3-7a) as

E 2
0xE

2
y � ð2E0xE0yEx cos �ÞEy þ E 2

0y ðE
2
x � E 2

0x sin
2�Þ ¼ 0 ð3-8Þ

The solution of this quadratic equation (3-8) is

Ey ¼
E0yEx cos �

E0x

�
E0y sin �

E0x

ðE 2
0x � E2

xÞ
1=2

ð3-9Þ

At the top and bottom of the ellipse where it is tangent to the rectangle the slope
is 0. We now differentiate (3-9), set E 0

y ¼ dEy=dEx ¼ 0, and find that

Ex ¼ �E0x cos � ð3-10aÞ

Figure 3-1 Propagation of the transverse optical field.
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Substituting (3-10a) into (3-9), the corresponding values of Ey are found to be

Ey ¼ �E0y ð3-10bÞ

Similarly, by considering (3-9) where the slope is E 0
y ¼ 1 on the sides of the

rectangle, the tangent points are

Ex ¼ �E0x ð3-11aÞ

Ey ¼ �E0y cos � ð3-11bÞ

Equations (3-10) and (3-11) show that the maximum length of the sides of the
ellipse are Ex ¼ �E0x and Ey ¼ �E0y. The ellipse is tangent to the sides of the
rectangle at ð�E0x, �E0y cos �Þ and ð�E0x cos �, �E0yÞ. We also see that
(3-10) and (3-11) show that the extrema of Ex and Ey are �E0x and �E0y, respec-
tively.

In Fig. 3-2 the ellipse is shown touching the rectangle at point A, B, C, and D,
the coordinates of which are

A : þE0x cos �, þ E0y ð3-12aÞ

B : þE0x, þ E0y cos � ð3-12bÞ

C : �E0x cos �, � E0y ð3-12cÞ

D : �E0x, � E0y cos � ð3-12dÞ

The presence of the ‘‘cross term’’ in (3-7a) shows that the polarization ellipse
is, in general, rotated, and this behavior is shown in Fig. 3-2 where the ellipse is
shown rotated through an angle  . More will be said about this later.

It is also of interest to determine the maximum and minimum areas of the
polarization ellipse which can be inscribed within the rectangle. We see that along

Figure 3-2 An elliptically polarized wave and the polarization ellipse.
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the x axis the ellipse is tangent at the extrema x ¼�E0x and x ¼ þE0x. The area of
the ellipse above the x axis is given by

A ¼

Z þE0x

�E0x

Ey dx ð3-13Þ

Substituting (3-9) into (3-13) and evaluating the integrals, we find that the area of
the polarization ellipse is

A ¼ �E0xE0y sin � ð3-14Þ

Thus, the area of the polarization ellipse depends on the lengths of the major and
minor axes, E0x and E0y, and the phase shift � between the orthogonal transverse
components. We see that for � ¼ �/2 the area is �E0xE0y, whereas for � ¼ 0 the area is
zero. The significance of these results will soon become apparent.

In general, completely polarized light is elliptically polarized. However,
there are certain degenerate forms of the polarization ellipse which are continually
encountered in the study of polarized light. Because of the importance of these
special degenerate forms we now discuss them as special cases in the following
section. These are the cases where either E0x or E0y is zero or E0x and E0y are
equal and/or where � ¼ 0, �/2, or � radians.

3.3 SPECIALIZED (DEGENERATE) FORMS OF THE POLARIZATION
ELLIPSE

The polarization ellipse (3-7a) degenerates to special forms for certain values of E0x,
E0y, and �. We now consider these special forms.

1. E0y ¼ 0. In this case Ey(z, t) is zero and (3-4) becomes

Exðz, tÞ ¼ E0x cosð� þ �xÞ ð3-15aÞ

Eyðz, tÞ ¼ 0 ð3-15bÞ

In this case there is an oscillation only in the x direction. The light is then said to be
linearly polarized in the x direction, and we call this linear horizontally polarized
light. Similarly, if E0x ¼ 0 and Eyðz, tÞ 6¼ 0, then we have a linear oscillation along the
y axis, and we speak of linear vertically polarized light.

2. � ¼ 0 or �. Equation (3-7a) reduces to

E2
x

E2
0x

þ
E2
y

E2
0y

� 2
Ex

E0x

Ey

E0y

¼ 0 ð3-16Þ

Equation (3-16) can be written as

Ex

E0x

�
Ey

E0y

� �2

¼ 0 ð3-17Þ

whence

Ey ¼ �
E0y

E0x

� �
Ex ð3-18Þ
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Equation (3-18) is recognized as the equation of a straight line with slope �ðE0y=E0xÞ

and zero intercept. Thus, we say that we have linearly polarized light with slope
�ðE0y=E0xÞ. The value � ¼ 0 yields a negative slope, and the value � ¼ � a positive
slope. If E0x ¼ E0y, then we see that

Ey ¼ �Ex ð3-19Þ

The positive value is said to represent linear þ45� polarized light, and the negative
value is said to represent linear �45� polarized light.

3. � ¼ �/2 or 3�/2. The polarization ellipse reduces to

E2
x

E2
0x

þ
E2
y

E2
0y

¼ 1 ð3-20Þ

This is the standard equation of an ellipse. Note that � ¼ �/2 or � ¼ 3�/2 yields the
identical polarization ellipse.

4. E0x ¼ E0y ¼ E0 and � ¼ �/2 or � ¼ 3�/2. The polarization ellipse now
reduces to

E2
x

E2
0

þ
E2
y

E2
0

¼ 1 ð3-21Þ

Equation (3-21) describes the equation of a circle. Thus, for this condition the
light is said to be right or left circularly polarized (� ¼ �/2 and 3�/2, respectively).
Again, we note that (3-21) shows that it alone cannot determine if the value of � is
�/2 or 3�/2.

Finally, in the previous section we showed that the area of the polarization
ellipse was

A ¼ �E0xE0y sin � ð3-22Þ

We see that for � ¼ 0 or � the area of the polarization ellipse is zero, which is to be
expected for linearly polarized light. For � ¼ �/2 or 3�/2 the area of the ellipse is a
maximum; that is, �E0xE0y. It is important to note that even if the phase shift
between the orthogonal components is �/2 or 3�/2, the light is, in general, elliptically
polarized. Furthermore, the polarization ellipse shows that it is in the standard
form as given by (3-20).

For the more restrictive condition where the orthogonal amplitudes are
equal so that E0x ¼ E0y ¼ E0 and, when � ¼ �=2 or 3�=2, (3-22) becomes

A ¼ �E2
0 ð3-23Þ

which is, of course, the area of a circle.
The previous special forms of the polarization ellipse are spoken of as being

degenerate states. We can summarize these results by saying that the degenerate
states of the polarization ellipse are (1) linear horizontally or vertically polarized
light, (2) linear þ45� or �45� polarized light, and (3) right or left circularly polarized
light.

Aside from the fact that these degenerate states appear quite naturally as
special cases of the polarization ellipse, there is a fundamental reason for their
importance: they are relatively easy to create in an optical laboratory and can be
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used to create ‘‘null-intensity’’ conditions. Polarization instruments, which may be
based on null-intensity conditions, enable very accurate measurements to be made.

3.4 ELLIPTICAL PARAMETERS OF THE POLARIZATION ELLIPSE

The polarization ellipse has the form:

E2
x

E2
0x

þ
E2
y

E2
0y

� 2
Ex

E0x

Ey

E0y

cos � ¼ sin2 � ð3-7aÞ

where � ¼ �y � �x. In general, the axes of the ellipse are not in the Ox and
Oy directions. In (3-7a) the presence of the ‘‘product’’ term ExEy shows that it is
actually a rotated ellipse; in the standard form of an ellipse the product term is not
present. In this section we find the mathematical relations between the parameters of
the polarization ellipse, E0x,E0y, and � and the angle of rotation  , and another
important parameter, �, the ellipticity angle.

In Fig. 3-3 we show the rotated ellipse. Let Ox and Oy be the initial, unrotated,
axes, and let Ox0 and Oy0 be a new set of axes along the rotated ellipse. Furthermore,
let  ð0 	  	 �Þ be the angle between Ox and the direction Ox0 of the major axis.

The components E 0
x and E 0

y are

E 0
x ¼ Ex cos þ Ey sin ð3-24aÞ

E 0
y ¼ �Ex sin þ Ey cos ð3-24bÞ

If 2a and 2b (a 
 b) are the lengths of the major and minor axes, respectively, then
the equation of the ellipse in terms of Ox0 and Oy0 can be written as

E 0
x ¼ a cosð� þ � 0Þ ð3-25aÞ

E 0
y ¼ �b sinð� þ � 0Þ ð3-25bÞ

where � is the propagator and �0 is an arbitrary phase. The � sign describes the two
possible senses in which the end point of the field vector can describe the ellipse.

Figure 3-3 The rotated polarization ellipse.
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The form of (3-25) is chosen because it is easy to see that it leads to the standard
form of the ellipse, namely,

E 02
x

a2
þ
E 02

y

b2
¼ 1 ð3-26Þ

We can relate a and b in (3-25) to the parameters E0x and E0y in (3-7a) by
recalling that the original equations for the optical field are

Ex

E0x

¼ cosð� þ �xÞ ð3-27aÞ

Ey

E0y

¼ cosð� þ �yÞ ð3-27bÞ

We then substitute (3-25) and (3-27) into (3-24), expand the terms, and write

aðcos � cos � 0 � sin � sin � 0Þ ¼ E0xðcos � cos �x � sin � sin �xÞ cos 

þ E0yðcos � cos �y � sin � sin �yÞ sin ð3-28aÞ

�bðsin � cos � 0 þ cos � sin � 0Þ ¼ �E0xðcos � cos �x � sin � sin �xÞ sin 

þE0yðcos � cos �y � sin � sin �yÞ cos ð3-28bÞ

Equating the coefficients of cos � and sin � leads to the following equations:

a cos � 0 ¼ E0x cos �x cos þ E0y cos �y sin ð3-29aÞ

a sin � 0 ¼ E0x sin �x cos þ E0y sin �y sin ð3-29bÞ

�b cos � 0 ¼ E0x sin �x sin � E0y sin �y cos ð3-29cÞ

�b sin � 0 ¼ E0x cos �x sin � E0y cos �y cos ð3-29dÞ

Squaring and adding (3-29a) and (3-29b) and using � ¼ �y � �x, we find that

a2 ¼ E2
0x cos

2  þ E2
0y sin

2  þ 2E0xE0y cos sin cos � ð3-30aÞ

Similarly, from (3-29c) and (3-29d) we find that

b2 ¼ E2
0x sin

2  þ E2
0y cos

2  � 2E0xE0y cos sin cos � ð3-30bÞ

Hence,

a2 þ b2 ¼ E2
0x þ E2

0y ð3-31Þ

Next, we multiply (3-29a) by (3-29c), (3-29b) by (3-29d), and add. This gives

�ab ¼ E0xE0y sin � ð3-32Þ

Further, dividing (3-29d) by (3-29a) and (3-29c) by (3-29b) leads to

ðE2
0x � E2

0yÞ sin 2 ¼ 2E0xE0y cos � cos 2 ð3-33aÞ

or

tan 2 ¼
2E0xE0y cos �

E2
0x � E2

0y

ð3-33bÞ

which relates the angle of rotation  to E0x, E0y, and �.
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We note that, in terms of the phase �,  is equal to zero only for � ¼ 90� or
270�. Similarly, in terms of amplitude, only if E0x or E0y is equal to zero is  equal
to zero.

An alternative method for determining  is to transform (3-7a) directly to
(3-26). To show this we write (3-24a) and (3-24b) as

Ex ¼ E 0
x cos � E 0

y sin ð3-34aÞ

Ey ¼ E 0
x sin þ E 0

y cos ð3-34bÞ

Equation (3-34) can be obtained from (3-24) by solving for Ex and Ey or,
equivalently, replacing  by � , Ex by E 0

x, and Ey by E 0
y. On substituting (3-34a)

and (3-34b) into (3-7a), the cross term is seen to vanish only for the condition given
by (3-33).

It is useful to introduce an auxiliary angle ð0 	  	 �=2Þ for the polarization
ellipse defined by

tan ¼
E0y

E0x

ð3-35Þ

Then (3-33) is easily shown by using (3-34) to reduce to

tan 2 ¼
2E0xE0y

E2
0xE

2
0y

cos � ¼
2 tan

1� tan2 
cos � ð3-36Þ

which then yields

tan 2 ¼ ðtan 2Þ cos � ð3-37Þ

We see that for � ¼ 0 or � the angle of rotation is

 ¼ �  ð3-38Þ

For � ¼ �=2 or 3�=2 we have  ¼ 0, so the angle of rotation is also zero.
Another important parameter of interest is the angle of ellipticity, �. This is

defined by

tan� ¼
�b

a
�
�

4
	 � 	

�

4
ð3-39Þ

We see that for linearly polarized light b ¼ 0, so � ¼ 0. Similarly, for circularly
polarized light b ¼ a, so � ¼ ��=4. Thus, (3-39) describes the extremes of the
ellipticity of the polarization ellipse.

Using (3-31), (3-32), and (3-35), we easily find that

�2ab

a2 þ b2
¼

2E0xE0y

E2
0x þ E2

0y

sin � ¼ ðsin 2Þ sin � ð3-40Þ

Next, using (3-39) we easily see that the left-hand side of (3-40) reduces to sin 2�, so
we can write (3-40) as

sin 2� ¼ ðsin 2Þ sin � ð3-41Þ

which is the relation between the ellipticity of the polarization ellipse and the
parameters E0x,E0y, and � of the polarization ellipse.
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We note that only for � ¼ �=2 or 3�=2 does (3-41) reduce to

� ¼ � ð3-42Þ

which is to be expected.
The results that we have obtained here will be used again, so it is useful to

summarize them. The elliptical parameters E0x, E0y, and � of the polarization
ellipse are related to the orientation angle  and ellipticity angle � by the following
equations:

tan 2 ¼ ðtan 2Þ cos � 0 	  	 � ð3-43aÞ

sin 2� ¼ ðsin 2Þ sin � �
�

4
< � 	

�

4
ð3-43bÞ

where 0 	  	 �=2 and

a2 þ b2 ¼ E2
0x þ E2

0y ð3-43cÞ

tan ¼
E0y

E0x

ð3-43dÞ

tan� ¼
�b

a
ð3-43eÞ

We emphasize that the polarization ellipse can be described either in terms of
the orientation and ellipticity angles  and � on the left-hand sides of (3-43a) and
(3-43b) or the major and minor axes E0x and E0y and the phase shift � on the
right-hand sides of (3-43a) and (3-43b).

Finally, a few words must be said on the terminology of polarization. Two
cases of polarization are distinguished according to the sense in which the end
point of the field vector describes the ellipse. It seems natural to call the polarization
right-handed or left-handed according to whether the rotation of E and the direction
of propagation form a right-handed or left-handed screw. The traditional terminol-
ogy, however, is just the opposite and is based on the apparent behavior of E when
viewed face on by the observer. In this book we shall conform to the traditional, that
is, customary usage. Thus, the polarization is right-handed when to an observer
looking in the direction from which the light is coming, the end point of the electric
vector would appear to describe the ellipse in the clockwise sense. If we consider the
value of (3-4) for two time instants separated by a quarter of a period, we see that
in this case sin � > 0, or by (3-43), 0 < � 	 �=4. For left-handed polarization the
opposite is the case; i.e., to an observer looking in the direction from which
the light is propagated, the electric vector would appear to describe the ellipse
counterclockwise; in this case sin � < 0, so that ��=4 	 � < 0.
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4

The Stokes Polarization Parameters

4.1 INTRODUCTION

In Chapter 3 we saw that the elimination of the propagator between the transverse
components of the optical field led to the polarization ellipse. Analysis of the ellipse
showed that for special cases it led to forms which can be interpreted as linearly
polarized light and circularly polarized light. This description of light in terms of the
polarization ellipse is very useful because it enables us to describe by means of a
single equation various states of polarized light. However, this representation is
inadequate for several reasons. As the beam of light propagates through space, we
find that in a plane transverse to the direction of propagation the light vector traces
out an ellipse or some special form of an ellipse, such as a circle or a straight line in a
time interval of the order 10�15 sec. This period of time is clearly too short to allow
us to follow the tracing of the ellipse. This fact, therefore, immediately prevents us
from ever observing the polarization ellipse. Another limitation is that the polariza-
tion ellipse is only applicable to describing light that is completely polarized.
It cannot be used to describe either unpolarized light or partially polarized
light. This is a particularly serious limitation because, in nature, light is very often
unpolarized or partially polarized. Thus, the polarization ellipse is an idealization of
the true behavior of light; it is only correct at any given instant of time. These
limitations force us to consider an alternative description of polarized light in
which only observed or measured quantities enter. We are, therefore, in the same
situation as when we dealt with the wave equation and its solutions, neither of
which can be observed. We must again turn to using average values of the optical
field which in the present case requires that we represent polarized light in terms
of observables.

In 1852, Sir George Gabriel Stokes (1819–1903) discovered that the polariza-
tion behavior could be represented in terms of observables. He found that any state
of polarized light could be completely described by four measurable quantities
now known as the Stokes polarization parameters. The first parameter expresses
the total intensity of the optical field. The remaining three parameters describe the
polarization state. Stokes was led to his formulation in order to provide a suitable
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mathematical description of the Fresnel–Arago interference laws (1818). These
laws were based on experiments carried out with an unpolarized light source,
a quantity which Fresnel and his successors were never able to characterize mathe-
matically. Stokes succeeded where others had failed because he abandoned the
attempts to describe unpolarized light in terms of amplitude. He resorted to
an experimental definition, namely, unpolarized light is light whose intensity is
unaffected when a polarizer is rotated or by the presence of a retarder of any
retardance value. Stokes also showed that his parameters could be applied not
only to unpolarized light but to partially polarized and completely polarized light
as well. Unfortunately, Stokes’ paper was forgotten for nearly a century. Its impor-
tance was finally brought to the attention of the scientific community by the Nobel
laureate S. Chandrasekhar in 1947, who used the Stokes parameters to formulate the
radiative transfer equations for the scattering of partially polarized light. The Stokes
parameters have been a prominent part of the optical literature on polarized light
ever since.

We saw earlier that the amplitude of the optical field cannot be observed.
However, the quantity that can be observed is the intensity, which is derived by
taking a time average of the square of the amplitude. This suggests that if we take
a time average of the unobserved polarization ellipse we will be led to the observables
of the polarization ellipse. When this is done, as we shall show shortly, we obtain
four parameters, which are exactly the Stokes parameters. Thus, the Stokes par-
ameters are a logical consequence of the wave theory. Furthermore, the Stokes
parameters give a complete description of any polarization state of light. Most
important, the Stokes parameters are exactly those quantities that are measured.
Aside from this important formulation, however, when the Stokes parameters are
used to describe physical phenomena, e.g., the Zeeman effect, one is led to a very
interesting representation. Originally, the Stokes parameters were used only to
describe the measured intensity and polarization state of the optical field. But by
forming the Stokes parameters in terms of a column matrix, the so-called Stokes
vector, we are led to a formulation in which we obtain not only measurables but also
observables, which can be seen in a spectroscope. As a result, we shall see that the
formalism of the Stokes parameters is far more versatile than originally envisioned
and possesses a greater usefulness than is commonly known.

4.2 DERIVATION OF THE STOKES POLARIZATION PARAMETERS

We consider a pair of plane waves that are orthogonal to each other at a point in
space, conveniently taken to be z¼ 0, and not necessarily monochromatic, to be
represented by the equations:

ExðtÞ ¼ E0xðtÞ cos½!tþ �xðtÞ� ð4-1aÞ

EyðtÞ ¼ E0yðtÞ cos½!tþ �yðtÞ� ð4-1bÞ

where E0x(t) and E0y(t) are the instantaneous amplitudes, ! is the instantaneous
angular frequency, and �x(t) and �y(t) are the instantaneous phase factors. At all
times the amplitudes and phase factors fluctuate slowly compared to the rapid
vibrations of the cosinusoids. The explicit removal of the term !t between (4-1a)
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and (4-1b) yields the familiar polarization ellipse, which is valid, in general, only at
a given instant of time:

E2
xðtÞ

E2
0xðtÞ

þ
E2
yðtÞ

E2
0yðtÞ

�
2ExðtÞEyðtÞ

E0xðtÞE0yðtÞ
cos �ðtÞ ¼ sin2 �ðtÞ ð4-2Þ

where �ðtÞ ¼ �yðtÞ � �xðtÞ.
For monochromatic radiation, the amplitudes and phases are constant for

all time, so (4-2) reduces to

E2
xðtÞ

E2
0x

þ
E2
yðtÞ

E2
0y

�
2ExðtÞEyðtÞ

E0xE0y

cos � ¼ sin2 � ð4-3Þ

While E0x, E0y, and � are constants, Ex and Ey continue to be implicitly dependent on
time, as we see from (4-1a) and (4-1b). Hence, we have written Ex(t) and Ey(t) in
(4-3). In order to represent (4-3) in terms of the observables of the optical field, we
must take an average over the time of observation. Because this is a long period of
time relative to the time for a single oscillation, this can be taken to be infinite.
However, in view of the periodicity of Ex(t) and Ey(t), we need average (4-3) only
over a single period of oscillation. The time average is represented by the symbol
� � �h i, and so we write (4-3) as

E2
xðtÞ

� �
E2
0x

þ
E2
yðtÞ

� �
E2
0y

�
2 ExðtÞEyðtÞ
� �
E0xE0y

cos � ¼ sin2 � ð4-4aÞ

where

hEiðtÞEjðtÞi ¼ lim
T!1

1

T

Z T

0

EiðtÞEjðtÞ dt i, j ¼ x, y ð4-4bÞ

Multiplying (4-4a) by 4E2
0xE

2
0y, we see that

4E2
0yhE

2
xðtÞi þ 4E2

0xhE
2
yðtÞi � 8E0xE0yhExðtÞEyðtÞi cos �

¼ ð2E0xE0y sin �Þ
2

ð4-5Þ

From (4-1a) and (4-1b), we then find that the average values of (4-5) using (4-4b) are

hE2
xðtÞi ¼

1

2
E2
0x ð4-6aÞ

hE2
yðtÞi ¼

1

2
E2
0y ð4-6bÞ

hExðtÞEyðtÞi ¼
1

2
E0xE0y cos � ð4-6cÞ

Substituting (4-6a), (4-6b), and (4-6c) into (4-5) yields

2E2
0xE

2
0y þ 2E2

0xE
2
0y � ð2E0xE0y cos �Þ

2
¼ ð2E0xE0y sin �Þ

2
ð4-7Þ

Since we wish to express the final result in terms of intensity this suggests that
we add and subtract the quantity E 4

0x þ E 4
0y to the left-hand side of (4-7); doing this
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leads to perfect squares. Upon doing this and grouping terms, we are led to the
following equation:

ðE2
0x þ E2

0yÞ
2
� ðE2

0x � E2
0yÞ

2
� ð2E0xE0y cos �Þ

2
¼ ð2E0xE0y sin �Þ

2
ð4-8Þ

We now write the quantities inside the parentheses as

S0 ¼ E2
0x þ E2

0y ð4-9aÞ

S1 ¼ E2
0x � E2

0y ð4-9bÞ

S2 ¼ 2E0xE0y cos � ð4-9cÞ

S3 ¼ 2E0xE0y sin � ð4-9dÞ

and then express (4-8) as

S2
0 ¼ S2

1 þ S2
2 þ S2

3 ð4-10Þ

The four equations given by (4-9) are the Stokes polarization parameters for a plane
wave. They were introduced into optics by Sir George Gabriel Stokes in 1852. We
see that the Stokes parameters are real quantities, and they are simply the
observables of the polarization ellipse and, hence, the optical field. The first
Stokes parameter S0 is the total intensity of the light. The parameter S1

describes the amount of linear horizontal or vertical polarization, the parameter
S2 describes the amount of linear þ45� or �45� polarization, and the parameter
S3 describes the amount of right or left circular polarization contained within the
beam; this correspondence will be shown shortly. We note that the four Stokes
parameters are expressed in terms of intensities, and we again emphasize that the
Stokes parameters are real quantities.

If we now have partially polarized light, then we see that the relations given by
(4-9) continue to be valid for very short time intervals, since the amplitudes and
phases fluctuate slowly. Using Schwarz’s inequality, one can show that for any state
of polarized light the Stokes parameters always satisfy the relation:

S2
0 
 S2

1 þ S2
2 þ S2

3 ð4-11Þ

The equality sign applies when we have completely polarized light, and the inequality
sign when we have partially polarized light or unpolarized light.

In Chapter 3, we saw that orientation angle  of the polarization ellipse was
given by

tan 2 ¼
2E0xE0y cos �

E2
0x � E2

0y

ð3-33bÞ

Inspecting (4-9) we see that if we divide (4-9c) by (4-9b),  can be expressed in terms
of the Stokes parameters:

tan 2 ¼
S2

S1

ð4-12Þ

Copyright © 2003 by Marcel Dekker, Inc. All Rights Reserved.



Similarly, from (3-40) and (3-41) in Chapter 3 the ellipticity angle � was given by

sin 2� ¼
2E0xE0y sin �

E2
0x þ E2

0y

ð4-13Þ

Again, inspecting (4-9) and dividing (4-9d) by (4-9a), we can see that � can be
expressed in terms of the Stokes parameters:

sin 2� ¼
S3

S0

ð4-14Þ

The Stokes parameters enable us to describe the degree of polarization P for any
state of polarization. By definition,

P ¼
Ipol
Itot

¼
ðS2

1 þ S2
2 þ S2

3Þ
1=2

S0

0 	 P 	 1 ð4-15Þ

where Ipol is the intensity of the sum of the polarization components and Itot is the
total intensity of the beam. The value of P¼ 1 corresponds to completely polarized
light, P¼ 0 corresponds to unpolarized light, and 0<P<1 corresponds to partially
polarized light.

To obtain the Stokes parameters of an optical beam, one must always take a
time average of the polarization ellipse. However, the time-averaging process can be
formally bypassed by representing the (real) optical amplitudes, (4-1a) and (4-1b), in
terms of complex amplitudes:

ExðtÞ ¼ E0x exp½ið!tþ �xÞ� ¼ Ex expði!tÞ ð4-16aÞ

EyðtÞ ¼ E0y exp½ið!tþ �yÞ� ¼ Ey expði!tÞ ð4-16bÞ

where

Ex ¼ E0x expði�xÞ ð4-16cÞ

and

Ey ¼ E0y expði�yÞ ð4-16dÞ

are complex amplitudes. The Stokes parameters for a plane wave are now obtained
from the formulas:

S0 ¼ ExE
�
x þ EyE

�
y ð4-17aÞ

S1 ¼ ExE
�
x � EyE

�
y ð4-17bÞ

S2 ¼ ExE
�
y þ EyE

�
x ð4-17cÞ

S3 ¼ iðExE
�
y � EyE

�
x Þ ð4-17dÞ

We shall use (4-17), the complex representation, henceforth, as the defining equa-
tions for the Stokes parameters. Substituting (4-16c) and (4-16d) into (4-17) gives

S0 ¼ E2
0x þ E2

0y ð4-9aÞ

S1 ¼ E2
0x � E2

0y ð4-9bÞ

S2 ¼ 2E0xE0y cos � ð4-9cÞ

S3 ¼ 2E0xE0y sin � ð4-9dÞ

which are the Stokes parameters obtained formally from the polarization ellipse.
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As examples of the representation of polarized light in terms of the Stokes
parameters, we consider (1) linear horizontal and linear vertical polarized light,
(2) linear þ45� and linear �45� polarized light, and (3) right and left circularly
polarized light.

4.2.1 Linear Horizontally Polarized Light (LHP)

For this case E0y ¼ 0. Then, from (4-9) we have

S0 ¼ E2
0x ð4-18aÞ

S1 ¼ E2
0x ð4-18bÞ

S2 ¼ 0 ð4-18cÞ

S3 ¼ 0 ð4-18dÞ

4.2.2 Linear Vertically Polarized Light (LVP)

For this case E0x ¼ 0. From (4-9) we have

S0 ¼ E2
0y ð4-19aÞ

S1 ¼ �E2
0y ð4-19bÞ

S2 ¼ 0 ð4-19cÞ

S3 ¼ 0 ð4-19dÞ

4.2.3 Linear Q45� Polarized Light (LQ 45)

The conditions to obtain L þ 45 polarized light are E0x ¼ E0y ¼ E0 and � ¼ 0�. Using
these conditions and the definition of the Stokes parameters (4-9), we find that

S0 ¼ 2E2
0 ð4-20aÞ

S1 ¼ 0 ð4-20bÞ

S2 ¼ 2E2
0 ð4-20cÞ

S3 ¼ 0 ð4-20dÞ

4.2.4 Linear �45� Polarized Light (L� 45)

The conditions on the amplitude are the same as for L þ 45 light, but the phase
difference is � ¼ 180�. Then, from (4-9) we see that the Stokes parameters are

S0 ¼ 2E2
0 ð4-21aÞ

S1 ¼ 0 ð4-21bÞ

S2 ¼ �2E2
0 ð4-21cÞ

S3 ¼ 0 ð4-21dÞ
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4.2.5 Right Circularly Polarized Light (RCP)

The conditions to obtain RCP light are E0x ¼ E0y ¼ E0 and � ¼ 90�. From (4-9) the
Stokes parameters are then

S0 ¼ 2E2
0 ð4-22aÞ

S1 ¼ 0 ð4-22bÞ

S2 ¼ 0 ð4-22cÞ

S3 ¼ 2E2
0 ð4-22dÞ

4.2.6 Left Circularly Polarized Light (LCP)

For LCP light the amplitudes are again equal, but the phase shift between the
orthogonal, transverse components is �¼�90�. The Stokes parameters from (4-9)
are then

S0 ¼ 2E2
0 ð4-23aÞ

S1 ¼ 0 ð4-23bÞ

S2 ¼ 0 ð4-23cÞ

S3 ¼ �2E2
0 ð4-23dÞ

Finally, the Stokes parameters for elliptically polarized light are, of course, given
by (4–9).

Inspection of the four Stokes parameters suggests that they can be arranged in
the form of a column matrix. This column matrix is called the Stokes vector. This
step, while simple, provides a formal method for treating numerous complicated
problems involving polarized light. We now discuss the Stokes vector.

4.3 THE STOKES VECTOR

The four Stokes parameters can be arranged in a column matrix and written as

S ¼

S0

S1

S2

S3

0
BBBBB@

1
CCCCCA ð4-24Þ

The column matrix (4-24) is called the Stokes vector. Mathematically, it is not a
vector, but through custom it is called a vector. Equation (4-24) should correctly be
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called the Stokes column matrix. The Stokes vector for elliptically polarized light is
then written from (4-9) as

S ¼

E2
0x þ E2

0y

E2
0x � E2

0y

2E0xE0y cos �

2E0xE0y sin �

0
BBB@

1
CCCA ð4-25Þ

Equation (4-25) is also called the Stokes vector for a plane wave.
The Stokes vectors for linearly and circularly polarized light are readily found

from (4-25). We now derive these Stokes vectors.

4.3.1 Linear Horizontally Polarized Light (LHP)

For this case E0y ¼ 0, and we find from (4-25) that

S ¼ I0

1
1
0
0

0
BB@

1
CCA ð4-26Þ

where I0 ¼ E2
0x is the total intensity.

4.3.2 Linear Vertically Polarized Light (LVP)

For this case E0x ¼ 0, and we find that (4-25) reduces to

S ¼ I0

1
�1
0
0

0
BB@

1
CCA ð4-27Þ

where, again, I0 is the total intensity.

4.3.3 Linear Q45� Polarized Light (LQ 45)

In this case E0x ¼ E0y ¼ E0 and � ¼ 0, so (4-25) becomes

S ¼ I0

1
0
1
0

0
BB@

1
CCA ð4-28Þ

where I0 ¼ 2E2
0.

4.3.4 Linear �45� Polarized Light (L� 45)

Again, E0x ¼ E0y ¼ E0, but now � ¼ 180�. Then (4-25) becomes

S ¼ I0

1
0

�1
0

0
BB@

1
CCA ð4-29Þ

and I0 ¼ 2E2
0.
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4.3.5 Right Circularly Polarized Light (RCP)

In this case E0x ¼ E0y ¼ E0 and � ¼ 90�. Then (4-25) becomes

S ¼ I0

1
0
0
1

0
BB@

1
CCA ð4-30Þ

and I0 ¼ 2E2
0.

4.3.6 Left Circularly Polarized Light (LCP)

Again, we have E0x¼E0y, but now the phase shift � between the orthogonal
amplitudes is �¼� 90�. Equation (4-25) then reduces to

S ¼ I0

1
0
0

�1

0
BB@

1
CCA ð4-31Þ

and I0 ¼ 2E2
0.

We also see from (4-25) that if � ¼ 0� or 180�, then (4-25) reduces to

S ¼

E2
0x þ E2

0y

E2
0x � E2

0y

�2E0xE0y

0

0
BBBB@

1
CCCCA ð4-32Þ

We recall that the ellipticity angle � and the orientation angle  for the polarization
ellipse are given, respectively, by

sin 2� ¼
S3

S0

��

4
	 � 	

�

4
ð4-33aÞ

tan 2 ¼
S2

S1

0 	  < � ð4-33bÞ

We see that S3 is zero, so the ellipticity angle � is zero and, hence, (4-32) is the Stokes
vector for linearly polarized light. The orientation angle according to (4-33b) is

tan 2 ¼
�2E0xE0y

E2
0x � E2

0y

ð4-34Þ

The form of (4-32) is a useful representation for linearly polarized light.
Another useful representation can be made by expressing the amplitudes E0x and
E0y in terms of an angle. To show this, we first rewrite the total intensity S0 as

S0 ¼ E2
0x þ E2

0y ¼ E2
0 ð4-35Þ
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Equation (4-35) suggests Fig. 4-1. From Fig. 4-1 we see that

E0x ¼ E0 cos  ð4-36aÞ

E0y ¼ E0 sin  0 	  	
�

2
ð4-36bÞ

The angle  is called the auxiliary angle; it is identical to the auxiliary angle
used to represent the orientation angle and ellipticity equations summarized earlier.
Substituting (4-36) into (4-32) leads to the following Stokes vector for linearly
polarized light:

S ¼ I0

1

cos 2

sin 2

0

0
BBB@

1
CCCA ð4-37Þ

where I0 ¼ E2
0 is the total intensity. Equation (4-36) can also be used to represent the

Stokes vector for elliptically polarized light, (4-25). Substituting (4-36) into (4-25)
gives

S ¼ I0

1

cos 2

sin 2 cos �

sin 2 sin �

0
BBB@

1
CCCA ð4-38Þ

It is customary to write the Stokes vector in normalized form by setting I0 ¼ 1. Thus,
(4-38) is written as

S ¼

1

cos 2

sin 2 cos �

sin 2 sin �

0
BBB@

1
CCCA ð4-39Þ

Figure 4-1 Resolution of the optical field components.
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The orientation angle  and the ellipticity angle � of the polarization ellipse are
given by (4-33a) and (4-33b). Substituting S1, S2, and S3 into (4-39) into (4-33a) and
(4-33b) gives

tan 2 ¼ tan 2 cos � ð4-40aÞ

sin 2� ¼ sin 2 sin � ð4-40bÞ

which are identical to the relations we found earlier.
The use of the auxiliary angle  enables us to express the orientation and

ellipticity in terms of  and �. Expressing (4-39) in this manner shows that there
are two unique polarization states. For  ¼ 45�, (4-39) reduces to

S ¼

1
0

cos �
sin �

0
BB@

1
CCA ð4-41Þ

Thus, the polarization ellipse is expressed only in terms of the phase shift � between
the orthogonal amplitudes. The orientation angle  is seen to be always 45�. The
ellipticity angle, (4-40b) however, is

sin 2� ¼ sin � ð4-42Þ

so � ¼ �/2. The Stokes vector (4-41) expresses that the polarization ellipse is rotated
45� from the horizontal axis and that the polarization state of the light can vary
from linearly polarized (� ¼ 0, 180�) to circularly polarized (� ¼ 90�, 270�).

Another unique polarization state occurs when � ¼ 90� or 270�. For this
condition (4-39) reduces to

S ¼

1
cos 2

0
� sin 2

0
BB@

1
CCA ð4-43Þ

We see that we now have a Stokes vector and a polarization ellipse, which depends
only on the auxiliary angle . From (4-40a) the orientation angle  is always zero.
However, (4-40b) and (4-43) show that the ellipticity angle � is now given by

sin 2� ¼ � sin 2 ð4-44Þ

so � ¼ � . In general, (4-46) shows that we will have elliptically polarized light. For
 ¼ þ45�and �45� we obtain right and left circularly polarized light. Similarly, for
¼ 0� and 90� we obtain linear horizontally and vertically polarized light.

The Stokes vector can also be expressed in terms of S0,  , and �. To show this
we write (4-33a) and (4-33b) as

S3 ¼ S0 sin 2� ð4-45aÞ

S2 ¼ S1 tan 2 ð4-45bÞ

In Section 4.2 we found that

S2
0 ¼ S2

1 þ S2
2 þ S2

3 ð4-10Þ
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Substituting (4-45a) and (4-45b) into (4-10), we find that

S1 ¼ S0 cos 2� cos 2 ð4-46aÞ

S2 ¼ S0 cos 2� sin 2 ð4-46bÞ

S3 ¼ S0 sin 2� ð4-46cÞ

Arranging (4-46) in the form of a Stokes vector, we have

S ¼ S0

1
cos 2� cos 2 
cos 2� sin 2 

sin 2�

0
BB@

1
CCA ð4-47Þ

The Stokes parameters (4-46) are almost identical in form to the well-known
equations relating Cartesian coordinates to spherical coordinates. We recall that
the spherical coordinates r, �, and � are related to the Cartesian coordinates x, y,
and z by

x ¼ r sin � cos� ð4-48aÞ

y ¼ r sin � sin� ð4-48bÞ

z ¼ r cos � ð4-48cÞ

Comparing (4-48) with (4-46), we see that the equations are identical if the angles are
related by

� ¼ 90� � 2� ð4-49aÞ

� ¼ 2 ð4-49bÞ

In Fig. 4-2 we have drawn a sphere whose center is also at the center of the
Cartesian coordinate system. We see that expressing the polarization state of an
optical beam in terms of � and  allows us to describe its ellipticity and orientation
on a sphere; the radius of the sphere is taken to be unity. The representation
of the polarization state on a sphere was first introduced by Henri Poincaré in
1892 and is, appropriately, called the Poincaré sphere. However, at that time,
Poincaré introduced the sphere in an entirely different way, namely, by representing
the polarization equations in a complex plane and then projecting the plane on to a
sphere, a so-called stereographic projection. In this way he was led to (4-46). He
does not appear to have known that (4-46) were directly related to the Stokes
parameters. Because the Poincaré sphere is of historical interest and is still used to
describe the polarization state of light, we shall discuss it in detail later. It is
especially useful for describing the change in polarized light when it interacts with
polarizing elements.

The discussion in this chapter shows that the Stokes parameters and the Stokes
vector can be used to describe an optical beam which is completely polarized.
We have, at first sight, only provided an alternative description of completely polar-
ized light. All of the equations derived here are based on the polarization ellipse
given in Chapter 3, that is, the amplitude formulation. However, we have pointed
out that the Stokes parameters can also be used to describe unpolarized and
partially polarized light, quantities which cannot be described within an amplitude
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formulation of the optical field. In order to extend the Stokes parameters to
unpolarized and partially polarized light, we must now consider the classical
measurement of the Stokes polarization parameters.

4.4 CLASSICAL MEASUREMENT OF THE STOKES POLARIZATION
PARAMETERS

The Stokes polarization parameters are immediately useful because, as we shall now
see, they are directly accessible to measurement. This is due to the fact that they are
an intensity formulation of the polarization state of an optical beam. In this section
we shall describe the measurement of the Stokes polarization parameters. This is
done by allowing an optical beam to pass through two optical elements known as a
retarder and a polarizer. Specifically, the incident field is described in terms of its
components, and the field emerging from the polarizing elements is then used to
determine the intensity of the emerging beam. Later, we shall carry out this same
problem by using a more formal but powerful approach known as the Mueller
matrix formalism. In the following chapter we shall also see how this measurement
method enables us to determine the Stokes parameters for unpolarized and partially
polarized light.

We begin by referring to Fig. 4-3, which shows an monochromatic optical
beam incident on a polarizing element called a retarder. This polarizing element is
then followed by another polarizing element called a polarizer. The components of
the incident beam are

ExðtÞ ¼ E0xe
i�xei!t ð4-50aÞ

EyðtÞ ¼ E0ye
i�yei!t ð4-50bÞ

Figure 4-2 The Poincaré representation of polarized light on a sphere.
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In Section 4.2 we saw that the Stokes parameters for a plane wave written in complex
notation could be obtained from

S0 ¼ ExE
�
x þ EyE

�
y ð4-17aÞ

S1 ¼ ExE
�
x � EyE

�
y ð4-17bÞ

S2 ¼ ExE
�
y þ EyE

�
x ð4-17cÞ

S3 ¼ iðExE
�
y � EyE

�
x Þ ð4-17dÞ

where i ¼
ffiffiffiffiffiffiffi
�1

p
and the asterisk represents the complex conjugate.

In order to measure the Stokes parameters, the incident field propagates
through a phase-shifting element which has the property that the phase of the
x component (Ex) is advanced by �=2 and the phase of the y component Ey is
retarded by �=2, written as ��=2. The components E0

x and E 0
y emerging from the

phase-shifting element component are then

E0
x ¼ Exe

i�=2
ð4-51aÞ

E0
y ¼ Eye

�i�=2
ð4-51bÞ

In optics, a polarization element that produces this phase shift is called a retarder; it
will be discussed in more detail later.

Next, the field described by (4-51) is incident on a component which is called a
polarizer. It has the property that the optical field is transmitted only along an axis
known as the transmission axis. Ideally, if the transmission axis of the polarizer is at
an angle � only the components of E0

x and E 0
y in this direction can be transmitted

perfectly; there is complete attenuation at any other angle. A polarizing element
which behaves in this manner is called a polarizer. This behavior is described in
Fig. 4-4. The component of E0

x along the transmission axis is E0
x cos �. Similarly, the

component of E0
y is E

0
y sin �. The field transmitted along the transmission axis is the

sum of these components so the total field E emerging from the polarizer is

E ¼ E0
x cos � þ E0

y sin � ð4-52Þ

Figure 4-3 Measurement of the Stokes polarization parameters.
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Substituting (4-51) into (4-52), the field emerging from the polarizer is

E ¼ Exe
i�=2 cos � þ Eye

�i�=2 sin � ð4-53Þ

The intensity of the beam is defined by

I ¼ E � E�
ð4-54Þ

Taking the complex conjugate of (4-53) and forming the product in accordance with
(4-54), the intensity of the emerging beam is

Ið�,�Þ ¼ ExE
�
x cos

2 � þ EyE
�
y sin

2 �

þ E�
xEye

�i� sin � cos � þ ExE
�
y e

i� sin � cos � ð4-55Þ

Equation (4-55) can be rewritten by using the well-known trigonometric half-angle
formulas:

cos2 � ¼
1þ cos 2�

2
ð4-56aÞ

sin2 � ¼
1� cos 2�

2
ð4-56bÞ

sin � cos � ¼
sin 2�

2
ð4-56cÞ

Using (4-56) in (4-55) and grouping terms, we find that the intensity Ið�,�Þ becomes

Ið�,�Þ ¼
1

2
½ðExE

�
x þ EyE

�
y Þ þ ðExE

�
x � EyE

�
y Þ cos 2�

þ ðExE
�
y þ EyE

�
x Þ cos� sin 2� þ iðExE

�
y � EyE

�
x Þ sin� sin 2�� ð4-57Þ

The terms within parentheses are exactly the Stokes parameters given in (4-17).
It was first derived by Stokes and is the manner in which the Stokes parameters were

Figure 4-4 Resolution of the optical field components by a polarizer.
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first introduced in the optical literature. Replacing the terms in (4-57) by the
definitions of the Stokes parameters given in (4-17), we arrive at

Ið�,�Þ ¼
1

2
½S0 þ S1 cos 2� þ S2 cos� sin 2� þ S3 sin � sin 2�� ð4-58Þ

Equation (4-58) is Stokes’ famous intensity formula for measuring the four Stokes
parameters. Thus, we see that the Stokes parameters are directly accessible to
measurement; that is, they are observable quantities.

The first three Stokes parameters are measured by removing the retarder
ð� ¼ 0�Þ and rotating the transmission axis of the polarizer to the angles � ¼ 0�,
þ45�, and þ90�, respectively. The final parameter, S3, is measured by reinserting a
so-called quarter-wave retarder ð� ¼ 90�Þ into the optical path and setting
the transmission axis of the polarizer to � ¼ 45�. The intensities are then found
from (4-58) to be

Ið0�, 0�Þ ¼
1

2
½S0 þ S1� ð4-59aÞ

Ið45�, 0�Þ ¼
1

2
½S0 þ S2� ð4-59bÞ

Ið90�, 0�Þ ¼
1

2
½S0 � S1� ð4-59cÞ

Ið45�, 90�Þ ¼
1

2
½S0 þ S3� ð4-59dÞ

Solving (4-59) for the Stokes parameters, we have

S0 ¼ Ið0�, 0�Þ þ Ið90�, 0�Þ ð4-60aÞ

S1 ¼ Ið0�, 0�Þ � Ið90�, 0�Þ ð4-60bÞ

S2 ¼ 2Ið45�, 0�Þ � Ið0�, 0�Þ � Ið90�, 0�Þ ð4-60cÞ

S3 ¼ 2Ið45�, 90�Þ � Ið0�, 0�Þ � Ið90�, 0�Þ ð4-60dÞ

Equation (4-60) is really quite remarkable. In order to measure the
Stokes parameters it is necessary to measure the intensity at four angles. We must
remember, however, that in 1852 there were no devices to measure the intensity
quantitatively. The intensities can be measured quantitatively only with an optical
detector. But when Stokes introduced the Stokes parameters, such detectors did not
exist. The only optical detector was the human eye (retina), a detector capable
of measuring only the null or greater-than-null state of light, and so the above
method for measuring the Stokes parameters could not be used! Stokes did
not introduce the Stokes parameters to describe the optical field in terms of observ-
ables as is sometimes stated. The reason for his derivation of (4-58) was not to
measure the Stokes polarization parameters but to provide the solution to an entirely
different problem, namely, a mathematical statement for unpolarized light. We shall
soon see that (4-58) is perfect for doing this. It is possible to measure all four Stokes
parameters using the human eye, however, by using a null-intensity technique. This
method is described in Section 6.4.

Unfortunately, after Stokes solved this problem and published his great paper
on the Stokes parameters and the nature of polarized light, he never returned to
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this subject again. By the end of his researches on this subject he had turned his
attention to the problem of the fluorescence of solutions. This problem would
become the major focus of his attention for the rest of his life. Aside from Lord
Rayleigh in England and Emil Verdet in France, the importance of Stokes’ paper
and the Stokes parameters was not fully recognized, and the paper was, practically,
forgotten for nearly a century by the optical community. Fortunately, however, Emil
Verdet did understand the significance of Stokes’ paper and wrote a number of
subsequent papers on the Stokes polarization parameters. He thus began a tradition
in France of studying the Stokes parameters. The Stokes polarization parameters did
not really appear in the English-speaking world again until they were ‘‘rediscovered’’
by S. Chandrasekhar in the late 1940s when he was writing his monumental papers
on radiative transfer. Previous to Chandrasekhar no one had included optical
polarization in the equations of radiative transfer. In order to introduce polarization
into his equations, he eventually found Stokes’ original paper. He immediately
recognized that because the Stokes parameters were an intensity formulation of
optical polarization they could be introduced into radiative equations. It was only
after the publication of Chandrasekhar’s papers that the Stokes parameters
reemerged. They have remained in the optical literature ever since.

We now describe Stokes’ formulation for unpolarized light.

4.5 STOKES PARAMETERS FOR UNPOLARIZED AND PARTIALLY
POLARIZED LIGHT

The intensity Ið�,�Þ of a beam of light emerging from the retarder/polarizer
combination was seen in the previous section to be

Ið�,�Þ ¼
1

2
½S0 þ S1 cos 2� þ S2 sin 2� cos�þ S3 sin 2� sin�� ð4-58Þ

where S0, S1, S2, and S3 are the Stokes parameters of the incident beam, � is the
rotation angle of the transmission axis of the polarizer, and � is the phase shift of the
retarder. By setting � to 0�, 45�, or 90� and � to 0� or 90�, with the proper pairings of
angles, all four Stokes parameters can then be measured. However, it was not Stokes’
intention to merely cast the polarization of the optical field in terms of the intensity
rather than the amplitude. Rather, he was interested in finding a suitable mathema-
tical description for unpolarized light. Stokes, unlike his predecessors and his con-
temporaries, recognized that it was impossible to describe unpolarized light in terms
of amplitudes. Consequently, he abandoned the amplitude approach and sought a
description based on the observed intensity.

To describe unpolarized light using (4-58), Stokes observed that unpolarized
light had a very unique property, namely, its intensity was unaffected by (1) rotation
of a linear polarizer (when a polarizer is used to analyze the state of polarization, it is
called an analyzer) or (2) the presence of a retarder. Thus, for unpolarized light
the only way the observed intensity Ið�,�Þ could be independent of �, � was for
(4-58) to satisfy

Ið�,�Þ ¼
1

2
S0 ð4-61aÞ
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and

S1 ¼ S2 ¼ S3 ¼ 0 ð4-61bÞ

Equations (4-61a) and (4-61b) are the mathematical statements for unpolarized
light. Thus, Stokes had finally provided a correct mathematical statement. From a
conceptual point of view S1, S2, and S3 describe the polarizing behavior of the
optical field. Since there is no polarization, (4-61a) and (4-61b) must be the correct
mathematical statements for unpolarized light. Later, we shall show how (4-61) is
used to formulate the interference laws of Fresnel and Arago.

In this way Stokes discovered an entirely different way to describe the polar-
ization state of light. His formulation could be used to describe completely polarized
light and completely unpolarized light as well. Furthermore, Stokes had been led to a
formulation of the optical field in terms of measurable quantities (observables), the
Stokes parameters. This was a unique point of view for nineteenth-century optical
physics. The representation of radiation phenomena in terms of observables would
not reappear again in physics until 1925 with the discovery of the laws of quantum
mechanics by Werner Heisenberg.

The Stokes parameters described in (4-58) arise from an experimental config-
uration. Consequently, they were associated for a long time with the experimental
measurement of the polarization of the optical field. Thus, a study of classical
optics shows that polarization was conceptually understood with the nonobservable
polarization ellipse, whereas the measurement was made in terms of intensities, the
Stokes parameters. In other words, there were two distinct ways to describe the
polarization of the optical field.

We have seen, however, that the Stokes parameters are actually a consequence
of the wave theory and arise naturally from the polarization ellipse. It is only
necessary to transform the nonobservable polarization ellipse to the observed
intensity domain, whereupon we are led directly to the Stokes parameters. Thus,
the Stokes polarization parameters must be considered as part of the conceptual
foundations of the wave theory.

For a completely polarized beam of light we saw that

S2
0 ¼ S2

1 þ S2
2 þ S2

3 ð4-10Þ

and we have just seen that for unpolarized light

S2
0 > 0, S1 ¼ S2 ¼ S3 ¼ 0 ð4-62Þ

Equations (4-10) and (4-62) represent extreme states of polarization. Clearly,
there must be an intermediate polarization state. This intermediate state is called
partially polarized light. Thus, (4-10) can be used to describe all three polarization
conditions by writing it as

S2
0 
 S2

1 þ S2
2 þ S2

3 ð4-11Þ

For perfectly polarized light ‘‘
’’ is replaced by ‘‘¼’’; for unpolarized light ‘‘
’’ is
replaced by ‘‘>’’ with S1 ¼ S2 ¼ S3 ¼ 0; and for partially polarized light ‘‘
’’ is
replaced by ‘‘>.’’

An important quantity which describes these various polarization conditions
is the degree of polarization P. This quantity can be expressed in terms of the
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Stokes parameters. To derive P we decompose the optical field into unpolarized and
polarized portions, which are mutually independent. Then, and this will be proved
later, the Stokes parameters of a combination of independent waves are the sums of
the respective Stokes parameters of the separate waves. The four Stokes parameters,
S0, S1, S2, and S3 of the beam are represented by S. The total intensity of the beam is
then S0. We subtract the polarized intensity ðS2

1 þ S2
2 þ S2

3Þ
1=2 from the total intensity

S0 and we obtain the unpolarized intensity. Thus, we have

S ðuÞ
¼ S0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2
1 þ S2

2 þ S2
3

q
, 0, 0, 0 ð4-63aÞ

and

S ð pÞ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2
1 þ S2

2 þ S2
3

q
,S1,S2,S3 ð4-63bÞ

where S (u) represents the unpolarized part and S ( p) represents the polarized part.
The degree of polarization P is then defined to be

P ¼
Ipol
Itot

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2
1 þ S2

2 þ S2
3

q
S0

0 	 P 	 1 ð4-64Þ

Thus, P ¼ 0 indicates that the light is unpolarized, P ¼ 1 that the light is (completely)
polarized, and 0<P<1 that the light is partially polarized.

The use of the Stokes parameters to describe polarized light rather than the
amplitude formulation enables us to deal directly with the quantities measured in an
optical experiment. Thus, we carry out the analysis in the amplitude domain and
then transform the amplitude results to the Stokes parameters, using the defining
equations. When this is done, we can easily relate the experimental results to
the theoretical results. Furthermore, when we obtain the Stokes parameters, or
rather the Stokes vector, we shall see that we are led to a description of radiation
in which the Stokes parameters not only describe the measured quantities but can
also be used to truly describe the observed spectral lines in a spectroscope. In other
words, we shall arrive at observables in the strictest sense of the word.

4.6 ADDITIONAL PROPERTIES OF THE STOKES POLARIZATION
PARAMETERS

Before we proceed to apply the Stokes parameters to a number of problems of
interest, we wish to discuss a few of their additional properties. We saw earlier
that the Stokes parameters could be used to describe any state of polarized light.
In particular, we saw how unpolarized light and completely polarized light could
both be written in terms of a Stokes vector. The question remains as to how we can
represent partially polarized light in terms of the Stokes parameters and the Stokes
vector. To answer this question, we must establish a fundamental property of the
Stokes parameters, the property of additivity whereby the Stokes parameters of
two completely independent beams can be added. This property is another way
of describing the principle of incoherent superposition. We now prove this property
of additivity.
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We recall that the Stokes parameters for an optical beam can be represented in
terms of complex amplitudes by

S0 ¼ ExE
�
x þ EyE

�
y ð4-17aÞ

S1 ¼ ExE
�
x � EyE

�
y ð4-17bÞ

S2 ¼ ExE
�
y þ EyE

�
x ð4-17cÞ

S3 ¼ iðExE
�
y � EyE

�
x Þ ð4-17dÞ

Consider now that we have two optical beams each of which is characterized by its
own set of Stokes parameters represented as S (1) and S (2):

S
ð1Þ
0 ¼ E1xE

�
1x þ E1yE

�
1y ð4-65aÞ

S
ð1Þ
1 ¼ E1xE

�
1x � E1yE

�
1y ð4-65bÞ

S
ð1Þ
2 ¼ E1xE

�
1y þ E1yE

�
1x ð4-65cÞ

S
ð1Þ
3 ¼ iðE1xE

�
1y � E1yE

�
1xÞ ð4-65dÞ

and

S
ð2Þ
0 ¼ E2xE

�
2x þ E2yE

�
2y ð4-66aÞ

S
ð2Þ
1 ¼ E2xE

�
2x � E2yE

�
2y ð4-66bÞ

S
ð2Þ
2 ¼ E2xE

�
2y þ E2yE

�
2x ð4-66cÞ

S
ð2Þ
3 ¼ iðE2xE

�
2y � E2yE

�
2xÞ ð4-66dÞ

The superscripts and subscripts 1 and 2 refer to the first and second beams, respec-
tively. These two beams are now superposed. Then by the principle of superposition
for amplitudes the total field in the x and y direction is

Ex ¼ E1x þ E2x ð4-67aÞ

Ey ¼ E1y þ E2y ð4-67bÞ

We now form products of (4-67a) and (4-67b) according to (4-17):

ExE
�
x ¼ ðE1x þ E2xÞðE1x þ E2xÞ

�

¼ E1xE
�
1x þ E1xE

�
2x þ E2xE

�
1x þ E2xE

�
2x ð4-68aÞ

EyE
�
y ¼ ðE1y þ E2yÞðE1y þ E2yÞ

�

¼ E1yE
�
ly þ E1yE

�
2y þ E2yE

�
1y þ E2yE

�
2y ð4-68bÞ

ExE
�
y ¼ ðE1x þ E2xÞðE1y þ E2yÞ

�

¼ E1xE
�
1y þ E1xE

�
2y þ E2xE

�
1y þ E2xE

�
2y ð4-68cÞ

EyE
�
x ¼ ðE1y þ E2yÞðE1x þ E2xÞ

�

¼ E1yE
�
1x þ E2yE

�
1x þ E1yE

�
2x þ E2yE

�
2x ð4-68dÞ

Let us now assume that the two beams are completely independent of each other
with respect to their amplitudes and phase. We describe the degree of independence
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by writing an overbar which signifies a time average over the product of Ex and Ey,
that is, ExE

�
x , EyE

�
y , etc., so

EiE
�
j i, j ¼ x, y ð4-69Þ

Since the two beams are completely independent, we express this behavior by

E1iE
�
2j ¼ E2iE

�
1j ¼ 0 i 6¼ j ð4-70aÞ

E1iE
�
1j 6¼ 0 i, j ¼ x, y ð4-70bÞ

E2iE
�
2j 6¼ 0 i, j ¼ x, y ð4-70cÞ

The value of zero in (4-70a) indicates complete independence. On the other hand, the
nonzero value in (4-70b) and (4-70c) means that there is some degree of dependence.
Operating on (4-68a) through (4-68b) with an overbar and using the conditions
expressed by (4-70), we find that

ExE
�
x ¼ E1xE

�
1x þ E2xE

�
2x ð4-71aÞ

EyE
�
y ¼ E1yE

�
1y þ E2yE

�
2y ð4-71bÞ

ExE
�
y ¼ E1xE

�
1y þ E2xE

�
2y ð4-71cÞ

EyE
�
x ¼ E1yE

�
1x þ E2yE

�
2x ð4-71dÞ

We now form the Stokes parameters according to (4-17), drop the overbar because
the noncorrelated terms have been eliminated, and group terms. The result is

S0 ¼ ExE
�
x þ EyE

�
y ¼ ðE1xE

�
1x þ E1yE

�
1yÞ þ ðE2xE

�
2x þ E2yE

�
2yÞ ð4-72aÞ

S1 ¼ ExE
�
x � EyE

�
y ¼ ðE1xE

�
1x � E1yE

�
1yÞ þ ðE2xE

�
2x � E2yE

�
2yÞ ð4-72bÞ

S2 ¼ ExE
�
y þ EyE

�
x ¼ ðE1xE

�
1y þ E1yE

�
1xÞ þ ðE2xE

�
2y þ E2yE

�
2xÞ ð4-72cÞ

S3 ¼ iðExE
�
y � EyE

�
x Þ ¼ iðE1xE

�
1y � E1yE

�
1xÞ þ iðE2xE

�
2y � E2yE

�
2xÞ ð4-72dÞ

From (4-65) and (4-66) we see that we can then write (4-72) as

S0 ¼ S
ð1Þ
0 þ S

ð2Þ
0 ð4-73aÞ

S1 ¼ S
ð1Þ
1 þ S

ð2Þ
1 ð4-73bÞ

S2 ¼ S
ð1Þ
2 þ S

ð2Þ
2 ð4-73cÞ

S3 ¼ S
ð1Þ
3 þ S

ð2Þ
3 ð4-73dÞ
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Thus, the Stokes parameters of two completely independent optical beams can be
added and represented by the Stokes parameters of the combined beams. We can
write (4-73) in terms of Stokes vectors, i.e.,

S0

S1

S2

S3

0
BBBB@

1
CCCCA ¼

S
ð1Þ
0

S
ð1Þ
1

S
ð1Þ
2

S
ð1Þ
3

0
BBBBB@

1
CCCCCAþ

S
ð2Þ
0

S
ð2Þ
1

S
ð2Þ
2

S
ð2Þ
3

0
BBBBB@

1
CCCCCA ð4-74Þ

or simply

S ¼ S ð1Þ
þ S ð2Þ

ð4-75Þ

so the Stokes vectors, S ðiÞ, i ¼ 1, 2, are also additive.
As a first application of this result, (4-74), we recall that the Stokes vector for

unpolarized light is

S ¼ I0

1
0
0
0

0
BB@

1
CCA ð4-76Þ

We also saw that the Stokes vector could be written in terms of the orientation angle
 and the ellipticity � as

S ¼ I0

1

cos 2� cos 2 

cos 2� sin 2 

sin 2�

0
BBBB@

1
CCCCA ð4-47Þ

Thus, for a beam of light (which may be a result of combining two beams), we see
from (4-74) that we can write (4-76), using (4-47), as

I0

1

0

0

0

0
BBBB@

1
CCCCA ¼

I0
2

1

cos 2� cos 2 

cos 2� sin 2 

sin 2�

0
BBBB@

1
CCCCAþ

I0
2

1

� cos 2� cos 2 

� cos 2� sin 2 

� sin 2�

0
BBBB@

1
CCCCA ð4-77Þ

We can also express (4-74) in terms of two beams of equal intensity I0=2 using the
form in (4-47) as

I0

1

0

0

0

0
BBBB@

1
CCCCA ¼

I0
2

1

cos 2�1 cos 2 1

cos 2�1 sin 2 1

sin 2�1

0
BBBB@

1
CCCCAþ

I0
2

1

cos 2�2 cos 2 2

cos 2�2 sin 2 2

sin 2�2

0
BBBB@

1
CCCCA ð4-78Þ
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Comparing the Stokes parameters in the second column in (4-78) with (4-77), we
see that

cos 2�2 cos 2 2 ¼ � cos 2�1 cos 2 1 ð4-79aÞ

cos 2�2 sin 2 2 ¼ � cos 2�1 sin 2 1 ð4-79bÞ

sin 2�2 ¼ � sin 2�1 ð4-79cÞ

Equation (4-79c) is only true if

�2 ¼ ��1 ð4-80Þ

Thus, the ellipticity of beam 2 is the negative of that of beam 1. We now substitute
(4-80) into (4-79a) and (4-79b) and we have

cos 2 2 ¼ � cos 2 1 ð4-81aÞ

sin 2 2 ¼ � sin 2 1 ð4-81bÞ

Equations (4-81a) and (4-81b) can only be satisfied if

2 1 ¼ 2 2 � � ð4-82aÞ

or

 2 ¼  1 �
�

2
ð4-82bÞ

Thus, the polarization ellipse for the second beam is oriented 90� ð�=2Þ from the first
beam. The conditions

�2 ¼ ��1 ð4-80bÞ

 2 ¼  1 �
�

2
ð4-82bÞ

are said to describe two polarization ellipses of orthogonal polarization. Thus,
unpolarized light is a superposition or mixture of two beams of equal intensity
and orthogonal polarization. As special cases of (4-77) we see that unpolarized
light can be decomposed into (independent) beams of linear and circular polarized
light; that is,

I0

1

0

0

0

0
BBBB@

1
CCCCA ¼

I0
2

1

1

0

0

0
BBBB@

1
CCCCAþ

I0
2

1

�1

0

0

0
BBBB@

1
CCCCA ð4-83aÞ

I0

1

0

0

0

0
BBBB@

1
CCCCA ¼

I0
2

1

0

1

0

0
BBBB@

1
CCCCAþ

I0
2

1

0

�1

0

0
BBBB@

1
CCCCA ð4-83bÞ
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I0

1

0

0

0

0
BBBB@

1
CCCCA ¼

I0
2

1

0

0

1

0
BBBB@

1
CCCCAþ

I0
2

1

0

0

�1

0
BBBB@

1
CCCCA ð4-83cÞ

Of course, the intensity of each beam is half the intensity of the unpolarized beam.
We now return to our original problem of representing partially polarized light

in terms of the Stokes vector. Recall that the degree of polarization P is defined by

P ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2
1 þ S2

2 þ S2
3

q
S0

0 	 P 	 1 ð4-84Þ

This equation suggests that partially polarized light can be represented by a
superposition of unpolarized light and completely polarized light by using (4-74).
A little thought shows that if we have a beam of partially polarized light, which we
can write as

S ¼

S0

S1

S2

S3

0
BBBB@

1
CCCCA ð4-85Þ

Equation (4-85) can be written as

S ¼

S0

S1

S2

S3

0
BBBB@

1
CCCCA ¼ ð1� PÞ

S0

0

0

0

0
BBBB@

1
CCCCAþ P

S0

S1

S2

S3

0
BBBB@

1
CCCCA 0 	 P 	 1 ð4-86Þ

The first Stokes vector on the right-hand side of (4-86) represents unpolarized light,
and the second Stokes vector represents completely polarized light. For P¼ 0,
unpolarized light, (4-86) reduces to

S ¼

S0

0

0

0

0
BBBB@

1
CCCCA ð4-87aÞ

and for P ¼ 1, completely polarized light, (4-86) reduces to

S ¼

S0

S1

S2

S3

0
BBB@

1
CCCA ð4-87bÞ
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We note that S0 on the left-hand side of (4-86) always satifies

S0 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2
1 þ S2

2 þ S2
3

q
ð4-88aÞ

whereas S0 in the Stokes vector associated with P on the right-hand side of (4-86)
always satisfies

S0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2
1 þ S2

2 þ S2
3

q
ð4-88bÞ

Another representation of partially polarized light in terms of P is the decom-
position of a beam into two completely polarized beams of orthogonal polarizations,
namely,

S0

S1

S2

S3

0
BB@

1
CCA ¼

1þ P

2P

PS0

S1

S2

S3

0
BB@

1
CCAþ

1� P

2P

PS0

�S1

�S2

�S3

0
BB@

1
CCA 0 < P 	 1 ð4-89aÞ

where

PS0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2
1 þ S2

2 þ S2
3

q
ð4-89bÞ

Thus, partially polarized light can also be decomposed into two orthogonally polar-
ized beams.

While we have restricted this discussion to two beams, it is easy to see that we
could have described the optical field in terms of n beams, that is, extended (4-75) to

S ¼ S ð1Þ
þ S ð2Þ

þ S ð3Þ
þ � � � þ S ðnÞ

¼
Xn
i¼1

S ðiÞ i ¼ 1, . . . , n ð4-90Þ

We have not done this for the simple reason that, in practice, dealing with two beams
is sufficient. Nevertheless, the reader should be aware that the additivity law can be
extended to n beams. Lastly, we note that for partially polarized light the intensities
of the two beams are given by

S
ð1Þ
0 ¼

1

2
S0 þ

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2
1 þ S2

2 þ S2
3

q
ð4-91aÞ

S
ð2Þ
0 ¼

1

2
S0 �

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2
1 þ S2

2 þ S2
3

q
ð4-91bÞ

Only for unpolarized light are the intensities of the two beams equal. This is also
shown by (4-89a).

It is of interest to express the parameters of the polarization ellipse in terms of
the Stokes parameters. To do this, we recall that

S0 ¼ E2
0x þ E2

0y ¼ I0 ð4-92aÞ

S1 ¼ E2
0x � E2

0y ¼ I0 cos 2 ð4-92bÞ

S2 ¼ 2E0xE0y cos � ¼ I0 sin 2 cos � ð4-92cÞ

S3 ¼ 2E0xE0y sin � ¼ I0 sin 2 sin � ð4-92dÞ
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We can then write (4-92) as

E2
0x ¼

S0 þ S1

2
ð4-93aÞ

E2
0y ¼

S0 � S1

2
ð4-93bÞ

cos � ¼
S2

2E0xE0y

ð4-93cÞ

sin � ¼
S3

2E0xE0y

ð4-93dÞ

We recall that the instantaneous polarization ellipse is

E2
x

E2
0x

þ
E2
y

E2
0y

�
2ExEy

E0xE0y

cos � ¼ sin2 � ð4-94Þ

Substituting (4-93) into the appropriate terms in (4-94) gives

2E2
x

S0 þ S1

þ
2E2

y

S0 � S1

�
4S2ExEy

S2
0 � S2

1

¼
S2
3

S2
0 � S2

1

ð4-95Þ

where we have used E2
0xE

2
0y ¼ ðS2

0 � S2
1Þ=4 from (4-93a) and (4-93b). Multiplying

through (4-95) by ðS2
0 � S2

1Þ=S
2
3 then yields

2ðS0 � S1ÞE
2
x

S2
3

þ
2ðS0 þ S1ÞE

2
y

S2
3

�
4S2ExEy

S2
3

¼ 1 ð4-96Þ

We now write (4-96) as

Ax2 � 2Cxyþ 2By2 ¼ 1 ð4-97aÞ

where

A ¼
2ðS0 � S1Þ

S2
3

ð4-97bÞ

B ¼
2ðS0 þ S1Þ

S2
3

ð4-97cÞ

C ¼
2S2

S2
3

ð4-97dÞ

and for convenience we have set x ¼ Ex and y ¼ Ey.
We can now find the orientation and ratio of the axes in terms of the Stokes

parameters (4-97). To do this we first express x and y in polar coordinates:

x ¼ � cos � ð4-98aÞ

y ¼ � sin� ð4-98bÞ

Copyright © 2003 by Marcel Dekker, Inc. All Rights Reserved.



Substituting (4-98a) and (4-98b) into (4-97) we find

A�2 cos2 �� 2C�2 sin� cos�þ B�2 sin2 � ¼ 1 ð4-99Þ

Using the half-angle formulas for cos2 � and sin2 �, (4-99) then becomes

A�2ð1þ cos 2�Þ

2
� C�2 sin 2�þ

B�2ð1� cos 2�Þ

2
¼ 1 ð4-100Þ

We now introduce the parameter L defined in terms of � as

L ¼
2

�2
ð4-101Þ

substitute (4-101) into (4-100), and write

L ¼ ðAþ BÞ � 2C sin 2�þ ðA� BÞ cos 2� ð4-102Þ

The major and minor axes of the ellipse correspond to maximum and minimum
values of �, respectively, whereas L is a minimum and maximum. The angle � where
this maximum and minimum occur can be found in the usual way by setting
dL=d� ¼ 0 and solving for �. We, therefore, have

dL

d�
¼ �4C cos 2�� 2ðA� BÞ sin 2� ¼ 0 ð4-103Þ

and

sin 2�

cos 2�
¼ tan 2� ¼

�2C

A� B
ð4-104Þ

Solving for �, we find that

� ¼
�1

2
tan�1 2C

A� B
ð4-105Þ

To find the corresponding maximum and minimum values of L in (4-102),
we must express sin 2� and cos 2� in terms of A, B, and C. We can find unique
expressions for sin 2� and cos 2� from (4-104) by constructing the right triangle in
Fig. 4-5. We see from the right triangle that (4-104) is satisfied by

sin 2� ¼
�2Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð�2CÞ2 þ ðA� BÞ2
q ð4-106aÞ

cos 2� ¼
A� Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð�2CÞ2 þ ðA� BÞ2
q ð4-106bÞ

or

sin 2� ¼
2Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2CÞ2 þ ð�ðA� BÞÞ2
q ð4-106cÞ

cos 2� ¼
�ðA� BÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2CÞ2 þ ð�ðA� BÞÞ2
q ð4-106dÞ
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Substituting (4-106a) and (4-106b) into (4-102) yields

Lmax ¼ ðAþ BÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�2CÞ2 þ ðA� BÞ2

q
ð4-107aÞ

and, similarly, substituting (4-106c) and (4-106d) into (4-102) yields

Lmin ¼ ðAþ BÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2CÞ2 þ ð�ðA� BÞÞ2

q
ð4-107bÞ

We have written ‘‘max’’ and ‘‘min’’ on L in (4-107a) and (4-107b) to indicate
that these are the maximum and minimum values of L. We also note that (4-106a)
and (4-106c) are related by

sin 2�1 ¼ � sin 2�2 ð4-108aÞ

and (4-106b) and (4-106d) by

cos 2�1 ¼ � cos 2�2 ð4-108bÞ

We see that (4-106a) and (4-106b) are satisfied by setting

�2 ¼ �1 þ
�

2
ð4-109Þ

Thus, the maximum and minimum lengths, that is, the major and minor axes, are at
�1 and �1 þ 90�, respectively, which is exactly what we would expect. We thus see
from (4-101) that

�2min ¼
2

Lmax

ð4-110aÞ

�2max ¼
2

Lmin

ð4-110bÞ

The ratio of the square of the lengths of the major axis to the minor axis is defined
to be

R ¼
�2max

�2min

ð4-111Þ

Figure 4-5 Right triangle corresponding to Eq. (4-104).
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so from (4-107a) and (4-107b) we have

R ¼
ðAþ BÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2CÞ2 þ ðA� BÞ2

q
ðAþ BÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2C2 þ ðA� BÞ2

q ð4-112Þ

We can now express (4-112) in terms of the Stokes parameters from (4-97b), (4-97c)
and (4-97d) and we find that (4-112) becomes

R ¼
S0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2
1 þ S2

2

q
S0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2
1 þ S2

2

q ð4-113Þ

Thus, we have found the relation between the length of the major and minor axes of
the polarization ellipse and the Stokes parameters. This can be expressed directly by
using (4-110) and (4-97) or as a ratio R given by (4-113).

Not surprisingly there are other interesting relations between the Stokes
parameters and the parameters of the polarization ellipse. These relations are
fundamental to the development of the Poincaré sphere, so we shall discuss them
in Chapter 12.

4.7 STOKES PARAMETERS AND WOLF’S COHERENCY MATRIX

We have demonstrated that the state of polarization is specified completely by the
four Stokes parameters S0,S1,S2, and S3. There is another representation in which
the polarization is described by a 2 � 2 matrix known as Wolf’s coherency matrix.
Furthermore, there is a direct relationship between the elements of the coherency
matrix and the Stokes parameters. This relationship, as well as the required math-
ematical background, is thoroughly discussed in the text by Born and Wolf. For the
sake of completeness, however, we briefly discuss the coherency matrix as it relates to
the Stokes parameters.

Consider an optical field consisting of the components:

ExðtÞ ¼ E0xðtÞe
�ið!tþ�xÞ ð4-114aÞ

EyðtÞ ¼ E0yðtÞe
�ið!tþ�yÞ ð4-114bÞ

If we take the real part of these expressions, i.e., let

ExðtÞ ¼ Re½E0xðtÞe
�ið!tþ�xÞ� ð4-115aÞ

EyðtÞ ¼ Re½E0yðtÞe
�ið!tþ�yÞ� ð4-115bÞ

then these are equivalent to (4-1).
The element Jij of the coherency matrix J are defined to be

Jij ¼ hEiE
�
j i ¼ lim

T!1

1

2T

Z T

�T

EiE
�
j dt ði, j ¼ x, yÞ ð4-116Þ

It follows that

Jxy ¼ J �
yx ð4-117Þ
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and so the coherency matrix in Hermitian. The coherency matrix is defined to be
the array:

J ¼
Jxx Jxy

Jyx Jyy

 !
¼

hExE
�
x i hExE

�
y i

hEyE
�
x i hEyE

�
y i

 !
ð4-118Þ

The trace of this matrix, i.e.,

TrJ ¼ Jxx þ Jyy ¼ hExE
�
x i þ hEyE

�
y i ð4-119Þ

is equal to the total intensity of the light.
There is a direct connection between the Stokes parameters and the elements of

the coherency matrix. The Stokes parameters for a quasi-monochromatic wave are
defined to be [see (4-17)]

S0 ¼ ExE
�
x

� �
þ EyE

�
y

� �
ð4-120aÞ

S1 ¼ ExE
�
x

� �
� EyE

�
y

� �
ð4-120bÞ

S2 ¼ ExE
�
y

� �
þ EyE

�
x

� �
ð4-120cÞ

S3 ¼ i ExE
�
y

� �
� EyE

�
x

� �	 

ð4-120dÞ

where the angular brackets are the time averages. We see immediately from (4-117)
and (4-120) that

S0 ¼ Jxx þ Jyy ð4-121aÞ

S1 ¼ Jxx � Jyy ð4-121bÞ

S2 ¼ Jxy þ Jyx ð4-121cÞ

S3 ¼ iðJxy � JyxÞ ð4-121dÞ

Equations (4-121) show that the Stokes parameters and the elements of the
coherency matrix are linearly related. A specification of the wave in terms of
the coherency matrix is in all respects equivalent to its specification in terms of the
Stokes parameters.

There is a very simple way of describing the degree of polarization using the
coherency matrix. From Schwarz’s inequality we haveZ

AiA
�
i dt

Z
AjA

�
j dt 


Z
AiA

�
j dt

Z
AiA

�
j dt i, j ¼ x, y ð4-122Þ

From the definition given by (4-117) it follows that

JxxJyy 
 JxyJyx ð4-123Þ

or, using (4-118),

JxxJyy � JyxJxy 
 0 ð4-124Þ

The equality sign clearly refers to completely polarized light, and the > sign to
partially polarized light. Furthermore, we see from (4-119) that (4-124) is the deter-
minant of (4-119) so

det J ¼ 0 complete polarization ð4-125aÞ

det J > 0 partial polarization ð4-125bÞ
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One can readily determine the coherency matrices for various states of polar-
ized light, using (4-121). We easily find for unpolarized light that

J ¼
S0

2

1 0
0 1

� �
ð4-126aÞ

for linearly horizontally polarized light

J ¼ S0
1 0
0 0

� �
ð4-126bÞ

and for right circularly polarized light

J ¼
S0

2

1 �i
i 1

� �
ð4-126cÞ

The degree of polarization is readily found to be

P ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

4 det J

ðTr J Þ2

s
ð4-127Þ

where Tr J is the trace of the matrix J and is defined as the sum of the diagonal
elements; that is

Tr J ¼ Jxx þ Jyy ð4-128Þ

The coherency matrix elements can also be introduced by considering the
measurement of the polarization state of an optical beam. We recall that the intensity
of a beam emerging from a retarder/polarizer combination is

Ið�,�Þ ¼ ExE
�
x cos

2 � þ EyE
�
y sin

2 �

þ E�
xEye

�i� sin � cos � þ ExE
�
y e

i� sin � cos � ð4-55Þ

The Stokes parameters were then found by expressing the sinusoidal terms in terms
of the half-angle trigonometric formulas. If we had a quasi-monochromatic wave,
then we could time-average the quadratic field terms and express (4-55) as

Ið�,�Þ ¼ hExE
�
x i cos

2 � þ hEyE
�
y i sin

2 �

þ hE�
xEyie

�i� sin � cos � þ hExE
�
y ie

i� sin � cos � ð4-129aÞ

or

Ið�,�Þ ¼ Jxx cos
2 � þ Jyy sin

2 �

þ Jxye
�i� sin � cos � þ Jyxe

i� sin � cos � ð4-129bÞ

where the Jij are defined to be

Jij ¼ hEiE
�
j i ð4-129cÞ

which are the coherency matrix elements.
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Finally, there is a remarkable relation between the Stokes parameters and the
coherency matrix. We first note from (4-121) that

Jxx ¼
S0 þ S1

2
ð4-130aÞ

Jyy ¼
S0 � S1

2
ð4-130bÞ

Jxy ¼
S2 � iS3

2
ð4-130cÞ

Jyx ¼
S2 þ iS3

2
ð4-130dÞ

so we can express (4-130) in matrix form as

J ¼
Jxx Jxy

Jyx Jyy

 !
¼

1

2

S0 þ S1 S2 � iS3

S2 þ iS3 S0 � S1

� �
ð4-131Þ

One can easily decompose (4-131) into 2 � 2 matrices such that

J ¼
1

2

X3
i¼0

	iSi ð4-132aÞ

where

	0 ¼
1 0
0 1

� �
ð4-132bÞ

	1 ¼
0 1
1 0

� �
ð4-132cÞ

	2 ¼
0 �i
i 0

� �
ð4-132dÞ

	3 ¼
1 0
0 �1

� �
ð4-132eÞ

The remarkable fact about this decomposition is that 	1, 	2, the 	3 are the three
Pauli spin matrices of quantum mechanics with the addition of the identity matrix,
	0. This connection between the coherency matrix, the Stokes parameters, and the
Pauli spin matrices appears to have been first pointed out by U. Fano in 1954. What
is even more surprising about the appearance of the Pauli spin matrices is that they
were introduced into quantum mechanics by Pauli in order to describe the behavior
of the spin of the electron, a particle. Indeed, in quantum mechanics the wave
function that describes a pure state of polarization can be expanded in a complete
set of orthonormal eigenfunctions; it has the same form for electromagnetic radia-
tion and particles of spin 1/2 (the electron).

The coherency matrix is treated in an elegant manner by Born and Wolf and
the reader is referred to their text for further information on this subject.
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5

The Mueller Matrices for Polarizing
Components

5.1 INTRODUCTION

In the previous chapters we have concerned ourselves with the fundamental
properties of polarized light. In this chapter we now turn our attention to the
study of the interaction of polarized light with elements which can change its state
of polarization and see that the matrix representation of the Stokes parameters leads
to a very powerful mathematical tool for treating this interaction. In Fig. 5-1 we
show an incident beam interacting with a polarizing element and the emerging beam.
In Fig. 5-1 the incident beam is characterized by its Stokes parameters Si, where
i¼ 0, 1, 2, 3. The incident polarized beam interacts with the polarizing medium, and
the emerging beam is characterized by a new set of Stokes parameters S0

1, where,
again, i ¼ 0, 1, 2, 3. We now assume that S0

1 can be expressed as a linear combination
of the four Stokes parameters of the incident beam by the relations:

S0
0 ¼ m00S0 þm01S1 þm02S2 þm03S3 ð5-1aÞ

S0
1 ¼ m10S0 þm11S1 þm12S2 þm13S3 ð5-1bÞ

S0
2 ¼ m20S0 þm21S1 þm22S2 þm23S3 ð5-1cÞ

S0
3 ¼ m30S0 þm31S1 þm32S2 þm33S3 ð5-1dÞ

In matrix form (5-1) is written as

S0
0

S0
1

S0
2

S0
3

0
BBB@

1
CCCA ¼

m00 m01 m02 m03

m10 m11 m12 m13

m20 m21 m22 m23

m30 m31 m32 m33

0
BBB@

1
CCCA

S0

S1

S2

S3

0
BBB@

1
CCCA ð5-2Þ

or

S0
¼ M � S ð5-3Þ
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where S and S 0 are the Stokes vectors and M is the 4� 4 matrix known as the
Mueller matrix. It was introduced by Hans Mueller during the early 1940s. While
Mueller appears to have based his 4� 4 matrix on a paper by F. Perrin and a still
earlier paper by P. Soleillet, his name is firmly attached to it in the optical literature.
Mueller’s important contribution was that he, apparently, was the first to describe
polarizing components in terms of his Mueller matrices. Remarkably, Mueller
never published his work on his matrices. Their appearance in the optical literature
was due to others, such as N.G. Park III, a graduate student of Mueller’s who
published Mueller’s ideas along with his own contributions and others shortly
after the end of the Second World War.

When an optical beam interacts with matter its polarization state is almost
always changed. In fact, this appears to be the rule rather than the exception. The
polarization state can be changed by (1) changing the amplitudes, (2) changing the
phase, (3) changing the direction of the orthogonal field components, or (4) trans-
ferring energy from polarized states to the unpolarized state. An optical element that
changes the orthogonal amplitudes unequally is called a polarizer or diattenuator.
Similarly, an optical device that introduces a phase shift between the orthogonal
components is called a retarder; other names used for the same device are wave plate,
compensator, or phase shifter. If the optical device rotates the orthogonal compo-
nents of the beam through an angle � as it propagates through the element, it is
called a rotator. Finally, if energy in polarized states goes to the unpolarized state,
the element is a depolarizer. These effects are easily understood by writing the trans-
verse field components for a plane wave:

Exðz, tÞ ¼ E0x cosð!t� �zþ �xÞ ð5-4aÞ

Eyðz, tÞ ¼ E0y cosð!t� �zþ �yÞ ð5-4bÞ

Equation (4) can be changed by varying the amplitudes, E0x or E0y, or the phase,
�x or �y and, finally, the direction of Exðz, tÞ and Eyðz, tÞ. The corresponding devices
for causing these changes are the polarizer, retarder, and rotator. The use of

Figure 5-1 Interaction of a polarized beam with a polarizing element.
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the names polarizer and retarder arose, historically, before the behavior of these
polarizing elements was fully understood. The preferable names would be diattenua-
tor for a polarizer and phase shifter for the retarder. All three polarizing elements,
polarizer, retarder, and rotator, change the polarization state of an optical beam.

In the following sections we derive the Mueller matrices for these polarizing
elements. We then apply the Mueller matrix formalism to a number of problems
of interest and see its great utility.

5.2 THE MUELLER MATRIX OF A POLARIZER

A polarizer is an optical element that attenuates the orthogonal components of an
optical beam unequally; that is, a polarizer is an anisotropic attenuator; the
two orthogonal transmission axes are designated px and py. Recently, it has also
been called a diattenuator, a more accurate and descriptive term. A polarizer is some-
times described also by the terms generator and analyzer to refer to its use and position
in the optical system. If a polarizer is used to create polarized light, we call it a
generator. If it is used to analyze polarized light, it is called an analyzer. If the ortho-
gonal components of the incident beam are attenuated equally, then the polarizer
becomes a neutral density filter. We now derive the Mueller matrix for a polarizer.

In Fig. 5-2 a polarized beam is shown incident on a polarizer along with the
emerging beam. The components of the incident beam are represented by Ex and Ey.
After the beam emerges from the polarizer the components are E0

x and E0
y, and they

are parallel to the original axes. The fields are related by

E0
x ¼ pxEx 0 	 px 	 1 ð5-5aÞ

E0
y ¼ pyEy 0 	 py 	 1 ð5-5bÞ

The factors px and py are the amplitude attenuation coefficients along orthogonal
transmission axes. For no attenuation or perfect transmission along an orthogonal
axis pxð pyÞ ¼ 1, whereas for complete attenuation pxð pyÞ ¼ 0. If one of the axes has
an absorption coefficient which is zero so that there is no transmission along this
axis, the polarizer is said to have only a single transmission axis.

Figure 5-2 The Mueller matrix of a polarizer with attenuation coefficients px and py.
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The Stokes polarization parameters of the incident and emerging beams are,
respectively,

S0 ¼ ExE
�
x þ EyE

�
y ð5-6aÞ

S1 ¼ ExE
�
x � EyE

�
y ð5-6bÞ

S2 ¼ ExE
�
y þ EyE

�
x ð5-6cÞ

S3 ¼ iðExE
�
y � EyE

�
x Þ ð5-6dÞ

and

S0
0 ¼ E0

xE
0�
x þ E0

yE
0�
y ð5-7aÞ

S0
1 ¼ E0

xE
0�
x � E0

yE
0�
y ð5-7bÞ

S0
2 ¼ E0

xE
0�
y þ E0

yE
0�
x ð5-7cÞ

S0
3 ¼ iðE0

xE
0�
y � E 0

yE
0�
x Þ ð5-7dÞ

Substituting (5-5) into (5-7) and using (5-6), we then find

S0
0

S0
1

S0
2

S0
3

0
BBBB@

1
CCCCA ¼

1

2

p2x þ p2y p2x � p2y 0 0

p2x � p2y p2x þ p2y 0 0

0 0 2pxpy 0

0 0 0 2pxpy

0
BBBB@

1
CCCCA

S0

S1

S2

S3

0
BBBB@

1
CCCCA ð5-8Þ

The 4� 4 matrix in (5-8) is written by itself as

M ¼
1

2

p2x þ p2y p2x � p2y 0 0

p2x � p2y p2x þ p2y 0 0

0 0 2pxpy 0

0 0 0 2pxpy

0
BBBB@

1
CCCCA 0 	 px, y 	 1 ð5-9Þ

Equation (5-9) is the Mueller matrix for a polarizer with amplitude attenuation
coefficients px and py. In general, the existence of the m33 term shows that the
polarization of the emerging beam of light will be elliptically polarized.

For a neutral density filter px ¼ py ¼ p and (5-9) becomes

M ¼ p2

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0
BBB@

1
CCCA ð5-10Þ

which is a unit diagonal matrix. Equation (5-10) shows that the polarization state is
not changed by a neutral density filter, but the intensity of the incident beam is
reduced by a factor of p2. This is the expected behavior of a neutral density filter,
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since it only affects the magnitude the intensity and not the polarization state.
According to (5-10), the emerging intensity I 0 is then

I0 ¼ p2I ð5-11Þ

where I is the intensity if the incident beam.
Equation (5-9) is the Mueller matrix for a polarizer which is described by

unequal attenuations along the px and py axes. An ideal linear polarizer is one which
has transmission along only one axis and no transmission along the orthogonal axis.
This behavior can be described by first setting, say, py ¼ 0. Then (5-9) reduces to

M ¼
p2x
2

1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

0
BB@

1
CCA ð5-12Þ

Equation (5-12) is the Mueller matrix for an ideal linear polarizer which polarizes
only along the x axis. It is most often called a linear horizontal polarizer,
arbitrarily assigning the horizontal to the x direction. It would be a perfect linear
polarizer if the transmission factor px was unity ð px ¼ 1Þ. Thus, the Mueller matrix
for an ideal perfect linear polarizer with its transmission axis in the x direction is

M ¼
1

2

1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

0
BB@

1
CCA ð5-13Þ

If the original beam is completely unpolarized, the maximum intensity of the
emerging beam which can be obtained with a perfect ideal polarizer is only 50%
of the original intensity. It is the price we pay for obtaining perfectly polarized light.
If the original beam is perfectly horizontally polarized, there is no change in
intensity. This element is called a linear polarizer because it affects a linearly
polarized beam in a unique manner as we shall soon see.

In general, all linear polarizers are described by (5-9). There is only one known
natural material that comes close to approaching the perfect ideal polarizer described
by (5-13), and this is calcite. A synthetic material known as Polaroid is also used as
a polarizer. Its performance is not as good as calcite, but its cost is very low in
comparison with that of natural calcite polarizers, e.g., a Glan–Thompson prism.
Nevertheless, there are a few types of Polaroid which perform extremely well as
‘‘ideal’’ polarizers. We shall discuss the topic of calcite and Polaroid polarizers in
Chapter 26.

If an ideal perfect linear polarizer is used in which the role of the transmission
axes is reversed from that of our linear horizontal polarizer, that is, px ¼ 0 and
py ¼ 1, then (5-9) reduces to

M ¼
1

2

1 �1 0 0
�1 1 0 0
0 0 0 0
0 0 0 0

0
BB@

1
CCA ð5-14Þ

which is the Mueller matrix for a linear vertical polarizer.
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Finally, it is convenient to rewrite the Mueller matrix, of a general linear
polarizer, (5-9), in terms of trigonometric functions. This can be done by setting

p2x þ p2y ¼ p2 ð5-15aÞ

and

px ¼ p cos � py ¼ p sin � ð5-15bÞ

Substituting (5-15) into (5-9) yields

M ¼
p2

2

1 cos 2� 0 0

cos 2� 1 0 0

0 0 sin 2� 0

0 0 0 sin 2�

0
BBB@

1
CCCA ð5-16Þ

where 0 	 � 	 90�. For an ideal perfect linear polarizer p ¼ 1. For a linear horizontal
polarizer � ¼ 0, and for a linear vertical polarizer � ¼ 90�. The usefulness of the
trigonometric form of the Mueller matrix, (5-16), will appear later.

The reason for calling (5-13) and (5-14) linear polarizers is due to the following
result. Suppose we have an incident beam of arbitrary intensity and polarization so
that its Stokes vector is

S ¼

S0

S1

S2

S3

0
BBB@

1
CCCA ð5-17Þ

We now matrix multiply (5-17) by (5-13) or (5-14), and we can write

S0
0

S0
1

S0
2

S0
3

0
BBB@

1
CCCA ¼

1

2

1 �1 0 0

�1 1 0 0

0 0 0 0

0 0 0 0

0
BBB@

1
CCCA

S0

S1

S2

S3

0
BBB@

1
CCCA ð5-18Þ

Carrying out the matrix multiplication in (5-18), we find that

S0
0

S0
1

S0
2

S0
3

0
BBB@

1
CCCA ¼

1

2
ðS0 � S1Þ

1

�1

0

0

0
BBB@

1
CCCA ð5-19Þ

Inspecting (5-19), we see that the Stokes vector of the emerging beam is always
linearly horizontally (þ) or vertically (�) polarized. Thus an ideal linear polarizer
always creates linearly polarized light regardless of the polarization state of the
incident beam; however, note that because the factor 2pxpy in (5-9) is never zero,
in practice there is no known perfect linear polarizer and all polarizers create
elliptically polarized light. While the ellipticity may be small and, in fact, negligible,
there is always some present.
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The above behavior of linear polarizers allows us to develop a test to determine
if a polarizing element is actually a linear polarizer. The test to determine if we have a
linear polarizer is shown in Fig. 5-3. In the test we assume that we have a linear
polarizer and set its axis in the horizontal (H ) direction. We then take another
polarizer and set its axis in the vertical (V ) direction as shown in the figure. The
Stokes vector of the incident beam is S, and the Stokes vector of the beam emerging
from the first polarizer (horizontal) is

S0
¼ MHS ð5-20Þ

Next, the S 0 beam propagates to the second polarizer (vertical), and the Stokes
vector S0 0 of the emerging beam is now

S0 0
¼ MVS

0
¼ MVMHS ¼ MS ð5-21Þ

where we have used (5-20). We see that M is the Mueller matrix of the combined
vertical and linear polarizer:

M ¼ MVMH ð5-22Þ

where MH and MV are given by (5-13) and (5-14), respectively. These results, (5-21)
and (5-22), show that we can relate the Stokes vector of the emerging beam to the
incident beam by merely multiplying the Mueller matrix of each component and
finding the resulting Mueller matrix. In general, the matrices do not commute.

We now carry out the multiplication in (5-22) and write, using (5-13) and (5-14),

M ¼
1

4

1 �1 0 0

�1 1 0 0

0 0 0 0

0 0 0 0

0
BBB@

1
CCCA

1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0

0
BBB@

1
CCCA ¼

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0
BBB@

1
CCCA ð5-23Þ

Thus, we obtain a null Mueller matrix and, hence, a null output intensity regardless
of the polarization state of the incident beam. The appearance of a null Mueller
matrix (or intensity) occurs only when the linear polarizers are in the crossed polar-
izer configuration. Furthermore, the null Mueller matrix always arises whenever the
polarizers are crossed, regardless of the angle of the transmission axis of the first
polarizer.

Figure 5-3 Testing for a linear polarizer.
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5.3 THE MUELLER MATRIX OF A RETARDER

A retarder is a polarizing element which changes the phase of the optical beam.
Strictly speaking, its correct name is phase shifter. However, historical usage
has led to the alternative names retarder, wave plate, and compensator. Retarders
introduce a phase shift of � between the orthogonal components of the incident
field. This can be thought of as being accomplished by causing a phase shift of
þ�=2 along the x axis and a phase shift of ��=2 along the y axis. These axes of
the retarder are referred to as the fast and slow axes, respectively. In Fig. 5-4 we show
the incident and emerging beam and the retarder. The components of the emerging
beam are related to the incident beam by

E0
xðz, tÞ ¼ eþi�=2Exðz, tÞ ð5-24aÞ

E0
yðz, tÞ ¼ e�i�=2Eyðz, tÞ ð5-24bÞ

Referring again to the definition of the Stokes parameters (5-6) and (5-7) and
substituting (5-24a) and (5-24b) into these equations, we find that

S0
0 ¼ S0 ð5-25aÞ

S0
1 ¼ S1 ð5-25bÞ

S0
2 ¼ S2 cos�þ S3 sin� ð5-25cÞ

S0
3 ¼ �S2 sin�þ S3 cos� ð5-25dÞ

Equation (5-25) can be written in matrix form as

S0
0

S0
1

S0
2

S0
3

0
BB@

1
CCA ¼

1 0 0 0
0 1 0 0
0 0 cos� sin�
0 0 � sin � cos �

0
BB@

1
CCA

S0

S1

S2

S3

0
BB@

1
CCA ð5-26Þ

Note that for an ideal phase shifter (retarder) there is no loss in intensity; that is,
S0
0 ¼ S0.

Figure 5-4 Propagation of a polarized beam through a retarder.
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The Mueller matrix for a retarder with a phase shift � is, from (5-26),

M ¼

1 0 0 0
0 1 0 0
0 0 cos� sin�
0 0 � sin� cos�

0
BB@

1
CCA ð5-27Þ

There are two special cases of (5-27) which appear often in polarizing optics. These
are the cases for quarter-wave retarders (� ¼ 90�, i.e., the phase of one component
of the light is delayed with respect to the orthogonal component by one quarter
wave) and half-wave retarders (� ¼ 180�, i.e., the phase of one component of the light
is delayed with respect to the orthogonal component by one half wave), respectively.
Obviously, a retarder is naturally dependent on wavelength, although there are
achromatic retarders that are slowly dependent on wavelength. We will discuss
these topics in more detail in Chapter 26. For a quarter-wave retarder (5-27)
becomes

M ¼

1 0 0 0
0 1 0 0
0 0 0 1
0 0 �1 0

0
BB@

1
CCA ð5-28Þ

The quarter-wave retarder has the property that it transforms a linearly polarized
beam with its axis at þ 45� or � 45� to the fast axis of the retarder into a right or left
circularly polarized beam, respectively. To show this property, consider the Stokes
vector for a linearly polarized � 45� beam:

S ¼ I0

1
0

�1
0

0
BB@

1
CCA ð5-29Þ

Multiplying (5-29) by (5-28) yields

S0
¼ I0

1
0
0

�1

0
BB@

1
CCA ð5-30Þ

which is the Stokes vector for left (right) circularly polarized light. The trans-
formation of linearly polarized light to circularly polarized light is an important
application of quarter-wave retarders. However, circularly polarized light is
obtained only if the incident linearly polarized light is oriented at � 45�.

On the other hand, if the incident light is right (left) circularly polarized
light, then multiplying (5-30) by (5-28) yields

S0
¼ I0

1
0

�1
0

0
BB@

1
CCA ð5-31Þ
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which is the Stokes vector for linear � 45� or þ 45� polarized light. The quarter-wave
retarder can be used to transform linearly polarized light to circularly polarized light
or circularly polarized light to linearly polarized light.

The other important type of wave retarder is the half-wave retarder ð� ¼ 180�Þ.
For this condition (5-27) reduces to

M ¼

1 0 0 0
0 1 0 0
0 0 �1 0
0 0 0 �1

0
BB@

1
CCA ð5-32Þ

A half-wave retarder is characterized by a diagonal matrix. The terms m22 ¼ m33 ¼

� 1 reverse the ellipticity and orientation of the polarization state of the incident
beam. To show this formally, we have initially

S ¼

S0

S1

S2

S3

0
BB@

1
CCA ð5-17Þ

We also saw previously that the orientation angle  and the ellipticity angle � are
given in terms of the Stokes parameters:

tan 2 ¼
S2

S1

ð4-12Þ

sin 2� ¼
S3

S0

ð4-14Þ

Multiplying (5-17) by (5-32) gives

S0
¼

S0
0

S0
1

S0
2

S0
3

0
BB@

1
CCA ¼

S0

S1

�S2

�S3

0
BB@

1
CCA ð5-33Þ

where

tan 2 0
¼

S0
2

S0
1

ð5-34aÞ

sin 2�0
¼

S0
3

S0
0

ð5-34bÞ

Substituting (5-33) into (5-34) yields

tan 2 0
¼

�S2

S1

¼ � tan 2 ð5-35aÞ

sin 2�0
¼

�S3

S0

¼ � sin 2� ð5-35bÞ

Hence,

 0
¼ 90� �  ð5-36aÞ

�0
¼ 90� þ � ð5-36bÞ
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Half-wave retarders also possess the property that they can rotate the polarization
ellipse. This important property shall be discussed in Section 5.5.

5.4 THE MUELLER MATRIX OF A ROTATOR

The final way to change the polarization state of an optical field is to allow a beam to
propagate through a polarizing element that rotates the orthogonal field components
Ex(z, t) and Ey(z, t) through an angle �. In order to derive the Mueller matrix for
rotation, we consider Fig. 5-5. The angle � describes the rotation of Ex to E0

x and of
Ey to E0

y. Similarly, the angle � is the angle between E and Ex. In the figure the point
P is described in the E0

x, E
0
y coordinate system by

E0
x ¼ E cosð�� �Þ ð5-37aÞ

E0
y ¼ E sinð�� �Þ ð5-37bÞ

In the Ex, Ey coordinate system we have

Ex ¼ E cos� ð5-38aÞ

Ey ¼ E sin � ð5-38bÞ

Expanding the trigonometric functions in (5-37) gives

E0
x ¼ Eðcos� cos � þ sin � sin �Þ ð5-39aÞ

E0
y ¼ Eðsin � cos � � sin � cos�Þ ð5-39bÞ

Collecting terms in (5-39) using (5-38) then gives

E0
x ¼ Ex cos � þ Ey sin � ð5-40aÞ

E0
y ¼ �Ex sin � þ Ey cos � ð5-40bÞ

Figure 5-5 Rotation of the optical field components by a rotator.
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Equations (5-40a) and (5-40b) are the amplitude equations for rotation. In order to
find the Mueller matrix we form the Stokes parameters for (5-40) as before and find
the Mueller matrix for rotation:

Mð2�Þ ¼

1 0 0 0
0 cos 2� sin 2� 0
0 � sin 2� cos 2� 0
0 0 0 1

0
BB@

1
CCA ð5-41Þ

We note that a physical rotation of � leads to the appearance of 2� in (5-41) rather
than � because we are working in the intensity domain; in the amplitude domain we
would expect just �.

Rotators are primarily used to change the orientation angle of the polarization
ellipse. To see this behavior, suppose the orientation angle of an incident beam is  .
Recall that

tan 2 ¼
S2

S1

ð4-12Þ

For the emerging beam we have a similar expression with the variables in (4-12)
replaced with primed variables. Using (5-41) we see that the orientation angle  0

is then

tan 2 0
¼

�S1 sin 2� þ S2 cos 2�

S1 cos 2� þ S2 sin 2�
ð5-42Þ

Equation (4-12) is now written as

S2 ¼ S1 tan 2 ð5-43Þ

Substituting (5-43) into (5-42), we readily find that

tan 2 0
¼ tanð2 � 2�Þ ð5-44Þ

so

 0
¼  � � ð5-45Þ

Equation (5-45) shows that a rotator merely rotates the polarization ellipse of the
incident beam; the ellipticity remains unchanged. The sign is negative in (5-45)
because the rotation is clockwise. If the rotation is counterclockwise, that is, � is
replaced by � � in (5-41), then we find

 0
¼  þ � ð5-46Þ

In the derivation of the Mueller matrices for a polarizer, retarder, and
rotator, we have assumed that the axes of these devices are aligned along the Ex

and Ey (or x, y axes), respectively. In practice, we find that the polarization elements
are often rotated. Consequently, it is also necessary for us to know the form of the
Mueller matrices for the rotated polarizing elements. We now consider this problem.
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5.5 MUELLER MATRICES FOR ROTATED POLARIZING
COMPONENTS

To derive the Mueller matrix for rotated polarizing components, we refer to Fig. 5-6.
The axes of the polarizing component are seen to be rotated through an angle �
to the x0 and y0 axes. We must, therefore, also consider the components of the
incident beam along the x0 and y0 axes. In terms of the Stokes vector of the incident
beam, S, we then have

S0
¼ MRð2�ÞS ð5-47Þ

where MR(2�) is the Mueller matrix for rotation (5-41) and S 0 is the Stokes vector of
the beam whose axes are along x0 and y0.

The S 0 beam now interacts with the polarizing element characterized by its
Mueller matrix M. The Stokes vector S00 of the beam emerging from the rotated
polarizing component is

S0 0
¼ MS 0

¼ MMRð2�ÞS ð5-48Þ

where we have used (5-47). Finally, we must take the components of the emerging
beam along the original x and y axes as seen in Fig. 5-6. This can be described by a
counterclockwise rotation of S00 through � � and back to the original x, y axes, so

S 0 0 0
¼ MRð�2�ÞS 0 0

¼ ½MRð�2�ÞMMRð2�Þ�S
ð5-49Þ

whereMR(�2�) is, again, the Mueller matrix for rotation and S 000 is the Stokes vector
of the emerging beam. Equation (5-49) can be written as

S0 0 0
¼ Mð2�ÞS ð5-50Þ

where

Mð2�Þ ¼ MRð�2�ÞMMRð2�Þ ð5-51Þ

Figure 5-6 Derivation of the Mueller matrix for rotated polarizing components.
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Equation (5-51) is the Mueller matrix of a rotated polarizing component. We recall
that the Mueller matrix for rotation MR(2�) is given by

MRð2�Þ ¼

1 0 0 0
0 cos 2� sin 2� 0
0 � sin 2� cos 2� 0
0 0 0 1

0
BB@

1
CCA ð5-52Þ

The rotated Mueller matrix expressed by (5-51) appears often in the treatment
of polarized light. Of particular interest are the Mueller matrices for a rotated
polarizer and a rotated retarder. The Mueller matrix for a rotated ‘‘rotator’’
is also interesting, but in a different way. We recall that a rotator rotates the
polarization ellipse by an amount �. If the rotator is now rotated through an
angle , then one discovers, using (5-51), that M(2�) ¼ MR(2�); that is, the rotator
is unaffected by a mechanical rotation. Thus, the polarization ellipse cannot
be rotated by rotating a rotator! The rotation comes about only by the intrinsic
behavior of the rotator. It is possible, however, to rotate the polarization ellipse
mechanically by rotating a half-wave plate, as we shall soon demonstrate.

The Mueller matrix for a rotated polarizer is most conveniently found by
expressing the Mueller matrix of a polarizer in angular form, namely,

M ¼
p2

2

1 cos 2� 0 0
cos 2� 1 0 0

0 0 sin 2� 0
0 0 0 sin 2�

0
BB@

1
CCA ð5-16Þ

Carrying out the matrix multiplication according to (5-51) and using (5-52), the
Mueller matrix for a rotated polarizer is

M¼
1

2

1 cos2� cos2� cos2� sin2� 0

cos2� cos2� cos2 2�þ sin2� sin2 2� ð1� sin2�Þ sin2� cos2� 0

cos2� sin2� ð1� sin2�Þ sin2� cos2� sin2 2�þ sin2� cos2 2� 0

0 0 0 sin2�

0
BBB@

1
CCCA

ð5-53Þ

In (5-53) we have set p2 to unity. We note that � ¼ 0�, 45�, and 90� correspond to a
linear horizontal polarizer, a neutral density filter, and a linear vertical polarizer,
respectively.

The most common form of (5-53) is the Mueller matrix for an ideal linear
horizontal polarizer (� ¼ 0�). For this value (5-53) reduces to

MPð2�Þ ¼
1

2

1 cos 2� sin 2� 0

cos 2� cos2 2� sin 2� cos 2� 0

sin 2� sin 2� cos 2� sin2 2� 0

0 0 0 0

0
BBB@

1
CCCA ð5-54Þ

In (5-54) we have written MP(2�) to indicate that this is the Mueller matrix for
a rotated ideal linear polarizer. The form of (5-54) can be checked immediately by
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setting � ¼ 0 (no rotation). Upon doing this, we obtain the Mueller matrix of a linear
horizontal polarizer:

MPð0
�
Þ ¼

1

2

1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

0
BB@

1
CCA ð5-55Þ

One can readily see that for � ¼ 45� and 90� (5-54) reduces to the Mueller matrix for
an ideal linear þ 45� and vertical polarizer, respectively. The Mueller matrix for a
rotated ideal linear polarizer, (5-54), appears often in the generation and analysis of
polarized light.

Next, we turn to determining the Mueller matrix for a retarder or wave plate.
We recall that the Mueller matrix for a retarder with phase shift � is given by

Mc ¼

1 0 0 0
0 1 0 0
0 0 cos� sin�
0 0 � sin� cos �

0
BB@

1
CCA ð5-56Þ

Somtimes the term compensator is used in place of retarder, and so we have used
the subscript ‘‘c.’’

From (5-51) the Mueller matrix for the rotated retarder (5-56) is found to be

Mcð�, 2�Þ ¼

1 0 0 0

0 cos2 2�þ cos� sin2 2� ð1� cos�Þ sin2� cos2� � sin� sin2�

0 ð1� cos�Þ sin2� cos2� sin2 2�þ cos�cos2 2� sin�cos2�

0 sin� sin2� � sin�cos2� cos�

0
BBB@

1
CCCA

ð5-57Þ

For � ¼ 0�, (5-57) reduces to (5-56) as expected. There is a particularly interesting
form of (5-57) for a phase shift of � ¼ 180�, a so-called half-wave retarder. For
� ¼ 180� (5-57) reduces to

Mcð180
�, 4�Þ ¼

1 0 0 0
0 cos 4� sin 4� 0
0 sin 4� � cos 4� 0
0 0 0 �1

0
BB@

1
CCA ð5-58Þ

Equation (5-58) looks very similar to the Mueller matrix for rotation MR(2�), (5-52),
which we write simply as MR:

MR ¼

1 0 0 0
1 cos 2� sin 2� 0
0 � sin 2� cos 2� 0
0 0 0 1

0
BB@

1
CCA ð5-59Þ
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However, (5-58) differs from (5-59) in some essential ways. The first is the ellipticity.
The Stokes vector of an incident beam is, as usual,

S ¼

S0

S1

S2

S3

0
BBBB@

1
CCCCA ð5-17Þ

Multiplying (5-17) by (5-59) yields the Stokes vector S 0:

S0
¼

S0

S1 cos 2� þ S2 sin 2�

�S1 sin 2� þ S2 cos 2�

S3

0
BBBB@

1
CCCCA ð5-60Þ

The ellipticity angle �0 is

sin 2�0
¼

S0
3

S0
0

¼
S3

S0

¼ sin 2� ð5-61Þ

Thus, the ellipticity is not changed under true rotation. Multiplying (5-17) by (5-58),
however, yields a Stokes vector S 0 resulting from a half-wave retarder:

S0
¼

S0

S1 cos 4� þ S2 sin 4�

S1 sin 4� � S2 cos 4�

�S3

0
BBBB@

1
CCCCA ð5-62Þ

The ellipticity angle �0 is now

sin 2�0
¼

S0
3

S0
0

¼
�S3

S0

¼ � sin 2� ð5-63Þ

Thus,

�0
¼ �þ 90� ð5-64Þ

so the ellipticity angle � of the incident beam is advanced 90� by using a rotated
half-wave retarder.

The next difference is for the orientation angle  0. For a rotator, (5-59), the
orientation angle associated with the incident beam,  , is given by the equation:

tan 2 ¼
S2

S1

ð5-65Þ

so we immediately find from (5-65) and (5-60) that

tan 2 0
¼

S0
2

S0
1

¼
sin 2 cos 2� � sin 2� cos 2 

cos 2 cos 2� þ sin 2 sin 2�
¼

sinð2 � 2�Þ

cosð2 � 2�Þ
ð5-66Þ
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whence

 0
¼  � � ð5-67Þ

Equation (5-67) shows that a mechanical rotation in � increases  by the
same amount and in the same direction (by definition, a clockwise rotation of
� increases). On the other hand, for a half-wave retarder the orientation angle  0

is given by the equation, using (5-17) and (5-62),

tan 2 0
¼

cos 2 sin 4� � sin 2 cos 4�

cos 2 cos 4� þ sin 2 sin 4�
¼

sinð4� � 2 Þ

cosð4� � 2 Þ
ð5-68Þ

so

 0
¼ 2� �  ð5-69aÞ

or

 0
¼ �ð � 2�Þ ð5-69bÞ

Comparing (5-69b) with (5-67), we see that rotating the half-wave retarder clockwise
causes  0 to rotate counterclockwise by an amount twice that of a rotator. Because
the rotation of a half-wave retarder is opposite to a true rotator, it is called
a pseudorotator. When a mechanical rotation of � is made using a half-wave retarder
the polarization ellipse is rotated by 2� and in a direction opposite to the direction of
the mechanical rotation. For a true mechanical rotation of � the polarization ellipse
is rotated by an amount � and in the same direction as the rotation.

This discussion of rotation of half-wave retarders is more than academic,
however. Very often manufacturers sell half-wave retarders as polarization rotators.
Strictly speaking, this belief is quite correct. However, one must realize that the use
of a half-wave retarder rather than a true rotator requires a mechanical mount with
twice the resolution. That is, if we use a rotator in a mount with, say 20 of resolution,
then in order to obtain the same resolution with a half-wave retarder a
mechanical mount with 10 of resolution is required. The simple fact is that doubling
the resolution of a mechanical mount can be very expensive in comparison with
using a true rotator. The cost for doubling the resolution of a mechanical
mount can easily double, whereas the cost increase between a quartz rotator and a
half-wave retarder is usually much less. In general, if the objective is to rotate the
polarization ellipse by a known fixed amount, it is better to use a rotator rather than
a half-wave retarder.

A half-wave retarder is very useful as a rotator. Half-wave retarders can also
be used to ‘‘reverse’’ the polarization state. In order to illustrate this behavior,
consider that we have an incident beam which is right or left circularly polarized.
Its Stokes vector is

S ¼ I0

1
0
0
�1

0
BB@

1
CCA ð5-70Þ

Copyright © 2003 by Marcel Dekker, Inc. All Rights Reserved.



Multiplying (5-70) by (5-58) and setting � ¼ 0� yields

S0
¼ I0

1
0
0
�1

0
BB@

1
CCA ð5-71Þ

We see that we again obtain circularly polarized light but opposite to its original
state; that is, right circularly polarized light is transformed to left circularly polarized
light, and vice versa. Similarly, if we have incident linear þ 45� polarized light, the
emerging beam is linear � 45� polarized light. It is this property of reversing the
ellipticity and the orientation, manifested by the negative sign in m22 and m33, that
also makes half-wave plates very useful.

Finally, we consider the Mueller matrix of a rotated quarter-wave retarder.
We set � ¼ 90� in (5-58) and we have

Mcð90
�, 2�Þ ¼

1 0 0 0

0 cos2 2� sin 2� cos 2� � sin 2�

0 sin 2� cos 2� sin2 2� cos 2�

0 sin 2� � cos 2� 0

0
BBB@

1
CCCA ð5-72Þ

Consider that we have an incident linearly horizontally polarized beam, so its Stokes
vector is ðI0 ¼ 1Þ

S ¼

1
1
0
0

0
BB@

1
CCA ð5-73Þ

We multiply (5-73) by (5-72), and we find that the Stokes vector S0 is

S0
¼

1

cos2 2�

sin 2� cos 2�

sin 2�

0
BBB@

1
CCCA ð5-74Þ

We see immediately from (5-74) that the orientation angle  0 and the ellipticity
angle �0 of the emerging beam are given by

tan 2 0
¼ tan 2� ð5-75aÞ

sin 2�0
¼ sin 2� ð5-75bÞ

Thus, the rotated quarter-wave plate has the property that it can be used to
generate any desired orientation and ellipticity starting with an incident linearly
horizontally polarized beam. However, we can only select one of these parameters;
we have no control over the other parameter. We also note that if we initially have
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right or left circularly polarized light the Stokes vector of the output beam is

S0
¼

1
� sin 2�
� cos 2�

0

0
BB@

1
CCA ð5-76Þ

which is the Stokes vector for linearly polarized light. While it is well known that a
quarter-wave retarder can be used to create linearly polarized light, (5-76) shows that
an additional variation is possible by rotating the retarder, namely, the orientation
can be controlled.

Equation (5-76) shows that we can generate any desired orientation or
ellipticity of a beam, but not both. This leads to the question of how we can generate
an elliptically polarized beam of any desired orientation and ellipticity regardless of
the polarization state of an incident beam.

5.6 GENERATION OF ELLIPTICALLY POLARIZED LIGHT

In the previous section we derived the Mueller matrices for a rotated polarizer and
a rotated retarder. We now apply these matrices to the generation of an elliptically
polarized beam of any desired orientation and ellipticity. In order to do this we
refer to Fig. 5-7. In the figure we show an incident beam of arbitrary polarization.
The beam propagates first through an ideal polarizer rotated through an angle �
and then through a retarder, with its fast axis along the x axis. The Stokes vector
of the incident beam is

S ¼

S0

S1

S2

S3

0
BBB@

1
CCCA ð5-17Þ

Figure 5-7 The generation of elliptically polarized light.
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It is important that we consider the optical source to be arbitrarily polarized. At
first sight, for example, we might wish to use unpolarized light or linearly polarized
light. However, unpolarized light is surprisingly difficult to generate, and the
requirement to generate ideal linearly polarized light calls for an excellent linear
polarizer. We can avoid this problem if we consider that the incident beam is of
unknown but arbitrary polarization. Our objective is to create an elliptically polar-
ized beam of any desired ellipticity and orientation and which is totally independent
of the polarization state of the incident beam.

The Mueller matrix of a rotated ideal linear polarizer is

MPð2�Þ ¼
1

2

1 cos 2� sin 2� 0

cos 2� cos2 2� sin 2� cos 2� 0

sin 2� sin 2� cos 2� sin2 2� 0

0 0 0 0

0
BBB@

1
CCCA ð5-54Þ

Multiplying (5-17) by (5-54) yields

S0
¼

1

2
ðS0 þ S1 cos 2� þ S2 sin 2�Þ

1
cos 2�
sin 2�
0

0
BB@

1
CCA ð5-77Þ

The Mueller matrix of the retarder (nonrotated) is

Mc ¼

1 0 0 0
0 1 0 0
0 0 cos� sin�
0 0 � sin� cos �

0
BB@

1
CCA ð5-56Þ

Multiplying (5-77) by (5-56) then gives the Stokes vector of the beam emerging from
the retarder:

S0 0
¼ Ið�Þ

1

cos 2�

cos� sin 2�

� sin� sin 2�

0
BBB@

1
CCCA ð5-78aÞ

where

Ið�Þ ¼
1

2
ðS0 þ S1 cos 2� þ S2 sin 2�Þ ð5-78bÞ

Equation (5-78a) is the Stokes vector of an elliptically polarized beam. We immedi-
ately find from (5-78a) that the orientation angle  (we drop the double prime) is

tan 2 ¼ cos� tan 2� ð5-79aÞ

and the ellipticity angle � is

sin 2� ¼ � sin� sin 2� ð5-79bÞ
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We must now determine the � and � which will generate the desired values of  
and �. We divide (5-79a) by tan 2� and (5-79b) by sin 2�, square the equations, and
add. The result is

cos 2� ¼ � cos 2� cos 2 ð5-80Þ

To determine the required phase shift �, we divide (5-79b) by (5-79a):

sin 2�

tan 2 
¼ � tan� cos 2� ð5-81Þ

Solving for tan � and using (5-80), we easily find that

tan� ¼ �
tan 2�

sin 2 
ð5-82Þ

Thus, (5-80) and (5-82) are the equations for the angles � and � to which the
polarizer and the retarder must be set in order to obtain the desired ellipticity and
orientation angles � and  .

We have thus shown that using only a rotated ideal linear polarizer and a
retarder we can generate any state of elliptically polarized light. There is a final
interesting fact about (5-80) and (5-82). We write (5-80) and (5-82) as a pair in the
form

cos 2� ¼ � cos 2� cos 2 ð5-80Þ

tan 2� ¼ � sin 2 tan� ð5-83Þ

Equations (5-80) and (5-83) are recognized as equations arising from spherical
trigonometry for a right spherical triangle. In Fig. 5-8 we have drawn a right
spherical triangle. The angle 2 (the orientation of the polarization ellipse) is plotted
on the equator, and the angle 2� (the ellipticity of the polarization ellipse) is plotted
on the longitude. If a great circle is drawn from point A to point B, the length of the
arc AB is given by (5-80) and corresponds to 2� as shown in the figure. Similarly, the

Figure 5-8 A right spherical triangle drawn on the surface of a sphere.
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phase � is the angle between the arc AB and the equator; its value is given by (5-83).
We see from Fig. 5-8 that we can easily determine � and � by (1) measuring the
length of the arc AB and (2) measuring the angle between the arc AB and the equator
on a sphere.

The polarization equations (5-80) and (5-83) are intimately associated with
spherical trigonometry and a sphere. Furthermore, we recall from Section 4.3
that when the Stokes parameters were expressed in terms of the orientation angle
and the ellipticity angle they led directly to the Poincaré sphere. In fact, (5-80) and
(5-83) describe a spherical triangle which plots directly on to the Poincaré sphere.
Thus, we see that even at this early stage in our study of polarized light there
is a strong connection between the equations of polarized light and its representation
on a sphere. In fact, one of the most remarkable properties of polarized light is
that there is such a close relation between these equations and the equations of
spherical trigonometry. In Chapter 12, on the Poincaré sphere, these relations will
be discussed in depth. In order to provide the reader with background material
on right spherical triangles a brief discussion of the fundamentals of spherical
trigonometry is presented at the end of Section 12.2.
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6

Methods of Measuring the Stokes
Polarization Parameters

6.1 INTRODUCTION

We now turn our attention to the important problem of measuring the Stokes
polarization parameters. In Chapter 7 we shall also discuss the measurement of
the Mueller matrices. The first method for measuring the Stokes parameters is due
to Stokes and is probably the best known method; this method was discussed in
Section 4.4. There are other methods for measuring the Stokes parameters. However,
we have refrained from discussing these methods until we had introduced the
Mueller matrices for a polarizer, a retarder, and a rotator. The Mueller matrix
and Stokes vector formalism allows us to treat all of these measurement problems
in a very simple and direct manner. While, of course, the problems could have
been treated using the amplitude formulation, the use of the Mueller matrix
formalism greatly simplifies the analysis.

In theory, the measurement of the Stokes parameters should be quite simple.
However, in practice there are difficulties. This is due, primarily, to the fact that
while the measurement of S0, S1, and S2 is quite straightforward, the measurement
of S3 is more difficult. In fact, as we pointed out, before the advent of optical
detectors it was not even possible to measure the Stokes parameters using Stokes’
measurement method (Section 4.4). It is possible, however, to measure the Stokes
parameter using the eye as a detector by using a so-called null method; this is
discussed in Section 6.4. In this chapter we discuss Stokes’ method along with
other methods, which includes the circular polarizer method, the null-intensity
method, the Fourier analysis method, and the method of Kent and Lawson.

6.2 CLASSICAL MEASUREMENT METHOD: THE QUARTER-WAVE
RETARDER POLARIZER METHOD

The Mueller matrices for the polarizer (diattenuator), retarder (phase shifter), and
rotator can now be used to analyze various methods for measuring the Stokes
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parameters. A number of methods are known. We first consider the application
of the Mueller matrices to the classical measurement of the Stokes polarization
parameters using a quarter-wave retarder and a polarizer. This is the same problem
that was treated in Section 4.4; it is the problem originally considered by Stokes
(1852). The result is identical, of course, with that obtained by Stokes. However,
the advantage of using the Mueller matrices is that a formal method can be used to
treat not only this type of problem but other polarization problems as well.

The Stokes parameters can be measured as shown in Fig. 6-1. An optical beam
is characterized by its four Stokes parameters S0, S1, S2, and S3. The Stokes vector of
this beam is represented by

S ¼

S0

S1

S2

S3

0
BBB@

1
CCCA ð6-1Þ

The Mueller matrix of a retarder with its fast axis at 0� is

M ¼

1 0 0 0
0 1 0 0
0 0 cos� sin�
0 0 � sin� cos�

0
BB@

1
CCA ð6-2Þ

The Stokes vector S0 of the beam emerging from the retarder is obtained by
multiplication of (6-2) and (6-1), so

S0
¼

S0

S1

S2 cos�þ S3 sin�

�S2 sin�þ S3 cos�

0
BBB@

1
CCCA ð6-3Þ

Figure 6-1 Classical measurement of the Stokes parameters.
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The Mueller matrix of an ideal linear polarizer with its transmission axis set at
an angle � is

M ¼
1

2

1 cos 2� sin 2� 0

cos 2� cos2 2� sin 2� cos 2� 0

sin 2� sin 2� cos 2� sin2 2� 0

0 0 0 0

0
BBB@

1
CCCA ð6-4Þ

The Stokes vector S00 of the beam emerging from the linear polarizer is found
by multiplication of (6-3) by (6-4). However, we are only interested in the
intensity I00, which is the first Stokes parameter S00

0 of the beam incident on the optical
detector shown in Fig. 6-1. Multiplying the first row of (6-4) with (6-3), we then
find the intensity of the beam emerging from the quarter-wave retarder–polarizer
combination to be

Ið�,�Þ ¼
1

2
½S0 þ S1 cos 2� þ S2 sin 2� cos�þ S3 sin 2� sin�� ð6-5Þ

Equation (6-5) is Stokes’ famous intensity relation for the Stokes parameters. The
Stokes parameters are then found from the following conditions on � and �:

S0 ¼ Ið0�, 0�Þ þ Ið90�, 0�Þ ð6-6aÞ

S1 ¼ Ið0�, 0�Þ � Ið90�, 0�Þ ð6-6bÞ

S2 ¼ 2Ið45�, 0�Þ � S0 ð6-6cÞ

S3 ¼ 2Ið45�, 90�Þ � S0 ð6-6dÞ

In practice, S0, S1, and S2 are easily measured by removing the quarter-wave
retarder (� ¼ 90�) from the optical train. In order to measure S3, however, the
retarder must be reinserted into the optical train with the linear polarizer set
at � ¼ 45�. This immediately raises a problem because the retarder absorbs some
optical energy. In order to obtain an accurate measurement of the Stokes parameters
the absorption factor must be introduced, ab initio, into the Mueller matrix for the
retarder. The absorption factor which we write as p must be determined from a
separate measurement and will then appear in (6-5) and (6-6). We can easily
derive the Mueller matrix for an absorbing retarder as follows.

The field components Ex and Ey of a beam emerging from an absorbing
retarder in terms of the incident field components Ex and Ey are

E0
x ¼ Exe

þi�=2e�x ð6-7aÞ

E0
y ¼ Eye

�i�=2e�y ð6-7bÞ

where x and y are the absorption coefficients. We can also express the exponential
absorption factors in (6-7) as

px ¼ e�x ð6-8aÞ

py ¼ e�y ð6-8bÞ
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Using (6-7) and (6-8) in the defining equations for the Stokes parameters, we find
the Mueller matrix for an anisotropic absorbing retarder:

M ¼
1

2

p2x þ p2y p2x � p2y 0 0

p2x � p2y p2x þ p2y 0 0

0 0 2pxpy cos� 2pxpy sin�

0 0 �2pxpy sin� 2pxpy cos�

0
BBB@

1
CCCA ð6-9Þ

Thus, we see that an absorbing retarder behaves simultaneously as a polarizer and
a retarder. If we use the angular representation for the polarizer behavior,
Section 5.2, equation (5-15b), then we can write (6-9) as

M ¼
p2

2

1 cos 2� 0 0
cos 2� 1 0 0

0 0 sin 2� cos� sin 2� sin�
0 0 � sin 2� sin� sin 2� cos�

0
BB@

1
CCA ð6-10Þ

where p2x þ p2y ¼ p2. We note that for � ¼ 45� we have an isotropic retarder; that is,
the absorption is equal along both axes. If p2 is also unity, then (6-9) reduces to an
ideal phase retarder.

The intensity of the emerging beam Ið�,�Þ is obtained by multiplying (6-1) by
(6-10) and then by (6-4), and the result is

Ið�,�Þ ¼
p2

2
½ð1þ cos 2� cos 2�ÞS0 þ ðcos 2� þ cos 2�ÞS1

þ ðsin 2� cos� sin 2�ÞS2 þ ðsin 2� sin� sin 2�ÞS3� ð6-11Þ

If we were now to make all four intensity measurements with a quarter-wave
retarder in the optical train, then (6-11) would reduce for each of the four combina-
tions of � and �¼ 90� to

S0 ¼
1

p2
½Ið0�, 0�Þ þ Ið90�, 0�Þ� ð6-12aÞ

S1 ¼
1

p2
½Ið0�, 0�Þ � Ið90�, 0�Þ� ð6-12bÞ

S2 ¼
2

p2
Ið45�, 0�Þ � S0 ð6-12cÞ

S3 ¼
2

p2
Ið45�, 90�Þ � S0 ð6-12dÞ

Thus, each of the intensities in (6-12) are reduced by p2, and this has no effect on
the final value of the Stokes parameters with respect to each other. Furthermore, if
we are interested in the ellipticity and the orientation, then we take ratios of the
Stokes parameters S3=S0 and S2=S1 and the absorption factor p2 cancels out.
However, this is not exactly the way the measurement is made. Usually, the first
three intensity measurements are made without the retarder present, so the first three
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parameters are measured according to (6-6). The last measurement is done with a
quarter-wave retarder in the optical train, (6-12d), so the equations are

S0 ¼ Ið0�, 0�Þ þ Ið90�, 0�Þ ð6-13aÞ

S1 ¼ Ið0�, 0�Þ � Ið90�, 0�Þ ð6-13bÞ

S2 ¼ 2Ið45�, 0�Þ � S0 ð6-13cÞ

S3 ¼
2

p2
Ið45�, 90�Þ � S0 ð6-13dÞ

Thus, (6-13d) shows that the absorption factor p2 enters in the measurement of
the fourth Stokes parameters S3. It is therefore necessary to measure the absorption
factor p2. The easiest way to do this is to place a linear polarizer between an
optical source and a detector and measure the intensity; this is called I0. Next, the
retarder with its fast axis in the horizontal x direction is inserted between the
linear polarizer and the detector. The intensity is then measured with the polarizer
generating linear horizontally and linear vertically polarized light [see (6-11)]. Dividing
each of these measured intensities by I0 and adding the results gives p2. Thus,
we see that the measurement of the first three Stokes parameters is very simple, but
the measurement of the fourth parameter S3 requires a considerable amount
of additional effort.

It would therefore be preferable if a method could be devised whereby the
absorption measurement could be eliminated. A method for doing this can be
devised, and we now consider this method.

6.3 MEASUREMENT OF THE STOKES PARAMETERS USING
A CIRCULAR POLARIZER

The problem of absorption by a retarder can be completely overcome by using
a single polarizing element, namely, a circular polarizer; this is described below.
The beam is allowed to enter one side of the circular polarizer, whereby the first
three parameters can be measured. The circular polarizer is then flipped 180�, and
the final Stokes parameter is measured. A circular polarizer is made by cementing
a quarter-wave retarder to a linear polarizer with its axis at 45� to the fast axis of
the retarder. This ensures that the retarder and polarizer axes are always fixed with
respect to each other. Furthermore, because the same optical path is used in all
four measurements, the problem of absorption vanishes; the four intensities are
reduced by the same amount.

The construction of a circular polarizer is illustrated in Fig. 6-2.
The Mueller matrix for the polarizer–retarder combination is

M ¼
1

2

1 0 0 0
0 1 0 0
0 0 0 1
0 0 �1 0

0
BB@

1
CCA

1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0

0
BB@

1
CCA ð6-14aÞ
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and thus

M ¼
1

2

1 0 1 0

0 0 0 0

0 0 0 0

�1 0 �1 0

0
BBB@

1
CCCA ð6-14bÞ

Equation (6-14b) is the Mueller matrix of a circular polarizer. The reason for calling
(6-14b) a circular polarizer is that regardless of the polarization state of the incident
beam the emerging beam is always circularly polarized. This is easily shown by
assuming that the Stokes vector of an incident beam is

S ¼

S0

S1

S2

S3

0
BBBB@

1
CCCCA ð6-1Þ

Multiplication of (6-1) by (6-14b) then yields

S0
¼

1

2
ðS0 þ S2Þ

1

0

0

�1

0
BBB@

1
CCCA ð6-15Þ

which is the Stokes vector for left circularly polarized light (LCP). Thus, regardless
of the polarization state of the incident beam, the output beam is always left
circularly polarized. Hence, the name circular polarizer. Equation (6-14b) defines
a circular polarizer.

Next, consider that the quarter-wave retarder–polarizer combination
is ‘‘flipped’’; that is, the linear polarizer now follows the quarter–wave retarder.
The Mueller matrix for this combination is obtained with the Mueller matrices

Figure 6-2 Construction of a circular polarizer using a linear polarizer and a quarter-wave

retarder.
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in (6-14a) interchanged; we note that the axis of the linear polarizer when it is
flipped causes a sign change in the Mueller matrix (see Fig. 6-2). Then

M ¼
1

2

1 0 �1 0
0 0 0 0
�1 0 1 0
0 0 0 0

0
BB@

1
CCA

1 0 0 0
0 1 0 0
0 0 0 1
0 0 �1 0

0
BB@

1
CCA ð6-16aÞ

so

M ¼
1

2

1 0 0 �1
0 0 0 0
�1 0 0 1
0 0 0 0

0
BB@

1
CCA ð6-16bÞ

Equation (6-16b) is the matrix of a linear polarizer. That (6-16b) is a linear polarizer
can be easily seen by multiplying (6-1) by (6-16b):

S0
¼

1

2
ðS0 � S3Þ

1
0
�1
0

0
BB@

1
CCA ð6-17Þ

which is the Stokes vector for linear �45� polarized light. Regardless of the
polarization state of the incident beam, the final beam is always linear þ45�

polarized. It is of interest to note that in the case of the ‘‘circular’’ side of the
polarizer configuration, (6-15), the intensity varies only with the linear component,
S2, in the incident beam. On the other hand, for the ‘‘linear’’ side of the polarizer,
(6-17), the intensity varies only with S3, the circular component in the incident beam.

The circular polarizer is now placed in a rotatable mount. We saw earlier
that the Mueller matrix for a rotated polarizing component, M, is given by the
relation:

Mð2�Þ ¼ MRð�2�ÞMMRð2�Þ ð5-51Þ

where MRð2�Þ is the rotation Mueller matrix:

MRð2�Þ ¼

1 0 0 0
0 cos 2� sin 2� 0
0 � sin 2� cos 2� 0
0 0 0 1

0
BB@

1
CCA ð5-52Þ

and Mð2�Þ is the Mueller matrix of the rotated polarizing element. The Mueller
matrix for the circular polarizer with its axis rotated through an angle � is then
found by substituting (6-14b) into (5-51). The result is

MCð2�Þ ¼
1

2

1 � sin 2� cos 2� 0
0 0 0 0
0 0 0 0
1 sin 2� � cos 2� 0

0
BB@

1
CCA ð6-18Þ
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where the subscript C refers to the fact that (6-18) describes the circular side of the
polarizer combination. We see immediately that the Stokes vector emerging from
the beam of the rotated circular polarizer is, using (6-18) and (6-1),

SC ¼
1

2
ðS0 � S1 sin 2� þ S2 cos 2�Þ

1

0

0

�1

0
BBBBB@

1
CCCCCA ð6-19Þ

Thus, as the circular polarizer is rotated, the intensity varies but the polarization
state remains unchanged, i.e., circular. We note again that the total intensity depends
on S0 and on the linear components, S1 and S2, in the incident beam.

The Mueller matrix when the circular polarizer is flipped to its linear side is,
from (6-16b) and (5-51),

MLð2�Þ ¼
1

2

1 0 0 �1

sin 2� 0 0 � sin 2�

� cos 2� 0 0 cos 2�

0 0 0 0

0
BBBBB@

1
CCCCCA ð6-20Þ

where the subscript L refers to the fact that (6-20) describes the linear side of the
polarizer combination. The Stokes vector of the beam emerging from the rotated
linear side of the polarizer, multiplying, (6-20) and (6-1), is

SL ¼
1

2
ðS0 � S3Þ

1

sin 2�

� cos 2�

0

0
BBBBB@

1
CCCCCA ð6-21Þ

Under a rotation of the circular polarizer on the linear side, (6-21) shows that the
polarization is always linear. The total intensity is constant and depends on S0 and
the circular component S3 in the incident beam.

The intensities detected on the circular and linear sides are, respectively, from
(6-19) and (6-21),

ICð�Þ ¼
1

2
ðS0 � S1 sin 2� þ S2 cos 2�Þ ð6-22aÞ

ILð�Þ ¼
1

2
ðS0 þ S3Þ ð6-22bÞ

The intensity on the linear side, (6-22b), is seen to be independent of the rotation
angle of the polarizer. This fact allows a simple check when the measurement is being
made. If the circular polarizer is rotated and the intensity does not vary, then one
knows the measurement is being made on IL, the linear side.
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In order to obtain the Stokes parameters, we first use the circular side of the
polarizing element and rotate it to � ¼ 0�, 45�, and 90�, and then flip it to the linear
side. The measured intensities are then

ICð0
�
Þ ¼

1

2
ðS0 þ S2Þ ð6-23aÞ

ICð45
�
Þ ¼

1

2
ðS0 � S1Þ ð6-23bÞ

ICð90
�
Þ ¼

1

2
ðS0 � S2Þ ð6-23cÞ

ILð0
�
Þ ¼

1

2
ðS0 � S3Þ ð6-23dÞ

The IL value is conveniently taken to be � ¼ 0�. Solving (6-23) for the Stokes
parameters yields

S0 ¼ ICð0
�
Þ þ ICð90

�
Þ ð6-24aÞ

S1 ¼ S0 � 2ICð45
�
Þ ð6-24bÞ

S2 ¼ ICð0
�
Þ � ICð90

�
Þ ð6-24cÞ

S3 ¼ S0 � 2ILð0
�
Þ ð6-24dÞ

Equation (6-24) is similar to the classical equations for measuring the Stokes par-
ameters, (6-6), but the intensity combinations are distinctly different. The use of
a circular polarizer to measure the Stokes parameters is simple and accurate because
(1) only a single rotating mount is used, (2) the polarizing beam propagates through
the same optical path so that the problem of absorption losses can be ignored,
and (3) the axes of the wave plate and polarizer are permanently fixed with respect
to each other.

6.4 THE NULL-INTENSITY METHOD

In previous sections the Stokes parameters were expressed in terms of measured
intensities. These measurement methods, however, are suitable only for use with
quantitative detectors. We pointed out earlier that before the advent of solid-state
detectors and photomultipliers the only available detector was the human eye. It can
only measure the presence of light or no light (a null intensity). It is possible, as
we shall now show, to measure the Stokes parameters from the condition of a
null-intensity state. This can be done by using a variable retarder (phase shifter)
followed by a linear polarizer in a rotatable mount. Devices are manufactured
which can change the phase between the orthogonal components of an optical
beam. They are called Babinet–Soleil compensators, and they are usually placed in
a rotatable mount. Following the compensator is a linear polarizer, which is also
placed in a rotatable mount. This arrangement can be used to obtain a null intensity.
In order to carry out the analysis, the reader is referred to Fig. 6-3.
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The Stokes vector of the incident beam to be measured is

S ¼

S0

S1

S2

S3

0
BBB@

1
CCCA ð6-1Þ

The analysis is simplified considerably if the , � form of the Stokes vector derived
in Section 4.3 is used:

S ¼ I0

1
cos 2

sin 2 cos �
sin 2 sin �

0
BB@

1
CCA ð4-38Þ

The axis of the Babinet–Soleil compensator is set at 0�. The Stokes vector of
the beam emerging from the compensator is found by multiplying the matrix
of the nonrotated compensator (Section 5.3, equation (5-27)) with (4-40):

S0
¼ I0

1 0 0 0
0 1 0 0
0 0 cos� sin�
0 0 � sin� cos�

0
BB@

1
CCA

1
cos 2

sin 2 cos �
sin 2 sin �

0
BB@

1
CCA ð6-25Þ

Carrying out the matrix multiplication in (6-25) and using the well-known trigono-
metric sum formulas, we readily find

S0
¼ I0

1

cos 2

sin 2 cosð�� �Þ

sin 2 sinð�� �Þ

0
BBB@

1
CCCA ð6-26Þ

Figure 6-3 Null intensity measurement of the Stokes parameters.
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Two important observations on (6-26) can be made. The first is that (6-26) can
be transformed to linearly polarized light if S0

3 can be made to be equal to zero.
This can be done by setting �� � to 0�. If we then analyze S0 with a linear polarizer,
we see that a null intensity can be obtained by rotating the polarizer; at the null
setting we can then determine . This method is the procedure that is almost
always used to obtain a null intensity. The null-intensity method works because
� in (6-25) is simply transformed to �� � in (6-26) after the beam propagates through
the compensator (retarder). For the moment we shall retain the form of (6-26)
and not set �� � to 0�. The function of the Babinet–Soleil compensator in this
case is to transform elliptically polarized light to linearly polarized light.

Next, the beam represented by (6-26) is incident on a linear polarizer with
its transmission axis at an angle �. The Stokes vector S00 of the beam emerging
from the rotated polarizer is now

S00
¼

I0
2

1 cos 2� sin 2� 0

cos 2� cos2 2� sin 2� cos 2� 0

sin 2� sin 2� cos 2� sin2 2� 0

0 0 0 0

0
BBB@

1
CCCA

1

cos 2

sin 2 cosð�� �Þ

sin 2 sinð�� �Þ

0
BBB@

1
CCCA ð6-27Þ

where we have used the Mueller matrix of a rotated linear polarizer, Equation (5-54)
Section 5.5. We are interested only in the intensity of the beam emerging from the
rotated polarizer; that is, S00

0 ¼ Ið�,�Þ. Carrying out the matrix multiplication with
the first row in the Mueller matrix and the Stokes vector in (6-27) yields

Ið�,�Þ ¼
I0
2
½1þ cos 2� cos 2þ sin 2� sin 2 cosð�� �Þ� ð6-28Þ

We now set �� � ¼ 0 in (6-28) and find

Ið�, �Þ ¼
I0
2
½1þ cos 2� cos 2þ sin 2� sin 2� ð6-29aÞ

which reduces to

Ið�, �Þ ¼
I0
2
½1þ cos 2ð� � Þ� ð6-29bÞ

The linear polarizer is rotated until a null intensity is observed. At this angle
� �  ¼ �=2, and we have

I þ
�

2
, �

� �
¼ 0 ð6-30Þ

The angles � and  associated with the Stokes vector of the incident beam are thus
found from the conditions:

� ¼ � ð6-31aÞ

 ¼ � �
�

2
ð6-31bÞ

Equations (6-31a) and (6-31b) are the required relations between  and � of
the Stokes vector (6-26) and � and �, the phase setting on the Babinet–Soleil
compensator and the angle of rotation of the linear polarizer, respectively.
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From the values obtained for  and � we can determine the corresponding
values for the orientation angle  and the ellipticity � of the incident beam.
We saw in (4-40) (Section 4.3) that  and � could be expressed in terms of  and
�, namely,

tan 2 ¼ tan 2 cos � ð4-40aÞ

sin 2� ¼ sin 2 sin � ð4-40bÞ

Substituting (6-31) into (4-40), we see that  and � can be expressed in the terms of
the measured values of � and �:

tan 2 ¼ tan 2� cos� ð6-32aÞ

sin 2� ¼ � sin 2� sin� ð6-32bÞ

Remarkably, (6-32) is identical to (4-40) in form. It is only necessary to take the
measured values of � and � and insert them into (6-32) to obtain  and �. Equations
(4-40a) and (4-40b) can be solved in turn for  and � following the derivation given in
Section 5.6, and we have

cos 2 ¼ � cos 2� cos 2 ð6-33aÞ

tan � ¼
tan 2�

sin 2 
ð6-33bÞ

The procedure to find the null-intensity angles � and � is first to set the
Babinet–Soleil compensator with its fast axis to 0� and its phase angle to 0�. The
phase is then adjusted until the intensity is observed to be a minimum. At this point
in the measurement the intensity will not necessarily be zero, only a minimum, as we
see from (6-29b),

Ið�, �Þ ¼
I0
2
½1þ cos 2ð� � Þ� ð6-29bÞ

Next, the linear polarizer is rotated through an angle � until a null intensity
is observed; the setting at which this angle occurs is then measured. In theory this
completes the measurement. In practice, however, one finds that a small adjustment
in phase of the compensator and rotation angle of the linear polarizer are almost
always necessary to obtain a null intensity. Substituting the observed angular
settings on the compensator and the polarizer into (6-32) and (6-33), we then find
the Stokes vector (4-38) of the incident beam. We note that (4-38) is a normalized
representation of the Stokes vector if I0 is set to unity.

6.5 FOURIER ANALYSIS USING A ROTATING
QUARTER-WAVE RETARDER

Another method for measuring the Stokes parameters is to allow a beam to
propagate through a rotating quarter-wave retarder followed by a linear horizontal
polarizer; the retarder rotates at an angular frequency of !. This arrangement is
shown in Fig. 6-4.
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The Stokes vector of the incident beam to be measured is

S ¼

S0

S1

S2

S3

0
BB@

1
CCA ð6-1Þ

The Mueller matrix of the rotated quarter-wave retarder (Section 5.5) is

M ¼

1 0 0 0

0 cos2 2� sin 2� cos 2� � sin 2�

0 sin 2� cos 2� sin2 2� cos 2�

0 sin 2� � cos 2� 0

0
BB@

1
CCA ð5-72Þ

and for a rotating retarder we consider � ¼ !t. Multiplying (6-1) by (5-72) yields

S0
¼

S0

S1 cos
2 2� þ S2 sin 2� cos 2� � S3 sin 2�

S1 sin 2� cos 2� þ S2 sin
2 2� þ S3 cos 2�

S1 sin 2� � S2 cos 2�

0
BB@

1
CCA ð6-34Þ

The Mueller matrix of the linear horizontal polarizer is

M ¼
1

2

1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0

0
BB@

1
CCA ð5-13Þ

Figure 6-4 Measurement of the Stokes parameters using a rotating quarter-wave retarder

and a linear polarizer.
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The Stokes vector of the beam emerging from the rotating quarter-wave retarder–
horizontal polarizer combination is then found from (6-34) and (5-13) to be

S0
¼

1

2
ðS0 þ S1 cos

2 2� þ S2 sin 2� cos 2� � S3 sin 2�Þ

1
1
0
0

0
BB@

1
CCA ð6-35Þ

The intensity S0
0 ¼ Ið�Þ is

Ið�Þ ¼
1

2
ðS0 þ S1 cos

2 2� þ S2 sin 2� cos 2� � S3 sin 2�Þ ð6-36Þ

Equation (6-36) can be rewritten by using the trigonometric half-angle formulas:

Ið�Þ ¼
1

2
S0 þ

S1

2

� �
þ
S1

2
cos 4� þ

S2

2
sin 4� � S3 sin 2�

� �
ð6-37Þ

Replacing � with !t, (6-37) can be written as

Ið!tÞ ¼
1

2
½A� B sin 2!tþ C cos 4!tþD sin 4!t� ð6-38aÞ

where

A ¼ S0 þ
S1

2
ð6-38bÞ

B ¼ S3 ð6-38cÞ

C ¼
S1

2
ð6-38dÞ

D ¼
S2

2
ð6-38eÞ

Equation (6-38) describes a truncated Fourier series. It shows that we
have a d.c. term (A), a double frequency term (B), and two quadruple frequency
terms (C and D). The coefficients are found by carrying out a Fourier analysis of
(6-38). We easily find that ð� ¼ !tÞ

A ¼
1

�

Z 2�

0

Ið�Þ d� ð6-39aÞ

B ¼
2

�

Z 2�

0

Ið�Þ sin 2� d� ð6-39bÞ

C ¼
2

�

Z 2�

0

Ið�Þ cos 4� d� ð6-39cÞ

D ¼
2

�

Z 2�

0

Ið�Þ sin 4� d� ð6-39dÞ
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Solving (6-38) for the Stokes parameters gives

S0 ¼ A� C ð6-40aÞ

S1 ¼ 2C ð6-40bÞ

S2 ¼ 2D ð6-40cÞ

S3 ¼ B ð6-40dÞ

In practice, the quarter-wave retarder is placed in a fixed mount which can be
rotated and driven by a stepper motor through N steps. Equation (6-38a) then
becomes, with !t ¼ n�j (�j is the step size),

Inð�jÞ ¼
1

2
½A� B sin 2n�j þ C cos 4n�j þD sin 4n�j� ð6-41aÞ

and

A ¼
2

N

XN
n¼1

Iðn�jÞ ð6-41bÞ

B ¼
4

N

XN
n¼1

Iðn�jÞ sin 2n�j ð6-41cÞ

C ¼
4

N

XN
n¼1

Iðn�jÞ cos 4n�j ð6-41dÞ

D ¼
4

N

XN
n¼1

Iðn�jÞ sin 4n�j ð6-41eÞ

As an example of (6-41), consider the rotation of a quarter-wave retarder
that makes a complete rotation in 16 steps, so N¼ 16. Then the step size is
�j ¼ 2�=N ¼ 2�=16 ¼ �=8. Equation (6-41) is then written as

A ¼
1

8

X16
n¼1

I n
�

8

� �
ð6-42aÞ

B ¼
1

4

X16
n¼1

I n
�

8

� �
sin n

�

4

� �
ð6-42bÞ

C ¼
1

4

X16
n¼1

I n
�

8

� �
cos n

�

2

� �
ð6-42cÞ

D ¼
1

4

X16
n¼1

I n
�

8

� �
sin n

�

2

� �
ð6-42dÞ

Thus, the data array consists of 16 measured intensities I1 through I16. We
have written each intensity value as Iðn�=8Þ to indicate that the intensity is measured
at intervals of �=8; we observe that when n ¼ 16 we have Ið2�Þ as expected.
At each step the intensity is stored to form (6-42a), multiplied by sinðn�=4Þ to
form B, cosðn�=2Þ to form C, and sinðn�=2Þ to form D. The sums are then performed
according to (6-42), and we obtain A, B, C, and D. The Stokes parameters are then
found from (6-40) using these values.
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6.6 THE METHOD OF KENT AND LAWSON

In Section 6.4 we saw that the null-intensity condition could be used to determine
the Stokes parameters and, hence, the polarization state of an optical beam. The
null-intensity method remained the only practical way to measure the polarization
state of an optical beam before the advent of photodetectors. It is fortunate that the
eye is so sensitive to light and can easily detect its presence or absence. Had this not
been the case, the progress made in polarized light would surely not have been as
rapid as it was. One can obviously use a photodetector as well as the eye, using
the null-intensity method described in Section 6.4. However, the existence of
photodetectors allows one to consider an extremely interesting and novel method
for determining the polarization state of an optical beam.

In 1937, C. V. Kent and J. Lawson proposed a new method for measuring
the ellipticity and orientation of a polarized optical beam using a Babinet–Soleil
compensator and a photomultiplier tube (PMT). They noted that it was obvious
that a photomultiplier could simply replace the human eye as a detector, and used to
determine the null condition. However, Kent and Lawson went beyond this and
made several important observations. The first was that the use of the PMT could
obviously overcome the problem of eye fatigue. They also noted that, in terms of
sensitivity (at least in 1937) for weak illuminations, determining the null intensity
was as difficult with a PMT as with the human eye. They observed that the PMT
really operated best with full illumination. In fact, because the incident light at a
particular wavelength is usually much greater than the laboratory illumination the
measurement could be done with the room lights on. They now noted that this
property of the PMT could be exploited fully if the incident optical beam whose
polarization was to be determined was transformed not to linearly polarized light but
to circularly polarized light. By then analyzing the beam with a rotating linear
polarizer, a constant intensity would be obtained when the condition of circularly
polarized light was obtained or, as they said, ‘‘no modulation.’’ From this condition
of ‘‘no modulation’’ the ellipticity and orientation angles of the incident beam could
then be determined. Interestingly, they detected the circularly polarized light by
converting the optical signal to an audio signal and then used a headphone set to
determine the constant-intensity condition.

It is worthwhile to study this method because it enables us to see how photo-
detectors provide an alternative method for measuring the Stokes parameters
and how they can be used to their optimum, that is, in the measurement of polarized
light at high intensities. The measurement is described by the experimental
configuration in Fig. 6-5. The Stokes vector of the incident elliptically polarized
beam to be measured is represented by

S ¼

S0

S1

S2

S3

0
BBBBB@

1
CCCCCA ð6-1Þ

The primary use of a Babinet–Soleil compensator is to create an arbitrary
state of elliptically polarized light. This is accomplished by changing the phase
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and orientation of the incident beam. We recall from Section 5.5 that the Mueller
matrix for a rotated retarder is

MCð�,2�Þ ¼

1 0 0 0

0 cos2 2�þ cos�sin2 2� ð1� cos�Þsin2� cos2� �sin�sin2�

0 ð1� cos�Þsin2� cos2� sin2 2�þ cos�cos2 2� sin�cos2�

0 sin�sin2� �sin�cos2� cos�

0
BBBBB@

1
CCCCCA

ð6-43Þ

where � is the angle that the fast axis makes with the horizontal x axis and � is the
phase shift.

The beam emerging from the Babinet–Soleil compensator is then found by
multiplying (6-1) by (6-43):

S0
¼

S0

S1ðcos
2 2� þ cos� sin2 2�Þ þS2ð1� cos�Þ sin2� cos2� �S3 sin� sin2�

S1ð1� cos�Þ sin2� cos2� þS2ðsin
2 2� þ cos� cos2 2�Þ þS3 sin� cos2�

S1 sin� sin2� �S2 sin� cos2� þS3 cos�

0
BBBBB@

1
CCCCCA

ð6-44Þ

For the moment let us assume that we have elliptically polarized light incident
on a rotating ideal linear polarizer. The Stokes vector of the beam incident on the
rotating linear polarizer is represented by

S ¼

1

cos 2

sin 2 cos �

sin 2 sin �

0
BBBBB@

1
CCCCCA ð4-39Þ

Figure 6-5 Measurement of the ellipticity and orientation of an elliptically polarized beam

using a compensator and a photodetector.
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The Mueller matrix of the rotating linear polarizer is

M ¼
1

2

1 cos 2� sin 2� 0

cos 2� cos2 2� sin 2� cos 2� 0

sin 2� sin 2� cos 2� sin2 2� 0

0 0 0 0

0
BBB@

1
CCCA ð6-4Þ

The Stokes vector of the beam emerging from the rotating analyzer is found by
multiplying (6-1) by (6-4)

S0
¼

1

2
½1þ cos 2 cos 2� þ sin 2 cos � sin 2��

1

cos 2�

sin 2�

0

0
BBBB@

1
CCCCA ð6-45Þ

Thus, as the analyzer is rotated we see that the intensity is modulated. If the
intensity is to be independent of the rotation angle �, then we must have

cos 2 ¼ 0 ð6-46aÞ

sin 2 cos � ¼ 0 ð6-46bÞ

We immediately see that (6-46a) and (6-46b) are satisfied if 2 ¼ 90� (or 270�) and
� ¼ 908. Substituting these values in (4-39), we have

S ¼

1

0

0

1

0
BBB@

1
CCCA ð6-47Þ

which is the Stokes vector for right circularly polarized light.
In order to obtain circularly polarized light, the Stokes parameters in (6-44)

must satisfy the conditions:

S0
0 ¼ S0 ð6-48aÞ

S0
1 ¼ S1ðcos

2 2� þ cos� sin2 2�Þ þ S2ð1� cos�Þ sin 2� cos 2�

� S3 sin� sin 2� ¼ 0 ð6-48bÞ

S0
2 ¼ S1ð1� cos�Þ sin 2� cos 2� þ S2ðsin

2 2� þ cos� cos2 2�Þ

þ S3ðsin� cos 2�Þ ¼ 0 ð6-48cÞ

S0
3 ¼ S1ðsin� sin 2�Þ � S2ðsin� cos 2�Þ þ S3 cos� ð6-48dÞ

We must now solve these equations for S1, S2, and S3 in terms of � and � (S0 is
unaffected by the wave plate). While it is straightforward to solve (6-48), the algebra
is surprisingly tedious and complicated. Fortunately, the problem can be solved
in another way, because we know the transformation equation for describing a
rotated compensator.
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To solve this problem, we take the following approach. According to Fig. 6-5,
the Stokes vector of the beam S0 emerging from the compensator is related to the
Stokes vector of the incident beam S by the equation:

S0
¼ MCð2�ÞS ð6-49Þ

where MC(2�) is given by (6-43) above. We recall that MC(2�) is the rotated Mueller
matrix for a retarder, so (6-49) can also be written as

S0
¼ ½Mð�2�ÞMCMð2�Þ�S ð6-50aÞ

where

Mð2�Þ ¼

1 0 0 0
0 cos 2� sin 2� 0
0 � sin 2� cos 2� 0
0 0 0 1

0
BB@

1
CCA ð6-50bÞ

and

MC ¼

1 0 0 0
0 1 0 0
0 0 cos� sin�
0 0 � sin� cos�

0
BB@

1
CCA ð6-50cÞ

We now demand that our resultant Stokes vector represents right circularly
polarized light and write (6-50a) as

S0
¼ Mð�2�ÞMCMð2�Þ

S0

S1

S2

S3

0
BB@

1
CCA ¼

1
0
0
1

0
BB@

1
CCA ð6-51Þ

While we could immediately invert (6-51) to find the Stokes vector of the
incident beam, it is simplest to find S in steps. Multiplying both sides of (6-51) by
M(2�), we have

MCMð2�Þ

S0

S1

S2

S3

0
BB@

1
CCA ¼ Mð2�Þ

1
0
0
1

0
BB@

1
CCA ¼

1
0
0
1

0
BB@

1
CCA ð6-52Þ

Next, we multiply (6-52) by M�1
C to find

Mð2�Þ

S0

S1

S2

S3

0
BB@

1
CCA ¼ M�1

C

1
0
0
1

0
BB@

1
CCA ¼

1
0

� sin�
cos�

0
BB@

1
CCA ð6-53Þ
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Finally, (6-53) is multiplied by M(�2�), and we have

S0

S1

S2

S3

0
BB@

1
CCA ¼ Mð�2�Þ

1
0

� sin�
cos �

0
BB@

1
CCA ¼

1
� sin 2� sin�
cos 2� sin�

cos�

0
BB@

1
CCA ð6-54Þ

We can check to see if (6-54) is correct. We know that if � ¼ 0�, that is, the retarder is
not present, then the only way S0 can be right circularly polarized is if the incident
beam S is right circularly polarized. Substituting � ¼ 0� into (6-54), we find

S ¼

1
0
0
1

0
BB@

1
CCA ð6-55Þ

which is the Stokes vector for right circularly polarized light.
The numerical value of the Stokes parameters can be determined directly

from (6-54). However, we can also express the Stokes parameters in terms of  and
� in (4-39) or in terms of the orientation and ellipticity angles  and � (Section 4-3).
Thus, we can equate (4-39) to (6-54) and write

S0

S1

S2

S3

0
BBB@

1
CCCA ¼

1

cos 2

sin 2 cos �

sin 2 sin �

0
BBB@

1
CCCA ¼

1

� sin 2� sin�

cos 2� sin�

cos�

0
BBB@

1
CCCA ð6-56Þ

or, in terms of the orientation and ellipticity angles,

S0

S1

S2

S3

0
BBB@

1
CCCA ¼

1

cos 2� cos 2 

cos 2� sin 2 

sin 2�

0
BBB@

1
CCCA ¼

1

� sin 2� sin�

cos 2� sin�

cos�

0
BBB@

1
CCCA ð6-57Þ

We now solve for S in terms of the measured values of � and �. Let us first
consider (6-56) and equate the matrix elements:

cos 2 ¼ � sin 2� sin� ð6-58aÞ

sin 2 cos � ¼ cos 2� sin� ð6-58bÞ

sin 2 sin � ¼ � cos� ð6-58cÞ

In (6-58) we have written � to include left circularly polarized light. We divide
(6-58b) by (6-58c) and find

cot � ¼ � cos 2� tan � ð6-59aÞ

Similarly, we divide (6-58b) by (6-58a) and find

cos � ¼ � cot 2� cot 2 ð6-59bÞ
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We can group the results by renumbering (6-58a) and (6-59) and write

cos 2 ¼ � sin 2� sin� ð6-60aÞ

cot � ¼ � cos 2� tan � ð6-60bÞ

cos � ¼ � cot 2� cot 2 ð6-60cÞ

Equations (6-60) are the equations of Kent and Lawson.
Thus, by measuring � and �, the angular rotation and phase shift of the

Babinet–Soleil compensator, respectively, we can determine the azimuth  and
phase � of the incident beam. We also pointed out that we can use � and � to
determine the ellipticity � and orientation  of the incident beam from (6-57).
Equating terms in (6-57) we have

cos 2� cos 2 ¼ � sin 2� sin� ð6-61aÞ

cos 2� sin 2 ¼ cos 2� sin� ð6-61bÞ

sin 2� ¼ � cos � ð6-61cÞ

Dividing (6-61b) by (6-61a), we find

tan 2 ¼ � cot 2� ð6-62Þ

Squaring (6-61a) and (6-61b), adding, and taking the square root gives

cos 2� ¼ sin� ð6-63Þ

Dividing (6-61c) by (6-63) then gives

tan 2� ¼ � cot� ð6-64Þ

We renumber (6-62) and (6-63) as the pair:

tan 2 ¼ � cot 2� ð6-65aÞ

tan 2� ¼ � cot� ð6-65bÞ

We can rewrite (6-65a) and (6-65b) as

tan 2 ¼ � tanð90� � 2�Þ ð6-66aÞ

tan 2� ¼ � tanð90� � �Þ ð6-66bÞ

so

 ¼ 45� � � ð6-67aÞ

� ¼ 45� �
�

2
ð6-67bÞ

We can check (6-67a) and (6-67b). We know that a linear þ45� polarized beam of
light is transformed to right circularly polarized light if we send it through a quarter-
wave retarder. In terms of the incident beam,  ¼ 45� and � ¼ 0�. Substituting these
values in (6-67a) and (6-67b), respectively, we find that � ¼ 0� and � ¼ 90� for the
retarder. This is exactly what we would expect using a quarter-wave retarder with its
fast axis in the x direction.

While nulling techniques for determining the elliptical parameters are very
common, we see that the method of Kent and Lawson provides a very interesting
alternative. We emphasize that nulling techniques were developed long before the
appearance of photodetectors. Nulling techniques continue to be used because they

Copyright © 2003 by Marcel Dekker, Inc. All Rights Reserved.



are extremely sensitive and require, in principle, only an analyzer. Nevertheless, the
method of Kent and Lawson has a number of advantages, foremost of which is that
it can be used in ambient light and with high optical intensities. The method of Kent
and Lawson requires the use of a Babinet–Soleil compensator and a rotatable polar-
izer. However, the novelty and potential of the method and its full exploitation of the
quantitative nature of photodetectors should not be overlooked.

6.7 SIMPLE TESTS TO DETERMINE THE STATE OF POLARIZATION
OF AN OPTICAL BEAM

In the laboratory one often has to determine if an optical beam is unpolarized,
partially polarized, or completely polarized. If it is completely polarized, then
we must determine if it is elliptically polarized or linearly or circularly polarized.
In this section we consider this problem. Stokes’ method for determining the
Stokes parameters is a very simple and direct way of carrying out these tests
(Section 4.4).

We recall that the polarization state can be measured using a linear polarizer
and a quarter-wave retarder. If a polarizer made of calcite is used, then it transmits
satisfactorily from 0.2 mm to 2.0 mm, more than adequate for visual work and
into the near infrared. Quarter-wave retarders, on the other hand, are designed to
transmit at a single wavelength, e.g., He–Ne laser radiation at 0.6328 mm. Therefore,
the quarter-wave retarder should be matched to the wavelength of the polarizing
radiation. In Fig. 6-6 we show the experimental configuration for determining
the state of polarization. We emphasize that we are not trying to determine the
Stokes parameters quantitatively but merely determining the polarization state of
the light.

We recall from Section 6.2 that the intensity Ið�,�Þ of the beam emerging
from the retarder–polarizer combination shown in Fig. 6-6 is

Ið�,�Þ ¼
1

2
½S0 þ S1 cos 2� þ S2 cos� sin 2� þ S3 sin � sin 2�� ð6-5Þ

Figure 6-6 Experimental configuration to determine the state of polarization of an optical

beam.
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where � is the angle of rotation of the polarizer and � is the phase shift of
the retarder. In our tests we shall set � to 0� (no retarder in the optical train) or
90� (a quarter-wave retarder in the optical train). The respective intensities according
to (6-5) are then

Ið�, 0�Þ ¼
1

2
½S0 þ S1 cos 2� þ S2 sin 2�� ð6-68aÞ

Ið�, 90�Þ ¼
1

2
½S0 þ S1 cos 2� þ S3 sin 2�� ð6-68bÞ

The first test we wish to perform is to determine if the light is unpolarized or
completely polarized. In order to determine if it is unpolarized, the retarder is
removed ð� ¼ 0�Þ, so we use (6-68a). The polarizer is now rotated through 180�.
If the intensity remains constant throughout the rotation, then we must have

S1 ¼ S2 ¼ 0 and S0 6¼ 0 ð6-69Þ

If the intensity varies so (6-69) is not satisfied, then we know that we do not have
unpolarized light. If, however, the intensity remains constant, then we are still not
certain if we have unpolarized light because the parameter S3 may be present.
We must, therefore, test for its presence. The retarder is now reintroduced into the
optical train, and we use (6-68b):

Ið�, 90�Þ ¼
1

2
½S0 þ S1 cos 2� þ S3 sin 2�� ð6-68bÞ

The polarizer is now rotated. If the intensity remains constant, then

S1 ¼ S3 ¼ 0 and S0 6¼ 0 ð6-70Þ

Thus, from (6-69) and (6-70) we see that (6-5) becomes

Ið�,�Þ ¼
1

2
S0 ð6-71Þ

which is the condition for unpolarized light.
If neither (6-69) or (6-70) is satisfied, we then assume that the light is elliptically

polarized; the case of partially polarized light is excluded for the moment. Before
we test for elliptically polarized light, however, we test for linear or circular polar-
ization. In order to test for linearly polarized light, the retarder is removed from
the optical train and so the intensity is again given by (6-68a):

Ið�, 0�Þ ¼
1

2
½S0 þ S1 cos 2� þ S2 sin 2�� ð6-68aÞ

We recall that the Stokes vector for elliptically polarized light is

S ¼ I0

1

cos 2

sin 2 cos �

sin 2 sin �

0
BBB@

1
CCCA ð4-38Þ
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Substituting S1 and S2 in (4-38) into (6-68a) gives

Ið�, 0�Þ ¼
1

2
½1þ cos 2 cos 2� þ sin 2 cos � sin 2�� ð6-72Þ

The polarizer is again rotated. If we obtain a null intensity, then we know that we
have linearly polarized light because (6-68a) can only become a null if � ¼ 0� or 180�,
a condition for linearly polarized light. For this condition we can write (6-72) as

Ið�, 0�Þ ¼
1

2
½1þ cosð2� 2�Þ� ð6-73Þ

which can only be zero if the incident beam is linearly polarized light. However,
if we do not obtain a null intensity, we can have elliptically polarized light or
circularly polarized light. To test for these possibilities, the quarter-wave retarder
is reintroduced into the optical train so that the intensity is again given by (6-68b):

Ið�, 90�Þ ¼
1

2
½S0 þ S1 cos 2� þ S3 sin 2�� ð6-68bÞ

Now, if we have circularly polarized light, then S1 must be zero so (6-68b) will
become

Ið�, 90�Þ ¼
1

2
½S0 þ S3 sin 2�� ð6-74Þ

The polarizer is again rotated. If a null intensity is obtained, then we must
have circularly polarized light. If, on the other hand, a null intensity is not obtained,
then we must have a condition described by (6-68b), which is elliptically polarized
light.

To summarize, if a null intensity is not obtained with either the polarizer by
itself or with the combination of the polarizer and the quarter-wave retarder, then
we must have elliptically polarized light.

Thus, by using a polarizer–quarter-wave retarder combination, we can test for
the polarization states. The only state remaining is partially polarized light. If none
of these tests described above is successful, we then assume that the incident beam is
partially polarized.

To be completely confident of the tests, it is best to use a high-quality calcite
polarizer and a quartz quarter-wave retarder. It is, of course, possible to make these
tests with Polaroid and mica quarter-wave retarders. However, these materials
are not as good, in general, as calcite and quartz and there is less confidence in
the results. See Chapter 26 for information on these elements.

If we are certain that the light is elliptically polarized, then we can consider
(6-5) further. Equation (6-5) is

Ið�,�Þ ¼
1

2
½S0 þ S1 cos 2� þ S2 cos� sin 2� þ S3 sin � sin 2�� ð6-5Þ

We can express (6-5) as

Ið�,�Þ ¼
1

2
½S0 þ S1 cos 2� þ ðS2 cos �þ S3 sin�Þ sin 2�� ð6-75Þ
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or

Ið�,�Þ ¼ ½Aþ B cos 2� þ C sin 2�� ð6-76aÞ

where

A ¼
S0

2
ð6-76bÞ

B ¼
S1

2
ð6-76cÞ

C ¼
S2 cos�þ S3 sin�

2
ð6-76dÞ

For an elliptically polarized beam given by (4-38), I0 is normalized to 1, and we write

S ¼

1
cos 2

sin 2 cos �
sin 2 sin �

0
BB@

1
CCA ð4-39Þ

so from (6-76) we see that

A ¼
1

2
ð6-77aÞ

B ¼
cos 2

2
ð6-77bÞ

C ¼
cosð�� �Þ sin 2

2
ð6-77cÞ

The intensity (6-76a) can then be written as

I ¼
1

2
½1þ cos 2 cos 2� þ sin 2 cosð�� �Þ sin 2�� ð6-77dÞ

We now find the maximum and minimum intensities of (6-77d) by differentiating
(6-77d) with respect to � and setting dI(�)/d� ¼ 0. The angles where the maximum
and minimum intensities occur are then found to be

tan 2� ¼
C

B
¼

�C

�B
ð6-78Þ

Substituting (6-78) into (6-76a), the corresponding maximum and minimum
intensities are, respectively,

IðmaxÞ ¼ Aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ C2

p
ð6-79aÞ

IðminÞ ¼ A�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þ C2

p
ð6-79bÞ

From (6-69) we see that we can then write (6-79) as

Iðmax , minÞ ¼
1

2
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 2þ sin2 2 cos2ð�� �Þ

q� �
ð6-80Þ
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Let us now remove the retarder from the optical train so that � ¼ 0�; we then
have only a linear polarizer which can be rotated through �. Equation (6-80) then
reduces to

Iðmax ,minÞ ¼
1

2
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 2þ sin2 2 cos2 �

ph i
ð6-81Þ

For linearly polarized light � ¼ 0� or 180�, so (4-39) becomes

S ¼

1

cos 2

� sin 2

0

0
BBB@

1
CCCA ð6-82Þ

and (6-81) becomes

Iðmax ,minÞ ¼
1

2
½1� 1� ¼ 1, 0 ð6-83Þ

Thus, linearly polarized light always gives a maximum intensity of unity and a
minimum intensity of zero (null).

Next, if we have circularly polarized light, � ¼ 90� or 270� and  ¼ 45�, as is
readily shown by inspecting (4-39). For this condition (6-81) reduces to

Iðmax ,minÞ ¼
1

2
½1� 0� ¼

1

2
ð6-84Þ

so the intensity is always constant and reduced to 1/2. We also see that if we
have only the condition � ¼ 90� or 270�, then (4-39) becomes

S ¼

1
cos 2

0
� sin 2

0
BB@

1
CCA ð6-85Þ

which is the Stokes vector of an ellipse in a standard form, i.e., unrotated. The
corresponding intensity is, from (6-80),

Iðmax ,minÞ ¼
1

2
½1� cos 2� ð6-86Þ

Similarly, if  ¼ �45� and � is not equal to either 90� or 270�, then (4-39) becomes

S ¼

1
0

cos �
sin �

0
BB@

1
CCA ð6-87Þ

and (6-81) reduces to

Iðmax ,minÞ ¼
1

2
½1� cos �� ð6-88Þ

This final analysis confirms the earlier results given in the first part of this
chapter. We see that if we rotate a linear polarizer and we observe a
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null intensity at two angles over a single rotation, we have linearly polarized light;
if we observe a constant intensity, we have circularly polarized light; and if we
observe maximum and minimum (non-null) intensities, we have elliptically polarized
light.

In Figs. 6-7 and 6-8 we have plotted the intensity as a function of the rotation
angle of the analyzer. Specifically, in Fig. 6-7 we show the intensity for the condition
where the parameters of the incident beam described by (4-39) are  ¼ �/6 (30�)
and � ¼ �/3 (60�); the compensator is not in the wave train, so � ¼ 0.
According to (4-39), the Stokes vector is

S ¼

1

1=2ffiffiffi
3

p
=4

3=4

0
BBB@

1
CCCA ð6-89Þ

The intensity expected for (6-89) is seen from (6-77d) to be

Ið�Þ ¼
1

2
1þ

1

2
cos 2� þ

ffiffiffi
3

p

4
sin 2�

� �
ð6-90Þ

The plot of (6-90) is given in Fig. 6-7.
We see from (6-89) that the square root of the sum of the squares S1, S2,

and S3 is equal to unity as expected. Inspecting Fig. 6-8, we see that there is a
maximum intensity and a minimum intensity. However, because there is no null
intensity we know that the light is elliptically polarized, which agrees, of course,
with (6-89).

Figure 6-7 Intensity plot of an elliptically polarized beam for  ¼ �/6 and � ¼ �/3.
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In Fig. 6-8 we consider an elliptically polarized beam such that  ¼ �/4 and
we have arbitrary phase �. This beam is described by the Stokes vector given by
(6-87):

S ¼

1
0

cos �
sin �

0
BB@

1
CCA ð6-87Þ

The corresponding intensity for (6-87), according to (6-77d), is

I ¼
1

2
½1þ cos � sin 2�� ð6-91Þ

We now consider (6-87) for � ¼ 0, �/4, and �/2. The Stokes vectors correspond-
ing to these conditions are, respectively,

Sð0Þ ¼

1

0

1

0

0
BBB@

1
CCCA s

�

4

� �
¼

1

0
1ffiffiffi
2

p

1ffiffiffi
2

p

0
BBBBBB@

1
CCCCCCA

S
�

2

� �
¼

1

0

0

1

0
BBB@

1
CCCA ð6-92Þ

The Stokes vectors in (6-92) correspond to linear þ45� polarized light, elliptically
polarized light, and right circularly polarized light. Inspection of Fig. 6-8 shows
the corresponding plot for the intensities given by (6-91) for each of the

Figure 6-8 Plot of the intensity for a linearly polarized beam, an elliptically polarized beam,
and a circularly polarized beam.
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Stokes vectors in (6-92). The linearly polarized beam gives a null intensity, the
elliptically polarized beam gives maximum and minimum intensities, and the
circularly polarized beam yields a constant intensity of 0.5.
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7

The Measurement of the
Characteristics of Polarizing Elements

7.1 INTRODUCTION

In the previous chapter we described a number of methods for measuring and
characterizing polarized light in terms of the Stokes polarization parameters.
We now turn our attention to measuring the characteristics of the three major optical
polarizing elements, namely, the polarizer (diattenuator), retarder, and rotator.
For a polarizer it is necessary to measure the attenuation coefficients of the ortho-
gonal axes, for a retarder the relative phase shift, and for a rotator the angle of
rotation. It is of practical importance to make these measurements. Before proceed-
ing with any experiment in which polarizing elements are to be used, it is good
practice to determine if they are performing according to their specifications. This
characterization is also necessary because over time polarizing components change:
e.g., the optical coatings deteriorate, and in the case of Polaroid the material
becomes discolored. In addition, one finds that, in spite of one’s best laboratory
controls, quarter-wave and half-wave retarders, which operate at different wave-
lengths, become mixed up. Finally, the quality control of manufacturers of polariz-
ing components is not perfect, and imperfect components are sold.

The characteristics of all three types of polarizing elements can be determined
by using a pair of high-quality calcite polarizers that are placed in high-resolution
angular mounts; the polarizing element being tested is placed between these two
polarizers. A practical angular resolution is 0.1� (60 of arc) or less. High-quality
calcite polarizers and mounts are expensive, but in a laboratory where polarizing
components are used continually their cost is well justified.

7.2 MEASUREMENT OF ATTENUATION COEFFICIENTS OF
A POLARIZER (DIATTENUATOR)

A linear polarizer is characterized by its attenuation coefficients px and py along
its orthogonal x and y axes. We now describe the experimental procedure for
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measuring these coefficients. The measurement configuration is shown in Fig. 7-1.
In the experiment the polarizer to be tested is inserted between the two polarizers
as shown. The reason for using two polarizers is that the same configuration can also
be used to test retarders and rotators. Thus, we can have a single, permanent,
test configuration for measuring all three types of polarizing components.

The Mueller matrix of a polarizer (diattenuator) with its axes along the x
and y directions is

Mp ¼
1

2

p2x þ p2y p2x � p2y 0 0

p2x � p2y p2x þ p2y 0 0

0 0 2pxpy 0

0 0 0 2pxpy

0
BBBB@

1
CCCCA 0 	 px, y 	 1 ð7-1Þ

It is convenient to rewrite (7-1) as

Mp ¼

A B 0 0
B A 0 0
0 0 C 0
0 0 0 C

0
BB@

1
CCA ð7-2aÞ

where

A ¼
1

2
ðp2x þ p2yÞ ð7-2bÞ

B ¼
1

2
ðp2x � p2yÞ ð7-2cÞ

C ¼
1

2
ð2pxpyÞ ð7-2dÞ

In practice, while we are interested only in determining p2x and p2y, it is useful
to measure pxpy as well, because a polarizer satisfies the relation:

A2
¼ B2

þ C2
ð7-3Þ

Figure 7-1 Experimental configuration to measure the attenuation coefficients px and py
of a polarizer (diattenuator).
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as the reader can easily show from (7-2). Equation (7-3) serves as a useful check
on the measurements. The optical source emits a beam characterized by a Stokes
vector

S ¼

S0

S1

S2

S3

0
BB@

1
CCA ð7-4Þ

In the measurement the first polarizer, which is often called the generating
polarizer, is set to þ 45�. The Stokes vector of the beam emerging from the
generating polarizer is then

S ¼ I0

1
0
1
0

0
BB@

1
CCA ð7-5Þ

where I0 ¼ (1/2)(S0 þ S2) is the intensity of the emerging beam. The Stokes vector
of the beam emerging from the test polarizer is found to be, after multiplying (7-2a)
and (7-5),

S0
¼ I0

A
B
C
0

0
BB@

1
CCA ð7-6Þ

The polarizer before the optical detector is often called the analyzing polarizer
or simply the analyzer. The analyzer is mounted so that it can be rotated to an
angle . The Mueller matrix of the rotated analyzer is (see Chap. 5)

MA ¼
1

2

1 cos 2 sin 2 0

cos 2 cos2 2 sin 2 cos 2 0

sin 2 sin 2 cos 2 sin2 2 0

0 0 0 0

0
BBB@

1
CCCA ð7-7Þ

The Stokes vector of the beam incident on the optical detector is then seen
from multiplying (7-6) by (7-7) to be

S0
¼

I0
2
ðAþ B cos 2þ C sin 2Þ

1
cos 2
sin 2
0

0
BB@

1
CCA ð7-8Þ

and the intensity of the beam is

IðÞ ¼
I0
2
ðAþ B cos 2þ C sin 2Þ ð7-9Þ
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First method:

By rotating the analyzer to  ¼ 0�, 45�, and 90�, (7-9) yields the following equations:

Ið0�Þ ¼
I0
2
ðAþ BÞ ð7-10aÞ

Ið45�Þ ¼
I0
2
ðAþ CÞ ð7-10bÞ

Ið90�Þ ¼
I0
2
ðA� BÞ ð7-10cÞ

Solving for A, B, and C, we then find that

A ¼
Ið0�Þ þ Ið90�Þ

I0
ð7-11aÞ

B ¼
Ið0�Þ � Ið90�Þ

I0
ð7-11bÞ

C ¼
2Ið45�Þ � Ið0�Þ � Ið90�Þ

I0
ð7-11cÞ

which are the desired relations. From (7-2) we also see that

p2x ¼ Aþ B ð7-12aÞ

p2y ¼ A� B ð7-12bÞ

so that we can write (7-10a) and (7-10c) as

p2x ¼
2Ið0�Þ

I0
ð7-13aÞ

p2y ¼
2Ið90�Þ

I0
ð7-13bÞ

Thus, it is only necessary to measure I(0�) and I(90�), the intensities in the x and y
directions, respectively, to obtain p2x and p2y. The intensity I0 of the beam emerging
from the generating polarizer is measured without the polarizer under test and
the analyzer in the optical train.

It is not necessary to measure C. Nevertheless, experience shows that
the additional measurement of I(45�) enables one to use (7-3) as a check on the
measurements.

In order to determine p2x and p2y in (7-13) it is necessary to know I0. However,
a relative measurement of p2y=p

2
x is just as useful. We divide (7-12b) by (7-12a) and

we obtain

p2y

p2x
¼

Ið90�Þ

Ið0�Þ
ð7-14Þ

We see that this type of measurement does not require a knowledge of I0. Thus,
measuring I(0�) and I(90�) and forming the ratio yields the relative value of the
absorption coefficients of the polarizer.
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In order to obtain A, B, and C and then p2x and p2y in the method described
above, an optical detector is required. However, the magnitude of p2x and p2y can
also be obtained using a null-intensity method. To show this we write (7-3) again

A2
¼ B2

þ C2
ð7-3Þ

This suggests that we can write

B ¼ A cos � ð7-15aÞ

C ¼ A sin � ð7-15bÞ

Substituting (7-15a) and (7-15b) into (7-9), we then have

IðÞ ¼
I0A

2
½1þ cosð2� �Þ� ð7-16aÞ

and

tan � ¼
C

B
ð7-16bÞ

where (7-16b) has been obtained by dividing (7-15a) by (7-15b).
We see that I() leads to a null intensity at

null ¼ 90� þ
�

2
ð7-17Þ

where null is the angle at which the null is observed. Substituting (7-17) into (7-16b)
then yields

C

B
¼ tan 2null ð7-18Þ

Thus by measuring � from the null-intensity condition, we can find B/A and C/A
from (7-15a) and (7-15b), respectively. For convenience we set A ¼ 1. Then we
see from (7-12) that

p2x ¼ 1þ B ð7-19aÞ

p2y ¼ 1� B ð7-19bÞ

The ratio C/B in (7-18) can also be used to determine the ratio py/px, which
we can then square to form p2y=p

2
x. From (7-2)

B ¼
1

2
ðp2x � p2yÞ ð7-2cÞ

C ¼
1

2
ð2pxpyÞ ð7-2dÞ

Substituting (7-2b) and (7-2c) into (7-18) gives

tan 2null ¼
2pxpy

p2x � p2y
ð7-20Þ
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The form of (7-20) suggests that we set

px ¼ p cos� py ¼ p sin � ð7-21aÞ

so

tan 2null ¼
sin 2�

cos 2�
¼ tan 2� ð7-21bÞ

and

� ¼ null ð7-21cÞ

This leads immediately to

py

px
¼ tan� ¼ tanðnullÞ ð7-22aÞ

or, using (7-17)

p2y

p2x
¼ cot2

�

2

� �
ð7-22bÞ

Thus, the shift in the intensity, (7-16a) enables us to determine p2y=p
2
x directly from �.

We always assume that p2y=p
2
x 	 1. A neutral density filter is described by p2x ¼ p2y

so the range on p2y=p
2
x limits � to

90� 	 � 	 180� ð7-22cÞ

For p2y=p
2
x ¼ 0, an ideal polarizer, � ¼ 180�, whereas for p2y=p

2
x ¼ 1, a neutral density

filter � ¼ 90� as shown by (7-22b). We see that the closer the value of � is to
180�, the better is the polarizer. As an example, for commercial Polaroid HN22 at
0.550 mm p2y=p

2
x ¼ 2� 10�6=0:48 ¼ 4:2� 10�6 so from (7-22b) we see that � ¼

179.77� and null ¼ 179.88�, respectively; the nearness of � to 180� shows that it is
an excellent polarizing material.

Second method:

The parameters A, B, and C can also be obtained by Fourier-analyzing (7-9),
assuming that the analyzing polarizer can be continuously rotated over a half or
full cycle. Recall that Eq. (7-9) is

IðÞ ¼
I0
2
ðAþ B cos 2þ C sin 2Þ ð7-9Þ

From the point of view of Fourier analysis A describes a d.c. term, and B and C
describe second-harmonic terms. It is only necessary to integrate over half a cycle,
that is, from 0� to �, in order to determine A, B, and C. We easily find that

A ¼
2

�I0

Z �

0

IðÞ d ð7-23aÞ

B ¼
4

�I0

Z �

0

IðÞ cos 2 d ð7-23bÞ

C ¼
4

�I0

Z �

0

IðÞ sin 2 d ð7-23cÞ
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Throughout this analysis we have assumed that the axes of the polarizer
being measured lie along the x and y directions. If this is not the case, then the
polarizer under test should be rotated to its x and y axes in order to make
the measurement. The simplest way to determine rotation angle � is to remove the
polarizer under test and rotate the generating polarizer to 0� and the analyzing
polarizer to 90�.

Third method:

Finally, another method to determine A, B, and C is to place the test polarizer in
a rotatable mount between polarizers in which the axes of both are in the y
direction. The test polarizer is then rotated until a minimum intensity is observed
from which A, B, and C can be found. The Stokes vector emerging from the
y generating polarizer is

S ¼
I0
2

1

�1

0

0

0
BBBBB@

1
CCCCCA ð7-24Þ

The Mueller matrix of the rotated test polarizer (7-2a) is

M ¼

A B cos 2� B sin 2� 0

B cos 2� A cos2 2� þ C sin2 2� ðA� CÞ sin 2� cos 2� 0

B sin 2� ðA� CÞ sin 2� cos 2� A sin2 2� þ C cos2 2� 0

0 0 0 0

0
BBBBB@

1
CCCCCA ð7-25Þ

The intensity of the beam emerging from the y analyzing polarizer is

Ið�Þ ¼
I0
4
½ðAþ CÞ � 2B cos 2� þ ðA� CÞ cos2 2�� ð7-26Þ

Equation (7-26) can be solved for its maximum and minimum values by differentiat-
ing I(�) with respect to � and setting dI(�)/d� ¼ 0. We then find

sin 2�½B� ðA� CÞ cos 2�� ¼ 0 ð7-27Þ

The solutions of (7-27) are

sin 2� ¼ 0 ð7-28aÞ

and

cos 2� ¼
B

A� C
ð7-28bÞ
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For (7-28a) we have � ¼ 0� and 90�. The corresponding values of the intensities
are then, from (7-26)

Ið0�Þ ¼
I0
2
½A� B� ð7-29aÞ

Ið90�Þ ¼
I0
2
½Aþ B� ð7-29bÞ

The second solution (7-28b), on substitution into (7-26), leads to I(�) ¼ 0. Thus,
the minimum intensity is given by (7-29a) and the maximum intensity by (7-29b).
Because both the generating and analyzing polarizers are in the y direction,
this is exactly what one would expect. We also note in passing that at � ¼ 45�,
(7-26) reduces to

Ið45�Þ ¼
I0
4
½Aþ C� ð7-29cÞ

We can again divide (7-29) through by I0 and then solve (7-29) for A, B, and C.
We see that several methods can be used to determine the absorption

coefficients of the orthogonal axes of a polarizer. In the first method we generate
a linear þ45� polarized beam and then rotate the analyzer to obtain A, B, and C
of the polarizer being tested. This method requires a quantitative optical detector.
However, if an optical detector is not available, it is still possible to determine A, B,
and C by using the null-intensity method; rotating the analyzer until a null is
observed leads to A, B, and C. On the other hand, if the analyzer can be mounted
in a rotatable mount, which can be stepped (electronically), then a Fourier analysis
of the signal can be made and we can again find A, B, and C. Finally, if the
transmission axes of the generating and analyzing polarizers are parallel to one
another, conveniently chosen to be in the y direction, and the test polarizer is
rotated, then we can also determine A, B, and C by rotating the test polarizer
to 0�, 45�, and 90�.

7.3 MEASUREMENT OF PHASE SHIFT OF A RETARDER

There are numerous occasions when it is important to know the phase shift of
a retarder. The most common types of retarders are quarter-wave and half-wave
retarders. These two types are most often used to create circularly polarized light
and to rotate or reverse the polarization ellipse, respectively.

Two methods can be used for measuring the phase shift using two linear
polarizers following the experimental configuration given in the previous section.

First method:

In the first method a retarder is placed between the two linear polarizers mounted in
the ‘‘crossed’’ position. Let us set the transmission axes of the first and second
polarizers to be in the x and y directions, respectively. By rotating the retarder,
the direction (angle) of the fast axis is rotated and, as we shall soon see, the phase
can be found. The second method is very similar to the first except that the fast axis
of the retarder is rotated to 45�. In this position the phase can also be found. We now
consider both methods.
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For the first method we refer to Fig. 7-2. It is understood that the correct
wavelength must be used; that is, if the retarder is specified for, say 6328 Å,
then the optical source should emit this wavelength. In the visible domain calcite
polarizers are, as usual, best. However, high-quality Polaroid is also satisfactory, but
its optical bandpass is much more restricted. In Fig. 7-2 the transmission axes of the
polarizers (or diattenuators) are in the x (horizontal) and y (vertical) directions,
respectively. The Mueller matrix for the retarder rotated through an angle � is

Mð�, �Þ

1 0 0 0

0 cos2 2� þ cos� sin2 2� ð1� cos�Þ sin 2� cos 2� � sin� sin 2�

0 ð1� cos�Þ sin 2� cos 2� sin2 2� þ cos� cos2 2� sin� cos 2�

0 sin� sin 2� � sin� cos 2� cos�

0
BBB@

1
CCCA

ð7-30Þ

where the phase shift � is to be determined. The Mueller matrix for an ideal linear
polarizer is

Mx, y ¼
1

2

1 �1 0 0

�1 1 0 0

0 0 0 0

0 0 0 0

0
BBB@

1
CCCA ð7-31Þ

where the plus sign corresponds to a horizontal polarizer and the minus sign to a
vertical polarizer. The Mueller matrix for Fig. 7-2 is then

M ¼ MyMð�, �ÞMx ð7-32Þ

Carrying out the matrix multiplication in (7-32) using (7-30) and (7-31) then yields

M ¼
ð1� cos �Þð1� cos 4�Þ

8

1 1 0 0

�1 �1 0 0

0 0 0 0

0 0 0 0

0
BBB@

1
CCCA ð7-33Þ

Figure 7-2 Closed polarizer method to measure the phase of a retarder.
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Equation (7-33) shows that the polarizing train behaves as a pseudopolarizer. The
intensity of the optical beam on the detector is then

Ið�,�Þ ¼ I0
ð1� cos�Þð1� cos 4�Þ

4
ð7-34Þ

where I0 is the intensity of the optical source.
Equation (7-34) immediately allows us to determine the direction of the

fast axis of the retarder. When the retarder is inserted between the crossed polarizers,
the intensity on the detector should be zero, according to (7-34), at � ¼ 0�. If it
is not zero, the retarder should be rotated until a null intensity is observed. After this
angle has been found, the retarder is rotated 45� according to (7-34) to obtain the
maximum intensity. In order to determine �, it is necessary to know I0. The easiest
way to do this is to rotate the x polarizer (the first polarizer) to the y position and
remove the retarder; both linear polarizers are then in the y direction. The intensity
ID on the detector is then (let us assume that unpolarized light enters the first
polarizer)

ID ¼
I0
2

ð7-35Þ

so (7-34) can be written as

Ið�,�Þ ¼ ID
ð1� cos�Þð1� cos 4�Þ

2
ð7-36Þ

The retarder is now reinserted into the polarizing train. The maximum intensity,
Ið�,�Þ, takes place when the retarder is rotated to � ¼ 45�. At this angle (7-36) is
solved for �, and we have

� ¼ cos�1 1�
Ið45�,�Þ

ID

� �
ð7-37Þ

The disadvantage of using the crossed-polarizer method is that it requires that
we know the intensity of the beam, I0, entering the polarizing train. This problem
can be overcome by another method, namely, rotating the analyzing polarizer and
fixing the retarder at 45�. We now consider this second method.

Second method:

The experimental configuration is identical to the first method except that the
analyzer can be rotated through an angle . The Stokes vector of the beam emerging
from the generating polarizer is (again let us assume that unpolarized light enters the
generating polarizer)

S ¼
I0
2

1
1
0
0

0
BB@

1
CCA ð7-38Þ
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Multiplication of (7-38) by (7-30) yields

S0
¼

I0
2

1

cos2 2� þ cos� sin2 2�

ð1� cos�Þ sin 2� cos 2�

sin� sin 2�

0
BBBB@

1
CCCCA ð7-39Þ

We assume that the fast axis of the retarder is at � ¼ 0�. If it is not, the
retarder should be adjusted to � ¼ 0� by using the crossed-polarizer method
described in the first method; we note that at � ¼ 0�, (7-39) reduces to

S0
¼

I0
2

1

1

0

0

0
BBBB@

1
CCCCA ð7-40Þ

so that the analyzing polarizer should give a null intensity when it is in the y
direction. Assuming that the retarder’s fast axis is now properly adjusted, we
rotate the retarder counterclockwise to � ¼ 45�. Then (7-39) reduces to

S0
¼

I0
2

1

cos�

0

sin�

0
BBBB@

1
CCCCA ð7-41Þ

This is a Stokes vector for elliptically polarized light. The conditions � ¼ 90�

and 180� correspond to right circularly polarized and linear vertically polarized
light, respectively. We note that the linear vertically polarized state arises because
for � ¼ 180� the retarder behaves as a pseudorotator. The Mueller matrix of the
analyzing polarizer is

Mð�Þ ¼
1

2

1 cos 2 sin 2 0

cos 2 cos2 2 sin 2 cos 2 0

sin 2 sin 2 cos 2 sin2 2 0

0 0 0 0

0
BBBB@

1
CCCCA ð7-42Þ

The Stokes vector of the beam emerging from the analyzer is then

S ¼
I0
4
ð1þ cos� cos 2Þ

1

cos 2

sin 2

0

0
BBBB@

1
CCCCA ð7-43Þ

so the intensity is

Ið,�Þ ¼
I0
4
ð1þ cos� cos 2Þ ð7-44Þ
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In order to find �, (7-44) is evaluated at  ¼ 0� and 90�, and

Ið0�,�Þ ¼
I0
4
ð1þ cos�Þ ð7-45aÞ

Ið90�,�Þ ¼
I0
4
ð1� cos�Þ ð7-45bÞ

Equation (7-45a) is divided by (7-45b) and solved for cos�:

cos� ¼
Ið0�,�Þ � Ið90�,�Þ

Ið0�,�Þ þ Ið90�,�Þ
ð7-46Þ

We note that in this method the source intensity need not be known.
We can also determine the direction of the fast axis of the retarder in a

‘‘dynamic’’ fashion. The intensity of the beam emerging from the analyzer when it
is in the y position is (see (7-39) and (7-42))

Iy ¼
I0
4
½1� ðcos2 2� þ cos� sin2 2�Þ� ð7-47aÞ

where � is the angle of the fast axis measured from the horizontal x axis. We now see
that when the analyzer is in the x position:

Ix ¼
I0
4
½1þ ðcos2 2� þ cos� sin2 2�Þ� ð7-47bÞ

Adding (7-47a) and (7-47b) yields

Ix þ Iy ¼
I0
2

ð7-48aÞ

Next, subtracting (7-47a) from (7-47b) yields

Ix � Iy ¼
I0
2
ðcos2 2� þ cos� sin2 2�Þ ð7-48bÞ

We see that when � ¼ 0 the sum and difference intensities (7-48) are equal. Thus, one
can measure Ix and Iy continuously as the retarder is rotated and the analyzer
is flipped between the horizontal and vertical directions until (7-48a) equals
(7-48b). When this occurs, the amount of rotation that has taken place determines
the magnitude of the rotation angle of the fast axis from the x axis.

Third method:

Finally, if a compensator is available, the phase shift can be measured as
follows. Figure 7-3 shows the measurement method. The compensator is placed
between the retarder under test and the analyzer. The transmission axes of
the generating and analyzing polarizers are set at þ45� and þ135�, that is, in the
crossed position.

The Stokes vector of the beam incident on the test retarder is

S ¼
I0
2

1
0
1
0

0
BB@

1
CCA ð7-49Þ
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The Mueller matrix of the test retarder is

M ¼

1 0 0 0
0 1 0 0
0 0 cos� sin�
0 0 � sin� cos�

0
BB@

1
CCA ð7-50Þ

Multiplying (7-49) by (7-50) yields

S ¼
I0
2

1
0

cos�
� sin�

0
BB@

1
CCA ð7-51Þ

The Mueller matrix of the Babinet–Soleil compensator is

M ¼

1 0 0 0
0 1 0 0
0 0 cos� sin�
0 0 � sin� cos�

0
BB@

1
CCA ð7-52Þ

Multiplying (7-51) by (7-52) yields the Stokes vector of the beam incident on the
linear �45� polarizer:

S ¼
I0
2

1
0

cosð�þ �Þ
� sinð�þ �Þ

0
BB@

1
CCA ð7-53Þ

Figure 7-3 Measurement of the phase shift of a wave plate using a Babinet–Soleil compen-
sator.
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Finally, the Mueller matrix for the ideal linear polarizer with its transmission axis
at �45�(þ135�) is

M ¼
1

2

1 0 �1 0
0 0 0 0
�1 0 1 0
0 0 0 0

0
BB@

1
CCA ð7-54Þ

Multiplying (7-53) by the first row of (7-54) gives the intensity on the detector,
namely,

Ið�þ �Þ ¼
I0
4
½1� cosð�þ �Þ� ð7-55Þ

We see that a null intensity is found at

� ¼ 360� � � ð7-56Þ

from which we then find �.
There are still other methods to determine the phase of the retarder, and the

techniques developed here can provide a useful starting point. However, the methods
described here should suffice for most problems.

7.4 MEASUREMENT OF ROTATION ANGLE OF A ROTATOR

The final type of polarizing element that we wish to characterize is a rotator. The
Mueller matrix of a rotator is

M ¼

1 0 0 0
0 cos 2� sin 2� 0
0 � sin 2� cos 2� 0
0 0 0 1

0
BB@

1
CCA ð7-57Þ

First method:

The angle � can be determined by inserting the rotator between a pair of polarizers
in which the generating polarizer is fixed in the y position and the analyzing
polarizer can be rotated. This configuration is shown in Fig. 7-4.

The Stokes vector of the beam incident on the rotator is

S ¼
I0
2

1
�1
0
0

0
BB@

1
CCA ð7-58Þ

The Stokes vector of the beam incident on the analyzer is then found by multiplying
(7-58) by (7-57)

S0
¼

I0
2

1

� cos 2�

sin 2�

0

0
BBB@

1
CCCA ð7-59Þ
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The Mueller matrix of the analyzer is

M ¼
1

2

1 cos 2 sin 2 0

cos 2 cos2 2 sin 2 cos 2 0

sin 2 sin 2 cos 2 sin2 2 0

0 0 0 0

0
BBB@

1
CCCA ð7-60Þ

The intensity of the beam emerging from the analyzer is then seen from the
product of (7-60) and (7-59) to be

IðÞ ¼
I0
4
½1� cosð2þ 2�Þ� ð7-61Þ

The analyzer is rotated and, according to (7-61), a null intensity will be observed at

 ¼ 180� � � ð7-62aÞ

or, simply,

� ¼ 180� �  ð7-62bÞ

Second method:

Another method for determining the angle � is to rotate the generating polarizer
sequentially to 0�, 45�, 90�, and 135�. The rotator and the analyzing polarizer
are fixed with their axes in the horizontal direction. The intensities of the beam
emerging from the analyzing polarizer for these four angles are then

Ið0�Þ ¼
I0
4
ð1þ cos 2�Þ ð7-63aÞ

Ið45�Þ ¼
I0
4
ð1þ sin 2�Þ ð7-63bÞ

Ið90�Þ ¼
I0
4
ð1� cos 2�Þ ð7-63cÞ

Ið135�Þ ¼
I0
4
ð1� sin 2�Þ ð7-63dÞ

Figure 7-4 Measurement of the rotation angle � of a rotator.
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Subtracting (7-63c) from (7-63a) and (7-63d) from (7-63b) yields

I0
2

� �
cos 2� ¼ Ið0�Þ � Ið90�Þ ð7-64aÞ

I0
2

� �
sin � ¼ Ið45�Þ � Ið135�Þ ð7-64bÞ

Dividing (7-64b) by (7-64a) then yields the angle of rotation �:

� ¼ tan�1
½ðIð45�Þ � Ið135�ÞÞ=ðIð0�Þ � Ið90�ÞÞ� ð7-65Þ

In the null-intensity method an optical detector is not required, whereas in
this second method a photodetector is needed. However, one soon discovers that
even a null measurement can be improved by several orders of magnitude below the
sensitivity of the eye by using an optical detector–amplifier combination.

Finally, as with the measurement of retarders, other configurations can be
considered. However, the two methods described here should, again, suffice for
most problems.
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8

Mueller Matrices for Reflection and
Transmission

8.1 INTRODUCTION

In previous chapters the Mueller matrices were introduced in a very formal
manner. The Mueller matrices were derived for a polarizer, retarder, and rotator
in terms of their fundamental behavior; their relation to actual physical
problems was not emphasized. In this chapter we apply the Mueller matrix formula-
tion to a number of problems of great interest and importance in the physics
of polarized light. One of the major reasons for discussing the Stokes parameters
and the Mueller matrices in these earlier chapters is that they provide us with an
excellent tool for treating many physical problems in a much simpler way than is
usually done in optical textbooks. In fact, one quickly discovers that many of these
problems are sufficiently complex that they preclude any but the simplest to be
considered without the application of the Stokes parameters and the Mueller
matrix formalism.

One of the earliest problems encountered in the study of optics is the behavior
of light that is reflected and transmitted at an air–glass interface. Around 1808,
E. Malus discovered, quite by accident, that unpolarized light became polarized
when it was reflected from glass. Further investigations were made shortly afterward
by D. Brewster, who was led to enunciate his famous law relating the polarization of
the reflected light and the refractive index of the glass to the incident angle
now known as the Brewster angle; the practical importance of this discovery was
immediately recognized by Brewster’s contemporaries. The study of the interaction
of light with material media and its reflection and transmission as well as its
polarization is a topic of great importance.

The interaction of light beams with dielectric surfaces and its subsequent
reflection and transmission is expressed mathematically by a set of equations
known as Fresnel’s equations for reflection and transmission. Fresnel’s equations
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can be derived from Maxwell’s equations. We shall derive Fresnel’s equations in the
next Section.

In practice, if one attempts to apply Fresnel’s equations to any but the
simplest problems, one quickly finds that the algebraic manipulation is very
involved. This complexity accounts for the omission of many important derivations
in numerous textbooks. Furthermore, the cases that are treated are usually restricted
to, say, incident linearly polarized light. If one is dealing with a different state of
polarized light, e.g., circularly polarized or unpolarized light, one must usually begin
the problem anew. We see that the Stokes parameters and the Mueller matrix
are ideal to handle this task.

The problems of complexity and polarization can be readily treated by
expressing Fresnel’s equations in the form of Stokes vectors and Mueller matrices.
This formulation of Fresnel’s equations and its application to a number of interest-
ing problems is the basic aim of the present chapter. As we shall see, both reflection
and refraction (transmission) lead to Mueller matrices that correspond to polarizers
for materials characterized by a real refractive index n. Furthermore, for total
internal reflection (TIR) at the critical angle the Mueller matrix for refraction
reduces to a null Mueller matrix, whereas the Mueller matrix for reflection becomes
the Mueller matrix for a phase shifter (retarder).

The Mueller matrices for reflection and refraction are quite complicated.
However, there are three angles for which the Mueller matrices reduce to very
simple forms. These are for (1) normal incidence, (2) the Brewster angle, and (3)
an incident angle of 45�. All three reduced matrix forms suggest interesting ways to
measure the refractive index � of the dielectric material. These methods will be
discussed in detail.

In practice, however, we must deal not only with a single air–dielectric
interface but also with a dielectric medium of finite thickness, that is, dielectric
plates. Thus, we must consider the reflection and transmission of light at multiple
surfaces. In order to treat these more complicated problems, we must multiply the
Mueller matrices. We quickly discover, however, that the matrix multiplication
requires a considerable amount of effort because of the presence of the off-diagonal
terms in the Mueller matrices. This suggests that we first transform the Mueller
matrices to a diagonal representation; matrix multiplication of diagonal matrices
leads to another diagonal matrix. Therefore, in the final chapters of this part of
the book, we introduce the diagonalized Mueller matrices and treat the problem
of transmission through a single dielectric plate and through several dielectric
plates. This last problem is of particular importance, because at present it is one
of the major ways to create polarized light in the infrared spectrum.

8.2 FRESNEL’S EQUATIONS FOR REFLECTION AND
TRANSMISSION

In this section we derive Fresnel’s equations. Although this material can be found
in many texts, it is useful and instructive to reproduce it here because it is
so intimately tied to the polarization of light. Understanding the behavior of
both the amplitude and phase of the components of light is essential to designing
polarization components or analyzing optical system performance. We start with a
review of concepts from electromagnetism.
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8.2.1 Definitions

Recall from electromagnetism that:

E
*

is the electric field
B
*

is the magnetic induction
D
*

is the electric displacement
H
*

is the magnetic field
"0 is the permittivity of free space
" is the permittivity
�0 is the permeability of free space
� is the permeability

"r ¼
"

"0
¼ ð1þ �Þ ð8-1aÞ

where "r is the relative permittivity or dielectric constant and � is the electric
susceptibility,

�r ¼
�

�0

¼ ð1þ �mÞ ð8-1bÞ

and where �r is the relative permeability and �m is the magnetic susceptibility.
Thus,

" ¼ "0"r ¼ "0ð1þ �Þ ð8-1cÞ

and

� ¼ �0�r ¼ �0ð1þ �mÞ ð8-1dÞ

Recall that (we use rationalized MKSA units here):

B
*

¼ �H
*

ð8-1eÞ

and

D
*

¼ "E
*

ð8-1f Þ

Maxwell’s equations, where there are no free charges or currents, are

r
*
�D
*

¼ 0 ð8-2aÞ

r
*
� B
*

¼ 0 ð8-2bÞ

r
*
� E
*

¼ �
@B
*

@t
ð8-2cÞ

r
*
�H

*
¼
@D
*

@t
ð8-2dÞ
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8.2.2 Boundary Conditions

In order to complete our review of concepts from electromagnetism, we must
recall the boundary conditions for the electric and magnetic field components. The
integral form of Maxwell’s first equation, (8.2a), is

�
ZZ

D
*
� dA
*

¼ 0 ð8-3Þ

This equation implies that, at the interface, the normal components on either side
of the interface are equal, i.e.,

Dn1 ¼ Dn2 ð8-4Þ

The integral form of Maxwell’s second equation, (8.2b), is

�
ZZ

B
*
� dA
*

¼ 0 ð8-5Þ

which implies again that the normal components on either side of the interface are
equal, i.e.,

Bn1 ¼ Bn2 ð8-6Þ

Invoking Ampere’s law, we haveI
H
*
� d I

*
¼ I ð8-7Þ

which implies

Ht1 ¼ Ht2 ð8-8Þ

i.e., the tangential component of H is continuous across the interface.
Lastly,I

E
*
� d I

*
¼

Z Z
�rr � E

*
� dA ¼ 0 ð8-9Þ

which implies

Et1 ¼ Et2 ð8-10Þ

i.e., the tangential component of E is continuous across the interface.

8.2.3 Derivation of the Fresnel Equations

We now have all the tools we need derive Fresnel’s equations. Suppose we have
a light beam intersecting an interface between two linear isotropic media. Part of
the incident beam is reflected and part is refracted. The plane in which this
interaction takes place is called the plane of incidence, and the polarization of
light is defined by the direction of the electric field vector. There are two situations
that can occur. The electric field vector can either be perpendicular to the plane
of incidence or parallel to the plane of incidence. We consider the perpendicular
case first.

Copyright © 2003 by Marcel Dekker, Inc. All Rights Reserved.



Case 1: E
*

is Perpendicular to the Plane of Incidence

This is the ‘‘s’’ polarization (from the German ‘‘senkrecht’’ for perpendicular) or
	 polarization. This is also known as transverse electric, or TE, polarization (refer
to Fig. 8-1). Light travels from a medium with (real) index n1 and encounters an
interface with a linear isotropic medium that has index n2. The angles of incidence
(or reflection) and refraction are �i and �r, respectively.

In Fig. 8-1, the y axis points into the plane of the paper consistent with the
usual Cartesian coordinate system, and the electric field vectors point out of
the plane of the paper, consistent with the requirements of the cross product and
the direction of energy flow. The electric field vector for the incident field is repre-
sented using the symbol E

*
, whereas the fields for the reflected and transmitted

components are represented by R
*

and T
*
, respectively. Using Maxwell’s third

equation (8.2c) we can write

k
*
� E
*

¼ !B
*

ð8-11Þ

We can write this last equation as

H
*

¼
k
*

n � E
*

!�0

ð8-12Þ

where k
*

n is the wave vector in the medium, and k
*

n is

k
*

n ¼ !
ffiffiffiffiffiffiffiffi
�0"

p
âan ð8-13Þ

where âan is a unit vector in the direction of the wave vector.
Now we can write

H
*

¼ !
ffiffiffiffiffiffiffiffi
�0"

p âan � E
*

!�0

¼
âan � E

*ffiffiffiffiffiffiffiffiffiffi
�0="

p ð8-14Þ

Figure 8-1 The plane of incidence for the transverse electric case.
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or

H
*

¼
âan � E

*

�
ð8-15Þ

where

� ¼

ffiffiffiffiffiffiffiffi
�0

"0"r

r
¼
�0
n

�0 ¼

ffiffiffiffiffiffi
�0

"0

r
and n ¼

ffiffiffiffi
"r

p
� �

ð8-16Þ

where n is the refractive index and we have made the assumption that �r � 1.
This is the case for most dielectric materials of interest.

The unit vectors in the directions of the incident, reflected, and transmitted
wave vectors are

âai ¼ sin �iâax þ cos �iâaz ð8-17aÞ

âar ¼ sin �iâax � cos �iâaz ð8-17bÞ

âat ¼ sin �tâax þ cos �tâaz ð8-17cÞ

The magnetic field in each region is given by

Hi

*
¼

âai � E
*

s

�1
H
*

r ¼
âar � R

*

s

�1
H
*

t ¼
âat � T

*

s

�2
ð8-18Þ

and the electric field vectors tangential to the interface are

E
*

s ¼ �Esâay R
*

s ¼ �Rsâay T
*

s ¼ �Tsâay ð8-19Þ

We can now write the magnetic field components as

H
*

i ¼
�Es sin �iâaz

�1
þ
Es cos �iâax

�1

� �
ð8-20aÞ

H
*

r ¼
�Rs sin �iâaz

�1
�
Rs cos �iâax

�1

� �
ð8-20bÞ

H
*

t ¼
�Ts sin �râaz

�2
þ
Ts cos �râax

�2

� �
ð8-20cÞ

We know the tangential component of H
*

is continuous, and we can find the
tangential component by taking the dot product of each H

*
with âax. We have, for

the tangential components:

Htan
i þHtan

r ¼ Htan
t ð8-21aÞ

or

Es cos �i
�1

�
Rs cos �i
�1

¼
Ts cos �r
�2

¼
ðEs þ RsÞ cos �r

�2
ð8-21bÞ

using the fact that the tangential component of E is continuous, i.e., Es þ Rs ¼ Ts.
We rearrange (8.21b) to obtain

Es½�2 cos �i � �1 cos �r� ¼ Rs½�2 cos �i þ �1 cos �r� ð8-21cÞ
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and now Fresnel’s equation for the reflection amplitude is

Rs ¼
�2 cos �i � �1 cos �r
�2 cos �i þ �1 cos �r

Es ð8-21dÞ

Using the relation in (8-16) for each material region, we can express the reflection
amplitude in terms of the refractive index and the angles as

Rs ¼
n1 cos �i � n2 cos �r
n1 cos �i þ n2 cos �r

Es ð8-22aÞ

This last equation can be written, using Snell’s law, n1 sin �i ¼ n2 sin �r, to eliminate
the dependence on the index:

Rs ¼ �
sinð�i � �rÞ

sinð�i þ �rÞ
Es ð8-22bÞ

An expression for Fresnel’s equation for the transmission amplitude can be similarly
derived and is

Ts ¼
2n1 cos �i

n1 cos �i þ n2 cos �r
Es ð8-23aÞ

or

Ts ¼
2 sin �r cos �i
sinð�i þ �rÞ

Es ð8-23bÞ

Case 2: E
*

is Parallel to the Plane of Incidence

This is the ‘‘p’’ polarization (from the German ‘‘parallel’’ for parallel) or �
polarization. This is also known as transverse magnetic, or TM, polarization
(refer to Fig. 8-2). The derivation for the parallel reflection amplitude and transmis-
sion amplitude proceeds in a manner similar to the perpendicular case, and Fresnel’s
equations for the TM case are

Rp ¼
n2 cos �i � n1 cos �r
n2 cos �i þ n1 cos �r

Ep ð8-24aÞ

or

Rp ¼
tanð�i � �rÞ

tanð�i þ �rÞ
Ep ð8-24bÞ

and

Tp �
2n1 cos �i

n2 cos �i þ n1 cos �r
Ep ð8-25aÞ

or

Tp ¼
2 sin �r cos �i

sinð�i þ �rÞ cosð�i � �rÞ
Ep ð8-25bÞ

Figures 8-1 and 8-2 have been drawn as if light goes from a lower index medium to
a higher index medium. This reflection condition is called an external reflection.
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Fresnel’s equations also apply if the light is in a higher index medium
and encounters an interface with a lower index medium, a condition known as
an internal reflection.

Before we show graphs of the reflection coefficients, there are two special
angles we should consider. These are Brewster’s angle and the critical angle.

First, consider what happens to the amplitude reflection coefficient in (8-24b)
when �i þ �r sums to 90�. The amplitude reflection coefficient vanishes for
light polarized parallel to the plane of incidence. The incidence angle for which
this occurs is called Brewster’s angle. From Snell’s law, we can relate Brewster’s
angle to the refractive indices of the media by a very simple expression, i.e.,

�iB ¼ tan�1 n2
n1

ð8-26Þ

The other angle of importance is the critical angle. When we have an internal
reflection, we can see from Snell’s law that the transmitted light bends to
ever larger angles as the incidence angle increases, and at some point the transmitted
light leaves the higher index medium at a grazing angle. This is shown in Fig. 8-3.
The incidence angle at which this occurs is the critical angle. From Snell’s law,
n2 sin �i ¼ n1 sin �r [writing the indices in reverse order to emphasize the light
progression from high (n2) to low (n1) index], when �r ¼ 90�,

sin �i ¼
n1
n2

ð8-27aÞ

or

�c ¼ sin�1 n1
n2

ð8-27bÞ

where �c is the critical angle. For any incidence angle greater than the critical
angle, there is no refracted ray and we have TIR.

Figure 8-2 The plane of incidence for the transverse magnetic case.
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The amplitude reflection coefficients, i.e.,

rs �
Rs

Es

ð8-28aÞ

and

rp �
Rp

Ep

ð8-28bÞ

and their absolute values for external reflection for n1 ¼ 1 (air) and n2 ¼ 1.5 (a typical
value for glass in the visible spectrum) are plotted in Fig. 8.4. Both the incident
and reflected light has a phase associated with it, and there may be a net phase
change upon reflection. The phase changes for external reflection are plotted in
Fig. 8.5. The amplitude reflection coefficients and their absolute values for the
same indices for internal reflection are plotted in Fig. 8-6. The phase changes for
internal reflection are plotted in Fig. 8-7. An important observation to make here is
that the reflection remains total beyond the critical angle, but the phase change is
a continuously changing function of incidence angle. The phase changes beyond
the critical angle, i.e., when the incidence angle is greater than the critical angle,
are given by

tan
’s
2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 �r � sin2 �c

q
cos �r

ð8-29aÞ

and

tan
’p
2

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 �r � sin2 �c

q
cos �r sin

2 �c
ð8-29bÞ

Figure 8-3 The critical angle where the refracted light exists the surface at grazing incidence.
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where ’s and ’p are the phase changes for the TE and TM cases, respectively.
The reflected intensities, i.e., the square of the absolute value of the amplitude
reflection coefficients, R ¼ jr2j, for external and internal reflection are plotted in
Figs. 8-8 and 8-9, respectively.

The results in this section have assumed real indices of refraction for linear,
isotropic materials. This may not always be the case, i.e., the materials may be
anisotropic and have complex indices of refraction and, in this case, the expressions
for the reflection coefficients are not so simple. For example, the amplitude reflection
coefficients for internal reflection at an isotropic to anisotropic interface [as would
be the case for some applications, e.g., attenuated total reflection (see Deibler)], are

rs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2x � k2x þ 2inxkx � n21 sin

2 �
q

� n1 cos �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2x � k2x þ 2inxkx � n21 sin

2 �
q

þ n1 cos �
ð8-30aÞ

Figure 8-4 Amplitude reflection coefficients and their absolute values versus incidence angle

for external reflection for n1 ¼ 1 and n2 ¼ 1.5.

Figure 8-5 Phase changes for external reflection versus incidence angle for n1 ¼ 1 and
n2¼ 1.5.
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and

rp ¼
n1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2z � k2z þ 2inzkz � n21 sin

2 �
q

� ½nynz � kykz þ iðkynz þ kznzÞ� cos �

n1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2z � k2z þ 2inzkz � n21 sin

2 �
q

þ ½nynz � kykz þ iðkynz þ kznzÞ� cos �

ð8-30bÞ

where nx, ny, and nz are the real parts of the complex indices of the anisotropic
material, and kx, ky, and kz are the imaginary parts (in general, materials can have
three principal indices). Anisotropic materials and their indices are covered in
Chapter 24.

Before we go on to describe the reflection and transmission process in terms of
Stokes parameters and Mueller matrices we make note of two important points.

Figure 8-6 Amplitude reflection coefficients and their absolute values versus incidence angle

for internal reflection for n1 ¼ 1 and n2 ¼ 1.5.

Figure 8-7 Phase changes for internal reflection versus incidence angle for n2 ¼ 1.5 and

n1¼ 1.
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First, the Stokes parameters must be defined appropriately for the field within and
external to the dielectric medium. The first Stokes parameter represents the total
intensity of the radiation and must correspond to a quantity known as the Poynting
vector. This vector describes the flow of power of the propagating field components
of the electromagnetic field. The Poynting vector is defined to be

S
*

¼ ðE
*
�H

*
Þ ð8-31aÞ

Figure 8-8 Intensity reflection for external reflection versus incidence angle for n1 ¼ 1 and
n2 ¼ 1.5.

Figure 8-9 Intensity reflection for internal reflection versus incidence angle for n2 ¼ 1.5 and

n1 ¼ 1.
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In an isotropic dielectric medium, the time-averaged Poynting vector is

hS
*
i ¼

"r
2
E
*
� E
*�

ð8-31bÞ

Second, the direction of the Poynting vector and the surface normal are different.
This requires that the component of the Poynting vector in the direction of the
surface normal must be taken. Consequently, a cosine factor must be introduced
into the definition of the Stokes parameters.

With these considerations, we will arrive at the correct Mueller matrices for
reflection and transmission at a dielectric interface, as we will now show.

8.3 MUELLER MATRICES FOR REFLECTION AND TRANSMISSION
AT AN AIR–DIELECTRIC INTERFACE

The Stokes parameters for the incident field in air (n ¼ 1) are defined to be

S0 ¼ cos �iðEsE
�
s þ EpE

�
p Þ ð8-32aÞ

S1 ¼ cos �iðEsE
�
s � EpE

�
p Þ ð8-32bÞ

S2 ¼ cos �iðEsE
�
p þ EpE

�
s Þ ð8-32cÞ

S3 ¼ i cos �iðEsE
�
p � EpE

�
s Þ ð8-32dÞ

where Es and Ep are the orthogonal components of the incident beam perpendicular
and parallel to the plane of incidence, respectively, and the asterisk represents the
complex conjugate. The factor i in (8-32d) is

ffiffiffiffiffiffiffi
�1

p
.

Similarly, the Stokes parameters for the reflected field are

S0R ¼ cos �iðRsR
�
s þ RpR

�
p Þ ð8-33aÞ

S1R ¼ cos �iðRsR
�
s � RpR

�
p Þ ð8-33bÞ

S2R ¼ cos �iðRsR
�
p þ RpR

�
s Þ ð8-33cÞ

S3R ¼ i cos �iðRsR
�
p � RpR

�
s Þ ð8-33dÞ

The subscript R indicates that these are the Stokes parameters associated with
the reflected beam. Substituting the values of Rs and Rp from Eqs. (8-22a) and
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(8-24a) into (8-33) and using (8-32), the Stokes vector for the reflected beam SR is
found to be related to the Stokes vector of the incident beam S by

S0R

S1R

S2R

S3R

0
BBBBB@

1
CCCCCA¼

1

2

tan��
sin�þ

� �2

�

cos2��þcos2�þ cos2���cos2�þ 0 0

cos2���cos2�þ cos2��þcos2�þ 0 0

0 0 �2cos�þcos�� 0

0 0 0 �2cos�þcos��

0
BBBBB@

1
CCCCCA

�

S0

S1

S2

S3

0
BBBBB@

1
CCCCCA ð8-34Þ

where �� ¼ �i � �r. In the Mueller formalism, the matrix of a polarizer is

M ¼
1

2

p2S þ p2p p2S � p2p 0 0

p2s � p2p p2s þ p2p 0 0

0 0 2pspp 0

0 0 0 2pspp

0
BBBBB@

1
CCCCCA ð8-35Þ

Comparing (8-34) with (8-35) we see that the 4 � 4 matrix in (8-34) corresponds
to a Mueller matrix of a polarizer; this is to be expected from the form of
Fresnel’s equations, (8-22) and (8-24), in Section 8.2.

The Stokes parameters for the transmitted field are defined to be

S0T ¼ n cos �rðTsT
�
s þ TpT

�
p Þ ð8-36aÞ

S1T ¼ n cos �rðTsT
�
s � TpT

�
p Þ ð8-36bÞ

S2T ¼ n cos �rðTsT
�
p þ TpT

�
s Þ ð8-36cÞ

S3T ¼ in cos �rðTsT
�
p � TpT

�
s Þ ð8-36dÞ

where the subscript T indicates the Stokes parameters of the transmitted beam, and
Ts and Tp are the transmitted field components perpendicular and parallel to the
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plane of incidence. Substituting the values of Ts and Tp from Eqs. (8-23) and (8-25)
into (8-36) and using (8-32), the Stokes vector ST is found to be

S0T

S1T

S2T

S3T

0
BBB@

1
CCCA ¼

sin 2�i sin 2�r

2ðsin �þ cos ��Þ
2

�

cos2 �� þ 1 cos2 �� � 1 0 0

cos2 �� � 1 cos2 �� þ 1 0 0

0 0 2 cos �� 0

0 0 0 2 cos ��

0
BBB@

1
CCCA

S0

S1

S2

S3

0
BBB@

1
CCCA ð8-37Þ

We see that the 4 � 4 matrix in (8-37) also corresponds to the Mueller matrix
of a polarizer.

It is straightforward to show from (8-34) and (8-37) that the following
relation exists:

S0 ¼ S0R þ S0T ð8-38Þ

Thus, the sum of the reflected intensity and the transmitted intensity is equal to the
incident intensity, as expected from the principle of the conservation of energy.

Equation (8-34) shows that incident light which is completely polarized
remains completely polarized. In addition to the case of incident light that is
completely polarized, (8-34) allows us to consider the interesting case where the
incident light is unpolarized. This case corresponds to Malus’ discovery. It
was very important because up to the time of Malus’ discovery the only known
way to obtain completely polarized light was to allow unpolarized light to propagate
through a calcite crystal. Two beams were observed to emerge, called the
ordinary and extraordinary rays, and each was found to be orthogonally linearly
polarized.

The Stokes vector for unpolarized light is

S ¼ I0

1
0
0
0

0
BB@

1
CCA ð8-39Þ

From (8-34) we then see that (8-39) yields

SR ¼

S0R

S1R

S2R

S3R

0
BB@

1
CCA ¼

1

2

tan ��
sin �þ

� �2

�

cos2 �� þ cos2 �þ
cos2 �� � cos2 �þ

0
0

0
BB@

1
CCA ð8-40Þ

The degree of polarization P is then

P ¼
S1

S0

����
���� ¼ cos2 �� � cos2 �þ

cos2 �� þ cos2 �þ

�����
����� ð8-41Þ
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In general, because the numerator in (8-41) is less than the denominator, the
degree of polarization is less than 1. However, a closer inspection of (8-41) shows
that if cos �þ is zero, then P ¼ 1; that is, the degree of polarization is 100%. This
condition occurs at

cos �þ ¼ cosð�i þ �rÞ ¼ 0 ð8-42aÞ

so

�i þ �r ¼
�

2
¼ 90� ð8-42bÞ

Thus, when the sum of the incident angle and the refracted angle is 90� the
reflected light is completely polarized. We found this earlier in Section 8.2 and this
is confirmed by setting cos �þ ¼ 0 in (8-40), which then reduces to

SR ¼

S0R

S1R

S2R

S3R

0
BB@

1
CCA ¼

1

2
cos2 2�iB

1
1
0
0

0
BB@

1
CCA ð8-43Þ

The Stokes vector in (8-43) shows that the reflected light is linearly horizontally
polarized. Because the degree of polarization is 1 (100%) at the angle of incidence
which satisfies (8-42b), we have labeled �i as �iB , Brewster’s angle.

In Fig. 8-10 we have plotted (8-41), the degree of polarization P versus
the incident angle �i, for a material with a refractive index of 1.50. Figure 8-10
shows that as the incident angle is increased P increases, reaches a maximum, and
then returns to zero at �i ¼ 90�. Thus, P is always less than 1 everywhere except at the

Figure 8-10 Plot of the degree of polarization P versus the incident angle �i for incident

unpolarized light which is reflected from glass with a refractive index of 1.5.
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maximum. The angle at which the maximum takes place is 56.7� (this will be shown
shortly) and P is 0.9998 or 1.000 to three significant places. At this particular angle
incident unpolarized light becomes completely polarized on being reflected. This
angle is known as the polarization or Brewster angle (written �iB ). We shall
see shortly that at the Brewster angle the Mueller matrix for reflection (8-34)
simplifies significantly. This discovery by Brewster is very important because it
allows one not only to create completely polarized light but partially polarized
light as well. This latter fact is very often overlooked. Thus, if we have a perfect
unpolarized light source, we can by a single reflection obtain partially polarized
light to any degree we wish. In addition to this behavior of unpolarized light an
extraordinarily simple mathematical relation emerges between the Brewster angle
and the refractive indices of the dielectric materials, i.e., (8-26): this relation was
used to obtain the value 56.7�.

With respect to creating partially polarized light, it is of interest to determine
the intensity of the reflected light. From (8-40) we see that the intensity IR of the
reflected beam is

IR ¼
1

2

tan ��
sin �þ

� �2

ðcos2 �� þ cos2 �þÞ ð8-44Þ

In Fig. 8-11 we have plotted the magnitude of the reflected intensity IR as
a function of incident angle �i for a dielectric (glass) with a refractive index of
1.5. Figure 8-11 shows that as the incidence angle increases, the reflected intensity
increases, particularly at the larger incidence angles. This explains why when the
sun is low in the sky the light reflected from the surface of water appears to be
quite strong. In fact, at these ‘‘low’’ angles polarizing sunglasses are only partially

Figure 8-11 Plot of the intensity of a beam reflected by a dielectric of refractive index of 1.5.

The incident beam is unpolarized.
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effective because the reflected light is not completely polarized. If the incident
angle were at the Brewster angle, the sunglasses would be completely
effective. The reflected intensity at the Brewster angle �iB (56.7�), according to
(8-43) is only 7.9%.

In a similar manner (8-37) shows that the �iB Stokes vector for the transmitted
beam where the incident beam is again unpolarized is

S0T

S1T

S2T

S3T

0
BB@

1
CCA ¼

sin 2�i sin 2�r

2ðsin �þ cos ��Þ
2

cos2 �� þ 1
cos2 �� � 1

0
0

0
BB@

1
CCA ð8-45Þ

The degree of polarization P of the transmitted beam is

P ¼
cos2 �� � 1

cos2 �� þ 1

�����
����� ð8-46Þ

We again see that P is always less than 1. In Fig. 8-12 a plot has been made of
the degree of polarization versus the incident angle. The refractive index of the
glass is again n ¼ 1.50.

The transmitted light remains practically unpolarized for relatively small
angles of incidence. However, as the incident angle increases, the degree of polariza-
tion increases to a maximum value of 0.385 at 90�. Thus, unlike reflection, one can
never obtain completely polarized light (P ¼ 1) by the transmission of unpolarized
light through a single surface. However, it is possible to increase the degree
of polarization by using a dielectric material with a larger refractive index.

Figure 8-12 Plot of the degree of polarization versus the incident angle for incident unpo-
larized light transmitted through a single glass surface. The refractive index is again 1.5.

Copyright © 2003 by Marcel Dekker, Inc. All Rights Reserved.



In Fig. 8-13 a plot has been made of the degree of polarization versus incident
angle for materials with refractive indices of n ¼ 1.5, 2.5, and 3.5. We see that
there is a significant increase in the degree of polarization as n increases.

The final question of interest is to determine the intensity of the transmitted
beam. From (8-45) we see that the transmitted intensity IT is

IT ¼
sin 2�i sin 2�r

2ðsin �þ cos ��Þ
2
ðcos2 �� þ 1Þ ð8-47Þ

It is also of interest to determine the form of (8-47) at the Brewster angle �iB .
Using this condition, (8-42b), we easily find that (8-47) reduces to

ITB ¼
1

2
ð1þ sin2 2�iBÞ ð8-48Þ

For the Brewster angle of 56.7� (n ¼ 1.5) we see that the transmitted intensity
is 92.1%. We saw earlier that the corresponding intensity for the reflected beam
was 7.9%. Thus, the sum of the reflected intensity and the transmitted intensity
is 100%, in agreement with the general case expressed by (8-38), which is always true.

In Fig. 8-14 we have plotted (8-47) as a function of the incident angle for
a beam transmitted through a dielectric with a refractive index of n ¼ 1.5.
We observe that the transmission remains practically constant up to the value of
approximately 60�, whereupon the intensity drops rapidly to zero as the incidence
angle approaches 90�.

We can extend these results to the important case of dielectric plates
and multiple plates. Before we deal with this problem, however, we consider some

Figure 8-13 Plot of the degree of polarization versus the incident angle for differing refrac-
tive indices for an incident unpolarized beam transmitted through a single dielectric surface.
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simplifications in the Mueller matrices (8-34) and (8-37) in the next section.
These simplifications occur at normal incidence (�i ¼ 0�), at the Brewster angle
�iB , and at �i ¼ 45�.

8.4 SPECIAL FORMS FOR THE MUELLER MATRICES FOR
REFLECTION AND TRANSMISSION

There are three cases where the Mueller matrix for reflection by a dielectric
surface simplifies. We now consider these three cases. In addition, we also derive
the corresponding Mueller matrices for transmission.

8.4.1 Normal Incidence

In order to determine the form of the Mueller matrices at normal incidence
for reflection and transmission, (8-34) and (8-37), we first express Snell’s law for
refraction for small angles. For small angles we have the approximations (� 1):

cos � ’ 1 ð8-49aÞ

sin � ’ � ð8-49bÞ

Snell’s law for refraction for small angles can then be written as

�i ’ n�r ð8-50Þ

and we can then write

tan �� ’ �� ¼ �i � �r ð8-51aÞ

Figure 8-14 The intensity of a beam transmitted through a dielectric with a refractive index
of 1.5 as a function of incidence angle. The incident beam is unpolarized.
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sin �þ ’ �þ ¼ �i þ �r ð8-51bÞ

cos �þ ’ 1 ð8-51cÞ

cos �� ’ 1 ð8-51dÞ

Using these approximations (8-51), the Mueller matrix (8-34) then reduces to

M ’
1

2

�i � �r
�i þ �r

� �2
2 0 0 0
0 2 0 0
0 0 �2 0
0 0 0 �2

0
BB@

1
CCA ð8-52Þ

Substituting Snell’s law for small angles (8-50) into (8-52), we then have

MR ¼
n� 1

nþ 1

� �2
1 0 0 0
0 1 0 0
0 0 �1 0
0 0 0 �1

0
BB@

1
CCA ð8-53Þ

which is the Mueller matrix for reflection at normal incidence. The significance of
the negative sign in the matrix elements m22 and m33 is that on reflection the
ellipticity and the orientation of the incident beam are reversed.

In a similar manner we readily determine the corresponding Mueller matrix
for transmission at normal incidence. From (8-37) we have for small angles that

M ¼
ð2�iÞð2�rÞ

2ð�þÞ
2

2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

0
BB@

1
CCA ð8-54Þ

Again, using the small-angle approximation for Snell’s law (8-50) we see that (8-54)
reduces to

MT ¼
4n

ðnþ 1Þ2

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0
BB@

1
CCA ð8-55Þ

which is the Mueller matrix for transmission at normal incidence.
The reflected intensity at normal incidence is seen from (8-53) to be

IR ¼
n� 1

nþ 1

� �2

I0 ð8-56Þ

and from (8-55) the transmitted intensity is

IT ¼
4n

ðnþ 1Þ2
I0 ð8-57Þ

Adding (8-56) and (8-57) yields

IR þ IT ¼ I0 ð8-58Þ

as expected.
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The normal incidence condition indicates that we can determine, in principle,
the refractive index of the dielectric medium by reflection, (8-56). At first sight
this might appear to be simple. However, in order to use a ‘‘normal incidence
configuration’’ the reflected beam must be separated from the incident beam. We
can only do this by inserting another optical component in the optical path. Thus, in
spite of the seeming simplicity of (8-56), we cannot use it to measure the reflected
beam and the refractive index of the dielectric (e.g., glass) directly.

8.4.2 The Brewster Angle

The Mueller matrix for reflection MR is; from (8-34),

MR ¼
1

2

tan��
sin�þ

� �2

�

cos2 ��þ cos2 �þ cos2 ��� cos2 �þ 0 0

cos2 ��� cos2 �þ cos2 ��þ cos2 �þ 0 0

0 0 �2cos�þ cos�� 0

0 0 0 �2cos�þ cos��

0
BBBBB@

1
CCCCCA

ð8-59Þ

Similarly, the Mueller matrix for transmission MT, from (8-37), is

MT ¼
sin 2�i sin 2�r

2ðsin �þ cos ��Þ
2

cos2 �� þ 1 cos2 �� � 1 0 0
cos2 �� � 1 cos2 �� þ 1 0 0

0 0 2 cos �� 0
0 0 0 2 cos ��

0
BB@

1
CCA

ð8-60Þ

Equation (8-60) has a very interesting simplification for the condition �þ ¼ �i þ �r ¼
90�. We write

�þ ¼ �iB þ �rB ¼ 90� ð8-61aÞ

so

�rB ¼ 90� � �iB ð8-61bÞ

We shall show that this condition defines the Brewster angle. We now also write,
using (8-61b)

�� ¼ �iB � �rB ¼ 2�iB � 90� ð8-62Þ

Substituting (8-62) into (8-59) along with �þ ¼ 90�, we see that (8-59) reduces to

MRB
¼

1

2
cos2 2�iB

1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

0
BB@

1
CCA ð8-63Þ

Copyright © 2003 by Marcel Dekker, Inc. All Rights Reserved.



where we have used the relation:

sinð2�iB � 90�Þ ¼ � cos 2�iB ð8-64Þ

The result of (8-63) shows that for �þ ¼ �iB þ �rB ¼ 90� the Mueller matrix reduces to
an ideal linear horizontal polarizer. This angle where the dielectric behaves as an
ideal linear polarizer was first discovered by Sir David Brewster in 1812 and
is known as the Brewster angle. Equation (8-63) also shows very clearly that at
the Brewster angle the reflected beam will be completely polarized in the s direction.
This has the immediate practical importance of allowing one to create, as we saw in
Section 8.3, a completely linearly polarized beam from either partially or unpolarized
light or from elliptically polarized light.

At the interface between a dielectric in air Brewster’s relation becomes,
from (8.26),

tan �iB ¼ n ð8-65Þ

This is a truly remarkable relation because it shows that the refractive index n,
which we usually associate with the phenomenon of transmission, can be obtained
by a reflection measurement. At the time of Brewster’s discovery, using Brewster’s
angle was the first new method for measuring the refractive index of an optical
material since the development of transmission methods in the seventeenth and
eighteenth centuries. In fact, the measurement of the refractive index to a useful
resolution is surprisingly difficult, in spite of the extraordinarily simple relation
given by Snell’s law. Relation (8-65) shows that the refractive index of a medium
can be determined by a reflection measurement if the Brewster angle can be
measured. Furthermore, because a dielectric surface behaves as a perfect linear
polarizer at the Brewster angle, the reflected beam will always be linearly polarized
regardless of the state of polarization of the incident beam. By then using a
polarizer to analyze the reflected beam, we will obtain a null intensity only at
the Brewster angle. From this angle the refractive index n can immediately be
determined from (8-65).

At the Brewster angle the Mueller matrix for transmission (8-37) is readily
seen to reduce to

MT,B ¼
1

2

sin2 2�iB þ 1 sin2 2�iB � 1 0 0

sin2 2�iB � 1 sin2 2�iB þ 1 0 0

0 0 2 sin 2�iB 0

0 0 0 2 sin 2�iB

0
BBBB@

1
CCCCA ð8-66Þ

which is a matrix of a polarizer. Thus, at the Brewster angle the Mueller matrix
for transmission still behaves as a polarizer.

8.4.3 45� Incidence

The fact the Fresnel’s equations simplify at normal incidence and at the Brewster
angle is well known. However, there is another angle where Fresnel’s equations and
the Mueller matrices also simplify, the incidence angle of 45�. Remarkably, the
resulting simplification in Fresnel’s equations appears to have been first noticed
by Humphreys-Owen only around 1960. We now derive the Mueller matrices for
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reflection and transmission at an incidence angle of 45�. The importance of the
Mueller matrix for reflection at this angle of incidence is that it leads to another
method for measuring the refractive index of an optical material. This method has
a number of advantages over the normal incidence method and the Brewster
angle method.

At an incidence angle of �i ¼ 45�, Fresnel’s equations for Rs and Rp, (8-22b)
and (8-24b), reduce to

Rs ¼
cos �r � sin �r
cos �r þ sin �r

� �
Es ð8-67aÞ

and

Rp ¼
cos �r � sin �r
cos �r þ sin �r

� �2
Ep ð8-67bÞ

We see that from (8-67) and the definitions of the amplitude reflection coefficients
in (8-28) we have

r2s ¼ rp ð8-68Þ

Later, we shall see that a corresponding relation exists between the orthogonal
intensities Is and Ip.

Using the condition that the incidence angle is 45� in (8-33) and using (8-67)
we are led to the following Mueller matrix for incident 45� light:

MRð�i ¼ 45�Þ ¼
1� sin 2�r

ð1þ sin 2�rÞ
2

1 sin 2�r 0 0
sin 2�r 1 0 0

0 0 � cos 2�r 0
0 0 0 � cos 2�r

0
BB@

1
CCA

ð8-69Þ

Thus, at þ45� incidence the Mueller matrix for reflection also takes on a simplified
form. It still retains the form of a polarizer, however, Equation (8-69) now suggests
a simple way to determine the refractive index n of an optical material by
reflection. First, we irradiate the optical surface with s polarized light with an
intensity I0. Its Stokes vector is

Ss ¼ I0

1
1
0
0

0
BB@

1
CCA ð8-70Þ

Multiplication of (8-70) by (8-69) leads to an intensity:

Is ¼ I0
1� sin 2�r
1þ sin 2�r

ð8-71Þ
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Next, the surface is irradiated with p polarized light so its Stokes vector is

Sp ¼ I0

1
�1
0
0

0
BB@

1
CCA ð8-72Þ

Multiplication of (8-72) by (8-69) leads to an intensity:

Ip ¼ I0
1� sin 2�r
1þ sin 2�r

� �2

ð8-73Þ

Equations (8-71) and (8-73) for intensity are analogous to (8-67a) and (8-67b)
for amplitude. Further, squaring (8-71) and using (8-73) leads to the relation:

Is
I0

� �2

¼
Ip

I0
ð8-74Þ

or

I2s
Ip

¼ I0 ð8-75Þ

Using the intensity reflection coefficients:

Rs ¼
Is
I0

ð8-76aÞ

and

Rp ¼
Ip
I0

ð8-76bÞ

we have

R2
s ¼ Rp ð8-77Þ

which is the analog of (8-68) in the intensity domain. Equation (8-75) shows that if
Ip and Is of the reflected beam can be measured, then the intensity of the
incident beam I0 can be determined.

Equations (8-71) and (8-73) also allow a unique expression for the
refractive index to be found in terms of Is and Ip. To show this, (8-73) is divided
by (8-71), and we have

Ip
Is

¼
1� sin 2�r
1þ sin 2�r

ð8-78Þ

Solving (8-78) for sin 2�r then yields

sin 2�r ¼
Is � Ip
Is þ Ip

ð8-79Þ
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We now write sin 2�r in (8-79) in terms of the half-angle formula

2 sin �r cos �r ¼
Is � Ip

Is þ Ip
ð8-80Þ

Equation (8-80) can be written further as

ð
ffiffiffi
2

p
sin �rÞð

ffiffiffi
2

p
cos �rÞ ¼

ð
ffiffiffiffi
Is

p
�

ffiffiffiffi
Ip

p
Þð

ffiffiffiffi
Is

p
þ

ffiffiffiffi
Ip

p
Þ

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Is þ Ip

p
Þð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Is þ Ip

p
Þ

ð8-81Þ

This form suggests that we equate the left- and right-hand sides as

ffiffiffi
2

p
sin �r ¼

ffiffiffiffi
Is

p
�

ffiffiffiffi
Ip

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Is þ Ip

p ð8-82aÞ

ffiffiffi
2

p
cos �r ¼

ffiffiffiffi
Is

p
þ

ffiffiffiffi
Ip

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Is þ Ip

p ð8-82bÞ

We see that this decomposition is satisfactory because (8-82a) also leads to �r ¼ 0�

for Is ¼ Ip as in (8-79). Proceeding further, we have, from Snell’s law for an incidence
angle of �i ¼ 45�,

ffiffiffi
2

p
sin �r ¼

1

n
ð8-83Þ

Equating (8-83) and (8-82a) then yields

n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Is þ Ip

p
ffiffiffiffi
Is

p
�

ffiffiffiffi
Ip

p ð8-84Þ

Equation (8-84) shows that at an incidence angle of 45� a very simple relation
exists between the measured orthogonal intensities Is and Ip and the refractive
index n of an optical material. With the existence of photodetectors this suggests
another way to measure the refractive index of an optical material.

Thus, we see that there are several methods for measuring the refractive
index. Most importantly, the foregoing analysis enables us to use a single description
for determining the behavior of light that is reflected and transmitted by a dielectric
surface.

8.4.4 Total Internal Reflection

Fresnel’s equations predict correctly the magnitude of the reflected and transmitted
intensities of an optical beam. An added success of Fresnel’s equations, however,
is that they not only describe the behavior of light at an air–dielectric interface
for ‘‘proper’’ reflection but, remarkably, for total internal reflection (TIR) as well.
The phenomenon of TIR, occurs when light propagates from an optically denser
medium into one which is less optically dense. In order to derive the Mueller matrix
for TIR, we must first obtain the correct form of Fresnel’s equations for TIR.
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In Fig. 8-15, we show an optical beam propagating in an optically denser
medium and being reflected at the dielectric air–interface. Snell’s law for Fig. 8-15
is now written

n sin �i ¼ sin �r ð8-85Þ

For TIR to occur, the following condition must be satisfied:

n sin �i > 1 ð8-86Þ

We recall that Fresnel’s reflection equations are

Rp ¼
tanð�i � �rÞ

tanð�i þ �rÞ
Ep ð8-24bÞ

and

Rs ¼ �
sinð�i � �rÞ

sinð�i þ �rÞ
Es ð8-22bÞ

Expanding the trigonometric functions in (8-24b) and (8-22b) gives

Rp ¼
sin �i cos �i � sin �r cos �r
sin �i cos �i þ sin �r cos �r

Ep ð8-87aÞ

Rs ¼
� sin �i cos �r � sin �r cos �i
� sin �i cos �r þ sin �r cos �i

Es ð8-87bÞ

Snell’s law (8-85) can be rewritten as

cos �r ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 sin2 �i ¼ 1

q
n sin �i > 1 ð8-88Þ

Substituting (8-88) into (8-87a) and (8-87b) yields

Rp ¼
cos �i � in

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 sin2 �i � 1

q
cos �i þ in

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 sin2 �i � 1

q Ep ð8-89aÞ

Figure 8-15 Total internal reflection.
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Rs ¼
n cos �i � i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 sin2 �i � 1

q
n cos �i þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 sin2 �i � 1

q Es ð8-89bÞ

Let us consider (8-89a) in further detail. We can express

cos �i � in

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 sin2 �i � 1

q
cos �i þ in

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 sin2 �i � 1

q ð8-90Þ

as

g ¼
a� ib

aþ ib
ð8-91aÞ

where

a ¼ cos �i ð8-91bÞ

and

b ¼ n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 sin2 �i � 1

q
ð8-91cÞ

The factor g is easily seen to be unimodular; that is, gg* ¼ 1, where the asterisk
refers to a complex conjugate. Thus, (8-89a) can be expressed as

g ¼ e�i�p
¼

a� ib

aþ ib
ð8-92aÞ

and

g ¼ cos �p � i sin �p ð8-92bÞ

where �p refers to the phase associated with the parallel component, (8-89a).
Equating the real and imaginary parts in (8-92) yields

cos �p ¼
a2 � b2

a2 þ b2
ð8-93aÞ

sin �p ¼
2ab

a2 þ b2
ð8-93bÞ

Dividing (8-93b) by (8-93a) then gives

sin �p
cos �p

¼ tan �p ¼
2ab

a2 � b2
ð8-94Þ

Equation (8-94) can be further simplified by noting that sin �p and cos �p can be
written in terms of their half-angle representations; that is,

sin �p
cos �p

¼
2 sinð�p=2Þ cosð�p=2Þ

cos2ð�p=2Þ � sin2ð�p=2Þ
¼

2ab

a2 � b2
ð8-95Þ
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We arbitrarily set

sin
�p
2
¼ b ð8-96aÞ

cos
�p
2
¼ a ð8-96bÞ

Dividing (8-96a) by (8-96b) yields

tan
�p
2
¼

b

a
ð8-97aÞ

and, from (8-91b) and (8-91c),

tan
�p
2
¼

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 sin2 �i � 1

q
cos �i

ð8-97bÞ

In exactly the same manner we find that

tan
�s
2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 sin2 �i � 1

q
n cos �i

ð8-97cÞ

It is straightforward now to show that the following relation between the
phases, � ¼ �s � �p, can be derived from (8-97b) and (8-97c)

tan
�

2
¼ �

cos �i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 sin2 �i � 1

q
n sin2 �i

ð8-98Þ

Returning to Fresnel’s equations (8-89a) and (8-89b), we now see that for TIR
they can be written simply as

Rp ¼ e�i�pEp ð8-99aÞ

Rs ¼ e�i�sEs ð8-99bÞ

From the definition of the Stokes parameters for reflection, we easily find that the
Mueller matrix for TIR is

MR ¼

1 0 0 0
0 1 0 0
0 0 cos � � sin �
0 0 sin � cos �

0
BB@

1
CCA ð8-100Þ

where � ¼ �s � �p. Thus, TIR is described by the Mueller matrix for a retarder.
The phenomenon of TIR was first used by Fresnel (around 1820) to create

circularly polarized light from linearly polarized light. In order to do this,
Fresnel designed and then cut and polished a piece of glass in the form of a
rhomb as shown in Fig. 8-16.

For a glass such as BK7, a commonly used optical glass made by Schott, the
refractive index n at a wavelength of 6328 Å (He–Ne wavelength) is 1.5151. From
(8-98) we see that for an angle of �i ¼ 55�050 the phase shift � at the first surface is
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�L ¼ 45.00�. There is a similar phase shift �U at the upper surface for a total phase
shift of 90.00�. Formally, we have from (8-100)

M ¼

1 0 0 0
0 1 0 0
0 0 cos �U � sin �U
0 0 sin �U cos �U

0
BB@

1
CCA

1 0 0 0
0 1 0 0
0 0 cos �L � sin �L
0 0 sin �L cos �L

0
BB@

1
CCA ð8-101aÞ

which leads to

M ¼

1 0 0 0
0 1 0 0
0 0 cosð�U þ �LÞ � sinð�U þ �LÞ
0 0 sinð�U þ �LÞ cosð�U þ �LÞ

0
BB@

1
CCA ð8-101bÞ

For the Fresnel rhomb � ¼ �U þ �L ¼ 90�, so the Mueller matrix is

M ¼

1 0 0 0
0 1 0 0
0 0 0 �1
0 0 1 0

0
BB@

1
CCA ð8-102Þ

If the incident beam is represented by

S ¼

S0

S1

S2

S3

0
BB@

1
CCA ð8-103Þ

then the Stokes vector of the beam emerging from the Fresnel rhomb is found
by multiplication of (8-103) by (8-102) to be

S0
¼

1 0 0 0
0 1 0 0
0 0 0 �1
0 0 1 0

0
BB@

1
CCA

S0

S1

S2

S3

0
BB@

1
CCA ¼

S0

S1

�S3

S2

0
BB@

1
CCA ð8-104Þ

If the incident beam is linear þ45� polarized light then its Stokes vector is

S ¼ I0

1
0
1
0

0
BB@

1
CCA ð8-105Þ

Figure 8-16 The Fresnel rhomb.
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we see that the Stokes vector of the emerging beam is

S ¼ I0

1
0
0
1

0
BB@

1
CCA ð8-106Þ

which is, of course, the Stokes vector of right circularly polarized light. Fresnel
was the first to design and construct the rhombohedral prism which bears his
name. He then used the prism to create circularly polarized light. Before Fresnel
did so, no one had ever created circularly polarized light! This success was another
triumph for his wave theory and his amplitude formulation of polarized light.

The major advantage of casting the problem of reflection and transmission
at an optical interface into the formalism of the Mueller matrix calculus and
the Stokes parameters is that we then have a single formulation for treating any
polarization problem. In particular, very simple forms of the Mueller matrix arise at
an incidence angle of 0�, the Brewster angle �iB , an incidence angle of 45�, and TIR.
However, in practice we usually deal with optical materials of finite thickness.
We therefore now extend the results in this chapter toward treating the problem
of reflection and transmission by dielectric plates.
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9

The Mathematics of the Mueller Matrix

9.1 INTRODUCTION

Mathematical development to better understand and describe the information
contained in the Mueller matrix is given in this chapter. The experimental Mueller
matrix can be a complicated function of polarization, depolarization, and noise.
How do we separate the specific information we are interested in, e.g., depolarization
or retardance, from the measured Mueller matrix? When does an experimental
matrix represent a physically realizable polarization element and when does it not?
If it does not represent a physically realizable polarization element, how do
we extract that information which will give us information about the equivalent
physically realizable element? These are the questions we attempt to answer in this
chapter.

Two algebraic systems have been developed for the solution of polarization
problems in optics, the Jones formalism and the Mueller formalism. The Jones
formalism is a natural consequence of the mathematical phase and amplitude
description of light. The Mueller formalism comes from experimental considerations
of the intensity measurements of polarized light.

R.C. Jones developed the Jones formalism in a series of papers published in
the 1940s [1–3] and reprinted in a collection of historically significant papers on
polarization [4]. The Jones formalism uses Jones vectors, two element vectors that
describe the polarization state of light, and Jones matrices, 2� 2 matrices that
describe optical elements. The vectors are complex and describe the amplitude
and phase of the light, i.e.,

J
*
ðtÞ ¼

E
*

xðtÞ

E
*

yðtÞ

 !
ð9-1Þ

is a time-dependent Jones vector where E
*

x, E
*
y are the x and y components of the

electric field of light traveling along the z axis. The matrices are also complex and
describe the action in both amplitude and phase of optical elements on a light beam.
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The Jones matrix is of the form:

J ¼
j11 j12
j21 j22

� �
ð9-2Þ

where the elements jij ¼ aij þ ibij are complex. The two elements of the Jones vector
are orthogonal and typically represent the horizontal and vertical polarization
states. The four elements of the Jones matrix make up the transfer function from
the input to the output Jones vector. Since these elements are complex, the Jones
matrix contains eight constants and has eight degrees of freedom corresponding to
the eight kinds of polarization behavior. A physically realizable polarization element
results from any Jones matrix, i.e., there are no physical restrictions on the values of
the Jones matrix elements. The Jones formalism is discussed in more detail in
Chapter 11.

The Mueller formalism, already discussed in previous chapters but reviewed
here, owes its name to Hans Mueller, who built on the work of Stokes [5], Soleillet
[6], and Perrin [7] to formalize polarization calculations based on intensity. This
work, as Jones’, was also done during the 1940s but originally appeared in a now
declassified report [8] and in a course of lectures at M.I.T. in 1945–1946. As we have
learned, the Mueller formalism uses the Stokes vector to represent the polarization
state. The Mueller matrix is a 4� 4 matrix of real numbers. There is redundancy
built into the Mueller matrix, since only seven of its elements are independent if
there is no depolarization in the optical system. In the most general case, the Mueller
matrix can have 16 independent elements; however, not every 4� 4 Mueller matrix is
a physically realizable polarizing element.

For each Jones matrix, there is a corresponding Mueller matrix. On conversion
to a Mueller matrix, the Jones matrix phase information is discarded. A matrix
with eight pieces of information is transformed to a matrix with seven pieces of
information. Transformation equations for converting Jones matrices to Mueller
matrices are given in Appendix C. The Mueller matrices can also be generated
from equations. The Jones matrix is related to the Mueller matrix by

M ¼ AðJ� J�ÞA�1
ð9-3Þ

where � denotes the Kronecker product and A is

A ¼

1 0 0 1

1 0 0 �1

0 1 1 0

0 i �i 0

2
6664

3
7775 ð9-4Þ

The elements of the Mueller matrix can also be obtained from the relation:

mij ¼
1

2
TrðJ	iJ

y	jÞ ð9-5Þ

where Jy is the Hermitian conjugate of J and the 	 are the set of four 2� 2 matrices
that comprise the identity matrix and the Pauli matrices (see Section 9.3).

The Jones matrix cannot represent a depolarizer or scatterer. The Mueller
matrix can represent depolarizers and scatterers (see, e.g., [9]). Since the Mueller
matrix contains information on depolarization, the conversion of Mueller matrices
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to Jones matrices must discard depolarization information. There is no phase
information in a Mueller matrix, and the conversion conserves seven degrees of
freedom.

The Mueller formalism has two advantages for experimental work over the
Jones formalism. The intensity is represented explicitly in the Mueller formalism,
and scattering can be included in the calculations. The Jones formalism is easier to
use and more elegant for theoretical studies.

9.2 CONSTRAINTS ON THE MUELLER MATRIX

The issue of constraints on the Mueller matrix has been investigated by a number
of researchers, e.g., [10–15]. The fundamental requirement that Mueller matrices
must meet in order to be physically realizable is that they map physical incident
Stokes vectors into physical resultant Stokes vectors. This recalls our requirement on
Stokes vectors that the degree of polarization must always be less than or equal to
one, i.e.,

P ¼
ðS2

1 þ S2
2 þ S2

3Þ
1=2

S0

	 1 ð9-6Þ

A well-known constraint on the Mueller matrix is the inequality [16]:

TrðMMT
Þ ¼

X3
i, j¼0

m2
ij 	 4m2

00 ð9-7Þ

The equals sign applies for nondepolarizing systems and the inequality otherwise.
Many more constraints on Mueller matrix elements have been recorded.

However, we shall not attempt to list or even to discuss them further here.
The reason for this is that they may be largely irrelevant when one is making
measurements with real optical systems. The measured Mueller matrices are
a mixture of pure (nondepolarizing) states, depolarization, and certainly noise
(optical and electronic). Is the magnitude of a particular Mueller matrix element
due to diattenuation or retardance or is it really noise, or is it a mixture? If it is a
mixture, what are the proportions? It is the responsibility of the experimenter to
reduce noise sources as much as possible, determine the physical realizability of his
Mueller matrices, and if they are not physically realizable, find the closest physically
realizable Mueller matrices. A method of finding the closest physically realizable
Mueller matrix and a method of decomposing nondepolarizing and depolarizing
Mueller matrices are discussed in the remaining sections of this chapter.
These are very important and provide useful results; however, only so much can
be done to reduce noise intrusion. A study was done [17] to follow error propagation
in the process of finding the best estimates, and it was found that the noise
was reduced by one-third in nondepolarizing systems and reduced by one-tenth
in depolarizing systems in going from the nonphysical matrix to the closest
physically realizable matrix. The reduction is significant and worth doing, but no
method can completely eliminate measurement noise. We will give examples in
Section 9.4.
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9.3 EIGENVECTOR AND EIGENVALUE ANALYSIS

Cloude [18,19] has formulated a method to obtain polarization characteristics and
answer the question of physical realizability. Any 2� 2 matrix J (in particular, a
Jones matrix) can be expressed as

J ¼
X
i

ki	i ð9-8Þ

where the 	i are the Pauli matrices:

	1 ¼
1 0
0 �1

� �
	2 ¼

0 1
1 0

� �
	3 ¼

0 �i
i 0

� �
ð9-9Þ

with the addition of the identity matrix:

	0 ¼
1 0
0 1

� �
ð9-10Þ

and the ki are complex coefficients given by

ki ¼
1

2
TrðJ � 	iÞ ð9-11Þ

The components of this vector can also be written:

k0 ¼
1

2
ð j11 þ j22Þ ð9-12Þ

k1 ¼
1

2
ð j11 � j22Þ ð9-13Þ

k2 ¼
1

2
ð j12 þ j21Þ ð9-14Þ

k3 ¼
i

2
ð j12 � j21Þ ð9-15Þ

Cloude introduces a 4� 4 Hermitian ‘‘target coherency matrix’’ obtained from the
tensor product of the k’s, i.e.,

Tc ¼ k� k�T ð9-16Þ

The elements of the Mueller matrix are given in terms of the Jones matrix as

mij ¼
1

2
TrðJ	iJ

y	jÞ ð9-17Þ

and Cloude shows that this can also be written as

mij ¼
1

2
TrðTc�4iþjÞ ð9-18Þ

where the � are the 16 Dirac matrices, a set of matrices which form a basis for 4� 4
matrices. The Dirac matrices are shown in Table 9-1.

The matrix Tc can be expressed as

Tc ¼ mij	i � 	j ð9-19Þ
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where

	i � 	j ð9-20Þ

are the Dirac matrices. Tc can be written in the parametric form:

A0 þ A C� iD Hþ iG I� iJ

Cþ iD B0 þ B Eþ iF K� iL

H� iG E� iF B0 � B Mþ iN

Iþ iJ Kþ iL M� iN A0 � A

0
BBBB@

1
CCCCA ð9-21Þ

where A through N are real numbers. If these real numbers are arranged into a 4� 4
matrix where the ijth element is the expansion coefficient of the Dirac matrix �4iþj

then the matrix:

A0 þ B0 CþN Hþ L Fþ I

C�N Aþ B Eþ J Gþ K

H� L E� J A� B DþM

I� F K� G M�D A0 � B0

0
BBBB@

1
CCCCA ð9-22Þ

is just the Mueller matrix when Tc is expressed in the Pauli base. The coherency
matrix is then obtained from the experimental Mueller matrix by solving for the real

Table 9-1 Dirac Matrices

�0 �1 �2 �3

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0
BB@

1
CCA

0 1 0 0
1 0 0 0
0 0 0 i
0 0 �1 0

0
BB@

1
CCA

0 0 1 0
0 0 0 �i
1 0 0 0
0 i 0 0

0
BB@

1
CCA

0 0 0 1
0 0 i 0
0 �i 0 0
1 0 0 0

0
BB@

1
CCA

�4 �5 �6 �7

0 1 0 0
1 0 0 0
0 0 0 �i
0 0 i 0

0
BB@

1
CCA

1 0 0 0
0 1 0 0
0 0 �i 0
0 0 0 �1

0
BB@

1
CCA

0 0 0 �i
0 0 1 0
0 1 0 0
i 0 0 0

0
BB@

1
CCA

0 0 i 0
0 0 0 1
�i 0 0 0
0 1 0 0

0
BB@

1
CCA

�8 �9 �10 �11

0 0 1 0
0 0 0 i
1 0 0 0
0 �i 0 0

0
BB@

1
CCA

0 0 0 i
0 0 1 0
0 1 0 0
�i 0 0 0

0
BB@

1
CCA

1 0 0 0
0 �1 0 0
0 0 1 0
0 0 0 �1

0
BB@

1
CCA

0 �i 0 0
i 0 0 0
0 0 0 1
0 0 1 0

0
BB@

1
CCA

�12 �13 �14 �15

0 0 0 1
0 0 �i 0
0 i 0 0
1 0 0 0

0
BB@

1
CCA

0 0 �i 0
0 0 0 1
i 0 0 0
0 1 0 0

0
BB@

1
CCA

0 i 0 0
�i 0 0 0
0 0 0 1
0 0 1 0

0
BB@

1
CCA

1 0 0 0
0 �1 0 0
0 0 �1 0
0 0 0 1

0
BB@

1
CCA

Copyright © 2003 by Marcel Dekker, Inc. All Rights Reserved.



elements A through N. When this is done the elements of the coherency matrix are
found to be

t11 ¼
m11 þm22 þm33 þm44

2
ð9-23Þ

t12 ¼
m12 þm21 � iðm34 �m43Þ

2
ð9-24Þ

t13 ¼
m13 þm31 þ iðm24 �m42Þ

2
ð9-25Þ

t14 ¼
m14 þm41 � iðm23 �m32Þ

2
ð9-26Þ

t21 ¼
m12 þm21 þ iðm34 �m43Þ

2
ð9-27Þ

t22 ¼
m11 þm22 �m33 �m44

2
ð9-28Þ

t23 ¼
m23 þm32 þ iðm14 �m41Þ

2
ð9-29Þ

t24 ¼
m24 þm42 � iðm13 �m31Þ

2
ð9-30Þ

t31 ¼
m13 þm31 � iðm24 �m42Þ

2
ð9-31Þ

t32 ¼
m23 þm32 � iðm14 �m41Þ

2
ð9-32Þ

t33 ¼
m11 �m22 þm33 �m44

2
ð9-33Þ

t34 ¼
m34 þm43 þ iðm12 �m21Þ

2
ð9-34Þ

t41 ¼
m14 þm41 þ iðm23 �m32Þ

2
ð9-35Þ

t42 ¼
m24 þm42 þ iðm13 �m31Þ

2
ð9-36Þ

t43 ¼
m34 þm43 � iðm12 �m21Þ

2
ð9-37Þ

t44 ¼
m11 �m22 �m33 þm44

2
ð9-38Þ

The eigensystem for the coherency matrix Tc can be found and provides the
decomposition of Tc into four components i.e.,

Tc ¼ 
1Tc1 þ 
2Tc2 þ 
3Tc3 þ 
4Tc4 ð9-39Þ

where the 
 are the eigenvalues of Tc and

Tci ¼ ki � k�Ti ð9-40Þ

are the eigenvectors. The eigenvalues of Tc are real since Tc is Hermitian. The
eigenvectors are in general complex. Each eigenvalue/eigenvector corresponds to
a Jones matrix (and every Jones matrix corresponds to a physically realizable
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polarization element). The Jones matrix corresponding to the dominant eigenvalue is
the matrix that describes the dominant polarizing action of the element. Extraction of
this Jones matrix may be of interest for some applications: however, here the proper-
ties of the sample are most important.

These properties may be found with the realization that the eigenvector
corresponding to the dominant eigenvalue is the quantity known as the C-vector
[20]. The eigenvector components are the coefficients of the Pauli matrices in the
decomposition of the Jones matrix: this is identical to the definition of the C-vector.
The components of the C-vector give the information shown in Table 9.2.

Cloude has shown that for an experimental Mueller matrix to be physically
realizable, the eigenvalues of the corresponding coherency matrix must be non-
negative. The ratio of negative to positive eigenvalues is a quantitative measure of
the realizability of the measured matrix. Further, a matrix that is not physically
realizable can be ‘‘filtered,’’ or made realizable by subtracting the component
corresponding to the negative eigenvalue from the coherency matrix. Calculation
of a new Mueller matrix then yields one that may include errors and scattering, but
one that can be constructed from real polarization components.

9.4 EXAMPLE OF EIGENVECTOR ANALYSIS

In this section, a simple example of the calculations described in Section 9.3 is
given. We will also give examples of the calculations to derive the closest physically
realizable Mueller matrix from experimentally measured matrices.

The Mueller matrix for a partial linear polarizer with principal intensity
transmission coefficients k1 ¼ 0.64 and k2 ¼ 0.36 along the principal axes and
having an orientation � ¼ 0 is given by

0:50 0:14 0:0 0:0
0:14 0:50 0:0 0:0
0:0 0:0 0:48 0:0
0:0 0:0 0:0 0:48

2
664

3
775 ð9-41Þ

The equivalent Jones matrix is

0:8 0:0
0:0 0:6

� �
ð9-42Þ

Table 9-2 Meaning of the C-vector Components

Matrix Coefficient Meaning

	0 �0 Amplitude Absorption
	0 �0 Phase Phase

	1 �1 Amplitude Linear diattenuation along axes
	1 �1 Phase Linear retardance along axes
	2 �2 Amplitude Linear diattenuation 45�

	2 �2 Phase Linear retardance 45�

	3 �3 Amplitude Circular diattenuation
	3 �3 Phase Circular retardance
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The Cloude coherency matrix is

0:98 0:14 0:0 0:0

0:14 0:02 0:0 0:0

0:0 0:0 0:0 0:0

0:0 0:0 0:0 0:0

2
6664

3
7775 ð9-43Þ

There is only one nonzero eigenvalue of this matrix and it has a value of one. The
eigenvector corresponding to this eigenvalue is

0:9899

0:1414

0:000

0:000

2
6664

3
7775 ð9-44Þ

where the second element of this vector is the measure of the linear diattenuation.
Note that the terms corresponding to diattenuation at 45� and circular diattenuation
are zero. Now suppose that the polarizer with the same principal transmission
coefficients is rotated 40�. The Mueller matrix is

0:500000 0:024311 0:137873 0:000000

0:024360 0:480725 0:003578 0:000000

0:137900 0:003270 0:499521 0:000000

0:000000 0:000000 0:000000 0:480000

2
6664

3
7775 ð9-45Þ

The dominant eigenvalue is approximately one, and the corresponding eigenvector is

0:9899

0:0246

0:1393

0:0002i

2
6664

3
7775 ð9-46Þ

With the rotation, the original linear polarization has coupled with polarization
at 45� and circular polarization, and, in fact, the polarization at 45� is now the
largest.

The linear diattenuation can now be calculated from (1) the original Mueller
matrix, (2) the Jones matrix as found by Gerrard and Burch, and (3) the Cloude
coherency matrix eigenvector. The linear diattenuation is given by

k1 � k2
k1 þ k2

¼
0:64� 0:36

0:64þ 0:36
¼ 0:28 ð9-47Þ

Calculation of the linear diattenuation from the Jones matrix derived directly from
the Mueller matrix gives

r21 � r22
r21 þ r22

¼
0:82 � 0:62

0:82 þ 0:62
¼ 0:28 ð9-48Þ
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In the method of Cloude, the components of the eigenvector corresponding to the
dominant eigenvalue (i.e., the components of the C-vector) are given by

k0 ¼
ðr1 þ r2Þ

2
ð9-49Þ

and

k1 ¼
ðr1 � r2Þ

2
ð9-50Þ

so that, solving for r1 and r2, and calculating diattenuation, a value of 0.28 is again
obtained.

Let us now examine experimental Mueller matrices that have noise and are
not likely to be physically realizable, and convert these into the closest possible
physically realizable Mueller matrix. We will follow a slightly different prescription
(D.M. Hayes, Pers. Commun., 1996) from that given above [19]. First, create the
covariance matrix n for the experimental Mueller matrix m from the following
equations:

n11 ¼ m11 þm22 þm12 þm21 ð9-51Þ

n12 ¼ n21 ð9-52Þ

n13 ¼ n31 ð9-53Þ

n14 ¼ n41 ð9-54Þ

n21 ¼ m13 þm23 � iðm14 þm24Þ ð9-55Þ

n22 ¼ m11 �m22 �m12 þm21 ð9-56Þ

n23 ¼ n32 ð9-57Þ

n24 ¼ n42 ð9-58Þ

n31 ¼ m31 þm32 þ iðm41 þm42Þ ð9-59Þ

n32 ¼ m33 �m44 þ iðm34 þm43Þ ð9-60Þ

n33 ¼ m11 �m22 þm12 �m21 ð9-61Þ

n34 ¼ n43 ð9-62Þ

n41 ¼ m33 þm44 � iðm34 �m43Þ ð9-63Þ

n42 ¼ m31 �m32 þ iðm41 �m42Þ ð9-64Þ

n43 ¼ m13 �m23 � iðm14 �m24Þ ð9-65Þ

n44 ¼ m11 þm22 �m12 �m21 ð9-66Þ

Since this results in a Hermitian matrix, the eigenvalues will be real and the eigen-
vectors orthogonal. Now find the eigenvalues and eigenvectors of this matrix, and
form a diagonal matrix from the eigenvalues, i.e.,

� ¼


1 0 0 0
0 
2 0 0
0 0 
3 0
0 0 0 
4

2
664

3
775 ð9-67Þ
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We now set any negative eigenvalues in � equal to zero because negative
eigenvalues correspond to nonphysical components. Construct a matrix V composed
of the eigenvectors of n and perform the similarity transform:

N ¼ V�V�1
ð9-68Þ

where N is the covariance matrix corresponding to the closest physical Mueller
matrix to m. Finally, construct the physical Mueller matrix using the linear trans-
formation:

M21 ¼
N11 þN22 �N33 �N44

2
ð9-69Þ

M12 ¼ M21 þN33 �N22 ð9-70Þ

M22 ¼ N11 �N22 �M12 ð9-71Þ

M11 ¼ 2N11 �M22 �M12 �M21 ð9-72Þ

M13 ¼ ReðN21 þN43Þ ð9-73Þ

M23 ¼ Reð2N21Þ �M13 ð9-74Þ

M31 ¼ ReðN31 þN42Þ ð9-75Þ

M32 ¼ Reð2N31Þ �M31 ð9-76Þ

M33 ¼ ReðN41 þN32Þ ð9-77Þ

M44 ¼ Reð2N41Þ �M33 ð9-78Þ

M14 ¼ �ImðN21 þN43Þ ð9-79Þ

M24 ¼ Imð2N43Þ þM14 ð9-80Þ

M41 ¼ ImðN31 þN42Þ ð9-81Þ

M42 ¼ Imð2N31Þ �M41 ð9-82Þ

M43 ¼ ImðN41 þN32Þ ð9-83Þ

M34 ¼ Imð2N32Þ �M43 ð9-84Þ

Let us now show numerical examples. The first example is an experimental
calibration matrix for a rotating retarder polarimeter. The (normalized) matrix,
which should ideally be the identity matrix, is

0:978 0 0:003 0:005

0 1:000 �0:007 0:006

0 0:007 0:999 �0:007

0:005 �0:003 �0:002 0:994

2
6664

3
7775 ð9-85Þ

The eigenvalues of the corresponding coherency matrix are, written in vector form,

1:986 �0:016 �0:007 �0:005
 �

ð9-86Þ

Copyright © 2003 by Marcel Dekker, Inc. All Rights Reserved.



Three of these eigenvalues are negative so that the three corresponding eigenvalues
must be removed (substracted) from the diagonal matrix formed by the set of four
eigenvalues. In this case, the filtered matrix is

0:993 0 0:002 0:005

0 0:993 0 0

0:002 0 0:993 0

0:005 0 0 0:993

2
6664

3
7775 ð9-87Þ

The eigenvalue ratio, the ratio of the negative eigenvalue to the dominant eigenvalue
in decibels, is a measure of the closeness to realizability. For this example the ratio of
the largest negative eigenvalue to the dominant eigenvalue is approximately �21 dB.
The original matrix was quite close to being physically realizable.

In a second example we have the case of a quartz plate that has its optic axis
misaligned from the optical axis, inducing a small birefringence. The measured
matrix was

1:000 0:019 0:021 �0:130

�0:024 �0:731 �0:726 0:005

0:008 0:673 �0:688 �0:351

�0:009 0:259 �0:247 0:965

2
6664

3
7775 ð9-88Þ

The eigenvalues of the corresponding coherency matrix are

2:045 �0:073 0:046 �0:017
 �

ð9-89Þ

and the eigenvalue ratio is approximately �14.5 dB. In this case there are two
negative eigenvalues that must be subtracted. The filtered matrix becomes

0:737 �0:005 0:006 �0:067
�0:005 �0:987 �0:024 0:131
0:006 �0:024 �0:989 �0:304
�0:067 0:131 �0:304 0:674

2
664

3
775 ð9-90Þ

9.5 THE LU–CHIPMAN DECOMPOSITION

Given an experimental Mueller matrix, we would like to be able to separate the
diattenuation, retardance, and depolarization. A number of researchers had
addressed this issue e.g., [21, 22] for nondepolarizing matrices. A general decomposi-
tion, a significant and extremely useful development, was only derived with the work
of Lu and Chipman. This polar decomposition, which we call the Lu–Chipman
decomposition [23, 24], allows a Mueller matrix to be decomposed into the product
of the three factors.

Let us first review the nondepolarizing factors of diattenuation and retardance
in this context. Diattenuation changes the intensity transmittances of the incident
polarization states. The diattenuation is defined as

D �
Tmax � Tmin

Tmax þ Tmin

ð9-91Þ
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and takes values from 0 to 1. Eigenpolarizations are polarization states that are
transmitted unchanged by an optical element except for a change in phase and
intensity. A diattenuator has two eigenpolarizations. For example, a horizontal
polarizer has the eigenpolarizations of horizontal polarization and vertical
polarization. If the eigenpolarizations are orthogonal, the element is a homogeneous
polarization element, and is inhomogeneous otherwise. The axis of diattenuation is
along the direction of the eigenpolarization with the larger transmittance. Let this
diattenuation axis be along the eigenpolarization described by the Stokes vector:

ð 1 d1 d2 d3Þ
T
¼ ð1, D̂DT

Þ
T ð9-92Þ

where ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d 2
1 þ d 2

2 þ d 2
3

q
¼ jD̂Dj ¼ 1 ð9-93Þ

Let us define a diattenuation vector:

D
*

� DD̂D ¼

Dd1

Dd2

Dd3

0
B@

1
CA ¼

DH

D45

DC

0
B@

1
CA ð9-94Þ

where DH is the horizontal diattenuation, D45 is the 45
� linear diattenuation, and DC

is the circular diattenuation. The linear diattenuation is defined as

DL �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

H þD2
45

q
ð9-95Þ

and the total diattenuation is

D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

H þD2
45 þD2

C

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

L þD2
C

q
¼ jD

*
j ð9-96Þ

The diattenuation vector provides a complete description of the diattenuation
properties of a diattenuator.

The intensity transmittance can be written as the ratio of energies in the exiting
to incident Stokes vector:

T ¼
s00
s0

¼
m00s0 þm01s1 þm02s2 þm03s3

s0
ð9-97Þ

where there is an intervening element with Mueller matrix M. The first row of the
Mueller matrix completely determines the intensity transmittance. Equation (9-97)
can be rewritten as

T ¼ m00 þ
m
*
� s
*

s0
ð9-98Þ

where the vectors are defined as m
*

� ðm01,m02,m03Þ and s
*

� ðs1, s2, s3Þ. The
maximum and minimum values of the dot product can be taken to be

s
*
�m
*

¼ s0jm
*
j ð9-99Þ
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and

s
*
�m
*

¼ �s0jm
*
j ð9-100Þ

so that the maximum and minimum transmittances Tmax and Tmin are

Tmax ¼ m00 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

01 þm2
02 þm2

03

q
ð9-101Þ

Tmin ¼ m00 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

01 þm2
02 þm2

03

q
ð9-102Þ

The normalized Stokes vectors associated with Tmax and Tmin are

ŜSmax ¼

1

m01

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

01 þm2
02 þm2

03

q
m02

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

01 þm2
02 þm2

03

q
m03

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

01 þm2
02 þm2

03

q

0
BBBBBBBB@

1
CCCCCCCCA

ð9-103Þ

and

ŜSmin ¼

1

�m01

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

01 þm2
02 þm2

03

q
�m02

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

01 þm2
02 þm2

03

q
�m03

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

01 þm2
02 þm2

03

q

0
BBBBBBBBB@

1
CCCCCCCCCA

ð9-104Þ

The diattenuation of the Mueller matrix is

D ¼
Tmax � Tmin

Tmax þ Tmin

¼
1

m00

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

01 þm2
02 þm2

03

q
ð9-105Þ

and the axis of diattenuation is along the maximum transmittance and thus the
direction of ŜSmax. The axis of diattenuation is along the state ŜSmax and the diatten-
uation vector of the Mueller matrix is then given by

D
*

¼

DH

D45

DC

0
@

1
A ¼

1

m00

m01

m02

m03

0
@

1
A ð9-106Þ

so that the first row of a Mueller matrix gives its diattenuation vector. The expres-
sions for ŜSmax and ŜSmin can be written as

ŜSmax ¼
1
D̂D

� �
ð9-107Þ

and

ŜSmin ¼
1

�D̂D

� �
ð9-108Þ
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Operational definitions for the components of the diattenuation vector are given by

TH � TV

TH þ TV

¼
m01

m00

¼ DH ð9-109Þ

T45 � T135

T45 þ T135

¼
m02

m00

¼ D45 ð9-110Þ

TR � TL

TR þ TL

¼
m03

m00

¼ DC ð9-111Þ

where TH is the transmittance for horizontally polarized light, TV is the transmit-
tance for vertically polarized light, T45 is the transmittance for linear 45� polarized
light, T135 is the transmittance for linear 135� polarized light, TR is the transmittance
for right circularly polarized light, and TL is the transmittance for left circularly
polarized light.

Now consider that we have incident unpolarized light, i.e., only one element of
the incident Stokes vector is nonzero. The exiting state is determined completely by
the first column of the Mueller matrix. The polarization resulting from changing
completely unpolarized light to polarized light is called polarizance. The polarizance
is given by

P ¼
1

m00

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

10 þm2
20 þm2

30

q
ð9-112Þ

and can take values from 0 to 1. A normalized polarizance vector is given by

P
*

�

PH

P45

PR

0
@

1
A ¼

1

m00

m10

m20

m30

0
@

1
A ð9-113Þ

The components of the polarizance vector are equal to the horizontal degree of
polarization, 45� linear degree of polarization, and circular degree of polarization
resulting from incident unpolarized light.

Retarders are phase-changing devices and have constant intensity transmit-
tance for any incident polarization state. Eigenpolarizations are defined for retarders
according to the phase changes they produce. The component of light with leading
phase has its eigenpolarization along the fast axis (see Chaps. 24 and 26) of the
retarder. Let us define a vector along this direction:

ð 1, a1, a2, a3Þ
T
¼ ð 1, R̂RT

Þ
T ð9-114Þ

where ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 þ a22 þ a23

q
¼ jR̂Rj ¼ 1 ð9-115Þ

The retardance vector and the fast axis are described by

R
*

� RR̂R ¼

Ra1
Ra2
Ra3

0
@

1
A �

RH

R45

RC

0
@

1
A ð9-116Þ
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where the components of R
*

give the horizontal, 45� linear, and circular retardance
components. The net linear retardance is

RL ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

H þ R2
45

q
ð9-117Þ

and the total retardance is

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

H þ R2
45 þ R2

C

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

L þ R2
C

q
¼ jR

*
j ð9-118Þ

Now that we have laid the groundwork for nondepolarizing Mueller matrices,
let us consider the decomposition of these matrices. Nondepolarizing Mueller
matrices can be written as the product of a retarder and diattenuator, i.e.,

M ¼ MRMD ð9-119Þ

where MR is the Mueller matrix of a pure retarder and MD is the Mueller matrix of a
pure diattenuator. A normalized Mueller matrix M can be written:

M ¼

1 m01 m02 m03

m10 m11 m12 m13

m20 m21 m22 m23

m30 m31 m32 m33

0
BB@

1
CCA ¼ 1 D

*T

P
*

m

 !
ð9-120Þ

where the submatrix m is

m ¼

m11 m12 m13

m21 m22 m23

m31 m32 m33

0
@

1
A ð9-121Þ

and D
*

and P
*

are the diattenuation and polarizance vectors as given in (9.106) and
(9.113). The diattenuatorMD is calculated from the first row ofM, andM�1

D can then
be multiplied by M to obtain the retarder matrix MR ¼ MM�1

D . The diattenuator
matrix is given by

MD ¼
1 D

*T

D
*

mD

 !
ð9-122Þ

where

mD ¼ aI3 þ b D
*
�D
*T� �

ð9-123Þ

and where I3 is the 3� 3 identity matrix, and a and b are scalars derived from the
norm of the diattenuation vector, i.e.,

D ¼ jD
*
j ð9-124Þ

a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�D2

p
ð9-125Þ

b ¼
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�D2

p

D2
ð9-126Þ
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Writing the diattenuator matrix out, we have

MD ¼

1 m01 m02 m03

m01 aþ bm2
01 bm01m02 bm01m03

m02 bm02m01 aþ bm2
02 bm02m03

m03 bm03m01 bm03m02 aþ bm2
03

0
BBBB@

1
CCCCA ð9-127Þ

where

a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðm2

01 þm2
02 þm2

03

q
Þ ð9-128Þ

and

b ¼
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðm2

01 þm2
02 þm2

03Þ

q
ðm2

01 þm2
02 þm2

03Þ
ð9-129Þ

M�1
D is then given by

M�1
D ¼

1

a2
1 �D

*T

�D
*

I3

 !
þ

1

a2ðaþ 1Þ
0 0

*T

0
*

ðD
*
�D
*T

Þ

 !
ð9-130Þ

The retarder matrix is

MR ¼ 1 0
*T

0
*

mR

 !
ð9-131Þ

where

mR ¼
1

a
m� bðP

*
�D
*T

Þ

h i
ð9-132Þ

The retarder matrix can be written explicitly as

MR ¼
1

a

a 0 0 0

0 m11 � bðm10m01Þ m12 � bðm10m02Þ m13 � bðm10m03Þ

0 m21 � bðm20m01Þ m22 � bðm20m02Þ m23 � bðm20m03Þ

0 m31 � bðm30m01Þ m32 � bðm30m02Þ m33 � bðm30m03Þ

2
6664

3
7775 ð9-133Þ

The total retardance R and the retardance vector can be found from the equations:

R ¼ jR
*
j ¼ cos�1 TrðmRÞ � 1

2

� �
0 	 R 	 � ð9-134Þ

R ¼ jR
*
j ¼ 2�� cos�1 TrðmRÞ � 1

2

� �
� 	 R 	 2� ð9-135Þ

R
*

¼

RH

R45

RC

0
@

1
A ¼

ðMRÞ23 � ðMRÞ32
ðMRÞ31 � ðMRÞ13
ðMRÞ12 � ðMRÞ21

0
@

1
A R

2 sinðRÞ
ð9-136Þ
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The total retardance is then given explicitly as

R ¼ cos�1 1

2a
½m11 þm22 þm33 � bðm10m01 þm20m02 þm30m03Þ � a�

� �
ð9-137Þ

and the retardance vector is given by

R
*
¼

m23 �m32 � bðm20m03 �m30m02Þ

m31 �m13 � bðm30m01 �m10m03Þ

m12 �m21 � bðm10m02 �m20m01Þ

2
64

3
75

�
cos�1 1=2a½m11 þm22 þm33 � bðm10m01 þm20m02 þm30m03Þ � a�ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4a2 � ½m11 þm22 þm33 � bðm10m01 þm20m02 þm30m03Þ � a�2
p ð9-138Þ

A pure depolarizer can be represented by the matrix:

1 0 0 0
0 a 0 0
0 0 b 0
0 0 0 c

2
664

3
775 ð9-139Þ

where |a|, |b|, |c| 	 1. The principal depolarization factors are 1 � |a|, 1 � |b|, and
1 � |c|, and these are measures of the depolarization of this depolarizer along its
principal axes. The parameter � given by

� � 1�
jaj þ jbj þ jcj

3
, 0 	 � 	 1 ð9-140Þ

is the average of the depolarization factors, and this parameter is called the depolar-
ization power of the depolarizer. An expression for a depolarizer can be written as

1 0
*T

0
*

m�

" #
, mT

� ¼ m� ð9-141Þ

where m� is a symmetric 3� 3 submatrix. The eigenvalues of m� are the principal
depolarization factors, and the eigenvectors are the three orthogonal principal axes.
This last expression is not the complete description of a depolarizer, because
it contains only six degrees of freedom when we require nine. The most general
expression for a depolarizer can be written as

M� ¼ 1 0
*T

P
*

� m�

" #
, mT

� ¼ m� ð9-142Þ

where P
*

� is the polarizance vector, and with this expression we have the required
nine degrees of freedom and no diattenuation or retardance. Thus, we see that a
depolarizer with a nonzero polarizance may actually have polarizing properties
according to our definition here.

Depolarizing Mueller matrices can be written as the product of the three
factors of diattenuation, retardance, and depolarization, i.e.,

M ¼ M�MRMD ð9-143Þ
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where M� is the depolarization, and this equation is the generalized polar
decomposition for depolarizing Mueller matrices. It is useful for the decomposition
of experimental Mueller matrices to allow the depolarizing component to follow the
nondepolarizing component. As in the nondepolarizing case, we first find the matrix
for the diattenuator. We then define a matrix M0 such that

M0
¼ MM�1

D ¼ M�MR ð9-144Þ

This expression can be written out as the product of the 2� 2 matrices:

M�MR ¼
1 0

*T

P
*

� m�

" #
1 0

*T

0
*

mR

" #
¼

1 0
*T

P
*

� m�mR

" #

¼
1 0

*T

P
*

� m0

" #
¼ M0

ð9-145Þ

Let 
1, 
2, and 
3 be the eigenvalues of

m0
ðm0

Þ
T
¼ m�mRðm�mRÞ

T
¼ m2

� ð9-146Þ

We can obtain the relations:

P
*

� ¼
P
*
�mD

*

1�D2
ð9-147Þ

and

m0
¼ m�mR ð9-148Þ

from (9-144) and (9-145).
The eigenvalues of m� are then

ffiffiffiffiffi

1

p
,

ffiffiffiffiffi

2

p
, and

ffiffiffiffiffi

3

p
. It should be pointed

out that there is an ambiguity in the signs of the eigenvalues [17]. The retarder
submatrix mR is a rotation matrix and has a positive determinant so that the sign
of the determinant of m0 indicates the sign of the determinant of m�. The
assumption that the eigenvalues all have the same sign is reasonable, especially
since depolarization in measured systems is usually small and the eigenvalues
are close to one. This assumption simplifies the expression for m�. An expression
for m� is given by, from the Cayley–Hamilton theorem (a matrix is a root of its
characteristic polynomial),

m� ¼ �½m0
ðm0

Þ
T
þ �2I�

�1
½�1m

0
ðm0

Þ
T
þ �3I ð9-149Þ

where

�1 ¼
ffiffiffiffiffi

1

p
þ

ffiffiffiffiffi

2

p
þ

ffiffiffiffiffi

3

p
ð9-150Þ

�2 ¼
ffiffiffiffiffiffiffiffiffiffi

1
2

p
þ

ffiffiffiffiffiffiffiffiffiffi

2
3

p
þ

ffiffiffiffiffiffiffiffiffiffi

3
1

p
ð9-151Þ

and

�3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2
3

p
ð9-152Þ
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The sign in front of the expression on the right-hand side in Eq. (9-149) follows
the sign of the determinant of m0. We can now find mR from the application of m�1

�

to m0, i.e.,

mr ¼ m�1
� m0

¼ �½�1m
0
ðm0

Þ
T
þ �3I�

�1
½m0

ðm0
Þ
Tm0

þ �2m
0
� ð9-153Þ

The eigenvalues 
1, 
2, and 
3 can be found in terms of the original Mueller matrix
elements by solving a cubic equation, but the expressions that result are long and
complicated. It is more feasible to find the �’s. We have

�3 ¼ detðm�Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðm2

�Þ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det½m0ðm0Þ

T
�

q
¼ detðm0

Þ ð9-154Þ

Recall that M0
¼ M(M�)

�1 has the form:

M0
¼ 1 0

*T

P
*

� m0

" #
ð9-155Þ

so that

�3 ¼ detðm0
Þ ¼ detðM0

Þ ¼ detðMÞ detðM�1
� Þ ¼

detðMÞ

detðM�Þ
¼

detðMÞ

a4
ð9-156Þ

Let us define a �1 and �2 such that

�1 ¼ Tr½m2
�� ¼ 
1 þ 
2 þ 
3 ð9-157Þ

and

�2 ¼ Tr½�23ðm
2
�Þ

�1
� ¼ 
1
2 þ 
1
3 þ 
2
3 ð9-158Þ

Then �1 satisfies the recursive equation:

�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �3�1

p
q

ð9-159Þ

This can be approximated by

�1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 2�3

ffiffiffiffi
�1

p
qr

ð9-160Þ

Since

�2 ¼
1

2
½�21 � �1� ð9-161Þ

we can use the approximation for �1 to obtain the approximation for �2:

�2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 2�3

ffiffiffiffi
�1

p
q

ð9-162Þ

Expressions for �1 and �2 are given in terms of the original Mueller matrix
elements and the elements of m2

�:

�1 ¼
1

a2

X3
i, j¼1

m2
i, j �

X3
i¼1

m2
i, 0

" #
þ

1

a4

X3
i¼1

mi, 0 �
X3
j¼1

mi, jm0, j

 !2
2
4

3
5 ð9-163Þ
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and

�2 ¼ m�2, 2
m�3, 3

þm�1, 1
m�3, 3

þm�1, 1
m�2, 2

� m2
�2, 3

þm2
�1, 3

þm2
�1, 2

� �
ð9-164Þ

where the elements of m2
� are

m2
� ¼

m�1, 1
m�1, 2

m�1, 3

m�2, 1
m�2, 2

m�2, 3

m�3, 1
m�3, 2

m�3, 3

2
4

3
5 ð9-165Þ

where we note that m�i, j
¼ m�j, i

and

m�i, j
¼

1

a2

X3
k¼1

mikmjk

 !
�mi0mj0

" #
þ

1

a4
mi0 �

X3
k¼1

mikm0k

" #
mj0 �

X3
k¼1

mjkm0k

" #

ð9-166Þ

We can then write:

�23ðm
2
�Þ

�1
¼

m�2,2
m�3,3

�m2
�2,3

m�1,3
m�2,3

�m�1,2
m�3,3

m�1,2
m�2,3

�m�2,2
m�2,3

m�1,3
m�2,3

�m�1,2
m�3,3

m�1,1
m�3,3

�m2
�1,3

m�1,2
m�1,3

�m�1,1
m�2,3

m�1,2
m�2,3

�m�2,2
m�2,3

m�1,2
m�1,3

�m�1,1
m�2,3

m�1,1
m�2,2

�m2
�1,2

2
664

3
775

ð9-167Þ

and the retarder rotation matrix is given by

mR ¼ m�1
� m0

¼
1

�1
I� �m2

� þ ��23ðm
2
�Þ

�1
 �

m0
ð9-168Þ

If we can find approximations for the depolarizer eigenvalues
ffiffiffiffiffi

1

p
,

ffiffiffiffiffi

2

p
, and

ffiffiffiffiffi

3

p
,

then we can write an expression for m�1
� as

m�1
� ¼

1

�1
I� �m2

� þ ��23ðm
2
�Þ

�1
 �

ð9-169Þ

where

 ¼
ð
1 þ 
2 þ 
3Þ

ffiffiffiffiffi

1

p
þ

ffiffiffiffiffi

2

p
þ

ffiffiffiffiffi

3

p	 

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2
3

pffiffiffiffiffi

1

p
þ

ffiffiffiffiffi

2

p	 
 ffiffiffiffiffi

1

p
þ

ffiffiffiffiffi

3

p	 
 ffiffiffiffiffi

2

p
þ

ffiffiffiffiffi

3

p	 
 þ 1 ð9-170Þ

� ¼
1ffiffiffiffiffi


1
p

þ
ffiffiffiffiffi

2

p	 
 ffiffiffiffiffi

1

p
þ

ffiffiffiffiffi

3

p	 
 ffiffiffiffiffi

2

p
þ

ffiffiffiffiffi

3

p	 
 ð9-171Þ

and

� ¼

ffiffiffiffiffi

1

p
þ

ffiffiffiffiffi

2

p
þ

ffiffiffiffiffi

3

p	 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2
3

p	 
 ffiffiffiffiffi

1

p
þ

ffiffiffiffiffi

2

p	 
 ffiffiffiffiffi

1

p
þ

ffiffiffiffiffi

3

p	 
 ffiffiffiffiffi

2

p
þ

ffiffiffiffiffi

3

p	 
 ð9-172Þ
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9.6 SUMMARY

We have answered the questions posed at the beginning of this chapter. With the
material presented here, we now have the tools to determine whether or not a
Mueller matrix is physically realizable and we have a method to bring it to the
closest physically realizable matrix. We can then separate the matrix into its consti-
tuent components of diattenuation, retardance, and depolarization. We must
remember, however, that noise, once introduced into the system, is impossible to
remove entirely. The experimentalist must take prudent precautions to minimize the
influence of errors peculiar to the system at hand.
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10

The Mueller Matrices for Dielectric
Plates

10.1 INTRODUCTION

In Chapter 8, Fresnel’s equations for reflection and transmission of waves at an air–
dielectric interface were cast in the form of Mueller matrices. In this chapter we
use these results to derive the Mueller matrices for dielectric plates. The study of
dielectric plates is important because all materials of any practical importance are of
finite thickness and so at least have upper and lower surfaces. Furthermore, dielectric
plates always change the polarization state of a beam that is reflected or transmitted.
One of their most important applications is to create linearly polarized light from
unpolarized light in the infrared region. While linearly polarized light can be created
in the visible and near-infrared regions using calcite polarizers or Polaroid, there are
no corresponding materials in the far-infrared region. However, materials such as
germanium and silicon, as well as others, do transmit very well in the infrared region.
By making thin plates of these materials and then constructing a ‘‘pile of plates,’’ it
is possible to create light in the infrared that is highly polarized. This arrangement
therefore requires that the Mueller matrices for transmission play a more prominent
role than the Mueller matrices for reflection.

In order to use the Mueller matrices to characterize a single plate or multiple
plates, we must carry out matrix multiplications. The presence of off-diagonal
terms of the Mueller matrices create a considerable amount of work. We know,
on the other hand, that if we use diagonal matrices the calculations are simplified;
the product of diagonalized matrices leads to another diagonal matrix.

10.2 THE DIAGONAL MUELLER MATRIX AND THE ABCD
POLARIZATION MATRIX

When we apply the Mueller matrices to problems in which there are several polariz-
ing elements, each of which is described by its own Mueller matrix, we soon
discover that the appearance of the off-diagonal elements complicates the matrix
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multiplications. The multiplications would be greatly simplified if we were to use
diagonalized forms of the Mueller matrices. In particular, the use of diagonalized
matrices enables us to determine more easily the Mueller matrix raised to the
mth power, Mm, an important problem when we must determine the transmission
of a polarized beam through m dielectric plates.

In this chapter we develop the diagonal Mueller matrices for a polarizer and
a retarder. To reduce the amount of calculations, it is simpler to write a single
matrix that simultaneously describes the behavior of a polarizer or a retarder or a
combination of both. This simplified matrix is called the ABCD polarization matrix.

The Mueller matrix for a polarizer is

MP ¼
1

2

p2s þ p2p p2s � p2p 0 0

p2s � p2p p2s þ p2p 0 0

0 0 2pspp 0

0 0 0 2pspp

0
BBBBB@

1
CCCCCA ð10-1Þ

and the Mueller matrix for a phase shifter is

MC ¼

1 0 0 0

0 1 0 0

0 0 cos� sin �

0 0 � sin� cos�

0
BBBBB@

1
CCCCCA ð10-2Þ

where ps and pp are the absorption coefficients of the polarizer along the s (or x) and
p (or y) axes, respectively, and � is the phase shift of the retarder.

The form of (10-1) and (10-2) suggests that the matrices can be represented by
a single matrix of the form:

� ¼

A B 0 0

B A 0 0

0 0 C D

0 0 �D C

0
BBBBB@

1
CCCCCA ð10-3Þ

which we call the ABCD polarization matrix. We see that for a polarizer:

A ¼
1

2
ðp2s þ p2pÞ ð10-4aÞ

B ¼
1

2
ðp2s � p2pÞ ð10-4bÞ

C ¼
1

2
ð2psppÞ ð10-4cÞ

D ¼ 0 ð10-4dÞ
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and for the retarder

A ¼ 1 ð10-5aÞ

B ¼ 0 ð10-5bÞ

C ¼ cos� ð10-5cÞ

D ¼ sin� ð10-5dÞ

If we multiply (10-1) by (10-2), we see that we still obtain a matrix which can be
represented by an ABCD matrix; the matrix describes an absorbing retarder.

The matrix elements ABCD are not all independent; that is, there is a unique
relationship between the elements. To find this relationship, we see that (10-3) trans-
forms the Stokes parameters of an incident beam Si to the Stokes parameters of an
emerging beam S0

i so that we have

S0
0 ¼ AS0 þ BS1 ð10-6aÞ

S0
1 ¼ BS0 þ AS1 ð10-6bÞ

S0
2 ¼ CS2 þDS3 ð10-6cÞ

S0
3 ¼ �DS2 þ CS3 ð10-6dÞ

We know that for completely polarized light the Stokes parameters of the incident
beam are related by

S2
0 ¼ S2

1 þ S2
2 þ S2

3 ð10-7Þ

and, similarly,

S02
0 ¼ S02

1 þ S02
2 þ S02

3 ð10-8Þ

Substituting (10-6) into (10-8) leads to

ðA2
� B2

ÞðS2
0 � S2

1Þ ¼ ðC2
þD2

ÞðS2
2 þ S2

3Þ ð10-9Þ

But, from (10-7),

S2
0 � S2

1 ¼ S2
2 þ S2

3 ð10-10Þ

Substituting (10-10) into the right side of (10-9) gives

ðA2
� B2

� C2
�D2

ÞðS2
0 � S2

1Þ ¼ 0 ð10-11Þ

and

A2
¼ B2

þ C2
þD2

ð10-12Þ

We see that the elements of (10-4) and (10-5) satisfy (10-12). This is a very useful
relation because it serves as a check when measuring the Mueller matrix elements.

The rotation of a polarizing device described by the ABCD matrix is given by
the matrix equation:

M ¼ Mð�2�Þ�Mð2�Þ ð10-13Þ
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which in its expanded form is

M ¼

A B cos 2� B sin 2� 0

B cos 2� A2 cos2 2� þ C sin2 2� ðA� CÞ sin 2� cos 2� �D sin 2�

B sin 2� ðA� CÞ sin 2� cos 2� A sin2 2� þ C cos2 2� D cos 2�

0 D sin 2� �D cos 2� C

0
BBBB@

1
CCCCA

ð10-14Þ
In carrying out the expansion of (10-13), we used

Mð2�Þ ¼

1 0 0 0
0 cos 2� sin 2� 0
0 � sin 2� cos 2� 0
0 0 0 1

0
BB@

1
CCA ð10-15Þ

We now find the diagonalized form of the ABCD matrix. This can be done using the
well-known methods in matrix algebra. We first express (10-3) as an eigenvalue/
eigenvector equation, namely,

�S ¼ 
S ð10-16aÞ

or

ð�� 
ÞS ¼ 0 ð10-16bÞ

where 
 and S are the eigenvalues and the eigenvectors corresponding to �. In order
to find the eigenvalues and the eigenvectors, the determinant of (10-3) must be taken;
that is,

A� 
 B 0 0
B A� 
 0 0
0 0 C� 
 D
0 0 �D C� 


��������

�������� ¼ 0 ð10-17Þ

The determinant is easily expanded and leads to an equation called the secular
equation:

½ðA� 
Þ2 � B2
�½ðC� 
Þ2 þD2

� ¼ 0 ð10-18Þ

The solution of (10-18) yields the eigenvalues:


1 ¼ Aþ B ð10-19aÞ


2 ¼ A� B ð10-19bÞ


3 ¼ Cþ iD ð10-19cÞ


4 ¼ C� iD ð10-19dÞ
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Substituting these eigenvalues into (10-17), we easily find that the eigenvector
corresponding to each of the respective eigenvalues in (10-19) is

S1
¼

1ffiffiffi
2

p

1
1
0
0

0
BB@

1
CCA S2

¼
1ffiffiffi
2

p

1
�1
0
0

0
BB@

1
CCA S3

¼
1ffiffiffi
2

p

0
0
1
i

0
BB@

1
CCA S4

¼
1ffiffiffi
2

p

0
0
1
�i

0
BB@

1
CCA

ð10-20Þ

The factor 1=
ffiffiffi
2

p
has been introduced to normalize each of the eigenvectors.

We now construct a new matrix K, called the modal matrix, whose columns
are formed from each of the respective eigenvectors in (10-20):

K ¼
1ffiffiffi
2

p

1 1 0 0
1 �1 0 0
0 0 1 1
0 0 i �i

0
BB@

1
CCA ð10-21aÞ

The inverse matrix is easily found to be

K�1
¼

1ffiffiffi
2

p

1 1 0 0
1 �1 0 0
0 0 1 �i
0 0 1 i

0
BB@

1
CCA ð10-21bÞ

We see that KK�1
¼ I, where I is the unit matrix. We now construct a diagonal

matrix from each of the eigenvalues in (10-19) and write

MD ¼

Aþ B 0 0 0
0 A� B 0 0
0 0 Cþ iD 0
0 0 0 C� iD

0
BB@

1
CCA ð10-22Þ

From (10-4) the diagonal Mueller matrix for a polarizer MD,P is then

MD,P ¼

p2s 0 0 0
0 p2p 0 0
0 0 pspp 0
0 0 0 pspp

0
BB@

1
CCA ð10-23Þ

and from (10-5) the diagonal matrix for a retarder is

MD,C ¼

1 0 0 0
0 1 0 0
0 0 ei� 0
0 0 0 e�i�

0
BB@

1
CCA ð10-24Þ

A remarkable relation now emerges. From (10-21) and (10-22) one readily sees
that the following identity is true:

�K ¼ KMD ð10-25Þ
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Postmultiplying both sides of (10-25) by K�1, we see that

� ¼ KMDK
�1

ð10-26aÞ

or

MD ¼ K�1�K ð10-26bÞ

where we have used KK�1
¼ I. We now square both sides of (10-26a) and find that

�2
¼ KM2

DK
�1

ð10-27Þ

which shows that �m is obtained from

�m
¼ KMm

DK
�1

ð10-28Þ

Thus, by finding the eigenvalues and the eigenvectors of � and then constructing
the diagonal matrix and the modal matrix (and its inverse), the mth power of the
ABCD matrix � can be found from (10-28). Equation (10-26b) also allows us to
determine the diagonalized ABCD matrix �.

Equation (10-28) now enables us to find the mth power of the ABCD matrix �:

�m
¼

A B 0 0

B A 0 0

0 0 C �D

0 0 D C

0
BBB@

1
CCCA

m

¼ K

ðAþ BÞm 0 0 0

0 ðA� BÞm 0 0

0 0 ðCþ iDÞ
m 0

0 0 0 ðC� iDÞ
m

0
BBB@

1
CCCAK�1

ð10-29Þ

Carrying out the matrix multiplication using (10-21) then yields

�m
¼
1

2

h
ðAþBÞmþðA�BÞm

i h
ðAþBÞm�ðA�BÞm

i
0 0

h
ðAþBÞm�ðA�BÞm

i h
ðAþBÞmþðA�BÞm

i
0 0

0 0
h
ðCþ iDÞ

m
þðC� iDÞ

m
i h

� iðCþ iDÞ
m
þ iðC� iDÞ

m
i

0 0
h
iðCþ iDÞ

m
� iðC� iDÞ

m
i h

ðCþ iDÞ
m
þðC� iDÞ

m
i

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

(10-30)

Using (10-30) we readily find that the mth powers of the Mueller matrix of a
polarizer and a retarder are, respectively,

Mm
p ¼

1

2

p2ms þ p2mp p2ms � p2mp 0 0

p2ms � p2mp p2ms þ p2mp 0 0

0 0 2pms p
m
p 0

0 0 0 2pms p
m
p

0
BBBB@

1
CCCCA ð10-31Þ
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and

Mm
C ¼

1 0 0 0
0 1 0 0
0 0 cosm� sinm�
0 0 � sinm� cosm�

0
BB@

1
CCA ð10-32Þ

The diagonalized Mueller matrices will play an essential role in the following section
when we determine the Mueller matrices for single and multiple dielectric plates.

Before we conclude this section we discuss another form of the Mueller
matrix for a polarizer. We recall that the first two Stokes parameters, S0 and
S1, are the sum and difference of the orthogonal intensities. The Stokes parameters
can then be written as

S0 ¼ Ix þ Iy ð10-33aÞ

S1 ¼ Ix � Iy ð10-33bÞ

S2 ¼ S2 ð10-33cÞ

S3 ¼ S3 ð10-33dÞ

where

Ix ¼ ExE
�
x Iy ¼ EyE

�
y ð10-33eÞ

We further define

Ix ¼ I0 ð10-34aÞ

Iy ¼ I1 ð10-34bÞ

S2 ¼ I2 ð10-34cÞ

S3 ¼ I3 ð10-34dÞ

Then, we can relate S to I by

S0

S1

S2

S3

0
BB@

1
CCA ¼

1 1 0 0
1 �1 0 0
0 0 1 0
0 0 0 1

0
BB@

1
CCA

I0
I1
I2
I3

0
BB@

1
CCA ð10-35aÞ

or I to S,

I0
I1
I2
I3

0
BB@

1
CCA ¼

1

2

1 1 0 0
1 �1 0 0
0 0 2 0
0 0 0 2

0
BB@

1
CCA

S0

S1

S2

S3

0
BB@

1
CCA ð10-35bÞ

The column matrix:

I ¼

I0

I1

I2

I3

0
BBB@

1
CCCA ð10-36Þ
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is called the intensity vector. The intensity vector is very useful because the 4� 4
matrix which connects I to I 0 is diagonalized, thus making the calculations simpler.
To show that this is true, we can formally express (10-35a) and (10-35b) as

S ¼ KAI ð10-37aÞ

I ¼ K�1
A S ð10-37bÞ

where KA and K�1
A are defined by the 4� 4 matrices in (10-35), respectively. The

Mueller matrix M can be defined in terms of an incident Stokes vector S and an
emerging Stokes vector S0:

S0
¼ MS ð10-38Þ

Similarly, we can define the intensity vector relationship:

I0 ¼ P I ð10-39Þ

where P is a 4� 4 matrix.
We now show that P is diagonal. We have from (10-37a)

S0
¼ KAI

0
ð10-40Þ

Substituting (10-40) into (10-38) along with (10-37a) gives

I0 ¼ ðK�1
A MKAÞI ð10-41Þ

or, from (10-39)

P ¼ K�1
A MKA ð10-42Þ

We now show that for a polarizer P is a diagonal matrix. The Mueller matrix
for a polarizer in terms of the ABCD matrix elements can be written as

M ¼

A B 0 0

B A 0 0

0 0 C 0

0 0 0 C

0
BBBBB@

1
CCCCCA ð10-43Þ

Substituting (10-43) into (10-42) and using KA and K�1
A from (10-35), we readily find

that

P ¼

Aþ B 0 0 0

0 A� B 0 0

0 0 C 0

0 0 0 C

0
BBBBB@

1
CCCCCA ð10-44Þ

Thus, P is a diagonal polarizing matrix; it is equivalent to the diagonal
Mueller matrix for a polarizer. The diagonal form of the Mueller matrix was first
used by the Nobel laureate S. Chandrasekhar in his classic papers in radiative

Copyright © 2003 by Marcel Dekker, Inc. All Rights Reserved.



transfer in the late 1940s. It is called Chandrasekhar’s phase matrix in the literature.
In particular, for the Mueller matrix of a polarizer we see that (10-44) becomes

P ¼

p2s 0 0 0

0 p2p 0 0

0 0 pspp 0

0 0 0 pspp

0
BBBBB@

1
CCCCCA ð10-45Þ

which is identical to the diagonalized Mueller matrix given by (10-23). In Part II we
shall show that the Mueller matrix for scattering by an electron is proportional to

Mp ¼
1

2

1þ cos2 � � sin2 � 0 0

� sin2 � 1þ cos2 � 0 0

0 0 2 cos � 0

0 0 0 2 cos �

0
BBBB@

1
CCCCA ð10-46Þ

where � is the observation angle in spherical coordinates and is measured from the
z axis (� ¼ 0�). Transforming (10-46) to Chandrasekhar’s phase matrix, we find

P ¼

cos2 � 0 0 0

0 1 0 0

0 0 cos � 0

0 0 0 cos �

0
BBBB@

1
CCCCA ð10-47Þ

which is the well-known representation for Chandrasekhar’s phase matrix for the
scattering of polarized light by an electron.

Not surprisingly, there are other interesting and useful transformations which
can be developed. However, this development would take us too far from our orig-
inal goal, which is to determine the Mueller matrices for single and multiple dielectric
plates. We now apply the results in this section to the solution of this problem.

10.3 MUELLER MATRICES FOR SINGLE AND MULTIPLE
DIELECTRIC PLATES

In the previous sections, Fresnel’s equations for reflection and transmission at
an air–dielectric interface were cast into the form of Mueller matrices. In this section
we use these results to derive the Mueller matrices for dielectric plates. We first
treat the problem of determining the Mueller matrix for a single dielectric plate.
The formalism is then easily extended to multiple reflections within a single dielectric
plate and then to a pile of m parallel transparent dielectric plates.

For the problem of transmission of a polarized beam through a single dielectric
plate, the simplest treatment can be made by assuming a single transmission
through the upper surface followed by another transmission through the lower
surface. There are, of course, multiple reflections within the dielectric plates, and,
strictly speaking, these should be taken into account. While this treatment of
multiple internal reflections is straightforward, it turns out to be quite involved. In
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the treatment presented here, we choose to ignore these effects. The completely correct
treatment is given in the papers quoted in the references at the end of this chapter. The
difference between the exact results and the approximate results is quite small, and
very good results are still obtained by ignoring the multiple internal reflections.
Consequently, only the resulting expressions for multiple internal reflections are
quoted. We shall also see that the use of the diagonalized Mueller matrices developed
in the previous section greatly simplifies the treatment of all of these problems.

In Fig. 10-1 a single dielectric (glass) plate is shown. The incident beam is
described by the Stokes vector S. Inspection of the figure shows that the Stokes
vector S0 of the beam emerging from the lower side of the dielectric plate is related
to S by the matrix relation:

S0
¼ M2

TS ð10-48Þ

whereMT is the Mueller matrix for transmission and is given by (8-13) in Section 8.3.
We easily see, using (8-13), that M2

T is then

M2
T ¼

1

2

sin 2�i sin 2�r

ðsin �þ cos ��Þ
2

" #2

cos4 �� þ 1 cos4 �� � 1 0 0

cos4 �� � 1 cos4 �� þ 1 0 0

0 0 2 cos2 �� 0

0 0 0 2 cos2 ��

0
BBBB@

1
CCCCA ð10-49Þ

where �i is the angle of incidence, �r is the angle of refraction, and �� ¼ �i � �r.
Equation (10-49) is the Mueller matrix (transmission) for a single dielectric

plate. We can immediately extend this result to the transmission through m parallel
dielectric plates by raising M2

T to the mth power, this is, M2m
T . The easiest way to

do this is to transform (10-49) to the diagonal form and raise the diagonal matrix to
the mth power as described earlier. After this is done we transform back to the

Figure 10-1 Beam propagation through a single dielectric plate.
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Mueller matrix form. Upon doing this we then find that the Mueller matrix for
transmission through m parallel dielectric plates is

M2m
T ¼

1

2

sin 2�i sin 2�r

ðsin �þ cos ��Þ
2

" #2m

cos4m �� þ 1 cos4m �� � 1 0 0

cos4m �� � 1 cos4m �� þ 1 0 0

0 0 2 cos2m �� 0

0 0 0 2 cos2m ��

0
BBBBBBB@

1
CCCCCCCA

ð10-50Þ

Equation (10-50) includes the result for a single dielectric plate by setting m ¼ 1. We
now consider that the incident beam is unpolarized. Then, the Stokes vector of a
beam emerging from m parallel plates is, from (10-50),

S0
¼

1

2

sin 2�i sin 2�r

ðsin �þ cos ��Þ
2

" #2m

cos4m �� þ 1

cos4m �� � 1

0

0

0
BBBBB@

1
CCCCCA ð10-51Þ

The degree of polarization P of the emerging beam is then

P ¼
1� cos4m ��
1þ cos4m ��

�����
����� ð10-52Þ

In Fig. 10-2 a plot of (10-52) is shown for the degree of polarization as a function
of the incident angle �i. The plot shows that at least six or eight parallel plates
are required in order for the degree of polarization to approach unity. At normal
incidence the degree of polarization is always zero, regardless of the number of
plates.

The use of parallel plates to create linearly polarized light appears very
often outside the visible region of the spectrum. In the visible and near-infrared
region (<2 �m) Polaroid and calcite are available to create linearly polarized
light. Above 2 �m, parallel plates made from other materials are an important
practical way of creating linearly polarized light. Fortunately, natural materials
such as germanium are available and can be used; germanium transmits more
than 95% of the incident light up to 20 �m.

According to (10-51) the intensity of the beam emerging from m parallel plates,
IT, is

IT ¼
1

2

sin 2�i sin 2�r

ðsin �þ cos ��Þ
2

" #2m

ð1þ cos4m ��Þ ð10-53Þ

Figure 10-3 shows a plot of (10-53) for m dielectric plates.
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Figure 10-2 Plot of (10-52), the degree of polarization P versus incident angle and the
number or parallel plates. The refractive index n is 1.5.

Figure 10-3 The intensity of a beam emerging from m parallel plates as a function of the
angle of incidence. The refractive index is 1.5.
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At the Brewster angle the Mueller matrix for transmission through m dielectric
plates is readily shown from the results given in Chapter 8 and Section 10.2 to be

M2m
T,B ¼

1

2

sin4m 2�iB þ 1 sin4m 2�iB � 1 0 0

sin4m 2�iB � 1 sin4m 2�iB þ 1 0 0

0 0 2 sin2m 2�iB 0

0 0 0 2 sin2m 2�iB

0
BBBBBB@

1
CCCCCCA

ð10-54Þ

For a single dielectric plate m ¼ 1, (10-54) reduces to

M2
T,B ¼

1

2

sin4 2�iB þ 1 sin4 2�iB � 1 0 0

sin4 2�iB � 1 sin4 2�iB þ 1 0 0

0 0 2 sin2 2�iB 0

0 0 0 2 sin2 2�iB

0
BBBBBB@

1
CCCCCCA

ð10-55Þ

If the incident beam is unpolarized, the Stokes vector for the transmitted beam after
passing through m parallel dielectric plates will be

S0
¼

1

2

sin4m 2�iB þ 1

sin4m 2�iB � 1

0

0

0
BBBBB@

1
CCCCCA ð10-56Þ

The degree of polarization is then

P ¼
1� sin4m 2�iB
1þ sin4m 2�iB

�����
����� ð10-57Þ

A plot of (10-57) is shown in Fig. 10-4 for m dielectric plates.
The intensity of the transmitted beam is given by S0 in (10-56) and is

IT ¼
1

2
ð1þ sin4m 2�iBÞ ð10-58Þ

Equation (10-58) has been plotted in Fig. 10-5.
From Figs. 10-4 and 10-5 the following conclusions can be drawn. In Fig. 10-4,

there is a significant increase in the degree of polarization up to m ¼ 6. Figure 10-5,
on the other hand, shows that the intensity decreases and then begins to ‘‘level off’’
for m ¼ 6. Thus, these two figures show that after five or six parallel plates there is
very little to be gained in using more plates to increase the degree of polarization and
still maintain a ‘‘constant’’ intensity. In addition, the cost for making such large
assemblies of dielectric plates, the materials, and mechanical alignment becomes
considerable.

Dielectric plates can also rotate the orientation of the polarization ellipse.
At first this behavior may be surprising, but this is readily shown. Consider the

Copyright © 2003 by Marcel Dekker, Inc. All Rights Reserved.



Figure 10-4 Plot of the degree of polarization P versus number of dielectric plates at the
Brewster angle for refractive indices of 1.5, 2.0, and 2.5.

Figure 10-5 Plot of the transmitted intensity of a beam propagating through m parallel
plates at the Brewster angle �iB . The refractive indices are 1.5, 2.0, and 2.5, respectively.
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situation when the incident beam is linearþ45� polarized light. The normalized Stokes
vector of the beam emerging from m dielectric plates is then, from (10-54),

S0
¼

1

2

sin4m 2�iB þ 1

sin4m 2�iB � 1

2 sin2m 2�iB

0

0
BBBBB@

1
CCCCCA ð10-59Þ

The emerging light is still linearly polarized. However, the orientation angle  is

 ¼
1

2
tan�1 2 sin2m 2�iB

sin4m 2�iB � 1

 !
ð10-60Þ

We note that for m ¼ 0 (no dielectric plates) the absolute magnitude of the
angle of rotation is  ¼ 45�, as expected. Figure 10-6 illustrates the change in the
angle of rotation as the number of parallel plates increases. For five parallel plates
the orientation angle rotates from þ45� to þ24.2�.

Equation (10-57) can also be expressed in terms of the refractive index, n. We
recall that (10-57) is

P ¼
1� sin4m 2�iB
1þ sin4m 2�iB

�����
����� ð10-57Þ

Figure 10-6 Rotation of the polarization ellipse by m parallel dielectric plates according to
(10-60). The refractive index is 1.5.
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At the Brewster angle we have

tan �iB ¼ n ð10-61aÞ

and we see that we can then write

sin �iB ¼
nffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 þ 1
p ð10-61bÞ

and

cos �iB ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 þ 1
p ð10-61cÞ

so

sin 2�iB ¼
2n

n2 þ 1
ð10-61dÞ

Substituting (10-61d) into (10-59) yields

P ¼
1� ½2n=ðn2 þ 1Þ�4m

1þ ½2n=ðn2 þ 1Þ�4m

�����
����� ð10-62Þ

Equation (10-62) is a much-quoted result in the optical literature and optical hand-
books. In Figure 10-7 a plot is made of (10-62) in terms of m and n. Of course,

Figure 10-7 Plot of the degree of polarization as a function of the number of parallel plates;
multiple reflections are ignored.
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as inspection of Fig. 10-7 shows, the curves are identical to those in Fig. 10-4 except
in the former figure the abscissa begins with m ¼ 1.

In the beginning of this section we pointed out that the Mueller matrix
formalism can also be extended to the problem of including multiple reflections
within a single dielectric plate as well as the multiple plates. G. G. Stokes (1862)
was the first to consider this problem and showed that the inclusion of
multiple reflections within the plates led to the following equation for the degree
of polarization for m parallel plates at the Brewster angles:

P ¼
m

mþ ½2n2=ðn2 � 1Þ�2

����
���� ð10-63Þ

The derivation of (10-63) along with similar expressions for completely and
partially polarized light has been given by Collett (1972), using the Jones matrix
formalism (Chapter 11) and the Mueller matrix formalism. In Fig. 10-8, (10-63) has
been plotted as a function of m and n, the refractive index.

It is of interest to compare (10-62) and (10-63). In Fig. 10-9 we have
plotted these two equations for n ¼ 1.5. We see immediately that the degree of
polarization is very different. Starting with 0 parallel plates, that is, the unpolarized
light source by itself, we see the degree of polarization is zero, as expected. As
the number of parallel plates increases, the degree of polarization increases for
both (10-62) and (10-63). However, the curves diverge and the magnitudes differ
by approximately a factor of two so that for 10 parallel plates the degree of
polarization is 0.93 for (10-62) and 0.43 for (10-63). In addition, for (10-63), the

Figure 10-8 Plot of the degree of polarization as a function of the number of parallel plates
for the case where multiple reflections are included.

Copyright © 2003 by Marcel Dekker, Inc. All Rights Reserved.



lower curve is almost linear with a very shallow slope, and shows that there is very
little to be gained by increasing the number of parallel plates in order to increase the
degree of polarization.

A final topic that we discuss is the use of a simpler notation for the
Mueller matrices for reflection and transmission by representing the matrix elements
in terms of the Fresnel reflection and transmission coefficients. These coefficients are
defined to be

�s ¼
Rs

Es

� �2

¼
sin ��
sin �þ

� �2

ð10-64aÞ

�p ¼
Rp

Ep

� �2

¼
tan ��
tan �þ

� �2

ð10-64bÞ

and

�s ¼
n cos �r
cos �i

Ts

Es

� �2

¼
tan �i
tan �r

2 sin �r cos �i
sin �þ

� �2

¼
sin 2�i sin 2�r

sin2 �þ
ð10-65aÞ

�p ¼
n cos �r
cos �i

Tp

Ep

� �2

¼
tan �i
tan �r

2 sin �r cos �i
sin �þ cos ��

� �2

¼
sin 2�i sin 2�r

sin2 �þ cos2 ��
ð10-65bÞ

Figure 10-9 Degree of polarization for m parallel plates for n¼ 1.5. The upper curve

corresponds to (10-62), and the lower corresponds to (10-63).
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One can readily show that the following relations hold for Fresnel coefficients:

�s þ �s ¼ 1 ð10-66aÞ

and

�p þ �p ¼ 1 ð10-66bÞ

At the Brewster angle, written as �iB , Fresnel’s reflection and transmission
coefficients (10-65) and (10-66) reduce to

�s,B ¼ cos2 2�iB ð10-67aÞ

�p,B ¼ 0 ð10-67bÞ

�s,B ¼ sin2 2�iB ð10-68aÞ

�p,B ¼ 1 ð10-68bÞ

We see immediately that

�s,B þ �s,B ¼ 1 ð10-69aÞ

and

�p,B þ �p,B ¼ 1 ð10-69bÞ

Equations (10-69a) and (10-69b) are, of course, merely special cases of (10-66a) and
(10-66b).

With these definitions the Mueller matrices for reflection and transmission can
be written, respectively, as

M� ¼
1

2

�s þ �p �s � �p 0 0

�s � �p �s þ �p 0 0

0 0 2ð�s�pÞ
1=2 0

0 0 0 2ð�s�pÞ
1=2

0
BBBB@

1
CCCCA ð10-70aÞ

and

M� ¼
1

2

�s þ �p �s � �p 0 0

�s � �p �s þ �p 0 0

0 0 2ð�p�sÞ
1=2 0

0 0 0 2ð�s�pÞ
1=2

0
BBBB@

1
CCCCA ð10-70bÞ

The reflection coefficients �s and �p, (10-64a) and (10-64b), are plotted as a function
of the incident angle for a range of refractive indices in Figs. 10-10 and 10-11. Similar
plots are shown in Figs. 10-12 and 10-13 for �s and �p, (10-65a) and (10-65b).

In a similar manner the reflection and transmission coefficients at the Brewster
angle, (10-67) and (10-68), are plotted as a function of the refractive index n in
Figs. 10-14 and 10-15.

The great value of the Fresnel coefficients is that their use leads to simpler
forms for the Mueller matrices for reflection and transmission. For example, instead
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Figure 10-10 Plot of the Fresnel reflection coefficient �s as a function of incidence
angle �i, (10-64a).

Figure 10-11 Plot of the Fresnel reflection coefficient �p as a function of incidence
angle �i, (10-64b).
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Figure 10-12 Plot of the Fresnel reflection coefficient �s as a function of incidence angle
�i, (10-65a).

Figure 10-13 Plot of the Fresnel reflection coefficient �p as a function of incidence angle
�i, (10-65b).
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of the complicated matrix entries given above, we can write, say, the diagonalized
form of the Mueller matrices as

M�,D ¼

�s 0 0 0
0 �p 0 0

0 0 ð�s�pÞ
1=2 0

0 0 0 ð�s�pÞ
1=2

0
BB@

1
CCA ð10-71aÞ

Figure 10-14 Plot of the reflection coefficients at the Brewster angle, (10-67).

Figure 10-15 Plot of the transmission coefficients at the Brewster angle, (10-68).
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and

M�,D ¼

�s 0 0 0
0 �p 0 0

0 0 ð�s�pÞ
1=2 0

0 0 0 ð�s�pÞ
1=2

0
BB@

1
CCA ð10-71bÞ

For treating problems at angles other than the Brewster angle it is much simpler to
use either (10-71a) or (10-71b) rather than the earlier forms of the Mueller matrices
because the matrix elements �s, �p, �s, and �p are far easier to work with.

In this chapter we have applied the Mueller matrix formalism to the problem
of determining the change in the polarization of light by single and multiple
dielectric plates. We have treated the problems in the simplest way by ignoring the
thickness of the plates and multiple reflections within the plates. Consequently,
the results are only approximately correct. Nevertheless, the results are still useful
and allow us to predict quite accurately the expected behavior of polarized light and
its interaction with dielectric plates. In particular, we have presented a number of
formulas, much quoted in the optical literature and handbooks, which describe
the degree of polarization for an incident unpolarized beam of light. These
formulas describe the number of parallel plates required to obtain any degree of
polarization. A fuller discussion of the behavior of multiple plates can be found in
the references.
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11

The Jones Matrix Calculus

11.1 INTRODUCTION

We have seen that the Stokes polarization parameters and the Mueller matrix form-
alism can be used to describe any state of polarization. In particular, if we are dealing
with a single beam of polarized light, then the formalism of the Stokes parameters is
completely capable of describing any polarization state ranging from completely
polarized light to completely unpolarized light. In addition, the formalism of the
Stokes parameters can be used to describe the superposition of several polarized
beams, provided that there is no amplitude or phase relation between them; that
is, the beams are incoherent with respect to each other. This situation arises when
optical beams are emitted from several independent sources and are then superposed.

However, there are experiments where several beams must be added and the
beams are not independent of each other, e.g., beam superposition in interferom-
eters. There we have a single optical source and the single beam is divided by a beam
splitter. Then, at a later stage, the beams are ‘‘reunited,’’ that is, superposed. Clearly,
there is an amplitude and phase relation between the beams. We see that we must
deal with amplitudes and phase and superpose the amplitudes of each of the beams.
After the amplitudes of the beam are superposed, the intensity of the combined
beams is then found by taking the time average of the square of the total amplitude.
If there were no amplitude or phase relations between the beams, then we would
arrive at the same result as we obtained for the Stokes parameters. However, if there
is a relation between the amplitude and the phase of the optical beams, an inter-
ference term will arise.

Of course, as pointed out earlier, the description of the polarizing behavior of
the optical field in terms of amplitudes was one of the first great successes of the wave
theory of light. The solution of the wave equation in terms of transverse components
leads to elliptically polarized light and its degenerate linear and circular forms. On
the basis of the amplitude results, many results could be understood (e.g., Young’s
interference experiment, circularly polarized light). However, even using the
amplitude formulation, numerous problems become difficult to treat, such as the
propagation of the field through several polarizing components. To facilitate
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the treatment of complicated polarization problems at the amplitude level, R. Clark
Jones, in the early 1940s, developed a matrix calculus for treating these problems,
commonly called the Jones matrix calculus. It is most appropriately used when we
must superpose amplitudes. The Jones calculus involves complex quantities con-
tained in 2 � 1 column matrices (the Jones vector) and 2 � 2 matrices (the Jones
matrices). At first sight it would seem that the use of the 2 � 2 matrices would be
simpler than the use of the 4 � 4 Mueller matrices. Oddly enough, this is not the
case. This is due primarily to the fact that even the matrix multiplication of several
complex 2 � 2 matrices can be tedious. Furthermore, even after the complete matrix
calculation has been carried out, additional steps are still required. For example, it is
often necessary to separate the real and imaginary parts (e.g., Ex and Ey) and super-
pose the respective amplitudes. This can involve a considerable amount of effort.
Another problem is that to find the intensity one must take the complex transpose of
the Jones vector and then carry out the matrix multiplication between the complex
transpose of the Jones vector and Jones vector itself. All this is done using complex
quantities, and the possibility of making a computational error is very real. While the
4 � 4 Mueller matrix formalism appears to be more complicated, all the entries are
real quantities and there are many zero entries, as can be seen by inspecting the
Mueller matrix for the polarizer, the retarder and the rotator. This fact greatly
simplifies the matrix multiplications, and, of course, the Stokes vector is real.

There are, nevertheless, many instances where the amplitudes must be added
(superposed), and so the Jones matrix formalism must be used. There are many
problems where either formalism can be used with success. As a general rule, the
most appropriate choice of matrix method is to use the Jones calculus for amplitude
superposition problems and the Mueller formalism for intensity superposition prob-
lems. Experience will usually indicate the best choice to make.

In this chapter we develop the fundamental matrices for the Jones calculus
along with its application to a number of problems.

11.2 THE JONES VECTOR

The plane-wave components of the optical field in terms of complex quantities can be
written as

Exðz, tÞ ¼ E0xe
ið!t�kzþ�xÞ ð11-1aÞ

Eyðz, tÞ ¼ E0ye
ið!t�kzþ�yÞ ð11-1bÞ

The propagator !t� kz is now suppressed, so (11-1) is then written as

Ex ¼ E0xe
i�x ð11-2aÞ

Ey ¼ E0ye
i�y ð11-2bÞ

Equation (11-2) can be arranged in a 2 � 1 column matrix E:

E ¼
Ex

Ey

 !
¼

E0xe
i�x

E0ye
i�y

 !
ð11-3Þ
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called the Jones column matrix or, simply, the Jones vector. The column matrix on
the right-hand side of (11-3), incidentally, is the Jones vector for elliptically polarized
light.

In the Jones vector (11-3), the maximum amplitudes E0x and E0y are real
quantities. The presence of the exponent with imaginary arguments causes Ex and
Ey to be complex quantities. Before we proceed to find the Jones vectors for various
states of polarized light, we discuss the normalization of the Jones vector; it is
customary to express the Jones vector in normalized form. The total intensity I of
the optical field is given by

I ¼ ExE
�
x þ EyE

�
y ð11-4Þ

Equation (11-4) can be obtained by the following matrix multiplication:

I ¼ E �
x E �

y

	 
 Ex

Ey

� �
ð11-5Þ

The row matrix ðE �
x E �

y Þ is the complex transpose of the Jones vector (column matrix
E) and is written Ey; thus,

E
y
¼ E �

x E �
y

	 

ð11-6Þ

so

I ¼ E
y
E ð11-7Þ

yields (11-4). Carrying out the matrix multiplication of (11-7), using (11-3), yields

E2
0x þ E2

0y ¼ I ¼ E2
0 ð11-8Þ

It is customary to set E2
0 ¼ 1, whereupon we say that the Jones vector is normalized.

The normalized condition for (11-5) can then be written as

E
y
E ¼ 1 ð11-9Þ

We note that the Jones vector can only be used to describe completely polarized light.
We now find the Jones vector for the following states of completely polarized light.

1. Linear horizontally polarized light. For this state Ey ¼ 0, so (11-3)
becomes

E ¼
E0xe

i�x

0

� �
ð11-10Þ

From the normalization condition (11-9) we see that E2
0x ¼ 1. Thus, suppressing ei�x

because it is unimodular, the normalized Jones vector for linearly horizontally polar-
ized light is written

E ¼
1
0

� �
ð11-11Þ

In a similar manner the Jones vectors for the other well-known polarization states
are easily found.

Copyright © 2003 by Marcel Dekker, Inc. All Rights Reserved.



2. Linear vertically polarized light. Ex ¼ 0, so E2
0y ¼ 1 and

E ¼
0
1

� �
ð11-12Þ

3. Linear þ45� polarized light. Ex ¼ Ey, so 2E2
0x ¼ 1 and

E ¼
1ffiffiffi
2

p
1
1

� �
ð11-13Þ

4. Linear �45� polarized light. Ex ¼ �Ey, so 2E2
0x ¼ 1 and

E ¼
1ffiffiffi
2

p
1
�1

� �
ð11-14Þ

5. Right-hand circularly polarized light. For this case E0x ¼ E0y and
�y � �x ¼ þ90�. Then, 2E2

0x ¼ 1 and we have

E ¼
1ffiffiffi
2

p
1
þi

� �
ð11-15Þ

6. Left-hand circularly polarized light. We again have E0x ¼ E0y, but
�y � �x ¼ �90�. The normalization condition gives 2E2

0x ¼ 1, and we have

E ¼
1ffiffiffi
2

p
1
�i

� �
ð11-16Þ

Each of the Jones vectors (11-11) through (11-16) satisfies the normalization condi-
tion (11-9).

An additional property is the orthogonal or orthonormal property. Two vec-
tors A and B are said to be orthogonal if AB ¼ 0 or, in complex notation, AyB ¼ 0.
If this condition is satisfied, we say that the Jones vectors are orthogonal. For
example, for linearly horizontal and vertical polarized light we find that

1 0
	 
� 0

1

� �
¼ 0 ð11-17aÞ

so the states are orthogonal or, since we are using normalized vectors, orthonormal.
Similarly, for right and left circularly polarized light:

1 þi
	 
� 1

�i

� �
¼ 0 ð11-17bÞ

Thus, the orthonormal condition for two Jones vectors E1 and E2 is

E
y

i Ej ¼ 0 ð11-18Þ

We see that the orthonormal condition (11-18) and the normalizing condition
(11-9) can be written as a single equation, namely

E
y

i Ej ¼ �ij i; j ¼ 1; 2 ð11-19aÞ
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where �ij is the Kronecker delta and has the property:

�ij ¼ 1 i ¼ j ð11-19bÞ

�ij ¼ 0 i 6¼ j ð11-19cÞ

In a manner analogous to the superposition of incoherent intensities or
Stokes vectors, we can superpose coherent amplitudes, that is, Jones vectors.
For example, the Jones vector for horizontal polarization is EH and that for vertical
polarization is EV, so

EH ¼
E0xe

i�x

0

� �
EV ¼

0

E0ye
i�y

� �
ð11-20Þ

Adding EH and EV gives

E ¼ EH þ EV ¼
E0xe

i�x

E0ye
i�y

 !
ð11-21Þ

which is the Jones vector for elliptically polarized light. Thus, superposing two
orthogonal linear polarizations give rise to elliptically polarized light. For example,
if E0x ¼ E0y and �y ¼ �x, then, from (11-21), we can write

E ¼ E0xe
i�x 1

1

� �
ð11-22Þ

which is the Jones vector for linear þ45� polarized light. Equation (11-22) could also
be obtained by superposing (11-11) and (11-12):

E ¼ EH þ EV ¼
1
0

� �
þ

0
1

� �
¼

1
1

� �
ð11-23Þ

which, aside from the normalizing factor, is identical to (11-13).
As another example let us superpose left and right circularly polarized light of

equal amplitudes. Then, from (11-15) and (11-16) we have

E ¼
1ffiffiffi
2

p
1
�i

� �
þ

1ffiffiffi
2

p
1
i

� �
¼

2ffiffiffi
2

p
1
0

� �
ð11-24Þ

which, aside from the normalizing factor, is the Jones vector for linear horizontally
polarized light (11-11).

As a final Jones vector example, we show that elliptically polarized light can be
obtained by superposing two opposite circularly polarized beams of unequal ampli-
tudes. The Jones vectors for two circular polarized beams of unequal amplitudes
a and b can be represented by

Eþ ¼ a
1
þi

� �
E� ¼ b

1
�i

� �
ð11-25Þ

According to the principle of superposition, the resultant Jones vector for (11-25) is

E ¼ Eþ þ E� ¼
aþ b
iða� bÞ

� �
¼

Ex

Ey

� �
ð11-26Þ
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In component form (11-26) is written as

Ex ¼ aþ b ð11-27aÞ

Ey ¼ ða� bÞei�=2 ð11-27bÞ

We now restore the propagator !t� kz, so (11-27) is then written as

Ex ¼ ðaþ bÞeið!t�kzÞ
ð11-28aÞ

Ey ¼ ða� bÞeið!t�kzþ�=2Þ
ð11-28bÞ

Taking the real part of (11-28), we have

Exðz, tÞ ¼ ðaþ bÞ cosð!t� kzÞ ð11-29aÞ

Eyðz, tÞ ¼ ða� bÞ cos !t� kzþ
�

2

� �
ð11-29bÞ

¼ ða� bÞ sinð!t� kzÞ ð11-29cÞ

Equations (11-28a) and (11-28b) are now written as

Exðz, tÞ

aþ b
¼ cosð!t� kzÞ ð11-30aÞ

Eyðz, tÞ

a� b
¼ sinð!t� kzÞ ð11-30bÞ

Squaring and adding (11-30a) and (11-30b) yields

E2
xðz, tÞ

ðaþ bÞ2
þ

E2
yðz, tÞ

ða� bÞ2
¼ 1 ð11-31Þ

Equation (11-31) is the equation of an ellipse whose major and minor axes lengths
are a þ b and a � b, respectively. Thus, the superposition of two oppositely circu-
larly polarized beams of unequal magnitudes gives rise to a (nonrotated) ellipse with
its locus vector moving in a counterclockwise direction.

11.3 JONES MATRICES FOR THE POLARIZER,
RETARDER, AND ROTATOR

We now determine the matrix forms for polarizers (diattenuators), retarders (phase
shifters), and rotators in the Jones matrix calculus. In order to do this, we assume
that the components of a beam emerging from a polarizing element are linearly
related to the components of the incident beam. This relation is written as

E 0
x ¼ jxxEx þ jxyEy ð11-32aÞ

E 0
y ¼ jyxEx þ jyyEy ð11-32bÞ

where E 0
x and E 0

y are the components of the emerging beam and Ex and Ey are the
components of the incident beam. The quantities jik, i, k ¼ x, y, are the transforming
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factors (elements). Equation (11-32) can be written in matrix form as

E 0
x

E 0
y

 !
¼

jxx jxy

jyx jyy

 !
Ex

Ey

 !
ð11-33aÞ

or

E
0
¼ JE ð11-33bÞ

where

J ¼
jxx jxy
jyx jyy

� �
ð11-33cÞ

The 2 � 2 matrix J is called the Jones instrument matrix or, simply, the Jones matrix.
We now determine the Jones matrices for a polarizer, retarder, and rotator.

A polarizer is characterized by the relations:

E 0
x ¼ pxEx ð11-34aÞ

E 0
y ¼ pyEy 0 	 px, y 	 1 ð11-34bÞ

For complete transmission px, y ¼ 1, and for complete attenuation px, y ¼ 0. In terms
of the Jones vector, (11-34) can be written as

E 0
x

E 0
y

 !
¼

px 0

0 py

 !
Ex

Ey

 !
ð11-35Þ

so the Jones matrix (11-33c) for a polarizer is

Jp ¼
px 0
0 py

� �
0 	 px, y 	 1 ð11-36Þ

For an ideal linear horizontal polarizer there is complete transmission along
the horizontal x axis and complete attenuation along the vertical y axis. This is
expressed by px ¼ 1 and py ¼ 0, so (11-36) becomes

JPH ¼
1 0
0 0

� �
ð11-37Þ

Similarly, for a linear vertical polarizer, (11-36) becomes

JPV ¼
0 0
0 1

� �
ð11-38Þ

In general, it is useful to know the Jones matrix for a linear polarizer rotated
through an angle �. This is readily found by using the familiar rotation transforma-
tion, namely,

J
0
¼ Jð��ÞJJð�Þ ð11-39aÞ

where Jð�Þ is the rotation matrix:

Jð�Þ ¼
cos � sin �
� sin � cos �

� �
ð11-39bÞ
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and J is given by (11-33c). For a rotated linear polarizer represented by (11-36) and
rotated by angle � we have from (11-39) that

J
0
¼

cos � � sin �
sin � cos �

� �
px 0
0 py

� �
cos � sin �
� sin � cos �

� �
ð11-40Þ

Carrying out the matrix multiplication in (11-40) we find that the Jones matrix for a
rotated polarizer is

JPð�Þ ¼
px cos

2 � þ py sin
2 � ðpx � pyÞ sin � cos �

ðpx � pyÞ sin � cos � px sin
2 � þ py cos

2 �

 !
ð11-41Þ

For an ideal linear horizontal polarizer we can set px ¼ 1 and py ¼ 0 in (11-41), so
that the Jones matrix for a rotated linear horizontal polarizer is

JPð�Þ ¼
cos2 � sin � cos �

sin � cos � sin2 �

 !
ð11-42Þ

The Jones matrix for a linear polarizer rotated through þ45� is then seen from
(11-42) to be

JPð45
�
Þ ¼

1

2

1 1

1 1

 !
ð11-43Þ

If the linear polarizer is not ideal, then the Jones matrix for a polarizer (11-36) at
þ45� is seen from (11-41) to be

JPð45
�
Þ ¼

1

2

px þ py px � py

px � py px þ py

 !
ð11-44Þ

We note that for � ¼ 0� and 90�, (11-42) gives the Jones matrices for a linear
horizontal and vertical polarizer, Eqs. (11-37) and (11-38) respectively.

Equation (11-41) also describes a neutral density (ND) filter. The condition for
a ND filter is px ¼ py ¼ p, so (11-41) reduces to

JNDð�Þ ¼ p
1 0

0 1

 !
ð11-45Þ

Thus, JND(�) is independent of rotation (�), and the amplitudes are equally attenu-
ated by an amount p. This is, indeed, the behavior of a ND filter. The presence of the
unit (diagonal) matrix in (11-45) confirms that a ND filter does not affect the
polarization state of the incident beam.

The next polarizing element of importance is the retarder. The retarder
increases the phase by þ�=2 along the fast (x) axis and retards the phase by ��=2,
along the slow (y) axis. This behavior is described by

E 0
x ¼ eþi�=2Ex ð11-46aÞ

E 0
y ¼ e�i�=2Ey ð11-46bÞ
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where E 0
x and E 0

y are the components of the emerging beam and Ex and Ey are the
components of the incident beam. We can immediately express (11-46) in the Jones
formalism as

J
0
¼

E 0
x

E 0
y

� �
¼

eþi�=2 0

0 e�i�=2

� �
Ex

Ey

� �
ð11-47Þ

The Jones matrix for a retarder (phase shifter) is then

JRð�Þ ¼
eþi�=2 0

0 e�i�=2

� �
ð11-48Þ

where � is the total phase shift between the field components. The two most common
types of phase shifters (retarders) are the quarter-wave retarder and the half-wave
retarder. For these devices � ¼ 90� and 180�, repectively, and (11-48) becomes

JR



4

� �
¼

ei�=4 0
0 e�i�=4

� �
¼ ei�=4

1 0
0 e�i�=2

� �
¼ ei�=4

1 0
0 �i

� �
ð11-49aÞ

and

JR



2

� �
¼

ei�=2 0
0 e�i�=2

� �
¼

i 0
0 �i

� �
¼ i

1 0
0 �1

� �
ð11-49bÞ

The Jones matrix for a rotated retarder is found from (11-48) and (11-39) to be

JRð�, �Þ ¼
ei�=2 cos2 � þ e�i�=2 sin2 � ðei�=2 � e�i�=2

Þ sin � cos �

ðei�=2 � e�i�=2
Þ sin � cos � ei�=2 sin2 � þ e�i�=2 cos2 �

 !
ð11-50Þ

With the half-angle formulas, (11-50) can also be written in the form:

JRð�, �Þ ¼
cos

�

2
þ i sin

�

2
cos 2� i sin

�

2
sin 2�

i sin
�

2
sin 2� cos

�

2
� i sin

�

2
cos 2�

0
B@

1
CA ð11-51Þ

For quarter-wave retarder and a half-wave retarder (11-51) reduces, respectively, to

JR



4
, �

� �
¼

1ffiffiffi
2

p þ
iffiffiffi
2

p cos 2�
iffiffiffi
2

p sin 2�

iffiffiffi
2

p sin 2�
1ffiffiffi
2

p �
iffiffiffi
2

p cos 2�

0
BB@

1
CCA ð11-52Þ

and

JR



2
, �

� �
¼ i

cos 2� sin 2�
sin 2� � cos 2�

� �
ð11-53Þ

The factor i in (11-53) is unimodular and can be suppressed. It is common, therefore,
to write (11-53) simply as

JR



2
, �

� �
¼

cos 2� sin 2�
sin 2� � cos 2�

� �
ð11-54Þ

Inspecting (11-54) we see that it is very similar to the matrix for rotation, namely,

Jð�Þ ¼
cos � sin �
� sin � cos �

� �
ð11-39bÞ
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However, (11-54) differs from (11-39b) in two ways. First, in (11-54) we have 2�
rather than �. Thus, a rotation of a retarder through � rotates the polarization ellipse
through 2�. Second, a clockwise mechanical rotation � in (11-54) leads to a counter-
clockwise rotation of the polarization ellipse. In order to see this behavior clearly,
consider that we have incident linear horizontally polarized light. Its Jones vector is

J ¼
Ex

0

� �
ð11-55Þ

The components of the beam emerging from a true rotator (11-39b) are then

E 0
x ¼ ðcos �ÞEx ð11-56aÞ

E 0
y ¼ �ðsin �ÞEx ð11-56bÞ

The angle of rotation  is then

tan ¼
E 0

y

E 0
x

¼
� sin �

cos �
¼ tanð��Þ ð11-57Þ

In a similar manner, multiplying (11-55) by (11-54) leads to

E 0
x ¼ ðcos 2�ÞEx ð11-58aÞ

E 0
y ¼ ðsin 2�ÞEx ð11-58bÞ

so we now have

tan ¼
E 0

y

E 0
x

¼
sin 2�

cos 2�
¼ tan 2� ð11-59Þ

Comparing (11-59) with (11-57), we see that the direction of rotation for a rotated
retarder is opposite to the direction of true rotation. Equation (11-59) also shows
that the angle of rotation is twice that of a true rotation. Because of this similar but
analytically incorrect behavior of a rotated half-wave retarder, (11-54) is called a
pseudorotator. We note that an alternative form of a half-wave retarder, which is the
more common form, is given by factoring out i in (11-49b) or simply setting � ¼ 0� in
(11-54):

J



2

� �
¼

1 0
0 �1

� �
ð11-60Þ

The final matrix of interest is the Jones matrix for a rotator. The defining
equations are

E 0
x ¼ cos�Ex þ sin �Ey ð11-61aÞ

E 0
y ¼ � sin �Ex þ cos�Ey ð11-61bÞ

where � is the angle of rotation. Equation (11-61) is written in matrix form as

J
0
¼

E 0
x

E 0
y

� �
¼

cos� sin �
� sin � cos�

� �
Ex

Ey

� �
ð11-62Þ
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so the Jones matrix for a rotator is

JROT ¼
cos � sin �

� sin � cos�

� �
ð11-63Þ

It is interesting to see the effect of rotating a true rotator. According to (11-39),
the rotation of a rotator, (11-63), is given by

JROTð�Þ ¼
cos � � sin �

sin � cos �

� �
cos� sin �

� sin � cos�

� �
cos � sin �

� sin � cos �

� �
ð11-64Þ

Carrying out the matrix multiplication in (11-64) yields

JROTð�Þ ¼
cos� sin �

� sin � cos�

� �
¼ JROT ð11-65Þ

Thus, we have the interesting result that the mechanical rotation of a rotator does
not affect the rotation of the polarization ellipse. The polarization ellipse can only be
rotated by an amount intrinsic to the rotator, which is the rotation angle �. We
conclude that the only way to create a rotation of the polarization ellipse mechani-
cally is to use a half-wave retarder placed in a mechanical rotating mount.

11.4 APPLICATIONS OF THE JONES VECTOR AND
JONES MATRICES

We now turn our attention to applying the results of Sections 11.2 and 11.3 to several
problems of interest. One of the first problems is to determine the Jones vector for a
beam emerging from a rotated linear polarizer and its intensity. The Jones vector of
the incident beam is

E ¼
Ex

Ey

 !
ð11-66Þ

The Jones matrix of a rotated (ideal) linear polarizer was shown in (11-42) to be

JPð�Þ ¼
cos2 � sin � cos �

sin � cos � sin2 �

 !
ð11-42Þ

While it is straightforward to determine the Jones vector and the intensity of the
emerging beam, it is of interest to restrict ourselves to the case where the incident
beam is linearly horizontally polarized, so

E ¼
Ex

0

� �
¼ Ex

1

0

� �
ð11-67Þ

Multiplying (11-67) by (11-42) yields

E
0
¼

Ex cos
2 �

Ex sin � cos �

� �
ð11-68Þ

Copyright © 2003 by Marcel Dekker, Inc. All Rights Reserved.



We now interpret, formally, the state of polarization of (11-68). We can express
(11-68) as a Jones vector for elliptically polarized light, namely,

E
0
¼

aei�x

bei�y

 !
ð11-69Þ

where a and b are real. Equating (11-68) and (11-69), we have

E 0
x ¼ Ex cos

2 � ¼ aei�x ð11-70aÞ

E 0
y ¼ Ex cos � sin � ¼ bei�y ð11-70bÞ

Dividing (11-70b) by (11-70a) then gives

E 0
y

E 0
x

¼
sin �

cos �
¼

b

a

� �
ei� ð11-71Þ

where � ¼ �y � �x. Finally, taking the real and imaginary parts of (11-71) leads to

sin �

cos �
¼

b

a
cos � ð11-72aÞ

0 ¼
b

a
sin � b 6¼ a ð11-72bÞ

We conclude immediately from (11-72b) and � ¼ 0�, so (11-72a) is

b

a
¼

sin �

cos �
ð11-73Þ

The polarization ellipse corresponding to (11-69) is

x2

a2
þ
y2

b2
�
2xy cos �

ab
¼ sin2 � ð11-74Þ

For � ¼ 0�, (11-74) reduces to

y ¼
b

a
x ¼

sin �

cos �
x ð11-75Þ

Thus, the Jones vector (11-68) describes a beam that is linearly polarized with a slope
equal to

m ¼ tan ¼ tan � ð11-76Þ

The intensity of the emerging beam is

I 0 ¼ E
y
E

¼ ðE �
x cos

2 � E �
x sin � cos �Þ

Ex cos
2 �

Ex sin � cos �

 !
ð11-77aÞ

so

I 0 ¼ I cos2 � ð11-77bÞ
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where I ¼ E �
xEx. Equation (11-77b) is Malus’ law. It was discovered by E. Malus

while observing unpolarized light through a rotating calcite crystal. We recall he
discovered that unpolarized light became partially polarized when it was reflected
from a plate of glass. He found the form of (11-77b) solely from geometrical con-
siderations.

This problem can be expanded further by allowing the beam emerging from the
polarizer (11-68) to be incident on a linear vertical polarizer. The Jones matrix is
found by setting � ¼ 90� in (11-42):

JPð90
�
Þ ¼

0 0
0 1

� �
ð11-78Þ

The Jones vector of the beam emerging from the second linear polarizer, found by
multiplying (11-68) by (11-78) is

E 0
p ¼ Ex cos � sin �

0
1

� �
ð11-79Þ

and the intensity is immediately found to be

I 0 ¼
I

8
ð1 � cos 4�Þ ð11-80Þ

where I ¼ E �
xEx. Thus, as the second polarizer is rotated, a null intensity is observed

at � ¼ 0�, 90�, 180�, and 270�. Equation (11-80) is, of course, the same as obtained
using the Mueller–Stokes calculus.

We now apply the Jones formalism to several other problems of interest. We
recall from Section 6.6 that we used the method of Kent and Lawson to determine
the Stokes parameters of an incident elliptically polarized beam. We can also treat
the problem in the amplitude domain and apply the Kent–Lawson method to deter-
mine the phase and orientation of the beam. The incident beam can be written in the
form:

E ¼
cos
sin ei�

� �
ð11-81Þ

The beam (11-81) is incident on a retarder of arbitrary phase � oriented at an angle �.
The phase and orientation of the retarder are now adjusted until circularly polarized
light is obtained. We recall that this is detected by allowing the circularly polarized
beam to be incident on a rotating linear polarizer directly in front of the detector;
circular polarization is obtained when a constant intensity is detected. We can write
this condition as

Jð��ÞJRJð�ÞE ¼
1ffiffiffi
2

p
1
i

� �
ð11-82Þ

The column matrix on the right-hand side of (11-82) is the Jones vector for right
circularly polarized light; E is given by (11-81) and J(�) and JR are the Jones matrices
for rotation and a retarder, respectively. Again, it is simplest to find E in (11-82) by
multiplying through J(�), etc. Carrying out this process, we arrive at

E ¼
cos
sin ei�

� �
¼

1ffiffiffi
2

p
cos � � iei� sin �
sin � þ iei� cos �

� �
ð11-83Þ
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Equation (11-83) is easily checked because a retarder, even if rotated, does not affect
the total intensity. Thus, it is easy to see that taking the complex transpose of
(11-83) for each Jones vector and multiplying by its normal Jones vector gives a
unit intensity as required.

We now equate the components in each of the column matrices in (11-83) and
divide these equations to find

tanei� ¼
sin � þ iei� cos �

cos � � iei� sin �
ð11-84Þ

Rationalizing the denominator in (11-84), we easily find that

tanei� ¼
� sin� cos 2� þ i cos�

1þ sin 2� sin�
ð11-85Þ

Equating real and imaginary parts in (11-85) yields

tan cos � ¼
� sin� cos 2�

1þ sin 2� sin�
ð11-86aÞ

tan sin � ¼
cos�

1þ sin 2� sin�
ð11-86bÞ

Dividing (11-86a) by (11-86b), we obtain

cot � ¼ � tan� cos 2� ð11-87Þ

Squaring and adding (11-86a) and (11-86b) then leads to

tan ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin 2� sin�

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin 2� sin�

p ð11-88Þ

Equation (11-88) can be rewritten by using the relations:

cos ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin 2� sin�

p ffiffiffi
2

p ð11-89aÞ

sin  ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin 2� sin�

p ffiffiffi
2

p ð11-89bÞ

Squaring (11-89a) and (11-89b) and subtracting, we find that

cos 2 ¼ sin 2� sin� ð11-90Þ

We now write (11-87) and (11-90) as the pair

cos 2 ¼ sin 2� sin� ð11-91aÞ

cot � ¼ � tan� cos 2� ð11-91bÞ

Equations (11-91a) and (11-91b) are the Kent–Lawson equations which were derived
using the Mueller–Stokes formalism in Section 6.6, equations (6-60a) and (6-60b).

This treatment using the Jones formalism illustrates a very important point. At
first glance the use of 2 � 2 rather than 4 � 4 matrices might lead us to believe that
calculations are simpler with the Jones calculus. The example illustrated by the
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Kent–Lawson problem shows that this is not necessarily so. We see that even though
it is relatively easy to solve for Ex and Ey there is still a considerable amount of
algebra to be carried out. Furthermore, because complex quantities are used, the
chance of making a calculating error is increased. Consequently, because the Mueller
formalism contains only real quantities it is actually easier to use; invariably, the
algebra is considerably less. Experience usually indicates which is the preferable
formalism to use in order to solve a problem.

These remarks can be illustrated further by considering another problem.
Suppose we wish to create elliptically polarized light of arbitrary orientation and
phase ( and �) from, say, linear horizontally polarized light. This can be done by
using only a Babinet–Soleil compensator and adjusting its phase and orientation.
For the purpose of comparison we address this problem first by using the Mueller
formalism and then by using the Jones formalism. The problem is simply stated
mathematically by

MRð2�Þ

1
1
0
0

0
BB@

1
CCA ¼

1
cos 2

sin 2 cos �
sin 2 sin �

0
BB@

1
CCA ð11-92Þ

where MR(2�) is the Mueller matrix of a rotated retarder (5-57) in Section 5.5.
Carrying out the matrix multiplication in (11-92) and equating matrix elements,
we have

cos2 2� þ cos� sin2 2� ¼ cos 2 ð11-93aÞ

ð1� cos�Þ sin 2� cos 2� ¼ sin 2 cos � ð11-93bÞ

sin� sin 2� ¼ sin 2 sin � ð11-93cÞ

We now solve (11-93) for � and �. Equation (11-93a) can be rewritten immediately as

ð1� cos�Þ sin2 2� ¼ 2 sin2  ð11-94Þ

Dividing (11-93b) by (11-94) then gives

cot 2� ¼ cot  cos � ð11-95Þ

Next, (11-93c) is divided by (11-93b) to obtain

cot
�

2
¼ cos 2� tan � ð11-96Þ

where we have used the trigonometric half-angle formulas for �. The cos 2� term can
be expressed in terms of  and �. From (11-95) we see that

cos 2� ¼
cos cos �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� cos2  sin2 �
p ð11-97aÞ

sin 2� ¼
sin ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� cos2  sin2 �
p ð11-97bÞ

Copyright © 2003 by Marcel Dekker, Inc. All Rights Reserved.



We now substitute (11-97a) into (11-96) and write the result along with (11-95) as
the pair:

cot 2� ¼ cot  cos � ð11-98aÞ

cot
�

2
¼

cos  sin �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2  sin2 �

p ð11-98bÞ

We can provide two simple numerical checks on (11-98). We know that if we
start with linear horizontally polarized light and wish to rotate the linearly polarized
light to þ45�, this can be done by rotating a half-wave retarder through þ22.5�. We
can show this formally by writing

1
0
1
0

0
BB@

1
CCA ¼

1
cos 2

sin 2 cos �
sin 2 sin �

0
BB@

1
CCA ð11-99Þ

We see that linear þ45� polarized light corresponds to 2 ¼ 90� and � ¼ 0� in (11-99).
Substituting these conditions into (11-98a) and (11-98b) yields

tan 2� ¼ 1 ð11-100aÞ

tan
�

2
¼ 1 ð11-100bÞ

from which we immediately find that � ¼ 22.5� and � ¼ 180� as required.
The other check on (11-98) is to consider the conditions to create right cir-

cularly polarized light from linear horizontally polarized light. We know that a
quarter-wave retarder rotated through 45� will generate right circularly polarized
light. Therefore, we again write

1
0
0
1

0
BB@

1
CCA ¼

1
cos 2

sin 2 cos �
sin 2 sin �

0
BB@

1
CCA ð11-101Þ

which is satisfied for 2 ¼ 90� and � ¼ 90�. Substituting these conditions into (11-98)
gives

tan 2� ¼ 1 ð11-102aÞ

tan
�

2
¼ 1 ð11-102bÞ

from which we see that we must set the Babinet–Soleil compensator to � ¼ 45� and
� ¼ 90�, which is exactly what we would expect.

We now consider the same problem of the rotated Babinet–Soleil compensator
using the Jones formalism. The mathematical statement for this problem is written as

JRð�Þ
1
0

� �
¼

cos
sin ei�

� �
ð11-103Þ

Copyright © 2003 by Marcel Dekker, Inc. All Rights Reserved.



where JR(�) is given by

JRð�Þ ¼
cos � � sin �
sin � cos �

� �
ei�=2 0
0 e�i�=2

� �
cos � sin �
� sin � cos �

� �
ð11-104Þ

Carrying out the matrix multiplication and equating terms, we find

ei�=2 cos2 � þ e�i�=2 sin2 � ¼ cos ð11-105aÞ

ðei�=2 � e�i�=2
Þ sin � cos � ¼ sin ei� ð11-105bÞ

We first rewrite (11-105b) as

i sin
�

2
sin 2� ¼ sin ei� ð11-106Þ

Next, we divide (11-105a) by (11-106), group terms, then equate the real and
imaginary terms and find

cot 2� ¼ cot  cos � ð11-107aÞ

cot
�

2
¼ sin 2� cot sin � ð11-107bÞ

From (11-97b) we see that sin 2� can be replaced, so (11-107) can be written as the
pair

cot 2� ¼ cot  cos � ð11-108aÞ

cot
�

2
¼

cos sin �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2  sin2 �

p ð11-108bÞ

Equation (11-108) is identical to the result (11-98) obtained using the Mueller for-
malism. The reader will see that a considerable amount of increased effort is required
to obtain (11-108) using the Jones formalism.

One of the fundamental problems continuously encountered in the field of
polarized light is to determine the orientation and ellipticity of an incident (polar-
ized) beam. This can be done by analyzing the beam using a quarter-wave retarder
and a linear polarizer, where both elements are capable of being rotated through the
angles  and �, respectively. Thus, the Jones matrix for a rotated quarter-wave
retarder and a rotated ideal polarizer in sequence using Equations (11-52) and
(11-42), is

J ¼ JPð�ÞJR



4
,

� �
ð11-109aÞ

where

JR



4
,

� �
¼

1ffiffiffi
2

p
1þ i cos 2 i sin 2
i sin 2 1� i cos 2

� �
ð11-109bÞ

and

JPð�Þ ¼
cos2 � cos � sin �

cos� sin � sin2 �

� �
ð11-109cÞ
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The matrix product (11-109a) is then written out as

J ¼
1ffiffiffi
2

p
cos2 � cos� sin �

cos� sin � sin2 �

� �
1þ i cos 2 i sin 2
i sin 2 1� i cos 2

� �
ð11-110Þ

The product in (11-110) is a matrix from which it is clear there is extinction at specific
values of  and �. These extinction angles determine the ellipticity and orientation of
the incident beam. Rather than giving a general solution of this problem, we consider
a specific example.

Suppose we find that extinction occurs at  ¼ 45� and � ¼ 30�. Then, (11-109b)
and (11-109c) become

JR



4
, 45�

� �
¼

1ffiffiffi
2

p
1 i
i 1

� �
ð11-111aÞ

and

JPð30
�
Þ ¼

1

4
3

ffiffiffi
3

pffiffiffi
3

p
1

� �
ð11-111bÞ

Multiplying (11-111a) and (11-111b) according to (11-109a) yields

J ¼
1

4
ffiffiffi
2

p
3þ i

ffiffiffi
3

p
i3þ

ffiffiffi
3

p

ffiffiffi
3

p
þ i i

ffiffiffi
3

p
þ 1

 !
ð11-112Þ

Equation (11-112) describes the propagation of the incident beam first through the
rotated quarter-wave retarder followed by a linear polarizer. The purpose of the
rotated quarter-wave retarder is to transform the incident elliptically polarized
beam to linearly polarized light. The linear polarizer is then rotated until a null
intensity, i.e., extinction, occurs. This, incidentally, is the fundamental basis of ellip-
sometry. In order to have a null intensity we must have from (11-112)

1

4
ffiffiffi
2

p
3þ i

ffiffiffi
3

p
i3þ

ffiffiffi
3

p

ffiffiffi
3

p
þ i i

ffiffiffi
3

p
þ 1

 !
Ex

Ey

 !
¼

0

0

� �
ð11-113Þ

Writing (11-113) out in component form gives

3þ i
ffiffiffi
3

p� �
Ex þ i3þ

ffiffiffi
3

p� �
Ey ¼ 0 ð11-114aÞ

ffiffiffi
3

p
þ i

� �
Ex þ i

ffiffiffi
3

p
þ 1

� �
Ey ¼ 0 ð11-114bÞ

We see that (11-114a) differs from (11-114b) only by a factor of
ffiffiffi
3

p
, so the equations

are identical. We now solve (11-114b) for Ey/Ex and find that

Ey

Ex

¼ �

ffiffiffi
3

p

2
þ i

1

2

� �
ð11-115Þ

Now Ey/Ex can be expressed as

Ey

Ex

¼
a

b

� �
ei� ð11-116Þ
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where a/b is real. Equating the real and imaginary parts in (11-115) and (11-116),
we have

a

b
cos � ¼

�
ffiffiffi
3

p

2
ð11-117aÞ

a

b
sin � ¼

1

2
ð11-117bÞ

Squaring (11-117a) and (11-117b) and adding gives

a

b
¼ �1 ð11-118aÞ

Similarly, dividing (11-117b) by (11-117a) yields

� ¼ tan�1 �1ffiffiffi
3

p

� �
¼ �30� ð11-118bÞ

Thus, the orthogonal amplitudes of the incident beam are equal, and the phase shift
between the orthogonal components is �30�.

The Jones vector of the original beam is then

E
0
¼

Ex

Ey

� �
¼

1ffiffiffi
2

p
a
bei�

� �
¼

1ffiffiffi
2

p
1

�ei30
�

� �
ð11-119Þ

where we have introduced a factor of 1=
ffiffiffi
2

p
so that (11-119) is normalized. In terms

of the polarization ellipse, (11-119) gives

x2 �
ffiffiffi
3

p
xyþ y2 ¼

1

2
ffiffiffi
2

p

� �2

ð11-120Þ

which is the equation of a rotated ellipse, Equation (11-120) can be rotated to
a nonrotated (standard) ellipse by using the well-known equations of analytical
geometry. Thus, the left-hand side of (11-120) is of the form:

Ax2 þ 2Bxyþ Cy2 ð11-121Þ

By using the well-known rotation equations, (11-121) can be transformed to

a1u
2
þ 2b1uvþ c1v

2
ð11-122aÞ

where

a1 ¼ A cos2 �þ 2B sin� cos �þ C sin2 � ð11-122bÞ

2b1 ¼ 2B cos�� ðA� CÞ sin 2� ð11-122cÞ

c1 ¼ A sin2 �� 2B sin� cos�þ C cos2 � ð11-122dÞ

The ‘‘cross’’ term 2b1 will vanish, and the standard form of the ellipse is obtained for

cot 2� ¼
A� C

2B
ð11-123Þ
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From (11-120) we see that A ¼ C ¼ 1 and B ¼ �
ffiffiffi
3

p
=2. Thus, (11-123) shows that the

angle of rotation � is �45�. Equations (11-122b) and (11-122d) then reduce to

a1 ¼
2�

ffiffiffi
3

p

2
ð11-124aÞ

c1 ¼
2þ

ffiffiffi
3

p

2
ð11-124bÞ

The ellipticity angle is seen to be

tan� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�

ffiffiffi
3

p

2þ
ffiffiffi
3

p

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffi
3

p
=2

1þ
ffiffiffi
3

p
=2

s
ð11-125aÞ

Equation (11-125a) can be reduced further by noting that cos 30� ¼
ffiffiffi
3

p
=2 and using

the half-angle formulas:

tan� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos 30�

1þ cos 30�

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 sin2 15�

2 cos2 15�

s
ð11-125bÞ

so � ¼ 15�. Thus, (11-120) describes an ellipse that is rotated 45� from the x axis. The

axial length is L2=L1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
c1=a1

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2þ

ffiffiffi
3

p
Þ=ð2�

ffiffiffi
3

p
Þ

q
¼ 3:7321.

The last problem that we consider is to show that a linear polarizer can be used
to measure the major and minor axes of the polarization ellipse in standard form,
i.e., the major and minor axes of the ellipse are along the x and y axes, respectively.
This is described by setting � ¼ 90� in (11-81), so

E ¼
cos 
i sin 

� �
¼

a
ib

� �
ð11-126Þ

The amplitude equations corresponding to (11-126) are

Ex ¼ cos cos!t ð11-127aÞ

Ey ¼ sin  sin!t ð11-127bÞ

We can eliminate !t between (11-127a) and (11-127b), so

E2
x

a2
þ
Ey

b2
¼ 1 ð11-128Þ

where a ¼ cos and b ¼ sin . Thus, a and b are the lengths of the semimajor and
semiminor axes of the polarization ellipse (11-128). We now return to the measure-
ment of a and b.

The Jones matrix of a rotated polarizer is

Jpð�Þ ¼
cos2 � sin � cos �

sin � cos � sin2 �

� �
ð11-42Þ

so the Jones vector of the emerging beam is (multiplying (11-126) by (11-42))

E
0
¼

a cos2 � þ ib sin � cos �

a sin � cos � þ ib sin2 �

 !
ð11-129Þ
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The intensity corresponding to (11-129) is readily seen to be

Ið�Þ ¼ a2 cos2 � þ b2 sin2 � ð11-130Þ

where the prime on the intensity has been dropped. Setting � ¼ 0� and 90�, respec-
tively, (11-130) gives

Ið0�Þ ¼ a2 ¼ cos2  ð11-131aÞ

Ið90�Þ ¼ b2 ¼ sin2  ð11-131bÞ

Thus, by measuring the orthogonal intensities, the square of the major and minor
axes can be found. It is usually convenient to express (11-131) simply as the ratio:

a

b
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Ið0�Þ

Ið90�Þ

s
ð11-132Þ

Numerous problems using the Jones and Mueller matrices can be found in the
references at the end of this chapter. In particular, Gerrard and Burch treat a
number of interesting problems.

11.5 JONES MATRICES FOR HOMOGENEOUS ELLIPTICAL
POLARIZERS AND RETARDERS

We now end this chapter with a discussion of a topic of importance. We have
described polarizers, retarders, circular polarizers, etc., in terms of the Mueller
and Jones matrices. In particular, we have pointed out that a linear polarizer and
a circular polarizer derive their names from the fact that, regardless of the polariza-
tion state of the incident beam, the polarization state of the emerging beam is always
linearly and circularly polarized, respectively. Let us look at this behavior more
closely. The Jones matrix of a rotated linear polarizer is given by

JPð�Þ ¼
cos2 � sin � cos �

sin � cos � sin2 �

 !
ð11-42Þ

The incident beam is represented by

E ¼
Ex

Ey

� �
ð11-66Þ

Multiplying (11-66) by (11-42) yields

E
0
¼ ðEx cos � þ Ey sin �Þ

cos �
sin �

� �
ð11-133Þ

which is the Jones matrix for linearly polarized light. We note that if, say, � ¼ 0�,
(11-42) reduces to

JPH ¼
1 0
0 0

� �
ð11-37Þ
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We observe that if the incident beam is elliptically polarized, (11-66), then multi-
plying (11-66) by (11-37) gives

E
0
¼ Ex

1
0

� �
ð11-134Þ

Equation (11-134) shows that we obtain linearly polarized light. This can be written
in normalized form as

E
0
¼

1
0

� �
ð11-135Þ

If we now try to transmit the orthogonal state, namely, linear vertically polarized
light:

E ¼
0
1

� �
ð11-136Þ

we find from (11-37) and (11-136) that

E
0
¼

0
0

� �
ð11-137Þ

so there is no emerging beam. This behavior of the polarizer (11-37) can be summa-
rized by writing

E
0
¼

1 0
0 0

� �
1
0

� �
¼ 1

1
0

� �
ð11-138aÞ

E
0
¼

1 0
0 0

� �
0
1

� �
¼ 0

0
1

� �
ð11-138bÞ

Written in this way we see that the problem of transmission by a polarizer can be
thought of in terms of an eigenvector/eigenvalue problem. Thus, we see that the
eigenvectors of the 2 � 2 Jones matrix (11-37) are

E1 ¼
1
0

� �
E2 ¼

0
1

� �
ð11-139Þ

and the corresponding eigenvalues are 1 and 0. A linear polarizer has the property
that it transmits one of its eigenvectors perfectly and rejects the orthogonal eigen-
vector completely.

Let us now consider the same problem using a circular polarizer. We have seen
that a circular polarizer can be constructed by using a linear polarizer set at þ45�

followed by a quarter-wave retarder. The Jones matrix is

J ¼
1

2

1 1
i i

� �
ð11-140Þ

We now multiply (11-66) by (11-140) and find that

E
0
¼

Ex þ Ey

2

1
i

� �
¼

1ffiffiffi
2

p
1
i

� �
ð11-141Þ
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in its normalized form. Thus, again, regardless of the polarization state of the inci-
dent beam, the emerging beam is always right circularly polarized. In the case of a
linear polarizer the transmission of the orthogonal polarization state was completely
blocked by the linear polarizer. Let us now see what happens when we try to transmit
the orthogonal polarization state, namely, left circularly polarized light through the
circular polarizer (11-140). The Jones vector of the orthogonal state (which is left
circularly polarized) is

E ¼
1ffiffiffi
2

p
1
�i

� �
ð11-16Þ

Multiplying (11-16) by (11-140), we find that the Jones vector of the emerging
beam is

E
0
¼

1� i

2
ffiffiffi
2

p
1
i

� �
ð11-142Þ

The emerging beam is right circularly polarized. The circular polarizer (11-140) does
not block the left circularly polarized beam! Equation (11-142), therefore, is not an
eigenvector of (11-140). The reason for this seemingly anomalous behavior, which is
unlike the linear polarizer, is that the circular polarizer is constructed from a linear
þ45� polarizer and a quarter-wave retarder. That is, it is not a homogeneous polar-
izing element. The eigenvectors of (11-140) are easily shown actually to be

E1 ¼
1ffiffiffi
2

p
1

�1

� �
E2 ¼

1ffiffiffi
2

p
1
i

� �
ð11-143Þ

which are linear �45� and right circularly polarized light, respectively; the corre-
sponding eigenvalues are 0 and 1 þ i. Consequently, (11-140) does not describe a true
‘‘circular’’ polarizer. We would expect that a true circular polarizer would behave in
a manner identical to that of the linear polarizer. Namely, only one state of polarized
light always emerges and this corresponds to one of the two eigenvectors.
Furthermore, the other eigenvector is orthogonal to the transmitted eigenvector,
but it is completely blocked by the polarizing element, that is, the eigenvalues are
1 and 0. A polarizing element that exhibits these two properties simultaneously is
called homogeneous. We now wish to construct the homogeneous polarizing ele-
ments not only for circularly polarized light but also for the more general state,
elliptically polarized light.

The key to solving this problem is to recall our earlier work on raising the
matrix to the mth power. There we saw that the Mueller matrix could be diagonal-
ized and that it was possible to represent the Mueller matrix in terms of its eigen-
values, eigenvectors, and another matrix, which we called the modal matrix. Let us
now consider this problem again, now using the Jones vector.

Let us represent the Jones vector of a beam by

E1 ¼
p
q

� �
ð11-144aÞ
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Then, the orthogonal state is given by

E2 ¼
�q�

p�

� �
ð11-144bÞ

The reader can easily prove that Eqs. (11-144) are orthogonal by applying the
orthogonality condition:

E
y

1E2 ¼ E
y

2E1 ¼ 0 ð11-145Þ

where y represents complex transpose. We also know that the corresponding eigen-
values are 
1 and 
2. Earlier, we saw that we could construct a new matrix K, which
we called the modal matrix, from the eigenvectors and written

K ¼
p �q�

q p�

� �
ð11-146aÞ

The inverse modal matrix K�1 is easily found to be

K�1
¼

1

pp� þ qq�
p� q�

�q p

� �
ð11-146bÞ

It is easily shown that K K�1
¼ K�1K ¼ I if we normalize pp* þ qq* to 1.

Now, we saw earlier that there is a unique relationship between a matrix �
(� J) to its eigenvalues and eigenvectors expressed by

�K ¼ K� ð11-147Þ

where � is the diagonal eigenvalue matrix:

� ¼

1 0
0 
2

� �
ð11-148Þ

We now solve (11-147) for � to obtain

� ¼ K�K�1
ð11-149Þ

Equation (11-149) is a rather remarkable result because it shows that a matrix � can
be constructed completely from its eigenvectors and eigenvalues. We can write
(11-149) (� is replaced by J) so that

J ¼
1

pp� þ qq�
p �q�

q p

� �

1 0
0 
2

� �
p� q�

�q p

� �
ð11-150Þ

Carrying out the multiplication yields

J ¼
1

pp� þ qq�

1pp

�
þ 
2qq

�
ð
1 � 
2Þpq

�

ð
1 � 
2Þqp
� 
1qq

�
þ 
2pp

�

� �
ð11-151Þ

To check (11-150) and (11-151), let us consider linearly polarized light. We know its
eigenvectors are

E1 ¼
0
1

� �
E2 ¼

0
1

� �
ð11-139Þ

and its eigenvalues are 1 and 0. The modal matrix K is then

K ¼
1 0
0 1

� �
ð11-152aÞ
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The inverse modal matrix K�1 is easily found to be

K�1
¼

1 0
0 1

� �
ð11-152bÞ

From (11-150) we then can write

J ¼
1 0
0 1

� �
1 0
0 0

� �
1 0
0 1

� �
¼

1 0
0 0

� �
ð11-153Þ

which is identical to the Jones matrix of a linear horizontal polarizer; it is a homo-
geneous polarizing element.

Let us now construct a homogeneous right circular polarizer. The orthogonal
eigenvectors are

E1 ¼
1ffiffiffi
2

p
1
i

� �
E2 ¼

1ffiffiffi
2

p
i
1

� �
ð11-154Þ

Thus, from (11-150) and (11-154) the Jones matrix for a right circular homogeneous
polarizer will be (p ¼ 1, q ¼ i)

J ¼
1

2

1 i
i 1

� �
1 0
0 0

� �
1 �i
�i 1

� �
¼

1

2

1 �i
i 1

� �
ð11-155Þ

We can check to see if (11-155) is the Jones matrix for a homogeneous right circular
polarizer. First, we consider an elliptically polarized beam represented by

E ¼
Ex

Ey

� �
ð11-156Þ

We multiply (11-156) by (11-155), and we find that

E ¼
Ex � iEy

2

1
i

� �
ð11-157Þ

so only right circularly polarized light emerges, as required. Next, we take the
product of (11-155) and the eigenvector for right circularly polarized light and the
eigenvector for left circularly polarized light, respectively:

E
0
¼

1

2

1 �i
i 1

� �
1ffiffiffi
2

p
1
i

� �
¼ ð1Þ

1ffiffiffi
2

p
1
i

� �
ð11-158aÞ

E
0
¼

1

2

1 �i
i 1

� �
1ffiffiffi
2

p
1
�i

� �
¼ ð0Þ

1ffiffiffi
2

p
1
�i

� �
ð11-158bÞ

which is exactly what we require for a homogeneous right circular polarizer.
We can now turn our attention to constructing a homogeneous elliptical polar-

izer. For convenience, we describe this by the Jones vector:

E1 ¼
p
q

� �
ð11-159aÞ

and describe its orthogonal vector (eigenvector) by

E2 ¼
�q�

p�

� �
ð11-159bÞ
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From (11-151) we then have immediately, by setting 
1 ¼ 1 and 
2 ¼ 0,

J ¼
pp� pq�

qp� qq�

� �
ð11-160Þ

There are two other ways to represent an elliptical polarizer. The first is to
write the incident Jones vector in the form:

E1 ¼
axe

i�x

aye
i�y

 !
ð11-161Þ

The orthogonal state and eigenvalues are constructed as shown earlier in this section.
Then, we easily see from (11-150) and (11-161) that the Jones matrix for an elliptical
polarizer is

J ¼
a2x axaye

�i�

axaye
þi� a2y

 !
� ¼ �y � �x ð11-162Þ

The other representation of an elliptical polarizer can be obtained by using the Jones
vector:

E1 ¼
cos

sin ei�

� �
ð11-163Þ

as the eigenvector. Again, the orthogonal state and eigenvalues are constructed as
shown earlier. Then, from (11-150) we see that the Jones matrix for the elliptical
polarizer is

J ¼
cos  � sin e�i�

sin ei� cos

 !
1 0

0 0

� �
cos sin e�i�

� sin ei� cos

 !
ð11-164aÞ

or

J ¼
cos2  sin  cose�i�

sin  coseþi� sin2 

 !
ð11-164bÞ

The form expressed by (11-164b) enables us to determine the Jones matrix for any
type of elliptical polarizer including, for example, a linear polarizer and a circular
polarizer. For a linear horizontal polarizer  ¼ 0� and (11-164b) reduces to

J ¼
1 0

0 0

� �
ð11-165Þ

which is, indeed, the Jones matrix for a linear horizontal polarizer given earlier by
(11-37). Similarly, for  ¼ 45� and � ¼ 90�, which are the conditions for right
circularly polarized light, we see that (11-164b) reduces to

J ¼
1

2

1 �i

i 1

� �
ð11-166Þ

which is the Jones matrix for a homogeneous right circular polarizer, in agreement
with (11-155).
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While we have considered only ideal polarizers, it is simple to extend this
analysis to the general case where the polarizer is described by

J ¼
px 0
0 py

� �
ð11-167Þ

where px, py range between 0 and 1.
For an ideal linear horizontal polarizer px ¼ 1 and py ¼ 0. The terms used to describe
nonideal behavior of polarizers are diattenuation or dichroism. We shall use the
preferable diattenuation. For an explanation of the term dichroism and the origin
of its usage, see Shurcliff. Equation (11-167) describes a diattenuator. We see imme-
diately that the eigenvalues of a diattenuator are px and py. Therefore, the Jones
matrix for a nonideal (diattenuating) elliptical polarizer is

J ¼
cos  � sin e�i�

sin ei� cos

 !
px 0

0 py

 !
cos sin e�i�

� sin ei� cos

 !
ð11-168aÞ

or

J ¼
px cos

2 þ py sin
2  ðpx � pyÞ sin  cose

�i�

ðpx � pyÞ sin  cos e
þi� px sin

2 þ py cos
2 

 !
ð11-168bÞ

Equation (11-168b) enables us to describe any type of elliptical polarizer and is the
most useful of all representations of homogeneous elliptical polarizers.

There is, of course, the other importance type of polarizing element, which is
the retarder. We now treat the problem of representing homogeneous linear, circular,
and elliptical retarders. We begin this discussion by recalling that the Jones matrix
for a retarder was given by

J ¼
eþi�=2 0
0 e�i�=2

� �
ð11-169Þ

We now determine the eigenvectors and the eigenvalues of (11-169). We do this by
forming the familiar eigenvector/eigenvalue equation:

eþi�=2
� 
 0

0 e�i�=2
� 


 !
p

q

� �
¼ 0 ð11-170Þ

The eigenvalues are


1 ¼ eþi�=2 
2 ¼ e�i�=2
ð11-171aÞ

and the corresponding eigenvectors are

E1 ¼
1
0

� �
E2 ¼

0
1

� �
ð11-171bÞ
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which are the Jones vectors for linear horizontally and linear vertically polarized
light, respectively. Thus, the respective eigenvector/eigenvalue equations are

eþi�=2 0

0 e�i�=2

� �
1

0

� �
¼ eþi�=2 1

0

� �
ð11-172aÞ

and

eþi�=2 0
0 e�i�=2

� �
0
1

� �
¼ e�i�=2 0

1

� �
ð11-172bÞ

Because the eigenvectors of (11-169) are orthogonal states of linear polarized light,
the retarder is called a linear retarder. We can now immediately find the Jones matrix
for an elliptical retarder. For an elliptical retarder we must obtain the same eigen-
values given by (11-171a). If we use the Jones vector for elliptically polarized light
given by

E1 ¼
cos
sin ei�

� �
ð11-173Þ

then the Jones matrix for an elliptical retarder must be

J¼
cos � sine�i�

sinei� cos

� �
eþi�=2 0
0 e�i�=2

� �
cos sine�i�

� sinei� cos

� �
ð11-174aÞ

or

J ¼
ei�=2 cos2 þ e�i�=2 sin2  ðei�=2 � e�i�=2

Þ sin  cose�i�

ðei�=2 � e�i�=2
Þ sin  cos eþi� ei�=2 sin2 þ e�i�=2 cos2 

 !
ð11-174bÞ

Equation (11-174b) can be checked immediately by observing that for  ¼ 0�

(linear horizontally polarized light) it reduces to

J ¼
eþi�=2 0
0 e�i�=2

� �
ð11-175Þ

which is the Jones matrix for a linear retarder (11-169), as we expect.
We can use (11-174b) to find, say, the Jones matrix for a homogeneous right

circular retarder. We do this by using the familiar conditions of  ¼ 45� and � ¼ 90�.
Substituting these values in (11-174b) then gives

J ¼

cos
�

2
sin
�

2

� sin
�

2
cos

�

2

0
B@

1
CA ð11-176Þ

which is, indeed, the Jones matrix for a homogeneous right circular retarder.
These results can be summarized by writing the Jones matrices for a homo-

geneous elliptical polarizer and the Jones matrix for a homogeneous elliptical
retarder as the pair:

J ¼
px cos

2 þ py sin
2  ðpx � pyÞ sin  cos e

�i�

ðpx � pyÞ sin  cose
þi� px sin

2 þ py cos
2 

 !
ð11-168bÞ

J ¼
ei�=2 cos2 þ e�i�=2 sin2  ðei�=2 � e�i�=2

Þ sin  cose�i�

ðei�=2 � e�i�=2
Þ sin  coseþi� ei�=2 sin2 þ e�i�=2 cos2 

� �
ð11-174bÞ
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Shurcliff and, more recently, Kliger et al., have tabulated the Jones matrices and the
Mueller matrices for elliptical polarizers and retarders as well as their degenerate
forms. All of their forms can, of course, be obtained from (11-168b) and (11-174b).
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12

The Poincaré Sphere

12.1 INTRODUCTION

In the previous chapters we have seen that the Mueller matrix formalism and
the Jones matrix formalism enable us to treat many complex problems involving
polarized light. The use of matrices, however, only slowly made its way into physics
and optics. In fact, before the advent of quantum mechanics in 1925 matrix
algebra was rarely used. It is clear that matrix algebra greatly simplifies the treatment
of many difficult problems. In the optics of polarized light even the simplest problem
of determining the change in polarization state of a beam propagating through
several polarizing elements becomes surprisingly difficult to do without matrices.
Before the advent of matrices only direct and very tedious algebraic methods
were available. Consequently, other methods were sought to simplify these difficult
calculations.

The need for simpler ways to carry out difficult calculations began in anti-
quity. Around 150 BC the Greek astronomer Hipparchus was living in Alexandria,
Egypt, and working at the famous library of Alexandria. There, he compiled a
catalog of stars and also plotted the positions of these stars in terms of latitude and
longitude (in astronomy, longitude and latitude are called right ascension and
declination) on a large globe which we call the celestial sphere. In practice,
transporting a large globe for use at different locations is cumbersome.
Therefore, he devised a method for projecting a three-dimensional sphere on to
a two-dimensional plane. This type of projection is called a stereographic projec-
tion. It is still one of the most widely used projections and is particularly popular
in astronomy. It has many interesting properties, foremost of which is that the
longitudes and latitudes (right ascension and declination) continue to intersect each
other at right angles on the plane as they do on the sphere. It appears that the
stereographic projection was forgotten for many centuries and then rediscovered
during the European Renaissance when the ancient writings of classical Greece
and Rome were rediscovered. With the advent of the global exploration of
the world by the European navigators and explorers there was a need for
accurate charts, particularly charts that were mathematically correct. This
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need led not only to the rediscovery and use of the stereographic projection
but also to the invention of new types of projections, e.g., the famous Mercator
projection.

Henri Poincaré, a famous nineteenth-century French mathematician and
physicist, discovered around 1890 that the polarization ellipse could be repre-
sented on a complex plane. Further, he discovered that this plane could be
projected on to a sphere in exactly the same manner as the stereographic projec-
tion. In effect, he reversed the problem of classical antiquity, which was to project
a sphere on to a plane. The sphere that Poincaré devised is extremely useful for
dealing with polarized light problems and, appropriately, it is called the Poincaré
sphere.

In 1892, Poincaré introduced his sphere in his text Traité de Lumierè. Before
the advent of matrices and digital computers it was extremely difficult to carry out
calculations involving polarized light. As we have seen, as soon as we go beyond the
polarization ellipse, e.g., the interaction of light with a retarder, the calculations
become difficult. Poincaré showed that the use of his sphere enabled many of
these difficulties to be overcome. In fact, Poincaré’s sphere not only simplifies
many calculations but also provides remarkable insight into the manner in which
polarized light behaves in its interaction with polarizing elements.

While the Poincaré sphere became reasonably well known in the optical
literature in the first half of the twentieth century, it was rarely used in the treatment
of polarized light problems. This was probably due to the considerable mathematical
effort required to understand its properties. In fact, its use outside of France appears
to have been virtually nonexistent until the 1930s. Ironically, the appreciation of
its usefulness only came after the appearance of the Jones and Mueller matrix
formalisms. The importance of the Poincaré sphere was finally established in the
optical literature in the long review article by Ramachandran and Ramaseshan on
crystal optics in 1961.

The Poincaré sphere is still much discussed in the literature of polarized light.
In larger part this is due to the fact that it is really surprising how simple it is to use
once it is understood. In fact, despite its introduction nearly a century ago, new
properties and applications of the Poincaré sphere are still being published and
appearing in the optical literature. The two most interesting properties of the
Poincaré sphere are that any point on the sphere corresponds to the three Stokes
parameters S1, S2, and S3 for elliptically polarized light, and the magnitude
of the interaction of a polarized beam with an optical polarizing element
corresponds to a rotation of the sphere; the final point describes the new set of
Stokes parameters. In view of the continued application of the Poincaré sphere we
present a detailed discussion of it. This is followed by simple applications of the
sphere to describing the interaction of polarized light with a polarizer, retarder, and
rotator. More complicated and involved applications of the Poincaré sphere are
listed in the references.

12.2 THEORY OF THE POINCARÉ SPHERE

Consider a Cartesian coordinate system with axes x, y, z and let the direction of
propagation of a monochromatic elliptically polarized beam of light be in the
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z direction. The equations of propagation are described by

Exðz, tÞ ¼ Ex exp ið!t� kzÞ ð12-1aÞ

Eyðz, tÞ ¼ Ey exp ið!t� kzÞ ð12-1bÞ

where Ex and Ey are the complex amplitudes:

Ex ¼ E0x expði�xÞ ð12-2aÞ

Ey ¼ E0y expði�yÞ ð12-2bÞ

and E0x and E0y are real quantities. We divide (12-2b) by (12-2a) and write

Ey

Ex

¼
E0y

E0x

ei� ð12-3aÞ

¼
E0y

E0x

cos �þ i
E0y

E0x

� �
sin �

¼ uþ iv ð12-3bÞ

where � ¼ �y � �x and u and v are orthogonal axes in the complex plane. On
eliminating the propagator in (12-1) and (12-2), we obtain the familiar equation of
the polarization ellipse:

E2
x

E2
0x

þ
E2
y

E2
0y

� 2
ExEy

E0xE0y

cos � ¼ sin2 � ð3-7aÞ

We have shown in Section 3.2 that the maximum values of Ex and Ey are E0x

and E0y, respectively. Equation (3-7a) describes an ellipse inscribed in a rectangle of
sides 2E0x and 2E0y.

This is shown in Fig. 12-1.

Figure 12-1 Parameters of the polarization ellipse having amplitude components E0x and
E0y along x and y axes, respectively. The angle � is related to E0x and E0y by tan� ¼ E0y/E0x.

The major and minor axes of the ellipse are 2a and 2b, and the ellipticity is e ¼ b/a ¼ tan "; the
azimuth angle � is with respect to the x axis. (From Jerrard.)
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In general, we recall, the axes of the ellipse are not necessarily along the x and y
axes but are rotated, say, along x0 and y0. Thus, we can write the oscillation along
x0 and y0 as

x0 ¼ a cos� ð12-4aÞ

y0 ¼ b sin� ð12-4bÞ

where � ¼ !t� kz. The ellipticity e, which is the ratio of the minor axis to the
major axis, is e ¼ b/a. The orientation of the ellipse is given by the azimuth angle
�(0 	 � 	 180�); this is the angle between the major axis and the positive x axis. From
Fig. 12-1 the angles " and � are defined by the equations:

tan " ¼
b

a
ð0 	 " 	 90�Þ ð12-5aÞ

tan � ¼
E0y

E0x

ð0 	 � 	 90�Þ ð12-5bÞ

The sense of the ellipse or the direction of rotation of the light vector depends on �; it
is designated right or left according to whether sin � is negative or positive. The sense
will be indicated by the sign of the ratio of the principal axes. Thus, tan " ¼ þb=a
or �b/a refers to left (counterclockwise) or right (clockwise) rotation, respectively.

By using the methods presented earlier (see Section 3.4), we see that the follow-
ing relations exist with respect to the parameters of the polarization ellipse, namely,

E2
0x þ E2

0y ¼ a2 þ b2 ð12-6aÞ

E2
0x � E2

0y ¼ ða2 � b2Þ cos 2� ð12-6bÞ

E0xE0y sin � ¼ �ab ð12-6cÞ

2E0xE0y cos � ¼ ða2 � b2Þ sin 2� ð12-6dÞ

By adding and subtracting (12-6a) and (12-6b), we can relate E0x and E0y to a, b,
and �. Thus, we find that

E2
0x ¼ a2 cos2 � þ b2 sin2 � ð12-7aÞ

E2
0y ¼ a2 sin2 � þ b2 cos2 � ð12-7bÞ

We see that when the polarization ellipse is not rotated, so � ¼ 0�, (12-7a) and
(12-7b) become

E0x ¼ �a E0y ¼ �b ð12-8Þ

which is to be expected, as Fig. 12-1 shows. The ellipticity is then seen to be

e ¼
b

a
¼

E0y

E0x

ð12-9Þ

when � ¼ 0�.
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We can now obtain some interesting relations between the foregoing param-
eters. The first one can be obtained by dividing (12-6d) by (12-6b). Then

sin 2�

cos 2�
¼ tan 2� ¼

E0xE0y

E2
0x � E2

0y

cos � ð12-10Þ

Substituting (12-5b) into (12-10) then yields

tan 2� ¼
2 tan �

1� tan2 �

� �
cos � ð12-11Þ

The factor in parentheses is equal to tan 2�. We then have

tan 2� ¼ tan 2� cos � ð12-12Þ

The next important relationship is obtained by dividing (12-6c) by (12-6a),
whence

�ab

a2 þ b2
¼

E0xE0y

E2
0x þ E2

0y

sin � ð12-13Þ

Using both (12-5a) and (12-5b), we find that (12-13) becomes

� sin 2" ¼ sin 2� sin � ð12-14Þ

Another important relation is obtained by dividing (12-6b) by (12-6a). Then

E2
0x � E2

0y

E2
0x þ E2

0y

¼
a2 � b2

a2 þ b2
cos 2� ð12-15Þ

Again, substituting (12-5a) and (12-5b) into (12-15), we find that

cos 2� ¼ cos 2" cos 2� ð12-16Þ

Equation (12-16) can be used to obtain still another relation. We divide (12-6d) by
(12-6a) to obtain

2E0xE0y cos �

E2
0x þ E2

0y

¼
a2 � b2

a2 þ b2
sin 2� ð12-17Þ

Next, using (12-5a) and (12-5b), we find that (12-17) can be written as

sin 2� cos � ¼ cos 2" sin 2� ð12-18Þ

Equation (12-18) can be solved for cos2" by multiplying through by sin2� so that

sin 2� sin 2� cos � ¼ cos 2" sin2 2� ¼ cos 2"� cos 2" cos2 2� ð12-19Þ

or

cos 2" ¼ ðcos 2" cos 2�Þ cos 2� þ sin 2� sin 2� cos � ð12-20Þ

We see that the term in parentheses is identical to (12-16), so (12-20) can finally be
written as

cos 2" ¼ cos 2� cos 2� þ sin 2� sin 2� cos � ð12-21Þ

Copyright © 2003 by Marcel Dekker, Inc. All Rights Reserved.



Equation (12-21) represents the law of cosines for sides from spherical trigonometry.
Consequently, it represents our first hint or suggestion that the foregoing results
can be related to a sphere. We shall not discuss (12-21) at this time, but defer its
discussion until we have developed some further relations.

Equation (12-21) can be used to find a final relation of importance. We divide
(12-14) by (12-21):

� tan 2" ¼
sin 2� sin �

cos 2� cos � þ sin 2� sin 2� cos �
ð12-22Þ

Dividing the numerator and the denominator of (12-22) by sin2� cos � yields

� tan 2" ¼
tan �

sin 2� þ ðcos 2� cos 2�Þ=ðsin 2� cos �Þ
ð12-23Þ

We now observe that (12-12) can be written as

cos 2� tan 2� ¼ sin 2� cos � ð12-24Þ

so

cos � ¼
cos 2� tan 2�

sin 2�
ð12-25Þ

Substituting (12-25) into the second term in the denominator of (12-23) yields the
final relation:

� tan 2" ¼ sin 2� tan � ð12-26Þ

For convenience we now collect relations (12-12), (12-14), (12-16), (12-21), and
(12-26) and write them as a set of relations:

tan 2� ¼ tan 2� cos � ð12-27aÞ

� sin 2" ¼ sin 2� sin � ð12-27b)

cos 2� ¼ cos 2" cos 2� ð12-27cÞ

cos 2" ¼ cos 2v cos 2� þ sin 2� sin 2� cos � ð12-27dÞ

� tan 2" ¼ sin 2� tan � ð12-27eÞ

The equations in (12-27) have very familiar forms. Indeed, they are well-known
relations, which appear in spherical trigonometry.

Figure 12-2 shows a spherical triangle formed by three great circle arcs, AB,
BC, and CA on a sphere. At the end of this section the relations for a spherical
triangle are derived by using vector analysis. There it is shown that 10 relations exist
for a so-called right spherical triangle. For an oblique spherical triangle there exists,
analogous to plane triangles, the law of sines and the law of cosines. With respect to
the law of cosines, however, there is a law of cosines for the angles (uppercase letters)
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and a law of cosines for sides (lower case letters). Of particular interest are the
following relations derived from Fig. 12-2.

cos c ¼ cos a cos b ð12-28aÞ

sin a ¼ sin c sinA ð12-28bÞ

tan b ¼ tan c cosA ð12-28cÞ

cos a ¼ cos b cos cþ sin b sin c cosA ð12-28dÞ

tan a ¼ sin b tanA ð12-28eÞ

If we now compare (12-28a) with (12-27a), etc., we see that the equations
can be made completely compatible by constructing the right spherical triangle in
Fig. 12-3. If, for example, we equate the spherical triangles in Figs. 12-2 and 12-3,
we have

a ¼ 2" b ¼ 2� � ¼ A ð12-29Þ

Substituting (12-29) into, say, (12-28a) gives

cos 2� ¼ cos 2" cos 2� ð12-30Þ

which corresponds to (12-27c). In a similar manner by substituting (12-29) into the
remaining equations in (12-28), we obtain (12-27). Thus, we arrive at the very inter-
esting result that the polarization ellipse on a plane can be transformed to a spherical
triangle on a sphere. We shall return to these equations after we have discussed some
further transformation properties of the rotated polarization ellipse in the complex
plane.

The ratio Ey/Ex in (12-3) defines the shape and orientation of the elliptical
vibration given by (3-7a). This vibration may be represented by a point m on a
plane in which the abscissa and ordinate are u and v, respectively. The diagram in
the complex plane is shown in Fig. 12-4.

Figure 12-2 Spherical triangle on a sphere. The vertex angles are designated by A, B, C.
The side opposite to each angle is represented by a, b, and c, respectively.
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From (12-3b) we have

u ¼
E0y

E0x

cos � ð12-31aÞ

v ¼
E0y

E0x

sin � ð12-31bÞ

The point m(u, v) is described by the radius Om and the angle �. The angle � is found
from (12-31) to be

tan � ¼
v

u
ð12-32aÞ

or

� ¼ tan�1 v

u
ð12-32bÞ

Figure 12-3 Right spherical triangle for the parameters of the polarization ellipse.

Figure 12-4 Representation of elliptically polarized light by a point m on a plane; � is the
plane difference between the components of the ellipse (From Jerrard.)
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Squaring (12-31a) and (12-31b) and adding yields

u2 þ v2 ¼
E0y

E0x

� �2

¼ �2 ð12-33Þ

which is the square of the distance from the origin to m. We see that we can also
write (12-33) as

u2 þ v2 ¼ ðuþ ivÞðu� ivÞ ¼
Ey

Ex

� �
Ey

Ex

� ��

¼ ��� ¼
E2
0y

E2
0x

ð12-34aÞ

so

uþ iv ¼
Ey

Ex

¼ � ð12-34bÞ

Thus, the radius vecor Om and the angle mOu represent the ratio Ey/Ex and the
phase difference �, respectively. It is postulated that the polarization is left- or right-
handed according to whether � is between 0 and � or � and 2�.

We now show that (12-34a) can be expressed either in terms of the rotation
angle � or the ellipticity angle ". To do this we have from (12-33) that

u2 þ v2 ¼
E0y

E0x

� �2

¼ �2 ð12-35aÞ

We also have, from (12-5b)

E0y

E0x

¼ tan � ð12-35bÞ

Squaring (12-35b) gives

E2
0y

E2
0x

¼ tan2 � ð12-35cÞ

Now,

tan 2� ¼
2 tan �

1� tan2 �
ð12-35dÞ

so

tan2 � ¼ 1�
2 tan �

tan 2�
ð12-35eÞ

But, from (12-27a) we have

tan 2� ¼ tan 2� cos � ð12-35fÞ

Substituting (12-35f) into (12-35e) gives

tan2 � ¼ 1�
2 tan �

tan 2�
cos � ð12-35gÞ

Equating (12-35g) to (12-35c) and (12-35a) we have

u2 þ v2 ¼ 1� 2ðtan � cos �= tan 2�Þ

¼ 1� 2 cot 2�ðtan � cos �Þ
ð12-35hÞ
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Finally, substituting (12-35b) into (12-35h) and using (12-31a), we find that

u2 þ �2 þ 2u cot 2� � 1 ¼ 0 ð12-36Þ

Thus, we have expressed u and v in terms of the rotation angle � of the
polarization ellipse. It is also possible to find a similar relation to (12-36) in terms
of the ellipticity angle " rather than �. To show this we again use (12-35a), (12-35b),
and (12-35d) to form

u2 þ v2 ¼ 1�
2 tan �

sin 2�
cos 2� ð12-37aÞ

Substituting (12-27a) and (12-27b) into (12-37a) then gives

u2 þ v2 ¼ 1� 2v csc 2" cos 2� ð12-37bÞ

After replacing cos 2� with its half-angle equivalent and choosing the upper sign, we
are led to

u2 þ v2 � 2v csc 2"þ 1 ¼ 0 ð12-38Þ

Thus, we can describe (12-35a),

u2 þ v2 ¼
E0y

E0x

� �2

¼ �2 ð12-35aÞ

in terms of either � or ", respectively, by

u2 þ v2 þ 2u cot 2� � 1 ¼ 0 ð12-39aÞ

u2 þ v2 � 2v csc 2"þ 1 ¼ 0 ð12-39bÞ

At this point it is useful to remember that the two most important parameters
describing the polarization ellipse are the rotation angle � and the ellipticity angle ",
as shown in Fig. 12-1. Equations (12-39a) and (12-39b) describe the polarization
ellipse in terms of each of the parameters.

Equations (12-39a) and (12-39b) are recognized as the equations of a circle.
They can be rewritten in standard forms as

ðuþ cot 2�Þ2 þ v2 ¼ ðcsc 2�Þ2 ð12-40aÞ

u2 þ ðv� csc 2"Þ2 ¼ ðcot 2"Þ2 ð12-40bÞ

Equation (12-40a) describes, for a constant value of �, a family of circles each
of radius csc 2� with centers at the point (�cot 2�, 0). Similarly (12-40b) describes, for
a constant value of ", a family of circles each of radius cot 2� and centers at the point
(0, csc 2�). The circles in the two systems are orthogonal to each other. To show this
we recall that if we have a function described by a differential equation of the form

Mðx, yÞdxþNðx, yÞdy ¼ 0 ð12-41aÞ

then the differential equation for the orthogonal trajectory is given by

Nðx, yÞdx�Mðx, yÞdy ¼ 0 ð12-41bÞ
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We therefore consider (12-39a) and show that (12-39b) describes the orthogonal
trajectory. We first differentiate (12-39a)

u duþ v dvþ cot 2� du ¼ 0 ð12-42Þ

We eliminate the constant parameter cot2� from (12-42) by writing (12-39a) as

cot 2� ¼
1� u2 � v2

2u
ð12-43Þ

Substituting (12-43) into (12-42) and grouping terms, we find that

ð1þ u2 � v2Þ duþ 2uv dv ¼ 0 ð12-44Þ

According to (12-41a) and (12-41b), the trajectory orthogonal to (12-44) must,
therefore, be

2uv du� ð1þ u2 � v2Þ dv ¼ 0 ð12-45Þ

We now show that (12-39b) reduces to (12-45). We differentiate (12-39b) to obtain

u duþ v dv� csc 2" dv ¼ 0 ð12-46aÞ

Again, we eliminate the constant parameter csc 2" by solving for csc 2" in (12-39b):

csc 2" ¼
1þ u2 þ v2

2v
ð12-46bÞ

We now substitute (12-46b) into (12-46a), group terms, and find that

2uv du� ð1þ u2 � v2Þ dv ¼ 0 ð12-47Þ

Comparing (12-47) with (12-45) we see that the equations are identical so the tra-
jectories are indeed orthogonal to each other. In Fig. 12-5 we have plotted the family

Figure 12-5 Orthogonal circles of the polarization ellipse in the uv plane.

Copyright © 2003 by Marcel Dekker, Inc. All Rights Reserved.



of circles for � ¼ 15� to 45� and for " ¼ 10� to 30�. We note that the circles intersect
at m and that at this intersection each circle has the same value of � and �.

Each of the circles, (12-40a) and (12-40b), has an interesting property which we
now consider. If v ¼ 0, for example, then (12-40a) reduces to

ðuþ cot 2�Þ2 ¼ ðcsc 2�Þ2 ð12-48aÞ

Solving for u, we find that

u ¼ � cot � or u ¼ tan � ð12-48bÞ

Referring to Fig. 12-4, these points occur at s and t and correspond to linearly
polarized light in azimuth cot�1u and tan�1u, respectively; we also note from
(12-3a) and (12-3b) that because v ¼ 0 we have � ¼ 0, so u ¼ E0y/E0x. Similarly, if
we set u ¼ 0 in (12-40a), we find that

v ¼ �1 ð12-48cÞ

Again, referring to (12-3b), (12-48c) corresponds to E0y=E0x ¼ 1 and � ¼ ��/2, that
is, right- and left-circularly polarized light, respectively. These points are plotted as
P1 and P2 in Fig. 12-4. Thus, the circle describes linearly polarized light along the
u axis, circularly polarized light along the v axis, and elliptically polarized light
everywhere else in the uv plane.

From these results we can now project the point m in the complex uv plane on
to a sphere, the Poincaré sphere. This is described in the following section.

12.2.1 Note on the Derivation of Law of Cosines and Law of
Sines in Spherical Trigonometry

In this section we have used a number of formulas that originate from spherical
trigonometry. The two most important formulas are the law of cosines and the law
of sines for spherical triangles and the formulas derived by setting one of the angles
to 90� (a right angle). We derive these formulas by recalling the following vector
identities:

A� ðB� CÞ ¼ ðA � CÞB� ðA � BÞC ð12-N1aÞ

ðA� BÞ � C ¼ ðA � CÞB� ðB � CÞA ð12-N1bÞ

ðA� BÞ � ðC�DÞ ¼ ½A � ðC�DÞ�B� ½B � ðC�DÞ�A ð12-N1cÞ

ðA� BÞ � ðC�DÞ ¼ ðA � CÞðB �DÞ � ðA �DÞðB � CÞ ð12-N1dÞ

The terms in brackets in (12-N1c) are sometimes written as

½A � ðC�DÞ� ¼ ½A,C,D� ð12-N1eÞ

½B � ðC�DÞ� ¼ ½B,C,D� ð12-N1fÞ

A spherical triangle is a three-sided figure drawn on the surface of a sphere as
shown in Fig. 12-N1. The sides of a spherical triangle are required to be arcs of great
circles. We recall that a great circle is obtained by intersecting the sphere with a plane
passing through its center. Two great circles always intersect at two distinct points,
and their angle of intersection is defined to be the angle between their corresponding
planes. This is equivalent to defining the angle to be equal to the plane angle between
two lines tangent to the corresponding great circles at a point of intersection.
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The magnitude of a side of a spherical triangle may be measured in two ways.
Either we can take its arc length, or we can take the angle it subtends at the center of
the sphere. These two methods give the same numerical result if the radius of the
sphere is unity. We shall adopt the second of the two methods. In other words, if A,
B, and C are the vertices of a spherical triangle with opposite sides a, b, and c,
respectively, the numerical value of, say, a will be taken to be the plane angle
BOC, where O is the center of the sphere in Fig. 12-N1.

In the following derivations we assume that the sphere has a radius R ¼ 1 and
the center of the sphere is at the origin. The unit vectors extending from the center to
A, B, and C are , �, and �, respectively; the vertices are labeled in such a way that
, �, and � are positively oriented.

We now refer to Fig. 12-N2. We introduce another set of unit vectors 0, �0,
and � 0 extending from the origin and defined so that

� � ¼ � ¼ sin c� 0 ð12-N2aÞ

�� � ¼  ¼ sin a0 ð12-N2bÞ

� �  ¼ � ¼ sin b�0 ð12-N2cÞ

In Fig. 12-N2 only 0 is shown. However, in Fig. 12-N3 all three unit vectors are
shown. The unit vectors 0, �0, and � 0 determine a spherical triangle A0B0C0 called the
polar triangle of ABC; this is shown in Fig. 12-N4. We now let the sides of the polar
triangle be a0, b0, and c0, respectively. We see that B0 is a pole corresponding to the
great circle joining A and C. Also, C0 is a pole corresponding to the great circle AB. If
these great circles are extended to intersect the side B0C0, we see that this side is
composed of two overlapping segments B0E and DC0 each of magnitude of 90�. Their
common overlap has a magnitude A, so we see that

a0 þ A ¼ � ð12-N3aÞ

b0 þ B ¼ � ð12-N3bÞ

c0 þ C ¼ � ð12-N3cÞ

Figure 12-N1 Fundamental angles and arcs on a sphere.
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Equation (12-N3) is useful for relating the angles of a spherical triangle to the sides
of the corresponding polar triangle. We now derive the law of cosines and law of
sines for spherical trigonometry.

In the identity (12-N1d):

ðA� BÞ � ðC�DÞ ¼ ðA � CÞðB �DÞ � ðA �DÞðB � CÞ ð12-N1dÞ

we substitute  for A, � for B,  for C, � for D. Since  is a unit vector, we see that
(12-N1d) becomes

ð� �Þ � ð� �Þ ¼ � � � � ð � �Þð� � Þ ð12-N4Þ

In Fig. 12-N2 we have � � � ¼ cos a,  � � ¼ cos c, and  � � ¼ cos b. Hence, the right-
hand side of (12-N4) becomes

cos a� cos b cos c ð12-N5Þ

Figure 12-N3 Unit vectors within a unit sphere.

Figure 12-N2 The construction of a spherical triangle on the surface of a sphere.
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From (12-N2) we see that the left-hand side of (12-N4) becomes

ðsin c� 0Þ � ð� sin b�0Þ ¼ � sin c sin bð� 0 � �0Þ ð12-N6Þ

Now, just as � � � is equal to cosa, we see from the polar triangle in Figs. 12-N3 and
12-N4 that � 0 � �0 ¼ cos a0. From (12-N3a) cos a0 is cos(� � A), which equals �cosA.
Thus, the left-hand side of (12-N4) equals

sin c sin b sinA ð12-N7Þ

Equating the two sides we obtain the law of cosines:

cos a ¼ cos b cos cþ sin b sin c cosA ð12-N8aÞ

We can, of course, imagine that Fig. 12-N2 is rotated so that the roles previously
played by a, b, and c, respectively, are now replaced by b, c, and a, so we can write

cos b ¼ cos c cos aþ sin c sin a cosB ð12-N8bÞ

cos c ¼ cos a cos bþ sin a sin b cosC ð12-N8cÞ

Three other versions of the cosine law are obtained by applying the law of
cosines to the polar triangle by merely changing a to a0, b to b0, etc., according to
(12-N3), namely,

cosA ¼ � cosB cosCþ sinB sinC cos a ð12-N9aÞ

cosB ¼ � cosC cosAþ sinC sinA cos b ð12-N9bÞ

cosC ¼ � cosA cosBþ sinA sinB cos c ð12-N9cÞ

We now turn to the law of sines. Here, we make use of the identity:

ðA� BÞ � ðC�DÞ ¼ ½A � ðC�DÞ�B� ½B � ðC�DÞ�A ð12-N1cÞ

Replacing A by , B by �, C by , and D by �, (12-N1c) becomes

ð� �Þ � ð� �Þ ¼ ½ � ð� �Þ��� ½� � ð� �Þ� ð12-N10Þ

Figure 12-N4 The polar triangle on a sphere.
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From the relations given by (12-N2) the left-hand side of (12-N10) becomes

ðsin c� 0Þ � ð� sin b�0Þ ¼ � sin b sin cð� 0 � �0Þ

¼ � sin b sin cð� sin a0Þ

¼ ðsin b sin c sinAÞ ð12-N11Þ

In this manner we obtain

ðsin b sin c sinAÞ ¼ ½,�, �� ð12-N12aÞ

ðsin c sin a sinBÞ� ¼ ½�, �,�� ð12-N12bÞ

ðsin a sin b sinC Þ� ¼ ½�,,��� ð12-N12cÞ

We see from either (12-N1e) or (12-N1f) that ½,�, �� ¼ ½�, �,� ¼ ½�,,�� and,
hence, the left-hand sides of (12-N12) are all equal. Thus, for example, we can write

sin b sin c sinA ¼ sin c sin a sinB ð12-N13Þ

which yields

sin b

sinB
¼

sin a

sinA
ð12-N14Þ

Similarly, we obtain from (12-N12) that

sin a

sinA
¼

sin c

sinC
ð12-N15Þ

so that we can finally write the law of sines:

sin a

sinA
¼

sin b

sinB
¼

sin c

sinC
ð12-N16Þ

From the law of cosines and the law of sines we can derive the equations for a
right spherical triangle. To show this let us first summarize the previous results by
writing

The law of cosines for sides a, b, and c:

cos a ¼ cos b cos cþ sin b sin c cosA ð12-N17aÞ

cos b ¼ cos c cos aþ sin c sin a cosB ð12-N17bÞ

cos c ¼ cos a cos bþ sin a sin b cosC ð12-N17cÞ

The law of cosines for angles A, B, and C:

cosA ¼ � cosB cosCþ sinB sinC cos a ð12-N18aÞ

cosB ¼ � cosC cosAþ sinC sinA cos b ð12-N18bÞ

cosC ¼ � cosA cosBþ sinA sinB cos c ð12-N18cÞ
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The law of sines:

sin a

sinA
¼

sin b

sinB
¼

sin c

sinC
ð12-N19Þ

We can use (12-N17), (12-N18) and (12-N19) to obtain the equations for a
right spherical triangle. In order to derive these equations, we assume that the angle
C is the right angle. The spherical right triangle is shown in Fig. 12-N5.

In (12-N17c) we set C ¼ 90�, and we see that

cos c ¼ cos a cos b ð12-N20aÞ

Similarly, from the law of sines (12-N19) we find that

sin a ¼ sin c sinA ð12-N20bÞ

sin b ¼ sin c sinB ð12-N20cÞ

From the law of cosines for angles (12-N18) we then have

cosA ¼ cos a sinB ð12-N20dÞ

cosB ¼ cos b sinA ð12-N20eÞ

cosA cosB ¼ sinA sinB cos c ð12-N20fÞ

We note that (12-N20f) can also be derived by multiplying (12-N20d) by (12-N20e)
and using (12-N20a).

Next, we divide (12-N20b) by cos a so that

sin a= cos a ¼ tan a ¼ sin c sinA= cos a

¼ tan c½cos b sinA�

¼ tan c cosB ð12-N20gÞ

where we have used (12-N20a) and (12-N20e). We see that we have found six rela-
tions. Further analysis shows that there are four more relations for a right spherical

Figure 12-N5 Arc length and angle relations for a right spherical triangle.
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triangle, so there are ten relations altogether. We therefore find that for a right
spherical triangle we have the following relations:

cos c ¼ cos a cos b ð12-N21aÞ

sin a ¼ sin c sinA ð12-N21bÞ

sin b ¼ sin c sinB ð12-N21cÞ

tan a ¼ sin b tanA ð12-N21dÞ

tan b ¼ sin a tanB ð12-N21eÞ

tan b ¼ tan c cosA ð12-N21fÞ

tan a ¼ tan c cosB ð12-N21gÞ

cosA ¼ cos a sinB ð12-N21hÞ

cosB ¼ cos b sinA ð12-N21iÞ

cos c ¼ cotA cotB ð12-N21jÞ

These relations are important because they are constantly appearing in the study of
polarized light.

12.3 PROJECTION OF THE COMPLEX PLANE ONTO A SPHERE

We now consider the projection of the point m in the complex plane on to the surface
of a sphere. This projection is shown in Fig. 6. Specifically, the point m in the uv
plane is projected as point M on the sphere. A sphere of unit diameter (the radius r is
equal to 1/2) is constructed such that point O is tangential to the uv plane, and points
in the plane on the u axis project on to the surface of the sphere by joining them
to O0. The line OO0 is the diameter, and the points p1 and p2 project on to the poles
P1 and P2 of the sphere. Then, by the principles of sterographic projection the family
of circles given by (12-39a) and (12-39b) project into meridians of longitude and
parallels of latitude, respectively. The point O0 (see Fig. 12-6) is called the antipode of
a sphere. If all the projected lines come from this point, the projection is called
stereographic. The vector Om projects into the arc OM of length 2�, and the sphe-
rical angle MOO

0
is �. Thus, any point M on the sphere will, as does m on the plane,

represent the state of polarization of light.
In order to find the relationship between the coordinates of M and the param-

eters of the light, i.e., the ellipticity, azimuth, sense, and phase difference, it is
necessary to determine the coordinates in terms of � and ". We must, therefore,
express (transform) the coordinates of m on the uv plane to M on the sphere. If
the center of the sphere (Fig. 12-6) is taken as the origin of the coordinate system,
then the coordinates of m and O0, referenced to this origin are found as follows: the
coordinates of m, in terms of x, y, z, are seen from the figure to be

x ¼ �
1

2
ð12-49aÞ

y ¼ tan � cos � ð12-49bÞ

z ¼ tan � sin � ð12-49cÞ
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The coordinates of the point O0 are

x0 ¼
1

2
ð12-50aÞ

y0 ¼ 0 ð12-50bÞ

z0 ¼ 0 ð12-50cÞ

The point m is projected along the straight line mMO0 on to M. That is, we must
determine the coordinates of the straight line mMO0 and the point M on the sphere.
The equation of the sphere is

x2 þ y2 þ z2 ¼
1

2

� �2

ð12-51Þ

We must now find the equation of the straight line mMO0. In order to do this,
we must digress for a moment and determine the general equation of a straight line
in three-dimensional space. This is most easily done using vector analysis.

Consider Fig. 12-7. A straight line is drawn through the point R0 and parallel
to a constant vector A. If the point R is also on the line, then the vector R � R0 is

Figure 12-6 Stereographic projection of the complex plane on a sphere. Elliptically polar-

ized light is represented by the points m and M on the plane and the sphere, respectively. The
vector Om projects into the arc OM of length 2�; the angle � projects into the spherical angle
MOT. The latitude and longitude of M are l and k, respectively. (From Jerrard.)
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parallel to A. This is expressed by

ðR� R0Þ � A ¼ 0 ð12-52Þ

which is the equation of a straight line. The fact that R � R0 is parallel to Amay also
be expressed by the vector equation:

R� R0 ¼ At ð12-53Þ

where t is a scalar. Thus, the equation of a straight line in parametric form is

R ¼ R0 þ At �1 < t <1 ð12-54Þ

We can deduce the Cartesian form of (12-54) by setting

R ¼ xiþ yjþ zk ð12-55aÞ

R0 ¼ x0iþ y0jþ z0k ð12-55bÞ

A ¼ aiþ bjþ ck ð12-55cÞ

where i, j, k are the Cartesian unit vectors. Thus, we have

x ¼ x0 þ at ð12-56aÞ

y ¼ y0 þ bt ð12-56bÞ

z ¼ z0 þ ct ð12-56cÞ

Eliminating t in (12-56), we find

x� x0
a

¼
y� y0

b
¼

z� z0
c

ð12-57Þ

We now return to our original problem. We have

A ¼ ð1Þi� ðtan � cos �Þj� ðtan � sin �Þk ð12-58Þ

Similarly, R0 is

R0 ¼ �
1

2
iþ ðtan � cos �Þjþ ðtan � sin �Þk ð12-59Þ

Figure 12-7 Vector equation of a straight line in three-dimensional space.
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Thus, from (12-55), (12-58) and (12-59) we find from (12-57) the relation:

xþ 1=2

1
¼

y� tan � cos �

� tan � cos �
¼

z� tan � sin �

� tan � sin �
ð12-60Þ

which is the equation of the line O0m.
The coordinates (x, y, z) of M, the point of intersection of O0m and the sphere,

are obtained by solving (12-51) and (12-60) simultaneously. To do this, let us first
solve for x. We first write, from (12-60),

z ¼
1

2
ðtan � sin �Þð1� 2xÞ ð12-61aÞ

y ¼
1

2
ðtan � cos �Þð1� 2xÞ ð12-61bÞ

We now substitute (12-61a) and (12-61b) into (12-51):

x2 þ y2 þ z2 ¼
1

2

� �2

ð12-51Þ

and find that

4ðtan2�þ 1Þx2 � ð4 tan2�Þxþ ðtan2�� 1Þ ¼ 0 ð12-62Þ

The solution of this quadratic equation is

x ¼
1

2
cos 2�,

1

2
ð12-63aÞ

In a similar manner the solutions for y and z are found to be

y ¼
1

2
sin 2� cos �, 0 ð12-63bÞ

z ¼
1

2
sin 2� sin �, 0 ð12-63cÞ

The first set of x, y, z coordinates in (12-63) refers to the intersection of the straight
line at M on the surface of the sphere. Thus, the coordinates of M are

Mðx, y, zÞ ¼
1

2
cos 2�,

1

2
sin 2� cos �,

1

2
sin 2� sin �

� �
ð12-64aÞ

The second set of coordinates in (12-63) describes the intersection of the line at the
origin O0, that is, the antipode of the sphere:

O0
ðx, y, zÞ ¼

1

2
, 0, 0

� �
ð12-64bÞ

We note that for � ¼ 0 that (12-64a) reduces to (12-64b). Using (12-27a), (12-27b),
and (12-27c), we can express the coordinates for M as

x ¼
1

2
cos 2� ¼

1

2
cos 2" cos 2� ð12-65aÞ

y ¼
1

2
sin 2� cos � ¼

1

2
cos 2" sin 2� ð12-65bÞ

z ¼
1

2
sin 2� sin � ¼

1

2
sin 2" ð12-65cÞ
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Equations (12-65a), (12-65b), and (12-65c) have a familiar appearance. We
recall that the orthogonal field components Ex and Ey (12-2a) and (12-2b) are

Ex ¼ E0x expði�xÞ ð12-2aÞ

Ey ¼ E0y expði�yÞ ð12-2bÞ

where the propagator has been suppressed. The Stokes parameters for (12-2) are
then defined in the usual way:

S0 ¼ ExE
�
x þ EyE

�
y ð12-66aÞ

S1 ¼ ExE
�
x � EyE

�
y ð12-66bÞ

S2 ¼ ExE
�
y þ EyE

�
x ð12-66cÞ

S3 ¼ iðExE
�
y � EyE

�
x Þ ð12-66dÞ

Substituting (12-2) into (12-66) gives

S0 ¼ E2
0x þ E2

0y ð12-67aÞ

S1 ¼ E2
0x � E2

0y ð12-67bÞ

S2 ¼ 2E0xE0y cos � ð12-67cÞ

S3 ¼ 2E0xE0y sin � ð12-67dÞ

where we have written � ¼ �y � �x. From (12-7b) in Section 12.2 we have

tan � ¼
E0y

E0x

0 	 � 	 908ð Þ ð12-5bÞ

We now set

S0 ¼ A2
þ B2

¼ C2
ð12-68Þ

where A ¼ E0x and B ¼ E0y and construct the right triangle in Fig. 12-8. We see
immediately that (12-67) can be rewritten in the form:

S0 ¼ C2
ð12-69aÞ

S1 ¼ C2 cos 2� ð12-69bÞ

S2 ¼ C2 sin 2� cos � ð12-69cÞ

S3 ¼ C2 sin 2� sin � ð12-69dÞ

Figure 12-8 Construction of a right triangle.
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Finally, we set C2
¼ 1=2 in (12-69), so we have

S0 ¼
1

2
ð12-70aÞ

S1 ¼
1

2
cos 2� ð12-70bÞ

S2 ¼
1

2
sin 2� cos � ð12-70cÞ

S3 ¼
1

2
sin 2� sin � ð12-70dÞ

We now compare (12-70) with the coordinates of M in (12-65), and we see that the
equations for S1, S2, and S3 and x, y, and z are identical. Thus, the coordinates of the
point M on the Poincaré sphere correspond exactly to the Stokes parameters S1, S2,
and S3 of the optical beam and S0 corresponds to the radius of the sphere.

On the Poincaré sphere we see that for a unit intensity we can write the Stokes
parameters as [see (12-65)]

S0 ¼ 1 ð12-71aÞ

S1 ¼ cos 2" cos 2� ð12-71bÞ

S2 ¼ cos 2" sin 2� ð12-71cÞ

S3 ¼ sin 2" ð12-71dÞ

where of course, " and � are the ellipticity and azimuth (rotation) of the polarized
beam.

In Fig. 12-9 we have drawn the Poincaré sphere in terms of the Stokes param-
eters given in (12-71). The point M on the surface of the Poincaré sphere is described
in terms of its latitude (2"), where ��=2 	 2" 	 �=2, and its longitude (2�),

Figure 12-9 The Poincaré sphere showing the representation of an elliptically polarized

vibration by a point M. From the spherical triangle OMT, the parameters of the vibration can
be found. Points on the equator OO0 represent linearly polarized light. The sense of rotation of
the ellipse is left and right in the upper and lower hemispheres, respectively. The poles P1 and

P2 represent left and right circularly polarized light, respectively. (From Jerrard.)

Copyright © 2003 by Marcel Dekker, Inc. All Rights Reserved.



where �� 	 2� 	 �. We see immediately that for 2" ¼ 0, which corresponds to the
equator on the Poincaré sphere, (12-71) reduces to

S0 ¼ 1 ð12-72aÞ

S1 ¼ cos 2� ð12-72bÞ

S2 ¼ sin 2� ð12-72cÞ

S3 ¼ 0 ð12-72dÞ

Equation (12-72) is the Stokes parameters for linearly polarized light oriented at an
angle �. For 2� ¼ 0, (12-72) reduces to linear horizontally polarized light, for
2� ¼ �=2 we find linear þ45� light, and for 2� ¼ � linear vertically polarized light.
Thus, as we move counterclockwise on the equator, we pass through different states
of linearly polarized light.

If we now set 2� ¼ 0 so we move along the prime meridian (longitude), then
(12-71) reduces to

S0 ¼ 1 ð12-73aÞ

S1 ¼ cos 2" ð12-73bÞ

S2 ¼ 0 ð12-73cÞ

S3 ¼ sin 2" ð12-73dÞ

Equation (12-73) is recognized as elliptically polarized light for the polarization
ellipse in its standard form. We see that if we start from the equator ð2" ¼ 0Þ and
move up in latitude then at the pole we have 2" ¼ �=2, and (12-73) reduces to right
circularly polarized light. Similarly, moving down from the equator at the lower pole
2" ¼ ��/2, and we have left circularly polarized light.

We can now summarize the major properties of the Poincaré sphere:

1. The coordinates of a point M on the Poincaré sphere are represented by
latitude angle 2" and longitude angle 2�. A polarization state is described
by Pð2", 2�Þ.

2. The latitude 2" ¼ 0� corresponds to the equator and for this angle the
Stokes vector, (12-71), is seen to reduce to the Stokes vector for linearly
polarized light, (12-72). Thus, linearly polarized light is always restricted to
the equator. The angles 2� ¼ 0�, 90�, 180�, and 270� correspond to the
linear polarization states linear horizontal, linear þ45�, linear vertical, and
linear �45�, respectively.

3. The longitude 2� ¼ 0� corresponds to the prime meridian and for this angle
the Stokes vector, (12-71), is seen to reduce to the Stokes vector for ellip-
tically polarized light for an nonrotated polarization ellipse, (12-73).
According to (12-73) we see that for 2" ¼ 0� we have linear horizontally
polarized light and as we move up along the prime meridian we pass from
right elliptically polarized light to right circularly polarized light at
2" ¼ 90� (the north pole). Similarly, moving down the meridian from the
equator we pass from left elliptically polarized light to left circularly polar-
ized light at 2" ¼ �90� at the south pole.
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4. The points along a given parallel represent ellipses of the same form (ellip-
ticities) but different orientations (azimuths).

5. The points on a given meridian represent vibrations of the same orienta-
tion (azimuth) whose eccentricity varies from 0 on the equator to �1 at the
north and south poles, respectively.

The real power of the Poincaré sphere is that it enables us to determine the
state of polarization of an optical beam after it has propagated through a polarizing
element or several polarizing elements without carrying out the calculations. In the
following section we apply the sphere to the problem of propagation of a polarized
beam through (1) a polarizer, (2) a retarder, (3) a rotator, and (4) an elliptical
polarizer consisting of a linear polarizer and a retarder.

12.4 APPLICATIONS OF THE POINCARÉ SPHERE

In Section 12.1 we pointed out that the Poincaré sphere was introduced by Poincaré
in order to treat the problem of determining the polarization state of an optical beam
after it had propagated through a number of polarizing elements. Simply put, given
the Stokes parameters (vector) of the input beam, the problem is to determine the
Stokes parameters of the output beam after it has propagated through a polarizing
element or several polarizing elements. In this section we apply the Poincaré sphere
to the problem of describing the effects of polarizing elements on an incident polar-
ized beam. In order to understand this behavior, we first consider the problem using
the Mueller matrix formalism, and then discuss the results in terms of the Poincaré
sphere.

The Mueller matrix for an ideal linear polarizer rotated through an angle � is

MP ¼
1

2

1 cos 2� sin 2� 0

cos 2� cos2 2� sin 2� cos 2� 0

sin 2� sin 2� cos 2� sin2 2� 0

0 0 0 0

0
BBB@

1
CCCA ð12-74Þ

In the previous section we saw that the Stokes vector of a beam of unit intensity and
written in terms of its ellipticity " and its azimuth (orientation) � is given by

S ¼

1

cos 2" cos 2�

cos 2" sin 2�

sin 2"

0
BBB@

1
CCCA ð12-75Þ

The incident beam is now represented by (12-75) and is plotted as a point P on the
Poincaré sphere, specifically Pð2", 2�Þ. The polarized beam now propagates through
the rotated polarizer, and the Stokes vector of the emerging beam is found by multi-
plying (12-75) by (12-74) to obtain the result:

S0
¼

1

2
½1þ cos 2" cos 2ð�� �Þ�

1

cos 2�

sin 2�

0

0
BBB@

1
CCCA ð12-76Þ
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The Stokes vector of the emerging beam aside from the intensity factor in (12-76) can
also be described in terms of ellipticity and orientation:

S0
¼

1

cos 2"0 cos 2�0

cos 2"0 sin 2�0

sin 2"0

0
BBB@

1
CCCA ð12-77Þ

The polarization state is described only by the parameters within the column
matrix and (12-76) shows that, regardless of the polarization state of the incident
beam, the polarization state of the emerging beam is a function only of �, the
orientation angle of the linear polarizer. From (12-77) we see that 2"0 ¼ 0, so the
ellipticity is zero and the point P0, that is, Pð2"0, 2�0Þ, is always on the equator. Thus,
regardless of the polarization state of the incident beam and its position on the
Poincare spheré the final point P0 is always located on the equator at the position
2�, that is P0

ð0, 2�Þ. We also see from (12-77) and (12-76) that tan 2�0 ¼ tan 2�, that
is, �0 ¼ �, so the final longitude is �.

It is also possible to use the Poincaré sphere to obtain the intensity factor in
(12-76). For the Poincaré sphere, 2" corresponds to the parallels and 2� corresponds
to the longitudes. Within the factor in (12-76) we see that we have

cos 2" cosð2�� 2�Þ ð12-78Þ

Now (12-27c) is

cos 2� ¼ cos 2" cos 2� ð12-79Þ

Thus, (12-78) is obtained by constructing a right spherical triangle on the Poincaré
sphere. In order to determine the magnitude of the arc on a great circle (2�), we need
only measure the length of the angle 2" on the meridian (longitude) followed by
measuring the length ð2�� 2�Þ on the equator (latitude). The length (2�) of the arc of
the great circle is then measured from the initial point of the meridian to the final
point along the equator. This factor is then added to 1 and the final result is divided
by 2, as required by (12-76). The Poincaré sphere, therefore, can also be used to
determine the final intensity as well as the change in the polarization state.

The next case of interest is a retarder. The Mueller matrix is given by

MR ¼

1 0 0 0
0 1 0 0
0 0 cos � � sin�
0 0 sin� cos�

0
BB@

1
CCA ð12-80Þ

In order to determine the point P 0 on the Poincaré sphere, we consider first the case
where the incident beam is linearly polarized. For linearly polarized light with its
azimuth plane at an angle  the Stokes vector is

S ¼

1
cos 2
sin 2
0

0
BB@

1
CCA ð12-81Þ
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In terms of 2" and 2� (latitude and longitude), (12-81) can be expressed in terms of
(12-75) as

S ¼

1

cos 2" cos 2�

cos 2" sin 2�

sin 2"

0
BB@

1
CCA ð12-75Þ

Equating the terms in (12-75) and (12-81):

cos 2" cos 2� ¼ cos 2 ð12-82aÞ

cos 2" sin 2� ¼ sin 2 ð12-82bÞ

sin 2" ¼ 0 ð12-82cÞ

We immediately find from (12-82) that 2" ¼ 0 and 2� ¼ 2. The latter result allows
us to express (12-75) as

S ¼

1

cos 2�

sin 2�

0

0
BB@

1
CCA ð12-83Þ

The Stokes vector S0 of the emerging beam is found by multiplying (12-83) by
(12-80), so

S0
¼

1

cos 2�

cos� sin 2�

sin� sin 2�

0
BB@

1
CCA ð12-84Þ

The corresponding Stokes vector in terms of 2"0 and 2�0 is

S0
¼

1

cos 2"0 cos 2�0

cos 2"0 sin 2�0

sin 2"0

0
BB@

1
CCA ð12-85Þ

Equating terms in (12-84) and (12-85) gives

sin 2"0 ¼ sin 2� sin� ð12-86aÞ

tan 2�0 ¼ tan 2� cos � ð12-86bÞ

Equations (12-86a) and (12-86b) can be expressed in terms of the right spherical
triangle shown in Fig. 12-10. The figure is constructed using the equations for a right
spherical triangle given at the end of Section 12.2 (compare Figure 12-10 to Figure
12-N5). Figure 12-10 shows how the retarder moves the initial point Pð2", 2�Þ to
P0
ð2"0, 2�0Þ on the Poincaré sphere. To carry out the operations equivalent to the

right spherical triangle, the following steps are performed:

1. Determine the initial point Pð2" ¼ 0, 2�Þ on the equator and label it A.
2. Draw an angle at A from the equator of magnitude �, the phase shift of the

retarder.
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3. Measure the arc length 2� along the equator from A. Then draw this arc
length from A to B. The end of this arc corresponds to the point P0

ð2"0, 2�0Þ.
4. The meridian 2"0 is drawn down to the equator; this arc length corresponds

to the ellipticity angle 2"0. The intersection of the meridian with the equa-
tor is the orientation angle 2�0. Three cases are of special interest: linear
horizontally polarized light, linear þ45� polarized light, and linear verti-
cally polarized light. We discuss each of these cases and their interaction
of a retarder as they are described on the Poincaré sphere.
a. Linear horizontally polarized light. For this case 2 ¼ 2� ¼ 0�. We see

from (12-86a) and (12-86b) that 2"0 and 2�0 are zero. Thus, the linear
horizontally polarized light is unaffected by the retarder and P is
identical to P0.

b. Linear þ45� light. Here, 2 ¼ 2� ¼ �=2, and from (12-86a) and
(12-86b) we have

sin 2"0 ¼ sin� ð12-87aÞ

tan 2�0 ¼ 1 ð12-87bÞ

Thus, the arc length (the longitude or the meridian) is 2"0 ¼ � and
2�0 ¼ �=2. We see that as � increases, 2"0 increases, so that when
2"0 ¼ �=2, which corresponds to right circularly polarized light, the
arc length 2"0 extends from the equator to the pole.

c. Linear vertically polarized light. For this final case 2 ¼ 2� ¼ �. We
see from (12-86a) that 2"0 ¼ 0, that is, P0 is on the equator. However,
tan 2� ¼ �1, so 2�0 ¼ ��. Thus, P0 is on the equator but diametri-
cally opposite to P on the Poincaré sphere.

The Stokes vector confirms this behavior for these three cases, since we have
from (12-84) that

S 0
¼

1

cos 2�

cos� sin 2�

sin� sin 2�

0
BBBB@

1
CCCCA ð12-84Þ

which reduces to linear horizontally polarized, linear þ45�, and linear vertically
polarized light for 2� ¼ 0,�=2, and � respectively.

Figure 12-10 Right spherical triangle for a retarder.
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We now consider the case where the incident light is elliptically polarized. In
order to understand the behavior of the elliptically polarized light and the effect of a
retarder on its polarization state in terms of the Poincaré sphere, we write the Stokes
vector for the incident beam as

S ¼

S0

S1

S2

S3

0
BB@

1
CCA ð12-88Þ

Multiplying (12-88) by (12-80) then gives

S0
¼

S0

S1

S2 cos�� S3 sin�

S2 sin �� S3 cos �

0
BBB@

1
CCCA ð12-89Þ

Now, the third and fourth elements (S0
2 and S0

3) describe rotation through the angle �.
To see this behavior more clearly, let us consider (12-89) for a quarter-wave retarder
ð� ¼ �=2Þ and a half-wave retarder ð� ¼ �Þ. For these cases (12-89) reduces, respec-
tively, to

S0
¼

S0

S1

�S3

S2

0
BB@

1
CCA ð12-90aÞ

and

S0
¼

S0

S1

�S2

�S3

0
BB@

1
CCA ð12-90bÞ

Let us now consider the Poincaré sphere in which we show the axes labeled as
S1,S2, and S3. We see that, according to (12-90a) and (12-90b), S1 remains invariant,
but S2 ! �S3 ! �S2 and S3 ! S2 ! �S3. As can be seen from Fig. 12-11 for the

Figure 12-11 Right spherical triangle for a linear polarizer–retarder combination.
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Poincaré sphere, this corresponds to rotating the sphere around the S1 axis sequen-
tially through �/2 and then again through another �/2 for a total rotation of �. Thus,
the effect of the retarder can be expressed merely by rotating the Poincaré sphere
around the S1 axis; the magnitude of the rotation is equal to the phase shift �. It is
this remarkably simple property of the Poincaré sphere which has led to its great use
and interest.

In terms of the equation for 2"0 and 2�0, we can obtain these values by deter-
mining the Stokes vector S0 of the emerging beam, namely, by multiplying (12-75) by
(12-80). The result is easily seen to be

S0
¼

1

cos 2" cos 2�

cos� cos 2" sin 2� � sin� sin 2"

sin� cos 2" sin 2� þ cos� sin 2"

0
BBB@

1
CCCA ð12-91Þ

We immediately find by equating the elements of (12-91) to (12-85) that

tan 2�0 ¼
cos� cos 2" sin 2� � sin� sin 2"

cos 2" cos 2�
ð12-92aÞ

sin 2"0 ¼ sin� cos 2" sin 2� þ cos� sin 2" ð12-92bÞ

In the Stokes vector (12-91) the element S1 is recognized as the relation for a
right spherical triangle, namely, (12-N21a). The elements S2 and S3 are the relations
for an oblique spherical triangle if the angle C shown in Fig. 12-N5 is an oblique
angle. We can use the Poincaré sphere to obtain the orientation angle �0 and the
ellipticity angle �0. For example, if we set a ¼ 90��2", b ¼ �, c ¼ 90� � 2"0, and
C ¼ 90� � 2� in (12-N17c) we obtain the ellipticity angle (12-92b) of the emerging
beam; a similar set of angles leads to the orientation angle (12-92a).

We now turn to the problem of describing the interaction of an elliptically
polarized beam with a rotator using the Poincaré sphere. The Mueller matrix for a
rotator is

Mrot ¼

1 0 0 0

0 cos 2� sin 2� 0

0 � sin 2� cos 2� 0

0 0 0 1

0
BBB@

1
CCCA ð12-93Þ

where � is the angle of rotation. The Stokes vector of the emerging beam is found by
multiplying (12-88) by (12-93):

S0
¼

1

S1 cos 2�þ S2 sin 2�

�S1 sin 2�þ S2 cos 2�

S3

0
BBB@

1
CCCA ð12-94Þ
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or in terms of " and �, (12-75) by (12-93),

S0
¼

1

cos 2" cos 2ð� � �Þ

cos 2" sin 2ð� � �Þ

sin 2"

0
BBB@

1
CCCA ð12-95Þ

We see that from (12-94) we have a rotation around the S3 axis, i.e., starting from
2� ¼ 0� and moving to 270� in increments of 90�, S1 ! S2 ! �S1 ! �S2 and,
similarly, S2 ! �S1 ! �S2 ! S1. Thus, rotating the Poincaré sphere around the
S3 axis by � transforms Pð2", 2�Þ to P0

ð2", 2ð� � �ÞÞ; the ellipticity angle " remains
unchanged and only the orientation of the polarization ellipse is changed.

To summarize, the rotation around the S1 axis describes the change in phase,
i.e., propagation through a birefringent medium, and the rotation around the S3 axis
describes the change in azimuth, i.e., propagation through an optically active
medium.

The final problem we consider is the propagation of a polarized beam through
a linear polarizer oriented at an angle � to the x axis followed by a retarder with its
fast axis along the x axis. For the linear polarizer we have from (12-76) and (12-77)
that

S0
¼

1

2
½1þ cos 2" cos 2ð�� �Þ�

1

cos 2�

sin 2�

0

0
BBB@

1
CCCA ð12-76Þ

S0
¼

1

cos 2"0 cos 2�0

cos 2"0 sin 2�0

sin 2"0

0
BBB@

1
CCCA ð12-77Þ

We, of course, immediately see that 2"0 is zero and 2�0 ¼ 2�. The point Pð2", 2�Þ, the
incident beam, is moved along the equator through an angle � to the point
P0
ð2"0, 2�0Þ. Equivalently, we need only rotate the Poincaré sphere around its polar

axis. Next, the beam propagates through the retarder. Using (12-76) and the Mueller
matrix for a retarder (12-80), we see that the Stokes vector is

S0
¼

1

cos 2�

sin 2� cos�

sin 2� sin �

0
BBB@

1
CCCA ð12-96Þ

We now equate the elements in (12-96) with (12-77) to obtain

cos 2"0 cos 2�0 ¼ cos 2� ð12-97aÞ

cos 2"0 sin 2�0 ¼ sin 2� cos� ð12-97bÞ

sin 2"0 ¼ sin 2� sin� ð12-97cÞ
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Alternatively, we can equate the elements to the Stokes vector representation of
elliptically polarized light using �0 and  0 notation for (12-77):

S0
¼

1

cos 2�0 cos 2 0

cos 2�0 sin 2 0

sin 2�0

0
BB@

1
CCA ð12-98Þ

Equating elements of (12-96) with (12-98) yields

cos 2�0 cos 2 0
¼ cos 2� ð12-99aÞ

cos 2�0 sin 2 0
¼ sin 2� cos� ð12-99bÞ

sin 2�0 ¼ sin 2� sin� ð12-99cÞ

We now divide (12-99c) by (12-99b) to obtain

tan 2�0 ¼ sin 2 0 tan � ð12-100Þ

Similarly, we divide (12-99b) by (12-99a) and find that

tan 2 0
¼ tan 2� cos� ð12-101Þ

We now collect (12-99a), (12-100) and (12-101) and write

cos 2�0 cos 2 0
¼ cos 2� ð12-102aÞ

tan 2�0 ¼ sin 2 tan � ð12-102bÞ

tan 2 0
¼ tan 2� cos� ð12-102cÞ

Not surprisingly, (12-102a), (12-102b), and (12-102c) correspond to (12-N21a),
(12-N21d), and (12-N21f), respectively. These equations are satisfied by the right
spherical triangle in Fig. 12-11. The arc 2� and the angle � determine the magnitudes
2�0 and 2 0. We see that all that is required to determine these latter two angles is to
rotate the sphere through an angle � around the S1 axis and then to measure the arc
length 2�. We note that the magnitude of the angle � is then confirmed by the
intersection of the arcs 2� and 2 0.

A number of further applications of the Poincaré sphere have been given in the
optical literature. A very good introduction to some of the simplest aspects of the
Poincaré sphere and certainly one of the clearest descriptions is found in Shurcliff.
An excellent and very detailed description, as well as a number of applications, has
been given by Jerrard; much of the material presented in this chapter is based on
Jerrard’s excellent paper. Further applications have been considered by Ramaseshan
and Ramachandran, who have also described the Poincaré sphere and its application
in a very long and extensive review article entitled ‘‘Crystal Optics’’ in the Handbuch
der Physik. This is not an easy article to read, however, and requires much time and
study to digest fully. Finally, E. A. West et al. have given an excellent discussion of
the application of the Poincaré sphere to the design of a polarimeter to measure solar
vector magnetic fields.

Remarkably, even though the Poincaré sphere was introduced a century ago,
papers on the subject continue to appear. A recent paper of interest on a planar
graphic representation of the state of polarization, a planar Poincaré chart, is given
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by Tedjojuwono et al. Finally, a very good review has been recently published by
Boerner et al. on polarized light and includes other projections analogous to the
stereographic projection (the mercator, the azimuthal, etc.).
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13

The Interference Laws of Fresnel
and Arago

13.1 INTRODUCTION

In this last chapter of the first part, we now turn to the topic that led Stokes to
introduce his polarization parameters, namely, the mathematical formulation of
unpolarized light and its application to the interference laws of Fresnel and
Arago. In this section the events that led up to Stokes’ investigation are described.
We briefly review these events.

The investigation by Stokes that led to his paper in 1852 began with the
experiments performed by Fresnel and Arago in 1817. At the beginning of these
experiments both Fresnel and Arago held the view that light vibrations were long-
itudinal. However, one of the results of these experiments, namely, that two rays that
are polarized at right angles could in no way give rise to interference, greatly puzzled
Fresnel. Such a result was impossible to understand on the basis of light vibrations
that are longitudinal. Young heard of the experiments from Arago and suggested
that the results could be completely understood if the light vibrations were trans-
verse. Fresnel immediately recognized that this condition would indeed make the
experiments intelligible. Indeed, as J. Strong has correctly pointed out, only after
these experiments had been performed was the transverse nature of light as well as
the properties of linearly, circularly, and elliptically polarized light fully understood.

The results of the Fresnel–Arago experiments have been succinctly stated as the
interference laws of Fresnel and Arago. These laws, of which there are four, can be
summarized as follows:

1. Two waves linearly polarized in the same plane can interfere.
2. Two waves linearly polarized with perpendicular polarizations cannot

interfere.
3. Two waves linearly polarized with perpendicular polarizations, if derived

from perpendicular components of unpolarized light and subsequently
brought into the same plane, cannot interfere.
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4. Two waves linearly polarized with perpendicular polarizations, if derived
from the same linearly polarized wave and subsequently brought into the
same plane, can interfere.

The fact that orthogonally polarized rays cannot be made to interfere can be
taken as a proof that light vibrations are transverse. This leads to a complete under-
standing of laws 1 and 2. The same confidence in understanding cannot be made with
respect to laws 3 and 4, however. For these laws involve unpolarized light, a quantity
that Fresnel and Arago were unable to understand completely or to characterize
mathematically. As a consequence, they never attempted a mathematical formula-
tion of these laws and merely presented them as experimental facts.

Having established the basic properties of unpolarized, as well as partially
polarized light, along with their mathematical formulation, Stokes then took up
the question of the interference laws of Fresnel and Arago. The remarkable fact
now emerges that Stokes made no attempt to formulate these laws. Rather, he
analyzed a related experiment that Stokes states is due to Sir John Herschel. This
experiment is briefly discussed at the end of this chapter.

The analysis of the interference laws is easily carried to completion by means of
the Mueller matrix formalism. The lack of a matrix formalism does not preclude a
complete analysis of the experiments, but the use of matrices does make the calcula-
tions far simpler to perform. We shall first discuss the mathematical statements of
unpolarized light. With these statements we then analyze the experiments through
the use of matrices, and we present the final results in the form of the Stokes vectors.

The apparatus that was used by Fresnel and Arago is similar to that devised by
Young to demonstrate the phenomenon of interference arising from two slits. In
their experiments, however, polarizers are appropriately placed in front of the light
source and behind the slits in order to obtain various interference effects. Another
polarizer is placed behind the observation screen in two of the experiments in order
to bring the fields into the same plane of polarization. The optical configuration will
be described for each experiment as we go along.

13.2 MATHEMATICAL STATEMENTS FOR UNPOLARIZED LIGHT

In most optics texts very little attention is paid to the subject of unpolarized light.
This subject was the source of numerous investigations during the nineteenth century
and first half of the twentieth century. One of the major reasons for this interest was
that until the invention of the laser practically every known optical source emitted
only unpolarized light. Ironically, when the subject of unpolarized light was finally
‘‘understood’’ in the late 1940s and 1950s, a new optical source, the laser, was
invented and it was completely polarized! While there is a natural tendency to
think of lasers as the optical source of choice, the fact is that unpolarized light
sources continue to be widely used in optical laboratories. This observation is sup-
ported by looking into any commercial optics catalog. One quickly discovers that
manufacturers continue to develop and build many types of optical sources, includ-
ing black-body sources, deuterium lamps, halogen lamps, mercury lamps, tungsten
lamps, etc., all of which are substantially unpolarized. Consequently, the subject of
unpolarized light is still of major importance not only for understanding the Fresnel–
Arago laws but because of the existence and use of these optical sources. Hence, we
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should keep in mind that the subject of unpolarized light is far from being only of
academic interest.

In all of the experiments of Fresnel and Arago an unpolarized source of light is
used. The mathematical statements that characterize unpolarized light will now be
developed, and these expressions will then be used in the analysis of the Fresnel–
Arago experiments and the formulation of their laws.

The Stokes parameters of a beam of light, as first shown by Stokes, can be
determined experimentally by allowing a beam of light to propagate through a
retarder of retardance � and then through a polarizer with its transmission axis at
an angle � from the x axis. The observed intensity I(�, �) of the beam is found to be

Ið�,�Þ ¼
1

2
½S0 þ S1 cos 2� þ S2 sin 2� cos�� S3 sin 2� sin�� ð13-1Þ

where S0, S1, S2, and S3 are the Stokes parameters of the incident beam. In order to
use (13-1) to characterize unpolarized light, Stokes invoked the experimental fact
that the observed intensity of unpolarized light is unaffected by the presence of the
retarder and the orientation of the polarizer. In other words, I(�,�) must be inde-
pendent of � and �. This condition can only be satisfied if

S1 ¼ S2 ¼ S3 ¼ 0, S0 6¼ 0 ð13-2aÞ

so

Ið�,�Þ ¼ S0=2 ð13-2bÞ

The Stokes parameters for a time-varying field with orthogonal components
Ex(t) and Ey(t) in a linear basis are defined to be

S0 ¼ hExðtÞE
�
x ðtÞi þ hEyðtÞE

�
y ðtÞi ð13-3aÞ

S1 ¼ hExðtÞE
�
x ðtÞi � hEyðtÞE

�
y ðtÞi ð13-3bÞ

S2 ¼ hExðtÞE
�
y ðtÞi þ hEyðtÞE

�
x ðtÞi ð13-3cÞ

S3 ¼ ihExðtÞE
�
y ðtÞi � ihEyðtÞE

�
x ðtÞi ð13-3dÞ

where h� � �i means a time average and an asterisk signifies the complex conjugate.
The Stokes parameters for an unpolarized beam (13-2) can be expressed in terms of
the definition of (13-3) so we have

hExðtÞE
�
x ðtÞi þ hEyðtÞE

�
y ðtÞi ¼ S0 ð13-4aÞ

hExðtÞE
�
x ðtÞi � hEyðtÞE

�
y ðtÞi ¼ 0 ð13-4bÞ

hExðtÞE
�
y ðtÞi þ hEyðtÞE

�
x ðtÞi ¼ 0 ð13-4cÞ

ihExðtÞE
�
y ðtÞi � ihEyðtÞE

�
x ðtÞi ¼ 0 ð13-4dÞ

From (13-4a) and (13-4b) we see that

hExðtÞE
�
x ðtÞi ¼ hEyðtÞE

�
y ðtÞi ¼

1

2
S0 ð13-5Þ
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Thus, we conclude from (13-5) that the time-averaged orthogonal quadratic field
components are equal, and so for unpolarized light we tentatively set

ExðtÞ ¼ EyðtÞ ¼ AðtÞ ð13-6Þ

This expression indeed satisfies (13-4a) and (13-4b). However, from (13-4c) and
(13-4d) we have

hExðtÞE
�
y ðtÞi ¼ hEyðtÞE

�
x ðtÞi ¼ 0 ð13-7aÞ

and this cannot be satisfied by (13-6). Therefore, we must set

ExðtÞ ¼ AxðtÞ ð13-7bÞ

EyðtÞ ¼ AyðtÞ ð13-7cÞ

in order to satisfy (13-4a) through (13-4d). We see that unpolarized light can be
represented by

hAxðtÞA
�
xðtÞi ¼ hAyðtÞA

�
yðtÞi ¼ hAðtÞA�

ðtÞi ð13-8aÞ

and

hAxðtÞA
�
yðtÞi ¼ hAyðtÞA

�
xðtÞi ¼ 0 ð13-8bÞ

Equations (13-8) are the classical mathematical statements for unpolarized
light. The condition (13-8b) is a statement that the orthogonal components of unpo-
larized light have no permanent phase relation. In the language of statistical analysis,
(13-8b) states that the orthogonal field components of unpolarized light are uncor-
related. We can express (13-8a) and (13-8b) as a single statement by writing

hAiðtÞA
�
j ðtÞi ¼ hAðtÞA�

ðtÞi � �ij i, j ¼ x, y ð13-9aÞ

where �ij is the Kronecker delta defined by

�ij ¼ 1 if i ¼ j ð13-9bÞ

�ij ¼ 0 if i 6¼ j ð13-9cÞ

13.3 YOUNG’S INTERFERENCE EXPERIMENT WITH
UNPOLARIZED LIGHT

Before we treat the Fresnel–Arago experiments, we consider Young’s interference
experiment with an unpolarized light source using the results of the previous section.
In many treatments of Young’s interference experiments, a discussion of the nature
of the light source is avoided. In fact, nearly all descriptions of the experiment in
many textbooks begin with the fields at each of the slits and then proceed to show
that interference occurs because of the differences in path lengths between the slits
and the screen. It is fortuitous, however, that regardless of the nature of the light
source and its state of polarization, interference will always be observed. It was
fortunate for the science of optics that the phenomenon of interference could be
described without having to understand the nature of the optical source. Had optical
physicists been forced to attack the problem of the polarization of sources before
proceeding, the difficulties might have been insurmountable and, possibly, greatly
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impeded further progress. Fortunately, this did not occur. Nevertheless, the problem
of characterizing the polarization of light remained a problem well into the twentieth
century as a reading of the papers in the references at the end of this chapter show.

Many beginning students of physical optics sometimes believe that Young’s
experiment must be performed with light that is specially prepared; i.e., initially the
light source is unpolarized and then is transformed to linear polarized light before it
arrives at the slits. The fact is, however, that interference phenomena can be
observed with unpolarized light. This can be easily shown with the mathematical
statements derived in the previous section.

In Young’s experiment an unpolarized light source is symmetrically placed
between the slits A and B as shown in Fig. 13-1. The Stokes vector of the unpolarized
light can again be decomposed in the following manner:

S	 ¼ hAA�
i

1
0
0
0

0
BB@

1
CCA ¼

1

2
hAxA

�
xi

1
1
0
0

0
BB@

1
CCAþ

1

2
hAyA

�
yi

1
�1
0
0

0
BB@

1
CCA ð13-10Þ

The Stokes vector at slit A is

SA ¼
1

2
hAxA

�
xi

1
1
0
0

0
BB@

1
CCA

A

þ
1

2
hAyA

�
yi

1
�1
0
0

0
BB@

1
CCA

A

ð13-11aÞ

and at slit B is

SB ¼
1

2
hAxA

�
xi

1
1
0
0

0
BB@

1
CCA

B

þ
1

2
hAyA

�
yi

1
�1
0
0

0
BB@

1
CCA

B

ð13-11bÞ

Figure 13-1 Young’s interference experiment with unpolarized light.
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where the subscripts A and B remind us that these are the Stokes vectors of the field
at the respective slits.

The fields which satisfy the Stokes vector SA are

ExAðtÞ ¼
AxðtÞffiffiffi

2
p EyAðtÞ ¼

AyðtÞffiffiffi
2

p ð13-12aÞ

and SB

ExBðtÞ ¼
AxðtÞffiffiffi

2
p EyBðtÞ ¼

AyðtÞffiffiffi
2

p ð13-12bÞ

The field components at point C on the screen arising from the field propagating
from slit A is

ExAðtÞ ¼
AxðtÞffiffiffi

2
p expði�AÞ ð13-13aÞ

EyAðtÞ ¼
AyðtÞffiffiffi

2
p expði�AÞ ð13-13bÞ

and, similarly, that due to slit B

ExBðtÞ ¼
AxðtÞffiffiffi

2
p expði�BÞ ð13-14aÞ

EyBðtÞ ¼
AyðtÞffiffiffi

2
p expði�BÞ ð13-14bÞ

The total field in the x and y directions is

ExðtÞ ¼ ExAðtÞ þ ExBðtÞ ¼
AxðtÞffiffiffi

2
p ½expði�AÞ þ expði�BÞ� ð13-15aÞ

and

EyðtÞ ¼ EyAðtÞ þ EyBðtÞ ¼
AyðtÞffiffiffi

2
p ½expði�AÞ þ expði�BÞ� ð13-15bÞ

or

ExðtÞ ¼
AxðtÞffiffiffi

2
p ð1þ ei�Þ ð13-16aÞ

EyðtÞ ¼
AyðtÞffiffiffi

2
p ð1þ ei�Þ ð13-16bÞ

where � ¼ �B � �A and the constant factor expði�AÞ has been dropped. Equation
(13-16) describes the field components at a point C on the observing screen. It is
interesting to note that it is not necessary at this point to know the relation between
the slit separation and the distance between the slits and the observing screen. Later,
this relation will have to be known to obtain a quantitative description of the inter-
ference phenomenon. We shall see shortly that interference is predicted with the
information presented above.
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The Stokes vector for (13-16) is now formed in accordance with (13-3) and
applying the conditions for unpolarized light (13-8) or (13-9). We then find that the
Stokes vector for the field at C is

S ¼ hAA�
ið1þ cos�Þ

1

0

0

0

0
BB@

1
CCA ð13-17Þ

Thus, we see from (13-17) that light observed on the screen is still unpolarized.
Furthermore, the intensity is

I ¼ hAA�
ið1þ cos�Þ ð13-18Þ

Equation (13-18) is the familiar statement for describing interference. According to
(13-18), the interference pattern on the screen will consist of bright and dark (null
intensity) lines.

In order to use (13-18) for a quantitative measurement, the specific relation
between the slit separation and the distance from the slits to the screen must be
known. This is described by � ¼ �B � �A ¼ k�l, where k ¼ 2�/
 and �l is the path
difference between the fields propagating from A and B to C. The phase shift can be
expressed in terms of the parameters shown in Fig. 13-1.

l 22 ¼ d 2
þ yþ

a

2

� � 2

ð13-19aÞ

l 21 ¼ d 2
þ y�

a

2

� � 2

ð13-19bÞ

Subtracting (13-19b) from (13-19a) yields

l 22 � l 21 ¼ 2ay ð13-20Þ

We can assume that a is small, d � a, and c is not far from the origin so that

l2 þ l1 ffi 2d ð13-21Þ

so (13-20) becomes

�l ¼ l2 � l1 ¼
ay

d
ð13-22Þ

The phase shift � is then

� ¼ �B � �A ¼ k�l ¼
2�ay


d
ð13-23Þ

where k ¼ 2�/
 is the wavenumber and 
 is the wavelength of the optical field. The
maximum intensities are, of course, observed when cos� ¼ 1, � ¼ 2�m so that

y ¼

d

a

� �
m m ¼ 0, 1, 2, ::: ð13-24aÞ
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and the minimum (null) intensities are observed when cos� ¼ �1, � ¼ ð2mþ 1Þ�
so that

y ¼

d

a

� �
m m ¼

1

2
,
3

2
,
5

2
, ::: ð13-24bÞ

One can easily show that, regardless of the state of polarization of the incident
beam, interference will be observed. Historically, this was first done by Young and
then by Fresnel and Arago, using unpolarized light.

We now consider the mathematical formulation of the Fresnel–Arago inter-
ference laws.

13.4 THE FIRST EXPERIMENT: FIRST AND SECOND
INTERFERENCE LAWS

We consider a source of unpolarized light 	 symmetrically placed between slits A and
B as shown in Fig. 13-2. A linear polarizer P	 with its transmission axis parallel to
the x axis is placed in front of the light source. A pair of similar polarizers PA and PB

are also placed behind slits A and B, respectively. The transmission axes of these
polarizers PA and PB are at angles  and � with respect to the x axis, respectively. We
wish to determine the intensity and polarization of the light on the screen �.

The Stokes vector for unpolarized light of intensity AA* can be represented by

S	 ¼ hAðtÞA�
ðtÞi

1
0
0
0

0
BB@

1
CCA ð13-25Þ

Figure 13.2 The first experiment. The transmission axis of the P	 is parallel to the x axis.

The transmission axes of PA and PB are at angles  and � from the x axis.
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Equation (13-25) can be decomposed into two orthogonally linearly polarized
beams. We then write

S	 ¼ hAA�
i

1

0

0

0

0
BBB@

1
CCCA

¼
1

2
hAxA

�
xi

1

1

0

0

0
BBB@

1
CCCAþ

1

2
hAyA

�
yi

1

�1

0

0

0
BBB@

1
CCCA ð13-26Þ

where we have used (13-8a).
The Mueller matrix for P	 is

M	 ¼
1

2

1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

0
BB@

1
CCA ð13-27Þ

The output beam from P	 is obtained from the multiplication of (13-27) and (13-26):

SP	 ¼
1

2
hAxA

�
xi

1
1
0
0

0
BB@

1
CCA ð13-28Þ

Thus, the polarizer P	 transmits the horizontal and rejects the vertical component of
the unpolarized light, (13-26). The light is now linearly horizontally polarized.

The matrix of a polarizer, MP, with its transmission axis at an angle � from the
x axis, is determined from

MPð2�Þ ¼ Mð�2�ÞMPMð2�Þ ð13-29Þ

where MP(2�) is the matrix of the rotated polarizer and M(2�) is the rotation matrix:

Mð2�Þ ¼

1 0 0 0

0 cos 2� sin 2� 0

0 � sin 2� cos 2� 0

0 0 0 1

0
BBB@

1
CCCA ð13-30Þ

The Mueller matrix for PA is then found by setting � ¼  in (13-30) and then
substituting (13-27) into (13-29). The result is

MPA
¼

1

2

1 cos 2 sin 2 0

cos 2 cos2 2 cos 2 sin 2 0

sin 2 cos 2 sin 2 sin 2 2 0

0 0 0 0

0
BBB@

1
CCCA ð13-31Þ
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A similar result holds for MPB
with  replaced by �. The Stokes vector SA that

emerges from PA is obtained by the multiplication of (13-28) by (13-31):

SA ¼
1

2
hAxA

�
xi cos

2 

1

cos 2

sin 2

0

0
BBB@

1
CCCA ð13-32aÞ

In a similar manner the Stokes vector SB is found to be

SB ¼
1

2
hAxA

�
xi cos

2 �

1

cos 2�

sin 2�

0

0
BBB@

1
CCCA ð13-32bÞ

Inspection of (13-32a) and (13-32b) shows that both beams are linearly polarized at
slits A and B.

In order to describe interference phenomena at the screen �, we must now
determine the fields at slits A and B in the following manner. From the definition of
the Stokes vector given by (13-3) and the Stokes vector that we have just found at slit
A, Eq. (13-32a), we can write

hExðtÞE
�
x ðtÞiA þ hEyðtÞE

�
y ðtÞiA ¼

1

2
hAxðtÞA

�
xðtÞi cos

2  ð13-33aÞ

hExðtÞE
�
x ðtÞiA � hEyðtÞE

�
y ðtÞiA ¼

1

2
hAxðtÞA

�
xðtÞi cos

2  cos 2 ð13-33bÞ

hExðtÞE
�
y ðtÞiA þ hEyðtÞE

�
x ðtÞiA ¼

1

2
hAxðtÞA

�
xðtÞi cos

2  sin 2 ð13-33cÞ

ihExðtÞE
�
y ðtÞiA � ihEyðtÞE

�
x ðtÞiA ¼ 0 ð13-33dÞ

where the subscript A on the angle brackets reminds us that we are at slit A. We now
solve these equations and find that

hExðtÞE
�
x ðtÞiA ¼

1

2
hAxðtÞA

�
xðtÞi cos

4  ð13-34aÞ

hEyðtÞE
�
y ðtÞiA ¼

1

2
hAxðtÞA

�
xðtÞi cos

2  sin 2  ð13-34bÞ

hExðtÞE
�
y ðtÞiA ¼ hEyðtÞE

�
x ðtÞiA ¼

1

4
hAxðtÞA

�
xðtÞi cos

2  sin 2 ð13-34cÞ

We see that the following fields will then satisfy (13-34):

ExAðtÞ ¼
AxðtÞffiffiffi

2
p cos 2  ð13-35aÞ

EyAðtÞ ¼
AxðtÞffiffiffi

2
p cos sin  ð13-35bÞ

where Ax(t) is the time-varying amplitude. The quantity Ax(t) is assumed to vary
slowly in time. In view of the fact that the Stokes vector at slit B is identical in form
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with that at slit A, the field at slit B, following (13-35), will be

ExBðtÞ ¼
AxðtÞffiffiffi

2
p cos2 � ð13-36aÞ

EyBðtÞ ¼
AxðtÞffiffiffi

2
p cos � sin � ð13-36bÞ

The propagation of the beams along the paths AC and BC as shown in Fig. 13-2
increases the phase of the fields by an amount �A ¼ kl1 and �B ¼ kl2 , respectively,
where k ¼ 2�/
 and 
 is the wavelength. Thus, at point C on the screen �, the s and p
field components will be, by the principle of superposition,

ExðtÞ ¼ ExAðtÞ expði�AÞ þ ExBðtÞ expði�BÞ ð13-37aÞ

EyðtÞ ¼ EyAðtÞ expði�AÞ þ EyBðtÞ expði�BÞ ð13-37bÞ

or

ExðtÞ ¼ expði�AÞ½ExAðtÞ þ ei�ExBðtÞ� ð13-38aÞ

EyðtÞ ¼ expði�AÞ½EyAðtÞ þ ei�EyBðtÞ� ð13-38bÞ

where � ¼ �B � �A ¼ kðl2 � l1Þ: The factor expði�AÞ will disappear when the Stokes
parameters are formed, and so it can be dropped. We now substitute (13-35) and
(13-36) into (13-38), and we find that

ExðtÞ ¼
AxðtÞffiffiffi

2
p ðcos 2 þ ei� cos2 �Þ ð13-39aÞ

EyðtÞ ¼
AxðtÞffiffiffi

2
p ðcos sin þ ei� cos� sin �Þ ð13-39bÞ

The Stokes parameters for ExðtÞ and EyðtÞ are now formed in the same manner as in
(13-3). The Stokes vector observed on the screen will then be

S¼
1

2
hAA�

i

cos2 þ cos2 �þ 2cosð� �Þ cos cos� cos�

cos2  cos2þ cos2 � cos2�þ 2cosðþ �Þ cos cos� cos�

cos2  sin2þ cos2 � sin2�þ ðcos2  sin2�þ cos2 � sin 2Þ cos�

ðcos2  sin 2�� cos2 � sin2Þ sin�

0
BBB@

1
CCCA

ð13-40Þ

We now examine the Stokes vector, (13-40), for some special cases.

Case I. The transmission axes of the polarizers PA and PB are parallel. For
this condition  ¼ � and (13-40) reduces to

S ¼ hAA�
ið1þ cos�Þ cos 2 

1
cos 2
sin 2
0

0
BB@

1
CCA ð13-41Þ

The factor 1þ cos� tells us that we will always have perfect interference.
Furthermore, the beam intensity is proportional to ð1þ cos�Þ cos 2  and the light
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is always linearly polarized. Thus, (13-41) is the mathematical statement of the first
interference law of Fresnel and and Arago.

There are two further subcases of interest.

Case I(a). The axes of the polarizers PA and PB are parallel to the axis of the
polarizer P	. Then  ¼ 0, and (13-41) reduces to

S ¼ hAA�
ið1þ cos�Þ

1

1

0

0

0
BBB@

1
CCCA ð13-42aÞ

The beam is linearly horizontally polarized, and the intensity is at a maximum.

Case I(b). The axes of the polarizers PA and PB are perpendicular to the axis
of the polarizer P	. Then  ¼ �=2, and (13-41) reduces to

S ¼ hAA�
ið1þ cos�Þð0Þ

1

1

0

0

0
BBB@

1
CCCA ð13-42bÞ

Thus the observed intensity of the beam will be zero at all points on the observation
screen.

Case II. The transmission axes of PA and PB are perpendicular to each other.
For this condition � ¼ þ �=2 and (13-40) reduces to

S ¼
1

2
hAA�

i

1

cos 2 2þ sin 2 2 cos�

sin 2 cos 2ð1þ cos�Þ

� sin 2 sin�

0
BBB@

1
CCCA ð13-43Þ

We now see that the interference term 1þ cos� is missing in S0, the intensity.
Equation (13-43) is the mathematical statement of the second law of Fresnel and
Arago, i.e., we do not have interference in this case. In general, the light is elliptically
polarized as the presence of S3 in (13-43) shows. Again there are some interesting
subcases of (13-43).

Case II(a). The axis of PA is parallel to the axis of P	. For this condition
 ¼ 0, and (13-43) reduces to

S ¼
1

2
hAA�

i

1

1

0

0

0
BBB@

1
CCCA ð13-44Þ

There is no interference, and the intensity and polarization of the observed beam
and the polarized light from the source are identical.
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Case II(b). The axis of PA is perpendicular to the axis of P	. In this case the
axis of PB is parallel to P	. Then (13-43) reduces again to (13-44).

Case II(c). The transmission axes of PA and PB are at þ�=4 and ��=4 from
the transmission axis of P	. For this last case (13-43) reduces to

S ¼
1

2
hAA�

i

1
cos �
0

� sin�

0
BB@

1
CCA ð13-45Þ

Again, there will be no interference, but the light is elliptically polarized. The Stokes
vector degenerates into circularly or linearly polarized light for � ¼ ðm� 1=2Þ�
and �m�, respectively, where m ¼ 0, � 1, � 2, ::::

13.5 THE SECOND EXPERIMENT: THIRD INTERFERENCE LAW

In order to determine the mathematical statement that corresponds to the third law,
we consider the following experiment represented by Fig. 13-3. The polarizer P is
placed, with its transmission axis at an angle � from the x axis, behind the screen � to
enable the fields that orginate at A and B to be brought into the same plane of
polarization.

Here, 	 is again an unpolarized light source and the transmission axes of PA

and PB are placed parallel and perpendicular, respectively, to the x axis. The

Figure 13.3 The transmission axes of PA and PB are along the x and y axes, respectively.
The transmission axis of P is at an angle � from the x axis.
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matrices for PA and PB are then [we set  ¼ 0 and then �=2 in (13-31)]

MPA
ð ¼ 0Þ ¼

1

2

1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

0
BB@

1
CCA ð13-46Þ

MPB
 ¼

�

2

� �
¼

1

2

1 �1 0 0
�1 1 0 0
0 0 0 0
0 0 0 0

0
BB@

1
CCA ð13-47Þ

The Stokes vector at slit A is then found by multiplication of the Stokes vector for
unpolarized light, (13-10), by (13-46). The result is

SA ¼
1

2
hAxA

�
xi

1
1
0
0

0
BB@

1
CCA ð13-48Þ

Similarly, the Stokes vector at slit B is obtained by multiplication of the Stokes
vector for unpolarized light by (13-47):

SB ¼
1

2
hAyA

�
yi

1

�1

0

0

0
BB@

1
CCA ð13-49Þ

Thus, the beams are linearly and orthogonally polarized; they are derived from the
perpendicular components of the unpolarized light. The fields which satisfy (13-48)
and (13-49) are, respectively,

:ExAðtÞ ¼
AxðtÞffiffiffi

2
p EyAðtÞ ¼ 0 ð13-50aÞ

ExBðtÞ ¼ 0 EyBðtÞ ¼
AyðtÞffiffiffi

2
p ð13-50bÞ

These fields now propagate to the screen �, where they are intercepted by the
polarizer P. At the polarizer the fields are

ExðtÞ ¼
AxðtÞffiffiffi

2
p expði�AÞ ð13-51aÞ

EyðtÞ ¼
AyðtÞffiffiffi

2
p expði�BÞ ð13-51bÞ

or

ExðtÞ ¼
AxðtÞffiffiffi

2
p ð13-52aÞ

EyðtÞ ¼
AyðtÞffiffiffi

2
p expði�Þ ð13-52bÞ
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where again � ¼ �B � �A and we have dropped the factor exp(i�A). The transmission
axis of the polarizer P is at an angle � with respect to the x axis. Since we are now
dealing with fields, we can conveniently use the Jones calculus to find the field on the
screen after the beam has passed through the polarizer P.

The Jones matrix of the rotated polarizer, Jð�Þ, is

Jð�Þ ¼
cos � � sin �

sin � cos �

 !
1 0

0 0

 !
cos � sin �

� sin � cos �

 !

¼
cos2 � sin � cos �

sin � cos � sin 2 �

0
@

1
A ð13-53Þ

The field which is now at the screen can be obtained if we write (13-52) as a column
matrix. Multiplication of the vector composed of Eqs. (13-52) by (13-53) then gives
the field at the screen as

ExðtÞ ¼
AxðtÞffiffiffi

2
p cos2 � þ

AyðtÞffiffiffi
2

p ei� cos � sin � ð13-54aÞ

EyðtÞ ¼
AxðtÞffiffiffi

2
p cos � sin � þ

AyðtÞffiffiffi
2

p ei� sin 2 � ð13-54bÞ

We now form the Stokes vector and apply the conditions for unpolarized light given
by (13-3) and (13-8) and find that

S ¼
1

2
hAA�

i

1

cos 2�

sin 2�

0

0
BBBBB@

1
CCCCCA ð13-55Þ

Thus, we see that under no circumstances can there be interference. Equation (13-55)
is the mathematical statement of the third interference law of Fresnel and Arago. In
general, the light is linearly polarized. In particular, for � ¼ 0 the light is linearly
horizontally polarized, and for � ¼ �=2 it is linearly vertically polarized, as expected.

13.6 THE THIRD EXPERIMENT: FOURTH INTERFERENCE LAW

In this final experiment the arrangement of the polarizers is identical to the previous
experiment except that a linear polarizer P	, with its transmission axis at þ�=4 from
the x axis, is placed in front of the unpolarized light source (see Fig. 13-4). In this
case we take the axes of the unpolarized light source to be at an angle of þ�=4 from
the horizontal x axis.

The Stokes vector of the unpolarized light for this new direction is related to
the old direction by the transformation:

S0
	 ¼ Mð2�Þ � S	 ð13-56Þ
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where Mð2�Þ is the rotation matrix. We now multiply out (13-56) (and set � ¼ �/4),
and we find, after decomposing the unpolarized light in the familiar manner, that

S0
	 ¼

1

2
hAxA

�
xi

1
0
�1
0

0
BB@

1
CCAþ

1

2
hAyA

�
yi

1
0
1
0

0
BB@

1
CCA ð13-57Þ

Another way to arrive at (13-57) is to use the fact that unpolarized light is equivalent
to two independent beams of light of equal intensities and polarized in orthogonal
directions. Then we could simply take the statement for unpolarized light, (13-10)
directly and resolve it into (13-57) without the introduction of (13-56). Either way we
obtain (13-57).

The Mueller matrix for the polarizer P	 [with a set to �/4 in (13-31)] is

My	 ¼
1

2

1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0

0
BB@

1
CCA ð13-58Þ

We now multiply (13-57) and (13-58), and the beam that emerges from P	 is

Sy	0 ¼
1

2
hAyA

�
yi

1
0
1
0

0
BB@

1
CCA ð13-59Þ

Thus, the light is linearly polarized (þ�/4 preference) and derived from a single
orthogonal component of the unpolarized light. The beam (13-59) now passes

Figure 13-4 The third experiment. The transmission axis of P	 is at þ�=4 from the x axis.
The directions of the axes of PA, PB, and PC are identical to the second experiment.
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through PA and PB, and the Stokes vectors at the slits are

SA ¼
1

2
hAyA

�
yi

1
1
0
0

0
BB@

1
CCA ð13-60aÞ

SB ¼
1

2
hAyA

�
yi

1
�1
0
0

0
BB@

1
CCA ð13-60bÞ

Thus, both beams are orthogonally linearly polarized but are derived from the same
component of the unpolarized light.

The fields at slits A and B which satisfy (13-60a) and (13-60b) are then

ExAðtÞ ¼
AyðtÞffiffiffi

2
p EyAðtÞ ¼ 0 ð13-61aÞ

ExBðtÞ ¼ 0 EyBðtÞ ¼
AyðtÞffiffiffi

2
p ð13-61bÞ

The fields at the polarizer PC will then be

ExðtÞ ¼
AyðtÞffiffiffi

2
p ð13-62aÞ

EyðtÞ ¼
AyðtÞffiffiffi

2
p ei� ð13-62bÞ

After the field passes through the polarizer PC the components become

ExðtÞ ¼
AyðtÞffiffiffi

2
p cos 2 � þ

AyðtÞffiffiffi
2

p ei� cos � sin � ð13-63aÞ

EyðtÞ ¼
AyðtÞffiffiffi

2
p cos � sin � þ

AyðtÞffiffiffi
2

p ei� sin 2 � ð13-63bÞ

The Stokes vector observed on the screen is then, from (13-63),

S ¼
1

2
hAA�

ið1þ sin 2� cos�Þ

1
cos 2�
sin 2�
0

0
BB@

1
CCA ð13-64Þ

An inspection of this Stokes vector shows that interference can be observed.
Equation (13-64) is the mathematical statement of the fourth and last of the inter-
ference laws of Fresnel and Arago. There are again some interesting subcases.

Case III(a). The axis of PC is parallel to the axis of PA and orthogonal to the
axis of PB. Then � ¼ 0 and (13-64) reduces to

S ¼
1

2
hAA�

i

1
1
0
0

0
BB@

1
CCA ð13-65aÞ
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The light is linearly horizontally polarized, and there is no interference (the beam
from PB is not contributing to the field).

Case III(b). The axis of PC is þ�/4 from the axis of PA. In this case � ¼ �/4,
and so (13-64) reduces to

S ¼
1

2
hAA�

ið1þ cos�Þ

1

0

1

0

0
BBB@

1
CCCA ð13-65bÞ

The light shows maximum interference and is linearly polarized (þ�/4 preference).

Case III(c). The axis of PC is perpendicular to the axis of PA so � ¼ �/2.
Then (13-64) becomes

S ¼
1

2
hAA�

i

1

�1

0

0

0
BBB@

1
CCCA ð13-65cÞ

The light is linearly vertically polarized, an again there is no interference (now the
beam from PA is not contributing).

At this point we can summarize the Fresnel–Arago laws. However, we defer
this in order to consider one more interesting related problem.

13.7 THE HERSCHEL–STOKES EXPERIMENT

In Section 13.1 we pointed out that Stokes did not formulate the Fresnel–Arago
interference laws, but treated a related experiment suggested by Sir John Herschel.
This experiment is represented in Fig. 13-5. In this experiment an unpolarized source
of light, 	, is again used. The transmission axis of polarizer PB is fixed in the direc-
tion of the x axis, while the polarizer PA is rotated through an angle a. The Stokes
vector on the screen � is to be determined.

The Stokes vector at the slit B is, following the methods developed earlier,

SB ¼
1

2
hAxA

�
xi

1

1

0

0

0
BBB@

1
CCCA ð13-66aÞ

while the Stokes vector at slit A is

SA ¼
1

2
hAxA

�
xi cos

2 

1

cos 2

sin 2

0

0
BBBB@

1
CCCCAþ

1

2
hAyA

�
yi sin

2 

1

cos 2

sin 2

0

0
BBBB@

1
CCCCA ð13-66bÞ
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The fields at B and A that satisfy (13-66a) and (13-66b) are

ExBðtÞ ¼
AxðtÞffiffiffi

2
p EyBðtÞ ¼ 0 ð13-67aÞ

E0
xAðtÞ ¼

AxðtÞffiffiffi
2

p cos 2  E 0
yAðtÞ ¼

AxðtÞffiffiffi
2

p cos sin  ð13-67bÞ

E 00
xAðtÞ ¼

AyðtÞffiffiffi
2

p cos sin  E 00
yAðtÞ ¼

AyðtÞffiffiffi
2

p sin 2  ð13-67cÞ

The primed and double primed fields correspond to the first and second Stokes
vector in (13-66b) and arise because the Stokes vectors in (13-66b) are independent.
The fields at the screen � are then

ExðtÞ ¼
AxðtÞffiffiffi

2
p ðei� þ cos2 Þ þ

AyðtÞffiffiffi
2

p sin  cos ð13-68aÞ

EyðtÞ ¼
AxðtÞffiffiffi

2
p cos sin þ

AyðtÞffiffiffi
2

p sin 2  ð13-68bÞ

We now form the Stokes vector in the usual way and apply the condition for
unpolarized light and find that

S ¼ hAA�
i

1þ cos2  cos �

cos2 ð1þ cos�Þ

sin  cosð1þ cos�Þ

� sin  cos sin�

0
BBB@

1
CCCA ð13-69Þ

Figure 13-5 The Herschel–Stokes experiment. The transmission axis of PB is fixed along
the x axis, and the transmission axis of PA is rotated through an angle  from the x axis.
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Stokes actually obtained only S0 and took � to be equal to zero or �. We examine
(13-69) at some special values of .

Case IV(a). The transmission axis of the polarizer PA is parallel to the trans-
mission axis of PB, so  ¼ 0. Then (13-69) reduces to

S ¼ hAA�
ið1þ cos�Þ

1

1

0

0

0
BBB@

1
CCCA ð13-70Þ

We have perfect interference, and the light is linearly horizontally polarized.

Case IV(b). The transmission axis of PA is perpendicular to the transmission
axis of PB, so a ¼ �/2. Then (13-69) reduces to

S ¼ hAA�
i

1
0
0
0

0
BB@

1
CCA ð13-71Þ

There is no interference, and the light is unpolarized.
This problem shows why it was selected by Stokes. Within the confines of a

single problem he was able to show that one could obtain complete interference
along with completely polarized light, (13-70), and, conversely, no interference
and completely unpolarized light, (13-71). It was this ‘‘peculiar’’ behavior of polar-
ized light which was a source of great confusion. Stokes, however, by his investiga-
tion was able to show that with his parameters all these questions could be answered,
and, equally important, this could be done within the structure of the wave theory of
light.

13.8 SUMMARY OF THE FRESNEL–ARAGO INTERFERENCE LAWS

In view of the rather lengthy analysis required to obtain the mathematical statements
for the Fresnel–Arago interference laws, it is worthwhile to summarize these results.
We restate each of the laws and the corresponding Stokes vector.

13.8.1 The First Interference Law

Two waves, linearly polarized in the same plane, can interfere.

S ¼ hAA�
ið1þ cos�Þ cos 2 

1
cos 2
sin 2
0

0
BB@

1
CCA ð13-41Þ

The angle a refers to the condition when the transmission axes of the two polarizers
behind the slits are parallel. We see that the light is always linearly polarized and
there will always be interference.
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13.8.2 The Second Interference Law

Two waves, linearly polarized with perpendicular polarizations, cannot interfere.

S ¼
1

2
hAA�

i

1

cos 2 2þ sin 2 2 cos�

sin 2 cos 2ð1þ cos�Þ

� sin 2 sin�

0
BBB@

1
CCCA ð13-43Þ

The interference term 1 þ cos� is missing in S0, the intensity. Equation (13-43)
shows that the light is always elliptically polarized, but there is never any interfer-
ence.

13.8.3 The Third Interference Law

Two waves, linearly polarized with perpendicular polarizations, if derived from
perpendicular components of unpolarized light and subsequently brought into the
same plane, cannot interfere.

S ¼
1

2
hAA�

i

1

cos 2�

sin 2�

0

0
BBB@

1
CCCA ð13-55Þ

Equation (13-55) shows that interference is never seen under these conditions.

13.8.4 The Fourth Interference Law

Two waves, linearly polarized with perpendicular polarizations, if derived from the
same linearly polarized wave and subsequently brought into the same plane, can
interfere.

S ¼
1

2
hAA�

ið1þ sin 2� cos�Þ

1

cos 2�

sin 2�

0

0
BBB@

1
CCCA ð13-64Þ

Only if � ¼ 0� or 90� does the interference term in (13-64) vanish; otherwise inter-
ference will always be observed; the Stokes vector is always linearly polarized.

This concludes our discussion of the fundamental properties of polarized light.
At this point the reader can certainly see that a great deal of knowledge can be
obtained about the properties and behavior of polarized light without having to
resort to the equations of the electromagnetic field. However, this is as far as we
can go. Ultimately, we must deal with the source of the polarized radiation fields. In
order to do this, we must now turn to the theory of the electromagnetic field, i.e.,
Maxwell’s equations and the source of polarized light. We shall see that the Stokes
parameters and Mueller formalism play a major and very interesting role.

Copyright © 2003 by Marcel Dekker, Inc. All Rights Reserved.



REFERENCES

Papers

1. Stokes, G. G., Trans. Camb. Phil. Soc., 9, 399 (1852). Reprinted in Mathematical and

Physical Papers, Cambridge University Press, London, 1901, Vol. 3, p. 233.
2. Soleillet, P., Ann. Phys., 12 (10) 23 (1929).
3. Langsdorf, A. and DuBridge, L., J. Opt. Soc. Am., 24, 1 (1934).

4. Birge, R. T., J. Opt. Soc. Am., 25, 179 (1935).
5. Perrin, F. J. Chem. Phys., 10, 415 (1942).
6. Hurwitz, H. J. Opt. Soc. Am., 35, 525 (1945).

7. Parke, N. G., III, Statistical Optics. II: Mueller Phenomenological Algebra, RLE TR-119,
Research Laboratory of Elect. at M.I.T. (1949).

8. Wolf, E., Nuovo Cimento, 12, 884 (1954).
9. Hannau, R., Am. J. Phys., 31, 303 (1962).

10. Collett, E., Am. J. Phys., 39, 1483 (1971).

Books
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14
Introduction to the Classical and
Quantum Theory of Radiation by
Accelerating Charges

In Part I, Chapters 1–13, we dealt with the polarization of the optical field and the
phenomenological interaction of polarized light with optical components, namely,
polarizers, retarders, and rotators. All this was accomplished with only the classical
theory of light. By the mid-nineteenth century Fresnel’s theory of light was a com-
plete triumph. The final acceptance of the wave theory took place when Stokes
showed that the Fresnel–Arago interference laws could also be explained and under-
stood on the basis of classical optics. Most importantly, Stokes showed that un-
polarized light and partially polarized light were completely compatible with the
wave theory of light. Thus, polarized light played an essential role in the acceptance
of this theory. We shall now see how polarized light was again to play a crucial role
in the acceptance of an entirely new theory of the optical field, namely, Maxwell’s
theory of the electrodynamic field.

In spite of all of the successes of Frensel’s theory there was an important
problem that classical optics could not treat. We saw earlier that the classical optical
field was described by the wave equation. This equation, however, says nothing
about the source of the optical field. In 1865 James Clerk Maxwell introduced a
totally new and unexpected theory of light. Maxwell’s new theory was difficult to
understand because it arose not from the description of optical phenomena but from
a remarkable synthesis of the laws of the electromagnetic field. This theory was
summarized by expressing all of the known behavior of the electromagnetic field
in the form of four differential equations. In these equations a source term existed in
the form of a current j(r, t) along with a new term postulated by Maxwell, namely,
the displacement current @D(r, t)/@t.

After Maxwell had formulated his equations, he proceeded to solve them. He
was completely surprised at his results. First, when either the magnetic or electric
field was eliminated between the equations, he discovered that in free space
the electromagnetic field was described by the wave equation of classical optics.
The next result surprised him even more. It appeared that the electromagnetic
field propagated at the same speed as light. This led him to speculate that, perhaps,
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the optical field and the electromagnetic field were actually manifestations of the
same disturbance, being different only in their frequency (wavelength).

Maxwell died in 1879. Nearly 10 years later Heinrich Hertz (1888) carried out
a set of very sophisticated and brilliant experiments and confirmed Maxwell’s
theory. In spite of Hertz’s verification, however, Maxwell’s theory was not imme-
diately adopted by the optics community. There were several reasons for this. One
reason was due to the simple fact that Hertz confirmed Maxwell’s theory not
at optical wavelengths but at millimeter wavelengths. For the optical community
this was not enough. In order for them to accept Maxwell’s theory, it would
have to be proved at optical wavelengths. Another reason for the slow acceptance
of Maxwell’s theory was that for 30 years after the publication of Maxwell’s theory
in 1865 nothing had been found which could clearly differentiate between the
classical wave theory and Maxwell’s theory. Nothing had appeared in optics
which was not known or understood using Fresnel’s theory; no one yet understood
exactly what fluorescence or the photoelectric effect was. There was, however,
one very slim difference between the two theories. Maxwell’s theory, in contrast
to Fresnel’s theory, showed that in free space only transverse waves existed. It was
this very slim difference that sustained the ‘‘Maxwellians’’ for several decades. A
third important reason why Maxwell’s theory was not readily embraced by the
optics community was that a considerable effort had to be expended to study
electromagnetism–a nonoptical subject–in order to understand fundamental optical
phenomena. Furthermore, as students to this day know, a fair degree of mathe-
matical training is required to understand and manipulate Maxwell’s equations
(this was especially true before the advent of vector analysis). It was, therefore,
very understandable why the optics community was reluctant to abandon a theory
that explained everything in a far simpler way and accounted for all the known
facts.

In 1896, less than a decade after Hertz’s experiments, two events took place
which overthrew Fresnel’s elastic theory of light and led to the complete acceptance
of Maxwell’s theory. The first was the discovery by J. J. Thomson of the electron, the
long-sought source of the optical field, and the second was the splitting of unpolar-
ized spectral lines which became polarized when an electron was placed in a magnetic
field (the Lorentz–Zeeman effect). In this part we shall see how polarized light played
a crucial role in the acceptance of Maxwell’s theory. We shall use the Stokes para-
meters to describe the radiation by accelerating electrons and see how the Stokes
parameters and the Stokes vector take on a surprising new role in all of this. In the
final chapter of this part we shall show that the Stokes vector can be used to describe
both classical and quantum radiating systems, thereby providing a single description
of radiation phenomena.
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15

Maxwell’s Equations for the
Electromagnetic Field

Maxwell’s equations describe the basic laws of the electromagnetic field. Over the
40 years preceding Maxwell’s enunciation of his equations (1865) the four funda-
mental laws describing the electromagnetic field had been discovered. These are
known as Ampère’s law, Faraday’s law, Coulomb’s law, and the magnetic continuity
law. These four laws were cast by Maxwell, and further refined by his successors, into
four differential equations:

=�H ¼ jþ
@D

@t
ð15-1aÞ

=� E ¼�
@B

@t
ð15-1bÞ

= �D ¼ � ð15-1cÞ

= � B ¼ 0 ð15-1dÞ

These are Maxwell’s famous equations for fields and sources in macroscopic media:
E and H are the instantaneous electric and magnetic fields, D and B are the
displacement vector and the magnetic induction vector, and j and � are the current
and the charge density, respectively. We note that (15-1a) without the term @D=@t is
Ampère’s law; the second term in (15-1a) was added by Maxwell and is called the
displacement current. A very thorough and elegant discussion of Maxwell’s equa-
tions is given in the text Classical Electrodynamics by J. D. Jackson, and the reader
will find the required background to Maxwell’s equations there.

When Maxwell first arrived at his equations, the term ð@D=@tÞ was not present.
He added this term because he observed that (15-1a) did not satisfy the continuity
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equation. To see that the addition of this term leads to the continuity equation, we
take the divergence =�, of both sides of (15-1a).

= � ½=�H� ¼ ð= � jÞ þ
@

@t
ð= �DÞ ð15-2aÞ

The divergence of curl is zero, so the left-hand side is zero and we have

ð= � jÞ þ
@

@t
ð= �DÞ ¼ 0 ð15-2bÞ

Next, we substitute (15-1c) into (15-2b) and find that

= � jþ
@�

@t

� �
¼ 0 ð15-3aÞ

or

= � jþ
@�

@t
¼ 0 ð15-3bÞ

which is the continuity equation. Equation (15-3b) states that the divergence of the
current ð= � jÞ is equal to the time rate of change of the creation of charge ð�@�=@tÞ.
What Maxwell saw, as Jackson has pointed out, was that the continuity equation
could be converted into a vanishing divergence by using Coulomb’s law, (15-1c).
Thus, (15-1c) could only be satisfied if

= � jþ
@�

@t
¼ = � jþ

@D

@t

� �
¼ 0 ð15-4Þ

Maxwell replaced j in Ampère’s law by its generalization, and arrived at a new type
of current for the electromagnetic field, namely,

j ! jþ
@D

@t
ð15-5Þ

for time-dependent fields. The additional term @D=@t in (15-5) is called the
displacement current.

Maxwell’s equations form the basis for describing all electromagnetic
phenomena. When combined with the Lorentz force equation (which shall be dis-
cussed shortly) and Newton’s second law of motion, these equations provide a
complete description of the classical dynamics of interacting charged particles and
electromagnetic fields. For macroscopic media the dynamical response of the aggre-
gates of atoms is summarized in the constitutive relations that connect D and j with
E, and H with B; that is, D ¼ "E, j ¼ 	E, and B ¼ �H, respectively, for an iso-
tropic, permeable, conducting dielectric.

We can now solve Maxwell’s equations. The result is remarkable and was the
primary reason for Maxwell’s belief in the validity of his equations. In order to do
this, we first use the constitutive relations:

D ¼ "E ð15-6aÞ

B ¼ �H ð15-6bÞ

Copyright © 2003 by Marcel Dekker, Inc. All Rights Reserved.



Equations (15-6a) and (15-6b) are substituted into (15-1a) and (15-1b), respectively,
to obtain

=�H ¼ j þ "
@E

@t
ð15-7aÞ

=� E ¼ ��
@H

@t
ð15-7bÞ

Next, we take the curl ð=�Þ of both sides of (15-7b):

=� =� Eð Þ ¼ ��
@

@t
=�Hð Þ ð15-8Þ

We can eliminate =�H in (15-8) by using (15-7a), and find that

=� =� Eð Þ ¼ �
�@

@t
j þ "

@E

@t

� �

so

=� =� Eð Þ ¼ ��
@j

@t
� �"

@2E

@t2
ð15-9Þ

The left-hand side is known from vector analysis to reduce to

=� =� E ¼ = = � Eð Þ � =2
E ð15-10Þ

Equation (15-9) then reduces to

=ð= � EÞ � =2
E ¼ ��

@j

@t
� �"

@2E

@t2
ð15-11Þ

Finally, if there are no free charges then � ¼ 0 and (15-1c) becomes

= �D ¼ "= � E ¼ 0

or

= � E ¼ 0 ð15-12Þ

Thus, (15-11) can be written as

=2
E� �"

@2E

@t2
¼ ��

@j

@t
ð15-13Þ

Inspection of (15-13) quickly reveals the following. If there are no currents, then
j ¼ 0 and (15-13) becomes

=2
E ¼ �"

@2E

@t2
ð15-14Þ

which is the wave equation of classical optics. Thus, the electric field E propagates
exactly according to the classical wave equation. Furthermore, if we write (15-14) as

=2
E ¼

1

1=�"

@2E

@t2
ð15-15Þ
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then we have

=2
E ¼

1

v2
@2E

@t2
ð15-16Þ

where v2 ¼ c2. The propagation of the electromagnetic field is not only governed by
the wave equation but propagates at the speed of light. It was this result that led
Maxwell to the belief that the electromagnetic field and the optical field were one and
the same.

Maxwell’s equations showed that the wave equation for optics, if his theory was
correct, was no longer a hypothesis but rested on firm experimental and theoretical
foundations.

The association of the electromagnetic field with light was only a speculation
on Maxwell’s part. In fact, there was only a single bit of evidence for its support,
initially. We saw that in a vacuum we have

= � E ¼ 0 ð15-12Þ

Now it is easy to show that the solution of Maxwell’s equation gives rise to an
electric field whose form is

E ¼ E0e
iðk�r�!tÞ

ð15-17aÞ

where

E ¼ Exux þ Eyuy þ Ezuz ð15-17bÞ

E0 ¼ E0xux þ E0yuy þ E0zuz ð15-17cÞ

k ¼ kxux þ kyuy þ kzuz ð15-17dÞ

r ¼ xux þ yuy þ zuz ð15-17eÞ

k � r ¼ kxxþ kyyþ kzz ð15-17fÞ

Substituting (15-17a) into (15-12) quickly leads to the relation:

k � E ¼ 0 ð15-18Þ

where we have used the remaining equations in (15-17) to obtain (15-18). The wave
vector is k and is in the direction of propagation of the field, E. Equation (15-18)
is the condition for orthogonality between k and E. Thus, if the direction of
propagation is taken along the z axis, we can only have field components along
the x and y axes; that is, the field in free space is transverse. This is exactly what
is observed in the Fresnel–Arago interference equations. Thus, in Maxwell’s theory
this result is an immediate consequence of his equations, whereas in Fresnel’s theory
it is a defect. This fact was the only known difference between Maxwell’s theory and
Fresnel’s theory when Maxwell’s theory appeared in 1865. For most of the scientific
community and, especially, the optics community this was not a sufficient reason to
overthrow the highly successful Fresnel theory. Much more evidence would be
needed to do this.
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Maxwell’s equations differ from the classical wave equation in another very
important respect, however. Returning to (15-13), Maxwell’s equations lead to

=2
E� �"

@2E

@t2
¼ ��

@j

@t
ð15-13Þ

The right-hand term in (15-13) is something very new. It describes the source of the
electromagnetic field or the optical field. Maxwell’s theory now describes not only the
propagation of the field but also enables one to say something about the source of
these fields, something which no one had been able to say with certainty before
Maxwell. According to (15-13) the field E arises from a term @j/@t. More specifically
the field arises not from j, the current per se, but from the time rate of change of the
current. Now this can be interpreted, as follows, by noting that the current can be
written as

j ¼ ev ð15-19Þ

where e is the charge and v is the velocity of the charge. Substituting (15-19) into
(15-13), we have

=2
E� �"

@2E

@t2
¼ �e

@v

@t
¼ �e_vv ð15-20Þ

The term @v/@t is obviously an acceleration. Thus, the field arises from accelerating
charges. In 1865 no one knew of the existence of actual charges, let alone accelerat-
ing charges, and certainly no one knew how to generate or control accelerating
charges. In other words, the term (�e)@v/@t in 1865 was ‘‘superfluous,’’ and so we
are left just with the classical wave equation in optics:

=2
E� �"

@2E

@t2
¼ 0 ð15-21Þ

Thus, we arrive at the same result from Maxwell’s equations after a considerable
amount of effort, as we do by introducing (15-21) as an hypothesis or deriving it
from mechanics. This difference is especially sharp when we recall that it takes only a
page to obtain the identical result from classical mechanics! Aside from the existence
of the transverse waves and the source term in (15-13), there was very little motiva-
tion to replace the highly successful Fresnel theory with Maxwell’s theory. The only
difference between the two theories was that in Fresnel’s theory the wave equation
was the starting point, whereas Maxwell’s theory led up to it.

Gradually, however, the nature of the source term began to become clearer.
These investigations, e.g., Lorentz’s theory of the electron, led physicists to search
for the source of the optical field. Thus, (15-13) became a fundamental equation of
interest. Because it plays such an important role in the discussion of the optical field,
(15-13) is also known as the radiation equation, a name that will soon be justified. In
general, (15-13) has the form of the inhomogeneous wave equation.

The solution of the radiation equation can be obtained by a technique called
Green’s function method. This is a very elegant and powerful method for solving
differential equations, in general. However, it is quite involved and requires a con-
siderable amount of mathematical background. Consequently, in order not to
detract from our discussions on polarized light, we refer the reader to its solution
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by Jackson (Classical Electrodynamics). Here, we merely state the result. Using
Green’s function method, the solution of the radiation equation in the form given
by (15-20) is found to be

Eðr, tÞ ¼
e

4�"0c
2

n

�3R
� ðn� vÞ � _vv
� �� �

ð15-22aÞ

where

� ¼ 1� n � v ð15-22bÞ

and n ¼ R/R is a unit vector directed from the position of the charge to the observa-
tion. The geometry of the moving charge is shown in Fig. 15-1.

In the following chapter we determine the field components of the radiated field
for (15-22) in terms of the accelerating charges.
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Figure 15-1 Radiating field coordinates arising from an accelerating charge; P is the obser-
vation point (From Jackson).
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16

The Classical Radiation Field

16.1 FIELD COMPONENTS OF THE RADIATION FIELD

Equation (15-22a) is valid for any acceleration of the electron. However, it is con-
venient to describe (15-22a) in two different regimes, namely, for nonrelativistic
speeds ðv=c  1Þ and for relativistic speeds ðv=c ’ 1Þ. The field emitted by an accel-
erating charge observed in a reference frame where the velocity is much less than the
speed of light, that is, the nonrelativistic regime, is seen from (15-22a) to reduce to

EðX, tÞ ¼
e

4�"0c
2R

� �
½n� ðn� _vvÞ� ð16-1Þ

where EðX, tÞ is the field vector of the radiated field measured from the origin, e is the
charge, c is the speed of light, R is the distance from the charge to the observer,
n ¼ R=R is the unit vector directed from the position of the charge to the observation
point, and _vv is the acceleration (vector) of the charge. The relation between the
vectors X and n is shown in Fig. 16-1.

To apply (16-1), we consider the (radiated) electric field E in spherical
coordinates. Since the field is transverse, we can write

E ¼ E�u� þ E�u� ð16-2Þ

where u� and u� are unit vectors in the � and � directions, respectively. Because we
are relatively far from the source, we can take n to be directed from the origin and
write n ¼ ur, where ur is the radial unit vector directed from the origin. The triple
vector product in (16-1) can then be expanded and written as

ur � ður � _vvÞ ¼ urður � _vvÞ � _vv ð16-3Þ

For many problems of interest it is preferable to express the acceleration of the
charge _vv in Cartesian coordinates, thus

_vv ¼ €xxux þ €yyuy þ €zzuz ð16-4Þ
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where the double dot refers to twofold differentiation with respect to time. The unit
vectors u in spherical and Cartesian coordinates are shown later to be related by

ur ¼ sin � cos�ux þ sin � sin�uy þ cos �uz ð16-5aÞ

u� ¼ cos � cos�ux þ cos � sin�uy � sin �uz ð16-5bÞ

u� ¼ � sin�ux þ cos�uy ð16-5cÞ

or

ux ¼ sin � cos�ur þ cos � cos�u� � sin�u� ð16-6aÞ

uy ¼ sin � sin�ur þ cos � sin�u� þ cos�u� ð16-6bÞ

uz ¼ cos �ur � sin �u� ð16-6cÞ

Using (16-5) and (16-6), we readily find that (16-3) expands to

urður � _vvÞ � _vv ¼ �u�ð €xx cos � cos�þ €yy cos � sin�� €zz sin �Þ

þ u�ð� €xx sin�þ €yy cos�Þ
ð16-7Þ

We see that ur is not present in (16-7), so the field components are indeed transverse
to the direction of the propagation ur.

An immediate simplification in (16-7) can be made by noting that we shall only
be interested in problems that are symmetric in �. Thus, we can conveniently take
� ¼ 0. Then, from (16-1), (16-2), and (16-7) the transverse field components of the
radiation field are found to be

E� ¼
e

4�"0c
2R

½ €xx cos � � €zz sin �� ð16-8Þ

E� ¼
e

4�"0c
2R

½ €yy� ð16-9Þ

Equations (16-8) and (16-9) are the desired relations between the transverse radiation
field components, E� and E�, and the accelerating charge described by €xx, €yy, and €zz.
We note that E�, E�, and � refer to the observer’s coordinate system, and €xx, €yy, and €zz
refer to the charge’s coordinate system.

Because we are interested in field quantities that are actually measured, namely,
the Stokes parameters, in spherical coordinates the Stokes parameters are defined by

S0 ¼ E�E
�
� þ E�E

�
� ð16-10aÞ

S1 ¼ E�E
�
� � E�E

�
� ð16-10bÞ

S2 ¼ E�E
�
� þ E�E

�
� ð16-10cÞ

S3 ¼ iðE�E
�
� � E�E

�
� Þ ð16-10dÞ

Figure 16-1 Vector relation for a moving charge and the radiation field.
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where i ¼
ffiffiffiffiffiffiffi
�1

p
. While it is certainly possible to substitute (16-8) and (16-9) directly

into (16-10) and find an expression for the Stokes parameters in terms of the accel-
eration, it is simpler to break the problem into two parts. Namely, we first determine
the acceleration and the field components and then form the Stokes parameters
according to (16-10).

16.2 RELATION BETWEEN THE UNIT VECTOR IN SPHERICAL
COORDINATES AND CARTESIAN COORDINATES

We derive the relation between the vector in a spherical coordinate system and a
Cartesian coordinate system.

The rectangular coordinates x, y, z are expressed in terms of spherical coordi-
nates r, �, � by the equations:

x ¼ xðr, �,�Þ y ¼ yðr, �,�Þ z ¼ zðr, �,�Þ ð16-11Þ

Conversely, these equations can be expressed so that r, �, � can be written in terms
of x, y, z. Then, any point with coordinates (x, y, z) has corresponding coordinates
(r, �, �). We assume that the correspondence is unique. If a particle moves from a
point P in such a way that � and � are held constant and only r varies, a curve in
space is generated. We speak of this curve as the r curve. Similarly, two other
coordinate curves, the � curves and the � curves, are determined at each point as
shown in Fig. 16-2. If only one coordinate is held constant, we determine successively
three surfaces passing through a point in space, these surfaces intersecting in the
coordinate curves. It is generally convenient to choose the new coordinates in such a
way that the coordinate curves are mutually perpendicular to each other at each
point in space. Such coordinates are called orthogonal curvilinear coordinates.

Let r represent the position vector of a point P in space. Then

r ¼ xiþ yjþ zk ð16-12Þ

From Fig. 16-2 we see that a vector vr tangent to the r curve at P is given by

v ¼
@r

@r
¼

@r

@sr

� �
�

dsr
dr

� �
ð16-13Þ

Figure 16-2 Determination of the r, �, and � curves in space.
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where sr is the arc length along the r curve. Since @r=@sr is a unit vector (this ratio is
the vector chord length�r, to the arc length�sr such that in the limit as �sr ! 0 the
ratio is 1), we can write (16-13) as

vr ¼ hrur ð16-14Þ

where ur is the unit vector tangent to the r curves in the direction of increasing arc
length. From (16-14) we see then that hr ¼ dsr=dr is the length of vr.

Considering now the other coordinates, we write

vr ¼ hrur v� ¼ h�u� v� ¼ h�u� ð16-15Þ

so (16-14) can be simply written as

vk ¼ hkuk k ¼ r, �,� ð16-16Þ

where ukðk ¼ r, �,�Þ is the unit vector tangent to the uk curve. Furthermore, we see
from (16-13) that

hr ¼
dsr
dr

¼
@r

@r

����
���� ð16-17aÞ

h� ¼
ds�
d�

¼
@r

@�

����
���� ð16-17bÞ

h� ¼
ds�
d�

¼
@r

@�

����
���� ð16-17cÞ

Equation (16-17) can be written in differential form as

dsr ¼ hrdr ds� ¼ h�d� ds� ¼ h�d� ð16-18Þ

We thus see that hr, h�, h� are scale factors, giving the ratios of differential distances
to the differentials of the coordinate parameters. The calculations of vk from (16-15)
leads to the determination of the scale factors from hk ¼ vk

�� �� and the unit vector
from uk ¼ vk=hk.

We now apply these results to determining the unit vectors for a spherical
coordinate system. In Fig. 16-3 we show a spherical coordinate system with unit
vectors ur, u�, and u�. The angles � and � are called the polar and azimuthal angles,

Figure 16-3 Unit vectors for a spherical coordinate system.
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respectively. We see from the figure that x, y, and z can be expressed in terms of r, �
and � by

x ¼ r sin � cos� y ¼ r sin � sin� z ¼ r cos � ð16-19Þ

Substituting (16-19) into (16-12) the position vector r becomes

r ¼ ðr sin � cos�Þiþ ðr sin � sin�Þjþ ðr cos �Þk ð16-20Þ

From (16-13) we find that

vr ¼
@r

@r
¼ sin � cos�iþ sin � sin�jþ cos�k ð16-21aÞ

v� ¼
@r

@�
¼ r cos � cos�iþ r cos � sin�j� r sin �k ð16-21bÞ

v� ¼
@r

@�
¼ �r sin � sin�iþ r sin � cos�j ð16-21cÞ

The scale factors are, from (16-17),

hr ¼
@r

@r

����
���� ¼ 1 ð16-22aÞ

h� ¼
@r

@�

����
���� ¼ r ð16-22bÞ

h� ¼
@r

@�

����
���� ¼ r sin � ð16-22cÞ

Finally, from (16-21) and (16-22) the unit vectors are

ur ¼
vr

hr
¼ sin � cos�iþ sin � sin�jþ cos �k ð16-23aÞ

u� ¼
v�

h�
¼ cos � cos�iþ cos � sin�j� sin �k ð16-23bÞ

u� ¼
v�

h�
¼ � sin�iþ cos�j ð16-23cÞ

which corresponds to the result given by (16-6) (it is customary to express ux, uy, uz
as i, j, k).

We can easily check the direction of the unit vectors shown in Fig. 16-3 by
considering (16-23) at, say, � ¼ 0� and � ¼ 90�. For this condition (16-23) reduces to

ur ¼ k ð16-24aÞ

u� ¼ j ð16-24bÞ

u� ¼ �i ð16-24cÞ

which is exactly what we would expect according to Fig. 16-3.
An excellent discussion of the fundamentals of vector analysis can be found in

the text of Hilderbrand given in the references at the end of this chapter. The
material presented here was adapted from his Chapter 6.
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16.3 RELATION BETWEEN THE POYNTING VECTOR AND THE
STOKES PARAMETERS

Before we proceed to use the Stokes parameters to describe the field radiated by
accelerating charges, it is useful to see how the Stokes parameters are related to the
Poynting vector and Larmor’s radiation formula in classical electrodynamics.

In Chapter 13, in the discussion of Young’s interference experiment the fact
was pointed out that two ideas were borrowed from mechanics. The first was the
wave equation. Its solution alone, however, was found to be insufficient to arrive at a
mathematical description of the observed interference fringes. In order to describe
these fringes, another concept was borrowed from mechanics, namely, energy.
Describing the optical field in terms of energy or, as it is called in optics, intensity,
did lead to results in complete agreement with the observed fringes with respect to
their intensity and spacing. However, the wave equation and the intensity formula-
tion were accepted as hypotheses. In particular, it was not at all clear why the
quadratic averaging of the amplitudes of the optical field led to the correct results.
In short, neither aspect of the optical field had a theoretical basis.

With the introduction of Maxwell’s equations, which were a mathematical
formulation of the fundamental laws of the electromagnetic field, it was possible
to show that these two hypotheses were a direct consequence of his theory. The first
success was provided by Maxwell himself, who showed that the wave equation of
optics arose directly from his field equations. In addition, he was surprised that his
wave equation showed that the waves were propagating with the speed of light. The
other hypothesis, namely, the intensity formed by taking time averages of the quad-
ratic field components was also shown around 1885 by Poynting to be a direct
consequence of Maxwell’s equations. We now show this by returning to Maxwell’s
equations in free space [see Eqs.(15-1)],

=� E ¼ ��
@H

@t
ð16-25aÞ

=�H ¼ "
@E

@t
ð16-25bÞ

= � E ¼ 0 ð16-25cÞ

= � B ¼ 0 ð16-25dÞ

and where we have also used the constitutive equations, (15-6). First, we take the
scalar product of (16-25a) and H so that we have

H � =� E ¼ ��H �
@H

@t
ð16-26aÞ

Next, we take the scalar product of (16-25b) and E so that we have

E � =�H ¼ "E �
@E

@t
ð16-26bÞ

We now subtract (16-26b) from (16-26a):

H � =� E� E � =�H ¼ ��H �
@H

@t
� "E �

@E

@t
ð16-27Þ
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The left-hand side of (16-27) is recognized as the identity:

= � ðE�HÞ ¼ H � ð=� EÞ � E � ð=�HÞ ð16-28Þ

The terms on the right-hand side of (16-27) can be written as

H �
@H

@t
¼

1

2

@

@t
ðH �HÞ ð16-29aÞ

and

E �
@E

@t
¼

1

2

@

@t
ðE � EÞ ð16-29bÞ

Then, using (16-28) and (16-29), (16-27) can be written as

= � ðE�HÞ þ
@

@t

�ðH �HÞ þ "ðE � EÞ

2

� �
¼ 0 ð16-30Þ

Inspection of (16-30) shows that it is identical in form to the continuity equation for
current and charge:

= � jþ
@�

@t
¼ 0 ð16-31Þ

In (16-31) j is a current, that is, a flow of charge. Thus, we write the corresponding
term for current in (16-30) as

S ¼ ðE�HÞ ð16-32Þ

The vector S is known as Poynting’s vector and represents, as we shall show, the flow
of energy.

The second term in (16-30) is interpreted as the time derivative of the sum of
the electrostatic and magnetic energy densities. The assumption is now made that
this sum represents the total electromagnetic energy even for time–varying fields, so
the energy density w is

w ¼
�H2

þ "E2

2
ð16-33aÞ

where

H �H ¼ H2
ð16-33bÞ

E � E ¼ E2
ð16-33cÞ

Thus, (16-30) can be written as

= � Sþ
@w

@t
¼ 0 ð16-34Þ

The meaning of S is now clear. It is the flow of energy, analogous to the flow of
charge j (the current). Furthermore, if we write (16-34) as

= � S ¼ �
@w

@t
ð16-35Þ
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then the physical meaning of (16-35) (and (16-34)) is that the decrease in the time rate
of change of electromagnetic energy within a volume is equal to the flow of energy
out of the volume. Thus, (16-34) is a conservation statement for energy.

We now consider the Poynting vector further:

S ¼ ðE�HÞ ð16-32Þ

In free space the solution of Maxwell’s equations yields plane-wave solutions:

Eðr, tÞ ¼ E0e
iðk�r�!tÞ

ð16-36aÞ

Hðr, tÞ ¼ H0e
iðk�r�!tÞ

ð16-36bÞ

We can use (16-25a) to relate E to H:

=� E ¼ ��
@H

@t
ð16-25aÞ

Thus, for the left-hand side of (16-25a) we have, using (16-36a),

=� E ¼ =� ½E0e
iðk�r�!tÞ

�

¼ ik� E ð16-37aÞ

where we have used the vector identity

=� ð�aÞ ¼ r�� aþ �r � a ð16-38Þ

Similarly, for the right-hand side we have

��
@H

@t
¼ i!H ð16-39Þ

Thus (16-25a) becomes

n� E ¼
H

c"0
ð16-40aÞ

where

n ¼
k

k
ð16-40bÞ

since k ¼ !=c. The vector n is the direction of propagation of S. Equation (16-40a)
shows that n, E, andH are perpendicular to one another. Thus, if n is in the direction
of propagation, then E and H are perpendicular to n, that is, in the transverse plane.
We now substitute (16-40a) into (16-32) and we have

S ¼ c"0½E� ðn� EÞ� ð16-41Þ

From the vector identity:

a� ðb� cÞ ¼ ða � cÞb� ða � bÞc ð16-42Þ

we see that (16-41) reduces to

S ¼ c"0ðE � EÞn ð16-43Þ
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In Cartesian coordinates the quadratic term in (16-43) is written out as

E � E ¼ ExEx þ EyEy ð16-44Þ

Thus, Maxwell’s theory leads to quadratic terms, which we associate with the flow of
energy.

For more than 20 years after Maxwell’s enunciation of his theory in 1865,
physicists constantly sought to arrive at other well-known results from his theory,
e.g., Snell’s law of refraction, or Fresnel’s equations for reflection and transmission
at an interface. Not only were these fundamental formulas found but their deriva-
tions led to new insights into the nature of the optical field. Nevertheless, this did not
give rise to the acceptance of this theory. An experiment would have to be under-
taken which only Maxwell’s theory could explain. Only then would his theory be
accepted.

If we express E and H in complex terms, then the time-averaged flux of energy
is given by the real part of the complex Poynting vector, so

hSi ¼
1

2
ðE�H

�
Þ ð16-45Þ

From (16-40) we have

n� E
�
¼ H

�
ð16-46Þ

and substituting (16-46) into (16-45) leads immediately to

hSi ¼
1

2
c"0ðE � E

�
Þn ð16-47Þ

Thus, Maxwell’s theory justifies the use of writing the intensity I as

I ¼ ExE
�
x þ EyE

�
y ð16-48Þ

for the time-averaged intensity of the optical field.
In spherical coordinates the field is written as

E ¼ E�u� þ E�u� ð16-49Þ

so the Poynting vector (16-47) becomes

hSi ¼
c"0
2

ðE�E
�
� þ E�E

�
� Þn ð16-50Þ

The quantity within parentheses is the total intensity of the radiation field, i.e., the
Stokes parameter S0. Thus, the Poynting vector is directly proportional to the first
Stokes parameter.

Another quantity of interest is the power radiated per unit solid angle, written
as

dP

d�
¼

c"0
2

ðE � E
�
ÞR2

ð16-51Þ

We saw that the field radiated by accelerating charges is given by

E ¼
e

4�"0c
2R

½n� ðn� _vvÞ� ð16-1Þ
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Expanding (16-1) by the vector triple product:

E ¼
e

4�"0c
2R

½nðn � _vvÞ � _vv� ð16-52Þ

We denote

n � _vv ¼ nj j _vvj j cos� ð16-53Þ

where � is the angle between n and _vv and � � �j j denotes that the absolute magnitude is
to be taken. Using (16-52) and (16-53), we then find (16-51) becomes

dP

d�
¼ e2 _vvj j sin2 � ð16-54Þ

We saw that the field radiated by accelerating charges is given by

E� ¼
e

4�"0c
2R

ð €xx cos � cos�þ €yy cos � sin�� €zz sin �Þ ð16-55aÞ

E� ¼
e

4�"0c
2R

ð� €xx sin�þ €yy cos �Þ ð16-55bÞ

The total radiated power over the sphere is given by integrating (16-51) over the solid
angle:

P ¼
c"0
2

Z 2�

0

Z �

0

ðE�E
�
� þ E�E

�
� ÞR

2 sin � d� d� ð16-56Þ

We easily find thatZ 2�

0

Z �

0

ðE�E
�
� ÞR

2 sin � d� d� ¼
4�e2

16�2"20c
4
ð €xxj j

2
þj €yyj2Þ ð16-57aÞ

and Z 2�

0

Z �

0

ðE�E
�
� ÞR

2 sin � d� d� ¼
4�e2

3ð16�2"20c
4Þ
ðj €xxj2 þ j €yyj2 þ 4 €zzj j2Þ ð16-57bÞ

where ��
j j

2
� ð

��
Þð

��
Þ
�. Thus, adding (16-57a) and (16-57b) yieldsZ 2�

0

Z �

0

ðE�E
�
� þ E�E

�
� ÞR

2 sin � d� d� ¼
4

3

e2

4�"0c
4
ðj€rrj2Þ ð16-58aÞ

where

€rr ¼ €xxux þ €yyuy þ €zzuz ð16-58bÞ

Substituting (16-58a) into (16-56) yields the power radiated by an accelerating
charge:

P ¼
2

3

e2

4�"0c
3
j€rrj2 ð16-59Þ

Equation (16-59) was first derived by J. J. Larmor in 1900 and, consequently, is
known as Larmor’s radiation formula.
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The material presented in this chapter shows how Maxwell’s equations led to
the Poynting vector and then to the relation for the power radiated by the accelera-
tion of an electron, that is, Larmor’s radiation formula. We now apply these results
to obtain the polarization of the radiation emitted by accelerating electrons. Finally,
very detailed discussions of Maxwell’s equations and the radiation by accelerating
electrons are given in the texts by Jackson and Stratton.
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17

Radiation Emitted by Accelerating
Charges

17.1 STOKES VECTOR FOR A LINEARLY OSCILLATING CHARGE

We have shown how Maxwell’s equation gave rise to the equations of the radiation
field and the power emitted by an accelerating electron. We now discuss the polar-
ization of the radiation emitted by specific electron configurations, e.g., bound
charges and charges moving in circular and elliptical paths.

At the beginning of the nineteenth century the nature of electric charges was not
fully understood. In 1895 the electron (charge) was discovered by J. J. Thompson.
Thus, the long-sought source of the optical field was finally found. A year after
Thompson’s discovery, P. Zeeman performed a remarkable experiment by placing
radiating atoms in a constant magnetic field. He thereupon discovered that the
original single spectral line was split into two, or even three, spectral lines.

Shortly thereafter, H. Lorentz heard of Zeeman’s results. Using Maxwell’s
theory and his electron theory, Lorentz then treated this problem. Lorentz’s calcula-
tions predicted that the spectral lines should not only be split but also completely
polarized. On Lorentz’s suggestions Zeeman then performed further measurements
and completely confirmed the predictions in all respects. It was only after the work of
Zeeman and Lorentz that Maxwell’s theory was accepted and Fresnel’s theory of
light replaced.

Not surprisingly, the importance of this work was immediately recognized, and
Zeeman and Lorentz received the Nobel Prize in physics in 1902. We should empha-
size that the polarization predictions of the spectral lines played a key part in under-
standing these experiments. This prediction, more than any other factor, was one of
the major reasons for the acceptance of Maxwell’s theory into optics.

In this chapter we build up to the experiment of Zeeman and the theory of
Lorentz. We do this by first applying the Stokes parameters to a number of classical
radiation problems. These are the radiation emitted by (1) a charge oscillating along
an axis, (2) an ensemble of randomly oriented oscillating charges, (3) a charge
moving in a circle, (4) a charge moving in an ellipse, and (5) a charge moving in a
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magnetic field. In the following chapter we then consider the problem of a randomly
oriented oscillating charge moving in a constant magnetic field—the Lorentz–
Zeeman effect.

We consider a bound charge oscillating along the z axis as shown in Fig. 17-1.
The motion of the charge is described by

d 2z

dt 2
þ ! 2

0 z ¼ 0 ð17-1Þ

The solution of (17-1) is

zðtÞ ¼ zð0Þ cosð!0tþ Þ ð17-2Þ

where z(0) is the maximum amplitude and  is an arbitrary phase constant. Because
we shall be using the complex form of the Stokes parameters, we write (17-2) as

zðtÞ ¼ zð0Þeið!0tþÞ ð17-3Þ

where it is understood that by taking the real part of (17-3), we recover (17-2); that is,

Re½zðtÞ� ¼ zð0Þ cosð!0tþ Þ ð17-4Þ

The radiation field equations are given by (16-8) and (16-9) in Section 16.1:

E� ¼
e

4�"0c
2R

½ €xx cos � � €zz sin �� ð16-8Þ

E� ¼
e

4�"0c
2R

½ €yy� ð16-9Þ

Recall that these equations refer to the observation being made in the xz plane, that
is, at � ¼ 0. The angle � is the polar angle in the observer’s reference frame.

Performing the differentiation of (17-3) to obtain €zz, we have

€zz ¼ �! 2
0 zð0Þe

ið!0tþÞ ð17-5Þ

Figure 17-1 Motion of a linear oscillating charge.
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Substituting (17-5) into (16-8) yields

E� ¼
e

4�"0c
2R

½! 2
0 zð0Þ sin �e

ið!0tþÞ� ð17-6aÞ

E� ¼ 0 ð17-6bÞ

The Stokes parameters are defined in a spherical coordinate system to be

S0 ¼ E�E
�
� þ E�E

�
� ð16-10aÞ

S1 ¼ E�E
�
� � E�E

�
� ð16-10bÞ

S2 ¼ E�E
�
� þ E�E

�
� ð16-10cÞ

S3 ¼ iðE�E
�
� � E�E

�
� Þ ð16-10dÞ

Substituting (17-6a) and (17-6b) into (16-10) yields

S0 ¼
ezð0Þ

4�"0c
2R

� � 2

!4
0 sin

2 � ð17-7aÞ

S1 ¼ �
ezð0Þ

4�"0c
2R

� � 2

!4
0 sin

2 � ð17-7bÞ

S2 ¼ 0 ð17-7cÞ

S3 ¼ 0 ð17-7dÞ

We now arrange (17-7) in the form of the Stokes vector:

S ¼
ezð0Þ

4�"0c
2R

� � 2

sin 2 �!4
0

1
�1
0
0

0
BB@

1
CCA ð17-8Þ

Equation (17-8) shows that the observed radiation is always linearly vertically polar-
ized light at a frequency !0, the fundamental frequency of oscillation of the bound
charge. Furthermore, when we observe the radiation parallel to the z axis (� ¼ 0�),
the intensity is zero. Observing the radiation perpendicular to the z axis (� ¼ 90�), we
note that the intensity is a maximum. This behavior is shown in Fig. 17-2. In order to
plot the intensity behavior as a function of �, we set

Ið�Þ ¼ sin 2 � ð17-9aÞ

In terms of x(�) and z(�) we then have

xð�Þ ¼ Ið�Þ sin � ¼ sin 2 � sin � ð17-9bÞ

zð�Þ ¼ Ið�Þ cos � ¼ sin 2 � cos � ð17-9cÞ

The term ez(0) in (17-8) is recognized as a dipole moment. A characteristic of
dipole radiation is the presence of the sin2� term shown in (17-8). Hence, (17-8)

Copyright © 2003 by Marcel Dekker, Inc. All Rights Reserved.



describes the Stokes vector of a dipole radiation field. This type of field is very
important because it appears in many types of radiation problems in physics and
engineering. Finally, we note that a linearly oscillating charge gives rise to linearly
polarized light. Thus, the state of polarization is a manifestation of the fundamental
motion of the electron. This observation will be confirmed for other types of radiat-
ing systems.

17.2 STOKES VECTOR FOR AN ENSEMBLE OF RANDOMLY
ORIENTED OSCILLATING CHARGES

In the previous section, we considered the radiation field emitted by a charge or
electron oscillating with an angular frequency !0 about an origin. Toward the end of
the nineteenth century a model was proposed for the atom in which an oscillating
electron was bound to a positively charged atom. The electron was believed to be
negative (from work with ‘‘free’’ electrons in gases and chemical experiments). The
assumption was made that the electron was attracted to the positively charged atom,
and the force on the electron was described by Hooke’s law, namely, -kr. This model
was used by H. Lorentz to solve a number of longstanding problems, e.g., the
relation between the refractive index and the wavelength, the so-called dispersion
relation.

The motion of the electron was described by the simple force equation:

m€rr ¼ �kr ð17-10aÞ

or

€rrþ ! 2
0 r ¼ 0 ð17-10bÞ

where m is the mass of the electron, k is the restoring force constant, and the angular
frequency is ! 2

0 ¼ k=m. We saw in Part I that the nature of unpolarized light was not

Figure 17-2 Plot of the intensity behavior of a dipole radiation field.

Copyright © 2003 by Marcel Dekker, Inc. All Rights Reserved.



well understood throughout most of the nineteenth century. We shall now show that
this simple model for the motion of the electron within the atom leads to the correct
Stokes vector for unpolarized light.

The treatment of this problem can be considered to be among the first success-
ful applications of Maxwell’s equations in optics. This simple atomic model provides
a physical basis for the source term in Maxwell’s equations. The model leads to the
appearance of unpolarized light, a quantity that was a complete mystery up to the
time of the electron. Thus, an ensemble of oscillating charges bound to a positive
nucleus and randomly oriented gives rise to unpolarized light.

We now determine the Stokes vector of an ensemble of randomly oriented,
bound, charged oscillators moving through the origin. This problem is treated by
first considering the field emitted by a single charge oriented at the polar angle  and
the azimuthal angle � in the reference frame of the charge. An ensemble average is
then taken by integrating the radiated field over the solid angle sin  d d�. The
diagram describing the motion of a single charge is given in Fig. 17-3.

The equations of motion of the charged particle can be written immediately
from Fig. 17-3 and are

xðtÞ ¼ A sin  sin �ei!0t ð17-11aÞ

yðtÞ ¼ A sin  sin �ei!0t ð17-11bÞ

zðtÞ ¼ A cosei!0t ð17-11cÞ

where !0 is the angular frequency of natural oscillation. Differentiating (17-11) twice
with respect to time gives

€xxðtÞ ¼ �! 2
0A sin  cos�ei!0t ð17-12aÞ

€yyðtÞ ¼ �! 2
0A sin  sin �ei!0t ð17-12bÞ

€zzðtÞ ¼ �! 2
0A cosei!0t ð17-12cÞ

Figure 17-3 Instantaneous motion of an ensemble of oscillating charges.
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Substituting (17-12) into the radiation field equations, we find that

E� ¼ �
eA! 2

0 e
i!0t

4�"0c
2R

ðsin  cos� cos � � cos sin �Þ ð17-13aÞ

E� ¼ �
eA! 2

0 e
i!0t

4�"0c
2R

ðsin  sin �Þ ð17-13bÞ

where � is the observer’s viewing angle measured from the z axis.
Recall that the Stokes parameters are defined by

S0 ¼ E�E
�
� þ E�E

�
� ð16-10aÞ

S1 ¼ E�E
�
� � E�E

�
� ð16-10bÞ

S2 ¼ E�E
�
� þ E�E

�
� ð16-10cÞ

S3 ¼ iðE�E
�
� � E�E

�
� Þ ð16-10dÞ

Substituting (17-13) in (16-10), we then find that the Stokes parameters are

S0 ¼ C ½sin 2  sin 2 �þ sin 2  cos2 � cos 2 �

� 2 sin  cos cos� cos � sin � þ cos 2  sin 2 �� ð17-14aÞ

S1 ¼ C ½sin 2  sin 2 �� sin 2  cos2 � cos 2 �

þ 2 sin  cos cos� cos � sin � � cos 2  sin 2 �� ð17-14bÞ

S2 ¼ C ½2ðsin 2  sin � cos� cos � � cos sin  sin � sin �Þ� ð17-14cÞ

S3 ¼ 0 ð17-14dÞ

where

C ¼
eA

4�"0c
2R

� � 2

!4
0 ð17-14eÞ

The fact that S3 is zero in (17-14d) shows that the emitted radiation is always
linearly polarized, as we would expect from a model in which the electron only
undergoes linear motion.

In order to describe an ensemble of randomly oriented charges we integrate
(17-14) over the solid angle sin d d�:

h� � �i ¼

Z 2�

0

Z �

0

� � �ð Þ sin  d d� ð17-15Þ

where h� � �i is the ensemble average and � � �ð Þ represents (17-14a), etc. Carrying out
the integration of (17-14) by using (17-15) and forming the Stokes vector, we find
that

S ¼
8�

3

eA

4�"0c
2R

� � 2

!4
0

1
0
0
0

0
BB@

1
CCA ð17-16Þ
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which is the Stokes vector for unpolarized light. This is exactly what is observed from
natural light sources. Note that the polarization state is always independent of the
observer’s viewing angle �; the observed light always appears to be unpolarized.

Thus, this simple model explains the appearance of unpolarized light from
optical sources. Unpolarized light can only arise from an ensemble of randomly
oriented accelerating charges, which can be the case for bound electrons. Electrons
moving at a constant velocity, even if the motion is random, cannot give rise to
unpolarized light.

This simple atomic model received further support when it was used by Lorentz
to explain the Lorentz–Zeeman effect, namely, the radiation field emitted by a bound
electron moving in a constant magnetic field. We emphasize that the motion of a free
accelerating electron gives rise to a different result, as we shall see.

17.2.1 Note on Use of Hooke’s Law for a Simple Atomic System

At first glance the use of Hooke’s law to describe the motion of a negative electron
bound to a positive charge (nucleus) within an atom may appear to be quite arbi-
trary. The use of Hooke’s law is based, however, on the following simple atomic
model.

The force of attraction between two opposite but equal charges e separated by
a distance r is given by

F ¼
ðþeÞð�eÞ

4�"0r
2

ur ð17-17Þ

where ur is a unit radius vector. The positive charge is located at the origin of a
spherical coordinate system.

We now assume that the positive charge is distributed over a sphere of volume
V and radius r, so the charge density � is

� ¼
þe

V
¼

þe

4�r3=3
ð17-18Þ

or

þe ¼
4��r3

3
ð17-19Þ

Substituting (17-19) into (17-17) gives

F ¼ �kr ð17-20Þ

where r ¼ rur, and k ¼ e�/3"0. Equation (17-20) is Hooke’s law. Thus, on the basis of
this very simple atomic model the motion of the electron is expected to undergo
simple harmonic motion.

17.3 STOKES VECTOR FOR A CHARGE ROTATING IN A CIRCLE

We now continue with our application of the Stokes parameters to describe radiation
problems. In this section we turn our attention to the determination of the field
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radiated by a charge moving in a circle. This is shown in Fig. 17-4. The coordinates
of the charge are

xðtÞ ¼ a cos!0t ð17-21aÞ

yðtÞ ¼ a sin!0t ð17-21bÞ

zðtÞ ¼ 0 ð17-21cÞ

That (17-21) describe counterclockwise motion is easily checked by first setting
� ¼ !0t. Then, as t increases, � increases. Choosing � ¼ 0, �=2, � and 3�=2, the
reader will easily see that plotting the position of the charge describes a counter-
clockwise motion as it moves in a circle of radius a.

To use the complex form of the Stokes parameters, the coordinates (17-21)
must also be expressed in complex form. We have (Euler’s relation)

ei!0t ¼ cos!0tþ i sin!0t ð17-22Þ

The real part of (17-22) is cos !0t. We can also express sin !0t in terms of the real
part of (17-22), Re{ }, by multiplying (17-22) by �i. Then, we see that

Re ei!0t
� �

¼ cos!0t ð17-23aÞ

Re �iei!0t
� �

¼ sin!0t ð17-23bÞ

Thus, in complex notation (17-21a) and (17-21b) become

xðtÞ ¼ aei!0t ð17-24aÞ

yðtÞ ¼ �iaei!0t ð17-24bÞ

and the acceleration is then

€xxðtÞ ¼ �a! 2
0 e

i!0t ð17-25aÞ

€yyðtÞ ¼ þia! 2
0 e

i!0t ð17-25bÞ

Figure 17-4 Motion of a charge moving counterclockwise in a circle of radius a in the xy

plane with an angular frequency !0.
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Substituting (17-25a) and (17-25b) into the radiation field equations (16-8) and (16-9)
we find that

E� ¼
e

4�"0c
2R

�a! 2
0 cos �e

i!0t
 �

ð17-26aÞ

E� ¼
e

4�"0c
2R

ia! 2
0 e

i!0t
 �

ð17-26bÞ

Again, we express (17-26a) and (17-26b) in terms of the Stokes parameters and
form the Stokes vector. The result is

S ¼
ea

4�"0c
2R

� � 2

!4
0

1þ cos2 �
1� cos2 �

0
2 cos �

0
BB@

1
CCA ð17-27Þ

Equation (17-27) is the Stokes vector for elliptically polarized light. Thus, we see that
the radiation is elliptically polarized and is characterized by a frequency !0, the
frequency of rotation of the electron. Furthermore, we see that we have the factor
ea in (17-27), the familiar expression for the dipole moment. We observe that (17-27)
shows that the orientation angle  of the polarization ellipse is always zero.
Similarly, the ellipticity angle � is

� ¼
1

2
sin�1 S3

S0

� �
ð17-28Þ

so from (17-27) we have

� ¼
1

2
sin�1 2 cos �

1þ cos2 �

� �
ð17-29Þ

The ellipticity angle is a function of the observation angle �. We see that
for � ¼ 0�, that is, we view the rotating electron along the z axis, (17-29) becomes
� ¼ 45� and we observe right circularly polarized light. The Stokes vector (17-27)
reduces to

S ¼ 2
ea

4�"0c
2R

� � 2

!4
0

1
0
0
1

0
BB@

1
CCA ð17-30Þ

If we now view the rotating electron perpendicular to the z axis, that is, � ¼ 90�, we
find that � ¼ 0� and we observe linearly horizontally polarized light. The corre-
sponding Stokes vector is

S ¼
ea

4�"0c
2R

� � 2

!4
0

1
1
0
0

0
BB@

1
CCA ð17-31Þ

These results agree with our earlier observation that the polarization of the
emitted radiation is a manifestation of the motion of the charge. Thus, if we look
along the z axis we would see an electron moving counterclockwise in a circle, so
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we observe right circularly polarized light. If we look perpendicular to the z axis,
the electron appears to behave as a linear oscillator and we observe linearly
horizontally polarized light, in agreement with our earlier conclusion. The linear
polarization is to be expected, because if we view the motion of the charge as
it moves in a circle at � ¼ 90� it appears to move from left to right and then
from right to left, identical to the behavior of a linear oscillator described in
Section 17.1. Finally, for � ¼ 180� we see that (17-29) becomes � ¼ �45�, so we
observe left circularly polarized light.

Also observe that (17-27) satisfies the equality:

S 2
0 ¼ S 2

1 þ S 2
2 þ S 2

3 ð17-32Þ

The equals sign shows that the emitted radiation is always completely polarized.
Furthermore, the degree of polarization is independent of the observation angle �.

17.4 STOKES VECTOR FOR A CHARGE MOVING IN AN ELLIPSE

It is of interest to consider the case where an electron moves in an elliptical orbit. The
equations of motion are

xðtÞ ¼ a cos!0t ð17-33aÞ

yðtÞ ¼ b sin!0t ð17-33bÞ

where a and b are the semimajor and semiminor axes lengths, respectively. In
complex notation (17-33) becomes

xðtÞ ¼ aei!0t ð17-34aÞ

yðtÞ ¼ �ibei!0t ð17-34bÞ

The acceleration is then

€xxðtÞ ¼ �a! 2
0 e

i!0t ð17-35aÞ

€yyðtÞ ¼ ib! 2
0 e

i!0t ð17-35bÞ

Again using the radiation field equations (16-8) and (16-9), the radiated fields are
found to be

E� ¼
e! 2

0

4�"0c
2R

 !
ei!0t½�a cos �� ð17-36aÞ

E� ¼
e! 2

0

4�"0c
2R

 !
ei!0t½ib� ð17-36bÞ

We now form the Stokes vector for (17-36) and find that

S ¼
e

4�"0c
2R

� � 2

!4
0

b 2
þ a 2 cos 2 �

b 2
� a 2 cos 2 �

0

2ab cos �

0
BBB@

1
CCCA ð17-37Þ
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Equation (17-37) is the Stokes vector for elliptically polarized light. We see imme-
diately that if a ¼ b then (17-37) reduces to the Stokes vector for an electron moving
in a circle. The orientation angle  of the polarization ellipse is seen from (17-37) to
be 0�. The ellipticity angle � is

� ¼
1

2
sin�1 2ab cos �

b 2 þ a 2 cos �

� �
ð17-38Þ

The radiation is always elliptically polarized with one exception; the exception will be
discussed in a moment. We see that for � ¼ 0�, (17-37) reduces to

S ¼
e

4�"0c
2R

� � 2

!4
0

b 2
þ a 2

b 2
� a 2

0

2ab

0
BBB@

1
CCCA ð17-39Þ

which is the Stokes vector for elliptically polarized light. The other case of interest is
to observe the radiation perpendicular to the z axis, that is, � ¼ 90�. For this angle
(17-37) reduces to

S ¼
e

4�"0c
2R

� � 2

!4
0b

2

1
1
0
0

0
BB@

1
CCA ð17-40Þ

which is the Stokes vector for linear horizontally polarized light. Again, this is
perfectly understandable, because at this angle the moving charge appears to be
oscillating in a straight line as it moves in its elliptical path.

The Stokes vectors derived here will reappear when we discuss the Lorentz–
Zeeman effect.
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18

The Radiation of an Accelerating
Charge in the Electromagnetic Field

18.1 MOTION OF A CHARGE IN AN ELECTROMAGNETIC FIELD

In previous chapters the Stokes vectors were determined for charges moving in a
linear, circular, or elliptical path. At first sight the examples chosen appear to have
been made on the basis of simplicity. However, the examples were chosen because
charged particles actually move in these paths in an electromagnetic field; that is, the
examples are based on physical reality. In this section we show from Lorentz’s force
equation that in an electromagnetic field charged particles follow linear and circular
paths. In the following section we determine the Stokes vectors corresponding to
these physical configurations.

The reason for treating the motion of a charge in this chapter as well as in the
previous chapter is that the material is necessary to understand and describe the
Lorentz–Zeeman effect. Another reason for discussing the motion of charged parti-
cles in the electromagnetic field is that it has many important applications. Many
physical devices of importance to science, technology, and medicine are based on our
understanding of the fundamental motion of charged particles. In particle physics
these include the cyclotron, betatron, and synchrotron, and in microwave physics the
magnetron and traveling-wave tubes. While these devices, per se, will not be dis-
cussed here, the mathematical analysis presented is the basis for describing all of
them. Our primary interest is to describe the motion of charges as they apply to
atomic and molecular systems and to determine the intensity and polarization of the
emitted radiation.

In this chapter we treat the motion of a charged particle in three specific
configurations of the electromagnetic field: (1) the acceleration of a charge in an
electric field, (2) the acceleration of a charge in a magnetic field, and (3) the accel-
eration of a charge in perpendicular electric and magnetic fields. In particular, the
motion of a charged particle in perpendicular electric and magnetic fields is extre-
mely interesting not only from the standpoint of its practical importance but because
the paths taken by the charged particle are quite beautiful and remarkable.
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In an electromagnetic field the motion of a charged particle is governed by the
Lorentz force equation:

F ¼ q½Eþ ðv� BÞ� ð18-1Þ

where q is the magnitude of the charge, E is the applied electric field, B is the applied
magnetic field, and v is the velocity of the charge. The background to the Lorentz
force equation can be found in the texts given in the references. The text by G. P.
Harnwell on electricity and magnetism is especially clear and illuminating. Quite
understandably, because of the importance of the phenomenon of the radiation of
accelerating charges in the design and fabrication of instruments and devices, many
articles and textbooks are devoted to the subject. Several are listed in the references.

18.1.1 Motion of an Electron in a Constant Electric Field

The first and simplest example of the motion of an electron in an electromagnetic
field is for a charge moving in a constant electric field. The field is directed along
the z axis and is of strength E0. The vector representation for the general electric
field E is

E ¼ Exux þ Eyuy þ Ezuz ð18-2Þ

Since the electric field is directed only in the z direction, Ex ¼ Ey ¼ 0, so

E ¼ Ezuz ¼ E0uz ð18-3Þ

For simplicity the motion of the electron is restricted to the xz plane and is initially
moving with a velocity v0 at an angle  from the z axis. This is shown in Fig. 18-1.

Because there is no magnetic field, the Lorentz force equation (18-1) reduces to

m€rr ¼ �eE ð18-4Þ

Figure 18-1 Motion of an electron in the xz plane in a constant electric field directed along
the z axis.
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where m is the mass of the electron. In component form (18-4) is

m €xx ¼ 0 ð18-5aÞ

m €yy ¼ 0 ð18-5bÞ

m €zz ¼ �eEz ¼ �eE0 ð18-5cÞ

At the initial time t ¼ 0 the electron is assumed to be at the origin of the coordinate
system, so

xð0Þ ¼ zð0Þ ¼ 0 ð18-6Þ

Similarly, the velocity at the initial time is assumed to be

_xxð0Þ ¼ vx ¼ v0 sin  ð18-7aÞ

_zzð0Þ ¼ vz ¼ v0 cos ð18-7bÞ

There is no force in the y direction, so (18-5b) can be ignored. We integrate (18-5a)
and (18-5c) and find

_xxðtÞ ¼ C1 ð18-8aÞ

_zzðtÞ ¼ �
�eE0t

m
þ C2 ð18-8bÞ

where C1 and C2 are constants of integration. From the initial conditions, C1 and C2

are easily found, and the specific solution of (18-8) is

_xxðtÞ ¼ v0 sin  ð18-9aÞ

_zzðtÞ ¼
�eE0t

m
þ v0 cos ð18-9bÞ

Integrating (18-9) once more yields

xðtÞ ¼ v0t sin  ð18-10aÞ

zðtÞ ¼
�eE0t

2

2m
þ v0t cos ð18-10bÞ

where the constants of integration are found from (18-6) to be zero. We can elim-
inate t between (18-10a) and (18-10b) to obtain

zðtÞ ¼ �
eE0

2mv20 sin
2 

 !
x2 þ ðcotÞx ð18-11Þ

which is the equation of a parabola. The path is shown in Fig. 18-2.
Inspecting (18-11) we see that if  ¼ 0 then zðtÞ ¼ 1. That is, the electron

moves in a straight line starting from the origin 0 along the z axis and ‘‘intercepts’’
the z axis at infinity (1). However, if  is not zero, then we can determine the
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positions x(t) where the electron intercepts the z axis by setting z(t) ¼ 0 in (18-11).
On doing this the intercepts are found to occur at

xðtÞ ¼ 0 ð18-12aÞ

xðtÞ ¼
mv20
eE0

sin 2 ð18-12bÞ

The first value corresponds to our initial condition x(0) ¼ z(0) ¼ 0. Equation
(18-12b) shows that the maximum value of x is attained by setting  ¼ 45�, so

xmax ¼
mv20
eE0

ð18-13Þ

This result is not at all surprising, since (18-11) is identical in form to the equation
for describing a projectile moving in a constant gravitational field. Finally, the
maximum value of z is found from (18-11) to be

zðtÞ ¼
1

2

mv20
eE

 !
sin 2 ð18-14aÞ

or

zmax ¼
1

2
xmax ð18-14bÞ

where we have used (18-12b).

Figure 18-2 Parabolic path of an electron in a constant electric field.

Copyright © 2003 by Marcel Dekker, Inc. All Rights Reserved.



18.1.2 Motion of a Charged Particle in a Constant Magnetic Field

We now consider the motion of an electron moving in a constant magnetic field. The
coordinate configuration is shown in Fig. 18-3. In the figure B is the magnetic field
directed in the positive z direction. The Lorentz force equation (18-1) then reduces
to, where the charge on an electron is q ¼ �e,

F ¼ �eðv� BÞ ð18-15Þ

Equation (18-15) can be expressed as a differential equation:

m€rr ¼ �eðv� BÞ ð18-16Þ

where m and r̈ are the mass and acceleration vector of the charged particle, respec-
tively. In component form (18-16) is

m €xx ¼ �eðv� BÞx ð18-17aÞ

m €yy ¼ �eðv� BÞy ð18-17bÞ

m €zz ¼ �eðv� BÞz ð18-17cÞ

where the subscript on (v � B) refers to the appropriate component to be taken. The
vector product v � B can be expressed as a determinant

v� B ¼

ux uy uz

_xx _yy _zz

Bx By Bz

�������
������� ð18-18Þ

where ux, uy, and uz are the unit vectors pointing in the positive x, y, and z directions,
respectively and the velocities have been expressed as _xx, _yy, and _zz. The constant
magnetic field is directed only along z, so Bz ¼ B and Bx ¼ By ¼ 0. Then, (18-18)
and (18-17) reduce to

m €xx ¼ �eð _yyBÞ ð18-19aÞ

m €yy ¼ �eð� _xxBÞ ð18-19bÞ

m €zz ¼ 0 ð18-19cÞ

Figure 18-3 Motion of an electron in a constant magnetic field.
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Equation (18-19c) is of no interest because the motion along z is not influenced by
the magnetic field. The equations of motion are then

€xx ¼
�eB

m
_yy ð18-20aÞ

€yy ¼
eB

m
_xx ð18-20bÞ

Equation (18-20a) and (18-20b) can be written as a single equation by introducing
the complex variable �(t):

�ðtÞ ¼ xðtÞ þ iyðtÞ ð18-21Þ

Differentiating (18-21) with respect to time, we have

_�� ¼ _xxþ i _yy ð18-22aÞ

€�� ¼ €xxþ i €yy ð18-22bÞ

Multiplying (18-20b) by i and adding this result to (18-20a) and using (18-22a)
leads to

€�� �
ieB

m
_�� ¼ 0 ð18-23Þ

The solution of (18-23) is readily found by assuming a solution of the form:

�ðtÞ ¼ e!t ð18-24Þ

Substituting (18-24) into (18-23) we find that

!ð!� i!cÞ ¼ 0 ð18-25Þ

where !c ¼ eB/m is the frequency of rotation, known as the cyclotron frequency.
Equation (18-25) is called the auxiliary or characteristic equation of (18-23),

and from (18-25) the roots are ! ¼ 0, i!c. The general solution of (18-23) can be
written immediately as

�ðtÞ ¼ c1 þ c2e
i!ct ð18-26Þ

where c1 and c2 are constants of integration. To provide a specific solution for
(18-23), we assume that, initially, the charge is at the origin and moving along the
x axis with a velocity v0. Thus, we have

xð0Þ ¼ 0 yð0Þ ¼ 0 ð18-27aÞ

_xxð0Þ ¼ v0 _yyð0Þ ¼ 0 ð18-27bÞ

which can be expressed in terms of (18-21) and (18-22a) as

�ð0Þ ¼ xð0Þ þ iyð0Þ ¼ 0 ð18-28aÞ

_��ð0Þ ¼ _xxð0Þ þ i _yyð0Þ ¼ v0 ð18-28bÞ

This leads immediately to

c1 ¼ �c2 ð18-29aÞ

c2 ¼
iv0
!c

ð18-29bÞ

Copyright © 2003 by Marcel Dekker, Inc. All Rights Reserved.



so the specific solution of (18-26) is

�ðtÞ ¼ �
iv0
!c

ð1� ei!ctÞ ð18-30Þ

Taking the real and imaginary part of (18-30) then yields

xðtÞ ¼
v0
!c

sin!ct ð18-31aÞ

yðtÞ ¼ �
v0
!c

ð1� cos!ctÞ ð18-31bÞ

or

xðtÞ ¼
v0
!c

sin!ct ð18-32aÞ

yþ
v0
!c

¼
v0
!c

cos!ct ð18-32bÞ

Squaring and adding (18-32a) and (18-32b) give

x2 þ yþ
v0
!c

� �2

¼
v0
!c

� �2

ð18-33Þ

which is an equation of a circle with radius v0/!c and center at x ¼ 0 and y ¼ �v0/!c.
Equations (18-32) and (18-33) show that in a constant magnetic field a charged

particle does indeed move in a circle. Also, (18-32) describes a charged particle
moving in a clockwise direction as viewed along the positive axis toward the
origin. Equation (18-33) is of great historical and scientific interest, because it is
the basis of one of the first methods and instruments used to measure the ratio
e/m, namely, the mass spectrometer. To see how this measurement is made, we
note that since the electron moves in a circle, (18-33) can be solved for the condition
where it crosses the y axis, which is x ¼ 0. We see from (18-33) that this occurs at

y ¼ 0 ð18-34aÞ

y ¼ �
2v0
!c

ð18-34bÞ

We note that (18-34b) is twice the radius � (� ¼ v0/!c). This is to be expected because
the charged particle moves in a circle. Since !c ¼ eB/m, we can solve (18-34b) for e/m
to find that

e

m
¼ �

2v0
By

� �
ð18-35Þ

The initial velocity �0 is known from equating the kinetic energy of the electron
with the voltage applied to the charged particle as it enters the chamber of the mass
spectrometer. The magnitude of y where the charged particle is intercepted (x ¼ 0) is
measured. Finally, the strength of the magnetic field B is measured with a magnetic
flux meter. Consequently, all the quantities on the right side of (18-35) are known, so
the ratio e/m can then be found. The value of this ratio found in this manner agrees
with those of other methods.
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18.1.3 Motion of an Electron in a Crossed Electric and
Magnetic Field

The final configuration of interest is to determine the path of an electron which moves
in a constant magnetic field directed along the z axis and in a constant electric field
directed along the y axis, a so-called crossed, or perpendicular, electric and magnetic
field. This configuration is shown in Fig. 18-4.

For this case Lorentz’s force equation (18-1) reduces to

m €xx ¼ �eð _yyBÞ ð18-36aÞ

m €yy ¼ �eEþ eð _xxBÞ ð18-36bÞ

m €zz ¼ 0 ð18-36cÞ

From (18-21) and (18-22), (18-36) can be written as a single equation:

€�� � i!c
_�� ¼ �

ieE

m
ð18-37Þ

where !c ¼ eB/m. Equation (18-37) is easily solved by noting that if we multiply by
e�i!c t then (18-37) can be rewritten as

d

dt
ðe�i!ct _��Þ ¼

�ieE

m

� �
e�i!ct ð18-38Þ

Straightforward integration of (18-38) yields

� ¼
eE

m!c

� �
t�

ic1
!c

� �
ei!ct þ c2 ð18-39Þ

where c1 and c2 are constants of integration. We choose the initial conditions to be

xð0Þ ¼ 0 yð0Þ ¼ 0 ð18-40aÞ

_xxð0Þ ¼ v0 _yyð0Þ ¼ 0 ð18-40bÞ

The specific solution of (18-39) is

� ¼ a�þ ibð1� cos�Þ þ b sin� ð18-41aÞ

Figure 18-4 Motion of an electron in a crossed electric and magnetic field.
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where

� ¼ !ct ð18-41bÞ

a ¼
eE

m!2
c

ð18-41cÞ

b ¼
v0 � eE=m!c

!c

ð18-41dÞ

Equating the real and imaginary parts of (18-41a) and (18-21), we then find that

xð�Þ ¼ a�þ b sin� ð18-42aÞ

yð�Þ ¼ bð1� cos�Þ ð18-42bÞ

Equation (18-42) is well known from analytical geometry and describes a gen-
eral cycloid or trochoid. Specifically, the trochoidal path is a prolate cycloid, cycloid,
or curtate cycloid, depending on whether a < b, a ¼ b, or a > b, respectively. We
can easily understand the meaning of this result. First, we note that if the applied
electric field E were not present then (18-42) would reduce to the equation of a circle
of radius b, so the electron moves along a circular path. However, an electric field in
the y direction forces the electron to move in the same direction continuously as the
electron moves in the circular path. Consequently, the path is stretched, so the circle
becomes a general cycloid or trochoid. This ‘‘stretching’’ factor is represented by the
term a� in (18-42a). We note that (18-40) shows � ¼ 0 corresponds to the origin.
Thus, � is measured from the origin and increases in a clockwise motion.

We can easily find the maximum and minimum values of x(�) and y(�) over a
single cycle of �. The maximum and minimum values of y(�) are simply 0 and 2b and
occur at � ¼ 0 and �, respectively. For x(�) the situation is more complicated. From
(18-42a) the angles where the minimum and maximum values of x(�) occur are

� ¼ tan�1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2

p

a

 !
ð18-43Þ

The negative sign refers to the minimum value of x(�), and the positive sign refers to
the maximum value of x(�). The corresponding maximum and minimum values of
x(�) are then found to be

xða, bÞ ¼ a tan�1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2

p

a

 !
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a2

p
ð18-44Þ

In particular, if we set b ¼ 1 in (18-43) and (18-44) we have

� ¼ tan�1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p

a

 !
ð18-45Þ

xðaÞ ¼ a � tan�1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p

a

 !
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
ð18-46Þ
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Equation (18-46) shows that x(a) is imaginary for a > 1; that is, a maximum and a
minimum do not exist. This behavior is confirmed in Fig. 18-13 and 18-14 for
a ¼ 1.25 and a ¼ 1.5.

Equation (18-45) ranges from a ¼ 0 to 1; for a ¼ 0 (no applied electric field)
� ¼ �=2 and 3�/2 (or ��/2), respectively. This is exactly what we would expect for a
circular path. Following the conventional notation the path of the electron moves
counterclockwise, so �/2 is the angle at the maximum point and 3�/2 (��/2) corre-
sponds to the angle at the minimum point. Figure 18-5 shows the change in �ðaÞ as
the electric field (a) increases. The upper curve corresponds to the positive sign of the
argument in (18-45), and the lower curve corresponds to the negative sign, respec-
tively. We see that at a ¼ 1 the maximum and minimum values converge. The point
of convergence corresponds to a cycloid. This behavior is confirmed by the curve for
x(a) in the figure for a ¼ 1, as we shall soon see.

The maximum and minimum points of the (prolate) cycloid are given by
(18-46). We see immediately that for a ¼ 0 we have x(0) ¼ �1. This, of course,
applies to a circle. For 0 < a < 1 we have a prolate cycloid. For a cycloid a ¼ 1, and
(18-46) gives x(1) ¼ 0 and �; that is, the maximum and minimum points coincide.
This behavior is also confirmed for the plot of x(a) versus a at the value where a ¼ 1.
In Fig. 18-6 we have plotted the change in the maximum and minimum values of x(a)
as a increases from 0 to 1. The upper curve corresponds to the positive sign in
(18-46), and the lower curve corresponds to the negative sign.

It is of interest to determine the points on the x axis where the electron path
intersects or is tangent to the x axis. This is found by setting y ¼ 0 in (18-42b). We see
that this is satisfied by � ¼ 0 or � ¼ 2�. Setting b ¼ 1 in (18-42a), the points of
intersection on the x axis are given by x ¼ 0 and x ¼ 2�a; the point x ¼ 0 and y ¼ 0,

Figure 18-5 Plot of the angle �ðaÞ, Eq. (18-45), for the maximum and minimum points as

the electric field (a) increases.

Copyright © 2003 by Marcel Dekker, Inc. All Rights Reserved.



we recall, is the position of the electron at the initial time t ¼ 0. Thus, setting b ¼ 1 in
(18-42a), the initial and final positions of the electron for a ¼ 0 are at x(i) ¼ 0 and
x(f ) ¼ 0, which is the case for a circle. For the other extreme, obtained by setting a ¼
1, the initial and final intersections are 0 and 2�, respectively. Thus, as the magnitude
of the electric field increases, the final point of intersection on the x axis increases. In
addition, as a increases, the prolate cycloid advances so that for a ¼ 0 (a circle) the
midpoint of the path is at x ¼ 0 and for a ¼ 1 the midpoint is at x ¼ �.

We now plot the evolution of the trochoid as the electric field E(a) increases.
The equations used are, from (18-42) with b ¼ 1,

xð�Þ ¼ a�þ sin� ð18-47aÞ

yð�Þ ¼ 1� cos� ð18-47bÞ

It is of interest to plot (18-47a) from � ¼ 0 to 2� for a ¼ 0, 0.25, 0.50, 0.75, and 1.0.
Figure 18-7 is a plot of the evolution of x(�) from a pure sinusoid for a ¼ 0 to a
cycloid for a ¼ 1.

The most significant feature of Fig. 18-7 is that the maxima shift to the right as
a increases. This behavior continues until a ¼ 1, whereupon the maximum point
virtually disappears. Similarly, the minima shift to the left, so that at a ¼ 1 the
minimum point virtually disappears. This behavior is later confirmed for a ¼ 1, a
cycloid.

The paths of the electrons are specifically shown in Figs. 18-8 to 18-15. The
curves are plotted over a single cycle of � (0 to 2�). For these values (18-45) shows

Figure 18-6 Plot of the maximum and minimum values of xð�Þ written as x(a), Eq. (18-46)
as the electric field (a) increases from 0 to 1.
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that the path intersects the x axis at 0 and 2�a, respectively. We select a to be 0, 0.25,
0.5, . . . , 1.5. The corresponding intersections of the path on the x axis are then (0, 0),
(0, �/2), (0, �), . . . , (0, 3�). With these values of a, Figs. 18-8 to 18-15 show the
evolutionary change in the path. Figure 18-15 shows the path of the electron as it
moves over four cycles.

Figure 18-8 The trochoidal path of an electron, a ¼ 0 (a circle).

Figure 18-7 Plot of xð�Þ, Eq. (18-47a), for a ¼ 0 to 1.
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Figure 18-10 The trochoidal path of an electron, a ¼ 0.5.

Figure 18-9 The trochoidal path of an electron a ¼ 0.25.
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Figure 18-11 The trochoidal path of an electron, a ¼ 0.75.

Figure 18-12 The trochoidal path of an electron, a ¼ 1.0.
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18.2 STOKES VECTORS FOR RADIATION EMITTED BY
ACCELERATING CHARGES

We now determine the Stokes vectors for the radiation emitted by the accelerating
charges undergoing the motions described in the previous section, namely, (1) the

Figure 18-13 The trochoidal path of an electron, a ¼ 1.25.

Figure 18-14 The trochoidal path of an electron, a ¼ 1.5.
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motion of an electron in a constant electric field, (2) the motion of an electron in a
constant magnetic field, and (3) the motion of the electron in a crossed electric and
magnetic field.

The components of the radiation field in spherical coordinates were shown in
Chapter 16 to be

E� ¼
e

4�"0c
2R

½ €xx cos � � €zz sin �� ð16-8Þ

E� ¼
e

4�"0c
2R

½ €yy� ð16-9Þ

These equations refer to the observation being made in the xz plane; that is, at � ¼ 0.
The angle � is the polar angle in the observer’s reference frame.

Recall that the Stokes parameters of the radiation field are defined by

S0 ¼ E�E
�
� þ E�E

�
� ð16-10aÞ

S1 ¼ E�E
�
� � E�E

�
� ð16-10bÞ

S2 ¼ E�E
�
� þ E�E

�
� ð16-10cÞ

S3 ¼ iðE�E
�
� � E�E

�
� Þ ð16-10dÞ

In the following problems we represent the emitted radiation and its polarization in
the form of Stokes vectors.

Figure 18-15 The trochoidal path of an electron over four cycles, a ¼ 0.25.
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18.2.1 Stokes Vector for a Charge Moving in an Electric Field

The path of the charge moving in a constant electric field in the xz plane was found
to be

xðtÞ ¼ v0t sin  ð18-10aÞ

zðtÞ ¼
�eE0t

2

2m
þ v0t cos ð18-10bÞ

We see that the accelerations of the charge in the x and z directions are then

€xxðtÞ ¼ 0 ð18-48aÞ

€zzðtÞ ¼ �
eE0

m
ð18-48bÞ

Substituting (18-48) into (16-8) and (16-9) yields

E� ¼
e2E0

m4�"0c
2R

sin � ð18-49aÞ

E� ¼ 0 ð18-49bÞ

and we immediately find from (18-49) that the Stokes vector is

S ¼
e2E0

m4�"0c
2R

 !2

sin2 �

1
�1
0
0

0
BB@

1
CCA ð18-50Þ

Equation (18-50) shows that the emitted radiation is linearly vertically polarized. It
also shows the accelerating electron emits the familiar dipole radiation pattern
described by sin2 �, so the intensity observed along the z axis is zero (� ¼ 0) and
is a maximum when viewed along the x axis (� ¼ �/2).

Before we finish the discussion of (18-50) there is another point of interest that
should be noted. We observe that in (18-50) there is a factor of e2=4�"0mc2. We now
ask the question, what, if any, is the meaning of this quantity? The answer can be
obtained by recalling that the electric field E ‘‘outside’’ of an electron is given by

E ¼
e

4�"0r
2
ur ð18-51Þ

where r is the distance from the center of the electron and ur is the unit radius vector.
We now imagine the electron has a radius a and compute the work that must be done
to move another (positive) charge of the same magnitude from the surface of this
electron to infinity. The total work, or energy, required to do this is

W ¼ �e

Z 1

a

E � dr ð18-52Þ

where dr is drur. Substituting (18-51) into (18-52) gives

W ¼
e2

4�"0

Z 1

a

dr

r2
¼

e2

4�"0a
ð18-53Þ
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We now equate (18-53) to the rest mass of the electron mc2 and find that

a ¼
e2

4�"0mc2
ð18-54Þ

Thus, the factor e2/4�"0mc2 is the classical radius of the electron. The value of
a is readily calculated from the values e ¼ 1.60 � 10�19 C, m ¼ 9.11 � 10�31 kg,
and c ¼ 2.997 � 108 m/sec, which yields

a ¼ 2:82� 10�15m ð18-55Þ

We see that the radius of the electron is extremely small. The factor e2/4�"0mc2

appears repeatedly in radiation problems. Later, it will appear again when we con-
sider the problem where radiation is incident on an electron and is then re-emitted,
that is, the scattering of radiation by an electron.

18.2.2 Stokes Vector for a Charge Accelerating in a Constant
Magnetic Field

In the previous section we saw that the path described by an electron moving in a
constant magnetic field is given by the equations:

xðtÞ ¼
v0
!c

sin!ct ð18-31aÞ

yðtÞ ¼ �
v0
!c

ð1� cos!ctÞ ð18-31bÞ

where �0 is the initial velocity and !c ¼ eB/m is the cyclotron frequency. Using the
exponential representation:

Refei!ctg ¼ cos!ct ð18-56aÞ

Ref�iei!ctg ¼ sin!ct ð18-56bÞ

we can then write

x ¼ cð�iei!ctÞ ð18-57aÞ

yþ c ¼ cðe
i!ctÞ ð18-57bÞ

where

c ¼
v0
!c

ð18-57cÞ

The accelerations €xxðtÞ and €yyðtÞ are then

€xxðtÞ ¼ ic!
2
ce

i!ct ð18-58aÞ

€yyðtÞ ¼ �c!
2
ce

i!ct ð18-58bÞ
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and the radiation field components become

E� ¼
�iec!

2
c

4�"0c
2R

cos �ei!ct ð18-59aÞ

E� ¼
ec!

2
c

4�"0c
2R

ei!ct ð18-59bÞ

From the definition of the Stokes parameters in (16-10) the Stokes vector is

S ¼
ec

4�"0c
2R

� �2

!4
c

1þ cos2 �
1� cos2 �

0
2 cos �

0
BB@

1
CCA ð18-60Þ

which is the Stokes vector for elliptically polarized light radiating at the same fre-
quency as the cyclotron frequency !c. Thus, the Stokes vector found earlier for a
charge moving in a circle is based on physical reality. We see that (18-60) reduces to
right circularly polarized light, linearly horizontally polarized light, and left circu-
larly polarized light for �¼ 0, �/2, and �, respectively.

18.2.3 Stokes Vector for a Charge Moving in a Crossed Electric and
Magnetic Field

The path of the electron was seen to be a trochoid described by

xð�Þ ¼ a�þ b sin� ð18-42aÞ

yð�Þ ¼ bð1� cos�Þ ð18-42bÞ

where

� ¼ !ct ð18-41bÞ

a ¼
eE

m!2
c

ð18-41cÞ

b ¼
v0 � eE=m!c

!c

ð18-41dÞ

Differentiating (18-42a) and (18-42b) twice with respect to time and using (18-56)
then gives

€xxðtÞ ¼ ib!2
ce

i!ct ð18-61aÞ

€yyðtÞ ¼ b!2
ce

i!ct ð18-61bÞ

and we immediately find that the Stokes vector is

S ¼ b2!4
c

1þ cos2 �
1� cos2 �

0
2 cos �

0
BB@

1
CCA ð18-62Þ

which, again, is the Stokes vector for elliptically polarized light.
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With this material behind us we now turn our attention to the Lorentz–Zeeman
effect and see how the role of polarized light led to the acceptance of Maxwell’s
electrodynamical theory in optics.
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19

The Classical Zeeman Effect

19.1 HISTORICAL INTRODUCTION

In 1846, Michael Faraday discovered that by placing a block of heavy lead glass
between the poles of an electromagnet and passing a linearly polarized beam through
the block in the direction of the lines of force, the plane of polarization of the linearly
polarized beam was rotated by the magnetic medium; this is called the Faraday
effect. Thus, he established that there was a link between electromagnetism and
light. It was this discovery that stimulated J. C. Maxwell, a great admirer of
Faraday, to begin to think of the relation between the electromagnetic field and
the optical field.

Faraday was very skillful at inverting questions in physics. In 1819, H. Oersted
discovered that a current gives rise to a magnetic field. Faraday then asked the
inverse question of how can a magnetic field give rise to a current? After many
years of experimentation Faraday discovered that a changing magnetic field rather
than a steady magnetic field generates a current (Faraday’s law). In the Faraday
effect, Faraday had shown that a magnetic medium affects the polarization of light
as it propagates through the medium. Faraday now asked the question, how, if at all,
does the magnetic field affect the source of light itself ? To answer this question, he
placed a sodium flame between the poles of a large electromagnet and observed the
D lines of the sodium radiation when the magnetic field was ‘‘on’’ and when it was
‘‘off.’’ After many attempts, by 1862 he was still unable to convince himself that any
change resulted in the appearance of the lines, a circumstance which we now know
was due to the insufficient resolving power of his spectroscope.

In 1896, P. Zeeman, using a more powerful magnet and an improved spectro-
scope, repeated Faraday’s experiment. This time there was success. He established
that the D lines were broadened when a constant magnetic field was applied.
H. Lorentz heard of Zeeman’s discovery and quickly developed a theory to explain
the phenomenon.

The fact has been pointed out that, even with the success of Hertz’s experi-
ments in 1888, Maxwell’s theory was still not accepted by the optics community,
because Hertz had carried out his experiments not at optical frequencies but at
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microwave frequencies; he developed a source which operated at microwaves. For
Maxwell’s theory to be accepted by the optical community, it would be necessary to
prove the theory at optical frequencies (wavelengths); that is, an optical source which
could be characterized in terms of a current would have to be created. There was
nothing in Fresnel’s wave theory which enabled this to be done. Lorentz recognized
that at long last an optical source could be created which could be understood in
terms of the simple electron theory (sodium has only a single electron in its outer
shell). Therefore, he used the simple model of the (sodium) atom in which an electron
was bound to the nucleus and its motion governed by Hooke’s law. With this model
he then discovered that Zeeman’s line broadening should actually consist of two or
even three spectral lines. Furthermore, using Maxwell’s theory he was able to predict
that the lines would be linearly, circularly, or elliptically polarized in a completely
predictable manner. Lorentz communicated his theoretical conclusions to Zeeman,
who investigated the edges of his broadened lines and confirmed Lorentz’s predic-
tions in all respects.

Lorentz’s spectacular predictions with respect to the splitting, intensity, and
polarization of the spectral lines led to the complete acceptance of Maxwell’s theory.
Especially impressive were the polarization predictions, because they were very com-
plicated. It was virtually impossible without Maxwell’s theory and the electron
theory even remotely to understand the polarization behavior of the spectral lines.
Thus, polarization played a critical role in the acceptance of Maxwell’s theory.
In 1902, Zeeman and Lorentz shared the Nobel Prize in physics for their work.
The prize was given not just for their discovery of and understanding of the
Zeeman effect but, even more importantly, for the verification of Maxwell’s theory
at optical wavelengths. It is important to recognize that Lorentz’s contribution was
of critical importance. Zeeman discovered that the D lines of the sodium were
broadened, not split. Because Lorentz predicted that the spectral lines would be
split, further experiments were conducted and the splitting was observed. Soon
after Zeeman’s discovery, however, it was discovered that additional spectral lines
appeared. In fact, just as quickly as Lorentz’s theory was accepted, it was discovered
that it was inadequate to explain the appearance of the numerous spectral lines. The
explanation would only come with the advent of quantum mechanics in 1925.

The Zeeman effect and the Faraday effect belong to a class of optical phenom-
ena that are called magneto-optical effects. In this chapter we analyze the Zeeman
effect in terms of the Stokes vector. We shall see that the Stokes vector takes on a
new and very interesting interpretation. In Chapter 20 we describe the Faraday effect
along with other related phenomena in terms of the Mueller matrices.

19.2 MOTION OF A BOUND CHARGE IN A CONSTANT
MAGNETIC FIELD

To describe the Zeeman effect and determine the Stokes vector of the emitted radia-
tion, it is necessary to analyze the motion of a bound electron in a constant magnetic
field, that is, determine x(t), y(t), z(t) of the electron and then the corresponding
accelerations. The model proposed by Lorentz to describe the Zeeman effect was a
charge bound to the nucleus of an atom and oscillating with an amplitude A through
the origin. The motion is shown in Fig. 19-1; � is the polar angle and  is the
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azimuthal angle. In particular, the angle  describes the projection of OP on to the
xy plane. The significance of emphasizing this will appear shortly.

The equation of motion of the bound electron in the magnetic field is governed
by the Lorentz force equation:

m€rrþ kr ¼ �e½v� B� ð19-1Þ

where m is the mass of the electron, kr is the restoring force (Hooke’s law), v is the
velocity of the electron, and B is the strength of the applied magnetic field. In
component form (19-1) can be written

m €xxþ kx ¼ �e½v� B�x ð19-2aÞ

m €yyþ ky ¼ �e½v� B�y ð19-2bÞ

m €zzþ kz ¼ �e½v� B�z ð19-2cÞ

We saw in the previous chapter that for a constant magnetic field directed along the
positive z axis (B ¼ Buz), (19-2) becomes

m €xxþ kx ¼ �e½ _yyB� ð19-3aÞ

m €yyþ ky ¼ �e½� _xxB� ð19-3bÞ

m €zzþ kz ¼ 0 ð19-3cÞ

Equation (19-3) can be rewritten further as

€xxþ !2
0x ¼ �

eB

m

� �
_yy ð19-4aÞ

€yyþ !2
0y ¼ �

eB

m

� �
_xx ð19-4bÞ

€zzþ !2
0z ¼ 0 ð19-4cÞ

where !0 ¼
ffiffiffiffiffiffiffiffiffi
k=m

p
is the natural frequency of the charge oscillating along the

line OP.

Figure 19-1 Motion of bound charge in a constant magnetic field; � is the polar angle
and  is the azimuthal angle. In particular, the angle  describes the projection of OP on to

the xy plane.
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Equation (19-4c) can be solved immediately. We assume a solution of the form
z(t) ¼ e!t. Then, the auxiliary equation for (19-4c) is

!2
þ !2

0 ¼ 0 ð19-5aÞ

so

! ¼ �i!0 ð19-5bÞ

The general solution of (19-4c) is then

zðtÞ ¼ c1e
i!0t þ c2e

�i!0t ð19-6Þ

To find a specific solution of (19-6), the constants c1 and c2 must be found from
the initial conditions on z(0) and _zzð0Þ. From Fig. 19-1 we see that when the charge is
at P we have

zð0Þ ¼ A cos� ð19-7aÞ

_zzð0Þ ¼ 0 ð19-7bÞ

Using (19-7) we find the solution of (19-6) to be

zðtÞ ¼ A cos� cos!0t ð19-8Þ

Next, we solve (19-4a) and (19-4b). We again introduce the complex variable:

� ¼ xþ iy ð19-9Þ

In the same manner as in the previous chapters (19-4a) and (19-4b) can be written as
a single equation:

€�� þ
�ieB

m

� �
_�� þ !2

0� ¼ 0 ð19-10Þ

Again, assuming a solution of the form z(t) ¼ e!t, the solution of the auxiliary
equation is

! ¼ i
eB

2m

� �
� i !2

0 �
eB

2m

� �2
 !1=2

ð19-11Þ

The term (eB/2m)2 in (19-11) is orders of magnitude smaller than !2
0, so (19-11) can

be written as

!� ¼ ið!L � !0Þ ð19-12aÞ

where

!L ¼
eB

2m
ð19-12bÞ

The frequency !L is known from the Larmor precession frequency; the reason for the
term precession will soon become clear. The solution of (19-10) is then

zðtÞ ¼ c1e
i!þt þ c2e

i!�t ð19-13Þ

where !þ is given by (19-12a).
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To obtain a specific solution of (19-13), we must again use the initial condi-
tions. From Fig. 19-1 we see that

xð0Þ ¼ A sin� cos ð19-14aÞ

yð0Þ ¼ A sin� sin ð19-14bÞ

so
�ð0Þ ¼ xð0Þ þ iyð0Þ ¼ A sin� expði Þ ð19-14cÞ

_��ð0Þ ¼ 0 ð19-14dÞ

After a little algebraic manipulation we find that the conditions (19-14c) and
(19-14d) lead to the following specific relations for x(t) and y(t):

xðtÞ ¼
A sin�

!0

½!0 cosð þ !LtÞ cos!0tþ !L sinð þ !LtÞ sin!0t� ð19-15aÞ

yðtÞ ¼
A sin�

!0

½!0 sinð þ !LtÞ cos!0t� !L cosð þ !LtÞ sin!0t� ð19-15bÞ

Because the Larmor frequency is much smaller than the fundamental oscillation
frequency of the bound electron, !L  !0, the second term in (19-15a) and (19-15b)
can be dropped. The equations of motion for x(t), y(t), and z(t) are then simply

xðtÞ ¼ A sin� cosð þ !LtÞ cos!0t ð19-16aÞ

yðtÞ ¼ A sin� sinð þ !LtÞ cos!0t ð19-16bÞ

zðtÞ ¼ A cos� cos!0t ð19-16cÞ

In (19-16) we have also included z(t) from (19-8) as (19-16c). We see that !Lt,
the angle of precession, is coupled only with  and is completely independent of �.
To show this precessional behavior we deliberately chose to show  in Fig. 19-1. The
angle  is completely arbitrary and is symmetric around the z axis. We could have
chosen its value immediately to be zero. However, to demonstrate clearly that !Lt is
restricted to the xy plane, we chose to include  in the formulation. We therefore see
from (19-16) that, as time increases, the factor  increases by !Lt. Thus, while the
bound charge is oscillating to and fro along the radius OP there is a simultaneous
counterclockwise rotation in the xy plane. This motion is called precession, and we
see !Lt is the angle of precession. The precession caused by the presence of the
magnetic field is very often called the Larmor precession, after J. Larmor, who,
around 1900, first pointed out this behavior of an electron in a magnetic field.

The angle  is arbitrary, so we can conveniently set  ¼ 0 in (19-16). The
equations then become

xðtÞ ¼ A sin� cos!Lt cos!0t ð19-17aÞ

yðtÞ ¼ A sin� sin!Lt cos!0t ð19-17bÞ

zðtÞ ¼ A cos� cos!0t ð19-17cÞ

We note immediately that (19-17) satisfies the equation:

r2ðtÞ ¼ x2ðtÞ þ y2ðtÞ þ z2ðtÞ ð19-18aÞ

¼ A2 cos2 !0t ð19-18bÞ
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This result is completely expected because the radial motion is due only to the
natural oscillation of the electron. The magnetic field has no effect on this radial
motion, and, indeed, we see that there is no contribution.

Equations (19-17) are the fundamental equations which describe the path of
the bound electron. From them the accelerations can then be obtained as is done in
the following section. However, we consider (19-17a) and (19-17b) further. If we plot
these equations, we can ‘‘follow’’ the precessional motion of the bound electron as it
oscillates along OP. Equations (19-17a) and (19-17b) give rise to a remarkably
beautiful pattern called a petal plot. Physically, we have the electron oscillating
very rapidly along the radius OP while the magnetic field forces the electron to
move relatively slowly counterclockwise in the xy plane. Normally, !L  !0 and
!L ’ !0/10

7. Thus, the electron oscillates about 10 million times through the origin
during one precessional revolution. Clearly, this is a practical impossibility to illus-
trate or plot. However, if we artificially take !L to be close to !0, we can demonstrate
the precessional behavior and still lose none of our physical insight. To show this
behavior we first arbitrarily set the factor A sin� to unity. Then, using the well-
known trigonometric sum and difference formulas, (19-17a) and (19-17b) can be
written as

xðtÞ ¼
1

2
½cosð!0 þ !LÞtþ cosð!0 � !LÞt� ð19-19aÞ

yðtÞ ¼
1

2
½sinð!0 þ !LÞt� sinð!0 � !LÞt� ð19-19bÞ

We now set

�0 ¼ !0t and �L ¼ !Lt ð19-20Þ

so (19-19) becomes

xð�0Þ ¼
1

2
½cosð�0 þ �LÞ þ cosð�0 � �LÞ� ð19-21aÞ

yð�0Þ ¼
1

2
½sinð�0 þ �LÞ � sinð�0 � �LÞ� ð19-21bÞ

To plot the precessional motion, we set �L ¼ �0/p, where p can take on any
integer value. Equation (19-21) then can be written as

xð�0Þ ¼
1

2
cos

pþ 1

p

� �
�0 þ cos

p� 1

p

� �
�0

� �
ð19-22aÞ

yð�0Þ ¼
1

2
sin

pþ 1

p

� �
�0 � sin

p� 1

p

� �
�0

� �
ð19-22bÞ

where we have dropped the subscript L. As a first example of (19-22) we set !L ¼

!0/5, so �L ¼ 0.2�0. In Fig. 19-2, (19-22) has been plotted over 360� for �L ¼ 0.2�0
(in which time the electron makes 5 � 360 ¼ 1800 radial oscillations, which is
equivalent to � taking on values from 0 to 1800�. The figure shows that the electron
describes five petals over a single precessional cycle. The actual path and direction
taken by the electron can be followed by starting, say, at the origin, facing the three
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o’clock position and following the arrows while keeping the ‘‘surface’’ of the petal to
the left of the electron as it traverses the path.

One can readily consider other values of !L. In Fig. 19-3 through Fig. 19-6
other petal diagrams are shown for four additional values of !L, namely, !0, !0/2,
!0/4, and !0/8, respectively. The result shows a proportional increase in the number
of petals and reveals a very beautiful pattern for the precessional motion of the
bound electron.

Equations (19-21) (or (19-19)) can be transformed in an interesting manner by
a rotational transformation. The equations are

x0 ¼ x cos � þ y sin � ð19-23aÞ

y0 ¼ �x sin � þ y cos � ð19-23bÞ

where � is the angle of rotation. We now substitute (19-21) into (19-23), group terms,
and find that

x0 ¼ ð1=2Þ½cosð�0 þ �
0
Þ þ cosð�0 � �

0
Þ� ð19-24aÞ

y0 ¼ ð1=2Þ½sinð�0 þ �
0
Þ � sinð�0 � �

0
Þ� ð19-24bÞ

where

�0 ¼ �L � � ð19-24cÞ

Inspecting (19-24) we see that the equations are identical in form with (19-21); that is,
under a rotation of coordinates x and y are invariant. In a (weak) magnetic field
(19-24) shows that the equations of motion with respect to axes rotating with an
angular velocity !L are the same as those in a nonrotating system when B is zero.
This is known as Larmor’s theorem. The result expressed by (19-24) allows us to

Figure 19-2 Petal diagram for a precessing electron; !L ¼ !0=5, �L ¼ �0=5.
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describe x0 and y0 in a very simple way. If we set � ¼ �L � �0 then �
0
¼ �0 and (19-24a)

and (19-24b) reduce, respectively, to

x0 ¼ ð1=2Þ½1þ cos 2�0� ð19-25aÞ

y0 ¼ ð1=2Þ sin 2�0 ð19-25bÞ

Figure 19-3 Petal diagram for a precessing electron; !L ¼ !0, �L ¼ �0.

Figure 19-4 Petal diagram for a precessing electron; !L ¼ !0=2, �L ¼ �0=2.

Copyright © 2003 by Marcel Dekker, Inc. All Rights Reserved.



Thus, in the primed coordinate system only �0, the natural oscillation angle, appears.
The angle �L can be eliminated and we find that

ðx0 � 1=2Þ2 þ y02 ¼ ð1=2Þ2 ð19-26Þ

which is a circle of unit diameter with intercepts on the x0 axis at 0 and 1.

Figure 19-5 Petal diagram for a precessing electron; !L ¼ !0=4, �L ¼ �0=4.

Figure 19-6 Petal diagram for a precessing electron; !L ¼ !0=8, �L ¼ �0=8.
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A final observation can be made. The petal diagrams for precession based on
(19-21) and shown in the figures appear to be remarkably similar to the rose dia-
grams which arise in analytical geometry, described by the equation:

� ¼ cos k� k ¼ 1, 2, . . . , N ð19-27Þ

where there are 2N petals if N is even and N petals if N is odd. We can express
(19-27) in terms of x and y from the relations:

x ¼ � cos � ð19-28aÞ

y ¼ � sin � ð19-28bÞ

so

x ¼ cos k� cos � ¼ ð1=2Þ½cosðkþ 1Þ� þ cosðk� 1Þ�� ð19-29aÞ

y ¼ cos k� sin � ¼ ð1=2Þ½sinðkþ 1Þ� � sinðk� 1Þ�� ð19-29bÞ

where we have used the sum and difference formulas for the cosine and sine func-
tions.

We can show that the precession equations (19-21a) and (19-21b) reduce to
either (19-27) or (19-29) by writing them as

x ¼ ð1=2Þ½cos pþ cos q� ð19-30aÞ

y ¼ ð1=2Þ½sin p� sin q� ð19-30bÞ

where

p ¼ �0 þ �L ð19-30cÞ

q ¼ �0 � �L ð19-30dÞ

Equation (19-30) can be transformed to polar coordinates by squaring and adding
(19-30a) and (19-30b)

�2 ¼ x2 þ y2 ¼ ð1=2Þ½1þ cosðpþ qÞ� ð19-31Þ

We now set �0 to

�0 ¼ k�L ¼ k� k ¼ 1, 2, . . . ,N ð19-32aÞ

so

p ¼ �0 þ �L ¼ ðkþ 1Þ� k ¼ 1, 2, . . . ,N ð19-32bÞ

q ¼ �0 � �L ¼ ðk� 1Þ� k ¼ 1, 2, . . . ,N ð19-32cÞ

Thus,

pþ q ¼ 2k� ð19-33Þ

Substituting (19-32) into (19-30) and (19-33) into (19-31) then yields

x ¼ ð1=2Þ½cosðkþ 1Þ� þ cosðk� 1Þ�� ð19-34aÞ

y ¼ ð1=2Þ½sinðkþ 1Þ� � sinðk� 1Þ�� ð19-34bÞ
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and substituting (19-33) into (19-31) yields,

�2 ¼ ð1=2Þ½1þ cos 2k�� ¼ cos2 k� ð19-35Þ

or

� ¼ cos k� k ¼ 1, 2, :::,N ð19-36Þ

We see that (19-36) (or, equivalently, (19-34)) is the well-known rose equation of
analytical geometry. Thus, the rose equation describes the phenomenon of the pre-
cession of a bound electron in a magnetic field, an interesting fact that does not
appear to be pointed out in courses in analytical geometry.

19.3 STOKES VECTOR FOR THE ZEEMAN EFFECT

We now determine the Stokes vector for the Zeeman effect. We repeat Eqs. (19-17),
which describe the path of the oscillating electron bound to an atom.

xðtÞ ¼ A sin� cos!Lt cos!0t ð19-17aÞ

yðtÞ ¼ A sin� sin!Lt cos!0t ð19-17bÞ

zðtÞ ¼ A cos� cos!0t ð19-17cÞ

where

!L ¼
eB

2m
ð19-12bÞ

Equations (19-17) can be represented in complex form by first rewriting them by
using the trigonometric identities for sums and differences:

xðtÞ ¼
A

2
sin�ðcos!þtþ cos!�tÞ ð19-37aÞ

yðtÞ ¼
A

2
sin�ðsin!þt� sin!�tÞ ð19-37bÞ

zðtÞ ¼ A cos� cos!0t ð19-37cÞ

where

!� ¼ !0 � !L ð19-37dÞ

Using the familiar rule of writing (19-37) in complex notation, we have

xðtÞ ¼
A

2
sin�½expði!þtÞ þ expði!�tÞ� ð19-38aÞ

yðtÞ ¼ �i
A

2

� �
sin�½expði!þtÞ � expði!�tÞ� ð19-38bÞ

zðtÞ ¼ A cos� expði!0tÞ ð19-38cÞ
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Twofold differentiation of (19-38) with respect to time yields

€xxðtÞ ¼ �
A

2
sin �½!2

þ expði!þtÞ þ !
2
� expði!�tÞ� ð19-39aÞ

€yyðtÞ ¼ i
A

2

� �
sin�½!2

þ expði!þtÞ � !
2
� expði!�tÞ� ð19-39bÞ

€zzðtÞ ¼ �ðA cos�Þ!2
0 expði!0tÞ ð19-39cÞ

The radiation field equations are

E� ¼
e

4�"0c
2R

½ €xxðtÞ cos � � €zzðtÞ sin �� ð19-40aÞ

E� ¼
e

4�"0c
2R

½ €yyðtÞ� ð19-40bÞ

Substituting (19-39) into (19-40) yields

E� ¼
eA

8�"0c
2R

½sin� cos �f!2
þ expði!þtÞ þ !

2
� expði!�tÞg

þ 2!2
0 cos� sin � expði!0tÞ� ð19-41aÞ

and

E� ¼
ieA sin�

8�"0c
2R

f!2
þ expði!þtÞ � !

2
� expði!�tÞg ð19-41bÞ

The Stokes parameters are defined in spherical coordinates to be

S0 ¼ E�E
�
� þ E�E

�
� ð16-10aÞ

S1 ¼ E�E
�
� � E�E

�
� ð16-10bÞ

S2 ¼ E�E
�
� þ E�E

�
� ð16-10cÞ

S3 ¼ iðE�E
�
� � E�E

�
� Þ ð16-10dÞ

We now form the quadratic field products of (19-41) according to (16-10), drop
all cross-product terms, and average � over a sphere of unit radius. Finally, we group
terms and find that the Stokes vector for the classical Zeeman effect is

S ¼
eA

8�"0c
2R

� �2

2

3
ð!4

þ þ !4
�Þð1þ cos2 �Þ þ

4

3
!4
0 sin

2 �

�
2

3
ð!4

þ þ !4
�Þ sin

2 � þ
4

3
!4
0 sin

2 �

0
4

3
ð!4

þ � !4
�Þ cos �

0
BBBBBBB@

1
CCCCCCCA

ð19-42Þ

The form of (19-42) suggests that we can decompose the column matrix according to
frequency. This implies that the converse of the principle of incoherent superposition
is valid; namely, (19-42) can be decomposed according to a principle that we call the
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principle of spectral incoherent decomposition. Therefore, (19-42) is decomposed
into column matrices in terms of !�, !0, and !þ. We now do this and find that

S ¼
2

3

eA

8�"0c
2R

� �2

!4
�

1þ cos2 �

� sin2 �

0

�2 cos �

0
BBBB@

1
CCCCAþ !4

0

2 sin2 �

2 sin2 �

0

0

0
BBBB@

1
CCCCAþ !4

þ

1þ cos2 �

� sin2 �

0

2 cos �

0
BBBB@

1
CCCCA

0
BBBB@

1
CCCCA

ð19-43Þ

The meaning of (19-43) is now immediately evident. According to (19-43), we
will observe three spectral lines at frequency !�, !0, and !þ, respectively. This is
exactly what is observed in a spectroscope. Furthermore, we see that the Stokes
vectors associated with !� and !þ correspond to elliptically polarized light with
their polarization ellipses oriented at 90� and of opposite ellipticity. Similarly, the
Stokes vector associated with the !0 spectral line is always linearly horizontally
polarized.

In Fig. 19-7 we represent the spectral lines corresponding to (19-43) as they
would be observed in a spectroscope.

Thus, by describing the Zeeman effect in terms of the Stokes vector, we have
obtained a mathematical formulation that corresponds exactly to the observed spec-
trum, that is, each of the column matrices in (19-43) corresponds to a spectral line.
Furthermore, the column matrix (Stokes vector) contains all of the information
which can be measured, namely, the frequency (wavelength), intensity, and polariza-
tion. In this way we have extended the usefulness of the Stokes vector.

Originally, the Stokes parameters were introduced to obtain a formulation of
the optical field whereby the polarization could be measured in terms of the intensity,
a measurable quantity. The Stokes vector was then constructed and introduced to
facilitate the mathematical analyses of polarized light via the Mueller matrix for-
malism. The Stokes vector now takes on another meaning. It can be used to represent

Figure 19-7 The Zeeman effect observed in a spectroscope.
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the observed spectral lines. In a sense we have finally reached a goal enunciated first
by W. Heisenberg (1925) in his formulation of quantum mechanics and, later, for
optics by E. Wolf (1954)—the description of atomic and optical phenomena in terms
of observables.

We see from (19-43) that the ellipticity angle is a function of the observation
angle �. In Fig. 19-8 a plot is made of the ellipticity angle versus �. We observe that
from � ¼ 0� (viewing down along the magnetic field) to � ¼ 180� (viewing up along
the magnetic field) there is a reversal in the ellipticity.

Equation (19-43) reduces to special forms when the radiation is observed par-
allel to the magnetic field (� ¼ 0�) and perpendicular to the magnetic field (� ¼ 90�).
For � ¼ 0� we see from (19-43) that the Stokes vector associated with the !0 column
matrix vanishes, and only the Stokes vectors associated with !� and !þ remain. We
then have

S ¼
4

3

eA

8�"0c
2R

� �2

!4
�

1
0
0
�1

0
BB@

1
CCAþ !þ

4

1
0
0
1

0
BB@

1
CCA

0
BB@

1
CCA ð19-44Þ

Thus, we observe two radiating components (spectral lines) at !� and !þ, which are
left and right circularly polarized, respectively. Also, the intensities are equal; the
magnitudes of the frequencies !4

� are practically equal. The observation of only two
spectral lines parallel to the magnetic field is sometimes called the longitudinal
Zeeman effect. Figure 19-9 corresponds to (19-44) as viewed in a spectroscope.

Figure 19-8 Plot of the ellipticity angle �ð�Þ versus the viewing angle � of the spectral lines
associated with the !� and !þ frequencies in (19-43).
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Next, we consider the case where the radiation is observed perpendicular to the
magnetic field (� ¼ 90�). Equation (19-43) now reduces to

S ¼
2

3

eA

8�"0c
2R

� �2

!4
�

1
�1
0
0

0
BB@

1
CCAþ 2!4

0

1
1
0
0

0
BB@

1
CCAþ !4

þ

1
�1
0
0

0
BB@

1
CCA

2
664

3
775 ð19-45Þ

Three components (spectral lines) are observed at !�, !0, and !þ, respectively. The
spectral lines observed at !� and !þ are linearly vertically polarized, and the spectral
line at !0 is linearly horizontally polarized. Furthermore, we see that the intensity of
the center spectral line (!0) is twice that of !� and !þ. The observation of the
Zeeman effect perpendicular to the magnetic field is sometimes called the transverse
Zeeman effect or the Zeeman triplet. The appearance of the spectra corresponding to
(19-45) is shown in Fig. 19-10.

Finally, it is of interest to determine the form of the Stokes vector (19-43) when
the applied magnetic field is removed. We set B ¼ 0, and we have !� ¼ !þ ¼ !0.
Adding the elements of each row of matrices gives

S ¼
8

3

eA

8�"0c
2R

� �2

!4
0

1
0
0
0

0
BB@

1
CCA ð19-46Þ

which is the Stokes vector for unpolarized light. Thus, we observe a single spectral
line radiating at the frequency !0, the natural frequency of oscillation of the bound
atom. This is exactly what we would expect for an electron oscillating randomly
about the nucleus of an atom. In a spectroscope we would, therefore, observe
Fig. 19-11.

In the following chapter we extend the observable formulation to describing
the intensity and polarization of the radiation emitted by relativistically moving

Figure 19-9 The longitudinal Zeeman effect. The spectral lines observed in a spectroscope

for the Zeeman effect parallel to the magnetic field ð� ¼ 0�Þ.
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electrons. In Chapter 22 we use the Stokes vectors to describe the emission of
radiation by quantized atomic systems.
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20

Further Applications of the Classical
Radiation Theory

20.1 RELATIVISTIC RADIATION AND THE STOKES VECTOR FOR A
LINEAR OSCILLATOR

In previous chapters we have considered the emission of radiation by nonrelativistic
moving particles. In particular, we determined the Stokes parameters for particles
moving in linear or curvilinear paths. Here and in Section 20.2 and 20.3 we reconsi-
der these problems in the relativistic regime. It is customary to describe the velocity
of the charge relative to the speed of light by � ¼ v=c.

For a linearly oscillating charge we saw that the emitted radiation was linearly
polarized and its intensity dependence varied as sin2 �. This result was derived for the
nonrelativistic regime ð� 1Þ. We now consider the same problem, using the rela-
tivistic form of the radiation field. Before we can do this, however, we must first
show that for the relativistic regime ð� � 1Þ the radiation field continues to consist
only of transverse components, E� and E�, and the radial or longitudinal electric
component Er is zero. If this is true, then we can continue to use the same definition
of the Stokes parameters for a spherical radiation field.

The relativistic radiated field has been shown by Jackson to be

Eðx, tÞ ¼
e

4�"0c
2

n

�3R
� fðn� �Þ � ð _��Þg

� �
ret

ð20-1aÞ

where

� ¼ 1� n � � ð20-1bÞ

The brackets � � �½ �ret means that the field is to be evaluated at an earlier or retarded
time, t0 ¼ t� Rðt0Þ=c where R/c is just the time of propagation of the disturbance
from one point to the other. Furthermore, c� is the instantaneous velocity of the
particle, c _�� is the instantaneous acceleration, and n ¼ R=R. The quantity �! 1 for
nonrelativistic motion. For relativistic motion the fields depend on the velocity as
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well as the acceleration. Consequently, as we shall soon clearly see the angular
distribution is more complicated.

In Fig. 20-1 we show the relations among the coordinates given in (20-1a)
We recall that the Poynting vector S is given by

S ¼
1

2
c"0 Ej j

2
n ð20-2Þ

Thus, we can write, using (20-1a),

S � n½ � ¼
e2

32�2"0c
3

1

�6R2
n� ½ðn� �Þ � _���
�� ��2� �

ret

ð20-3Þ

There are two types of relativistic effects present. The first is the effect of the specific
spatial relationship between � and _��, which determines the detailed angular distribu-
tion. The other is a general relativistic effect arising from the transformation from
the rest frame of the particle to the observer’s frame and manifesting itself by the
presence of the factor � in the denominator of (20-3). For ultrarelativistic particles
the latter effect dominates the whole angular distribution.

In (20-3), S � n is the energy per unit area per unit time detected at an observa-
tion point at time t due to radiation emitted by the charge at time t0 ¼ t� Rðt0Þ=c.
To calculate the energy radiated during a finite period of acceleration, say from
t0 ¼ T1 to t0 ¼ T2, we write

W ¼

Z t¼T2þRðT2Þ=c

t¼T1þRðT1Þ=c

S � n½ �ret dt ¼

Z t0¼T2

t0¼T1

ðS � nÞ
dt

dt0
dt0 ð20-4Þ

The quantity ðS � nÞ dt=dt0
	 


is the power radiated per unit area in terms of the
charge’s own time. The terms t0 and t are related by

t0 ¼ t�
Rðt0Þ

c
ð20-5Þ

Furthermore, as Jackson has also shown,

� ¼ 1þ
1

c

dRðt0Þ

dt0
ð20-6Þ

Figure 20-1 Coordinate relations for an accelerating electron. P is the observation point
and O is the origin. (From Jackson.)
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Differentiating (20-5) yields

dt

dt0
¼ � ð20-7Þ

The power radiated per unit solid angle is

dPðt0Þ

d�
¼ R2

ðS � nÞ
dt

dt0
¼ �R2

S � n ð20-8Þ

These results show that we will obtain a set of Stokes parameters consistent with
(20-8) by defining the Stokes parameters as

S0 ¼
1

2
c"0�R

2 E�E
�
� þ E�E

�
�

 �
ð20-9aÞ

S1 ¼
1

2
c"0�R

2 E�E
�
� � E�E

�
�

 �
ð20-9bÞ

S2 ¼
1

2
c"0�R

2 E�E
�
� þ E�E

�
�

 �
ð20-9cÞ

S3 ¼
1

2
c"0�R

2 iðE�E
�
� � E�E

�
� Þ

 �
ð20-9dÞ

where the electric field E x, tð Þ is calculated from (20-1a).
Before we proceed to apply these results to various problems of interest, we

must demonstrate that the definition of the Stokes parameters (20-9) is valid for
relativistic motion. That is, the field is transverse and there is no longitudinal
component ðEr ¼ 0Þ. We thus write (20-1a) as

Eðx, tÞ ¼
e

4�"0c
2R

n� ðn� _��Þ
 �

� ½n� ð�� _��Þ�

�3

" #
ret

ð20-10Þ

Because the unit vector n is practically in the same direction as ur, (20-10) is
rewritten as

Eðr, tÞ ¼
e

4�"0c
2�3R

½ur � ður � _��Þ� � ½ur � ð�� _��Þ�
� �

ð20-11Þ

The triple vector product relation can be expressed as

a� ðb� cÞ ¼ bða � cÞ � cða � bÞ ð20-12Þ

so (20-11) can be rewritten as

Eðr, tÞ ¼
e

4�"0c
2�3R

urður � _��Þ � _��ður � urÞ � _��ður � _��Þ þ _��ður � �Þ�


ð20-13Þ

In spherical coordinates the field Eðr, tÞ is

Eðr, tÞ ¼ Erur þ E�u� þ E�u� ð20-14Þ

Taking the dot product of both sides of (20-13) with ur and using (20-14), we see that

Er ¼ ður � _��Þ � ður � _��Þ � ður � �Þður � _��Þ þ ður � _��Þður � �Þ ¼ 0 ð20-15Þ
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so the longitudinal (radial) component is zero. Thus, the radiated field is always
transverse in both the nonrelativistic and relativistic regimes. Hence, the Stokes
parameters definition for spherical coordinates continues to be valid.

The components E� and E� are readily found for the relativistic regime. We
have

� ¼
_xxiþ _yyjþ _zzk

c
ð20-16aÞ

_�� ¼
€xxiþ €yyjþ €zzk

c
ð20-16bÞ

The Cartesian unit vectors in (20-16a) and (20-16b) can be replaced with the unit
vectors in spherical coordinates, namely,

i ¼ sin �ur þ cos �u� ð20-17aÞ

j ¼ u� ð20-17bÞ

k ¼ cos �ur � sin �u� ð20-17cÞ

In (20-17) the azimuthal angle has been set to zero because we assume that we always
have symmetry around the z axis. Substituting (20-17) into (20-16) yields

c� ¼ ð _xx sin � þ _zz cos �Þur þ _yyu� þ ð _xx cos � � _zz sin �Þu� ð20-18aÞ

c _�� ¼ ð €xx sin � þ €zz cos �Þur þ €yyu� þ ð €xx cos � � €zz sin �Þu� ð20-18bÞ

The transverse components E� and E� are then

E� ¼
�e

4�"0c
2�3R

ð €xx cos � � €zz sin �Þ �
€xx _zz� _xx €zz

c

� �
ð20-19aÞ

E� ¼
�e

4�"0c
2�3R

€yy�
€yy _xx� _yy €xxð Þ sin � þ €yy _zzþ _yy €zzð Þ cos �

c

� �
ð20-19bÞ

We see that the factors divided by c in (20-19a) and (20-19b) are the relativistic
contributions. For � and _�� 1, (20-19) reduces to the nonrelativistic forms used
in previous chapters.

We now apply these results to determining the radiation and the polarization
emitted by charges undergoing linear and circular motion. In the following sections
we treat synchrotron radiation and the motion of a charge moving in a dielectric
medium (Čerenkov radiation). In the final section we deal with the scattering of
radiation by electric charges.

For a linear charge that is accelerating along the z axis, � and _�� are parallel, so

�� _�� ¼ 0 ð20-20Þ

Equation (20-1a) then reduces to

Eðx, tÞ ¼
e

4�"0c
2�3R

n� ðn� _��Þ
 �

ð20-21aÞ

or

Eðr, tÞ ¼
e

4�"0c
2R

ur � ður � _vvÞ

�3

� �
ð20-21bÞ
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According to (20-11) and (20-14), the field components of (20-21b) are

E� ¼
e

4�"0c
2�3R

€xx cos � � €zz sin �½ � ð20-22aÞ

E� ¼
e

4�"0c
2�3R

€yy ð20-22bÞ

From the definition of the Stokes parameters (20-9) we then find the Stokes vector
for the relativistic accelerating charge [from (20-22) and (20-1b)] is

S ¼
e2 €zz2

32�2"0c
3

sin2 �

ð1� � cos �Þ5

" # 1
1
0
0

0
BB@

1
CCA ð20-23Þ

where n � � ¼ � cos �. We see immediately that the radiation is linearly horizontally
polarized as in the nonrelativistic case.

The intensity of the radiation field is seen from (20-23) to be

Ið�,�Þ ¼ I0
sin2 �

1� � cos �ð Þ
5

 !
ð20-24Þ

where I0 ¼ e2 €zz2=32�2"0c
3. For the nonrelativistic case �! 0, and (20-24) reduces to

I �ð Þ ¼ I0 sin
2 � ð20-25Þ

which is the well-known dipole radiation distribution. In (20-25), the nonrelativistic
result, the minimum intensity I �ð Þ is at � ¼ 0�, where I 0�ð Þ ¼ 0, and the maximum
intensity is at � ¼ 90�, where I 90�ð Þ ¼ I0.

Equation (20-24), on the other hand, shows that the maximum intensity shifts
toward the z axis as � increases. To determine the positions of the maximum and
minimum of (20-24), we differentiate (20-24) with respect to �, set the result equal to
zero, and find that

sin � ¼ 0 ð20-26aÞ

3� cos2 � þ 2 cos � � 5� ¼ 0 ð20-26bÞ

The solution of the quadratic equation (20-26b) is

cos � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15�2 þ 1

p
� 1

3�
ð20-27Þ

where we have taken the positive root because of the requirement that cos �j j 	 1.
For small values of �, (20-27) reduces to

cos � ’
5�

2
ð20-28Þ

so that for � ¼ 0 the angle � is 90� as before . For extreme relativistic motion � ’ 1,
and (20-28) then reduces to

cos � ’ 1 ð20-29Þ
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so � ’ 0�. We see that the maximum intensity has moved from � ¼ 90�ð� 1Þ to
� ¼ 0� ð� ’ 1Þ, that is, the direction of the maximum intensity moves toward the
charge moving along the z axis.

In Fig. 20-2 the intensity contours for various values of � are plotted. The
contours clearly show the shift of the maximum intensity toward the z axis for
increasing �. In the figure the charge is moving up the z axis from the origin, and
the horizontal axis corresponds to the y direction. To make the plot we equated Ið�Þ
with �, so

yð�Þ ¼ � sin � ð20-30aÞ

zð�Þ ¼ � cos � ð20-30bÞ

where

� ¼ Ið�Þ ¼
sin2 �

ð1� � cos �Þ5
ð20-30cÞ

We see that, as � increases, the familiar sin2 � distribution becomes lobelike, a
characteristic behavior of relativistically moving charges.

The formulation we have derived is readily extended to an oscillating charge.
The motion of a charge undergoing linear oscillation is described by

zðtÞ ¼ z0e
i!0t ð20-31Þ

In vector form (20-31) can be written as

zðtÞ ¼ zðtÞuz ¼ z0e
i!0tuz ð20-32Þ

Figure 20-2 Intensity distribution of a relativistic moving charge for � ¼ 0, 0:2, and 0.4.
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Furthermore, using � notation, � ¼ _zz=c, we can express the velocity and acceleration
in vector form as

� ¼
_zz

c
uz _�� ¼

€zz

c
uz ð20-33Þ

We see immediately that

�� _�� ¼ 0 ð23-34Þ

which is identical to (20-20). Hence, we have the same equations for an oscillating
charge as for a unidirectional relativistic moving charge. We easily find that the
corresponding Stokes vector is

S ¼
1

2c"0

ez0
4�c

� �2 sin2 �

1� � cos �ð Þ
5

 !
!4
0

1
1
0
0

0
BB@

1
CCA ð20-35Þ

Thus, the radiation appears at the same frequency as the frequency of oscillation.
With respect to the intensity distribution we now have radiation also appearing
below the z ¼ 0 axis because the charge is oscillating above and below the xy
plane. Thus, the intensity pattern is identical to the unidirectional case but is now
symmetrical with respect to the xy plane. In Fig. 20-3 we show a plot of the intensity
contour for � ¼ 0:4.

Figure 20-3 Intensity contours for a relativistic oscillating charge � ¼ 0:4ð Þ.
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20.2 RELATIVISTIC MOTION OF A CHARGE MOVING IN
A CIRCLE: SYNCHROTRON RADIATION

In the previous section we dealt with the relativistic motion of charges moving in a
straight line and with the intensity and polarization of the emitted radiation. This
type of radiation is emitted by electrons accelerated in devices known as linear
accelerators. We have determined the radiation emitted by nonrelativistic charges
moving in circular paths as well. In particular, we saw that a charge moves in a
circular path when a constant magnetic field is applied to a region in which the free
charge is moving.

In this section we now consider the radiation emitted by relativistically moving
charges in a constant magnetic field. The radiation emitted from highly relativistic
charges is known as synchrotron radiation, after its discovery in the operation of the
synchrotron. A charge moving in a circle of radius a is shown in Fig. 20-4.

The coordinates of the electron are

x tð Þ ¼ a cos!t y tð Þ ¼ a sin!t ð20-36Þ

Using the familiar complex notation, we can express (20-36) as

x tð Þ ¼ aei!t y tð Þ ¼ �iaei!t ð20-37aÞ

_xx tð Þ ¼ i!aei!t _yy tð Þ ¼ a!ei!t ð20-37bÞ

€xx tð Þ ¼ �a!2ei!t €yy tð Þ ¼ ia!2ei!t ð20-37cÞ

For the nonrelativistic case we saw that !, the cyclotron frequency, was given by

! ¼
eB

m
ð20-38Þ

where e is the magnitude of the charge, B is the strength of the applied magnetic field,
m is the mass of the charge, and c is the speed of light in free space. We can obtain

Figure 20-4 Motion of a relativistic charge moving in a circle of radius a in the xy plane
with an angular frequency !.
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the corresponding form for ! for relativistic motion by merely replacing m in (20-38),
the rest mass, with the relativistic mass m by

m !
m

ð1� �2Þ1=2
ð20-39Þ

Thus, (20-38) becomes

! ¼
eB

m
ð1� �2Þ1=2 ð20-40Þ

The frequency ! in (20-40) is now called the synchrotron frequency.
To find the Stokes vector of the emitted radiatin, we recall from Section 20-1

that the relativistic field components are

E� ¼
�e

4�"0c
2�3R

ð €xx cos � � €zz sin �Þ �
€xx _zz� _xx €zz

c

� �
ð20-41aÞ

E� ¼
�e

4�"0c
2�3R

€yy�
ð €yy _xx� _yy €xxÞ sin � þ ð €yy _xxþ _yy €xxÞ cos �

c

� �
ð20-41bÞ

Because there is no motion in the z direction, (20-41) reduces to

E� ¼
�e

4�"0c
2�3R

½ €xx cos �� ð20-42aÞ

E� ¼
�e

4�"0c
2�3R

€yy�
ð €yy _xx� _yy €xxÞ sin �

c

� �
ð20-42bÞ

Substituting (20-37b) and (20-37c) into (20-42), we find

E� ¼
�e

4�"0c
2�3R

½a!2 cos �� ð20-43aÞ

E� ¼
�e

4�"0c
2�3R

ia!2
�
a2!3

c
sin �

" #
ð20-43bÞ

where we have suppressed the exponential time factor ei!t. From the definition of the
Stokes parameters given in Section 20.1, we then find that the Stokes vector for
synchrotron radiation is

S ¼
e2�4!4

a2ð1� � cos �Þ5

1þ cos2 � þ �2 sin2 �

�ð1� �2Þ sin2 �

2� sin �

�2 cos �

0
BBB@

1
CCCA ð20-44Þ

where we emphasize that � is the observer’s angle measured from the z axis. Equation
(20-44) shows that for synchrotron radiation the radiation is, in general, elliptically
polarized. The Stokes vector (20-44) is easily shown to be correct because the matrix
elements satisfy the equality:

S2
0 ¼ S2

1 þ S2
2 þ S2

3 ð20-45Þ

We saw earlier when dealing with the motion of a charge moving in a circle for
the nonrelativistic case that the Stokes vector reduces to simpler (degenerate) forms.
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A similar situation arises with relativistically moving charges. Thus, when we observe
the radiation at � ¼ 0�, the Stokes vector (20-44) reduces to

S ¼
2e2�4!4

a2ð1� �Þ5

1

0

0

�1

0
BBB@

1
CCCA ð20-46Þ

which is the Stokes vector for left circularly polarized light. Similarly, for � ¼ �=2 the
Stokes vector is

S ¼
e2a2!4

c4

1þ �2

�ð1� �2Þ

2�

0

0
BBB@

1
CCCA ð20-47Þ

At this observation angle the radiation is linearly polarized. Finally, at � ¼ �, we see
that the radiation is right circularly polarized.

For � 1, the nonrelativistic regime, (20-44) reduces to

S ¼
e2a2!4

c4

1þ cos2 �

� sin2 �

0

�2 cos �

0
BBB@

1
CCCA ð20-48Þ

where ! ¼ eB=m ¼ !c is the cyclotron frequency. This is the Stokes vector we found
in Section 17.3 for a charge rotating in the xy plane. We now examine the intensity,
orientation angle, and ellipticity of the polarization ellipse for synchrotron radiation
(20-44).

The intensity of the radiation field, Ið�Þ, can be written from (20-44) as

Ið�Þ ¼
e2!4

c

a2
ð1� �2Þ2ð1þ cos2 � þ �2 sin2 �

ð1� � cos �Þ5

" #
ð20-49Þ

where we have set ! ¼ !cð1� �
2
Þ
1=2. The presence of the factor ð1� � cos �Þ5 in the

denominator of (20-49) shows that a lobelike structure will again emerge; this beha-
vior will be shown shortly when a plot is made of (20-49).

The orientation angle  and the ellipticity angle � are

 ¼
1

2
tan�1 �2�

ð1� �2Þ sin �

� �
ð20-50Þ

and

� ¼
1

2
sin�1 �2 cos �

1þ cos2 � þ �2 sin2 �

� �
ð20-51Þ

In Fig. 20-5 a plot of the intensity, (20-49) has been made as a function of the
observation angle � for � ¼ 0, 0:1, and 0.2. We see that for � ¼ 0 (i.e., the non-
relativistic radiation pattern) the intensity contour follows a bubblelike distribution.
However, as � increases, the bubblelike contour becomes lobelike. This behavior
is further emphasized in Figs. 20-6 and 20-7. Figure 20-6 shows (20-49) for
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� ¼ 0:3, 0:4, and 0.5. Similarly, Figure 20-7 shows (20-49) for � ¼ 0:6, 0:7, and 0.8.
For �, say, equal to 0.99 we have Ið0�Þ=Ið90�Þ ¼ 2� 109, which is an extraordinarily
narrow beam.

In Fig. 20-8 we have plotted the logarithm of the intensity Ið�Þ from � ¼ 0� to
180�for � ¼ 0 to 0.9 in steps of 0.3.

Figure 20-5 Relativistic intensity contours for � ¼ 0:0, 0:1, and 0.2.

Figure 20-6 Relativistic intensity contours for � ¼ 0:3, 0:4, and 0.5.
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In order to plot the orientation angle  , (20-50), as a function of �, we
note that, for � ¼ 0:0 and 1.0,  ¼ 0 and ��=4, respectively. In Fig. 20-9 we plot
 as a function of � where the contours correspond to � ¼ 0:0, 0:1, . . . , 1:0 for
decreasing  .

Figure 20-7 Relativistic intensity contours for � ¼ 0:6, 0:7, and 0.8.

Figure 20-8 Logarithmic plot of the intensity for � ¼ 0:0 through 0.9.
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In Fig. 20-10 the ellipticity angle �, (20-51), is plotted for � ¼ 0 to 1.0 over a
range of � ¼ 0� to 180�. For the extreme relativistic case (20-51) becomes

� ¼ �
1

2
sin�1

ðcos �Þ ð20-52Þ

Figure 20-9 Orientation angle  for synchrotron radiation.

Figure 20-10 Ellipticity angle � for synchrotron radiation.
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It is straightforward to show that (20-52) can be rewritten in the form of an equation
for a straight line, namely,

� ¼
�

2
� 45� ð20-53Þ

and this behavior is confirmed in Fig. 20-10. We see that Fig. 20-10 shows that the
ellipticity varies from � ¼ �45� (a circle) at � ¼ 0� and � ¼ 45� (a counterclockwise
circle) at � ¼ 180�.

Finally, it is of interest to compare the Stokes vector for � ¼ 0 and for � ¼ 1.
The Stokes vectors are, respectively,

S ¼ K

1þ cos2 �

sin2 �

0

2 cos �

0
BBB@

1
CCCA � ¼ 0 ð20-54aÞ

and

S0
¼ K0

1

sin2 �

sin � cos �

cos �

0
BBB@

1
CCCA � ¼ 1 ð20-54bÞ

where K and K0 are constants [see (20-44)]. For � ¼ 0� and 90�, S and S0 become,
respectively,

S ¼ 2K

1
0
0
1

0
BB@

1
CCA S0

¼ K0

1
0
0
1

0
BB@

1
CCA � ¼ 0� ð20-55aÞ

S ¼ K

1
1
0
0

0
BB@

1
CCA S0

¼ K0

1
1
0
0

0
BB@

1
CCA � ¼ 90� ð20-55bÞ

Thus, in the extreme cases of � ¼ 0 and � ¼ 1, the Stokes vectors—that is, the
polarization states—are identical! However, between these two extremes the polari-
zation states are very different.

Synchrotron radiation was first observed in the operation of synchrotrons.
However, many astronomical objects emit synchrotron radiation, and it has been
associated with sunspots, the crab nebula in the constellation of Taurus, and radia-
tion from Jupiter. Numerous papers and discussions of synchrotron radiations have
appeared in the literature, and further information can be found in the references.

20.3 ČERENKOV EFFECT

A charged particle in uniform motion and traveling in a straight line in free space
does not radiate. However, if the particle is moving with a constant velocity through
a material medium, it can radiate if its velocity is greater than the phase velocity of
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light in the medium. Such radiation is called Čerenkov radiation, after its discoverer,
P. A. Čerenkov (1937). According to the great German physicist A. Sommerfeld, the
problem of the emission of radiation by charged particles moving in an optical
medium characterized by a refractive index n was studied as early as the beginning
of the last century.

The emission of Čerenkov radiation is a cooperative phenomenon involving a
large number of atoms of the medium whose electrons are accelerated by the fields of
the passing particle and so emit radiation. Because of the collective aspects of the
process, it is convenient to use the macroscopic concept of a dielectric constant "
rather than the detailed properties of individual atoms.

In this section our primary concern is to determine the polarization of
Čerenkov radiation. The mathematical background as well as additional informa-
tion on the Čerenkov effect can be found in Jackson’s text on classical electro-
dynamics. Here, we shall determine the radiated field Eðx, tÞ for the Čerenkov
effect, whereupon we then find the Stokes parameters (vector).

A qualitative explanation of the Čerenkov effect can be obtained by consider-
ing the fields of the fast particle in the dielectric medium as a function of time. The
medium is characterized by a refractive index n, so the phase velocity of the light is
c/n, where c is the speed of light in a vacuum. The particle velocity is denoted by v. In
order to understand the Čerenkov effect it is not necessary to include the refractive
index in the analysis, however. Therefore, we set n ¼ 1, initially. At the end of the
analysis we shall see the significance of n.

If we have a charged particle that is stationary but capable of emitting spherical
waves, then after the passage of time t the waves are described by

x2 þ y2 þ z2 ¼ r2ðtÞ ¼ ðctÞ2 ð20-56Þ

If the charge is moving along the positive x axis with a velocity v, then the coordinate
x is replaced by x� vt, so (20-56) becomes

ðx� vtÞ2 þ y2 þ z2 ¼ ðctÞ2 ð20-57Þ

We can consider the form of (20-57) in the xy plane by setting z ¼ 0, so the two-
dimensional representation of the spherical wave is

ðx� vtÞ2 þ y2 ¼ ðctÞ2 ð20-58Þ

We nowwrite � ¼ v=c. Furthermore, for convenience we set c ¼ 1, so (20-58) becomes

ðx� �tÞ2 þ y2 ¼ t2 ð20-59Þ

The intercepts of the spherical wave on the x axis are found by setting y ¼ 0 in
(20-59). Then

x� ¼ ð�� 1Þt ð20-60Þ

The intercept of the leading edge of the spherical wave front is then

xþ ¼ ð�þ 1Þt ð20-61aÞ

and, similarly, the intercept of the trailing edge of the spherical wave front is

x� ¼ ð�� 1Þt ð20-61bÞ
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The maximum and minimum values of the spherical wave along the y axis are
found from the condition dy=dx ¼ 0. From Eq. (20-59) we can then show that the
maximum and minimum values of y occur at

x ¼ �t ð20-62aÞ

This result is to be expected for a wave source propagating with a velocity v ¼ �. The
corresponding maximum and minimum values of y are then found from (20-59) to be

y� ¼ �t ð20-62bÞ

Since the radius of the spherical wave front is rðtÞ ¼ ct ¼ ð1Þt, this, too, is to be
expected. We see that at t ¼ 0 both x and y ¼ 0 correspond to the particle’s position
ðx� �tÞ at the origin. The phase velocity vp of the spherical wave is determined from
rðtÞ ¼ ct and vp ¼ drðtÞ=dt ¼ cð¼ 1Þ.

Solving (20-59) for yðtÞ we have

yðtÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � ðx� �tÞ2

q
ð20-63Þ

It is of interest to plot (20-63) for � ¼ 0, 0.5, and 1.0. We see from (20-61b) that for
� ¼ 1 we have x� ¼ 0; that is, the trailing edges of the spherical wave fronts coin-
cide. In Figs. 20-11 to 20-13. we have made plots of (20-63) for � ¼ 0, 0:5, and 1.0.
However, to describe the expansion of the spherical wave with the passage of time as
the particle moves, the coordinates of the x axis have been reversed. That is, the
largest circle corresponds to 4 sec and appears first, followed by decreasing circles for
3, 2, and 1 sec. For completeness we have included a plot for � ¼ 0. The plot for
� ¼ 1, Fig. 20-13, confirms that when the particle is moving with the speed of light
the trailing edges, which are shown as the leading edges in the plot, coincide.

Figure 20-11 Propagation of a spherical wave for a staionary particle ð� ¼ 0Þ.
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Figure 20-13 is especially interesting because it shows that the wave fronts only
coincide for � ¼ 1. The question now arises, what happens when � > 1? To answer
this question we return to (20-63). We observe that yðtÞ is imaginary if

xþ > ð�þ 1Þt ð20-64aÞ

Figure 20-12 Propagation of a spherical wave for a particle moving with a velocity � ¼ 0:5.

Figure 20-13 Propagation of a spherical wave for a particle moving with a velocity � ¼ 1:0.
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and

x� > ð�� 1Þt ð20-64bÞ

If we now choose, say, � ¼ 1:5, then (20-64a) and (20-64b) become

xþ > 2:5t ð20-65aÞ

and

x� > 0:5t ð20-65bÞ

Equation (20-65b) is especially interesting. We see from the condition (20-61b) that
for � ¼ 0, x is always less than 0 and for � ¼ 1 it is exactly 0. However, (20-65b) now
shows that if the speed of the particle exceeds the speed of light then there is a
reversal of sign. However, so long as x� is less than 0.5t, yðtÞ is real, so the wave
can propagate! In Figs. 20-14 and 20-15 we show this behavior for � ¼ 1:5 and
� ¼ 2:5.

If we now observe Figs. 20-11 to 20-13 we see that the spherical wave fronts do
not interfere for 0 	 � 	 1. Furthermore, we observe from Figs. 20-14 and 20-15 that
if we extend a straight line from the origin through the tangents of the spherical wave
fronts, then a new wave front appears, which is linear. This behavior is exactly what
is observed when a boat moves quickly through water. It should be clearly under-
stood that for � < 1 or � > 1 spherical waves are always generated. However, for
� < 1 the waves cannot interfere, whereas for � > 1 the waves can interfere.
Furthermore, this reinforcement of waves for � > 1 appears suddenly as soon as
this condition appears. Hence, we experience a ‘‘shock,’’ and so the straight line or
tangent line is called a shock wave. The appearance of this shock wave does not

Figure 20-14 Propagation of a spherical wave for a particle moving with a velocity � ¼ 1:5.
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occur because there is a sudden change in the medium (the medium is unaffected),
but because the waves, which were previously noninterfering ð� 	 1Þ, now interfere
ð� > 1Þ. In Fig. 20-16 we have drawn the straight line from the origin through the
tangents of the spheres.

The tangents line in Fig. 20-16 is called a wake. The normal to the wake makes
an angle �c, which is called the critical angle. From the figure we see that it can be
expressed as

cos �c ¼
c

v
ð20-66Þ

In free space a particle cannot propagate equal to or faster than the speed of
light. However, in an optical medium the phase velocity of the light is less than c and
is given by c=n. Thus, if a particle moves with a speed greater than c=n it will generate
an interference phenomenon exactly in the same manner as we have been describing.
This behavior was first observed by Čerenkov, and, consequently, in optics the
phenomenon is called the Čerenkov effect and the emitted radiation, Čerenkov
radiation. Furthermore, the critical angle �c is now called the Čerenkov angle; the
shock wave is in the direction given by �c.

The Čerenkov radiation is characterized by a cone. Its most important applica-
tion is to measure the velocity of fast particles; that is, �c is measured by moving a
detector such that the maximum intensity is observed. At this condition �c is deter-
mined, and v can then be immediately found.

With this background we now determine the intensity and polarization of the
Čerenkov radiation. Our analysis draws heavily on Jackson’s treatment of the
Čerenkov effect and classical radiation in general.

Figure 20-15 Propagation of a spherical wave for a particle moving with a velocity � ¼ 2:5.
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We restate the first two equations of the chapter. The electric field emitted by
an accelerating charge is given by

Eðx, tÞ ¼
e

4�"0c
2

n

�3R
� fðn� �Þ � _��g

� �
ret

ð20-1aÞ

where ½� � ��ret means that the quantity in the brackets is to be evaluated at the
retarded time, t0 ¼ t� Rðt0Þ=c. The quantity � is given by

� ¼ 1� n � � ð20-1bÞ

where c� is the instantaneous velocity of the particle, c _�� is the instantaneous accel-
eration, and n ¼ R=R. The quantity �! 1 for nonrelativistic motion. See Fig. 20-1
for the relations among the coordinates.

The instantaneous energy flux is given by the Poynting vector:

S ¼ ½E�H� ð16-32Þ

or

S ¼
1

2
c"0 Ej j

2
n ð20-2Þ

The power radiated per unit solid angle is then

dP

d�
¼

1

2
c"0 REj j

2
ð20-67Þ

Figure 20-16 Construction of the tangent line for � ¼ 1:5.
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The total energy radiated per unit solid angle is the time integral of (20-67), namely,

dW

d�
¼

1

2
c"0R

2

Z 1

�1

Eðx, tÞ
�� ��2dt ð29-68Þ

Equation (20-68) describes the radiation of energy in the time domain. A similar
expression can be obtained in the temporal frequency domain (Parseval’s theorem),
and (20-68) can be expressed as

dW

d�
¼

1

2
c"0R

2

Z 1

�1

Eðx,!Þ
�� ��2d! ð29-69Þ

We now introduce the Fourier transform pair:

Eðx,!Þ ¼
1ffiffiffiffiffiffi
2�

p

Z 1

�1

Eðx, tÞei!tdt ð20-70aÞ

Eðx, tÞ ¼
1ffiffiffiffiffiffi
2�

p

Z 1

�1

Eðx,!Þe�i!td! ð20-70bÞ

By substituting (20-1a), the electric field of an accelerated charge, into (20-70a), we
obtain a general epression for the energy radiated per unit solid angle per unit
frequency interval in terms of an integral over the trajectory of the particle. Thus,
we find that

Eðx,!Þ ¼
e

4�"0
ffiffiffiffiffiffi
2�

p
c3

Z 1

�1

n

�3R
� fðn� �Þ � _��g

� �
ret

ei!tdt ð20-71Þ

We now change the variable of integration from t and t0 by using the relation
between the retarded time t0 and the observer’s time t, namely,

t0 þ
Rðt0Þ

c
¼ t ð20-72Þ

Using (20-72) in (20-71), we then find that

Eðx,!Þ ¼
e

4�"0
ffiffiffiffiffiffi
2�

p
c3

Z 1

�1

n

�2R
� fðn� �Þ � _��g

� �
ei!ðt

0
þRðt0Þ=cÞdt0 ð20-73Þ

In obtaining (20-73) we have used the relation from (20-72) that dt ¼ �dt0. We also
observe that transforming to t0 in (20-73) requires that the ‘‘ret’’ be dropped because
the integral is no longer being evaluated at the ‘ret’’ time. Since the observation point
is assumed to be far away from the region where the acceleration occurs, the unit
vector n is sensibly constant in time. Furthermore, referring to Fig. 20-1 the distance
Rðt0Þ can be approximated as

Rðt0Þ ’ x� n � r ð20-74Þ

Substituting this relation into (20-73), we then have

Eðx,!Þ ¼
e

4�"0
ffiffiffiffiffiffi
2�

p
c3

Z 1

�1

n

�2R
� fðn� �Þ � _��g

� �
ei!ðt�n�rðtÞ=cÞdt ð20-75Þ

where x is the distance from the origin O to the observation point P and rðt0Þ is the
position of the particle relative to O as shown in Fig. 20-17.
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In the integral (20-75) we have neglected the unimodular phase factor and
dropped the primes on the time variable for the sake of brevity.

The integral in (20-75) can be simplified further. One can show that the factor
within the integrand of (20-75) can be rewritten as

n�
ðn� �Þ � _��

�2
¼

d

dt

n� ðn� �Þ

�

� �
ð20-76Þ

Thus, the integrand in (20-75) can be replaced with the right-hand side of (20-76),
and we have

Eðx,!Þ ¼
e

4�"0
ffiffiffiffiffiffi
2�

p
c3R

Z 1

�1

d

dt

n� ðn� �Þ

�

� �
ei!ðt�n�rðtÞ=cÞdt ð20-77Þ

We note that d=dt ¼ ðdt0=dtÞ ðd=dtÞ ¼ �ðd=dt0Þ, and we recall that we have dropped
the prime on the final dt in (20-77). Thus, (20-77) becomes

Eðx,!Þ ¼
e

4�"0
ffiffiffiffiffiffi
2�

p
c3R

Z 1

�1

dfn� ðn� �Þgei!ðt�n�rðtÞ=cÞ
ð20-78Þ

Equation (20-78) can now be integrated by parts to obtain

Eðx,!Þ ¼
e!

4�"0
ffiffiffiffiffiffi
2�

p
c4R

Z 1

�1

½n� ðn� vÞ�ei!ðt�n�rðtÞ=cÞdt ð20-79Þ

For a nonpermeable medium the correct fields and energy radiated for a
particle moving in free space with a velocity v > c require that at the end of the
calculation we make the replacement:

c !
cffiffiffi
"

p e !
effiffiffi
"

p ð20-80Þ

Thus, (20-79) becomes

Eðx,!Þ ¼
e!"1=2

4�"0
ffiffiffiffiffiffi
2�

p
c4R

Z 1

�1

½n� ðn� vÞ�ei!ðt�n�rðtÞ"1=2=cÞdt ð20-81Þ

Figure 20-17 Coordinate relations for a moving charge. (From Jackson.)
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To describe the Čerenkov effect, we have a charged particle moving in a straight line
whose motion is described by

rðtÞ ¼ vt ð20-82Þ

Since the velocity is constant, the triple vector product in (20-81) can be factored out
and we have

Eðx,!Þ ¼
e!"1=2

4�"0
ffiffiffiffiffiffi
2�

p
c4R

½n� ðn� vÞ�

Z 1

�1

ei!tð1�n�v"1=2=cÞdt ð20-83Þ

The integral is a Dirac delta function. We finally find that we have, using (20-83),

Eðx,!Þ ¼
e"1=2

2"0
ffiffiffiffiffiffi
2�

p
c4R

½n� ðn� vÞ�� 1� "1=2
v

c
cos �

� �
ð20-84Þ

where � is measured relative to the velocity v. The delta function only leads to a
nonzero result when its argument is zero; that is

cos �c ¼
1

�"1=2
ð20-85Þ

which is the condition we found earlier for the emission of radiation at �c, the critical
or Čerenkov angle. Thus, the delta function guarantees that the radiation is emitted
only at the Čerenkov angle.

The significance of the delta function in (20-85) is that the field, i.e., the total
energy radiated per unit frequency interval, is infinite. This infinity occurs because
the particle has been moving through the medium forever. To obtain a meaningful
result, we assume that the particle passes through a slab of dielectric in a time
interval 2T. Then, the infinite integral in (20-83) is replaced by

!

2�

Z T

�T

ei!tð1�n�v"1=2=cÞdt ¼
!T

�

sin½!Tð1� "1=2� cos �Þ�

!Tð1� "1=2� cos �Þ
ð20-86Þ

For the moment we shall represent the right-hand side of (20-86) by fð!,T Þ and write
(20-84) as

Eðx,!Þ ¼
e"1=2

2"0
ffiffiffiffiffiffi
2�

p
c4R

½n� ðn� vÞ�fð!,TÞ ð20-87Þ

To find the Stokes parameters for (20-87) we must expand the triple vector product.
The vector n can be set to ur, the unit vector in the radial direction. Then

ur � ður � vÞ ¼ urðvr � uÞ � v ð20-88Þ

As before, we express the velocity in Cartesian coordinates:

v ¼ _xxiþ _yyjþ _zzk ð20-89Þ

where i, j, and k, are unit vectors in the x, y, and z directions, respectively.
We now express i, j, and k in spherical coordinates. We assume that we have

symmetry around the z axis, so we can arbitrarily take � ¼ 0�. Then, the unit vectors
in Cartesian coordinates are related to the unit vectors in spherical coordinates
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ur, u�, and u�, by

i ¼ sin �ur þ cos �u� ð20-90aÞ

j ¼ u� ð20-90bÞ

k ¼ cos �ur � sin �u� ð20-90cÞ

Then (20-89) becomes

v ¼ urð _xx sin � þ _zz cos �Þ þ u�ð _xx cos � � _zz sin �Þ þ _yyu� ð20-91Þ

Substituting (20-91) into the right-hand side of (20-88) yields

ur � ður � vÞ ¼ �u�ð _xx cos � � _zz sin �Þ � _yyu� ð20-92Þ

which shows that the field is transverse to the direction of propagation ur. We now
replace the triple vector product in (20-87) by (20-92), so

Eðx,!Þ ¼
e"1=2

2"0
ffiffiffiffiffiffi
2�

p
c4R

fð!,TÞ½�u�ð _xx cos � � _zz sin �Þ � _yyu�� ð20-93Þ

Finally, the vector Eðx,!Þ can be expressed in terms of its spherical coordi-
nates:

Eðx,!Þ ¼ Erur þ E�u� þ E�u� ð20-94Þ

Equating the right-hand sides of Eqs. (20-93) and (20-94), we find

E� ¼
�e"1=2

2"0
ffiffiffiffiffiffi
2�

p
c4R

fð!,TÞð _xx cos � � _zz sin �Þ ð20-95aÞ

E� ¼
�e"1=2

2"0
ffiffiffiffiffiffi
2�

p
c4R

fð!,TÞ½ _yy� ð20-95bÞ

Let us now assume that the charge is moving along the z axis with a velocity _zz ¼ c�,
so _xx ¼ _yy ¼ 0. Then, (20-95) reduces to

E� ¼
e"1=2�

2"0
ffiffiffiffiffiffi
2�

p
c3R

fð!,TÞ sin � ð20-96aÞ

E� ¼ 0 ð20-96bÞ

The Stokes polarization parameters are defined by

S0 ¼ E�E
�
� þ E�E

�
� ð16-10aÞ

S1 ¼ E�E
�
� � E�E

�
� ð16-10bÞ

S2 ¼ E�E
�
� þ E�E

�
� ð16-10cÞ

S3 ¼ iðE�E
�
� � E�E

�
� Þ ð16-10dÞ
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Substituting (20-96) into (16-10) and forming the Stokes vector, we find that

S ¼
e2"�2

8�"20c
6
f 2ð!,TÞ sin2 �

1
�1
0
0

0
BB@

1
CCA ð20-97Þ

The polarization of the radiation emitted by the Čerenkov effect is linearly vertically
polarized.

Finally, we can integrate S in (20-97) over the solid angle d�. On doing this we
find that the Stokes vector for the Čerenkov effect is

S ¼
e2 tan2 �cf

2
ð!,TÞ

2"20c
6

1
�1
0
0

0
BB@

1
CCA ð20-98Þ

Thus, we see that the radiation emitted by the Čerenkov effect is linearly
vertically polarized. Further information on the Čerenkov effect can be found in
the texts by Jackson and Sommerfeld, as well as in the references listed in Jackson’s
text.

20.4 THOMSON AND RAYLEIGH SCATTERING

Maxwell’s original purpose for developing his theory of the electromagnetic field was
to encompass all the known phenomena of electromagnetism into a fundamental set
of equations. It came as a surprise to Maxwell (and his contemporaries!) that his
differential equations led to waves propagating with the speed of light. After the
work of Hertz and Lorentz and Zeeman the only conclusion that could be drawn was
that Maxwell’s theory was a unifying theory between the electromagnetic field and
the optical field. Furthermore, the phenomena were one and the same in both dis-
ciplines, the major difference being the wavelength (or frequency). Electromagnetism
phenomena were associated with ‘‘low’’ frequencies, and optical phenomena were
associated with ‘‘high’’ frequencies.

Maxwell’s theory when coupled with Lorentz’s theory of the electron led not
only to the correct description of the seemingly complex Lorentz–Zeeman effect but
also to a very good understanding of the phenomenon of dispersion. Lorentz’s
electron theory was able to provide a description of dispersion, which led to a
complete understanding of Cauchy’s simple empirical relation between the refractive
index and the wavelength. This result was another triumph for Maxwell’s theory.

But there was still another application for Maxwell’s theory, which was totally
unexpected. This was in the area of a phenomenon known as scattering. It is not
clear at all the Maxwell’s theory can be applied to this phenomenon, but it can and
does lead to results in complete agreement with experiments. The phenomenon of
scattering is described within Maxwell’s theory as follows. An incident field consist-
ing of transverse components impinges on a free electron. The electron will be
accelerated and so emits radiation; that is, it reradiates the incident radiation. If
the electron is ‘‘bound’’ to a nucleus so that it is oscillating about the nucleus with
a fundamental frequency, then it, too, is found to scatter or reradiate the incident
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radiation. The reradiation or scattering takes place in an extremely short time (nano-
seconds or less). Remarkably, one discovers that the scattered radiation manifests
two distinct characteristics. The first is that there is a change in the polarization state
between the incident and scattered radiation in which the degree of polarization
varies with the observer’s viewing angle. This behavior is very different from the
Lorentz–Zeeman effect. There we saw that the polarization state changes as the
observing angle varies, but the degree of polarization remains the same, and, in
fact, is unity. The other notable difference is that the incident radiation field propa-
gates along one axis and, ideally, can only be observed along this axis. The scattered
radiation, on the other hand, is observed to exist not only along the axis but away
from the axis as well. Characteristically, the maximum intensity of the scattered
radiation is observed along the axis of the incident radiation and the minimum
intensity perpendicular to the direction of the propagation of the incident beam.
However, unlike the behavior of dipole radiation the intensity does not go to zero
anywhere in the observed scattered radiation field. Maxwell’s theory along with
Lorentz’s electron theory completely account for this behavior. We now treat the
problem of scattering and present the results in terms of the Stokes parameters. The
scattering behavior is represented by the Mueller matrix.

We first determine the Stokes parameters for the scattering of electromagnetic
waves by a so-called free electron located at the origin of a Cartesian coordinate
system. This is illustrated in Fig. 20-18. The incident field is represented by Eðz, tÞ
and propagates in the z direction. The motion of a free electron is then described by

m€rr ¼ �eE ð20-99Þ

or, in component form,

€xx ¼
�e

m
ExðtÞ ð20-100aÞ

€yy ¼
�e

m
EyðtÞ ð20-100bÞ

Figure 20-18 Scattering of incident radiation by a free electron.
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where m is the mass of the electron, e is the charge, and ExðtÞ and EyðtÞ are the
transverse components of the incident field. The incident field components can be
written as

ExðtÞ ¼ E0xe
ið!tþ�xÞ ð20-101aÞ

EyðtÞ ¼ E0ye
ið!tþ�yÞ ð20-101bÞ

Equation (20-100) can be written from (20-101) as

€xx ¼
�e

m
E0xe

i�xei!t ð20-102aÞ

€yy ¼
�e

m
E0ye

i�yei!t ð20-102bÞ

The accelerations are now known, so we can substitute these results directly into the
Eqs. (16-8) and (16-9) for the radiated field in spherical coordinates. Thus,

E� ¼
�e2

4�"0mc2R
½E0xe

i�xei!t� cos � ð20-103aÞ

and

E� ¼
�e2

4�"0mc2R
½E0ye

i�yei!t� ð20-103bÞ

The Stokes vector S0 corresponding to (20-103) is readily found. In terms of the
Poynting vector, a factor of c/4� should be included in the definition to obtain
complete consistency. However, no essential information is lost by not including
this factor, so the Stokes vector S0 is given in the usual form:

S0
¼

1

2

e2

4�"0mc2R

 !2
S0ð1þ cos2 �Þ þ S1 sin

2 �

S0 sin
2 � þ S1ð1þ cos2 �Þ

2S2 cos �

2S3 cos �

0
BBBB@

1
CCCCA ð20-104Þ

where S0, etc., are the Stokes parameters for the incident plane wave (20-101).
Equation (20-104) can be readily written in terms of the Stokes vector S of the

incident field and the Stokes vector S0 of the scattered field, whereupon we find that
the Mueller matrix for the scattering process is

M ¼
1

2

e2

4�"0mc2R

 !2
1þ cos2 � sin2 � 0 0

sin2 � 1þ cos2 � 0 0

0 0 2 cos � 0

0 0 0 2 cos �

0
BBB@

1
CCCA ð20-105Þ

We see that (20-105) corresponds to the Mueller matrix of a polarizer. This type of
scattering by a free charge is known as Thomson scattering and is applicable to the
scattering of x-rays by electrons and gamma rays by protons. Note the term
e2/4�"0mc2, which, as we saw earlier, is the classical electron radius r0. We observe
that the radius enters (20-105) as a squared quantity. Thus, the scattered intensity is
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proportional to the area of the electron. We, therefore, look upon the reradiation of
the incident radiation as scattering by the area presented by the electron.

Two other facts can be observed. The first is that, according to (20-104), the
scattered intensity is

Ið�Þ ¼
1

2
½S0ð1þ cos2 �Þ þ S1 sin

2 �� ð20-106Þ

where, for convenience, we have set the factor containing the physical constants to
unity. We see immediately that the magnitude of the scattered radiation depends on
the contribution of the linear polarization (S1) of the incident beam. To plot (20-106)
we use the normalized Stokes parameters and set S0 to unity. We see that the two
extremes for (20-106) are for linearly polarized light (S1 ¼ �1 and S1 ¼ 1) and
midway is unpolarized light (S1 ¼ 0). The corresponding intensities are

Ið�Þ ¼
1

2
½1þ cos 2�� ðS1 ¼ �1Þ ð20-107aÞ

Ið�Þ ¼
1

2
½1þ cos2 �� ðS1 ¼ 0Þ ð20-107bÞ

Ið�Þ ¼
1

2
½2� ðS1 ¼ 1Þ ð20-107cÞ

We see that there is a significant change in the intensity over this range of
polarization. In Fig. 20-19 we have plotted (20-106) by setting S0 ¼ 1 and varying

Figure 20-19 Intensity contours for scattering by a free electron for incident linearly polar-
ized light from linear vertically polarized light (innermost contour) to linear horizontally

polarized light (outermost contour) in steps of 0.5.
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S1 ¼ �1 to 1 in steps of 0.5 over a range of � ¼ 0� to 360�. The inner lobe
corresponds to S1 ¼ �1, and the outer lobe to S1 ¼ 1. We note that for S1 ¼ 0
we obtain a ‘‘peanutlike’’ lobe.

The other fact of interest is that we can express the scattering in terms of the
scattering cross-section. This is defined by

d	

d�
¼

energy radiated/unit time/unit solid angle

incident energy/unit area/unit time
ð20-108Þ

From (20-108) and (20-104) we see that the ratio of the scattered to incident Stokes
parameters is the differential cross-section:

d	

d�
¼

1

2

e2

4�"0mc2

 !2
S0½1þ cos2 �� þ S1 sin

2 �

S0

ð20-109Þ

For the case of incident unpolarized light (20-108) reduces to

d	

d�
¼

1

2

e2

4�"0mc2

 !2

ð1þ cos2 �Þ ð20-110Þ

Equation (20-108) is known as Thomson’s formula for the scattering by free charges.
The total cross-section is defined to be

	T ¼

Z
4�

d	

d�
d� ð20-111Þ

Integrating (20-110) over the solid angle according to (20-111), the total cross-section
for the free electron is

	T ¼
8�

3

e2

4�"0mc2

 !2

ð20-112Þ

The Thomson cross section in equal to 0:665� 10�28m2 for electrons. The unit of
length, e2=4�"0mc2 ¼ 2:82� 10�15m, is the classical electron radius, because a clas-
sical distribution of charge totalling the electronic charge must have a radius of this
order if its electrostatic self-energy is equal to the electron mass. Finally, we note that
the classical Thomson scattering is valid only at low frequencies. The quantum
effects become important when the frequency ! becomes comparable to mc2= �h, i.e.,
when the photon energy �h! is comparable with, or larger than, the particle’s rest
energy mc2.

Another quantity of interest is the degree of polarization. According to
(20-104) this depends on both the polarization of the incident radiation and the
observer’s viewing angle. For example, from (20-104) we see that if we have linearly
horizontally polarized light, S0 ¼ S1 and S2 ¼ S3 ¼ 0, the scattered radiation is also
linearly horizontally polarized and the degree of polarization is unity. However, if
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the incident radiation is unpolarized light, the Stokes vector is fI0, 0, 0, 0g, and the
Stokes vector of the scattered radiation is

S ¼
1

2

e2

4�"0mc2R

 !2

I0

1þ cos �

sin2 �

0

0

0
BBBB@

1
CCCCA ð20-113Þ

Equation (20-113) shows that the scattered radiation is, in general, partially polar-
ized and the degree of polarization is

P ¼
sin2 �

1þ cos2 �

�����
����� ð20-114Þ

We see that for � ¼ 0� (so-called on-axis scattering) the degree of polarization P is
zero, whereas for � ¼ 90� (off-axis scattering) the degree of polarization is unity. This
behavior in the degree of polarization is characteristic of all types of scattering. In
Fig. 20-20 we have plotted (20-114) as a function of the angle of scattering.

We now consider the scattering from a bound charge. The equation of
motion is

m€rrþ kr ¼ �eE ð20-115Þ

Figure 20-20 The degree of polarization P for scattering of unpolarized light by a free
electron.
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or, in component form,

€xxþ !2
0x ¼

�e

m
Ex ð20-116aÞ

€yyþ !2
0y ¼

�e

m
Ey ð20-116bÞ

€zzþ !2
0z ¼ 0 ð20-116cÞ

where !0 ¼ ðk=mÞ
1=2 and the incident field is again propagating along the z axis and

consists of the transverse components ExðtÞ and EyðtÞ. We first consider the solution
of (20-116a). In order to solve this equation we know that the solution is

xðtÞ ¼ xcðtÞ þ xpðtÞ ð20-117Þ

where xcðtÞ is the complementary solution and xpðtÞ is the particular solution. Using
the notation:

D �
d

dt
ð20-118Þ

we can write (20-116a) as

ðD2
þ !2

0ÞxðtÞ ¼ RðtÞ ð20-119aÞ

where

RðtÞ ¼
�e

m

� �
ExðtÞ ¼

�e

m

� �
E0xe

i�xei!t ð20-119bÞ

and ! is the frequency of the incident light. By using the well-known methods of
differential equations for solving nonhomogeneous equations, we obtain the general
solution:

xðtÞ ¼ c1e
i!0t þ c2e

�i!0t þ c3e
i!t

ð20-120Þ

where c1, c2 and c3 are arbitrary constants. By substituting (20-120) into (20-116a)
we readily find that c3 is

c3 ¼
e

mð!2 � !2
0Þ
E0xe

i�x ð20-121Þ

so the solution of (20-116a) is

xðtÞ ¼ c1e
i!0t þ c2e

�i!0t þ
e

mð!2 � !2
0Þ
E0xe

i�xei!t ð20-122Þ

The first two terms in (20-122) describe the natural oscillation of the bound electron
and are not involved in the scattering process. The last term in (20-122) is the term
that arises from the interaction of the incident field E with the bound electron and
describes the scattering process. Hence, the scattering term is

xðtÞ ¼
e

mð!2 � !2
0Þ
E0xe

i�xei!t ð20-123aÞ
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Similarly, for (20-116b), we have

yðtÞ ¼
e

mð!2 � !2
0Þ
E0ye

i�yei!t ð20-123bÞ

The x and y accelerations of the bound electron are then found from (20-123a) and
(20-123b):

€xxðtÞ ¼
�e!2

mð!2 � !2
0Þ
ExðtÞ ð20-124aÞ

€yyðtÞ ¼
�e!2

mð!2 � !2
0Þ
EyðtÞ ð20-124bÞ

where

ExðtÞ ¼ E0xe
i!tþi�x ð20-124cÞ

EyðtÞ ¼ E0ye
i!tþi�y ð20-124dÞ

The radiation field components, that is, scattered field components, are

E� ¼ ð�e=4�"0c
2RÞ½ €xx cos �� ð20-125aÞ

E� ¼ ð�e=4�"0c
2RÞ½ €yy� ð20-125bÞ

Substituting (20-124a) and (20-124b) into (20-125a) and (20-125b), respectively, and
forming the Stokes parameters, we find the Stokes vector of the scattered radiation:

S ¼
1

2

e2

m4�"0c
2Rð!2 � !2

0Þ

" #2

!4

S0ð1þ cos2 �Þ þ S1 sin
2 �

S0 sin
2 � þ S1ð1þ cos2 �Þ

2S2 cos �

2S3 cos �

0
BBBB@

1
CCCCA ð20-126Þ

The result is very similar to the one we obtained for scattering by a free electron.
In fact, if we set !0 ¼ 0 in (20-126) (the free-electron condition), we obtain the same
Stokes vector given by (20-104). However, for a bound electron we have an impor-
tant difference. While the polarization behavior is identical, we see that the scattered
intensity is now proportional to !4 or ð2�c=
Þ4, that is, to the inverse fourth power of
the wavelength. This shows that as the wavelength of light decreases, e.g., from the
red region to the blue region of the spectrum, the intensity of the scattered light
increases. This accounts for the ‘‘blue’’ sky; the sky is blue because of the scattering
by bound electrons. This behavior was first explained by Lord Rayleigh in the latter
part of the nineteenth century. The scattering process associated with !4

ðor 1=
4Þ is
called, consequently, Rayleigh scattering.

Scattering phenomena play an important role not only in optics but, especially,
in nuclear physics. The ideas developed here are readily extended to particle scatter-
ing, and the interested reader can find further discussions of other aspects of scatter-
ing in the references.
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21

The Stokes Parameters and Mueller
Matrices for Optical Activity
and Faraday Rotation

21.1 INTRODUCTION

In 1811, Arago discovered that the ‘‘plane of polarization’’ of linearly polarized light
was rotated when a beam of light propagated through quartz in a direction parallel
to its optic axis. This property of quartz is called optical activity. Shortly afterwards,
in 1815, Biot discovered, quite by accident, that many liquids and solutions are also
optically active. Among these are sugars, albumens, and fruit acids, to name a few.
In particular, the rotation of the plane of polarization as the beam travels through a
sugar solution can be used to measure its concentration. The measurement of the
rotation in sugar solutions is a widely used method and is called saccharimetry.
Furthermore, polarization measuring instruments used to measure the rotation are
called saccharimeters.

The rotation of the optical field occurs because optical activity is a manifesta-
tion of an unsymmetric isotropic medium; that is, the molecules lack not only a
center of symmetry but also a plane of symmetry as well. Molecules of this type are
called enantiomorphic since they cannot be brought into coincidence with their
mirror image. Because this rotation takes place naturally, the rotation associated
with optically active media is called natural rotation.

In this chapter we shall only discuss the optical activity associated with liquids
and solutions and the phenomenon of Faraday rotation in transparent media and
plasmas. In Chapter 24 we shall discuss optical activity in crystals.

Biot discovered that the rotation was proportional to the concentration and
path length. Specifically, for an optically active liquid or for a solution of an optically
active substance such as sugar in an inactive solvent, the specific rotation or rotary
power g is defined as the rotation produced by a 10-cm column of liquid containing
1 g of active substance per cubic centimeter (cc) of solution. For a solution containing
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m g/cc the rotation for a path length l is given by

� ¼
�ml

10
ð21-1aÞ

or, in terms of the rotary power �,

� ¼
10�

ml
ð21-1bÞ

The product of the specific rotation and the molecular weight of the active substance
is known as the molecular rotation.

In 1845, after many unsuccessful attempts, Faraday discovered that the plane
of polarization was also rotated when a beam of light propogates through a medium
subjected to a strong magnetic field. Still later, Kerr discovered that very strong
electric fields rotate the plane of polarization. These effects are called either mag-
neto-optical or electro-optical. The magneto-optical effect discovered by Faraday
took place when lead glass was subjected to a relatively strong magnetic field; this
effect has since become known as the Faraday effect. It was through this discovery
that a connection between electromagnetism and light was first made.

The Faraday effect occurs when an optical field propagates through a trans-
parent medium along the direction of the magnetic field. This phenomenon is
strongly reminiscent of the rotation that occurs in an optically active uniaxial crystal
when the propagation is along its optical axis; we shall defer the discussion of
propagation in crystals until Chapter 24.

The magnitude of the rotation angle � for the Faraday effect is given by

� ¼ VHl ð21-2Þ

where H is the magnetic intensity, l is the path length in the medium, and V is a
constant called Verdet’s constant, a ‘‘constant’’ that depends weakly on frequency
and temperature. In (21-2)H can be replaced by B, the magnetic field strength. If B is
in gauss, l in centimeters, and � in minutes of arc (0), then Verdet’s constant measured
with yellow sodium light is typically about 10�5 for gases under standard conditions
and about 10�2 for transparent liquids and solids. Verdet’s constant becomes much
larger for ferromagnetic solids or colloidal suspensions of ferromagnetic particles.

The theory of the Faraday effect can be easily worked out for a gas by using the
Lorentz theory of the bound electron. This analysis is described very nicely in the
text by Stone. However, our interest here is to derive the Mueller matrices that
explicitly describe the rotation of the polarization ellipse for optically active liquids
and the Faraday effect. Therefore, we derive the Mueller matrices using Maxwell’s
equations along with the necessary additions from Lorentz’s theory.

In addition to the Faraday effect observed in the manner described above,
namely, rotation of the polarization ellipse in a transparent medium, we can easily
extend the analysis to Faraday rotation in a plasma (a mixture of charged particles).

There is an important difference between natural rotation and Faraday rota-
tion (magneto-optical rotation), however. In the Faraday effect the medium is
levorotatory for propagation in the direction of the magnetic field and dextrarota-
tory for propagation in the opposite direction. If at the end of the path l the light ray
is reflected back along the same path, then the natural rotation is canceled while the
magnetic rotation is doubled. The magnetic rotation effect is because, for the return
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path, as we shall see, not only are k� and kþ interchanged but i and �i are also
interchanged. The result is that the vector direction of a positive rotation is opposite
to the direction of the magnetic field. Because of this, Faraday was able to multiply
his very minute rotation effect by repeated back-and-forth reflections. In this way he
was then able to observe his effect in spite of the relatively weak magnetic field that
was used.

21.2 OPTICAL ACTIVITY

In optically active media there are no free charges or currents. Furthermore, the
permeability of the medium is, for all practical purposes, unity, so B¼H. Maxwell’s
equations then become

=� E ¼ �
@H

@t
ð21-3aÞ

=�H ¼
@D

@t
ð21-3bÞ

= �D ¼ 0 ð21-3cÞ

= � B ¼ 0 ð21-3dÞ

Eliminating H between (21-3a) and (21-3b) leads to

=� ð=� EÞ ¼ �
@

@t

@D

@t

� �
ð21-4aÞ

or

=ð= � EÞ � =2
E ¼ !2

D ð21-4bÞ

where we have assumed a sinusoidal time dependence for the fields.
In an optically active medium the relation between D and E is

D ¼ "E ð21-5Þ

where " is a tensor whose form is

" ¼
"x �iz iy
iz "y �ix
�iy ix "z

0
@

1
A ð21-6Þ

The parameters "x, "y, and "z correspond to real (on-axis) components of the
refractive index and x, y, and z correspond to imaginary (off-axis) components
of the refractive index. For isotropic media the diagonal elements are equal, so
we have

"x ¼ "y ¼ "z ¼ n2 ð21-7Þ

where n is the refractive index. The vector quantity  can be expressed as

 ¼
b




� �
s ð21-8Þ
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where b is a constant (actually a pseudoscalar) of the medium, 
 is the wavelength,
and s is a unit vector in the direction of propagation equal to k/k. We thus can write
(21-5) as

D ¼ n2Eþ
i�

k
ðk� EÞ ð21-9Þ

where � ¼ b/
.
Now from (21-3c) we see that

= �D ¼ ik �D ¼ 0 ð21-10Þ

Taking the scalar product of k with D in (21-9), we then see that

k �D ¼ n2k � E ¼ 0 ð21-11Þ

Thus, the displacement vector and the electric vector are perpendicular to the pro-
pagation vector k. This fact is quite important since the formation of the Stokes
parameters requires that the direction of energy flow (along k) and the direction of
the fields be perpendicular.

With these results (21-4) now becomes (replacing k/k by s)

=2
E ¼ �

!2

c2
ðn2Eþ i�s� EÞ ð21-12Þ

From the symmetry of this equation we see that we can take the direction of pro-
pagation to be along any arbitrary axis. We assume that this is the z axis, so (21-12)
then reduces to

@2Ex

@z2
¼ �

!2n2

c2
Ex þ

i!2�

c2
Ey ð21-13aÞ

@2Ey

@z2
¼ �

!2n2

c2
Ey þ

i!2�

c2
Ex ð21-13bÞ

The equation for Ez is trivial and need not be considered further.
We now assume that we have plane waves of the form:

Ex ¼ E0xe
i�x�ikzz ð21-14aÞ

Ey ¼ E0ye
i�y�ikzz ð21-14bÞ

and substitute (21-14) into (21-13), whereupon we find that

k2z �
!2n2

c2

 !
Ex þ

i!2�

c2
Ey ¼ 0 ð21-15aÞ

i!2�

c2
Ex þ k2z �

!2n2

c2

 !
Ey ¼ 0 ð21-15bÞ

This pair of equations can have a nontrivial solution only if their determinant
vanishes:

k2z �
!2n2

c2
i!2�

c2

i!2�

c2
k2z �

!2n2

c2

��������

�������� ¼ 0 ð21-16Þ
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so the solution of (21-16) is

k2z ¼ k20ðn
2
� i�Þ ð21-17Þ

where k20 ¼ !2=c2. Because we are interested in the propagation along the positive z
axis, we take only the positive root of (21-17), so

k0z ¼ k0ðn
2
� i�Þ1=2 ð21-18aÞ

k00z ¼ k0ðn
2
þ i�Þ1=2 ð21-18bÞ

Substituting (21-18a) into (21-15a), we find that

E 0
y ¼ þE 0

x ð21-19aÞ

while substitution of (21-18b) into (21-15a) yields

E 00
y ¼ �E 00

x ð21-19bÞ

For the single primed wave field we can write

E
0
¼ E 0

xiþ E 0
yj ¼ ðE 0

0xe
i�0x iþ E 0

0ye
i�0y jÞe�ikzz

0

ð21-20Þ

Now from (21-19a) we see that

E 0
0x ¼ E 0

0y ð21-21aÞ

and

�0x ¼ �0y þ
�

2
ð21-21bÞ

Hence, we can write (21-20) as

E
0
¼ ðE 0

0xe
i�0x iþ iE 0

0xe
i�0x jÞe�ikzz

0

ð21-22aÞ

In a similar manner the double-primed wave field is found to be

E
00
¼ ðE 00

0xe
i�00x i� iE 00

0xe
i�00x jÞe�ikzz

00

ð21-22bÞ

To simplify notation let E 0
0x ¼ E01, �

0
x ¼ �1, E 00

0x ¼ E02, and �00x ¼ �2. Then, the
fields are

E1 ¼ ðE01e
i�1 iþ iE01e

i�1 jÞeik1z ð21-23aÞ

E2 ¼ ðE02e
i�2 i� iE02e

i�2 jÞeik2z ð21-23bÞ

where k1 ¼ k0z and k2 ¼ k00z . We now add the x and y components of (21-23) and
obtain

Ex ¼ E01e
ið�1þk1zÞ þ E02e

ið�2þk2zÞ ð21-24aÞ

Ey ¼ þiðE01e
ið�1þk1zÞ � E02e

ið�2þk2zÞÞ ð21-24bÞ

The Stokes parameters at any point z in the medium are defined to be

S0ðzÞ ¼ ExðzÞE
�
x ðzÞ þ EyðzÞE

�
y ðzÞ ð21-25aÞ

S1ðzÞ ¼ ExðzÞE
�
x ðzÞ � EyðzÞE

�
y ðzÞ ð21-25bÞ

S2ðzÞ ¼ ExðzÞE
�
y ðzÞ þ EyðzÞE

�
x ðzÞ ð21-25cÞ

S3ðzÞ ¼ iðExðzÞE
�
y ðzÞ � EyðzÞE

�
x ðzÞÞ ð21-25dÞ
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Straightforward substitution of (21-24) into (21-25) leads to

S0ðzÞ ¼ 2ðE2
01 þ E2

02Þ ð21-26aÞ

S1ðzÞ ¼ 4E01E02 cosð�þ kzÞ ð21-26bÞ

S2ðzÞ ¼ 4E01E02 sinð�þ kzÞ ð21-26cÞ

S3ðzÞ ¼ 2ðE2
01 � E2

02Þ ð21-26dÞ

where � ¼ �2 � �1 and k ¼ k2 � k1. We can find the incident Stokes parameters by
considering the Stokes parameters at z ¼ 0. We then find the parameters are

S0ð0Þ ¼ 2ðE2
01 þ E2

02Þ ð21-27aÞ

S1ð0Þ ¼ 4E01E02 cos � ð21-27bÞ

S2ð0Þ ¼ 4E01E02 sin � ð21-27cÞ

S3ð0Þ ¼ 2ðE2
01 � E2

02Þ ð21-27dÞ

We now expand (21-26), using the familiar trignometric identities and find that

S0ðzÞ ¼ 2ðE2
01 þ E2

02Þ ð21-28aÞ

S1ðzÞ ¼ ð4E01E02 cos �Þ cos kz� ð4E01E02 sin �Þ sin kz ð21-28bÞ

S2ðzÞ ¼ ð4E01E02 sin �Þ cos kzþ ð4E01E02 cos �Þ sin kz ð21-28cÞ

S3ðzÞ ¼ 2ðE2
01 � E2

02Þ ð21-28dÞ

which can now be written in terms of the incident Stokes parameters, as given by
(21-27), as

S0ðzÞ ¼ S0ð0Þ ð21-29aÞ

S1ðzÞ ¼ S1ð0Þ cos kz� S2ð0Þ sin kz ð21-29bÞ

S2ðzÞ ¼ S1ð0Þ sin kzþ S2ð0Þ cos kz ð21-29cÞ

S3ðzÞ ¼ S3ð0Þ ð21-29dÞ

or, in matrix form,

S0ðzÞ
S1ðzÞ
S2ðzÞ
S3ðzÞ

0
BB@

1
CCA ¼

1 0 0 0
0 cos kz � sin kz 0
0 sin kz cos kz 0
0 0 0 1

0
BB@

1
CCA

S0ð0Þ
S1ð0Þ
S2ð0Þ
S3ð0Þ

0
BB@

1
CCA ð21-30Þ

Thus, the optically active medium is characterized by a Mueller matrix whose form,
corresponds to a rotator. The expression for k in (21-30) can be rewritten with the
aid of (21-18) as

k ¼ k2 � k1 ¼ k00z � k0z ¼ k0ðn
2
� �Þ1=2 � k0ðn

2
þ �Þ1=2 ð21-31Þ

Since � n2 (21-31) can be approximated as

k ’
k0�

n
ð21-32Þ
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The degree of polarization at any point in the medium is defined to be

PðzÞ ¼
ðS2

1ðzÞ þ S2
2ðzÞ þ S2

3ðzÞÞ
1=2

S0ðzÞ
ð21-33Þ

On substituting (21-29) into (21-33) we find that

PðzÞ ¼
ðS2

1ð0Þ þ S2
2ð0Þ þ S2

3ð0ÞÞ
1=2

S0ð0Þ
¼ Pð0Þ ð21-34Þ

that is, the degree of polarization does not change as the optical beam propogates
through the medium.

The ellipticity of the optical beam is given by

sin 2�ðzÞ ¼
S3ðzÞ

ðS2
1ðzÞ þ S2

2ðzÞ þ S2
3ðzÞÞ

1=2
ð21-35Þ

Substituting (21-29) into (21-35) then shows that the ellipticity is

sin 2�ðzÞ ¼
S3ð0Þ

ðS2
1ð0Þ þ S2

2ð0Þ þ S2
3ð0ÞÞ

1=2
¼ sin 2�ð0Þ ð21-36Þ

so the ellipticity is unaffected by the medium.
Finally, the orientation angle of the polarization ellipse is given by

tan 2 ðzÞ ¼
S2ðzÞ

S1ðzÞ
ð21-37aÞ

¼
S1ð0Þ sin kzþ S2ð0Þ cos kz

S1ð0Þ cos kz� S2ð0Þ sin kz
ð21-37bÞ

When the incident beam is linearly vertically or horizontally polarized, the respective
Stokes vectors are

ð1, � 1, 0, 0Þ and ð1, 1, 0, 0Þ ð21-38Þ

so S1(0) ¼ �1, S2(0) ¼ 0, and (21-37b) reduces to

tan 2 ðzÞ ¼ � tan kz ð21-39aÞ

whence

 ðzÞ ¼ �
1

2
kz ¼ �

k0�

2n

� �
z ¼ �

��


n

� �
z ð21-39bÞ

Thus, the orientation angle  (z) is proportional to the distance traveled by the beam
through the optically active medium and inversely proportional to wavelength, in
agreement with the experimental observation. We can now simply equate (21-39b)
with (21-1a) and relate the measured quantities of the medium to each other. As a
result we see that Maxwell’s equations completely account for the behavior of the
optical activity.

Before, we conclude this section one question should still be answered. In
section 21.1 we pointed out that for natural rotation the polarization of the beam
is unaffected by the optically active medium when it is reflected back through the
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medium. To study this problem, we consider Fig. 21-1. The Mueller matrix of the
optically active medium is, from (21-30)

MðkzÞ ¼

1 0 0 0
0 cos kz � sin kz 0
0 sin kz cos kz 0
0 0 0 1

0
BB@

1
CCA ð21-40Þ

Now for a reflected beam we must replace z by –z and k by –k. We thus obtain
(21-40). From a physical point of view we must obtain the same Mueller matrix
regardless of the direction of propagation of the beam. Otherwise, we would have a
preferential direction! The Mueller matrix for a perfect reflector is

MR ¼

1 0 0 0
0 1 0 0
0 0 �1 0
0 0 0 �1

0
BB@

1
CCA ð21-41Þ

Thus, from Fig. 21-1 the Mueller matrix for propagation through the medium,
reflection, and propagation back through the medium, is

M¼MðkzÞMRMðkzÞ ð21-42aÞ

¼

1 0 0 0

0 coskz � sinkz 0

0 sinkz coskz 0

0 0 0 1

0
BBB@

1
CCCA

1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 �1

0
BBB@

1
CCCA

1 0 0 0

0 coskz � sinkz 0

0 sinkz coskz 0

0 0 0 1

0
BBB@

1
CCCA

ð21-42bÞ

Carrying out the matrix multiplication in (21-42b), we obtain

M ¼

1 0 0 0
0 1 0 0
0 0 �1 0
0 0 0 �1

0
BB@

1
CCA ð21-43Þ

Figure 21-1 Reflection of a polarized beam propagating through an optically active

medium.
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Thus, (21-43) shows that the forward and backward propagation, as well as polar-
ization of the beam, are completely unaffected by the presence of the optically active
medium.

21.3 FARADAY ROTATION IN A TRANSPARENT MEDIUM

Natural rotation of the plane of polarization was first observed in quartz by Arago in
1811. With the development of electromagnetism, physicists began to investigate the
effects of the magnetic field on materials and, in particular, the possible relationship
between electromagnetism and light. In 1845, Michael Faraday discovered that when
a linearly polarized wave is propagating in a dielectric medium parallel to a static
magnetic field the plane of polarization rotates. This phenomenon is known as the
Faraday effect. The behavior is similar to that taking place in optically active media.
However, there is an important difference. If, at the end of a path l the radiation is
reflected backwards, then the rotation in optically active media is opposite to the
original direction and cancels out; this was shown at the end of the previous section.
For the magnetic case, however, the angle of rotation is doubled. This behavior
along with some other important observations, will be shown at the end of this
section.

In the present problem we take the direction of the magnetic field to be along
the z axis. In addition, the plane waves are propagating along the z axis, and
the directions of the electric (optical) vibrations are along the x and y axes. In
such a medium (transparent, isotropic, and nonconducting) the displacement current
vector is

D ¼ "0Eþ P ð21-44Þ

where P is the polarization vector (this vector refers to the electric polarizibility of
the material) and is related to the position vector r of the electron by

P ¼ �Ner ð21-45Þ

Maxwell’s equation (21-3) then become

=� E ¼ �i!H ð21-46aÞ

=�H ¼ i!ð"0Eþ PÞ ð21-46bÞ

Eliminating H between (21-46a) and (21-46b), we find that

=2
Eþ !2"0E ¼ �!2

P ð21-47Þ

or, in component form,

=2
Ex þ !

2"0Ex ¼ �!2
Px ð21-48aÞ

=2
Ey þ !

2"0Ey ¼ �!2
Py ð21-48bÞ

The position of the electron can readily be found from the Lorentz force
equation to be

�� ¼
e

m
E�

� �
!2

� !2
0 �

eH!

m

� �
ð21-49aÞ

Copyright © 2003 by Marcel Dekker, Inc. All Rights Reserved.



where

�� ¼ x� iy ð21-49bÞ

E� ¼ Ex � iEy ð21-49cÞ

The polarization vector is then expressed as

P� ¼ Ne�� ¼ Px � iPy ð21-50Þ

Solving for Px and Py, we find that

Px ¼ AEx þ iBEy ð21-51aÞ

Py ¼ AEy þ iBEx ð21-51bÞ

where

A ¼
Ne2

m
ð!2

� !2
0Þ ð!2

� !2
0Þ

2
�

eH!

m

� �2
" #�1

ð21-52aÞ

B ¼
Ne3H!

m
ð!2

� !2
0Þ

2
�

eH!

m

� �2
" #�1

ð21-52bÞ

With Px and Py now known, (21-48a) and (21-48b) become

@2Ex

@z2
þ !2"0Ex þ !2A

	 

Ex þ i !2B

	 

Ey ¼ 0 ð21-53aÞ

@2Ey

@z2
þ !2"0Ey þ !2A

	 

Ey þ i !2B

	 

Ex ¼ 0 ð21-53bÞ

Since we are assuming that there is propagation only along the z axis, we can
rewrite (21-53) as

�k2 þ !2"0 þ !
2A

	 

Ex þ i !2B

	 

Ey ¼ 0 ð21-54aÞ

�k2 þ !2"0 þ !
2A

	 

Ey þ i !2B

	 

Ex ¼ 0 ð21-54bÞ

If we now compare (21-53) with (21-13), we see that the forms of the equations are
identical. Hence, we can proceed directly with the writing of the Mueller rotation
matrix and the remaining relations. In addition, we find the wavenumber for the
propagating waves to be

k0;00 ¼
!

c
1�

Ne2=m

ð!2 � !2
0Þ � eH!=m

" #1=2

ð21-55Þ

where the single and double primes correspond to the (þ) and (�) solutions in
(21-55), respectively. The orientation angle for linearly polarized radiation is then
determined from (21-37) to be

 ¼
1

2
ðk00 � k0Þz ð21-56Þ
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Since the second term under the square root in (21-55) is small compared with unity,
we easily find that

k00 � k0 ’
2Ne3!2

m2

H

!2 � !2
0

ð21-57Þ

so the orientation angle of the radiation is

 ’
Ne3!2Hz

m2ð!2 � !2
0Þ

¼ VHz ð21-58Þ

where Verdet’s constant V is

V ¼
Ne3!2

m2ð!2 � !2
0Þ

ð21-59Þ

We thus see that the Mueller matrix for the Faraday effect is

MðzÞ ¼

1 0 0 0

0 cosVHz � sinVHz 0

0 sinVHz cosVHz 0

0 0 0 1

0
BB@

1
CCA ð21-60Þ

Thus, the rotation (21-58), is proportional to the path length, in agreement with the
experimental observation.

Before concluding, let us again consider the problem where the beam propa-
gates through the magneto-optical medium and is reflected back toward the optical
source. For convenience, we replace VHz with � and we write (21-60) as

MðzÞ ¼

1 0 0 0

0 cos � � sin � 0

0 sin � cos � 0

0 0 0 1

0
BB@

1
CCA ð21-61Þ

Now for a reflected beam we must replace z by –z. However, VH is unaffected.
Unlike natural rotation, in the Faraday effect we have superposed an asymmetry
in the problem with the unidirectional magnetic field. Thus, � transforms to –�, and
the Mueller matrix M(z) for the beam propagating back to the source becomes

Mð�zÞ ¼

1 0 0 0

0 cos � sin � 0

0 � sin � cos � 0

0 0 0 1

0
BB@

1
CCA ð21-62Þ

The Mueller matrix for a reflector (mirror) is

MR ¼

1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 �1

0
BB@

1
CCA ð21-63Þ
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Thus, the Mueller matrix for the propagation through the medium, reflection, and
propagation back through the medium, is

M ¼ Mð�zÞMRMðzÞ ð21-64aÞ

¼

1 0 0 0

0 cos � sin � 0

0 � sin � cos � 0

0 0 0 1

0
BBB@

1
CCCA

1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 �1

0
BBB@

1
CCCA

1 0 0 0

0 cos � � sin � 0

0 sin � cos � 0

0 0 0 1

0
BBB@

1
CCCA

ð21-64bÞ

Carrying out the matrix multiplication in (21-64b), we find that

M ¼

1 0 0 0

0 cos 2� � sin 2� 0

0 � sin 2� � cos 2� 0

0 0 0 �1

0
BBB@

1
CCCA ð21-65Þ

Since � is arbitrary, we can replace � by –� in (21-65) without changing its meaning,
and we then have

M ¼

1 0 0 0

0 cos 2� sin 2� 0

0 sin 2� � cos 2� 0

0 0 0 �1

0
BBB@

1
CCCA ð21-66Þ

Equation (21-66) is recognized as the Mueller matrix for a pseudorotator. That is, the
rotation as well as the ellipticity are opposite to the true behavior of a rotator. Thus,
unlike natural rotation the angle of rotation is doubled upon reflection, so that for n
reflections, 2� in (21-66) is replaced by 2n� and a relatively large rotation angle can
then be measured.

21.4 FARADAY ROTATION IN A PLASMA

While we have used Maxwell’s equations to describe the propagation and polariza-
tion of light in optical media, the fact is that Maxwell’s equations are universally
applicable. In this section we briefly wish to show that the phenomenon of Faraday
rotation appears when waves propagate in plasmas. Plasmas are gaseous matter
consisting of charged particles. They appear not only in the laboratory but through-
out the universe.

In a plasma the fields are again described by Maxwell’s equations, which we
write here as

=� E ¼ �i!H ð21-67aÞ

=�H ¼ i!" � E ð21-67bÞ
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where " is the plasma dielectric tensor. For a plasma having a static magnetic field
along the z axis we have H ¼ Hk, and the tensor " is then found to be (see the book
by Bekefi)

" ¼
"xx "xy 0
�"xy "xx 0
0 0 "zz

0
@

1
A ð21-68Þ

where

"xx ¼ "yy ¼ 1�
!2
p

!2 � !2
g

ð21-69aÞ

"xy ¼ �"yx ¼
�i!g!

2
p

!ð!2 � !2
gÞ

ð21-69bÞ

"zz ¼ 1�
!2
p

!2
ð21-69cÞ

and

!2
p ¼

e2

"0m
¼ plasma frequency ð21-69dÞ

!g ¼
eH

m
¼ electron gyrofrequency ð21-69eÞ

Eliminating H between (21-67a) and (21-67b) gives

=ð= � EÞ � =2
E ¼ !2"E ð21-70Þ

We now consider the wave to be propagating along the z axis, i.e., in the
direction of the static magnetic field. For this case it is not difficult to show that
= � E ¼ 0. Equation (21-70) then reduces to

@2Ex

@z2
¼ �!2

½"xxEx þ "xyEy� ð21-71aÞ

@2Ey

@z2
¼ �!2

½"xxEy � "xyEx� ð21-71bÞ

These equations are identical to (21-54), and again we obtain the same results as in
that section. In the present problem we now find that the wavenumbers for indivi-
dual waves are

k0 ¼
!

c
ð"xx þ i"xyÞ

1=2
ð21-72aÞ

k00 ¼
!

c
ð"xx þ i"xyÞ

1=2
ð21-72bÞ

so

k0 � k00 ’
!g!

2
p

cð!2 � !2
gÞ

ð21-73Þ
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and the angle of rotation is

 ¼
k0 � k00

2

� �
z ¼

!g!
2
pz

2cð!2 � !2
gÞ

ð21-74Þ

Thus, we see that for a plasma we obtain the rotation Mueller matrix:

M ¼

1 0 0 0
0 cos sin 0
0 � sin cos 0
0 0 0 1

0
BB@

1
CCA ð21-75Þ

The subject of optical activity and magneto-optical phenomena is vast. Many
of the details of particular aspects as well as general treatments of the subject can be
found in the references.
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22

The Stokes Parameters for
Quantum Systems

22.1 INTRODUCTION

In previous chapters we saw that classical radiating systems could be represented
in terms of the Stokes parameters and the Stokes vector. In addition, we saw that
the representation of spectral lines in terms of the Stokes vector enabled us to
arrive at a formulation of spectral lines which corresponds exactly to spectroscopic
observations, namely, the frequency, intensity, and polarization. Specifically, when
this formulation was applied to describing the motion of a bound electron moving in
a constant magnetic field, there was a complete agreement between the Maxwell–
Lorentz theory and Zeeman’s experimental observations. Thus, by the end of the
nineteenth century the combination of Maxwell’s theory of radiation (Maxwell’s
equations) and the Lorentz theory of the electron appeared to be completely
triumphant. The triumph was short-lived, however.

The simple fact was that while the electrodynamic theory explained the appear-
ance of spectral lines in terms of frequency, intensity, and polarization there was still
a very serious problem. Spectroscopic observations actually showed that even for the
simplest element, ionized hydrogen gas, there was a multiplicity of spectral lines.
Furthermore, as the elements increased in atomic number the number of spectral
lines for each element greatly increased. For example, the spectrum of iron showed
hundreds of lines whose intensities and frequencies appeared to be totally irregular.
In spite of the best efforts of nineteenth-century theoreticians, no theory was ever
devised within classical concepts, e.g., nonlinear oscillators, which could account for
the number and position of the spectral lines.

Nevertheless, the fact that the Lorentz–Zeeman effect was completely
explained by the electrodynamic theory clearly showed that in many ways the
theory was on the right track. One must not forget that Lorentz’s theory not only
predicted the polarizations and the frequencies of the spectral lines, but even showed
that the intensity of the central line in the ‘‘three line linear spectrum (� ¼ 90�)’’
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would be twice as bright as the outer lines. It was this quasi-success that was so
puzzling for such a long time.

Intense efforts were carried on for the first 25 years of the twentieth century
on this problem of the multiplicity of spectral lines. The first real breakthrough
was by Niels Bohr in a paper published in 1913. Using Planck’s quantum ideas
(1900) and the Rutherford model of an atom (1911) in which an electron rotated
around a nucleus, Bohr was able to predict with great accuracy the spectrum
of ionized hydrogen gas. A shortcoming of this model, however, was that even
though the electron rotated in a circular orbit it did not appear to radiate, in
violation of classical electrodynamics; we saw earlier that a charged particle
moving in a circular orbit radiates. According to Bohr’s model the ‘‘atomic
system’’ radiated only when the electron dropped to a lower orbit; the phenomenon
of absorption corresponded to the electron moving to a higher orbit. In spite of the
difficulty with the Bohr model of hydrogen, it worked successfully. It was natural to
try to treat the next element, the two-electron helium atom, in the same way. The
attempt was unsuccessful.

Finally, in 1925, Werner Heisenberg published a new theory of the atom, which
has since come to be known as quantum mechanics. This theory was a radical
departure from classical physics. In this theory Heisenberg avoided all attempts to
introduce those quantities that are not subject to experimental observation, e.g., the
motion of an electron moving in an orbit. In its simplest form he constructed a
theory in which only observables appeared. In the case of spectral lines this was,
of course, the frequency, intensity, and polarization. This approach was considered
even then to be extremely novel. By now, however, physicists had long forgotten that
a similar approach had been taken nearly 75 years earlier by Stokes. The reader will
recall that to describe unpolarized light Stokes had abandoned a model based on
amplitudes (nonobservables) and succeeded by using an intensity formulation
(observables). Heisenberg applied his new theory to determining the energy levels
of the harmonic oscillator and was delighted when he arrived at the formula
En ¼ �hh!ðnþ 1=2Þ. The significance of this result was that for the first time the
factor of 1/2 arose directly out of the theory and not as a factor to be added to
obtain the right result. Heisenberg noted at the end of his paper, however, that his
formulation ‘‘might’’ be difficult to apply even to the ‘‘simplest’’ of problems such as
the hydrogen atom because of the very formidable mathematical complexities.

At the same time that Heisenberg was working, an entirely different approach
was being taken by another physicist, Erwin Schrödinger. Using an idea put forth in
a thesis by Louis de Broglie, he developed a new equation to describe quantum
systems. This new equation was a partial differential equation, which has since
come to be known as Schrödinger’s wave equation. On applying his equation to a
number of outstanding problems, such as the harmonic oscillator, he also arrived at
the same result for the energy as Heisenberg. Remarkably, Schrödinger’s formula-
tion of quantum mechanics was totally different from Heisenberg’s. His formulation,
unlike Heisenberg’s, used the pictorial representation of electrons moving in orbits in
a wavelike motion, an idea proposed by de Broglie.

The question then arose, how could two seemingly different theories arrive
at the same results? The answer was provided by Schrödinger. He discovered
that Heisenberg’s quantum mechanics, which was now being called quantum
matrix mechanics, and his wave mechanics were mathematically identical. In a
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very remarkable result Schrödinger showed that Heisenberg’s matrix elements could
be obtained by simply integrating the absolute magnitude squared of his wave equa-
tion solution multiplied by the variable over the volume of space. This result is
extremely important for our present problem because it provides the mechanism
for calculating the variables €xx, €yy and €zz in our radiation equation.

We saw that the radiation equations for E� and E� were proportional to the
acceleration components €xx €yy, and €zz. To obtain the corresponding equations for
quantum mechanical radiating systems, we must calculate these quantities using
the rules of quantum mechanics. In Section 22.4 we transform the radiation equa-
tions so that they also describe the radiation emitted by quantum systems. In Section
22.5 we determine the Stokes vectors for several quantized systems. We therefore see
that we can describe both classical and quantum radiating systems by using the
Stokes vector.

Before we carry this out, however, we describe some relationships between
classical and quantum radiation fields.

22.2 RELATION BETWEEN STOKES POLARIZATION PARAMETERS
AND QUANTUM MECHANICAL DENSITY MATRIX

In quantum mechanics the treatment of partially polarized light and the polarization
of the radiation emitted by quantum mechanical systems appears to be very different
from the classical methods. In classical optics the radiation field is described in
terms of the polarization ellipse and amplitudes. On the other hand, in quantum
optics the radiation field is described in terms of density matrices. Furthermore, the
polarization of the radiation emitted by quantum systems is described in terms of
intensities and selection rules rather than the familiar amplitude and phase relations
of the optical field. Let us examine the descriptions of polarization in classical and
quantum mechanical terms. We start with a historical review and then present the
mathematics for the quantum mechanical treatment.

It is a remarkable fact that after the appearance of Stokes’ paper (1852) and his
introduction of his parameters, they were practically forgotten for nearly a century!
It appears that only in France was the significance of his work fully appreciated.
After the publication of Stokes’ paper, E. Verdet expounded upon them (1862). It
appears that the Stokes parameters were thereafter known to French students of
opitcs, e.g., Henri Poincaré (ca. 1890) and Paul Soleillet (1927). The Stokes
parameters did not reappear in any publication in the English-speaking world
until 1942, in a paper by Francis Perrin. (Perrin was the son of the Nobel laureate
Jean Perrin. Both father and son fled to the United States after the fall of France in
June 1940. Jean Perrin was a scientist of international standing, and he also appears
to have been a very active voice against fascism in prewar France. Had both father
and son remained in France, they would have very probably been killed during the
occupation.)

Perrin’s 1942 paper is very important because he (1) reintroduced the Stokes
parameters to the English-speaking world, (2) presented the relation between the
Stokes parameters for a beam that underwent rotation or was phase shifted, (3)
showed the connection between the Stokes parameters and the wave statistics of
John von Neumann, and (4) derived conditions on the Mueller matrix elements
for scattering (the Mueller matrix had not been named at that date). Perrin also
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stated that Soleillet (1927) had pointed out that only a linear relation could exist
between the Stokes parameter for an incident beam (Si) and the transmitted (or
scattered) beam ðS 0

i Þ. According to Perrin the argument for a linear relation was a
direct consequence of the superposition of the Stokes parameters for n independent
beams; only a linear relation would satisfy this requirement. This is discussed further
in this section. The impact of his paper did not appear for several years, because of
its publication during the Second World War. As a result, even by 1945 the Stokes
parameters were still not generally known.

The question of the relation between the classical and quantum representation
of the radiation field only appears to have arisen after the ‘‘rediscovery’’ of Stokes’
1852 paper and the Stokes parameters by the Nobel laureate Subrahmanyan
Chandrasekhar in 1947, while writing his fundamental papers on radiative transfer.
Chandrasekhar’s astrophysical research was well known, and consequently, his
papers were immediately read by the scientific community.

Shortly after the appearance of Chandrasekhar’s radiative transfer papers,
U. Fano (1949) showed that the Stokes parameters are a very suitable analytical
tool for treating problems of polarization in both classical optics and quantum
mechanics. He appears to have been the first to give a quantum mechanical
description of the electromagnetic field in terms of the Stokes parameters; he also
used the formalism of the Stokes parameters to determine the Mueller matrix for
Compton scattering. Fano also noted that the reason for the successful application
of the Stokes parameters to the quantum theoretical treatment of electromagnetic
radiation problems is that they are the observable quantities of phenomenological
optics.

The appearance of the Stokes parameters of classical optics in quantum physics
appears to have come as a surprise at the time. The reason for their appearance was
pointed out by Falkoff and MacDonald (1951) shortly after the publication of
Fano’s paper. In classical and quantum optics the representations of completely
(i.e., elliptically) polarized light are identical (this was also first pointed out by
Perrin) and can be written as

 ¼ c1 1 þ c2 2 ð22-1Þ

However, the classical and quantum interpretations of this equation are quite dif-
ferent. In classical optics  1 and  2 represent perpendicular unit vectors, and the
resultant polarization vector  for a beam is characterized by the complex ampli-
tudes c1 and c2. The absolute magnitude squared of these coefficients then yields the
intensities jc1j

2 and jc2j
2 that one would measure through an analyzer in the direction

of  1 and  2. In the quantum interpretation  1 and  2 represent orthogonal polar-
ization states for a photon, but now jc1j

2 and jc2j
2 yield the relative probabilities for a

single photon to pass through an analyzer which admits only quanta in the states  1

and  2, respectively.
In both interpretations the polarization of the beam (photon) is completely

determined by the complex amplitudes c1 and c2. In terms of these quantities one can
define a 2 � 2 matrix with elements:

�ij ¼ cic
�
j i, j ¼ 1, 2 ð22-2Þ
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In quantum mechanics an arbitrary wave equation can be expanded into any desired
complete set of orthonormal eigenfunctions; that is,

 ¼
X
i

ci i ð22-3Þ

Then

j j2 ¼   �
¼
X
ij

cic
�
j  i 

�
j ð22-4Þ

From the expansion coefficients we can form a matrix � by the rule:

�ij ¼ cic
�
j i, j ¼ 1, 2 ð22-5Þ

According to (22-1), we can then express (22-5) in a 2 � 2 matrix:

� ¼
�11 �12
�21 �22

� �
ð22-6Þ

The matrix � is known as the density matrix and has a number of interesting proper-
ties; it is usually associated with von Neumann (1927). First, we note that �ii ¼ cic

�
i

gives the probability of finding the system in the state characterized by the eigen-
function  i. If we consider the  function as being normalized, thenZ

  �d� ¼
X
ij

cic
�
j

Z
 i j d� ¼

X
i

cic
�
i ¼ �11 þ �22 ¼ 1 ð22-7Þ

Thus, the sum of the diagonal matrix elements is 1. The process of summing these
elements is known as taking the trace of the matrix and is written as Tr(� � �), so we
have

Trð�Þ ¼ 1 ð22-8Þ

If we measure some variable F in the system described by  , the result is given
by

hF i ¼

Z
 F � d� ¼

X
ij

Z
ci iFc

�
j  

�
j d�

¼
X
ij

cic
�
j Fij ð22-9aÞ

where the matrix Fij is defined by the formula:

Fij ¼

Z
 iF 

�
j d� ð22-9bÞ

However,X
i

Fij�ij ¼ ðF�Þii ð22-10Þ

Therefore,

hF i ¼
X
i

ðF�Þii ð22-11aÞ

or

hF i ¼ TrðF�Þ ð22-11bÞ
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Thus, the expectation value of F, hF i, is determined by taking the trace of the matrix
product of F and �.

In classical statistical mechanics the density function �(p, q) in phase space,
where p and q are the momentum and the position, respectively, is normalized by the
condition:Z

�ðp, qÞ dp dq ¼ 1 ð22-12aÞ

and the average value of a variable is given by

hF i ¼

Z
F�ðp, qÞ dp dq ð22-12bÞ

We see immediately that a similar role is played by the density matrix in quantum
mechanics by comparing (22-7) and (22-11b) with (22-12a) and (22-12b).

The polarization of electromagnetic radiation can be described by the vibration
of the electric vector. For a complete description the field may be represented by two
independent beams of orthogonal polarizations. That is, the electric vector can be
represented by

E ¼ c1e1 þ c2e2 ð22-13Þ

where e1 and e2 are two orthogonal unit vectors and c1 and c2, which are in general
complex, describe the amplitude and phase of the two vibrations. From the two ex-
pansion coefficients in (22-13) we can form a 2 � 2 density matrix. Furthermore,
from the viewpoint of quantum mechanics the equation analogous to (22-13) is given
by (22-1), which is rewritten here:

 ¼ c1 1 þ c2 2 ð22-1Þ

We now consider the representation of an optical beam in terms of its density
matrix. An optical beam can be represented by

E ¼ E1e1 þ E2e2 ð22-14aÞ

where

E1 ¼ a1 cosð!tþ �1Þ ð22-14bÞ

E2 ¼ a2 cosð!tþ �2Þ ð22-14cÞ

In complex notation, (22-14) is written as

E1 ¼ a1 exp ið!tþ �1Þ ð22-15aÞ

E2 ¼ a2 exp ið!tþ �2Þ ð22-15bÞ

We now write

a1 ¼ cos � ð22-16aÞ

a2 ¼ sin � ð22-16bÞ

� ¼ �2 � �1 ð22-16cÞ
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Equation (22-14) can then be expressed as

E ¼ cos �e�i�
e1 þ sin �e2 ð22-17Þ

so we have

c1 ¼ cos �e�i�
ð22-18aÞ

c2 ¼ sin � ð22-18bÞ

The density matrix is now explicitly written out as

� ¼
�11 �12

�21 �22

� �
¼

c1c
�
1 c1c

�
2

c2c
�
1 c2c

�
2

� �
¼

cos2 � cos � sin e�i�

sin � cos �ei� sin2 �

 !
ð22-19Þ

Complete polarization can be described by writing (22-1) in terms of a single
eigenfunction for each of the two orthogonal states. Thus, we write

 ¼ c1 1 ð22-20aÞ

or

 ¼ c2 2 ð22-20bÞ

where  i refers to a state of pure polarization. The corresponding density matrices
are then, respectively,

�1 ¼
c1c

�
1 0

0 0

� �
¼

1 0

0 0

� �
ð22-21aÞ

and

�2 ¼
0 0

0 c2c
�
2

� �
¼

0 0

0 1

� �
ð22-21bÞ

where we have set c1c
�
1 and c2c

�
2 equal to 1 to represent a beam of unit intensity.

We can use (22-21a) and (22-21b) to obtain the density matrix for unpolarized
light. Since an unpolarized beam may be considered to be the incoherent superposi-
tion of two polarized beams with equal intensity, if we add (22-21a) and (22-21b) the
density matrix is

�U ¼
1

2

1 0

0 1

� �
ð22-22Þ

The factor 1/2 has been introduced because the normalization condition requires
that the trace of the density matrix be unity. Equation (22-22) can also be obtained
from (22-19) by averaging the angles � and � over � and 2�, respectively.

In general, a beam will have an arbitrary degree of polarization, and we
can characterize such a beam by the incoherent superposition of an unpolarized
beam and a totally polarized beam. From (22-19) the polarized contribution is
described by

�P ¼
c1c

�
1 c1c

�
2

c2c
�
1 c2c

�
2

� �
ð22-23Þ
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The density matrix for a beam with arbitrary polarization can then be written in the
form:

� ¼ U
1 0

0 1

 !
þ P ¼

c1c
�
1 c1c

�
2

c2c
�
1 c2c

�
2

 !
ð22-24Þ

where U and P are the factors to be determined. In particular, P is the degree of
polarization; it is a real quantity and its range is 0 	 P 	 1. We now note the
following three cases:

1. If 0 < P < 1, then the beam is partially polarized.
2. If P ¼ 0, then the beam is unpolarized.
3. If P ¼ 1, then the beam is totally polarized.

For P ¼ 0, we know that

�U ¼
1

2

1 0

0 1

 !
ð22-22Þ

Thus, U ¼ 1/2 and P ¼ 0. For P ¼ 1, the density matrix is given by (22-23), so U ¼ 0
when P ¼ 1. We can now easily determine the explicit relation between U and P by
writing

U ¼ aPþ b ð22-25Þ

From the condition on U and P just given we find that b ¼ 1/2 and a ¼ �b so the
explicit form of (22-25) is

U ¼ �
1

2
Pþ

1

2
ð22-26Þ

Thus (22-24) becomes

� ¼
1

2
ð1� PÞ

1 0

0 1

 !
þ P

c1c
�
1 c1c

�
2

c2c
�
1 c2c

�
2

 !
ð22-27Þ

Equation (22-27) is the density matrix for a beam of arbitrary polarization.
By the proper choice of pure states of polarization  i, the part of the density

matrix representing total polarization can be written in one of the forms given by
(22-20). Therefore, we may write the general density matrix as

� ¼
1

2
ð1� PÞ

1 0

0 1

 !
þ P

1 0

0 0

 !
ð22-28Þ

or

� ¼
1

2

1þ P 0

0 1� P

 !
ð22-29Þ
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Hence, any intensity measurement made in relation to these pure states will yield the
eigenvalues:

Iþ ¼
1

2
ð1þ PÞ ð22-30aÞ

I� ¼
1

2
ð1� PÞ ð22-30bÞ

Classical optics requires that to determine experimentally the state of polariza-
tion of an optical beam four measurements must be made. The optical field in
classical optics is described by

E ¼ E1e1 þ E2e2 ð22-14aÞ

where

E1 ¼ a1 exp ið!tþ �1Þ ð22-15aÞ

E2 ¼ a2 exp ið!tþ �2Þ ð22-15bÞ

In quantum optics the optical field is described by

 ¼ c1 1 þ c2 2 ð22-1Þ

Comparing c1 an c2 in (22-1) with E1 and E2 in (22-15) suggests that we set

c1 ¼ a1 exp ið!tþ �1Þ ð22-31aÞ

c2 ¼ a2 exp ið!tþ �2Þ ð22-31bÞ

We now define the Stokes polarization parameters for a beam to be

S0 ¼ c1c
�
1 þ c2c

�
2 ð22-32aÞ

S1 ¼ c1c
�
1 � c2c

�
2 ð22-32bÞ

S2 ¼ c1c
�
2 þ c2c

�
1 ð22-32cÞ

S3 ¼ iðc1c
�
2 � c2c

�
1Þ ð22-32dÞ

We now substitute (22-31) into (22-32) and find that

S0 ¼ a21 þ a22 ð22-33aÞ

S1 ¼ a21 � a22 ð22-33bÞ

S2 ¼ 2a1a2 cos � ð22-33cÞ

S3 ¼ 2a1a2 sin � ð22-33dÞ

We see that (22-33) are exactly the classical Stokes parameters (with a1 and a2
replacing, e.g., E0x and E0y as previously used in this text). Expressing (22-32) in
terms of the density matrix elements, �11 ¼ c1c

�
1 etc., the Stokes parameters are

linearly related to the density matrix elements by

S0 ¼ �11 þ �22 ð22-34aÞ

S1 ¼ �11 � �22 ð22-34bÞ

S2 ¼ �12 þ �21 ð22-34cÞ

S3 ¼ ið�12 � �21Þ ð22-34dÞ
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Thus, the Stokes parameters are linear combinations of the elements of the 2 � 2
density matrix.

It will be convenient to express (22-34a) by the symbol I for the intensity and
the remaining parameters of the beam by P1, P2 and P3, so

I ¼ �11 þ �22 ð22-35aÞ

P1 ¼ �11 � �22 ð22-35bÞ

P2 ¼ �12 þ �21 ð22-35cÞ

P3 ¼ ið�12 � �21Þ ð22-35dÞ

In terms of the density matrix (22-19) we can then write

� ¼
�11 �12

�21 �22

 !
¼

1

2

1þ P1 P2 � iP3

P2 þ iP3 1� P1

 !
ð22-36Þ

where we have set I¼ 1. From the point of view of measurement both the classical
and quantum theories yield the same results. However, the interpretations, as
pointed out above, are completely different.

We also recall that the Stokes parameters satisfy the condition:

I 2 
 P 2
1 þ P 2

2 þ P 2
3 ð22-37Þ

Substituting (22-35) into (22-37), we find that

detð�Þ ¼ �11�22 � �12�21 
 0 ð22-38Þ

where ‘‘det’’ stands for the determinant. Similarly, the degree of polarization P is
given by

P ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�11 � �22Þ

2
þ 4�12�21

q
�11 þ �22

ð22-39Þ

There is one further point that we wish to make. The wave function  can be
expanded in a complete set of orthonormal eigenfunctions. For electromagnetic
radiation (optical field) this consists only of the terms:

 ¼ c1 1 þ c2 2 ð22-1Þ

The wave functions describing pure states may be chosen in the form:

 1 ¼
1

0

 !
and  2 ¼

0

1

 !
ð22-40Þ

Substituting (22-40) into (22-1), we have

 ¼
c1

c2

 !
ð22-41Þ
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Using this wave function leads to the following expressions for the expectation values
(see 22-9a) of the unit matrix and the Pauli spin matrices:

I ¼ h1i ¼ ðc�1 c�2Þ
1 0
0 1

� �
c1
c2

� �
¼ c1c

�
1 þ c2c

�
2 ð22-42aÞ

P1 ¼ h	zi ¼ ðc�1 c�2Þ
1 0
0 �1

� �
c1
c2

� �
¼ c1c

�
1 � c2c

�
2 ð22-42bÞ

P2 ¼ h	xi ¼ ðc�1 c�2Þ
0 1
1 0

� �
c1
c2

� �
¼ c1c

�
2 þ c1c

�
2 ð22-42cÞ

P3 ¼ h	yiðc
�
1c

�
2Þ

0 �i
i 0

� �
c1
c2

� �
¼ iðc1c

�
2 � c2c

�
1Þ ð22-42dÞ

We see that the terms on the right hand side of (22-42) are exactly the Stokes
polarization parameters. The Pauli spin matrices are usually associated with particles
of spin 1/2, e.g., the electron. However, for both the electromagnetic radiation field
and for particles of spin 1/2 the wave function can be expanded in a complete set of
orthonormal eigenfunctions consisting of only two terms (22-1). Thus, the quantum
mechanical expectation values correspond exactly to observables.

Further information on the quantum mechanical density matrices and the
application of the Stokes parameters to quantum problems, e.g., Compton scatter-
ing, can be found in the numerous papers cited in the references.

22.3 NOTE ON PERRIN’S INTRODUCTION OF STOKES
PARAMETERS, DENSITY MATRIX, AND LINEARITY OF THE
MUELLER MATRIX ELEMENTS

It is worthwhile to discuss Perrin’s observations further. It is rather remarkable that
he discussed the Stokes polarization parameters and their relationship to the
Poincaré sphere without any introduction or background. While they appear to
have been known by French optical physicists, the only English-speaking references
to them are in the papers of Lord Rayleigh and a textbook by Walker. Walker’s
textbook is remarkably well written, but does not appear to have had a wide circula-
tion. It was in this book, incidentally, that Chandrasekhar found the Stokes polar-
ization parameters and recognized that they could be used to incorporate the
phenomenon of polarization in the (intensity) radiative transfer equations.

As is often the case, because Perrin’s paper was one of the first papers on the
Stokes parameters, his presentation serves as a very good introduction to the subject.
Furthermore, he briefly described their relation to the quantum mechanical density
matrix.

For completely polarized monochromatic light the optical vibrations may be
represented along the two rectangular axes as

E1 ¼ a1 cosð!tþ �1Þ ð22-14bÞ

E2 ¼ a2 cosð!tþ �2Þ ð22-14cÞ
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where a1 and a2 are the maximum amplitudes and �1 and �2 are the phases. The phase
difference between these components is

� ¼ �2 � �1 ð22-16cÞ

and the total intensity of the vibration is

I ¼ a21 þ a22 ð22-43Þ

In nature, light is not strictly monochromatic. Furthermore, as we have seen,
because of the rapid vibrations of the optical field only mean values can be measured.
To analyze polarized light, we must use analyzers, that is, polarizers (with transmis-
sion factors k1 and k2 along the axes) and phase shifters (with phase shifts of �1 and
�2 along the fast and slow axes respectively). These analyzers then yield the mean
intensity of a vibration Ea obtained as a linear combination, with given changes in
phase, of the two components E1 and E2 of the initial vibration as

Ea ¼ k1a1 cosð!tþ �1 þ �1Þ þ k2a2 cosð!tþ �2 þ �2Þ ð22-44Þ

We note that this form is identical to the quantum mechanical form given by (22-1).
The mean intensity of (22-44) is then

Ia ¼
1

2

h
ðk21 þ k22Þðha

2
1i þ ha22iÞ:þ ðk21 � k22Þðha

2
1i � ha22iÞ

þ 2k1k2 cosð�1 � �2Þðh2a1a2 cos �iÞ

þ 2k1k2 sinð�1 � �2Þðh2a1a2 sin �iÞ
i

ð22-45Þ

We can write the terms within parentheses as

S0 ¼ ha21i þ ha22i ð22-46aÞ

S1 ¼ ha21i � ha22i ð22-46bÞ

S2 ¼ h2a1a2 cos �i ð22-46cÞ

S3 ¼ h2a1a2 sin �i ð22-46dÞ

where h� � �i refers to the mean or average value, and S0, S1, S2 and S3 are the four
Stokes parameters of the optical beam. Equation (22-45) can then be rewritten as

Ia ¼
1

2

h
ðk21 þ k22ÞS0 þ ðk21 � k22ÞS1 þ 2k1k2 cosð�1 � �2ÞS2:

þ2k1k2 sinð�1 � �2ÞS3

i
ð22-47Þ

As we have seen, by choosing different combinations of a1 and a2 and �1 and �2 we
can determine S0, S1, S2, and S3. Equation (22-47) is essentially the equation first
derived by Stokes.

The method used by Stokes to characterize a state of polarization may be
generalized and connected with the wave statistics of von Neumann. Consider a
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system of n harmonic oscillations of the same frequency subjected to small random
perturbations. This may be represented by the complex expression:

Ek ¼ Pk expði!tÞ ð22-48aÞ

where

Pk ¼ pk expði�kÞ ð22-48bÞ

and the modulus pk and the argument �k vary slowly over time in comparison with
the period of oscillation but quickly with respect to the period of measurement.
Suppose we can measure the mean intensity of an oscillation E linearly dependent
on these oscillations:

E ¼
X
k

CkEk ¼
X
k

CkPk expði!tÞ ð22-49aÞ

where

Ck ¼ ck expði�kÞ ð22-49bÞ

The mean intensity corresponding to (22-49a) is then

hEE �
i ¼

X
kl

CkClhPkP
�
l i ð22-50Þ

The mean intensity depends on the particular oscillations involving only the von
Neumann matrix elements (the density matrix):

�kl ¼ hPkP
�
l i ð22-51Þ

The knowledge of these matrix elements determines all that we can know about the
oscillations by such measurements. Since this matrix is Hermitian, we can set

�kk ¼ �k �kl ¼ �kl þ i	kl ðk 6¼ 1Þ ð22-52Þ

where �k, �kl ¼ � lk, and 	kl ¼ �	kl are real quantities. The diagonal terms �k are the
mean intensities of the oscillations.

�k ¼ h p2ki ð22-53aÞ

and the other terms give the correlations between the oscillations:

�kl ¼ h pkpl cosð�k � �lÞi ð22-53bÞ

	kl ¼ h pkpl sinð�k � �lÞi ð22-53cÞ

While Perrin did not explicitly show the relation of the Stokes parameters to the
density matrix, it is clear, as we have shown, that only an additional step is required
to do this.

Perrin made additional observations on the correlation functions for nonhar-
monic systems. Before we conclude, however, there is one additional remark that
we wish to investigate. Perrin noted that Soleillet first pointed out that, when a beam
of light passes through some optical arrangement, or, more generally, produces
a secondary beam of light, the intensity and the state of polarization of the emergent
beam are functions of those of the incident beam. If two independent incident beams
are superposed, the new emergent beam will be, if the process is linear, the
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superposition without interference of the two emergent beams corresponding to the
separate incident beams. Consequently, in such a linear process, from the additivity
properties of the Stokes parameters, the parameters S 0

0, S
0
1, S

0
2, S

0
3 which define the

polarization of the emergent beam, must be homogenous linear functions of the
parameters S0, S1, S2, S3 corresponding to the incident beam; the 16 coefficients
of these linear functions will completely characterize the corresponding optical
phenomenon.

Perrin offers this statement without proof. We can easily show that from
Stokes’ law of additivity of independent beams that the relationship between S0

0

and S0 etc., must be linear.
Let us assume a functional relation between S 0

0, S
0
1 etc., such that

S 0
0 ¼ f ðS0,S1,S2,S3Þ ð22-54aÞ

S 0
1 ¼ f ðS0,S1,S2,S3Þ ð22-54bÞ

S 0
2 ¼ f ðS0,S1,S2,S3Þ ð22-54cÞ

S 0
3 ¼ f ðS0,S1,S2,S3Þ ð22-54dÞ

To determine the explicit form of this functional relationship, consider only I ¼ S 0
0

(22-54). Furthermore, assume that I 0 is simply related to I ¼ S0 only by

I 0 ¼ f ðIÞ ð22-55Þ

For two independent incident beams with intensities I1 and I2 the corresponding
emergent beams I 01and I 02 are functionally related by

I 01 ¼ f ðI1Þ ð22-56aÞ

I 02 ¼ f ðI2Þ ð22-56bÞ

Both equations must have the same functional form. From Stokes’ law of additivity
we can then write

I 01 þ I 02 ¼ I ¼ f ðI1Þ þ f ðI2Þ ð22-57Þ

Adding I 01and I 02 the total intensity Imust also be a function of I1 þ I2 by Stokes’ law
of additivity. Thus, we have from (22-57)

f ðI1Þ þ f ðI2Þ ¼ f ðI1 þ I2Þ ð22-58Þ

Equation (22-58) is a functional equation. The equation can be solved for f (I) by
expanding f (I1), f (I2), and f (I1 þ I2) in a series so that

f ðI1Þ ¼ a0 þ a1I1 þ a2I
2
1 þ � � � ð22-59aÞ

f ðI2Þ ¼ a0 þ a1I2 þ a2I
2
2 þ � � � ð22-59bÞ

f ðI1 þ I2Þ ¼ a0 þ a1ðI1 þ I2Þ þ a2ðI1 þ I2Þ
2
þ � � � ð22-59cÞ

so

f ðI1Þ þ f ðI2Þ ¼ 2a0 þ a1ðI1 þ I2Þ þ a2ðI
2
1 þ I22Þ þ � � �

¼ a0 þ a1ðI1 þ I2Þ þ a2ðI1 þ I2Þ
2
þ � � � ð22-60Þ
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The left- and right-hand sides of (22-60) are only consistent with Stokes’ law of
additivity for the linear terms, that is a0 ¼ 0, a1 6¼ 0, a2 ¼ 0, etc., so the solution
of (22-58) is

f ðI1Þ ¼ a1I1 ð22-61aÞ

f ðI2Þ ¼ a1I2 ð22-61bÞ

f ðI1 þ I2Þ ¼ a1ðI1 þ I2Þ ð22-61cÞ

Thus, f (I) is linearly related to I; f (I) must be linear if Stokes’ law of additivity is to
apply simultaneously to I1 and I2 and I 01 and I 02. We can therefore relate S 0

0 to S0, S1,
S2 and S3 by a linear relation of the form:

S 0
0 ¼ f ðS0,S1,S2,S3Þ ¼ a1S0 þ b1S1 þ c1S2 þ d1S3 ð22-62Þ

and similar relations (equations) for S 0
1, S

0
2, and S 0

3. Thus, the Stokes vectors are
related by 16 coefficients aik.

As examples of this linear relationship, Perrin noted that, for a light beam
rotated through an angle  around its direction of propagation, for instance by
passing through a crystal plate with simple rotatory power, we have

S 0
0 ¼ S0 ð22-63aÞ

S 0
1 ¼ cosð2 ÞS1 � sinð2 ÞS2 ð22-63bÞ

S 0
2 ¼ sinð2 ÞS1 þ cosð2 ÞS2 ð22-63cÞ

S 0
3 ¼ S3 ð22-63dÞ

Similarly, when there is a difference in phase � introduced between the components
of the vibration along the axes, for instance by birefringent crystals with axes parallel
to the reference axes, then

S 0
0 ¼ S0 ð22-64aÞ

S 0
1 ¼ S1 ð22-64bÞ

S 0
2 ¼ cosð�ÞS2 � sinð�ÞS3 ð22-64cÞ

S 0
3 ¼ sinð�ÞS2 þ cosð�ÞS3 ð22-64dÞ

In the remainder of this paper Perrin then determined the number of nonzero
(independent) coefficients aik for different media. These included (1) symmetrical
media (8), (2) the scattering of light by an asymmetrical isotropic medium (10), (3)
forward axial scattering (5), (4) forward axial scattering for a symmetric medium (3),
(5) backward scattering by an asymmetrical medium (4), and (6) scattering by iden-
tical spherical particles without mirror symmetry (5).

Perrin’s paper is actually quite remarkable because so many of the topics that
he discussed have become the basis of much research. Even to this day there is much
to learn from it.
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22.4 RADIATION EQUATIONS FOR QUANTUM
MECHANICAL SYSTEMS

We now turn to the problem of determining the polarization of radiation emitted by
atomic and molecular systems. We assume that the reader has been exposed to the
rudimentary ideas and methods of quantum mechanics particularly Schrödinger’s
wave equation and Heisenberg’s matrix mechanics.

Experimental evidence of atomic and molecular systems has shown that a
dynamical system in an excited state may spontaneously go to a state of lower
energy, the transition being accompanied by the emission of energy in the form of
radiation. In quantum mechanics the interaction of matter and radiation is allowed
from the beginning, so that we start with a dynamical system:

atomþ radiation ð22-65Þ

Every energy value of the system described by (22-65) can be interpreted as a possible
energy of the atom alone plus a possible energy of the radiation alone plus a small
interaction energy, so that it is still possible to speak of the energy levels of the atom
itself. If we start with a system (22-65) at t ¼ 0 in a state that can be described
roughly as

atom in an excited state nþ no radiation ð22-66Þ

we find at a subsequent time t the system may have gone over into a state descri-
bed by

atom in an excited state mþ radiation ð22-67Þ

which has the same total energy as the initial state (22-66), although the energy of the
atom itself is now smaller. Whether or not the transition (22-66)! (22-67) will
actually occur, or the precise instant at which it takes place, if it does take place,
cannot be inferred from the information that at t ¼ 0 the system is certainly in the
state given by (22-66). In other words, an excited atom may ‘‘jump’’ spontaneously
into a state of lower energy and in the process emit radiation.

To obtain the radiation equations suitable for describing quantum systems,
two facts must be established. The first is the Bohr frequency condition, which states
that a spontaneous transition of a dynamical system from an energy state of energy
En to an energy state of lower energy Em is accompanied by the emission of radiation
of spectroscopic frequency !n!m given by the formula:

!n!m ¼
1

�hhðEn � EmÞ
ð22-68Þ

where �hh is Planck’s constant divided by 2�.
The other fact is that the transition probability An!m for a spontaneous

quantum jump of a one-dimensional dynamical system from an energy state n to
an energy state m of lower energy is, to a high degree of approximation, given by the
formula:

An!m ¼
e2

3�"0c
3h
!3
n!m

Z
 �
nx m dx

����
����2 ð22-69Þ

where e is the electric charge and c is the speed of light. The transition probability
An!m for a spontaneous quantum jump from the nth to the mth energy state is seen
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to be proportional to the square of the absolute magnitude of the expectation value
of the variable x. That is, the quantity within the absolute magnitude signs is hxi.
Equation (22-69) shows that to determine hxi we must also know the eigenfunction  
of the atomic system. The expectation value of x is then found by carrying out the
required integration.

The importance of this brief discussion of the Bohr frequency condition and
the transition probability is that these two facts allow us to proceed from the classi-
cal radiation equations to the radiation equations for describing the radiation
emitted by quantum systems.

According to classical electrodynamics the radiation field components (sphe-
rical coordinates) emitted by an accelerating charge are given by

E� ¼
e

4�"0c
2R

€xx cos � � €zz sin �½ � ð16-8Þ

E� ¼
e

4�"0c
2R

€yy½ � ð16-9Þ

Quantum theory recognized early that these equations were essentially correct. They
could also be used to describe the radiation emitted by atomic systems; however, new
rules were needed to calculate €xx, €yy, and €zz. Thus, we retain the classical radiation
equation (16-8) and (16-9), but we replace €xx, €yy, and €zz by their quantum mechanical
equivalents.

To derive the appropriate form of (16-8) and (16-9) suitable for quantum
mechanical systems, we use Bohr’s correspondence principle along with the fre-
quency condition given by (22-68). Bohr’s correspondence principle states that
‘‘in the limit of large quantum numbers quantum mechanics reduces to classical
physics’’. We recall that the energy emitted by an oscillator of moment p ¼ er is

I ¼
1

6�"0c
3
€pp
�� ��2 ð22-70Þ

Each quantum state n has two neighboring states, one above and one below, which
for large quantum numbers differ by the same amount of energy �hh!nm. Hence, if we
replace p by the matrix element pnm, we must at the same time multiply (22-70) by 2
so that the radiation emitted per unit time is

I ¼
1

3�"0c
3
pnm
�� ��2¼ e2

3�"0c
3
!4
nm rnm
�� ��2 ð22-71Þ

We see that the transition probability is simply the intensity of radiation emitted per
unit time. Thus, dividing (22-71) by !nm gives the transition probability stated in
(22-69). The quantity rnm can now be calculated according to the rules of wave
mechanics, namely,

rnm ¼

Z
V

�nðr, tÞr�
�
mðr, tÞdr ð22-72Þ

where r stands for the radius vector from the nucleus to the field point, �m(r,t) and
�n(r,t) are the Schrödinger wave functions for the mth and nth states of the quantum
system, the asterisk denotes the complex conjugate, dr is the differential volume
element, and V is the volume of integration.
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In quantum mechanics rnm is calculated from (22-72). We now assume that
by a twofold differentiation of (22-72) with respect to time we can transform the
classical r to the quantum mechanical form rnm. Thus, according to Bohr’s corre-
spondence principle, €xx is transformed to €xxnm etc. i.e.,

€xx ¼! €xxnm ð22-73aÞ

€yy ¼! €yynm ð22-73bÞ

€zz ¼! €zznm ð22-73cÞ

We now write (22-72) in component form:

xnm ¼

Z
V

�nðr, tÞx�
�
mðr, tÞ dr ð22-74aÞ

ynm ¼

Z
V

�nðr, tÞy�
�
mðr, tÞ dr ð22-74bÞ

znm ¼

Z
V

�nðr, tÞz�
�
mðr, tÞ dr ð22-74cÞ

The wave functions �mðr, tÞ and �nðr, tÞ can be written as

�mðr, tÞ ¼ �mðrÞe
i!mt ð22-75aÞ

�nðr, tÞ ¼ �nðrÞe
i!nt ð22-75bÞ

where !mn ¼ 2�fmn. Substituting (22-75) into (22-74) and then differentiating the
result twice with respect to time yields

€xxnm ¼ �ð!n � !mÞ
2eið!n�!mÞt

Z
V

�nðrÞx�
�
mðrÞ dr ð22-76aÞ

€yynm ¼ �ð!n � !mÞ
2eið!n�!mÞt

Z
V

�nðrÞy�
�
mðrÞ dr ð22-76bÞ

€zznm ¼ �ð!n � !mÞ
2eið!n�!mÞt

Z
V

�nðrÞz�
�
mðrÞ dr ð22-76cÞ

Now, it is easily proved that the integrals in (22-76) vanish for all states of an atom if
n ¼ m, so the derivative of the dipole moment vanishes and, accordingly, the emitted
radiation also; that is, a stationary state does not radiate. This explains the fact,
unintelligible from the standpoint of Bohr’s theory, that an electron revolving around
the nucleus, which according to the classical laws ought to emit radiation of the same
frequency as the revolution, can continue to revolve in its orbit without radiating.

Returning now to the classical radiation equations (16-8) and (16-9), we see
that the corresponding equations are, using (22-73)

E� ¼
e

4�"oc
2R

€xxnm cos � � €zznm sin �½ � ð22-77aÞ

E� ¼
e

4�"oc
2R

€yynm½ � ð22-77bÞ

where €xxnm, €yynm and €zznm are calculated according to (22-76a), (22-76b), and (22-76c),
respectively.
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The Schrödinger wave function �(r) is found by solving Schrödinger’s time
independent wave equation:

r
2�ðrÞ þ

2m

�hh2
ðE� VÞ�ðrÞ ¼ 0 ð22-78Þ

where r
2 is the Laplacian operator; in Cartesian coordinates it is

r
2
�
@2

@x2
þ
@2

@y2
þ
@2

@z2
ð22-79Þ

The quantities E and V are the total energy and potential energy, respectively,
m is the mass of the particle, and �hh ¼ h/2� is Planck’s constant divided by 2�.

Not surprisingly, Schrödingers’s equation (22-78) is extremely difficult to solve.
Fortunately, several simple problems can be solved exactly, and these can be used to
demonstrate the manner in which the quantum radiation equations, (22-77a) and
(22-77b), and the Stokes parameters can be used. We now consider these problems.

22.5 STOKES VECTORS FOR QUANTUM MECHANICAL SYSTEMS

In this section we determine the Stokes vectors for several quantum systems of
interest. The problems we select are chosen because the mathematics is relatively
simple. Nevertheless, the examples presented are sufficiently detailed so that they
clearly illustrate the difference between the classical and quantum representations.
This is especially true with respect to the so-called selection rules as well as the
representation of emission and absorption spectra. The examples presented are (1)
a particle in an infinite potential well, (2) a one-dimensional harmonic oscillator, and
(3) a rigid rotator restricted to rotating in the xy plate. We make no attempt to
develop the solutions to these problems, but merely present the wave function and
then determine the expectation values of the coordinates. The details of these
problems are quite complicated, and the reader is referred to any of the numerous
texts on quantum mechanics given in the references.

22.5.1 Particle in an Infinite Potential Well

The simplest quantum system is that of the motion of a particle in an infinite
potential well of width extending from 0 to L. We assume the motion is along the
z axis, so Schrödinger’s equation for the system is

��hh2

2m

d2 ðzÞ

dz2
¼ E ðzÞ ð22-80Þ

and vanishes outside of the region. The normalized eigenfunctions are

 nðzÞ ¼
2

L

� �1=2
sin

n�z

L

� �
0 	 z 	 L ð22-81Þ

and the corresponding energy is

En ¼
�2 �hh2

2mL2

 !
n2 n ¼ 1, 2, 3, . . . ð22-82Þ
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Since the motion is only along the z axis, we need only evaluate znm. Thus,

znm ¼

Z L

0

 �
nðzÞz mðzÞ dz ð22-83aÞ

¼
2

L

Z L

0

sin
n�z

L

� �
z sin

m�z

L

� �
dz ð22-83bÞ

Straightforward evaluation of this integral yields

znm ¼
8Lnm

�2ðn2 �m2Þ
2

ðnþm oddÞ ð22-84aÞ

¼
L

2
ðn ¼ mÞ ð22-84bÞ

¼ 0 ðotherwiseÞ ð22-84cÞ

Equations (22-84b) and (22-84c) are of no interest because !nm describes a nonra-
diating condition and the field components are zero for znm ¼ 0. Equation (22-84) is
known as the selection rule for a quantum transition. Emission and absorption of
radiation only take place in discrete amounts. The result is that there will be an
infinite number of discrete spectral lines in the observed spectrum.

The field amplitudes are

E� ¼
2eL

�3"0c
2
!2
nm

nm

ðn2 �m2Þ
2

� �
sin � ð22-85aÞ

E� ¼ 0 ð22-85bÞ

where we have set R to unity. We now form the Stokes parameters and then the
Stokes vector in the usual way and obtain

S ¼
2eL

�3"0c
2

� �2

sin2 � !4
nm

nm

ðn2 �m2Þ
2

� �2
" # 1

1
0
0

0
BB@

1
CCA ð22-86Þ

This is the Stokes vector for linearly horizontally polarized light. We also have the
familiar dipole radiation angular factor sin2 �. We can observe either absorption or
emission spectra, depending on whether we have a transition from a lower energy
level to an upper energy level or from an upper to a lower level, respectively. For the
absorption case the spectrum that would be observed is obtained by considering all
possible combinations of n and m subject to the condition that n þ m is odd. Thus,
for example, for a maximum number of five we have

S ¼
2eL

�3"0c
2

� �
sin2 � !4

12

22

34

 ! 1
1
0
0

0
BB@

1
CCA,!4

14

42

154

 ! 1
1
0
0

0
BB@

1
CCA,!4

23

62

54

 ! 1
1
0
0

0
BB@

1
CCA

8>><
>>:

9>>=
>>;

ð22-87Þ
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Similarly, for the emission spectrum we would observe

S ¼
2eL

�3"0c
2

� �2

sin2 � !4
21

22

34

 ! 1
1
0
0

0
BB@

1
CCA,!4

41

42

154

 ! 1
1
0
0

0
BB@

1
CCA,!4

32

62

54

 ! 1
1
0
0

0
BB@

1
CCA

8>><
>>:

9>>=
>>;

ð22-88Þ

The intensity of the emission lines are in the ratio:

!4
21

22

34

 !
: !4

41

42

154

 !
: !4

32

62

54

 !
ð22-89Þ

Using the Bohr frequency condition and (22-82), we can write !nm as

!nm ¼
En � Em

�hh
¼
�2 �hh

2mL2
ðn2 �m2

Þ ð22-90Þ

Thus, the ratio of the intensities of the emission lines are 22 : 42 : 62 or 1 : 4 : 9,
showing that the transition 3! 2 is the most intense.

22.5.2 One-Dimensional Harmonic Oscillator

The potential V(z) of a one-dimensional harmonic oscillator is VðzÞ ¼ z2=2.
Schrödinger’s equation then becomes

��hh2

2m

d2 ðzÞ

dz2
þ
m!2z2

2
 ðzÞ ¼ E ðzÞ ð22-91Þ

The normalized solutions are

 nðzÞ ¼
2�n=2

ðn!Þ1=2
m!

��hh

� �1=2
exp

�m!z2

2�hh

 !
Hn

2m

�hh

� �1=2
z

" #
n ¼ 0, 1, 2 ð22-92Þ

where Hn(u) are the Hermite polynomials. The corresponding energy levels are

En ¼ nþ
1

2

� �
�hh! ð22-93Þ

where !2
¼ k=m. The expectation value of z is readily found to be

znm ¼
�hh

m!

� �1=2
nþ 1

2

� �1=2
n ! nþ 1 absorption ð22-94aÞ

¼
�hh

m!

� �1=2
n

2

h i1=2
n ! n� 1 emission ð22-94bÞ

¼ 0 otherwise ð22-94cÞ
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The field components for the emitted and absorbed fields are then

E� ¼
�e

4�"0c
2

�hh

m!

� �1=2
sin � !2

n, nþ1

nþ 1

2

� �1=2" #
ð22-95aÞ

E� ¼ 0 ð22-95bÞ

and

E� ¼
�e

4�"0c
2

�hh

m!

� �1=2
sin � !2

n, n�1

n

2

� �1=2� �
ð22-96aÞ

E� ¼ 0 ð22-96bÞ

The Stokes vector for the absorption and emission spectra are then

S ¼
e2 �hh

16�2"20c
4m!

 !
sin2 � !4

n, nþ1

nþ 1

2

� � 1
1
0
0

0
BB@

1
CCA ð22-97Þ

S ¼
e2 �hh

16�2"20c
4m!

 !
sin2 � !4

n, n�1

n

2

h i 1
1
0
0

0
BB@

1
CCA ð22-98Þ

Equations (22-97) and (22-98) show that for both absorption and emission spectra
the radiation is linearly horizontally polarized, and, again, we have the familiar sin2 �
angular dependence of dipole radiation. To obtain the observed spectral lines we
take n ¼ 0, 1, 2, 3, . . . for the absorption spectrum and n ¼ 1, 2, 3. . . for the emission
spectrum. We then obtain a series of spectral lines similar to (22-89) and (22-90).
With respect to the intensities of the spectral lines for, say n ¼ 5, the ratio of
intensities is 1 : 2 : 3 : 4 : 5 : 6, showing that the strongest transition is 6! 5 for emis-
sion and 5! 6 for absorption.

22.5.3 Rigid Rotator

The ideal diatomic molecule is represented by a rigid rotator; that is, a molecule can
be represented by two atoms with masses m1 and m2 rigidly connected so that the
distance between them is a constant R. If there are no forces acting on the rotator,
the potential may be set to zero and the variable r, the radial distance, to unity.
Schrödinger’s equation for this case is then

ðsin �Þ�1 @

@�
sin �

@ 

@�

� �
þ ðsin2 �Þ�1 @

2 

@�2
þ

2IE

�hh2

� �
 ¼ 0 ð22-99Þ

where I is the moment of inertia, given by

I ¼ m1r
2
1 þm2r

2
2 ð22-100Þ

The solution of Schrödinger’s equation (22-99) is then

 l,m ¼ Yl,�mð�,�Þ ¼ �l,�mð�Þ��mð�Þ ð22-101Þ
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where l 
 mj j. The energy levels are given by

E ¼
�hh2

2I

 !
Iðlþ 1Þ l ¼ 0, 1, 2, 3, . . . ð22-102Þ

A very important and illustrative example is the case where the motion of the
rotator is restricted to the xy plane. For this case the polar angle � ¼ �=2 and (22-99)
reduces to

d2 

d�2
¼ �

2IE

�hh2

� �
 ð22-103Þ

with the solutions:

 ¼ ��mð�Þ ¼ ð2�Þ�1=2 expð�im�Þ m ¼ 1, 2, 3, . . . ð22-104Þ

Equation (22-104) can also be obtained from (22-101) by evaluating the associated
Legendre polynomial at � ¼ �=2. The energy levels for (22-103) are found to be

E ¼
�hh

2I

� �
m2 m ¼ 1, 2, 3, . . . ð22-105Þ

We now calculate the Stokes vector corresponding to (22-103). Since we
are assuming that � is measured positively in the xy plane, the z component vanishes.
Thus, we need only calculate xnm and ynm. The coordinates x and y are related to � by

x ¼ a cos� ð22-106aÞ

y ¼ a sin� ð22-106bÞ

where a is the radius of the rigid rotator (molecule). We now calculate the expecta-
tion values:

xnm ¼

Z 2�

0

 �
nx m d�

¼
a

2�

Z 2�

0

expð�in�Þ cos� expðim�Þ d�

¼
a

4�

Z 2�

0

exp �iðn�m� 1Þ�½ � d�

þ
a

4�

Z 2�

0

exp �iðn�mþ 1Þ�½ � d� ð22-107Þ

The first integral vanishes except for m ¼ n�1, while the second integral vanishes
except for m ¼ n þ 1; we then have the selection rule that �m ¼ �1. Evaluation of
the integrals in (22-107) then gives

xm,m�1 ¼ þ
a

2
ð22-108Þ

In a similar manner we find that

ym,m�1 ¼ �
a

2i
ð22-109Þ
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Thus, the amplitudes for the absorbed and emitted fields are

E� ¼ �
ea

8�"0c
2

� �
!2
n,mþ1 cos � ð22-110aÞ

E� ¼ �
ea

8i�"0c
2

� �
!2
m,mþ1 ð22-110bÞ

and

E� ¼ �
ea

8�"0c
2

� �
!2
m,m�1 cos � ð22-111aÞ

E� ¼
ea

8i�"0c
2

� �
!2
m,m�1 ð22-111bÞ

respectively. The Stokes vectors using (22-106) and (22-107) are then readily found
to be

S ¼
ea

8�"0c
2

� �2

!4
m,mþ1

1þ cos2 �
� sin2 �

0
�2 cos �

0
BB@

1
CCA ð22-112Þ

and

S ¼
ea

8�"0c
2

� �2

!4
m,m�1

1þ cos2 �
� sin2 �

0
2 cos �

0
BB@

1
CCA ð22-113Þ

In general, we see that for both the absorption and emission spectra the spectral lines
are elliptically polarized and of opposite ellipticity. As usual, if the radiation is
observed parallel to the z axis (� ¼ 0�), then (22-112) and (22-113) reduce to

S ¼ 2
ea

8�"0c
2

� �2

!4
m,mþ1

1
0
0
�1

0
BB@

1
CCA ð22-114Þ

and

S ¼ 2
ea

8�"0c
2

� �2

!4
m,m�1

1
0
0
1

0
BB@

1
CCA ð22-115Þ

which are the Stokes vectors for left and right circularly polarized light. For � ¼ 90�,
(22-111) and (22-112) reduce to

S ¼
ea

8�"0c
2

� �2

!4
m,mþ1

1
�1
0
0

0
BB@

1
CCA ð22-116Þ
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and

S ¼
ea

8�"0c
2

� �2

!4
m,m�1

1
�1
0
0

0
BB@

1
CCA ð22-117Þ

which are the Stokes vectors for linearly vertically polarized light.
Inspection of (22-116) and (22-117) shows that the Stokes vectors, aside from

the frequency !m,m�1, are identical to the classical result. Thus, the quantum beha-
vior expressed by Planck’s constant is nowhere to be seen in the spectrum! This result
is very different from the result for the linear harmonic oscillator where Planck’s
constant �hh appears in the intensity. It was this peculiar behavior of the spectra that
made their interpretation so difficult for a long time. That is, for some problems (the
linear oscillator) the quantum behavior appeared in the spectral intensity, and for
other problems (the rigid rotator) it did not. The reason for the disappearance
of Planck’s constant could usually be traced to the fact that it actually appeared
in both the denominator and numerator of many problems and simply canceled out.
In all cases, using Bohr’s correspondence principle, in the limit of large quantum
numbers �hh always canceled out of the final result.

We now see that the Stokes vector can be used to represent both classical and
quantum radiation phenomena. Before we conclude, a final word must be said about
the influence of the selection rules on the polarization state. The reader is sometimes
led to believe that the selection rule itself is the cause for the appearance of either
linear, circular, or elliptical polarization. This is not quite correct. We recall that the
field equations emitted by an accelerating charge are

E� ¼
e

4�"0c
2R

€xx cos � � €zz sin �½ � ð16-8Þ

E� ¼
e

4�"0c
2R

€yy½ � ð16-9Þ

We have seen that we can replace €xx, €yy, and €zz by their quantum mechanical
equivalents:

€xx ! �!2
nmxnm ð22-118aÞ

€yy ! �!2
nmynm ð22-118bÞ

€zz ! �!2
nmznm ð22-118cÞ

so that (16-8) and (16-9) become

E� ¼ �
e

4�"0c
2R

� �
!2
nm xnm cos � � znm sin �½ � ð22-119aÞ

E� ¼ �
e

4�"0c
2R

� �
!2
nmynm ð22-119bÞ

If only a single Cartesian variable remains in (22-119), then we have linearly polar-
ized light. If two variables appear, e.g., xnm and ynm, then we obtain elliptically or
circularly polarized light. However, if the selection rule is such that either xnm or ynm
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were to vanish, then we would obtain linearly polarized light regardless of the pre-
sence of the angular factor. In other words, in classical physics the angular factor
dominates the state of polarization emitted by the radiation. However, in quantum
mechanics the fact that either xnm or ynm can vanish and thus give rise to linearly
polarized light shows that the role of the selection rule is equally significant in the
polarization of the emitted or absorbed radiation.

Numerous other problems can easily be treated with the methods discussed
here, such as the rigid rotator in three dimensions and the Zeeman effect [22]. We
refer the reader to the numerous texts on quantum mechanics for further examples
and applications.
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23

Introduction

Polarized light and its applications appear in many branches of science and engineer-
ing. These include astrophysics (synchrotron radiation, solar physics, atmospheric
scattering), chemistry (saccharimetry, optical activity, fluorescence polarization),
microscopy (the polarizing microsope), and, of course, optics [polarization by reflec-
tion from glass (dielectrics) and metals, liquid crystals, thin films, electro-optics, etc.]
It is not practical to deal with all these different applications of polarized light in this
single textbook. Therefore, in this final part the discussion is restricted to several
applications which are of special importance.

We begin with Chapter 24 ‘‘Crystal Optics.’’ The polarization of light was first
discovered by Bartholinus while investigating the transmission of unpolarized light
through a crystal of Iceland spar (calcite). It is a remarkable fact that in spite of all
the research on materials over the last 300 years very few natural or synthetic
materials have been found which can be used to create and analyze polarized
light. The crystals having the widest applications in the visible region of the spectrum
are calcite, quartz, mica, and tourmaline. The optics of crystals is quite complicated.
Fortunately, calcite and quartz are uniaxial crystals and relatively easy to understand
in terms of their polarizing behavior.

In Chapter 24 we discuss a very important application of polarized light,
namely, the phenomenon of electro-optical crystals. Many crystals become aniso-
tropic when subjected to an electric field or a magnetic field or both; the associated
effects are called the electro-optical and magneto-optical effects, respectively. Of the
two phenomena, in crystals the electro-optical effect is the more important, so we
consider only this effect in detail.

The polarization of light is changed when light is reflected from dielectric
materials. The change in polarization also occurs when light is reflected (and trans-
mitted) by metals and semiconductors. In Chapter 25 we discuss the optics of metals.
In particular, we show that the optical constants of the metal can be determined
by analyzing the polarization of the reflected light.

Chapter 26 is a summary of some of the most common polarization optical
elements that are used in the practice of optics. One of these is Polaroid or sheet
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polarizer. For many years a synthetic material was sought which could create polar-
ized light. This was finally accomplished with the invention of Polaroid by Edwin
Land. Polaroid is a dichroic polarizer that creates polarized light by the differential
absorption of an incident beam of light. For many applications Polaroid is a useful
substitute for calcite polarizers, which are very expensive. Because Polaroid is so
widely used, its parameters and their measurement are presented and discussed in
Section 26.2 with other types of polarizers.

Chapter 27 describes modern techniques of measurement of the Stokes vector.
Stokes polarimetry is employed when the polarization properties of light are desired.
Mueller matrix polarimetry, discussed in Chapter 28, is used when the polarization
properties of a sample are needed. This measurement technique implies that one has
control over the incident light by means of a polarization state generator, and
reflected or transmitted light from the sample is analyzed by a polarization state
analyzer.

In Chapter 29 we discuss one of the most important and elegant applications
of polarized light, ellipsometry. The objective of ellipsometry is to measure the
thickness and real and imaginary refractive indices of thin films. We introduce
the fundamental equation of ellipsometry and solve it by using the Stokes
parameters and the Mueller matrices.
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24
Crystal Optics

24.1 INTRODUCTION

Crystals are among nature’s most beautiful and fascinating objects. Even the slight-
est examination of crystals shows remarkable forms, symmetries, and colors. Some
also have the property of being almost immutable, and appear to last forever. It is
this property of chemical and physical stability that has allowed them to become so
valuable.

Many types of crystals have been known since time immemorial, e.g., dia-
monds, sapphires, topaz, emeralds, etc. Not surprisingly, therefore, they have been
the subject of much study and investigation for centuries. One type of crystal, calcite,
was probably known for a very long time before Bartholinus discovered in the late
seventeenth century that it was birefringent. Bartholinus apparently obtained the
calcite crystal from Iceland (Iceland spar); the specimens he obtained were extremely
free of striations and defects. His discovery of double refraction (birefringence) and
its properties was a source of wonder to him. According to his own accounts, it gave
him endless hours of pleasure—as a crystal he far preferred it to diamond! It was
Huygens, however, nearly 30 years later, who explained the phenomenon of double
refraction.

In this chapter we describe the fundamental behavior of the optical field prop-
agating in crystals; this behavior can be correctly described by assuming that crystals
are anisotropic. Most materials are anisotropic. This anisotropy results from the
structure of the material, and our knowledge of the nature of that structure can
help us to understand the optical properties.

The interaction of light with matter is a process that is dependent on the
geometrical relationships between light and matter. By its very nature, light is asym-
metrical. Considering light as a wave, it is a transverse oscillation in which the
oscillating quantity, the electric field vector, is oriented in a particular direction in
space perpendicular to the propagation direction. Light that crosses the boundary
between two materials, isotropic or not, at any angle other than normal to the
boundary, will produce an anisotropic result. The Fresnel equations illustrate this,
as we saw in Chapter 8. Once light has crossed a boundary separating materials, it
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experiences the bulk properties of the material through which it is currently travers-
ing, and we are concerned with the effects of those bulk properties on the light.

The study of anisotropy in materials is important to understanding the results
of the interaction of light with matter. For example, the principle of operation of
many solid state and liquid crystal spatial light modulators is based on polarization
modulation. Modulation is accomplished by altering the refractive index of the
modulator material, usually with an electric or magnetic field. Crystalline materials
are an especially important class of modulator materials because of their use in
electro-optics and in ruggedized or space-worthy systems, and also because of the
potential for putting optical systems on integrated circuit chips.

We will briefly review the electromagnetics necessary to the understanding of
anisotropic materials, and show the source and form of the electro-optic tensor. We
will discuss crystalline materials and their properties, and introduce the concept of
the index ellipsoid. We will show how the application of electric and magnetic fields
alters the properties of materials and give examples. Liquid crystals will be discussed
as well.

A brief summary of electro-optic modulation modes using anisotropic
materials concludes the chapter.

24.2 REVIEW OF CONCEPTS FROM ELECTROMAGNETISM

Recall from electromagnetics [1–3] that the electric displacement vector �DD is given by
(MKS units)

�DD ¼ " �EE ð24-1Þ

where " is the permittivity and " ¼ "o 1þ �ð Þ, where "o is the permittivity of free
space, � is the electric susceptibility, 1þ �ð Þ is the dielectric constant, and
n ¼ 1þ �ð Þ

1=2 is the index of refraction. The electric displacement is also given by

�DD ¼ "o �EEþ �PP ð24-2Þ

but

�DD ¼ "o 1þ �ð Þ �EE ¼ "o �EEþ "o� �EE ð24-3Þ

so �PP, the polarization (also called the electric polarization or polarization density), is
�PP ¼ "ox �EE.

The polarization arises because of the interaction of the electric field with
bound charges. The electric field can produce a polarization by inducing a dipole
moment, i.e., separating charges in a material, or by orienting molecules that possess
a permanent dipole moment.

For an isotropic, linear medium:

�PP ¼ "ox �EE ð24-4Þ

and � is a scalar, but note that in

D ¼ "o �EEþ �PP ð24-5Þ
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the vectors do not have to be in the same direction, and in fact in anisotropic media,
�EE and �PP are not in the same direction (and so �DD and �EE are not in the same direction).
Note that � does not have to be a scalar nor is �PP necessarily linearly related to �EE. If
the medium is linear but anisotropic:

Pi ¼
X
j

"o�ijEj ð24-6Þ

where �ij is the susceptibility tensor, i.e.,

P1

P2

P3

0
@

1
A ¼ "o

�11 �12 �13
�21 �22 �23
�31 �32 �33

0
@

1
A E1

E2

E3

0
@

1
A ð24-7Þ

and

D1

D2

D3

0
B@

1
CA ¼ "o

1 0 0

0 1 0

0 0 1

0
B@

1
CA

E1

E2

E3

0
B@

1
CAþ "o

�11 �12 �13

�21 �22 �23

�31 �32 �33

0
B@

1
CA

E1

E2

E3

0
B@

1
CA

¼ "o

1þ �11 �12 �13

�21 1þ �22 �23

�31 �32 1þ �33

0
B@

1
CA

E1

E2

E3

0
B@

1
CA ð24-8Þ

where the vector indices 1,2,3 represent the three Cartesian directions. This can be
written

Di ¼ "ijEj ð24-9Þ

where

"ij ¼ "oð1þ �ijÞ ð24-10Þ

is variously called the dielectric tensor, permittivity tensor, or dielectric permittivity
tensor. Equations (24-9) and (24-10) use the Einstein summation convention, i.e.,
whenever repeated indices occur, it is understood that the expression is to be summed
over the repeated indices. This notation will be used throughout this chapter.

The dielectric tensor is symmetric and real (assuming that the medium is homo-
geneous and nonabsorbing) so that

"ij ¼ "ji ð24-11Þ

and there are at most six independent elements.
Note that for an isotropic medium with nonlinearity (which occurs with higher

field strengths):

P ¼ "o �Eþ �2E
2
þ �3E

3
þ � � �

	 

ð24-12Þ

where �2, �3, etc., are the nonlinear terms.
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Returning to the discussion of a linear, homogeneous, anisotropic medium, the
susceptibility tensor:

�11 �12 �13
�21 �22 �23
�31 �32 �33

0
@

1
A ¼

�11 �12 �13
�12 �22 �23
�13 �23 �33

0
@

1
A ð24-13Þ

is symmetric so that we can always find a set of coordinate axes (i.e., we can always
rotate to an orientation) such that the off-diagonal terms are zero and the tensor is
diagonalized thus

�011 0 0
0 �022 0
0 0 �033

0
@

1
A ð24-14Þ

The coordinate axes for which this is true are called the principal axes, and these �0

are the principal susceptibilities. The principal dielectric constants are given by

1 0 0

0 1 0

0 0 1

0
B@

1
CAþ

�11 0 0

0 �22 0

0 0 �33

0
B@

1
CA ¼

1þ �11 0 0

0 1þ �22 0

0 0 1þ �33

0
B@

1
CA

¼

n
2
1 0 0

0 n
2
2 0

0 0 n
2
3

0
B@

1
CA ð24-15Þ

where n1, n2, and n3 are the principal indices of refraction.

24.3 CRYSTALLINE MATERIALS AND THEIR PROPERTIES

As we have seen above, the relationship between the displacement and the field is

Di ¼ "ijEj ð24-16Þ

where "ij is the dielectric tensor. The impermeability tensor �ij is defined as

�ij ¼ "oð"
�1
Þij ð24-17Þ

where "�1 is the inverse of the dielectric tensor. The principal indices of refraction, n1,
n2, and n3 are related to the principal values of the impermeability tensor and the
principal values of the permittivity tensor by

1

n21
¼ �ii ¼

"o
"ii

1

n22
¼ �jj ¼

"o
"jj

1

n23
¼ �kk ¼

"o
"kk

ð24-18Þ

The properties of the crystal change in response to the force from an externally
applied electric field. In particular, the impermeability tensor is a function of the
field. The electro-optic coefficients are defined by the expression for the expansion,
in terms of the field, of the change in the impermeability tensor from zero field
value, i.e.,

�ijðEÞ � �ijð0Þ � ��ij ¼ rijkEk þ sijklEkEl þOðE
n
Þ, n ¼ 3, 4, . . . ð24-19Þ
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where �ij is a function of the applied field E, rijk are the linear, or Pockels, electro-
optic tensor coefficients, and the sijkl are the quadratic, or Kerr, electro-optic tensor
coefficients. Terms higher than quadratic are typically small and are neglected.

Note that the values of the indices and the electro-optic tensor coefficients are
dependent on the frequency of light passing through the material. Any given indices
are specified at a particular frequency (or wavelength). Also note that the external
applied fields may be static or alternating fields, and the values of the tensor coeffi-
cients are weakly dependent on the frequency of the applied fields. Generally, low-
and/or high-frequency values of the tensor coefficients are given in tables. Low
frequencies are those below the fundamental frequencies of the acoustic resonances
of the sample, and high frequencies are those above. Operation of an electro-optic
modulator subject to low (high) frequencies is sometimes described as being
unclamped (clamped).

The linear electro-optic tensor is of third rank with 33 elements and the quad-
ratic electro-optic tensor is of fourth rank with 34 elements; however, symmetry
reduces the number of independent elements. If the medium is lossless and optically
inactive:

"ij is a symmetric tensor, i.e., "ij ¼ "ji,
�ij is a symmetric tensor, i.e., �ij ¼ �ji,
rijk has symmetry where coefficients with permuted first and second indices are

equal, i.e., rijk ¼ rjik,
sijkl has symmetry where coefficients with permuted first and second indices are

equal and coefficients with permuted third and fourth coefficients are equal,
i.e., sijkl ¼ sjikl and sijkl ¼ sijlk.

Symmetry reduces the number of linear coefficients from 27 to 18, and reduces
the number of quadratic coefficients from 81 to 36. The linear electro-optic coeffi-
cients are assigned two indices so that they are rlk where l runs from 1 to 6 and k runs
from 1 to 3. The quadratic coefficients are assigned two indices so that they become
sij where i runs from 1 to 6 and j runs from 1 to 6. For a given crystal symmetry class,
the form of the electro-optic tensor is known.

24.4 CRYSTALS

Crystals are characterized by their lattice type and symmetry. There are 14 lattice
types. As an example of three of these, a crystal having a cubic structure can be
simple cubic, face-centered cubic, or body-centered cubic.

There are 32 point groups corresponding to 32 different symmetries. For exam-
ple, a cubic lattice has five types of symmetry. The symmetry is labeled with point
group notation, and crystals are classified in this way. A complete discussion of
crystals, lattice types, and point groups is outside the scope of the present work,
and will not be given here; there are many excellent references [4–9]. Table 24-1 gives
a summary of the lattice types and point groups, and shows how these relate to
optical symmetry and the form of the dielectric tensor.

In order to understand the notation and terminology of Table 24-1, some
additional information is required which we now introduce. As we have seen in
the previous sections, there are three principal indices of refraction. There are
three types of materials; those for which the three principal indices are equal,
those where two principal indices are equal, and the third is different, and those
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where all three principal indices are different. We will discuss these three cases in
more detail in the next section. The indices for the case where there are only two
distinct values are named the ordinary index (no) and the extraordinary index (ne).
These labels are applied for historical reasons [10]. Erasmus Bartholinus, a Danish
mathematician, in 1669 discovered double refraction in calcite. If the calcite crystal,
split along its natural cleavage planes, is placed on a typewritten sheet of paper, two
images of the letters will be observed. If the crystal is then rotated about an axis
perpendicular to the page, one of the two images of the letters will rotate about the
other. Bartholinus named the light rays from the letters that do not rotate the
ordinary rays, and the rays from the rotating letters he named the extraordinary

Table 24-1 Crystal Types, Point Groups, and the Dielectric Tensors

Symmetry Crystal System Point Group Dielectric Tensor

Isotropic Cubic �443m

" ¼ "o

n
2 0 0
0 n

2 0
0 0 n

2

0
@

1
A432

m3
23

m3m

Uniaxial Tetragonal 4

" ¼ "o

n
2
o 0 0
0 n

2
o 0

0 0 n
2
e

0
@

1
A

�44

4=m
422
4mm
�442m

4=mmm

Hexagonal 6
�66

6=m
622

6mm
�66m2

6=mmm

Trigonal 3
�33
32

3m
�33m

Biaxial Triclinic 1

" ¼ "o

n
2
1 0 0
0 n

2
2 0

0 0 n
2
3

0
@

1
A

�11

Monoclinic 2
m

2=m

Orthorhombic 222
2mm

mmm

Source: Ref. 11.
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rays, hence the indices that produce these rays are named likewise. This explains the
notation in the dielectric tensor for tetragonal, hexagonal, and trigonal crystals.

Let us consider such crystals in more detail. There is a plane in the material
in which a single index would be measured in any direction. Light that is propa-
gating in the direction normal to this plane with equal indices experiences the same
refractive index for any polarization (orientation of the E vector). The direction for
which this occurs is called the optic axis. Crystals having one optic axis are called
uniaxial crystals. Materials with three principal indices have two directions in
which the E vector experiences a single refractive index. These materials have
two optic axes and are called biaxial crystals. This will be more fully explained
in Section 24.4.1. Materials that have more than one principal index of refraction
are called birefringent materials and are said to exhibit double refraction.

Crystals are composed of periodic arrays of atoms. The lattice of a crystal is a
set of points in space. Sets of atoms that are identical in composition, arrangement,
and orientation are attached to each lattice point. By translating the basic structure
attached to the lattice point, we can fill space with the crystal. Define vectors a, b,
and c which form three adjacent edges of a parallelepiped which spans the basic
atomic structure. This parallelepiped is called a unit cell. We call the axes that lie
along these vectors the crystal axes.

We would like to be able to describe a particular plane in a crystal, since
crystals may be cut at any angle. The Miller indices are quantities that describe
the orientation of planes in a crystal. The Miller indices are defined as follows: (1)
locate the intercepts of the plane on the crystal axes—these will be multiples of lattice
point spacing; (2) take the reciprocals of the intercepts and form the three smallest
integers having the same ratio. For example, suppose we have a cubic crystal so that
the crystal axes are the orthogonal Cartesian axes. Suppose further that the plane we
want to describe intercepts the axes at the points 4, 3, and 2. The reciprocals of these
intercepts are 1=4, 1=3, and 1=2. The Miller indices are then (3,4,6). This example
serves to illustrate how the Miller indices are found, but it is more usual to encounter
simpler crystal cuts. The same cubic crystal, if cut so that the intercepts are 1, 1, 1
(defining a plane parallel to the yz plane in the usual Cartesian coordinates) has
Miller indices (1,0,0). Likewise, if the intercepts are 1, 1, 1 (diagonal to two of the
axes), the Miller indices are (1,1,0), and if the intercepts are 1, 1, 1 (diagonal to all
three axes), the Miller indices are (1,1,1).

Two important electro-optic crystal types have the point group symbols
�443m (this is a cubic crystal, e.g., CdTe and GaAs) and �442m (this is a tetragonal
crystal, e.g., AgGaS2). The linear and quadratic electro-optic tensors for these two
crystal types, as well as all the other linear and quadratic electro-optic coefficient
tensors for all crystal symmetry classes, are given in Tables 24-2 and 24-3. Note
from these tables that the linear electro-optic effect vanishes for crystals that retain
symmetry under inversion, i.e., centrosymmetric crystals, whereas the quadratic
electro-optic effect never vanishes. For further discussion of this point, see Yariv
and Yeh, [11].

24.4.1 The Index Ellipsoid

Light propagating in anisotropic materials experiences a refractive index and a
phase velocity that depends on the propagation direction, polarization state, and
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Table 24-2 Linear Electro-optic Tensors

Centrosymmetric �11

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

0
BBBBBB@

1
CCCCCCA

2=m
mmm

4=m
4=mmm

�33
�33m
6=m

6=mmm

m3
m3m

Triclinic 1 r11 r12 r13
r21 r22 r23
r31 r32 r33
r41 r42 r43
r51 r52 r53
r61 r62 r63

0
BBBBBB@

1
CCCCCCA

Monoclinic 2 2kx2ð Þ 0 r12 0
0 r22 0
0 r32 0
r41 0 r43
0 r52 0
r61 0 r63

0
BBBBBB@

1
CCCCCCA

2 2kx3ð Þ 0 0 r13
0 0 r23
0 0 r33
r41 r42 0
r51 r52 0
0 0 r63

0
BBBBBB@

1
CCCCCCA

m m?x2ð Þ r11 0 r13
r21 0 r23
r31 0 r33
0 r42 0
r51 0 r53
0 r62 0

0
BBBBBB@

1
CCCCCCA

m m?x3ð Þ r11 r12 0
r21 r22 0
r31 r32 0
0 0 r43
0 0 r53
r61 r62 0

0
BBBBBB@

1
CCCCCCA

Orthorhombic 222 0 0 0
0 0 0
0 0 0
r41 0 0
0 r52 0
0 0 r63

0
BBBBBB@

1
CCCCCCA

(contd. )

Copyright © 2003 by Marcel Dekker, Inc. All Rights Reserved.



Table 24-2 Continued

2mm 0 0 r13
0 0 r23
0 0 r33
0 r42 0
r51 0 0
0 0 0

0
BBBBBB@

1
CCCCCCA

Tetragonal 4 0 0 r13
0 0 r13
0 0 r33
r41 r51 0
r51 �r41 0
0 0 0

0
BBBBBB@

1
CCCCCCA

�44 0 0 r13
0 0 �r13
0 0 0
r41 �r51 0
r51 r41 0
0 0 r63

0
BBBBBB@

1
CCCCCCA

422 0 0 0
0 0 0
0 0 0
r41 0 0
0 �r41 0
0 0 0

0
BBBBBB@

1
CCCCCCA

4mm 0 0 r13
0 0 r13
0 0 r33
0 r51 0
r51 0 0
0 0 0

0
BBBBBB@

1
CCCCCCA

�442m 2kx1ð Þ 0 0 0
0 0 0
0 0 0
r41 0 0
0 r41 0
0 0 r63

0
BBBBBB@

1
CCCCCCA

Trigonal 3 r11 �r22 r13
�r11 r22 r13
0 0 r33
r41 r51 0
r51 �r41 0
�r22 �r11 0

0
BBBBBB@

1
CCCCCCA

32 r11 0 0
�r11 0 0
0 0 0
r41 0 0
0 �r41 0
0 �r11 0

0
BBBBBB@

1
CCCCCCA

(contd.)
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Table 24-2 Continued

3m m?x1ð Þ 0 �r22 r13
0 r22 r13
0 0 r33
0 r51 0
r51 0 0
�r22 0 0

0
BBBBBB@

1
CCCCCCA

3m m?x2ð Þ r11 0 r13
�r11 0 r13
0 0 r33
0 r51 0
r51 0 0
0 �r11 0

0
BBBBBB@

1
CCCCCCA

Hexagonal 6 0 0 r13
0 0 r13
0 0 r33
r41 r51 0
r51 �r41 0
0 0 0

0
BBBBBB@

1
CCCCCCA

6mm 0 0 r13
0 0 r13
0 0 r33
0 r51 0
r51 0 0
0 0 0

0
BBBBBB@

1
CCCCCCA

622 0 0 0
0 0 0
0 0 0
r41 0 0
0 �r41 0
0 0 0

0
BBBBBB@

1
CCCCCCA

�66 r11 �r22 0
�r11 r22 0
0 0 0
0 0 0
0 0 0

�r22 �r11 0

0
BBBBBB@

1
CCCCCCA

�66m2 m?x1ð Þ 0 �r22 0
0 r22 0
0 0 0
0 0 0
0 0 0

�r22 0 0

0
BBBBBB@

1
CCCCCCA

�66m2 m?x2ð Þ r11 0 0
�r11 0 0
0 0 0
0 0 0
0 0 0
0 �r11 0

0
BBBBBB@

1
CCCCCCA

(contd.)
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wavelength. The refractive index for propagation (for monochromatic light of some
specified frequency) in an arbitrary direction (in Cartesian coordinates):

�aa ¼ xîiþ yĵjþ zk̂k ð24-20Þ

can be obtained from the index ellipsoid, a useful and lucid construct for visualiza-
tion and determination of the index. (Note that we now shift from indexing the
Cartesian directions with numbers to using x, y, and z.) In the principal coordinate
system the index ellipsoid is given by

x
2

n2x
þ
y
2

n2y
þ

z
2

n2z
¼ 1 ð24-21Þ

in the absence of an applied electric field. The lengths of the semimajor and semi-
minor axes of the ellipse formed by the intersection of this index ellipsoid and a plane
normal to the propagation direction and passing through the center of the ellipsoid
are the two principal indices of refraction for that propagation direction. Where
there are three distinct principal indices, the crystal is defined as biaxial, and the
above equation holds. If two of the three indices of the index ellipsoid are equal, the
crystal is defined to be uniaxial and the equation for the index ellipsoid is

x
2

n2o
þ
y
2

n2o
þ

z
2

n2e
¼ 1 ð24-22Þ

Uniaxial materials are said to be uniaxial positive when no < ne and uniaxial negative
when no > ne: When there is a single index for any direction in space, the crystal is
isotropic and the equation for the ellipsoid becomes that for a sphere:

x
2

n2
þ
y
2

n2
þ

z
2

n2
¼ 1 ð24-23Þ

The index ellipsoids for isotropic, uniaxial, and biaxial crystals are illustrated in
Fig. 24-1.

Examples of isotropic materials are CdTe, NaCl, diamond, and GaAs.
Examples of uniaxial positive materials are quartz and ZnS. Materials that are
uniaxial negative include calcite, LiNbO3, BaTiO3, and KDP (KH2PO4). Examples
of biaxial materials are gypsum and mica.

Table 24-2 Continued

Cubic �443m

23

0 0 0
0 0 0
0 0 0
r41 0 0
0 r41 0
0 0 r41

0
BBBBBB@

1
CCCCCCA

432 0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

0
BBBBBB@

1
CCCCCCA

Source: Ref. 11
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Table 24-3 Quadratic Electro-optic Tensors

Triclinic 1

�11

s11 s12 s13 s14 s15 s16
s21 s22 s23 s24 s25 s26
s31 s32 s33 s34 s35 s36
s41 s42 s43 s44 s45 s46
s51 s52 s53 s54 s55 s56
s61 s62 s63 s64 s65 s66

0
BBBBBB@

1
CCCCCCA

Monoclinic 2

m

2=m

s11 s12 s13 0 s15 0
s21 s22 s23 0 s25 0
s31 s32 s33 0 s35 0
0 0 0 s44 0 s46
s51 s52 s53 0 s55 0
0 0 0 s64 0 s66

0
BBBBBB@

1
CCCCCCA

Orthorhombic 2mm

222

mmm

s11 s12 s13 0 0 0
s21 s22 s23 0 0 0
s31 s32 s33 0 0 0
0 0 0 s44 0 0
0 0 0 0 s55 0
0 0 0 0 0 s66

0
BBBBBB@

1
CCCCCCA

Tetragonal 4

�44

4=m

s11 s12 s13 0 0 s16
s12 s11 s13 0 0 �s16
s31 s31 s33 0 0 0
0 0 0 s44 s45 0
0 0 0 �s45 s44 0
s61 �s61 0 0 0 s66

0
BBBBBB@

1
CCCCCCA

422

4mm

�442m

4=mm

s11 s12 s13 0 0 0
s12 s11 s13 0 0 0
s31 s31 s33 0 0 0
0 0 0 s44 0 0
0 0 0 0 s44 0
0 0 0 0 0 s66

0
BBBBBB@

1
CCCCCCA

Trigonal 3

�33

s11 s12 s13 s14 s15 �s61
s12 s11 s13 �s14 �s15 s61
s31 s31 s33 0 0 0
s41 �s41 0 s44 s45 �s51
s51 �s51 0 �s45 s44 s41

s61 �s61 0 �s15 s14
1

2
s11 � s12ð Þ

0
BBBBBBB@

1
CCCCCCCA

32

3m

�33m

s11 s12 s13 s14 0 0
s12 s11 s13 �s14 0 0
s13 s13 s33 0 0 0
s41 �s41 0 s44 0 0
0 0 0 0 s44 s41

0 0 0 0 s14
1

2
s11 � s12ð Þ

0
BBBBBBB@

1
CCCCCCCA

Hexagonal 6

�66

6=m

s11 s12 s13 0 0 �s61
s12 s11 s13 0 0 s61
s31 s31 s33 0 0 0
0 0 0 s44 s45 0
0 0 0 �s45 s44 0

s61 �s61 0 0 0
1

2
s11 � s12ð Þ

0
BBBBBBB@

1
CCCCCCCA

(contd.)
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Table 24-3 Continued

622

6mm

�66m2

6=mmm

s11 s12 s13 0 0 0
s12 s11 s13 0 0 0
s31 s31 s33 0 0 0
0 0 0 s44 0 0
0 0 0 0 s44 0

0 0 0 0 0
1

2
s11 � s12ð Þ

0
BBBBBBB@

1
CCCCCCCA

Cubic 23

m3

s11 s12 s13 0 0 0
s13 s11 s12 0 0 0
s12 s13 s11 0 0 0
0 0 0 s44 0 0
0 0 0 0 s44 0
0 0 0 0 0 s44
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s12 s12 s11 0 0 0

0 0 0
1

2
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Source: Ref. 11

Figure 24-1 Index ellipsoids.
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24.4.2 Natural Birefringence

Many materials have natural birefringence, i.e., they are uniaxial or biaxial in their
natural (absence of applied fields) state. These materials are often used in passive
devices such as polarizers and retarders. Calcite is one of the most important natu-
rally birefringent materials for optics, and is used in a variety of well known polar-
izers, e.g., the Nichol, Wollaston, or Glan-Thompson prisms. As we shall see later,
naturally isotropic materials can be made birefringent, and materials that have
natural birefringence can be made to change that birefringence with the application
of electromagnetic fields.

24.4.3 The Wave Surface

There are two additional methods of depicting the effect of crystal anisotropy on
light. Neither is as satisfying or useful to this author as the index ellipsoid; however,
both will be mentioned for the sake of completeness and in order to facilitate under-
standing of those references that use these models. They are most often used to
explain birefringence, e.g., in the operation of calcite-based devices [12–14].

The first of these is called the wave surface. As a light wave from a point source
expands through space, it forms a surface that represents the wave front. This
surface consists of points having equal phase. At a particular instant in time, the
wave surface is a representation of the velocity surface of a wave expanding in the
medium; it is a measure of the distance through which the wave has expanded from
some point over some time period. Because the wave will have expanded further
(faster) when experiencing a low refractive index and expanded less (slower) when
experiencing high index, the size of the wave surface is inversely proportional to the
index.

To illustrate the use of the wave surface, consider a uniaxial crystal. Recall that
we have defined the optic axis of a uniaxial crystal as the direction in which the speed
of propagation is independent of polarization. The optic axes for positive and nega-
tive uniaxial crystals are shown on the index ellipsoids in Fig. 24-2, and the optic
axes for a biaxial crystal are shown on the index ellipsoid in Fig. 24-3.

Figure 24-2 Optic axis on index ellipsoid for uniaxial positive and uniaxial negative
crystals.
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The wave surfaces are now shown in Fig. 24-4 for both positive and negative
uniaxial materials. The upper diagram for each pair shows the wave surface for
polarization perpendicular to the optic axes (also perpendicular to the principal
section through the ellipsoid), and the lower diagram shows the wave surface for
polarization in the plane of the principal section. The index ellipsoid surfaces are
shown for reference. Similarly, cross-sections of the wave surfaces for biaxial mate-
rials are shown in Fig. 24-5. In all cases, polarization perpendicular to the plane of
the page is indicated with solid circles along the rays, whereas polarization parallel to
the plane of the page is shown with short double-headed arrows along the rays.

24.4.4 The Wavevector Surface

A second method of depicting the effect of crystal anisotropy on light is the wave-
vector surface. The wavevector surface is a measure of the variation of the value of k,
the wavevector, for different propagation directions and different polarizations.
Recall that

k ¼
2�



¼
!n

c
ð24-24Þ

so k/ n. Wavevector surfaces for uniaxial crystals will then appear as shown in
Fig 24-6. Compare these to the wave surfaces in Fig. 24-4.

Wavevector surfaces for biaxial crystals are more complicated. Cross-sections
of the wavevector surface for a biaxial crystal where nx < ny < nz are shown in
Fig. 24-7. Compare these to the wave surfaces in Fig. 24-5.

Figure 24-3 Optic axes on index ellipsoid for biaxial crystals.
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Figure 24-5 Wave surfaces for biaxial materials in principal planes.

Figure 24-4 Wave surfaces for uniaxial positive and negative materials.
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24.5 APPLICATION OF ELECTRIC FIELDS: INDUCED
BIREFRINGENCE AND POLARIZATION MODULATION

When fields are applied to materials, whether isotropic or anisotropic, birefringence
can be induced or modified. This is the principle of a modulator; it is one of the most
important optical devices, since it gives control over the phase and/or amplitude
of light.

The alteration of the index ellipsoid of a crystal on application of an electric
and/or magnetic field can be used to modulate the polarization state. The equation
for the index ellipsoid of a crystal in an electric field is

�ijðEÞxixj ¼ 1 ð24-25Þ

Figure 24-6 Wavevector surfaces for positive and negative uniaxial crystals.

Figure 24-7 Wavevector surface cross sections for biaxial crystals.
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or

ð�ijð0Þ þ��ijÞxixj ¼ 1 ð24-26Þ

This equation can be written as

x
2 1

n2x
þ�

1

n

� �2

1

 !
þ y

2 1

n2y
þ�

1

n

� �2

2

 !
þ z

2 1

n2z
þ�

1

n

� �2

3

 !

þ 2yz �
1

n

� �2

4

 !
þ 2xz �

1

n

� �2

5

 !
þ 2xy �

1

n

� �2

6

 !
¼ 1 ð24-27Þ

or

x
2 1

n2x
þ r1kEk þ s1kE

2
k þ 2s14E2E3 þ 2s15E3E1 þ 2s16E1E2

� �

þ y
2 1

n2y
þ r2kEk þ s2kE

2
k þ 2s24E2E3 þ 2s25E3E1 þ 2s26E1E2

 !

þ z
2 1

n2z
þ r3kEk þ s3kE

2
k þ 2s34E2E3 þ 2s35E3E1 þ 2s36E1E2

� �
þ 2yz r4kEk þ s4kE

2
k þ 2s44E2E3 þ 2s45E3E1 þ 2s46E1E2

	 

þ 2zx r5kEk þ s5kE

2
k þ 2s54E2E3 þ 2s55E3E1 þ 2s56E1E2

	 

þ 2xy r6kEk þ s6kE

2
k þ 2s64E2E3 þ 2s65E3E1 þ 2s66E1E2

	 

¼ 1 ð24-28Þ

where the Ek are components of the electric field along the principal axes and
repeated indices are summed.

If the quadratic coefficients are assumed to be small and only the linear coeffi-
cients are retained, then

�
1

n

� �2

l

¼
X3
k¼1

rlkEk ð24-29Þ

and k ¼ 1, 2, 3 corresponds to the principal axes x, y, and z. The equation for the
index ellipsoid becomes

x
2 1

n2x
þ r1kEk

� �
þ y

2 1

n2y
þ r2kEk

 !
þ z

2 1

n2z
þ r3kEk

� �

þ 2yz r4kEkð Þ þ 2zx r5kEkð Þ þ 2xy r6kEkð Þ ¼ 1 ð24-30Þ

Suppose we have a cubic crystal of point group �443m, the symmetry group of such
common materials as GaAs. Suppose further that the field is in the z direction. Then,
the index ellipsoid is

x
2

n2
þ
y
2

n2
þ

z
2

n2
þ 2r41Ezxy ¼ 1 ð24-31Þ
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The applied electric field couples the x-polarized and y-polarized waves. If we make
the coordinate transformation:

x ¼ x
0 cos 45� � y

0 sin 45�

y ¼ x
0 sin 45� � y

0 cos 45�
ð24-32Þ

and substitute these equations into the equation for the ellipsoid, the new equation
for the ellipsoid becomes

x
02 1

n2
þ r41Ez

� �
þ y

02 1

n2
� r41Ez

� �
þ

z
2

n2
¼ 1 ð24-33Þ

and we have eliminated the cross term. We want to obtain the new principal indices.
The principal index will appear in Eq. (24-33) as 1=n2x0 and must be equal to the
quantity in the first parenthesis of the equation for the ellipsoid, i.e.,

1

n2x0
¼

1

n2
þ r41Ez ð24-34Þ

We can solve for nx0 so (24-34) becomes

nx0 ¼ nð1þ n
2
r41EzÞ

1=2
ð24-35Þ

We assume n2r41Ez  1 so that the term in parentheses in (24-35) is approximated by

1þ n
2
r41Ez

	 
1=2
ffi 1�

1

2
n
2
r41Ez

� �
ð24-36Þ

The equations for the new principal indices are

nx0 ¼ n�
1

2
n
3
r41Ez ð24�37Þ

ny0 ¼ nþ
1

2
n
3
r41Ez

nz0 ¼ n:

As a similar example for another important materials type, suppose we have a
tetragonal (point group �442m) uniaxial crystal in a field along z. The index ellipsoid
becomes

x
2

n2o
þ
y
2

n2o
þ

z
2

n2e
þ 2r63Ezxy ¼ 1 ð24-38Þ

A coordinate rotation can be done to obtain the major axes of the new ellipsoid. In
the present example, this yields the new ellipsoid:

1

n2o
þ r63Ez

� �
x
02
þ

1

n2o
� r63Ez

� �
y
02
þ

z
2

n2e

 !
¼ 1 ð24-39Þ

As in the first example, the new and old z axes are the same, but the new x
0 and y

0

axes are 45� from the original x and y axes (see Fig. 24-8).
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The refractive indices along the new x and y axes are

n
0
x ¼ no �

1

2
n
3
or63Ez ð24-40Þ

n
0
y ¼ no þ

1

2
n
3
or63Ez

Note that the quantity n
3
rE in these examples determines the change in refractive

index. Part of this product, n3r, depends solely on inherent material properties, and is
a figure of merit for electro-optical materials. Values for the linear and quadratic
electro-optic coefficients for selected materials are given in Tables 24-4 and 24-5,
along with values for n and, for linear materials, n3r. While much of the information
from these tables is from Yariv and Yeh [11], materials tables are also to be found in
Kaminow [5,15]. Original sources listed in these references should be consulted on
materials of particular interest. Additional information on many of the materials
listed here, including tables of refractive index versus wavelength and dispersion
formulas, can be found in Tropf et al. [16].

For light linearly polarized at 45�, the x and y components experience different
refractive indices n0x and n

0
y:The birefringence is defined as the index difference n

0
y � n

0
x.

Since the phase velocities of the x and y components are different, there is a phase
retardation 	 (in radians) between the x and y components of E given by

	 ¼ !
c
n
0
y � n

0
x

	 

d ¼

2�



n
3
or63Ezd ð24-41Þ

where d is the path length of light in the crystal. The electric field of the incident light
beam is

�EE ¼
1ffiffiffi
2

p E x̂xþ ŷyð Þ ð24-42Þ

After transmission through the crystal, the electric field is

1ffiffiffi
2

p E e
i	=2

x̂x
0
þ e

�i	=2
ŷy
0

	 

ð24-43Þ

Figure 24-8 Rotated principal axes.
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Table 24-4 Linear Electro-optic Coefficients

Substance Symmetry
Wavelength

(mm)

Electrooptic
Coefficients

rlk (10�12 m/V)
Indices of
Refraction

n
3
r

(10�12 m/V)

CdTe �443m 1.0 r41 ¼ 4.5 n ¼ 2.84 103
3.39 r41 ¼ 6.8

10.6 r41 ¼ 6.8 n ¼ 2.60 120

23.35 r41 ¼ 5.47 n ¼ 2.58 94
27.95 r41 ¼ 5.04 n ¼ 2.53 82

GaAs �443m 0.9 r41 ¼ 1.1 n ¼ 3.60 51
1.15 r41 ¼ 1.43 n ¼ 3.43 58

3.39 r41 ¼ 1.24 n ¼ 3.3 45
10.6 r41 ¼ 1.51 n ¼ 3.3 54

ZnSe �443m 0.548 r41 ¼ 2.0 n ¼ 2.66
0.633 r41

a
¼ 2.0 n ¼ 2.60 35

10.6 r41 ¼ 2.2 n ¼ 2.39

ZnTe �443m 0.589 r41 ¼ 4.51 n ¼ 3.06
0.616 r41 ¼ 4.27 n ¼ 3.01
0.633 r41 ¼ 4.04 n ¼ 2.99 108

r41
a
¼ 4.3

0.690 r41 ¼ 3.97 n ¼ 2.93
3.41 r41 ¼ 4.2 n ¼ 2.70 83

10.6 r41 ¼ 3.9 n ¼ 2.70 77

Bi12SiO20 23 0.633 r41 ¼ 5.0 n ¼ 2.54 82

CdS 6mm 0.589 r51 ¼ 3.7 no ¼ 2.501

ne ¼ 2.519
0.633 r51 ¼ 1.6 no ¼ 2.460

ne ¼ 2.477

1.15 r31 ¼ 3.1 no ¼ 2.320
r33 ¼ 3.2 ne ¼ 2.336
r51 ¼ 2.0

3.39 r13 ¼ 3.5 no ¼ 2.276
r33 ¼ 2.9 ne ¼ 2.292
r51 ¼ 2.0

10.6 r13 ¼ 2.45 no ¼ 2.226

r33 ¼ 2.75 ne ¼ 2.239
r51 ¼ 1.7

CdSe 6mm 3.39 r13
a
¼ 1.8 no ¼ 2.452

r33 ¼ 4.3 ne ¼ 2.471

PLZTb
1m 0.546 ne

3r33 – no
3r13¼

2320

no ¼ 2.55

(Pb0.814La0.124
Zr0.4Ti0.6O3)

LiNbO3 3m 0.633 r13 ¼ 9.6 no ¼ 2.286

r22 ¼ 6.8 ne ¼ 2.200
r33 ¼ 30.9
r51 ¼ 32.6

(contd.)
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If the path length and birefringence are selected such that 	 ¼ �, the modu-
lated crystal acts as a half-wave linear retarder and the transmitted light has field
components:

1ffiffiffi
2

p E e
i�=2

x̂x
0
þ e

�i�=2
ŷy
0

	 

¼

1ffiffiffi
2

p E e
i�=2

x̂x
0
� e

i�=2
ŷy
0

	 

¼ E

e
i�=2ffiffiffi
2

p x̂x
0
� ŷy

0
	 


ð24-44Þ

The axis of linear polarization of the incident beam has been rotated by 90� by the
phase retardation of � radians or one-half wavelength. The incident linear polariza-
tion state has been rotated into the orthogonal polarization state. An analyzer at the

Table 24-4 Continued

Substance Symmetry
Wavelength

(mm)

Electrooptic
Coefficients

rlk (10�12 m/V)
Indices of
Refraction n

3
r (10�12 m/V)

1.15 r22 ¼ 5.4 no ¼ 2.229
ne ¼ 2.150

3.39 r22 ¼ 3.1 no ¼ 2.136

ne ¼ 2.073

LiTaO3 3m 0.633 r13 ¼ 8.4 no ¼ 2.176
r33 ¼ 30.5 ne ¼ 2.180
r22 ¼ �0.2

3.39 r33 ¼ 27 no ¼ 2.060
r13 ¼ 4.5 ne ¼ 2.065
r51 ¼ 15
r22 ¼ 0.3

KDP (KH2PO4) �442m 0.546 r41 ¼ 8.77 no ¼ 1.5115

r63 ¼ 10.3 ne ¼ 1.4698
0.633 r41 ¼ 8 no ¼ 1.5074

r63 ¼ 11 ne ¼ 1.4669

3.39 r63 ¼ 9.7
no

3r63 ¼ 33

ADP (NH4H2PO4) �442m 0.546 r41 ¼ 23.76 no ¼ 1.5079
r63 ¼ 8.56 ne ¼ 1.4683

0.633 r63 ¼ 24.1

RbHSeO4
c 0.633 13,540

BaTiO3 4mm 0.546 r51 ¼ 1640 no ¼ 2.437

ne ¼ 2.365

KTN (KTaxNb1�xO3) 4mm 0.633 r51 ¼ 8000 no ¼ 2.318
ne ¼ 2.277

AgGaS2 �442m 0.633 r41 ¼ 4.0 no ¼ 2.553
r63 ¼ 3.0 ne ¼ 2.507

aThese values are for clamped (high-frequency field) operation.
bPLZT is a compound of Pb, La, Zr, Ti, and O [17,18]. The concentration ratio of Zr to Ti is most

important to its electro-optic properties. In this case, the ratio is 40 : 60.
cSource: Ref. 19.
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output end of the crystal aligned with the incident (or unmodulated) plane of polar-
ization will block the modulated beam. For an arbitrary applied voltage producing a
phase retardation of 	 the analyzer transmits a fractional intensity cos2 	. This is the
principle of the Pockels cell.

Note that the form of the equations for the indices resulting from the applica-
tion of a field is highly dependent on the direction of the field in the crystal. For
example, Table 24-6 gives the electro-optical properties of cubic �443m crystals when
the field is perpendicular to three of the crystal planes. The new principal indices are
obtained in general by solving an eigenvalue problem. For example, for a hexagonal
material with a field perpendicular to the (111) plane, the index ellipsoid is

1

n2o
þ
r13Effiffiffi

3
p

� �
x
2
þ

1

n2o
þ
r13Effiffiffi

3
p

� �
y
2
þ

1

n2e
þ
r33Effiffiffi

3
p

� �
z
2
þ 2yzr51

Effiffiffi
3

p þ 2zxr51
Effiffiffi
3

p ¼ 1

ð24-45Þ

and the eigenvalue problem is

1

n2o
þ
r13Effiffiffi

3
p 0

2r51Effiffiffi
3

p

0
1

n2o
þ
r13Effiffiffi

3
p

2r51Effiffiffi
3

p

2r51Effiffiffi
3

p
2r51Effiffiffi

3
p

1

n2e
þ
r33Effiffiffi

3
p

0
BBBBBBB@

1
CCCCCCCA
V ¼

1

n02
V ð24-46Þ

Table 24-5 Quadratic Electro-optic Coefficients

Substance Symmetry
Wavelength

(mm)

Electro-optic
Coefficients

sij (10
�18 m2/V2)

Index of
Refraction

Temperature
(�C)

BaTiO3 m3m 0.633 s11 � s12 ¼ 2290 n ¼ 2.42 T > Tc

(Tc ¼ 120�C)

PLZTa
1m 0.550 s33 � s13 ¼ 26000=n3 n ¼ 2.450 Room

temperature

KH2PO4 (KDP) �442m 0.540 n
3
eðs33 � s13Þ ¼ 31 no ¼ 1.5115b Room

temperaturen
3
oðs31 � s11Þ ¼ 13:5 ne ¼ 1.4698b

n
3
oðs12 � s11Þ ¼ 8:9

n
3
os66 ¼ 3:0

NH4H2PO4 (ADP) �442m 0.540 n
3
eðs33 � s13Þ ¼ 24 no ¼ 1.5266b Room

temperaturen
3
oðs31 � s11Þ ¼ 16:5 ne ¼ 1.4808b

n
3
oðs12 � s11Þ ¼ 5:8

n
3
os66 ¼ 2

aPLZT is a compound of Pb, La, Zr, Ti, and O [17,18]. The concentration ratio of Zr to Ti is most

important to its electro-optic properties; in this case, the ratio is 65 : 35.
bAt 0.546 mm.

Source: Ref. 11.
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The secular equation is then

1

n2o
þ
r13Effiffiffi

3
p

� �
�

1

n02
0

2r51Effiffiffi
3

p

0
1

n2o
þ
r13Effiffiffi

3
p

� �
�

1

n02
2r51Effiffiffi

3
p

2r51Effiffiffi
3

p
2r51Effiffiffi

3
p

1

n2o
þ
r33Effiffiffi

3
p

� �
�

1

n02

0
BBBBBBB@

1
CCCCCCCA

¼ 0 ð24-47Þ

and the roots of this equation are the new principal indices.

24.6 MAGNETO-OPTICS

When a magnetic field is applied to certain materials, the plane of incident linearly
polarized light may be rotated in passage through the material. The magneto-optic
effect linear with field strength is called the Faraday effect, and was discovered by
Michael Faraday in 1845. A magneto-optic cell is illustrated in Fig. 24-9. The field is
set up so that the field lines are along the direction of the optical beam propagation.
A linear polarizer allows light of one polarization into the cell. A second linear
polarizer is used to analyze the result.

The Faraday effect is governed by the equation:

� ¼ VBd ð24-48Þ

where V is the Verdet constant, � is the rotation angle of the electric field vector of
the linearly polarized light, B is the applied field, and d is the path length in the

Table 24-6 Electro-optic Properties of Cubic �443m Crystals

E Field Direction Index Ellipsoid Principal Indices

E perpendicular to
(001) plane:

x
2
þ y

2
þ z

2

n2o
þ 2r41Exy ¼ 1 n

0
x ¼ no þ

1

2
n
3
or41E

Ex ¼ Ey ¼ 0
n
0
y ¼ no �

1

2
n
3
or41E

Ez ¼ E n
0
z ¼ no

E perpendicular to
(110) plane:

x
2
þ y

2
þ z

2

n2o
þ

ffiffiffi
2

p
r41E yzþ zxð Þ ¼ 1 n

0
x ¼ no þ

1

2
n
3
or41E

Ex ¼ Ey ¼ E=
ffiffiffi
2

p

n
0
y ¼ no �

1

2
n
3
or41E

Ez ¼ 0 n
0
z ¼ no

E perpendicular to
(111) plane:

x
2
þ y

2
þ z

2

n2o
þ

2ffiffiffi
3

p r41E yzþ zxþ xyð Þ ¼ 1 n
0
x ¼ no þ

1

2
ffiffiffi
3

p n
3
or41E

Ex ¼ Ey ¼ Ez ¼ E=
ffiffiffi
3

p

n
0
y ¼ no �

1

2
ffiffiffi
3

p n
3
or41E

n
0
z ¼ no �

1ffiffiffi
3

p n
3
or41E

Source: Ref. 20.
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medium. The rotatory power �, defined in degrees per unit path length, is given by

� ¼ VB ð24-49Þ

A list of Verdet constants for some common materials is given in Table 24-7. The
material that is often used in commercial magneto-optic-based devices is some for-
mulation of iron garnet. Data tabulations for metals, glasses, and crystals, including
many iron garnet compositions, can be found in Chen [21]. The magneto-optic effect
is the basis for magneto-optic memory devices, optical isolators, and spatial light
modulators [22,23].

Other magneto-optic effects in addition to the Faraday effect include the
Cotton–Mouton effect, the Voigt effect, and the Kerr magneto-optic effect. The
Cotton–Mouton effect is a quadratic magneto-optic effect observed in liquids.
The Voigt effect is similar to the Cotton–Mouton effect but is observed in vapors.
The Kerr magneto-optic effect is observed when linearly polarized light is reflected
from the face of either pole of a magnet. The reflected light becomes elliptically
polarized.

24.7 LIQUID CRYSTALS

Liquid crystals are a class of substances which demonstrate that the premise that
matter exists only in solid, liquid, and vapor (and plasma) phases is a simplification.
Fluids, or liquids, generally are defined as the phase of matter which cannot maintain

Figure 24-9 Illustration of a setup to observe the Faraday effect.

Table 24-7 Values of the Verdet Constant at 
 ¼ 5893 Å

Material T (�C) Verdet Constant (deg/G �mm)

Watera 20 2.18� 10�5

Air (
 ¼ 5780 Å and 760 mm Hg)b 0 1.0� 10�8

NaClb 16 6.0� 10�5

Quartzb 20 2.8� 10�5

CS2
a 20 7.05� 10�5

Pa 33 2.21� 10�4

Glass, flinta 18 5.28� 10�5

Glass, Crowna 18 2.68� 10�5

Diamonda 20 2.0� 10�5

aSource: Ref. 11.
bSource: Ref. 10.
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any degree of order in response to a mechanical stress. The molecules of a liquid have
random orientations and the liquid is isotropic. In the period 1888 to 1890 Reinitzer,
and separately Lehmann, observed that certain crystals of organic compounds exhi-
bit behavior between the crystalline and liquid states [24]. As the temperature is
raised, these crystals change to a fluid substance that retains the anisotropic behavior
of a crystal. This type of liquid crystal is now classified as thermotropic because the
transition is effected by a temperature change, and the intermediate state is referred
to as a mesophase [25]. There are three types of mesophases: smectic, nematic, and
cholesteric. Smectic and nematic mesophases are often associated and occur in
sequence as the temperature is raised. The term smectic derives from the Greek
word for soap and is characterized by a material more viscous than the other meso-
phases. Nematic is from the Greek for thread and was named because the material
exhibits a striated appearance (between crossed polaroids). The cholesteric meso-
phase is a property of the cholesterol esters, hence the name.

Figure 24-10a illustrates the arrangement of molecules in the nematic meso-
phase. Although the centers of gravity of the molecules have no long-range order as
crystals do, there is order in the orientations of the molecules [26]. They tend to be
oriented parallel to a common axis indicated by the unit vector n̂n.

The direction of n̂n is arbitrary and is determined by some minor force such as
the guiding effect of the walls of the container. There is no distinction between a
positive and negative sign of n̂n. If the molecules carry a dipole, there are equal
numbers of dipoles pointing up as down. These molecules are not ferroelectric. The
molecules are achiral, i.e., they have no handedness, and there is no positional
order of the molecules within the fluid. Nematic liquid crystals are optically uni-
axial.

The temperature range over which the nematic mesophase exists varies with the
chemical composition and mixture of the organic compounds. The range is quite

Figure 24-10 Schematic representation of liquid crystal order.
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wide; for example, in one study of ultraviolet imaging with a liquid crystal light
valve, four different nematic liquid crystals were used [27]. Two of these were
MBBA [N-(p-methoxybenzylidene)-p-(n-butylaniline)] with a nematic range of 17�

to 43�C, and a proprietary material with a range of –20� to 51�C.
There are many known electro-optical effects involving nematic liquid crystals

[25, 28, 29]. Two of the more important are field-induced birefringence, also called
deformation of aligned phases, and the twisted nematic effect, also called the Schadt–
Helfrich effect.

An example of a twisted nematic cell is shown in Fig. 24-11. Figure 24-11a
shows the molecule orientation in a liquid crystal cell, without and with an applied
field. The liquid crystal material is placed between two electrodes. The liquid crystals
at the cell wall align themselves in some direction parallel to the wall as a result of
very minor influences. A cotton swab lightly stroked in one direction over the inter-
ior surface of the wall prior to cell assembly is enough to produce alignment of the
liquid crystal [30]. The molecules align themselves with the direction of the rubbing.
The electrodes are placed at 90� to each other with respect to the direction of
rubbing. The liquid crystal molecules twist from one cell wall to the other to
match the alignments at the boundaries as illustrated, and light entering at one
cell wall with its polarization vector aligned to the crystal axis will follow the twist
and be rotated 90� by the time it exits the opposite cell wall. If the polarization vector
is restricted with a polarizer on entry and an analyzer on exit, only the light with the
90� polarization twist will be passed through the cell. With a field applied between
the cell walls, the molecules tend to orient themselves perpendicular to the cell
walls, i.e., along the field lines. Some molecules next to the cell walls remain parallel
to their original orientation, but most of the molecules in the center of the cell align

Figure 24-11 Liquid crystal cell operation.
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themselves parallel to the electric field, destroying the twist. At the proper strength,
the electric field will cause all the light to be blocked by the analyzer.

Figure 24-11b shows a twisted nematic cell as might be found in a digital watch
display, gas pump, or calculator. Light enters from the left. A linear polarizer is the
first element of this device and is aligned so that its axis is along the left-hand liquid
crystal cell wall alignment direction. With no field, the polarization of the light twists
with the liquid crystal twist, 90� to the original orientation, passes through a second
polarizer with its axis aligned to the right-hand liquid crystal cell wall alignment
direction, and is reflected from a mirror. The light polarization twists back the way it
came and leaves the cell. Regions of this liquid crystal device that are not activated
by the applied field are bright. If the field is now applied, the light does not change
polarization as it passes through the liquid crystal and will be absorbed by the
second polarizer. No light returns from the mirror, and the areas of the cell that
have been activated by the applied field are dark.

A twisted nematic cell has a voltage threshold below which the polarization
vector is not affected due to the internal elastic forces. A device 10 mm thick might
have a threshold voltage of 3V [25].

Another important nematic electro-optic effect is field-induced birefringence or
deformation of aligned phases. As with the twisted nematic cell configuration, the
liquid crystal cell is placed between crossed polarizers. However, now the molecular
axes are made to align perpendicular to the cell walls and thus parallel to the direc-
tion of light propagation. By using annealed SnO2 electrodes and materials of high
purity, Schiekel and Fahrenschon [29] found that the molecules spontaneously
align in this manner. Their cell worked well with 20 mm thick MBBA. The working
material must be one having a negative dielectric anisotropy so that when an electric
field is applied (normal to the cell electrodes) the molecules will tend to align them-
selves perpendicular to the electric field. The molecules at the cell walls tend to
remain in their original orientation and the molecules within the central region
will turn up to 90�; this is illustrated in Fig. 24-12.

Figure 24-12 Deformation of liquid crystal due to applied voltage. (After Ref. 28.)
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There is a threshold voltage typically in the 4–6 V range [25]. Above the
threshold, the molecules begin to distort and become birefringent due to the ani-
sotropy of the medium. Thus, with no field, no light exits the cell; at threshold
voltage, light begins to be divided into ordinary and extraordinary beams, and
some light will exit the analyzer. The birefringence can also be observed with
positive dielectric anisotropy when the molecules are aligned parallel to the elec-
trodes at no field and both electrodes have the same orientation for nematic
alignment. As the applied voltage is increased, the light transmission increases
for crossed polarizers [25]. The hybrid field-effect liquid crystal light valve relies
on a combination of the twisted nematic effect (for the ‘‘off ’’ state) and induced
birefringence (for the ‘‘on’’ state) [31].

Smectic liquid crystals are more ordered than the nematics. The molecules
are not only aligned, but they are also organized into layers, making a two-
dimensional fluid. This is illustrated in Fig. 24-10b. There are three types of smec-
tics: A, B, and C. Smectic A is optically uniaxial. Smectic C is optically biaxial.
Smectic B is the most ordered, since there is order within layers. Smectic C, when
chiral, is ferroelectric. Ferroelectric liquid crystals are known for their fast switch-
ing speed and bistability.

Cholesteric liquid crystal molecules are helical, and the fluid is chiral. There
is no long range order, as in nematics, but the preferred orientation axis changes
in direction through the extent of the liquid. Cholesteric order is illustrated in
Fig. 24-10c.

For more information on liquid crystals and an extensive bibliography, see
Wu [32,33], and Khoo and Wu [34].

24.8 MODULATION OF LIGHT

We have seen that light modulators are composed of an electro- or magneto-optical
material on which an electromagnetic field is imposed. Electro-optical modulators
may be operated in a longitudinal mode or in a transverse mode. In a longitudinal
mode modulator, the electric field is imposed parallel to the light propagating
through the material, and in a transverse mode modulator, the electric field is
imposed perdendicular to the direction of light propagation. Either mode may be
used if the entire wavefront of the light is to be modulated equally. The longitudinal
mode is more likely to be used if a spatial pattern is to be imposed on the modula-
tion. The mode used will depend on the material chosen for the modulator and the
application.

Figure 24-13 shows the geometry of a longitudinal electro-optic modulator.
The beam is normal to the face of the modulating material and parallel to the field
imposed on the material. Electrodes of a material that is conductive yet transparent
to the wavelength to be modulated are deposited on the faces through which the
beam travels. This is the mode used for liquid crystal modulators.

Figure 24-14 shows the geometry of the transverse electro-optic modulator.
The imposed field is perpendicular to the direction of light passing through the
material. The electrodes do not need to be transparent to the beam. This is the
mode used for modulators in laser beam cavities, e.g., a CdTe modulator in a
CO2 laser cavity.
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24.9 CONCLUDING REMARKS

The origin of the electro-optic tensor, the form of that tensor for various crystal
types, and the values of the tensor coefficients for specific materials have been dis-
cussed. The concepts of the index ellipsoid, the wave surface, and the wavevector
surface were introduced. These are quantitative and qualitative models that aid in
the understanding of the interaction of light with crystals. We have shown how the
equation for the index ellipsoid is found when an external field is applied, and how
expressions for the new principal indices of refraction are derived. Magneto-optics
and liquid crystals were described. The introductory concepts of constructing an
electro-optic modulator were discussed.

Figure 24-14 Transverse mode modulator.

Figure 24-13 Longitudinal mode modulator.
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While the basics of electro- and magneto-optics in bulk materials have been
covered, there is a large body of knowledge dealing with related topics which cannot
be covered here. A more detailed description of electro-optic modulators is covered
in Yariv and Yeh [11]. Information on spatial light modulators may be found in
Efron [35]. Shen [36] describes the many aspects and applications of nonlinear optics,
and current work in such areas as organic nonlinear materials can be found in SPIE
Proceedings [37,38].
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25

Optics of Metals

25.1 INTRODUCTION

We have been concerned with the propagation of light in nonconducting media. We
now turn our attention to describing the interaction of light with conductingmaterials,
namely, metals and semiconductors.Metals and semiconductors, absorbing media, are
crystalline aggregates consisting of small crystals of random orientation. Unlike true
crystals they do not have repetitive structures throughout their entire forms.

The phenomenon of conductivity is associated with the appearance of heat; it is
very often called Joule heat. It is a thermodynamically irreversible process in which
electromagnetic energy is transformed to heat. As a result, the optical field within a
conductor is attenuated. The very high conductivity exhibited by metals and semi-
conductors causes them to be practically opaque. The phenomenon of conduction
and strong absorption corresponds to high reflectivity so that metallic surfaces act as
excellent mirrors. In fact, up to the latter part of the nineteenth century most large
reflecting astronomical telescope mirrors were metallic. Eventually, metal mirrors
were replaced with parabolic glass surfaces overcoated with silver, a material with a
very high reflectivity. Unfortunately, silver oxidizes in a relatively short time with
oxygen and sulfur compounds in the atmosphere and turns black. Consequently,
silver-coated mirrors must be recoated nearly every other year or so, a difficult, time-
consuming, expensive process. This problem was finally solved by Strong in the
1930s with his method of evaporating aluminum on to the surface of optical glass.

In the following sections we shall not deal with the theory of metals. Rather, we
shall concentrate on the phenomenological description of the interaction of polarized
light with metallic surfaces. Therefore, in Section 25.2 we develop Maxwell’s equa-
tions for conducting media. We discover that for conducting media the refractive
index becomes complex and has the form n ¼ n(1�i�) where n is the real refractive
index and � is the extinction coefficient. Furthermore, Fresnel’s equations for reflec-
tion and transmission continue to be valid for conducting (absorbing) media.
However, because of the rapid attenuation of the optical field within an absorbing
medium, Fresnel’s equations for transmission are inapplicable. Using the complex
refractive index, we develop Fresnel’s equations for reflection at normal incidence
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and describe them in terms of a quantity called the reflectivity. It is possible to
develop Fresnel’s reflection equations for non-normal incidence. However, the
forms are very complicated and so approximate forms are derived for the s and p
polarizations. It is rather remarkable that the phenomenon of conductivity may be
taken into account simply by introducing a complex index of refraction. A complete
understanding of the significance of n and � can only be understood on the basis of
the dispersion theory of metals. However, experience does show that large values of
reflectivity correspond to large values of �.

In Sections 25.3 and 25.4 we discuss the measurement of the optical constants n
and �. A number of methods have been developed over the past 100 years, nearly all
of which are null-intensity methods. That is, n and � are obtained from the null
condition on the reflected intensity. The best-known null method is the principle
angle of incidence/principle azimuthal angle method (Section 25.3). In this method
a beam of light is incident on the sample and the incidence angle is varied until an
incidence angle is reached where a phase shift of �/2 occurs. The incidence angle
where this takes place is known as the principle angle of incidence. An additional
phase shift of �/2 is now introduced into the reflected light with a quarter-wave
retarder. The condition of the principal angle of incidence and the quarter-wave
shift and the introduction of the quarter-wave retarder, as we shall see, creates
linearly polarized light. Analyzing the phase-shifted reflected light with a polarizer
that is rotated around its azimuthal angle leads to a null intensity (at the principal
azimuthal angle) from which n and � can be determined.

Classical null methods were developed long before the advent of quantitative
detectors, digital voltmeters, and digital computers. Nulling methods are very valu-
able, but they have a serious drawback: the method requires a mechanical arm that
must be rotated along with the azimuthal rotation of a Babinet–Soleil compensator
and analyzer until a null intensity is found. In addition, a mechanical arm that yields
scientifically useful readings is quite expensive. It is possible to overcome these
drawbacks by reconsidering Fresnel’s equations for reflection at an incidence
angle of 45�. It is well known that Fresnel’s equations for reflection simplify at
normal incidence and at the Brewster angle for nonabsorbing (dielectric) materials.
Less well known is that Fresnel’s equations also simplify at an incidence angle of 45�.
All of these simplifications were discussed in Chapter 8 assuming dielectric media.
The simplifications at the incidence angle of 45� hold even for absorbing media.
Therefore, in Section 25.4 we describe the measurement of an optically absorbing
surface at an incidence angle of 45�. This method, called digital refractometry, over-
comes the nulling problems and leads to equations to determine n and � that can be
solved on a digital computer by iteration.

25.2 MAXWELL’S EQUATIONS FOR ABSORBING MEDIA

We now solve Maxwell’s equations for a homogeneous isotropic medium described
by a dielectric constant ", a permeability �, and a conductivity 	. Using material
equations (also called the constitutive relations):

D ¼ "E ð25-1aÞ

B ¼ �H ð25-1bÞ

j ¼ 	E ð25-1cÞ
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Maxwell’s equations become, in MKSA units,

=�H� "
@E

@t
¼ 	E ð25-2aÞ

=� Eþ �
@H

@t
¼ 0 ð25-2bÞ

= � E ¼
�

"
ð25-2cÞ

= �H ¼ 0 ð25-2dÞ

These equations describe the propagation of the optical field within and at the
boundary of a conducting medium. To find the equation for the propagation of
the field E we eliminate H between (25-2a) and (25-2b). We take the curl of
(25-2b) and substitute (25-2a) into the resulting equation to obtain

=� ð=� EÞ þ ð�"Þ
@2E

@t2
þ �	

@E

@t
¼ 0 ð25-3Þ

Expanding the =� ð=�Þ operator, we find that (25-3) becomes

=2
E ¼ �"

@2E

@t2
þ �	

@E

@t
ð25-4Þ

Equation (25-4) is the familiar wave equation modified by an additional term. From
our knowledge of differential equations the additional term described by @E=@t
corresponds to damping or attenuation of a wave. Thus, (25-4) can be considered
the damped or attenuated wave equation.

We proceed now with the solution of (25-4). If the field is strictly monochro-
matic and of angular frequency ! so that E � Eðr, tÞ ¼ EðrÞ expði!tÞ, then substitut-
ing this form into (25-4) yields

=2
EðrÞ ¼ ð��"!2

ÞEðrÞ þ ði!�	ÞEðrÞ ð25-5Þ

which can be written as

=2
EðrÞ ¼ ð��!2

Þ "� i
	

!

� �h i
EðrÞ ð25-6Þ

In this form, (25-6) is identical to the wave equation except that now the dielectric
constant is complex; thus,

" ¼ "� i
	

!

� �
ð25-7Þ

where " is the real dielectric constant.
The correspondence with nonconducting media is readily seen if " is defined in

terms of a complex refractive index n (we set � ¼ 1 since we are not dealing with
magnetic materials):

" ¼ n
2

ð25-8Þ

We now express n in terms of the refractive index and the absorption of the medium.
To find the form of n which describes both the refractive and absorbing behavior
of a propagating field, we first consider the intensity I(z) of the field after it has
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propagated a distance z. We know that the intensity is attenuated after a distance z
has been traveled, so the intensity can be described by

IðzÞ ¼ I0 expð�zÞ ð25-9Þ

where  is the attenuation or absorption coefficient. We wish to relate  to �, the
extinction coefficient or attenuation index. We first note that n is a dimensionless
quantity, whereas from (25-9)  has the dimensions of inverse length. We can express
z as a dimensionless parameter by assuming that after a distance equal to a wave-
length 
 the intensity has been reduced to

Ið
Þ ¼ I0 expð�4��Þ ð25-10Þ

Equating the arguments of the exponents in (25-9) and (25-10), we have

 ¼
4�




� �
� ¼ 2k� ð25-11Þ

where k ¼ 2�/
 is the wavenumber. Equation (25-9) can then be written as

IðzÞ ¼ I0 exp �
4�




� �
�z

� �
ð25-12Þ

From this result we can write the corresponding field E(z) as

EðzÞ ¼ E0 exp �
2�




� �
�z

� �
ð25-13Þ

or

EðzÞ ¼ E0 expð�k�zÞ ð25-14Þ

Thus, the field propagating in the z direction can be described by

EðzÞ ¼ E0 expð�k�zÞ exp½ið!t� kzÞ� ð25-15Þ

The argument of (25-15) can be written as

i! t�
k

!

� �
zþ i

k�

!

� �
z

� �
ð25-16aÞ

¼ i! t�
k

!
f1� i�gz

� �
ð25-16bÞ

But k ¼ !/v ¼ !n/c, so (25-16b) becomes

i! t�
n

c
f1� i�gz

h i
ð25-17aÞ

¼ i! t�
n

c

� �
z

h i
ð25-17bÞ

where

n ¼ nð1� i�Þ ð25-18Þ

Thus, the propagating field (25-15) can be written in the form:

EðzÞ ¼ E0 exp i! t�
n

c

� �
z

� �h i
ð25-19Þ
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Equation (25-19) shows that conducting (i.e., absorbing) media lead to the same
solutions as nonconducting media except that the real refractive index n is replaced
by a complex refractive index n. Equation (25-18) relates the complex refractive
index to the real refractive index and the absorption behavior of the medium and
will be used throughout the text.

From (25-7), (25-8), and (25-18) we can relate n and � to 	. We have

" ¼ n
2
¼ n2ð1� i�Þ2 ¼ "� i

	

!

� �
ð25-20Þ

which leads immediately to

n2ð1��2Þ ¼" ð25-21aÞ

n2� ¼
	

2!
¼

	

4��
ð25-21bÞ

where � ¼ !=2�
We solve these equations to obtain

n2 ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"2 þ

	

4��

� �2r
þ "

" #
ð25-22aÞ

n2�2 ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"2 þ

	

4��

� �2r
� "

" #
ð25-22bÞ

Equation (25-22) is important because it enables us to relate the (measured) values of
n and � to the constants " and 	 of a metal or semiconductor. Because metals are
opaque, it is not possible to measure these constants optically.

Since the wave equation for conducting media is identical to the wave equation
for dielectrics, except for the appearance of a complex refractive index, we would
expect the boundary conditions and all of its consequences to remain unchanged.
This is indeed the case. Thus, Snell’s law of refraction becomes

sin �i ¼ n sin �r ð25-23Þ

where the refractive index is now complex. Similarly, Fresnel’s law of reflection and
refraction continue to be valid. Since optical measurements cannot be made with
Fresnel’s refraction equations, only Fresnel’s reflection equations are of practical
interest. We recall these equations are given by

Rs ¼ �
sinð�i � �rÞ

sinð�i þ �rÞ
Es ð25-24aÞ

Rp ¼
tanð�i � �rÞ

tanð�i þ �rÞ
Ep ð25-24bÞ

In (25-24) �i is the angle of incidence and �r is the angle of refraction, and Rs, Rp, Es,
and Ep have their usual meanings.

We now derive the equations for the reflected intensity, using (25-24).
We consider (25-24a) first. We expand the trigonometric sum and difference terms,
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substitute sin �r¼ n sin �r into the result, and find that

Rs

Es

¼
cos �i � n cos �r
cos �i þ n cos �r

� �
ð25-25Þ

We first use (25-25) to obtain the reflectivity, that is, the normalized intensity at
normal incidence. The reflectivity for the s polarization, (25-25) is defined to be

Rs �
Rs

Es

����
����2 ð25-26Þ

At normal incidence �i ¼ 0, so from Snell’s law, (25-23), �r ¼ 0 and (25-25) reduces to

Rs

Es

¼
1� n

1þ n

� �
ð25-27Þ

Replacing n with the explicit form given by (25-18) yields

Rs

Es

¼
ð1� nÞ þ in�

ð1þ nÞ � in�

� �
ð25-28Þ

From the definition of the reflectivity (25-26) we then see that (25-28) yields

Rs ¼
ðn� 1Þ2 þ ðn�Þ2

ðnþ 1Þ2 þ ðn�Þ2

" #
ð25-29Þ

We observe that for nonabsorbing media (� ¼ 0), (25-29) reduces to the well-known
results for dielectrics. We also note that for this condition and for n ¼ 1 the reflec-
tivity is zero, as we would expect. In Fig. 25-1 a plot of (25-29) as a function of �

Figure 25-1 Plot of the reflectivity as a function of �. The refractive indices are n ¼ 1.0, 1.5,
and 2.0, respectively.
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is shown. We see that for absorbing media with increasing � the reflectivity
approaches unity. Thus, highly reflecting absorbing media (e.g., metals) are charac-
terized by high values of �.

In a similar manner we can find the reflectivity for normal incidence for the p
polarization, (25-24b). Equation (25-24b) can be written as

Rp

Ep

¼
sinð�i � �rÞ

sinð�i þ �rÞ

cosð�i þ �rÞ

cosð�i � �rÞ
ð25-30Þ

At normal incidence the cosine factor in (25-30) is unity, and we are left with the
same equation for the s polarization, (25-24a). Hence,

Rp ¼ Rs ð25-31Þ

and for normal incidence the reflectivity is the same for the s and p polarizations.
We now derive the reflectivity equations for non-normal incidence. We again

begin with (25-24a) or, more conveniently, its expanded form, (25-25)

Rs

Es

¼
cos �i � n cos �r
cos �i þ n cos �r

� �
ð25-25Þ

Equation (25-25) is, of course, exact and can be used to obtain an exact expression
for the reflectivity Rs. However, the result is quite complicated. Therefore, we derive
an approximate equation, much quoted in the literature, for Rs which is sufficiently
close to the exact result. We replace the factor cos �r by ð1� sin2 �rÞ

1=2 and use
sin �i ¼ n sin �r. Then, (25-25) becomes

Rs

Es

¼
cos �i �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � sin2 �i

q
cos �i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � sin2 �i

q
2
64

3
75 ð25-32Þ

Equation (25-32) can be approximated by noting that n2 � sin2�i, so (25-32) can be
written as

Rs

Es

¼
cos �i � n

cos �i þ n
ð25-33Þ

We now substitute (25-18) into (25-33) and group the terms into real and imaginary
parts:

Rs

Ep

¼
ðcos �i � nÞ þ in�

ðcos �i þ nÞ � in�

� �
ð25-34Þ

The reflectivity Rs is then

Rs ¼
ðn� cos �iÞ

2
þ ðn�Þ2

ðnþ cos �iÞ
2
þ ðn�Þ2

" #
ð25-35Þ

We now develop a similar, approximate, equation for Rp. We first write
(25-24b) as

Rs

Ep

¼
sinð�i � �rÞ

sinð�i þ �rÞ

cosð�i þ �rÞ

cosð�i � �rÞ
ð25-30Þ
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The first factor is identical to (25-24a), so it can be replaced by its expanded form
(25-25):

sinð�i � �rÞ

sinð�i þ �rÞ
¼

cos �i � n cos �r
cos �i þ n cos �r

� �
ð25-36Þ

The second factor in (25-30) is now expanded, and again we use cos �r ¼
ð1� sin2 �rÞ

1=2 and sin �i ¼ n sin �r:

cosð�i þ �rÞ

cosð�i � �rÞ
¼

ðcos �iÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � sin2 �i

q
� sin2 �i

ðcos �iÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � sin2 �i

q
þ sin2 �i

ð25-37Þ

Because n2 � sin2�i, (25-37) can approximated as

cosð�i þ �rÞ

cosð�i � �rÞ
ffi

n cos �i � sin2 �i

n cos �i þ sin2 �i
ð25-38Þ

We now multiply (25-36) by (25-38) to obtain

Rp

Ep

¼
cos �i � n

cos �i þ n

� �
n cos �i � sin2 �i

n cos �i þ sin2 �i

 !
ð25-39Þ

Carrying out the multiplication in (25-39), we find that there is a sin2 �i cos �i term.
This term is always much smaller than the remaining terms and can be dropped. The
remaining terms then lead to

Rp

Ep

¼
�n cos �i þ 1

n cos �i þ 1
ð25-40aÞ

or

Rp

Ep

¼ �
cos �i � 1=n

cos �i þ 1=n
ð25-40bÞ

Replacing n by n(1 � i�), grouping terms into real and imaginary parts, and ignoring
the negative sign because it will vanish when we determine the reflectivity, gives

Rp

Ep

¼
ðn� 1= cos �iÞ � in�

ðnþ 1= cos �iÞ þ in�
ð25-41Þ

Multiplying (25-41) by its complex conjugate, we obtain the reflectivity Rp:

Rp ¼
ðn� 1= cos �iÞ

2
þ ðn�Þ2

ðnþ 1= cos �iÞ
2
þ ðn�Þ2

ð25-42Þ

For convenience we write the equation for Rs, (25-35), here also:

Rs ¼
ðn� cos �iÞ

2
þ ðn�Þ2

ðnþ cos �iÞ
2
þ ðn�Þ2

" #
ð25-35Þ

In Figs. 25-2 through 25-5 plots are shown for the reflectivity as a function of
the incidence angle �i of gold (Au), silver (Ag), copper (Cu), and platinum (Pt), using
(25-35) and (25-39). The values for n and � are taken from Wood’s classic text
Physical Optics.
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Figure 25-2 Reflectance of gold (Au) as a function of incidence angle. The refractive index

and the extinction coefficient are 0.36 and 7.70 respectively. The normal reflectance value is
0.849.

Figure 25-3 Reflectance of silver (Ag) as a function of incidence angle. The refractive index
and the extinction coefficient are 0.18 and 20.2, respectively. The normal reflectance value is

0.951.
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Figure 25-4 Reflectance of copper (Cu) as a function of incidence angle. The refractive
index and the extinction coefficient are 0.64 and 4.08, respectively. The normal reflectance
value is 0.731.

Figure 25-5 Reflectance of platinum (Pt) as a function of incidence angle. The refractive
index and the extinction coefficient are 2.06 and 2.06, respectively. The normal reflectance

value is 0.699.
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In Figs. 25-2 through 25-5 we observe that the p reflectivity has a minimum
value. This minimum is called the pseudo-Brewster angle minimum because, unlike
the Brewster angle for dielectrics, the intensity does not go to zero for metals.
Nevertheless, a technique based on this minimum has been used to determine n
and �. The interested reader is referred to the article by Potter.

Finally, we see that the refractive index can be less than unity for many metals.
Born and Wolf have shown that this is a natural consequence of the simple classical
theory of the electron and the dispersion theory. The theory provides a theoretical
basis for the behavior of n and �. Further details on the nature of metals and, in
particular, the refractive index and the extinction coefficient (n and �) as it appears in
the dispersion theory of metals can be found in the reference texts by Born and Wolf
and by Mott and Jones.

25.3 PRINCIPAL ANGLE OF INCIDENCE MEASUREMENT OF
REFRACTIVE INDEX AND EXTINCTION COEFFICIENT OF
OPTICALLY ABSORBING MATERIALS

In the previous section we saw that optically absorbing materials are characterized
by a real refractive index n and an extinction coefficient �. Because these constants
describe the behavior and performance of optical materials such as metals and
semiconductors, it is very important to know these ‘‘constants’’ over the entire
optical spectrum.

Methods have been developed to measure the optical constants. One of the best
known is the principal angle of incidence method. The basic idea is as follows.
Incident þ45� linearly polarized light is reflected from an optically absorbing mate-
rial. In general, the reflected light is elliptically polarized; the corresponding polar-
ization ellipse is in nonstandard form. The angle of incidence of the incident beam is
now changed until a phase shift of 90� is observed in the reflected beam. The incident
angle where this takes place is called the principal angle of incidence. Its significance is
that, at this angle, the polarization ellipse for the reflected beam is now in its stan-
dard form. From this condition relatively simple equations can then be found for n
and �. Because the polarization ellipse is now in its standard form, the orthogonal
field components are parallel and perpendicular to the plane of incidence. The
reflected beam is now passed through a quarter-wave retarder. The beam of light
that emerges is linearly polarized with its azimuth angle at an unknown angle. The
beam then passes through an analyzing polarizer that is rotated until a null intensity
is found. The angle at which this null takes place is called the principal azimuth angle.
From the measurement of the principal angle of incidence and the principal azimuth
angle the optical constants n and � can then be determined. In Fig. 25-6 we show the
measurement configuration.

To derive the equations for n and �, we begin with Fresnel’s reflection equa-
tions for absorbing media:

Rs ¼ �
sinð�i � �rÞ

sinð�i þ �rÞ
Es ð25-24aÞ

Rp ¼
tanð�i � �rÞ

tanð�i þ �rÞ
Ep ð25-24bÞ
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The angle �r is now complex, so the ratios Rp/Ep and Rs/Es are also complex. Thus,
the amplitude and phase change on being reflected from optically absorbing media.
Incident polarized light will, in general, become elliptically polarized on reflection
from an optically absorbing medium. We now let �p and �s be the phase changes
and �p and �s the absolute values of the reflection coefficients rp and rs. Then, we can
write

rp ¼
Rp

Ep

¼ �p expði�pÞ ð25-43aÞ

rs ¼
Rs

Es

¼ �s expði�sÞ ð25-43bÞ

Equation (25-43) can be transformed to the Stokes parameters. The Stokes param-
eters for the incident beam are

S0 ¼ cos �iðEsE
�
s þ EpE

�
p Þ ð25-44aÞ

S1 ¼ cos �iðEsE
�
s � EpE

�
p Þ ð25-44bÞ

S2 ¼ cos �iðEsE
�
p þ EpE

�
s Þ ð25-44cÞ

S3 ¼ i cos �iðEsE
�
p � EpE

�
s Þ ð25-44dÞ

Similarly, the Stokes parameters for the reflected beam are defined as

S0

0
¼ cos �iðRsR

�
s þ RpR

�
pÞ ð25-45aÞ

S0
1 ¼ cos �iðRsR

�
s � RpR

�
pÞ ð25-45bÞ

S0
2 ¼ cos �iðRsR

�
p þ RpR

�
s Þ ð25-45cÞ

S0
3 ¼ i cos �iðRsR

�
p � RpR

�
s Þ ð25-45dÞ

Figure 25-6 Measurement of the principal angle of incidence and the principal azimuth
angle.
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Substituting (25-43) into (25-45) and using (25-44) yields

S0
0

S0
1

S0
2

S0
3

0
BB@

1
CCA ¼

1

2

�2s þ �
2
p �2s � �

2
p 0 0

�2s � �
2
p �2s þ �

2
p 0 0

0 0 2�s�p cos� 2�s�p sin�

0 0 �2�s�p sin� 2�s�p cos�

0
BBB@

1
CCCA

S0

S1

S2

S3

0
BB@

1
CCA ð25-46Þ

where � ¼ �s��p.
We now allow the incident light to be þ45o linearly polarized so that Ep ¼ Es.

Furthermore, we introduce an azimuthal angle  (generally complex) for the
reflected light, which is defined by

tan ¼
Rs

Rp

¼ �
cosð�i � �rÞ

cosð�i þ �rÞ
¼ P expði�Þ ð25-47Þ

where we have used (25-24), and P is real and we write it as

P ¼ tan ð25-48aÞ

where  is called the azimuthal angle. From (25-43) we also see that

P ¼
�s
�p

� ¼ �s � �p ð25-48bÞ

We note that  is real in the following two cases:

1. For normal incidence (�i ¼ 0); then from (25-47) we see that P¼ 1 and�¼ �.
2. For grazing incidence (�i ¼ �/2); then from (25-47) we see that P ¼ 1 and

� ¼ 0.

Between these two extreme values there exists an angle ��i�i called the principal
angle of incidence for which � ¼ �/2. Let us now see the consequences of obtaining
this condition. We first write (25-48b) as

�s ¼ P�p ð25-49Þ

Substituting (25-49) into (25-46), we obtain the Stokes vector of the reflected light
to be

S0
0

S0
1

S0
2

S0
3

0
BBBB@

1
CCCCA ¼

�2p
2

1þ P2
� 1� P2
	 


0 0

� 1� P2
	 


1þ P2
	 


0 0

0 0 2P cos� 2P sin�

0 0 �2P sin� 2P cos�

0
BBBB@

1
CCCCA

S0

S1

S2

S3

0
BBBB@

1
CCCCA

ð25-50Þ

For incident þ45� linearly polarized light, the Stokes vector is

S0

S1

S2

S3

0
BB@

1
CCA ¼ I0

1
0
1
0

0
BB@

1
CCA ð25-51Þ
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Substituting (25-51) into (25-50), we find the Stokes vector of the reflected light to be

S0
0

S0
1

S0
2

S0
3

0
BBB@

1
CCCA ¼

�2pI0
2

1þ P2

� 1� P2
	 

2P cos�

�2P sin�

0
BBB@

1
CCCA ð25-52Þ

The ellipticity angle � is

� ¼
1

2
sin�1 S0

3

S0
0

� �
¼

1

2
sin�1 �2P sin�

1þ P2

� �
ð25-53aÞ

Similarly, the orientation angle  is

 ¼
1

2
tan�1 �2P cos�

1� P2

� �
ð25-53bÞ

We see that � is greatest when � ¼ �/2 but then  ¼ 0; i.e., the polarization ellipse
corresponding to (25-52) is in its standard, nonrotated, form.

For � ¼ �/2 the Stokes vector, (25-52), becomes

S0
0

S0
1

S0
2

S0
3

0
BBBB@

1
CCCCA ¼

�2pI0
2

1þ P2

� 1� P2
	 


0

�2P

0
BBBB@

1
CCCCA ð25-54Þ

and � and  of the polarization ellipse corresponding to (25-54) are,

� ¼
1

2
sin�1 S0

3

S0
0

� �
¼

1

2
sin�1 �2P

1þ P2

� �
ð25-55aÞ

 ¼
1

2
tan�1 S0

2

S0
1

� �
¼ 0 ð25-55bÞ

We must now transform the elliptically polarized light described by the Stokes
vector (25-54) to linearly polarized light. A quarter-wave retarder can be used to
transform elliptically polarized light to linearly polarized light. The Mueller matrix
for a quarter-wave retarder oriented at 0� is

M ¼

1 0 0 0
0 1 0 0
0 0 0 �1
0 0 1 0

0
BB@

1
CCA ð25-56Þ

Multiplying (25-54) by (25-56) yields

S0
0

S0
1

S0
2

S0
3

0
BBBB@

1
CCCCA ¼

�2pI0
2

1þ P2

� 1� P2
	 

2P

0

0
BBBB@

1
CCCCA ð25-57Þ
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which is the Stokes vector for linearly polarized light. The Mueller matrix for a linear
polarizer at an angle � is

M ¼
1

2

1 cos 2� sin 2� 0

cos 2� cos2 2� sin 2� cos 2� 0

sin 2� sin 2� cos 2� sin2 2� 0

0 0 0 0

0
BBBB@

1
CCCCA ð25-58Þ

Multiplying (25-57) by (25-58), we obtain the intensity of the beam emerging from
the analyzing polarizer:

Ið�Þ ¼ ð1þ P2
Þ � ð1� P2

Þ cos 2�þ 2P sin 2� ð25-59Þ

or

Ið�Þ ¼ A� B cos 2�þ C sin 2� ð25-60aÞ

where

A ¼ 1þ P2
ð25-60bÞ

B ¼ 1� P2
ð25-60cÞ

C ¼ 2P ð25-60dÞ

Equation (25-60a) is now written as

I �ð Þ ¼ A 1�
B

A
cos 2�þ

C

A
sin 2�

� �
ð25-61aÞ

We set

cos � ¼
B

A
ð25-61bÞ

sin � ¼
C

A
ð25-61cÞ

so that (25-61a) can now be written as

Ið�Þ ¼ A 1� cosð� � 2�Þ½ � ð25-62aÞ

and

� ¼ tan�1 C

B

� �
¼ tan�1 2P

1� P2

� �
ð25-62bÞ

A null intensity for (25-62a) is obtained when

� ¼
�

2
ð25-63aÞ

or

� ¼ 2� ð25-63bÞ

The azimuthal angle where the null intensity occurs is called the principal azimuthal
angle �  .
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We can relate (25-63b) to the principal azimuthal angle �  as follows. We recall from
(25-48a) that

P ¼ tan ð25-48aÞ

Substituting (25-48a) into (25-62b), we find that

� ¼ tan�1 C

B

� �
¼ tan�1

½tan 2 � ¼ 2� ð25-64aÞ

or

� ¼ �  ð25-64bÞ

The magnitude of P is then

P ¼
�s
�p

¼ tan �  ð25-65Þ

It is possible to obtain the same results by irradiating the sample surface with
circularly polarized light rather than linearly polarized light. We remove the quarter-
wave retarder from the analyzing arm (see Fig. 25-1) and insert it between the þ45�

linear polarizer and the optical sample in the generating arm. The Stokes vector of
the beam emerging from the linear polarizer in the generating arm is

S0

S1

S2

S3

0
BB@

1
CCA ¼ I0

1
0
1
0

0
BB@

1
CCA ð25-66Þ

Multiplying (25-66) by the Mueller matrix for a quarter-wave retarder oriented at 0�,
(25-56), we obtain the Stokes vector for right circularly polarized light:

S0

S1

S2

S3

0
BB@

1
CCA ¼ I0

1
0
0
1

0
BB@

1
CCA ð25-67Þ

The Stokes vector (25-67) is now used in (25-50), whereupon the Stokes vector of the
reflected beam is found to be

S0
0

S0
1

S0
2

S0
3

0
BB@

1
CCA ¼

�2pI0
2

1þ P2

�ð1� P2
Þ

2P sin�
2P cos�

0
BB@

1
CCA ð25-68Þ

At the principal angle of incidence � ¼ �/2, so (25-68) reduces to

S0
0

S0
1

S0
2

S0
3

0
BB@

1
CCA ¼

�2pI0
2

1þ P2

� 1� P2
	 

2P
0

0
BB@

1
CCA ð25-69Þ

which is identical to the Stokes vector found in (25-57). Thus, the quarter-wave
retarder can be inserted into either the generating or analyzing arm, because the
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phase shift of �/2 can be generated before or after the reflection from the optical
surface.

We also point out that a quarter-wave retarder can also transform elliptically
polarized light to linearly polarized light if the polarization ellipse is in its standard
form. However, the orientation angle is different from 45�. To see this clearly, let us
represent the Stokes vector of elliptically polarized light in its ‘‘standard’’ form;
that is,

S0

S1

S2

S3

0
BB@

1
CCA ¼

A
B
0
D

0
BB@

1
CCA ð25-70Þ

The Mueller matrix of a quarter-wave retarder is

M ¼

1 0 0 0
0 1 0 0
0 0 0 �1
0 0 1 0

0
BB@

1
CCA ð25-56Þ

Multiplying (25-70) by (25-56) yields

S0

S1

S2

S3

0
BB@

1
CCA ¼

A
B
�D
0

0
BB@

1
CCA ð25-71Þ

which is, of course, the Stokes vector for linearly polarized light. However, the
polarization ellipse is now oriented at an angle  given by

 ¼
1

2
tan�1 �D

B

� �
ð25-72Þ

We now relate the principle angle of incidence ��i�i ð� ¼ �=2Þ and the principal
azimuthal angle �  to the optical constants n and �. We recall that

tan ¼
Rs

Rp

¼
� cosð�i � �rÞ

cosð�i þ �rÞ
¼ P expði�Þ ð25-47Þ

P ¼
�s
�p

� ¼ �s � �p ð25-48bÞ

We expand (25-47)

P exp i�ð Þ ¼ �
cos �i cos �r þ sin �i sin �r
cos �i cos �r � sin �i sin �r

ð25-73aÞ

¼
tan �i tan �r þ 1

tan �i tan �r � 1
ð25-73bÞ

Solving (25-73b) for tan �i tan �r gives

1þ P expði�Þ

1� P expði�Þ
¼ � tan �i tan �r ¼ �

tan �i sin �iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � sin2 �i

q ð25-74Þ
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At the principal angle of incidence � ¼ �/2. Furthermore, sin2 �i  n2 and may be
disregarded. Then, (25-74) becomes

1þ iP

1� iP
¼

� sin ���i tan ���i
nð1� i�Þ

ð25-75Þ

where ���i is the principal angle. Multiplying (25-75) by its complex conjugate leads
immediately to

n
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p
¼ sin ���i tan ���i ð25-76Þ

Equation (25-76) serves as a very useful check on n and �.
We now establish the relations between n and � and ���i and �  . First, we invert

(25-75) and obtain

1� iP

1þ iP
¼

�nð1� i�Þ

sin ���i tan ���i
ð25-77Þ

Next, we replace P by tan �  . Then, multiplying the numerator and the denominator
of the left-hand side of (25-77) by 1� i tan �  , we find that

n

sin ���i tan ���i
¼ �

1� tan2 �  

1þ tan2 �  
ð25-78aÞ

n�

sin ���i tan ���i
¼

�2 tan2 �  

1þ tan2 �  
ð25-78bÞ

The right-hand sides of (25-78a) and (25-78b) reduce to cos 2 �  and sin 2 �  , respec-
tively. This leads immediately to

n ¼ � sin ���i tan ���i cos 2 �  ð25-79aÞ

� ¼ tan 2 �  ð25-79bÞ

We can substitute (25-79a) and (25-79b) into (25-18) and find that

n ¼ � sin ���i tan ���i expð�i2 �  Þ ð25-80Þ

Thus, by measuring the principal angle of incidence ���i and the principal azimuthal
angle �  , we can determine n and � from (25-79a) and (25-79b), respectively.

In the present formulation of relating n and � to ��i�i and �  , the term sin2 �i has
been neglected. Interestingly, as pointed out by Wood, the inclusion of sin2 �i leads to
the same equations.

Further information on the principal angle of incidence method is given in
the textbooks by Born and Wolf, Wood, and Longhurst. For example, Wood also
describes the application of the method to the measurement of optical materials in
the ultraviolet region of the optical spectrum.

25.4 MEASUREMENT OF REFRACTIVE INDEX AND EXTINCTION
COEFFICIENT AT AN INCIDENT ANGLE OF 45�

In the previous sectionwe saw that the principal angle of incidencemethod can be used
to obtain the optical constants n and �. We also pointed out that there is another
method known as the pseudo-Brewster angle method; this method is described by
Potter. The classical Brewster angle method, we recall, leads to a null intensity at the
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Brewster angle for dielectrics. For absorbing optical materials, however, one can show
that a minimum intensity is obtained instead; this is indicated in Figs. 25-2 through
25-5. From a measurement of the minimum intensity, n and � can then be found. The
Brewster angle method is very useful. However, a ‘‘wide’’ minimum is obtained, and
this limits the accuracy of the results to only two or three decimal places at most.

All of these classical methods are based on a ‘‘null’’ or minimum intensity
condition and reading of mechanical dials. Consequently, these methods can be
called optomechanical; that is, only optics and mechanical components are used to
determine n and �. While these methods have long been the ‘‘standard’’ means for
determining n and �, they have a number of drawbacks. The first and most serious is
that a mechanical arm must be used and moved to find the appropriate angle, e.g.,
the principal angle of incidence or the Brewster angle. Very often, apparatus to do
this, such as a divided circle, is not readily available. Furthermore, a mechanical
divided circle is quite expensive. Another drawback is that it is time consuming to
move the mechanical arm and search for a null or minimum intensity. In addition,
automating the movement of a mechanical arm is difficult and expensive. Finally,
these measurement methods do not utilize to any significant extent the developments
made in electronics and optical detectors in recent years.

Ideally, it would be preferable if n and � could be measured without any
mechanical movement whatsoever, especially, with respect to moving a mechanical
arm. This can indeed be done by irradiating the optical surface at an incident angle of
45�. At this angle Fresnel’s equations reduce to relatively simple forms, and the
measurement of the reflected intensity can be easily made with an optical detector
and a digital voltmeter. Mechanical fixed mounts are, of course, still necessary, but
there are no major mechanical movements. Furthermore, the required mechanical
and optical components are nearly always available in any modern optical labora-
tory. In addition, because the angles involved are 45� and the components are aligned
perpendicular to each other, these measurements are easily carried out on an optical
table. Finally, a digital voltmeter capable of reading to, say, 5 1

2 digits is relatively
inexpensive. In this method, therefore, the optical constants are derived by using only
quantitative detectors and reading on a digital voltmeter rather than a mechanical
dial. In fact, the four Stokes parameters must be measured, but these measurements
are made at settings of 0�, 45�, and 90�, which does not require searching for a null.
Consequently, this measurement method can be called optoelectronic. It has been
called digital refractometry. Therefore, we consider Fresnel’s equations for reflection
at an incident angle of 45�. From the measurement of the Stokes parameters of the
reflected beam, n and � can then be determined. We now derive the relations which
relate the Stokes parameters to n and � at an incident angle of 45�.

Figure 25-7 shows the incident orthogonal components Ep and Es and the
reflected field components Rp and Rs, respectively; p and s have their usual meanings.
For absorbing optical materials Fresnel’s reflection equations continue to hold, so

Rs ¼ �
sinð�i � �rÞ

sinð�i þ �rÞ
Es ð25-81aÞ

Rp ¼
tanð�i � �rÞ

tanð�i þ �rÞ
Ep ð25-81bÞ

In (25-81), �i is the angle of incidence and �r is the angle of refraction.
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Absorbing optical media are characterized by a complex refractive index n of
the form:

n ¼ nð1� i�Þ ð25-18Þ

When �i ¼ 45�, a relatively simple form of Fresnel’s equations emerges, as we shall
now show.

Snell’s law of refraction continues to be valid for media described by (25-18), so
we have

sin �r ¼
sin �i
n

ð25-82Þ

Equation (25-82) can be expressed in terms of cos �r:

cos �r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � sin2 �i

q
n

ð25-83Þ

For an incident angle of 45�, (25-82) and (25-83) become, respectively,

sin �r ¼
1ffiffiffi
2

p
n

ð25-84aÞ

and

cos �r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n2 � 1

p

ffiffiffi
2

p
n

ð25-84bÞ

Figure 25-7 Optical field components for the incident and reflected fields.
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For an incident angle of 45o, (25-81) reduces to

Rs ¼ �
cos �r � sin �r
cos �r þ sin �r

� �
Es ð25-85aÞ

Rp ¼
cos �r � sin �r
cos �r þ sin �r

� �2
Ep ð25-85bÞ

Replacing the cosine and sine terms using (25-84), we can write (25-85) as

Rs ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n2 � 1

p
� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2n2 � 1
p

þ 1

" #
Es ð25-86aÞ

In a similar manner the equation for Rp becomes

Rp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n2 � 1

p
� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2n2 � 1
p

þ 1

" #2

Ep ð25-86bÞ

We now setffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n2 � 1

p
¼ a� ib ¼ A expð�i�Þ ð25-87Þ

Then, (25-86a) and (25-86b) can be written using (25-87) as

Rs ¼ �
ða� 1Þ � ib

ðaþ 1Þ � ib

� �
Es ð25-88aÞ

Rp ¼
ða� 1Þ � ib

ðaþ 1Þ � ib

� �2
Ep ð25-88bÞ

Equation (25-86) can be written also in terms of A and �, as in (25-87).
Straightforward substitution gives

Rs ¼
1� A expð�i�Þ

1þ A expð�i�Þ

� �
Es ð25-89aÞ

Rp ¼
1� A expð�i�Þ

1þ A expð�i�Þ

� �2
Ep ð25-89bÞ

From (25-87) we have

A2
¼ a2 þ b2 ð25-90aÞ

� ¼ tan�1 b

a

� �
ð25-90bÞ

A and � can also be expressed in terms of n and �. We have from (25-87)

a� ib ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n2 � 1

p
ð25-91Þ

Substituting (25-18) into (25-91) and then squaring both sides of the equation leads to

a2 � b2 � ið2abÞ ¼ ð2n2 � 2n2�2 � 1Þ � ið4n2�Þ ð25-92Þ
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Equating real and imaginary terms we have

a2 � b2 ¼ 2n2 � 2n2�2 � 1 ð25-93aÞ

ab ¼ 2n2� ð25-93bÞ

We can also find an expression for a2þb2. We take the complex conjugate of
(25-91):

aþ ib ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n2ð1þ i�Þ2 � 1

q
ð25-94aÞ

We also have from (25-87) that

a� ib ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n2ð1� i�Þ2 � 1

q
ð25-94bÞ

Multiplying (25-94a) by (25-94b) gives

A2
¼ a2 þ b2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n4ð1þ �2Þ2 � 4n2ð1� �2Þ þ 1

q
ð25-95Þ

Adding and subtracting (25-93a) and (25-95) yields

a2 ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n4ð1þ �2Þ2 � 4n2ð1� �2Þ þ 1

q
þ ð2n2 � 2n2�2 � 1Þ

� �
ð25-96aÞ

b2 ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n4ð1þ �2Þ2 � 4n2ð1� �2Þ þ 1

q
� ð2n2 � 2n2�2 � 1Þ

� �
ð25-96bÞ

Then, from (25-90b) and (25-96) we see that

� ¼ tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n4ð1þ �2Þ2 � 4n2ð1� �2Þ þ 1

q
� ð2n2 � 2n2�2 � 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4n4ð1þ �2Þ2 � 4n2ð1� �2Þ þ 1

q
þ ð2n2 � 2n2�2 � 1Þ

2
64

3
75

1=2

ð25-97Þ

For nonabsorbing materials � ¼ 0, so (25-95) and (25-97) reduce to

A2
¼ a2 ¼ 2n2 � 1 and � ¼ 0 ð25-98Þ

as expected.
We must now transform the amplitude equations (25-89) to intensity equa-

tions, and from these derive the Stokes polarization parameters.
We defined the Stokes parameters of the incident and reflected beams in

Eqs. (25-44) and (25-45).

Copyright © 2003 by Marcel Dekker, Inc. All Rights Reserved.



Substituting (25-89) into (25-45) and using (25-44) yields

S0
0

S0
1

S0
2

S0
3

0
BBBB@

1
CCCCA ¼

1� 2A cos �þ A2

ð1þ 2A cos�þ A2Þ
2

�

1þ A2 2A cos� 0 0

2A cos � 1þ A2 0 0

0 0 1� A2
�2A sin�

0 0 2A sin� 1� A2

0
BBB@

1
CCCA

S0

S1

S2

S3

0
BBB@

1
CCCA ð25-99Þ

The 4 � 4 matrix is the Mueller matrix for optically absorbing materials at an
incident angle of 45�. The presence of the off-diagonal terms in the upper and
lower parts of the matrix shows that optically absorbing materials simultaneously
change the amplitude and phase of the incident beam. To determine n and �, we
measure A and � and solve (25-95) and (25-97) for n and � by iteration. It is
straightforward to show that (25-99) reduces to the equation for dielectrics by setting
� ¼ 0; i.e.,

S0
0

S0
1

S0
2

S0
3

0
BBBB@

1
CCCCA ¼

1� sin 2�r

ð1þ sin 2�rÞ
2

1 sin 2�r 0 0

sin 2�r 1 0 0

0 0 � cos 2�r 0

0 0 0 � cos 2�r

0
BBBB@

1
CCCCA

S0

S1

S2

S3

0
BBBB@

1
CCCCA
ð25-100Þ

We can derive an important relation between the intensity of an incident beam,
I0, and the orthogonal intensities of the reflected beam, Is and Ip, respectively.
Consider that we irradiate the surface of an optically absorbing material with a
linear vertically polarized beam of intensity I0; we call this the p polarized beam,
and its Stokes vector is

S0

S1

S2

S3

0
BB@

1
CCA ¼ I0

1
�1
0
0

0
BB@

1
CCA ð25-101Þ

Multiplying (25-99) out with (25-101) substituted for the incident Stokes vector gives

Ip ¼ I0
ð1þ A2

� 2A cos�Þ2

ð1þ A2 þ 2A cos�Þ2
ð25-102Þ

Next, we irradiate the optical surface with a linearly horizontally polarized beam; we
call this the s polarized beam. Its Stokes vector is

S0

S1

S2

S3

0
BB@

1
CCA ¼ I0

1
1
0
0

0
BB@

1
CCA ð25-103Þ
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Multiplying (25-99) out with (25-103) substituted for the incident Stokes vector
yields

Is ¼ I0
ð1þ A2

� 2A cos �Þ

ð1þ A2 þ 2A cos �Þ
ð25-104Þ

We eliminate the ratio factor between (25-102) and (25-104) and find that

I2s ¼ I0Ip ð25-105Þ

Equation (25-105) is a fundamental relation. It is the intensity analog of the ampli-
tude relation:

R2
s ¼ Rp ð25-106Þ

Equation (25-105) shows that it is incorrect to square (25-106) in order to obtain
(25-105); the correct relation includes the source intensity I0. From an experimental
point of view (25-105) is very useful because it shows that by measuring the ortho-
gonal intensities of the reflected beam the source intensity can be directly monitored
or measured. Similarly, if I0 is known, then (25-105) serves as a useful check on the
measurement of Is and Ip.

We now turn to the measurement of A and � in (25-99).
Let us irradiate the optical surface with an optical beam of intensity I0 which is

right circularly polarized. The Stokes vector of the incident beam is then

S0

S1

S2

S3

0
BB@

1
CCA ¼ I0

1
0
0
1

0
BB@

1
CCA ð25-107Þ

Multiplying (25-99) out with (25-107) substituted for the incident Stokes vector, we
find that the Stokes vector of the reflected beam is

S0
0

S0
1

S0
2

S0
3

0
BB@

1
CCA ¼ I0

1� 2A cos�þ A2

ð1þ 2A cos�þ A2Þ
2

1þ A2

2A cos�
�2A sin�
1� A2

0
BB@

1
CCA ð25-108Þ

The reflected beam is elliptically polarized. We can determine the quantities A2 and �
directly from measuring the Stokes parameters. Dividing S0

3 by S0
0 we find that

A2
¼

S0
0 � S0

3

S0
0 þ S0

3

ð25-109aÞ

Dividing S0
2 by S0

1 gives

� ¼ tan�1 �S0
2

S0
1

� �
ð25-109bÞ
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We also see that the ellipticity angle � is

� ¼
1

2
sin�1 1� A2

1þ A2

 !
ð25-110aÞ

¼
1

2
sin�1

1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n4ð1þ �2Þ2 � 4n2ð1� �2Þ þ 1

q
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n4ð1þ �2Þ2 � 4n2ð1� �2Þ þ 1

q
2
64

3
75 ð25-110bÞ

The orientation angle  is, using (25-97),

 ¼
��

2
ð25-111aÞ

¼ �
1

4
tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n4 1þ �2

	 
2
�4n2 1� �2

	 

þ 1

q
� 2n2 � 2n2�2 � 1
	 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n4 1þ �2

	 
2
�4n2 1� �2

	 

þ 1

q
þ 2n2 � 2n2�2 � 1
	 


2
64

3
75

1=2

ð25-111bÞ

For the condition where we have no absorption (� ¼ 0) � and  become, respec-
tively,

� ¼
1

2
sin�1 1� n2

n2

 !
ð25-112aÞ

 ¼ 0 ð25-112bÞ

as expected. To determine A2 and  uniquely, we must measure all four Stokes
parameters. In Part I, various methods for doing this were considered. Before we
describe an experimental configuration for carrying out the measurement, we relate
the above equations to another commonly used representation, the reflection coeffi-
cients representation.

The reflection coefficients are defined by Born and Wolf to be

rs ¼
Rs

Es

¼ �se
i�s ð25-113aÞ

rp ¼
Rp

Ep

¼ �pe
i�p; � ¼ �s � �p ð25-113bÞ

From the definitions of the Stokes parameters given by (25-44) and (25-45), the
amplitude equations (25-113) are found to transform

S0
0

S0
1

S0
2

S0
3

0
BBBB@

1
CCCCA ¼

1

2

�2s þ �
2
p �2s � �

2
p 0 0

�2s � �
2
p �2s þ �

2
p 0 0

0 0 2�s�p cos � 2�s�p sin �

0 0 �2�s�p sin � 2�s�p cos �

0
BBBB@

1
CCCCA

S0

S1

S2

S3

0
BBBB@

1
CCCCA ð25-114Þ
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We can relate the coefficients in (25-114) to A and  in (25-108) by irradiating the
surface with right circularly polarized light. The respective Stokes parameters of the
reflected beam are

1

2
�2s þ �

2
p

 �
¼

1þ A2
� 2A cos�

1þ A2 þ 2A cos�
	 
2
" #

1þ A2
	 


ð25-115aÞ

1

2
�2s � �

2
p

 �
¼

1þ A2
� 2A cos�

1þ A2 þ 2A cos�
	 
2
" #

2A cos�ð Þ ð25-115bÞ

�s�p sin � ¼
1þ A2

� 2A cos�

1þ A2 þ 2A cos�
	 
2
" #

�2A sin�ð Þ ð25-115cÞ

�s�p cos � ¼
1þ A2

� 2A cos�

1þ A2 þ 2A cos�
	 
2
" #

ð1� A2
Þ ð25-115dÞ

Adding (25-115a) and (25-115b) gives

�2s ¼
Is
I0

¼
1þ A2

� 2A cos �

1þ A2 þ 2A cos �
ð25-116aÞ

and subtracting (25-115b) from (25-115a) gives

�2p ¼
Ip

I0
¼

1þ A2
� 2A cos�

	 
2
1þ A2 þ 2A cos�
	 
2 ð25-116bÞ

The relation for g in terms of A and � is then obtained by dividing (25-115c) by
(25-115d)

tan � ¼
�2A

1� A2

� �
sin� ð25-116cÞ

We see that the reflection coefficients in (25-116a) and (25-116b) are identical to the
ratio of the orthogonal intensities, (25-102) and (25-104), of the reflected beam. We
also see from (25-116a) and (25-116b) that

�4s ¼ �2p ð25-117Þ

in agreement with our previous observations.
Figure 25-8 shows a block diagram of the experimental configuration for

measuring n and �.
In this measurement, a He–Ne laser is used as the optical source (6328 Å). The

optical beam emerging from the laser is expanded and collimated; this creates a plane
wave. In addition, an improved signal-to-noise ratio is obtained by chopping the
beam. The frequency at which the beam is chopped is then used as a reference signal
for a lock-in amplifier. The circular polarizer before the sample creates a circularly
polarized beam which then irradiates the optical surface at an incident angle of 45�.
The autocollimator is used to align the optical surface of the sample being measured
to exactly 45�. The reflected beam is then analyzed by a circular polarizer in order to
obtain the four Stokes parameters in accordance with the discussion in Part I. The
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beam that emerges from the circular polarizer in the analyzing path is incident on a
silicon detector. The chopped voltage signal is then fed to the lock-in amplifier along
with the reference signal. The lock-in amplifier consists, essentially, of a phase-
sensitive detector along with an RC network to smooth the output d.c. (analog)
voltage. The d.c. voltage is then converted into a digital voltage by a digital volt-
meter, e.g., a 5 1

2 digit voltmeter. The 5 1
2 means that the minimum voltage which can

be displayed or ‘‘read’’ is five digits after the decimal point. The 1/2 term means
that the number to the left of the decimal point can vary from 0 to 1 for an average
of (1 þ 0)/2 ¼ 1/2. If we have a voltage greater than 1.99999 V, then the maximum
displayed reading can only be read to four decimal places, e.g., 2.1732 V. The digital
output is read by a digital computer, and the values of A2 and � are then calculated
from (25-109a) and (25-109b), respectively.

The optical constants n and � are calculated from the values of A2 and � in
(25-95) and (25-97). For convenience we repeat the equations here:

A2
¼ a2 þ b2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n4 1þ �2

	 
2
�4n2 1� �2

	 

þ 1

q
ð25-95Þ

� ¼ tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n4 1þ �2

	 
2
�4n2 1� �2

	 

þ 1

q
� 2n2 � 2n2�2 � 1
	 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n4 1þ �2

	 
2
�4n2 1� �2

	 

þ 1

q
þ 2n2 � 2n2�2 � 1
	 


2
64

3
75

1=2

ð25-97Þ

To determine n and �, we first estimate these values. This is most easily done from
the plots of (25-95) and (25-97) in Figs. 25-9 and 25-10.

Figure 25-8 Experimental configuration for measuring the Stokes parameters and the
optical constants n and � of an optically absorbing material.
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Figure 25-10 Plot of � versus � for varying values of n, Eq. (25-97).

Figure 25-9 Plot of A2 versus � for varying values of n, Eq. (25-95).
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Inspecting Figs. 25-9 and 25-10, we observe that small values of � yield small
values of A2 and relatively small phase shifts �. This information is very useful for
determining the approximate value of the complex refractive index.

Let us now consider two examples of determining n and �. In the first example,
a sample is measured, and its normalized Stokes vector is

S0

S1

S2

S3

0
BB@

1
CCA ¼

1:000
0:365
�0:246
�0:898

0
BB@

1
CCA ð25-118Þ

We find then from (25-118), (25-109a), and (25-109b) that

A2
¼ 18:608 ð25-119aÞ

and

� ¼ 33:979� ð25-119bÞ

Using these values in (25-102) and (25-104), we then find that the ratio of the
orthogonal intensities is

Ip
Is

¼ 0:837 ð25-120Þ

This value provides a final check on the measurement. To obtain a ‘‘seed’’ value for
the complex refractive index, we construct Table 25-1, using (25-95) and (25-97).

Inspection of the table shows that, as the ‘‘blocks’’ of n increase, the first entry
of A2 and � in each block increase and decrease, respectively. Thus, we need only
match the pair of A2 and � that is closest to the actual value. In this case the desired
values are A2

¼ 18.608 and � ¼ 33.979�. The closest pair in the table which matches
this is A2

¼ 15.046 and � ¼ 30.182, and the corresponding values of n and � are 2.5
and 0.5. Thus, the ‘‘seed’’ complex refractive index is chosen to be

n ¼ 2:5ð1� i 0:5Þ ð25-121Þ

Table 25-1 was constructed for small values of �. If, for example, large values of A2

and � were found, this would indicate that a new table should be constructed from
(25-95) and (25-97), starting with values of, say, n ¼ 0.5 and � ¼ 5.0, etc.

We now iterate (25-95) and (25-97) around n ¼ 2.50 and � ¼ 0.50, and we find
that for A2

¼ 18.608 and � ¼ 33.979o the complex refractive index is represented by

n ¼ 2:6790ð1� i 0:5745Þ ð25-122Þ

We can use this result to find the reflectivity of an optical beam at normal incidence.
We recall from Section 25.2 that the reflectivity for any incident polarization is

R ¼
n� 1ð Þ

2
þ n�ð Þ

2

nþ 1ð Þ
2
þ n�ð Þ

2
ð25-123Þ

Substituting the above values of n and � into (25-123), we find that

R ¼ 32:6% ð25-124Þ

which shows that this optical material is a very poor reflector.
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We now consider another example. The normalized Stokes vector for this
example is

S0

S1

S2

S3

0
BB@

1
CCA ¼

1:000
0:053
0:160
�0:986

0
BB@

1
CCA ð25-125Þ

We immediately find that

A2
¼ 139:845 ð25-126aÞ

� ¼ 71:672� ð25-126bÞ

From Figs. 25-9 and 25-10 we see that the very large values of A2 and � indicate a
relatively large value for �. We again construct a seed table as before, and we find
that the appropriate seed value for the complex refractive index is

n ¼ 0:5ð1� i15Þ ð25-127Þ

Table 25-1 Initial values for determining n and �
from (25-95) and (25-97)

n � A2 �

0.5 0.5 0.800 68.954

0.5 1.0 1.414 67.815
0.5 1.5 2.211 68.254
0.5 2.0 3.202 68.954

1.0 0.5 2.062 42.393
1.0 1.0 4.123 57.961
1.0 1.5 6.946 64.113

1.0 2.0 10.630 67.007

1.5 0.5 5.088 33.833
1.5 1.0 9.055 54.216

1.5 1.5 15.038 62.774
1.5 2.0 23.114 66.465

2.0 0.5 9.434 31.280

2.0 1.0 16.032 52.752
2.0 1.5 26.401 62.244
2.0 2.0 40.608 66.256

2.5 0.5 15.046 30.182
2.5 1.0 25.020 50.052
2.5 1.5 41.020 61.987

2.5 2.0 63.105 66.156

3.0 0.5 21.915 29.608

3.0 1.0 36.014 51.667
3.0 1.5 58.892 61.844
3.0 2.0 90.604 66.701

Copyright © 2003 by Marcel Dekker, Inc. All Rights Reserved.



Proceeding as before, we obtain

n ¼ 0:65ð1� i12:78Þ ð25-128Þ

For this sample we find that the reflectivity R, (25-123), is

R ¼ 96:4% ð25-129Þ

This large value of R shows that this sample is an excellent reflector.
Thus, we see that Fresnel’s equations for an incidence angle of 45� enable us to

determine n and � by taking advantage of all of the developments of modern elec-
tronics and computers. In particular, this method is readily automated. While the
simplest measurement configuration has been shown in Fig. 25-8, more complicated
ones, which simplify the measurements, such as a dual-beam configuration to mea-
sure Is and Ip simultaneously, can be conceived.

The measurement of the refractive index and the extinction coefficient of mate-
rials is critical to the development of modern optical materials (e.g., fiber-optic glass,
metals and metal alloys, and semiconductors). In this and previous sections we have
dealt with determining the optical constants which are inherent to the material itself.
In practice, this means that the material and, in particular, the optical surface must
be free of any other substances resting on the surface (e.g., a thin film).

The problem of considering the effects of a thin film on an optical surface
appears to have been first studied by Drude about 1890. He was probably initially
interested in characterizing these thin films in terms of their optical properties.
However, as he advanced in his investigations he came to realize that the subject
was far from simple and required substantial effort. In fact, the fundamental equa-
tions could not be solved until the advent of digital computers. In order to determine
n and � for thin films as well as the substrates, he developed a method that has come
to be known as ellipsometry. As time developed, further applications were found,
e.g., the measurement of thin films deposited on optical lenses in order to improve
their optical performance. In Chapter 29 we consider the fundamentals of ellipso-
metry.
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26

Polarization Optical Elements

26.1 INTRODUCTION

A polarization optical element is any optical element that modifies the state of
polarization of a light beam. Polarizers, retarders, rotators, and depolarizers are
all polarization optical elements, and we will discuss their properties in this chapter.
The many references on polarization elements, and catalogs and specifications from
manufacturers, are good sources of information. We include here a survey of ele-
ments, and brief descriptions so that the reader has at least a basic understanding of
the range of available polarization elements.

26.2 POLARIZERS

A polarizer is an optical element that is designed to produce polarized light of a
specific state independent of the incident state. The desired state might be linear,
circular, or elliptically polarized, and an optical element designed to produce one of
these states is a linear, circular, or elliptical polarizer. Polarization elements are
based on polarization by absorption, refraction, and reflection. Since this list
describes most of the things that can happen when light interacts with matter, the
appearance of polarized light should not be surprising. We will cover polarization by
all these methods in the following sections.

26.2.1 Absorption Polarizers: Polaroid

Polaroid is a material invented in 1928 by Edwin Land, who was then a 19-year-old
student at Harvard University. (The generic name for Polaroid, sheet polarizer,
applies to a polarizer whose thickness normal to the direction of propagation of
light is much smaller than the width.) Land used aligned microcrystals of herapathite
in a transparent medium of index similar to that of the crystalline material.
Herapathite is a crystalline material discovered about 1852 by the English medical
researcher William Bird Herapath. Herapath had been feeding quinine to dogs, and
the substance that came to be known as herapathite crystallized out of the dogs’
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urine. Crystals of herapathite tend to be needle-shaped and the principal absorption
axis is parallel to the long axis of the crystal. Land reduced crystals of herapathite to
small size, aligned them, and placed them in a solution of cellulose acetate. This first
absorption polarizer is known as J-sheet.

Sheet polarizer, operating on the principle of differential absorption along
orthogonal axes, is also known as dichroic polarizer. This is because the unequal
absorptions also happen to be spectrally dependent, i.e., linearly polarized light
transmitted through a sample of Polaroid along one axis appears to be a different
color from linearly polarized light transmitted along the orthogonal axis.

The types of sheet polarizer typically available are molecular polarizers, i.e.,
they consist of transparent polymers that contain molecules that have been aligned
and stained with a dichroic dye. The absorption takes place along the long axis of the
molecules, and the transmission axis is perpendicular to this. H-sheet, K-sheet, and
L-sheet are of this type, with H-sheet being the most common. Sheet polarizers can
be made in large sizes (several square feet) for both the visible and near infrared, and
is an extremely important material, because, unlike calcite, it is inexpensive. Polaroid
material can be laminated between glass plates and the performance of these polar-
izers is extremely good.

We now derive equations that describe sheet polarizer properties; the equations
are equally applicable to any type of polarizer. Suppose we have a light source that is
passed through an ideal polarizer with its transmission axis at some angle  from a
reference. The output of the ideal polarizer then passes through a sheet polarizer
with its transmission axis oriented at an angle � with respect to a reference, as shown
in Fig. 26-1. The Mueller matrix of this last polarizer is

Mpol �ð Þ ¼

A B cos 2� B sin 2� 0

B cos 2� A cos2 2� þ C sin2 2� A� Cð Þ sin 2� cos 2� 0

B sin 2� A� Cð Þ sin 2� cos 2� A sin22� þ C cos22� 0

0 0 0 C

0
BBBB@

1
CCCCA

ð26-1Þ

Figure 26-1 Measurement configuration for characterizing a single polarizer.
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where

A ¼
p2x þ p2y

2

B ¼
p2x � p2y

2
ð26-2Þ

C ¼ pxpy

and where the quantities px and py are the absorption coefficients of the orthogonal
optical axes, and 0 	 px, py 	 1: The Stokes vector of the beam emerging from the
ideal polarizer with its transmission axis at angle  is

S ¼ I0

1

cos 2

sin 2

0

0
BBBB@

1
CCCCA ð26-3Þ

where I0 is the intensity of the beam. The light intensity emerging from the sheet
polarizer is found from multiplying (26-3) by (26-1) where we obtain

I �,ð Þ ¼ I0 Aþ B cos 2 � � ð Þ½ � ð26-4Þ

The maximum intensity occurs at � ¼  and is

Imax ¼ I0 Aþ B½ � ¼ I0p
2
x ð26-5Þ

The minimum intensity occurs at � ¼ þ �=2 and is

Imin ¼ I0 A� B½ � ¼ I0p
2
y ð26-6Þ

A linear polarizer has two transmittance parameters: the major principal transmit-
tance k1 and the minor principal transmittance k2. The parameter k1 is defined as the
ratio of the transmitted intensity to the incident intensity when the incident beam is
linearly polarized in that vibration azimuth which maximizes the transmittance.
Similarly, the ratio obtained when the transmittance is a minimum is k2. Thus,

k1 ¼
Imax

I0
¼ Aþ B ¼ p2x ð26-7Þ

k2 ¼
Imin

I0
¼ A� B ¼ p2y ð26-8Þ

The ratio k1=k2 is represented by Rt and is called the principal transmittance
ratio. Rt of a high-quality polarizer may be as large as 105. The reciprocal of Rt is
called the extinction ratio, and is often quoted as a figure of merit for polarizers. The
extinction ratio should be a small number and the transmittance ratio a large
number; if this is not the case, the term at hand is being misused.

Because the principal transmittance can vary over several orders of magnitude,
it is common to express k1 and k2 in terms of logarithms. Specifically, k1 and k2 are
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defined in terms of the minor and major principal densities, d1 and d2:

d1 ¼ log10
1

k1

� �

d2 ¼ log10
1

k2

� � ð26-9Þ

or

k1 ¼ 10�d1

k2 ¼ 10�d2
ð26-10Þ

Dividing k1 by k2 yields

Rt ¼ 10D ð26-11Þ

where D ¼ d2 � d1 is the density difference or dichroitance.
The average of the principal transmittances is called the total transmittance kt

so that

kt ¼
k1 þ k2

2
¼

p2x þ p2y
2

¼ A ð26-12Þ

The parameter kt is the ratio of the transmitted intensity to incident beam intensity
when the incident beam is unpolarized [multiply a Stokes vector for unpolarized light
by the matrix in (26-1)]. Furthermore, we see that kt is an intrinsic constant of the
polarizer and does not depend on the polarization of the incident beam, as is the case
with k1 and k2.

Figure 26-1 shows the measurement of k1 and k2 of a single polarizer. We
assumed that we had a source of perfectly polarized light from an ideal (or nearly
ideal) polarizer. Another way to determine k1 and k2 is to measure a pair of identical
polarizers and use an unpolarized light source. This method requires an extremely
good source of unpolarized light. It turns out to be surprisingly difficult to obtain a
perfectly unpolarized light source. Nearly every optical source has some elliptical
polarization associated with it, i.e., the emitted light is partially polarized to some
degree. One reason this is so is because a reflection from nearly every type of surface,
even one which is rough, creates polarized light. Assuming we can produce a light
source that is sufficiently unpolarized as to lead to meaningful data, the parameters
k1 and k2 can, in principle, be determined from a pair of identical polarizers.
Figure 26-2 illustrates the experiment.

Let us assume we can align the polarization axes. From (26-1), the Stokes
vector resulting from the passage of unpolarized light through the two aligned
polarizers is

A B 0 0
B A 0 0
0 0 C 0
0 0 0 C

0
BB@

1
CCA

A B 0 0
B A 0 0
0 0 C 0
0 0 0 C

0
BB@

1
CCA

I0
0
0
0

0
BB@

1
CCA ¼ I0

A2
þ B2

2AB
0
0

0
BB@

1
CCA ð26-13Þ

The intensity for the beam emerging from the polarizer pair is

I pð Þ ¼ I0 A2
þ B2

	 

ð26-14Þ
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This may be written:

I pð Þ ¼
k21 þ k22

2
I0 ð26-15Þ

We now rotate the polarizer closest to the unpolarized source through 90�. The
Stokes vector of the beam emerging from the polarizer pair is now

A B 0 0
B A 0 0
0 0 C 0
0 0 0 C

0
BB@

1
CCA

A �B 0 0
�B A 0 0
0 0 C 0
0 0 0 C

0
BB@

1
CCA

I0
0
0
0

0
BB@

1
CCA ¼ I0

A2
� B2

0
0
0

0
BB@

1
CCA ð26-16Þ

The intensity from the crossed pair, I(s), is

I sð Þ ¼ I0 A2
� B2

	 

ð26-17Þ

and this may be written:

I sð Þ ¼ k1k2 ð26-18Þ

Now let the ratio of intensities I(p)/I0 when the polarizers are aligned beH0 and
let the ratio of intensities I(s)/I0 when the polarizers are perpendicular be H90. Then,
we can write

H0 ¼
k21 þ k22

2
¼ A2

þ B2
	 


ð26-19Þ

and

H90 ¼ k1k2 ¼ A2
� B2

	 

ð26-20Þ

Multiplying (26-19) and (26-20) by 2 and adding gives

2H0 þ 2H90 ¼ k21 þ 2k1k2 þ k22 ð26-21Þ

Taking the square root, we haveffiffiffi
2

p
H0 þH90ð Þ

1=2
¼ k1 þ k2 ð26-22Þ

Figure 26-2 Measurement of k1 and k2 of identical polarizers.
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Multiplying (26-19) and (26-20) by 2, subtracting, and taking the square root,
we haveffiffiffi

2
p

H0 �H90ð Þ
1=2

¼ k1 � k2 ð26-23Þ

Now we solve for k1 and k2 by adding and subtracting (26-22) and (26-23):

k1 ¼

ffiffiffi
2

p

2
H0 þH90ð Þ

1=2
þ H0 �H90ð Þ

1=2 �
ð26-24Þ

k2 ¼

ffiffiffi
2

p

2
H0 þH90ð Þ

1=2
� H0 �H90ð Þ

1=2 �
ð26-25Þ

The principal transmittance ratio can now be expressed in terms of H0 and H90:

Rt ¼
k1
k2

¼
H0 þH90ð Þ

1=2
þ H0 �H90ð Þ

1=2 �
H0 þH90ð Þ

1=2
� H0 �H90ð Þ

1=2
 � ð26-26Þ

Thus, if we have a perfect unpolarized light source and we can be assured of aligning
the polarizers parallel and perpendicular to each other, we can determine the trans-
mittance parameters k1 and k2 of a polarizer when they are arranged in a pair.
However, as has been pointed out, it is very difficult to produce perfectly unpolarized
light. It is much easier if a known high-quality polarizer is used to produce linearly
polarized light and the measurement of k1 and k2 follows the measurement method
illustrated in Fig. 26-1.

Suppose we cannot align the two polarizer axes perfectly. If one of the polar-
izers is rotated from the horizontal axis by angle �, then we have the situation shown
in Fig. 26-3.

The Stokes vector of the beam emerging from the first polarizer is

I0

A B 0 0
B A 0 0
0 0 C 0
0 0 0 C

0
BB@

1
CCA

1
0
0
0

0
BB@

1
CCA ¼ I0

A
B
0
0

0
BB@

1
CCA ð26-27Þ

Figure 26-3 Nonaligned identical linear polarizers.
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The second polarizer is represented by (26-1), and so the beam intensity emerg-
ing from the second polarizer is

I �ð Þ ¼ I0 A2
þ B2cos 2�

 �
ð26-28Þ

Using a trigonometric identity, this can be written as

I �ð Þ ¼ I0 A2
� B2

	 

þ 2B2cos2�

 �
ð26-29Þ

Equation (26-29) can be expressed in terms of H0 and H90, i.e.,

H �ð Þ ¼
I �ð Þ

I0
¼ H90 þ H0 �H90ð Þcos2� ð26-30Þ

Equation (26-30) is a generalization of Malus’ Law for nonideal polarizers. This
relation is usually expressed for an ideal polarizer so that A2

¼ B2
¼ 1=4,

H0 ¼ 2A2, and H90 ¼ 0 so that

H �ð Þ ¼
1

2
cos2� ð26-31Þ

We now apply data to these results. In Fig. 26-4 the spectral curves of different
types of Polaroid sheet are shown with the values of k1 and k2. In Table 26-1, values
of H0 and H90 are listed for the sheet Polaroids HN-22, HN-32, and HN-38 over the
visible wavelength range. From this table we can construct Table 26-2 and determine
the corresponding principal transmittances. We see from Table 26-2 that HN-22 has
the largest principal transmittance ratio in comparison with HN-32 and HN-38,
consequently it is the best Polaroid polarizer. Calcite polarizers typically have a
principal transmittance ratio of 1�106 from 300 to 2000 nm. This is three times

Figure 26-4 Curves of k1 and k2 for three grades of HN polarizer. (From Ref. 1.)
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better than that of Polaroid HN-22 at its best value. Nevertheless, in view of the
lower cost of sheet polarizer, it is useful in many applications.

26.2.2 Absorption Polarizers: Polarcor

Polarcor is an absorption polarizer consisting of elongated silver particles in glass.
This polarizer, developed commercially by Corning, has been produced with trans-
mittance ratios of 10,000 in the near infrared. The polarizing ability of silver in glass
was observed in the late 1960s [2], and polarizers with high transmittance ratios were
developed in the late 1980s [3]. Because these polarizers depend on a resonance
phenomenon, performance is strongly dependent on wavelength, but they can be
engineered to operate with good performance over broad wavelength regions cen-
tered on near-infrared wavelengths from 800 to 1500 nm.

26.2.3 Wire-Grid Polarizers

A wire grid is a planar array of parallel wires. It is similar to the sheet polarizer in
that the transmitted light is polarized perpendicularly to the wires. Light polarized

Table 26-2 Principal Transmittances of HN-22, HN-32, and HN-38

Rt

Wavelength

(nm) HN-22 HN-32 HN-38

375 4.17�10�5 3.00�10�3 3.34�10�2

400 5.00�10�5 9.09�10�3 6.85�10�2

450 1.00�10�5 6.52�10�4 3.03�10�2

500 3.33�10�6 7.14�10�5 5.41�10�3

550 5.56�10�6 2.00�10�5 8.82�10�4

600 4.55�10�6 2.27�10�5 3.23�10�4

650 4.55�10�6 2.00�10�5 2.94�10�4

700 5.88�10�6 3.33�10�5 8.11�10�4

750 1.46�10�5 2.86�10�4 4.88�10�3

Table 26-1 Parallel-Pair H0 and Crossed-Pair Transmittance H90 of HN Polarizers

Wavelength
HN-22 HN-32 HN-38

(nm) H0 H90 H0 H90 H0 H90

375 0.006 0.0000005 0.05 0.0003 0.15 0.01
400 0.02 0.0000002 0.11 0.002 0.22 0.03

450 0.10 0.000002 0.23 0.0003 0.33 0.02
500 0.15 0.000001 0.28 0.00004 0.37 0.004
550 0.12 0.000001 0.25 0.00001 0.34 0.0006
600 0.09 0.000001 0.22 0.00001 0.31 0.0002

650 0.11 0.000001 0.25 0.00001 0.34 0.0002
700 0.17 0.000002 0.30 0.000002 0.37 0.0006
750 0.24 0.000007 0.35 0.0002 0.41 0.004
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parallel to the wires is reflected instead of absorbed as with the sheet polarizer. To be
an effective polarizer, the wavelength should be longer than the spacing between the
wires. For practical reasons, wire grids are usually placed on a substrate. Until
relatively recently, they have been typically manufactured for the infrared region
of the spectrum (>2 mm) because the small grid spacing required for shorter wave-
lengths has been difficult to produce. Grid spacing for these infrared polarizers are
normally 0.5 mm or greater, although smaller spacings have been fabricated. With
technological improvements in grid fabrication techniques, grids with wires of width
0.065 mm or less have been produced. These grids are useful into the near infrared
and visible [4,5]. Photomicrographs of wire-grid polarizers composed of 0.065 mm
aluminum wires are given in Fig. 26-5.

Since reflection loss and absorption reduce the transmittance ratio of wire
grids, an antireflection coating is often applied to the substrate. The quality of this
coating and its achromaticity are important factors in the overall performance of
wire grids. Commercial wire grid polarizers have transmittance ratios of 20 to

Figure 26-5 Photomicrographs of wire-grid polarizers. (a) Side view. (b) Top down view.
(Courtesy of MOXTEK, Inc.)
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10,000. More information on wire grids is given in Bennett and Bennett [6] and
Bennett [7] and the cited patents [4,5,8].

26.2.4 Polarization by Refraction (Prism Polarizers)

Crystal prism polarizers use total internal reflection at internal interfaces to separate
the polarized components. There are many designs of prism polarizers, and we will
not cover all of these here. The reader should consult the excellent article by Bennett
and Bennett [6] for a comprehensive treatment.

The basis of most prism polarizers is the use of a birefringent material, as
described in Chapter 24. We illustrate the phenomenon of double refraction with
the following example of the construction of a Nicol polarizing prism. We know that
calcite has a large birefringence. (Calcite, the crystalline form of limestone, marble,
and chalk, occurs naturally. It has not been grown artificially in anything but very
small sizes. It can be used in prism polarizers for wavelengths from 0.25 to 2.7 mm.) If
the propagation is not perpendicular to the direction of the optic axis, the ordinary
and extraordinary rays separate. Each of these rays is linearly polarized. A Nicol
prism is a polarizing prism constructed so that one of the linear polarized beams is
rejected and the other is transmitted through the prism unaltered. It was the first
polarizing prism ever constructed (1828). However, it is now obsolete and has been
replaced by other prisms, such as the Glan–Thompson, Glan–Taylor, Rochon, and
Wollaston prisms. These new designs have become more popular because they are
optically superior; e.g., the light is nearly uniformly polarized over the field of view,
whereas it is not for the Nicol prism. The Glan–Thompson type has the highest
reported transmittance ratio [6].

In a Nicol prism a flawless piece of calcite is split so as to produce an elongated
cleavage rhomb about three times as long as it is broad. The end faces, which
naturally meet the edges at angles of 70�530, are ground so that the angles become
68� (this allows the field-of-view angle to be increased); apparently, this practice of
‘‘trimming’’ was started by Nicol himself. Figure 26-6 shows the construction of the
Nicol prism. The calcite is sawed diagonally and at right angles to the ground and
polished end faces. The halves are cemented together with Canada balsam, and the
sides of the prism are covered with an opaque, light-absorbing coating. The refrac-
tive index of the Canada balsam is 1.54, a value intermediate to the ordinary (no ¼
1.6584) and extraordinary (ne ¼ 1.4864) refractive indices of the calcite. Its purpose is
to deflect the ordinary ray (by total internal reflection) out of the prism and to allow
the extraordinary ray to be transmitted through the prism.

We now compute the angles. The limiting angle for the ordinary ray is deter-
mined from Snell’s law. At 5893 Å the critical angle �2 for total internal reflection at
the calcite–balsam interface is obtained from

1:6583 sin �2 ¼ 1:54 sin 90� ð26-32Þ

so that �2 ¼ 68:28�. The cut is normal to the entrance face of the prism, so that the
angle of refraction �r1 at the entrance face is 90� � 68.28� ¼ 21.72�. The angle of
incidence is then obtained from

sin �i1 ¼ 1:6583 sin 21:72� ð26-33Þ
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so that the angle of incidence is �i1 ¼ 37:88�. Since the entrance face makes an angle
of 68� with the longitudinal axis of the prism, the normal to the entrance face is
90� � 68� ¼ 22� with respect to the longitudinal axis. The limiting angle at which the
ordinary ray is totally reflected at the balsam results in a half-field angle of
�1 ¼ 37:88� � 22� ¼ 15:88�. A similar computation is required for the limiting
angle for the extraordinary ray at which total reflection does not occur. The refrac-
tive index for the extraordinary ray is a function of the angle (let us call it �) between
the wave normal and the optic axis. Using the same procedure as before (but not
shown in Fig. 26-6), we have �02 ¼ 90� � �0r1 , and the critical angle at the calcite/
balsam interface is obtained from

sin 90� � �0r1
	 


¼ cos �0r1 ¼
1:54

n�
ð26-34Þ

The index of refraction n� of the extraordinary wave traveling in a uniaxial crystal at
an angle � with the optic axis is given by

1

n2�
¼

sin2�

n2e
þ
cos2�

n2o
ð26-35Þ

For our Nicol prism:

� ¼ �0r1 þ 41�440 ð26-36Þ

and (26-35) becomes

cos2�0r1
1:542

¼
sin2 �0r1 þ 41:73�

	 

n2e

þ
cos2 �0r1 þ 41:73�

	 

n2o

ð26-37Þ

Figure 26-6 Diagram of a Nicol prism: (a) longitudinal section; (b) cross-section.
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This transcendental equation is easily solved using a computer, and �0r1 is found to be
7.44� and �01 is 11.61�, using the values of the indices for 
 ¼ 5893Å. The semi field
angle is 10.39� and the total field angle is 20.78�.

The cross-section of the Nicol prism is also shown in Fig. 26-6. Only the extra-
ordinary ray emerges and the plane of vibration is parallel to the short diagonal
of the rhombohedron, so that the direction of polarization is obvious. The corners of
the prism are sometimes cut, making the direction of polarization more difficult to
discern.

26.2.5 Polarization by Reflection

One has only to examine plots of the Fresnel equations, as described in Chapter 8, to
see that polarization will almost always occur on reflection. Polarizers that depend
on reflection are usually composed of plates oriented near the Brewster angle.
Because sheet and prism polarizers do not operate in the infrared and ultraviolet,
reflection polarizers are sometimes used in these regions. Brewster-angle polarizers
are necessarily sensitive to incidence angle and are physically long devices because
Brewster angles can be large, especially in the infrared where materials with high
indices are used.

26.3 RETARDERS

A retarder is an optical element that produces a specific phase difference between two
orthogonal components of incident polarized light. A retarder can be in prism form,
called a rhomb, or it can be in the form of a window or plate, called a waveplate.
Waveplates can be zero order, i.e., the net phase difference is actually the specified
retardance, or multiorder, in which case the phase difference can be a multiple,
sometimes large, of the specified retardance. Retarders are also sometimes called
compensators, and can be made variable, e.g., the Babinet–Soleil compensator.
Retarders may be designed for single wavelengths, or be designed to operate over
larger spectral regions i.e., achromatic retarders.

26.3.1 Birefringent Retarders

The properties of isotropic, uniaxial, and biaxial optical materials were discussed
in Chapter 24. We can obtain from that discussion that the phase retardation of
linearly polarized light in going through a uniaxial crystal with its optic axis par-
allel to the faces of the crystal is

	 ¼
2�



d ne � noð Þ ð26-38Þ

when the polarization is at an angle with the optic axis. The optical path difference
experienced by the two components is d ne � noð Þ and the birefringence is ne � noð Þ.
These quantities are all positive for positive uniaxial materials, i.e., materials with
ne > no. The component of the light experiencing the refractive index ne is parallel
with the optic axis while the component experiencing the index no is perpendicular to
the optic axis. The slow axis is the direction in the material in which light experiences
the higher index ne, i.e., for the positive uniaxial material, the direction of the optic
axis. The fast axis is the direction in the material in which light experiences the lower
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index, no. It is the fast axis that is usually marked with a line on commercial wave-
plates. The foregoing discussion is the same for negative uniaxial material with the
positions of ne and no interchanged.

The most common commercial retarders are quarter wave and half wave, i.e.,
where there are �=2 and � net phase differences between components, respectively.
The quarter-wave retarder produces circular polarization when the azimuth of the
(linearly polarized) incident light is 45� to the fast axis. The half-wave retarder
produces linearly polarized light rotated by an angle 2� when the azimuth of the
(linearly polarized) incident light is at an angle � with respect to the fast axis of the
half-wave retarder.

As we have seen above, the net retardance is an extensive property of the
retarder; i.e., the retardance increases with path length through the retarder.
When the net retardation for a retarder reaches the minimum net value desired
for the element, that retarder is known as a single-order retarder (sometimes
called a zero-order retarder). Although many materials have small birefringence,
some (e.g., calcite) have large values of birefringence (see Table 26-3).
Birefringence is, like index, a function of wavelength. A single-order retarder may
not be possible because it would be too thin to be practical. A retarder called ‘‘first
order’’ may be constructed by joining two pieces of material such that the fast axis of
one piece is aligned with the slow axis of the other. The thicknesses of the pieces of
material are adjusted so that the difference in the thicknesses of the two pieces is
equal to the thickness of a single-order retarder. The retardation can be found from
the equation

	 ¼
2�



d1 � d2ð Þ ne � noð Þ ð26-39Þ

where d1 and d2 are the thicknesses.
A multiple-order retarder is a retarder of thickness such that its net retardation

is an integral number of wavelengths plus the desired fractional retardance, e.g.,
5
=4, 3
=2, etc. Multiple-order retarders may be less expensive than single-order
retarders, but they are sensitive to temperature and incidence angle.

Table 26-3 Birefringence for Optical Materials at 589.3 nm

Material Birefringence (ne� no)

Positive Uniaxial Crystals
Ice (H2O) 0.004

Quartz (SiO2) 0.009
Zircon (ZrSiO4) 0.045
Rutile (TiO2) 0.287

Negative Uniaxial Crystals
Beryl (Be3Al2(SiO3)6) �0.006

Sodium nitrate (NaNO3) �0.248
Calcite (CaCO3) �0.172
Sapphire (Al2O3) �0.008
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26.3.2 Variable Retarders

Retarders have been constructed of movable elements in order to produce variable
retardance. Two of the most common designs based on movable wedges are the
Babinet and Soleil (also variously called Babinet–Soleil, Soleil–Babinet, or Soleil–
Bravais) compensators, shown in Fig. 26-7. The term compensator is used for
these elements because they are often used to allow adjustable compensation of
retardance originating in a sample under test.

The Babinet compensator, shown in Fig. 26-7a, consists of two wedges of a
(uniaxial) birefringent material (e.g., quartz). The bottom wedge is fixed while the
top wedge slides over the bottom by means of a micrometer. The optic axes of both
wedges are parallel to the outer faces of the wedge pair, but are perpendicular to one
another. At any particular location across the face of the Babinet compensator, the
net retardation is

	 ¼
2�



d1 � d2ð Þ ne � noð Þ ð26-39Þ

where d1 and d2 are the thicknesses at that location. If monochromatic polarized
light oriented at 45� to one of the optic axes is incident on the Babinet compensator,
one component of the light becomes the extraordinary component and the other is
the ordinary component in the first wedge. When the light enters the second wedge,
the components exchange places, i.e., the extraordinary becomes the ordinary and
vice versa. An analyzer whose azimuth is perpendicular to the original polarization
can be placed behind the compensator to show the effect of the retardations.
Everywhere where there is zero or a multiple of 2� phase difference there will be a
dark band. When the upper wedge is translated, the bands shift. These bands indi-
cate the disadvantage of the Babinet compensator—a desired retardance only occurs
along these parallel bands.

The Soleil compensator, shown in Fig. 26-7b consists of two wedges with
parallel optic axes followed by a plane parallel quartz prism with its optic axis
perpendicular to the wedge axes. The top wedge is the only moving part again.
The advantage of this design is that the retardance is uniform over the whole field
where the wedges overlap.

Jerrard [9] gives a review of these and many other compensator designs.

Figure 26-7 Diagrams of (a) Babinet compensator, and (b) Soleil compensator where OA is
the optic axis.
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26.3.3 Achromatic Retarders

The most common type of retarder is the waveplate, as described above, a plane
parallel plate of birefringent material, with the crystal axis oriented perpendicular to
the propagation direction of light. As the wavelength varies, the retardance of the
zero-order waveplate must also vary, unless by coincidence the birefringence was
linearly proportional to wavelength. Since this does not occur in practice, the wave-
plate is only approximately quarter wave (or whatever retardance it is designed for)
for a small wavelength range. For higher order waveplates, m ¼ 3, 5, . . . , the effective
wavelength range for quarter-wave retardance is even smaller.

The achromatic range of waveplates can be enlarged by assembling combina-
tions of waveplates of birefringent materials [6]. This method has been common in
the visible region; however, in the infrared the very properties required to construct
such a device are the properties to be measured polarimetrically, and there are not an
abundance of data available to readily design high-performance devices of this kind.
Nevertheless, an infrared achromatic waveplate has been designed [10] using a com-
bination of two plates. This retarder has a theoretical retardance variation of about
20� over the 3–11 mm range.

A second class of achromatic retardation elements is the total internal reflec-
tion prism. Here, a specific phase shift between the s and p components of light
(linear retardance) occurs on total internal reflection. This retardance depends on the
refractive index, which varies slowly with wavelength. However, since this retardance
is independent of any thickness, unlike the waveplate, the variation of retardance
with wavelength is greatly reduced relative to the waveplate. A common configura-
tion for retarding prisms is the Fresnel rhomb, depicted in Fig. 26-8. This figure
shows a Fresnel rhomb designed for the visible spectrum. The nearly achromatic
behavior of this retarder is the desired property; however, the Fresnel rhomb has the
disadvantages of being long with large beam offset. In an application where the
retarder must be rotated, any beam offset is unacceptable. A quarter-wave Fresnel
rhomb for the infrared, made of ZnSe and having a clear aperture of x in., has a
beam offset of 1.7x in. and a length of 3.7x in.

Infrared Achromatic Retarder

Figure 26-9 shows a prism retarder that was designed for no beam deviation. This
design includes two total internal reflections and an air–metal reflection. Similar
prisms have been designed previously, but special design considerations for the
infrared make this prism retarder unique. Previous designs for the visible have

Figure 26-8 Fresnel rhomb.
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included a solid prism with similar shape to the retarder in Fig. 26-9, but with no air
space [11], and a set of confronting rhombs called the double Fresnel rhomb. The
latter design includes four total internal reflections. These designs are not appropri-
ate for the infrared.

The prism design relies on the fact that there are substantial phase shifts
between the s and p components of polarized light at the points of total internal
reflection (TIR). The phase changes of s and p components on TIR are given by the
formulas [12]:

�prisms ¼ 2 tan�1 n2 sin2�� 1
	 
1=2

n cos�
ð26-40Þ

and

�prismp ¼ 2 tan�1 n n2 sin2 �� 1
	 
1=2

cos�
ð26-41Þ

where � is the angle of incidence and n is the index of refraction of the prism
material. The linear retardance associated with the TIR is the net phase shift between
the two components

�prism
¼ �prismp � �prisms ð26-42Þ

In addition there are phase shifts on reflection from the metal given by [6]

�metal
s ¼ tan�1 2�0sb

�20s � a2 þ b2
	 
 ð26-43Þ

�metal
p ¼ tan�1 �2�0pd

c2 þ d2��20p
ð26-44Þ

where

�0s ¼ n0cos �0 ð26-45Þ

�0p ¼
n0

cos �0
ð26-46Þ

Figure 26-9 Infrared achromatic prism retarder design.
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a2 þ b2 ¼ n21 � k21 � n20sin
2�0

	 
2
þ4n21k

2
1

h i1=2
ð26-47Þ

c2 þ d2 ¼
n21 þ k21
	 
2
a2 þ b2
	 
 ð26-48Þ

b ¼
a2 þ b2
	 


2
�

n21 � k21 � n20sin
2�0

	 

2

" #1=2

ð26-49Þ

d ¼ b 1�
n20sin

2�0
a2 þ b2

 !
ð26-50Þ

and where n0 is the refractive index of the incident medium, �0 is the angle of
incidence, and n1 and k1 are respectively the index of refraction and extinction
index for the metal mirror. The linear retardance associated with the metal mirror
is the net phase shift between the s and p components:

�metal
¼ �metal

p � �metal
s ð26-51Þ

The net retardance for the two TIRs and the metal reflection is then

� ¼ 2�prism
þ�metal

ð26-52Þ

The indices of refraction of materials that transmit well in the infrared are
higher than indices of materials for the visible. Indices for infrared materials are
generally greater than 2.0, where indices for materials for the visible are in the range
1.4–1.7. The higher indices for the infrared result in greater phase shifts between s
and p components for a given incidence angle than would occur for the visible. Prism
retarder designs for the infrared that have more than two TIRs soon become imprac-
tically large as the size of the clear aperture goes up or the desired retardance goes
down. The length of a solid prism retarder of the shape of Fig. 26-9 is governed by
the equation:

L ¼
ada

tan 908� �ð Þ
ð26-53Þ

where da is the clear aperture and � is the angle of incidence for the first TIR. The
theoretical minimum length of the two-prism design for a clear aperture of 0.5 in.
and a retardance of a quarter wave is 2.1 in. The minimum length for the same
retardance and clear aperture in a three TIR design is 4.5 in.

Materials that are homogeneous (materials with natural birefringence are
unacceptable) and good infrared transmitters must be used for such a device.
Suitable materials include zinc selenide, zinc sulfide, germanium, arsenic trisulfide
glass, and gallium arsenide. Metals that may be used for the mirror include gold,
silver, copper, lead, or aluminum, with gold being preferable because of its excellent
reflective properties in the infrared and its resistance to corrosion.

Beam angles at the entry and exit points of the two-prism arrangement are
designed to be at normal incidence to minimize Fresnel diattenuation. Figure 26-10
shows the theoretical phase shift versus wavelength for this design. For zinc selenide
prisms and a gold mirror at the angles shown, the retardation is very close to a
quarter of a wavelength over the 3 to 14 mm band. (The angles were computed to give
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a retardance of 90� near 10 mm.) Table 26-4 gives numerical values of the phase shift
along with indices for zinc selenide and gold. The indices for gold are from Ordal
et al. [13] and the indices for ZnSe are fromWolfe and Zissis [14]. The requirement of
a nearly achromatic retarder with no beam deviation is satisfied, although the
disadvantage of the length of the device remains (the actual length is dependent
on the clear aperture desired).

Achromatic Waveplate Retarders

As we have seen, waveplates are made of birefringent materials and the retardance is
given by

	 ¼
2�



ne � n0ð Þd ð26-54Þ

The retardance is explicitly inversely proportional to wavelength. If the value
of the birefringence:

�n ¼ ne � n0ð Þ ð26-55Þ

Figure 26-10 Theoretical retardance of achromatic prism retarder in the infrared.

Table 26-4 Numerical Data for Achromatic Retarder

Wavelength (mm) ZnSe Index Gold Index (n) Gold Index (k) Total Phase Shift

3 2.440 0.704 21.8 88.39
4 2.435 1.25 29.0 89.03

5 2.432 1.95 36.2 89.42
6 2.438 2.79 43.4 89.66
7 2.423 3.79 50.5 89.81
8 2.418 4.93 57.6 89.91

10 2.407 7.62 71.5 90.02
12 2.394 10.8 85.2 90.04
14 2.378 14.5 98.6 89.98
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for some material was directly proportional to wavelength then achromatic wave-
plates could be made from the material. This condition is not normally satisfied in
nature.

Plates made up of two or three individual plates have been designed that are
reasonably achromatic [6]. If we consider a plate made of two materials, a and b,
having thicknesses da and db and wish to make the retardance equal at two wave-
lengths 
1 and 
2, we can write the equations:

N
1 ¼ �n1ada þ�n1bdb ð26-56Þ

N
2 ¼ �n2ada þ�n2bdb ð26-57Þ

where N is the retardance we require in waves, i.e., 1/4 , 1/2, etc., and the subscripts
on the birefringence �n designates the wavelength and material. Solving the equa-
tions for da and db we have

da ¼
N 
1�n2b � 
2�n1bð Þ

�n1a�n2b ��n1b�n2a
ð26-58Þ

and

db ¼
N 
2�n1a � 
1�n2að Þ

�n1a�n2b ��n1b�n2a
ð26-59Þ

The optimization of the design is facilitated by changing the thickness of one of
the plates and the ratio of the thicknesses [15]. There will generally be an extremum
in the retardance function in the wavelength region of interest. A good achromatic
design will have the extremum near the middle of the region. Changing the ratio of
the thicknesses shifts the position of the extremum. Changing the thickness of one of
the plates changes the overall retardance value.

There are important practical considerations for compound plate design. For
example, it may not be possible to fabricate plates that are too thin, or they may
result in warped elements; and plates that are thick will be more sensitive to angular
variation of the incident light. Precision of alignment of the plates in a multiplate
design is extremely important, and misalignments will result in oscillation of retar-
dance. A compound waveplate for the infrared mentioned earlier is composed of two
plates of CdS and CdSe with fast axes oriented perpendicularly [8]. This design calls
for a CdS plate about 1.3 mm thick followed by a CdSe plate about 1 mm thick. The
theoretical achromaticity over the 3–11 mm wavelength region is 90��20�, although
measurements indicate somewhat better performance [16]. The useful wavelength
range of these achromatic waveplates is often determined by the design of the anti-
reflection coatings.

26.4 ROTATORS

Rotation of the plane of polarization can occur through optical activity, the Faraday
effect, and by the action of liquid crystals.
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26.4.1 Optical Activity

Arago first observed optical activity in quartz in 1811. During propagation of light
though a material, a rotation of the plane of polarization occurs that is proportional
to the thickness of the material and also depends on wavelength. There are many
substances that exhibit optical activity, notably quartz and sugar solutions (e.g.,
place a bottle of corn syrup between crossed polarizers!). Many organic molecules
can exist as stereoisomers, i.e., a molecule of the same chemical formula is formed
such that it either rotates light to the right or to the left. Since these molecules can
have drastically different effects when taken internally, it has become important to
distinguish and separate them when producing pharmaceuticals. Natural sugar is
dextrorotatory, meaning it rotates to the right; amino acids are generally levorota-
tory, rotating to the left.

Optical activity can be explained in terms of left and right circularly polarized
waves and the refractive indices that these waves experience. The rotatory power of
an optically active medium is

� ¼
�ðnL � nRÞ



ð26-60Þ

in degrees per centimeter, where nL is the index for left circularly polarized light, and
nR is the index for right circularly polarized light.

The rotation angle is

� ¼
�ðnL � nRÞd



ð26-61Þ

Suppose we have a linearly polarized wave entering an optically active medium.
The linearly polarized wave can be represented as a sum of circular components.
Using the Jones formalism:

1
0

� �
¼

1

2

1
�i

� �
þ
1

2

1
i

� �
ð26-62Þ

We have written the linear polarized light as a sum of left circular and right
circular components. After traveling a distance d through the medium, the Jones
vector will be

1

2

1

�i

� �
ei2�nLd=
 þ

1

2

1

i

� �
ei2�nRd=


¼
1

2
ei2�ðnRþnLÞd=2


1

�i

� �
e�i2�ðnR�nLÞd=2
 þ

1

i

� �
ei2�ðnR�nLÞd=2


� �
ð26-63Þ

Let

 ¼
2�ðnR þ nLÞd

2

and � ¼

2�ðnL � nRÞd

2

ð26-64Þ
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Substituting these values into the right hand side of (26-64) gives

ei 
1

2

1

�i

� �
ei� þ

1

2

1

i

� �
e�i�
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¼ ei 

1

2
ei� þ e�i�	 


�
1

2
i ei� � e�i�	 


0
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1
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8><
>:

9>=
>; ¼ ei 

cos �

sin �

� �

ð26-65Þ

which is a linearly polarized wave whose polarization has been rotated by �.

26.4.2 Faraday Rotation

The Faraday effect has been described in Chapter 24. Faraday rotation can be used
as the basis for optical isolators. Consider a Faraday rotator between two polarizers
that have their axes at 45�. Suppose that the Faraday rotator is such that it rotates
the incident light by 45�. It should then pass through the second polarizer since the
light polarization and the polarizer axis are aligned. Any light returning through the
Faraday rotator is rotated an additional 45� and will be blocked by the first polar-
izer. In this way, very high isolation, up to 90 dB [17], is possible. Rotation in devices
based on optical activity and liquid crystals retrace the rotation direction and cannot
be used for isolation. Faraday rotation is the basis for spatial light modulators,
optical memory, and optical crossbar switches.

26.4.3 Liquid Crystals

A basic description of liquid crystals has been given in Chapter 24. Liquid crystal
cells of various types can be configured to act as polarization rotators. The rotation
is electrically controllable, and may be continuous or binary. For a detailed treat-
ment of liquid crystals, see Khoo and Wu [18].

26.5 DEPOLARIZERS

A depolarizer reduces the degree of polarization. We recall that the degree of polar-
ization is given by

P ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2
1 þ S2

2 þ S2
3

q
S0

ð26-66Þ

An ideal depolarizer produces a beam of unpolarized light regardless of the
initial polarization state, so that the goal of an ideal depolarizer is to reduce P to 0.
The Mueller matrix for an ideal depolarizer is

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0
BBB@

1
CCCA ð26-67Þ

A partial depolarizer (or pseudodepolarizer) reduces the degree of polarization.
It could reduce one, two, or all three of the Stokes vector components by varying
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amounts, and there are many possibilities [19]. Examples of depolarizers in an every-
day environment include waxed paper and projection screens. Integrating spheres
have been shown to function as excellent depolarizers [20]. Commercial depolarizers
are offered that are based on producing a variable phase shift across their apertures.
These rely on obtaining a randomized mix of polarization states over the beam
width. A small beam will defeat this depolarization scheme.
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27

Stokes Polarimetry

27.1 INTRODUCTION

In this chapter, we discuss methods of measuring (or creating) the Stokes vector, the
real four-element entity that describes the state of polarization of a beam of light.
The measurement process can be represented as

I ¼ AS ð27-1Þ

where I is the vector of flux measurements as made by the detector, A is a matrix
whose dimensions depend on the number of measurements and whose elements
depend on the optical system, and S is the incident Stokes vector. Since we want to
determine the incident Stokes vector, we must invert Eq. (27-1) so that S is given by

S ¼ A
�1
I ð27-2Þ

This system of equations is generated through a set of measurements and can be
solved through Fourier or nonFourier techniques. Both solution methods will be
discussed in this chapter.

A set of elements that analyzes a polarization state of incoming light is a
polarization state analyzer (PSA). A set of elements that generates a polarization
state is a polarization state generator (PSG). The PSA and PSG are functionally
depicted in Fig. 27-1. All of the polarimeter types described in this chapter can be or
have to be used with electronics and computers in order to automate the data
collection process.

A Stokes polarimeter is complete if it measures all four elements of the Stokes
vector, and incomplete if it measures less than four. We will describe several types of
Stokes polarimeters in the remainder of the chapter. Rotating element polarimetry,
oscillating element polarimetry, and phase modulation polarimetry are all methods
that make a series of measurements over time to obtain the Stokes vector [1]. Other
techniques, division of amplitude and division of wavefront polarimetry, described in
the last section of the chapter, are designed to measure all four elements of the Stokes
vector simultaneously.
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27.2 ROTATING ELEMENT POLARIMETRY

Stokes polarimeters that use rotating elements are shown in Fig. 27-2. The elements
shown are all linear retarders and polarizers (analyzers). The measured Stokes ele-
ments are shown in the box to the right of each diagram, where the large black dots
indicate the Stokes components that are measured.

27.2.1 Rotating Analyzer Polarimeter

Shown in Fig. 27-2a, the polarizer (analyzer) in this polarimeter rotates and produces
a modulating signal at the detector, which is given by

I ¼
a0
2
þ
a2
2
cos 2� þ

b2
2
sin 2� ð27-3Þ

where � is the azimuthal angle of the polarizer. The coefficients a0, a2, and b2 are the
first three elements of the Stokes vector. At least three measurements must be made
to determine the three measurable elements of the Stokes vector.

Equation (27-3) and subsequent expressions for the modulated signal in this
chapter on Stokes polarimetry and in Chapter 28 on Mueller matrix polarimetry are
all derived from algebraic equations representing these polarimetric systems. For
example, for the rotating analyzer polarimeter, we have the equation:

S0
0

S0
1

S0
2

S0
3

0
BB@

1
CCA ¼

1

2

1 cos 2� sin 2� 0
cos 2� cos2 2� sin 2� cos 2� 0
sin 2� sin 2� cos 2� sin2 2� 0
0 0 0 0

0
BB@

1
CCA

S0

S1

S2

S3

0
BB@

1
CCA ð27-4Þ

Figure 27-1 Functional diagrams of Stokes polarimetry.
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where the input Stokes vector is multiplied by the Mueller matrix for a rotated ideal
linear polarizer to obtain the (primed) output Stokes vector. We only need carry out
the multiplication of the first row of the Mueller matrix with the input Stokes vector
because we will be measuring the output signal I ¼ S0

0. Thus,

I ¼
S0

2
þ
S1

2
cos 2� þ

S2

2
sin 2� ð27-5Þ

Figure 27-2 Rotating element polarimeters. (After Ref. 1.)
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Comparing this equation with (27-3), we have the correspondence:

S0 ¼ a0

S1 ¼ a2

S2 ¼ b2

ð27-6Þ

The coefficients have been purposely written as a’s and b’s to represent the modu-
lated signal as a Fourier series where the fundamental frequency of modulation and
its harmonics are the angle � and its multiples. We will continue to do this for the
polarimeters described in this chapter and the next.

27.2.2 Rotating Analyzer and Fixed Analyzer Polarimeter

A fixed analyzer in front of the detector in this configuration shown in Fig. 27-2b
means that the detector observes only one polarization, and any detector polariza-
tion sensitivity is made superfluous. A modulated signal composed of two frequen-
cies is measured, and can be expressed as the Fourier series:

I ¼
a0
4
þ
1

4

X2
n¼1

a2n cos 2n� þ b2n sin 2n�ð Þ ð27-7Þ

The first three elements of the Stokes vector are

S0 ¼ a0 � a4

S1 ¼
2

3
ða2 � a0 þ 2a4Þ

S2 ¼ 0:4ð2b2 þ b4Þ:

ð27-8Þ

27.2.3 Rotating Retarder and Fixed Analyzer Polarimeter

This is the basic complete Stokes polarimeter and is illustrated in Fig. 27-2c. The
detector observes only a single polarization, and the modulated signal is again
composed of two frequencies. The signal is again expressed as a Fourier series:

I ¼
a0
2
þ
1

2

X2
n¼1

ða2n cos 2n� þ b2n sin 2n�Þ ð27-9Þ

where now the angle � is the azimuthal angle of the retarder. If the retarder is quarter
wave, the Stokes vector is given in terms of the Fourier coefficients as

S0 ¼ a0 � a4

S1 ¼ 2a4

S2 ¼ 2b4

S3 ¼ b2

ð27-10Þ
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27.2.4 Rotating Retarder and Analyzer Polarimeter

Both elements rotate in this polarimeter of Fig. 27-2d. When the analyzer is rotated
at three times the retarder angle and the retarder is quarter wave, the detected signal
is given by

I ¼
a0
2
þ
1

2

X3
n¼1

ða2n cos 2n� þ b2n sin 2n�Þ ð27-11Þ

where � is the rotation angle of the retarder. The Stokes vector is

S0 ¼ a0

S1 ¼ a2 þ a6

S2 ¼ b6 � b2

S3 ¼ b4

ð27-12Þ

27.2.5 Rotating Retarder and Analyzer Plus
Fixed Analyzer Polarimeter

This case, combining the previous two cases and shown in Fig. 27-2e, produces as
many as nine harmonics in the detected signal when the analyzer is rotated by the
factors 5/2, 5/3, or �3/2 times the retarder angle so that

I ¼
a0
4
þ
1

4

X10
n¼1
n 6¼9

ðan cos n� þ bn sin n�Þ ð27-13Þ

The Stokes vector is given in terms of the Fourier coefficients, when the rotation
factor is 5/2 and the fixed analyzer is at 0�, as

S0 ¼ a0 � a4

S1 ¼ 2a1

S2 ¼ 2b1

S3 ¼ b3

ð27-14Þ

27.3 OSCILLATING ELEMENT POLARIMETRY

Oscillating element polarimeters rotate the polarization of light using some electro-
or magneto-optical device such as a Faraday cell or a liquid crystal cell (see Chapter
24). If, for example, the plane of polarization is rotated by an angle � in a Faraday
cell, this has the effect of having mechanically rotated all subsequent elements by an
angle ��. The modulation is typically sinusoidal, which simulates an oscillating
element, although a saw-tooth signal could be used to drive the modulation to
result in an equivalent to a synchronous rotation of the element. The advantages
of oscillating element polarimeters include operation at high frequencies, and the
absence of moving parts to disturb alignment. A disadvantage, when the modulation
is sinusoidal, is the additional complication in the signal content. The azimuthal
angles are sinusoids, and the detected intensity now contains an infinite number
of harmonics whose amplitudes depend on Bessel functions of the modulation
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amplitude. Oscillating element polarimeters derive harmonic content from the rela-
tionships (Bessel function expansions):

sinð� sin!tÞ ¼ 2
X1
n¼0

J2nþ1ð�Þ sin½ð2nþ 1Þ!t� ð27-15Þ

cosð� sin!tÞ ¼ J0ð�Þ þ 2
X1
n¼0

J2nð�Þ cos 2n!t ð27-16Þ

Experimentally, a lock-in amplifier is required for each detected frequency. Three
oscillating element polarimeters are shown in Fig. 27-3 and we describe these polari-
meters in the following subsections.

27.3.1 Oscillating Analyzer Polarimeter

The oscillating analyzer polarimeter (see Ref. 2) is shown in Fig. 27-3a. This polari-
meter, like the rotating analyzer polarimeter, measures the first three components of
the Stokes vector and hence is an incomplete polarimeter. The oscillating element
produces an effective analyzer azimuth of

� ¼ �0 þ �1 sin!t ð27-7Þ

where the azimuth �0 is determined by the mechanical azimuth of the fixed
analyzer and/or a d.c. bias current in the Faraday cell, and �1 is the amplitude of

Figure 27-3 Oscillating element polarimeters. (After Ref. 1.)
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the sinusoidal optical rotation produced by the Faraday cell. Substituting (27-17)
into (27-3) we have

I ¼
a0
2
þ
a2 cos 2�0 þ b2 sin 2�0

2
cosð2�1 sin!tÞ

þ
�a2 sin 2�0 þ b2 cos 2�0

2
sinð2�1 sin!tÞ ð27-18Þ

If we now use Eqs. (27-15) and (27-16) to replace cosð2�1 sin!tÞ and sinð2�1 sin!tÞ,
we have

I ¼
a0
2
þ

a2
2
cos 2�0 þ

b2
2
sin 2�0

� �
J0ð2�1Þ þ 2J2ð2�1Þ cos 2!t½ �

þ
�a2
2

sin 2�0 þ
b2
2
cos 2�0

� �
2J1ð2�1Þ sin!t½ �

ð27-19Þ

where we have neglected terms in frequency higher than 2!.
The zero frequency (d.c.), fundamental, and second harmonic of the detected

signal are then

Ið0Þ ¼ 1þ J0ð2�1Þ
a2
2
cos 2�0 þ

b2
2
sin 2�0

� �� �

Ið!Þ ¼ 2J1ð2�1Þ
�a2
2

sin 2�0 þ
b2
2
cos 2�0

� �� �
sin!t

Ið2!Þ ¼ 2J2ð2�1Þ
a2
2
cos 2�0 þ

b2
2
sin 2�0

� �� �
cos 2!t

ð27-20Þ

The d.c., fundamental, and second harmonic of the signal are detected synchro-
nously, and the amplitude ratios are

�! ¼ Ið!Þ=Ið0Þ

�2! ¼ Ið2!Þ=Ið0Þ
ð27-21Þ

and these are, using (28-20),

�! ¼
2J2ð2�1Þðð�a2=2Þ sin 2�0 þ ðb2=2Þ cos 2�0Þ

1þ J0ð2�1Þðða2=2Þ cos 2�0 þ ðb2=2Þ sin 2�0Þ

�2! ¼
2J2ð2�1Þ ða2=2Þ cos 2�0 þ ðb2=2Þ sin 2�0ð Þ

1þ J0ð2�1Þðða2=2Þ cos 2�0 þ ðb2=2Þ sin 2�0Þ

ð27-22Þ

These last equations can be inverted to give the coefficients

a2 ¼
�!J2ð2�1Þ sin 2�0 � �2!J1ð2�1Þ cos 2�0

J1ð2�1Þ �2!J0ð2�1Þ � 2J2ð2�1Þ½ �

b2 ¼
��!J2ð2�1Þ cos 2�0 � �2!J1ð2�1Þ sin 2�0

J1ð2�1Þ �2!J0ð2�1Þ � 2J2ð2�1Þ½ �

ð27-23Þ
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If � ¼ 0� and 2�1 ¼ 137:8�, J0ð2�1Þ ¼ 0, and the Stokes vector is given by

S0
0 ¼ I0

S0
1 ¼

�2!
2J2ð2�1Þ

S0
2 ¼

�!
2J1ð2�1Þ

ð27-24Þ

where the primes indicate the output Stokes parameters.

27.3.2 Oscillating Retarder with Fixed Analyzer Polarimeter

This polarimeter, the equivalent of the rotating retarder polarimeter, is shown in
Fig. 27-3b. As indicated in the figure, this is a complete Stokes polarimeter. A
retarder is surrounded by two optical rotators with equal and opposite rotations.
For example, a quarter-wave retarder might have a Faraday cell on one side and an
identical Faraday cell on the other side but connected to an electrical signal source of
opposite polarity. A light beam passing through a linear retarder of retardance � with
fast axis azimuth �R and a linear polarizer (analyzer) of azimuth �A results in an
output intensity corresponding to the first Stokes parameter of the emergent light:

S0
0 ¼

S0

2
þ
S1

2
½cos 2�R cosð2�A � 2�RÞ � sin 2�R sinð2�A � 2�RÞ cos ��

þ
S2

2
½sin 2�R cosð2�A � 2�RÞ þ cos 2�R sinð2�A � 2�RÞ cos ��

þ
S3

2
½sinð2�A � 2�RÞ sin �� ð27-25Þ

If we assume that � ¼ �=2 and �A ¼ 0, I is the detected signal, and k is a proportion-
ality constant, then we have

kI ¼ S0 þ
1

2
S1

� �
þ
1

2
S1 cos 4�R þ

1

2
S2 sin 4�R � S3 sin 2�R ð27-26Þ

or

kI ¼ �0 þ �1 cos 4�R þ �2 sin 4�R � �3 sin 2�R ð27-27Þ

where

�0 ¼ S0 þ
1

2
S1 ð27-28aÞ

�1 ¼
1

2
S1 ð27-28bÞ

�2 ¼
1

2
S2 ð27-28cÞ

and

�3 ¼ �S3 ð27-28dÞ
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The two optical rotators on either side of the retarder effectively oscillate the retarder
azimuth and we have

�R ¼ �R0
þ �R1

sin!t ð27-29Þ

where �R0
is the bias azimuth, and �R1

is the rotation amplitude. Using (27-29) in
(27-27) and again making use of the Bessel function expansions, we can obtain the
Fourier amplitudes of the detected signal as

kIdc ¼ �0 þ �1½cos 4�R0
J0ð4�R1

Þ� þ �2½sin 4�R0
J0ð4�R1

Þ� þ �3½sin 2�R0
J0ð2�R1

Þ�

ð27-30aÞ

kI! ¼ �1½�2 sin 4�R0
J1ð4�R1

Þ� þ �2½2 cos 4�R0
J1ð4�R1

Þ� þ �3½2 cos 2�R0
J1ð2�R1

Þ�

ð27-30bÞ

kI2! ¼ �1½2 cos 4�R0
J2ð4�R1

Þ� þ �2½2 sin 4�R0
J2ð4�R1

Þ� þ �3½2 sin 2�R0
J2ð2�R1

Þ�

ð27-30cÞ

kI3! ¼ �1½�2 sin 4�R0
J3ð4�R1

Þ� þ �2½2 cos 4�R0
J3ð4�R1

Þ� þ �3½2 cos 2�R0
J3ð2�R1

Þ�

ð27-30dÞ

In vector-matrix form, the last three equations are

k

I!

I2!

I3!

0
B@

1
CA¼

�2sin4�R0
J1ð4�R1

Þ 2cos4�R0
J1ð4�R1

Þ 2cos2�R0
J1ð2�R1

Þ

2cos4�R0
J2ð4�R1

Þ 2sin4�R0
J2ð4�R1

Þ 2sin2�R0
J2ð2�R1

Þ

�2sin4�R0
J3ð4�R1

Þ 2cos4�R0
J3ð4�R1

Þ 2cos2�R0
J3ð2�R1

Þ

0
B@

1
CA

�1

�2

�3

0
B@

1
CA

ð27-31Þ

This equation can be solved for �1, �2, and �3 by inverting the 3� 3 matrix. Equation
(27-30a) can then be used to find �0, and (27-28) used to find the Stokes vector
elements.

27.3.3 Oscillating Retarder and Analyzer Polarimeter

The oscillating retarder and analyzer polarimeter is the generalization of oscillating
element designs [3]. This polarimeter is shown in Fig. 27-3c. A retarder is surrounded
by two optical rotators as in the oscillating retarder and fixed analyzer polarimeter,
but now the rotators produce rotations �r1 and �r2 . The retarder is oriented at some
angle �R and the linear polarizer is oriented at some angle �P. With no optical
rotators, the detected signal is given by

kI ¼ S0 þ ðS1 cos 2�R þ S2 sin 2�RÞ cosð2�P � 2�RÞ þ S3 sinð2�P � 2�RÞ ð27-32Þ

Consider that the rotator R2 in Fig. 27-3c is replaced by two equivalent rotators in
series that have rotations �r1 and r1þ r2. The sum of these is r2 and we have not
changed the resultant net rotation. The retarder is now surrounded by rotators with
rotations r1 and �r1 and this is equivalent to the retarder in the new azimuth �Rþ r1.
The rotator with rotation r1þ r2 rotates the polarizer azimuth to �Pþ r1þ r2. If we
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replace the angles in (27-32) with the azimuthal angles resulting from the addition of
the rotators, we have

kI ¼ S0 þ S1 cosð2�R þ 2r1Þ cosð2�P � 2�R þ 2r2Þ

þ S2 sinð2�R þ 2r1Þ cosð2�P � 2�R þ 2r2Þ

þ S3 sinð2�P � 2�R þ 2r2Þ ð27-33Þ

If we reference the angular coordinates to the azimuth of the polarizer, we can set
�P¼ 0 and rewrite (27-33) as

kI ¼ S0 þ
1

2
S1½cos 4�R cosð2r1 � 2r2Þ � sin 4�R sinð2r1 � 2r2Þ þ cosð2r1 þ 2r2Þ�

þ
1

2
S2½sin 4�R cosð2r1 � 2r2Þ þ cos 4�R sinð2r1 � 2r2Þ þ sinð2r1 þ 2r2Þ�

� S3ðsin 2�R cos 2r2 � cos 2�R sin 2r2Þ ð27-34Þ

Now consider that the rotators are oscillated at the same frequency and are
either in phase or out of phase by �, then the rotations produced are given by

r1 ¼ �r1 sin!t ð27-35aÞ

and

r2 ¼ �r2 sin!t ð27-35bÞ

We can now substitute the expressions of (27-35) into (27-34) and again use the
Bessel function expansions of (27-15) and (27-16) to obtain the equation:

kI ¼ MSn ð27-36Þ

where

I ¼
I!
I2!
I3!

0
@

1
A Sn ¼

S1

S2

S3

0
@

1
A ð27-37Þ

and

M¼

� sin4�RJ1ð2�r1 � 2�r2 Þ cos4�RJ2ð2�r1 � 2�r2 Þ þ J2ð2�r1 þ 2�r2 Þ 2cos2�RJ1ð2�r2 Þ

cos4�RJ2ð2�r1 � 2�r2 Þ þ J2ð2�r1 þ 2�r2 Þ sin4�RJ2ð2�r1 � 2�r2 Þ �2 sin2�RJ2ð2�r2 Þ

� sin4�RJ3ð2�r1 � 2�r2 Þ cos4�RJ2ð2�r1 � 2�r2 Þ þ J2ð2�r1 þ 2�r2 Þ 2cos2�RJ3ð2�r2 Þ

0
B@

1
CA

(27-38)
The zero frequency term is given by

Idc ¼ S0 þ
1

2
S1½cos 4�RJ0ð2�r1 � 2�r2Þ þ J0ð2�r1 þ 2�r2Þ�

þ
1

2
S2½sin 4�RJ0ð2�r1 � 2�r2 Þ� � S3½sin 2�RJ0ð2�r2Þ� ð27-39Þ

Sn is found by multiplying the signal vector I by the inverse of M and then S0 is
obtained from (27-39).
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27.4 PHASE MODULATION POLARIMETRY

Phase modulation polarimeters are shown in Fig. 27-4. These polarimeters use
devices that vary in retardance in response to an electrical signal. A common type
of phase modulator is the photoelastic modulator (see Chapter 24).

27.4.1 Phase Modulator and Fixed Analyzer Polarimeter

This polarimeter, shown in Fig. 27-4a, uses a single modulator with a fixed linear
analyzer. The axes of the modulator and analyzer are inclined at 45� to each other.

The detected signal is given by

I ¼
S0

2
þ
1

2
ðS1 cos 2�A þ S2 sin 2�AÞ cos�þ S3 sin� ð27-40Þ

where �A is the azimuthal angle of the analyzer and � is the retardance of the
modulator. The modulator retardance is

� ¼ � sin!t ð27-41Þ

where ! is the frequency of modulation and � is the magnitude of the modulation.
The detected intensity is given by

I ¼
I0
2
þ
I1
2
sin!tþ

I2
2
cos 2!t ð27-42Þ

Figure 27-4 Phase modulation polarimeters. (After Ref. 1.)
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If � ¼ 137:8� [J0(�)¼ 0 and �¼ 0�] the Stokes vector is given by

S0 ¼ I0

S1 ¼
I2

2J2 �ð Þ

S3 ¼
I1

2J1 �ð Þ

ð27-43Þ

If the polarimeter elements are both rotated by 45� (see Fig. 27-4b), we will measure
the Stokes vector:

S0 ¼ I0

S2 ¼
I2

2J2ð�Þ

S3 ¼
I1

2J1ð�Þ

ð27-44Þ

27.4.2 Dual-Phase Modulator and Fixed Analyzer Polarimeter

The dual-phase modulator and fixed analyzer polarimeter is shown in Fig. 27-4c. The
first modulator (closest to the analyzer) is aligned 45� to the analyzer and has time-
varying retardation:

�1 ¼ �1 sin!1t ð27-45Þ

The second modulator, aligned to the analyzer axis, has time-varying retardation:

�2 ¼ �2 sin!2t ð27-46Þ

All four Stokes parameters can be measured with this system. The signal is

I ¼
S0

2
þ
S1 cos�2

2
þ
S2 sin�2 sin�1

2
�
S3 sin�2 cos�1

2
ð27-47Þ

and if we demand that �1¼ �2¼ 137.8� then

I ¼
I0
2
þ
I1 cos 2!2t

2
�
I2 cosð!2 � !1Þ

2
þ
I3 sinð!2 � 2!1Þt

2
ð27-48Þ

and higher frequency terms. The Stokes vector is then given by

S0 ¼ I0

S1 ¼
I1

2J2ð�2Þ

S2 ¼
I2

2J1ð�1ÞJ1ð�2Þ

S3 ¼
�I3

2J2ð�1ÞJ1ð�2Þ

ð27-49Þ
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27.5 TECHNIQUES IN SIMULTANEOUS MEASUREMENT OF
STOKES VECTOR ELEMENTS

In the polarimetry techniques we have described in this chapter up to this point, all
depend on a time sequential activity. That is, in rotating element polarimetry, polar-
izers and retarders are rotated and measurements are made at various angular posi-
tions of the elements; in oscillating element polarimetry, rotators are oscillated, and
measurements are made at various points in the oscillation; in phase modulation
polarimetry, measurements are made at various phase values in the modulation. We
would like to be able to make all required measurements at the same time to ensure
that time is not a factor in the result. In order to do this we can divide the wavefront
spatially and make simultaneous measurements of different quantities at different
points in space, or we can separate polarizations by dividing the amplitude of the
wavefront. Polarimeters of these types generally have no moving parts.

27.5.1 Division of Wavefront Polarimetry

Wavefront division relies on analyzing different parts of the wavefront with separate
polarization elements. This has been done using a pair of boresighted cameras that
were flown on the space shuttle [4,5]. A linear polarizer was placed in front of each
camera where the polarizers were orthogonal to each other. Chun et al. [6] have
performed wavefront division polarimetry using a single infrared camera. Metal
wire-grid polarizers were formed on a substrate using microlithography in the pat-
tern shown in Fig. 27-5. This wire-grid array was placed in front of the detector array
so that light from different parts of the object space pass through different polariza-
tion elements and on to different detectors. Each detector element of the infrared
focal plane array has its own polarizer. These polarizers are linear polarizers at four
different orientations, as shown in Fig. 27-5, and the pattern is repeated up to the size
of the array. There are no circular components measured and thus this is an incom-
plete polarimeter.

Figure 27-5 Pattern of micropolarizers in a wavefront division polarimeter.

Copyright © 2003 by Marcel Dekker, Inc. All Rights Reserved.



The advantage of this polarimetric measurement method is the simultaneous
measurement of the Stokes vector elements available from the polarization element
array. The reduction in resolution of the detector by the number of different polar-
ization elements and the spatial displacement of information within the polarization
element pattern are disadvantages.

27.5.2 Division of Amplitude Polarimetry

In amplitude division polarimetry, the energy in the entire wavefront of the incident
beam is split and analyzed before passing to detectors. The detectors should be
spatially registered so that any detector element is looking at the same point in
space as all other detector elements. This method can employ as few as two detectors
with analysis of two orthogonally polarized components of light, or it can measure
the complete Stokes vector using four detectors. There are a number of variations of
division of amplitude polarimetry and we will describe several.

Four-Channel Polarimeter Using Polarizing Beam Splitters

A diagram of a four-channel polarimeter [7] is shown in Fig. 27-6. This polarimeter
uses three polarizing beam splitters and two retarders. Readings are made at four
detectors. The input Stokes vector is determined from the four detector measure-
ments and from use of a transfer Mueller matrix found during the calibration pro-
cedure. The polarizing beam splitters have transmissions of 80% and 20% for the

Figure 27-6 A four-channel polarimeter. PBS is a beam splitter, QWR is a quarter-wave

retarder, and HWR is a half-wave retarder.
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parallel and perpendicular components. A quarter-wave retarder before detectors 1
and 2 is oriented at 45� and the half-wave retarder before detectors 3 and 4 is
oriented at 22.5�.

The advantage of this system is the simultaneous measurement of all four
Stokes components for each point in object space. Care must be taken to ensure
spatial registration of the detectors and equalization of detector response. Two-
channel polarimeters [8] are substantially easier to construct.

Azzam’s Four-Detector Photopolarimeter

Another type of amplitude division complete Stokes polarimeter is the four-detector
photopolarimeter of Azzam [9,10]. A diagram of this polarimeter is shown in
Fig. 27-7, and a photograph of a commercial version of this instrument is given
in Fig. 27-8.

In this four-detector polarimeter, a light beam strikes four detectors in
sequence, as shown in Fig. 27-7. Part of the light striking the first three is specularly
reflected to the remaining detectors in the sequence, while the last detector absorbs
substantially all the remaining light. The signal measured by each detector is propor-
tional to the fraction of the light that it absorbs, and that fraction is a linear combi-
nation of the Stokes parameters. The light intensity measured by the detector is then
linearly related to the input Stokes vector. The four detected signals are related to the
input Stokes vector by

I ¼

i0
i1
i2
i3

0
BB@

1
CCA ¼ A

S0

S1

S2

S3

0
BB@

1
CCA ¼ AS ð27-50Þ

Figure 27-7 Optical diagram of the four-detector photopolarimeter. (From Ref. 9.)
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where A is a Mueller matrix of the instrument. The input Stokes vector is then
obtained from

S ¼ A
�1
I ð27-51Þ

In order to determine the Stokes vector uniquely, the instrument matrix must be
nonsingular. We now derive this instrument matrix.

The Stokes vectors of the light reflected from the surfaces of the photodetectors
D0, D1, and D2 are

S
ð0Þ

¼ M0S

S
ð1Þ

¼ M1R1M0S

S
ð2Þ

¼ M2R2M1R1M0S

ð27-52Þ

where S is the input Stokes vector,

Ml ¼ rl

1 � cos 2 l 0 0

� cos 2 l 1 0 0

0 0 sin 2 l cos�l sin 2 l sin�l

0 0 � sin 2 l sin�l sin 2 l cos�l

2
66664

3
77775 ð27-53Þ

is the Mueller matrix of the lth detector, and

Rl ¼

1 0 0 0

0 cos 2l sin 2l 0

0 � sin 2l cos 2l 0

0 0 0 1

2
66664

3
77775 ð27-54Þ

is the rotation matrix describing the rotation of the plane of incidence between
successive reflections; rl is the reflectance of the lth detector for incident unpolarized

Figure 27-8 Photograph of a commercial four-detector photopolarimeter. (Courtesy of
Gaertner Scientific Corp., Skokie, IL.)

Copyright © 2003 by Marcel Dekker, Inc. All Rights Reserved.



or circularly polarized light and tan le
i�l ¼ rpl=rsl is the ratio of the complex reflec-

tion coefficients of the surface for polarizations parallel and perpendicular to the
local plane of incidence.

Let us form a vector L composed of the first elements of the Stokes vectors S,
S
ð0Þ, Sð1Þ, and S

ð2Þ, i.e., the elements that are proportional to the intensities. This can
be accomplished by multiplying each of these Stokes vectors by the row vector:

G ¼ 1 0 0 0
 �

ð27-55Þ

so that we have

L ¼

S0

S
ð0Þ
0

S
ð1Þ
0

S
2ð Þ

0

2
666664

3
777775 ð27-56Þ

This vector L is linearly related to the input Stokes vector by

L ¼ FS ð27-57Þ

where F is given in terms of its rows by

F ¼

F0

F1

F2

F3

2
66664

3
77775 ¼

G

GM0

GM1R1M0

GM2R2M1R1M0

2
66664

3
77775 ð27-58Þ

The last three rows of this matrix are the first three rows of the matrices M0,
M1R1M0, and M2R2M1R1M0. If we insert the appropriate forms of Eqs. (27-53)
and (27-54) into (27-58) we obtain the matrix:

F ¼

1 0 0 0

f10 f11 0 0

f20 f21 f22 f23

f30 f31 f32 f33

2
66664

3
77775 ð27-59Þ

where

f10 ¼ r0

f11 ¼ �r0 cos 2 0

f20 ¼ r0r1ð1þ cos 2 0 cos 2 1 cos 21Þ

f21 ¼ �r0r1ðcos 2 0 þ cos 2 1 cos 21Þ

f22 ¼ �r0r1ðsin 2 0 cos�0 cos 2 1 sin 21Þ

f23 ¼ �r0r1ðsin 2 0 sin�0 cos 2 1 sin 21Þ
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f30 ¼ r0r1r2ð1þ cos 2 0 cos 2 1 cos 21 þ cos 2 1 cos 2 2 cos 22

þ cos 2 0 cos 2 2 cos 21 cos 22

� cos 2 0 sin 2 1 cos�1 cos 2 2 sin 21 sin 22Þ

f31 ¼ �r0r1r2ðcos 2 0 þ cos 2 1 cos 21 þ cos 2 0 cos 2 1 cos 2 2 cos 22

þ cos 2 2 cos 21 cos 22 � sin 2 1 cos�1 cos 2 2 sin 21 sin 22Þ

f32 ¼�r0r1r2ðsin2 0 cos�0 cos2 1 sin21þ sin2 0 cos�0 cos2 2 sin21 cos22

þ sin2 0 cos�0 sin2 1 cos�1 cos2 2 cos21 sin22

� sin2 0 sin�0 sin2 1 sin�1 cos2 2 sin22Þ

f33 ¼�r0r1r2ðsin2 0 sin�0 cos2 1 sin21 þ sin2 0 sin�0 cos2 2 sin21 cos22

þ sin2 0 cos�0 sin2 1 sin�1 cos2 2 sin22

þ sin2 0 sin�0 sin2 1 cos�1 cos2 2 cos21 sin22Þ ð27-60Þ

The signal from each of the four detectors is proportional to the light absorbed
by it. The light absorbed is the difference between the incident flux and the reflected
flux; thus, the signal from the first detector is the difference between the first two
elements of the vector L (27-56) multiplied by a proportionality constant that is
dependent on the detector responsivity; the signal from the second detector is pro-
portional to the difference between the second and third elements of the vector L; the
signal from the third detector is proportional to the difference between the third and
fourth elements of the vector L; and since the last detector is assumed to absorb the
remaining light, the signal from this detector is proportional to the remaining flux.
The signal from each detector is then expressed as

i0 ¼ k0ðS0 � S
ð0Þ
0 Þ

i1 ¼ k1ðS
ð0Þ
0 � S

ð1Þ
0 Þ

i2 ¼ k2ðS
ð1Þ
0 � S

ð2Þ
0 Þ

i3 ¼ k3S
ð2Þ
0

ð27-61Þ

In matrix form, (27-61) can be expressed as

I ¼ KDL ð27-62Þ

where K is the detector responsivity matrix, L is the vector in (27-56), and D is
constructed so that it takes the difference between elements of the vector L, i.e.,

K ¼

k0 0 0 0

0 k1 0 0

0 0 k2 0

0 0 0 k3

2
6664

3
7775 ð27-63Þ
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and

D ¼

1 �1 0 0
0 1 �1 0
0 0 1 �1
0 0 0 1

2
664

3
775 ð27-64Þ

Substituting (27-57) into (27-62) we obtain

I ¼ KDFS ð27-65Þ

and we observe in comparing (27-65) and (27-50) that the instrument matrix A is

A ¼ KDF ð27-66Þ

We know K, D, and F from (27-59), (27-63), and (27-64), and we have found the
instrument matrix.

In order to compute A�1, A must be nonsingular and its determinant must be
nonzero. We find the determinant from

detA ¼ ðdetKÞðdetDÞðdetFÞ ð27-67Þ

which becomes, when we make substitutions,

detA ¼ �ðk0k1k2k3Þðr
3
0r

2
1r2Þðsin 21 sin 22Þ

� ðsin2 2 0 cos 2 0 sin 2 1 cos 2 1 cos 2 2Þ sin�1 ð27-68Þ

If any factor in this equation is zero, the determinant becomes zero. We can now
make some observations about the conditions under which this can happen. The first
term in parentheses is the product of the responsivities of the detectors. It is undesir-
able and unlikely that any of these are zero, but this might happen if a detector is not
working. The next term in parentheses is a product of the reflectances of the first
three detectors. If any of these are zero, light will not get to the fourth detector, and
the system will not work. Again, this is a condition that is undesirable and unlikely.
The third term in parentheses is a geometrical condition: these factors are nonzero as
long as the planes of incidence of two successive reflections are not coincident or
orthogonal. The detectors can be arranged so that this does not happen. The fourth
term in parentheses vanishes when

 0 ¼ 0,
�

2

 1 ¼ 0,
�

2

 0 ¼
�

4

 1 ¼
�

4

 2 ¼
�

4

ð27-69Þ

The first two conditions in (27-69) are equivalent to having the first two detectors
as perfect linear polarizers. The last three conditions would require that the
first three detectors reflect p and s polarizations equally or function as retarders.
Since the detectors are designed to be absorbing elements and typical reflections
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from absorbing surfaces will not fulfill these conditions, they are unlikely. The last
factor, sin�1, is the sine of the differential reflection phase shift at the second
detector. A phase shift of 0 or � is usually associated with Fresnel reflections from
nonabsorbing dielectrics. Again, we have absorbing detectors and this condition is
not fulfilled.

Further details of polarimeter optimization, light path choice, spectral perfor-
mance, and calibration are given in Azzam [10]. A fiber-optic implementation of the
four-detector polarimeter is described in Bouzid et al. [11], and a corner cube con-
figuration version of the polarimeter is discussed in Liu and Azzam [12].

Division of Amplitude Polarimeters Using Gratings

A number of polarimeters based on division of amplitude using gratings have been
proposed [13–16]. Diffraction gratings split a single incident light beam into multiple
beams and introduce significant polarization [17]. Azzam has demonstrated a polari-
meter based on conical diffraction [10]. This instrument is shown in Fig. 27-9. An
incident beam strikes a metal diffraction grating at an oblique incidence angle �. The
grating is positioned such that the lines of the gratings are at some arbitrary angle 
to the plane of incidence, and this is the condition for conical diffraction. With this
geometry, the diffraction efficiency is dependent on all elements of the Stokes vector,
and thus this instrument is a complete polarimeter. A linear detector is placed at the
location of each diffracted order to be detected. When four detectors are used, the
same relationships apply to the grating polarimeter as in the four-detector polari-
meter; i.e., the signal is linearly related to the incident Stokes vector by

I ¼ AS ð27-70Þ

and we again invert the instrument matrix A to obtain the Stokes vector as in
(27-51), i.e.,

S ¼ A
�1
I ð27-51Þ

The derivation of the instrument matrix for this polarimeter follows the calibration
procedures established for the four-detector polarimeter.

A polarimeter using a grating in the normal spectroscopic orientation, i.e., in a
planar diffraction condition, has been designed and constructed [14]. This polari-
meter is illustrated in Fig. 27-10. Polarizers are placed in front of the detectors in this

Figure 27-9 Photopolarimeter using conical diffraction. (From Ref. 13.)
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design in order to make the instrument sensitive to all Stokes parameters. Four
detectors are used in four diffracted orders. At least two of the diffracted beams
must have polarizers in order for this polarimeter to be complete. An instrument
matrix is determined through a calibration process.

A 16-beam grating-based polarimeter has also been designed and demon-
strated [16]. A proposed polarimeter using transmission gratings and four linear
detector arrays is designed to measure spectral and polarization information simul-
taneously [15].

Division of Amplitude Polarimeter Using a Parallel Slab

A wavefront may be divided in amplitude using the multiple reflections obtained in a
planar dielectric slab [18]. Figure 27-11 shows a polarimeter based on a parallel plane
slab of material of index n1ð
Þ. A coating of metal of complex index n2 � ik2 is placed
on the bottom surface of the slab. A light beam incident on the slab at angle �
undergoes multiple reflections in the slab, which results in a set of parallel and
equally spaced outgoing beams. Linear polarizers are arranged in front of detectors
in these beams with as many inclination angles of the transmission axes as there are
detectors. The signal from the mth detector is then a linear combination of the
elements of the Stokes vector, i.e.,

im ¼
X3
j¼0

amjSj, m ¼ 0, 1, 2, . . . ð27-71Þ

where the mth vector am ¼ ½am0 am1 am2 am3� is the first row of the Mueller
matrix of the mth light path. If we limit the detectors to four, the output signal
vector is related to the input Stokes vector by the equation we have seen before for
division of amplitude polarimeters:

I ¼ AS ð27-70Þ

Figure 27-10 Photopolarimeter using planar diffraction. (From Ref. 14.)
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The matrix A is the instrument matrix determined through calibration, and, as in
previous division of amplitude examples, an unknown Stokes vector is found from
the equation

S ¼ A
�1
I ð27-51Þ

El-Saba et al. [18] show that for a slab of fused silica coated with a layer of silver
and operated at 633 nm, the preferred angle of incidence for maximum energy in
the beams and maximum value of the determinant of the instrument matrix
is around 80�.

27.6 OPTIMIZATION OF POLARIMETERS

To this point we have not discussed specific polarization element angular settings.
We have made reference to the use of quarter-wave retarders, primarily because we
can construct a complete Stokes polarimeter using the readily available quarter-wave
retarder and linear polarizer. We now ask the question, are there measurement
angles and values of retardance that will result in a more efficient and/or better
polarimeter?

This question was first addressed with regard to the angular positions of the
quarter-wave retarder and linear polarizer in a rotating retarder and fixed analyzer
polarimeter [19] and a rotating retarder, rotating analyzer polarimeter [20]. It
was found in the first instance that angles of (�45�, 0�, 30�, 60�) or (�90�, �45�,
30�, 60�) resulted in the least sensitivity with regard to flux noise and rotation
positional errors. In the second instance, if we let the rotation angle of the polarizer
be � and the rotation angle of the retarder be ’ and define an  and � such that

 ¼ 2’

� ¼ 2ð� � ’Þ
ð27-72Þ

Figure 27-11 Parallel slab polarimeter. (From Ref. 18.)
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then an optimal set of  and � is

½0�, 90��, 0�, � sin�1 1

3

� �� �
, 120�, � sin�1 1

3

� �� �
, 240�, � sin�1 1

3

� �� �
ð27-73Þ

If we allow both the measurement angles and retardance to take part in the optimi-
zation process for a rotating retarder polarimeter, we find that the optimal value of
retardance is 0.3661
 (�132�) and the optimal retarder positions are either (�15.12�,
�51.69�) or (�74.88�, �38.31�) where these angle pairs are complements of each
other [21,22]. These values were found through numerical optimization described in
the cited references where the optimal values offer the best signal-to-noise perfor-
mance and least sensitivity to element misalignment. Figure 27-12 shows the locus of
points on the Poincaré sphere for values of retardance of 45�, 90�, 132�, and 180�.
The figure indicates that better ‘‘global coverage’’ of the sphere is made possible by
using the retardance of 132�.

Figure 27-13 reinforces this intuition where the intersection of the curve for the
retardance value 132� with the four retarder positions (�15.12�, �51.69�) forms the
corners of a regular tetrahedron inscribed in the Poincaré sphere, points as far apart
as possible as one can make them on the surface of the sphere.

Figure 27-14 shows plots of a figure of merit for the rotating retarder fixed
polarizer polarimeter versus number of measurements for the system with a quarter-
wave retarder and an optimal retarder with both equally spaced angles and the
optimal measurement angles. The results of this plot indicate that the optimal retar-
der with repeated optimal angles offers the best performance.

At this time, 132� retarders are not standard items from optical supply houses,
and the improvement in performance gained by using these optimal elements may
not be worth the cost and risk of ordering custom elements.

Figure 27-12 Locus of points on the Poincaré sphere for retardance values 45�, 90�, 132�,
and 180� for a rotating retarder polarimeter. (From Ref. 21.)
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28

Mueller Matrix Polarimetry

28.1 INTRODUCTION

The real 4� 4 matrix that completely describes the polarization properties of a
material in reflection or transmission is measured in Mueller matrix polarimetry.
A Mueller matrix polarimeter is complete if all 16 of the elements are measured, and
incomplete otherwise. To be complete, a Mueller matrix polarimeter must have a
complete polarization state analyzer (PSA) and a complete polarization state gen-
erator (PSG). Figure 28-1 is a conceptual diagram of a Mueller matrix polarimeter.

The equation we wish to solve in Mueller matrix polarimetry is

I
�

�

�

2
664

3
775 ¼ aMp ¼

a1 a2 a3 a4
� � � �

� � � �

� � � �

2
664

3
775

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

2
664

3
775

p1
p2
p3
p4

2
664

3
775 ð28-1Þ

where M is the Mueller matrix to be measured, the vector p is the Stokes vector of
the light entering the sample represented by M, the vector a is the first row of the
PSA Mueller matrix, and I is the signal from the detector. Note that the vector p is
the product of the Stokes vector of the source and the Mueller matrix of the PSG,
and only the first row of a is needed since the measured signal from the detector is the
single value representing the first element of the output Stokes vector. We should
measure at least 16 values of I with 16 settings of the PSG and PSA in order to
obtain 16 equations in the 16 unknowns of the elements of the sample Mueller
matrix. Very often more than 16 measurements are made so that the matrix elements
are overdetermined. Measurement methods using Fourier or non-Fourier data-
reduction techniques may be used.

In this chapter we shall discuss a small selection of Mueller matrix polarimeters
that have found practical use. This will serve to illustrate the variation in method and
serve as examples for those contemplating measurement of Mueller matrices. Hauge
[1] gives a more complete review of various types of incomplete and complete
Mueller matrix polarimeters. We review practical examples of rotating-element
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and phase-modulating polarimeters. Another type, the four-detector polarimeter, is
also reviewed in this chapter.

28.1.1 Polarimeter Types

There are a number of different methods that have been devised to collect Mueller
matrices. Many Mueller matrix polarimeters are either rotating-element polarimeters
or phase-modulating polarimeters. Rotating-element polarimeters use mechanical
rotation of polarizers or retarders to achieve the desired measurements. Phase mod-
ulating polarimeters use an electro-optical modulator to induce a time-varying retar-
dation. Either of these polarimeter types may be complete or incomplete. Examples
of different configurations of these two types are depicted in Figs. 28-2 and 28-3 and
these show the Mueller matrix elements that are measured in each case (represented
by the large dots).

28.1.2 Rotating Element Polarimeters

Figure 28-2a shows a rotating polarizer—rotating analyzer polarimeter. When the
polarizer is rotated by an angle � and the analyzer by angle 3� synchronously, the
Fourier series representing the normalized intensity has the form (I0 is the source
intensity):

I

I0
¼

a0
4
þ
1

4

X4
k¼1

ða2k cos 2k� þ b2k sin 2k�Þ ð28-2Þ

The nine Fourier coefficients determine nine elements of the Mueller matrix:

M ¼

a0 a2 b2 �

a6 a4 þ a8 �b4 þ b8 �

b6 b4 þ b8 a4 � a8 �

� � � �

2
664

3
775 ð28-3Þ

A rotating polarizer–rotating compensator plus fixed analyzer polarimeter is shown
in Fig. 28-2b. If the polarizer and retarder of this polarimeter are rotated synchro-
nously in a 3 : 1 ratio, the normalized detected intensity can be expanded in the

Figure 28-1 Conceptual diagram of a Mueller matrix polarimeter.
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Fourier series:

I

I0
¼

a0
4
þ
1

4

X7
k¼1

ða2k cos 2k� þ b2k sin 2k�Þ ð28-4Þ

The 15 Fourier coefficients overdetermine the 12 elements of the Mueller matrix in
the first three columns:

M ¼

ða0 � a6Þ ða1 � a5 � a7Þ ðb1 � b5 þ b7Þ �

2a6 2ða5 þ a7Þ 2ðb7 � b5Þ �

2b6 2ðb5 þ b7Þ 2ða5 � a7Þ �

�2b3 �2b2 �2a2 �

2
664

3
775 ð28-5Þ

The polarimeter in Fig. 28-2c determines the first three rows of the Mueller matrix.
The last rotating-element polarimeter in Fig. 28-2d is the dual rotating-retarder
polarimeter, and we will discuss this polarimeter in more detail in Section 28.2 below.

Figure 28-2 Rotating element polarimeters; P is a polarizer, A is an analyzer, R is a
retarder, and S is the sample. Measured elements of the Mueller matrix are indicated by
large dots. (After Ref. 1.)
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28.1.3 Phase-Modulating Polarimeters

Two types of phase modulation polarimeters are shown in Fig. 28-3. One has a single
modulator on either side of the sample, and the other has a double modulator on
either side. We describe the double modulator case in more detail later in this
chapter. For the single modulator case, it can be shown that the detected intensity,
when the modulator axes are inclined at 45� to each other, as shown in Fig. 28-3a, is

I

I0
¼

1

4
1 0 cos�2 sin�2

 �
M

1
cos�1

0
sin�1

2
664

3
775 ð28-6Þ

where I0 is the source intensity and

cos�i ¼ cosð�i sin!itÞ

sin�i ¼ sinð�i sin!itÞ
ð28-7Þ

and the subscripts 1 and 2 identify the first and second modulators. The detected
signal is then given by

I

I0
¼

1

4
ðM00 þM01 cos�1 þM01 sin�1 þM20 cos�2 þM21 cos�1 cos�2

þM23 sin�1 cos�2 þM30 sin�2 þM31 cos�1 sin�2

þM33 sin�1 sin�2Þ: ð28-8Þ

The frequencies ! and phases � are chosen such that the nine matrix elements are
measured by sequential or parallel phase-sensitive detection, i.e., lock-in amplifiers.

Figure 28-3 Phase-modulating polarimeters. A phase modulator/phase modulator polari-
meter is shown in a); a dual-phase modulator polarimeter is shown in b). Measured elements
of the Mueller matrix are indicated by large dots. P is a polarizer, A is an analyzer, PM is a

phase modulator, and S is a sample. (After Ref. 1.)
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One type of complete Mueller matrix polarimeter is represented in Fig. 28-4.
This is the dual rotating-retarder polarimeter [2]. It consists of a complete polari-
meter as a PSG and a complete polarimeter as a PSA. The retarders are rotated and
Fourier analysis is performed on the resulting modulated signal to obtain the
Mueller matrix of the sample. In Section 28.2, we will examine this polarimeter in
more detail. This dual rotating-retarder method has been implemented as a nonima-
ging laser polarimeter in order to examine electro-optical samples in transmission [3].
An imaging version of this polarimeter has been constructed to obtain highly
resolved polarimetric images of liquid crystal televisions [4] and electro-optic mod-
ulators [5]. This same method has been used in the construction of spectropolari-
meters to evaluate samples in transmission and reflection [6,7]. In Section 28.3, we
will discuss other types of Mueller matrix polarimeters. The polarimetric methods
that were discussed in the first part of this book were based on manual methods. The
methods described here are all automated and typically depend on computers to
collect and process the information.

28.2 DUAL ROTATING-RETARDER POLARIMETRY

This polarimeter configuration is based on a concept originally proposed by Azzam
[2], elaborated on by Hauge [8], and by Goldstein [3], and has been used in spectro-
polarimetry as we shall see [6,7]. The technique has also been used with the sample in
reflection to measure birefringence in the human eye at visible wavelengths [9–11].
We have shown in Fig. 28-1 a functional block diagram of a general Mueller matrix
polarimeter. The polarimeter has five sections: the source, the polarizing optics, the
sample, the analyzing optics, and the detector.

28.2.1 Polarimeter Description

The polarizing optics consist of a fixed linear polarizer and a quarter-wave retarder
that rotates. The sample region is followed by the analyzing optics, which consist of
a quarter-wave retarder that rotates followed by a fixed linear polarizer. This is
shown in Fig. 28-4. One of the great advantages of this configuration is that the

Figure 28-4 Dual rotating-retarder polarimeter. P1 and P2 are polarizers, R1 and R2 are
retarders.
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polarization sensitivity of the detector is not important because the orientation of the
final polarizer is fixed.

The two retarders are rotated at different but harmonic rates, and this results in
a modulation of the detected intensity. The Mueller matrix of the sample is found
through a relationship between the Fourier coefficients of a series representing the
modulation and the elements of the sample matrix.

The second retarder is rotated at least five times the rate of the first, and data
might typically be collected for every 2� to 6� of rotation of the first retarder. The
stages are stopped completely after each incremental rotation, and an intensity read-
ing is recorded. The resulting data set is a modulated waveform, which is then
processed according to the algorithms we shall describe shortly.

The polarizing elements in the polarimeter are required to be aligned with
respect to a common axis to start the measurements (this would typically be the
axis of the polarized laser or the axis of the first polarizer if an unpolarized source is
used). This alignment is done manually to try to minimize orientation errors, and the
residual orientation errors are removed through a computational compensation
method that we will describe.

28.2.2 Mathematical Development: Obtaining the Mueller Matrix

This polarimeter measures a signal that is modulated by rotating the retarders. The
elements of the Mueller matrix are encoded on the modulated signal. The output
signal is then Fourier analyzed to determine the Mueller matrix elements. The second
retarder is rotated at a rate of five times that of the first. This generates 12 harmonic
frequencies in the Fourier spectrum of the modulated intensity.

The Mueller matrix for the system is

P2R2ð�ÞMR1ð�ÞP1 ð28-9Þ

where P indicates a linear polarizer, R(�) indicates an orientation-dependent retar-
der, and M is the sample and the matrix quantity to be determined. Mueller matrices
are then substituted for a linear retarder with quarter-wave retardation and a fast
axis at � and 5� for R1 and R2, respectively; a horizontal linear polarizer for P2; a
horizontal linear polarizer for P1; and a sample for M. The detected intensity is
given by

I ¼ cAMP ð28-10Þ

where P¼R1P1S is the Stokes vector of light leaving the polarizing source (S is the
Stokes vector of the light from the source), A¼P2R2 is the Mueller matrix of the
analyzing optics, M is the Mueller matrix of the sample, and c is a proportionality
constant obtained from the absolute intensity. Explicitly,

I ¼ c
X4
i, j¼1

aipjmij ð28-11Þ

or

I ¼ c
X4
i:j¼1

�ijmij ð28-12Þ
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where the ai are the elements of the first row of A, the pj are the elements of P, the mij

are the elements of the Mueller matrix M, and where

�ij ¼ aipj ð28-13Þ

The order of matrix multiplication can be changed as shown above in going from
(28-10) to (28-11) because we are only measuring intensity, i.e., the first element of
the Stokes vector. Only the first row of the matrix A is involved in the calculation:

a1 a2 a3 a4
� � � �

� � � �

� � � �

2
664

3
775

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

2
664

3
775

p1
p2
p3
p1

2
664

3
775 ¼

I
�

�

�

2
664

3
775 ð28-14Þ

and multiplying through:

I ¼ a1ðm11p1 þm12p2 þm13p3 þm14p4Þ

þ a2ðm21p1 þm22p2 þm23p3 þm24p4Þ

þ a3ðm31p1 þm32p2 þm33p3 þm34p4Þ

þ a4ðm41p1 þm42p2 þm43p3 þm44p4Þ ¼
X4
i, j¼1

�ijmij ð28-15Þ

When the rotation ratio is 5 : 1 the �ij are given by

�11 ¼ 1

�12 ¼ cos2 2�

�13 ¼ sin 2� cos 2�

�14 ¼ sin 2�

�21 ¼ cos2 10�

�22 ¼ cos2 2� cos2 10�

�23 ¼ sin 2� cos 2� cos2 10�

�24 ¼ sin 2� cos2 10�

�31 ¼ sin 10� cos 10�

�32 ¼ cos2 2� sin 10� cos 10�

�33 ¼ sin 2� cos 2� sin 10� cos 10�

�34 ¼ sin 2� sin 10� cos 10�

�41 ¼ � sin 10�

�42 ¼ � cos2 2� sin 10�

�43 ¼ � sin 2� cos 2� sin 10�

�44 ¼ � sin 2� sin 10�

ð28-16Þ
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These equations can be expanded in a Fourier series to yield the Fourier coefficients,
which are functions of the Mueller matrix elements. The inversion of the these
relations gives the Mueller matrix elements in terms of the Fourier coefficients:

m11 ¼ a0 � a2 þ a8 � a10 þ a12

m12 ¼ 2a2 � 2a8 � 2a12

m13 ¼ 2b2 þ 2b8 � 2b12

m14 ¼ b1 � 2b11 ¼ b1 þ 2b9 ¼ b1 þ b9 � b11

m21 ¼ �2a8 þ 2a10 � 2a12

m22 ¼ 4a8 þ 4a12

m23 ¼ �4b8 þ 4b12

m24 ¼ �4b9 ¼ 4b11 ¼ 2ð�b9 þ b11Þ

m31 ¼ �2b8 þ 2b10 � 2b12

m32 ¼ 4b8 þ 4b12

m33 ¼ 4a8 � 4a12

m34 ¼ 4a9 ¼ �4a11 ¼ 2ða9 � a11Þ

m41 ¼ 2b3 � b5 ¼ �b5 þ 2b7 ¼ ðb3 � b5 þ b7Þ

m42 ¼ �4b3 ¼ �4b7 ¼ �2ðb3 þ b7Þ

m43 ¼ �4a3 ¼ 4a7 ¼ 2ð�a3 þ a7Þ

m44 ¼ �2a4 ¼ 2a6 ¼ ða6 � a4Þ

ð28-17Þ

The 5 : 1 rotation ratio is not the only ratio that can be used to determine
Mueller matrix elements, but it is the lowest ratio in which the expressions for the
Fourier coefficients may be inverted to give the Mueller matrix elements.

Intensity values in the form of voltages are measured as the retarders are
incrementally advanced such that the first retarder is rotated through 180�. The
Fourier coefficients must be obtained from the measured intensity values. There
are several methods of formulating the solution to this problem.

If the problem is formulated as

xa ¼ I, ð28-18Þ

where I is a vector of 36 intensity values, a is the set of Fourier coefficients, and x is a
26� 25 matrix where each row is of the form:

ð1 cos 2� cos 4� . . . cos 24� sin 2� sin 4� . . . sin 24�Þ

where the � for each row represents the angle of the fast axis of the first retarder, then
the solution is

a ¼ ðxTxÞ�1xTI ð28-19Þ

(The minimum number of equations needed to solve for the coefficients uniquely is
25 so that the maximum rotation increment for the first retarder is 7.2�; for this
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example, 36 equations are obtained from 5� rotational increments through 180�.)
This solution is equivalent to the least-squares solution [12]. In the least-squares
formulation the expression for the instrument response is

Ið�Þ ¼ a0 þ
X12
j¼1

ðaj cos 2j� þ bj sin 2j�Þ, ð28-20Þ

but the actual measurement �(�) may be different from this value due to noise and/
or error. The sum of the square of these differences may be formed, i.e.,X

�ð�lÞ � Ið�lÞ½ �
2
¼ Eða0, a1, . . . , a12, b1, . . . , b12Þ ð28-21Þ

where E is a function of the coefficients and l is the subscript of the retarder angle.
The values of the coefficients can now be found by taking the partial derivative of E
with respect to the coefficients and setting these equal to zero:

@E

@ak
¼ 0,

@E

@bk
¼ 0: ð28-22Þ

The expression becomes, for the derivative with respect to al,

X35
l¼0

�ð�lÞ � a0 þ
X12
j¼1

ðaj cos 2j�l þ bj sin 2j�l

" #" #
� ð�2 cos 2k�lÞ ¼ 0 ð28-23Þ

Solving this system of 36 equations in 25 unknowns will give the least-squares solu-
tion for the coefficients, which is identical to the solution obtained from (28-19).

28.2.3 Modulated Intensity Patterns

Simulated modulated intensity patterns for no sample and various examples of ideal
polarization elements are given in Figs. 28-5 through 28-8. The abscissa represents
measurement number in a sequence of 36 (corresponding to 5� increments over 180�)
and the ordinate represents detector voltage, normalized to 0.5.

The quality of the measurement and the type of element in the sample position
can be recognized by observation of the measured intensity modulation. For exam-
ple, the pattern of a retarder with its fast axis aligned and one with its slow axis
aligned are immediately recognizable and differentiated. Good measurements yield
modulated intensity patterns that are essentially identical to the simulations.

28.2.4 Error Compensation

The true nature of the sample may be obscured by errors inherent in the polarimeter
optical system. The Mueller matrix elements must be compensated for the known
errors in retardance of the retarders and the errors caused by the inability to align the
polarizing elements precisely. The fact that there are errors that cannot be eliminated
through optical means leads to an error analysis and a compensation procedure to be
implemented during polarimeter data processing.

A summary of an error analysis of a dual-rotating retarder Mueller matrix
polarimeter is presented in this section. The derivation of the compensated Mueller
matrix elements using the small-angle approximation is documented in detail [13],

Copyright © 2003 by Marcel Dekker, Inc. All Rights Reserved.



and exact compensation equations for the Mueller matrix elements have been
derived [14]. Errors in orientational alignment and errors caused by nonideal
retardation elements are considered in these compensations. A compensation for
imperfect retardation elements is then made possible with the equations derived,
and the equations permit a calibration of the polarimeter for the azimuthal
alignment of the polarization elements. A similar analysis was done earlier [8] for
a dual rotating compensator ellipsometer; however, that analysis did not include
errors in the last polarizer but did include errors caused by diattenuation in the
retardation elements. Experimental experience with the polarimeter described here

Figure 28-6 Modulated intensity for a linear horizontal polarizer.

Figure 28-5 Modulated intensity for no sample.
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indicates that the deviation of the retarders from quarter wave is important com-
pared with the diattenuation of the retarders [3].

In the error analysis, the effect of retardation associated with the polarizers and
polarization associated with the retarders have not been included. It is also assumed
that there are no angular errors associated with the stages that rotate the elements. It
is only the relative orientations of the polarizers and retarders that are relevant, and
the analysis is simplified by measuring all angles relative to the angle of the polar-
ization from the first polarizer. The errors are illustrated in Fig. 28-9. The three

Figure 28-7 Modulated intensity for a linear vertical polarizer.

Figure 28-8 Modulated intensity for a half wave plate at 45�.

Copyright © 2003 by Marcel Dekker, Inc. All Rights Reserved.



polarization elements have errors associated with their initial azimuthal alignment
with respect to the first polarizer. These are shown as "3, "4, and "5 in Fig. 28-9. In
addition, one or both retarders may have retardances that differ from quarter wave.
These are shown as �1 and �2 where "1 and "2 are the deviations from quarter wave in
Fig. 28-9. In general, both retarders will have different retardances and the three
polarization elements will be slightly misaligned in azimuth.

The following calibration procedure is used. First, the polarimeter is operated
with no sample and Fourier coefficients obtained from the measured modulated
intensity. Second, using error-compensation equations with matrix elements of the
identity matrix inserted for the Mueller matrix elements, errors in the element orien-
tations and retardances are calculated. Third, in the routine use of the polarimeter,
the systematic errors in the Fourier coefficients arising from the imperfections are
compensated for by using the error-compensated equations with experimentally
determined error values to obtain the error-compensated sample Mueller matrix
elements as a function of measured Fourier coefficients.

With no sample in the polarimeter, the sample matrix is the identity matrix.
Because all off-diagonal elements in the sample Mueller matrix are zero, all odd
Fourier coefficients in (28-20) become zero. Because the diagonal elements equal
one, the coefficients of the twelfth harmonic vanish also.

The Fourier coefficients are found to be functions of the errors, after we
find the �’s as in (28-16) but this time as functions of errors. The Fourier
coefficients are

a0 ¼
1

2
m11 þ

1

4
�3m12 þ

1

4
�4 cos 2"5m21 þ

1

8
�3�4 cos 2"5m22

þ
1

4
�4 sin 2"5m31 þ

1

8
�3�4 sin 2"5m32

a1 ¼
1

2
sin �1 sin 2"3m14 þ

1

4
�4 sin �1 sin 2"3 cos 2"5m24

þ
1

4
�4 sin �1 sin 2"3 sin 2"5m34

Figure 28-9 Significant error sources in the dual rotating-retarder polarimeter.
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a2 ¼
1

4
�1 cos 4"3m12 þ

1

4
�1 sin 4"3m13 þ

1

8
�1�4 cos 4"3 cos 2"5m22

þ
1

8
�1�4 sin 4"3 cos 2"5m23 þ

1

8
�1�4 cos 4"3 sin 2"5m32

þ
1

8
�1�4 sin 4"3 sin 2"5m33

a3 ¼ �
1

8
�1 sin �2 sin 3m42 �

1

8
�1 sin �2 cos3m43

a4 ¼ �
1

4
sin �1 sin �2 cos1m44

a5 ¼
1

2
sin �2 sin 5m41 þ

1

4
�3 sin �2 sin 5m42

a6 ¼
1

4
sin �1 sin �2 cos2m44

a7 ¼ �
1

8
�1 sin �2 sin 4m42 þ

1

8
�1 sin �2 cos4m43

a8 ¼
1

16
�1�2 cos9ðm22 þm33Þ þ

1

16
�1�2 sin 9ðm32 �m23Þ

a9 ¼
1

8
�2 sin �1 sin 6m24 þ

1

8
�2 sin �1 cos6m34

a10 ¼
1

4
�2 cos11m21 þ

1

8
�2�3 cos11m22 þ

1

4
�2 sin 11m31

þ
1

8
�2�3 sin 11m32

a11 ¼ �
1

8
�2 sin �1 sin 7m24 �

1

8
�2 sin �1 cos7m34

a12 ¼
1

16
�1�2 cos10ðm22 �m33Þ þ

1

16
�1�2 sin 10ðm23 þm32Þ

b0 ¼ 0

b1 ¼
1

2
sin �1 cos 2"3m14 þ

1

4
�4 sin �1 cos 2"3 cos 2"5m24

þ
1

4
�4 sin �1 cos 2"3 sin 2"5m34

b2 ¼ �
1

4
�1 sin 4"3m12 þ

1

4
�1 cos 4"3m13 þ

1

8
�1�4 cos 4"3 cos 2"5m23

�
1

4
�1�4 sin 4"3 cos 2"5m22

þ
1

8
�1�4 cos 4"3 sin 2"5m33 �

1

8
�1�4 sin 4"3 sin 2"5m32

b3 ¼ �
1

8
�1 sin �2 cos3m42 þ

1

8
�1 sin �2 sin 3m43

ð28-24Þ
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b4 ¼
1

4
sin �1 sin �2 sin 1m44

b5 ¼ �
1

2
sin �2 cos5m41 �

1

4
�3 sin �2 cos5m42

b6 ¼ �
1

4
sin �1 sin �2 sin 2m44

b7 ¼ �
1

8
�1 sin �2 cos4m42 �

1

8
�1 sin �2 sin 4m43

b8 ¼ �
1

16
�1�2 sin 9ðm22 þm33Þ �

1

16
�1�2 cos9ðm23 �m32Þ

b9 ¼ �
1

8
�2 sin �1 cos6m24 þ

1

8
�2 sin �1 sin 6m34

b10 ¼ �
1

4
�2 sin 11m21 �

1

8
�2�3 sin 11m22 þ

1

4
�2 cos11m31

þ
1

8
�2�3 cos11m32

b11 ¼
1

8
�2 sin �1 cos7m24 �

1

8
�2 sin �1 sin 7m34

b12 ¼ �
1

16
�1�2 sin 10ðm22 �m33Þ þ

1

16
�1�2 cos10ðm23 þm32Þ

where

�1 ¼ 1� cos �1

�2 ¼ 1� cos �2

�3 ¼ 1þ cos �1

�4 ¼ 1þ cos �2

1 ¼ 2"4 � 2"3 � 2"5

2 ¼ 2"4 þ 2"3 � 2"5

3 ¼ 2"4 � 4"3 � 2"5

4 ¼ 2"4 þ 4"3 � 2"5

5 ¼ 2"5 � 2"4

6 ¼ 2"5 � 4"4 þ 2"3

7 ¼ 2"5 � 4"4 � 2"3

8 ¼ �2"5 þ 4"4 � 2"3 ¼ �6

9 ¼ 4"4 � 4"3 � 2"5

10 ¼ 4"4 þ 2"3 � 2"5

11 ¼ 4"4 � 2"5

ð28-25Þ
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These equations can be inverted for this case where there is no sample, so that the
sample Mueller matrix is the identity matrix, and we then solve for the errors in
terms of the Fourier coefficients. The equations yield the errors as

"3 ¼
1

4
tan�1 b8

a8

� �
�
1

4
tan�1 b10

a10

� �

"4 ¼
1

2
tan�1 b2

a2

� �
�
1

2
tan�1 b6

a6

� �
þ
1

4
tan�1 b8

a8

� �
�
1

4
tan�1 b10

a10

� �

"5 ¼
1

2
tan�1 b2

a2

� �
þ
1

2
tan�1 b8

a8

� �
�
1

2
tan�1 b10

a10

� �

�1 ¼ cos�1 a10 cos9 � a8 cos11
a10 cos9 þ a8 cos11

� �

�2 ¼ cos�1 a2 cos9 � a8 cos 4"3 � 2"5ð Þ

a2 cos9 þ a8 cos 4"3 � 2"5ð Þ
Þ

� ð28-26Þ

These values for the errors found from the calibration are now to be substituted back
into the equations for the Mueller matrix elements by using measured values of the
Fourier coefficients with a sample in place:

m44 ¼
4

sin �1 sin �2
�

a4
cos1

þ
a6

cos2

� �

m43 ¼ 8
�a3 cos3 þ b3 sin 3 þ a7 cos4 � b7 sin 4

�1 sin �2

m42 ¼ �8
a3 sin 3 þ b3 cos3 þ a7 sin 4 þ b7 cos4

�1 sin �2

m41 ¼
��3m42

2
�

4b5
cos 5 sin �2

m24 ¼ 8
a9 sin 6 � b9 cos6 � a11 sin 7 þ b11 cos 7

�2 sin �1

m34 ¼ 8
a9 cos6 þ b9 sin 6 � a11 cos7 � b11 sin 7

�2 sin �1

m14 ¼
��4 cos 2"5m24

2
þ

4b1
cos 2"3 sin �1

�
�4 sin 2"5m34

2

m22 ¼ 16
a8 cos9 þ a12 cos10 � b8 sin 9 � b12 sin 10

�1�2

m33 ¼ 16
a8 cos9 � a12 cos10 � b8 sin 9 þ b12 sin 10

�1�2

m23 ¼ 16
�a8 sin 9 þ a12 sin 10 � b8 cos9 þ b12 cos10

�1�2

ð28-27Þ
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m32 ¼ 16
a8 sin 9 þ a12 sin 10 þ b8 cos9 þ b12 cos10

�1�2

m12 ¼
16a2 cos 4"3 � 16b2 sin 4"3 � �1�4 cos 2"5m22 � �1�4 sin 2"5m32

2�1

m13 ¼
16a2 sin 4"3 þ 16b2 cos 4"3 � �1�4 cos 2"5m23 � �1�4 sin 2"5m33

2�1

m21 ¼
16a10 cos11 � 16b10 sin 11 � �2�3m22

2�2

m31 ¼
� �2�3m32 � 16b10 cos11 � 16a10 sin 11ð Þ

2�2

m11 ¼ 4a0 �
1

2
�3m12 �

1

2
�4 cos 2"5m21 �

1

4
�3�4 cos 2"5m22

�
1

2
�4 sin 2"5m31 �

1

4
�3�4 sin 2"5m32

28.2.5 Optical Properties from the Mueller Matrix

One objective of Mueller matrix polarimetry might be to obtain electro- and
magneto-optic coefficients of crystals. The coefficients are derived from the
Mueller matrices measured as a function of applied field strength. The method by
which this derivation is accomplished is briefly summarized here [15].

The application of an electric field across a crystal produces an index change.
Principal indices are obtained by solving an eigenvalue problem (see Chapter 24).
For example, for a �443m cubic material with index n0 and with a field E perpendicular
to the (110) plane, the index ellipsoid is

x2 þ y2 þ z2

n20
þ

ffiffiffi
2

p
r41Eðyzþ zxÞ ¼ 1 ð28-28Þ

The eigenvalue problem is solved, and the roots of the secular equation are the new
principal indices:

n0x ¼ n0 þ
1

2
n30r41E

n0y ¼ n0 �
1

2
n30r41E

n0z ¼ n0

ð28-29Þ

The principal indices of the �443m cubic material for an electric field applied transver-
sely and longitudinally are given by Namba [16].

The phase retardation accumulated by polarized light in traversing a medium
with anisotropic properties is given by

	 ¼ 2�ðna � nbÞL=
 ð28-30Þ

where L is the medium thickness in the direction of propagation, 
 is the wavelength
of light, and na, nb are the indices experienced in two orthogonal directions perpen-
dicular to the direction of propagation. In the longitudinal mode of operation, the
electric field and propagation direction are both along the z axis. The refractive
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indices experienced by the light are in the plane containing the x and y principal axes.
If the light polarization and crystal are aligned such that the polarization is 45� from
either principal axis, the phase retardation will be

	 ¼ 2�ðn0y � n0xÞL=
 ð28-31Þ

where n0y, n
0
x are the (new) principal indices with the field applied. (For crystals with

natural birefringence and no electric field, these indices may just be the principal
indices.)

The phase delays for light polarized at 45� to the principal axes of the �443m
material can now be calculated. The phase retardation for the �443m cubic material is

	cubic ¼ 2�n30r41EL=
 ð28-32Þ

If the electric field is expressed in terms of electric potential and charge separation,
i.e., E¼V/d, then the phase retardation is

	long
cubic ¼ 2�n30r41V=
 ð28-33Þ

because the charge separation d is equal to the optical path through the crystal.
The phase retardation for �443m cubic material in the transverse mode is also

given by (28-26). In the transverse mode the charge separation is not the same as the
optical path so that when E is given as V/d, the phase delay is given as

	trans
cubic ¼ 2�n30r41VL=d
 ð28-34Þ

The cubic crystal described is expected to act as a linear retarder. The Mueller matrix
formalism representation of a retarder with a fast axis at arbitrary orientation angle
� is

1 0 0 0

0 cos2 2� þ sin2 2� cos � ð1� cos �Þ sin 2� cos 2� � sin 2� sin �

0 ð1� cos �Þ sin 2� cos 2� sin2 2� þ cos2 2� cos � cos 2� sin �

0 sin 2� sin � � cos 2� sin � cos �

2
6664

3
7775 ð28-35Þ

where the retardance is �. If the retarder fast axis is assumed to be at 0�, the matrix
becomes, substituting for � the retardance of the crystal,

1 0 0 0

0 1 0 0

0 0 cos
2�



n3r41V

L

d
sin

2�



n3r41V

L

d

0 0 � sin
2�



n3r41V

L

d
cos

2�



n3r41V

L

d

2
66666664

3
77777775

ð28-36Þ

It is now clear that the electro-optic coefficient r42 can be obtained from the mea-
sured Mueller matrix.

Note that for purposes of obtaining the electro-optic coefficient experimentally,
the fast axis of an electro-optic crystal acting as an ideal retarder can be at any
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orientation. The (4,4) matrix element of the matrix for a retarder with the fast axis at
angle � is independent of fast-axis orientation, and the fast-axis orientation can be
eliminated elsewhere by adding the (2,2) and (3,3) matrix elements or squaring and
adding elements in the fourth row and column. Given a measured Mueller matrix of
a crystal, a known applied voltage, and a known refractive index, one can easily
obtain the electro-optic coefficient r41.

28.2.6 Measurements

As an example of a calibration measurement and compensation, the ideal and mea-
sured Mueller matrices for a calibration (no sample) are, respectively,

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

2
664

3
775

0:998 0:026 0:019 �0:002
0:002 0:976 �0:030 0:009
0:007 0:033 0:966 �0:002
0:002 �0:004 �0:002 1:000

2
664

3
775

The measured results, normalized to unity, are given without any error compensa-
tion. The measured matrix is clearly recognizable as a noisy representation of the
corresponding ideal matrix.

Error compensation may be demonstrated with the experimental calibration
Mueller matrix. The source of the large error for the two middle elements of the
diagonal is the retardance errors of the wave plates. Using calculated values for the
errors and compensation by using the small-angle approximation error analysis as
discussed above [13], one sees that the renormalized compensated Mueller matrix for
no sample becomes

0:997 �0:006 0:004 0:002
0:007 1:000 �0:007 0:009
0:008 �0:007 0:990 �0:003
0:003 �0:006 �0:007 0:998

2
664

3
775

Equations for the exact error compensation give slightly better results.

28.2.7 Spectropolarimetry

Spectropolarimetry is the measurement of both spectral and polarization informa-
tion. A spectropolarimeter has been described [7] based on a Fourier transform
infrared (FTIR) spectrometer with the dual rotating-retarder polarimeter described
previously. An optical diagram of this instrument, based on a Nicolet 6000 FTIR
spectrometer, is given in Fig. 28-10 and shows the complete polarimeter within the
sample compartment. The spectrometer performs the normal spectral scanning, and
after a scan period the dual rotating retarder changes to a new rotational position.
This continues, as described in the previous section, until all polarization informa-
tion is collected. The data are then reduced to produce a Mueller matrix for each
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wavelength of the FTIR spectrometer scan. This spectropolarimeter has been used to
analyze polarization properties of optical samples in reflection and transmission.

Spectropolarimetry requires polarization elements that are achromatic across a
spectral region of the data collection. Polarizers that are achromatic are generally
more readily available than achromatic retarders. For the infrared (2–25 mm), wire-
grid polarizers are achromatic over large ranges within this region, although their
diattenuation performance is not generally as good as that of prism polarizers.
Achromatic waveplates have been designed that are achromatic over wavelength
ranges somewhat smaller than the polarizers, and these custom elements can be
expensive and they have achromatic performance poorer than that of the polarizers.
Fortunately, the compensation techniques described in the last section apply to this
problem, and are used to great advantage to correct for the imperfect achromaticity of
the retarders.

28.2.8 The Measurement Matrix Method

An alternative to the Fourier method described above is the measurement matrix
method (see Ref. 17). Similar to (28-14), we have

aq, 1 aq, 2 aq, 3 aq, 4

� � � �

� � � �

� � � �

2
6664

3
7775

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

2
6664

3
7775

pq, 1

pq, 2

pq, 2

pq, 2

2
6664

3
7775 ¼

Iq

�

�

�

2
6664

3
7775

¼
X3
j¼0

X3
k¼0

aq, jmj, ksq, k ð28-37Þ

Figure 28-10 Optical diagram of a spectropolarimeter based on a Fourier-transform infra-

red spectrometer. L1 is a laser, S1 and S2 are sources, D1 is the detector, elements starting with
M are mirrors, elements starting with BS are beam splitters, WLS and WLD are white light
source and white light detector, LD is the laser detector, and BSIR is the infrared beam
splitter.
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for the qth measurement at the qth position of the PSG and PSA. We now write the
Mueller matrix as a 16�1 vector:

M ¼ m00 m01 m02 m03 m10 . . . m33

 �T
ð28-38Þ

We also define a 16�1 measurement vector for the qth measurement as

Wq ¼ wq, 00 wq, 01 wq, 02 wq, 03 wq, 10 . . . wq, 33

 �T
¼ aq, 0sq, 0 aq, 0sq, 1 aq, 0sq, 2 aq, 0sq, 3 aq, 1sq, 0 . . . aq, 3sq, 3
 �T

ð28-39Þ

The qth measurement is then the dot product of M and W:

Iq ¼Wq �M¼ aq, 0sq,0 aq, 0sq, 1 aq, 0sq, 2 aq, 0sq, 3 aq,1sq, 0 . . . aq, 3sq,3
 �

m00

m01

m02

m03

m10

..

.

m33

2
6666666664

3
7777777775

ð28-40Þ

We make a set of Q measurements so that we obtain a Q�16 matrix where the qth
row is the measurement vector Wq. The measurement equation relates the measure-
ment vector I to the sample Mueller vector:

I ¼ WM ¼

I0
I1
..
.

IQ�1

2
6664

3
7775 ¼

w0, 00 w0, 01 � � � w0, 33

w1, 00 w1, 01 � � � w1, 33

..

.

wQ�1, 00 wQ�1, 01 � � � wQ�1, 33

2
6664

3
7775

m00

m01

..

.

m33

2
6664

3
7775 ð28-41Þ

If W contains 16 linearly independent columns, all 16 elements of the Mueller matrix
can be determined. If Q ¼ 16, then the matrix inverse is unique and the Mueller
matrix elements are determined from the data-reduction equation:

M ¼ W
�1
P ð28:42Þ

If more than 16 measurements are made, which is usually the case, M is overdeter-
mined, although now W may not have a unique inverse. The optimal polarimetric
data-reduction equation is equivalent to a least-squares solution.

28.3 OTHER MUELLER MATRIX POLARIMETRY METHODS

Other polarimetric methods have been used to obtain Mueller matrices. We describe
three of them in this section.

28.3.1 Modulator-Based Mueller Matrix Polarimeter

Another class of polarimeters has been designed using electro-optical modulators.
Thompson et al. [18] describe a polarimeter for scattering measurements, which uses
four modulators. These modulators are Pockels cells made of potassium dideuterium
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phosphate (KD*P). A functional diagram of this four-modulator polarimeter is
shown in Fig. 28-11.

All elements of the Mueller matrix are measured simultaneously in this polari-
meter. The polarizers are aligned and fixed in position. The four Pockels cells are
driven at four different frequencies. The normalized Stokes vector after the first
polarizer is

S0 ¼

1

1

0

0

2
6664

3
7775 ð28-43Þ

so that the Stokes vector at the detector is

Sf ¼ I0ðP2M4M3FM2M1ÞS0 ð28-44Þ

where M1, M2, M3, and M4 are the modulator Mueller matrices, P2 is the second
polarizer matrix, I0 is the initial intensity, and F is the sample matrix. The intensity at
the detector is the first element of this vector and is given by

If ¼
I0
2
ð f11þ f12 cos�1þ f13 sin�1 sin�2� f14 sin�1 cos�2þ f21 cos�4þ f22 cos�1 cos�4

þ f23 sin�1 sin�2 cos�4� f24 sin�1 cos�2 cos�4þ f31 sin�3 sin�4þ f32 cos�1 sin�3 sin�4

þ f33 sin�1 sin�2 sin�3 sin�4� f34 sin�1 cos�2 sin�3 sin�4þ f41 cos�3 sin�4

þ f42 cos�1 cos�3 sin�4þ f43 sin�1 sin�2 cos�3 sin�4� f44 sin�1 cos�2 cos�3 sin�4Þ

ð28-45Þ

where the fij are the elements of the sample matrix and �1, �2, �3, and �4 are the
retardances of the four modulators. The retardances of the modulators are driven by
oscillators at different frequencies so that they are

�i ¼ �oi cos!it ð28-46Þ

where �oi is the amplitude of the retardance of the ith retarder. The trigonometric
functions in the oscillating retardances are expanded in terms of Bessel functions of
the retardation amplitudes, these results are substituted into the expression for the

Figure 28-11 Functional diagram of the four-modulator polarimeter.
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intensity, and the Fourier expansion of the coefficients of the fij is taken. The primary
frequencies at which each matrix element occurs are

0 2!1 !1 � !2 !1 � 2!2

2!4 2!1 � 2!4 !1 � !2 � 2!4 !1 � 2!2 � 24

!3 � !4 2!1 � !3 � !4 !1 � !2 � !3 � !4 !1 � 2!2 � !3 � !4

2!3 � !4 2!1 � 2!3 � !4 !1 � !2 � 2!3 � !4 !1 � 2!2 � 2!3 � !4

ð28-47Þ

The modulation frequencies are chosen so that there are unique frequencies of signal
corresponding to each matrix element. Lock-in amplifiers for these frequencies are
used in the detector electronics.

Initial alignment of the modulators with the polarization direction is not per-
fect, and the foregoing analysis can be repeated with a constant retardation error for
each modulator. This results in somewhat more complex expressions for the char-
acteristic frequencies for the matrix elements. A calibration procedure minimizes the
errors due to misalignment. An accuracy of 1% is said to be attainable with iterative
calibration.

28.3.2 Mueller Matrix Scatterometer

The scatter of light reflected from a surface into the sphere surrounding the point of
incidence is measured in order to understand reflection properties of the surface. The
effect of polarization in the reflection process can be measured with a Mueller matrix
scatterometer, described by Schiff et al [19]. The sample is mounted on a goniometer
so that in-plane or out-of-plane measurements may be made. There are optics asso-
ciated with the source (PSG) and receiver (PSA) that allow complete polarization
control, shown in Fig. 28-12. The source optics consist of a linearly polarized laser
source, a half-wave plate to control orientation of the linear polarization, and a
quarter-wave retarder. The receiver optics consist of a quarter-wave retarder and a
linear polarizer.

The power measured by the detector is given by

1� 4 4� 4 4� 1

P0 ¼ ½r� ½M� ½s�Pi

Rec Sample Source

ð28-48Þ

where Pi is the input power from the laser, vector s is the (normalized) source optics
Stokes vector, M is the sample matrix, and r is basically the top row of the Mueller
matrix for the receiving optics. In order to measure M, the source optics are set so
that six Stokes vectors are produced corresponding to the normalized Stokes vectors
for linear horizontal, linear vertical, �45� linear, and right and left circularly polar-
ized light, i.e., S1, S2, and S3 are set to �1, one at a time. The PSA is set to these six
polarization states for each of the six states of the PSG to produce 36 measurements.
Expressing this in matrix form we have

6� 6 6� 4 4� 4 4� 6

½P0� ¼ ½R� ½M� ½S�Pi

Rec Sample Source

ð28-49Þ
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A calibration must be performed to compensate for errors, since there are
multiple error sources that will not allow the production of ideal polarization
states. The R and S matrices above give 48 unknowns. A measurement is made
with no sample to give 36 values of P0, and 12 more equations are obtained from
the quadrature relations associated with the overdefinition of the Stokes vectors.
This comprises a system of 48 equations and 48 unknowns. Solving these produces
the matrices [S] and [R], and now measurements of P0 can be made with a sample in
place, and the matrix M can be calculated from

M½ � ¼ R½ �
T R½ �

	 
�1
R½ �

T P0½ � S½ �
T S½ � S½ �

T
	 
�1 1

Pi

� �
ð28-50Þ

28.3.3 Four-Detector Photopolarimeter

The four-detector photopolarimeter was described in Chapter 27. It is a complete
Stokes polarimeter. A Mueller matrix polarimeter is constructed by using a four-
detector photopolarimeter as the PSA and a conventional polarizer—quarter-wave
retarder pair as a PSG. The polarizer is set at some fixed azimuth, and the output
signal (a four-element vector) from the four-detector photopolarimeter is recorded as
a function of the azimuth of the fast axis of the quarter-wave retarder. The signal is
subject to Fourier analysis to yield a limited series whose vectorial coefficients deter-
mine the columns of the measured Mueller matrix.

Figure 28-12 Diagram of a Mueller matrix scatterometer. (From Ref. 19.)
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Calibration of the instrument is required and takes place with no sample pre-
sent. The optical elements are aligned so that light is directed straight through. The
fast axis of the quarter-wave retarder is aligned with the fixed polarizer by adjusting
it in small steps until S3 from the four-detector photopolarimeter is 0. After the light
passes through the quarter-wave plate, the Stokes vector is

Sð�Þ ¼

1þ g cos 2�

ð1� f Þ þ g cos 2� þ f cos 4�

g sin 2� þ f sin 4�

sin 2�

2
6664

3
7775

¼ S0 þ S1c cos 2� þ S1s sin 2� þ S2c cos 4� þ S2s sin 4� ð28-51Þ

where � is the retarder azimuth, and f and g are characteristic of the quarter wave
retarder and where

S0 ¼

1
ð1� f Þ

0
0

2
664

3
775, S1c ¼

g
g
0
0

2
664

3
775, S1s ¼

0
0
g
1

2
664

3
775, S2c ¼

0
f
0
0

2
664

3
775, S2s ¼

0
0
f
0

2
664

3
775

ð28-52Þ

The values of f and g are determined by a rotating quarter-wave test [20]. The value
of g is the diattenuation of the quarter-wave retarder, and 2f�1 is the retardance
error from quarter wave in radians.

The output vector of the four-detector polarimeter with a sample in position is

Ið�Þ ¼ AMSð�Þ ð28-53Þ

where M is the sample Mueller matrix and A is the instrument calibration matrix
[20]. Using S(�) from (28-52) gives a Fourier series for I(�) of the same composition
as S(�) with vectorial coefficients given by

I0 ¼ A C1M þ ð1� f ÞC2M½ �

I1c ¼ gA C1M þ C2M½ �

I1s ¼ A gC3M þ C4M½ �

I2c ¼ fAC2M

I2s ¼ fAC3M

ð28-54Þ

where C1M, C2M, C3M, and C4M are the columns of the Mueller matrix M. These
columns are then given by

C2M ¼ ð1=f ÞA�1
I2c

C3M ¼ ð1=f ÞA�1
I2s

C1M ¼ A
�1
I0 � ð1� f ÞC2M

C2M ¼ A
�1
I1s � gC3M

ð28-55Þ
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29

Ellipsometry

29.1 INTRODUCTION

One of the most important applications of polarized light is the measurement of the
complex refractive index and thickness of thin films. A field of optics has been
developed to do this and has come to be known as ellipsometry. In its broadest
sense ellipsometry is the art of measuring and analyzing the elliptical polarization of
light; the name appears to have been given in 1944 by Alexandre Rothen, one of the
pioneers in the field. However, the field of ellipsometry has become much more
restrictive so that now it almost always applies to the measurement of the complex
refractive index and thickness of thin films. In its most fundamental form it is an
optical method for measuring the optical parameters of a thin film by analyzing the
reflected polarized light. The optical parameters are the refractive index n, the extinc-
tion coefficient �, and the thickness d of a thin film deposited on a substrate. The
optical procedure for determining these parameters is done in a very particular
manner, and it is this manner which has come to be known as ellipsometry. The
fundamental concepts of ellipsometry are quite simple and straightforward.
However, we shall see that this seeming simplicity is deceptive. Nevertheless, it is
very elegant.

The fact that a thin film on a substrate could significantly change the measured
characteristics of an optical material; e.g., a microthin coating of oil on water came,
apparently, as a surprise to nineteenth-century optical physicists. The great Lord
Rayleigh admitted as much when he was experimenting with the surface viscosity of
liquids and said:

Having proved that the superficial viscosity of water was due to a greasy contamination
whose thickness might be much less than one-millionth of a millimetre, I too hastily
concluded that films of such extraordinary tenuity were unlikely to be of optical impor-
tance until prompted by a remark of Sir G. Stokes, I made an actual estimate of the

effect to be expected.

At about the time that Rayleigh was investigating the optical properties of light
reflected from the surface of liquids, Drude was investigating the optical properties
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of light reflected from solids. In two fundamental articles published in 1889 and 1890
he laid the foundations for ellipsometry. As we have pointed out many times, at that
time the only optical detector was the human eye, which has only a capability of
‘‘measuring’’ a null-intensity condition. Drude cleverly exploited this very limited
quantitative condition of the human eye to determine the optical parameters of a
thin film. He recognized that an optical material such as a metal behaves simulta-
neously as a polarizer and a phase shifter so that, in general, light reflected from the
optical surface of a metal is elliptically polarized. Analysis shows that by adjusting
the amplitude and the phase of the incident beam it is possible to transform the
reflected elliptically polarized light to linearly polarized light. Drude did this by
inserting a polarizer and a compensator (retarder) between the optical source and
the sample.

By setting the compensator with its fast axis at 45� and rotating the polarizer
through an angle P, the reflected elliptically polarized light could be transformed to
linearly polarized light. The reflected linearly polarized light was then analyzed by
another linear polarizer (the analyzer) by rotating it through an angle Q until a null
intensity was observed. Analysis showed that these angles could be used to determine
the ellipsometric parameters  and �, which described the change in amplitude and
phase in the reflected wave. Further analysis based, e.g., on Fresnel’s reflection
equations could then relate  and � to n, �, and d. The elegance of the method
will become apparent when this analysis is presented in the following sections.

Ellipsometry can be used to determine the optical constants of a reflecting
material or the optical constants and thickness of the film deposited on an optical
substrate. It has a number of advantages over other methods for determining the
optical constants. Among these are its applicability to the measurement of strongly
absorbing materials, the simplicity of the measurement method, and the ease of the
sample preparation. In addition, it is nondestructive and requires only a very small
sample size. For studying the properties of surface films its directness, sensitivity, and
simplicity are without parallel. Also, ellipsometry can be applied to the measurement
of surface films whose thickness ranges from monatomic dimensions to micrometers.
Throughout this range the index of refraction n of a film can be determined and, for
absorbing film media, the extinction coefficient � as well.

Ellipsometry can be conveniently divided into two parts. The first is the
measurement technique for determining  and �. The second is the theory required
to relate the optical parameters of the thin film to the measured values of  and �.
Throughout this section we use the formalism of the Stokes parameters and
the Mueller matrices to derive some important results. We begin by deriving the
fundamental equation of ellipsometry, that is, the equation relating  and � to n, �,
and d.

29.2 FUNDAMENTAL EQUATION OF CLASSICAL ELLIPSOMETRY

In this section we derive an equation that relates the amplitude and phase of the
incident and reflected beams from a thin film, the so-called ellipsometric parameters,
to the complex refractive index and the thickness of the film. The equation is called
the fundamental equation of ellipsometry. To derive this equation, we consider
Fig. 29-1. In the figure Ep and Es are the incident field components parallel (p)
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and perpendicular (s) to the plane of paper. Similarly, Rp and Rs are the parallel and
perpendicular reflected components, respectively. For the incident field components
we can write

Ep ¼ E0pe
ip ð29-1aÞ

Es ¼ E0se
is ð29-1bÞ

A similar pair of equations can also be written for the reflected field, namely,

Rp ¼ R0pe
i�p ð29-2aÞ

Rs ¼ R0se
i�s ð29-2bÞ

In (29-1) and (29-2) the propagation factor, !t � �z, has been suppressed.
Measurements have shown that Rp, s is directly related to Ep, s, and, in general, for
optically absorbing materials the incident field will be attenuated and undergo a
phase shift. In order to describe this behavior we introduce complex reflection coef-
ficients, �p and �s:

Rp ¼ �pEp ð29-3aÞ

Rs ¼ �sEs ð29-3bÞ

or, in general,

�m ¼
Rm

Em

m ¼ p, s ð29-4Þ

Figure 29-1 Reflection of an incident beam by an optical film of thickness d with a refrac-
tive index n1 and an extinction coefficient �1.
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Substituting (29-1) and (29-2) into (29-4) then yields

�m ¼
R0m

E0m

� �
ei �m�mð Þ m ¼ p, s ð29-5Þ

We define a complex relative amplitude attenuation as

� ¼
�p
�s

¼
R0p=E0p

E0s=R0s

� �
ei ��ð Þ

ð29-6Þ

where  ¼ p � s and � ¼ �p � �s. The quantities  and � describe the phase before
and after reflection, respectively.

Traditionally, the factors in (29-6) are written in terms of the tangent of the
angle  :

tan ¼
R0p=E0p

E0s=R0s
ð29-7aÞ

and a phase angle �:

� ¼ ��  ¼ ð�p � �sÞ � ðp � sÞ ð29-7bÞ

From (29-7) we can then express (29-6) as

� ¼ tan ei� ð29-8Þ

Thus, ellipsometry involves the measurement of tan  , the change in the amplitude
ratio and �, the change in phase. The quantities  and � are functions of the optical
constants of the medium, the thin film and the substrate, the wavelength of light, the
angle of incidence, and, for an optical film deposited on a substrate, its thickness.
With these factors in mind we now express (29-8) as

� ¼ tan ei� ¼ f n, �, dð Þ ð29-9Þ

Equation (29-9) is called fundamental equation of ellipsometry. Ideally, by measuring
 and � the quantities n, �, and d can be determined. In (29-9), � has been expressed
in terms of a general functional form, f (n, �, d ). Later, we derive the specific form of
f (n, �, d ) for a thin film deposited on a substrate.

Equation (29-9) shows that the basic problem of ellipsometry is to measure  
and � and relate it to f (n, �, d ). In the next section we develop the equations
for measuring  and �. In the following section we relate these measurements to
f (n, �, d ). We shall soon see that the form of (29-9) is deceptively simple and that a
considerable effort is needed to solve it.

29.3 CLASSICAL MEASUREMENT OF THE ELLIPSOMETRIC
PARAMETERS PSI (c) AND DELTA (D)

In this section we describe the classical measurement of  and � in the fundamental
equation of ellipsometry, (29-9). This is done by using a polarizer and compensator
before the sample and a polarizer (analyzer) after the sample. The objective of the
present analysis is to relate the angular settings on the polarizers and the compen-
sator to  and �. Figure 29-2 shows the experimental configuration.
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We first determine the Mueller matrix of the combination of the linear polar-
izer and the compensator in the ‘‘generating’’ arm. The linear polarizer can be
rotated to any angle P. The compensator, on the other hand, has its fast axis
fixed at 45�, but its phase � can be varied from 0� to 360�. The Mueller matrices
for the polarizer and compensator are then, respectively,

Mpol Pð Þ ¼
1

2

1 cos 2P sin 2P 0

cos 2P cos2 2P cos 2P sin 2P 0

sin 2P cos 2P sin 2P sin2 2P 0

0 0 0 0

0
BBB@

1
CCCA ð29-10Þ

and

Mcomp þ45�ð Þ ¼

1 0 0 0
0 cos� 0 sin�
0 0 1 0
0 � sin� 0 cos�

0
BB@

1
CCA ð29-11Þ

The Mueller matrix for the polarizer–compensator combination, (29-10) and
(29-11), is

MPSG ¼ Mcomp �ð ÞMpol Pð Þ ð29-12Þ

and so

MPSG ¼
1

2

1 cos 2P sin 2P 0

cos � cos 2P cos� cos2 2P cos� cos 2P sin 2P 0

sin 2P cos 2P sin 2P sin2 2P 0

� sin� cos 2P � sin� cos2 2P � sin� cos 2P sin 2P 0

0
BBB@

1
CCCA

ð29-13Þ

where PSG stands for polarization state generator.

Figure 29-2 Experimental configuration to measure  and � of an optical sample.
(Courtesy of Gaertner Scientific Corp., Skokie, IL.)
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The Stokes vector of the beam incident on the polarizer–compensator combination is
represented by its most general form:

S ¼

S0

S1

S2

S3

0
BB@

1
CCA ð29-14Þ

Multiplying (29-14) by (29-13), we obtain the Stokes vector of the beam incident on
the samples:

S0
¼

S0
0

S0
1

S0
2

S0
3

0
BBB@

1
CCCA ¼

1

2
S0 þ S1 cos 2Pþ S2 sin 2Pð Þ

1

cos� cos 2P

sin 2P

� sin� sin 2P

0
BBB@

1
CCCA ð29-15Þ

which is a Stokes vector for elliptically polarized light. The orientation angle � of the
beam is

tan 2� ¼ tan
tan 2P

cos�
ð29-16aÞ

and, similarly, the ellipticity angle � is

sin 2� ¼ � sin� cos 2P ð29-16bÞ

Thus, by varying P and � we can generate any state of elliptically polarized light.
We now write (29-15) simply as

S ¼ I0

1
cos� cos 2P

sin 2P
� sin� cos 2P

0
BB@

1
CCA ð29-17Þ

and drop the primes on the Stokes vector (parameters).
The phase shift between the components emerging from the polarizer–

compensator according to the relations derived in Section 29.2 is expressed in
terms of an angle . The Stokes parameters of the beam incident on the sample
can then be written in terms of its field components as seen from (29-1) as

S0 ¼ EsE
�
s þ EpE

�
p ¼ E2

0s þ E2
0p ð29-18aÞ

S1 ¼ EsE
�
s � EpE

�
p ¼ E2

0s � E2
0p ð29-18bÞ

S2 ¼ EsE
�
p þ EpE

�
s ¼ 2E0sE0p cos ð29-18cÞ

S3 ¼ i EsE
�
p � EpE

�
s

	 

¼ 2E0sE0p sin  ð29-18dÞ

The phase shift  is seen from (29-17) and (29-18) to be

tan ¼
sin 

cos
¼

S3

S2

¼
� sin� cos 2P

sin 2P
ð29-19Þ

Copyright © 2003 by Marcel Dekker, Inc. All Rights Reserved.



Now

sinð2P� 90�Þ ¼ � cos 2P ð29-20aÞ

cosð2P� 90�Þ ¼ sin 2P ð29-20bÞ

Substituting (29-20) into (29-19) then yields

tan ¼ sin� tanð2P� 90�Þ ð29-21Þ

Thus, the phase  of the beam emerging from the polarizer–compensator combina-
tion can be varied by adjusting the phase shift � of the compensator and the polarizer
orientation angle P. In particular, if we have a quarter-wave retarder so that � ¼ 90�,
then from (29-21)  ¼ 2P � 90�. By rotating the polarizer angle from P ¼ 0
( ¼ �90�) to P ¼ 90� ( ¼ 90�), the total phase change is 180�. In terms of the
Stokes vector S, (29-17), for � ¼ 90� we then have

S ¼ I0

1
0

sin 2P
� cos 2P

0
BB@

1
CCA ð29-22Þ

Equation (29-22) is the Stokes vector for elliptically polarized light; its orientation
angle � is always 45�. However, according to (29-22) the ellipticity angles corre-
sponding to P ¼ 0�, 45�, and 90�, are � ¼ �45�, 0�, and þ45�, and the respective
Stokes vectors are {1, 0, 0,�1}, {1, 0, 1, 0}, and {1, 0, 0,þ1}; these vectors correspond
to left circularly polarized light, linear þ45� polarized light, and right circularly
polarized light, respectively. By rotating the polarizer from 0� to 90�, we can generate
any state of elliptically polarized light ranging from left circularly polarized light to
right circularly polarized light.

The ratio of the amplitudes Ep and Es of the beam emerging from the polar-
izer–compensator can be defined in terms of an angle L, by

tanL ¼
Ep

Es

ð29-23aÞ

From (29-18a), (29-18b), and (29-17) we have

S1

S0

¼
EsE

�
s � EpE

�
p

EsE
�
s þ EpE

�
p

¼ cos� cos 2P ð29-23bÞ

or

1� ðEp=EsÞ ðE
�
p =E

�
s Þ

1þ ðEp=EsÞ ðE
�
p E

�
s Þ

¼ cos� cos 2P ð29-23cÞ

Because tan L is real, (29-23a) can be expressed as

tanLð Þ
�
¼

E �
p

E �
s

¼ tanL ð29-24Þ
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Thus, (29-23c) can be written with the aid of (29-24) as

1� tan2 L

1þ tan2 L
¼

1� ðsin2 LÞ=ðcos2 LÞ

1þ ðsin2 LÞ=ðcos2 LÞ
¼ cos2 L� sin2 L ¼ cos� cos 2P ð29-25Þ

or

cos 2L ¼ cos � cos 2P ð29-26Þ

We note that if S1 is defined as the negative of (29-18b); that is,

S1 ¼ EpE
�
p � EsE

�
s ð29-27Þ

then (29-26) becomes

cos 2L ¼ � cos � cos 2P ð29-28Þ

which is the form usually given in ellipsometry. Thus, again, by varying � and P, the
angle L can be selected. For circularly polarized light Es ¼ Ep, so L ¼ 45�, (29-23),
and cos 2L ¼ 0. For linearly horizontally polarized light Ep ¼ 0, L ¼ 0, and
cos 2L ¼ 1. Finally, for linearly vertically polarized light, Es ¼ 0, L ¼ 90�, and
cos 2L ¼ �1.

Equations (29-21) and (29-28) appear very often in ellipsometry and so are
rewritten here together as the pair:

tan ¼ sin� tanð2P� 90�Þ ð29-29aÞ

cos 2L ¼ � cos � cos 2P ð29-29bÞ

We emphasize that (29-29a) and (29-29b) relate the amplitude and phase of the
optical beam incident on the sample to the value of the compensator phase � and
the polarizer angle P, respectively.

The procedure for measuring  and � consists of rotating the generating
polarizer and the analyzing polarizer until the reflected beam is extinguished.
Because the compensator is fixed with its fast axis at 45�, only two polarizing ele-
ments rather than three must be adjusted. The Stokes vector of the reflected light is

S0
¼

E 02
0s þ E 2

0p

E 02
0s � E 02

0p

2E 0
0sE

0
0p cos�

2E 0
0sE

0
0p sin �

0
BBBB@

1
CCCCA ð29-30Þ

where �, using the notation in Section 29.2, is the phase associated with the reflected
beam. To obtain linearly polarized light, sin � in (29-30) must be zero, so

� ¼ 0�, 180� ð29-31Þ

Thus, there are two values of � which lead to linearly polarized light. The Stokes
vector S0 in (29-30), using (29-31), then becomes

S0
¼

E 02
0s þ E 02

0p

E 02
0s � E 02

0p

�2E 0
0sE

0
0p

0

0
BBBB@

1
CCCCA ð29-32Þ

Copyright © 2003 by Marcel Dekker, Inc. All Rights Reserved.



The condition on � then transforms (29-76) to

� ¼ ��  ¼ � ð� ¼ 0�Þ ð29-33aÞ

or

� ¼ 180� �  � ¼ 180�ð Þ ð29-33bÞ

The angles of the polarizer in the generating arm corresponding to (29-33a) and
(29-33b) can be written as P0 and P0

0 , respectively.
We have

tan ¼ sin� tanð2P0 � 90�Þ ð29-34aÞ

cos 2L0 ¼ � cos� cos 2P0 ð29-34bÞ

and

tan0 ¼ sin� tanð2P0
0 � 270�Þ ð29-35aÞ

cos 2L0
0 ¼ � cos� cos 2P0

0 ð29-35bÞ

The linearly polarized reflected beam will be extinguished when the analyzer
angles corresponding to P0 and P 0

0 are A0 and A0
0, respectively. This leads immedi-

ately to the following forms for tan , (29-7a):

tan ¼
Rp

�� ��
Rs

�� �� ¼ R0p

R0s

E0s

E0p

ð29-36Þ

Substituting (29-23a) into (29-36), we have

tan ¼
R0p

R0s

cotL0 ð29-37Þ

where we have used the measurement value L0. We also see that

tanð�A0Þ ¼
R0p

R0s

ð29-38Þ

(the angle –A0 is opposite to P0). Then, using (29-38), (29-37) becomes

tan ¼ cotL0 tanð�A0Þ ð29-39Þ

for the polarizer-analyzer pair settings of P0 and A0. Similarly, for the pair P 0
0 and

A0
0 we have

tan ¼ cotL0
0 tanA

0
0 ð29-40Þ

From (29-34a) and (29-35a) we see that

P0
0 ¼ P0 � 90� ð29-41aÞ

and

A0
0 ¼ A0 � 90� ð29-41bÞ

Using (29-41) and setting (29-39) equal to (29-40) yields

cotL0
0 ¼ tanL0 ð29-42Þ
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so that multiplying (29-39) and (29-40) gives

tan2  ¼ tanðA0
0Þ tanð�A0Þ ð29-43Þ

Equation (29-43) shows that tan  can be determined by measuring A0
0 and A0, the

angular settings on the analyzer. Similarly, the phase shift � can be obtained from
(29-33) and (29-34) or (29-35).

For the special case where � ¼ 90�, a quarter-wave retarder, the equations
relating  and � simplify. From (29-34a) and (29-34b) we have

� ¼ 2P0 � 90� ¼ 2P0
0 � 270� ð29-44Þ

from (29-34b) and (29-35b):

L0
0 ¼ L0 ð29-45Þ

and from (29-35) and (29-40):

�A0 ¼ A0
0 ð29-46Þ

If a Babinet–Soleil compensator is used, then the phase shift � can be set to 90� and
A0, A

0
0, P0, and P 0

0 can be used to give tan and �, (29-43) and (29-44), respectively;
that is,

tan2  ¼ tan2 A0 ¼ tan2 �A0
0

	 

ð29-47aÞ

so

 ¼ A0 ¼ �A0
0 ð29-47bÞ

and

� ¼ 2P0 � 90� ¼ 2P0
0 � 270� ð29-47cÞ

In order to select the correct equations for calculating � and  from a pair of
extinction settings, it is necessary to establish whether the settings correspond to the
condition �0

¼ �� or �0
¼ �þ 180�. This is accomplished by observing that,

although � may have any value between 0� and 360�,  is limited to values between
0� and 90�. From this fact the sign of the analyzer extinction setting, according to
 ¼ �A0 ¼ A0

0, determines whether the setting corresponds to the primed or
unprimed case.

The relations presented above describe the measurement formulation of ellip-
sometry. The formulation rests on the conditions required to obtain a null intensity;
that is, linearly polarized light will be obtained for reflected light if sin � ¼ 0� or 180�.
From this condition one works backwards to find the corresponding values of P and
A and then  and �.

There are other configurations and formulations of ellipsometry. One of the
most interesting has been given by Holmes and Feucht. Their formulation is parti-
cularly valuable because it leads to a single expression for the complex reflectivity �
in terms of the polarizer angles P and A; we now designate the analyzing polarizer
angle by A. Moreover, it includes the ‘‘imperfections’’ of the compensator with its
fast axis at an angle C. This formulation was used by F. L. McCrackin, one of the
first researchers to use digital computers to solve the ellipsometric equations, in the
early 1960s.
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We recall that � of an optical surface is related to the ellipsometric parameters
 and � by

� ¼ tan ei� ð29-8Þ

We assume the same ellipsometric measurement configuration as before, namely, an
ideal polarizer and a compensator in the generating arm and an ideal polarizer in the
analyzing arm. The transmission axes of the polarizers are at P and A, respectively.
The compensator is considered to be slightly absorbing, and its fast axis is at an
angle C. Lastly, the beam incident on the generating polarizer is assumed to be
linearly horizontally polarized with a unit amplitude. We use the Jones calculus to
carry out the caluculations.

The Jones matrix for the incident beam is

Jinc ¼
1
0

� �
ð29-48Þ

The Jones matrix of a rotated linear polarizer is

Jpol ¼
cosP � sinP

sinP cosP

� �
1 0

0 1

� �
cosP sinP

� sinP cosP

� �

¼
cos2 P sinP cosP

sinP cosP sin2 P

 !
ð29-49Þ

Multiplying (29-48) by (29-49) then gives

J ¼ cosP
cosP
sinP

� �
ð29-50Þ

The term cos P is an amplitude factor, which can be ignored, and so the Jones matrix
of the beam incident on the compensator is

J ¼
cosP
sinP

� �
ð29-51Þ

The Jones matrix for an ideal compensator is

Jcomp ¼
ei�x 0
0 ei�y

� �
ð29-52Þ

If there is also absorption along each of the axes, then the Jones matrix (29-52) can
be rewritten as

Jcomp ¼
axe

i�x 0
0 aye

i�y

� �
ð29-53Þ

where 0	 ax,y<1. We see that we can now write (29-53) as

Jcomp ¼
1 0
0 ac

� �
ð29-54Þ
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where ac¼(ay/ax)exp(i�) and � ¼ �y � �x; ac is called the absorption ratio of the
compensator; we have ignored the factor axe

i�x outside of the matrix in (29-54). The
Jones matrix of the compensator, (29-54), with its fast axis rotated to an angle C is

Jcomp ¼
cosC � sinC

sinC cosC

� �
1 0

0 ac

� �
cosC sinC

� sinC cosC

� �

¼
cos2 Cþ ac sin

2 C 1� acð Þ sinC cosC

ð1� acÞ sinC cosC sin2 Cþ ac cos
2 C

 !
ð29-55Þ

Multiplying (29-51) by (29-55), the Jones matrix of the beam incident on the optical
sample is

J ¼
cosC cosðC� PÞ þ ac sinC sinðC� PÞ
sinC cosðC� PÞ � ac cosC sinðC� PÞ

� �
ð29-56Þ

We must now determine the Jones matrix of the optical sample. By definition,
the reflected beam is related to the incident beam by

Rp ¼ �pEp ð29-3aÞ

Rs ¼ �sEs ð29-3bÞ

where �p and �s are the complex reflection coefficients for the parallel and perpendi-
cular components, respectively. The Jones matrix of the sample is then seen from
(29-3) to be

Jsamp ¼
�p 0

0 �s

� �
ð29-57Þ

The complex relative amplitude attenuation � in (29-8) is defined by

� ¼
�p
�s

ð29-6Þ

so (29-57) can be written as

Jsamp ¼
� 0
0 1

� �
ð29-58Þ

where we have ignored the factor �s because it will drop out of our final equation,
which is a ratio.

The Jones matrix of the beam incident on the analyzing polarizer is now seen
from multiplying (29-56) by (29-58) to be

J ¼
� cosC cosðC� PÞ þ ac sinC sinðC� PÞ½ �

sinC cosðC� PÞ � ac cosC sinðC� PÞ

� �
¼

Ex

Ey

� �
ð29-59Þ

Equation (29-59) shows that the reflected light is, in general, elliptically polarized.
However, if C, P, and ac are adjusted so that the reflected light is linearly polarized,
then the azimuthal angle � of the linearly polarized light is

tan � ¼
Ey

Ex

¼
sinC cosðC� PÞ � ac cosC sinðC� PÞ

�½cosC cosðC� PÞ þ ac sinC sinðC� PÞ�
ð29-60Þ
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The linearly polarized light, (29-60), is now analyzed by the analyzer. We know that
if the analyzer is rotated through 90� from � we will obtain a null intensity. Thus,
we have

A ¼ � þ 90� ð29-61aÞ

so

� ¼ A� 90� ð29-61bÞ

Taking the tangent of both sides of (29-61b) yields

tan � ¼
�1

tanA
ð29-62Þ

Solving now for � in (29-60), using (29-62) and factoring out cosC cos(C�P) from
numerator and denominator yields

� ¼
tanA tanCþ ac tanðP� CÞ½ �

ac tanC tanðP� CÞ � 1
ð29-63Þ

where we have expressed (29-63) with the argument P�C rather than C�P, as is
customary in ellipsometry:

Equation (29-63) enables us to determine � from the reading A, P, C and a
knowledge of ac. As an example of (29-63), suppose that we use a perfect quarter-
wave retarder so that ac ¼ ið

ffiffiffiffiffiffiffi
�1

p
Þ. Furthermore, suppose that P is measured to be

60�, C ¼ 30�, and A ¼ 45�. Substituting these values into (29-63), we find that

� ¼
�

ffiffiffi
3

p
� i2

ffiffiffi
3

p

5
ð29-64Þ

Equating (29-64) to (29-8) we find that

 ¼ tan�1

ffiffiffi
3

5

r !
¼ 37:8� ð29-65aÞ

� ¼ tan�1 2ð Þ ¼ 63:4� ð29-65bÞ

Because (29-63) is so easy to use, it is probably the simplest way to determine the
ellipsometric parameters  and � from �.

As we mentioned, other ellipsometric configuration can be conceived, e.g.,
placing the compensator in the analyzing arm. However, for a variety of reasons
the most popular configuration is the one discussed here. Further information on the
measurement of the ellipsometric parameters can be found in the references.

29.4 SOLUTION OF THE FUNDAMENTAL EQUATION OF
ELLIPSOMETRY

We now turn to the problem of finding a specific form for f (n, �, d ), the right-hand
side of the ellipsometric equation, and then the solution of the fundamental equation
of ellipsometry. The model proposed by Drude, and the one which has been used
with great success, is that of a homogeneous thin film superposed on a substrate. An
optical beam is then incident on the thin film and undergoes multiple reflections
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within the film. From a knowledge of the polarization state of the incident and
reflected beams, the refractive index, extinction coefficient, and thickness of the
film can be determined.

In order to solve this problem several related problems must be addressed. The
first is to determine the relation between the refractive indices of two different media
and the complex relative amplitude attenuation �. In Fig. 29-3 we show the oblique
reflection and transmission of a plane wave incident on a boundary.

Fresnel’s equations for the reflection coefficients rp and rs can be written as (see
Chapter 8)

rp ¼
n2 cos �i � n1 cos �r
n2 cos �i þ n1 cos �r

ð29-66aÞ

rs ¼
n1 cos �i � n2 cos �r
n1 cos �i þ n2 cos �r

ð29-66bÞ

The complex relative amplitude attenuation � is defined to be

� ¼
rp
rs

ð29-67Þ

Substituting (29-66) into (29-67) gives

� ¼
rp

rs
¼

x cos �i � cos �r
x cos �i þ cos �r

cos �i þ x cos �r
cos �i � x cos �r

ð29-68Þ

where x ¼ n2/n1. The refractive angle �r can be eliminated from (29-68) by using
Snell’s law, which we write as

sin �r ¼
sin �i
x

ð29-69Þ

Figure 29-3 Oblique reflection and transmission of a plane wave at the planar interface
between two semi-infinite media 1 and 2. (Modified from Azzam and Bashara.)
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so (29-68) can then be rewritten as

� ¼
rp

rs
¼

x2 cos �i �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � sin2 �i

q
x2 cos �i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � sin2 �i

q
0
B@

1
CA cos �i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � sin2 �i

q
cos �i �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � sin2 �i

q
0
B@

1
CA ð29-70Þ

We now set

a ¼ cos �i and b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � sin2 �i

q
ð29-71Þ

and let

U ¼ a2x2 � b2 ð29-72aÞ

V ¼ abð1� x2Þ ð29-72bÞ

so (29-70) now becomes

� ¼
Uþ V

U� V
ð29-72cÞ

Setting f ¼ U/V, we solve (29-72a) and (29-72b) for x2 and find that

x2 ¼ sin2 �i 1þ
tan2 �i
f 2

" #
ð29-73Þ

Equation (29-72c) can be solved for f in terms of �, and we find that

f ¼
1þ �

1� �
ð29-74Þ

Finally, from x ¼ n2/n1 and (29-74) we see that (29-73) then becomes

n2
n1

¼ sin �i 1þ
1� �

1þ �

� �2

tan2 �i

" #1=2

ð29-75Þ

which is the desired relation between n2, n1, and �.
A slightly different form of (29-75) can be written by writing tan �i as (sin �i/

cos �i). A little bit of further algebra then leads to

n2
n1

¼ tan �i 1�
4�

ð1þ �Þ2
sin2 �i

� �1=2
ð29-76Þ

The elimination of the refractive angle �r is advantageous from a computa-
tional point of view because it is easier to evaluate (29-75) [or (29-76)] in terms of �
rather than a complex angle.

We recall that, for materials with a real refractive index n, Fresnel’s reflection
coefficient at the Brewster angle �iB is rp ¼ 0, so � ¼ 0. We then see that (29-76)
reduces to

tan �iB ¼
n2
n1

ð29-77Þ
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For a medium such as air, whose refractive index is practically equal to 1, (29-77)
becomes

n ¼ tan �iB ð29-78Þ

which is the usual form of Brewster’s law.
It is of interest to solve (29-76) for � and then investigate the behaviour of � as

a function of the incidence angle �i. Solving (29-76) for � leads to a quadratic
equation in � whose solution is

� ¼
�ðxþ yÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ yÞ2 � x2

q
x

ð29-79aÞ

where (we set n2¼ n and n1¼ 1)

x ¼
n2 � tan2 �i

2
ð29-79bÞ

y ¼
sin4 �i
cos2 �i

ð29-79cÞ

The positive value of the square root is chosen in (29-79a) because, as we shall see,
this correctly describes the behavior of �. For an incidence angle of �i ¼ 0, (29-79)
becomes

x ¼
n2

2
y ¼ 0 � ¼ �1 ð29-80Þ

The negative value of � shows that at normal incidence there is a 180� phase shift
between the incident and reflected waves.

The next angle of interest is the Brewster angle, where we find that

x ¼ 0 y ¼
n4

n2 þ 1
� ¼ 0 ð29-81Þ

Finally, the determination of � at an incidence angle of �i ¼ 90� can be found from
the limiting value as �i! 90�. First, (29-79a) is written as

� ¼ � 1þ
y

x

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

y

x

� �2
�1

r
ð29-82aÞ

For large values of �i we see that (29-79b) and (29-79c) can be written as

x ffi �
tan2 �i

2
ð29-82bÞ

y ¼
sin4 �i
cos2 �i

ð29-82cÞ

so

y

x
¼ �2 sin2 �i ð29-82dÞ
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Equation (29-82a) then becomes

� ¼ �ð1� 2 sin2 �iÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 2 sin2 �iÞ

2
� 1

q
ð29-82eÞ

In the limit as �i! 90� we see that �! 1, so we have

x ! �1 y ! 1 �! 1 ð29-83Þ

This behavior is confirmed in Figs. 29-4 and 29-5. In the first figure a plot is
made of �(�i) versus �i. We see that � ¼ �1 at �i ¼ 0�, � ¼ 0 at �i ¼ �iB (the Brewster
angle), and � ¼ 1 at �i ¼ 90�. Similarly, in Fig. 29.5 a plot is made of the absolute
magnitude of �(�i).

In terms of measurable quantities the reflectances Rp and Rs are of practical
importance and are defined by

Rp ¼ rp
�� ��2 ð29-84aÞ

Rs ¼ rs
�� ��2 ð29-84bÞ

which gives the fraction of the total intensity of an incident plane wave that appears
in the reflected wave for the p and s polarizations.

At this point it is of interest to use (29-76) to determine the complex refractive
index of a material for a specific angle of incidence. We see that, at an incidence angle
of 45� and for n1 ¼ 1, (29-76) reduces to the simple form:

n22 ¼
1þ �2

ð1þ �Þ2
ð29-85Þ

Figure 29-4 Plot of the complex relative amplitude attenuation �, (29-79a) as a function of
incident angle �i.
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The complex relative amplitude attenuation � can be written as

� ¼ aþ ib ð29-86Þ

Substituting (29-86) into (29-85) and grouping terms into real and imaginary parts
yields

n22 ¼
CEþDFð Þ � i CF�DEð Þ

E 2 þ F 2
ð29-87aÞ

¼ A� iB ð29-87bÞ

where

A ¼
CEþDF

E 2 þ F 2
ð29-87cÞ

B ¼
CF�DE

E 2 þ F 2
ð29-87dÞ

and

C ¼ 1þ a2 � b2 ð29-87eÞ

D ¼ 2ab ð29-87fÞ

E ¼ ð1þ aÞ2 � b2 ð29-87gÞ

F ¼ 2bð1þ aÞ ð29-87hÞ

Figure 29-5 Plot of the absolute magnitude of �, (29-79a), as a function of �i.
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We recall that n2 is complex and defined in terms of its real refractive index n
and extinction coefficient � as

n2 ¼ n 1� i�ð Þ ð29-88Þ

We can now find n and � in terms of A and B by equating the square of (29-88) to
(29-87b):

n22 ¼ n2 1� i�ð Þ
2
¼ A� iB ð29-89Þ

Expanding (29-89) and equating the real and imaginary parts yields

n2 � n2�2 ¼ A ð29-90aÞ

2n2� ¼ B ð29-90bÞ

Equation (29-90) then leads to a quadratic equation in n2:

n4 � An2 �
B2

4
¼ 0 ð29-91Þ

whose solution is

n2 ¼
A�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
2

ð29-92aÞ

and for �, (29-90b),

� ¼
B

A�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p ð29-92bÞ

For real refractive indices, B must be zero so we must choose the positive sign in
(29-92a) and we have

n2 ¼ A ð29-93aÞ

� ¼ 0 ð29-93bÞ

We can now consider a specific example. In Section 29.3 we saw that ellipso-
metric measurements on a material led to a value for � of

� ¼
�

ffiffiffi
3

p
� i2

ffiffiffi
3

p

5
ð29-64Þ

From (29-86) to (29-92) the complex refractive index n2 is then found to be

n2 ¼ 0:3953ð1� i0:4641Þ ð29-94Þ

Equation (29-76) is very important because, in practice, thin films are deposited
on substrates and the complex refractive index of the substrate, written n2, must be
known in order to characterize the thin film.

In the problem described we have assumed that the incident beam propagates
in medium 0 and is reflected and transmitted at the interface of medium 0 and 1. We
can denote the reflection and transmission coefficients at the interface by r01 and t01;
by convention the order of the subscripts denotes that the beam is travelling from the
medium represented by the first subscript (0) to the medium represented by the
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second subscript (1). If the incident beam is propagating in medium 1 and is reflected
and transmitted at the interface of medium 0, then the reflection and transmission
coefficients are denoted by r10 and t10, respectively. It is necessary to know the
relation between these coefficients. A direct way to do this is to interchange n1 and
n2 in Fresnel’s reflection and transmission equations. Another method, due to
Stokes, is not only elegant but very novel and is given in Section 29.4.1. If the
ambient medium is designated by 0 and the film by 1, then the following relations
are found:

r10 ¼ �r01 ð29-95aÞ

t01t10 ¼ 1� r201 ð29-95bÞ

With this background we can now consider a specific form for f (n, �, d ), the
thin film deposited on a substrate and very often called the ambient–film–substrate
(AFS) system. This system is shown in Fig. 29-6. The film has parallel-plane bound-
aries of thickness d and is sandwiched between semi-infinite ambient and substrate
media. The three media are all homogeneous and optically isotropic with complex
refractive indices n0, n1, and n2, respectively. In most cases the ambient medium is
transparent and n0 is real.

In the figure the incident beam is seen to undergo multiple reflections and
transmissions at the interfaces between the ambient and the thin film and the thin
film and the substrate. We know that there will be destructive or constructive inter-
ference for these multiple reflections. The interference will take place constructively if
the phase shift between each of the adjacent beams from the thin film into the
ambient medium differs by 2� radians. In order to proceed with the problem it is
necessary to determine the relation between the phase shift between each of the
adjacent beams and the film thickness. Figure 29-7 shows the geometry of the
path difference between two adjacent beams.

Figure 29-6 Oblique reflection and transmission of a plane wave by an ambient (0)–film
(1)–substrate (2) system with parallel-plane boundaries. The film thickness is d, �0 is the angle
of incidence in the ambient medium, and �1 and �2 at the angles of refraction in the film and

the substrate, respectively. (From Azzam and Bashara.)
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In Fig. 29-7 the path lengths between the two adjacent beams are BD0

and BCþCD, respectively. The optical path difference is �l so the phase difference
is �� ¼ k�l or,

�� ¼ k½nðBCþ CDÞ � BD0
� ð29-96Þ

where k ¼ 2�/
 and 
 is the free-space wavelength of the incident light. We see that

BC ¼ CD ¼
d

cos �r
ð29-97aÞ

BD0
¼ BD sin �i ¼ n BDð Þ sin �r ð29-97bÞ

and

BD ¼
2d

cos �r
sin �r ð29-97cÞ

Substituting (29-97) into (29-96) yields

�� ¼
4�nd



cos �r ð29-98Þ

In Fig. 29-6 we see that we replace �r by �1, so we have

�� ¼
4�nd



cos�1 ð29-99Þ

If �� ¼ 2�, then there is constructive interference between the adjacent beams; that
is, the waves are in phase with one another. Similarly, if �� ¼ �, there is destructive
interference, so the waves are completely out of phase with one another.

Equation (29-99) is readily expressed in terms of the incident angle �0. From
Snell’s law we see that (29-99) can be written as

�� ¼
4�d



n21 � n20 sin

2 �0
	 
1=2

ð29-100Þ

We must now add all the contributions of the beams contributing to the total
reflected beam. For the moment we ignore the polarizations s and p; they will be

Figure 29-7 Geometry of the path difference between two adjacent beams on reflection at

oblique incidence by front and back surfaces of a thin film. (From Strong, Ref. 6.)
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restored later. If the incident field is written as E0, then we see that the first four
beams are

E1 ¼ r01E0 ð29-101aÞ

E2 ¼ t01t10r12e
�i��E0 ð29-101bÞ

E3 ¼ t01t10r10r
2
12e

�i2��E0 ð29-101cÞ

E4 ¼ t01t10r
2
10r

2
12e

�i3��E0 ð29-101dÞ

so the total field E is

E ¼ r01E0 þ t01t10r12e
�i��E0 þ t01t10r10r

2
12e

�i2��E0

þ t01t10r
2
10r

2
12e

�i3��E0 ð29-102Þ

We can write all the terms after the first term r01E0 for N beams as

t01t10r12e
�i�� 1þ r0r12e

�i��
þ r210r

2
12e

�i2��
þ �� �þ rN�1

10 rN�1
12 e�iðN�1Þ��

h i
ð29-103Þ

The terms within the brackets can be written as

S ¼ 1þ xþ x2 þ � � � þ xN�1
ð29-104aÞ

where

x ¼ r10r12e
�i��

ð29-104bÞ

Equation (29-104a) is a geometric sum. The solution is readily obtained by multi-
plying (29-104a) through by x:

xS ¼ xþ x2 þ x3 þ � � � þ xN ð29-104cÞ

and then subtracting (29-104c) from (29-104a) to obtain

S ¼
1� xN

1� x
ð29-105Þ

The factor x is always less than 1, so that for an infinite number of beams N!1 and
the limiting value of S in (29-105) is

S ¼
1

1� x
ð29-106Þ

Thus, we see that (29-102) becomes

r ¼ r01 þ
t01t10r12e

�i��

1� r10r12e
�i�� ð29-107aÞ

or

r ¼
r01 þ r12e

�i��

1þ r01r12e
�i�� ð29-107bÞ

where r ¼ E/E0 and we have used Stokes’ relations r10 ¼ �r01 and t01t10 ¼ 1� r201.
We observe that Stokes’ relations are extremely important because they not only
enable us to determine the correct signs between the coefficients but they also allow
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us to express R in terms of r01 and r12 only, the reflection coefficients for the
ambient–film (0–1) interface and the film–substrate (1–2) interface, respectively.

Equation (29-107b) is valid when the incident wave is linearly polarized either
parallel (p) or perpendicular (s) to the plane of incidence. Thus, we may express the
complex reflection coefficients as, adding the subscripts for the polarization compo-
nents,

�p ¼
r01p þ r12pe

�i��

1þ r01pr12pe
�i�� ð29-108aÞ

�s ¼
r01s þ r12se

�i��

1þ r01sr12se
�i�� ð29-108bÞ

where �� is the same for the p and s polarizations and is given by (29-100). The
Fresnel reflection coefficients at the 0–1 and 1–2 interfaces for the p and s polariza-
tions are now

r01p ¼
n1 cos�0 � n0 cos�1
n1 cos�0 þ n0 cos�1

ð29-109aÞ

r12p ¼
n2 cos�1 � n1 cos�2
n2 cos�1 þ n1 cos�2

ð29-109bÞ

and

r01s ¼
n0 cos�0 � n1 cos�1
n0 cos�0 þ n1 cos�1

ð29-110aÞ

r12s ¼
n1 cos�1 � n2 cos�2
n1 cos�1 þ n2 cos�2

ð29-110bÞ

The three angles �0, �1, and �2 between the directions of propagation of the plane
waves in media 0, 1, and 2, and the normal to the film boundaries are related by
Snell’s law:

n0 sin�0 ¼ n1 sin�1 ¼ n2 sin�2 ð29-111Þ

Thus, between (29-109), (29-110) and (29-111) all the quantities can be found for
determining the reflection coefficients r01p, r12p and r01s, r12s.

We can consider an example of the calculation of these coefficients. For
simplicity, so that we can see how a calculation of this type is carried through, let
us consider that we have media that are characterized only by real refractive indices,
e.g., a thin-film dielectric deposited on a glass substrate. Let the ambient medium be
represented by air, so the refractive index is n0 ¼ 1 and the film and substrate
refractive indices are n1 ¼ 1.5 and n2 ¼ 2.0, respectively. Further, let the incident
angle be �0 ¼ 30�. We then find from Snell’s law (29-111) that

�0 ¼ 30� ð29-112aÞ

�1 ¼ 19:4712� ð29-112bÞ

�2 ¼ 14:4775� ð29-112cÞ
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We now substitute these values along with the corresponding refractive indices into
(29-109) and (29-110) and find that

r01p ¼ 0:5916 ð29-113aÞ

r12p ¼ 0:6682 ð29-113bÞ

r01s ¼ 0:2679 ð29-113cÞ

r12s ¼ 0:4776 ð29-113dÞ

Inspecting (29-108a) and (29-108b) we see that there are only two unknown quan-
tities, the complex amplitude reflection coefficient �p (or �s) and ��. Thus, if we
measure either �p or �s, we can determine ��; in practice we actually measure j�pj

2

and j�sj
2.

The usual problem is to determine the thickness of the thin film d, that is, to
determine ��. We can readily determine �� if all the coefficients are real. For
example, we can rewrite (29-108a) as

�p ¼
aþ be�i��

1þ abe�i�� ð29-114aÞ

where

a ¼ r01p b ¼ r12p ð29-114bÞ

Multiplying (29-114a) by its complex conjugate then gives

�p
�� ��2¼ a2 þ b2 þ 2ab cos��

1þ a2b2 þ 2ab cos��
ð29-115Þ

Equation (29-115) is readily solved for ��:

�� ¼ cos�1 ða2 þ b2Þ � �p
�� ��2ð1þ a2b2Þ

2ab �p
�� ��2�1
� �

2
4

3
5 ð29-116Þ

Thus, by measuring �p
�� ��2 and knowing a and b from (29-114b), we determine ��

and, from (29-100), the film thickness d.
However, the above equations do not describe the fundamental equation of

ellipsometry. To obtain this equation we must introduce �, which is equal to the ratio
of �p and �s; that is, dividing (29-108a) by (29-108b), we have

� ¼
�p
�s

¼ tan ei� ¼
r01p þ r12pe

�i��

1þ r01pr12pe
�i��

 !
1þ r01sr12se

�i��

r01s þ r12se
�i��

 !
ð29-117Þ

Equation (29-117) is the fundamental equation of ellipsometry. The right-hand side is
the specific form of f (n, �, d ). We now see, however, that f (n, �, d) is a very
complicated function. In actuality it relates the measured ellipsometric angles  
and � to the optical properties of a three-phase system, namely, the (complex)
refractive indices of the ambient (n0), the film (n1), the substrate (n2), the film thick-
ness (d1) for given values of the vacuum wavelength (
) of the ellipsometer light
beam, and the angle of incidence (�0) in the ambient; the subscript 1 on d indicates
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that it is the thickness of the film associated with the medium n1. The equation can
now be written symbolically as

� ¼ tan ei� ¼ f n0, n1, n2, d1,�0, 
ð Þ ð29-118Þ

Equation (29-118) may be broken into two real equations for  and �, namely,

 ¼ tan�1 f n0, n1, n2, d1,�0, 
ð Þ
�� �� ð29-119aÞ

� ¼ arg f n0, n1, n2, d1,�0, 
ð Þ½ � ð29-119bÞ

where |�| and arg � are the absolute value and argument (angle of the complex
function �), respectively.

Azzam and Bashara have correctly stated that ‘‘although the function � may
appear from (29-117) to be deceptively simple, it is, in reality, quite complicated and
can be handled satisfactorily only by a digital computer’’. In fact, the solution of
(29-117) had to wait until the development of digital computers in the 1950s and
1960s. Inspection of (29-118) shows that � is, in general, explicitly dependent on nine
real arguments; the real and imaginary parts of the three complex refractive indices
n0, n1, n2, the film thickness d, the angle of incidence �0, and the wavelength. Not
surprisingly, therefore, the solution of (29-117) must be obtained in a piecemeal
fashion following the same development given above for real refractive indices
(and, therefore, reflection coefficients). Here, however, the numerical solution is
greatly complicated because the reflection coefficients are now complex.
Fortunately, computer programs have been developed which enable the complex
refractive indices to be determined as well.

In practice, the refractive indices of the ambient medium, thin film, and sub-
strate are very often known, and the quantity of interest is the thickness of the film.
The thickness of the thin film, d1, can be found in the following way. We write
(29-108a) and (29-108b) as

�p ¼
aþ bX

1þ abX
ð29-120aÞ

�s ¼
cþ dX

1þ cdX
ð29-120bÞ

where a, b, c, and d are the complex coefficients in (29-108a) and (29-108b) and

X ¼ e�i��
ð29-120cÞ

From (29-117) we then have

� ¼
aþ bXð Þ aþ cdXð Þ

1þ abXð Þ cþ dXð Þ
ð29-121aÞ

where

a, bð Þ ¼ r01p, r12p
	 


ð29-121bÞ

c, dð Þ ¼ r01s, r12sð Þ ð29-121cÞ
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Carrying out the multiplication in (29-121a), we then find that

� ¼
Aþ BXþ CX2

Dþ EXþ FX2
ð29-122aÞ

where

A ¼ r01p ð29-122bÞ

B ¼ r12p þ r01pr01sr12s ð29-122cÞ

C ¼ r12pr01sr12s ð29-122dÞ

D ¼ r01s ð29-122eÞ

E ¼ r12s þ r01pr12pr01s ð29-122fÞ

F ¼ r01pr12pr12s ð29-122gÞ

Equation (29-122a) can now be written as a quadratic equation:

a2X
2
þ a1Xþ a0 ¼ 0 ð29-123aÞ

where

a2 ¼ �F� C ¼ r12pr12sð�r01p � r01sÞ ð29-123bÞ

a1 ¼ �E� B ¼ �ðr12s þ r01pr12pr01sÞ � ðr12p þ r01pr01sr12sÞ ð29-123cÞ

a0 ¼ �D� A ¼ �r01s � r01p ð29-123dÞ

The two solutions of (29-123a) are

X1 ¼
�a1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 � 4a2a0

q
2a2

ð29-124aÞ

X2 ¼
�a1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 � 4a2a0

q
2a2

ð29-124bÞ

Thus, we have found a formal solution to the problem. To solve for X1 and X2, we
substitute the values of a2, a1, and a0 from (29-123) into (29-124). The result is a
complex number:

X1, 2 ¼ U� iV ð29-125Þ

We recall (from (29-120c) and (29-99)) that X1,2 is

X1, 2 ¼ exp
�4�in1 cos �1d1




� �
ð29-126Þ

Furthermore,

n1 cos�1 ¼ n21 � ðn0 sin�0Þ
2

 �1=2
ð29-127Þ
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Substituting (29-127) into (29-126) yields

X1, 2 ¼ exp
�4�i n21 � ðn0 sin�0Þ

2
 �1=2

d1



 !
¼ U� iV ð29-128Þ

This can be rewritten still further by setting

D ¼



2
n21 � ðn0 sin�0Þ

2
 ��1=2

ð29-129Þ

thus,

X1, 2 ¼ exp �i2�
d

D

� �� �
ð29-130Þ

where we have dropped the subscript 1 on d. Thus, we need only iterate d until X1,2 is
equal to the right-hand side of (29-128). In order to do this, however, the square root
in (29-124) must first be converted to Cartesian form. We briefly review this process.
We express the square root in (29-124) as

ffiffiffiffiffiffiffiffiffiffiffiffi
aþ ib

p
¼ xþ iy ð29-131aÞ

¼ ce ð29-131bÞ

We square both sides and equate the real and imaginary terms and find that

c2 cos 2� ¼ a ð29-132aÞ

c2 sin 2� ¼ b ð29-132bÞ

Squaring and adding both sides of (29-132) then leads to

c ¼ ða2 þ b2Þ1=4 ð29-133Þ

Next, we divide (29-132b) by (29-132a) to obtain

tan 2� ¼
b

a
ð29-134Þ

Using the trigonometric identity:

tan 2� ¼
2 tan �

1� tan2 �
ð29-135Þ

leads (29-134) to a quadratic equation of the form:

b tan2 � þ 2a tan � � b ¼ 0 ð29-136Þ

The solutions are found immediately to be

tan �1 ¼
�aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
b

ð29-137aÞ

tan �2 ¼
�a�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
b

ð29-137bÞ
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We restrict the angle � to the positive quadrant, so we take the first solution.
Constructing the familiar right triangle from (29-137a), we then find that

sin � ¼
�aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
ffiffiffi
2

p
ða2 þ b2Þ � a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

ph i1=2 ð29-138aÞ

cos � ¼
bffiffiffi

2
p

ða2 þ b2Þ � a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

ph i1=2 ð29-138bÞ

As an example of the formulas, we consider expressing the following simple
expression in Cartesian coordinates:ffiffiffiffiffiffiffiffiffiffiffiffi

4þ 3i
p

¼ xþ iy ð29-139Þ

We see that a ¼ 4 and b ¼ 3 and we readily find that

ffiffiffiffiffiffiffiffiffiffiffiffi
4þ 3i

p
¼

ffiffiffi
5

p 3ffiffiffiffiffi
10

p þ i
1ffiffiffiffiffi
10

p

� �
¼

1ffiffiffi
2

p 3þ i½ � ð29-140Þ

The equality is readily checked by squaring both sides of (29-140). The Cartesian
form of the square root in (29-124) is now added (or subtracted) from –a in the
numerator. We now have Cartesian forms in the numerator and the denominator.
We can then write

X1, 2 ¼
mþ in

oþ ip

¼
moþ pnð Þ þ i no�mpð Þ

o2 þ p2
¼ Uþ iV ð29-141Þ

We can express Uþ iV in complex polar coordinates and write (29-141) as

exp �i2�
d

D

� �� �
¼ Uþ iV ¼ A expð�iÞ ð29-142aÞ

where A and  are real quantities and we have

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 þ V2

p
ð29-142bÞ

 ¼ tan
�V

U

� �
ð29-142cÞ

Finally, we take the natural logarithm of both sides of (29-142a) and obtain

�i2�
d

D

� �
¼ lnA� i ð29-143Þ

so

d ¼
D

2�
þ i lnA½ � ð29-144Þ

where

D ¼



2
n21 � n0 sin�0ð Þ

2
 ��1=2

ð29-129Þ
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If n1 is real, then (29-144) can be iterated by using a range of values from d ¼ 0 to d ¼
D until the correct value is found. We also observe that if n1 and n0 are real there is
no imaginary part because d must be real.

If n1 is complex, (29-144) should first be squared and the result separated into
its real and imaginary parts. When this is done, we find that

d2 n2ð1� �2Þ � n20 sin
2 �0

 �
¼




4�

� �2

2 � ðlnAÞ2
 �

ð29-145aÞ

d2n2� ¼ � lnA ð29-145bÞ

If n and � are known, then (29-145a) can be iterated until the solution is found. The
result can then be checked by using (29-145b). However, if both d and the optical
constants n and � are not known, then both equations can be iterated by using a
range of values for d, n, and � until the equations are satisfied. It is clear that this
process is tedious at best, but is readily carried out on a digital computer. One can
see that it is a time-consuming process even to write a computer program in order to
evaluate the appropriate ellipsometric equations presented here. Fortunately, com-
puter programs have been written and are available from manufacturers of ellips-
ometers.

Archer has carried out a well-known computer solution to the evaluation of  
and � for a transparent film on a substrate of a single crystal of silicon. He solved
the above equations and made a Cartesian plot of  and � as shown in Fig. 29-8.
The constants used in the evaluation were an angle of incidence of 70.00�, a wave-
length of 5461 Å, and a complex index of refraction for silicon of 4.050 � 0.028i.

Each curve in Fig. 29-8 is the locus of points of increasing thickness for a film
of fixed index of refraction. The arrows show the direction of increasing thickness,
and the underlined numbers are the indices of refraction of the films. A thickness
scale is marked off on each curve in 20� increments in �. The phase shift is denoted by
�, which is measured in degrees and given by

� ¼
360�




� �
d n21 � sin2 �
 �1=2

ð29-146Þ

and may be used to convert from degrees to Ångström units. The � scales for all of
the curves have a common origin at 0�, which is the point ð ���, �  Þ for a film-free
silicon surface. The quantities � and  are cyclic functions of thickness, and the
curves repeat periodically with every 180� change in �. For a film index of refraction
1.5, for example, the period is 2430 Å.

A significant property of the dependence of � and  on the index of refraction
of the film is that, for all practical cases, no two curves overlap or intersect.
Consequently, each point in the plane corresponds to a unique value for the index
of refraction of the film. Strictly speaking, curves for very low and very high indices
of refraction do intersect, but the extreme values are seldom, if ever, encountered.
Although it is an academic point, as the index of refraction becomes indefinitely
large, the corresponding curve coincides with the curve marked 100. Only the posi-
tion of the � scale on the curve shifts with increasing index of refraction.

The property of uniqueness allows the determination of the thickness and index
of refraction of an unknown transparent film from a single measurement of � and  .
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Figure 29-8 thus constitutes a nomogram for translating the measurement into
thickness and index of refraction.

To summarize, in the precious section equations were developed to measure the
ellipsometric parameters  and �; the measurement of these two parameters allows
us to determine �. In this section the appropriate equations were solved to determine
the thickness d and the optical constants n and � from a knowledge of �. Specifically,
this is accomplished by determining the complex reflectivities, (29-109) and (29-110)
along with (29-111). With these values the quadratic equation for X (29-123a) and
(29-120c) is solved, where a2, a1 and a0 are given by (29-123a), (29-123b), and (29-123c):
X is an exponential function for d, the thickness of the thin film, and by some further
algebraic manipulation is determined by using either (29-144) or (29-145).

Ellipsometry has received wide attention for the past 40 years. The subject has
been best described by Azzam and Bashara, and their text contains a wealth of
information and knowledge as well as numerous references. In addition, they also
treat in detail and with much mathematical skill the subject of polarized light,
especially, as it relates to ellipsometry. Because of the wide range and applications
of ellipsometry, the reader will find the references of great interest. The introduction
to ellipsometry presented here should provide the interested reader with the back-
ground to read and understand the papers and books listed in the references.

Figure 29-8 The dependence of � and  on the properties of transparent films on silicon.
The parameter is the index of refraction of the film (underlined numbers). The thickness scale
is marked off in 20� increments in �. The thickness is given by 15.17�/(n2 � 0.8830)1/2 Å. (From

Archer.)
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29.4.1 Stokes’ Treatment of Reflection and Refraction at
an Interface

In the above discussion the reflection and transmission coefficients were used in the
derivation of the equations of ellipsometry. In particular, it is necessary to know the
reflection coefficients for a beam traveling from one medium to another, and vice
versa. This problem appears to have first been treated by Stokes. In this section we
derive these relations. A very clear discussion of this derivation has been given by
Hecht and Zajac, and we follow their treatment closely.

Suppose we have an incident wave of amplitude E0i incident on the planar
interface separating two dielectric media as shown in Fig. 29-9. Since r and t are the
fractional reflected and transmitted amplitudes, respectively (and where ni ¼ n1 and
nt ¼ n2), we have E0r ¼ rE0i and E0t ¼ tE0i. Fermat’s principle also allows reversi-
bility, that is, with the one proviso that there is no energy dissipation (absorption) a
wave’s direction of propagation can be reversed. In the language of physics one
speaks of time-reversal invariance; i.e., if a process occurs, the reversed process can
also occur.

In Fig. 29-9c two incident waves of amplitude E0ir and E0it are shown. A
portion of the wave whose amplitude is E0it is both reflected and transmitted at
the interface. Without making any assumptions let r0 and t0 be the amplitude reflec-
tion and transmission coefficients for a wave incident from below (i.e., ni ¼ n2 and
nt ¼ n1). Consequently, the reflected portion is E0itr

0, while that transmitted is E0itt
0.

Similarly, the incoming wave whose amplitude is E0ir splits into segments of ampli-
tude E0irr and E0irt. If the configuration of Fig. 29-9c is to be identical with that of
Fig. 29-9b, we must have

E0tt
0
þ E0rr ¼ E0 ð29-147Þ

E0rtþ E0tr
0
¼ 0 ð29-148Þ

Hence,

tt0 ¼ 1� r2 ð29-149Þ

and

r0 ¼ �r ð29-150Þ

Figure 29-9 Reflection and refraction via the Stokes treatment. (From Hecht and Zajac,
Ref. 8.)
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which are Stokes’ relations used in the main body of the text but written as r0 ¼ r10,
r ¼ r01 t

0
¼ t10, and t ¼ t01. In their derivation Hecht and Zajac point out some other

subtleties with respect to Stokes’ treatment, and the reader is referred to their text for
a further discussion.

29.5 FURTHER DEVELOPMENTS IN ELLIPSOMETRY: THE
MUELLER MATRIX REPRESENTATION OF c AND D

The foundations of ellipsometry were developed primarily by P. Drude around 1890.
At that time the optical sources were extremely limited with respect to their types and
performance. Furthermore, it was only possible to measure  and � using the
human eye as a detector, and this is only possible using a null-intensity condition.
Thus, ellipsometry and its mathematical representation was developed under very
restrictive conditions, namely, constant optical sources which allowed the settings
and mechanical dial movements for the generating and analyzing polarizers to be
moved relatively slowly until the null-intensity condition was found. In other words,
classical ellipsometry can only be done under conditions in which the optical source
and the sample (thin film) do not change and there is a considerable amount of time
available to make the required measurements.

If we use optical sources of very short duration (e.g., pulsed lasers) or the
sample is continually changing (e.g., the continuous deposition of an optical film
on to a substrate), then clearly the classical formulation of the measurement process
is inadequate. The concepts of representing the optical surface in terms of  and �
are still, of course, valid, but a different procedure must be developed for measuring
these quantities. Ideally, then, it would be useful to develop a formulation of ellip-
sometry which is valid regardless of the behavior of the optical source and the type of
optical detector.

This can be done by reformulating the equations of ellipsometry in terms of the
ABCD Mueller matrix and the Stokes polarization parameters. In this final section
we develop this matrix and solve for  and � in terms of the Stokes parameters.

Consider that we have an optical beam incident on an optical surface. The
Stokes vector of the incident beam is

S0 ¼ EsE
�
s þ EpE

�
p ð29-18aÞ

S1 ¼ EsE
�
s � EpE

�
p ð29-18bÞ

S2 ¼ EsE
�
p þ EpE

�
s ð29-18cÞ

S3 ¼ i EsE
�
p � EpE

�
s

	 

ð29-18dÞ

Similarly, the Stokes vector of the reflected beam is

S 0
0 ¼ RsR

�
s þ RpR

�
p ð29-151aÞ

S 0
1 ¼ RsR

�
s � RpR

�
p ð29-151bÞ

S 0
2 ¼ RsR

�
p þ RpR

�
s ð29-151cÞ

S 0
3 ¼ i RsR

�
p � RpR

�
s

	 

ð29-151dÞ
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We saw earlier that the complex reflection coefficient are defined by

�s ¼
Rs

Es

ð29-152aÞ

�p ¼
Rp

Ep

ð29-152bÞ

or

Rp ¼ �pEp ð29-3aÞ

Rs ¼ �sEs ð29-3bÞ

Substituting (29-3) into the equations for the reflected Stokes parameters, (29-151)
yields

S0
0 ¼ �s�

�
sð ÞEsE

�
s þ �p�

�
p

	 

EpE

�
p ð29-153aÞ

S0
1 ¼ �s�

�
sð ÞEsE

�
s � �p�

�
p

	 

EpE

�
p ð29-153bÞ

S0
2 ¼ �s�

�
p

	 

EsE

�
p þ �p�

�
s

	 

EpE

�
s ð29-153cÞ

S0
3 ¼ i �s�

�
p

	 

EsE

�
p � �p�

�
s

	 

EpE

�
s

 �
ð29-153dÞ

We have (29-18) for the input Stokes vector and (29-153) for the output Stokes
vector. The complete equation, with the resulting Mueller matrix, is

S0
0

S0
1

S0
2

S0
3

0
BBB@

1
CCCA¼

1

2

�s�
�
s þ �p�

�
p �s�

�
s � �p�

�
p 0 0

�s�
�
s � �p�

�
p �s�

�
s þ �p�

�
p 0 0

0 0 �s�
�
p þ �p�

�
s �i �s�

�
p � �p�

�
s

	 

0 0 i �s�

�
p � �p�

�
s

	 

�s�

�
p þ �p�

�
s

0
BBB@

1
CCCA

S0

S1

S2

S3

0
BBB@

1
CCCA

ð29-154Þ

The matrix has the familiar form of the ABCD matrix.
We also saw that

tan ¼
R0p=R0s

E0p=E0s

ð29-155aÞ

� ¼ ��  ð29-155bÞ

and

� ¼
�p
�s

¼ tan ei� ð29-155cÞ

The last relation can be written as

�p ¼ �s tan e
i�

ð29-155dÞ
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Substituting (29-155d) into (29-154), we then find that

S0
0

S0
1

S0
2

S0
3

0
BB@

1
CCA ¼

�s�
�
s

2

1þ tan2 1� tan2 0 0
1� tan2 1þ tan2 0 0

0 0 2 tan cos� 2 tan sin�
0 0 �2 tan sin� 2 tan cos�

0
BB@

1
CCA

S0

S1

S2

S3

0
BB@

1
CCA

ð29-156Þ

Equation (29-156) represents  and � in terms of the ABCD Mueller matrix. The
matrix can be used regardless of the duration of the optical source, that is, with both
c.w. and pulsed optical sources. Because of this general formulation of  and �,
(29-156) is of fundamental importance to ellipsometry. Equation (29-156) can be
used to determine  and � using a specific polarization state of the incident beam.
For example, consider an incident beam that is right circularly polarized so that its
Stokes vector is

S ¼ I0

1
0
0
1

0
BB@

1
CCA ð29-157Þ

Multiplication of (29-157) with (29-156) then yields the Stokes vector for the
reflected beam:

S0
¼

S0
0

S0
1

S0
2

S0
3

0
BB@

1
CCA ¼

�s�
�
s I0
2

1þ tan2  
1� tan2  
tan sin�
tan cos�

0
BB@

1
CCA ð29-158Þ

Solving (29-158) for  and � in terms of the reflected Stokes parameters, S0, we
find that

tan ¼
S0
0 � S0

1

S0
0 þ S0

1

� �1=2
ð29-159aÞ

tan� ¼
S0
2

S0
3

ð29-159bÞ

Thus, by measuring each of the four Stokes parameters of the reflected beam, we can
determine  and �. In forming (29-159a) and (29-159b) we see that the factor (�s�

�
s )

I0/2 cancels out. Hence, we can simply drop the factor �s�
�
s I0, but we retain the 1/2

since this allows us to represent a polarizer and phase shifter (retarder) in their
standard forms. Thus, the ABCD or Mueller matrix for ellipsometry is

M ¼
1

2

1þ tan2  1� tan2  0 0

1� tan2  1þ tan2  0 0

0 0 2 tan cos� 2 tan sin�

0 0 �2 tan sin� 2 tan cos�

0
BBB@

1
CCCA ð29-160Þ
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The form of (29-160) for an ideal polarizer and an ideal compensator is easily
found. For a perfect polarizer there is no phase shift, so � ¼ 0 and (29-160) is written
as

Mpol ¼
1

2

1þ tan2  1� tan2  0 0

1� tan2  1þ tan2  0 0

0 0 2 tan 0

0 0 0 2 tan 

0
BBB@

1
CCCA ð29-161Þ

Equation (29-161) is another representation of a linear polarizer. As an example of
(29-161), an ideal linear horizontal polarizer is described by

Mpol ¼
1

2

1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0

0
BBB@

1
CCCA ð29-162Þ

Comparing (29-162) with (29-161) we see that tan  ¼ 0. According to the definition
given by (29-155a), this is exactly what we would expect if there were no R0p com-
ponent but only an R0s component. Similarly, the Mueller matrix for a perfect
compensator is

Mcomp ¼

1 0 0 0

0 1 0 0

0 0 cos� sin�

0 0 � sin� cos�

0
BBB@

1
CCCA ð29-163Þ

Comparing (29-163) with (29-160), we see that we must have

M ¼

1 0 0 0

0 1 0 0

0 0 cos� sin�

0 0 � sin� cos�

0
BBB@

1
CCCA ð29-164Þ

and tan2 ¼ 1; (29-164) shows that the emerging beam is unattenuated and the
magnitude of the reflected beam is unchanged from the incident beam. This, too, is
the behavior expected of a perfect phase-shifting material. From (29-163) and
(29-164) we see also that � ¼ � as expected.

Let us now determine  and � in (29-160) by generating an elliptically polar-
ized beam as before using a linear polarizer at angle P and a quarter-wave retarder
fixed at þ45�. The Stokes vector of the beam incident on the sample is

S ¼ I0

1

0

sin 2P

� cos 2P

0
BBB@

1
CCCA ð29-165Þ
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Multiplying (29-165) by (29-160), we find that the reflected Stokes vector is

S 0
¼

I0
2

1þ tan2  

1� tan2  

2 tan sinð2P��Þ

2 tan cosð2P��Þ

0
BBB@

1
CCCA ð29-166Þ

This is, of course, the Stokes vector of elliptically polarized light. In order for the
reflected light to be linearly polarized, we must have

cosð2P��Þ ¼ 0 ð29-167Þ

Thus, (29-167) is satisfied if the generating linear polarizer is set to

2P1 �� ¼ 90� ð29-168aÞ

or

2P2 �� ¼ �90� ð29-168bÞ

Thus, solving (29-168a) and (29-168b) for � gives

� ¼ 2P1 � 90� ð29-169aÞ

� ¼ 2P2 þ 90� ð29-169bÞ

so

� ¼ 2P2 þ 90� ¼ 2P1 � 90� ð29-170Þ

Equation (29-170) is recognized as the condition that was obtained before on the
measurement of � when the problem was treated following the classical formulation
in Section 29.3. Substracting (29-169b) from (29-169a), we then find that

P2 ¼ P1 � 90� ð29-171Þ

We note that for the condition (29-171) the reflected Stokes vector becomes

S 0
¼

I0
2

1þ tan2  

1� tan2  

�2 tan 

0

0
BBB@

1
CCCA ð29-172Þ

where the � sign refers to (29-169a) and (29-169b), respectively.
In order to find tan  , or  , we now consider the null-intensity condition

created by using an analyzing linear polarizer. The Mueller matrix of the analyzer is

M ¼
1

2

1 cos 2Q sin 2Q 0

cos 2Q cos2 2Q cos 2Q sin 2Q 0

sin 2Q sin 2Q cos 2Q sin2 2Q 0

0 0 0 0

0
BBB@

1
CCCA ð29-173Þ

We now assume that the angle P has been adjusted so that the reflected beam has
become linearly polarized and is represented by (29-172). The intensity of the beam
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emerging from the analyzer is obtained by multiplying (29-172) by (29-173) and
writing the first Stokes parameter as I( , Q):

I  ,Qð Þ ¼
I0
4

1þ tan2  
	 


þ 1� tan2  
	 


cos 2Q� 2 tan sin 2Q
 �

ð29-174Þ

where the þ sign refers to the P1 condition and the – sign refers to the P2 condition,
respectively. The null-intensity conditions for Q1 and Q2 corresponding to P1 and P2

are, respectively,

I  1,Q1ð Þ ¼ 0 ¼ 1þ tan2  
	 


þ 1� tan2  
	 


cos 2Q1 þ 2 tan sin 2Q1

ð29-175aÞ

I  1,Q2ð Þ ¼ 0 ¼ 1þ tan2  
	 


þ 1� tan2  
	 


cos 2Q2 � 2 tan sin 2Q2

ð29-175bÞ

Subtracting (29-175b) from (29-175a) gives

1� tan2  
	 


cos 2Q1 � cos 2Q2½ � þ 2 tan sin 2Q1 þ sin 2Q2½ � ¼ 0 ð29-176Þ

Equation (29-176) can only be satisfied if

cos 2Q1 � cos 2Q2 ¼ 0 ð29-177aÞ

and

sin 2Q1 þ sin 2Q2 ¼ 0 ð29-177bÞ

Squaring (29-177a) and (29-177b) and adding the results yields

cos 2Q1 cos 2Q2 � sin 2Q1 sin 2Q2 ¼ 1 ð29-178aÞ

or

cos 2Q1 þ 2Q2ð Þ ¼ 1 ð29-178bÞ

Thus, we find that

Q2 ¼ �Q1 ð29-179aÞ

Q2 ¼ 90� �Q1 ð29-179bÞ

which are exactly the conditions found earlier for the analyzer.
With a knowledge of Q1 (or Q2) we can now solve for tan and  . We see that

(29-175a) [or (29-175b)] can be rearranged as a quadratic equation:

1� cos 2Q1ð Þ tan2  þ 2 sin 2Q1 tan þ 1þ cos 2Q1ð Þ ¼ 0 ð29-180Þ

Equation (29-180) can be solved to obtain

tan ¼
� sin 2Q1

1� cos 2Q1

ð29-181aÞ

which reduces to

tan ¼ � cotQ1 ð29-181bÞ

Copyright © 2003 by Marcel Dekker, Inc. All Rights Reserved.



The tangent and cotangent functions in (29-181b) can be rewritten in terms of their
sine and cosine functions; thus,

cos  �Q1ð Þ ¼ 0 ð29-182aÞ

and we finally have

 ¼ 90� �Q1 ¼ 270� �Q1 ð29-182bÞ

Equations (29-182a) and (29-170) are of fundamental importance, so they are
rewritten here as the pair

� ¼ 2P2 þ 90� ¼ 2P1 � 90� ð29-170Þ

and

 ¼ 90� �Q1 ¼ 270� �Q1 ð29-182bÞ

Finally, in the foregoing analysis the angular settings on the polarizer and the
compensator in the generating arm were made so that linearly polarized, rather than
elliptically polarized, light was reflected from the optical sample.

Let us now assume that these adjustments are not carried out first, but that we
wish to determine the conditions on the settings such that the intensity of the beam
emerging from the analyzer is a minimum, which in this case is zero (null).
The intensity of the beam is found by multiplying (29-166) and (29-173), so we have

Ið ,�,P,QÞ ¼
I0
4
½ð1þ tan2  Þ þ ð1� tan2  Þ cos 2Q

þ 2 tan sinð2P��Þ sin 2Q� ð29-183Þ

The minimum intensity is found from the conditions:

@Ið ,�,P,QÞ

@P
¼ 0 ð29-184aÞ

@Ið ,�,P,QÞ

@Q
¼ 0 ð29-184bÞ

Differentiating (29-183) according to (29-184a) leads immediately to

cosð2P��Þ ¼ 0 ð29-185Þ

which is exactly the same result we obtained in (29-167); that is,

2P�� ¼ 90�, 270� ð29-186Þ

Next, (29-183) is differentiated according to (29-184b) and we find that

tan ¼ �
ð1þ cos 2QÞ

sin 2Q
¼ � cotQ ð29-187Þ

which is identical to (29-181b)
We thus see that we can obtain all the previous conditions derived in Section

29.3 relating � and  to P and Q. we emphasize that with quantitative optical
detectors the optical surface can be irradiated, for example, with right circularly
polarized light, whereupon the measurement of all four Stokes parameters can
then yield � and  , (29-159a) and (29-159b).
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This concludes our discussion of ellipsometry. We see that the Stokes polariza-
tion parameters and the Mueller matrix allow us not only to obtain easily the for-
mulas of classical ellipsometry, as was done in previous sections, but to reformulate
the subject in a very general way, namely, representing an optical surface in terms of
the ABCD (or Mueller) matrix.
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Appendix A

Jones and Stokes Vectors

Normalized Jones Vectors Normalized Stokes Vectors

Linear horizontally polarized light
1
0

� � 1
1
0
0

2
664

3
775 (A.1)

Linear vertically polarized light
0
1

� � 1
�1
0
0

2
664

3
775 (A.2)

Linear 45� polarized light
1ffiffiffi
2

p
1
1

� � 1
0
1
0

2
664

3
775 (A.3)

Linear �45� polarized light
1ffiffiffi
2

p
1
�1

� � 1
�1
0
0

2
664

3
775 (A.4)

Right circularly polarized light
1ffiffiffi
2

p
1
�i

� � 1
0
0
1

2
664

3
775 (A.5)

Left circularly polarized light
1ffiffiffi
2

p
1
i

� � 1
0
0
�1

2
664

3
775 (A.6)
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Appendix B

Jones and Mueller Matrices

Jones matrix for free space
1 0

0 1

� �
ðB:1Þ

Jones matrix for an isotropic absorbing material whose transmittance is p2

p 0

0 p

� �
ðB:2Þ

Jones matrix for linear polarizer at 08
1 0

0 0

� �
ðB:3Þ

Jones matrix for linear polarizer at 908
0 0

0 1

� �
ðB:4Þ

Jones matrix for linear polarizer at 458
1

2

1 1
1 1

� �
ðB:5Þ

Jones matrix for a right circular polarizer
1

2

1 i
�i 1

� �
ðB:6Þ

Jones matrix for a left circular polarizer
1

2

1 �i
i 1

� �
ðB:7Þ

Jones matrix for a linear retarder at angle �

cos2 � cos � sin �

cos � sin � sin2 �

" #
ðB:8Þ
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Jones matrix for linear retarder with fast axis at angle � and retardation �

ei� cos2 � þ sin2 � ðei� � 1Þ sin � cos �

ðei� � 1Þ sin � cos � ei� sin2 � þ cos2 �

" #
ðB:9Þ

Jones matrix for quarter wave linear retarder with fast axis at 08

ei�=4 0

0 e�i�=4

" #
ðB:10Þ

Jones matrix for half-wave retarder with fast axis at 458
0 1
1 0

� �
ðB:11Þ

Mueller matrix for free space

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

2
664

3
775 ðB:12Þ

Mueller matrix for an isotropic absorbing material whose transmittance is k

k 0 0 0

0 k 0 0

0 0 k 0

0 0 0 k

2
6664

3
7775 ðB:13Þ

Mueller matrix for a linear polarizer at angle �

1

2

1 cos 2� sin 2� 0

cos 2� cos2 2� cos 2� sin 2� 0

sin 2� cos 2� sin 2� sin2 2� 0

0 0 0 1

2
6664

3
7775 ðB:14Þ

Mueller matrix for a horizontal linear polarizer
1

2

1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

2
664

3
775 ðB:15Þ

Mueller matrix for a vertical linear polarizer
1

2

1 �1 0 0
�1 1 0 0
0 0 0 0
0 0 0 0

2
664

3
775
ðB:16Þ
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Mueller matrix for a linear polarizer at 458
1

2

1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0

2
664

3
775 ðB:17Þ

Mueller matrix for a right circular polarizer
1

2

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

2
664

3
775 ðB:18Þ

Mueller matrix for a left circular polarizer
1

2

1 0 0 �1
0 0 0 0
0 0 0 0
�1 0 0 1

2
664

3
775 ðB:19Þ

Mueller matrix for a linear retarder with fast axis at angle � and retardation �

1 0 0 0

0 cos2 2�þ sin2 2� cos � ð1� cos �Þ sin 2� cos2� � sin 2� sin �

0 ð1� cos �Þ sin 2� cos 2� sin2 2�þ cos2 2� cos � cos 2� sin �

0 sin2� sin � � cos 2� sin � cos �

2
6664

3
7775 ðB:20Þ

Linear quarter wave retarder with fast axis at 08

1 0 0 0
0 1 0 0
0 0 0 1
0 0 �1 0

2
664

3
775 ðB:21Þ

Linear half-wave retarder with fast axis at 458

1 0 0 0
0 �1 0 0
0 0 1 0
0 0 0 �1

2
664

3
775 ðB:22Þ
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Appendix C

Relationships Between the Jones and
Mueller Matrix Elements

Mueller matrix elements in terms of Jones matrix elements:

m11 ¼ ð j11j
�
11 þ j12j

�
12 þ j21j

�
21 þ j22j

�
22Þ=2 ðC:1Þ

m21 ¼ ð j11j
�
11 þ j21j

�
21 � j12j

�
12 � j22j

�
22Þ=2 ðC:2Þ

m13 ¼ ð j12j
�
11 þ j22j

�
21 þ j11j

�
12 þ j21j

�
22Þ=2 ðC:3Þ

m14 ¼ ið j12j
�
11 þ j22j

�
21 � j11j

�
12 � j21j

�
22Þ=2 ðC:4Þ

m21 ¼ ð j11j
�
11 þ j12j

�
12 � j21j

�
21 � j22j

�
22Þ=2 ðC:5Þ

m22 ¼ ð j11j
�
11 � j21j

�
21 � j12j

�
12 þ j22j

�
22Þ=2 ðC:6Þ

m23 ¼ ð j11j
�
12 þ j12j

�
11 � j21j

�
22 � j22j

�
21Þ=2 ðC:7Þ

m24 ¼ ið j12j
�
11 þ j21j

�
22 � j22j

�
21 � j11j

�
12Þ=2 ðC:8Þ

m31 ¼ ð j11j
�
22 þ j21j

�
11 þ j12j

�
22 þ j22j

�
12Þ=2 ðC:9Þ

m32 ¼ ð j11j
�
21 þ j21j

�
11 � j12j

�
22 � j22j

�
12Þ=2 ðC:10Þ

m33 ¼ ð j11j
�
22 þ j12j

�
21 þ j21j

�
12 þ j22j

�
11Þ=2 ðC:11Þ

m34 ¼ ið�j11j
�
22 þ j12j

�
21 � j21j

�
12 þ j22j

�
11Þ=2 ðC:12Þ

m41 ¼ ið j11j
�
21 þ j12j

�
22 � j21j

�
11 � j22j

�
12Þ=2 ðC:13Þ

m42 ¼ ið j11j
�
21 � j12j

�
22 � j21j

�
11 þ j22j

�
12Þ=2 ðC:14Þ

m43 ¼ ið j11j
�
22 þ j12j

�
21 � j21j

�
12 � j22j

�
11Þ=2 ðC:15Þ

m44 ¼ ð j11j
�
22 � j12j

�
21 � j21j

�
12 þ j22j

�
11Þ=2 ðC:16Þ
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Expressing the Jones matrix elements in polar form, i.e. j ¼ rei�, the Jones matrix
elements in terms of the Mueller matrix elements are:

r11 ¼ m11 þm12 þm21 þm22ð Þ=2½ �
1=2

ðC:17Þ

r12 ¼ m11 �m12 þm21 �m22ð Þ=2½ �
1=2

ðC:18Þ

r21 ¼ m11 þm12 �m21 �m22ð Þ=2½ �
1=2

ðC:19Þ

r22 ¼ m11 �m12 �m21 þm22ð Þ=2½ �
1=2

ðC:20Þ

cosð�11 � �12Þ ¼
ðm13 þm23Þ

m11 þm21ð Þ
2
� m12 þm22ð Þ

2
 �1=2 ðC:21Þ

sinð�11 � �12Þ ¼
ðm14 þm24Þ

m11 þm21ð Þ
2
� m12 þm22ð Þ

2
 �1=2 ðC:22Þ

cosð�21 � �11Þ ¼
ðm31 þm32Þ

m11 þm12ð Þ
2
� m21 þm22ð Þ

2
 �1=2 ðC:23Þ

sinð�21 � �11Þ ¼
ðm41 þm42Þ

m11 þm12ð Þ
2
� m21 þm22ð Þ

2
 �1=2 ðC:24Þ

cosð�11 � �22Þ ¼
ðm33 þm44Þ

m11 þm22ð Þ
2
� m21 þm12ð Þ

2
 �1=2 ðC:25Þ

sinð�22 � �11Þ ¼
ðm43 �m34Þ

m11 þm22ð Þ
2
� m21 þm12ð Þ

2
 �1=2 ðC:26Þ
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Appendix D

Vector Representation of the Optical
Field: Application to Optical Activity

We have emphasized the Stokes vector and Jones matrix formulation for polarized
light. However, polarized light was first represented by another formulation intro-
duced by Fresnel and called the vector representation for polarized light. This repre-
sentation is still much used and for the sake of completeness we discuss it. This
formulation was introduced by Fresnel to describe the remarkable phenomenon of
optical activity in which the ‘‘plane of polarization’’ of a linearly polarized beam was
rotated as the optical field propagated through an optically active medium. Fresnel’s
mathematical description of this phenomenon was a brilliant success. After we have
discussed the vector representation we shall apply it to describe the propagation of
light through an optically active medium.

For a plane wave propagating in the z direction the components of the optical
field in the xy plane are

Ex z, tð Þ ¼ E0x cos kz� !tþ �xð Þ ðD-1aÞ

Ey z, tð Þ ¼ E0y cos kz� !tþ �y
	 


ðD-1bÞ

Eliminating the propagator kz�!t between (D-1a) and (D-1b) yields

E2
x z, tð Þ

E2
0x

þ
E2
y z, tð Þ

E2
0y

�
2Ex z, tð ÞEy z, tð Þ cos �

E0xE0y

¼ sin2 � ðD-2Þ

The Stokes vector corresponding to (D-1) is, of course,

S ¼

E2
0x þ E2

0y

E2
0x � E2

0y

2E0xE0y cos �

2E0xE0y sin �

0
BBBB@

1
CCCCA ðD-3Þ

In the xy plane we construct the vector E(z, t):

E z, tð Þ ¼ Ex z, tð Þiþ Ey z, tð Þj ðD-4Þ
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where i and j are unit vectors in the x and y directions, respectively. Substituting
(D-1) into (D-4) gives

E z, tð Þ ¼ E0x cos kz� !tþ �xð Þiþ E0y cos kz� !tþ �y
	 


j ðD-5Þ

We can also express the optical field in terms of complex quantities by writing

Ex z, tð Þ ¼ E0x cos kz� !tþ �xð Þ ¼ RefE0x exp½i kz� !tþ �xð Þ�g ðD-6aÞ

Ey z, tð Þ ¼ E0y cos kz� !tþ �y
	 


¼ RefE0y exp½i kz� !tþ �y
	 


�g ðD-6bÞ

where Re{. . .} means the real part is to be taken. In complex quantities (D-5) can be
written as

E z, tð Þ ¼ E0x exp i�xð Þiþ E0y exp i�y
	 


j ðD-7Þ

In (D-7) we have factored out and then suppressed the exponential propagator
[expi(kz-!t)], since it vanishes when the intensity is formed. Further, factoring out
the term exp(i�x) in (D-7), we can write

E z, tð Þ ¼ E0xiþ E0y exp i�ð Þj ðD-8Þ

where � ¼ �y � �x:
The exponential propagator [expi(kz�!t)] is now restored in (D-8) and the real part
taken:

E z, tð Þ ¼ E0x cos kz� !tð Þiþ E0y exp kz� !tþ �ð Þj ðD-9Þ

Equation (D-9) is the vector representation for elliptically polarized light. There are
two special forms of (D-9). The first is for �¼ 0� or 180�, which leads to linearly
polarized light at an angle  [see (D-2)]. If either E0y or E0x is zero, we have linear
horizontally polarized light or linear vertically polarized light respectively. For lin-
early polarized light (D-9) reduces to

E z, tð Þ ¼ ðE0xi� E0yjÞ cos kz� !tð Þ ðD-10Þ

where � corresponds to � ¼ 0� and 180�, respectively. The corresponding Stokes
vector is seen from (D-3) to be

S ¼

E2
0x þ E2

0y

E2
0x � E2

0y

�2E0xE0y

0

0
BBBB@

1
CCCCA ðD-11Þ

The orientation angle  of the linearly polarized light is

tan 2 ¼
S2

S1

¼
�2E0xE0y

E2
0x � E2

0y

ðD-12Þ

From the well-known trigonometric half-angle formulas we readily find that

tan ¼
E0y

E0x

ðD-13Þ

which is exactly what we would expect from inspection of (D-10).

Copyright © 2003 by Marcel Dekker, Inc. All Rights Reserved.



The other special form of (D-9) is for � ¼ �90� or 90�, whereupon the polar-
ization ellipse reduces to the standard form of an ellipse. This reduces further to the
equation of a circle if E0x¼E0y¼E0. For �¼�90�, (D-9) reduces to

E z, tð Þ ¼ E0½cos kz� !tð Þiþ sin kz� !tð Þj� ðD-14Þ

and for �¼ 90�

E z, tð Þ ¼ E0½cos kz� !tð Þi� sin kz� !tð Þj� ðD-15Þ

The behavior of (D-14) and (D-15) is readily seen by considering the equations at
z¼ 0 and then allowing !t to take on the values 0 to 2� radians in intervals of �/2.
One readily sees that (D-14) describes a vector E(z, t) which rotates clockwise at
an angular frequency of !. Consequently, (D-14) is said to describe left circularly
polarized light. Similarly, in (D-15), E(z, t) rotates counterclockwise as the wave
propagates toward the viewer and, therefore, we have right circularly polarized light.

Equations (D-14) and (D-15) lead to a very interesting observation. If we label
E(z, t) in (D-14) and (D-15) as El(z, t) and Er(z, t), respectively, and add the two
equations we see that

El z, tð Þ þ Er z, tð Þ ¼ 2E0 cos !t� kzð Þi ¼ Ex z, tð Þi ðD-16Þ

Thus, a linearly polarized wave can be synthesized from two oppositely polarized
circular waves of equal amplitude. This property played a key role in enabling
Fresnel to describe the propagation of a beam in an optically active medium. The
vector representation introduced by Fresnel revealed for the first time the mathema-
tical existence of circularly polarized light; before Fresnel no one suspected the
possible existence of circularly polarized light. Before we conclude this section
another important property of the vector formulation must be discussed.

Elliptically polarized light can be decomposed into two orthogonal polarized
states (coherent decomposition). We consider the form of the polarization ellipse
which can be represented in terms of (1) linearly � 45� polarized light and (2) right
and left circularly polarized light, respectively. We decompose an elliptically polar-
ized beam into linear �45� states of arbitrary amplitudes A and B (real) and write
(D-8) as

E z, tð Þ ¼ E0xiþ E0y exp i�ð Þj ¼ A iþ jð Þ þ B i� jð Þ ðD-17aÞ

¼ Aþ Bð Þiþ A� Bð Þj ðD-17bÞ

Taking the vector dot product of the left- and right-hand sides of (D-17) and equat-
ing terms yields

E0x ¼ Aþ B ðD-18aÞ

E0ye
i�
¼ A� B ðD-18bÞ

Because A and B are real quantities, the left-hand side of (D-18b) can be real only for
�¼ 0� or 180�. Thus, (D-18) becomes

E0x ¼ Aþ B ðD-19aÞ

�E0y ¼ A� B ðD-19bÞ
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which leads immediately to

A ¼
E0x � E0y

2
ðD-20aÞ

B ¼
E0x � E0y

2
ðD-20bÞ

We see that elliptically polarized light cannot be represented by linear �45� polariza-
tion states. The only state that can be represented in terms of L� 45� light is linear
horizontally polarized light. This is readily seen by writing

E0xi ¼
E0x

2

� �
iþ

E0x

2

� �
iþ

E0x

2

� �
j�

E0x

2

� �
j ðD-21aÞ

¼
E0x

2
iþ j½ � þ

E0x

2
i� j½ � ðD-21bÞ

We see that the right-hand side of (D-21b) consists of linear �45� polarized compo-
nents of equal amplitudes.

It is also possible to express linearly polarized light, E0xi, in terms of right and
left circularly polarized light of equal amplitudes. We can write, using complex
quantities,

E0xi ¼
E0x

2

� �
iþ

E0x

2

� �
iþ i

E0x

2

� �
j� i

E0x

2

� �
j ðD-22aÞ

¼
E0x

2
iþ ij½ � þ

E0x

2
i� ij½ � ðD-22bÞ

We see that (D-22b) describes two oppositely circularly polarized beams of equal
amplitudes.

We now represent elliptically polarized light in terms of right and left circularly
polarized light of amplitudes (real) A and B. We express (D-8) as

E z, tð Þ þ E0xiþ E0y exp i�ð Þj ¼ A iþ ijð Þ þ B i� ijð Þ ðD-23aÞ

¼ Aþ Bð Þiþ i A� Bð Þj ðD-23bÞ

We then find

E0x ¼ Aþ B ðD-24aÞ

E0ye
i�
¼ i A� Bð Þ ðD-24bÞ

We see immediately that for �¼�90�, (D-24) becomes

E0x ¼ Aþ B ðD-25aÞ

�E0y ¼ A� Bð Þ ðD-25bÞ

so (D-23b) then becomes

E z, tð Þ ¼ E0xi� iE0yj ðD-25cÞ
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Equation (D-25c) is the vector representation of the standard form of the polarization
ellipse. For convenience we only consider the þ value of (D-25b) so the amplitudes
(that is, the radii) of the circles are

A ¼
E0x � E0y

2
ðD-26aÞ

B ¼
E0x � E0y

2
ðD-26bÞ

The condition �¼�90� restricts the polarization ellipse to the standard form of the
ellipse [see (D-2)], namely,

E2
x z, tð Þ

E2
0x

þ
E2
y z, tð Þ

E2
0y

¼ 1 ðD-27Þ

Thus, only the nonrotated form of the polarization ellipse can be represented
by right and left circularly polarized light of unequal amplitudes, A and B
(D-26).

In Fig. D-1 we show elliptically polarized light as the superposition of the
right (R) and left (L) circularly polarized light. We can determine the points
where the circles (RCP) and (LCP) intersect the polarization ellipse. We write
(D-27) as

x2

Aþ Bð Þ
2
þ

y2

A� Bð Þ
2
¼ 1 ðD-28Þ

and the RCP and LCP circles as

x2 þ y2 ¼ A2
ðD-29aÞ

x2 þ y2 ¼ B2
ðA-29bÞ

Figure D-1 Superposition of oppositely circularly polarized light of unequal amplitudes to
form elliptically polarized light.

Copyright © 2003 by Marcel Dekker, Inc. All Rights Reserved.



where we have set Ex¼ x and Ey¼ y. Straightforward algebra shows the points of
intersection (xR, yR) for the RCP circle are

xR ¼ �
Aþ B

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2A� B

A

r
ðD-30aÞ

yR ¼ �
A� B

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Aþ B

A

r
ðD-30bÞ

and the points of intersection (xL, yL) for the LCP circle are

xL ¼ �
Aþ B

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2B� A

B

r
ðD-31aÞ

yL ¼ �
A� B

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Bþ A

B

r
ðD-31bÞ

Equations (D-30) and (D-31) can be confirmed by squaring and adding (D-30a) and
(D-30b) and, similarly, (D-31a) and (D-31b). We then find that

x2R þ y2R ¼ A2
ðD-32aÞ

x2L þ y2L ¼ B2
ðD-32bÞ

as expected.
As a numerical example of these results consider that we have an ellipse where

A¼ 3 and B¼ 1. From (D-30) and (D-31) we then find that

xR ¼
�2

ffiffiffi
5

p

3
ðD-33aÞ

yR ¼ �
ffiffiffi
5

p
ðD-33bÞ

and the points of intersection (xL, yL) for the LCP circle are

xL ¼ �2i ðD-34aÞ

yL ¼ �
ffiffiffi
5

p
ðD-34bÞ

Thus, as we can see from Fig. D-1, the RCP circle intersects the polarization ellipse,
whereas the existence of the imaginary number in (D-34a) shows that there is no
intersection for the LCP circle.

We now use these results to analyze the problem of the propagation of an
optical beam through an optically active medium. Before we do this, however, we
provide some historical and physical background to the phenomenon of optical
activity.

Optical activity was discovered in 1811 by Arago, when he observed that the
plane of vibration of a beam of linearly polarized light underwent a continuous
rotation as it propagated along the optic axis of quartz. Shortly thereafter
Biot (1774–1862) discovered this same effect in vaporous and liquid forms of various
substances, such as the distilled oils of turpentine and lemon and solutions of sugar
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and camphor. Any material that causes the E field of an incident linear plane wave
to appear to rotate is said to be optically active. Moreover, Biot discovered that
the rotation could be left- or right-handed. If the plane of vibration appears to
revolve counterclockwise, the substance is said to be dextrorotatory or d-rotatory
(Latin dextro, right). On the other hand, if E rotates clockwise it is said to be
levorotatory or l-rotatory (Latin levo, left).

The English astronomer and physicist Sir John Herschel (1792–1871), son of
Sir William Herschel, the discoverer of the planet Uranus, recognized that the
d-rotatory and l-rotatory behavior in quartz actually corresponded to two different
crystallographic structures. Although the molecules are identical (SiO2), crystal
quartz can be either right-or left-handed, depending on the arrangement of these
molecules. In fact, careful inspection shows that there are two forms of the crystals,
and they are the same in all respects except that one is the mirror image of the other;
they are said to be enantiomorphs of each other. All transparent enantiomorphic
structures are optically active.

In 1825, Fresnel, without addressing himself to the actual mechanism of optical
activity, proposed a remarkable solution. Since an incident linear wave can be repre-
sented as a superposition of R- and L-states, he suggested that these two forms of
circularly polarized light propagate at different speeds in an optically active medium.
An active material shows circular birefringence; i.e., it possesses two indices of refrac-
tion, one for the R-state (nR) and one for the L-state (nL). In propagating through an
optically active medium, the two circular waves get out of phase and the resultant
linear wave appears to rotate. We can see this behavior by considering this phenom-
enon analytically for an incident beam that is elliptically polarized; linearly polarized
light is then a degenerate case.

In Fig. D-2 we show an incident elliptically polarized beam entering an opti-
cally active medium with field components Ex and Ey. After the beam has propa-
gated through the medium the field components are E 0

x and E 0
y.

Fresnel suggested that in an optically active medium a right circularly polarized
beam propagates with a wavenumber kR and a left circularly polarized beam pro-
pagates with a different wavenumber kL. In order to treat this problem analytically
we consider the decomposition of Ex(z, t) and Ey(z, t) separately. Furthermore, we
suppress the factor !t in the equations because the time variation plays no role in the
final equations.

Figure D-2 Field components of an incident elliptically polarized beam propagating

through an optically active medium.
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For the Ex(z) component we can write this in terms of circular components as

ERx zð Þ ¼
Ex

2
cos kRzð Þi� sin kRzð Þj½ � ðD-35aÞ

ELx zð Þ ¼
Ex

2
cos kLzð Þiþ sin kLzð Þj½ � ðD-35bÞ

Adding (D-35a) and (D-35b) we see that, at z¼ 0,

ERx 0ð Þ þ ELx 0ð Þ ¼ Exi ðD-36Þ

which shows that (D-35) represents the x component of the incident field. Similarly,
for the Ey(z) component we can write

ERy zð Þ ¼
Ey

2
sin kRzð Þiþ cos kRzð Þj½ � ðD-37aÞ

ELy zð Þ ¼
Ey

2
� sin kLzð Þiþ cos kLzð Þj½ � ðD-37bÞ

Adding (D-37a) and (D-37b) we see that, at z¼ 0,

ERy 0ð Þ þ ELy 0ð Þ ¼ Eyxj ðD-38Þ

so (D-37) corresponds to the y component of the incident field. The total field E
0
ðzÞ in

the optically active medium is

E
0 zð Þ ¼ E0

xiþ E0
yjþ ¼ ERx þ ELx þ ERy þ ELy ðD-39Þ

Substituting (D-35) and (D-37) into (D-39) we have

E
0 zð Þ ¼ i

Ex

2
cos kRzþ cos kLz½ � þ

Ey

2
sin kRzþ sin kLz½ �

� �

þ j
�Ex

2
sin kRz� sin kLz½ � þ

Ey

2
cos kRzþ sin kLz½ �

� �
ðD-40Þ

Hence, we see that

E 0
x zð Þ ¼

Ex

2
cos kRzþ cos kLz½ � þ

Ey

2
sin kRzþ sin kLz½ � ðD-41aÞ

E 0
y zð Þ ¼ �

Ex

2
sin kRz� sin kLz½ � þ

Ey

2
cos kRzþ cos kLz½ � ðD-41bÞ

Equations (D-41a) and (D-41b) can be simplified by rewriting the terms:

cos kRzþ cos kLz ðD-42aÞ

sin kRz� sin kLz ðD-42bÞ

Let

a ¼
kR þ kLð Þz

2
ðD-43aÞ

b ¼
kR � kLð Þz

2
ðD-43bÞ

Copyright © 2003 by Marcel Dekker, Inc. All Rights Reserved.



so

kRz ¼ aþ b ðD-44aÞ

kLz ¼ a� b ðD-44bÞ

and (D-42) then becomes

cos kRzþ cos kLz ¼ cos aþ bð Þ þ cos a� bð Þ ðD-45aÞ

sin kRz� sin kLz ¼ sin aþ bð Þ � sin a� bð Þ ðD-45bÞ

Using the familiar sum and difference formulas for the cosine and sine terms of the
right-hand sides of (D-45a) and (D-45b) along with (D-43), we find that

cos kRzþ cos kLz ¼ 2 cos
kR þ kLð Þz

2

� �
cos

kR � kLð Þz

2

� �
ðD-46aÞ

sin kRz� sin kLz ¼ 2 cos
kR þ kLð Þz

2

� �
sin

kR � kLð Þz

2

� �
ðD-46bÞ

The term cos(kRþ kL)z/2 in (D-46a) and (D-46b) plays no role in the final equations
and can be dropped. Substituting the remaining cosine and sine term in (D-46) into
(D-41), we finally obtain

E0
x zð Þ ¼

Ex

2
cos

kR � kLð Þz

2
þ
Ey

2
sin

kR � kLð Þz

2
ðD-47aÞ

E0
y zð Þ ¼ �

Ex

2
sin

kR � kLð Þz

2
þ
Ey

2
cos

kR � kLð Þz

2
ðD-47bÞ

We see that (D-47) are the equations for rotation of Ex and Ey. We can write (D-47)
in terms of the Stokes vector and the Mueller matrix as

S0
0

S0
1

S0
2

S0
3

0
BBBB@

1
CCCCA ¼

1 0 0 0

0 cos 2� sin 2� 0

0 � sin 2� cos 2� 0

0 0 0 0

0
BBBB@

1
CCCCA

S0

S1

S2

S3

0
BBBB@

1
CCCCA ðD-48aÞ

where

� ¼
kR � kLð Þz

2
ðD-48bÞ

The angle of rotation � can be expressed in terms of the refractive indices nR and nL
of the medium and the wavelength 
 of the incident beam by writing

kR ¼ k0nR ¼
2�nR



ðD-49aÞ

kL ¼ k0nL ¼
2�nL



ðD-49bÞ
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and k0¼ 2�/
. If nR	 nL the medium is d-rotatory, and if nR
 nL the medium
is l-rotatory. Substituting (D-49) into (D-48), we then have

� ¼
� nR � nLð Þz



ðD-50Þ

The quantity �/d is called the specific rotatory power. For quartz it is found to be
21.7�/mm for sodium light, from which it follows that |nR� nL|¼ 7.1�10�5. Thus,
the small difference in the refractive indices shows that at an optical interface the two
oppositely circularly polarized beams will be very difficult to separate. Fresnel was
able to show the existence of the circular components and separate them by an
ingenious construction of a composite prism consisting of R- and L-quartz, as
shown in Fig. D-3. He reasoned that since the two component traveled with different
velocities they should be refracted by different amounts at an oblique interface. In
the prism the separation is increased at each interface. This occurs because the right-
handed circular component is faster in the R-quartz and slower in the L-quartz. The
reverse is true for the left-handed component. The former component is bent down
and the latter up, the angular separation increasing at each oblique interface. If the
two images of a linearly polarized source are observed through the compound prism
and then examined with a linear polarizer the respective intensities are unaltered
when the polarizer is rotated. Thus, the beams must be circularly polarized.

The subject of optical activity is extremely important. In the field of biochem-
istry a remarkable behavior is observed. When organic molecules are synthesized in
the laboratory, an equal number of d- and l-isomers are produced, with the result
that the mixture is optically inactive. One might expect in nature that equal amounts
of d- and l-stereoisomers would exist. This is by no means the case. Natural sugar
(sucrose, C12H22O6) always appears in the d-rotatory form, regardless of where it is
grown or whether it is extracted from sugar cane or sugar beets. Moreover the sugar
dextrose of d-glucose (C6H12O11) is the most important carbohydrate in human
metabolism. Evidently, living cells can distinguish in a manner not yet fully under-
stood between l- and d-molecules.

One of the earliest applications of optical activity was in the sugar industry,
where the angle of rotation was used as a measure of the quality of the sugar
(saccharimetry). In recent years optical activity has become very important in
other branches of chemistry. For example, the artificial sweetener aspartame and
the pain reducer ibuprofen are optically active. In the pharmaceutical industry it has
been estimated that approximately 500 out of the nearly 1300 commonly used drugs
are optically active. The difference between the l- and d-forms can, it is believed, lead

Figure D-3 Fresnel’s construction of a composite prism consisting of R-quartz and
L-quartz to demonstrate optical activity and the existence of circularly polarized light.

Copyright © 2003 by Marcel Dekker, Inc. All Rights Reserved.



to very undesirable consequences. For example, it is believed that the optically active
sedative drug thalidomide when given in the l-form acts as a sedative, but the d-form
is the cause of birth defects.

Interest in optical activity has increased greatly in recent years. Several sources
are listed in the references. Of special interest is the stimulating article by Applequist,
which describes the early investigations of optical activity by Biot, Fresnel, and
Pasteur, as well as recent investigations, and provides a long list of related references.
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